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Abstract

Molecular dynamics simulation technique is a very popular approach to
investigate the structure, dynamics and thermodynamics of biological molecules
and their complexes. Using extensive standard molecular dynamics simulations
and variants thereof, we probed in this work structural and energetic aspects of
either specific or non-specific protein-protein complexes formed by hydrophilic
proteins and of the interfacial water between the two proteins. For the specific
complexes, the standard free energies of binding are in overall good agreement
with the experimental values. In comparison to their specific counterparts, non-
specific encounters bear smaller interaction interfaces and are attracted by
shorter-ranged direct interactions between the proteins.

In order to quantify the allosteric effect, we calculated the allosteric coupling
energy between the ATP binding pocket and the PIF-pocket of phosphoinostide-
dependent kinase-1. For this system, we found that the main contribution to the
allosteric coupling energy comes from electrostatic interactions.

Utilizing molecular docking we modeled the interaction of the ER luminal
binding immunoglobulin protein (BIP) with loop 7 of the Sec61 translocon.
Additionally we used a cyclic peptide as a scaffold to design new competitive
compounds that bind to Casein kinase Il « in a competitive manner to Casein

kinase II § using molecular docking.



Kurzfassung

Die molekulardynamische Simulationstechnik ist heute weitverbreit, um die
Struktur, Dynamik und Thermodynamik von Biomolekiilen und ihren Komplexen
zu untersuchen. Mithilfe umfangreicher gewohnlicher sowie spezieller MD-
Simulationstechniken untersuchten wir die strukturellen und energetischen
Aspekte von spezifischen oder nicht-spezifischen Protein-Protein-Komplexen,
die durch hydrophile Proteine gebildet werden, sowie flir das Wasser im
Zwischenraum zwischen den beiden Molekiilen. Fiir die spezifischen Komplexe
sind die Standard-Gibbs-Bindungsenergien insgesamt in guter Ubereinstimmung
mit den experimentellen Werten. Im Vergleich zu ihren spezifischen Pendants
werden unspezifische Proteinkontakte durch kleinere Interaktionsschnittstellen
vermittelt, und die attraktiven Wechselwirkungen zwischen den Proteinen

haben eine kiirzere Reichweite.

Um allosterische Effekte zu quantifizieren, berechneten wir die allosterische
Kopplungsenergie zwischen der ATP-Bindungstasche und der PIF-Tasche des
Phosphoinostid-abhangigen Kinase-1. Fiir dieses System stellten wir fest, dass
der Hauptbeitrag zu der allosterischen Kopplungsenergie von elektrostatischen

Wechselwirkungen kommt.

Durch molekulares Docking modellierten wir die Wechselwirkung des ER
luminalen Proteins BIP mit der Schlaufe 7 des Sec61-Translokons. Mithilfe von
molekularem Docking konstruierten wir zudem ein zyklisches Peptidgertist fiir

neue Casein Kinase II § (CK23) kompetitive Peptide, die an CK2a binden.
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1. Introduction

In biological systems, molecules are continually binding together and
dissociating from each other. Molecular associations are the first steps in many
biological processes such as the cell cycle, cellular transport, immune response,
apoptosis, DNA replication and transcription, RNA splicing and signal
transduction. Several conceptual models have been proposed in the literature to
explain the mechanism of molecular associations. In 1894, Emil Fischer
attributed the extraordinary specificity of enzymes to a strict geometric
complementarity between enzymes and their substrates. Later, this idea became
famous as “lock-and-key” model to explain the recognition between molecules
and proteins. In 1958, Daniel Koshland from the University of California, Berkley,
recognized that proteins are flexible structures and hypothesized that they
accommodate the substrate by adjusting their shapes around it. Likewise, the
substrate could adapt its shape, as well, to optimize interactions with its binding
partner. This concept is nowadays referred to as “induced fit” hypothesis. A
further model was introduced that is termed “conformational selection”, which
describes the stabilization of global protein conformations through ligand
binding. According to this model, a protein samples in its unbound form a
multitude of interconvertable conformational states. The binding of a ligand
initiates a process of conformational selection within the ensemble where the
ligand preferentially binds to the conformations of the protein for which it has
the highest affinity at the expense of others. Therefore, the ligand does not create
new protein states but causes a shift in the population in the favor of the binding-
competent state(s). There are two guiding principles in understanding
association processes in molecular biology[1]. (1) The forces that govern
association are almost always noncovalent. In other words, noncovalent
interactions such as electrostatic forces, hydrogen bonds, and hydrophobic
interactions combine in various ways to stabilize molecular complexes. (2)
Associations are stereospecific and depend on a precise spatial arrangement of

the interacting groups. As a result, biological associations are highly specific so



that molecules can recognize one another and distinguish subtle variations in
structure.

The importance of molecular interactions such as protein-protein interactions
has been realized long ago. However, it took until the 1990ies to introduce
several important concepts on how they are formed. At the end of the 1980s, the
“new view” of protein folding was established that describes the folding of
peptide chains as a diffusive process in an energy funnel[2]. In analogy to protein
folding, the related process of protein-protein binding has then also been
portrayed by such a funnel[3]. Both the protein folding and protein-protein
binding processes are driven by the decrease in total Gibbs free energy (at
constant temperature and pressure) of the protein-solvent or protein-protein-
solvent system, which is dictated by opposing effects between entropy and
enthalpy, eventually leading to a global free energy minimum of these
thermodynamic systems. The requirement for lowering the free energy while
reducing conformational space ensures that the energy landscape of a foldable
protein is funnel-shaped[2, 4]. The spontaneous protein-protein association also
lowers the free energy of the system composed of proteins and solvent, while
reducing the conformational, rotational and translational entropy of the binding
partners[3]. Accordingly, the binding free energy is the key driving force behind
protein-protein association and of fundamental importance in supramolecular
chemistry.

Water molecules play an invaluable role in governing the structure, stability,
dynamics, and function of biomolecules. However, the exact range of processes
mediated by water is far from being understood. In many natural systems, water
is confined in an environment where its free movement is restricted and its
three-dimensional hydrogen-bonded network is partially disrupted. The
properties of such confined water are difficult to predict and may be
considerably different from those of bulk water. Hydrophobic dewetting has
been reported as a general mechanism for the association of hydrophobic
surfaces[5]. However, for the assembly of hydrophilic surfaces, the picture looks
a bit more complicated.

Decades of experimental and theoretical efforts have led to the development of

paradigms, theoretical methods and computational tools to study molecular



interactions. Molecular modeling techniques are heavily used, for instance, in
computational chemistry, computational biology, drug discovery and material
science. Some of the basic molecular modeling techniques are quantum
mechanical and molecular mechanics methods, Brownian and molecular
dynamics simulations and molecular docking. Molecular dynamics is the
principal tool for theoretical modeling of the conformational dynamics and
energetics of biological molecules. This computational method is now routinely
used to investigate the structure, dynamics and thermodynamics of biological
molecules and their complexes.

The main goal of this thesis is to study structural and energetics aspects of
specific and non-specific protein-protein complexes formed by hydrophilic
proteins in a comparative manner. To do this, we utilized several theoretical
approaches for analyzing trajectories obtained from standard and variant
molecular dynamics simulations.

This thesis consists of seven chapters. In the present chapter, we convey an
overview of molecular interactions and their importance for biological systems.
In the second chapter, theoretical aspects of the used concepts and methods are
thoroughly introduced. Chapters 3, 4, 5 and 6 are organized in a similar manner.
Each of those chapters describes a complete project with the background, the
methods used and the results obtained combined with the discussion section.
Chapter 3 addresses the association of hydrophilic proteins to form specific
complexes and the role of water that were studied by means of extensive
molecular dynamics simulations in explicit water. The systems of interest are the
three well studied protein complexes; Barnase - Barstar, Cytochrome c -
Cytochrome c¢ peroxidase, and the N-terminal domain of enzyme I - Histidine-
containing Phosphocarrier. One-dimensional free energy profiles of association
were obtained using umbrella-sampling simulations. Properties of the interfacial
water localized between two complex partners were quantified, as well.

In Chapter 4, using the analogues methods utilized in Chapter 3, we probed
comprehensively the structural and energetics aspects of nonspecific complexes
formed by the same protein pairs. In that chapter, we were seeking for the
source of interaction specificity that favors a small set of interactions over the

multitude of possibilities.



In Chapter 5, we attempted to model the universal phenomenon of allostery with
a thermodynamic two-state model. We present the results from alchemical free
energy perturbation calculations to quantify the allosteric affect in a case study
of phosphoinostide-dependent kinase-1 (PDK1).

Chapter 6 discusses applications of the widely used docking program AutoDock
to study aspects of protein-protein interaction. After introducing the docking
algorithms and scoring functions employed, we present two fruitful applications
that we performed in collaboration with experimental groups.

In the last chapter we summarize our work and its main findings followed by an

outlook others can build on it.



2. Binding Free Energy Theory and
Computation

2.1. Statistical Thermodynamics of Binding

2.1.1. Thermodynamics and Standard State

Conceptually, one can think of a binding reaction as a noncovalent association of
two molecules A and B that form the complex AB[6];
A+B2AB (2.1)

In the case of biological systems, the above reaction typically takes place in a
mixed solvent, which is called reaction solvent. The condition for equilibrium is;

Usora + Hsorp = Hsorap  (2.2)
where pg,, ; is the chemical potential of species i = A, B or AB in solution.
The chemical potential of species i in solution is given by the following equation:

Clol (2.3)

In this equation ug, ; and C; are the standard chemical potential and the

Usori = ﬂgol,i + RTIn

concentration of species i, respectively. R is the gas constant, T is the absolute
temperature, y; is the activity coefficient of i and C° is the standard
concentration in the same units as C;. It is common to express the concentration
in molar units (M), in which case C° = 1M. Frequently, C° is not included
explicitly. In such cases, C; is then the ratio of the concentration over the
standard concentration.

The standard chemical potential of species A,B and AB is their chemical
potential in standard state conditions. It is strategical to define a hypothetical
state in which each species is at standard state in the reaction solvent but does
not interact with other molecules of A, B or AB[6, 7]. The activity coefficients
relative to this standard state, y;, approach unity as C; approaches zero in the
reaction solvent.

Considering the above equations, the standard free energy of binding can be

calculated as follows:



AGgp = .ugol,AB - :ugol,A - ugol,B (2.4)

cec
YaB AB) (2.5)
Ya¥s CaCg eq

AGS, = —RTzn(

AG?; = —RTInK,; (2.6)
where ()., implies a quantity at equilibrium. In the case of low concentrations,
yi = 1lis typically a good approximation. Since C° is not written explicitly in
expressions for the binding constant Kz, it may appear that K,z bears units of
volume. However, K,; is a dimensionless quantity. When C° is not written

explicitly, it is implicit that the units of concentration are standard concentration.

2.1.2. The Standard Chemical Potential of a Molecule in Solution
The standard chemical potential of a molecule A (0G/0n4) 1 p in solution is given
by:

Qna(Vna)
Vn,aC° Qno(Vivo)

For the detailed derivation of the above equation, please see[8]. Qy 4 (VN_A) is the

Worn = —RTln( ) + POV, (2.7)

canonical partition function for a system containing N solvent molecules and one
solute molecule A at volume Vy, 4, which is the volume of the system when it is at
equilibrium at standard state pressure P°(1 atmosphere). Likewise, Qy o (VN,O) is
the partition function for the N solvent molecules without solute, at a different
equilibrium volume Vy , that also corresponds to the pressure P°.V, = Vy , —
Vi o is the change in equilibrium volume when one molecule of solute is added to
the N solvent molecules. Thus, for the case of N > 1,V, is the partial molar
volume of the solute at infinite dilution in the solvent [8]. The above expression
for g, 4 can be interpreted as the standard chemical potential of the solute in
the gas phase added to the work of transferring it to the solvent under constant
pressure.

The energy of the system in terms of conjugate momenta and coordinates is

given as follows:

Ma+Mg

H®a, 05,74, Ts) = z 27;_+U(TA,TS) (2.8)
i=1 ¢




Here, M, and Mgare respectively the number of atoms of the single solute
molecule and of the N solvent molecules; p is a vector of the momenta of the
M, + Mg atoms, p? is the squared magnitude of the momentum of atom i; m; is
the mass of atom i; and U(ry, 7;) is the potential energy as a function of all the

atomic coordinates. Assuming that classical statistical mechanics is applicable we

get:
QN A f dpAdps f drAdTS e_'[g(zlililcll+Mspi2/2mi+U(rA’rs))
0 (2.9)
Cno o [ dps [ drse”” (Ziar wSp? famiru )

where B = (RT)™! and o, is the symmetry number of the solute. Atoms
i=1,..M, belong to the solute, atoms i = M, + 1,... My + M belong to the
solvent.

The lab-frame coordinates of the solute atoms r, can be separated into internal
and external coordinates based on a molecular axis system. Any three atoms
(atom 1, 2 and 3) may be used to define the molecular axes. The Cartesian
coordinate of each atom may be specified relative to the newly defined molecular
axes. Note that, in internal coordinates, atom 1 is fixed at the origin; atom 2
always lies on the x-axis; and atom 3 lies in the z = 0 plane. The six coordinates
thus fixed correspond to the external coordinates of the molecule. We will term
the 3M, — 6 coordinates as r, and the complete set of external coordinates as .
The integrals over the internal coordinates of the solvent and as well as of the
solute do not depend upon the position or orientation of the solute. Therefore

the integral over {, yields a factor of 8m?Vy ,. The integral over the momentum

. 3/ . . . .
for each atom i yields a factor of (2mm;RT) /2 in the classical approximation. The
momentum integrals for the solvent atoms cancel. Therefore, the standard

chemical potential of species A is[6]:

8m? - 7

T 3/, LNa _

Hio1,a = —RTIn C°0A| |(27tmiRT) /2 7|+ PV 210)
i=1 ’

where Zy 4 and Zy  are configuration integrals and are given by:

Iya = je‘ﬁu(rA'rS)drAdrs (2.11)



Zno = f e PUTs)drs  (2.12)

2.1.3. The Standard Chemical Potential of a Molecular Complex in Solution

As for the single molecule, one has to define internal and external coordinates of
the complex. Using the external coordinates of molecule A as the external
coordinates of the complex is one way of doing that. Then the external
coordinates of B, (g, are defined relative to molecule A. Therefore, the external
coordinates of B become internal coordinates of the complex.

It is clear that one should not include the configurations for which the two
molecules are far apart in the configurational integral of the complex. This can be
accomplished by introducing a step function I({p) that is equal to unity for the
bound configurations and zero otherwise.

Thus the standard chemical potential of the complex is[6]:
Ma+Mp

8m? 3, ZN.aB —
UsoLap = —RTIn Cog 1_[ (2mm,RT)/2 Z + P°V,p  (2.13)
AB i=1 N,0

Znap = jI(CB)]{Be_ﬁU(rA‘TB’{B'rS)dTAdTBd(BdTS (2.14)

Here M, + Mg is the number of atoms in both solutes, J; is the Jacobian
determinant for the Eulerian rotation of molecule B with respect to molecule A.
It is generally not straightforward to define the complex, meaning the range over
which I({p) equals unity. Particularly simple is defining /({3) whenever the
potential of mean force for the interaction of A and B is sharply peaked and
negative in a small range of {z. In such a case the stable configurations of the
complex will dominate the thermodynamic averages over the zone of
configuration space where A and B are close together. According to Hill[9], the
region in which I({3) is equal to one must satisfy the following two criteria:

1. The region should include all the configurations that contribute
significantly to the chemical potential of the bound state; namely those for
which the Boltzmann factor of the potential of mean force is large.

2. The region should not include so large a phase volume of unbound

configurations those contribute appreciably to u2,, 45. For instance, the



complex cannot be considered as formed in a configuration where A and

B are infinitely far apart.

2.1.4. The Standard Free Energy of Binding

Above, we derived the standard chemical potential for a molecule and for a
complex in solution. Based on these equations, we rewrite the expression for the
standard free energy of binding in terms of molecular properties[6]:

o
C° 0,08 ZN,AB ZN,O

872 oup Zna Znp
where AV, = V5 — V, — V. As seen in the above equation, all mass dependent

terms have cancelled.

2.2. Molecular Dynamics
Molecular dynamics (MD) is a type of computer simulation in which particles are

allowed to interact for a period of time using approximations of classical
mechanics. MD is an interface between laboratory experiments and theory, and
is, therefore, a "virtual experiment”. MD inquires the relationship between
molecular structure, movement and function.
The molecular dynamics simulation method is based on Newton’s second law
known as equation of motion, F = ma, where F is the force exerted on the
particle, m and a are the mass and the acceleration of the particle, respectively. If
the forces acting on each atom are known, it is straightforward to determine the
acceleration of each atom in the system of interest. Integration of the equations
of motion then yields a trajectory that describes the positions, velocities and
accelerations of the particles as they vary with time. MD is a deterministic
method meaning that, once the positions and velocities of each atom are known,
the state of the system can be predicted at any time.
Newton'’s equation of motion is given by;

Fi =m;a; (2.16)
where F; is the force acting on particle i, m; is the mass of particle i and q; is the
acceleration of particle i. The force can also be expressed as the gradient of the

potential energy as follows

F,=-V,V (2.17)



Combining these two equations yields

dV dzrl-
—L (218)

where V' is the potential energy of the system and r; is the position of atom i.
Thus, the Newton’s equations of motion relate the derivatives of the potential
energies to the changes in positions as a function of time. In summary, to
calculate a trajectory, one only needs the initial positions of the atoms and an
initial distribution of velocities. The accelerations are then determined by the
gradients of the potential energy functions. The equations of motion are
deterministic, e.g., the positions and the velocities at time t = 0 determine the
positions and velocities at all other times, t. The initial positions can be obtained
from experimental structures, such as the X-ray crystal structures of
macromolecules or their solution structures determined by NMR spectroscopy.
The initial distribution of velocities is usually determined from a random
distribution with the magnitudes conforming to the required temperature and

ensuring that there exists no overall momentum

N
P = zmivi =0 (219)
i=1

The velocities v; are often chosen randomly from a Maxwell-Boltzmann or
Gaussian distribution at a given temperature. This gives the probability that an

atom i has a velocity v;,, in the x direction at a temperature T.

1/2
P(U- ) _ m; e_mivizx/‘l'kBT (2 20)
© ZﬂkBT '

Methods for solving Newton’s equations of motion are generally called Verlet
methods named after L. Verlet, one of the pioneers who applied integration
algorithms to molecular simulations. The Verlet algorithm[10] can be derived by
writing two third-order Taylor expansions for the positions r(t), one forward
and one backward in time. Denoting the velocities with v, the accelerations with

a and the third derivatives of r with respect to t with b, one obtains:

10



r(t + At) = r(t) + v(t)At + %a(t)Atz + %b(t)At3 + 0(At*) (2.21)

r(t — At) =r(t) — v(t)At + %a(t)Atz - %b(t)At3 + 0(At*) (2.22)

Summing up the expressions gives:
r(t + At) = 2r(t) — r(t — At) + a(t)At? + 0(At*) (2.23)

which is the basic form of the algorithm. An issue with this basic form of the
Verlet algorithm is that it does not explicitly generate velocities. Even though
they are not needed for the time evolution, their knowledge is sometimes
necessary, for instance for the calculation of the particles’ kinetic energies and
thus the system temperature. To overcome this difficulty, some variants of the
Verlet algorithm have been developed, such as the leap-frog algorithm[11] and

the velocity Verlet scheme. The leap-frog algorithm uses forces F(t) and
positions r(t) at time t and the velocities v(t — %) at time (t — %) to update the

positions and velocities.

v (t + %) =v (t - %) + %F(t) (2.24)

At
r(t + At) = r(t) + Atv (t + ?) (2.25)

2.2.1. Modeling Interactions in Molecular Dynamics

In molecular dynamics simulations, the interactions between particles are
modeled by molecular mechanics force fields. These force fields are based on the
Born-Oppenheimer approximation[12] to the Schrodinger equation. The Born-
Oppenheimer approximation states that since the masses of the nuclei are much
larger than the masses of the electrons, the electronic wave function depends
only on the positions of the nuclei and not on their momenta. Therefore, the
movements of electrons and atoms can be treated separately. This enables
representation of atoms as classical point particles that follow classical
Newtonian dynamics. In classical molecular mechanics the effect of the electrons
is approximated by an effective potential function whose parameters are usually

derived through fitting.

11



The most widely used force fields, such as AMBER[13], CHARMM]|14],
GROMOSJ15] and OPLSAA[16], consist of two parts, the functional form and the
parameters. The functional form is the description of the potential function. The
potential function (U ) describing interactions among particles typically
comprises electrostatic, van der Waals, bond, angle, and dihedral terms and can

be expressed as:

1
U= z Kp(b — beg)? + z EKB(Q — Oeq)

bonds bond angles

1
+ z 2 Ky[1 - cos (ng +v)]

dihedrals

where, K, and Kgare the force constants for the bonds and bond angles,
respectively; b and 6 are the instantaneous bond lengths and bond angles; b,
and 6, are the equilibrium bond lengths and bond angles; ¢ are the dihedral
angles and K is the corresponding force constant; the phase angle takes values
of either 0° or 180°. The non-bonded parts of the potential are represented by
van der Waals (4;;), London dispersion terms (B;;) and interactions between
partial atomic charges (q; and q;). € is the dielectric constant that accounts for
effects of the medium that are not explicitly represented.

The force field parameters are most often obtained by fitting to data from
experiments or from high-level quantum mechanical calculations.

The utility of MD simulations faces two main challenges: the force fields used
may require further refinement, and the high computational demands of such
simulations prohibit routine simulations exceeding the time scale of
microseconds, leading in many cases to an inadequate sampling of
conformational states. For example, a few microseconds-long MD simulation of a
relatively small system may take weeks to months to complete at the current
moment in time. Therefore molecular dynamics simulations are typically
performed on computer clusters or supercomputers using dozens or hundreds of

processors in parallel.

12



2.3 Approaches for Calculating Binding Affinities

2.3.1. Docking and Scoring

Docking methods try to identify the most stable bound conformation of two
molecules, generally of a protein and a ligand using a simplified energy model.
Often an empirical force field with a simplified solvent model is used in order to
minimize the required computational cost. The conformation is then used to
assign a binding energy or a score to the ligand. We will discuss docking methods

in detail in chapter 6 together with some applications.

2.3.2. Free Energy Methods

Unlike docking, free energy methods utilize conformational sampling in order to
generate proper thermodynamic averages. The use of conformational sampling
eliminates the sensitivity to a single conformation relied on by docking methods.
As a disadvantage free energy methods are computationally demanding in terms
of generating statistically converged results. We will start by briefly discussing
the end-point methods and then give a detailed description of pathway methods

that were employed in this thesis.

2.3.2.1. End-point Methods
End-point methods generate conformations of only the free and bound species

and compute the binding free energy by taking a difference. The linear
interaction energy (LIE)[17, 18] and MM-PBSA[19] methods are the most
popular end-point approaches.

LIE involves running two MD simulations: one for the ligand in the solution and
the other for the ligand placed in the protein binding site. It is assumed that the
saved snapshots represent Boltzmann ensembles of conformations and are
utilized to compute the Boltzmann-averaged electrostatic and van der Waals
interaction energies of the ligand with its environment in the bound and free
states. Changes in the internal energy of the solvent and the protein are
accounted for by some factors.

Even though LIE does not account explicitly for the standard concentration or for

changes in the configurational entropy or the internal energy of the ligand, the
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results may be surprisingly good if suitable scaling constants are used for the
energy terms [20].

A second end-point approach MM-PBSA, along with its GB variant, relies on MD
simulations of free ligand, free protein and their complex. In this approach the
simulations are used for calculating the average potential and solvation energies.
The snapshots that are saved during MD simulations are post processed by
stripping away the explicitly modelled solvent molecules and computing their
potential energies with the force field and their solvation energies with either
the PBSA or GBSA implicit solvent model. The changes in the mean potential
energy and solvation energy are computed by averaging over each trajectory.
Then the change in configurational entropy is estimated by a rigid-
rotor/harmonic-oscillator approximation using a few energy-minimized
snapshots. Although it is not clear from the literature how the standard
concentration has been incorporated into MM-PBSA/MM-GBSA method, ref [21]
provides a clear connection of the method to the theory of binding. The main
drawback of this approach is to obtain converged energy averages. This is
hampered by the sizeable energy fluctuations not only of the ligand and the

binding site, but also of parts of the protein remote from the binding site.

2.3.2.2. Pathway Methods
The change in free energy between two states of a system, for instance before

and after binding, can be formally expressed as —RTIn{e~2U/RT), where AU is the
change in the potential energy between the two states. Here, the angle brackets
indicate a Boltzmann average over a representative sample of conformations.
For a binding reaction, AU represents the formation of interactions between the
protein and the ligand, and the average can, in principle, be obtained by MD or
Monte Carlo (MC) simulations. In reality, such a simulation is extremely difficult
to converge. The free energy perturbation (FEP) method overcomes this
drawback by breaking the change into N steps, each representing a small change
6U of the interaction energy (perturbations). Then, a separate simulation is
performed for each resulting energy function U; to obtain the stepwise free

—6U/RT>i

energy changes —RTIn(e associated with each step, where ( ); indicates

a Boltzmann average with the energy function U;. In this manner, the initial and
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final states are connected by a continuous pathway of small steps for which
relatively small free energy differences are computed.

Thermodynamic integration (TI) is another pathway approach. TI uses MD or MC
to compute the first derivative of the free energy with respect to the distance
along the path and afterwards estimates the total change in free energy through
a numerical integration of the derivative along the path. Since the first derivative
of the free energy is a force, TI effectively involves a work integral. Either free
energy perturbation or thermodynamics integration can be applied to a given
free energy calculation.

The first applications of these methods to binding processes aimed at computing
the difference between the binding free energy of two similar ligands (AAG?),
based on a method called computational alchemy[22]. This involves using
pathways to calculate the change in free energy when ligand A transformed into
ligand B both in the binding site of the protein as well as in solution.

Pathway methods can also be employed to compute the standard binding free
energy of a protein and a ligand. The Double Decoupling approach draws on
related approaches[23] especially the Double Annihilation method[24]. It is
based on a pathway technique to compute the work of gradually decoupling the
ligand from the binding site and then effectively coupling it with an energy well
or trap of the defined size in bulk solution. The work of allowing the ligand to
escape from the trap into a standard volume can be computed analytically. Thus
the simulations results are connected with the appropriate standard state. This
approach has been further developed and applied to several protein-ligand
systems.

Alternative approaches compute the free energy of binding via a pathway in
which the ligand is gradually extracted from the binding site. In techniques of
this sort, the free energy of binding is commonly derived from the potential of

mean force extracted from a series of MD simulations.
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2.4. Free Energy Differences From Simulations of Intermediate
States

2.4.1. Exponential averaging

Let us assume that states i and j are defined by energy functions as a function of
the particle coordinates ¢, U;(§) and U;(q). Let AA;; be the free energy difference
between states i and j, defined as the logarithm of the ratio of the partition
functions related to U;(q) and U;(q) (Q;and Q;). It has long been known that the
free energy difference between two states can be computed by taking the
exponential average of the potential energy differences [25].

ay = 4@ = 4@ = -~ () @27
By adding and subtracting e #Vi@ from the integral in the partition function in

the numerator, we get

) [ e PU@-V@+0:@) g
Q;
[ e—ﬁ(uj(a)—vi(a))e-gui@dﬁ
AAU = —ﬁ_l In (229)

Qi
which gives the final relationship of
AUU — _ﬁ—lln (e—ﬁ(Uj(ﬁ)—Ui(ﬁ))>i (230)

Even though exponential averaging is an exact solution and one of the simplest
methods to understand, it is also one of the poorest methods in terms of
efficiency. The exponential averaging method does not converge quickly with the

number of samples.

2.4.2 Thermodynamic Integration

Starting with the statistical relation of the free energy
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A=-BUnQ (2.31)
and taking the derivative with respect to 4

dA

d .
“P_ gL —BUAD g7 =
I B d/llnje dq = (

dU(4,q)

o (232

one can obtain the final TI equation
Ldu(a, q
A = j WD, 1 233
0 dA

Because one can only carry out simulations at a number of intermediate values of
A, numerical integration schemes are required. All numerical integration

schemes that are used in practice have the following form:

S dU(L @)
»q

where wy, stand for the weights, which depend on the chosen numerical
integration method[26, 27]. For instance, under the trapezoid rule even A

spacing weights are wy; = wy = 1/2(K — 1) and wy1 ¢ = 1/(K — 1).

2.4.3. Bennett Acceptance Ratio

The Bennett Acceptance Ratio (BAR) is one of the earliest methods for free
energy estimation. BAR uses data from multiple states to give reliable free
energy difference estimation. Both exponential averaging and thermodynamic
integration need the ensemble average from a single state to estimate free
energies. Even though TI requires the derivatives at state k, it does not need the
configurations from any neighboring state. However, BAR requires
configurational information from two states to estimate the free energy change.
BAR is based on the principle that at the same configuration, ¢, at two separate
states, i and j, there exists a pathway connecting the two potentials, U;(§) and
U;(G), and the difference AU;;(§). In other words, the statesi and j are defined
by two different potentials acting on the same configuration. Owing to the states

are in the same configuration, there is an exact relationship between the
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distributions of the potential energy differences AU;;(q) of the states sampled
from i and AU;;(§), what is the distribution of potential energy differences
sampled from state j. Because it is an exact function of distributions, statistics
can be applied to find the optimal way to use the information between two

states, improving the free energy estimate.

Taking the properties of expectation values, we can write the free energy

difference:

(a(ﬁ)e_[mu”(a)h
(a(§e PrUi@),

(2.35)

which is true for any a(g) > 0 for all §. This is where Bennett started to drive the
equation named after him[28]. Then he used variational calculus to select the

value of (§) minimizing the variance of the free energy.

n; nj

1 1
; 1+ eln(ni/nj)+[3AUij(¢7)—BAA - ; 1+ eln(nj/ni)+BAUji(ﬁ)—BAA =0 (2.36)
which must be solved numerically. For the detailed derivation of the equation
(2.36) see the original paper by Bennett[28]. Maximum likelihood is another
approach to derive the same equation[29]. BAR is used to estimate free energies
between many states; however, it can only do this in a pairwise manner. Thus,
BAR requires information collected at state k and at its two neighboring states

k — 1 and k + 1 for each configuration stored.

2.4.4. Potential of Mean Force Using Weighted Histogram Analysis Method

The potential of mean force (PMF) W (§) along some coordinate &, was first
introduced by Kirkwood[30], is a key concept in modern statistical mechanical
theories of liquids and biomolecules. The PMF is defined based on the average

distribution function (p(&))[31],

(P
(P&

W(E) = W(E*) — kgTln l (2.37)

where é* and W(&*) are arbitrary constants. Using Boltzmann weighted
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averages one can define the average distribution function along the coordinate &

as follows

J AR5 (&' (R) — &)e~VRY/keT
dee—U(R)/kBT

() = (2.38)

where U(R) stands for the total energy of the system as a function of the
coordinates R and ¢'(R) is a function depending on a few degrees of freedom in
the dynamical system. For instance, {'(R) may be the distance between the

centers of mass of two molecules.

It is generally not applicable to compute the PMF W(§) or the distribution
function (p(¢)), from a plain molecular dynamics simulation. The presence of
large energy barriers along ¢ may prevent an accurate sampling of the
configurational space within the simulation time. For this reason, special
techniques have been developed to calculate the PMF from molecular dynamics
trajectories. The umbrella sampling technique by Torrie and Valleau[32] is one
of those approaches. In this method the system of interest is simulated in the
presence of a biasing window potential w(§) to enhance the sampling in the
neighborhood of a prescribed value of é. Thus, the biased simulations are
performed using the potential energy U(R) + w(¢). In this manner, the biasing
potential serves to confine variations of the coordinate £ within a small interval
around some chosen value and improve the configurational sampling in this
particular region. For instance, a harmonic potential of the form w(¢) =
%K({” — &,)? centered on successive values of ¢; is a reasonable choice to produce
the biased ensemble. To obtain the PMF along the region of interest of ¢, it is
necessary to carry out a number of simulations each biasing the configurational
sampling about a different value of the reaction coordinate . Then, the results of

the various windows are unbiased and recombined together to obtain the final

estimate of W (§).

In umbrella simulations calculations, the last steps are very important. The

biased distribution function obtained from ith-biased ensemble is as follows
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(P(O))y = e WO KT (p(E)) (e il®/kpTy=1  (2.39)
The unbiased PMF from the ith window is

Py 3

(&) w;(§) + F;  (2.40)

Wi(§) =W(&") — kgTln [

where the undetermined constant F; is defined as.
e Fi/kpT — (e—Wi(f)/kBT> (2.41)

F; represents the free energy associated with introducing the biasing potential.
There have been a number of efforts for addressing the problem of unbiasing and

recombining the information from umbrella sampling calculations.

For example, the Weighted Histogram Analysis Method (WHAM) by Kumar et
al.[33] aims at using all information from umbrella sampling simulations. This
method is a generalization of the histogram method that was developed by
Ferrenberg and Swendsen[34]. In this method an optimal estimate of the
unbiased distribution function is constructed as a weighted sum over the data
extracted from all the simulations and then, the functional form of the weight

factors that minimizes the statistical error is determined.

Let us consider an umbrella sampling calculation involving N,, biased window
simulations. The WHAM equations express the optimal estimate for the unbiased
distribution function as a ¢ -dependent weighted sum over N,, individual

unbiased distribution function [{p (f))]’(‘i’;biased_

adl nye~Wi)=-Fil/egT

BE) = ) [pENgriee [ZNW
j=1

i=1

2.42
n]e_[wl(f)_F]]/kﬁT ( )

In the above equation n; is the number of independent data points used to
construct the biased distribution function. Based on the previous equations one

can write the individual unbiased distribution function as

(NP eet = eWi®/ n(p(8))qye /6T (2.43)
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The WHAM equation can be rewritten as

NW NW -1
BE) = D np©O)y | ) me i OFVET 244
i=1 j=1

The free energy constants F; are determined from using the optimal estimate for

the distribution function
e Fi/keT = j dEe &/ keT(p(&))  (2.45)

Since the distribution function itself depends on the set of constants {F]}, the
WHAM equations must be solved self-consistently. This is achieved through
starting from an initial guess for the N, free energy constants F;, and an estimate
for the unbiased distribution is obtained from equation 2.44. This estimate for
(p(&)) is plugged in equation 2.45 to generate new estimates for the N, free
energy constants F; and a new unbiased distribution is generated with equation

2.44. These steps are repeated until both equations are satisfied[31].

3.4.5. Multistate Bennett Acceptance Ratio

The estimator Multistate Bennett Acceptance Ratio (MBAR) is a direct extension
to BAR as it enables assessing data from all states. MBAR reduces to BAR when
only two states are considered and to WHAM in the limit that histogram bin
widths are shrunk to zero. MBAR bases on the extended bridge sampling

estimator[35].

Suppose we have N; uncorrelated equilibrium samples from K thermodynamic
states within the same ensemble, such as NPT, NVT, or uVT. We define the

reduced potential function u;(x) for state i as follows

w; (%) = BilUi(x) + pV () + uin(x)]  (2.46)

where x € T indicates the configuration of the system within a configuration
space with volume V(x) (in the case of a constant pressure ensemble) and n(x)
the number of molecules of each of M components of the system (in the case of a

grand-canonical ensemble). For each state i, §; and U;(x) denote the inverse
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temperature and the potential energy function, respectively, p; stands for the
external pressure and y; denotes the vector of the chemical potentials of the M

state components.

Configurations {xm}f’lil from state i are sampled from the probability

distribution

P = a0 = [ drato 247)
r

where q(x) is nonnegative and represents an unnormalized density function,
and c; is the normalization constant (the partition function). In samples obtained
from molecular dynamics, the unnormalized density is the Boltzmann’s weight

q(x) = e,

The difference in dimensionless free energies

0y = f - fi = tn = I U

(2.48)
i fr‘ dx q; (X)

where the f; are related to the dimensional energies F; by f; = B;F; and also the

equilibrium expectations.

fr dx A(x)ql

(2.49)
fr dx q; (X)

Ay, = j dx (DAY =
r

One can compute these expectation values as ratios of the partition functions. In
order to construct an estimator to compute these ratios we need the following

relation

fr dx q;(x)a;;(x)q;(x)
fr dx ql(x)

ey ) = [ jr dx qi(X)l- (2.50)
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=j dx q;(x)a;;(x)q;(x) (2.51)
r

_ U dx ;(x) .f[‘ dx q;(x)a;j(x)q;(x) 2.52)
r f[‘ dxqj(x)

= ¢i{ajqi);  (2.53)

which holds for any arbitrary choice of functions a;;(x) for ¢; # 0. Using the
above relation, summing over the index j, and substituting the empirical
estimator N;* Zivlizlg(xni) for the expectations (g);, we obtain a set of K

estimating equations

Kk  Ni k . Nj
G Cj
— ) a;jqi(xin) = ) = ) @;;jqi(xjn)  (2.54)
N; N

j=1 'n=1 j=1 ‘n=1

fori = 1,2,3,..., K, where the solution of the set of equations for the ¢; yields an
estimate of the ¢; from the sampled data determined up to a multiplicative

constant.

Equation 2.54 determines a set of asymptotically unbiased estimators that
depend on the choice of functions a;;(x), known as extended bridge sampling
estimators in statistics[36]. By choosing the a;;(x) as following

N;¢

jYi
— (2.55)
Yhe1 M€t (%)

aij(x) =

we ensure that the resulting estimator is optimal, that it has the lowest variance
for a large class of choice of @;; (x) [36], and is guaranteed to have an unique

solution up to a scalar multiplier[35].

When the configurations are obtained from Boltzmann statistics, where

q;(x) = e %™ equations 2.54 and 2.55 yield the following estimating equations

for the dimensionless free energies
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i = —1 S e M) 2.56
fi=~ nZzzlk(leke(fk—uk(xjn)) (2:56)

which must be solved in a self-consistent manner for the f;. Here we must

emphasize that since the partition functions are only determined up to a scalar
multiplier, the estimated free energies f; can only be determined unequally up to
an additive constant. Therefore, only calculations of the differences Af; = f] —fi

will be meaningful.
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3. Energetics of Hydrophilic Protein-
Protein Association and Role of water

The project described in this chapter has been published in the Journal of Chemical
Theory and Computation (2014), 10, 3512-3524.

3.1. Summary

Hydrophilic protein-protein interfaces constitute a major part of all protein-
protein interfaces and are thus of great importance. However, the quantitative
characterization of their association is still an ongoing challenge and the driving
force behind their association remains poorly characterized. In this chapter we
addressed the association of hydrophilic proteins and the role of water by means
of extensive molecular dynamics simulations in explicit water using three well
studied protein complexes; Barnase - Barstar, Cytochrome ¢ - Cytochrome c
peroxidase, and the N-terminal domain of enzyme I - Histidine-containing
Phosphocarrier. The one-dimensional free energy profiles obtained from
umbrella sampling simulations are downhill or, in other words, barrierless.
Using these one-dimensional free energy profiles, the computed standard free
energies of binding are -12.7 + 1.1 kcal/mol, -9.4 £ 0.7 kcal/mol and -8.4 + 1.9
kcal/mol which are in reasonable to very good agreement with the experimental
values of -19.6 kcal/mol, -8.8 kcal/mol and -7.8 kcal.mol. As expected, analysis of
the confined water between the hydrophilic complex partners shows that the
density and the orientational order parameter deviate noticeably from the bulk

values, especially at close separations of the confining proteins.

3.2. Introduction
The capability of proteins to bind each other in a specific manner is essential

for a wide variety of biological processes such as the cell cycle, cellular transport,
immune response, apoptosis, DNA replication and transcription, RNA splicing
and signal transduction. Even though many proteins perform their functions

independently, a large part of all proteins interact with others for proper
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biological activity. Based on large-scale proteomics studies, it has been estimated
that about half of all cellular proteins are permanently or transiently involved in
protein complexes where they form on average 6 - 8 interactions with other
proteins[37]. Studies that analyzed the residue composition of protein-protein
interfaces showed that protein-protein interfaces are enriched in both charged
and polar residues rather than nonpolar residues[38, 39]. Yet, hydrophobic
residues are found to be scattered over the entire interface where they form
small hydrophobic patches within polar and charged residues[40].

Similar to the protein folding process, the decrease in the total Gibbs free
energy (at constant temperature and pressure) of the protein-protein-solvent
system upon binding is accompanied by opposing roles of entropy and enthalpy.
For the protein folding process, the requirement for lowering the free energy
while reducing the conformational space ensures that the energy landscape is
funnel-shaped[2, 41]. Analogously, spontaneous protein-protein association also
lowers the free energy of the full system while reducing the conformational,
rotational and translational entropies of the binding partners[3]. Decades of
experimental and theoretical efforts in this field have led to the development of
paradigms, theoretical methods and computational tools. An established concept
is the calculation of the standard free energy of binding from a one-dimensional
potential of mean force (PMF). The potential of mean force is the work required
to bring two particles to a particular relative separation r. Its gradient gives the
average force, including direct and indirect contributions. PMF calculations
provide a reliable method for determining the absolute free energies of binding
of protein-ligand and protein-protein systems[42]. The commonly used method
for this purpose is umbrella sampling[43] with the Weighted Histogram Analysis
Method (WHAM)[33]. This method is able to connect the mechanistic details of
the binding process with the underlying free energy surface. Application of these
methods is relatively straightforward for small systems. However, it is an
ongoing challenge for large systems such as protein-protein complexes.

Another important factor is the water solvent that plays a crucial role in
governing the structure, stability, dynamics, and function of biomolecules. In
many natural systems, water is confined in an environment where its free

movement is restricted and its three-dimensional hydrogen-bonded network is
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partially disrupted. The properties of the confined water are difficult to predict
and may be considerably different from those of bulk water. For example,
hydrophobic dewetting has been reported as a general mechanism for the
association of hydrophobic surfaces[5]. Our understanding how hydrophilic
surfaces assemble is less clear. There is some evidence e.g. by McLain et al.[44]
that the association of hydrophilic surfaces results from the direct interactions
between the binding partners. Based on neutron diffraction data, these authors
showed that the association of some small peptides in aqueous solution is
dominated by charge-charge interactions among the solutes. On the contrary,
based on thermodynamic models, Ben-Naim argued that solvent-induced
interactions play a dominant role for protein-protein association[45]. Using
model systems, Berne and coworkers[46] addressed this issue in detail. In their
study, plates characterized by large hydrophobic domains interacted via
attractive solvent induced interactions. In contrast, a homogeneous distribution
of hydrophobic and hydrophilic particles on the plates produced repulsive
solvent induced interactions. Ahmad et al[47, 48] extensively studied the
process of protein-protein association by unbiased MD simulations in explicit
solvent. When studying the spontaneous binding of a proline-rich peptide to an
SH3 domain they found a clear dewetting transition upon binding of this
hydrophobic interface[47]. With respect to hydrophilic interfaces, they observed
that the nature of the water confined in the interfacial gap volume between the
hydrophilic protein interfaces of the Barnase:Barstar pair deviated significantly
from bulk behavior[48].

Taking three well-studied protein-protein complexes as model systems, we
revisit here the issue of hydrophilic protein-protein association and the role of
water using extensive molecular dynamics simulations. The studied systems are
Barnase-Barstar (BN-BS), Cytochrome ¢ - Cytochrome ¢ peroxidase (CC-CCP),
and the complex of the N-terminal domain of enzyme I with Histidine-containing
Phosphocarrier (EIN-HPr). The three model complexes were selected due to the
availability of a wealth of kinetic and structural data, due to the demonstrated
importance of electrostatic interactions on their association, and because none of

them exhibits large conformational changes upon complexation.
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BN-BS is one of the best studied protein-protein complexes. Barnase is an
bacterial RNAase that is lethal to the cell when expressed without its
intracellular inhibitor Barstar[49]. The association of the BN-BS pair was
addressed extensively in previous studies using e.g.,, Brownian dynamics (BD)
and molecular dynamics (MD) simulations. Using BD simulations, Gabdoulline
and Wade[50] computed association rates and their dependence on ionic
strength and protein mutations for the BN-BS system. Spaar and Helms[51]
characterized the long-range free energy landscape of the BN-BS encounter
complexes using BD simulations. Using a transition-state theory like expression
and atomic-detail modeling of proteins, Zhou and colleagues[52] calculated the
electrostatic enhancement of the association rate of BN-BS and obtained results
that correlated well with experiments. Recently Gumbart et al.[53] calculated the
standard binding free energy of the BN-BS system from atomistic MD
simulations in explicit solvent. Their newly proposed methodology relies upon
PMF calculations where the proteins are restrained in the conformation, relative
position and orientation of the bound state.

Both Cytochrome ¢ (CC) and Cytochrome c peroxidase (CCP) are located in the
intermembrane space of mitochondria. Utilizing two molecules of ferrous CC as
specific electron source, CCP catalyzes the two-electron reduction of alkyl
hydroperoxides[54]. Using BD simulations Northrup et al[55] studied the
diffusional association of the CC-CC pair and, Gabdoulline and Wade[56]
investigated the factors that influence association rates of five different protein-
protein complexes including the CC-CC pair as model systems. They found, for
example, that the CC-CC association rate is fast enough to support a two-step
electron transfer mechanism.

In bacterial cells, the phosphorylation and the translocation of sugars are
coupled by the phosphoenolpyruvate (PEP):sugar phosphotransferase system
(PTS) that consists of two cytosolic proteins, namely enzyme I and HPr, as well as
of sugar specific components. The complex between EIN and HPr is a classical
example of surface complementarity[57]. Using data from paramagnetic
relaxation enhancement and replica exchange simulations, Hummer and

coworkers[58] studied the transient encounter complexes in the EIN-HPr
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association. They reported that, besides the specific complex, distinct nonspecific
complexes exist as well that account for ~10% of relative population.

Here, we present the results from umbrella sampling simulations in explicit
water and simulations of water localized between two proteins for the three
systems mentioned above. The one-dimensional free energy profiles of protein-
protein association were found to be downhill. Using these one-dimensional free
energy profiles, the computed standard free energies of binding are in overall
good agreement with the experimental values. Decomposition of the free energy
of binding revealed that the direct non-bonded interactions between the
complex partners favor the association whereas the solvent-induced interactions
turned out to be repulsive. Moreover, the density and the orientational order
parameter of confined water deviate noticeably from the bulk values at close

separation of the confining proteins.

3.3. Materials and Methods

The coordinates for the bound protein-protein complexes were retrieved from
the protein databank[59]: Barnase-Barstar (PDB ID: 1BRS[49]), Cytochrome c -
cytochrome c peroxidase (PDB ID: 2PCC[54]) and the amino terminal domain of
enzyme | and the Histidine-containing Phosphocarrier protein (PDB ID:

3EZB[57]).

3.3.1. Parameterization of Proteins

The titration states of titratable amino acids were assigned at physiological pH

using the program PROPKA (http://nbcr-222.ucsd.edu/pdb2pqgr_1.8/)[60]. All

crystallographically resolved water molecules were kept and the placement of
additional water molecules in internal protein cavities was tested using the
program DOWSER [61] and keeping only those with DOWSER energy below -12
kcal/mol. All interactions were modeled by the Amber force field FF99SB-
ILDN[62]. Short range nonbonded interactions were computed up to 1.2 nm
distance. Long range electrostatic interactions were treated by the particle mesh
Ewald (PME)[63] method. Dispersion correction was applied to energy and
pressure. Periodic boundary conditions were applied in all directions. Water

molecules were modeled by the TIP3P[64] potential that is typically used
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together with the AMBER force field. All simulations were carried out using the

GROMACS package, version 4.5.4.[65].

3.3.2. Heme Center Parameterization

The active sites of Cytochrome ¢ and Cytochrome c peroxidase contain a heme
group each. In Cytochrome ¢, the heme is covalently bonded to the polypeptide
chain and the iron atom in both oxidized and reduced states is six-coordinate low
spin[66]. The central heme iron is ligated to both a histidine and methionine.
Ccp, in its resting state, involves a noncovalent heme with a five-coordinate high-
spin iron[66]. Here, the central iron atom is coordinated by a histidine residue at
the fifth position. In our study we considered Cytochrome ¢ and Cytochrome ¢
peroxidase in their resting states where the iron atoms are Fe(II) and Fe(III),
respectively.

Even though the coordinate set 2PCC (PDB ID) was used to start the MD
simulations, we retrieved coordinates for the heme group and its coordinating
residues from crystal structures determined at higher resolution as starting
positions for the quantum mechanical calculations. The PDB entries 1YYC (1.23
A) and 1ZBY (1.20 A) were used for Cytochrome ¢ and Cytochrome c peroxidase,
respectively. The amino acids bonded to the heme centers were truncated at
their B-carbons and hydrogens were added. All QM calculations were performed
using Gaussian03[67]. For derivation of partial atomic charges, we followed the
standardized protocol commonly used in combination with the original
AMBERY94 force field with some minor changes. The geometry was optimized at
B3LYP level using the basis set 6-31G* in two consecutive stages. First, we
optimized the geometry of the heme group alone. Then the coordinating residues
were added to the resulting heme configuration in their conformations observed
in the crystallographic structure and the geometry of the full system was further
optimized without any restraints. Using the optimized geometry, we obtained
the molecular electrostatic potential from the HF/6-31G* electron density of the
heme centers. Restricted ESP (RESP) charges[68] were obtained using the RESP
program under Amber Tools in two steps. In the first stage, charge equivalency
on chemically equivalent heavy atoms was imposed and the total charges on the

methyl groups that were generated by adding hydrogen atoms to the Cf atoms of
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the heme coordinating amino acids were set to zero. In the second stage, the
charges of chemically equivalent hydrogen atoms were equated, keeping the
constraint on methyl groups and the charges on heavy atoms constant. The
remaining excess charge obtained when linking the amino acid Cf to the rest was
equally distributed over all atoms included in the parameterization, ensuring that
the overall charge on the heme and the newly defined amino acids is integral.
The missing force constants for bonds, angles and dihedrals of the heme
groups were taken from heme parameters in the AMBER parameter database,
see http://www.pharmacy.manchester.ac.uk/bryce/amber/ and Shahrokh et
al.[69] The derived charges and the used force constants for the heme centers

are provided in the Supporting Information.

3.3.3. Molecular Dynamics Simulations

In this study, we conducted two different sets of molecular dynamics
simulations for the three protein-protein complexes in explicit solvent. First, we
combined umbrella sampling and the weighted histogram analysis method to
characterize the one dimensional binding free energy surface of the three
systems. In order to generate equilibrated initial structures for the simulations,
each system was placed in a cubic box of TIP3P water. To mimic physiological
conditions 100 mM NaCl was added, including neutralizing counterions. This
resulted in 50 Na* and 46 CI- for the BN-BS system, 83 Na* and 82 CI- for the CC-
CC system and 107 Na* and 86 CI- for the EIN-HPr system. Following an initial
energy minimization of 1000 steps of steepest descent, each system was
equilibrated in two steps where the heavy atoms of the proteins were restrained
using a force constant of 1000 k] mol-! nm-2. The first step involved 100 ps of MD
in the NVT ensemble, maintaining the temperature at 310 K. Protein and
nonprotein atoms were coupled separately to temperature baths using
Berendsen’s weak coupling algorithm[70] with a coupling time of 0.1 ps. All
bonds were constraint using LINCS algorithm[71]. Subsequently, 100 ps of NPT
equilibration were performed, keeping the pressure at 1 bar also using
Berendsen’s weak coupling method[70] with a time constant of 1 ps. During data
collection, the Nose-Hoover thermostat[72, 73] was combined with the

Parrrinello-Rahman barostat[74] to regulate temperature and pressure,
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respectively. Equilibration was completed by 20 ns of conventional MD
simulation in the absence of any restraints. For integrating Newton’s equations
of motion, a leap-frog algorithm with a time step of 2 fs was used.

The final coordinates at the end of these trajectories were used as starting
configurations for umbrella sampling simulations. The protein coordinates were
rotated in order to align the line connecting the centers of mass of the two
complex partners with the z-axis. Then, the two proteins were placed in a
rectangular box with dimensions sufficient to satisfy the minimum image
convention even at the largest separation distance of 3 nm. The solvation box
sizes were 6.7 nm x 7.7 nm x 14.7 nm, 9.0 nm x 9.4 nm x 16.0 nm and 11.0 nm x
7.8 nm x 16.3 nm for BN-BS, CC-CC and EIN-HPr respectively. The initial
configurations were generated by translating one of the protein partners along
the z-axis up to 3 nm distance between the surfaces of the two proteins, while
keeping the other one fixed. The disassociation path between the bound and the
3.0-nm separated states was divided into 0.1 nm intervals up to 1 nm of
separation and 0.2 nm intervals between 1 nm and 3 nm. This resulted in 21
windows. For each window an umbrella sampling run of 10 ns length was
performed with a force constant of 1000 kJ/mol.nm? in general. The force
constant was increased to 2000 k] /mol.nm? in cases when the protein centers in
the windows deviated strongly from the initial configurations and therefore
caused sampling problems. For the BN-BS system each window was extended to
40 ns to check whether this led to a better agreement with the experimental
binding free energy. The first 0.5 ns of all windows were considered as
equilibration and excluded during analysis. Different time intervals were utilized
for construction of the PMF curves.

For WHAM analysis, the g wham[75] utility of GROMACS 4.5.4 was used with
default options, except for the convergence tolerance that was set to 10-°. The
histograms were carefully analyzed to ensure sufficient overlapping. New
windows were added when the overlaps between the histograms were not
sufficient and existing windows were deleted in those cases to avoid redundancy.

The histograms of the final umbrella windows are displayed in Figure 3.1.
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Figure 3.1. Histograms of the configurations within the umbrella sampling windows for
BN-BS (upper panel), CC-CC (middle panel) and EIN-HPr (lower panel). z is the reaction
coordinate coincident with the COM distance between the protein partners.



3.3.4. Standard Free Energy of Binding from PMF

In order to calculate the standard free energy of binding, AG?, we followed the
strategy presented by Henchman and coworkers[76]. They assumed that a PMF
is sampled along a 1D reaction coordinate, whereas concurrently the orthogonal
translational movement is restricted by a harmonic confinement potential. No
restraints are applied to the orientations. The standard free energy of binding is
computed as the sum of three terms.

AG® = AGpyrp + AGy + AG,  (3.1)

where AGpyr stands for the binding free energy change obtained as the
difference between the bound and unbound states retrieved from the PMF, 4G,
stands for the free energy change from the unbound volume to the standard state
volume and AGg accounts for the change in free energy associated with the
introduction of translational confinement restraints.

AGpyr and AG, are computed as

AGpyp = —RTIn (%) (3.2)

u

and

V,
AG, = —RTIn (v”) (3.3)

o

where, R is the ideal gas constant, T is the absolute temperature, V, is the
unbound volume, and V,, is the standard state volume. Q, and Q,, are the partition
functions for the bound and unbound regions, respectively. Their ratio is

computed by the following equation:

S _bG) @

Qu L

Here, the PMF depth, AW, is defined as the lowest point minus the exponential
average over the entire unbound region of the PMF. W(z) is the PMF as a
function of z and defined to be zero at its lowest point when the proteins are
bound.

-W(z)

funbounde RT
AW = RTin (3.5)

unbound dz
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[, andl, are the configurational integral of the PMF and are given by the

following equations:

—W(z)
lb:_[ e RT dz (3.6)
bound

and

l, = j dz (3.7)
unbound

The unbound volume V;, is the area explored in the xy plane times the distance

sampled along the z axis, [,,, by the protein and computed as follows:

Vo= 2nRT
u u kxy

(3.8)

where k,,, is the force constant of the applied harmonic restraint potential
along x and y directions.

The free energy term AGy to remove the orthogonal restraints in the bound
state is computed from additional 10 ns or 40 ns long umbrella windows without
orthogonal restraints, which cover the bound region along the reaction

coordinate, using the following equation

Ky (Ax2+Ay?)
AGR = RTlTl (e 2RT >kxy=0 (39)

Here Ax and Ay are the observed displacements relative to the minimum in the
restrained simulations.
In this study we chose the cutoff between the bound and unbound regions to

be the value of z where the PMF becomes constant within statistical noise.

3.3.5. Rotational Entropy Calculation

We calculated the rotational entropy based on the distribution of the
orientations of BS with respect to BN, of CC with respect to CCP and of HPr with
respect to EIN. For calculating the rotational entropy we used the umbrella
sampling trajectories after removing the rotational motion of one of the complex
partners. First of all, the reaction coordinate was divided in equal bins of 0.1 nm
length (distance bins). Then the snapshots were assigned to the distance bins
according to the protein-protein COM distance. Afterwards, for each distance bin

we calculated the entropy value as explained below.
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The rotation matrices needed for calculating protein orientations were
obtained by the g rotmat routine of GROMACS that is based on least squares
fitting. Utilizing the resulting matrices the three Euler angles (¢,6,1y) were
computed. The sampled distribution of the Euler angles was used to compute the

entropy as follows[77]:

180

360
grot = —Rj p(P)Inp(Pp)de — Rj p(0)Inp(6)sin6do
¢=0 6=0

360
R [ pim@dy  (310)

In order to define the states for the entropy calculation, the range for each
Euler angle was equally divided in angular bins of 3.6° bin size. For every
angular bin we counted the observed frequency, p. Summing up the contribution
of each state according to the above formula gave the rotational entropy. Instead
of the absolute rotational entropy we reported the change in rotational entropy,
AS™°t, relative to the uniform distribution of the three Euler angles what

corresponds to the ideal freely rotating case.

3.3.6. Entropy of Binding

The entropy loss of one of the protein partners upon association was also
estimated using the SF (system-frame) method introduced by Irudayam and
Henchman[78] for protein ligand systems. Here we give a brief description of the
method. For the detailed derivations please see reference [78]. Even though in
our systems both binding partners are proteins, we refer to the smaller binding
partner (Barstar, Cytochrome c¢ and Histidine-containing phosphocarrier) as
ligand. We ignored the change in internal entropy and, thus, assume that the
ligand only loses translational and rotational entropy upon complexation. In the

unbound state, the translational entropy of the ligand, Sf&fqu) is the sum of

vibrational and cratic entropies and is given by

3
1 2ksTe
seas =Rln< . | | — ) (3.11)
XL(aq) 1_q FrapMe

where x7 44 is the mole fraction of L, e is the natural logarithm base, FLi(aq) is
half of the average force magnitudes along the principal axes of the ligand and A;,

is the translational thermal de Broglie wavelength. The rotational entropy of the
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ligand in the unbound state consists of orientational and librational terms and is

given by

3
rot 877,'2 ZkﬁTe

a.Vwq) i1 TLi(aq)Ti(aq)AlL

In the above equation, g is the symmetry number,V,, ;) is the volume of a
single water molecule, 7} is the radius of the ligand protein along the ith principal
axis, 7! is half of the torque magnitude about the ith principal axis of the ligand
and A’ represents the rotational thermal de Broglie wavelengths.

In the bound state the ligand was assumed to have no cratic and orientational
entropy. Hence, the translational entropy of the bound ligand, S(tcromp’aq), is only
vibrational

tr 3 Zk‘gTe
S(comp,aq) = Rin nﬁ (313)
i=1  L(comp,aq)**L

rot

and the rotational entropy, S is solely librational

(comp,aq) ’
2kgT
S(Tcootmp aq) = Rln< A c i)Taking the difference of the bound and free
’ T(comp,aq) L

ligand entropies and assuming that the thermal rotational de Broglie
wavelengths do not change between solution and the complex, the final
equations for translational and rotational entropy changes upon complexation

are as follows
3

v, F!
ASET = Rln( o | " ) (3.14)
i=1  L(comp,aq)
3 .
o, V, T}
ASTOt = Rln( L8 7:”2(” —{ed) ) (3.15)
i—1 'L(aq) ¥ (comp,aq)

The average force and torque magnitudes were extracted from the first and last
windows of umbrella sampling simulations corresponding to the bound and

unbound states, respectively.

3.3.7. Properties of Interfacial Water

Subsequently, we performed a second set of MD simulations for the three
protein-protein systems to characterize the density and the tetrahedral order

parameter of the interfacial water localized between the two protein interfaces.
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These simulations were performed under the same conditions used in the
umbrella sampling simulations. Additionally, harmonic position restraints were
applied to the backbone atoms of the proteins to maintain their interfacial
distance and a fixed relative orientation. The starting configurations were
obtained in the same way as previously mentioned for the umbrella sampling
simulations. The interfacial distance was varied between 0.35 and 5.0 nm. Each
simulation was 20 ns long. The snapshots for analysis were collected every 0.25
ps. Analyses were carried out using the snapshots from the last 15 ns. A cubic
box of pure water was also simulated in order to compare the properties of

interfacial water to the bulk values.

3.3.8. Interfacial Gap Definition

The interface residues on the protein surfaces were retrieved from the ABC2
database.[”! There, protein interfaces contain those residues exhibiting a certain
change in their solvent accessible surface area (SASA) when comparing the
values of the unbound state to those of the complexed forms. The interfacial gap
was defined by a rectangular box, which spans the center of geometry of both
interfaces along the z-axis (the length). The width and height of the box were
calculated by considering minimum and maximum coordinate values of the
interfaces along x- and y-axes. The values, which gave the smaller dimensions,
were taken for defining the interfacial gap. Those water molecules, having
oxygen positions inside the interfacial gap, were considered as interfacial water
molecules. The volume of the interfacial water gap was calculated by subtracting
the overlapping protein volume from the volume of the aforementioned
rectangular box. The overlapping protein volume was calculated from the
protein mass inside the rectangular box and assuming an average value of the
protein density. For the protein density we used the generally accepted value of
1.35 g/cm3® that was deduced from hydrodynamic[80, 81] and adiabatic
compressibility[82] experiments. This procedure was applied to all frames along

a trajectory and the quantities were averaged subsequently.
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3.3.9. Tetrahedral Order Parameter

Water molecules have a general propensity for tetrahedral coordination, owing
to their hydrogen-bonding network. The tetrahedral order parameter is a three
body order parameter that measures the degree to which the nearest-neighbor
molecules are tetrahedrally coordinated with respect to a given molecule[83,

84]. The tetrahedral order parameter is defined as

q=1 —%i 24: <cosz/)l-kj + %)2 (3.16)

i=1 j=i+1

where ;. ; is the angle formed by the lines connecting the oxygen atoms of a
given water molecule k and those of its nearest neighbors i and j. We computed
the orientational order parameter in two different ways; first, we only
considered water molecules as potential neighbors, second, in addition to the
water molecules, we also took into account the nearby protein oxygen and
nitrogen atoms within a cutoff 3.5 A as potential neighbors. In both cases, we
considered the four nearest neighbors of interfacial water molecule k, based on
their Euclidian distances and calculated the orientational order parameter using
the formula above. These calculations were performed for each interfacial water

molecule k and then averaged.

3.4. Results and Discussion

3.4.1. Global and Interface Properties of the Systems of Interest

In this work we studied the association/dissociation of three well studied
protein-protein complexes; Barnase-Barstar (BN-BS), Cytochrome c¢ -
Cytochrome ¢ peroxidase (CC-CC) and the complex of the N-terminal domain of
enzyme [ with Histidine-containing Phosphocarrier (EIN-HPr). Figure 3.2 shows
cartoon and electrostatic surface representations of the systems studied. Visual
inspection easily reveals the favorable electrostatic complementarity between

the protein partners, especially of the BN-BS and CC-CC complexes.
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Figure 3.2. Cartoon (left panel) and electrostatic potential surface representation (right
panel) of the studied complexes. a) Barnase: Barstar. b) Cytochrome c: Cytochrome c
peroxidase c) N-terminal domain of enzyme I: Histidine-containing Phosphocarrier. The
electrostatic potential was computed utilizing the Adaptive Poisson-Boltzmann Solver
(APBS)[85] setting the dielectric constant to 78.5 and 2.0 for the solvent and the
proteins, respectively. The electrostatic potential was mapped to the protein surface
using the VMD software.[86] The color scale data ranges from -7kBT (red) to +7kBT
(blue).

Table 3.1 summarizes general and interface properties of the three model
systems. As seen in Table 3.1, the proteins and, more importantly, the interfaces
carry non-zero electrostatic net charges at pH=7. The charge values given in
Table 3.1 were computed after assignment of the titration states of amino acids
by PROPKA[60] and may thus differ from the standard charge values reported in
the literature. In all systems the interfaces are oppositely charged. In the BN-BS
and CC-CC complexes, the proteins also have an opposite overall charge whereas
in the EIN-HPr complex both proteins carry a negative overall charge. Another

noteworthy property is the area of the binding interfaces. The EIN-HPr system
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has the largest binding area which is commonly a characteristic of permanently
assembled proteins[87]. Here, however, it is the system with the weakest
binding constant. This may result from the overall negative charges of the
complex partners. Among the known protein complexes, BN-BS is one of the
tightest complexes with 14 hydrogen bonds and 12 salt bridges formed across
the interfaces, bearing a Ky value of 1.3 x 10-14. The CC-CC complex shows perfect
electrostatic complementarity[56] but has the smallest binding interface of all
three systems. The relatively weak stability of the bound complex may be
connected to the transient nature of the electron transfer step taking place
between this interaction pair.

Table 3.1. Some global and interface properties of the three protein-protein complexes.
The interface area and number of interface residues were retrieved from the ABC2
database[79]. The number of H-bonds and salt-bridges across the interfaces were taken
from the PDBe Pisa database (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html).

BN-BS CC:CYP EIN-HPr
Number of amino acids in protein I 110 108 249
Number of amino acids in protein II 89 296 85
Area of binding interface (A2) 778 570 1002
Number of interface residues in proteinl | 16 13 33
Number of interface residues in protein II | 14 10 24
Number of H-bonds across interface 14 4 6
Number of salt-bridges across interface 12 2 5
Total charge of protein I [e] +2 -7 -19
Total charge of protein II [e] -6 +6 -2
Total charge of interface I [e] +3 +5 -5
Total charge of interface II [e] -4 -2 +4
Binding constant 1.3x104M1 a | 6x107M1t b | 3.1x106M1 ¢

a) The disassociation constant was retrieved from reference[88]. b) The disassociation
constant was taken from reference[89]. c) The disassociation constant was converted from the
association constant reported in reference[90].
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3.4.2. One Dimensional Free Energy Surface of Protein-Protein Association

In this study we combined umbrella sampling with the WHAM method to
obtain the PMF curve for protein-protein disassociation. Here, the reaction
coordinate corresponds to the z-axis, coincident with the distance between the
centers of mass (COM) of the complex partners. We partitioned the trajectory
into pieces and computed the PMF and subsequently the standard free energy of
binding. Figure 3.3 shows PMF curves for the three systems obtained using
different time intervals of the full-length simulation windows. As seen in the
figure, all one-dimensional free energy surfaces of association are downhill or in
other words barrierless. For BN-BS, this was reported before[53, 91, 92]. Even
though the maximum value of the PMF varies among different time intervals, the
PMF curves behave similar for the three systems. Among the systems, the
sharpest PMF curve belongs to the BN-BS complex. Here the PMF becomes flat at
about 1.4 nm of separation what corresponds to 3.6 nm along the reaction
coordinate. For the CC-CC and EIN-HPr systems the PMF curves flatten beyond
1.5 nm of separation and coincide with the data points at 4.6 nm and 4.5 nm on
the reaction coordinate, respectively. The dashed line parallel to the y-axis in

Figure 3.3 indicates this critical separation for each system.
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Figure 3.3. Potential of mean force calculated from different time intervals of the
umbrella sampling simulations. a) Barnase: Barstar. b) Cytochrome c: Cytochrome c
peroxidase c) N-terminal domain of enzyme I: Histidine-containing Phosphocarrier. The
black dashed line that is parallel to the y-axis represents the cutoff that separates the
bound region from the unbound region. The grey dashed line left of it marks the position
of the bound state.

To obtain insight into the energetic contributions that lead to these PMF
profiles, we analyzed the components of the non-bonded interaction terms (see
Figure 3.4). The separation distances where the PMFs start to flatten coincide
with the distance where the direct Lennard Jones (L]) interactions between the
proteins almost vanish along the reaction coordinate. In contrast, the direct
electrostatic interactions are still very strong at these separations (see Figure
3.4). Interestingly, these separations are also where the rotational entropy of the

proteins starts to converge to a constant value (see Figure 3.5).
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Figure 3.4. The potential of mean force (PMF) (left panel) and the direct interactions
between the two proteins (right panel) calculated from full-length umbrella sampling
simulation windows along the COM distance. a, d) Barnase: Barstar. b, e) Cytochrome c:
Cytochrome c peroxidase. c, f) N-terminal domain of enzyme [: Histidine-containing
Phosphocarrier. The error analyses for PMF values were performed using a bootstrap
method introduced previously[75].

We assessed the quality of the PMF values obtained from different time
intervals of the trajectory by inspecting the quality of the sampling histograms
and made sure that there is sufficient overlapping between two consecutive
windows. Not surprisingly, longer sampling times led to smoother histograms
and better overlap. Assured by this analysis, we decided to use the full

trajectories for further analysis.
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Figure 3.5. Rotational entropy change along the COM distance; Barnase: Barstar (blue).
Cytochrome c: Cytochrome c peroxidase (green) and N-terminal domain of enzyme I:
Histidine-containing Phosphocarrier (red). The rotational entropy is calculated based on
the distribution of the orientations of BS with respect to BN, of CC with respect to CCP
and of HPr with respect to EIN. The change in rotational entropy, AS"¢, is defined
relative to the uniform distribution of the three Euler angles. Arrows mark the positions
of the bound complexes.

3.4.3. Standard Free Energy of Binding

The relation between the equilibrium constant of a chemical reaction and the
associated free energy is well established. When the reaction involves a change
in the number of components, one has to relate the obtained results to a
standard state, see reference [7]. Based on the PMF values given in Figure 3.5, we
calculated the standard free energies of binding, as explained in the Methods
section. The results are provided in Table 3.2 together with the experimental
values for comparison.

The cutoff between bound and unbound regions was set to the value of the
reaction coordinate where the PMF becomes constant within some error
interval. In Figure 3.3, the cutoff distances are marked as black dashed lines
parallel to the y-axis. Although the definition of the cutoff is arbitrary, the lowest
values of the PMF in the binding site contribute the most to the integrals and
make the calculation of AW insensitive to the cutoff[76]. Moreover, the rotational
entropy values beyond these cutoffs do not change considerably meaning that
the proteins are effectively in bulk (see Figure 3.5). This is more pronounced for
the BN-BS system due to the better convergence during windows of 40 ns in

length.

45



Table 3.2. Standard free energies of binding (4G°) for the BN-BS, CC-CC and EIN-HPr
complexes. The experimental values 4G¢y, are based on the binding constants given in
Table 3.1. The calculated values; AW, AGpyr AG, and AGg stand for the PMF depth, the
free energy change of binding between the bound and unbound section of the PMF, the
free energy change from the unbound volume to the standard state volume and the free

energy change to remove the orthogonal restraints, respectively.

BN-BS
Time interval | AW kcal Ac kcal Ac kcal Ac kcal 4G° kcal 4G9 kcal
(=) | Ao () [ 4Gy (D) | 4G (D) | 46°(—) | AGEp(——)
0-10 ns -12.9 -13.5 2.5 -0.8 -11.8
10-20 ns -15.3 -15.8 2.5 -0.9 -14.2
20-30 ns -14.2 -14.7 2.5 -0.8 -13.0
-19.62
30-40 ns -12.9 -13.4 2.5 -0.9 -11.8
-12.7 +1.14
0-40 ns -13.7 -14.2 2.5 -0.9 -12.6
CC-CC
0-5ns -9.7 -10.3 2.5 -1.1 -8.9
5-10 ns -10.6 -11.2 2.5 -1.2 -9.9
-8.8b
-9.4 +0.7d
0-10 ns -10.2 -10.6 2.5 -1.2 -9.3
EIN-HPr
0-5ns -7.7 -8.6 2.5 -0.9 -7.0
5-10 ns -10.3 -11.3 2.5 -0.9 -9.8
-7.8¢
-84 +£19d
0-10 ns -8.8 -9.9 2.5 -0.9 -8.3

a-c) Converted from the disassociation constants reported in Table 3.1, using the simulation
temperature (310 K). d) The mean value and the standard deviation of the standard free energies
of binding (4G°) from 10-ns (BN-BS) and 5-ns (CC-CC and EIN-HPr) time intervals.

The standard free energy of binding for the different time intervals varies
between -11.8 - 14.2 kcal/mo], -8.9 -9.9 kcal/mol and -7.0 - 9.8 kcal/mol for BN-
BS, CC-CC and EIN-HPr, respectively. These give average values of -12.7 + 1.1, -
9.4 + 0.7 and -8.4 % 1.9 kcal/mol, which are very close to the free energy of
binding computed from the whole trajectory (-12.6 kcal/mol, -9.3 kcal/mol and -
8.3 kcal/mol). Our estimates of the standard error of the mean standard free
energy are based on the four 10-ns long trajectory parts for BN-BS and 5-ns long

trajectory parts for CC-CC and EIN-HPr. We carefully searched the literature for
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the best matching experimental conditions to our simulations. The calculated
standard free energies of binding are in good agreement with these experimental
values, except for BN-BS. For the CC-CC and EIN-HPr systems, the computed
standard free energies of binding from 10-ns long trajectories, -9.3 kcal/mol and
-8.3 kcal/mol, match very closely the experimental values of -8.8 kcal/mol and -
7.8 kcal/mol, respectively. However for the BN-BS system the value computed
from 10-ns long trajectories, -11.8 kcal/mol, is 7.8 kcal/mol less favorable than
the experimental value of -19.6 kcal/mol. Extension of the simulations to 40 ns
did not bring the computed value much closer to the experimental
correspondent. The largest computed value is -14.2 kcal/mol, which is still 5.4
kcal/mol higher than the experimental value (see Table 3.2). It is well known
that the computed standard free energy of binding based on the method we
followed here is dependent on the applied orthogonal force constant[76], the
sampling time, the number of windows used and the window-width[93].
Therefore attaining a binding free energy, which compares well to the
experimentally determined binding free energy may require further
optimization of these parameters for a specific system. Since this is not the scope
of this work, we did not perform any further analysis utilizing different
parameters set for BN-BS. Further possible explanations for the deviation from
experiment could be inaccuracies of the force field, neglect of explicit
polarization, conformational changes of the protein that are not captured during
ns-scale time simulations etc. We note that previous, shorter simulations by
Neumann and Gottschalk[92] as well as by Wang and Helms[91] also resulted in
too low PMF profiles.

AGpyr contributes the most to the standard free energy of binding because it
accounts for all direct interactions, solvent contributions, rotational and
translational entropies of the proteins. The term AG, mainly accounts for
translational entropy since among the enthalpy and entropy terms translational
entropy is the only one that has a concentration dependence[94, 95]. The area
explored by the protein in the xy plane, 1.61 A2, was computed analytically (see
methods) and, therefore, is the same for all three systems. Since the unbound
length, I, is also almost the same for all systems, the free energy change AG, is

the same up to second decimal. Because the unbound volume, V;,, is smaller than
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the standard state volume, the rescaling free energy term 4G, yields a positive
contribution (2.5 kcal/mol) to the standard free energy of binding. The free
energy to remove the orthogonal constraints, 4Gz, makes a contribution of about
-0.9 kcal/mol for the BN-BS and EIN-HPr systems and of about -1.2 kcal/mol for
the CC-CC system. The AGgvalues computed using different time frames do not

differ much (see Table 3.2) presumably due to the exponential averaging.

3.4.4. Determinants of Binding Affinity

The riddle in protein-protein association is that there exist no strong chemical
bonds formed between the proteins, yet they do form stable assemblies in
aqueous solution. As explanation for these strong driving forces Ben-Naim[96]
suggested that solvent-induced interactions make a large, favorable contribution
to the standard free energy of binding. Ben-Naim decomposed the binding free
energy into the following three terms[96]:

AG° = AGr_g + AU + 6G  (3.17)

where AGr_g is the contribution to the driving force (4G,) due to the changes
in translational and rotational degrees of freedom of all species (the monomers
and the complex), AU is the energy change for bringing the two proteins from
infinite separation to the final configuration of the complex in vacuum, and 6G is
the solvent induced contribution to the binding free energy.

Figure 3.4(d-f) show the direct interaction energy between the complex
partners along the reaction coordinate obtained from full-length windows. As for
the entropies, the direct interaction energies were computed from the full-length
windows by dividing the reaction coordinate into bins and averaging the
energies inside each bin. As expected for protein pairs carrying nonzero net
electric charges, the direct interactions are overwhelmingly large compared to
the corresponding PMF and always favorable except for EIN-HPr at larger
distances. The observed humps in the electrostatic energy along the dissociation
path (Figure 3.4d-f) are due to protein rotations and reveal the pronounced
dipolar character of the proteins. In the EIN-HPr system the proteins have a
negative overall electrostatic charge even though the interfaces are oppositely
charged. Therefore, the proteins may adopt configurations with positive overall

electrostatic interaction energies even in the early stages of dissociation. Since
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these effects are compensated by respective protein-solvent interactions (see
below), the strong changes in the electrostatic interactions along the reaction
coordinate do not lead to spikes in the corresponding PMF values (Figure 3.4a-c).
Even though the PMF and Lennard Jones interactions almost vanish beyond the
cutoff, the electrostatic interactions are still very strong at this distance. Thus,
there must be some effect, which counteracts these interactions and lowers the
PMF to its actual value and converges to zero beyond the cutoff.

By decomposing the standard free energy of binding in the manner described
above, we obtained the results listed in Table 3.3. The free energy change
AGr_g(see Table 3.3) was computed as the sum of translational and rotational

rot

entropy terms —TASf"and —TAS]°t, which were predicted from the SF approach.
The free energy contributions due to the loss of translational entropy upon
binding are almost equal; 2.4 kcal/mol for BN-BS and 2.5 kcal/mol for the other
two systems. The —TAS]°t term that accounts for the free energy due to
rotational entropy loss upon complexation is almost twice the contribution from
the translational entropy loss, namely 4.2 kcal/mol, 5.0 kcal/mol and 4.8
kcal/mol for BN-BS, CC-CC and EIN-HPr, respectively. The rotational entropy
contribution to the standard free energy of binding for BN-BS computed here
(4.2 kcal/mol) is in quite good agreement with the value reported in a recent
study[53] (5.8 kcal/mol), which was calculated by applying a series of

orientational restraints. AU is simply defined as the difference between

minimum and maximum value of the total direct interactions.
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Table 3.3. The solvent-induced contribution (6G) to the standard free energy of binding
was derived as the difference of the computed AG,, from full-length windows (40 ns for
BN-BS and 10 ns for CC-CC and EIN-HPr) and the direct interactions AU value computed
from full-length windows. AS!" and AS7°! are translational and rotational entropy

changes upon complexation based on the SF approach. AGy_g is the sum of the two

entropic terms —TASY" and —TAS}°%, where T stands for the temperature.

Systems AG(,(%) AU(%) —TASL”(%) —TASZ‘”(%) AGT_R('::SIZ) 60<kc—jll)
BN-BS -12.6 -594.6 2.4 4.2 6.6 575.4
CC-CCP -9.3 -1178.5 2.5 5.0 7.5 1161.7
EIN-HPr -8.3 -718.4 2.5 4.8 7.3 702.8

Table 3.3 illustrates that according to the energy decomposition suggested by
Ben-Naim[96] the overall solvent-induced contribution to the standard free
energy of binding is positive. This contradicts the reasoning of Ben-Naim who
expected. AU to be in the order of only 0.5 kcal/mol, which is not the case. We
note, however, that the systems studied here are charged so that this behavior is
quite expected. For the EIN-HPr system, there exist some regions along the
reaction coordinate where the total direct interactions are repulsive (see Figure
3.4f) what would lead to a favorable negative §G. However when considering the
end points along the association path, the solvent-induced interactions are
repulsive for this system as well. Therefore we conclude that the solvent-induced
interactions counteract the large and favorable total direct interactions and are
repulsive overall. This issue, whether the solvent-induced interactions are
attractive or repulsive was addressed before. Based on some model systems,
Berne and coworkers[46] found that plates with homogenous hydrophilic and
hydrophobic sites give rise to repulsive solvent-induced interactions. However,
for plates with large hydrophilic domains, they reported attractive solvent-
induced interactions coupled with a dewetting transition. The plates with
homogenous hydrophobic and hydrophilic sites resemble hydrophilic protein-
protein interfaces quite well, since the hydrophilic protein-protein interfaces do

not only bear hydrophilic residues, but also contain hydrophobic residues.
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We also computed the rotational entropy along the reaction coordinate using
the distribution of the three Euler angles (see methods) and provide the results
in Figure 3.5. Our aim here was mainly to assess the convergence of rotational
motions. As seen in the figure, the term AS™¢ converges to a constant value at
large distances that we defined as unbound region. We also computed the
rotational entropy contribution using different angle bin sizes. Although the
numbers changed slightly at some regions along the reaction coordinate, the
overall change of AS™, is negligible (see Figure 3.6). The slight deviation in
AS™t at these regions is largely due to the inadequate sampling, since every
distance bin contains different numbers of snapshots. If we consider the
rotational entropy of binding as the difference between minimum (in the bound
region) and maximum (in the unbound region) values we obtain -11.0 cal K
mol-! for BN-BS -10.7 cal K1 mol-! for CC-CC and -9.7 cal K- mol! for EIN-HPr.
These entropy changes give TAS™°¢ values of 3.4 kcal/mol, 3.3 kcal/mol and 3.0
kcal/mol free energy changes at 310° K, respectively, which are smaller than the

contributions obtained using the SF approach (see Table 3.3).
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Figure 3.6. Rotational entropy calculated using different angle bin size for the BN-BS
complex.

3.4.5. Properties of Interfacial Water

At the atomic level, water appears to be one of the simplest molecules, yet
understanding the structure and dynamics of liquid water is an ongoing
challenge[97]. Our second set of simulations consisted of MD simulations that

address the behavior of water localized between two hydrophilic proteins. It is

51



well known that confining surfaces can exert a profound influence on the
structure and dynamics of water[97, 98]. Here, we investigated how the
properties of water localized between two hydrophilic proteins differ from those
of bulk water by means of density and orientational order parameter. Figure 3.6
shows that the interfacial water density increases by a few percent at close
interfacial distances for the BN-BS and CC-CC systems. However, for the EIN-HPr
complex we observed slight dewetting at the same interfacial distances. In all
cases, the density reaches the bulk value (0.98 g/cm3 for TIP3P water model)
beyond separation distances of a few nanometers (see Figure 3.7a). A similar
behavior was reported previously for protein-protein[48] and model

systems|[46].
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Figure 3.7. Density (panel a) and orientational order parameter (panel b) of the
interfacial water for the three systems; Barnase: Barstar (blue circles), Cytochrome c:
Cytochrome c¢ peroxidase (green squares) and N-terminal domain of enzyme I:
Histidine-containing Phosphocarrier (red stars). In panel b, the solid symbols are the
orientational order parameter when only including neighboring water molecules. The
open symbols stand for a modified orientational order parameter of the interfacial
water molecules when considering their four closest water oxygens or interfacial
protein atoms (O and N) within a 3.5 A distance cutoff.

In order to investigate the local structure of the interfacial water, we computed
the orientational order parameter q. The possible values for this orientational
order parameter for a single water molecule range from -3 to 1. However, the
average value for a collection of molecules varies between 0 in a random
network (no order) and 1 in a tetrahedral network[84]. We conducted this

calculation in two different ways; without and with considering the nearby polar
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protein atoms (N and 0) within a cutoff of 3.5 A. We found that the average value
for the orientational order parameter in bulk TIP3P is 0.55. As shown in Figure
3.7b, the orientational order parameter decreases to values between 0.33 and
0.4 at small separation between the protein surfaces. This was the case for all
three systems when we did not consider protein atoms for the analysis.
However, when we took into account the nearby polar protein atoms that are
potential H-bond donors and acceptors the decrease in the orientational order
parameter stops at values of about 0.5. For the CC-CC system the orientational
order parameter is even almost constant. We observed the relatively strongest
decrease in this modified orientational order parameter for the BN-BS pair
(Figure 7b, open circles). The small overall decrease in the orientational order
parameter when considering the protein atoms compared to the analysis that
only considered neighboring water molecules manifests that most water
molecules that are in the vicinity of polar interfaces form hydrogen bonds with
the protein atoms as expected.

The small decrease in the orientational order parameter for interfacial water
appears to be somehow connected with the increase in density, especially for the
BN-BS pair (see Figure 3.8). Structural order decrease with increasing density at
constant temperature was previously reported. Errington et al[84] and Yan et
al[99] increased the density of water upon compression and observed a
decrease in structural order. Another way of looking at this is to consider the
electric field created by the confining proteins. The effects of electric fields on
water are well documented and are manifold; bending or breaking of hydrogen
bonds due to reorientation, phase transition[100], lowering of the dielectric
constant[48, 101], etc. have been reported. At small separations the effect of an
exerted electric field on the interfacial water molecules is stronger compared to
large separations. This is the case because there are only few water molecules in
the interfacial gap that can generate a counteracting electric field. The water
molecules therefore align with the exerted electric field and do not have enough
orientational freedom to rotate into a proper orientation for forming tetrahedral

structure.
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Figure 3.8. Interfacial density vs. orientational order parameter (the polar O and N
atoms of the proteins are included) for all three systems.

3.5. Conclusion
In this chapter, we addressed the association of hydrophilic proteins and the

role of water using extensive molecular dynamics simulations. This was done on
the example of three well studied complexes; Barnase-Barstar (BN-BS),
Cytochrome ¢ - Cytochrome ¢ peroxidase (CC-CC) and the complex of the N-
terminal domain of enzyme I with Histidine-containing Phosphocarrier (EIN-
HPr). We found that the one-dimensional free energy surfaces of association are
downhill or in other words barrierless. However, we note that free energy
profiles depend on the reaction coordinate and, therefore, our results do not
show conclusively that the real binding paths are barrierless. Using the obtained
potential of mean force (PMF) curves along the association path; the standard
free energies of binding were computed to be in reasonable to very good
agreement with their experimental correspondents. Second, we focused on the
role of water in the protein-protein association. Decomposing the standard free
energy of binding revealed that the favorable electrostatic and Lennard Jones
interactions between the protein pairs render the solvent-induced interactions
repulsive. Analysis of the water localized between the two proteins showed that
the orientational order parameter of confined water deviates to a small degree

but noticeably from bulk values, especially at close separations of the confining
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proteins. The water at the interfacial gap is found to be more dense compared to
bulk water at close separations of the complex partners. This study showed that
different hydrophilic protein-protein interfaces seem to bind according to
similar physico-chemical principles. Atomistic MD simulations in explicit solvent
proved to be a reliable method to investigate overall principles as well as fine

details of such binding processes.
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4. How hydrophilic proteins form non-
specific complexes

4.1. Summary
In the crowded environment of living cells, proteins frequently encounter other

proteins in many possible orientations. Most of these contacts are short-lived
because the physico-chemical properties of the two binding patches do not
match. However, even for protein pairs that are known to bind tightly, it is by no
means an easy task for a protein to find the correct binding site on its partner
and align with it to form specific complex. So far the source of interaction
specificity that favors a small set of specific "native" interactions over the
multitude of alternative orientations is not well understood. As a first step in this
direction, we studied in this chapter nonspecific complexes formed by
Barnase—-Barstar, cytochrome c-cytochrome c peroxidase, and the N-terminal
domain of enzyme I- histidine-containing phosphocarrier. Our aim was to
characterize structural and energetic aspects of the nonspecific complexes and
compare to the native specific complexes. First we employed a set of unbiased
MD simulations to obtain two different nonspecific complexes for each system.
The chosen nonspecific complexes were analyzed in terms of their interface
properties and binding energetics. The one-dimensional free energy profiles of
the nonspecific complexes were found to be downhill. Using these one-
dimensional free energy profiles, the computed standard free energies of binding
are compared to the free energy binding of the correspondent specific complex.
Moreover, the characteristic of water confined between two protein partners

was studied by means of density and orientational order parameter.

4.2. Introduction
One striking characteristics of living cells is that they are crowded by a large

amount of proteins, often in the range of 17% and 35% by weight[102]. The
large number of proteins together with their large size dramatically reduces the

volume available to proteins to move around the cell interior[103]. Therefore,
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many proteins collide and interact at every instance in time. The majority of
these interactions exhibit very short lifetime and are insignificant, but some of
them lead to formation of biologically functional assemblies through specific
recognition. It would be quite detrimental for cells if the functionally important
protein encounters would be seriously affected in crowded environments. Thus,
there must exist an exquisite fine-tuning of the lifetimes of specific versus
nonspecific encounters. So far the source of interaction specificity that favors a
small set of interactions over the multitude of possibilities is not well

understood.

In the crowded environment of the cell, many possible orientations are available
to interacting proteins when they approach each other. It is by no means an easy
task for a protein to find the correct binding site on its partner and align with its
own binding site to achieve the specific interactions. Kinetic and theoretical
considerations suggest that the probability of forming a specific complex can be
increased by two mechanisms[104]. The first mechanism is known as reduction
in dimensionality. An interaction force keeps the proteins in proximity for a
prolonged time as well as in a preferred orientation, allowing a more extensive
search of the surface of the partner protein by translational and rotational
movements. Nonspecific binding of DNA to proteins is one of the well-known
examples[105]. The second mechanism applies only to proteins with a charge
dipole. For instance, in the complex of cytochrome c and cytochrome c
peroxidase, the search for the binding site is limited by dipolar preorientation of
the proteins upon their approach[104]. Thus, this mechanism like the first
mechanism leads to a dramatic reduction in the area to be searched prior to any

contact formation between the partner proteins.

In chapter 3, taking three well-studied protein-protein complexes as model
systems, we studied the association of hydrophilic protein—protein pairs and the
role of water[106] by atomistic molecular dynamics simulations in explicit
solvent and by umbrella potential simulations. The studied complexes were
Barnase-Barstar (BN-BS), cytochrome c-cytochrome c peroxidase (CC-CCP), and

the N-terminal domain of enzyme I[- histidine-containing phosphocarrier
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(EIN-HPr). In this chapter, using similar analysis methods we studied
nonspecific complexes formed by the same proteins. Here, our aim is to obtain
information about both structural and energetic aspects of the nonspecific

complexes and reveal how they differ from their specific counterparts.

The association of the BN-BS pair was addressed extensively in previous studies
using, for example, Brownian dynamics (BD) and molecular dynamics (MD)
simulations[50-53, 107]. Site-directed mutagenesis[108] analysis and BD
simulations[52, 109] of BN-BS system suggest that perturbations in charge
distribution outside the native binding surface can modulate the association rate.
This reveals the importance of nonspecific interactions in specific complex

formation.

Utilizing BD simulations, Northrup et al.[55] studied the diffusional association
of the CC-CCP pair. Their findings revealed that favorable electrostatic
interactions facilitate long-lived nonspecific encounters that, afterwards, convert
to the reactive specific complex. Later on, using paramagnetic NMR
spectroscopy, Volkov et al.[110] delineated the conformational space explored
by the proteins CC and CCP. They found that the dominant orientation of the
protein complex in solution is the same as that observed in the crystal structure.
According to their estimation the proteins spend >70% of the lifetime of the
complex in the dominant orientation, with the rest of the time spent in dynamic

encounter state.

The complex between EIN and HPr has become popular among the researchers
who study nonspecific binding. Tang et al.[58] have characterized the
nonspecific encounters between EIN and HPr. They demonstrated that even a
brief, imperfect collision can mediate the formation of specific complex. Using
the paramagnetic relaxation enhancement (PRE) technique, the authors
monitored transient nonspecific encounters and mapped their distribution to
particular protein surfaces. They proposed that once a nonspecific encounter
occurs, HPr can then explore the surface of EIN to find a specific binding pocket.
In this way, even protein surfaces not involved directly in the specific binding

interface facilitate the assembly of the functional complex. Using data from PRE
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and replica exchange simulations, Hummer and co-workers [58] studied the
transient encounter complexes in the EIN-HPr association. They reported that, in
addition to the specific complex, distinct nonspecific complexes exist as well that
account for ~10% of relative population. They pointed out that besides
accelerating the binding kinetics by enhancing the rate of success of random
diffusional encounters, nonspecific complexes also play a role in protein function

as alternative binding modes.

Here, we present the findings from molecular dynamics simulations of
nonspecific complexes formed by the proteins of the three systems mentioned
above. First we employed a set of unbiased MD simulations to obtain nonspecific
complexes. Then we applied a pre-filter to the formed complexes and selected
two nonspecific complexes from each system for further analysis, namely the one
with the largest contact interface and the one with the longest lifetime. The one-
dimensional free energy profiles of the nonspecific complexes were found to be
downhill. Using these one-dimensional free energy profiles, the computed
standard free energies of binding are compared to the free energy binding of the
correspondent specific complex. Moreover, the characteristic of water confined
between two protein partners was studied by means of density and orientational

order parameter.

4.3. Materials and Methods

4.3.1. Parameterization of Proteins

In this chapter, we conducted three different sets of molecular dynamics
simulations for the three protein-protein complexes in explicit solvent. The set-
up of the systems and the simulation parameters are identical to those described
in chapter 3. In brief, the coordinates for the specific protein-protein complexes
were retrieved from the protein databank[59]: Barnase-Barstar (PDB ID:
1BRS[49]), Cytochrome c - cytochrome c peroxidase (PDB ID: 2PCC[54]) and the
amino terminal domain of enzyme I and the Histidine-containing Phosphocarrier
protein (PDB ID: 3EZB[57]).

The titration states of titratable amino acids were assigned at physiological pH

using the program PROPKA (http://nbcr-222.ucsd.edu/pdb2pqgr_1.8/)[60]. All
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water molecules in the crystal structure were retained and the placement of
additional water molecules in internal protein cavities was tested using the
program DOWSER[61] and keeping only those with DOWSER energy below -12
kcal/mol. The Amber force field FF99SB-ILDN[62] was used to model the
interactions. Short-range non-bonded interactions were cut off at 1.2 nm
distance. Long range electrostatic interactions were treated by the particle mesh
Ewald (PME)[63] method. Dispersion correction was applied to energy and
pressure. Periodic boundary conditions were applied in all directions. To model
the water molecules the TIP3P[64] potential was employed that is typically used
together with the AMBER force field. Heme parameters for Cytochrome ¢ and
Cytochrome c¢ peroxidase were the same as in chapter 3, see also [106]. All

simulations were performed by the GROMACS package, version 4.5.4[65].

4.3.2. Molecular Dynamics Simulations

The first set of simulations consisted of plain molecular dynamics simulations
starting with a pair of unbound proteins to obtain the nonspecific complexes.
The initial configurations for this set of simulations were generated by displacing
one of the proteins to an interfacial distance of 1.0 nm and rotating it by 90¢,
180° and 270° about the x or y axes (see Table 4.1). The interfacial distance was
increased when there were clashes after the rotation. For each system, therefore,
7 independent molecular dynamics simulations were conducted including the
unrotated configuration. Each simulation was repeated once after assigning
different random initial velocities. Therefore for each system 14 simulations
were conducted. We also carried out 100 ns-long MD simulations of specific

complexes to characterize the behavior of interfacial residues along time.

Each initial configuration was placed in a cubic box of TIP3P water. To mimic
physiological conditions 100 mM NaCl was added, including neutralizing
counterions. Following an initial energy minimization of 1000 steps of steepest
descent, each system was equilibrated in two steps where the heavy atoms of the
proteins were restrained. The first step involved 100 ps of MD in the NVT
ensemble, maintaining the temperature at 310 K. Protein and nonprotein atoms

were coupled separately to temperature baths using Berendsen’s weak coupling
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algorithm[70]. Subsequently, 100 ps of NPT equilibration were performed,
keeping the pressure at 1 bar also using Berendsen’s weak coupling method[70].
During data collection, the Nose-Hoover thermostat[72].[73] was combined with
the Parrrinello-Rahman barostat[74] to regulate temperature and pressure,
respectively. Data collection was completed by 100 ns of conventional MD

simulation in the absence of any restraints.

4.3.3. Nonspecific Complex Definition

The nonspecific complex definition used here is arbitrary and employed for
practical purposes. We analyzed the 100 ns-long MD simulation trajectories
using visual inspection to separate those we observed any single binding event
in. Afterwards, we assessed the observed binding events in these trajectories
whether these events resulted in nonspecific complexes based on the criteria
that we set. We defined a complex as nonspecific based on three main criteria; 1)
it should last at least 20 ns, 2) each protein should contribute to the interface
with at least 10 residues, each with equal or larger than 80% occurrence
frequency as interface residue in consecutive snapshots, 3) The resulted complex
should not be native like. The occurrence frequency cut-off was determined by
monitoring the interface residues of the specific complexes along 100 ns-long
plain MD simulations. We found that, at least 80% of the interface residues
maintain the contacts with the interface residues of the partner protein in the
specific complexes throughout the simulations. We defined a residue as interface
residue when it has at least a single heavy atom within 0.5 A distance to the
partner protein.

For each system, two nonspecific complexes that bear either the longest lifetime
or the largest area of the contact interface compared to the rest were selected for
further analysis. For each nonspecific complex, the coordinates from the first
snapshot of the 20 ns or longer lifetime were taken as initial coordinates for
umbrella sampling simulations and for the simulations of water localized

between two proteins.
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Table 4.1. List of the initial simulations performed to obtain nonspecific complexes. We
refer to the nonspecific complexes (NSC) based on their initial configuration and
whether they monitored in run 1 or run 2. For instance, NSC-r1-y3 is observed in the
first simulation (run1) of the initial configuration y3.

Simulations | Run | Distance (A) | Rotation axis | Rotation (°)
rl-x1 1 10 - -
r1-x2 1 152 X 90
r1-x3 1 10 X 180
r1-x4 1 200 X 270
rl-y2 1 10 y 90
rl-y3 1 10 y 180
rl-y4 1 10 y 270
r2-x1 2 10 - -
r2-x2 2 152 X 90
r2-x3 2 10 X 180
r2-x4 2 200 X 270
r2-y2 2 10 y 90
r2-y3 2 10 y 180
r2-y4 2 10 y 270

a-b) For the EIN-HPr system the distance is increased to 15/20 A due to steric clashes.

4.4. Results and Discussion

4.4.1. Interfacial characteristics of Nonspecific Complexes

In this work we studied the association/dissociation of nonspecific complexes
formed between Barnase and Barstar, cytochrome c and cytochrome c
peroxidase and between the N-terminal domain of enzyme I and histidine-
containing phosphocarrier. The initial structures of the nonspecific complexes
were obtained using unbiased molecular dynamic simulations as explained in the
methods section. Out of 14 runs of 100 ns duration for each protein pair, we
observed binding in 11, 7 and 13 MD simulations of the BN-BS, CC-CCP and EIN-

HPr systems, respectively. Especially the MD simulations that were indicated by
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x1 resulted in assemblies that resemble the native complexes. However, 100 ns
was not sufficient to observe complexes that differ by less than a few A from the
crystal structure of the correspondent specific complex in RMSD. Out of the
complexes formed during the simulations, we considered 4 complexes of the BN-
BS, 2 complexes of the CC-CCP and 5 complexes of the EIN-HPr systems as
“different enough” from the specific complex (see methods section) so that these
conformations likely represent non-specific complexes. For each system 2
nonspecific complexes were selected based on lifetime and the area of the
binding interface for further analysis. Figure 4.1 shows the selected nonspecific
complexes (shown in blue-orange and blue-silver) together with the specific
complexes (blue-red). The larger component of each pair (BN, CCP and EIN are
represented with blue) was utilized to superimpose the complexes formed by
this pair. As seen in the figure, the nonspecific complexes differ substantially
from their specific correspondents in respect of orientation and the protein

surfaces involved in binding.
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BN-BS

CC-CCP

NSC-r2-y2

Figure 4.1. Cartoon representation of the nonspecific complexes chosen for further
analysis together with their specific correspondents. The larger component of each pair
(BN, CCP and EIN are shown with blue) was utilized to superimpose the specific and two
nonspecific complexes. The small component (BS, CC and HPr) in specific complex is
shown with red and in the nonspecific complexes are shown with orange and silver.

64



Table 4.2 lists general and interface characteristics of the nonspecific complexes
formed. As seen in this table, the areas of contact interface of the nonspecific
complexes are smaller than the area of the binding interface of the native
complex. This is true for all three systems. For instance, for the BN-BS system the
areas of the binding interface of the nonspecific complexes are 478 A% and 541
A% These values are smaller than the area of the binding interface of the specific
complex, which is 763.0 A2, For the EIN-HPr pair, the contact interface areas of
the nonspecific complexes are 470 A% and 662 A2, which is significantly smaller
than the area of the binding interface of the specific complex (960 A%). Whether
specific or nonspecific, the complexes formed by the CC-CCP pair bear the
smallest areas of binding interface, namely 552 AZ for the specific, 370 A% and
443 A? for the nonspecific complexes. The number of interface residues given in
Table 4.1 is defined based on occurrence along the trajectory, whereas the area
of the binding interface is computed from a single snapshot that was defined as
starting structure for the correspondent nonspecific complex. Hence, the area of
binding interface comes to the forefront that might be useful for differentiating
specific from nonspecific complexes. In relation to this, Hummer and colleagues
reported that the area of binding interface of nonspecific complexes constitute

65% of that of the correspondent specific complex[58].

The number of H-bonds and salt-bridges across the binding interfaces differ
substantially among the systems. For the BN-BS system, the number of these
interactions is substantially lower compared to the specific complex (14 H-bonds
and 12 salt-bridges). However in the CC-CCP NSC-r2-y2 complex, the number of
H-bonds and salt-bridges exceeds the number of these interactions in the specific
complex (4 H-bonds and 2 salt-bridges). All interfaces in nonspecific complexes
bear non-zero overall charges except the BN interface in the NSC-r1-r2 complex,
because it bears two positively and two negatively charged residues. This
indicates the importance of electrostatic interactions, which were reported to be

important in nonspecific binding before[58, 104, 111].
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Table 4.2. Some global and interface properties of the nonspecific complexes. The
number of interface residues calculated from trajectories based on a distance and a
frequency of occurrence cut-offs. The interface area, the number of H-bonds and salt-
bridges across the interfaces were calculated using the PDBe Pisa database
(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) using a single frame.

Area of No. of H- No. of salt- | Total
No. of
Lifetime | binding bonds bridges charge of
Complex interface
[ns] interface across across interface I:
. residues
(A?) interface interface I [e]
Native 763 16:14 14 12 +3:-4
NSC-r1-x4 20 ns 392 10:11 3 0 0:-2
%]
; NSC-r1-y2 92+ns | 478 15:14 1 2 0:-3
& NSC-r1-y3 31 ns 472 11:15 4 3 0:-5
NSC-r1-y4 50 ns 541 11:11 1 2 +2:-3
Native 552 13:10 4 2 +5:-2
[a )
S [ NSCri-y4 27 ns | 370 10:10 4 3 1+l
&)
© NSC-r2-y2 51+ ns 443 11:10 6 6 -2:+4
Native 1002 33:24 6 5 -5:+4
NSC-r1-y3 92+ ns 470 15:13 3 5 -3:42
a:‘: NSC-r1-y4 73+ns | 408 13:12 1 0 +1:+1
Z | NSC-r2-x3 50 ns | 446 13:12 8 6 1:+3
[Sa]
NSC-r2-y2 77+ ns 662 17 :16 3 2 -2:43
NSC-r2-y3 45+ ns 471 10:12 8 5 -3:0

4.4.2. One Dimensional Free Energy Profile of Nonspecific complexes

By combining umbrella sampling simulations with the Weighted Histogram
Analysis Method (WHAM) we obtained the one dimensional free energy profile
for the association of the nonspecific complexes as for the specific complexes
described in chapter 3. As reaction coordinate we used the center of mass
distance between the two proteins. Figure 4.2 depicts the PMF curves of the
nonspecific complexes using full-length windows. Even though the values change
among the PMF curves, the PMF curves exhibit similar behavior, which is not
surprising for the chosen reaction coordinate. Among all nonspecific complexes,
the profiles for BN-BS NSC-r1-y2 (Figure 4.1a, blue) and CC-CCP NSC-r1-y4

(Figure 4.1b, blue) converge at 1.0 nm physical separation; therefore they have
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the sharpest PMF curves. The PMF curves of the other two nonspecific complexes
of these systems converge beyond 1.2 nm physical separation. These distances
are shorter than the physical separations that were reported before for
correspondent specific complexes[106]. For the EIN-HPr system the picture is
somewhat different. For this system, convergence occurs beyond physical
separations of 1.4 (NSC-r1-y3) nm and 1.5 nm (NSC-r2-y2), what is comparable

to those that we reported before for the specific complexes [106].
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Figure 4.2. Potential of mean force of the nonspecific complexes. a) Barnase: Barstar. b)
Cytochrome c: Cytochrome c peroxidase c) N-terminal domain of enzyme I: Histidine-
containing Phosphocarrier. The plain line that is parallel to the y-axis represents the
cutoff that separates the bound region from the unbound region. The dashed line left of
it marks the position of the bound state.

67



To obtain insight into the energetic contributions that lead to these PMF profiles,
we analyzed the components of the nonbonded interaction terms (see Figure
4.3). For this we divided the reaction coordinate into bins and recorded the
average energies inside each bin. The separation distances where the PMFs start
to flatten coincide with the distance where the direct Lennard-Jones (LJ])
interactions between the proteins almost vanish along the reaction coordinate.
However, the electrostatic interactions are still very strong at these separations
(see Figure 4.3). Since both proteins carry nonzero net electric charges, the
direct interactions are overwhelmingly large compared to the corresponding
PMF values along the reaction coordinate. Except for the EIN-HPr system at
larger distances, the direct integrations are always favorable. For the EIN-HPr
complexes, the direct interactions between the proteins are dominated by
charge-charge repulsion at large distances. Although the PMF curves are
relatively smooth, the correspondent direct interaction curves have
irregularities. The observed bumps and dips in the electrostatic energy along the
dissociation path are due to protein rotations and reveal the pronounced dipolar
character of the proteins. Due to the compensation of these effects by respective
protein-solvent interactions the strong changes in the electrostatic interactions
along the reaction coordinate do not lead to bumps and dips in the

corresponding PMF values.

For the association of Bn and BS; previous Brownian dynamics simulations[51,
109] as well as unbiased MD simulations[48] provide good evidence that an
approach perpendicular to the protein surface is energetically preferred. For the
CC:CYP pair, this appears plausible as well given the strong electrostatic

complementarity and the clearly preferred native complex[56].
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Figure 4.3. Direct interactions between the two proteins calculated from umbrella
sampling simulation windows along the COM distance. Barnase: Barstar (upper panel),
Cytochrome c: Cytochrome c peroxidase (middle panel) and N-terminal domain of
enzyme [: Histidine-containing Phosphocarrier (lower panel).

4.4.3. Standard Free Energy of Nonspecific Binding

Based on the PMF values given in Figure 4.2, we computed the standard free
energies of binding for the nonspecific complexes, as explained in chapter 3. The
results are provided in Table 4.3 together with the experimental values for
specific binding. The cutoff between bound and unbound regions was set to the
value of the reaction coordinate where the PMF becomes constant within some
error interval. In Figure 4.2, the cutoff distances are marked as dashed lines
parallel to the y-axis. The standard energy of binding for the six nonspecific
complexes varies between -3.7 kcal/mol and -7.1 kcal/mol. As expected, the
standard free energies of binding computed here for nonspecific complexes are
less favorable than the values computed previously for the corresponding
specific complexes[106] and the experimental values. The BN-BS system gave
the largest difference in binding free energies for specific and nonspecific

complexes. The reported experimental value for the BN-BS specific complex is
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19.0 kcal/mol, while the computed free energies of binding for the nonspecific
complexes studied here are -3.72 kcal/mol and -3.50 kcal/mol. As discussed
before, the binding interface area of the specific complex is larger than that of the
nonspecific complexes for the BN-BS pair. The interface property that differs
most noticeably between specific and nonspecific complexes is the number of H-
bonds and salt bridges formed across the interface. The strength of the direct
interactions between proteins might be another explanation for the dramatic
difference in the binding free energies for specific and nonspecific complexes of
this pair. Despite bearing the smallest areas of the contact interfaces, CC-CCP
nonspecific complexes do not have the least favorable standard energies of
binding. They are -8.8 kcal/mol for the specific, -4.8 kcal/mol and -6.0 kcal/mol
for the nonspecific complexes. This can be attributed to the considerable number
of H-bonds and salt-bridges across the interface and the relatively strong
electrostatic interactions between the partner proteins. The nonspecific complex
EIN-HPr NSC-r2-y2 has the most favorable standard free energy of binding
among all complexes and this value is close to the standard free energy of
binding of the specific complex. The area of the contact interface of this
nonspecific complex (662 A%?) is the most prominent interface property.
Considering that both proteins are negatively charged, the direct interaction
energy between the proteins is quite favorable for this complex, which is
comparable to the direct interaction energy calculated for the specific

complex[106].

AGpyr contributes the most to the standard free energy of binding since it
accounts for all direct interactions, solvent contributions, rotational and
translational entropies of the proteins. The rescaling term 4G, mainly accounts

for translational entropy. The terms 4G, 554 4Gr do not differ substantially

among complexes. Therefore it is AGpy that determines the trend among the

standard free energies of binding.
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Table 4.3. Standard free energies of binding for the nonspecific complexes. The
experimental values 4Gy, are based on the binding constants given in [ref]. The
calculated values; AGpyfr AG, and AGp stand for the free energy change of binding
between the bound and unbound regions of the PMF, the free energy change from the
unbound volume to the standard state volume and the free energy change to remove the
orthogonal restraints, respectively.

AG kcal Ac kcal AG kcal 4G° kcal AGO kcal
PMF (mol) v(mol) R(mol) (mol) exp mol)
NSC-r1-y2 -5.10 2.42 -1.04 -3.72
BN-BS
NSC-r1-y4 -4.77 2.41 -1.14 -3.50 -19.6
Specific -14.2 2.5 -0.9 -12.6
NSC-r1-y4 -7.39 2.35 -0.96 -6.00
CC-CC
NSC-r2-y2 -6.06 2.43 -1.17 -4.80 -8.8
Specific -10.6 2.5 -1.2 -9.3
NSC-r1-y3 -6.53 2.59 -1.47 -5.41
EIN-HPr | NSC-r2-y2 -8.57 2.59 -1.12 -7.10 -7.8
Specific -9.9 2.5 -0.9 -8.3

As evident from our discussion above, it is difficult to connect the standard free
energies of binding and the characteristics of binding interfaces. It is even more
difficult to draw a conclusion on what really differs between specific and
nonspecific complexes that is common for all pairs. The most obvious result is
that nonspecific complexes have less favorable free energies of binding than the

native complexes, which is not surprising.

4.4.4. Factors Determining Binding Affinity

Recently, based on a formula suggested by Ben-Naim[45] we assessed the
determinants of binding affinity for specific complexes. According to this formula
the binding affinity is decomposed into three terms:
AG® = AGy_g + AU + 6G

where AGy_gis the rotational and translational entropy contribution to the
binding affinity (AG?), AU is the energy change for bringing the protein partners
from infinite separation to the final configuration in vacuum and &G is the
solvent-induced contribution to the free energy of binding. Table 4.4 lists the
energetic and entropic factors determining the binding affinity based on the

above formula. The term AG;_y is calculated as the sum of translational and
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rot

rotational entropy terms —TAS!" and —TAS]°%, which were predicted using SF
approach[78]. The contributions due to the loss of translational and rotational
entropies vary between 2.44 - 2.51 kcal/mol and 4.80 - 4.90 kcal/mol,
respectively. That gives an overall free energy change (AG;_g) of ~7.3 kcal/mol,
which compares very well to the entropic contributions calculated for the
specific complexes[106]. The SF approach assumes that in bound state the ligand
does not have orientational nor cratic entropies. However, even in very tight
complexes, the ligand/protein bears some degree of freedom with respect to its
partner. Therefore the SF method overestimates the entropic contribution,
AGr_g. The reason why the entropy loss is almost the same for specific and
nonspecific complexes formed by a protein pair might stem from the neglect of
the orientational entropy in the bound state, considering that the unbound state
is the same for all complexes formed by this protein pair. However, we find it
remarkable that the entropy loss is very close for the complexes formed by

different systems.

Table 4.4. The solvent-induced contribution (§G) to the standard free energy of binding
was derived as the difference of the computed AG, and the direct interactions AU
value. ASf" and AS]°' are translational and rotational entropy changes upon
complexation based on the SF approach. AGy_g is the sum of the two entropic terms
—TASE" and —TAS]°%, where T stands for the temperature.

AG® (%) AU(kC—le) —TASL”(%) —TAS[“(%) T-R (%) oG (%)
BN-BS -r1-y2 372 244.37 244 4.85 7.29 23336
BN-BS -r1-y4 350 394.47 2.46 4.83 7.29 383.68
CC-CC rl-y4 -6.00 663.26 2.48 4.90 7.38 649.88
CC-CC r2-y2 -4.80 73746 2.45 4.89 734 72532
EIN-HPrr1-y3 |  -541 489.40 2.53 4.82 7.35 476.74
EIN-HPr12-y2 | -7.10 690.62 2.51 4.80 7.31 676.21

AU is simply calculated as the difference between the minimum value in the
bound region and the maximum value in the unbound region. As seen in Table
4.4, the direct interactions energies are favorable and very strong for all six
nonspecific complexes. However, these values are smaller than the values that

were computed for their specific correspondents[106]. The solvent-induced
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interactions counteract the large and favorable total direct interactions and are
repulsive overall. We addressed this issue whether the solvent-induced
interactions are attractive or repulsive for the specific complexes before[106].
The sign and strength of the solvent-induced interactions are mainly determined
by the direct interactions between proteins. Therefore the solvent-induced
interactions for nonspecific complexes are smaller than the values computed for

their specific correspondents[106].

Irrespective of whether the native or a nonspecific contact is formed, the
unbound state is unique for the complexes formed by a protein pair. What differs
among them is the bound state. Assuming that the systems were sampled
sufficiently, the values that are given in Table 4.4 for a protein pair are
determined by the bound state. For instance which part of the protein surfaces
are exposed to solvent and which parts are deprived from building interactions
to solvent plays an important role in the strength of the solvent-induced
interactions. Analogously, the direct interactions are dependent on the
orientation of binding partners with respect to each other in the complex, as well

as the characteristics of the surfaces of the proteins involved in binding.

Above we address the determinants of binding affinity based on the formula
proposed by Ben-Naim. Our findings suggest that it is the direct interactions
between binding partners that favors the formation of nonspecific complexes
studied here. The other factors oppose the overwhelmingly strong direct
interactions keeping in mind that we did not assess the role of vibrational
entropy in binding. Since the entropic contributions are almost the same, it is
the balance between direct interactions and the solvent-induced interactions
that determines the binding affinity, which is the main difference between

nonspecific complexes and their specific correspondents.

4.4.5. Characteristics of Interfacial Water

In our third set of MD simulations we aimed at assessing the characteristics of
interfacial water confined between two proteins. It was shown previously that
confining surfaces can exert profound influence on the structure and dynamics of

water[97, 98]. Here, we quantified the influence of protein surfaces involved in
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binding on the properties of interfacial water by means of density and
tetrahedral order parameter. Figure 4.4 shows the interfacial water density
along the interfacial distance for all nonspecific complexes. Beyond separation
distances of a few nanometers the interfacial water density is bulk like. However,
at close separations the water density changes slightly except for the BS-BS-r1-
y2 and CC-CCP-r1-y2 nonspecific complexes. For these two nonspecific
complexes, even at close separations the interfacial water density is bulk like
(0.98 g/cm? for the TIP3P water model). We only observed slight dewetting for
EIN-HPr-r2-y2 complex at very close distances, for which the interfacial water
density drops to 0.95 g/cm3. For the remaining three nonspecific complexes the
interfacial water density increases slightly above 1.0 g/cm3. We should
emphasize that, since we did not observe a pronounced expulsion of water from
the interfaces, the hydrophobic effect has no role in the formation of these
nonspecific complexes. This is not surprising considering that all binding

interfaces studied here are hydrophilic.
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Figure 4.4. Density of the interfacial water for the nonspecific complexes. Barnase:

Barstar (upper panel, blue), Cytochrome c: Cytochrome c peroxidase (middle panel,

green) and N-terminal domain of enzyme I: Histidine-containing Phosphocarrier (lower
panel, red).
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We also computed the orientational order parameter g, in order to quantify the
local structure of the interfacial water. The average value of q for a collection of
molecules varies between 0 (random network) to 1(tetrahedral network). When
calculating the orientational order parameter, the nearby polar protein atoms (O
and N) within 3.5 A as well as water oxygen atoms were considered as potential
neighbors. The average value of the orientational order parameter for bulk
TIP3P is ~0.55. As shown in Figure 4.5, the orientational order parameter
decreases slightly only at close separation distances for all nonspecific
complexes. Like the density, it reaches the bulk value beyond separation
distances of a few nanometers. A similar behavior was reported by us for the
specific complexes (chapter 3 and [106]). Quantifying the water characteristics
by means of density and orientational order parameter revealed no real
difference in water quality at nonspecific interfaces studied here compared to
the specific interfaces studied before.[106] However this might be expected
given the fact that whether specific or nonspecific, the studied interfaces are

hydrophilic and bear similar physico-chemical characteristics.
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Figure 4.5. Orientational order parameter for the nonspecific complexes. Barnase:
Barstar (upper panel, blue), Cytochrome c: Cytochrome c peroxidase (middle panel,
green) and N-terminal domain of enzyme I: Histidine-containing Phosphocarrier (lower
panel, red).
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4.5. Conclusion
In this chapter, we presented the findings from molecular dynamics simulations

of nonspecific complexes formed by three protein pairs. The studied pairs were
Barnase-Barstar (BN-BS), Cytochrome ¢ - Cytochrome ¢ peroxidase (CC-CC) and
the complex of the N-terminal domain of enzyme I with Histidine-containing
Phosphocarrier (EIN-HPr). Analysis of the interface characteristic of the
nonspecific complexes to the correspondent specific interfaces showed that the
area of binding interface of the nonspecific complexes is noticeably smaller than
the area of binding interface of the native complexes. The one-dimensional free
energy profiles of association were found to be downhill or, in other words,
barrierless. Using the obtained potential of mean force (PMF) curves along the
association path, the standard free energies of binding were computed and

compared to the specific correspondents.

Decomposing the standard free energy of binding revealed that it is mainly the
direct interactions, both the electrostatic and Lennard Jones interactions that
favor the nonspecific protein-protein association. The other factors, namely the
entropy of binding and the solvent-induced interactions, oppose the very strong
direct interactions. This behavior is the same as what was reported for the
specific complexes before. This is not surprising, given the fact that the
nonspecific complexes studied here have hydrophilic interfaces and have similar

physico-chemical interface properties with the specific complexes.

Analysis of the interfacial water showed that the orientational order parameter
of confined water deviate to a small degree but noticeably from bulk values,
especially at close separations of the confining proteins. The water at the
interfacial gap is found to be more dense compared to bulk water at close
separations for some complexes. Even though we observed slight dewetting for
one of the nonspecific complexes, the values were within the standard deviation.
Therefore we did not monitor a prominent expulsion of water from the
interfaces, which is expected considering the residue composition of the

interfaces.

We found that specific and nonspecific binding are governed by similar physico-
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chemical principles. It might be interesting to study nonspecific complexes that

have different interface characteristics than their native correspondents.
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5. Quantifying Allosteric Effects

5.1. Summary
Phosphoinostide-dependent kinase-1 (PDK1) is an important protein kinase in

insulin and growth factor signaling. PDK1 has an allosteric site termed PIF-
pocket, which is located at the N-terminal lobe of the kinase domain. In order to
become fully activated, PDK1 docks the phosphorylated conserved hydrophobic
motif of substrate kinases at PIP-pocket. Several allosteric allosteric activators of
PDK1 have been developed in past years. In order to quantify the allosteric
effect, we computed the allosteric coupling energy between the ATP binding
pocket and the PIF-pocket of PDK1 as the difference of the binding free energies
that were computed in the presence and absence of the allosteric modulator
PS182. For this, we designed a thermodynamic cycle. Then, we carried out
alchemical free energy perturbation simulations to compute the standard
binding free energies utilizing different methods. We found that, the main
contribution to the allosteric coupling energy comes from the electrostatic
interactions, for the studied system. The contribution due to Lennard-Jones
interactions did not change notably based on the method used. We also assessed
the role of the initial structures used for the free energy perturbation

calculations.

5.2. Introduction
Allostery is a universal phenomenon whereby a perturbation by an effector at

one site of the molecule causes a functional change at another site of the
molecule via alteration of its shape and/or dynamics. Complex macromolecules
such as proteins exist in a multitude of closely related interconvertable
conformational states. At any instant, a set of proteins will adopt different
conformations that bear similar free energy. These collections are termed
ensembles. Allostery is a property of these conformational ensembles, as a
perturbation at any site in the structure leads to a shift in the distribution of the
conformational states across the entire population. In other words, allosteric

perturbations regardless of whether they are structural and/or dynamical do not
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create new conformational states; they only change the relative distributions of

the states within the ensemble.

4 R A A
* ¢ - + —— Receptor
R L R
) A > —— Receptor + ligand
)
g
o
‘.l
ok
K/'l aKA _é
e}
R4 al, \
AR = > AR’ : >
N Conformational space of receptor
a b

Figure 5.1. a) Two-state model defines allostery as an equilibrium between two states,
namely R and R*, with the equilibrium constant L and their binding to an allosteric
ligand A . The equilibrium constants for the inactive and active states are
K, = [AR]]/[A][R] and aK, = [AR*]/[A][R*], respectively. Since all states form a closed
thermodynamic circle, the equilibrium constant between AR and AR* is
aL = [AR]/[AR*]. b) Thermodynamic view of allostery. At the bottom of the funnel, the
receptor has two populated states: R (active) and R* (inactive). In the free form (shown
in red), the dominated state is the inactive state. Through binding of the allosteric
ligand, a population shift occurs in favor of the active state, which dominates in the
complex form (shown in green).

Evolution has optimized proteins to populate several switchable states. Each
state corresponds to a local free energy minimum on the free energy surface. If a
triggering event that effectively switches the protein population from one state
to the other is located far away from the active site of the protein, this process is
termed allostery. The simplest but quite practical model for the thermodynamic
view of allostery is the two-state model. As depicted in Figure 5.5, a protein can
populate one of two states: the inactive (R) state and the active state (R*). In the
free form, the distribution of these two states is governed by the equilibrium
constant L = [R*]/[R]. The ligand (A) will prefer one state over the other state
(conformational selection). The association constants for inactive and active
conformations are: K, = [AR]/[A][R] and aK, = [AR*]/[A][R*], respectively.
The binding affinity ratio of ligand A for R* and R defines the allosteric efficacy of
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ligand A: a = aK, /K, = [AR*][R]/[AR]R". The allosteric two-state model offers
allosteric ligands a functional classification through the measured allosteric
intrinsic efficacy, a. A full agonist can reach nearly 100% activity witha > 1. A
partial agonist corresponds to a > 1. A natural antagonist is defined by o = 1,
where the ligand shows no binding preference, in contrast to an inverse agonist
a <1, where the ligand preferentially binds to the inactive state

conformation[112].

Before binding of the allosteric ligand occurs, the relative free energy between
the inactive (R) and active (R*) states is given by AG, = G;(R*) — G,(R). After
binding, the relative free energy between active and inactive states becomes
AG, = G,(R*) — G,(R). The free energy change due to ligand binding, AAG =
AG, — AG,, is equal to RTina [112]. Therefore, the allosteric effect is merely
determined by the allosteric efficacy, a, but not by the absolute binding affinity
of the allosteric ligand. The allosteric efficacy a is also termed cooperativity
factor because it links two structural sites. Here, we should emphasize that
allosteric energy transfers is reciprocal, which can be easily derived from energy
balance or detailed balance conditions[1]. Consequently, the cooperativity factor
a quantifies the effect of an allosteric modulator A4 on the affinity of a protein to
another ligand B. In the same way, it also quantifies the reciprocal effect ligand B

has on the affinity of the protein to allosteric modulator A.

Allosteric effects can be quantified experimentally. For instance, one can
compare the dose-response curves obtained in the presence of varying
concentrations of allosteric modulators to the behavior predicted by quantitative
models[113]. Ricci et al.[114] designed allosteric activators and inhibitors for
artificial biosensors based on a population shift model. Traditional approaches
measure the affinity using a radioligand, i.e. a radioactively marked ligand.
Kostenis and Mohr[115] evaluated the modulation of a receptor, using two-point
kinetic experiments that determine the delay of the dissociation of the
radioligand triggered by allosteric modulation. Homogeneous biochemical
fluorescent assays have also been used to characterize ligand affinity and

dissociation rates in the presence of allosteric modulators[116].
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In this chapter, we used computational tools to quantify the allosteric effect
taking place in the enzyme phosphoinostide-dependent kinase-1 (PDK1). PDK1
is a "master" protein kinase in insulin and growth factor signaling. Phospholipid
secondary messengers trigger the activation of a complex protein kinase
network in which PDK1 is responsible for the activation of many different
protein kinases[117]. In order to be activated, the cytosolic PDK1 substrates first
need to be phosphorylated at a conserved hydrophobic motif at the C-terminus.
This specific sequence binds to the allosteric site on PDK1, termed PIF-pocket
(for PDK1 interacting fragment), that is located at the N-terminal lobe of the
kinase domain [118]. The specific binding event enables PDK1 to become fully
active and phosphorylate the substrate [119]. Engel et al. [120] and Stroba et al.
[121] showed that the PIF-pocket is a druggable site and developed allosteric
modulators of PDK1. Busschots et al. developed two potent compounds (PS182
and PS210) that act as activators of PDK1 and bind to the allosteric PIF-
pocket[122] (see Figure 5.4). Using free energy perturbation calculations, we
computed the affinity of ATP(Mg2+). to PDK1 in the presence and absence of the
allosteric modulator PS182 (see Figure 5.2). ATP(Mg?*): binding shifts the pre-
existing equilibrium between a binding-competent state and a nonbinding state.
In the absence of the allosteric modulator, the binding affinity of ATP(Mg2+)2 to
PDK1 is the intrinsic affinity of ATP(Mg2+)2 to the binding-competent state
(reaction I in figure 5.2). The binding of the allosteric activator stabilizes the
binding-competent state, thus, increases the ATP(Mg2+)2 affinity to PDK1
(reaction II in Figure 5.2). Accordingly, the allosteric coupling energy between
the active site (ATP binding pocket) and the allosteric site (PIF-pocket) of PDK1

can be calculated as the difference of the two binding free energies.
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Figure 5.2. In the absence of the allosteric modulator, the binding affinity of ATP(Mg2+).
to PDK1 (AG?) is the intrinsic affinity of ATP(Mg2+); to the binding-competent state
(upper panel). The binding of the allosteric activator stabilizes the binding-competent
state, thus, increases the ATP(Mg?2+), affinity to PDK1 (lower panel). Accordingly, the
allosteric coupling energy between the active site and the allosteric sites is AAG® =
AGY — AGY.

5.3. Material and Methods

The coordinates for the protein-ligand complexes were retrieved from the
protein databank[59]: PDK1-ATP (PDB ID: 3HRC[123]) and PDK1-ATP-PS182
(PDB ID: 4AWO0 [122]).

5.3.1. Parameterization of the Enzyme

The first amino acid (Arg75) and four consecutive amino acids (residues 233-
236) in the activation loop were not structurally resolved in the 3HRC coordinate
set. In order to complete these missing residues, we superimposed the two
coordinate sets with the pymol program and copied the four amino acids from
4AWO0 to 3HRC. In the same manner, the missing Mg?* ions were added to the
coordinate set 3HRC.

We used the webserver PROPKA (http://nbcr-222.ucsd.edu/pdb2pqr_1.8/)[60]
to assign the titration states of titratable amino acids at physiological pH. All

crystal water molecules were retained and the placement of additional water
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molecules in internal protein cavities was tested using the program
DOWSER[61] and only those with DOWSER energy below -12 kcal/mol were
kept. For all types of interactions the Amber force field FF99SB-ILDN[62] was
used.

In both coordinate sets, the residue Ser241 was mono-phosphorylated. Force
field parameter files for phosphoserine in the Amber format were retrieved from
the website http://www.pharmacy.manchester.ac.uk/bryce/amber. The file was
transferred to Gromacs format using the conversion script amb2gmx[124].

Short range nonbonded interactions were cut off at 1.2 nm distance. For long
range electrostatic interactions the particle mesh Ewald (PME)[63] method was
utilized. Dispersion correction was applied to both energy and pressure. Periodic
boundary conditions were applied in all directions. Water molecules were
modeled by the TIP3P[64] water model. All simulations were performed using

the GROMACS package, version 5.0.1.[65].

5.3.2. Parameterization of the Ligand

Quantum mechanical calculations for the ligand PS182 were started from its
conformation in PDB entry 4AWO0. All QM calculations were performed using
Gaussian03[67]. For derivation of partial atomic charges, we followed the
standardized protocol commonly used in combination with the original AMBER
force fields. The geometry was optimized at HF level using the basis set 6-31G*
without any restraints. Using the optimized geometry, we obtained the molecular
electrostatic potential from the HF/6-31G* electron density of the ligand.
Restricted ESP (RESP) charges[68] were computed using the RESP program
under Amber Tools in two steps. In the first stage, charge equivalency on
chemically equivalent heavy atoms was imposed. In the second stage, the
charges of chemically equivalent hydrogen atoms were equated.

Equilibrium values of the bond lengths, angles and dihedrals of the ligand PS182
were taken directly from the optimized structure. The force constants of missing
parameters were adopted from the General Amber Force Field (GAFF)[125] by

analogy.
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5.3.3. Molecular Dynamics Simulations

In this study, we conducted two different sets of molecular dynamics simulations
in explicit solvent. First, we performed plain molecular dynamic simulations to
obtain equilibrated initial structure for free energy calculations. We conducted
50 ns-long MD simulations for the coordinate set 3hrc, since the missing Mg2*
ions and the activation loop of the coordinate set 3hrc were modeled. The atomic
fluctuations of the two Mg?* ions computed over the last 10 ns of the MD
simulation after superimposing the backbone atoms of the protein were 1.0 and
0.6 A. For the 4aw0 system, the total simulation time with ligand PS182 was 400
ps. For the 4aw0 system, we also carried out a 50 ns-long plain MD simulation of
unbound PDK1 after removing the PS182 compound (We will term this
coordinate set 4awQ!igand-), 4aw(ligand- was meant to be an alternative choice for
3hrc.

We combined alchemical free energy perturbation and the Bennett’s acceptance
ratio method to compute the free energy of ATP together with two Mg? ions
(ATP(Mg2+)2).

In order to generate equilibrated initial structures for the simulations, each
system was placed in a cubic box of TIP3P water. To mimic physiological
conditions 100 mM NaCl was added, including neutralizing counterions. This
resulted in 55 Na* and 56 CI- for the 3hrc and 4aw0'igand- systems, and 53 Na* and
52 CI- for the 4aw0 system. Following an initial energy minimization of 1000
steps of steepest descent, each system was equilibrated in two steps whereby the
heavy atoms of the proteins were restrained using a force constant of 1000 kJ
mol-1 nm-2. The first step involved 200 ps of MD in the NVT ensemble,
maintaining the temperature at 300 K. Solute and solvent atoms were coupled
separately to temperature baths using Berendsen’s weak coupling algorithm[70]
with a coupling time of 0.1 ps. All bonds were constraint using the LINCS
algorithm[71]. Subsequently, 200 ps of NPT equilibration were performed,
keeping the pressure at 1 bar also using Berendsen’s weak coupling method[70]
with a time constant of 1 ps. During data collection, the Langevin integrator was
used for temperature control with a friction coeffient of 1 ps-l. The Parrrinello-
Rahman barostat[74] was used to regulate the pressure. Equilibration was

completed by 50 ns of conventional MD simulation in the absence of any
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restraints. For integrating Newton’s equations of motion, a stochastic leap-frog
algorithm with a time step of 2 fs was used.
The final coordinates at the end of these trajectories were used as starting

configurations for alchemical free energy perturbation calculations.

5.3.4. Alchemical Free Energy Calculation Simulations

We used the Double Decoupling Method (DDM) to compute absolute binding free
energies of a (ATP(Mg?*)2) unit. DDM is based on hypothetical intermediate
states in which the interactions between receptor and ligand are turned off
alchemically[126]. A problem with this method is that to compute an accurate
free energy from the entirely decoupled state to the next-most decoupled state,
the ligand is supposed to explore the entire simulation box. This is not a problem
in the ligand-only state, since without the ligand the solvent box is isotropic. To
overcome this problem with the complex, we attached the decoupled ligand by a
spring to the protein by gradually turning this spring on as the ligand is
decoupled.

We used a spring constant of 4184 k]J/mol.nm? in the fully decoupled state. The
force constant was zero when the Coulombic intermolecular terms are fully on
and was gradually increased throughout the Coulombic decoupling simulations.
The spring is attached on one end at the center of mass of ATP(Mg*2).. The other
end is a dummy point that coincides with the center of mass of the Ca atoms of
the pocket lining residues of the ATP binding pocket. The average distance that
was computed from the last 10 ns of the 50-ns long plain MD simulation was

taken as equilibrium distance.
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Figure 5.3. Graphical representation of the thermodynamic cycle we followed in this
study. The simulations that involve the complex are shown on the right side, whereas
the simulations that involve only the ligand are shown on the left side. Before
decoupling the ligand from the system, restraints are introduced between the ligand and
the protein (top-right corner). Then, the interactions between the ligand and the rest of
the system were decoupled gradually (first the Coulombic then the Lennard-Jones
interactions). The removal of the restraints is carried out analytically. At this point the
ligand comes back to couple with the solvent gradually, which means first the Coulombic
then the Lennard-Jones interactions are turned on. In practice, we performed the
calculations in the opposite direction. This results in the same free energy with the
opposite sign.

Figure 5.3 represents the thermodynamic cycle that we followed, in principle, to
calculate the binding free energy of ATP(Mg*?).. The free energy of binding is the
sum of the free energy change for the complexation of the ligand and receptor
(introduction of the ligand into the binding site) and the free energy of
desolvating the ligand (removing the ligand from the solution). Therefore, the
free energy of binding is equal to AGping = —(AGrest on + AGint complex T+

AGrest_off + AGint_wal:er) where AGresi:_on + AGini:_c:omplex = AGcomplex- Then, the
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free energy of binding becomes AGpinq = —AGcompiex — AGint water — AGrest off-

We performed the calculation steps shown in the cycle for both the PDK1-
ATP(Mg*?)2 complex with and without the allosteric modulator PS182 (reactions
[ and II in Figure 5.2). Since we were interested in computing the difference of
the binding free energies (AAG°), we did not carry out the ligand only
simulations since the solvation free energy (AGi,: water) 1S equal for both

systems and cancels out. The restraining free energy (AG,s: ofr) Was calculated

: 3 (kTm)3/2 .
analytically using the formula AG,es oy = —kTIn (; (T) ) where k is the

Boltzmann constant, K is the spring constant, T is the temperature and V is the
volume of the reference state (1 particle in 1661 A3 = 1 mol/1). Thus, this
correction in all cases is 5.3 kcal/mol and accounts for the relative degrees of
translational freedom without the need to sample the entire simulation box.
Accordingly, the allosteric coupling energy reduces to the difference of the

energies that were calculated by turning off the direct interactions (AGin¢ comp)-

First we gradually switched off the Coulombic interactions between ATP(Mg*?).
and the rest of the system. For this, the system Hamiltonian was coupled to a
coupling parameter (1 —A) where A=0 and A =1 correspond to the
unperturbed and perturbed states, respectively. Simultaneously we turned the
restraining potential on using the coupling parameter A. The A values used were:
0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, 0.95, 1.00. No soft-core potential was applied at this step.
Afterwards, we turned off the Lennard-Jones interactions in the same manner.
During switching off the Lennard-Jones interactions we applied a soft-core
potential[127] where soft-core alpha was set to 0.5, the soft-core power to 1.0,
and soft-core sigma to 0.3. The same A values were used. For each 4 value an
independent simulation was carried out with the same simulation parameters
mentioned above. Each simulation was started with 5000 steps of energy
minimization using the steepest-descent method, followed by a 200 ps long
equilibration in the NVT ensemble and 200-ps in the NPT ensemble with
positional restraints applied on heavy atoms. Subsequently, data collection was

carried out during a further simulation of 3.5 ns length. Data analysis was
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performed with the python scripts pyMBAR (https://simtk.org/home/pymbar)
taking the data from last 3.0 ns of the simulations. PyYMBAR enables subsampling
of the data collected from simulations after calculating the statistical inefficiency,
and estimates the free energy by various methods. In this study we used the
methods thermodynamic integration (TI), thermodynamic integration with cubic
interpolation (TI-cubic), Bennett acceptance ratio (BAR)[28] and multiple-state
Bennett acceptance ratio (MBAR)[35]. The uncertainties were computed as

described previously[35, 128].

5.4. Results and Discussion

5.4.1. State of the Initial Structures

First, we compared the PDK1 structures that we used for the free energy
perturbation calculations (initial structures) with the available PDK1 crystal
structures using an approach previously used by Biondi et al.[129] This
approach is based on principal component analysis[130] of the crystallographic
coordinates. Briefly, this involves the construction of a covariance matrix
containing the correlations between atomic shifts with respect to an average
structure in the ensemble of all available PDK1 crystal structures with at least
310 amino acids. Diagonalization of this matrix gives eigenvector/eigenvalue
sets, which describe concerted shifts of atoms (eigenvectors) together with the
corresponding mean square fluctuation of the structures (eigenvalues). This
approach allows a condensed description of the conformational states of the
initial structures using only a few degrees of freedom. The covariance matrix was
built from main chain atoms of residues 77-230 and 245-350. The PDK1 crystal
structures were projected onto a subspace spanned by the first two eigenvectors
(see Figure 5.5). The active and inactive structures are separated from each
other along the first eigenvector. The known most active (close) structures
appear as a cluster on the left side of the average structure (has a projection of
0,0) such as 4aw0 (PIF-pocket occupied by PS182), 4aw1 (PIF-pocket occupied
by PS210), 4rvv (PIF-pocket occupied by PIFtide) and 4a07 (PIF-pocket occupied
by PS171). On the far right side of the graph the inactive structures are located,
namely 3qc4 (PDK1 with a DFG-out inhibitor) and 3nax (PDK1 with inhibitor
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MP7). As is typical for such two-domain proteins (e.g. lysozyme and protein
kinases), the first eigenvector for the PDK1 structures describes a hinge-bending
motion between the small and the large lobes in Cartesian space, which causes
the opening and closing of the active site. Afterwards, we projected the initial
structures onto the eigenvectors obtained from the covariance matrix of the
PDK1 crystal structure. As seen in Figure 5.5, the initial structure 4aw0 is the
most active-like structure among all structures. This is expected, because the
strong allosteric activator PS182 occupies the PIF-pocket of 4aw0. The initial
structure 4aw0!igand- was meant to be an alternative choice for 3hrc, and was
obtained by 50-ns long plain MD simulations after removing PS182. Even though
two structures (3hrc and 4aw0) suffice to calculate the allosteric coupling energy
in our thermodynamic cycle, we also carried out free energy perturbation
calculations for the structure 4aw0ligand- to assess the effect of the initial

structure.

Figure 5.4. Cartoon representation of the PDK1-ATP-PS182 complex (PDB ID: 4AWO0).
The PIF-pocket and the ATP binding site are indicated by the bound ligands ATP and
PS182.

89



1.5}
z 1 x
C 2
: B,
S 05+ x % XX |
=
: X
: -
- x
& 0t x
W
5 o x x n
g 05 —
E 4rrv x x —~
£} ® *
2 1 — —
| " > dawl
) ¥ 4aw0 3 4207 3qc4 y 3nax
- I D b%e —
k_*_ 43\\/0‘ gand i
D 1 | l ] o
-2 0 2 4 6
projection on eigenvector 1 (nm)

Figure 5.5. Projection of all available PDK1 crystal structures with at least 310 amino
acids (cross signs) and the initial structures (color stars) onto the first two eigenvectors
obtained from the PDK1 crystal structures. 3hrc (green) represents the structure of
PDK1 with ATP(Mg?+), simulated for 50 ns. 4aw0 (red) is the crystal structure of PDK1
with ATP(Mg2+); and PS182 equilibrated for 400 ps. 4aw(ligand- (blue) stands for the
structure of PDK1 and ATP(Mg?2+); simulated for 50 ns following removal of PS182. For
the list of PDK1 structures used for the eigenvector calculation, see Table A.1.

Previous authors have used several specific inter-residue distances as indicator
of active vs. inactive conformations of protein kinase A (PKA)[131]. One of those
indicators is the distance between residues Ser53-Glys186 that measures the
degree of opening of the glycine rich loop. After aligning the respective protein
sequences this distance can be measured for PDK1 as well (Ser92-Glys225). It
was reported before that binding of an allosteric activator causes the active site
Lys111 to approach residue Glul30 in helix aC [123]. Therefore, the Lys111-
Gly130 distance is also an indicator for the conformational state of PDK1. Table
5.1 lists these indicator distances for each initial structure. Indeed, the structure
with the allosteric activator (4aw0) bears the shortest Lys111 - Glu130 distance
(3.5 A). On the other hand, 3hrc has the most open glycine-rich loop, as expected.
The structure 4aw0!igand- which was derived from 4aw0, has a more closed

glycine-rich compared to the other two structures. Overall these specific
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distances support the picture we obtained from the principal component
analysis.
Table 5.1. Indicator distances for PDK1 conformational states. The Lys111-Glu130

distance was measured between the NZ atom of Lys111 and the CD atom of Glu130. The
Ser92-Gly225 distance was measured between the Ca atoms of the respective residues.

Initial structures

Lys111-Glu130 [A]

Ser92-Gly225 [A]

4aw0 3.5 12.2
3hrc 6.3 13.2
4awA(ligand- 5.9 11.9

5.4.2. Quantifying Allosteric Effect

We quantified the allosteric effect by computing the allosteric coupling energy as
the difference of the binding affinity of ATP(Mg*?), to PDK1 in the presence and
absence of the allosteric activator PS182. For this, we performed alchemical free
energy perturbation simulations for three initial structures using a range of the
coupling parameter A. For combining the information from simulations of
different A values to calculate the free energy difference, we used different
methods such as thermodynamic integration (TI), thermodynamic integration
with cubic interpolation (TI-cubic), Bennett acceptance ratio (BAR) and multiple-
state Bennett acceptance ratio (MBAR). Table 5.2 lists the free energy change due
to turning on the Coulombic and Lennard-Jones interactions between
ATP(Mg?*)2 and the rest of the system in the presence of harmonic restraints.
—AGjpt comp accounts for the change in Coulombic and Lennard-Jones
interactions when the ATP(Mg?+): is introduced into the binding pocket. As seen
easily in Table 5.2 the value for —AGj, comp correlates well with the activity state
of the initial structure. The more active the PDK1 is, the more favorable the free
energy of introducing the ligand into its binding site becomes. For instance, 4aw0
is the most active structure (located on the far left of the first principal
component) and has the most favorable —AGi,¢ comp value (-325.7 + 0.5
kcal/mol). Similarly, 3hrc is the least active structure and bears the least

favorable —AGi,¢ comp Value (-308.3 + 0.5 kcal/mol) compared to the other two
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structures. The large values of —AGj,¢ comp are due to the strong Coulombic
interactions between the ATP(Mg?*), and the rest of the system. Even though
ATP(Mg?*)2 is neutral over all, it bears a strong dipole moment due to the
phosphate groups of ATP and the Mg?+* ions. We computed the dipole moment of
ATP(Mg?*)2 as 27.7 D from a 3 ns long MD simulation in solution. For the initial
structure 4aw0, doubling the simulations time changes in Coulombic and
Lennard-Jones interaction energies by less than 4 kcal/mol and 1 kcal/mol,
respectively. Figure 5.6 shows the free energy differences evaluated for each pair
of adjacent states for all methods during the discharging and the van der Waals
decoupling steps. We calculated the direct interaction energy (Coulombic and
Lennard-Jones) between ATP(Mg?*)2 and PDK1 from the trajectory of the
unperturbed system of 4aw( using an infinite length cutoff. We found 357.3+
21.5 kcal/mol and 24.1 + 5.2 kcal/mol for Coulombic and Lennard-Jones
interactions, respectively. Additionally, we computed the direct interactions
between ATP(Mg?*), and the allosteric activator PS182 in the same way. The
Lennard-Jones interactions turned out to be 0, which is not surprising
considering that the distance between the centers of masses of these two ligands
was 1.7 nm. At 1.7 nm physical separation, the electrostatic interactions
amounted to 2.7 kcal/mol. Therefore, even without the allosteric changes
triggered in the binding site, the contribution of the binding of PS182 to PDK1 is
2.7 kcal/mol.

Table 5.3 and 5.4 tabulates the allosteric coupling energies derived from the free
energy calculations for the structure pairs 4aw0-3hrc and 4aw0-4aw(ligand-
respectively. Expectedly, the allosteric coupling energy is more favorable for the
4aw0-3hrc pair (ranges from -9.7 to -17.5 kcal/mol) compared to the 4aw0-
4aw0'igand-(varies between -1.5 and -7.4 kcal/mol), since 3hrc is less active (more
open) compared to 4aw0'isand- The main contribution to the allosteric coupling
energy comes from electrostatic interactions. The contribution due to Lennard-
Jones interactions does not change notably based on the method or the structure
pair used. However, this is not the case for the contribution due to Coulombic
interactions. In comparison to BAR and MBAR, TI and TI-cubic predicts more

favorable electrostatic contributions for both structure pairs (see Table 5.3/ 5.4).
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Table 5.2. The free energy change due to switching off the interactions of ATP(Mg*2), in
the PDK1 binding site (—AGin¢ comp) Was computed by subtracting AGyes; on from the
computed free energy of complexation of ATP(Mg+*2); and PDK1 while the restraints
were turned on (AGint compiex = AGcompiex — AGrest_on)- All values are in kcal/mol.

TI TI-cubic BAR MBAR
Coulombic | -310.1+0.5 -3099+05 -307.1+03 -3085+0.3
4aw0 L] -209+0.1 -20.8+ 0.1 -201+£00 -205%+0.1
—AGint comp | -325.71£ 0.5 -3254 +0.6 3219 +04 -323.7+0.3
Coulombic | -294.7+ 04 -2946+04 -299.1+03 -2993+0.3
3hrc L] -18.8+ 0.1 -18.7+ 0.1 -184+0.1 -1794+0.1
—AGint comp | -308.3 £ 0.5 -308.0 £0.5 -312.2 £0.3 3119 +0.3
Coulombic | -305.6+0.5 -305.7+0.5 -307.7+0.1 -307.1%+0.1
4aw(ligand- L] -18.0 £ 0.1 -179+£ 0.1 -180+0.1 -18240.0
—AGint comp | -3183 £0.5 3183 +0.5 -3204 +£0.2 -320.0+0.1

[l [l BAR
B TI-CUBIC [0 MBAR
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Figure 5.6. The free energy differences evaluated for each pair of adjacent states for all
methods, during the discharging (states 0-20) and van der Waals decoupling steps
(states 21-40). The system Hamiltonian was coupled to a coupling parameter (1 — A).
The A values used were: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00.
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Table 5.3. Allosteric effect (AAG®) calculated as the free energy difference derived from
the initial structures 4aw0 and 3hrc. All values are in kcal/mol.

TI TI-cubic BAR MBAR
Coulombic -15.4 -15.3 -8.0 -10.2
L] -2.1 -2.1 -1.7 -2.6
AAG® -17.5 -17.4 -9.7 -12.8

The AAG® values calculated using different methods differ substantially. Since
the uncertainty values listed in Table 1 are very low and close to each other, one
cannot assess easily which method performs better. This mainly stems from the
large free energy change due to turning on the Coulombic interactions between

ATP(Mg?+); and PDK1.

Table 5.4. Allosteric effect (AAG®) calculated as the free energy difference derived from
the initial structures 4aw0 and 4aw0ligand-. All values are in kcal/mol.

TI TI-cubic BAR MBAR
Coulombic -4.5 -4.2 0.6 -1.4
L] -2.9 -2.9 -2.1 -2.3
AAG® -7.4 -7.1 -1.5 -3.7

5. 5. Conclusion
In this chapter, we used alchemical free energy perturbation calculations to

quantify the allosteric effect in PDK1. We designed a thermodynamic two-state
model to capture the phenomenon allostery. According to this model, there
exists equilibrium between a binding-competent state and a nonbinding state of
PDK1. ATP(Mg?*); binding to PDK1 shifts this pre-existing equilibrium in favor of
the binding-competent state. Similarly, the binding of the allosteric activator
stabilizes the binding-competent state, thus, increases the ATP(Mg2+); affinity to
PDK1. On this basis, we calculated the allosteric coupling energy between the

ATP binding pocket and the PIF-pocket of PDK1 as the difference of the two
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binding free energies computed in the presence and absence of PS182.

First, we assessed the states of the structure that we used for the free energy
calculations using a principal component analysis method and several indicator
distances. The structure 4aw0 was found to be the most active structure among
all crystal structures. The same analysis showed that 3hrc is an intermediate
structure like most of the PDK1 crystal structures. The initial structure
4aw(Qligand- is quite close to the structure 4aw0 but is less active. Second, we
conducted alchemical free energy perturbation calculations for these three
systems and analyzed the data using different methods. We found that the
allosteric coupling energy is more favorable for the 4aw0-3hrc pair (ranges from
-9.7 to -17.5 kcal/mol) than for the 4aw0-4aw0!igand- pair (varies between -1.5
and -7.4 kcal/mol). The main contribution to the allosteric coupling energy
comes from electrostatic interactions. The contribution due to Lennard-Jones
interactions does not change notably based on the method or the structure pair
used. However, this is not the case for the contribution due to Coulombic

interactions.
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6. Modeling Protein-Peptide
Interactions using Molecular Docking

6.1. Molecular Modeling

Molecular modeling encompasses theoretical and computational methods
devised to mimic the structural behavior of molecules and molecular processes.
Even though it is feasible to use other means to perform molecular modeling
studies, computational calculations unequivocally constitute the core of
molecular modeling[132]. Molecular modeling techniques are heavily used, for
instance, in computational chemistry, computational biology, drug discovery and

material science. Below, we will explain the technique molecular docking.

6.1.1. Molecular Docking

Molecular docking is an important technique in structural biology and computer-
aided drug design. In molecular docking, one predicts the structure (structures)
of the intermolecular complex formed between two or more molecules. Most
docking algorithms are able to generate a large number of possible structures;
therefore, they require also a means for scoring the structures to identify those
of lowest (free) energy that are typically of most interest. Thus, molecular
docking is concerned with two main problems, namely the generation and
energetic evaluation of the conformations of plausible complexes.

In molecular docking, an important issue is how the receptor and the ligand are
represented. The most widely used representations are atomic, surface and grid
representations. Due to the complexity of the atomic representation, it is
generally used in the ranking phase of docking in conjunction with a potential
energy function. Surface-based docking programs are typically used in protein-
protein docking studies. The majority of the docking programs use the grid
representation of the molecules, especially for the receptor[133].

The simplest version of docking is rigid docking, where one does not take into
account the internal dynamics of the molecules to be docked. This form of
docking involves six degrees of freedom of one molecule with respect to the

other molecule. In flexible docking, additionally, one has to take into account the
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internal conformational degrees of freedom of each molecule. Numerous
algorithms have been developed to tackle the docking problem. The simplest
algorithms treat both molecules as rigid and explore the six translational and
rotational degrees of freedom. The well-known algorithm DOCK is a good
example for such algorithms[134]. The DOCK algorithm is based on a high degree
of shape complementarity between the binding site and a molecule. Most of the
methods, which perform flexible docking, consider the conformational space of
the ligands and treat the receptor as rigid. Almost all of the known methods for
searching the conformational space are incorporated in a docking algorithm.
Algorithms that are utilized to treat the molecule flexible can be classified in
three groups: systematic methods (incremental construction, conformational
search), stochastic methods (Monte Carlo, genetic algorithms, tabu search) and
simulation methods (molecular dynamics, energy minimization).

Below we will discuss the widely used docking program AutoDock in terms of
the algorithms and scoring functions included. After the detailed discussion of
the program, we will give two fruitful applications that we carried out in

collaboration with experimental groups.

6.2. AutoDock

Autodock is an automated procedure that is devised for predicting the
interactions of ligands to macromolecules. In any docking calculation two
conflicting requirements must be balanced: a robust and accurate procedure and
a reasonable computational demand. AutoDock is an effort to fulfill both
demands. For this, Autodock combines two methods, namely a rapid grid-based
energy evaluation and efficient search of torsional degrees of freedom. As we
indicated before, molecular docking faces two main problems, which are the
generation and evaluation of conformations. Autodock generates the structures
using the Lamarckian Genetic Algorithm and utilizes an empirical free energy
scoring function for the evaluation of the generated structures. We should stress
that the Lamarckian Genetic Algorithm is not the only algorithm available for the

conformational search in AutoDock but is the most efficient one.
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6.2.1. Conformational Search in AutoDock

As mentioned, the primary method for conformational searching with AutoDock
is a Lamarckian genetic algorithm (LGA)[135], which has an enhanced
performance relative to simulated annealing and Genetic Algorithm (GA) alone.

LGA is a hybrid of a Genetic Algorithm and an adaptive local search method.

The vast majority of the genetic algorithms mimic the hallmarks of Darwinian
evolution and Mendelian genetics (one way transfer of information from the
genotype to phenotype). In molecular docking, state variables of the ligand are
given by a set of values that describe the translation, orientation and
conformation of the ligand with respect to the receptor. In GA, each state variable
corresponds to a gene. The state and the atomic coordinates of the ligand
correspond to genotype and phenotype respectively. In the case of molecular
docking, the fitness is the total interaction energy of the ligand with the receptor.
New individuals inherit genes from either parent based on the process called
crossover, which enables mating of random pairs of individuals. Additionally
some offspring undergo random mutations. The offspring of the current
generation are selected based on their fitness. Therefore the individuals that are
better suited to their environment are kept and poorer suited ones are

eliminated.

In earlier versions of AutoDock, optimized variants of simulated annealing were
used. Simulated annealing bears both local and global search aspects. Simulated
annealing performs a more global search when higher temperatures allow
transitions over energy barriers and later on carries out local search when low
temperatures enable more focus on local optimization. AutoDock, from version 3
on, has the option of using GA for global search and a local search (LS) method to
perform energy minimization, or a combination of both. The LS method is based
on the work of Solis and Wets[136], which does not require the gradient
information about the local energy landscape when performing the torsional
space search. The so-called Lamarckian genetic algorithm is the hybrid of GA and
the local search method that we mentioned above. The “Lamarckian” aspect is
the feature that enables individual conformations to search in their local

conformational space and then pass this information to later generations. In
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other words, any environmental adaptation of the ligand acquired during the

local search is inherited by its offspring.

6.2.2. Evaluation of the Generated Structures

AutoDock uses a semi-empirical free energy force field to evaluate the structures
generated during docking simulations. The force field was parameterized using a
large number of protein-inhibitor complexes. The force field evaluates binding
in two consecutive steps. In the first step, the change in intramolecular energies
upon transition from the unbound state to the conformations of the ligand and
protein in the bound state are estimated. The intermolecular energetics upon
binding is evaluated in the second step. The force field includes six pairwise
evaluations (V) and an estimate of conformational entropy loss (AS;,,s)[135,

137]:

P
AG = ( bound unbound) + ( bound unbound) + ( bound unbound + ASconf)

where L refers to ligand and P refers to protein in a ligand-protein docking
calculation. The first two terms are intramoleculer energies for bound and
unbound states of the ligand. Likewise, the following two terms stand for
intramolecular energies of bound and unbound states of the protein. The change
in the intermolecular energy between the bound and unbound states is given by
Wk s —VEk ma). The two molecules are assumed to be sufficiently distant

from each other and, therefore, the intermolecular energy in the unbound state

( bound) is assumed to be zero.

The evaluation for dispersion/repulsion, hydrogen bonding, electrostatics and

desolvation consists of the pairwise terms:

D;; 949
V= Wvdw ( ) + thond E(t) 12 T'TO + Welec ( )2
7 ij

tj

rz/
W, z(s +SV)e 207
The first term is a typical 6/12 potential for dispersion/repulsion interactions.

99



The A and B parameters were taken from the Amber force field. The second term
is a directional hydrogen bonding term and based on 10/12 potential. The
directionality of the hydrogen bond interactions E(t) is accounted for by the
angle t. Electrostatic interactions are treated by a screened Coulomb potential.
The final term is a desolvation potential, which is based on the volume of the
atoms surrounding a given atom weighted by a solvation parameter and an

exponential term based on distance.

The weighting constants W are optimized to calibrate the empirical free energy.

For this task, experimentally characterized complexes were used.

Desolvation is evaluated based on the work by Wesson and Eisenberg[138]. Two
pieces of information, namely S; and V;, are needed for the evaluation of the
desolvation. The S; values are the atomic solvation parameters that estimate the
energy required to transfer the atom from a fully solvated state to a fully buried
state. V; are estimates for the amount of desolvation when the ligand is in the

complex.

The term for the loss of conformational entropy upon binding is calculated as

follows:
ASconf = Wcoantors

where N;,,s stands for the number of torsional angles.

6.3. Application I: The Interaction of BIP with Loop 7 of Sec61

This project was carried out in collaboration with the group of Prof. Richard
Zimmermann (Medical Faculty of Saarland University). The modelling results
together with extensive experimental results were published in EMBO Journal
(2012) 31, 3282-3296.

6.3.1. Background

In mammalian cells, the Sec61 complex mediates the signal peptide dependent
protein transport into the endoplasmic reticulum. It is also used to integrate
nascent protein sequences translated by the ribosome into the membrane. The

gating of Sec61 is tightly regulated due to its role in Ca2* flux.
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It is known that the ER luminal binding immunoglobulin protein (BIP) and
cytosolic Ca2*-Calmodulin facilitate the gating of Sec61 from the open to the
closed state. It was shown by in-vivo studies that BIP together with its nucleotide
exchange factor Grpl70 plays a role in opening Sec61 for polypeptide
passage[139] and together with an undefined co-chaperon functions in closure

of Sec61 before and early in translocation[140, 141].

The main goal of this study was to demonstrate the role of BIP in channel closure
and reveal the underlying mechanism. Our task in this work was to analyze the

putative interactions of BIP with loop 7 of Sec61 using molecular docking.

6.3.2. Material and Methods

We performed flexible peptide docking using the program AutoDock version
4.0[137]. As the optimum length of peptides binding to the human Sec61 protein
was determined as 7, we constructed heptapeptides that covered the full length
of loop 7 (residues 312-358). All 41 peptide sequences were docked into 14 X-
ray structures of bovine Hsc70, DNAK of G. kaustophilus and DNAK of E. coli and
the best model of human BIP that was obtained from multi template homology
modeling utilizing the software MODELLER[142]. The PDB IDs of the crystal
structures are: 1YUW, 2V7Y, 3KHO, 1DKZ, 1DKY:B, 1DKX, 3DPQ:A, 3DPQ:B,
3DPQ:E, 3DPQ:F, 3DPP:A, 3DPP:B, 3DPO:A, and 3DPO:B. The structural templates
used for the homology modeling were 1YUW, 2KHO and 2V7Y. For each

structure, ten conformations were generated corresponding to ten docking runs.

6.3.3. Results and Discussion

We found that peptides randomly positioned in a grid centered on the binding
channel did never enter into the channel during the docking run. When started
from the center of the binding channel, between 0 and all 10 conformations
remained bound in the channel. The best docking score obtained was -10.6
kcal/mol. When averaging over the 14 crystal structures plus one homology
model, heptapeptides including residues 339-345 (GGLCYYL) and 347-353
(PPESFGS) had average docking scores below -8 kcal/mol.

For comparison, we also performed redocking of the peptide sequences
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contained in the respective crystal structures. In each case we only used the
seven residues positioned in the channel. This gave optimal scores ranging from
-7.3 kcal/mol to -10.8 kcal/mol. Here, the randomly positioned peptides also did
not manage to enter into the binding channel of their correspondent binding

partners.

This analysis shows that two heptapeptides taken from loop 7 of Sec61 bound to
Hsp70 proteins with similar binding affinities as compared to native Hsp70
substrate heptapeptides. This is remarkable given that redocking into co-crystal
structures usually results in more favorable docking scores than docking into
structures that were crystallized in the presence of other peptides. These results
obtained from molecular docking correlated well with the findings from peptide
binding experiments. In the peptide-binding experiments performed by our
colleagues in Prof. Zimmermann'’s group, peptides including amino acid residues
329-343 and 339-353 were found to preferentially bind to BIP[143]. This shows

the power of molecular docking when combined with experiments.

~ s oI S R B = A < s P = =

4.5 -5.0 5.5 -6.0 -6.5 -7.0 -1.5 -8.0

Figure 6.1: Loop 7 is shown in single letter code and with the calculated BiP-binding
scores of the respective heptapeptide (kcal/mol). Each heptapeptide is represented by
its middle residue.
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6.4. Application ll: Docking of cyclic peptides that contain non-
natural amino acids to CK2

This project was carried out in collaboration with Karsten Niefind (Department of
Chemistry, University of Cologne) and his colleagues. The modelling results
together with extensive experimental results were published in Analytical
Biochemistry (2015) 468, 4-14.

6.4.1. Background

Casein kinase II (CK2) is a highly conserved Ser/Thr kinase composed of two
catalytic a-subunits (CK2a) and two regulatory 3-subunits (CK2f3). The enzyme
has been linked to several human pathologies including cancer. Even though
CK2 is not an oncogene product, it is dys-regulated by tumor cells due to its anti-
apoptotic role. For this reason, CK2 is emerged as a promising pharmacological
target and a number of ATP-competitive inhibitors were developed[144]. In
order to avoid undesirable binding with off-target kinases several
pharmacological strategies have been proposed for CK2. One of the most
promising strategies is to perturb the CK2 a /CK2f interaction by small
compounds to alter the substrate specificity of the enzyme. Using a structure-
based design methodology and a screening strategy, Laudet and colleagues
identified several CK2f-competitive lead compounds [145, 146]. One of these
compounds was a cyclic peptide (Pc) of the sequence GCRLYGFKIHGCG that
mimics the C-terminus of CK2 namely the interaction region with CK2a. Raaf et
al. [147] reported the first X-ray structure of CK2a with this cyclic peptide
derived from the C-terminal CK2f segment (see Figure 6.2). They showed that
the peptide binds with submicromolar affinity to CK2a, stimulates its catalytic
activity and reduces effectively the CK2f binding to CK2a. The results provided a
thermodynamic and structural rationalization of the peptide’s CKf - competitive
functionality and cleared the way for a peptidomimetic drug perturbing the

CK2a/CK2p interaction.
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Pc chain D

l"\ —

N-terminal 'region of CK2a chain A

Figure 6.2. Partial view of the CK2a /Pc complex. Highlighted are the Pc chain D and the
buried water molecule W119 (W544 here) at the CK2[p interface of CK2a chain A
(green). The picture was modified from reference [147].

Together with Dr. Karsten Niefind and his colleagues at Chemistry Department in
University of Cologne, we used Pc as a scaffold to design new CK2f competitive
compounds. In this joint project, we used molecular modeling tools to find
potential cyclic peptides that include non-natural amino acids and rank them for

further investigations.

6.4.2. Materials and methods

Seven cyclic peptides where Phe-190 was substituted by an non-natural amino
acid were docked against the CK2 structure 4IB5 with the program AutoDock
version 4.2 [137]. In each docking experiment, the receptor protein, the cyclic
backbone of the peptide, and the side chains of the peptide except Phe-190 or its
substituents were kept rigid. Heavy atoms of the protein that are not detected in
the X-ray structure and protein hydrogen atoms were added using the tleap

program of Amber Tools 1.3 [148]. Hydrogen atoms of the non-natural amino
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acids in the peptide were added using the program Discovery Studio Visualizer
[149]. The input files were prepared using Autodock Tools version 1.5.4[137].
Docking was performed within a rectangular box of 60A x 904 x 60A dimensions.
The center of the grid was placed at the center of mass of the original peptide in
its bound conformation in crystal structure 4IB5. Fifty independent docking runs
were carried out for each peptide starting from random positions. For
comparison, we also performed redocking of the native peptide to the respective

crystal structure of the protein.

A separate set of docking runs was performed where we included one particular
water molecule (WAT554) that is hydrogen bonded to the carbonyl oxygen atoms
of Tyr188 of chain D and Pro108 of chain A in the crystal structure. As validation
of this strategy, the program Dowser [61] was used that identifies putative
internal hydration sites inside proteins. That program first identifies internal
cavities in a protein structure and then assesses the hydrophilicity of these
cavities in terms of the interaction energy of a water molecule with the
surrounding atoms. For our system, Dowser identified only a single favorable
water position. This position is near the binding cavity and is only 0.5 A away
from the position of water molecule WAT554 in chain A of the crystal structure.
Thus, we kept this water molecule rigid and treated it as part of the receptor in
our docking experiments. Since the crystal water did not bear the hydrogen
atoms, we used the water molecule positioned by Dowser. Including the water

molecule improved the results slightly for all peptides except the original one.

6.4.3. Results and Discussion

Table 6.1 lists the results from the molecular docking experiments. As seen in the
table, the best scores and their corresponding average scores are very close
which can be considered as a sign of convergence. Except for peptides 3,4-Clz-Phe
and 3-CF3-Phe, all other derivatives of the Pc peptide showed more favorable
binding affinity compared to the Pc peptide itself. Our colleagues further
analyzed the cyclic peptides including amino acid 3-iodo-L-Phe and 3-chloro-L-
Phe that became prominent in the molecular docking experiments and due to

their commercial availability. The compound 3-iodo-L-Phe was of particular
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interest since iodine substituents are known to form stronger halogen bonds

than chlorine and bromine atoms, due to the larger atomic radius and the high

polarizability. Using isothermal calorimetry, our colleagues showed that the 3-

iodo-L-Phe containing peptide has a more favorable binding affinity than the

peptide that contains 3-chloro-L-Phe. Resolving such fine details is evidently

beyond the ability of the molecular docking procedure followed here[150].

Table 6.1: Calculated binding energies obtained by docking of Pc and Pc derivatives into
the ligand free-free crystal structure of CK2a.

Best score (kcal/mol)

Average Score (kcal/mol)*

-W554 +W554 -W554 +W554
Phe (Pc) -5.75 -5.74 -5.74 -5.70
3-CN-Phe -6.15 -6.36 -6.01 -6.34
3,4-Cl-Phe -4.24 -4.64 -4.05 -4.55
3-Cl-Phe -6.17 -6.34 -6.16 -6.32
3-F-Phe -5.82 -5.94 -5.81 -5.89
3-I-Phe -5.90 -6.39 -5.87 -6.36
3-OH-Phe -6.01 -6.19 -5.99 -6.10
3-CF3-Phe -5.53 -5.77 -5.41 -5.61

* Average score over 50 independent runs.
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7. Conclusions and Outlook

In this thesis, we used different molecular modeling techniques to study the
mechanisms of molecular association reactions and to support experimental
analyses. Using molecular dynamics simulations we studied structural and
energetics aspects of specific (Chapter 3) and non-specific protein-protein
complexes (Chapter 4) formed by hydrophilic proteins. Utilizing the alchemical
free energy perturbation calculations we quantified the allosteric coupling
energy between two distant sites on phosphoinostide-dependent kinase-1
(Chapter 5). Lastly, we showed the power of molecular docking for modeling
protein-peptide interaction.

Previous studies showed that protein-protein interfaces contain more charged
and polar residues than nonpolar residues. Therefore, hydrophilic protein-
protein interfaces constitute an important if not the major part of all protein-
protein interfaces. So far, the driving force behind their association has remained
poorly characterized in the literature. Using three well-studied protein-protein
complexes, we probed the association of hydrophilic proteins while forming
specific complexes. The studied complexes are Barnase-Barstar (BN-BS),
Cytochrome ¢ - Cytochrome ¢ peroxidase (CC-CC), and the complex of the N-
terminal domain of enzyme I with Histidine-containing Phosphocarrier (EIN-
HPr). The one-dimensional free energy profiles of protein-protein association
were obtained from umbrella sampling simulations. The standard free energies
of binding computed from the one-dimensional free energy profiles are in overall
good agreement with the experimental values. We decomposed the standard free
energy of binding into three terms, which are the energy change due to the
change in translational and rotational degrees of freedom of all species (the
monomers and the complex), the energy change for bringing the two proteins
from infinite separation to the final configuration of the complex in vacuum, and
the solvent induced contribution. This revealed that the favorable electrostatic
and Lennard Jones interactions between the protein pairs render the solvent-
induced interactions repulsive. The interfacial water between the two proteins

was characterized by means of density and orientational order parameter. The
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orientational order parameter of confined water deviates to a small degree but
noticeably from bulk values, especially at close separations of the proteins. At
close separations of the complex partners, the water at the interfacial gap is
found to be more dense compared to bulk water. This theoretical analysis
illustrated that the bound states of these 3 hydrophilic protein systems is
stabilized by quite similar physicochemical parameters. For the first time, we
showed that the favorable electrostatic interactions extend to protein-protein
distances of only about 1.5 nm. Beyond this separation, the free energy profile is
flat.

For comparison, we have contrasted these findings with analyzing non-specific
encounters formed by the same 3 protein pairs. This is intended to explore the
situation in the crowded environment of cells where proteins frequently
encounter other proteins in many possible orientations. Most of these
encounters are short-lived because the two binding patches do not match in
terms of physico-chemical properties. Not all of these encounters are
undesirable and artifacts of the crowded environment of the living cell. Instead,
nonspecific interactions contribute critically to the formation of specific
complexes. Besides accelerating the binding kinetics, nonspecific complexes also
play a role in protein function as alternative binding modes. First we carried out
unbiased MD simulations of the BN-BS, CC-CCP and EIN-HPr systems started
from separated positions to obtain a set of spontaneously forming nonspecific
complexes. Afterwards, we applied a pre-filter to the formed complexes and
picked two nonspecific complexes those with the longest lifetime and with the
largest contact interface for detailed analyses. In comparison to their specific
counterparts, non-specific encounters bear smaller interaction interfaces and are
attracted by shorter-ranged direct interactions between the proteins. We found
that the entropic contributions are almost the same as for the specific complexes.
Therefore, the balance between direct interactions and the solvent-induced
interactions determines the binding affinity, which is the main difference

between nonspecific complexes and their specific counterparts.

Proteins populate several switchable states. If a triggering event that effectively

switches the protein population from one state to the other is far away from the
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active site of the protein, it is termed allostery. Allostery plays an important role
in almost all processes in living cells and in drug discovery. Phosphoinostide-
dependent kinase-1 (PDK1) is a "master" protein kinase in insulin and growth
factor signaling. PDK1 has an allosteric site termed PIF-pocket, which is located
at the N-terminal lobe of the kinase domain, where the substrate kinases dock
their phosphorylated conserved hydrophobic motif. This docking event enables
PDK1 to become fully active and phosphorylate its substrate. Several allosteric
modulators of PDK1 have been developed. In order to quantify the allosteric
effect, we calculated the allosteric coupling energy between the ATP binding
pocket and the PIF-pocket of PDK1 as the difference of the two binding free
energies computed in the presence and absence of the allosteric modulator
PS182. For this, we designed a thermodynamic cycle. Then, alchemical free
energy perturbation calculations were performed to compute the standard
binding free energies. For the studied system, the main contribution to the
allosteric coupling energy comes from the electrostatic interactions. The
contribution due to Lennard-Jones interactions did not change notably based on
the method used. Studying the structural and thermodynamic properties of
charged and highly polar compounds requires particular care especially when
the compounds are highly flexible. In such cases, the flexibility of the molecule
causes large fluctuations in the electrostatic interactions, which eventually

introduces large statistical errors.

The ER luminal binding immunoglobulin protein (BIP) and cytosolic Ca2*-
Calmodulin facilitate the gating of Sec61 from the open to the closed state. Using
molecular docking, we analyzed the putative interactions of BIP with loop 7 of
Sec61. The results obtained from molecular docking were in parallel with

findings from peptide binding experiments performed by our collaborators.

Casein kinase II (CK2) is a highly conserved Ser/Thr kinase composed of two
catalytic a-subunits (CK2a) and two regulatory (-subunits (CK2f). In another
collaboration project, we used a cyclic peptide as a scaffold to design new CK2p
competitive compounds that bind to CK2a using molecular docking. The cyclic
peptides including amino acid 3-iodo-L-Phe and 3-chloro-L-Phe performed
better than the scaffold peptide.
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The largest part of the work documented in this thesis aimed at elucidating the
mechanisms how hydrophilic proteins form specific and nonspecific complexes
and how they differ from each other. Very extensive molecular dynamics
calculations have been performed for that task and the topic has been
approached from various aspects. The interfaces of both specific and nonspecific
complexes studied here were of the same character. In future work, it would be
interesting to apply the same simulation methodology to study formation of
complexes formed by two hydrophobic proteins. Another interesting topic we
have not covered here the reciprocity of allostery. We have quantified the
allosteric effect at the active site. One can, in principle, also quantify the allosteric
effect at the allosteric site. For this, one should pick a relatively simple system

with apolar or lowly polar ligands.
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8. Appendix

Table A.1. The PDK crystal structures used for principal component analysis. Only the
structures with at least 310 amino acids were used.

PDBID | Chain
3rcj

>

4rrv

4rqv
4rqk
4awl
4aw0
4a07
4a06
3scl
3rwq
3rwp
3qd4
3qd3
3qdo0
3qcy
3qcx

3qcs
3qc4
3pwy
3orz

3orx
3nay

3nax
3iop
3ion
3hrf
3hrc
3h9o
2r7b
2biy
1uu8
luu7
luu3
lokz
loky
3qcq
1hiw

Bl el el el e e e e el e e e Qe Qe Re—l fe— Jpe -l Re ) Re-—l He— e (e e [l Y e e M A A A d RS

111



9. References

10.

11.

12.

Jackson, M.B., Molecular and Cellular Biophysics. 2006, New York:
Cambridge University Press.

Dill, K.A. and H.S. Chan, From Levinthal to pathways to funnels. Nature
Structural Biology, 1997. 4(1): p. 10-19.

Tsai, C.J., et al, Folding funnels, binding funnels, and protein function.
Protein Science, 1999. 8(6): p. 1181-1190.

Bryngelson, ].D., et al, FUNNELS, PATHWAYS, AND THE ENERGY
LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS. Proteins-Structure
Function and Genetics, 1995.21(3): p. 167-195.

Chandler, D., Interfaces and the driving force of hydrophobic assembly.
Nature, 2005.437(7059): p. 640-647.

Gilson, M.K,, et al., The statistical-thermodynamic basis for computation of
binding affinities: A critical review. Biophysical Journal, 1997. 72(3): p.
1047-1069.

General, L.]., A Note on the Standard State's Binding Free Energy. Journal of
Chemical Theory and Computation, 2010. 6(8): p. 2520-2524.

Hill, T.L., Cooperativity Theory in Biochemistry. 1 ed. Springer Series in
Molecular Biology. 1985, New York: Springer-Verlag.

Hill, T.L., THEORY OF PROTEIN SOLUTIONS .1. Journal of Chemical Physics,
1955. 23(4): p. 623-636.

Verlet, L., COMPUTER EXPERIMENTS ON CLASSICAL FLUIDS .1
THERMODYNAMICAL PROPERTIES OF LENNARD-JONES MOLECULES.
Physical Review, 1967. 159(1): p. 98-&.

Hockney, RW.,, S.P. Goel, and J.W. Eastwood, QUIET HIGH-RESOLUTION
COMPUTER MODELS OF A PLASMA. Journal of Computational Physics,
1974. 14(2): p. 148-158.

Born, M. and R. Oppenheimer, Zur Quantentheorie der Molekeln. 1927,
Annalen der Physik. p. 457-484.

112



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Cornell, W.D,, et al,, A second generation force field for the simulation of
proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995).
Journal of the American Chemical Society, 1996. 118(9): p. 2309-23009.
MacKerell, A.D., et al., All-atom empirical potential for molecular modeling
and dynamics studies of proteins. Journal of Physical Chemistry B, 1998.
102(18): p. 3586-3616.

Schuler, L.D., X. Daura, and W.F. Van Gunsteren, An improved GROMOS96
force field for aliphatic hydrocarbons in the condensed phase. Journal of
Computational Chemistry, 2001. 22(11): p. 1205-1218.

Jorgensen, W.L., D.S. Maxwell, and J. TiradoRives, Development and testing
of the OPLS all-atom force field on conformational energetics and
properties of organic liquids. Journal of the American Chemical Society,
1996. 118(45): p. 11225-11236.

Aqvist, ], C. Medina, and ].E. Samuelsson, NEW METHOD FOR PREDICTING
BINDING-AFFINITY IN COMPUTER-AIDED DRUG DESIGN. Protein
Engineering, 1994. 7(3): p. 385-391.

Hansson, T., J. Marelius, and ]. Aqvist, Ligand binding affinity prediction by
linear interaction energy methods. Journal of Computer-Aided Molecular
Design, 1998.12(1): p. 27-35.

Srinivasan, J., et al., Continuum solvent studies of the stability of DNA, RNA,
and phosphoramidate - DNA helices. Journal of the American Chemical
Society, 1998.120(37): p. 9401-9409.

Gilson, M.K. and H.-X. Zhou, Calculation of protein-ligand binding affinities.
Annual Review of Biophysics and Biomolecular Structure, 2007. 36: p. 21-
42.

Potter, M.]. and M.K. Gilson, Coordinate systems and the calculation of
molecular properties. Journal of Physical Chemistry A, 2002. 106(3): p.
563-566.

Tembe, B.L. and ]J.A. McCammon, LIGAND RECEPTOR INTERACTIONS.
Computers & Chemistry, 1984. 8(4): p. 281-283.

Hermans, J. and S. Shankar, THE FREE-ENERGY OF XENON BINDING TO
MYOGLOBIN FROM MOLECULAR-DYNAMICS SIMULATION. Israel Journal of
Chemistry, 1986. 27(2): p. 225-227.

113



24,

25.

26.

27.

28.

29,

30.

31.

32.

33.

34.

Jorgensen, W.L., et al., EFFICIENT COMPUTATION OF ABSOLUTE FREE-
ENERGIES OF BINDING BY COMPUTER-SIMULATIONS - APPLICATION TO
THE METHANE DIMER IN WATER. Journal of Chemical Physics, 1988.
89(6): p. 3742-3746.

Zwanzig, RW., HIGH-TEMPERATURE EQUATION OF STATE BY A
PERTURBATION METHOD .1. NONPOLAR GASES. Journal of Chemical
Physics, 1954. 22(8): p. 1420-1426.

Jorge, M., et al., Effect of the Integration Method on the Accuracy and
Computational Efficiency of Free Energy Calculations Using
Thermodynamic Integration. Journal of Chemical Theory and
Computation, 2010. 6(4): p. 1018-1027.

Shyu, C. and F.M. Ytreberg, Reducing the Bias and Uncertainty of Free
Energy Estimates by Using Regression to Fit Thermodynamic Integration
Data. Journal of Computational Chemistry, 2009. 30(14): p. 2297-2304.
Bennett, C.H., EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES
FROM MONTE-CARLO DATA. Journal of Computational Physics, 1976.
22(2): p. 245-268.

Shirts, M.R., et al, Equilibrium free energies from nonequilibrium
measurements using maximum-likelihood methods. Physical Review
Letters, 2003. 91(14).

Kirkwood, ].G., Statistical mechanics of fluid mixtures. 1935, The Journal of
Chemical Physics. p. 300-313.

Roux, B.,, THE CALCULATION OF THE POTENTIAL OF MEAN FORCE USING
COMPUTER-SIMULATIONS. Computer Physics Communications, 1995.
91(1-3): p. 275-282.

Torrie, G.M. and ].P. Valleau, NON-PHYSICAL SAMPLING DISTRIBUTIONS
IN MONTE-CARLO FREE-ENERGY ESTIMATION - UMBRELLA SAMPLING.
Journal of Computational Physics, 1977.23(2): p. 187-199.

Kumar, S., et al., The Weighted Histogram Analyses Method for Free-Energy
Calculations on Biomolecules .1. The Method. Journal of Computational
Chemistry, 1992. 13(8): p. 1011-1021.

Ferrenberg, AM. and R.H. Swendsen, OPTIMIZED MONTE-CARLO DATA-
ANALYSIS. Physical Review Letters, 1989. 63(12): p. 1195-1198.

114



35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Shirts, M.R. and ].D. Chodera, Statistically optimal analysis of samples from
multiple equilibrium states. Journal of Chemical Physics, 2008. 129(12).
Tan, Z.Q., On a likelihood approach for Monte Carlo integration. Journal of
the American Statistical Association, 2004. 99(468): p. 1027-1036.
Waksman, G. Proteomics and Protein-Protein Interactions: Biology,
Chemistry, Bioinformatics, and Drug Design. ProteinReviews, ed. M.Z.
Atassi. 2005, New York.

Sheinerman, F.B., R. Norel, and B. Honig, Electrostatic aspects of protein-
protein interactions. Current Opinion in Structural Biology, 2000. 10(2): p.
153-159.

Ansari, S. and V. Helms, Statistical analysis of predominantly transient
protein-protein interfaces. Proteins-Structure Function and
Bioinformatics, 2005. 61(2): p. 344-355.

Larsen, T.A., AJ. Olson, and D.S. Goodsell, Morphology of protein-protein
interfaces. Structure with Folding & Design, 1998. 6(4): p. 421-427.
Bryngelson, ].D., et al.,, Funnels, Pathways, and the Energy Landscape of
Protein Folding - A Synthesis. Proteins-Structure Function and Genetics,
1995.21(3): p. 167-195.

Woo, H.J. and B. Roux, Calculation of absolute protein-ligand binding free
energy from computer simulations. Proceedings of the National Academy
of Sciences of the United States of America, 2005. 102(19): p. 6825-6830.
Kaestner, ], Umbrella sampling. Wiley Interdisciplinary Reviews-
Computational Molecular Science, 2011. 1(6): p. 932-942.

McLain, S.E., et al., Charge-Based Interactions between Peptides Observed as
the Dominant Force for Association in Aqueous Solution. Angewandte
Chemie-International Edition, 2008. 47(47): p. 9059-9062.

Ben-Naim, A., On the driving forces for protein-protein association. Journal
of Chemical Physics, 2006. 125(2): p. 24901-24911.

Hua, L., R. Zangi, and B.]. Berne, Hydrophobic Interactions and Dewetting
between Plates with Hydrophobic and Hydrophilic Domains. Journal of
Physical Chemistry C, 2009. 113(13): p. 5244-5253.

115



47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

Ahmad, M., W. Gu, and V. Helms, Mechanism of fast peptide recognition by
SH3 domains. Angewandte Chemie-International Edition, 2008. 47(40): p.
7626-7630.

Ahmad, M., et al., Adhesive water networks facilitate binding of protein
interfaces. Nature Communications, 2011. 2: p. -.

Buckle, A.M. G. Schreiber, and A.R. Fersht, PROTEIN-PROTEIN
RECOGNITION - CRYSTAL STRUCTURAL-ANALYSIS OF A BARNASE
BARSTAR COMPLEX AT 2.0-ANGSTROM RESOLUTION. Biochemistry, 1994.
33(30): p. 8878-8889.

Gabdoulline, R.R. and R.C. Wade, Simulation of the diffusional association
of Barnase and Barstar. Biophysical Journal, 1997. 72(5): p. 1917-1929.
Spaar, A. and V. Helms, Free energy landscape of protein-protein encounter
resulting from Brownian dynamics simulations of Barnase : Barstar. Journal
of Chemical Theory and Computation, 2005. 1(4): p. 723-736.
Vijayakumar, M., et al., Electrostatic enhancement of diffusion-controlled
protein-protein association: Comparison of theory and experiment on
barnase and barstar. Journal of Molecular Biology, 1998. 278(5): p. 1015-
1024.

Gumbart, J.C., B. Roux, and C. Chipot, Efficient Determination of Protein-
Protein Standard Binding Free Energies from First Principles. Journal of
Chemical Theory and Computation, 2013. 9(8): p. 3789-3798.

Pelletier, H. and |. Kraut, Crystal-Structure of a Complex Between Electron-
Transfer Partners, Cytochrome-c Peroxidase and Cytochrome-c. Science,
1992.258(5089): p. 1748-1755.

Northrup, S.H., J.O. Boles, and ].C.L. Reynolds, Brownian Dynamics of
Cytochrome-c and Cytochrome-c Peroxidase Association. Science, 1988.
241(4861): p. 67-70.

Gabdoulline, R.R. and R.C. Wade, Protein-protein association: Investigation
of factors influencing association rates by Brownian dynamics simulations.
Journal of Molecular Biology, 2001. 306(5): p. 1139-1155.

Garrett, D.S., et al., Solution structure of the 40,000 M-r phosphoryl transfer
complex between the N-terminal domain of enzyme I and HPr. Nature

Structural Biology, 1999. 6(2): p. 166-173.

116



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Kim, Y.C.,, et al, Replica exchange simulations of transient encounter
complexes in protein-protein association. Proceedings of the National
Academy of Sciences of the United States of America, 2008. 105(35): p.
12855-12860.

Bernstein, F.C,, et al., Protein Data Bank - Computer-Based Archival File For
Macromolecular Structures. Journal of Molecular Biology, 1977. 112(3): p.
535-542.

Li, H.,, A.D. Robertson, and J.H. Jensen, Very fast empirical prediction and
rationalization of protein pK(a) values. Proteins-Structure Function and
Bioinformatics, 2005. 61(4): p. 704-721.

Zhang, L. and ]. Hermans, Hydrophilicity of cavities in proteins. Proteins-
Structure Function and Genetics, 1996. 24(4): p. 433-438.
Lindorff-Larsen, K., et al., Improved side-chain torsion potentials for the
Amber ff99SB protein force field. Proteins-Structure Function and
Bioinformatics, 2010. 78(8): p. 1950-1958.

Essmann, U, et al., A SMOOTH PARTICLE MESH EWALD METHOD. Journal
of Chemical Physics, 1995. 103(19): p. 8577-8593.

Jorgensen, W., Transferable intermolecular potential functions for water,
alcohols, and ethers. Application to liquid water. ]. Am. Chem. Soc, 1981.
103(2): p- 335-340.

Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. ] Comput Chem,
2005.26(16): p. 1701-18.

Worrall, J.A.R, et al, Interaction of yeast iso-1-cytochrome c with
cytochrome c peroxidase investigated by N-15,H-1 heteronuclear NMR
spectroscopy. Biochemistry, 2001. 40(24): p. 7069-7076.

Frisch, M.J., GW. Trucks, and H.B. Schlegel, Gaussian 03, Revision C.02.
2004, Gaussian, Inc. Wallingford CT.

Cieplak, P., et al., Application of the Multimolecule and Multiconformational
Resp Methodology to Biopolymers - Charge Derivation for DNA, RNA and
Proteins. Journal of Computational Chemistry, 1995. 16(11): p. 1357-
1377.

117



69.

70.

71.

72.

73.

74,

75.

76.

77.

78.

79.

80.

Shahrokh, K., et al, Quantum Mechanically Derived AMBER-Compatible
Heme Parameters for Various States of the Cytochrome P450 Catalytic
Cycle. Journal of Computational Chemistry, 2012. 33(2): p. 119-133.
Berendsen, H.J.C., et al., MOLECULAR-DYNAMICS WITH COUPLING TO AN
EXTERNAL BATH. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690.
Hess, B., P-LINCS: A parallel linear constraint solver for molecular
simulation. Journal of Chemical Theory and Computation, 2008. 4(1): p.
116-122.

Nose, S., A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE
MOLECULAR-DYNAMICS METHODS. Journal of Chemical Physics, 1984.
81(1): p. 511-5109.

Hoover, W.G.,, CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE
DISTRIBUTIONS. Physical Review A, 1985. 31(3): p. 1695-1697.
Parrinello, M. and A. Rahman, Polymorphic Transitions in Single-Crystals -
A New Molecular-Dynamics Method. Journal of Applied Physics, 1981.
52(12): p. 7182-7190.

Hub, ].S., B.L. de Groot, and D. van der Spoel, g wham-A Free Weighted
Histogram Analysis Implementation Including Robust Error and
Autocorrelation Estimates. Journal of Chemical Theory and Computation,
2010. 6(12): p. 3713-3720.

Doudou, S., N.A. Burton, and R.H. Henchman, Standard Free Energy of
Binding from a One-Dimensional Potential of Mean Force. Journal of
Chemical Theory and Computation, 2009. 5(4): p. 909-918.

Lazaridis, T., A. Masunov, and F. Gandolfo, Contributions to the binding free
energy of ligands to avidin and streptavidin. Proteins-Structure Function
and Genetics, 2002.47(2): p. 194-208.

Irudayam, S.J. and R.H. Henchman, Entropic Cost of Protein-Ligand Binding
and Its Dependence on the Entropy in Solution. Journal of Physical
Chemistry B, 2009. 113(17): p. 5871-5884.

Peter, W., A. Sam, and H. Volkhard, ABC (Analysing Biomolecular Contacts)-
database. 2007: Journal of Integrative Bioinformatics.

Kuntz, I.D., Jr. and W. Kauzmann, Hydration of proteins and polypeptides.
Advances in protein chemistry, 1974. 28: p. 239-345.

118



81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Squire, P.G. and M.E. Himmel, Hydrodynamics and Protein Hydration.
Archives of Biochemistry and Biophysics, 1979. 196(1): p. 165-177.
Gekko, K. and H. Noguchi, Compressibility of Globular-Proteins in Water at
25-Degrees-C. Journal of Physical Chemistry, 1979. 83(21): p. 2706-2714.
Chau, P.L. and A.. Hardwick, A new order parameter for tetrahedral
configurations. Molecular Physics, 1998.93(3): p. 511-518.

Errington, J.R. and P.G. Debenedetti, Relationship between structural order
and the anomalies of liquid water. Nature, 2001. 409(6818): p. 318-321.
Baker, N.A, et al, Electrostatics of nanosystems: Application to
microtubules and the ribosome. Proceedings of the National Academy of
Sciences of the United States of America, 2001. 98(18): p. 10037-10041.
Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics.
Journal of Molecular Graphics & Modelling, 1996. 14(1): p. 33-38.

Jones, S. and ].M. Thornton, Principles of protein-protein interactions.
Proceedings of the National Academy of Sciences of the United States of
America, 1996.93(1): p. 13-20.

Schreiber, G. and A.R. Fersht, Interaction of Barnase with Its Polypeptide
Inhibitor Barstar Studied by Protein Engineering. Biochemistry, 1993.
32(19): p. 5145-5150.

Mei, H.K,, et al., Control of formation and dissociation of the high-affinity
complex between cytochrome c and cytochrome c peroxidase by ionic
strength and the low-affinity binding site. Biochemistry, 1996. 35(49): p.
15800-15806.

Ginsburg, A., et al., Conformational stability changes of the amino terminal
domain of enzyme I of the Escherichia coli phosphoenolpyruvate : sugar
phosphotransferase system produced by substituting alanine or glutamate
for the active-site histidine 189: Implications for phosphorylation effects.
Protein Science, 2000. 9(6): p. 1085-1094.

Wang, L., et al., Downhill Binding Energy Surface of the Barnase-Barstar
Complex. Biopolymers, 2010.93(11): p. 977-985.

Neumann, J. and K.-E. Gottschalk, The Effect of Different Force Applications
on the Protein-Protein Complex Barnase-Barstar. Biophysical Journal,

2009.97(6): p. 1687-1699.

119



93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Buch, I, S. Kashif Sadiq, and G. De Fabritiis, Optimized Potential of Mean
Force Calculations for Standard Binding Free Energies. Journal of Chemical
Theory and Computation, 2011. 7(6): p. 1765-1772.

Yu, Y.B, P.L. Privalov, and R.S. Hodges, Contribution of translational and
rotational motions to molecular association in aqueous solution.
Biophysical Journal, 2001. 81(3): p. 1632-1642.

Zhou, H.-X. and M.K. Gilson, Theory of Free Energy and Entropy in
Noncovalent Binding. Chemical Reviews, 2009. 109(9): p. 4092-4107.
Ben-Naim, A., On the driving forces for protein-protein association. Journal
of Chemical Physics, 2006. 125(2).

Ball, P., Water as an active constituent in cell biology. Chemical Reviews,
2008. 108(1): p. 74-108.

Rasaiah, J.C,, S. Garde, and G. Hummer, Water in nonpolar confinement:
From nanotubes to proteins and beyond. Annual Review of Physical
Chemistry, 2008. 59: p. 713-740.

Yan, Z., et al., Structure of the first- and second-neighbor shells of simulated
water: Quantitative relation to translational and orientational order.
Physical Review E, 2007. 76(5).

Danielewicz-Ferchmin, [. and A.R. Ferchmin, Phase diagram of
electrostricted H20 at surfaces of electrodes at 273-373 K: Electric critical
point of water. Chemphyschem, 2005. 6(8): p. 1499-1509.
Danielewicz-Ferchmin, I. and A.R. Ferchmin, Water at ions, biomolecules
and charged surfaces. Physics and Chemistry of Liquids, 2004. 42(1): p. 1-
36.

Fulton, A.B., HOW CROWDED IS THE CYTOPLASM. Cell, 1982. 30(2): p.
345-347.

Ellis, R.J., Macromolecular crowding: obvious but underappreciated. Trends
in Biochemical Sciences, 2001. 26(10): p. 597-604.

Ubbink, M., The courtship of proteins: Understanding the encounter
complex. Febs Letters, 2009. 583(7): p. 1060-1066.

Iwahara, J. and G.M. Clore, Detecting transient intermediates in
macromolecular binding by paramagnetic NMR. Nature, 2006. 440(7088):
p. 1227-1230.

120



106.

107.

108.

1009.

110.

111.

112.

113.

114.

115.

116.

117.

Ulucan Ozlem, ].T., and Helms Volkhard, Energetics of Hydrophilic
Protein—-Protein Association and the Role of Water. Journal of Chemical
Theory and Computation, 2014. 10(8): p. 3512-3524.

Hoefling, M. and K.E. Gottschalk, Barnase-Barstar: From first encounter to
final complex. Journal of Structural Biology, 2010. 171(1): p. 52-63.
Schreiber, G. and A.R. Fersht, Rapid, electrostatically assisted association of
proteins. Nature Structural Biology, 1996. 3(5): p. 427-431.

Spaar, A., et al,, Diffusional encounter of barnase and barstar. Biophysical
Journal, 2006.90(6): p. 1913-1924.

Volkov, A.N,, et al., Solution structure and dynamics of the complex between
cytochrome c and cytochrome c peroxidase determined by paramagnetic
NMR. Proceedings of the National Academy of Sciences of the United
States of America, 2006. 103(50): p. 18945-18950.

Tang, C., ]. Iwahara, and G.M. Clore, Visualization of transient encounter
complexes in protein-protein association. Nature, 2006. 444(7117): p. 383-
386.

Tsai, C.-J. and R. Nussinov, A Unified View of "How Allostery Works". Plos
Computational Biology, 2014. 10(2).

P., K.T. Allosteric Drug Effectsin Pharmacology in Drug Discovery:
Understanding Drug Response. 2011, Academic Press: Chapel Hill.

Ricci, F., et al., Rational Design of Allosteric Inhibitors and Activators Using
the Population-Shift Model: In Vitro Validation and Application to an
Artificial Biosensor. Journal of the American Chemical Society, 2012.
134(37): p. 15177-15180.

Kostenis, E. and K. Mohr, Two-point kinetic experiments to quantify
allosteric effects on radioligand dissociation. Trends in Pharmacological
Sciences, 1996.17(8): p. 280-283.

Huwiler, K.G., et al.,, A Fluorescence Anisotropy Assay for the Muscarinic M1
G-protein-Coupled Receptor. Assay and Drug Development Technologies,
2010. 8(3): p. 356-366.

Mora, A. et al, PDKI1, the master regulator of AGC kinase signal
transduction. Seminars in Cell & Developmental Biology, 2004. 15(2): p.
161-170.

121



118.

1109.

120.

121.

122.

123.

124.

125.

126.

127.

128.

Biondi, R.M.,, et al., High resolution crystal structure of the human PDK1
catalytic domain defines the regulatory phosphopeptide docking site. The
EMBO journal, 2002. 21(16): p. 4219-4228.

Komander, D., et al., Structural insights into the regulation of PDK1 by
phosphoinositides and inositol phosphates. The EMBO journal, 2004.
23(20): p. 3918-3928.

Engel, M., et al., Allosteric activation of the protein kinase PDK1 with low
molecular weight compounds. The EMBO journal, 2006. 25(23): p. 5469-
5480.

Stroba, A, et al., 3, 5-Diphenylpent-2-enoic Acids as Allosteric Activators of
the Protein Kinase PDKI1: Structure- Activity Relationships and
Thermodynamic Characterization of Binding as Paradigms for PIF-Binding
Pocket-Targeting Compoundstit PDB code of 2Z with PDK1: 3HRF. Journal
of medicinal chemistry, 2009. 52(15): p. 4683-4693.

Busschots, K., et al., Substrate-Selective Inhibition of Protein Kinase PDK1
by Small Compounds that Bind to the PIF-Pocket Allosteric Docking Site.
Chemistry & Biology, 2012. 19(9): p. 1152-1163.

Hindie, V., et al., Structure and allosteric effects of low-molecular-weight
activators on the protein kinase PDK1. Nature chemical biology, 2009.
5(10): p. 758-764.

Mobley, D.L., ].D. Chodera, and K.A. Dill, On the use of orientational
restraints and symmetry corrections in alchemical free energy calculations.
Journal of Chemical Physics, 2006. 125(8).

Wang, ], et al., Development and testing of a general amber force field.
Journal of computational chemistry, 2004. 25(9): p. 1157-1174.

Boresch, S., et al., Absolute binding free energies: A quantitative approach
for their calculation. Journal of Physical Chemistry B, 2003. 107(35): p.
9535-9551.

Hornak, V. and C. Simmerling, Development of softcore potential functions
for overcoming steric barriers in molecular dynamics simulations. Journal
of Molecular Graphics & Modelling, 2004. 22(5): p. 405-413.

Shirts, M.R. and V.S. Pande, Comparison of efficiency and bias of free

energies computed by exponential averaging, the Bennett acceptance ratio,

122



129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

and thermodynamic integration. Journal of Chemical Physics, 2005.
122(14).

Biondi, R.M.,, et al., High resolution crystal structure of the human PDK1
catalytic domain defines the regulatory phosphopeptide docking site. Embo
Journal, 2002. 21(16): p. 4219-4228.

Amadei, A., A.B.M. Linssen, and H.J.C. Berendsen, ESSENTIAL DYNAMICS
OF PROTEINS. Proteins-Structure Function and Genetics, 1993. 17(4): p.
412-425.

Johnson, D.A,, et al., Dynamics of cAMP-dependent protein kinase. Chemical
Reviews, 2001. 101(8): p. 2243-2270.

Leach, A.R., Molecular Modelling: Principles and Applications. 2 ed. 2001:
Prentice Hall.

Kitchen, D.B., et al., Docking and scoring in virtual screening for drug
discovery: Methods and applications. Nature Reviews Drug Discovery,
2004. 3(11): p. 935-949.

Kuntz, I.D., et al., A GEOMETRIC APPROACH TO MACROMOLECULE-LIGAND
INTERACTIONS. Journal of Molecular Biology, 1982.161(2): p. 269-288.
Morris, G.M., et al, Automated docking using a Lamarckian genetic
algorithm and an empirical binding free energy function. Journal of
Computational Chemistry, 1998. 19(14): p. 1639-1662.

Solis, F.J. and R.J.B. Wets, MINIMIZATION BY RANDOM SEARCH
TECHNIQUES. Mathematics of Operations Research, 1981. 6(1): p. 19-30.
Morris, G.M., et al., AutoDock4 and AutoDockTools4: Automated Docking
with Selective Receptor Flexibility. Journal of Computational Chemistry,
2009.30(16): p. 2785-2791.

Wesson, L. and D. Eisenberg, ATOMIC SOLVATION PARAMETERS APPLIED
TO MOLECULAR-DYNAMICS OF PROTEINS IN SOLUTION. Protein Science,
1992.1(2): p. 227-235.

Dierks, T., et al, A microsomal ATP-binding protein involved in efficient
protein transport into the mammalian endoplasmic reticulum. Embo

Journal, 1996. 15(24): p. 6931-6942.

123



140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

Hamman, B.D., et al, The aqueous pore through the translocon has a
diameter of 40-60 angstrom during cotranslational protein translocation at
the ER membrane. Cell, 1997. 89(4): p. 535-544.

Alder, N.N,, et al, The molecular mechanisms underlying BiP-mediated
gating of the Sec61 translocon of the endoplasmic reticulum. Journal of Cell
Biology, 2005. 168(3): p. 389-399.

Sali, A. and T.L. Blundell, COMPARATIVE PROTEIN MODELING BY
SATISFACTION OF SPATIAL RESTRAINTS. Journal of Molecular Biology,
1993.234(3): p. 779-815.

Schaeuble, N., et al., BiP-mediated closing of the Sec61 channel limits CaZ2+
leakage from the ER. Embo Journal, 2012. 31(15): p. 3282-3296.

Cozza, G., F. Meggio, and S. Moro, The Dark Side of Protein Kinase CK2
Inhibition. Current Medicinal Chemistry, 2011. 18(19): p. 2867-2884.
Laudet, B., et al., Structure-based design of small peptide inhibitors of
protein kinase CK2 subunit interaction. Biochemical Journal, 2007. 408: p.
363-373.

Laudet, B., et al.,, Identification of chemical inhibitors of protein-kinase CK2
subunit interaction. Molecular and Cellular Biochemistry, 2008. 316(1-2):
p. 63-69.

Raaf, ], et al., First Structure of Protein Kinase CK2 Catalytic Subunit with
an Effective CK2 beta-Competitive Ligand. Acs Chemical Biology, 2013.
8(5): p.- 901-907.

Case, D., et al., AMBER 10. University of California, San Francisco, 2008.
Discovery Studio Modeling Environment, Release 2.5. 2009: San Diego:
Accelrys Software Inc.

Hochscherf, ], et al, Development of a high-throughput screening-
compatible assay to identify inhibitors of the CK2a/CKZ2b interaction.
Analytical Biochemistry, 2014. 468(2015): p. 4-14.

124



