
Modeling and Verification of Reconfigurable

Discrete Event Control Systems

Dissertation

zur Erlangung des Grades

der Doktorin der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultät II

- Physik und Mechatronik -

der Universität des Saarlandes

and

in Partial Fulfillment of the Requirements

for the Joint Ph.D Degree in

Mechatronic Engineering at

XIDIAN UNIVERSITY

by

Jiafeng Zhang

Saarbrücken, Germany / Xi’an, Shaanxi, P. R. China

2015

Tag des Kolloquiums: 31.07.2015

Dekan: Prof. Dr.-Ing. Georg Frey

Mitglieder des

Prüfungsausschusses: Prof. Dr. Fernando Tricas García (Vorsitz)

Prof. Dr.-Ing. Georg Frey (Gutachter)

Prof. Dr.-Ing. Hans-Michael Hanisch (Gutachter)

Prof. Dr. rer. nat. Helmut Seidel (weiteres Mitglied)

Meng Qin (akademischer Beisitz)

Abstract: Most modern technological systems rely on complicated control technologies,

computer technologies, and networked communication technologies. Their dynamic behavior

is intricate due to the concurrence and conflict of various signals. Such complex systems are

studied as discrete event control systems (DECSs), while the detailed continuous variable

processes are abstracted. Dynamic reconfigurable systems are the trend of all future

technological systems, such as flight control systems, vehicle electronic systems, and

manufacturing systems. In order to meet control requirements continuously, such a dynamic

reconfigurable system is able to actively adjust its configuration at runtime by modifying its

components, connections among components and data, while changes are detected in the

internal/external execution environment. Model based design methodologies attract wide

attention since they can detect system defect earlier, increase system reliability, and decrease

time and cost on system development. An accurate, compact, and easy formal model to be

analyzed is the first step of model based design methods. Formal verification is an expected

effective method to completely check if a designed system meets all requirements and to

improve the system design scheme. Considering the potential benefits of Timed Net

Condition/Event Systems (TNCESs) in modeling and analyzing reconfigurable systems, this

dissertation deals with formal modeling and verification of reconfigurable discrete event

control systems (RDECSs) based on them.

Keywords: Reconfigurable system, Discrete event system, Modeling, Verification, Petri nets.

Kurzfassung: Die meisten modernen technologischen Systeme benötigen aufwändige

Steuerungs-, Rechner- und Kommunikationstechnologien. Aufgrund von Nebenläufigkeit und

Konflikten ergibt sich ein kompliziertes dynamisches Verhalten. Derartige komplexe Systeme

werden dadurch untersucht, dass man sie als ereignisdiskrete Steuerungssysteme (Discrete

Event Control Systems, DECSs) betrachtet und dabei die detaillierten unterlagerten

kontinuierlichen Prozesse abstrahiert. Um die Anforderungen an die Steuerung durchgängig

erfüllen zu können adaptieren sich dynamische rekonfigurierbare Systeme zur Laufzeit durch

Modifikation ihrer Komponenten, deren Verbindungen untereinander und der gespeicherten

Daten, sobald Änderungen in der internen oder externen Umgebung festgestellt werden.

Beispiele für dynamische Rekonfigurierbare Systeme finden sich in der Luftfahrt, im

Automobilbereich aber auch in Fertigungssystemen. Modellbasierte Entwicklungsmethoden

erfreuen sich zunehmender Beliebtheit, da sie es erlauben Fehler früher im Entwicklungs-

prozess aufzudecken und damit zu höherer Systemverfügbarkeit bei verkürzter

Entwicklungszeit führen. Ein formales Modell des Systems bildet hierbei den ersten

wichtigen Schritt. Durch formale Verifikation kann dieses Modell effektiv und vollständig

überprüft und ggf. verbessert werden. Eine geeignete Modellform hierfür sind Timed Net

Condition/Event Systems (TNCESs). Die vorliegende Dissertation befasst sich mit der

Anwendung von TNCES zur Modellierung und Verifikation rekonfigurierbarer

ereignisdiskreter Steuerungssysteme (RDECSs).

Schlüsselworte: Rekonfigurierbare Systeme, Ereignisdiskrete Systeme, Modellierung,

Verifikation, Petrinetze.

摘要: 现代技术系统大多依赖于复杂控制技术、计算机技术和网络通信技术。由于信号

并发、冲突等的存在，导致系统的动态行为错综复杂。因此，往往将这些系统抽象为离

散事件控制系统来研究。动态可重构系统是未来复杂技术系统的趋势，如安全关键的核

电系统、飞控系统和普通的汽车电子系统、自动化制造系统等。这种系统可以根据系统

内、外执行环境的变化，如部分组件故障、网络阻塞、未知干扰、用户请求等，主动地修

改当前构型的部分组件、组件间连接关系和数据等，使当前构型在线地转变为另一种构

型，从而保证系统能够持续地满足控制需求。基于模型的设计方法能够较早发现复杂技

术系统的设计缺陷、提高系统的可靠性、缩短开发系统所耗费的时间，因此被广泛地关

注和应用。一个准确、简洁且易于分析的系统形式化模型是基于模型设计方法的第一步

。形式化验证是一种能够全面测试被设计的系统是否满足需求和改进系统设计方案的一

种有力措施。考虑到Timed Net Condition/Event Systems (TNCESs)在分析可重构系统方面

的诸多潜在优势，本文研究的主要内容就是基于TNCESs的可重构离散事件控制系统的

形式化建模与验证。

关键词：可重构系统、离散事件系统、建模、验证、Petri网

ABSTRACT

ABSTRACT

Most modern technological systems rely on complicated control technologies, computer

technologies, and networked communication technologies. Their dynamic behavior is intri-

cate thanks to the concurrence and conflict of various signals. Such complex systems can

be studied as discrete event control systems (DECSs) by ignoring their detailed continuous

variable processes. Dynamic reconfigurable systems are a trend of all future technological

systems, not only limited to safety-critical high-end systems like nuclear control systems

and flight control systems, but also other systems like vehicle electronic systems, manufac-

turing systems, etc. In order to meet control requirements continuously, such a dynamic

reconfigurable system is expected to be able to actively adjust its configuration at runtime

by modifying its components, connections among components, and data, while changes are

detected in the internal/external execution environment. These changes include faults of

partial components, blocking on communication networks, unknown disturbances, and user

requirements. Model based design methodologies attract wide attention since they can de-

tect system defect earlier during the system design stage, increase system reliability, and

decrease time cost on system development. An accurate, compact, and easily to be analyzed

formal model is the first step of model based design methods. Based on this, formal verifi-

cation is an expected effective method to completely check if a designed system meets all

requirements and to improve a system design scheme. This dissertation deals with formal

modeling and verification of reconfigurable discrete event control systems (RDECSs).

The formalism Net Condition/Event System (NCES) is a modular extension of Petri nets.

Its clear modularity fits the modeling requirements of RDECSs. This dissertation studies

three possible reconfiguration scenarios of an NCES. They are the modification of places,

transitions, and initial markings, respectively. Accordingly, an NCES based nested state

machine is developed to cope with their implementation. The correctness of the final NCES

model is checked by the software SESA, where the functional properties are specified by

Computation Tree Logic (CTL) and its extension extended CTL (eCTL).

It is found that the direct modeling of RDECSs by using NCESs may greatly burden the

subsequent verification. To this end, a new formalism Reconfigurable Timed Net Condi-

tion/Event System (R-TNCES) is proposed. An R-TNCES is composed of a control module

and a behavior module. The behavior module is a set of superposed Timed Net Condi-

tion/Event Systems (TNCESs). The control module is a set of reconfiguration functions.

I

Doctoral Dissertation of XIDIAN UNIVERSITY

These reconfiguration functions control the switching among TNCESs in the behavior mod-

ule. Furthermore, considering the similarity among TNCESs of the behavior module, a

level-by-level verification method is developed to control the verification complexity of an

R-TNCES.

Consistency is one of the most important properties of distributed reconfigurable systems.

This dissertation develops a novel coordination method for such systems. All reconfigurable

subsystems are modeled by R-TNCESs. A virtual coordinator is built and a communication

protocol among it and the subsystems is applied. Such a method has two benefits: 1¤an

optimal global reconfiguration scenario is obtained and 2) the number of exchanged mes-

sages is reduced. All reconfiguration processes are verified with the help of SESA, where

functional and temporal properties are specified by CTL, eCTL, and Timed CTL (TCTL).

Finally, in order to analyze the detailed system behavior during dynamic reconfiguration

processes of RDECSs. This dissertation further extends the R-TNCES formalism. Reconfig-

uration functions are newly assigned with action ranges and concurrent decision functions.

In addition, the firing rules of events are updated such that the concurrence of reconfigura-

tion events and normal events are conditionally allowed. Similarly, to check the correctness

of the extension, SESA is applied. A reconfigurable and energy-efficient vehicle assembly

line is applied to illustrate all the work of this part.

Keywords: Reconfigurable system, Discrete event system, Modeling, Verification, Petri nets

II

Á�

Á�

y�EâXÚ�õ�6uE,��Eâ!O�ÅEâÚ�äÏ&Eâ"du�«

&Ò¿u!Àâ���3§��XÚ�Ä�1��nE,"Ïd§ òù
XÚÄ

��lÑ¯���XÚ5ïÄ"Ä��­�XÚ´�5E,EâXÚ�ª³§XS�

'��Ø>XÚ!��XÚÚÊÏ�ð�>fXÚ!gÄz�EXÚ�"ù«XÚ�

±�âXÚS!	�1�¸�Cz§XÜ©|��æ!�ä{l!��Z6!̂ r�

¦�§ÌÄ/?U�c�.�Ü©|�!|�më�'XÚêâ�§¦�c�.3�

/=C�,�«�.§l
�yXÚU
±Y/÷v��I¦"Äu�.��O�{

U
�@uyE,EâXÚ��O"�!JpXÚ���5! ámuXÚ¤Ñ¤�

�m§Ïd�2�/'5ÚA^"��O(!{'�´u©Û�XÚ/ªz�.´Ä

u�.�O�{�1�Ú"3dÄ:þæ^/ªz�y�{U
�¡ÿÁ��O�

XÚ´Ä÷vI¦¿�U?XÚ�O�YJø���â"�©ïÄ�Ì�SNÒ´

�­�lÑ¯���XÚ�/ªzï���y"

NCES´Petri���«�¬z*Ð/ªzNX"Ù�ß��¬z(�·Üuï�

�­�lÑ¯���XÚ"�©Äk­:ïÄ
n«ÄuNCES���U�­��

Yµ1�«´é¥¤�?U§1�«´éC[�?U§1n«´éXÚÐ©I£�?

U"�A/§�«ÄuNCES�i@�G�Å�^5©O?nùn«­��Y���

¢�"�ª���XÚ�.��(5d^�SESAu�§Ù¥õUA5dO�äÜ6

9Ù*ÐÜ6£ã"

�Ä���^NCES½öTNCESï��­���XÚ¬��YXÚ�y�5�

�Kú, �©JÑ
�«#�/ªzNXR-TNCES"��R-TNCESd�����¬Ú

��1��¬|¤"Ù¥§1��¬dõ��U�TNCES|¤§���¬d�|­�

¼ê|¤"ù
­�¼ê�â�1�¸�UCgÄ/��1��¬¥�TNCES"d

	§�Ä�R-TNCES¥��TNCES��q5§��©��y��{�J
Ñ5§̂ ±

��éR-TNCES�y�E,5"

�
�y©Ùª�­�lÑ¯���XÚ���5§�©JÑ
�«#��N

�{"XÚ¥�z���­��©XÚÑd��R-TNCES5L«"��J[�Nì

ÚT�Nì��©XÚm�Ï&�Æ�ïáå5?n©XÚm���5¯K"ù«

�{�±��ü��Jµ1)�Ñ�`­��Y§2)~�©XÚm�Ï&þ"d	§�

�yù«�N�{��(5§æ^
ÄuO�äÜ6��.u�Eâ5�y��

XÚ��«1�"

��§�
k�©ÛÄ�­�L§¥�XÚ1�§�©?�Ú*Ð
R-TNCES"

III

Doctoral Dissertation of XIDIAN UNIVERSITY

Äk§3­�¼ê¥N\
�^��Ú¿uûü¼ê"Ùg§é¯�u�5K�
?

U§¦�­�¯�ÚÊÏ¯�U
k^�/¿u"Ó�/§�
�yXÚ��(5§

�©/Ïu^�SESA�¤é*Ð�R-TNCES�/ªz�y"���­�!!U�ð

�C�XÚ�^5`²ù�Ü©ó��`:Úk�5"

'''���cccµµµ�­�XÚ, lÑ¯�XÚ, ï�, �y, Petri�

IV

List of Figures

List of Figures

1.1 General structure of a dynamic reconfigurable control system 2

2.1 A composite module of an NCES . 11

2.2 A screenshot of SESA . 15

3.1 EnAS demonstrator in Halle [1] . 20

3.2 Working process of EnAS . 21

3.3 Policy 1: Production of a tin . 21

3.4 Policy 2: Production of tins with double pieces . 22

3.5 Specification of the reconfigurable EnAS with NCESs 23

3.6 NCES-based modules for automatic reconfigurations of EnAS 27

3.7 Reachability graph of the reconfigurable architecture . 28

4.1 FESTO MPS . 34

4.2 Working process of FESTO MPS . 34

4.3 Control model of Controlchain1 . 36

4.4 Allowed reconfigurations of FESTO MPS. 37

4.5 Controller model of a physical process . 38

4.6 Behavior module of RTNFESTO . 41

4.7 A diagram of a simplified reachability graph of FESTO MPS 45

4.8 Equivalent TNCES model of FESTO’s R-TNCES . 48

4.9 Layers of Light1 . 50

4.10 The composite module CML1
2 . 51

4.11 The composite module CML1
4 . 52

4.12 The composite module CML1
5 . 52

4.13 The reachability graph generated in the 4th step of Light1 53

4.14 The layers of Medium . 55

4.15 Improved verification of Light1 . 58

4.16 Improved verification of 100 steps . 59

5.1 Architecture of a DRDECS . 63

5.2 R-TNCES model of εF . 69

V

Doctoral Dissertation of XIDIAN UNIVERSITY

5.3 R-TNCES model of εE . 69

5.4 Coordinator of εF and εE . 70

5.5 The TNCES model of a distributed reconfiguration process 72

6.1 Default working process diagram of AAS . 80

6.2 Possible reconfigurations in AAS . 82

6.3 TNCES-based model of R3, R4, and W2 in Mode1 . 83

6.4 TNCES-based model of R3, R4, and W2 in Mode4 . 84

6.5 State transition graph of Example 1 . 84

6.6 State transition graph of Example 2 . 85

6.7 A fragment of the reachability graph of Example 3 . 89

6.8 Behavior module of eRNAAS . 90

6.9 Control module of eRNAAS . 92

VI

List of Tables

List of Tables

4.1 Fundamental structure modification instructions of R-TNCESs 42

4.2 State number in the verification of Medium . 58

5.1 Possible reactions of a subsystem . 67

5.2 Comparison of exchanged messages . 76

6.1 Time of robots on their energy-efficient modes . 94

6.2 Energy consumption of robots . 94

VII

Doctoral Dissertation of XIDIAN UNIVERSITY

VIII

List of Symbols

List of Symbols

N An NCES
TN A TNCES
RTN An R-TNCES
p A place of an NCES/a TNCES/an R-TNCES
P A set of places
t A transition of an NCES/a TNCES/an R-TNCES
T A set of transitions
f A flow arc of an NCES/a TNCES/an R-TNCES
F A set of flow arcs
cn A condition signal of an NCES/a TNCES/an R-TNCES
CN A set of condition signals
en An event signal of an NCES/a TNCES/an R-TNCES
EN A set of event signals
V (t) An event-processing mode to t
∨ The event-processing mode AND
∧ The event-processing mode OR
−t The set of all source places of t
•t The set of pre places of t
t• The set of post places of t
•p The set of pre transitions of p
p• The set of post transitions of p
∼t The set of all forcing transitions of t
t∼ The set of all forced transitions of t
m A marking of an NCES/a TNCES
d A clock status of a TNCES/an R-TNCES
m(p) Number of tokens in place p
d(p) Clock position of place p
z = (m, d) A state of a TNCES
m0 An initial marking of an NCES
m(P) The sum of tokens of all places in P
R(N,m0) Reachable set of N from m0

R(N, z0) Reachable set of TN from z0

[R(N,m0), E] Reachability graph of N from m0

N The set of non-negative integers
N+ The set of positive integers
D(z) Delay of state z
[N] The incidence matrix of N
[N]+ The output incidence matrix of N
[N]− The input incidence matrix of N
r A reconfiguration function of an R-TNCES

IX

Doctoral Dissertation of XIDIAN UNIVERSITY

X

List of Abbreviation

List of Abbreviation

DEC Discrete event system
DECS Discrete event control system
RDECS Reconfigurable discrete event control system
RCS Reconfigurable control system
DRCS Dynamic reconfigurable control system
NCES Net condition/event system
TNCES Timed net condition/event system
R-TNCES Reconfigurable timed net condition/event system
PLC Programable logic controller
FMS Flexible manufacturing system
CTL Computation tree logic
eCTL Extended computation tree logic
TCTL Timed computation tree logic
CC Control component
DRDECS Distributed reconfigurable discrete event control system
DDECS Distributed discrete event control system
RMS Reconfigurable manufacturing system
REMS Reconfigurable and energy-efficient manufacturing system
AAS Automatic assembly system

XI

Doctoral Dissertation of XIDIAN UNIVERSITY

XII

Content

Content

ABSTRACT . I

Á� . III

List of Figures . V

List of Tables . VII

List of Symbols . IX

List of Abbreviation . XI

Chapter 1 Introduction . 1

1.1 Study Object . 1

1.2 State of the Art . 5

1.3 Dissertation Organization . 8

Chapter 2 Preliminaries . 11

2.1 Net Condition/Event Systems . 11

2.2 Timed Net Condition/Event Systems . 13

2.3 Model Checking . 15

Chapter 3 Possible Reconfigurations in NCESs . 19

3.1 Motivation . 19

3.2 Experimental Manufacturing Platform . 20

3.3 Specification of Reconfigurable Control Systems . 22

3.4 Reconfiguration of Net Condition/Event Systems . 25

3.5 System Verification . 27

3.6 Summary . 29

Chapter 4 Reconfigurable Timed Net Condition Event Systems 31

4.1 Motivation . 31

4.2 Experimental Manufacturing Platform . 33

4.3 Control Components. 36

4.4 R-TNCESs . 39

4.4.1 Definition . 40

4.4.2 Dynamics of R-TNCESs . 43

4.4.3 Reconfiguration Implementation of R-TNCESs 46

4.5 Verification of R-TNCESs . 48

4.5.1 Verification of the Initial TNCES . 49

XIII

Doctoral Dissertation of XIDIAN UNIVERSITY

4.5.2 Verification of Other TNCESs . 53

4.5.3 Verification of the Control Module . 55

4.5.4 System Correctness . 56

4.5.5 Discussion . 58

4.6 Summary . 59

Chapter 5 Coordination of R-TNCESs . 61

5.1 Motivation . 61

5.2 Reconfigurable Coordination of a DRDECS . 62

5.2.1 Specification of a DRDECS . 63

5.2.2 Reconfigurable Coordination of a DRDECS . 64

5.3 Modeling of DRDECSs. 67

5.3.1 Benchmark Production System. 68

5.3.2 Formal Models . 68

5.4 SESA based Verification of DRDECSs. 72

5.5 Discussion . 74

5.6 Summary . 76

Chapter 6 Extended R-TNCESs . 77

6.1 Motivation . 77

6.2 Reconfigurable and Energy-efficient Manufacturing Systems 78

6.2.1 System Specification . 79

6.2.2 Running Example . 80

6.3 Extended R-TNCESs . 82

6.3.1 Drawbacks of R-TNCESs . 82

6.3.2 Extended R-TNCESs . 86

6.4 Verification of Extended R-TNCESs . 90

6.4.1 Implementation of Extended R-TNCESs . 91

6.4.2 Formal Verification of AAS . 93

6.5 Summary . 95

Chapter 7 Conclusion . 97

7.1 Contribution . 97

7.2 Discussion and Future Works . 99

7.2.1 Discussion . 99

7.3 Future Work . 100

Reference . 101

XIV

Content

Acknowledgement . 109

XV

Doctoral Dissertation of XIDIAN UNIVERSITY

XVI

Chapter 1 Introduction

Chapter 1 Introduction

Dynamic reconfigurability is an expected property of all future technological systems

since it can increase system flexibility and reliability and decrease time cost in developing

new products. These technological systems are man-made and rely on complex automatic

control technologies. They are always studied as discrete event control systems (DECSs).

This thesis reports modeling and verification of reconfigurable DECSs (RDECSs) based on

the formalism Net Condition/Event System (NCES). The NCES is a modular extension of

well-known Petri nets. As the beginning of a dissertation, this chapter introduces the study

object, state of the art on the topic, and the organization of this dissertation.

1.1 Study Object

With the trend of globalization, troublous market demands, aggressive competition on

a global scale, and rapid changes in process technologies stress enterprises. To remain com-

petitiveness, their manufacturing systems or product systems relying on complex control

techniques should meet a new requirement: RECONFIGURABILITY.

A control system with the property of reconfigurability is called a reconfigurable con-

trol system (RCS). An RCS is modular and extensible both in its plant and controller. Es-

sentially, it should offer several different but similar configurations in order to meet control

requirements in various internal or external conditions. In addition, it should have the ability

to change its current configuration due to changed inner/outer environment easily. There

are two types of reconfigurations: static and dynamic. The former is always applied off-

line before system cold starts. Whereas, the latter is applied automatically at run-time [2].

General aims of a static reconfiguration is to update physical equipments or to integrate new

techniques in order to largely improve or modify the original system. However, aims of a

dynamic reconfiguration are fault-tolerance or to actively adjust system behavior according

to changed environment or user requirements. Generally, a dynamic reconfiguration is a

major or minor change to the current configuration but not a change to the system. This

dissertation focuses on dynamic reconfigurations.

In fact, the idea of dynamic reconfigurable systems emerged earlier. Historically, from

the viewpoint of practical applications, a significant amount of studies on dynamic RCSs

were motivated by aircraft flight control systems for the purpose of fault-tolerance [3]. The

1

Doctoral Dissertation of XIDIAN UNIVERSITY

goal, therein, was to provide self-repairing capability in order to ensure a safe landing in

the event of severe faults in the aircraft. Such efforts have been stimulated partially by two

commercial aircraft accidents in the late 1970s [4].

A recent study provides another evidence for the need of reconfigurable control. It

shows that the fatal crash of EL AL Flight 1862 of a Boeing 747-200F freighter could have

been avoided if reconfigurable technologies could be applied. Therefore, a system for aiding

pilots by providing automatic fault accommodation is highly desirable for both civil and

military aircrafts. In safety-critical nuclear power industries, interests in diagnosis and fault-

tolerant control of nuclear power plants have been intensified since the Three Mile Island

incident and the tragedy at the Chornobyl nuclear power plant on April 26, 1986. Similar

research works had increased progressively since the initial research on reconfigurable (or

restructurable) control and self-repairing flight control systems began in the early 1980s [5],

[6], [7].

More recently, with the development of communication technologies and computer sci-

ence, dynamic reconfigurability has begun to draw more and more attention in a wider range

of industrial and academic communities, due to increased safety and reliability demands be-

yond what a conventional control system can offer. Dynamic reconfigurable systems are no

longer limited to high-end systems such as aerospace and nuclear power systems. Common

products, such as automobiles, are increasingly dependent on microelectronic/mechatronic

systems, onboard communication networks, and software, requiring new techniques for

achieving dynamic reconfigurability. The objectives of dynamic reconfigurations are not

limited to fault tolerance but also to actively adjust system configurations to adapt to fre-

quently changed user requirements or environment.

Modular PlantAuctuators Sensors

Change

Dectection and

Diagnosis

Reconfiguration

Mechanism

Reconfigurable

Feedback

Controller

Reconfigurable

Feed forward

Controller

Command

Governor

Actuator

Faults

Plant Faults or

Environment change Sensor

Faults
User

Requirement

Fig 1.1 General structure of a dynamic reconfigurable control system

Several review/survey papers on dynamic reconfigurable control systems (DRCSs) have

appeared since the 1990s [8], [9], [10]. To summarize, a typical DRCS can be divided into

2

Chapter 1 Introduction

four parts as shown in Fig. 1.1: (1) a modular plant, (2) a reconfigurable controller, (3)

a change (disturbances, faults, or user requirements) detection and diagnosis module, and

(4) a controller reconfiguration mechanism. In the change detection and diagnosis mod-

ule, any change such as inside faults and outside environment changes should be detected

and isolated as quickly as possible. Furthermore, changed parameters, system state/output

variables, and post system models before the detected change need to be estimated on-line

in real-time. After that, the reconfigurable controller should be reconfigured automatically

to maintain stability, desired dynamic performance and steady-state performance. In addi-

tion, in order to ensure the performance of a closed-loop system, a reconfigurable feedfor-

ward controller often needs to be synthesized. To avoid potential actuator saturation and to

take into consideration the degraded performance after the occurrence of changes, a com-

mand/reference governor may also need to be designed to adjust command input or reference

trajectory automatically.

The system performance of a DRCS can be evaluated by the transient and the steady-

state performance. Here, the transient performance indicates the system performance when

the system is in a dynamic reconfiguration process. Whereas, the steady-state performance

indicates the system performance when the system is under normal operations, i.e., it is

working within a particular configuration. It is important to point out that the emphasis on

system behaviors in these two modes of operation can be significantly different. During

normal operations, more emphasis should be placed on the system quality of service. In

the presence of a fault or a reconfiguration requirement, however, the problem how the sys-

tem can perform correct behavior during finite time with an acceptable (probably degraded)

performance, becomes a predominant issue.

Due to historical reasons and the complexity of the problem, most of the research on

fault detection and diagnosis and reconfigurable control was carried out as two separate

entities. More specifically, most existing fault diagnosis and identification techniques are

developed as diagnostic or monitoring tools, rather than an integral part of a DRCS [4].

This dissertation focuses on the reconfigurable control part. The whole work is carried

out by assuming the availability of perfect fault diagnosis and identification techniques and

communication techniques among the controller, the plant, and these fault diagnosis and

identification modules.

It is common that many modern technological systems can be considered as discrete

event systems (DESs). Since 1980s, the development of programable logic controllers

(PLCs), computer science and technologies, communication technologies, and sensor tech-

3

Doctoral Dissertation of XIDIAN UNIVERSITY

nologies has augmented new man-made dynamic systems, mostly technological and often

highly complex. Examples around us are air traffic control systems, automated manufac-

turing systems, computer and communication networks, embedded and networked systems,

and software systems. These complicated systems have a common property that they are

governed by operational rules designed by humans and their dynamic behavior can be rep-

resented as sequences of discrete states if detailed continuous dynamic behavior is ignored.

The system states change over time but are driven by discrete events rather than time.

A DES is causal, dynamic, asynchronous, and logical. A DES intentionally ignores

some of the system characteristics, specifically, those time-varying detailed continuous pro-

cesses. However, orders of transient behavior, named events, such as starting or ending a

time-varying continuous process are considered in attempting to meet the particular perfor-

mance specifications. As a result, the evolution of DESs is always described by interactions

of discrete events. A discrete event control system (DECS) is a DES, where both the plant

and the controller are DESs. The state change of a DECS should follow specified state

trajectories or should be always within a specified state area.

It is difficult or improper to describe the dynamic behavior of a DECS by differential

or difference equations. Although, some DECSs can be modelled by nonlinear differential

or difference equations, the equations are too complex to perform the subsequent system

analysis. Therefore, researchers find and propose special tools for DECSs. Typical mathe-

matical analysis tools for DECSs are graph theory [11], temporal logic [12], Petri nets [13],

automata [14], as well as some new formalisms [15], [16], [17], [18], [19], [20], [21] based

on them. There have been rich studies on DECSs especially after the advent of supervisory

control theory of DES that was originated by Ramadge and Wonham in 1987 [22].

A reconfigurable discrete event control system (RDECS) is a DECS. As a reconfig-

urable system, the controller of an RDECS is required to be reconfigurable. Whether or not

the reconfigurable controller can be rapidly reconfigured impacts the straightforward perfor-

mance of the whole system [23]. An RDECS has several different but similar configurations.

Each of these configurations is a DECS and has its own state-space. The reconfigurable

controller will decide which configuration can be activated to meet control requirements in

changed external/internal conditions. The most important problem is that, the reconfigurable

controller should also deal with the dynamic reconfiguration processes, i.e., the switching

processes from one configuration to another configuration, to guarantee the correctness and

safety of the whole system.

Developing a new RDECS typically includes the following tasks: requirements, mod-

4

Chapter 1 Introduction

eling, control design, code generation, implementation, hardware-in-the-loop simulation,

commissioning, operation, and reconfiguration. Validation, verification and testing are in-

serted between the different tasks since it is expensive to find errors late in the design process.

Obviously, models are key elements of the procedure. The advantage of using models is that

fewer prototypes have to be built. This dissertation focuses on modeling and verification of

RCSs by considering them as RDECSs.

1.2 State of the Art

In order to perform accurate analysis and to improve the system performance of an

RDECS, a proper mathematical model is the first critical step. Petri nets [24] are a popular

and widely used mathematical tool for handling fault detection and control problems in

DECSs. For example, in flexible manufacturing systems (FMSs), Petri net techniques are

used to cope with deadlock control problems [25], [26], [27], [28] and fault diagnosis [29],

[30].

The formalism Net Condition/Event System (NCES) [21] is an extension of Petri nets,

which was first introduced by Rausch and Hanisch in 1995 [31] for modeling of real-world

industry control systems. NCESs have been greatly developed in recent years, especially

in the research work about IEC61499 as well as the corresponding applications [32], [33].

NCESs support the way of thinking and modeling a system as a set of modules with par-

ticular dynamic behavior and their interconnections via signals. The extra condition/event

signals and the non-interleaving semantics, i.e., the possibility of firing several transitions

simultaneously, make it more powerful than Petri nets in modeling distributed processes

and their interactions [34]. The NCES formalism is enriched to Timed Net Condition/Event

System (TNCES) by assigning a time interval to each output flow arc. Specially, each place

bears a clock which is running if the place is marked. All running clocks run at the same

speed measuring the time while the token state of its place remains unchanged. The self-

modularity of the TNCES formalism potentially coincides with the modularity of RDECSs.

However, the same as Petri nets, the TNCES formalism is for systems that cannot be recon-

figured and the behavior such as the modification of places, transitions, arcs, condition/event

signals, and initial markings cannot be described directly.

Recently, many researchers have tried to deal with the modeling of control systems

with potential reconfigurations. They focus primarily on two directions: direct and indirect.

Direct methods offer reconfiguration mechanisms or specific rules coping with system struc-

ture modifications, whereas indirect methods usually import extra mechanisms to describe

5

Doctoral Dissertation of XIDIAN UNIVERSITY

system reconfigurations.

Valk develops self-modifying nets [35] that can modify their own firing rules such that

the computational power of ordinary Petri nets is increased. Guan and Lim develop recon-

figurable Petri nets (RPN) [36] as a modeling formalism for auto-modified multimedia and

execution protocols, where a special place called a modifier was proposed to deal with the

reconfiguration behavior. Llorens and Oliver propose net rewriting systems [37] that extend

the basic model of Petri nets, making possible the description of dynamic changes in con-

current systems. Their work is improved in [38] by classifying net blocks according to their

interfaces in order to guarantee the correctness of a reconfigurable Petri net such as bound-

edness and liveness. Almeida et al. [39] develop an event-condition-action (ECA) paradigm

for the design of reconfigurable logic controllers. Their study shows that the reconfigura-

bility is highly dependent on the level of modularity of the logic control system, and that

not all “modular” structures are reconfigurable. Wu and Zhou [40] present intelligent token

Petri nets (ITPN). In their model, tokens representing job instances carry real-time knowl-

edge about system states and changes just like smart cards in practice such that dynamical

changes of a system can be easily modeled. All these formalisms can describe the sys-

tem’s reconfiguration behavior. However, some of them do not clearly define the modularity

which brings complexity in designing, understanding, and future redevelopment. The sys-

tem’s correctness such as coherence of states before and after system reconfigurations is not

considered. Moreover, temporal constraints that are of great importance are not mentioned.

Sampath et al. [41] define a reconfiguration method for a class of discrete event sys-

tems (DESs) that are subject to linear constraints as their control specifications. This method

is suitable for non real-time reconfigurable systems such as hospital management systems.

Dumitrache et al. [42] propose a real-time reconfigurable supervised control architecture for

large-scale manufacturing systems in order to evaluate and improve the performance of the

control architecture. Ohashi and Shin [43] develop a model-based control design for re-

configurable manufacturing systems by using state transition diagrams and a general graph

representation, taking the reconfiguration and reuse of design data into account. Kalita and

Khargonekar [44] define a hierarchical structure and a framework for modeling, specifi-

cation, analysis, and design of logic controllers for reconfigurable manufacturing systems

(RMSs), which allows reusability and rapid reconfigurability of the controller while the

machining system is reconfigured. Liu and Darabi [45] develop a discrete event controller

based on finite automata, which can be reconfigured by a mechanism called mega-controller,

as responses to local sensor failures. In the literature, some other methods also offer the de-

6

Chapter 1 Introduction

scriptions of complex dynamic systems, such as the mobile nets [46] and holonic systems

[47], [48]. These studies have tried to describe the reconfigurability and to reflect the charac-

teristics of RDECSs. Nevertheless, some of them do not consider the temporal constraints.

Most of them cannot ensure the correctness or validity especially the coherence of states

in an RDECS. None of them deal with the reconfigurations based on the TNCES formal-

ism. Furthermore, most of the indirect methods cannot represent an RDECS in a compact

manner.

The consistency during a reconfiguration is one of the most important required prop-

erties of an RDECS. Several research works have been done in recent years, which define

inter-agent communication protocols for the coordination of various components in an RCS

[49], [50], [51]. The authors of [52] develop KB-ORG that is a fully automated, knowledge-

based organization designer for multi-agent systems. It uses both application-level and

coordination-level organization design knowledge to explore the combinatorial search space

of candidate organizations selectively. This approach significantly reduces the exploration

effort required to produce effective designs. The studies of [53] and [54] propose a coop-

erative mediation based negotiation protocol, called asynchronous partial overlay (APO).

It allows the agents to extend and overlap the context that they use for making their local

decisions. This variable based decomposition technique allows for rapid distributed asyn-

chronous problem solving without the explosive communications overhead normally associ-

ated with this decomposition technique. The work in [55] develops a collaborative network

for atmospheric sensing (CNAS), which is an agent-based, power-aware sensor network for

ground-level atmospheric monitoring. CNAS agents must have their radios turned off most

of the time, as even listening consumes significant power. All these communication modes

are effective in their application fields. However, the rate of exchanged messages is an im-

portant criterion in order to guarantee an acceptable level of satisfaction and robustness [50],

[51]. A multi-agent architecture is proposed in [56] to deal with the coherence of distributed

devices, where the exchanged messages among agents are reduced remarkably compared

with a direct point-to-point communication mode among agents. The method in [56] gives

a coordination solution for multiple concurrent requirements. However, the solution only

aims to satisfy the requirement with the highest priority. An optimal coordination solution

for all concurrent reconfiguration requirements is not studied.

Verification is another critical step in model based design of complex systems. Its aim

is to perform the act of reviewing, inspecting or testing, in order to establish and document

that a product, service or system meets regulatory or technical standards. An RDECS may

7

Doctoral Dissertation of XIDIAN UNIVERSITY

generate a huge state space no matter how simple it looks. It is necessary to perform formal

verification on it, the results of which will help designers to improve the designing scheme.

Finite state machines are widely used for the modeling of control flow in embedded systems

and are amenable to formal analysis like model checking [57], [58]. Model checking is

a method for formally verifying finite-state concurrent systems. Specifications about the

system are expressed as temporal logic formulas before efficient symbolic algorithms are

used to traverse the model defined by the system and to check whether the specification holds

or not. Extremely large state-spaces can often be traversed in minutes. The technique has

been applied to several complex industrial systems such as the Future bus and the PCI local

bus protocols. Two kinds of computational tools have been developed last years for model

checking: tools like KRONOS [59], UPPAAL [60], HyTech [61], and SESA [62], [63],

which compute sets of reachable states exactly and effectively, whereas emerging tools like

CHECKMATE [64], d/dt [65], and level-sets methods [66] approximate sets of reachable

states. Several research works have been proposed in recent years to control the verification

complexity by applying hierarchical model checking for complex embedded systems [32],

[67]. Nevertheless, not much attention is paid to TNCESs or reconfiguration forms such as

the modification of condition/event signals that can be applied at run-time.

1.3 Dissertation Organization

The automatic control technologies used in these complex RDECSs play a rather im-

portant role for their availability and reliability. In order to reduce the startup time to a

new product and to increase the reliability and safety of a complex technological system,

a model-based design methodology is always applied, where to obtain an accurate formal

model is the first critical step. On this basis, the formal verification is carried out for test-

ing and improving a design scheme. Considering the lacking of a proper formalism for

modeling RDECSs and the potential advantage of NCESs/TNCESs in modeling RDECSs,

this particular research copes with formal modeling and verification of RDECSs based on

NCESs/TNCESs. The dissertation is organized as follows.

Chapter 2 recalls basic definitions and properties of NCESs and TNCESs. The funda-

mentals of model checking technologies are briefly introduced. Especially, the modal logic

computation tree logic (CTL), extended CTL (eCTL), and timed CTL (TCTL) as well as

their instruction in the software SESA are represented.

Chapter 3 describes possible reconfiguration scenarios and their control implementa-

tion in an industrial control system that is modeled by an NCES. Here, the reconfiguration

8

Chapter 1 Introduction

scenarios include modification of places, modification of transitions, and updating of initial

states. Their control implementation is realized by an NCES based nested state machine.

Chapter 4 represents the formalism Reconfigurable TNCES (R-TNCES) for modeling

and verification of RDECSs. It is a reconfigurable extension of the formalism TNCES. In

addition, an optimal verification method is shown in this chapter for a special class of R-

TNCESs.

Chapter 5 depicts a coordination method for a distributed reconfigurable discrete event

control system (DRDECS), where each reconfigurable subsystem is modeled by an R-TNCES.

The coordination is implemented by a virtual coordinator together with a communication

protocol between it and the subsystems.

Chapter 6 reports the extended R-TNCES formalism. Considering some disadvantages

of R-TNCESs in modeling and analyzing dynamic reconfiguration processes of an RDECS,

reconfiguration functions in an R-TNCES are newly assigned with action ranges and concur-

rent decision functions. The new extension is applied to a reconfigurable vehicle assembly

line for the aim of energy-saving.

Finally, Chapter 7 concludes this dissertation. Specially, the advantages and identified

shortcomings of the current work are discussed. Moreover, prospective future work based

on the findings of this dissertation is introduced briefly.

9

Doctoral Dissertation of XIDIAN UNIVERSITY

10

Chapter 2 Preliminaries

Chapter 2 Preliminaries

This dissertation reports formal modeling and verification of reconfigurable discrete

event control systems (RDECSs). All independent innovation works relating to modeling

are based on the formalisms Net Condition/Event System (NCES) and Timed Net Condi-

tion/Event System (TNCES). Model checking technologies are applied to perform the for-

mal verification. For a better understanding of works of this dissertation, relevant elemental

knowledge on NCESs, TNCESs and model checking technologies are recalled in this chap-

ter.

2.1 Net Condition/Event Systems

The formalism Net Condition/Event System (NCES) is an extension of Petri nets. It

was introduced by Rausch and Hanisch in [31] and further developed in [21]. An NCES

is characterized by clear modular structures. A basic module of an NCES is a typical Petri

net [24], i.e., it is composed of places, transitions, flow arcs, and tokens. Each basic module

of an NCES interconnects with other modules via special condition/event signals, which

make an NCES different from a Petri net. Multiple interconnected basic modules can form

a composite module (as seen in Fig. 2.1). A composite module without any input/output

condition/event signal is called an autonomous NCES. An autonomous NCES is a place-

transition net formally represented by a 7-tuple:

N = (P , T , F , CN , EN , V , m0),

where,

Fig 2.1 A composite module of an NCES

11

Doctoral Dissertation of XIDIAN UNIVERSITY

• P is a non-empty finite set of places.

• T is a non-empty finite set of transitions.

• F is a set of flow arcs, F ⊆ (P × T) ∪ (T × P).

• CN is a set of condition signals with CN ⊆ (P × T) (resp, EN ⊆ (T × T)).

• EN is a subset of (T × T) \ idT , the irreflexive signal (flow) relation.

• V : T → {∨,∧} maps an event-processing mode (AND or OR) to each transition.

• m0 : P → {0, 1} is the initial marking.

Generally, m(p) denotes the token state of place p. The sum of tokens of all places

in P is denoted by m(P), i.e., m(P) =
∑

p∈P m(p). Let x ∈ P ∪ T be a node of an

NCES. The preset (resp, postset) of x is defined as •x = {y ∈ P ∪ T |(y, x) ∈ F} (resp,

x• = {y ∈ P ∪ T |(x, y) ∈ F}). A place p is called a source place of a transition t if there

is a condition signal from p to t. −t denotes the set of source places of t. Transitions in an

NCES are classified into two types: spontaneous and forced transitions. A transition t′ ∈ T

is called a forcing (resp, forced) transition of transition t if there is a event signal from t′

to t (resp, from t to t′). ∼t (resp, t∼) denotes the set of forcing transitions (resp, forced

transitions) of t. The set of spontaneous transitions is denoted by St, whereas the set of

forced transitions is denoted by Ft. It is defined that T = Ft ∪ St and Ft ∩ St = ∅.

The semantics of NCESs are defined by the firing rules of transitions. A transition t

is said to have a token concession if ∀p ∈ •t, m(p) = 1. It is said to have a condition

concession if ∀p ∈ −t, m(p) = 1. A transition is enabled if it has both token concession

and condition concession. A spontaneous transition can fire if it is enabled. However, for an

enabled forced transition t, in the case of V (t) =∧, t can fire only after all transitions in ∼t

fire. In the case of V (t) =∨, t can fire only after at least one of the transitions in ∼t fires.

In addition, an NCES is executed in steps, i.e., sets of transitions are fired simultane-

ously. Executable steps are formed by first picking up a nonempty set of enabled sponta-

neous transitions and then adding as many as possible of those transitions that are forced

to fire by signal-events produced by transitions in the step. This implies that in every non-

dead NCES, there exists a spontaneous transition. To make this more precise the signal-

completeness of transition sets is defined inductively:

Basis: Every subset s ⊆ St is signal-complete.

12

Chapter 2 Preliminaries

Step: If s ⊆ T is signal-complete, t ∈ Ft, V (t) =∨ and St ∩ s 6= ∅ OR V (t) =∧ and

St ⊆ s, then s ∪ t is signal-complete.

Obviously, the empty set is signal-complete and ∅ is the only signal-complete set con-

taining no spontaneous transition. A signal-complete set of transitions may fire simultane-

ously as far as signal-events are concerned.

A transition t ∈ Ft is said to be forced by the set s iff t /∈ s and s ∪ {t} is signal-

complete.

• A subset s ⊆ T is said to be a step of N iff

1. s ∩ St 6= ∅ (s is signal-founded, i.e., there is at least one spontaneous transition in

s), and

2. s is signal-complete (i.e., all necessary signal-events will occur).

• A step s of N is called enabled at the marking m iff

3. •s ≤ m (s has token-concession, i.e., the transitions in s are concurrently enabled

w.r.t. tokens), and

4. −s ≤ m (i.e., the conditions of all t ∈ s are satisfied)

• A step s of N is said to be executable at the marking m iff s is enabled at m and

5. there is no forced transition t ∈ Ft such that s ∪ {t} also satisfies 1-4 (s is signal-

closed, i.e., maximal with respect to inclusion of forced transitions).

A forced transition t with V (t) =∧ appears in an enabled step only if it receives signals

from all its signal sources. Otherwise, a forced transition t with V (t) =∨ appears in an

enabled step if it receives a signal from at least one of its signal sources.

If s is an executable step at m, then s may fire, which leads to a new state of N , i.e.,

the marking m′ := m − s•+•s. This is abbreviated as m
s−→ m′. The reachability relation

is defined as usual. Let R(N,m0) denote the set of all reachable markings of the NCES N

from m0. The reachability graph is a structure [R(N,m0), E] where E is the set of edges

such that (m,m′) ∈ E iff m,m′ ∈ RN(m0) and there is a step s with m
s−→ m′.

2.2 Timed Net Condition/Event Systems

The NCES formalism is enriched in the past years to consider time constraints that are

applied to input arcs of transitions: to every pre-arc of a transition, an interval [eft, lft]

of natural numbers is attached with 0 ≤ eft < lft ≤ w (w is a given integer). The

interpretation is as follows: Every place p bears a clock that is running (resp, switched) if

the place is marked (resp, unmarked). All running clocks run at the same speed measuring

the time of the token states (i.e., the clock on a marked place p shows the age of the youngest

13

Doctoral Dissertation of XIDIAN UNIVERSITY

token in p). If firing transition t removes a token from place p or adds a token to p, the

clock of p is turned back to 0. In addition, a transition t is able to remove tokens from its

pre-places (i.e., to fire) only if ∀p ∈ •t, the clock at place p shows a time D(p) such that

eft(p, t) ≤ D(p) ≤ lft(p, t). Hence, the firing of transitions is restricted by the clock

positions. This extended formalism is called Timed NCES (TNCES).

In this dissertation, N = {0, 1, 2, ...} denotes the set of nonnegative integer and N+ =

{1, 2, ...} denotes the set of positive integer. A state of a TNCES is denoted by z = (m, d),

where m : P → {0, 1} (resp, d : P → N) is the token states (resp, clock positions) of

places. We usually describe markings and time positions using a multiset (bag) or formal

sum notation for economy of space. As a result,
∑

p∈P M(p)p (resp,
∑

p∈P D(p)p) is used

to denote vector M (resp, D).

The firing rules of TNCESs are a combination of the ordinary firing rules of Petri nets

and firing of maximal steps [31], where a maximal step is a set of transitions that can be

fired simultaneously. The set of states reachable from z0 is called the reachability set of a

TNCES TN , which is denoted by R(TN, z0).

A TNCES is executed in steps too. The execution of a step does not take time. Let

(m, d) be a state. A step s of TN is said to be enabled at the state (m, d) of TN (compare

this to Section 2.1) iff

1. •s ≤ m and for every pre-place p of a transition t ∈ s it holds eft(p, t) ≤ d(p) ≤
lft(p, t) (i.e., s has token-concession and the clocks are between eft and lft), and

2. −s ≤ m.

Obviously, a step s may be enabled at the marking m in N , but not enabled at the state

z = (m, d) of TN because some clocks have not reached the earliest firing time eft or have

passed already the latest firing time lft. The state z = (m, d) of a TNCES may change not

only by execution of a step but also by elapsing of one time unit to z′ = (m′, d′), where

D′(p) :=

{
D(p) + 1 m′(p) = m(p) & m(p) 6= 0

0 else
(2-1)

If at a state z = (m, d) of TN , no step is enabled or can become enabled by elapsing of

time then this state is called dead. Otherwise, the minimal number of time units after which

at least one step becomes enabled is called the delay D(z) of the state z = (m, d). Hence,

the delay is defined only for non-dead states.

Since every executable step has to contain a spontaneous transition, the delay of a non-

dead state is the minimal number of time units after which at least one spontaneous transition

becomes enabled. This number obviously may be zero.

14

Chapter 2 Preliminaries

Fig 2.2 A screenshot of SESA

Let z = (m, d) be a non-dead state. Following the weak earliest firing rule we call a

step s to be executable at state z iff s is enabled after elapsing of D(z) time units. Given

a non-dead state z = (m, d) we first compute the delay D(z) and elapse D(z) time units

resulting in the state z′ = (m′, d′). Next the set E of all spontaneous transitions enabled at

z′ is computed. Then we proceed with E like the normal firing rule does, resulting in a list

of executable steps. These steps are considered as executable at the original state z (they

all have the delay D(z)). The execution of an executable step s at the state z then is done

by first elapsing D(z) time units and then firing s. The state z′′ = (m′′, d′) reached by the

execution of s is determined by m′′ = m − s•+•s, and

d′(p) :=

{
d(p) + D(z) if m(p) > 0 ∧ m′(p) > 0 ∧ p/∈(Fs∪sF)
0 else

(2-2)

2.3 Model Checking

Model checking [57], [58] is a method for formally verifying finite-state concurrent

systems. Specifications about the system are expressed as temporal logic formulas, and

efficient symbolic algorithms are used to traverse the model defined by the system and check

whether the specification holds or not. Extremely large state-spaces can often be traversed

in minutes. The technique has been applied to several complex industrial systems such as

the Future bus and the PCI (Peripheral Component Interconnect) local bus protocols.

15

Doctoral Dissertation of XIDIAN UNIVERSITY

SESA [62] is an effective tool for the analysis of NCESs and TNCESs. A screenshot

of it is show in Fig. 2.2. Typical properties which can be verified are boundedness of places,

liveness of transitions, and reachability of markings or states. General properties can be

expressed in CTL and verified by the model checker of SESA. To reduce the size of the state

space and the time for its construction, SESA offers several reduction methods. SESA also

derives some analysis results from the underlying Petri net of a signal-net system. SESA

inherited much of its code from the Petri net tool INA [68].

In this dissertation, SESA [62], [63] is applied to do the verification of all addressed

issues, where Computation Tree Logic (CTL) [69] and extended Computation Tree Logic

(eCTL) [70] are used to specify functional properties of an RDECS, and Timed Computation

Tree Logic (TCTL) [67] is used to describe temporal properties. In CTL, all formulae specify

the behavior of a system starting from an assigned state, in which formulae are evaluated by

taking paths, (i.e., sequences of states) into account. A formula holds for the system if it

is evaluated to be true in the initial state of the system. The model-checker SESA is a rich

tool to analyze and verify functional and temporal properties of NCESs and TNCESs. This

section briefly introduces the syntax and semantics of CTL, eCTL, TCTL, and their state

predicates as well as atomic state propositions used in SESA.

The semantics of CTL formulae are defined with respect to a reachability graph, where

states and paths are used for the evaluation. A reachability graph G consists of all global

states that the system can reach from a given initial state. It is formally defined as a tuple

G = [Z; E], where Z is a finite set of states, and E is a finite set of transitions between

states, i.e., a set of edges (z; z′) such that z, z′ ∈ Z and z′ is reachable from z.

In CTL, paths play a key role in the definition and evaluation of formulae. A path

denoted by (zi) starting from the state z0 is a sequence of states, (zi) = z0z1... such that

∀j ∈ N, there is an edge (zj; zj+1) ∈ E. The truth value of a CTL formula is evaluated with

respect to a certain state of the reachability graph. Let z0 ∈ Z be a state of the reachability

graph and ϕ be a CTL formula. The relation z0 |= ϕ means that the CTL formula ϕ is

satisfied in the state z0. Then the relation |= for a CTL formula is defined as follows:

• z0 |= EFϕ, if there is a path (zi) and j > 0 such that zj |= ϕ,

• z0 |= AFϕ, if for all paths (zi), there exists j > 0 such that zj |= ϕ,

• z0 |= AGϕ, if for all paths (zi) and for all j > 0, it holds zj |= ϕ.

In CTL, it is rather complicated to refer to the information contained in certain tran-

sitions among states of a reachability graph. A solution is given in [70] by proposing an

16

Chapter 2 Preliminaries

extension to CTL called eCTL. A transition formula is imported in eCTL to show the tran-

sition information contained in the edges of the reachability graph. Therefore, the structure

of the reachability graph G = [Z; E] is improved, where Z is a finite set of states, and E is

a finite set of transitions among states, i.e., a set of labeled edges (z, u, z′), such that z, z′ ∈
Z and z′ is reachable from z by executing the set of transitions u.

Let z0 ∈ G be a state of the reachability graph, ψ be a transition formula, and ϕ be an

eCTL formula. Then the relation |= for eCTL formulae are defined inductively:

• z0 |= EψXϕ, if there exists a successor state z1 such that there is an edge (z0, u, z1) ∈
E, where (z0, u, z1) |= ψ and z1 |= ϕ holds,

• z0 |= AψXϕ, if z1 |= ϕ holds for all successors states z1 with an edge (z0, u, z1) ∈ E

such that (z0, u, z1) |= ψ holds.

TCTL is an extension to CTL to model qualitative temporal assertions together with

time constraints [67]. For a reachability graph G = [Z; E], the state delay Delay is defined

as a mapping Delay : Z → N. ∀z, Delay(z) denotes the number of time units that have

to elapse at z before firing a transition from this state. For a path (zi) = z0z1, ... and a state

z ∈ Z, we have

• Delay[(zi), z] = 0 if z0 = z,

• Delay[(zi), z] = Delay(z0)+Delay(z1)+...+Delay(zk) if zk = z and z0, ..., zk−1 6=
z.

In other words, Delay[(zi), z] is the total time units after which the state z on the path (zi) is

reached at the first time, i.e., the minimal time distance from z0 to z. Let z0 ∈ Z be a state of

the reachability graph and ϕ be a TCTL formula. Then the relation |= for TCTL is defined

as follows:

• z0 |= EF [l, h]ϕ, if there is a path (zi) and j > 0 such that zj |= ϕ and l ≤
Delay((zi), zj) ≤ h, where [l, h] is a time interval of natural numbers with 0 ≤ l <

h ≤ w (w is a fixed integer),

• z0 |= AF [l, h]ϕ, if for all paths (zi), there is j > 0 such that zj |= ϕ and l ≤
Delay((zi), zj) ≤ h.

17

Doctoral Dissertation of XIDIAN UNIVERSITY

18

Chapter 3 Possible Reconfigurations in NCESs

Chapter 3 Possible Reconfigurations in NCESs

Reconfigurable control systems are characterized by clear modular structure. Net con-

dition/event control system (NCES) is such a modular formalism that was developed for

modeling and analyzing industrial distributed control systems. Assume that an industrial

control system is expected to be reconfigurable. It means that the controllers of its dis-

tributed physical components should be able to change themselves actively. According to

changed execution environment or user requirements, these controllers should be able to be

standby, activated, or even be removed from the system. In addition, they should also be

able to change their connection relation with other controllers, or be able to modify their

own behavior modes, or just update some shared data. If NCESs are applied to model such

reconfigurable systems, components of NCESs such as places, transitions, flow arcs, and

markings within particular basic modules or condition/event signals among these modules

should be modified at run-time. This chapter focuses on dynamic reconfigurations and con-

trol of NCESs.

3.1 Motivation

The main reasons to prefer NCESs/TNCESs to many others formalisms specifying an

industrial control system can be explained by two aspects. The first is their non-interleaving

semantics i.e., possibility of firing several transitions simultaneously, which better fits to

modeling of distributed processes and of their interaction. The second is the more compact

reachability space [71], [72], [73].

Generally, in an NCES, the number of tokens in places classically correspond to system

states of a control system. The firing of transitions, i.e., the occurrence of discrete events

such as the receipt of pulse/step signals, may change the number of tokens in places. There

are several conditions to be fulfilled to enable a transition to fire. First of all, all pre-places

have to be marked with at least one token. In addition, it may have incoming condition

arcs from places and event arcs from other transitions. A transition is enabled by condition

signals if each of its source places is marked by at least one token. The other type of influ-

ence on the firing can be described by event signals that come to the transition from other

transitions.

Assume that a reconfigurable control system is modeled by an NCES. Different ele-

19

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 3.1 EnAS demonstrator in Halle [1]

ments of the NCES model correspond to different physical/abstract parts of the reconfig-

urable control system. In this chapter, an automatic reconfiguration of an NCES means any

addition/removal of places, transitions, and any update in the initial marking. Meanwhile,

any modification of them should be well controlled to avoid failure such as deadlock and

overflow.

As far as we know, there is no research work dealing with automatic reconfigurations

based on NCESs, where relevant studies by using other formalisms are investigated in Chap-

ter 1. This chapter first builds an NCES-based model for a potential reconfigurable system.

After that, possible reconfiguration scenarios are defined. Then, a special mechanism is pro-

posed to handle these reconfiguration scenarios automatically. Three types of NCES-based

modules are defined. The first module allows the addition/removal of places to/from the sys-

tem NCES model. The second module handles the addition/removal of transitions to/from

the system within the given subset of places. The third one copes with modifications of the

initial marking. Finally, in order to guarantee a safe behavior of this reconfigurable architec-

ture, a model checking for the verification of CTL-based properties is applied. The whole

work is illustrated by an experimental manufacturing platform.

3.2 Experimental Manufacturing Platform

An experimental manufacturing platform EnAS, as shown in Fig. 3.1, was designed

as a prototype to demonstrate this work. It is supposed to have the following behavior: it

20

Chapter 3 Possible Reconfigurations in NCESs

Fig 3.2 Working process of EnAS

Fig 3.3 Policy 1: Production of a tin

transports pieces from a previous production system (Detailed descriptions are available in

the Website of the research laboratory of Prof. H. M. Hanisch at Martin Luther University

Halle-Wittenberg (http:// aut.informatik.uni-halle.de) into storing units. The pieces in EnAS

shall be placed inside tins to close with caps afterwards. Two different production strate-

gies can be applied: one or two pieces should be correctly placed in each tin according to

production rates of pieces of tins and caps. We denote respectively by nbpieces, nbtins+caps

the production number of pieces and tins (as well as caps) per hour and by Threshold a

variable(defined in user requirements) to choose the adequate production strategy.

The EnAS system is mainly composed of a belt, two Jack stations (J1 and J2) and two

Gripper stations (G1 and G2) (Fig. 3.2). The Jack stations place new produced pieces and

close tins with caps, whereas the Gripper stations remove charged tins from the belt into the

storing units. Initially, the belt moves a particular pallet containing a tin and a cap into the

first Jack station J1. According to production parameters, we distinguish two cases (see Fig.

3.3 and 3.4):

• First production policy: If (nbpieces/nbtins+caps ≤ Threshold), then the Jack station

21

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 3.4 Policy 2: Production of tins with double pieces

J1 places a new piece into the tin and then closes the tin with the cap. In this case, the

Gripper station G1 removes the tin from the belt into the storing station St1 (Fig. 3.3).

• Second production policy: If (nbpieces/nbtins+caps > Threshold), then the Jack sta-

tion J1 places just a piece in the tin which is moved thereafter into the second Jack

station to place a second new piece. Once J2 closes the tin with a cap, the belt moves

the pallet into the Gripper station G2 to remove the tin (with two pieces) into the

second storing station St2 (Fig. 3.4).

3.3 Specification of Reconfigurable Control Systems

Reconfiguration means qualitative changes in structures, functionalities, and algorithms

of control systems as responses to qualitative changes of goals of controls, of controlled sys-

tems, or of environments the systems behaves within. This could be caused by (partial)

failures, breakdowns, or even by human interventions. Let us denote by Sys the reconfig-

urable control system to be modeled by NCESs Σ(Sys) that specify all possible behaviors

of the system to be applied after well-defined reconfigurations.

Σ(Sys) = {PΣ(Sys), TΣ(Sys), FΣ(Sys), CNΣ(Sys), ENΣ(Sys), VΣ(Sys),m0Σ(Sys)}

We mean by a reconfiguration scenario of Σ(Sys) 1) any addition/removal of places,

2) any addition/removal of transitions, and 3) any update of marking. The system can be

specified by different sub-NCESs defining different possible behaviors to be followed under

22

Chapter 3 Possible Reconfigurations in NCESs

Fig 3.5 Specification of the reconfigurable EnAS with NCESs

well-defined conditions. Let ξ(Sys) be a sub-NCES that models Sys after a well-defined

automatic reconfiguration scenario. Here a sub-NCES means the NCES-based model of a

configuration of the reconfigurable system Sys.

ξ(Sys) = {Pξ(Sys), Tξ(Sys), Fξ(Sys), CNξ(Sys), ENξ(Sys), Vξ(Sys),m0ξ(Sys)},

where, Pξ(Sys) ⊆ PΣ(Sys), Tξ(Sys) ⊆ TΣ(Sys), and Fξ(Sys) ⊆ FΣ(Sys).

If ξ(Sys) specifies the configuration when a particular reconfiguration scenario is ap-

plied to the system, the places of Pξ(Sys) (resp, transitions of Tξ(Sys) and arcs of Fξ(Sys))

become the only able places of PΣ(Sys) to be activated (resp, only able transitions of TΣ(Sys)

and able arcs of FΣ(Sys)). The rest of places, transitions and arcs become disable.

23

Doctoral Dissertation of XIDIAN UNIVERSITY

In the Benchmark Production System EnAS, only four sub-NCESs are possible to spec-

ify its behavior when well-defined reconfiguration scenarios are automatically applied at

run-time, as shown in Fig. 3.5. To make it clear, the four sub-NCESs are respectively shown

above, where Σ(Sys) is graphically shown below.

• Let ξ1(Sys) be the first sub-NCES that specifies EnAS when the Second Production

Policy is applied such that:

Pξ1(Sys) = {PS1, PS2, PS3, PS4, PS5, PS6, PS9}

Place PS1 corresponds to the displacement of an empty tin on the belt to the first Jack

station where a piece is put (e.g. the place PS2). The tin is displaced thereafter (e.g.

place PS3) to the second Jack station where a second piece is put before it is closed

with a cup (e.g. place PS4). The closed tin is displaced thereafter on the belt (e.g.

place PS5) to the second Gripper station G2 for an evacuation to the second storing

station St2. We note finally that place PS9 defines the number of pieces (e.g. two

pieces) to be put in the tin when the Second Production Policy is applied.

• Let ξ2(Sys) be the second sub-NCES that specifies EnAS when the First Production

Policy is applied such that:

Pξ2(Sys) = {PS1, PS2, PS7, PS8, PS10}

Place PS7 corresponds to the displacement of a tin containing a piece and closed with

a cup from the first Jack station to the first Gripper station (e.g. place PS8). We note

finally that the place PS10 defines the number of pieces (e.g. one piece) to be put in

the tin when the First Production Policy is applied.

• Let ξ3(Sys) be the third sub-NCES that specifies EnAS when the second Jack station

is broken such that:

Pξ3(Sys) = {PS1, PS2, PS6, PS10}

Place PS2 corresponds to the placement of a piece in a tin to be closed with a cup in

the first Jack station. The place PS6 corresponds to the removal from the belt to the

second Storing Station St2.

24

Chapter 3 Possible Reconfigurations in NCESs

• Let ξ4(Sys) be the fourth sub-NCES that specifies EnAS when the first Jack station is

broken such that:

Pξ4(Sys) = {PS1, PS3, PS4, PS5, PS6, PS10}

Places PS1 and PS3 correspond to the displacement of an empty tin on the belt to the

second Jack station where a piece and a cup are put (e.g. the place PS4). The closed

tin is displaced thereafter on the belt (e.g. place PS5) to the second Gripper station

G2 for an evacuation to the second storing station St2 (e.g. PS6). We note finally

that the place PS10 defines the number of pieces (e.g. only one piece) to be put in the

tin when the first Jack station is broken.

3.4 Reconfiguration of Net Condition/Event Systems

To dynamically reconfigure the NCES Σ(Sys), we define nested state machines where

states correspond to other state machines. Each state machine forms a module allowing

reconfigurations of the system. Three types of modules are distinguished:

• The first module called changer places is modeled by an NECS to be denoted by

CP in which each place p = reconfigure(ξ(Sys)) corresponds to a subset Pξ(Sys)

⊆ PΣ(Sys). Therefore each transition in this state machine corresponds to the addi-

tion/removal of places to/from the system’s specification. CP is formalized as CP =

{PCP , TCP , FCP , CNCP , ENCP , VCP ,m0CP}.

• For each place p of CP , we define a particular module called changer transitions

and modeled by an NCES to be denoted by CT (CT= transition(p)) in which each

place corresponds to a particular composition of places in the system’s specification

ξ(Sys). Each transition corresponds therefore to the addition/removal of transitions,

event/condition signals in ξ(Sys) (p = reconfigure(ξ(Sys))). CT is formalized as

CT = {PCT , TCT , FCT , CNCT , ENCT , VCT ,m0CT}.

• The third particular type of modules is called changer marking. It is modeled by

an NCES and is denoted by CM . In CM , each place corresponds to a particular

marking of Σ(Sys). A place of CM corresponds to one or more places of a module

changer transitions or the whole module changer places. CM is formalized as

CM = {PCM , TCM , FCM , CNCM , ENCM , VCM ,m0CM}.

25

Doctoral Dissertation of XIDIAN UNIVERSITY

We denote by ∆(CT) (resp. ∆(CM)) the set of CT (resp. CM) modules. The whole

control system is characterized by different behaviors such that each one should be executed

after a well-defined reconfiguration scenario. Each scenario to be denoted by (p, q, k) (p ∈
PCP , q ∈ PCT = transition(p) such that CT ∈ ∆(CT), and k ∈ PCM such that CM ∈
∆(CM)) is executed when the corresponding place p is active in CP , place q is active in

CT and finally place k is active in the module CM . We denote by Behaviorp,q,k(Sys) the

sub-NCES of Σ(Sys) that can implement Sys when the reconfiguration scenario (p, q, k)

should be automatically applied. We synchronize the modules CP , CT and CM by event

signals as follows: For each scenario (p, q, k),

• ∀t1 ∈•p and t2 ∈•q, ∃ev1 ∈ (t1, t2),

• ∀t2 ∈•q and t3 ∈•k, ∃ev2 ∈ (t2, t3).

We synchronize in addition the reconfiguration modules and the specification Σ(Sys)

of the system Sys by event signals as follows: For each scenario (p, q, k) such that Behavior

p,q,k (Sys) = ξ(Sys),

• ∀t1 ∈•q, ∃t2 ∈ Tξ(Sys) such that ∃ev1 = (t1, t2),

• ∀t3 ∈•k, ∃t4 ∈ Tξ(Sys) such that ∃ev2 = (t3, t4).

The events ev1 and ev2 allow applications of reconfiguration scenarios to activate

places and/or transitions and/or arcs and/or to change marking in the NCES ξ(Sys) ∈
Σ(Sys).

Example 1 The final NCES-based model of the reconfigurable experimental manufacturing

system EnAS is shown in Fig. 3.6. According to Fig. 3.3, the module Changer places

CP1 is composed of two places P1 and P2 that respectively define the Second and the

First Production Policy. The transitions tr1 and tr2 define in this case the addition and

removal of places in the system’s specification. When transition tr1 is fired, we disable the

places PS3, PS4, PS5, PS6 and PS9, and we activate the places PS7, PS8 and PS10.

We associate for the place P1 the NCES CT1 and for the place P2 the NCES CT2. The

place P4 of the module CT1 corresponds to the execution of the second production policy

when PS1, PS2, PS3, PS4, PS5, PS6, PS9 are specifying EnAS. The place P5 specifies

the system when the second Jack station is broken. The place P6 corresponds to any problem

in the first Jack station. The place P7 is reached when the first and the second Jack stations

26

Chapter 3 Possible Reconfigurations in NCESs

Controller of Transitions: CT1

Controller of Places: CP1

Controller of Transitions: CT2

Controller of

Marking: CM1

Controller of

Marking: CM2

EnAS Model

P4

P1
 P2

P3

P5
P6

P7

P8

P9
 P10

P11

P12
 P13

PS1

PS2

PS3

PS4

PS5

PS6

PS7

PS8

PS9

PS10

tr

1

tr

2

tr
3

tr
4

tr
5

tr
6

tr
7

tr
8

tr
9

tr
10

tr
11

tr

12

tr
13

tr

14

tr15
tr16

tr17

tr
18

tr

19

 tr20

tr21

tr22

tr23

tr24

tr25

tr26

tr27

tr28

tr29

tr30

tr31

tr32
 tr33

tr34

[1,3]

[1,3]

[1,3]

[1,3]

[1,3]

[1,3]

[1,3]

[1,3]

Fig 3.6 NCES-based modules for automatic reconfigurations of EnAS

are broken. The place P9 of the module CT2 defines an execution scenario of EnAS when

the first Jack and Gripper stations are used to produce pieces. We note in addition that the

places P12 is active from the module CT1 when we put two pieces in the tin, whereas the

place P13 is active when only one piece is put in the tin (e.g. it is activated by CT2).

3.5 System Verification

Once the reconfigurable NCES is well-modeled, the next step to be addressed is their

verification in order to guarantee a correct behavior of the system after implementation of

any reconfiguration scenario. In this dissertation, we use the model checker SESA to verify

CTL-based properties defined in user requirements. This tool allows the verification of

any reactions of reconfiguration modules as well as their synchronization with the system’s

NCES that should be checked too. We show in Fig. 3.7 a reachability graph generated by

27

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 3.7 Reachability graph of the reconfigurable architecture

SESA for the verification of the NCES depicted in Fig. 3.6.

Example 2 In the system EnAS, we check functional properties of the NCES-based state

machines and the system’s NCES. We have to check in particular that whenever the transition

tr1 is fired, then the place PS7 should be reached:

AGAtr1XPS7

This formula is proven to be True by applying this tool. Indeed, when conditions are

satisfied to apply the Second Production Policy, the state PS7 should be reached. We have

also to check that whenever the transition tr5 is fired to apply the second policy, the place

PS5 should be applied to bring the tin from the first and second Jack stations to the second

Gripper station:

AGAtr5XPS5

This formula is proven to be True. We check also the correct behavior of the system

EnAS when the Second Production Policy is applied by verifying the following formula:

AGAtr29XAFEtr30XAFEtr31XAFEtr32XTRUE

28

Chapter 3 Possible Reconfigurations in NCESs

Indeed, whenever the belt is activated to transport a piece to the first Jack station, it is

activated again to transport the piece to the second Jack station before reaching the second

Gripper station. This formula is proven to be True by SESA. When the Second Production

Policy is applied, we check also if the evacuation of a closed tin from the belt can be done in

4 time units. The following formula is proven to be False by SESA:

EF [3, 4]PS6

The following formula is proven to be True:

AF [5, 6]PS6

Indeed the state PS6 (e.g. evacuation from the belt) should be reached 5 time units at

least after the activation of the place PS1.

3.6 Summary

This chapter deals with automatic reconfigurations to dynamically change the behaviors

of control systems, which is enabling or disabling certain parts of the system. This is a new

challenge in industry. We specify such systems with reconfiguration behavior by NCESs that

are an extension of Petri nets. Herein, a reconfiguration scenario is any addition-removal-

update of places, transitions, or just the modification of the initial marking. We define formal

modules allowing reconfigurations of an NCES, where the first module deals with places,

the second with transitions and the third with the marking. We apply a model checking for

the verification of CTL-based functional properties in order to guarantee a safe behavior of

this reconfigurable architecture.

29

Doctoral Dissertation of XIDIAN UNIVERSITY

30

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Chapter 4 Reconfigurable Timed Net Condition Event Systems

From previous chapter, we notice that if Net Condition/Event Systems (NCESs) are ap-

plied directly to model a reconfigurable discrete event control system (RDECS). The system

will be enlarged greatly due to new controllers designed for different reconfiguration scenar-

ios. This sharply burdens the verification of the final system. Therefore, a new formalism

Reconfigurable Timed Net Condition/Event System (R-TNCES) is proposed for the model-

ing and verification of RDECSs. This chapter represents the motivation of the R-TNCESs,

basic definitions and properties of an R-TNCES, and a verification method for a particular

type of R-TNCESs.

4.1 Motivation

A reconfiguration scenario is applied for the automatic improvement of the system per-

formance or for the system protection at run-time when hardware faults occur [56], [74]. The

good performance of an RDECS should be that it can reconfigure automatically and rapidly

due to the changed environment or user requirements without a halt [75]. In addition, during

a reconfiguration process, the internal behavior of the components in the working environ-

ment should not be influenced and no deadlock arises [76], [77], [78]. These advanced

requirements and the conspicuous extra complexity throw the industry and academia new

challenges to develop RDESs [79], [80].

As shown in Chapter 1, many researchers have tried to deal with the modeling of control

systems with potential reconfigurations. Most of them can describe the system’s reconfigu-

ration behavior. However, some of them do not clearly define the modularity, which brings

complexity in designing, understanding, and future redeveloping. The system’s correct-

ness such as coherence of states before and after system reconfigurations is not considered.

Moreover, temporal constraints are not mentioned, which are of importance in real-time

systems. Most important is that none of them deal with the reconfigurations based on the

TNCES formalism. Furthermore, most of the existing methods cannot represent an RDECS

in a compact manner. In this chapter, we try to model an RDECS using a direct method by

defining a new formalism.

In [56], [81], a “control component” defined as a software unit was developed for the

automatic refinement-based identification, specification, and verification of a plant system.

31

Doctoral Dissertation of XIDIAN UNIVERSITY

The possible reconfigurations of an NCES were studied in [1], where the modifications of

places, transitions, and initial markings are handled by an agent specified by an NCES. To

be independent of any approach or technology, to cover more forms of reconfiguration sce-

narios that can be applied at run-time such as the modification of condition/event signals

in a TNCES, and to optimize the functional and temporal specification of RDECSs, a new

formalism namely Reconfigurable Timed Net Condition/Event System (R-TNCES) is pro-

posed in this chapter. A possible system configuration of an RDES is assumed as a set of

physical processes with precedence constraints as done in [74]. The controllers of physical

processes are modeled by control components that are specified by TNCESs with uniform

interfaces through which they read data from sensors and send signals to activate actuators.

An R-TNCES is a new approach to adapt TNCESs for RDECSs such that all reconfigu-

ration scenarios including the addition/removal of places, transitions, arcs, initial markings,

and condition/event signals are specified directly. An R-TNCES consists of a behavior mod-

ule and a control module. The former is composed of various control components, whose

combinations form a set of superposed TNCESs that are used for the representations of

certain control models of an RDES. The latter is a set of reconfiguration functions. A re-

configuration function deals with the automatic transformations of the TNCESs in response

to the changes caused by errors in the controlled system, or by user requirements via en-

abling/disabling control components, changing condition/event signals among them, and

treating the state feasibility before and after reconfigurations such that the correctness of the

system can be guaranteed. The dynamic properties and implementation of an R-TNCES are

illustrated in detail in the chapter. Compared with relevant studies, less extra places and

transitions are needed to describe the dynamic behavior of an RDECS with the R-TNCES

formalism, while more reconfiguration scenarios are covered and the temporal constraints

are considered. In addition, the distinct modular structure of R-TNCESs, especially the ap-

plication of control components, makes the model understandable for future extensions. A

benchmark production system FESTO MPS [81] is applied to show the advantage of the

R-TNCES.

Several studies have been done in recent years to control the complexity of system

verification by applying hierarchical or refinement-based approaches [32], [67]. Neverthe-

less, no much attention is paid to TNCESs or reconfiguration forms such as the modification

of condition/event signals that can be applied at run-time. R-TNCESs are an extension to

TNCESs and can show a group of superposed TNCESs as well as their dynamic transfor-

mations. A verification method for R-TNCESs is necessary. SESA [62] is an effective

32

Chapter 4 Reconfigurable Timed Net Condition Event Systems

model-checker for TNCESs, which computes the reachable states exactly. It allows the ver-

ification and analysis of the properties such as boundedness and liveness. In addition, tem-

poral/functional properties based on Computation Tree Logic (CTL) [82], extended Com-

putation Tree Logic (eCTL) [70], and timed Computation Tree Logic (TCTL) [58] specified

by users can be checked manually.

In this chapter, an RDES is defined as a set of physical processes. The behavior of a

configuration is described by several simultaneous chains that are sequences of physical pro-

cesses with clear temporal constraints, where no resource competition exists among them.

The controllers of the physical processes are modeled by control components. Therefore,

each TNCES of an R-TNCES corresponding to the control model of a configuration is com-

posed of a set of control components. To satisfy user requirements, the initial TNCES of an

R-TNCES is checked first. Its control components are divided into multi-layers in terms of

the temporal constraints and then checked layer by layer. An abstract model denoting the

external environment of the underlying layer is constructed during the process, and a com-

posite net composed of a layer and the abstract model is obtained. The reachable states of

the obtained composite net are computed by SESA. Meanwhile, the functional and temporal

properties based on CTL/eCTL/TCTL are checked manually. Therefore, only the composite

net with a much smaller size rather than the whole TNCES is tackled at each step. Other

TNCESs of an R-TNCES can be obtained one by one by implementing certain reconfigu-

ration functions. Their verification is based on the correctness of their previous TNCESs

because two TNCESs linked directly by a reconfiguration function are supposed to be very

similar. If the external environment of the unchanged parts of a TNCES are not changed by

implementing the reconfiguration function, the repetitive verification of the unchanged parts

can be avoided. The method controls the complexity of model-checking of R-TNCESs and

is applied to FESTO MPS to show its virtue.

4.2 Experimental Manufacturing Platform

A benchmark production system FESTO MPS as shown in Fig. 4.1 is used as an intact

running example in this chapter. It is a well documented laboratory system used by many

universities for research and education purposes.

The whole schematic working process of FESTO MPS together with the time cost for

each physical process is shown in Fig. 4.2. It is composed of three units: the distribution

unit, the test unit, and the processing unit. The distribution unit consists of two components:

a pneumatic feeder and a converter. It forwards cylindrical workpieces from a stack to the

33

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.1 FESTO MPS

testing unit. The test unit consists of three components: the detector, the tester, and the

evacuator. It performs the checking of workpieces for their height, material type, and color.

Workpieces that pass the test unit successfully are forwarded to the rotating disk of the

processing unit, where the drilling of workpieces is done. It is assumed in this work that

there exist two drilling machines Drill1 and Drill2 to drill workpieces. The result of the

drilling operation is next checked by a checker and finally the finished product is removed

from the system by an evacuator. The set of chains describing FESTO MPS is provided as

follows:

• chain1 = act1, act2, act3, act4,

S1

S4

S2 S3 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Fig 4.2 Working process of FESTO MPS

34

Chapter 4 Reconfigurable Timed Net Condition Event Systems

• chain2 = act1, act2, act3, act5, act6, act7, act9, act10,

• chain3 = act1, act2, act3, act5, act6, act8, act9, act10,

• chain4 = act1, act2, act3, act5, act6, act11, act9, act10, and

• chain5 = act1, act2, act3, act5, act6, act12, act9, act10.

The first chain chain1 describes the system behavior that workpieces fail in passing the

Test. chain2 (resp, chain3) describes the system behavior that workpieces pass the Test

before they are drilled by the drilling machine Drill1 (resp, Drill2). chain4 represents the

system behavior that Drill1 or Drill2 is used to drill workpieces when either of them is

ready. The last one chain5 implies that both Drill1 and Drill2 are used at the same time to

accelerate the production. In this case, the distribution and the testing units have to forward

two successive pieces to the rotating disk before starting the drilling with Drill1 and Drill2.

Four distinct combinations of these chains cover three behavior modes of FESTO MPS

with three exclusive production rates. The light production mode is denoted by Light1

(resp, Light2) to be described by the combination of chain1 and chain2 (resp, chain1 and

chain3), where Drill1 (resp, Drill2) is applied only, i.e.,
∑

chainL1 = {chain1, chain2},∑
chainL2 = {chain1, chain3}. In fact, after the execution of Test, a workpiece is moved

to Evacuator1 or Elevator according to the test result. Light1 is the default initial be-

havior mode. It can be transformed into Light2 while Drill1 breaks down during run-time.

The combinations of chain1 with chain4 and chain1 with chain5 represent the medium

production mode Medium and high production mode High of FESTO MPS, respectively,

i.e.,
∑

chainM = {chain1, chain4} and
∑

chainH = {chain1, chain5}. The system com-

pletely stops in the worst case that both Drill1 and Drill2 are broken.

The set of control chains describing FESTO MPS’ control system is presented as fol-

lows:

• Controlchain1 = CC1, CC2, CC3, CC4,

• Controlchain2 = CC1, CC2, CC3, CC5, CC6, CC7, CC9, act10,

• Controlchain3 = CC1, CC2, CC3, CC5, CC6, CC8, CC9, act10,

• Controlchain4 = CC1, CC2, CC3, CC5, CC6, CC11, CC9, CC10, and

• Controlchain5 = CC1, CC2, CC3, CC5, CC6, CC12, CC9, CC10.

35

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.3 Control model of Controlchain1

Therefore, the corresponding controllers of the four configurations are denoted by

•
∑

ControlchainL1 = {Controlchain1, Controlchain2},

•
∑

ControlchainL2 = {Controlchain1, Controlchain3},

•
∑

ControlchainM = {Controlchain1, Controlchain4},

•
∑

ControlchainH = {Controlchain1, Controlchain5}.

The TNCES model of Controlchain1 is graphically shown in Fig. 4.3. Actually, the control

of Feeder, Convert, Test, and Evacuator1 is done one by one. Only after the control of

the former physical process is finished, the latter can be activated to work.

According to user requirements, we should make the control system of FESTO MPS

able to reconfigure automatically at run-time in response to any changed working environ-

ment caused by errors or new requirements to improve system performance without a halt.

It is assumed that only light and medium production modes are interchangeable, so are

medium and high production modes, as shown in Fig. 4.4. The high production mode can

be transformed into light production mode directly, but the converse is inadmissible.

4.3 Control Components

The proposed formalism R-TNCES is based on “control components”. The provided

verification method of R-TNCESs is subjected to a specific modeling methodology. This

36

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.4 Allowed reconfigurations of FESTO MPS

section mainly introduces the concept of control components and the modeling methodology

of the configurations in an RDECS.

An RDES is defined as a set of physical processes. Different compositions of these

physical processes with various constraints form a family of configurations. The behavior of

a configuration to be denoted by Sysi is described by a set of simultaneous chains denoted by∑
chaini, where each chain is a finite sequence of actuators with clear temporal constraints.

We denote the actuator of the ith physical process in an RDES by acti, denote the time cost

for the physical process to finish its work by running(acti) = [li, hi], and denote the set

of actuators that the system has to activate just before the activation of acti by prev(acti),

where [li, hi] is a time interval of natural numbers with 0 ≤ li < hi ≤ w (w is a fixed

integer). A chain is defined as follow:

chain : act1, act2, ..., actn,

where ∀i ∈ [1, n− 1], acti ∈ pre(acti+1). It is assumed that no loop exists in a chain and no

resource competition exists among the chains in
∑

chaini.

A control component is defined as a software unit. It is implemented by algorithms

that support functionalities of a physical system and interact with its physical processes as

follows:

• It reads data from a subset of sensors of the system.

• An algorithm corresponding to these sensor data is executed.

• When the execution finishes, the corresponding controlled actuators are activated.

37

Doctoral Dissertation of XIDIAN UNIVERSITY

We use control component CCi to model the controller of the ith physical process. A

control component CCi is specified by a TNCES module that has one initial place only

and is characterized by a set of traces such that each trace tr is described by the following

transitions:

• tcci
entrance is called the entrance transition. It is from the initial place. CCi is activated

only after tcci
entrance fires. Note that each control component has one entrance transition

only.

• tcci
starting is called a starting transition. The controlled physical process is forced to

work only after it fires.

• tcci
end is called an end transition. An end transition fires only after the controlled physical

process finishes its work and sends an event signal to the next control component

CCi+1.

In addition, a time interval is assigned to each output arc from place p (p∈•tcci
end) to tcci

end by

running(acti). For the other output arcs, the time intervals are default.

Fig 4.5 Controller model of a physical process

Example 3 A control component together with three sensors and an actuator is graphically

shown in Fig. 4.5. The control component CC1 reads data from three sensors S1, S2, and

38

Chapter 4 Reconfigurable Timed Net Condition Event Systems

S3, and then send signals to the actuator act1 to drive the controlled physical process. CC1

has two end transitions t6 and t7. Firing t6 implies that a signal is sent to CC2. Whereas,

firing t7 implies that a signal is sent to CC3.

According to the above definition of chains describing system behavior, the controller

of a chain, namely a control chain, is defined accordingly as follows:

Controlchain : CC1, CC2, ..., CCn,

where CCi is the controller of the ith physical process, which is a control component. The

set of control components that the control system has to activate just before the activation

of CCi is denoted by prev(CCi), where ∀i ∈ [1, n − 1], CCi ∈ pre(CCi+1). Therefore,

the controller of a configuration Sysi can be described by a set of control chains denoted by∑
Controlchaini, where |

∑
chaini| = |

∑
Controlchaini|.

In this chapter, it is supposed that an RDES can perform finite configurations such

that the same amount of control modes are available in its corresponding RDECS. Each

control mode is specified by a set of control chains, each of which is a finite sequence of

control components with explicit temporal constraints. The unambiguous modularity of

control components and their uniform interfaces make the control components suitable for

modeling of RDECS.

4.4 R-TNCESs

An RDECS can perform various configurations corresponding to different behavior

modes of the controlled RDES. All of them are modular and extensible, and their dynamic

transformations can be performed through the activing/disactiving parts of the modules and

modifying the communications among them. In this chapter, a configuration of an RDECS is

modeled by a TNCES that is composed of a set of control components. We extend TNCESs

in order to adapt them to RDECS. Not only reconfiguration scenarios such as the addi-

tion/removal of places, transitions, and initial markings, but also the modifications of condi-

tion/event signals among different control components are covered through this extension.

In addition, the state coherence before and after a reconfiguration is considered such that

the correctness and safety of the RDECS are guaranteed. An R-TNCES increases the com-

putational power of a TNCES such that the functional as well as temporal specification of

an RDECS is done directly, compactly, and optimally. This section is organized as follows:

Section 4.4.1 introduces the definition of an R-TNCES, its dynamic properties and imple-

mentation are provided in Section 4.4.2 and Section 4.4.3, respectively.

39

Doctoral Dissertation of XIDIAN UNIVERSITY

4.4.1 Definition

Definition 1 An R-TNCES is a structure RTN=(B, R), where R is control module consist-

ing of a set of reconfiguration functions R = {r1, ..., rm} and B is behavior module that is

a union of multi-TNCES, represented as

B=(P , T , F , W , CN , EN , DC, V , Z0),

where

• P (resp, T) is a superset of places (resp, transitions),

• F ⊆ (P × T) ∪ (T × P) is a superset of flow arcs,

• W : (P × T) ∪ (T × P) → {0, 1} maps a weight to a flow arc, W (x, y) > 0 if

(x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T ,

• CN ⊆ (P × T) (resp, EN ⊆ (T × T)) is a superset of condition signals (resp, event

signals),

• DC : F ∩ (P × T) → {[l1, h1], ..., [l|F∩(P×T)|, h|F∩(P×T)|]} is a superset of time

constraints on output arcs, where ∀i ∈ [1, |F ∩ (P × T)|], li, hi ∈ N, and li < hi,

• V : T → {∨,∧} maps an event processing mode (AND or OR) for every transition,

• Z0 = (M0, D0), where M0 : P → {0, 1} is the initial marking, and D0 : P → {0} is

the initial clock position.

Let
∑

TN=P × T × F × W × CN × EN × DC × V denote the set of all feasible

net structures that can be performed by an R-TNCES. Given a TNCES Γ=(P ′, T ′, F ′, W ,

CN ′, EN ′, V , DC ′, Z ′
0), TN(Γ)=(P ′, T ′, F ′, W , CN ′, EN ′, V , DC ′) denotes its net

structure, where TN(Γ) ∈
∑

TN . We have P ′ ⊆ P , T ′ ⊆ T , F ′ ⊆ F , W ′ ⊆ W ,

CN ′ ⊆ CN , EN ′ ⊆ EN , DC ′ ⊆ DC, ∀t ∈ T ′, V ′(t) = V (t), Z ′
0 = (M ′

0, D
′
0), and

∀p ∈ P ′, M ′
0(p) = M0(p) and D′

0(p) = D0(p).

Example 4 We use an R-TNCES to specify FESTO MPS’s control system denoted by

RTNFESTO. FESTO MPS is composed of 12 physical processes. We build 12 control com-

ponents as their controllers, respectively. According to the control chains provided for de-

scribing control behavior of FESTO MPS in Section 4.3, it can perform four configurations

within three types of behavior modes in terms of the production rates, denoted by Light1,

Light2, Medium, and High. They are formally represented as follows:

40

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.6 Behavior module of RTNFESTO

• Light1=(P1, T1, F1, W1, CN1, EN1, DC1, V1, z01),

• Light2=(P2, T2, F2, W2, CN2, EN2, DC2, V2, z02),

• Medium=(P3, T3, F3, W3, CN3, EN3, DC3, V3, z03),

• High=(P4, T4, F4, W4, CN4, EN4, DC4, V4, z04).

The behavior module of RTNFESTO is graphically shown in Fig. 4.6. The four control

modes are covered by it. It is formally described as follow:

BFESTO=(P , T , F , W , CN , EN , DC, V , Z0).

TN(Light1), TN(Light2), TN(Medium), TN(High) ∈
∑

TNFESTO. We have P =

P1∪P2∪P3∪P4, T = T1∪T2∪T3∪T4, F = F1∪F2∪F3∪F4, W = W1∪W2∪W3∪W4,

CN = CN1 ∪ CN2 ∪ CN3 ∪ CN4, EN = EN1 ∪ EN2 ∪ EN3 ∪ EN4, DC = DC1 ∪
DC2 ∪ DC3 ∪ DC4, ∀t ∈ T1 ∩ T2 ∩ T3 ∩ T4, V (t) = V1(t) = V2(t) = V3(t) = V4(t),

and ∀p ∈ P1 ∩ P2 ∩ P3 ∩ P4, Z0(p) = z01(p) = z02(p) = z03(p) = z04(p). Eight different

reconfiguration scenarios can be applied to FESTO MPS as shown in Fig. 4.4. Thus the

control module of FESTO MPS’s R-TNCES has eight elements. It is formally described as

follow:

41

Doctoral Dissertation of XIDIAN UNIVERSITY

RFESTO = { rL1,L2 , rL1,M , rM,L1 , rM,L2 , rM,H , rH,L1 , rH,L2 , rH,M }.

Let •r (resp, r•) denote the original (resp, target) TNCES before (resp, after) a recon-

figuration function r is applied, where TN(•r), TN(r•) ∈
∑

TN .

Definition 2 A reconfiguration function r is a structure r=(Cond, s, x). Cond → {true,

false} is the pre-condition of r. s: TN(•r) → TN(r•) is the structure modification instruc-

tion. x: laststate(
•r) → initialstate(r

•) is the state correlation function, where laststate(
•r)

(resp, initialstate(r
•)) denotes the last (resp, initial) state of •r (resp, r•) before (resp, after)

the application of r.

If Cond = true, r is executable, otherwise it cannot be executed. The structure modi-

fication instruction guides the structure modification from TN(•r) to TN(r•), including the

addition /removal of control components and condition/event signals among them such that

TN(•r) is transformed into TN(r•). The state correlation function maps the last state of
•r before the application of r to a feasible initial state of r• after the application of r, from

which the reconfigured system goes on running.

The pre-condition of a reconfiguration function traditionally means specific external

instructions, gusty component failures, or the arrival of certain states. It is assumed that

all states of the controlled RDES are obtained immediately and can be used directly in this

chapter. The fundamental structure modification instructions are proposed in Table 4.1. We

denote by x a place, y a transition, CC a control component, and “+” the AND of instructions

in order to represent complex modification instructions.

Instruction Symbol
Add condition signals Cr(cn(x, y))
Add event signals Cr(ev(y, y))
Add control component Cr(CC)
Delete condition signals De(cn(x, y))
Delete event signals De(ev(y, y))
Delete control component De(CC))

Table 4.1 Fundamental structure modification instructions of R-TNCESs

Example 5 rL1,L2=(Cond, s, x). Cond = true while Drill1 breaks down. s=De(CC7) +

Cr(CC8) + Cr(ev(t19, t23)) + Cr(ev(t25, t26). Let us assume that FESTO MPS is in the

light production mode Light1. Drill1 breaks down at time τ while the system is at state

z1 = laststate(Light1) = (M1, D1), where M1 = p1 + p4 + p9 + p10 + p13 + p16 + p21

+ p25 + p28, and D0 = p4 + 4p9 + p10 + p13 + 26p16 + 3p21 + 26p25 + 26p28 (i.e., a

42

Chapter 4 Reconfigurable Timed Net Condition Event Systems

workpiece is being tested, and a workpiece is being drilled by Drill1). Then rL1,L2 is exe-

cuted automatically to continue the production at this time. The first step is to execute the

structure modification instruction s, including removing CC7, adding CC8, and modifying

the signals among CC8 and other control components. According to the last state z1 before

rL1,L2 is implemented, the system should go on working from state z2 = (M2, D2), where

M2=p1+p4+p9+p10+p13+p16+p22+p25+p28, and D2=p4+4p9+p10+p13+26p16+26p25+26p28,

i.e., the workpiece on Test goes on being tested and Drill2 is added into the system waiting

for a drilling task. The controlled system continues to work in Light2 without any reboot

from z2.

4.4.2 Dynamics of R-TNCESs

The dynamics of an R-TNCES is represented in this section by referring to self modi-

fication nets and net rewriting systems. The states of an R-TNCES are defined as follows:

Definition 3 Let Γ be a TNCES supported by an R-TNCES RTN . A state of RTN is a pair

(TN(Γ), State(Γ)), where TN(Γ) denotes the net structure of Γ and State(Γ) denotes a

state of Γ.

The evolution of an R-TNCES depends on what events (reconfiguration functions or

transitions) take place. Let Γ be the current active TNCES with Γ=(P , T , F , W , CN , EN ,

DC, V , Z0) and TN(Γ) ∈
∑

TN . If a maximal step u fires, Γ evolves from its one inner

state to another. However, if a reconfiguration function r is applied, then Γ is updated into

Γ′ by changing its net structure and updating its state.

A reconfiguration function r=(Cond, s, x) is enabled at state (TN(Γ), State(Γ)) if

1. Cond = true, i.e., its pre-condition is fulfilled;

2. TN(Γ) = TN(•r), i.e., TN(Γ) is equal to the net structure of •r;

3. ∃State(r•), x(State(Γ))=initialstate(r
•), i.e., there exists a proper state initialstate

(r•) from which the system goes on working.

An enabled reconfiguration function can fire. After firing a reconfiguration function r at

state (TN(Γ), State(Γ)), the system evolves into a new state (TN(Γ′), State(Γ′)) where the

system structure is modified from TN(Γ) to TN(Γ′) and the state is updated to State(Γ′).

For a transition t in an R-TNCES, the first condition of its firing is that it must be in

the current active TNCES. On this basis, the firing rule of a transition in an R-TNCES is the

same as in a TNCES.

A spontaneous transition t is enabled at a state (TN(Γ), State(Γ)) with State(Γ) =

(M,D) if it has both token concession and condition concession, i.e., ∀p ∈ •t, M(p) ≥ 1

43

Doctoral Dissertation of XIDIAN UNIVERSITY

and ∀p ∈ −t, M(p) ≥ 1. In the case of V (t) = ∧, a forced transition t is enabled at the

state z = (M,D) if it has both token concession and condition concession, all its forcing

transitions are enabled or it does not have forcing transitions, and the clock position of its

each input place is within the corresponding time constraint, i.e.,

1. ∀p ∈ •t, M(p) ≥ 1,

2. ∀p ∈ −t, M(p) ≥ 1,

3. ∀t′ ∈ ∼t, ∀p ∈ •t′, M(p) ≥ 1 ∨ ∼t = ∅, and

4. ∀p ∈ •t, eft(p, t) ≤ D(p) ≤ lft(p, t).

In the case of V (t) = ∨, a forced transition t is enabled if it has both token concession

and condition concession, at least one of its forcing transitions is enabled or it does not have

forcing transitions, and the clock position of each its input place is within the corresponding

time constraint. Formally, a forced transition, in this case, is enabled if the third condition

above is changed into ∀p ∈ •t, ∃t′ ∈ ∼t, M(p) ≥ 1 ∨ ∼t = ∅.

Spontaneous transitions can fire at each time instant as long as they are enabled. Hence,

all enabled spontaneous transitions are included (and the whole set of transitions that are

forced by them) into the set of firing transitions. The maximal steps are generated from

the set of fired transitions. The time after which a maximal step fires is called a step delay

and is denoted by ∆τ . In the case that there is no spontaneous transition, ∆τ is equal

to the earliest firing time of a forced transition. Firing a maximal step u after ∆τ time

units results in a new state z′ = (M ′, D′) with M ′ = M + [N] × u ([N] is a |P | × |T |
integer matrix with [N](p, t) = W (t, p) − W (p, t)) and ∀p ∈ P , D(p)′ = D(p) + ∆τ , if

M(p) > 0 ∧ ∀t ∈ u, t /∈ •p ∪ p•, otherwise D(p)′ = 0.

In an RDECS, if an hardware error occurs or new user requirements arise at run-time, a

reconfiguration scenario should be implemented. Note that in an R-TNCES, a reconfigura-

tion function always has a higher priority than a transition. That is to say, if a reconfiguration

function r and a transition t are enabled simultaneously at a state z, the reconfiguration func-

tion always fires first.

Definition 4 The reachability graph of the R-TNCES RTN is a combination of several

labeled directed graphs whose nodes are states of RTN and whose arcs are of two kinds:

maximal steps and reconfiguration functions.

• The arcs from the state (TN(Γ), z) to the state (TN(Γ), z′) are denoted by a maximal

step u represented by:

(TN(Γ), z)[u〉(TN(Γ), z′)

44

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.7 A diagram of a simplified reachability graph of FESTO MPS

where Γ=(P , T , F , W , CN , EN , DC, V , z0), u ⊆ T , z = (M,D), z′ = (M ′, D′)∈
R(TN(Γ), z0), M ′(P) = M(P)+[N]×u, and D′(p)=D(p)+4τ if M(p) > 0∧∀t ∈
u, p /∈ •t ∪ t•. Otherwise D′(p) = 0. They are graphically represented by solid

arrows.

• The arcs from the state (TN(Γ), z) to the state (TN(Γ′), z′) are labeled with r=(Cond,

s, x), and are denoted in the current chapter by:

(TN(Γ), z)[r〉(TN(Γ′), z′)

where Γ=(P , T , F , W , CN , EN , DC, V , z0), Γ′=(P , T ′, F ′, W ′, CN ′, EN ′, DC ′,

V ′, z′). TN(Γ′) = s(TN(Γ)), z′=x(z) with z = (M,D) ∈ R(TN(Γ), z0) and

z′ = (M ′, D′). ∀p ∈ P ∩ P ′, M ′(p) = M(p) and D′(p) = D(p). ∀q ∈ P ′ − P ,

M ′(q) = M0(q) and D′(q) = 0, and M0(q) is the initial marking of q in RTN . The

reconfiguration functions are graphically represented by hollow arrows.

Example 6 A simplified reachability graph of RTNFESTO is shown in Fig. 4.7. Assume

that at time τ0, FESTO MPS is at state (TN(Light1), z1), where the firing step u1 is first

enabled and fired, then the system arrives at state (TN(Light1), z2). Suppose that just

at this moment the system receives a reconfiguration requirement that requests the system

to transform into the medium production mode. Then the reconfiguration function rL1,M is

applied at (TN(Light1), z2) such that the system evolves into the state (TN(Medium), z3),

from which the system goes on working in the medium production mode.

R-TNCESs are different from TNCESs because of the extra reconfiguration functions.

An R-TNCES can perform a group of superposed TNCESs and offer the automatic transfor-

mations of them by the addition/removal of control components and modifying the condi-

tion/event signals among them. In addition, the states coherence and temporal constraints are

45

Doctoral Dissertation of XIDIAN UNIVERSITY

considered in R-TNCESs. How reconfiguration functions of an R-TNCES are implemented

is illustrated in detail in the next subsection.

4.4.3 Reconfiguration Implementation of R-TNCESs

An R-TNCES has a set of reconfiguration functions to manage the system’s dynamic

reconfigurations including the structure modification and the states coherence. In this sub-

section, a state machine specified by a TNCES is developed to describe reconfiguration

functions of an R-TNCES. In addition, a set of actuators specified by TNCESs is proposed

to synchronize the state machine with the behavior module of the R-TNCES.

First of all, a state machine specified by a TNCES, which is called Structure changer,

is defined, where each place corresponds to a specific TNCES of an R-TNCES. Thus, each

transition corresponds to a reconfiguration function. The fact that a place sp gets a token

implies that the TNCES, to which sp corresponds, is selected. If a transition st (∀st ∈ sp•)

fires, then it removes the token away from sp and brings it into a place sp′, sp′ ∈ st•.

Firing of st implies that a reconfiguration function is applied. After that, the TNCES is

changed into other TNCES to which sp′ corresponds. The Structure changer is formalized

as follows:

Structure changer=(P , T , F , V , m0),

where ∀t ∈ T , |•t| = |t•| = 1,
∑

m0(P) = 1, which mean that only one place in P owns

a token in the initial state and only one TNCES is performed at any time, and V : T →
{∧}. The pre-condition of a reconfiguration function generally means a specific external

instruction, or a specific system state. Therefore the pre-condition Cond can be modeled by

input event/condition signals from external to transitions in Structure changer.

In addition, an actuator denoted by Actuator is defined for each place sp in Structure

changer, which is marked by Actuator=Act(sp), such that the changed TNCES can be

reactivated. Each actuator is composed of a place mp and a transition mt only, where
•mp=mp•={mt}, •mt=mt•={mp}, and M(mp) = 1. When the place sp in Structure

changer receives a token, the actuator Actuator=Act(sp) is activated. After that, mt sends

event signals constantly to the corresponding control components in the TNCES to which sp

corresponds. In this case, the control components in the active TNCES are executable only

and the others are not. An Actuator is formalized as follows:

Actuator=(P , T , F , V , m0),

46

Chapter 4 Reconfigurable Timed Net Condition Event Systems

where |P | = |T | = 1, •mt = mt• = {mp}, •mp = mp• = {mt}, m0(P) = 1, and V : T →
{∨}.

The set of actuators is denoted by
∑

Actuator. Obviously, |
∑

Actuator| equals to

the numbers of places in Structure changer. The synchronization of Structure changer

and
∑

Actuator is specified by event signals. Let sp be a place in Structure changer and

Actuator = Act(sp) = (mp,mt, F,W,M0) be its actuator. Then ∀st ∈ •sp, there is a event

signal from st to mt, i.e., st ∈ ∼mt.

Let Γ be the TNCES corresponding to sp,
∑

MΓ be the set of control components in it,∑
M1 be the set of shared control components used in all TNCESs of an R-TNCES RTN ,

and
∑

M2 =
∑

MΓ −
∑

M1. Let t ∈ M (M ∈
∑

M2) be the entrance transition of control

component M by firing which M can be activated to work. Then there exist event signals

from mt to the entrance transitions in all control components in
∑

M2, i.e., ∀M ∈
∑

M2, t

is the entrance transition of M, mt ∈ ∼t.

Example 7 Fig. 5.2 depicts the implementation of the R-TNCES based control model of

FESTO MPS. The places sp1, sp2, sp3, and sp4 in Structure changer correspond to Light1,

Light2, Medium, and High, respectively. When st7 fires, the reconfiguration function rH,L2

is implemented.

The control components are the basic (smallest) modules in an R-TNCES. States in one

control component are relatively independent with the states in other control components.

Thus, by the design requirement, an equivalent TNCES model can be built for an R-TNCES

following the way above, where the control module can be modeled by the synchronized

Structure changer and the set of actuators. The equivalent TNCES allows reconfigurations

while the states coherence can be guaranteed during the reconfiguration processes. Given

an R-TNCES, if n1 (n1 ∈ N+) TNCESs can be performed in its behavior module and there

exist n2 (n2 ∈ N+) reconfiguration functions, then its control module has 2×n1 places and

n1 + n2 transitions.

In most Petri net based design methods of RDECS, a place can be defined as a state

or a certain event or some special instructions such that the quantitative analysis of the net

size is impractical. Compared with other formalisms, control components are applied in

R-TNCESs. Therefore, it is easier for users to understand the design and facilitate the future

expansion of an RDECS. Llorens and Oliver [37] implemented net rewriting systems with

Petri nets. They make n1 (n1 ∈ N+ is the number of configurations that can be performed

by the system) copies of the transitions located in different layers and the set of places in an

47

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.8 Equivalent TNCES model of FESTO’s R-TNCES

exclusive layer, such that the different connections among places and transitions correspond

to different system configurations. When a layer is activated, all the transitions in it and the

corresponding Petri net based configuration is activated. Therefore, if net rewriting systems

are applied to FESTO MPS, extra 4×39 = 156 transitions are needed for the implementation

of reconfigurations. In the previous chapter, the modifications of places, transitions, and

initial markings are covered only. It needs extra 13 places and 22 transitions to deal with

possible reconfigurations in FESTO MPS. Whereas, in this chapter, the whole model has

8 extra places and 12 extra transitions only to cover all forms of reconfiguration scenarios

including the addition/removal of control components and modifying condition/event signals

among them.

4.5 Verification of R-TNCESs

Once an RDECS’s R-TNCES model is well established, the next step is to check

whether the model meets the design requirements. The checked properties include the rapid

and correct response to a reconfiguration request and the valid system behavior after the

application of a reconfiguration function. As far as we know, there is no work that deals

48

Chapter 4 Reconfigurable Timed Net Condition Event Systems

with the verification of reconfigurable systems with the TNCES formalism. So far, we have

not developed a specialized model-checker for R-TNCESs, thus in this chapter we use the

equivalent TNCES for the verification of an R-TNCES. We note that SESA is an effective

software environment for the analysis of TNCESs, which computes the set of reachable

states exactly. Typical properties that can be verified are boundedness of places, liveness

of transitions, and reachability of states. General functional and temporal properties can be

expressed in TCL, eCTL, and TCTL, and checked manually. In this section, we provide

a layer-by-layer verification method for R-TNCESs by SESA subjected to the modeling

methodology presented in Section 4.3.

4.5.1 Verification of the Initial TNCES

Assume that Γ0 is the default initial TNCES of an R-TNCES RTN with TN(Γ0) ∈∑
TN . Other TNCESs can be obtained by implementing specific reconfiguration functions.

Therefore, it is all-important to check the correctness of the initial TNCES.

The actuator of a physical process of an RDES is denoted by act. A chain is defined as a

sequence of actuators with temporal constraints. A configuration of an RDES is described by

a set of simultaneous chains and the corresponding controller is described by a set of control

chains that are the sequences of control components. It is assumed that no loop exists in a

chain, and no resource competition exists among the chains of a configuration. For a control

chain Controlchaini, Controlchaini(j) denotes the jth control component in Controlchaini,

and running(Controlchaini(j)) denotes the time constraint of Controlchaini(j).

The set of control components in a TNCES Γi is denoted by
∑

CCi. Before the verifi-

cation of Γ0,
∑

CC0 is divided into multi-layers. The set of control chains describing Γi is

marked by
∑

Controlchaini. If numberlayersi signifies the final number of layers of Γi and

|Controlchaini| denotes the number of nodes of Controlchaini, then

numberlayersi = max
|
P

Controlchaini|
i=1 {|Controlchaini|}.

If Layi
j denotes the set of control components in the jth layer of Γi, then

Layi
j = {∪|

P

Controlchaini|
i=1 Controlchaini(j)}, 0 < j ≤ numberlayeri.

Example 8 Light1 is the initial TNCES of RTNFESTO. Its control system is described by

the combination of Controlchain1 and Controlchain2. The control components of Light1

are divided into eight layers as shown in Fig. 4.9 according to the operation order of the

physical processes, where CC4 and CC5 are located in the fourth layer.

49

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.9 Layers of Light1

The verification of Γ0 is done layer by layer from the first one by SESA. If SESA shows

that a net is bounded, live, and all the checked CTL-based properties are shown to be true,

then the net is feasible with SESA. In each layer, the number of control components is not

greater than the total number of control chains, i.e., 1 ≤ |Layi
j| ≤ |

∑
Controlchaini|, and

0 < j ≤ numberlayersi. During the verification of a layer, an abstract model denoting its

external environment is constructed. The verification process of Γ0 is described as follows:

• Step1: The model-checker SESA is applied to automatically verify deadlock proper-

ties and also to manually verify CTL/eCTL-based functional and TCTL-based tem-

poral properties (to be described by users) of the set of control components Lay0
1 on

the first layer. If Lay0
1 is feasible with SESA, then go to the next step. Otherwise, the

verification is stopped.

• Stepi: In each Stepi (i > 1), an abstract model, denoted by Am0
i−1, is built, which

used to indicate the external environment of Lay0
i . The abstract model, tagged by

Am0
i−1, is constructed by the following way:

1. Create an initial place p1 with one token, an entrance transition tentrance from the

initial place, and an output place p2 from tentrance.

2. Build |Lay0
i | traces from the output place p2. Each trace denoted by trj has a

starting transition tjstart coming from p2 and an end transition tjend that hooks up to the

initial place p1, where 0 < j ≤ |Lay0
j |.

3. Assign a time interval [lji−1, h
j
i−1] to the output arc f(p3, t

j
end) with •tjend={p3} such

that [lji−1, h
j
i−1] =

∑i−1
k=1 running(Controlchainj(k)), where 0 < j ≤ |Lay0

j |.

50

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.10 The composite module CML1
2

Afterwards, Am0
i−1 is glued with Lay0

i by event signals due to the interconnection be-

tween Lay0
i−1 and Lay0

i . Then a new composite module signified by CM0
i is obtained.

Finally, the model-checker SESA is applied to automatically verify deadlock proper-

ties and also to manually verify eCTL-based functional and TCTL-based temporal

properties of CM0
i . Specifically,

if CM0
i is feasible with SESA then

if Lay0
i+1 6= ∅ then

go to the next step verification

else

the verification of this TNCES is correctly done

end if

else

the verification is stopped

end if

Example 9 There is one control component CC1 in LayL1
1 of Light1 only. Note that |LayL1

2 |
= 1. The abstract module AmL1

1 and the composite module CML1
2 are depicted in Fig. 4.10.

During the verification of LayL1
4 , the abstract model of the external environment of Lay4

L1

is first built. Note that |Lay4
L1| = 2. As a result, AmL1

3 has two traces corresponding to

Controlchain1 and Controlchain2, respectively. The composite model CML1
4 is shown in

Fig. 4.11. It is obvious that, the first three layers of Controlchain1 and Controlchain2 is the

same, and a branch arises in the fourth layer. In the verification of sixth layer, |Lay6
L1| = 1.

Thus in the abstract model AmL1
5 , there is one trace only corresponding to Controlchain2,

51

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.11 The composite module CML1
4

Fig 4.12 The composite module CML1
5

52

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.13 The reachability graph generated in the 4th step of Light1

as shown in Fig. 4.12.

In each step, eCTL/TCTL based properties specified by users are checked manually. In

particular the different choices of two chains in the fourth step are checked manually. The

following eCTL formula is applied to Light1:

z0 |= AGAt1XAFEt11ANDt14XTRUE

This formula is proven to be false by SESA. Indeed, whenever t1 that is the entrance transi-

tion of AmL1
4 fires, either CC4 or CC5 is activated according to the test result. It is impossi-

ble that CC4 and CC5 are activated simultaneously. Fig. 4.13 shows the reachability graph

automatically generated by SESA in the second step to check the deadlock property of the

new constructed composite model CML1
2 . From the picture, it is evident that no deadlock is

in CML1
2 .

4.5.2 Verification of Other TNCESs

Other TNCESs can be obtained one by one through the implementation of certain re-

configuration functions. Let r = (Cond, s, x) be a reconfiguration function, where •r = Γa

and r• = Γb. Assume that Γa passes SESA successfully, then the verification of Γb is illus-

trated as follows:

1. Divide the control components of Γb into multi-layers. The resulting number of

layers are denoted by numberlayersb and the set of control components in ith layer is denoted

by Layi
b.

2. If, after the reconfiguration, the layers from Layk
a to Layg

a in Γa is changed into

layers from Layk
b to Layg′

b in Γb while other layers remain unchanged, i.e.,

53

Doctoral Dissertation of XIDIAN UNIVERSITY

• Layi
a = Layi

b, 0 < i ≤ k,

• Layg+i
a=Layg′+i

b, 0 < i ≤numberlayersa−g, numberlayersa−g=numberlayersb−g′.

Then, Γ′ is verified from the kth layer following the layer-by-layer method proposed in

the last subsection. The verification does not stop, if every layer is feasible with SESA, until

the termination of the verification of the g′th layer.

3. Construct an abstract model Amb
g′ for the external environment of Layb

g′+1. If

Amb
g′ = Ama

g , then Γ′ is correctly done. Otherwise, the remaining parts from Layb
g′+1

to numberlayersb should be checked again. Specifically,

if CM b
g′ is feasible with SESA then

if Layb
g′ 6= ∅ then

Construct an abstract model Amb
g′

if Amb
g′ = Amb

g then

the verification is correctly done

else

go on verification

end if

else

the TNCES Γb is correctly done

end if

else

stop verification

end if

Example 10 The resulting layers of Medium is shown in Fig. 4.14. The previous five layers

and the last two layers of Light1 and Medium are the same. Therefore, the abstract model

AmL1
4 constructed in the verification process of Light1 can be used in the verification of

Medium directly. The temporal constraints of AmM
6 is [18, 30], which is equal to that of

AmL1
6 . As a result, Lay7

M and Lay8
M need not be checked again.

In particular, the TCTL property in the sixth step of Medium is verified:

z0 |= EF [14, 24]p32 = 1

This formula has been proven to be true. In fact, in the medium production mode, the drill

machine Drill1 or Drill2 can be activated in at least 14 time units after the system starts.

54

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.14 The layers of Medium

From the above description, the layer-by-layer method for the verification of other

TNCESs is based on the fact that their original TNCESs are feasible with SESA. There

exist a mass of common components between two TNCESs, which are linked by a reconfig-

uration function. The common parts do not need to be checked repetitively if their external

environments are not changed by the reconfiguration, since they have been proven to be

correct.

4.5.3 Verification of the Control Module

An R-TNCES can be implemented by an equivalent TNCES as shown in Section 4.4.3.

In this subsection, we focus on the cases when a reconfiguration request or an error occurs,

whether the control module can respond and select a proper TNCES. The following CTL

formula is proposed to the control module of RTNFESTO in Fig. 5.2:

z0 |= AGAst5XAFEmt1Xsp1

This formula has been proven to be false by SESA. In fact, when st5 fires, Light2 is selected,

and the Actuator2 is activated rather than Actuator1. Thus, mt1 in Actuator1 cannot get

enabled under this circumstance. The following formula has been proven to be true when

Light1 is selected.

z0 |= AGAst4ORst8XAFEmt1Xsp1

The complexity of the layer-by-layer method for the verification of the TNCESs of

an R-TNCES is considered. Suppose that ncomplexity is the upper bound of the number of

55

Doctoral Dissertation of XIDIAN UNIVERSITY

resulting layers of a TNCES, and it also denotes the total steps for the construction of the

composite model in each layer. Therefore, the complexity of the automatic layer-by-layer

construction problem of a TNCES is O(n2
complexity). Compared with the refinement-based

verification method of plant control systems in [74], we have following distinctions and

improvements: 1) Control components are applied directly to model the control system in

this chapter, whereas in [74], a place in the plant model is refined to the corresponding

controller specified by a control component, where reconfigurations are not allowed. 2) The

control chains describing the behavior of a TNCES are merged together before the separation

of the control components into multi-layers. Therefore, the checked net is minimized in each

layer, whereas the chains are checked simultaneously in [74] without the combination. 3) At

each step, we build an abstract model as the external environment of the underlying layer.

Whereas in [74], an abstract model is built at each step as a rough model of the system,

in which a place is refined according to certain refinement rules of TNCESs, by which the

net’s properties are preserved. 4) The similarity among various TNCESs of an R-TNCES

is considered, such that the comprehensive verification of the TNCESs can be simplified,

except the initial one.

4.5.4 System Correctness

The correctness of the proposed layer-by-layer verification approach is proven in this

section. Let numberlayersi be the sum of layers of a TNCES Γi and
∑

Controlchainsi be the

set of control chains describing Γi.

Theorem 1 If the generated composite model of the initial TNCES Γ0 in each step is feasible

with SESA, then Γ0 is correct according to user requirements.

Proof : During the verification of the Γ0, a sequence of composite modules is generated,

which is denoted by CM0
1 CM0

2 ...CM0
numberlayersi. Suppose that the generated composite

model in each step is feasible with SESA, but certain functional or temporal properties are

not satisfied. We have two cases:

• Case1. Let boundchaini denote the temporal constraint of a control chain Controlchaini,

with bound chaini =
∑|Controlchaini|

k=1 running (Control chaini(k)) and 0 < i ≤
|
∑

Controlchains|. If a temporal property φ is not satisfied by the whole TNCES,

there exists a composite module CM0
|Controlchaini|, generated in the |Controlchaini|th

step of the verification (0 < |Controlchaini| ≤ numberlayers), which does not meet

the corresponding temporal bound boundchaini. In this case, we have

56

Chapter 4 Reconfigurable Timed Net Condition Event Systems

hi
|Controlchaini| > boundchaini,

where hi
|Controlchaini| is the upper bound of the time interval of the trace corresponding

to Controlchaini in CM0
|Controlchaini|. That is to say, the upper bound hi

|Controlchaini|

of the composite module generated in the |Controlchaini|th step is larger than the

required temporal constraints. Nevertheless, in the proposed approach, if each com-

posite module satisfies with the time constraints, then

hi
|Controlchaini| ≤ boundchaini.

• Case2. Let ϕ be a functional property that is not satisfied by Γ0. According to the

assumption, a subset of composite models, to be generated in different layers, does

not satisfy ϕ. This is incompatible with the assumption.

Thus the theorem is true. ¥

Theorem 2 Given two TNCESs Γa and Γb of an R-TNCES, Γa is proved to be correct by

SESA. Suppose that only the layers from Layk
a to Layg

a in Γa are different from that from

Layk
b to Layg′

b in Γb. If the external environment of the un-changed parts of Γa is not

changed, the repetitive verification of them can be avoided during the verification process of

Γb.

Proof : Obviously, the first k layers of Γb need not to be checked repetitively due

to Theorem1. From the (g′ + 1)th step of the verification process, whether the verifica-

tion can be avoided depends on the external environment of Layb
g′+1, where Layb

g′+i =

Laya
g+i with 0 < i ≤ |

∑
Controlchainsb| − g′. If the constructed abstract model in the

(g + 1)th step of Γa is the same with the one generated in the (g′ + 1)th step of Γb, i.e.,

Ama
g = Amb

g′ , the generated composite module CM b
g′+1 = CMa

g+1. Therefore, the lat-

ter generated sequence of composite modules CM b
g′+1CM b

g′+1...CM b
|
P

Controlchainsb| equal

CMa
g+1CM b

g+1...CMa
|
P

Controlchainsa|. Therefore, the residual layers need not be checked

repetitively. However, if Ama
g 6= Amb

g′ , the latter generated sequence of composite modules

CM b
g′+1CM b

g′+1...CM b
|
P

Controlchainsb| is changed. Thus the residual layers has to be verified

one by one again, although the layers are maintained unchanged. From the above statements,

the theorem is true. ¥
57

Doctoral Dissertation of XIDIAN UNIVERSITY

Fig 4.15 Improved verification of Light1

4.5.5 Discussion

In the benchmark production system, Light1 is the initial production mode. Eight

reachability graphs corresponding to the eight steps of the layer-by-layer verification process

are computed by SESA. Fig. 4.15 demonstrates how the developed verification method

is improved comparing with the traditional verification method for NCESs. The number

of generated states by the proposed approach for Light1 is 371, whereas it is 19, 683 if a

verification algorithm without any improvement is directly applied. Table 4.2 depicts the

generated state number during the verification of Medium. The previous five and the last

two layers of Medium are not checked, because the external environment of LayL1
7 and

LayL1
8 is not changed by implementing rL1,M .

Steps 1 2 3 4 5 6 7 8
States number of Light1 3 16 10 302 10 10 10 10
States number of Medium 0 0 0 0 0 13 0 0

Table 4.2 State number in the verification of Medium

Fig. 4.16 reveals the result of an experimental study to compute the number of gen-

erated states for the automatic construction of feasible 100 steps to verify a TNCES. We

assume that there are 100 layers in a TNCES and the behavior of this TNCES is described

by three parallel chains with the same length. Assume that each layer generates 1000 states.

It is possible to generate 1000100 = 1.e + 300 states if SESA is applied directly to this

TNCES. However, if our method is applied, during the verification, 100 abstract models

are built. Each abstract model has three traces (five places). Thus in each step it gen-

58

Chapter 4 Reconfigurable Timed Net Condition Event Systems

Fig 4.16 Improved verification of 100 steps

erates 5 ∗ 1000 = 5000 states. Therefore, during the verification process, it generates

5000 ∗ 100 = 500, 000 states only.

4.6 Summary

This chapter introduces R-TNCES, a new formalism for modeling and verification of

RDECSs. Compared with the previous studies on formal methods for RDECS, the functional

and temporal specifications are optimized, and more forms of reconfiguration scenarios are

covered such as the addition/removal of control components and the modifications of condi-

tion/event signals among them. An R-TNCES architecture is composed of a behavior mod-

ule and a control module. The former is a union of a group of TNCESs that are composed

of control components with uniform interfaces. The latter handles the automatic reconfigu-

rations of these TNCESs. A reconfiguration function has not only a structure modification

instruction to dispose the structure reconfiguration but also a state correlation function to

assure the coherence of states before and after any implementation of reconfiguration sce-

narios. Therefore, an R-TNCES is such a formalism that guarantees the correctness of an

RDECS from the viewpoint of the model.

A layer-by-layer verification method for R-TNCESs is also proposed by using the

model-checker SESA. The initial TNCES of an R-TNCES is checked first. Its control com-

ponents are divided into multi-layers in terms of predetermined execution orders and then

checked layer by layer. An abstract model denoting the external environment of the un-

derlying layer is constructed during the process, and the obtained composite net is checked

by the model-checker SESA. Meanwhile, the functional and temporal properties specified

59

Doctoral Dissertation of XIDIAN UNIVERSITY

by users are checked manually. Other TNCESs are obtained one by one by implementing

certain reconfiguration functions. The similarity among the TNCESs is considered, which

helps to simplify the verification process. It is proved that if the external environment of the

unchanged parts is not changed by reconfigurations, the repetitive verification of the them

can be avoided. This solution controls the complexity of model-checking of an R-TNCES.

The benchmark production system FESTO MPS is taken as a whole running example in the

context of this chapter. It shows that the R-TNCES is a convenient formalism for modeling

and analyzing RDECSs.

60

Chapter 5 Coordination of R-TNCESs

Chapter 5 Coordination of R-TNCESs

A distributed reconfigurable discrete event control system (DRDECS) is composed of

several networked reconfigurable subsystems. In order to realize the system functions, these

reconfigurable subsystems communicate and coordinate with each other. Any automatic re-

configuration applied to a subsystem may cause risk to others and even to the safety of the

whole system. This chapter reports a new coordination method for a DRDECS, where each

subsystem is modeled by an R-TNCES. A virtual coordinator together with a communica-

tion protocol between it and subsystems is developed in order to achieve two aims: 1) to

coordinate subsystems with an optimal coordination solution by using Judgement Matrices

while multiple subsystems require global reconfigurations and 2) to reduce the exchanged

messages between the coordinator and these subsystems. Furthermore, for the purpose of

checking the functional and temporal properties of a DRDECS with a virtual coordinator,

the CTL based model checking method is applied. Finally, a hypothetic manufacturing plant

is used as a running example to illustrate the work.

5.1 Motivation

A distributed discrete event control system (DDECS) is a discrete-state, event-driven

system whose evolution depends entirely on the occurrence of asynchronous discrete events

over time [22]. A DDECS allowing dynamic reconfigurations is called in this chapter a

distributed reconfigurable discrete event control system (DRDECS). A dynamic reconfigu-

ration means the automatic change of a running system while the system performance is not

reduced [83]. It is always caused by continuous changes of the execution environment or

faults detecting of the system components. A great deal of real-world systems can be rep-

resented as DRDECSs such as traffic control systems, automobile electronic systems, and

manufacturing systems [41], [43], [84], [85], [86].

Physically, a DRDECS is composed of a set of networked reconfigurable discrete event

control subsystems. Possible reconfiguration scenarios of a DRDECS can be divided into

two types: local reconfigurations and global reconfigurations. The former is implemented by

subsystems independently without noticing others, which has been studied in many works

[81], [1], [87], [75], [44], [88]. The latter involves parts or all subsystems. Therefore, the

coordination of subsystems in such a case is of great importance and significance in many

61

Doctoral Dissertation of XIDIAN UNIVERSITY

cases, where the communication among them plays a key role such that all the subsystems

work effectively in a group setting [75], [53], [54], [89]. This chapter focuses on global

reconfigurations of a DRDECS.

As discussed in Chapter 1, several research works have been done in recent years, which

define inter-agent communication protocols for the coordination of various components [49],

[50], [51], [52], [53], [54], [55]. All those existing communication modes are effective in

their application fields. However, the rate of exchanged messages is an important criterion

in order to guarantee an acceptable level of satisfaction and robustness [50], [51]. A multi-

agent architecture is proposed in [56] to deal with the coherence of distributed devices, where

the exchanged messages among agents are reduced significantly compared with a direct

point-to-point communication mode among agents. The method in [56] gives a coordination

solution for multiple concurrent requirements. However, the solution only aims to satisfy the

requirement with the highest priority. An optimal coordination solution for all concurrent

reconfiguration requirements is not studied.

In order to better cope with the coordination problems of a DRDECS, this chapter de-

velops a novel virtual coordinator together with a communication protocol that defines inter-

action rules between subsystems and this coordinator. The proposed method is competent to

treat all concurrent reconfiguration requirements with an optimal coordination solution that

is selected by using Judgement Matrices handled by the coordinator, while the exchanged

messages are well-controlled.

In this chapter, the virtual coordinator and the communication protocol are modeled

by TNCESs. Reconfigurable subsystems of a DRDECS are modeled by reconfigurable

timed net condition/event systems (R-TNCESs) [87]. After the generation of models of a

DRDECS, the model checker SESA is applied to check whether they fulfill design require-

ments. All required or forbidden properties are specified by CTL as well as its extensions.

The alternative of using a liner time logic is ruled out because any model checker for such a

logic must have high complexity [90]. Finally, the communication protocol is evaluated in

this study by computing the exchanged messages among subsystems and the coordinator.

5.2 Reconfigurable Coordination of a DRDECS

A distributed reconfigurable discrete event control system (DRDECS) is composed of

a group of networked reconfigurable subsystems. The possible reconfiguration scenarios

in a DRDECS are divided into two categories: global and local reconfigurations. Each

subsystem is able to handle its own local reconfigurations independently without asking

62

Chapter 5 Coordination of R-TNCESs� � � �� � � � � � 	
 � � �
 � � � � � �� � � �� � � � � � �� � � � � ! " # � � $ % & '() (* + , - . / / 0 1 2 3 4 5 / 06 7 8 9: ; : < = > ?@ A A B C D E F G A B
Fig 5.1 Architecture of a DRDECS

for a permission from other subsystems. However, if a subsystem wants to apply a global

reconfiguration that may cause turbulence to other running subsystems, it has to apply for

a permission from them. In order to achieve the targets of 1) controlling the amount of

exchanged messages between subsystems and 2) dealing with all concurrent requirements

for global reconfigurations with an optimal coordination solution, a novel virtual coordinator

handling Judgement Matrices together with a communication protocol is developed.

5.2.1 Specification of a DRDECS

Assume that a DRDECS S is composed of n networked reconfigurable subsystems.

Then a DRDECS S , as shown in Fig. 5.1, is defined by

S = (Σ, $, ξ),

where Σ is a set of n subsystems, $ is a virtual coordinator handling a set of Judgement

Matrices, and ξ is a communication protocol that defines the interaction rules between Σ

and $.

The virtual coordinator exchanges messages with subsystems respectively in such a

DRDECS rather than subsystems communicate directly. Whenever a subsystem desires to

apply a global reconfiguration, it should send a request to the coordinator first to get a per-

mission. A coordination solution, i.e., how the whole system should react according to the

received reconfiguration requirements, is made in the virtual coordinator by using Judge-

ment Matrices before commands are sent to relevant subsystems. Any subsystem cannot

apply a global reconfiguration until it receives a command from the virtual coordinator. This

chapter assumes that the virtual coordinator runs on one of the subsystems as shown in Fig.

5.1. If its host breaks down or is deactivated in a particular condition, a coordinator equal

to the original one in other subsystems is selected and activated to be used. Therefore, the

coordinator is said to be virtual.

A subsystem, to be denoted by ε, in a DRDECS is a reconfigurable discrete event

control system, which can be presented as follows:

63

Doctoral Dissertation of XIDIAN UNIVERSITY

ε = (
∪

(Cof), Ref, Cof0).

∪
(Cof) is a set of all possible configurations of ε. Ref is a set of all global reconfiguration

scenarios in ε. Cof0 is the initial configuration, from which ε starts. The configurations

in
∪

(Cof) are in a ‘family’, which means the configurations are similar in aspects of in-

put types, main functions and output types. A reconfiguration scenario general means to

modify the system structure by adding/removing hardware/software components, justifying

parameters, or changing logic relationship between components.

Suppose that a subsystem εi (εi ∈ Σ) has ni configurations and mi global reconfigura-

tion scenarios. A distributed configuration of a DRDECS, denoted by DΓ, is defined by an

n-tuple:

DΓ = (ε1,k1 , ε2,k2 , ..., εn,kn),

where εi,ki
identifies the ki

th configuration (i ∈ {1, 2, ...,n}, ki∈{1, 2, ..., ni}) of εi. The

set of the distributed configurations of a DRDECS is denoted by D . The set of possible

distributed reconfiguration scenarios, denoted by R, is a mapping:

R : D → D .

A distributed reconfiguration scenario, denoted by Dr, is defined by an n-tuple:

Dr = (r1,h1 , r2,h2 , ..., rn,hn),

where ri,hi
(i ∈ {1, 2, ...,n} and hi ∈ {1, 2, ...,mi}) is the hi

th reconfiguration scenario of

εi. If ri,hi
exists (e.g. true), the global reconfiguration scenario ri,hi

is implemented in εi

during the implementation of this distributed reconfiguration scenario Dr. Otherwise (e.g.

false), no global reconfiguration scenario is executed in εi.

5.2.2 Reconfigurable Coordination of a DRDECS

Let D′
Γ = (c1,k1 , c2,k2 ,, cn,kn) be the on-going distributed configuration. Suppose

that subsystem εi desires to reconfigure itself from the ki
th configuration into the gth

i config-

uration (ki, gi ∈ {1, 2, ...,mi} with ki 6= gi), then it first sends the following requirement to

the coordinator $:

Request(From εi, T o $, Target gi, Cause).

64

Chapter 5 Coordination of R-TNCESs

From εi indicates that the requirement is sent from subsystem εi. To $ denotes that

the requirement is sent to the coordinator $. Target gi means that the sender, i.e., εi, would

like to reconfigure itself from its current configuration into its gi
th configuration, which is

called its target configuration for sending this requirement. Cause denotes the reason of

this requirement.

Let βreq denote the number of concurrent reconfiguration requirements received by the

coordinator. They are sent from different subsystems respectively. After that, an optimal

coordination solution for these concurrent requirements is computed by the coordinator. We

use D′′
Γ = (o1, o2, ..., on) to denote the final selected optimal coordination solution for the

received βreq requirements, where oi ∈
∪

(Cof)i, i ∈ {1, ...,n}. The optimal coordination

solution has the highest satisfaction ratio to the received requirements and the lowest change

ratio to other subsystems that do not desire reconfigurations. The satisfaction ratio can be

defined by Sr = Ns/βreq, where Ns is the number of subsystems that send requirements and

receive permission for them. The change ratio is defined by Cr = Nc/(n− βreq), where Nc

is the number of subsystems that do not send requirements but have to apply reconfigurations

according to the coordination solution.

During a coordination process, Judgement Matrices handled by the coordinator play a

key role, which are pre-defined by designers and define whether a distributed configuration is

legal, i.e., admissible, when a subsystem is in a particular configuration. A Judgement Matrix

corresponds to a possible reconfiguration requirement according to its target configuration,

into which the sender desires to transform.

Let M be such a matrix corresponding to the reconfiguration requirement Request

(From εi, To $, Target gi, Cause). It is an m × n matrix, where m is the number of

possible distributed configurations while the subsystem εi is in the gi
th configuration and n

is the number of subsystems. In the ith column of this matrix, ∀a, b ∈ {1, 2, ...,m} (a 6= b),

we have M [a, i] = M [b, i]. Obviously, a row vector of such a matrix corresponds to a

particular distributed configuration. For computing the optimal coordination solution for the

received βreq reconfiguration requirements, only their corresponding Judgement Matrices

are needed. The set of needed Judgement Matrices is denoted by Φ.

Before computing the optimal coordination solution, the concurrent reconfiguration

requirements received by the coordinator are divided into two levels: critical and common

requirements according to their causes. Accordingly, the subsets of Judgement Matrices

of critical and common requirements are denoted by Φcr and Φco, respectively. Generally,

critical ones are those caused by faults detecting or significant changes in environment.

65

Doctoral Dissertation of XIDIAN UNIVERSITY

Whereas common ones are caused by some optional behavior such as energy saving. The

details how an optimal coordination solution is obtained by using Judgement Matrices are

shown below.

Input:D′
Γ, Φcr, and Φco

Output:D′′
Γ

for All matrices in Φcr, check if there exists a row, in which all subsystems that send

critical requirements are in their target configurations;

Exists?

Y: Save it into PP1;

end for

if PP1 = ∅;

then End, Output: No coordination solution;

else if

for Each row in PP1, check if there is a row, in which all subsystems that send common

requirements are in their target configuration;

Exists?

Y: Save it into PP2;

end for

if PP2 6= ∅;

then Select a row in PP2 as D′′
Γ, which has the lowest change ratio;

else if

Select a row in PP1 as D′′
Γ, which has the highest satisfaction ratio and the lowest change

ratio;

end if

The possible reactions of a subsystem εi according to the coordination solution are

shown in TABLE 5.1. The first column denotes whether or not εi sends a reconfiguration

requirement to the coordinator. If it sends a requirement, it is marked by its target config-

uration gi, else −. The second shows the possible coordination solutions for the received

concurrent requirements by the coordinator. Accept (resp., Reject) means its requirement

is accepted (resp., rejected), Reconfigure (resp., −) denotes the subsystem should (resp.,

should not) apply a local reconfiguration, and Reject&Reconfigure means its requirement

is rejected but it also has to apply a reconfiguration that transforms it to a non-target config-

uration. The third column denotes the correct reconfiguration scenario that the subsystem

should apply, where ci,ki
denotes the original configuration before this global reconfigura-

66

Chapter 5 Coordination of R-TNCESs

tion, oi denotes its configuration after the reconfiguration, and − means no reconfiguration

is applied.

Table 5.1 Possible reactions of a subsystem

Target Solution Reaction
gi Accept ci,ki

→ oi (gi = oi)
gi Reject –
gi Reject & Reconfigure ci,ki

→ oi (gi 6= oi)
– – –
– Reconfigure ci,ki

→ oi

If the coordination solution is Accept, Reject & Reconfigure, or Reconfigure, i.e.,

∀i∈{1, 2, ..., n}, ci,ki
6= oi, then the coordinator sends the following signal to the subsystem

εi to command it to transform from the ki
th configuration to the oi

th configuration:

Order(From $, To εi, Target oi).

If a subsystem εi receives such a signal from the coordinator, a global reconfiguration sce-

nario is implemented, which transforms εi from the kth
i configuration to the oth

i configura-

tion. If the coordination solution is Reject, then the coordinator sends the following signal

to εi to reject its requirement:

Reject(From $, To εi, Target gi).

In a word, a subsystem expecting a global reconfiguration scenario should first send

a request to the coordinator. In order to obtain an optimal coordination solution for the

received multiple reconfiguration requirements, Judgement Matrices are applied.

5.3 Modeling of DRDECSs

It is essential to build mathematical models for a new method in order to perform

quantitative and qualitative analysis. TNCESs are an advisable choice to model distributed

discrete event control systems, which have been applied in many works. The R-TNCES

formalism is an extensions of TNCESs, which allows dynamic reconfigurations such as

adding/removing places, transitions, arcs, signals, modules and updating states. R-TNCESs

inherit all symbols and graphical representations from TNCESs. In the following, we intro-

duce a hypothetic DRDECS before the modeling.

67

Doctoral Dissertation of XIDIAN UNIVERSITY

5.3.1 Benchmark Production System

A hypothetic DRDECS Sys composed of two real-physical reconfigurable manufac-

turing subsystems: εF and εE ,1 is applied to illustrate the proposed method. It is assumed

that the two subsystems collaborate to manufacture workpieces and some particular recon-

figuration scenarios can be applied to them according to well-defined conditions.

In εF , a new incoming workpiece is tested in color, height, and material before it is

drilled. If the drilled workpiece is qualified, it is transformed onto εE directly. In εE , work-

pieces are put in tins and delivered into different storage units according to their dimensions

through a conveyor. We assume that εF has two drillers Dr1 and Dr2. It has three behavior

modes: light, medium, and high according to different manufacturing speeds. In the light

mode only one driller is used. In the default light mode L1, only Dr1 is used. The light

mode L2 is a substitution of L1 when Dr1 breaks down. In medium mode M , Dr1 and Dr2

are used alternatively. In high mode H , Dr1 and Dr2 are used simultaneously. Accordingly,

εE has two policies P1 and P3 according to different product types. We assume εE has two

jack stations J1 and J2. In P1, workpieces are placed by J1 or J2 in a tin before closing the

tin with a cap. After that, the produced workpiece is removed into the first storage unit. In

P3, both J1 and J2 are used to place workpieces from εF into a tin, at this time a tin has two

workpieces jacked by J1 and J2 separately before the tin is closed and displaced thereafter

on the belt to the second storage unit. The mode P2 is a substitution of P1 when J1 breaks

down, in which J2 is used only.

The possible reconfiguration scenarios in εF are L1 → L2, L1 → M , M → L1,

M → L2, M → H , H → L1, H → L2, H → M . The possible reconfiguration scenarios

in εE are P1 → P2, P1 → P3, P3 → P1, P3 → P2. We assume that all of them are global

reconfiguration scenarios.

5.3.2 Formal Models

As described in the previous chapter, a reconfigurable discrete event control system can

be easily modeled by an R-TNCES. Therefore, a reconfigurable subsystem in a DRDECS in

this chapter can be represented by

ε = (Γ0,B,R),

where Γ0 is a TNCES modeling the initial configuration. B is the set of TNCESs corre-

sponding to all possible configurations of ε. R = {RL,RG} is a set of reconfiguration
1Their prototypes are FESTO and EnAS as described in Chapter 3 and Chapter 4, which are available in Martin Luther

University: http://aut.informatik.uni-halle.de.

68

Chapter 5 Coordination of R-TNCESs

p5

p6

p7

p8

t9

t10

t11

t12

p1

p2

p3

p4

t1

t2

t3

t4 t5

t6 t7

t8

D2! ^ UserD1!
User

D2!^User

D1!

D1!

User

User

p9

p10 p11 p12

t14

p14

t13 t15

p13

t17t16

t28

t18

p17
t19

t20
t22

p20

p15

p18

p19
p16

t21

t23

t24 t25

t26

t27

t29

t30

t31

p21t33 t32

t34 t35 t36p22 p22 p23

[5
,5

0
]

[1
5

,5
0

]

[1
0

,5
0

]

[1
,3

]

[2
,4

]

[2
,4

]

[5
,7

]

[4
,6

]

[4
,6

]
[4

,6
]

[4
,6

]
[4

,6
]

[3,5]

[1,3]

Start

Fig 5.2 R-TNCES model of εF

t1

t2

p1

p2

p3

t3

t4

p4

t5

p5
t6

p6

t7

User

^ J2!

User

J1!

J1!

p7

t8
p8

t9

p9

t10

p14

t13

p12

t14

p13

t15

p10

t11

p11

t16

p15

t17

t25

t12

t18

t19

t20

t21

t22

t23

t24

[1,3]

[1,3]

[5,7]

[4,6]

[5,10]

[1,3]

[4,6]

[3,5]

from F

Fig 5.3 R-TNCES model of εE

69

Doctoral Dissertation of XIDIAN UNIVERSITY

sp1

sp7
sp2sp3

st1

sp6

sp4

sp5

sp8

st14

st13

st8 st7st12

st15

st6
st5

st4

st3

st2

st18

st16

st17st10
st11

st9

st19

st20

J1!

D1! user

user

D1!

J1!

D
2 !

D1!
u
ser

u
ser

D
2 !

D1!

user^D1!

J1!

D
1 !

user

J1!

D1!

D1!

J
1 !

Fig 5.4 Coordinator of εF and εE

functions, where RL models the set of local reconfiguration scenarios and RG models the set

of global reconfiguration scenarios with RL ∩ RG = ∅. The local reconfiguration function

can be implemented without input condition or input signals. Whereas a global reconfigu-

ration function needs to be triggered by some input events or some outside condition before

it is implemented. The R-TNCES models of εF and εE are shown in Fig. 5.2 and Fig. 5.3,

respectively.

The coordinator $ records the on-going distributed configuration. The implemented

distributed reconfiguration scenario decides the particular distributed configuration into which

the whole system can transform. A TNCES-based state machine is applied to model the be-

havior of a coordinator, where each place corresponds to a specific distributed configuration

of the DRDECS and the firing of a transition means the implementation of a particular dis-

tributed reconfiguration scenario from a distributed configuration into another. The TNCES-

based model of the coordinator of εF and εE is shown in Fig. 5.4.

Example 11 In Sys, the set of Judgement Matrices are shown below:

M1,1=
(

L1 P1

L1 P2

)
M1,2=

(
L2 P1

L2 P2

)
M1,3=

(
M P1

M P2

)
M1,4=

(
H P3

)
M2,1=

 L1 P1

L2 P1

M P1

 M2,2=

 L1 P2

L2 P2

M P2

 M2,3=
(

H P3

)
The first columns of these matrices denote the configurations of εF and the second

70

Chapter 5 Coordination of R-TNCESs

denote the configurations of εE . The matrix M1,1 is applied when εF requires to transform

into L1. If L1 is activated in εF , then P1 or P2 of εE can be activated for coherent behavior.

The matrix M2,3 is applied when εE applies P3 to optimize the production. In this case, only

the configuration H of εF is qualified to coordinate with εE .

Assume that the on-going distributed configuration of Sys is D′
Γ = (M,P1). εF and

εE send the following two signals simultaneously to the coordinator when the drill machine

Dr1 of εF breaks down and εE requires to improve its production:

Request(From εF , T o $, Target L2, Dr1!),

Request(From εE, T o $, Target P3, User).

Accordingly, two Judgement Matrices M1,2 and M2,3 are applied. The row vector (L2, P1)

is finally selected by the coordinator, i.e., D′′
Γ = (L2, P1). Therefore, the request from εE is

rejected by the coordinator but the one from εF is accepted.

The number of subsystems that do not send reconfiguration requirements but need to

apply local reconfigurations during a distributed reconfiguration process is denoted by βrec.

We model each distributed reconfiguration process by a TNCES. The module of the optimal

coordination solution D′′
Γ is defined by βreq +βrec traces. A trace is a sequence of places and

transitions, which corresponds to a coordination solution for a subsystem.

If a trace corresponds to the coordination solution of a subsystem ε that does not send

a reconfiguration requirement, then such a trace starts with a place p, ends with a place p′,

and contains a transition t between the two places, which is denoted by ptp′. The firing

of t means a reconfiguration command signal is sent to ε by the coordinator. If a trace

corresponds to the coordination solution of a subsystem ε that sends a reconfiguration re-

quirement, then such a trace starts with a place p, ends with a place p′, and contains three

transitions between the two places, which is denoted by pta/tr/trrp
′. The firing of ta means

that the reconfiguration requirement from ε is accepted, the firing of tr means that the re-

quirement is rejected, and the firing of trr means that the requirement is rejected but ε also

should apply a local reconfiguration scenario.

Example 12 The TNCES-based model of the distributed reconfiguration process in Exam-

ple 11 is shown in Fig. 5.5. The model of the selected row vector D′′
Γ = (L2, P1) has two

traces: the first p6t10/t11/t12p7 corresponds to the result of the reconfiguration requirement

from εF and the second p8t13/t14/t15p9 corresponds to the result of the reconfiguration re-

quirement from εE . The firing of t10 (resp, t13) means that the requirement from εF (resp,

71

Doctoral Dissertation of XIDIAN UNIVERSITY

p1

p2

t3t1 t2

p3

p4

t6
t4

t5

Dr´´=(L2,P1)

p5

p6

p7 p9

t7

t8

t9

t16

p8

t10

to t5 of F
to t2 of E

t11

t12

t13 t14

t15

Fig 5.5 The TNCES model of a distributed reconfiguration process

εE) is accepted, t11 (resp, t14) corresponds to the rejection of the requirement, and t12 (resp,

t15) means that the requirement is rejected but the coordinator sends another command to

it. Transition t8 sends an event signal to t5 of εF in Fig. 5.2, which corresponds to the

reconfiguration function changing εF from L1 to M . The required reconfiguration of εE

can be applied only after t6 fires. However, in this distributed reconfiguration process, εE’s

requirement is rejected. Thus, t2 of εE in Fig. 5.3 cannot fire and εE cannot apply any

reconfiguration scenario.

5.4 SESA based Verification of DRDECSs

Model checking is a technique for automatically verifying the correctness properties of

finite-state systems. Model checking for TNCESs and R-TNCESs is based on their reach-

ability graph. The checked properties include the timely and correct response of the whole

DRDECS to the concurrent reconfiguration requests and the valid behavior of subsystems

after the application of a distributed reconfiguration scenario. All checked properties are

specified by the temporal logic CTL or its extensions and are checked by the model-checker

SESA.

For the R-TNCES models of subsystems, we focus on the following two cases: 1) if

a reconfiguration command signal is received, whether a subsystem can respond and select

a proper configuration, 2) after the implementation of a particular reconfiguration scenario,

whether the new configuration can reflect correct functionalities and satisfy required tempo-

ral constraints.

72

Chapter 5 Coordination of R-TNCESs

Example 13 The following CTL formula is proposed to the control module of εF in Fig.

5.2:

z0 |= AGAt5XAFEt9Xp5

This formula is proven to be false by SESA. In fact, when t5 fires, ΓL2 is selected. Thus,

t9 corresponding to ΓL1 cannot become enabled under this circumstance. The following

formula has been proven to be true when L1 is selected.

z0 |= AGAt4ORt8XAFEt9Xp5

The eCTL formula below is applied to the TNCES ΓL1 of εF :

z0 |= AGAt13XAFEt15ANDt32XTRUE

This formula is proven to be false by SESA. Indeed, whenever t13 fires, either t15 or t32 will

eventually fire, which depends on the test result of the input workpiece. In particular, the

following TCTL property is checked by SESA when εF is in the behavior mode M :

z0 |= EF [14, 24]p16 = 1

This formula has been proven to be true. In fact, in the medium production mode, the drill

machine Dr1 or Dr2 can be activated in at least 14 time units after the system starts.

For the TNCES model of a distributed reconfiguration process, SESA is applied to

check the system behavior when a particular distributed reconfiguration scenario is applied

by the coordinator. Indeed, we have to check after the coordination solution is obtained for

the received concurrent reconfiguration requirements, whether all the relevant subsystems

can react correctly.

Example 14 We check the TNCES model in Example 12. The original distributed config-

uration is DΓ
′ = (L1, P1). We specify the following functional property according to the

temporal logic CTL:

z0 |= AGAt10XEFEt2XAFp2

The formula is proven to be true. Firing t10 means that the reconfiguration requirement of

εF is accepted by the coordinator. Firing t2 means that εF receives a command signal from

the coordinator, which will trigger the firing of t5 in εF , such that εF is transformed from L1

to L2. The following formula is proven to be false.

73

Doctoral Dissertation of XIDIAN UNIVERSITY

z0 |= AGAt13XEFEt7XAFp9

In fact, the requirement from εE is rejected by the coordinator according to the final coordi-

nation solution D′′
Γ = (L2, P1). Therefore, εE should not apply any reconfiguration during

this distributed reconfiguration process.

5.5 Discussion

The rate of exchanged messages is an important criterion in order to guarantee an ac-

ceptable level of safety and robustness in real-world industry such as wireless applications.

In this section, the proposed solution for concurrent reconfiguration requirements is evalu-

ated by counting the number of exchanged messages between subsystems and the coordina-

tor.

Assume that a DRDECS has n subsystems and a coordinator. If no coordinator is ap-

plied to the DRDECS, any subsystem desiring a global reconfiguration has to inform all

others before applying any global reconfiguration scenario. The concurrent reconfiguration

requirements are treated one by one. However, if a coordinator is applied, a subsystem desir-

ing a global reconfiguration only sends a requirement to the coordinator, where the reaction

of the whole system is decided. All the concurrent requirements are treated according to the

applied Judgement Matrices. It is assumed that in this discussion the rejected subsystems

during a distributed reconfiguration process will send again the same requirements to the

coordinator until they are accepted in the future and no new reconfiguration requirements

arise before all the requirements are accepted.

We denote by βmes the number of messages when no coordinator is applied in a DRDECS.

Let βreq be the number of concurrent reconfiguration requirements that are accepted one by

one and ∀i ∈ {1, 2, ..., βreq}, βi
rec be the number of final reconfigured subsystems for the ith

requirement. If no coordinator is applied, then βmes is computed by:

βmes =

βreq∑
i=1

3βi
rec(n− 1)

In this case, the βreq requirements are treated one by one. A subsystem desiring re-

configurations sends signals to all others before waiting their answers and deciding the re-

configuration scenario to be applied. Afterwards, feedback signals are sent to all others to

broadcast its on-going configuration.

74

Chapter 5 Coordination of R-TNCESs

We use s to denote the steps to accept all the βreq concurrent reconfiguration require-

ments when the proposed architecture is applied. We use βi
tre to denote the number of

accepted requirements in the ith step (i ∈ {1, 2, ..., s}). Then the number of exchanged

messages, denoted by βc
mes, is computed by:

βc
mes =

s∑
i=1

2(βreq −
i−1∑
j=0

βj
tre + βi

rec)

Indeed, βreq subsystems desiring reconfigurations of corresponding devices send βreq mes-

sages to the coordinator, but only the highest-priority message is accepted before a notifi-

cation is sent to the rest (i.e., n-1) subsystems. The coordinator decides any scenario to be

applied once answers are received from the distributed subsystems.

To compare the two approaches, it is assumed that n subsystems send reconfiguration

requirements simultaneously, i.e., βreq = n. Both approaches have the best case and the

worst case.

5.5.0.1 Communication without a coordinator

• Best Case: In this case, a subsystem desiring a reconfiguration sends a requirement to

all the other subsystems but only itself needs to be reconfigured with the allowance of

the other subsystems. Therefore, the number of exchanged messages in its best case

is:

βb
mes = 3n(n− 1)

• Worst Case: In this case, a subsystem sends a requirement to all the other subsys-

tems and all the subsystems in the environment should apply local reconfigurations.

Therefore, the number of exchanged messages in its worst case is:

βw
mes = 3n2(n− 1)

5.5.0.2 Communication through a coordinator

• Best Case: In this case, all the n concurrent reconfiguration requirements are accepted,

i.e., s = 1. There is a proper distributed reconfiguration function that satisfies all the

requirements. Therefore, the number of exchanged messages in its best case is:

75

Doctoral Dissertation of XIDIAN UNIVERSITY

βcb
mes = 4n

• Worst Case: In this case, the concurrent reconfiguration requirements are accepted in

n steps, i.e., in each step, only one requirement is accepted but all the other subsystems

need to be reconfigured. Therefore, the number of exchanged messages in its worst

case is:

βcw
mes = 3n(n+ 1)

Table 5.2 Comparison of exchanged messages

n 2 3 4 5 6 7 8 9
βb

mes 6 18 36 60 90 126 168 216
βcb

mes 8 12 16 20 24 28 32 36
βw

mes 12 54 144 300 540 882 1344 1944
βcw

mes 18 36 60 90 126 168 216 270

We compare the two results in TABLE 5.2. With the increase of the number of subsys-

tems, the advantage of the developed approach is clearly shown.

5.6 Summary

This chapter presents a novel virtual coordinator for a DRDECS to deal with the recon-

figurable coordination of a group set of reconfigurable discrete event control subsystems.

These subsystems are modeled by R-TNCESs. Concurrent reconfiguration requirements

are well solved by Judgement Matrices with an optimal coordination solution while the ex-

changed messages between subsystems and the coordinator are well-controlled.

76

Chapter 6 Extended R-TNCESs

Chapter 6 Extended R-TNCESs

Traditionally, manufacturing is an energy-intensive process, using motors, steam, and

compressed air systems to transform raw materials into durable goods and consumer prod-

ucts [91], [92], [93]. Recent research shows that switching machines of a manufacturing sys-

tem into their energy-efficient modes when they are idle during production can make consid-

erable contribution to the reduction of energy demand and thus can reduce carbon footprint

as well as operating costs [94], [95], [96], [97], [98], [99], [100], [101], [102]. This chapter

deals with the formal modeling and verification of reconfigurable and energy-efficient man-

ufacturing systems (REMSs) that are considered as reconfigurable discrete event control

systems (RDECSs).

6.1 Motivation

Taking the advantage of dynamic reconfigurations of machines of a reconfigurable man-

ufacturing system (RMS) between their working modes and energy-efficient modes can re-

duce system energy consumption. In this chapter, an RMS with such energy-efficient oper-

ations is called a reconfigurable and energy-efficient manufacturing system (REMS). Such

kind of systems can be abstracted as reconfigurable discrete event control systems (RDECSs)

when only their logic behavior properties are investigated. In this chapter, a reconfiguration

is called a local reconfiguration, if it is applied for switching a machine of an REMS be-

tween its working mode and energy-efficient mode. A reconfiguration is named a global

reconfiguration if it is applied for switching an REMS between different configurations .

An REMS not only allows global reconfigurations for switching the system from one

configuration to another, but also allows local reconfigurations on components for saving

energy when the system is in a particular configuration. In addition, the un-reconfigured

components of such a system should continue running during any reconfiguration. As a

result, during a system reconfiguration, the system may have several possible pathes and

may fail to meet control requirements if concurrent reconfiguration events and normal events

are not controlled. It means that the uncontrolled concurrence of reconfiguration events and

normal events may cause faults such as deadlocks and overflow [103], [104], [105], [106].

The formalism reconfigurable timed net condition/event system (R-TNCES) is a recon-

figurable extension of the timed net condition/event system (TNCES). TNCESs have a visual

77

Doctoral Dissertation of XIDIAN UNIVERSITY

graph expression, a clear modular structure, and an exact mathematical definition inherited

from Petri nets. In addition, TNCESs have a strong analysis software tool: SESA. Sys-

tem behavior properties, such as state/event trajectories, and temporal requirements, can be

specified by computation tree logic (CTL), extended CTL (eCTL), and timed CTL (TCTL)

before checked by SESA automatically. If a property is satisfied by the system, the model

checker will return a ‘True’. Otherwise, a counterexample will be returned. Therefore,

TNCESs has been widely applied in verification and validation of industry control systems

especially for manufacturing systems. The verification of an R-TNCES can be performed

with the assistance of SESA.

However, R-TNCESs cannot fully meet our requirements for an REMS. In an R-TNCES,

reconfiguration functions model system reconfiguration events and transitions model normal

events. However, the concurrence of reconfiguration functions and transitions is forbidden

in an R-TNCES, which is in fact inconsistent with system requirements of REMSs. As a

result, formal verification of such complex systems cannot be performed.

Motivated by the fact aforementioned, this chapter extends R-TNCESs. First, the re-

configuration functions of an R-TNCES are assigned with action ranges and concurrent de-

cision functions. After that, they are divided into two types according to their action ranges:

major and minor reconfiguration functions. The major ones are used to model global recon-

figuration events, whereas the minor ones are applied to model local reconfiguration events.

Accordingly, the dynamics of an R-TNCES is updated for these extensions such that the

concurrence of reconfiguration events and normal events can be conditionally allowed to

guarantee the system correctness. Afterwards, an implementation method for an extended

R-TNCES is developed. Finally, the software tool SESA is applied to check system func-

tional, temporal, and energy-efficient properties. An automatic assembly system is used to

illustrate this work.

6.2 Reconfigurable and Energy-efficient Manufacturing Systems

This chapter treats a reconfigurable and energy-efficient manufacturing system (REMS)

as a reconfigurable discrete event control system. This section presents system specification

and interesting system dynamics before illustrating them with an automatic assembly sys-

tem.

78

Chapter 6 Extended R-TNCESs

6.2.1 System Specification

An REMS is designed with a set of configurations to meet various requirements in

different execution environments. A configuration Con is defined as

Con = (Com, Str,Dat),

where Com is a set of all activated components in Con, Str defines the structure, i.e., the

the connection relationship and the communication protocol among components of Com,

and Dat denotes the set of all global variables and parameters of Con.

An REMS is denoted by

Sys = (
∑

, Rc),

where
∑

is the set of n configurations and Rc :
∑

→
∑

is the reconfigurable controller

dealing with system reconfigurations.

There are two types of system reconfigurations in an REMS: global and local reconfig-

urations. The former are applied for switching system configurations. The latter are applied

for switching an activated component between its working mode and energy-efficient mode

when the system is in a particular configuration.

An REMS starts running as described in one of these configurations. After that, it

should be able to change into other configurations smoothly due to the detection of com-

ponent faults or other well-defined conditions. In addition, in each configuration, local

reconfigurations can be applied to components such that the components can reconfigure

themselves into their energy-efficient modes to save energy when they are idle and turn back

to their working modes when the system needs them.

Dynamics of an REMS can be described by the evolution of system states. The evolu-

tion is caused by occurred events. An REMS includes normal events, local reconfiguration

events, and global reconfiguration events.

1. If a normal event occurs, the system changes its state within its current configuration.

2. If a local reconfiguration event occurs, a component of current configuration switches

into its energy-efficient mode or switches back into its working mode.

3. If a global reconfiguration event occurs, the system switches into another configura-

tion.

Meanwhile, during a global or local reconfiguration, if normal events meet their occur-

ring conditions and they are not modified by the occurred reconfiguration events, they should

go on occurring. However, this kind of concurrence brings safety threat to the system, since

they may cause unboundedness, deadlocks, even other functional or temporal failings.

79

Doctoral Dissertation of XIDIAN UNIVERSITY

6.2.2 Running Example

An automatic assembly system, denoted by AAS, is applied to illustrate works pre-

sented in this chapter. AAS includes three workstations (W1, W2, and W3) and four robots

(Rb1, Rb2, Rb3, and Rb4). It is assumed that robots are high energy consumption machines.

The respective time consumption of W1, W2, and W3 to finish a machining task is 40 time

units, 30 time unites, and 50 time unites. The time consumption of both Rb1 and Rb2 to

finish a task is 20 time units. The time consumption of both Rb3 and Rb4 to finish a task is

25 time units. The default working process diagram of AAS is shown in Fig. 6.1.

b4

W1 W2 W3

b4 b5 b6

b0 b1 b2 b2 b3 b3

Rb1 Rb1

Rb3 Rb3 Rb4

Rb2

Rb2

Rb4

A

B

b6

b5 Rb1Input Output

Asp2

Asp1

SA

Fig 6.1 Default working process diagram of AAS

The main function of AAS is to assemble machine parts into a subassembly of a vehicle,

to be marked by SA. Robots Rb1 and Rb2 move machine parts from Input into AAS, transfer

machine parts between workstations, and remove trashy machine parts to the Output. Dotted

arrows in Fig. 6.1 are used to denote the movements of machine parts during an assembly

process. On the other hand, SA is shifted along W1, W2, and W3 by robots Rb3 and Rb4.

Solid arrows in Fig. 6.1 are used to denote the movement of SA. To make it clear, b0, b1, ...

and b6 are used to denote positions where machine parts or SA should be during an assembly

process. The main assembly process is briefly described as follow three steps:

1. The to-be-worked subassembly SA is shifted from Input B to b0 by Rb3. A machine

part Asp1 is delivered to b4 from the input A. After that, Asp1 and SA are preprocessed on

W1. Then, the preprocessed SA is moved to b1 automatically. The preprocessed Asp1 is

moved to b4 automatically before being moved to position b5 by Rb1.

2. SA is transported to b2 from b1 by Rb3. Then, a second preprocess for SA is done by

W2. After that, SA is shifted to b3 from b2 by Rb4.

3. A machine part Asp2 is delivered to b6 by Rb2. Then, W3 starts the assembly after

SA is in b3, preprocessed Asp1 is in b5, and Asp2 is in b6. After the assembly, the machined

80

Chapter 6 Extended R-TNCESs

SA is moved out by Rb4. Two other trashy machine parts are removed out of AAS by Rb1

and Rb2, respectively.

It is assumed that four behavior modes are designed for AAS. Their work processes are

illustrated as follows:

• Mode1: Mode1 is the default mode as depicted in Fig. 6.1, where all the robots are

used.

• Mode2: Mode2 is a responding mode when Rb2 breaks down, where Rb1 should

update itself to perform the function of Rb2.

• Mode3: Mode3 is applied when Rb4 breaks down during the execution of Mode1,

where the work of Rb4 has to be done by Rb3.

• Mode4: Mode4 is applied when both Rb1 and Rb2 break down, where only Rb1 and

Rb3 are applied. In this case, Rb1 should cover the function of Rb2 as in Mode2 and

Rb3 should cover the function of Rb4 as in Mode3.

In each behavior mode, the applied robots should be able to reconfigure themselves into

their energy-efficient modes when they are idle and reconfigure themselves back into their

working modes when they have new tasks. A local reconfiguration for switching a robot

from its working mode to its energy-efficient mode consumes one time unit. Likewise, a

local reconfiguration for switching a robot from its energy-efficient mode back to its working

mode consumes one time unit, as well.

To avoid the halt of a continuous production line, possible dynamic reconfigurations

applied for switching AAS between these behavior modes are shown in Fig. 6.2. The solid

arrows denote global reconfigurations and dotted ones denote local reconfigurations.

It is assumed that a robot consumes one energy unit per time unit when it works in its

working mode. However, it only consumes 30% energy units per time unit when it works

in its energy-efficient mode. Note that the numerical value ‘30%’ is an assumption by the

authors to facilitate the quantitative analysis on energy-efficient operations. It does not come

from any literature on industry systems.

Obviously, the possible reconfiguration events of AAS can occur simultaneously with

many normal events in it. For example, when Rb1 is being modified by a global reconfigu-

ration or being switched into its energy-efficient mode, only its own work needs to stop for

a while and the workstations and other running robots should do their jobs unaffectedly.

81

Doctoral Dissertation of XIDIAN UNIVERSITY

Mode1

Mode2 Mode3

Mode4

R2 breaks down R4 breaks down

R4 breaks down R2 breaks down

R2 & R4 breaks down

Save energy

S
a

v
e

en
er

g
y

Save energy

S
a
v
e

en
er

g
y

Fig 6.2 Possible reconfigurations in AAS

6.3 Extended R-TNCESs

The formalism reconfigurable timed net condition/event system (R-TNCES)is an ex-

tension of the timed net condition/event systems (TNCES). Reconfiguration functions of

R-TNCESs can be used to model global reconfiguration events of REMSs. However, they

are not proper to model local reconfiguration events of REMSs directly. In addition, the

concurrence of normal events and reconfiguration events is currently not allowed in an R-

TNCES. Therefore, in order to perform correct formal verification of a REMS, this chapter

extends R-TNCESs. This section analyzes the drawbacks of R-TNCESs on investigating

REMSs before represents the proposed extended R-TNCESs.

6.3.1 Drawbacks of R-TNCESs

The TNCES models for the four behavior modes of AAS are denoted by Γ1 = (NΓ1 , z10),

Γ2 = (NΓ2 , z20), Γ3 = (NΓ3 , z30), and Γ4 = (NΓ4 , z40), respectively. The set of all possi-

ble reconfiguration events of AAS is marked by R={r1,s, r2,s, r3,s, r4,s, r−1
1,s , r−1

2,s , r−1
3,s , r−1

4,s ,

r1,2, r1,3, r1,4, r2,4, r3,4}. The reconfiguration event ri,s indicates a local reconfiguration that

transforms robot Rbi into its energy-efficient mode and r−1
i,s is the reverse of ri,s, i.e., to trans-

form robot Rbi from its energy-efficient mode into its working mode. The implementation

of the events ri,s and r−1
i,s does not change the current behavior mode but can switch robot

Rbi between its working mode and energy-efficient mode according to its busy/idle status

and waiting time. Finally, ri,j (i 6= j) denotes a global reconfiguration event that transforms

AAS from the configuration Modei into Modej.

82

Chapter 6 Extended R-TNCESs

[30,oo]

ev2

W 2

p40

R4

[5,oo]

sleep!

ev11

[5,oo]

p41

work!

ev10

p36

R3

[5,oo]

sleep!

ev9
[5,oo]

p37

work! cn5& cn4cn1!

cn14& cn13!

cn6

ev12

cn10! cn5

b2

cn6
cn7

ev10

ev2

ev11

p3

p4

t3 t4

p11

p12 p13

t11

t12

t13

p38

t40

t41

t42

t43

t44 t45

p39

p42

t46

t47

t48

t49

t50 t51

Fig 6.3 TNCES-based model of R3, R4, and W2 in Mode1

The firing of a reconfiguration function of an R-TNCES changes the system configu-

ration. As a consequence, if reconfiguration functions are applied to model local reconfig-

uration events for switching components between their working modes and energy-efficient

modes directly, the number of system configurations should be enlarged. For example, the

configuration Mode4 should be considered as four different configurations: 1) Both Rb1 and

Rb3 are in their working modes, 2) Rb1 is in working mode and Rb3 is in energy-efficient

mode, 3) Rb3 is in working mode and Rb1 is in energy-efficient mode, and 4) Both Rb1 and

Rb3 are in their energy-efficient modes. These four configurations are with the same struc-

ture. However, they should be verified separately. Obviously, this increases the verification

cost and burdens the whole design process.

Generally, transitions in an R-TNCES model normal events of a reconfigurable discrete

event control system. Whereas, reconfiguration functions are used to model system recon-

figuration behavior. However, the concurrence of reconfiguration functions and transitions

is not allowed in R-TNCESs, which is in fact inconsistent with requirements of REMSs. To

make it clearer, let us take the modules Rb3, Rb4, and W2 as an example. Their TNCES-

based models in Mode1 and Mode4 are shown in Figs. 6.3 and 6.4, respectively. The

differences between them are marked by dotted lines.

Example 15 Suppose that a reconfiguration function r1,4 gets enabled at state S3 when

AAS is in Mode1. The physical meaning of S3 is that 1) Rb3 just finishes transporting SA

to b2 and 2) W2 is ready to process SA. Assume that at this time a fault is detected in Rb4.

83

Doctoral Dissertation of XIDIAN UNIVERSITY

[30,oo]

ev2

W 2

ev10

p36

R3

[5,oo]

sleep!

ev9
[5,oo]

p37

work! cn5& cn4cn1

cn6

cn5

b2

cn6
cn7

ev10

ev2

ev11[5,oo] [5,oo]

ev11' ev12'

c
n
8
&
c
n
7
'

p'40 p'41

cn10'

p3

p4

t3 t4

p11

p12 p13

t11

t12

t13

p35

p38

t40

t41

t42

t43

t44 t45

t'46

t'47

t'48

t'49

Fig 6.4 TNCES-based model of R3, R4, and W2 in Mode4

S1

toks:1p3+1p11+1p35+1p39

tim e:0

S2

toks:1p3+1p11+1p36+1p39

tim e:0 0
:{
t4
2
}

S3

toks:1p3+1p12+1p35+1p39

tim e:5p3+ 5p39

5:{t11,t43}

S1'

toks:1p3+1p12+1p35

tim e:5p3

S2'

toks:1p4+1p12+1p35

tim e:0

S3'

toks:1p3+1p13+1p35

Tim e:30p35

0
:{
r
1
4
}=
>
M
o
d
e
40:{t3}

3
0
:{
t4
,t
1
2
}

S4

toks:1p4+1p12+1p35+1p39

tim e:5p390
:{
t3
}

M ode1M ode4

S4'

toks:1p3+1p13+1p40'

tim e:0

0:{t8'}

0
:{
r
1
4
,t
1
}=
>
M
o
d
e
4

Fig 6.5 State transition graph of Example 1

Rb4 should be removed. Meanwhile, Rb3 must update itself soon in order to cover Rb4’s

task. According to the design requirements for AAS, W2 should go on working ‘naturally’

at this time, i.e., the enabled transition t3 can fire at this state. However, the concurrence

of reconfiguration functions and transitions is not allowed in R-TNCESs. Therefore, at state

S3, only r1,4 fires alone and AAS turns to the state S1′. Afterwards, t3 fires, which leads to

the next state S2′. However, if r1,4 and t3 fire together, AAS turns to the state S2′ directly

without generating S1′. The state transition graph of this case is shown in Fig. 6.5.

Example 16 Assume that two reconfiguration functions r3,s and r4,s get enabled simultane-

ously at state S4. The physical meaning of S4 is that 1) W2 just starts its work and 2) both

Rb3 and Rb4 are idle. The firing of r3,s and r4,s only changes the states inside their modules,

but neither alter the system structure nor enable/disable any other transitions outside. That

84

Chapter 6 Extended R-TNCESs

S2

toks:1p3+1p11+1p36+1p39

tim e:0

S3

toks:1p3+1p12+1p35+1p39

tim e:5p3+ 5p39

5:{t11,t43}

S4

toks:1p4+1p12+1p35+1p39

tim e:5p390
:{
t3
}

M ode1

M ode1

Energy-efficient

30:{t4,t12}

S5

toks:1p3+1p13+1P35+1p39

tim e:30p35+ 35p39

S7'

toks:1p4+1p12+1p35+5p39

tim e:0

S6'

toks:1p4+1p12+1p35 +1p42

tim e:0

S5'

toks:1p4+1p12+1p38 +1p39

tim e:5p39

r3s,r4s M ode1

Fig 6.6 State transition graph of Example 2

is to say, the firing of r3,s and r4,s does not change the current system configuration. Ac-

cording to the design requirements for AAS, both Rb3 and Rb4 can reconfigure themselves

into energy-efficient modes freely when they will be idle for more than two time units. How-

ever, the concurrence of multiple reconfiguration functions is neither allowed in R-TNCESs.

Therefore, at state S4, only r4,s or r3,s fires alone. After that, the rest one fires since it is still

enabled. However, if r3,s and r4,s fire together, AAS turns to the state S7′ directly. The state

transition graph of this case is shown in Fig. 6.6.

In conclusion, the original R-TNCES formalism is not sufficient to model an REMS.

The reason can be explained from the following three aspects:

• Reconfigurations at the component level only change component behavior modes be-

tween their working modes and energy-efficient modes rather than changing system

configurations. If this kind of reconfigurations is modeled by reconfiguration functions

directly, the number of system configurations should be enlarged, which increases the

verification cost and burdens the whole design process.

• The concurrence of reconfiguration functions and transitions is not allowed in R-

TNCESs. However, from the above examples, the concurrence of reconfiguration

events and normal events is a common phenomenon in an REMS.

85

Doctoral Dissertation of XIDIAN UNIVERSITY

• Since the local reconfigurations for energy-efficient operations cannot be properly de-

scribed, the corresponding dynamics of them and reasonable analysis cannot be per-

formed.

To this end, this chapter extends R-TNCESs to achieve two aims. First, all possible

events including concurrent events that may occur in REMSs can be properly described.

Second, the concurrence of reconfiguration functions and transitions should be controlled to

ensure the system correctness.

6.3.2 Extended R-TNCESs

An extended R-TNCES has the same structure with the original R-TNCES. It is com-

posed of a behavior module and a control module, denoted by eRN = {B,R}. The defi-

nition of system states is not changed, as shown in Chapter 4. In the extended R-TNCES,

reconfiguration functions are newly assigned with action ranges and concurrent decision

functions. In addition, the firing rules of transitions and reconfiguration functions are up-

dated such that they are conditionally allowed to fire concurrently.

6.3.2.1 Modified Reconfiguration Functions

In order to model the two types of reconfiguration events in an REMS directly, A con-

cept namely action range is developed for each reconfiguration function of an R-TNCES.

In addition, a concurrent decision function is also assigned to a reconfiguration function to

constrain concurrent transitions that may lead to undesired states such as deadlocks and over-

flow during a reconfiguration. For the sake of brevity, a reconfiguration function indicates a

modified reconfiguration function in what follows.

Definition 5 A reconfiguration function r of an extended R-TNCES eRN is a structure

r=(Cond, s, x, Λ, Π). Cond → {true, false} is the pre-condition of r. s: Ω → Ω

is the structure modification instruction. x: R(NΓi, z0i) → Z0j is the state correlation

function, where Z0j is a set of feasible initial states of Γj . ?r = Γi = (NΓi, z0i) (resp,

r? = Γj = (NΓj, z0j)) denotes the TNCES before (resp, after) r fires. Λ∈(NΓi∪NΓj) de-

notes the action range of r. Π(r,Z) → T is a concurrent decision function deciding a set of

forbidden transitions that cannot fire together with r at state Z .

The reconfiguration functions of extended R-TNCESs are divided into two types: major

and minor reconfiguration functions. For a reconfiguration function r=(Cond, s, x, Λ, Π)

with ?r = Γi = (NΓi, z0i) and r? = Γj = (NΓj, z0j), it is a major reconfiguration function if

and only if NΓi 6= NΓj . Otherwise, it is a minor reconfiguration function. Let Rma and Rmi

86

Chapter 6 Extended R-TNCESs

denote the sets of major and minor reconfiguration functions of eRN , respectively. Then we

have R = Rma ∪Rmi and Rma ∩Rmi = ∅.

The implementation (firing) of a major reconfiguration function changes the structure of

the current activated TNCES, whereas the implementation (firing) of a minor reconfiguration

function only adjusts partial states of the activated TNCES within its action range.

Similar to Petri nets, the ‘conflict’ concept is proposed for two enabled reconfiguration

functions. We have the following two cases:

1. For two reconfiguration functions within the same type, i.e., both are minor or major

reconfiguration functions, if their action ranges have intersections, they are conflicting.

2. For a minor reconfiguration function and a major reconfiguration function, if the

action range of the minor reconfiguration function is not completely covered by that of the

major reconfiguration function, they are conflicting.

If two reconfiguration functions are conflicting, they cannot be implemented simultaneously.

The symbol r1‖r2 denotes that reconfiguration functions r1 and r2 are not conflicting.

Similar to the definition of steps in TNCESs, an r-step in an extended R-TNCES is a

maximal set of reconfiguration functions that can fire simultaneously at a particular state.

An r-step should satisfy the following two conditions:

1. For any two reconfiguration functions ri and rj (ri 6= rj) in an r-step γ, ri and rj are

not conflicting, i.e., ri‖rj .

2. There does not exist any other maximal set of reconfiguration functions γ′ such that

γ ⊂ γ′.

Accordingly, two r-steps γ1 and γ2 are conflicting, if ∃r1 ∈ γ1, ∃r2 ∈ γ2, r1 6= r2, r1 and r2

are conflicting.

6.3.2.2 Dynamics of Extended R-TNCESs

Suppose that at state Z = dNΓ, zc, multiple reconfiguration functions get enabled, to

be denoted by

R∗ = γ1 ∪ γ2 ∪ ... ∪ γg,

where γi (i ∈ [1, g]) is a maximal r-step at Z and ∀i, j ∈ [1, g], i 6= j, γi and γj are

conflicting. At the same state Z , the set of all enabled transitions is denoted by

T ∗ = u1 ∪ u2 ∪ ... ∪ uk,

where ui (i ∈ [1, k]) is a maximal step and ∀i, j ∈ [1, k], i 6= j, ui and uj are conflicting.

87

Doctoral Dissertation of XIDIAN UNIVERSITY

As a consequence, different compositions of r-steps and steps can occur simultaneously

at this state. Given an enabled reconfiguration function r, we use D .T (resp, D .P) to denote

the set of deleted transitions (resp, deleted places) and A .T (resp, A .P) to denote the set of

added transitions (resp, added places) by firing it, where ?r = Γi = (NΓi, z0i), r? = Γj =

(NΓj, z0j), NΓi=(Pi, Ti, Fi, CNi, ENi, emi, DCi), and NΓj=(Pj , Tj , Fj , CNj , ENj , emj ,

DCj). We have the following two cases:

1) For a transition t ∈ Ti, if it is enabled simultaneously with a minor reconfiguration

function r = (Cond, s, x, Λ, Π) at state Z=dNΓi
, zc and t /∈ Λ, then t can fire simultaneously

with r, i.e., t /∈ Π(r,Z).

2) For a transition t ∈ Ti, if it is enabled simultaneously with a major reconfigura-

tion function r = (Cond, s, x, Λ, Π) at state Z=dNΓi
, zc, then we have the following two

subcases:

1. A spontaneous transition t is forbidden to be concurrent with r at Z , if it meets one of

the following conditions

• If it is deleted by r, i.e., t ∈ D .T , it is forbidden by r, i.e., t ∈ Π(r,Z).

• If t /∈ D .T and all its elements are not changed by firing r, then it is allowed to

fire simultaneously with r. Formally, if •ti =• tj , t•i = t•j , −ti =− tj , ∼ti =∼

tj = ∅, and em(t)i = em(t)j , we have t /∈ Π(r,Z).

• If t /∈ D .T , some of its elements are modified by r, which include its preset,

postset, source places, and firing mode, and we have the following two cases:

(a) The preset, source places and firing mode of t decide whether t is enabled

after the firing of r. Therefore, if its preset, source places, or firing mode will

be changed by r, it can fire simultaneously with r. Formally, if •ti 6= •tj ,
−ti 6= −tj or em(t)i 6= em(t)j , then t /∈ Π(r,Z).

(b) The postset of t does not change its enabling condition, but influences the

structure of the net. Therefore, it is forbidden by r. Formally, if t•i 6= t•j ,

we have t ∈ Π(r,Z).

2. A forced transition t is forbidden to be concurrent with r at Z , if it further meets one

of the following conditions:

• Its firing mode is ∨ and all of its forcing transitions are forbidden to be concurrent

with r, i.e., if emi(t)=emj(t)=∨ and ∀t′ ∈ ∼t, t′ /∈ Π(r,Z), then t ∈ Π(r,Z).

88

Chapter 6 Extended R-TNCESs

S1

toks:1p3+1p11+1p36+1p39

tim e:0

S2

toks:1p3+1p12+1p35+1p39

tim e:5p3+ 5p39

5:{t11,t43}

S3

toks:1p4+1p12+1p35+1p39

tim e:5p390
:{
t3
}

M ode1

M ode1

Energy-

efficient

S4

toks:1p4+1p12+1p38+1p42

tim e:1p4+1p12

1:{r3s,r4s} 28:{r3s,r4s}

S5

toks:1p4+1p12+1p35+1p39

tim e:29p4+29p12

1:{t4,t12}

S6

toks:1p3+1p13+1p35+1p39

tim e:1p35+1p39

S7

toks:1p3+1p13+1p35+1p40

tim e:1p35 0
:{
t4
6
}

S8

toks:1p3+1p12+1p35+1p39

tim e:5p3+6p35

5:{t13,t43}

S9

toks:1p3+1p11+1p37+1p39

tim e:5p30
:{
t4
2
}

S10

toks:1P3+1P12+1p35+1p39

tim e:10p3+5p35

5:{t11,t43}

S11

toks:1P4+1P12+1p35

tim e:00
:{
t1
,r
1
4
}

S12

toks:1p3+1p13+1p35

tim e:30p35

30:{t2,t4}

S13

toks:1p3+1p13+1p40'

tim e:0

0:{t8}

M ode4

Fig 6.7 A fragment of the reachability graph of Example 3

• Its firing mode is ∧ and at least one of its forcing transitions is forbidden by r,

i.e., if emi(t)=emj(t)=∧ and ∃t′ ∈ ∼t, t′ /∈ Π(r,Z), then t ∈ Π(r,Z).

Since an extended R-TNCES allows the concurrence of multiple reconfiguration func-

tions and transitions, the reachability graph of an extended R-TNCES is defined as follows:

Definition 6 The reachability graph of an extended R-TNCES eRN is a combination of

several labeled directed graphs whose nodes are the states of eRN and whose arcs are of

three kinds: steps, r-steps, and combinations of a step and an r-step.

• The arc from state dNΓi, zic to state dNΓi, z
′
ic is denoted by a step u represented by:

dNΓi, zic[u〉dNΓi, z
′
ic, where z′

i ∈ R(NΓi, zi).

• The arc from state dNΓi, zic to state dNΓj, zjc is labeled with an r-step γ represented

by: dNΓi, zic[γ〉dNΓj, zjc. If γ contains major reconfiguration functions, NΓi 6= NΓj .

Otherwise, we have NΓi = NΓj and zj /∈ R(NΓi, zi).

• The arc from dNΓi, zic to state dNΓj, zjc is labeled with a step and an r-step {R, u}
represented by: dNΓi, zic[γ, u〉dNΓj, zjc. If γ contains major reconfiguration func-

tions, NΓi 6= NΓj . Otherwise, we have NΓi = NΓj .

Obviously, the graphical representation of an extended R-TNCES model is the same

with that of an R-TNCES model. However, system dynamics get enriched along with the

89

Doctoral Dissertation of XIDIAN UNIVERSITY

[40,oo]

ev1

W 1

[30,oo]

ev2

W 2

[50,oo]

ev3

W 3

ev6

R1

[3,oo]

Prepareto

work

ev4
[3,oo]

p29

sleep

P32

R2

[3,oo]

Preparetowork

ev7

[3,oo]

P33

finish

p40

R4

[5,oo]

Prepareto

work

ev11

[5,oo]

p41

finish

cn1

ev1
ev9

b0

cn3

ev10
ev1

b1

cn14& cn13cn11

ev10

p36

R3

[5,oo]

sleep

ev9
[5,oo]

p37

Prepareto

work
cn5& cn4cn1

cn17

cn14& cn13

cn2

cn4

cn3

ev8

ev12

cn19

cn10

[3,oo]

ev5

p28

cn16

cn11

b4

cn12 cn13

ev4

ev2

ev6

cn8

b3

cn9 cn10

ev11

ev3

ev12

cn14

b5

cn15 cn16

ev6

ev3

ev5

cn17

b6

cn18 cn19

ev7

ev3

ev8

cn5

b2

cn6 cn7

ev10

ev2

ev11

[5,oo] [5,oo]

ev11' ev12'

cn8& cn7'

p'40 p'41

cn10'

[3,oo] [3,oo]

ev7' ev8'

cn17'

p'32 p'33

cn19'

p1

p2

t1 t2

p3

p4

t3 t4

p5

p6

t5 t6

p7

p8

t7 t8

p9

p10

t9 t10

p11

p12 p13

t11

t12

t13

p14

p15 p16

t14

t15

t16

p17

p18 p19

t17 t19

t18

p20

p21 p22

t20 t22

t21

p23

p24 p25

t23

t24

t25

p26

p27

p30

t26

t27

t28 t29

t30

t31

t32 t33

p31

p34

t34

t35

t36

t37

t38 t39

p35

p38

t40

t41

t42

t43

t44 t45

p39

p42

t46

t47

t48

t49

t50 t51

t'34

t'35

t'36

t'37

t'46

t'47

t'48

t'49

cn3

cn2& cn6

cn15,cn21& cn24

Fig 6.8 Behavior module of eRNAAS

changes of reconfiguration functions. If we use an extended R-TNCES to model AAS,

the graphical TNCES models shown in Figs. 6.3 and 6.4 are still correct. However, their

reachability graphes get enriched during a same reconfiguration.

Example 17 A fragment of the reachability graph of the extended R-TNCES-based model

of the example composed of Rb3, Rb4, and W2 is shown in Fig. 6.7. AAS starts running in

Mode1. When it arrives at the state S3, two minor reconfiguration functions r3,s and r4,s

get enabled and fire simultaneously to reconfigure robots Rb3 and Rb4 into their energy-

efficient modes. After 28 time units, they reconfigure back to working modes. Assume that

R4 is detected to have a fault at state S10, the major reconfiguration function r1,4 gets

enabled. At the meantime, t3 gets enabled simultaneously with r1,4. Therefore, t3 fires

simultaneously with r1,4, which leads the transformation of AAS into Mode4.

6.4 Verification of Extended R-TNCESs

In order to perform correct formal verification of AAS, an extended R-TNCES-based

model should be built for it. The extended R-TNCES based model of AAS is marked by

90

Chapter 6 Extended R-TNCESs

eRNAAS={B,R}, B=Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, R=Rma∪Rmi, Rma={r1,2, r1,3, r1,4, r2,4, r3,4},

and Rmi={r1,s, r2,s, r3,s, r4,s, r−1
1,s , r−1

2,s , r−1
3,s , r−1

4,s}. We have Ω={NΓ1 , NΓ2 , NΓ3 , NΓ4}. The

four major reconfiguration functions are conflicting with each other. The minor reconfig-

uration functions ri,s and r−1
i,s (i ∈ [1, 4]) are conflicting but others are not. The behavior

module of eRNAAS is shown in Fig. 6.8, where elements drawn by dotted lines are possibly

modified during the implementation of a major reconfiguration function. In order to apply

automatic model checking to an extended R-TNCES, a TNCES-based nested state machine

is developed to implement its control module.

6.4.1 Implementation of Extended R-TNCESs

First of all, major reconfiguration functions are grouped according to their action ranges.

A set of state machines specified by TNCESs, which are called Major changers, is defined.

Each state machine corresponds to a group of major reconfiguration functions that share the

same action range. In a particular Major changer, each transition corresponds to a ma-

jor reconfiguration function. The transitions in a state machine cannot fire simultaneously,

which means that these modeled major reconfiguration functions by one state machine are

conflicting with each other. Firing a transition st in a Major changer implies that a major

reconfiguration function is implemented. A Major changer is formalized as follows:

Major changer=(P , T , F , V , z0),

where ∀t ∈ T , |•t|=|t•|=1,
∑

M0(P)=1, which means that only one place in P owns a

token at the initial state, and V : T → {∨}. The pre-condition Cond can be modeled by

input event/condition signals from external to transitions in a Major changer.

In addition, an actuator denoted by Actuator is defined for each place sp in all Major

changers, which is marked by Actuator=Act(sp). Each actuator is composed of a place

ap and a transition at only, where •ap=ap•={at}, •at=at•={ap}, and M(ap) = 1. When the

place sp in a Major changer receives a token, the actuator Actuator=Act(sp) is activated.

An Actuator is formalized as follows:

Actuator=(P , T , F , V , z0),

where |P | = |T | = 1, •at = at•= {ap}, •ap = ap•= {at}, m0(P) = 1, and V : T →{∨}.

Similar to major reconfiguration functions, minor reconfiguration functions are grouped

according to their action ranges. A set of state machines specified by TNCESs, which

are called Minor changers, is defined. Each state machine corresponds to a group of

91

Doctoral Dissertation of XIDIAN UNIVERSITY

p2 p3

p1

t1

t4 t5

t3

t10

t2

p9

p4

p10
t11

p5

t6

p6

t7

p7

t8

p8

t9

t12

p11

p12
t13 t14

p13

p14
t15 t16

p15

p16
t17

R2! R4!

R4! R2!R
2
!&
r4
!

standby work standby work standby work standby work

Actuator1

M ajor_changer

Actator3

Actuator2

M inor_changer1 M inor_changer2 M inor_changer3 M inor_changer3

Actator4

Fig 6.9 Control module of eRNAAS

minor reconfiguration functions. If the action ranges of two minor reconfiguration func-

tions are the same, they are modeled by transitions in a Minor changer. If the action

range of a group of minor reconfiguration functions, to be modelled by a Minor changer,

is completely covered by that of a group of major reconfiguration functions, to be mod-

eled by a Major changer, then this Minor changer can be activated only when this

Major changer is activated.

A Minor changer is formalized as follows:

Minor changer=(P , T , F , V , z0),

where ∀t ∈ T , |•t|=|t•|=1,
∑

M0(P)=1, which means that only one place in P owns a

token at the initial state, and V : T → {∨}. The pre-condition Cond can be modeled by

input event/condition signals from external to transitions in a Minor changer.

Example 18 Fig. 6.9 depicts the TNCES-based control module of eRNAAS . It has only

one Major changer, since the four major reconfiguration functions share the same action

range. It has four Minor changers, since the four robots have four distinguished action

ranges. The places p1, p2, p3, and p4 in Major changer correspond to Mode1, Mode2,

92

Chapter 6 Extended R-TNCESs

Mode3, and Mode4, respectively. When t3 fires, the major reconfiguration function r1,4 is

implemented. Robots Rb3 and Rb1 are applied in every mode of AAS. Therefore, minor

reconfiguration functions that transform them between energy-efficient modes and working

modes are activated in every system behavior mode. Moreover, it is possible for them to fire

simultaneously with other major reconfiguration functions.

6.4.2 Formal Verification of AAS

Since the time when a major reconfiguration function can get enabled and fire cannot

be predicted, this chapter applies an instruction insertion method to simulate AAS. In ad-

dition, eRNAAS evolves according to fired maximal steps and r-steps. Assume that AAS

should finish 100 subassemblies. It starts with Mode1. At time t1 when it finishes the 60th

subassembly, it reconfigures into Mode2 due to the fault detection of Rb2. Then, it goes on

working in Mode2. At time t2 when the 91st subassembly is being processed, it transforms

into Mode4 according to the fault detection of Rb4. During the whole process, minor re-

configurations, i.e., transforming robots between their working modes and energy-efficient

modes, are applied.

SESA is applied to compute the reachability graph of this whole process. A minimal

path regarding time consumption from the initial state to the objective state is computed

in each mode. In Mode1, it generates 23044 states, which takes 6990 time units to finish

assembly of the first 60 subassemblies in the minimal path. In Mode2, it generates 85259

states, which costs 4127 time units to finish assembling the next 30 subassemblies in the

minimal path. Finally, in Mode4, it generates 195007 states, which takes 1525 time units to

finish assembling the last 10 subassemblies in the minimal path. Note that, two states can be

considered to be same if and only if they have the same token numbers and time status.

Since each TNCES-based model of the behavior modes of AAS is a well-designed

control system, they are proved to be qualified according to SESA, where eCTL based func-

tional properties and TCTL based temporal properties are checked. In addition, the follow-

ing eCTL formula is applied to the control module of eRNAAS:

Z0 = EX < t4ANDt12 > X < p12 = 1 >

This formula is proved to be false by SESA. The transition t12 corresponds to the minor

reconfiguration function r2,s. Therefore, it can fire only when AAS is in Mode1 or Mode2.

The following formula is proved to be true.

Z0 = EX < t2ANDt10 > X < p10 = 1 >

93

Doctoral Dissertation of XIDIAN UNIVERSITY

Table 6.1 Time of robots on their energy-efficient modes

Configuration Mode1 Mode2 Mode4
System Uptime 6690 4127 1525
Robot Rb1 Rb2 Rb3 Rb4 Rb1 Rb3 Rb4 Rb1 Rb3
Time on energy-efficient mode 3233 4455 3818 2643 1004 2458 2428 523 435

Table 6.2 Energy consumption of robots

Configuration Mode1 Mode2 Mode4
Robot Rb1 Rb2 Rb3 Rb4 Rb1 Rb3 Rb4 Rb1 Rb3
Energy-1 6690 6690 6690 6690 4127 4127 4127 1525 1525
Energy-2 4726.9 3871.5 4303.4 5139.9 3424.2 2406.4 2427.4 1158.9 1220.5
Saved energy 1963.1 2818.5 2386.6 1550.1 702.8 1720.6 1699.6 366.1 304.5

It means that when robot Rb4 breaks down, the two reconfiguration functions r1,3 and r1,s

are possible to fire simultaneously.

The triggering conditions of minor reconfiguration functions can be computed previ-

ously. There are several possible state/event paths showing system behavior from the initial

state to the objective state, at which 100 subassemblies are finished. We select a minimal

path regarding to time for each TNCES-based model of the three configurations, to be de-

noted by Path = Z1,Z2,Zn, where energy-efficient operations are not included. That is

to say all robots should stay in their working modes in this case although they should wait

for a period of time before the next task comes. After that, based on the states on this path,

the time when a minor reconfiguration function gets enabled and fires can be computed. For

example, if an activated robot starts to wait at a particular state Zi, at which the system time

is τ1. A search is performed along this minimal path at τ1. If it is found that at Zj , the robot

works again, at which the system time is τ2. Then the time delay ∆τ = τ2 − τ1 between

these two states is obtained. The round local reconfigurations for switching a robot between

its working mode and energy-efficient mode takes two time units. Therefore, if the time

delay is larger than two, i.e., ∆τ > 2, a local reconfiguration can be applied to this robot.

The system time for reconfiguring this robot from its working mode to its energy-efficient

mode is τ1. The system time for reconfiguring this robot from its energy-efficient mode to

its working mode is τ2 − 1.

The time of robots on their energy-efficient modes in minimal pathes is computed dur-

ing the assembly of 100 subassemblies. They are shown in Table 6.1 together with the whole

system uptime in each mode. Take Mode1 as an example. Assume that Rb1 consumes one

94

Chapter 6 Extended R-TNCESs

energy unit per time unit in its working time but only consumes 30% energy unit per time

unit in its energy-efficient mode. In Mode1, if there is no minor reconfiguration applied

to Rb1 for saving energy, it will consume 6990 energy units. However, it only consumes

6990 − 3233 + 30% × 3233 = 4726.9 energy units in Mode1 if minor reconfigurations are

applied when it is idle. In the same way, the energy saved by the robots during this simula-

tion is shown in Table. 6.2, where the third row shows the energy consumption of each robot

if no minor reconfigurations are applied, the fourth row shows the energy consumption of

each robot when minor reconfigurations are applied, and the last row shows the saved energy

of each robot during this process.

6.5 Summary

A reconfigurable and energy-efficient manufacturing system (REMS) is a typical re-

configurable discrete event control system (RDECS). It allows two kinds of dynamic system

reconfigurations: local and global reconfigurations. The former are applied to save energy

for components, whereas the latter are applied to change system configurations according

to changed inner/outer execution environments. Meanwhile, normal events should be con-

ditionally allowed to occur simultaneously with these system reconfigurations, such that

the system can reconfigure smoothly and safely. In order to easily model conditioned con-

currence of reconfiguration events and normal events and represent all interesting system

behavior, this chapter extends R-TNCESs. Original reconfiguration functions are newly as-

signed with action ranges and concurrent decision functions. Accordingly, the dynamics of

R-TNCESs is updated. After that, a TNCES-based implementation method for the proposed

extended R-TNCESs is developed such that automatic model checking can be applied. The

verified properties include functional, temporal, and energy properties that are specified by

CTL, eCTL, or TCTL. An automatic assembly system is used to illustrate the whole work.

95

Doctoral Dissertation of XIDIAN UNIVERSITY

96

Chapter 7 Conclusion

Chapter 7 Conclusion

This dissertation deals with formal modeling and verification of dynamic reconfig-

urable discrete event control systems (RDECSs) based on Net Condition/Event Systems

(NCESs) or Timed Net Condition/Event Systems (TNCESs). As a conclusion, this chapter

summarizes contributions of this dissertation, discusses open problems of the current work,

and introduces prospective future work on RDECSs.

7.1 Contribution

Formal modeling is the first and a critical step of accurate analysis of complex control

systems. Formal verification is an expected method to check the quality of service of control

systems completely, since it is also able to prove whether the system is incorrect. The verifi-

cation results can help designers and engineers to improve the original design scheme. These

techniques are always applied before start-up of a system. Therefore, many latent design de-

ficiency can be discovered and solved earlier. In theory, man-made modern technological

systems can be studied by considering them as discrete event systems (DESs). Consider-

ing the potential benefits of NCESs/TNCESs in modeling and verification of reconfigurable

systems, all works described in this dissertation are carried out based on them.

In the beginning, this dissertation models a reconfigurable control system by an NCES.

A reconfiguration scenario is defined by any addition-removal-update of places, transitions,

or just modification of the initial markings. Three nested external formal modules are de-

veloped to cope with these reconfigurations. The first module deals with places, the second

deals with transitions, and the third deals with initial markings. In order to guarantee safe

behavior of this reconfigurable architecture, computation tree logic (CTL) based functional

properties are checked by the software SESA.

From the first work described in Chapter 3, it is noticed that the modeling methods for

RDECSs by using NCESs directly will increase the verification complexity sharply. This

can be explained as follows. The original system model itself as well as the external control

module generate a large state space. After they are synthesized, the state-space amplifies

exponentially. As a result, we turn to study a direct and compact modeling method. A new

formalism Reconfigurable Timed Net Condistion/Event System (R-TNCES) for modeling

and verification of RDECSs is developed. Compared with the previous studies on formal

97

Doctoral Dissertation of XIDIAN UNIVERSITY

methods for RDECSs, the functional and temporal specifications are optimized, and more

forms of reconfiguration scenarios are covered such as the addition/removal of control com-

ponent modules and the modifications of condition/event signals among them. Especially,

a reconfiguration function in an R-TNCES has not only a structure modification instruction

to dispose the structure reconfiguration but also a state processing function to assure the co-

herence of system states before and after any implementation of reconfiguration scenarios.

Therefore, an R-TNCES is such a formalism that guarantees the correctness of an RDECS

from the viewpoint of the model.

In order to control the verification complexity of R-TNCESs, a layer-by-layer verifica-

tion method for a special type of R-TNCESs is proposed by using the model-checker SESA.

The similarity among TNCESs in the behavior module is considered, which helps to sim-

plify the verification process. It is proved that if the external environment of the unchanged

parts is not changed by reconfigurations, their repetitive verification can be avoided. This

solution controls the complexity of model-checking of R-TNCESs. A benchmark produc-

tion system FESTO MPS is taken as a whole running example in this work. It shows that an

R-TNCES is a convenient formalism for modeling and analyzing RDECSs.

The consistency is one of the most critical problems of a dynamic reconfigurable sys-

tem. To this end, this dissertation proposes a novel virtual coordinator for a distributed re-

configurable discrete event control system (DRDECS) to deal with the reconfigurable coor-

dination of a group set of R-TNCES-based reconfigurable discrete event control subsystems.

Concurrent reconfiguration requirements are well solved by judgement matrices with an op-

timal coordination solution, while the amount of exchanged messages between subsystems

and the coordinator is well-controlled.

The concurrence of reconfiguration events and normal events is a natural dynamic prop-

erty of RDECSs, which may cause faults if they are not well-controlled. In order to easily

model conditioned concurrence of reconfiguration events and normal events and to represent

all interesting system behavior, this dissertation further extends R-TNCESs. Original recon-

figuration functions are newly assigned with action ranges and concurrent decision func-

tions. Accordingly, the dynamics of R-TNCESs is updated. Recent research work shows

that reconfigurable control technologies can be applied to save energy of manufacturing

systems by actively switching machines between their working modes and energy-efficient

modes. A reconfigurable and energy-efficient vehicle assembly system is modeled and ana-

lyzed by an extended R-TNCES.

98

Chapter 7 Conclusion

7.2 Discussion and Future Works

This dissertation studies some aspects of RDECSs. However, all current work is only a

tip of the iceberg. Many problems are identified little by little but not solved by the current

work.

7.2.1 Discussion

The current work copes with RDECSs on the system level, where a dynamic recon-

figuration process is abstracted as one single discrete event. This reconfiguration event is

set to be with the highest firing priority and its firing is assumed to be instantaneous. Ob-

viously, the detailed dynamic reconfiguration processes are not well modeled, let alone the

analysis and control. In addition, both in R-TNCESs and extended R-TNCESs, the struc-

ture modification instruction is not studied intensively, since the current work assumes that

the reconfigurable controller knows how to implement it. Furthermore, the state correlation

function is with a similar case that all current work is carried out by assuming that there is

an available state correlation function.

Although the R-TNCES formalism is extended in Chapter 6, there are still lots of prob-

lems waiting to be solved. As described in Chapter 6, a reconfiguration function has been

assigned with an action range and a concurrent decision function. It likely that detailed sys-

tem behavior can be modeled and further analyzed. However, questions such as how action

ranges are defined, implementation orders of structure modification instructions of multiple

enabled reconfiguration events, and how the concurrent decision functions work in the cases

that action ranges of multiple enabled reconfiguration events have intersections, are not well

answered yet.

A special formal verification software for R-TNCESs is lacking. The formal verifica-

tion of R-TNCESs and extended R-TNCESs is realized with the help of the software SESA.

However, this process is semi-automatic. For any reconfiguration scenario, we should feed

the new obtained configuration into the software again. Obviously, SESA cannot offer the

formal verification of detailed dynamic reconfiguration processes based on R-TNCESs. In

addition, SESA does not offer a visual interface. Therefore, it is not convenient and all the

system models have to be drawn by hand.

99

Doctoral Dissertation of XIDIAN UNIVERSITY

7.3 Future Work

So far, to the best of our knowledge, research works concerning dynamic reconfigura-

tion processes are limited. In [107], Gierds et al. propose a reconfigurable control approach

to adjust the communication among some given services such that a certain behavioral prop-

erty holds in the composed system. However, they do not consider the correctness of the

adaptation phase. Narges et. at develop a supervisory controller to guide the behavior of a

software system during adaption [108]. The possible concurrence of normal events and re-

configuration events is ignored and the temporal properties of reconfiguration events are out

of consideration. In addition, they only concern the structure modification of reconfigurable

systems.

Considering problems identified by the current work and the lacking of efficient theo-

retical results on dynamic reconfiguration processes of RDECSs, we plan to solve following

problems step by step: 1) Enrich the R-TNCES formalism; 2) Study the stability of dynamic

RDECSs based on R-TNCESs; 3) Investigate optimal verification methods for R-TNCESs

by considering net structure properties; 4) Develop a special simulation and model checking

software for R-TNCESs. Besides, another axis of research could be the close integration

of the proposed methodology with IEC 61499 for implementation and possibly IEC 61850

[109] for the application in distributed energy systems.

100

Reference

Reference

[1] KHALGUI M, MOSBAHI O, ZHANG J, et al. Feasible Dynamic Reconfigurations of Petri Nets-

Application to a Production System.[C] // ICSOFT (2). 2011 : 105 – 110.

[2] KHALGUI M, MOSBAHI O, LI Z, et al. Reconfiguration of distributed embedded-control sys-

tems[J]. Mechatronics, IEEE/ASME Transactions on, 2011, 16(4) : 684 – 694.

[3] STEINBERG M. Historical overview of research in reconfigurable flight control[J]. Proceedings of

the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219(4) :

263 – 275.

[4] ZHANG Y, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J].

Annual reviews in control, 2008, 32(2) : 229 – 252.

[5] VANDER VELDE W E. Control system reconfiguration[J], 1984.

[6] CHANDLER P R. Self-repairing flight control system reliability and maintainability program ex-

ecutive overview[C] // Proc. Nat. Aero. & Electr. Conf. 1984 : 586 – 590.

[7] WEISS J S E J L, WILLSKY D P L A. Design issues for fault tolerant-restructurable aircraft

control[C] // . 1985.

[8] RAUCH H E. Autonomous control reconfiguration[J]. Control Systems, IEEE, 1995, 15(6) : 37 –

48.

[9] BENITEZ-PÉREZ H, GARCIA-NOCETTI F. Reconfigurable Distributed Control[M]. [S.l.] :

Springer, 2005.

[10] HAJIYEV C, CALISKAN F. Fault diagnosis and reconfiguration in flight control systems : Vol

2[M]. [S.l.] : Springer, 2003.

[11] BONDY J A, MURTY U S R. Graph theory with applications : Vol 290[M]. [S.l.] : Macmillan

London, 1976.

[12] RESCHER N, URQUHART A. Temporal logic : Vol 220[M]. [S.l.] : Springer-Verlag New York,

1971.

[13] PETRI C A. Communicating with Automata[J]. Germany: PhD thesis, Technical University Darm-

stadt, 1962.

[14] TRAKHTENBROT B A, BARZDIN Y M. Finite automata[M]. [S.l.] : American Elsevier Publish-

ing Company, 1973.

[15] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal de

physique I, 1992, 2(12) : 2221 – 2229.

[16] NILSSON N J. A mobile automaton: An application of artificial intelligence techniques[R]. [S.l.] :

101

Doctoral Dissertation of XIDIAN UNIVERSITY

DTIC Document, 1969.

[17] HENZINGER T A. The theory of hybrid automata[M]. [S.l.] : Springer, 2000.

[18] MARSAN M A, BALBO G, CONTE G, et al. Modelling with generalized stochastic Petri nets[M].

[S.l.] : John Wiley & Sons, Inc., 1994.

[19] RAMCHANDANI C. Analysis of asynchronous concurrent systems by timed Petri nets[J], 1974.

[20] JENSEN K. Coloured Petri nets: basic concepts, analysis methods and practical use : Vol 1[M].

[S.l.] : Springer Science & Business Media, 1997.

[21] HANISCH H-M, THIEME J, LUDER A, et al. Modeling of PLC behavior by means of timed net

condition/event systems[C] // Emerging Technologies and Factory Automation Proceedings, 1997.

ETFA’97., 1997 6th International Conference on. 1997 : 391 – 396.

[22] RAMADGE P J, WONHAM W M. The control of discrete event systems[J]. Proceedings of the

IEEE, 1989, 77(1) : 81 – 98.

[23] LI J, DAI X, MENG Z, et al. Rapid design and reconfiguration of Petri net models for reconfig-

urable manufacturing cells with improved net rewriting systems and activity diagrams[J]. Comput-

ers & Industrial Engineering, 2009, 57(4) : 1431 – 1451.

[24] MURATA T. Petri nets: Properties, analysis and applications[J]. Proceedings of the IEEE, 1989,

77(4) : 541 – 580.

[25] LI Z, ZHOU M. Elementary siphons of Petri nets and their application to deadlock prevention in

flexible manufacturing systems[J]. Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on, 2004, 34(1) : 38 – 51.

[26] CHU F, XIE X-L. Deadlock analysis of Petri nets using siphons and mathematical program-

ming[J]. Robotics and Automation, IEEE Transactions on, 1997, 13(6) : 793 – 804.

[27] COMMONER F G. Deadlocks in Petri-nets[M]. [S.l.] : Massachusetts Computer Assoc., Incorpo-

rated, 1972.

[28] TRICAS F, GARCIA-VALLES F, COLOM J M, et al. A Petri net structure-based deadlock pre-

vention solution for sequential resource allocation systems[C] // Robotics and Automation, 2005.

ICRA 2005. Proceedings of the 2005 IEEE International Conference on. 2005 : 271 – 277.

[29] LO K, NG H, TRECAT J. Power systems fault diagnosis using Petri nets[C] // Generation, Trans-

mission and Distribution, IEE Proceedings- : Vol 144. 1997 : 231 – 236.

[30] RAMÍREZ-TREVIÑO A, RUIZ-BELTRÁN E, RIVERA-RANGEL I, et al. Online fault diagnosis

of discrete event systems. A Petri net-based approach[J]. Automation Science and Engineering,

IEEE Transactions on, 2007, 4(1) : 31 – 39.

[31] RAUSCH M, HANISCH H-M. Net condition/event systems with multiple condition outputs[C]

// Emerging Technologies and Factory Automation, 1995. ETFA’95, Proceedings., 1995 IN-

102

Reference

RIA/IEEE Symposium on : Vol 1. 1995 : 592 – 600.

[32] KHALGUI M, HANISCH H-M, GHARBI A. Model-checking for the functional safety of con-

trol component-based heterogeneous embedded systems[C] // Emerging Technologies & Factory

Automation, 2009. ETFA 2009. IEEE Conference on. 2009 : 1 – 10.

[33] KHALGUI M, MOSBAHI O, LI Z, et al. Reconfigurable multiagent embedded control systems:

From modeling to implementation[J]. Computers, IEEE Transactions on, 2011, 60(4) : 538 – 551.

[34] VYATKIN V, HANISCH H-M. Verification of distributed control systems in intelligent manufac-

turing[J]. Journal of Intelligent Manufacturing, 2003, 14(1) : 123 – 136.

[35] VALK R. Self-modifying nets, a natural extension of Petri nets[G] // Automata, Languages and

Programming. [S.l.] : Springer, 1978 : 464 – 476.

[36] GUAN S-U, LIM S-S. Modeling adaptable multimedia and self-modifying protocol execution[J].

Future Generation Computer Systems, 2004, 20(1) : 123 – 143.

[37] LLORENS M, OLIVER J. Structural and dynamic changes in concurrent systems: reconfigurable

Petri nets[J]. Computers, IEEE Transactions on, 2004, 53(9) : 1147 – 1158.

[38] LI J, DAI X, MENG Z. Automatic reconfiguration of petri net controllers for reconfigurable man-

ufacturing systems with an improved net rewriting system-based approach[J]. Automation Science

and Engineering, IEEE Transactions on, 2009, 6(1) : 156 – 167.

[39] ALMEIDA E E, LUNTZ J E, TILBURY D M. Event-condition-action systems for reconfigurable

logic control[J]. Automation Science and Engineering, IEEE Transactions on, 2007, 4(2) : 167 –

181.

[40] WU N, ZHOU M. Intelligent token Petri nets for modelling and control of reconfigurable auto-

mated manufacturing systems with dynamical changes[J]. Transactions of the Institute of Mea-

surement and Control, 2009.

[41] SAMPATH R, DARABI H, BUY U, et al. Control reconfiguration of discrete event systems with

dynamic control specifications[J]. Automation Science and Engineering, IEEE Transactions on,

2008, 5(1) : 84 – 100.

[42] DUMITRACHE I, CARAMIHAI S, STANESCU A. Intelligent agent-based control systems in

manufacturing[C] // Intelligent Control, 2000. Proceedings of the 2000 IEEE International Sym-

posium on. 2000 : 369 – 374.

[43] OHASHI K, SHIN K G. Model-based control for reconfigurable manufacturing systems[C]

// Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on :

Vol 1. 2001 : 553 – 558.

[44] KALITA D, KHARGONEKAR P P. Formal verification for analysis and design of logic controllers

for reconfigurable machining systems[J]. Robotics and Automation, IEEE Transactions on, 2002,

103

Doctoral Dissertation of XIDIAN UNIVERSITY

18(4) : 463 – 474.

[45] LIU J, DARABI H. Control reconfiguration of discrete event systems controllers with partial ob-

servation[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2004,

34(6) : 2262 – 2272.

[46] ASPERTI A, BUSI N. Mobile petri nets[J], 1996.

[47] VAN BRUSSEL H, WYNS J, VALCKENAERS P, et al. Reference architecture for holonic manu-

facturing systems: PROSA[J]. Computers in industry, 1998, 37(3) : 255 – 274.

[48] VALCKENAERS P, VAN BRUSSEL H, BONGAERTS L, et al. Holonic manufacturing sys-

tems[J]. Integrated Computer-Aided Engineering, 1997, 4(3) : 191 – 201.

[49] CATALÁN C, SERNA F, BLESA A, et al. Communication types for manufacturing systems. A

proposal to Distributed Control System based on IEC 61499[C] // Automation Science and Engi-

neering (CASE), 2011 IEEE Conference on. 2011 : 767 – 772.

[50] NOVÁK P, ROLLO M, HODÍK J, et al. Communication security in multi-agent systems[G]

// Multi-agent systems and applications III. [S.l.] : Springer, 2003 : 454 – 463.

[51] BERNA-KOES M, NOURBAKHSH I, SYCARA K. Communication efficiency in multi-agent

systems[C] // Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International

Conference on : Vol 3. 2004 : 2129 – 2134.

[52] SIMS M, CORKILL D, LESSER V. Automated organization design for multi-agent systems[J].

Autonomous Agents and Multi-Agent Systems, 2008, 16(2) : 151 – 185.

[53] MAILLER R, LESSER V. A Cooperative mediation-based protocol for dynamic distributed re-

source allocation[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 2006, 36(1) : 80 – 91.

[54] MAILLER R, LESSER V. A mediation based protocol for distributed constraint satisfaction[C]

// The fourth international workshop on distributed constraint reasoning. 2003 : 49 – 58.

[55] CORKILL D D. Turn off your radios! environmental monitoring using power-constrained sensor

agents[J], 2007.

[56] KHALGUI M, HANISCH H-M. Automatic NCES-based specification and SESA-based verifica-

tion of feasible control components in benchmark production systems[J]. International Journal of

Modelling, Identification and Control, 2011, 12(3) : 223 – 243.

[57] MCMILLAN K L. Symbolic model checking[M]. [S.l.] : Springer, 1993.

[58] CLARKE E M, GRUMBERG O, PELED D. Model checking[M]. [S.l.] : MIT press, 1999.

[59] BOZGA M, DAWS C, MALER O, et al. Kronos: A model-checking tool for real-time systems[C]

// Formal Techniques in Real-Time and Fault-Tolerant Systems. 1998 : 298 – 302.

[60] BEHRMANN G, DAVID A, LARSEN K G. A tutorial on uppaal[G] // Formal methods for the

104

Reference

design of real-time systems. [S.l.] : Springer, 2004 : 200 – 236.

[61] HENZINGER T A, HO P-H, WONG-TOI H. HyTech: A model checker for hybrid systems[C]

// Computer aided verification. 1997 : 460 – 463.

[62] STARKE P H, ROCH S. Analysing signal-net systems[M]. [S.l.] : Professoren des Inst. für Infor-

matik, 2002.

[63] http://homepages.engineering.auckland.ac.nz/ vyatkin/tools/modelchekers.html[K]. .

[64] SILVA B I, RICHESON K, KROGH B, et al. Modeling and verifying hybrid dynamic systems

using CheckMate[C] // Proceedings of 4th International Conference on Automation of Mixed Pro-

cesses. 2000 : 323 – 328.

[65] ASARIN E, DANG T, MALER O. The d/dt tool for verification of hybrid systems[C] // Computer

Aided Verification. 2002 : 365 – 370.

[66] MITCHELL I M. A toolbox of level set methods[J]. Dept. Comput. Sci., Univ. British Columbia,

Vancouver, BC, Canada, http://www. cs. ubc. ca/˜ mitchell/ToolboxLS/toolboxLS. pdf, Tech. Rep.

TR-2004-09, 2004.

[67] ALUR R, COURCOUBETIS C, DILL D. Model-checking for real-time systems[C] // Logic in

Computer Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium on e. 1990 :

414 – 425.

[68] http://www2.informatik.hu-berlin.de/ starke/ina.html[K]. .

[69] REYNOLDS M. An axiomatization of full computation tree logic[J]. The Journal of Symbolic

Logic, 2001, 66(03) : 1011 – 1057.

[70] ROCH S. Extended computation tree logic[C] // Workshop Concurrency, Speci & Programming,

number 140 in Informatik-Bericht. 2000.

[71] VYATKIN V. Modelling and Verification of Discrete Control Systems[J], .

[72] VYATKIN V, HANISCH H-M, PANG C, et al. Closed-loop modeling in future automation system

engineering and validation[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 2009, 39(1) : 17 – 28.

[73] VYATKIN V, HANISCH H-M. Formal modeling and verification in the software engineering

framework of IEC 61499: a way to self-verifying systems[C] // Emerging Technologies and Fac-

tory Automation, 2001. Proceedings. 2001 8th IEEE International Conference on : Vol 2. 2001 :

113 – 118.

[74] KHALGUI M, HANISCH H-M. Automatic specification of feasible Control Tasks in Benchmark

Production Systems[C] // Emerging Technologies and Factory Automation, 2008. ETFA 2008.

IEEE International Conference on. 2008 : 789 – 798.

[75] KOLLURU R, VALAVANIS K P, SMITH S, et al. Design fundamentals of a reconfigurable robotic

105

Doctoral Dissertation of XIDIAN UNIVERSITY

gripper system[J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transac-

tions on, 2000, 30(2) : 181 – 187.

[76] CHEN Y, LI Z. Design of a maximally permissive liveness-enforcing supervisor with a com-

pressed supervisory structure for flexible manufacturing systems[J]. Automatica, 2011, 47(5) :

1028 – 1034.

[77] CHEN Y, LI Z, KHALGUI M, et al. Design of a maximally permissive liveness-enforcing Petri

net supervisor for flexible manufacturing systems[J]. Automation Science and Engineering, IEEE

Transactions on, 2011, 8(2) : 374 – 393.

[78] CHEN Y, LI Z, ZHOU M. Behaviorally optimal and structurally simple liveness-enforcing super-

visors of flexible manufacturing systems[J]. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 2012, 42(3) : 615 – 629.

[79] HAN S, YOUN H Y. Modeling and analysis of time-critical context-aware service using extended

interval timed colored Petri nets[J]. Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on, 2012, 42(3) : 630 – 640.

[80] GEHIN A-L, STAROSWIECKI M. Reconfiguration analysis using generic component models[J].

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2008, 38(3) :

575 – 583.

[81] GHARBI A, KHALGUI M, ZHANG J, et al. Agent-based Fault Management of Embedded Con-

trol Systems.[C] // ICSOFT (2). 2011 : 277 – 280.

[82] ALUR R, YANNAKAKIS M. Model checking of hierarchical state machines[J]. ACM SIGSOFT

Software Engineering Notes, 1998, 23(6) : 175 – 188.

[83] PARISINI T, SACONE S. Fault diagnosis and controller re-configuration: an hybrid approach[C]

// Intelligent Control (ISIC), 1998. Held jointly with IEEE International Symposium on Computa-

tional Intelligence in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS),

Proceedings. 1998 : 163 – 168.

[84] KOREN Y, HEISEL U, JOVANE F, et al. Reconfigurable manufacturing systems[J]. CIRP Annals-

Manufacturing Technology, 1999, 48(2) : 527 – 540.

[85] YASUDA G. A distributed autonomous control architecture for synchronization and coordination

of multiple robot systems[C] // SICE Annual Conference (SICE), 2012 Proceedings of. 2012 :

1864 – 1869.

[86] PROENÇA J, CLARKE D, DE VINK E, et al. Dreams: a framework for distributed synchronous

coordination[C] // Proceedings of the 27th Annual ACM Symposium on Applied Computing.

2012 : 1510 – 1515.

[87] ZHANG J, KHALGUI M, LI Z, et al. R-TNCES: A novel formalism for reconfigurable discrete

106

Reference

event control systems[J]. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 2013,

43(4) : 757 – 772.

[88] YIGIT A S, ULSOY A G, ALLAHVERDI A. Optimizing modular product design for reconfig-

urable manufacturing[J]. Journal of Intelligent Manufacturing, 2002, 13(4) : 309 – 316.

[89] PITT J, MAMDANI A. Communication protocols in multi-agent systems: a development method

and reference architecture[G] // Issues in agent communication. [S.l.] : Springer, 2000 : 160 – 177.

[90] CLARKE E M, EMERSON E A, SISTLA A P. Automatic verification of finite-state concurrent

systems using temporal logic specifications[J]. ACM Transactions on Programming Languages

and Systems (TOPLAS), 1986, 8(2) : 244 – 263.

[91] LEITÃO P, ALVES J, MENDES J M, et al. Energy aware knowledge extraction from Petri

nets supporting decision-making in service-oriented automation[C] // Industrial Electronics (ISIE),

2010 IEEE International Symposium on. 2010 : 3521 – 3526.

[92] KARNOUSKOS S, COLOMBO A W, LASTRA J L M, et al. Towards the energy efficient future

factory[C] // Industrial Informatics, 2009. INDIN 2009. 7th IEEE International Conference on.

2009 : 367 – 371.

[93] BUNSE K, VODICKA M, SCHÖNSLEBEN P, et al. Integrating energy efficiency performance in

production management–gap analysis between industrial needs and scientific literature[J]. Journal

of Cleaner Production, 2011, 19(6) : 667 – 679.

[94] MECHS S, LAMPARTER S, MULLER J. On evaluation of alternative switching strategies for

energy-efficient operation of modular factory automation systems[C] // Emerging Technologies &

Factory Automation (ETFA), 2012 IEEE 17th Conference on. 2012 : 1 – 8.

[95] MECHS S, MULLER J, LAMPARTER S, et al. Networked priced timed automata for energy-

efficient factory automation[C] // American Control Conference (ACC), 2012. 2012 : 5310 – 5317.

[96] BI Z, WANG L. Optimization of machining processes from the perspective of energy consumption:

a case study[J]. Journal of manufacturing systems, 2012, 31(4) : 420 – 428.

[97] ODA Y, KAWAMURA Y, FUJISHIMA M. Energy consumption reduction by machining process

improvement[J]. Procedia CIRP, 2012, 4 : 120 – 124.

[98] CANNATA A, KARNOUSKOS S, TAISCH M. Energy efficiency driven process analysis and

optimization in discrete manufacturing[C] // Industrial Electronics, 2009. IECON’09. 35th Annual

Conference of IEEE. 2009 : 4449 – 4454.

[99] MOUZON G, YILDIRIM M B. A framework to minimise total energy consumption and total

tardiness on a single machine[J]. International Journal of Sustainable Engineering, 2008, 1(2) :

105 – 116.

[100] SHORIN D, ZIMMERMANN A. Model-based development of energy-efficient automation sys-

107

Doctoral Dissertation of XIDIAN UNIVERSITY

tems[C] // The 17th IEEE Real-Time and Embedded Technology and Applications Symposium.

2011.

[101] PARK C-W, KWON K-S, KIM W-B, et al. Energy consumption reduction technology in man-

ufacturing)A selective review of policies, standards, and research[J]. International Journal of

Precision Engineering and Manufacturing, 2009, 10(5) : 151 – 173.

[102] STOFFELS P, BOUSSAHEL W M, VIELHABER M, et al. Energy engineering in the virtual

factory[C] // Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference

on. 2013 : 1 – 6.

[103] WU N, ZHOU M, LI Z. Resource-oriented Petri net for deadlock avoidance in flexible assembly

systems[J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

2008, 38(1) : 56 – 69.

[104] LI Z-W, ZHOU M. Two-stage method for synthesizing liveness-enforcing supervisors for flexible

manufacturing systems using Petri nets[J]. Industrial Informatics, IEEE Transactions on, 2006,

2(4) : 313 – 325.

[105] LI Z W, HU H S, WANG A R. Design of liveness-enforcing supervisors for flexible manufacturing

systems using Petri nets[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 2007, 37(4) : 517 – 526.

[106] LI Z, ZHOU M. Control of elementary and dependent siphons in Petri nets and their application[J].

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2008, 38(1) :

133 – 148.

[107] GIERDS C, MOOIJ A J, WOLF K. Reducing adapter synthesis to controller synthesis[J]. Services

Computing, IEEE Transactions on, 2012, 5(1) : 72 – 85.

[108] KHAKPOUR N, ARBAB F, RUTTEN E. Supervisory Controller Synthesis for Safe Software

Adaptation[C] // Discrete Event Systems : Vol 12. 2014 : 39 – 45.

[109] MACKIEWICZ R. Overview of IEC 61850 and Benefits[C] // Power Systems Conference and

Exposition, 2006. PSCE’06. 2006 IEEE PES. 2006 : 623 – 630.

[110] MEHRABI M G, ULSOY A G, KOREN Y. Reconfigurable manufacturing systems: Key to future

manufacturing[J]. Journal of intelligent Manufacturing, 2000, 11(4) : 403 – 419.

108

Acknowledgement

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisors Prof. Zhiwu

Li, Prof. Georg Frey, and Prof. Mohamed Khalgui.

I thank Prof. Zhiwu Li for his thoughtful guidance, instructive advice, constant encour-

agement, and financial support. He patiently taught me to pay attention to details in doing

research and writing papers. He zealously finds promotion chances for me. I could not have

imagined having a better advisor and mentor for my Ph.D study. Without his recommenda-

tion, I could not get chances to know my other two supervisors.

Prof. Georg Frey is my supervisor in Saarland University. It is my lucky to have him

as one of my supervisors. His fair and serious attitude to me and to other formal registered

Ph.d students touched me, when I was just a visiting student in his lab in the beginning. His

speeches are always succinct and explicitly, which never hidden his enthusiasm. I appre-

ciate him for his professional guidance on my research work and warm help on my life in

Germany.

I would like to specially express my gratitude to Prof. Mohamed Khalgui, who has

done a great contribution to every piece of my research work during the passed 5 years. He

is always strict with my research work. I can hardly make progress in doing research without

his guidance, criticism, and help.

Besides my supervisors, I would like to specially express my sincere appreciation to

Prof. Kamel Barkaoui, Prof. Hans-Michael Hanisch, Prof.Olfa Mosbahi, Prof. Alessandro

Giua, Prof. Naiqi Wu, Prof. Jianyuan Jia, Prof. Yuanyin Qiu, Prof. Helmut Seidel, Prof.

Fernando Tricas Garcı́a, Prof. Zhi Li, and Prof. Kai Cai for their help and concern.

I thank my fellow lab mates in Xidian University. It is my pleasure to conduct research

with them for more than 3 years. Particularly among them are Dr. Ding Liu, Dr. Yifan Hou,

Dr. Meng Qin, Dr. Yufeng Chen, Dr. Anrong Wang, Dr. Jinwei Guo, Dr. Gaiyun Liu,

Dr. Chunfu Zhong, Dr. Hesuan Hu, Dr. Liang Hong, Ms. Na Li, Dr. Xiaoliang Chen, Dr.

Zhongyuan Jiang, M.Sc. Xi Wang, Dr. Xiuyan Zhang, Ms. Yin Tong, Ms. Miao Liu, Mr.

Ziyue Ma and Mr. Zhou He.

My sincere thanks also goes to all my colleagues and friends in Saarland University.

Particularly among them are Ms. Gisela Auert-Kempka, Mr. Manfred Rachor, Dr.-Ing. Felix

Felgner, Dipl.-Ing. Philipp Bauer, M.Sc. Fethi Belkhir, M.Sc. Wassim Boussahel, Dipl.-Ing.

Lukas Exel, M.Sc. Mohammed Hijjo, Dipl.-Ing. Josef Meiers, Dipl.-Ing. Marco Nesarajah,

109

Doctoral Dissertation of XIDIAN UNIVERSITY

and M.Sc. Christian Siegwart. I spent a pleasant time with them in Saarbrücken in Germany.

They are full of zeal for helping me all the time. I will never forget the wonderful period

with them.

I would like also express my gratitude to my Chinese friends in Germany. They are Mr.

Jianguo Zhao, Dr. Huacheng Qiu, M.Sc. Yuchun Xing, Ms. Jing Niu, Mr. Guanghou Zhou,

Mr. Xingtong Jiang, Ms. Xiangping Li, Dr. Dechen Chen, Dr. Ran Duan, Dr. Ye Liang, Mr.

Yu Meng, Mr. Jingyu Yang, Mr. Jianxing Chen, Mr. Han Du, Ms. Xue Li, and Dr. Qiang

Fu. I am grateful that God arranged them around me.

I am deeply grateful to my beloved parents and my sisters. No word can properly

express how grateful I am to them. Their prayer for me was what sustained me thus far.

At the end I would like to express appreciation to my beloved husband Shuo Tang, who is

always my support. I will use my entire lifetime to love and protect him.

110

	ABSTRACT
	摘要
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviation
	Chapter 1 Introduction
	1.1 Study Object
	1.2 State of the Art
	1.3 Dissertation Organization

	Chapter 2 Preliminaries
	2.1 Net Condition/Event Systems
	2.2 Timed Net Condition/Event Systems
	2.3 Model Checking

	Chapter 3 Possible Reconfigurations in NCESs
	3.1 Motivation
	3.2 Experimental Manufacturing Platform
	3.3 Specification of Reconfigurable Control Systems
	3.4 Reconfiguration of Net Condition/Event Systems
	3.5 System Verification
	3.6 Summary

	Chapter 4 Reconfigurable Timed Net Condition Event Systems
	4.1 Motivation
	4.2 Experimental Manufacturing Platform
	4.3 Control Components
	4.4 R-TNCESs
	4.4.1 Definition
	4.4.2 Dynamics of R-TNCESs
	4.4.3 Reconfiguration Implementation of R-TNCESs

	4.5 Verification of R-TNCESs
	4.5.1 Verification of the Initial TNCES
	4.5.2 Verification of Other TNCESs
	4.5.3 Verification of the Control Module
	4.5.4 System Correctness
	4.5.5 Discussion

	4.6 Summary

	Chapter 5 Coordination of R-TNCESs
	5.1 Motivation
	5.2 Reconfigurable Coordination of a DRDECS
	5.2.1 Specification of a DRDECS
	5.2.2 Reconfigurable Coordination of a DRDECS

	5.3 Modeling of DRDECSs
	5.3.1 Benchmark Production System
	5.3.2 Formal Models

	5.4 SESA based Verification of DRDECSs
	5.5 Discussion
	5.6 Summary

	Chapter 6 Extended R-TNCESs
	6.1 Motivation
	6.2 Reconfigurable and Energy-efficient Manufacturing Systems
	6.2.1 System Specification
	6.2.2 Running Example

	6.3 Extended R-TNCESs
	6.3.1 Drawbacks of R-TNCESs
	6.3.2 Extended R-TNCESs

	6.4 Verification of Extended R-TNCESs
	6.4.1 Implementation of Extended R-TNCESs
	6.4.2 Formal Verification of AAS

	6.5 Summary

	Chapter 7 Conclusion
	7.1 Contribution
	7.2 Discussion and Future Works
	7.2.1 Discussion

	7.3 Future Work

	Reference
	Acknowledgement
	Biography

