
 
 

 

 

Development of a High Throughput Method 

For the discovery of selective propene oxidation catalysts 

 

 

Dissertation 

zur Erlangung des Grades 

des Doktors der Ingenieurwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät III 

Chemie, Pharmazie, Bio- und Werkstoffwissenschaften 

der Universität des Saarlandes 

 
 

 

 

 

von 

Su, Woongsik 

 

 

 

Saarbrücken 

2012 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag des Kolloquiums:  26. 02. 2013 

 Dekan:    Prof. Dr. V. Helms 

 Berichterstatter:   Prof. Dr. W.F. Maier 

     Prof. Dr. J. Jauch  

 Vorsitz:    Prof. Dr. E. Heinzle  

 Akad. Mitarbeiter:  Dr. A. Rammo 

 



 

 

 

 

 

 

 

 

 

 

 

To my beloved mother 

& 

To my respectable Professor Dr. W. F. Maier 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgement 

 

First of all, I would like to express my sincere and deepest gratitude to my Prof. Dr. W. F. 

Maier for giving me the opportunity to work in his department under his excellent 

supervision. His expert guidance, advice, support, open mind, encouragements, and 

suggestions throughout the whole thesis have been crucial for the completion of the work 

described in thesis.  

 

Secondly, I thank Prof. Dr. J. Jauch for his agreement to review this dissertation. 

 

I would like to thank Prof. Dr. K. Stöwe for his advice during the project as well as for his 

assistance with the XRD measurements. 

 

I also thank Mr. R. Richter for his perceptive comments and his ongoing efforts to help me 

in the high-throughput reactor development. In addition, I thank Mrs. H. Höltzen for her 

helpful feedback and for enriching my understanding of analytic method, and Mr. C. 

Thome for his technical support concerning the development of the required software. 

 

I gratefully acknowledge financial support to this project from the Deutscher 

Akademischer Austauschdienst (DAAD). 

 

In addition, special thanks go to Dr. Bauke Albada for putting a lot of effort and time into 

reading and correcting the manuscript—Thanks you so much! 

 

I thank all my colleagues, especially, William, Nicola, and Katrina, for their support and 

helpful suggestions. I would like to extend my undying gratitude to my mother, Lee 

younghae, for her love and support. Also, I wish to thank my father, Su seongdo, who I 

would give anything to have seen me finish this project. 

 

There have been a number of people whose names are not mentioned, but without whom 

this thesis could not have been completed. I would like to express my deepest gratitude to 

all of them. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Abstract 

 

The main focus of this thesis lies in the development of a high-throughput method for the 

discovery of catalysts for selective oxidation of propene. For this, a new 10-fold parallel 

reactor was constructed, validated, and tested for selective oxidation of propene to 

acrolein or propene oxide. Catalysts for these conversions were prepared by combinatorial 

chemistry approaches and subsequently screened in high-throughput techniques. 

Following a sol-gel procedure approximately 2200 catalysts have been prepared, and they 

were tested with the help of a stage robot reactor as primary screening and a 10-fold 

parallel reactor as secondary screening. Using the stage robot reactor, several catalysts 

consisting of Cu-containing mixed oxides have been discovered that were active for 

propene-oxide production, but they could not be confirmed by conventional tests. In the 

case of acrolein-production, a Pd10Ga45Cu45 catalyst has been found with the best activity. 

Among Mo-based catalysts, Mo94Ru4Te2 and Mo88Sn8Te4 showed very high propene 

conversion to acrolein with yield of 25% at 375 °C and yield of 28% at 400 °C, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 

 

Der Schwerpunkt dieser Arbeit liegt in der Entwicklung einer Hochdurchsatz-Methode für 

die Entdeckung selektiver Propen-Oxidationskatalysatoren. Dafür wurde ein neuer 10-

fach-Parallelreaktor entwickelt, validiert und getestet für selektive Oxidation von Propen 

zu Acrolein oder Propenoxid, indem kombinatorische chemische Vorgehensweisen 

zusammen mit Hochdurchsatz-Screening-Techniken genutzt wurden. Einem Sol-Gel-

Verfahren folgend, wurden etwa 2200 Katalysatoren mit Hilfe eines Stage-Robot-

Reaktors als primäres Screening und eines 10-fach-Parallelreaktors als sekundäres 

Screening vorbereitet und getestet. Durch einen Stage-Robot-Reaktor wurde entdeckt, 

dass einige Katalysatoren, bestehend aus Cu-fassenden vermischten Oxiden, aktiv Propen-

Oxide produzieren, jedoch wurde es nicht durch herkömmliche Tests bestätigt. Bezüglich 

Acrolein-Produktion wurde ein Pd10Ga45Cu45-Katalysator aufgrund seiner Aktivität als 

bester befunden. Unter den Mo-basierten Katalysatoren zeigten Mo94Ru4Te2 und 

Mo88Sn8Te4 sehr hohe Propen-Konversion in Bezug auf Acrolein mit einer Ausbeute von 

25% bei 375°C beziehungsweise 28% bei 400°C. 
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Ⅰ. Introduction 

Nowadays, developments in computer-technology related to automation and data mining has opened 

the door to high-throughput experimentation in both industry and academy. Reducing the scale of 

experimentation has many advantages in terms of cost and safety. Hence there is no need in catalyst 

testing on a larger scale than necessary. However, high-throughput testing of catalysts has to provide 

meaningful and reliable data. 

Our group has developed several high-throughput methods using spectroscopic methods and a stage 

robot reactor for the discovery of catalysts. Although methods are successful in primary screening, 

their application is limited when applied to selective reaction like complex partial oxidation 

reactions. Therefore, a new 10-fold parallel reactor that is suitable as a second screening method and 

which includes a Micro-GC for analysis has been developed. The developed reactor has been 

validated for feasibility and reliability by analyzing the test-results at each channel.  

In order to study the performance of the new 10-fold parallel reactor, selective oxidation of propene 

has been chosen as test-reaction. The results show that it is possible to optimize catalyst composition 

and oxidation-protocol via secondary screening after hits obtained in the primary screening. 

This thesis is outlined as follows. At the beginning of chapter 1, combinatorial chemistry including 

synthesis, information technology and testing is briefly reviewed. Chapter 2 will touch on selective 

oxidation catalysts. 

In the ‗Result and Discussion‘ part, chapter 3 will show how the new high-throughput reactor based 

has been developed. Subsequently, the experimental results of catalyst-discovery for the oxidation 

of propene to propene oxide in chapter 4, propene to acrolein in chapter 5, and propene to acrolein 

with molybdenum in chapter 6 will be reported. 

Lastly, the experimental setup and the catalyst preparation method based on sol-gel will be 

described in detail in chapter 7. 
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1 Combinatorial chemistry 

The application of catalyst technology in the chemical industry is essential for maintaining our 

current level of development. In fact, more than over 90% of all chemical processes utilize catalysts 

and 60% of chemical productions of over 7000 compounds worth over $3 trillion per annum are 

produced using catalysis. At the moment, about 100 catalyst manufacturing companies exist 

globally
[1]

. It is clear that catalytic technologies have a vital role in the economic development of the 

chemical industry in the 21
th

 century. Controlling selectivity and conversion of new catalytic 

processes can enhance the chemical productivity by reducing production costs and saving resources. 

This contributes to the world Gross National Product (GNP) by driving environment friendly and 

energy-efficient technologies, which later on can provide new challenges for catalysis research
[2, 3]

. 

In spite of this importance, finding or developing new catalysts is a difficult procedure since it relies 

on a number of scientific disciplines covering at least chemistry, physics, and mechanics. 

Therefore, it is expected that combinatorial methods can be very useful for the discovery of new 

catalysts in a reliable and efficient way since many different aspects of catalyst-design can be 

screened simultaneously in a parallel manner. For example, researchers in the pharmaceutical 

industry have reduced both time and cost for producing effective and competitive new drugs. 

Combinatorial chemistry is regarded as one of the major technologies developed
[4]

, and it has 

become an integral part of  drug discovery in intelligent and systematic searches of large-parameter 

spaces based on the screening of diverse chemical libraries
[5, 6]

. Although the concept of 

combinatorial chemistry originated from combinatorics in drug discovery, these days combinatorial 

analysis is widely applied to life sciences or engineering such as semiconductors, superconductors, 

catalyst, polymers, materials, fuel cell, coating and organic dyes
[7-12]

. 
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Figure 1.1 Key areas of combinatorial chemistry [1] 

 

Combinatorial chemistry is an innovative methodology to find activity or selectivity among large 

diversities of libraries, which are synthesized, analyzed, and tested as shown in Figure 1.1 left. Apart 

from synthesis and testing, the development and use of a sophisticated high-capacity information-

management system are essential for this procedure because of the vast amount of data generated. 

Eventually, successful implementation of combinatorial approaches requires all components, such as 

rapid library synthesis, large-scale information management and high-throughput testing. These 

components must function smoothly so that bottlenecks will not control the speed of an entire 

process
[1]

.

 

1.1 Synthesis  

Since the synthesis of new materials is often the rate-limiting step, speeding up this process can 

increase the chance of discovering totally new and unexpected catalytic materials compared to the 

classical methods. Combinatorial approaches in this regard include several manners of the substance 

preparation and systematic synthesis. 
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Figure 1.2 Information of library synthesis[13] 

 

For catalyst synthesis, impregnation, multiple co-precipitation, evaporation, extrusion, spray-drying, 

ionic exchanges, sol–gel synthesis and hydrothermal synthesis have been applied to combinatorial 

chemistry
[14]

. However, in this thesis, the focus will be on sol-gel synthesis for catalytic preparation. 

1.1.1 Preparation of the sol-gel 

Sol-gel synthesis is a well-known bottom-up method to produce nanoparticles
[15, 16]

 in various fields 

such as optical materials, protection films, porous films, thin films, coating for fiber optics, carbon 

nanotubes, window insulator, polymers, micro-capsulation, and biomaterial
[17-21]

. M. Ebelmen in 

France reported the first silica gels in 1845
[22, 23]

 and Faraday synthesized the oldest sols prepared in 

a laboratory
[24]

. The sol-gel process has advantages such as high purity, good homogeneity of raw 

material, low processing temperature, good shape ability, and easy control of new composition. In 

contrast, high cost of raw materials, health hazards of organic solution, cracking during the drying 

phase, long processing time and sensitivity to atmosphere conditions are the main disadvantages
[25]

. 
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Figure 1.3 Detail information of sol-gel process with steps[26] 

 

 

As is shown in Figure 1.3, depending on the conditions used in each, the sol phase can be converted 

into dense films, dense ceramics, aerogels, uniform particles and ceramic fibers. While the sol state 

represents a stable state in which colloid particles in the liquid phase are distributed with mobility 

for a long period of time, the gel state results in solidification through hydrolysis and condensation, 

ultimately resulting in the loss of mobility. Metal alkoxides like LiOCH3 and NaOCH3, and silicium- 

or germanium-based sol-gel precursors like Si(OC2H5)4 and Ge(OC2H5)4, are well-known starting 

materials for sol-gel synthesis because of their high solubility in water. 

Sol-gel processes of amorphous or crystalline materials are based on low-temperature hydrolysis 

and condensation of hydrolysable precursors as in the following figures. 
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Figure 1.4 Hydrolysis on sol-gel process 

 

The hydrolysis reaction replaces alkoxide groups (OR) with hydroxyl groups (OH) as depicted in 

the above reaction scheme. 
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Figure 1.5 Condensations on sol-gel process 

 

In the condensation reactions (water condensation or alcohol condensation), the silanol groups (Si-

OR) produce siloxane bonds (Si-O-Si), ultimately resulting in a process of polymerization that leads 

to larger silicon-containing molecules
[27]

. Sol-gel synthesis can be classified as ‗acidic‘ (pH 1.5-6), 

‗basic‘ (pH 8-11), or ‗neutral‘ (pH 7), depending on the pH value of the solution in which the 

reaction is performed. Although hydrolysis or condensation can occur without adding catalyst, acid 

or basic catalyst can accelerate the hydrolysis or condensation reaction. Hydrochloric acid (HCl) and 

ammonia (NH3) are generally used in acid- and base-catalyzed methods, respectively. Apart from 

these, acetic acid, KOH, amines, KF, and HF can be used as a catalyst
[28]

. 

Figure 1.6 and Figure 1.7 describe the synthesis of amorphous porous silica prepared by either the 

acid- or base-catalyzed hydrolysis of tetraethoxysilane (TEOS)
[29]

, a starting material that is often 

used in the preparation of silica aerogels
[30]

. 

 

 Acid-Catalyzed Mechanism 
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Figure 1.6 Acid-catalyzed hydrolysis 

 

In the acid-catalyzed process, the oxygen atom of the silylether is rapidly protonated. As a result, 1) 

electron density is withdrawn from the silicon atom making it more susceptible to attack from water, 

and 2) the R-O fraction of the molecule is already turned into a good leaving-group. 

 

 Base-Catalyzed Mechanism 

 

Figure 1.7 Base-catalyzed hydrolysis 

 

In contrast, the base catalyzed sol-gel formation is caused by a hydroxylion. Because the hydroxide-

ion is nucleophilic, it can attack the electropositive silicon atom
[31]

 as shown in Figure 1.7. 

The relative rate of hydrolysis and condensation in the sol-gel process is dependent on the pH in the 

solution. Under acidic conditions, the rate of hydrolysis is faster than condensation, resulting in a 

poorly branched gel. On the other hand, under alkaline conditions the hydrolysis rate is slow and the 

dissociation of water is rapid, resulting in a highly branched gel
[32]

. Although many factors affect the 

structure of the sol-gel network, the difference of gelation between acid- and base-catalyzed 

conditions is dominant and can be visualized as in Figure 1.8. The former yields linear or randomly 

branched polymers, which entangle and form additional branches, whereas the latter yields more 

highly branched discrete clusters. 
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Figure 1.8 Effect of pH on sol-gel network formation[33] 

 

1.1.2 Synthetic methods in combinatorial chemistry 

Similar to the synthesis of combinatorial libraries, there are two main methods by which sol-gels can 

be prepared: a split & pool and parallel synthesis. 

           

Figure 1.9 Basic scheme of the Split & Pool-principle[34] versus that of parallel synthesis[35] 
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Houghton published a ―tag-bag method‖ for the rapid synthesis of multiple peptides in 1985, which 

is nowadays referred to as the split & pool methodology. In this method, each bag contains 

polymeric resin ―beads‖ for separation and isolation, wherein the mean bead diameter exceeds the 

mean pore diameter of the polymeric membrane of the bag. After repeating split and pool steps for 

several times, where during each step a different monomer is coupled, a highly diverse library is 

produced covering a wide range of samples. Immobilization of the discrete members of this library 

on solid-supports like resin-beads allows the efficient testing of libraries
[34, 36]

. Other commonly 

used synonyms in the field of combinatorial chemistry are ―split-mix‖, ―split-combine‖, ―one bead – 

one compound‖ and ―selectide-process‖
[37]

. Importantly, the identity of the library member has to be 

identified after the screening by either a direct determination of the structure of the member or by 

and indirect method in which tags, that were introduced during the synthesis, could be deciphered 

after  screening of the library. 

Alternatively, parallel synthesis allows different chemical compositions to be prepared in parallel, 

using a number of reaction vessels and a robot programmed to add the appropriate reagents to each 

other. The library construction speed of parallel synthesis is slower than with the split-mix synthesis, 

but it is easy to trace the chemical reaction and to identify the chemical structure of the active 

compound. Therefore, it has broadly been used in inorganic and organometallic chemistry
[38, 39]

, 

polymer synthesis
[40]

, medicinal chemistry
[41]

, drug discovery
[42]

, catalysis synthesis
[43]

, material 

discovery
[12]

, solid phase extraction
[44]

 and organic synthesis
[45]

. Multiple parallel procedures in 

combinatorial technology have been developed based on this parallel synthesis
[35]

. 

 

1.2 Information technology 

From the use of systematically acquired data and data-mining technologies, combinatorial methods 

can help scientists to discover trends and patterns of structure—activity relations from large 

databases for the development of catalysts. Finding a global maximum instead of a local maximum 

in the activity-profile of a catalyst by a mathematical solving-system is a major challenge in this 

regard. To improve initial hits and to find ways for catalyst discovery, rational methods have been 

applied in the design of experiments as plotted in the following Figure 1.10. 
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Figure 1.10 Basic scheme of information technology system 

 

1.2.1 Computational Chemistry 

Over the last decades, significant progress has been made in computational strategies for 

information management. For example, quantum-chemical approach, Monte Carlo (MC) and density 

function theory (DFT) have been developed as so-called in silico methods. 

Mechanisms of methanol decomposition on platinum
[46]

, reaction rates for an elementary process on 

the surface of solid catalyst in different zeolite framework structures
[47]

, and Brønsted acidity of 

active sites on the microscopic surface of silica-alumina and silica magnesia
[48]

 are simulated by  

quantum-chemical approaches. Density Function Theory (DFT) calculations are applied to gain an 

understanding in the temperature and/or pressure dependency of the interaction between oxygen and 

silver in a known oxidation catalyst
[49]

, and it helps to simulate various fields such as catalytic 

reaction, reactivity, mechanisms, barriers and kinetics
[50-54]

. A Monte Carlo (MC) with natural 

parallelism method has been implemented to save the power of computing resources
[55]

. 

Recently, Miyamoto et al. have introduced the term of ―Combinatorial Computational Chemistry‖ 

and implemented it with the high-throughput screening of catalysts and materials. The adsorption 

energies of NO and water on various ion-exchanged ZSM-5 for design of deNox catalyst
[56]

 was 

investigated, and the most stable adsorption state of NO on Ir model cluster was demonstrated in the 

design of precious metal catalysts for deNOx
[57]

. An active catalyst for methanol synthesis is also 
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implemented, and the result of calculation showed that Cu
+
-cation is the active center in the 

industrial Cu/ZnO/Al2O3 catalyst
[58]

. This simulation of a theoretical approach is based on quantum 

chemical and molecular dynamics methods
[59]

 and shows the beneficial use of computers in catalyst 

discovery. 

Volcano shaped plots of catalyst activities against catalyst composition is a useful empirical method  

in catalysis as it relates the activity to the strength of adsorption of intermediates at the surface of the 

active material
[60]

. These relationships within catalysts have been applied to different experimental 

conditions ranging from atmospheric to high pressure, various temperature of reaction
[61]

, and 

transitions of metal sulfide catalyst
[62]

. Also, electro catalytic materials for hydrogen evolution on 

256 pure metals and surface alloys have been studied and found to fit the volcano plot
[63]

. Although 

this empirical approach is usually reliable, it is very time-consuming and costly to obtain reliable 

data. 

Therefore, semi-empirical methods that use parameters derived from experimental data can also 

decrease computation time. Gordeeva et al. have introduced ―An Original Semi-empirical Approach 

to Computer-Assisted synthesis‖ on the combination of pure combinatorial methods with a small 

knowledge base that included several empirical rules
[64]

. 

1.2.2 Design of the catalyst library 

Due to the data explosion in combinatory chemistry, managing the flow of data with design 

concepts and extracting useful information from this data using a data mining concept has become 

essential. However, the design of a library for discovering or optimizing new catalysts is not 

straightforward since a number of factors have to be considered, such as the type of elements, 

suitable precursors and concentrations, functional group variations, the order of the addition of 

reagents during the preparation, the solvents, modifiers and additives used during preparation, 

treatment and reaction times, pretreatment, activation procedures, and molecular descriptors related 

to structural features and so on. Therefore, the experiments need to be planned in an intelligent way 

before combinatorial experiments can be initiated. In addition, researchers should recognize 

problems and select the response variable for experimental design with factors, levels and range. 

This design of experiment (DoE) relies on complex statistical and optimization algorithm, allowing 

the effective determination of those parameters as well as parameter interactions, which have a main 

effect on the desired properties during experiment
[65]

.  
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A very well-known evolutionary process
[66]

, Genetic Algorism (GA), was introduced by Wöhler
[67]

. 

Although GA has been developed as a machine learning technique in drug industry
[67]

, it has also 

been used for the generation of catalytic quality
[68]

. In addition, Optimal Design Of Experiments 

(ODOE), optimization strategy for the development of heterogeneous catalytic material has been 

studied using a stochastic strategy based on GA
[69]

. Recently, several approaches to the combination 

of GA and artificial neural networks (ANN) have been represented. 

The main idea of artificial neural networks (ANN) is based on the concept of neurons in biology, 

which mimics signal-processing in a way like neurons process signals from the environment. It 

combines GA and ANN, which leads to acceleration of the process of catalyst-discovery. The 

approach, supplemented by an artificial neural network with the genetic algorithm software for 

establishing relationships between catalyst compositions, is illustrated for finding the catalyst for the 

oxidative dehydrogenation of propane
[70]

 and optimizing olefin epoxidation catalysts
[71]

 or methanol 

synthesis catalyst based on Cu oxide
[72]

. 

1.2.3 Visualization of the data obtained in HTE 

For showing the results of high-throughput experimentation efficiently and selecting the next 

generation of catalysts rationally, several visualization methods have been developed as illustrated 

in the following Figure 1.11.  
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Figure 1.11 different visualization methods [10, 11, 73-77] 

 

Various ways of visualization have been developed for the mapping of data into parameter space. 

For example, the photograph of a luminescent material‘s library (a) is shown in the two dimensions 

diagram
[11]

, and acrolein concentrations (b) of samples collected from catalysts in a library is shown 

by excel program.
[77]

 Holographic research strategy (HRS) (e) showed how to handle a bulk of data 

by implementing the visualization scheme
[76]

. Results of a k-means cluster analysis based on eight 

principal components (PC) in the projection (d) are presented
[73]

. Our research group has developed 

different methods, such as the ternary (g) composition of catalytic activity
[78]

, the mapping of 

parameter spaces (h) for Quantitative composition activity relationships (QCARs) and quaternary 

composition spaces (i) with the help of Support vector machines (SVMs), multilevel B-splines, or 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Kriging 
[74, 79]

. Apart from these, the statistical commercial program Spotfire can help to visualize 

broad data sets using different visualization algorithms. 

 

1.3 Testing for HTE that is needed in catalyst design 

Classical catalyst tests are miniaturized, automated, and coupled with combinatorial tools. Suitable 

techniques for the analysis of catalyst results include GC, MS and IR, and characterization tools like 

XRD and XPS. 

 

Figure 1.12 Basic scheme of testing 

 

1.3.1 High-throughput experimentation (HTE) 

Since classical catalyst testing in laboratory reactors requires careful experimentation and data 

interpretation based on the concept of trial-and-error, the development tends to be slow. However, a 

method based on the high-throughput screening of catalysts increases the possibility to find an 

optimal catalytic system for a certain transformation. 

Miniaturization or microfabrication should increase speed of catalyst screening and decrease the 

consumption of resources. As a result, these applications should help chemical experiments to gain a 

number of advantages concerning chemical synthesis, chemical kinetics studies, and process 

development
[80]

. Based on these concepts, several techniques were developed that decrease the 

reaction volume and use small amounts of catalysts. For example, 384 parallel reactions reactor
[81]

, 

625-parallel single-bead reactor
[82]

, and 207-parallel reactor
[83]

 were developed. These high-
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throughput reactors can explore a broad experimental space and may include thousands of 

experiments as a primary screening, but they are not sufficient to assess the viability of hits as 

development candidates and to optimize catalyst formulation for activity and selectivity. 

In academies, several reactors to improve the accuracy of results were developed based on the 

concept of packed-bed reactor for gas-solid mixed-phase reaction as follows. In 2006, a 64-channel 

reactor module has been used for discovering free nonpyrophoric catalytic materials for the water–

gas shift reaction (WGSR)
[68]

. Kiener et al. in the Max-Planck-Institut in Mülheim developed a 49-

channel parallel flow reactor for high pressure processes, applying it to development of methanol 

synthesis catalysts in 2002
[84]

 and to the selective catalytic reduction of NO with C3H6
[85]

 in 2007. A 

64-channel parallel fixed-bed reactor was developed to investigate propylene oxidation catalysts
[77]

 

in 2007. Catalysts for hydrocyanic acid formation from methane and ammonia were studied by a 

high-throughput approach in a 48-parallel channel fixed-bed reactor
[86]

 in 2008. 

Although these studies described above were successful with newly developed high-throughput 

reactors, they are still insufficient to be substituted for conventional experimentations because 

reaction chambers were over-simplified and modified. Six-flow parallel reactor
[87]

 and four parallel 

reactors
[88]

 developed in academies can obtain almost the same result as conventional tests since 

these reactors are simply connecting several conventional reactors. Similar to these, such industrial 

reactors, a 16 parallel fixed bed reactor
[89]

 by Symyx Technologies or parallel reactor by hte AG 

were developed. 

In addition, another design approach of high-throughput reactors in a long-term perspective has been 

applied to three-phase reactions, which have largely been neglected because they are difficult to 

design, and their construction must consider that its application requires elevated temperatures and 

pressures. In this respect, the catalytic screening of three-phase reactions in 2001 is introduced to 

study the catalytic hydrogenation of crotonaldehyde over bimetallic samples
[90]

. However, it still 

remains to solve engineering problems such as stirrer design, the purging and introduction of 

pressurized gases, and the sealing of the entire system. 

1.3.2 Analysis of conversion 

To date, a number of instruments are implemented based on combinatorial chemistry for analysis or 

characterization of experimental results as high-throughput methods. Especially gas chromatography 
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(GC) and liquid chromatography (LC) are techniques widely used for the separation and analysis of 

gas samples in the chemical industry and help the acquisition of thermodynamic and kinetic data. 

In 2007 Oliver Trapp reviewed gas chromatographic techniques in high-throughput screening in 

catalysis
[91, 92]

. It covers both on- and off-line screening techniques of sequential or parallelized 

high-throughput multiplexing GC. Mass spectrometry (MS) was also implemented for a high-

throughput flow injection analysis on the purity estimation of combinatorial chemistry synthesis
[93]

 

and especially micro reactor supported MS is applied for testing heterogeneous catalyst library
[94]

.  

Furthermore, combinations of multiple analytic techniques have been implemented for 

combinatorial chemistry, for example, gas chromatography-mass spectrometry (GC-MS) for 

microbial metabolism analysis
[95]

 and several applications of liquid chromatography-mass 

spectrometry (LC-MS) related to interfacing, ionization and mass analysis, pharmaceutical sciences 

and biochemistry 
[96-98]

. Also, a high-performance liquid chromatography tandem mass 

spectrometric assay (HPLC-MS) has been introduced for the sample-pooling approach in 

pharmacokinetic studies
[99]

. For the discovery of new polyolefin catalysts, using high-throughput 

screening techniques to support polymer characterization method has been described with FT-IR
[13]

. 

1.3.3 Expected tendency of future development in HTE 

Combinatorial chemistry and high-throughput experimentation save both time and cost for research 

and development, and are, therefore, rapidly entering industrial laboratories. Academia still remains 

hesitant and even opposes in part due to huge investments required at the beginning of a project
[100]

.  

It is well known that heterogeneous catalysts are complex materials of ill-defined structures and 

mechanism. Catalyst performance is dependent on elemental composition, formulation, morphology, 

size, size distribution and processing variables. Since the parameter space that is needed to optimize 

catalysts is quite large, traditional one-at-a-time approaches of synthesis and testing are slow and 

inefficient. High-throughput methods in heterogeneous catalysis allow the synthesis and testing of 

large numbers of materials and are increasingly applied for catalytic and other functional 

applications in academic and industrial laboratories
[89]

. Despite the initially severe skepticism as to 

the possibility of obtaining meaningful catalytic data by HTE approaches, the technology becomes 

more and more accepted. Nowadays most major chemical companies have closed strategic 

collaborations with service providers, such as Symyx technologies, Chemspeed, hte 

Akiengesellschaft, AMTEC, INM, SINTEF, the AG, or Avantium or have their own internal efforts. 
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In addition, the combinatorial chemistry combined with HTE is now a core technology in many 

major chemical or material companies such as BASF, Bosch, Degussa, UOP, P&G, GE, Bayer, 

DuPont, DOW and many others
[101]

. 

 

2 Selective oxidation of propene 

Selective oxidation of small molecules to valuable products is an important reaction both in 

fundamental and industrial catalysis. It produces about 25% of the industrial organic chemicals and 

intermediates used for the production of fine chemicals and pharmaceuticals worldwide. The main 

products of this conversion are acrolein, acrylic acid, acrylonitrile, methacrylic acid, MTBE, maleic 

anhydride, phthalic anhydride, ethylene and propylene oxide, etc
[102]

. 

These reactions have the common feature that the desired products are often not the most favorable 

thermodynamically. If the strength of C-H bond of a particular hydrocarbon is stronger than the 

intermediate of its partial oxidized product, the reaction has a tendency to proceed to total oxidation 

of carbon-atoms to CO2. Moreover, to activate reactants, reaction conditions need high temperatures 

that sometimes lead to complete disintegration of the partially oxidized products
[103]

. In other words, 

on the route to the thermodynamically favorable total oxidation of hydrocarbons to CO2, catalysts 

are needed that accelerate certain desired chemical transformations, possibly by providing 

alternative reaction routes or mechanisms. 

Depending on the reaction conditions, a number of partially oxidized products can be formed before 

carbon oxides are formed. Selective oxidations of hydrocarbon have a long history and are often 

carried out with oxygen, air, water and sometimes CO2. Understanding factors that account for the 

activity and selectivity of these reactions is important in discovering new catalysts
[104]

. In 2002, 

Grasselli enumerated seven fundamental principles for a selective heterogeneous oxidation catalyst: 

1. lattice oxygen;  

2. metal oxygen bond strength;  

3. host structure;  

4. redox chemistry;  

5. multifunctionality of active sites;  

6. site isolation;  

7. phase cooperation.  
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These principles, referred to as "seven pillars", are very helpful to understand structure, surface and 

dynamic properties of metal oxide catalysts on an atomic level
[102]

. 

 

Figure 2.1 Summary of propene selective oxidation routes [105] 

 

For specific cases of the oxidation of propene, Figure 2.1 gives a summary of the routes available 

(see also appendix). The mechanism and kinetics of propylene oxidation catalysts have been 

extensively studied, and several comprehensive reviews have appeared in the literature
[106-108]

. 

2.1 Selective oxidation of propene to propene oxide 

In the chemical industry, propene oxide is an important starting-material. In fact, over 10% of all 

propene produced is converted into propene oxide. To date, there are two well-known 

commercialized propene oxidation processes, such as the chlorohydrin process and the Halcon 

process
[109]

. The chlorohydrin process causes severe environmental pollution because it produces 

environmentally benign chlorinated organic byproducts as well as calcium chloride. Alternatively, in 

2003, BASF and Dow Chemical started up new HPPO (Hydrogen-peroxide-propylen-oxide) process. 

However, this causes equimolar amounts of co-products requiring huge capital investment for the 

clean-up process. 
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Therefore, a direct production route from propene to propene oxide is highly desirable. Gold and 

copper have a proved reputation to be the most useful elements for this conversion. In order to reach 

commercial viability of gold-based catalyst like Au/Ti
[109, 110]

, it needs to improve superior 

performance with respect to efficient H2 consumption and resilience to catalyst deactivation. Cu 

based catalysts, such as Cu/silica catalyst Cu/silica
[111]

 and NaCl-Modified VCe1−x Cux
[112]

,  are 

other alternatives for the epoxidation of propylene with direct molecular oxygen as the oxidant. 

However, these catalysts were still insufficient to apply in industry. 

TS-1 (titanium silicalite-1) has been applied in the HPPO process. In the reaction unit, the catalytic 

epoxidation of propene is carried out using hydrogen peroxide (H2O2) and methanol at a temperature 

of 40-50 °C and 4 bar
[113]

. The disadvantageous use of costly hydrogen peroxide was solved by in 

situ production of this oxidizing reagent. For example, hydrogen peroxide synthesis from hydrogen 

and oxygen using anthrahydroquinones is implemented in combination with the oxidation of 

quinines using a bubble column and the palladium-catalyzed hydrogenation of quinines using a 

slurry, fixed-bed or monolith reactor
[114]

. 

2.2 Selective oxidation of propene to acrolein 

From the moment acrolein was produced commercially in 1938, the capacity of worldwide-refined 

acrolein increased to about 113,000 ton/yr in 1995. It has a variety of very valuable uses, for 

example, resins, glycerin, polyurethane, propylene glycol, acrylic acid, acrylonitrile, glycerol 

methionine and pharmaceuticals
[115]

. 

Acrolein is produced industrially through oxidation of propene or from glycerol and propane. 

Although efforts are underway to use propane as feedstock for the acrolein synthesis, it is still 

difficult to commercialize
[116]

. Similarly, commercializing acrolein production by dehydration of 

glycerol was abandoned because of the low efficiency of the process and the high cost of glycerol. 

Lately, this topic has attracted renewed interest in academic research due to an increase in the 

availability of glycerol as a result of enlarged biodiesel production 
[117-119]

. As it increases the 

usefulness of biomass, a number of studies about acrolein production from glycerol have recently 

been reported 
[119-122]

. Most studies are based on the fact that when glycerol is heated to 280 °C over 

solid acids, it decomposes into acrolein. 

For the discovery of selective oxidation catalysts of propylene to acrolein, there have been several 

approaches with molybdate (MoBi
[123, 124]

, MoSb
[125]

, MoTe
[126, 127]

), vanadium(V2O5
[107]

, 
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V2O5/Nb2O5
[128]

) or iron (FeSb
[129]

, Fe2(MoO4)3 doped with Bi or Te
[130]

). A major milestone was 

achieved when SOHIO in 1959 introduced a bismuth molybdates catalyst with outstanding activity 

and selectivity on the selective oxidation reaction of hydrocarbons. The typical process conditions 

are a reaction temperature at 300–400 °C with pressures of 1.5–2.5 kPa and a feed-gas with 5 - 10 % 

propene, mixed with air and inert diluents. Subsequently, multicomponent metal-oxides containing 

bismuth, molybdenum, and tungsten have been used to enhance catalytic performance for the 

propene oxidation catalyst to acrolein
[103]

. The other effective catalyst of MoVNb(Te, Sb) 
[131]

 was 

discovered by the Mitsubishi Chemical Company. Academia and industries studied it with regard to 

the catalytic performance of single-phase
[132]

, of support with Te-free or Te-containing
[133]

, of K 

doping
[134]

, and of Ph influence
[135, 136]

. The MoVSb Oxide catalyst was applied to several reactions 

such as partial oxidation of Isobutane 
[137]

, selective oxidation of propane to acrylic acid
[138]

 and 

selective oxidation propane to acrolein
[139]

. 

Nowadays, modern catalysts for selective oxidation are composed of at least four transition metals 

in at least two complex oxide phases. For example, a complex multicomponent oxide catalyst based 

on Bi, Fe and Co molybdate is used for the partial oxidation of propylene to acrolein
[140]

. In fact, all 

commercial processes in operation utilize multicomponent metal oxide catalysts. In addition, 

acrolein produced using this catalyst is used to produce acrylic acid (AA) by selective oxidation, or 

acrylonitrile (AN) through ammoxidation, both of which are important for manufacture of plastics, 

polymers, fibers and synthetic rubbers. 

The mechanism of acrolein production from propene can be expressed as follows. Industrial acrolein 

is produced by selective oxidation of propene without affecting the double bond by a suitable 

catalyst (1). 

CH3-CH=CH2 + O2 ↔ CH2=CH-CH=O + H2O  (1) 

Side reactions that lead to the total oxidation of propene (2) and acrolein (3) are:  

CH3-CH=CH2 + 
 

 
O2 ↔ 3CO2 + 3H2O  (2) 

CH2=CH-CH=O + 
 

 
O2 ↔ 3CO2 + 2H2O  (3) 

Acrylic acid (4) is produced as a secondary product. 

CH2=CH-CH=O + 
 

 
O2 ↔ CH2=CH-C(O)-OH  (4) 
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Ⅱ. Result and discussion 

3 Development of a high-throughput reactor 

Over the last several years, high-throughput methods and combinatorial chemistry have been 

developed as experimental methods enabling both the synthesis of numerous samples and the 

examination of their properties in a short time. High-throughput does not necessarily mean that a 

large number of overly simplistic experiments have been performed. On the contrary, if reliable data 

needs to be generated it requires a thoughtful design of the experiments and needs to be based on a 

sophisticated concept and heavily relies on the handling of data produced by a high-speed reactor as 

cutting edge technology. In this chapter, the development of a new high-throughput reactor that can 

provide reliable data for discovering new catalysts will be described. 

 

3.1 Motivation for the work described in this thesis 

The Maier group at Saarland University successfully applied an IR camera in several studies for the 

development of heterogeneous catalysts
[141, 142]

. However, this application is often restricted to total 

oxidation reactions because it cannot differentiate between catalysts that are responsible for 

intermediately oxidized products since it operates through the registration of the heat of reaction. 

To solve this drawback, an open-well high-throughput reactor system, referred to Stage-Robot 

Reactor (SRR), has been developed by previous researchers. It assists in the identification of the 

various products in the reaction of complex partial oxidation by using analytical instruments such as 

GC and MS. Regardless of the benefit that the simultaneous analysis of diverse products can have, 

the different design that a reaction chamber of a SRR has in comparison to a fixed-bed reactor limits 

the generation of reliable data, and thus severely affects the optimization of certain catalysts and its 

later application in the scaling up of the process
[143]

. In this, the main problems are the open reactor 

and phenomenon of catalyst instability like activation/deactivation, which happens during the 

catalytic process. 

Because of this reason, hits from a primary screening in the SRR should be ranked and evaluated 

further in a secondary screening using a more advanced reactor. This reactor allows a better which 

assessment of the application of hits as candidates and allows further optimization of the catalyst 
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formulation. In addition, new screening technology employed must closely mimic the various 

commercial processes and is at least as precise as conventional laboratory methods. In summary, the 

goal is to develop a more efficient and reliable high-throughput reactor that allows the entire system 

to operate under conventional conditions
[144]

. 

 

It is expected that the new reactor provides accurate data for the discovery of new catalyst that reach 

the global maximum in the activity-profile of the catalyst-composition and conversion of starting 

material into desired products instead of a local maximum. 

For the development of the reactor, three concepts of miniaturization, automation and parallel 

processing are determined to be crucial:  

1) Development of a highly accurate reactor that can be applied in the scale-up and optimization of 

chemical composition as secondary screening method. 

2) Validation of the efficiency of the developed high-throughput reactor using different 

experimental conditions. 

3) Application of the new high-throughput reactor in the actual catalyst discovery for selective 

propene oxidation system. 

 

 

This study described in this thesis will treat the following issues: 

 

A. Solving problems of the SRR for further testing to obtain larger quantities of data by: 

• Developing, implementing and leading new high-throughput reactor as a key technology. 

• Improvement of the reproducibility of catalysts discovered by new high-throughput reactor. 

• Combining possibilities of the SRR as a primary screening method, and the newly 

developed high-throughput reactor as secondary screening method. 

 

B. Formulate and deploy plans for discovering and optimizing the catalysts by: 

• Development and application of combinatorial chemistry and high-throughput 

experimentation tools to investigate catalyst for the selective oxidation of propene. 
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• Confirmation of properties of the best catalysts by high-throughput experiments of a scale-

up process through conventional gas-phase reaction tests. 

• Characterization of new catalysts by the study of their properties at fundamental levels using 

various instruments 

 

For this, a 10-fold parallel reactor consisting of 10 mini tube reactors will be developed and tested 

for the selective oxidation of propene by a fast-screening procedure of heterogeneously catalyzed 

gas-solid reactions. The objective of this study is not only to develop a high-throughput system, but 

also to validate the new reactor as a secondary screening method. 

 

3.2 Reactor design issues that need to be considered 

Generally, various preliminary questions for the design of a commercial reactor should be answered 

before embarking on the detailed construction of general issues
[145]

:  

• What are the concerns when it comes to has to temperature progression, i.e. constant, rising, 

falling, etc?  

• Are additional instruments required? 

• What should be the size of particles used for catalytic reaction? 

• What type of reactor is best for development, for example, plug flow, mixed flow, CSTR, 

fluidized bed, 3 phase reactor, recycle reactor and multistate? 

In the answering of these definable problems, heterogeneous catalysis, material science and reactor 

engineering are playing key roles
[146]

. 

 

In this study, the plug-flow reactor or fixed-bed reactor has been considered as the model of high-

throughput reactor development. Because it is continuously operating with a stream of gas or 

concurrent stream of gas, it is a common reactor in industrial plants and is also the most widely used 

reactor in hydrocarbon processing. On the other hand, it is used in the academic laboratories for 

experiments that evaluate new catalysts to monitor the commercial production of catalysts and to 

assess the effect of change of feedstock or operating variables on processes. 
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Generally, both individual porous-catalyst particles and phenomenon in reactions are important for 

the concept of developing reactors. For example, the effects of unsteady-state heat and mass transfer, 

and the influence of inhomogeneities and stagnant regions or back-mixing in the reactor should be 

considered for reactor operation in process control as well as in development
[147]

. However, these 

questions were not considered initially since minimization of reaction chambers had been planned in 

advance in order to minimize the effect of their design on the outcome of the catalytic reaction, thus 

make it more relevant as model-reactor for a pilot plant or commercial reactor. 

 

3.3 New developing concept 

 

Figure 3.1 Previous method (left) vs. developing method (right) 

 

Figure 3.1 outlines the concept of pervious methods and that of the new method developed for 

catalyst discovery. As discussed in the previous chapter, the stage robot reactor (SRR) developed by 

our group was confronted with the restriction of identifying various oxidized products in catalyst 

optimization and discovery of complex reactions. As is well known, research directed toward the 

discovery and optimization of new catalysts by means of conventional testing is an expensive, time-

consuming process that includes high degrees of uncertainty in their reproducibility. Thus, to 

overcome such limitations of catalyst discovery and to extend the capabilities of our high-

Previous Method 

Stage-Robot Reactor 

Conventional Test 

Developing Method 

Primary Screen 

• Stage robot reactor 

Secondary Screen 

• 10-fold parallel reactor 

Conventional test 
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throughput program with the stage robot reactor, we designed and implemented a fully integrated, 

high-throughput discovery and optimization infrastructure by developing a 10-fold parallel reactor 

as secondary screening method, as shown in the diagram of Figure 3.1
[13]

. 

Three screening systems were considered as follows: 

1) A stage robot as a primary screening device: it can rapidly identify catalyst activity, and identify 

and refuse an inactive catalyst by observing the hit. At the same time, it allows a number of 

broad ranges of the catalyst‘s candidates and conditions to be evaluated.  

2) A new secondary screening method is used to study catalyst performance, the relationship 

between catalyst structure and activity, and catalyzed process. 

3) Final results can be validated in a conventional test. 

As a consequence, it is expected that time and resources will be saved toward maximizing catalyst 

performance by checking only those catalyst candidates, which show the most promising 

performance. While conventional catalytic tests take more than one day using a manual operation 

system, the 10-fold parallel reactor can measure up to 10 catalysts under an automated work flow 

within one day. 

 

Figure 3.2 Schematic representation of an idealized generic structure for a catalyst test and analysis system 

Feed delivery  

Feed blender 

Valve between 

feed gases 

10-fold Parallel 

reactor 

Interface to 

analysis 

GC MS Optional 

Stage-Robot 
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New generic structure for the stage robot reactor and the 10-fold parallel system involved the same 

feed system consisting of feed delivery, feed blender and valve between feed-gases. The mixed gas 

is split into two flows when performing either the 10-fold parallel reactor or the stage robot. On-line 

gas chromatography (GC), mass spectrometry (MS) and optional various gas sensors for analyzing 

catalyst performance could be implemented. 

 

3.4 Schematic design of the reactor system 

3.4.1 Overall system design 

The 10-fold parallel reactor module for screening of heterogeneous catalysts enables catalyst testing 

under conditions that are equal to those of fixed-bed reactors. Especially, the rate by which 

experiments could be performed was significantly increased by testing 10 catalysts at the same using 

an automated system. In other words, processes can be carried out under identical reaction 

conditions as in a miniature glass tube reactor but were coupled with an online micro-gas 

chromatograph and a data-acquisition system. 

 

 

Figure 3.3 Outline of reactor system 
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Figure 3.3 shows a schematic outline of the new 10-fold parallel reactor system. A 10-channel multi 

valve (1ⅹ10, Valco Instrument) in the feed-gas inlet allows fast switching between the different 

channels. The main setup consists of two cylindrical modules called the central and splitting module. 

The main part of a central module is assigned to 11 channels using 10 fixed-bed reactors, which are 

concentrically arranged with regard to the axis of the module. To avoid condensation, 

polymerization or thermal decomposition of products, a temperature above 100 ºC is required 

throughout the entire system during the process. Therefore, the splitting module and the output 

piping including the product-gas-tube to the GC were installed with heater rod and thermocouple 

wire, respectively. For automation of the system, an electric circuit as a main interface was 

developed to communicate with each instrument through LPT, Com1 and Com2. In addition, a GUI 

interface mode was developed with the C++ programming language for controlling and monitoring 

the catalytic experiment. Subsequently, sequential analysis of the reaction products contained in the 

effluent gas was performed by Micro-GC. 

3.4.2 10-fold parallel reactor design 

 

Figure 3.4 High-throughput testing equipment: (a) view on the 10-fold parallel reactor module consisting of two 

modules (b) a cross-sectional view of reactor (c) fixed-bed tube reactor used in this system 

 

The 10-fold parallel reactor designed in this work contains a central module (height = 15 cm, 

diameter = 8 cm) with 11 channels (height = 15 cm, internal diameter = 11 mm) based on a 

miniature concept. It was made of an aluminum alloy that possesses good heat conduction. To 

ensure isothermal conditions in the reaction zone, in this system, these channels were equally 
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distributed under rotational symmetry. Heating was provided by an inner electrical heater rod 

(height = 13 cm, diameter = 1 cm). Axial temperature profiles are controlled by thermocouples 

placed in an empty tube reactor at the 11
th

 channel, and it has been shown that the radial temperature 

deviation does not exceed 4 K. The reactor was tested to keep the entire system stable at a 

temperature up to a maximum of 400 °C with a flow rate up to 50 mL/min. The miniature glass tube 

reactor (height = 22 cm, inner diameter = 5 mm and outer diameter = 8 mm) containing grid filter 

(diameter = 5 mm, thickness = 3 mm, porosity 0.27) were implemented for catalytic test as shown (c) 

in Figure 3.5. Each tube reactor was filled with 100–300 mg of catalytic material of 100–300 μm. 

The rest of catalysts in the filter of the used tube reactor were cleaned by using the ultra-sonic 

equipment and by heating in a diluted HNO3 acid solution. 

 

3.5 Consecutive parallel reactor 

During the last decade, several parallel reactors have been developed (16 parallels Amtec Germany, 

16 parallel Flowrence, hte). The possible system of flow stream can be divided into three concepts 

based on the position of the Multi-Position Valves (MVs) as shown in the following Figure 3.5. 

 

Figure 3.5 Schematic flow-sheet of (a) MV‘s at both sides (b) one downstream MV, and  (c) one upstream MV 

 

The high-throughput instrument requires a good user interface, be fast and relatively inexpensive. 

Obviously, using two multi-position valves (figure 3.5, example a) fails to meet the last criterion. 

Although implementing MVs both upstream and downstream probably produces the most accurate 
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results, the application of one MV installed downstream (b) is general sufficient for the development 

of parallel reactors. 

However, the concept of installing one MV downstream leads to another problem:  

while a specific channel is measured, all other channels remain under continuous flow. This creates 

two drawbacks. First, to observe the activation or deactivation of catalytic material accurately, the 

designed structure of the reactor should be tested, so that the total flow rate is equally distributed 

through all channels and have the same pressure drop. Furthermore, supplying a continuous flow to 

all channels simultaneously significantly increases expenses due to feed-gas consumption. 

Installing MV either upstream or downstream of the catalyst bed is of importance to establish ‗flow 

concept‘ in the parallel reactor. An upstream MV (c) causes a high risk that effluent gas analyzed 

can be contaminated by gases from the rest of the operating channel. Because of this, so far, the 

parallel reactor development has generally used to set up MV‘s positioned downstream (b). 

Disadvantages connected with the upstream positioned MV could be avoided using a splitting 

module. Here, it will be elucidated how this system works to neglect the contamination of effluent 

gas in each channel.  

3.5.1 Design of splitting module 

 

Figure 3.6 Effluent gas splitting module downstream 

 

To solve the gas contamination problem in the case of installing the MV upstream, a gas splitting 

module was invented and designed by the mechanical engineer R. Richter as shown in Figure 3.6, 
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which has the function of minimizing or eliminating the influence of gas contamination between 

online and offline columns. It is comprised of three parts such as upper plate (height = 20 mm, 

diameter = 20 mm), middle plate (height = 18 mm, diameter = 20 mm) and bottom plate (height = 

20 mm, diameter = 20 mm). In order to avoid corrosion, plates were made of stainless steel 

(X6CrNiMTi17-12-2). To avoid gas leakage they are enclosed in polished planes by tightening screws 

and sealing with 23 gaskets (2 sealing rings, 11 sealing O-rings, 11 sealing ellipses). The heating rod 

(height = 38.1 mm, diameter = 9.6 mm, 100W) in the center of the module allows to keep the 

temperature above 100 °C. The effluent gas from the online column is passed through a capillary 

line connected to the Micro-GC. 

 

 

Figure 3.7 Function of module for splitting effluent gas 

 

Our specific technique compared to other high-throughput reactors is the gas splitting module as 

shown in Figure 3.7. State-of-the-art technology for avoiding gas contamination between on-line 

and off-line results in the application of fine flow lines (width 2.5 mm) associated with the function 

of the stainless balls (diameter 3 mm). 

Each ball accomplishes opening or shutting each channel by moving its position up and down by 

overcoming the force of gravity associated with the weight of the ball. The ball in the online channel 
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is raised by the convection force derived by the flow as shown in the top left of Figure 3.7. In 

contrast, when one channel is open for flow of flue-gas, the other 10 offline channels remain close 

by pushing the ball based on the gravity force itself and the convection force of feed-gas as shown in 

the top right of Figure 3.7. 

Although contamination can occur through the narrow gap between the ball and channel based on 

diffusion effects, this influence may be small enough to be ignored. The extent of error in this regard 

will be shown in the following chapter on the validation of the reactor performance. The entire 

design of the splitting module can be seen in the appendix. 

3.5.2 Comparison of two methods 

 

Figure 3.8 Stage robot reactor vs. 10-fold parallel reactor 

 

The so-called ‗multichannel fixed bed reactor‘ or ‗10-fold parallel reactor‘ was developed for the 

secondary screening and hit validation. In this chapter the performance of this reactor will be 

compared with the stage robot reactor (SRR). Both high-throughput methods are used with the 

Micro-GC as analysis instruments and were automated with temperature control and the 

pretreatment of catalyst. Despite the fact that the new reactor can carry out tests with a maximum of 

10 catalysts compared to 207 in the stage robot reactor, the accuracy is high, which makes it suitable 

for the optimization of catalysts or scale-enlargements. However, it is unclear which reactor is more 

suitable for high-throughput experimentation since each reactor has specific advantages and 
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drawbacks. Ideally, the combination of two high-throughput methods is the best choice for 

discovering new catalysts in a set of large variables. 

To summarize, the stage robot reactor as a primary screening method has to meet the following 

challenges: tests should be simple, fast and scalable; large variety of catalysts can be tested under 

steady-state conditions and continuous flow; analysis has to provide a reliable estimate of 

conversion and selectivity of catalyst; the test results have to be reproducible; all tasks have to be 

automated under systematic workflow
[81]

. 

It is also necessary to confirm promising results in secondary screening methods, which is used to 

scale up a certain conversion to production scale or screen conditions under conventional test
[100]

. 

Therefore, the 10-fold parallel reactor developed by in-house workshop is suitable to take this role 

as the instrument in secondary screening process. 

Evidently, there is a difference between two high-throughput reactors and each reactor has specific 

criteria to extrapolate catalyst properties in primary screening and secondary screening stages. After 

all, using both reactors can both enhance the rate of the catalyst testing and harvest on the synergy 

effect of getting reliable data. 

3.6 Automation of the reactor 

Prior to developing the software required for performing catalytic tests in the 10-parallel rector, 

understanding the nature of this task is necessary. Namely, at the beginning those following points 

are to be taken into consideration:  

• What are the component‘s elements of the task? 

• What are the main functions? 

• How should different instruments be combined? 

• Which is the better way for the communication of instruments?  

 

In order to accomplish this work, the idea of processing is applied to events generated over time, a 

method that simulates the often-occurring queuing in a heterogeneous catalyst environment. This is 

referred to as the ‗discrete event model‘ and is a system where components interact via timed events. 

These discrete steps in the procedure may be classified as ‗regulating reactor temperature‘, 

‗analyzing product by Micro-GC‘, ‗switching magnetic valve to guide the flow of feed-gas‘ and 
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‗changing the online channel in Multi-ports valve‘. For automation of the reactor, an event model is 

designed in such a manner that the instruments that analyze the outcome of the reactor are 

alternatively activated during experimentation. This generates a ‗queue events‘ that is sorted by time. 

For this, a reference program is developed using C++ (see appendix). 

3.6.1 Main control box 

Developing the electric circuit as the interface of the whole system has the purpose of controlling 

the five instruments such as Varian CP-4900 GC, 10 multi position valve, heater, 3 magnetic valves. 

In addition, this control circuitry should be able to command controlling a current stream channel, 

reactor temperature and on/off condition of valve through Graphical User Interface (GUI) mode.  

           

Figure 3.9 Main control box 

 

As shown in above Figure 3.9, the front side of a control box shows the main power switch, the 

manual control panel of MVs including the monitor screen, 4 on/off LED lamps for magnetic valves, 

Micro-GC and heating instrument connectors. 

The right diagram in Figure 3.9 describes the inside of the box containing the power supplier, 

RS232 converter and electric circuit. Four relays are applied to downgrade the voltage sending the 

signal to 4 magnetic valves for controlling the on/off different feed-gases and 4 LED lamps installed 

with resistors are implemented to show the state of the magnetic valve. For controlling the 

temperature at the reaction chamber, ADAM-450 (RS-232 to RS-422/RS-485 Isolated converter) 

was used. Since the temperature controller (dTron) is carried out under RS485, the change of 

protocol from RS232 to RS485 through COM1 was necessary. All data communication for 

automation is performed through three ports such as LPT for ‗Micro-GC‘ and ‗three magnetic 

valves‘, Com1 for ‗temperature controller‘ and Com2 for ‗multi-ports valve‘.  
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3.6.2 Software development 

In order to control the entire system of the high-throughput process automatically, AutoCat software 

was developed by means of C++. In addition, some program components in this task were copied 

from previous IR-testRing software programmed by J.Scheidtmann. The software was programmed 

and developed based on the concept of user-friendly GUI and total automation. 

During the experiment, the process of experiment can be identified in real-time and is carried out 

independently for an entire day on manual control. The main screen of GUI mode under this 

software is shown (Figure 3.10), and the main source-code of C++ can be found out in the appendix. 

 

Figure 3.10 Main GUI window for controlling whole process 

 

The main center GUI in the AutoCat software consists of four sectors (Figure 3.10). First, (1) the 

main control panel has several functions such as changing the screen from main to process-mode, 

starting a queue of future events, and saving or loading the files for event process. Clicking the 

button in the (2) panel of the multi position valve can change the current channel by sending the 

command. The (3) running option part is comprised of several command buttons that can define the 

specific way of the testing process. Lastly, the instrument windowpane (4) has the role to switch 

three magnetic valves and control the temperature of the reactor heater. In addition, the bottom of 

the window shown by the red box presents the current process by showing the time counter in text 

mode. 
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Consequently, the AutoCat software can control instruments such as a multi-position valve, three 

magnetic valves, an electronic heating chamber and a micro-GC. This automatic AutoCat system is 

provided with an action queue based on time. 

 

       

Figure 3.11 GUI option window including the flow chart of the process steps 

 

The basic process called ―Star Run‖ consists of four steps that can be selected by changing the 

‗check-box‘ and typing the time duration in text box as shown (left part of Figure 3.11). In the first 

step, each reactor channel and product flow channel of the micro-GC is cleaned by the carrier gas, in 

this case He or Ar. This avoids impurities originating from chemicals and products of the previous 

experiments or off-line channels. In the second step, the time to flow feed-gas into the reactor is 

defined, which in turn defines the time to reach steady condition of reaction. The third step defines 

sampling time and run time of the micro-GC. In the case of double measurements, it is possible to 

recheck the results in order to reduce errors. In step 4, the channel that has been used is cleaned by a 

flow of He, and it also keeps the coherency of the results in each channel. In addition, containing He 

in previous channels helps to avoid deactivation of catalysts by undesired reactions and the impurity 

of reaction gas by contamination. 

In addition to the basic run, there are three running methods for specific situations based on 

experimental conditions. ―Clean Run‖ performs the cleaning process of all channels. If it needs to 

run a preheat treatment for a certain catalyst, ―Preheat Run‖ allows to use different gases, such as, 
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He, O2 and H2 under different temperature conditions. ―Single Run‖ has a function to carry out tests 

with only one channel automatically. Flow charts of four different processes are shown on the right 

side of Figure 3.11. 

 

 

Figure 3.12 (a) Operation diagram procedure (up) (b) process option screen (down) 

 

The process needed to control the temperature is performed in the point of each temperature, 

controlling sub steps such as ‗Multi‘, ‗Carrier‘ and ‗Feed‘ and it can be registered depending on 

different experimental conditions. For example, the option ‗Multi‘ under ‗Instrument‘ has options 

such as ‗Start‘, ‗Clean‘, ‗Preheat‘ and ‗Run‘. Likewise, ‗Reactor Heating‘ under ‗Instrument‘ can 
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control the temperature of the reactor by typing the desired temperature in the text box of the 

parameter row. 

Figure 3.12 shows the process with regard to the queue including 17 sequences. When it starts the 

program (0), the reactor with command ‗Clean‘ (1) is cleaned by helium gas in the process. This 

purging process is of importance, so that the results of measurements in each channel are based on 

identical experimental conditions. When command ‗Run‘ (2) is given, the program begins the 

measurements of 10 channels by the selected process in the option of ‗Start Run‘ given in Figure 

3.12. After that, the magnetic valve is opened (3) in order to flow carrier gas (helium) into the 

reactor channel during temperature increase to 60 ºC by the command of ‗Reactor Heating‘ (4). 

There is a reason why it is necessary to supply gas during the increasing temperature. As is well 

known, reactor leaking towards air can induce oxidation of the catalysts resulting in their 

deactivation. Helium gas in this system is purged into the reactor with 1 bar pressure. If no 

continuous gas supply exists during increasing temperature, the inside pressure of the reactor will be 

increased by heating gas, which induces the increase of potential to happen the leakage of reactor.  

Subsequently, these steps described above were repeated after increasing temperatures as shown in 

Figure 3.12. When all reaction measurements have been completed, magnetic valves are closed, 

which lowers the reactor temperature to an ambient levels. These process sequences can be 

rearranged by using a different combination of ‗Start-Run‘, ‗Clean-Run‘, ‗Preheat-Run‘ and ‗Single-

Run‘ based on the desired reaction procedure. 

Experimental errors always occur during testing. In order to avoid or minimize these, a double 

measurement method was implemented in the software of AutoCat as shown on the left side of 

Figure 3.11. By clicking the check box ―double‖, each step was measured twice. The accuracy of the 

tests is then increased by the compensation of two measurements. At the same time, the existence of 

the reactor leakage and the lack of measurements of micro-GC can be identified by monitoring the 

difference of the measurements obtained at values during the process. 

3.7 Validation of the reactor 

The main reason for this validation is to have reliable results of each channel with same catalyst 

under identical reaction conditions. In order to prove consistency at each reactor-tube, 50 mg 

Hopkalite catalysts is mixed with 100 mg sand for better heat transfer. The temperature has been 

increased from 23.8 ºC (room temperature) to 150 ºC in 25 ºC increments. Prior to the catalytic 
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reaction, each channel was purged with helium gas (50 mL/min) and product-gas was analyzed by 

the Mirco-GC. The experiment was performed in duplicate as described above (Figure 3.11). The 

flow rate of the feed-gas was maintained with 25 mL/min using gas with a composition of (CO: O2: 

He = 2: 2: 96). 

          

Figure 3.13 Reactor sketch in different channels 

 

As depicted in Figure 3.13, sand and sand-catalyst mixtures were inserted into odd (1, 3, 5, 7, 9) and 

even number (2, 4, 6, 8, 10) channels, respectively. For this experimental setup, 180 sequences were 

planned to test the heterogeneous catalytic reaction with Hopcalite. 

 

Figure 3.14 Results of sequence test.  

Reaction condition: 50 mg of Hopkalite catalyst diluted with 100 mg of sand; particle size of 100-200 μm; total flow rate 

of 25mL/min (CO:O2:He=2:2:96 vol%) 



3.7 Validation of the reactor 

39 

 

 

The difference of experimental results of both even and odd channels, which represent the 

conversion of CO and O2 measured by the thermal conductivity detector of the Micro-GC, is shown 

in Figure 3.14. The Y-axis represents the activities of reactants and products based on GC signal 

intensity. These results can be divided into three parts: 

As expected, the analysis of the purge gas (He) showed about zero value of GC signal intensity of 

O2 and CO (1). On the other hand, while the odd channels (insert send) showed almost no 

conversion (3), the conversion in the even channels (catalysts) increased with time based on 

increasing reaction rate through increasing temperature (2). Interestingly, the conversion in the 

second measurement by the double measurement concept was always higher than the first value, 

which is indicative a lower conversion of reactants. The origin of this outcome is still unclear, but it 

is likely that the contamination from the previous sample gas in the suction line of the Micro-GC 

enhances the signal of the current gas analysis. 

Consequently, sequence results show that the process is in accordance with expectations. However, 

it is still debatable whether the variations of the experimental results are due to the catalytic reaction 

process or not. The differences in the results should not depend on the channels. In order to evaluate 

the extent of deviation, the reactor reliability is judged by the differences at each channel. 

Experimental results in a box plot are presented as Whisker Diagrams, applied using the Excel 

program. Whisker plot provides a simple graphical summary of a set of data based on medians. 

Parameters (Mean, SD, Min, Q1, Median, Q3, Max, Bottom, 2Q Box, 3Q Box, Whisker-, and 

Whisker+) were tabulated in table 3.1 for even channels and in table 3.2 for odd channels. The data 

in table 3.1 as well as table 3.2 were calculated according to reference
[148]

. 

The positive and negative error span of the plot can be measured by calculation the correlation of Q3 

subtracted from Max and Min subtracted from Q1, respectively. 2Q Box and 3Q Box describe the 

range of median between Q1 and Q3. 
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Table 3.1 CO conversion data (left) and Whisker data (right) in even channels without Hopkalite 

Even 
Temperature step  

33.8 50 75 100 125 150 

Count 10 10 10 10 10 10 

Mean 7.92 10.17 22.04 48.61 82.84 99.11 

SD 1.06 0.94 0.80 1.36 2.16 1.34 

Min 6.74 8.68 20.74 46.87 80.27 96.72 

Q1 7.12 9.82 21.46 47.63 81.00 97.99 

Median 7.71 10.06 22.24 48.50 82.14 99.91 

Q3 8.37 10.48 22.62 49.79 84.77 100.00 

Max 9.81 11.79 23.04 50.76 85.86 100.00 

Bottom 7.12 9.82 21.46 47.63 81.00 97.99 

2Q Box 0.58 0.24 0.78 0.88 1.15 1.92 

3Q Box 0.66 0.42 0.38 1.28 2.63 0.09 

Whisker- 0.38 1.15 0.71 0.76 0.73 1.28 

Whisker+ 1.44 1.31 0.42 0.98 1.09 0.00 

Deviation 3.07 3.12 2.30 3.89 5.59 3.28 

 

 

 

Figure 3.15 Conversion profile with Box plot in even channels 

 

These box plots of Figure 3.15 show that the conversion values of the Hopcalite sample at 5 even-

channels increase with increasing temperature. Precisely, the deviation of conversion regarding 
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 Even 
Temperature step  

33.8 50 75 100 125 150 

2 
9.4  11.8  22.9  49.4  82.3  100.0  

9.8  9.8  20.7  47.6  80.3  97.4  

4 
8.4  11.4  23.0  48.2  82.0  100.0  

7.2  10.0  21.4  46.9  80.5  97.4  

6 
7.7  10.4  22.6  50.8  85.5  100.0  

7.1  9.9  22.4  49.9  84.8  99.7  

8 
8.3  10.5  22.6  49.9  85.9  100.0  

6.8  9.1  21.7  48.8  84.6  99.8  

10 
7.7  10.1  22.1  47.7  81.9  100.0  

6.7  8.7  21.0  46.9  80.7  96.7  
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temperature ranges from the minimum (2.30; 75°C) to the maximum (5.59; 125°C). Ten data of 

each temperature, which are five channels with double measurements, were used to calculate the 

parameters, including the deviation. 

 

Table 3.2 CO conversion data (left) and Whisker data (right) in odd channels with Hopkalite 

Odd 
Temperature step  

33.8 50 75 100 125 150 

Count 10 10 10 10 10 10 

Mean 1.78 2.31 2.19 2.03 2.23 2.23 

SD 0.97 0.81 0.90 0.96 0.69 0.64 

Min 0.14 0.84 0.65 0.00 1.02 1.26 

Q1 1.17 1.74 1.67 1.85 2.17 1.99 

Median 1.90 2.48 2.23 2.27 2.31 2.12 

Q3 2.59 2.92 2.62 2.58 2.71 2.51 

Max 3.08 3.30 3.66 3.12 2.98 3.28 

Bottom 1.17 1.74 1.67 1.85 2.17 1.99 

2Q Box 0.72 0.74 0.56 0.41 0.14 0.13 

3Q Box 0.69 0.44 0.39 0.31 0.40 0.39 

Whisker- 1.04 0.89 1.02 1.85 1.15 0.73 

Whisker+ 0.49 0.38 1.04 0.54 0.27 0.76 

Deviation 2.94 2.46 3.01 3.12 1.96 2.02 

 

 

Figure 3.16 Conversion profile with Box plot in odd channels 
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Odd 
Temperature step  

33.8 50 75 100 125 150 

1 
2.7  2.9  3.7  3.0  2.9  3.3  

2.2  2.9  3.3  1.9  2.4  2.5  

3 
3.1  3.3  2.7  2.2  2.7  2.5  

1.6  2.5  2.3  2.3  2.2  2.2  

5 
2.3  1.6  2.3  3.1  3.0  3.1  

1.1  2.5  2.0  2.3  2.2  2.0  

7 
0.7  1.4  1.3  0.9  1.0  1.3  

0.1  0.8  0.7  0.0  1.1  1.4  

9 
2.7  3.0  2.2  2.7  2.7  2.0  

1.3  2.1  1.6  1.8  2.2  2.1  
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In the tube reactors that had no catalyst, no reaction should take place, which means the 

concentration of CO and O2 should be constant. In the other words, the conversion of CO has to 

remain 0. The measured mean values of conversion with increasing temperature varied from 1.78 to 

2.23, which were taken as experimental error. For this, several reasons are possible. First, even 

though the intersection of online and offline channels are blocked by balls, some diffusion of gas 

through the seals can take place. Artificial errors, such as calibration mistakes on conversion and 

small leakages of connections between the tube reactor and each joint, cannot be avoided completely. 

Furthermore, after purging empty channels with 50 mL He, the trace of the previous gas 

contaminated in the Miro-GC suction line can add to this error. Apart from these, the reaction can 

take place without catalysts at high temperatures and trace contamination of catalysts on the reactor 

will can contribute to the error. The test in each odd channel provided almost identical results, 

having only small deviation (1.96–3.12). 

Although it is shown that the accuracy in each channel still needs improvement, this result clearly 

showed that the new reactor is promising and reliable and deserves to be applied in high-throughput 

experimentation. As a first step, the stability or compatibility of this system is tested at a 

temperature maximum of 400 °C and with atmospheric pressure. Generally, selective oxidation 

reaction takes place at conditions with temperature below 400 °C. Therefore, this reactor seemed 

ideal for catalyst screening in selective oxidation. 
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3.8 Simulation of temperature distribution 

 

Figure 3.17 3D FEA simulation in the distribution of temperature 

BC: Internal holes (a), BC: outside surface (b), FEA mesh (c), and temperature distribution profile (d)  

 

The FEA simulation in the central module was carried out to visualize its temperature distribution at 

a reaction temperature of 400 °C, shown in Figure 3.17. Aluminum 7079 alloy was chosen as the 

raw material, containing properties such as the thermal conductivity of 120 W/m.K, the density of 

2700 kg/m
3 

and the specific heat of 960 J/kg.K. A surface with 11 internal holes in Figure 3.17 (a) 

and an outside surface of the cylinder in Figure 3.17 (b) were considered as boundary conditions 

with a reaction temperature of 400 °C and a room temperature of 25 °C, respectively. All domains 

and boundaries were assigned, and then the generation of mesh was performed as presented in 

Figure 3.17 (c). The generated mesh contains 44996 triangular elements and 68280 nodes. The 

FEA/SolidWorks coupled computation required about half an hour to obtain the solution of 

temperature profile in this required condition. Figure 3.17 (d) shows the temperature variation in the 

solid domain of the central module of the 10-fold parallel reactor. 
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3.9 Operation concepts 

 

 

(a)  

 

 

 

(b) 
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(d) 

 

 

 

Figure 3.18 Operation concepts in the 10-fold parallel reactor scheme: (a) activity tests and life time experiments; (b) 

kinetic studies; (c) mass transfer limitation based on porous diffusion (d) mass transfer limitation based on film diffusion 

 

The Figure 3.18 shows different possibilities for experiments
[87]

 possible with the 10-fold parallel 

reactor setup. Here, possible main applications of the new reactor will briefly be described. 

Generally, for the purpose of catalyst screening, the reactor can be filled with the same amount of 

nine different catalysts (it is recommended to use the first tube reactor as reference, since it is also 

designed to be purged by the carrier gas, helium, during temperature changes) (Figure 3.18a). In 

contrast, different amounts of the same catalyst can be added to facilitate kinetic studies (Figure 

3.18b). By increasing the particle size of the catalyst with the same flow rate, the diagnostic 

experimental tests for the presence of intra particle limitation (mass transfer limitation based on 

porous diffusion) is used (Figure 3.18c). Variation of W/F by changing the amount of catalyst W or 

F allows a broad range of conversions to check for mass transfer limitation based on film diffusion 

(Figure 3.18d).  

Activity and stability tests with the same set catalyst can be performed in a single run using one 

experimental channel. The 10-fold parallel reactor concept also offers the possibility to investigate 

the stability of 9 samples of the same catalyst at different conditions simultaneously. Many kinetic 
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experiments can also be carried out at different temperatures and feed compositions during the 

screening process. 

3.10 Design of new rack 

3.10.1 Concept 

Based on a bottleneck of library preparation, a new rack has been designed and validated with the 

idea of increasing the speed of a process for catalyst tests. The previous procedure entails different 

vessels during each step such as synthesis, aging, drying, calcination and testing, which can be a 

time consuming and troublesome procedure. For example, each stock solution in synthesis is 

positioned into 2 mL vials in a rack of 50 vials and exchanged in a steel rack for calcination and is 

finally transferred into a slate or steel plate for testing. Instead of utilizing vials, rack and plate, it 

will be a more economical use of time or resource to apply one standard vessel. 

In 2001, our group introduced new rack including the part of a synthesis reactor
[100]

. Although the 

pipetting unit dispenses liquid or dissolves reagents into the cavities of a microreactor array in the 

rack, this method remained a problem in reproducibility as an important factor for discovering 

catalysts by high-throughput screening. Therefore, the manual preparation of the reagent solution 

again became a common procedure. 

The aim of the presenting work is to demonstrate the application of new rack applied in the entire 

catalyst process, which leads to the new or improved catalyst test with increasing the speed and 

reproducibility. 

 

Figure 3.19 Hexagonal library with 51 wells in a new rack 
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For this purpose, hexagonal aluminum-rack with 51 holes was developed as shown in Figure 3.19; 

this cylindrical rack was designed to contain maximum 51 GC flasks, placed in the stage robot 

reactor for catalyst tests. 

 

 

Figure 3.20 Scheme of using a new rack 

 

As described in Figure 3.20, this new type of rack for the stage robot reactor can be used for the 

catalyst preparation in synthesis, aging or drying and calcinations, or catalyst test, by turns. IR-

testRing software, which can control the SRR, was modified to use this new rack. While it decreases 

the time consumed during catalyst preparation and testing, the accuracy decreased due to the 

following two reasons. First, in comparison to our previous plate as a rack, the open structure with 

new rack is more exposed to atmospheric air and moisture, which can disturb the final result of 

experiments. Next, the reaction may be affected by the kind of HPLC flask material, such as silicate, 

which has the potential to promote unexpected reactions. 

In spite of the problem concerning the less accurate data obtained using this new rack, the time 

consuming in the entire system decreased. In addition, it was suitable to identify the hits of catalysts 

in a primary screening process. However, if high accuracy is required, it would be preferable to use 

the stage robot reactor with the old rack. This work aimed using only one standard vessel is 

implemented successfully and still valuable to develop for the further instrument because of its 
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flexibility, convenience and simplicity. Furthermore, there is the potential to apply it to analysis of 

liquid-liquid or liquid-gas phase reaction. 

3.10.2 Ternary composition  

To validate the performance of the new rack, a composition spread of potential catalysts composed 

of Ag, Cu and Mn has been chosen for the selective oxidation of propene. It is important that the 

entire process of catalyst preparation and testing has been performed with the same rack. In 

summary, the library of 51 potential catalysts in the new rack has been implemented for the entire 

process, including catalyst testing in the stage robot reactor for the selective oxidation of propene. 

This testing used propylene and oxygen atmospheres (C3H6:O2=4:1) and temperatures of 250 ºC, 

300 ºC and 350 ºC. The results were reproducible. 

Figure 3.21 shows the result of the direct test of ternary composition containing Ag, Cu and Mn by 

using the new rack. Visualization of the conversion for propylene to proplyenoxide, acrolein and 

CO2 were used in a Matlab modeling. Catalytic activities were defined based on the GC signal 

intensity of unscaled results. 

Correlations between catalytic activity and chemical composition reveal that conversion to 

propylene oxide exists in the wide area of composition spread at 250 ºC. However, the most of 

active areas of propylene formation at 250 ºC disappeared at 350 ºC, except for the area where the 

catalyst was composed of Cu0.3Mn0.6Ag0.1. 

In the case of the conversion to acrolein, similar behavior was seen at 250 ºC and 350 ºC: the most 

active region was found at the composition of Cu0.8Mn0.2. The rest showed relatively low activities 

of acrolein. This active area of acrolein production was extended at 350 ºC. 

The results of the conversion to CO2 show high value in the broad areas of including Mn rich 

composition at 250 ºC. With increasing the reaction temperature, the catalysts of binary composition 

of Mn-Ag or Mn-Cu have higher activity at 300 ºC. 

Although this result of the new rack maybe less accurate when compared to previous racks such as 

steel plate, the visualization of ternary composition provided interesting results to recognize a 

pattern that is useful for decision-making in future primary screening phases. 
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Production of Propylenoxide at 250 ºC (left) and at 350 ºC (right) 

 
Production of Acrolein at 250 ºC (left) and at 350 ºC (right) 

 

 
Production of CO2 at 250 ºC (left) and at 350 ºC (right) 

Figure 3.21 Ternary composition spread by using hexagonal library. 

Reaction conditions: around 400 μmol of catalyst. Total flow rate: 5 mL/min (C3H6:O2=4:1 vol%) 
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3.11 Conclusion 

The chemical industry promotes the use of miniature reactors since the reduced scale of 

experimentation has many advantages with respect to cost and safety. There is certainly a global 

interest in the application of high-throughput miniature reactors. 

In this project, a 10-fold parallel reactor has been developed and built by the in-house workshop. 

This reactor allows us to perform 10 comparable catalytic tests at the same time. So far, most of the 

parallel reactors rely on one multi-position valve downstream for decreasing the construction price 

and avoiding the mixture of product-gas. Here, another method has been used where the multi-

position valve is implemented upstream: the disadvantageous mixing of product-gas has been solved 

by developing a new splitting module that seals the channels using a ball valve at each channel. 

Moreover, the results of reactor validation show its compatibility for catalyst tests at temperatures 

up to 400 °C at atmospheric pressure. Because selective oxidation reactions can take place at low 

reaction temperature, it is expected that the newly developed reactor is suitable for the application to 

discover heterogeneous catalysts. This high-throughput system can be used as secondary screening 

systems that are useful for catalyst optimization, analysis, and validation. At least, it will supposedly 

be safer than a large reactor and less costly in respect of material for catalyst preparation. However, 

there are still challenges to tackle in the development of such a catalytic reactor before it can be 

applied in the application at high pressure or high temperature. 

Apart from the new reactor, the application of the new rack was successful in saving time for the 

catalyst-discovery and was used to sample the ternary composition spread of Ag, Cu and Mn. 

Nevertheless, the application of this rack still requires improvement and modifications to verify its 

performance for future applications. 
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4 Discovering catalysts for propene to propene oxide conversion 

4.1 Primary generation by using binary composition 

In our attempt to find new catalysts for propylene oxide production, the first generation of catalysts 

has been synthesized. Most materials used for the sol-gel synthesis were obtained from commercial 

sources and used without further purification. A list of the metal complexes used as a matrix was 

described in table 4.1 and 4.2. 

 

Table 4.1 Elements used for binary composition matrix 

H                 He 

Li Be           B C N O F Ne 

Na Mg           Al Si P S Cl Ar 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

Rb Sr Y Zr Nb Mo  Ru Rh Pd Ag Cd In Sn Sb Te I Xe 

Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 

Fr Ra                 

  La Ce Pr Nd  Sm Eu Gd Tb Dy Ho Er Tm Yb   

  Ac Th Pa U             

 

Table 4.2 List of used chemicals for binary matrix 

Element Chemical Compay Element Chemical Compay 

Ag Ag NO3 M ABCR Re Re Cl M Aldrich 

Al Al NO3 M Alfa Ru Ru Cl M Aldrich 

B B acid M Fluka Sb Sb Cl M J. T. Baker 

Cr Cr NO3 M Aldrich Si Si C8H2OO4 Si M  

Cu Cu NO3 M Fluka Sn Sn Cl M Aldrich 

Fe Fe NO3 M k.A. Te Te Saeure M Fluka 

Ga Ga NO3 M Aldrich W W Cl M Fluka 

Ge Ge OiPr M Aldrich Y Y NO3 M ABCR 

Hf Hf Cl M Aldrich Zn Zn OAc M Fluka 

In In NO3 M Aldrich Zr Zr ONO3 M Johnson 

La La NO3 M Fluka Mo Mo OiPr I Alfa Aesar 

Mn Mn NO3 M Merck Bi Bi 2-Ethylhexanoat M Strem 

Nb Nb OEt M  Ta Ta Cl5 M ABCR 

Pb Pb ClO4 M     

M: methanol, I : isopropanol 
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For the synthesis of catalysts, stock solutions of 27 precursors in methanol were prepared with 0.25 

M according to the following formulation: 

The molar ratio of A (0.25 M solution in methanol): B (0.25 M solution in methanol): complexing 

agent (4-hydroxy-4-methyl-pentanone): acid (propionic acid) was 50:50:695:2. The preparation of 

A50B50 was performed by pipetting the following volumes of single solutions in sequence: 0.25 M A 

in methanol (600.0 μL, 0.15 μmol), 0.25 M B in methanol (600.0 μL, 0.15 μmol), and complexing 

agent mixed with propionic acid (8.06 M, 259 μL, 2087 μmol). New catalysts of the systematic 

binary composition A50B50 with 27 materials (Ag, Al, B, Cr, Cu, Fe, Ga, Ge, Hf, In, La, Mn, Nb, Pb, 

Re, Ru, Sb, Si, Sn, Te, W, Y, Zn, Zr, Ta, Mo, Bi) were set by this recipe. This sol-gel method is 

similar to those described in reference
[83]

. 

In total, 351 catalysts were prepared for binary compositions as summarized in Figure. 4.1. After the 

pipetting process, the rack was covered and placed on an orbital shaker (Titramax 100; Heidolph) 

for 3 h. After the lid had been removed, the rack was dried for 6 days at 45 °C for gel formation and 

catalyst drying. All samples were calcined in an oven at 400 °C for 5 h with a heating rate of 0.2 °C 

min
−1

. Finally, the 351 catalyst powders obtained were ground in the HPLC flasks with a glass rod 

and manually transferred into wells in two library plates such as 1G1L and 1G2L, being stainless 

steel libraries. 
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Figure 4.1 Binary composition list 

4.2 Instrument setup 

 

Figure 4.2 Peaks of possible products determined by GC 52CB column 

 

The following conditions of the stage robot reactor were used: a flow rate of 5 mL/min was used at 

temperatures in a range from 200 °C to 400 °C with increments of 50 °C. Two feed-gas conditions 
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were used: rich gas 9:1 (C3H6 64.8%, O2 7.2%, N2 27%) and lean gas 4:1 (C3H6 45.6%, O2 11.4%, 

N2 43%) at atmospheric pressure. 

For feed and product-gas analyses, a micro-gas chromatograph (model CP 4900; Varian) was used 

with two packed columns, Porapak Q and polar 52CB. The 52CB column was used in parallel to 

separate 1,5-hexadien, propylene oxide, propylene aldehyde, acetone, acrolein and benzol as shown 

in Figure 4.2. In this study, only these 6 oxidized products from propene were considered as main 

products and other products were considered as side products. The first column, the polar 52CB, 

was used at a column temperature of 60 °C, injector temperature 110 °C, inject time 80 m sec, initial 

pressure 50 kP, run time 100 sec and acquisition delay 4 sec. The PPQ column was used at a column 

temperature of 80 °C, inject temperature 30 °C and inject time 50 m sec and all other conditions 

were identical to the 52CB. In addition, sample time, sample line temperature and stabilizing time of 

the Micro-GC were set to 20 sec, 80 °C and 5 sec, respectively. The product peak data received by 

the Micro-GC were analyzed with the help of the Matlab Program. 

 

4.3 Experimental setup and results 

The experiments of both libraries, 1G1L and 1G2L, with the stage robot were carried out with 

increasing temperatures from 200 °C to 400 °C. Each increment was 50 °C to provide five 

measurement points. Product-gas (1,5-Hexadiene, Propyleneoxide, Propylenealdehyde, Acetone, 

Acrolein and Benzol) was analyzed by the gas chromatographic method. 

The fuel-lean conditions or stoichiometric reactions save the fuel as feed-stock. However, such 

conditions have the tendency to increase burning of the fuel. Because of this, the work was carried 

out in a propene-rich condition with 9:1 and 4:1 flow rates, which caused the experiment to perform 

with a high C3/O2 ratio to limit total oxidation. The feed ratios were compatible with the selective 

oxidation for the formation of propene oxide. Because of less stability of propene oxide, it is 

expected to carry it out under a fuel-rich condition which used to apply in a membrane reactor or 

recycling process for such selective oxidation of butane to maleic anhydride
[149]

 
[150]

. Even though 

this condition (C3/O2=9; C3/O2=4) has the advantage in increasing selective oxidation, the problem 

of the deactivation of catalysts is increased by especially coking. During catalytic reactions 

involving hydrocarbons or carbon oxides, side reaction can occur on the catalyst surface leading to 

the formation of coke or carbon, which tends to cause deactivation of catalysts. Therefore, the 
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decision for a reliable feed-ratio still remains controversial, depending on using the type of reactor. 

Moreover, because the stage robot reactor cannot evaluate, elucidate and test the deactivation or 

pretreatment of catalysts, it is still difficult to explain results under different feed ratio conditions. 

Using data visualization to find insight in experimental results is critical to data analysis. For this, 

the selectivity and conversion were used, which were defined using the following formulas: 

 

Propene  

Conversion 

=                                                                     

                                 
 (1) 

To calculate the conversion and selectivity, the GC signal intensities of reactant and product were 

used instead of the moles. That means these parameters only show the trend or pattern of the results, 

and do not provide molar amounts of product produced. However, the global trends should be 

sufficient for the primary screening. 

Selectivity of 

product a 

= 
                                    

∑                                     
 
   

 (2) 

The symbol of Pa means one among five products. The term ∑  describes the sum of five products 

based on 

   {                                                                     }. 

In order to visualize and analyze results, Matlab program (see also appendix) was used as follows. 

Since 351 samples with five temperatures were measured, 1755 experimentations were carried out. 

Such area of high conversion and selectivity is generally interesting for engineers because of 

commercial reasons. However, it was difficult to analyze the data of the first generation because less 

selectivity and conversion were shown with a lot of overlapped data. In order to solve this problem, 

the following normalized expression was used for the conversion and selectivity of representing the 

hits of the tremendous data. The normalizations of two parameters were calculated by dividing the 

data by the maximum values of the generation, which means conversion = 1 and selectivity = 1, the 

maximum values, respectively. The color bar on the right side of Figure 4.3 shows the measured 

temperature from 200 °C to 400 °C. 
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Figure 4.3  Normalization of selectivity vs. conversion with feed-gas ratio 9:1(up) and 4:1(down) for propene oxide 

Reaction condition: around 400 μmol of catalyst. Total flow rate: 5 mL/min (C3H6:O2=9:1 and C3H6:O2=4:1 vol%) 
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Figure 4.3 describes that, among hit samples, the most active catalysts of the first generation (1G1L, 

1G2L), CuHf, CuZr, CuAl, CuIn, CuGa and CuNb show potential as catalysts for propene oxidation 

with a feed-gas ratio 9:1. An increasing temperature has proportional influence to the conversion. 

Even more, only CuZr and CuHf show high selectivity with feed-gas ratio 4:1 as well as 9:1, making 

them very interesting candidates. Moreover, these catalysts have remarkable activity at the low 

reaction temperature of 300 °C. 

Even though the others are potentially good materials for the catalyst propene oxide, they can induce 

the problem of deactivation of catalysts. Therefore, after runs (351 materials) of the first generation, 

CuHf and CuZr were selected for the design of second generation. 

 

4.4 Secondary generation 

Table 4.3 Summary of library for second generation 

 Library Key elements Composition Doping elements 

1 2G1L CuHf, CuZr 
CuHfX, CuZrX 

CuZr, CuHf, CuTi 

X=[Hf, Ti, Al, Fe, Mn, La, Nb, 

Sb, Si, Sn, Zn, Ta, Ru, In] 

2 2G2L ― ― ― 

3 2G3L Cu CuXY X,Y=[Mn, Sn, Sb, Cr, In, La, Zr] 

 

In order to prepare the library for the secondary generation, CuHf and CuZr were chosen as a 

starting point because they have the best catalytic activity for propene oxidation in the previous 

experiments. Next, Cu with compositions [0.3, 0.5, 0.7] was combined with the composition of two 

other elements such as Zr [0.2, 0.4, 0.6] and Hf [0.2, 0.4, 0.6]. The rest of the composition was one 

of the 14 elements, X=[Hf, Ti, Al, Fe, Mn, La, Nb, Sb, Si, Sn, Zn, Ta, Ru, In]. Based on these 

compositions of CuaHfbXc and CuaZrbXc, 84 samples were synthesized. In addition, the binary 

compositions of CuAZrB, CuAHfB and CuATiB with 0.1 composition increments were prepared. The 

catalysts for two libraries were prepared using two different sol-gel methods such as the propionic 

route (2G1L) and ethyl glycol route (2G2L) (please see chapter 7.4 catalyst preparation). Finally, 

two libraries containing 199 samples were tested by the stage robot reactor. 

According to first generation (1G1L, 1G2L), it is shown that Cu has quite good activity in the 

formation of the propylene oxide. Therefore, another library (2G3L) was prepared with copper 

containing composition of 7 elements (Mn, Sn, Sb, Cr, In, La, Zr) by using propionic route. Cu [0.3, 

0.5, 0.7] was combined XAYB to receive 200 samples. 
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Figure 4.4 Normalization of selectivity vs. conversion for propene oxide in 2G1L (up) and 2G2L (down) 

Reaction condition: around 400 μmol of catalyst. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 
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These tests were carried out at atmospheric pressure with the stage robot reactor in the temperature 

range of 250 °C to 350 °C. In order to study the result in oxygen rich conditions, the feed-gas 

composition of C3H8:O2 = 1:1 with a total flow rate of 5 mL/min was applied to the propene reaction. 

Figure 4.4 describes that Cu-Hf and Cu-Ti showed most active for propene oxide production in the 

two libraries. Especially, Cu0.3-0.8Hf0.2-0.7 in the library 2G1L showed good selectivity in a broad 

temperature range between 300 °C and 350 °C. Library 2G2L showed that Cu0.1-0.7Ti0.3-0.9 were 

potential catalysts for the selective oxidation propene to propene oxide. 

 

4.5 Hit validation by conventional test 

In the library of the second generation, several catalysts (Cu0.3Zr0.4Sn0.3, Cu0.5Hf0.2Sn0.3, 

Cu0.7Hf0.2Sn0.1, Cu0.3Hf0.2Zr0.5, Cu0.8Zr0.2, and the binary composition of Cu-Hf and Cu-Ti) were 

found active for propene oxide formation. Conventional tests to confirm the activity of the catalysts 

for propylene oxide formation were studied in a fixed-bed tubular flow reactor (25 mL/min) at 

atmospheric pressure without a pre reduction of the catalyst. The results were disappointing since 

there was no activity of propylene oxide. Eventually, the catalysts of conventional testing failed to 

show reproducibility of catalysts obtained in high-throughput method. The reasons can be explained 

as follows: 

First of all, catalyst scale-up was unsuccessful. It is well known that scaling up catalyst synthesis has 

always been a problem since catalysts are very sensitive to their method of a preparation. In this 

study for the high-throughput method, 300–400 μmol of catalysts were prepared, but 500 mg of 

catalysts were synthesized for conventional testing. It is guessed that the functional catalyst bodies 

were modified during catalyst scale-up. 

Secondly, fast deactivation of catalysts took place during the conventional test. In the high-

throughput method with the stage robot, the deactivation of catalysts was not considered and not 

checked. Nevertheless, sintering, carbon deposition and decreasing of surface area can induce 

deactivation during conventional tests. 
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4.6 Discussion 

Despite the fact that it was not possible to reproduce the hit obtained in the primary screening by the 

secondary screening, the results of the high-throughput test are here summarized. Several catalysts 

of the first generation were found to containing cooper, for examples, CuHf, CuZr, CuAl, CuIn, 

CuGa and CuNb. It is well known that copper can function as epoxidation catalyst. Cu/silica
[111]

, 

NaCl-Modified VCe1-XCuX Oxide
[112]

, and Cu/SiO2 and Mn-on-Cu/SiO2
[151]

 were reported as the 

catalysts of propene epoxidation by molecular oxygen as the oxidant. 

Li et al. showed that keeping the Cu species in its low valence is very important for propylene 

epoxidation and the role of H2 in the feed-gas helps to keep the Cu species at its low valence
[112]

. 

Based on XPS data of Cu 2p3/2, it is induced that Cu
0
 may be the active phase in NaCl-modified 

VCe1−XCuX catalysts for propylene epoxidation. Moreover, increasing the amount of H2 in the 

feedstock can enhance the PO selectivity and keep the catalyst stable. Consequently, it seems that a 

reduction process with H2 gas is necessary to get the low-valent Cu species before using Cu based 

catalysts. 

To the best of our knowledge, even though the in situ auto reduction process is preferable, no 

commercial catalyst has been developed. Therefore, it is required either to add H2 in the feed or to 

reduce the catalyst with hydrogen before using the catalysts. A typical reduction process is 

performed at 200-300 °C in 5% H2/He for 1-2 h
[111, 112]

. It seems that, without reduction process, the 

deactivation of catalysts takes place even faster. 

The question remains if the reduction process described above is also necessary in conventional tests 

for catalysts as discovered in the stage robot reactor. It is still unclear to answer this question. 

However, the open reactor system of the SRR may be the cause of the different results when 

compared to the conventional reactor. Since the SRR has a short reaction time in catalyst reactions 

with the open structure of the reactor, it seems to show the activity of Cu based catalysts in first and 

second generation. 

Moreover, the instability of propylene oxide with different topographical surface on catalysts can 

produce other products by a post reaction of propylene oxide as well as direct oxidation. For 

example, the study of selective propene epoxidation with immobilized Au has shown that the 

catalyst is extremely sensitive to the nanoparticle size and shape, and if particles are larger than 4 

nm, the reaction mainly proceeds to catalyzed propene combustion
[152]

. 
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In view of these problems, of which fast deactivation of catalysts and poor stability of propylene 

oxide are the most notable, the stage robot reactor still has the problem to develop reliably catalysts, 

especially when used in optimization or scale-up experiments. For this reason, we have planned to 

develop a new high-throughput reactor suitable for secondary screening. 

 

5 Catalyst for propene to acrolein 

After facing difficulties during the selective oxidation of propene to propene oxide, we turned out 

attention to acrolein as the main product. At the same time, new high-throughput reactor was 

developed. 

5.1 Primary screening in ternary composition 

5.1.1 1G3L 

It is well known that metals have individual properties concerning absorbing gases on their surfaces. 

Table 5.1 shows the extent of absorption with gases such as O2, C2H2, C2H4, CO, H2, CO2 and N2. It 

is assumed that, for the selective oxidation of propene to acrolein, the absorption of hydrocarbons, 

H2 and O2 will affect the reaction. This hypothesis has been considered in the design of new libraries 

for discovery of new catalysts. 

 

Table 5.1 Ability of metals to chemisorb simple molecules
[153]

 

Group Metals Periodic O2 C2H2 C2H4 CO H2 CO2 N2 

A Ti, Zr, Hf, IVA        

 V, Nb, Ta, VA + + + + + + + 

 Cr, Mo, W, VIA        

 Fe, Ru, Os VIIIA        

B1 Ni, Co VIIIA + + + + + + - 

B2 Rh, Pd, Pt, Ir VIIIA + + + + + - - 

B3 Mn, Cu VIIA, I B + + + + ± - - 

C Al, Au IIIB, B + + + + - - - 

D Li, Na, K IA + + - - - - - 

E Mg, Ag, Zn, Cd, IB-VB        

 In, Si, Ge, Sn, 
 

+ - - - - - - 

 Pb, As, Sb, Bi, Pd 
 

       

+ Strong chemisorptions, ± weak, - unobservable  
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Stock solutions with 0.25 mol/L concentration were prepared with 27 elements (Ga, Cr, Cu, Cd, Fe, 

Co, Ni, Zr, V, Zn, Sn, K, Nb, Ca, Ru, Ce, SrBr, Ag, Hf, Cs, W, Re, Ba, Bi, Pb, Pd, Mn). According 

to the values of chemisorptions in table 5.1, coefficient parameters were used with 0, 0.5 and 1. If 

there was absorption of gas on the surface of material, the value was 1 and the other case was 0. In 

the case of lack of data, the value 0.5 was given.  

Band-gap (forbidden zone) theory was applied
[154, 155]

. High band gap decreases the intrinsic 

conductivity, which has a mutual relation with the catalyst activity. In order to design the ternary 

composition as M1AM2BM3C, preference-factors were calculated with the following formula: 

 

Preference-factor = ∑     
 
          ∑     

 
         ∑     

 
         (1) 

 

The parameters used for calculating the preference-factor are shown in the following table 5.2. By 

the above formula, 200 samples having lower preference factor were filtered to select the candidates 

of catalyst for ternary composition, based on the assumption that the potential of catalyst to selective 

oxidation is proportional to the preference factor. 

 

Table 5.2 Parameter of gas absorption and band gap energy 

N M 
E1 

(O2) 

E2 

(CnHn) 

E3 

(H2) 
B(Mi) N M 

E1 

(O2) 

E2 

(CnHn) 

E3 

(H2) 
B(Mi) 

1 Ga 0.5 0.5 0.5 4.5 15 Ru 1 1 1 0.1 

2 Cr 1 1 1 1.7 16 Ce 0.5 0.5 0.5 1.1 

3 Cu 1 1 1 2 17 SrBr 0.5 0.5 0.5 5.77 

4 Cd 1 0 0 2.3 18 Mn 1 1 1 3.7 

5 Fe 1 1 1 2.3 19 Ag 1 0 0 1.2 

6 Co 1 1 1 0.6 20 Hf 1 1 1 5.6 

7 Ni 1 1 1 3.7 21 Cs 0.5 0.5 0.5 6 

8 Zr 1 1 1 5 22 W 1 1 1 2.8 

9 V 1 1 1 2.3 23 Re 0.5 0.5 0.5 2.3 

10 Zn 1 0 0 3.3 24 Ba 0.5 0.5 0.5 5.1 

11 Sn 1 0 0 4.3 25 Bi 1 0 0 2.9 

12 K 1 1 0 6 26 Pb 1 0 0 2.8 

13 Nb 1 1 1 3.5 27 Pd 0.5 0.5 0.5 1.5 

14 Ca 0.5 0.5 0.5 7.5 
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In this regard, two hypothesizes were considered. First, the property of absorbing gases on the 

surface of materials is a precondition to take place for any reactions like selective oxidation or total 

oxidation. Therefore, the combination of metals which have a high preference-factor may have a 

higher chance to perform during the catalytic test. Second, the primary factor for the enhanced 

activity of catalyst is a lowered band gap with a larger surface area
[156]

. However, in the case of low 

band gap, it may tend to proceed to total oxidation, so a high preference factor is considered the 

expectation value for the design of library in this experiment. 

5.1.2 1G4L 

A ternary composition of Cr-Ga-X with 24 elements X (Cr, Cd, Fe, Co, Ni, Zr, V, Zn, Sn, K, Nb, Ca, 

Ru, Ce, SrBr, Ag, Hf1, Cs, W, Re, Ba, Bi, Pb, Hf2) was prepared for the new library (1G4L) by 

means of the two sol-gel methods, the propionic acid and ethylene glycol route. At the beginning of 

the composition spread, CrAGaB was defined with A:B = [0.45:0.45, 0.4:0.4, 0.5:0.4, 0.4:0.5], and 

the rest was added with 24 elements. Through this method, 96×2 samples were synthesized by two 

recipes. In addition to these, 8 samples based on a binary composition of CrGa were also added to 

the library. Overall, 200 samples were prepared in this library (1G4L). 

5.2 The check of hit validation 

 

 

Figure 5.1 Flow chart of library design 
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After the development of the 10-fold parallel reactor, previous experiments were considered to 

obtain some information for finding the candidates of catalysts to acrolein production. Therefore, the 

results of six libraries (1G1L, 1G2L, 2G1L, 2G2L, 2G3L, 1G3L) presented in Figure 5.1 were used 

to select potential catalysts. A total 12 runs were prepared with the catalyst composition as 

summarized in table 5.3. Tests of M01–M08 were performed to validate the hits. In addition to these, 

tests of M09–M10 were done to optimize composition and recipe. 

 

Table 5.3 Chemical composition information for 10-fold parallel reactor 

 M01 M02 M03 M04 M05 M06 

1 Cu0.3Ce0.3SrBr0.3 Empty Empty Hf0.5Re0.5 empty Empty 

2 Cu0.35Ce0.47SrBr0.18 Ga0.47Cu0.35Pd0.18 Al0.5Ru0.5 Hf0.5Ru0.5 Cu0.3Hf0.2La0.5 Cu0.5Hf0.4Sn0.1 

3 Cu0.4Zn0.3Ru0.3 Ga0.4Cu0.3Pd0.3 B0.5Cu0.5 Hf0.5Sb0.5 Cu0.3Hf0.2Nb0.5 Cu0.3Zr0.2La0.5 

4 Cu0.47Zn0.35Ru0.18 Ga0.35Cu0.47Pd0.18 Cu0.5Ga0.5 Hf0.5Te0.5 Cu0.3Hf0.2Sb0.5 Cu0.3Zr0.4Nb0.3 

5 Cu0.4Mn0.3Ag0.3 Ga0.4Cu0.5Pd0.1 Cu0.5W0.5 Ag0.5Cu0.5 Cu0.3Zr0.5Hf0.2 Cu0.5Zr0.2La0.3 

6 Cu0.4Mn0.3Ag0.3 Ga0.4Cu0.3Pd0.3 Ge0.5Ru0.5 Al0.5Cu0.5 Cu0.3Hf0.4Sn0.3 Cu0.5Zr0.2Sb0.3 

7 Co0.4Mn0.3Ba0.3 Ga0.2Cu0.8 Ge0.5Sn0.5 Hf0.5Cu0.5 Cu0.3Hf0.4Zn0.3 Cu0.7Zr0.2Ta0.1 

8 Co0.47Mn0.35Ba0.18 Cu0.9Pd0.1 Ge0.5In0.5 Ag0.5Nb0.5 Cu0.3Hf0.6Nb0.1 Cu0.6Hf0.4 

9 Re (AuCe) Ga0.5Cu0.4Pd0.1 Cr0.5Sb0.5 Cu0.5Nb0.5 Cu0.5Hf0.2La0.3 Cu0.9Ti0.1 

10 Re (Hopkalit) Cu1.0 Cu0.5In0.5 Fe0.5Mo0.5 Cu0.5Hf0.4Si0.1 Cu1.0 

 M07 M08 M09 M10 M11 M12 

1 Empty empty Ga0.4Cu0.3Pd0.3 Ga0.3Cu0.4Pd0.3 Pd0.1Cu0.5Ga0.4 Mo0.91Pd0.03Cu0.03Ga0.03 

2 Cu0.3Hf0.2Ta0.5 Cu0.5Sb0.2In0.3 Ga0.3Cu0.4Pd0.3 Ga0.2Cu0.5Pd0.3 Pd0.1Cu0.5Ga0.4 Mo0.91Pd0.03Cu0.03Ga0.03 

3 Cu0.5Hf0.2Zn0.3 Cu0.5Mn0.3Cr0.2 Ga0.3Cu0.3Pd0.4 Ga0.1Cu0.6Pd0.3 Pd0.1Cu0.5Ga0.4 Mo0.91Pd0.03Cu0.03Ga0.03 

4 Cu0.3Zr0.2In0.5 Cu0.5Sb0.3In0.2 Ga0.4Cu0.3Pd0.3 Cu0.7Pd0.3 Pd0.1Cu0.4Ga0.5 Mo0.91Pd0.03Cu0.03Ga0.03 

5 Cu0.3Zr0.4Sb0.3 Cu0.7Sn0.2Sb0.1 Ga0.3Cu0.4Pd0.3 Ga0.2Cu0.6Pd0.2 Pd0.1Cu0.4Ga0.5 Mo0.82Pd0.06Cu0.06Ga0.06 

6 Cu0.3Zr0.4Zn0.3 Cu0.4Sn0.3La0.3 Ga0.3Cu0.3Pd0.4 Ga0.2Cu0.7Pd0.1 Pd0.1Cu0.4Ga0.5 Mo0.82Pd0.06Cu0.06Ga0.06 

7 Cu0.5Zr0.2Ti0.3 Cu0.4Sb0.3In0.3 Ga0.4Cu0.3Pd0.3 Ga0.1Cu0.8Pd0.1 Pd0.1Cu0.3Ga0.6 Mo0.82Pd0.06Cu0.06Ga0.06 

8 Cu0.7Zr0.2Hf0.1 Cu0.3Mn0.4Sb0.3 Ga0.3Cu0.4Pd0.3 Ga0.3Cu0.3Pd0.4 Pd0.1Cu0.3Ga0.6 Mo0.82Pd0.06Cu0.06Ga0.06 

9 Cu0.9Ti0.1 Cu0.3Mn0.3La0.4 Ga0.3Cu0.3Pd0.4   Pd0.1Cu0.3Ga0.6 Mo0.91Pd0.03Cu0.03Ga0.03 

10 Cu1.0 Cu0.3Mn0.3Zr0.4       Mo0.82Pd0.06Cu0.06Ga0.06 
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Figure 5.2 Selectivity and conversion through test number 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:He=2:2:96 vol%) 

 

Figure 5.2 shows the selectivity and conversion of the best catalysts in each run of the 10-fold 

parallel reactor based on the best activity of propene to acrolein. Out of 12 tests, Pd10Cu30Ga60 

showed the best performance with high selectivity and conversion. The increase of catalytic activity 

of Cu40Cu30Pd30 from test M09 to M10 seems due to the increase of its surface area as shown in 

table 5.4. The surface area of catalysts was measured by nitrogen adsorption (Sorptomatic 1990, 

Carlo Erba). In addition to this, the dramatic decrease of activity of Mo82Pd6Cu6Ga6 could result 

from the decrease of surface area from 32.78 m
2
/g to 0.65 m

2
/g. However, the amount of Pd also 

decreased in the catalysts, which could also be one of the reasons why its activity has decreased. 

 

Table 5.4 Surface area of catalysts, Ga40Cu30Pd30 and MO82Pd6Cu6Ga6 

Generation Catalyst Surface area 

9 Ga40Cu30Pd30 16.74 m
2
/g 

10 Ga40Cu30Pd30 32.78 m
2
/g 

12 MO82Pd6Cu6Ga6 0.65 m
2
/g 
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5.3 Discussion 

According to previous experiments by using the 10-fold parallel reactor, Pd10Cu30Ga60 in the 

generation 11 was found as best potential catalysts for conversion of propene to acrolein. Therefore, 

the ternary composition spread of Pd-Ga-Cu was planned to examine. 

Because of high cost of precious metals, such as Pt, Pd and Ru
[157, 158]

, these are mainly used as 

doping elements in catalysts. Even though catalysts containing noble metals allow the reaction to 

run at mild conditions, especially at low temperature, the less noble metal containing catalyst is still 

suitable from a commercial perspective. For this study, the library (2G4L) was prepared to carry out 

the test with the stage robot reactor based on catalysts with maximum loading of Pd 10%. 

A composition spread library of the mixed oxides of Cu1–100Pd0-10Ga1-100 was planned with the help 

of Plattenbau software. Catalysts were transferred to the library plate and reactions at a temperature 

from 300-400 °C with increments of 50 were performed. The catalyst performance was determined 

with the GC signal intensity by TCD (thermal conductivity detector).  

Figure 5.3 shows the catalytic activity of the ternary composition (Ga-Cu-Pd) spread by Matlab 

visualization (see also appendix). It describes that Ga45Pd10Cu45 shows the best activity for acrolein 

production at 300 °C. As expected, at low temperature (mild reaction conditions), total oxidation as 

well as selective oxidation is dependent on the presence of Pd as the key element. Consequently, 

there is a proportional pattern between the amount of the Pd in catalysts and the acrolein formation. 

The other high activity of selective oxidation is found in regions of composition with Ga46Pd8Cu46 

and Ga91Pd9. In addition, the binary compositions Ga0–100Cu0–100 and low Pd containing areas with 

Ga0–100Pd0-5Cu0–100 showed relatively low catalytic activity. 
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Figure 5.3 Acrolein ternary composition spread of Cu1–100Pd0-10Ga1-100 at 300 °C 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 
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6 Mo based catalyst for propene to acrolein 

At this moment, a complex multicomponent oxide catalyst based on Bi, Fe and Co molybdate was 

used for the partial oxidation of propylene to acrolein
[140]

. In fact, all commercial processes in 

operation utilize multicomponent metal oxide catalysts including bismuth molybdate and catalysts, 

have been studied for nearly 40 years
[159-162]

, and have displayed very good activity and 

selectivity
[163]

. Recently, there have been several studies using vanadium based catalysts
[128, 155]

. 

 

6.1 Primary screening 

The synthesis for this work in primary screening started with the Mo containing catalysts for 

acrolein formation. Molybdate was chosen as a starting material since it exhibits extraordinarily 

high thermal stability and is well known for having a function of partial oxidation of olefins. Most 

materials used for sol-gel synthesis were obtained from commercial sources and used without 

further purification. A list of the metal complexes used as a matrix is described in Table 6.1 and 6.2.  

 

Table 6.1 Elements used for composition matrix in primary screening 

H                 He 

Li Be           B C N O F Ne 

Na Mg           Al Si P S Cl Ar 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

Rb Sr Y Zr Nb Mo  Ru Rh Pd Ag Cd In Sn Sb Te I Xe 

Cs Ba Lu Hf Ta W* Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 

Fr Ra                 

  La Ce Pr Nd  Sm Eu Gd Tb Dy Ho Er Tm Yb   

  Ac Th Pa U             

W
*
: NaW 

 

For primary screening, two libraries with the 100 samples of 50 different dopants (Ag, Al, Au, B, Ba, 

Bi, Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Hf, Ho, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, 

Ni, Pb, Pd, Rb, Re, Rh, Ru, Sb, Sc, Si, Sn, Sm, Sr, Te, Ti, V, W, Y, Zn, Zr), as shown in table 6.1, 

were tested. 
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Table 6.2 Chemicals used for synthesis in primary screening 
Element Chemical Compay Element Chemical Compay 

Ag AgNO3M ABCR Mg MgNO3M Merck 

Al AlNO3M Alfa Mn MnNO3M Merck 

Au AuBrM  Mo MoOiPrI AlfaAesar 

B BAcidM Fluka Na NaNO3M Merck 

Ba
*
 BaClM  Nb NbOEtM  

Bi Bi2EthylhexanoatM Strem Ni NiNO3M Aldrich 

Ca CaNO3M Merck Pb PbClO4M  

Ce CeNO3M Fluka Pd PdOAcM  

Co CoNO3M Fluka Rb Rb  

Cr CrNO3M Aldrich Re ReClM Aldrich 

Cs CsClM unb. Rh RhClM Aldrich 

Cu CuNO3M Fluka Ru RuClM Aldrich 

Dy DyNO3M Aldrich Sb SbClM J.T.Baker 

Er ErNO3M Aldrich Sc ScNO3M ABCR 

Eu EuNO3M STREM Si SiNO3M  

Fe FeNO3M k.A. Sn SnClM Aldrich 

Ga GaNO3M Aldrich Sm SmNO3M Riedel 

Hf HfClM Aldrich Sr SrClM Merck 

Ho HoNO3M STREM Te TeacidM Fluka 

In InNO3M Aldrich Ti TiOiPrM Lancaster 

Ir IrClM Aldrich V VOOiPr3M ABCR 

K
*
 KNO3M  W

*
 NaWM Fluka 

La LaNO3M Fluka Y YNO3M ABCR 

Li LiNO3M Fluka Zn ZnOAcM Fluka 

Lu LuNO3M Aldrich Zr ZrONO3M Johnson 

Ba
*
, K

*
,W

*
: addition of HNO3 to avoid precipitation 

 

As is shown in table 6.2, 0.1 M metal precursor solutions in methanol solvent were prepared with 50 

metal alkoxides. These doping solutions were placed in 20 mL volume flasks. In the case of some 

dopants such as K, HaW and Ba, a drop of nitric acid was added to avoid precipitation. 

6.1.1 First library 

Two binary catalysts including molybdate, Mo96X4 and Mo92X8 mixed oxides, were prepared by 

modified sol-gel methods based on reference
[164]

. (NH4)6Mo7O24∙4H2O (0.25 atomic mol/L = 0.035 

mol/L) were used as starting materials to prepare the initial suspension that contains citric acid with 

an atomic ratio of C/Mo (Citric acid·H2O and (NH4)6Mo7O24∙4H2O) = 3/1 in 130 mL H2O. After that, 
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a 10 mL HNO3 solution was added into this suspension solution through vigorous stirring to 

dissolve precipitates.  

           

Figure 6.1 Procedure of modified sol-gel synthesis 

 

It is well known that most molybdenum compounds have a very low solubility in water, which 

results in precipitation. In order to avoid precipitation, it was necessary to use a high synthesis 

temperature such as 373K. Since commercial pipetting robot (Zinsser Analytic) does not function 

for maintaining a certain temperature during synthesis, the new racks described in chapter 3.10 were 

used. By manual pipetting method, the suspension containing (NH4)6Mo7O24∙4H2O, HNO3 and citric 

acid were distributed into two libraries (Mo96X4 and Mo92X8) as shown in Figure 6.1. 50 different 

dopants (0.1 mol/ methanol) were manually transferred into each flask. The temperature of 373K 

was maintained during the synthesis. Consequently, the molar ratio of Mo96X4 and Mo92X8 were 

dopant (X): matrix (H24M07N6O24·4H2O): acid (HNO3) = 1:3.4:240 and dopant (X): matrix 

(H24M07N6O24·4H2O): acid (HNO3) = 1:1.64:240, respectively. After drying at 100 °C for 3 days 

and calcinations of up to a temperature of 400 °C, 1G5L library was obtained for using the stage 

robot. 

(NH4)6Mo7O24∙4H2O (35 mmol Mo / 130 ml H2O) 

T = 373 K 

Adding Citric Acid 20.4 g 

Adding HNO3 10 ml 

Distribution into 100 HPLC flasks 

Adding 50 dopants (0.1 mol / methanol) 

Drying (air, 373K, 18h), Calcination (air, 673K, 4h)  
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6.1.2 Instrument setup 

 

Figure 6.2 Separation peaks in columns of Micro-GC 

 

For this experiment, the Micro-GC equipped three packed columns such as polar, Porapak Q and 

molecular sieve 5Å, were used in parallel to separate all different products available. These 

separation peaks in three columns are shown in Figure 6. 2. 

The 10-fold parallel reactor was set up with a flow rate of 25mL/min comprising the following gas 

composition (C3H6: O2: He=2:2:96). To get a homogenous static condition and to reduce hot spots 

during the reaction, 50 mg of catalyst was mixed with 100 mg of sand, which had a particle size in a 

range between 100 μm–200 μm. 

6.1.3 Test by the Stage Robot Reactor 

100 samples in the first-generation library (1G5L) were tested at 300, 350 and 400 °C. Flow rate and 

gas composition in the feed-gas were adjusted with 5 mL/min and (C3H6: O2 = 1:1), respectively. 

Figures 6.3–6.5 show the results of the 1G5L library for selective oxidation of propene to acrolein. 

The test results were analyzed based on visualization in Matlab (see also appendix). For these plots, 

the activities based on unscaled GC signal intensity have been applied such that very active samples 

are colored in dark red and can be identified at once. Empty holes in these graphs are represented 

with gray color.  
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Figure 6.3 Acrolein activity at 300 °C 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 

 

The result of the catalytic test at 300 °C in Figure 6.3 showed that the activities for acrolein 

formation in 14(Mo96Rh4), 22(Mo96Ir4), 24(Mo96Ru4), 64(Mo92Rh8), 72(Mo92Rb8) and 74(Mo92Ru8) 

are high compared to the other catalysts. Molybdenum loaded with 8% rhodium showed the best 

catalytic performance. 

 

Figure 6.4 Acrolein activity at 350 °C 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 
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The result of the catalytic test at 350 °C in Figure 6.4 showed the best activities in the holes of 

10(Mo96Sn4), 14(Mo96Rh4), 22(Mo96Ir4), 24(Mo96Ru4), 60(Mo92Sn8) and 74(Mo92Ru8). There was 

no activity of molybdenum doped with Sn at 300 °C, but it improved with the increase of 

temperature. 

 

Figure 6.5 Acrolein activity at 400 °C 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 

 

The catalytic tests at 400 °C showed the best activities in the holes of 10(Mo96Sn4), 24(Mo96Ru4), 

60(Mo92Sn8) and 74(Mo92Ru8). The results clearly illustrate that the Mo based catalysts with Sn and 

Ru have a good potential for selective oxidation of propene to acrolein. 10(Mo96Sn4), 14(Mo96Rh4), 

24(Mo96Ru4), 36(Mo96Te4), 42(Mo96Bi4), 67(Mo92Er8), 68(Mo92Eu8), 74(Mo92Ru8), 83(Mo92Y8) and 

92(Mo92Bi8) were chosen for hit validation. Although the catalysts of 42(Mo96Bi4) and 92(Mo92Bi8) 

did not show high activity in this test, they were chosen because the catalyst of Molybdenum with 

Bismuth is often used in the catalytic partial oxidation of propene to acrolein
[124, 165]

. 
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6.1.4 Hit validation 

Based on the primary screening, 8 Mo based catalysts containing doping elements (Sn, Ru, Bi, Rh, 

Te, Er, Eu, Y) were found with high activity of acrolein formation. However, as discussed in the 

previous chapter, even though hits were identified using the stage robot reactor, it still did not 

guarantee the same results in conventional experiments because of problems such as catalyst 

deactivation, scale-up, instability of starting materials and the open structure of the reaction chamber 

in the stage robot reactor. Therefore, it is required that the hits are validated by conventional tests. 
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Figure 6.6 Activities of acrolein 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

In order to validate the potential candidate of catalysts obtained with the stage robot reactor, the 10-

fold parallel reactor was used. The results of the reactant-gas analysis were then used to calculate the 

values of activity which are defined as: 

Activity = 
                                

                                                   
 (1) 
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Figure 6.6 shows activity relating to the production of acrolein in the temperature range of 250 to 

400 °C. Here, the unscaled GC signal intensity was used for calculating the activity.  Normalization 

of activity was calculated by dividing the value with the GC signal intensity of acrolein of Mo96Sn4 

since it was the best value during the process of hit validation. Activity 1 is the value of the GC 

signal intensity of Mo96Sn4 at 400 °C. Without consideration of selectivity, three catalysts (Mo96Sn4, 

Mo96Ru4 and Mo96Ru4) showed the highest performance for the selective oxidation of propene to 

acrolein. The group that had the activity between 0.2 and 0.4 were the catalysts such as Mo96Bi4, 

Mo92Bi8 and Mo96Te4. Lastly, Mo96Rh4, Mo92Er8, Mo92Eu8 and Mo92Y8 showed less than 0.2 activities 

over the entire experimental range. 
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Figure 6.7 Selectivity of acrolein 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

To show the extent of selectivity of acrolein, the simplified definition of the selectivity was 

calculated as follows: 

Selectivity = 

                               

                                
                          

 

 (1) 
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This value is involved in the combination of the selective oxidation of propene to acrolein and the 

total oxidation of propene to carbon dioxide. Ru-, Sn- and Bi-doped catalysts in Figure 6.7 showed 

that the selectivity was higher than 0.3 over the whole experimental range. In contrast, Te containing 

catalysts showed high selectivity with increasing temperature. Interestingly, Mo96Rh4 showed 

selectivity around 0.6 at 240 °C and decreased dramatically with increasing temperature. 

Based on the result of selectivity, it was predicted that the best candidates would be the catalysts 

doped with Ru, Sn, Bi and Te. However, despite the high selectivity of Mo96Bi4 and Mo96Ti4, both 

catalysts were not very active for the production of acrolein (see Fig. 6.3). Therefore, Mo94Ru4 and 

Mo94Sn4 were chosen as key elements for preparation of the second library after the recheck of 10 

potential catalysts. 2G6L was prepared with 100 compositions with 50 dopants including these two 

elements as a base for composition (Mo94Ru4X2, Mo94Sn4X2). 

6.1.5 Second library 

Mo94Ru4X2, Mo94Sn4X2 mixed oxides in the second library (2G6L) were prepared by using the same 

procedure described for first generation. For example, Mo94Ru4X2 and Mo94Sn4X2 matrixes were 

synthesized pipetting the following volumes of single solutions in sequence: 0.035 M Molybdenum 

with 0.75 M citric acid monohydrate in water (940 μL) and 0.1 M RuCl(or SnCl) in methanol (100 

μL, 10 μmol), 0.1 M X (50 dopants, 100 μL, 5 μmol) in methanol, and nitric acid (50 μL). In short, 

the molar ratio of first dopant(X): second dopant(RuCl or SnCl): matrix(H24M07N6O24·4H2O): acid 

(HNO3) was 1:2:6.58:480. 

6.1.6 Screening of the stage robot 

The result of 2G6L in the library of second generation for the stage robot reactor at 300 °C and 

350 °C is shown in the following Figure 6.8. Consequently, four catalysts such as Mo94Sn4Te2 (36), 

Mo94Ru4Sb2 (51), Mo94Ru4Te2 (86) and Mo94Ru4Bi2 (92) were chosen as the best catalysts. 

Mo94Ru4Te2 (86) especially showed the highest activity from the second generation of library in 

primary screening method. The results of unscaled GC signal intensity were also used for the 

activities of acrolein. 
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Figure 6.8 Acrolein activity at 300 °C (left) and 350 °C (right) 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 

 

6.1.7 Hit validation 

Again for the validation of hits in the second generation, a 10-fold parallel reactor has been used. In 

order to analyze data precisely, calibration of propene, acrolein, CO2 and CO was completed. The 

yield(Y) of acrolein, conversion(X) of propene and selectivity(S) of acrolein identify the results of 

the experiment. Reactant and product signals were calibrated to define their moles in feed and 

product-gases. Theses parameters were defined as follows: 

 

conversion = 
                                  

                
 (1) 

 

Selectivity = 

                

                 
            

  
          

  
 

(2) 

 

Yield = Conversion Ⅹ Selectivity (3) 
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For calculating these values, only CO2, CO and acrolein as major products were considered, which 

means it was assumed that additional propene compounds were negligible and thus were simply 

ignored. If there are no other products in the reaction without those described above, the values 

could actually be compatible with real ones such as conversion, selectivity and yield. These 

parameters with hypothetical assumptions were enough to represent their physical properties of 

high-throughput results. 

250 275 300 325 350 375 400

0.00

0.05

0.10

0.15

0.20

0.25

Y
ie

ld

Temperature (
o
C)

 Mo94Sn4Te2

 Mo94Ru4Sb2

 Mo94Ru4Te2

 Mo94Ru4Bi2

 

Figure 6.9 Yield of acrolein 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

The yields of acrolein obtained by the catalysts in Figure 6.9 show that the yield with the catalyst of 

Mo94Ru4Te2 increased up to 25% by increasing reaction temperature from 250 °C to 400 °C. On the 

other hand, Mo94Sn4Te2, Mo94Ru4Bi2 and Mo94Ru4Sb2 showed relatively low yield of below 5% at 

400 °C. In case of Mo94Ru4Bi2, a slight increase at 350 °C was noted, and after that the value 
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decreased gradually. Consequently, except for Mo94Ru4Te2 it seems that the result of hit validation 

did not correlate with the result of the stage robot reactor. 
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Figure 6.10 Selectivity of acrolein 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100–200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

Based on the results of selectivity to acrolein in Figure 6.10, Mo94Ru4Sb2 has the highest selectivity 

among 4 catalysts whereas it also has the lowest yield in Figure 6.9. In contrast, Mo94Sn4Te2 and 

Mo94Ru4Te2 have less than 50% of selectivity with high yields. Without doubt, these results 

performed with the parallel-reactor were identical to that of the primary screening by the stage robot 

reactor, but again, problems such as reproducibility and deactivation of catalysts and reliability of 

high-throughput reactor may have contributed to validating the hit selection. 

Consequently, among four candidates as a potential catalyst, Mo94Ru4Te2 was found the best hit 

based on its yield in Figure 6.9. Therefore, this catalyst was chosen as the best candidate for 

optimization of the catalytic activity in a second approach. At the same time, the remaining catalysts, 
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Mo94Sn4Te2, Mo94Ru4Bi2 and Mo94Ru4Sb2, which showed less activity, were considered as potential 

catalysts in a second screening. 

6.1.8 Ternary composition (Mo-Ru-Te) 

As is shown with the primary screening in Figure 6.9 and Figure 6.10, it was found that the 

combination of Mo-Ru-Te provided the best catalyst for the selective oxidation of propene to 

acrolein based on its yield at 400 °C. To study the catalytic efficiency and behavior of Mo-Ru-Te, 

55 samples were prepared using the same recipe used for synthesis and the following results were 

obtained by using the stage robot under the same conditions used in the primary screening. The 

unscaled GC signal intensity was used for the visualization of the ternary composition for selective 

oxidation of propene to acrolein in Matlab. 

 

Figure 6.11 Activities of acrolein and CO2 to composition spread at temperature of 300 °C and 400 °C 

Reaction condition: around 400 μmol of catalysts. Total flow rate: 5 mL/min (C3H6:O2=1:1 vol%) 
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Figure 6.11 describes the activity of catalysts for the selective oxidation to acrolein and for total 

oxidation to CO2. At the low temperature of 300 °C, the catalyst with high amounts of Ru was more 

active for total oxidation as well as partial oxidation, most likely because Ru as noble metal 

enhanced its activity at low temperature. Considering reaction temperatures of 400 °C, Mo 

contained catalysts had a high potential in the case of binary as well as ternary compositions, which 

are shown in the green and red transparent area in the right side of Figure 6.11, respectively. 

Interestingly, based on the results at 400 °C, some similarities to previous studies were observed. 

For example, P. Forzatti showed that multicomponent oxide systems (Cd-Te-Mo-O and Mn-Te-Mo-

O) based on Mo including small amounts of Te are effective catalysts for the selective oxidation of 

olefins at 400 °C
[166]

. This study described that the addition of small amounts of Te in catalysts 

induced an increase in the conversion of propylene and the yield of acrolein, but only minor changes 

in the yield of carbon oxides. The data suggests that Te doping to a molybdate matrix should not 

exceed a maximum of 2 mol%. More than 2 mol% doping was shown to induce decreasing the yield 

of propylene to acrolein. 

 

6.2 Secondary screening 

As is shown in the previous chapter, with the primary screening method based on the stage robot 

reactor it is possible to screen a large number of samples within a short time and to accumulate a lot 

of data. However, a catalyst may deactivate rapidly over time due to poisoning or product inhibition 

or it may require additional time to improve performance such as pretreatment by reduction. In 

regard to this, our objective in the early stages of the development of high-throughput catalyst 

research methods was to create a new setup of a secondary workflow that allows broad exploration 

for catalyst composition, synthesis method, support materials, run conditions and real feeds. 

Although several manners of using the newly developed reactor are explained in chapter 3.9, in this 

study the new high-throughput reactor was mainly used for hit validation, optimization of synthesis 

method and catalyst composition. 

6.2.1 Instrumental setup 

In the procedure of secondary screening, the parallel-reactor was used for the propene oxidation 

experiments under reaction temperatures from 250 to 400 °C (523–673K), which resulted in 7 
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measurement points (25 °C increments). Flow rate and gas composition in the feed-gas were 

25mL/min and C3H6: O2: He=2:2:96, respectively. To achieve homogenous static conditions and to 

ignore hot spots during the reaction, 50 mg of catalyst were mixed with 100 mg sand, which had a 

particle size from 100 μm to 200 μm. The setup of the Micro-GC for analysis was identical to the 

conditions used in the primary screening. 

6.2.2 Experimental procedure 

Twelve runs of the new 10-fold parallel reactor with changing the synthetic recipe or the 

composition of catalysts were carried out to optimize the performance of the catalyst. After facing 

difficulties with the reproducibility of the catalysts, several synthesizes were carried out to find an 

improved sol-gel recipe. For this experiment, seven diverse parameters were considered to optimize 

the activity of the catalysts. The information of composition in each generation is shown in the 

following table 6.3. Catalysts based on 7 elements (Mo, Ru, Te, Sn, Ti, Bi, Sb) were prepared during 

increasing generation in the secondary screening procedure by using modified sol-gel methods. 

 

Table 6.3 Catalyst composition based on atomic content in each generation 

Num G1 G2 G3 G4 G5 G6 

1 Mo94Ru4Te2 Mo94Ru4Te2 Mo88Ru8Te4 Mo94Ru4Te2 Mo94Ru4Te2 Mo94Ru4Te2 

2 Mo92Ru4Te4 Mo94Ru4Te2 Mo84Ru8Te8 Mo94Ru4Te2 Mo92Ru4Te4 Mo92Ru6Te2 

3 Mo90Ru4Te6 Mo94Ru4Te2 Mo80Ru8Te12 Mo94Ru4Te2 Mo94Ru4Te2 Mo90Ru6Te4 

4 Mo94Ru2Te4 Mo94Ru4Te2 Mo88Ru8Te4 Mo88Ru8Te12 Mo94Ru4Te2 Mo92Ru4Te4 

5 Mo96Ru2Te2 Mo94Ru4Te2 Mo88Ru8Te4 Mo94Ru4Te2 Mo92Ru4Te4 Mo90Ru4Te6 

6 
   

Mo94Ru4Te2 Mo94Ru4Te2  
7 

   
Mo94Ru4Te2 Mo94Ru4Te2  

8 
   

Mo92Ru4Te4 Mo92Ru4Te4  
9 

   
Mo92Ru4Te4 Mo94Ru4Te2  

10 
      

Num G7 G8 G9 G10 G11 G12 

1 Mo94Ru4Te2 Mo92Ru6Te2 Mo94Sn4Te2 Mo94Sn4Te2 
Mo96Sn1Te2Ti2 Mo94Sn4Te2 

2 Mo92Ru6Te2 Mo92Ru6Te2 Mo94Ru4Sb2 Mo94Sn4Te2 
Mo94Ru2Te2Ti2 Mo90Sn8Te2 

3 Mo94Ru4Te2 Mo92Ru6Te2 Mo94Ru4Te2 Mo92Ru8 
Mo94Ru2Te2Ti2 Mo88Sn8Te4 

4 Mo92Ru6Te2 Mo92Ru6Te2 Mo94Ru4Bi2 Mo92Ru8 
Mo94Ru2Te2Ti2 Mo92Sn4Te2Ti2 

5 Mo96Ru4 Mo92Ru6Te2 Mo94Sn4Te2 Mo94Sn4Te2 Mo94Sn4Te2 Mo94Ru4Te2 

6 Mo94Ru6 Mo92Ru6Te2 Mo92Sn6Te2 Mo94Sn4Te2 Mo94Sn4Te2 Mo90Ru8Te2 

7 Mo96Ru4 Mo92Ru6Te2 Mo92Sn4Te4 Mo92Ru8 
Mo94Ru4Te2 Mo88Ru8Te4 

8 Mo94Ru6 Mo92Ru6Te2 Mo94Sn4Te2 Mo92Ru8 Mo94Ru4Te2 Mo92Ru4Te2Ti2 

9 
 

Mo92Ru6Te2     
10 

 
Mo92Ru6Te2     
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6.2.3 Catalysts preparation 

Catalyst performance is dependent on catalytic composition as well as preparation parameters (such 

as type of precursors, mixture of solution, solution Ph, synthetic temperature, calcinations 

temperature, and carination media) and operation condition (such as temperature, contact time, and 

reactant concentration). Some of these attributes correlate with catalytic activity, which are called 

the ―descriptor‖ to design a ―diverse‖ library in order to increase chances for discovering promising 

regions in the parameter space by HTE
[167]

. 

Seven factors, such as material composition, pH in solution, amount of addition of citric acid, 

mixture with ethylene glycol, aging time of precursors in solution, stirring (rpm) and the type of 

precursors used were chosen as descriptors in table 6.4.  

 

Table 6.4 Diversity of catalyst synthesis as descriptor 

Num D1 D2 D3 D4 D5 D6 D7 

G1 O X X X X X X 

G2 X O X O X X X 

G3 O O O X X X X 

G4 O O X X O X X 

G5 O X O X X X X 

G6 O X X X X X X 

G7 O X O X X X X 

G8 X X X X X X O 

G9 O X X X O X X 

G10 O X X X X O X 

G11 X X X X X X O 

G12 O X X X X X X 

D1: material composition; D2: pH by HNO3; D3: amount of citric acid; D4: mixture with ethylene glycol; D5: aging 

precursors in solution; D6: stirring rpm; D7: type of precursors 

 

Based on the experimental results with diverse descriptors in each generation, the decision to design 

the library of the next experiment was made. As mentioned above, seven factors (D1–D7) were 

considered to have main influence on the activity of catalysts for the success of catalyst discovery. 

For instance, material composition (D1) was changed in a range of Mo80-96Ru2-8Te0-6, Mo80-96Sn2-

8Te0-6, Mo94Ru4Bi2, Mo94Ru4Sb2, Mo92-96Sn1-4Te2Ti2 and Mo92-96Ru2-4Te2Ti2. The value of pH (D2) 

in solution was changed by adding HNO3 1-3 mL per flask. The solution of dissolved 

(NH4)6Mo7O24∙4H2O (D3) was added to the amount of citric acid based on weight rate 0–3 (citric 
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acid/ molybdate matrix). This solution was mixed with ethylene glycol up to 0–2 mL per flask (D4). 

After dissolving RuCl and SnCl in methanol with 0.1 M, the solution was allowed to age for more 

than 2 weeks. The procedure of adding Sn and Ru solutions into molybdate solution was carried out 

with the different rpm 250–300 (D6). Different precursors (D7) of Mo (Ammonium molybdate 

tetrahydrate, phosphomolybdic acid, Bi(acetonitrile)molybdenum chloride), Bi(Bismuthyl nitrate), 

Ru(Ruthenium chloride, Ammonium hexachlororuthenate, Ruthenium(Ⅲ) acetylacetonate, 

Ruthenium(Ⅳ)oxide anhydrous), Sn(Tin chloride, Tintetraisopropoxytin-isoprosal adduct, 

Tin(Ⅳ)acetate, Tin(Ⅱ)-2,4-pentanedionate), Ti(Titanium(Ⅳ) isopropoxide, Titanium 2-

ethylhexoide) and Te(telluric acid) were prepared as starting materials. The detailed recipe of 

catalyst synthesis in detail can be found in chapter 7.4. 

6.2.4 The result concerning the temperature range 

Figure 6.12 shows the best results of yield from propene to acrolein at each temperature with 

increasing temperatures and generations. The yields at different temperatures have been 

implemented to visualize the results in the range of 250–400 °C. The yield was calculated based the 

same way as given in chapter 6.1.7. The maximum yields at each temperature were selected to 

visualize results.  
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Figure 6.12 Visualization of temperature vs. yield 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100–200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

The pattern of the graph in Figure 6.12 clearly describes the increasing yield while the generation is 

performing. At the highest temperature, e.g. 1 as 400 °C, it shows that there is a dramatic increase in 

yield up to maximum 28%. In contrast, there is a little variation of the yield at 250 °C. 

Until the temperature of 350 °C is reached, no exact proportional increase of yield appeared with 

increasing generations. For example, the results of generation 9 show lower activity compared to the 

result obtained with the previous generation. However, in the results at 400 °C a clear increase of 

conversion with a higher generation was observed. 
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6.2.5 The result of selectivity vs. yield with increasing generations 
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Figure 6.13 Yield & selectivity with increasing generations 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100–200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

The best results of the maximum yield and selectivity, which are chosen in each generation of 

400 °C, are given in Figure 6.13. The value of yield was gradually increased with the rise of the 

library generation. In contrast, selectivity shows the pattern of fluctuation on the range of generation. 

During hit validation with the 10-fold parallel reactor, the best catalyst Mo94Ru4Te2 from the 

primary screening method showed 21% yield, which was confirmed as the blue dot line of the 9
th

 

library generation in Figure 6.13. Eventually, there were difficulties with the reproducibility of the 

experiment, which showed the best yield in primary screening. It is assumed that the problem 

resulted from the sensitivity of catalyst preparation. Therefore, the sol-gel method was modified in 

each generation by changing seven factors as descriptors of diversity in order to identify the best 

recipe for catalyst preparation. 
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6.2.6 Characterization of surface area 

 

Table 6.5 Surface areas of catalysts, Mo94Sn4Te2 and Mo94Ru4Te2 

Generation Catalyst Surface area 

9 Mo94Sn4Te2 32.78 m
2
/g 

10 Mo94Ru4Te2 57.017 m
2
/g 

11 Mo94Ru4Te2 35.22 m
2
/g 

 

Total BET surface areas of the catalysts, measured by nitrogen adsorption (Sorptomatic 1990, Carlo 

Erba) at the temperature of liquid nitrogen, are shown in table 6.5. The samples were outgassed 

overnight under vacuum at 200 °C before adsorption.  

The catalysts of Mo94Ru4Te2 and Mo94Ru4Te2 from the 10
th

 and 11
th

 library generation show surface 

areas of 57 and 35 m
2
/g. The results of Mo94Ru4Te2 in generation 10 and 11 describe that even 

though surface area decreased from 57.017 m
2
/g to 35.22 m

2
/g, the yield as well as the selectivity 

increased. 

6.2.7 Effects of parameter variation for catalytic activity 

It is often useful to perform pattern recognition to solve certain problems or to find out trend from 

enormous data in various fields
[168-170]

. In particular, the pattern search between the catalytic activity 

and the parameter variation modified for synthesis improvement is necessary for analysis of the 

problem of catalyst preparation. During the currently discussed study, seven descriptors such as 

material composition, pH, the amount of citric acid, mixture with ethylene glycol, aging time of 

stock solution, stirring (rpm) and type of precursors were used. 

In order to study the effects of parameter variation, deviation values were calculated in each 

generation by subtracting the minimum of acrolein yield from the maximum of acrolein yield at 

each generation as following:   

Deviation value (DV) = |maximum yield of acrolein - minimum yield of acrolein| 

For convenience in statistical calculations or visualizations, the statistical variable often is 

normalized or simplified. After calculating the deviation values, they were changed to obtain better 

magnitudes, according to the scale values tabulated in table 6.6. For example, the deviation values 

between 1 and 5 were converted into 1. 
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Table 6.6 Calculation parameters to change magnitude 

Num 
Deviation values 

(yield to acrolein) 
Scale values 

1 1≤DV<5 SV=1 

2 5≤DV<10 SV=2 

3 10≤DV<15 SV=3 

4 15≤DV<20 SV=4 

5 20≤DV<25 SV=5 

6 25≤DV<30 SV=6 

 

In the graph below, some trends were observed that correlate to increase yield according to the 

diversity. However, because the number of data is too low, a clear trend for the aspects D1 to D7 

cannot be observed. Furthermore, data of two catalysts, Mo-Ru-Te and Mo-Sn-Te, are combined in 

visualizing pattern due to the lack of data Mo-Sn-Te. Therefore, these findings may only be true to 

this special case of Mo-Ru-Te. 

 

Table 6.7 Analysis of parameter variations 

 
The deviation value of conversion (DV) New scaled value (NV) 

G D1 D2 D3 D4 D5 D6 D7 D1 D2 D3 D4 D5 D6 D7 

1 1.0              1             

2   4.1    0.7          1   1       

3 1.3  1.2  1.7          1 1 1         

4 0.9  1.5      4.5      1 1     1     

5 0.3    3.1          1   1         

6 5.4              2             

7 10.0    11.9          3   3         

8             14.5              3 

9 3.4        21.2      1       5     

10 20.2          3.2    4         1   

11             26.7              6 

12 19.4              3             

       
Avg 1.9  1.0  1.7  1.0  3.0  1.0  4.5  

{ ≤ DV <  |NV   } { ≤ DV <   |NV   } {  ≤ DV <   |NV   } {  ≤ DV <   |NV   } {  ≤ DV <   |NV   } {  ≤ DV <   |NV  6} Avg = average of 

parameter variations  
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Considering the ternary composition Mo-Ru(Sn)-Te, 12 library generations were designed by 

changing descriptor (D1–D7). Each color shows the sensitivity of descriptor with regard to 

conversion performance. For example, the value of the red color has the highest influences in the 

increase of conversion based on changing the value of descriptor. In addition, the value of the green 

color clearly represents less impact. As is shown in table 6.7, the average values of parameter 

variations (Avg) were calculated to determine the data of Figure 6.14 below. 

 

Figure 6.14 The summary of influence of 7 parameter variations along 12 generation 

(D1: material composition; D2: pH by HNO3; D3: amount of citric acid; D4: mixture with ethylene glycol; D5: aging 

precursors in solution; D6: stirring; D7: type of precursors) 

 

Figure 6.14 shows that the aspects of D5 and D7 are the most important key factors to improve 

catalyst activity. It also shows a medium importance of the aspects is D1 and D3. Lastly, as 

expected, D2, D4 and D6 are not of much importance. However, the three values cannot be totally 

neglected. 

Aging time of solution (D5) together with type of precursor (D7) was shown as one of the important 

factors. In order to study this influence, stock solutions of RuCl (0.1 mol/L) and SnCl (0.1 mol/L) as 

starting material in methanol solvent were used in G5 and G9. The aging time of these stock 

solutions, especially RuCl, showed a strong effects on the catalytic activity. It was thought that this 

may result from the change of the oxygen state of precious metal because of absorbing sunlight 
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during aging time. The role of aging time during catalyst synthesis was unclear. However, it was 

concluded that the failure of catalyst reproducibility in the secondary screening process was caused 

by deviations in the aging time of the stock solution. 

The type of precursor (D7) was also shown to be an important key factor. Instead of finding the 

suitable aging time of the metal chloride in methanol, it was decided to seek appropriate precursors. 

As a result, Tin(IV)2,4-pentanedionate and Ruthenium(III) acetylacetonat were shown to be the best 

precursors for preparing stock solutions for catalyst synthesis. 

Interestingly, materials composition (D1) seemed to be quite unimportant compared to other factors 

such as D5 and D7. Generally, the chemical composition of catalysts plays a very important role in 

the catalyst activity. However, by primary screening procedure the span of material composition 

here was already optimized, which led to less impact on the experimental results. 

Although D2, D4 and D6 had little influence in improving their catalytic performance, it was still 

difficult to draw clear conclusions, because the number of experiments was insufficient to obtain 

reliable results, and variations of the factors were too small to notice any influence. 

In addition to these, this study was not prepared for quantitative analysis, which means that this 

pattern visualization cannot be perfect because of the lack of data and the previously taken 

assumptions. Therefore, it cannot compare the absolute difference of 7 descriptors on selective 

oxidation catalyst from propene to acrolein, but it was enough to show the relative difference based 

on the pattern concerning catalyst activity. 
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6.2.8 The result of generation 12 
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Figure 6.15 Yield of acrolein in generation 12 without catalyst pre-treatment 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

So far, two catalyst compositions, Mo-Ru-Te and Mo-Sn-Te, were optimized to generation 12. 

Although the two catalysts, Mo94Ru4Te2 and Mo88Sn8Te4 showed the best yield at 400 °C, they 

exhibit a totally different behavior with increasing temperature. 

In the case of the Sn containing catalyst, the amount of Sn-Te in the Mo-oxide seemed directly 

proportional to the yield. In addition, the yield increased with increasing temperature. In contrast, 

the amount of Ru-Te in the Mo-oxide was inversely preoperational to the yield, and after 350 °C the 

yield of acrolein abruptly decreased. 

Based on the result of the composition in Mo94Ru4Te2 it seems that Ru and Te are best up to a 

maximum of Re4 and Te2, but Mo88Sn8Te4 still has potential to increase the amount of Sn and Te in 

the catalyst so as to increase its yield. 
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Figure 6.16 Selectivity of acrolein in generation 12 without catalyst pre-treatment 

Reaction condition: 50 mg of catalysts diluted with 100 mg of sand with particle size of 100-200 μm. Total flow rate: 

25mL/min (C3H6:O2:N2=2:2:96 vol%) 

 

Figure 6.16 describes that the decrease in the yield of Ru or Sn contained catalyst in Figure 6.15 is 

associated with the decrease in selectivity to acrolein. In this regard, the higher amount of Ru seems 

to induce an increase in the total oxidation producing CO2 and H2O at a temperature more than 

350 °C. Eventually, it is of interest to note that the Ru contained catalysts are still better than the Sn 

contained ones at low temperatures as can be seen from Figure 6.16. In contrast, at high 

temperatures, the Sn contained catalysts had an outstanding activity for propene conversion to 

acrolein. 

In addition to these results, our study showed that both catalysts were very sensitive according to the 

conditions of catalyst preparation on sol-gel method. During the optimization processes, the 

developed catalysts could be further optimized by a third generation screening. 
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6.3 Discussion 

The study for a better understanding of the parameters governing sol-gel chemistry and the 

development of a suitable processing method has shown that the structure of the catalyst highly 

depends on its preparation during the sol-gel process. The type of inorganic or organic precursor 

influences the specific micro-structure of the catalysts, which affects catalytic activity. 

In discovering Mo-based catalyst for propene to acrolein, the primary screening and secondary 

screening method were implemented. The stage robot reactor as the primary screening tool surveyed 

the Mo-based catalysts modified with 50 different dopants. At the same time, a new parallel-reactor 

was developed and used as a secondary screening method. It was used to validate hits of the 

catalysts discovered in the primary screening and to optimize the activity of the catalysts. 

Mo94Ru4Te2 and Mo88Sn8Te4 were identified as the best catalysts for selective propene oxidation to 

acrolein among those investigated. Small amounts of doping with Te increased the catalytic 

performance. This is in agreement with a previous study that showed that multicomponent oxide 

systems, based on Mo with Te, are effective catalysts for the selective oxidation of olefins
[166]

. 

It was also found that the use of chloride based precursors (RuCl, SnCl) needed aging for more than 

one month in day light for better activity. It seems that metal-chloride bonds methanolyzed slowly 

under formation of the more reactive methanolate-species. To develop Mo94Ru4Te2, 

Ruthenium(III)chloride was used as starting material, which neighboring stable oxidation states, 

especially Ru(II)
[171]

, Ru(III)
[171]

, and Ru(IV)
[172]

. First, it was theorized that aging is necessary to 

change the oxygen state of Ru(III) to Ru(II) or Ru(IV), which is responsible for the high activity of 

the catalyst. However, it was found that Ruthenium(III) acetylacetonat is the best precursor for good 

catalytic activity without a long aging period. Hence, it can be concluded that the alkoxide group of 

Ruthenium(III) induced the sol-gol process to enhance the catalytic activity. 
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Ⅲ. Experiment 

The general strategy for high-throughput experimentation in the present study involved not only the 

validation and development of a new reactor but also the discovery and optimization of new catalyst. 

To carry out the efficient implementation of high-throughput tests required systematic combinatorial 

workflow without a bottleneck. Moreover, catalysts are very sensitive depending upon several 

influences such as composition, exact synthesis protocol, and the precursors used. In this chapter, 

we will explain how experiments were carried out to discover and to develop new catalysts. 

 

7 Work flow overview 

 

Figure 7.1 Flow chart of experiment procedure under HTE method 

 

As is shown in Figure 7.1, the design of an experiment in this study laid within the combination of 

automatic synthesis, catalyst preparation by sol-gel method, a stage robot reactor as a primary 

screening, data mining and a 10-fold parallel reactor as secondary screening including issues of 

visualization, catalyst characterization and automation program. 
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7.1 Work stream 

 

Figure 7.2 Work stream in high-throughput methods 

 

Figure 7.2 illustrates the work stream of catalyst discovery with three screening methods. To carry 

out the high-throughput experimentation more effectively, this system was planned including six 

operation units: catalyst preparation; a stage robot reactor; a 10-fold parallel reactor; a conventional 

test; data mining; and analytical testing. The catalyst preparation step was totally automated by 

using a pipetting robot (Zinsser Analytic) through the Plattenbau library design software 

programmed with C++ including the python recipe code
[173]

.  

As is well known, it is a complex process to reproduce a catalyst because of several variables, such 

as composition, morphology, and a pore size contribute to the function of a heterogeneous catalyst. 

Therefore, it was necessary to classify the process into different screening methods depending on 

aims. The first phase, known as primary screening using the stage robot, was designed for screening 

multiple families of metal oxides that logically could perform the desired catalytic performance. The 

objective of this stage in this work was to discover ―hits‖, which represent truly new classes of 

material showing potential for specific applications. Generally, due to achieving sufficient 

throughput, the sheer volume of experiments often makes it impossible to obtain sufficient reliable 

data. Thus, "hits" discovered in the primary screening should be validated in the secondary 

screening process. 
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Our secondary screening technology using 10-fold parallel fixed bed reactor developed in the in-

house workshop provided optimized clues, which assessed the feasibility of hits as development 

candidates and further optimized the catalyst formulation to improve activity and selectivity. In 

addition to these uses, it was designed to carry out catalyst kinetic study, as well as mass transfer 

limitation on operation concepts. Finally, optimized leads entered the third phase of development 

which showed final validation of the catalyst. 

The amount of raw data generated in a short time through the screening method could not be 

analyzed in a reasonable time without the help of computers and sophisticated software. For this 

work, Matlab and Spotfire were used to harvest reliable data by visual data mining, which combined 

data mining techniques with new visualization technologies. Lastly, the obtained catalysts were 

analyzed by GC-MS and characterized by XRD, BET and XPS. 

 

7.2 Stage robot reactor 

The high-throughput reactor system, referred to as the stage robot reactor, was previously developed 

in our group 
[78]

. The catalyst library was placed between the heating stack and a reaction chamber. 

The top of the well, an insulating 15 mm thick ceramic mask made of Macor® provided additional 

reaction volume for the catalytic reaction and insulated the library plate to improve the stability of 

the reaction temperature on the catalyst surface. A guiding mask helped the sampling needle to 

thread into each well. Inside the sampling needle, a capillary bundle containing both the educt-gas 

supply and the product-gas sampling was placed sequentially into each well of the library plate. 

Since the whole reactor was moved by a xyz-stage, the sampling capillary was moved to reach every 

single well on the plate. Due to the open boundary conditions on the structure of the reactor, the 

catalytic reaction was prone to problems. For example, moisture or oxygen from ambient air could 

enter the reaction chamber. For the oxidation of propene, the total flow (5mL/min) of educt-gas was 

used with a mixture of 45.6 vol% propene and 54.4 vol % synthetic air (C3H6:O2=4:1), and a 

mixture of 64.8 vol% propene and 35.2 vol % synthetic air (C3H6:O2=9:1). 

  



7.2 Stage robot reactor 

96 

 

 

Figure 7.3 (a) Cross-section of the stage robot system (b) Magnification of the reactor chamber [83] 

 

The gas composition of products was analyzed by a micro-gas chromatograph; model CP 4900 

Varian, with a thermal conductivity detector. Three packed columns such as Porapak Q and Polar 

52CB were used in parallel to separate partial oxidized products and the whole system under this 

experiment was controlled by TestRig software
[174]

. 

           

Figure 7.4 Image of a stainless-steel library plate with catalyst samples 

 

As is shown in Figure 7.4, the typical library plates used in our group were made from either 

stainless-steel (right) or slate (left) plate; they contained 207 separate 2 mm deep drill holes 

(diameter 3.5 mm), thickness 6 mm, and diameter 99 mm in a hexagonal pattern. For the screening 

setup with the stage robot reactor as the primary screening process, the steel libraries were used. 

Some empty wells in the library functioned as background measurement, and at least one well was 

filled with a reference catalyst. For example, hopcalite, which is an oxide mixture based on copper 

and manganese oxides
[175]

, was used as a reference catalyst. 
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7.3 10-fold parallel reactor 

 

Figure 7.5 Instruments of experimental system: (a) Upstream part, (b) Tube reactor, (c) Controlling part, (d) 10-fold 

parallel reactor and (e) Micro-GC 

 

As is shown in Figure 7.5, the experimental setup of the 10-fold parallel reactor in the laboratory 

was divided into 5 parts such as (a) upstream part, (b) tube reactor, (c) controlling part, (d) multi-

channel reactor (10-fold parallel reactor) and lastly (e) micro-GC. The upstream part consisting of 3 

magnetic valves controlled the feed gas under reaction conditions of 1 bar pressure and a flow rate 

between 25mL/min and 50 mL/min. The flow rate of feed gas was successfully tested for the same 

pressure for each channel. Three magnetic valves controlled the composition of the mixed feed-gas, 

helium and air, respectively. This feed-gas for reaction, as well as the carrier gas for cleaning the 

channels was flown through each channel in regular sequence controlled by the 10-channel valve. 

Glass tube reactors (b) were used for the tubular flow reaction. The controlling part (c) functioned to 

regulate the reactor temperature, control the flow rate, change flow to channels, control the magnetic 

valves and maintain the temperature in the outlet part at 100 °C. The reaction part (d) was tested to 

heat up to 400 °C. Lastly, the Micro-GC (e) (CP 4900; Varian) was used to analyze the effluent gas 

through the signal started by the trigger of controlling part (c). 



7.3 10-fold parallel reactor 

98 

 

7.3.1 Preparation of tube reactor 

 

Figure 7.6  Preparation of tube reactors 

20 ml flask (1), reactor rack made of wood (2), tube reactor including filter (3), pipetting tip after cutting spire (4), oil 

blotting paper (5) and air hose (6) 

 

Making quick and accurate measurements of catalyzed reactions from small volumes of catalysts 

represented considerable problems with regard to handling materials and instruments. To solve these 

problems, filling a tube reactor with catalysts, as shown in Figure 7.6, followed these steps: (a) 

prepared (1) a 20 mL flask with catalysts ground by a glass rod after calcinations, (2) a container 

with 20 wells for tube reactors out of wood, (3) a fixed-bed glass tube reactor (Ø 5 mm i.d., about 

220 mm length) with a glass frit, (4) a pipetting tip by cutting a hole in the spire to a diameter large 

enough for the falling catalysts, (5) oil blotting paper to make a funnel, and (6) a hose to inject the 

air into the tube reactor. (b) After assembling the tools of part, the tube reactor was filled with a 

catalyst. Bed (50 mg catalyst diluted with 100 mg sand) resting on a glass frit (Ø 5 mm, porosity = 

0.27) in the middle of the reactor fixed in that position throughout the test run. (c) Air gas was 

injected into the tube reactor to blow off the fine particles of catalysts. In the preparation of small 

volumes of catalysts, such as 50 mg, particle size could not be controlled. Fine catalysts could 

contaminate the reactor, increasing the error of experimentations. 
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7.3.2 Cleaning process 

 

Figure 7.7 Cleaning method of a tube reactor 

 

Increasing the experimental speed with small amounts of catalysts contributes to the problem of 

contamination by fine catalysts. In order to remove these fine particles in the frit of used reactors, 

the following 5 cleaning steps were used:  

(a) After disposal of the used catalysts, the tube reactor was put in an ultrasonic bath for 30 min at 

50 °C to eliminate the rest of catalysts. 

(b) The reactor was put in a flask beaker containing water solution.  

(c) King's water (HNO3:HCl = 1:3) was dropped into the tube reactor.  

(d) The tube reactor remained for a day under this condition.  

(e) If the frit was not clean, king's water was again added and heated until the rest of catalysts were 

removed. 

In addition, the splitting module of the 10-fold parallel reactor could be also contaminated by fine 

catalysts. To monitor this condition, the data of either an empty tube reactor or a bypass were 

observed. However, serious contamination of fine catalysts in the splitting module was not observed 

after cleaning. Though contaminated, the low activity of catalysts was apparently due to the low 

temperature (100 °C) in the splitting module. Generally, the splitting module was dismantled, 

cleaned with alcohol and dried overnight at 70 °C every half year before new measurements were 

taken. 
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7.4 Catalyst preparation 

A commercial pipetting robot (Zinsser Analytic) with automation system was used for catalyst 

synthesis based on the sol-gel method. In the procedure, the prepared metal solutions with 

precursors were positioned in 10 mL vials. Aliquots of each stock solution were transferred into 2 

mL vials in racks of 50 vials to formulate the final reaction mixture. The concept on the 

combinatorial catalyst library to optimize the speed of the synthesis was applied by using the 

Plattenbau library design software
[173]

. This software could calculate the volumes of the different 

solutions with starting materials according to the formulated recipe written by Python. Finally, it 

generated a pipetting list, which was transferred to the pipetting robot and provides information with 

regard to the total volume of each solution needed for synthesis. 

After completing the pipetting process into the entire rack, this rack was covered with a lid and 

placed on an orbital shaker with a maximum of 80 rpm for 15 h to have a homogenous mixture 

condition. After the lid was removed, the rack was aged for 7 days at room temperature. It was then 

dried at 40 °C for 7 days in the drying oven to allow gel formation. For calcinations, the oven was 

maintained at 400 °C for 5 h with a heating rate of 0.2 °C min
-1

. Thereafter, the oven was cooled 

down to 35 °C with 0.5 °C min
-1

. 

After the calcinations, the catalyst powders obtained were ground in HPLC flasks by a glass rod to 

get better homogeneity in corn sizes, and manually transferred into 207 hexagonally positioned 

wells (diameter 3.5 mm) in a stainless steel library plate (diameter 99 mm). Some wells were left 

empty for background screening, and some were filled with a reference catalyst. 

Different kinds of modified sol-gel procedures were applied to prepare libraries depending on the 

matrix metal precursor and different solvents. The detail of information such as catalyst preparation 

recipe will be introduced as follows, and the information of catalyst composition in specific libraries 

can be found in the appendix. 
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7.4.1 Sol-gel synthetic recipes 

 

1) Propene to propene oxide or acrolein 

 

Propionic route 

The molar ratio of A (0.25 M solution in methanol): B (0.25 M solution in methanol): complexing 

agent (4-hydroxy-4-methyl-pentanone): acid (propionic acid) was 50:50:695:2. If B was used as 

dopant, precious solution was prepared with 0.1 M in methanol. The preparation of A50B50 was 

performed by pipetting the following volumes of single solutions in sequence: 0.25 M, A in 

methanol (600.0 μL, 0.15 μmol), 0.25 M, B in methanol (600.0 μL, 0.15 μmol), and complexing 

agent mixed with propionic acid (8.06 M, 259 μL, 2087 μmol).  

The list of libraries used in this recipe:  

1G1L, 1G2L, 2G1L, 2G3L, 1G3L, 1G4L, 2G4L 

M01, M02, M03, M04, M05, M06, M08 

T01, T02, T03 

 

Ethylene glycol route 

The molar ratio of A (0.25 M solution in the mixture of water and ethylene glycol with 1:1 volume 

percent): B (0.25 M solution in the mixture of water and ethylene glycol with 1:1 volume percent): 

acid (HNO3) was 50:50:346. The preparation of A50B50 was performed by pipetting the following 

volumes of single solutions in sequence: 0.25 M, A in water and ethylene glycol (600.0 μL, 0.15 

μmol), 0.25 M, B in ethylene glycol (600.0 μL, 0.15 μmol), and nitric acid (8.06 M, 129 μL, 1043 

μmol).  

The list of libraries used in this recipe:  

2G2L 

M07 
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2) Mo based catalyst for propene to acrolein 

 

Catalyst preparation for Hit validation of primary screening  

For the validation of hits from primary screening, two generations such as library 1 (Mo96Sn4, 

Mo96Ru4 Mo96Bi4, Mo92Ru8, Mo92Bi8, Mo96Rh4, Mo96Te4, Mo92Er8, Mo92Eu8 and Mo92Y8) and library 2 

(Mo94Sn4Te2, Mo94Ru4Sb2, Mo94Ru4Te2 and Mo94Ru4Bi2) were prepared by the modified sol-gel 

method described in Figure 6.1. (NH4)6Mo7O24∙4H2O (0.25 atomic mol/L = 0.035 mol/L) aqueous 

solution was used containing citric acid in an atomic ratio 3:1 of citric acid (Zitronensäure) and 

ammonium molybdate. RuCl (Aldrich), SnCl Aldrich, Bi (Strem), Teacid (Fluka), ErNO3 (Aldrich), 

YNO3 (ABCR), and EuNO3 (STREM) were added into methanol being 0.1 M concentration. The 

suspensions containing ammonium molybdate were distributed into 20 mL flasks. Doping solutions 

(0.1 M/methanol) were added into the suspension solution under a vigorous stirring. In addition to 

these, 1 mL HNO3 was slowly added into each flask, under a stirring. After that, the samples were 

dried at 373 K for 18 h and calcined at 673K for 4h in air. 

 

Catalyst preparation in secondary screening  

- Generation (1-2-3) 

 (NH4)6Mo7O24∙4H2O (0.25 atomic mol/L = 0.035 mol/L) dissolved in distillated water was used 

containing citric acid in an atomic ratio 3:1 of citric acid (Zitronensäure) and ammonium molybdate. 

Doping solutions, RuCl (Aldrich) and Teacid (Fluka) with concentration (0.1 M/methanol) were 

prepared and added into each suspension solution with following volume to get the certain 

compositions under vigorous stirring with rpm 300. Lastly, HNO3 was slowly added into each flask, 

under a stirring. 
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[ml] Composition C/Mo Mo Ru Sn Te HNO3 EG 

Generation 1 

1 Mo94Ru4Te2 3 9.4 1 0 0.5 1  

2 Mo92Ru4Te4 3 9.2 1 0 1 1  

3 Mo90Ru4Te6 3 9 1 0 1.5 1  

4 Mo94Ru2Te4 3 9.4 0.5 0 1 1  

5 Mo96Ru2Te2 3 9.6 0.5 0 0.5 1  

Generation 2 

1 Mo94Ru4Te2 3 9.4 1 0 0.5 1  

2 Mo94Ru4Te2 3 9.4 1 0 0.5 1.5  

3 Mo94Ru4Te2 3 9.4 1 0 0.5 1 2 

4 Mo94Ru4Te2 3 9.4 1 0 0.5 1.5 2 

5 Mo94Ru4Te2 6 9.4 1 0 0.5 1.5 2 

Generation 3 

1 Mo88Ru8Te4 3 8.8 2 0 1 1 2 

2 Mo84Ru8Te8 3 8.6 2 0 2 1 2 

3 Mo80Ru8Te12 3 8.2 2 0 3 1 2 

4 Mo88Ru8Te4 3 8.8 2 0 1 2 2 

5 Mo88Ru8Te4 0 8.8 2 0 1 1 2 
EG: Ethylen glcohol 

 

- Generation 4 

Two different Ru precursor solutions were prepared. One (Ru) was just normal RuCl in methanol 

with 0.1 M. The other (Ru*) was aged for more than one month. 

[ml] Composition Mo Ru Sn Te HNO3 EG 

Generation 4 

1 Mo94Ru*4Te2 9.4 1 0 0.5 1 2 

2 Mo94Ru4Te2 9.4 1 0 0.5 1 2 

3 Mo94Ru4Te2 9.4 1 0 0.5 2 2 

4 Mo88Ru8Te12 8.2 2 0 1.5 1 2 
Ru*: with one month aging  
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- Generation (5-6-7) 

Here, the sol-gel preparation method used was the same as previous used method. During increase 

of generation, the composition and the amount of citric acid were changed. 

 

 [ml] Composition C/Mo Mo Ru Sn Te HNO3 EG 

Generation 5 

1 Mo94Ru4Te2 0 9.4 1 0 0.5 1 2 

2 Mo94Ru4Te2 1.5 9.4 1 0 0.5 1 2 

3 Mo92Ru4Te4 1.5 9.2 1 0 1 1 2 
4 Mo94Ru2Te4 1.5 9.2 0.5 0 1 1 2 
5 Mo94Ru4Te2 3 9.4 1 0 0.5 1 2 
6 Mo92Ru4Te4 3 9.2 1 0 1 1 2 
7 Mo94Ru2Te4 3 9.2 0.5 0 1 1 2 

Generation 6 

1 Mo94Ru4Te2 3 9.4 1 0 0.5 1 2 

2 Mo92Ru6e2 3 9.2 1.5 0 0.5 1 2 

3 Mo90Ru6Te4 3 9.0 1.5 0 1 1 2 

4 Mo92Ru4Te4 3 9.2 1 0 1 1 2 

5 Mo90Ru4Te6 3 9.0 1 0 1.5 1 2 

Generation 7 

1 Mo94Ru4Te2 0 9.4 1 0 0.5 1 2 

2 Mo92Ru6Te2 0 9.0 1.5 0 0.5 1 2 

3 Mo94Ru4Te2 3 9.4 1 0 0.5 1 2 

4 Mo92Ru6Te2 3 9.0 1.5 0 0.5 1 2 

5 Mo96Ru4 0 9.6 1 0 0 1 2 

6 Mo94Ru6 0 9.4 1.5 0 0 1 2 

7 Mo96Ru4 3 9.6 1 0 0 1 2 

8 Mo94Ru6 3 9.4 1.5 0 0 1 2 
EG: Ethylen glcohol 

 

- Generation (8-9-10-11) 

Here, in generation 8, several different precursor metals were used to prepare solutions as follows. 

Mo (Ammonium molybdate tetrahydrate), Mo
1 

(phosphomolybdic acid), Mo
2
 

(Bi(acetonitrile)molybdenum chloride) were used as Molybdate precursors and Ru*(Ruthenium 

chloride with more than one month of aging), Ru
1
(Ammonium hexachlororuthenate) Ru

2
 

(Ruthenium(III) acetylacetonate) were used as Ruthenium precursors. Molybdate (0.25 atomic 

mol/L = 0.035 mol/L) dissolved in distilled water  was used containing citric acid in an atomic ratio 
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3:1 of citric acid (Zitronensäure) and ammonium molybdate. Doping solutions of three Ruthenium 

precursors were prepared with concentration (0.1 M/methanol). In generation 10, two rpm 

(revolution per minute) conditions, rpm 250 and rpm 300, were used to mix solutions. 

In generation 11, Ru
3
 (Ruthenium(IV)oxide anhydrous), Ru

2
 (Ruthenium(III) acetylacetonate), 

Sn
1
(Tintetraisopropoxytin-isoprosal adduct) and Sn

2
(Tin(IV) acetate) were used for checking the 

influence of different precursor metals. 

 

[ml] Composition C/Mo Mo Ru Sn Te HNO3 EG 

Generation 8 

1 Mo92Ru1
6Te2 3 9.2 1.5 0 0.5 1 2 

2 Mo92Ru2
6Te2 3 9.2 1.5 0 0.5 1 2 

3 Mo92Ru*6Te2 3 9.2 1.5 0 0.5 1 2 

4 Mo1
92Ru1

6Te2 3 9.2 1.5 0 0.5 1 2 

5 Mo1
92Ru2

6Te2 3 9.2 1.5 0 0.5 1 2 
6 Mo1

92Ru*6Te2 3 9.2 1.5 0 0.5 1 2 

7 Mo2
92Ru1

6Te2 3 9.2 1.5 0 0.5 1 2 

8 Mo2
92Ru2

6Te2 3 9.2 1.5 0 0.5 1 2 

9 Mo2
92Ru*6Te2 3 9.2 1.5 0 0.5 1 2 

Generation 9 

1 Mo94Sn4Te2 3 9.4 0 1 0.5 1 2 

2 Mo94Ru*4Sb2 3 9.4 1 0 0.5 1 2 

3 Mo94Ru*4Te2 3 9.4 1 0 0.5 1 2 

4 Mo94Ru*4Bi2 3 9.4 1 0 0.5 1 2 

1 Mo94Sn4Te2 3 9.4 0 1 0.5 1 2 

2 Mo92Sn6Te2 3 9.4 0 1.5 0.5 1 2 

3 Mo92Sn4Te4 3 9.4 0 1 1 1 2 

4 Mo94Sn4Te2 3 9.4 0 1 0.5 1 2 

Generation 10 
1 +Mo94Sn4Te2 0 9.4 0 1 0.5 1 2 
2 +Mo94Sn4Te2 3 9.4 0 1 0.5 1 2 
3 +Mo92Ru8 0 9.4 2 0 0 1 2 
4 +Mo92Ru8 3 9.4 2 0 0 1 2 
5 Mo94Sn4Te2 0 9.4 0 1 0.5 1 2 
6 Mo94Sn4Te2 3 9.4 0 1 0.5 1 2 
7 Mo92Ru8 0 9.4 2 0 0 1 2 
8 Mo92Ru8 3 9.4 2 0 0 1 2 
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Generation 11 
1 Mo96Sn1

1Te2Ti2 0 9.4 0 0.5 0.5 1 2 
2 Mo96Sn2

1Te2Ti2 0 9.4 0 0.5 0.5 1 2 
3 Mo94Ru3

2Te2Ti2 0 9.4 1 0 0.5 1 2 
4 Mo94Ru2

2Te2Ti2 0 9.4 1 0 0.5 1 2 
5 Mo94Sn1

4Te2 0 9.4 0 2 0.5 1 2 
6 Mo94Sn2

4Te2 0 9.4 0 2 0.5 1 2 
7 Mo94Ru3

4Te2 0 9.4 2 0 0.5 1 2 
8 Mo94Ru2

4Te2 0 9.4 2 0 0.5 1 2 

 

Rpm 250: + 

Aging more than one month: * 

 

- Generation 12  

The last generation, Ammonium molybdate tetrahydrate, Sn
3
 (Tin(II)-2.4-pentanedionate) and Ru

2
 

(Ruthenium(III) acetylacetonate) were used as precursor metals without adding citric acid. 

 

 Generation 12 
1 Mo94Sn3

4Te2 0 9.4 0 2 0.5 1 1 
2 Mo90Sn3

8Te2 0 9.4 0 4 0.5 1 1 
3 Mo89Sn3

7Te4 0 9.4 0 4 0.5 1 1 
4 Mo94Sn3

4Te2 0 9.4 0 1 0.5 1 1 
5 Mo94Ru2

4Te2 0 9.4 2 0 0.5 1 1 
6 Mo90Ru2

8Te2 0 9.4 2 0 0.5 1 1 
7 Mo89Ru2

7Te4 0 9.4 2 0 0.5 1 1 
8 Mo94Ru2

4Te2 0 9.4 2 0 0.5 1 1 
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Ⅳ. Summary and conclusions 

The main objective of this study was to find a high-throughput secondary screening method for two 

selective oxidation reactions of propene. Due to various products and the complex mechanism for 

selective reactions, our common high-throughput methods, such as the stage robot reactor (SRR) 

and the IR-camera, were found unsuitable. 

During the new project, a 10-fold parallel reactor for catalytic tests was constructed in the in-house 

workshop. Ten miniature tube type reactors were installed and automated with regard to adjusting 

the temperature of the reaction chamber, switching the reactant feed-gases, and controlling the 

Micro-GC. Control box including an electric circuit was developed on the purpose of transmitting 

signal to other instruments. For the automation of catalyst experiment, AutoCat was programmed by 

C++. This software is based on GUI concept and can identify entire process in real-time. 

Generally, multi-position valve in parallel reactor was installed downstream since it can avoid the 

contamination of effluent-gas to be analyzed. However, this concept causes problems either to 

distribute the flow rate and pressure drop equally through channels or to increase expenses due to 

feed-gas consumption. In the 10-fold parallel reactor, a multi-position valve was put upstream 

without these disadvantages. A potential gas contamination problem was solved by the development 

of the gas splitting module to function minimizing or eliminating the influence of gas contamination 

between online and offline columns. This secondary screening method replaced the conventional 

test in the application of hit validation and catalyst optimization. 

In order to validate the compatibility of results at each channel, catalyst reaction of carbon-

monoxide was applied with Hopcalite. For this, Whisker Diagrams was depicted and showed the 

deviation of conversion from minimum (2.30; 75 °C) to maximum (5.59; 125°C). To study the 

distribution of temperature FEA simulation was performed. Apart from this, a new hexagonal 

aluminum-rack was applied in the entire catalyst processes such as synthesis, aging, heating, 

cacinations, and testing. In the ternary composition spread of Ag, Cu and Mn, results showed that 

the new rack is enough to recognize a pattern for decision-making in discovery of catalysts. 

Using the stage robot reactor (SRR), the search for catalysts for the conversion of propene to 

propene oxide was carried out. Five libraries with around 1000 catalysts were synthesized based on 

the sol-gel method with the binary composition spread of 27 materials. Surprisingly, the results of 

the conventional tests were incompatible with that of the high-throughput tests. Two reasons, such 
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as deactivation of catalysts and non-similarity of the structure of the reaction chamber between SRR 

and PFR were assumed. First, the catalysts developed for the propene epoxidation showed very fast 

deactivation, and it was found necessary to carry out the reduction with H2 pretreatment. Second, 

basically, the open structure of SRR makes it difficult to obtain the same result of PFR because of 

the post-reaction, which may have taken place easily with propene oxide due to its reactivity. 

The study of propene to acrolein was performed by using the SRR and the 10-fold parallel reactor. 

The best catalysts discovered in the primary screening with six libraries were tested to validate the 

hits in the secondary screening. Subsequently, the optimization process of the catalysts resulted in 

the catalyst of Pd10Cu30Ga60 with the best activity. The result for the composition spread of Cu1–

100Pd0-10Ga1-100 illustrated that Pd10Ga45Cu45 was most active for acrolein production at the mild 

temperature of 300 °C. 

Mo based catalysts were used as starting material for the study of propene to acrolein. Through 

high-throughput methods, 200 samples in the primary process and 12 generations in the secondary 

process were tested. Finally, Mo94Ru4Te2 and Mo88Sn8Te4 showed very high propene conversion to 

acrolein with yield of 25% at 375 °C and yield of 28% at 400 °C, respectively. To develop 

Mo94Ru4Te2, Ruthenium(III)chloride was used as starting material that needed longer aging. 

Ruthenium(III) acetylacetonat was found as the best precursor for good catalytic activity without 

aging. As a result, it seems that the alkoxide group of Ruthenium(III) induced the sol-gol process to 

enhance the catalytic activity, and metal-chloride bonds was methanolyzed to obtain more reactive 

methanolate-species. 

Consequently, this work indicates that the new developed 10-fold parallel reactor provided a helpful 

tool for enhancing catalyst discovery in the secondary screening process. Through the 

experimentation for the search of selective propene oxidation catalysts we reached the goal of our 

project. This obtained knowledge can be used to extend common high-throughput technology. 

Especially, it is expected that the combination of the IR-camera method and the 10-fold parallel 

reactor will provide better benefits in this regard. Nevertheless it is worth mentioning that due to the 

sensitivity of the catalysts to the preparation, reproduction and scale-up may become difficult. 
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Ⅴ. Zusammenfassung und Ausblick 

Das Hauptziel dieser Studie bestand darin, die Hochdurchsatz-Methode des sekundären Screenings 

für zwei selektive Oxidationsreaktionen zu finden. Aufgrund von verschiedenen Produkten und des 

komplexen Mechanismus für selektive Reaktionen wurden unsere üblichen Hochdurchsatz-

Methoden, solche wie der Stage-Robot-Reaktor (SRR) und die IR-Kamera, als ungeeignet befunden. 

Durch das neue Projekt wurde in der hauseigenen Werkstatt ein 10-fach-Parallel-Reaktor für 

katalytische Tests konstruiert. Zehn Miniatur-Rohr-Reaktoren wurden installiert und automatisiert in 

Bezug auf die Einstellung der Temperatur der Reaktionskammer, den Wechseln der Edukt-Gase und 

die Kontrolle des Mikro-GC. Die Kontrollbox mitsamt der elektrischen Beschaltung wurde mit der 

Absicht entwickelt, Signale auf andere Instrumente zu übertragen. Für die Atomisierung des 

Katalysatoren-Experiments wurde AutoCat von C++ programmiert. Diese Software basiert auf dem 

GUI-Konzept und kann den gesamten Prozess in Echtzeit aufzeigen. 

Im Allgemeinen wurde ein Mehrkanal-Ventil im Parallelreaktor ablaufseitig installiert, da sie die 

Kontaminierungsanalyse von Ausflussgasen verhindern kann. Allerdings verursacht dieses Konzept 

Probleme, entweder um die Flussrate und Druckverlust gleichmäßig durch die Kanäle zu verteilen, 

oder in Bezug auf die steigenden Kosten bezüglich der Gaszufuhr-Konsumption. Im 10-fach-

Parallelreaktor wurde ein Mehrkanal-Ventil ohne diese Nachteile zulaufseitig angebracht. Ein 

potenziales Gaskontaminierungsproblem wurde durch die Entwicklung eines Gas-Splitting-Moduls 

gelöst, welches die Verkleinerung oder Eliminierung des Einflusses der Gaskontamination zwischen 

online und offline Spalten bewirkt. Diese sekundäre Screening-Methode ersetzte den üblichen Test 

bei der Anwendung von der Hit-Validierung und Katalysatorenoptimierung.  

Um die Kompatibilität der Ergebnisse in jedem Kanal zu validieren, wurde die 

Katalysatorenreaktion von Kohlenmonoxid mit Hopcalite angewandt. Dafür wurden Whisker 

Diagramme wiedergegeben, welche die Deviation der Konversion vom Minimum (2.30; 75°C) zum 

Maximum (5.59; 125°C) zeigten. Um die Distribution von Temperaturen zu studieren, wurde die 

FEA-Simulation ausgeführt. Davon abgesehen wurde ein neuer hexagonaler Aluminium-Behälter in 

den gesamten Katalysatorenprozessen wie Synthese, Alterung, Erhitzung, Kalzination und Testung 

eingesetzt. In der ternären Zusammensetzung von Ag, Cu und Mn zeigten die Ergebnisse, dass der 

neue Behälter genug ist, um ein Muster für Entscheidungentreffen bei der Entdeckung von 

Katalysatoren zu erkennen. 
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Unter Nutzung des Stage-Robot-Reaktors (SRR) wurde die Suche nach Katalysatoren für die 

Konversion von Propen zu Propenoxid ausgeführt. Fünf Bibliotheken mit etwa eintausend 

Katalysatoren wurden auf Basis der Sol-Gel-Methode mit der binären Zusammensetzung und 

Verbreitung von siebenundzwanzig Materialien synthetisiert. Überraschenderweise passten die 

Ergebnisse der konventionellen Tests nicht mit jenen des Hochdurchsatzverfahrens zusammen. 

Hierfür wurden zwei Gründe, nämlich die Deaktivierung der Katalysatoren und die Ungleichheit der 

Struktur der Reaktionskammer zwischen SRR und PFR, vorgelegt. Erstens zeigten die Katalysatoren, 

welche für die Propenepoxidation entwickelt worden waren, sehr schnelle Deaktivierung, sodass es 

als nötig befunden wurde, die Reduzierung mit H2-Vorbehandlung auszuführen. Zweitens, und 

hauptsächlich, macht die offene Struktur von SRR es schwierig, das gleiche Resultat von PFR zu 

erhalten, aufgrund der Postreaktion, welche mit Propenoxid einfach abläuft aufgrund seiner 

Reaktionsfähigkeit. 

Die Studie von Propen zu Acrolein wurde unter Nutzung der SRR und des 10-fachen-

Parallelreaktors durchgeführt. Die besten Katalysatoren der sechs Bibliotheken, entdeckt im 

primären Screening, wurden getestet, um die Hits im zweiten Screening zu validieren. Anschließend 

resultierte der Optimierungsprozess der Katalysatoren in dem Katalysator mit den besten 

Ergebnissen Pd10Cu30Ga60. Das Ergebnis für die Komposition aus Cu1–100Pd0-10Ga1-100 zeigt auf, dass 

Pd10Ga45Cu45 bei der milden Temperatur von 300°C am aktivsten Acrolein produziert hat.  

Mo-basierte Katalysatoren wurden als Startmaterial für die Studie von Propen zu Acrolein genutzt. 

Durch die Hochdurchsatzverfahren wurden zweihundert Beispiele im primären Prozess und zwölf 

Generationen im sekundären Prozess getestet. Schließlich zeigten Mo94Ru4Te2 und Mo88Sn8Te4 sehr 

hohe Propenkonversion zu Acrolein mit einer Ausbeute von 25% bei 375 °C beziehungsweise 28% 

bei 400 °C. Um Mo94Ru4Te2 zu entwickeln, wurde Ruthenium(III)chloride, welches längeres Altern 

brauchte, als Startmaterial genutzt. Ruthenium(III) stellte sich als bester Präkursor für gute 

katalytische Aktivität ohne Altern heraus. Als ein Ergebnis scheint es, dass die Alkoxidgruppe von 

Ruthenium(III) den Sol-Gel-Prozess einführte zur Förderung der katalytischen Aktivität, und 

Metall-Chlorid-Anleihen wurden methanolisiert, um mehr reaktionsfähige Methanolat-Spezien zu 

erhalten.  

Infolgedessen zeigt diese Arbeit, dass der neu entwickelte 10-fache-Parallelreaktor ein hilfreiches 

Werkzeug darstellt zur Förderung der Entdeckung von Katalysatoren im sekundären Screening-

Prozess. Durch das Experimentieren für die Suche nach selektiven Propenoxidkatalysatoren 
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erreichten wir das Ziel unserer Arbeit. Dieses erlangte Wissen kann genutzt werden, um allgemeine 

Hochdurchsatz-Technologien zu erweitern. Insbesondere wird erwartet, dass die Kombination der 

IR-Kamera-Methode und des 10-fachen-Parallelreaktors diesbezüglich bessere Leistungen liefern 

wird. Nichtsdestotrotz sollte erwähnt werden, dass die Reproduktion und der Scale-Up aufgrund der 

Empfindlichkeit der Katalysatoren in der Vorbereitung schwierig werden könnten. 
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Ⅳ. Appendix 

A List of abbreviations 

Abbreviations  

Symbol Meaning 

ANN Artificial neural network 

AA Acrylic acid 

AN Acrylonitrile 

BC Boundary condition 

BET Brunauer, Emmett and Teller method 

KB Complexing agent 

°C Degree centigrade 

°K Degree Kelvin 

DOE Design of Experiment 

DFT Density function theory 

EDX Energy Dispersive X-ray Analysis 

EG Ethylene glycol 

FEA Finite Element Analysis 

GC Gas chromatography 

GHSV Gas hourly space velocity 

GA Genetic algorithm 

GUI Graphical user interface 

GNP Gross national product 

HPLC High pressure liquid chromatography 

HRS Holographic research strategy 

HT High-throughput 

HTE High-throughput experimentation 

h Hours(s) 

HPPO Hydrogen-peroxide-propylen-oxide 
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 IR Infrared 

l Liter 

LC Liquid chromatograph 

MFC Mass flow controller 

MC Monte carlo 

MS Mass spectrometry 

μg Microgram 

μl Microliter 

μmole Micromole 

mg Milligram 

mL Milliliter 

min Minutes 

Mol% Mole percent 

MVs Multi-position valves 

PFR Plug flow reactor 

QCARs Quantitative composition activity relationships 

ODOE Optimal design of experiments 

PC Principal components 

rpm Revolutions per minute 

SEM Scanning electron microscopy 

SVMs Support vector machines 

s, sec Seconds 

m sec  Millisecond 

SRR Stage robot reactor 

T Temperature 

TCD Thermal conductivity detector 

TG Thermogravimetry 

Vol% Volume percent 

WGSR Water gas shift reaction  

XRD X-ray diffraction 

XPS X-ray photoelectron spectroscopy 
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B List of libraries 

Occupancy of catalyst library 1G1L 

 

1 Ag0.5Al0.5 51 Al0.5Bi0.5 101 Cu0.5Ge0.5 151 Ga0.5Sb0.5 

2 Ag0.5B0.5 52 B0.5Cr0.5 102 Cu0.5Hf0.5 152 Ga0.5Si0.5 

3 Ag0.5Cr0.5 53 B0.5Cu0.5 103 Cu0.5In0.5 153 Ga0.5Sn0.5 

4 Ag0.5Cu0.5 54 B0.5Fe0.5 104 Cu0.5La0.5 154 Ga0.5Te0.5 

5 Ag0.5Fe0.5 55 B0.5Ga0.5 105 Cu0.5Mn0.5 155 Ga0.5W0.5 

6 Ag0.5Ga0.5 56 B0.5Ge0.5 106 Cu0.5Nb0.5 156 Ga0.5Y0.5 

7 Ag0.5Ge0.5 57 B0.5Hf0.5 107 Cu0.5Pb0.5 157 Ga0.5Zn0.5 

8 Ag0.5Hf0.5 58 B0.5In0.5 108 Cu0.5Re0.5 158 Ga0.5Zr0.5 

9 Ag0.5In0.5 59 B0.5La0.5 109 Cu0.5Ru0.5 159 Ga0.5Ta0.5 

10 Ag0.5La0.5 60 B0.5Mn0.5 110 Cu0.5Sb0.5 160 Ga0.5Mo0.5 

11 Ag0.5Mn0.5 61 B0.5Nb0.5 111 Cu0.5Si0.5 161 Ga0.5Bi0.5 

12 Ag0.5Nb0.5 62 B0.5Pb0.5 112 Cu0.5Sn0.5 162 Ge0.5Hf0.5 

13 Ag0.5Pb0.5 63 B0.5Re0.5 113 Cu0.5Te0.5 163 Ge0.5In0.5 

14 Ag0.5Re0.5 64 B0.5Ru0.5 114 Cu0.5W0.5 164 Ge0.5La0.5 

15 Ag0.5Ru0.5 65 B0.5Sb0.5 115 Cu0.5Y0.5 165 Ge0.5Mn0.5 

16 Ag0.5Sb0.5 66 B0.5Si0.5 116 Cu0.5Zn0.5 166 Ge0.5Nb0.5 

17 Ag0.5Si0.5 67 B0.5Sn0.5 117 Cu0.5Zr0.5 167 Ge0.5Pb0.5 

18 Ag0.5Sn0.5 68 B0.5Te0.5 118 Cu0.5Ta0.5 168 Ge0.5Re0.5 

19 Ag0.5Te0.5 69 B0.5W0.5 119 Cu0.5Mo0.5 169 Ge0.5Ru0.5 

20 Ag0.5W0.5 70 B0.5Y0.5 120 Cu0.5Bi0.5 170 Ge0.5Sb0.5 

21 Ag0.5Y0.5 71 B0.5Zn0.5 121 Fe0.5Ga0.5 171 Ge0.5Si0.5 

22 Ag0.5Zn0.5 72 B0.5Zr0.5 122 Fe0.5Ge0.5 172 Ge0.5Sn0.5 

23 Ag0.5Zr0.5 73 B0.5Ta0.5 123 Fe0.5Hf0.5 173 Ge0.5Te0.5 

24 Ag0.5Ta0.5 74 B0.5Mo0.5 124 Fe0.5In0.5 174 Ge0.5W0.5 

25 Ag0.5Mo0.5 75 B0.5Bi0.5 125 Fe0.5La0.5 175 Ge0.5Y0.5 

26 Ag0.5Bi0.5 76 Cr0.5Cu0.5 126 Fe0.5Mn0.5 176 Ge0.5Zn0.5 

27 Al0.5B0.5 77 Cr0.5Fe0.5 127 Fe0.5Nb0.5 177 Ge0.5Zr0.5 

28 Al0.5Cr0.5 78 Cr0.5Ga0.5 128 Fe0.5Pb0.5 178 Ge0.5Ta0.5 

29 Al0.5Cu0.5 79 Cr0.5Ge0.5 129 Fe0.5Re0.5 179 Ge0.5Mo0.5 

30 Al0.5Fe0.5 80 Cr0.5Hf0.5 130 Fe0.5Ru0.5 180 Ge0.5Bi0.5 

31 Al0.5Ga0.5 81 Cr0.5In0.5 131 Fe0.5Sb0.5 181 Hf0.5In0.5 

32 Al0.5Ge0.5 82 Cr0.5La0.5 132 Fe0.5Si0.5 182 Hf0.5La0.5 

33 Al0.5Hf0.5 83 Cr0.5Mn0.5 133 Fe0.5Sn0.5 183 Hf0.5Mn0.5 

34 Al0.5In0.5 84 Cr0.5Nb0.5 134 Fe0.5Te0.5 184 Hf0.5Nb0.5 

35 Al0.5La0.5 85 Cr0.5Pb0.5 135 Fe0.5W0.5 185 Hf0.5Pb0.5 

36 Al0.5Mn0.5 86 Cr0.5Re0.5 136 Fe0.5Y0.5 186 Hf0.5Re0.5 

37 Al0.5Nb0.5 87 Cr0.5Ru0.5 137 Fe0.5Zn0.5 187 Hf0.5Ru0.5 

38 Al0.5Pb0.5 88 Cr0.5Sb0.5 138 Fe0.5Zr0.5 188 Hf0.5Sb0.5 

39 Al0.5Re0.5 89 Cr0.5Si0.5 139 Fe0.5Ta0.5 189 Hf0.5Si0.5 

40 Al0.5Ru0.5 90 Cr0.5Sn0.5 140 Fe0.5Mo0.5 190 Hf0.5Sn0.5 

41 Al0.5Sb0.5 91 Cr0.5Te0.5 141 Fe0.5Bi0.5 191 Hf0.5Te0.5 

42 Al0.5Si0.5 92 Cr0.5W0.5 142 Ga0.5Ge0.5 192 Hf0.5W0.5 

43 Al0.5Sn0.5 93 Cr0.5Y0.5 143 Ga0.5Hf0.5 193 Hf0.5Y0.5 

44 Al0.5Te0.5 94 Cr0.5Zn0.5 144 Ga0.5In0.5 194 Hf0.5Zn0.5 

45 Al0.5W0.5 95 Cr0.5Zr0.5 145 Ga0.5La0.5 195 Hf0.5Zr0.5 

46 Al0.5Y0.5 96 Cr0.5Ta0.5 146 Ga0.5Mn0.5 196 Hf0.5Ta0.5 

47 Al0.5Zn0.5 97 Cr0.5Mo0.5 147 Ga0.5Nb0.5 197 Hf0.5Mo0.5 

48 Al0.5Zr0.5 98 Cr0.5Bi0.5 148 Ga0.5Pb0.5 198 Hf0.5Bi0.5 

49 Al0.5Ta0.5 99 Cu0.5Fe0.5 149 Ga0.5Re0.5 199 In0.5La0.5 

50 Al0.5Mo0.5 100 Cu0.5Ga0.5 150 Ga0.5Ru0.5 200 In0.5Mn0.5 
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Occupancy of catalyst library 1G2L 

 

1 In0.5Nb0.5 51 Nb0.5Si0.5 101 Sb0.5Y0.5 151 Mo0.5Bi0.5 

2 In0.5Pb0.5 52 Nb0.5Sn0.5 102 Sb0.5Zn0.5   

3 In0.5Re0.5 53 Nb0.5Te0.5 103 Sb0.5Zr0.5   

4 In0.5Ru0.5 54 Nb0.5W0.5 104 Sb0.5Ta0.5   

5 In0.5Sb0.5 55 Nb0.5Y0.5 105 Sb0.5Mo0.5   

6 In0.5Si0.5 56 Nb0.5Zn0.5 106 Sb0.5Bi0.5   

7 In0.5Sn0.5 57 Nb0.5Zr0.5 107 Si0.5Sn0.5   

8 In0.5Te0.5 58 Nb0.5Ta0.5 108 Si0.5Te0.5   

9 In0.5W0.5 59 Nb0.5Mo0.5 109 Si0.5W0.5   

10 In0.5Y0.5 60 Nb0.5Bi0.5 110 Si0.5Y0.5   

11 In0.5Zn0.5 61 Pb0.5Re0.5 111 Si0.5Zn0.5   

12 In0.5Zr0.5 62 Pb0.5Ru0.5 112 Si0.5Zr0.5   

13 In0.5Ta0.5 63 Pb0.5Sb0.5 113 Si0.5Ta0.5   

14 In0.5Mo0.5 64 Pb0.5Si0.5 114 Si0.5Mo0.5   

15 In0.5Bi0.5 65 Pb0.5Sn0.5 115 Si0.5Bi0.5   

16 La0.5Mn0.5 66 Pb0.5Te0.5 116 Sn0.5Te0.5   

17 La0.5Nb0.5 67 Pb0.5W0.5 117 Sn0.5W0.5   

18 La0.5Pb0.5 68 Pb0.5Y0.5 118 Sn0.5Y0.5   

19 La0.5Re0.5 69 Pb0.5Zn0.5 119 Sn0.5Zn0.5   

20 La0.5Ru0.5 70 Pb0.5Zr0.5 120 Sn0.5Zr0.5   

21 La0.5Sb0.5 71 Pb0.5Ta0.5 121 Sn0.5Ta0.5   

22 La0.5Si0.5 72 Pb0.5Mo0.5 122 Sn0.5Mo0.5   

23 La0.5Sn0.5 73 Pb0.5Bi0.5 123 Sn0.5Bi0.5   

24 La0.5Te0.5 74 Re0.5Ru0.5 124 Te0.5W0.5   

25 La0.5W0.5 75 Re0.5Sb0.5 125 Te0.5Y0.5   

26 La0.5Y0.5 76 Re0.5Si0.5 126 Te0.5Zn0.5   

27 La0.5Zn0.5 77 Re0.5Sn0.5 127 Te0.5Zr0.5   

28 La0.5Zr0.5 78 Re0.5Te0.5 128 Te0.5Ta0.5   

29 La0.5Ta0.5 79 Re0.5W0.5 129 Te0.5Mo0.5   

30 La0.5Mo0.5 80 Re0.5Y0.5 130 Te0.5Bi0.5   

31 La0.5Bi0.5 81 Re0.5Zn0.5 131 W0.5Y0.5   

32 Mn0.5Nb0.5 82 Re0.5Zr0.5 132 W0.5Zn0.5   

33 Mn0.5Pb0.5 83 Re0.5Ta0.5 133 W0.5Zr0.5   

34 Mn0.5Re0.5 84 Re0.5Mo0.5 134 W0.5Ta0.5   

35 Mn0.5Ru0.5 85 Re0.5Bi0.5 135 W0.5Mo0.5   

36 Mn0.5Sb0.5 86 Ru0.5Sb0.5 136 W0.5Bi0.5   

37 Mn0.5Si0.5 87 Ru0.5Si0.5 137 Y0.5Zn0.5   

38 Mn0.5Sn0.5 88 Ru0.5Sn0.5 138 Y0.5Zr0.5   

39 Mn0.5Te0.5 89 Ru0.5Te0.5 139 Y0.5Ta0.5   

40 Mn0.5W0.5 90 Ru0.5W0.5 140 Y0.5Mo0.5   

41 Mn0.5Y0.5 91 Ru0.5Y0.5 141 Y0.5Bi0.5   

42 Mn0.5Zn0.5 92 Ru0.5Zn0.5 142 Zn0.5Zr0.5   

43 Mn0.5Zr0.5 93 Ru0.5Zr0.5 143 Zn0.5Ta0.5   

44 Mn0.5Ta0.5 94 Ru0.5Ta0.5 144 Zn0.5Mo0.5   

45 Mn0.5Mo0.5 95 Ru0.5Mo0.5 145 Zn0.5Bi0.5   

46 Mn0.5Bi0.5 96 Ru0.5Bi0.5 146 Zr0.5Ta0.5   

47 Nb0.5Pb0.5 97 Sb0.5Si0.5 147 Zr0.5Mo0.5   

48 Nb0.5Re0.5 98 Sb0.5Sn0.5 148 Zr0.5Bi0.5   

49 Nb0.5Ru0.5 99 Sb0.5Te0.5 149 Ta0.5Mo0.5   

50 Nb0.5Sb0.5 100 Sb0.5W0.5 150 Ta0.5Bi0.5   
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Occupancy of catalyst library 1G3L 

 

1 Co0.3V0.3Ba0.4 51 Ga0.3Cu0.3Hf0.4 101 Ga0.3Fe0.4Sn0.3 151 Cd0.3Nb0.4Ce0.3 

2 Ni0.3Mn0.4Pb0.3 52 Cu0.3Zr0.3Sn0.4 102 Co0.3Ni0.4Cs0.3 152 Cu0.3Nb0.4Ag0.3 

3 Cr0.4SrBr0.3Pb0.3 53 Cu0.3Cd0.4Ni0.3 103 Cr0.3Cu0.4Ba0.3 153 Ni0.3Nb0.4SrBr0.3 

4 Zn0.3Ru0.4Cs0.3 54 Fe0.3Ni0.3Sn0.4 104 Zn0.3Ce0.3Mn0.4 154 Ni0.3Cs0.4Re0.3 

5 Cu0.4Zn0.3Cs0.3 55 Ga0.3Cr0.4Sn0.3 105 Ga0.3Ni0.4SrBr0.3 155 Co0.3Re0.3Ba0.4 

6 Co0.3Ca0.4Cs0.3 56 Ni0.3Ca0.3W0.4 106 Cu0.3Zn0.3Hf0.4 156 Cd0.3Co0.3Ru0.4 

7 Cu0.4Ca0.3W0.3 57 Ni0.4Re0.3Ba0.3 107 Cr0.3Co0.3Sn0.4 157 Ga0.3Co0.3Ce0.4 

8 Co0.3Zr0.3Zn0.4 58 Mn0.4Ag0.3Cs0.3 108 Co0.4Zn0.3Pd0.3 158 Cu0.3V0.4K0.3 

9 Cu0.4Ni0.3Hf0.3 59 Co0.4Mn0.3Ba0.3 109 Ni0.3Zr0.3Ba0.4 159 Zn0.3Mn0.4Ba0.3 

10 Cu0.3W0.3Ba0.4 60 Zr0.4SrBr0.3Ag0.3 110 Co0.3Ni0.3Ca0.4 160 Cr0.4Cd0.3Ca0.3 

11 Co0.4Ni0.3Bi0.3 61 Fe0.4Ce0.3Pb0.3 111 Ni0.4Zr0.3SrBr0.3 161 Ga0.3Co0.3Zr0.4 

12 Co0.3Ni0.4Re0.3 62 Co0.3Ni0.3Sn0.4 112 Fe0.3Ni0.3K0.4 162 Fe0.3Ni0.4Pb0.3 

13 Cu0.4Ni0.3Zr0.3 63 Ni0.4Ce0.3Hf0.3 113 Fe0.4Co0.3Ce0.3 163 Zn0.3Ce0.3Hf0.4 

14 Ni0.4Ru0.3Ce0.3 64 Cu0.3Ca0.3Ba0.4 114 Cu0.3Co0.3SrBr0.4 164 Ni0.3Zr0.3Pb0.4 

15 Cr0.4Cu0.3Bi0.3 65 Ni0.3Cs0.3Ba0.4 115 Cd0.4Ni0.3Nb0.3 165 Ga0.3Co0.4Ni0.3 

16 Cu0.4Ni0.3Pd0.3 66 Co0.3V0.3Ag0.4 116 Cr0.3Co0.3SrBr0.4 166 Cd0.3Zr0.4SrBr0.3 

17 Cr0.3Cu0.4Ag0.3 67 Ni0.3Ca0.4Ce0.3 117 Ga0.4Cu0.3Pd0.3 167 Co0.3Sn0.3Ru0.4 

18 Ni0.4Ca0.3Pb0.3 68 Zn0.3Nb0.4Re0.3 118 Cu0.3Hf0.3Re0.4 168 Cd0.3Mn0.4Ba0.3 

19 Ni0.4Zr0.3Cs0.3 69 Cu0.4Fe0.3Cs0.3 119 Cr0.3Co0.4Ba0.3 169 Ga0.3Sn0.3Nb0.4 

20 Co0.3Ni0.4Pb0.3 70 Co0.3V0.3Ce0.4 120 Cu0.4Cs0.3W0.3 170 Cr0.3Co0.4Ce0.3 

21 Ni0.4Cs0.3Re0.3 71 Cr0.4Cd0.3Cs0.3 121 Co0.3Ni0.4Mn0.3 171 Cu0.3Nb0.3Pb0.4 

22 Ga0.4Ni0.3Cs0.3 72 Cr0.3Co0.3K0.4 122 Co0.4V0.3Bi0.3 172 Co0.3Sn0.3Pd0.4 

23 Zn0.3W0.4Ba0.3 73 Cu0.3SrBr0.3Hf0.4 123 Ga0.3Cu0.4Pd0.3 173 Ga0.3Cu0.4Ce0.3 

24 Cu0.3Ni0.4Mn0.3 74 Fe0.3Ni0.3Zn0.4 124 Cu0.3Ni0.3K0.4 174 Cd0.3Ni0.3Nb0.4 

25 Cu0.3Ce0.4SrBr0.3 75 Ni0.4Nb0.3Pb0.3 125 Fe0.4Zn0.3Ba0.3 175 Co0.4SrBr0.3Pd0.3 

26 Ni0.4Nb0.3Cs0.3 76 Cu0.3W0.3Re0.4 126 V0.4K0.3Ba0.3 176 Cr0.4Ni0.3Cs0.3 

27 Co0.3Nb0.3Pb0.4 77 Cu0.3Ni0.3W0.4 127 Cu0.3Fe0.3Pb0.4 177 Cu0.3Ru0.3Bi0.4 

28 Ga0.4Co0.3Cs0.3 78 Co0.4Ca0.3Mn0.3 128 Cu0.4Sn0.3Ru0.3 178 Ga0.3Cu0.3SrBr0.4 

29 Co0.3V0.4Pb0.3 79 Co0.4K0.3Pd0.3 129 Zn0.3Hf0.4Ba0.3 179 Co0.4SrBr0.3Ba0.3 

30 K0.3Nb0.4SrBr0.3 80 Ca0.3Mn0.4Pb0.3 130 Cu0.4Zn0.3Ru0.3 180 Ga0.3Cu0.4Ni0.3 

31 Nb0.4Ca0.3Pb0.3 81 Ga0.3Zr0.4Zn0.3 131 Co0.3Cs0.4Re0.3 181 Co0.3Ni0.4W0.3 

32 Cu0.4Sn0.3Pd0.3 82 Co0.3Zr0.4Ce0.3 132 Cu0.4Cd0.3Ba0.3 182 Cu0.4V0.3Re0.3 

33 Cr0.4Cu0.3Ag0.3 83 Ga0.3Cu0.4Re0.3 133 Ga0.3Cu0.4Fe0.3 183 Ni0.3Ca0.3Ce0.4 

34 Nb0.4Ag0.3Cs0.3 84 Cu0.4Bi0.3Pd0.3 134 Cd0.3Co0.3Pd0.4 184 Cu0.4V0.3Pb0.3 

35 Cu0.3Cs0.4W0.3 85 Cu0.3Ca0.4Re0.3 135 Ni0.3Zn0.4Nb0.3 185 Cu0.4Zn0.3Ca0.3 

36 Ga0.3Ni0.3Re0.4 86 Cu0.3Nb0.3SrBr0.4 136 Ga0.3Cr0.4Ag0.3 186 Cr0.3Cd0.3Co0.4 

37 Co0.3Hf0.3Pb0.4 87 Cu0.4Sn0.3Ba0.3 137 Cr0.4Cd0.3Ba0.3 187 Ni0.3Nb0.4Ce0.3 

38 Sn0.3Mn0.4Ba0.3 88 Co0.3Ni0.3Hf0.4 138 Cu0.3Ag0.4W0.3 188 Ni0.3Zr0.3Ce0.4 

39 Cu0.3Co0.4Ag0.3 89 Cu0.4SrBr0.3Re0.3 139 Fe0.3Co0.4Cs0.3 189 Co0.4Zn0.3Mn0.3 

40 Cu0.3Zr0.4Ce0.3 90 Zn0.3SrBr0.3Mn0.4 140 Co0.3Zr0.4Cs0.3 190 Co0.3Ni0.3Bi0.4 

41 Ga0.3Co0.3Cs0.4 91 Cu0.4Mn0.3Ag0.3 141 Cu0.4SrBr0.3Pb0.3 191 Ni0.4Zn0.3Nb0.3 

42 Fe0.4Cs0.3Bi0.3 92 Ga0.3Co0.3V0.4 142 Cd0.3Ni0.4SrBr0.3 192 Cu0.3K0.4Hf0.3 

43 Co0.3Hf0.3Bi0.4 93 Ni0.3Nb0.4Cs0.3 143 Co0.3Ni0.4Bi0.3 193 Cu0.3Ni0.4Re0.3 

44 Ga0.3Ni0.4W0.3 94 Co0.3Ca0.3Ru0.4 144 Ga0.4Ni0.3Zr0.3 194 Cu0.3V0.3Ag0.4 

45 Ga0.3Co0.4Ce0.3 95 Cu0.3Ni0.4Sn0.3 145 Ga0.3Hf0.4Pb0.3 195 Cr0.4Ca0.3Ag0.3 

46 Cr0.3Cd0.4Co0.3 96 Cu0.4Cd0.3Nb0.3 146 Co0.3Ni0.4Pd0.3 196 Fe0.3Ni0.4Cs0.3 

47 Ga0.3V0.4Ag0.3 97 Ga0.3Ni0.3Nb0.4 147 Cd0.3Ce0.3Hf0.4 197 Cd0.3Co0.4Zr0.3 

48 Sn0.3W0.4Ba0.3 98 Cu0.3Co0.3Ba0.4 148 Cu0.3Fe0.4Ba0.3 198 Cu0.4Ni0.3Ag0.3 

49 Cd0.3Ce0.3Pd0.4 99 Co0.4Mn0.3Bi0.3 149 Ni0.4Ce0.3W0.3 199 Cu0.3Ce0.4Pd0.3 

50 Cu0.3Ru0.3Re0.4 100 Nb0.4Cs0.3Bi0.3 150 Cd0.3Cs0.3Pd0.4 200 Cu0.3SrBr0.4W0.3 
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Occupancy of catalyst library 2G1L 

 

1 Cu0.3Hf0.2Ti0.5 51 Cu0.5Hf0.2Si0.3 101 Cu0.3Zr0.4Al0.3 151 Cu0.5Zr0.4Sn0.1 

2 Cu0.3Hf0.2Al0.5 52 Cu0.5Hf0.2Sn0.3 102 Cu0.3Zr0.4Fe0.3 152 Cu0.5Zr0.4Zn0.1 

3 Cu0.3Hf0.2Fe0.5 53 Cu0.5Hf0.2Zn0.3 103 Cu0.3Zr0.4Mn0.3 153 Cu0.5Zr0.4Ta0.1 

4 Cu0.3Hf0.2Mn0.5 54 Cu0.5Hf0.2Ta0.3 104 Cu0.3Zr0.4In0.3 154 Cu0.5Zr0.4Ru0.1 

5 Cu0.3Hf0.2In0.5 55 Cu0.5Hf0.2Ru0.3 105 Cu0.3Zr0.4La0.3 155 Cu0.7Zr0.2Hf0.1 

6 Cu0.3Hf0.2La0.5 56 Cu0.5Zr0.3Hf0.2 106 Cu0.3Zr0.4Nb0.3 156 Cu0.7Zr0.2Ti0.1 

7 Cu0.3Hf0.2Nb0.5 57 Cu0.5Hf0.4Ti0.1 107 Cu0.3Zr0.4Sb0.3 157 Cu0.7Zr0.2Al0.1 

8 Cu0.3Hf0.2Sb0.5 58 Cu0.5Hf0.4Al0.1 108 Cu0.3Zr0.4Si0.3 158 Cu0.7Zr0.2Fe0.1 

9 Cu0.3Hf0.2Si0.5 59 Cu0.5Hf0.4Fe0.1 109 Cu0.3Zr0.4Sn0.3 159 Cu0.7Zr0.2Mn0.1 

10 Cu0.3Hf0.2Sn0.5 60 Cu0.5Hf0.4Mn0.1 110 Cu0.3Zr0.4Zn0.3 160 Cu0.7Zr0.2In0.1 

11 Cu0.3Hf0.2Zn0.5 61 Cu0.5Hf0.4In0.1 111 Cu0.3Zr0.4Ta0.3 161 Cu0.7Zr0.2La0.1 

12 Cu0.3Hf0.2Ta0.5 62 Cu0.5Hf0.4La0.1 112 Cu0.3Zr0.4Ru0.3 162 Cu0.7Zr0.2Nb0.1 

13 Cu0.3Hf0.2Ru0.5 63 Cu0.5Hf0.4Nb0.1 113 Cu0.3Zr0.6Hf0.1 163 Cu0.7Zr0.2Sb0.1 

14 Cu0.3Zr0.5Hf0.2 64 Cu0.5Hf0.4Sb0.1 114 Cu0.3Zr0.6Ti0.1 164 Cu0.7Zr0.2Si0.1 

15 Cu0.3Hf0.4Ti0.3 65 Cu0.5Hf0.4Si0.1 115 Cu0.3Zr0.6Al0.1 165 Cu0.7Zr0.2Sn0.1 

16 Cu0.3Hf0.4Al0.3 66 Cu0.5Hf0.4Sn0.1 116 Cu0.3Zr0.6Fe0.1 166 Cu0.7Zr0.2Zn0.1 

17 Cu0.3Hf0.4Fe0.3 67 Cu0.5Hf0.4Zn0.1 117 Cu0.3Zr0.6Mn0.1 167 Cu0.7Zr0.2Ta0.1 

18 Cu0.3Hf0.4Mn0.3 68 Cu0.5Hf0.4Ta0.1 118 Cu0.3Zr0.6In0.1 168 Cu0.7Zr0.2Ru0.1 

19 Cu0.3Hf0.4In0.3 69 Cu0.5Hf0.4Ru0.1 119 Cu0.3Zr0.6La0.1 169 Cu0.1Zr0.9 

20 Cu0.3Hf0.4La0.3 70 Cu0.5Zr0.1Hf0.4 120 Cu0.3Zr0.6Nb0.1 170 Cu0.2Zr0.8 

21 Cu0.3Hf0.4Nb0.3 71 Cu0.7Hf0.2Ti0.1 121 Cu0.3Zr0.6Sb0.1 171 Cu0.3Zr0.7 

22 Cu0.3Hf0.4Sb0.3 72 Cu0.7Hf0.2Al0.1 122 Cu0.3Zr0.6Si0.1 172 Cu0.4Zr0.6 

23 Cu0.3Hf0.4Si0.3 73 Cu0.7Hf0.2Fe0.1 123 Cu0.3Zr0.6Sn0.1 173 Cu0.5Zr0.5 

24 Cu0.3Hf0.4Sn0.3 74 Cu0.7Hf0.2Mn0.1 124 Cu0.3Zr0.6Zn0.1 174 Cu0.6Zr0.4 

25 Cu0.3Hf0.4Zn0.3 75 Cu0.7Hf0.2In0.1 125 Cu0.3Zr0.6Ta0.1 175 Cu0.7Zr0.3 

26 Cu0.3Hf0.4Ta0.3 76 Cu0.7Hf0.2La0.1 126 Cu0.3Zr0.6Ru0.1 176 Cu0.8Zr0.2 

27 Cu0.3Hf0.4Ru0.3 77 Cu0.7Hf0.2Nb0.1 127 Cu0.5Zr0.2Hf0.3 177 Cu0.9Zr0.1 

28 Cu0.3Zr0.3Hf0.4 78 Cu0.7Hf0.2Sb0.1 128 Cu0.5Zr0.2Ti0.3 178 Cu0.1Hf0.9 

29 Cu0.3Hf0.6Ti0.1 79 Cu0.7Hf0.2Si0.1 129 Cu0.5Zr0.2Al0.3 179 Cu0.2Hf0.8 

30 Cu0.3Hf0.6Al0.1 80 Cu0.7Hf0.2Sn0.1 130 Cu0.5Zr0.2Fe0.3 180 Cu0.3Hf0.7 

31 Cu0.3Hf0.6Fe0.1 81 Cu0.7Hf0.2Zn0.1 131 Cu0.5Zr0.2Mn0.3 181 Cu0.4Hf0.6 

32 Cu0.3Hf0.6Mn0.1 82 Cu0.7Hf0.2Ta0.1 132 Cu0.5Zr0.2In0.3 182 Cu0.5Hf0.5 

33 Cu0.3Hf0.6In0.1 83 Cu0.7Hf0.2Ru0.1 133 Cu0.5Zr0.2La0.3 183 Cu0.6Hf0.4 

34 Cu0.3Hf0.6La0.1 84 Cu0.7Zr0.1Hf0.2 134 Cu0.5Zr0.2Nb0.3 184 Cu0.7Hf0.3 

35 Cu0.3Hf0.6Nb0.1 85 Cu0.3Zr0.2Hf0.5 135 Cu0.5Zr0.2Sb0.3 185 Cu0.8Hf0.2 

36 Cu0.3Hf0.6Sb0.1 86 Cu0.3Zr0.2Ti0.5 136 Cu0.5Zr0.2Si0.3 186 Cu0.9Hf0.1 

37 Cu0.3Hf0.6Si0.1 87 Cu0.3Zr0.2Al0.5 137 Cu0.5Zr0.2Sn0.3 187 Cu0.1Ti0.9 

38 Cu0.3Hf0.6Sn0.1 88 Cu0.3Zr0.2Fe0.5 138 Cu0.5Zr0.2Zn0.3 188 Cu0.2Ti0.8 

39 Cu0.3Hf0.6Zn0.1 89 Cu0.3Zr0.2Mn0.5 139 Cu0.5Zr0.2Ta0.3 189 Cu0.3Ti0.7 

40 Cu0.3Hf0.6Ta0.1 90 Cu0.3Zr0.2In0.5 140 Cu0.5Zr0.2Ru0.3 190 Cu0.4Ti0.6 

41 Cu0.3Hf0.6Ru0.1 91 Cu0.3Zr0.2La0.5 141 Cu0.5Zr0.4Hf0.1 191 Cu0.5Ti0.5 

42 Cu0.3Zr0.1Hf0.6 92 Cu0.3Zr0.2Nb0.5 142 Cu0.5Zr0.4Ti0.1 192 Cu0.6Ti0.4 

43 Cu0.5Hf0.2Ti0.3 93 Cu0.3Zr0.2Sb0.5 143 Cu0.5Zr0.4Al0.1 193 Cu0.7Ti0.3 

44 Cu0.5Hf0.2Al0.3 94 Cu0.3Zr0.2Si0.5 144 Cu0.5Zr0.4Fe0.1 194 Cu0.8Ti0.2 

45 Cu0.5Hf0.2Fe0.3 95 Cu0.3Zr0.2Sn0.5 145 Cu0.5Zr0.4Mn0.1 195 Cu0.9Ti0.1 

46 Cu0.5Hf0.2Mn0.3 96 Cu0.3Zr0.2Zn0.5 146 Cu0.5Zr0.4In0.1 196 Cu1.0 

47 Cu0.5Hf0.2In0.3 97 Cu0.3Zr0.2Ta0.5 147 Cu0.5Zr0.4La0.1 197 Zr1.0 

48 Cu0.5Hf0.2La0.3 98 Cu0.3Zr0.2Ru0.5 148 Cu0.5Zr0.4Nb0.1 198 Hf1.0 

49 Cu0.5Hf0.2Nb0.3 99 Cu0.3Zr0.4Hf0.3 149 Cu0.5Zr0.4Sb0.1 199 Ti1.0 

50 Cu0.5Hf0.2Sb0.3 100 Cu0.3Zr0.4Ti0.3 150 Cu0.5Zr0.4Si0.1   
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Occupancy of catalyst library 2G2L 

 

1 Cu0.3Hf0.2Ti0.5 51 Cu0.5Hf0.2Si0.3 101 Cu0.3Zr0.4Al0.3 151 Cu0.5Zr0.4 

2 Cu0.3Hf0.2Al0.5 52 Cu0.5Hf0.2Sn0.3 102 Cu0.3Zr0.4Fe0.3 152 Cu0.5Zr0.4 

3 Cu0.3Hf0.2Fe0.5 53 Cu0.5Hf0.2Zn0.3 103 Cu0.3Zr0.4Mn0.3 153 Cu0.5Zr0.4 

4 Cu0.3Hf0.2Mn0.5 54 Cu0.5Hf0.2Ta0.3 104 Cu0.3Zr0.4Ru0.3 154 Cu0.5Zr0.4 

5 Cu0.3Hf0.2Ru0.5 55 Cu0.5Hf0.2In0.3 105 Cu0.3Zr0.4La0.3 155 Cu0.7Zr0.2 

6 Cu0.3Hf0.2La0.5 56 Cu0.5Zr0.3Hf0.2 106 Cu0.3Zr0.4Nb0.3 156 Cu0.7Zr0.2 

7 Cu0.3Hf0.2Nb0.5 57 Cu0.5Hf0.4 107 Cu0.3Zr0.4Sb0.3 157 Cu0.7Zr0.2 

8 Cu0.3Hf0.2Sb0.5 58 Cu0.5Hf0.4 108 Cu0.3Zr0.4Si0.3 158 Cu0.7Zr0.2 

9 Cu0.3Hf0.2Si0.5 59 Cu0.5Hf0.4 109 Cu0.3Zr0.4Sn0.3 159 Cu0.7Zr0.2 

10 Cu0.3Hf0.2Sn0.5 60 Cu0.5Hf0.4 110 Cu0.3Zr0.4Zn0.3 160 Cu0.7Zr0.2 

11 Cu0.3Hf0.2Zn0.5 61 Cu0.5Hf0.4 111 Cu0.3Zr0.4Ta0.3 161 Cu0.7Zr0.2 

12 Cu0.3Hf0.2Ta0.5 62 Cu0.5Hf0.4 112 Cu0.3Zr0.4In0.3 162 Cu0.7Zr0.2 

13 Cu0.3Hf0.2In0.5 63 Cu0.5Hf0.4 113 Cu0.3Zr0.6 163 Cu0.7Zr0.2 

14 Cu0.3Zr0.5Hf0.2 64 Cu0.5Hf0.4 114 Cu0.3Zr0.6 164 Cu0.7Zr0.2 

15 Cu0.3Hf0.4Ti0.3 65 Cu0.5Hf0.4 115 Cu0.3Zr0.6 165 Cu0.7Zr0.2 

16 Cu0.3Hf0.4Al0.3 66 Cu0.5Hf0.4 116 Cu0.3Zr0.6 166 Cu0.7Zr0.2 

17 Cu0.3Hf0.4Fe0.3 67 Cu0.5Hf0.4 117 Cu0.3Zr0.6 167 Cu0.7Zr0.2 

18 Cu0.3Hf0.4Mn0.3 68 Cu0.5Hf0.4 118 Cu0.3Zr0.6 168 Cu0.7Zr0.2 

19 Cu0.3Hf0.4Ru0.3 69 Cu0.5Hf0.4 119 Cu0.3Zr0.6 169 Zr0.9 

20 Cu0.3Hf0.4La0.3 70 Cu0.5Hf0.4 120 Cu0.3Zr0.6 170 Cu0.2Zr0.8 

21 Cu0.3Hf0.4Nb0.3 71 Cu0.7Hf0.2 121 Cu0.3Zr0.6 171 Cu0.3Zr0.7 

22 Cu0.3Hf0.4Sb0.3 72 Cu0.7Hf0.2 122 Cu0.3Zr0.6 172 Cu0.4Zr0.6 

23 Cu0.3Hf0.4Si0.3 73 Cu0.7Hf0.2 123 Cu0.3Zr0.6 173 Cu0.5Zr0.5 

24 Cu0.3Hf0.4Sn0.3 74 Cu0.7Hf0.2 124 Cu0.3Zr0.6 174 Cu0.6Zr0.4 

25 Cu0.3Hf0.4Zn0.3 75 Cu0.7Hf0.2 125 Cu0.3Zr0.6 175 Cu0.7Zr0.3 

26 Cu0.3Hf0.4Ta0.3 76 Cu0.7Hf0.2 126 Cu0.3Zr0.6 176 Cu0.8Zr0.2 

27 Cu0.3Hf0.4In0.3 77 Cu0.7Hf0.2 127 Cu0.5Zr0.2Hf0.3 177 Cu0.9 

28 Cu0.3Zr0.3Hf0.4 78 Cu0.7Hf0.2 128 Cu0.5Zr0.2Ti0.3 178 Hf0.9 

29 Cu0.3Hf0.6 79 Cu0.7Hf0.2 129 Cu0.5Zr0.2Al0.3 179 Cu0.2Hf0.8 

30 Cu0.3Hf0.6 80 Cu0.7Hf0.2 130 Cu0.5Zr0.2Fe0.3 180 Cu0.3Hf0.7 

31 Cu0.3Hf0.6 81 Cu0.7Hf0.2 131 Cu0.5Zr0.2Mn0.3 181 Cu0.4Hf0.6 

32 Cu0.3Hf0.6 82 Cu0.7Hf0.2 132 Cu0.5Zr0.2Ru0.3 182 Cu0.5Hf0.5 

33 Cu0.3Hf0.6 83 Cu0.7Hf0.2 133 Cu0.5Zr0.2La0.3 183 Cu0.6Hf0.4 

34 Cu0.3Hf0.6 84 Cu0.7Hf0.2 134 Cu0.5Zr0.2Nb0.3 184 Cu0.7Hf0.3 

35 Cu0.3Hf0.6 85 Cu0.3Zr0.2Hf0.5 135 Cu0.5Zr0.2Sb0.3 185 Cu0.8Hf0.2 

36 Cu0.3Hf0.6 86 Cu0.3Zr0.2Ti0.5 136 Cu0.5Zr0.2Si0.3 186 Cu0.9 

37 Cu0.3Hf0.6 87 Cu0.3Zr0.2Al0.5 137 Cu0.5Zr0.2Sn0.3 187 Ti0.9 

38 Cu0.3Hf0.6 88 Cu0.3Zr0.2Fe0.5 138 Cu0.5Zr0.2Zn0.3 188 Cu0.2Ti0.8 

39 Cu0.3Hf0.6 89 Cu0.3Zr0.2Mn0.5 139 Cu0.5Zr0.2Ta0.3 189 Cu0.3Ti0.7 

40 Cu0.3Hf0.6 90 Cu0.3Zr0.2Ru0.5 140 Cu0.5Zr0.2In0.3 190 Cu0.4Ti0.6 

41 Cu0.3Hf0.6 91 Cu0.3Zr0.2La0.5 141 Cu0.5Zr0.4 191 Cu0.5Ti0.5 

42 Cu0.3Hf0.6 92 Cu0.3Zr0.2Nb0.5 142 Cu0.5Zr0.4 192 Cu0.6Ti0.4 

43 Cu0.5Hf0.2Ti0.3 93 Cu0.3Zr0.2Sb0.5 143 Cu0.5Zr0.4 193 Cu0.7Ti0.3 

44 Cu0.5Hf0.2Al0.3 94 Cu0.3Zr0.2Si0.5 144 Cu0.5Zr0.4 194 Cu0.8Ti0.2 

45 Cu0.5Hf0.2Fe0.3 95 Cu0.3Zr0.2Sn0.5 145 Cu0.5Zr0.4 195 Cu0.9 

46 Cu0.5Hf0.2Mn0.3 96 Cu0.3Zr0.2Zn0.5 146 Cu0.5Zr0.4 196 Cu1.0 

47 Cu0.5Hf0.2Ru0.3 97 Cu0.3Zr0.2Ta0.5 147 Cu0.5Zr0.4 197 Zr1.0 

48 Cu0.5Hf0.2La0.3 98 Cu0.3Zr0.2In0.5 148 Cu0.5Zr0.4 198 Hf1.0 

49 Cu0.5Hf0.2Nb0.3 99 Cu0.3Zr0.4Hf0.3 149 Cu0.5Zr0.4 199 Ti1.0 

50 Cu0.5Hf0.2Sb0.3 100 Cu0.3Zr0.4Ti0.3 150 Cu0.5Zr0.4   
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Occupancy of catalyst library 2G3L 

 

1 Cu0.5Mn0.2Sn0.3 51 Cu0.3Sn0.5In0.2 101 Cu0.7Cr0.2La0.1 151 Cu0.6Mn0.2In0.2 

2 Cu0.5Mn0.2Sb0.3 52 Cu0.3Sn0.5La0.2 102 Cu0.7Cr0.2Zr0.1 152 Cu0.6Mn0.2La0.2 

3 Cu0.5Mn0.2Cr0.3 53 Cu0.3Sn0.5Zr0.2 103 Cu0.7In0.2La0.1 153 Cu0.6Mn0.2Zr0.2 

4 Cu0.5Mn0.2In0.3 54 Cu0.3Sb0.5Cr0.2 104 Cu0.7In0.2Zr0.1 154 Cu0.6Sn0.2Sb0.2 

5 Cu0.5Mn0.2La0.3 55 Cu0.3Sb0.5In0.2 105 Cu0.7La0.2Zr0.1 155 Cu0.6Sn0.2Cr0.2 

6 Cu0.5Mn0.2Zr0.3 56 Cu0.3Sb0.5La0.2 106 Cu0.7Mn0.1Sn0.2 156 Cu0.6Sn0.2In0.2 

7 Cu0.5Sn0.2Sb0.3 57 Cu0.3Sb0.5Zr0.2 107 Cu0.7Mn0.1Sb0.2 157 Cu0.6Sn0.2La0.2 

8 Cu0.5Sn0.2Cr0.3 58 Cu0.3Cr0.5In0.2 108 Cu0.7Mn0.1Cr0.2 158 Cu0.6Sn0.2Zr0.2 

9 Cu0.5Sn0.2In0.3 59 Cu0.3Cr0.5La0.2 109 Cu0.7Mn0.1In0.2 159 Cu0.6Sb0.2Cr0.2 

10 Cu0.5Sn0.2La0.3 60 Cu0.3Cr0.5Zr0.2 110 Cu0.7Mn0.1La0.2 160 Cu0.6Sb0.2In0.2 

11 Cu0.5Sn0.2Zr0.3 61 Cu0.3In0.5La0.2 111 Cu0.7Mn0.1Zr0.2 161 Cu0.6Sb0.2La0.2 

12 Cu0.5Sb0.2Cr0.3 62 Cu0.3In0.5Zr0.2 112 Cu0.7Sn0.1Sb0.2 162 Cu0.6Sb0.2Zr0.2 

13 Cu0.5Sb0.2In0.3 63 Cu0.3La0.5Zr0.2 113 Cu0.7Sn0.1Cr0.2 163 Cu0.6Cr0.2In0.2 

14 Cu0.5Sb0.2La0.3 64 Cu0.3Mn0.2Sn0.5 114 Cu0.7Sn0.1In0.2 164 Cu0.6Cr0.2La0.2 

15 Cu0.5Sb0.2Zr0.3 65 Cu0.3Mn0.2Sb0.5 115 Cu0.7Sn0.1La0.2 165 Cu0.6Cr0.2Zr0.2 

16 Cu0.5Cr0.2In0.3 66 Cu0.3Mn0.2Cr0.5 116 Cu0.7Sn0.1Zr0.2 166 Cu0.6In0.2La0.2 

17 Cu0.5Cr0.2La0.3 67 Cu0.3Mn0.2In0.5 117 Cu0.7Sb0.1Cr0.2 167 Cu0.6In0.2Zr0.2 

18 Cu0.5Cr0.2Zr0.3 68 Cu0.3Mn0.2La0.5 118 Cu0.7Sb0.1In0.2 168 Cu0.6La0.2Zr0.2 

19 Cu0.5In0.2La0.3 69 Cu0.3Mn0.2Zr0.5 119 Cu0.7Sb0.1La0.2 169 Cu0.3Mn0.4Sn0.3 

20 Cu0.5In0.2Zr0.3 70 Cu0.3Sn0.2Sb0.5 120 Cu0.7Sb0.1Zr0.2 170 Cu0.3Mn0.4Sb0.3 

21 Cu0.5La0.2Zr0.3 71 Cu0.3Sn0.2Cr0.5 121 Cu0.7Cr0.1In0.2 171 Cu0.3Mn0.4Cr0.3 

22 Cu0.5Mn0.3Sn0.2 72 Cu0.3Sn0.2In0.5 122 Cu0.7Cr0.1La0.2 172 Cu0.3Mn0.4In0.3 

23 Cu0.5Mn0.3Sb0.2 73 Cu0.3Sn0.2La0.5 123 Cu0.7Cr0.1Zr0.2 173 Cu0.3Mn0.4La0.3 

24 Cu0.5Mn0.3Cr0.2 74 Cu0.3Sn0.2Zr0.5 124 Cu0.7In0.1La0.2 174 Cu0.3Mn0.4Zr0.3 

25 Cu0.5Mn0.3In0.2 75 Cu0.3Sb0.2Cr0.5 125 Cu0.7In0.1Zr0.2 175 Cu0.3Sn0.4Sb0.3 

26 Cu0.5Mn0.3La0.2 76 Cu0.3Sb0.2In0.5 126 Cu0.7La0.1Zr0.2 176 Cu0.3Sn0.4Cr0.3 

27 Cu0.5Mn0.3Zr0.2 77 Cu0.3Sb0.2La0.5 127 Cu0.4Mn0.3Sn0.3 177 Cu0.3Sn0.4In0.3 

28 Cu0.5Sn0.3Sb0.2 78 Cu0.3Sb0.2Zr0.5 128 Cu0.4Mn0.3Sb0.3 178 Cu0.3Sn0.4La0.3 

29 Cu0.5Sn0.3Cr0.2 79 Cu0.3Cr0.2In0.5 129 Cu0.4Mn0.3Cr0.3 179 Cu0.3Sn0.4Zr0.3 

30 Cu0.5Sn0.3In0.2 80 Cu0.3Cr0.2La0.5 130 Cu0.4Mn0.3In0.3 180 Cu0.3Sb0.4Cr0.3 

31 Cu0.5Sn0.3La0.2 81 Cu0.3Cr0.2Zr0.5 131 Cu0.4Mn0.3La0.3 181 Cu0.3Sb0.4In0.3 

32 Cu0.5Sn0.3Zr0.2 82 Cu0.3In0.2La0.5 132 Cu0.4Mn0.3Zr0.3 182 Cu0.3Sb0.4La0.3 

33 Cu0.5Sb0.3Cr0.2 83 Cu0.3In0.2Zr0.5 133 Cu0.4Sn0.3Sb0.3 183 Cu0.3Sb0.4Zr0.3 

34 Cu0.5Sb0.3In0.2 84 Cu0.3La0.2Zr0.5 134 Cu0.4Sn0.3Cr0.3 184 Cu0.3Cr0.4In0.3 

35 Cu0.5Sb0.3La0.2 85 Cu0.7Mn0.2Sn0.1 135 Cu0.4Sn0.3In0.3 185 Cu0.3Cr0.4La0.3 

36 Cu0.5Sb0.3Zr0.2 86 Cu0.7Mn0.2Sb0.1 136 Cu0.4Sn0.3La0.3 186 Cu0.3Cr0.4Zr0.3 

37 Cu0.5Cr0.3In0.2 87 Cu0.7Mn0.2Cr0.1 137 Cu0.4Sn0.3Zr0.3 187 Cu0.3In0.4La0.3 

38 Cu0.5Cr0.3La0.2 88 Cu0.7Mn0.2In0.1 138 Cu0.4Sb0.3Cr0.3 188 Cu0.3In0.4Zr0.3 

39 Cu0.5Cr0.3Zr0.2 89 Cu0.7Mn0.2La0.1 139 Cu0.4Sb0.3In0.3 189 Cu0.3La0.4Zr0.3 

40 Cu0.5In0.3La0.2 90 Cu0.7Mn0.2Zr0.1 140 Cu0.4Sb0.3La0.3 190 Cu0.3Mn0.3Sn0.4 

41 Cu0.5In0.3Zr0.2 91 Cu0.7Sn0.2Sb0.1 141 Cu0.4Sb0.3Zr0.3 191 Cu0.3Mn0.3Sb0.4 

42 Cu0.5La0.3Zr0.2 92 Cu0.7Sn0.2Cr0.1 142 Cu0.4Cr0.3In0.3 192 Cu0.3Mn0.3Cr0.4 

43 Cu0.3Mn0.5Sn0.2 93 Cu0.7Sn0.2In0.1 143 Cu0.4Cr0.3La0.3 193 Cu0.3Mn0.3In0.4 

44 Cu0.3Mn0.5Sb0.2 94 Cu0.7Sn0.2La0.1 144 Cu0.4Cr0.3Zr0.3 194 Cu0.3Mn0.3La0.4 

45 Cu0.3Mn0.5Cr0.2 95 Cu0.7Sn0.2Zr0.1 145 Cu0.4In0.3La0.3 195 Cu0.3Mn0.3Zr0.4 

46 Cu0.3Mn0.5In0.2 96 Cu0.7Sb0.2Cr0.1 146 Cu0.4In0.3Zr0.3 196 Cu0.3Sn0.3Sb0.4 

47 Cu0.3Mn0.5La0.2 97 Cu0.7Sb0.2In0.1 147 Cu0.4La0.3Zr0.3 197 Cu0.3Sn0.3Cr0.4 

48 Cu0.3Mn0.5Zr0.2 98 Cu0.7Sb0.2La0.1 148 Cu0.6Mn0.2Sn0.2 198 Cu0.3Sn0.3In0.4 

49 Cu0.3Sn0.5Sb0.2 99 Cu0.7Sb0.2Zr0.1 149 Cu0.6Mn0.2Sb0.2 199 Cu0.3Sn0.3La0.4 

50 Cu0.3Sn0.5Cr0.2 100 Cu0.7Cr0.2In0.1 150 Cu0.6Mn0.2Cr0.2 200 Cu0.3Sn0.3Zr0.4 
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Occupancy of catalyst library 1G4L 

 

1 Ga0.4Cr0.4Cu0.2 51 Ga0.5Cr0.4Fe0.1 101 Ga0.4Cr0.4Ni0.2 151 Ga0.5Cr0.4V0.1 

2 Ga0.4Cr0.4Cd0.2 52 Ga0.5Cr0.4Co0.1 102 Ga0.4Cr0.4Zr0.2 152 Ga0.5Cr0.4Zn0.1 

3 Ga0.4Cr0.4Fe0.2 53 Ga0.5Cr0.4Ni0.1 103 Ga0.4Cr0.4V0.2 153 Ga0.5Cr0.4Sn0.1 

4 Ga0.4Cr0.4Co0.2 54 Ga0.5Cr0.4Zr0.1 104 Ga0.4Cr0.4Zn0.2 154 Ga0.5Cr0.4K0.1 

5 Ga0.4Cr0.4Ni0.2 55 Ga0.5Cr0.4V0.1 105 Ga0.4Cr0.4Sn0.2 155 Ga0.5Cr0.4Nb0.1 

6 Ga0.4Cr0.4Zr0.2 56 Ga0.5Cr0.4Zn0.1 106 Ga0.4Cr0.4K0.2 156 Ga0.5Cr0.4Ca0.1 

7 Ga0.4Cr0.4V0.2 57 Ga0.5Cr0.4Sn0.1 107 Ga0.4Cr0.4Nb0.2 157 Ga0.5Cr0.4Ru0.1 

8 Ga0.4Cr0.4Zn0.2 58 Ga0.5Cr0.4K0.1 108 Ga0.4Cr0.4Ca0.2 158 Ga0.5Cr0.4Ce0.1 

9 Ga0.4Cr0.4Sn0.2 59 Ga0.5Cr0.4Nb0.1 109 Ga0.4Cr0.4Ru0.2 159 Ga0.5Cr0.4SrBr0.1 

10 Ga0.4Cr0.4K0.2 60 Ga0.5Cr0.4Ca0.1 110 Ga0.4Cr0.4Ce0.2 160 Ga0.5Cr0.4Ag0.1 

11 Ga0.4Cr0.4Nb0.2 61 Ga0.5Cr0.4Ru0.1 111 Ga0.4Cr0.4SrBr0.2 161 Ga0.5Cr0.4Hf0.1 

12 Ga0.4Cr0.4Ca0.2 62 Ga0.5Cr0.4Ce0.1 112 Ga0.4Cr0.4Ag0.2 162 Ga0.5Cr0.4Cs0.1 

13 Ga0.4Cr0.4Ru0.2 63 Ga0.5Cr0.4SrBr0.1 113 Ga0.4Cr0.4Hf0.2 163 Ga0.5Cr0.4W0.1 

14 Ga0.4Cr0.4Ce0.2 64 Ga0.5Cr0.4Ag0.1 114 Ga0.4Cr0.4Cs0.2 164 Ga0.5Cr0.4Re0.1 

15 Ga0.4Cr0.4SrBr0.2 65 Ga0.5Cr0.4Hf0.1 115 Ga0.4Cr0.4W0.2 165 Ga0.5Cr0.4Ba0.1 

16 Ga0.4Cr0.4Ag0.2 66 Ga0.5Cr0.4Cs0.1 116 Ga0.4Cr0.4Re0.2 166 Ga0.5Cr0.4Bi0.1 

17 Ga0.4Cr0.4Hf0.2 67 Ga0.5Cr0.4W0.1 117 Ga0.4Cr0.4Ba0.2 167 Ga0.5Cr0.4Pb0.1 

18 Ga0.4Cr0.4Cs0.2 68 Ga0.5Cr0.4Re0.1 118 Ga0.4Cr0.4Bi0.2 168 Ga0.5Cr0.4Hf20.1 

19 Ga0.4Cr0.4W0.2 69 Ga0.5Cr0.4Ba0.1 119 Ga0.4Cr0.4Pb0.2 169 Ga0.4Cr0.5Cu0.1 

20 Ga0.4Cr0.4Re0.2 70 Ga0.5Cr0.4Bi0.1 120 Ga0.4Cr0.4Hf20.2 170 Ga0.4Cr0.5Cd0.1 

21 Ga0.4Cr0.4Ba0.2 71 Ga0.5Cr0.4Pb0.1 121 Ga0.45Cr0.45Cu0.1 171 Ga0.4Cr0.5Fe0.1 

22 Ga0.4Cr0.4Bi0.2 72 Ga0.5Cr0.4Hf20.1 122 Ga0.45Cr0.45Cd0.1 172 Ga0.4Cr0.5Co0.1 

23 Ga0.4Cr0.4Pb0.2 73 Ga0.4Cr0.5Cu0.1 123 Ga0.45Cr0.45Fe0.1 173 Ga0.4Cr0.5Ni0.1 

24 Ga0.4Cr0.4Hf20.2 74 Ga0.4Cr0.5Cd0.1 124 Ga0.45Cr0.45Co0.1 174 Ga0.4Cr0.5Zr0.1 

25 Ga0.45Cr0.45Cu0.1 75 Ga0.4Cr0.5Fe0.1 125 Ga0.45Cr0.45Ni0.1 175 Ga0.4Cr0.5V0.1 

26 Ga0.45Cr0.45Cd0.1 76 Ga0.4Cr0.5Co0.1 126 Ga0.45Cr0.45Zr0.1 176 Ga0.4Cr0.5Zn0.1 

27 Ga0.45Cr0.45Fe0.1 77 Ga0.4Cr0.5Ni0.1 127 Ga0.45Cr0.45V0.1 177 Ga0.4Cr0.5Sn0.1 

28 Ga0.45Cr0.45Co0.1 78 Ga0.4Cr0.5Zr0.1 128 Ga0.45Cr0.45Zn0.1 178 Ga0.4Cr0.5K0.1 

29 Ga0.45Cr0.45Ni0.1 79 Ga0.4Cr0.5V0.1 129 Ga0.45Cr0.45Sn0.1 179 Ga0.4Cr0.5Nb0.1 

30 Ga0.45Cr0.45Zr0.1 80 Ga0.4Cr0.5Zn0.1 130 Ga0.45Cr0.45K0.1 180 Ga0.4Cr0.5Ca0.1 

31 Ga0.45Cr0.45V0.1 81 Ga0.4Cr0.5Sn0.1 131 Ga0.45Cr0.45Nb0.1 181 Ga0.4Cr0.5Ru0.1 

32 Ga0.45Cr0.45Zn0.1 82 Ga0.4Cr0.5K0.1 132 Ga0.45Cr0.45Ca0.1 182 Ga0.4Cr0.5Ce0.1 

33 Ga0.45Cr0.45Sn0.1 83 Ga0.4Cr0.5Nb0.1 133 Ga0.45Cr0.45Ru0.1 183 Ga0.4Cr0.5SrBr0.1 

34 Ga0.45Cr0.45K0.1 84 Ga0.4Cr0.5Ca0.1 134 Ga0.45Cr0.45Ce0.1 184 Ga0.4Cr0.5Ag0.1 

35 Ga0.45Cr0.45Nb0.1 85 Ga0.4Cr0.5Ru0.1 135 Ga0.45Cr0.45SrBr0.1 185 Ga0.4Cr0.5Hf0.1 

36 Ga0.45Cr0.45Ca0.1 86 Ga0.4Cr0.5Ce0.1 136 Ga0.45Cr0.45Ag0.1 186 Ga0.4Cr0.5Cs0.1 

37 Ga0.45Cr0.45Ru0.1 87 Ga0.4Cr0.5SrBr0.1 137 Ga0.45Cr0.45Hf0.1 187 Ga0.4Cr0.5W0.1 

38 Ga0.45Cr0.45Ce0.1 88 Ga0.4Cr0.5Ag0.1 138 Ga0.45Cr0.45Cs0.1 188 Ga0.4Cr0.5Re0.1 

39 Ga0.45Cr0.45SrBr0.1 89 Ga0.4Cr0.5Hf0.1 139 Ga0.45Cr0.45W0.1 189 Ga0.4Cr0.5Ba0.1 

40 Ga0.45Cr0.45Ag0.1 90 Ga0.4Cr0.5Cs0.1 140 Ga0.45Cr0.45Re0.1 190 Ga0.4Cr0.5Bi0.1 

41 Ga0.45Cr0.45Hf0.1 91 Ga0.4Cr0.5W0.1 141 Ga0.45Cr0.45Ba0.1 191 Ga0.4Cr0.5Pb0.1 

42 Ga0.45Cr0.45Cs0.1 92 Ga0.4Cr0.5Re0.1 142 Ga0.45Cr0.45Bi0.1 192 Ga0.4Cr0.5Hf20.1 

43 Ga0.45Cr0.45W0.1 93 Ga0.4Cr0.5Ba0.1 143 Ga0.45Cr0.45Pb0.1 193 Ga0.5Cr0.5 

44 Ga0.45Cr0.45Re0.1 94 Ga0.4Cr0.5Bi0.1 144 Ga0.45Cr0.45Hf20.1 194 Ga0.5Cr0.5 

45 Ga0.45Cr0.45Ba0.1 95 Ga0.4Cr0.5Pb0.1 145 Ga0.5Cr0.4Cu0.1 195 Ga0.4Cr0.6 

46 Ga0.45Cr0.45Bi0.1 96 Ga0.4Cr0.5Hf20.1 146 Ga0.5Cr0.4Cd0.1 196 Ga0.4Cr0.6 

47 Ga0.45Cr0.45Pb0.1 97 Ga0.4Cr0.4Cu0.2 147 Ga0.5Cr0.4Fe0.1 197 Ga0.6Cr0.4 

48 Ga0.45Cr0.45Hf20.1 98 Ga0.4Cr0.4Cd0.2 148 Ga0.5Cr0.4Co0.1 198 Ga0.6Cr0.4 

49 Ga0.5Cr0.4Cu0.1 99 Ga0.4Cr0.4Fe0.2 149 Ga0.5Cr0.4Ni0.1 199 Ga0.7Cr0.3 

50 Ga0.5Cr0.4Cd0.1 100 Ga0.4Cr0.4Co0.2 150 Ga0.5Cr0.4Zr0.1 200 Ga0.7Cr0.3 
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Occupancy of catalyst library 3G1L 

 

1 Cu(a)1.0 51 Cu(a)0.1Zr0.4Sn0.5 101 Cu(a)0.2Hf0.2Sn0.6 151 Hf0.7Sn0.2Cu(b)0.1 

2 Cu(a)0.9Zr0.1 52 Cu(a)0.1Zr0.3Sn0.6 102 Cu(a)0.2Hf0.1Sn0.7 152 Hf0.6Sn0.3Cu(b)0.1 

3 Cu(a)0.9Sn0.1 53 Cu(a)0.1Zr0.2Sn0.7 103 Cu(a)0.1Hf0.9 153 Hf0.5Sn0.4Cu(b)0.1 

4 Cu(a)0.8Zr0.2 54 Cu(a)0.1Zr0.1Sn0.8 104 Cu(a)0.1Hf0.8Sn0.1 154 Hf0.4Sn0.5Cu(b)0.1 

5 Cu(a)0.8Zr0.1Sn0.1 55 Cu(a)0.1Sn0.9 105 Cu(a)0.1Hf0.7Sn0.2 155 Hf0.3Sn0.6Cu(b)0.1 

6 Cu(a)0.8Sn0.2 56 Zr1.0 106 Cu(a)0.1Hf0.6Sn0.3 156 Hf0.2Sn0.7Cu(b)0.1 

7 Cu(a)0.7Zr0.3 57 Zr0.9Sn0.1 107 Cu(a)0.1Hf0.5Sn0.4 157 Hf0.1Sn0.8Cu(b)0.1 

8 Cu(a)0.7Zr0.2Sn0.1 58 Zr0.8Sn0.2 108 Cu(a)0.1Hf0.4Sn0.5 158 Hf0.7Cu(b)0.3 

9 Cu(a)0.7Zr0.1Sn0.2 59 Zr0.7Sn0.3 109 Cu(a)0.1Hf0.3Sn0.6 159 Hf0.5Cu(b)0.5 

10 Cu(a)0.7Sn0.3 60 Zr0.6Sn0.4 110 Cu(a)0.1Hf0.2Sn0.7 160 Hf0.3Cu(b)0.7 

11 Cu(a)0.6Zr0.4 61 Zr0.5Sn0.5 111 Cu(a)0.1Hf0.1Sn0.8 161 Zr0.1Sn0.1Cu(b)0.8 

12 Cu(a)0.6Zr0.3Sn0.1 62 Zr0.4Sn0.6 112 Hf1.0 162 Zr0.2Sn0.1Cu(b)0.7 

13 Cu(a)0.6Zr0.2Sn0.2 63 Zr0.3Sn0.7 113 Hf0.9Sn0.1 163 Zr0.1Sn0.2Cu(b)0.7 

14 Cu(a)0.6Zr0.1Sn0.3 64 Zr0.2Sn0.8 114 Hf0.8Sn0.2 164 Zr0.3Sn0.1Cu(b)0.6 

15 Cu(a)0.6Sn0.4 65 Zr0.1Sn0.9 115 Hf0.7Sn0.3 165 Zr0.2Sn0.2Cu(b)0.6 

16 Cu(a)0.5Zr0.5 66 Sn1.0 116 Hf0.6Sn0.4 166 Zr0.1Sn0.3Cu(b)0.6 

17 Cu(a)0.5Zr0.4Sn0.1 67 Cu(a)0.9Hf0.1 117 Hf0.5Sn0.5 167 Zr0.4Sn0.1Cu(b)0.5 

18 Cu(a)0.5Zr0.3Sn0.2 68 Cu(a)0.8Hf0.2 118 Hf0.4Sn0.6 168 Zr0.3Sn0.2Cu(b)0.5 

19 Cu(a)0.5Zr0.2Sn0.3 69 Cu(a)0.8Hf0.1Sn0.1 119 Hf0.3Sn0.7 169 Zr0.2Sn0.3Cu(b)0.5 

20 Cu(a)0.5Zr0.1Sn0.4 70 Cu(a)0.7Hf0.3 120 Hf0.2Sn0.8 170 Zr0.1Sn0.4Cu(b)0.5 

21 Cu(a)0.5Sn0.5 71 Cu(a)0.7Hf0.2Sn0.1 121 Hf0.1Sn0.9 171 Zr0.5Sn0.1Cu(b)0.4 

22 Cu(a)0.4Zr0.6 72 Cu(a)0.7Hf0.1Sn0.2 122 Hf0.1Sn0.1Cu(b)0.8 172 Zr0.4Sn0.2Cu(b)0.4 

23 Cu(a)0.4Zr0.5Sn0.1 73 Cu(a)0.6Hf0.4 123 Hf0.2Sn0.1Cu(b)0.7 173 Zr0.3Sn0.3Cu(b)0.4 

24 Cu(a)0.4Zr0.4Sn0.2 74 Cu(a)0.6Hf0.3Sn0.1 124 Hf0.1Sn0.2Cu(b)0.7 174 Zr0.2Sn0.4Cu(b)0.4 

25 Cu(a)0.4Zr0.3Sn0.3 75 Cu(a)0.6Hf0.2Sn0.2 125 Hf0.3Sn0.1Cu(b)0.6 175 Zr0.1Sn0.5Cu(b)0.4 

26 Cu(a)0.4Zr0.2Sn0.4 76 Cu(a)0.6Hf0.1Sn0.3 126 Hf0.2Sn0.2Cu(b)0.6 176 Zr0.6Sn0.1Cu(b)0.3 

27 Cu(a)0.4Zr0.1Sn0.5 77 Cu(a)0.5Hf0.5 127 Hf0.1Sn0.3Cu(b)0.6 177 Zr0.5Sn0.2Cu(b)0.3 

28 Cu(a)0.4Sn0.6 78 Cu(a)0.5Hf0.4Sn0.1 128 Hf0.4Sn0.1Cu(b)0.5 178 Zr0.4Sn0.3Cu(b)0.3 

29 Cu(a)0.3Zr0.7 79 Cu(a)0.5Hf0.3Sn0.2 129 Hf0.3Sn0.2Cu(b)0.5 179 Zr0.3Sn0.4Cu(b)0.3 

30 Cu(a)0.3Zr0.6Sn0.1 80 Cu(a)0.5Hf0.2Sn0.3 130 Hf0.2Sn0.3Cu(b)0.5 180 Zr0.2Sn0.5Cu(b)0.3 

31 Cu(a)0.3Zr0.5Sn0.2 81 Cu(a)0.5Hf0.1Sn0.4 131 Hf0.1Sn0.4Cu(b)0.5 181 Zr0.1Sn0.6Cu(b)0.3 

32 Cu(a)0.3Zr0.4Sn0.3 82 Cu(a)0.4Hf0.6 132 Hf0.5Sn0.1Cu(b)0.4 182 Zr0.7Sn0.1Cu(b)0.2 

33 Cu(a)0.3Zr0.3Sn0.4 83 Cu(a)0.4Hf0.5Sn0.1 133 Hf0.4Sn0.2Cu(b)0.4 183 Zr0.6Sn0.2Cu(b)0.2 

34 Cu(a)0.3Zr0.2Sn0.5 84 Cu(a)0.4Hf0.4Sn0.2 134 Hf0.3Sn0.3Cu(b)0.4 184 Zr0.5Sn0.3Cu(b)0.2 

35 Cu(a)0.3Zr0.1Sn0.6 85 Cu(a)0.4Hf0.3Sn0.3 135 Hf0.2Sn0.4Cu(b)0.4 185 Zr0.4Sn0.4Cu(b)0.2 

36 Cu(a)0.3Sn0.7 86 Cu(a)0.4Hf0.2Sn0.4 136 Hf0.1Sn0.5Cu(b)0.4 186 Zr0.3Sn0.5Cu(b)0.2 

37 Cu(a)0.2Zr0.8 87 Cu(a)0.4Hf0.1Sn0.5 137 Hf0.6Sn0.1Cu(b)0.3 187 Zr0.2Sn0.6Cu(b)0.2 

38 Cu(a)0.2Zr0.7Sn0.1 88 Cu(a)0.3Hf0.7 138 Hf0.5Sn0.2Cu(b)0.3 188 Zr0.1Sn0.7Cu(b)0.2 

39 Cu(a)0.2Zr0.6Sn0.2 89 Cu(a)0.3Hf0.6Sn0.1 139 Hf0.4Sn0.3Cu(b)0.3 189 Zr0.8Sn0.1Cu(b)0.1 

40 Cu(a)0.2Zr0.5Sn0.3 90 Cu(a)0.3Hf0.5Sn0.2 140 Hf0.3Sn0.4Cu(b)0.3 190 Zr0.7Sn0.2Cu(b)0.1 

41 Cu(a)0.2Zr0.4Sn0.4 91 Cu(a)0.3Hf0.4Sn0.3 141 Hf0.2Sn0.5Cu(b)0.3 191 Zr0.6Sn0.3Cu(b)0.1 

42 Cu(a)0.2Zr0.3Sn0.5 92 Cu(a)0.3Hf0.3Sn0.4 142 Hf0.1Sn0.6Cu(b)0.3 192 Zr0.5Sn0.4Cu(b)0.1 

43 Cu(a)0.2Zr0.2Sn0.6 93 Cu(a)0.3Hf0.2Sn0.5 143 Hf0.7Sn0.1Cu(b)0.2 193 Zr0.4Sn0.5Cu(b)0.1 

44 Cu(a)0.2Zr0.1Sn0.7 94 Cu(a)0.3Hf0.1Sn0.6 144 Hf0.6Sn0.2Cu(b)0.2 194 Zr0.3Sn0.6Cu(b)0.1 

45 Cu(a)0.2Sn0.8 95 Cu(a)0.2Hf0.8 145 Hf0.5Sn0.3Cu(b)0.2 195 Zr0.2Sn0.7Cu(b)0.1 

46 Cu(a)0.1Zr0.9 96 Cu(a)0.2Hf0.7Sn0.1 146 Hf0.4Sn0.4Cu(b)0.2 196 Zr0.1Sn0.8Cu(b)0.1 

47 Cu(a)0.1Zr0.8Sn0.1 97 Cu(a)0.2Hf0.6Sn0.2 147 Hf0.3Sn0.5Cu(b)0.2 197 Zr0.7Cu(b)0.3 

48 Cu(a)0.1Zr0.7Sn0.2 98 Cu(a)0.2Hf0.5Sn0.3 148 Hf0.2Sn0.6Cu(b)0.2 198 Zr0.5Cu(b)0.5 

49 Cu(a)0.1Zr0.6Sn0.3 99 Cu(a)0.2Hf0.4Sn0.4 149 Hf0.1Sn0.7Cu(b)0.2 199 Zr0.3Cu(b)0.7 

50 Cu(a)0.1Zr0.5Sn0.4 100 Cu(a)0.2Hf0.3Sn0.5 150 Hf0.8Sn0.1Cu(b)0.1 200 Cu(b)1.0 

 

 

 

 

 

 

 



B. List of catalyst library 

132 

 

 

Occupancy of catalyst library 1G5L 

 

1 Mo0.96Sb0.04 26 Mo0.96Co0.04 51 Mo0.92Sb0.08 76 Mo0.92Co0.08 

2 Mo0.96Sc0.04 27 Mo0.96B0.04 52 Mo0.92Sc0.08 77 Mo0.92B0.08 

3 Mo0.96Li0.04 28 Mo0.96Al0.04 53 Mo0.92Li0.08 78 Mo0.92Al0.08 

4 Mo0.96Lu0.04 29 Mo0.96Ag0.04 54 Mo0.92Lu0.08 79 Mo0.92Ag0.08 

5 Mo0.96Mg0.04 30 Mo0.96Ca0.04 55 Mo0.92Mg0.08 80 Mo0.92Ca0.08 

6 Mo0.96Mn0.04 31 Mo0.96In0.04 56 Mo0.92Mn0.08 81 Mo0.92In0.08 

7 Mo0.96Ni0.04 32 Mo0.96Zr0.04 57 Mo0.92Ni0.08 82 Mo0.92Zr0.08 

8 Mo0.96Pd0.04 33 Mo0.96Y0.04 58 Mo0.92Pd0.08 83 Mo0.92Y0.08 

9 Mo0.96Na0.04 34 Mo0.96Si0.04 59 Mo0.92Na0.08 84 Mo0.92Si0.08 

10 Mo0.96Sn0.04 35 Mo0.96Sr0.04 60 Mo0.92Sn0.08 85 Mo0.92Sr0.08 

11 Mo0.96Cs0.04 36 Mo0.96Te0.04 61 Mo0.92Cs0.08 86 Mo0.92Te0.08 

12 Mo0.96Rb0.04 37 Mo0.96Sn0.04 62 Mo0.92Rb0.08 87 Mo0.92Sn0.08 

13 Mo0.96Re0.04 38 Mo0.96Ho0.04 63 Mo0.92Re0.08 88 Mo0.92Ho0.08 

14 Mo0.96Rh0.04 39 Mo0.96Ce0.04 64 Mo0.92Rh0.08 89 Mo0.92Ce0.08 

15 Mo0.96Cu0.04 40 Mo0.96Cr0.04 65 Mo0.92Cu0.08 90 Mo0.92Cr0.08 

16 Mo0.96Dy0.04 41 Mo0.96Zn0.04 66 Mo0.92Dy0.08 91 Mo0.92Zn0.08 

17 Mo0.96Er0.04 42 Mo0.96Bi0.04 67 Mo0.92Er0.08 92 Mo0.92Bi0.08 

18 Mo0.96Eu0.04 43 Mo0.96Mo0.04 68 Mo0.92Eu0.08 93 Mo0.92Mo0.08 

19 Mo0.96Ga0.04 44 Mo0.96V0.04 69 Mo0.92Ga0.08 94 Mo0.92V0.08 

20 Mo0.96Hf0.04 45 Mo0.96Ti0.04 70 Mo0.92Hf0.08 95 Mo0.92Ti0.08 

21 Mo0.96Au0.04 46 Mo0.96Pd0.04 71 Mo0.92Au0.08 96 Mo0.92Pd0.08 

22 Mo0.96Ir0.04 47 Mo0.96Nb0.04 72 Mo0.92Ir0.08 97 Mo0.92Nb0.08 

23 Mo0.96La0.04 48 Mo0.96K0.04 73 Mo0.92La0.08 98 Mo0.92K0.08 

24 Mo0.96Ru0.04 49 Mo0.96NaW0.04 74 Mo0.92Ru0.08 99 Mo0.92NaW0.08 

25 Mo0.96Fe0.04 50 Mo0.96Ba0.04 75 Mo0.92Fe0.08 100 Mo0.92Ba0.08 
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Occupancy of catalyst library 2G6L 

 

1 Mo0.94Sn0.4Sb0.2 26 Mo0.94Sn0.4Co0.2 51 Mo0.94Ru0.4Sb0.2 76 Mo0.94Ru0.4Co0.2 

2 Mo0.94Sn0.4Sc0.2 27 Mo0.94Sn0.4B0.2 52 Mo0.94Ru0.4Sc0.2 77 Mo0.94Ru0.4B0.2 

3 Mo0.94Sn0.4Li0.2 28 Mo0.94Sn0.4Al0.2 53 Mo0.94Ru0.4Li0.2 78 Mo0.94Ru0.4Al0.2 

4 Mo0.94Sn0.4Lu0.2 29 Mo0.94Sn0.4Ag0.2 54 Mo0.94Ru0.4Lu0.2 79 Mo0.94Ru0.4Ag0.2 

5 Mo0.94Sn0.4Mg0.2 30 Mo0.94Sn0.4Ca0.2 55 Mo0.94Ru0.4Mg0.2 80 Mo0.94Ru0.4Ca0.2 

6 Mo0.94Sn0.4Mn0.2 31 Mo0.94Sn0.4In0.2 56 Mo0.94Ru0.4Mn0.2 81 Mo0.94Ru0.4In0.2 

7 Mo0.94Sn0.4Ni0.2 32 Mo0.94Sn0.4Zr0.2 57 Mo0.94Ru0.4Ni0.2 82 Mo0.94Ru0.4Zr0.2 

8 Mo0.94Sn0.4Pd0.2 33 Mo0.94Sn0.4Y0.2 58 Mo0.94Ru0.4Pd0.2 83 Mo0.94Ru0.4Y0.2 

9 Mo0.94Sn0.4Na0.2 34 Mo0.94Sn0.4Si0.2 59 Mo0.94Ru0.4Na0.2 84 Mo0.94Ru0.4Si0.2 

10 Mo0.94Sn0.4Sn0.2 35 Mo0.94Sn0.4Sr0.2 60 Mo0.94Ru0.4Sn0.2 85 Mo0.94Ru0.4Sr0.2 

11 Mo0.94Sn0.4Cs0.2 36 Mo0.94Sn0.4Te0.2 61 Mo0.94Ru0.4Cs0.2 86 Mo0.94Ru0.4Te0.2 

12 Mo0.94Sn0.4Rb0.2 37 Mo0.94Sn0.4Sn0.2 62 Mo0.94Ru0.4Rb0.2 87 Mo0.94Ru0.4Sn0.2 

13 Mo0.94Sn0.4Re0.2 38 Mo0.94Sn0.4Ho0.2 63 Mo0.94Ru0.4Re0.2 88 Mo0.94Ru0.4Ho0.2 

14 Mo0.94Sn0.4Rh0.2 39 Mo0.94Sn0.4Ce0.2 64 Mo0.94Ru0.4Rh0.2 89 Mo0.94Ru0.4Ce0.2 

15 Mo0.94Sn0.4Cu0.2 40 Mo0.94Sn0.4Cr0.2 65 Mo0.94Ru0.4Cu0.2 90 Mo0.94Ru0.4Cr0.2 

16 Mo0.94Sn0.4Dy0.2 41 Mo0.94Sn0.4Zn0.2 66 Mo0.94Ru0.4Dy0.2 91 Mo0.94Ru0.4Zn0.2 

17 Mo0.94Sn0.4Er0.2 42 Mo0.94Sn0.4Bi0.2 67 Mo0.94Ru0.4Er0.2 92 Mo0.94Ru0.4Bi0.2 

18 Mo0.94Sn0.4Eu0.2 43 Mo0.94Sn0.4Mo0.2 68 Mo0.94Ru0.4Eu0.2 93 Mo0.94Ru0.4Mo0.2 

19 Mo0.94Sn0.4Ga0.2 44 Mo0.94Sn0.4V0.2 69 Mo0.94Ru0.4Ga0.2 94 Mo0.94Ru0.4V0.2 

20 Mo0.94Sn0.4Hf0.2 45 Mo0.94Sn0.4Ti0.2 70 Mo0.94Ru0.4Hf0.2 95 Mo0.94Ru0.4Ti0.2 

21 Mo0.94Sn0.4Au0.2 46 Mo0.94Sn0.4Pd0.2 71 Mo0.94Ru0.4Au0.2 96 Mo0.94Ru0.4Pd0.2 

22 Mo0.94Sn0.4Ir0.2 47 Mo0.94Sn0.4Nb0.2 72 Mo0.94Ru0.4Ir0.2 97 Mo0.94Ru0.4Nb0.2 

23 Mo0.94Sn0.4La0.2 48 Mo0.94Sn0.4K0.2 73 Mo0.94Ru0.4La0.2 98 Mo0.94Ru0.4K0.2 

24 Mo0.94Sn0.4Ru0.2 49 Mo0.94Sn0.4NaW0.2 74 Mo0.94Ru0.4Ru0.2 99 Mo0.94Ru0.4NaW0.2 

25 Mo0.94Sn0.4Fe0.2 50 Mo0.94Sn0.4Ba0.2 75 Mo0.94Ru0.4Fe0.2 100 Mo0.94Ru0.4Ba0.2 
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Occupancy of catalyst T01 

 

1 Cu0.8Mn0.1Ag0.1 26 Cu0.2Mn0.3Ag0.5 

2 Cu0.7Mn0.2Ag0.1 27 Cu0.2Mn0.2Ag0.6 

3 Cu0.7Mn0.1Ag0.2 28 Cu0.2Mn0.1Ag0.7 

4 Cu0.6Mn0.3Ag0.1 29 Cu0.1Mn0.8Ag0.1 

5 Cu0.6Mn0.2Ag0.2 30 Cu0.1Mn0.7Ag0.2 

6 Cu0.6Mn0.1Ag0.3 31 Cu0.1Mn0.6Ag0.3 

7 Cu0.5Mn0.4Ag0.1 32 Cu0.1Mn0.5Ag0.4 

8 Cu0.5Mn0.3Ag0.2 33 Cu0.1Mn0.4Ag0.5 

9 Cu0.5Mn0.2Ag0.3 34 Cu0.1Mn0.3Ag0.6 

10 Cu0.5Mn0.1Ag0.4 35 Cu0.1Mn0.2Ag0.7 

11 Cu0.4Mn0.5Ag0.1 36 Cu0.1Mn0.1Ag0.8 

12 Cu0.4Mn0.4Ag0.2 37 Cu0.2Mn0.8 

13 Cu0.4Mn0.3Ag0.3 38 Cu0.4Mn0.6 

14 Cu0.4Mn0.2Ag0.4 39 Cu0.6Mn0.4 

15 Cu0.4Mn0.1Ag0.5 40 Cu0.8Mn0.2 

16 Cu0.3Mn0.6Ag0.1 41 Mn0.2Ag0.8 

17 Cu0.3Mn0.5Ag0.2 42 Mn0.4Ag0.6 

18 Cu0.3Mn0.4Ag0.3 43 Mn0.6Ag0.4 

19 Cu0.3Mn0.3Ag0.4 44 Mn0.8Ag0.2 

20 Cu0.3Mn0.2Ag0.5 45 Cu0.2Ag0.8 

21 Cu0.3Mn0.1Ag0.6 46 Cu0.4Ag0.6 

22 Cu0.2Mn0.7Ag0.1 47 Cu0.6Ag0.4 

23 Cu0.2Mn0.6Ag0.2 48 Cu0.8Ag0.2 

24 Cu0.2Mn0.5Ag0.3 49 Cu1.0 

25 Cu0.2Mn0.4Ag0.4 50 Mn1.0 
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Occupancy of catalyst T02 

 

1 Cu0.8Mn0.1Ag0.1 26 Cu0.2Mn0.3Ag0.5 

2 Cu0.7Mn0.2Ag0.1 27 Cu0.2Mn0.2Ag0.6 

3 Cu0.7Mn0.1Ag0.2 28 Cu0.2Mn0.1Ag0.7 

4 Cu0.6Mn0.3Ag0.1 29 Cu0.1Mn0.8Ag0.1 

5 Cu0.6Mn0.2Ag0.2 30 Cu0.1Mn0.7Ag0.2 

6 Cu0.6Mn0.1Ag0.3 31 Cu0.1Mn0.6Ag0.3 

7 Cu0.5Mn0.4Ag0.1 32 Cu0.1Mn0.5Ag0.4 

8 Cu0.5Mn0.3Ag0.2 33 Cu0.1Mn0.4Ag0.5 

9 Cu0.5Mn0.2Ag0.3 34 Cu0.1Mn0.3Ag0.6 

10 Cu0.5Mn0.1Ag0.4 35 Cu0.1Mn0.2Ag0.7 

11 Cu0.4Mn0.5Ag0.1 36 Cu0.1Mn0.1Ag0.8 

12 Cu0.4Mn0.4Ag0.2 37 Cu0.2Mn0.8 

13 Cu0.4Mn0.3Ag0.3 38 Cu0.4Mn0.6 

14 Cu0.4Mn0.2Ag0.4 39 Cu0.6Mn0.4 

15 Cu0.4Mn0.1Ag0.5 40 Cu0.8Mn0.2 

16 Cu0.3Mn0.6Ag0.1 41 Mn0.2Ag0.8 

17 Cu0.3Mn0.5Ag0.2 42 Mn0.4Ag0.6 

18 Cu0.3Mn0.4Ag0.3 43 Mn0.6Ag0.4 

19 Cu0.3Mn0.3Ag0.4 44 Mn0.8Ag0.2 

20 Cu0.3Mn0.2Ag0.5 45 Cu0.2Ag0.8 

21 Cu0.3Mn0.1Ag0.6 46 Cu0.4Ag0.6 

22 Cu0.2Mn0.7Ag0.1 47 Cu0.6Ag0.4 

23 Cu0.2Mn0.6Ag0.2 48 Cu0.8Ag0.2 

24 Cu0.2Mn0.5Ag0.3 49 Cu1.0 

25 Cu0.2Mn0.4Ag0.4 50 Mn1.0 

  
51 Ag1.0 
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Occupancy of catalyst T03 

 

1 Ga0.275Cu0.7Pd0.025 26 Ga0.45Cu0.5Pd0.05 

2 Ga0.25Cu0.7Pd0.05 27 Ga0.425Cu0.5Pd0.075 

3 Ga0.225Cu0.7Pd0.075 28 Ga0.4Cu0.5Pd0.1 

4 Ga0.2Cu0.7Pd0.1 29 Ga0.375Cu0.5Pd0.125 

5 Ga0.175Cu0.7Pd0.125 30 Ga0.35Cu0.5Pd0.15 

6 Ga0.15Cu0.7Pd0.15 31 Ga0.325Cu0.5Pd0.175 

7 Ga0.125Cu0.7Pd0.175 32 Ga0.3Cu0.5Pd0.2 

8 Ga0.1Cu0.7Pd0.2 33 Ga0.275Cu0.5Pd0.225 

9 Ga0.075Cu0.7Pd0.225 34 Ga0.25Cu0.5Pd0.25 

10 Ga0.05Cu0.7Pd0.25 35 Ga0.225Cu0.5Pd0.275 

11 Ga0.025Cu0.7Pd0.275 36 Ga0.2Cu0.5Pd0.3 

12 Cu0.7Pd0.3 37 Ga0.575Cu0.4Pd0.025 

13 Ga0.375Cu0.6Pd0.025 38 Ga0.55Cu0.4Pd0.05 

14 Ga0.35Cu0.6Pd0.05 39 Ga0.525Cu0.4Pd0.075 

15 Ga0.325Cu0.6Pd0.075 40 Ga0.5Cu0.4Pd0.1 

16 Ga0.3Cu0.6Pd0.1 41 Ga0.475Cu0.4Pd0.125 

17 Ga0.275Cu0.6Pd0.125 42 Ga0.45Cu0.4Pd0.15 

18 Ga0.25Cu0.6Pd0.15 43 Ga0.425Cu0.4Pd0.175 

19 Ga0.225Cu0.6Pd0.175 44 Ga0.4Cu0.4Pd0.2 

20 Ga0.2Cu0.6Pd0.2 45 Ga0.375Cu0.4Pd0.225 

21 Ga0.175Cu0.6Pd0.225 46 Ga0.35Cu0.4Pd0.25 

22 Ga0.15Cu0.6Pd0.25 47 Ga0.325Cu0.4Pd0.275 

23 Ga0.125Cu0.6Pd0.275 48 Ga0.3Cu0.4Pd0.3 

24 Ga0.1Cu0.6Pd0.3 49 Ga0.4Cu0.3Pd0.3 

25 Ga0.475Cu0.5Pd0.025 50 Ga0.3Cu0.3Pd0.4 
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C Used chemicals for libraries 

 

Num Label El. Connection Company ID-Nr. 

1 AgNO3M Ag NO3 ABCR 1571 

2 AlNO3M Al NO3 Alfa 100 

3 AuBrM Au Br 

 

1997 

4 BAcidM B Acid Fluka 191 

5 BaClM Ba Cl 

 

144 

6 Bi2EthylhexanoatM Bi 2Ethylhexanoat Strem 1409 

7 CaNO3M Ca NO3 Merck 212 

8 CeNO3M Ce NO3 Fluka 1953 

9 CoNO3M Co NO3 Fluka 898 

10 CrNO3M Cr NO3 Aldrich 900 

11 CsClM Cs Cl unb. 219 

12 CuNO3M Cu NO3 Fluka 869 

13 DyNO3M Dy NO3 Aldrich 286 

14 ErNO3M Er NO3 Aldrich 1537 

15 EuNO3M Eu NO3 STREM 1536 

16 FeNO3M Fe NO3 k.A. 1221 

17 GaNO3M Ga NO3 Aldrich 1031 

18 GeOiPrM Ge OiPr Aldrich 915 

19 HfClM Hf Cl Aldrich 1634 

20 HoNO3M Ho NO3 STREM 1395 

21 InNO3M In NO3 Aldrich 1621 

22 IrClM Ir Cl Aldrich 374 

23 KNO3M K NO3 

 

394 

24 LaNO3M La NO3 Fluka 424 

25 LiNO3M Li NO3 Fluka 440 

26 LuNO3M Lu NO3 Aldrich 1538 

27 MgNO3M Mg NO3 Merck 1034 

28 MnNO3M Mn NO3 Merck 464 

29 MoOiPrI Mo OiPr AlfaAesar 498 

30 NaNO3M Na NO3 Merck 531 

31 NbOEtM Nb OEt 

 

1038 

32 NiNO3M Ni NO3 Aldrich 559 

33 PbClO4M Pb ClO4 

 

182 

34 PdOAcM Pd OAc 

 

579 

35 PrNO3M Pr NO3 k.A. 639 

36 PtBrM Pt Br 

 

1234 

37 RbacacM Rb acac Aldrich 1033 

38 ReClM Re Cl Aldrich 1161 

39 RhClM Rh Cl Aldrich 1223 

40 RuClM Ru Cl Aldrich 681 

41 SbClM Sb Cl J.T.Baker 128 

42 ScNO3M Sc NO3 ABCR 1664 

43 SiNO3M Si NO3 

 

1876 

44 SmNO3M Sm NO3 Riedel 1747 

45 SnClM Sn Cl Aldrich 841 

46 SrClM Sr Cl Merck 1880 

47 TaOEtM Ta OEt ABCR 1617 

48 TeacidM Te Acid Fluka 1601 

49 TiOiPrM Ti OiPr Lancaster 1898 

50 VOOiPr3M V OOiPr3 ABCR 1492 

51 WClM W Cl Fluka 1688 

52 YNO3M Y NO3 ABCR 905 

53 ZnOAcM Zn OAc Fluka 836 

54 ZrONO3M Zr ONO3 Johnson 860 
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D Sketch of splitting module in the 10-fold parallel reactor 
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E Ignition 

 

1) Ignition temperature and ratio of propene 
Ignition temperature: 458 °C 

Lower explosive limit: 2% at 20 °C 

Upper explosive limit: 11.1% at 20 °C 

 Reference: www.engineeringtoolbox.com 

2) Temperature dependence of ignition limits 

,20( ) (1 ( 20 ))u u Ct Z c t C      
 uZ

: Lower explosive limit 

,20( ) (1 ( 20 ))o o Ct Z c t C      
 oZ

: Upper explosive limit 

c = 0.000721 for many hydrocarbons for H2 (and other fuels), c can differ 

Note: Range of ignitable mixture increases for higher temperature 

Reference: combustion lecture slide 

by Dr. F. Dinkelacker and Prof. A.Leipertz in Erlangnen-Nuernberg 

Temperature (°C) Lower Explosive Upper Explosive 

20 2 11.1 

50 1.95674 11.34009 

100 1.88464 11.74025 

150 1.81254 12.1404 

200 1.74044 12.54056 

250 1.66834 12.94071 

300 1.59624 13.34087 

350 1.52414 13.74102 

400 1.45204 14.14118 

450 1.37994 14.54133 

500 1.30784 14.94149 

550 1.23574 15.34164 

600 1.16364 15.7418 
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3) Ignition temperature and flammable limit of Chemicals 
 

Fuel or Chemical 

Temperature 

Fuel or Chemical 

"Lower Explosive or 

Flammable Limit" 

"Upper Explosive or 

Flammable Limit" 

(oC) (oF) (LEL/LFL)% (UEL/UFL)% 

Acetaldehyde 175 347 Acetaldehyde 4 60 

Acetone 465 869 Acetone 2.6 12.8 

Acetylene 305 581 Acetylene 2.2 85 

Benzene 560 1040 Benzene 1.3 7.1 

Butane 420 788 Butane 1.8 8.4 

Carbon monoxide 609 1128 Carbon Monoxide 12 75 

Cyclohexane 245 473 Cyclohexane 1.3 8 

Diethyl ether 160 320 Diethyl Ether 1.9 36 

Ethane 515 859 Ethane 3 12.4 

Ethylene 490 914 Ethylene 2.7 36 

Ehtyl Alcohol 365 689 Ethyl Alcohol 3.3 19 

Fuel Oil No.1 210 410 Fuel Oil No.1 0.7 5 

Hydrogen 500 932 Hydrogen 4 75 

Isobutane 462 864 Isobutane 1.8 9.6 

Isobutene 465 869 Isobutene 1.8 9 

Isooctane 447 837 Isooctane 0.79 5.94 

Isopentane 420 788 Isopentane 1.32 9.16 

Isopropyl Alcohol 399 750 Isopropyl Alcohol 2 12 

Methane (Natural Gas) 580 1076 Methane 5 15 

Methyl Alcohol 385 725 Methyl Alcohol 6.7 36 

Naphtha 550 1022 Naphthalene 0.9 5.9 

n-Heptane 215 419 n-Heptane 1.05 6.7 

n-Hexane 225 437 n-Hexane 1.1 7.5 

n-Pentane 260 500 Pentane 1.5 7.8 

Propane 480 842 Propane 2.1 10.1 

Propylene 458 856 Propylene 2 11.1 

Toluene 530 849 Toluene 1.2 7.1 

Xylene 463 867 p-Xylene 1.1 7 
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F List of products 

Name Another name Structure Formula Mw[g/mol] 

Propylene Propene 

 

C3H6 42.08064 

1,5-Hexadien 

1,5-Hexadiene   

Biallyl  

Diallyl  
 

C6H10 82.1454 

Propylenoxid 

1,2-Epoxipropan 

Methyloxiran 

Propylenether  

C3H6O 58.08004 

Propionaldehyd 

Propanal 

Propionaldehyde 

Methylacetaldehyde 

Propionic aldehyde  

C3H6O 58.08004 

Aceton 

Propanone 

β-ketopropane 

Dimethyl ketone 
 

CH3COCH3 58.08004 

Acrolein 

2-Propenal 

Acraldehyde 

Acrylic Aldehyde 

Allyl Aldehyde  

C3H4O 56.06416 

Benzol Benzene 

 

C6H6 78.11364 

Allylalkohol 
2-Propen-1-ol 

2-Propenol 

 

C3H6O 58.08004 

1,3-butadiene 

Buta-1,3-diene 

Biethylene 

Erythrene 

Divinyl 

 

C4H6 54.09164 

THF 

Tetrahydrofuran THF 

Hydrofuran 

oxolane 
 

C4H8O 72.10692 

Water 
  

H2O 18.01528 

carbon dioxide   CO2 44.0098 

Hydrogen   H2 2.01588 
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G Source codes 

Matlab source code for the visualization with conversion vs selectivity  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Main file for Conversion vs Selectivity 

% File=visualstart.m 

% Chemical Engineer, Woongsik Su in 2009 

% Saarbrücken Univeristy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

close all;clear all 

warning off MATLAB:griddata:DuplicateDataPoints 

 

[get,path]=uigetfile('.txt'); 

A=load(get); 

v=A(:,5); 

 

 

figure 

hold on 

labnum=A(:,1) 

x=A(:,2)/max(A(:,2)); 

y=A(:,3); 

scatter(x,y,8,colorchange(A(:,5)),'filled') 

grid off 

axis on 

text(0.8,-0.08,'Conversion','Fontsize',10); 

text(-0.08,0.6,'Selectivity','Fontsize',10,'Rotation',90); 

text(x+0.0008,y+0.0008,int2str(labnum),'FontSize',8); 

set(1,'color','white'); 

 

rectangle('Position',[0.89,0.79,0.1,0.208])  

scatter(0.91,0.99,15,[0 1 0],'filled'); 

text(0.92,0.99,'150°C','FontSize',8); 

scatter(0.91,0.95,15,[0 0 0],'filled'); 

text(0.92,0.95,'200°C','FontSize',8); 

scatter(0.91,0.91,15,[0 0 1],'filled'); 

text(0.92,0.91,'250°C','FontSize',8); 
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Matlab source code for visualization in ternary composition 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Main file for visualization in ternary composition 

% File=terstart.m 

% original source from Uli Theune, Geophysics, University of Alberta 

% Source has been modified by Su Woongsik in 2008 

% To visualize the ternary composition 

% Chemical Engineer, Woongsik Su in 2009 

% Saarbrücken Univeristy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

close all;clear all 

warning off MATLAB:griddata:DuplicateDataPoints 

%load data 

[get,path]=uigetfile('.txt'); 

A=load(get); 

el1='Cr' 

el2='Mo' 

el3='Ni' 

 

 

l=length(A); 

v=A(:,4); 

 

figure; 

colormap(jet) 

[hg,htick,hcb]=tersurf(A(:,1),A(:,2),A(:,3),v); 

hlabels=terlabel(el1,el2,el3); 

 

set(hg(:,3),'color','m') 

set(hg(:,2),'color','c') 

set(hg(:,1),'color','y') 

 

set(hlabels,'fontsize',12) 

set(hlabels(3),'color','m') 

set(hlabels(2),'color','c') 

set(hlabels(1),'color','y') 

set(htick(:,1),'color','y','linewidth',3) 

set(htick(:,2),'color','c','linewidth',3) 

set(htick(:,3),'color','m','linewidth',3) 

 

set(hcb,'xcolor','w','ycolor','w') 

set(gcf,'color',[0 0 0.3]) 

set(gcf,'paperpositionmode','auto','inverthardcopy','off') 
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function [hg,htick,hcb]=tersurf(c1,c2,c3,d) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%FUNCTION [HG,HTICK,HCB]=TERSURF(C1,C2,C3,D) plots the values in the vector d  

% The three vectors c1,c2,c3 define the position of a data value within the 

% Uli Theune, Geophysics, University of Alberta 

% 2002 - ... 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

if nargin < 4 

    error('Error: Not enough input arguments.'); 

    return 

end 

if (length(c1)+length(c2)+length(c3))/length(c1) ~=3 

    error('Error: all arrays must be of equal length.'); 

    return 

end 

 

% Check if the data need to be normalized 

if max(c1+c2+c3)>1 

    for i=1:length(c1) 

        c1(i)=c1(i)/(c1(i)+c2(i)+c3(i)); 

        c2(i)=c2(i)/(c1(i)+c2(i)+c3(i)); 

        c3(i)=c3(i)/(c1(i)+c2(i)+c3(i)); 

    end 

end 

 

hold on 

% Calculate the position of the data points in the ternary diagram 

x=0.5-c1*cos(pi/3)+c2/2; 

y=0.866-c1*sin(pi/3)-c2*cot(pi/6)/2; 

 

% Create short vectors for the griding 

tri=delaunay(x,y); 

trisurf(tri,x,y,d); 

shading interp 

 

% Add the axis system now 

d1=cos(pi/3); 

d2=sin(pi/3); 

l=linspace(0,1,6); 

zmax=max(d); 

for i=2:length(l)-1 

   hg(i-1,3)=plot3([l(i)*d1 1-l(i)*d1],[l(i)*d2 l(i)*d2],[zmax zmax]*1.1,':k','linewidth',0.25); 

   hg(i-1,1)=plot3([l(i) l(i)+(1-l(i))*d1],[0 (1-l(i))*d2],[zmax zmax]*1.1,':k','linewidth',0.25); 

   hg(i-1,2)=plot3([(1-l(i))*d1 1-l(i)],[(1-l(i))*d2 0],[zmax zmax]*1.1,':k','linewidth',0.25); 

end 

plot([0 1 0.5 0],[0 0 sqrt(3)/2 0],'k','linewidth',1) 

% Make x-tick labels 

for i=1:length(l) 

    htick(i,1)=text(l(i),-0.025,num2str(l(i))); 

    htick(i,3)=text(1-l(i)*cos(pi/3)+0.025,l(i)*sin(pi/3)+0.025,num2str(l(i))); 

    htick(i,2)=text(0.5-l(i)*cos(pi/3)-0.06,sin(pi/3)*(1-l(i)),num2str(l(i))); 

end 

hold off 

axis image 

axis off 

caxis([min(d) max(d)]) 

view(2) 

hcb=colorbar; 
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Matlab source code for visualization of library in the results of SRR 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% file name = circle_test.m 

% for visulalization of library in the results of SRR 

% Chemical Engineer, Woongsik Su in 2009 

% Saarbrücken Univeristy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%% 

% import data % 

%%%%%%%%%%%%%%% 

center=[17 16]; %%%%%%%% Center of the circle 

r=19; %%%%%%%% Radius of the circle 

N=300; %%%%%%%% Number of dividing 

theta=linspace(0,2*pi,N); %%%%%%%% Angle of the circle(Radian) 

x=r*cos(theta)+center(1); %%%%%%%% x coordinate 

y=r*sin(theta)+center(2); %%%%%%%% y coordinate 

hold on; 

plot(x,y,'black'); %%%%%%%% Plot the circle 

 

%load data 

[get,path]=uigetfile('.txt'); 

Datenmatrix=load(get); 

 

B=[22 20 18 16 14 12 10 23 21 19 17 15 13 11

 9 26 24 22 20 18 16 14 12 10 8 6 27

 25 23 21 19 17 15 13 11 9 7 5 28 26

 24 22 20 18 16 14 12 10 8 6 4 29 27

 25 23 21 19 17 15 13 11 9 7 5 3 30

 28 26 24 22 20 18 16 14 12 10 8 6 4

 2 31 29 27 25 23 21 19 17 15 13 11 9

 7 5 3 1 30 28 26 24 22 20 18 16 14

 12 10 8 6 4 2 31 29 27 25 23 21 19

 17 15 13 11 9 7 5 3 1 30 28 26 24

 22 20 18 16 14 12 10 8 6 4 2 29 27

 25 23 21 19 17 15 13 11 9 7 5 3 28

 26 24 22 20 18 16 14 12 10 8 6 4 27

 25 23 21 19 17 15 13 11 9 7 5 26 24

 22 20 18 16 14 12 10 8 6 23 21 19 17

 15 13 11 9 22 20 18 16 14 12 10] 

A=[1 1 1 1 1 1 1 3 3 3 3 3 3 3

 3 5 5 5 5 5 5 5 5 5 5 5 7

 7 7 7 7 7 7 7 7 7 7 7 9 9

 9 9 9 9 9 9 9 9 9 9 9 11 11

 11 11 11 11 11 11 11 11 11 11 11 11 13

 13 13 13 13 13 13 13 13 13 13 13 13 13

 13 15 15 15 15 15 15 15 15 15 15 15 15

 15 15 15 15 17 17 17 17 17 17 17 17 17

 17 17 17 17 17 17 19 19 19 19 19 19 19

 19 19 19 19 19 19 19 19 19 21 21 21 21

 21 21 21 21 21 21 21 21 21 21 21 23 23

 23 23 23 23 23 23 23 23 23 23 23 23 25

 25 25 25 25 25 25 25 25 25 25 25 25 27

 27 27 27 27 27 27 27 27 27 27 27 29 29

 29 29 29 29 29 29 29 29 29 31 31 31 31

 31 31 31 31 33 33 33 33 33 33 33] 
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scatter(A(:),B(:),200,Datenmatrix(:),'filled') 

 

axis equal, axis([-3 36 -3 36]), zoom on 

 

   grid off 

   colorbar 

   axis off 

 %  hold on 

   text(38,38,'Activity','Fontsize',12) 

 grid on; 

set(gcf,'color',[1 1 1]);  
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C++ source code in AutoCat 

 

// testform.cpp : implementation file 

// written by Woongsik Su in Saarbruecken at Technical University in 2009 

// c++ for the automation of 10-fold parallel reactor 

//  

 

#include "stdafx.h" 

#include "irtestrig.h" 

#include "testform.h" 

#include "LevelTrace.h" 

#include "Multioptions.h" 

#include "Tvichw32.h" 

#include "lpt.h" 

#include "MainFrm.h" 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

///////////////////////////////////////////////////////////////////////////// 

// testform dialog 

 

IMPLEMENT_DYNCREATE(testform, CPanelInstrument) 

 

///////////////////////////////////////////////////////////////////////////// 

// CRobbiCtrlView diagnostics 

 

#ifdef _DEBUG 

void testform::AssertValid() const 

{ 

 CPanelInstrument::AssertValid(); 

} 

 

void testform::Dump(CDumpContext& dc) const 

{ 

 CPanelInstrument::Dump(dc); 

} 

#endif //_DEBUG 

 

///////////////////////////////////////////////////////////////////////////// 

 

testform::testform() 

 : CPanelInstrument(testform::IDD) 

{ 

 //{{AFX_DATA_INIT(testform) 

 m_bRunning = FALSE; 

 //}}AFX_DATA_INIT 

 m_bWaiting = FALSE; 

 m_WaitTime = 100; 

 m_WaitCarrier = 10; 

 m_WaitFeed = 20; 

 m_WaitInHoleAfter = 0; 

 m_WaitInHole = 100; 

 m_WaitOver = 0; 

 m_WaitStatus = ""; 
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 m_WaitStr = ""; 

 m_SuctionTime = 50; 

 // HW32 = NULL; 

// m_bEnableGC = FALSE; 

// m_RunDirectory = _T("");  

 m_bGCForceReady = FALSE; 

 m_Cleaning=FALSE; 

 m_Pretreat=FALSE; 

 m_Singlerun=FALSE; 

 m_RunPointsAct=1; 

 m_initialchanel=1; 

 m_numberGC=2; 

 m_TotalTime=0; 

// Multi 

 //m_FeedVentileUse=TRUE; 

 //m_CarrierVentileUse=TRUE; 

 //m_FeedWaitingTime=100; 

 //m_CarrierWaitingTime=200; 

 //m_MicroGcUse=TRUE; 

 static BOOL bFirst = TRUE; 

 if (bFirst) { 

  bFirst = FALSE; 

 

// Read Values from Setup 

  ASSERT(theSetup != NULL); 

  if (!theSetup->fOpenSection("Multi")) { 

   SetupDefault(); 

   VERIFY(theSetup->fOpenSection("Multi")); 

  } 

  theSetup->Get("FeedVentileUse", m_FeedVentileUse); 

  theSetup->Get("CarrierVentileUsebefore", m_CarrierVentileUsebefore); 

  theSetup->Get("CarrierVentileUseafter", m_CarrierVentileUseafter); 

  theSetup->Get("FeedWaitingTime", m_FeedWaitingTime);  

  theSetup->Get("CarrierWaitingTimebefore", m_CarrierWaitingTimebefore); 

  theSetup->Get("CarrierWaitingTimeafter", m_CarrierWaitingTimeafter); 

  theSetup->Get("MicroGcUse", m_MicroGcUse); 

  theSetup->Get("SuctionTime", m_SuctionTime); 

  theSetup->Get("DoubleMeasurements", m_DoubleMeasurements); 

  theSetup->Get("GCRunTime", m_GCRunTime); 

  theSetup->Get("CleaningTime", m_CleaningTime); 

  theSetup->Get("PretreatingTime", m_PretreatingTime); 

  theSetup->Get("SinglerunningTime", m_SinglerunningTime); 

  theSetup->Get("SinglewaitingTime", m_SinglewaitingTime); 

  theSetup->Get("SinglerunningChannel", m_SinglerunningChannel); 

  theSetup->Get("CleanGCUse", m_CleanGCUse); 

  //c_StartGC.EnableWindow(m_MicroGcUse); 

  //c_StartGC.EnableWindow(false); 

   

  //c_StartGC.EnableWindow(m_bEnableGC); 

   

  theSetup->CloseSection(); 

  

  

 

  // SetupReadRuns(); 

 

//  c_DoRun.EnableWindow(FALSE); 

 

// Open Lpt Port 

  if (m_MicroGcUse) { 
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   CLpt::Init(); 

 

   USHORT IRQNumber=7; 

   UCHAR ucPortNum; 

   ucPortNum = GetLPTNumber(CLpt::GetHandle());   

   SetPin(CLpt::GetHandle(),2,true); 

 

   TRACE("IRQNum:%d PortNum:%d IRQCounter:%d\n", 

    IRQNumber,ucPortNum,GetIRQCounter(CLpt::GetHandle(),IRQNumber)); 

  }  

 

  SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, false); 

  SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, false); 

  SetPin(CLpt::GetHandle(), (unsigned char) m_PretreatPinNo, false); 

 

 

 

  } 

 //end Multiinitial 

 

  if (!theSetup->fOpenSection("Feed")) { 

   VERIFY(theSetup->fOpenSection("Feed")); 

  } 

  theSetup->Get("PinNo", m_FeedPinNo); 

  theSetup->CloseSection(); 

 

  if (!theSetup->fOpenSection("Carrier")) { 

   VERIFY(theSetup->fOpenSection("Carrier")); 

  } 

  theSetup->Get("PinNo", m_CarrierPinNo); 

  theSetup->CloseSection();  

 

  if (!theSetup->fOpenSection("Pretreat")) { 

   VERIFY(theSetup->fOpenSection("Pretreat")); 

  } 

  theSetup->Get("PinNo", m_PretreatPinNo); 

  theSetup->CloseSection(); 

} 

 

testform::~testform() 

{ 

 // Also see OnDestroy ! 

   

} 

 

 

void testform::DoDataExchange(CDataExchange* pDX) 

{ 

 CPanelInstrument::DoDataExchange(pDX); 

 //{{AFX_DATA_MAP(testform) 

 DDX_Control(pDX, IDC_STARTGC, c_StartGC); 

 DDX_Check(pDX, IDC_STARTGC, m_bRunning); 

 //}}AFX_DATA_MAP 

} 

 

 

 

BEGIN_MESSAGE_MAP(testform, CPanelInstrument) 

 //{{AFX_MSG_MAP(testform) 

 ON_BN_CLICKED(IDC_STARTGC, OnStartGC) 

 ON_BN_CLICKED(IDC_BUTTON1, OnButton1) 
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 ON_BN_CLICKED(IDC_BUTTON2, OnButton2) 

 ON_BN_CLICKED(IDC_BUTTON3, OnButton3) 

 ON_BN_CLICKED(IDC_BUTTON4, OnButton4) 

 ON_BN_CLICKED(IDC_BUTTON5, OnButton5) 

 ON_BN_CLICKED(IDC_BUTTON6, OnButton6) 

 ON_BN_CLICKED(IDC_BUTTON7, OnButton7) 

 ON_BN_CLICKED(IDC_BUTTON8, OnButton8) 

 ON_BN_CLICKED(IDC_BUTTON9, OnButton9) 

 ON_BN_CLICKED(IDC_BUTTON10, OnButton10) 

 ON_BN_CLICKED(IDC_DORUN, OnDoRun) 

 ON_BN_CLICKED(IDC_MULTOPTIONS, OnMultoptions) 

 ON_BN_CLICKED(IDC_START_GC, OnButton12) 

 ON_BN_CLICKED(IDC_CleanRun, OnCleanRun) 

 ON_BN_CLICKED(IDC_Pretreat, OnPretreat) 

 ON_BN_CLICKED(IDC_SingleRun, OnSingleRun) 

 //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// testform message handlers 

 

void testform::OnStartGC()  

{ 

 // TODO: Add your control notification handler code here 

  if (m_MicroGcUse) { 

  c_StartGC.SetCheck(1); 

  SetPin(CLpt::GetHandle(),2,false); 

  Sleep(200); 

  SetPin(CLpt::GetHandle(),2,true); 

  c_StartGC.SetCheck(0); 

  c_StartGC.EnableWindow(FALSE); 

 } 

} 

 

BOOL testform::IsGCReady(void) { 

 if (CLpt::GetHandle() != NULL && m_MicroGcUse)  

  return GetPin(CLpt::GetHandle(),13); 

 else  

  return FALSE; 

 

} 

 

void testform::OnButton1()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go1\n"); 

 m_Serial.Close(); 

  

} 

 

void testform::OnButton2()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 
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 m_Serial.Write("1go2\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton3()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Close(); 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go3\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton4()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go4\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton5()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go5\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton6()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go6\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton7()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go7\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton8()  
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{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go8\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton9()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go9\n"); 

 m_Serial.Close(); 

} 

 

void testform::OnButton10()  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

  

 m_Serial.Write("1go10\n"); 

 m_Serial.Close(); 

} 

 

void testform::CmdTgtDoRegisterCommands(void) { 

 CExpCommand *cmd = CmdTgtGetCommando(); 

 ASSERT(cmd != NULL); 

 cmd->ExpCmdRegisterCmd(CmdTgtGetID(), CMD_RUN, "Run", "Starte Run."); 

 cmd->ExpCmdRegisterCmd(CmdTgtGetID(), CMD_CLEAN, "Clean", "Starte Clean."); 

 cmd->ExpCmdRegisterCmd(CmdTgtGetID(), CMD_PRETREAT, "Pretreat", "Starte Pretreat."); 

 cmd->ExpCmdRegisterCmd(CmdTgtGetID(), CMD_SINGLERUN, "Singlerun", "Starte Singlerun."); 

 

} 

 

BOOL testform::CmdTgtValidateOptions(int /* CmdID */, const CString & /* Options */, CString & /* ErrMsg */ ) 

{ 

 // Nothing to do 

 return TRUE; 

} 

 

void testform::CmdTgtDoCommand(int CmdID, const CString & /* Options */) { 

 switch (CmdID) { 

 case CMD_START: 

 case CMD_STOP: 

 case CMD_PAUSE: 

 case CMD_RESUME: 

  break; 

 case CMD_RUN: 

  CmdTgtSetState(INDI_NOT_READY); 

  UpdateData(); 

  m_bRunning = TRUE; 

  UpdateData(FALSE); 

  OnDoRun(); 
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 break; 

 case CMD_CLEAN: 

  CmdTgtSetState(INDI_NOT_READY); 

  UpdateData(); 

  m_bRunning = TRUE; 

  UpdateData(FALSE); 

  OnCleanRun(); 

 break; 

 case CMD_PRETREAT: 

  CmdTgtSetState(INDI_NOT_READY); 

  UpdateData(); 

  m_bRunning = TRUE; 

  UpdateData(FALSE); 

  OnPretreat(); 

 break; 

  case CMD_SINGLERUN: 

  CmdTgtSetState(INDI_NOT_READY); 

  UpdateData(); 

  m_bRunning = TRUE; 

  UpdateData(FALSE); 

  OnSingleRun(); 

 break; 

 default: 

  TRACE("Unknown Command\n"); 

  ASSERT(FALSE); 

  break; 

 } 

} 

 

void testform::OnDoRun()  

 // TODO: Add your control notification handler code here 

{ 

  //CString str_1,str_2; 

  //str_1.Format("%d",m_RunPoints.GetSize()); 

  //str_2.Format("%d",m_RunPointsAct); 

  // MessageBox(str_2,str_1,MB_OK); 

 // Kommt noch weg 

 { 

 UpdateData(); 

  

 m_RunState = MULTI_CHANNEL; 

 

 // Call this in every case, will deactivate the DoRun Button. 

 m_Cleaning=FALSE; 

 DoRun(); 

 } 

} 

 

 

 

void testform::OnCleanRun()  

{ 

 // TODO: Add your control notification handler code here 

  { 

 UpdateData(); 

  

 m_RunState = MULTI_CHANNEL; 

 

 // Call this in every case, will deactivate the DoRun Button. 

 m_Pretreat=FALSE; 

 m_Cleaning=TRUE; 
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 DoRun(); 

 } 

} 

 

 

void testform::DoRun(void) { 

 

// ASSERT(m_bRunning); 

// m_RackDisplay.ResumeRun(); 

 //CPoint p; 

 CString str; 

 m_bRunning=TRUE; 

  

 //m_FeedVentileUse; 

 //m_CarrierVentileUse; 

 //m_MicroGcUse; 

 //SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, false); 

 //SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, false); 

 //SetPin(CLpt::GetHandle(), (unsigned char) m_PretreatPinNo, false); 

 

 switch (m_RunState) { 

 case MULTI_CHANNEL: // First Movement is sent in OnDoRun  

  m_numberGC=2; 

  if (m_Singlerun) 

  { 

  str.Format("Moving to Channel(%d)", m_SinglerunningChannel);  

  DisplayStatusStr(str); 

  OnStartMULTI(m_SinglerunningChannel); 

  m_RunPointsAct=10; 

  } 

  else 

  { 

  str.Format("Moving to Channel(%d)", m_RunPointsAct);  

  DisplayStatusStr(str); 

  OnStartMULTI(m_RunPointsAct); 

  } 

 

  if (m_Cleaning) 

  {m_RunState=MULTI_CLEAN; 

  } 

  else if (m_Pretreat) 

  {m_RunState=MULTI_PRETREAT; 

  } 

  else if (m_Singlerun) 

  {m_RunState=MULTI_SINGLERUN; 

  } 

  else 

  {m_RunState=MULTI_CARRIER; 

  } 

  DoRun(); 

  break; 

 case MULTI_CARRIER: 

  m_RunState=MULTI_FEED; 

  if (!m_CarrierVentileUsebefore) 

  {Wait(0);} 

  else 

  { 

   SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, true); 

   Wait(m_CarrierWaitingTimebefore); 

  } 

  // 
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  if (m_CleanGCUse) 

  {m_RunState=MULTI_CLEANGC; 

  } 

  else 

  { 

  } 

  // 

  break; 

 case MULTI_CLEANGC: 

  m_RunState=MULTI_CLEANGCWAIT; 

  OnStartGC(); 

  DoRun(); 

  break; 

 case MULTI_CLEANGCWAIT: 

  m_RunState=MULTI_FEED;  

  SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, true); 

  Wait(m_SuctionTime); 

  break; 

 case MULTI_FEED: 

  m_RunState = MULTI_STARTGC; 

  if (!m_FeedVentileUse) 

  {Wait(0);} 

  else 

  //FEED 

  {SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, false); 

  SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, true); 

  Wait(m_FeedWaitingTime); 

  } 

  break; 

 case MULTI_STARTGC: 

  if (!m_MicroGcUse) 

  { 

  m_RunState = MULTI_CARRIER2; 

  DoRun(); 

  } 

  else 

  { 

  m_RunState = MULTI_WAITING; 

  OnStartGC(); 

  m_numberGC=m_numberGC-1; 

  DoRun(); 

  } 

  break; 

 case MULTI_WAITING: 

  if ((!m_DoubleMeasurements)|(m_numberGC==0)) 

  { 

  m_TotalTime=m_SuctionTime; 

  } 

  else 

  { 

  m_TotalTime=m_SuctionTime+m_GCRunTime; 

  } 

  if (m_FeedVentileUse) 

  { 

  SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, false); 

  SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, true); 

  Wait(m_TotalTime); 

  } 

  else 

  { 

  SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, true); 
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  SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, false); 

  Wait(m_TotalTime); 

  } 

  if ((!m_DoubleMeasurements)|(m_numberGC==0)) 

  { 

  m_RunState = MULTI_CARRIER2; 

  } 

  else 

  { 

  m_RunState = MULTI_STARTGC; 

  } 

  break; 

 case MULTI_CARRIER2: 

  m_RunState = MULTI_WAITEND; 

  if (!m_CarrierVentileUseafter) 

  {Wait(0);} 

  else 

  { 

  SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, true); 

  SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, false); 

  Wait(m_CarrierWaitingTimeafter); 

  } 

  break; 

 case MULTI_CLEAN: 

  m_RunState=MULTI_WAITEND; 

  if (m_RunPointsAct) 

  {SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, true);} 

  Wait(m_CleaningTime); 

  break; 

 case MULTI_PRETREAT: 

  m_RunState=MULTI_WAITEND; 

  if (m_RunPointsAct) 

  {SetPin(CLpt::GetHandle(), (unsigned char) m_PretreatPinNo, true);} 

  Wait(m_PretreatingTime); 

  break; 

 case MULTI_SINGLERUN: 

  m_RunState=MULTI_SINGLEGCRUN; 

  if (m_RunPointsAct) 

  {SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, true);} 

  Wait(m_SinglerunningTime); 

  break; 

 case MULTI_SINGLEGCRUN: 

  m_RunState=MULTI_SINGLEGCWAIT; 

  OnStartGC(); 

  DoRun(); 

  break; 

 case MULTI_SINGLEGCWAIT: 

  m_RunState=MULTI_WAITEND; 

  Wait(m_SinglewaitingTime); 

  break; 

 case MULTI_WAITEND: 

  m_RunPointsAct++; 

  if (m_RunPointsAct < 11) { 

   m_RunState = MULTI_CHANNEL; 

   DoRun(); 

  } else { 

   m_RunState = MULTI_STOP; 

   DoRun(); 

  } 

  break; 

 case MULTI_STOP: 
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  if (m_Singlerun) 

  { 

  } 

  else 

  { 

   OnStartMULTI(m_initialchanel); 

   SetPin(CLpt::GetHandle(), (unsigned char) m_CarrierPinNo, false); 

   SetPin(CLpt::GetHandle(), (unsigned char) m_FeedPinNo, false); 

   SetPin(CLpt::GetHandle(), (unsigned char) m_PretreatPinNo, false); 

   m_bRunning = FALSE; 

   m_Cleaning= FALSE; 

   m_RunPointsAct=1; 

  } 

  UpdateData(); 

  DisplayStatusStr("Stopped"); 

  

  UpdateData(FALSE); 

  CmdTgtSetState(INDI_READY); 

  break; 

 default: 

  ASSERT(FALSE); 

  break; 

 } 

 

} 

 

 

 

void testform::OnThreadCheck(void) { 

 if (m_bWaiting) { 

  m_WaitTime--; 

  TRACE("Waiting: %d\n", m_WaitTime); 

 

   // Display progress in Status Bar. 

  CString str; 

  if (m_WaitTime % 10 == 0) { 

   str.Format("%d", m_WaitTime); 

  } else  

   str = "."; 

  m_WaitStr += str; 

  CIRTestRigApp *pApp = static_cast<CIRTestRigApp *>(AfxGetApp()); 

  ASSERT_VALID(pApp); 

  CMainFrame *pWnd = static_cast<CMainFrame *>(pApp->GetMainWnd()); 

  ASSERT_VALID(pWnd); 

  pWnd->m_wndStatusBar.SetWindowText(m_WaitStr); 

 

   // then call DoRun if necessary. 

  if (m_WaitTime <= 0) { 

   m_bWaiting = FALSE; 

   if (m_bRunning) 

    DoRun(); 

  } 

 } 

 

 c_StartGC.EnableWindow(IsGCReady()); 

} 

 

void testform::Wait(int Seconds) { 

 m_WaitStr.Format("%sWaiting: %d", m_WaitStatus, Seconds); 

 m_WaitTime = Seconds; 

  // Display in StatusBar. 
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 DisplayStatusStr(m_WaitStr); 

 

 if (m_WaitTime == 0)  

  // Do immediately. 

  DoRun(); 

 else  

  m_bWaiting = TRUE; 

} 

 

void testform::DisplayStatusStr(const CString &str) { 

 CIRTestRigApp *pApp = static_cast<CIRTestRigApp *>(AfxGetApp()); 

 ASSERT_VALID(pApp); 

 CMainFrame *pWnd = static_cast<CMainFrame *>(pApp->GetMainWnd()); 

 ASSERT_VALID(pWnd); 

 pWnd->m_wndStatusBar.SetWindowText(str); 

} 

 

 

void testform::OnStartMULTI(int Channel_num)  

{ 

 // TODO: Add your control notification handler code here 

 m_Serial.Open(_T("COM2")); 

 m_Serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); 

 m_Serial.SetupHandshaking(CSerial::EHandshakeOff); 

 m_ChannelStr.Format("1go%d\n", Channel_num); 

 m_Serial.Write(m_ChannelStr); 

 m_Serial.Close(); 

} 

 

void testform::OnMultoptions()  

{ 

 // TODO: Add your control notification handler code here 

 CMultioptions dlg; 

 dlg.m_FeedVentileUse = m_FeedVentileUse; 

 dlg.m_CarrierVentileUsebefore = m_CarrierVentileUsebefore; 

 dlg.m_CarrierVentileUseafter = m_CarrierVentileUseafter; 

 dlg.m_FeedWaitingTime = m_FeedWaitingTime; 

 dlg.m_CarrierWaitingTimebefore = m_CarrierWaitingTimebefore; 

 dlg.m_CarrierWaitingTimeafter = m_CarrierWaitingTimeafter; 

 dlg.m_MicroGcUse = m_MicroGcUse; 

 dlg.m_SuctionTime = m_SuctionTime; 

 dlg.m_DoubleMeasurements = m_DoubleMeasurements; 

 dlg.m_GCRunTime = m_GCRunTime; 

 dlg.m_CleaningTime = m_CleaningTime; 

 dlg.m_PretreatingTime = m_PretreatingTime; 

 dlg.m_SinglerunningTime = m_SinglerunningTime; 

 dlg.m_SinglewaitingTime = m_SinglewaitingTime; 

 dlg.m_SinglerunningChannel = m_SinglerunningChannel; 

 

 dlg.m_CleanGCUse= m_CleanGCUse; 

 //dlg.SetParent(this); 

 if (dlg.DoModal() == IDOK) { 

  

 m_FeedVentileUse = dlg.m_FeedVentileUse; 

 m_CarrierVentileUsebefore = dlg.m_CarrierVentileUsebefore; 

 m_CarrierVentileUseafter = dlg.m_CarrierVentileUseafter; 

 m_FeedWaitingTime = dlg.m_FeedWaitingTime; 

 m_CarrierWaitingTimebefore = dlg.m_CarrierWaitingTimebefore; 

 m_CarrierWaitingTimeafter = dlg.m_CarrierWaitingTimeafter; 

 m_MicroGcUse = dlg.m_MicroGcUse; 

 m_SuctionTime = dlg.m_SuctionTime; 



G Source codes 

159 

 

 m_DoubleMeasurements = dlg.m_DoubleMeasurements; 

 m_GCRunTime = dlg.m_GCRunTime; 

 m_CleaningTime = dlg.m_CleaningTime; 

 m_PretreatingTime = dlg.m_PretreatingTime; 

 m_SinglerunningTime = dlg.m_SinglerunningTime; 

 m_SinglewaitingTime = dlg.m_SinglewaitingTime; 

 

 m_SinglerunningChannel = dlg.m_SinglerunningChannel; 

 

 m_CleanGCUse = dlg.m_CleanGCUse; 

 

 SetupSave(); 

 } 

  

} 

 

void testform::SetupDefault(void) 

{ 

 ASSERT(theSetup != NULL); 

 theSetup->InsertSection("Multi"); 

 VERIFY(theSetup->fOpenSection("Multi")); 

 

 theSetup->RegisterKey("FeedVentileUse", CSetup::KEY_INT); 

 theSetup->RegisterDefault("FeedVentileUse", 0); 

 

 theSetup->RegisterKey("CarrierVentileUsebefore", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CarrierVentileUsebefore", 0); 

 

 theSetup->RegisterKey("CarrierVentileUseafter", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CarrierVentileUseafter", 0); 

 

 theSetup->RegisterKey("FeedWaitingTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("FeedWaitingTime", 100); 

 

 theSetup->RegisterKey("CarrierWaitingTimebefore", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CarrierWaitingTimebefore", 50); 

 

 theSetup->RegisterKey("CarrierWaitingTimeafter", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CarrierWaitingTimeafter", 50); 

 

 theSetup->RegisterKey("MicroGcUse", CSetup::KEY_INT); 

 theSetup->RegisterDefault("MicroGcUse", 0); 

 

 theSetup->RegisterKey("SuctionTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("SuctionTime", 50); 

 

 theSetup->RegisterKey("DoubleMeasurements", CSetup::KEY_INT); 

 theSetup->RegisterDefault("DoubleMeasurements", 0); 

  

 theSetup->RegisterKey("GCRunTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("GCRunTime", 0); 

  

 theSetup->RegisterKey("CleaningTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CleaningTime", 0); 

 

 theSetup->RegisterKey("CleanGCUse", CSetup::KEY_INT); 

 theSetup->RegisterDefault("CleanGCUse", 0); 

 

 theSetup->RegisterKey("PretreatingTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("PretreatingTime", 0); 
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 theSetup->RegisterKey("SinglerunningTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("SinglerunningTime", 0); 

 

 theSetup->RegisterKey("SinglerunningChannel", CSetup::KEY_INT); 

 theSetup->RegisterDefault("SinglerunningChannel", 0); 

 

 theSetup->RegisterKey("SinglewaitingTime", CSetup::KEY_INT); 

 theSetup->RegisterDefault("SinglewaitingTime", 0); 

 

 

 theSetup->CloseSection(); 

} 

 

void testform::SetupSave(void) 

{ 

 ASSERT(theSetup != NULL); 

 VERIFY(theSetup->fOpenSection("Multi")); 

 

 theSetup->Set("FeedVentileUse", m_FeedVentileUse); 

 theSetup->Set("CarrierVentileUsebefore", m_CarrierVentileUsebefore); 

 theSetup->Set("CarrierVentileUseafter", m_CarrierVentileUseafter); 

 theSetup->Set("FeedWaitingTime", m_FeedWaitingTime); 

 theSetup->Set("CarrierWaitingTimebefore", m_CarrierWaitingTimebefore); 

 theSetup->Set("CarrierWaitingTimeafter", m_CarrierWaitingTimeafter); 

 theSetup->Set("MicroGcUse", m_MicroGcUse); 

 theSetup->Set("SuctionTime", m_SuctionTime); 

 theSetup->Set("DoubleMeasurements", m_DoubleMeasurements); 

 theSetup->Set("GCRunTime", m_GCRunTime); 

 theSetup->Set("CleaningTime", m_CleaningTime); 

 theSetup->Set("PretreatingTime", m_PretreatingTime); 

 theSetup->Set("SinglerunningTime", m_SinglerunningTime); 

 theSetup->Set("SinglewaitingTime", m_SinglewaitingTime); 

 theSetup->Set("SinglerunningChannel", m_SinglerunningChannel); 

 

 theSetup->Set("CleanGCUse", m_CleanGCUse); 

 theSetup->CloseSection(); 

} 

 

void testform::OnButton12()  

{ 

 // TODO: Add your control notification handler code here 

 // if (m_bEnableGC) { 

 // c_StartGC.SetCheck(1); 

 // SetPin(CLpt::GetHandle(),2,false); 

 // Sleep(200); 

 // SetPin(CLpt::GetHandle(),2,true); 

 // c_StartGC.SetCheck(0); 

//  c_StartGC.EnableWindow(FALSE); 

 //} 

} 

 

void testform::OnPretreat()  

{ 

 // TODO: Add your control notification handler code here 

  { 

 UpdateData(); 

  

 m_RunState = MULTI_CHANNEL; 

 

 // Call this in every case, will deactivate the DoRun Button. 

 //m_Cleaning=TRUE; 
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 m_Cleaning=FALSE; 

 m_Pretreat=TRUE; 

 DoRun(); 

 } 

  

} 

 

void testform::OnSingleRun()  

{ 

 // TODO: Add your control notification handler code here 

 { 

 UpdateData(); 

  

 m_RunState = MULTI_CHANNEL; 

 

 // Call this in every case, will deactivate the DoRun Button. 

 m_Cleaning=FALSE; 

 m_Pretreat=FALSE; 

 m_Singlerun=TRUE; 

 DoRun(); 

 } 

} 

 


