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Kurzzusammenfassung 
Die vorliegende Arbeit untersucht die Möglichkeit funktionelle anorganische 

Nanobausteine als Vernetzungsvermittler für selbstheilende Materialien zu 

verwenden. Intelligente Polymere und Verbundwerkstoffe, welche die reversible 

Diels-Alder-Reaktion zur intrinsischen Selbstheilung von Materialdefekten nutzen, 

gehören einer neuartigen Materialklasse an. Maleimid- und Furanfunktionalitäten 

dienen zur reversiblen Vernetzung von anorganischen Nanopartikeln und 

Polymermatrix. Das eigentliche Ziel ist die Bestimmung von universell geeigneten 

Techniken zur Herstellung von thermoreversibel vernetzbaren Hybridmaterialien. 

Zunächst wurde gezeigt, dass sterische Oberflächeneffekte an SiO2-Nanopartikel, 

welche mit kurzen Silankupplungsreagenzien mit Maleimidfunktionalitäten 

modifiziert wurden, nur sehr geringe Diels-Alder-Reaktivität erlauben. 

Oberflächeninitiierte radikalische Atomtransferpolymerisation wurde genutzt um 

Kern-Schale Nanopartikel mit erhöhter Reaktivität zu erzeugen. Durch den Gebrauch 

von Methacrylsäurebutylester als Comonomer wurde die Glasübergangstemperatur 

herabgesetzt und die Distanz zwischen den Vernetzungspunkten wurde erhöht. 

Außerdem wurden Hybridmaterialen basierend auf käfigartigen kubischen 

Spherosilikaten hergestellt. Die Art des Vernetzers bestimmte die mechanischen 

Eigenschaften sowie die Selbstheilungsfähigkeit. 

Den Beweis für eine erfolgreiche Selbstheilung der Hybridmaterialien lieferte die 

Heilung von Oberflächenkratzern nach thermischer Behandlung. 
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Abstract 
This work investigates the possibility to employ functional inorganic nano building 

blocks as cross-linking agents for self-healing materials. Smart polymers and 

composites using reversible Diels-Alder reaction as mechanism for intrinsic self-

healing of defects represent a novel class of materials. Maleimide and furan 

functionalities have been selected to ensure Diels-Alder reaction between inorganic 

nanoparticles and polymeric matrix. The ultimate goal was to identify universally 

suitable techniques to prepare thermally remendable hybrid materials. 

Initially, surface-modification of silica nanoparticles with short silane coupling agents 

containing maleimide functionalities displayed low Diels-Alder conversion because 

of steric effects on the surface. Surface-initiated atom transfer radical polymerization 

yielded core-shell nanoparticles with increased reactivity by utilizing butyl 

methacrylate as comonomer to lower glass transition temperature and increase the 

distance between cross-links. Additionally, two hybrid materials based on cage-like 

cubic spherosilicates were prepared. Mechanical properties as well as self-healing 

abilities could be tuned by the choice of the cross-linker. 

Spectroscopic, thermal and mechanical analytical tools displayed the extent of the 

Diels-Alder reaction during curing as well as the reversibility of the cross-linking. 

Healing of surface scratches by thermal treatment provided evidence for successful 

self-healing properties of the hybrid materials.  
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1 INTRODUCTION 

Parts of the introduction are reprinted with permission from Engel, T. and Kickelbick, 

G. (2013) Thermally Remendable Polymers, in Self-Healing Polymers: From 

Principles to Applications (ed W. H. Binder), Wiley-VCH, Weinheim, Germany.  

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA 

1.1 Self-Healing Materials 

All natural and artificial materials are exposed to mechanical, thermal and chemical 

influences. In consequence, degradation over time can lead to fatigue, which results in 

deterioration of mechanical properties up to complete failure. Structural elements of 

machines may undergo periodic deformations causing micro-cracks, which propagate 

with every movement leading to bigger and bigger defects.[1, 2] Besides mechanical 

degradation by abrasion caused by contact with harder materials, coatings are mainly 

affected by atmospheric influences e.g., light, temperature changes and oxidations.[3-

5] Differences in the thermal expansion coefficients of the coating and the substrate 

may cause crack formation. Normally these damages would involve a replacement of 

the damaged parts or renewal of the coating. 

Nature developed various techniques to heal injuries, from the “bleeding” of the 

rubber tree to close the end of broken branches, up to the numerous stages involved 

during the healing of bone fractures.[6] 

A chemist dream is to mimic such self-healing behavior within engineered polymeric 

and composite materials using physical and chemical mechanisms. Self-healing 

materials were defined by White et al.: “Self-healing materials exhibit the ability to 

repair themselves and to recover functionality using resources inherently available to 

them […] whether the repair process is autonomic or externally assisted (e.g., by 

heating).”[7] 

This ingenious new class of materials offers a road towards renewable, longer-lasting 

products for various applications e.g., coatings in electronics, aeronautics and the 

automotive industry.[8-14] Unlike thermoplastic materials, standard thermosets 

irreversibly cure and cannot be melted to be shaped differently. In the event of a 
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failure, the absence of plastic flow prevents healing by rearrangement of polymer 

chains. By incorporation of healing additives or functionalities, chemists and material 

engineers are able to create a new class of materials. 

Three main self-healing principles have been identified. Capsule based self-healing 

and vascular self-healing appertain to the class of extrinsic self-healing, needing 

secondary healing agents do perform the repair of damage. The third category is 

composed of intrinsically self-healing materials.[7] 

1.2 Self-Healing Approaches 

1.2.1 Capsule-based self-healing 

Capsule based self-healing approaches enclose a liquid healing agent in spherical 

capsules until a damage triggers breaking of the reservoirs and release of the healing 

agent (Figure 1). Different encapsulation techniques and a great variety of healing 

agents have been employed. Encapsulation in the case of self-healing materials is 

mainly achieved by forming a solid polymer shell at the interface of droplets in an oil-

water emulsion. The polymer can be formed by in situ polycondensations (urea-

formaldehyde, melamine-formaldehyde) or polyadditions (polyurethane).[15-24] 

Another successful technique proceeds by the dispersion of the healing agent in a 

molten polymer followed by emulsification and solidification by temperature 

decrease. This technique is called meltable dispersion encapsulation.[25] 

Different healing mechanisms were used involving one or more encapsulated liquid 

healing agents. White et al. used ring opening metathesis polymerization (ROMP) 

with encapsulated dicyclopentadiene.[26] Grubbs catalyst necessary for the reaction 

was previously dispersed within the polymer matrix. Other groups used epoxy-resin 

filled capsules in combination with an imidazole catalyst that could be thermally 

activated.[27] 

In the multicapsule-based systems, both the healing agent and the polymerizer are 

encapsulated separately. Keller et al. established multicapsule self-healing in 

elastomeric matrix by employing platin-catalysed hydrosilation reaction of vinyl-

terminated polydimetylsiloxane (PDMS).[18, 28] Later, multicapsule healing was 

extended to spatially separated epoxide and mercaptane.[29] 



INTRODUCTION 
_____________________________________________________________________ 

 !
3 

!
! !

A third approach in the field of capsule-based self-healing uses remaining latent 

functionalities of the polymeric matrix that is to be repaired. An example is the 

solvent-promoted self-healing of remaining amine-functionalities within an epoxy 

matrix. Caruso et al. tested different encapsulated solvents that trigger self-healing by 

swelling of the polymeric matrix, thereby facilitation addition of amine to 

epoxide.[30, 31] The results suggested that polar aprotic solvents are best suited to 

promote healing. 

Disadvantages of capsule-based self-healing mechanism are the non-repeatability of 

self-healing, the deterioration of the mechanical properties by incorporation of 

macroscopic capsules and the need to tune the mechanical properties of the capsule 

shell. Once the healing agent is depleted, no more self-healing can be observed at the 

same position. Another important requirement in the design of crack-healing material 

is that the fracture toughness of the capsule shell and the fracture toughness of the 

matrix matches.[32] If they do not match, the crack will be deflected around the 

capsules without harming it. 

 

 
FIGURE 1: SCHEMATIC REPRESENTATION OF CAPSULE-BASED SELF-HEALING 

1.2.2 Vascular self-healing  

Vascular self-healing materials use hollow channels in 1D, 2D or 3D orientation as 

reservoirs for healing agent storage (Figure 2). These systems mimic the blood vessels 

within living tissue. 1D-systems were achieved by incorporation of hollow glass 

fibers, filled with a healing agent.[33-38] 2D and 3D vascular systems can be 

constructed by building a sandwich-like material out of polymer sheets topped with 
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silicone or poly (vinyl chloride) (hetero-DA) tubing acting as channels.[39] A more 

elegant technique is direct-ink writing of the channels within an uncured polymer 

precursor.[40, 41] After solidification the ink-scaffold is removed, which leaves 

hollow channels within the polymer matrix. Connectivity of the channels can easily 

be controlled, thereby facilitating refilling of the network and increasing the volume 

of accessible healing agent. The same healing agents and healing mechanisms as 

presented in chapter 1.2.1 can be applied. Only some properties, like surface 

wettability and viscosity may play a role in the choice of the healing agent, because 

these properties as well as the interconnectivity and the size of the channels affect the 

efficiency of filling and release in case of damage. [42-44] 

 
FIGURE 2: SCHEMATIC REPRESENTATION OF VASCULAR SELF-HEALING MATERIALS. 

CURING OF HEALING-AGENT IS TRIGGERED BY CATALYST DISPERSED IN THE MATRIX 

(REPRESENTED BY STARS). 

1.2.3 Intrinsic self-healing 

Intrinsic materials come as close to the definition of self-healing materials as possible. 

They use functionalities that are directly incorporated into the material to allow 

bonding and de-bonding. These reversible bonds can be physical, covalent, ionic or 

hydrogen bonds. No incorporation of extrinsic bodies, which will deteriorate the 



INTRODUCTION 
_____________________________________________________________________ 

 !
5 

!
! !

mechanical properties of the matrix, is necessary. No capsules or channels are needed. 

Blending of a cross-linked polymer matrix with a linear polymer enables healing by 

physical rearrangement and entanglement.[45-47] Functionalization of the polymer 

backbone with pendant groups that are able to form reversible bonds affords a 

chemical way to heal damage upon a trigger.[48-50] The trigger that is needed is the 

only drawback of intrinsic systems. In order to break bonds, it is necessary to 

introduce energy in some form to the system. This may be thermal, chemical, 

photochemical or mechanical energy. Thermal energy is most commonly used and the 

easiest method to trigger bonding and de-bonding in self-healing materials. In the next 

chapter different intrinsic self-healing techniques involving a thermal trigger are 

summarized.  

1.3 Principles of Thermal Healing 

1.3.1 Physical Methods 

Physical self-healing mechanisms involve a repair of physical damage by 

interdiffusion of polymer chains at crack interfaces. No chemical bonds are formed or 

broken during this process. Only physical links between entangled macromolecular 

chains are released, rearranged and new entanglements form after diffusion of chain 

segments across crack interfaces. 

1.3.2 Molecular Diffusion across Crack Interface 

Self-healing of thermoplastic polymers through molecular diffusion across crack 

interfaces has been extensively studied in the 1980s. The research covers amorphous, 

semi-crystalline block copolymers and composites. Bringing two pieces of the same 

polymer in contact at a temperature higher than the glass transition temperature Tg, 

results in a gradual disappearance of the crack interface and an increase in strength at 

the healing site due to interdiffusion of polymer chains. [51] 

Jud and Kausch investigated the crack-healing behavior of a series of PMMA samples 

differing in their molecular weights. The interpenetration is strongly dependent on the 

temperature, the healing-time and molecular weight of the polymer. [52] Healing 

occurs already at 5 K above Tg but the effect is much faster if the system is heated 
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15 K above Tg. A slight normal pressure on the sample is needed to insure the initial 

contact between fracture surfaces. The amount of pressure depends on the molecular 

weight because the stiffness increases with Mw. After 1 min penetration time, two 

surfaces brought together establish a bond, which is considerably stronger than that of 

pure adhesion. [52] In short time experiments, fracture strength comparable to the 

initial strength of the material was regained quickly. On the other hand, long time 

experiments showed that the optically healed samples fail 10 times faster than the 

original material. This means that no fully entangled network has been established in 

the crack region and an interdiffusion of chain segments rather than that of whole 

polymer chains is responsible for the regain of strength. [51] The effect of the time 

expired between the formation of the crack and the re-healing was investigated. 

Immediate (several minutes) penetration led to a much faster healing process than a 

penetration delay of several days. There has to be some reorganization of chain ends 

at the crack surfaces and surface reactions cannot be excluded. [52] 

Different models were established to explain the dynamics of concentrated polymer 

systems and the phenomenon of crack healing at thermoplastic interfaces. [53-55] 

According to the reptation model (a chain in a tube) introduced by de Gennes 

(Figure 3), the molecular diffusion coefficient D of a polymer chain is proportional to 

M-2. [53] The reptation model predicts the dependence between thermal motions of 

entangled macromolecules in polymer melts or concentrated polymer solutions and 

the molecular weight. Movements of chains are constrained and therefore the 

macromolecules need to move in a snake-like fashion. In particular, Wool and 

O’Connor used the reptation model to determine a recovery ratio of mechanical 

properties. Their five stages model consists of rearrangement, surface approach, 

wetting, diffusion and randomization. [55] 

 
FIGURE 3: A POLYMER CHAIN P COMPOSED OF SEGMENTS S CANNOT MOVE 

SIDEWAYS. THE CHAIN IS TRAPPED IN A VIRTUAL TUBE T AND CAN ONLY MOVE BY 

REPTATION. 
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1.3.3 Interpenetrating Networks 

Another physical thermally engaged self-healing mechanism uses thermoplastic 

polymers as a system to heal thermosets. These interpenetrating polymer networks 

(IPN) are composed of a cross-linked thermosetting polymer network and an 

interpenetrating linear polymer (Figure 4). Upon heating, diffusion of linear polymer 

to the crack interface promoted closure of the rupture. They use the concepts of 

molecular diffusion extended to heal materials that are inherently unable to move 

across crack interfaces. 

 

 
FIGURE 4: SEMI-INTERPENETRATING POLYMER NETWORK (SIPN) 

 

Palmese et al. formulated an in situ sequential synthesis of an IPN using diglycidyl 

ether of bisphenol A (DGEBA) cured with 4,4’-methylene biscyclohexanamine as the 

cross-linked phase and poly(methacrylated phenyl glycidyl ether) (pMPGE) as the 

linear polymer phase. [45] Using soxhlet extraction, they showed first of all that the 

linear polymer is mobile within the network, which is a necessary condition for the 

self-healing mechanism. The incorporation of the linear polymer chains allowed 

increasing retention of healing capacity over additional healing cycles. 

Hayes et al. mixed a commercially available thermosetting epoxy resin with a linear 

thermoplastic poly(bisphenol-A-co-epichlorohydrin). The matrix system can be 

induced to regain up to 70% of its virgin properties upon healing by raising the 

temperature above 140 °C after a fracture event has been demonstrated. [46] 

Luo et al. blended two non-miscible materials, an epoxy network and poly(ε-

caprolactone) (PCL). The phase-separated blend has “a bricks and mortar” 

morphology with polyepoxide spheres in a PCL matrix. On heating the PCL “mortar” 
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melts and wets all free surfaces and cracks. On cooling, recrystallization of PCL 

closes cracks and even two separated pieces could be reattached to each other. [47] 

1.3.4 Shape Memory assisted Self-Healing 

The shape memory effect in polymers permits a polymeric piece to be deformed to a 

temporary shape until later being triggered to return to its original shape when 

stimulated by external heating or other means. [56, 57] 

For semi-crystalline networks crystallites serve as physical cross-links that can 

temporary fixate a deformation below the melting point Tm and the permanent shape 

may be recovered when the sample is heated above Tm. Beyond the melting point 

rubber elasticity, resulting from permanent covalent cross-links, is responsible for the 

return to the initial shape. In particular, the cross-links serve as permanent anchors for 

the network chains to return to their state of highest conformational entropy. [58] 

Mather et al. used shape memory effect to assist in the self-healing process. Their 

strategy is demonstrated in a blend system consisting of cross-linked PCL network 

and linear PCL interpenetrating the network. The shape memory closes any cracks 

formed during deformation and the linear chains diffuse to the crack interface where 

they re-entangle during the same heating step. [59] 

 

1.3.5 Chemical Methods 

Contrary to physical self-healing mechanisms, chemical methods require breaking 

and regeneration of new chemical bonds. Reversible ionic and supramolecular 

networks are able to form very flexible cross-linking. Many studies have been carried 

out investigating these possibilities. In this work, only mechanisms involving 

reversible covalent bonds will be mentioned. 

1.3.6 Thermoreversible Mechanisms 

Thermoreversible mechanisms involve chemical reactions forming reversible bonds. 

Formation or breakage of covalent bonds is controlled by temperature. At low 

temperature cross-linking or polymerization occurs. Increase in temperature above a 

critical temperature causes the back reaction, breaking up the previously formed 
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bonds. This critical temperature dictates a temperature range for application. The 

material can only be employed at temperatures below which the material does not lose 

any of its mechanical stability. Ideally, the back reaction occurs at a higher 

temperature to allow application at room temperature or above room temperature. 

1.3.7 Diels-Alder Reactions 

Diels-Alder (DA) chemistry has been widely used to synthesize self-healing 

materials. One of the most relevant aspects of the DA reaction for re-mendable 

polymers is its thermal reversibility, known as the retro-Diels–Alder (RDA) reaction. 

[60] Different systems were investigated e.g. dicyclopentadiene, maleimide/furan, 

Hetero-DA (HDA) (Scheme 1). 

 

 
SCHEME 1: DIELS-ALDER/RETRO-DIELS-ALDER EQUILIBRIUM BETWEEN A) TWO 

CYCLOPENTADIENES B) FURAN AND MALEIMIDE C) CYCLOPENTADIENE AND 

PYRIDINYLDITHIOFORMATE (HDA). 

 

The DA reaction is a thermoreversible [4+2]-cycloaddition involving diene and 

dienophile reactants. DA reaction enables the formation of two carbon–carbon bonds 

in a specific manner to form a cyclic (bicyclic) product. Electrons move 

simultaneously in a cyclic fashion without the need of intermediates. The DA reaction 

proceeds in a single step, simply on heating. The transition state has six delocalized 
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π–electrons and is therefore somewhat aromatic in character, stabilizing the transition 

to the DA product (Scheme 2). 

 

 
SCHEME 2: SCHEMATIC DA REACTION BETWEEN A DIENE AND A DIENOPHILE. THERE 

ARE TO POSSIBLE SIX-CENTERED TRANSITION STATES, RESULTING IN THE 

KINETICALLY FAVORED ENDO-PRODUCT AND THE THERMODYNAMICALLY FAVORED 

EXO-PRODUCT. 

 

DA reactions occur between a conjugated diene and an alkene called the dienophile, 

in the example above butadiene and a maleimide. Cyclic dienes like furan or 

cyclopentadiene (CP) are exceptionally good DA reagents because the conjugated 

diene in cyclic systems are trapped in cis-position. Butadiene normally prefers the 

trans-conformation, making it necessary to rotate around the σ-bond. Because the 

involved orbitals are normally the HOMO of the diene and the LUMO of the 

dienophile, it is preferable to approach the energy level of these two orbitals. This can 

happen by electron-donating functional groups at 1-position of the diene. The HOMO 

of furan is higher in energy than that of CP because of the extra electron density 

brought to the system by the oxygen. Normally, furan and maleimide are reacted 

together because the energies of the involved molecular orbitals are closest, 

permitting faster DA reaction at lower temperatures. 

On the other hand, the dienophile reactant needs some kind of conjugation of the 

alkene for the DA reaction to occur. Simple alkenes have relatively high energy 

LUMOs and do not react well with nucleophiles. In the case of the maleimide ring, 

the π-system is extended onto two carbonyl-functional groups thereby withdrawing 

electron density from the double bond by –M effect. 

DA cycloaddition reaction forms not only carbon–carbon bonds but also heteroatom–

carbon bonds (HDA) and it is widely used synthetically to prepare six-membered 
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rings. [61] Dithioester are very reactive dienophiles when reacted with cyclic dienes. 

They react very fast, even at temperatures below room temperatures and in bulk, 

especially, when the reaction is catalyzed by a Lewis acid or trifluoroacetic acid. 

[62, 63] These catalysts coordinate to sulfur atoms of the dithioester end-group in 

order to increase the electrophilicity on the thiocarbonyl bond. [61] Table 1 

summarizes the different reaction partners and reaction conditions for DA reactions 

used in preparation of thermally remendable polymers. 

 
TABLE 1: SUMMARY OF DIFFERENT DA REACTION PARTNERS AND THE CORRESPONDING REACTION 

CONDITIONS. 

Diene Dienophile Conditions Adduct 

 

 

 

Furan 

 

 

 

Maleimide 

DA: between RT and 120 °C 

RDA: >120°C 

Several hrs to days  

 

 

 

 

 

Cyclopentadiene 

 

 

 

 

Cyclopentadiene 

DA: between 80°C and 120°C* 

RDA: >120°C or >180°C* 

Several hrs to days 
(*) depending on R1 and R2 

 

 

 

 

 

 

Cyclopentadiene 

 

 

 

 

Dithioester 

HDA: between RT and 80 °C 

RHDA: >80 °C 

Minutes (Cat: Trifluoroacetic acid) 

 

 

The system using cyclopentadiene as both the diene and the alkene, demonstrate a 

distinctive feature that none of the other DA couples show. Wudl et al. showed that 

the cyclopentadiene dimer (dicyclopentadiene, DCP) is able to react as dienophile 

with a third CP molecule to form a trimer (Scheme 3). [64] In fact, even linear 

molecules with telomeric CP-units are able to form network-like materials. 
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SCHEME 3: REPRESENTATION OF A CYCLOPENTADIENYL-TRIMER RESPONSIBLE FOR 

CROSS-LINKS IN CP-POLYMER. [64] 

 

The reactivity of the functional groups in a polymeric material is strongly dependent 

on the mobility of these groups in the bulk of the polymer. In order to afford a DA-

adduct, the reactants must be able to reach the six-centered transition state required to 

undergo the concerted cycloaddition. If the reactive units are trapped in a rigid matrix, 

not able to reach one-another, no DA reaction will be observed. This can be the case 

if too many cross-linking points are present or if the temperature is lower than the 

glass transition temperature of the linear polymer chains. 

 

Polymers of CP have been known since Staudinger and Bruson. [65] They discovered 

not only that CP undergoes a self-DA reaction to produce DCP, but also that DCP is 

an even better DA substrate, and therefore continues to react with itself to produce a 

polymer. The major advantage of CP as DA-active units for polymer materials is the 

fact that CP acts as both the diene and the dienophile. [50] In 1961, Stille and 

Plummer investigated the polymerization of 1,6-bis(cyclopentadienyl)hexane, 1,9-

bis(cyclopentadienyl)nonane and α,α’-bis(cyclopentadienyl)-p-xylenes in a 

homopolymerisation and in copolymerization with bismaleimides. [66] 

CP derivatives of common chlorinated polymers have been widely synthesized and 

have been used as cross-linkers for the DA reaction. They are easily obtained by 

reacting the chlorinated polymers e.g PVC or polychloromethylstyrene (PCMS) with 

the sodium or lithium salts of CP. [67] The first to demonstrate the thermal 

reversibility of the DCP-system were Kennedy and Castner. [68] They thermally 

reversed via RDA at 215 °C, but because of the high temperatures these systems were 

not very stable. 
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Recently, Wudl et al. reported the synthesis of two DA-monomers starting from 

dicyclopentadiene, which was first transformed to dicylopentadiene dicarboxylic acid. 

Afterwards, the monomer was obtained by bislactonization with variable diols 

(Scheme 4). Mechanical and thermal properties of the resulting material can be tuned 

by varying the nature of the backbone of the diol. [64] 

 
SCHEME 4: DICYCLOPENTADIENYL-MONOMER FOR SINGLE COMPONENT SELF-

HEALING POLYMER [61] 

By heating to the RDA reaction temperature of 120 °C, the monomer opens, releasing 

two CP-units, which can react intermolecularly to form a remendable polymer. The 

same authors could demonstrate, that these systems tent to form cross-linked 

networks when a DCP-unit acts like the dienophile in the DA reaction and reacts with 

a third CP. [64] Compression tests followed by healing showed remarkable shape 

recovery (Figure 5). 

 
FIGURE 5: CPD-POLYMER (A) AFTER COMPRESSION TESTING AND (B) AFTER HEALING. 

REPRINTED WITH PERMISSION FROM [64]. COPYRIGHT (2008) AMERICAN CHEMICAL 

SOCIETY. 

 

The first to use maleimide and furan moieties as cross-linking species for polymeric 

materials were Stevens and Jenkins. [69] They incorporated maleimide functional 

groups into a polystyrene backbone by Friedel-Crafts alkylation and envisioned the 

creation of a self-healing material using DA reactivity with a bifunctional furan 

linker. However this idea was not exploited until a decade later, when Stevens and 
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Canary mixed maleimide-modified polystyrene with difurfuryl adipate. [70] They 

achieved a remendable cross-linked material with a RDA temperature of 150 °C. 

Thermal instability of the furfuryl groups however limited healing cycles. Wudl et al. 

widely investigated maleimide and furan moieties to develop a remendable polymeric 

network. [48, 49, 71] The materials had comparable mechanical properties to those of 

commercially available epoxy resins, but a thermal treatment at a temperature above 

120 °C allowed disconnecting 30 % of the cross-linking, which reconnected upon 

cooling. [48] Monomers were composed of divalent, trivalent or tetravalent 

maleimides and furans varying also in the nature of the spacer backbone. 

Diethylenglycol segments are used e.g. to lower the glass transition temperature of the 

resulting polymer, which increases mobility of polymer chains within the material. 

Both Wouters et al. and Singha et al. used furfuryl methacrylate as a co-monomer for 

co-polymerization with butyl methacrylate or methyl methacrylate, respectively. 

[72, 73] In the first example, free radical polymerization was used to synthesize the 

polymethacrylate backbone baring pendant furan-groups. [72] This leads to a polymer 

gel because under these reaction conditions, some of the furfuryl-groups cross-link. 

By mixing the swollen polymer with a bismaleimide as cross-linking-agent a powder 

coating system was obtained. The powder is applied onto a substrate and molten at 

elevated temperatures above 120 °C to form a coating which solidifies upon cooling. 

Subsequent heating and cooling cycles revealed reversible behavior and no significant 

loss of properties. [72] On the other hand, Singha et al. used atom transfer radical 

polymerization (ATRP) to prepare furfuryl methacrylate co-polymers together with 

methyl methacrylate. Thereby they achieved a better polydispersity index of 1.3 [73] 

and no cross-linking of the pendant furfuryl-groups was observed. The resulting linear 

co-polymer was cross-linked via DA reaction using bismaleimides. 

Within the wide variety of dienes and dienophiles usable for self-healing based on DA 

chemistry, there are very few couples that allow fast cross-linking or polymerization. 

Reaction times of several days can be necessary for the DA reaction in the bulk of a 

polymer. Probably the fastest DA reaction reported until now, is the HDA reaction 

between CP and pyridinyldithioformate linkers. [62, 63] The monomers could be 

cross-linked in the solid state within minutes at room temperature and de-cross-linked 

at temperatures above 80 °C within minutes. Disadvantages for the application of 

these fast-healing systems are the small window of temperatures, relatively high costs 

and instability at higher temperatures limiting the number of healing-cycles. [63] 
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1.3.8 NO-C-Bonds 

Self-healing polymeric materials, using dynamic covalent bonds like the NO-C-bonds 

as healing mechanism, are based on the same principles as stable free radical 

polymerization (SFRP) first mentioned by Kazmaier et al. [74] SFRP is a living 

polymerization technique using reversible termination of radical chain growth. 

Reversible terminators, such as 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), must 

have an endothermic enthalpy of reaction with styrene monomer so that they are not 

able to initiate new chains once they are liberated. 

During SFRP, TEMPO is required to capture reversibly any radical at chain ends to 

prevent preliminary chain termination. To use this procedure as a self-healing 

mechanism the NO-C-bonds have to be used as cross-linking points in the 

thermosetting material. Therefore it is necessary to attach on one hand pendant styryl-

groups captured by TEMPO on the backbone of any polymer. On the other hand, 

attachment of TEMPO-units to the polymer, which are linked to a styryl-moiety, 

provides the counterpart for cross-linking reaction. [75-77] By heating above 60 °C, 

free radicals are released, TEMPO and styryl-radical, which can recombine through 

radical exchange reaction, thereby cross-linking the material (Scheme 5). The biggest 

advantage is the rate at which the bonds dissociate and reform, leaving the material 

with all its mechanical properties even above the dissociation temperature. 
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SCHEME 5: SCHEMATIC REPRESENTATION OF THE THERMODYNAMIC FORMATION OF 

CROSS-LINKED POLYMERS VIA RADICAL EXCHANGE REACTION OF ALKOXYAMINES. 

Stable organic radicals have received much attention over the last years. The 

advantages of these systems are that the C-ON-bonds of alkoxyamines quite easily 

breaks and reforms (Scheme 6). The resulting N-O-radicals are stable enough to give 

the material the apparent dynamic features of a supramolecular system and the 

mechanical strength of a covalently bonded polymer. [50] For the first time, Otsuka et 

al. demonstrated the dynamic covalent bond between a TEMPO and a styryl-radical. 

[75, 78, 79] 

 

 

SCHEME 6: DISSOCIATION/ASSOCIATION OF ALKOXYAMINE-DERIVATIVES. 

Model compounds were used to demonstrate the exchange reaction after breaking the 

bond. [75] Otsuka et al. prepared linear polymers containing dynamic bonds in their 

backbone [79] or as pendant groups on a PMMA chain. [75] Zhang et al. developed a 

synthetic pathway to attach the dynamic unit on a PCMS polymer. [76] Both Zhang 

and Otsuka demonstrated the gelation of these systems by radical exchange reaction 

(Figure 6). By heating up the polymer, the covalent bonds break up in two radicals, 

which can recombine with a different radical to form chemical cross-links. These 

cross-links can easily be cleaved by adding an excess amount of free alkoxyamine. 

[75] 
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FIGURE 6: PICTURES OF THE SOLUTION OF THE POLYMER IN ANISOLE (10 WT%) (A) 

BEFORE AND (B) AFTER HEATING AT 100 °C FOR 24 H. REPRINTED WITH PERMISSION 

FROM [75]. COPYRIGHT (2006) AMERICAN CHEMICAL SOCIETY. 

1.3.9 Alternative Mechanism 

Thermal decomposition of perfluorocyclobutanes (PFCB) is an effectively 

irreversible reaction yielding different products. [80] On the other hand, pure 

mechanical decomposition, like in the case of ultrasonic pulses lead to breaking of the 

cyclobutane into two vinylethers. These can be thermally triggered to form PFCB-

bonds once again. This healing mechanism is technically no thermoreversible 

mechanism and therefore it is treated apart. 

1.3.10 Perfluorocyclobutanes 

The C-F-bond in fluoroalkenes are with 460-540 kJ/mol very strong bonds. But 

vicinal fluorination has been shown to weaken the strength of the alkene. 

Tetrafluoroethene has a π-dissociation energy of only 220 kJ/mol. The double bond 

instability is responsible for the well-known propensity of fluorinated alkenes to 

undergo [2+2]-cycloaddition. Thermal [2+2]-cyloaddition is normally forbidden, 

because of molecular-orbital symmetry. In simple alkenes a biradical intermediate 

product has to be induced photochemically which recombines into a cyclobutane. [81] 

The weakness of the π-bond in fluorinated alkenes enables thermal dissociation into a 

biradical transition state. 

 

Craig et al. investigated the self-healing properties of poly(perfluorocyclobutane) 

(PPFCB), an important class of polymers for aerospace and electronics. [80] PFCB-

units were interesting because they break under mechanical stress to form 

trifluorovinylethers (TFVE), which is the starting material for the formation of 
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PPFCB. A simple thermal treatment (>150 °C) leads to re-mending (Scheme 7). The 

breaking mechanism involves a diradical transition state, which enables secondary 

self-healing mechanisms. The 1,4-diradical makes stress-induced cross-linking a 

possible self-healing mechanism and stress-induced isomerization, from cis to trans, 

could be the cause for stress-release like in the case of gem-dibromocyclopropane. 

[82] 

 

 
SCHEME 7: PFCB POLYMERS ARE CLEAVED BY MECHANICAL CHAIN STRESS INTO 

SMALLER PARTS CONTAINING TFVE GROUPS THAT CAN BE REPOLYMERIZED 

THERMALLY. 

It must be distinguished between a thermal decomposition and a mechanical 

decomposition, because they do not yield the same product. [80] The major thermal 

decomposition products are hexafluorocyclobutene and phenol, an effectively 

irreversible reaction that is not suitable for remending. Only pure mechanical 

decomposition results in a cycloreversion of PFCB-moieties to thermally remendable 

TFVE-units. Ultrasonic pulses simulated these pure mechanical reaction conditions. 

 

1.4 Inorganic-Organic Systems 

In inorganic-organic composite and nanocomposite materials, properties of different 

material classes can be combined, to increase thermal stability, mechanical strength, 

electrical conductivity and/or the index of refraction. Inorganic particles or fibers 

have been widely used in the field of (nano)composites. These principles can be 

expanded onto self-healing composites and (nano)composites. 
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In particle or fiber-reinforced materials, the adhesion of the filler to the polymer 

matrix is important to guarantee load transfer from the polymer matrix to the 

reinforcement material. [83] Normally surface modification of the filler particles with 

polymerizable groups, allows chemical binding between both phases.  

Peterson and coworkers attached dienophile maleimido functional groups to the 

surface of glass fibers. These glass fibers were combined with a thermosetting furan-

functionalized epoxy resin. [83] Reversible DA reaction was used to impart reversible 

covalent binding at the polymer-glass interface. Mechanical stress was followed by 

complete failure of the interface. Significant healing could be observed after thermal 

treatment of 1 h at 90 °C. 

Kwok and Hahn proposed to use carbon fibers as a resistive heating network for the 

use in self-healing composites based on the DA mechanism. [84] An electrical current 

passing through fibers of a carbon fiber filled polymer matrix causes heat dissipation 

through resistance heating. The heat created in the composite is then transferred to the 

insulating resin utilizing DA reaction to heal itself. Removal of any resin rich top 

layer may be necessary to expose the fibers and reduce local contact resistance as 

much as possible. [84] 

Bowman et al. were interested in using the magnetic properties of metal-oxide 

nanoparticles to trigger self-healing by external alternating magnetic field. Therefore 

chromium oxide CrO2, which has an ideal Currie temperature for RDA reaction 

(113 °C), was mixed with a trifuran monomer. To this mixture a 

diphenylbismaleimide was added and upon melting at 150 °C and re-cooling the 

monomers combined to a thermoreversible network. The black thermoset melted 

within a magnetic field and cross-linked again upon slow cooling. The maximum 

temperature depends on the weight-percentage of CrO2 and the magnetic field 

strength. [85] The incorporation of magnetically susceptible particles in a 

thermoreversible gel results in a material that undergoes a reversible gel-to-sol 

transition when placed in an alternating magnetic field. The gel-to-sol transition 

allows the material to flow, and upon cooling macroscopic fractures are healed by 

diffusion. 
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1.5 Efficiency, Assessment of healing performance 

In this subsection, popular methods for the control of healing performance will be 

mentioned. First of all, there are general analytical methods, like nuclear magnetic 

resonance (NMR) and infrared (IR) spectroscopy, differential scanning calorimetry 

(DSC), size-exclusion chromatography (SEC) or mechanical tests. On the other hand, 

some specialized tools are used depending on the system and the self-healing 

mechanism. 

Besides liquid NMR and IR spectroscopy, solid-state 13C NMR spectroscopy is 

another general method to study self-healing polymers. [48, 49] NMR allows to 

investigate the thermally reversible DA reaction in the macromolecular solid by 

differentiating e.g. between free furan groups and the pericyclic DA product.  

In the case of PFCB as healing mechanism, 19F NMR is a useful tool to distinguish 

between the PFCB unit and free fluoroalkenes. [80] SEC is especially useful in the 

analysis of soluble uncross-linked macromolecules. [62, 63, 80] If a thermoreversible 

reaction like DA or HDA or the thermal cyclisation of fluoroalkens is used to 

polymerize beginning from monomers, SEC can be used to monitor reversibility by 

checking for de-polymerization, by RDA reaction or mechanical damage. 

DSC was also used to monitor DA and RDA reaction in self-healing polymers. [48, 

49, 86] Wudl and coworkers used a specialized DSC technique called temperature 

modulated DSC. Using this method they could differentiate between reversible and 

non-reversible effects. Non-reversible effects, like degradation of the material tend to 

overlap with signals of the reaction of interest.  

Dynamic mechanical analysis (DMA) has been proven helpful for self-healing 

performance assessment. [64, 77] It is applicable for all types of thermally self-

healing materials, physical methods or chemical methods. In the case of dynamic 

covalent bonds, Yuan et al. used DMA to compare the temperature dependency of 

loss factor tan ∂ of reversibly cross-linked polystyrene and permanently cross-linked 

polystyrene. Both systems show similar glass transition temperatures signal at 125 °C. 

The dynamic equilibrium of dissociation/association is very fast and the apparent 

molecular weight does not change, allowing the part to retain the shape and 

mechanical properties even during healing process. [77] 

Mechanical testing is very important to study the bulk properties of a healed material, 

which should be as similar as possible compared to the original materials properties. 
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Table 2 summarizes healing efficiencies of some materials using different mechanical 

tests. A general method to assess these properties is the three-point bending flexural 

test. [85] Three-point bending was used in the nanocomposite using CrO2 as magnetic 

susceptible particles transferring the energy of an alternating magnetic field into the 

polymer matrix in the form of heat. The flextural test was used to determine the 

flextural strength of a specimen before and after several healing cycles. In these 

experiments, complete recovery of the flexural modulus and ultimate strength was 

demonstrated. 

 
TABLE 2: SUMMARY OF HEALING EFFICIENCIES OF SELF-HEALING MATERIALS DETERMINED WITH 

DIFFERENT MECHANICAL TESTS. 

Healing mechanism Mechanical test Healing conditions Maximum 

healing efficiency 

Cyclopentadiene Diels-

Alder [64] 

Three-point bending test 120 °C, 12 h ≈ 60 % 

Maleimide/Furan Diels-

Alder with CrO2 [85] 

Three-point bending test 110 °C , 12 h ≈ 100 % 

C-ON bond [77] Double cleavage drilled 

compression test 

130 °C, 2.5 h ≈ 75 % 

Maleimide/Furan Diels-

Alder epoxy resin [86] 

Double cleavage drilled 

compression test 

120 °C, 20 min 

80 °C , 72 h 

≈ 96 % 

Maleimide/Furan Diels-

Alder [48] 

Compact tension test 120 - 150 °C, 

24 h 

≈ 57 % 

Interpenetrating Network 

(IPN) [46] 

Compact tension test 130 °C, 1h ≈ 70 % 

Interpenetrating Network 

(IPN) [45] 

Compact tension test 

(modified) 

165 °C, 1h ≈ 52 % 

Maleimide/Furan Diels-

Alder coatings [72] 

 

Rheology, measurement of 

viscosity during heating 

cycles 

175 °C , 1h ≈ 100 % 

 

Fracture toughness is an indication of the amount of stress required to propagate a 

preexisting flaw. It is a very important material property since the occurrence of flaws 

is not completely avoidable in the processing, fabrication, or service of a 

material/component. There are different popular fracture test specimen geometries. 

Double Cleavage Drilled Compression (DCDC) specimens are particularly suitable 

for brittle materials (Figure 7A). [87] Janssen originally designed DCDC fracture tests 
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for measuring the fracture toughness of glass. [88] DCDC sample refers to a 

rectangular column with a circular hole drilled through its center that is subjected to 

axial compression. [87] This geometry was used by Zhang and coworkers to evaluate 

the healing efficiency of their maleimide and furan modified epoxy resin. The design 

allows for controlled incremental crack growth so that the cracked specimen remains 

in one piece after the test, ensuring realignment of the fracture surfaces prior to 

healing. A blade was wedged into the central hole of the DCDC specimen before to 

the test to create pre-cracks at the upper and lower extremities. [86] The same method 

was used in the case of the radical mechanism using alkoxyamines for self-healing. 

Healing efficiency was calculated from the ratio of critical stress required to 

propagate the crack to a given length in the healed material and in the virgin material. 

Nearly complete rehabilitation is observed for the cured resin, as characterized by the 

average healing efficiency of 96 %. [77] 

Wudl et al. used a different geometry to test the fracture toughness of their DA self-

healing materials. [48, 49] Hayes et al. investigated with the same test the properties 

of an IPN. [46] They chose compact tension test specimen geometry (Figure 7B). 

Gently tapping a fresh razor blade into a machined starter notch of the sample created 

a sharp pre-crack.  

 
FIGURE 7: FRACTURE TEST SAMPLE GEOMETRIES (A) DOUBLE CLEAVAGE DRILLED 

COMPRESSION (DCDC) TEST (B) COMPACT TENSION TEST. PRE-CRACKS ARE FORMED 

BY TAPPING WITH A RAZOR BLADE. 

 

Application of a tension perpendicular to the pre-crack, led to a complete fracture of 

the specimen by crack propagation. After structural failure, the two pieces were 

matched and held together with a clamp, treated at 120 to 150 °C under nitrogen for 

about 2 hrs, and cooled to room temperature (Figure 8). Fracture tests before and after 
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healing showed recovery of about 57 % of fracture strength. [48] Palmese et al. used 

the same geometry for the assessment of healing properties of their IPN, with the 

addition of a crack-arresting hole drilled in the middle of the crack-propagation 

pathway. [45] 

 

 
FIGURE 8: (A) MENDING EFFICIENCY OBTAINED BY FRACTURE TOUGHNESS TESTING. VALUES FOR THE 

ORIGINAL AND HEALED FRACTURE TOUGHNESS AT THE CRITICAL LOAD. (B) IMAGE OF A BROKEN 

SPECIMEN BEFORE THERMAL TREATMENT. (C) IMAGE OF THE SPECIMEN AFTER THERMAL TREATMENT. (D) 

SEM IMAGE OF THE SURFACE OF A HEALED SAMPLE: THE LEFT SIDE IS THE AS-HEALED SURFACE AND THE 

RIGHT SIDE IS THE SCRAPED SURFACE. (E) ENLARGED IMAGE OF THE BOXED AREA IN (D). REPRINTED WITH 

PERMISSION FROM[48]. COPYRIGHT (2002) SCIENCE MAGAZINE. 

 

The free stable radical approach developed by Otsuka and Takahara allows a special 

analytical tool, which detects free radicals. [75, 78, 79] Electron Spin Resonance 

(ESR) spectroscopy was first used by Rong et al. and later by Zhang et al. to examine 

fission behavior of alkoxyamine moieties at increasing temperatures. [76, 77] Starting 

from a temperature of 100 °C, free radical concentration increased gradually. Cyclic 

ESR measurement between 20 and 130 °C showed that the relative intensity of the 

radical signal fluctuates and that the process is fully reversible apart from irreversible 

recombinations of styrene radicals. [77] 
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1.6 Silsequioxanes and Spherosilicates 

1.6.1 Nomenclature 

Silsesquioxanes have the general formula [RSiO1.5]x, where R can by either hydrogen 

or an organic rest. Polymeric silsesquioxanes often demonstrate a ladder-like 

structure, which can be easily prepared by acid or base catalyzed hydrolysis of silane 

precursors (Scheme 8).[89-91]  

 
SCHEME 8: LADDER-LIKE POLYMERIC SILSESQUIOXANE 

A more interesting class of materials are polyhedral oligomeric silsesquioxanes 

(POSS), the smallest siloxane structures known. The smallest known POSS is the T8 

silsesquioxane, which has a cubic structure and presents eight functionalities at the 

corners (Scheme 9). Higher homologues are the polyhedral T10, T12, and so on.  

The T nomenclature originates from the three oxygen atoms bonded to each silicon 

atom. The subscribed number expresses the number x of repeating units in the 

formula [RSiO1.5]x.  

 

SCHEME 9: STRUCTURES OF T8 AND T10 SILSESQUIOXANES. 

 

A special class of silsesquioxanes is composed of silicon atoms with four neighboring 

oxygen atoms, referred to as spherosilicates. They have the general molecular formula 

[ROSiO1,5]x and are designated with the letter Q. The most commonly used 

spherosilicate is the polyanion Q8 (Scheme 10). 
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SCHEME 10: SPHEROSILICATE ALSO REFERED TO AS POLYANION Q8 

1.6.2 Synthesis and applications of cubic T8 and Q8 derivatives  

Preparation of T8 cubes from trialkoxysilanes requires catalysis because the relatively 

slow condensation reaction leads to a broad variety of products, from polyhedral to 

linear or branched macromolecular structures.[92] Typically, yields of 30 % are not 

exceeded. In some cases the use of a superacid may increase the yield and decrease 

the number of products. Kaneko et al. used trifluoromethanesulfonic acid for the 

preparation of T8 structured (3-aminopropyl)silsesquioxane.[93] On the other hand 

highly reactive trichlorsilanes were also used for the preparation of POSS.[94] The 

fast condensation in the presence of water minimizes secondary reactions and 

relatively high yields of the cubic structures are obtained. 

Hydridosilsesquioxane H8Si8O12 has shown to be useful for the preparation of various 

functional T8 materials. Agaskar et al. developed a simple method for the preparation 

of H8Si8O12 by hydrolysis of trichlorsilane HSiCl3 using Fe3+ as catalyst.[95] 

Subsequent hydrosilation can be applied to introduce many desired organic rests. The 

introduction of one or more polymerizable groups was employed to incorporate the 

inorganic cages in nanostructured hybrid materials by copolymerization.[94, 96] Lin 

et al. were the first to use POSS as building blocks for DA based self-healing 

nanocomposites. Therefore, they reacted furfurylamine with commercially available 

glycidyl POSS to create a octafunctional dienic silsesquioxane.[97] 

 

Spherosilicates with the cubic structure Q8 are mainly interesting because they are 

easily prepared in high yield. They can be prepared either by a bottom-up or a top-

down technique using tetraalkylammonium hydroxides. Q8 spherosilicate was first 

reported by Hoebbel et al. in 1971, when they treated silicic acid with 
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tetramethylammonium hydroxide.[98] Laine et al. investigated the top-down 

approach using various R4NOH species to dissolve rice hull ash, a waste product of 

the rice industry previously considered as useless.[99] The most commonly used 

precursors for spherosilicates are tetraalkoxysilanes, which can be hydrolyzed in 

methanol using tetramethylammonium hydroxide (Scheme 11).[100, 101] 

 

 
SCHEME 11: SYNTHESIS OF Q8 POLYANION FROM VARIOUS PRECURSORS. 

 

The bulky counter ion R4N+ prevents the formation of polymeric products, directing 

the formation of only the cubic polyanion. The resulting spherosilicate solution can be 

functionalized in a biphasic reaction with chlorosilanes leading to the desired 

functionalities. 

End capping with dimethylchlorosilane yields the Q8M8
H species (Scheme 12), which 

can be used for further modification of the corners via hydrosilation reaction, in a 

similar way to H8Si8O12. 

 
SCHEME 12: END CAPPING OF OCTAANION WITH DIMETHYLCHLOROSILANE TO FORM 

Q8M8
H SPECIES. 

The introduction of polymerizable groups, such as acrylates or methacrylates and the 

copolymerization with standard monomers results in cross-linked hybrid 

materials.[96] Kickelbick et al. as well as Laine et al. managed to modify the Q8M8
H 

cage with initiator groups and photoinitiator groups for surface-initiated 

polymerization.[102-104] Grafting-from ATRP or photopolymerization yielded star-

shaped polymers with inorganic cage-like cores. 
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2 RESEARCH GOALS 

The aim of this work is to investigate synthetic routes to employ silica based nano-

building blocks as the counterpart for reversibly cross-linkable polymer matrices. In 

recent years substantial progress was observed in the field of thermally remendable 

polymers using DA chemistry as the self-healing mechanism. Both simple polymeric 

materials and composite materials were investigated. Composite approaches focused 

primarily on the use of nanoparticles as means of triggering the self-healing by taking 

advantage of their physical properties. Magnetic nanoparticles were introduced into 

self-healing polymeric matrices to exploit hyperthermia resulting from the exposure 

to an alternating magnetic field. Nevertheless, there is still a need to investigate the 

role that inorganic nano-building blocks could play as cross-linking agents within DA 

based self-healing nanocomposites. 

Different methods for surface modification of silica nanoparticles with maleimide or 

furan functionalities are applied in order to identify universal and practical techniques 

to accomplish the goal of self-healing nanocomposites. 

 

Synthesis of SiO2 nanoparticles 

Silica nanoparticles are chosen as an ideal starting point, because of their uniform size 

and shape and their well-established surface chemistry. They can be easily prepared 

by a sol-gel method. The main focus will remain on the design of the surface 

functionalities and their chemical properties towards the reversible DA reaction 

within a polymer/particle mixture. In opposition to homogenous systems, functional 

nanoparticles and their surface chemistry are controlled by additional constrictions. 

 

DA reaction on sterically crowded surfaces 

Molecular trialkoxysilanes are first examined as surface functionalities. Various 

commercially available alkoxysilanes can serve as starting material to prepare 

maleimde functionalized coupling agents. Their synthesis and attachment to the silica 

surface are investigated. Elemental analysis, TGA and FTIR spectroscopy will be 

used to confirm modification of the nanoparticles and will provide a way to quantify 

the surface coverage. The use of IBMK as an alternative solvent for the modification 



RESEARCH GOALS 
_____________________________________________________________________ 

 !
28 

!
! !

step should facilitate functionalization and decrease agglomeration of the 

nanoparticles. DLS allows examining the quality of the nanoparticle dispersions 

obtained. 

Model reactions are performed to compare the reactivity of free soluble maleimides 

and furans with the reactivity of surface attached reaction partners. UV-Vis 

spectroscopy allows following maleimide consumption during DA reaction. Due to 

the low organic content of the surface modified nanoparticles and their light scattering 

properties, combinations of analyzing techniques are employed to quantify DA 

conversion and conclude on the suitability of the modified silica nanoparticles for the 

creation self-healing nanocomposites. 

 

Core-shell nanoparticles by grafting-from polymerization 

Surface-initiated grafting-from polymerization is chosen as supplementary surface 

modification technique. This method provides the possibilities to increase the number 

of functional groups as well as the distance between the surface of the nanoparticle 

and the functional groups. The choice of comonomers offers the potential to adapt and 

tune the properties of the interface between inorganic particle and polymeric matrix. 

Glass transition temperature and polarity are the essential variables on the way to an 

effective self-healing nanocomposite. Methacrylic monomers are available with 

various alkyl chain lengths and are easily modified to incorporate dienic and 

dienophilic functionalities. As counterpart for the inorganic functional building 

blocks, a linear thermoplastic polymer matrix is synthesized from maleimide or furan 

bearing monomers and non-functional comonomers using ATRP. By mixing both the 

linear polymer and the core-shell particles a hybrid material is formed. DA reactivity, 

mechanical and thermal properties, as well as self-healing abilities are investigated 

with different techniques. 

 

Spherosilicates as building blocks for self-healing materials 

Additionally to Stöber particles, molecular nanosilica, known as spherosilicates are 

considered as cross-linking agents for DA self-healing composites. They serve as 

model system to study reactivity. Their solubility facilitates homogenous distribution 

within the functional polymeric matrix and the diffusion of the inorganic cross-linking 

agents towards crack interfaces. Functionalization with furan moieties is facilitated by 

the aromaticity of the diene, limiting side reactions during hydrosilation. DA 
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reactivity, mechanical properties and self-healing performance will be investigated 

using different maleimide cross-linkers. 

 

Comparative study of inorganic building blocks 

Finally, a comparative study is carried out to show which inorganic building block is 

most suitable to prepare a self-healing hybrid material. Therefore the kinetics of the 

DA reaction, the reversibility of the cross-linking, the mechanical properties of the 

cured materials and the self-healing capacities are investigated. 
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3 RESULTS AND DISCUSSION 

The results of this work have been published. 

3.1 Thermoreversible Reactions on Inorganic Nanoparticle Surfaces: 

Diels−Alder Reactions on Sterically Crowded Surfaces 

The easiest way to use silica nanoparticles as reactive moieties for the synthesis of 

self-healing nanocomposites using the DA reaction as cross-linking mechanism is a 

direct modification of their surface with dienophilic or dienic functionalities. 

The first publication describes the synthesis of silica nanoparticles with a diameter 

below 5 nm baring different coupling agents with incorporated maleimide groups. 

Trialkoxysilanes were used as anchoring group for the surface modification. They 

react with silanols on the surface to form stable Si-O-Si bonds. The kinetics of 

hydrolysis and condensation strongly depends on the type of alkoxy rest. Methoxy-

groups are far more labile and react relatively fast compared to ethoxysilanes. In the 

case of maleimdo baring alkoxysilanes, synthetic strategies starting from 

trimethoxysilanes were not successful because they did not endure the harsh reaction 

conditions during the synthesis of the coupling agent. The use of triethoxysilanes on 

the other hand required increasing the reactivity by heating the reaction mixture 

during surface modification. In literature toluene is often used as a solvent with high 

boiling point. A great drawback is that the particle suspension, previously stabilized 

by electrostatic repulsion in alcoholic solution is not stable in toluene. As soon as 

toluene is added, the particles precipitate and eventually form a gel. The solution to 

this problem was the use of a solvent that has both a high boiling point and a 

relatively high dielectric constant. Isobuthyl methyl ketone (IBMK) has both of these 

characteristics. A solvent exchange procedure starting from the suspension in 

methanol was used to slowly transfer the nanoparticles into IBMK without previous 

isolation. Three different coupling agents baring maleimide functionalities were 

prepared starting from commercially available triethoxysilanes. N-((3-Triethoxysilyl)-

propyl)maleimide (MPTES) was prepared from 3-aminopropyltriethoxysilane 

(APTES) and maleic anhydride. The second coupling agent was prepared from 2-
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hydroxyethylmaleimide and N-(3-isocyanoatopropyl)triethoxysilane by a tin 

catalysed urethyl formation to form 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl(3-

(triethoxysilyl)propyl)carbamate (MUPTES). The third synthetic strategy employed 

the Michael addition between APTES and 1,1′-(methylendi-4,1-

phenylene)bismaleimide. The amino group of APTES adds across the double bond of 

one of the dienophiles of the bismaleimide. All three coupling agents could be used to 

modify the surface of the previously prepared Stöber silica particles. The successful 

surface functionalization could be demonstrated by FTIR spectroscopy and TGA 

experiments. The nitrogen percentage determined by elemental analysis as well as the 

surface area of the nanoparticles from nitrogen adsorption/desorption measurements 

were used to calculate the surface coverage. The ability of the maleimide groups 

attached closely to the particle surface to undergo DA reaction was investigated by 

reacting a nanoparticle suspension in isopropanol with molecular furan. The results 

and comparison with model reaction of maleimide compounds not attached to a 

particle surface revealed that the reactivity is strongly inhibited and increases with 

decreasing surface coverage. Model reactions of maleimide compounds with 

comparable substitutions next to the maleimide ring showed that increasing the 

electron deficiency of the dienophile could increase the kinetics of the DA reaction. A 

phenyl group attached to the nitrogen atom of the maleimide ring draws electron 

density out of the conjugated π-system by mesomeric -M effect. An alkyl chain like 

the propyl in MPTES on the other hand, increases the electron density by inductive +I 

effect. 

In conclusion, DA reaction on the surface of silica nanoparticles modified by short 

dienophilic coupling agents is possible but its conversion is strongly dependent on 

steric effects. DA reaction on sterically hindered silica surfaces is not the best choice 

for the creation of self-healing nanocomposites. The relatively low DA reactivity will 

drastically decrease within a polymeric matrix, where the kinetics are dominated by 

diffusion of polymer chains and the accessibility of the reactive surface groups will 

decrease as cross-linked macromolecules block the surface of the nanoparticles. 

In order to achieve a higher reactivity, the distance of the reactive groups to the 

surface of the nanoparticles has to be greatly increased. Longer spacer groups 

between the anchoring triethoxysilane and the maleimide were envisioned by using 

the hydrosilation reaction, but all attempts were in vain because secondary 

hydrosilation took place at the double bond of the maleimide. Protection of the 
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maleimide by DA reaction with furan prior to the addition of the silane led also to 

secondary products and the presence of primary amine is not tolerated by the 

hydrosilation reaction. 

The results have been published in Chemistry of Materials: 

T. Engel, G. Kickelbick, Thermoreversible Reactions on Inorganic Nanoparticle 

Surfaces: Diels−Alder Reactions on Sterically Crowded Surfaces, Chem. Mater. 

2013, 25, 149-157. © 2012 American Chemical Society.  

 

 
FIGURE 9: TABLE OF CONTENT: SCHEMATIC REPRESENTATION OF A STERICALLY CROWDED DA REACTION 

ON THE SURFACE OF SILICA NANOPARTICLES. 
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ABSTRACT: Organically surface-functionalized nanoparticles
are important cross-linkers for nanocomposites. In the past,
many cross-linking reactions were based on simple radical
additions. However, novel smart materials require reversible
reactions. These reactions, such as the Diels−Alder reaction,
often have a specific sterical demand, e.g., a six-centered
transition state. In this study, < 5 nm silica particles were
functionalized with maleimide groups, and their reactivity with
regard to Diels−Alder reactions were investigated, applying
various techniques. A new method for the surface modification of silica nanoparticles is presented, minimizing agglomeration in
organic solvents and thus increasing the accessibility of the functional groups on the particle surface. Kinetic studies of substituted
model compounds were carried out to evaluate the reactivity of the maleimide functionality. The Diels−Alder reaction between
2,5-dimethylfuran and N-propylmaleimide, N-ethyl(N-propylcarbamato)maleimide, and N-phenylmaleimide was followed by
UV/Vis spectroscopy. The reaction rate increases in this order, showing the effect of maleimide substitution. Afterwards N-((3-
triethoxysilyl)propyl)maleimide was used to graft maleimidopropyl functional groups onto the nanoparticle surface. 3-
Aminopropyltriethoxysilane, which could then be reacted with 1,1′-(methylenedi-4,1-phenylene)bismaleimide, was used to attach
phenyl-substituted maleimide functionality to the surface. 3-Isocyanatopropyltriethoxysilane introduced the electron-drawing
carbamato functionality into the system. The surface coverage of the samples was characterized applying CHN analysis, TGA-
FTIR coupling, and FTIR spectroscopy. All analytical methods revealed that the functional groups are covalently bonded to the
silica surface and the maleimide rings remain intact. Diels−Alder reactions of the surface groups show that the reactivity of the
molecules attached to the particles depends on sterical crowding, but the reaction rate is not significantly changed by surface
effects.
KEYWORDS: nanoparticles, surface-functionalization, thermoreversible reaction, Diels−Alder

■ INTRODUCTION
Inorganic nanoparticles are important building blocks for many
novel materials. The incorporation of nanoparticles in polymer
matrixes can dramatically change their properties. Particularly
the mechanical and thermal properties are influenced by the
incorporated inorganic phase. In many cases it is necessary to
provide a surface-functionalization to enhance the compatibility
and the dispersion of the nanoparticles in an organic matrix.1,2

Changing the polarity and the availability of functional groups
has a significant effect on the dispersibility in the monomer or
polymer matrix and allows a tight bonding to the latter by the
formation of cross-linked networks. The grafting of polymer-
izable functional groups onto the nanoparticle surface allows
covalent bonding with the matrix, improving the compatibility
of the phases and preventing phase separation and agglomer-
ation of particles.2,3 Methacryloxy and epoxy functionalities
have been used to incorporate silica nanoparticles into organic
matrixes through copolymerization.3 This increases homoge-
neity of the particle distribution and also mechanical strength of
the resulting nanocomposite. A drawback of highly cross-linked
materials is crack formation and crack propagation. In addition,
the often observed absence of glass transition and melting

points prevents the cross-linked nanocomposite from being
reprocessed and reshaped.
In recent years, compounds with reversible bonding became

the focus of materials scientists, due to self-healing properties
and the possibility to reprocess and reshape cross-linked
nanocomposites.4−8 One of the major mechanisms used in this
respect is the Diels−Alder (DA) reaction, applying maleimide
and furan functional groups as dienophiles and dienes. Due to
the thermoreversible reaction type these materials show also a
self-healing ability.
Wudl et al. were the first to synthesize a thermally

remendable macromolecule and to investigate its self-healing
properties.4 They found that cuts or cracks could be healed by a
simple thermal treatment. Our aim is the combination of
reversible DA chemistry with the advantages of nanocomposite
materials.
By using reversible DA cross-linking, the inorganic particles

can be separated from the polymer matrix by a simple thermal
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treatment. Beyer et al. used reversible DA chemistry to develop
polymer films in which a change in optical clarity can be
thermally triggered.9 Rahman et al. grafted free maleimide
functional groups through nucleophilic addition of a
commercially available bismaleimide onto the surface of
amino-functionalized silica nanoparticles.10 They investigated
the reactivity of the maleimide groups to undergo Michael
reaction on the surface of the particles.
In the same spirit we investigated the surface functionaliza-

tion of silica nanoparticles with maleimide functional groups.
An important aspect of our work was the investigation of the
reactivity of the dienophiles on the surface of nanoparticles.
Because of the sterical hindrance and the demand of a six-
membered transition state for the DA reaction, it is important
to judge the effect of sterical crowded surfaces on this reaction
type. Therefore, different coupling agents with maleimide
functionality were synthesized and grafted onto particles, and
the surface coverage was determined. A model reaction with
furan was used to investigate the influence of steric hindrance
on DA and retro-Diels−Alder (retro-DA) chemistry.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of Silica Nanopar-

ticles. Spherical amorphous silica nanoparticles were prepared
following a modified Stöber process.11 Tetraethyl orthosilicate
(TEOS) was first hydrolyzed and then condensed in alcoholic
solution, applying ammonia as base. Transmission electron
microscopy (TEM) (Figures S1 and S2, Supporting Informa-
tion) and dynamic light scattering (DLS) measurements of the
obtained nanoparticles in methanol revealed a diameter of 3.8
± 0.9 nm and 4.8 ± 0.8 nm, respectively. Nitrogen sorption
measurements were performed to calculate the surface area of
particles according to Brunauer, Emmett, and Teller (BET).12

The nitrogen sorption measurement shows a specific surface
area of 750 m2 per gram of silica nanoparticles. When assuming
a spherical shape of the particles and a density for silica of 2.2 g
cm−3, the calculated diameter is 3.6 nm, which corresponds to
the diameter measured in the TEM experiment. Some
discrepancy may be explained by porosity. The physisorption
isotherm revealed a characteristic hysteresis loop, which is
associated with capillary condensation taking place in
mesopores (IUPAC Type IV H2).13

Surface functionalization was carried out by applying a
solvent-exchange methodology, which allows for higher surface
coverage and very low agglomeration of the particles.14 Isobutyl
methyl ketone (IBMK) was used as the suspension medium for
the silica particles during the modification step because of its
relatively high dielectric constant, ε = 13.1, which results in
ionized hydroxyl groups on the nanoparticle surface. Another
advantage of this solvent is the relatively high boiling point of
115 °C, which favors the elimination of ethoxy groups and
condensation of the silane coupling agents during functional-
ization reactions.
In previous studies, toluene was the preferred solvent

because of the high boiling point, but its low dielectric constant
of ε = 2.4 made it a poor choice because the particle suspension
is not stable in toluene and the particles tend to agglomerate.
Green et al. isolated the bare silica particles and redispersed
them in IBMK after drying.14 In this work, it was examined if
the solvent could be changed without isolation of the particles.
Therefore, IBMK was added to a freshly prepared silica
suspension in methanol, and the two solvents were codistilled
by rotary evaporation. This step was repeated two times.

Dynamic light scattering measurements before and after the
solvent exchange showed that the particle suspensions
remained stable during this procedure (Figure 1).

The particles in the original alcoholic dispersion had a
diameter of 4.8 ± 0.8 nm. The particles transferred to IBMK
showed a diameter of 5.4 ± 1.2 nm (DLS). In addition, Figure
1 shows the size distribution plot of the same silica particles if
suspended in toluene. Agglomerates with a diameter of more
than 300 nm were formed in toluene.

Coupling Agents. Different coupling agents for the surface
modification of the nanoparticles were used. N-((3-
Triethoxysilyl)propyl)maleimide 1, 2-(2,5-dioxo-2,5-dihydro-
1H-pyrrol-1-yl)ethyl(3-(triethoxysilyl)propyl)carbamate 2, and
1-(4-{[4-(2,5-dioxo-3-{[3-(triethoxysilyl)-propyl]amino}-
pyrrolidin-1-yl)phenyl]methyl}phenyl)-2,5-dihydro-1H-pyr-
role-2,5-dione 3. These molecules are composed of a
triethoxysilane anchor group, a spacer, and a maleimide
functional group used as the dienophile functionality for DA
reaction.
1 was synthesized according to a literature procedure

(Scheme 1)15 with an overall yield of 96%.

2 was prepared according to a modified literature procedure
via a dibutyltin dilaurate-catalyzed addition of protected 2-
hydroxyethylmaleimide with N-(3-isocyanoato-propyl)-
triethoxysilane (Scheme 2).16 The protection of maleimide
functionality with furan via DA reaction is necessary because 2-
hydroxyethylmaleimide tends to polymerize via Michael
addition of the hydroxyl group to the maleimide double
bond. Deprotection takes place during the surface modification
step of the silica nanoparticles. The boiling point of the
suspension medium IBMK is sufficiently high to provoke retro-
DA reaction with liberation of furan.

Figure 1. DLS size distribution of silica particles before and after
solvent exchange and after suspension in toluene.

Scheme 1. Reaction Scheme for the Preparation of 1a

aReagents and conditions: (a) dry DCM, RT, 1 h; (b) ZnCl, HMDS,
dry toluene, 80 °C, 5 h.
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Commercially available APTES was used to react with 1,1′-
(methylendi-4,1-phenylene)bismaleimide via Michael addition
as shown in Scheme 3 to form 3.
Surface Modification and Characterization. Dynamic

Light Scattering. DLS was used to investigate the dispersibility
of the isolated particles, which is an important proof of the
availability of the functional groups at the surface. The particles
were mixed with different solvents, and they were sonicated for
10 min. For 1@SiO2 and 2@SiO2, the best results were
achieved with 2-propanol as suspension medium (Figure 2).
The other solvents resulted in agglomerates of more than 100
nm. Only suspension in 2-propanol resulted in a narrow
distribution around 15 and 60 nm, respectively. This could be
explained by the duality of the 2-propanol properties. On the
one hand, it has a hydroxyl group, which can undergo hydrogen
bonding with either the particle surface or the carbonyl groups
of the maleimide ring, and on the other hand, it has an
isopropyl chain, which can develop weak interactions with the
surface functionalities. 3@SiO2 was not dispersible in 2-
propanol and most other suspension mediums. The best result,
a relatively broad size distribution of 100 nm, was achieved in
dimethylformamide (DMF). This study shows how critical the
suspension medium is for the accessibility of the functional
groups.
FTIR Analysis. The success of functionalization was studied

by FTIR spectroscopy (Figure 3). All samples showed multiple
peaks in the “fingerprint”-region of silica between 460 and 1200
cm−1: A strong asymmetric Si−O−Si vibration at about 1100
cm−1, weaker asymmetric Si−OH vibration at 957 cm−1,
symmetric Si−O−Si vibration at 797 cm−1, and two additional
peaks at 573 and 460 cm−1.17 The FTIR spectrum of pure silica
shows the presence of molecular water through scissor bending
vibration at ∼1630 cm−1. The broad signal between 3300 and
3700 cm−1 is a superimposition of H-bonded molecular water

and hydroxyl terminals of silanol groups. An O−H stretching
vibration, characteristic of free surface silanol groups, was only
detected in the pure silica sample at 3746 cm−1.18 CH2 and
CH3 (2907, 2945, and 2984 cm−1) vibrational modes can be
assigned to the remaining ethoxy groups on the surface of the

Scheme 2. Reaction Scheme for the Preparation of 2a

aReagents and conditions: (a) Toluene, rt, 24 h; (b) ethanolamine, dry
MeOH, reflux, 24 h; (c) isocyanatopropyltriethoxysilane, dibutyltin
dilaurate, acetone, reflux, 12 h.

Scheme 3. Reaction Scheme for the Preparation of BMPTES

Figure 2. Dynamic light scattering size distributions of 1@SiO2 in 2-
propanol, 2@SiO2 in 2-propanol, and 3@SiO2 in DMF.

Figure 3. Infrared spectra of bare silica and the sample modified with
1.
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nanoparticles as well as the weak signals at 1484, 1450, and
1394 cm−1, which rise from C−H bending modes..
Attenuated total reflection infrared (ATR-FTIR) measure-

ments of the 1-functionalized particles revealed characteristic
signals for organic coupling agents (Figure 3). The strong
asymmetric stretch of the carbonyls could be detected at 1704
cm−1, and even the weak symmetric stretching mode is visible
at 1770 cm−1. The symmetric C−N−C stretching vibration at
1369 cm−1 is another proof of the successful functionalization
with maleimide functionality. Another indication for the high
surface modification is the peak at 696 cm−1 assigned to
maleimide ring deformation.19

The FTIR spectrum of 3@SiO2 (Figure S4, Supporting
Information) shows signals for both the symmetric and
asymmetric stretching modes of the conjugated maleimide
carbonyl groups at 1773 cm−1 (very weak) and 1714 cm−1

(strong). The last mentioned signal is stronger than all the
other carbonyl signals because the surface molecules are
composed of two imides. The signal at 1513 cm−1 could be
assigned to aromatic C−C stretching mode of the benzene
rings and the peak at 1388 cm−1 is caused by a symmetric C−
N−C stretching vibration within the maleimide ring as shown
by Parker et al.19

In the spectrum of 2@SiO2 (Figure S3, Supporting
Information), both symmetric and asymmetric stretching
modes of carbonyls at 1773 cm−1 and 1710 cm−1 were present
but the signals are weaker because of lower surface coverage.
Weak C−H bending modes could be observed at 1439 cm−1

and 1409 cm−1. A signal at 1546 cm−1 could arise from
maleimide CC stretching or N−H bending of the urethyl
group. The high amount of surface modification is also verified
by the maleimide ring deformation at 697 cm−1.
Thermogravimetric Analysis. TGA was coupled with

infrared spectroscopy to investigate the thermal stability of
modified particles. The three-dimensional IR plots are shown in
Figures S5−S7, Supporting Information. The temperature-
dependent mass loss of 1@SiO2 revealed two discernible steps.
The first one at 110−300 °C released mainly IBMK adsorbed
to the particle surface and ethanol from excess ethoxy groups
not reacted during condensation. This mass loss totaled 6%.
The second step from 300 °C to 700 °C released CO2,
ammonia, water, carbon monoxide, and ethylene, pointing to
the thermal decomposition of the maleimidopropyl function-
ality. During this step 17.5% of the initial mass was lost.
Burning of residual carbon under oxygen released additional
6.5%. According to the TGA measurements, 24% of the mass of
the 1@SiO2 sample could be assigned to the coupling agent.
The temperature-dependent mass loss of 3@SiO2 showed

three discernible steps. The first one at 30−200 °C released
water adsorbed to the particle surface and ethanol from excess
ethoxy groups not reacted during condensation. This mass loss
totaled 1.2%. The second step from 200 °C to 360 °C released
CO2, ammonia, water, carbon monoxide, and an organic acid,
pointing to the thermal decomposition of the maleimido-
functionality. During this step 3.2% of the initial mass was lost.
The third decomposition step released 22.4% of CO2, water,
CO and ethylene. Burning of residual carbon under oxygen
released additional 13.7%. According to the TGA measure-
ments, about 39% of the mass of the 3@SiO2 sample could be
assigned to the coupling agent.
The temperature dependent mass loss of 2@SiO2 showed

three discernible steps. The first one at 30−150 °C released
water adsorbed to the particle surface and ethanol from excess

ethoxy groups not reacted during condensation. This mass loss
totaled 2.0%. The second step from 150 °C to 310 °C released
CO2, ammonia, water, carbon monoxide, and an organic acid,
pointing to the thermal decomposition of the maleimido
functionality. During this step, 3.3% of the initial mass was lost.
The third decomposition step released 14.0% of CO2, water,
CO, and ethylene. No residual carbon was burned under
oxygen. According to the TGA measurements, about 17% of
the mass of the 2@SiO2 sample could be assigned to the
coupling agent.

Elemental Analysis. The percentage of nitrogen is the
perfect tool to calculate the number of functional groups on the
surface of the silica particles, because the nitrogen atoms are
only present in the coupling agent and not in residual solvent
or ethoxy groups. Equation 1 gives the molar amount of
functional groups per gram of particles. This calculation gave
1.5 ± 0.2, 0.3 ± 0.1, and 1.3 ± 0.1 mmol of maleimide per gram
of particle for 1@SiO2, 2@SiO2, and 3@SiO2, respectively.
By taking into account the surface area per gram of silica, the

number of functional groups per surface area could be
calculated (eq 2) and resulted in the following surface
coverages: 1.2 ± 0.2 functional groups per nm2 for 1@SiO2;
0.3 ± 0.1 functional groups per nm2 for 2@SiO2; 1.0 ± 0.1
functional groups per nm2 for 3@SiO2.

Diels−Alder Reaction on the Surface of Nano-
particles. The particles were reacted with furan at room
temperature to prove their ability to carry out DA reactions. All
three samples were isolated and were dispersed in furan by
sonication. The suspensions were stirred for 2 days at RT.
Afterward the particles were collected by centrifugation, washed
three times with diethyl ether, and dried in vacuum. ATR-
FTIR, TGA-IR, and elemental analysis were used to character-
ize the samples F-1@SiO2, F-2@SiO2, and F-3@SiO2.
Afterward retro-DA reaction was carried out at 150 °C in a

vacuum-oven. TGA measurements were used to determine the
difference in mass loss between the samples before and after
retro-DA reaction.
Figure 4 shows a comparison between the IR spectra of 1@

SiO2 and F-1@SiO2. The first difference is the small red-shift of

the carbonyl peak from 1704 to 1698 cm−1, which could be
explained by breaking the conjugation between the carbonyls
and the maleimide double bond during DA reaction. On the
other hand, the maleimide ring deformation signal at 696 cm−1

disappeared almost completely. The integration of this signal

Figure 4. Comparison of 1@SiO2 and F-1@SiO2 by infrared
spectroscopy.
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was used to follow the conversion over time of the maleimide
system to the DA product.
F-2@SiO2 showed the same vibrational changes, but the

changes were more difficult to observe. The red-shift of the
carbonyl peak is partly overlapped by the signal of the
carbamate. Furthermore, the maleimide ring deformation
disappeared during the reaction, but initially the signal was
very weak.
No clear differences in the spectra of F-3@SiO2 and 3@SiO2

could be observed. The red-shift is covered by carbonyl
stretching modes of the additional imide and several signals in
the region between 700 and 650 cm−1 overlap with the
deformation of the maleimide ring, making it impossible to
distinguish between these signals.
A comparison of the thermal decomposition between 1@

SiO2 and F-1@SiO2 showed a larger mass loss in the sample
reacted with furan (Figure 5). The difference between the two

samples represented 1.62%. This difference was determined
from 100 °C to 200 °C because IR measurements of the
decomposition gases showed that furan is liberated in between
these temperatures. Furan, released by retro-DA reaction, was
detected by IR spectroscopy showing the typical strong signal
at 745 cm−1 characteristic for furan (Figure 6). The maximum
release of furan from the sample was detected at 135 °C. Above
this temperature, ideal reaction conditions for the rDA reaction

on the surface of nanoparticles should be fulfilled. This 1.62%
equals 0.24 mmol furan per gram of particles reacted via DA
reaction to the maleimide surface groups. Comparing this value
with the number of functional groups per gram of particles, the
percentage of groups reacting with furan equals 16%.
TGA of F-2@SiO2 gave rise to an additional mass loss of

0.75% between 100 °C and 200 °C (Figure S8, Supporting
Information). Taking into account the number of functional
groups on the surface of the particles, we could estimate a
conversion of 37% of the 2 moieties. F-3@SiO2 liberates 1.50%
furan, meaning that 17% of the maleimde groups reacted with
furan (Figure S9, Supporting Information).
These results suggest that the percentage of maleimide

moieties reacting with furan depends on the surface coverage of
the particles and not on the type of surface modification. The
more the surface of the particles is crowded, the less of the
functional groups are able to react. In total, 1@SiO2 shows the
highest amount of furan reacted via DA reaction because these
samples show the highest surface coverage of 1.2 molecules per
nm2, but relative to surface coverage it exhibited the lowest
reactivity. 2@SiO2, which presented a much lower coverage of
0.3 molecules per nm2, showed higher reactivity with respect to
the number of functional groups. 1@SiO2 expressed four times
as many maleimides on the surface than 2@SiO2 but only twice
as much furan reacted via DA reaction. This observation
suggests that there is an ideal number of surface molecules per
nm2 where both effects are compensated.
Elemental analysis results could not be analyzed as easily

because the different decomposition steps cannot be distin-
guished and only carbon, hydrogen, and nitrogen composition
can be obtained. The nitrogen content followed the same trend
as the TGA results. For all three samples, the relative nitrogen
content was lower if the samples were reacted with furan.

Kinetic Studies of Differently Funtionalized Malei-
mides. The DA reaction between maleimides with various
pendant groups and dimethylfuran (MF) was studied with UV
spectroscopy and compared to the surface-functionalized
nanoparticles. All the reactions followed the same scheme as
that shown in Scheme 4.

The proportions of exo and endo products are not relevant
in the context of the use of DA reaction as a cross-linking
reaction between nanoparticles and macromolecular systems.
Kinetic studies were only performed to compare reactivity of
the maleimdes and to study the effects of different
functionalities on the rate constant k. Given the structures of
the used coupling agents for particle functionalization, we chose
three different model compounds for preliminary kinetic

Figure 5. Comparison of TGA measurements of 1@SiO2 and F-1@
SiO2.

Figure 6. IR Spectra of the decomposition gases at 135 °C of samples
1@SiO2 and F-1@SiO2.

Scheme 4. General Reaction Scheme for Model DA
Reactions
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studies. These model compounds were N-propylmaleimideM1,
N-ethyl(N-propylcarbamato)maleimide M2, and N-phenyl-
maleimide M3, respectively. Whereas the UV spectrum of
MF in 1,2-dichloroethane did not show any absorption above
270 nm, M1 in the same solvent (c = 0.02 M) displayed a
characteristic maximum at about 290 nm (ελ = 656 M−1 cm−1)
arising from the excitation of the conjugated system of CC
and CO bonds. During the reaction and as the DA products
form, this conjugation breaks, which results in the hipsocromic
shift of the absorption corresponding now to the excitation of
the remaining carbonyls. The progress of DA reaction could
therefore be followed by UV spectroscopy by keeping track of
the decrease of the absorbance at 290 nm (for M1) with time.
This was carried out for the three molecules at different
temperatures, specifically 50 °C, 60 °C, and 70 °C. The
maximum absorptions for M2 and M3 were at 298 nm (ελ =
348 M−1 cm−1) and 295 nm (ελ = 457 M−1 cm−1), respectively.
Figures S10−S12 (Supporting Information) show the results of
kinetic measurements of the three molecules at 60 °C with a
30-fold excess of MF. The high excess of MF was chosen to
guarantee pseudo-first-order kinetics with regard to the
maleimides and to minimize reaction time. A first experiment
with a 10-fold excess of MF lasted several hours, so the
concentration of MF was tripled.
Figure S10 shows the natural logarithm of the conversion

over time of the three different model maleimides. Table 1 lists

the reaction rate constants k for each temperature as calculated
from the slope of the graphics in Figures S13−15, Supporting
Information. Only the linear domain was used to calculate the
rate constants because the reactions are not quantitative. The
back reaction takes place in different amounts depending on the
temperature and the nature of maleimides. As we were only
interested in a comparison of the rate at which the reactions
take place, we do not take into account measurements near the
reaction equilibrium.
Analysis at the k values at 50 °C showed that M1 is the

slowest reactant for the conversion with MF because the propyl
chain increases the electron density in the maleimide system,
raising the energy level of the LUMO of the dienophile and
therefore decreasing energy compatibility of reactive orbitals.
The urethyl functionality in M2 is withdrawing electron density
from the maleimide system, therefore lowering the energy level
of the LUMO and increasing the interaction with the HOMO
of the diene. The phenyl ring of M3 withdraws even more
electron density from the system, which results in even a higher
reaction rate constant with regard to M1.
Kinetic Studies at the Surface of Particles with Furan

at RT. To investigate if the reaction rate is drastically changed
at the surface of nanoparticles, the reaction rate constant was
estimated by monitoring the maleimide ring deformation signal
in the infrared spectra during DA reaction on the surface of
silica nanoparticles. Unfortunately, this method could only be

used for the propylmaleimide 1-modified samples because
integration of the signal at 696 cm−1 over time gave no
evaluable results for the other samples. A 200 mg amount of
1@SiO2 was dispersed in 20 mL of 2-propanol, and 1 mL of
furan was added. Samples were withdrawn from this suspension
after various time intervals. The samples were dried
immediately, and ATR-IR measurements were carried out
(Figure 7). The spectra were normalized using the strongest

unchanged signal, the asymmetric Si−O−Si stretching, as
reference to obtain quantitative information. After a basis line
correction, the area under the signal at 696 cm−1 was used to
plot the conversion against reaction time. The conversion
follows exponential decay, as in the case for first-order kinetics
(Figure 7). The kinetic rate constant is in the order of 10−5 s−1.
This value is in the same order of magnitude as that for the
reaction rate in the case of molecular systems at room
temperature, meaning that the reaction rate is not significantly

Table 1. Reaction Rate Constants k for Temperatures 50 °C,
60 °C, and 70 °C for Model DA Reactions (confidence
interval 95%)

model
compound

k [10−4 s−1],
T = 50 °C

k [10−4 s−1],
T = 60 °C

k [10−4 s−1],
T = 70 °C

M1 3.8 ± 0.1 6.2 ± 0.1 12.0 ± 0.3
M2 9.0 ± 0.6 13.3 ± 1.0 15.8 ± 2.7
M3 11.9 ± 0.6 21.6 ± 1.7 28.8 ± 0.4

Figure 7. (a) Infrared spectra of 1@SiO2 at different time intervals
during the reaction with furan. (b) Conversion over time plot. (c) Plot
for first-order kinetics as a function of the linear fit and reaction rate
value k.
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altered by surface effects. UV/Vis spectroscopic measurements
could not be performed because of the light scattering
properties of the silica nanoparticles.

■ CONCLUSIONS
This study ascertained that the conditions chosen to conduct
surface modification of nanosized silica particles, involving an
exchange of the suspension medium from methanol to IBMK,
ensures high surface coverage and low agglomeration of the
particles. The low dielectric constant of toluene makes it a poor
choice because ionization of surface silanols is unlikely.
Another goal of this work was to determine the reactivity of

differently substituted maleimides. It was shown in molecular
systems that phenyl-substituted maleimides are three times
more reactive than propyl-substituted maleimdes. Furthermore,
it has been demonstrated that the amount of active sites for the
DA reaction on the surface of silica nanoparticles is dependent
on the grafting density of the dienophile species. The higher the
grafting density and the sterical effects near the reaction site,
the lower the conversion of DA reaction. Already reacted
furan/maleimide groups interfere with other approaching furan
molecules, hindering the continuation of DA reaction. Finally, a
kinetic study of DA reactions between maleimide moieties on
surfaces and molecular furan has shown that surface effects do
not dramatically decrease the reaction rate.

■ EXPERIMENTAL SECTION
Methods. Fourier transform infrared spectroscopy (FT-IR)

measurements were performed on a Bruker Vertex 70 Spectrometer
under ambient air (40 scans at a resolution of 4 cm−1) in attenuated
total reflectance (ATR) mode. Thermogravimetric analysis (TGA)
were performed on a Netzsch Iris TG 209 C in an alumina crucible
heating from room temperature to 700 °C under nitrogen followed by
heating to 800 °C under oxygen with a rate of 20 K min−1. Differential
scanning calorimetry (DSC) measurements were carried out on a
Netzsch DSC 204 F1 Phoenix calorimeter in aluminum crucibles with
pierced lids, heating under nitrogen with a rate of 15 K min−1. Liquid-
state NMR spectra were recorded on a Bruker AC 200F spectrometer
(1H at 200.13 MHz, 13C at 50.32 MHz). Liquid-state 29Si NMR
spectra were recorded on a Bruker Avance 300 spectrometer at 69.63
MHz. Elemental analysis was carried out on a Leco 900 CHN
Analysator. The percentage of nitrogen was used to calculate the
number of functional groups on the surface of the silica particles.
Equation 1 gives the molar amount of functional groups per gram of
particles:

= Δ × Δ ×c
m

m
M N

100 0.01
FG

SiO

N

N2 (1)

where cFG is the molar concentration of functional groups per gram
[mol g−1], ΔmSiO2

is the residual mass of SiO2 from TGA measurement
[%], ΔmN is the mass of nitrogen from EA [%], MN is the molar mass
of nitrogen [g mol−1], and N is the number of nitrogen atoms per
functional group.
By taking into account the surface area per gram of silica, the

number of functional groups per surface area NFG‑A can be calculated
according to eq 2:

= × × ×‐
−N c N

A
1 10FG A FA A

18
(2)

where NFG‑A is the number of functional groups per area [nm
−2], nFG is

the molar concentration of functional groups per gram [mol g−1], NA
is Avogadro’s number, and A is the specific surface area of the
nanoparticles per gram [m2 g−1].
Transmission electron microscopy (TEM) images were recorded on

a JEOL JEM-2010 microscope. The samples were attached to Plano
S160-3 copper grids by dispersing them in ethanol using an ultrasound

cleaning bath, adding one drop (30 μL) on the copper grid and
evaporating the solvent.

Dynamic light scattering (DLS) measurements were carried out by
noninvasive backscattering on an ALV/CGS-3 compact goniometer
system with an ALV/LSE-5003 correlator and multiple tau correlator
at a wavelength of 632.8 nm (He−Ne Laser) and at a 90° goniometer
angle. The dispersing media were purified before use with a syringe
filter (200 nm mesh). The determination of the particle radius was
carried out by the analysis of the correlation function via the g2(t)
method followed by a linearized number-weighting (n.w.) of the
distribution function.

Nitrogen sorption measurements were performed on a Sorptomatic
1900 instrument from Fisons Instruments at 77 K. The samples were
degassed under vacuum at 60 °C for at least 2 h prior to measurement.
The surface area was calculated according to Brunauer, Emmett, and
Teller (BET).

Materials. Tetraethyl orthosilicate (TEOS) was provided by
Wacker Silicones. 3-Aminopropyltriethoxysilane (APTES), 3-isocya-
natopropyltriethoxysilane, 1,1′-(methylenedi-4,1-phenylene)-
bismaleimide, isobutyl methyl ketone, dry toluene, dry dichloro-
methane, furan, dimethylfuran, hexamethyldisilazane, and dibutyltin
dilaurate (95%) were purchased from Sigma-Aldrich and were used as
received. All other solvents and chemicals were purchased from the
central chemical depot of the Saarland University and dried according
to standard procedures if necessary. Zinc chloride was purified in
boiling dioxane with zinc dust and recrystallized from dioxane.

Synthesis of Silica Nanoparticles. The silica nanoparticles were
synthesized according to a modified literature procedure.20 In a 250
mL round-bottom flask, methanol (100 mL) was mixed with 51 mg
(1.0 mmol) of 33% ammonia and 1.98 g (110 mmol) of water and
stirred for 10 min. Then 10.41 g (50 mmol) of TEOS were added. The
solution was stirred for 2 days, and a part of the particles was isolated
to characterize the unmodified sample. The particles were precipitated
with 100 mL of hexane and 50 mL of diethyl ether. Afterwards they
were isolated and washed three times with ethanol by centrifugation at
13000 rpm and dried overnight in a vacuum oven (≈50 mbar) at 60
°C. Yield: 1.5 g silica particles; TEM: diameter 3.8 ± 0.9 nm; DLS:
diameter 4.8 ± 0.8 nm; surface area: BET 750 m2 g−1.12

Synthesis of N-((3-Triethoxysilyl)propyl)maleimide 1. The
synthesis was carried out following a literature procedure.15 The
reaction was carried out under argon atmosphere. In a 250 mL three-
neck round-bottom flask equipped with a dropping funnel, 1.73 g
(17.6 mmol) of maleic anhydride were dissolved in 60 mL of dry
dichloromethane. A mixture of 3.90 g (17.6 mmol) of 3-
(aminopropyl)triethoxysilane (APTES) and 20 mL of dry dichloro-
methane were added through a dropping funnel while stirring. After
allowing the mixture to stand for 1 h at room temperature, the solvent
was removed under vacuum. The intermediate product was collected
as a white powder. 1H NMR (200.13 MHz, CDCl3, 25 °C) δ = 0.68 (t,
3J = 7.7 Hz, 2H), 1.23 (t, 3J = 7.0 Hz, 9H), 1.74 (p, 3J = 7.7 Hz, 2H),
3.39 (q, 3J = 6.5 Hz, 2H), 3.84 (q, 3J = 7.0 Hz, 6H), 6.33 (s, 2H), 7.83
(br s, 1H). 13C NMR (50.32 MHz, DMSO-d6, 25 °C) δ = 7.80
(CH2Si), 18.24 (CH3CH2O), 21.95 (CH2CH2CH2), 42.64 (CH2NH),
58.59 (CH3CH2O), 131.54 (CHCONH), 136.08 (CHCOOH),
165.56 (COOH), 166.03 (CONH).

In the next step, the intermediate product was dissolved in 60 mL of
dry toluene, and 2.40 g (17.6 mmol) of zinc chloride were added at
once. After the reaction mixture was heated to 80 °C, a solution of
2.84 g (17.6 mmol) of hexamethyldisilazane with 20 mL of toluene
was added dropwise. The temperature was held during 5 h at 80 °C.
After cooling, the solution was filtered to remove zinc chloride and the
solvent was removed in vacuum. Yield: 5.12 g (17.0 mmol; 96.5%) of a
colorless oily liquid. 1H NMR (200.13 MHz, CDCl3, 25 °C) δ = 0.55−
0.64 (m, 2H), 1.22 (t, 3J = 6.9 Hz, 9H), 1.62−1.78 (m, 2H), 3.51 (t, 3J
= 7.37 Hz, 2H), 3.81 (q, 3J = 6.9 Hz, 6H), 6.68 (s, 2H). 13C NMR
(50.32 MHz, CDCl3, 25 °C) δ = 7.49 (CH2Si), 18.25 (CH3CH2O),
25.06 (CH2CH2CH2), 45.36 (CH2N), 58.44 (CH3CH2O), 134.21
(HCCH), 171.10 (CO). 29Si NMR (59.63 MHz, CDCl2, 25 °C)
δ = −46.34. IR (cm−1): 3099, 2974, 2932, 2887, 1770, 1703, 1440,
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1406, 1365, 1255, 1220, 1166, 1101, 1072, 956, 829, 783, 756, 694,
453.
Synthesis of Protected Maleic Anhydride 3,6-Epoxy-1,2,3,6-

tetrahydrophthalic Anhydride 4. The synthesis was carried out
following a modified literature procedure.16 In a 250 mL three-neck
round-bottom flask under argon atmosphere, 20 g (0.204 mol) of the
maleic anhydride and 14.04 g (0.206 mol) of furan were dissolved in
100 mL of toluene. The mixture was stirred for 24 h at room
temperature. A white precipitate formed during this time. The solid
was collected by filtration and washed two times with cold diethyl
ether. The filtrate was reduced by rotary evaporation to 20 mL and
cooled to 4 °C overnight. A second crop crystallized which was again
collected by filtration and washed with diethyl ether. Finally, the
crystals were dried in vacuum (≈10−2 mbar) overnight. Yield: 27.36 g
(0.165 mol; 80.6%) of a white solid. 1H NMR (200.13 MHz, CDCl3,
25 °C) δ = 3.01 (s, 2 H), 5.40 (s, 2 H), 6.57 (s, 2 H). 13C NMR (50.32
MHz, CDCl3, 25 °C) δ = 47.52 (CH), 81.40 (CHO), 136.67 (CC),
175.29 (CO). IR (cm−1): 3606, 3143, 3099, 3089, 3066, 3033, 3000,
2991, 1857, 1780, 1309, 1282, 1230, 1211, 1193, 1145, 1083, 1018,
948, 921, 902, 877, 848, 821, 800, 732, 690, 674, 634, 574, 428. Onset
of decomposition (DSC, N2, 15 K min−1): 117.9 °C. Elemental
analysis (%): Calcd for C8H6O4: C 57.84, H 3.64, N 0.00; Found: C
56.75, H 3.71, N 0.00.
Synthesis of Protected 2-Hydroxyethylmaleimide 5. The

synthesis was carried out following a modified literature procedure.16

In a 100 mL round-bottom flask equipped with a reflux condenser,
5.80 g (35 mmol) of 4 were dissolved in 30 mL of dry MeOH.
Afterwards 2.14 g (35 mmol) of ethanolamine were added dropwise at
0 °C. The mixture was refluxed for 24 h. The MeOH was removed by
rotary evaporation, and the crude product was recrystallized from
diethyl ether at −20 °C. The crystals were collected by filtration and
washed with cold diethyl ether. Reducing the filtrate and recrystallizing
again gained a second crop. The final product was dried in vacuum
(≈10−2 mbar) overnight. Yield: 5.75 g (18.5 mmol; 52.7%) of a white
solid. 1H NMR (200.13 MHz, CDCl3, 25 °C) δ = 0.86 (bs, 1H), 2.90
(s, 2H), 3.76 (m, 4H), 5.30 (s, 2H), 6.54 (s, 2H). 13C NMR (50.32
MHz, CDCl3, 25 °C) δ = 41.74 (CHOCHCO), 47.46 (NCH2),
60.22 (CH2OH), 80.95 (HCO), 136.49 (CC), 176.74 (CO). IR
(cm−1): 3473, 3097, 3026, 3006, 2993, 2972, 2931, 2895, 1766, 1681,
1469, 1434, 1404, 1386, 1334, 1317, 1286, 1267, 1218, 1168, 1155,
1099, 1053, 1033, 1012, 958, 937, 916, 873, 850, 806, 771, 721, 703,
653, 594, 563, 530, 487, 428. Onset of decomposition (DSC, N2, 15 K
min−1): 138.1 °C. Elemental analysis (%): Calcd for C10H11NO4: C
57.41, H 5.30, N 6.70; Found: C 57.39, H 5.43, N 6.59.
Synthesis of Protected 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-

1-yl)ethyl 3-(Triethoxysilyl)propylcarbamate 2. The reaction was
carried out under argon atmosphere. In a 100 mL three-neck round-
bottom flask, 935 mg (3 mmol) of protected hydroxyethyl maleimide
5 was suspended in 10 mL of dry acetone. 890 mg (3.6 mmol) 3-
Isocyanotopropyltriethoxysilane were added via a syringe while
stirring. The solution was stirred at reflux overnight followed by the
addition of 3 drops of dibutyltin dilaurate catalyst. The reaction
mixture was refluxed for an additional 1 h. The crude mixture was
concentrated under vacuum and washed with hexane three times. 1H
NMR (200.13 MHz, CDCl3, 25 °C) δ = 0.56 (t, 3J = 7.9 Hz, 2H), 1.17
(t, 3J = 7.0 Hz, 9H), 1.54 (m, 2H), 2.84 (s, 2H), 3.09 (m, 2H), 3.67
(m, 2H), 3.77 (q, 3J = 7.0 Hz, 6H), 4.13 (t, 3J = 5.0 Hz, 2H), 5.20 (s,
2H), 6.48 (s, 2H). 13C NMR (50.32 MHz, CDCl3) δ 7.46 (CH2Si),
18.24 (CH3CH2O), 23.17 (CH2CH2CH2), 37.38 (OCH2CH2N),
41.74 (CHOCHCO), 43.39 (CH2NCO), 58.41 (CH3CH2O), 61.71
(CH2OCN), 80.90 (HCO), 136.17 (CC), 155.97 (NCOO), 170.48
(CO). 29Si NMR (59.63 MHz, CDCl2, 25 °C) δ = −45.72. IR
(cm−1): 3356, 3080, 2974, 2927, 2885, 1774, 1701, 1600, 1512, 1436,
1388, 1361, 1336, 1240, 1222, 1190, 1166, 1099, 1074, 1022, 954, 877,
854, 771, 717, 648, 594, 530, 470, 428.
Syntheses of 1-(4-{[4-(2,5-Dioxo-3-{[3-(triethoxysilyl)-

propyl]amino}pyrrolidin-1-yl)phenyl]methyl}phenyl)-2,5-dihy-
dro-1H-pyrrole-2,5-dione 3. The reaction was carried out under
argon atmosphere. In a 100 mL round-bottom flask, 2 g (5.8 mmol) of
1,1′-(methylenedi-4,1-phenylene)bismaleimide were dissolved in 50

mL of chloroform. 1.1 g (5 mmol) APTES were added, and the
mixture was stirred for 12 h at RT. The crude product was used
without further purification. 1H NMR (200.13 MHz, CDCl3, 25 °C) δ
= 0.69 (t, 3J = 8.0 Hz, 2H), 1.24 (t, 3J = 7.0 Hz, 9H), 1.72 (m, 2H),
2.72 (m, 2H), 3.03−3.42 (m, 2H), 3.84 (q, 3J = 7.0 Hz, 6H), 3.99 (s,
1H), 4.05 (s, 2H), 6.86 (s, 2H), 7.29 (m, 8H). 13C NMR (50.32 MHz,
CDCl3) δ = 7.62, 18.09, 23.91, 36.62, 40.95, 46.48, 53.58, 58.11,
126.31, 126.51, 129.27, 129.51, 134.02, 140.02, 140.81, 168.16, 175.19,
176.31. 29Si NMR (59.63 MHz, CDCl2, 25 °C) δ = −46.03. IR
(cm−1): 3346, 3039, 2974, 2931, 2885, 1776, 1703, 1670, 1512, 1438,
1382, 1307, 1168, 1101, 1074, 1020, 952, 856, 811, 773, 671, 605, 513,
466, 408.

Solvent Exchange. Methanol was exchanged with isobutyl methyl
ketone (IBMK) by adding 20 mL of IBMK to 50 mL of the particle
suspension. A first fraction of methanol and excess ammonia were
removed by rotary evaporation to reach a volume of approximately 10
mL. Then a second volume of 10 mL of IBMK was added, and the
suspension was again concentrated to approximately 10 mL. This
procedure was repeated two times. Afterwards the suspension was
diluted with 90 mL of fresh IBMK.

Surface Functionalization of Silica Particles in IBMK. In a 250
mL three-neck round-bottom flask with a reflux condenser, 2 g of 1, 3
g of 2, or 3 g of the crude 3 was added to the silica particle suspension
in IBMK and heated to 115 °C for 24 h. Afterwards the suspension
was cooled to room temperature, and half of the solvent was removed
by rotary evaporation. The particles were isolated by centrifugation at
13000 rpm for 10 min. Afterwards they were washed three times with
acetone and dried overnight in a vacuum oven (≈50 mbar) at 80 °C.
The particles were stored in a desiccator over P2O5. Yield: 0.8 g of
yellowish particles.
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3.2 Self-healing nanocomposites from silica-polymer core-shell nanoparticles 

As the use of silica nanoparticles functionalized with short maleimide containing 

coupling agents revealed to be a poor choice for self-healing nanocomposites, a 

completely different approach was established. In order to increase the distance 

between the particle surface and the functional DA groups, a grafting-from 

polymerization technique was chosen. Starting from initiator-modified SiO2 

nanoparticles, a reactive polymeric shell can be created by surface-initiated atom 

transfer polymerization (SI-ATRP). Maleimide or furan moieties can be introduced in 

the form of polymerizable monomers. Therefore furfuryl methacrylate (FMA) and a 

protected maleimide methacrylate (pMiMA) were synthesized. The maleimide double 

bond had to be protected by DA reaction with furan in order to prevent 

polymerization of the maleimide. The aromatic character of the furfuryl ring prevents 

polymerization under radical conditions. The use of FMA and pMiMA without a 

comonomer would yield a glass transition temperature of the polymeric shell 

exceeding 100 °C, which averts DA reaction by lowering the mobility of the 

macromolecules. As DA reaction typically takes place from room temperature to 

90 °C, a relatively low glass transition temperature is of advantage. Therefore a 

comonomer with flexible side groups can be added. Poly(butyl methacrylate) 

(PBMA) has a glass transition temperature situated around room temperature. 

Therefore butyl methacrylate (BMA) was used as a comonomer for the polymer shell 

created by ATRP. A ratio of BMA and FMA of 10:1 was employed because low 

functionalities increase the length of polymer segments between cross-links thereby 

increasing flexibility and reactivity. The more flexible the chains the easier the DA 

reaction can achieve its six-centred transition state, which is necessary for an optimal 

overlapping of the π-orbitals of diene and dienophile.  

Standard ATRP afforded the polymer matrix used as counter-part for the self-healing 

material. Under these conditions the same monomers yielded linear polymers with 

low polydispersity index. In the case of the protected maleimide monomer, lower 

reaction temperature was necessary in order to prevent deprotection resulting in an 

irreversibly cross-linked polymer network. In polar solvents, linear tridentate ligands 

for Cu ions such as N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) are 

more reactive than linear tetradentate ligands like 1,1,4,7,10,10-
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hexamethyltriethylenetetramine (HMTETA). The CuII/PMDETA complex is stronger 

than the CuII/HMTETA complex, which increases the concentration of the active 

radical species and the reaction rate. By using toluene as solvent, these reactivities are 

switched. CuI/PMDETA is more soluble in toluene as CuI/HMTETA because of the 

less ionic character of the complex. Modeling and EXAFS measurements in toluene at 

room temperature suggest the neutral complex with the structure 

CuI(PMDETA)Br.[105] 

On the other hand, CuIBr is likely to form the ionic complex 

[CuI(HMTETA)+][CuICl2]–.[106] The much higher solubility of CuI/PMDETA in 

toluene lowers the equilibrium constant KATRP by increasing the ratio 

[CuII/PMDETA]:[CuI/PMDETA]. 

In the same way, low solubility of CuI/HMTETA allows to increase the reactivity and 

lower the reaction temperature to 70 °C. No RDA and no gel formation were 

observed at this temperature. 

The furan used to protect the maleimide moieties had to be removed after 

polymerization. RDA reaction at temperatures above 120 °C liberated the volatile 

furan molecule in just a few minutes. A milder method is the deprotection in boiling 

toluene. Therefore P(BMA-co-pMiMA) was dissolved in toluene and heated for 

several hrs to 110 °C. Air cooling was used to avoid condensation of furan. FTIR and 

DSC measurements showed complete RDA reaction and the mass loss from 90 to 

200 °C could be used to calculate the maleimide content. 

Self-healing inorganic/organic materials were prepared by mixing the previously 

dispersed core-shell silica nanoparticles with a deprotected P(BMA-co-MiMA) 

polymer matrix in solution. After removal of the solvent, the nanocomposite could be 

molded and cured at 70 °C. During the curing phase DA reaction between FMA and 

MiMA fragments took place. FTIR, rheology and UV-Vis spectroscopy was used to 

follow the reaction. Maximum conversion was achieved after approximately 12 hrs. 

The reversibility of the cross-linking could be demonstrated by UV-Vis spectroscopy 

over several DA/RDA cycles. Additionally, DSC measurements indicated an 

endothermic reaction at high temperatures. Relatively low mobility within the 

polymer matrix hampered fast reconnection during cooling. Cooling could only 

reform a small part of the initial DA bonds. Annealing for 12 hrs above glass 

transition temperature was essential to ensure maximum DA connectivity. 
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Scratch healing experiments were performed and investigated by light microscopy. 

Complete closure of scratches was observed after heat treatment. RDA dissociates the 

cross-links allowing thermoplastic flow and closure of the scratch interface by newly 

formed entanglements. 

 

The results have been published in a special edition of Polymer International 

dedicated to Krzysztof Matyjaszewski: 

T. Engel, G. Kickelbick, Self-healing nanocomposites from silica–polymer core–shell 

nanoparticles, Polym. Int. 2014, 63, 915-923. © 2013 Society of Chemical Industry 

 

 
FIGURE 10: TABLE OF CONTENT: HEALING OF MECHANICAL DAMAGE (SURFACE SCRATCH) TRIGGERED BY A 

HEAT TREATMENT AND SCHEMATIC REPRESENTATION OF RETRO-DIELS-ALTER REACTION INVOLVED IN 

THE HEALING MECHANISM. 
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Self-healing nanocomposites from
silica − polymer core − shell nanoparticles
Tom Engel and Guido Kickelbick∗

Abstract

A copolymer containing butyl methacrylate in a 10-fold excess and furan-protected maleimidopropyl methacrylate was
synthesized via atom transfer radical polymerization (ATRP). Maleimide functionalities served as dienophiles for reversible
crosslinking by Diels − Alder (DA) reactions. As counterpart to the linear polymer, silica − polymer core − shell nanoparticles
with grafted furfuryl groups were prepared by surface-initiated ATRP. Rheological measurements during the DA reaction at
80 ◦C showed an increase in storage modulus due to crosslinking within the nanocomposite. DSC allowed the detection of
the endothermic retro-DA reaction above 120 ◦C, which provided the possibility to self-heal scratches. Repeated curing/de-
crosslinking was detected using UV−visible spectroscopy and revealed the reproducibility of the thermoreversible crosslinking
reaction, which is a prerequisite for the self-healing mechanism. Finally, the scratch-healing abilities of the material were
verified on composite films.
c© 2013 Society of Chemical Industry

Supporting information may be found in the online version of this article.

Keywords: ATRP; core − shell nanoparticles; thermoreversible crosslinking; self-healing; Diels − Alder

INTRODUCTION
Since the introduction of atom transfer radical polymerization
(ATRP),1 considerable effort has been devoted to applying ‘living’
radical polymerization techniques to the design of nanostructured
materials.2 One of the major applications of controlled radical
polymerization is the preparation of polymer structures, such as
brushes, on surfaces.3–7 ATRP is an effective strategy to build
tailored interfaces between inorganic surfaces and polymeric
materials, allowing the control of chain length, molecular weight
distribution and surface coverage.8

Planar surfaces of various chemical compositions, e.g. silicon,
silica or gold, have been functionalized via ATRP.8– 13 However, the
main focus lies in the preparation of inorganic–organic core–shell
particles. These composite particles are utilized in the areas of
coatings, electronics, catalysis, separations, and diagnostics.14,15

The core may be composed of a metal, such as gold,16–18 or
oxides, such as silica, titania, iron oxide, zinc oxide, or zirconia.19–22

The polymeric shell is usually prepared by the attachment
of an ATRP initiator and a grafting-from polymerization. The
composition of the polymers, which is determined by the choice of
monomers or mixtures of monomers, allows the surface properties
of the particles to be changed, which leads for example to an
increase in the stability of a particle suspension23 or a change in
the biocompatibility24 of the particles. Stimuli-responsive polymer
shells can be used for biomedical applications such as drug
delivery.25

In materials chemistry self-healing polymers attracted some
attention in recent years. Diels − Alder (DA) chemistry between
maleimide and furan moieties has been widely used to synthesize
self-healing materials.26–32 One of the most relevant aspects of the
DA reaction for re-mendable polymers is its thermal reversibility,

known as the retro-DA (rDA) reaction.33 Wudl et al. showed that
materials prepared with this thermoreversible mechanism reveal
mechanical properties equal to those of commercially available
epoxy resins, but a thermal treatment at a temperature above
120 ◦C allowed un-crosslinking of the network, thereby increasing
processability and reuseability.28,29 ATRP was also used to prepare
self-healing polymers. Kavitha and Singha synthesized a copolymer
of methyl methacrylate and furfuryl methacrylate (FMA), which
was further reacted with a bis-maleimide crosslinker.34 Wouters
et al. formulated a coating using butyl methacrylate (BMA) and
FMA as monomers. BMA lowers the glass transition temperature
Tg of the resulting polymer, thereby increasing mobility of the
macromolecules at low temperatures and facilitating the DA
reaction.26

In a previous study we showed that silica nanoparticles grafted
with molecular maleimido-silane coupling agents inhibit DA
reactivity of the dienophile groups due to steric effects near the
particle surface.35 One solution to this problem is to increase the
distance between the particle surface and the functional groups
by a grafting-from polymerization of a copolymer containing DA
reactive moieties. Such a strategy also allows tailoring the number
of reactive groups by choosing the ratio between reactive and
unreactive monomers. In this study we show the preparation of
a self-healing nanocomposite using ATRP, surface ATRP and DA
crosslinking techniques.

∗ Correspondence to: Guido Kickelbick, Inorganic Solid State Chemistry,
Saarland University, Am Markt Zeile 3, 66125 Saarbrücken, Germany. E-mail:
guido.kickelbick@uni-saarland.de

Inorganic Solid State Chemistry, Saarland University, Am Markt Zeile 3, 66125,
Saarbrücken, Germany

Polym Int 2014; 63: 915–923 www.soci.org c© 2013 Society of Chemical Industry
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EXPERIMENTAL
Materials
Tetraethyl orthosilicate was provided by Wacker Silicones
(Burghausen, Germany). Isobutyl methyl ketone (IBMK), dry
toluene, dry dichloromethane, furan, methacryloyl chlo-
ride, 2-bromopropionyl bromide, 10-undec-1-ol, furfuryl alco-
hol, Karstedt catalyst, ethyl 2-bromoisobutyrate, N,N,N′,N′,N′′-
pentamethyldiethylenetriamine (PMDETA) and 1,1,4,7,10,10-
hexamethyltriethylenetetramine (HMTETA) were purchased from
Sigma-Aldrich (Steinheim, Germany). Dimethylethoxysilane was
purchased from ABCR (Karlsruhe, Germany). Triethylamine was
purchased from Acros Organics (Geel, Belgium). All chemicals
were used as received or purified applying standard procedures.

Methods
Fourier transform infrared (FTIR) spectroscopy measurements were
performed on a Bruker Vertex 70 spectrometer under ambient air
(40 scans at a resolution of 4 cm−1) in attenuated total reflectance
mode. TGA was performed on a Netzsch Iris TG 209 C in an alumina
crucible heating from room temperature to 700 ◦C under nitrogen
followed by heating to 800 ◦C under oxygen with a rate of 5 ◦C
min−1. DSC measurements were carried out on a Netzsch DSC
204 F1 Phoenix calorimeter in aluminium crucibles with pierced
lids, heating under nitrogen with a rate of 15 ◦C min−1. Liquid state
NMR spectra were recorded on a Bruker AC 200 F spectrometer
(1H at 200.13 MHz, 13C at 50.32 MHz). Liquid state 29Si NMR
spectra were recorded on a Bruker Avance 300 spectrometer
at 59.63 MHz. Transmission electron microscopy (TEM) was carried
out using a JEOL JEM-2010 microscope. The samples were attached
to Plano S160-3 copper grids by dispersing them in ethanol
using an ultrasound cleaning bath, adding one drop (30 µL)
on the copper grid and evaporating the solvent. Dynamic light
scattering (DLS) measurements were carried out by non-invasive
backscattering on an ALV/CGS-3 compact goniometer system
with an ALV/LSE-5003 correlator at a wavelength of 632.8 nm
(He − Ne laser) and a 90◦ goniometer angle. The dispersing
media were purified before use with a syringe filter (200 nm
mesh). The determination of the particle radius was carried out by
analysis of the correlation function via the g2(t) method followed
by a linearized number-weighting of the distribution function.
Nitrogen sorption measurements were performed at 77 K on
a Sorptomatic 1900 instrument from Fisons Instruments. The
samples were degassed under vacuum at 60 ◦C for at least 2 h
prior to measurement. The surface area was calculated according
to the Brunauer, Emmett and Teller (BET) method.

Microscope images were recorded under polarized light using
an Olympus BX60 microscope equipped with a Sony CCD-Iris
color camera. The polymer films were obtained by drop-casting a
10 mg mL−1 dispersion onto glass slides. Scratches were created
with a diamond scratching pen.

Rheological measurements of the polymer melts were carried
on an Anton Paar Physica MCR 301 rheometer equipped with a
CTD 450 convection oven. The prepressed samples were measured
in oscillation mode using the PP25 measuring system with 25 mm
plate diameter and a plate-to-plate distance of 1 mm. UV − visible
spectra were recorded on a Perkin Elmer Lambda 25 UV − visible
spectrometer in transmission mode on 1 mm quartz slides. The
samples were prepared by dip coating. SEC measurements in
tetrahydrofuran (THF) were performed with a PSS system, which
included a Viscotek VE1121 pump, a Shodex refractive index
detector, a PSS SLD 7000 multi-angel light scattering detector and

styrene-divinylbenzene copolymer columns (PSS SDV) at a rate of
1 mL min−1.

Synthesis of the protected maleimide monomer
pMiMA – 3-(3,5-dioxo-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-
en-4-yl)-propyl 2-methylprop-2-enoate (3)
A 500 mL three-necked round-bottom flask equipped with a
dropping funnel was charged with 25 g (0.112 mol) protected (3-
hydroxypropyl)maleimide (2), 200 mL dry dichloromethane and
13.6 g (0.134 mol) triethylamine under an argon atmosphere. The
solution was stirred at 0 ◦C for 10 min and then, maintaining
the same temperature, 12.29 g (0.118 mol) methacryloyl chloride
was added dropwise. The reaction mixture was stirred overnight
at room temperature. Then 600 mL dichloromethane was
added and the solution was washed twice with 50 mL of
saturated NaHCO3 solution and twice with water. After drying
with sodium sulfate the organic layer was concentrated
under vacuum and the crude product was purified by
flash chromatography (ethyl acetate/CH2Cl2 1:1). Yield: 25.6 g
(0.087 mol; 78.5%).

1H NMR (CDCl3, 25 ◦C) δ ppm: 1.91 (s, 3H), 2.01 (s, 2H), 2.87 (s, 2H),
3.82 (t, J = 6.00 Hz, 2H), 4.29 (t, J = 6.00 Hz, 2H), 5.27 (s, 2H), 5.56 (s,
1H), 6.08 (s, 2H), 6.52 (s, 2H). 13C NMR (CDCl3, 25 ◦C) δ ppm: 18.23
(CH3), 26.70 (CH2), 35.76 (CH2 − N), 47.37 (CH), 61.51 (CH2 − O),
80.92 (CHO), 114.06 (C = C), 125.52 (=CH2), 136.49 (=C<), 167.18
(O − C = O), 176.06 (N − C = O). IR (cm−1): 3450 (sym C = O + asym
C = O), 3087 (=C − H), 3015 (=C − H), 2967 (C − H), 2930 (C − H),
1777 (sym C = O), 1693 (asym C = O), 1401, 1317, 1173, 875.
Elemental analysis (%): calculated for C15H17O5N, C 61.85, H 5.88,
N 4.81; found C 60.61, H 6.09, N 4.61.

Synthesis of furfuryl methacrylate (4)
The reaction was carried out under an argon atmosphere. In a 1 L
round-bottom flask, 37.53 g (0.383 mol) furfuryl alcohol, 160 mL
dry dichloromethane and 58.08 g (0.574 mol) triethylamine were
mixed while stirring vigorously for 10 min in an ice-water bath.
Afterwards 40.0 g (0.2826 mol) methacryloyl chloride was added
dropwise at 0 ◦C. After the addition, the reaction mixture was stirred
at room temperature overnight. The white triethylammonium
chloride was removed by filtration and the yellow turbid solution
was concentrated under vacuum. Finally, the crude product was
purified by distillation under vacuum (70 ◦C at 4 mbar). Yield:
36.53 g (0.219 mol; 57.5%).

1H NMR (CDCl3, 25 ◦C) δ ppm: 1.91 (s, 3H), 5.11 (s, 2H), 5.53 (s, 1H),
6.10 (s, 1H), 6.31 − 6.40 (m, 2H), 7.38 (s, 1H). 13C NMR (CDCl3, 25 ◦C)
δ ppm: 18.01 (CH3), 58.04 (CH2 − O), 110.33 (=CH − CH=), 125.68
(=CH2), 135.89 (=C<), 142.97 (=CH − O), 149.51 (=C − O), 166.71
(C = O). IR (cm−1): 3124 (=C − H), 2959 (C − H), 1716 (C = O), 1314,
1292, 1153, 1144, 1010, 918, 813, 742. Elemental analysis (%):
calculated for C9H10O3, C 65.05, H 6.07, N 0.00; found C 63.49, H
5.96, N 0.00.

Poly[(butyl methacrylate)-co-(protected maleimidopropyl
methacrylate)] – P(BMA-co-pMiMA)
In a typical experiment, HMTETA (0.02 eq) and freshly prepared
CuBr (0.02 eq) were added to a solution of butyl methacrylate (1 eq)
and the comonomer pMiMA (0.1 eq) in dry toluene (four times the
volume of monomers) in a 100 mL Schlenk tube. Afterwards, the
mixture was degassed by three freeze − pump − thaw cycles. The
polymerization was started by adding ethyl α-bromoisobutyrate
(0.01 eq) and was carried out at 70 ◦C. After 3 h opening of the

wileyonlinelibrary.com/journal/pi c© 2013 Society of Chemical Industry Polym Int 2014; 63: 915–923
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Schlenk tube to the atmosphere stopped the reaction. The reaction
mixture was diluted with THF and the catalyst was removed
over activated alumina. After solvent removal the polymer was
precipitated from acetone with methanol while cooling in liquid
nitrogen. Yield: 36%; degree of substitution (DS) 0.1 (NMR).

1H NMR (CDCl3, 25 ◦C) δ ppm: 0.95 (m, 71H), 1.26 − 1.91 (m, 78H),
2.87 (bs, 2H), 3.58 (m, 2H), 3.94 (bs, 28H), 5.27 (s, 2H), 6.53 (s, 2H). 13C
NMR (CDCl3, 25 ◦C) δ ppm: 13.68, 19.31, 29.26, 30.20, 30.87, 44.74,
47.42, 53.83, 64.70, 80.95 (CHO), 136.55 (C = C), 175.93 (N − C = O),
177.50 (C = O), 177.83 (C = O). SEC (THF, LS): Mn = 33 000 g mol−1;
polydispersity index (PDI) = 1.22. IR (cm−1): 2957 (C − H), 2873
(C − H), 1721 (C = O), 1703 (C = O mal), 1447, 1400, 1264, 1239,
1144, 1063, 878, 748.

Synthesis of monoethoxysilane initiator21

Synthesis of undec-10-en-1-yl 2-bromopropanoate
In a 250 mL three-necked round-bottom flask, a solution of 10.00 g
(0.0587 mol) 10-undec-1-ol and 5.97 g (0.0590 mol) triethylamine
in 100 mL dichloromethane was stirred at 0 ◦C for 10 min. 12.95 g
(0.06 mol) 2-bromopropionyl bromide was added dropwise at 0 ◦C
and the mixture was stirred overnight at room temperature. The
organic phase was washed three times with 40 mL of a saturated
NaHCO3 solution and three times with water. The organic layer
was dried over sodium sulfate and concentrated under vacuum.
Yield: quantitative.

1H NMR (CDCl3, 25 ◦C) δ ppm: 1.31 (m, 12H), 1.67 (m, 2H),
1.85 (d, J = 8 Hz, 3H), 2.06 (m, 2H), 4.17 (t, J = 6 Hz, 2H), 4.39 (q,
J = 6 Hz, 1H), 4.96 (t, J = 10 Hz, 2H), 5.84 (m, 1H). 13C NMR (CDCl3,
25 ◦C) δ ppm: 21.30 (CH3 − CHBr), 25.45 (CH2), 28.10 (CH2), 28.63
(CH2), 28.79 (CH2), 29.08 (CH2), 29.14 (CH2), 32.43 (CH2), 33.51 (CH2),
39.77 (CHBr), 65.69 (CH2 − O), 113.82 (C = C), 138.69 (C = C), 169.95
(C = O). IR (cm−1): 3077 (=C − H), 2976 (C − H), 2924 (C − H), 2854
(C − H), 1739 (C = O), 1640 (C = C), 1058, 992, 908.

Synthesis of 10-dimethylethoxysilyl-undec-1-yl 2-bromopropanoate
In a 1 L round-bottom flask with reflux condenser and drying
tube, 30.1 g (0.099 mol) undec-10-en-1-yl 2-bromopropanoate
was dissolved in 100 mL of dichloromethane. 10.28 g (0.099 mol)
dimethylethoxysilane was added and the mixture was heated
to 50 ◦C. Karstedt catalyst (100 µL) was added and the reaction
was allowed to stir under dry air for 3 days at 50 ◦C.
NMR of the reaction mixture showed complete conversion.
The catalyst was removed by passing the solution over 2 g
of alumina. The solvent was removed under vacuum and
colorless oil was used without further purification. Yield: 37 g
(0.090 mol; 91.5%).

1H NMR (200 MHz, CDCl3) δ ppm: 0.07 (s, 6H), 0.54 (m, 2H),
1.26 (m, 20H), 1.62 (m, 3H), 1.81 (d, J = 8 Hz, 3H), 3.70 (m, 2H),
4.15 (m, 2H), 4.35 (q, J = 6 Hz, 1H). 13C NMR (CDCl3, 25 ◦C) δ

ppm: −2.12 (CH3 − Si), 16.35 (CH2 − Si), 18.51 (SiOCH2 − CH3),
21.62 (CH3 − CHBr), 23.13 (CH2), 25.69 (CH2), 28.34 (CH2), 29.11
(CH2), 29.26 (CH2), 29.45 (CH2), 33.37 (CH2), 40.14 (CHBr), 58.09
(Si − O − CH2−), 66.00 (CH2 − O), 170.17 (C = O). 29Si NMR (CDCl3,
25 ◦C) δ ppm 16.82. IR (cm−1): 2924 (C − H), 2854 (C − H), 1739
(C = O), 1446 (C − H), 1389 (C − H), 1250 (C − H), 1158, 1106, 1074,
837, 783, 722, 679.

Surface modification with ATRP initiator21

In a 250 mL round-bottom flask mounted with a reflux
condenser, 10 g of silica particles, prepared by a modified
Stöber synthesis,21,36 were dispersed in 150 mL IBMK using ultra

sonication. 20 g of the ATRP initiator 10-dimethylethoxysilyl-
undec-1-yl 2-bromopropanoate was added and the mixture
was stirred at 115 ◦C for 24 h. After cooling, the particles were
collected by centrifugation at 13 000 rpm for 20 min, washed three
times with acetone and dried under vacuum (residual pressure
ca 0.01 mbar). Yield: 6.72 g.

Grafting-from polymerization of poly[(butyl
methacrylate)-co-(furfuryl
methacrylate)] – P(BMA-co-FMA)@SiO2

21

1 g initiator functionalized nanoparticles, 15 g (0.105 mol) BMA,
1.75 g (105 mmol) FMA, 300 mg (1.3 mmol) HMTETA and 20 mL
toluene were placed in a Schlenk tube. The flask was sealed
and the contents were degassed by three freeze − pump − thaw
cycles. The Schlenk tube was charged with argon and 140 mg
(1 mmol) CuBr was subsequently added. The reaction occured for
6 h at 70 ◦C and was quenched by exposing it to air. The sample was
centrifuged at 13 000 rpm for 20 min and resuspended in acetone
to wash out free polymer and excess monomer. Yields: 4 g.

Etching of silica particles for SEC of graft polymer
In order to characterize the polymer chains grafted from the
silica nanoparticles, they have to be detached from the surface.
Therefore, prior to gel permeation chromatography analysis, the
silica nanoparticles were dissolved with hydrofluoric acid (HF)
to obtain free PBMA-co-FMA polymer. The etching procedure
consisted in adding 250 mg of the PBMA-co-FMA@silica particles
to a plastic vial, followed by 10 mL toluene, 75 mg phase transfer
catalyst Aliquot 336 and 15 mL of a 2% aqueous solution of HF.
The vial was sealed and the content was stirred vigorously for
several hours. At the end of the etching process, the aqueous
and organic phases were allowed to separate and the organic
phase was removed from the top. After washing the latter with a
saturated sodium bicarbonate solution to neutralize residual HF,
the solvent was removed in order to precipitate the polymer from
acetone into cold methanol. Yield: 100 mg.

1H NMR (THF-d8, 25 ◦C) δ ppm: 0.87 (m, 76H), 1.30 − 1.82 (m,
87H), 3.83 (bs, 25H), 4.86 (s, 2H), 6.26 − 6.33 (m, 2H), 7.40 (s, 1H). 13C
NMR (CDCl3, 25 ◦C) δ ppm: 16.48, 18.71, 44.53, 44.87, 51.72, 54.17,
58.30, 110.45 (C = C), 143.19 (C = C), 148.86 (C = C), 176.91 (C = O),
177.73 (C = O). SEC (THF, LS):Mn = 150 000 g mol−1; PDI = 3.3. IR
(cm−1): 2958 (C − H), 2934 (C − H), 2874 (C − H), 1722 (C = O),
1464, 1239, 1143, 1063, 964, 945, 747.

RESULTS AND DISCUSSION
Initiator synthesis and surface modification
The synthesis of the ATRP initiator attachable to the silica
nanoparticles was carried out according to a modified
literature procedure.21 Esterification of 10-undecen-1-ol with 2-
bromopropyonyl bromide was followed by hydrosilation with
dimethylethoxysilane to yield a coupling agent capable of forming
monolayers on the silica nanoparticles. The latent α-halo ester
was later used to initiate the ATRP of methacrylic monomers.
Formation of an initiator monolayer on silica nanoparticles was
performed using the technique described by Green et al.21,35 SiO2

particles (Fig. S1) with a diameter of 42.1 ± 5.4 nm prepared by a
modified Stöber process36 were suspended in IBMK, a solvent with
a relatively high dielectric constant, resulting in ionized silanol
groups and thereby stabilizing the suspension. The initiator was
added to the boiling solution with an initiator to surface site ratio
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Figure 1. DLS hydrodynamic radii of bare silica and initiator modified
particles in ethanol.

Figure 2. FTIR spectra of bare silica and initiator@SiO2.

[I]/[S] of 2, where [I] is the initiator concentration and [S] is the
number of hydroxyl groups on the silica surface. The number of
surface silanols was assumed to be 5 OH groups per nm2.21

Figure 1 displays the DLS size distributions of bare silica and
the initiator modified particles in ethanol. An increase of the
hydrodynamic diameter from 43.8 ± 6.6 nm to 74.0 ± 9.1 nm was
observed after the modification step. The radius of the pristine
silica particles is consistent with TEM images. Measurements of
500 particles revealed a diameter of 42.1 ± 5.4 nm (Fig. S1).

The success of functionalization was also studied by FTIR
spectroscopy (Fig. 2). The original silica particles showed multiple
peaks in the ‘fingerprint’ region: a strong asymmetric Si–O–Si
vibration at 1100 cm−1, a weaker symmetric Si–O–Si vibration at
797 cm−1 and an asymmetric Si–OH vibration at 957 cm−1.35

Furthermore, the presence of molecular water was detected
through scissor bending vibration at 1630 cm−1. The broad
signal from 3700 to 3300 cm−1 originates from a superposition
of H-bonded molecular water and surface silanols. CH2 and
CH3 vibrational modes (3000–2900 cm−1) and bending modes
(1500–1400 cm−1) could be assigned to remaining ethoxy groups
on the surface of the silica particles.

The FTIR spectrum of initiator modified particles (initiator@SiO2)
showed a decrease of OH vibrations and an increase of the CH2 and

CH3 vibrational and bending modes (Fig. 2). Furthermore, a broad
carbonyl signal was observed at 1722 cm−1. TGA revealed a mass
loss of 22.1%. In a nitrogen atmosphere the initiator molecules
decompose above 200 ◦C in two steps. This result was confirmed by
elemental analysis, presenting 11.2% carbon and 2.5% hydrogen.
The remaining 8% were assigned to the presence of oxygen and
bromine.

The initiator graft density σ I was determined using the following
equation

σ1 = m%
ASilica

NA

MW
0, 01 (1)

where NA is the Avogadro number, Asilica is the surface area of the
silica particles in m2 g−1, m% is the mass loss from TGA assigned
to the initiator and MW is the molecular weight of the initiator in
g mol−1, by taking into account that the anchoring Si − O bond
of the surface immobilized coupling agent is not cleaved during
heating. The surface area of the bare silica was determined using
the BET method.37

This calculation yields a graft density σ I of 1.3 initiator molecules
per square nanometer. The number of initiator groups per surface
area is comparable to the value achieved by Green et al.21 Higher
graft densities were not realized because high excess of coupling
agent results in high loss of unreacted initiator.

Monomer synthesis
The maleimide methacrylic ester was synthesized according to
a modified literature procedure.38 In order to avoid radical
polymerization at the maleimide double bond or any electrophilic
attack through Michael addition, it is preferable to protect
maleic anhydride with furan by a DA reaction in toluene at
room temperature. The resulting double bond of the 10-oxa-
4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (Scheme 1(a)) shows
very low reactivity compared with the conjugated maleimide
double bond. A longer reaction time of 3 days allowed the yield
of the protection by the DA reaction to be increased to 89%.
The imidization reaction between 3-aminopropan-1-ol and the
protected anhydride was carried out in methanol. In the last
step the protected 3-hydroxypropylmaleimide was reacted with
methacryloyl chloride to form the maleimide-containing monomer
as a waxy slightly yellow solid (Scheme 1(a)).

Furfuryl methacrylate was synthesized using the commercially
available furfuryl alcohol and methacryloyl chloride. Purification
by distillation is necessary and the colorless liquid product was
obtained in 57.5% yield (Scheme 1(b)).

ATRP of P(BMA-co-pMiMA)
The copolymerization of butyl methacrylate with protected
maleimidopropyl methacrylate in a 10:1 ratio by ATRP using
PMDETA resulted either in a highly crosslinked product or in
no polymerization at all, depending on the amount of solvent
used in the reaction. The relatively high reaction temperature
of 90 ◦C shifted the DA equilibrium towards the rDA reaction
leading to partially deprotected maleimides by liberation of furan.
The resulting highly reactive double bond reacted readily under
radical conditions to form a crosslinked polymer (Scheme 2). In
order to avoid deprotection of maleimido double bonds at 90 ◦C,
the reaction temperature had to be decreased which resulted
in a change of the copper complex applied. Using HMTETA as
the chelating agent, the reaction could be carried out at 70 ◦C,
at which temperature no rDA occurred and only the methacrylic
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Scheme 1. Monomer synthesis.

Scheme 2. Schematic representation of undesired branching/gelation after deprotection of maleimide moieties.

double bonds were polymerized. Furthermore, the reaction time
was decreased to 3 h in order to prevent side reactions.

These optimized reaction conditions allowed the synthesis of
a linear, non-crosslinked copolymer of BMA and pMiMA. The
maleimido monomer showed a slightly lower reactivity yielding a
DS of 0.09. 1H NMR spectroscopy of the P(BMA-co-pMiMA) revealed
a signal at 6.52 ppm, which can be assigned to the double bond in
the protected maleimide group (Fig. 3(a)). The signals at 5.26 and
2.86 ppm were assigned to the other protons of the protection
group. The second 1H NMR spectrum (Fig. 3(b)) was recorded
after deprotection of the maleimide moieties within the polymer.
Deprotection was achieved by heating the sample to 140 ◦C for
1 h and could be proved by NMR through disappearance of all the
signals assigned to the protection group. Furan was released by
rDA reaction during heating, giving rise to a maleimide signal at
6.71 ppm.

DSC of the same sample before deprotection showed a strong
endothermic signal at 154 ◦C with an onset temperature of
124 ◦C, originating from the rDA reaction followed by endothermic
evaporation of the released furan (Fig. 4). The second heating cycle
permitted the glass transition temperature Tg of the copolymer
P(BMA-co-MiMA) to be determined as 28 ◦C.

FTIR spectroscopy was also used to detect the rDA deprotection
reaction. After the heat treatment, furan was released by the rDA
reaction resulting in the appearance of a signal at 696 cm−1, which
arises from a maleimide ring deformation (Fig. 5, inset). Aside
from this maleimide signal, the deprotection could be detected by
the blueshift of the maleimide carbonyl signal from 1696 cm−1 to
higher wavenumbers. The protected sample showed two distinct
carbonyl signals, for the maleimide ring and the methacrylic esters.
After the rDA reaction the two signals merged together.

Figure 3. 1H NMR spectrum of P(BMA-co-pMiMA) before (a) and after (b)
deprotection by rDA reaction.

P(BMA-co-FMA)@SiO2 by grafting-from ATRP
Silica − polymer core − shell particles with pendant furfuryl groups
were prepared via surface-initiated ATRP as counterpart for the
linear maleimido copolymer. In order to increase the distance
between the particle surface and the functional groups as well as
the number of reacting groups, grafting-from polymerization of a
copolymer containing reactive moieties was envisioned.

Atom transfer radical grafting-from polymerization in toluene
with PMDETA as chelating agent was used for the preparation of
the particles. This procedure did not change the size distribution
and the resulting particles also revealed no strong tendency to
agglomerate in TEM (Fig. S2). However, the composite particles
dispersed in THF revealed an increase of the hydrodynamic
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Figure 4. DSC curves of the first two heating cycles of P(BMA-co-pMiMA)
(15 ◦C min−1).

Figure 5. FTIR spectra of P(BMA-co-pMiMA) before and after deprotection
via rDA reaction at 140 ◦C.

diameter of roughly 200% compared with the bare silica particles,
as demonstrated by DLS (Fig. S3). The diameter of 132.0 ± 19.9 nm
results from a polymeric layer surrounding the silica particles with
approximately the same thickness as the core itself. As TEM was not
appropriate to visualize the polymeric shell, AFM analysis (Fig. 6)
of the core − shell particles was performed after spin coating from
suspension on mica slides. AFM showed strongly agglomerated
particles with an approximate height of 80 nm and a mean width
of 216 ± 34 nm.

ATR-IR spectra (Fig. 7) allowed a comparison of initiator modified
particles and copolymer modified particles. In the spectrum
of P(BMA-co-FMA)@SiO2, a strong carbonyl stretching signal at
1724 cm−1 was observed which originates from the carbonyls in
the methacrylate chains.

TGA measurements of the core − shell particles showed a
first decomposition step below 200 ◦C, originating from trapped
solvent or monomer molecules (Fig. 8). The polymer chains begin
to decompose at 250 ◦C. During two decomposition steps the
sample lost 91% of its original mass. Thereby, 68.9% of the original
mass is assigned to the grafted copolymer.

In order to determine the molecular weight and the
polydispersity of the graft polymer chains, the silica core had to
be etched with hydrofluoric acid. SEC of the liberated copolymer

Figure 6. AFM image of core − shell particles.

Figure 7. FTIR spectra of (a) initiator modified particles and (b) polymer
core − shell particles.

resulted in a molecular weight Mn of 150 000 g mol−1 and a PDI of
3.3. 1H NMR of the previously grafted polymer provided a DS of
0.11 furfuryl groups.

The calculation of the graft density using Eqn 1 for the copolymer
with a molecular weight of 150 000 g mol−1 indicated 0.01 polymer
chains per square nanometer.

The relatively low graft density compared with the results of
Green et al., who prepared poly(methyl methacrylate) grafted
particles with 0.18 polymer chains per square nanometer,21 can
be explained by the lower reactivity of BMA as well as steric
effects caused by bulkier monomers. The higher PDI compared
with the surface polymerization of methyl methacrylate (2.2)34 is
attributed to the high molecular weight of the chains and because
copolymerization tends to increase the PDI through differences in
reactivity between the monomers.

Diels − Alder curing and proof of self-healing ability
DA curing was conducted on a small scale. Thus the linear P(BMA-
co-MiMA) was mixed with a suspension of P(BMA-co-FMA)@SiO2

in THF and the solvent was removed. Afterwards, the as-prepared
nanocomposite was heated to 80 ◦C for 24 h in order to allow

wileyonlinelibrary.com/journal/pi c© 2013 Society of Chemical Industry Polym Int 2014; 63: 915–923



921

Self-healing nanocomposites www.soci.org

Scheme 3. Schematic representation of the self-healing mechanism.

Figure 8. TGA measurements of initiator modified particles and core − shell
particles.

curing by the DA reaction. Scheme 3 shows the curing principle of
the self-healing material.

During the first heating cycle of DSC measurements, the cured
sample showed a broad endothermic rDA signal above 115 ◦C,
with an enthalpy of reaction of 5.3 J g−1 (Fig. 9). During cooling
no DA reaction could be observed because the curing reaction is
too slow and does not give rise to a detectable signal at a cooling
rate of 15 ◦C min−1. During the second heating cycle, only a very
small endothermic peak with an enthalpy of reaction of 1.3 J g−1

could be detected at 150 ◦C, meaning that curing only took place
to a small extent during cooling. Furthermore, curing increased
the glass transition temperature to 39 ◦C.

Melt rheology was used to illustrate the increase of the
storage modulus during curing of the nanocomposite by DA
reaction. Therefore a 1:1 mixture of P(BMA-co-MiMA) and P(BMA-
co-FMA)@SiO2 was pressed into a disc with a diameter of 25 mm
and a thickness of 1 mm. Then the storage modulus of the sample
disc was measured in oscillation mode at 80 ◦C over several hours.
Figure 10 shows the evolution of the storage modulus. At first,
starting at 0.25 MPa, a rapid increase was observed during the
first 4 h. At the end of the experiment the curing rate decreases,
yielding a maximum storage modulus of slightly above 0.46 MPa.
In order to decrease the curing time from 24 h or several days to
an acceptable period for self-healing applications, a curing degree
of 80% was chosen as a target. This percentage was calculated by
normalizing both time and storage modulus and taking the first
derivative of the curve. At a curing degree of 80%, the curing rate
drastically decreases and at this point the first derivative of the
normalized curve is equal to 1.

The free maleimide moiety has a UV light absorption maximum
at approximately 300 nm. A thin film of the nanocomposite

Figure 9. DSC curves of crosslinked PBMA-co-MiMA and PBMA-co-
FMA@SiO2.

Figure 10. Storage modulus over time measured by melt rheology; 80%
of the maximum storage modulus was reached after approximately 3.2 h.

material was dip coated onto a quartz substrate and the evolution
of the maleimide UV absorption was followed over time. This gave
rise to a conversion over time plot very similar to the rheological
measurements (Fig. 11). At the beginning of the experiment, the
maleimide absorption dropped rapidly and the conversion rate
decreased drastically after 4 h. Similar to the rheological data, 80%
of the maximum curing was achieved after approximately 3.2 h.

The greatest advantage of self-healing materials using
thermoreversible reactions as a healing mechanism over capsule
based healing is the idealized endless repeatability of the healing
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Figure 11. Conversion over time of the curing reaction measured by
UV−visible spectroscopy; 80% of maximum conversion is reached after
approximately 3.2 h.

mechanism. There are no reservoirs with liquid curing agents
that deplete after one or two healing cycles. Nevertheless,
the high temperatures during the rDA reaction may result in
thermal decomposition of functional groups. Even photochemical
irreversible 2 + 2 cycloadditions between maleimides could cause
a decrease of healing capacities. Therefore it is important to test
the curing and de-curing over multiple cycles, to show that the
healing process is not limited to just a few cycles.

UV − visible spectroscopy was used to investigate the curing
efficiency over multiple DA/rDA cycles. Figure 12 shows the relative
maleimide signal intensity over three DA/rDA cycles. The study
reveals that the healing efficiency does not decrease over the
first three cycles, but a systematic decrease in maleimide signal
strength in both the cured and de-crosslinked state was observed.
This can be explained by a change in film thickness over time

Figure 12. Relative maleimide UV signal over multiple DA curing/rDA
cycles.

by flow of the de-crosslinked system at high temperatures. If this
decrease were caused by irreversible maleimide crosslinks, only
the signal in the de-crosslinked state would decrease over time.

Scratch-healing tests were performed on drop cast composite
films using an optical microscope with polarization filter. After
curing of the nanocomposite films, a diamond scratching pen was
used to produce scratches on the film surface. Figure 13 shows
such a scratch magnified 200 times. The section of the scratch
visible in the first picture is approximately 1 mm long and 80 µm
wide. First the self-healing film was treated at 80 ◦C for 1 h, leading
to a smoothing of the scratch profile. The deep region of the
scratch, produced by the sharp tip of the diamond cutter, did not
disappear. The less deep regions of the scratch were only plastic
displacement of material caused by etches of the cutting tool.
Here the polymer chains were intact and did not have to heal. The

Figure 13. Microscope images of a scratch in a nanocomposite film on glass (a) before healing, (b) after heating for 1 h to 80 ◦C, (c) after heating for
15 min at 120 ◦C and (d) after healing for 15 min at 150 ◦C.
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material only becomes smoother by evening out the produced
roughness.

The actual cut in the film surface is only 10–20 µm wide and
could not heal at 80 ◦C because the polymer chains were unable to
cross the scratch interface in the cured state. A second heating step
at 120 ◦C was chosen to prove that no healing occurred at high
temperatures without rDA reaction. At a temperature of 120 ◦C,
the material is at its maximum mobility but it stays crosslinked.
Figure 13(c) shows that the scratch morphology did not change
after heating to 120 ◦C for 15 min. Finally, the healing step at 150 ◦C
(Fig. 13(d)) closed the scratch interface along the entire length.
This proves that the rDA reaction took place very quickly, breaking
up the network and enabling flow of polymer chains across the
scratch. Because the material glass transition temperature is only
slightly above room temperature, the macromolecules are very
mobile at 150 ◦C and can quickly re-entangle and close the scratch.

SUMMARY
An intrinsically self-healing nanocomposite was synthesized
using DA and rDA reactions as the healing mechanisms. Linear
butyl methacrylate based copolymer bearing propylmaleimide
side groups was synthesized by ATRP. Deprotection of the
maleimide functional group by rDA reaction could be observed
by DSC, NMR and IR spectroscopy. The counterparts for DA
curing, silica − polymer core − shell particles, were prepared
using surface-initiated ATRP with furfuryl methacrylate and butyl
methacrylate as comonomers. A graft density of 0.01 polymer
chains per square nanometer was achieved with a molecular
weight of 150 000 and a PDI of 3.3.

Mixing the linear polymer with the core − shell particles in
suspension and removing the solvent led to a nanocomposite.
DA curing was verified using rheological and UV − visible
measurements. DSC thermograms of the cured samples showed an
endothermic rDA signal at 150 ◦C. Scratch-healing properties of the
composite films on glass surfaces were tested using microscopy.
Thermal treatment at temperatures above the rDA temperature
broke up the network, allowing thermoplastic flow to close the
scratch in the composite film.
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3.3 Furan-Modified Spherosilicates as Building Blocks for Self-Healing 

Materials 

In this work, a nano-sized cage-like spherosilicate was synthesized as building block 

for the design of self-healing hybrid materials. The octaanion [-OSiO1,5]8 was reacted 

with dimethylchlorsilane HMe2SiCl to get the precursor 

(octahydridodimethylsiloxy)silsesquioxane (Q8M8
H). The attachment of maleimide 

functionalities was not successful, because of secondary reactions. Hydrosilation of 

allylmaleimide led to a mixture of products. The double bonds of maleimides or even 

protected maleimides react with the silane. The result was a cross-linked insoluble 

product. 

As the maleimide-modified spherosilicate could not be synthesized successfully, the 

preparation of a furfuryl-derivative was inquired. Therefore, allyl bromide was 

reacted with furfuryl alcohol in the presence of KOH, to give a furfuryl allyl ether 

(FAE). The aromatic character of the furfuryl prevented hydrosilation at both sides of 

the ether. 

A full functionalization of the spherosilicate could be achieved, as demonstrated by 

FTIR, 1H NMR, 29Si NMR and mass spectroscopy. The product Q8M8FAE8 could be 

detected by DLS, giving an average hydrodynamic diameter of 3.2 ± 0.6 nm, which 

corresponds to the calculated diameter of 3.2 nm. Furthermore, two molecular cross-

linkers were used to prepare self-healing composites. A short and stiff bismaleimide 

with a diphenylmethylene backbone (BMI) and an oligomeric flexible PDMS 

bismaleimide (M2-PDMS) were mixed in equimolar ratios with the dienic 

spherosilicate (Scheme 13). Both products had completely different mechanical 

properties and self-healing behaviour.  

 
SCHEME 13: DIENOPHILIC CROSS-LINKERS USED IN COMBINATION WITH THE DIENIC 

SPHEROSILICATES. 

FTIR measurements were used to investigate DA reaction. It could be demonstrated 

that both cross-linkers formed covalent bonds between the furan and maleimide 
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moieties. Q8M8FAE8/BMI is a hard and glassy material, whereas Q8M8FAE8/M2-

PDMS is flexible and rubber-like. In both cases, DSC measurements showed 

endothermic RDA reaction above 90 °C. The kinetics of DA reaction during cooling 

is dominated by molecular diffusion as shown by the fast and complete curing in the 

case of BMI. DA reaction is slowed down by the long siloxane backbone in the case 

of M2-PDMS. Simple diffusion laws cannot describe the movement of oligomeric 

molecules. De Gennes et al. developed the reptation model to describe the movement 

of polymer chains.[53] The increased distance between cross-linking points makes 

entanglements possible. Once the oligomeric chains are caught up in this entangled 

state, movement is slowed down, thereby slowing down overall DA reaction. 

 

The results have been published together with a cover profile in the European Journal 

of Inorganic Chemistry in a special cluster issue on Hybrid Materials – Next 
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FIGURE 11: TABLE OF CONTENT: SYNTHETIC ROUTE FOR THE PREPARATION OF Q8M8FAE8. THE CAGE WAS 

REACTED WITH TWO DIFFERENT CROSS-LINKERS, RESULTING IN SELF-HEALING HYBRID MATERIALS WITH 

MISCELLANEOUS MECHANICAL PROPERTIES. 
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Octafunctional spherosilicates were used to prepare self-
healing hybrid materials. The hydrosilation of the octakis-
(hydridodimethylsiloxy)-substituted spherosilicate with fur-
furyl allyl ether generates an inorganic nano-building-block
that is used to formulate various self-healing hybrid materials
based on a reversible Diels–Alder reaction. Curing with a
molecular bismaleimide results in a hard, glassy but revers-
ibly cross-linkable hybrid material. The reversibility of the

Introduction

Degradation, damage, and failure are natural conse-
quences of material applications.[1] Intrinsic healing systems
allow the repair of damage through latent functionalities.
Various external triggers such as light or heat can be used
for this approach.[2] Thermally remendable materials based
on the Diels–Alder/retro-Diels–Alder (DA/rDA) mecha-
nism are probably the most well-known type of self-healing
material.

Polymers with a self-healing ability are mainly based on
furfuryl and maleimide groups, which act as dienes and
dienophiles in the reversible curing by a Diels–Alder (DA)
reaction.[3] The self-healing ability strongly depends on the
mobility of the functional groups and the ratio of male-
imide to furan.[4] A nonstoichiometric ratio increases the
probability that new cross-links will form. In previous work,
we designed self-healing nanocomposites based on silica–
polymer core–shell nanoparticles.[5] After curing, these ma-
terials could be healed at temperatures above the rDA tem-
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curing mechanism allows the preparation of films with a
heated press, which also opens the possibility to process the
materials by injection molding. Substitution of the molecular
cross-linker with an oligomeric poly(dimethylsiloxane)
bismaleimide results in an elastomeric material. The kinetics
of the Diels–Alder reaction upon cooling after a retro-Diels–
Alder reaction are mainly controlled by the mobility of the
cross-linker within the system.

perature within minutes. The only drawback was the slow
formation of new DA bonds upon cooling. Typically, an-
nealing at 70 °C fceor 12 h was required for high healing
efficiency. In conventional thermally remendable polymers,
which do not contain inorganic components, hetero-DA re-
actions of dithioesters and cyclopentadiene can accelerate
the cross-linking reaction dramatically.[6] In hybrid materi-
als or nanocomposites, it is not only the DA/rDA velocity
itself but also the diffusion and mobility of the inorganic
components in the material that determines the speed of
the cross-linking; thus, a decrease of the size of the building
blocks should increase the reaction rates.

Compared to silica nanoparticles, which we have already
used as cross-linkers in self-healing nanocomposites,
spherosilicates are quite small. Spherosilicates and particu-
larly polyhedral oligomeric silsesquioxanes (POSS) have
shown their ability to improve polymer properties. Mono-
functional molecules can be used as comonomers,[7] and
multifunctional starlike POSS molecules were employed as
cross-linkers or as macroinitiators.[8] The first approaches
to use POSS cages in self-healing coatings were presented
recently by Lin et al.[9]

In this work, we present a new synthetic strategy for the
preparation of multifunctional spherosilicates with diene
moieties that can be employed in thermally remendable self-
healing hybrids. We investigated the influence of the size of
the inorganic building blocks as well as the type of organic
cross-linker on the healing properties of the final materials.
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Results and Discussion

Synthesis of Octa-Furfuryl-Modified Spherosilicate

The hydrosilation of 2-[(prop-2-en-1-yloxy)methyl]furan
(furfuryl allyl ether, FAE) with octakis(hydridodimethyl-
siloxy)-substituted spherosilicate (Q8M8

H) was performed
to synthesize a cagelike polyhedral spherosilicate with eight
diene functional groups. The octahydridospherosilicate was
prepared according to a modified literature procedure.[10]

Compared to the synthesis of silsesquioxanes, the spherosil-
icate production requires shorter reaction times and results
in higher yields of the target material. In a first step, the
controlled hydrolysis and condensation of tetraethoxysilane
(TEOS) with tetramethylammonium hydroxide resulted in
a solution of the octaanion,[10a] which was reacted with di-
methylchlorosilane to afford Q8M8

H in 69% yield. Charac-
terization by infrared spectroscopy showed a distinctive
Si–H vibration at ν̃ = 2141 cm–1 and a strong asymmetric
Si–O–Si stretching signal at ν̃ = 1067 cm–1 (Figure 1). As
Q8M8

H is readily soluble in many organic solvents, we ana-
lyzed the product by solution-state NMR spectroscopy. 1H
NMR spectroscopy disclosed a heptet at δ = 4.74 ppm,
which is assigned to the 8 Si–H protons (Figure S1). The
multiplet at δ = 0.26 ppm was assigned to the 48 protons of
the dimethylsilyl groups (Figure S2).

Figure 1. FTIR spectra of Q8M8
H and Q8M8FAE8.

Scheme 1. Functionalization of Q8M8
H with FAE.
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The 29Si NMR spectrum of Q8M8
H in CDCl3 showed a

signal at δ = –109.03 ppm for the Q4 species of the SiO2

cube and a signal at δ = –1.88 ppm assigned to the silicon
atoms bearing the hydrogen atoms (Figure S3).

By applying a modified literature procedure,[11] FAE was
obtained in 81% yield by a substitution reaction of furfuryl
alcohol and allyl bromide. The hydrosilation of FAE with
Q8M8

H in the presence of the Karstedt catalyst was success-
fully employed to functionalize all eight corners of the cubic
structure with Diels–Alder (DA) reactive groups
(Scheme 1). The product was obtained quantitatively as a
viscous liquid. The aromatic nature of the furfuryl ring pre-
vents hydrosilation across the diene as a side reaction.

A comparison of the FTIR spectra of Q8M8FAE8 and
Q8M8

H showed the complete disappearance of the Si–H
stretching vibration, which demonstrates that all eight cor-
ners have reacted. Additionally, specific signals for the fur-
furyl moieties emerged at ν̃ = 3129, 1503, 1438, and
1411 cm–1 (Figure 1).

NMR spectroscopy also demonstrated the complete con-
version of Q8M8

H (Figures 2 and 3). No allylic protons
could be detected, and a signal at δ = 0.60 ppm for the
newly formed CH2–Si species was observed. 29Si NMR
spectroscopy also confirmed that all Si–H bonds had

Figure 2. 1H NMR spectrum of Q8M8FAE8.
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reacted, and the newly formed Si–C bonds gave rise to a
signal at δ = 12.90 ppm.

Figure 3. 29Si NMR spectrum of Q8M8FAE8.

Dynamic light scattering (DLS) measurements of the as-
prepared functional cages revealed a hydrodynamic dia-
meter of (3.16 !0.64) nm in acetone, which was in good
agreement with the calculated diameter of ca. 3.2 nm from
the standard bond lengths (Figure 4).

Figure 4. DLS size distribution of Q8M8FAE8 in acetone.

Furthermore, in the ESI Fourier transform ion cyclotron
resonance (ESI-FTICR) MS spectrum of the product, sev-
eral peaks corresponded to [M + K]+, [M + NH4]+, and [M
+ 2H]2+ at m/z = 2162.52, 2140.57, and 1062.26, respec-
tively (Figures S7 and S8). Isolation followed by fragmenta-
tion of the [M + 2H]2+ species revealed fragmentation steps
through which the FAE pendant groups are replaced by so-
dium ions (Figure S9).

Synthesis of Bismaleimido–Polymethylsiloxane Cross-
Linker (M2-PDMS)

The commercially available 1,1"-(methylenedi-4,1-phenyl-
ene)bismaleimide (BMI) was used as a molecular cross-
linker for the newly prepared Q8M8FAE8. To obtain a
more-flexible cross-linker for the preparation of elastomeric
materials, α,ω-diaminopropyl-terminated oligo-polydimeth-
ylsiloxane (PDMS) was treated with maleic anhydride fol-
lowed by ring closure with zinc chloride and hexamethyl-
disilazane to form the α,ω-bismaleimidopropyl-PDMS (M2-
PDMS, Scheme 2).[12] The commercially available precursor
had a mean degree of polymerization (DP) of eight dimeth-
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ylsiloxy units as determined by 1H NMR spectroscopy.
M2-PDMS was characterized by NMR spectroscopy. All
aminopropyl end groups reacted with maleic anhydride,
and ring closure occurred in a yield of 89% to form male-
imidopropyl end groups.

Scheme 2. Synthesis of the cross-linker M2-PDMS.

DA Curing with Both Cross-Linkers

DA reactions between Q8M8FAE8 and the two different
cross-linkers, BMI and the oligomeric M2-PDMS, were in-
vestigated (Scheme 3). For BMI, both starting materials
were dissolved in CDCl3 to enable in situ monitoring of the
DA reaction by 1H NMR spectroscopy at room tempera-
ture (Figure 5). The signals for the DA adduct emerged
gradually at δ = 5.3 and 6.4 ppm. At room temperature in
dilute concentration, the reaction is relatively slow. The in-
tegrated product signal at δ = 5.3 ppm follows a linear trend
up to a reaction time of 18 h (Figure 6).

Scheme 3. Schematic representation of the self-healing hybrid ma-
terial.

The low intensity of the product signals is due to the low
solubility of the highly cross-linked products, which precipi-
tate from the reaction solution. The bulk reaction at 70 °C
afforded a hard, glassy, orange material as reported by Lin
and co-workers.[9]
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Figure 5. 1H NMR spectra of the DA reaction between Q8M8FAE8
and BMI.

Figure 6. DA adduct peak area over time during in situ 1H NMR
spectroscopy.

For M2-PDMS, no solvent was required for mixing as
both monomers were liquids. An elastomeric hybrid mate-
rial was produced by simply mixing Q8M8FAE8 with M2-
PDMS, followed by 10 min of vigorous shaking and a DA
reaction at 70 °C within a mould.

The DA reactions of both materials were also confirmed
by FTIR spectroscopy measurements. In comparison with
that of the uncured BMI, the carbonyl stretch of the cured
composite showed a blueshift from ν̃ = 1702 to 1707 cm–1.
Furthermore, the maleimide ring-deformation signal at ν̃ =
686 cm–1 disappeared (Figure 7, a). The elastomeric mate-
rial showed a redshift of the carbonyl stretching mode from
ν̃ = 1710 cm–1 for the free M2-PDMS to 1701 cm–1 for the
DA adduct. The disappearance of the maleimide ring-defor-
mation signal at ν̃ = 696 cm–1 was also observed (Figure 7,
b). These differences in the positions of the signals are due
to the difference in the electronic structures emerging from
the conjugation of a phenyl ring to the maleimide ring.

Differential scanning calorimetry (DSC) measurements
were used to visualize the retro-DA reaction within a pre-
viously cross-linked material. At temperatures as high as
180 °C, exothermic polymerization of maleimides and de-
composition leads to mass loss and undesired irreversibly
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Figure 7. FTIR spectra of (a) BMI, Q8M8FAE8, and their DA ad-
duct and (b) M2-PDMS, Q8M8FAE8, and their DA adduct.

cross-linked species. Therefore, a maximum temperature of
155 °C was chosen for the DSC measurements. For the
BMI-cross-linked material, the first heating cycle showed a
broad endothermic signal above 90 °C of 25.5 J/g, which is
related to the retro-DA reaction of the previously reacted
furfuryl and maleimide moieties (Figure 8).

Figure 8. DSC curve of Q8M8FAE8 previously cured with BMI.

During the following cooling, a rapid recuring was ob-
served and was accompanied by a broad endothermic DA
reaction signal over a range of 100 °C. Nearly the same
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amount of energy was consumed during this step as during
the retro-DA reaction. The breaking and recombination
could be repeated in the next heating and cooling cycle.
This result was unexpected, because previous work on self-
healing nanocomposites with polymer-grafted silica nano-
particles reacted on a completely different time scale. In
these systems, only very little DA reaction was detected dur-
ing cooling, because the mobility of the reactive furfuryl
and maleimide groups was directly linked to the mobility
of the polymeric chains, which is often described by the
reptation model of polymer chains.[13] In this new material,
both reaction partners are molecular species, which can
move by simple molecular diffusion at the border of the
forming cross-linked solid. The small difference in the ex-
tent of the cross-linking, observed by a drop of 25.5 to
22.9 J/g could be explained by trapped unreacted bismale-
imide molecules or dangling unreacted maleimides.

The DSC curve of the elastomeric, M2-PDMS-cross-
linked material, showed the same behavior during the first
heating cycle. Only the amount of energy needed for the
retro-DA reaction was inferior (Figure 9). Secondly, it was
observed that the DA reaction during cooling was relatively
slow. During the second heating step, only a third of the
original cross-linking density was obtained. This can be ex-
plained by the relatively high molecular weight of the M2-
PDMS cross-linker and the accompanying lower mobility
of the pendant maleimide groups. Furthermore, in previous
work, it was shown that the conjugated phenyl rings in-
crease the reaction rate of the DA reaction by a factor of
two.[14]

Figure 9. DSC curve of Q8M8FAE8 previously cured with M2-
PDMS.

Damage Healing by Thermal Treatment

For the BMI-cured spherosilicates, scratch-healing ex-
periments were performed on pressed films of 100 µm thick-
ness. For that, a sample of 100 mg was heated to 135 °C
between two silicon wafers of a heated film-maker press.
After 15 min at this temperature, a transparent 100 µm
thick film was prepared by using a pressure of 2 tons (Fig-
ure 10). As the film preparation is possible, the use of injec-
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tion-molding techniques for the preparation of specimens
would also be possible.

Figure 10. 100 µm film prepared with a heatable press.

For the M2-PDMS-cured spherosilicates, a disclike speci-
men was prepared in a glass recipient. The specimen was
then broken and reshaped by thermal treatment at 135 °C
followed by several hours at 70 °C within a rectangular
mold (Figure 11).

Figure 11. Rectangular specimen molded by healing and reshaping
of M2-PDMS-cured Q8M8FAE8.

The scratch-healing test was monitored by conventional
transmission light microscopy. Two scratches on the surface
of the BMI-cured spherosilicate before and after heat-treat-
ment at 110 °C are shown in Figure 12 (a). A rapid smooth-
ing of the film surface was observed, and the two scratches
disappeared almost entirely after a few minutes. Complete
liquefaction above 150 °C would lead to complete disap-
pearance of the surface damage but would be accompanied
by the loss of the original shape of the specimen. The heal-
ing of a crack within the rectangular specimen of M2-
PDMS-cured spherosilicate is shown in Figure 12 (b).
Within 10 min at 100 °C, the crack closed completely. The
elastomeric nature of the PDMS-based composite is favor-
able for crack-healing behavior.
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Figure 12. Damage healing at 110 °C of (a) a BMI-cured
Q8M8FAE8 film and (b) a M2-PDMS-cured Q8M8FAE8 specimen.

Conclusions
A new synthetic strategy for the preparation of dienic

spherosilicates was presented. The modification of a Q8M8
H

cage was obtained by a hydrosilation approach. The full
modification of all eight corners with furfuryl allyl ether
was achieved by applying this procedure. A DA reaction
between furfuryl ether modified spherosilicates
(Q8M8FAE8) with two different maleimide cross-linkers led
to bulk hybrid materials. Depending on the nature of the
cross-linker, two self-healing composites with different me-
chanical properties and healing abilities were obtained.
Curing with molecular, stiff BMI led to a hard, glassy solid.
The application of oligomeric M2-PDMS resulted in an
elastomeric material. NMR spectroscopy could be used to
monitor the DA reaction. DSC measurements showed a
broad retro-DA reaction signal above 90 °C. Differences in
the DA reaction rate during cooling were observed. The
mobility of the molecular bismaleimide in the melt was su-
perior and, thereby, enabled nearly complete reconnection
upon cooling. The kinetics of the oligomeric system is lower
because the mobility of the functional dienophilic groups is
governed by the typical diffusion mechanism of polymeric
chains.

Finally, scratch-healing experiments were followed by
light microscopy. Within minutes, fast repair of the damage
could by visualized.

Experimental Section
Materials: Tetraethoxysilane was kindly provided by Wacker
Silicones. Chlorodimethylsilane, aminopropyl-terminated poly(di-
methylsiloxane) and Karstedt catalyst were purchased from ABCR.
Tetramethylammonium hydroxide pentahydrate, furfuryl alcohol,
allyl bromide, maleic anhydride and 1,1"-(methylenedi-4,1-phenyl-
ene)bismaleimide were purchased from Sigma–Aldrich. All chemi-
cals were used as received or purified by standard procedures.
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Methods: Fourier transform infrared (FTIR) spectroscopy mea-
surements were performed with a Bruker Vertex 70 Spectrometer
under ambient air (40 scans at a resolution of 4 cm–1) in attenuated
total reflectance (ATR) mode. Differential scanning calorimetry
(DSC) measurements were performed with a Netzsch DSC 204 F1
Phoenix calorimeter with samples in aluminum crucibles with
pierced lids and heated under nitrogen at a rate of 10 K/min. Solu-
tion NMR spectra were recorded with a Bruker Avance 300 spec-
trometer at 25 °C (1H at 300.13 MHz, 13C at 75.48 MHz, 29Si at
59.63 MHz). Elemental analysis was performed with a Leco 900
CHN analyzer. Dynamic light scattering (DLS) measurements were
performed by noninvasive backscattering with an ALV/CGS-3
compact goniometer system with an ALV/LSE-5003 correlator and
multiple tau correlator at a wavelength of 632.8 nm (He–Ne Laser)
and at a 90° goniometer angle. The dispersing media were purified
before use with a syringe filter (200 nm mesh). The determination
of the particle radius was carried out by the analysis of the corre-
lation function by the g2(t) method followed by a linearized
number-weighting (n.w.) of the distribution function. High-resolu-
tion mass spectroscopy (HRMS) was performed with a solariX 7
Tesla FTICR mass spectrometer (Bruker Daltonik, Bremen, Ger-
many). All samples were ionized by electrospray ionization (ESI).
In MS/MS mode, precursor ions were isolated first in the quadru-
pole and externally accumulated in the hexapole for 0.1 s. For colli-
sion-induced dissociation (CID), a collision voltage of 2–10 V was
applied.

Octakis(hydridodimethylsiloxy)octasilsesquioxane (Q8M8
H): Octa-

kis(hydridodimethylsiloxy)octasilsesquioxane was prepared by a
modified literature procedure.[10] In a 250 mL three-necked round-
bottom flask with a magnetic stir bar, tetramethylammonium
hydroxide (17.73 g, 0.1 mol) was dissolved in methanol (53 mL)
and water (13 mL). The flask was cooled in an ice bath, and tetra-
ethoxysilane (19.15 mL, 18.00 g, 0.086 mol) was added. The solution
was stirred overnight at room temperature to give the octaanion
solution. At the second stage, the solution was slowly added
through a dropping funnel to a solution of dimethylchlorosilane
(32.44 g, 0.34 mol) in pentane (300 mL) at 0 °C. Afterwards, the
mixture was kept at room temperature for 3 h. The organic layer
was separated, and the solvent was removed by rotary evaporation.
The resulting white solid was washed several times with methanol
and dried in vacuo, yield 7.5 g (7.37 mmol, 69%). 1H NMR
(CDCl3, 25 °C): δ = 0.26 [td, 48 H, Si(CH3)2], 4.74 (hp, 8 H, SiH)
ppm. 13C NMR (CDCl3, 25 °C): δ = 0.06 [Si(CH3)2] ppm. 29Si
(CDCl3, 25 °C): δ = –1.88 (SiH), –109.03 (SiOSi) ppm. IR: ν̃ =
2962 (CH), 2141 (SiH), 1253, 1067 (asym SiOSi), 896, 835, 753
(sym SiOSi) cm–1.

2-[(Prop-2-en-1-yloxy)methyl] furan (FAE): In a 100 mL round-bot-
tom flask with a magnetic stir bar, furfuryl alcohol (10 g,
0.102 mol) and KOH (22.88 g, 0.408 mol) were added and stirred
at 0 °C for 10 min. Afterwards, allyl bromide (18.51 g, 0.153 mol)
was added slowly at 0 °C. The reaction mixture was stirred at 60 °C
overnight. Dichloromethane (DCM, 100 mL) was added, and the
excess KOH was extracted three times with water. The organic
phase was dried with anhydrous sodium sulfate, and the solvent,
excess allyl bromide, and allyl alcohol were removed by rotary evap-
oration. Finally, the slightly yellow product was purified by vacuum
distillation, yield 11.50 g (0.083 mol, 81.6%). 1H NMR (CDCl3,
25 °C): δ = 4.00 (dt, 3J = 5.7 Hz, 4J = 1.4 Hz, 2 H, CH2 allyl), 4.46
(s, 2 H, CH2 furfuryl), 5.20 (dm, 2J = 9.0 Hz, 1 H, C=CH2), 5.30
(dq, 2J = 17.3 Hz, 3J = 1.6 Hz, 4J = 1.6 Hz, 1 H, C=CH2), 5.92
(m, 1 H, CH2CH=C), 6.31–6.35 (m, 2 H, HC=CH), 7.40 (dd, 3J =
1.8 Hz, 4J = 0.9 Hz, 1 H, OHC=C) ppm. 13C NMR (CDCl3,
25 °C): δ = 63.70 (CH2 allyl), 70.79 (CH2 furfuryl), 109.11 (C=C
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furan), 110.11 (C=C furan), 117.29 (C=C allyl), 134.32 (C=C allyl),
142.61 (C=C furan), 151.68 (C=C furan) ppm. IR: ν̃ = 3148
(HC=C), 3119 (HC=C), 3080 (HC=C), 2979 (C–H), 2905 (C–H),
2854 (C–H), 1646 (C=C), 1503 (C=C), 1354, 1225, 1154, 1072,
1003, 917, 734 cm–1.

Octakis[(furfuryl propyl ether)dimethylsiloxy]octasilsesquioxane
(Q8M8FAE8): In a 25 mL Schlenk flask with a magnetic stir bar
under an argon atmosphere, octakis(hydridodimethylsiloxy)octa-
silsesquioxane (1 g, 0.98 mmol) and FAE (1.11 g, 8.0 mmol) were
dissolved in dry toluene (10 mL). A solution of Karstedt catalyst
in xylene (25 µL) was added, and the reaction mixture was stirred
at 60 °C for 3 d. Finally, the toluene and excess FAE were removed
in vacuo to yield a slightly yellow viscous liquid that was analyti-
cally pure, yield quantitative. 1H NMR (CDCl3, 25 °C): δ = 0.12
(s, 7 H, CH3Si), 0.60 (m, 2 H, CH2Si), 1.63 (m, 2 H, CH2CH2CH2),
3.42 (t, 3J = 6.8 Hz, 2 H, OCH2CH2), 4.42 (s, 2 H, CH2 furfuryl),
6.28–6.32 (m, 2 H, HC=CH), 7.38 (dd, 3J = 1.7 Hz, 4J = 0.8 Hz, 1
H, OHC=C) ppm. 13C NMR (CDCl3, 25 °C): δ = –0.01 (CH3Si),
14.12 (CH2Si), 23.55 (CH2CH2CH2), 65.06 (OCH2CH2), 73.26
(CH2 furfuryl), 109.33 (C=C), 110.61 (C=C), 142.96 (C=C), 152.57
(C=C) ppm. 29Si (CDCl3, 25 °C): δ = –109.08, 12.90 ppm. IR: ν̃ =
3129 (HC=C), 2950 (C–H), 2853 (C–H), 1503 (C=C), 1438 (C=C),
1411 (C=C), 1356, 1151, 1071, 839, 730 cm–1. C80H136O36Si16

(2123.31): calcd. C 45.25, H 6.46; found C 42.85, H 6.21. HRMS
(ESI-FTICR): calcd for C80H136O36Si16K [M + K]+ 2162.4100;
found 2162.5210; calcd. for C80H140O36Si16N [M + NH4]+

2141.1467; found 2140.5704; calcd. for C80H138O36Si16 [M + 2H]2+

1062.5622; found 1062.2615.

Bis(maleimidopropyl)-Terminated Polydimethylsiloxane (M2-
PDMS): In a 100 mL round-bottomed flask, maleic anhydride
(2.33 g, 0.024 mol) was dissolved in DCM (50 mL). A solution of
aminopropyl-terminated PDMS (10 g, 0.012 mol) in DCM (20 mL)
was added dropwise through a dropping funnel to the stirred maleic
anhydride solution. The resulting solution was stirred for 1 h. Af-
terwards, the solvent was removed by rotary evaporation. The re-
sulting viscous liquid was dissolved in anhydrous toluene (50 mL),
and ZnCl2 (3.27 g, 0.024 mol) was added as the mixture was heated
to 80 °C. After the addition of hexamethyldisilazane (3.87 g,
0.024 mol), the reaction was continued for 5 h. First, the solid was
removed by filtration, and then the solvent was removed by rotary
evaporation followed by drying under high vacuum, yield 11.23 g
(0.011 mol; 91.7%). 1H NMR (CDCl3, 25 °C): δ = 0.00–0.13 (m,
77 H, CH3Si), 0.49 (m, 4 H, CH2Si), 1.60 (m, 4 H, CH2CH2CH2),
3.49 (t, J = 3.5 Hz, 4 H, NCH2), 6.68 (s, 4 H, HC=CH) ppm. 13C
NMR (CDCl3, 25 °C): δ = 0.03 (CH3Si), 1.00 (CH3Si), 1.74
(CH3Si), 15.21 (CH2Si), 22.50 (CH2CH2CH2), 40.71 (NCH2),
133.98 (C=C), 170.84 (C=O) ppm. 29Si (CDCl3, 25 °C): δ = –21.96,
–21.22, 7.06 ppm. IR: ν̃ = 3103 (HC=C), 2963 (C–H), 1710 (C=O),
1443 (C=C), 1406 (C=C), 1257 (C–H), 1011 (Si–O–Si), 790 (Si–O–
Si) cm–1.

Supporting Information (see footnote on the first page of this arti-
cle): Additional NMR spectroscopic data of Q8M8

H and M2-
PDMS and HRMS spectroscopic data of Q8M8FAE8.
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3.4 Supplementary results 

3.4.1 Nano-structured Hybrid Material 

BMI and octafunctional spherosilicate Q8M8FAE8 were both dissolved in chloroform 

prior to curing by DA reaction. Chloroform was then removed by rotary evaporation, 

and the mixture was cured at 70 °C. Subsequent TGA-FTIR measurements revealed 

that not all chloroform could be removed, because some molecules were incorporated 

within the forming network. The trapped chloroform molecules were only liberated 

after the RDA took place at temperatures as high as 140 °C. This could be 

substantiated by FTIR measurements of the decomposition gases. Chloroform has two 

very specific strongly infrared-active signals at 1219 and 769 cm–1. They are assigned 

to the C-H deformation and the C-Cl stretching, respectively. Figure 12 shows the 

infrared spectrum of the liberated chloroform at 140 °C. 

 
FIGURE 12: GAS-PHASE FT-IR SPECTRUM OF CHLOROFORM RELEASED FROM HYBRID 

Q8M8FAE8/BMI UPON HEATING TO RETRO-DIELS-ALDER TEMPERATURE. 

 

The 3-dimensional TG-FTIR chromatogram in figure 13 shows that chloroform is 

liberated in two steps in the range of 100 to 200 °C. The two steps may be explained 
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by the difference in RDA temperature of endo- and exo-DA-products. During curing 

the kinetically favoured endo-adduct is preferentially formed, but also small amounts 

of the thermodynamically favoured exo-adduct is generated. First RDA of the endo-

adduct occurred, liberating most of the chloroform at 140 °C. RDA of the exo-adducts 

released the rest of the chloroform at 160 °C. 

 
FIGURE 13: THREE-DIMENSIONAL FTIR CHROMATOGRAM OF DECOMPOSITION GASES 

RELEASED FROM Q8M8FAE8/BMI DURING TGA EXPERIMENT. 

On the other hand, the TGA curve allows quantifying the amount of solvent 

incorporated within the inorganic-organic hybrid network. It could be shown that 

11.8 % of the initial mass was lost in the temperature range of the RDA reaction 

between 100 and 200 °C (Figure 14). This amounts to 1 mmol of chloroform per gram 

of network. By burning all organic parts of the material 22 % of pure SiO2 remains at 

the end of the TGA experiment. A total number of 4 solvent molecules per 

spherosilicate molecule could be calculated. 

The incorporation of solvent into the cross-linked hybrid material, together with 

TGA-FTIR measurements, delivered an indirect insight within the nano-structure of 

the material. The regular arrangement of the cubic spherosilicates provides ordered 

voids big enough to trap single chloroform molecules. 
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FIGURE 14: TGA EXPERIMENT SHOWING THE MASS LOSS OF THE HYBRID MATERIAL 

Q8M8FAE8/BMI UPON HEATING AND THE CORRESPONDING GRAM SCHMIDT CURVE, 

REFLECTING THE SUM OF FTIR SIGNALS GENERATED BY ANALYSING THE 

DECOMPOSITION GASES. 

 

3.4.2 Comparative investigation of the influence of cross-linkers on the self-healing 

behaviour 

An investigation of the influence on DA reactivity, cross-linking density and self-

healing ability of the different cross-linking agents synthesized in course of this work 

was conducted. 

 

Different experiments were performed on different furfuryl cross-linkers within a 

poly(butyl methacrylate-co-maleimidopropyl methacrylate) [P(BMA-co-MiMA0.1)] 

matrix. The goal was to understand the influence of molecular weight, molecular 

diffusion and nanoparticle content on the velocity of the DA reaction, the cross-

linking density, the mechanical properties and the self-healing ability. Therefore 

P(BMA-co-MiMA0.1) was mixed with poly(butyl methacrylate-co-furfuryl 

methacrylate) [P(BMA-co-FMA0.1)], a bifunctional furanyl cross-linker ethane-1,2-

diyl difuran-2-carboxylate (BF), the octafunctional cage-like spherosilicate 

(Q8M8FAE), furfuryl modified silica nanoparticles (FUPTES@SiO2) and P(BMA-co-

FMA) grafted from SiO2 nanoparticles. The influence of the length of the grafted 
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polymeric chains and the ratio of FMA to BMA was also investigated. Figure 15 

displays TGA results of three core-shell samples. A mass ratio of 10:1 of monomers 

to nanoparticles gave a core-shell ratio of 20:80, whereas a ratio of 2:1 resulted in a 

core-shell ratio of 50:50. 

 

 
FIGURE 15: TGA RESULTS OF THREE CORE-SHELL NANOPARTICLE SAMPLES WITH 

VARIOUS CHAIN LENGTHS AND DIFFERENT MONOMER RATIOS. 

 

BF was synthesized by reacting 2-furoyl chloride with ethylene glycol (Scheme 14). 

FUPTES@SiO2 was obtained by functionalization of silica nanoparticles with a 

dienic triethoxysilane previously prepared by reacting furfuryl amine with (3-

isocyanatopropyl)triethoxysilane (Scheme 15). 

 

 

SCHEME 14: BIFUNCTIONAL FURANYL CROSS-LINKER ETHANE-1,2-DIYL DIFURAN-

2-CARBOXYLATE (BF). 
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SCHEME 15: SYNTHESIS OF 1-(FURAN-2-YLMETHYL)-3-(TRIETHOXYSILYL)UREA (FUPTES). 

 

In order to facilitate comparison between self-healing materials, a stoichiometric ratio 

of maleimide to furan was chosen in every case. Table 1 resumes the relative 

compositions of the different mixtures. 

 
TABLE 3: COMPOSITIONS OF VARIOUS SELF-HEALING MATERIALS CHOSEN FOR COMPARATIVE REASONS, 

AS WELL AS THE RESULTING PARTICLE CONTENT. 

Maleimide 

component 

Weight 

% 

Furan component Weight 

% 

Particle 

content (wt%) 

P(BMA-co-MiMA0.1) 50.0 P(BMA-co-FMA0.1) 50.0 0 

P(BMA-co-MiMA0.1) 87.7 Q8M8FAE8 12.3 3.1 

P(BMA-co-MiMA0.1) 94.5 BF 5.5 0 

P(BMA-co-MiMA0.1) 66.7 FUPTES@SiO2 33.3 26 

P(BMA-co-MiMA0.1) 50.0 P(BMA-co-FMA0.1)@SiO2 (long) 50.0 5 

P(BMA-co-MiMA0.1) 66.7 P(BMA-co-FMA0.2)@SiO2 (long) 33.3 3 

P(BMA-co-MiMA0.1) 24.8 P(BMA-co-FMA0.1)@SiO2 (short) 75.2 31 

 

 

3.4.2.1 UV-Vis experiments 

 

The DA reaction follows second order kinetics in the case of a stoichiometric ratio of 

furan and maleimide. The conversion of the DA reaction in thin films at 70 °C was 

followed by UV-Vis studies. The maleimide signal of the polymer matrix could be 

followed over time. No second order reaction kinetics were observed because the 

reaction is increasingly slowed down as the cross-linking density increases and the 

mobility of polymer segments decreases (Figure 16). It could be shown that the 

reaction was fastest and conversion was highest in the case of the molecular BF and 

Q8M8FAE8. The SiO2 nanoparticles modified with a short furfuryl-silane did not react 

because of steric effects and the reaction was stopped after 2 hrs. The polymer-

functionalized nanoparticles with high molecular weight polymer chains reacted as 
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fast as the linear non-grafted polymer. Increase of FMA content within the polymer-

grafted nanoparticles slowed the reaction down.  

 
FIGURE 16: UV-VIS EXPERIMENT DISPLAYING THE KINETICS AND EXTENT OF DA REACTION WITHIN 

MALEIMIDE-MODIFIED POLYMER MATRIX WITH VARIOUS FURAN-CROSS-LINKERS. 

These results could only be used to estimate the reaction kinetics and the conversion 

of the DA reaction, but no conclusion upon the cross-linking density was possible. In 

the case of the molecular cross-linkers, DA reaction does not automatically form a 

cross-linked material. If some cross-linkers only react once, only the molecular 

weight of the polymer chains increases without forming a cross-link. The easiest way 

to investigate the cross-link density, is to investigate the swelling behaviour of the 

reaction products after 12 hrs at 70 °C. 

 

3.4.2.2 Swelling behaviour 

 

Swelling of the cross-linked networks in toluene was performed to estimate the cross-

linking density. The results are resumed in Table 4. Higher cross-linking density 

decreases the uptake of solvent within the network. First of all, it could be 

demonstrated that no network was formed in the case of FUPTES@SiO2, which did 

also show no DA reaction in the UV-Vis experiment. Interestingly, the reaction with 
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the bisfunctional furanyl cross-linker BF did also lead to no visible network 

formation. Apparently, the cross-linker rapidly reacts at one end, leaving the second 

end unreacted even after 12 hrs at 70 °C. The use of Q8M8FAE8 resulted in a highly 

cured material. Comparison between linear polymers and grafted polymers showed an 

increase of the apparent cross-linking density with particle content, because the 

nanoparticles themselves act as additional cross-linking points. The increase of the 

furfuryl content also increases the cross-linking density, because the polymer 

segments between two dienes decrease in length. 

The Flory-Rehner theory was used to calculate the apparent molecular weight 

between two cross-links.[107] The theory was established to describe cross-linked 

polymeric materials but the influence of nanoparticles is not taken into account. 

 
TABLE 4: RESULTS OF SWELLING EXPERIMENTS USING P(BMA-CO-MIMA0.1) MATRIX AND VARIOUS CROSS-

LINKERS. MC IS THE APPARENT AVERAGE MOLECULAR WEIGHT BETWEEN CROSS-LINKS, CALCULATED 

USING THE FLORY-REHNER THEORY.[107] 

CROSS-LINKER SiO2 content 
(wt%) 

SWELLING (%) MC (g/mol) 

P(BMA-co-FMA0.1) linear 0 387 13620 
P(BMA-co-FMA0.1)@SiO2 long chains 5 356 12190 
P(BMA-co-FMA0.2)@SiO2 long chains 3 326 8520 
P(BMA-co-FMA0.1)@SiO2 short chains 30 159 1030 
FUPTES@SiO2 25 / / 
BF 0 / / 
Q8M8FAE8 3 260 3470 

3.4.2.3 Rheological measurements 

 

Rheological measurements of disc shaped specimens were used to investigate the 

change of mechanical properties during the DA reaction in previously uncured 

material. The cured material was then heated from room temperature to 160 °C to see 

if a change could be observed during RDA reaction. Table 5 resumes the storage and 

loss moduli obtained after 12 hrs at 70 °C. The polymer matrix P(BMA-co-MiMA0.1) 

is very soft at 70 °C because the glass transition temperature is exceeded by 40 °C. 

The highest value of the storage modulus was obtained by curing the matrix with 

linear P(BMA-co-FMA0.1), followed by the spherosilicate. Curing with polymer 

grafted silica nanoparticles yielded different moduli that strongly depended of the 

amount of FMA within the polymer chains. Lower diene content increases the 

mechanical properties.  
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TABLE 5: STORAGE MODULI AND LOSS MODULI OF PURE POLYMER MATRIX AND 

VARIOUS MIXTURES AFTER DA CURING AT 70 °C FOR 12 HRS. 

 

Material composition 

Storage 

modulus [Pa] 

Loss modulus 

[Pa] 

 

P(BMA-co-MiMA0.1) 

 

2,500 

 

5,700 

P(BMA-co-MiMA0.1) +  

P(BMA-co-FMA0.1) 

 

650,000 

 

900,000 

P(BMA-co-MiMA0.1) + 

P(BMA-co-FMA0.1)@SiO2 

 

100,000 

 

125,000 

P(BMA-co-MiMA0.1) 

P(BMA-co-FMA0.2)@SiO2 

 

34,000 

 

39,000 

P(BMA-co-MiMA0.1) + 

Q8M8FAE8 

 

110,000 

 

105,000 

P(BMA-co-MiMA0.1) +  

FUPTES@SiO2 

 

6,000 

 

5,000 

P(BMA-co-MiMA0.1) +  

BF 

 

21,000 

 

18,000 

Q8M8FAE8 + 

Bismaleimide 

 

> 107 

 

> 106 

 

P(BMA-co-FMA0.1)@SiO2 did allow more DA cross-links than P(BMA-co-

FMA0.2)@SiO2 by increasing the flexibility of the polymeric chains between two 

cross-linking points. Low storage modulus of 6000 Pa was measured for the 

composite containing FUPTES@SiO2, confirming that no DA reaction occurred. The 

slightly higher modulus compared to pure polymer matrix arose from high particle 

content of 26 wt%. As mentioned before, the reaction with BF did not result in a 

cross-linked material as demonstrated by lack of swelling in toluene. Rheology on the 

other hand, showed an increase of the storage modulus compared to uncured P(BMA-

co-MiMA0.1). The only explanation would be the experimental circumstances. 

Apparently the oscillating rotation of the rheometer plates favored cross-linking. 

Increased movement of the macromolecules increased the probability of a second DA 

reaction leading to a network formation. Even if curing occurred, the extent of the 

cross-links were minimal as demonstrated by relatively low storage modulus of 

21000 Pa. In addition to the materials based on polymer matrix, the 
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Q8M8FAE8/bismaleimide composite was investigated. The material was first molten 

at 160 °C to improve contact with the plates. Afterwards, it was slowly cooled down 

and the storage modulus was recorded. Even at 100 °C the storage modulus had 

increased drastically up to 10 MPa. Curing was extremely fast and the glassy 

composite is very tough. 

All other materials were investigated a second time after the DA curing. DMA was 

performed by heating the samples from 40 °C to 160 °C accompanied by recording of 

the storage modulus. After the initial softening with increasing temperature, a plateau 

of the storage modulus was reached. Contrary to the uncured samples, all cross-linked 

materials showed a second softening point arising from RDA reaction. Figure 17 

shows the DMA of the P(BMA-co-MiMA0.1)/Q8M8FAE8 sample. The second 

softening point was estimated by the intersection of two tangents applied to the curve. 

All softening points were located in a temperature range between 130 and 140 °C, 

which fits perfectly with previous findings concerning RDA temperature. Figure 18 

shows the DMA of FUPTES@SiO2 cured polymer. No plateau of the storage 

modulus and no RDA softening point could be observed, which is consistent with low 

cross-linking density. 
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FIGURE 17: DMA EXPERIMENT OF THE P(BMA-CO-MIMA0.1)/Q8M8FAE8 SAMPLE. 

SOFTENING AT 134 °C REVEALS RETRO-DIELS-ALDER REACTION. 

 
FIGURE 18: DMA EXPERIMENT OF THE P(BMA-CO-MIMA0.1)/FUPTES@SIO2 SAMPLE. 

NO RETRO-DIELS-ALDER REACTION COULD BE OBSERVED. 

3.4.2.4 Scratch-healing behavior 

 

In order to investigate the influence of the cross-linking agent on self-healing 

behavior of the DA cured materials, scratch-healing tests were performed on thin foil 

samples prepared with a heated press. The scratches were obtained by linear abrasion 

using constant load. Microscopic images were taken before and after heating to 
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different temperatures (Figure 19). The heating occurred from both sides of the 

sample without pressure to avoid flattening by deformation of the sample. 

 

 
FIGURE 19: SCRATCH-HEALING TEST AT DIFFERENT TEMPERATURES OF (A) P(BMA-CO-MIMA0.1)/P(BMA-

COFMA0.1), (B) P(BMA-CO-MIMA0.1)/Q8M8FAE8, (C) P(BMA-CO-MIMA0.1)/FUPTES@SIO2, (D) P(BMA-CO-

MIMA0.1)/P(BMA-COFMA0.1)@SIO2 AND (E) Q8M8FAE8/BISMALEIMIDE. THE DISTANCE BETWEEN TWO LINES OF 

RULER IS EQUAL TO 1 MM. 

The sample composed of P(BMA-co-MiMA0.1)/P(BMA-co-FMA0.1) (a) revealed no 

change in the shape of the scratch up to a temperature of 110 °C. The scratch 

disappeared only after the RDA reaction occurred at 150 °C. The same behavior could 

be observed for  (b) P(BMA-co-MiMA0.1)/Q8M8FAE8 , (d) P(BMA-co-

MiMA0.1)/P(BMA-co-FMA0.1)@SiO2 and (e) Q8M8FAE8/BMI. During abrasion of the 

latter, the sample cracked, but even the crack could be healed. P(BMA-co-
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MiMA0.1)/FUPTES@SiO2 ruptured during abrasion because of the brittleness arising 

from the high particle content. Even at low temperature of 70 °C, closure of a major 

part of the holes in the surface was observed. This thermoplastic behavior arises from 

the lack of cross-links within this sample. Again, it could be established that 

FUPTES@SiO2 is not a suitable cross-linking agent for self-healing materials. 

 

3.5 Conclusion 

The preparation of inorganic building blocks suitable for DA based self-healing 

nanocomposites was successful. Different techniques were investigated and a 

comparative study was conducted. 

Nanoparticles modified with short maleimide- or furan-coupling agents showed 

characteristic low conversion due to steric surface effects. Approach and overlap of 

dienes and dienophiles are hindered even in solution. Lower mobility within a 

polymer matrix further decreases conversion. 

Short molecular cross-linker BF showed high reaction rate but no DA curing was 

observed. Reaction only took place at one end of the cross-linker. 

As self-healing polymers based on furan/maleimide interaction have been reported in 

literature, a nanoparticle-polymer core-shell approach was examined. It could be 

demonstrated that both a high molecular weight of grafted polymer chains and a low 

furan content were favorable for high cross-linking density. The reaction rate was 

comparable to that of non-grafted linear polymers. Swelling experiments in toluene 

indicated that the nanoparticle cores acted as additional cross-linking points. 

Rheology showed that the increase of storage modulus is highest with a linear 

polymer followed by the core-shell nanoparticles with the same BMA/FMA ratio. 

Increase of furan content decreases cross-linking density as the mobility of chain 

segments is lowered. 

Best suited for the synthesis of a hybrid self-healing nanocomposite is the 

spherosilicate Q8M8FAE8. DA-curing of maleimide-containing polymer matrix with 

the cage-like compound was fastest and the obtained cross-linking density was 

relatively high. The storage modulus reached values higher then in the case of core-

shell nanoparticles and the self-healing ability was satisfactory. Furthermore the 

possibility to use Q8M8FAE8 in combination with low molecular weight cross-linkers 
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is very interesting. High diffusion rates of both the inorganic compound and the cross-

linker resulted in highest DA reaction rate and highest mechanical properties of all 

combinations tested within this work. 
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3.6 Experimental Section 

3.6.1 Methods 

3.6.1.1 Infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) measurements were performed on a 

Bruker Vertex 70 spectrometer under ambient air (40 scans at a resolution of 4 cm−1) 

in attenuated total reflectance (ATR) mode.  

3.6.1.2 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) were performed on a Netzsch Iris TG 209 C in an 

alumina crucible heating from room temperature to 700 °C under nitrogen followed 

by heating to 800 °C under oxygen with a rate of 20 K min−1. 

The infrared investigation of the decomposition gases released during TGA 

experiments was performed on a Bruker Vertex 70 spectometer equipped with a 

TGIR gas cell with liquid nitrogen cooled MCT (HgCdTe) detector. The gases are 

carried by 40 mL·s-1 nitrogen through a heated transfer line and measured at a 

resolution of 4 cm-1 at 32 scans per spectrum. 

3.6.1.3 Specimen preparation 

Disc-like specimens for UV-Vis, rheology and scratch-healing experiments were 

produced with a Specac Atlas manual hydraulic press equipped with a high 

temperature film maker kit. Films were pressed to a thickness of 50 µm to 250 µm 

depending on the experiment at 135 °C with a maximum load of 2 tons between two 

silicon wafers. 

3.6.1.4 UV-Vis spectroscopy 

UV/Vis spectra were recorded on a Perkin Elmer Lambda 25 UV/Vis spectrometer in 

transmission mode on a 10 mm quartz flow-through cuvette heated by distilled water 

to 70 °C. The specimens previously pressed at 135 °C were quenched at room 

temperature to avoid DA reaction prior to the experiment. 

3.6.1.5 Rheology 

Rheological measurements of the polymer and composite disc-like specimens were 

recorded on an Anton Paar Physica MCR 301 rheometer equipped with a CTD 450 
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convection oven. The prepressed samples were measured in oscillation mode with a 

frequency of 1 Hz and a displacement of 0.01 % using the PP25 measuring system 

with 25 mm plate diameter and a plate to plate distance of 0.25 mm. 

3.6.1.6 Microscopy 

Microscopic images were recorded under polarized light using an Olympus BX60 

microscope equipped with a Sony CCD-Iris color camera. The scratches were made 

by linear abrasion. 

3.6.1.7 Linear abrasion 

The scratches were made by linear abrasion of the sample films with a Taber Linear 

Abraser equipped with a conical tungsten carbide tip. The scratch was generated by a 

single movement at a velocity of 15 cycles per minute under a load of 250 g. 

3.6.2 Synthetic procedures 

3.6.2.1 Synthesis of 1-(furan-2-ylmethyl)-3-(triethoxysilyl)urea (FUPTES) 

 

A 25 mL Schlenk flask with reflux condenser was dried under vacuum and purged 

with argon, then 8.93 g (36 mmol) of freshly distilled (3-isocyanatopropyl)-

triethoxysilane and 10 mL of dry dichloromethane was added. The mixture was 

heated to reflux and 4.21 g (43 mmol) of freshly distilled furfurylamine was added 

drop-wise into the solution and stirred over night. The solvent and excess 

furfurylamine was removed by vacuum distillation. Yield: 11.71 g (34 mmol, 94.4 %) 
1H NMR (CDCl3, 25 °C) δ(ppm) = 0.37 (bt, 2H, CH2-Si), 0.97 (t, 9H; EtOSi), 1.35 

(m, 2H, CH2-CH2-CH2), 2.87 (m, 2H, N-CH2), 3.56 (q, 6H, EtOSi), 4.03 (m, 2H, 

CH2-N), 5.88 (bs, 1H, NH), 6.01 (m, 2H, HC=CH), 6.29 (bs, 1H, NH), 7.05 (bs, 1H, 

OCH). 13C NMR (CDCl3, 25 °C) δ(ppm) = 7.00 (CH2-Si), 17.54 (EtOSi), 23.15 (CH2-

CH2- CH2), 36.44 (N-CH2), 42.12 (CH2-N), 57.57 (EtOSi), 105.45 (C=C), 109.52 

(C=C), 140.88(C=C), 152.70 (C=CO), 158.68 (C=O). 29Si (CDCl3, 25°C) δ(ppm) = -

45.72. IR (cm−1): 3337 (NH), 3124 (C=C-H), 2974 (CH), 2924 (CH), 2883 (CH), 

1680 (C=O), 1630 (C=O), 1568 (NH), 1506 (CN), 1441(C=C), 1389 (C=C), 1166 (Si-

OEt), 1101 (Si-OEt), 1074 (Si-OEt), 1010 (Si-C), 954 (Si-C). 
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3.6.3 Functionalization of silica nanoparticles with FUPTES 

A 50 mL glass with air tight lid was filled with 1 g of silica nanoparticles and purged 

with argon. 20 mL of IBMK was added with a syringe. After heating to 115 °C, 2 g 

(5.8 mmol) FUPTES was added and the dispersion was stirred for 24 hrs. Afterwards 

the suspension was cooled to room temperature, and half of the solvent was removed 

by rotary evaporation. The particles were isolated by centrifugation at 13000 rpm for 

10 min. They were washed three times with acetone and dried overnight in a vacuum 

oven (≈50 mbar) at 80 °C. Yield: 0.95 g. IR (cm−1): 2979 (CH), 2930 (CH), 1685 

(C=O), 1640 (C=O), 1446 (C=C), 1369 (C=C), 1055 (SiOSi), 955 (SiOH), 

788(SiOSi). 

3.6.4 Synthesis of ethane-1,2-diyl difuran-2-carboxylate (BF) 

In a dried 100 mL round-bottom Schlenk-flask purged with argon, 3.1 g (0.05 mol) 

ethylene glycol were mixed with 25.85 g (0.2 mol) diisopropylethylamine. While 

stirring at 0 °C, 13.05 g (0.1 mol) of 2-furoyl chloride were added slowly. After the 

addition, the reaction mixture was heated to 50 °C for 2 hrs. The white solid that 

formed was filtered of and the liquid phase was dissolved in 100 mL of diethylether. 

The organic phase was washed thrice with a NaHCO3 solution and thrice with water. 

After drying with MgSO4 the solvent was removed by rotary evaporation until a solid 

formed. The crude product was purified by washing with propan-2-ol and drying in 

vacuum. Yield: 5.19 g (0.021 mol; 41.5 %) 1H NMR (CDCl3, 25 °C) δ(ppm) = 4.62 

(s, 4H, CH2-CH2), 6.52 (dd, 2H; C=C), 7.22 (dd, 2H, C=C), 7.60 (dd, 2H, C=C). 13C 

NMR (CDCl3, 25 °C) δ(ppm) = 62.46 (CH2-CH2), 111.90 (C=C), 118.49 (C=C), 

144.20 (C=C), 146.60 (C=C), 158.35 (C=O). 

3.6.5 Grafting-from polymerization of poly[(butyl methacrylate)-co-(furfuryl 

methacrylate)] by ARGET ATRP. 

Activators regenerated by electron transfer (ARGET) ATRP was used to generate 

silica-polymer core-shell nanoparticles with different polymer chain lengths and 

monomer compositions. Initiator functionalized nanoparticles with 17 wt% initiator 

content (TGA) were used. BMA, FMA, 50 µL HMTETA, initiator-particles and 5 mL 

toluene were placed in a Schlenk tube. The contents were degassed by bubbling argon 
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through the liquid for 10 min. The Schlenk tube was charged with argon and 10 mg 

(0.05 mmol) CuBr2 was subsequently added. The reaction was started by heating the 

mixture to 80 °C and adding 100 µL of hydrazine hydrate (50-60 %). Exposing the 

reaction to air after 3 hrs quenched the polymerization. The samples were purified by 

precipitating from toluene in methanol. Table 6 summarizes reagent masses used for 

the preparation of different chain lengths and monomer compositions. 

 
TABLE 6: PARTICLE AND MONOMER COMPOSITION OF REACTION MIXTURE DURING ARGET ATRP. 

 Initiator NP BMA FMA 

P(BMA-co-FMA0.1) 

long chains 

0.3 g 

 

3 g 0.3 g 

P(BMA-co-FMA0.1) 

short chains 

0.3 mg 0.73 g 0.073 g 

P(BMA-co-FMA0.2) 

long chains 

0.3 mg 3 g 0.6 g 
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4 SUMMARY 

Different strategies for the preparation of self-healing hybrid materials were 

investigated. DA reaction involving furan and maleimide derivatives was chosen as 

self-healing mechanism. Surface functionalized silica nanoparticles as well as cage-

like spherosilicates were employed as cross-linking agents within a thermoplastic 

matrix. The goal was to react originally thermoplastic nanocomposites using DA 

reaction between dienic and dienophilic functional groups, to obtain thermosetting 

nanocomposites with increased mechanical properties. Typically, thermosetting 

materials are irreversibly cured and cannot be recycled or reshaped. Additionally, they 

are prone to suffer under long-term mechanical stresses, because of their increased 

brittleness. The reversibility of the DA curing process at elevated temperatures, 

allows breaking up the cross-links by RDA reaction. These DA and RDA cycles 

provide a reusable, recyclable and self-healing nanocomposite. 

In order to investigate the use of inorganic nano-building blocks as cross-linking 

agents in self-healing materials, silica nanoparticles were chosen as model because of 

the well-established synthetic procedures. 

The Stöber process is a simple sol-gel method to synthesize silica nanoparticles of 

uniform size and shape. Furthermore, the surface chemistry of SiO2 nanoparticles is 

well known and offers many possibilities to apply the desired surface functionalities. 

The first step towards self-healing hybrid materials was the synthesis of maleimide 

coupling agents for the modification of nanosized SiO2 with a diameter of less than 

5 nm. Triethoxysilane was used as anchor group, because of its relatively high 

stability. APTES, a commercially available precursor was used for the preparation of 

two different coupling agents. The first, N-((3-triethoxysilyl)propyl)maleimide 1, was 

obtained by reacting maleic anhydride with APTES, followed by maleimide 

formation by catalyzed ring closure. 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl(3-

(triethoxysilyl)propyl)carbamate 2 was formed by reacting DA-protected 2-

hydroxethylmaleimide with 3-isocyanato-propyltriethoxysilane. The third coupling 

agent 1-(4-{[4-(2,5-dioxo-3-{[3-(triethoxysilyl)-propyl]amino}-pyrrolidin-1-yl)-

phenyl]methyl}phenyl)-2,5-di-hydro-1H-pyrrole-2,5-dione 3 was prepared by 

Michael addition of 1,1′-(methylendi-4,1-phenylene)bismaleimide with APTES. 
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All three coupling agents were used for nanoparticle modification in IBMK as 

solvent. High dielectric constant of IBMK increases the stability of the particle 

suspension, while the high boiling point favors surface modification. 

The modified particles were characterized by DLS, FTIR spectroscopy and TGA 

coupled with FTIR. Additionally, elemental analysis was used to calculate surface 

coverage. 1@SiO2, 2@SiO2 and 3@SiO2 presented surface coverages of 1.2, 0.3 and 

1.0 molecules per nm3, respectively. 

The influence of the spacer group between the maleimide and the triethoxysilane on 

the DA kinetics was investigated by model reactions in solution. Therefore, similar 

molecules were prepared which did not present the triethoxysilane anchor group. 

These model maleimides were reacted with furan in excess to simulate first order 

kinetics. Using UV-Vis spectroscopy, the decrease of the maleimide signal around 

300 nm could be detected and a trend in reactivity was observed in the order 1, 2 and 

3. –M and –I effects of phenyl and oxygen are withdrawing electron density from the 

maleimide systems, thereby lowering the energy of the LUMO. DA reactivity is 

increased by the increase of the HOMO/LUMO interaction. 

UV-Vis spectroscopy could not be used for kinetic studies on the surface of 

nanoparticles because of light scattering in the particle suspensions. Thus, FTIR 

spectroscopy was used to investigate DA reaction between 1@SiO2 and furan. 

Reaction rate constant k was in the same order of magnitude than the respective k for 

the model reaction in solution. No considerable slowdown was observed on the 

nanoparticle surface. 

TGA results of DA reacted nanoparticles revealed low conversion. Steric effects 

between closely stacked surface functionalities prevent full conversion. The 

calculated conversions were 16 %, 37 % and 17 %, respectively. Remarkably, a low 

surface coverage resulted in a higher DA conversion, which is in agreement with 

steric surface effects. 

 

As the ultimate goal was to use modified nanoparticles within a polymeric matrix, the 

previous investigation indicated that short molecular coupling agents were unsuitable 

as DA conversion was very low, even in solution. A successful DA curing in the solid 

state requires superior mobility of functional groups by increasing the distance to the 

surface. 
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The next logical step in order to create self-healing nanocomposites was surface-

initiated ATRP. By using dienophilic and dienic monomers and initiator-modified 

silica, inorganic-organic core-shell nanoparticles could be confected. The use of a 

comonomer, allowed tuning glass transition temperature Tg and number of functional 

groups. BMA was selected because of its relative low Tg. A ratio of 10:1 of BMA to 

functional monomer was necessary to keep a low Tg and maintain mobility of 

polymeric chains between cross-links. 

Stöber process was used to prepare 42.1 ± 5.4 nm (TEM) SiO2 nanoparticles. They 

were modified with previously prepared initiator coupling agent. In order to ensure 

the formation of a monolayer of initiator molecules, monoethoxysilane was used as 

anchor group. Additionally, the use of monoethoxysilanes prevents the formation of 

secondary oligomeric silane networks. Dimeric condensation products remain soluble 

and can easily removed by washing. 

Functional monomers were prepared by reacting methacryloyl chloride with furfuryl 

alcohol or protected hydroxypropylmaleimide. ATRP was used to prepare both the 

polymer matrix and the core-shell nanoparticles. P(BMA-co-FMA0.1)@SiO2 was 

synthesized in toluene at 90 °C using CuBr and PMDETA. In order to prevent 

secondary reactions during the preparation of P(BMA-co-pMiMA0.1) matrix, 

HMTETA was employed as chelating agent. Lower reaction temperature avoided 

RDA reaction of the protected maleimide, thereby avoiding polymerization of the 

maleimide double bond. 

DLS, TEM, AFM, FTIR and TGA were used to characterize the core-shell 

nanoparticles. DLS showed an increase of the hydrodynamic diameter of roughly 

200 % and TEM revealed no agglomeration. TGA experiments revealed 68.9 wt% of 

copolymer. Additionally, molecular weight distributions of grafted polymer chains 

were obtained after etching of the silica core with hydrofluoric acid. SEC of the 

liberated macromolecules resulted in a molecular weight of 150,000 g/mol and a PDI 

of 3.3. Low graft-density of 0.01 chains per nm2 could be explained by relatively low 

reactivity and the use of bulky monomers. 

P(BMA-co-MiMA0.1) matrix was obtained after deprotection of the maleimide 

moieties at temperatures above 100 °C. DSC measurements were used to provide 

evidence for the RDA reaction. A strong endothermic signal with an onset 

temperature of 124 °C revealed liberation of furan by RDA reaction. Supporting 

verification was obtained by FTIR measurements. 
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Maleimide polymer matrix and furan core-shell nanoparticles were combined by 

suspension in THF followed by removal of the solvent. The resulting nanocomposite 

was cured by DA reaction at 80 °C for 24 hrs. During the first heating cycle of DSC 

measurements, an endothermic RDA peak was observed. Subsequent cooling and 

reheating showed only minor RDA reaction. This could be explained by slow DA 

reaction during cooling. Curing by DA reaction could be observed by rheology and 

UV-Vis spectroscopy of previously uncured composite samples. Increase of storage 

modulus is accompanied by a decrease of the intensity of maleimide signal at 300 nm. 

Reversibility of cross-linking reaction was proven by multiple cycles using UV-Vis 

spectroscopy. 

Proof of self-healing ability was gained from scratch healing test. Microscopic images 

of surface scratches during heating displayed complete closure of the defects at 

temperatures above RDA reaction. 

 

In the third investigation, cubic spherosilicate cores were modified with dienic 

functional groups by hydrosilation reaction. Spherosilicates are one of the smallest 

silica species known. The high solubility of these inorganic building blocks offers 

analytical advantages as liquid NMR spectroscopy can be used for characterization. 

Influence of solubility and the resulting increased diffusion rate on DA reaction was 

investigated. 

The octaanion [(OSiO1,5)8]8- served as precursor for the preparation of an 

octafunctional cross-linker. Hydrolysis followed by controlled condensation of TEOS 

in methanol/water was used to synthesize the inorganic anion. Tetramethylammonium 

hydroxide was used as base. Dimethylchlorosilane was employed for endcapping of 

the cubic structure in a biphasic reaction using petroleum ether as solvent for the 

silane. In the next step hydrosilation reaction was used to functionalize Q8M8
H with 

furfuryl moieties using FAE, which was prepared in advance. FAE was obtained by 

reacting furfuryl alcohol with allyl bromide in a bulk reaction with potassium 

hydroxide. 

Hydrosilation reaction resulted in an eight-fold modification of the cubic 

spherosilicate as evidenced by liquid NMR spectroscopy. In addition, FTIR 

spectroscopy showed no remaining Si-H signal. DLS results confirmed the calculated 

size of the nano building blocks. Furthermore, in the ESI-FTICR MS spectrum of the 

product, several peaks corresponded to Q8M8FAE8. 



SUMMARY 
_____________________________________________________________________ 

 !
85 

!
! !

As counterpart, two bifunctional maleimide cross-linkers were synthesized. A short 

stiff molecular cross-linker BMI and an oligomeric flexible siloxane cross-linker M2-

PDMS were prepared for comparison. 

DA reaction was confirmed using NMR and FTIR spectroscopy. DSC measurements 

of previously cured materials revealed higher endothermic RDA reaction of the BMI 

sample. In addition, cooling and reheating exposed a faster reconnection of the cross-

links compared to the M2-PDMS sample. Higher diffusion rates of the molecular 

cross-linker were identified as the cause of this effect. 

Both hybrid self-healing materials had very different mechanical properties. Curing 

with the small stiff BMI molecule gave a hard, resistant, glassy solid. M2-PDMS with 

its relatively low glass transition temperature gave an elastomeric material. 

It could be shown that both materials could be molded using a heated filmmaker 

press. Broken specimens could be healed and even reshaped by RDA reaction. 

Additional scratch-healing tests monitored by light microscopy revealed surface 

smoothening of the BMI-cured sample and complete closure of defects of the M2-

PDMS specimen. The elastomeric nature of the latter was favorable for self-healing 

abilities. 

 

In order to complete the investigations, a comparative study of all three self-healing 

strategies was conducted. Spherosilicates Q8M8FAE8, P(BMA-co-FMA)@SiO2 silica-

polymer core-shell nanoparticles and surface modified nanoparticles FUPTES@SiO2 

were mixed with P(BMA-co-MiMA0.1) matrix in stoichiometric ratio of maleimide 

and furan. Core-shell nanoparticles were synthesized with two different chain lengths 

and various BMA to FMA ratio. A short furan coupling agent used to modify SiO2 

nanoparticles was prepared from furfuryl amine and 3-isocyanato-

propyltriethoxysilane. In addition to inorganic cross-linkers both a short molecular 

bisfuran and the furan copolymer P(BMA-co-FMA0.1) were prepared. 

Various techniques were utilized to characterize the resulting materials. UV-Vis 

spectroscopy was used to follow DA curing at 70 °C. Fastest reactions were recorded 

with both molecular cross-linkers BF and Q8M8FAE8, where diffusion rates are 

highest. Polymer and core-shell particles with the same BMA/FMA ratio displayed 

similar reaction rates. An increased FMA content slowed down DA reaction by 

decreasing mobility of the polymer chains. Nanoparticles functionalized with short 
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coupling agents did not perform as cross-linkers. No decrease of maleimide signal 

could be detected. 

Swelling behavior of previously cured samples was used to assess the number of 

cross-links formed by DA reaction. It could be demonstrated that both BF and 

FUPTES@SiO2 did not result in enough cross-links to form networks. BF only 

reacted with one of the dienic functionalities without cross-linking the matrix. 

Furthermore it could be shown that the highest number of cross-linking points was 

obtained through high nanoparticle content and by using the spherosilicate cross-

linker. The nanoparticles themselves acted as secondary cross-links. 

Rheological measurements were used to compare the mechanical properties of 

uncured polymer matrix with cured samples. The fact that FUPTES@SiO2 did not 

serve as a cross-linker could be confirmed. Slight increase of storage modulus could 

be explained by high nanoparticle content. On the other hand, curing with BF resulted 

in an increased storage modulus. These results were not consistent with UV-Vis or 

swelling experiments. The oscillating movements of the plates may favor DA reaction 

during rheology. Furthermore, the results confirmed that lower furan content is 

beneficial for a high number of cross-links. 

DMA from 40 to 160 °C of previously cured samples displayed a second softening 

domain generated by RDA reaction for all cross-linked materials. This phenomenon 

could be employed to distinguish the samples with self-healing abilities from the 

samples without self-healing abilities. 

Scratch healing experiments were used for the same goal. It could be demonstrated 

that all cured samples allowed self-healing of surface defects by RDA reaction. 

P(BMA-co-MiMA0.1)/FUPTES@SiO2 could be melted at low temperatures because 

of the lack of cross-links. 

It was concluded that Q8M8FAE8
 was best suited as inorganic cross-linking agent for 

self-healing nanocomposites. Due to its size, DA-curing was fast and conversion was 

high. 

On the other hand, inorganic-organic core-shell nanoparticles represent a universal 

technique for the preparation of self-healing nanocomposites. The silica core could be 

easily be substituted for any other kind of inorganic core. 
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5 OUTLOOK 

The different building blocks investigated in this work were more or less suitable for 

the preparation of self-healing nanocomposites. The various triethoxysilane coupling 

agents containing maleimide- and furan-functional groups did not yield usable 

building blocks for DA reaction because of steric hindrance near the surface of the 

nanoparticles. The increase of the length of the spacer group between the 

triethoxysilane anchor group and the DA functionalities may solve this issue. In 

further investigations it could be envisaged to use longer spacer groups in order to 

increase the reactivity of the surface functionalities.  

Silica nanoparticles were chosen as a model because of the simple synthetic 

procedures and the uniform size and shape. An exchange of the inorganic core could 

be useful in order to profit from physical properties of various kinds of inorganic 

nanoparticles. Magnetite particles would offer the possibility to use hyperthermia as 

heating mechanism to trigger the DA or RDA reaction. Heat dissipation generated by 

placing the nanocomposite within an alternating magnetic field would facilitate the 

application of self-healing material. In the case of self-healing coatings, working with 

gold nanoparticles would allow to heal surface defect by heating the nanocomposite 

through light irradiation. Gold nanoparticles efficiently generate heat in the presence 

of electromagnetic radiation in the near infrared range. 

The surface-initiated ATRP technique presented in this work could be easily 

transferred to many other kinds of inorganic cores, by simply changing the type of 

anchor group used to attach the initiator. Phosphonic acids are universally suitable for 

a great number of different metal oxides. Thiols may be employed in the case of many 

metal nanoparticles and metal sulfides, selenides or tellurides. 
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8 SUPPORTING INFORMATION 

Thermoreversible Reactions on 
Inorganic Nanoparticle Surfaces – 
Diels-Alder Reactions on Sterically 
Crowded Surfaces 
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1. Transmission+electron+microscopy+(TEM)+

+

+

$

Figure$S10:$TEM$image$of$prepared$silica$nanoparticles.+

+

+
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$

Figure$S11:$TEM$size$distribution$histogram.+

+

2.+FTIR+Analysis+

 

Figure$S3:$IR$Spectrum$of$2@SiO2.$



SUPPORTING INFORMATION 
_____________________________________________________________________ 

 !
96 

!
! !

 

Figure$S4:$IR$Spectrum$of$BMPTES@SiO2.$

 
2.+TGA+coupled+with+FTIR++

 

 

Figure$S5:$TGA/FTIR$3DKplot$of$1@SiO2.$
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Figure$S6:$TGA/FTIR$3DKplot$of$2@SiO2.$

 

 

Figure$S7:$TGA/FTIR$3DKplot$of$3@SiO2.$
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3.+DielsBAlder+Reaction+on+the+particle+surface+

 

Figure$S8:$$Comparison$of$TGA$measurements$of$FK2@SiO2$and$2@SiO2$after$retroKDA$reaction$at$150°C.$

 

Figure$S9:$Comparison$of$TGA$measurements$of$FK3@SiO2$and$3@SiO2$after$retroKDA$reaction$at$150°C.$
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4.+Kinetic+Studies+of+Model+Compounds+

+

 

Figure$S10:$UVKVis$ Spectra$ of$NKPropylmaleimide$M1+ at$ different$ time$ intervals$ during$ the$DA$ reaction$with$
dimethylfuran$at$60°C.$
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Figure$S11:$UVKVis$Spectra$of$NKethyl(NKpropylcarbamato)maleimide$M2$at$different$time$intervals$during$the$
DA$reaction$with$dimethylfuran$at$60°C.$

 

Figure$S12:$UVKVis$Spectra$of$NKPhenylmaleimide$M3$ at$ different$ time$ intervals$ during$ the$DA$ reaction$with$
dimethylfuran$at$60°C.$
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Figure$S13:$Logarithm$of$conversion$over$time$of$NKPropylmaleimide$M1$at$different$temperatures.$

 

Figure$ S14:$ Logarithm$ of$ conversion$ over$ time$ of$ NKethyl(NKpropylcarbamato)maleimide$ M2$ at$ different$
temperatures.$
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Figure$S15:$Logarithm$of$conversion$over$time$of$NKPhenylmaleimide$M3$at$different$temperatures.+
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Self-healing nanocomposites from silca-polymer core-shell 

nanoparticles 

 

Tom Engel and Guido Kickelbick* 

Inorganic Solid State Chemistry, Saarland University, Am Markt Zeile 3, 66125 Saarbrücken, 

Germany 

 

SUPPORTING INFORMATION 

 

Synthesis of Protected Maleic Anhydride – 3,6-Epoxy-1,2,3,6-tetrahydrophthalic 

Anhydride 1. 

The synthesis was carried out following a modified literature procedure. In a 1 L 

three-neck round-bottom flask under argon atmosphere. 100 g (1.02 mol) of the 

maleic anhydride and 81.69 g (1.2 mol) of furan were dissolved in 500 mL of toluene. 

The mixture was stirred for 3 days at room temperature. A white precipitate formed 

during this time. The solid was collected by filtration and washed two times with cold 

diethyl ether. The filtrate was reduced by rotary evaporation to 80 mL and cooled to 4 

°C overnight. A second crop crystallized, which was again collected by filtration and 

washed with diethyl ether. Finally, the crystals were dried in vacuum (≈10−2 mbar) 

overnight. Yield: 151.65 g (0.913 mol; 89.5%). 

1H NMR (CDCl3, 25 °C) δ ppm 3.01 (s, 2 H), 5.40 (s, 2 H), 6.57 (s, 2 H). 13C NMR 

(CDCl3, 25 °C) δ ppm 47.52 (CH), 81.40 (CHO), 136.67 (C=C), 175.29 (C=O). 

IR (cm−1): 3143 (2x C=C), 3099 (=C-H), 3089, 3066, 3033, 3000, 2991, 1857 (sym 

C=O), 1780 (asym C=O), 1309, 1282, 1230, 1211, 1193, 1145, 1083, 1018, 948, 921, 

902, 877, 848, 821. Onset of decomposition (DSC, N2, 15 K min−1): 117.9 °C.  

Elemental analysis (%): Calcd for C8H6O4: C 57.84, H 3.64, N 0.00; Found: C 56.75, 

H 3.71, N 0.00. 
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Synthesis of Protected (3-Hydroxypropyl)maleimide – 4-(3-hydroxypropyl)-10-

oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione 2. 

In a 2 L reactor with double jacket heating and mechanical stirrer, reflux condenser 

and dropping funnel, 100 g (0.6019 mol) protected maleic anhydride were suspended 

in 2 L MeOH. 45.21 g (0.602 mol) 3-Aminopropan-1-ol were added drop wise and 

stirred at RT until all adducts were dissolved. The mixture was heated to reflux (57 

°C) for 3 days. The solvent was removed in vacuum. The yellowish oil was dissolved 

in 500 mL of chloroform and washed 3 times with 200 mL of water. The organic 

layer was dried over sodium sulfate and concentrated in vacuum. Yield: 32.3 g (0.144 

mol; 24.0 %)  

1H NMR (CDCl3, 25 °C) δ ppm 1.78 (qt, J = 6.00 Hz, 2 H), 2.88 (s, 2 H), 3.53 (t, J = 

6.00 Hz, 2 H), 3.66 (t, J = 6.00 Hz, 2 H), 5.28 (s, 2 H), 6.53 (s, 2 H). 13C NMR 

(CDCl3, 25 °C) δ ppm 30.32 (CH2), 35.16 (CH2N), 47.48 (CH), 58.63 (CH2O), 80.96 

(CHO), 136.51 (C=C), 176.94 (C=O).  

IR (cm−1): 3507 (OH), 3095 (=C-H), 3008 (=C-H), 2947 (C-H), 2874 (C-H), 1766 

(sym C=O), 1689 (asym C=O), 1435, 1155, 1019, 878, 851. Elemental analysis (%): 

Calcd for C11H13O4N: C 59.19, H 5.87, N 6.27; Found: C 57.71, H 5.80, N 5.98. 

 
Synthesis of silica nanoparticles 

The silica nanoparticles were synthesized according to a modified literature 

procedure. In a 2 L round-bottom flask, ethanol (1500 mL) was mixed with 45 mL of 

25% ammonia and 30 mL of water and stirred for 10 min. Then 170 mL of TEOS 

were added. The solution was stirred for 1 days, and a part of the particles was 

isolated to characterize the unmodified sample. Part of the solvent was removed and 

and the particles were isolated and washed three times with ethanol by centrifugation 

at 13000 rpm and dried overnight in a vacuum oven (≈50 mbar) at 60 °C. Yield: 45 g 
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silica particles; TEM: diameter 42 ± 5.4 nm; DLS: diameter 44.8 ± 0.4 nm; surface 

area: BET 306 m2 g−1. 

 

 FIGURE S1: TEM IMAGE OF BARE SILICA AND THE CORRESPONDING 

HISTOGRAM WITH DETERMINED AVERAGE DIAMETER.  

 

Figure S2: TEM image of PBMA-co-FMA grafted silica and the corresponding histogram 

with determined average diameter. 
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Figure S3: UV/Vis spectra during curing of P(BMA-co-MiMA) with P(BMA-co-

FMA)@SiO2. 
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Figure S4: UV/Vis spectra of multiple curing cycles.  
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Furan-Modified Spherosilicates as Building Blocks for Self-Healing 
MaterialsSupporting Information

 
 

Figure SI1: 1H NMR of Q8M8
H. 

 
 

Figure SI2: 1H NMR of Q8M8
H. 
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FIGURE SI3: 29SI NMR OF Q8M8

H. 
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FIGURE SI4: 1H NMR OF M2-PDMS. 

 

 
FIGURE SI5: 13C NMR OF M2-PDMS. 
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FIGURE SI6: 29SI NMR OF M2-PDMS. 
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FIGURE SI7: ESI-MS SPECTRUM OF Q8M8FAE8. 
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FIGURE SI8: ESI-MS OF Q8M8FAE8 (DOUBLY CHARGED SPECIES) 
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FIGURE SI9: MS/MS MODE, PRECURSOR IONS (1062 M/Z) WERE ISOLATED FIRST IN THE QUADRUPOLE AND 

EXTERNALLY ACCUMULATED IN THE HEXAPOLE FOR 0.1 S. FOR CID, 4 V COLLISION VOLTAGE WAS 

APPLIED. 

 

 


