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Abstract 

  Antibiotic resistance is emerging as a tremendous medical burden worldwide. The mode of action of 

antibiotics is based on killing or growth inhibition, thus leading to an inevitable selection of resistant strains. 

The predicament obliges human beings to explore novel therapeutic concepts. Quorum sensing (QS) 

communication system stringently regulates the bacterial pathogenicity without affecting viability making 

QS an ideal target for development of new anti-infectives being less prone to resistance (QS inhibitors, QSIs). 

For P. aeruginosa, we started to develop QSIs blocking its crucial QS receptor PqsR, and discovered the first 

PqsR antagonist I-20/II-1 by modification of the natural agonist HHQ. However, the antagonist suffered 

from ineffectiveness in P. aerugnosa due to an unexpected functional inversion mediated by a bacterial 

enzyme. Overcoming the undesired biotransformation resulted in the most potent anti-infective PqsR 

antagonist discovered so far (II-3) that  fully protects Galleria mellonella from P. aeruginosa infections at a 

low nanomolar concentration, thus providing the first proof-of-concept for PqsR as a therapeutic target. To 

improve the druglikeness, the compounds were further optimized, and a second promising compound III-16 

with enhanced solubility was identified. Overall, this work describes the discovery of inhibitors for a novel 

anti-infective target, a rational procedure for rescuing ineffective compounds, and a reasonable process to 

improve drug-like properties. This research may illuminate a promising avenue for combating antibiotic-

resistant P. aeruginosa infections. 
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Zusammenfassung 

  Antibiotikaresistenz stellt weltweit eine enorme medizinische Herausforderung dar. Da Antibiotika durch 

Abtötung der Krankheitserreger oder Hemmung des Zellwachstums wirken, kommt es unvermeidlich zur 

Selektion von resistenten Bakterienstämmen. Deswegen ist die Forschung gezwungen, neue therapeutische 

Konzepte zu entwickeln. Das Quorum Sensing (QS) Kommunikationssystem reguliert die Pathogenität der 

Bakterien ohne ihre Lebensfähigkeit zu beeinflussen. Deshalb wird QS als ein ideales Target angesehen, um 

neue anti-infektive Wirkstoffe (QS Inhibitoren, QSIs) zu entwickeln, die eine deutlich geringere 

Resistenzbildungsrate besitzen sollten. Für P. aeruginosa haben wir begonnen QSIs gegen den wichtigen QS 

Rezeptor PqsR zu entwickeln. Die ersten PqsR Antagonisten (z.B. I-20/II-1) wurden durch Modifikation des 

natürlichen Agonisten HHQ erhalten. Der aktivste Antagonist war in P. aeruginosa wenig wirksam,was auf 

eine unerwartete Umkehr der Funktionalität der Substanz zurückgeführt werden konnte. Schutz vor der 

ungewollten Biotransformation durch chemische Modifikation führte zu dem aktivsten anti-infektiven 

Wirkstoff (II-3) innerhalb dieser Arbeit. Bei einer Konzentration von nur 22 nM konnte II-3 Galleria 

Mellonella vollständig vor P. aeruginosa Infektion schützen. Somit haben wir das erste Proof-of-Concept für 

die Relevanz von PqsR als therapeutisches Target geliefert. Zur Verbesserung der Druglikeness wurden die 

Verbindungen weiter optimiert. Dabei wurde eine weitere vielversprechende Verbindung III-16 mit 

verbesserter Löslichkeit identifiziert. Zusammenfassend beschreibt die vorliegende Arbeit die Identifizierung 

von Inhibitoren eines neuen anti-infektiven Targets, die Rettung inaktiver Substanzen durch eine rationale 

Strategie, sowie ein Verfahren zur Verbesserung der physicochemischen Wirkstoffeigenschaften. Sie zeigt 

einen möglichen Weg auf, um zukünftig Antibiotika-resistente Infektionen mit P. aeruginosa zu bekämpfen. 

 

 

 

 

 

 

 

 

 



VI 

Papers Composing this Dissertation 

This doctoral dissertation comprises three publications, which are referred to in the text by their 

Roman numerals. 

I. Discovery of Antagonists of PqsR, a Key Player in 2-Alkyl-4-quinolone-Dependent 

Quorum Sensing in Pseudomonas aeruginosa 

Cenbin Lu, Benjamin Kirsch, Christina Zimmer, Johannes C. de Jong, Claudia Henn, 

Christine K. Maurer, Mathias Müsken, Susanne Häussler, Anke Steinbach, Rolf W. 

Hartmann 

Chemistry & Biology 2012, 19, 381–390. 

II. Overcoming the Unexpected Functional Inversion of a PqsR Antagonist in 

Pseudomonas aeruginosa: an in vivo Potent Antivirulence Agent Targeting pqs 

Quorum Sensing 

Cenbin Lu, Christine K. Maurer, Benjamin Kirsch, Anke Steinbach, Rolf W. Hartmann 

Angewandte Chemie International Edition 2014, 53, 1109–1112. 

III. Optimization of Anti-virulence PqsR Antagonists Regarding Aqueous Solubility and 

Biological Properties Resulting in New Insights in Structure-activity Relationships 

Cenbin Lu, Benjamin Kirsch, Christine K. Maurer, Johannes C. de Jong, Andrea 

Braunshausen, Anke Steinbach, Rolf W. Hartmann 

European Journal of Medicinal Chemistry 2014, 79, 173–183. 



VII 

Contribution Report 

The author wishes to clarify his contributions to the papers I–III composing this dissertation. 

I. Significant contribution to the antagonist design conception. Syntheses and 

characterization of the compounds (1–21 and 29–42), with the rest compounds synthesized 

by Dr. Johannes C. de Jong. Significant contribution to the interpretation of the results to 

SAR. Significant contribution to the composition of manuscript. 

II. Significant contribution to the antagonist design conception. Syntheses and 

characterization of the compounds (1–3). Significant contribution to the evaluation of 

compound in nematode infection model. Significant contribution to the composition of 

manuscript. 

III. Significant contribution to the antagonist design conception. Syntheses and 

characterization of the compounds (1–31). Significant contribution to the interpretation of 

the results to SAR and SPR. Significant contribution to the composition of manuscript. 



VIII 

Further Publications of the Author 

The author also contributes to the following papers by synthesizing compounds and by composing 

the manuscript. However, these works are marginal comparing to the main body of this dissertation 

and therefore are not included. 

IV. Antibiotic-free Nanotherapeutics: Ultra-small Mucus-penetrating Solid Lipid 

Nanoparticles Enhance the Pulmonary Delivery and Antivirulence of Novel Quorum 

Sensing Inhibitors  

Noha Nafeea, Ayman Husaria, Christine K. Maurer, Cenbin Lu, Anke Steinbach, Rolf W. 

Hartmann, Claus-Michael Lehr, Marc Schneider  

To be submitted. 

V. Chapter 8.2: Synthetic QSIs Blocking Receptor Signaling or Signal Molecule 

Biosynthesis in P. aeruginosa 

Christine K. Maurer, Cenbin Lu, Martin Empting, Rolf W. Hartmann 

Quorum Sensing VS Quorum Quenching: A Battle with no End in Sight. ed. Vipin Chandra 

Kalia (Springer-Verlag GmbH Berlin Heidelberg) submitted.  



IX 

Acknowledgement 

I hereby extend my heartfelt thanks to my doctoral advisor, Prof. Dr. Rolf W. Hartmann, for 

introducing me into the field of quorum sensing inhibition and giving me such an amazing topic for 

my PhD work. His innovative ideas, broad knowledge and enthusiasm for science always guided 

and encouraged me during my PhD studies. I treasure this experience of working with him very 

much. 

I express my sincere gratitude to Prof. Dr. Claus-Michael Lehr for being the chairman of the 

promotion committee. 

I gratefully acknowledge my Berichterstatter Prof. Dr. Rolf Müller for the review of this 

dissertation. 

I would like to thank Dr. André Schäftlein for being the member of the promotion committee. 

I appreciate Dr. Anke Steinbach, Dr. Johannes C. de Jong, Dr. Simon Lucas and Dr. Martin 

Empting as excellent group leaders. Thank you for your trust, instruction and encouragement. 

The full support from Dr. Matthias Negri, Dr. Stefan Boettcher, Dr. Josef Zapp and Dr. Matthias 

Groh in structure study as well as LC-MS and NMR measurement and resolution, respectively, is 

effusive in my gratitude. 

I would like to thank Dr. Christina Zimmer, Dr. Andrea Braunshausen, Dr. Jörg Haupenthal, Ms. 

Simone Amman, Ms. Jeannine Jung, Ms. Jannine Ludwig and Ms. Carina Scheid for their kind help 

in biological evaluation of synthesized compounds. 

I convey my warmest thanks to all members of the PQS group. Special thanks to Christine K. 

Maurer and Benjamin Kirsch for the productive and wonderful teamwork. 

I would thank the members of the team of Praktitum für Organische Chemie: Dr. Matthias Engel, 

Dr. Michael Ring, Dr. Cornelia M. Grombein, Juliette Emmerich, Michael P. Storz and Jan H. 

Sahner. I cherish the past good days we spent together. 

I am grateful to Dr. Matthias Engel, Dr. Stefan Boettcher, Dr. Qingzhong Hu, Dr. Kuiying Xu, Dr. 

Martin Frotscher, Mr. Lothar Jager, Ms. Katrin Schmitt, Ms. Martina Schwarz and Ms. Barbara 

Boeffel for their help with my accommodation and in coping with all kinds of bureaucratic 

procedures as I came here for the first time. 

Finally, I would like to express my deep love to my family. I thank my beloved parents, who are 

adamant in support of me to actualize my dream. I thank my devoted wife for sharing my joyance 

and solacing my fidgetiness during my PhD studies. Special thanks to my grandparents, two 

venerable chemists, who were the first teachers to initiate me into chemistry and biology. Thank 

you for being in my life. 



X 

Abbreviations 

3-oxo-C12-HSL N-3-oxododecanoyl-L- homoserine lactone 

AI autoinducer 

AMPs antimicrobial peptides 

C4-HSL N-butanoyl-L-homoserine lactone 

CBF ciliary beat frequency 

CF cystic fibrosis 

CLSM confocal laser scanning microscopy 

Duox/SCN-/LPO dual oxidase-thiocyanate-lactoperoxidase 

EDG electron-donating group 

eDNA extracellular DNA 

EPS extracellular polymeric substances 

EWG electron-withdrawing group 

GCSF granulocyte colony-stimulating factor 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GSH glutathione 

HAQ 2-alkyl-4-hydroxyquinoline 

HHQ 2-heptyl-4-hydroxyquinoline 

ISS International Space Station 

MOA mechanism of action 

MvfR multiple virulence factor regulator 

MVs membrane vesicles 

ORFs open reading frames 

P. aeruginosa Pseudomonas aeruginosa 

PE pseudomonas elastase 

PMNs polymorphonuclear leukocytes 

PQS Pseudomonas quinolone signal 

QS quorum sensing 

QSIs quorum sensing inhibitors 

ROS reactive oxygen species 

SEM scanning electron micrograph 

V-ATPase vacuolar ATPase 

 



XI 

Contents 

1 Introduction 1 

1.1 Pseudomonas aeruginosa 1 

1.2 Quorum Sensing (QS) and QS-regulated Pathogenicity/Virulence of P. 

aeruginosa 
2 

1.2.1 Quorum Sensing 2 

1.2.2 Virulence Factors 4 

1.2.2.1 Elastase B 5 

1.2.2.2 Rhamnolipids 5 

1.2.2.3 Pyocyanin  6 

1.2.3 Biofilm 8 

1.3 PqsR Antagonists as QS Inhibitors (QSIs) for Anti-virulence Therapy against 

P. aeruginosa Infections 
9 

1.3.1 Anti-virulence Therapy via Quorum Sensing Inhibition 9 

1.3.2 PqsR as an Eligible Target for QSIs 10 

2 Work Strategy 12 

2.1 Design of PqsR Antagonists 12 

2.2 Biological Evaluation of Synthesized Compounds 12 

3 Results and Discussions 13 

3.1. Paper I: Discovery of Antagonists of PqsR, a Key Player in 2-Alkyl-4-

quinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa 
13 

3.2. Paper II: Overcoming the Unexpected Functional Inversion of a PqsR 

Antagonist in Pseudomonas aeruginosa: an in vivo Potent Antivirulence Agent 

Targeting pqs Quorum Sensing 

24 

3.3. Paper III: Optimization of Anti-virulence PqsR Antagonists Regarding 

Aqueous Solubility and Biological Properties Resulting in New Insights in 

Structure-activity Relationships 

29 

3.4. Evaluation of the Inhibitory Effects on Biofilm Formation 41 

4 Summary, Conclusion and Outlook 42 

4.1 Summary and Conclusion 42 

4.1.1 Discovery of the First PqsR Antagonists 42 

4.1.2 Identification of the most Potent PqsR Antagonist and the First Proof-of- 42 



XII 

concept for PqsR-targeting Therapy 

4.1.3 Development of PqsR Antagonists with Improved Physicochemical Properties 42 

4.2 Outlook  43 

5 Reference 44 

6 Appendix 49 

6.1 Supplemental Information for Paper I 49 

6.2 Supplemental Information for Paper II 66 

6.3 Curriculum Vitae 75 

 



–1– 

1 Introduction 

Nowadays, it is well recognized that bacteria do not live as a loose community but organize their 

behaviors via cell-to-cell communication systems and act as a multicellular organism. Such well 

coordinated group behaviors are usually associated with pathogenicity (e.g. production of virulence 

factors, formation of biofilm), however, normally not involved in bacterial viability. Along with the 

understanding of bacterial communication, a novel anti-infective strategy is brought to light, which 

selectively attenuates bacterial pathogenicity without affecting the growth by disrupting cell-to-cell 

communication. Such a strategy would in all probability bring us the dawn of overcoming the rising 

problem of antibiotic resistance during the long-lasting war between human beings and pathogenic 

bacteria. 

 

1.1 Pseudomonas aeruginosa 

  Pseudomonas aeruginosa is a common important Gram-negative bacterium (Figure 1) first 

isolated in 1882 by the French pharmacist and bacteriologist Carle Gessard from wound of soldiers 

whose bandages had a blue and green color (Gessard, 1984). It possesses a notable large and diverse 

genome of 5–7 Mb encoding circa 6000 open reading frames (ORFs) (Stover et al., 2000). The high 

genetic and metabolic versatility enables P. aeruginosa to adapt most natural and artificial 

environments throughout the world from soil, water, tissues of plants and animals, medical 

equipments, even to International Space Station (ISS) (Kim et al., 2013). 

 

Figure 1. Scanning electron micrograph (SEM) of P. aeruginosa.  

(adopted from http://phil.cdc.gov/phil/details.asp?pid=10043) 

 

  As an opportunistic human pathogen P. aeruginosa is able to colonize in burns, wound, blood, 
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gastrointestinal, pulmonary and urinary tracts, and is a leading cause of life-threatening nosocomial 

infections. It preferentially infects immuno-compromised individuals and cystic fibrosis (CF) 

patients, and is the main responsible factor for chronic lung infections (Koch and Hoiby, 1993) as 

well as the mortality of CF patients (Govan and Deretic, 1996). 

The eradication of P. aeruginosa is a great medical challenge because it is intrinsically resistant 

to antibiotics or disinfectants (Strateva and Yordanov, 2009). Besides, this microorganism is able to 

produce an arsenal of virulence factors as well as establish microcolonies encased with 

exopolysaccharides forming a biofilm community. Virulence factors and biofilm help the bacterial 

cells to effectively counterwork the human immune response and dramatically decrease the 

susceptibility to antibiotics (Costerton et al., 1999). 

 

1.2 Quorum Sensing (QS) and QS-regulated Pathogenicity/ Virulence 

of P. aeruginosa 

 

1.2.1 Quorum Sensing 

  Quorum sensing (QS) is a cell-to-cell communication system first discovered in the 

bioluminescent bacterium Vibrio fischeri (Nealson et al., 1970). It allows bacteria to determine their 

local population, make cell density-dependent collective decisions thereby coordinating the whole 

bacterial community to behavior like a multicellular organism (Figure 2). Notably, such well 

coordinated group behaviors are normally not involved in bacterial viability (Galloway et al., 2012; 

LaSarre and Federle, 2013) but always connected to pathogenicity/virulence, including the 

expression of virulence factors, the formation of biofilm, swarming, swimming as well as twitching, 

which facilitate the invasion into the hosts, counteract host immune system as well as promote 

resistance/tolerance towards conventional antibiotics (Miller and Bassler, 2001). 

  A typical QS system consists of three components: a signal molecule (termed autoinducer or AI), 

a receptor/transcriptional regulator and a synthase producing AI. AI is able to specifically activate 

the receptor thereby initiating the transcription of certain genes including those for AI biosynthesis 

(gene encoding the synthase), which enables a positive autoinducing loop. However, at a low 

population the AI secreted into the surrounding medium is strongly diluted due to the diffusion, thus, 

the activation of the receptor is only at a basal level. As the cell density increases, the AI reaches a 

threshold concentration leading to a full activation of the receptor and up-regulation of target genes, 

most of which, as mentioned above, are related to the bacterial pathogenicity (Figure 2) (Miller and 

Bassler, 2001). 
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Figure 2. Pathogen determines cell density and coordinates gene expression for infections via 

QS communication. 

 

  P. aeruginosa employs three main QS systems, denoted las (Gambello and Iglewski, 1991; 

Passador et al., 1993), rhl (Ochsner et al., 1994; Ochsner and Reiser, 1995) and pqs (Pesci et al., 

1999). All the networks are hierarchically interconnected: las controls the other two systems (Pesci 

et al., 1997; Wade et al., 2005), and is therefore regarded as the master regulator; pqs positively 

regulates the rhl signaling (McKnight et al., 2000), while rhl in turn puts a negative feedback upon 

pqs (Figure 3) (McGrath et al., 2004; Wade et al., 2005). Although las is generally to be considered 

to sit on the top of the QS hierarchy of P. aeruginosa, it is worth to note that the subordinate 

systems, rhl and pqs, can still be activated in the absence of las under certain conditions (Dekimpe 

and Deziel, 2009; Diggle et al., 2003; Lee et al., 2013). 

For the las QS the synthase LasI produces the AI N-3-oxododecanoyl-L- homoserine lactone 

(3-oxo-C12-HSL), which activates the receptor LasR. Similarly, RhlI produces 

N-butanoyl-L-homoserine lactone (C4-HSL), which stimulates RhlR. While both 

homoserine-mediated QS systems are broadly applied by various bacteria, the recently discovered 

species-specific pqs QS only occurs in Pseudomonas (Pesci et al., 1999), and is receiving increasing 

attention. The Pseudomonas Quinolone Signal (PQS) and to a lesser extent its precursor 

2-heptyl-4-hydroxyquinoline (HHQ), two most predominant members of the 

2-alkyl-4-hydroxyquinoline (HAQ) family (Deziel et al., 2004) function as AIs of the pqs system, 

and activate their cognate receptor PqsR (Cao et al., 2001; Xiao et al., 2006), a LysR-type 

transcriptional regulator (Maddocks and Oyston, 2008) that drives the coordinated expression of 
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nearly 200 genes (Figure 3). Many of these genes are related to virulence factors, such as phzA1-G1, 

which is involved in the biosynthesis of pyocyanin, hcnAB, which is responsible for production of 

hydrogen cyanide, lasB, which encodes elastase B and lecA, which codes for Lectin A (Cao et al., 

2001; Deziel et al., 2005). The pqs QS also indirectly promotes the production of rhamnolipids via 

activating the rhl system as mentioned before. Besides virulence factors, biofilm formation is also 

regulated by the pqs system (Diggle et al., 2003). Moreover, other QS regulated activities, for 

instance membrane vesicles formation (Mashburn-Warren et al., 2009; Mashburn-Warren et al., 

2008), are under the control of pqs signaling. Furthermore, PqsR activates pqsABCD located in the 

pqs operon to express the synthases, which conduct the biosynthesis of the AI HHQ, which is 

further converted to PQS by the LasR-regulated monooxygenase PqsH (Deziel et al., 2004; 

Gallagher et al., 2002; Schertzer et al., 2010). Thus, a positive feedback is triggered by activation of 

PqsR by either PQS or HHQ (McGrath et al., 2004), which allows an initial rapid increase of 

extracellular PQS levels during an exponential growth phase. 

 

 

Figure 3. Three intertwined QS systems in P. aeruginosa. 

 

1.2.2 Virulence Factors 

  Virulence factors are molecules or cell structures expressed by pathogenic bacteria contributing 

to the virulence/pathogenicity such as destructive enzymes, toxins, siderophores, pili and flagella. 
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The virulence factors empower the bacteria to invade the host, escape from host immune 

surveillance, repress the host immune response, as well as decrease the susceptibility towards 

antibiotics (Lyczak et al., 2000). The virulence factors play undoubtedly a critical role for the 

infections, however, they are normally not involved in bacterial growth (Galloway et al., 2012; 

LaSarre and Federle, 2013). In this section elastase B, rhamnolipids and pyocyanin are chosen as 

representative virulence factors of P. aeruginosa, which are directly or indirectly controlled by pqs 

QS. 

 

1.2.2.1 Elastase B 

  Elastase B, also termed LasB protease, pseudomonas elastase (PE) or pseudolysin, is a 33 kDa 

elastolystic metalloprotease from the thermolysin family (Kessler et al., 1998; Morihara, 1995) 

encoded by the lasB gene of P. aeruginosa. The activation of lasB is positively controlled by pqs 

QS, and exogenous PQS strongly induces expression of elastase B even in the las mutant 

(McKnight et al., 2000). This destructive enzyme is able to destroy host tissues via specific 

cleavage of the structural proteins such as type III and IV collagens (Heck et al., 1986), which are 

common components of the extracellular matrix widely existing in dermis, lung, blood vessel walls, 

liver and spleen (Miller and Gay, 1982). Elastase B damages tight junction-associated proteins 

ZO-1 and ZO-2 thereby breaking down the epithelial barriers (Azghani, 1996; Azghani et al., 1990; 

Azghani et al., 1993). Moreover, this protease also functions as a powerful weapon towards host 

innate and adaptive immune systems, since it degrades a battery of cytokines (e.g. INF-γ, IL-2 and 

IL-8), chemokines, immunoglobulins (e.g. IgA and IgG), human airway lysozymes (Jacquot et al., 

1985), antimicrobial peptides (AMPs) as well as phagocytosis-related surfactant proteins e.g. SP-A 

Kuang (Kuang et al., 2011). Overall, Elastase B supports the P. aeruginosa infections in a variety of 

ways, and therefore is regarded as an important contributor to pathogenicity. 

 

1.2.2.2 Rhamnolipids 

  Rhamnolipids are a class of glycolipids produced by P. aeruginosa including monorhamnolipid 

and dirhamnolipid (Chart 1). Three enzymes RhlA, RhlB and RhlC, all of which are under control 

of pqs and rhl QS (Deziel et al., 2005; Ochsner et al., 1994; Ochsner and Reiser, 1995; Rahim et al., 

2001), are required for the biosynthesis of rhamnolipids. 

 

http://en.wikipedia.org/wiki/IFN-%CE%B3
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Chart 1. Structures of rhamnolipids. 

 

  Although these heat-stable glycolipids are well known for their properties as biosurfactants, 

multiple biological functions have been discovered. First, rhamnolipids guarantee a trouble-free QS 

communication. The AI of pqs QS, PQS, shows a poor solubility due to the high lipophilicity 

making a great problem for signal transmission for P. aeruginosa. Besides packing PQS into 

membrane vesicles (MVs) to assist the delivery (Mashburn and Whiteley, 2005), the bacteria also 

use rhamnolipids to enhance the solubility of PQS likely via forming micelles (Calfee et al., 2005). 

Second, rhamnolipids act as wetting agents to reduce surface tension and correspondingly enhance 

bacterial translocation abilities in the medium e.g. swarming and twitching (Glick et al., 2010). Due 

to the massive influence on bacterial motility the surfactants play a crucial role for determining and 

maintaining biofilm architecture. Rhamnolipids are responsible for keeping the fluid channels 

around the biofilm open possibly by preventing planktonic cells from attaching to the formed 

biofilm. This is supported by the result that rhlA mutant, which is not able to produce rhamnolipids, 

is unable to sustain the water channels around the biofilm and forms a thick and flat biofilm (Davey 

et al., 2003). Third, rhamnolipids function as toxins to host cells. In addition to rupturing 

erythrocytes (hemolysis) (Johnson and Boese-Marrazzo, 1980), this virulence determinant is 

detrimental to immunocytes, particularly, the polymorphonuclear leukocytes (PMNs), which are 

directly induced to necrosis (Jensen et al., 2007). Usually, rhamnolipids form an anti-PMNs shield 

outside of the biofilm in vivo and collapse the attack of PMNs besieging the P. aeruginosa 

aggregate. The subsequent necrotic lysis of the immunological cells not only elevates the 

inflammation levels to recruit more PMNs to be victims of rhamnolipids killing but also supplies 

more extracellular DNA (eDNA, a component of biofilm, also see below, “1.2.3 biofilm”) to 

strengthen the biofilm (Alhede et al., 2014). All the evidences underline the crucial role of 

rhamnolipids in the infectious process. 

 

1.2.2.3 Pyocyanin 

  Pyocyanin is a redox-active pigment possessing a phenazine core (Chart 2). Its biosynthesis is 
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conducted by synthases PhzA1-G1, PhzM and PhzS. There is an intimate connexion with pqs QS. 

On one hand, HHQ/PQS-deficient mutants (pqsA and pqsR mutants) are unable to produce 

pyocyanin (Cao et al., 2001; Deziel et al., 2004); on the other hand, pyocyanin formation is also 

controlled in a HHQ/PQS-independent manner by the action of PqsE, which is co-regulated in the 

pqs operon (pqsABCDE), and is able to restore pyocyanin levels in pqsA or pqsR mutants (Farrow 

et al., 2008; Rampioni et al., 2010).  

 

 

Chart 2. Structures of pyocyanin. 

 

  As a multifunctional virulence factor pyocyanin is of great significance for P. aeruginosa. First, 

due to its redox properties pyocyanin functions as an electron transporter that accepts and transfers 

electrons generated from bacterial respiration chain to electron acceptors distant from the colonies 

(e.g. an air-water interface), thus, enable the aerobic respiration of P. aeruginosa even under 

oxygen-limited conditions (Rada and Leto, 2013). Second, this compound displays antibiotic 

activities towards protozoa, fungi and bacteria, especially Gram-positive bacteria, therefore helping 

its producer organism to gain advantages over other competitors in the environment (Baron and 

Rowe, 1981). Third, the interaction between pyocyanin and molecular oxygen affords reactive 

oxygen species (ROS) e.g. H2O2, which induces a cell lysis of P. aeruginosa and subsequently 

promotes the release of eDNA (Das and Manefield, 2012). This result implies that the virulence 

determinant may indirectly contribute to biofilm formation (Das et al., 2013). Fourth, pyocyanin 

causes massive cell dysfunction, injury and death of hosts. Most of these activities are attributed to 

the disruption of redox homeostasis, in other words, exposure of host cells to oxidative stress, by 

means of depleting intracellular pools of NAD(P)H and glutathione (GSH), generating superoxide 

as well as downstream ROS (Muller, 2002; O'Malley et al., 2004). Particularly for mammalian cells 

pyocyanin has a variety of biological effects: it elicits mucin overproduction, and diminishes the 

ciliary beat frequency (CBF) of nasal ciliated epithelium cells preventing the host from wiping out 

the pathogens (Wilson et al., 1988); it decreases mitochondrial aconitase activity and membrane 

potential, represses the cellular respiration and depletes intracellular ATP levels (O'Malley et al., 

2003a); it inactivates vacuolar ATPase (V-ATPase), and interrupts non-mitochondrial ATP 

consumption and generation as well as V-ATPase-regulated physiological processes e.g. 
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receptor-mediated endocytosis and altered localization of cystic fibrosis transmembrane 

conductance regulator (Lau et al., 2004); it also impairs the cellular catalase activity via both 

transcriptional regulation and direct inactivation of the enzyme depriving the ability of the cells to 

break down the tissue-damaging H2O2 (O'Malley et al., 2003b). Besides, pyocyanin is able to block 

the dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN-/LPO) system hampering the production 

of microbicidal oxidant hypothiocyanite (Rada et al., 2008). Moreover, pyocyanin modulates host 

immune response by induction of a series of cytokines, such as TNF-a, IL-1β, granulocyte 

colony-stimulating factor (GCSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), 

IL-6, IL-11, IL-19, IL-20, IL-23 and IL-24, many of which are involved in the inflammatory 

process (Rada et al., 2011). The multiple biological functions, especially the ability to interact with 

hosts emphasize pyocyanin as a key virulence factor of P. aeruginosa. 

 

1.2.3 Biofilm 

  Under appropriate conditions, planktonically grown P .aeruginosa can switch from the nomadic 

existence to a biofilm lifestyle. A biofilm is defined as a structured community of aggregated 

bacterial cells embedded into self-produced extracellular polymeric substances (EPS) composed of 

polysaccharides, eDNA and proteins (Costerton et al., 1999; Costerton et al., 2003). 

 

 

Figure 3. SEM image of P. aeruginosa biofilm. 

(modified from http://eyemicrobiology.upmc.com/PhotoGallery.htm. The author expresses his 

thanks to the Charles T. Campbell Laboratory and Dr. R. M. Q. Shanks for this figure) 

 

QS is closely connected with such a process (Irie and Parsek, 2008), as the communication 
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systems control an array of factors that structure biofilm formation, such as rhamnolipids, as 

mentioned before, which actively maintain open channels that allow the distribution of nutrients 

and oxygen in the community (Davey et al., 2003), lectins A and B (Winzer et al., 2000), which 

may contribute to the adhesion of bacteria to the corresponding host tissue, and eDNA resulted from 

bacterial autolysis provoked either by pyocyanin (Das and Manefield, 2012) or directly by pqs QS 

(D'Argenio et al., 2002), which is a main component of the extracellular matrix. Biofilm not only 

provides the bacteria a shelter for hiding but also, more importantly, protect the pathogen from a 

broad spectrum of environmental challenges, particularly antibiotics and host immune system 

(Hall-Stoodley et al., 2004). Biofilm dramatically increases bacterial tolerance towards traditional 

antimicrobial agents via diverse mechanisms: first, it serves as a physical diffusion barrier hindering 

certain antibiotics to penetrate into the full depth of the biofilm; second, special constituents of EPS 

are able to actively neutralize antibiotics, e.g. the negatively charged eDNA can either directly bind 

drugs with opposite charges like aminoglycosides, thus impeding the access to the sites of action 

(Purdy Drew et al., 2009; Ramphal et al., 1988), or indirectly induce pmr genes to counteract AMPs 

(Mulcahy et al., 2008); third, due to nutrient limitation inside the biofilm, the regular bacterial cells 

exist in a low-growing or starve state having a reduced metabolism rate, and this physiological 

status leads to diminished sensitivity towards antibiotics targeting active cell process (Costerton et 

al., 1999); fourth, in addition to the regular cells, there is a small subpopulation of spontaneously 

dormant and non-dividing variants termed persister cells living in the community, which are much 

more tolerant towards antimicrobials than other cells (Lewis, 2010). The protective effects of 

biofilm against host immune system are generally based on physical shielding, induction of necrosis 

of immunological cells as well as cleavage of immune-related proteins as mentioned above. 

 

1.3 PqsR Antagonists as QS Inhibitors (QSIs) for Anti- virulence 

Therapy against P. aeruginosa Infections 

 

1.3.1 Anti-virulence Therapy via Quorum Sensing Inhibition 

  Nowadays, human beings are confronted with an alarming situation in view of the lack of 

effective therapies against antibiotic-resistant bacterial infections (Arias and Murray, 2009). The 

predicament is attributed to the mode of action of marketed antibiotics, which is based on 

interference with bacterial growth (via e.g. targeting cell-wall biosynthesis, inhibiting protein 

production, or disrupting DNA replication), which results in an inevitable selection of resistant 

strains (Levy and Marshall, 2004). The emergence of bacterial resistance urgently requires the 

development of novel anti-infective strategies, however, unfortunately, the discovery of novel 

anti-infectives that are less prone to resistance is challenging, and the interest of the pharmaceutical 
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industry to develop new antibiotics is decreasing (Lewis, 2012). 

The anti-virulence therapy is a promising strategy to overcome the growing and challenging 

resistance problem by means of targeting non-vital cell functions that are associated with the 

bacterial pathogenicity. This novel therapeutic concept has decided advantages over conventional 

antibiotics-treatment, because the selective intervention into the pathogenic mechanisms without 

affecting on bacterial viability reduces natural election pressure and therefore delays or avoids the 

development of resistance (Cegelski et al., 2008; Galloway et al., 2012; Rasko et al., 2008). 

Since QS regulates the expression of a large set of pathogenicity-associated genes, corruption of 

the cell-to-cell communication system by QS inhibitors (QSIs) is an ideal approach for an 

anti-virulence therapy to disarm rather than kill the pathogens. Basically, three key nodes of the 

network can be targeted by QSIs: 1) blockade of signal molecule production, e.g. via inhibiting AI 

synthases; 2) inactivation of signal molecules, via chemical or enzymatic destruction of AIs; 3) 

interference with signal receptors via antagonizing endogenous agonists or destructing the receptor 

(Rasmussen and Givskov, 2006a, b). 

 

1.3.2 PqsR as an Eligible Target for QSIs 

  P. aeruginosa causes severe and fatal infections and possesses significant intrinsic resistance 

towards a wide range of conventional antimicrobials including β-lactams, fluoroquinolones, 

tetracycline, and chloramphenicol (Strateva and Yordanov, 2009). Search for a novel and effective 

approach to cure the obstinate P. aeruginosa infections, anti-virulence therapy via QSIs has been 

absorbing great attention of researchers worldwide. 

QSIs interfering with HSL-based signal pathways (las and rhl systems) have been investigated. 

The majority of these anti-las or anti-rhl QSIs are natural product-derived halogenated furanone 

compounds (Hentzer et al., 2003) and HSL analogs (Galloway et al., 2011). However, such QSIs 

suffered from either cytotoxicity towards mammalian cells (Yang et al., 2014) or low activity of 

repressing the production of virulence factors, and none of them has reached clinical studies to date. 

  While other research groups are concentrating on compounds targeting las or rhl QS, we focus on 

the P. aeruginosa specific pqs QS, and regard the receptor PqsR as a highly attractive target to 

develop QSIs (PqsR antagonists) for the following reasons: 1) as mentioned above, pqs QS plays a 

critical role for the pathogenicity, thus, we believe that the blockage of PqsR should attenuate the 

pqs-dependent virulence. This concept has been supported by the fact that the pqsR mutant strain 

displays a reduced mortality rate in mice (Xiao et al., 2006). Additionally, the mutation of 

pqs-controlled virulence genes results in decreased pathogenicity in plants, nematodes and insects 

(Jander et al., 2000; Mahajan-Miklos et al., 1999). Moreover, based on the fact that PQS is 

produced in high amounts in the sputum of the CF patients (Collier et al., 2002), it is assumed that 
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blocking the pqs QS system should make the P. aeruginosa lung infection in CF patients better 

treatable. 2) Whereas HSL-mediated QS is widespread among Gram-negative bacteria, we 

speculate that species-selective targeting of specific regulatory pqs QS might help to minimize 

adverse effects on beneficial bacterial consortia present in the host that are observed with 

broad-spectrum antibiotics. 3) Considering that the results obtained with inhibitors of AI synthases 

are less than satisfactory (PqsA and PqsD inhibitors require high concentrations to achieve desirable 

effects) (Lesic et al., 2007; Storz et al., 2012), we suspect that antagonizing endogenous ligands at 

the signal receptor should more directly and efficiently impact the QS circuit than blocking of the 

signal synthases. To the best of our knowledge, there were no such antagonists reported until we 

started this project. During the cause of the project we discovered the first QSIs targeting PqsR in 

2012. 
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2 Work Strategy 

 

2.1 Design of PqsR Antagonists 

  To the best of our knowledge, there is no appropriate crystal structure of PqsR with satisfactory 

resolution available for protein structure-based drug design to date, and no antagonist of this 

receptor had been reported before we started this project. The natural ligands, PQS and HHQ are all 

agonists. Nevertheless, we used them for the design of potential antagonists (ligand-based 

approach), since it has been known for a long time that antagonists can be obtained by structural 

modification of agonists (Hartmann et al., 1980). 

Although PQS is the most potent natural ligand, we used the less potent HHQ (Xiao et al., 2006) 

as a starting point for the following reasons: 1) the 3-hydroxy group of PQS has been proven to be 

responsible for interaction with lipid A of outer membrane lipopolysaccharides (Mashburn-Warren 

et al., 2008). Thus, HHQ lacking this group should exhibit a lower tendency to membrane 

association. 2) HHQ does not display iron chelating (Bredenbruch et al., 2006; Diggle et al., 2007) 

or pro-oxidant properties in contrast to PQS (Haussler and Becker, 2008). Therefore modification of 

HHQ should avoid these unwanted interactions. Initially, we modified the stereo-electronic 

configuration of HHQ by changing the length of the alkyl side chain and by introducing 

electron-donating (EDG) and withdrawing groups (EWG) into the benzene moiety of the quinolone 

structure. In the next step, to further optimize the active compounds regarding stability and water 

solubility, the 3-position of HHQ was substituted by diverse functional groups, and an oxygen atom 

was inserted into the alkyl side chain. 

 

2.2 Biological Evaluation of Synthesized Compounds 

  The functionality of the prepared compounds towards PqsR was initially determined in a 

β-galactosidase reporter gene assay established in E. coli. Strong antagonists were then investigated 

in a second reporter gene assay constructed in P. aeruginosa. Next, the potent compounds were 

assayed using P. aeruginosa wild type PA14 for their biological effects on the production of AIs as 

well as the virulence factor pyocyanin. Finally, the in vivo anti-virulence potency of the most 

promising compound was evaluated in nematode and insect infection models. Besides, water 

solubility and iron-chelating properties were detected using standard HPLC and CAS methods, 

respectively. 

  



–13– 

3 Results and Discussions 

 

3.1 Paper I: Discovery of Antagonists of PqsR, a Key Player in 

2-Alkyl-4-quinolone-Dependent Quorum Sensing in Pseudomonas 

aeruginosa 

 

This paper has been published in Chemistry & Biology 2012, 19, 381–390.  

Reprinted with permission from Elsevier. 
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3.2 Paper II: Overcoming the Unexpected Functional Inversion of a 

PqsR Antagonist in Pseudomonas aeruginosa: an in vivo Potent 

Antivirulence Agent Targeting pqs Quorum Sensing 

 

This paper has been published in Angewandte Chemie International Edition 2014, 53, 1109–1112. 

Reprinted with permission from John Wiley and Sons. 
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3.3 Paper III: Optimization of Anti-virulence PqsR Antagonists 

Regarding Aqueous Solubility and Biological Properties Resulting in 

New Insights in Structure-activity Relationships 

 

This paper has been published in European Journal of Medicinal Chemistry 2014, 79, 173–183. 

Reprinted with permission from Elsevier. Copyright © 2014 Elsevier Masson SAS. All rights 

reserved. 
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3.4 Evaluation of the Inhibitory Effects on Biofilm Formation 

  Recently, it was demostrated that blocking PqsR via small molecules indeed attenuates the 

biofilm development of P. aeruginosa (Ilangovan et al., 2013), which encouraged us to investigate 

the anti-biofilm activity for the most promising antagonist I-20/II-1. However, the results obtained 

from two distinct assays are ambiguous: in the crystal violet staining assay (O'Toole et al., 1999) a 

10%-25% reduction of biofilm formation was observed in the presence of the compound at a 

concentration of 15 µM; in contrast, in the viability staining assay combined with automated 

confocal laser scanning microscopy (CLSM) (Musken et al., 2010) there was no inhibition recorded. 

In the future, further studies will be conducted to clarify the inhibitory effects of the PqsR 

antagonists on P. aeruginosa biofilm. 
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4 Summary, Conclusion and Outlook 

 

4.1 Summary and Conclusion 

PqsR is the receptor of the P. aeruginosa-specific pqs QS circuit, and functions as a critical 

regulator that fine-tunes the expression of a large set of pathogenicity-associated genes, most of 

which are involved in the production of virulence factors and biofilm formation. We regard this 

virulence regulator as an attractive drug target, and discovered anti-virulence compounds blocking 

PqsR (PqsR antagonists) to effectively diminish bacterial pathogenicity without provoking 

resistance. 

 

4.1.1 Discovery of the First PqsR Antagonists 

  Because of the lack of an appropriate crystal structure of PqsR, we have applied a ligand-based 

design strategy to explore PqsR antagonists via structural modification of the natural 

ligands/agonists of the receptor, and subsequently identified PqsR antagonists by means of 

introducing strong EWGs like CN, CF3 or NO2 into the 6-position of HHQ. All of the antagonists 

I-18, I-19 and I-20/II-1 exhibited high activity towards PqsR with IC50s in low nanomolar range in 

the E coli.-based reporter gene assay. This work led to the discovery of the first PqsR antagonists. 

 

4.1.2 Identification of the most Potent PqsR Antagonist and the First Proof-of-concept for 

PqsR-targeting Therapy 

  Despite high activity displayed in the E coli.-based reporter gene assay, the first PqsR antagonist 

I-20/II-1 is unable to efficiently repress the pqs QS activity as well as the production of virulence 

factor pyocynin in P. aeruginosa. A thorough investigation of this phenomenon revealed that the 

ineffectiveness of I-20/II-1 in the pathogen is attributed to an unexpected functional inversion 

mediated by the bacterial enzyme PqsH that converts the strong antagonist into a potent agonist II-2. 

Consequently, we utilized medicinal-chemistry strategies to overcome the problem and reshaped the 

antagonist I-20/II-1 yielding compound II-3, which fully protects Galleria mellonella larvae from 

lethal P. aeruginosa infections at a low nanomolar concentration (22 nM). To the best of our 

knowledge, compound II-3 is the most active anti-virulence compound interfering with PqsR 

reported to date (Ilangovan et al., 2013; Klein et al., 2012; Zender et al., 2013). This work provided 

the first proof-of-concept for PqsR as a target for anti-virulence therapy. 

 

4.1.3 Development of PqsR Antagonists with Improved Physicochemical Properties 

  Our PqsR antagonists turned out to be promising anti-virulence agents, however, these 
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compounds suffered from poor aqueous solubility that hinders them to be proper drug candidates. 

Thus, the antagonists were structurally modified by means of introducing polar or ionizable groups 

into the quinolone core or the alkyl side chain to improve their solubility. SARs as well as SPRs 

thus obtained were systematically studied. In this work new insights into ligand-receptor 

interactions were provided and a novel potent compound, III-16, with improved solubility was 

developed. 

 

4.2 Outlook 

  In the next step the highly potent PqsR antagonists will be proceeded in mouse infection models 

e.g. tumor model, lung infection model and burn wound model, to investigate the in vivo 

anti-virulence efficacy in mammalian species. 

  Recently, the cocrystal structure of PqsR with ligands was reported by another group (Ilangovan 

et al., 2013), however, the resolution was poor. In cooperation with other group (Xu et al., 2012) we 

are also aiming at getting a high quality crystal structure of PqsR, which will assist us in elucidating 

the mechanism of action (MOA) of receptor activation/inactivation. This may in turn facilitate the 

antagonist design and optimization in the future. 

  Meanwhile, the existing PqsR antagonists are going to be further modified regarding activity as 

well as physicochemical properties. Noteworthy, the poor water solubility of this compound class 

can be a problem obstructing the way to drug candidates for a systemic administration (e.g. oral 

administration). To solve this problem, we have planned to replace the left benzene ring as well as 

groups at 1- or 3-position with other more polar or ionizable counterparts. Moreover, we are also 

investigating diverse delivery systems e.g. packing the highly lipophilic antagonists into 

nanoparticles or liposomes. Although further optimization is needed for the systemic application, 

we suggest that these compounds should be readily applicable for a topical treatment that is less 

affected by solubility. Application of the compounds in a form of aerosol to cure lung infections and 

administration as creme to deal with skin infections are promising options to achieve a local 

therapeutic effect. 
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6 Appendix 

 

6.1 Supplemental Information for Paper I 

 

Table S1. Agonistic and Antagonistic Activities of PQS Analogues 

      
      

PqsR stimulation 

induced by 50 nM test 

compd. compared to 50 

nM PQS (= 1.00) 

Inhibition of PqsR 

stimulation induced by 

50 nM PQS in the 

presence of 50 nM test 

compd. (full inhibition 

= 1.00 ) 

 
 

 

 

Compd. 

 

 

 

R 

 

 

 

R” 

    
 

 
Variation of 

side chain 
31 n-C5H11 H 0.12 0.08 

32 n-C6H13 H 0.54*
 

0.04 

33 n-C7H15 H 1.00* - 

 34 n-C8H17 H 0.91* n.d.
a
 

 35 n-C9H19 H 0.81* n.d. 

Introduction of 

substituents in 

the 

carbocyclic 

ring 

36 n-C7H15 6-OCH3 0.04 

 

0.17 

37 n-C7H15 7-OCH3 1.06* 

 

n.d. 

38 n-C7H15 8-F 0.12 

 

-0.07 

39 n-C7H15 6-F 1.07* 

 

n.d. 

40 n-C7H15 6-CH3 0.35 

 

-0.04 

41 n-C7H15 6-I 0.26* 

 

0.03 

 42 n-C7H15 6,7-benzo 0.08 

 

-0.07 

β-Galactosidase reporter gene assay was performed in E. coli transformed with the plasmid pEAL08-2 encoding PqsR and 

the reporter gene lacZ controlled by the pqsA promoter. For the agonist test, the compounds were measured at 50 nM and 

5 µM (data not shown); for the antagonist test, the compounds were measured at 50 nM and 5 µM (data not shown) in the 

presence of 50 nM PQS. Mean value of at least two independent experiments with n=4, standard deviation less than 25%. 

Significance: For the agonist test, induction compared to the basal value; for the antagonist test, decrease of the 

PQS-induced induction. * p < 0.05. 
a
 n.d. not determined 

 

 

Table S2. Determination of Water Solubility 

Compd. Water solubility [μM] 

23 >300 

25 200-300 

27 5-15 

19 <5 

Aqueous solutions (containing 5% DMSO) of the test compounds were prepared with final theoretical concentrations of 

5, 15, 50, 100, 200 and 300 μM. The solution clarity was examined. 



–50– 

 

Table S3. Determination of Antibacterial Activity in E. coli tolC 

 

 

Compd.
a
 

Mass loaded 

on the paper 

disc  [µg] 

Diameter 

of inhibition 

[cm] 

 

Chloramphenicol 

 5 1.9 

 10 2.0 

 15 2.2 

 20 2.3 

2
b
  25 1.3 

3  25 1.1 

4  25 1.2 

5  25 1.2 

6  25 1.1 

11  25 1.2 

Antibacterial activity of compounds was determined in E. coli tolC applying a filter disc technique. Chloramphenicol 

was used as the positive control. Mean value of at least two independent experiments, standard deviation less than 25%. 
a
 All other compounds did not exhibit antibacterial properties. 

b
 Standard deviation 28%. 

 

 
Figure S1. Binding Affinity for Compound 18  
a) Overlay of sensorgrams for compound 18 binding to H6SUMO-PqsR

C87
 measured at 12 °C. The data read-out line is 

indicated by the dashed line. b) Fitting of compound 18 equilibrium response data from the His6SUMO-PqsR
C87

 surface 

to a steady state 1:1 model to calculate Kd ((I) 54 nM, (II) 60 nM; mean 57 nM). c) Fiting of compound 18 kinetic data 

to a simple 1:1 interaction model including mass transport component (orange lines) to calculate Kd ((I) 45 nM, (II) 32 

nM; mean 38 nM). 
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Figure S2. Growth Curves of P. aeruginosa PA14 
Strains were grown in the absence (▲)/presence of 5 μM compound 18 (■) or 19 (●). Samples were taken at 0h, 2.5h, 

4h, 5.5h, 6.5h, 8.5h and 9.5h to measure OD600. Mean value of one experiment with n = 3, standard deviation less than 

15%. 

 

 
Figure S3. Synthesis Route of HHQ and PQS Analogues 

Reagents and conditions: i) p-TsOH, n-hexane, reflux; (ii) Ph2O, reflux; iii) BF3• SMe2, DCM, r.t., then MeOH; iv) 

hexamine, p-TsOH, AcOH, reflux, then HCl/water; v) B(OH)3, conc. H2SO4, H2O2, THF, r.t.; vi) 

di-iso-propylethylamine, N-methylpyrrolidone, μW, 200 °C, 30-60 min. 

 

Supplemental Experimental Procedures 

 

Syntheses of the Title Compounds 1-21, 24 and 26-42 

Procedure A1.  

A solution of β-ketoester (9.24 mmol, 1 equiv), aniline (9.24 mmol, 1 equiv) and p-TsOH·H2O (50 

mg, 0.29 mmol, 3 mol %) in n-hexane (20 ml) was heated at reflux using a Dean-Stark separator for 

5 h. After cooling the solution was concentrated in vacuo and the residue was added dropwise to 
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refluxing (260 °C) diphenyl ether (5 ml). Refluxing was continued for 30 min. After cooling to 

room temperature, Et2O (15 ml) and 2 M HCl (20 ml) were added and the mixture was left 

overnight at 5 °C. If a crystalline solid had formed, it was collected and washed with Et2O. If no 

solid had formed, ammonia was added to basify the mixture. HHQ or its analogues was purified by 

crystallization from ethyl acetate or column chromatography on silica gel (Woschek et al., 2007). 

Procedure A2. 

A mixture of HHQ or its analogues (2.06 mmol, 1 equiv), hexamine (575 mg, 4.11 mmol, 2 equiv) 

and p-TsOH·H2O (400 mg, 2.32 mmol, 1.1 equiv) in glacial acetic acid (120 ml) was heated at 

reflux for 3 h under a nitrogen atmosphere. After cooling 5 M HCl (50 ml) was added and heating 

was continued at 105 °C for 1 h. The mixture was allowed to cool, diluted with water (200 ml), and 

extracted with CH2Cl2 (4 x 50 ml). The combined organic fractions were washed with brine, dried 

over MgSO4, and concentrated under reduced pressure. The crude 3-formyl-2-alkylquinolone was 

purified by column chromatography on silica gel (n-hexane/ethyl acetate, 5/9-1/1) (Tanoue et al., 

1989). 

Procedure A3. 

Boric acid (220 mg, 3.54 mmol, 5 equiv.) was suspended in THF (40 ml), followed by the addition 

of 30% H2O2 (in H2O, 0.24 ml, 3 equiv) and conc. H2SO4 (1.0 ml). After stirring for 30 min, a 

solution of 3-formyl-2-alkylquinolone (0.70 mmol, 1 equiv.) in THF (20 ml) was added dropwise 

over 10 min. After additional stirring for 5 h, the mixture was filtered. The filtrate was neutralized 

by addition of a sat. NaHCO3 solution (120 ml) and the aqueous layer was extracted with ethyl 

acetate (3 x 50 ml). After washing the combined organic fractions with brine and drying over 

MgSO4 the organic solvent was removed in vacuo. PQS or its analogues was purified by column 

chromatography on silica gel (CH2Cl2/MeOH, 60/1) (Gross et al., 2010). 

Procedure B.  

Di-iso-propylethylamine (1.31 mmol, 1.2 equiv) and 1-chlorononan-2-one (1.09 mmol, 1 equiv) 

were added to a solution of the appropriate substituted anthranilic acid (1.09 mmol, 1 equiv) in 

anhydrous N-methylpyrrolidone (2.25 ml) contained in a 10 ml microwave vial. The solution was 

then heated under microwave irradiation to 200 °C for 30-60 min. The reaction mixture was 

allowed to cool to room temperature, added to an ice/water mixture and left to settle for 20 min. The 

precipitate thus formed was isolated by filtration, dried in vacuo overnight and the PQS analogues 

was purified by recrystallization from ethyl acetate (Hodgkinson et al., 2011). 

Procedure C.  

To a solution of methoxy-substituted HHQ (0.36 mmol, 1 equiv) in anhydrous CH2Cl2 (8 ml) was 

added BF3·SMe2 complex (10 mmol, 30 equiv) at 0 °C and the reaction mixture was stirred at room 

temperature overnight. The reaction was quenched with MeOH, evaporated, and the residue was 
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purified by column chromatography on silica gel (CH2Cl2/MeOH, 40/1~25/1) (Konieczny et al., 

2005). 

 

2-Methylquinolin-4(1H)-one (1). Compound 1 was obtained according to procedure A1 from 

aniline (357 mg, 3.84 mmol) and 1a (500 mg, 3.84 mmol, commercial available) after 

crystallization as a brown solid (241 mg, 1.51 mmol, 39%), mp 234-235 °C. 
1
H-NMR (500 MHz, 

DMSO-d6): δ = 2.50 (s, 3H), 6.06 (s, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.76 (dt, 

J = 1.5 Hz, 8.0 Hz, 1H), 8.19 (dd, J = 1.0 Hz, 8.0 Hz, 1H), 11.69 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 19.4, 108.3, 117.6, 122.6, 124.4, 124.7, 131.3, 140.0, 149.5, 176.6. LC/MS m/z 

160.12 (MH
+
), 99.9%.  

2-Pentylquinolin-4(1H)-one (2). Compound 2 was obtained according to procedure A1 from 

aniline (405 mg, 4.36 mmol) and 2a (811 mg, 4.36 mmol) after crystallization as a white solid (287 

mg, 1.33 mmol, 30%), mp 175-178 °C.
 1

H-NMR (500 MHz, DMSO-d6): δ = 0.87 (t, J = 7.0 Hz, 

3H), 1.32-1.35 (m, 4H), 1.76 (quint, J = 7.5 Hz, 2H), 2.99 (t, J = 7.5 Hz, 2H), 7.04 (s, 1H), 7.68 (t, J 

= 7.5 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.25 (d, J = 7.0 Hz, 1H), 14.77 (brs, 

1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.7, 28.4, 30.6, 33.2, 105.2, 119.3, 119.8, 123.4, 

126.6, 133.8 139.4, 159.8, 170.1. LC/MS: m/z 217.32 (MH
+
), 99.9%. 

2-Hexylquinolin-4(1H)-one (3). Compound 3 was obtained according to procedure A1 from 

aniline (785 mg, 8.44 mmol) and 3a (1.69 g, 8.44 mmol) after crystallization as a grey solid (933 

mg, 4.07 mmol, 48%), mp 142-143 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.82 (t, J = 7.0 Hz, 

3H), 1.24-1.32 (m, 6H), 1.72 (quint, J = 7.5 Hz, 2H), 2.98 (t, J = 7.5 Hz, 2H), 7.07 (s, 1H), 7.68 (t, J 

= 8.0 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 14.91 (brs, 

1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 28.1, 28.7, 30.8, 33.3, 105.1, 119.4, 119.6, 

123.4, 126.8, 133.9, 139.3, 160.1, 169.8. LC/MS: m/z 230.27 (MH
+
), 99.9%. 

2-Heptylquinolin-4(1H)-one (4). Compound 4 was obtained according to procedure A1 from 

aniline (859 mg, 9.24 mmol) and 4a (1.98 g, 9.24 mmol) after crystallization as a white solid (1320 

mg, 5.43 mmol, 59%), mp 149-151 °C. 
1
H-NMR (500 MHz, MeOH-d4): δ = 0.91 (t, J = 7.0 Hz, 

3H), 1.32-1.47 (m, 8H), 1.87 (quint, J = 7.5 Hz, 2H), 3.069 (t, J = 7.5 Hz, 2H), 7.04 (s, 1H), 7.78 (dt, 

J = 1.0 Hz, 8.5 Hz, 1H), 8.00 (d, J= 8.0 Hz, 1H), 8.04 (dt, J = 1.0 Hz, 8.5 Hz, 1H), 8.40 (d, J = 7.5 

Hz, 1H). 
13

C-NMR (125 MHz, MeOH-d4): δ = 14.4, 23.6, 30.0, 30.2, 30.4, 32.8, 35.4, 106.0, 120.3, 

120.9 125.0, 128.7, 135.9, 141.0, 162.7, 171.6. LC/MS: m/z 244.276 (MH
+
), 95.0%. 

2-Octylquinolin-4(1H)-one (5). Compound 5 was obtained according to procedure A1 from aniline 

(711 mg, 7.65 mmol) and 5a (1.744 g, 7.65 mmol) after crystallization as a white solid (537 mg, 

2.09 mmol, 27%), mp 132-135 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.80 (t, J = 7.0 Hz, 3H), 

1.19-1.32 (m, 10H), 1.71 (quint, J = 7.5 Hz, 2H), 2.97 (t, J = 7.5 Hz, 2H), 7.04 (s, 1H), 7.66 (t, J = 
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7.5 Hz, 1H), 7.94 (t, J = 7.0 Hz, 1H), 8.11 (d, J = 7.5 Hz, 1H), 8.22 (d, J = 7.5 Hz, 1H), 14.84 (brs, 

1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 14.4, 22.5, 28.9, 28.9, 29.0, 29.2, 31.6, 33.7, 105.6, 

119.8, 120.1, 123.9, 127.2, 134,3, 139.8, 160.5, 170.4. LC/MS: m/z 258.22 (MH
+
), 99.9%. 

2-Nonylquinolin-4(1H)-one (6). Compound 6 was obtained according to procedure A1 from 

aniline (960 mg, 10.33 mmol) and 6a (2.50 g, 10.33 mmol) after crystallization as a white solid 

(1.61 g, 5.96 mmol, 57%), mp 101-103 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.83 (t, J = 7.0 Hz, 

3H), 1.15-1.37 (m, 12H), 1.74 (quint, J = 7.5 Hz, 2H), 2.99 (t, J = 7.5 Hz, 2H), 7.04 (s, 1H), 7.69 (dt, 

J =1.0 Hz, 7.5 Hz, 1H), 7.97 (dt, J = 1.0 Hz, 7.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.25 (dd, J =1.0 

Hz, 8.5 Hz, 1H), 14.76 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.0, 22.0, 28.4, 28.59, 

28.62, 28.7, 28.8, 31.2, 33.3, 105.2, 119.3, 119.8, 123.5, 126.7, 133.8, 139.4, 159.9, 170.1. LC/MS: 

m/z 272.27 (MH
+
), 99.9%. 

2-(3-Phenylpropyl)quinolin-4(1H)-one (7). Compound 7 was obtained according to procedure A1 

from aniline (79 mg, 0.85 mmol) and 7a (200 mg, 0.85 mol). After cooling the reaction mixture was 

extracted with ethyl acetate. The combined organic phases were dried with MgSO4, and evaporated 

in vacuo. The residue was purified by chromatography on silica gel (CH2Cl2/MeOH, 25/1~30/1) 

yielding compound 7 (18 mg, 0.07 mmol, 8%) as a yellow solid, mp 168-170 °C. 
1
H-NMR (500 

MHz, MeOH-d4): δ = 2.04 (quint, J = 7.5 Hz, 2H), 2.69 (dt, J = 3.0 Hz, 7.5 Hz, 4H), 6.19 (s ,1H), 

7.12 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.0 Hz, 2H), 7.23 (dt, J = 1.5 Hz, 7.5 Hz, 2H), 7.35 (dt, J = 1.5 

Hz, 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.64 (dt, J = 1.5 Hz, 7.5 Hz, 1H), 8.17 (dd, J = 0.5 Hz, 

8.0 Hz, 1H).
 13

C-NMR (125 MHz, MeOH-d4): δ = 30.3, 33.0, 34.8, 107.5, 117.6, 123.6, 124.1, 

124.5, 125.6, 128.0, 131.9, 140.2, 141.1, 155.2, 179.2. LC/MS: m/z 264.16 (MH
+
), 97.3%. 

2-Heptyl-7-hydroxyquinolin-4(1H)-one (8). Compound 8 was obtained according to procedure C 

from 9 (100 mg, 0.37 mol) after chromatography on silica gel as a white solid (42 mg, 0.17 mmol, 

46%), mp 138-141 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.86 (t, J = 6.5 Hz, 3H), 1.26-1.31 (m, 

8H), 1.64 (quint, J = 6.5 Hz, 2H), 2.53 (t, 3H), 5.76 (s, 1H), 6.72 (dd, J = 2.0 Hz, 9.0 Hz, 1H), 6.81 

(s, 1H), 7.85 (d, J = 8.5 Hz, 1H), 10.18 (s, 1H), 11.13 (s, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 

13.9, 22.0, 28.2, 28.3, 28.4, 31.1, 33.1, 100.8, 106.8, 113.2, 118.0, 126.6, 141.9, 152.7, 160.1, 176.5. 

LC/MS: m/z 260.20 (MH
+
), 99.9%. 

2-Heptyl-7-methoxyquinolin-4(1H)-one (9). Compound 9 was obtained according to procedure 

A1 from 3-methoxyaniline (260 mg, 2.11 mmol) and 4a (450 mg, 2.10 mmol) after chromatography 

on silica gel (CH2Cl2/MeOH, 20/1) as a yellow solid (171 mg, 0.63 mmol, 30%), mp 152-154 °C. 

1
H-NMR (500 MHz, DMSO-d6): δ = 0.91 (t, J = 7.0 Hz, 3H), 1.29-1.37 (m, 8H), 1.68-1.74 (quint, J 

= 7.5 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 3.90 (s, 3H), 5.87 (s, 1H), 6.92 (dd, J = 2.5 Hz, 9.0 Hz, 1H), 

6.98 (d, J = 7.5 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 11.34 (brs, 1H).
 13

C-NMR (125 MHz, DMSO-d6): 
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δ = 13.8, 22.0, 28.2, 28.3, 28.4, 31.1, 33.1, 55.2, 98.8, 107.3, 112.5, 118.9, 126.5, 141.8, 152.9, 

161.6, 176.4. LC/MS: m/z 274.27 (MH
+
), 99.9%.  

2-Heptyl-8-methoxyquinolin-4(1H)-one (10). Compound 10 was obtained according to procedure 

A1 from 2-methoxyaniline (516 mg, 4.20 mmol) and 4a (900 mg, 4.20 mmol) after crystallization 

as a white solid (435 mg, 1.59 mmol, 38%), mp 105-108 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 

0.86 (t, J = 7.0 Hz, 3H), 1.25-1.31 (m, 8H), 1.62 (quint, J = 7.5 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H), 

3.98 (s, 3H), 5.91 (s, 1H), 7.19-7.21 (m, 2H), 7.60 (t, J = 8.0 Hz, 1H), 10.86 (brs, 1H). 
13

C-NMR 

(125 MHz, DMSO-d6): δ = 13.9, 22.0, 28.4, 28.5, 29.0, 31.2, 32.7, 56.1, 108.1, 111.0, 116.0, 117.1, 

122.4, 125.6, 130.8, 148.3, 153.7, 176.,5. LC/MS: m/z 274.26 (MH
+
), 96.3%. 

8-Ethyl-2-heptylquinolin-4(1H)-one (11). Compound 11 was obtained according to procedure A1 

from 2-ethylaniline (339 mg, 2.80 mmol) and 4a (600 mg, 2.80 mmol) after crystallization as a 

white solid (101 mg, 0.37 mmol, 13%), mp 103-104 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 

(t, J = 7.0 Hz, 3H), 1.21-1.32 (m, 11H), 1.65 (quint, J = 7.5 Hz, 2H), 2.70 (t, J = 7.5 Hz, 2H), 2.95 

(q, J = 7.5 Hz, 2H), 5.94 (s, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.46 (d, J = 7.0 Hz, 1H), 7.93 (d, J = 9.5 

Hz, 1H), 10.27 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.9, 14.2, 22.0, 23.1, 28.4, 28.5, 

28.9, 31.2, 32.9, 107.7, 122.6, 122.7, 125.0, 130.6, 131.8, 137.9, 154.2, 177.1. LC/MS: m/z 272.41 

(MH
+
), 99.9%. 

8-Fluoro-2-heptylquinolin-4(1H)-one (12). Compound 12 was obtained according to procedure 

A1 from 2-fluoroaniline (520 mg, 4.67 mmol) and 4a (1.00 g, 4.67 mmol) after crystallization as a 

yellow solid (371 mg, 1.42 mmol, 30%), mp 151-154 °C.
 1

H-NMR (500 MHz, DMSO-d6): δ = 0.85 

(t, J = 7.0 Hz, 3H), 1.24-1.31 (m, 8H), 1.64 (quint, J = 7.0 Hz, 2H), 2.64 (t, J = 7.0 Hz, 2H), 5.98 (s, 

1H), 7.25 (dt, J = 4.5 Hz, 8.0 Hz, 1H), 7.52 (m, 1H), 7.85 (dd, J = 1.0 Hz, 8.0 Hz, 1H), 11.42 (brs, 

1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 22.0, 28.3, 28.5, 28.7, 31.1, 32.9, 108.3, 116.1 (d, 

JCF = 16.8 Hz), 120.4, 122.3 (d, JCF = 6.9 Hz), 126.7, 129.5, 151.5 (d, JCF = 249.6 Hz), 154,5, 175.8. 

LC/MS: m/z 262.21 (MH
+
), 97.8%. 

2-Heptyl-6-hydroxyquinolin-4(1H)-one (13). Compound 13 was obtained according to procedure 

C from 14 (100 mg, 0.37 mol) after chromatography on silica gel as a yellow solid (45 mg, 0.17 

mmol, 46%), mp 215-218 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 (t, J = 7.0 Hz, 3H), 

1.24-1.30 (m, 8H), 1.64 (quint, J = 7.0 Hz, 2H), 2.53 (t, J = 7.5 Hz, 2H), 5.79 (s, 1H), 7.09 (dd, J = 

3.0 Hz, 9.0 Hz, 1H), 7.351 (d, J = 3.5 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 9.54 (brs, 1H), 11.31 (brs, 

1H). 
13

C-NMR (125 MHz, DMSO-d6): δ =13.9, 22.0, 28.3, 28.4, 31.1, 33.1, 106.0, 107.3, 119.3, 

121.4, 126.0, 133.6, 152.1, 153.2, 176.2. LC/MS: m/z 260.23 (MH
+
), 99.9%. 

2-Heptyl-6-methoxyquinolin-4(1H)-one (14). Compound 14 was obtained according to procedure 

A1 from 4-methoxyaniline (517 mg, 4.20 mmol) and 4a (900 mg, 4.20 mmol) after crystallization 

(Et2O/MeOH) as a yellow solid (455 mg, 1.67 mmol, 40%), mp 140-141 °C. 
1
H-NMR (500 MHz, 
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DMSO-d6): δ = 0.85 (t, J = 7.0 Hz, 3H), 1.24-1.32 (m, 8H), 1.70 (quint, J = 7.0 Hz, 2H), 2.77 (t, J = 

8.0 Hz, 2H), 3.87 (s, 3H), 6.46 (s, 1H), 7.45 (dd, J = 2.5 Hz, 9.0 Hz, 1H), 7.50 (d, J = 3.0 Hz, 1H), 

7.77 (d, J = 9.0 Hz, 1H), 13.10 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.9, 22.0, 28.3, 

28.4, 28.6, 31.1, 33.2, 55.6, 102.9, 105.7, 120.4, 123.1, 123.7, 134.7, 156.4, 170.8. LC/MS: m/z 

274.27 (MH
+
), 97.5%. 

2-Heptyl-6-methylquinolin-4(1H)-one (15). Compound 15 was obtained according to procedure 

A1 from p-toluidine (400 mg, 3.74 mmol) and 4a (800 mg, 3.74 mmol) after chromatography on 

silica gel (CH2Cl2/MeOH, 30/1) as a yellow solid (194 mg, 0.74 mmol, 20%), mp 179-182 °C. 

1
H-NMR (500 MHz, DMSO-d6): δ = 0.96 (t, J = 7.0 Hz, 3H), 1.35-1.42 (m, 8H), 1.77 (quint, J = 

7.0 Hz, 2H), 2.50 (s, 3H), 2.68 (t, J = 7.5 Hz, 2H), 6.00 (s, 1H), 7.55 (d, J = 1.0 Hz, 2H), 7.94 (s, 

1H), 11.53 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 20.6, 22.0, 28.3, 28.4, 31.1, 33.1, 

107.3, 117.7, 124.0, 124.5, 131.8, 132.7, 138.1, 153.1, 176.7. LC/MS: m/z 258.27 (MH
+
), 99.9%. 

6-Fluoro-2-heptylquinolin-4(1H)-one (16). Compound 16 was obtained according to procedure 

A1 from 4-fluoroaniline (233 mg, 2.10 mmol) and 4a (450 mg, 2.10 mmol) after chromatography 

on silica gel (CH2Cl2/MeOH, 30/1~40/1) as a white solid (208 mg, 0.80 mmol, 38%), mp 

175-177 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 (t, J = 7.0 Hz, 3H), 1.25-1.32 (m, 8H), 1.67 

(quint, J = 7.5 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 5.94 (s, 1H), 7.52 (dt, J = 3.0 Hz, 8.0 Hz, 1H), 7.60 

(dd, J = 4.5 Hz, 9.0 Hz, 1H), 7.68 (dd, J = 3.0 Hz, 9.5 Hz, 1H), 11.62 (brs, 1H). 
13

C-NMR (125 

MHz, DMSO-d6):  δ = 13.8, 21.9, 28.3, 18.4, 31.0, 33.2, 106.8, 108.7(d, JCF = 22.2 Hz), 120.1 (d, 

JCF = 25.6 Hz), 120.5 (d, JCF = 8.2 Hz), 125.6 (d, JCF = 6.3 Hz), 136.8, 153.7, 158.0 (d, JCF = 240.8 

Hz), 175.9. LC/MS: m/z 262.23 (MH
+
), 99.9%. 

6-Chloro-2-heptylquinolin-4(1H)-one (17). Compound 17 was obtained according to procedure 

A1 from 4-chloroaniline (474 mg, 3.73 mmol) and 4a (800 mg, 3.74 mmol) after chromatography 

on silica gel (CH2Cl2/MeOH, 110/1) as a yellow solid (70 mg, 0.25 mmol, 7%), mp 220-223 °C. 

1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 3H), 1.22-1.31 (m, 8H), 1.65 (quint, J = 

7.0 Hz, 2H), 2.58 (t, J= 7.5 Hz, 2H), 5.96 (s, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.64 (dd, J = 2.5 Hz, 9.0 

Hz, 1H), 7.96 (d, J = 2.5 Hz, 1H) 11.66 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 

28.2, 28.3, 28.4, 31.1, 33.2, 107.8, 120.3, 123.6, 125.5, 127.3, 131.5, 138.7, 154.1, 175.5. LC/MS: 

m/z 278.28 (MH
+
), 96.4%. 

2-Heptyl-8-methoxy-6-(trifluoromethyl)quinolin-4(1H)-one (21). Compound 21 was obtained 

according to procedure A1 from 2-methoxy-4-(trifluoromethyl)aniline (535 mg, 2.80 mmol) and 4a 

(600 mg, 2.80 mmol) after chromatography on silica gel (CH2Cl2/MeOH, 120/1~90/1) as a yellow 

solid (40 mg, 0.11 mmol, 4%), mp 168 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 1.66 (t, J = 7.0 Hz, 

3H), 2.03-2.12 (m, 8H), 2.43 (quint, J = 7.5 Hz, 2H), 3.50 (t, J = 7.5 Hz, 2H), 4.88(s, 3H), 6.86 (s, 

1H), 8.22 (d, J = 2.0 Hz, 1H), 8.71 (s, 1H), 12.07 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 
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16.6, 24.7, 31.1, 31.2, 31.6, 33.9, 35.4, 59.5, 109.3, 112.1, 116.2, 116.3, 116.3, 116.3, 125.5, 125.8, 

125.8, 127.3, 128.0, 136.0, 152.0, 157.8, 178.6. LC/MS: m/z 342.10 (MH
+
), 99.9%. 

2-Ethyl-6-(trifluoromethyl)quinolin-4(1H)-one (24). Compound 24 was obtained according to 

procedure A1 from 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol) and 24a (1.30 g, 10.0 mmol) 

after crystallization as a white solid (0.40 g, 1.66 mmol, 16%), mp 293-296 °C. 
1
H-NMR (500 MHz, 

DMSO-d6): δ = 1.26 (t, J = 7.6 Hz, 3H), 2.65 (q, J = 7.6 Hz, 2H), 6.05 (s, 1H), 7.71 (d, J = 8.9 Hz, 

1H), 7.91 (dd, J = 8.9 Hz, 2.1 Hz, 1H), 8.30 (s, 1H), 11.81 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 12.7, 26.4, 107.8, 119.4, 122.4 (q, JCF = 4.4 Hz), 123.0 (q, JCF = 32.0 Hz), 123.8, 

124.3 (q, JCF = 272.0 Hz), 127.4 (q, JCF = 3.5 Hz), 142.3, 156.0, 176.3. LC/MS: m/z 242.22 (MH
+
), 

99.4%. 

2-Butyl-6-(trifluoromethyl)quinolin-4(1H)-one (26). Compound 26 was obtained according to 

procedure A1 from 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol) and 26a  (1.58 g, 10.0 mmol) 

after crystallization as a white solid (1.87 g, 6.95 mmol, 69%), mp 225-226 °C. 
1
H-NMR (500 MHz, 

DMSO-d6): δ = 0.88 (t, J = 7.4 Hz, 3H), 1.32 (sextet, J = 7.5 Hz, 2H), 1.63 (quint, J = 7.6 Hz, 2H), 

2.59 (t, J = 7.7 Hz, 2H), 6.02 (s, 1H), 7.70 (d, J = 8.7 Hz, 1H), 7.87 (dd, J = 8.9 Hz, 2.1 Hz, 1H), 

8.30 (s, 1H), 11.80 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.5, 21.6, 30.2, 32.9, 108.7, 

119.5, 122.4 (q, JCF = 4.3 Hz), 123.0 (q, JCF = 32.0 Hz), 123.8, 124.2 (q, JCF = 272.0 Hz), 127.4 (q, 

JCF = 3.5 Hz), 142.2, 154.7, 176.2. LC/MS: m/z 270.28 (MH
+
), 99.7%. 

2-Pentyl-6-(trifluoromethyl)quinolin-4(1H)-one (27). Compound 27 was obtained according to 

procedure A1 from 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol) and methyl 27a (1.72 g, 10.0 

mmol) after crystallization as a white solid (1.23 g, 4.34 mmol 43%), mp 197-198 °C.
 1

H-NMR 

(500 MHz, DMSO-d6): δ = 0.86 (t, J = 7.1 Hz, 3H), 1.28-1.33 (m, 4H), 1.67 (m, 2H), 2.59 (t, J = 

7.7 Hz, 2H), 6.03 (s, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.89 (dd, J = 9.0 Hz, 2.1 Hz, 1H), 8.30 (d, J = 

1.6 Hz, 1H), 11.80 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.7, 21.7, 27.8, 30.6, 33.2, 

108.7, 119.5, 122.4 (q, JCF = 4.3 Hz), 123.0 (q, JCF = 32.0 Hz), 123.8, 124.3 (q, JCF = 272.0 Hz), 

127.4 (q, JCF = 3.4 Hz), 142.3, 154.8, 176.2. LC/MS: m/z 284.27 (MH
+
), 97.2%. 

2-Hexyl-6-(trifluoromethyl)quinolin-4(1H)-one (28). Compound 28  was obtained according to 

procedure A1 from 4-(trifluoromethyl)aniline (1.61 g, 10.0 mmol) and 28a (1.86 g, 10.0 mmol) 

after crystallization as a white solid (1.55 g, 5.22 mmol, 52%), mp 185 °C.
 1

H-NMR (500 MHz, 

DMSO-d6): δ = 0.83 (t, J = 7.1 Hz, 3H), 1.23-1.35 (m, 6H), 1.66 (quint, J = 7.5 Hz, 2H), 2.59 (t, J = 

7.7 Hz, 2H), 6.03 (d, J = 1.2 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.89 (dd, J = 8.9 Hz, 2.2 Hz, 1H), 

8.30 (d, J = 1.7 Hz, 1H), 11.80 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 28.1, 

30.9, 33.2, 108.7, 119.5, 122.4 (q, JCF = 4.6 Hz), 123.0 (q, JCF = 32.0 Hz), 123.8, 124.3 (q, JCF = 

272.0 Hz), 127.4 (q, JCF = 3.6 Hz), 142.3, 154.8, 176.2. LC/MS: m/z 298.32 (MH
+
), 99.5%. 

2-Heptyl-7-(trifluoromethyl)quinolin-4(1H)-one (29). Compound 29  was obtained according to 
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procedure A1 from 3-(trifluoromethyl)aniline (415 mg, 2.58 mmol) and 4a (600 mg, 2.80 mmol) 

after crystallization as a white solid (133 mg, 0.43 mmol, 16%), mp 218-220 °C.
 1

H-NMR (500 

MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 3H), 1.23-1.35 (m, 8H), 1.73 (quint, J = 7.5 Hz, 2H), 2.85 

(t, J = 7.5 Hz, 2H), 6.65 (s, 1H), 7.79 (d, J = 8.5 Hz, 1H), 8.27(s, 1H), 8.36 (d, J = 8.5 Hz, 1H) 

13
C-NMR (125 MHz, DMSO-d6): δ = 13.9, 21.9, 28.3, 28.4, 31.0, 33.4, 107.6, 116.6 (q, JCF = 3.6 

Hz), 120.5(q, JCF = 3.6 Hz), 123.5(q, JCF = 272.0 Hz), 124.0, 126.2, 132.1 (q, JCF = 32.0 Hz), 139.2, 

158.8, 172.6. LC/MS: m/z 311.98 (MH
+
), 99.9%. 

2-Heptyl-8-(trifluoromethyl)quinolin-4(1H)-one (30). Compound 30  was obtained according to 

procedure A1 from 2-(trifluoromethyl)aniline (415 mg, 2.58 mmol) and 4a (600 mg, 2.80 mmol) 

after chromatography on silica gel (CH2Cl2/MeOH, 100/1) as a yellow solid (191 mg, 0.61 mmol, 

24%), mp 85-86 °C.
 1

H-NMR (500 MHz, DMSO-d6): δ = 0.83 (t, J = 7.0 Hz, 3H), 1.22-1.33 (m, 

8H), 1.87 (s, 2H), 2.78 (t, J = 7.5 Hz, 2H), 6.67 (brs, 1H), 7.49 (t, J = 7.5 Hz, 1H), 8.03 (d, J = 7.5 

Hz, 1H), 8.37 (J = 8.0 Hz, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 28.4, 28.5, 31.2, 

122.6 (not all signals of carbons were observed).  LC/MS: m/z 311.99 (MH
+
), 99.3%. 

3-Hydroxy-2-pentylquinolin-4(1H)-one (31). Compound 31 was obtained according to procedure 

A3 from 31a (95 mg, 0.39 mmol) after chromatography on silica gel as a white solid (25 mg, 0.11 

mmol, 28%), mp 259-263 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.93 (t, J = 7.0 Hz, 3H), 

1.37-1.40 (m, 4H), 1.73 (quint, J = 6.5 Hz, 2H), 2.78 (t, J = 7.5 Hz, 2H), 7.27 (quint, J = 9.0 Hz, 

1H), 7.58 (d, J = 3.5 Hz, 2H), 8.14 (d, J = 7.5 Hz, 1H), 11.46 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.8, 21.8, 27.4, 28.0, 30.9, 117.7, 121.4, 122.1, 124.4, 129.9, 135.3, 137.3, 137.7, 

168.8. LC/MS: m/z 232.24 (MH
+
), 96.4%. 

2-Hexyl-3-hydroxyquinolin-4(1H)-one (32). Compound 32 was obtained according to procedure 

A3 from 32a (288 mg, 1.12 mmol) after chromatography on silica gel as a light brown solid (86 mg, 

0.35 mmol, 31%), mp 203-205 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.81 (t, J = 7.0 Hz, 3H), 

1.21-1.32 (m, 6H), 1.62 (quint, J = 7.5 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 7.17 (quint, J = 4.0 Hz, 

1H), 7.49 (d, J = 4.0 Hz, 2H), 8.05 (d, J = 8.0 Hz, 1H), 11.36 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 14.4, 22.5, 28.2, 28.6, 28.9, 31.5, 118.2, 121.9, 122.6, 124.9, 130.4, 135.9, 137.8, 

138.3, 169.3. LC/MS: m/z 246.23 (MH
+
), 98.7%. 

2-Heptyl-3-hydroxyquinolin-4(1H)-one (33). Compound 33 was obtained according to procedure 

A3 from 33a (190 mg, 0.70 mmol) after chromatography on silica gel as a white solid (73 mg, 0.28 

mmol, 40%), mp 195-198 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 3H), 

1.22-1.34 (m, 8H), 1.66 (quint, J = 7.0 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 7.21 (quint, J = 4.0 Hz, 

1H), 7.52 (d, J = 3.5 Hz, 2H), 8.08 (d, J = 8.0 Hz, 1H), 11.41 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.9, 22.0, 27.8, 28.1, 28.4, 28.7, 31.2, 117.7, 121.5, 122.1, 124.4, 129.9, 135.5, 

137.3, 137.8, 168.8. LC/MS: m/z 260.25 (MH
+
), 97.1%. 
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3-Hydroxy-2-octylquinolin-4(1H)-one (34). Compound 34 was obtained according to procedure 

A3 from 34a (243 mg, 0.85 mmol) after chromatography on silica gel as a light brown solid (116 

mg, 0.42 mmol, 49%), mp 192-194 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 

3H), 1.24-1.34 (m, 10H), 1.66 (quint, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 7.21 (quint, J = 4.0 

Hz, 1H), 7.52 (d, J = 4.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 1H), 11.38 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.9, 22.0, 27.7, 28.0, 28.6, 28.7, 28.8, 31.2, 117.7, 121.4, 122.1, 124.4, 129.9, 

135.4, 137.3, 137.8, 168.8. LC/MS: m/z 274.29 (MH
+
), 99.9%. 

3-Hydroxy-2-nonylquinolin-4(1H)-one (35). Compound 35 was obtained according to procedure 

A3 from 35a (240 mg, 0.80 mmol) after chromatography on silica gel as a white solid (113 mg, 

0.42 mmol, 39%), mp 167-169 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 3H), 

1.18-1.35 (m, 12H), 1.66 (quint, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 7.21 (quint, J = 4.0 Hz, 

1H), 7.52 (d, J = 3.5 Hz, 2H), 8.08 (d, J = 8.5 Hz, 1H), 11.38 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.9, 22.0, 27.7, 28.1, 28.6, 28.8, 28.9, 31.2, 117.7, 121.4, 122.1, 124.4, 129.9, 

135.4, 137.3, 137.8, 168.8. LC/MS m/z 288.37 (MH
+
), 99.9%. 

2-Heptyl-3-hydroxy-6-methoxyquinolin-4(1H)-one (36). Compound 36 was obtained according 

to procedure A3 from 36a (210 mg, 0.70 mmol) after chromatography on silica gel as a brown solid 

(79 mg, 0.27 mmol, 38%), mp 211-214 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 

3H), 1.23-1.31 (m, 8H), 1.65 (quint, 2H), 2.71 (t, 2H), 3.82 (s, 3H), 7.18 (dd, J = 2.0 Hz, 6.0 Hz, 

1H), 7.4-7.48 (br, 2H), 11.40 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 22.0, 27.8, 28.1, 

28.4, 28.7, 31.1, 55.2, 102.8, 119.5, 121.2, 122.8, 132.3, 134.8, 137.3, 154.3, 167.8. LC/MS: m/z 

290.24 (MH
+
), 99.9%. 

2-Heptyl-3-hydroxy-7-methoxyquinolin-4(1H)-one (37). Compound 37 was obtained according 

to procedure A3 from 37a (240 mg, 0.80 mmol) after chromatography on silica gel as a brown solid 

(218 mg, 0.75 mmol, 94%), mp 222-224 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 (t, J = 7.0 

Hz, 3H), 1.25-1.31 (m, 8H), 1.65 (m, 2H), 2.68 (m, 2H), 3.83 (s, 3H), 6.82 (d, J = 9.0 Hz, 1 H), 6.91 

(br. 1H), 7.82 (br, 1H), 7.97 (d, J = 9.0 Hz, 1H), 11.18 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): 

δ = 13.8, 22.0, 27.7, 27.9, 28.4, 28.6, 31.1, 55.2, 97.8, 112.5, 116.6, 126.1, 134.3, 137.2, 139.0, 

160.7, 168.7. LC/MS: m/z 290.24 (MH
+
), 99.9%. 

8-Fluoro-2-heptyl-3-hydroxyquinolin-4(1H)-one (38). Compound 38 was obtained according to 

procedure A3 from 38a (68 mg, 0.23 mmol) after chromatography on silica gel as a brown solid (21 

mg, 0.08 mmol, 35%), mp 167-169 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 

3H), 1.23-1.35 (m, 8H), 1.63 (quint, J= 7.5 Hz, 2H), 2.79 (t, J = 7.5 Hz, 2H), 7.16-7.20 (m ,1H), 

7.43-7.46 (m, 1H), 7.91 (d, J = 8.0 Hz, 1H), 8.20 (brs, 1H), 11.93 (s 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.893, 22.023, 27.710, 27.998, 28.428, 28.823, 31.181, 114.1, 114.2, 117.1, 117.7, 
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120.2, 120.3, 121.0, 124.4,125.9, 125.9, 126.6, 126.8, 136.4, 138.5, 151.4(d, JCF = 247.8 Hz), 168.3. 

LC/MS: m/z 278.23, 99.0%. 

6-Fluoro-2-heptyl-3-hydroxyquinolin-4(1H)-one (39). Compound 39 was obtained according to 

procedure A3 from 39a (172 mg, 0.59 mmol) after chromatography on silica gel as a pink solid 

(140 mg, 0.50 mmol, 85%), mp 228-231 °C.
 1

H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 

Hz, 3H), 1.24-1.32 (m, 8H), 1.66 (quint, J = 6.5 Hz, 2H), 2.72 (t, J = 6.5 Hz, 2H), 7.44 (t, J = 6.5 

Hz, 1H), 7.60 (brs, 1H), 7.70 (dd, J = 3.0 Hz, 6.5 Hz, 1H), 8.13 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.8, 22.0, 27.7, 28.1, 28.4, 28.7, 31.1, 107.8 (d, JCF = 21.9 Hz), 119.1(d, JCF = 25.8 

Hz), 120.4(d, JCF = 8.2 Hz), 122.9(d, JCF = 6.8 Hz), 134.1, 136.1, 137.5, 157.2 (d, JCF = 240.1 Hz), 

167.9, 167.9. LC/MS: m/z 278.22 (MH
+
), 99.9%. 

2-Heptyl-3-hydroxy-6-methylquinolin-4(1H)-one (40). Compound 40 was obtained according to 

procedure A3 from 40a (150 mg, 0.52 mmol) after chromatography on silica gel as a white solid 

(118 mg, 0.43 mmol, 83%), mp 221-222 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.95 (t, J = 7.0 

Hz, 3H), 1.34-1.45 (m, 8H), 1.76 (quint, J = 7.5 Hz, 2H), 2.50 (s, 3H), 2.82 (t, J= 7.5 Hz, 2H), 7.47 

(dd, J = 2.0 Hz, 8.5 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.98 (s, 1H) 11.46 (br, 1H). 
13

C-NMR (125 

MHz, DMSO-d6): δ = 13.8, 20.6, 22.0, 27.7, 28.4, 28.7, 31.1, 117.6, 122.0, 123.3, 130.6, 131.6, 

135.2, 135.5, 137.6, 168.4. LC/MS: m/z 274.32 (MH
+
), 95.4%. 

2-Heptyl-3-hydroxy-6-iodoquinolin-4(1H)-one (41). Compound 41 was obtained according to 

procedure B from 1-chlorononan-2-one (192 mg, 1.10 mmol) and 2-amino-5-iodobenzoic acid (288 

mg, 1.10 mmol) after recrystallisation as a grey solid (70 mg, 0.18 mmol, 16%), mp 275-279 °C. 

1
H-NMR (500 MHz, DMSO-d6): δ = 0.83 (t, J = 7.0 Hz, 3H), 1.23-1.31 (m, 8H), 1.64 (quint, J = 

7.5 Hz, 2H), 2.70 (t, J= 7.5 Hz, 2H), 7.36 (d, J = 6.0 Hz, 1H), 7.77 (dd, J = 2.0 Hz, 8.5 Hz, 1H), 

8.38 (d, J = 2.5 Hz, 1H) 11.57 (brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 27.6, 

28.1, 28.3, 28.6, 31.1, 85.6, 120.2, 124.1, 132.8, 136.2, 136.3, 137.8, 138.2, 167.4. LC/MS: m/z 

386.19 (MH
+
), 99.1%. 

2-Heptyl-3-hydroxybenzo[g]quinolin-4(1H)-one (42). Compound 42 was obtained according to 

procedure B from 1-chlorononan-2-one (192 mg, 1.10 mmol) and 3-amino-2-naphthoic acid (151 

mg, 1.10 mmol) after chromatography on silica gel as a yellow solid (15mg, 0.05 mmol, 4%), mp 

250-253 °C. 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.90 (t, J = 7.0 Hz, 3H), 1.29-1.49 (m, 8H), 1.84 

(quint, J = 7.5 Hz, 2H), 2.95 (t, J= 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 

7.92 (d, J = 8.5 Hz, 1H), 8.05 (m, 2H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 14.3, 23.6, 29.3, 30.1, 

30.2, 30.5, 32.8, 114.9, 123.5, 125.6, 126.0, 128.0, 128.6, 130.1, 130.6, 135.7, 142.6, 171.6. LC/MS: 

m/z 310.35 (MH
+
), 96.6%. 

For synthesis of compounds 18-20 see the experimental procedures of the paper. 

Compounds 22, 23 and 25 were commercially available. 
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Syntheses of the Intermediates 2a-7a, 27a-28a and 31a-40a 

Procedure D.  

Sythesis of ethyl β-ketoester. To a THF solution of 2M LDA (20 ml, 40 mmol 2.4 equiv) was added 

ethyl acetoacetate (16.6 mmol, 1.0 equiv) at 0 °C. The deep yellow clear solution was stirred at 0 °C 

for 1 h. To this solution the alkyl halide was added (20.0 mmol 1.2 equiv) at -78 °C. The 

temperature was allowed to reach an ambient temperature over 14 h and the solution was stirred at 

r.t. for 2 h. To the solution was added 10% HCl (200 ml) and the mixture was extracted with Et2O 

(4 × 250 ml). The combined organic layers were dried over Na2SO4, filtered, and the filtrate was 

concentrated in vacuo. The residue was purified by column chromatography (n-hexane/ethyl acetate, 

30/1) to give ethyl β-ketoester (Nguyen et al., 2006). 

Procedure E.  

Sythesis of methyl β-ketoester. A solution of methyl akylnyl ester (30.0 mmol, 1 equiv) and 

piperidine (30.0 mmol, 1 equiv) in benzene (10 ml) was heated overnight under reflux. After 

evaporation of the solvent under reduced pressure the residue was purified by flash column 

chromatography on silica (ethyl acetate/n-hexanes 15/85) twice to yield methyl β-ketoester 

(Bestmann et al., 1977). 

Ethyl 3-oxooctanoate (2a). Compound 2a was obtained according to procedure D from ethyl 

acetoacetate (2.57 g, 16.60 mmol) and 1-iodobutane (3.68 g, 19.89 mmol) after chromatography on 

silica gel as a yellow oil (811 mg, 4.36 mmol, 26%). 
1
H-NMR (500 MHz, CDCl3): δ = 0.82 (t, J = 

7.0 Hz, 3H), 1.17-1.28 (m, 7H), 1.53 (quint, J = 7.5 Hz, 2H), 2.46 (t, J = 7.5 Hz, 2H), 3.35 (s, 2H), 

4.12 (q, J = 8.0 Hz 2H). 
13

C-NMR (125 MHz, CDCl3): δ = 13.8, 14.0, 22.3, 23.1, 31.1, 42.9, 49.2, 

61.2, 167.2, 202.9. LC/MS: m/z 344.39, 93.3%. 

Ethyl 3-oxononanoate (3a). Compound 3a was obtained according to procedure D from 

ethylacetoactate (2.57 g, 16.60 mmol) and 1-iodopentane (3.96 g, 20.00 mmol) after 

chromatography on silica gel as a yellow oil (1.69 g, 9.08 mmol, 55%). 
1
H-NMR (500 MHz, 

CDCl3): δ = 0.81 (t, J = 7.0 Hz, 3H), 1.19-1.25 (m, 9H), 1.52 (quint, J = 7.5 Hz, 2H), 2.46 (t, J = 7.5 

Hz, 2H), 3.35 (s, 2H), 4.11 (m, 2H). 
13

C-NMR (125 MHz, CDCl3): δ = 13.9, 14.0, 22.4, 23.4, 28.6, 

31.5, 43.0, 49.2, 61.2, 167.2, 202.9. LC/MS: m/z 372.44, 94.1%. 

Ethyl 3-oxodecanoate (4a). Compound 4a was obtained according to procedure D from 

ethylacetoactate (2.16 g, 16.60 mmol) and 1-iodohexane (4.20 g, 19.81 mmol) after 

chromatography on silica gel as a yellow oil (1.98 g, 9.24 mmol, 55%). 
1
H-NMR (500 MHz, 

CDCl3): δ = 0.84 (t, J = 7.0 Hz, 3H), 1.23-1.28 (m, 11H), 1.54 (quint, J = 7.0 Hz, 2H), 2.49 (t, J = 

7.0 Hz, 2H), 3.39 (s, 2H), 4.16 (m, 2H). 
13

C-NMR (125 MHz, CDCl3): δ = 13.9, 14.0, 22.5, 23.4, 

28.9, 31.5, 43.0, 49.2, 61.2, 167.2, 202.9. LC/MS: m/z 457.98, 87.1%. 

Ethyl 3-oxoundecanoate (5a). Compound 5a was obtained according to procedure D from 

ethylacetoactate (2.57 g, 16.60 mmol) and 1-iodoheptane (4.48 g, 19.83 mmol) after 
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chromatography on silica gel as a yellow oil (1.74 g, 7.65 mmol, 46%). 
1
H-NMR (500 MHz, 

CDCl3): δ = 0.80 (t, J = 7.0 Hz, 3H), 1.19-1.25 (m, 13H), 1.52 (quint, J = 7.5 Hz, 2H), 2.45 (t, J = 

7.5 Hz, 2H), 3.35 (s, 2H), 4.12 (q, J = 7.5 Hz, 2H). 
13

C-NMR (125 MHz, CDCl3): δ = 14.0, 14.0, 

22.6, 23.4, 29.0, 29.0, 29.2, 31.7, 43.0, 49.3, 61.3, 167.2, 202.9. LC/MS: m/z 237.31, 99.9%. 

Ethyl 3-oxododecanoate (6a). Compound 6a was obtained according to procedure D from 

ethylacetoactate (2.57 g, 16.60 mmol) and 1-iodooctane (7.40 g, 20.00 mmol) after chromatography 

on silica gel as a yellow oil (2.50 g, 10.33 mmol, 62%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 (t, 

J = 7.0 Hz, 3H), 1.16-1.28 (m, 15H), 1.45 (quint, J = 7.0 Hz, 2H), 2.49 (t, J = 7.0 Hz, 2H, 

overlapped with peak of solution), 3.55 (s, 2H), 4.08 (q, J = 7.0 Hz, 2H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.8, 13.9, 22.0, 22.8, 28.3, 28.6, 28.7, 28.8, 31.2, 42.1, 48.7, 60.4, 167.2, 203.5. 

LC/MS: m/z 372.41, 96.4%. 

Ethyl 3-oxo-6-phenylhexanoate (7a). To a stirred solution of 4-phenylbutyric acid (800 mg, 4.88 

mmol, 1 equiv) and SOCl2 (4 ml, 54.69 mmol, 11.2 equiv) was added pyridine (0.3 ml, 3.71 mmol, 

0.76 equiv). The solution was stirred at room temperature for 30 min and at 40 °C for an additional 

1 h before it was concentrated to give 4-phenylbutanoylchloride as a yellow oil, which was used in 

the next step without further purification (Muhlman et al., 2001). Under a nitrogen atmosphere 

monoethyl malonate (1.20 g, 9.09 mmol) and 2,2'-bipyridyl (8 mg, as an indicator) were added to a 

solution of THF (25 ml). After cooling to -70 °C, n-butyllithium (1.6 M, in n-hexane, 12 ml, 19.2 

mmol) was added slowly while allowing the temperature to rise to ca. -5 °C near the end of the 

addition. After the pink color persisted at -5 °C the heterogeneous solution was recooled to -70 °C 

and 4-phenylbutanoylchloride (4.88 mmol) was added over 5 min. Stirring was continued at -70 °C 

for 1 h. The reaction solution was poured into a mixture of ether (40 ml) and HCl (1.0 M, 20 ml). 

After mixing and separating the aqueous phase, the organic phase was washed with saturated 

sodium bicarbonate and water, dried over Na2SO4, and concentrated in vacuo to yield 7a (150 mg, 

0.64 mmol, 13%) as a yellow oil (Wierenga et al., 1979). 
1
H-NMR (500 MHz, DMSO-d6): δ = 1.14 

(t, J = 7.0 Hz, 3H), 1.73 (quint, J = 7.5 Hz, 2H), 2.50 (q, J = 7.5 Hz, 4H), 3.28 (s, 1H), 3.52 (s, 2H), 

4.04 (q, J = 7.0 Hz, 2H), 7.13-7.15 (m, 3H), 7.23-7.26 (m, 2H). 
13

C-NMR (125 MHz, DMSO-d6): δ 

= 13.9, 24.6, 34.2, 41.5, 48.7, 60.4, 125.7, 128.2, 141.5, 167.2, 203.3. LC/MS: m/z 415.26, 97.7%.  

Methyl 3-oxooctanoate ester (27a). Compound was obtained according to procedure E from 

methyl 2-octynoate (4.63 g, 30.0 mmol) after chromatography on silica gel as a colorless oil (3.00 g, 

17.44 mmol, 58%).  
1
H-NMR (500 MHz, CDCl3): δ = 0.88 (t, J = 7.1 Hz, 3H), 1.29 (m, 4H), 1.59 

(m, 2H), 2.52 (t, J = 7.4 Hz, 2H), 3.44 (s, 2H), 3.73 (s, 3H). 

Methyl 3-oxononanoate (28a). Compound was obtained according to procedure E from methyl 

2-nonynoate (5.05 g, 30 mmol) after chromatography on silica gel as a colorless oil (2.96 g, 15.91 

mmol, 53%). 
1
H-NMR (500 MHz, CDCl3): δ = 0.85 (t, J = 6.9 Hz, 3H), 1.25 (m, 6H), 1.56 (m, 2H), 
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2.50 (t, J = 7.4 Hz, 2H), 3.42 (s, 2H), 3.71 (s, 3H). 

4-Oxo-2-pentyl-1,4-dihydroquinoline-3-carbaldehyde (31a). Compound 31a was obtained 

according to procedure A2 from 2 (224 mg, 1.03 mmol) after chromatography on silica gel as a 

yellow solid (105 mg, 0.43 mmol, 42%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.88 (t, J = 7.0 Hz, 

3H), 1.32-1.37 (m, 4H), 1.60 (quint, J = 7.5 Hz, 2H), 3.04 (t, J= 7.5 Hz, 2H), 7.42 (t, J = 7.0 Hz, 

1H), 7.59 (d, J = 8.0 Hz, 1H), 7.73 (m, 1H), 8.14 (dd, J = 1.5 Hz, 8.5 Hz, 1H), 10.38 (s, 1H), 12.11 

(brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.7, 21.7, 28.4, 31.1, 314, 113.3, 118.7, 124.9, 

126.1, 133.0, 139.1, 160.0, 178.0, 190.7. LC/MS: 244.23 (MH
+
), 99.9% 

2-Hexyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (32a). Compound 32a was obtained 

according to procedure A2 from 3 (500 mg, 2.18 mmol) after chromatography on silica gel as a 

yellow solid (298 mg, 1.16 mmol, 53%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.86 (t, J = 7.0 Hz, 

3H), 1.27-1.41 (m, 6H), 1.59 (quint, J = 7.5 Hz, 2H), 3.04 (t, J= 8.0 Hz, 2H), 7.42 (t, J = 8.0 Hz, 

1H), 7.59 (d, J = 8.0 Hz, 1H), 7.73 (m, 1H), 8.14 (dd, J = 1.0 Hz, 8.0 Hz, 1H) 10.38 (s, 1H) 12.13 

(brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.8, 21.9, 28.6, 28.7, 30.8, 31.5, 113.3, 118.6, 

124.9, 126.1, 133.0, 139.1, 160.0, 178.0, 190.7. LC/MS: 258.24 (MH
+
), 99.9% 

2-Heptyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (33a). Compound 33a was obtained 

according to procedure A2 from 4 (500 mg, 2.06 mmol) after chromatography on silica gel as a 

yellow solid (310 mg, 1.14 mmol, 55%). Compound 33a was unstable, decomposition was 

observed in 
1
H-NMR test. LC/MS: 272.22 (MH

+
), 99.9%. 

2-Octyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (34a). Compound 34a was obtained 

according to procedure A2 from 5 (500 mg, 1.94 mmol) after chromatography on silica gel as a 

yellow solid (243 mg, 0.85 mmol, 44%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 

3H), 1.15-1.40 (m, 10H), 1.59 (quint, J = 7.5 Hz, 2H), 3.06 (t, J= 8.0 Hz, 2H), 7.42 (t, J = 8.0 Hz, 

1H), 7.59 (d, J = 8.0 Hz, 1H), 7.73 (m, 1H), 8.14 (dd, J = 1.5 Hz, 8.5 Hz, 1H), 10.38 (s, 1H), 12.11 

(brs, 1H).
 13

C-NMR (125 MHz, DMSO-d6): δ = 13.9, 22.0, 28.5, 28.6, 28.8, 29.0, 31.2, 31.5, 113.3, 

118.6, 124.9, 126.1, 133.0, 139.1, 160.0, 178.1, 190.8. LC/MS: 286.29 (MH
+
), 99.9%. 

2-Nonyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (35a). Compound 35a was obtained 

according to procedure A2 from 6 (500 mg, 1.84 mmol) after chromatography on silica gel as a 

yellow solid (252 mg, 0.84 mmol, 46%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.84 (t, J = 7.0 Hz, 

3H), 1.24-1.27 (m, 12H), 1.59 (quint, J = 7.5 Hz, 2H), 3.04 (t, J= 7.5 Hz, 2H), 7.42 (t, J = 8.0 Hz, 

1H), 7.59 (d, J = 8.0 Hz, 1H), 7.73 (m, 1H), 8.14 (dd, J = 1.5 Hz, 8.5 Hz, 1H), 10.38 (s, 1H), 12.11 

(brs, 1H). 
13

C-NMR (125 MHz, DMSO-d6): δ = 13.9, 22.0, 28.6, 28.6, 28.8, 28.9, 31.3, 113.3, 118.6, 

124.9, 126.1, 133.0, 139.1, 160.0, 178.0, 190.7. LC/MS: 300.28 (MH
+
), 98.3%. 

2-Heptyl-6-methoxy-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (36a). Compound 36a was 

obtained according to procedure A2 from 14 (350 mg, 1.28 mmol) after chromatography on silica 
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gel as a yellow solid (210 mg, 0.70 mmol, 54%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.85 (t, J = 

7.0 Hz, 3H), 1.25-1.38 (m, 8H), 1.58 (quint, J = 7.5 Hz, 2H), 3.02 (t, J = 8.0 Hz, 2H), 3.85 (s, 3H), 

7.36 (dd, J = 3.0 Hz, 9.0 Hz, 1H), 7.54-7.56 (m, 2H), 10.39 (s, 1H), 12.10 (brs, 1H). 
13

C-NMR (125 

MHz, DMSO-d6): δ =13.8, 22.0, 28.3, 28.8, 28.9, 31.1, 31.5, 55.4, 104.9, 112.5, 120.4, 122.6, 127.4, 

133.5, 156.6, 158.4, 177.5, 190.7. LC/MS: 302.25 (MH
+
), 99.9%. 

2-Heptyl-7-methoxy-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (37a).Compound 37a was 

obtained according to procedure A2 from 9 (580 mg, 2.13 mmol) after chromatography on silica gel 

as a yellow solid (250 mg, 0.83 mmol, 39%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 1.06 (t, J = 7.0 

Hz, 3H), 1.46-1.59 (m, 8H), 1.79 (quint, J = 7.5 Hz, 2H), 3.22 (t, J= 7.5 Hz, 2H), 4.08 (s, 3H), 

7.18-7.22 (m, 2H), 8.24 (d, J = 7.5 Hz, 1H), 10.56 (s, 1H), 12.15 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.8, 21.9, 28.2, 28.7, 28.9, 31.0, 31.4, 55.5, 100.2, 113.1, 114.2, 120.0, 126.8, 

140.9, 159.9, 162.7, 177.4, 190.8, 190.9. LC/MS: 302.22 (MH
+
), 99.9%. 

8-Fluoro-2-heptyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (38a). Compound 38a was 

obtained according to procedure A2 from 12 (305 mg, 1.17 mmol) after chromatography on silica 

gel as a yellow solid (68 mg, 0.23 mmol, 20%).Compound 27a was unstable, decomposition was 

observed in 
1
H-NMR test. LC/MS: 264.17 (MH

+
), 98.0%. 

6-Fluoro-2-heptyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (39a). Compound 39a was 

obtained according to procedure A2 from 16 (290 mg, 1.11 mmol) after chromatography on silica 

gel as a yellow solid (182 mg, 0.63 mmol, 56%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.86 (t, J = 

7.0 Hz, 3H), 1.23-1.42 (m, 8H), 1.60 (quint, J = 7.5 Hz, 2H), 3.04 (t, J= 7.5 Hz, 2H), 7.62-7.69 (m, 

2H), 7.80 (dd, J = 3.0 Hz, 9.5 Hz, 1H) 10.38 (s, 1H), 12.26 (brs, 1H). 
13

C-NMR (125 MHz, 

DMSO-d6): δ = 13.8, 21.9, 28.2, 28.7, 28.9, 31.0, 31.6, 109.5, 111.9, 112.7, 121.5, 127.6, 136.0, 

158.9 (d, JCF = 244.1 Hz), 177.2, 190.6. LC/MS: 290.22 (MH
+
), 95.7%. 

2-Heptyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde (40a). Compound 40a was 

obtained according to procedure A2 from 15 (300 mg, 1.17 mmol) after chromatography on silica 

gel as a yellow solid (161 mg, 0.56 mmol, 48%). 
1
H-NMR (500 MHz, DMSO-d6): δ = 0.93 (t, J = 

7.0 Hz, 3H), 1.30-1.48 (m, 8H), 1.66 (quint, J = 7.5 Hz, 2H), 2.50 (s, 3H), 3.10 (t, J = 8.0 Hz, 2H), 

7.57 (d, J = 8.0 Hz, 1H), 7.64 (dd, J = 2.0 Hz, 8.5 Hz, 1H), 8.01 (s, 1H), 10.458 (s, 1H). 
13

C-NMR 

(125 MHz, DMSO-d6): δ = 13.8, 20.7, 21.9, 28.2, 28.8, 28.9, 31.0, 31.5, 113.1, 118.6, 124.3, 126.1, 

134.2, 134.5, 137.1, 159.4, 177.9, 190.7. LC/MS: 286.33 (MH
+
), 99.7%. 

Intermediates 1a, 24a and 26a were commercially available. 
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6.2 Supplemental Information for Paper II 

 

General Experimental Information-Chemistry 

 

Chemicals and Analytical Methods 

1
H and 

13
C NMR spectra were recorded on a Bruker DRX-500 instrument. Chemical shifts are 

given in parts per million (ppm) with the solvent resonance as internal standard for spectra obtained 

in CDCl3, MeOH-d4 and DMSO-d6. All coupling constants (J) are given in hertz. Mass 

spectrometry (LC/MS) was performed on a MSQ
®

 electro spray mass spectrometer (Thermo Fisher). 

The system was operated by the standard software Xcalibur®. A RP C18 NUCLEODUR
®
 100-5 

(125  3 mm) column (Macherey-Nagel GmbH) was used as stationary phase with 

water/acetonitrile mixtures as eluent. All solvents were HPLC grade. Reagents were used as 

obtained from commercial suppliers without further purification. Flash chromatography was 

performed on silica gel 60, 70-230 mesh (Fluka) and the reaction progress was determined by 

thin-layer chromatography (TLC) analyses on silica gel 60, F254 (Merck). Visualization was 

accomplished with UV light and staining with basic potassium permanganate (KMnO4). The 

melting points were measured using melting point apparatus SMP3 (Stuart Scientific). The 

apparatus is uncorrected. 

The following compounds were prepared according to previously described procedures: HHQ, 

PQS, 1 and 7.
[1] 

 

Synthesis of Title Compounds 

 

2-Heptyl-3-hydroxy-6-nitroquinolin-4(1H)-one (compound 2). 

A solution of 4 (200 mg, 0.63 mmol, 1.0 equiv) in dry THF (50 mL) was added dropwise to pure 

activated MnO2 (540 mg, 6.21 mmol, 9.9 equiv) at room temperature. The mixture was then stirred 

overnight. After filtration through Celite the solvent was removed under reduced pressure and the 

residue was purified by column chromatography on silica gel (dichloromethane:methanol, 80:1 v/v) 

to give 2-heptyl-6-nitro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde as a yellow solid (80 mg, 0.25 

mmol), which was unstable and used immediately in the next step. Boric acid (80 mg, 1.30 mmol, 

5.0 equiv) was suspended in THF (20 mL), followed by the addition of 30% H2O2 (90 µL, 3.0 

equiv) and conc. H2SO4 (0.5 mL). After stirring for 30 min a solution of the aldehyde (80 mg, 0.25 

mmol) in THF (10 mL) was added dropwise over 10 min. After additional stirring for 5 h, the 

mixture was filtered. The filtrate was neutralized by addition of a sat. NaHCO3 solution (120 mL) 

and the aqueous layer was extracted with ethyl acetate (3 x 30 mL). After drying of the combined 
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organic layers over MgSO4 the solvent was removed under reduced pressure. The residue was 

purified by preparative thin layer chromatography on silica gel (dichloromethane:methanol, 30:1 

v/v) to give 2 as a yellow solid (60 mg, 0.20 mmol, 32% for 2 steps). mp: 217.1-219.7 °C; 
1
H-NMR 

(500 MHz, DMSO-d6): δ 0.85 (t, J = 7.0 Hz, 3H), 1.24-1.39 (m, 8H), 1.67 (quint, J = 7.5 Hz, 2H), 

2.74 (t, J = 7.5 Hz, 2H), 7.70 (d, J = 9.0 Hz, 1H), 8.29 (dd, J = 2.5, 9.0 Hz, 1H), 8.71 (br, 1H), 8.90 

(d, J = 2.5 Hz, 1H), 11.99 (br, 1H); 
13

C-NMR (125 MHz, DMSO-d6): δ 13.9, 22.0, 27.6, 28.0, 28.4, 

28.7, 31.1, 119.5, 121.1, 121.8, 123.8, 136.8, 139.2, 140.2, 141.4, 169.2; LC/MS: m/z 305.03 [M + 

H]
+
, 99.9%.

[1]
 

2-Heptyl-6-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxamide (compound 3). 

N,N’-Carbonyldiimidazole (62 mg, 0.38 mmol, 2.0 equiv) was added to 5 (62 mg, 0.19 mmol, 1.0 

equiv) in dry DMF (1 mL). After stirring at 65 °C for 5 h, the mixture was cooled to 0 °C and iced 

conc. NH3•H2O (5 mL) was added. After stirring overnight at room temperature the solvent was 

evaporated under reduced pressure. To the residue was added iced water (5 mL) and the pricipitate 

was isolated by filtration. After purification by column chromatography on silica gel 

(dichloromethane:methanol, 70:1 v/v) 3 was isolated as a white solid (43 mg, 0.13 mmol, 68%), 

mp: 237.6-239.1 °C; 
1
H-NMR (500 MHz, DMSO-d6): δ 0.86 (t, J = 7.0 Hz, 3H), 1.23-1.39 (m, 8H), 

1.69 (quint, J = 7.5 Hz, 2H), 3.00 (t, J = 8.0 Hz, 2H), 7.36 (br, 1H), 7.76 (d, J = 9.0 Hz, 1H), 8.45 

(dd, J = 2.5, 9.0 Hz, 1H), 8.54 (br, 1H), 8.86 (d, J = 2.5 Hz, 1H), 12.30 (br, 1H); 
13

C-NMR (125 

MHz, DMSO-d6): δ 13.9, 22.0, 28.3, 29.0, 29.2, 31.1, 32.7, 115.3, 119.9, 121.9, 123.9, 126.4, 142.4, 

143.1, 157.7, 166.7, 175.0; LC/MS: m/z 332.92 [M + H]
+
, 96.8%.

[2]
 

2-Heptyl-3-(hydroxymethyl)-6-nitroquinolin-4(1H)-one (compound 4). 

At 0 °C LiAlH4 (90 mg, 2.37 mmol, 2.0 equiv) was added to a stirred solution of 6 (420 mg, 1.17 

mmol, 1.0 equiv) in dry THF (20 mL). After stirring at room temperature for 2 h water (8 drops) 

and NaOH (2 drops, 15%) were added at 0 °C and after filtration the solvent was removed under 

reduced pressure. The residue was purified by column chromatography (dichloromethane:methanol, 

60:1 v/v) and washed with n-hexane to give 4 as a yellow solid (35 mg, 0.11 mmol, 9%), mp: 

>350 °C; 
1
H-NMR (500 MHz, DMSO-d6): δ 0.86 (t, J = 7.0 Hz, 3H), 1.23-1.42 (m, 8H), 1.70 (quint, 

J = 7.5 Hz, 2H), 2.77 (t, J = 7.5 Hz, 2H), 4.48 (d, J = 5.5 Hz, 2H), 4.68 (t, J = 5.5 Hz, 1H), 7.70 (d, 

J = 9.0 Hz, 1H), 8.39 (dd, J = 2.5, 9.0 Hz, 1H), 8.84 (d, J = 3.0 Hz, 1H), 11.93 (br, 1H); 
13

C-NMR 

(125 MHz, DMSO-d6): δ 13.9, 22.0, 28.4, 29.0, 29.2, 31.1, 53.4, 119.6, 119.9, 121.9, 122.9, 125.6, 

142.3, 143.2, 153.9, 175.6; LC/MS: m/z 319.06 [M + H]
+
, 99.9%.

[3]
 

2-Heptyl-6-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (compound 5). 

6 (250 mg, 0.69 mmol) was suspended in 10% NaOH (50 mL) solution and heated at reflux for 4 h. 

After cooling to 0 °C on an ice water bath and extraction with ethyl acetate, the water phase was 

acidified with conc. HCl to reach a pH of 4.0-6.0. 5 was isolated by filtration, washed with water 
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and dried under vacuum as a gray solid (32 mg, 0.10 mmol, 14%). mp: 192.7-194.9 °C; 
1
H-NMR 

(500 MHz, DMSO-d6): δ 0.86 (t, J = 7.0 Hz, 3H), 1.27-1.44 (m, 8H), 1.67 (quint, J = 7.5 Hz, 2H), 

3.26 (t, J = 7.5 Hz, 2H), 7.91 (d, J = 9.0 Hz, 1H), 8.58 (dd, J = 2.5, 9.0 Hz, 1H), 8.90 (d, J = 2.5 Hz, 

1H), 13.22 (br, 1H), 15.64 (br, 1H); 
13

C-NMR (125 MHz, DMSO-d6): δ 13.9, 22.0, 28.3, 29.1, 31.1, 

33.3, 107.6, 120.8, 121.5, 122.7, 127.7, 141.6, 144.2, 163.9, 165.4, 178.6; LC/MS: m/z 332.90 [M + 

H]
+
, 98.8%. 

Ethyl 2-heptyl-6-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylate (compound 6). 

Under nitrogen atmosphere 7 (3.40 g, 15 mmol, 1.0 equiv) was added to a suspension of sodium 

hydride (50-65% w/w, 0.75 g, 15 mmol, 1.0 equiv) in dry DMF (50 mL), causing the liberation of 

hydrogen gas. A solution of 6-nitro-1H-benzo[d][1,3]oxazine-2,4-dione (3.0 g, 14 mmol, 0.9 equiv) 

in dry DMF (30 mL) was added dropwise and stirred overnight. Most of the solvent was removed 

under reduced pressure and the remaining solvent treated with 1M HCl, yielding the crude product 

as a yellow solid. After recrystallization from ethyl acetate/methanol 6 was isolated as a yellow 

solid (1.8 g, 5.71 mmol, 41%). mp: 239.6-241.8 °C; 
1
H-NMR (500 MHz, MeOH-d4): δ 0.91 (t, J = 

7.0 Hz, 3H), 1.29-1.47 (m, 11H), 1.78 (quint, J = 7.5 Hz, 2H), 2.80 (t, J = 8.0 Hz, 2H), 4.39 (q, J = 

8.0 Hz, 2H), 7.72 (d, J = 9.0 Hz, 1H), 8.49 (dd, J = 2.5, 9.0 Hz, 1H), 9.04 (d, J = 2.5 Hz, 1H); 

13
C-NMR (125 MHz, MeOH-d4): δ 14.4, 14.6, 23.3, 30.3, 30.5, 30.6, 32.8, 33.8, 62.6, 117.6, 120.8, 

123.1, 125.4, 127.8, 144.3, 145.4, 156.8, 167.8, 176.4. LC/MS; m/z 360.77 [M + H]
+
, 96.3%.

[4]
 

 

General Experimental Information-Biology 

 

Chemicals, Bacterial Strains, and Media 

Yeast extract was purchased from Fluka (Neu-Ulm, Germany), peptone from casein from Merck 

(Darmstadt, Germany), Bacto™ Tryptone from BD Biosciences (Heidelberg, Germany), and 

Gibco
®
 phosphate-buffered saline (PBS) from Life Technologies (Darmstadt, Germany). Salts and 

organic solvents of analytical grade were obtained from VWR (Darmstadt, Germany). 

P. aeruginosa strain PA14 (PA14), the isogenic pqsH and pqsA transposon mutants, and the 

isogenic pqsR knockout mutant were stored in glycerol stocks at - 80 °C. 

The following media were used: Luria Bertani broth (LB), PPGAS medium,
[5]

 and modified M9 

minimal medium (20 mM NH4Cl; 12 mM Na2HPO4; 22 mM KH2PO4; 8.6 mM NaCl; 1 mM, 

MgSO4; 1 mM CaCl2; 11 mM glucose).
[6]

 

 

Reporter Gene Assay in E. coli 

The ability of the compounds to either stimulate or antagonize the PqsR-dependent transcription 

was analysed as previously described
[1]

 using a β-galactosidase reporter gene assay in E. coli 
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expressing PqsR. Briefly, a culture of E. coli DH5α cells containing the plasmid pEAL08-2, which 

encodes PqsR under the control of the tac promoter and the β-galactosidase reporter gene lacZ 

controlled by the pqsA promoter, were co incubated with test compound. Antagonistic effects of 

compounds were assayed in the presence of 50 nM PQS. After incubation, β- galactosidase activity 

was measured spectralphotometrically at OD420nm using POLARstar Omega (BMG Labtech, 

Ortenberg, Germany) and expressed as percent stimulation of controls. For the determination of 

IC50 values, compounds were tested at least at eight different concentrations. The given data 

represent mean values of two experiments with n = 4. 

 

Reporter Gene Assay in P. aeruginosa 

In order to study the antagonistic and agonistic properties of compounds 1, 2 and 3 in P. aeruginosa, 

the PqsR-dependent transcription was evaluated using a β-galactosidase reporter gene assay system. 

A PA14 strain carrying a non-functional pqsA gene to eliminate intracellular HHQ and PQS 

production was transformed with the plasmid pEAL08-2 and incubated with test compound in the 

presence or absence of 50 nM PQS and proceeded analogously to reporter gene assay in E. coli.  

 

Measurement of Compound 2 Levels 

In order to strengthen the theory of a possible biotransformation of the antagonistic compound 1 

levels of compound 2 produced by P. aeruginosa were investigated for PA14, pqsA and pqsH 

mutants. Cultures were inoculated with a starting OD600 = 0.1 in 100 mL Erlenmeyer flasks 

containing 50 mL LB medium. DMSO as a control or a DMSO solution of 1 (5 µM) was added to 

the cultures to a final DMSO concentration of 0.5%. The flasks were incubated at 37 °C, 200 rpm 

for 16 h. Every 60 min, samples of 995 µL of each culture were taken and supplemented with 15 µL 

of methanol containing 50 µM of the internal standard (HHQ-d4). The cells were lysed via 

sonification (amplitude 80%, 1 min) and compound 2 was extracted with 995 µL of ethyl acetate for 

1 min. After centrifugation (42,000 g, 2 min) 800 µL of the organic phase were transferred to a 

glass vial for vacuum evaporation. The residues were redissolved in 200 µL of methanol and 

subjected to UHPLC-MS/MS analysis. For each sample, cultivation and extraction were performed 

in triplicates.  

 

UHPLC-MS/MS Analysis of Extracted Compound 2 Levels 

UHPLC-MS/MS analysis was carried out on a TSQ Quantum Access Max mass spectrometer 

equipped with an HESI-II source and a triple quadrupole mass detector (Thermo Scientific, 

Dreieich, Germany). For analysis of compound 2, the following chromatographic conditions were 

used: 0.00-1.20 min, solvent gradient from 60% A up to 99% A, 1.21-1.80 min, isocratic 99% A, 
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1.81-2.00 min 60% A. Monitored ions were (mother ion [m/z], product ion [m/z], scan time [s], 

scan width [m/z], collision energy [V], tube lens offset [V], polarity): compound 2: 303.088, 

217.959, 0.2, 0.010, 32, 114, negative; internal standard (HHQ-d4): 248.340, 163.360, 0.2, 0.010, 32, 

113, positive. Samples were injected with a volume of 25 µL. The mobile phase consisted of 

acetonitrile containing 1‰ TFA (v/v; A) and 10 mM ammonium acetate buffer containing 1‰ TFA 

(v/v; B) and a flow rate of 0.8 mL/min. Xcalibur software was used for data acquisition and 

quantification using a calibration curve relative to the area of the IS. 

 

Determination of Extracellular HHQ and PQS Levels 

For determination of extracellular levels of HHQ and PQS produced by PA14, cultivation was 

performed in the following way: cultures (initial OD600 = 0.02) were incubated with or without 

inhibitor (final DMSO concentration 1%, v/v) at 37 °C, 200 rpm and a humidity of 75% for 16 h in 

24-well Greiner Bio-One (Frickenhausen, Germany) Cellstar plates containing 1.5 mL of LB 

medium per well. For HHQ analysis, according to the method of Lepine et al.,
[7]

 500 µL of the 

cultures supplemented with 50 µL of a 10 µM methanolic solution of the internal standard (IS) 

5,6,7,8-tetradeutero-2-heptyl-4(1H)-quinolone (HHQ-d4) were extracted with 1 mL of ethyl acetate. 

After centrifugation (18,620 g, 12 min), 400 µL of the organic phase were evaporated to dryness 

and redissolved in methanol. UHPLC-MS/MS analysis was carried out as described in detail by 

Storz et al..
[8]

 The monitored ions were (mother ion [m/z], product ion [m/z], scan time [s], scan 

width [m/z], collision energy [V], tube lens offset [V]): HHQ: 244, 159, 0.5, 0.01, 30, 106; HHQ-d4 

(IS): 248, 163, 0.1, 0.01, 32, 113. Quantification of PQS produced by PA14 was performed 

according to the method of Maurer et al.
[9]

 For each sample, cultivation and sample work-up were 

performed in triplicates. Inhibition values of HHQ and PQS formation were normalized to OD600. 

 

Pyocyanin Assay 

For analysis of pyocyanin formation, cultivation procedure was the same as for HHQ determination 

with the exception of using PPGAS medium. Pyocyanin produced by PA14 was quantified using 

the method of Essar et al.
[10]

 with some modifications, as described in detail by Klein et al..
[11]

 

Briefly, 900 μL of each culture were extracted with 900 μL of chloroform and 800 μL of the 

organic phase re-extracted with 250 μL of 0.2 M HCl. OD520 was measured in the aqueous phase 

using FLUOstar Omega (BMG Labtech, Ortenberg, Germany). For each sample, cultivation and 

sample work-up were performed in triplicates. Inhibition values of HHQ and PQS formation were 

normalized to OD600. 

 

Determination of Growth Curves of PA14 in Minimal Medium 
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Cultures of PA14 adjusted to a starting OD600 of 0.05 were grown in triplicates in 100 mL 

Erlenmeyer flasks containing 10 mL modified M9 minimal medium at 37 °C, 200 rpm and a 

humidity of 75%. DMSO alone or 15 µM DMSO solutions of compound 3 were added to the 

cultures to a final DMSO concentration of 1% (v/v). Bacterial growth was measured as a function of 

OD600 using Thermo Spectronic Helios Epsilon UV-VIS Spectrophotometer (Thermo Scientific, 

Dreieich, Germany). 

 

Caenorhabditis elegans Fast Killing Assay 

C. elegans nematodes (Bristol N2, wild type, German Center for Neurodegenerative Diseases, Bonn, 

Germany) were synchronized at fourth larval stage (L4) according to the protocol of Worm Book 

(www.wormbook.org). PA14 was incubated overnight in LB medium in the presence or absence of 

15 µM antagonist 3 containing 1% DMSO. After spreading of 10 µL of an overnight bacterial 

culture, the PGS plates with or without 15 µM antagonist 3 containing 1% DMSO were incubated at 

37 °C for 24 h and placed at room temperature for further 16 h. After transfer of 15-20 L4 C. 

elegans onto each plate, the mortality was scored every hour.
[12]

 The nematodes were considered 

dead or alive based on movements elicited by touching their heads gently with a thin wire or 

shaking the plates. For each condition, data from three independent experiments were combined. 

 

Galleria mellonella Virulence Assay 

G. mellonella larvae were purchased from local supplier (Angelsport Becker, Saarbrücken, 

Germany). For infection of the larvae, bacterial cultures were grown to exponential growth phase, 

adjusted to an OD600 of 1.6 in sterile PBS (pH 7.2), and serially diluted in PBS to obtain a lethal cell 

density (7 ± 1 CFUs/20 µL). CFUs were determined according to the method of Miles and Misra.
[13]

 

Aliquots of 5 µL were injected into the Galleria mellonella larvae (average weight 450 ± 50 mg) 

via the hindmost left proleg using a 10 µL Hamilton syringe. Larvae were incubated in Petri-dishes 

in the dark at 37 °C. Survival rates were monitored in time intervals of 12 h for 108 h post infection. 

Larvae were considered dead when no movement was observed in response to touch or when 

melanization of the cuticle occurred.
[14]

 Groups of 15 larvae each were subjected to the following 

treatments: injection of a) PA14 suspension diluted as described above, b) 10 pmol of compound 3 

dissolved in a), c) 5 pmol of compound 3 dissolved in a), d) PA14 isogenic pqsA transposon mutant 

suspension diluted as mentioned above, and e) PA14 isogenic pqsR knockout mutant suspension 

prepared as described above. For each treatment, data from at least two independent experiments 

were combined. 

 

Statistical Analysis 
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For the animal experiments, statistical analysis was performed using GraphPad Prism 5.04 software. 

Survival curves were generated by the Kaplan-Meier method and analyzed by the log-rank 

(Mantel-Cox) test. IC50 values were calculated with Origin 8 software. 

 

Supplementary Results 

 

 

Figure S1. Chromatograms of SRM transition m/z 303>218 indicating biotransformation 

product (upper diagram) and chemically synthesized reference 2 (lower diagram). 
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Figure S2. Production of compound 2 in PA14, pqsA and pqsH mutants after 16 hours. Strains 

were incubated with 1 at 5 µM. 

 

 

Figure S3. Competition experiment with PqsR antagonist 1 and agonist 2 in E. coli 

β-galactosidase reporter gene assay. The assay was performed in the presence of 50 nM PQS. For 

Y axis, 0% is defined as the basal PqsR stimulation without ligands and 100% is defined as the 

PqsR stimulation by 50 nM PQS. 

 

 

Figure S4. Synthetic route of compounds 2 and 3. Reagents and conditions: a) NaH, dry DMF, r.t. 

then HCl; b) NaOH, H2O, reflux then HCl; c) N,N’-carbonyldiimidazole, NH3•H2O, dry DMF, 0 °C 

– r.t.; d) LiAlH4, dry THF, 0 °C – r.t.; e) MnO2, dry THF, r.t. then B(OH)3, conc. H2SO4, H2O2, 

THF, r.t. 
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Figure S5. Growth curves of PA14 in modified M9 minimal medium in the absence (control) 

and presence of 15 µM of compound 3. 
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