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Short summary 

Besides reducing animal testing, in vitro models allow for the pre-screening of 

new drug candidates in terms of safety and efficacy before they enter clinical 

trials. To date, models mimicking the deep lung show limitations such as 

cellular origin or lack of appropriate barrier properties. Therefore, the focus of 

this work was on the establishment of a robust and reproducible cell line-based 

coculture model that reflects the two major barrier structures present in the 

alveolar region, namely intercellular junctions and macrophages.  

This model was characterized regarding its morphology and barrier properties, 

with permeability assays showing its applicability for evaluating drug transport 

and absorption. Long-term cocultivation implied its suitability to assess the lung 

in diseased state mainly regarding chronic diseases.  

The application of small amounts of Ag nanoparticles resulted in high 

cytotoxicity in a monoculture of macrophage-like cells, whereas the coculture 

showed only low toxicity. Newly developed starch nanoparticles intended for 

pulmonary drug delivery of proteins were nebulized onto the coculture and were 

evaluated with respect to their impact on the epithelial barrier, cell viability and 

cellular interactions. 

In summary, as a more physiologically-relevant representation of the deep lung, 

the new established coculture can be applied as a useful tool to evaluate new 

formulations intended for pulmonary delivery and further contribute to their 

optimization. 
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Kurzzusammenfassung 

Neben der Reduzierung von Tierversuchen, erlauben in vitro Modelle die 

Voruntersuchung neuer Formulierungen hinsichtlich Sicherheit und Effektivität, 

bevor diese in klinischen Studien eingesetzt werden. Bisher verwendete 

Modelle zur Nachbildung der tiefen Lunge zeigen Limitationen bzgl. 

Zellursprung, Barriereeigenschaften oder Reproduzierbarkeit.  

Daher wurde im Rahmen dieser Arbeit ein auf humanen Zellllinien basierendes 

Kokulturmodell entwickelt, welches neben dichten Zell-Zell-Verbindungen eine 

zweite Barrierestruktur, in Form von Immunzellen, aufweist.  

Das Modell wurde hinsichtlich Morphologie und Barriereeigenschaften 

charakterisiert. Weitere Studien zeigten dessen Eignung für die Evaluierung von 

Wirkstofftransport. Langzeitkokultivierung impliziert den Einsatz für zukünftige 

krankheitsrelevante Fragestellungen. Während die Applikation schon geringer 

Mengen an Silber-Nanopartikeln bei makrophagen-ähnlichen Zellen in einer 

hohen Zytotoxizität resultierte, zeigte die Kokultur nahezu keine Toxizität. 

Des Weiteren wurden neuartige, für die pulmonale Applikation von Proteinen 

entwickelte, Stärke-Nanopartikel vernebelt und deren Effekt auf die 

Zellbarriere, -viabilitäten sowie das zelluläre Interaktionsverhalten untersucht. 

Zusammenfassend lässt sich sagen, dass das hier entwickelte Kokulturmodell, 

zwei für die tiefe Lunge charakteristischen Barrierestrukturen beinhaltend, als 

nützliches Werkzeug zur Evaluierung neuer Formulierungen und deren 

Optimierung eingesetzt werden kann. 
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1. Introduction 

1.1 Respiratory tract: its functions and clearance mechanisms 

Oxygen (O2) forms the basis of almost all life, and is involved in many processes 

in the body. To exert an effect, O2 must first reach the bloodstream, from which it 

is further transported to the cells and tissues. The so-called respiratory tract, 

composed of the conducting airways and the alveolar region, is responsible for 

this transfer of O2. In general, after entering the body through the nose or mouth, 

inhaled air passes through the branching structures of the lung - starting with the 

trachea, followed by bronchi and bronchioles - and finally reaches the alveoli, 

where gas exchange of O2 (from the alveoli to the blood) and CO2 (from the blood 

to the alveoli) takes place. With regard to physiological functions, cellular 

morphology and amount of cells, the epithelium changes along the respiratory 

tract (Figure 1.1). The lung also possesses several drug transporters [1-3] 

including peptide transporters [4], P-glycoprotein (P-gp), breast cancer resistance 

protein (BCRP), multidrug resistance-related proteins (MRPs) [5, 6] and organic 

cation transporters (OCTs) [7-9] that have an effect on drug absorption [10].  

 

Figure 1.1. Epithelial changes along the respiratory tract. The lung comprises many different 

cell types, that differ in function and morphology. Whereas the conductive epithelium is lined by 7 

different cell types, the air-blood barrier within the respiratory zone is formed by two kinds of cells 

that are involved in gas exchange. Adapted and modified with permission from [11], modified from 

[12]. 
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Conducting zone 

The conducting airways begin at the nasal epithelium, followed by the trachea, 

which branches into the bronchi and further into the terminal bronchioles, while 

becoming progressively smaller in diameter [13]. Besides directing airflow, the 

conducting airways also filter, warm and humidify the inhaled air [14].  

The airway epithelium is composed of different cell types, which vary in function 

and morphology [14-16]. These include goblet cells, basal cells, ciliated cells, 

brush cells, serous cells, Clara cells and neuroendocrine cells [1, 17]. Together, 

they form a pseudostratified layer in which the apical membranes are joined by 

tight junctions (TJs). These cell-cell connections divide cellular membranes into 

functional distinct domains, and are further responsible for membrane barrier 

properties [18-20]. 

The main cell population in the tracheal epithelium are ciliated cells, which 

constitute approximately 50% of the total cell population [21, 22]. Almost the 

entire epithelial surface is covered by mucus-producing goblet and so-called Club 

cells, originally known as Clara cells [1, 23, 24]. Besides secreting glycoproteins, 

Club cells are capable of self-renewal and are known to be involved in the repair 

of the bronchioles [25-27]. Further, recent publications describe their involvement 

in the differentiation of alveolar epithelial type II (ATII) cells after severe lung 

injury [27].  

The entire airway epithelium is covered with lining fluid, the so-called mucus [28]. 

This mobile non-cellular barrier is located at the tips of the cilia, and is one of the 

most important defense mechanisms in the human lung. Inhaled particles and 

organisms are captured by the mucus which is transported by ciliary beating to 

the esophagus [29, 30], where it is either eliminated by expectoration or can be 

swallowed and further transferred to the digestive tract [16]. To guarantee the 

optimal level of clearance the mucus blanket is composed of two phases, 

differing in their physical properties. Whereas the upper layer of mucus, most 

proximal to the airspace, has a high viscosity, the region of mucus in close 

contact with the epithelium is a thin and watery layer with a low viscosity. A layer 

consisting of phospholipids lowers the surface tension between these two mucus 

regions [13, 31]. Besides glycoproteins (mucins, 2%), proteins (1%), inorganic 
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salts (1%) and lipids (1%), mucus is composed mainly of water (95%) and is 

primarily secreted from the serous cells of submucosal glands and goblet cells 

[32]. Its thickness depends on the location in the airways as well as on the 

presence of pathological conditions [28]. This can vary between 10 and 30 µm in 

the trachea and 2 and 5 µm in the bronchioles [33]; in diseases such as cystic 

fibrosis (CF) the layer is thicker [34]. 

 

Respiratory zone 

Due to its extensive surface area (~140 m²) and also its thinness of 0.1-0.5 µm, 

the alveolar epithelium, also known as the “air-blood barrier”, permits rapid gas 

exchange by passive diffusion [16, 35, 36], while protecting the body from 

external threats e.g. inhaled toxins, particles and microorganisms. Around 99% of 

the epithelium is made up of two cell types: alveolar type I (ATI) and ATII cells 

[37]. These cells are in contact with the underlying capillary bed, consisting of 

micro vessels formed of endothelial cells, with a surface area of 130 m2 [13, 16]. 

ATI cells cover ~96% of the alveolar surface and display a flattened shape, with a 

diameter of approximately 50-100 µm and an average thickness of just 0.26 µm. 

Considering this rather short diffusion path, ATI cells are known to be responsible 

for gas exchange and drug transport. Morphologically, they exhibit a large 

cytoplasmic volume and only a few cellular organelles [16, 35, 37]. 

In contrast, the smaller ATII cells exhibit a diameter of ~10 µm and an average 

thickness of 5-10 µm. Cuboidal in shape, they cover about 3% of the alveolar 

surface [37]. Moreover, ATII cells are involved in the renewal of injured ATI cells 

as a result of proliferation and subsequent transformation to the squamous cell 

type [13, 35, 38]. Contributing to the regulation of immune defense, ATII cells 

express molecules of the class II major histocompatibility complex (MHC) that are 

important for presentation of antigens and further activation of T cells as well as 

intracellular adhesion molecules such as ICAM-I [13, 39-41]. 

Besides these functions, ATII cells are characterized by the capability to 

synthesize and secrete surfactant, a lining fluid that covers the alveolar 

epithelium similar to the way in which mucus covers the airways and comprises a 
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mixture of phospholipids (90%) and proteins (10%). Four surfactant-associated 

proteins (SPs) are present in particular: SP-A, -B, -C and -D [28, 42-47]. 

Whereas the hydrophilic surfactant proteins SP-A and SP-D are participating in 

the pulmonary immune defense mechanisms by preventing the adhesion of 

inhaled particles or microorganisms to the alveolar epithelium [48], SP-B and 

SP-C are involved in reducing the alveolar surface tension at the air-epithelium 

interface, thus preventing the alveoli from collapsing during exhalation             

[46, 49-52]. Further, they facilitate the formation as well as the stabilization of the 

surfactant film [28], a thin layer with an average thickness of 0.05-0.08 µm      

[33, 53].  

As the mucociliary escalator does not reach the alveoli, macrophages provide an 

alternative means of protection by patrolling the alveolar surface [13]. Arising 

from monocytes in the bone marrow, these phagocytic cells reach the alveoli via 

the capillaries [16]. They play an important role in defense against inhaled 

bacteria and particles by ingesting such foreign matter. Macrophages can be 

cleared from the alveoli to the bronchioles by the lining fluid, and are further 

eliminated along the mucociliary pathway [13, 16, 24, 54]. 

 

1.2 Pulmonary drug delivery and nanoparticles 

To date, oral application is the most preferred way to deliver active 

pharmaceutical ingredients (APIs) to their site of action [13]. Besides its 

advantages including high patient compliance, low production costs of oral 

dosage forms [55] and a large absorption surface [56], some drawbacks have 

always to be considered which may influence the successful action of the used 

drug. These include extremes of pH, especially occurring in the stomach, as well 

as extensive enzymatic activity; the mucus layer lining the entire epithelium may 

also impact on drug absorption and so action, as may the presence of food     

[57, 58]. Another common systemic route of administration is via the skin, a 

natural barrier against particle penetration [59] that is not easy to overcome; as 

such, it is therefore often associated with means of administration which are 

invasive in nature.  
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The lung represents an important alternative route for drug delivery, due to the 

possibility to administer drugs in a non-invasive way to a large epithelial surface 

[60], a relatively low enzymatic activity compared to the gastrointestinal tract (GI) 

[61, 62], high vascularization [1], and avoidance of the first pass effect [13, 63]. 

Besides the local treatment (“air-to-lung”) of respiratory diseases such as 

asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) 

[1, 64-66], the pulmonary route also permits systemic availability of the drug 

(“lung-to-blood”) due to absorption via the thin alveolar epithelium. This allows for 

treatment of diseases such as diabetes [67] or thrombosis [68, 69]. Thus, the 

application of therapeutics via the lung constitutes a promising means to 

administer drugs with poor oral absorption or which show instability in the 

gastrointestinal tract, including small molecules and in particular macromolecules 

e.g. proteins and peptides [13, 33, 70].  

To facilitate and further enhance drug delivery, pharmaceutical companies make 

use of nanotechnology which allows for encapsulation of APIs or diagnostic 

agents in nanosized carriers such as nanoparticles (NPs), and is therefore also 

referred to as nanomedicine [71-73]. Such NPs can protect the drug from 

external influences during its application and can enhance drug permeation 

through cellular membranes [74]. Further, due to their size and surface 

characteristics NPs are able to evade pulmonary clearance mechanisms, to 

permit cell-specific targeting, and importantly, to reduce drug side effects [63]. 

In general, NPs are defined as particles with sizes between 1 and 100 nm and a 

resulting high surface-to-volume ratio [72, 75, 76]. They can be divided into 

natural NPs, occurring as a consequence of dusts, forest fires or volcanic activity 

[77], and engineered NPs [78] that can be found in different application areas 

including electronics, biomedicine, pharmaceuticals, remediation, construction, 

cosmetics and in food packaging [78-82]. Nevertheless, despite their wide usage, 

there is still a huge concern regarding safety of NPs due to the rapid increase in 

nanotechnology worldwide and an increased exposure of humans to 

uncharacterized particles [77]. Airborne NPs smaller than 100 nm seem to have 

unrestricted access to most areas of the lung - their small size facilitates their 

uptake into cells as well as transcytosis across epithelial and endothelial cells 

into the blood and lymphatic circulation, from where they have the potential ability 
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to reach sensitive target sites such as bone marrow, lymph nodes, spleen, and 

heart [77, 83, 84]. The exposure to airborne particles is known to contribute to 

many chronic pulmonary diseases, while exposure to high particle concentrations 

has been associated with increased pulmonary and cardiovascular mortality    

[77, 83].  

Therefore, in the context of pulmonary drug delivery, it is of utmost importance 

that not only the API but also all excipients as well as the final formulation are 

evaluated with regard to their potential toxicological risks. Therefore, both in vivo 

and (more commonly) in vitro models have been established and utilized for 

decades to determine the safety and efficacy of future drug candidates and their 

parent materials [85].  

 

1.3 In vivo models of the lung 

Potential drug candidates can be defined by applying in vitro bioassays that 

evaluate properties such as their impact on cell viability or bacterial growth 

behavior. However, in vivo toxicity and efficacy of inhaled drugs cannot be 

determined using these assays [86]. Thus, animal experiments can better provide 

an indication of the therapy outcome and further improve the understanding of 

pharmacokinetics and dynamics of a potential formulation [85, 87]. However, in 

addition to substantial differences in lung anatomy, several critical points 

including fluctuating clearance, issues related to long-term therapy or drug 

binding to serum proteins may vary between species, meaning that even the 

relevance of animal models may sometimes be questionable [88]. They are 

probably still the best choice to determine clearance, systemic side effects and 

pharmacokinetic parameters in spite of such points however [85].  

Until today, most in vivo drug screens have been performed in rodents including 

mice, rats, guinea pigs or rabbits. Long developmental periods and high 

maintenance costs hinder a high-throughput screening approach however. 

Therefore, Caenorhabditis elegans with its microscopic size, short life cycle, 

genetic tractability, and low-cost laboratory maintenance is an attractive model 

organism for infection and life-span studies [89-94].  
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Animal models for chronic infections or diseases such as asthma, COPD and CF 

are also well-established and have made great progress in terms of genetic 

modifications, but they still do not fully reflect the morphology of the lung in 

diseased states and therefore continue to need some improvement [95, 96]. The 

failure rate of translating data from animals to humans also still remains high, in 

spite of the considerable advances that have been made in in vivo models; this 

fact forms part of an ongoing discussion on the utilization of animal models [97].  

 

1.4 In vitro models of the lung 

Cell- and tissue-based models serve as important alternatives to animal testing 

for predicting safety and efficacy of new drug candidates and formulations, as 

well as for the evaluation of inhaled chemicals or particulate matter [98, 99]. 

While these models cannot mimic the whole organism, the deliberate reduction of 

biological complexity that they provide can in fact be an advantage, permitting 

the study of particular scientific questions under well-controlled conditions, e.g. 

understanding of transport mechanisms across epithelial barriers [13]. In vitro 

models can help to focus on diverse levels of cellular organization and therefore 

they may allow for studying processes in more depth than is possible with in vivo 

models. But it has always to be kept in mind, that these models have their 

limitations as the employed cells are sometimes not strictly 

physiologically-relevant with respect to their origin or not suitable for mimicking 

the deep lung due to an absence of barrier properties. Further, artifacts may 

occur in such models, causing misleading results [85].  

In the case of pulmonary delivery, it is essential that epithelial cell models form a 

tight barrier against solutes or particles, similar to the in vivo situation. In vitro, 

this parameter can be monitored by measuring the so-called transepithelial 

electrical resistance (TEER) [13] and by determining the apparent permeability 

coefficient (Papp) of paracellular markers [85]. In general, functional epithelia 

exhibit high TEER values in combination with low permeability levels               

[24, 100, 101]. To further evaluate particle safety and impact on respiratory 

epithelia, assays measuring cytotoxicity (i.e. 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay [102]), changes in gene expression, 
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production of reactive oxygen species (ROS) or the secretion of pro-cytokines 

with inflammatory responses are utilized [85]. Several in vitro models including 

mono- and advanced cocultures mimicking the upper airways or the deep lung to 

evaluate safety and uptake of nanoparticles [103] have already been described in 

literature.  

 

Single cell-based cultures 

To mimic the upper airways, a number of cell lines have been extensively used. 

Calu-3 cells, derived from a submucosal adenocarcinoma [24, 104], are probably 

the most commonly used cell line to evaluate pulmonary drug delivery                     

[24, 105-107]. Whereas cells cultivated at air liquid interface (ALI) conditions are 

able to differentiate and build a mucus layer similar to the physiological situation, 

cultures grown under liquid covered conditions (LCC) exhibit an altered 

differentiation and permeability to substances [101, 108]. Besides Calu-3 cells, 

16HBE14o- cells (of human bronchial epithelial origin) have been used in studies 

addressing drug absorption and interaction with the epithelium [109-113]. 

Although exhibiting a tight barrier and expressing important transporters such as 

P-gp and the lung resistance-related protein (LRP) [114], these cells lack cilia 

and mucus production when cultivated at ALI [109]. Another cell line of bronchial 

origin, NCl-H441, exhibits biochemical and morphological characteristics of both 

ATII cells and Club cells [1, 23], forms a polarized monolayer with functional tight 

junctions, and expresses drug transporters such as P-gp and OCTs [9, 85, 115]. 

These features make NCI-H441 cells very well-suited for evaluating drug and 

carrier transport. Besides cell lines, primary cells have also been used in 

pulmonary drug delivery. For example, commercially available primary normal 

human bronchial epithelial (NHBE) cells show barrier properties and express 

important drug transporters, such as P-gp [116]. Besides evaluating drug 

transport, this model can also be utilized to evaluate anti-inflammatory drugs or 

carriers, due to the fact that air pollutants can induce inflammatory responses 

[117].  

In contrast to the upper airways, only a few models are available mimicking the 

deep lung. The A549 cell line, derived from an alveolar epithelial cell 
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adenocarcinoma [118] is the most commonly used cell line for mimicking the 

alveolar region, even though it lacks epithelial barrier function [100, 119]. A549 

cells have been intensively used in studies addressing drug transport            

[100, 111, 120-122], and particle interactions [123-126].  

Due to their capacity to express functional tight junctions, resulting in high TEER, 

primary ATI-like cells are the best model to mimic the human air-blood barrier. 

Therefore, filter-grown human alveolar epithelial cells (hAEpC) in primary culture 

were established to evaluate transport of drugs or carriers [100, 127, 128]. 

However, their use is limited due to the restricted access to primary tissue, short 

cell life-span and inter-individual differences, which leads to low reproducibility. 

This fact excludes them from use in high-throughput screening of new 

formulations. In this respect, a new human transduced ATI cell line (TT1) was 

obtained by immortalization of primary ATII cells, to study inflammatory 

responses and NP uptake [129, 130]. However, these cells also lack expression 

of tight junctions, and as such models of the deep lung that maintain cell 

differentiation and barrier properties are still needed. 

 

Advanced cell culture models 

Modeling the lung with its complex structure is quite challenging, since these 

models must incorporate alveolar epithelial cells, fibroblasts, endothelial cells, 

immune cells and potentially also other cell types. Therefore, advanced in vitro 

models based on cocultures cultivated on permeable filters or on a chip have 

been established, aiming to mimic basic interactions between various respiratory 

cell populations [14, 85].  

More information on coculture models can be found in literature                         

[1, 13, 14, 16, 85]. As an example, Rothen-Rutishauser and colleagues 

established a triple cell culture model composed of epithelial cells (A549), 

monocyte derived macrophages, and dendritic cells, which, when cultivated at 

ALI showed greater efficacy in predicting in vivo toxicity compared to 

monocultures [126]. Immune cells most certainly play a crucial role in forming an 

additional barrier in such models and also in vivo, due to particle-phagocytosis 
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and inflammatory responses [85]. The transport of polyelectrolyte microcapsules 

within the above described triple coculture model was recently shown by Kuhn 

et al. [131]. Further, to study the potential toxic effect of particles in the lung, 

Klein et al. established a tetraculture comprising four different human cell lines, 

including epithelial cells (A549), macrophages (THP-1), mast cells (HMC-1) and 

endothelial cells (EA.hy 926) [132]. A coculture model mimicking the 

alveolar-capillary barrier evaluating the damage caused by silica NPs in the deep 

lung has also been introduced, by Kasper et al. They showed that the developed 

coculture comprising the epithelial cell line NCI-H441 and ISO-HAS-1 as 

endothelial cells was less sensitive regarding toxic effects compared to 

conventional monocultures, but conversely much more sensitive in terms of 

mimicking inflammatory responses [133]. Moreover, a suitable coculture model to 

evaluate adsorption, uptake and trafficking of nanosized carriers under different 

physiological conditions was established by Hermanns et al., involving NCI-H441 

in coculture with either primary isolated human pulmonary microvascular 

endothelial cells (HPMECs) or endothelial cells (ISO-HAS-1). Within these 

cocultures, epithelial cells acted differently when compared to epithelial 

monocultures with respect to barrier properties and inflammatory responses 

[134].  

Although these coculture models showed several advantages compared to 

monocultures, they still lack the expression of functional tight intercellular 

connections whose alteration is known to be involved in pathogenesis, as noted 

for example in asthma and chronic bronchitis [135, 136].  

Recently, an autologous coculture composed of primary ATI-like cells and 

alveolar macrophages was established by Hittinger et al. to evaluate the safety of 

airborne particles [137]. The advantage of this model is the use of primary cells, 

which form functional tight junctions and exhibit a similar physiology to what is 

observed in vivo [100, 128]. Moreover, primary alveolar macrophages obtained 

from the same donor allow a better in vivo-in vitro correlation. Nevertheless, their 

use is limited due to restricted access to primary tissue, short life-spans of 

primary cells and inter-individual differences. 
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Currently, so-called organs-on-a-chip, micro-engineered biomimetic systems 

containing microfluidic channels lined by living human cells, have been 

developed to meet the high-throughput needs for drugs and particle toxicity tests 

[138, 139]. The application of mechanical stress to lung-on-a-chip models has 

shown higher toxic and inflammatory responses as well as particle uptake 

compared to conventional, comparable static monocultures [138]. Although their 

standardization is still challenging, these models serve as promising alternatives 

to animal models in the case of pharmaceutical, chemical and environmental 

applications [85]. 
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2. Aim of the work 

Until now, several in vitro models mimicking the lung have been used to evaluate 

the impact of inhaled components including NPs, chemicals, microorganisms and 

toxins. Nevertheless, there is still a need for models of the deep lung that 

maintain cell differentiation and barrier properties. In this regard, an autologous 

coculture model comprising primary alveolar epithelial cells and alveolar 

macrophages was recently established. While primary cells show similarities to 

in vivo physiology, the isolation of primary cells is time consuming and expensive. 

Moreover, their short life-span and variability between donors results in low 

reproducibility of primary cell-based models, further restricting their use for 

high-throughput screening of new formulations.  

To increase the reproducibility and further facilitate high-throughput screening of 

new drug candidates, a more robust cell line-based coculture model mimicking 

the human air-blood barrier in healthy state was investigated within this work. For 

this purpose, the new established ATI-like cell line, hAELVi, was combined with 

previously differentiated macrophage-like cells (THP-1 cell line). Whereas 

hAELVi cells represent a diffusional barrier within the system by exhibiting 

functional tight junctions, the macrophages should represent an immunological 

barrier in particular for larger molecules and NPs similar to the in vivo situation.  

The first part of this thesis includes the characterization of the hAELVi cell line 

cultivated under LCC and at ALI with respect to its barrier properties and 

suitability for assessing drug transport.  

The second and main part of this thesis includes the set-up and subsequent 

characterization of the hAELVi-/THP-1 coculture models with regard to 

examination of cellular morphology by confocal laser scanning microscopy 

(CLSM), scanning electron microscopy (SEM) as well as transmission electron 

microscopy (TEM), determination of barrier properties by measurement of TEER, 

and assessment of its suitability to evaluate drug transport.  
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This work is part of the COMPACT project, a European association of academic 

and industrial partners which is funded by the Innovative Medicines Initiative (IMI) 

and the European Federation of Pharmaceutical Industries and Associations 

(efpia). The consortium comprises several work packages (WPs) that are 

focusing on the identification and characterization of transport pathways (WP3) 

across biological barriers involving oral (WP4), brain (WP5), lung (WP6) and skin 

(WP7) delivery and cell membranes. Further, construction and characterization of 

formulations for non-invasive delivery of peptide- and protein (WP1) as well as 

nucleic acid-based (WP2) drugs are investigated in COMPACT. 

With this regard, the last part of this thesis includes the application of different 

kinds of NPs. Well-characterized Poly (D, L)-lactide-co-glycolide-(PLGA) / 

chitosan (CS) that are known to be non-toxic and have already been used as 

drug delivery system (DDS) for pulmonary delivery as well as commercially 

available silver (Ag) NPs were applied to the newly established coculture model 

to assess its ability to evaluate NP safety. In this respect the impact of NPs on 

cell viability, barrier properties and inflammatory responses was determined. In 

terms of pharmaceutical relevance, a newly developed DDS, namely starch NPs 

intended for pulmonary delivery of proteins and peptides (PhD thesis, Sarah 

Barthold) prepared within COMPACT, was nebulized onto hAELVi-/THP-1 

monocultures as well as the coculture cultivated at ALI. The system was further 

evaluated regarding cell viability (MTT assay), barrier properties (TEER) and 

cellular interactions. Additionally, starch NPs loaded with a model cargo 

(Immunoglobulin G1; IgG1) were applied in a similar set-up and were evaluated 

in the same way.  

In summary, the overall aim of this thesis was to successfully establish a cell 

line-based coculture model of the human air-blood barrier in the healthy state. 

This model should serve as a tool to evaluate interactions of aerosolized drug 

carriers with the epithelium (by allowing for determination of e.g. cytotoxicity and 

cellular interactions-uptake) and further contribute to the improvement of new 

drug formulations. 
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3. Characterization of the newly established human 

alveolar epithelial lentivirus immortalized cell line 

(hAELVi) 

 

 

 

 

 

 

 

 

The author of this thesis made the following contributions to this chapter:  

Performed all cell culture experiments, measured TEER, interpreted the 

experimental data, cultivated, fixed and stained the cells for confocal analysis, 

histological cross-sections and wrote the chapter. Confocal images were made 

by Dr. Cristiane de Souza Carvalho-Wodarz. Further sample preparation, 

cutting, staining and imaging of histological cross sections were performed by 

Marijas Jurisic at Saarland University.  
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3.1 Introduction 

According to the 3R principle (replace, reduce, refine) [140], new in vitro models 

that contribute to a reduction in the use of animal models for evaluating safety of 

inhaled components including chemicals, (nano) materials and drugs are of 

utmost significance. So far, the most commonly used cell line that mimics the 

alveolar region and is further applied in assays that aim to evaluate toxicity of 

inhaled materials is A549, which is adenocarcinomic in origin [118]. As already 

mentioned in the first chapter, A549 cells are deficient in the expression of 

functional tight intercellular connections. In contrast, to mimic the upper airways, 

cell lines such as Calu-3, 16HBE14o- or NCI-H441 [23, 101, 108, 109, 112, 113] 

are commonly used. Although these are not suitable for mimicking the deep lung, 

models consisting of such cells have been successfully applied to assess safety 

and uptake of NPs intended for inhalation.  

Isolated cells in primary culture are the so-called “gold standard” to mimic the 

human air-blood barrier [141]. These cells allow for a better representation of the 

situation that can be found in vivo [142], as they reflect physiological phenotypes 

and form functional tight junctions [6, 100, 128]. Nevertheless, their use is 

restricted due to limited access to primary material, short cell survival time 

periods, and the potential for high variabilty in data obtained from such cultures 

(as a result of inter-donor differences). The latter leads to low reproducibility 

which limits the use of primary cell-based models in high-throughput screening of 

new drug candidates. To combat these problems, an ATI cell line (TT1) has been 

obtained by immortalization of primary ATII cells. This cell line reflects the 

physiological phenotype of ATI cells, and has been used in studies for evaluating 

inflammatory responses and NP uptake [129]. Nevertheless, these cells are not 

able to express functional tight junctions [130]. Thus, by applying a novel 

immortalization regime comprising a defined set of immortalizing genes, an 

ATI-like cell line, namely human alveolar epithelial lentivirus immortalized 

(hAELVi) cells that display functional intercellular connections could be 

generated. Detailed information regarding the different steps and selection 

criteria that finally led to the obtained cell line, as well as first initial 

characterization studies including TEER measurements, SEM and CLSM images 



3. Characterization of the newly established alveolar epithelial cell line hAELVi 

 
27 

 

for morphology, as well as polymerase chain reaction (PCR) -analysis of ATI-

specific markers can be found in the thesis “Immortalization of primary human 

alveolar epithelial cells: A new in vitro model of the air-blood barrier forming 

functional tight junctions” by Anna Kühn [143]. The following chapter describes 

the characterization of this prospective model for drug delivery with regard to the 

formation of tight intercellular junctions and drug transport.  

The two obtained clones (hAELVi.A and hAELVi.B) of this new cell line were 

cultivated under LCC as well as at ALI, and were further evaluated and compared 

regarding barrier properties by means of TEER measurements, and staining of 

the tight junction proteins zonula occludens (ZO-1) and occludin (OCLN). 

Moreover, their suitability for predicting drug absorption was evaluated via 

transport studies, using sodium fluorescein (NaFlu), a hydrophilic molecule 

typically employed to assess paracellular transport. 
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3.2 Materials and Methods 

3.2.1 Cell culture 

hAELVi.A or hAELVi.B cells were cultivated onto fibronectin (1% (v/v); FN; 

Corning, USA) / collagen (1% (v/v); COL; Sigma; Germany)-coated Transwell® 

membranes (Corning, USA) with a pore size of 0.4 µm and growth areas of 

0.33 cm² (Corning: 3470; for TEER measurement) and 1.12 cm² (Corning: 3460; 

for TEER, CLSM, and transport studies). Cells were seeded at 1x105 cells/cm² in 

small airway growth medium (SAGM; Lonza) containing 1% fetal bovine serum 

(FBS; Lifetechnologies, Germany) and 1% penicillin/streptomycin (P/S; 

10.000 U/mL, Gibco Lifetechnologies, USA) under LCC, i.e. 200 µL apical / 

800 µL basolateral (0.33 cm² Transwell® membranes) and 500 µL apical / 1.5 mL 

basolateral (1.12 cm² Transwell® membranes). To set up ALI cultures, the cells 

were seeded under LCC; after two days in culture the medium was then 

completely aspirated, and the cells were further fed from the basolateral 

compartment only, i.e. 200 µL for Transwells® with a growth area of 0.33 cm² and 

500 µL for bigger Transwells® with 1.12 cm² cultivation space. The cells were 

cultivated at 37 °C, 5% CO2 and 95% humidity and the medium was changed 

every second day. To characterize and compare hAELVi cells under both 

conditions, measurements of the TEER were performed over a period of 7 or 

14 days. Afterwards, the cells were fixed and stained for immunohistochemistry, 

or transport studies were conducted. To determine the ability of hAELVi cells to 

grow in higher passages and further to exhibit TEER, the cells were routinely 

cultivated in a six-well plate in a ratio of 1:3 and seeded as previously described 

every 2-4 weeks to determine the TEER. 

 

3.2.2 Transepithelial electrical resistance (TEER) 

The TEER is a parameter that describes the integrity of a cell layer [13]. To 

determine this factor, hAELVi cells were seeded as previously described in 

section 3.2.1 and TEER determined as described previously                           

[108, 127, 144, 145]. Briefly, to avoid fluctuation in TEER due to temperature 
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influences, the cells were placed on a heating plate (37 °C) and resistance 

measurements were conducted using a chopstick electrode and an epithelial 

voltohmmeter (EVOM) both from World Precision Instruments, Sarasota, USA. 

To further determine the TEER in samples exposed to ALI, medium was refilled 

into Transwell® compartments to LCC levels, i.e. 500 µL (apical) and 1.5 mL 

(basolateral). After 1 h of equilibration TEER measurements were conducted. 

Afterwards, the medium was aspirated and the cells were fed and re-cultivated at 

ALI. The TEER was calculated by subtracting the resistance value of black 

inserts containing only medium (39 Ω for 0.33cm² / 110 Ω for 1.12 cm²) from all 

samples, with further multiplication by the cultivation area of the inserts. 

 

3.2.3 Confocal laser scanning microscopy (CLSM) 

To visualize the formation of tight junctions, 1x105 hAELVi cells/cm² were seeded 

on FN/COL-coated Transwell® filters with a pore size of 0.4 µm and a growth 

area of 1.12 cm². The samples were further cultured under LCC and at ALI as 

previously described in section 3.2.1, and were fixed with 3% methanol free 

paraformaldehyde (PFA; stock 16%; 15710-S, Electron Microscopy Sciences, 

USA) in phosphate buffered saline (PBS) for 30 min after 7 and 14 days in 

culture. Afterwards, the samples were treated and stained as previously 

described [146] with minor modifications. Briefly, the samples were quenched 

with 50 mM NH4Cl/PBS for 10 min and subsequently blocked and permeabilized 

by using a mixture of 0.5% bovine serum albumin (BSA) / 0.025% Saponin in 

PBS for 30 min. All steps including fixation, blocking and permeabilizing were 

performed at room temperature (RT) and from the apical side. Primary antibodies 

against the tight junction proteins OCLN (mouse anti-occludin, Catalog 

No 33-1500, Invitrogen) and ZO-1 (rabbit anti-ZO-1, Catalog No 61-7300, 

Invitrogen) were diluted 1:200 in 0.5% BSA / 0.025% Saponin in PBS and 

incubated with cells overnight at 4 °C. The secondary antibodies for OCLN 

(polyclonal Alexa-Fluor 488 conjugated rabbit anti-mouse, Catalog No. A11059, 

Invitrogen) and ZO-1 (polyclonal Alexa-Fluor 633, conjugated goat anti-rabbit, 

Catalog No. A21070, Invitrogen) were diluted 1:400 in PBS and incubated with 
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cells for 1 h at 37 °C. Afterwards, the samples were washed twice with PBS and 

counterstained with 4',6-diamidino-2-phenylindole (DAPI) diluted 1:50000 (nuclei, 

Stock 1 mg/mL; LifeTechnologies™, Darmstadt, Germany) in PBS. Transwell® 

membranes were removed from insert holders with a scalpel, put on an objective 

slide and mounted in DAKO medium (Product No. S302380-2, DAKO, USA), 

before they were analyzed by CLSM (Zeiss LSM710, Zeiss, Germany). 

Microscopy images of fixed samples were acquired at 1024 × 1024 resolution, 

using a 63x water immersion objective and z-stacks of around 6 μm. Confocal 

images were analyzed using Zen 2012 software (Carl Zeiss Microscopy GmbH) 

and Fiji Software (Fiji is a distribution of ImageJ available at http://fiji.sc). 

 

3.2.4 Histology 

To characterize the hAELVi cells regarding morphology, histological 

cross-sections were prepared. For that, hAELVi cells were cultivated under LCC 

and at ALI as previously described in 3.2.1 and fixed on days 7 and 14 with 3% 

methanol free PFA for 30 min at RT. Afterwards, the samples were dehydrated 

with gradual ethanol concentrations (35-50-70-95-100-100% for 10 min each, 

diluted in H2Od), followed by the removal of alcohol by using Histo-clear II 

(Histological Clearing Agent; National diagnostics, USA) for 2x 10 min. 

Subsequently, the samples were embedded in paraffin (Histowax® Embedding 

Medium; Leica Microsystems, Germany) for 2x 1 h and stored overnight at 4 °C 

before they were cut in 4 µm slices using a Microtome-Reichert Jung 2040 

Autocut (Boston Laboratory Equipment, USA). In a next step, the slices were 

stained with hematoxylin/eosin, mounted with Roti®-Histokitt (Carl Roth GmbH + 

Co. KG, Germany) and analyzed with a Zeiss light microscope (Zeiss Imager 

M1m, Zeiss, Germany), using a 100x objective.  
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3.2.5 Transport studies 

To evaluate the suitability of this model for analyzing drug absorption, the 

transport of the paracellular marker NaFlu alone and in combination with 

ethylenediaminetetraacetic acid (EDTA), a modulator of tight junctions, was 

determined. For this purpose, hAELVi.A monolayers were cultured under LCC 

and at ALI to further determine the Papp - a parameter that describes the ability of 

a compound to overcome the epithelial barrier and in doing so may give a hint as 

to its potential bioavailability in vivo [13]. 

Briefly, 1x105 cells/cm² were seeded on FN/COL-coated Transwell® filters with a 

pore size of 0.4 µm and a growth area of 1.12 cm2. Two days after seeding, the 

seeded Transwell® filters were divided into two groups, one for culturing under 

LCC and the other at ALI. TEER measurements were conducted every two days 

to monitor the cell growth, until the transport studies were performed on days 7 

and 14 for LCC and ALI cultures, respectively. Transport experiments were then 

conducted according to previous protocols [100, 114] with minor modifications. 

Briefly, before starting the experiment, the cells were washed twice with 

pre-warmed Krebs-Ringer Buffer (KRB; 142.03 mM NaCl, 2.95 mM KCl, 

1.49 mM K2HPO4
*3H2O, 10.07 mM HEPES, 4.00 mM D-Glucose, 

1.18 mM MgCl2*6H2O, 4.22 mM CaCl2*2H2O; pH 7.4) and were further incubated 

with KRB for 45 min. TEER was measured before and after the experiment to 

check barrier integrity. To start the transport study, KRB was aspirated and 

520 µL NaFlu (10 µg/mL in KRB) ± 16 mM EDTA were added to the apical 

(donor) compartment, and 1.7 mL KRB was put into the basolateral compartment 

(acceptor). Samples were directly taken from the donor (20 µL) just at the start 

and the end of the experiment as well as from the acceptor compartment 

(200 µL) and were subsequently transferred into a 96-well plate. During the 

transport study, the plates were placed on a MTS orbital shaker (150 rpm; IKA, 

Germany) in the incubator at 37 °C. Samples from the basolateral compartment 

were taken and replaced with 200 µL of fresh KRB every 30 min for 3 h. The 

samples were then measured using a Tecan® plate reader (Tecan Deutschland 

GmbH, Germany) at wavelengths of 488 nm (em) and 530 nm (ex).  
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3.2.6 Statistical analysis 

Data represent of 2-3 experiments and are shown as mean ± standard error of 

the mean (SEM*). Two-way ANOVA with Bonferroni´s post hoc test was 

performed using GraphPad Prism 5 software (GraphPad).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Characterization of the newly established alveolar epithelial cell line hAELVi 

 
33 

 

3.3 Results and Discussion 

3.3.1 hAELVi cells exhibit tight barriers when cultivated under liquid covered 

conditions (LCC) and at air liquid interface (ALI) 

Epithelial barriers play a crucial role in animal survival, by protecting these 

organisms from external threats such as pathogens or toxins. As they are 

permeable to ions, gases, nutrients and macromolecules, epithelial barriers also 

contribute to the regulation of hydric balance and overall homeostasis                     

[37, 147, 148]. Besides adherent junctions, gap junctions and desmosomes, TJs 

are an essential component of the epithelial barrier [148]. TJs were first identified 

via electron microscopy in 1963 by Farquar and Palar [149] and are composed of 

various transmembrane proteins such as claudins, OCLN, tricellulin, and 

junctional adhesion molecules (JAMs); cytoplasmic linker or adaptor proteins 

which connect them to the actin cytoskeleton including ZO-1, -2, -3, cingulin, and 

MAPP1; and signaling molecules such as Protein kinase C [150-154]. TJs are 

able to change their permeability and functional properties in response to stimuli, 

regulating and permitting the transit of ions, water or molecules while restricting 

the passage of large molecules [155-158]. Further, they divide cell membranes 

into functionally distinct apical and basolateral domains, that lead to cell polarity 

and result in cell barrier properties [16, 18-20, 159, 160]. Measurement of TEER 

can be partly used to characterize these properties with regard to the cell layer 

integrity [13]. Usually, in vitro, functional epithelial barriers exhibit high TEER 

values, ranging from ~400-600 Ω*cm² in the case of the intestine [161], 

1000-1500 Ω*cm² for the bronchial epithelium [24, 101], and in the order of 

>1000 Ω*cm² for the alveolar epithelium [85, 100]. 

To evaluate the ability to form a barrier comparable to that of primary cells, which 

more closely represent the in vivo situation, the new established hAELVi cell line 

was seeded onto previously-coated permeable filter membranes, and TEER was 

determined every second day for 7 and 14 days (Figure 3.1). After 7 days, cells 

cultivated at ALI showed higher TEER, up to 332 Ω*cm², compared to samples 

under LCC where values of ~135 Ω*cm² could be observed. On day 12 cells in 

both culture conditions reached TEER values up to 770 Ω*cm², and even higher 
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resistance values of up to 3100 Ω*cm² (ALI) and 2400 Ω*cm² (LCC) were noted 

after 14 days in culture.  
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Figure 3.1. Barrier properties of hAELVi cells. hAELVi cells were cultured under LCC and at 

ALI. TEER was measured every second day for a period of 7 and 14 days. Data shown are 

mean ± SEM* (n=12) from three independent experiments; *P<0.05; **P<0.01; ***P<0.001 vs. LCC. 

 

Comparable values were observed in human alveolar epithelial cells in primary 

culture (hAEpC) that developed a maximum TEER of 2000 Ω*cm² after 

approx. 6-8 days in culture. Whereas hAEpC exhibit short life-spans of around 

15 days resulting in decrease of TEER after this time [100, 127], hAELVi cells 

maintained high TEER values for up to 25 days [162]. 

To further confirm the formation of TJs, the expression of two characteristic 

proteins associated with the TJs, namely OCLN (Figure 3.2 A, C, E, G; green) 

and ZO-1 (Figure 3.2 B, D, F, H; red) were analyzed and further visualized via 

CLSM.  
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Figure 3.2. Visualization of tight junction proteins occludin (OCLN) and zonula occludens-1 
(ZO-1) in hAELVi monolayers. Z-stack images from confocal laser scanning microscopy of 
hAELVi cells cultured under LCC (A, B, E, F) and at ALI (C, D, G, H) for 7 (A-D) and 14 days 
(E-H). tight junctions (occludin, green; ZO-1, red). Nuclei are counterstained with DAPI (blue). 
Scale bar: 20 µm. 
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Samples cultured under LCC for either 7 or 14 days expressed both OCLN 

(Figure 3.2 A, E) and ZO-1 (Figure 3.2 B, F), that appears as a thin continuous 

line between the adjacent cells, indicating a densely packed monolayer with 

clearly labeled TJ complexes. Comparable to samples grown under LCC, no 

difference in the expression of OCLN (Figure 3.2 C, G) and ZO-1 

(Figure 3.2 D, H) could be observed in cells when cultivated at ALI for 7 and 

14 days. Whereas TEER measurements showed differences with regard to 

cultivation times and magnitude of values, no differences could be observed in 

CLSM images of TJ-associated proteins. This can be possibly explained by the 

longer period of time which TJs require to mature to functional TJs, which 

ultimately results in increasing TEER values. 

OCLN, with a molecular weight of ~65 kDa, was the first protein found to be a 

major component of the TJ in 1993 [163]. It was later proposed to be involved in 

signaling pathways and TJ assembly [164]. Van Itallie and colleagues further 

investigated its role in cell-cell adhesion in several OCLN-deficient fibroblast cell 

lines that, however, do possess well-developed ZO-1-containing adherent 

junctions. They could show that exogenous OCLN co-localized with ZO-1 at 

points of cell-cell contact and further conferred cell-cell adhesion in these cells 

[165]. Further, in vitro and in vivo binding assays have shown, that ZO-1 interacts 

with OCLN as well as with F-actin, suggesting that ZO-1 acts as a linker between 

OCLN and the actin cytoskeleton [166]. 

As the TJs are crucial for maintaining cell polarity and junctional integrity, and 

therefore are forming a barrier between compartments, it is not surprising that a 

range of diseases are associated with the disruption of the TJs. In most cancer 

tissues, cells lose their polarity and contact inhibition, which further leads to 

migration of undifferentiated cells. Alterations in TJ integrity are also known to be 

involved in inflammatory diseases including inflammatory bowel disease            

[167, 168], multiple sclerosis [169], and diabetes [170], and may be important for 

the course of infections in the lung, such as asthma and CF [136, 171].  
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3.3.2 hAELVi cells exhibit tight barriers when cultivated in higher passages 

To further characterize the hAELVi cells with regard to their growth behavior and 

their ability to exhibit a tight epithelial barrier at higher passage numbers, both 

hAELVi clones (hAELVi.A and hAELVi. B) were cultivated in six-well plates and 

seeded as previously described every 2-4 weeks to determine the TEER.  

Differences were observed both in the magnitude of TEER values and in the time 

at which the cells started to build functional TJs. The hAELVi.A clone reached 

higher TEER in a shorter period of time compared to the hAELVi.B clone 

(Figure 3.3), indicating a faster differentiation of hAELVi.A cells. This behavior 

could also be observed in lower passage numbers [162]. This shift in exhibiting a 

tight epithelial barrier can be clearly observed at passage 69, where hAELVi.A 

cells displayed TEER values of ~2900 Ω*cm² compared to significant lower 

values of ~390 Ω*cm² in samples of hAELVi.B cells. This trend can clearly be 

observed at passage 75, where hAELVi.B showed significant lower TEER values 

of ~400 Ω*cm² compared to hAELVi.A that already showed ~3000 Ω*cm² after 

17 days in culture. However, after 21 days in culture (p75) hAELVi.B cells also 

exhibited high values of around 2500 Ω*cm² (p75*). 
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Figure 3.3. Barrier properties of hAELVi monolayers in higher passages. Both hAELVi 
clones were cultivated under LCC and TEER was measured for 17 days (p69 and p75), 21 days 
(p75*) and 15 days (p86). Data shown are mean ± SEM* (n=4); **P<0.01; ***P<0.001.  
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These results show that the hAELVi cells can be cultivated in higher passages 

and maintain their barrier function up to passage number 86, at which both 

clones exhibit higher TEER (>1000 Ω*cm²) after 15 days. To evaluate if a change 

in the expression of TJ proteins or an alteration in the karyotype can be 

responsible for such a shift, further TEER measurements in combination with 

analysis of TJ proteins via visualization or PCR as well as karyotyping should be 

performed in following passages.  

 

3.3.3 Morphological analysis of monocultures under liquid covered conditions 

(LCC) and at air liquid interface (ALI) via histological cross-sections  

Besides the characterization via TEM and SEM [162], histological cross-sections 

were conducted to characterize the hAELVi cells with regard to their morphology. 

Therefore, the cells were grown for 7 and 14 days before they were fixed and 

processed for histology examinations.  

 

Figure 3.4. Morphology of hAELVi cells. hAELVi cells cultivated under LCC (A, C) and at ALI 

(B, D) for 7 (A, B) and 14 days (C, D) are shown on top of Transwell® filter membranes, with 

membrane pore cross-sections.  

 

Samples cultivated under LCC for 7 days (Figure 3.4 A) showed a thicker 

monolayer compared to those cultivated at ALI (Figure 3.4 B). One explanation 

for this can be the set-up of ALI conditions, in which the cells are only fed from 

the basolateral compartment; hence, the cells become flattened to extend their 
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surface for getting nutrients. However, after 14 days in culture no difference could 

be observed in the histology of LCC and ALI cultured samples (Figure 3.4 C, D). 

This can possibly be explained by the process of sample preparation, which 

influences the appearance of the cells. In contrast, analyses using a normal light 

microscope showed differences in the appearance of the cells cultivated under 

LCC or at ALI. Whereas cells grown at ALI showed a homogenous monolayer, 

samples under LCC seemed to be heterogeneous (data not shown).  

 

3.3.4 hAELVi monocultures represent promising models to study drug absorption 

and transport 

Further, the suitability of hAELVi cells to predict drug absorption kinetics was 

evaluated in cultures grown under LCC and at ALI, for 7 (Figure 3.5 A) or 14 days 

(Figure 3.5 B), by measuring the permeability of NaFlu through cell monolayers. 

This hydrophilic molecule is typically used as a marker to assess paracellular 

transport, alone or in combination with EDTA, the latter of which is known to 

modulate TJs. As TJs are attributed a so-called “fence-function” by mechanically 

restricting diffusion of lipids and proteins via the paracellular route, high TEER is 

always accompanied with low paracellular transport [148, 154, 157, 160].  

This effect could be observed at day 7 and even more prominently at day 14, 

when the cells displayed TEER values of 600 Ω*cm2 (LCC) and more than 

1000 Ω*cm2 (ALI). In the presence of EDTA, the TEER dropped to almost zero 

and the Papp value of NaFlu reached a maximum level, indicating complete 

opening of the TJs, resulting in elevated transport of NaFlu to the basolateral 

compartment.  
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Figure 3.5. Permeability studies in hAELVi monolayers. Transport of NaFlu across hAELVi 

monolayers after 7 (A) and 14 days (B), cultivated under LCC and at ALI. Both graphs show the 

relation of TEER and Papp. Data shown are mean ± SEM* (n=6); *P<0.05; **P<0.01; ***P<0.001. 

 

The process of removing/adding calcium (Ca2+) to cells to study TJ assembly has 

been used for years as it is crucial for the maintenance of cell-cell junctions [172]. 

Transient removal of Ca2+ with the aid of chelators from the culture media results 

in disruption of the TJs, separating the cells from each other; thus, the OCLN 

band around each cell is retained. This results in a decrease in the TEER and 

dramatic increase in the transepithelial permeability to tracers [148, 173-176]. 

So far, A549 cells, an adenocarcinoma-derived cell line representing a rather 

ATII-like phenotype, including important type II cell features such as lamellar 

bodies [177, 178], is a common model of the lung epithelium and has further 

been used in drug transport studies [122], despite the fact that A549 cells are not 

able to form a functional barrier. The previously established immortalized human 

ATI-like cell line TT1 also lacks the capacity to form a diffusional barrier to 

hydrophilic molecules. Nevertheless, in addition to A549 cells [100, 111, 126], 

TT1 has also been utilized to evaluate NP uptake and inflammatory responses 

[129, 130].  

With respect to the tight alveolar epithelium, these cell lines are of limited value 

for predicting drug transport and absorption. In contrast, lung cell lines such as 

Calu-3 [101, 105, 106] or 16HBE14o- [110, 112-114] may be used to assess 

pulmonary drug delivery. However, these cell lines are of bronchial origin and 

differ in morphology compared to alveolar epithelial cells as they feature cilia and 

mucus. Regardless of their shortcomings, extensive work has been performed 
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using these cells - either grown in monoculture or in cocultures together with 

other cell lines or primary cells - to determine drug transport, to investigate 

cellular mechanisms or to determine interactions with particles. For example, 

A549 cells were cocultured with primary HPMEC cells to study the mechanisms 

of injury in the peripheral lung [179], or with human blood monocyte-derived 

macrophages and dendritic cells to evaluate the interaction with particles [126]. 

Considering the lack of a tight barrier, the relevance and results of such studies 

with regard to predicting transport across the alveolar epithelium have to be 

reviewed critically.  

In contrast, transport studies with NaFlu showed that the hAELVi cells maintain 

their barrier properties and represent a promising tool to evaluate drug transport 

and absorption. The fact that the TJs within this model can be modulated with 

EDTA, in combination with the increasing knowledge of TJs and how they can be 

“opened” and “closed”, creates the possibility for this model to help develop new 

therapies for diseases where comprised TJ function is present [148]. 

Moreover, to enable a better comparison to primary cells and other cell lines, the 

occurrence of transporters that are located in the lung such as active transporters 

of peptides, e.g. PEPT-2, efflux systems including MRPs, P-gp and BCRP or 

organic cation transporters [3-6, 8, 9, 180, 181] should be examined in hAELVi 

cells in further experiments. 
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3.4 Conclusion 

The newly established hAELVi cell line forms monolayers with high functional 

and morphological resemblance to those of ATI cells, as well as tight intercellular 

junctions, when grown on permeable filters (Transwells®). The two obtained 

clones exhibited high TEER values when cultivated under LCC and at ALI, but 

differed in the time point at which the cells started to build functional tight 

junctions. hAELVi.A reached higher TEER earlier than hAELVi.B, indicating a 

faster differentiation. They were also able to be cultivated in higher passages and 

to maintain their barrier functions up to passage number 86. 

CLSM images confirmed the expression of the TJ proteins OCLN and ZO-1 when 

hAELVi cells were cultivated under LCC and at ALI, the latter of which permits 

the deposition and further evaluation of aerosolized particles via nebulization, or 

dry powder formulations via the Pharmaceutical Aerosol Deposition Device on 

Cell Cultures (PADDOCC) [182]. 

hAELVi cells exhibit a tight barrier result in a formidable diffusion barrier for 

molecules that are transported via the paracellular route. This was confirmed by 

the transport of the hydrophilic molecule NaFlu, making them a promising model 

of the alveolar air-blood barrier for drug transport and metabolism studies. 

As TJs are crucial for maintaining cell polarity as well as junctional integrity and 

are therefore associated with disease development, hAELVi cells can contribute 

in increasing the knowledge of TJ participation in various states of disease. They 

may further help in the development and testing of new therapies for diseases in 

which compromised TJ barriers are present. 

To sum up, from the obtained results it can be concluded that the hAELVi cells 

have great potential to form the basis of meaningful in vitro cell models, so 

presenting an alternative to animal testing both in the context of pulmonary drug 

delivery as well as inhalation toxicology. 
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4.1 Introduction 

In vitro models represent an important alternative to animal models with regard to 

the assessment of safety and efficacy of newly developed formulations. There 

are well-established in vitro models mimicking different organs such as the skin      

[183-185], intestine [144, 161, 186] or the lung [100, 126, 187, 188] utilized for 

several applications. As previously mentioned in the first chapter, A549 cells in 

monocultures [119, 189, 190], or in combination with other cell lines               

[189, 191-194] or primary cells [113, 126, 195] are the most commonly used 

model for mimicking the deep lung so far. But again, these cells are not able to 

form functional tight junctions. In contrast, isolated cells in primary culture reflect 

physiological phenotypes and form functional TJs [6, 100, 128]; but, due to 

limited access to primary material, short life-spans of primary cells and 

inter-individual differences between cell donors, they are also not suitable for 

high-throughput screening of new drug candidates.  

For the deep lung, besides the ATI and ATII cells that form the respiratory 

epithelium, alveolar macrophages also play an important role in the air-blood 

barrier. As part of the immune system they patrol the epithelial surface and 

phagocytose inhaled particles, allergens, and microorganisms that are able to 

overcome the mucociliary barrier, and therefore are responsible for the clearance 

within the alveolar region [13, 16, 24, 37]. 

With respect to drug delivery, there is no cell line-based coculture mimicking the 

deep lung which displays functional TJs and also contains macrophages - two 

important components for studying the interaction with aerosolized drug carriers 

or inhaled compounds. 

Therefore, this chapter describes the establishment of a new coculture consisting 

of the recently described hAELVi cell line, which when grown on permeable filters 

(Transwells®) forms monolayers with high functional and morphological 

resemblance to ATI cells, as well as tight intercellular junctions. To model the 

alveolar macrophages, the human cell line THP-1 was utilized. This commercially 

available cell line is derived from a human acute monocytic leukemia [196]. After 

treatment with phorbol-12-myristate-13-acetate (PMA), these cells can be 
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differentiated into macrophage-like cells that further mimic native 

monocyte-derived macrophages in several respects [197-200]. Numerous studies 

have shown that the treatment with PMA leads to the expression of 

macrophage-characteristic cell-surface markers such as CD11b, CD14 and 

toll-like receptor (TLR) 2 [198, 200-202]. Besides other immortalized human 

monocyte or macrophage cell lines such as HL 60, U937, ML-2 or Mono Mac 6 

cells, differentiated THP-1 cells behave more like native monocyte-derived 

macrophages and are therefore the most commonly used cell line applied to 

study monocyte/macrophage differentiation and function [197, 202-206].  

Technically, THP-1 cells have some advantages over human primary monocytes 

or macrophages. Firstly, they possess a homogenous genetic background that 

minimizes the degree of variability in the cell phenotype [202, 206-208]. Further, 

the genetic modification of THP-1 cells is relatively easy compared to primary 

cells [205]. In contrast to primary cells, THP-1 cells can be stored indefinitely in 

liquid nitrogen. Moreover, a lack of availability, and inter-individual differences 

due to donor variability or contamination with other blood components - 

drawbacks of primary cells - are not associated with cell lines such as THP-1 

[202]. Another advantage of using THP-1 cells is that they can be further 

activated into M1 and M2 cells [202, 206]. Whereas M1 cells inhibit cell 

proliferation resulting in tissue damage, M2 cells promote cell proliferation and 

are involved in tissue repair [209]. It should always be kept in mind that cell lines 

mainly have a malignant background that may serve as a risk of experimental 

bias, as the cultivation outside their natural environment possibly results in 

diverging sensitivity and responses [210]. But in vitro coculturing may serve as an 

alternative to relativize these drawbacks [205].  

As THP-1 cells are well-characterized and commonly used in in vitro models for 

evaluating drug delivery [211-215], inflammation [210, 216-218] and infection  

[219-223], they were selected for use in the current coculture model and were 

seeded on pre-formed hAELVi monolayers.  

The coculture system was further characterized regarding barrier properties by 

measuring TEER, and morphological as well as ultrastructural analysis was 

performed with CLSM, SEM and TEM. Further, long-term cocultivation was 
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conducted to determine the suitability of the model to study chronic lung diseases 

(e.g. cancer or infectious diseases). Additionally, transport studies using NaFlu, a 

hydrophilic marker transported via the paracellular route, were performed to 

evaluate the potential of the model to act as a tool to predict drug transport and 

absorption. 
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4.2 Materials and Methods 

4.2.1 Cell culture  

4.2.1.1 Monocultures 

Epithelial cells. hAELVi cells were seeded onto permeable filters with a pore size 

of 0.4 µm and growth areas of 0.33 cm² or 1.12 cm²; the samples were cultured 

as previously described in section 3.2.1.  

Macrophages. THP-1 cells (No. ACC-16), a monocyte-derived cell line [196], was 

obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen 

(DSMZ; Braunschweig, Germany). The cells were grown in T75 culture flasks 

using Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco® by 

Lifetechnologies™, Paisley, UK) supplemented with 10% FBS. Before using them 

in experiments, the suspension cells were differentiated by adding 7.5 ng/mL 

PMA (Sigma, Germany) to cell culture medium [198] and further incubated for 

48 h [161]. Afterwards, 9.4 x 104 cells were seeded on Transwell® filters with a 

pore size of 0.4 µm and a growth area of 1.12 cm² under LCC (500 mL 

apical / 1.5 mL basolateral) in RPMI medium containing 10% (v/v) FBS and 1% 

(v/v) P/S. After allowing the cells to adhere for 4 h they were divided into two 

groups: one group was kept cultivated under LCC, the other was set on ALI, i.e. 

the cells were further fed from the basolateral compartment only with 500 µL of 

RPMI. 

Monocultures of hAELVi and THP-1 cells cultivated alongside the coculture were 

used as internal controls.  

 

4.2.1.2 Cocultures 

Epithelial cells were pre-grown for 14 days before the cocultures were set up. 

After differentiation for 48 h with 7.5 ng/mL PMA, THP-1 cells were seeded on 

top of the epithelial layer in a ratio of 3:1 (hAELVi cells:THP-1) [224]. To set up 

the coculture under LCC, 500 µL RPMI medium containing THP-1 cell 
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suspension was added to the apical compartment and 1.5 mL SAGM was added 

to the basolateral compartment. For cocultures cultivated at ALI, 6 µL RPMI 

containing THP-1 cells was carefully pipetted into the middle of the apical 

compartment and 500 µL SAGM was added to the basolateral area. The 

cocultures were cultivated for 24 h before the experiments were conducted.  

 

Figure 4.1. Experimental design of the coculture set-up. After seeding and subsequent 

cultivation of epithelial cells under liquid-covered conditions (left images) and at air-liquid interface 

(right images), previously differentiated macrophage-like cells are seeded on top. Further, new 

drug delivery systems (DDS, namely, nanoparticles) are added by pipetting or via nebulization 

onto the coculture and subsequently evaluated regarding cytotoxicity, their impact on barrier 

functions and cellular interaction. 
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To evaluate the capability of the system to be used for studying chronic diseases 

or infections, the coculture was set up as previously described. In addition to a 

24 h / 1 day coculture, the model was further cocultivated for 3 and 7 days. To 

monitor the cell viabilities and the integrity of the epithelial barrier, CLSM analysis 

and TEER measurements were conducted. 

The main experiments were performed at ALI and were further compared to 

samples cultivated under LCC.  

 

4.2.1.3 Macrophage-conditioned medium 

To evaluate the impact of macrophages on the epithelial barrier, hAELVi 

monocultures were incubated with conditioned media in the apical compartment, 

whereas SAGM was added in the basolateral compartment. The conditioned 

media was either obtained from THP-1 monocultures or from previously set up 

cocultures. hAELVi monocultures incubated with RPMI in the apical compartment 

and SAGM in the basolateral compartment as well as hAELVi-/THP-1 cocultures 

were used as controls. TEER measurements were conducted to monitor the 

effect of those conditioned media.  

 

4.2.2 Transepithelial electrical resistance (TEER) 

TEER was evaluated as previously described in section 3.2.2. 

 

4.2.3 Morphological and ultrastructural analysis of mono- and cocultures  

4.2.3.1 Confocal laser scanning microscopy (CLSM) 

To analyze the coculture with CLSM, previously differentiated THP-1 cells were 

pre-stained before set up of the coculture. For that, a live cell dye was used: 

7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)-succinimidyl ester 

(DDAO-SE, CellTrace™ Far Red; Molecular Probes, USA), following the 



4. Set-up and characterization of a new 3D coculture mimicking the air-blood barrier 

 
50 

 

manufacturer’s protocol. Briefly, the lyophilized tracer was solubilized with 20 µL 

dimethyl sulfoxide (DMSO) to obtain a stock solution with a concentration of 

1 mM DDAO-SE. To pre-label the cells, 7 mL pre-warmed PBS containing 5 µM 

DDAO-SE was added to the cells and further incubated for 15 min at 37 °C. After 

aspirating the staining solution, the differentiated THP-1 cells were incubated with 

12 mL medium for a further 30 min before seeding onto the epithelial cells.  

Immunohistochemical staining for the TJ protein OCLN was performed as 

previously described [146, 162] with minor modifications. Briefly, after 24 h in 

coculture the system was fixed with 3% methanol free PFA (stock 16%; 15710-S, 

Electron Microscopy Sciences, USA) in PBS from basolateral side overnight at 

4 °C. The monocultures of hAELVi were treated in a similar way. The following 

steps including quenching, blocking, permeabilizing and staining were then 

performed from the apical compartment of cocultures and monocultures, similar 

to the procedure described in chapter 3. In brief, the samples were quenched 

with 150 µL of 50 mM NH4Cl in PBS for 10 min, followed by a blocking and 

permeabilizing step using a mixture of 0.5% BSA / 0.025% Saponin in PBS for 

30 min at RT. The primary antibody against OCLN (mouse 

anti-occludin, Catalog No 33-1500, Invitrogen) was diluted 1:200 in 

0.5% BSA / 0.025% Saponin/PBS-solution; 150 µL was then added apically 

followed by an incubation at 4 °C overnight. The secondary antibody (polyclonal 

Alexa-Fluor 488 conjugated rabbit anti-mouse, Catalog No. A11059, Invitrogen) 

was diluted 1:400 in PBS and incubated for 1 h at RT. The samples were washed 

with PBS and counterstained with DAPI (1:50000). Transwell® membranes were 

then cut out of the filter insert structure, mounted in DAKO mounting medium 

(Product No. 85 S302380-2, DAKO, USA) and analyzed by CLSM (Zeiss 

LSM710, Zeiss, Germany). Lasers at 405 nm (DAPI), 488 nm (OCLN) and 

633 nm (DDAO-SE) were applied for detection. Microscopic images were 

acquired at 1024 × 1024 resolution, using 63x water immersion objective. 

Confocal images were analyzed using Zen 2012 software (Carl Zeiss Microscopy 

GmbH) and Fiji Software (Fiji is a distribution of ImageJ available at http://fiji.sc).  

To visualize long-term cocultures, hAELVi cells were cultivated as mentioned 

earlier. THP-1 cells were pre-labeled with DDAO-SE as previously described 
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before setting up the coculture. 3D and profile images of the cocultures cultivated 

3 and 7 days were obtained by CLSM (Leica TCS SP 8; Leica, Mannheim, 

Germany), using the same laser and magnification settings. Analysis was 

performed using LAS X software (Leica Application Suite X; Leica, Mannheim, 

Germany). 

 

4.2.3.2 Scanning electron microscopy (SEM) 

Mono- and cocultures were set up as described above in section 4.2.1, and fixed 

after 24 h by adding 3% PFA to the basolateral compartment with a 4 °C 

overnight incubation. The next day, the samples were dehydrated by treatment 

with graduated ethanol concentrations (30, 50, 60, 70, 80, 90, 96, 100 and a 

further 100% solution, for 10 min each) followed by incubation with 

hexamethyldisilazane (HMDS) for 10 min. After aspiration of HMDS, the samples 

were dried under a fume hood. Then, the Transwell® membranes were cut out of 

the filter insert structure with a scalpel, put on a carbon disc and further sputtered 

with gold before examination by SEM. Images were taken with a Zeiss SEM 

EVO® HD15 (Zeiss, Germany) under high pressure conditions with a secondary 

electron detector and using 10 kV acceleration voltage.  

 

4.2.3.3 Transmission electron microscopy (TEM) 

Mono- and cocultures were cultivated as described earlier in sections 4.2.1.1 and 

4.2.1.2. Fixation was performed after 15 days (hAELVi monocultures) or 24 h 

(THP-1 monocultures, cocultures) using a 1% final concentration of 

glutaraldehyde (GA). This was achieved either by adding 1 or 2% GA to well 

compartments. 1% or 2% solutions of GA were prepared by dilution of 50% GA 

stock solution with 200 mM 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic 

acid (HEPES) buffer, pH 7.4. Thus, samples cultured at ALI were fixed by adding 

1% GA to the apical (1 mL) and the basolateral (1.5 mL) compartment. Samples 

cultivated under LCC were fixed by adding 500 µL 2% GA to the apical and 
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1.5 mL of 1% GA to the basolateral compartment. All samples were incubated 

with GA overnight at 4 °C. For further sample preparation and imaging, 

Transwell® membrane inserts were transferred to 50 mL falcon tubes filled with 

200 mM HEPES buffer and subsequently shipped to Dr. Urska Repnik and Prof. 

Dr. Gareth Griffiths at the University of Oslo, Norway. The samples were further 

processed as described by Susewind et al. [161] with minor modifications. Briefly, 

for epon embedding the samples were post-fixed with a 2% OsO4 (EMA, PA, 

USA) solution containing 1.5% potassium ferricyanide for 1 h on ice, and stained 

en bloc with 1.5% aqueous uranyl acetate (EMS, PA, USA) for 30 min. Cells 

were then dehydrated at RT using a graded ethanol series (70, 80, 90, 96, 

(4x)100% for 10 min each), and progressively infiltrated with epoxy resin (50, 75 

and 100%) (Sigma-Aldrich; St. Louis/MO, USA). Transwell® membranes with 

cells were flat embedded and blocks were polymerized overnight at 70 °C. 

Ultrathin sections of 70-80 nm, perpendicular to the filter plane, were cut with a 

Leica ultra-microtome Ultracut EM UCT (Leica Microsystems, Austria) using an 

ultra-diamond knife (Diatome, Switzerland) and examined with a 

JEM-1400 transmission electron microscope (JEOL, USA). The images were 

taken with a TemCam-F216 camera (Tvips, Germany). 

 

4.2.4 Transport studies 

Transport experiments were performed as previously described in chapter 3 with 

minor modifications. Briefly, monocultures of hAELVi cells and cocultures were 

set up and cultivated under LCC and at ALI as described earlier. The transport of 

NaFlu alone and in combination with 16 mM EDTA was performed. After 24 h of 

coculture, the samples were washed once with pre-warmed KRB. To avoid losing 

macrophages during the washing step, the supernatant of the coculture was 

collected and centrifuged. Afterwards, the pellet was resuspended in 500 µL KRB 

and added to the apical compartment. Both mono- and cocultures were further 

incubated with KRB for 45 min. After TEER measurements to ensure the initial 

integrity of the monolayer, the medium was aspirated and treated as described 

before. The centrifuged pellet was resuspended in 520 µL NaFlu 
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(10 µg/mL in KRB) ± 16 mM EDTA, which was then added to the apical 

compartment (donor). A 1.7 mL volume of KRB was added to the basolateral 

compartment (acceptor). The following steps including taking samples, 

measurements and analysis were performed as previously described in section 

3.2.3.  

 

4.2.5 Statistical analysis 

Data represent 1-3 independent experiments and are shown as mean ± standard 

error of mean (SEM*). Two-way ANOVA with Bonferroni´s post hoc test was 

performed using GraphPad Prism 5 software (GraphPad). 
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4.3 Results and Discussion 

4.3.1 Differentiation of THP-1 into macrophage-like cells 

THP-1 cells are round monocytic cells that normally grow in suspension [196], 

(Figure 4.2 A). Before their use in the coculture model, they were differentiated 

into macrophage-like cells by treatment with PMA [197-200].  

Figure 4.2. Differentiation of THP-1. A: THP-1 monocytes, normally growing as suspension 

cells. B: THP-1 macrophage-like cells after differentiation with PMA. Such cells become adherent, 

exhibit cellular extension and lose their ability to proliferate. Scale bar: 5 µm. 

 

The differentiation is also accompanied by an alteration in morphology: cells 

become flat and amoeboid in shape [197, 203]. Further, it results in loss of 

proliferation due to cell cycle arrest in the G1-phase via complex mechanisms 

associated with the modulation of the expression of several cell cycle regulators 

[199]. Further, cells become adherent to cell culture plastic [197], (Figure 4.2 B). 
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4.3.2 Coculture: epithelial barrier properties  

The coculture of hAELVi cells and THP-1 macrophages was set up at ALI and 

under LCC. Both conditions were assessed simultaneously in order to better 

compare the differences between these culture conditions. For this purpose, 

hAELVi cells were seeded on prior FN/COL-coated polyester membranes with a 

pore size of 0.4 µm under LCC for two days. Afterwards, some samples were 

exposed to ALI, while others were kept under LCC. After 14 days in culture, 

previously differentiated THP-1 cells were added on top of the epithelial cells. 

TEER values were determined after 1 day in coculture. 

Figure 4.3. Barrier properties of hAELVi/THP-1 cocultures. TEER-measurements of hAELVi 

cell monolayers pre-grown for 14 days, immediately before (0 day) and 1 day after coculture with 

THP-1 cells, either at ALI (A) or under LCC (B). Data shown represent mean ± SEM* (n=9) from 

three independent experiments; *P<0.05; ***P<0.001. 

 

The results showed that hAELVi cells maintained higher TEER in coculture as 

compared to the monocultures (Figure 4.3 A, B). This effect was more distinct in 

samples grown under LCC. Indeed, an increase in the TEER has been observed 

in the coculture of 16HBE14o- and human umbilical vein endothelial cells 

(HUVEC) as introduced by Chowdhury et al. [225]. They suggested that 

endothelial-derived factors contributed to the increased TEER. To address the 

possibility that also THP-1 cells secrete factors that influence the epithelial 

barrier, hAELVi monocultures were incubated with supernatants from THP-1 

monocultures (SNA) or from cocultures (SNB) obtained after 24 h in coculture. 

These results were compared to the coculture under LCC (hAELVi + THP-1), in 

which hAELVi cells were fed from the apical side with RPMI medium and with 
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SAGM from the basolateral. Epithelial cells grown with the same medium 

composition but without macrophages (hAELVi monoculture) were used in order 

to exclude the effect of macrophages themselves on the barrier property 

(Figure 4.4). 
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Figure 4.4. Impact of macrophages on barrier properties of hAELVi cells. TEER 

measurements of hAELVi cells in coculture with THP-1 cells, hAELVi cells incubated with pure 

RPMI and supernatants of THP-1 (“hAELVi + SNA”) and from previously set up cocultures 

(“hAELVi + SNB”). Data shown represent mean ± SEM* (n=3) of two independent experiments.  

 

The results showed no difference in the TEER when hAELVi cells were incubated 

with supernatant samples compared to the coculture, which suggests that there 

are no factors secreted from THP-1 cells either alone or when in contact with 

hAELVi cells that could interfere with the epithelial barrier integrity. Moreover, 

cell-cell interaction between macrophages and epithelial cells also did not 

influence the TEER, since hAELVi monocultures cultivated with the same 

medium composition as used for the coculture (i.e. RPMI in the apical 

compartment and SAGM in the basolateral) showed as high TEER as the 

coculture. Taken together, these results suggest that the higher TEER observed 

in the cocultures is due to the fact that hAELVi cells are in contact with different 

media (RPMI and SAGM). 
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4.3.2.1 Influence of SAGM and RPMI media on TEER values  

SAGM is a complex medium containing several growth factors such as bovine 

pituitary extract, hydrocortisone, human epidermal growth factor, epinephrine, 

transferrin, insulin, retinoic acid, triiodothyronine, BSA-fatty acid free, antibiotics 

such as gentamicin/amphotericin-B and 1% (v/v) P/S, as well as 1% (v/v) FBS. 

By comparison, RPMI 1640 medium lacks these ingredients and includes only 

10% of serum. hAELVi cells in coculture cultivated under LCC are supplied with 

500 µL RPMI in the apical and 1.5 mL SAGM in the basolateral compartment. 

Therefore, of the complete media in contact with hAELVi cells, approximately 

25% is constituted by RPMI, with the remaining 75% represented by SAGM. To 

address the effect of different proportions of media on the TEER values, hAELVi 

monocultures were incubated with the following SAGM:RPMI proportions (%): 

100:0, 20:80, 30:70, 40:60, 60:40 and 0:100.  

The results showed that hAELVi cells do not form any barrier when cultivated in 

pure RPMI, which is expected due to the lack of growth factors normally supplied 

by the SAGM. hAELVi cells cultivated with SAGM alone showed a maximum 

TEER of ~1000 Ω*cm² after 9 days, whereas for all media combinations the 

TEER reached values in a range of ~2500-3700 Ω*cm² (Figure 4.5). 

Unexpectedly, hAELVi cells formed a barrier also with a minimum amount of 

SAGM (e.g. 20%; Figure 4.5). This indicates a synergistic effect of both media 

that requires only a small amount of RPMI to result in an enormous increase in 

TEER. To get a detailed insight into the mechanism by which RPMI possibly 

influences the formation of TJs, protein expression and finally the associated 

barrier properties of hAELVi cells should be evaluated in future studies. 

Nevertheless, it can be concluded that the barrier properties of hAELVi cells are 

not affected when in contact with the culture medium of THP-1 cells. This 

medium can be therefore used in the coculture set-up. 
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Figure 4.5. Impact of different medium compositions on hAELVi cells, cultured under LCC. 

TEER measurements of hAELVi monocultures incubated with mixed media (SAGM:RPMI) in 

different ratios. Data shown represent mean ± SEM* (n=6) from two independent experiments; 
*P<0.05; **P<0.01; ***P<0.001 vs. 100%:0%. 

 

As previously mentioned, hAELVi and THP-1 cells are usually cultivated in 

SAGM and RPMI media, with 1% or 10% (v/v) FBS, respectively. This difference 

can account for the higher TEER even when hAELVi cells are supplied with 20% 

of SAGM, as shown above (Figure 4.5). Therefore, hAELVi monocultures grown 

on permeable filters were cultivated with pure SAGM or RPMI containing 1 or 

10% of FBS. Additionally, RPMI containing 1 or 10% FBS was applied in the 

apical compartment, whereas SAGM with 1% serum was added in the 

basolateral compartment. These variants were compared with the classical 

medium of hAELVi cultivation (SAGM + 1% FBS; Figure 4.6).  

The results showed that hAELVi cells do not form any barrier when cultivated in 

RPMI regardless of the serum concentration (RPMI 1% or 10% FBS). However, 

hAELVi cells incubated with SAGM supplemented with 10% FBS showed higher 

TEER after 12 days (up to ~4000 Ω*cm²) compared to TEER values observed in 

samples incubated with the same medium containing 1% of FBS (~1700 Ω*cm²). 

Indeed, such TEER was similar to that observed in the coculture with classical 

coculture set-up (RPMI + 10% FBS together with SAGM + 1% FBS), which 

indicate that serum concentration contribute to higher TEER values in hAELVi 

cells. This was even more evident when RPMI containing 10% of FBS and 

SAGM with 1% serum were incubated on the hAELVi cells (Figure 4.6).  
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Figure 4.6. Influence of pure and mixed media containing different amounts of serum on 

hAELVi cells, grown under LCC. TEER measurements of hAELVi monocultures. Data shown 

represent mean ± SEM* (n=6) from two independent experiments; ***P<0.001 vs. SAGM + 1%. % 

indicates the concentration of FBS in the media. 

 

Taken together, these results show that the higher TEER observed in the 

cocultures is mainly due to the higher serum concentration in RPMI medium. 

Nevertheless, as already discussed, a synergistic effect of RPMI in combination 

with SAGM contributes to the increased TEER. Moreover, these results could 

validate the use of hAELVi cells with medium comprising a lower proportion of 

SAGM, which would reduce the cost of maintaining these cells. 

 

4.3.3 Coculture: morphological characterization 

CLSM images confirmed the findings of developed TEER in cocultures as 

preserved TJs could be observed when grown at ALI and under LCC 

(Figure 4.3 A, B). In contrast to cocultures set up at ALI, where macrophages 

were located on top of the epithelial cells (Figure 4.7 A), only few THP-1 cells 

could be found on hAELVi monolayers under LCC (Figure 4.7 B).  
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Figure 4.7. Morphology of hAELVi/THP-1 cocultures. Confocal laser scanning microscopic 

(CLSM) images of hAELVi-/THP-1 cocultures, cultivated at ALI (A) and under LCC (B). THP-1 

cells (DDAO-SE; red), tight junctions (occludin; green). Nuclei are counterstained with DAPI 

(blue). Scale bar: 20 µm. 

 

Z-stacks (Figure 4.8 A, B, D, and E) as well as cross-section views of the 

cocultures (Figure 4.8 C, F) reinforce the observation from Figure 4.7, in which 

fewer macrophages are observed in cultures under LCC.  

 

Figure 4.8. Morphology of hAELVi-/THP-1 cocultures. 3D images (A, B, D, E) and 

cross-sections (C, F) of hAELVi-/THP-1 cocultures, grown at ALI (A-C) and under LCC (D-F) for 

1 day. THP-1 cells (DDAO-SE; red). Nuclei are counterstained with DAPI (blue). Scale bar: 

40 µm. 
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The intrinsic limitation of the coculture set-up under LCC may still lead to a 

reduction of macrophages to a significant extent, e.g. during the change of cell 

culture medium. This suggests a rather weak interaction between macrophages 

and epithelial cells when cultivated under LCC, as samples grown at ALI showed 

more THP-1 cells when analyzed with CLSM although the samples were 

processed in the same way. In any case, the use of cocultures at ALI is 

recommended as this is the physiological condition in the alveoli.  

However, when comparing ALI and LCC, SEM images showed similar amounts 

of macrophages homogeneously distributed on top of epithelial cells 

(Figure 4.9 A, B). This contradiction in observations by CLSM and SEM is most 

likely due to the sample preparation rather than the culture condition itself. 

Whereas for CLSM analysis the fixation procedure was conducted from the 

apical side, labeling and washing steps were conducted from the basolateral 

side. In contrast, all steps in the preparation for SEM imaging was done from 

basolateral side, which might reduce the loss of macrophages.  

Epithelial cells cultivated under LCC, display additional structures on their 

surfaces (Figure 4.9 D). As all samples were handled as “cocultures”, in which 

the loss of macrophages should be minimized during sample preparation, the 

medium was carefully aspirated from the apical compartment, further washing 

steps were left out and all steps during preparation were performed from the 

basolateral side. As these structures could not be observed on cells grown at 

ALI, it seems to be more likely that these are residues from the medium applied 

in the apical compartment during cultivation. Additionally, cells exposed to ALI 

appeared more homogeneous in size (Figure 4.9 C). 
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Figure 4.9. SEM images of hAELVi and THP-1 monocultures as well as cocultures. 

A, B: Cocultures of hAELVi and THP-1 grown at ALI (A) and under LCC (B). Scale bar: 30 µm. 

C, D: hAELVi cells in monoculture, cultivated at ALI (C) and under LCC (D) for 15 days. 

Scale bar: 10 µm. E, F: THP-1 monocultures grown for 1 day, either at ALI (E) or under LCC (F). 

Scale bar: 30 µm. 

 

Furthermore, THP-1 cells grown at ALI seem to be more attached to the 

membrane and appear flattened in shape (Figure 4.9 E). One explanation could 

be that the cells extend their surface to increase their capacity of nutrient uptake. 

Under LCC displayed different phenotypes ranging from rounded to amoeboid 

with cellular extensions (Figure 4.9 F). But under both culture conditions, they 

display cellular extensions, with which they get in contact with each other.  
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To further visualize differentiated THP-1 cells with CLSM, cells were pre-labeled 

with a red dye before seeding into chamber slides either under LCC or at ALI for 

24 h. CLSM images showed that THP-1 cells grown at ALI (Figure 4.10 A) are 

bigger in size compared to those cultivated under LCC (Figure 4.10 B).  

 

 

Figure 4.10. Morphology of THP-1 monocultures. CLSM images of differentiated THP-1 cells 

grown at ALI (A) and under LCC (B). THP-1 cells (DDAO-SE, red); nuclei were further 

counterstained with DAPI (blue). Scale bar: 20 µm. 

 

This may be explained by the fact that THP-1 cultivated under LCC are in contact 

with medium from two compartments, resulting in more serum supply. In contrast, 

cells grown at ALI just get their nutrients from the basolateral compartment, 

resulting in cell enlargement in order to extend their surface and increase their 

nutrient ingestion. These findings were also supported by data of Kreft et al. who 

observed that Calu-3 cells cultivated under LCC were significantly smaller than 

those grown at ALI in the first week of culturing [226]. 

For hAELVi cells in monoculture the results obtained here regarding 

morphological characterization by CLSM or SEM agree with those previously 

described in chapter 3.  
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4.3.4 Coculture: ultrastructural characterization  

To further characterize the coculture, ultrastructural analysis was conducted in 

collaboration with the University of Oslo. TEM images of coculture samples that 

were set up at ALI showed several macrophages located on top of the epithelium 

(Figure 4.11 A), interacting to some extent with epithelial cells (Figure 4.11 B). 

While hAELVi cells interact with pseudopodia and express TJs (Figure 4.11 C), 

confirming the results obtained by immunostaining of the TJs (see section 4.3.5), 

THP-1 cells communicate via pseudopodia (Pp; Figure 4.11 G) that are not 

located on the whole surface of the cell, but more on the lateral and underside, 

indicating a sampling of the epithelial area. As the macrophage-like cells seem to 

be in a “resting” state, the application of particles may lead to activation in terms 

of motility and display of pseudopodia which are known to be involved in 

phagocytosis [227-229]. 

Interestingly, when in coculture, THP-1 cells are covered with an extracellular 

matrix layer and hAELVi cells are covered with a glycocalyx-like structure, a 

protective layer that has been shown to shield the human airway epithelial cells 

from virus-mediated gene transfer [230]. As this could not be observed in THP-1 

monocultures, it can be speculated that either hAELVi cells secrete factors that 

modify the surface of macrophage-like cells or sediment on top of these cells. To 

get more detailed information about the crosstalk between both cell types, 

appropriate experiments should be included in future studies, for example to test 

the effect of conditioned medium. 

Ultrastructural analysis of hAELVi monocultures was already carried out in the 

course of the characterization of the recently established hAELVi cell line [162]. 

Nevertheless, to run a complete set-up, hAELVi cells were also grown under LCC 

and at ALI in parallel to THP-1 monocultures and combined cell systems. As the 

epithelial monocultures showed no additional information however, they are not 

shown in this thesis. 
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Figure 4.11. Ultrastructural analysis of hAELVi-/THP-1 cocultures. Transmission electron 

microscopic (TEM) images of hAELVi cells after 24 h in coculture with THP-1 cells. A: Overview 

of several macrophage-like cells on top of epithelial cells. B: Slight interaction of a THP-1 cell with 

hAELVi cells (magnification of A). C: Cleft between both cell types; hAELVi cells display tight 

junctions (TJ), microvilli (Mv) and glycocalix (Gx) on top (magnification of B). D: Cross-sections of 

the space between hAELVi cells and THP-1. E, F: Surfaces of a THP-1 cell, either exposed to the 

air (E) showing Gx, or under LCC (F). G: Communication of two THP-1 cells via pseudopodia 

(Pp), expressing ER cisternae. 
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TEM images of THP-1 monocultures showed several differences between both 

culture conditions, although the cells display cellular extensions, so-called 

pseudopodia, on their surfaces when grown under LCC (Figure 4.12 A) as well 

as at ALI (Figure 4.12 C). Besides involvement in moving processes, 

pseudopodia are mainly responsible for engulfing foreign particles or cell debris 

[231-236]. When cultured under LCC, THP-1 cells display a prominent Golgi 

apparatus (GA*), phagocytic vacuoles in the cytoplasm and endoplasmic 

reticulum (ER) cisternae (Figure 4.12 B), confirming the findings of differentiated 

THP-1 already described in literature [197, 203].  

 Figure 4.12. Ultrastructural analysis of THP-1 monocultures. Transmission electron 

microscopic (TEM) images of macrophage-like cells cultivated on permeable filter supports, either 

under LCC (A, B) or at ALI (C, D). Single THP-1 cell grown under LCC displaying pseudopodia on 

its surface (A) and prominent Golgi apparatus (B). THP-1 cell cultivated at ALI (C), exhibiting 

pseudopodia and showing prominent efferosomes (D), whereas Golgi apparatus is not notable. 
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The current findings indicate that THP-1 cells under LCC conditions are 

biosynthetically active. In contrast, THP-1 cells exposed to the air contain so-

called efferosomes that are phagosomes containing cell debris (Figure 4.12 C). 

In addition, a Golgi apparatus is not notable, indicating that at ALI, the 

macrophage-like cells are less biosynthetically active. Taken together, these 

results suggest that cell death at ALI is more common than in samples grown 

under LCC. 

 

Also the presence of prominent ER in THP-1 cells that are cocultured with 

hAELVi cells, comparable to THP-1 monocultures grown under LCC, indicate 

some communication or even a secretion of factors resulting in better viability 

conditions for macrophage-like cells. For detailed information about the influence 

of hAELVi cells on THP-1, further experiments in this respect should be involved 

in future studies. 

 

4.3.5 Transport studies 

The prospective use of this coculture model for drug transport and absorption 

was assessed by evaluating the transport of NaFlu, a hydrophilic molecule. In 

order to modulate TJs, NaFlu was used in combination with EDTA; that is known 

to be able to open TJs by chelation of Ca+2 in a reversibly manner. As previously 

mentioned in chapter 3, high TEER always goes together with a low paracellular 

transport. This relationship could also be observed within the coculture model, 

and was even more prominent when compared to hAELVi monolayers. After 

adding EDTA, a drop in TEER and subsequent higher transport of NaFlu to the 

basolateral compartment could be observed in samples grown under LCC as well 

as in those exposed to ALI (Figure 4.13). As hAELVi cells display higher TEER 

values when cocultivated with THP-1 cells under LCC, this effect was much more 

pronounced, as hAELVi cells are in contact with a higher amount of RPMI 

medium during their cultivation and therefore exhibit higher TEER values. 
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Figure 4.13. Permeability assay on cocultures, grown under LCC and at ALI. Transport of 

NaFlu across hAELVi-/THP-1 cocultures. The graph combines TEER and Papp values. Data 

shown are mean ± SEM* (n=3-9) from 1-3 independent experiments; ***P<0.001.  

 

The obtained results indicated that this coculture system serves as an even more 

promising model to evaluate drug absorption compared to hAELVi monocultures 

(shown in chapter 3). Nevertheless, to get a broad insight into its applicability, 

studies with more model drugs (e.g. propranolol) should be included in future 

experiments. 

Finally, as this model comprises the main cell type responsible for clearance in 

the alveolar region (i.e. macrophages), this coculture system could entirely 

applicable to study the clearance of new drug formulations and/or NPs.  

 

4.3.6 Long-term cocultivation 

In order to have a coculture system that could be further used not only for drug 

delivery testing but also to study chronic diseases, hAELVi cells and THP-1 were 

cocultured for up to 7 days at ALI. To monitor the condition of the cells during that 

period of time, TEER was measured after 3 and 7 days in coculture and 

morphology was documented by CLSM images. TEER measurements showed 

that hAELVi cells maintained their tight barrier, although a decrease to 
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~2800 Ω*cm² could be observed after 7 days in coculture compared to a value of 

~4300 Ω*cm² after 3 days. This behavior could also be observed in hAELVi 

monocultures which displayed a TEER value of ~2500 Ω*cm² after 3 weeks in 

monoculture compared to 1 week in coculture (Figure 4.14). This stability of 

TEER could also observed in hAELVi monocultures grown under LCC for 28 

days, showing constant values of ~2000 Ω*cm² [162]. 
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Figure 4.14. Long-term cocultivation of hAELVi cells and THP-1, grown at ALI. TEER 

measurements of hAELVi monocultures and cocultivated with THP-1 after 3 and 7 days in 

coculture. Data shown are mean ± SEM* (n=6) from two independent experiments.  

 

To document the cell viability during 1 week of cocultivation, THP-1 cells were 

pre-labeled with DDAO-SE (red) as previously described before added on 

hAELVi monolayers and further analyzed by CLSM. During incubation, the 

reagent passively diffuse into the cytoplasm of cells, where their acetate groups 

are cleaved by intracellular esterases; this results in the formation of 

carboxyfluorescein succinimidyl esters, which covalently bind to intracellular 

amines and form fluorescent conjugates [237]. All images showed that both cell 

types remain viable (Figure 4.15), however a decrease in the amount of 

macrophages could be observed after 7 days in coculture. To prolong the 

coculture (e.g. for studying longer exposure times or repeated exposure), one 

possibility could be to further add more macrophages after 3 days of 

cocultivation.  
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Figure 4.15. Morphology of long-term cocultures of hAELVi cells and THP-1. 3D images 

(A, B) and cross-sections (C, D) of hAELVi-/THP-1 cocultures grown for 3 days (A, C) and 7 days 

(B, D) at ALI. THP-1 cells (DDAO-SE; red). Nuclei are counterstained with DAPI (blue). Scale bar: 

20 µm. 

 

Taken together, the obtained results suggest that the established alveolar 

coculture is a promising model that can serve as a tool to assess the lung in a 

diseased state, for example in chronic diseases such as chronic bronchitis, 

asthma, COPD or CF [65]. 
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4.4 Conclusion 

This chapter describes the establishment of a new 3D coculture model mimicking 

the human air-blood barrier in a healthy state. The system is based on cell lines 

and involves the recently established hAELVi cell line. When grown on permeable 

filters (Transwells®), these cells form monolayers with high functional and 

morphological resemblance to ATI cells and tight intercellular junctions. To model 

the alveolar macrophages, the human cell line THP-1 was seeded on pre-formed 

hAELVi monolayers. As already mentioned the use of cell lines allows consistent 

seeding and better reproducibility, as well as better suitability for high-throughput 

screening of new drug candidates.  

The system either grown at ALI or under LCC was further characterized with 

respect to its barrier properties and morphology. In general, hAELVi cells and 

THP-1 cells are cultivated in different media. Whereas hAELVi cells are grown in 

a complex medium, THP-1 cells are cultivated in basic RPMI. Even if hAELVi 

cells do not form any barrier when cultured in RPMI, TEER measurements 

showed that they display high TEER values when cultured in mixed SAGM/RPMI. 

Also, the presence of THP-1 cells does not interfere in the expression of a tight 

barrier.  

Though hAELVi cells in monoculture cultivated under LCC and at ALI can be 

used to evaluate cytotoxicity effects, this does not hold true for cocultures. While 

results obtained from SEM showed a homogenous distribution of THP-1 on top of 

hAELVi cells under LCC, CLSM and TEM images indicated a significant 

reduction of macrophages on top of hAELVi cells due to low interaction of THP-1 

with the epithelial layer. Therefore, use of cocultures at ALI is recommended as 

cultures grown under LCC are not satisfactory for studying particle-cell 

interactions.  

Further, TEM images revealed that hAELVi cells were covered with 

glycocalyx-like structures. Whereas a layer of extracellular matrix at the surfaces 

exposed to the air could be observed on THP-1 cells when cocultured at ALI, this 

could not be observed in the monocultures. These findings suggest that hAELVi 
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cells secrete factors that modify the surface of macrophage cells or sediment on 

top of these cells. 

Conducted permeability assays using NaFlu alone or in combination with the TJ 

modulator EDTA indicated that this model is a promising alternative for assessing 

drug transport. Additionally, as this model comprises an extra barrier structure in 

the form of macrophages, clearance mechanisms of applied drug formulations 

and/or NPs can be evaluated in parallel.  

Long-term cocultivation including TEER measurements and analysis via CLSM 

showed that the system can be kept in coculture up to 7 days, during which 

hAELVi cells maintained their tight barrier and THP-1 and hAELVi cells remained 

viable. But however, a decrease in the amount of macrophages could be 

observed after 7 days in coculture. To prolong the coculture (e.g. for studying 

longer exposure times or repeated exposure), more macrophages could be 

added after 3 days in coculture. But nevertheless, besides drug delivery testing, 

this makes this model a promising tool to answer questions regarding cancer 

pathogenesis as well as chronic diseases in the future. 

In summary, the newly established 3D coculture model expresses two essential 

components of the deep lung important for the assessment of new drug 

candidates and DDS: functional epithelial TJs, and macrophages.  
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5. Application of the established alveolar 3D coculture 

model for nanoparticle deposition  
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5.1 Introduction 

Besides natural NPs generated by combustion processes, dusts or volcanic 

activity [73, 77], an increasing number of engineered NPs are released into the 

air, water and soil [73, 238, 239]. Nowadays, engineered NPs are involved in 

many applications and industries such as cosmetics, leisure wear, electronics, 

food packaging and drug delivery [71, 78, 79, 82]. This has resulted in a 

considerable increase in human exposure to NPs via the gastrointestinal tract, 

the skin and the respiratory system [73, 77, 240, 241].  

During inhalation, airborne NPs come in contact with several cellular and 

non-cellular barriers that protect the respiratory tract against foreign particulate 

matter [73]. Once inhaled NPs reach the lung, they first come in contact with the 

lining fluid (Figure 5.1 (1)) before they are either entrapped in the mucus blanket 

of the upper airways and carried via the mucociliary escalator upwards to the 

esophagus, before being finally eliminated by expectoration; further transferred to 

the digestive tract [16, 29, 30]; or taken up by alveolar macrophages that are 

responsible for clearance in the deep lung (Figure 5.1 (2)).  

 

Figure 5.1. Fate of inhaled nanoparticles. Once reaching the lung, airborne NPs come first in 

contact with the lining fluid (1) before they are either eliminated by the mucociliary escalator in the 

conducting zone and by alveolar macrophages in the deep lung (2) or reach the underlying tissue 

or systemic circulation by crossing the epithelium (3). Adapted and modified with permission 

from [14], modified from [242]. 
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Together with the engulfed foreign particles, the macrophages are then cleared 

from the alveoli to the bronchioles by the lining fluid and finally eliminated via the 

mucociliary pathway [16, 54]. 

But despite the existence of these barriers, several studies have revealed that 

small-sized NPs of various materials have the capacity to enter different cell 

types, and in doing so may cause adverse health effects including enhanced 

expression of pro-inflammatory cytokines [73, 243-245] and the generation of 

ROS [245-250]. Such molecules may further induce inflammation, mitochondrial 

damage [251, 252] or DNA strand breaks [247] that can finally result in cell death. 

Further, it was found that for example combustion-derived NPs are able to 

exacerbate preexisting respiratory diseases and an increased cardiovascular 

morbidity has been associated with the inhalation of NPs [73, 249, 253-260]. 

In general, it is known that NPs’ toxicity can be affected by their size, the bulk 

material, shape or surface charge [84, 261-266]. Due to their size, the deposition 

and final fate of smaller NPs differs from that of larger particles [73], and their 

high surface-to-mass ratio gives them greater toxic and fibrogenic potential [249]. 

Airborne NPs smaller than 100 nm seem to be able to escape pulmonary 

clearance mechanisms [63] and are further capable of being taken up into cells 

and/or translocated across epithelial and endothelial cells into the underlying 

tissue or systemic circulation (Figure 5.1 (3)) [14].  

Such an occurrence was shown in in vivo studies aiming to examine the 

pulmonary and systemic distribution of inhaled Ag NPs. A fast translocation into 

the systemic circulation as well as into other organs including liver, kidney and 

brain could be observed [267]. Further studies showed that Ag NPs induced 

blood-brain barrier destruction and neuronal degeneration, and within the lungs 

decreased tidal and minute volume on inhalation, and decrease inflammatory 

responses within the lungs after subcutaneous injection [268, 269].  

Once inside the body, it is likely that NPs will come into contact with immune 

cells. As already mentioned, depending on the physicochemical properties of 

NPs, these interactions may have an immunomodulatory effect, resulting in the 

induction of inflammation and increased susceptibility to infectious diseases or 
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even to autoimmune diseases and cancer, by activating or suppressing the 

function of the immune system [270, 271].  

Positively-charged NPs usually hold a greater inflammatory potential than 

negatively-charged or neutral NPs [272]. As macrophages display 

negatively-charged sialic acid on their surfaces [273], it is more likely that cationic 

substances interact with them by binding to TLRs that further induce an 

inflammatory response [274, 275].  

However, to study the effects of new drug candidates or DDS such as NPs under 

well-controlled conditions, one cell type alone cannot mimic the behavior of a 

whole tissue. With respect to clinical relevance, advanced cell- and tissue-based 

in vitro models should contain immune cells, as they are involved in the activation 

of the signal transduction pathway and inflammatory responses.  

Therefore, the successfully established alveolar 3D coculture model was utilized 

for the application and first evaluation of NPs. First, well-known PLGA-CS particles 

that have already been used for pulmonary drug delivery were applied on 

hAELVi-/THP-1 mono- and cocultures which were then tested for cell viability. 

Further, well-characterized Ag NPs were applied to show the suitability of the 

coculture for evaluating toxicity, by determining cell viability following exposure as 

well as NP impact on the epithelial barrier. Finally, newly developed starch NPs 

intended for pulmonary drug delivery of proteins were nebulized onto the coculture 

followed by the determination of their impact on cell viability and barrier properties, 

as well as their cellular interaction.  

 

 

 

 

 



5. Application of the 3D coculture for nanoparticle deposition 

 
77 

 

5.2 Materials and Methods 

5.2.1 Nanoparticle preparation and characterization 

5.2.1.1 Poly (D, L)-lactide-co-glycolide nanoparticles-/chitosan nanoparticles 

(PLGA NPs) 

PLGA- (Resomer® RG 752 H; Evonik Industries AG, Germany) based NPs 

coated with CS (chitosan chloride; Protasan® UP CL113; Novamatrix, Norway) 

were prepared via the emulsion-diffusion-evaporation technique [276, 277]. 

Therefore, 15 mg of the cationic CS polymer was dissolved in 5 mL of an 

aqueous 2.5% (w/v) polyvinyl alcohol solution (PVA; Moviol® 4-88 from Kuraray, 

Japan). The organic phase consisting of 100 mg PLGA in 5 mL ethyl acetate 

(reagent grade; Sigma Aldrich, USA) was added dropwise (160 µL/min) to a 

stirring aqueous solution to create a primary emulsion. After homogenizing with 

an aggregation unit at 15 000-17 000 rpm for 10 min, purified water was added to 

a final volume of 50 mL to permit the ethyl acetate to evaporate overnight. More 

details with regard to preparation and further characterization can be found in the 

thesis “Development of a Nanotechnology enabled Drug Delivery System for 

Pulmonary siRNA delivery” by Nicole Kunschke [278]. For cell viability studies, 

PLGA-CS NPs were diluted in cell culture medium (0-1000 µg/mL) and incubated 

for 24 h followed by the conduction of an MTT assay as described below in 

section 5.2.4. 

 

5.2.1.2 Silver nanoparticles (Ag NPs) 

Well-characterized Ag NPs were purchased from Sigma Aldrich (730793; Sigma 

Aldrich, Germany). The NPs were stated by the manufacturer to be 20 ± 4 nm in 

size determined via TEM, and were dispersed in aqueous solution. Before 

nebulization, the NPs were re-dispersed using a pipette.  
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5.2.1.3 Starch nanoparticles (starch NPs) 

Starch NPs were prepared by charge-mediated coacervation between negatively 

charged carboxylate groups (NegSt) and positively-charged amine groups 

(PosSt) of α-starch derivatives in aqueous solution [279]. Briefly, materials were 

dissolved in purified water to obtain solutions of 0.25 mg/mL, with subsequent 

filtration. NegSt solutions were added to PosSt solutions in a ratio of 1:1 using a 

syringe pump (Harvard Apparatus PHD ULTRA, Harvard Apparatus Inc., 

Holliston, USA) under gentle stirring at RT. NPs formed spontaneously and were 

analyzed after 10 min of stirring for equilibration. The final pH value was 7.4 for 

all tested formulations. IgG1 - an antibody, responsible for the elimination of 

invading pathogens - was chosen as model cargo. For loading, 150 µL IgG1 

solution (5 mg/mL; kindly donated by Boehringer Ingelheim, Germany) was 

added to 40 mL of starch NP suspension. 

For cellular interaction studies with hAELVi/THP-1 monocultures as well as the 

coculture, starch NPs were nebulized with an Aeroneb®Lab nebulizer 

(Aerogen Ltd., Ireland). To visualize the particles by CLSM, PosSt was labeled 

with a green fluorescent dye (Bodipy® FL C5 NHS Ester; LifeTechnologies, USA) 

before starch NP formation, and IgG1 was labeled with Alexa Fluor 647 

carboxylic acid (succinimidyl ester) (LifeTechnologies, USA) according in each 

case to the manufacturer’s protocol. Further information can be found in the 

thesis “Nanotechnology enabled drug delivery of proteins and peptides to the 

lung” by Sarah Barthold [280].  

Physicochemical properties including particle size, size distribution 

(polydispersity index, PdI) and surface charge (ζ-potential) of NPs in preparation 

medium were determined using the ZetaSizer® Nano ZSP (Malvern Instruments, 

UK). Particle sizes were intensity based z-average values and standard deviation 

was of at least 3 measurements.  
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5.2.2 Cell culture 

Mono-and cocultures were seeded as previously described in sections 3.2.1.1 

and 3.2.1.2.  

 

5.2.3 Transepithelial electrical resistance 

The effects of NPs on hAELVi mono- and cocultures at ALI were determined by 

TEER measurements, conducted 24 h after the deposition of NPs, as previously 

described in 3.2.2. 

 

5.2.4 Cell viability determination via MTT assay  

The influence of different particles including PLGA-CS NPs, Ag NPs, blank starch 

NPs and loaded starch NPs on cell viability was evaluated after nebulization onto 

monocultures and cocultures, respectively, using the Aeroneb®Lab nebulizer. 

After 24 h of incubation, cell viability was evaluated by conducting the so-called 

MTT assay [102]. This colorimetric assay is based on the reduction of the salt 

MTT to its insoluble formazan by mitochondrial enzymes. The arising formazan 

crystals can be dissolved in DMSO, resulting in a purple color, the intensity of 

which correlates with the mitochondrial activity of the cells.  

Briefly, mono-and cocultures were washed once with 300 µL Hanks’ balanced 

salt solution buffer (HBSS; composed of 1.12 mM CaCl2, 0.49 mM MgCl2*6H2O, 

0.41 mM MgSO4*7H2O, 5.33 mM KCl, 0.44 mM KH2PO4, 4.17 mM NaCO3, 

137.93 mM NaCl, 0.34 mM Na2HPO4, 5.55 mM D-Glucose, pH 7.4). In case of 

the coculture, the supernatants were centrifuged to avoid losing macrophages. 

The pellets were further resuspended in 300 µL HBSS buffer, containing 10% 

(v/v) MTT reagent (5 mg/mL; Sigma Aldrich, USA), added back to the wells and 

incubated for 4 h. After aspirating the reagent, 300 µL DMSO was added and 

again incubated for 20 min. Absorbance was measured with a Tecan Infinite® 

200 microplate reader (Tecan Deutschland GmbH, Germany) at 550 nm. During 
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the experiment the plates were placed on a MTS orbital shaker (150 rpm; IKA, 

Germany) at 37 °C. Cell viabilities were calculated in comparison to a positive 

control (untreated cells: 100% cell viability) and a negative control 

(1% TritonX-100:0% of cell viability). 

 

5.2.5 Cellular interaction studies 

Mono- and cocultures were grown at ALI as previously described. After 24 h in 

coculture, 250 µL of blank and IgG1-loaded starch NPs were deposited onto 

mono-and cocultures with the Aeroneb®Lab nebulizer and further incubated for 

24 h.  

The supernatant was then carefully aspirated and the cells were fixed with 3% 

methanol free PFA (added to the basolateral compartment) at 4 °C overnight. 

After fixation, the cells were permeabilized with 150 µL BSA/Saponin/PBS 

solution applied apically, followed by 150 µL anti-phalloidin staining (1:100) for 

30 min at RT. After aspirating the staining solution, the samples were 

counterstained with 150 µL DAPI (1:50000 in PBS) and subsequently mounted. 

The samples were analyzed using CLSM. Lasers at 405 nm (DAPI), 488 nm 

(starch NPs), 565 nm (actin) and 633 nm (IgG1) were used for detection. 

Microscopic images were acquired at 1024x1024 resolution, using 63x water 

immersion objective. Confocal images were analyzed using ZEN 2012 software 

(Carl Zeiss Microscopy GmbH) and Fiji software (Fiji is a distribution of ImageJ 

available at http://fiji.sc). 

 

5.2.6 Statistical analysis 

Data presented depict 1-3 independent experiments and are shown as 

mean ± standard error of mean (SEM*). Two-way ANOVA with Bonferroni´s post 

hoc test was performed using GraphPad Prism 5 software (GraphPad). 
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5.3 Results and Discussion 

5.3.1 Nanoparticle characterization 

Before applying the NPs onto hAELVi-/THP-1 mono- and cocultures, particle 

suspensions were evaluated regarding their size, PdI and ζ-potential. To evaluate 

their aerosolization stability, Ag NPs, starch NPs and starch NPs loaded with 

IgG1 were collected before and after nebulization (Table 5.1).  

PLGA-CS particles were applied to cells grown under LCC by pipette. 

Measurements showed a size of 142.1 ± 1.9 nm with a narrow size distribution of 

<0.2 and a positive ζ-potential of + 30.3 ± 0.7 mV. Compared to the other NPs 

used in the following experiments, these particles were the only ones with a 

positive surface charge.  

Measurements performed with the ZetaSizer® Nano ZSP showed an average 

size of 26.1 nm for Ag NPs, similar to the manufacturers information with a size 

distribution (PdI) of 0.21. Despite an increase in ζ-potential, these particles were 

stable during nebulization. 

Table 5.1. Particle characterization, conducted with the ZetaSizer® (Malvern, UK). 

Nanoparticle suspension of PLGA-CS, Ag NPs, blank starch NPs as well as loaded starch NPs 

were evaluated regarding size, PdI and ζ-potential. 

* Particle suspension used for pre-screening of different concentrations on THP-1 cells; performed under LCC. 

 

Blank starch NPs used to pre-screen the cytotoxicity of different concentrations 

on THP-1 monocultures grown under LCC displayed an average size of 

150.6 ± 2.4 nm with a PdI below 0.1. In contrast, the same kind of particles used 

for cytotoxicity and cellular interaction studies in samples grown at ALI, showed a 
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size of 115.10 ± 1.2 nm with a narrow size distribution and a negative ζ-potential. 

This difference might be attributed to the storage of the particles or may be an 

influence of the label. Nevertheless, they were stable during nebulization.  

When loaded with a model cargo (IgG1), starch NPs displayed an average size 

of 130.2 ± 5.7 nm with a PdI >0.2. But whereas the PdI was stable during 

nebulization, an increase in size (212.3 ± 1.8 nm) and slight changes in the 

ζ-potential could be observed, which can be a result of agglomeration during the 

nebulization process. 

 

5.3.2 Proof-of-concept I: PLGA-CS nanoparticles 

PLGA-CS NPs have been introduced as a flexible and efficient DDS that can be 

used for gene therapy [277, 281]. For initial proof-of-concept studies, they were 

applied on hAELVi-/THP-1 mono- and cocultures that were grown under LCC.  

Due to its biocompatible and biodegradable qualities, PLGA, a co-polymer 

approved by the Food and Drug Administration (FDA) and the European 

Medicine Agency (EMA), has been used to fabricate devices for drug delivery 

and tissue engineering applications [282]. In general, PLGA is a copolymer of 

poly lactic acid (PLA) and poly glycolic acid (PGA), linked by ester bonds. 

Whereas PGA displays a crystalline structure, PLA can be found in highly 

crystalline form or can be completely amorphous [282]. When co-polymerized 

with PLA, PGA reduces the grade of crystallinity of PLGA, resulting in increased 

hydration and hydrolysis rate. It was found that the higher the content of PGA, 

the faster the biodegradation rate of the polymer [283]. However, PLGA shows 

the fastest degradation in a ratio of 50:50 of PLA and PGA [282]. In contact with 

water it biodegrades by hydrolysis of its ester linkages into lactic and glycolic 

acids. While PGA can be excreted unchanged by the kidneys, both monomers 

can be metabolized by entering the tricarboxylic acid cycle and eliminated from 

the body as carbon dioxide and water [282, 284, 285].  

CS, a polysaccharide, is also known to be biocompatible and biodegradable, with 

low toxicity and mucoadhesive properties that supports macromolecule 
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permeation through well-organized epithelia [286-293]. When coated with CS, 

the negative surface charge of PLGA NPs increases from negative to positive 

without affecting the PdI, resulting in promoted cellular adhesion and a prolonged 

retention time at the target site (which is beneficial for example in cancer cell 

targeting). Besides this, the modification of PLGA NP surfaces with CS can also 

decrease the burst effect in the release of an encapsulated drug, and can 

increase the stability of macromolecules [281, 288, 291]. 

Due to the well-characterized properties of PLGA-CS NPs and their capacity to 

deliver drugs into lung cells [277], hAELVi-/THP-1 mono- and cocultures were 

incubated with PLGA-CS NPs in different concentrations ranging from 0 to 

1000 µg/mL for 24 h. Results obtained from the MTT assay showed no decrease 

in cell viability in hAELVi monocultures. As an exception, after applying a NP 

concentration of 25 µg/mL, an increase in cell viability of ~25% up to 125% could 

be observed (Figure 5.2), indicating stress in the epithelial cells. It was already 

shown that CS NPs are well-tolerated by epithelial cells even at concentration 

>1000 µg/mL [289].  
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Figure 5.2. Impact of PLGA-CS NPs on mono- and cocultures, grown under LCC. Cell 

viabilities of hAELVi-/THP-1 mono- and cocultures after 24 h of NPs incubation with different 

concentrations. Data shown are mean ± SEM* (n=3) from one experiment; 

*P<0.05; ***P<0.001 vs. hAELVi; #P<0.05; ##P<0.01; ###P<0.001 vs. hAELVi + THP-1. 
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In contrast, THP-1 cells in monoculture showed viabilities less than 50% when 

incubated with PLGA-CS NPs at a concentration of 25 µg/mL, whereas higher 

viability levels could be observed when treated with concentrations of 50 µg/mL 

or 100 µg/mL. The application of 1000 µg/mL led to a decrease in cell viability of 

~73% (Figure 5.2). Even if CS is considered as non-toxic and biocompatible, it 

has been reported that when formulated as NPs a reduction in safety can be 

observed, resulting in cell membrane damage followed by enzyme leakage and 

necrotic or autophagic cell death [294]. Furthermore, it has been proven that 

PLGA NPs can induce inflammation [295] after intravenous administration, that 

was reversible after halting the treatment [296].  

In hAELVi-/THP-1 cocultures cell viabilities between 80 and 88% could be found, 

whereas the highest NP concentration of 1000 µg/mL led to a decrease of ~42%, 

resulting in ~68% of viable cells in hAELVi monocultures. These results show 

again that hAELVi cells are more robust compared to THP-1 cells. When 

cocultured, the toxic effect that could be observed in the macrophage-like cells 

was attenuated. This can be indicative of interplay of epithelial and 

macrophage-like cells, which is realistic when considering the situation in vivo. As 

PLGA-CS NPs are known to be a potent DDS for gene therapy, further analysis 

should be performed within this coculture system, as these studies have shown it 

to be a promising tool for evaluating toxicity and could be further utilized for the 

evaluation of other parameters, including inflammatory response or knock-down 

experiments. 

 

5.3.3 Proof-of-concept II: Silver nanoparticles (Ag NPs) 

Due to their antimicrobial properties, Ag NPs are commonly used in many 

consumer and medical products such as cosmetics, sanitary products, food 

technology, textiles, dental fixtures, catheters and wound dressings                 

[81, 297-300]. Despite its widespread use, only limited information on silver 

toxicity is available. Current studies suggest that some forms of silver are more 

toxic than others, resulting in the induction of toxicity in different species [301-

305]. Moreover, these particles can cause argyria, an irreversible skin 
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discoloration [306] and/or neuronal damage in humans [81]. Besides absorption 

via the skin, inhalation is one of the main exposure routes for Ag NPs; however, 

their interaction with mammalian cells is currently still not fully understood. 

Therefore, it is of primary importance to evaluate possibly adverse effects of 

aerosolized Ag NPs [307].  

With respect to the effect of Ag NPs on the lung, commercially available Ag NPs 

were nebulized onto the newly established alveolar coculture model. Cell 

viabilities and epithelial barrier integrity were determined in hAELVi-/THP-1 

mono- and cocultures after 24 h of NPs incubation. 

Figure 5.3. Impact of nebulized Ag NPs on mono- and cocultures. A: Cytotoxicity of applied 

Ag NPs on hAELVi-/THP-1 mono- and cocultures. B: TEER-measurements of hAELVi 

monocultures and cocultivated with THP-1. Data shown are mean ± SEM* (n=6) from two 

independent experiments; **P<0.01, ***P<0.001. 

 

The nebulization of Ag NPs led to a decrease in cell viability (Figure 5.3 A). In 

hAELVi monocultures a decrease to ~87% viability could be observed, whereas 

THP-1 showed levels of around 42%. In cocultivated samples only a slight effect 

could be observed, resulting in cell viabilities of ~95%. As previously shown in 

chapter 4, TEM images indicated some interaction between hAELVi and THP-1 

cells, which may attenuate the toxic effects of Ag NPs. An abundant glycocalyx 

that has been previously been shown to shield the human airway epithelial cells 

from virus-mediated gene transfer [230] covers the epithelial cells, and seems 

somehow to extend its protective role to macrophages. Due to the fact that the 

extracellular matrix layer that covered THP-1 cells in coculture at ALI could not 

be observed in THP-1 monocultures, it can be speculated that hAELVi cells 
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secrete factors that modify the surface of macrophage cells or sediment on top of 

these cells. This finding raises the hypothesis that the hAELVi cells protect the 

THP-1 cells, which in monoculture are much more sensitive against applied NPs. 

These findings are also supported by the data of Kasper et al. who established a 

coculture model aiming to mimic the alveolar-capillary barrier for evaluating the 

impact of silica NPs in the deep lung. They have shown that their coculture was 

less sensitive to toxic effects compared to conventional monocultures [133].  

Several studies have shown that the toxicity of Ag NPs can be induced via 

various mechanisms such as the induction of the expression of genes involved in 

cell cycle progression and apoptosis, interruption of ATP synthesis, and ROS and 

oxidative stress resulting in DNA damage [298, 300, 308, 309]. Besides this 

effect being noted in A549 cells, reduced cell viability as a result of Ag NP 

incubation was also observed in alveolar macrophages [310, 311]. Surprisingly, it 

was reported that also non-cytotoxic doses <0.5 µg/mL could induce the 

expression of genes associated with cell cycle progression and apoptosis      

[312, 313]. 

To further evaluate the impact of Ag NPs on the barrier integrity of epithelial cells, 

TEER measurements were conducted after 24 h of particle incubation. Non-

treated samples displayed TEER values of ~2900 Ω*cm² (hAELVi monoculture) 

and ~5400 Ω*cm² (hAELVi + THP-1). Incubation with Ag NPs resulted in a 

decreased TEER: hAELVi cells showed values of around 1500 Ω*cm², in contrast 

values of ~2600 Ω*cm² which could be observed in the coculture (Figure 5.3 B). 

Comparing mono- and cocultures no difference could be observed, as both 

groups showed the same behavior after Ag NP incubation. Due to the fact that 

the coculture itself displays a higher TEER compared to the monoculture, the 

effect seems to be more pronounced.  

However, the effect of a decrease in TEER should not always be directly 

associated with cytotoxicity. TEER values should be considered rather as an 

indicator for cytotoxicity [85] as it could be shown that CS for example, as a 

biocompatible polysaccharide, that is commonly used as an excipient in drug 

delivery systems, is able to open TJs [314]. Several studies showed a reversible 
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change in permeability after incubation with CS, indicating that opening of the 

TJs is not necessarily a result of cytotoxicity of a given substance [315-317]. 

It is also known, that paracellular permeability which is increased in a variety of 

diseases such as inflammatory bowel disease, and airway inflammation as 

occurring in asthma [135] and CF [318] can be modulated by cytokines, leading 

to actin remodeling and changes in the TJ structure resulting in the leakage of 

the epithelial barrier [319]. With this in mind, the possible induction of 

inflammation is also an important issue that should always be considered in the 

context of exposure to NPs. Therefore, experiments for evaluating inflammatory 

responses after NPs incubation should be included in future studies. 

 

5.3.4 Application and evaluation of newly developed starch nanoparticles  

As previously mentioned in chapter 1, the work within the COMPACT project 

comprises the preparation and characterization of formulations either for 

non-invasive delivery of nucleic acid-based drugs or proteins and peptides. A 

DDS for the latter for pulmonary drug delivery was developed by Sarah Barthold 

by charge-mediated coacervation of positively- and negatively-charged starch 

derivatives, synthesized from potato starch. These NPs have already been tested 

on A549 and 16HBE14o- cells [279]. As the newly established coculture model 

represents two characteristic barrier structures for the deep lung - tight epithelial 

junctions and macrophages - and is therefore quite important for drug delivery, 

this new DDS was applied to determine its impact on cell viability and cellular 

interactions. But before these NPs were nebulized onto the alveolar coculture, 

they were first tested on THP-1 monocultures, as it is known from the previous 

experiments that these cells represent the sensitive component within this 

system. 

Therefore, 1x105 cells were grown under LCC in a 96-well plate and further 

incubated with different concentrations of blank starch NPs ranging from 

0-133 µg/mL, diluted in RPMI medium. After 24 h of particle incubation, an MTT 

assay was applied to determine DDS impact on cell viability of THP-1 cells. 
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Already a particle concentration of 8 µg/mL lead to a decrease in viability to 76%, 

whereas at concentrations between 17 and 133 µg/mL viability levels of 68% - 

55% could be observed (Figure 5.4).  
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Figure 5.4. Impact of blank starch NPs on THP-1 monocultures. Cell viabilities of THP-1 cells 

grown under LCC were cultivated with different concentrations of blank starch NPs for 24 h. Data 

shown are mean ± SEM* (n=3) from one experiment; ***P<0.001.  

 

Comparing these results with those obtained from PLGA-CS NPs, it could be 

observed that while PLGA-CS concentrations of 50 µg/mL led to cell viabilities of 

~55%, starch NPs with a concentration of 67 µg/mL showed values of ~61%. 

Higher concentrations of both formulations, however, showed similar cell viability 

levels. It is generally accepted that positively-charged NPs are more toxic to 

mammalian cells [265]. In the case of starch NPs, it can be speculated that 

contamination with pyrogens can cause this toxicity. Immunogenicity assays 

combining the human TLR reporter assay and the dendritic cell maturation assay 

revealed that starch NPs activated TLR receptors and further increased the 

dendritic cell maturation. Subsequently applied endoLISA® assays showed high 

concentrations of endotoxins in samples of cationic starch derivatives, whereas 

none could be detected in negatively-charged starch. Detailed examination 

indicated that the synthesis time point as well as the storage time at RT could 

have led to contamination with bacteria, resulting in the release of pyrogens that 

further induced toxicity in macrophage-like cells [280]. Shorter storage periods or 
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lower temperatures such as 4 °C or -20 °C, as well as storage in a desiccator 

under low relative humidity could therefore be beneficial for newly synthesized 

starch derivatives.  

Until now, 2D or 3D cell cultures grown under LCC have been used for assays 

evaluating toxicity [103], particle interactions [126, 191] and cell infection [320], 

giving an important and valid contribution to knowledge in these areas. However, 

this approach does not realistically reflect particle inhalation in vivo [321]. In this 

regard, research is now more focused on the direct delivery of aerosols to the 

cells which are cultivated at ALI; the following experiments also had a focus on 

ALI, since this condition represents better the in vivo situation in the deep lung, 

i.e. cells exposed to the air.  

Related to the previous results (Figure 5.4), either 50 µL (≙ 7.25 µg) or 250 µL 

(≙ 41.25 µg) of starch NPs were deposited onto hAELVi cells, THP-1 cells and 

the coculture. After 24 h of particle incubation, cell viability studies as well as 

TEER measurements were conducted.  

Whereas the nebulization of 7.25 µg of blank starch NPs led to a slight increase 

in cell viability in hAELVi monocultures up to ~110%, which can be associated 

with stress of the cells induced by applied NPs, slight decreases down to 91% 

could be found in THP-1 monocultures and the coculture (Figure 5.5 A). In 

contrast, the application of 41.25 µg of blank starch NPs had no effect on cell 

viabilities of hAELVi monocultures, while a decrease in cell viability in THP-1 

(~54%) and the coculture (~84%) could be observed (Figure 5.5 B). This can 

possibly be explained by the fact that the cells are in contact with a higher 

amount of starch NPs which were speculated to be contaminated with pyrogens, 

as previously discussed in Figure 5.4. Nevertheless, as already discussed in 

5.3.3, the interaction between hAELVi and THP-1 and also the fact that both are 

covered with either an extracellular matrix layer or glycocalyx-like structure when 

cocultured may attenuate the toxic effect of higher concentrations of blank starch 

NPs. 
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Figure 5.5. Influence of blank starch NPs with different concentrations on mono-and 

cocultures, cultivated at ALI. A, C: Cell viabilities of mono- and cocultures after incubation with 

blank starch NPs. B, D: TEER-measurements of hAELVi mono- and cocultures with THP-1 after 

incubation with blank starch NPs. Data shown are mean ± SEM* (n=6) from two independent 

experiments; *P<0.05, **P<0.01, ***P<0.001. 

 

TEER measurements conducted to determine the effect of blank starch NPs on 

the epithelial barrier revealed that non-treated cells in monoculture displayed 

TEER values of around 4000 Ω*cm² and ~2600 Ω*cm² after nebulization of 

7.25 µg and 41.25 µg, respectively. The application of 7.25 µg of blank starch 

NPs showed values of ~3100 Ω*cm², and ~2000 Ω*cm² after the treatment with 

41.25 µg of starch NPs. A similar effect could be observed in the coculture, 

exhibiting TEER values of ~3880 Ω*cm² and ~2500 Ω*cm² after incubation of 

7.25 µg and 41.25 µg, respectively. Due to the higher TEER in non-treated 

samples, this effect seemed to be more pronounced in the coculture 

(Figure 5.5 B, D).  

Even if the obtained results showed that epithelial cells are more robust and 

resistant to the effects of starch NPs, and that no differences could be observed 
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in terms of evaluating the impact of applied NPs onto the epithelial barrier, both 

cell types are needed to mimic the situation in vivo where cells can interact with 

each other as well as with the applied particle.  

 

Additionally, as these NPs were prepared for pulmonary drug delivery of proteins 

and peptides, they were loaded with a model cargo, IgG1 and subsequently 

applied to the mono- and cocultures with the Aeroneb®Lab nebulizer. IgG1 is a 

subclass of the family of IgG antibodies that are responsible for the elimination of 

invading pathogens and their products. A deficiency in IgG1 is reported to be 

associated with respiratory diseases / inflammatory states including asthma     

[322-324]. 

The nebulization of loaded starch NPs led to a decrease in viability in hAELVi 

(~80%) and THP-1 (~36%) monocultures (Figure 5.6 A). This observation can be 

a result of the agglomeration of loaded starch NPs, as previous results have 

shown that the physicochemical properties of NPs changed upon nebulization - 

observed as an increase in size from 130 nm up to 212 nm, and a slight change 

in an increase in the ζ-potential from -23 mV to -19 mV. This effect could not be 

observed in the cocultures, which supports the assumption that communication 

between epithelial cells and THP-1 cells leads to higher resistance to NPs. 

Figure 5.6. Influence of loaded starch NPs on mono-and cocultures, cultivated at ALI. A: 

Cell viabilities of mono- and cocultures after incubation with loaded starch NPs. B: TEER 

measurements of hAELVi mono- and cocultures with THP-1 after incubation with loaded starch 

NPs. Data shown are mean ± SEM* (n=6) from two independent experiments; **P<0.01, 
***P<0.001. 
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To evaluate the impact of starch NPs + IgG1 on the barrier integrity, TEER was 

measured after 24 h of particle incubation. hAELVi monocultures were only 

slightly affected by the incubation with starch NPs + IgG1 (~2400 Ω*cm²), 

whereas the coculture showed a drop in TEER to ~3500 Ω*cm² 

(starch NPs + IgG1; Figure 5.6 B). In contrast to the results obtained from MTT 

assays, no cytotoxic effect could be observed via TEER measurements. Even if 

mono- and cocultures showed lower TEER values upon NP exposure compared 

to the untreated cells, hAELVi cells do still maintain their tight barrier.  

As the newly developed starch NPs are intended for intracellular delivery, cellular 

interactions were evaluated by nebulizing either blank starch NPs or NPs loaded 

with IgG1 onto hAELVi-/THP-1 mono- and cocultures. Starch was labeled with a 

green fluorescent dye (Bodipy® FL C5 NHS Ester) and IgG1 was labeled with 

Alexa Fluor 647 carboxylic acid to visualize the NPs by CLSM. The nebulization 

was followed by 24 h of incubation at 37 °C. After fixation, the samples were 

further stained with anti-phalloidin (actin, red) and DAPI (nucleus, blue). 

Z-stacks of CLSM indicated an internalization of blank starch NPs into hAELVi 

cells when grown in monocultures (Figure 5.7 A). An uptake into epithelial cells 

could already be observed in previous studies conducted with A549 and 

16HBE14o- exposed to these starch NPs [279].  

Figure 5.7. Cellular interaction studies of nebulized starch NPs. Confocal laser scanning 

microscopic images of monocultures of hAELVi (A), THP-1 (B) and the coculture (C) cultivated at 

ALI after 24 h of incubation with nebulized blank starch NPs. hAELVi cells / THP-1: anti-phalloidin 

(actin; red); NPs: Bodipy® C5 NHS Ester; green. Nuclei were counterstained with DAPI (blue). 

Images are representative of two independent experiments. Arrows indicate starch NPs. 

Scale bar: 10 µm. 
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An internalization could also be observed in THP-1 monocultures after 24 h of 

incubation (Figure 5.7 B). As they mimic alveolar macrophages, which are 

responsible for the clearance of foreign matter in the deep lung in vivo, this was 

not unexpected. As already mentioned earlier, the interaction behavior of NPs is 

governed by their shape and surface charge as well as their size. Depending on 

the cell type, the optimum particle size for efficient endocytic uptake varies [325]. 

For macrophages it is known that they are able to ingest large particles with a 

diameter between 1 and 10 µm [325-327]. For drug delivery via liposomes it was 

found that negatively-charged liposomes with a diameter of 0.05-0.1 µm were 

internalized more efficiently than larger ones [328, 329]. For microspheres 

maximum phagocytosis was observed for those displaying sizes in a range of 

1-3 µm [329-331] which corresponds to the general size of bacteria that are 

commonly targets of phagocytes [332]. For alveolar macrophages in particular, 

optimal sizes between 3 and 6 µm were found [333]. In contrast, the starch NPs 

display a size of ~115 nm; and yet, they were taken up into the macrophage-like 

cells. NPs are known to aggregate when in contact with biological solutions, 

resulting in increased overall size [332]. Another explanation can again be the 

previously described contamination with pyrogens that may affect the uptake 

behavior of macrophages. Pyrogens like lipopolysaccharides (LPS) are known to 

activate TLR receptors resulting in an increased phagocytic activity of 

macrophages [334].  

Within the coculture, however, no uptake into epithelial cells but only into 

macrophage-like cells could be observed (Figure 5.7 C). Considering the 

situation in vivo, where macrophages are patrolling the alveolar epithelium, this 

behavior was expected. Nevertheless, it was surprising that negligible numbers 

of particles were taken up into the epithelium, as it is known that particles smaller 

than 200 nm are able to evade lung clearance mechanisms and therefore are 

suitable for intracellular delivery into epithelial cells [335, 336].  

The analysis of cellular interaction of starch NPs + IgG1 showed no difference 

compared to blank starch NPs, as the labeled IgG1 could not be detected (data 

not shown). This can be ascribed to the rather low concentration of IgG1 that was 

used for the loading of starch NPs.  
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Nevertheless, these results indicate that the newly developed starch NPs are 

able to be taken up into epithelial cells and macrophages, even if the uptake into 

the epithelium is not observable when cocultured with macrophages. Previously 

conducted experiments revealed a contamination of the cationic starch 

derivatives with pyrogens due to long storage periods. As this can also possibly 

affect cell viabilities, it is of utmost importance to control and to ensure that NPs 

are pyrogen-free before their application.  

In addition, the increasing knowledge of the uptake behavior of NPs into 

macrophages with respect to their alteration within the body (e.g. by 

opsonization) can help in the modification of these NPs in a way that enables 

them to easily reach their target cells. 
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5.4 Conclusion 

As humans are increasingly exposed to naturally-derived or engineered NPs, the 

evaluation of their impact on cellular systems is of utmost importance. For this, 

several in vitro models either comprising single cell layers or complex cocultures 

have been used to analyze cytotoxicity or cellular interactions. With regard to the 

complexity that can be found in vivo, there is still a need for in vitro models 

containing more than one cell type, that allow cell-cell as well as cell-particle 

interactions. 

Within this chapter, the newly established alveolar coculture model was 

successfully utilized for the application of several kinds of NPs. In first 

proof-of-concept studies, the use of the coculture showed benefits with respect to 

evaluation of the toxicity of well-characterized PLGA-CS NPs.  

Further, Ag NPs were nebulized onto hAELVi and THP-1 monocultures as well 

as the combined system. An amount as low as 7.25 µg showed high cytotoxicity 

in macrophage-like cells, whereas in the coculture almost no toxicity could be 

observed. As already shown in chapter 4, TEM images indicated some 

interaction between hAELVi and THP-1 cells that may attenuate the toxic effects 

of Ag NPs. An abundant glycocalyx-like layer that covers the epithelial cells 

seems somehow to extend its protective role to macrophages, due to the fact that 

the extracellular matrix layer could be observed on THP-1 cells in coculture at 

ALI but could not be seen in THP-1 monocultures. Therefore, it can be 

speculated that hAELVi cells protect the THP-1s by secreting factors that may 

modify the surface of macrophages or sediment on top of these cells. The 

possible induction of inflammation is also an important issue that should always 

be considered in the context of exposure to NPs. With this in mind, experiments 

for evaluating inflammatory responses after NPs incubation should be included in 

future studies. 

Further, a newly developed DDS intended for the pulmonary delivery of proteins 

and peptides based on starch NPs was nebulized onto the coculture and was 

evaluated regarding its toxicity and cellular interaction. Besides low toxicity, 

CLSM images indicated the suitability of starch NPs for intracellular delivery, 
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even if no uptake could be observed into epithelial cells when cocultured with 

THP-1.  

In summary, the obtained results indicate the promising use of the newly 

established coculture model to pre-screen new formulations for toxicity and 

cellular interactions. The established involvement of the main cell types 

contributing to the air-blood barrier and the increasing knowledge of their uptake 

behavior (macrophages in particular) makes this model a promising tool to 

contribute to the optimization of new DDS to allow them to reach their target 

cells.  
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6. Summary and outlook 

Besides naturally-derived NPs, the rising number of engineered NPs that are 

incorporated into many consumer products or used as DDS has resulted in an 

increased exposure of humans to NPs. As the lung is a major route for entering 

the human body, NP impact on pulmonary cellular systems has to be carefully 

evaluated. For this purpose, in vitro models able to evaluate new drug candidates 

or DDS with respect to their safety and efficacy represent an important alternative 

for animal testing. Isolated cells in primary culture are the gold standard in terms 

of reflecting physiological phenotypes and functions, however, their use is 

restricted due to limited access to primary material, short cell life-spans and large 

inter-individual cellular differences, leading to low reproducibility and limited 

usability for high-throughput screening applications. In this regard, the aim of this 

thesis was to establish a human cell line-based coculture model mimicking the 

human air-blood barrier that is suitable for studying the interaction with 

aerosolized drug carriers. 

Within the current work a coculture of the recently described human lentivirus 

immortalized alveolar epithelial cell line hAELVi with overlying differentiated 

macrophage-like cells (THP-1) was successfully set up; this was followed by its 

subsequent characterization and application to NPs testing. TEER 

measurements and microscopic analysis revealed that hAELVi cells maintain 

their TJs and the resulting diffusional barrier is not affected by macrophages that 

are added on top. But, whereas hAELVi monocultures cultivated under both LCC 

and at ALI can be used to evaluate cytotoxicity, the coculture system requires ALI 

conditions. While SEM imaging showed a homogenous distribution of THP-1s on 

top of hAELVi cells under both conditions, CLSM and TEM images indicated a 

significant reduction of macrophages under LCC, most likely occurring during the 

change of cell culture medium in the apical compartment. TEM also revealed a 

rather weak interaction between macrophages and epithelial cells when 

cultivated under LCC as compared to samples grown at ALI.  
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Besides this technical limitation, ALI is preferred anyway because it better 

represents the physiological situation in the lung in vivo, and allows the 

deposition of aerosolized particles. Transport studies using NaFlu alone or in 

combination with the TJ modulator EDTA indicated that this model is a promising 

alternative for assessing drug transport. Additionally, as this model comprises an 

extra barrier in form of macrophages, clearance mechanisms of applied drug 

formulations and/or NPs can be evaluated in parallel. 

Additional, long-term cocultivation for up to 7 days revealed that both cell types 

remained viable, however a decrease in the amount of macrophages could be 

observed after 7 days in coculture. One possibility to prolong the coculture e.g. 

for studying longer exposure times or repeated exposure could be to further add 

more macrophages after 3 days of cocultivation. But nevertheless, besides drug 

delivery testing, this makes this model a promising tool to answer questions 

regarding cancer pathogenesis as well as chronic diseases in the future. 

First experiments involving the nebulization of small concentrations of Ag NPs 

showed high cytotoxicity in macrophage-like cells, whereas in the coculture a 

reduced toxicity could be observed. This implies some interaction between both 

cell types that results in the attenuation of toxic effects. In addition, TEM images 

revealed that THP-1 cells are covered with a layer of extracellular matrix when 

cocultured with hAELVi cells. In contrast, this protective layer could not be 

observed in THP-1 monocultures, suggesting a synergistic crosstalk between 

macrophage-like cells and the epithelium by e.g. secreted factors. Further, a 

newly developed DDS intended for the pulmonary delivery of proteins and 

peptides based on starch NPs was nebulized onto the coculture and 

subsequently evaluated regarding toxicity and cellular interaction. Besides low 

toxicity, CLSM images indicated the suitability of starch NPs for intracellular 

delivery, even if no uptake could be observed into epithelial cells when 

cocultured with THP-1s. The increasing knowledge of e.g. macrophage uptake 

behavior can contribute to the optimization of new DDS allowing them to better 

reach their specific target cells.  

Nevertheless, there are still open questions and suggestions that can provide the 

basis for future work. Among these, the following should be mentioned: The 
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possible genesis of inflammation should always be considered in terms of NP 

exposure / application. The established coculture model includes immune cells in 

the form of macrophages - these represent a main source of cytokine production 

and play a crucial role in host responses to infection, immune responses and 

inflammation. To further determine the capacity of this model for evaluating 

inflammatory responses, inflammatory stimuli like LPS should be applied and 

cytokine release should be analyzed. Moreover, to study the treatment of 

respiratory diseases, the model could perhaps be extended towards an infection 

with relevant pathogens such as Pseudomonas aeruginosa or Streptococcus 

pneumoniae.  

Besides that, the endothelial barrier has not been sufficiently investigated with 

regard to drug delivery so far. Also, as it can be assumed that these structures at 

least partly contribute to the tight barrier in vivo, endothelial cells can be further 

included in the system. Moreover, the model as it was set up and described here 

implicates rather static conditions. 

To mimic more closely the in vivo-like conditions, in which blood perfusion and 

breathing applies some shear stress to the cells, the system could be connected 

to a flow system. Another point that should be considered when evaluating 

drug-cell interactions is the opsonization of the NPs by plasma or lining fluid 

proteins. Although the small volume of medium in cultures set up at ALI may 

mimic the amount of lung lining fluid in the alveoli. The latter, however, has a very 

peculiar composition, containing lung surfactant proteins and phospholipids. 

Therefore, it could be interesting to evaluate to what extent hAELVi cells produce 

these molecules as well, and to investigate the composition of the resulting 

alveolar lining fluid on top of these cocultures. 

Apart from these still open questions, the newly established coculture of two 

human cell lines, representing alveolar epithelial cells and macrophages, 

appears as a useful tool for studying the interaction with aerosol particles in the 

context of testing the safety of air-born nanomaterials as well as novel inhalation 

(nano) pharmaceuticals.  
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List of abbreviations 

Ag NPs Silver nanoparticles 

ALI Air liquid interface 

ANOVA Analysis of variance 

API Active pharmaceutical ingredient  

ATI Alveolar type I cells 

ATII Alveolar type II cells 

BCRP Breast cancer resistance protein 

BSA Bovine serum albumin 

Ca Calcium 

CF Cystic fibrosis 

CFDA-SE Carboxyfluorescein diacetate succinimidyl ester 

CLSM Confocal laser scanning microscopy 

COL Collagen 

COMPACT Collaboration on the optimization of macromolecular 

pharmaceutical access to cellular targets 

COPD Chronic obstructive pulmonary disease 

CS Chitosan 

DAPI 4',6-diamidino-2-phenylindole 

DDS Drug delivery system 

DDAO-SE N, N-Dimethyldodecylamine N-oxide succinimidyl ester 

DMSO Dimethyl sulfoxide 

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen 

EDTA Ethylenediaminetetraacetic acid 
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Efpia European Federation of Pharmaceutical Industries and 

Associations 

EMA European Medicine Agency 

ER Endoplasmic reticulum 

EVOM Epithelial voltohmmeter 

FBS Fetal bovine serum  

FDA Food and Drug Administration 

FN Fibronectin 

GA Glutaraldehyde 

GA* Golgi apparatus 

hAELVi human alveolar epithelial lentivirus immortalized cells 

hAEpC human alveolar epithelial primary cells 

HBSS Hank’s balanced salt solution 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HMDS Hexamethyldisilazane 

hPMECs human pulmonary microvascular endothelial cells 

HUVEC Human umbilical vein endothelial cells  

ICAM-I Intracellular adhesion molecule-I 

IgG1 Immunoglobulin G1 

IMI Innovative Medicines Initiative 

JAMs Junctional adhesion molecules 

KRB Krebs-Ringer Buffer 

LCC Liquid covered conditions 

LPS Lipopolysaccharide 

LRP Lung resistance-related protein 
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MHC Major histocompatibility complex 

MRPs Multidrug resistance-related proteins 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

Mv Microvilli 

NaFlu Sodium fluorescein 

NHBE Normal human bronchial epithelial  

NPs Nanoparticles 

OCLN Occludin 

OCTs Organic cation transporters 

PADDOCC Pharmaceutical Aerosol Deposition Device on Cell Cultures 

Papp Apparent permeability coefficient 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction  

PdI Poly dispersity index 

PFA Paraformaldehyde 

PGA Poly glycolic acid 

P-gp P-glycoprotein 

PLA Poly lactic acid 

PLGA Poly(D,L)-lactide-co-glycolide 

PMA Phorbol-12-myristate-13-acetate  

Pp Pseudopodia 

P/S Penicillin/Streptomycin 

PVA Polyvinyl alcohol 

ROS Reactive oxygen species 

RPMI Roswell Park Memorial Institute 
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RT Room temperature 

SAGM Small airway growth medium 

SD Standard deviation 

SEM Scanning electron microscopy  

SEM* Standard error of the mean 

SNA Supernatant A 

SNB Supernatant B 

SPs Surfactant-associated proteins  

TEER Transepithelial electrical resistance  

TEM Transmission electron microscopy  

TJs Tight junctions 

TLR Toll-like receptor 

TT1 Transduced type I cell line 

ZO-1 Zonula Occludens-1 
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