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SUMMARY  

 

In addition to the so-called small molecule drugs, proteins and peptides are of increasing 

interest for pharmacotherapy, due to several advantageous properties. In general, those 

compounds are administered parenterally. However, non-invasive routes of administration 

represent a great part of research. Amongst others is the pulmonary application of proteins 

and peptides for local delivery in the case of pulmonary diseases, such as idiopathic 

pulmonary fibrosis, where the alveolar epithelium is affected.  

To ensure an intracellular delivery, nanoparticles in a size range of 150 nm were prepared via 

charge-mediated coacervation, characterized for their physicochemical properties and loaded 

with several model-proteins and -peptides. The material used for nanoparticle preparation was 

chosen to be positively and negatively charged starch derivatives, which were synthesized 

from potato starch. 

Although nanoparticles in that size range are known to show an increased cell uptake, they do 

not show a high deposition in the deep lung. Thus, an advanced carrier system consisting of a 

fast dissolving microparticle matrix with embedded starch nanoparticles was developed and 

characterized. Due to its aerodynamic properties, that carrier system was able to deposit a 

high fraction of the applied dose in the deep lung (~50%), while at the same time 

demonstrating (in in vitro models) the ability to facilitate uptake of starch nanoparticles into 

cells of the alveolar epithelium after fast dissolution of the microparticle matrix.  
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KURZZUSAMMENFASSUNG 

 

Aufgrund zahlreicher Vorteile, stellen Proteine und Peptide eine vielversprechende 

Erweiterung der Pharmakotherapie dar, weg von sogenannten small molecule drugs. Die 

nicht-invasive Applikation solcher Wirkstoffe steht heutzutage im Fokus der Forschung. 

Unter anderem zählt hierzu die pulmonale Applikation von Proteinen und Peptiden für die die 

lokale Gabe bei bestimmten Lungenerkrankungen wie z.B. der idiopathischen pulmonalen 

Fibrose, bei der vor allem das Alveolarepithel betroffen ist.  

Um ein intrazelluläres Delivery zu gewährleisten wurden Nanopartikel durch 

ladungsvermittelte Koazervation im wässrigen Medium mit einem Größenbereich um die 150 

nm hergestellt und charakterisiert. Im Anschluss wurden die Nanopartikel mit verschiedenen 

Modell-Proteinen und -Peptiden beladen. Das Material für die Nanopartikel bestand dabei aus 

negativ und positiv geladenen Stärkederivaten, welche aus Kartoffelstärke synthetisiert 

wurden.  

Da Nanopartikel in diesem Größenbereich zwar eine Aufnahme in die Zelle erleichtern, 

allerdings keine hohe Depositionsrate in der tiefen Lunge erreichen, wurde im Rahmen dieser 

Arbeit ein spezielles Drug Delivery System, bestehend aus in einer sich schnell auflösenden 

Mikropartikel Matrix mit eingebetteten Nanopartikeln, entwickelt und charakterisiert. Durch 

seine aerodynamischen Eigenschaften ist das Drug Delivery System fähig einen Großteil der 

applizierten Dosis in der tiefen Lunge zu deponieren (~50%), als auch, nach der schnellen 

Auflösung der Mikropartikel Matrix, die Aufnahme der Nanopartikel in das Lungenepithel (in 

vitro) zu gewährleisten. 
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1. STATE OF THE ART 

1.1 PROTEINS AND PEPTIDES AS ACTIVE PHARMACEUTICAL INGREDIENTS 

Historically speaking, active pharmaceutical ingredients (APIs) such as acetylsalicylic acid or 

paracetamol have been commonly characterized by a small molecular weight. However, 

modern drug discovery approaches most often lead to drugs with a hydrophobic character and 

a high molecular weight, resulting in poor water solubility and low permeability over 

epithelial barriers, respectively.1, 2 In recent times, the use of so-called biopharmaceuticals, 

including nucleic acid- and protein- based APIs with complex chemical structures have begun 

to find favor in therapeutic settings; such entities have shown faster and higher success rates 

in phase two and three clinical trials compared to conventional APIs.3, 4 This is especially 

important for pharmaceutical industry with clinical trials being the most expensive part of 

development. 

Due to the fact that this thesis is about drug delivery systems (DDS) for protein and peptide 

delivery, the focus of this chapter lies on protein- and peptide-based APIs. Nucleic acid based 

APIs will not be explained, so the reader is referred to several literature reviews about this 

topic.5-8 

 

1.1.1 THE STRUCTURE OF PROTEINS AND PEPTIDES 

Proteins and peptides are biomacromolecules consisting of amino acid residues. The main 

difference between proteins and peptides is their size, represented by different numbers of 

constituent amino acids. While peptides in general consist of a linear chain of 20-30 amino 

acid monomers (primary structure), proteins generally have more than 100 residues, also 

showing different protein folding and resulting higher levels of structure (secondary, tertiary, 

quaternary structure), as can be seen in Figure 1.1. 

Proteins and peptides in the human body are mainly composed of 22 different amino acids. 

Amino acids consist of an amine group (-NH2) and a carboxyl group (-COOH) that are both 

linked to a carbon atom which is also bound to a hydrogen atom and a variable moiety. The 

primary structure is constructed of so-called peptide bonds between the carboxyl group of one 

amino acid and the amine group of another.9 The secondary structure is mainly formed by two 

motifs: the α-helix and the β-sheet. Additionally, random coils with no clear spatial 

arrangements occur (displayed as turquoise strands in Figure 1.1). For the formation of a 

tertiary or quaternary structure, several peptide chains building multiple subunits are 

combined to form the final protein, e.g. in enzymes. The process of folding is highly complex 
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and cannot be done easily by chemical synthesis. As a result, biotechnology-based methods 

are often used as manufacturing tools.9 

 

 

Figure 1.1: Different protein folding, shown by the example of the HIV-1 NEF protein, a 

non-receptor tyrosine-protein kinase that plays a role in many biological processes. 

 

Unlike proteins, peptides mostly only possess a primary structure. Due to disulfide bond 

formation, they sometimes express a secondary structure,9 as known from vasopressin 

(antidiuretic hormone) or insulin.  

 

1.1.2 PROTEIN AND PEPTIDE THERAPEUTICS 

Proteins fulfil various functions in the human body, ranging from stabilizing tissues and 

organs (e.g. collagens), to transport, storage of molecules, mediation of receptors, and 

catalysis of metabolic reactions (enzymes). As a result, they often exhibit post-translational 

modifications, such as phosphorylation, acetylation or glycosylation, which activates the 

protein and allow it to carry out its specific function. In contrast, most peptides work as 

signaling agents and are classified as hormones.9  
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In many cases, diseases are the result of missing or malfunctioning proteins. The idea of 

protein- or peptide-based APIs is often therefore to replace these compounds. Currently, 

proteins and peptides represent a large fraction of compounds in drug development pipelines, 

due to their predictable activity profiles and their highly selective mode of action. 

Additionally, several formulations incorporating protein or peptide APIs are already on the 

market, as illustrated in the following. 

Insulin is the oldest example of a peptide-based API, used for the treatment of diabetes 

mellitus type 1 - a metabolic disorder resulting from an absolute insulin deficiency, caused by 

either defects in insulin action, secretion, or both. Before the discovery of insulin by Banting 

and Best in the 1920s, this disease in its most severe form often led to death.10 Today, insulin 

is usually administered via subcutaneous injection. Different modifications of the molecule, 

resulting in long-acting and short-acting insulin derivatives, allow for mimicry of the 

physiological secretion of insulin by the pancreas.10 

The small peptide-derivative leuprorelin is a luteinizing hormone-releasing hormone (LH-RH) 

agonist which was first synthesized by Takeda Chemical Industries in 1974,11 being 80 times 

more potent than natural LH-RH.12 It is used today in the treatment of e.g. advanced and 

metastatic prostate cancer - as part of androgen deprivation therapy (ADT), acting to suppress 

testicular steroidogenesis - when administered continuously. This first formulation, which was 

associated with the need for frequent dosing via subcutaneous or intramuscular 

administration, was soon replaced by a depot formulation, allowing for dosing at one-month 

intervals. Further developments, using various DDS allow for application at a three-monthly 

or even six-monthly (Eligard® 45mg; Atrix Laboratories) intervals.13 ADT in general and the 

advanced depot leuprorelin medication in particular, replaced orchiectomy, an irreversible 

surgical castration, which was one of the rare and unpleasant treatment options in the 1940s.  

With the progress in biotechnology, the use of monoclonal antibodies for the treatment of 

various inflammatory diseases has seen a rapid increase in popularity. One example is 

adalimumab (Humira®), a recombinant fully humanized monoclonal antibody, used for the 

treatment of moderately to severely active rheumatoid arthritis (an immune-mediated, chronic 

inflammatory disease characterized by chronic synovitis). Adalimumab binds specifically to 

the pro-inflammatory cytokine TNF-α, neutralizing cytokine activity. It can either be used as 

monotherapy or in combination with so-called disease-modifying anti-rheumatic drugs 

(DMARDs) such as methotrexate.14 

It can therefore be seen that in a wide range of diseases with diabetes, cancer and 

inflammatory diseases representing just a few examples - proteins and peptides are 
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successfully used as API. The use of proteins and peptides in such contexts may act to provide 

a treatment where none was available before, or to further improve the outcome of existing 

therapy options, considered inefficient from a modern perspective. However, the delivery of 

proteins and peptides is a complicated task, as discussed further below.  

 

1.1.3 NEEDS IN PROTEIN DELIVERY  

Parenteral application is the typical route to deliver proteins and peptides and is the least 

expensive and quickest strategy for commercialization, however owing to their complex 

structure, proteins and peptides are susceptible to degradation. Degradation results  in protein 

unfolding and thus a loss of function,15 which may also be accompanied by an unwanted 

immune response in vivo. The maintenance of the spatial structure of proteins is therefore of 

great importance. For peptides, besides their short half-life, the most important property to 

either maintain or enhance is their ability to gain intracellular access, as they often have their 

target inside the cell. One strategy employed to overcome stability or pharmacokinetic issues 

associated with proteins or peptides is to chemically modify the molecular structure, as known 

for example from the use of protein analogs15 or via acylation16-18 or PEGylation.19, 20 

However, care must be taken during modification not to reduce efficacy or to cause 

immunogenicity. As an alternative to changing the chemical structure, the use of DDS based 

on micro- or nanoparticles could be applied for protein and peptide delivery. Here, the protein 

can be used in its original form, and will be protected during storage and delivery by the DDS. 

The application of nanotechnology in the form of DDS (‘nanotechnology enabled DDS’) 

could even enhance protein uptake into or permeation over epithelial barriers, allowing for 

non-invasive administration and avoiding the requirement for injection. Nevertheless, as high 

salt concentrations, heat, shear stress or extreme pH values during preparation might be 

detrimental to the protein/ peptide structure, mild manufacturing processes have to be chosen, 

that do not degrade the protein or peptide during DDS preparation and loading. 

In summary, the successful formulation of proteins and peptides requires a thorough 

understanding of the physicochemical and biological properties of the protein-/peptide-based 

API. This includes knowledge of physical and chemical stability, as well as of the 

characteristic pharmacokinetic profile.  
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1.2 NANOPARTICLES FOR MEDICAL APPLICATIONS 

The following section gives an overview on the topic of nanotechnology, as background to 

further discussion on nanotechnology enabled DDS.  

 

1.2.1 A PHARMACEUTICAL PERSPECTIVE ON NANOTECHNOLOGY 

Although the concept of nanotechnology was defined by Taniguchi in the 1970s, a universally 

agreed upon interpretation of this term is still unavailable. Typically, a material can be 

considered as ‘nano’ if it exists in a size range of 1 nm to 100 nm, with special physical and 

chemical properties or biological effects that differ from its larger-scale counterpart. In the 

field of pharmacy the definition is even broader, including particles up to 1000 nm in size. 

A broad range of industrial sectors apply nanotechnology and nanoparticles: From food 

agriculture21 to electronics,22, 23 renewable energy,24, 25 and health care26-29 to just mention a 

few.  

However, there is also a public fear of nanotechnology, with toxicity arising from materials in 

the nano-size range being an important concern to be addressed.30 Worst case scenarios from 

e.g. studies on combustion particles and their effect on the environment or human health are 

indeed important for risk assessment but should never be extrapolated to nanoparticles with a 

deliberate use in humans as for the field of nanomedicine. Here, nanotechnology is applied for 

medical purposes in order to produce the safest possible product, manufactured from high 

quality raw materials by the best manufacturing processes, and regulated by a quality control 

of the highest standards. The European Technology Platform on NanoMedicine has defined 

nanomedicine as: “The application of nanotechnology in health care, exploiting the improved 

and often novel physical, chemical, and biological properties of materials at the nanometric 

scale”.31 Figure 1.2 demonstrates the specific position of nanomedicine within the broad field 

of nanoparticles and illustrates the diversity of such nanoparticles.  

In general, there are two main groups of nanoparticles used for medicinal applications. The 

first group basically consists of plain nano-sized API particles, so-called nanocrystals. The 

second group is based on DDS. Here, the API is incorporated into a carrier matrix of 

excipient(s), usually made up of polymers or lipids. The latter can vary considerably – from 

simple structures, to highly complex systems, such as core-shell and also multilayer 

structures. In the following, when the term nanoparticle is used, it refers to these kind of 

nanoparticles used within the field of nanomedicine.  
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Figure 1.2: Overview of nanoparticles with different origins and with a focus on 

nanomedicine. NP: nanoparticle; API: active pharmaceutical ingredient; DDS: drug delivery 

system. NP type used in this thesis (*); modified with permission from Barthold et al.32 

 

As safety is a huge issue, the material chosen for nanoparticle preparation generally must have 

pharmaceutical acceptance, meaning that it is of high purity, and is biocompatible and 

biodegradable (if necessary). Such properties provide a good starting point for evaluating the 

safety profile of the final formulation. Materials which fulfil these criteria generally have 

GRAS (Generally Recognized As Safe) status, if not already used as excipients in FDA- (US 

Food and Drug Administration) or EMA- (European Medicines Agency) approved products. 

Materials with a high toxicity are not considered for nanoparticle preparation. One approach 

that may help in the evaluation of safety of future nano-products was introduced by Lehr and 

Groß.33 Here, the intrinsic toxicity of the nano-product compounds is evaluated as a first 

parameter, followed by consideration of their solubility and biodegradability as second 

parameter. According to those parameters, a product can be classified into classes from I to 
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IV, with class I representing non-toxic bulk materials with high solubility/ biodegradability. 

By comparison, class II also represents non-toxic bulk materials, but with low solubility/ 

biodegradability. A product that belongs to class III or IV shows a toxic behavior in its bulk 

form being highly soluble/ biodegradable (III) or not (IV). For class I materials, additional 

safety testing could be set aside, whereas additional testing might be advisable for class II and 

class III products. Class IV products, however, require exhaustive safety testing. 

An earlier system for the risk assessment of final nanoparticle formulation was proposed by 

Keck et al. in 2013.34 The Nanotoxicology Classification System (NCS) is designed to 

categorize formulations based firstly on size and biodegradability, and secondly on 

biocompatibility. Again, there are four categories of increasing risk. Particles above 100 nm 

in size that are biodegradable are in class I, whereas particles which are not biodegradable 

belong to class II. Class III and IV deal with particles below 100 nm. To differentiate here, 

class III particles are again biodegradable, whereas particles in class IV are not. While the 

NCS considers characteristics such as formulation size and biodegradability, the initial 

toxicity of material is not considered – here therefore, the further developed system of Lehr 

and Groß may find application as a complementary tool.  

 

1.2.2 ADVANTAGES OF NANOPARTICLES AND THEIR MARKET SITUATION 

The first nanoparticles for pharmaceutical applications, at that stage called nanoparts, were 

synthesized by Birrenbach and Speiser in the 1970s.35 However, materials and preparation as 

well as analytical techniques used at that time, had to be optimized or even newly developed 

to suit the high demands of a pharmaceutical application. Nevertheless, from the 1990s 

onwards, various nanoparticulate formulations have been approved by the FDA or the EMA 

and are currently on the market.36, 37 In the following section a number of selected examples 

will be discussed; further information about nanoparticle formulations on the market can be 

found in literature.36 

APIs are not always ideal drug candidates showing a high solubility and permeability, and an 

excellent safety profile. Using nanoparticles for drug delivery may therefore improve the 

performance of non-ideal APIs in several ways.36 Most modern drugs in fact show low water 

solubility. Nanoparticles show increased dissolution kinetics, which can lead to higher 

bioavailability of the API.38 The issue of poor API solubility has mainly been overcome by 

using Nanocrystal® technology, where the size of API particles is reduced via wet-milling into 

the nano-size range, leading to improved water solubility of the product and hence 

bioavailability.39-41 The first marketed drug, developed with the Nanocrystal® technology was 
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Sirolimus (Rapamune®) in 1999.40, 42 Sirolimus, a potent immunosuppressive agent used for 

the prevention of graft rejection in organ transplantation is highly hydrophobic, shows low 

water solubility, and hence has a low bioavailability. However, an orally administered 

nanoparticle formulation, based on the Nanocrystal® technology, shows fast dissolution 

kinetics and an improved bioavailability.  

Another issue that can be addressed by using nanoparticles is the possibility of tuning release 

kinetics of an API via encapsulation into a carrier matrix (a DDS).37 A prolonged release of 

drug over a certain period of time can be achieved, meaning a reduction in dose frequency. A 

further benefit could lie in reduced side effects, which are dose dependent, as has been shown 

by Bawa:37 adverse effect, seen for traditional formulations, can be reduced by adjusting the 

release kinetics via tunable sizes and surfaces of nanoparticles, as has been seen for the 

liposomal formulation of AmBisome®,43-45 which was approved by the FDA in 1997. A 

bottleneck preventing widespread use of the drug amphotericin B is its toxicity which further 

compromises its fungicidal activity. However, the encapsulation into liposomes lowers the 

toxic effects and improves drug therapeutic efficacy.43-45 

The importance of DDS is also derived from their targeting potential and ability to overcome 

biological barriers. Some DDS for example are able to cross the blood-brain-barrier,46, 47 

although practically all macromolecules and most of the small-molecule drugs are not able to 

cross. An indirect targeting mechanisms of nanoparticles has also been described by Maeda 

and Matsumara:48 a higher endothelial fenestration and architectural anarchy compared to 

healthy tissue has been found for tumor capillaries, making a passive tumor-targeting of 

nanoparticles possible. This phenomenon has been called the EPR (enhanced permeation and 

retention) effect. Liposomes of up to 400 nm have been shown to be able to permeate tumor 

vessels.49 Such observations have led to the conclusion that injected agents of the right size 

are able to accumulate in tumor tissue, if not previously recognized and cleared by the 

immune system. This point addresses another important aspect of surface characteristics of 

nanoparticles: nanoparticles with a hydrophilic surface (e.g. conferred via PEGylation) have a 

higher chance of escaping immune cell detections50 allowing for circulation for a longer 

period of time in the bloodstream. An example for this delivery strategy is the marketed and 

previously mentioned formulation Doxil®/Caelyx®. Doxil/Caelyx®, is a formulation of the 

API doxorubicin, which is an intercalating agent used in cancer therapy. The formulation is 

based on PEGylated liposomes, also known as STEALTH® liposomes.51 STEALTH® 

liposomes are not recognized by the immune system, therefore showing a prolonged blood 



11 

 

circulation time.52 Further, the formulation has shown a decreased toxicity compared to free 

doxorubicin.53 

A similar effect based on passive targeting is called ELVIS, “Extravasation through Leaky 

Vasculature and the subsequent Inflammatory cell-mediated Sequestration”, introduced by 

Yuan et al. with respect to rheumatoid arthritis.54 It can be suspected that such effects are also 

applicable in other inflammatory tissue, when several pathophysiological features such as 

vascular leakage and activated inflammatory cells are shared - indeed an accumulation of 

particles in inflamed areas of the intestinal epithelium has also been observed.55, 56 In contrast 

to passive targeting, active targeting via modification of the carrier’s surface with appropriate 

ligands binding to specific pathological sites in the body is also possible. 

To summarize, nanoparticles offer several advantages including enhanced solubility of drug 

compounds, reduced side effects, and passive/active targeting possibilities. They can not only 

serve as delivery agents but also protect the drug from degradation and can furthermore 

control drug release and enhance permeation through cell membranes.57  

Although there are only a few formulations on the market yet, the impact of reformulated or 

novel nanoparticle-based formulations on medicine and health care is more than promising. It 

should be emphasized, however, that the bench to bed-side process is a long and slow one. 

Although liposomes have been widely studied since the 1960s, the first liposomal formulation 

only reached the market in the 1990s (AmBisome®). Solid nanoparticles were studied later, 

and are currently in clinical trials, but are still some way from reaching the market.58 

Obviously, nanoparticle-based formulations that are currently on the market are quite simple, 

compared to what nanoparticle-based DDS can offer (multicomponent systems). However, 

the full characterization that is required from FDA and EMA in the case of nanoparticles is 

still quite challenging. Nanoparticles do not yet count as well-established formulations (as do 

tablets, inhalables, creams, etc.), due to their special properties conferred by their nano-size. 

As mentioned, people are inherently concerned of nano-toxicity. It is of no help that there are 

no clear regulatory and safety guidelines directly related to nanoparticles for medicinal 

applications. Responsible institutions are thus very careful in selecting the right analytical 

tools for every formulation as repetition of the Contergan® scandal is absolutely not wanted. 

Contergan® was primarily prescribed as a sedative drug, however, after it became an over-the-

counter API it was later also used against morning sickness in pregnant women. Shortly after, 

thousands of infants were born with phocomelia, severe malformations of the extremities. 

Unfortunately, at that time, pharmacovigilance was still in the early stages of development. 

Only after that scenario, people began to think carefully about the safety of medicines leading 
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to the development of more precise drug regulations and control over drug use and 

development. Therefore, successful nanoparticulate formulations should be based on a sound 

knowledge of the API (in the context of this project, the protein/peptide), the excipients, their 

biocompatibility, biodegradability and toxicity.59 Further, consistent quality must be ensured 

by appropriate manufacturing processes and a sound characterization of the formulation.  

 

1.2.3 ROUTE OF ADMINISTRATION 

Biodistribution is guided by the application route, as are parameters including onset of action, 

efficacy and elimination. A first step in the development of a formulation for administration 

via a specific route is to decide whether local or systemic delivery is preferable. Usually local 

delivery is favored, although not always the easiest choice as the target can be hard to reach. 

So far, nanoparticles for medicinal use are administered parenterally, including via 

intravenous (i.v.) application. This route has the advantage of always demonstrating a 100% 

bioavailability as no absorption via an epithelial barrier is necessary. This route is most 

famously employed for cancer therapy, as nanoparticles are able to accumulate in tumor tissue 

due to their passive targeting (EPR effect). However, the drawbacks of this route of 

administration are the invasive character, the need of medical personnel for application and 

the assurance of sterility for the applied medicine, which makes production usually quite 

expensive.  

By contrast, the most well-renowned non-invasive route of administration is the oral route. 

Production is cheap, and people are usually quite eager to swallow tablets/ capsules or liquids 

compared to receiving an injection. Unfortunately, there are drawbacks such as variations in 

pH, sometimes to extreme levels (e.g. in the stomach), the potential for variation in drug 

absorption depending on whether dosing is performed in a fed or fasted state (food effect), the 

mucus layer, which acts as a barrier to oral absorption, and the enzymatic environment. Often, 

sensitive drugs are destroyed in that environment and nanoparticles are often not able to cross 

the mucus barrier, meaning no or only low absorption into the circulation. Nanoparticles with 

special properties, however, are able to show some penetration.60 Additionally, some 

therapeutically interesting formulations based on nanoparticles could be used for the treatment 

of inflammatory bowel disease (IBD)61 or for uptake via M-cells for vaccination.62 

Another non-invasive route of administration is the skin. As its purpose is to prevent 

unintentional permeation, delivery via the intact skin is not that easy. Microneedles for 

vaccination63, however, or needle-free vaccination through the use of nanoparticles have been 

reported recently.64 
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Furthermore, the lungs are an interesting target for drug delivery via nanoparticles, for both 

local and systemic delivery. This is discussed in more detail below. 

 

1.3 THE PULMONARY ROUTE OF ADMINISTRATION  

Diseases like Chronic Obstructive Pulmonary Disease (COPD), asthma, lung cancer, cystic 

fibrosis (CF), and also idiopathic pulmonary fibrosis (IPF) locally affect the lung. To achieve 

here a maximum effect with at the same time reducing side effects, a direct and local 

application to the lung is favored (air-to-lung-delivery). Moreover, pulmonary delivery to 

obtain a systemic effect is of increasing interest (lung-to-blood-delivery). A few drug 

candidates delivered via the lung have already been selected for clinical trials: 

dihydroergotamine as non-oral treatment of migraine65 is one of them. As patients with 

migraine often suffer from nausea, a formulation for oral delivery is difficult; inhalation of the 

API is therefore preferred under this condition. 

Regarding non-invasive delivery of proteins and peptides, the lung and especially the deep 

lung (also called alveolar region), consisting of a very thin layer of tissue for high efficiency 

gas exchange66, is an important epithelial barrier. Due to a low level of resident degrading 

enzymes, drug delivery directly to the lung or via the lung into the circulation can occur 

without much enzymatic or metabolic loss (as is well-known to occur for example for the oral 

route of administration), making administration via this route very attractive. One famous 

example of a protein formulation pulmonary delivery is the inhalable insulin formulation 

called Afrezza® from Mannkind Inc., that was approved by the FDA in June 2014.67  

 

1.3.1 THE HUMAN LUNG AND ITS CLEARANCE MECHANISMS  

With around 100 m2 of surface area, the lung represents one of the biggest exchange 

interfaces of the human body with its surrounding environment.68 The large surface area on 

the one hand enables efficient gas exchange (oxygen uptake vs. carbon dioxide excretion), but 

on the other hand also provides a gateway for microorganisms and particles contained within 

the inhaled air. Therefore, to protect this area, several barriers are prominent in the lung. The 

most prominent are the respiratory epithelia (cellular barrier), together with the mucus 

(conducting airways) and the pulmonary lining fluid (deep lung) as non-cellular barriers.69 

Both types of barriers vary along the respiratory tract in terms of structure and composition. 

The fate of an inhaled particle after deposition in the lung is illustrated in Figure 1.3.  
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Figure 1.3: Fate of a particle after deposition in the lung; (1) first contact with the lung lining 

fluids; (2) uptake into / across the pulmonary epithelium; (3) clearance; modified with 

permission from Ruge et al.69  
 

Depending on the specific pulmonary location, different clearance mechanisms exist. In the 

conducting airways, the mucociliary clearance is most prominent, whereas in the deep lung it 

is macrophage clearance.70 Mucociliary clearance has the ability to entrap particulates within 

the mucus and propel them out of the human lungs at rates between 3 and 25 mm/min.71, 72 

This speed varies according to pulmonary condition73 and airway caliber, but a maximum 

lung-residence time of about 6 h can be predicted.74 In the deep lung, the clearance depends 

on the phagocytic stimuli elicited by deposited particulates, which in turn is a function of their 

shape, surface chemistry and size. Between 50 and 75% of inhaled particulates are cleared 

within 2-3 h after deposition, and nearly 100% are removed after 25 h.70 The alveolar 

clearance rate, however, may be influenced by a number of pulmonary conditions. Thus, a 

time frame of up to 6 h could be estimated for non-biodegradable nanoparticles to deliver 

their cargo. 

    

Conducting airways 

The mucociliary clearance is an effective system to entrap and remove particulates contained 

in inhaled air. Cellular and non-cellular barrier elements again cooperate, to allow for 

operation of this system. A pseudo-stratified columnar epithelium is formed by ciliated, 

secretory and basal cells that build the bronchial airway epithelium.66 The apical membranes 

of such cells are further joined by tight junctions, giving the epithelium its barrier properties.75 

The pulmonary mucus (pulmonary lining fluid of this particular region) on top of the 

epithelial cells is made of 90-95% water, mucins (glycoproteins), lipids, proteins, DNA and 
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cells.76, 77 It consists of two different layers:66 the lower layer shows aqueous sol-like 

characteristics. It allows the cilia to beat and recover so that the thick viscous upper layer can 

be propelled towards the proximal airways in a continuous way. Subsequently, the mucus can 

be transferred to the digestive tract for further gastric metabolism and elimination.66, 78 The 

upper layer is a viscous gel layer containing mucins that form a complex mesh-like structure 

with a high capacity to entrap particulates.76, 77 These mucins are built of a polypeptide 

backbone, with high levels of O-glycosylated tandem repeats, leading to a negative charge at 

physiological pH.79, 80 There are five major mucins expressed in the respiratory tract: MUC1, 

MUC4 and MUC16 (cell-membrane tethered mucins), as well as MUC5AC and MUC5B 

(main gel-forming mucins), which are secreted by submucosal glands and goblet cells onto 

the luminal surface of the airways.81, 82 The latter two mucins are primarily responsible for the 

viscous mesh-like size structure of the pulmonary mucus.83 The pore size of the mucus is 

highly heterogeneous and ranges between small pores of just 100 nm up to large voids of 

several µm in size.84 Thus, water, ions and small molecules are able to diffuse through the 

mucin mesh, whereas larger particulates at some point are hindered due to steric interactions 

with the rigid walls. Additionally to the size filtering effect, electrostatic and hydrophobic 

filtering effects enable the immobilization and clearance of particulates, even smaller than the 

pore size of the mucus mesh. These effects are based on the interactions of negatively charged 

mucins85 and hydrophobic regions located in the non-glycosylated regions of the mucins,79 

with particulates.  

 

Deep lung  

The alveolar region represents a major target of many inhaled therapeutic agents. Two 

epithelial cell types constitute the alveolar epithelium: due to their flattened shape 

(approximately 0.2 to 0.3 µm thick in the cell periphery78), Alveolar Type I (AT-I) cells 

provide an exceptional platform for gas exchange and cover about 90% of the entire alveolar 

surface. Alveolar Type II (AT-II) cells are cuboidal in shape and are responsible for the 

synthesis and release of pulmonary surfactant (composed of a complex mixture of lipids and 

proteins that reduce the surface tension in the alveoli, preventing their collapse).86, 87 They 

further serve as progenitors for ATI cells and are important for cell renewal. Both cell types 

are able to form tight junctions88, 89 and represent a significant barrier, although nanoparticles 

smaller than 100 nm may efficiently cross the alveolar epithelium.90 Endocytic pathways 

provide an opportunity for bigger particles to be internalized.91 Another cell type present in 

the deep lung are the macrophages, which patrol on top of the epithelium, having the ability to 
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engulf and degrade particles in a size range of 1-5 µm.83 Nanoparticle uptake by alveolar 

macrophages (mediated by hydrophilic proteins contained in the pulmonary surfactant) has 

also been described, showing different absorption patterns depending on the nanoparticle 

coating.92, 93 When considering the prospect of delivery to the lung, it is important to keep in 

mind that these described aspects of barrier function and clearance must be preserved, as they 

are of the highest importance for maintaining human health. Thus, the aim is to design a 

system with the ability to avoid clearance and penetrate or pass barriers without significant 

interference with such clearance mechanisms and barrier integrity.  

 

1.3.2 PARTICLE DESIGN 

It can be seen that the biological barriers within the lung represent a challenge for pulmonary 

drug delivery. However, a better understanding and characterization of the pulmonary barriers 

in recent years has given the opportunity to enhance and improve drug delivery to the lung.94 

Nanotechnology enabled DDS in particular have the potential to improve pulmonary drug 

delivery. This can be achieved through the ability to rationally design nanoparticles with 

optimal surface chemistry, size and shape for overcoming those barriers.  

Designing mucus penetrating particles, which are able to escape the mucus entrapment by 

means of a hydrophilic polymer coating (PEGylation) which results in particles with a neutral 

or slightly negative charged surface,77, 95, 96 has helped in improving particle uptake in the 

lung. Guluronate oligomers have been shown to alter the network architecture in mucin 

matrices, thus leading to an enhanced nanoparticle mobility in both native and highly purified 

mucus matrices.97 These strategies could for example be most suitable for drug delivery to the 

lung in diseases with increased or pathologically thickened mucus.  

In the alveolar region, the clearance of particles occurs mostly by way of alveolar 

macrophages.98 Furthermore, it is known that the macrophage clearance is faster for 

microparticles than for nanoparticles.99 Therefore, nanoparticles could be designed in 

different sizes that might help to avoid macrophage clearance.  

Traditionally, the focus of pulmonary drug delivery has been on improving lung deposition of 

inhaled therapeutics. Thus, most of the factors influencing particle size during aerosol 

generation and subsequent drug inhalation have been well-described.77, 78 In this respect, a 

dramatic improvement of deposition can be achieved with most modern aerosol delivery 

devices.100 The design of particles additionally plays an important role in such effective 

deposition – particles with a certain shape or in an acceptable size range for sufficient 

aerodynamic properties may enable deposition in the alveolar region. However, nanoparticles 
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in a pharmaceutically relevant size range of approximately 100-200 nm are not suitable for a 

high deposition in the deep lung.101 Thus, a carrier system with optimum aerodynamic 

properties (generally in the lower µm size range) is necessary to improve the delivery of 

nanoparticles to the alveolar region. Several investigations have been made in that context, in 

which the delivery of nanoparticles via dry powder carriers seems to be the most promising. 

One approach is to combine the high alveolar deposition of microparticles with the slower 

clearance by alveolar macrophages of nanoparticles For example, Ely et al. used an active 

release mechanism of nanoparticles from carrier particles by an incorporated effervescent 

technology.102 Another concept is utilized by so-called large porous Trojan particles, 

introduced by Tsapis et al. Also here, nanoparticle-in-microparticle systems are formed and 

administered. Upon deposition, the microparticles quickly dissolve, releasing the incorporated 

nanoparticles again.103  

Although nanoparticles represent a great chance for improved pulmonary delivery (e.g. 

enhanced cell uptake, avoidance of macrophage clearance), they cannot be administered as 

such but need an advanced carrier system, necessary for high deposition in the deep lung.  
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2. AIM OF THE WORK  

 

Biopharmaceuticals, such as proteins and peptides, currently represent a large fraction of 

compounds in drug development pipelines, due to their highly selective mode of action and 

predictable activity profiles. Nevertheless, a widespread application of potential protein 

therapeutics is restricted due to limitations in both drug disposition and pharmacokinetic 

properties. Their success, amongst other factors, will depend on formulation and delivery 

strategies that can address these limitations. 

This thesis was part of a joint research program entitled COMPACT (Collaboration on the 

Optimization of Macromolecular Pharmaceutical Access to Cellular Targets), which is a 

European project funded by the Innovative Medicines Initiative (IMI) and the European 

Federation of Pharmaceutical Industries and Associations (efpia). COMPACT focuses on two 

major aims: first of all, the identification and characterization of transport pathways across 

biological barriers and across cell membranes (work packages (WPs) 4-7), and secondly the 

construction and characterization of DDS for proteins and peptides (WP 1) or nucleic acids 

(WP 2). Within the COMPACT consortium, the motivation of this thesis was the 

development and characterization of a nanotechnology enabled, novel and safe DDS for 

pulmonary protein and peptide delivery. 

One of the most important points to be addressed in this respect is the excipient used for the 

DDS. The material should be biocompatible, biodegradable, and easily accessible. 

Furthermore, the material should be suitable for the nanoparticle preparation process. Charge-

mediated coacervation in aqueous medium was chosen as the preparation procedure for 

nanoparticle formation. This process is mild, fast, straight-forward and easy to upscale, e.g. by 

using microfluidics. Further, no additional excipients, such as stabilizers, are necessary. As 

the alveolar epithelium seems to play a major role in diseases such as IPF, this site of action 

was chosen as target in this project. Due to the low deposition of NPs in the deep lung, the 

final pulmonary formulation should be based on a delivery system, consisting of 

microparticles with embedded nanoparticles, suitable for a high deposition in the alveolar 

region. The microparticle matrix should further be highly water soluble to ensure a fast 

release of the nanoparticles, which are then ready for cell uptake. 
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The major aims and corresponding work of this thesis can subsequently be divided into four 

sections: 

 

Chapter 3  Starch derivatives as excipients for nanotechnology enabled pulmonary drug 

delivery systems: polymer characterization, improvement of synthesis and 

purification 

Chapter 4  Starch vs. chitosan nanoparticles – preparation and physicochemical 

characterization 

Chapter 5  Aerosol delivery of nanoparticles to the deep lung – nanoparticles embedded in 

microparticles 

Chapter 6  In vitro biopharmaceutical evaluation of the novel carriers 
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3. STARCH DERIVATIVES AS EXCIPIENTS FOR 

NANOTECHNOLOGY ENABLED PULMONARY DRUG DELIVERY 

SYSTEMS: POLYMER CHARACTERIZATION, IMPROVEMENT OF 

SYNTHESIS AND PURIFICATION 
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3.1 INTRODUCTION 

DDS (shown in Figure 1.2) are prepared from a wide range of different materials. The most 

common ones are polymers of synthetic or natural origin, with both types showing advantages 

and disadvantages.104 The most studied synthetic polymers are polyesters, such as poly (ɛ-

caprolactone) (PCL), poly (lactic acid) (PLA), poly (lactide-co-glycolide) (PLGA) and their 

derivatives.105 PLGA is a well-known material. Being biocompatible, with GRAS status for 

some applications, and offering a controlled release of its cargo, it is an ideal material for 

DDS preparation. The delivery of proteins, however, requires special care and attention. The 

release of the cargo at the desired site of action is one point, but with particular respect to 

proteins and peptides the DDS should further be able to protect the complex structure from 

degradation during DDS preparation and loading, storage and on exposure to physiological 

conditions following application. In the latter context, PLGA is mainly degraded by 

hydrolysis in vivo, leading to acidic degradation products that could be detrimental to the 

encapsulated cargo.106 

The importance of new natural or semi-synthetic polymers as DDS components is increasing 

in line with the considerable current interest in material sustainability. Natural polymers, 

especially polysaccharides are among the most studied polymers as components of DDS for 

biopharmaceuticals.107, 108 Within this group, dextran-,109-111 alginate-,112 and chitosan-based 

systems have all been well-explored.113-117 In addition, starch is an excellent bio-polymer for 

nanotechnology enabled DDS. It is a commonly employed excipient in pharmaceutical 

industry, used for example in tableting processes,118-121 as well as an excipient in novel DDS 

for nasal122 and other site-specific123, 124 applications. Regarding its toxicity, starch consists 

of linear amylose and branched amylopectin - both polysaccharides consisting of α-(D)-

glucose units, which have been evaluated as safe and without the need for restrictions on daily 

intake.125 Starch is further GRAS listed and included in the FDA Inactive Ingredients 

Database. Its excellent biocompatibility is further underlined by its biodegradability not only 

by hydrolysis, but also by α-amylase, an enzyme commonly present in the human body.  

Additionally, the molecular structure of starch allows for different chemical derivatizations, 

due to the presence of a high amount of hydroxyl groups; this in turn leads to the possibility 

for numerous new applications. Santander-Ortega et al. previously prepared NPs from propyl 

starch for the dermal application of small molecule drugs.126 However, as this starch 

derivative was not water soluble, ethyl acetate had to be used as a solvent for particle 

preparation. Further, the use of a high speed homogenizer makes the utilized preparation 

method challenging for the encapsulation of proteins. The synthesis of a water soluble, 
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negatively charged starch derivative for complex formation with cationic cyclodextrins as 

targeted cancer therapy was investigated by Thiele et al.127 Another study, using positively 

charged, water soluble starch-derivatives for better pDNA transfection was carried out by 

Yamada et al.128  

The properties of the excipient for DDS preparation is of great importance in order to ensure a 

good quality of the used material as well as compatibility with a protein or peptide cargo. As 

charge-mediated coacervation in aqueous medium was the method of choice for NP 

preparation, the focus was set on water soluble starch derivatives. Thus, negatively and 

positively charged α-starch-derivatives that were used for nanoparticle preparation were 

characterized for their degree of substitution, purity, and their weight average molecular 

weight. Additionally, different syntheses were carried out to optimize both the synthesis 

procedure and purification method; the products of this optimization work were also 

characterized. 

 

3.2 MATERIALS AND METHODS 

3.2.1 MATERIALS 

Potato starch, partially hydrolyzed with a molecular weight (Mw) of 1 300 000 g/mol and an 

amylose content of approximately 33% was a kind gift from AVEBE (Netherlands). (2,2,6,6-

tetramethylpiperidin-1-yl)oxidanyl (TEMPO), N,N’-dicyclohexylcarbodiimide (DCC), 1-

hydroxybenzotriazole (HOBt) and 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholinium chloride (DMTMM) were obtained from Sigma Aldrich (USA). 

Ethylenediamine was purchased from Acros Organics (USA). All other reagents were of 

analytical grade. 

 

3.2.2 STARCH OXIDATION – SYNTHESIS OF NEGATIVELY CHARGED STARCH 

Potato starch was oxidized to produce a negatively charged starch derivative, in the following 

referred to as NegSt. Briefly, 20 g of dried potato starch was weighed into a 1 L glass beaker, 

suspended in 800 mL of purified water and heated at 95 °C for 1 h. After cooling down to 

room temperature (RT), the catalyst TEMPO was added to the suspension (4 mg/g potato 

starch). Adequate volumes of sodium hypochlorite solution (12%) were then added (1 

mL/min). The pH was kept at 8.5 during the reaction by adding 1 M sodium hydroxide 

solution. Sodium borohydride (0.5 molar equivalents relative to sodium hypochlorite) was 

then slowly added to stop the reaction. The resulting solution was stirred overnight. After 

filtration the next day, the solution was extensively purified by ultrafiltration (Vivaflow 200; 
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5 kDa Hydrosart membrane, Sartorius Stedim Biotech GmbH, Germany) and lyophilized for 

two days (Alpha 2-4, Martin Christ GmbH, Germany) before storing at RT until usage. 

 

3.2.3 COUPLING OF ETHYLENEDIAMINE WITH DCC/HOBT  

To obtain the positively charged starch derivative (PosSt), NegSt was coupled with 

ethylenediamine. To achieve this, 13 g of the free acid form of NegSt, obtained by ion 

exchange, was first dissolved in 650 mL DMSO at 50 °C under a reflux condenser overnight, 

with stirring. The coupling agents DCC and HOBt (each 1.5 molar equivalents relative to the 

degree of oxidation of NegSt) were then added and stirred for 24 h. Afterwards, 

ethylenediamine was slowly added (10 molar equivalents relative to the degree of oxidation of 

NegSt) and the reaction was allowed to proceed for another 48 h (end product termed PosStα) 

or 72 h (end product termed PosStβ). After filtration, the solution was either lyophilized, 

subsequently dissolved in 1%  acetic acid (HOAc), extensively ultrafiltered (Vivaflow 200; 5 

kDa Hydrosart membrane, Sartorius Stedim Biotech GmbH, Germany) and lyophilized for 

two days (PosStα and PosStβ) or precipitated with ethanol (EtOH), washed and then 

lyophilized (PosStγ and PosStδ). PosSt was stored at RT until further use. An overview of the 

different materials and their synthesis specifications can be found in Table 3.1. 

 

Table 3.1 

Different PosSt derivatives and details of their synthesis. Coupling was performed with 

DCC/HOBt. 

 

PosSt NegSt 

[Dox] 

Reaction time 

[h] 

Method of purification 

α 36 48 ultrafiltration 

β 52 72 ultrafiltration 

γ 25 48 precipitation 

δ 21 48 precipitation 

 

3.2.4 COUPLING OF ETHYLENEDIAMINE WITH DMTMM  

As a second coupling reaction, the coupling of ethylenediamine to NegSt via DMTMM was 

carried out, according to Kunishima et al.129 Here, 250 mg of NegSt was first dissolved in 

6.25 mL milliQ water. Afterwards, 18.75 mL of DMSO was added, to obtain a solvent 

mixture of 1:4 (water:DMSO). Further, 0.68 mmol DMTMM (conjugation reagent, adapted 

from Yamada et al.128) was added under stirring and the resulting mixture was further stirred 
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for 30 min to activate the carboxylate groups. After 30 min, 10 equivalents of 

ethylenediamine relative to the degree of oxidation of NegSt were added and the reaction was 

allowed to proceed for another 72 h at RT. The mixture was then filtered and precipitated with 

EtOH. The resulting product, termed PosStδDMTMM was then lyophilized for two days. 

PosStDMTMMδ was stored at RT until usage.  

An overview of all syntheses can be found in Scheme 3.1. 

 

 

Scheme 3.1: Synthesis of negatively charged starch (NegSt) and positively charged starch 

(PosSt); (A) coupling reaction with DCC/HOBt (PosSt); (B) coupling reaction with DMTMM 

(PosStDMTMM); potato starch is illustrated as amylose. 

 

3.2.5 SYNTHESIS OF FLUORESCENTLY LABELED POSITIVELY CHARGED STARCH  

For later characterization and cell interaction studies, PosSt was labeled with green Bodipy® 

FL-C5 NHS Ester. Briefly, 30 mg of polymer was dissolved in 5 mL purified water and 

diluted slowly with 5 mL of methanol. A 2 mL volume of Bodipy® FL-C5 NHS Ester solution 

in methanol (0.5 mg/mL) was then added slowly to obtain a molar ratio of 50:1 (starch:dye). 

The sample was stirred for 1 h at RT under light protection, and then precipitated with 1 M 

sodium hydroxide and ethanol. Washing was performed with ethanol:methanol (1:1) until the 

supernatant was fluorescence free. Labeled positively charged starch, referred to as PosStF, 

was then dissolved in purified water, freeze dried and stored in the fridge under light 

protection until usage. 
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3.2.6 CHARACTERIZATION OF SYNTHESIZED STARCH DERIVATIVES 

The degree of oxidation of NegSt was determined with the Blumenkrantz assay, a 

colorimetric method based on detection of uronic acid content.130 The degree of oxidation was 

calculated as follows: 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 [%] =

𝐴
ɛ ∗ 𝑑

∗ 1 000 000

𝑚(𝑁𝑒𝑔𝑆𝑡) 𝑖𝑛 50 µ𝐿
∗ 100 

 

A: absorbance; ɛ: extinction coefficient (26700 [Lmol-1cm-1]); d: cuvette length (1 [cm]); m: 

mass [mg]. 

 

 
1H-NMR spectra were collected at RT on a Bruker Biospin spectrometer NMR Magnet 

System 400 MHz Ultrashield plus (Bruker, USA) in D2O (64 scans). Fourier transform 

infrared (FT-IR) measurements were carried out in solid state with a Spectrum 400 FT-IR/FT-

NIR spectrometer (PerkinElmer, UK) between 700 and 3600 cm-1. The weight average 

molecular weights of starch derivatives were analyzed by gel permeation chromatography 

(GPC, HLC-8320 GPC, Tosoh, Japan), equipped with online viscometer (ETA-2010, PSS, 

Germany) on SUPREMA 1000 and 30 columns (NegSt) or SUPREMA-MAX 1000 and 30 

columns (for PosSt; PSS, Germany) at a flow rate of 1 mL/min at 35 °C in 1 M sodium nitrate 

(NegSt) or 1% formic acid (PosSt). The calibration was done with Pullulan and PVP 

standards, respectively.  

For X-ray powder diffraction (XRPD), samples were analyzed by a diffractometer of the type 

Bruker D8 Advance, equipped with a 1D-detector 'Lynxeye' using variable divergence slit and 

Cu Kα radiation. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 OXIDATION OF POTATO STARCH  

The raw material used for the oxidation was a partially hydrolyzed potato starch with an 

amylose content of approximately 33% and a molecular weight of 1 300 000 g/mol. For the 

synthesis, a TEMPO-mediated system was used, which enabled the selective C6-oxidation 

(primary hydroxyl group) of potato starch.131  

TEMPO (I) is a stable radical, which is oxidized to the nitrosonium ion (II), the actual 

oxidizing species, under the influence of hypochlorite. During the oxidation process of potato 

starch, the hydroxyl group is oxidized via an aldehyde to the carboxylate, while the 

nitrosonium ion (II) is reduced to the hydroxylamine (III). The regeneration of the 
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nitrosonium takes place in situ with the help of the oxidant hypochlorite.131 Here, the 

hydroxylamine reacts with another nitrosonium ion to reform the stable TEMPO radical. This 

process is shown in Scheme 3.2.  

 

 

 Scheme 3.2: Mechanism of TEMPO-mediated oxidation of potato starch. 

 

For the synthesis, a ratio of 4 mg of TEMPO per 1 g of starch was chosen, as a higher amount 

probably leads to the degradation of the polymer (as suggested by Thiele132). For the 

oxidation of the hydroxyl group to the aldehyde, as well of the aldehyde to the carboxylate, 1 

molar equivalent of hypochlorite is required. Different molar ratios of sodium hypochlorite 

were used (1.5, 1.25, 1, 0.75) to obtain a product with different degrees of oxidation.132 A 

degree of oxidation below 100% was expected, as some of the primary alcohol groups are 

necessary for formation of the α-1,6-glycosidic bond in amylopectin.  

After the reaction, sodium borohydride was slowly added to selectively reduce aldehyde 

groups back to hydroxyl groups, without reducing the carboxyl groups.  

 

3.3.2 CONJUGATION OF ETHYLENEDIAMINE WITH DCC/HOBT 

The oxidation of potato starch was carried out as a first step for two reasons. One reason is the 

need for a negatively charged starch derivative for the further development of a 

nanotechnology enabled DDS prepared via charge-mediated coacervation in aqueous 

medium. Additionally, the use of NegSt as a precursor for modification with ethylenediamine 

allows for a selective coupling reaction between carboxyl groups of NegSt and amine groups 
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of ethylenediamine, meaning that protection of hydroxyl groups is unnecessary. Conversion 

of the carboxyl group via an activated ester to an amide (as possible  for example with the 

DCC/HOBt system - Scheme 3.3) also does not lead to toxic side products or impurities, as 

usually known from paper industry, where the synthesis of cationic starches is usually 

performed with epoxyalkylamines133, 134 or halogenalkylamines.135  

The conjugation of ethylenediamine with DCC/HOBt in DMSO was adopted from Sheehan136 

and König,137 who have used the reaction for peptide bond formation. Furthermore, this 

method was used by Thiele for the synthesis of amino-functionalized pteroates (folic acid salt) 

and for their coupling with oxidized starch.132 As a free carboxylic group is necessary for the 

reaction, the carboxyl group was transferred into the free acid form with the help of an ion 

exchanger (Dowex 50 WX2-200). Successful coupling could already be observed during 

synthesis, by the formation of the non-water soluble dicyclohexylurea (not shown in Scheme 

3.3).  

 
 

Scheme 3.3: Mechanism of coupling: ethylenediamine with DCC/ HOBt. 

 



28 

 

3.3.3 CONJUGATION OF ETHYLENEDIAMINE WITH DMTMM 

An alternative coupling reaction between carboxyl groups of NegSt and amine groups of 

ethylenediamine was performed using DMTMM (adopted from Kunishima129) instead of 

DCC/HOBt. The conjugation with DMTMM is shown in Scheme 3.4. In a first step, an 

activated ester is produced by the reaction of a NegSt carboxylate anion with DMTMM. In 

order to achieve this, the reaction mixture was stirred for 30 min to activate the sodium 

carboxylate groups. The formed activated ester is then subjected to attack by the amine group 

of ethylenediamine, forming an amide bond. Reaction conditions, such as solvent choice, 

reaction time and molar ratio of DMTMM:NegSt were extracted from Yamada et al.,128 who 

used this technique for coupling s-PEI to oxidized starch. The advantage of the DMTMM 

conjugation is the mild reaction condition at RT as compared to the DCC/HOBt system, 

which takes place at 50 °C – such an elevated temperature could result in an accelerated 

degradation of the polymer. 

 
 

Scheme 3.4: Mechanism of coupling: ethylenediamine with DMTMM. 

3.3.4 CHARACTERIZATION OF STARCH DERIVATIVES 

Proof of successful reaction 

The reaction was followed by conduction of FT-IR spectroscopy (shown for β-starch 

derivatives synthesized with DCC/HOBt in Figure 3.1 (A), and for δ-starch derivatives 

synthesized with DMTMM in Figure 3.1 (B). The typical peaks of the C=O stretching of the 
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carboxyl anion COONa at 1600 cm-1, and of the C=O stretching from the COOH group (after 

ion exchange) at 1732 cm-1, disappeared for PosStβ, and were replaced by two peaks at 1660 

cm-1 and at 1550 cm-1. These correspond to the amide bond formation: the amide I peak (1660 

cm-1) is mainly associated with the C=O stretching vibration, while the amide II (1550 cm-1) 

results from the N-H bending vibration and from the C-N stretching vibration. This is in 

principle also true for the reaction with DMTMM, however the stretching of the C=O arising 

from the carboxyl anion at 1594 cm-1 is still visible in the FT-IR spectrum, indicating a lower 

amount of amide bond formation for the PosStδDMTMM-derivative.  

 

Figure 3.1: FT-IR spectra of β-starch derivatives (A) and δ-starch derivatives (B). 

 

Further, 1H-NMR spectra were collected to analyze the purity of the samples and to determine 

the degree of substitution with ethylenediamine. NegSt (shown for NegStα in Figure 3.2 (A) 

showed δH values between 5.28 – 5.58 ppm that were assigned to the anomeric 1H atom, 

whereas the signals from 3.20 – 4.20 ppm were ascribed to the ring protons 2H, 3H, 4H, 5H, 

6H.127, 138  
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NegSt was afterwards coupled with ethylenediamine, which could also be observed by 1H-

NMR (shown for PosStα in Figure 3.2 (B). PosSt showed the typical pattern between 5.10 – 

5.62 ppm of the anomeric 1H atom. The ring protons were visible between 3.30 – 4.30 ppm. 
 

Figure 3.2: 1H-NMR spectra of synthesized starch derivatives in D2O: Oxidized starch 

(NegStα, (A) and coupled with ethylenediamine using DCC/HOBt (B and C). PosStγ was 

precipitated with EtOH rather than lyophilized followed by tangential flow filtration (PosStβ). 

PosStδDMTMM was produced from NegStδ coupled with ethylenediamine using DMTMM, and 

was precipitated with EtOH (D). 

 

Further, the value between 3.00 – 3.22 ppm was ascribed to the coupled ethylenediamine 

(NH-CH2-CH2-NH2). HOAc, used to protonate the synthesized PosSt, can be seen in the 

spectrum as an intense peak at 1.8 ppm. The peaks at 7.4, 7.6 and 7.8 ppm were ascribed to 

small impurities arising from the coupling reagents DCC/HOBt. Therefore, for the synthesis 

of PosStγ, the purification method was changed from lyophilization/tangential flow filtration 

to precipitation with ethanol. As DCC and HOBt are both soluble in ethanol, whereas starch 

derivatives are not, they can be separated through precipitation. This method was successful, 

as can be found in the 1H-NMR of PosStγ, shown in Figure 3.2 (C). Although the degree of 

substitution is less compared to PosStα, the previously noted peaks between 7 and 8 ppm were 

not visible. However, some traces of free ethylenediamine remained, suggesting that the 

washing after precipitation could still be improved. The same holds true for the product 

synthesized with DMTMM (Figure 3.2 (D).  
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Degree of substitution 

The degree of oxidation of NegSt was determined by a colorimetric assay, according to 

Blumenkrantz et al.,130 as this information is important for the following coupling reaction. 

Briefly, the Blumenkrantz assay detects the uronic acid content (carboxyl groups arising from 

the TEMPO C6-oxidation) by building a chromogen when heated in concentrated sulfuric 

acid/tetraborate and treated with m-hydroxybiphenyl. The degree of substitution of PosSt 

samples was calculated from 1H-NMR spectra. Both the degree of oxidation of different 

NegSt syntheses as well as the degree of substitution of PosSt is shown in Table 3.2. 

 

Table 3.2 

Degree of substitution of starch derivatives. Degree of oxidation of NegSt was determined 

with the Blumenkrantz assay (mean ± SD; n = 3), while the degree of substitution of PosSt 

was calculated from 1H-NMR spectra. 

 

 degree of oxidation (NegSt) / substitution (PosSt) [%]  

 α β γ δ δDMTMM 

NegSt 36 ± 1 52 ± 5 25 ± 2 21 ± 2 21 ± 2 

PosSt 33 47 10 11 19 

 

It can be seen that for different syntheses, the degree of oxidation varied. NegStα showed a 

degree of oxidation of 36 ± 1%, whereas NegStβ showed an increased degree of substitution 

of 52 ± 5%. The γ- and δ-samples showed a lower degree of oxidation between approximately 

25% and 20%. The degree of oxidation depended on the equivalent amount of NaOCl used 

for the synthesis. This is in accordance with Thiele,132 who described the degree of oxidation 

in relation to the equivalent amount of NaOCl - the more equivalents of NaOCl per starch 

monomer, the higher the degree of oxidation. For approximately 52% oxidation, 1.5 

equivalents of NaOCl were used, for 36% 1.25 equivalents were used, and for 25% and 21% 

oxidation, 1 and 0.75 equivalents were used respectively.  

For the substitution, 10 equivalents of ethylenediamine according to the degree of oxidation 

of NegSt were used. It can be seen that, the lower the degree of observed oxidation, the 

correspondingly lower the degree of coupling with ethylenediamine. Compared to the 

coupling with DCC/HOBt, the coupling with DMTMM was more efficient, showing a degree 

of substitution of 19%. 
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Molecular weight 

GPC measurements of α-starch derivatives showed a weight average molecular weight of 

around 76000 ± 4300 for PosSt (Table 3.3), which is in the same range as that of NegSt, 

showing a weight average molecular weight of 87 000 ± 1 800. However, for the synthesis of 

PosStβ, the weight average molecular weight decreased almost by half – this showed values 

of 43 000 ± 2 000, compared to NegStβ which had a weight average molecular weight of     

82 000 ± 1 900. It is likely that the elevated temperature of 50 °C combined with an increased 

reaction time led to degradation of the polymer backbone, leading to such a decrease. 

 

Table 3.3 

Mean average molecular weight of starch derivatives, determined with GPC (mean ± SD, n = 

2). 

 

 α β γ δ 

NegSt 86 799 ± 1 806 81 791 ± 1 889 n.a. n.a. 

PosSt 75 753 ± 4 282 43 402 ± 2 014 n.a. n.a. 

PosStDMTMM n.a. n.a. n.a. n.a. 

 

Unfortunately, the weight average molecular weights of the other polymers could not been 

determined, due to irreparable malfunction of the GPC. It is expected that at least for the 

PosSt samples, synthesized with DMTMM, the weight average molecular weight would be 

maintained, as the reaction was taking place at RT. 

 

3.3.5 Α-STARCH DERIVATIVES, USED FOR NANOPARTICLE PREPARATION 

In the following chapter, “Starch vs. chitosan nanoparticles – preparation and 

physicochemical characterization”, α-starch derivatives were used for the preparation of 

nanoparticles via charge complexed coacervation in aqueous medium. Therefore, 

material properties will shortly be summarized in this paragraph.  

The yield of the oxidation was 80.6% for NegStα and the reaction yield for the coupling with 

ethylenediamine was found to be 59.6%. Negatively and positively charged α-starch 

derivatives showed approximately the same weight average molecular weight, being 87 000 

for NegStα and 76 000 for PosStα. NegStα showed a degree of oxidation of around 36%, 

whereas the coupling reaction with ethylenediamine was found to be around 33%. Both 

polymers showed a stable amorphous solid state after lyophilization, which can be seen in 
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Figure 3.3. In comparison, the starting material of the synthesis, potato starch, showed a semi-

crystalline state, which is known to be characteristic of starch material.139  

 

Figure 3.3: XRPD pattern of potato starch (PS) and α-starch derivatives (NegStα, PosStα). 

 

For further characterization of the formulation as well as for cell interaction studies, PosSt 

was labeled with the fluorescent dye Bodipy® FL-C5 NHS Ester. The resulting polymer was 

orange in appearance as a dry powder with maximum fluorescence intensity at an excitation 

wavelength of 488 nm.  

 

3.4 CONCLUSION 

The NP formation via charge-mediated coacervation in aqueous medium requires water 

soluble materials. The synthesis and characterization of positively and negatively charged, 

water soluble starch derivatives was successfully carried out. Although the oxidation of potato 

starch was straight-forward, the conjugation of ethylenediamine with DCC/HOBt had some 

drawbacks. The medium for the coupling reaction consisted of 100% DMSO, which made 

purification using the Vivaflow 200 system challenging, as the Hydrosart® membrane (a 

stabilized cellulose-based membrane) is incompatible with DMSO. A pre-lyophilization step 

before the purification step was therefore necessary, which additionally proved to be both 

challenging (due to the high sublimation point of DMSO) and time consuming. An alternative 
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strategy to the pre-lyophilization step and purification with Vivaflow 200 was therefore 

found, namely the precipitation of PosSt with EtOH. With this time saving method, even the 

small amount of impurities arising from DCC/HOBt that were visible in the 1H-NMR 

spectrum could be removed. However, further improvement of the precipitation is necessary 

to remove residual free ethylenediamine. A more thorough washing procedure is suggested in 

this respect. Another drawback of the DCC/HOBt method is the elevated temperature of 50 

°C that is necessary for the coupling reaction. GPC measurements showed a decrease in the 

mean average molecular weight between PosStα and PosStβ from 76 000 to 43 000, 

respectively, indicating that the elevated temperature in combination with the prolonged 

reaction time of 72 h could result in an accelerated degradation of the polymer backbone. As a 

result, NegSt was coupled to ethylenediamine instead using DMTMM. Here, the reaction is 

taking place at RT in a mixture of water:DMSO. The product can be purified by precipitation 

with EtOH as solvent of choice.   

An important aspect for future work would be the testing of reproducibility of the synthesis to 

ensure a product of constant quality. Also scalability would be a variable to be explored. 
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4. STARCH VS. CHITOSAN NANOPARTICLES – PREPARATION 

AND PHYSICOCHEMICAL CHARACTERIZATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The author of the thesis made the following contribution to the current chapter:  

 

Planned and designed all experiments, performed experiments related to particle preparation 

and characterization, analyzed all data obtained from the mentioned studies, interpreted all 

experimental data and wrote the chapter, if not stated otherwise. 

 

Greta Magnano, an Erasmus student, who was instructed by the author of the thesis, 

contributed to the chapter by performing parts of the CS nanoparticle preparation and 

characterization. 

 

Julian Taffner, a ten week internship student was instructed by the author of the thesis and 

contributed to the chapter by performing parts of the starch nanoparticle preparation and 

characterization.  
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4.1 INTRODUCTION 

The use of NPs as DDS for protein delivery is well-established, as they can offer protection 

during both storage, and administration, and are known to facilitate an enhanced permeation 

through epithelial barriers.140, 141 

The selection of an appropriate NP preparation method depends on both the carrier material as 

well as the drug (in this case the protein) to be encapsulated. There are several methods which 

can be utilized for NP preparation. In principle, they can all be described as either top-down 

or bottom-up methods.142, 143 The first case employs material on a large scale and involves the 

reduction of its lateral dimensions (that is, its particle size) with e.g. wet milling techniques. 

However, these methods involve a great amount of energy input and are highly inefficient.144 

On the other hand, bottom-up methods start with the material in a dissolved form, upon which 

nano- and microstructures are built up. Several approaches can be assigned to the bottom-up 

method, such as spray drying,145 supercritical fluid processes,146 nanoprecipitation,147, 148 and 

emulsion solvent evaporation.149-151 Each preparation method has its advantages and 

disadvantages. Most of these processes necessitate input of energy, by heating, sonication, or 

vortexing. Further, the use of organic solvents may be necessary, for example when DDS are 

prepared from polymers that are not water soluble. All such factors could potentially damage 

the structure of the DDS protein cargo, as the secondary, tertiary and quaternary levels of 

protein structure are very sensitive to the application of energy. Although often preparation 

methods for DDS are emulsion based, this approach can additionally lead to unfolding of the 

protein, as protein molecules migrate to the phase interface, arranging their hydrophilic 

domains to the water side and their lipophilic domains to the hydrophobic side. 

To avoid these issues and to ensure protein integrity, a preparation method for DDS was 

chosen that only applies the use of aqueous media, with no organic solvents and no harsh 

mixing conditions. Therefore, water soluble polymers were evaluated. Polysaccharides are 

among the most studied polymers for drug delivery applications.107 Amongst these, chitosan 

(CS) was chosen as reference material, as chitosan-based DDS are widely explored114-116, 152 

and can be prepared in aqueous solution by virtue of interaction of CS with a small ionic 

crosslinker tripolyphosphate (TPP).152 

Working in an aqueous environment, it should, however be noted that some proteins degrade 

under extreme pH conditions – and some even when their surrounding pH differs only a little 

from physiological pH - while others are sensitive to ionic strength. DDS preparation and 

loading with protein could be carried out in a buffered system; however, the presence of 
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buffer salts also has the potential to change the chemical properties of the DDS, as its 

formation is based on electrostatic interaction. 

The aim of this chapter was to compare the preparation and characterization of NPs composed 

of two different carbohydrate-based materials. CS NPs introduced by Calvo et al. in 1997 and 

often used for protein delivery152 acted as an evaluation tool for the preparation process, and 

as a guide to help establish appropriate analytical methods for the newly developed starch 

NPs. The synthesized water soluble anionic and cationic α-starch derivatives were used in 

order to enable NP formation via charge-mediated coacervation; these NPs were compared to 

CS NPs, prepared also via charge-mediated coacervation with TPP, which is also called ionic 

gelation in this special case. 

 

4.2 MATERIALS AND METHODS 

4.2.1 MATERIALS 

Protasan UPCL 113 (chitosan, CS) with a weight average molecular weight of 61268 ± 406 

and a degree of deacetylation of ~ 83% was bought from Novamatrix, Norway. Sodium 

tripolyphosphate (TPP) was purchased from Merck KGaA, Germany. Negatively (NegSt) and 

positively (PosSt) charged starches were synthesized in house. IgG1 and insulin were kindly 

donated by Boehringer Ingelheim (Germany) and Sanofi (France), respectively. Vancomycin 

hydrochloride (vanco), Ribonuclease A from bovine pancreas (RNAse A), α-amylase from 

porcine pancreas, chitosanase from Streptomyces (chitosanase), albumin from chicken egg 

white (OVA), albumin from bovine serum (BSA), and lysozyme from chicken egg white 

(Lyso) were bought from Sigma Aldrich  (USA). The Nrf2 peptide153 (peptide sequence: 

(LQL)DEETGEFLPIQ) was bought from Selleck Chemicals, U.S.A. 

Purified water was produced by a milliQ water purification system (Merck Millipore, USA). 

All other reagents were of analytical grade.  

 

4.2.2 PREPARATION AND LOADING OF CHITOSAN NANOPARTICLES 

CS NPs were prepared by ionic gelation of positively charged amine groups of CS with 

negatively charged phosphate groups of TPP in aqueous solution, in a procedure adapted from 

Calvo et al.113 Besides material concentration, the molar ratio of components, as well as the 

stirring speed (500 rpm, 1000 rpm) and injection rate (5 mL/min, 10 mL/min, 20 mL/min) for 

particle preparation using a syringe pump were investigated, as parameters potentially 

influencing the characteristics of resulting NPs. Further, the impact of the preparation medium 
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was explored, by utilizing either purified water, or 10 mM HOAc/OAc- buffer pH 5.0 with 

and without different amounts of NaCl (5 mM, 10 mM, 50 mM). Briefly, materials were 

dissolved in aqueous medium to obtain solutions of 1 mg/mL, 0.5 mg/mL and 0.25 mg/mL 

and filtered. Different molar ratios (20:1, 10:1, 2:1 and 0.5:1) of CS:TPP were studied by 

adding adequate volumes of TPP solutions (1, 0.5, 0.25 mg/mL) to CS solutions (1, 0.5, 0.25 

mg/mL) under gentle stirring at RT. NPs formed spontaneously and were analyzed after 10 

min of stirring for equilibration. The final pH value of all tested formulations was 5.0.  

In order to assess the use of CS NPs as DDS for proteins, five proteins varying in size and net 

charge, were chosen for loading experiments. These proteins were IgG1 (Mw: 150 kDa, 

isoelectric point (IEP): 8.5), BSA (Mw: 66 kDa, IEP: 4.7), OVA (Mw: 44 kDa, IEP: 4.5), 

Lyso (Mw: 14 kDa, IEP: 11.4) and Nrf2 (Mw: 1.3 kDa, IEP: 3.5). For the loading 

experiments, each protein sample was prepared as 5 mg/mL stock solution in purified water 

and added in various concentrations to the NP suspension to obtain final protein 

concentrations of 10.4 µg/mL, 20.7 µg/mL, and 41.3 µg/mL.  

 

4.2.3 PREPARATION AND LOADING OF STARCH NANOPARTICLES 

Starch NPs were prepared by charge-mediated coacervation between negatively charged 

carboxylate groups (NegSt) and positively charged amine groups (PosSt) of α-starch 

derivatives in aqueous solution. Briefly, materials were dissolved in purified water to obtain 

solutions of 1 mg/mL, 0.5 mg/mL, and 0.25 mg/mL, and filtered. Different molar ratios (3:1, 

1:1, 1:3) of PosSt and NegSt solutions were studied by adding adequate volumes of NegSt (1, 

0.5, 0.25 mg/mL) solution to PosSt solution (1, 0.5, 0.25 mg/mL) under gentle stirring at RT. 

NPs formed spontaneously and were analyzed after 10 min of stirring for equilibration. The 

final pH value was 7.4 for all tested formulations.  

For later characterization studies of the formulation as well as uptake studies, labeled starch 

NPs were prepared from solutions of 0.25 mg/mL and a molar ratio of 1:1 of PosSt:NegSt. 

Instead of PosSt alone, different mass ratios of PosSt:PosStF (100:0, 50:50, 10:90, 5; 95) were 

used for particle preparation. 

Four proteins varying in net charge and size were chosen for loading experiments, in order to 

assess the use of starch NPs as DDS. In detail, these proteins were vanco (Mw: 1.5 kDa, IEP: 

7.5), insulin (Mw: 6 kDa, IEP: 5.3), RNAse A (Mw: 14 kDa, IEP: 9.6), and IgG1 (Mw: 150 

kDa, IEP: 8.5). Each protein sample was prepared as 5 mg/mL stock solution in purified water 

(except insulin, which was dissolved in 0.01 N NaOH) and added to the NP suspension to 

obtain final protein concentrations of 17.2 µg/mL, 34.2 µg/mL, and 51.2 µg/mL. 
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4.2.4 CHARACTERIZATION OF NANOPARTICLES 

Physicochemical properties (particle size, PdI, and ζ-potential) of NPs in preparation medium 

were determined using the Zetasizer Nano ZSP (Malvern Instruments, UK) with a scattering 

angle of 173°. Particle sizes were intensity based z-average values and standard deviation was 

of at least 3 measurements. Storage stability of CS NPs was assessed by monitoring NPs for 

size, PdI and ζ-potential for 7 days. Samples were stored in the fridge (4 °C). 

Physicochemical stability of starch NPs was monitored for size, PdI and ζ-potential for 14 

days. Samples were stored either in the fridge (4 °C) or at RT (20 °C). Morphology of CS NPs 

was analyzed by scanning electron microscopy (SEM, JSM 7001F Field Emission SEM (Jeol, 

Japan)). Samples were placed on a silicon wafer on top of a carbon disc and sputtered with 

gold (layer thickness approx. 10 nm) prior to scanning. The accelerating voltage was 5 kV 

with a focal distance of 15 mm. Further, transmission electron microscopy (TEM) using a 

JEOL JEM 2011 microscope (Oxford Instruments, UK) was used for morphology analysis of 

CS and starch NPs. A 20 µL volume of sample was incubated on a copper grid for 30 min. 

After staining with 1% (w/v) of phosphotungstic acid (PTA) for 30 s, samples were dried 

overnight (excess fluid was directly removed with filter paper) and analyzed.  

To study the biodegradation of CS NPs, 10 mL of NP suspension was incubated at 50 °C with 

0.5 µL or 5 µL of chitosanase solution (0.1352 units/µL) for 2, 4, 6, 8, or 24 h under gentle 

stirring. As control, 10 mL of CS NP suspension was incubated at 50 °C under gentle stirring 

without enzyme. The biodegradation of starch NPs was studied by incubating 10 mL of NP 

suspension with 25 µL α-amylase solution (36.37 units/µL) at 37 °C for 2, 4, 6, or 8 h under 

gentle stirring. As a control in this case, 10 mL of starch NP suspension was incubated at 37 

°C under gentle stirring in the absence of α-amylase. Particle concentrations were then 

analyzed at several time points by nanoparticle tracking analysis (NanoSight LM 10, Malvern 

Instruments, UK). For these measurements, 0.5 mL was taken from each sample. Described 

results are the particle concentration (after correction for the dilution factor needed for 

valuable measurement) of treated and non-treated samples (each n=3).  

To study the stability of CS NPs and starch NPs upon aerosolization, they were nebulized 

with the Aeroneb®Lab nebulizer (Aerogen Ltd., Ireland) and collected to be analyzed for size, 

PdI and ζ-potential with the Zetasizer Nano ZSP (Malvern Instruments, UK). 

For the determination of protein encapsulation efficiency (EE) and loading rate (LR) in each 

case, NPs were separated from the dispersing medium containing non-encapsulated protein, 

after 15 min equilibration, by ultracentrifugation (45.000 x g for 90 min (CS NPs) or 60 min 

(starch NPs), 20 °C; Optima L-XP, Beckman Coulter, UK). The amount of free protein in the 
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supernatant was determined with the BCA (bicinchoninic acid) Assay Kit (Sigma Aldrich, 

USA). This assay relies on the formation of Cu2+-protein complexes with reduction of Cu2+ to 

Cu1+ under alkaline conditions. Bicinchoninic acid then forms a purple complex with the Cu1+ 

in alkaline conditions that can be detected by measuring the absorbance at 562 nm. EE and 

LR of proteins/peptides were defined and calculated according to following equations: 

 

 

 

 

 

 

 

For determination of the particle yield (mass NP), washing of the particles was performed 

with Vivaflow® 50 (100 kDa MWCO, PES (Polyethersulfone) membrane, Sartorius, 

Germany). A 50 mL (CS) or 40 mL (starch) volume of NP suspension was washed with 150 

mL or 120 mL of purified water, respectively, concentrated to 10 mL, freeze dried and 

weighed. 

 

4.3 RESULTS AND DISCUSSION 

The well-known system of CS NPs was chosen to get an idea of the preparation process and 

to establish analytical tools for the newly developed starch NPs. Further, the CS NP system 

was designated as a bench-mark for starch NPs. 

CS NPs were chosen, due to the abundance of literature available describing such systems, as 

well as the ability to prepare CS and starch-based NPs using a similar aqueous-based 

preparation process. CS is a well-known material and was a good starting point for the 

evaluation of analytical tools. It was designated as the 1st generation DDS for the COMPACT 

consortium to be replaced by starch NPs as a 2nd generation DDS once all characterization 

methods had been developed.   

 

4.3.1 PREPARATION OF CHITOSAN NANOPARTICLES 

CS is prepared via partial deacetylation from the natural polymer chitin, consisting of N-

acetylated glucosamine residues, occurring widely in nature as a structural polysaccharide 

present in the integument of crustacea and insects.154 Further, there is a vegetarian source of 

CS, obtained by extracting chitin from cell walls of fungi.155  

𝐸𝐸[%] =
𝑚𝑎𝑠𝑠(𝑝𝑟𝑜𝑡𝑒𝑖𝑛)𝑡𝑜𝑡𝑎𝑙 −  𝑚𝑎𝑠𝑠(𝑝𝑟𝑜𝑡𝑒𝑖𝑛)𝑓𝑟𝑒𝑒

𝑚𝑎𝑠𝑠(𝑝𝑟𝑜𝑡𝑒𝑖𝑛)𝑡𝑜𝑡𝑎𝑙
∗ 100 

𝐿𝑅 [%] =
𝑚𝑎𝑠𝑠(𝑝𝑟𝑜𝑡𝑒𝑖𝑛)𝑡𝑜𝑡𝑎𝑙 −  𝑚𝑎𝑠𝑠(𝑝𝑟𝑜𝑡𝑒𝑖𝑛)𝑓𝑟𝑒𝑒

𝑚𝑎𝑠𝑠𝑁𝑃
 ∗ 100 
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CS NPs were prepared by adding different amounts of the highly negatively charged small 

molecule TPP to a CS solution under stirring. Both solutions always had the same mass 

concentration.  

 

Particle preparation by manual injection  

First of all, the influence of the molar ratio and concentration of components on the 

physicochemical properties of formed CS NPs was investigated (Figure 4.1). It can be seen 

that NP formation depended highly on the molar ratio of the two components: a molar ratio of 

CS:TPP 20:1 led to a particle size between 182.1 ± 29.2 nm and 395.4 ± 36.1 nm, with 

corresponding PdI values at these sizes of 0.25 and 0.23, respectively. A molar ratio of 10:1 

was also shown to give good results with particle sizes ranging from 155.5 ± 2.7 nm to 395.8 

± 6.8 nm and PdIs between 0.15 and 0.36. In contrast, molar ratios of 2:1 and 0.5:1 resulted in 

aggregation of the material, with particle sizes between 800 and 4000 nm and high PdI values 

observed. This is in accordance with the determined ζ-potential values for these formulations, 

which are close to zero, indicating that an electrostatic stabilization of the NPs was not 

possible. However, this was possible for the formulations of molar ratios 20:1 and 10:1, with 

ζ-potential values around +45 mV and +35 mV, respectively. As a first result, it can therefore 

be concluded that the molar ratio of CS:TPP is important for NP formation, and should be 

between 20:1 and 10:1. A higher amount of negatively charged TPP leads to a loss in the ζ-

potential, resulting in an unstable system.  

As second parameter, the influence of material concentration was explored. Therefore, CS and 

TPP concentrations of 1, 0.5, and 0.25 mg/mL were investigated. For a molar ratio of 20:1, it 

can be seen that particle size increased with increasing material concentration: a particle size 

of 182.1 ± 29.2 nm was obtained for 0.25 mg/mL concentrations, whereas a particle size of 

290.6 ± 52.2 nm and 395.4 ± 36.1 nm was found for 0.5 mg/mL and 1 mg/mL concentrations, 

respectively. Similar results were obtained for a molar ratio of 10:1: the particle size for the 

lowest concentration was 155.5 ± 2.7 nm, whereas a particle size of 261.8 ± 0.2 was obtained 

for 0.5 mg/mL and a particle size of 395.8 ± 6.8 nm was obtained for 1 mg/mL. The ζ-

potential was not affected by the material concentration. The values rather depended on the 

molar ratio of CS:TPP, with ζ-potentials of around +45 mV for 20:1 and +30 - +35 mV for a 

molar ratio of 10:1. It can be concluded that particle size depends chiefly on material 

concentration, with a lower concentration leading to a smaller particle size. The ζ-potential, 

however, was mostly influenced by the molar ratio of components. This is in accordance with 

Calvo et al., who obtained similar results.113 
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Figure 4.1: Preparation of CS NPs with different material concentrations (1, 0.5, 0.25 

mg/mL), and molar ratios (20:1, 10:1, 2:1, 0.5:1 CS:TPP). (A) size (bar) and PdI (squares); 

(B) ζ-potential; TPP solution was applied by manual injection. 

 

Particle preparation with a syringe pump 

It could be seen that NP results obtained by manual injection were not always reproducible. 

To reduce the high standard deviations and to further improve reproducibility, the use of a 

syringe pump (Harvard Apparatus PHD ULTRA, Harvard Apparatus Inc., Holliston, USA) 

was explored. When using such a pump, the pressure, the added volume and the injection rate 

can be adjusted and controlled, which may lead to more reproducible results. For these 

experiments, a material concentration of 0.25 mg/mL of CS and TPP and two different molar 

ratios, 20:1 and 10:1, were chosen. Parameters such as stirring speed (500 rpm, 1000 rpm) and 

injection rate (5 mL/min, 10 mL/min, 20 ml/min) were varied and their effect on 

physicochemical properties of CS NPs studied. The results can be found in Figure 4.2.  

In comparison to the experiments performed with manual injection, the PdI of NPs formed 

using a syringe pump was always below 0.2, indicating a narrow particle size distribution. 

The particle size, however, did not depend on stirring speed or injection rate. For a molar ratio 

of 20:1, particle sizes were between 180 nm and 210 nm independent of injection rate and 

stirring speed. For a molar ratio of 10:1 it could be assumed that stirring has a minor 
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influence, as particle size was between 144.3 ± 0.2 nm and 161.3 ± 0.7 nm for a stirring speed 

of 500 rpm, whereas particle size decreased for a stirring speed of 1000 rpm, being between 

111.7 ± 0.2 nm and 120 ± 1.0 nm. However, these values were again independent of injection 

rates utilized in these experiments.  

 

 
Figure 4.2: Influence of stirring speed and injection rate on the preparation of CS NPs with 

0.25 mg/mL and two different molar ratios using the syringe pump. (A) size (bars) and PdI 

(squares); (B) ζ-potential. 

 

ζ-potential values were again only depending on the CS:TPP molar ratio, being around +50 

mV for a molar ratio of 20:1 and around +35 mV for a molar ratio of 10:1. It can be 

concluded that the syringe pump is a valuable tool for reproducible particle preparation. For 

further experiments, CS NPs were prepared with the syringe pump from 0.25 mg/mL 

solutions and a molar ratio of 10:1 (CS:TPP) under stirring at 500 rpm with an injection rate 

of 20 mL/min.  
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Particle preparation in buffer  

To investigate the influence of preparation medium and temperature, CS NPs were prepared 

in a 10 mM HOAc/OAc- buffer, pH 5.0 at different temperatures (4 °C, 20 °C, 45 °C). Results 

can be found in Table 4.1.  

 

Table 4.1 

Influence of preparation medium, temperature and NaCl concentration on physicochemical 

properties of CS NPs prepared from 0.25 mg/mL solutions with a molar ratio of 10:1 in a 10 

mM HOAc/OAc- buffer, pH 5.0. 

 

Temperature 

[°C] 

NaCl 

[mM] 

Size 

[d.nm] 

PdI ζ-potential 

[mV] 

4 - 88.1 ± 1.9 0.25 12.7 ± 0.9 

20 - 84.3 ± 1.6 0.24 24.1 ± 2.9 

45 - 80.9 ± 0.9 0.19 26.4 ± 0.8 

20 5 74.8 ± 0.2 0.21 20.2 ± 3.2 

20 10 73.7 ± 0.8 0.19 12.7 ± 0.4 

20 50 55.1 ± 0.1 0.09 16.3 ± 2.2 

 

It can be seen that the temperature had no clear effect on particle size, however for an 

elevated temperature, particle size distribution was somewhat improved with a PdI below 0.2 

for the formulation prepared at 45 °C. The ζ-potential was by contrast clearly influenced by 

the temperature, with values of +12.7 ± 0.9 mV for a preparation at 4 °C and values of +24.1 

± 2.9 mV and +26.4 ± 0.8 mV for the preparation at 20 °C and 45 °C, respectively. As the ζ-

potential measurement is temperature dependent, it could be assumed that for 4 °C the sample 

did not reach the correct measurement temperature yet, as the preparation temperature is not 

expected to alter the ζ-potential. To improve size distribution, NaCl was added in various 

concentrations to the buffer used for NP preparation (5 mM, 10 mM, 50 mM). It can be seen 

that, with increasing amounts of NaCl, the PdI decreased from 0.24 for the preparation in 

buffer without NaCl, to 0.21 for the preparation in 5 mM NaCl, to 0.09 for the preparation in 

50 mM NaCl. Particle size was also affected by the NaCl amount. Particles of 84.3 ± 1.6 nm 

were formed from preparation in buffer without NaCl, while 74.8 ± 0.2 nm particles resulted 

from the preparation in 5 mM NaCl, and 55.1 ± 0.1 nm NPs were the product of preparation 

in 50 mM NaCl. While some variations in ζ-potential was observed, as this measure depends 

both on the pH and ionic strength of the dispersing medium, it could not be compared under 
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conditions of varying NaCl content. The preparation in buffer clearly changed the particle size 

of CS NPs, being around 150 nm for the preparation in water and 90 nm for the preparation in 

buffer and even smaller for the preparation in buffer with additional salt concentration. 

To keep the formulation as simple as possible, it was decided to minimize additional material 

contributions from buffer components or salts. The preparation in water was used for further 

evaluation of the CS NPs system. 

 

4.3.2 CHARACTERIZATION OF CHITOSAN NANOPARTICLES 

Storage stability  

To investigate storage stability of CS NPs, short term particle stability after preparation was 

studied for 7 days. Therefore, CS NPs prepared from 0.25 mg/mL and a molar ratio of 10:1 

were stored at 4 °C. Samples were taken at several time points and analyzed for their size, PdI 

and ζ-potential (Figure 4.3). It can be seen that particle size, PdI and ζ-potential were stable 

during storage and could be prepared in advance before running further experiments. 

 

 

Figure 4.3: Storage stability of CS NPs prepared from 0.25 mg/mL and a molar ratio of 10:1 

(CS:TPP), stored at 4 °C. (A) size (bars) and PdI (squares); (B) ζ-potential. 
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Morphology  

Attempts were made to evalute the morphology of CS NPs by SEM. In contrast to PLGA 

NPs, where this technique has nicely been explored, the application of SEM for imaging of 

CS NPs was found to be of limited use. SEM images showed a polymer layer (Figure 4.4 (A) 

with some particulate structures, more clearly visible at higher levels of magnification (Figure 

4.4 (B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Images of CS NPs, prepared from 0.25 mg/mL solutions in a molar ratio of 10:1 

(CS:TPP). SEM images (A-B). TEM images without staining (C) and with 1% PTA staining 

(D). 

 

This behavior indicates an instability of the system probably occuring as a result of the drying 

process utilized during SEM sample preparation - as CS NPs are known to show a gel-like 

structure, such sample drying can be expected to result in particle aggregation. In more detail, 

for imaging, the sample is placed on a SEM wafer, water is evaporated and the dry image is 

analyzed after sputtering with gold. However, during drying, space becomes limited, with 

particles coming closer to each other. Once a particle comes in contact with another particle, 

their surfaces literally stick together. NP repulsive forces, resulting from their positive ζ-

potentials, are overcome with restricted space and direct contact of the NPs. Another 

technique was therefore employed for imaging of CS NPs, namely TEM. Here, the sample is 

placed on a copper grid, allowed to dry and analyzed. The same phenomenon could be 

observed as for SEM imaging (Figure 4.4 (C). However, NPs could be stabilized with 1% 

2 µm 

1 µm 

A 

B 

C 

D 

TEM SEM 
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PTA (Figure 4.4 (D). After incubation of the NPs on the grid for 10 min, the residual solvent 

was removed by blotting with tissue paper and the grid was incubated on a 1% PTA droplet 

for 30 s. Although a polymer layer can still be observed, PTA working as a negative stain in 

this case builds a small dark layer around the particles, stabilizing them and making them 

“visible”. 

 

Biodegradation 

The biodegradation of a nanoparticulate system and the analysis of its degradation products is 

of great importance, when considering the application of such a system in vivo. 

For this reason, the biodegradability of CS NPs by chitosanase was tested, using an adapted 

protocol from Sun et al.156 Chitosanase is an enzyme, produced by many micro-organisms, 

including bacteria such as actinomycetes, as well as fungi.154 While chitosanase is not a 

human enzyme, the test should act as tool to further develop a similar enzymatic method for 

the starch NPs. 

CS NPs were incubated at 50 °C with or without chitosanase. For the samples treated with 

chitosanase, either 0.5 µL or 5 µL enzyme solution was added (0.0676 units and 0.676 units, 

respectively). At certain time points, samples were taken and particle concentration was 

determined with the help of nanoparticle tracking analysis. Compared to a control group (CS 

NPs stored at 50 °C without enzyme), the particle concentration was determined. It can be 

seen from Table 4.2 that the particle concentration of the control group decreased from 77.8 ± 

1.4 x E8 particles/mL before the incubation to 61.9 ± 12.5 x E8 particles/mL after 24 h of 

incubation. This could be due to the elevated temperature of 50 °C, resulting in a higher 

moving speed of the particles, and leading to merging of particles as a result of this higher 

kinetic energy. Nevertheless, the difference in particle concentration between the control 

group and samples incubated with chitosanase was very clear. The 0.5 µL chitosanase 

samples showed a decrease in particle amount from 80.4 ± 1.9 x E8 particles/mL to 5.3 ± 1.9 x 

E8 particles/mL already after 24 h of incubation. This effect was even more pronounced for 

the samples treated with 5 µL chitosanase. Here, the particle amount of 82.99 ± 4.1 x E8 

particles/mL was reduced to 0.6 ± 0.2 x E8 particles/mL after 24 h of incubation. Already after 

2 h the particle concentration was reduced to 1.8 ± 0.9 x E8 particles/mL, indicating a very 

fast degradation mechanism of the CS NPs. 
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Table 4.2 

Biodegradation of CS NPs by chitosanase at 50 °C, analyzed as particle concentration after 2, 

4, 6, 8, or 24 h; determined by nanoparticle tracking analysis (mean ± SD; n=3). 

 

 CS NPs 

[x E8 particles/mL] 

CS NPs + 0.5 µL chitosanase  

[x E8 particles/mL] 

CS NPs + 5 µL chitosanase  

[x E8 particles/mL] 

before 77.8 ± 1.4 80.4 ± 1.9 82.99 ± 4.1 

2 h 68.8 ± 3.9 13.3 ± 3.6 1.8 ± 0.9 

4 h 72.2 ± 4.2 12.1 ± 1.2 0.9 ± 0.3 

6 h 75.2 ± 5.9 9.1 ± 3.7 0.8 ± 0.4 

8 h 79.4 ± 6.2 8.7 ± 2.8 0.7 ± 0.2 

24 h 61.9 ± 12.5 5.3 ± 1.9 0.6 ± 0.2 

 

Loading of CS nanoparticles 

To investigate the use of CS NPs as DDS, five different proteins/peptides were chosen to 

study the loading capacity of CS NPs. The selected proteins - Nrf2 (Mw: 1.3 kDa, IEP: 3.5), 

Lyso (Mw: 14 kDa, IEP: 11.4), OVA (Mw: 44 kDa, IEP: 4.5), BSA (Mw: 66 kDa, IEP: 4.7), 

and IgG1 (Mw: 150 kDa, IEP: 8.5) – represent proteins/peptides with different net charges 

and molecular weights. For this experiment, CS NPs prepared from 0.25 mg/mL solutions and 

a molar ratio of 10:1 (CS:TPP) were chosen. For the determination of protein EE and LR of 

the CS NPs, they were separated from the dispersing medium, containing the free protein, 

after 15 min equilibration, by ultracentrifugation. EE and LR were determined indirectly, by 

measuring the amount of free protein in the produced supernatant with a colorimetric method 

(BCA assay). The BCA assay was chosen as detection method of choice due to its broad 

application spectrum.  

Although a direct method of quantification is always favored, the dissolution of the NPs 

without harming the cargo (in this case the protein) has to be ensured when such a method is 

employed. Different dissolution strategies were in fact tried, such as dissolution with e.g. HCl, 

NaOH, and 500 mM NaCl; however, either particles could not be completely dissolved, or the 

pH or ionic strength of the solubilizing agent led to aggregation of the protein. 

As a result, an indirect method for quantification was preferred. Ultracentrifugation was 

chosen as a separation method, as other methods such as Vivaspin® or Centrisart® (membrane 

based methods), in which the protein has shown interactions with the membrane, made a 

quantitative analysis impossible. Before quantifying the EE and the LR, the 
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ultracentrifugation method had to be validated. In this respect, three parameters had to be 

guaranteed: a) a NP suspension had to form a quantitative pellet during ultracentrifugation, 

meaning complete removal of NPs from the supernatant; b) a protein solution had to show 

similar concentrations in the supernatant before and after ultracentrifugation to assure no 

precipitation of the protein under the employed ultracentrifugation conditions; c) the 

applicability and linearity of the BCA assay in the measured protein concentration range had 

to be verified.  

A quantitative pellet of CS NPs was formed with ultracentrifugation at 45 000 x g and 20 °C 

for 60 min. Further, the supernatant was analyzed by nanoparticle tracking analysis, and no 

particles could be observed. The pellet which was formed by CS NPs after ultracentrifugation 

can be seen in Figure 4.5 (A), with visualization by SEM. Further all tested concentrations of 

protein solution before (“conc theory”) and after ultracentrifugation (“conc measured”) were 

determined with the BCA assay. The results of such measurement for a representative 

employed protein concentration of 40 µg/mL are shown in Figure 4.5 (B). It can be seen that 

the theoretical concentration and the concentration after ultracentrifugation is almost the 

same, thus no aggregation and sedimentation of the protein/peptide occurred. In a third step, 

the applicability and linearity range of the BCA assay was determined. It could be shown that 

blank NP supernatant showed a slight impact on the absorbance reading as determined with 

the BCA assay. However, these values were constant and could be subtracted from the 

measurement values of samples. 
 
 

 

Figure 4.5: Validation of the indirect quantification method. (A) SEM image of the pellet 

formed by CS NPs after ultracentrifugation at 45 000 x g, 60 min, and 20 °C; (B) 

concentration of protein solutions before ultracentrifugation (conc theory) and after 

ultracentrifugation determined from the supernatant (conc measured). 

 

NPs were washed with the Vivaflow® 50 system (100 kDa MWCO, PES membrane, 

Sartorius, Germany), freeze dried and weighed, for the determination of the LR. In contrast to 

Vivaspin® or Centrisart®, this membrane based, crossflow filtration method, also known as 
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tangential flow filtration, is very mild. It is stated in the Cross flow filtration method 

handbook that “a pressure difference across the filter drives components that are smaller than 

the pores through the filter. Components larger than the filter pores are retained and pass 

along the membrane surface, flowing back to the feed reservoir.”157 With this method, NPs 

stay intact and do not show a blockage of the membrane as happened for the other two 

systems. This was verified by dynamic light scattering (DLS): before washing with the 

Vivaflow® 50 system, CS NPs showed a particle size of 151.1 ± 1.0 nm and a PdI of 0.14. 

After washing, particle size increased to 182.6 ± 3 nm with a PdI of 0.18. This slight increase 

in size can be explained by the concentrating effects of washing on the sample: For washing, 

50 mL of nanoparticle suspension was used, but this volume was concentrated to 10 mL for 

freeze drying.  

Physicochemical properties of loaded CS NPs from post loading experiments with different 

proteins/peptides can be found in Table 4.3. Further, EE and LR are shown.  

Regarding size distribution, all formulations showed good PdI values, lower than 0.2, 

indicating a narrow particle size distribution. Blank particles showed a particle size of 155.5 ± 

2.7 nm and a ζ-potential of +31.5 ± 0.8 mV. In contrast to that, all formulations demonstrated 

a decrease in particle size varying extent when loaded with different proteins. Also a decrease 

in the ζ-potential could be seen following loading with proteins. The loading with OVA, 

however, is an exception, as both particle size and ζ-potential stayed constant.  

The high EE determined for OVA and BSA of up to 82.8 ± 1.6% and 91.7 ± 4.6%, as well as 

the high LR of 23.0 ± 1.3% and 25.6 ± 1.3%, respectively, can be ascribed to the hydrophobic 

character of these proteins at pH 5.0. The IEP of these proteins is 4.5 (OVA) and 4.7 (BSA), 

meaning that both proteins are close to their IEP at the pH of the CS NP suspension. 

Nevertheless, compared to OVA, BSA-loaded NPs showed a decrease in particle size as well 

as a decrease in ζ-potential, indicating a different binding mechanism as compared to OVA. 

Concerning the encapsulation of the negatively charged Nrf2 (at pH 5.0), an encapsulated 

mass of around 50-60 µg could not be further enhanced, meaning that such a system has a 

maximum LR of approximately 3%.  

It can be seen that for some formulations (marked with *), the EE and LR could not been 

determined. This holds true for all the IgG formulations, as well as the formulation loaded 

with 125 µg Lyso. For a higher mass of Lyso, however, an EE of up to 23.9 ± 0.9% and a LR 

of 6.6 ± 0.3% could be obtained. Surprisingly, Lyso was able to be encapsulated, although its 

IEP (11.4) is even higher than that of IgG (8.5), meaning a higher positively charge than the 

antibody at pH 5.0. 
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Table 4.3 

Physicochemical properties of protein-loaded CS NPs as well as encapsulation efficiency 

(EE) and loading rate (LR), as determined indirectly with the BCA assay after separating 

loaded NPs from free protein via ultracentrifugation; *loading could not be determined; 

(mean ± SD, n=3). 

 

CS NPs 

(loaded 

with) 

mass
initial 

protein 

[µg] 

Size 

[d.nm] 

PdI ζ-potential 

[mV] 

mass
encaps 

protein 

[µg] 

EE 

[%] 

LR 

[%] 

blank - 155.53 ± 2.7 0.15 +31.5 ± 0.8 - - - 

IgG1 (Mw 150 kDa, IEP 8.5) 

 125 133.8 ±  8.7 0.13 +25.8 ±  2.3 * * * 

 250 102.5 ±  10.1 0.17 +23.3 ±  1.6 * * * 

 500 106.3 ±  20.3 0.18 +22.4 ±  4.0 * * * 

BSA (Mw 66 kDa, IEP 4.7) 

 125 126.1 ±  9.4 0.13 +21.3 ±  1.7 144.1 ± 8.5 113.7 ± 6.7 7.9 ± 0.5 

 250 89.6 ±  3.5 0.17 +23.5 ±  1.9 209.4 ± 7.7 83.8 ± 3.1 11.5 ± 0.4 

 500 134.4 ±  3.3 0.17 +21.4 ±  3.7 463.8 ± 23.1 91.7 ± 4.6 25.6 ± 1.3 

OVA (Mw 44 kDa, IEP 4.5) 

 125 154.4 ±  24.2 0.15 +31.0 ±  1.9 120.4 ± 7.3 94.2 ± 5.7 6.6 ± 0.4 

 250 158.5 ±  8.5 0.14 +31.0 ±  1.1 228.6 ± 13.3 90.5 ± 5.3 12.6 ± 0.7 

 500 163.7 ±  26.0 0.18 +30.1 ±  4.3 417.9 ± 8.2  82.8 ± 1.6 23.0 ± 0.5 

Lyso (Mw 14 kDa, IEP 11.4) 

 125 116.9 ± 11.8 0.13 +21.4 ±  6.3 * * * 

 250 135.8 ±  5.8 0.12 +24.3 ±  2.7 48.0 ± 10.4 19.2 ± 4.2 2.7 ± 0.6 

 500 139.1 ±  23.6 0.11 +25.1 ±  3.6 119.5 ± 4.7 23.9 ± 0.9 6.6 ± 0.3 

Nrf2 (Mw 1.3 kDa, IEP 3.5) 

 125 131.6 ± 21.6 0.13 +31.7 ± 0.2 53.5 ± 19.8 42.6 ± 15.7 2.9 ± 1.1 

 250 114.1 ± 10.8 0.16 +24.6 ± 1.3 28.0 ± 10.4 11.1 ± 4.1 1.5 ± 0.6 

 500 105.8 ± 5.3 0.18 +24.8 ± 0.7 64.3 ± 12.4 12.8 ± 2.5 3.5 ± 0.7 

 

Apparently, a negative charge is not important for binding of the protein/peptide to the 

positively charged CS NPs. It seems that the most important factor influencing the binding is 

rather hydrophobicity or an approximately neutral charge at the desired pH – an observation 

which is entirely logical when considering the hydrophilic aqueous environment.    
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Stability of chitosan nanoparticles upon aerosolization 

To determine their applicability for pulmonary delivery, CS NPs aerosolization properties and 

their stability during nebulization were studied by determining the physicochemical properties 

of the NPs before and after nebulization. CS NPs with a size of approximately 146.8 ± 1.4 nm 

and a PdI of 0.155 showed a ζ-potential of approximately +32.7 ± 3.7 mV before 

nebulization. After nebulization, however, particle size increased to 173.3 ± 1.8 nm and a PdI 

of 0.195 was found, together with a ζ-potential of +30.8 ± 1.8 mV. Furthermore, the 

nebulization process required a very long time frame, which additionally showed that the 

nebulization of CS NPs for pulmonary delivery is not efficient. 

 

4.3.3 PREPARATION OF STARCH NANOPARTICLES 

Starch NPs were prepared via charge-mediated coacervation in aqueous solution at RT. This 

process was adapted from Calvo et al.,113, 152 who prepared CS NPs from the interaction 

between CS and the small TPP. In contrast to the CS system, the starch NP formation 

involved the interaction of two polymeric materials of similar molecular weight. Partial 

charge neutralization due to the reaction of positively charged amine groups of PosSt with 

negatively charged carboxyl groups of NegSt led to the spontaneous formation of starch NPs, 

after mixing the two oppositely charged polymers under stirring. An advantage of the starch 

NP system is the isohydric pH of the nanoparticle suspension of 7.4 as well as the interaction 

of two polymers probably leading to more stable particles. The general advantage of 

coacervation is the mild character of this procedure as organic solvents, high temperatures, 

and sonication are not necessary for the NP preparation. Further, no additional stabilizers 

necessary for example during nanoprecipitation have to be used in this case. Therefore, it is 

very well suited as method to prepare NPs for loading with proteins and peptides.  

The important parameters influencing particle properties, known from the CS NP preparation, 

were also investigated for the starch NP formation. The influence of polymer concentration (1 

mg/mL, 0.5 mg/mL, 0.25 mg/mL), and different molar ratios (1:3, 1:1, 3:1 PosSt:NegSt) were 

studied, by adding NegSt to PosSt with the help of a syringe pump under stirring. Important 

physicochemical properties of the formed NPs in relation to the used material concentration 

and molar ratio are described in Table 4.4. 
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Table 4.4 

Physicochemical characteristics of starch NPs related to material concentration (1, 0.5, 0.25 

mg/mL) and molar ratio of components (1:3, 1:1, 3:1) used for charge-mediated coacervation.  

 

A narrow particle size distribution for the formulations is indicated by the consistently low 

PdI (always below 0.2). Particle size ranged from approximately 140-350 nm, depending on 

both the material concentration and molar ratio of components. The smallest particle size of 

138.9 ± 0.3 nm was obtained for a molar ratio of 1:3, and 0.25 mg/mL material  

concentrations. Keeping the molar ratio constant, but increasing the material concentrations to 

0.5 and 1 mg/mL resulted in increased particle sizes of 160.5 ± 0.6 and 181.6 ± 1.7 nm, 

respectively. As mentioned, varying the molar ratio also influenced particle size. NPs 

prepared from material concentrations of 0.25 mg/mL showed an increase in particle size 

from 138.9 ± 0.3 nm to 152.0 ± 0.2 nm and further to 209.2.8 nm for molar ratios of 1:3, 1:1 

and 3:1, respectively, thus indicating that the particle size increased also with the content of 

PosSt. 

The ζ-potential ranged from -35 to -10 mV in the investigated molar ratios, and in fact only 

depended on the molar ratio of PosSt and NegSt. For a molar ratio of 1:3 the ζ-potential was 

approximately -35 mV. A molar ratio of 1:1 resulted in a ζ-potential of around -25 mV, and 

starch NPs prepared in a molar ratio of 3:1 showed a ζ-potential of around -10 mV. Therefore, 

the greater the PosSt content of the formulation, the closer the ζ-potential was to 0.  

 

Formulation PosSt conc 

[mg/mL] 

NegSt conc 

[mg/mL] 

PosSt:NegSt 

[molar ratio] 

Size 

[d.nm] 

PdI ζ-potential 

[mV] 

Starch 1-1:3 1 1 1:3 181.6 ± 1.7 0.104 -31.1 ± 0.3 

Starch 1-1:1 1 1 1:1 206.9 ± 0.7 0.078 -22.2 ± 0.1 

Starch 1-3:1 1 1 3:1 346.9 ± 6.6 0.211 -10.3 ± 0.1 

Starch 0.5-1:3 0.5 0.5 1:3 160.5 ± 0.6 0.088 -33.4 ± 1.6 

Starch 0.5-1:1 0.5 0.5 1:1 179.0 ± 1.6 0.077 -23.5 ± 0.8 

Starch 0.5-3:1 0.5 0.5 3:1 230.5 ± 4.2 0.084 -9.1 ± 0.1 

Starch 0.25-1:3 0.25 0.25 1:3 138.9 ± 0.3 0.105 -37.0 ± 3.1 

Starch 0.25-1:1 0.25 0.25 1:1 152.0 ± 0.2 0.077 -24.1 ± 0.6 

Starch 0.25-3:1 0.25 0.25 3:1 209.3 ± 2.8 0.035 -8.5 ± 0.3 
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4.3.4 PREPARATION OF LABELED STARCH NANOPARTICLES 

For later characterization and cell interaction studies, starch NPs were prepared as described, 

but with different amounts of labeled PosStF. Results can be found in Table 4.5. It could be 

seen that the lower the PosStF content was present in the formulation, the lower the resulting 

ζ-potential, whereas particle size and PdI were constant. The hydrophobic character of the 

label probably caused the change in the ζ-potential. For later experiments, a 50:50 ratio of 

PosStF:PosSt was chosen to ensure similar physicochemical properties as the particles without 

label whilst at the same time a high fluorescence for analysis.   

 

Table 4.5 
Characteristics of starch NPs prepared with different amounts of labeled PosStF in a ratio of 

1:1 (PosSt(F):NegSt) and a concentration of 0.25 mg/mL; bold: formulation used for uptake 

studies (Chapter 6). 

 

PosSt
F
 

[%] 

PosSt 

[%] 

Size 

[d.nm] 

PdI ζ-potential 

[mV] 

100 0 132.5 ± 1.17 0.088 -26.4 ± 2.80 

50 50 145.2 ± 0.7 0.1 -26.4 ± 2.8 

10 90 147.1 ± 0.75 0.051 -22.7 ± 0.95 

5 95 146.4 ± 0.72 0.064 -18.3 ± 0.12 

 

 

4.3.5 CHARACTERIZATION OF STARCH NANOPARTICLES 

Storage stability  

To investigate the influence of the surface charge of the nanoparticles on storage stability, 

starch NPs prepared from 0.25 mg/mL formulations with a molar ratio of 1:3, 1:1 and 3:1 

were chosen. Starch NP formulations showed different storage stabilities, when stored after 

preparation (Figure 4.6). Whilst Starch 0.25-1:3 and Starch 0.25-1:1 showed good stability 

with respect to size over 14 days, the formulation Starch 0.25-3:1, with a ζ-potential close to 

zero showed aggregation tendencies at both storage temperatures. For this formulation the 

weak surface charge was not able to electrostatically stabilize the NP suspension via repulsive 

forces.158 Starch 0.25-1:1 showed best stability and was therefore chosen for further 

experiments. 
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Figure 4.6: Stability study of various starch NP formulations prepared from 0.25 mg/mL 

solutions, stored either at RT or at 4 °C (F); (A) size; (B) PdI; (C) ζ-potential.  

 

Morphology 

TEM images of starch NPs, prepared from 0.25 mg/mL solutions, incubated on a copper grid 

and stained with 1% PTA are shown in Figure 4.7. Black particles with a spherical, solid and 

consistent shape could be observed for all formulations. Image analysis indicated that sizes 

were comparable to size measurements determined by DLS. However, similar to CS NPs, 

starch NPs tended to aggregate during the drying process on the copper grid, forming a 
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polymer layer probably due to their gel-like, sticky character (data not shown). Therefore, 

starch NPs were stained and stabilized with 1% PTA during the drying process.  

The formulation of Starch 0.25-1:3 (Figure 4.7 (C) only showed few particles whereas a 

considerably greater amount of NPs could be found for formulations Starch 0.25-3:1 and 

Starch 0.25-1:1. The efficient interaction of the highly negatively charged starch NPs (ζ-

potential of -37.0 ± 3.1 mV) with the slightly negatively charged TEM grids during the 

incubation time was probably hindered by repulsion.   

Figure 4.7: TEM images of starch NPs, positively stained with 1% PTA. (A) Starch 0.25-3:1; 

(B) Starch 0.25-1:1; (C) Starch 0.25-1:3. 

 

Biodegradation 

With respect to the use of NPs in the field of nanomedicine, one important point to address is 

the biodegradation of the system. As known, safety of NPs is not only a matter of size, but 

also depends on a variety of other factors such as dose frequency, toxicity of raw material, 

and importantly on their persistence in the body. The longer NPs stay in the human body 

without any biodegradation, the higher might be the risk of adverse effects, e.g. due to 

unintentional activation of the immune system.34  

In general, degradation products of NPs also have to be determined to be safe, otherwise these 

could lead to a non-specific immune response as well. However, by choosing starch and 

starch derivatives as material for the preparation of a DDS, this issue has already been 

considered. Maintenance of degradability should lead eventual breakdown to glucose and 

glucose units (or oligomers) with ethylendiamine side chains, which should be readily 

excreted due to low molecular weight. The latter is further reduced by using a NP system, 

consisting of both positively and negatively charged starch derivatives. To test the 

biodegradability of the starch NP system, not only by unspecific degradation mechanisms, but 

also by specific enzymatic degradation, Starch 0.25-1:1 samples were incubated in a proof of 
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concept study at 37 °C with or without α-amylase, an enzyme found in the human body (e.g. 

in the saliva, the pancreatic juice, the serum159, or the lung160). After certain time points, 

samples were taken and particle concentration was determined by nanoparticle tracking 

analysis. Compared to a control group (starch NPs stored at 37 °C without enzyme), a 

decrease in particle concentration could be observed already after 2 h incubation with α-

amylase at 37 °C (Table 4.6). Yamada et al. found that modified starch-PEI derivatives were 

still able to be degraded by α-amylase, although the degradation was slower compared to the 

degradation of unmodified starch.128 The synthesized starch derivatives in the current work 

showed a smaller change in molecular structure than the starch-PEI derivatives in comparison 

to unmodified starch. Moreover, the incubation of starch NPs with α-amylase showed that 

even after charge-mediated coacervation, the two starch derivatives were able to be degraded 

by the human enzyme α-amylase. The fluctuations in particle numbers for the control group 

can be ascribed to the analytical method. Only a limited amount of particles can be measured 

due to the high dilution necessary for this method. Thus, NTA does not allow for exact 

particle counting but rather gives an order of magnitude. The fluctuations seen within the 

control group are therefore likely the result of the intrinsic measurement error. The trend 

nevertheless is clear. 

 

Table 4.6 
Biodegradation of starch NPs by α-amylase incubated at 37 °C; analyzed as particle 

concentration after 2, 4, 6, or 8 h; determined by nanoparticle tracking analysis; (mean ± SD, 

n=3). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading of starch nanoparticles 

As the starch NPs should act as DDS for the delivery of proteins, their loading capacity was 

evaluated, by loading of four different proteins. The selected proteins - vanco (Mw: 1.5 kDa, 

IEP: 7.5), insulin (Mw: 6 kDa, IEP: 5.3), RNAse A (Mw: 14 kDa, IEP: 9.6), and IgG1 (Mw: 

 Starch NPs 

[x E8 particles/mL] 

Starch NPs + α-amylase 

[x E8 particles/mL] 

before 44.3 ± 2.9 44.5 ± 0.2 

2 h 56.1 ± 8.0 2.7 ± 0.6 

4 h 46.1 ± 1.7 1.7 ± 1.1 

6 h 55.4 ± 10.4 1.7 ± 0.8 

8 h 50.5 ± 3.8 0.9 ± 0.6 
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150 kDa, IEP: 8.5) – represent a range of IEP and molecular weights. Starch NPs from 0.25 

mg/mL solutions and a molar ratio of 1:1 were chosen, showing best stability and a negatively 

surface charge of around -25 mV. Table 4.7 shows the physicochemical properties of loaded 

starch NPs as well as EE and LR, determined indirectly with the BCA assay after separating 

loaded NPs from free protein via ultracentrifugation. Here, the same procedure for validation 

was applied as for the CS NPs: the ultracentrifugation at 45 000 x g and 20 °C for 90 min 

showed no remaining NPs in the supernatant, as determined by nanoparticle tracking analysis. 

Further, tested protein solutions showed stable concentration readings before and after 

ultracentrifugation, indicating that no aggregation or sedimentation of the proteins occurred. 

The supernatant of starch NPs, similar to CS NPs, showed a low absorbance in the BCA that 

was stable and could therefore be subtracted from the calculations.  

EE and LR differed for all four proteins, and the EE was affected by the initial amount of 

protein added: the lower the protein amount, the higher the EE. However, the LR was 

enhanced by increasing the initial amount of added protein. Calvo et al. observed the same 

phenomenon for the encapsulation of BSA into CS NPs.113 A narrow PdI could be observed 

for all formulations, except for the formulation loaded with 500 µg IgG1. An increase in size, 

combined with a decrease in ζ-potential indicated that the loading with IgG1 was successful. 

It seemed that the loading could be increased from approximately 4.5% (125 µg and 250 µg 

IgG1) up to 12.0% for the 500 µg formulation. However, when taking into account the broad 

size distribution of NPs (indicated by a PdI of 0.39), such data must be interpreted cautiously. 

As the EE was obtained via indirect measurement, protein aggregation could have biased the 

results. A saturation for IgG1-loaded starch NPs could be already found for the 125 µg 

formulation, as no difference was observed between the encapsulated mass and the LR of the 

125 µg loaded NPs and the 250 µg loaded NPs. For these formulations, the encapsulated mass 

was found to be 63 and 72 µg, respectively, and the LR was determined as 4.4 and 4.9%, 

respectively. Starch NPs loaded with RNAse A showed no saturation, as the loading could be 

increased from 4.9% for the 250 µg loaded formulation up to 9.6% for the 750 µg 

formulation; however, the EE dropped from 27.9% for the 250 µg loaded NPs to 18.1% for 

the 750 µg loaded NPs. The same could be observed for insulin: an EE of 24.9% was seen 

following loading with 250 µg of insulin, a value which dropped to 15.9% following loading 

with 750 µg insulin. In contrast, an increase in LR be observed from 4.3% to 8.2% for such 

formulations. The most promising loading however was achieved for vanco, which showed a 

LR of up to 22.8% for the 750 µg loaded formulation with at the same time a high EE of 

43.5%.  



59 

 

Table 4.7 

Physicochemical properties, EE and LR of starch nanoparticles loaded with different amounts 

of IgG1, RNAse A, insulin or vancomycin. Results represent mean ± SD, n=3. 

 

 

starch 

NP 

(loaded 

with) 

mass
initial 

protein 

[µg] 

Size 
[d.nm] 

PdI ζ-potential 

[mV] 
mass

encaps 

protein 
[µg] 

EE 
[%] 

LR 
[%] 

blank - 157.7 ± 2.2 0.08 -23.7 ± 0.7 - - - 

IgG1 (Mw 150 kDa, IEP 8.5) 

 125 179.6 ± 6.1 0.10 -18.0 ± 0.2 63.2 ± 14.7 50.6 ± 11.7  4.4 ± 1.0 

 250 237.4 ± 15.6 0.17 -13.1 ± 0.3 71.9 ± 1.9 28.8 ± 0.8 4.9 ± 0.1 

 500 556.5 ± 49.5 0.39 -11.6 ± 0.9 174.3 ± 2.4 35.9 ± 0.5 12.0 ± 0.2 

RNAse A (Mw 14 kDa, IEP 9.6) 

 250 171.5 ± 0.3 0.07 -21.6 ± 0.6 72.0 ± 3.4 27.9 ± 1.3 4.9 ± 0.2 

 500 172.9 ± 1.3 0.05 -17.7 ± 2.4 103.5 ± 3.1 20.1 ± 0.6 7.1 ± 0.2 

 750 195.0 ± 31.5 0.13 -20.7 ± 0.5 139.8 ± 21 18.1 ± 2.7 9.6 ± 1.4 

insulin (Mw 6 kDa, IEP 5.3) 

 250 157.6 ± 0.7 0.09 -22.7 ± 1.2 62.4 ± 3.1 24.9 ± 1.2 4.3 ± 0.2 

 500 162.3 ± 0.4 0.06 -21.0 ± 0.3 73.9 ± 4.7 14.8 ± 0.9 5.1 ± 0.3 

 750 160.3 ± 0.9 0.07 -20.4 ± 0.5 119.2 ± 4.3 15.9 ± 0.6 8.2 ± 0.3 

vanco (Mw 1.5 kDa, IEP 7.5) 

 250 163.9 ± 0.4 0.08 -23.4 ± 0.7 205.2 ± 7.7  81.1 ± 3.0 14.2 ± 0.5 

 500 164.7 ± 0.8 0.05 -21.2 ± 0.3 258.6 ± 0.2 51.1 ± 0.1 17.8 ± 0.1 

 750 164.5 ± 0.6 0.06 -21.2 ± 0.4 330.1 ± 4.1 43.5 ± 0.5 22.8 ± 0.3 

 

The differences in EE and LR can be ascribed to the differences in IEP and molecular weight 

of the various proteins and peptides. Calvo et al., amongst others, described the phenomenon 

of particle protein loading as a function of electrostatic interactions between protein and 

polysaccharide.113 As the loading of the proteins into the starch NPs is a result of the 

electrostatic interactions between negatively charged NPs and protein, the IEP of each protein 

at the pH of the starch NP suspension (pH 7.4) has to be taken into account. Both IgG1 and 

RNAse A are positively charged at pH 7.4, whereas insulin is negatively charged and 

vancomycin is neutral. A high EE and loading for IgG1 and RNAse A would therefore be 

expected. However, IgG1 and RNAse A loaded starch NPs showed rather low LR of 4.9% 

and 9.6%, respectively. This low loading, which was slightly higher in the case of RNAse A, 

could be a result of the fact that the system loaded with IgG1 was already saturated in the case 

of the 250 µg formulation, due to steric hindrance. IgG1 is an antibody with a molecular 

weight of around 150 kDa that needs more space, when binding to the NP surface than e.g. 
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RNAse A with a molecular weight of around 14 kDa. Insulin showed a similar behavior to 

RNAse A: a loading of 8.2% could be achieved for the 750 µg formulation, although insulin 

is negatively charged at pH 7.4. Vancomycin, which is neutral at pH 7.4, showed the highest 

loading of 22.8% probably due to a combined effect of low water solubility at this pH, and the 

small molecular weight of 1.5 kDa.  

In order to evaluate protein integrity during the loading, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed. For such investigations, 

IgG1 was chosen as model protein and SDS-PAGE was run on a precast 10% polyacrylamide 

gel at 10 mA. Results can be found in Figure 4.8. It can be seen that the band of IgG1 loaded 

into starch NPs (lane 1) is at the same level as IgG1, stored at 4 °C (lane 3), indicating that no 

protein aggregation or loss of molecular weight occurred during the loading of the starch NPs 

with IgG1. The smearing in lane 1 can be ascribed to some interaction between blank starch 

NPs and the stain Coomassie Blue, as this was also visible for blank starch NPs (lane 2). 

Further studies showed, that the smearing was due to some unspecific interaction between 

PosSt and the staining.    

 

Figure 4.8: SDS-PAGE of IgG1 loaded starch NPs (lane 1), blank starch NPs (lane 2) and 

IgG1 standard (lane 3); samples were stained with Coomassie Blue.  

 

 

Aerosolization properties of starch nanoparticles 

To determine their applicability for pulmonary delivery, the aerosolization properties and 

stability of starch NPs during nebulization was studied. Physicochemical properties of the 

starch NPs were measured before and after nebulization. Further, the nebulization of labeled 

starch NPs and of starch NPs loaded with IgG1 was studied; results can be found in Table 4.8. 
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Table 4.8 

Physicochemical properties of various starch NP formulations before and after nebulization. 

 

 

Starch NPs showed similar physicochemical properties before and after nebulization, which 

was observed to run smoothly. Labeled starch NPs showed similar size and PdI values before 

and after nebulization, however, ζ-potential decreased from about -26 mV to about -15 mV. 

This could be ascribed to the hydrophobic label of the polymer, which might change the 

hydrophobicity of the NPs and thus the tightness of the surface binding of the ion layers, 

contributing to the ζ-potential. The physiochemical properties of starch NPs loaded with IgG1 

were seen to change upon nebulization, observed as an increase in size from 184 nm up to 212 

nm and an increase in PdI from 0.21 to 0.25. Although the ζ-potential did not change before 

and after nebulization, the stability of IgG1 NPs during nebulization was not deemed to be 

satisfactory, indicating a destabilization of the loaded nanoparticles during nebulization.  

For uptake studies (Chapter 6), the deposited amount of starch NPs on a Transwell® 

membrane was studied by applying different volumes of starch NP suspension with the 

Aeroneb®Lab nebulizer, followed by weighing and calculation of the amount of deposited 

starch NPs. The results can be found in Figure 4.9. It can be seen that increasing the applied 

volume resulted in an increase in the deposited mass. The volume that was chosen for uptake 

studies was 250 µL, meaning a deposited mass of starch NPs of approximately 41.1 ± 0.7 µg. 

 

Starch NPs Size 

[d.nm] 

PdI ζ-potential 

[mV] 

before 147.9 ± 2.4 0.074 -21.8 ± 1.1 

after 152.4 ± 1.6 0.058 -23.5 ± 1.3 

labeled before 145.2 ± 0.7 0.1 -26.4 ± 2.8 

labeled after 145.2 ± 2.2 0.089 -14.9 ± 6.62 

IgG1 loaded before 184.0 ± 2.9 0.21 -18.5 ± 1.3 

IgG1 loaded after 212.3 ± 1.8 0.25 -19.3 ± 2.4 
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Figure: 4.9: Deposited starch NP amount on a Transwell® membrane, after nebulization of 

different volumes of starch NP suspension with the Aeroneb®Lab nebulizer. 

 

 

4.4 COMPARISON OF CHITOSAN AND STARCH NANOPARTICLES 

Regarding the preparation process, both nanoparticle types were able to be prepared in 

aqueous medium. Compared to CS NPs, starch NPs were prepared from two polymers instead 

of a polymer interacting with a highly charged small compound. The parameters influencing 

physicochemical properties of NPs were similar for both NP types. The material concentration 

was the most important factor with respect to influence on particle size, whereas the molar 

ratio of components was important for the surface charge. Both particle types showed particle 

sizes of around 150 nm, but differed in their ζ-potential. CS NPs showed a positive surface 

charge, whereas starch NPs showed a negative surface charge. Due to the fact that the systems 

are based on electrostatic interactions, the preparation medium was, not surprisingly, found to 

influence particle properties. As the labeling of CS was not successful, labeled CS NPs could 

not be prepared. The preparation of labeled starch NPs, however, was successful, with particle 

properties being similar to the unlabeled starch NPs. 

Regarding their morphology, both particle types showed a spherical appearance with a gel-

like character. It has to be mentioned that the addition of PTA facilitated a negative staining 

of the CS NPs, whereas the starch NPs were positively stained with PTA (being taken up into 

the particles). 
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The chosen starch NP formulation (Starch 0.25-1:1) showed better storage stability, although 

CS NPs storage stability was only evaluated for a short period of time and therefore is hard to 

compare. Also, both NP types were able to be degraded by their specific enzyme.  

The loading behavior was also similar for both types of NPs. Molecules with an IEP close to 

the pH of the NP suspension showed the best LR. 

Aerosolization properties differed a lot between the two particle types. Whilst CS NPs were 

not stable during nebulization, starch NPs and also labeled starch NPs were stable during 

nebulization. Loaded starch NPs, however, showed destabilization tendencies. 

 

4.5 CONCLUSION 

CS NPs were used as a well-known and well-described model DDS to evaluate a mild 

preparation process to be further employed for the production of starch NPs, and to develop 

analytical methods suitable for characterization of the newly developed starch NPs. For the 

preparation process, key parameters were found to be the polymer concentration, influencing 

the size of the NPs, as well as molar ratio of employed components, which influence the 

surface charge of the NPs. Due to their gel-like structure, CS NPs were not stable during 

drying, which was a challenge for imaging the CS NPs. One possible solution for studying the 

morphology of CS NPs was found in TEM imaging after 1% PTA staining of the CS NPs. 

Storage stability of CS NPs in the fridge was evaluated for 6 days. Particles were stable 

during that time. The biodegradation of CS NPs with the help of an enzyme (chitosanase) was 

successfully demonstrated.  

The derivatization of potato starch into water soluble, positively (PosSt) and negatively 

charged (NegSt) starches enabled the formation of starch NPs in aqueous medium via charge-

mediated coacervation. As determined by TEM images after 1% staining with PTA, starch 

NPs showed a spherical shape. Physicochemical properties of NPs (namely size and surface 

charge) could be tuned by varying the molar ratio and concentration of the two components. 

Starch NPs were demonstrated to be biodegradable by α-amylase. Further, starch NPs were 

loaded with proteins and peptides of different net charges and molecular weights. Vanco was 

found to be the best suitable candidate, with a LR of 23% and an EE of 44%, probably 

favored by the combination of the low molecular weight and the hydrophobicity of the 

peptide at the pH of the NP suspension. It can therefore be concluded that starch NPs, 

prepared by the utilized mild and easy technique, have the potential to be further explored as 

platform for pulmonary delivery of proteins and peptides. 
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5.  AEROSOL DELIVERY OF NANOPARTICLES TO THE DEEP 

LUNG – NANOPARTICLES EMBEDDED IN MICROPARTICLES 
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5.1 INTRODUCTION 

The pulmonary application of proteins and peptides is a promising non-invasive route of 

administration. Systemic delivery via the lungs is an interesting approach as a large absorptive 

surface area, a high vascularization and a thin air-blood-barrier support the uptake of APIs 

from this site. Additionally, the avoidance of the first-pass effect, known to be present in the 

case of oral delivery, shows further advantages for pulmonary administration.89 Local delivery 

to the lungs may also present a number of benefits, and as such, COMPACT has chosen local 

lung delivery as one of their preferred routes of administration. This is of importance for 

diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung cancer, cystic 

fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and pulmonary infections. The direct 

application to the site of action is favored, due to reduced systemic side effects and a rapid 

onset of action. The actual target of course depends on the disease, and was chosen in the 

context of COMPACT to be the alveolar epithelium. This site is heavily affected in IPF, in 

which repeated cycles of epithelial cell injury may lead to an activation of alveolar epithelial 

cells, resulting in an abnormal wound repair with exaggerated accumulation of fibroblasts and 

extracellular matrix.161-164 A first model drug, that could actually function as API in the 

context of IPF is the intracellularly-active peptide Nrf-2.153 Achieving uptake of such a 

peptide into non-phagocytic, epithelial cells is however considerably more challenging 

compared to e.g. macrophages, which are known to engulf nearly everything (in accordance 

with their physiological function). The previously developed nanoparticle formulation 

(Chapter 4) shows a good size range suitable for the uptake into epithelial cells of the deep 

lung, which requires nanoparticle carriers below 200 nm in size.165, 166  

Amongst other factors, the deposition of particles in the lung is influenced by the physical and 

chemical properties of the particles, which can be easily addressed, by controlling the 

preparation parameters of the particles. It is known, that particle deposition occurs due to 

three major mechanisms: impaction, sedimentation and diffusion.83 Very large particles (> 8 

µm daero) deposit already in the mouth and throat. Medium sized particles (daero ~ 4 - 10 µm) 

tend to deposit in the bronchioles, whilst smaller particles (20-50 nm < daero < 2-5 µm) deposit 

in the alveolar region.101, 167-169 As can be seen, the size of developed nanoparticles (~150 nm) 

is not ideally suited for respiration170  and delivery to the deep lung.  

Thus, the previously developed formulation needs further optimization in order to allow for 

efficient deposition in the deep lung. Besides applying APIs by nebulizers, and metered dose 

inhalers (MDI), dry powder inhalers (DPI) are favored. These systems show numerous 
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advantages, being propellant-free, portable and easy to operate, and showing an improved 

stability of the formulation as a result of existence in a dry state.171-173  

Spray drying is a mild, commonly used method for preparation of dry powders.168, 174 It has 

been applied to a variety of substances, such as antibiotics,175 vaccines,176 and peptides.177 The 

Nano Spray Dryer (Büchi B-90) is furthermore a good choice, as it is known to facilitate the 

preparation of particles in a size range of a few µm, interesting for deep lung delivery. 

Different particle types can be produced by spray drying. Hollow Trojan microparticles, as 

prepared by Tsapis et al., consist of a NP layer building the microparticle.103 Various porous 

particle types were introduced by Yang et al.178 and Ungaro et al.179 Also matrix particles are 

known, where the nanoparticles are embedded in a microparticle matrix.180, 181  

An advanced carrier system was designed for deep lung deposition of nanoparticles developed 

as nano- in microparticle dry powder formulation. This system was proposed to a) escape 

macrophage clearance and b) mediate alveolar epithelial cell uptake of the NPs. Selection of 

excipients used for microparticle formation was made based on their possession of high water 

solubility. Consequently, in this chapter, the advanced carrier system for pulmonary 

application was prepared from CS and Starch NPs, spray dried with different excipients, i.e. 

lact, treha, and manni. Various characterization methods were used to assess the properties of 

the microparticles: the most important investigation being the redispersion behavior of NPs 

after disintegration of the microparticles, followed by assessment of morphology, powder 

crystallinity, and localization of NPs in the microparticles, as well as particle size, and 

aerodynamic properties.  

 

5.2 MATERIALS AND METHODS 

5.2.1 MATERIALS 

Partially hydrolyzed potato starch (Mw 1 300 000 g/mol, approx. 33% amylose content) was a 

gift from AVEBE (Netherlands). Negatively (NegSt) and positively (PosSt) charged starches 

were synthesized in house. Chitosan UP CL 113 (CS) was bought from NovaMatrix 

(Norway). Sodium tripolyphosphate (TPP) was purchased from Merck (Germany). IgG1 was 

kindly donated by Boehringer Ingelheim (Germany). Mannitol (manni), trehalose dihydrate 

(treha) and α-lactose monohydrate (lact) were bought from Sigma Aldrich (USA). G-Blocks 

(guluronic acid oligomers, consisting of more than 90% guluronic acid residues and some 

mannuronic acid residues, dp10 and d22) were a kind gift from the Department of 

Biotechnology, Norwegian University of Science and Technology (NTNU). Alexa Fluor 647 

carboxylic acid (succinimidyl ester) and Bodipy FL-C5 NHS Ester (succinimidyl ester) were 
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obtained from Life Technologies (USA). Purified water was produced by a milliQ water 

purification system (Merck Millipore, USA). All other reagents were of analytical grade.  

 

5.2.2 PREPARATION OF MICROPARTICLES 

Scale-up of nanoparticle preparation 

For upscaling of CS NPs, the preparation was performed as described earlier (Chapter 4), but 

with an increased volume: NP formation therefore occurred spontaneously after adding 10 mL 

of TPP solution to 50 mL of CS solution under stirring at 300 rpm (molar ratio 10:1, 

CS:TPP). The final pH value was 5.5.  

Upscaling of starch NPs was also facilitated by an increase of volume: 20 mL of NegSt were 

added to 20 mL of PosSt under stirring at 700 rpm (molar ratio 1:1). The final pH value was 

7.4. For loaded starch NP samples, 150 µL of IgG1 solution (5 mg/mL) was added to 40 mL 

of starch NP suspension. Stirring speed and injection rate were adjusted for both CS and 

starch NP formulations to obtain NPs of similar physicochemical properties compared to NP 

prepared in Chapter 4. 

 

Microparticle preparation  

Either blank NP suspension or NP suspension with excipient was spray dried with a nano 

spray dryer (Büchi B-90, Büchi, Switzerland). Lact, treha or manni was added to the NP 

suspension prior to spray drying, in mass ratios of NP:excipient 1:5, 1:10 and 1:20. 

Additionally, the influence of microparticle matrix forming G-Blocks (dp10, dp22) on the 

physicochemical properties of NP suspensions was tested. Different spray caps (4 µm, 5.5 µm 

and 7 µm) and inlet temperatures (90 °C, 70 °C, and 50 °C) were investigated for spray 

drying. The spray dryer was equilibrated with water prior to every spray drying run. The spray 

drying process for further particle analysis was performed at 70 °C inlet temperature, an outlet 

temperature of maximum 40 °C and a gas flow of 130 L/min, using the 5.5 µm spray cap. The 

spray rate was always 100% and samples - typical batch size was 40 or 50 mL feed volume - 

were kept on ice during the spray drying process. For NGI experiments, 10 µL sodium 

fluorescein solution (FluNa, 5 mg/mL) was added to each sample and spray drying was 

performed under light protection. Samples were stored in a desiccator until usage.  

 

5.2.3 NANOPARTICLE RELEASE FROM MICROPARTICLES 

Release of NPs from the microparticle matrix was tested in a proof of concept study by 

dissolving approximately 1 mg of microparticles in 1 mL of purified water. After 10 s 
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vortexing, the particle size and PdI of released NPs was determined by DLS using the 

Zetasizer Nano ZSP (Malvern Instruments, UK) with a scattering angle of 173 °. 

 

5.2.4 MORPHOLOGY  

Morphology of microparticles was examined by SEM (JSM 7001F Field Emission SEM 

(Jeol, Japan)). Samples were immobilized on a carbon disc and sputtered with gold (layer 

thickness approx. 10 nm) prior to scanning. The accelerating voltage was 5 kV. In case of the 

Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) deposition study, 

samples were directly deposited on SEM carbon discs and analyzed as mentioned above. 

 

5.2.5 PARTICLE SIZE DISTRIBUTION  

Particle size distribution was determined by image analysis of SEM images, using the Fiji 

Software (Fiji is a distribution of ImageJ available at http://fiji.sc). Particle sizes were 

measured, grouped into different intervals and plotted as number of particles [%]. More than 

100 particles were analyzed per image. Additionally, particle size distribution was analyzed 

by static laser light diffraction using the HORIBA LA-950 (HORIBA, Japan) powder feeder 

attachment. Vibration and air suction allowed the powder to pass through a laser light beam 

and to be analyzed directly as dry powder without the need of applying a non-solvent.  

 

5.2.6 POWDER CRYSTALLINITY 

For X-ray powder diffraction (XRPD) experiments, samples were analyzed by a 

diffractometer of the type Bruker D8 Advance, equipped with an 1D-detector 'Lynxeye' using 

variable divergence slit and Cu-Kα radiation. X-ray diffraction is based on radiation scattering 

and interference. Diffraction occurs when light is scattered by a periodic array with long-

range order, producing constructive interference at specific angles. The scattering of X-rays 

from atoms produces a diffraction pattern, which contains information about the atomic 

arrangement within the crystal. The conditions for constructive interference are described by 

Braggs Law, where n is the order of the diffracted beam, λ is the wavelength of the x-ray 

radiation, d is the distance between the parallel lattice planes from which the waves are 

scattered and θ is the angle between the x-rays and the lattice plane:182 

 

𝑛 ∗ 𝜆 = 2 ∗ 𝑑 ∗ 𝑠𝑖𝑛𝜃 

According to Bragg’s law, constructive interference for a set of atomic planes with d-spacing 

only occurs when the incident angle is θ. When the scattered waves interfere constructively, 
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they remain in phase, as the path length of each wave is equal to an integer multiple of the 

wavelength. Such an occurrence yields a peak in the diffractogram.  

The position and intensity of peaks in a diffraction pattern are determined by the crystal 

structure. The absence of peaks in the diffractogram or the presence of so-called halos 

indicates a completely amorphous material, which does not have a periodic array with long-

range order, and so does not produce a diffraction pattern.182 

 

5.2.7 LOCALIZATION OF NANOPARTICLES IN MICROPARTICLES 

The internal composition of the carrier system was observed by a confocal laser scanning 

microscope (Zeiss LSM710, Zeiss, Germany). Lasers at 405 nm (4′,6-Diamidino-2-

phenylindole, DAPI), 488 nm (starch NPs) and 633 nm (IgG1) were used for detection. 

Labeled starch NPs were spray dried with treha (mass ratio 1:20) and DAPI (12.5 ng/mL). For 

loaded particles, 150 µL labeled IgG1 (5 mg/mL) was added to the labeled starch NP 

suspension beforehand. Aliquots of the spray dried powders were fixed on a glass slide. 

Confocal images were analyzed using the Zen 2012 software (Carl Zeiss Microscopy GmbH).  

IgG1 was labeled with Alexa Fluor 647 carboxylic acid (succinimidyl ester) according to the 

manufacturers’ protocol (life technologies, USA). Purification was performed with PD-10 

Desalting Columns (GE Healthcare, UK). 

 

5.2.8 AERODYNAMIC PROPERTIES 

The mass median aerodynamic diameter (MMAD), the geometric standard deviation (GSD), 

and the fine particle fraction (FPF) of microparticles prepared by spray drying of NPs with 

excipient in a mass ratio 1:20 and 10 µL FluNa (5 mg/mL) for analysis were determined with 

the Next Generation Impactor (NGI). For NGI experiments, the flow rate was adjusted to 60 

L/min and the time of aspiration was set to 4 s. The powder inhaler (Handihaler®, Boehringer 

Ingelheim, Germany) was loaded with a hard gelatin no.3 capsule, filled with 10 mg of 

powder (n = 3). After inhaler actuation, particle deposition on the NGI was determined by 

correlating fluorescence intensity to deposited mass. Therefore, a standard curve was prepared 

from each sample and fluorescence intensity was measured at λex= 485 nm and λem = 530 nm. 

The fluorescent dye FluNa was equally distributed throughout the formulation. FPF is defined 

as the part of the inhaled dose with an aerodynamic diameter < 5 µm in %. Further important 

parameters are the MMAD and the GSD. The MMAD is correlated to the detected mass 

within the NGI and is the mass median aerodynamic diameter, meaning that 50% of the 
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particles are smaller than this value and 50% are larger. The GSD gives an idea of the particle 

distribution. 

 

5.2.9 PADDOCC DEPOSITION 

The deposition of microparticles was studied with the help of the PADDOCC (Pharmaceutical 

Aerosol Deposition Device on Cell Cultures), which is a deposition device for dry powder, 

developed in-house.183, 184 Particles were analyzed qualitatively and quantitatively for 

following cell interaction studies (Chapter 6). Deposition behavior and morphology was 

analyzed after direct deposition on carbon disc wafers, by SEM. Particle deposition was 

determined quantitatively by correlating fluorescence intensity to deposited mass. For 

quantification, microparticles, co-spray dried with FluNa were used; a standard curve was 

prepared from each sample and fluorescence intensity was measured at λex= 485 nm and λem = 

530 nm. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 PREPARATION OF MICROPARTICLES 

Scale-up of nanoparticle preparation  

For preparing the microparticles from the NP suspension via spray drying, the preparation 

method of NPs was up-scaled. As an increase in concentration of the solutions led to an 

increased size of the NPs (Chapter 4), the process was up-scaled by increasing the volume but 

keeping the concentration constant at 0.25 mg/mL. Different beaker types and injection rates 

were tested and the impact on physicochemical properties of NPs is shown in Table 5.1.   

Both NP types showed a size around 150 nm, with a narrow particle size distribution. They 

differed, however, in their ζ-potential, with CS NPs showing a positive ζ-potential of 

approximately +35 mV and starch NPs showing a negative ζ-potential of approximately -20 

mV. 

It could be concluded that the NP preparation process was suitable for up-scaling by 

increasing the volume. However, a good solvent mixture has to be assured, by selection of a 

suitable beaker type, magnetic stirrer and injection rate, depending on the kind of syringe to 

be employed in the preparation process. Following investigation and control of these process 

parameters, the physicochemical properties of NPs stayed constant as compared to the 

original preparation process. 
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Table 5.1  
Characteristics of NPs in process upscaling studies prepared from 0.25 mg/mL solutions and a 

molar ratio of 1:1 (PosSt:NegSt) and 10:1 (CS:TPP) with varying process parameters; bold: 

formulations used for microparticle preparation. Beaker type 1123: 150 mL; beaker type 

1122: 100 mL; beaker type 1169: 50 mL; all from VWR, USA). 

 

Beaker type Syringe volume 

[mL] 

Injection rate 

[mL/min] 

Size 

[d.nm] 

PdI ζ-potential 

[mV] 

CS NPs      

1122 10 30 175.9 ± 1.5 0.159 +35.1 ± 0.9 

1122 20 60 199.0 ± 1.5 0.163 +35.2 ± 0.5 

1123 10 20 136.1 ± 0.4 0.151 +35.5 ± 2.8 

Starch NPs      

1169 20 20 180.8 ± 1.5 0.055 -19.5 ± 1.3 

1169 20 40 157.9 ± 1.6 0.071 -17.9 ± 2.3 

1169 20 60 145.1 ± 0.7 0.066 -18.1 ± 3.5 

 

Microparticle preparation 

Microparticles were prepared from aqueous CS NP or starch NP suspensions (Table 5.1, 

bold) spray dried with a nano spray dryer with or without different excipients. An influence 

of the spray cap on the size of microparticles was disproved and the 5.5 µm spray cap was 

chosen for all following experiments. To ensure a dry product while at the same time ensuring 

mild preparation conditions feasible for protein encapsulation, an inlet temperature of 70 °C 

was selected. Although this temperature seems to be quite high, the most important 

temperature influencing product stability is in fact the outlet temperature, which was always 

below 40 °C in this case. To further ensure a mild preparation process, samples were kept on 

ice during spray drying. To determine NP stability during the pumping process, 

physicochemical properties of NPs were determined before spray drying and almost at the end 

of the spray drying process by taking samples from the remaining NP suspension. Size and ζ-

potential of NPs remained the same prior to and at the end of spray drying, meaning that the 

pumping process as well as temperature differences did not influence particle properties over 

the duration of the spray drying process, which usually took approximately 2 – 2.5 h for the 

applied volumes.  

NP suspensions were spray dried with excipient; therefore, the influence of the excipient on 

physicochemical properties of NPs was investigated. Here, a focus was placed on excipients 
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that were highly water soluble, in order to easily release the NPs after deposition in the deep 

lung. Further, excipients with GRAS status were favored, resulting in a choice of excipients 

being lact, treha, and manni. Solid excipient was either added after NP preparation and stirred 

for 10 min for equilibration, or NPs were directly prepared in excipient solution. For the 

latter, each material for NP preparation (i.e. CS, TPP, NegSt, PosSt) was dissolved in an 

excipient solution instead of purified water. As no differences between the two preparation 

methods was observed, it was decided to add the solid excipient after NP preparation. The 

influence of excipients on physicochemical properties of NPs can be found in Table 5.2. As 

can be seen, the addition of excipients, i.e. manni, lact, and treha did not change the 

physicochemical properties of NPs. Particles were in general around 150 nm with a PdI of 

around 0.16 for CS NPs and 0.07 for starch NPs. The ζ-potential was approximately +35 mV 

and -25 mV for CS NPs and starch NPs, respectively. 

 

Table 5.2 

Influence of excipient on physicochemical properties of NPs, after applying to the NP 

suspension as dry powder; measured after stirring for 10 min for equilibration. Dp10 and dp22 

are G-Blocks, with the number indicating their oligomer length. Manni: mannitol, lact: 

lactose, treha: trehalose. 

 

 Size  

[d.nm] 

PdI ζ-potential  

[mV] 

CS NPs + manni 1:20 149.4 ± 1.9 0.171 +37.1 ± 1.4 

CS NPs + lact 1:20 150.3 ± 1.5 0.175 +36.6 ± 0.9 

CS NPs + treha 1:20 135.9 ± 1.5 0.152 +36.4 ± 1.2 

Starch + manni 1:20 153.3 ± 0.4 0.085 -23.0 ± 0.2 

Starch + lact 1:20 152.7 ± 1.9 0.065 -23.4 ± 0.3 

Starch + treha 1:20 154.1 ± 1.5 0.083 -23.6 ± 0.8 

CS + dp22 1:0.4 588.5  ± 120.7 0.733 +11.0 ± 0.2 

CS + dp10 1:0.4 6471 ± 545 0.630 +1.7 ± 0.1 

CS + dp10 1:1 2710 ± 1224 0.897 -14.6 ± 0.2 

CS + dp10 1:1.8 337.6 ± 3.5 0.369 -21.6 ± 0.3 

CS + dp10 1:3.6 6584 ± 2282 0.675 +0.5 ± 0.1 

Starch + dp10 1:0.4 150.0 ± 1.4 0.077 -32.2 ± 1.7 

Starch + dp10 1:3.6 128.9 ± 0.7 0.097 -34.7 ± 2.2 

Starch + dp22 1:3.6 127.7 ± 0.4 0.106 -36.4 ± 2.4 
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Additionally, the approach of using smart excipients was followed by testing G-Blocks 

(guluronic acid oligomers, dp10 and dp22) for building the microparticle matrix. This 

material was evaluated for mucosal delivery of NPs and it could be shown that applying the 

G-Blocks together with NPs improved particle mobility in mucus due to a reduced mucus 

barrier function.97, 185 The idea of additionally selecting G-Blocks as part of the microparticle 

preparation was that this could potentially improve bronchiolar uptake of particles that impact 

in the upper lung, where mucus is present as a non-cellular barrier. CS NPs showed signs of 

aggregating upon G-Block addition, with large particles between a few hundred nanometers 

up to the µm range being formed. From the ζ-potential values, which are often around 0±10 

mV, it can be concluded that (partial) charge neutralization let to aggregation of the particles. 

An interaction between the positively charged surface of CS NPs and the negatively charged 

G-Blocks acids can be assumed. In contrast, starch NPs with added G-Blocks showed 

particles around or smaller than 150 nm with a PdI below 0.1 and a ζ-potential around -35 

mV. Here, the NP suspension was not negatively influenced by aggregation, probably due to 

the fact, that both starch NPs and G-Blocks acids were negatively charged. Nevertheless, 

there was an influence of G-Blocks, as can be seen by the increase in ζ-potential magnitude 

from approximately -25 to -35 mV, indicating that G-Blocks might have been associated with 

the particle surface. As a conclusion, non-charged excipients for spray drying were favored, 

as they did not influence physicochemical properties of NPs.  

A first result regarding powder properties after spray drying was powder flowability, which 

differed for the various formulations. Although manni samples were more difficult to collect 

from the collecting electrode of the spray dryer, the powder flow appeared to be more regular 

compared to lact or treha samples – in these cases material was easy to remove from the 

electrode, however particles showed signs of aggregation during the collection process. Here, 

adhesion interaction between the particles was more pronounced than for manni samples. This 

is in accordance with literature data, in which manni has been reported to show good powder 

flowability.186 

 

5.3.2 RELEASE OF NANOPARTICLES FROM MICROPARTICLES 

The successful release of NPs from the microparticle matrix was one of the main 

requirements for the formulation. In vivo, this is an important point to be addressed, so it was 

the first parameter to be explored. The uptake of particles into cells is amongst other factors 

size dependent. For example, Desai et al. have shown that the uptake of NPs into Caco-2 cells 

is significantly greater compared to their microparticle counterparts.141, 187 In general, it is 
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known that NPs in a size range between 100 - 200 nm are taken up by cells via endocytosis. 

Thus, NPs released from the microparticle matrix should have a size around or below 200 nm, 

and a narrow size distribution. 

In a proof of concept study, approximately 1 mg each of the microparticle formulations was 

dissolved in 1 mL aqueous solution and vortexed for 10 s (to speed up the dissolution 

process). Released NPs were measured for their size and size distribution. Results for 

different formulations can be found in Figure 5.1, where CS NP formulations are shown in 

(A) and starch NP formulations are shown in (B). It could be seen that blank NPs, spray dried 

without excipient, were not able to be redispersed. This was the case for CS NPs, which 

showed aggregates in the µm size range and a PdI close to 1. Compared to that, starch NPs 

showed an improved behavior, nevertheless, the size distribution was not satisfactory. During 

the drying process, the gel-like NPs probably came into contact with each other, forming 

larger particles.  

 

 

Figure 5.1: Dissolution behavior of microparticles, and comparison of physicochemical 

properties of NPs before spray drying and after being released from the microparticles. (A) 

CS NPs spray dried with different amounts of excipient. (B) Starch NPs spray dried with 

different amounts of excipient. 
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Adding different excipients in a mass ratio 1:5 (NP:excipient) could not improve the 

redispersion behavior of both NP types. However, a mass ratio of 1:20 led to a good 

redispersion of NPs with physicochemical properties being similar to the NP suspension 

before spray drying. The excipient served as drying protectant, probably due to steric 

hindrance, so that the NPs were not able to merge into larger particles. One exception is 

manni, which could still not improve the dissolution behavior of CS NPs in a mass ratio of 

1:20. Loaded starch NPs with 150 µL IgG1 solution (5 mg/mL) also showed a good 

redispersion when spray dried with treha in a mass ratio NP:excipient of 1:20. The size of 

these loaded NPs after redispersion was 243.0 ± 9.2 nm with a PdI of 0.2.  

As a result, a mass ratio of 1:20 NP:excipient was chosen for further experiments. The 

material of choice was determined to be manni or treha, showing good protection of the NP 

suspension during spray drying. 

 

5.3.3 MORPHOLOGY  

The morphology of all spray dried samples was examined using SEM. Representative images 

of spray dried NPs without excipient and with excipient in a mass ratio of 1:20 (NP: 

excipient) are shown in Figure 5.2. It could be seen that both types of NPs, when spray dried 

without excipient, were very small and had an undefined shape. In contrast, NPs spray dried 

with excipient were larger and of defined shape. Depending on the kind of NP, the 

morphology differed: microparticles prepared from CS NPs spray dried with different 

excipients had a spherical and smooth surface, whereas starch NPs spray dried with excipient 

additionally had wrinkled shapes.  

Iskandar et al. have shown that morphology of spray dried particles depends on parameters 

such as droplet size of the material to be spray dried, viscosity of the droplet, size of the sol in 

the droplet, drying temperature, gas flow rate and addition of surfactant. From a theoretical 

perspective they concluded that the structural stability of the droplet and the hydrodynamic 

effects during the drying process might play important roles in controlling the morphology of 

the resulting particles.188 As spray drying parameters, such as droplet size (determined by the 

spray cap), gas flow rate and drying temperature was kept constant, the differences in 

morphology are likely chiefly influenced by formulation parameters in this case. 
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Figure 5.2: SEM images of spray dried NPs without (A) or with 1:20 excipient: manni (B) 

lact (C) treha (D); column on the left: CS NPs (1); column on the right: starch NPs (2); scale 

bar: 1 µm. 
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Spray drying of blank NPs led to a collapse of the droplet during the drying process, resulting 

in particles of undefined shape. Adding an excipient, however, increased the mass fraction in 

the droplet, stabilizing the droplet due to its internal stiffness, meaning that prepared particles 

showed a more defined shape and were almost spherical. A review from Vehring presented a 

classification based on dimensionless numbers (e.g. Peclet number) that can be used to 

estimate how excipient properties in combination with process parameters influence the 

morphology of engineered particles.189 The differences in shape of microparticles have to do 

with the NP type, as process parameters and excipients were kept constant. It could be 

assumed that starch NPs have a different Peclet number compared to CS NPs, resulting in a 

different diffusion behavior in the droplet, leading to a different particle shape.  

 

5.3.4 PARTICLE SIZE AND PARTICLE SIZE DISTRIBUTION 

Particle sizes were measured with the Fiji Software, grouped into different intervals and 

plotted as number of particles [%] (Figure 5.3). More than 100 particles were analyzed per 

image. Therefore, images were divided into sections and only particles completely visible 

were chosen for measurement. It can be seen that CS NPs, spray dried without excipient are 

mostly in the nanometer size range (87%), and mostly around 400 – 800 nm, with 13% of 

particles being between 1-2 µm. This is in accordance with the redispersion behavior 

observed after spray drying: during the drying process, the gel-like NPs come into contact 

with each other, forming larger particles. This differed for the starch NPs. Here, only 59% of 

NPs were found to be below 1 µm, 33% were between 1-2 µm in size, and 8% were between 

2-4 µm. As the redispersion of starch NPs spray dried without excipient was easier to achieve 

than the CS NPs, it could be assumed that the starch NPs do not show this gel-like character 

to such an extent as the CS NPs do.  

For the samples spray dried with excipient, this looked different. The particle fraction below 1 

µm was decreased, whereas the fractions of a few µm in size increased. Adding more mass 

for the spray drying process with at the same time a constant volume, led to increased particle 

size and improved the redispersion behavior. It could be assumed that the excipient is building 

a matrix into which the NPs are embedded.   
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Figure 5.3: Particle size distribution of optimized microparticles spray dried with various 

excipients, compared to NPs, spray dried without excipient. 

 

Additionally, particle size was measured with the HORIBA LA-950 using static laser light 

diffraction and the dry powder feeder apparatus. As can be seen in Figure 5.4 (A), the sample 

is applied as dry powder and dispersed either via pressurized air or sucked up via low 

pressure. With the help of a laser light beam, particle size is determined while the powder is in 

the air stream passing the measurement window. Applying pressurized air is a rather harsh 

and fast method, and as such a certain amount of sample mass is necessary to be able to detect 

particles in the air stream. Using low pressure instead is a mild method, where particles are 

passing through the measurement window with less speed, thus less amount of sample is 

needed. However, the ability to de-agglomerate particles is less effective in this case. 

The dry feeder apparatus is a useful tool to analyze the particle size of a powder, as there is no 

need to apply a non-solvent, which could influence the physicochemical properties of the 

microparticles. In general, a mass of a few grams is needed to give a good signal when the 

sample is dispersed via pressurized air. The yield of the spray drying process, however, was 

usually between 150 - 200 mg. Deciding for a manual measurement and applying a low 

pressure instead of pressurized air made possible a detection of the particles within the air 

stream. Nevertheless, the mild dispersion method was not able to de-agglomerate particles of 

all samples, as can be seen in Figure 5.4 (B), where the cumulative volume of particles [%] is 

shown. The two manni formulations showed a good particle size distribution between 2 and 

10 µm, with the CS NPs spray dried with manni 1:20 being slightly smaller than the starch 

NPs spray dried with manni 1:20. The other formulations showed large aggregates up to the 

mm size range. This behavior is in accordance with the differences in powder flowability 
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observed during sample collection after the spray drying process. As known from the SEM 

images, particle size was below 10 µm, indicating that the mild low pressure during 

measurement was not able to de-agglomerate the particles. This further approved manni as 

excipient, showing good powder flowability. 

 

Figure 5.4: Particle size distribution of microparticles (mass ratio 1:20), determined with the 

HORIBA LA-950. 
 

 

5.3.5 POWDER CRYSTALLINITY 

To fully characterize a powder formulation, its solid state form should be analyzed. This was 

done by XRPD. Microparticles were prepared in a mass ratio 1:20 (NP:excipient) and results 

can be found in Figure 5.5. For lact and treha samples, there was only a halo visible, 

indicating that the samples were amorphous. Manni samples instead showed distinct patterns, 

typical for crystalline material, and indicating the existence of long-range molecular order. 

Analyzing the spectrum resulted in approximately 17% α-form, 25% β-form, and 59% δ-form 

for Starch_manni and 13% α-form, 84% β-form, and 3% δ-form for CS_manni. Bulk material 

of manni before spray drying showed 100% β-form. Hulse et al. found structural variations of 

spray dried manni depending on the supplier. There were basically two different polymorphic 

forms, being either α-form or β-form or a mixture of both.190 Comparing the samples of 

CS_manni and Starch_manni showed that the NP type had an effect on the recrystallization 

behavior of manni. In Starch_manni, the original β-form transformed mainly into the δ-form 

and also into the α-form, although to a lower extent, so that only 25% of the β-form was left. 

In CS_manni, the β-form was better preserved, so that only a low amount transferred into the 

α-form and even less into the δ-form. As Hulse et al. did not find the δ-form, this polymorph 

could be a result of the included NPs, which is also underlined by the different amount of δ-

form being present for the two different formulations. A similar influencing effect was seen 
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by Hulse et al., who co-spray dried proteins (trypsin and lysozyme) with manni and analyzed 

the influence of protein on manni polymorphism.191   

 

Figure 5.5: XRPD diffractograms of microparticles. 

 

5.3.6 LOCALIZATION OF NANOPARTICLES IN MICROPARTICLES 

From SEM images, it was not possible to visualize the localization of NPs within the 

microparticles. Confocal microscopy however is able to distinguish between different 

fluorescent labels, each representing an independent structure. Therefore, labeled starch NPs 

were spray dried as usual after adding treha (mass ratio 1:20, NP:excipient) and the 

fluorescent dye DAPI (12.5 ng/mL). Particles were analyzed by confocal microscopy, with 

Figure 5.6 representing a cross-section of microparticle. It can be seen that the NPs are 

distributed throughout the whole microparticle, rather than building a ring at the surface. 

Sham et al.180 obtained similar results for dry powder comprised of polycyanoacrylate NPs 

and lact. In this study, NPs were also embedded in a microparticle matrix, however, the NPs 

appeared in clusters, rather than being distributed equally throughout the microparticle. 

Another study into embedding NPs in microspheres was performed by Grenha et al. They 

showed that CS NPs were equally distributed throughout the whole microparticle matrix. 

However, they have seen that manni also completely coated the microparticle, giving a wall-

like structure.181    
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Figure 5.6: Confocal images of labeled starch NPs (green), co-spray dried with treha (mass 

ratio 1:20) and DAPI (blue). (A) DAPI, representing the microparticle matrix, (B) Bodipy 

(green label), representing the NPs; (C) fluorescence overlay; (D) additional overlay with 

light microscopic image; scale bar: 2 µm. 

 

Furthermore, the composition of starch NPs loaded with 150 µL labeled IgG1 and spray dried 

with treha and DAPI was investigated (cross-section shown in Figure 5.7). IgG1 was labeled 

for such investigations with Alexa Fluor 647 carboxylic acid (succinimidyl ester) according to 

the manufacturer’s protocol. From the confocal images it could be concluded, that also here, 

the loaded starch NPs are distributed throughout the microparticle. In addition, the 

visualization of several microparticles provides proof of a rather equal distribution of NPs 

throughout the sample.  

 

Figure 5.7: Fluorescence images of labeled starch NPs, loaded with labeled IgG1 and co-

spray dried with treha (mass ratio 1:20) and DAPI. (A) DAPI, representing the microparticle; 

(B) Bodipy, representing the nanoparticles; (C) Alexa Fluor 647, representing IgG1; (AB) 

overlay of (A) and (B); (BC) overlay of (B) and (C); (ABC) overlay of (A), (B) and (C); scale 

bar: 10 µm. 
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5.3.7 AERODYNAMIC PROPERTIES 

The aerodynamic properties of a formulation intended for pulmonary application are essential 

to both characterize and optimize, as a high deposition in the deep lung depends on the 

physical and chemical properties of the particles amongst other factors (e.g. breathing of the 

patient, lung physiology). Parameters to be determined are the MMAD, the GSD and the FPF. 

The FPF, being defined as the part of the inhaled dose being < 5 µm in aerodynamic diameter, 

gives an indication of the amount of the applied dose reaching the deep lung. The MMAD 

indicates the median aerodynamic diameter within the measured particle population and is 

correlated to the detected mass within the NGI. Additionally, the GSD gives an idea of 

particle distribution and homogeneity of the sample. 

In general, when speaking about the size of particles, it is the geometric diameter that is being 

referred to. However, the inhalation process is characterized by the flight behavior of a 

particle, which depends not only on its size, but also on its density (and shape). Therefore, the 

aerodynamic diameter was introduced as a more meaningful measure. Assuming an 

appropriate MMAD between 1-5 µm, a high deposition in the deep lung is expected.192, 193  

Aerodynamic properties of different formulations can be found in Table 5.3.  

 

Table 5.3 

Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), and 

Fine Particle Fraction (FPF) of  microparticles prepared by spray drying of NPs with excipient 

in a mass ratio 1:20. Parameters were determined with the Next Generation Impactor (NGI); 

for analysis, sodium fluorescein (FluNa) was added before the spray drying process; (mean ± 

SD, n = 3). 

 

 MMAD [µm] GSD [µm] FPF [%] 

CS_manni 3.8 ± 0.3 3.2 ± 0.1 52.5 ± 7.9 

CS_lact 4.0 ± 0.5 1.8 ± 0.6 27.4 ± 7.0 

CS_treha 3.4 ± 0.6 2.6 ± 0.3 42.7 ± 5.4 

Starch_ manni 2.1 ± 0.3 4.9 ± 0.5 41.3 ± 2.9 

Starch_ lact 2.5 ± 0.3 4.2 ± 0.4 36.7 ± 3.9 

Starch_ treha 2.1 ± 0.2 7.0 ± 0.5 40.5 ± 3.5 
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Formulations based on CS NPs showed an MMAD around 3.5 µm with a narrow GSD. In 

comparison, the starch NP formulations were smaller, with an MMAD around 2 µm. 

Nevertheless, the GSD was higher compared to the CS NP formulations. This is in accordance 

with the SEM images, showing a broader size distribution for the starch NP formulations than 

the CS NP formulations. The FPF was dependent on the excipient used for microparticle 

preparation. Here, manni samples showed the best results with around 40% FPF for 

Starch_manni and around 50% for CS_manni. These findings are in agreement with those 

reported in literature, where an FPF between 5 and 50% is common, varying as a result of the 

type of carrier194, 195 and drug morphology196 rather than as a function of the utilized 

inhalation device.197 

 

5.3.8 PADDOCC DEPOSITION 

Qualitative and quantitative deposition of microparticles was studied with the PADDOCC 

(Photo 5.1), which is a set-up, consisting of (A) an air-flow control unit (Akita®, Activaero, 

Germany), (B) an aerosolization unit (fitting a HandiHaler®, Boehringer Ingelheim, 

Germany), and (C) a custom-made sedimentation chamber, holding three Snapwell® inserts 

containing monolayers of pulmonary epithelial cells.183, 184 The device should mimic the 

process of aerosol drug delivery by sedimentation as a deposition mechanism, and should 

allow for evaluating the interaction of a specific formulation with the pulmonary epithelial 

cells. 

 

Photo 5.1: Setup of the PADDOCC. (A) Air-flow control unit; (B) aerosolization unit; (C) 

sedimentation chamber, holding three Snapwell® inserts. The latter two components are 

placed in a heating chamber, for performance of the cell experiments at 37 °C.  

 

Before studying the interaction of the microparticle formulations with the pulmonary 

epithelia, the deposition of the formulations with the PADDOCC onto SEM wafers, in the 

absence of a cell monolayer, was examined qualitatively and quantitatively. More than 90% 
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of the total formulation mass was released from the capsule for all experiments. In a first step 

the deposition was analyzed qualitatively: Figure 5.8 shows SEM images of deposited 

microparticle formulations.  

 

Figure 5.8: SEM images of microparticles, deposited with the PADDOCC onto SEM wafers. 

CS NPs spray dried with excipient: (A) manni; (B) lact; (C) treha. Starch NPs spray dried 

with excipient: (D) manni; (E) lact; (F) treha. All samples were spray dried in a mass ratio 

1:20 (NP:excipient); scale bar: 10 µm. 

 

It could be seen that only small particles were deposited and that, although some 

agglomeration occurred, particles were spread over the entire surface of the SEM wafers. It 

seemed that a greater degree of deposition occurred on the case of the sample starch_manni 

(D), compared to other formulations. This was in accordance with the particle size 

measurements and the powder flowability observations made during formulation collection 

from the spray dryer.  

In a second step, the quantitative deposition of the formulations was studied; results can be 

found in Figure 5.9.  



85 

 

 

Figure 5.9: Quantitative deposition of microparticles prepared by spray drying of NPs with 

excipient in a mass ratio 1:20. For analysis, FluNa was added before the spray drying process. 

Deposited mass is calculated per Transwell® area (1.12 cm2). A mass of 10 mg of particles per 

capsule was used for deposition studies.  

 

Two trends could be observed from these experiments: the deposited mass depended on the 

excipient, with manni showing the highest deposited mass and treha showing the lowest 

deposited mass. Further, the NP type was of importance, as formulations consisting of starch 

NPs showed a higher deposition than formulations of CS NPs. These results are underlined by 

the qualitative analysis, shown by the SEM images. Comparison of these results to those 

obtained for particle size measurements with the dry feeder apparatus of the HORIBA LA-

950 is further possible. With respect to size measurements facilitated by the dry feeder 

apparatus, lact and treha aggregates were not able to be redispersed within the air stream for 

measurement purposes. This observation can be correlated to the findings of the PADDOCC 

experiments, where lact- and treha-containing particles probably impacted as larger 

aggregates in the PADDOCC device, mimicking the in vivo aerosol deposition situation, 

before reaching the Snapwell® region. Manni samples, however, showed good dispersion 

behavior within the air stream and reached the Snapwell® region in high doses. Starch_manni 

showed better deposition behavior than CS_manni. As mentioned before, the different 

formulations showed different flow properties as well as different cohesive natures, probably 

leading to the different deposition. In summary, manni showed potential as an excipient for 

bringing high particle amounts to the deep lung, which is in accordance with literature,195 

whereas spry dried particles resulting in amorphous lact and treha, showed poor dispersibility 

leading to low predicted particle deposition in the alveolar region.  
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5.4 CONCLUSION 

The successful spray drying process was mainly influenced by the working of the spray cap, 

together with the piezo driven mesh used for droplet formation. A dysfunction of the spray 

cap resulted in a poor yield or bad product quality. An inlet temperature of 70 °C ensured a 

dry product and resulted in an outlet temperature below 40 °C indicating a low thermal 

burden for the encapsulated protein. Adding different non-charged excipients (manni, lact,  

and treha) did not change the physicochemical properties of the NP suspension. Also so-

called smart excipients, i.e. G-Blocks, were tested. However, these molecules are negatively 

charged; as such they were seen to be appropriate as excipients for starch NPs, but showed 

aggregation after addition to CS NP suspensions. It can therefore be concluded that non-

charged excipients are favored for the microparticle preparation. 

Spray drying the NP suspension without excipient resulted in particles with an indistinct 

shape. Adding an excipient led to particles distinctly spherical in shape, with specific 

morphology depending mostly on the NP composition - spray dried CS samples with different 

excipients showed rather smooth and round surfaces, while spray dried starch samples with 

different excipients showed rather wrinkled shapes. NPs spray dried without excipient were 

not able to be redispersed. Depending on the amount of excipient, NPs were able to be 

redispersed in aqueous solution (mass ratio 1:20, NP:excipient).  

The particle size distribution clearly depended on the specific excipient employed. Samples 

spray dried with manni showed the narrowest particle size distribution, whereas samples spray 

dried with lact or treha showed a broad size distribution.  

Also crystallinity of the samples depended on the kind of excipient used. Manni samples 

showed a crystalline appearance after spray drying, whereas lact and treha samples were 

completely amorphous.  

The internal structure of the microparticles was evaluated by confocal fluorescence 

microscopy, using the formulation of Starch_treha (loaded with IgG1) as model formulation 

to get an idea of whether the NPs are located at the surface, or rather spread throughout the 

excipient matrix. It was seen that the latter phenomenon occurred with starch NPs being 

present throughout the entire microparticle and not only at the surface. The same was true for 

the formulation loaded with IgG1.  

The aerodynamic properties of the formulations differed with respect to measure of MMAD, 

GSD and FPF. The MMAD was slightly larger for the CS NP formulations, whereas the GSD 

was higher for the starch NP formulations, independent of the used excipient. The FPF, 

however, depended rather on the excipient than on the NP type, with the highest FPF between 
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40% and 50% noted for Starch_manni and CS_manni formulations, respectively. The 

deposition with the PADDOCC worked for all formulations, however differences between the 

formulations were found. Quantitatively speaking, the manni samples looked best, from 

which Starch_manni showed the highest deposited amounts. 

In summary, taking into consideration all tested excipients, there is no clear advantage of one 

special excipient. Lact and treha showed a good redispersion behavior of NPs, however their 

amorphous and highly cohesive character was detrimental for their delivery to the deep lung. 

Manni showed a high degree of deposition and good redispersion in the case of starch NPs, 

however, its influence on protein stability has to be further evaluated. A mixture of treha and 

manni as matrix builder for the microparticle preparation could be proposed. Assessing the 

NP type, starch NPs clearly show an advantage for both important parameters - redispersion 

of the NPs after microparticle dissolution and high deposition in the deep lung - compared to 

CS NPs. Due to that fact, starch NPs were further evaluated for their cell uptake ability 

(Chapter 6).  
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6.  IN VITRO BIOPHARMACEUTICAL EVALUATION OF THE 

NOVEL CARRIERS 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The author of the thesis made the following contribution to this chapter:  

 

 

Planned, designed and performed experiments related to particle preparation and 

characterization, cytotoxicity and endoLISA assays as well as uptake studies, analyzed data 

from the mentioned studies, interpreted the experimental data and wrote the manuscript, if not 

stated otherwise. 

  

The cell culture was performed by Stephanie Kletting.  

 

The immunogenicity studies were performed by Anne Marit de Groot at Utrecht University. 

She analyzed data from the mentioned studies and interpreted the experimental data.  
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6.1 INTRODUCTION 

After successful DDS preparation, in vitro biopharmaceutical evaluation of the prepared 

system, including cytotoxicity and immunogenicity assessment as well as the conduction of 

first uptake studies is crucial, before testing the uptake and efficacy of the developed DDS in 

vivo.  

As the carrier system introduced in this thesis was developed for pulmonary delivery, the 

various cellular and non-cellular barriers of the lung must be considered during in vitro DDS 

assessment. These include the epithelial barriers of the upper and the deep lung, mucus as a 

non-cellular barrier and clearance mechanism of the upper lung, as well as macrophages 

patrolling in the deep lung. One of the main barriers to be overcome by the DDS is the 

epithelial barrier of the alveolar region, as these are the specific cells to be targeted by the 

DDS. Nevertheless, interactions could still occur between DDS + macrophages (clearance 

mechanism in the deep lung), but also between DDS + barriers of the upper lung. As a result, 

cytotoxicity testing of the DDS was performed not only with alveolar epithelial cells, but also 

with macrophages and bronchiolar epithelial cells.  

For pulmonary delivery, various cell culture models of the respiratory system are available. 

Regarding epithelia, A549 cells are a well-established cell line of the alveolar region. 

Additionally, Calu-3 cells and 16HBE14o- cells are commonly used to mimic the epithelia of 

the upper airways.198 Further, THP-1 cells have been utilized as a model for macrophages, 

present as a clearance system in the deep lung. While advanced systems, such as co-

cultures,199, 200 or triple-cultures201-203 are available, in the context of the current work, 

monocultures composed of the above mentioned cells were of interest for a first evaluation. 

In this chapter cytotoxicity studies of the source materials used for NP preparation were 

performed on A549 cells, as there is a lack of data related to the pulmonary toxicity of such 

materials. Formulation into nano-sized carriers could alter material toxicity, as well as the 

form of deposition. Thus, both CS and starch NPs were evaluated regarding their cytotoxicity 

in different cell lines. Such testing is of additional importance as recently the OECD guideline 

for the testing of chemicals for subchronic inhalation toxicity was updated, and now includes 

also NPs.204 Additionally, microparticles were evaluated regarding their cytotoxicity in 

different cell lines under liquid covered conditions (LCC) as well as air-liquid-interface 

(ALI), as the deposition under ALI will lead to a different local concentration of the applied 

particles. Immunogenicity experiments with microparticles were conducted by the University 

of Utrecht, a collaboration partner in COMPACT. Due to some surprising results, an 
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endoLISA was performed to investigate any potential source of contamination with 

endotoxins.  

As intracellular delivery was of specific importance in this thesis, investigation of the uptake 

of the particles is necessary in order to assess and ensure efficacy of the DDS-associated 

protein/peptide; therefore, ALI uptake studies of starch NPs on alveolar and bronchial 

epithelia cell lines, i.e. A549 and 16HBE14o-, were conducted. Microparticles were also 

deposited on A549 cells, and NP uptake was studied to see whether microparticles could be 

dissolved on epithelial cells cultivated under ALI.  

Unless stated otherwise, α-starch derivatives, named NegSt and PosSt, were used for 

experiments. 

 

6.2 MATERIALS AND METHODS 

6.2.1 MATERIALS  

Protasan UPCL 113 (chitosan, CS) was bought from Novamatrix, Norway. Sodium 

tripolyphosphate (TPP) was purchased from Merck KGaA, Germany. Negatively 

(NegSt) and positively (PosSt) charged starches were synthesized in house. IgG1 was 

kindly donated by Boehringer Ingelheim (Germany). Mannitol (manni), trehalose 

dihydrate (treha) and α-lactosemonohydrate (lact) were bought from Sigma Aldrich 

(USA). 

A549 cells (No. CCL-185) and Calu-3 cells (No. HTB-55) were purchased from American 

Type Culture Collection (ATCC). 16HBE14o- cells were a kind gift from Dr. Dieter C. 

Gruenert (Department of Otolaryngology, University of California, San Francisco, CA, USA). 

THP-1 cells (No. ACC-16) were bought from DSMZ. Cell culture medium (RPMI 1640), 

minimum essential medium eagle (MEM), fetal bovine serum (FBS), phosphate buffered 

saline (PBS), Hank’s balanced salt solution (HBSS) and sodium pyruvate were obtained from 

Life Technologies (USA), and non-essential amino acids (NEAA) from GE Healthcare Life 

Sciences. Thiazolyl blue tetrazolium bromide (MTT reagent) was bought from Sigma 

Aldrich (USA). TritonTM X-100 was purchased from Sigma Aldrich (U.S.A.). The 

endoLISA® assay endotoxin test kit was purchased from Hyglos GmbH (Germany). Purified 

water was produced by a milliQ water purification system (Merck Millipore, USA). 

All other reagents were of analytical grade.  
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6.2.2 CELL CULTURE 

A549 and THP-1 cells were cultivated in RPMI 1640 medium. Calu-3 and 16HBE14o- cells 

were cultivated in MEM medium containing 1% NEAA, and 1% sodium pyruvate (Calu-3) or 

300 mg glucose (16HBE14o-), respectively. All media contained 10% FBS (v/v). For cell 

viability assays and uptake studies, 1% (v/v) penicillin/streptomycin (P/S, 10 000 U/mL, 

Gibco life technologies, USA) was added to media.  

 

6.2.3 CELL VIABILITY 

Cell viability was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. This colorimetric assay is based on the reduction of the tetrazolium 

dye MTT to its insoluble formazan, by mitochondrial enzymes. The formazan crystals can be 

dissolved in DMSO and show a purple color, the intensity of which depends on the metabolic 

activity of cells. Thus, quantification of the absorbance of solubilized formazan crystals gives 

an indication of how many viable cells are present, in relation to a positive and negative 

control.  

For assessing the cytotoxicity of materials used for NP preparation, 2x104 A549 cells were 

seeded into 96 well plates under LCC. After reaching approximately 90% confluence, the cell 

medium was removed and the cells were washed once with 200 µL HBSS (composed of 1.12 

mM CaCl2, 0.49 mM MgCl2-6H2O, 0.41 MgSO4-7H2O, 5.33 mM KCl, 0.44 mM KH2PO4, 

4.17 mM NaHCO3, 137.93 mM NaCl, 0.34 mM Na2HPO4, 5.55 mM D-glucose, pH 7.4). 

Afterwards, the cells were incubated with material solutions of CS, TPP, NegSt, or PosSt 

dissolved in HBSS (4 h incubation) or RPMI (24 h incubation).  

NP toxicity was studied using A549 (2x104) and THP-1 (1x105) cells, seeded into 96 well 

plates (LCC). Cells were incubated with NP suspensions, diluted with RPMI medium 

(concentrations of 133, 67, 33, 17, and 8 µg/mL) for 4 h and 24 h, respectively.  

To evaluate the microparticles, A549 and Calu-3 cells were seeded into 96 well plates to 

enable LCC investigations, as well as cultivated on Transwell® plates (3460, 1.12 cm2, 

Corning, USA) to enable ALI investigation. The particles were applied after 

dissolution/redispersion of NPs in RPMI (A549) or MEM (Calu-3) in the case of LCC or after 

PADDOCC deposition (10 mg per capsule, in the case of ALI cultures) and incubated for 4 h 

or 24 h.  

In all cases, following incubation of cells with NP materials, NPs or microparticles, cells were 

washed once with 200 µL HBSS buffer. A 100 µL volume fresh HBSS buffer, containing 

10% (v/v) MTT reagent (5 mg/mL) was then added and incubated for a further 4 h. HBSS 
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buffer was aspirated and 100 µL DMSO was added and incubated for 20 min. Absorbance 

was then measured at 550 nm with the Tecan Infinite® 200 microplate reader (Tecan 

Deutschland GmbH, Germany). All incubation steps were done at 37 °C, under gentle shaking 

and light protection. Cell viabilities were calculated in comparison to negative controls 

(untreated cells as 100% value of cell viability) and positive controls (1% TritonTM X-100 

solution as 0% value of cell viability).  

 

6.2.4 IMMUNOGENICITY 

Immunogenicity experiments were carried out by our project partner from Utrecht University. 

Assays were performed according to Zeng et al.205 as follows: 

 

Toll-like receptor activation assay 

Toll-like receptor (TLR) reporter cell lines (HEK-BlueTM-hTLR2, -hTLR3, -hTLR4, -hTLR7, 

and -hTLR9 reporter cells) were cultured as instructed by the manufacturer (InvivoGen, 

France). The TLR reporter cell lines were stimulated with the unloaded or loaded (IgG1) 

microparticles at concentrations of 1, 0.5, 0.1 and 0.05 mg/mL or with the solvent alone, in a 

total volume of 100 µL for 16 h at 37 °C. As positive controls, the following agonists were 

used: PAM3SCK (100 ng/mL) for TLR2, polyinosinic-polycytidylic acid [poly(I:C)] (5 

μg/mL) for TLR3, lipopolysaccharide (LPS)-EK (10 ng/mL) for TLR4, CL264 (5 μg/mL) for 

TLR7 and ODN2006 (10 μg/mL) for TLR9 (all from InvivoGen). To detect the reporter 

protein, secreted alkaline phosphatase (SEAP), 20 μL of the supernatant was added to 180 μL 

of QUANTI-BlueTM substrate (InvivoGen) and incubated for 1 h at 37 °C. Levels of SEAP 

were determined by measuring the absorbance using a microplate reader at 650 nm. Relative 

SEAP levels were defined as the sample level divided by the solvent control level. 

 

Dendritic cell maturation assay  

Femurs and tibia of adult CB6F1/CrL mice (6-12 weeks old) were flushed with culture 

medium (Iscove’s Modified Dulbecco’s Medium) supplemented with 5% (v/v) FBS (Lonza, 

Verviers, Belgium), 50 μM 2-mercaptoethanol (Sigma-Aldrich), penicillin and streptomycin, 

and the cells were seeded in 12-well plates at a concentration of 4.5x105 cells in 1 mL culture 

medium (adapted from Lutz et al.206). Dendritic cells were expanded with 20 ng/mL murine 

recombinant granulocyte macrophage colony stimulating factor (rGM-CSF) (Cytogen, The 

Netherlands). On day 2, the volume of complete growth medium was doubled and on day 5, 

an additional 20 ng/mL rGM-CSF was added. On day 7, bone marrow dendritic cells were 
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stimulated with PBS (1:250), LPS (10 ng/mL) or the unloaded or loaded (IgG1) 

microparticles at concentrations of 1, 0.5, 0.1 and 0.05  mg/mL for 16 h at 37 °C in a 

humidified CO2 incubator. Staining of surface markers with the indicated antibodies was 

performed in the presence of Fc block (2.4 G2) for 30 min on ice. Anti-CD11c (N418) and I-

Ad/I-Ed (M5/114) were purchased from eBioscience (San Diego, CA, USA), and anti-CD40 

(3/23) and -CD86 (GL1) were obtained from BD Biosciences (Breda, the Netherlands). 

Samples were measured on a FACS CantoII (BD Biosciences, San Jose, CA, USA) and 

analyzed using the FlowJo software. Ethical approval for the mouse experiments was obtained 

from the Animal Experiment Committee of Utrecht University, The Netherlands. 

 

6.2.5 ENDOLISA 

Endotoxin amounts were determined with an endoLISA® endotoxin test kit from Hyglos 

GmbH (Germany). Materials were dissolved or particles were dispersed in endotoxin-free 

water at 1 mg/mL. LPS standard was freshly prepared as follows: the lyophilized LPS 

standard was dissolved completely in 2.06 mL endotoxin-free water (500 EU/mL). It was 

vortexed at 1 400 rpm for 10 min and a dilution row was prepared with concentrations of 500, 

50, 5, 0.5, 0.05, and 0 EU/mL. Each sample was vortexed thoroughly before pipetting. A 100 

µL volume of sample was added to a coated 96 well plate, followed by 20 µL of 6x binding 

buffer. The wells were sealed with cover foil and incubated at 37 °C for 90 min with 

continuous mixing at 450 rpm. Afterwards, the plate was washed carefully 3 times with 150 

µL wash buffer per well. Then, 100 µL assay reagent was added to each well. Fluorescence 

was measured at λex = 380 nm and λem = 440 nm and set as time point zero. The plate was 

incubated at 37 °C for another 90 min, following which the fluorescence was again 

determined and designated as time point 1. Endotoxin amount was calculated afterwards 

according to the standard curve. 

 

6.2.6 UPTAKE STUDIES 

For the evaluation of starch NP uptake into A549 and 16HBE14o- cells, 1x105 and 0.6x105 

cells/well, of the respective cell lines were seeded on Transwell® membranes (3460, 1.12 

cm2). After 24 h, A549 cells were set on ALI, i.e. medium was aspirated and 500 µL of fresh 

medium was added to the basolateral compartment only. Two days later, 250 µL of labeled 

starch NPs were deposited onto A549 cells with the Aeroneb®Lab nebulizer (Aerogen Ltd., 

Ireland) and incubated at 37 °C or 4 °C, respectively. Regarding the 16HBE14o- cells, an ALI 
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was established after 48 h in culture. After reaching 90% confluence, 250 µL starch NPs were 

nebulized in the same procedure as for deposition on A549 cells.  

For studying the uptake of the microparticles, A549 were seeded in Snapwell® plates (3801, 

1.12 cm2; Corning, USA) and 10 mg of labeled starch NPs in manni (mass ratio 1:20) were 

deposited with the PADDOCC at 37 °C.  

In all cases, after 1 h, 4 h, and 24 h of incubation, cells were washed with PBS and fixed with 

3% paraformaldehyde (PFA) for 30 min at RT. After fixation, cells were permeabilized with a 

BSA/saponin/PBS solution, followed by an anti-phalloidin staining (1:143 and 1:100 in 

16HBE14o- in BSA/saponin/PBS; actin) for 30 min. After washing, the samples were 

counterstained with DAPI (1:50 000 in PBS; nuclei) and subsequently mounted with DAKO 

mounting medium (DAKO, USA). The samples were analyzed by a confocal laser scanning 

microscope (Zeiss LSM710, Zeiss, Germany). Lasers at 405 nm (DAPI), 488 nm (starch NPs) 

and 633 nm (actin) were used for detection. Microscopic images of fixed samples were 

acquired at 1024 × 1024 resolution, using a 63X water immersion objective. Confocal images 

were analyzed using Zen 2012 software (Carl Zeiss Microscopy GmbH) and Fiji Software 

(Fiji is a distribution of ImageJ available at http://fiji.sc). 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 CYTOTOXICITY SCREENING 

Material used for nanoparticle preparation 

The use of cell lines in general is advantageous in comparison to primary cells, as the latter 

are donor dependent and often lack reproducibility. That is particularly true for lung tissue 

extracted from patients in a diseased state (lung cancer, CF, etc.) for which variations between 

each patient are known. A549 cells were chosen as an epithelium model of the deep lung. 

This was deemed to be a necessary model for investigation, as intracellular delivery to the 

alveolar region requires uptake into such cells; assessment of the toxicity of applied materials 

to such cells is therefore of great importance. A549 cells constitute a human pulmonary 

adenocarcinoma-derived cell line,207 which is both an easily accessible and well-established 

model of the alveolar region for first tests. For evaluating cell viability on exposure to NP 

materials, A549 cells were incubated with CS, TPP, NegSt and PosSt (α-starch derivatives) 

for 4 h and 24 h at 37 °C. Materials were dissolved in HBSS (4 h) or RPMI (24 h) and added 

in various concentrations to the A549 cells. Results can be found in Figure 6.1 with (A) 

representing 4 h of incubation and (B) representing 24 h of incubation. 
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Figure 6.1: Viability of A549 cells after incubation with material used for NP preparation 

(CS, TPP, NegSt, and PosSt); after 4h incubation, samples dissolved in HBSS (A) and after 

24 h incubation, samples dissolved in RPMI (B). Data represent two independent experiments 

(n=3, each). 

 

After 4 h of incubation it could be seen that positively charged polymers were more toxic than 

negatively charged materials, which is in accordance with literature, showing that positively 

charged materials are more toxic compared to negatively charged ones.128, 208 A cell viability 

of 71 ± 6 % was found for the lowest concentration (0.05 mg/mL) of PosSt, which slowly 

decreased with increasing concentration up to 5 mg/mL. In contrast to PosSt, a cell viability 

of 135 ± 8 % was observed for the lowest tested concentration of CS, indicating that the cells 

were under stress. Here, a drastic decrease in cell viability was observed for concentrations of 

around 0.4 mg/mL and greater. In comparison, Huang et al., found that the cytotoxicity of CS 

only significantly increased at concentrations higher than 0.7 mg/mL, and that the cytotoxicity 

was independent of CS molecular weight; toxic effects could also be reduced by reducing the 

degree of CS deacetylation. Additionally, no difference was observed in the cytotoxicity of 
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CS applied as a raw material or as NP suspension.209 The cytotoxic effects in the current work 

could be at least partially ascribed to the low pH of the CS solution. This highlights an 

advantage of the starch material, in that it does not alter the pH of the applied medium. 

Negatively charged materials showed similar cell viabilities for concentrations up 2.5 mg/mL, 

however, whilst NegSt showed a good cell viability of 85 ± 6 % for the highest tested 

concentration, a high concentration of TPP led to a decrease in cell viability to 33 ± 12 %. 

This could be attributed to an increase in osmolality with increasing concentration of TPP. A 

1 mg/mL concentration of TPP was still isotonic (osmolality of around 286 mOsm/kg), 

whereas 2.5 mg/mL already showed an increase up to approximately 310 mOsm/kg and 5 

mg/mL showed an osmolality of approximately 330 mOsm/kg.  Polymeric materials showed 

no effect on osmolality so that samples were always isotonic. 

A general drop in cell viability could be found for the 24 h incubation (Figure 6.1 B), as the 

assay also detected a drop in cell proliferation rather than purely toxicity. In contrast to this, 

CS showed more or less constant cell viabilities of around 70-80%. This could be explained 

by the fact that CS was not soluble in RPMI medium and was applied as suspension, meaning 

that significant interaction with the A549 cells was possibly not taking place.   

 

Cytotoxicity of nanoparticles 

NPs were evaluated for their cytotoxicity using A549 cells, as an uptake of NPs by alveolar 

epithelial cells was the objective. Knowing from the previously conducted formulation studies 

that the molar ratio of NP components strongly influences the ζ-potential, it was aimed here to 

understand the effect of surface charge on cytotoxicity. Thus, three different starch NP 

formulations were studied, employing molar ratios of 3:1, 1:1, and 1:3 PosSt:NegSt, prepared 

from 0.25 mg/mL solutions. For comparison, CS NPs (0.25 mg/mL, molar ratio 10:1 CS:TPP) 

as well as NegSt, PosSt, and a water soluble potato starch (PSs) as control were tested in a 

concentration range from 8 to 133 µg/mL. Viability data of A549 cells after treatment with 

aforementioned samples for 4 h (A) and 24 h (B) are shown in Figure 6.2.  

At the routinely-employed 4 h measurement time point, as suggested by the manufacturers, 

A549 cells incubated with PSs, or NegSt both showed cell viabilities of around 100%. 

Treatment with PosSt resulted in a decrease in cell viability to 65.4 ± 5.5% for the highest 

tested concentration. Such results were comparable to the experiments performed on source 

material (Figure 6.1). Similar results were also obtained for Starch 0.25-3:1 NPs with cell 

viabilities of around 71.3 ± 1.9%. Decreasing the PosSt amount in the NP formulation led to 

an increase in cell viability, which is not surprising bearing in mind that positively charged 
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polymers usually show higher toxicities.128, 208 CS NPs showed a similar behavior to Starch 

0.25-1:1 NPs for the 4 h incubation, while after the 24 h incubation period, a decrease in cell 

viability to 60.9 ± 2.2 % was noted for the highest tested concentration. This is in contrast to 

the cell viability studies performed by Grenha et al., who found a minimum cell viability of 

80% for their tested CS NP suspension.114 However, the CS they were using was of higher 

molecular weight (150 000 - 400 000 g/mol) compared to the CS used in this thesis, with a 

molecular weight of approximately 50 000 - 150 000 g/mol. Although the aforementioned 

Huang et al. found that the molecular weight does not influence toxicity of CS,209 it may 

change the pH of the applied NP suspension so resulting in cell damage. 

 

 

Figure 6.2: Viability of A549 cells after exposure to starch NPs, starch derivatives (PosSt, 

NegSt), or a soluble potato starch (PSs) for 4 h (A) or 24 h (B). Data represent two 

independent experiments (n = 3, each). 
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It can be concluded that, the greater the amount of positively charged material present in the 

starch NP formulation, the lower the observed cell viability. In addition, the chosen starch NP 

formulation Starch 0.25-1:1 showed similar or even better cell viabilities after 4 h and 24 h 

compared to the tested CS NP formulation. In the applied dose of 40 µg for uptake 

experiments, starch NPs showed cell viabilities of 80% or higher. 

Additionally to the A549 epithelial cell line, THP-1 cells, representing alveolar macrophages, 

were used to study the cytotoxicity of NP formulations. In this respect, the formulations CS 

0.25 10:1 (CS NP) and Starch 0.25-1:1 (Starch NP) were chosen. Figure 6.3 shows the cell 

viabilities of THP-1 cells after 4 h, 8 h, and 24 h treatment with CS NPs or starch NPs. 

 

 

Figure 6.3: Viability of THP-1 cells after exposure to CS NPs, or starch NPs (Starch 0.25-

1:1) for 4 h (■), 8 h (♦) or 24 h (○). Data represent two independent experiments (n = 3, each). 

 

For the THP-1 cells, it could be seen that CS NPs showed better cell viabilities compared to 

starch NPs after 4 h of incubation. CS NPs showed constant cell viabilities around 135%, 

indicating that the THP-1 cells were under stress. High viabilities can be a sign of positive 

stimulation; however, they are often also seen before cell viability decreases, demonstrating a 

type of rescue mechanism of the cell. Starch NPs showed a decrease in cell viability to 66.1 ± 

6.9 % for the highest tested concentration. The differences in cell viability of the two 

formulations after 4 h could perhaps be ascribed to differences in uptake kinetics, as the 

results obtained after 8 h and after 24 h of incubation were similar, with CS NPs showing 

slightly higher cell viabilities.  
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Cytotoxicity of microparticles 

Microparticles, consisting either of starch NPs or CS NPs embedded in a microparticle matrix 

of manni, lact, or treha, were tested for their cytotoxicity using A549 and Calu-3 cells. These 

two cell types were chosen for investigation as microparticles would be required to pass 

through the whole respiratory system before deposition in the deep lung (represented by A549 

cells), meaning that they could also interact with epithelial cell lines of the upper lung 

(modeled by Calu-3 cells).  

Therefore, microparticles were dissolved in medium and applied under LCC to A549 or Calu-

3 cells and incubated for 4 h and 24 h, respectively. The results can be found in Figure 6.4. 

 

 

Figure 6.4: Cell viability after incubation with microparticles. Calu-3 cells after (A) 4 h 

incubation; (B) 24 h incubation; A549 cells after (C) 4 h incubation; (D) 24 h incubation; 

concentration [µg/mL] - representative of NP amount in microparticles. 

 

The x-axis represents the concentration of NP in microparticles, to make a comparison to 

Figure 6.2 possible. It was observed that cell viability was independent from the NP material, 

and depended rather on the kind of excipient used for microparticle preparation. Manni 

samples led to a more pronounced decrease in cell viability compared to lact or treha samples. 

No big difference between the two cell lines was found, with the exception of the 24 h time 

point, at which Calu-3 cells seemed to show better cell viabilities compared to A549 cells. 

This is most likely caused by the longer doubling time of Calu-3 cells, leading to a lower 

uptake of particles in comparison to A549 cells within the same time interval, and less 

pronounced effects resulting from particle-induced downregulation of cell proliferation. The 
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differences in excipient tolerability could be attributed to their chemistry, as no differences in 

osmolality were found between the samples. Treha and lact are disaccharides of glucose or 

glucose and galactose monomers, respectively and as such are probably positively influencing 

the cells’ metabolism.   

The cytotoxicity of microparticles was further tested by the University of Copenhagen, a 

COMPACT project partner, using the MTS assay with an incubation time of 1 h. Particles 

showed slightly increased viability, but in general no toxicity was observed (data not shown). 

Further, cytotoxicity was tested under ALI conditions by applying microparticles (10 mg per 

capsule) with the PADDOCC. The results of these investigations are shown in Figure 6.5. It 

could be seen that within cell lines, the differences in cell viabilities between the formulations 

are negligible, although differences in deposited amounts of sample expected to reach cells 

were found in Chapter 5 (Figure 5.9). Calu-3 cells seemed to show higher cell viabilities, 

compared to A549 cells, which is in accordance with results found for LCC (Figure 6.4). As 

mentioned before, this could be due to the fact that Calu-3 cells have a longer doubling time 

compared to A549 cells. 

 

 

Figure 6.5: Cell viability of A549 and Calu-3 cells after deposition of microparticles (10 mg 

per capsule) with the PADDOCC and incubation at 37 °C for 4 h; cell viability determined 

with the MTT assay. 

 

6.3.2 IMMUNOGENICITY SCREENING  

To prevent an undesirable inflammatory and immunological response (in which CD4+ T cells 

may be activated and B cell-derived antigens may be formed) and to prevent the premature 

elimination of the DDS from the body, the immunogenicity of microparticles was tested based 
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on induction of dendritic cell maturation and TLR activation (extracellular: hTLR2, 4; 

intracellular: hTLR 3, 9) via NFκB.  

Antigen-presenting cells, such as dendritic cells, recognize pathogens via pattern-recognition 

receptors. These receptors can recognize peptidoglycan-, RNA- or DNA-associated patterns, 

which are characteristic for pathogens but absent in eukaryotic cells. TLRs are widely studied 

pattern-recognition receptors, and as such in the present experiment the potential activation of 

four different human TLRs (TLR2, TLR3, TLR4, and TLR9) was measured. Additionally, 

dendritic cell maturation was studied. These two assays were used in combination. The human 

TLR reporter assay was used as it is a straightforward and relatively quick human based 

assay, and allows for prediction of which TLR pathway may be activated in vivo. Moreover, 

the dendritic cell maturation assay links the innate and adaptive immune system, and gives a 

prediction regarding whether T cells could become activated in response to administration of 

a specific material. 

Cells were stimulated with microparticles or IgG1 for 16 h in triplicates; results for 

extracellular hTLR2 (A), and hTLR4 (B) can be found in Figure 6.6, whereas results for 

intracellular hTLR3 (B), and hTLR9 (D) can be found in Figure 6.7. In general, no inhibition 

(small diagrams) should be observed, as this could lead to a false negative result. If inhibition 

of the agonist by the sample occurs, the activation (large diagrams) of hTLR cannot be 

interpreted.  

Regarding the hTLR2, no inhibition i.e. SEAP activity was measured and no activation from 

IgG1 and CS particles was observed. Starch particles also showed no inhibition of hTLR2, but 

demonstrated a concentration dependent activation, i.e. DDS particles consisting of starch 

activated TLR more than IgG, thus being more immunogenic than the drug itself.  

Regarding the hTLR4, inhibition in combination with CS particles was lower than the agonist, 

meaning that TLR4 activation data is also inconclusive. The negatively charged agonist 

(LPS)-EK could have been bound by the positively charged CS NPs, hTLR4 is in fact 

activated by CS particles. Starch particles, however, showed no inhibition of hTLR4 - a 

concentration dependent activation of hTLR4 starch particles to a greater extent than IgG was 

observed, meaning that the starch particles were more immunogenic than the drug itself. 
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Figure 6.6: Immunogenicity. Inhibition (small images) and activation (large images) of TLR. 

Percentage of SEAP activity compared to maximum (TLR agonist) is displayed on the y-axis. 

Statistical significance was measured using two-way ANOVA. Statistical analysis was 

performed between drug/DDS and positive control (inhibition) or between drug (IgG) and 

DDS with corresponding concentration, e.g. DDS with concentration of 0.05 mg/mL was 

compared to IgG with a concentration of 0.25 µg/mL (activation). Samples that are 

statistically lower compared to positive control, have inhibited the TLR signaling 

pathway/TLR receptor. Therefore, the data in the activation graph is n.a. It could not be 

concluded if there was an activation/inhibition present. (A) hTLR2; (B) hTLR4. 

 

For the hTLR3, a concentration dependent inhibition of hTLR3 (i.e. SEAP activity) measured 

in combination with CS particles was determined, meaning that the data of hTLR3 activation 

is inconclusive. It is likely, that the agonist for this hTLR, poly(I:C), a nucleotide which is 

negatively charged, was bound by the CS NPs. Thus, it could not be concluded if hTLR3 is 
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activated by CS particles. The same holds true for the starch particles. As part of the NPs 

consist of cationic starch derivatives, they could have bound the agonist poly(I:C), although to 

a lower extent, due to the negative net charge. 

 

 

Figure 6.6: Immunogenicity. Inhibition (small images) and activation (large images) of TLR. 

Percentage of SEAP activity compared to maximum (TLR agonist) is displayed on the y-axis. 

Statistical significance was measured using two-way ANOVA. Statistical analysis was 

performed between drug/DDS and positive control (inhibition) or between drug (IgG) and 

DDS with corresponding concentration, e.g. DDS with concentration of 0.05 mg/mL was 

compared to IgG with a concentration of 0.25 µg/mL (activation). Samples that are 

statistically lower compared to positive control, have inhibited the TLR signaling 

pathway/TLR receptor. Therefore, the data in the activation graph is n.a. It could not be 

concluded if there was an activation/inhibition present. (A) hTLR3; (B) hTLR9. 

 

For the hTLR9, no inhibition (i.e. SEAP activity) was measured in combination with CS 

particles, and no activation of hTLR9 was observed; in some cases, the CS DDS particles 
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showed significantly lower SEAP activity compared to corresponding IgG concentrations. 

Also starch particles showed no inhibition and no activation of hTLR9; also here, the starch 

DDS showed significantly lower SEAP activity compared to corresponding IgG 

concentrations in some cases. 

It could be concluded, that starch microparticles were more likely to activate TLR than CS 

microparticles. However, only an activation of extracellular hTLR, i.e. 2 and 4, was observed, 

whereas intracellular hTLR3 and hTLR 9 were not activated. As an activation of the TLR is a 

hindrance for pulmonary applications, these results were followed up by an endotoxin assay 

(Chapter 6.3.3) to identify the source of TLR activation. 

For the murine bone marrow-derived dendritic cells (BMDC) maturation assay, cells were 

stimulated with microparticles or IgG1 for 20 h in duplicates. Results can be found in Figure 

6.8. 

 

 

Figure 6.8: BMDC maturation assay. CD40+CD86/MHCII+CD11c frequency as a 

percentage of the parent population is displayed on the y-axis. Statistical significance was 

measured using two-way ANOVA. Statistical analysis was performed between drug (IgG) 

and DDS with corresponding concentration, e.g. DDS with concentration of 0.05 mg/mL was 

compared to IgG with a concentration of 0.25 µg/mL.  

 

 

Chitosan particles showed no increased maturation of dendritic cells. In some cases however, 

the percentage of CD40+CD86+ cells was lower compared to the corresponding IgG1 

concentration. In the case of starch particles, there was an increased maturation of dendritic 
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cells especially at the two highest concentrations (0.1, 0.5 and 1 mg/ml). The effect was also 

concentration dependent: the percentage CD40+CD86+ cells increased with increasing 

concentration. 

 

6.3.3 ENDOLISA 

Due to the results from the immunogenicity data, an endoLISA was performed to see whether 

the material itself was immunogenic or whether any endotoxin impurities may have been 

present, leading to false positive results. Therefore, all synthesized starch derivatives were 

tested as well as CS and TPP. To identify the source of any potential contamination within the 

preparation steps, also NPs, as well as microparticle formulations were also applied. The 

results can be found in Figure 6.9.  

 

Figure 6.9: Endotoxin concentration in material samples (dissolved in endotoxin-free water) 

as well as NP or microparticle formulations (dispersed in endotoxin-free water). For particle 

preparation α-starch derivatives were used. 

 

It could be seen that no endotoxins were found for CS material or for CS formulations. This is 

in accordance with the statement of the manufacturer, who guarantees an ultra-low level of 

endotoxins in this material. Negatively charged starches showed only very little amounts of 

endotoxin, independent of the degree of starch oxidation. In contrast, PosStα, with a degree of 

substitution of 33%, showed a very high endotoxin concentration of approximately 45 

EU/mL. All other PosSt derivatives, however, showed only a low concentration of 

endotoxins. This was independent of the degree of substitution, as PosStβ with a degree of 

substitution of around 47% showed only around 1 EU/mL. This further decreased for PosStγ 

and PosStδ. Starch NPs, consisting of 50% PosStα, showed a concentration of 31 EU/mL. 
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starch microparticles consisting of starch NPs and excipient (mass ratio 1:20) showed again a 

decreased concentration of approximately 3 EU/mL.  

As the found endotoxin concentration was independent of the degree of substitution 

(comparison of PosStα and PosStβ), a direct activation from the starch material itself could be 

excluded. It was however interesting that a lower endotoxin concentration was observed when 

comparing the PosStδ derivative to the PosStα derivate. This result could indicate that the 

synthesis time point and storage time could have had an influence, as PosStα was synthesized 

at least one or two years before PosStβ. The other PosSt derivatives were all synthesized over 

a short period of time. The strong immune activation observed in the TLR assays and the DC 

maturation assay was thus most likely due to the contamination of the cationic starch 

derivative during storage and not by one of the preparation steps. It could be concluded, that 

the conditions for storage of PosSt are very important to control. This gives some perspective 

to eliminate this problem in further studies. During the experiments, PosSt was kept light 

protected at RT. Storage at 4 °C or even -20 °C could show an improvement. Also storage in a 

desiccator under low relative humidity could show an advantage. Keeping this in mind, the 

cytotoxicity data as well as immunogenicity data should be interpreted with care and ideally 

be performed for carriers prepared from newly synthesized starch derivatives. 

 

6.3.4 UPTAKE STUDIES 

Nanoparticles 

In order to evaluate uptake of starch NPs into A549 cells, PosSt was labeled with a green 

fluorescent dye (Bodipy® FL C5 NHS Ester, for synthesis see Chapter 3), following which 

starch NPs were prepared from 0.25 mg/mL solutions in a ratio of 1:1. The size of these 

labeled starch NPs was 145.2 ± 0.1 nm, with a PdI of 0.1, indicating a narrow size 

distribution. The ζ-potential was -26.4 ± 2.8 mV. As a control, A549 cells were grown under 

ALI conditions without treatment. Starch NPs were stable during nebulization (with a slight 

decrease in the ζ-potential, Chapter 4), and were deposited onto A549 cells and further 

incubated for 1 h, 4 h and 24 h at 4 °C or 37 °C. Endocytosis, as an energy-driven uptake 

mechanism, is highly reduced in cells when incubated at 4 °C. If NPs are taken up by the cells 

at 4 °C, it can be concluded that the uptake is not mediated by an energy-dependent 

mechanism. The binding and uptake of starch NPs by A549 cells can be seen in Figure 6.10 as 

z-stacks. Usually, the thickness of the samples is greater than that of a single focal plane. Z-

stacks are created by incrementally stepping through the sample and taking images at different 

focal planes. The advantage of this technique is that the complete sample can be visualized. 
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For this study, the ability to create z-stacks means that NP localization with respect to surface 

binding vs. uptake into cell can be visualized, as indicated in Figure 6.10 as either an arrow 

(extracellular NPs) or arrow head (intracellular NPs).  

Particles (green) showed an uptake already after 1 h of incubation at 37 °C. There was also 

some uptake after 1 h of incubation at 4 °C, although to a lower extent under these conditions, 

suggesting that at least a part of the uptake mechanism is energy dependent, i.e. normally 

occurs by endocytosis. The cell-associated fluorescence as observed at 4 °C could be either 

due to mere binding to the cell membrane or indicate some nonspecific, energy independent 

uptake. Such nonspecific uptake is known for A549 cells, suggesting that this could be a cell-

dependent phenomenon.91 
 

 

Figure 6.10: Confocal laser scanning microscopy (CLSM) images of 250 µl nebulized starch 

NP onto A549 cells, cultivated at the ALI. (A) after 1 h incubation at 37°C; (B) after 1 h 

incubation at 4°C; (C) after 4 h incubation at 37°C; (D) after 4 h incubation at 4°C; (E) after 

24 h incubation at 37°C; (F) A549 without treatment, incubated at 37°C.  Cells were washed 

with PBS, fixed with 3% PFA and stained. Blue: DAPI; red: actin; green: starch NP; scale bar: 

10 µm; arrow: extracellular NPs; arrow head: intracellular NPs; (n=2).  
 

To investigate this possibility further, the interaction of starch NPs with 16HBE14o- cells, a 

cell line generated by transformation of normal human bronchial epithelial cells that does not 

show carcinoma-like properties,210, 211 was also tested at 37 °C. The size of starch NPs in this 
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case was 114.6 ± 2 nm, with a PdI of 0.12 and a ζ-potential of -28.1 ± 0.6 mV. The results of 

this study can be found in Figure 6.11. No particle uptake was seen after 1 h of incubation. 

However, after 4 h and 24 h of incubation, particles could be internalized. In this case, the 

confocal microscopy analysis provides qualitative data only - uptake amount should not be 

compared between the two cell types since the particle batch and the instrument settings (e.g. 

laser power) were not identical. From the images it seemed that the uptake into A549 was 

more pronounced; however, the experiment on the 16HBE14o- cells was only performed 

once, and it is suspected that the result may be influenced by a problem with the level of 

particle fluorescence, as an A549 cells experiment was run in parallel and showed the same 

effect. Nevertheless, an interaction of starch NPs with non-cancer pulmonary cell lines could 

be suggested. 
 

 
Figure 6.11: CLSM images of 250 µl nebulized starch NP onto 16HBE14o- cells, cultivated 

at the ALI at 37 °C. (A) after 1 h incubation; (B) after 4 h incubation; (C) after 24 h 

incubation; (D) control; cells were washed with PBS, fixed with 3% PFA and stained. Blue: 

DAPI; red: actin; green: starch NP; scale bar: 10 µm. 
 

In summary, starch NPs were able to be internalized by A549 cells, and, from a preliminary 

study also potentially taken up by cells of a non-cancer cell line, 16HBE14o-. Thus, NPs 

should be able to be internalized once released from the microparticles following lung 

deposition. 
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Microparticles 

To investigate the uptake of starch NPs when applied as dry powder formulation, 

microparticles (Starch_manni 1:20) were deposited on A549 cells with the PADDOCC (10 mg 

per capsule). The uptake was studied after 1 h, 4 h and 24 h of incubation at 37 °C and can be 

found in Figure 6.12. Compared to the starch NP uptake on A549 cells, fewer particles can be 

found for the application of the microparticles. This is reasonable, due to the fact that only 

1:20 of the microparticles consisted of starch NPs and that only a limited amount of the 

applied fraction reached the cells after deposition with the PADDOCC. Nevertheless, particles 

can be found already after 1 h of incubation, suggesting that the microparticles were rapidly 

dissolved, releasing the starch NPs. Also after 4 h and 24 h of incubation, particles were 

internalized. In contrast to the direct application of starch NPs, where NPs could be found 

throughout the sample, microparticles were not homogenously distributed, but rather showed 

some high deposition and low deposition spots.  
 

 

Figure 6.12: CLSM images of Starch_manni 1:20 deposited with the PADDOCC (10 mg per 

capsule) onto A549 cells, cultivated at the ALI at 37 °C. (A) after 1 h incubation; (B) after 4 h 

incubation; (C) after 24 h incubation; (D) control; cells were washed with PBS, fixed with 3% 

PFA and stained. Blue: DAPI; red: actin; green: starch NP; scale bar: 10 µm. 
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6.4 CONCLUSION 

The cytotoxicity screening on A549 cells revealed that positively charged materials were 

more toxic, compared to negatively charged materials. NegSt, however, showed a higher 

tolerance compared to TPP, probably due to the effect of TPP on osmolality. On A549 cells, 

starch NP formulations showed a decrease in cell viability with increasing PosSt amount, thus 

a final formulation consisting of a molar ratio of 1:1 (PosSt: NegSt) was chosen. Additionally, 

starch NPs were comparable or better than the standard CS formulation. This behavior was 

different for the cytotoxicity on THP-1 cells, where CS NPs showed an advantageous 

behavior after an incubation of 4 h. Following 24 h of incubation, however, it was revealed 

that both particle types showed more or less comparable effects. Cytotoxicity testing of 

microparticles under LCC revealed a detrimental effect of manni samples, independent of the 

NP formulation. However, this effect was not pronounced under ALI conditions. It could be 

suggested that Calu-3 cells were less sensitive than A549 cells, due to their longer doubling 

time, thus leading to a lower endocytic uptake of particles per unit time.  

Immunogenicity data indicated that the starch delivery system was more immunogenic 

compared to the CS NPs, thus not suitable for application in vivo. However, CS NPs often 

interfered with the assay, due to presumed binding of the agonist to CS NP surfaces, meaning 

that an accurate analysis of the results was not possible. Additionally, results obtained from 

the endotoxin assay suggested that the observed apparent immunogenicity of the starch 

system could be due to suboptimal storage conditions of PosStα, leading to incorporation of 

immunogenic endotoxin impurities. It could be shown that the endotoxin concentration was 

independent of the degree of substitution of PosSt and also that the closer the starch derivative 

synthesis was to the performed endoLISA experiment, the lower the found endotoxin 

concentration. An alternative could therefore be the use of newly synthesized PosSt 

derivatives for DDS and additional cytotoxicity and immunogenicity screenings, or the 

removal of endotoxin impurities. The latter is challenging, as endotoxins are heat resistant, 

meaning that samples must be stored at 200 °C for at least 4 h or treated with 1 M NaOH in 

order to facilitate endotoxin removal. An alternative approach could be the application of 

EndoTrap® from Hyglos, which is a chromatography based method for endotoxin removal. In 

comparison to starch derivatives, CS and its formulation did not show any endotoxin 

impurities, due to the fact that the material was bought in high quality from Novamatrix, who 

also guaranteed a very low content of endotoxins. These findings show, how important a 

detailed material characterization is, with regards to material purity and presence of 
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impurities, especially with respect to new materials that cannot be bought from a 

manufacturer.  

The uptake of starch NPs after aerosolization onto A549 cells and 16HBE14o- cells indicate 

that starch NPs could be suitable for intracellular protein/peptide delivery. Also the 

application of the dry powder formulation led to an uptake of starch NPs in A549 cells that 

was already visible after 1 h of incubation, demonstrating that the microparticles were able to 

quickly dissolve and release the NPs.  

In a next step, intracellular protein/peptide delivery by loaded starch NPs should be evaluated, 

as well as a competitive particle uptake between macrophages and epithelial cells. Results of 

those experiments are included in the thesis A new cell line-based coculture model of the 

human air-blood barrier to evaluate the interaction with aerosolized drug carriers by 

Stephanie Kletting. 
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 7.  SUMMARY AND OUTLOOK 

 

Protein and peptide delivery is a demanding task. The pulmonary route of administration in 

particular, requires special attention regarding formulation strategy and a good knowledge of 

the used materials, in order to facilitate effective delivery of proteins and peptides. 

The aim of this thesis was focused on the development of a novel nanotechnology enabled 

DDS suitable for pulmonary protein and peptide delivery, using novel excipients. 

In this context, the synthesis and characterization of starch derivatives was performed, 

including an optimization of product purification performed by precipitation of the material, 

as well as introducing an alternative coupling agent, DMTMM. 

NP preparation from synthesized starch derivatives via charge mediated coacervation in 

aqueous medium was successfully performed, offering a mild preparation method for loading 

with proteins and peptides. This procedure was seen to be most successful for NP loading 

with vanco, with an EE of ~43% and a LR of ~23% obtained in this case. No organic 

solvents, no harsh preparation conditions, and no additional excipients, e.g. for stabilization 

purposes, had to be used for such NP preparation. 

A carrier system for the delivery of NPs to the deep lung was further developed. The market 

situation shows that APIs for inhalation are usually applied as physical mixture with larger 

carrier particles acting as a vehicle for deep lung deposition. This often results in a high 

fraction of particles that do not reach the lung, as de-agglomeration in the air-stream is 

required. The developed carrier system instead consists of a fast dissolving carrier matrix with 

aerodynamic properties, suitable for deep lung deposition, which incorporates the NPs and 

facilitates a fast NP release in the deep lung.  

In vitro experiments revealed opportunities but also drawbacks of the developed DDS. It 

could be shown that starch NPs applied without but also with the microparticle carrier system 

were able to be taken up by alveolar epithelial cells (A549), ensuring an intracellular delivery 

of the cargo. However, immunogenicity data revealed a contamination with endotoxins, 

which could to a certain extent also explain the obtained cytotoxicity data.  

In summary, these findings underline the close interplay between knowledge of the material 

used for drug delivery preparation, and in vitro testing approaches, in addition to the 

development of a suitable DDS for APIs from a technological viewpoint. Additionally, in the 

case of proteins and peptides as API, a sound knowledge of their characteristics is also 

necessary.  



113 

 

Although a few questions could be answered in the current work, several open questions still 

remain and could form the basis of future work. In the course of material synthesis an 

alternative coupling reagent was found in DMTMM, and an improvement in the purification 

method could be shown; however, scalability from milligram to gram, and further to 

kilogram, is of interest from an industrial point of view. Furthermore, although a possible 

explanation for the apparent immunogenicity of the system was found – namely, 

contamination with endotoxins – the application of different elimination techniques (e.g. with 

EndoTrap®) followed by further evaluation with the endoLISA are of importance to 

substantiate this hypothesis. Cytotoxicity and immunogenicity data should also be repeated in 

conjunction with such investigations. 

NP preparation and loading was successful with model proteins. The loading with an actual 

disease-relevant cargo with subsequent efficacy testing is however of interest. The release 

kinetics of such a cargo from NPs could be investigated.  

The microparticles (and especially Starch_manni) showed a high degree of deposition in the 

deep lung, and a considerable uptake of starch NPs, when deposited as dry powder 

formulation. However, release studies of the NPs in lung relevant medium (e.g. simulated 

lung fluid) as well as real-time imaging of the dissolution of the microparticles on pulmonary 

epithelial cells are of interest. Further, particle uptake by epithelial cells vs. macrophages 

should be evaluated (e.g. with a co-culture model). 
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8.  LIST OF ABBREVIATIONS 

 

ALI air-liquid-interface 

ANOVA analysis of variance 

API active pharmaceutical ingredient 

AT-I alveolar type I cell 

AT-II alveolar type II cell 

BCA bicinchoninic acid 

BMDC murine bone marrow-derived dendritic cells 

BSA bovine serum albumin 

CLSM confocal laser scanning microscopy 

COMPACT collaboration on the optimization of macromolecular pharmaceutical access to 

cellular targets  

CS chitosan 

DAPI 4‘,6-diamidin-2-phenylindol 

DCC N,N’-dicyclohexylcarbodiimide  

DDS drug delivery system 

DLS dynamic light scattering 

DMSO dimethyl sulfoxide 

DMTMM 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride 

DPI dry powder inhaler 

DSMZ  Deutsche Sammlung von Mikroorganismen und Zellkulturen 

EE encapsulation efficiency 

efpia European Federation of Pharmaceutical Industries and Association 

EMA European Medicines Agency 

FACS fluorescence-activated cell sorting 

FBS fetal bovine serum 

FDA (US) Food and Drug Administration 

FPF fine particle fraction 

FT-IR fourier transform infrared spectroscopy 

GPC gel permeation chromatography 

GRAS generally recognized as safe 

GSD geometric standard deviation 
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HBSS  Hank’s balanced salt solution 

HOBt 1-hydroxybenzotriazole 

hTLR human toll-like receptor 

IEP isoelectric point 

IMI Innovative Medicines Initiative 

IPF idiopathic pulmonary fibrosis 

lact lactose 

LCC liquid covered condition 

LPS lipopolysaccharide 

LR loading rate 

Lyso lysozyme 

manni mannitol 

MDI metered dose inhaler 

MEM minimum essential medium eagle 

MMAD mass median aerodynamic diameter 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

FluNa sodium fluorescein 

NaOCl sodium hypochlorite 

NCS nanotoxicology classification system 

NEAA non-essential amino acids 

NegSt negatively charged starch derivative 

NGI next generation impactor 

NMR nuclear magnetic resonance 

NP nanoparticle 

OVA ovalbumin 

PADDOCC pharmaceutical aerosol deposition device on cell culture 

PBS phosphate buffered saline 

PdI polydispersity index 

PFA paraformaldehyde 

PosSt positively charged starch derivative 

PTA phosphotungstic acid 

RNAse A ribonuclease A  

RPMI Roswell Park Memorial Institute (cell culture medium) 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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SEAP secreted embryonic alkaline phosphatase 

SEM scanning electron microscopy 

TEM transmission electron microscopy 

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl 

TPP sodium tripolyphosphate 

treha trehalose 

vanco vancomycin  

XRPD x-ray powder diffraction  
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