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Abstract 

 

In history, garlic (Allium sativum), onions (Allium cepa) and other Allium plants were used due to 

their antimicrobial-, antifungal- and desinfection abilities.[1-3] These plants contain a wide and rich 

range of sulfur-containing molecules, such as alliin, allicin and various polysulfanes (formerly 

named polysulfides) which do show high reactivity in several medicinal (e.g. cancer 

chemoprevention) and agricultural system (e.g. as “green pesticides”).[1-16] 

The main objective of this PhD study is to further investigate the chemistry, reactivity, biological 

activity of natural disulfanes and chemically related species.  

Sulfur and selenium and containing compounds were used to examine the different activity and 

toxicity of the agents based on the two chalcogen elements. Various biological assays were 

used to examine the activity of the chalcogen compounds against mammalian cells, such as 

Neuro A2 cell line (from murine neuroblastoma) and agricultural of relevant organism (e.g. 

Botrytis cinerea, Steinernema feltiae) to find new lead structures for a potential pro-drug or 

possible new phytoprotectants and ‘green’ pesticides. Cyclic voltammetry was used to analyze 

the redox behavior of the different chalcogen compounds and their potential reactivity against 

glutathione (GSH) and other thiol-containing groups in cells.  

SEM-EDX microanalysis was employed to investigate the distribution of chalcogen atoms inside 

the Neuro 2A cells. Sulfur atoms from the polysulfanes and the sulfur nanoparticles as well as 

selenium nanoparticles could be detected as part of a very preliminary study employing the EDX 

methodology to chalcogen-containing material. Cell fractionation was subsequently used to 

investigate further where the model tetrasulfane DPhTTS is located inside Neuro 2A cells. 
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Kurzfassung 

 

Bereits in Zeiten des Altertums wurden Knoblauch (Allium sativum), Zwiebeln (Allium cepa) und 

andere Pflanzen der Allium-Spezies wegen ihrer antimikrobiellen und antimykotischen 

Eigenschaften, sowie ihrer desinfizierenden Wirkung in vielen Kulturen weltweit eingesetzt. Die 

Pflanzen dieser Gattung enthalten einen hohen Anteil an hoch reaktiven, schwefelhaltigen 

Substanzen, die in wissenschaftlichen Versuchen bereits ein signifikantes Potential im 

medizinischen (z.B. in der Krebstherapie) als auch im landwirtschaftlichen (z.B. als „grüne“ 

Pflanzenschutzmittel) Bereich aufgezeigt haben. 

Das Hauptaugenmerk der hier vorliegenden Doktorarbeit lag daher auf der Vertiefung der 

bereits früher durchgeführten Analysen, um nähre Erkenntnisse zu den unterschiedlichen 

Reaktionsmechanismen und Reaktivitäten der chalkogenhaltigen Naturstoffe und deren 

synthetischen Derivate, zu erhalten. 

Schwefel- und Selen- haltige Verbindungen wurden synthetisiert und in den biologischen 

Experimenten mit den Schwefelverbindungen verglichen, um mehr über die Reaktivität und die 

Verteilung der einzelnen Chalkogene in der Zelle oder weiteren biologischen Materialien (z.B. 

Pilzkulturen, Nematoden) zu erfahren. Innerhalb der hier vorliegenden Dissertation wurden 

Experimente an Nervenzellen von Nagetieren (Neuro 2A Zelllinie) und Experimente an 

landwirtschaftlich bedeutsamen Systemen (Botrytis cinerea, Steinernema felitae) durchgeführt, 

sowie grundlegende Methoden zur Kontrolle der Redox-Aktivität (Zyklische Voltammetrie) der 

einzelnen Verbindungen beschrieben. 
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1. Introduction 
  

1.1 Oxidative stress 

In biochemistry, Oxidative Stress (OS) is related to a increase of the intracellular concentration 

of oxidizing species.[1] In biology, OS describes the imbalance between the “normal” conditions 

of a healthy cell and the increased amounts of oxidising processes with does often take place 

when the cell degenerates or turns into an abnormal cell, e.g. cancer or inflammatory cell.[2-4] OS 

in cells is characterized by a disturbed (anti)oxidant defense system, the precence of high 

(nearly toxic) concentrations of redox active species such as free radicals and non-radical 

reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive nitrogen oxygen 

species (RNOS) and reactive sulfur species (RSS). Several diseases, including cancer, hypoxia, 

inflammation, but also aging, are related to OS and the antioxidant levels in biological 

materials.[5-7] Figure 1.1 indicates the damages to biological material that are related to ROS and 

the presence of free radicals. 

 

 

Figure 1.1:  Cells and tissues damaged by reactive oxygen species (ROS) (adopted from Ref. [8]) 
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While oxygen containing molecules normally act as pro-oxidants, other chalcogen (sulfur, 

selenium, and tellurium) containing compounds could be used as pro-oxidants as well as anti-

oxidants, regarding their molecular structures and the redox-environment inside specific 

cells.[4,6,9-17] Sulfur- and selenium-containing molecules can in particular react with the sulfur-

containing available in the cells, like glutathione (GSH), cysteine (Cys) and other thiol (RSH) 

groups. The ‘cellular thiolstat’, an expression invented by Prof. Dr. Claus Jacob in Saarbruecken 

in 2011, gives an overview about the redox active sulfur groups and their possible reactions 

inside the cells.[18-21] 

Allicin (diallyldisulfide-S-monoxide) from garlic, as one of the best described sulfur-containing 

natural compound, reacts very well with the thiols inside biological material due to disulfide/thiol-

interaction and sulfur-exchange reactions (Scheme 1.1). It is the high reactivity of the poly-sulfur 

groups (further named as ‘polysulfanes’) which gives molecules like allicin and alliin the 

antimicrobial, antifungal and antiviral activities for which they were used since ancient times by 

different cultures worldwide.[22-24] 

Disulfanes, such as allicin, and their oxidized forms, like disulfide-S-dioxide, are known to easily 

undergo sulfur-sulfur-exchange reactions to produce new mixed disulfanes. 
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S R1

S R1
S

S
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R1
S R1

S

O
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S R1

S

O

O
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R1SH

R2SH

R2SH

R1SOH

R1SO2H

[O]

[O]

[O]A B
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Scheme 1.1:  Establishment of disulfide-S-oxides and the mixed disulfide through oxidative reaction. The 

disulfide compound (B) is constructed from thiol through oxidation. The disulfides then 

undergo further oxidation to form disulfide-S-monoxide (C) and disulfide-S-dioxide (D). The 

S-S bonds are activated through sulfur oxidation that encourages the reaction to produce 

mixed disulfide (E) as well as sulfenic and sulfinic acid.[3] 
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The different oxidation states of the sulfur compounds are summarized in Table 1.1. The table 

shows various ROS and RSS, the oxidation state of the chalcogen and the number of electrons 

that is formally required to complete the reductions of a thiol. As also shown in the table, 

disulfide-S-oxides have a higher oxidation state compared to other RSS.  

Table 1.1  Summary of the oxidation states of various sulfur compounds. (Table adopted from Ref.[3]) 

Reactive species Structure Oxidation state of 
chalcogen 

Electrons required for 
complete reduction 

Thiyl radical RS• –1 1 
Disulfide RSSR –1 2 
Disulfide-S-
monoxide 

RS(O)SR +1, –1 4 

Disulfide-S-dioxide RS(O)2SR +3, –1 6 
Sulfenic acid RSOH 0 2 
Hydroxyl radical HO• –1 1 
Peroxide ROOR –1 2 
Superoxide O•

2¯ –0.5 3 
 

1.2 Allium plants as source of natural compounds 

Garlic (Allium sativum), onion (Allium cepa) and other members of the Allium family have been 

used as part of nutrition since ancient times. Since thousands of years, these plants are also 

used as medicinal plants to heal all kind of diseases and for their antimicrobial activity.[24-26] 

Nowadays, the allium plants are back in the focus of science due to their rich amount of sulfur 

containing molecules with high reactivity against microbes, fungi and bacteria and their possible 

application in cancer therapy and cardiovascular diseases.[13,27-34] 

The garlic (and also the other Allium species) defense system against animals and other 

potential enemies uses an effective and potent chemical reaction which will take place as soon 

as the garlic plant is hurt or damaged. Alliin (a nonprotein sulfur containing amino acid and a 

secondary metabolite)[35,36] is enzymatically esseantially found in garlic via enzymatic 

degradation, which is catalysed by alliinase to form ammonium piruvate and sulferic acid (Figure 

1.2). Alliin is transformed by alliinase to allicin within seconds, a reaction which produces the 

typical smell and taste of garlic. This intense smell and the reactive allicin prevent animals to eat 

the garlic plant. Allicin also attacks bacteria and fungi which otherwise may affect the damaged 

part of the garlic plant.[24,37,38] 
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Figure 1.2: Enzymatic synthesis of allicin from alliin by alliinase.[39] 

 

2-Propensulfenic acid is an unstable molecule and very reactive at room temperature. It easily 

undergoes self-condensation (elimination of water) to form allicin (Scheme 1.2). 

2-propenesulfenic Allicin

-H2O

S

O
H

S

O
H

S

O

S

 

Scheme 1.2:  Condensation of 2-propenesulfenic to allicin.[40] 

 

It should be mentioned that allicin is also easily prone to Cope reaction, an elimination reaction 

to form alkenes. At room temperature it can easily form 2-propenesulfenic acid and thioacrolein 

(Scheme 1.3).[40,41] 

S
S

O

S

O

S

Allicin 2-propenesulfenic Thioacrolein

+

 

Scheme 1.3: Cope elimination of allicin to form 2-propenesulfenic and thioacrolein.[41] 
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Okada et al. have found that the -S(O)SCH2CH=CH2 moiety of allicin could contribute to the 

antioxidant properties, due to the fact that it involves a mechanism of abstraction H-atoms from 

the ally-group next to the S-S-bond.[16] H-atom transfer, which is shown in Scheme 1.4 might 

play an important role for radical-trapping activities of allicin. 

Radical of allicin 

.
R'OO R'OOH

.

S

O

S

H H

Allicin

S

O

S

H

 

Scheme 1.4: Mechanism of H-atom abstraction from allicin.[16] 
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Scheme 1.5: Reactivity and biotransformation of allicin. (Figure adapted from Ref.[42]) 

 

Allicin is also able to form vinyldithiins in non-polar solvents such as hexane or various oils like 

pine oil. The reactivity and the biotransformation of allicin is shown on Scheme 1.5. The reaction 

follows a Diels-Alder (D-A) dimerization mechanism.[43] According to Beslin et al., the 

transformation of allicin leads to 2-vinyl-4H-1,3-dithiin as main product in non-polar medium. A 
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further important product, 3-vinyl-4H-1,2-dithiin is formed following the reaction processes shown 

in Scheme 1.6.[44] 

S O

O

NH2O

S

OH

S
S

O

S

S

S
S S

Alliinase
Alliin 2-Propenesulfenic Allicin

Thioacrolein2-vinyl-4 H-1,3-dithiin 3-vinyl-4 H-1,2-dithiin

+
dimerization
(Diels-Alder)

 

Scheme 1.6: Transformation of allicin to form vinyldithiins.[44] 

 

It was proposed that the dithiins were formed by the enzymatic condensation reaction between 

thioacrolein and thioformaldehyde by alliinase. It is known that thioacrolein is formed by the 

alliinase-mediated breakdown of alliin. Thioformaldehyde is also formed by the alliinase-

mediated breakdown of methiin.[42,45] The formation mechanisms of 1,2- and 1,3-dithiins are 

shown in Scheme 1.7. 

 

 



Introduction 
 

 
7 

 

2-propenesulfenic acid

S

O

O

NH2O

S

O

O

NH2O

S
OH

S
OH

S
S

O

Allicin

S
S

O

CH2

S

S
S

S

S

Methiin Alliin

Alliinase

Methanesulfenic acid

Methyl methanethiosulfinate

Thioformaldehyde Thioacrolein

3-vinyl-4H-1,2-dithiin2-vinyl-4H-1,3-dithiin

CH2

S

Alliinase

1 : 1

+ 

 

Scheme 1.7: Formation of 1,2- and 1,3-vinyldithiins from methiin and alliin, respectively.[45] 

 

Vinyldithiins are regioisomeric, heterocyclic compounds with two sulfur atoms and a better 

stability compared to allicin.[39] The pharmacological studies indicate that 3-vinyl-4H-1,2-dithiin is 

more lipophilic than 2-vinyl-4H-1,3-dithiin. Most recent studies show that 3-vinyl-4H-1,2-dithiin 

has a tendency to accumulate inside fat tissues. Besides that, this molecule also easily 

undergoes biotransformation by microsomes from murine liver tissue.[46] Assays using blood 

showed that this substance can decrease the amounts of cholesterol in the blood and could be 

useful as nutritional supplement.[47] 



Introduction 
 

 
8 

 

Polysulfanes are also found naturally in garlic. Bioactive decomposition products from garlic 

include diallyltrisulfide (DATS) and diallyltetrasulfide (DATTS). Various diallypolysulfanes, 

including DATS and DATTS, can easily interact with intracellular thiols via thiol/polysulfane 

exchange reactions. Therefore these compounds do have an huge influence on the cellular 

thiolstat, cell signaling and different apoptosis pathways which do involve cysteine containing 

enzymes and proteins.[18,21] 

One of the main reaction partners in cells for the polysulfanes could be glutathione (GSH) which 

will then be transferred into glutathione disulfide (GSSG).[35,48] DATS and DATTS have a very 

broad impact on biological processes and can cause cell cycle arrest (in the G2/M phase) and 

apoptosis especially when they are used against oxidative stressed cell lines (e.g. certain cancer 

cell lines).[35] 

Other disulfide containing compounds such as α-lipoic acid (LA) and lipoamide (LAm) are known 

to have antioxidant properties.[12] 

Disulfide compounds which were not so much in the focus in the past, such as 1,2-dithiane and 

1,5-dithiacyclooctane, are known to play important roles in biological and chemical as well 

processes.[49] The structure of these compounds are shown in Figure 1.3. 

 

S S OH

O

  
S S NH2

O

 

α-lipoic acid (LA)    lipoamide (Lam) 

S

S

    

S

S
 

          1,2-dithiane   1,5-dithiacyclooctane (1,5-DTCO) 

Figure 1.3: The chemical structures of several active sulfur containing molecules  

 

Several other (synthetic) compounds containing polysulfane groups, such as 3H-1,2-dithiole-3-

thione (dithiolethione, DT), 5-(4-Methoxyphenyl)-3H-1,2-dithiole-3-thione (anetholedithiolethione, 
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ADT) 5-(2-pyrazinyl)-4-methyl-1,2-dithiole-3-thione (Oltipraz), and bicycloalkyldithiolethione (α-

pinene trithione, APT), are known for their chemo protective and antitumor activity.[50] The 

structures of some of these compounds are shown in Figure 1.4. 

               S S

S

    

N

N
SS

S
 

    Dithiolethione (DT)     Oltipraz 

O
SS

S      

              Anetholedithiolethione (ADT   α-pinene trithione (APT) 

Figure 1.4: Chemical structures of selected dithiolethiones. 

 

Recent studies have demonstrated, that several dithiolethione compounds, particularly 

anetholedithiolethione (ADT), exhibit cardioprotective activities due to H2S-release from the 

parent dithiole-thione moiety.[51] Munday et al. reported that DT has a higher activity to induce 

Phase 2 enzymes in rodents compared to Oltipraz due to its ability to stimulate the transcription 

factors of enzymes such as gluthathione-S-transferase (GST) and NAD(P)H/quinine 

oxidoreductase 1 (NQO1) via activation of Nrf2.[52] 

In case of α-pinene trithione (APT), this compound was synthesized from α-pinene oil and 

elemental sulfur by a base-catalyzed reaction. The so called Haarlem Oil (HO) is a semisynthetic 

(natural) product made from terpene oil and elemental sulfur by reaction them together under 

the high temperatur. Haarlem Oil was first introduced in the Netherlands in the 16th-Century. 

Thomas Monsieur was the first using HO in scientific studies and marketed the oil in France in 

1924. In the 1980s and 1990s, HO has been further studied due to the presence of various 

sulfur compounds and the potentially use in medicinal treatment.[53,54] 

S

S

S
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The cardioprotective activities of these compounds are well known but not fully understood. The 

knowledge about the biological activity, especially with regard to the redox-modulatory behaviour 

and the antinematicidal and antifungal activity, is still very limited. 

 

1.3 Chalcogen nanoparticles 

As shown before, polysulfanes do have a high biological activity. Interestingly, many of the 

chemical properties related to the polysulfanes are also found in the S8 ring system of elemental 

sulfur. For instance, both, polysulfanes and S8 contain sulfur-sulfur bonds which may react with 

biological materials such as cysteine containing proteins and enzymes. Both, polysulfanes and 

S8 are able to form superoxide radical anion (O2
.-), under physiological conditions. They can 

bind to diverse metal ions (e.g. iron, copper, zinc) and react with proteins and cellular 

membranes. 

 

 

Figure 1.5: Reactivity of polysulfanes and their interactions with biomolecules. (Figure adopted from 

Ref. [35,55]). 

 

Chemically, elemental sulfur is more stable and, as a solid, also easier to use. S8 is odorless 

compared to polysulfanes, which increases the chance for a possible industrial application. 
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Recent studies have shown that elemental sulfur shows activity against bacteria such as 

Pseudomonas aeruginosa and Staphylococcus areus, as well as some antimicrobial activity.[56] 

1.4 Biological activity 

1.4.1 Antimicrobial activity 

Allicin posseses high activity in inhibiting the growth of several bacteria such as Streptococci, 

Staphylococci, Eberthella typhosa, Bacillus dysenteriae, Bacillus enteritidis and Vibrio chlorae.[57] 

Polysulfanes, in particular diallyldisulfanes, diallyltrisulfanes and diallyltetrasulfanes do show 

high antiviral activity when exposed to Cryptococcal meningitis.[58] Yoshida et al. reported that 

DATS, which is isolated from oil-macerated garlic extract, has high antimicrobial activity against 

several different types of bacteria.[59] Several studies showed that the antimicrobial activities 

were affected by alk-(en)-yl groups, and therefore, Yoshida et al. suggested that the order for 

antimicrobial activity should be allyl ≥ methyl > propenyl.[59] 

 

1.4.2 Antifungal activity 

In history, extracts from garlic, onion and other Allium plants were used to test their antifungal 

activity. These extracts are potent against several fungi families, for example Candida, 

Cryptococcus, Trichophyton, Epidermophyton, and Microsporum. The Allium extracts were 

however less active or even inactive against the Aspergillus family.[26] Shams-Ghahfarokhi et al. 

reported that 2 mg/ml of aqueous onion extract and 65 to 125 μg/ml of aqueous garlic extract do 

have activity against Malassezia furfur, Candida albicans and other Candida spp.[26] In contrast, 

López-Díaz et al. have found that garlic extracts have no or very low activity against the growth 

of Penicillium olsonii and Penicillium nalgiovense.[60] 

Botrytis cinerea (‘grey mold’) acts in infected crops as a necrotrophic fungus, an organism that 

kills a part or the entire plant before deriving nutrients from it. B. cinerea is induced to the 

damaged parts of the plant and spreads to healthy tissue thus causing necrotic lesion.[61] 

 

1.4.3 Nematicidal activity 
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To investigate the activity of the sulfur compounds from Allium plants and their synthesized 

mimics, on the organisms, the compounds were tested on different nematodes (small round 

worms), like Caenorhabditis elegans and Steinernema feltiae.[25] 

Diallylpolysulfanes such as DATS have been examined and found to be more active than 

diallydisulfide (DADS) against Bursaphelencus xylophilus, a pine wilt nematode (PWN) that 

infects pine trees and cause pine wilt.[25] 

Steinernema feltiae is a transparent nematode, maximum 5 mm long, used as a 

‘phytoprotectant’ by eating fly eggs and larvae. Due to the fact that S. feltiae is not a pest but a 

helpful organism for gardening, these nematodes can be used in normal laboratories without any 

special security protocols. This is also commercially available via the internet by the 

company Sautter and Stepper, Ammerbuch, Stuttgart, Germany. This nematode is easy to 

culture and simple toxicity screens using a normal light microscope are possible.[62] Even though 

these nematodes are not pests by themselves, they represent a standard model for related 

environmental and agricultural vermins and pests. 

This nematode is an entomophatogenic nematode, which means that it is itself a parasite for 

other parasites, especially insects and their eggs. S. feltiae and other nematodes are normally 

used by gardeners as a biological defence against garden pests like flies, bugs, snails and 

various other organisms.[63] In the past few years, nematodes are also attracting more and more 

attention as part of laboratory experiments. These small organisms are easy to handle, cheap 

and they do not require any specific handling due to the fact that they are useful animals in the 

environment with a very short lifespan. 

 

1.5 Cell assay 

Cell assays are a major system for biological research. Such in vitro assays are becoming more 

and more important due to the high costs of animal tests and the ethical conflicts such 

experiments are creating. The simplest experiments using different cells and cell lines are 

toxicity tests. Here, cells show different colors regarding if they are alive or dead. Such viability 

assays are standardly done using two-color fluorescence dyes (green and red), like calcein 

acetoxymethyl ester (calcein-AM) and propidium iodide (PI). The cells are counted 

simultaneously by a fluorescence reader. 
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Calcein-AM is highly lipophilic compared to PI. Therefore, once this dye enters the cell and is 

retained in the cytoplasm due to hydrolyis by esterases in viable cells. It produces a strong 

green fluorescence. In contrast, PI cannot reach beyond the viable cell membrane, it only 

reaches the nucleus by passing through membranes of dead cells and then intercalates with the 

DNA double strand to produce a red fluorescence (Figure 1.6). Calcein-AM and PI can be used 

separately or together to identify viable and death cells.[64] 

 

 

Figure 1.6: Calcein-AM and PI staining to determine viable and dead cells.(Adopted from Ref.[64]) 

 

In this study, calcein-AM and propidium iodide were used to determine cell viability of Neuro 2A 

cells, a murine neuroblastoma cell line. There are three reasons why we were used a Neuro 2A 

cell in associated to know the activity of the sulfur compound in this cell. Firstly, due to the high 

content of GSH in Neuro 2A cells. It is known, that the Neuro 2A cell line does contain up to four 

to five times more glutathione than other cell lines, such as the PC12 cell line (derived from a 
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transplantable rat pheochromocytoma).[65] Second, this cell is widely used as model for the 

explanation of the basic functions of neuronal system and the third, Neuro 2A cells can easily be 

differentiated with retinoic acid so they are much nearer to “real neuron”. 

1.6 Analytical methods 

1.6.1 Cyclic voltammetry 

Cyclic voltammetry (CV) is an electroanalytical technique used to study the redox state of 

different (natural) compounds. CV is often used to study possible biological activity of freshly 

synthesized, novel compounds. The comparison of the redox values of the compound with the 

redox state of the cells at particular pH-levels provides a hint about the reactivity of such a 

compound.[66-68] 

 

Figure 1.7: The graph of a simple cyclic voltammogram.[66] 

 

CV is a potent and powerful method to examine preliminary biological effects of redox active 

compounds. The potential is applied between the reference electrode and the working electrode 

and the current is measured between the working electrode and the counter electrode (3-

electrode setup).[67,68] 

More details about the experimental setup and the theory of the electrochemical method are 

given in the experimental part of this thesis. 

 



Introduction 
 

 
15 

 

1.6.2 Energy-dispersive X-ray spectrometry 

Energy-dispersive X-ray spectroscopy (EDX, EDS or XEDS) is a technique or method to analyze 

or to characterize elements in a specific sample such as a geological specimen or a biological 

material.[69,70] Powerful X-rays allow to scan the entire area of a biological material and to 

determine the different (heavy) elemental atoms inside this material. With this method, the 

mapping of different elements inside the sample is possible.  

The EDX spectrometry is consists of three main parts: an X-ray detector, used to detect and 

transform emitted X-rays into electronic signals; a Pulse Processor, to measure the electronic 

signals to specify the energy that produces each X-ray detected; and a multi-channel Analyzer 

(MCA) with data management system (computer, software) which displays and calculates the 

interpretation of the X-ray data as a histogram of intensity versus the energy voltage (keV) 

(Figure 1.8). 

 

 

Figure 1.8: The EDX spectrometry (Figure adopted from Ref. [69]) 
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1.7 Objectives of the present work 

The first objective of this project was to investigate the biological and redox-modulatory 

behaviour of the polysulfanes and nanoparticles using cyclic voltammetry. Another aim of this 

study was to investigate the biological activities of these compounds against selected modul 

organisms, such as Botrytis cinerea, Steinernema feltiae, cancer cells and Neuro 2A cells lines. 

The possibility of creating for the first time a “cellular map” of various chalcogen atoms within the 

cells using EDX was also of high interest. 

Due to the highly interdisciplinary character of this project, it was divided into eight main 

research areas: 

 

1.  Synthesis of the polysulfanes and dithiole thione compounds.  

2. Electrochemical studies to investigate the redox behavior of the polysulfanes.  

3.  Evaluation of the activity of the polysulfanes on several cell lines.  

4.  Evaluation of the nematicidal activity of polysulfanes against Steinernema feltiae.  

5.  Evaluation of the antifungal activity of polysulfanes against Botrytis cinerea.  

6.  Basic screening of Neuro 2A cell lines to highlight the activity of polysulfanes. 

7.  “Cellular mapping” using EDX-microanalysis.  

8.  Detection of the main location for (re-)activity of such compounds in neuroblastoma cells 

using advanced HPLC/UV-MS analysis. 
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2. Results and Discussion 
  

2.1 Synthesis of organosulfur compounds 

2.1.1 Synthesis of vinyldithiins 

Vinyldithiins were synthesized from acrolein and hydrogen sulfide according to the standard 

procedure developed by Beslin.[44] The characterization of 1,2-vinyldithiin and 1,3-vinyldithiin 

was performed using 1H-NMR. The molar mass of 1,2-VDT and 1,3-VDT was confirmed using 

LC-MS. Both compounds exhibited the expected m/z ratio 144.04 [M+] and 144.03 [M+], 

respectively. The peak area percentage of both compounds was 100%, indicating a high purity. 

All the results obtained were in very good agreement with those reported in the literature. 

 

1,2-Vinyldithin (1,2-VDT) 

S
S

 

      1,2-VDT 

1,2-VDT was purified by column chromatography on silica gel with 

petrol ether:ethyl acetate = 99:1. It was obtained as a yellow oil. 

The total yield was only 1.2 % compared to 24 % reported by 

Beslin. [44] TLC (petrol ether: ethyl acetate = 99.5:0.5): Rf = 0.4. 

1H NMR (CDCl3, 500 MHz): 2.13-2.38 (m, 2H), 3.25 (m, 1H), 5.08-5.16 (m, 1H), 5.57 (m, 

1H) 5.96 (m, 1H), 6.08 (d t, 1H) ppm. 

Literature: 1H NMR (CDCl3, 500 MHz): 2.3-2.7 (m, 2H), 3.62 (m, 1H), 5.1-6.5 (complex m, 

5H) ppm.[44]. 
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1,3-Vinyldithin (1,3-VDT) 

S

S

 

     1,3-VDT 

1,3-VDT was purified by column chromatography on silica gel with 

petrol ether:ethyl acetate = 99:1. It was obtained as a yellow oil. 

The yield was slightly better than the one from 1,2-VDT, but still 

just 2.4 % compared to 24 % % reported by Beslin. [44] TLC (petrol 

ether: ethyl acetate = 99.5:0.5): Rf = 0.6. 

1H NMR (CDCl3, 500 MHz): 3.06-3.16 (m, 2H), 4.26 (d, 1H), 5.08-5.16 (m, 1H), 5.79 (m, 

1H) 5.96 (m, 1H), 6.13 (d t, 1H) ppm. 

Literature: 1H NMR (CDCl3, 500 MHz): 3.17-3.36 (m, 2H), 4.68 (d, 1H), 5.17-6.4 (complex 

m, 5H) ppm.[44]. 

 

2.1.2 Synthesis 1,2-dithiane 

Cyclic disulfanes are difficult to synthesize due to the competing intermolecular reaction which 

ultimately leads to the formation of oligomers. Using a dispersion of dithiols on a large surface 

area provided by silica gel avoids intermolecular reactions. The 1,2-dithiane was synthesized 

according to literature method of Ali and McDermott, using molecular bromine on hydrated silica 

gel in non-aqueous media as oxidizing agent.[71] Silica gel also removes the hydrogen bromide 

formed intermediately in the reaction and turns it unavailable for side reactions. The silica gel 

acts both as a heat sink and as hydrogen bromide (HBr) scavenger. This procedure leads to the 

desired compounds. 

S

S

 
1,2-dithiane 

The product was purified by column chromatography on silica 

gel with petrol ether: ethyl acetate = 95:5. It was obtained as a 

white crystallized solid (white crystals) with an Rf-value of 0.64. 

The yield was 15.0 %. 

1H NMR (CDCl3,): δ 1.73-2.06 (s, 4 H); 2.8 (s, 4 H). 

The melting point of the final product was 28-30 °C. 

Literature: 1H NMR (CDC13): δ 1.95 (s, 4 H); 2.8 (s, 4 H).[72] 

Literature: 32-33 °C.[72] 
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2.1.3 Synthesis of 1,5-dithiacyclooctane  

1,5-dithiacyclooctane (1,5-DTCO) was synthesized from 1,3-dibromopropane and 1,3-

propanedithiol according to the literature method of Clennan and Liao. [62] 

S

S
 

1,5-DTCO 

The crude product was purified by column chromatography on 

silica gel with hexane: ethyl acetate = 9:1. It was obtained as 

colorless liquid with a Rf-value of 0.56. Yield = 197 mg (1.3 

mmol; 3.2 %). 

1H NMR (CDCl3) δ 2.1 (m, 4H), 2.8 (m, 8H). 

Literature: 1H NMR (CDCl3) δ 2.1 (m, 4H), 2.8 (m, 8H).[62] 

 

Additionally, the refractive index of the starting material and of 1,5-DTCO was measured at 20 

°C. The values of the refractive indices are presented in Table 2.1. 

Table 2.1:  The refractive indices of starting materials, their mixtures and the product (data are 

presented as mean ± SD)  

 Structure of the molecule 
Exp. values of 

refractive index, nD 

Starting 
material 

BrBr  
1.5230 ± 0.0  

SHSH  
1.5388 ± 0.0 

Mix 

BrBr  
+ 

SHSH  

1.5270 ± 0.0 

Product 
S

S
 

1.5743 ± 0.0 
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2.1.4 Synthesis of α-pinene trithione 

α-Pinene trithione (APT) was synthesized from α-pinene and elemental sulfur following the 

procedure of Djerassi and Luttringhaus.[8] 

The product was purified by column chromatography on silica gel with petrol ether. It was 

obtained as a red-brown solid with a Rf-value of 0.58 and in an yield of 5.2%. 

 

S
S

S

1

2
3

4 5 6

78
9

10

 
APT 

13C NMR (CDCl3) δ 211.53 (C10), 167.75 (C6), 153.76 (C7), 

43.72 (C1), 40.29 (C2), 38.88 (C3), 33.90 (C4), 31.71 (C5), 24.44 

(C8), 21.03 (C9). 

Literature: 13C NMR (CDCl3) δ 211.29 (C10), 167.76 (C6), 153.80 

(C7), 43.75 (C1), 40.32 (C2), 38.91 (C3), 33.98 (C4), 31.75 (C5), 

25.50 (C8), 21.10 (C9).[73] 

 

2.2 Selected organosulfur compounds 

Other disulfane compounds were selected and used as a part of this research project for 

comparison. Such compounds include as α-lipoic acid (LA), lipoamide (LAm), diallyldisulfide 

(DADS). All of these compounds were purchased from Sigma Aldrich. The other disulfide 

compounds such as 3H-1,2-dithiole-3-thione, dithiolethione (DT), 5-(2-pyrazinyl)-4-methyl-1,2-

dithiole-3-thione(Oltipraz), 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione, anetholedithiolethiones 

(ADT) were purchased from LKT Laboratories Inc. Haarlem Oil (HO) was a gift from Laboratoire 

du Dr. J. Lefevre. Chemical structures of the relevant disulfane molecules are shown in Figure 

2.1. 
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N
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4-methyl-5-(pyrazin-2-yl)-3H-1,2-dithiole-3-

thione or Oltipraz 

O
SS

S  
5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione or 

anetholedithiolethione (ADT) 

 

Figure 2.1:  The chemical structures of cyclic disulfides compounds used. 

 

Some of the polysulfane compounds synthesized in the laboratory of Prof. Dr. Claus Jacob 

during the last few years were also used as a part of this project (diallyltrisulfide (DATS), 

dipropyltrisulfide (DPTS), diallyltetrasulfide (DATTS), dipropyltetrasulfide (DPTTS), 

dibenzyltetrasulfide (DBnTTS), dipropylacidtetrasulfide (DPSTTS), diethylethertetrasulfide 

(DEETTS) and dipropylethanoicacidtetrasulfide (DPSEETTS). These polysulfane compounds 

were synthesized and purified by Brigitte Czepukojc.  

 

Other polysulfanes, such as diphenyltetrasulfide (DPhTTS), benzyltetrasulfidepropylacid 

(BnTTSPs), propyltetrasulfidepropylacid (PrTTSPs), phenyltetrasulfidebenzyl (PhTTSBn) and 

propylacidterasulfidephenyl (PhTTSPs) were synthesized and purified by Uma M. Viswanathan. 

The chemical structures of these polysulfanes are shown in Figures 2.2. and 2.3. 
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Figure 2.2: Chemical structures of polysulfane compounds prepared by Brigitte Czepukojc. 

  



Results and Discussion 
 

 
23 

 

S
S

S
S

 
1,4-diphenyltetrasulfane or  

diphenyltetrasulfide (DPhTTS) 

S
S

S
S

O

OH

 
3-(benzyltetrasulfanyl)propanoic acid or 

benzyltetrasulfidepropylacid (BnTTSPs) 

CH3

S
S

S
S OH

O

 
3-(propyltetrasulfanyl)propanoic acid or 

propyltetrasulfidepropylacid (PrTTSPs) 

S
S

S
S

 
1-benzyl-4-phenyltetrasulfane or 

phenyltetrasulfidebenzyl (PhTTSBn) 

S
S

S
SOH

O

 
3-(phenyltetrasulfanyl)propanoic acid or 

propylacidterasulfidephenyl (PhTTSPs) 

 

 
Figure 2.3: Chemical structures of polysulfane compounds prepared by Uma M. Viswanathan. 

 
 

2.3 Synthesis of the chalcogen nanoparticles  

Sulfur nanoparticles (NPS) were synthesized and purified based on the procedure reported by 

Bomhard and Lange.[74] Selenium nanoparticles (NPSe) were synthesized and purified 

according to the literature by Chen et al. [75] 

All nanoparticles were characterized by the Zetasizer Nano from Malvern Instruments, Ltd. 

Germany. The Zeta potentials of the nanoparticles were performed at 25 °C, pH 7 following 

standard procedures. The Zeta potential is the potential difference across phase boundaries 

between solids and liquids. The polydispersity index (PDI) describes the ratio of weight average 

molecular mass to the number average molecular mass. These data represents the results of 

three independent experiments. The respective sizes of the nanoparticles are presented in 

Figure 2.4.  
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Figure 2.4: Zeta potentials of nanosulfur (NPS) and nanoselenium (NPSe) particles. 

 

The NPS possesses an average diameter of 117.0 nm with a zeta potential of approximately -

41.6 mV and a PDI of 0.15 % ± 0.015, while the NPSe possesses an average diameter of 99.0 

nm with a PDI of 0.23 % ± 0.02. The selenium nanoparticles are smaller than the sulfur particles 

and have a zeta potential of approximately +23.26 mV. 

 

2.4 Nematode toxicity studies 

The purpose of this assay is to investigate the effect of organosulfur compounds on higher 

organisms, here on the nematode Steinernema feltiae.  

In the nematode assay, the different sulfur compounds under investigation were used at several 

concentrations to check their reactivity and toxicity and their potential application in a agricultural 

context. The results of these nematode assay are provided in the following sections. 

 

2.4.1 Activity of the cyclic disulfide compounds in Steinernema feltiae 

The compounds 1,2-VDT and 1,3-VDT were tested to evaluate their potential effect against the 

nematode Steinernema feltiae (S. feltiae) and to investigate if the S-S-bond plays an important 

role for the activity of these compounds. Comparing the results in Figure 2.5., it is obvious that 

the reactivity of 1,3-VDT is considerably lower than the one of 1,2-VDT. This finding clearly 

indicates that the S-S-bond plays a major role as far as the activity of such cyclic compounds 

concerned.  
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Figure 2.5: S. feltiae treated with 1,2-VDT and 1,3-VDT for 24 h, the control containing 1 % of DMSO, 

The control was normalized to 100 % viability. Significances are expressed to the control. 

Data presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and 

*** p < 0.001. 

 

Other cyclic disulfide compounds such as 1,2-dithiane and 1,5-dithiacyclooctane (1,5-DTCO) 

were also tested to comparable data in the nematode screen. The choice of 1,5-DTCO because 

the existence of two Sp-type lone pairs of this compound which approach each other due to 

repulsive interaction between the sulfur atoms.[76] The results show that 1,2-dithiane has a 

moderate activity against the nematodes (67 %) at 400 µM. Nearly the same result is given for 

1,5-DTCO, which has a less effect against S. feltiae (62 %) at 400 µM as well. The results are 

given in Figure 2.6. 
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Figure 2.6: S. feltiae treated with 1,2-dithiane and 1,5-DTCO for 24 h, the control containing 1 % of 

DMSO, The control was normalized to 100 % viability. Significances are expressed to the 

control. Data presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 

0.01 and *** p < 0.001. 

 

Due to its cyclic structure, α-lipoic Acid (LA) and lipoamide (LAm) were also tested for 

comparison compounds. The data shows that LA and LAm have only low activity against S. 

feltiae (Figure 2.7.). 
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Figure 2.7: S. feltiae treated with LA and LAm for 24 h, the control containing 1 % of DMSO, The 

control was normalized to 100 % viability. Significances are expressed to the control. Data 

presented as viability % ± SD. Significances: Significances: ns p≥0.05, * p< 0.05, ** p < 

0.01 and *** p < 0.001. 

 

The other cyclic disulfane compounds were also considerably tested. These compounds with 

dithiolethione ring system, such as DT, ADT, APT and Oltipraz were chosen due to modified at 

sulfur-sulfur ring with unsaturated sulfur-sulfur, S=S bond. Structurally, compared to the other 

cyclic disulfide these compounds are more stable. The results showed that these compounds do 

exhibit a rather pronounced activity against S. feltiae. As shown in Figure 2.8., dithiolethione 

(DT) possesses considerable toxicity against S. feltiae at concentrations above 100 µM. 

Compared to the other compounds and this study, DT shows the highest activity at 

concentrations of 200 and 400 µM. The activity of DT is even higher than the one of Oltipraz 

which is used as a commercially available schistosomicide reference compound Both molecules 

contain the S-S-bond in a five-ring membered system. DT is smaller and the molecular weight is 

lower, which may help the molecule to penetrate the nematode membrane easier and faster 

than Oltipraz. Also the double bond sulfur atom in DT may interact with sulfur proteins inside the 

biological membrane as well. 
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Figure 2.8:  S. feltiae treated with DT, ADT, APT and Oltipraz for 24 h, the control containing 1 % of 

DMSO, The control was normalized to 100 % viability. Significances are expressed to the 

control. Data presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 

0.01 and *** p < 0.001. 

 

Overall, the cyclic disulfane compounds tested show some interesting, but not the highest 

activity in the S. feltiae assay. 1,2-VDT, the cyclic disulfide from garlic, and DT do have higher 

activities then other tested cyclic disulfane compounds. The linear DADS shows some activity 

against S. feltiae (30%) which proves that the reactivity is more likely due to the general 
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presence of the S-S-bond and not just to the same number of sulfur atoms or the ring system 

like into angular consistence (as in 1,3-VDT). 

Additionally to the synthetic compounds tested, Harleem Oil (HO) was also used in the 

nematode assay. Due to the low solubility, the HO solution was sonicated or, alternatively 

centrifuged before it was applied to the nematodes. The two different preparations did not show 

any toxic effect against S. feltiae (Figure 2.9.). 
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Figure 2.9: S. feltiae treated with HO for 24 h, the control containing only water was normalized to 

100 % viability. Significances are expressed to the control. Data presented as viability % ± 

SD. Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

To compare with cyclic disulfide, a linier disulfide compound such as diallydisulfide (DADS) was 

also tested. Here, DADS is used as the lead structure and all other cyclic disulfide compounds 

are used to see if the various structure can actually improve the activity of the disulfide bond. 
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Figure 2.10: S. feltiae treated with DADS for 24 h, the control containing 1 % of DMSO, The control was 

normalized to 100 % viability. Significances are expressed to the control. Data presented 

as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

2.4.2 Activity of the nanoparticles in Steinernema feltiae 

The activity of the polysulfanes such as diallyltrisulfide (DATS) and diallyltetrasulfide (DATTS) 

has been known against nematodes for several years. Intersetingly, as the activity of these 

compounds is a direct result of a longer sulfur-sulfur chain, the chemistry of the S8 ring in 

elemental sulfur should be comparable to the one of polysulfanes due to the presence of similar 

sulfur-sulfur chains.[56] Following the procedure from the nematode assay used before to test the 

cyclic disulfanes, the nanoparticles were used in the same assay in amounts between 1 and 500 

µg/ml. Figure 2.11. shows some nematodes before and after 24 h treatment with NPS at a sulfur 

concentration of 250 µg/ml. 
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Figure 2.11:  Effect of sulfur nanoparticles (NPS) on Steinernema feltiae. (A) in the control (the 

nematodes were very active); (B) after 24 h treatment, the nematodes are dead (yellow 

arrow). The viability was measured at four-fold magnification. 

 

The activity of nanoparticles on S. feltiae after 24 h exposure is presented in Figure 2.12., the 

results show that sulfur-based nanoparticles exhibit considerable toxicity against S. feltiae with a 

LD50 value at around 6.99 µg/ml after 24 h incubation. This LD50 value is considerably lower 

than the ones from the polysulfanes such as DATS and DATTS .[56]. The NPS here killing S. 

feltiae (100 % death at 250 µg/ml). The selenium nanoparticles have also some activity, yet the 

latter is significantly lower than the one of NPS, the LD50 of NPSe is around 43.50 µg/ml. 

 



Results and Discussion 
 

 
32 

 

Con
tro

l 1 5 10 25 50 10
0

25
0 

50
0

0

50

100

150

*** ***
*** *** *** ***

*** ***

Sulfur nanoparticles (NPS)

Concentration [µg/ml]

V
ia

b
il

it
y 

[%
]

Con
tro

l 1 5 10 25 50 10
0

25
0 

50
0

0

50

100

150

*** *** *** ***
***

***

*** ***

Selenium nanoparticles (NPSe)

Concentration [µg/ml]

V
ia

b
il

it
y 

[%
]

 
Figure 2.12: Nematicidal assay on S. feltiae treated with the nanoparticles for 24 h, the control 

containing water was set at 100 % viability. Significances are expressed to the control. 

Data presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** 

p < 0.001. 

 

2.5 Botrytis assay 

In this assay four different strains of Botrytis cinerea were used. These strains are shown in 

Table 2.2. The multidrug resistant (MDR) phenotypes are usually correlated with increased drug 

efflux through the overexpressed transporters.[61] 

Some of the compounds tested do show toxic effects only in the case of the wild-type strain, but 

not against the mutants. This is most likely due to the fact that some compounds are selectivity 

transported out of the fungus through specific transport systems. 
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Table 2.2:  The strains of Botrytis cinerea are used in Botrytis assay. 

Strain  Description 

BO5.10 (WT)  a sensitive lab strain, wild type 

MDR 1  

 

multi drug resistant strain due to the over  

expression on ABC and atrB transporter. 

MDR 1*  

 

multi drug resistant strain due to the higher over  

expression on ABC and atrB transporters 

MDR 2  

 

multi drug resistant strain due to the over 

expression on MFS transporter MfsM2. 

 

In this assay, ethanol and DMSO were used as solvents to dissolve the compounds (between 

0.05 and 1.36 % (v/v) for EtOH, between 0.01 to 1.5 % (v/v) for DMSO). The concentrations of 

the compounds tested were between 0.05 mM and 3.2 mM.  

Overall, 3H-1,2-dithiol-3-tihone or dithiolethione (DT) and α-lipoic acid (LA) show lower MIC50-

values compared to the other compounds. In contrast, Oltipraz exhibited a higher MIC50-values 

in all strains tested. Table 2.3. shows that DT and LA were more active than the other 

compounds tested in all the strains.  

 

Table 2.3:  The MIC50 values of cyclic disulfide compounds obtained against Botrytis cinerea strains 

after 48 h exposure. Data presented as means .±.SD. 

Cyclic disulfides 
compounds 

MIC50 values [mM] 

Strains of Botrytis cinerea 

WT MDR 1 MDR 1* MDR 2 

1,2-VDT 1.27 ± 0.0 0.20 ± 0.0 0.37 ± 0.1 1.01 ± 0.3 

1,3-VDT 1.27 ± 0.0 1.17 ± 0.1 1.0 ± 0.3 1.22 ± 0.0 

LA 0.33 ± 0.0 0.36 ± 0.0 0.32 ± 0.0 0.32 ± 0.1 

DT 0.08 ± 0.0 0.23 ± 0.0 0.21 ± 0.0 0.51 ± 0.0 

Oltipraz 1.38 ± 0.0 1.38 ± 0.2 1.47 ± 0.1 1.52 ± 0.0 
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Figure 2.13. shows that DT is very active against the spores of the MDR 2 strain at 0.4 mM. At 

concentrations of 0.4 and 0.6 mM DT also shows some good activity against the MDR 1, MDR 

1* strains and WT strain. α-lipoic acid (LA) behaved similar to DT in its inhibition of the fungi or 

the fungal growth. 
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0.3 0.4 
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Figure 2.13:  The MDR 2 strains treated with dithiolethione (DT) for 48 h, incubation at room 

temperature. The strains were observed under Nicon Eclipse TS 100 microscope. 

Magnification 100x. 

 

Interestingly, 1,2-VDT which contains the cyclic S-S structure is once more active than 1,3-VDT 

(the isomer without a S-S-bond) against of the MDR1 and MDR1* strains at 0.20 and 0.37 mM 
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respectively. In contrast, Oltipraz shows little activity against the fungal growth in all of the 

strains tested.  

Overall, cyclic disulfide compounds with cyclic S-S structure show some moderate inhibition 

against the fungal growth. 

 

2.6. Impact of the organo sulfur compounds on the survival of the Neuro 2A cells 

In this project, the Neuro 2A cell line was used to investigate the effect of OSCs on such cells in 

the presence and absence of H2O2. In the past, some specially designed chalcogen molecules 

showed interesting antioxidant effects in cells when incubated together with H2O2. Selenium 

containing compounds and in particular selenium nanoparticles are here for their high 

antioxidant activity, while sulfur compounds generally do show a higher prooxidant activity. 

Nonetheless it often depends on the cellular environment if the chalcogen compounds do act as 

pro- or antioxidants.[21,65,77-80] 

Oxidative stress (OS) induces cell injury, or moreover, can cause cell damage or direct cell 

death. In neuronal cells, a variety of OS mechanisms have been proposed. H2O2 causes 

apoptosis in cortical neurons by attacking DNA immediately or through activation of 

endonucleases which could harm DNA and ultimately cause cell death.[77,78] Another effect of 

H2O2 is interference of the mitochondrial function by preventing the accumulation of 

mitochondrial Ca2+. This will consequently reduce ATP production inside the mitochondria which 

will ultimately lead to cell death.[77,81] 

 

2.6.1 Activity of H2O2 on Neuro 2A cell line 

Figure 2.14 shows the effects of H2O2 on the Neuro 2A cell line at different concentrations of 

this oxidative stress (100–1000 µM). At 100 µM, only 75 % of the cells are still viable which is 

already a significant decrease compared to the control. At 1000 µM, H2O2 is absolutely toxic 

against the Neuro 2A cells with a survival rate of just 5 %. The difference between 100 and 250 

µM is not significant. A concentration of 250 µM of H2O2 was therefore used in the subsequent 

experiments to investigate the effects of the OSCs on the oxidative stressed cells in the absence 

and in the presence of H2O2. Due to the high GSH level, the Neuro 2A cells should be more 
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resistant against OS than other cells. Figure 2.14 shows that the resistance is so significant 

against OS. 
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Figure 2.14:  Survival assay of H2O2 on Neuro 2A cells for 24 h on 96-well plate. The density of the 

cells was 10,000 cells per well. The control containing water was normalized to 100 % 

viability, significances are expressed to the control. Data presented as viability % ± SD. 

Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

  

2.6.2 Activity of cyclic disulfide compounds on Neuro 2A cell line 

Neuro 2A cells were incubated with various concentrations of the cyclic disulfide compounds in 

the absence and in the presence of 250 µM H2O2. The final concentration of the compounds 

tested in this assay was between 1 and 100 µM. The results are shown Figure 2.15. 

Surprisingly, none of the sulfur containing compounds used did show any significant toxicity 

against the Neuro 2 A cells in absence of H2O2 (white bars) my be due to high levels of GSH in 

the cells.  In the presence of H2O2 (gray bars) all the substances tested showed a comparably 

weak, but not statistically significant cytotoxicity. 
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Figure 2.15:  Survival assay of 1,2-VDT, 1,3-VDT, LA and LAm on Neuro 2A cells for 24 h on 96-well 

plate. The density of the cells was 10,000 cells per well. White bars, the compounds were 

tested in the absence H2O2 and gray bars the compounds were tested in the presence 

H2O2. The control containing 1 % of DMSO was normalized to 100 % viability, 

significances are expressed to the control. Data presented as viability % ± SD. 

Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

In contrast, 1,2-dithiane and 1,5-DTCO exhibited a stronger toxican effect in the neuronal cells 

at 100 µM in absence of H2O2 (Figure 2.16). When these compounds were tested in the 

presence of H2O2 (gray bars) however they showed less toxicity. This could be a hint for the 

prooxidant character of these two compounds. 
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Figure 2.16:  Survival assay of 1,2-dithiane and 1,5-DTCO on Neuro 2A cells for 24 h on 96-well plate. 

The density of the cells was 10,000 cells per well. White bars, the compounds were tested 

in the absence H2O2 and  gray bars the compounds were tested in the presence H2O2. 

The control containing 1 % of DMSO was normalized to 100 % viability, significances are 

expressed to the control. Data presented as viability % ± SD. Significances: ns p≥0.05, * 

p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

The morphological structures of the Neuro 2A cells treated with 1,2-dithiane and 1,5-DTCO are 

presented in Figure 2.17. The pictures show that morphological changes were apparent in 

bubbling cell bodies when examined 24 h after treatment. The cells were also stained with 

calcein-AM and propodium iodide (PI) to see the difference between living and dead cells. Living 

cells emit strong green fluorescence due to the calcein-AM enters to the cell and is retained in 

the cytoplasm due to hydrolyis by esterases in viable cells, while the dead cells emit red 

fluorescence due to PI reaches the nucleus by passing through membranes of dead cells and 

then intercalates with the DNA double strand to produce a red fluorescence. 
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Figure 2.17:  Survival assay of Neuro 2A cells upon treatment with 1,2-dithiane and 1,5-DTCO. 

Neuronal cells were plated at a density of 10,000 cells/well in 96-well tissue culture plate. 

After 24 h, the culture medium containing the organosulfur compounds was replaced with 

0.2 ml of dye solution (calcein-AM and PI) and cells were observed under the microscope 

(Magnification 40 x). A. Control (untreated cells); B. Cells treated with 100 µM of 1,2-

dithiane; and C. Cells treated with 100 µM of 1,5-DTCO. 

 

The other cyclic disulfide compounds such as, DT, ADT, APT and Oltipraz, were also tested on 

Neuro 2A cells. The results presented in Figure 2.18 show that these compounds do not have 

any toxic effects on Neuro 2 A cells in the absence (white bars) or in the presence (gray bars) of 

H2O2.  
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Figure 2.18:  Survival assay of DT, ADT, APT and Oltipraz on Neuro 2A cells for 24 h on 96-well plate. 

The density of the cells was 10,000 cells per well. White bars, the compounds were tested 

in the absence H2O2 and  gray bars the compounds were tested in the presence H2O2. 

The control containing 1 % of DMSO was normalized to 100 % viability, significances are 

expressed to the control. Data presented as viability % ± SD. Significances: ns p≥0.05, * 

p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

In the case of Haarlem Oil (HO), the experiment shows moderate activity of HO against the 

Neuro 2A cells at a dilution of 1:1 (viability of 6% in the absence of H2O2). In presence of H2O2 

(gray bars), HO shows moderate toxicity, which is somewhat surprising as HO is sold as an 
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antioxidant. Nonetheless, the concentrations of HO applied in this experiment are unlikely to be 

found in the human body after oral consumption of HO.  
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Figure 2.19:  Survival assay of HO on Neuro 2A cells for 24 h on 96-well plate. The density of the cells 

were 10.000 cells per well. White bars, the compounds were tested in the absence H2O2 

and  gray bars the compounds were tested in the presence H2O2. The control containing 

water was normalized to 100 % viability, significances are expressed to the control. Data 

presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 

0.001. 

 

The morphological structures of the Neuro 2A cells after treatment with Haarlem Oil are shown 

in Figure 2.20. Changes in morphology lead to bubbling cells when the cells were exposed to 

HO at dilution 1:5 for 24 h. As in the previous experiments cells were stained with calcein-AM 

and PI to analyse the ratio of living against dead cells. 
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Figure 2.20:  Survival assay of Neuro 2A cells upon treatment with HO. Neuronal cells were plated at a 

density of 10,000 cells/well in 96-well tissue culture plate. After 24 h, the culture medium 

containing the HO was replaced with 0.2 ml of dye solution (calcein-AM and PI) and cells 

were observed under the microscope (Magnification 40 x). Cells treated with HO 1:5. 

 

2.6.3 Activity of polysulfane compounds on Neuro 2A cell line 

Linear disulfide compound such as DADS and polysulfane compounds, such as DATS, DPTS, 

DATTS and DPTTS showed different activities in the neuronal cell line. DADS, DATS and DPTS 

showed no activity on Neuro 2A cells, while DATTS and DPTTS do slighty a significant toxicity. 

One reason for this result may be the different sulfur-sulfur chain length found in these 

molecules. The longer the S-S chain length is seem to be the activity. Similar results were 

already found in other experiments with other biological material in the past.[56] Interestingly the 

compounds with an allyl-group showed more activity compared to the compounds with a propyl 

group. The results are shown in Figure 2.21. 
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Figure 2.21:  Survival assay of DADS, DATS, DPTS, DATTS and DPTTS on Neuro 2A cells for 24 h on 

96-well plate. The density of the cells was 10,000 cells per well. White bars, the 

compounds were tested in the absence H2O2 and  gray bars the compounds were tested 

in the presence H2O2. The control containing 1 % of DMSO was normalized to 100 % 

viability, significances are expressed to the control. Data presented as viability % ± SD. 

Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 
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Figure 2.22:  Survival assay of DPSTTS, DPSEETTS, DEETTS and PrTTSPs on Neuro 2A cells for 24 

h on 96-well plate. The density of the cells was 10,000 cells per well. White bars, the 

compounds were tested in the absence H2O2 and  gray bars the compounds were tested 

in the presence H2O2. The control containing 1 % of DMSO was normalized to 100 % 

viability, significances are expressed to the control. Data presented as viability % ± SD. 

Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

Another derivatives of polysulfanes, including DPSTTS, DPSEETTS, DEETTS, and PrTTSPs 

were also tested under the same conditions on the Neuro 2A cells. All these compounds contain 

a tetrasulfur chain and show a weak cytotoxic effect on neuronal cells at concentrations of 

around 50 to 100 µM (Figure 2.22). 
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Figure 2.23:  Survival assay of PhTTSBn, BnTTSPs and PhTTSPs on Neuro 2A cells for 24 h on 96-

well plate. The density of the cells was 10,000 cells per well. White bars, the compounds 

were tested in the absence H2O2 and  gray bars the compounds were tested in the 

presence H2O2. The control containing 1 % of DMSO was normalized to 100 % viability, 

significances are expressed to the control. Data presented as viability % ± SD. 

Significances: ns p≥0.05, * p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

The asymmetric aromatic tetrasulfanes such as PhTTSBn, BnTTSPs, PhTTSPs and do both 

show a weak activity against Neuro 2A cells in the absence and in the presence of H2O2 which 

is shown in Figure 2.23. 
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Figure 2.24:  Survival assay of DPhTTS and DBnTTS on Neuro 2A cells for 24 h on 96-well plate. The 

density of the cells was 10,000 cells per well. White bars, the compounds were tested in 

the absence H2O2 and  gray bars the compounds were tested in the presence H2O2. The 

control containing 1 % of DMSO was normalized to 100 % viability, significances are 

expressed to the control. Data presented as viability % ± SD. Significances: ns p≥0.05, * 

p< 0.05, ** p < 0.01 and *** p < 0.001. 

 

Comparing the data, DPhTTS was the most active compound and showed a greater cytotoxicity 

than other compounds, with only around 28 % of cell viability left when used in a concentration 

of 100 µM (at the same concentration, DBTTS resulted in around 38 % of remaining viability). 

These results also confirm a different activity as far as benzyl- and phenyl-side chains. Phenyl 

containing compound slightly more active than benzyl one. (Figure 2.24). 
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2.6.4  The summary of IC50 values of organo sulfur compounds  in the Neuro 2A 
cell line 

The IC50 values of the various OSCs are presented in Table 2.4. 

Table 2.4:  The IC50 values of OSCs on Neuro 2A cell line (data are presented as mean ± SD) 

Compound IC50 value in the 
absence of H2O2  

[μM] 

IC50 value in the 
presence of H2O2  

[μM] 

 A. Linear disulfide 

diallyldisulfide (DADS) >100 >100 

 B. Cyclic disulfides 

1,2-VDT >100 >100 

1,3-VDT >100 >100 

1,2-dithiane  79.5 ± 0.1 >100 

1,5-DTCO 80.9 ± 8.0 >100 

LA >100 >100 

LAm >100 >100 

DT >100 >100 

ADT >100 >100 

APT >100 >100 

oltipraz >100 >100 

 C. Polysulfanes 

diallyltrisulfide (DATS) >100 >100 

dipropyltrisulfide (DPTS) >100 >100 

diallyltetrasulfide (DATTS) >100 >100 

Dipropyltetrasulfide (DPTTS) >100 >100 

dipropylacidtetrasulfide (DPSTTS) >100 >100 

Dipropylethanoicacidtetrasulfide (DPSEETTS) 65.3 ± 13.7 52.5 ± 3.0 

diethylethertetrasulfide (DEETTS) 81.6 ± 16.7 40.2 ± 18.2 

propyltetrasulfidepropylacid (PrTTSPs) >100 >100 

phenyltetrasulfidepropylacid (PhTTSPs) 76.8 ± 5.5 52.0 ± 22.2 

benzyltetrasulfidepropylacid (BnTTSPs) >100 >100 

phenyltetrasulfidebenzyl (PhTTSBn) >100 51.9 ± 12.1 

dibenzyltetrasulfide (DBnTTS) 34.4 ± 18.3 37.6 ± 13.0 

diphenyltetrasulfide (DPhTTS) 60.9 ± 25.0 65.5 ± 8.8 
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2.6.5 Activity of nanoparticles on Neuro 2A cell line 

As seen before, sulfur nanoparticles and selenium nanoparticles exhibit a strong toxicity against 

S. feltia. In this experiment, the nanoparticles were therefore tested on the Neuro 2A cells to 

compare their activity with the one of di- and polysulfanes. 
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Figure 2.25:  Survival assay of Neuro 2A cells exposed to chalcogen nanoparticles for 24 h. The assay 

was performed on 96-well plate, the density of the cells was 10,000 cells per well. After 

these treatments, cells were washed with PBS and viability was assessed by dyes 

solution (calcein-AM and PI). The control containing water was set at 100 % viability. 

Significances are expressed to the control. Data shows means of three independent 

experiments.  Data presented as viability % ± SD. Significances: ns p≥0.05, * p< 0.05, ** p 

< 0.01 and *** p < 0.001. 

 

The results show that both of the chalcogen nanoparticles, i.e. NPS and NPSe are active 

against Neuro 2A cells when employed at a concentration of at around 1µg/ml (Figure 2.25.). 

The IC50-values determined for them are below 1 µg/ml for NPS and NPSe respectively. 
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2.7 Electrochemical analysis: Cyclic Voltammetry 

Cyclic voltammetry (CV) is an electrochemical technique to analyse the redox properties of 

organic and inorganic compounds.[67,82] In this particular study, the different redox potentials of 

OSCs could provide a hint for the chemical reactivity and biological activity of the different 

molecules. Also statements about the antioxidant or prooxidant behavior of the OSCs could be 

derived from their redox potentials. To analyze the OSCs under appropiate conditions (e.g. in 

phosphate buffer at pH 7.4), a dropping mercury was used [83,84] All measurements were 

performed using a platinum wire counter electrode and a silver/silver-chloride electrode as a 

reference electrode with a standard scan rate of 250 mV/s. The experiment was carried out 

together with Uma M. Viswanathan, a PhD student in Prof. Jacob’s group and under supervise 

by Dr. Torsten Burkholz. 

 

2.7.1 Electrochemistry of cyclic disulfide compounds 

1,2-VDT, 1,2-dithiane and 1,5-DTCO were analyzed in the absence and in the presence of 

glutathione (GSH) as an internal reference standard. Anodic signals (Epa) are obtained due to 

oxidation of the reduced forms of the compounds, while reduction signals (Epc) are obtained due 

to reduction of the oxidized forms of the compounds.[85] As expected, 1,3-VDT shows no 

oxidation or reduction signal (no S-S bond in the molecule). The voltammogram obtained in the 

presence of this compound is therefore not shown.  
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Table 2.5:  Summary of oxidation potentials (Epa) and reduction potentials (Epc) of cyclic disulfide 

compounds in the absence and in the presence of GSH. Data presented as mean ± SD. 

Potentials Compound GSH mix 

(Compound + GSH) 

 1,2-VDT)   

Epa (mV) 
-618 ± 1.0  -615. ± 2.5 

 -412 ± 4.3 -409 ± 3.8 

Epc (mV) 
-650 ± 1.6  -656 ± 1.9 

 -470 ± 1.0 -426 ± 7.2 

 1,2-dithiane   

Epa (mV) 
-540 ± 1.6  -540 ± 0.0 

 -412 ± 4.3 -404 ± 31.0 

Epc (mV) 
-561 ± 1.2  -585 ± 1.2 

 -470 ± 1.0 -422 ± 1.9 

 1,5-DTCO   

Epa (mV) 
-535 ± 3.8  -535 ± 4.1 

 -412 ± 4.3 -352 ± 3.4 

Epc (mV) 
-556 ± 1.0  -556 ± 4.0 

 -470 ± 1.0 -418 ± 3.3 

 

The CVs of 1,2-VDT, 1,2-dithiane and 1,5-DTCO show more negative potentials compared to 

GSH (here GSH used as an internal reference standard). The reduction (Epc) signals for these 

compounds were not affected when GSH was presence together (the Epc value of the 

compounds only are -650, -561 and -556 mV for 1,2-VDT, 1,2-dithiane and 1,5-DTCO 

respectively, while the Epc value of the compounds in the presence of GSH are -656, -585 and -

556 mV for 1,2-VDT, 1,2-dithiane and 1,5-DTCO respectively). The reduction (Epc) signals for 

GSH alone (Epc = -470 mV) however were shifted positively towards higher potentials when 

GSH was present together with the compounds (Epc = -426, -422, and -418 for 1,2-VDT, 1,2-

dithiane and 1,5-DTCO respectively) (Table 2.5). 
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Figure 2.26:  The cyclic voltammogram of 1,2-VDT, Epa = -618 mV, Epc = -650. 

 

Figure 2.27:  The cyclic voltammogram of 1,2-VDT in the presence of GSH, Epa = -615 mV, Epc = -

656. 
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Figure 2.28:  The cyclic voltammogram of 1,2-dithiane, Epa = -540 mV, Epc = -561. 

 

 

Figure 2.29:  The cyclic voltammogram of 1,2-dithiane in the presence of GSH, Epa = -540 mV, Epc = -

585. 
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Figure 2.30:  The cyclic voltammogram of 1,5-DTCO, Epa = -535 mV, Epc = -556. 

 

 

Figure 2.31:  The cyclic voltammogram of 1,5-DTCO in the presence of GSH, Epa = -535 mV, Epc = -

556. 
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DT, ADT, APT and Oltipraz were also measured using similar conditions. Similarly to 1,2-VDT, 

these cyclic disulfide compounds showed more negative potentials when compared to GSH. 

Unfortunately, the signals for GSH/GSSG are not clearly visible in the case Oltipraz is recorded 

in the presence of GSH. The redox potentials obtained are summarized in Table 2.6. The 

voltammograms of these compounds are presented in Figures 2.32. to 2.38. 

Table 2.6:  Summary of oxidation potentials (Epa) and reduction potential (Epc) of cyclic disulfides 

compounds in the absence and in the presence of GSH. Data presented as mean ± SD. 

Potentials Compound GSH 
mix 

(Compound + GSH) 

 DT   

Epa (mV) 

-686 ± 1.2  -660 ± 9.6 

-569 ± 7.7  -547 ± 11.8 

 -412 ± 4.3 - 

Epc (mV) 

-960 ± 9.6  -986 ± 2.0 

-627 ± 13.3  -705 ± 8.9 

 -470 ± 1.0 -445 ± 1.9 

 ADT   

Epa (mV) 

-677 ± 7.0  -687 ± 6.4 

  -570 ± 1.9 

 -412 ± 4.3 -351 ± 6.0 

Epc (mV) 

-721 ± 3.5  -721 ± 5.3 

-621 ± 12.7  -603 ± 4.1 

 -470 ± 1.0 -434 ± 15.3 

 APT   

Epa (mV) 

-752 ± 2.8  -744 ± 0.0 

-570 ± 1.0  -564 ± 0.0 

 -412 ± 4.3 -392 ± 11.7 

Epc (mV) 

-788 ± 0.0  -803 ± 1.0 

-602 ± 8.2  -621 ± 11.0 

 -470 ± 1.0 -406 ± 0.0 
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Figure 2.32:  The cyclic voltammogram of DT, Epa = -686 mV, Epc = -960 mV. 

 

 

Figure 2.33:  The cyclic voltammogram of DT in the presence of GSH, Epa = -660 mV, Epc = -986 mV. 
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Figure 2.34:  The cyclic voltammogram of APT, Epa = -752 mV, Epc = -788 mV. 

 

 

Figure 2.35:  The cyclic voltammogram of APT in the presence of GSH, Epa = -744 mV, Epc = -803 

mV. 
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Figure 2.36:  The cyclic voltammogram of ADT, Epa = -677 mV, Epc = -721 mV. 
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Figure 2.37:  The cyclic voltammogram of ADT in the presence of GSH, Epa = -687 mV, Epc = -721 

mV. 

 

Figure 2.38:  The cyclic voltammogram of oltipraz, Epa = -555 mV, Epc = -617 mV. 

 

Table 2.7:  Summary of oxidation potentials (Epa) and reduction potential (Epc) of cyclic disulfides 

compounds in the of GSH. Data presented as mean ± SD. 

Potentials Compound 

 Oltipraz 

Epa (mV) -555 ± 3.5 

Epc (mV) -617 ± 2.0 

 

2.7.2 Electrochemistry of diallyldisulfide and polysulfanes  

Diallyldisulfide (DADS) and the polysulfanes exhibited at least two reduction and oxidation 

signals, of which one reduction signal (Epc) and one oxidation signal (Epa) were dominant. The 

summary of the redox potentials of the DADS and linear polysulfanes is presented in Table 2.8. 

The CVs of DADS and linear polysulfanes are shown in Figure 2.39 to 2.42.  
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Table 2.8:  Summary of oxidation potentials (Epa) and reduction potential (Epc) of polysulfanes in the 

absence of GSH. Data presented as mean ± SD. 

Potentials Compound 

 DADS 

Epa (mV) -462´± 1.9 

Epc (mV) 
-603 ± 1.2 

-522 ± 1.0 

 DATTS 

Epa (mV) -579 ± 1.0 

Epc (mV) 
-651 ± 1.0 

-528 ± 1.6 

 DPSTTS 

Epa (mV) 
-574 ± 1.0 

-387 ± 1.0 

Epc (mV) 
-644 ± 0.0 

-411 ± 1.0 

 DPSEETTS 

Epa (mV) 
-576 ± 0.0 

 

Epc (mV) 
-642 ± 0.0 

-532 ± 0.0 

 

In the first instance, the reduction signal (Epc) are generally tendency more negative with 

increased sulfur-sulfur chain, i.e. DATTS is more negative than DADS. This tendency is clearly 

visible at physiological pH 7.4 where DADS and DATTS exhibit a Epc value of -603 mV and -651 

mV respectively. In case of the novel tetrasulfane derivatives Epa and Epc values, do not differ 

fiercely from the values obtained under physiological pH 7.4 for DATTS (a reference compound 

for tetrasulfanes). The values generally are obtained around -644 mV for DPSTTS and -642 mV 

for DPSEETTS. Interestingly, these Epc values are significantly more negative compared to the 

value of the reduction signal obtained of GSH/GSSG (-470 mV), which appear that the 
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tetrasulfanes are, at least, considerably less oxidizing than GSSG. This finding is in good 

agreement at least in theory. Based on this initial electrochemistry studies showed that 

polysulfanes behave as strong oxidants.[29] 

 

Figure 2.39:  The cyclic voltammogram of DADS, Epa = -462 mV, Epc = -603 mV. 
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Figure 2.40:  The cyclic voltammogram of DATTS, Epa = -579 mV, Epc = -651 mV. 

 

Figure 2.41:  The cyclic voltammogram of DPSTTS, Epa = -574 mV, Epc = -644 mV. 
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Figure 2.42:  The cyclic voltammogram of DPSEETTS, Epa = -576 mV, Epc = -642 mV. 

 

The summary of the oxidation and reduction potentials obtained under the same condition for 

the aromatic tetrasulfane derivatives such as DBnTTS in the absence or in the presence of GSH 

in phosphate buffer of pH 7.4 is provided in Table 2.9. The data showed that Epc values 

obtained for the aromatic compound are significantly more negative than the Epc value obtained 

for GSH/GSSG. The Epc value of DBnTTS are found around -616 mV and the Epc value 

obtained for glutathione disulfide (GSSG) under the same experimental conditions are obtained 

around -470 mV. This implies that aromatic tetrasulfane compound is less oxidizing than GSSG. 

The CVs of DBnTTS in the absence or in the presence of GSH are shown in Figures 2.43 and 

2.44. 

 

Table 2.9: Summary of oxidation potentials (Epa) and reduction potential (Epc) of polysulfanes in the 

absence and in the presence of GSH. Data presented as mean ± SD. 

Potentials Compound GSH 
Mix 

Compound + GSH 
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 dibenzyltetrasulfide (DBnTTS)   

Epa (mV) 
-565 ± 1.0  -572 ± 0.0 

 -412 ± 4.3 - 

Epc (mV) 
-616 ± 0.0  -626 ± 0.0 

 -470 ± 1.0 -463 ± 3.5 
 

 

 

Figure 2.43:  The cyclic voltammogram of DBnTTS, Epa = -565 mV, Epc = -616 mV. 
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Figure 2.44:  The cyclic voltammogram of DBnTTS in the presence of GSH, Epa = -572 mV, Epc = -626 

mV. 

2.8 Energy-dispersive X-ray spectroscopy microanalysis 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for elemental 

analysis and chemical characterization of diverse samples. The aim of this study is to analyze 

and to identify the different distribution of sulfur and selenium in Neuro 2A cells. The intensity or 

relative proportions of the elements are presented in mass percentages. 

The different OSCs and chalcogen-based nanoparticles were analyzed due to their different 

behavior inside the cells. Overall, nine different chemical elements were determined in this 

study: carbon, nitrogen, oxygen, sulfur, phosphorus, selenium, silicon, sodium, and aluminium. 

The treatment and preparation of the cells for the EDX analysis was as follows. The cells were 

fixed with formaldehyde and glutaraldehyde in cacodylate buffer on glass coverslips (the cells 

were grown adherent on a glass coverslip) and incubated with the compounds for 24 h. 

Subsequently, analysis of the cells was carried out in order to established the overall distribution 

of the defined elements. 

 

http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Characterization_%28materials_science%29
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2.8.1 EDX microanalysis of untreated cells  

It was known that most of biological redox system present in the human cell is not based on the 

metal ion or flavin, but on the redox active sulfur. The latter found, GSH which present in most 

mammalian cells was around 10 mM (most as GSH, but also in oxidized as GSSG, glutathione 

disulfide). GSH is a primary part of the “cellular redox buffer” which protect cells effectively 

against oxidative stress.[86] 

Figure 2.45. shows the elemental distribution of the defined elements over the area of Neuro 2A 

cells without pretreatment with compounds (control). The defined elements were scanned across 

the cell and across the coverslip, to determined the differentiation of the elements. Silicon and 

oxygen are obviously detected in a cell-covered glass coverslip. Interestingly, sulfur is found 

within the scanned area of the cell without pretreatment with compounds (control) with the mass 

percentage of 0.90 % (± 0.2). Even though this finding not as much as if we compared to the 

literature, but this result showed that sulfur resulting from the presence of GSH in the cell. The 

mass percentage of the sulfur found was depend on the spot of the analyzer and homogeneity 

of the cell. 
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Figure 2.45:  Mass percentages of the defined elements scanned by EDX analysis across neuronal 

cells (untreated). 
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2.8.2 X-ray mapping of Neuro 2A cells treated with diphenyltetrasulfide 

The concentration of DPhTTS used in the Neuro 2A cells in this assay was 100 µM. The 

distribution of elements in Neuro 2A cells incubated with this compound are displayed in Figure 

2.46. As shown in Figure 2.46, sulfur atoms were detected in every area (yellow color) of the 

cell, with the mass percentage of 1.18 %. 

 

 

 
 
Figure 2.46:  X-ray mapping of defined elements over the scan area of Neuro 2A cell lines; A. 

Distribution of defined elements scanned across the cell (cells treated with 100 µM of 
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DPhTTS); B. Distribution of defined elements scanned across the coverslip. X-ray 

mapping was performed by a EDX microanalyzer (SUPRATM 40, Carl Zeiss AG). 

 

2.8.3 X-ray mapping of Neuro 2A cells treated with dibenzyltetrasulfide 

The concentration of DBnTTS used in the Neuro 2A cells in this assay was 100 µM. The 

distribution of elements in Neuro 2A cells incubated with this compound are displayed in Figure 

2.47. Similarly to DPhTTS, the sulfur atoms were detected with the mass percentage was 

around 4 %. 

 
 
Figure 2.47:  X-ray mapping of defined elements over the scan area of Neuro 2A cell ines; A. 

Distribution of defined elements scanned across the cell (cells treated with 100 µM of 
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DBnTTS); B. Distribution of defined elements scanned across the coverslip. X-ray 

mapping was performed by a EDX microanalyzer (SUPRATM 40, Carl Zeiss AG). 
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2.8.4 EDX microanalysis of Neuro 2A cells with the nanoparticles  

Figure 2.48. shows the elemental distribution of the sulfur and selenium elements over the area 

of Neuro 2A cells treated with sulfur and selenium nanoparticles. Interestingly, selenium is 

detected within the scanned area of the cell with the mass percentage of 0.87 % (± 0.44 %) 

(Figure 2.48.). This implies that Se can be up taken by the neuronal cell either in form of intact 

NPSe or as metabolic product.  
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Selenium nanoparticles NPSe (scanned on cell)
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Figure 2.48:  Mass percentages of the defined elements scanned by EDX analysis across three 

neuronal cells treated with NPS and NPSe. 

 

X-ray mapping of Neuro 2A cells treated with the sulfur nanoparticles  

The cell culture studies using neuronal cells showed that NPS have a strong toxic effect against 

the Neuro 2A cell line. The distribution of elements in Neuro 2A cells in the presence of NPS are 

displayed in Figure 2.49. 
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Figure 2.49:  X-ray mapping of defined elements over the scan area of Neuro 2A cell-lines; A. 

Distribution of defined elements scanned across the cell (cells treated with 100 µg/ml of 

NPS); B. Distribution of defined elements scanned across the coverslip. X-ray mapping 

was performed by a EDX microanalyzer (SUPRATM 40, Carl Zeiss AG). 
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X-ray mapping of Neuro 2A cells treated with selenium nanoparticles 

The cell cultures studies using NPSe showed a high toxicity on neuronal cells at 1 µg/ml. The 

distribution of element Se on neuronal cells are presented in Figure 2.50.  

 
 
Figure 2.50:  X-ray mapping of defined elements over the scan area of Neuro 2A cell lines; A. 

Distribution of defined elements scanned across the cell (cells treated with 100 µg/ml of 

NPSe); B. Distribution of defined elements scanned across the coverslip. X-ray mapping 

was performed by a EDX microanalyzer (SUPRATM 40, Carl Zeiss AG). 
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2.9 Cell fractionation to investigate the location of the compounds in Neuro 2A 
cells 

In the previous toxicity experiments DPhTTS showed the highest activity in the Neuro 2A cells. 

Therefore, DPhTTS was chosen as a suitable candidate for the cell fractionation. The aim of this 

study was to investigate where DPhTTS is located inside the neuronal cells. Cells were therefore 

incubated with 100 µM of DPhTTS for 24 h, than fractionated into their different constituents: 

cytosol, cell membrane, nuclear, mitochondria, reticulum endoplasmic-ribosome (RE-Ribosome), 

and the Golgi apparatus. The cellulars fractions were subsequently analyzed using HPLC/UV-

MS to determine the approximate location and distribution of DPhTTS inside the cell. 

 

2.9.1 Intracellular distribution of DPhTTS  

To fractionate the cytosol and cell membrane, the neuronal cells were centrifuged at 17.500 rpm 

using Eppendorf AG Centrifuge 5430 R. The pellet obtained was recognized as cell membrane 

fraction, while the cytosolic fraction was still in the supernatant.  

Table 2.10.  The retention times (RT) of DPhTTS and component in the cell membrane as fraction 

obtained by HPLC/UV-MS analysis. 

Retention time (RT) (minute) 

DPhTTS cell membrane fraction 

6.26 6.42 

6.72 6.73 

7.20 7.18 

7.69 7.65 

DPhTTS nuclear fraction 

6.26 6.23 

6.72 6.63 

7.20 6.97 

7.69 7.45 

 

DPhTTS was detected in the cell membrane fraction (Table 2.10.). This implies that this 

compound enters to the cell membrane. Based on Lipinski’s rules this symmetric tetrasulfane 
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compound poseses clogP values of 5.044. DPhTTS was not detected in cytosol, indicating that 

this compound may become enriched in cell membranes and possibly other lipophilic of the cell.  

To separate the nuclear fraction, neuronal cells were dounced three times using dounce 

homogenizer in hypotonic solution (0.25 M sucrose) to break the cell membranes open. The 

cells were then centrifuged for 10 min at 3,000 rpm, the resulting pellet contains the nuclear 

fraction. The top part of the nuclear fraction was centrifuged further at 10,000 g for 20 min to 

separate the mitochondria fraction. The RE-Ribosome fraction was then separated by the 

isolation of the surface part of the mitochondria fraction and subsequent centrifugation at 

196,000 g for 60 min. The Golgi apparatus fraction was obtained from the top layer of the ER-

Ribosome fraction. All the different steps of the subcellular fractionations were carried out in cool 

condition. The results all of the cellular and subcellular fractions are demonstrated in the Figure 

2.51. The results show that DPhTTS might be detected in the nuclear fraction due to the peaks 

obtained were similar to the peaks obtained from DPhTTS. In addition, some of molecules of 

DPhTTS were detected in the mitochondria and ER-Ribosome fractions but the intensities are 

too small to give a clear statement (Table 2.9.).  
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Figure 2.51:  HPLC/UV-MS analysis of the cellular and sub cellular fractions. A. HPLC/UV-MS analysis 

of DPhTTS, B. Buffer, C. Cell membrane, D. Cytosolic, E. Nuclear, F. Mitochondria, G. 

ER-Ribosome, and H. Golgi fraction.  
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3. Summary and Outlook 
 

The primary aim of this study was to investigate the redox behaviour, biological activities and a 

possible use of disulfide-based OSCs and sulfur-based nanoparticles as potential redox-

modulating agents in medicine or as phytoprotectans in Agriculture.  

1,2-Vinyldithiin (1,2-VDT), 1,3-vinyldithiin (1,3-VDT), 1,2-dithiane, 1,5-dithiacyclooctane (1,5-

DTCO), and α-pinene trithione (APT) were synthesized successfully in the beginning of this 

project. The sulfur- and selenium-nanoparticles (NPS and NPSe respectively) were also 

prepared according to the literature. The structures and the purities of OSCs were confirmed 

using NMR, HPLC and LC-MS spectroscopy. NPS and NPSe were characterized using a 

ZetaSizer Nano from Malvern Instruments, Ltd. Germany. The sulfur rich Haarlem Oil was a gift 

from Laboratoires du Dr. J. Lefevre, France. The other compounds used as part of this project 

were synthesized and purified by colleagues in the group of Prof. Dr. Claus Jacob at the 

University of Saarland, especially by Brigitte Czepukojc and Uma M. Viswanathan.  

The electrochemical studies were conducted to evaluate aspect of the redox behavior of the 

various compounds, using cyclic voltammetry (CV) as analytical technique. All experiments were 

carried out in the presence and absence of glutathione (GSH) to investigate if the different 

compounds were reacting with GSH or not (also GSH was used as internal reference). In 

general, all the compounds used were more reducing than GSH and therefore apparently did not 

react with GSH. As expected, 1,3-VDT did not show any oxidations or reduction signals due to 

the fact that this compound does not possess a sulfur-sulfur bond which could be reduced.  

Furthermore, the activity of the compounds and nanoparticles was measured employing 

Steinernema feltiae nematodes as a model for living (higher) organisms. This studies indicated 

that 1,2-VDT was more active against the nematodes compared with its isomer (1,3-VDT). The 

linear disulfide, such as diallyldisulfide, and associated chemical reactivity generally were highly 

active and toxic against the nematodes, while Harlem Oil did not show such a high toxicity. 

These results do reflect the already expected high (redox) activity of the sulfur-sulfur bond 

containing compounds.  

Nonetheless the highest activity was found using the nanoparticles. Sulfur nanoparticles, in 

particular, showed an excellent activity at low concentrations (µg/ml). These results are 
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interesting and should be followed up by (expensive) agricultural field trials to prepare a highly 

active and commercial product out of the sulfur and selenium nanoparticles. 

In order to investigate the activity of the OSCs against Botrytis cinerea, wild type and resistant 

mutant strain were studied. The results show that dithiolethione (DT) has a strong activity at low 

concentrations (around 0.3 mM) against all different strains of B. cinerea. In the same 

concentration range, α-lipoic acid (LA) has also shown some inhibitory effects against the MDR 

2 spores of this fungus.  

Calcein-AM-PI dyes were used to performed survival and apoptosis assays on Neuro 2A cells, a 

standard murine neuroblastoma cell line. In this assay, the compounds were tested in the 

presence and the absence of hydrogen peroxide to analyze the influence of oxidative stress on 

the compounds. The toxicity of the molecules was evaluated based on the cell viability of the 

neuronal cell after 24 h. The results showed that cyclic disulfide compounds, such as 1,2-

dithiane, 1,5-DTCO and DT possess some moderate activity. As before, sulfur- and selenium-

nanoparticles exhibited the most cytotoxic effects The polysulfane-derivatives (especially the 

tetrasulfanes) also showed toxic effects at moderate sometimes even at lower concentrations. 

DPhTTS and DBnTTS, in particular, exhibited high activity at concentrations around 100 µM with 

cell survival rates below 38%. 

SEM-EDX microanalysis was used to study the distribution of chalcogen atoms inside the cells. 

Sulfur atoms from the polysulfanes and the nanoparticles were expected detect at in every area 

of the Neuro 2A cells. Interestingly, the selenium was also detected inside the cells with a mass 

percentage of Se of 0.87 % (± 0.44 %). 

DPhTTS showed the highest activity in the neuronal cells, so this compound was used further as 

part of cell fractionating studies. Cells were fractionated after 24 h incubation to obtain various 

cellular organelles: cell membrane, nuclear, mitochondria, reticulum endoplasmic-ribosome, and 

the Golgi apparatus. All of the fractions were analyzed by HPLC/UV-MS detector with ESI 

(Electron Spray Ionization) at 254 nm. Ultimately, this analysis indicated that the lipophilic 

tetrasulfane DPhTTS becomes enriched in the cell membrane and also in the nucleus. Some 

lower concentrations of the compound were also found in the mitochondria and in the RE-

ribosome. 

In future, several studies to analyze the behaviour of the chalcogen containing compounds in 

mammalian cells and other biological materials such as fungi and bacteria are required. It may 
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also be interesting to investigate further the toxicity and the signalling pathway triggered as 

affected by these compounds. Indeed, it would interesting to see if these compounds do affect 

primary signaling pathways to induce apoptosis or if the cellular processes are more complicated 

and complex as differentiated as thought at present.  

Finally, it may be worth to subsequently conduct some filed trials with industrial partners to 

established possible OSCs-brand ‘green’ pesticides or phytoprotectans as commercial products. 

The preliminary data looks indeed promising and there is a huge market to sell nature-based 

and cheap phytoprotectans. The same consideration also applies to the sulfur nanoparticles and 

to the selenium containing compound and to possible application for medicinal and agriculture. 
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4. Experimental Section 
 

4.1 Materials and methods  
4.1.1 Materials  
Acrolein, ethyl orthoformate, 1,4-butanedithiol, 1,3-dibromopropane, 1,3-propanedithiol, 

diallyldisulfide (DADS) and α-pinene were purchased from Sigma Aldrich (Germany) and used 

without further purification. Anhydrous zinc chloride, sodium sulfate, silica gel, bromine, sodium, 

anhydrous calcium chloride, sulfur, sodium sulfite, sodium sulfide, sulfuric acid, sodium sulfide 

nonahydrate, L-cysteine, selenious acid, α-lipoic acid, lipoamide were purchased from Sigma 

Aldrich (Germany). Meanwhile, Oltipraz, dithiolethione (DT) and anethole dithiole thione (ADT) 

were purchased from LKT Laboratories Inc. Haarlem Oil was a gift from Dr. J. Lefevre, ZI La 

Pelouse-55 190, Void Vacon, France. 

 

4.1.2 Nuclear magnetic resonance spectroscopy 

NMR spectra (1H NMR and 13C NMR) were recorded on a Bruker Avance 500 at the Department 

of Pharmaceutical and Medicinal Chemistry, School of Pharmacy, University of Saarland. The 

chemical shifts are expressed relative to the signal of chloroform (CDCl3), used as a solvent, at 

7.26 ppm and 77.16 ppm, for 1H NMR and 13C NMR, respectively. All the spectra recorded and 

the chemical shifts reported are given in δ (ppm). 

 

4.1.3 Melting points 

Melting points were measured using Thermo Scientific 9300, Fisher company, UK and given 

without correction.  
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4.1.4 Refractive index 
Refractive indices were measured as appropriate using a thermostatically controlled Abbe 

refractometer (Atago 3T, Japan). For each compound, the refractive index was measured at 25 

°C and in triplicate.  

 

 
4.1.5 Characterization of nanoparticles 

Sulfur and selenium nanoparticles of sulfur and selenium were characterized with a Zetasizer 

Nano (Malvern Instruments Ltd, Germany). The diameter (nm) of particles, polydispersity index 

(PDI) and Zeta potentials (mV) of the nanoparticles were measured at 25 °C and at pH=7 in 

triplicate. 

 

4.2 Synthesis of organo sulfur compounds 

4.2.1 Synthesis of vinyldithiins 

Vinyldithiins were synthesized from acrolein and hydrogen sulfide according to the literature 

procedure described by Beslin. [44] In brief, into a ice-cooled solution of absolute ethanol (150 

ml), acrolein (0.1 mol), ethylorthoformate (0.15 mol) and ZnCl2 (0.002 mol) were added under a 

continuous stream of H2S (0.1 ml/min). The solution was stirred for 5 h, afterwards the reaction 

mixture was poured on ice and extracted with 50 ml of cold pentane (3x). The yellow organic 

phase was separated, dried over sodium sulfate (Na2SO4), filtered and the solvent evaporated 

using a vacuum rotary evaporator. The vinyldithiins (1,2-VDT and 1,3-VDT) were separated and 

purified by silica gel column chromatography using  petroleum ether and ethyl acetate 

(PE/EtOAc, 99:1) as solvent. Fractions from the column were collected was done under ice-

cooled conditions (i.e. the collecting tubes were immerged into an ice bath) because of low 

thermal stability of the vinyldithiin compounds. 
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4.2.2 Synthesis of 1,2-dithiane 

1,2-Dithiane was synthesized by brominating 1,4-butanedithiol according to the literature.[71] 

Under ice-cooled and vigorous stirring conditions, flash chromatography grade silica gel (5.0 g) 

was placed into a 100 ml threenecked round-bottom flask. Distilled water (2.5 ml) was added 

drop-wise into the flask using a syringe. Stirring was continued until a flowing suspension was 

obtained. Dichloromethane (DCM) (25 ml) was added to the flask, followed by slow addition of 

1,4-butanedithiol (4.02 mmol) in DCM (5 ml). A Solution of elem. bromine (Br2) in DCM (1.16 M, 

3.50 ml, 4.06 mmol) was added drop-wise to the mixture using a syringe. The reaction was 

terminated once the colour of the solution turned light brown-yellow (fine yellow) and did not 

change any further for another 10 to 15 minutes (this indicates that the reaction is completed). 

The reaction mixture was then filtered and washed with 100 ml of distilled water (3x) and dried 

over anhydrous Na2SO4. The organic solvent was removed under reduced pressure to obtain 

the crude product which was purified further by silica gel column chromatography using 

petroleum ether and ethyl acetate (PE/EtOAc, 95:5) as solvent. 

 

4.2.3 Synthesis of 1,5-dithiacyclooctane  

1,5-Dithiacyclooctane (1,5-DTCO) was synthesized from 1,3-dibromopropane (20 mmol) and 

1,3-propanedithiol (20 mmol) under an argon atmosphere, as described by Clennan et al. with a 

few modifications.[62] In short, sodium (1 g, 0.04 mol) was added to anhydrous EtOH (200 ml) 

and stirred until a fine yellow solution was produced, The solution was then warmed to 50 °C, 

followed by the simultaneous drop-wise addition of 1,3-dibromopropane (20 mmol) in anhydrous 

EtOH (50 ml) and 1,3-propanedithiol (20 mmol) in anhydrous EtOH (50 mL) over 1.5 h. The 

mixture was then heated for another hour upon which it produced a gloomy white solution. The 

latter was allowed to cool to room temperature. Then the white precipitate was filtered and the 

ethanol solution obtained was reduced to induce formation of more white precipitate. Water (150 

ml) was added to the precipitate and the resulting aqueous solution was extracted four times 

with 40 ml of hexane. The hexane layers were combined, dried over anhydrous CaCl2, filtered, 

and the solvent was removed under vacuum. The crude product was purified by silica gel 

column chromatography using petroleum ether and ethyl acetate (PE/EtOAc, 95:5) as solvent. 
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4.2.4 Synthesis α-pinene trithione 

α-Pinene trithione (APT) was synthesized by mixing α-pinene (40 mmol) and elemental sulfur 

(S8) (280 mmol),and subsequently heating the mixture to 145-150 °C under continuous stirring. 

Stirring was continued at this temperature for 5 h until the colour of the solution changed from 

yellow to red-brown. At this point, diethyl ether was added to the reaction mixture and the 

mixture was stirred overnight to precipitate any unreacted sulfur and then filtered. The organic 

solvent was removed under vacuum. The crude product obtained was purified by silica gel 

column chromatography using petroleum ether and ethyl acetate (PE/EtOAc, 95:5) as solvent.[8] 

 

4.2.5 Synthesis of nanoparticles 

Synthesis of sulphur nanoparticles 

Sulfur nanoparticles (NPS) were synthesized and purified according to the procedure of 

Bornhard and Lange with small modifications.[74] After synthesis, the nanoparticles then filtered 

and washed extensively with MilliQ water and centrifuged several times in order to remove all 

soluble, unreacted impurities. Afterwards the sulfur nanoparticles was reduced to a final volume 

(20-25 ml) using a vacuum rotary evaporator. The sulfur nanoparticles are then filtered 

consisting of a acetate membrane (w/0.2 µM). Characterization of NPS according to size, Zeta 

potential and polydispersity index (PDI) was performed with a Zetasizer Nano (Malvern 

Instruments Ltd. Germany).  

 

Synthesis of selenium nanoparticles 

Selenium nanoparticles (NPSe) were synthesized and purified according to the method 

described by Chen et al.[75] After synthesis, the nanoparticles then filtered and washed several 

times with HCl (0.01 M, 60 ml), ethanol (120 ml), and washed extensively with MilliQ water and 

centrifuged several times in order to remove all soluble, unreacted impurities. Afterwards the 

selenium nanoparticles was reduced using a vacuum rotary evaporator. The selenium 

nanoparticles then filtered with Whatman Anotop Syringe Filters (0.45 µM). Characterization of 

NPSe according to size, Zeta potential and polydispersity index (PDI) was performed with a 

ZetaSizer Nano (Malvern Instruments Ltd. Germany). 
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4.3 Nematode assays 

4.3.1 Nematodes Steinernema feltiae 

The nematodes Steinernema feltiae were purchased from Sautter & Stepper, Ammerbuch, 

Germany, as a powder cake product and stored at below 12 °C, as S feltiae is inactive below 

this temperature (ideally at 4 °C). A homogeneous mixture of nematodes was prepared by 

mixing 200 mg of powder cake with 50 ml of distilled water in order to revive of nematodes 

before use.  

 

4.3.2 Sample preparation 

Test preparation samples followed the method described by Sarakbi.[85] In brief, a primary stock 

solution, 40 mM, of the compound tested was prepared in DMSO. From this main stock solution, 

a series of dilutions were carried out to prepare 20, 10, and 5 mM stock solution. These 

secondary stock solution are then used to prepared the working solution. Here, 444.44, 222.22, 

111.11, and 55.56 µM solutions of the respective compound was prepared and 88.8 µl of each 

of these solutions was then placed into a Falcon tube and diluted with distilled water to a final 

volume of 8 ml. The percentage of DMSO used was 1.1 %. To produce a test medium 

compound 400, 200, 100, and 50 µM in 1% of DMSO, 900 µl of the serial solutions were 

transferred into Eppendorf tubes (1 ml) than mixed with 100 µl of a homogeneous mixture of 

nematodes. The final volume each tube was 1 ml, and concentration of compounds include 50, 

100, 200, and 400 µM in 1% DMSO.  

To prepare a negative control, 88.8 µl of DMSO was placed into a Falcon tube and diluted with 

distilled water to yield 1.1 % DMSO solution, 900 µl of this 1.1 % DMSO solution was transfered 

into an Eppendorf tube (1 ml) and combined with 100 µl of a homogeneous mixture of 

nematodes (final volume 1 ml). As a blank, 100 µl of a homogeneous mixture of nematodes was 

added to 900 µl of distilled water.  
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4.3.3 Assay procedure 

The assay was performed according to the procedure of Sarakbi with few modifications.[85] Three 

replicates at each concentration of a test compound were performed medium (see the Figure 

4.1).  

 

 

Figure 4.1: Design of the nematode assay using a 96-well culture flask. 

 

For the assay, in each replicate, two samples (100 µl of each well, around 50-70 worms are 

counted per well) were added within 2 wells in 96-well plate flat bottom tissue culture with a lid 

(Greiner bio-one, Cellstar) and assessed immediately (0 h) under the microscope. Live and dead 

nematodes in each sample were counted under the microscope at four-fold magnification (VWR 

International, Belgium); afterwards the plate was incubated at room temperature in the dark. 

After 24 h, the nematodes were stimulated with 50 µl of warm water (50 °C) to each well and 

counted as “live” and “dead” once more.  
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Calculations  

The viability of the nematodes obtained at each concentration of compound (three replicates) 

were expressed as a percentage (%). The viability values were obtained using the number of 

live nematodes after 24 h, expressed as W24 h and the number of live nematodes after 0 h, 

expressed as W0 h. The calculation of the viability of the nematodes after exposing them to the 

compounds is presented in the equation below: 

100(%)
0

24 x
W
W

Viability
h

h=  

 

4.4 Botrytis assay 

4.4.1 Composition of the culture medium of Botrytis cinerea strains 

The strains of Botrytis cinerea were kindly provided by the group of Prof. Dr. Matthias Hahn. This 

assay was performed under supervised by Dr. Michaela Leroch from the Department of Biology, 

University of Kaiserslautern, Germany. The strains were cultured in media containing Gamborg 

medium (Gamborg medium mixture (3 g/l), KH2PO4 (10 mmol/l), glucose (50 mmol/l) and 

adjusted to pH = 5.5 by using KOH). 

 

4.4.2 Strains of Botrytis cinerea  

The strains used in this assay were BO5.10, a sensitive lab strain (wild type strain, WT), MDR1, 

a multi drug resistance strain that has a high resistance and over expression on ABC 

transporter. MDR1*, a multi drug resistance strain that has a higher resistance and higher over 

expression on ABC and atrB transporter. MDR2, a multi drug resistance strain that has a higher 

over expression on MFS-transporter mfsM2. 
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4.4.3 Assay procedure 

Preparation of the spore suspensions 

The spore suspensions were prepared under aseptic conditions. The spores that were ready to 

be harvested from the agar plate were suspended by adding sterilized MilliQ water and mixed 

mechanically using a Drygalski-spatula. The mixture of the mycelium is then strained/washed 

with the blue tip in to the sterilized 15 ml Falcon tube through another sterilized Falcon tube that 

is filled with sterilized glass wool. The spore suspensions were washed once more with sterilized 

MilliQ water and centrifuged at 3,000 rpm for 3 min. Afterwards, the supernatant was removed, 

and spores were suspended again in sterilized MilliQ water (this step was repeated 3 times). 

All the preparations were performed in the fume hood and under aseptic condition. By using a 

Neubauer improved hemocytometer, spores were counted and multiplied by 5 to obtain the 

number of spores and then multiplied by 104 to obtain the number of spores in 1 ml. The 

suspension was diluted as required to obtaine a standard concentration of  2 x 105 spores/ml, 

which was used for the assay. Afterwards, the spore suspension was placed into an Eppendorf 

tube that was filled with Gamborg medium (final volume is 1 ml). The number of spores 

suspension obtained was incubated at room temperature in an Eppendorf tube for 2 h. 

 

Setting-up the test 

5 µl of the spore-suspensions were added into the centre of each well plate (96-well-plate). 

Adding into the centre of the well plate was intended to prevent growing on the edge of the well 

plate and also can be disturbing when using a plate reader to determinate results. Afterwards, 

95 μl of the substance (final concentration) was added. The plate was placed in chamber with a 

wet paper filled (a wet paper used to raise the humidity), then was closed, and incubated for 2 

days (48 h) at 20 °C. Furthermore, the optical density (OD) were determined with a plate reader 

at a wavelength of 595 nm (Dynatech MR5000 plate-reader). The MIC50 values were determined 

using Origin 7.5 software.  
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4.5 Cell culture studies 

4.5.1 Materials and methods 

Cell culture assay was performed under sterile conditions at the Department of Microsystems 

Technique of Prof. Dr. med. Karl-Herbert Schaefer at University of Applied Sciences 

Kaiserslautern, Campus Zweibruecken under the instructions of Dr. Cornelia Irene Hagl. Neuro 

2A cells were kindly provided by the department of Microsystems technique of Prof. Dr. med. 

Karl-Herbert Schaefer at University of Applied Sciences Kaiserslautern, Campus Zweibruecken. 

All plastic- or glass-materials used were sterilised prior to use. All solutions were sterilised by 

steam autoclaving. Experiments were performed in 96-well from Greiner Bio-one.  

Dulbecco’s modified Eagle's medium (DMEM) Fetal calf serum (FCS), Penicillin-Streptomycin, 

Non-Essential Amino Acid (NEAA), Dimethyl sulfoxide (DMSO), Trypsin-EDTA, pure Methanol, 

calcein-AM and Propidium Iodide were kindly provided by the Department of Microsystems 

Technique of Prof. Schaefer at University of Applied Sciences Kaiserslautern, Campus 

Zweibruecken. 

 

4.5.2  Culturing Neuro 2A cell lines 

Neuro-2A cells were grown in Dulbecco’s modified Eagle's medium (DMEM) with 10 % Fetal 

Bovine Serum (FBS), 1 % penicillin/streptomycin, and non-essential amino acid (NEAA 1 %). 

Cells were cultured at 37 °C in a 5 % CO2 atmosphere. 

 

Thawing of cells  

Frozen cells in cryo-vials at a temperature of -80°C were allowed to warm in a water bath at a 

temperature of 37°C. The cells were immediately poured into 10 ml of warmed medium (to 

minimize the toxic effect of DMSO), the suspension was centrifuged at 800 rpm for 5 min, and 

the top solution was removed. The pellet was then re-suspended with 10 ml of fresh medium 

and was placed to cell culture flask and incubated directly at 37 °C. On the next day, the 

medium was removed and replaced with new fresh medium. When the cells achieved 80 % 

confluence (2 or 3 days), they were split. 
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Splitting of cells 

At this point, the medium was removed with the 10 ml pipette and poured with 3 ml Trypsin-

EDTA. Incubation at 37 °C in 5 % CO2 atmosphere for 3-5 min in order to detach the cells from 

the surface of the flask. After incubation, the flask was gently knocked to release the cells on the 

surface of the flask. To normalize the cells due to a potential enzymatic reaction with Trypsin-

EDTA, the cell-trypsin suspension was mixed with fresh medium containing FBS (5 ml) and 

transferred with the pipette (gentle motion up and down) to the Falcon tube (15 ml, sterilized) 

and centrifuged at 800-1,000 rpm for 5 min. After centrifugation, the supernatant was removed 

and the pellet was suspended with fresh medium containing FBS (1 ml). For the next cultivation, 

50 μl of cell-suspension was transferred to the cell culture flask containing a fresh medium.  

 

Statistics 

Results were expressed as a mean of the number of experiments indicated. The IC50-values for 

the assays were determined using Origin 7.5 software. The p-values were determined using 

Prism 5 software. Significances: ns p≥0.05, * p< 0.05,** p < 0.01 and *** p < 0.001. 

 

4.5.3 Survival assay (calcein-AM - propidium iodide assay)  

Screening the activity of the chemical compounds on 96-well tissue culture plates  

Cells were seeded with a density of 10,000 cells per well in 96-well tissue culture plates in 

appropriate medium, then incubated for 24 h in an atmosphere of 5 % CO2 in humidified air at 

37 °C. After 24 h incubation, the culture medium was replaced with 0.2 ml medium containing 

H2O2, at concentrations of 100, 250, 500 and 1000 μM for 24 h incubation to determine the 

effect of H2O2 on Neuro 2 A cells. For the screening of the chemical compounds, cells were 

exposed to the compounds at concentrations of 1, 10, 50 and 100 μM in the absence or 

presence of H2O2 then incubated for another 24 h in an atmosphere of 5 % CO2 in humidified air 

at 37 °C.  
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Preparation of staining solution 

• Calcein acetoxymethyl ester (calcein-AM): 50 μg of calcein was diluted in 50 μl of DMSO. 

• Propiumiodide (PI): 50 μg of PI was diluted in 50 μl of sterilized distilled water  

• Staining solution: the staining solution was prepared with diluted 1 µl of calcein-AM and PI 

into 998 μl of phosphate buffered saline (PBS). This solution was then protected from the 

light immediately.  

 

Preparation of the culture staining 

After the incubation period, the previous medium was removed from each well and washed 

with 0.2 ml of PBS. Subsequently, the PBS was removed and replaced with 0.2 ml of staining 

solution and incubated for 15 min in an atmosphere of 5 % CO2 in humidified air at 37 °C. The 

plate was immediately protected from light. In this assay, calcein-AM enters the living cells and 

is cleaved by esterase inside the cells, producing a green fluorescence. In contrast, PI only 

enters dead cells, interacts and binds to nucleic acid, resulting in a red fluorescence.[87] 

Quantification of live and dead cells was performed by fluorescence microscopy. Images were 

analyzed using the Image J software live and dead cells were counted and cell viability was 

expressed as the percentages of live cells compared to the total number of cells present in the 

sample analyzed.  
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4.6 Cyclic Voltammetry studies 

Reagent 

Phosphate buffer was prepared by mixing potassium dihydrogen phosphate, KH2PO4, 174.18 

g/mol (0.2 M) and potassium monohydrogen phosphate, K2HPO4, 136.09 g/ mol (0.2 M). The 

phosphate buffer was then adjusted to pH = 7.4 using a pH meter (Hanna Instrument) and 

stored at 4 °C. 

 

Experimental conditions 

The experimental conditions used in cyclic voltammetry were as follows: 

• Working electrodes: mercury-drop electrode (drop size 16), reference electrode: Ag/AgCl, 

counter electrode: platinum wire/spiral. 

• Scan rate: the scan rate used for cyclic voltammetry generally was 250 mV/s. 

• Potential range: the potential range extended from 0 mV to -1200 mV. 

• Number of cycles: the number of cycles used in this method was 4 full cycles with 8 

segments i.e. one full cycle containing two segments. To verify whether the peaks found in 

the first cycle are also detected in the following cycles.  

• Recording cyclic voltammograms: Cyclic voltammograms were recorded on a BAS CV-

100W workstation (Bioanalytical Sytem Inc., USA). 

 

Preparation of the electrolysis cells 

The electrolysis cell was routinely cleaned with acetone, rinsed with distilled water and dried in 

the oven. A three-electrode system (working electrodes) was used for cyclic voltammetry must 

be cleaned by rinsing the entirely electrodes with distilled water and methanol after each 

experiment. The surface of the carbon electrode was also polished on an abrasive surface with 

circular motion and rinsed with distilled water after used and sonication. Since the mercury-drop 

electrode was used, a new drop (drop size 16) of the mercury was generated before each point 

and knocked off after each experiment. When all the measurements were completed, the 

mercury drops from the electrolysis cell were carefully removed and disposed safely.   
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Sample preparation 

Primary stock solutions of the compounds and glutathione, (10 mM each) were prepared in 1 ml 

of absolute MeOH. From which, 200 µl of compound stock were transferred to the electrolysis 

cell containing phosphate buffer (pH = 7.4) and MeOH (30 %) to obtain a final concentration of 

the compound (100 µM). The total volume in the electrolysis cell was 20 ml. To determine if 

there are any notable interactions between the compounds tested and GSH they both were 

mixed together in the same electrolysis cell under the same experimental conditions with the 

concentration ratio of a GSH : compound of 2 : 1 (100 µM and 50 µM respectively). GSH was 

used in twofold concentrations to ensure that exchange reaction would go to completion. 

 

4.7 SEM/EDX-microanalysis 

Preparation of cells for EDX-microanalaysis 

To perform EDX-microanalysis, Neuro 2 A cells were prepared on a coverslip (CS) in a 24-well 

plate (Greiner Bio-One) at a density of 2 x 104 cells per well. This plate was then incubated for 

24 h in an atmosphere of 5 % CO2 in humidified air at 37 °C. After 24 h of incubation, the culture 

medium was replaced with 0.5 ml medium containing compound and incubated again for 

another 24 h.  

 

Scanning electron microscopy fixation 

Once cells were exposed to the test compounds, were they washed with PBS (1x) and fixed with 

formaldehyde (1 %) and glutaraldehyde (1 %) in 0.2 M of cacodylate buffer, and subsequently 

shaken at room temperature for 2 h. They were then washed again with 0.2 M cacodylate buffer 

(3x) and shaken for another 10 min, followed by washing with 70 % of ethanol (EtOH) (3x) for 10 

min with shaking repeated (3x). Afterwards, the same procedure was repeated with a higher 

concentration of ethanol (80 %, 90 %, 96 % and 100 %) prolonging the time of shaking to 30 

min. Cells were washed with absolute ethanol (100 %) and were shaken for 30 min once more 

and this procedure was repeated. 
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Then the washing was continued with absolute ethanol (100 %) and hexamethyldisilazane 

(HMDS) (ratio 1:1) and samples were shaken for 20 min. At the end, a final wash with fresh 

HMDS was performed twice also following 20 min of shaking. A few drops of a fresh HMDS were 

then added and the samples were left to evaporate in the fume hood overnight. 

 

Coating the samples 

The Neuro 2A cells fixed sample (on a coverslip) was mounted and glued on the sample holders 

and sputtered with the carbon to perform a carbon coating for SEM. This carbon coating method 

was performed on a Balzers Sputter Coating Sputtering Device SCD030 with a voltage 240 V. 

Carbon coating was performed at the Department of Anatomy of Prof. Dr. Frank Schmitz at 

University of University of Saarland, Homburg, under the instructions of Anna Schuster.  

 

Scanning electron microscopy SEM/EDX analysis 

Scanning electron microscopy (SEM) was performed at University of Applied Sciences 

Kaiserslautern, Campus Zweibruecken by Reiner Lilischki and Olaf Pohl. The SEM/EDX 

analysis were performed with a 12 - 900,000x magnification, on a Si-Li detector with an 

acceleration voltage of 0.1 – 30 keV. 

 

4.8 Cell fractionation studies 

Cell fractionation studies was performed at the Department of Medical Biochemistry and 

Molecular Biology of Prof Dr. Richard Zimmerman at University of University of Saarland, 

Homburg under the supervising of Martin Jung. 
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Preparation of cells 

To fractionate cells into their cell fractions Neuro 2A cells were grown in DMEM medium to a 

density of 2 x 106 cells. The neuronal cells were then incubated with the media containing the 

compound. To fractionate cells into the subcellular fractions, Neuro 2A cells were grown in 

DMEM medium to a density of 3 x 107 cells then incubated with the media containing the 

compound. 

 

Cell fractionation 

Fractionation of cells 

After 24 h exposure of the Neuro 2A cells to the compound tested, cells were spyn down (1,000 

rpm, 5 min, RT). The supernatant was removed and the pellet was diluted with 500 μl of distilled 

water and transfer to a Precellys Ceramic Kit (Peqlab). It was homogenated for 30 s 

(FastPrep®-24, MP Biomedical, California, USA). The homogenate was then centrifuged for 3 h 

at 17,500 rpm, 4 °C (Eppendorf AG Centrifuge 5430 R). The pellet obtained at this centrifuged 

speed is referred to as the cell membrane fraction, while the supernatant is referred as the 

cytosol fraction.  

 

Subcellular fractionation 

After 24 h exposure of Neuro 2A cells to the compound tested, cells were harvested (1,000 rpm, 

5 min, RT). The supernatant was removed and the cells were dounced (3x) using a dounce 

homogenizer (1,300 rpm 10 min for each dounce) in combination with hypotonic buffer (0.25 M 

sucrose, Table 4.1) used to break the cells. Then, the dounced cell preparation was centrifuged 

(3,000 rpm, 10 min, 4 °C). The pellet obtained was refered to as nuclear fraction. 
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Table 4.1: The composition of buffers used as part of subcellular fractionation. 

Buffer without DTT/pMSF/CHX/Rnasin 

Composition: 

50 mM HEPES/KOH pH=7.5 10 ml; 1 M 

250 mM Sucrose  25 ml; 2 M 

50 mM KOAc 2 ml; 5 M 

6 mM MgOAc 1,2 ml; 1 M 

1 mM EDTA 1 ml; 0.2 M 

Add 200 mL H2O MilliQ  

 

The top fraction from nuclear fraction was then centrifuged at 10,000 g for 20 min at 2 °C to 

obtain the mitochondria fraction. The reticulum endoplasmic-ribosome (RE-ribosome) fraction 

was obtained by isolation of the top mitochondria fraction subsequently centrifugation at 196,000 

g for 60 min at 2 °C. The Golgi fraction was obtained from the top fraction of RE-ribosome 

(Scheme 4.1.). All the steps of the subcellular fractionation steps were performed in the cooled 

conditions. 

 

Analysis of the subcellular fractions using HPLC/UV-MS 

Analysis of all of the fractions was performed using HPLC coupled with a UV-MS detector 

operated in Electron Spray Ionization (ESI) mode. UV-detection was performed at a wavelength 

254 nm with the injection volume of 25 μl and time range 0-8 minutes. The solvents used in part 

of this analysis were H2O containing 0.1 % Trifluoroacetic acid (TFA) and acetonitrile consisting  

0.1 % TFA at a flow rate of 0.8 ml/min.  
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1H NMR, 13C NMR, and LC-MS Results of the synthesized compounds 

 

1H NMR spectrum of 1,2-VDT 

 

LC-MS spectrum of 1,2-VDT 
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1H NMR spectrum of 1,3-VDT 

 

LC-MS spectrum of 1,3-VDT 
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1H NMR spectrum of 1,2-dithiane 

 
1H NMR spectrum of 1,5-DTCO 
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13C NMR spectrum of α-APT 
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