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Abstract

The increasing amount of biological data available from high-throughput technolo-
gies poses great interdisciplinary challenges to research. Today, cost-efficient plat-
forms generate manifold types of data and allow to build comprehensive resources
that include but are not limited to genomics, proteomics, and metabolomics on a
systemic scale. In order to adapt to this development in the post-wetlab analysis,
computer scientists in computational biology work on methods and software frame-
works that are able to account for data size and diversity, and allow to scrutinize
data in respect to a specific context, such as the emergence of diseases.

Aiming for this, we first present a desktop software framework designed to
integrate biological data that features a uniform interface to perform consecutive
analysis steps managed by an automated task processing system. The extensibility
of the platform based on a concise plugin interface was used for a study on breast
cancer for which we developed a plugin to derive gene regulatory networks.

From this analysis, we derived a general approach to generate transcription
factor-microRNA regulatory networks and built a webservice available for public
use: TFmiR. Using differentially expressed sets of mRNAs and miRNAs, TFmiR
generates a network with experimental or predicted evidence and provides down-
stream investigation, e.g. applying various network measures and overrepresenta-
tion analysis. Further in-depth analysis is provided with a motif search algorithm.
For all motifs of particular interest, the software allows to investigate co-regulated
and co-targeted subnetworks and calculates the functional similarity scores of the
participating genes.

We investigated a comprehensive dataset on Alzheimer’s disease that was pro-
vided by the neurological laboratory in Homburg. We conducted the individual
analysis of the various types of data, followed by applying our approaches to build
regulatory networks, and search for potential key drivers of the Alzheimer’s dis-
ease. Moreover, we show a different strategy based on patient-similarity networks
with the aim to find a descriptive combination of markers for AD spanning the
multiple data sources.
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Zusammenfassung

Biotechnologische Hochdurchsatzverfahren und die damit verbundene stetig anwach-
sende Menge an biologischen Daten stellen die Forschung vor ebenso wachsende
Herausforderungen. Neue und kosteneffiziente Verfahren erlauben die Erstellung
umfangreicher Datenbanken, die beispielsweise das vollständige Genom, Proteom,
oder Metabolom eines Organismus oder Individuums enthalten können. Infor-
matiker, Bioinformatiker, und Biologen arbeiten daher an Methoden und Soft-
wareumgebungen um dieser Entwicklung nachzukommen und diese Daten trotz
ihres Umfangs und Vielfältigkeit einheitlich erfassen zu können. Dabei gilt beson-
deres Interesse der Notwendigkeit, diese Daten im Hinblick auf ihre Bedeutung in
bestimmten Kontexten zu untersuchen, wie zum Beispiel im Zusammenhang mit
Krankheiten.

Mit diesem Ziel vor Augen zeigen wir zunächst die Softwareumgebung Mebitoo,
die wir zur Integration und automatisierten Analyse von biologischen Daten ent-
wickelten. Mit einer Erweiterung der Software zur Erstellung regulatorischer Netz-
werke zeigen wir die vielfältige Einsetzbarkeit der Platform am Beispiel von Daten
zu Brustkarzinomen.

Aufbauend darauf entwickelten wir eine allgemeine Strategie zur Erstellung
regulatorischer Netzwerke, die auf differentiell exprimierten Genen und microR-
NAs basiert. Wir stellten einen Webservice zur Verfügung, der durch die Ein-
bindung verschiedener Datenbanken zu experimentell bestimmten oder in silico
berechneten mutmaßlichen Interaktionen ein regulatorisches Netzwerk, wahlweise
im Hinblick auf eine mögliche Krankheit, erstellt und untersucht. Die bereit-
gestellten Analysen umfassen Methoden zur generellen Netzwerkevaluierung, sowie
aufwändigere Algorithmen zur Bestimmung von Netzwerkmotiven und deren Sub-
netzen, und die Untersuchung auf deren Funktionalität.

Abschließend beschreiben wir die Untersuchung eines umfassenden Datensatzes
zur Alzheimer’schen Krankheit, welcher vom neurologischen Labor der Univer-
sitätsklinik des Saarlandes zusammengestellt wurde. Die Daten umfassen Gen-
und miRNA Expressionsprofile, Methylierung, Proteinlevelmessungen, und SNPs
zu einer Kohorte von Alzheimerpatienten und Kontrollen. Wir untersuchten die
Daten jeweils individuell und zeigten anschließend die Anwendung unserer Pipeline
Identifikation von mutmaßlichen Key Drivern. Darüberhinaus verfolgten wir einen
Ansatz, der auf Ähnlichkeitsnetzen für die jeweiligen Patienten beruht.
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Chapter 1

Introduction

In the last century, biological technology evolved to create a critical amount of
data that exceeded the capability to comprehend manually in magnitudes. Thus,
a need for structured data storage established and drove the development of bio-
logical databases, starting with Margret Dayhoff and the Atlas of Protein Sequence
and Structure. This lead to the Protein Information Resource database of protein
sequences - today part of the Uniprot consortium [Dayhoff et al., 1976; Dayhoff,
1965]. Meanwhile, her group started the computational analysis of protein struc-
tures [Dayhoff, 1974, 1969]. With Dayhoff’s field of research prevailing and gaining
importance up to today, we regard this as the beginning of computational biol-
ogy, and bioinformatics. Ever since, the rapidly increasing fund of biological data
spans over a respectable amount of databases that hold DNA/RNA sequencing
data, methylomes, genotypes, and protein structures.

When evaluating the human genome, more than 1 800 disease associated genes
were discovered, enabling the development of a variety of genetic tests for certain
conditions [Miklos and Rubin, 1996]. However, the knowledge of the genome helps
to assess genetic risks but delivers not necessarily deterministic answers for the
occurrence of many diseases. Epigenetic regulation mechanisms known as DNA
methylation, histone modification, chromatin remodeling and noncoding RNAs,
influence which genes actually are expressed and play a major role in cell differen-
tiation, growth, and eventually in the pathological history of each individual [Bird,
1986]. For this reason, studies of expression data and epigenetic features together
delivered valuable insights.

In order to enhance a comprehensive understanding, databases were designed
to embrace a variety of multifaceted biological data with respect to a specific pur-
pose, such as The Cancer Genome Atlas (TCGA), which contains gene expression
profiling, copy number variation profiling, SNP genotyping, genome wide DNA
methylation profiling, microRNA profiling, and exon sequencing.

The availability of such comprehensive datasets rose the question of how to

1



2 CHAPTER 1. INTRODUCTION

contextualize each other, and lead to the efforts to employ integrated analysis on
biological data.

1.1 Biological Data

The translation of biological features on molecular level to generate computation-
ally assessable data poses various challenges itself. For example, there is no way
to observe the DNA sequence of a human genome in its entirety of over 3 000
Mega-base pairs using a microscope. Thus research focused on methods to ac-
complish such tasks, starting with the first practical method presented by Sanger
et al. [1977] who amplified DNA using a DNA polymerase with specific terminators
for each of the four nucleotides, and enabled to determine the base pair sequence
using gel electrophoresis. As one of many examples, DNA sequencing methods
enabled structured assessment of biological data and today, various experimental
protocols exist to obtain methylomes, expression profiles, DNA/RNA sequences,
protein structures and many more.

In the following sections, we outline the methods applicable to obtain the data
we studied in the scope of this work.

1.1.1 Enzyme Linked Immunosorbent Assay (ELISA)

The Enzyme Linked Immunosorbent Assay (ELISA) is one of the most established
methods to detect the presence of a certain substance in a sample, and its variations
share the same concept.

In principle, a liquid sample subjected to test is added to a stationary solid
phase with a ligand-specific binding reagent that contains the antigen for a certain
antibody or vice versa. Subsequently, a labelled substrate for the antigen is added
to the plate and the reaction of non-bound antigens with the substrate induces
a color change. The resulting signal is measured using spectrophotometry and
allows quantification of the antigen in the studied sample [Voller et al., 1978].

ELISA has been established as a standard for diagnostic tests such as the
determination of serum antibody concentrations in HIV patients. In Chapter 5,
we study Amyloid-β 40 and 42 measurements obtained with ELISA.

1.1.2 Microarrays

As mentioned before, regulatory mechanisms influence the transcription of the
genome. In order to gain an insight into this transcriptional level, genome-wide
hybridization arrays were designed and are used today to compare genome-wide
features among individuals and tissues. For example, an investigation of samples
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from disease patients in comparison with healthy controls may show differences
in the expression profiles that hint information on the gene products responsible
for the defect. A schematic of a gene expression microarray assay is shown in
Figure 1.1. Extracted mRNAs or amplified cDNAs from tissues are labelled with
fluorescent markers and hybridized to the array. A laser and a confocal scanner
then excite and detect the fluorescent dyes, which yields a digital image from the
microarray. Using image processing algorithms, the spot intensities are measured
and translated into numerical readings. After estimation and subtraction of the
background noise, the final signal is an integer proportional to the concentration
of the target sequence for each spot. For two-dye experiments, a ratio of the
expression levels of a sample in respect to the reference is determined [Trevino
et al., 2007]. A microarray is capable to detect and measure expression levels of
thousands of genes in a single experiment.

The microarray technology developed by Illumina in particular is based on
oligonucleotides attached to beads that are randomly deposited onto a glass sur-
face. Using the address sequence of each bead, bead positions are decoded to
determine which bead combination is located in which well [Gunderson et al.,
2004]. Thus, each array has a unique layout file that is used to decode the data
when scanning. For gene expression in human samples, Illumina provides an ex-
pression BeadChip (HT12v4) that targets more than 47 000 probes with up to 12
different samples per chip.

The design of the beads and therefore the applications of the Illumina BeadChip
technology are multifaceted and include arrays used for genotyping, copy-number
determination, sequencing, and methylation analysis. The versatility of the plat-
form enables to obtain variety of data cost-efficiently, and was used to generate
most of the data studied in Chapter 5.

1.1.3 DNA Methylation

DNA Methylation, occuring at the CpG dinucleotide, is probably the most studied
epigenetic modification so far. Extensive mapping experiments in different cancers
pointed out a key role of DNA methylation in oncogenic development [Boerno et al.,
2010]. When studies showed the potential of methylation-based biomarkers that
enhance early diagnosis, prognosis, and classification of cancer, the aim was set to
perform epigenome-wide association analysis at reasonable costs.

The Illumina Infinium HumanMethylation 450k BeadChip covers 99% percent
of all RefSeq genes with more than 480 000 CpG sites at high coverage with an
average of 17 probes per gene. The array includes various functional elements, gene
bodies and miRNA promoters are covered as well [Touleimat and Tost, 2012], and
generates data for an extensive analysis with a single experiment. As we show in
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Figure 1.1: Overview of a microarray experiment for both a comparison experiment with two
dyes and a single dye experiment. Left column shows the processing steps, third column the
results of each step. Source: Trevino et al. [2007]

Chapter 5, we used this data to investigate methylation levels of gene and miRNA
promoters together with expression and SNP data.

1.1.4 MicroRNA

Previously, we mentioned DNA methylation assuming a key role in the regulation
of gene expression. Other than that, gene regulation may occur at the transcript
level. Small non-coding RNAs, microRNAs (miRNA), bind to mRNA transcripts
and prevent their translation to protein products. Moreover, targets may recipro-
cally influence level and function of miRNAs [Pasquinelli, 2012].

The mutual regulation of miRNAs and target genes is crucial to the under-
standing of gene-regulatory mechanisms.

The samples in our Alzheimer study were obtained using the Geniom RT An-
alyzer, which is another microarray-based platform. In order to quantify miRNA
from the tissue samples, microRNAs are hybridized to microfluidic primers, la-
belled. After primer extension, a picture is obtained that is processed subsequently
to translate the intensities into a numeric reading.
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1.2 Single nucleotide polymorphisms (SNPs)

An investigation of single nucleotide polymorphisms (SNPs) enables to assess ge-
netic variations between individuals on a genomic scale. For one position out of
every 1 000 nucleotides, the human genome shows a base pair exchange among
individuals [Syvänen, 2001]. Depending on the location of those SNPs, this may
affect an individual in different ways. For example, a SNP that occurs within a
gene coding region can change the amino acid composition of the encoded protein
and, thus, alternate the structure and function of the product. In fact, many inher-
ited disorders are associated with SNPs, such as the Apoε allele, which was shown
to affect atherosclerosis [Davignon et al., 1988] and plays a role in our studies on
Alzheimer’s disease as well.

Apart from the obvious approach to sequence a sample genome, SNPs can be
determined using a polymerase chain reaction with allele-specific oligonucleotides
or, on larger scales, using microarrays. In our case, the Illumina Human610-
Quad beadchip microarray was used to determine the SNPs for the samples in the
Alzheimer study.

1.3 Systems Biology

Different biological data represent a collection of systematic measurements. Many-
faceted system biology approaches that incorporate such genome-scale experiments
have been developed to perform predictive, hypothesis-driven science [Chuang
et al., 2010].

1.3.1 Gene regulatory networks

One systems biology strategy in particular aims at the reconstruction of gene
regulatory networks (GRNs) from experimental data such as microarray gene ex-
pression profiles. The incorporation of more information such as interaction data,
genome sequences, or epigenetic information helps to prune and thus to create
more concise networks [Hecker et al., 2009].

The construction of regulatory networks and their pruning using other systemic
data motivated large parts of the work presented in this thesis. We developed a
gene regulatory network plugin based on co-expression data for our software frame-
work Mebitoo presented in Chapter 3.3 and published subsequently the breast
cancer study described in 3.4. In Chapter 4 we introduce the web service TFmiR,
that was designed to build a transcription factor-miRNA regulatory network based
on differentially expressed genes and miRNAs.
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1.4 Similarity Networks

A different approach on data integration was done with networks of individuals
[Barabási, 2007], for example in Christakis and Fowler [2007] where the authors
investigated obesity of individuals and their social network and concluded obesity
to spread through social ties.

Likewise, Wang et al. [2014] presented a method to create patient-similarity
networks integrating biological data, and merge those into a single network that
incorporates the information content of each data source. Thus, this network
reflects a condensed representation of the dataset and offers insight into possible
complementary characteristics of the different input sources.

Similarity networks and network merging are explained in more detail in section
2.3, and we outline their novel application on Alzheimer’s disease data in Chapter
5.

1.5 Computational Tools for Data Integration

Unsurprisingly, the need for software that enables to create workflows for efficient
processing rose together with the amount of biological data available.

Cytoscape, a software environment to integrate biological interaction networks
with expression data, was presented by Shannon et al. [2003a] and gained large
popularity due to a platform-independent architecture with a graphical user inter-
face. Since then, the plugin-based platform received with well over 5000 citations
and grew a large developer base that contributed various plugins for data visualiza-
tion, ontology analysis, data integration, clustering, and many more as described
in Saito et al. [2012]. However, some of the plugins mentioned are obsolete today,
since the platform is under continuous development and was recently rebuild to
be future-proof in a major version update to 3.x which is incompatible to 2.x.

Scripting languages on the other hand offer more flexibility to work with bio-
logical data. Dialects like Python allow dynamic typecasting and are based on an
easy-to-understand syntax in comparison to their regular programming language
counterparts and allow for very quick prototyping of data analysis pipelines. The
potential was recognized, and groups like Cock et al. [2009] developed libraries
that wrapped standard tasks like data import and export for biological data and
the execution of BLAST queries or ClustalW alignments on sequences into their
package called BioPython.

Statistics in computational biology provide important methods to rule out sig-
nificant pieces from the large puzzle of biological data. Designed specifically for
the purpose of statistical computing, the R framework naturally provides much of
the required functionality. Because R features a packing protocol to extend the
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framework, Gentleman et al. [2004] presented their Bioconductor package to close
the gap between R and biological data, starting with array-based expression data.
Since then, Bioconductor has been extended continuously to allow processing of
data from many different biotechnology platforms.

We present our own approach to a software framework for biological data in-
tegration and workflow creation in Chapter 3. Both Cytoscape and R were used
to develop the pipeline behind TFmiR (Chapter 4), and large parts of the anal-
ysis in the Alzheimer’s disease study was carried out using R scripts based on
Bioconductor, and various subpackages designed to handle the variation of data
sources.

1.6 Complex Diseases

Research has shown that many diseases show a genetic component [Davison et al.,
1994]. Some disorders like sickle cell disease, cystic fibrosis, or Huntington’s disease
are linked to mutations in single genes or loci. However, many other disorders
are likely to arise due to a combination of genetic factors but are induced by
certain lifestyles and environmental factors as well, many of which are yet to
be determined. We now know that there are genetic predispositions for certain
diseases (such as the Apolipoprotein E (Apoε ) allele in Alzheimer’s Disease), but
a genetic tendency alone proved not be sufficient as definitive predictors for many
of them [Craig, 2008].

In the next sections, we describe briefly the complex diseases studied in the
scope of this thesis, in particular breast carcinoma and the Alzheimer’s disease.

1.6.1 Breast Cancer

Breast cancer (BC) is the most prevalent carcinoma in females, with one of ten
women affected by the age of 80 years and accounts for the second-highest number
of deaths of female cancer patients, after lung cancer [Siegel et al., 2014]. Because
BC is a genetically heterogenous type of cancer, treatment and prognosis depends
on correct classification of the carcinoma at hand [Volinia and Croce, 2013]. Due
its complexity, molecular mechanisms and regulatory patterns of the disease are
not yet completely understood.

In order to address the complexity with appropriate models, Cava et al. [2014],
for example, presented an effective discrimination of cancer types based on a sup-
port vector machine classifier combining copy number variations, SNP data, and
the expression values of miRNAs, and mRNAs.

In section 3.4, we describe our approaches to study BC with regulatory network
approaches where we ruled out possible key driver genes and potential drug targets.
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Additionally, we present the application of our TFmiR service to build a TF-
regulatory network on breast cancer data in section 4.5.

1.6.2 Alzheimer’s Disease

With improved healthcare and life standards in general, the average human life
expectancy increased largely, and thus aging and aging-related disease research is
regarded increasingly important. Besides cancer that represents in fact a collection
of diseases, neurodegenerative diseases pose the most prevalent risk for the elderly.
For the most common disorder, the Alzheimer’s Disease (AD), cases double every
five years from the age of 65 onwards. Since its discovery in the early 20th century,
Alzheimer has been known as a complex disorder that is hard to diagnose in
early stages, researchers started to search for possible connections and interactions
between different regulatory pathways that point to the mechanism behind the
disease.

Medical indications discern between Early-Onset Alzheimers Disease (EOAD)
and Late-Onset Alzheimer’s Disease (LOAD). The early-onset form occurs prior
to the age of 60-65 years and often even before the age of 55 and is known to
be mainly caused by mutations in three genes and inherited in an autosomal-
dominant fashion. This familial form is implied by mutations in the genes related
to encoding the amyloid precursor protein (APP), as well as mutations both in
presenilin-1 and presinilin-2 (PSEN1, PSEN2). In a normal metabolism, APP is
processed by the β-secretase 1 (BACE1) and the γ-secretase and is transformed
to β-amyloid 40 and 42 (Aβ40, Aβ42) which are then decomposed. However,
both peptides show neurotoxic characteristics and plaque accumulations have been
found in brain tissues of patients diagnosed with AD as well as with the Down
Syndrome. Interestingly, those plaques have been found in patients that suffered
from traumatic brain injury [Johnson et al., 2010], which indicates its connection
to neurodegeneration not to be limited to AD.

On the other hand, for the LOAD forms that show prevalence in individuals
of 60-65 years and above, there are several genes known to be involved in the
development of sporadic AD. So far, the gene coding for apoliprotein ε (Apoε)
and its genotypes are considered a major factor but not a sufficient marker for
diagnostics or prognosis. Statistically, AD patients are more likely to carry the
Apoε4 allele than the population in general, while Apoε2 may be protective [Minati
et al., 2009].

Alzheimer’s disease largely affects the episodic and semantic memory as well
as it induces noncognitive behavioural changes [Mega et al., 1996]. The temporal
lobe - one of the four major brain lobes of the cerebral cortex - has been shown to
be largely associated with those traits and thus, with AD [Visser et al., 2002].
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In the closing chapter 5, we investigate a comprehensive dataset spanning mi-
croRNA and gene expression as well as methylome and Amyloid-β levels obtained
for 64 samples of temporal lobe tissue from post-mortem patients, of which 39
suffered from Late-Onset Alzheimer’s Disease.

1.7 Outline

This thesis is divided into six chapters. Closing the introduction at this point,
the author presents the theoretical part relevant for this thesis in chapter 2, where
statistical methods and network theory are explained in more detail.

The subsequent three chapters outline major projects the author participated
in.

In chapter 3, the Mebitoo software framework for data integration and workflow
pipelines and the application of the GRN plugin on breast cancer data and their
downstream evaluation are presented.

Subject of chapter 4 is TFmiR, a web service we developed to build regulatory
networks based on gene and miRNA expression data. Moreover, we show our
studies with TFmiR in respect to breast cancer.

The last project presented in the scope of this thesis is the still ongoing study
on Alzheimer’s disease, for which we carried out the analysis for a comprehensive
dataset ourselves. Subsequently, we applied the former approaches and addition-
ally pursued a different strategy based on patient-similarity networks (Chapter
5).

Finally, the last chapter 6 concludes this thesis with a summary and outlook
on future work.
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Chapter 2

Theory

2.1 Statistical Tests

Statistical hypothesis testing is a common method to draw inference about popula-
tions using deviations within data from expected values or, in two-sample testing,
to compare different groups of samples of a population. For instance, in the scope
of this thesis, these are individual markers - such as expression levels for genes
and microRNAs or methylated regions, that are tested for significant differences
between case and control groups of different diseases.

For each test, one tries to determine a probability for a the dataset given a
certain hypothesis is true.

2.1.1 Fundamentals

Classical statistical tests share the same concept:

1. A null-hypothesis H0 and an alternative hypothesis H1 are formulated. Ba-
sically, it is hypothesized that a population is different or not different from
a certain mean, while the alternative is the antithesis.

2. When calculating a test-statistic, it is determined how probable a property
is for the samples in question. As it is in general unlikely to match the
exact mean in a statistical test, results are judged by confidence levels. A
significance level for the statistic reduces the decision whether or not the null
hypothesis is rejected on the so called p-value.

3. If the test statistic fails to satisfy the significance level, it is rejected as being
unlikely to hold given the samples.

For the scope of this thesis, a variety of statistical tests has been used which
will be introduced in the following sections.

11
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2.1.2 The students’s t-test

The t-test finds application when evaluating the mean values of a set of samples
to an expected value.

Given a sample X = X1, . . . , Xn of probes independent to each other that
are N(µ, σ2)-distributed with unknown mean µ and variance σ2, the investigated
hypothesis is defined as:

H0 : µ = µ0 (2.1)

The test statistic then is defined as shown in equation 2.2:

T :=
√
n · X̄ − µ0

Sn
(2.2)

with the sample variance of the mean Sn = σ√
n
.

This test can be applied for quality assurance, for example to ensure a cohort
is within certain specifications: if one is interested if the mean durability time of
a set of lightbulbs compared to the specification a manufacturer warrants.

Obviously, the test confidence grows with larger sample sizes.
In case the samples are not normally distributed, non-parametrical test meth-

ods are required. For any t-test, there is an alternative non-parametrical test
method.

Two-sample t-test

The two-sample t-test is applicable for two samples X = X1, . . . , Xm ∼ N(µX , σ
2
X)

and Y = Y1, . . . , Ym ∼ N(µY , σ
2
Y ) with homogeneous variance (σ2

X = σ2
Y and both

samples are independent to each other.
Similary as with the one-sample t-test, the null hypothesis is defined alike in

equation 2.3.

H0 : µX = µY (2.3)

The test statistic in this case is defined in equation 2.4.

T :=
X̄m − Ȳn√

1
m

+ 1
n
· Sp

(2.4)

with

S2
p :=

(m− 1)S2
X,m + (n− 1)S2

Y,n

m+ n− 2
(2.5)

In order to accept the null hypothesis H0, T should be near to 0, otherwise it is
rejected.
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If the variance is proven to be heterogeneous instead of homogeneous, e.g.
applying a Levene-Test, the t-test is not suitable. An alternative would be the
Welch-Test.

In the scope of this thesis, the two-sample t-test is applied for the differential
analysis of gene and microRNA expression data as well as methylation analysis.

2.1.3 Hypergeometric Test

The hypergeometric test is based on the hypergeometric distribution and provides
a means to compute the statistical significance of specific k probes from n draws
from a population sized N with a total of K success probes. In other words, this
test is applicable to determine whether the amount of successful draws is over- or
underrepresented.

A random variable that is hypergeometrically distributed follows equation 2.6:

P (X = k) =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) (2.6)

The p-value is calculated by 1−
∑

K P (k).

2.1.4 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test allows to validate whether or not an observed cu-
mulative frequency distribution of samples matches 1.) an expected distribution
or 2.) the distribution of another random variable.

To apply this test, observed frequencies are arranged in ascending order, and
each cumulative observed frequency Fi is calculated as the sum from f1 up to and
including fi. From this, cumulative relative observed frequencies are determined
by:

rel Fi =
Fi
n

(2.7)

with the number of data in the sample n =
∑
fi.

This distribution then tested against either an cumulative relative expected
frequency rel F̂i, which is calculated alike. The test statistic is calculated first by
the partial calculation

Di = |rel Fi − rel F̂i| (2.8)

and
D′i = |rel Fi−1 − rel F̂i−1| (2.9)

for each i.
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Finally, D is the largest value of the largest Di or D′i:

D = max(maxDi,maxD′i) (2.10)

Depending on a desired significance level α and the amount of samples n, D is
rejected when it exceeds a critical Dα,n, for large n approximated by

Dα(2),n =

√
− ln(α/2)

2n
(2.11)

as given by Smirnov [1948]. Other computations have been suggested and literature
provides tables for those [Miller, 1956; Zar, 2007].

In a summary, the Kolmogorov-Smirnov test allows to search for a maximum
deviation between the observed distribution F and the hypothetic distribution F̂
and in case this deviation exceeds a certain threshold, the hypothesis that both
curves follow the same distribution is rejected.

In the scope of this thesis, this test has been used to calculate the significance
of similar gene frequency within co-regulated and co-targeted genes of motifs in
TFmiR.

2.1.5 Multiple Testing Correction

When statistical tests are applied, the probability to find a certain result “by
chance” - the p-value usually defines the threshold whether a hypothesis is ac-
cepted or rejected. While this works well for few tests, dealing with genomes and
microarray experiments leads to several thousand separate hypothesis tests. Ac-
cordingly, when testing 20 000 genes with a p-value cut-off at 0.05, still about
1.000 genes may mistakenly be considered significant. The possible outcomes for
a hypothesis test are shown in Table 2.1.

Thus, the probability of making an error α accumulates with the number m of
hypothesis tests. The probability of not making an error in such a series of tests
can be written as:

P (No errors in m tests) = (1− α)m (2.12)

with the probability to make at least one error in m tests 1−(1−α)m. Controlling
the Type I error rate is the aim of the p-value adjustment for multiple testing. In
the scope of this thesis we applied the False Discovery Rate correction presented
by Benjamini and Hochberg [1995] (BH-FDR).

With the amount of mistakenly accepted hypotheses V - false positives -, the
False Discovery Rate is defined as the expected proportion of Type I errors among
the rejected hypotheses R:
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Actual Situation

Decision H0 True H0 False

Accept H0

Correct decision
1− α

Incorrect Decision
Type II Error

β

Reject H0

Incorrect Decision
Type I Error

α
Correct Decision

(1− β)

Table 2.1: Possible outcomes of a hypothesis test with α = P (Type I Error) and β = P (Type II
Error). Minimization of Type I errors are the purpose of multiple testing correction methods.

FDR = E(
V

R
|R > 0) · P (R > 0) (2.13)

To control false discoveries, this rate is to be kept below a certain threshold q.
For example, if the threshold was 0.10 with 1000 hypotheses rejected for 20 000
genes, less than 100 of those are expected to be false positives.

In general, to control the FDR for m tests at level q, the following steps are
applied:

1. Order unadjusted p-values: p1 ≤ p2 ≤ · · · ≤ pm

2. Identify the test with the highest rank j for which pj ≤ j
m
· q

3. Tests of rank 1, 2, . . . , j are declared significant

2.2 Graphs

First, fundamentals of graphs and the underlying abstract model is presented.

2.2.1 Fundamentals

On the most abstract level, a graph can be understood as a binary two-dimensional
matrix, where rows and columns indicate the source and target elements of a graph
and the binary value indicates an existing relation, as shown in equation 2.14.
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v1 v2 v3

v1 0 0 1

v2 1 1 0

v3 1 1 0

(2.14)

More intuitively, a graph consists of a set of elements called nodes V =
{v1, v2, . . . }, which are connected via links that indicate connections between
nodes, e.g. with e1 = (v1, v2). The network from 2.14 is translated to a graphical
representation in Figure 2.1. Note that, depending on the type of the graph - di-
rected or undirected -, the graphical representation may neglect the bidirectional
relations inherently whereas the matrix representation is bijective.

Figure 2.1: Example from 2.14 translated to a graphical representation

The number of links pointing from one node v to all other nodes is defined as
the degree of a node.

2.2.2 Network Measures

For analyzing networks in general terms, a variety of centrality measures have been
included in the scope of the work presented in Chapter 4.

Degree distribution

The degree distribution defines the probability for each node in a network to have
a certain degree k. The trend of the curve in the resulting plot gives information
about the characteristics of a network. In an evenly distributed random network
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the curve follows approximately a Poisson distribution, while the degree distribu-
tion of a scale-free network that is characterized by a few hubs with many links
and a large amount of nodes with few links follows a negative power law [Erdős
and Rényi, 1959; Newman, 2003]. In a biological context, the degree of a node in
terms of a protein-protein interaction network can hint at which proteins are key
drivers for metabolic processes in a cell.

Average path length

The average path length lG is defined as the average number of steps along the
shortest paths (d) between all pairs of all nodes (vi, vj) in a network G with size
n:

lG =
1

n · (n− 1)
·
∑
i 6=j

d(vi, vj) (2.15)

Intuitively, for a biological interaction network to be efficient in terms of few in-
termediate steps, a short average path length indicates efficiency.

Density

The network density D denotes the ratio of the number of actual edges E existing
in a network G to the number of possible edges, as shown in equation 2.16.

D =
2E

N(N − 1)
(2.16)

Network density has been shown to be an indicator of how robust a model network
is to failures. But it has been shown for biological networks that even networks
with low average density were robust to node losses. For that reason, Hayes et al.
[2013] distinguished between local and global density and showed for real protein-
protein interaction (PPI) networks, that the high local edge density in real world
networks contributes to network stability as well.

Diameter

The length of the longest of all shortest paths in a network denotes the network
diameter. This value is understood as a characteristic indicator for the linear size
of a network.

Transitivity

The network transitivity - or clustering coefficient - is a measure for the clustering
in a network.
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Usually, one distinguishes between the global and the local clustering coeffi-
cient.

The global clustering coefficient is determined by the ratio of the actual num-
ber of 3 fully connected nodes to the number of connected triplets of nodes in a
network, such as shown in equation 2.17

C =
no of closed triplets

number of connected triplets
(2.17)

The local clustering coefficient measures the clustering coefficient for a single
node i. In words, it is the ratio of all neighbours Ni = {vj : eij ∈ E ∧ eji ∈ E} of
i that are interconnected to each other to all possible interconnected nodes, given
by the size ki of Ni, 2.18.

Ci =
|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki · (ki − 1)
(2.18)

Measuring the local clustering coefficient of a node in a PPI network, for ex-
ample, may indicate the importance of the protein for the metabolism in question.

Closeness

The reciprocal sum of all shortest paths d from a node v to all other nodes in a
network gives a measure for the centrality of a node, also called its closeness C,
see Equation 2.19.

C(v) =
1∑

w d(v, w)
(2.19)

This value, relative to the closeness of the other nodes in a network, gives a measure
of how relevant a node is in a network in respect to the other nodes.

Note, since this value is an average, it may indicate very proximate distances
to only a few nodes (with some very far away) or more similar distances to all
nodes. A protein with high closeness could be heavily involved in regulation.

Betweenness

Another measure for the centrality of a node is the betweenness. For any node
n and a pair of nodes v1 and v2, the total number of shortest paths linking v1

and v2 passing node n is calculated and related to the overall number of shortest
paths between v1 and v2. A high betweenness indicates the importance of a node
to maintain connections in a network.
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Eigenvector

Other than the degree centrality of a node, the eigenvector centrality assigns a
quality factor to each of the links connected to that node to weight the impor-
tance of the respective link. This factor is obtained by calculating the eigenvalues
for the adjacency matrix and assigning those as weights. Intuitively the higher
the eigenvector value of a certain node scores implicates a higher weight for the
neighbouring nodes.

In a biological sense, a high eigenvector centrality protein is likely to be in-
teracting with other important proteins, together resembling a critical part of an
metabolic pathway.

In the context of drug discovery and a differential analysis of disease and healthy
population, eigenvector centralities may help to reveal potential targets.

2.2.3 Minimum dominating sets

Originally developed to minimize resource allocation for wireless networks, Rai
et al. [2009] presented an algorithm to find a minimum connected dominating set
that represents the most efficient way to connect through the hubs in a network.

A connected dominating set (CDS) C of a graph G is the set S that induces a
connected graph, and the minimum connected dominating set (MCDS) is the set
with the minimal number of links necessary.

Because the problem is known to be NP-hard, it requires heuristics to solve a
MCDS search in reasonable time [He et al., 2011].

For an adjacency matrix of a graph we define a vector X with Xi for each
node i = 1, if the node has been recognized as a key node and 0 otherwise. Then,
solving the optimization problem shown in equation 2.20 yields the dominating set
of nodes.

min
n∑
i=1

Xi

subject to ∀i
n∑
i

adj (i, j)X(j) ≥ 1

(2.20)

In collaboration with Maryam Nazarieh, the author adapted this algorithm to
identify key driver nodes for regulatory networks, and we provide this functionality
our webservice described in Chapter 4.
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2.2.4 Network Motifs

Moreover, when it comes to understand network characteristics, an important
question is whether the network can be decomposed into building blocks. This
was shown in the transcription regulation of the bacterium E. Coli by Huerta
et al. [1998] and Thieffry et al. [1998].

2.2.5 Motifs in TF-miRNA interaction networks

Key functional modules in a regulatory network are represented by Feed Forward
Loops (FFLs). These have been shown to be important patterns in transcriptional
regulation networks that are responsible in normal cell functions and diseases alike
[Milo et al., 2002]. In Figure 2.2, the relevant motifs are shown.

Figure 2.2: Schematic of the four motifs investigated in TFmiR, as shown in Hamed et al. [2015a]

Co-regulation feed forward loop (CR-FFL)

The co-regulation FFL resembles the regulation of a target gene by a transcription
factor as well as the repression of the same gene by a miRNA.

miRNA feed forward loop (miRNA-FFL)

If a miRNA represses both the target gene and the TF which regulates the target
gene as well, the miRNA-FFL pattern applies.
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Transcription factor feed forward loop (TF-FFL)

This describes the regulation of expression of both miRNA and a target gene as
well as the miRNA repression of the target gene.

Composite feed forward loop (C-FFL)

The composite FFL describes the most dense interaction between the three com-
ponents. The transcription factor regulates both a miRNA and a target gene and
the corresponding miRNA represses both the TF and the target gene.

2.2.6 Statistical evaluation

First, the hypergeometric test shown in Section 2.1.3 is applied to identify signifi-
cant transcription factor and microRNA pairs that both regulate the same target:

p− value = 1−
x∑
i=0

(
k
i

)(
M−k
N−i

)(
M
N

) (2.21)

with k the number of targets of the miRNA in question, N the number of genes
regulated by a certain TF and x the number of common targets of both, and
M the number of all genes regulated by miRNAs and TFs in the databases we
queried. After applying the BH FDR correction (see 2.1.5), only remaining pairs
with adjusted p-value < 0.05 were retained as significant.

2.2.7 Motif search algorithm

Since the motifs are similar and share an incremental structure, instead of searching
for each motif individually, the algorithm could be applied based on the existing
links in the network in such manner that all motifs are discovered during a single
iteration over the whole set of edges in the network, which made the processing
highly efficient.

Since all motifs share outgoing edges for a transcription factor, all edges that
originate from a TF are identified. Then, for those edges targeting a gene, the gene
is subsequently tested for miRNA regulations (edges incoming from miRNAs). For
those microRNAs, the interactions to the original TF are checked and subsequently
the motif can be classified as one of the four motifs defined above. Algorithm 1
shows a pseudocode listing of the motif search.

The motif search algorithm was implemented on network level using Java and
Cytoscape.
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Algorithm 1 Motif search
1: procedure MotifSearch
2: MotifsList motifs
3: for e: edges in network n do
4: interactionType ← InteractionType.determine(e)
5: if interactionType.getSourceType() == ’TF’ then
6: Node tf ← e.getSource()
7: if interactionType.getTargetType() == ’GENE’ then
8: Node gene ← e.getTarget()
9: for Edge other : getAdjacentEdgeList(gene, INCOMING) do
10: InteractionType otherType = InteractionType.determine(other)
11: if otherType == ’miRNA’ then
12: Node miRNA ← other.getSource()
13: if n.containsEdge(miRNA, tf)
14: ∧ n.containsEdge(tf, miRNA)
15: ∧ n.getNeighbors(tf, OUTGOING).contains(miRNA)
16: ∧ n.getNeighbors(tf, INCOMING).contains(miRNA) then
17: MotifType ← COMPOSITE-FFL
18: else if n.containsEdge(miRNA, tf)
19: ∧ n.getNeighbors(tf, INCOMING).contains(miRNA) then
20: MotifType ← miRNA-FFL
21: else if n.containsEdge(tf, miRNA)
22: ∧ n.getNeighbors(tf, OUTGOING).contains(miRNA) then
23: MotifType ← TF-FFL
24: else
25: MotifType ← CO-REGULATION

26: motifs.add(createMotif(motifType, tf, miRNA, gene))
return motifs

2.2.8 Motif significance

In order to validate the significance of the motifs found in a certain network, we
implemented a comparison to their occurrence in random networks based on the
original network layout.

Network randomization

In order to retain the stronger attachment of key driver nodes, we decided to
apply a degree-preserving randomization algorithm. For a network with L edges,
two edges e1 = (v1, v2) and e2 = (v3, v4) are randomly chosen for 2 × L from all
edges E of the network and rewired such that start and end nodes are swapped,
i.e. e3 = (v1, v4) and e4 = (v3, v2) if {e3, e4} 6∈ E.

Random network comparison

We calculate the p-value for a motif as follows:

p− value =
Nh

Nr

(2.22)
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which denotes the ratio of a certain motif to be acquired more or equal times in
the tested network Nh to the number of created random networks, with Nr = 100
in our specific case.

Moreover, we calculate the Z-score for each motif type to investigate by how
many standard deviations the observed motif was above or below the mean of
random ones, defined as:

Z − score =
No −Nm

σ
(2.23)

with number of motifs observed in the real network No and Nm, σ the mean and
standard deviation of motif occurrence in the 100 random networks created.

2.3 Similarity Network Fusion

In order to investigate the individual datasets provided by Riemenschneider et al
(see Chapter 5), we applied Similarity Network Fusion (SNF), a method proposed
by Wang et al. [2014] which allows to integrate several different datasets retaining
information about the individual samples. This approach was originally developed
for computer vision and image processing by Wang et al. [2012].

2.3.1 SNF algorithm

The idea is to construct a graph G = (V,E) that resembles a patient similarity
network for each dataset. The vertices V = v1, . . . , vn correspond to the patients,
while the edges E are weighted by how similar the patients are. For continous
variables, with the Euclidian distance ρ(vi, vj) between two patients i and j, the
weight for this edge is determined by a scaled exponential similarity kernel defined
as:

W (i, j) = exp−ρ
2(vi, vj)

µεi,j
(2.24)

with an empirically set hyperparameter µ and εi,j as a means to eliminate the
scaling problem, defined as:

εi,j =
¯ρ(vi, Ni) + ¯ρ(vj, Nj) + ρ(vi, vj)

3
(2.25)

with ¯ρ(vx, Nx) being the average value of distances between vx and each of its
neighbors.

For discrete variables, the authors suggested using the chi-squared distance
measure which in our work has been used to incorporate Apoε genotypes later on.

As the intention is to integrate different measured datasets, a fused matrix
from the individual patient similarity networks had to be computed.
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For this, a normalized weight matrix P = D−1W is calculated with the matrix
D(i, i) =

∑
jW (i, j) such that

∑
j P (i, j) = 1. This is called a full kernel on the

vertex set V. To account for the normalization for self-similarities, the normaliza-
tion is adapted for when i = j:

P (i, j) =

{
W (i,j)

2
∑

k 6=iW (i,k)
, j 6= i

1
2
, j = i

(2.26)

Now, to measure the local affinity of a node vi to all its neighbors Ni (including
vi) in G, a k-nearest neighbors method applied as:

S(i, j) =

{
W (i,j)∑

k∈Ni
W (i,k)

, j ∈ Ni

0, otherwise
(2.27)

That way, non-neighboring nodes are set to zero similarity values. While the
matrix P contains full information about the similarities, S considers only the
similarity to the k most similar patients for each patient.

The network fusion starts with P as initial states and incorporates S as a kernel
to model the local structure of the graphs.

For m different datasets, similarity matrices W1, . . . ,Wm are computed using
equation 2.24, likewise Pn and Sn from equations 2.26 and 2.27.

The idea behind SNF is to iteratively update the similarity matrix correspond-
ing to each datatype. Assume two data sets for which two status matrices P 1 and
P 2 have been calculated (iteration t = 0). The update process for both matrices
is defined as:

P 1
t+1 = S1 × P 2

t × (S1)T (2.28)

P 2
t+1 = S2 × P 1

t × (S2)T (2.29)

with P 1
t+1 and P 2

t+1 the status matrices for the first and second datatype after t
iterations, respectively. In that manner, status matrices are updated each time
step in an interchanging fashion.

The final matrix after t steps is defined as:

P c =
P 1
t + P 2

t

2
(2.30)

In order to reduce noise, the method can be modified to include only common
neighborhoods Ni of a node vi:

P 1
t+1(i, j) =

∑
k∈Ni

∑
l∈Nj

S1(i, k)× S1(j, l)× P 2
t (k, l) (2.31)
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As a result, if two nodes vi and vj share common neighbors in both similarity
matrices, they are likely to be part of the same cluster. Also, if two nodes are not
similar according to one dataset, the similarity within other datasets propagates
into the other matrices during the fusion. After each iteration, the normalization
from Equation 2.26 is applied after each iteration step to ensure that a node always
is more similar to itself than to others and to guaranteee that the final network
is full rank, i.e. a regular matrix with non-zero eigenvalues. This is important to
apply classification and clustering to the final network.

The extension to more than two datasets is defined as an generalized version
of Equations 2.28 and 2.29:

pv = Sv ×


∑
k 6=v

P k

m− 1

× (Sv)T , v = 1, . . . ,m (2.32)

The resulting fused matrix P c can be used for clustering and classification of
the nodes.

2.3.2 Network Clustering

In order to identify possible subtypes in a fused network graph with n samples and
m measurements, we try to determine clusters of samples. A label vector is defined
such that for each sample xi, a vector is defined such that for each possible subtype
k, yi(k), the value 1 and 0 is assigned depending on whether or not the sample
belongs to the respective subtype. Thus, the partition matrix Y = (yT1 , y

T
2 , . . . y

T
n )

describes the clustering scheme.
With SNF, spectral clustering is used to identify the network clusters by min-

imizing the RatioCut [Ng et al., 2001; Wei and Cheng, 1989] by solving the opti-
mization problem defined as:

min
Q∈Rn×C

Trace (QTL+Q)s.t.QTQ = I (2.33)

with the scaled partition matrix Q = Y (Y TY )−
1
2 , the normalized Laplacian matrix

L+ = I − D− 1
2WD−

1
2 with similarity matrix W and the network degree matrix

D (with 0 diagonal elements). This method has been shown to incorporate the
global network structure [von Luxburg, 2007].

2.3.3 Normalized Mutual Information

The normalized mutual information (NMI) is a measure to evaluate a clustering
against the number of clusters. The measure is defined as the ratio of the mutual
information to the entropy H of clusters and classes, respectively.
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The mutual information with clusters W and classes C is defined as:

I(W,C) =
∑
k

∑
j

P (wk ∩ cj) log
P (wk ∩ cj)
P (wk) · P (cj)

(2.34)

with P (wk) the probability for an element to be in cluster wk, P (cj) the probability
being class cj and P (wk ∩ cj) the intersection of both.

The entropy H, a measure for the uncertainty of the respective outcomes for a
probability function, is calculated as follows:

H(W ) = −
∑
k

P (wk) logP (wk) (2.35)

and analogously for the classes C.
Finally, the normalized mutual information can be written as:

NMI(W,C) =
I(W,C)

[H(W ) +H(C)]/2
(2.36)

As both H(W ) and H(C) each are an upper bound to I(W,C), the dominator is
divided by 2 to obtain values between 0 and 1 for the NMI score.

As the entropy increases with the number of clusters, the NMI score tends to
value fewer clusters higher than a large number of clusters and, thus, allows to
compare clusterings with different numbers of clusters.

We used NMI to compare the clusterings obtained with the similarity network
fusion method using different combinations of data input sources.



Chapter 3

Mebitoo - an Extensible Software
Framework for Bioinformatics
Analysis Workflow
Automatization

This chapter introduces the software framework Mebitoo. This software is a col-
loborative project for which the author contributed the mainframe software and
plugin architecture, while additional plugins have been developed and used in
various Bachelor projects supervised by the author. This work was published in
Spaniol et al. [2015]. The case study on breast cancer describes a collaboration
with Johannes Trumm and Mohamed Hamed that aimed at integrating regulatory
network analysis.

3.1 Introduction

Initially, with Mebitoo we developed a software with the intention the perform
analysis on membrane protein sequences [Spaniol, 2009]. However, applications in
computational biology require to target a wider range of research fields beyond se-
quence analysis. When aiming at a more extensive view at biological data to gain
a better understanding of complex processes, it has become popular to integrate
data from various sources and perform a comprehensive analysis. For instance, in
the field of complex disorders such as Alzheimers disease, the pathogenic factors
have remained largely unexplained so far and it has been suggested that integra-
tion of various data such as gene expression, DNA methylation, single nucleotide
polymorphisms (SNPs) and protein level measurements may lead to a better un-
derstanding of the disease [Rhinn et al., 2013; Zhang et al., 2013].

27
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3.1.1 Related work

In the last years, various tools to pipeline data analysis have been presented.
Web-based software like the Galaxy tool [Goecks et al., 2010] allow for interactive
analysis of sequencing data. Users upload sequences to a remote public server or
set up a local workspace environment. The software allows stepwise processing
of generated data so that the workflow is highly adaptable to different types of
analysis intended. Programmers can also extend the software using their own
plugins to customize workflows with Python scripts. Another well-known tool is
Geneious [Kearse et al., 2012], which is a Java Desktop application that allows
for a variety of sequence manipulation analysis and may also be extended by own
workflows or plugins.

While Galaxy performs on webserver basis that has the possibility to scale
for large computational efforts, Mebitoo as desktop application does not require
system administration knowledge or access to a server infrastructure and still qual-
ifies for working with sensitive (e.g. clinical) data. On the other hand, Geneious
emerged to become the standard software for many applications and excels as tool
for the daily work with biological data and features a plugin development API
that exceeds the concise plugin architecture of Mebitoo in complexity.

3.1.2 Motivation

With Mebitoo we developed a desktop software framework that enables for the
implementation of a variety of analysis tools with the intention to minimize the
overhead of plugin development. That way, the software is amenable to extensions
by developers who can focus on implementing new methods while the framework
provides the interface for data management and interaction with other modules.
To manage module interaction, users are enabled to define tasks that automatically
execute a variety of customized workflows. Mebitoo is set apart from other software
by the ability to process arbitrary data supported by a database management
system and XML (see Section 3.2.2), a task manager to enable workflows within
a graphical user interface (Section 3.2.5) and the extendability with customized
method plugins (Section 3.2.4).

3.2 Design

Mebitoo is a software application suite written in Java that is based on the Net-
beans Rich-Client platform (RCP) project backed by Oracle.
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Figure 3.1: Mebitoo framework overview. The core (grey) provides the basic functionality for
data import and task definition and execution as well as the plugin interface. Externally devel-
oped plugins can be mounted by the framework and executed by a task manager.

3.2.1 Core Module

The core module provides the framework for data management and processing.
It (1) implements data import and storage, (2) defines the plugin system that
provides an interface to communicate with extensions, and (3) provides a task
management that is used to define and queue tasks that process the datasets. A
framework overview is shown in Figure 3.1.

The data storage layout realized in Mebitoo uses the HSQL database engine and
allows to store either collections of sequences as datasets or additional arbitrarily
structured data as XML-documents.

The plugin structure is based on the module architecture provided by the Net-
beans Rich-Client platform. It supports a concise abstract interface and provides
plugin templates which can be easily adapted by developers to execute customized
methods.

Tasks are defined as relations between plugins and datasets, that can be ob-
jected to parallel processing. Each task can be queued and finally submitted as a
single processing job.
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3.2.2 Database Design

Concerning the database itself, we provide a concise concept with few tables that
are not allowed to be altered by plugin developers.

In order not to limit a plugin developer on the database concept presented
here, if an application requires to apply custom data structures as applied when
we worked with regulatory networks, the database design can be extended by
plugins themselves. To maintain consistency for the core module, Mebitoo runs a
database check at every startup. When working with separate projects, Mebitoo
features an option to swap between different databases.

Entity Relationship Model

The diagram in Figure 3.2 shows a simplified entity relationship model, which
omits the primary and foreign key attributes. Those have to be added for each
entity and relation to obtain a complete model when the database is actually
implemented.

Each entity and relation is modeled in the database, except for the plugins.
Those are loaded from the file system dynamically. Instead of modeling a plugin
representation within the database that requires to synchronize between database
and plugins, we use the plugin identifiers (e.g. org.mebitoo.plugin.aligner) as
symbolic foreign keys and use them to directly retrieve plugins from the module
system service provider.

Any dataset may contain an arbitrary amount of sequences, but no sequence
can belong to more than one dataset. A task can be linked to any dataset and
plugin, but only once to every entity. This restriction is a key predicate for the
task execution model. A plugin data entity has to be unique for each dataset
and plugin – regardless of the plugin version – but any dataset can have as many
data entries as there are plugins and a plugin may also produce XML files for any
dataset.

Schema

The final database design applies to the schema shown in Table 3.1.

3.2.3 Dataset Structure

In its abstract sense, a dataset in Mebitoo is a collection of data that belongs to
one certain entity. For example, a dataset could consist of a single sequence, one
sample of sequences from a cohort, or an entire cohort itself. Whenever a task is
processed, the dataset as a whole is passed to the processing. Thus, it depends on
the modules how to interpret the plugin data associated with a certain dataset.
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Figure 3.2: A compact Entity Relationship model of the Mebitoo database.

Table 3.1: Database Schema

Datasets (id : int, name: string, date: bigint)

Sequences (id : int, dataset id : int,
name: string, sequence: string)

Tasks (id : int, name: string,
date: bigint, status :int)

Plugin Data (id : int, dataset id : int, plugin id : int,
plugin version: string, date: bigint, xml :CLOB)

Task Plugins (id : int, task id : int; plugin id : int)

Task Datasets (id : int, task id : int; plugin id : int)

We defined the plugin data as XML documents that are stored as OTHER
objects in the HSQL database. Basically an XML document is created for each
dataset and plugin tuple. Thus, when a plugin and dataset are selected, the dataset
container forwards the request to the database interface and builds a JDOM from
the XML file on-the-fly.

Other than dataset, sequence, and task information, the plugin data is not read
from the disk until required but the plugin data table is realized as a cached table.
This affects the performance negatively because reading data from the hard disk
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Datasets

Datasets

Dataset

Dataset BereichSequences

Sequence              ... Sequence

Sequences

                  ...

Database

getXMLFor(Plugin ID)

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="org.mebitoo.plugins.example">
  <table>
     ...
  </table>
...
</plugin>

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="org.mebitoo.plugins.example">
  <table>
     ...
  </table>
...
</plugin>

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="org.mebitoo.plugins.example">
  <sequence>
     ...
  </sequence>
...
</plugin>

Figure 3.3: By default, a dataset consists of a set of string entries or arbitrary data stored in any
XML-consistent format. During runtime, all datasets and the containing sequences are loaded
into memory. On the other hand, the associated XML-files that contain the data of each plugin
are not loaded from disk until required, e.g. during plugin processing. This is called a “lazy”
initialization. In that way, we avoid the possible large memory requirements when loading the
entire XML structure.

takes up significantly more time than accessing the RAM. We decided to accept
this in trade-off for the possibility to store large XML files, although for small
datasets it would be better to have in-memory tables to favor better runtimes.

In summary, the storage strategy of Mebitoo resembles a two fold concept:
the dataset index and task tables, obligatory for the actual use of the software,
are available in memory any time. Figure 3.3 illustrates the concept of a dataset.
The plugin data is stored in XML files, which are completely open to the needs
of a plugin developer. Instead of writing XML documents to the hard drive, what
would entail the implementation of input/output (I/O) handling, we cache the files
using the database engine and only load them into resident memory on demand.

3.2.4 Plugin Interface

The plugin system in Mebitoo adapts the concept from the plugin system that
is implemented in the Netbeans RCP. We introduced an additional interface and
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provide an empty plugin template which can be easily customized to integrate
methods into Mebitoo.

Thus, each plugin that should be part of the task processing system is required
to implement a interface that is understood by core module. Basically, a class that
complies with the required interface implements two functions that make the data
available for processing and displaying objects.

Plugin Main Class

A plugin class should implement this interface:

@ServiceProvider ( s e r v i c e=Plugin . class , path=” org . mebitoo . p lug in ” )
public class Template extends AbstractPlug in {

DatasetProcessor ge tDatase tProce s so r ( ) ;
DatasetView getDatasetView ( ) ;

}

The easiest way would be to have static instances of both objects within the plugin
and return them.

In fact, the implementation of both the dataset processor and the view is the
more important part:

Dataset Processor

A dataset processor class is responsible for the computations performed on one
dataset. The interface is very simple:

public class TemplateDatasetProcessor
implements DatasetProcessor {

public Result p roce s s ( Dataset d t s t ) {
. . .

}
}

Dataset View

Mebitoo automatically creates a window for each plugin. The dataset view is the
interface for your plugin to publish the main panel to Mebitoo and defines the
logic how to update a panel:

public class TemplateDatasetView implements DatasetView {
// c a l l e d to hook the pane l in mebitoo
public JPanel ge tRepre sentat ion ( ) ;
// update on da t a s e t f ocus change
public void update ( Dataset d t s t ) ;
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// empty the view , e . g . happens i f no da t a s e t s e l e c t e d
public void r e s e t ( ) ;

}

3.2.5 Tasks

A key design requirement of Mebitoo is to easily queue and launch bulk dataset
processing with little effort. This has been accomplished by introducing tasks that
implement an interface. This interface can be understood by Java executors, which
are part of the concurrency package.

A user can set up a task via a GUI-Dialog in which he specifies the plugins and
the datasets.

Each of these datasets is processed by each plugin specified when the task is
executed. The newly created task is queued and can be executed at any time the
user invokes the processing by clicking on the “Start” button.

The task execution procedure can be understood as a three-fold loop, see Figure
3.4.

It is possible to queue many tasks, which are processed in serial order. This
decision has been made to ensure that only one dataset is processed at a time, in
order to avoid any anti-dependencies. Although those could be resolved easily, by
synchronizing the access to the database, and if the same plugin accessed the same
dataset, merging the XML trees, it lacks the necessity for such functionality. If a
user wants all datasets to be processed at the same time, it is possible to queue
all datasets into the same task.

By default the processing of datasets within a task happens in parallel, based
on the number of CPU cores available. To assert correctness we define all datasets
independent of each other and a plugin is not allowed to access foreign datasets
during processing. This behavior restricts data processing to the scope of a dataset,
a feature that has been sacrificed in order to allow execution parallelism.

The innermost loop, the plugin processing, is executed sequentially again, so
we inherently solve any dependency issues when plugins depend on each other’s
data.

The greatest benefit of this design can be achieved by adding as many datasets
and plugins as possible to a single task, which would result in a maximum execution
parallelism.
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Figure 3.4: Sequence diagram for task processing.

3.3 Gene Regulatory Network Plugin

The GRN query plugin takes as input an undirected gene co-expression net-
work (see Figure 3.5a) and then attempts to query several publicly available
databases for regulatory information associated with the input co-expression net-
work. Namely, it integrates data from the regulatory databases Transcriptional
Regulatory Element Database (TRED) [Jiang et al., 2007], Molecular Signatures
Database (MSigDB) [Liberzon et al., 2011] and JASPAR database [Sandelin et al.,
2004] as data sources for identifying transcription factors, known regulatory inter-
actions and associated binding motifs. At first, all those genes in an input network
are marked that are listed in at least one of the databases to code for a transcription
factor, as shown in Figure 3.5b, which shows an exemplary network.

Then, for each of these TF-genes, the tool searches whether the databases
contain a known regulation of a target gene. In each such case, a directed edge is
added between the transcription factor and the target gene.

Finally, the plugin uses the Motif Statistics and Discovery (MoSDi) software
[Marschall and Rahmann, 2009] to run a motif search for all known binding motifs
of the transcription factors represented in the current network against the promoter
regions of all genes in the network. If a match is found, a new directed edge is added
from the transcription factor to the gene. Moreover, the user has the option to
expand the network by (a) adding further transcription factors that are annotated
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(a) (b)

Figure 3.5: (a) Network visualization for the input co-expression network. (b) Transcription
factors involved in the input network are identified and marked in yellow while the remaining
genes are colored blue.

as known regulators of the input gene network, and/or by (b) including additional
target genes that are annotated to be regulated by the TFs in the input network,
and/or by (c) searching for regulatory interactions between the additional target
genes and the additional TFs. Finally, the user can export the resulting network,
as shown in Figure 3.6 in various formats as an image or as a network file (.sif)
to be imported, visualized, and analyzed by other network analysis tools, such as
Cytoscape [Smoot et al., 2011] or Visant [Hu et al., 2013].
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Figure 3.6: GRN query plugin applied to a gene co-expression sub network around the known
imprinted genes (IGN). Transcription factors involved in the input network are identified and
marked in yellow while the remaining genes are colored blue. The tool expands the IGN network
by adding additional transcription factors (marked in orange) that are annotated as known
regulators of the input genes and also by adding additional target genes (marked in green) that
are annotated to be regulated by the TFs in the input network.

3.4 Case study - Integrative network-based ap-

proach identifies key genetic elements in breast

invasive carcinoma

The following study, to which the author contributed in the key driver identifi-
cation, is a collaborative work published in Hamed et al. [2015b]. As this study
motivated the development of TFmiR, presented in Chapter 4, the general concept
of the methology is depicted in the following sections.
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3.4.1 Motivation

Using the integrative network approach to associate regulatory networks with the
development of breast carcinoma we incorporated data from gene expression, DNA
methylation, miRNA expression as well as somatic mutation datasets.

3.4.2 Approach

The datasets used for the integrative approach were collected from The Cancer
Genome Atlas (TCGA) [Cancer Genome Atlas Research Network, 2008] . We
investigated 151 cases and 20 controls for which all four data types we wanted to
incorporate were available at TCGA.

The expression and methylation profiles were analyzed using 1) Significance
Analysis of Microarray (SAM) , 2) a moderated student’s t-test, and 3) the area un-
der the curve receiver operator characteristics (AUC ROC) . All markers that were
identified as significantly differentially expressed by at least two of the methods
were accepted into the list of differentially expressed markers for genes, miRNAs,
and methylated regions alike.

Differentially co-expressed gene clusters between cases and controls were iden-
tified by us using WGCNA[Langfelder and Horvath, 2008] and DiffCoEx [Tesson
et al., 2010].

Based on the obtained data, we constructed a gene regulatory network as ex-
plained in section 3.3.

Additionally using the coexpression modules, we created a causal probabilistic
Bayesian network and used the edges from the gene regulatory network as seed
point to deduce node directionality. In order to evaluate the network topology,
the Sparse candidate and likelihood-equivalence Bayesian Dirichlet methods were
used to score the final network. At each iteration, edges could be added, removed
or reversed as well as have the parent node swapped. This algorithm was applied
three times and all edges that were inferred at least two times were considered for
the next step.

The final network was built from the directed edges obtained by the three
networks above. Subsequently, methylation and expression profiles were used to
prune the network with respect to the data available. As increased methylation
levels in gene promoter regions were shown to be responsible for reduced expres-
sion of those genes, anti-correlating regulatory interaction with respect to their
expression and methylation profiles were removed from the network.

In order to put differentially expressed microRNAs and differentially expressed
genes into context, we used miRTrail [Laczny et al., 2012] to identify the microRNA
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Figure 3.7: Overview integrated systems approach for key driver identification. Source: Hamed
et al. [2015b]

Targets and calculated the intersection with the set of obtained differentially ex-
pressed mRNAs.

The other way around, we used TransmiR [Wang et al., 2009] to identify the
genes (TF) that may be responsible for the regulation of the differentially expressed
miRNAs.

The results were validated using the hypergeometric test (see Section 2.1.3)
and merged into a final network. An overview of the method is shown in Figure
3.7

3.4.3 Results

In the end, we identified a minimal set of nodes that regulate the entire network
using the GNU Linear Programming Kit (GLPK) [Makhorin, 2004] and OpenOpt
[Kroshko, 2007] (covered in Section 2.2.3), which we assume to be possible key
drivers for the regulatory network we generated.

In an extended enrichment analysis, we used overrepresented genes of in our
study set and identified pathways from KEGG and GO functional annotations us-
ing the Database for Annotation Visualization and Integrated Discovery (DAVID)
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[Dennis et al., 2003], and evaluated them applying a hypergeometric test. For
microRNA enrichment, TAM [Lu et al., 2010] was used.

For the dataset of 131 cases and 20 controls, we obtained 1317 differentially
expressed genes, 2623 differentially methylated gene promoter regions and 121
differentially expressed miRNAs.

The results of the study showed strong association between the regulatory ele-
ments of the heterogeneous data sources in terms of the interchangeable regulatory
influence and genomic proximity. By analyzing three different types of regulatory
interactions: TF-mRNA, miRNA-mRNA, and proximity analysis of somatic vari-
ants, we were able to identify various key driver elements (106 genes, 68 miRNAs,
and 9 mutations) that could possibly drive the cancer developmental process and
thus contribute to a better understanding of cancer development and new thera-
peutic strategies.

The derivation of a regulatory network from expression data and the down-
stream analysis with respect to various diseases has been the motivation for devel-
oping TFmiR, the webservice we present in Chapter 4. The approach presented
in this study is applicable to other cancer types as well as other diseases, thus we
applied the approach shown here also in our study on Alzheimer’s disease (Chapter
5).

3.5 Discussion

We presented Mebitoo as a desktop software framework for sequential data pro-
cessing pipelines. The core module provides functionality for data storage using
a database engine and defines an interface for developers to implement their own
methods via plugin extensions. The task system allows for large-scale automated
execution of time-consuming processes. The usage of the Netbeans platform en-
sures future compatibility with possible upcoming hardware architectures and Java
Runtime Environments. The RCP provides a large variety of functionality that de-
velopers may deploy in their own modules and enables the usage of a large variety
of third-party libraries when desired.

We integrated a database engine to store datasets and use cached tables to
enable the storage of large XML files. Pre-defined functionality enables to import
sequence datasets either manually, as FASTA files either solitarily or grouped in
folders using the BioJava library.

The software is extendable by mounting plugins that communicate with the
core module. Plugins are derived from an interface class that provides functionality
to assist inexperienced programmers with the development of new modules. The
methods realized by the interface cover the data exchange between plugins and
the database using JDOM.
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In order to require little interaction with the end-user and to have automated
workflows, we defined a task concept that allows for automated processing of
datasets by plugins. Moreover, we modeled a thread-safe concurrency scheme for
the task execution to enhance the processing performance for multiple datasets.

We found the decision to use Java and supplementary libraries reasonable, as
the language supports fast application development. Moreover, the functionality
of third-party modules enhanced the prototyping process because we were not
required to implement all desired features on our own. We expect the database to
handle at least two gigabytes of data because HSQL has been reported to easily
deal with that size. According to the developers, HSQL theoretically supports
a maximum capacity of 16 terabytes while the character large objects (CLOBs),
which in case of Mebitoo contain the XML-information of the respective plugins,
may hold multiple gigabytes.

Our approach to model the interaction between plugins and the main applica-
tion is practical but plugin instances are not immutable by design. An immutable
concept appears to be superior regarding the concurrent processing of data be-
cause of their inherent thread-safe nature [Bloch, 2001], but would interfere with
plugin development. This would also enable the application of multiple dataset
viewer frames, since that way a currently chosen dataset to be represented in the
GUI is decoupled from the state of plugin instances.

In different projects, that were either conducted by the author in the course
of this thesis (but are not described here due to space limitations) as well as in
the Bachelor theses of Thorsten Klingen, Stefan Helfrich and Mustafa Kahraman
that were supervised by the author, we connected the Mebitoo GUI to various
command-line tools, such as the alignment tool BLAT, the motif search algorithm
MEME, and recombination analysis with Recco in order to provide a pipeline
working with those tools. We took different approaches using the Java Native
Interface (JNI) to spawn C++ instances as part of the Java main application
(MEME) and the Java Remote Message Invocation (RMI) to enable a client/server
architecture to outsource complex computations with BLAT. In summary, the
dependency on different platforms and various libraries turned those efforts into
tedious endeavours and the projects showed that a limitation to command-line
calls is the most feasible method to do this. However, tracking progress within the
task manager for such methods is difficult and impairs the responsiveness of the
application.

3.6 Outlook

Further development of Mebitoo is omnifarious by design. Although the plugin
interface is non-varying, the restriction is one way. This means that Mebitoo is
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not supposed to adapt to new plugins but those are expected to implement a
basic interface that is versatile enough to enable specialized development, taking
advantage of the Java swing framework to do so.

The other way around, because a plugin is allowed to use all libraries the
main program can provide, adding functionality to the core program can easily be
accomplished. This flexibility permits further development as needed.

Possible enhancements could be to incorporate and include more probabilistic
graphical approaches and other biological data types into Mebitoo to capture fur-
ther insights on the regulatory regime of biological processes and human disease
networks. For example, as shown in the case study on breast cancer, by incorpo-
rating the Bayesian learning approach, GO terms, and KEGG pathway knowledge,
the network structure can be refined and made more informative with respect to
a specific disease or a cellular process.



Chapter 4

TFmiR: A web server for
constructing and analyzing
disease-specific transcription
factor and miRNA co-regulatory
networks

The following project is a collaborative work to which the author contributed the
web frontend software and the backend interface to handle the execution of the
R scripts written by Mohamed Hamed as well as a Cytoscape plugin to perform
TF-miRNA-Gene motif search on regulatory networks. This work was published
in Hamed et al. [2015a].

4.1 Motivation

In the last chapter we presented a desktop software application to integrate anal-
ysis pipelines. However, if the analysis reaches a certain complexity in terms of
computational requirements, it is feasible to gain additional power using a server
architecture. Additionally, some of the downstream analysis presented before relies
on R scripts and various 3rd party libraries which interfered with the fundamen-
tal concept of Mebitoo not to be dependent on additional software packages that
have to be maintained outside the platform. Both considerations motivated the
design of a web service that incorporates the software we used to build and analyze
co-regulatory networks shown in the previous chapter.

Based on the input of differentially expressed mRNAs and/or microRNAs we
extended our tool to provide a comprehensive downstream analysis to assess net-

43
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work motifs, network key drivers and investigate functional enrichments, optionally
in context with specific diseases.

4.2 Methods

TFmiR is a software framework based on various programming languages and web
technologies. The server-side computation of our methods was written in R. This
is based on a generalized version of the scripts written for the work presented in
the breast cancer study, see section 3.4. We refer to this part of the software as
backend. The graphical representation of TFmiR consists of a frontend that is
based on PHP, JavaScript, Java and various libraries thereof.

4.2.1 R statistical computing

The backend to a large extent consists of scripts based upon the R programming
language. R has been chosen because it provides a large set of bioinformatics
utility libraries, especially the Bioconductor software [Gentleman et al., 2004] and
third party contributors thereof.

In the following sections, we briefly depict the software and tools incorporated
into our framework.

4.2.2 igraph

The igraph package provides various tools to create, manipulate, and to visualize
networks. It provides interfaces to high-level languages like R and Python and is
capable to handle large graphs efficiently [Csardi and Nepusz, 2006].

Because of its versatility, the package was used in TFmiR to conduct backend
computations on the generated networks as well as to generate network plots.

4.2.3 Bioconductor

Bioconductor itself is an extensible software project specifically developed for com-
putational biology and bioinformatic applications, especially for analysis of high-
throughput sequencing data including DNA and RNA sequencing, methylomes
and downstream analysis such as annotations and graph analysis. It has been
widely accepted in the scientific field so that it comprises nearly 1 000 packages
so far written by a large community and enables rapid workflow implementation
[Huber et al., 2015].
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GoSemSim

The package GoSemSim by Yu et al. [2010] is used to compute semantic similarities
between genes. Specifically, we compute gene functional similarities for our genes
as well as a random set of genes from ENTREZ in order to rule out significant
functional similarities the network motifs we identified using the Kolmogorov-
Smirnov test, see Chapter 2.1.4.

4.2.4 HTML

The structure of any website is annotated using the Hypertext Markup Language
(HTML). Based on the markup, the content of a website is rendered by a browser
and displayed to the user.

4.2.5 PHP

The server-side frontend processing was implemented using the PHP Hypertext
Preprocessor (PHP), which is nowadays - with over 80% of all websites based on
PHP - the most used programming language to implement web services. The
advantage over using plain HTML is that it enables a dynamic creation of the
content displayed to the user. This meets the major requirement of TFmiR to
allow interaction depending on user input data.

4.2.6 Javascript

In order to offer more responsiveness, interactive websites take advantage of the
JavaScript language. Other than PHP, JavaScript is executed on the client-side,
i.e. within the respective web browser. While this raises compatibility issues be-
tween several implementations of the scripting engines used in different browsers,
such as between Microsoft Internet Explorer, Firefox, and Chrome, Javascript
allows for asynchronous queries. Those allow for the processing of data in the
background while the frontend interface is still usable and enables better inter-
activity in order to create a look and feel that narrows the gap between regular
desktop applications and interactive websites.

4.2.7 JQuery

As Javascript evolved to be a key factor for interactive websites, entire libraries
have been designed to simplify the client-side scripting of HTML pages. Among
many others, the JQuery library emerged to be outstandingly the most popular
framework today. The library allows for manipulation of DOM elements in a
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document and supports asynchronous queries and accounts for different browser
engines, which makes its usage independent from the browser that is used client-
side. The capability to spawn asynchronous processes, document manipulation
and the compatibility to the Cytoscape Javascript library (see next Section) are
used in various features implemented in TFmiR.

4.2.8 Cytoscape.js

A visual representation of the networks built was implemented using the Cytoscape
Javascript library, which is compatible with the previously mentioned JQuery li-
brary. As this shares an interface to the well-known network visualization software
Cytoscape [Shannon et al., 2003b], we used this to realize various layouts.

4.2.9 Apache

Underneath the entire framework runs a Apache webserver 2.0, an open-source
project that was chosen since it proved to be a reliable server technology with rea-
sonable performance and, thus, is worldwide accepted with ≈ 60% of all websites
running Apache today.

4.2.10 Javascript Object Notation

The Javascript Object Notation (JSON) is a compact file format designed for
data exchange between applications. It supports various basic datatypes such as
numbers (whether integer or real), Strings, Arrays, and Objects. A brief example
for a motif object JSON is shown in Listing 4.1.

Listing 4.1: ”JSON Example”

{
” type ” : ”COMPOSITE−FFL” ,
” t f ” : ”ESR1” ,
”mirna” : ”hsa−mir−221” ,
” gene ” : ”TP53”

}

In contrast to XML, JSON is less versatile but reduces the markup overhead which
is favorable for transmission over networks.

We wrote a script in TFmiR that generates JSONs from the network interaction
table in order to communicate with Cytoscape.js and Cytoscape.
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4.2.11 Representational State Transfer

REST is a programming paradigm for distributed systems. In short, it states
that a certain URI always has to contain the same content (but not identical).
As an example, a news website would not be REST conform due to its changing
content, other than a website that always displays the current weather in the same
style and format. A REST Interface offers the functionality to access content
using GET, POST, PUT, and DELETE operations and requires to be stateless, which
means a server can not handle user sessions. Data transfer with rest usually occurs
using HTML, JSON, or XML. REST has been used to realize the communication
between TFmiR and the Cytoscape motif search plugin.

4.2.12 Cytoscape

Cytoscape evolved to be the standard application when dealing with networks and
their visualization in computational biology. Based on Java, it offers a plugin
architecture that enables to include a variety of tools by written by third party
developers.

After an initial implementation of the motif search in R, it became apparent
that R is too expensive in terms of execution time. Thus, we decided to increase
the performance by implementing a plugin for Cytoscape, from which we expected
the algorithm to perform significantly faster.

CyREST

CyREST is a plugin for Cytoscape developed by Keiichiro Ono [2015] that offers
REST services for Cytoscape. We adapted the plugin and modified the source
to support a REST query for the motif search in our regulatory networks in Cy-
toscape.

4.2.13 Databases

Within TFmiR we incorporated a variety of different interaction databases to
model a regulatory network from the input data, an overview is given in Table 4.1.

In order to increase performance, the databases were mirrored into RData
binary packages on our server.

4.3 Input data

As input for TFmiR for differentially expressed miRNAs and mRNAs alike, a user
provides a file that contains the official symbol or miRNA identifier and a value
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Table 4.1: Overview of the databases used in TFmiR. (P) means predicted interactions and (E)
means experimentally validated interactions.

Interaction Databases (P/E) Published Genes miRNAs Regulatory links Version /frozen date

TF → Gene TRANSFAC (E) Matys et al. [2002] 1279 – 2943 V11.4

ORegAnno (E) Griffith et al. [2008] 1132 – 1083 Nov 2010

TRED (P) [3] Jiang et al. [2006] 3038 – 6462 2007

TF → miRNA TransmiR (E) Wang et al. [2009] 158 175 567 V1.2, Jan 2013

PMID20584335 (E) Qiu et al. [2009] 58 56 102 Apr 2009

ChipBase (P) Yang et al. [2012] 119 1380 33087 V1.1, Nov 2012

miRNA → gene miRTarBase (E) Hsu et al. [2010] 2244 551 5640 V4.5, Nov 2013

TarBase (E) Sethupathy et al.
[2006]

422 79 492 V7.0

miRecords (E) Xiao et al. [2008] 543 157 780 Mar 2009

starBase (P) Yang et al. [2011] 5720 249 56051 V2.0, Sept 2013

miRNA → miRNA PmmR(P) Sengupta and
Bandyopadhyay
[2011]

– 312 3846 Mar 2011

{1,−1} which indicates whether the corresponding markers has been classified as
up- or downregulated within the sample dataset, an example shown in Listing 4.2.

Listing 4.2: Example TFmiR input for differentially expressed mRNAs

AATK −1
ABCB8 1
ABCG4 1
ABHD10 1
ABLIM1 −1
ABT1 1
. . .

4.4 Frontend and Interface Architecture

The user frontend is divided into three separate parts: the front page for data
input, the results page that displays the overall results and finally, detailed views
for motifs, the respective co-regulated/co-targeted subnetworks, and functional
similarity analysis.
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In order to save computational time, the processing in TFmiR is split into three
stages: first, the overall networks are calculated. Then at convience, TFmiR offers
the option to perform a motif search on the created networks. Finally, a user may
select a motif of interest and calculate functional similarities for the participants
of the respective motif.

4.4.1 Front page

The first page presented to the user is the front page that displays the input forms
for the files which contain the sets of deregulated microRNAs and mRNAs. Ad-
ditionally, a user may define a p-value threshold for the analysis and, if available,
specify the disease associated with the submitted dataset. Finally, there is an
option to set an evidence level which offers the possibility to consider only experi-
mental or predicted databases, or both. Finally, a user can initiate the first-stage
processing.

The first processing step is handled by a Javascript query that submits the
datasets together with the options to the R script backend, where the respective
interactions are calculated and finally merged into a full interaction network and - if
specified - a disease specific network. When finished, a Javascript routine updates
the front page and displays an overview of graphical buttons for the generated
networks as well as for the individual interactions between miRNA, genes, and
transcription factors, respectively. Those buttons display a brief summary, such
as graph size, overlap for the respective interactions, and significance and lead to
the more detailed result page.

4.4.2 Result page

The result page is split into four different parts: the network view, the interaction
table, the overrepresentation analysis for both genes and miRNAs, and finally a
motif view.

Network View

The first panel shows an interactive view that displays the network as a whole.
An screen excerpt of the web service is shown in Figure 4.1. We offer a toolbar to
modify the network layout and to select arbitrary nodes and a list of the selected
nodes is shown at the bottom. Any network layout can be exported as an image.
Additionally, the motif search and the minimum dominating set determination can
be invoked on user demand.
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Figure 4.1: Shown are parts of the network view panel of TFmiR. The upper toolbar offers
various options to layout the network and. Nodes can be selected based on various network
measures. Additionally, a user may invoke a motif search, or highlight the respective motifs
when the analysis is done. For any selected motif, co-targeted and co-regulated subnetworks can
be investigated in an additional window. Here, the composite-FFL motif pattern from our breast
cancer study is highlighted.

Interaction Table

The second panel contains an interaction table that gives detailed insight on every
interaction in the network. The table shows each interaction between a regulator
and its target, the type of the interaction, evidence (predicted or experimentally
determined) and the source from which the interaction was obtained. Additionally,
we provide a popup link which opens a window showing a list of the diseases related
to the regulator and the target, respectively.

ORA Tables

The overrepresentation analysis is available for both, genes and miRNAs.
For miRNAs, TFmiR provides a list of diseases associated with the miRNAs

submitted and calcutates a percentage value of how many of the related miRNAs
are present in the current network.
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The overrepresentation analysis is not done by TFmiR but we incorporate
established web services for that purpose. We provide links to GO Term Biological
Processes, KEGG Pathways, the Omim Database and David. When a user follows
the links, TFmiR submits a list of the genes present in the network to the respective
webservice and the browser opens the corresponding website in a new windows.

Motif Table

Once the motif search is finished, the results are stored on the server. To investigate
in detail, users may switch from the network overview to the motif table panel.
Here, each motif and the participating nodes are shown as well as the confidence
scores for the motif in question. A link is provided to investigate the respective
co-regulated und co-targeted subnetworks.

Co-regulation and Co-targeted subnetworks

We implemented two approaches to investigate the genes that interact with a
motif, as shown in Figure 4.2. Co-targeted subnetworks contain all targets that
were identified to be regulated by both the TF and the miRNA in the motif. Co-
regulated subnetworks on the other hand incorporate all targets that are regulated
by at least one of the former, TF or miRNA. An example for a co-regulated
subnetwork is shown in our case study in section 4.5, Figure 4.3.

Gene

TF

Gene

miRNA

Gene

GeneGene

miRNA GeneGene

GeneGene

TF

Gene

Figure 4.2: Shown are graphical representations of how co-targeted (l) and co-regulated (r)
subnetworks are defined.

Functional similarity

For the co-targeted and co-regulated subnetworks, a user may compute a functional
similarity score. TFmiR selects a random set of genes of the same size as the gene
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set in the motif from all GO annotated Entrez genes and computes their similarity
scores. After 1 000 permutations, a kolmogorov-smirnov test is used to check if
the gene pairs similarity scores are significantly higher than those determined in
the randomly selected gene pairs. TFmiR displays a plot of the cumulative scores
and the p-value obtained from the statistic test, an example is shown in Figure
4.4.

4.4.3 Data management

As TFmiR generates a variety of output during its computations, we thought
of a concept that would allow to easily assess the data even outside of the web
application. The results of each processing step are stored into a user’s session
folder incrementally. For example, if interested in the functional similarity plot in
a certain motif context, the costly computation is performed once and subsequently
stored in the respective session folder.

We implemented a routine that allows to compress a users full session data into
a ZIP file and provide a button on the result page download the entire dataset
that has been created up to that point.

Sessions

We tried to implement a tradeoff between security and usability of our tool. An
intuitive way to track a user without the requirement implement a login process
can be realized using a session management system. Each client is assigned its own
session identifier which is used to store the uploaded and in the analysis process
generated data physically into a directory on the webserver. In order to ensure
reasonable capacities, the session information is deleted automatically after two
weeks when it has not been accessed.

4.4.4 Cytoscape Plugin

In order to speed up the motif search in our regulatory network, we implemented
a Cytoscape plugin according to our algorithm shown in Section 2.2.7 that our
webservice is able to connect with using the CyREST plugin for Cytoscape.

In order to do so, and since the vanilla REST plugin only supports basic net-
work operations such and storage functionality, we modified the existing REST
plugin to have an additional function that offered the possibility to invoke our
motif search plugin within a resident Cytoscape instance running on our server.
We defined a path motifsearch within the plugin so that it can accept a HTTP
POST query that submits a JSON file. The is built from the network files created
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in our backend and contains the information about each interaction type and the
respective nodes involved.

When a user invokes the motif search routine, the network displayed by Cy-
toscape.js is converted to a JSON and submitted to the Cytoscape REST interface
plugin, where the algorithm is automatically started. After the motif search rou-
tine finished, the motifs are serialized to JSON and returned as a result to TFmiR.

Cytoscape “headless”

As Cytoscape incorporates a scripting engine and is usually mandatory to be
executed within a GUI, we initially thought of invoking our plugin by starting
Cytoscape with a script as parameter. However, this is not possible for custom
plugins yet. Thus, the easier way was to modify the REST plugin which worked
well with the JSON interface Cytoscape.js provides.

In order to adapt Cytoscape to act as a server without a GUI in a “‘headless
mode”, we used the X Window Virtual Framebuffer (Xvfb) software as a virtual
framebuffer that captured the GUI and resolved our issues with Cytoscape.

4.5 Case Study - Breast Cancer

The following case study was taken from the Hamed et al. [2015a] article.

TFmiR was applied to several data sets related to complex diseases such as
cancer, Alzheimer and diabetes. In a recent study on breast cancer [Hamed
et al., 2015b], we identified 1262 deregulated genes and 121 deregulated miR-
NAs using gene and miRNA expression data from the TCGA portal (https:
//tcga-data.nci.nih.gov/tcga/). These two sets of deregulated genes and miR-
NAs are the default sample input files provided by the TFmiR web server. Next,
TFmiR was used to reveal the co-regulation network between the deregulated
genes/TFs and deregulated miRNAs and to better understand the pathogenic
mechanisms associated with breast tumorigenesis. As user input parameters we
set the p-value cut off to 0.05, disease was set to breast neoplasms, and the evi-
dence level was set to both experimentally validated and predicted interactions.
For this data set TFmiR constructed a total of 427 regulatory interactions com-
prising 263 nodes of deregulated miRNAs and deregulated TFs/genes. The breast
cancer-specific network involved 345 interactions and 212 nodes of deregulated
miRNAs and genes with node and edge coverage ratios (CR) of 80.6%, and 80.8%,
respectively. The provided ORA analysis of the disease network nodes revealed
their implications in many cancer types as well as cancer-related KEGG path-
ways. Moreover, ORA analysis of the network miRNAs showed their involvement
in cancerogenesis of multiple organs such as lung neoplasms, ovarian cancer, and

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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adenocarcinoma (Table 4.2). Additionally, TFmiR identified 22 key network play-
ers (10 genes and 12 miRNAs) based on the union set of four centrality measures
described above (Table 4.3). Interestingly, some of the identified key genes such
as BRCA2, ESR1, AKT1, and TP53 were previously implicated and significantly
mutated in breast cancer samples [Koboldt et al., 2012]. More importantly, the
protein products of the genes ESR1, TP53, TGFB1, AKT1, and BRCA2 are bind-
ing targets for anti-breast cancer drugs [Hamed et al., 2015b] (Table 4.4).
Next, we examined the TF-miRNA co-regulatory motifs that were significantly en-
riched in the entire interaction network. We identified 53 FFL motifs (3 composite-
FFLs, 2 TF-FFLs, 6 miRNA-FFLs, and 42 coreg-FFLs). An interesting motif
involving the TF SPI1, the miRNA hsa-mir-155, and the target gene FLI1 reveals
how FFL motifs may help to better understanding the pathogenicity of breast
cancer (Figure 4.3). Recent studies reported that the oncogene SPI1 is involved
in tumor progression and metastasis [Guo et al., 2005; Rimmelé et al., 2010].
However, the co-regulation of the oncogene FLI1 [Sakurai et al., 2007] by both
SPI1 and the oncomiR hsa-mir-155 was not reported before. As the co-regulated
genes of SPI1 and hsa-mir-155 have significantly more similar cellular functions
than randomly selected genes (Figure 4.4), this FFL motif provides novel insights
on SPI1-miRNA networks alteration in breast cancer and suggests a cooperative
functional role between SPI1 and potential miRNA partners.

Supplementary Materials of TFmiR web server                    Hamed M et al. 
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Figure S2. Sample input file of deregulated miRNAs. (1), and (-1) refer to up-and down regulation, respectively. 

 

 

Figure S3. (a) Co-targeted genes defined as genes that are targeted by the same TF and miRNA pair. (b) Co-
regulated genes defined as all genes regulated by the TF and the miRNA of this TF-miRNA pair. 
 

 

Figure S4. A composite FFL motif involves the TF SPI1, the miRNA has-mir-155, and the target gene FLI1. The 

co-regulated nodes are also visualized and are further tested whether they compose a cooperative functional module 

in breast cancerogenesis (see Fig S5).  

(b) (a) 

Figure 4.3: A composite FFL motif involves the TF SPI1, the miRNA has-mir-155, and the
target gene FLI1. The co-regulated nodes are also visualized and are further tested whether
they compose a cooperative functional module in breast cancerogenesis (see Figure 4.3)
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Table 4.2: The twelve most significant functions and diseases enriched in the miRNA nodes of
the breast cancer disease network

Category Term miRNAs Count p-value

Function Epithelial-mesenchymal transition 17 0.022

Function Glucose metabolism 4 0.048

Disease Breast neoplasms 67 1.43× 10−25

Disease Lung neoplasms 50 4.33× 10−17

Disease Neoplasms 44 3.15× 10−15

Disease Ovarian neoplasms 43 1.3× 10−14

Disease Adenocarcinoma 27 2.59× 10−13

Disease Pancreatic neoplasms 39 7.3× 10−13

Disease Prostatic neoplasms 41 3.49× 10−12

Disease Melanoma 45 1.25× 10−11

Disease Colonic neoplasms 32 4.67× 10−11

Disease Colorectal neoplasms 45 5.69× 10−11

Table 4.3: Key driver genes and miRNAs in the breast cancer network

Key genes E2F6, TP53, SPI1, TGFB1, SMAD4, ESR1, TERT, E2F3,
BRCA2, AKT1

Key miRNAs hsa-mir-148a, hsa-mir-21, hsa-mir-93, hsa-mir-152, hsa-mir-
106b, hsa-mir-143, hsa-mir-200c, hsa-mir-27a, hsa-mir-23a, hsa-
mir-22, , hsa-mir-146a, hsa-mir-335
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Figure S5. Cumulative distribution of GO functional semantic scores of gene pairs of co-regulated genes in the 

examined motif (red) versus randomly selected genes (black). The p-value was calculated using the Kolmogorov-

Smirnov test. 
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Figure 4.4: Cumulative distribution of GO functional semantic scores of gene pairs of co-regulated
genes in the examined motif (red) versus randomly selected genes (black). The p-value was
calculated using the Kolmogorov- Smirnov test.

Table 4.4: The identified key gene nodes in the breast cancer network whose protein products are
targeted by anti-cancer drugs. (1) means that at least one drug that targets this gene product
is reported in this database, and (0) means no drugs are reported for the respective gene in this
database. Not included are substances that are known to be cancerogenous or mutagenic.

Target gene Drug and antineoplastic agents CTD PharmGKB CancerResource

AKT1 U 0126; Tyrphostin AG 1478; Ur-
sodeoxycholic Acid; Valproic Acid;
Tyrphostin AG 1024; Trametinib;
Tretinoin

1 0 1

BRCA2 Tretinoin; Trichostatin A; Estra-
diol; Transplatin; Troglitazone; Tuni-
camycin; Fulvestrant

1 0 1

ESR1 Exemestane; Tamoxifen 0 1 1

TGFB1 Doxorubicin; Fluorouracil; Thalido-
mide; Entinostat; Hyaluronidase

0 0 1

TP53 4-biphenylmine; Alliin; Apigenin; At-
ropine; Bicalutamide; Butylideneph-
thalide

0 0 1
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4.6 Discussion & Perspective

Our webservice approach to create and investigate comprehensively a co-regulatory
network for diseases was a technical challenge in terms of developing an interface
with reasonable responsiveness and performance. As most operations are expen-
sive in execution time, we decided to split the initial network generation from
downstream motif search, and this again from functional similarity determination
of their subnetworks.

To enable downstream analysis outside TFmiR, for example with Cytoscape,
the entire data that is generated by TFmiR at any time during the analysis can be
downloaded with a single click. This includes the functional similarity images gen-
erated up to that point. The efforts to implement the Cytoscape/CyREST/TFmiR
interface were reasonable, the transfer of the motif search to Cytoscape could in-
crease the performance for our example data set by a factor of 10.

In comparison to other webservices with similar functionality that allow to in-
vestigate single gene↔ miRNA interactions, TFmiR offers extended functionality.
The tool allows for an investigation of the molecular interactions between sets of
deregulated genes and miRNas within and without the pathogenic pathways of
a disease with custom evidence levels. The downstream network analysis with
co-regulatory motif detection, visualization, ORA analysis, and evaluation of the
interaction significance is novel in its functionality.

TFmiR was able to confirm regulators known from literature and revealed
new aspects of TF/gene/miRNA interactions in breast cancer pathogenesis. The
identified novel hub nodes may be investigated in respect to their druggability.

In future, TFmiR could be extended to include time series expression data.
This would enable to investigate how regulatory mechanisms may evolve.
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Chapter 5

Alzheimer’s Disease: Integrative
Differential Analysis of Temporal
Cortex Brain Samples

The last project presented in the scope of this thesis is a collaborational project
with the group of Prof. Matthias Riemenschneider, head of the neurobiological
laboratory and the psychiatric department at the Universitätklinikum des Saar-
landes with the aim to study the Alzheimer’s disease integratively across diverse
datasets. The main wet lab work has been done by Sabrina Pichler and Dr. Gilles
Gasparoni, while the author performed the raw data processing and the data inte-
gration. Additionally, Mohamed Hamed and Alexander Zapp helped with the key
driver identification (section 5.3) and proximity analysis (section 5.4), while Lukas
Tost studied putative connections between miRNA expression and the methylome
(section 5.5) in his Bachelor thesis that was supervised by the author. The work
is in preparation for publication.

5.1 Motivation

In this study, we try to account for the evident complexity of AD by integrat-
ing different data collected for individual samples into a single model. The group
of Prof. Matthias Riemenschneider obtained and prepared brain samples from
64 individuals from the Munich Brain Center (MUC) and generated an extensive
dataset including gene and microRNA expression levels, methylome, single nu-
cleotide polymorphisms and Amyloid-β protein level measurements from temporal
lobes.

In the following, we discuss the dataset and describe subsequently our ap-
proaches to integrate the different types of data.

59
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5.2 Dataset

The brain samples - further referred to as MUC samples - were collected from 64
individuals with 39 cases and 25 controls, see Table 5.1. The age distribution,
which is shown in Figure 5.1, suggested a cohort of late-onset cases.

Male Female Total

Case 15 24 39

Control 15 10 25

30 34 64

Table 5.1: Number of males and females in the example dataset

Figure 5.1: Age distribution of the patients in the sample set. The outlier being a control, and
EOAD onset expected to be prior to 55-65, we consider our dataset to represent the late onset
form of Alzheimer’s disease.

In the following sections, the individual datasets suchs as protein levels, miRNA
and mRNA expression profiling, and methylome are presented in more detail.

5.2.1 Amyloid-β protein levels

As mentioned before, the formation of neuritic Amyloid-β is considered to be a
key pathological feature of AD. Protein levels for both peptides (Amyloid-β40 and
42) were obtained using an quantitative Enzyme Linked Immunosorbent Assay
(ELISA).

Evaluation of the assay, log transformation and determination of the extinction
values, was done at the laboratory in Homburg. In Section 2.3, We incorporated
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the protein level measurements as additional input for the SNF method described
in section 2.3.

We log transformed the protein levels to validate the presumed case and control
fold change. Amyloid-β 40 and 42 showed differential levels between both groups
with p-values at 1.052× 10−8 and 1.984× 10−8, respectively. Figure 5.2 shows the
distribution of both protein level measurements.

Figure 5.2: Shown are the respective Amyloid-β 40 (l) and 42 (r) level distributions for cases
(red) and controls (blue)

5.2.2 miRNA Expression

We analyzed the miRNA-expression profiles in the temporal cortex from the MUC
brain samples for both control group and disease group. Quantile normalization
and background correction was done in Homburg. The full dataset contained
information about the expression of 1281 miRNAs and was filtered several times
to identify differentially relevant markers.

Data preparation

The dataset needed to be filtered for noise, since a large fraction of the miRNA
markers showed relative expression values < 50, which was established in Homburg
as reasonable threshold when working with the Febit Geniom 16 array. Those
values were marked as NA.
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Figure 5.3: miRNA expression plotted against the respective Braak Stage of the samples. Red
circles indicate individuals diagnosed with AD, blue circles are control. Filled rhombs indicate
median values for respective groups. The most significant candidates, miRNA 132 (left panel)
and miRNA 212 (right panel), both show higher expression levels in control than in AD group.

We define a call ratio C as the fraction of samples p for a marker M that satisfy
the threshold over all samples for a marker:

CM =
p

p+ n
(5.1)

with the markers n that exceed this threshold.
The dataset was split into control and AD group. For both groups, every

marker was checked for a call ratio above 90%. If at least one marker in of both
groups exceeded that ratio, the marker was accepted.

For both groups, the median for each marker was calculated. If the median did
not meet the threshold (50.0) at least one group, the marker was rejected. In the
same step, only markers which had a significant higher expression (twofold) in one
group (AD or control) were accepted. The filtering left 560 acceptable markers
and the remaining dataset was log2 transformed.

Sample redundancy For some samples, two profiles were measured. Similar to
the marker call-ratio, we calculated a sample call-ratio to decide which one should
be rejected.

The profile that scored lower was dropped from the analysis, see table 5.2. Call
rates were similar except for AD_F_TP_16.

Differential Analysis

To find differentially expressed miRNAs, a Student’s t-test was applied to the
dataset. After correction for multiple testing, two significant miRNAs remained,
namely has miR 132 and hsa miR 212 as shown in table 5.4.
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Table 5.2: Call ratios for the doubled samples

Sample name Call ratio Call ratio REP

AD_F_TP_05 0.38 0.39

AD_F_TP_09 0.41 0.40

AD_F_TP_16 0.34 0.39

ctrl_F_TP_05 0.408 0.406

Table 5.3: Student’s t-test results with p-Value < 0.01 before multiple testing correction, see
Table 5.4

miRNA p-Value

hsa miR 132 8.2E-07

hsa miR 212 6.5E-06

hsa miR 129* 0.00028

hsa miR 296 5p 0.00032

hsa miR 129 3p 0.00093

hsa miR 590 5p 0.0018

hsa miR 4284 0.0023

hsa miR 323 3p 0.0027

hsa miR 148b 0.003

hsa miR 1207 5p 0.0031

hsa miR 1274b 0.0035

hsa miR 543 0.0037

hsa miR 4298 0.0059

hsa miR 495 0.0061

hsa miR 126 0.0063

hsa miR 129 5p 0.0063

hsa miR 1289 0.007

hsa miR 4270 0.0079

hsa miR 1972 0.0085

hsa let 7g 0.0087

hsa miR 874 0.0091

hsa miR 744* 0.0093

hsa life 18 0.0094

hsa miR 296 3p 0.0098
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Table 5.4: Significant miRNAs after FDR correction with p-value < 0.05

miRNA Corrected p-value

hsa miR 132 0.0024

hsa miR 212 0.008

For those, the average expression in control groups is higher than in cases, see
Figure 5.3.

The heatmap for miRNAs with p-value < 0.01 is shown in Figure 5.4.
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Figure 5.4: Heatmap for the 23 miRNAs with p-value < 0.01 for AD and control group. Note
that the cluster of samples to the left indicates all but two Apoε4 non-carriers, the exceptions
being actual AD cases.
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5.2.3 Gene Expression

The gene expression levels were determined using the Illumina HT12 v4 Bead
Array. Bioinformatic analysis was carried out with R using the limma package
[Ritchie et al., 2015].

First, using the negative array control probes, the Illumina data was back-
ground corrected and normalized, and log2 transformed afterwards. The compar-
ison between the raw data and the processing is shown in Figure 5.5.

Figure 5.5: log2 intensity plot before and after normalization and background correction
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Results

The test gave 1346 underexpressed genes in contrast to 814 overexpressed genes
in Alzheimer’s disease, see Table 5.5.

Table 5.5: Number of up- and downregulated genes in test set

AD - ctrl

Downregulated (-1) 1346

Non-decisive (0) 27389

Upregulated (1) 814

We could identify 148 differentially expressed genes between case and control,
using an adjusted p-value threshold of 0.01. For a less strict threshold of 0.05, 1918
genes were considered to be significant. Table 5.6 shows the 30 top genes from the
analysis (see Appendix A.1 for the full table)

Table 5.6: Table shows an excerpt of the top 30 genes from 148 differentially expressed genes
with p-Value < 0.01 using limma. (5 differentially expressed sites could not be annotated)

No Gene Symbol log FC t p-Value adj. p-Value B

1 GFAP 1.4 7.1 1.6e-09 4.8e-05 11

2 C5orf41 0.58 6.7 7.6e-09 9e-05 9.8

3 RNU1G2 1.4 6.7 9.1e-09 9e-05 9.7

4 RNU1-3 1.3 6.3 3.5e-08 0.00026 8.4

5 RNU1-5 1.2 6.1 7.8e-08 0.00044 7.7

6 AEBP1 1.5 6.1 8.8e-08 0.00044 7.6

7 HBP1 0.59 5.9 1.7e-07 0.00064 7

8 C1orf110 1.2 5.9 1.8e-07 0.00064 6.9

9 RHOQ 0.77 5.9 2e-07 0.00064 6.9

10 PPARBP 0.51 5.8 2.8e-07 0.00076 6.5

11 MYBPC1 1.1 5.8 2.8e-07 0.00076 6.5

12 EIF3E 0.38 5.7 3.4e-07 0.00079 6.4

13 NFKB1 0.49 5.7 3.5e-07 0.00079 6.4

14 TNPO1 0.56 5.7 4.2e-07 0.00089 6.2

15 C5orf41 0.57 5.5 8.6e-07 0.0017 5.5

. . .
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Table 5.6 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

16 PKN2 0.62 5.4 1.3e-06 0.0024 5.1

17 AK1 0.53 5.4 1.4e-06 0.0024 5.1

18 MAP1LC3A -0.51 -5.3 1.5e-06 0.0024 5

19 ITPKB 1.2 5.3 1.6e-06 0.0024 5

20 SRGAP1 0.78 5.2 2.2e-06 0.003 4.7

21 KCNF1 -0.97 -5.2 2.9e-06 0.0038 4.4

22 SST -1.5 -5.2 3e-06 0.0038 4.4

23 PPEF1 -0.99 -5.1 3.1e-06 0.0038 4.4

24 DDR2 0.96 5.1 3.8e-06 0.0045 4.2

25 LOC284988 0.74 5.1 4e-06 0.0045 4.1

26 HBQ1 -0.85 -5.1 4.2e-06 0.0046 4.1

27 FOXJ1 1.3 5 4.7e-06 0.0048 4

28 FAM107A 0.64 5 4.9e-06 0.0048 4

29 LOC388481 -0.49 -5 5e-06 0.0048 3.9

30 KCNA4 -0.28 -5 5.1e-06 0.0048 3.9

For the top 12 genes, Figure 5.6 shows the expression values for cases and
controls and the corresponding Braak stages that indicate the progression of the
neurodegenerative process.
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(a) Genes 1-6

Figure 5.6: Figures 5.6a and 5.6b show the expression values and their corresponding Braak
stage of the top 12 genes as indicator for AD progression.

The most prevalent genes for early-onset Alzheimer’s disease, such as APP,
PSEN1 and PSEN2 show either non-significant p-values within the expression
data or dropped out of analysis due to FDR correction (PSEN2 ). Since the mean
age of the targets studied is 74.5 and Alzheimer’s disease shows a mean progression
of 10 years (ranging from 1 to 25 in some cases), we consider the studied individuals
as late-onset alzheimer’s disease cases (LOAD) for which those genes may not be
determinative.

The tau protein coding gene MAPT shows significantly higher expression in
the case group, with an adjusted p-value of 0.0328.

A comparison of the identified 1918 genes (1291 downregulated, 845 upregu-
lated) shows an overlap of 307 (24.8% ) of 1271 in reference downregulated genes
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(b) Genes 7-12

Figure 5.6: (cont.)

and 218 (12.9%) of 1691 in reference upregulated genes, see [Blalock et al., 2004],
Figure 5.7 or Molecular Signatures Database, where the data is published.

Figure 5.8 shows the overlap between the different external datasets and the
data retrieved with limma.

Also, there were significant overlaps with gene sets that have been associated
to various disorders such as bipolar disorder.

A heatmap of the 148 top genes with known gene names is shown in Figure
5.9.
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Figure 5.7: Overlaps of the up- and downregulated genes in our study with those of Blalock et al.
[2004].

Figure 5.8: Diagram shows the overlap of the results retrieved from Limma analysis (with p-
Value < 0.05) and the genes associated with Alzheimer from Omim and a dataset published on
MSigDB, released by Blalock et al. [2004], who worked with a threshold of 0.05 as well.
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Figure 5.9: Heatmap for the top 148 differentially expressed genes. A separation between case and
control group can be seen. Even more interesting, “misclassified” individuals (due to expression
profiles) show the respective Apoε genotypes that are considered to have a protective or promoting
function for Alzheimer’s disease, e.g. ctrl M TP 10 and ctrl M TP 07 with an 23 genotype, or
the AD patients AD F TP 10 and AD F TP 01 with expression profiles similar to control groups
but with at least one Apoε 4 allele. On the other hand, information for clear separation is still
incomplete, since patient AD F TP 17 shows an expression similar to controls as well as the
Apoε 23-genotype but still were diagnosed with Alzheimer’s.
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5.2.4 Methylation

The epigenetic methylation data were generated using an Illumina 450k BeadChip
Array. In the following, the data has been analyzed using the methylumi R package
[Davis et al., 2012].

First, we preprocessed the data following the protocol as described in the man-
ual provided with methylumi and subsequently identified differentially methylated
regions (DMRs) using the methyAnalysis R-package [Du and Bourgon, 2013].

The comparisons of the density between both channels for both methylated and
unmethylated probes after (1) color balance adjustment, (2) background correction
and (3) quantile normalization are listed in Appendix A.2. In Figure 5.10 the
comparison before and after preprocessing is shown.

Then, we identified the DMRs using a smoothing window of 250 base pairs.
The thresholds were set at a p-value of 0.05 and a required fold difference of
0.1. The fold difference threshold was selected to account for the fact that within
tissues, methylation changes are more subtle in same type tissues than in more
heterogeneous samples, such as in cancer and controls for example. Finally, the
DMRs were annotated and filtered for promoter regions 2kb base pairs upstream.

Figure 5.10: Box plot of color bias before and after processing of the methylation data

Results

We obtained a set of 5543 differentially methylated regions between cases and
controls, whereof 1021 lie within promoter regions (2kb upstream). The top 50
differentially methylated regions – sorted by the adjusted p-value – are listed in
Table 5.7.
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Table 5.7: Top 50 differentially methylated regions, sorted by p-Value

Rank Chr Start End Width min
adj.p-
val

Mean AD Mean Ctrl EntrezID Symbol TSS Dist.

1 chr14 64010427 64010844 418 0.0038 -4.7 -4.6 5529 PPP2R5E -348

2 chr20 16710288 16710841 554 0.0039 -4.3 -4.1 6629 SNRPB2 0

3 chr10 85954312 85954622 311 0.0039 -5.6 -5.4 92211 CDHR1 0

4 chr17 79268988 79269242 255 0.0046 -3.8 -3.7 124565 SLC38A10 0

5 chr1 21112556 21113199 644 0.0046 -4.6 -4.5 50809 HP1BP3 0

6 chr17 79670206 79670933 728 0.0052 -5.6 -5.5 1468 SLC25A10 0

7 chr11 809697 810321 625 0.0052 -5.3 -5.1 6181 RPLP2 0

8 chr20 23470274 23470461 188 0.0052 3.5 3.8 10047 CST8 -1305

9 chr16 85060822 85061228 407 0.007 -3.8 -3.6 9764 KIAA0513 -147

10 chr2 10861364 10861710 347 0.007 -4.8 -4.5 245973 ATP6V1C2 -65

11 chr15 42840397 42841312 916 0.0079 -5 -4.9 255252 LRRC57 0

12 chr16 11343164 11343701 538 0.0079 5.5 5.3 116028 RMI2 0

13 chr1 11332969 11333577 609 0.0082 -4.5 -4.3 29914 UBIAD1 0

14 chr4 205522 205522 1 0.0086 0.99 0.68 642280 ZNF876P -867

15 chr10 81838583 81839181 599 0.0088 -4.6 -4.5 219347 TMEM254-AS1 0

16 chr18 77711560 77712060 501 0.0088 -5.1 -4.9 80148 PQLC1 0

17 chr2 9697298 9697298 1 0.0088 2.3 1.8 6868 ADAM17 -1381

18 chr8 121137288 121137734 447 0.0094 -4.1 -3.9 7373 COL14A1 0

19 chr9 120177435 120177700 266 0.01 -3.4 -3.7 23245 ASTN2 -118

20 chr1 9149026 9149026 1 0.01 0.8 0.36 6518 SLC2A5 -516

21 chr2 17720407 17720407 1 0.011 -5.7 -5 7447 VSNL1 -1400

22 chr13 20420028 20434104 14077 0.011 -0.2 -0.089 9205 ZMYM5 0

23 chr21 27542749 27543410 662 0.011 -5.3 -5.2 351 APP 0

24 chr5 148786302 148786377 76 0.011 1.1 0.89 728264 MIR143HG -63

25 chr5 134094363 134094672 310 0.011 -5.3 -5.3 9879 DDX46 0

26 chr1 113257872 113258477 606 0.011 -4.9 -4.7 333926 PPM1J 0

27 chr16 30569726 30569978 253 0.011 -5.1 -4.9 92595 ZNF764 -84

28 chr10 99609481 99611477 1997 0.011 -5.2 -4.9 401647 GOLGA7B 0

29 chr1 147400503 147400867 365 0.011 -5.4 -5.2 51463 GPR89B 0

30 chr6 53659348 53659618 271 0.011 -3.7 -3.5 55227 LRRC1 0

31 chr12 120427178 120427182 5 0.011 -3.7 -3.6 92558 CCDC64 -466

32 chr22 33453994 33454444 451 0.011 -3.9 -3.7 8224 SYN3 0

33 chr17 39240343 39240343 1 0.011 1.7 1.2 100132476 KRTAP4-7 -116

34 chr4 39699140 39699959 820 0.011 -4.7 -4.5 3093 UBE2K 0

35 chr2 73341598 73341598 1 0.011 0.74 0.48 26056 RAB11FIP5 -1452

36 chr15 90808551 90809150 600 0.011 -5.1 -5 10519 CIB1 0

37 chr7 129592730 129593010 281 0.012 -3.8 -3.6 7328 UBE2H 0

38 chr15 83316640 83316838 199 0.013 -5.6 -5.3 64506 CPEB1 0

39 chr15 64454827 64455548 722 0.013 -4.5 -4.3 5479 PPIB 0

40 chr17 79633496 79633857 362 0.013 -5.7 -5.6 339229 OXLD1 0

41 chr7 33102336 33102794 459 0.013 -5.2 -5 51251 NT5C3A 0

42 chr7 66057363 66057450 88 0.013 -4.8 -4.5 493754 LOC493754 0

43 chr4 126236316 126236816 501 0.013 -3.3 -3.1 79633 FAT4 -751

44 chr2 111435449 111435943 495 0.013 -4.1 -4 699 BUB1 0

45 chr11 71493933 71497688 3756 0.013 -4.3 -4.4 55199 FAM86C1 -869

46 chr21 35014635 35015322 688 0.013 -4.8 -4.5 6453 ITSN1 0

47 chr9 88357129 88357129 1 0.013 -3.3 -3 23287 AGTPBP1 -185

48 chr8 75233610 75233613 4 0.014 -6.3 -5.7 56704 JPH1 -48

49 chr6 170124933 170125241 309 0.014 -5.4 -5.3 55274 PHF10 -827

50 chr8 145133263 145133899 637 0.014 -5.2 -5.1 54512 EXOSC4 0
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5.3 Application of the key driver identification

pipeline

We used the set of differentially expressed miRNAs, mRNAs and differentially
methylated regions to apply the computational pipeline described in Sections 3.4
and 4.5. To widen the search space, we extended the microRNAs to the set before
multiple test correction. The identified key drivers are shown in Table 5.8.

Notably, one would expect mir-212 to be a key driver because it has been widely
associated with the Alzheimer’s Disease [Wong et al., 2013]. When investigating
the resulting TF-miRNA network shown in Figure 5.11, this is a result from using
the MCDS algorithm to the identify the key drivers. When looking for a minimum
set, mir-132 is a more contributing node than mir-212 and thus favorably selected.

We could identify the cyclin-dependent kinase 5 gene (CDK5) as a key driver
gene, which has as well been shown in other studies to be associated with pre-
neurofibrillary tangles and neurofibrillary tangles in temporal lobes from AD brain
samples [Hernandez et al., 2009; Shukla et al., 2012].

Table 5.8: Table shows the results for the key drivers identified from differentially expressed
miRNAs and mRNAs. Among other miRNAs we identified mir-132 as a key driver, but not
mir-212.

Interactions Type Count Key Drivers Total KD Top GO Top KEGG

TF-mRNA Genes 148

TSPAN7, JARID1A, AH-
NAK, ITPKB, NELL1,
PPARBP, KRT17, BBX,
C10orf105, CDK5, HBP1,
CPNE9, C13orf36,
RASL12, SLC16A9

15 cell-matrix adhesion,
multicellular organismal
development,intracellular
signaling cascade

Inositol phosphate
metabolism, Axon guid-
ance, Alzheimer’s disease
(CDK5)

miRNA-miRNA

Genes 59 GFAP, ITGB5, RIN2,
TPI1

4

miRNAs 15

mir-148b, mir-323-3p, let-
7g ,mir-126, mir-129*, mir-
132, mir-129- 3p, mir-
484, mir-296-5p, mir-590-
5p,mir-543

11
Hormones Regulation,
hESC regulation, inflam-
mation

Autistic Disorder, Stom-
ach Neoplasms
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Figure 5.11: Transcription factor-mRNA network (created with igraph)

5.4 Proximity Analysis

Using the set of differentially expressed miRNAs and gene methylation, we exam-
ined SNPs that are adjacent to their respective coding regions.

5.4.1 microRNA proximity

Figure 5.12 shows the result from the proximity analysis of miRNAs and their
corresponding SNPs.
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Figure 5.12: Proximity analysis of micro RNAs with known SNPs. Green are the known micro
RNAs, blue known SNPs. Red are differentially expressed microRNAs as shown in section 5.2.2.
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5.4.2 Methylation proximity

For the differentially methylated regions, we identified four genes and their respec-
tive SNPs in our dataset. We examined the results with DAVID and in the UCSC
Genome Browser. A graphical overview of the findings is shown in Figure 5.13.

For TMEM254-AS1 Antisense RNA Gene, COL14A (involved with collagen
binding) and CST8, as well as genes in their genomic context displayed no con-
nection to AD or neurogenerative diseases is in general known so far.

UbiA prenyltransferase domain containing protein 1 (UBIAD) is associated
with Schnyder corneal dystrophy, an autosomal dominantly inherited disease that
affects the cornea and causes opacification. Other than increasing severity of the
disease with aging patients, the connection to AD is questionable.

This analysis suggests that SNPs near methylated regions in our dataset are
unlikely to influence the development of AD.

5.5 Epigenetic analysis of miRNA

In the scope of a Bachelor thesis, Lukas Tost worked on a project in which we aimed
for an investigation of the effect of miRNA promoter methylation in the MUC
samples and implemented an R package to do so. We combined the previously
obtained methylation data, miRNA and mRNA expression profiles using various
database sources. Based on the differentially methylated transcription start sites
(TSSs), we built a network for the respective miRNAs and their targets, shown
in Figure 5.14. We analyzed the respective targets using DAVID [Dennis et al.,
2003], see Table 5.9.

The four genes EPHA4, CBLN4, ZNF148 and KAT2B were previously de-
scribed in literature to be correlated with AD.

EPHA4 is a substrate of γ-secretase, and the γ-secretase-cleaved EPHA4 intra-
cellular domain (EICD) is known to enhance the formation of dendritic spines via
activation of the Rac signaling pathway [Matsui et al., 2012]. Rac1 levels are cor-
related with the amount of EICD in frontal lobes and negatively correlated with
the amount of tau phosphorylation, which indicates involvment in the synaptic
pathogenesis of AD.

Significant expression decrease of the gene coding for synaptic protein cerebellin
4 (CBLN4) was shown to be connected to amyloid-β induced cell death, as in
vitro experiments with increased recombinant CBLN4 showed preserving effects in
cultivated neuron cells Chacón et al. [2015].

ZBPF belongs to the family of zinc binding protein factors which were described
by Augustin et al. [2011] to be part of a module of transcription factor families
that AD-related genes share.
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Figure 5.13: Proximity analysis of gene methylation with known SNPs

The gene encoding the lysine acetyltransferase 2B (KAT2B), also known as
P300/CBP-associated factor (PCAF), was shown to regulate the expression of
proteins involved in amyloid-β generation and degradation [Duclot et al., 2010],
especially previously mentioned γ-secretase.
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Figure 3: Shown are microRNAs2 and their respective targets. The TSSs of
microRNAs, which - regarding the used thresholding values - have been determined
to differ significantly between “AD” and “control”, were taken into account. The
significance is attributable to the used parameters, which are described in Figure 1.
Hypothesis: Matching / All observations: 0.53

2 "hsa-miR-106b-5p", "hsa-miR-93-5p", "hsa-miR-25-3p"

Figure 5.14: Shown is the network for differentially methylated miRNAs and their gene targets.
The node filling indicates methylation and expression levels, respectively.

5.6 Integration with Similar Network Fusion

While the key driver analysis is a method to generally assess expression and methy-
lome data, the MUC dataset enabled us to specifically compare the profiles for each
sample. Thus, in order to assess the datasets sample-wise, we applied the simi-
lar network fusion (SNF) method presented in Chapter 2.3. Since the dataset is
incomplete for some samples, the SNF study was limited to an intersection of 56
samples for which the whole dataset was available.

We used the lists of the differential analysis for each dataset as an input in order
to increase the significance of the output network and reduce noise by non-decisive
probes. That way, we tried to highlight possible decisive correlations between the



80 CHAPTER 5. INTEGRATIVE ANALYSIS OF AD

Table 5.9: Functional annotation for the putative miRNA regulated gene targets

Gene Symbol Gene Name Function

EPHA4 receptor A4 Axon guidance

CBLN4 cerebellin 4 precursor Putative involvement in synap-
tic function in central nervous
system

ZNF148 zinc finger protein 148 negative regulation of tran-
scription from RNA poly-
merase II promoter

KAT2B K(lysine) acetyltransferase 2B chromatin structure and dy-
namics / transcription

CNRIP1 cannabinoid receptor interac-
tion protein 1

modulates the constitutive
CB1 receptor activity in the
central nervous system

FBXW7 F-box and WD repeat domain
containing 7

Ubiquitin mediated proteolysis

PTHLH parathyroid hormone-like hor-
mone

skeletal system development

CEP350 centrosomal protein 350kDa Cell division and chromosome
partitioning

PBX3 pre-B-cell leukemia homeobox
3

regulation of respiratory
gaseous exchange by neurolog-
ical system process

CALD1 caldesmon 1 muscle system process

TOB1 transducer of ERBB2, 1 Anti-proliferative protein

samples spanning over the different datatypes that enable a more precise prediction
outcome whether or not to classify a sample to be case or control.

Thus, the final input for SNF contained the following datasets with continously
measured data of 2 miRNAs, 148 mRNAs, and 119 differentially methylated sites,
including non-promoter regions.

Moreover, from the protein level measurement (Amyloid-β 40/42) we extracted
the Apoε genotype (presumed relevance shown in 5.9 and created a matrix with
discrete entries 0, 1, and 2, each representing the count of the respective allele
Apoε 2, 3, and 4:

Based on the clustering shown in Figure 5.9, we expect a stronger influence
of the Apoε genotype, for that reason a different measure for this feature has
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Table 5.10: Example of the Apoε genotype table

Sample Apoε 2 Apoε 2 Apoε 3

AD F TP 01 0 1 1

AD F TP 06 0 1 1

AD F TP 07 0 2 0

AD F TP 10 0 0 2
...

...
...

...

been included. We derived the probabilities for each genotype from Raber et al.
[2004] and created a vector containing the allele, diagnosis, and the corresponding
probability, see Table 5.11

Table 5.11: Apoε probability table [Raber et al., 2004]

642 J. Raber et al. / Neurobiology of Aging 25 (2004) 641–650

Table 1
ApoE genotype frequency in US population and AD risk

Genotype Populationa
(%)

ADb
(%)

#Population #AD Riskc
(%)

If all
US

ε2/2 1 0.1 0.5M 0.004M 0.08 0.4M
ε2/3 12 4 5.5M 0.18M 3.2 1.5M
ε3/3 60 35 27.6M 1.4M 5.1 2.3M
ε3/4 21 42 9.6M 1.7M 18 8.2M
ε4/4 2 16 0.9M 0.6M 67 30.7M

Please note that ε2/ε4 subjects are not included in table.
a Using estimate of 46 million in US over 60 y/o in 2000.
b Assuming 4 million individuals have AD.
c Data from [13,46,49].

of age has some support [38], but such “healthy survivor”
effects have been discussed at length and apply only to a
small number of individuals and may be measurement arti-
facts, mostly unrelated to AD diagnosis [21–23] or represent
the extreme limit of the aging process. Also, family history
shows a major association with the risk of developing AD,
even beyond the autosomal dominant mutations and apoE
genotype. The family risk that is not yet explained by ge-
netic factors could be related to unidentified genes associ-
ated with either AD risk or longevity to reach the age of
AD risk [52] or other manners of familial association such
as cultural factors. However, closer scrutiny of the actual
age of onset of dementia in AD patients in relationship to
the apoE genotype reveals that it is the APOE gene which
is the factor determining the vast majority of AD risk. This
association is modeled in detail below.

2.2. The Gompertz law and modeling biological aging

To examine the risk factors associated with the develop-
ment of AD, it is necessary to first examine the process of
aging and the consequent mortality. Biological aging is the
reciprocal of decay and is associated with a progressive in-
crease in mortality rate with duration of life (as opposed
to a stable rate of mortality as would be seen in a decay
curve). Aging in biological systems may best be seen as a
consequence of the massive scale of redundancy achieved
by multi-cellular systems to compensate for the natural loss
of system elements over time [16], which is described by a
Gomperz curve (as opposed to a Weibull curve, as is seen for

Table 2
Prevalence of AD

Estimated 4 million cases in US (2000)
(2000–46 million individuals over 60 y/o)
Estimated 500,000 new cases per year
Increase with age (prevalence)
1% of 60–65 (10.7m) = 107,000
2% of 65–70 (9.4m) = 188,000
4% of 70–75 (8.7m) = 350,000
8% of 75–80 (7.4m) = 595,000
16% of 80–85 (5.0m) = 800,000

aging in mechanical systems, for reviews, see [16,21–23]).
The Gompertz law states that mortality starts at a low level in
early adulthood, and then doubles every set number of years.
There is an exponential increase of death rate beginning at
age 30, doubling every 7.5 years for women and every 8.2
years for men, with over 99.5% of the variance in mortal-
ity rate explained by an exponential function (a straight line
on log-linear plot, Fig. 1c) between 30 and 95 years of age
for the US population. Comparing AD incidence per year
data (Fig. 1c), it is apparent that the rate of developing AD
increases more rapidly (doubling every 5 years) than mor-
tality rate. The rate of developing AD would be expected to
exceed that of mortality by 105 years old (though there is
some difficulty in assessing such values in small, difficult to
find populations). Without considering the controversy about
whether there is a different rate of developing AD related to
gender (cf. [28]; and for the consideration that females are
more vulnerable to AD than males, see [13,64], application
of the rate of developing AD to the US Census data yields
the result that there is nearly twice as much AD in women
solely related to the increased longevity of women (Fig. 1d).
The centenary population (individuals in their 100th year)
only represents about 1% of the birth cohort (and there are
five times as many females at this age as there are males),
but, according to these calculations, 80% of centenarians
have AD (though the empirical data of Miech et al. [38],
support the findings of others that this level is not reached
in centenarians because of a plateau in the increasing rate at
very old age).

2.3. AD attacks brain systems with a high degree of
neuroplasticity

It is remarkable that the development of AD is more
closely related to aging than mortality is. This pattern of
age-accelerated AD development suggests that there is a
catastrophic breakdown of a selective brain system with age.
To show such a close relationship to aging, that system needs
to be highly redundant and composed of parts that must reach
a threshold of dysfunction and then deteriorate very quickly.
In the case of AD, the redundant system is the network
of neurons subserving memory, and when the deterioration
of these neurons reaches the point that network capacity is
impaired, memory problems will appear, and then the pa-
tient will deteriorate relatively rapidly. The highly-redundant
brain system that is attacked by AD pathology is thought
to be composed of those neuronal systems that have ma-
jor neuroplastic activity, which underlies memory function
[1–3,37,56].

2.4. Broad support for the relationship between ApoE
genotype and AD

Since the apoE genotype was first shown to have a major
impact on the age of development of AD, there have been
over 100 studies which have confirmed the relationship

5.6.1 Results

We could reach an Mutual Information score of 0.35 and 84% accuaracy using
these four datasets.

The scores for the resulting network scores using different combinations of input
networks are shown in Table 5.12. The clusters for each individual dataset and
the final clustering of the fused network is shown in Figure 5.15.

Interestingly, when we included the Amyloid-β ratios as an additional marker
into the network, the accuracy of the method suffered largely. Thus, for this study,
we focused on expression, methylome and the Apoε genotype.



82 CHAPTER 5. INTEGRATIVE ANALYSIS OF AD

Figure 5.15: From top left to top right: clusters for each dataset, (1) miRNA, (2) mRNA, (3)
methylation, (4) ApoE genotype, (5) Amyloid-β ratios and (6) the fused network

5.7 Discussion

In the following section, we assess the results from the (1) data analysis, (2) key
driver identification, (3) microRNA promoter methylation analysis and (4) the
similar network fusion and possible strategies to improve the approaches.

5.7.1 MUC Dataset

Subject of this study is a cohort of 64 samples from 39 Alzheimer cases and 25
controls. Although the size of the data suffices to show clear trends between both
groups, presumably the study gains statistical power if the tested population could
be increased. However, comprehensive datasets that include the entire set of input



5.7. DISCUSSION 83

Table 5.12: Scoring of different combinations for Similar Network Fusion

Specifity (TPR) Sensivity (TNR) Accuracy NMI

miRNA/mRNA/Methylation/ApoE 0.83 0.85 0.84 0.36

mRNA/Methylation 0.70 0.91 0.82 0.32

miRNA/mRNA/ApoE 0.83 0.82 0.82 0.32

miRNA/mRNA 0.78 0.85 0.82 0.31

miRNA/Methylation 0.70 0.91 0.82 0.32

miRNA/mRNA/Methylation 0.70 0.88 0.80 0.27

miRNA/Methylation/ApoE 0.87 0.73 0.79 0.27

mRNA/Methylation/ApoE 0.91 0.64 0.75 0.25

mRNA/ApoE 0.83 0.64 0.71 0.16

miRNA/ApoE 0.83 0.64 0.71 0.16

Methylation/ApoE 0.83 0.64 0.71 0.16

data that was generated for this project are not available publicly and, thus, hard
to study at a large scale.

Moreover, the post-mortem timespan of the tissues before preservation differs
largely, see Table 5.13. This leads to different degradation states within the sam-
ples and may distort the results of a differential analysis.

Table 5.13: Post-mortem preservation times for MUC samples

Time < 12h 12-24h 24-48h > 48h NA

6 17 16 5 20

Methylation Noise

Major concerns when investigating the methylation data are related to the nature
of the brain tissue, methylation heterogeneity between different tissues, and the
putative cells affected in AD. Epigenetic modifications are known differ largely for
different tissues in an individual [Ma et al., 2014], while the samples contain as well
neurons as neuroglia cells. Because AD is associated with neuronal degeneration,
the measured methylome is expected to contain noise in respect to how many cells
of one or the other type have actually been measured for each sample at hand.
A possible remedy could be to identify specific markers for neuronal epigenetic
modifications and glia to determine the assumable fraction of neurons and correct
the signals.
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5.7.2 Early stage samples

When investigating Alzheimer’s disease, it has to be considered that the pathology
develops in a comparatively large time frame. Other than cancer, late-onset AD
shows early symptoms that may indicate a case, but are diagnosed years later.
This uncertainty impedes the need for a dataset that is representative for samples
in early stages of AD. A possible remedy, and not limited to research on AD, could
be a project to collect biological data from individuals spanning several decades.
In our particular interest, if we were able to track changes in the metabolism of
patients that were later shown to suffer from AD, it would be highly interesting
to search for significant differences between earlier “snapshots” of AD patients
and healthy population. Such studies would allow to investigate the origins of
the disease rather than late-stage effects, as factors such as amyloid-β plaques are
observed in many diseases involved in neurodegeneration [Hardy and Selkoe, 2002].

5.7.3 microRNA Promoter Methylation

While we found genes related to AD to be targeted by miRNAs with differentially
methylated promoters, the expression levels did not meet the assumption of direct
methylation → miRNA expression → gene expression relationship. Beside the
issues regarding the methylation data (see section 5.7.1), miRNA-mediated regu-
lation is subjected to other possible factors that influence their targeting efficiency
that were not accounted for, such as ribosome interference, RNA-binding proteins
or unpredictable effects with overlapping target sites [Pasquinelli, 2012]. For this
reason, more sophisticated approaches, e.g. incorporating protein levels, to esti-
mate post-translational effects may enhance the understanding of the underlying
mechanisms.

5.7.4 Similarity Network Fusion

The similarity network fusion was previously used to incorporate TCGA data.
Cancer is considered a heterogeneous disease and descriptive markers for cases
and controls are usually separated clearly in a differential analysis [Hamfjord et al.,
2011; Hibbs et al., 2004; Jerónimo et al., 2004; Melnikov et al., 2009]. In compar-
ison, we expected the investigation of late-onset Alzheimer’s disease to pose a
challenge because there are several markers known to be risk factors yet not con-
clusive predictors. We think a combination of each may enhance the discrimination
between cases and controls, but probably some regulatory mechanism yet to be
understood can not be modeled with the statistical model behind the patient-
similarity network fusion.
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Input for the method

When Wang et al. [2014] published their method, whole datasets from TCGA
without differential analysis were used. Although the tumor samples could be
stratified for different cancer types, our approach was different as we wanted to
distinguish combined markers between affected and unaffected individuals with a
high accuracy. The pipeline for the SNF analysis can be easily adapted for other/-
more input data or pose different questions. Other approaches to implement the
method could include (1) using the whole datasets without differential anaysis and
(2) stratify unaffected and affected samples each in respect to different features,
such as we did for the Apoε 4 allele where we compared carriers/non-carriers to
study a possible relation between the Apoε genotype and the markers used in our
patient-similarity profiles (which did not yield satisfactory results so far).
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Chapter 6

Summary and Discussion

In this thesis, the author presented our approach to address data integration in
systems biology.

First, we introduced Mebitoo, a software framework for data integration. In
the beginning designed to handle with sequence data, we evolved the application to
work with arbitrary data and introduced an extension to work with gene regulatory
networks. We extended the regulatory network in a study on breast cancer where
we used methylation data and miRNA expression profiles to prune and enrich the
network, respectively.

However, the concept of Mebitoo to be a desktop application independent of
execution environment limits the software in a few ways. While the database
storage system is able to manage several gigabytes of size with ease, unprocessed
systemic data exceed the feasible dimensions easily. For example, a methylome or
genome wide association studies generate raw data that reach terabytes depending
on the study size, up to several gigabytes for each sample.

On the other hand, strengths of Mebitoo are the concise plugin design that
benefits from the rich client platform underneath and eases the development of
plugins as shown in several Bachelor and Master projects. While less flexible than
interpreter based environments, a graphical user interface enhances usability for
users not familiar with command shells. A task manager allows to define and queue
processes and enables to generate workflows, thus Mebitoo excels when applying
a custom set of various methods to datasets of moderate size.

We presented a pipeline for generating regulatory transcription factor-miRNA
networks and generalized the approach for public use with TFmiR. As we incor-
porate various databases and R packages, we chose a web server architecture and
designed a contemporary web application. We extended the functionality with a
search algorithm for regulatory motifs and provide downstream analysis with their
interacting co-regulated and co-targeted subnetworks. In comparison to other ser-

87
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vices, TFmiR is distinguished by the ability to investigate comprehensively the
interaction between all participating genes and miRNAs, the motif detection func-
tionality, and the ORA analysis of the generated TF-miRNA regulatory networks.
Continuing our studies on breast cancer, TFmiR was able to confirm regulators
from literature and hint possible new aspects of TF-miRNA-gene interactions and
to characterize co-regulatory motifs that form functional modules in breast onco-
genesis.

In final study presented in this thesis, the author analyzed various data from
a cohort of Alzheimer’s disease patients and respective controls. We carried out a
differential analysis on each and applied the previously shown pipelines to identify
key drivers, putative drug targets, and modeled a regulatory network based on
the dataset. As the data was specific for each individual, we applied a patient-
similarity network based method and a network fusion algorithm to rule out dis-
tinctive features. The first results showed that the complementary information
of the differential analysis enhanced the capability to discriminate between AD
patients and control groups.

6.1 Outlook

The aim of systems biology to model living systems in its entirety remains a
demanding task. Integrating experimental und theoretical techniques has been
tackled by many approaches and yet, the complexity of regulatory systems still
remains to be fully understood.

Our Mebitoo framework is suitable to implement various methods with small
effort. The platform ensures efficiency with the advantage of compiled bytecode
instead of scripting languages and easy usability due to a graphical user interface.
This allows the embedding of pipelines that up to today are frequently done manu-
ally by biologists, such as a PCR primer identification on sequenced data, followed
by a BLAT mapping to identify regions, annotate the corresponding genes, and
subsequent investigation of the gene neighborhood.

We intend to continue development of TFmiR. In order to investigate how
regulatory mechanisms may evolve, we think of a concept to elucidate multi-case
expression data to model a time series. Moreover, an elucidation of the networks in
respect to cellular processes such as stem cell differentiation in addition to diseases
could yield insights in the underlying regulatory mechanism.

The most recent work on Alzheimer’s disease leaves some open questions, such
as the disputable impact of amyloid-β levels on the similar network fusion method.
The author intends to incorporate larger datasets that are in preparation into the
study to refine the marker selection, additionally integrating the SNP dataset that
was used for the proximity analysis so far.
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6.2 Closing Remarks

We learned that data integration in bioinformatics, while making large progresses,
remains a relevant topic to unravel systemic relationships and explore possible
regulatory mechanisms in complex organisms and their diseases. Further improve-
ments of biotechnology and the methods to assess systemic data may reveal specific
connections on a molecular level. Guided by this, researchers may strategically
scrutinize the natural causality of biological processes.
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Erdős, P and Rényi, A.
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Appendix A

Alzheimer Study

A.1 Table of differentially expressed genes

Table A.1: Table shows 148 differentially expressed genes with p-Value < 0.01 using limma. (5
differentially expressed sites could not be annotated)

No Gene Symbol log FC t p-Value adj. p-Value B

1 GFAP 1.4 7.1 1.6e-09 4.8e-05 11

2 C5orf41 0.58 6.7 7.6e-09 9e-05 9.8

3 RNU1G2 1.4 6.7 9.1e-09 9e-05 9.7

4 RNU1-3 1.3 6.3 3.5e-08 0.00026 8.4

5 RNU1-5 1.2 6.1 7.8e-08 0.00044 7.7

6 AEBP1 1.5 6.1 8.8e-08 0.00044 7.6

7 HBP1 0.59 5.9 1.7e-07 0.00064 7

8 C1orf110 1.2 5.9 1.8e-07 0.00064 6.9

9 RHOQ 0.77 5.9 2e-07 0.00064 6.9

10 PPARBP 0.51 5.8 2.8e-07 0.00076 6.5

11 MYBPC1 1.1 5.8 2.8e-07 0.00076 6.5

12 EIF3E 0.38 5.7 3.4e-07 0.00079 6.4

13 NFKB1 0.49 5.7 3.5e-07 0.00079 6.4

14 TNPO1 0.56 5.7 4.2e-07 0.00089 6.2

15 C5orf41 0.57 5.5 8.6e-07 0.0017 5.5

16 PKN2 0.62 5.4 1.3e-06 0.0024 5.1

17 AK1 0.53 5.4 1.4e-06 0.0024 5.1

. . .
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Table A.1 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

18 MAP1LC3A -0.51 -5.3 1.5e-06 0.0024 5

19 ITPKB 1.2 5.3 1.6e-06 0.0024 5

20 SRGAP1 0.78 5.2 2.2e-06 0.003 4.7

21 KCNF1 -0.97 -5.2 2.9e-06 0.0038 4.4

22 SST -1.5 -5.2 3e-06 0.0038 4.4

23 PPEF1 -0.99 -5.1 3.1e-06 0.0038 4.4

24 DDR2 0.96 5.1 3.8e-06 0.0045 4.2

25 LOC284988 0.74 5.1 4e-06 0.0045 4.1

26 HBQ1 -0.85 -5.1 4.2e-06 0.0046 4.1

27 FOXJ1 1.3 5 4.7e-06 0.0048 4

28 FAM107A 0.64 5 4.9e-06 0.0048 4

29 LOC388481 -0.49 -5 5e-06 0.0048 3.9

30 KCNA4 -0.28 -5 5.1e-06 0.0048 3.9

31 LOC144438 0.51 5 5.1e-06 0.0048 3.9

32 ANTXR1 1 5 5.8e-06 0.0049 3.8

33 MRPS25 -0.56 -5 5.8e-06 0.0049 3.8

34 ENTPD2 0.57 5 5.8e-06 0.0049 3.8

35 LOC649362 0.83 5 5.9e-06 0.0049 3.8

36 KRT17 -1.1 -5 6.2e-06 0.0049 3.7

37 APLNR 1.6 5 6.3e-06 0.0049 3.7

38 ITGB4 1.3 4.9 6.6e-06 0.005 3.7

39 SLC25A46 -0.48 -4.9 6.9e-06 0.005 3.6

40 SLC16A9 1.1 4.9 7e-06 0.005 3.6

41 TOB1 0.67 4.9 7.1e-06 0.005 3.6

42 NPM3 -0.47 -4.9 7.4e-06 0.005 3.6

43 SMAD5 0.51 4.9 7.5e-06 0.005 3.6

44 PLEC1 0.65 4.9 7.6e-06 0.005 3.6

45 ARHGEF9 -0.78 -4.9 8.6e-06 0.0055 3.4

46 PRKCB -0.82 -4.9 8.8e-06 0.0055 3.4

47 DNALI1 0.77 4.9 8.9e-06 0.0055 3.4

48 FAM89A 0.92 4.8 9.7e-06 0.0057 3.3

. . .
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Table A.1 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

49 ABCA1 1.1 4.8 9.7e-06 0.0057 3.3

50 SLC38A2 0.65 4.8 9.8e-06 0.0057 3.3

51 AHNAK 1.1 4.8 1.1e-05 0.0059 3.3

52 CAPRIN2 -0.71 -4.8 1.1e-05 0.0059 3.2

53 NELL1 -1.3 -4.8 1.1e-05 0.0059 3.2

54 NLGN4X -0.63 -4.8 1.2e-05 0.0059 3.2

55 PAPOLA 0.5 4.8 1.2e-05 0.0059 3.2

56 ARHGDIG -1.1 -4.8 1.2e-05 0.0059 3.2

57 PTTG1IP 0.74 4.8 1.2e-05 0.0059 3.2

58 PALLD 0.92 4.8 1.2e-05 0.0059 3.1

59 TUBG2 -0.45 -4.8 1.2e-05 0.0059 3.1

60 PRPH2 -0.59 -4.8 1.3e-05 0.0059 3.1

61 TMEM163 -0.71 -4.8 1.3e-05 0.0059 3.1

62 FXYD7 -0.91 -4.8 1.3e-05 0.0059 3.1

63 TPI1 -0.52 -4.8 1.3e-05 0.0059 3.1

64 HSPB3 -0.77 -4.7 1.3e-05 0.006 3.1

65 TSPAN7 -1.3 -4.7 1.4e-05 0.0064 3

66 GNB2L1 0.2 4.7 1.5e-05 0.0066 3

67 ATP6V0D1 -0.55 -4.7 1.5e-05 0.0066 2.9

68 TARBP1 -0.94 -4.7 1.6e-05 0.0066 2.9

69 DCLK1 -0.85 -4.7 1.6e-05 0.0066 2.9

70 CORT -0.98 -4.7 1.6e-05 0.0066 2.9

71 CPNE9 -0.76 -4.7 1.7e-05 0.0071 2.8

72 VKORC1L1 -0.58 -4.7 1.8e-05 0.0071 2.8

73 NRSN1 -1.7 -4.7 1.8e-05 0.0071 2.8

74 KANK2 0.49 4.7 1.8e-05 0.0071 2.8

75 LPP 0.73 4.7 1.8e-05 0.0071 2.8

76 C13orf36 -0.51 -4.6 1.9e-05 0.0072 2.7

77 PABPC1 0.68 4.6 1.9e-05 0.0073 2.7

78 TSC22D1 -0.33 -4.6 2e-05 0.0073 2.7

79 ME3 -0.79 -4.6 2e-05 0.0073 2.7

. . .
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Table A.1 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

80 CDK5 -0.83 -4.6 2e-05 0.0073 2.7

81 HPRT1 -1.2 -4.6 2e-05 0.0073 2.7

82 MYOT 1.1 4.6 2e-05 0.0073 2.7

83 JARID1A 0.68 4.6 2.1e-05 0.0073 2.7

84 SLC35F1 -1.1 -4.6 2.2e-05 0.0077 2.6

85 SEZ6L -0.21 -4.6 2.3e-05 0.0078 2.6

86 METAP2 0.35 4.6 2.3e-05 0.0078 2.6

87 GLIS3 0.85 4.6 2.3e-05 0.0079 2.5

88 RIT2 -0.9 -4.6 2.4e-05 0.008 2.5

89 MAL2 -1.2 -4.6 2.5e-05 0.0081 2.5

90 RPL14 0.83 4.6 2.5e-05 0.0081 2.5

91 ADAM23 -0.93 -4.6 2.5e-05 0.0081 2.5

92 LOC90113 -0.72 -4.6 2.5e-05 0.0081 2.5

93 NPTX1 -0.43 -4.6 2.6e-05 0.0081 2.5

94 SYNC1 0.65 4.6 2.6e-05 0.0081 2.4

95 LOC653308 -0.45 -4.6 2.7e-05 0.0081 2.4

96 C10orf105 1.4 4.5 2.7e-05 0.0081 2.4

97 OCIAD1 -0.63 -4.5 2.7e-05 0.0081 2.4

98 MYST3 0.54 4.5 2.8e-05 0.0081 2.4

99 RIN2 0.71 4.5 2.8e-05 0.0081 2.4

100 SLC35A2 -0.38 -4.5 2.8e-05 0.0081 2.4

101 LOC100130148 -0.32 -4.5 2.8e-05 0.0081 2.4

102 GLRA2 -0.5 -4.5 2.9e-05 0.0081 2.4

103 SPHKAP -0.96 -4.5 2.9e-05 0.0081 2.4

104 NAV2 0.81 4.5 2.9e-05 0.0082 2.3

105 SMPD3 -0.24 -4.5 3e-05 0.0084 2.3

106 RPH3A -0.85 -4.5 3.1e-05 0.0085 2.3

107 TUBB2A -1.5 -4.5 3.1e-05 0.0085 2.3

108 WBP5 0.41 4.5 3.2e-05 0.0085 2.3

109 SYTL4 1.1 4.5 3.2e-05 0.0085 2.3

110 SP1 0.6 4.5 3.2e-05 0.0085 2.3

. . .
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Table A.1 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

111 TSPYL2 -0.81 -4.5 3.3e-05 0.0086 2.2

112 OSBPL2 0.39 4.5 3.3e-05 0.0086 2.2

113 OSBPL10 -0.74 -4.5 3.3e-05 0.0086 2.2

114 SYT1 -2.1 -4.5 3.4e-05 0.0086 2.2

115 PIGZ -0.68 -4.5 3.5e-05 0.0086 2.2

116 CFL1 -0.32 -4.5 3.5e-05 0.0086 2.2

117 GYPC 0.85 4.5 3.5e-05 0.0086 2.2

118 BMPER -0.52 -4.5 3.5e-05 0.0086 2.2

119 EGR1 -1 -4.5 3.6e-05 0.0087 2.2

120 MDH2 -0.34 -4.5 3.6e-05 0.0087 2.2

121 DIRAS2 -1.4 -4.5 3.6e-05 0.0088 2.1

122 SPOP 0.36 4.5 3.8e-05 0.0089 2.1

123 CNTN4 -0.15 -4.5 3.8e-05 0.0089 2.1

124 OLFM1 -1.1 -4.4 3.8e-05 0.0089 2.1

125 RASL12 0.98 4.4 3.9e-05 0.009 2.1

126 LOC729513 0.72 4.4 4e-05 0.0091 2.1

127 NXPH1 -0.85 -4.4 4e-05 0.0092 2.1

128 CAPS 1 4.4 4e-05 0.0092 2.1

129 C4orf44 -0.37 -4.4 4.1e-05 0.0092 2

130 ZHX3 0.55 4.4 4.1e-05 0.0092 2

131 RGS4 -1.8 -4.4 4.3e-05 0.0094 2

132 FAM89A 0.84 4.4 4.3e-05 0.0094 2

133 NCALD -1.2 -4.4 4.4e-05 0.0095 2

134 FRMPD2 -0.71 -4.4 4.4e-05 0.0095 2

135 IL13RA1 0.77 4.4 4.4e-05 0.0096 2

136 GLTSCR2 0.38 4.4 4.6e-05 0.0097 1.9

137 LOC647251 -1.1 -4.4 4.6e-05 0.0097 1.9

138 NRXN1 -0.59 -4.4 4.6e-05 0.0097 1.9

139 DGKI -0.3 -4.4 4.7e-05 0.0098 1.9

140 HSPB8 0.81 4.4 4.7e-05 0.0098 1.9

141 BBX 0.56 4.4 4.8e-05 0.0098 1.9

. . .
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Table A.1 – Continued

Gene Symbol log FC t p-Value adj. p-Value B

142 ITGB5 0.75 4.4 4.8e-05 0.0098 1.9

143 SLN -0.58 -4.4 4.8e-05 0.0098 1.9

144 SIX5 0.83 4.4 4.9e-05 0.0098 1.9

145 BRE -0.39 -4.4 4.9e-05 0.0098 1.9

146 C1QTNF5 0.92 4.4 4.9e-05 0.0098 1.9

147 ZBTB40 0.55 4.4 5e-05 0.0099 1.9

148 FAM19A1 -0.88 -4.4 5.1e-05 0.0099 1.8

A.2 Methylation Data Preprocessing

Figure A.1: Density of methylated and unmethylated probes before and after processing
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Figure A.2: Summed color bias before and after

Figure A.3: Color bias for both channels before and after

Figure A.4: Density before and after quantile normalization
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Figure A.5: CpG Intensity before and after processing
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