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Abstract 

FURST, STEPHEN JOSEPH.  Design, Fabrication, and Control Methods for Exploiting the 

Multifunctional Sensing and Actuating Capabilities of Shape Memory Alloy Wires.  (Under the 

direction of Prof. Dr.-Ing. Stefan Seelecke) 

The benefits of replacing space and energy consuming actuators and sensors with so-called “active” 

materials have been well known for decades.  One such material, shape memory alloys (SMAs), 

inspire particularly novel applications because of their unmatched power density, high force output, 

and ability to be multifunctional – acting simultaneously as both actuator and sensor.  Recently, 

improved material processing techniques by companies such as Dynalloy have enabled repeatable, 

low-cost production of small-diameter (<100 µm) SMA wires capable of being actuated with minimal 

power at rates faster than 1 Hz.  Additionally, a multifunctional power controller has been developed 

at North Carolina State University to simultaneously control the heating power input to SMA wires 

while measuring their changing electrical resistance.  Advances such as these have enabled new 

applications to be considered in academia, such as steerable catheters and guidewires for use inside 

the human body, light-weight actuator systems for micro-air-vehicles, energy-efficient linear actuators 

to replace traditional solenoid or coil driven motors, and a multifunctional sensor-actuator system to 

control an adaptive Smart Inhaler nozzle without disrupting a delicate laminar air flow. 

Despite the obvious advantages and an abundance of novel application concepts, very few SMA-wire-

based applications are commercially available.  This development gap is caused by a number of 

significant practical challenges.  First, the SMA material itself is non-linear and hysteretic, so design 

requires in-depth understanding of a complex kinematics problem.  The design challenge is 

complicated further by a coupled thermo-mechanical interaction between a tiny SMA wire and 

surrounding structure that typically has a much larger thermal mass.  Next, making reliable electrical 

and mechanical connections between the tiny SMA wires and the structure is non-trivial, and it is 

necessary to track the treatment history of the SMA materials during the fabrication process so that 

the behavior will be predictable.  Finally, controlling the actuation or interpreting the sensor 

information of the electro-thermo-mechanically coupled SMA-structure system requires a ground-up 

understanding of the material’s characteristics and the physics of the coupled interactions. 

This dissertation provides a path for bringing miniature embedded SMA-wire applications from 

concept to functionality.  Part 1 gives an overview of design with SMA wires, fabrication methods, 

and the implications of thermo-mechanical coupling.  Throughout Part 1, design optimization and 

fabrication methods are presented in the context of an adaptive nozzle and a bio-inspired wing joint.   

Part 2 uses side-by-side physics-based modeling and experimental results to build an understanding of 

the stress, strain, and resistance characteristics of SMA wire within SMA-spring systems that provide 

simplified analogs for many embedded SMA applications.  Then, methods for multifunctional sensing 

and control are outlined, implemented, and tested on the analog systems before finally being applied 

to the adaptive nozzle joint developed in Part 1, where SMA wires are used simultaneously to deform 



 

the joint and to measure the deformation for a closed-loop control scheme.  The framework and case 

studies presented provide engineers with a design and control method that can be applied to a wide 

array of embedded SMA-wire applications in a multitude of industries. 

  



Zusammenfassung 

FURST, STEPHEN JOSEPH.  Design, Fabrication, and Control Methods for Exploiting the 

Multifunctional Sensing and Actuating Capabilities of Shape Memory Alloy Wires.  (Under the 

direction of Prof. Dr.-Ing. Stefan Seelecke) 

Die Vorteile sogenannter „aktiver“ Materialien beim Einsatz in platz- und energiesparenden 

Anwendungen sind seit langem bekannt. Formgedächtnislegierungen (FGL) sind Beispiele für solche 

Materialien, die neue Anwendungen durch ihre einzigartige Leistungsdichte, hohe Kraftwirkung und 

Multifunktionalität als Sensor und Aktor inspirieren. Seit kurzer Zeit ist, durch verbesserte 

Herstellungstechniken von Unternehmen wie Dynalloy, Inc., USA, die kostengünstige Produktion von 

FGL-Drähten mit geringem Durchmesser (<100 µm) möglich, die zudem bei minimalem 

Energieeinsatz mit Raten größer 1 Hz aktuiert werden können. An der North Carolina State University 

wurde darüber hinaus ein multifunktionaler Leistungsregler entwickelt, mit dem sich gleichzeitig die 

Heizleistung der FGL-Drähte steuern, und die Veränderung ihrer elektrischen Widerstände messen 

lassen. Entwicklungen wie diese haben im akademischen Bereich bereits zu neuen Anwendungen 

geführt, wie beispielsweise steuerbare Katheter und Steuerdrähte für die Verwendung im 

menschlichen Körper, leichte Aktuatorsyteme für Mikro-Luftfahrzeuge, energieeffiziente 

Linearaktoren, welche klassische, elektromagnetisch angesteuerte Motoren ersetzen können, und ein 

nicht-intrusives Sensor-Aktor-System zur Steuerung der adaptiven Düse eines Inhalatorsystems 

(„Smart Inhaler“) ohne Störung der empfindlichen laminaren Luftströmung.  

Trotz der offensichtlichen Vorteile und einer Fülle an neuen Anwendungskonzepten finden bis heute 

nur sehr wenige FGL-Draht-Anwendungen Verwendung in kommerziellen Produkten.  Diese 

Entwicklungslücke ist durch eine Reihe von Komplexitäten in der Handhabung von FGL-

Aktorsystemen bedingt. Zunächst einmal verhält sich das Material der FGL nichtlinear hysteretisch, 

so dass die Konzeption ein tiefgreifendes Verständnis eines komplexen kinematischen Problems 

voraussetzt. Eine weitere Herausforderung besteht in der gekoppelt thermo-mechanischen Interaktion 

zwischen dem dünnen FGL-Draht und der umgebenden Struktur mit üblicherweise viel größerer 

Wärmekapazität.  

Die nächste Schwierigkeit ist das Anbringen der elektrischen und mechanischen Verbindungen 

zwischen dem FGL-Draht und der Struktur. Zudem ist es notwendig, die Bearbeitungsgeschichte des 

Drahtes während der Herstellung nachzuvollziehen, damit das Verhalten vorhersagbar wird.  

Letztendlich wird für die Steuerung der Aktuierung und die Interpretation der Sensorsignale des 

elektro-thermo-mechanisch gekoppelten FGL-Systems ein grundlegendes Verständnis der 

Materialcharakteristik und der zugrundeliegenden physikalischen Vorgänge benötigt. 

Diese Dissertation stellt das Vorgehen für die Entwicklung von FGL-Drahtanwendungen vom 

Konzept hin zur Funktionalität dar. Teil 1 liefert einen Überblick über die Konstruktion mit FGL-

Drähten, Herstellungsmethoden und die Konsequenzen der thermo-mechanischen Kopplung. In Teil 1 



 

werden Designoptimierung und Herstellungsverfahren im Rahmen einer adaptiven Düse und eines 

bioinspirierten Flügelgelenkes dargestellt. 

Teil 2 vergleicht physikalische Modellierung und experimentelle Ergebnisse, um ein Verständnis für 

den Verlauf von Spannung, Dehnung und elektrischem Widerstand von FGL-Drähten in Feder-FGL-

Draht-Systemen zu entwickeln. Diese Systeme liefern vereinfachte Referenzsysteme für viele FGL-

Anwendungen. Danach werden Verfahren für multifunktionales Messen und Regeln beschrieben, auf 

den Referenzystemen implementiert und getested, bevor sie auf das in Teil 1 entwickelte System, das 

adaptive Gelenk einer Inhalatordüse, angewandt werden. Die FGL-Drähte werden in dieser 

Anwendung gleichzeitig dazu verwendet, die Düse zu verformen und die Verformung zu messen, 

wodurch eine Regelung realisiert werden kann.  Das dargestellte Vorgehen und die Fallstudien bieten 

Ingenieuren grundlegende Design- und Regelungsmethoden, die für eine Vielzahl an FGL-

Drahtaktor/sensor Anwendungen verwendet werden können.  
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I. Motivation 

With space and resources becoming more coveted, engineers in many fields have been pushed to 

develop novel, space and energy conserving solutions.  For example, automotive and aerospace 

engineers are looking for lightweight replacements to the motor and gear driven mechanisms currently 

used in automobiles, airplanes, and space craft.  Meanwhile, biomedical device companies want to 

improve surgical success and recovery outlooks by taking highly-maneuverable, non-invasive surgical 

tools inside the human body through small openings in the skin.   

At the same time as demand for miniaturization is increasing, the evolution of computers, electronics, 

and embedded systems have led to mounting expectations of customizability, adaptability, and precise 

automated control.  These challenges have motivated the discovery and development of “active” or 

“smart” materials, such as piezo-ceramics (i.e. PZT), magneto-rheological fluids (MRFs), electro-

active polymers (EAPs), and shape memory alloys (SMAs).  Active materials can change their 

properties in response to stimuli such as a remotely applied magnetic or electric field, or a change in 

temperature.  Engineers can exploit these changes in properties to produce a useable force or 

measurement quantity.  In this way, an active material can be used as an actuator or a sensor, or in 

some cases both at the same time.  Streamlined smart sensors and actuators can replace the bulky 

gears, ligatures, and coils that are required to convert the work done by conventional electric rotary or 

linear motors into a useable mechanical action.  The elimination of these components results in a 

significant weight and space savings, and it reduces the number of moving parts that are prone to 

failure. 

Moreover, many smart materials have very high energy and power densities, enabling them to 

efficiently convert electrical energy or power into mechanical work.  Electromechanical actuators 

such as solenoids and motors waste energy due to effects such as fringe and resistive losses.  

Therefore active materials can offer significant cost savings, not only in terms of space and weight 

reduction, but also in terms of maximum attainable efficiency as defined by the power density. 

i. Shape Memory Alloys 

Thermally-activated SMAs have the highest known power density of any known actuator system.  

This means they produce the most mechanical work output for every Watt of heating power put in.  

SMA material undergoes a strain change of up to 8% in response to a temperature-induced phase 

change.  Figure 1 shows a conceptualization of how the crystal lattice structure of SMA changes in 

response to heating, cooling, and stressing.  The phase change between the high-temperature austenite 

(A) phase, the low-temperature martensite twin (M+/ M-) phase, and the tensile-stress-induced 

martensite plus (M+) phase is responsible for the unique shape memory behavior of SMAs.  SMA can 

also exist in the compressive-stress-induced martensite minus (M-) phase, but it is omitted from the 

diagram in Figure 1. 

The most common thermally-activated SMA is the Nickel-Titanium alloy Nitinol.  Nitinol can be 

molded into any shape and processed to change phase at below ambient temperature, in the case of a 
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super-elastic SMA, or above ambient temperature, in the case of an SMA actuator.  SMA actuators 

can also be drawn into a thin wire (i.e. < 100 µm diameter) that can be heated by a controlled electric 

current or power input while its electrical resistance is simultaneously monitored for sensing 

purposes.  Thanks to work by companies such as Dynalloy, Inc. [1], manufacturing processes have 

improved so that Nitinol actuator wires can be produced with consistent physical properties, including 

phase transition temperature and maximum transformation strain.  It is because of these advances and 

the untapped potential for novel application that thermally-actuated Nitinol shape memory alloy 

actuator wires are the focus of this work. 

 
Figure 1:  Diagram of Shape Memory Alloy Phase Change in Response to Heating, Cooling, and Stressing 

ii. Challenges of Working with SMAs 

Though there are many potential benefits to SMA actuator wires, a number of practical challenges 

have delayed widespread implementation of SMA actuator wires in applications.  First, the strain 

change (actuation) of the SMA material involves a phase change with intrinsic energy loss due to 

latent heat.  As a result, repeated actuation is not conservative and the material characteristics are non-

linear and hysteretic.  Also, small wires have little thermal mass and are susceptible to coupled 

thermo-mechanical interaction with any part of the surrounding structure that they touch.  In most 

cases, the structure acts as a heat sink, causing inhomogeneity in the temperature and thus phase 

fraction distribution within the wire.  Both of these issues complicate the kinematics of an embedded 

SMA actuator design problem. 

The next challenge arises from the practicality of fabrication.  It is difficult to make reliable electrical 

and mechanical junctions between a hair-thin SMA wire and a structure.  Large clamp or crimp 

mechanisms add bulk and defeat the purpose of using the wire in the first place.  Also, it is difficult to 

make a bond with Nitinol by welding or soldering, and exposing the wire to such high temperatures 

can alter the properties of the material by effectively applying another heat treatment.  Many common 
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adhesives soften or dissociate when exposed to elevated temperatures during actuation.  Furthermore, 

creating a secure electrical bond is especially difficult because the local stress and strain at each point 

in the wire changes during actuation.  A reliable electrical connection with constant contact pressure 

and contact resistance is critical so that the sensor measurements and heating power are consistent.   

iii. Current SMA Applications 

Although the practical challenges of working with these complex hysteretic materials have delayed 

widespread application, shape memory alloy actuators have managed to find their way into a number 

of applications.  Currently, SMA actuators have been particularly successful in biomedical, MEMS, 

and aerospace fields [2]-[27].  Nitinol SMA actuators are of interest in the biomedical field because 

the constitutive elements of Nitinol, Nickel and Titanium, are both biocompatible and corrosive 

resistant.  However, passive super-elastic SMAs are used more commonly than SMA actuators, 

particularly in stents [2], because the passive elements do not require Joule heating.  The small, 

streamlined profile of SMA actuator wires has made them attractive for non-intrusive surgical 

techniques, such as cardiac ablation [3], where the SMA actuator wires can be used to steer a robotic 

catheter in-vivo [4].  Active SMA materials have also been proposed for use in heart valves [5] or 

microvalves [7].   

The aerospace industry and MEMS field have found use for SMA actuator systems as well, in large 

part because of their high force-output to mass ratio and miniaturizability.  For example, SMA 

material is employed to actuate a variable area chevron to improve the efficiency of jet outlets [6],[8] 

or for in-flight tracking of helicopter rotor blades that require light-weight but high force actuator [9].  

In the case of the variable geometry chevron, the actuators are actuated by the change in flow 

temperature of the exhaust effectively serving as temperature sensor and compensation actuator 

simultaneously.  The MEMs field has many applications using SMA thin films [10],[11], but some 

researchers have also proposed integrating SMA wires to silicon wafers [12].  Similarly, the small 

profile of SMA makes then ideal for microactuators [13],[14]. 

Also, SMA actuator wires are enticing analogs for biological muscle fibers.  As a result, SMA wires 

are proposed as “metal muscles” for a replica finger mechanism [15], hand [16], fish [17], or 

earthworm [18].  Further, natural interaction of the biological joint muscle inspires configurations of 

SMA actuators wires and structural joint material, and the associated kinematics. 

The two applications used as case studies for embedded SMA actuator wire design, fabrication, and 

control in this work are an adaptive Smart Inhaler nozzle with SMA-actuated joints and a 

biologically-inspired micro air vehicle that is based on the flapping flight of a bat and uses SMA wires 

as metal muscles to rotate joints [22].  These applications are introduced in more detail the following 

sections.  

iv. Adaptive Smart Inhaler Nozzle 

The “Smart Inhaler” concept was first developed at NC State University in 2004 by Seelecke and 

Klienstruer [19],[20].  The adaptive nozzle required for the Smart Inhaler is used throughout this work 
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as a case study of design, fabrication, and multifunctional sensing and controls methods.  A Smart 

Inhaler, shown in Figure 2, is designed to provide targeted drug delivery to a certain location within 

the pulmonary system.  Some ailments such as a cancerous tumor may affect only a small portion of 

the lungs and require toxic medications to be treated, so it is desirable to medicate the affected regions 

only.  Unfortunately, medication in aerosol form that is delivered via a traditional inhaler is deposited 

all throughout the mouth, voice box, trachea, and both lungs.  The Smart Inhaler is designed to reduce 

the unwanted deposition by positioning the medication stream at a controlled location within a benign 

bulk flow.  Computational fluid dynamics (CFD) analysis suggests that the particles deposited on a 

certain location in the pulmonary system emanate from a predictable location in the flow inhaled at 

the mouth, and experimental tests verify that the deposition can indeed be controlled through the 

mouth, trachea, and several bifurcations of the lungs [21].  

The Smart Inhaler requires an integrated design, with actuator and sensor embedded into the structure.  

In order for the medication deposition location to be predictable and repeatable, the inhaled stream 

must remain laminar.  The model on the left of Figure 2 depicts a carrier airstream (yellow) and the 

medication stream (red) in aerosol form dispensed through an adaptive nozzle.  The nozzle component 

used to position the medication within the bulk flow cannot be so obstructive as to induce turbulence.  

It also must be adaptable enough to control the location and trajectory of the medication stream.  Such 

adaptability requires two flexible joints in series that can be deflected in any direction, each using at 

least three SMA actuators [19].  The center and right panels of Figure 2 show the top joint of an 

adaptive nozzle actuated by three SMA actuator wires.  The 6 total SMA wires are designed to be 

used simultaneously as actuators through exploitation of the shape memory effect and position 

feedback sensors through measurement of the resistance across the SMA wire that varies with strain.  

They could also provide information on flow rate by carefully tracking the control input power 

required to hold the nozzle in a certain position during convective cooling.   

 
Figure 2:  Diagram of Smart Inhaler (left) and Flexible Top Joint (middle) and Picture of Flexible Top Joint (right) 



 

Figure 3 shows both joints of the adaptive nozzle deflected into various configurations.  T

used for assembly of a two-joint 

The assembly process is carefully controlled to ensure that all 6 

treatment history so that they will behave similarly.  

the nozzle tip position with a closed

measurement of tip displacement

Figure 3:  Dual-Joint Smart Inhaler Nozzle

v. Bio-Inspired Application

SMA wires also lend themselves naturally to bio

many ways, similar to that of biological muscles.  

micro-air-vehicle (MAV) that is based on the biology 

many different platforms for MAVs have been explored, natural flyers such as the bat are ideally 

suited because of their compact size

wings are essentially reconfigurable wing structures, with 

and wrist.  The natural flyers also inspire a light

power.  Natural flyers generate their power and adjust their aerodynamic control surfaces using 

muscles.  Most mechanical flyers rely on a large rotary motor that turns a propeller or turbine to 

deliver thrust to a fixed wing.  The aerodynamic surfaces are then controlled 

motors coupled with a large gear or ligature to distribute the control power.  Along the same lines, a 

natural flyer’s flexible joints are comprised of rigid bone structures connected by flexible ligaments 

and separated by low-friction c

ligatures, connections are made by hinges or ball screw joints that are often heavy and require 

constant maintenance.  Bats in particular are chosen as a flapping flight platform because of

exceptionally large wingspan to body weight ratio and the resulting low wing

within the actuation frequency range of small SMA wires 

th joints of the adaptive nozzle deflected into various configurations.  T

joint Smart Inhaler nozzle with 6 actuators is summarized in later sections.  

The assembly process is carefully controlled to ensure that all 6 actuators have identical pre

treatment history so that they will behave similarly.  In addition, a method is presented for controlling 

the nozzle tip position with a closed-loop algorithm using the SMA wire for both actuation and 

tip displacement [28]-[30]. 

   
 Nozzle 

Inspired Application 

lend themselves naturally to bio-inspired applications because their behavior is

similar to that of biological muscles.  One such application concept

that is based on the biology and flapping flight of a bat 

many different platforms for MAVs have been explored, natural flyers such as the bat are ideally 

suited because of their compact size and excellent maneuverability stemming

wings are essentially reconfigurable wing structures, with multiple-DOF joints at the

The natural flyers also inspire a light-weight, energy efficient means of generating flapping 

generate their power and adjust their aerodynamic control surfaces using 

muscles.  Most mechanical flyers rely on a large rotary motor that turns a propeller or turbine to 

deliver thrust to a fixed wing.  The aerodynamic surfaces are then controlled 

motors coupled with a large gear or ligature to distribute the control power.  Along the same lines, a 

flexible joints are comprised of rigid bone structures connected by flexible ligaments 

friction cartilage that is constantly lubricated.  In traditional mechanical 

ligatures, connections are made by hinges or ball screw joints that are often heavy and require 

Bats in particular are chosen as a flapping flight platform because of

exceptionally large wingspan to body weight ratio and the resulting low wing-

within the actuation frequency range of small SMA wires [23].  

7 

th joints of the adaptive nozzle deflected into various configurations.  The process 

is summarized in later sections.  

actuators have identical pre-stress and 

a method is presented for controlling 

algorithm using the SMA wire for both actuation and 

 

ired applications because their behavior is, in 

One such application concept is a bio-inspired 

of a bat [22],[23].  Although 

many different platforms for MAVs have been explored, natural flyers such as the bat are ideally 

and excellent maneuverability stemming from the fact that their 

joints at the shoulder, elbow 

weight, energy efficient means of generating flapping 

generate their power and adjust their aerodynamic control surfaces using 

muscles.  Most mechanical flyers rely on a large rotary motor that turns a propeller or turbine to 

deliver thrust to a fixed wing.  The aerodynamic surfaces are then controlled separately by additional 

motors coupled with a large gear or ligature to distribute the control power.  Along the same lines, a 

flexible joints are comprised of rigid bone structures connected by flexible ligaments 

artilage that is constantly lubricated.  In traditional mechanical 

ligatures, connections are made by hinges or ball screw joints that are often heavy and require 

Bats in particular are chosen as a flapping flight platform because of their 

-beat frequency that falls 
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Instead of using traditional mechanica

using flexures made from super-elastic SMA ribbons fixed to a rigid “bone” structure.  These super

elastic joints are essentially frictionless, and it is not necessary to keep them clean or

motors can be replaced by SMA actuator wires that can be stretched across the joi

tendons, only they contract in response to a heating current.  

These biologically inspired solutions are implemented in the bat exhib

at the North Carolina Museum of Science in Raleigh, NC.  The bats in the exhibit each have 

independently controlled shoulder and elbow joints made from super

from SMA actuator wires, as shown i

presented as a case study in this dissertation.

Figure 4:  Biologically Inspired SMA-Actuated Bat

II. Objectives 

While the motivations for and appli

fabrication, and control challenges still stand in the way of widespread 

objectives of this dissertation are to 

fabrication, and to outline multifunctional sensing and control 

actuator—small, thermally actuated Nitinol wires.  

Part 1 details the process that can be used to design wit

discusses some of the different fabrication processes used for small SMA wires, including adhesives

and Teflon tube wire guides, and presents two design and fabrication case studies 

nozzle and robotic bat. 

Part 2 focuses on developing the understanding necessary to use SMA wires simultaneously as a 

controllable actuator and a viable sensor.  Simplified analog SMA

alongside the physics-based Seelec

mechanisms behind different performance characteristics can be identified.  Then sensor mapping and 

control schemes are developed and applied first to

more complex geometry of the adaptive 

Instead of using traditional mechanical joints and motors, it is possible to mimic a biological joint by 

elastic SMA ribbons fixed to a rigid “bone” structure.  These super

elastic joints are essentially frictionless, and it is not necessary to keep them clean or 

motors can be replaced by SMA actuator wires that can be stretched across the joints like muscles and 

contract in response to a heating current.   

These biologically inspired solutions are implemented in the bat exhibit at the Nature Research Center 

at the North Carolina Museum of Science in Raleigh, NC.  The bats in the exhibit each have 

independently controlled shoulder and elbow joints made from super-elastic SMAs and muscles made 

from SMA actuator wires, as shown in Figure 4.  The design, assembly, and control methods are 

presented as a case study in this dissertation. 

Actuated Bat 

While the motivations for and applications of SMA actuators are nearly endless, the practical design, 

fabrication, and control challenges still stand in the way of widespread commercial use

are to facilitate proliferation by providing a roadmap of desig

to outline multifunctional sensing and control techniques for one type of SMA 

small, thermally actuated Nitinol wires.  These techniques are presented in two parts.  

Part 1 details the process that can be used to design with non-linear hysteretic SMA wires.  Part 1 also 

different fabrication processes used for small SMA wires, including adhesives

, and presents two design and fabrication case studies 

Part 2 focuses on developing the understanding necessary to use SMA wires simultaneously as a 

controllable actuator and a viable sensor.  Simplified analog SMA-spring systems are studied in

based Seelecke-Mueller-Achenbach model [30],[32] so that the physical 

mechanisms behind different performance characteristics can be identified.  Then sensor mapping and 

veloped and applied first to simplified SMA-spring setups and finally to the 

more complex geometry of the adaptive Smart Inhaler nozzle. 

l joints and motors, it is possible to mimic a biological joint by 

elastic SMA ribbons fixed to a rigid “bone” structure.  These super-

 lubricated.  Also, 

nts like muscles and 

it at the Nature Research Center 

at the North Carolina Museum of Science in Raleigh, NC.  The bats in the exhibit each have 

elastic SMAs and muscles made 

.  The design, assembly, and control methods are 

 

, the practical design, 

commercial use.  The 

facilitate proliferation by providing a roadmap of design and 

techniques for one type of SMA 

These techniques are presented in two parts.   

linear hysteretic SMA wires.  Part 1 also 

different fabrication processes used for small SMA wires, including adhesives 

, and presents two design and fabrication case studies – the adaptive 

Part 2 focuses on developing the understanding necessary to use SMA wires simultaneously as a 

spring systems are studied in-depth 

so that the physical 

mechanisms behind different performance characteristics can be identified.  Then sensor mapping and 

and finally to the 
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1.1 Design of Embedded SMA Systems 

Embedded SMA actuator wires can offer the solution to many novel applications that are otherwise 

impractical or unrealizable.  Further, SMA wires enable new engineering solutions to traditional 

design problems, and in the long run they can reduce costs by saving space and offering excellent 

energy efficiency.  It is worth the extra up-front effort to learn the design process and fabrication 

considerations required for SMA-based solutions so that these benefits can be exploited.  Passive 

SMA actuator springs and flexures have a niche in compensating for environmental temperature 

change, where the change in ambient temperature triggers some actuation.  However, the focus of this 

work is on SMA wires that are actively heated by a controlled Joule heating power and passively 

cooled by a thermal environment that may or may not be stable.   

The ultimate goal of any design problem is to meet a set of performance objectives subject to 

constraints defined by the application and the available materials, and the same is true for design of 

micro-SMA systems.  For example, in the case of an SMA actuator embedded within a structure, it 

might be desirable to instigate a certain structural deformation angle without exposing the SMA wire 

to stresses greater than its yield stress.  The relationship between the objectives and constraints is 

defined by the kinematics and force balance of the coupled SMA-structure system.  The kinematics 

are dependent on variables such as the SMA wire attachment points and the bending modes of the 

structure, while the force balance also includes variables such as the diameter of the SMA wire and 

the stiffness of the structure.  In the case of thermally-actuated SMA wires, both the kinematics and 

force balance problems are subject to coupling with the thermal field. 

Given enough design and engineering work, SMA wire actuators could be used in almost any 

application.  However, the low bandwidth of the heating and cooling processes makes SMA wires less 

suitable for some applications than others.  In order for an actuation cycle to be repeated, the SMA 

wire must be heated and then cooled.  This can be done arbitrarily quickly as long as heating power is 

high enough and the cooling can be achieved quickly enough.  However, knowledge of the interaction 

between an embedded SMA and a structure is needed to determine the feasibility of an SMA based 

solution, then begin the process of design. 

1.1.1 SMA-Structure Interaction 

For applications with SMA actuator wires, a special understanding of the hysteretic characteristics of 

SMA is required because the hysteresis affects both the kinematics and the force balance problem.  

For an SMA wire to be implemented as an actuator, a restoring force is needed to enable repeated 

actuation.  This restoring force may, for example, be provided by structural elements that flex when 

the wire is actuated (contracted) but then act as a spring to lengthen the SMA wire as it cools.  For this 

analysis, the structural element is approximated as a pre-stretched linear bias spring.  The analog 

actuator system showing such a spring in series with an SMA wire is shown in Figure 5.    
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Figure 5:  Generalization of an Embedded SMA Actuator - Structure System with a Pre-stretched Spring at Equilibrium 

The position of the connection point between the SMA wire and the spring can move by δ , as labeled 

in Figure 5, depending on the state of contraction of the SMA.  However, a contraction of the SMA 

necessitates an elongation of the spring, and vice-versa.  For the system in Figure 5 at static 

equilibrium, equation (1.1) shows how the strain of the SMA wire, SMAε  as referenced from its 

shortest possible austenitic free length, relates to δ  and to the initial equilibrium strain in the SMA, 

0 _ SMAε .  Equation (1.2) shows how the stretch in the spring, 
sprx , relates to δ  and the initial stretch 

of the spring at the equilibrium shown in Figure 5, 0 _ sprx . 

 0 _SMA SMA

SMAL

δ
ε ε= +  (1.1) 

 0 _spr sprx xδ= − +  (1.2) 

The equilibrium force and position of the junction can be easily seen if the spring and SMA 

characteristics are plotted on the same set of axes.  To do this, the common variable between 

equations (1.1) and (1.2), δ , is used to find 
sprx  as a function of SMAε : 

 ( )0_ 0_spr SMA SMA SMA sprx L xε ε= − +  (1.3) 

Figure 6 shows a simplification of the stress-strain diagram for a single-crystal SMA and a spring 

characteristic plotted on the same set of axes.  Based on equation (1.3), the spring characteristic must 

be inverted, scaled and undergo a translation, as shown in the right panel.  

 
Figure 6:  Load-Displacement Characteristics of Martensitic SMA Wire and Linear Spring on the Same Set of Axes 

When an SMA wire is heated, its stress-strain characteristic changes due to the change in phase of the 

constitutive grains of the alloy.  The hysteresis loop rises, causing a change in the equilibrium position 

as shown in Figure 7.  Initially, in panel A, the cool wire is stressed to the tensile-preferred martensite 
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( M + ) line where it reaches an equilibrium that is indicated by the circle.  Note that the M +  line 

intersects the strain axis at the maximum transformation strain labeled Tε  in panel A.  As the 

temperature is increased in panel B, the equilibrium will be satisfied on the M +  line until it is forced 

to follow the bottom branch of the hysteresis loop as phase transformation begins.  The equilibrium 

point will follow this bottom plateau through T2 in panel C until the wire is totally transformed to 

austenite ( A ) in panel D.  From this point, additional heating does not lead to additional phase or 

strain change.   

On thermal unloading, the equilibrium is maintained on the austenite line until the top branch of the 

hysteresis loop sweeps through, forcing the wire to begin its transformation back to the M +  phase.  

Once the wire cools to T0 again, there is only 1 possible equilibrium on the M +  line, and additional 

cooling will not cause any additional elongation.  

 
Figure 7:  Stress-Strain Equilibrium between Perfect Single Crystal SMA and Spring during Thermal Loading and 
Unloading Cycle  

In this case, the stress-strain (load-displacement) behavior is linear and non-hysteretic because it is 

constrained by the linear spring.  However, the temperature-strain plot in Figure 8 reveals the 

hysteretic influence of the SMA material.  The equilibrium points in Figure 7 are reproduced in Figure 

8, where the total stroke of the actuator is indicated by the line labeled ε∆ .  The existence of this 

hysteresis loop leads to a significant difference in the strain (and stress) between panels C and E, and 

analogously between panels B and F. 
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Figure 8:  Temperature-Strain Characteristic of SMA-Spring Actuator System 

Figure 9  shows how changing the stiffness of the structure (i.e. spring) changes the stroke and stress 

in the actuator system.  For a stiff spring, shown in panel k1, a large stress is generated by the heating 

process from temperatures T1 to T3.  The softer spring, depicted in panel k2, does not generate as 

high of a stress in the SMA wire.  As a result the softer spring, k2, generates slightly more strain 

change because the stress at the high temperature equilibrium, 2σ , does not induce as much elastic 

strain up the austenite line as 1σ  in panel k1.  Also note that with the soft spring complete actuation 

could have been achieved at a much lower temperature, and that the pre-stretch in the spring would 

have to be much greater to generate the same pre-stress, 0σ .  The limit of a soft spring is a hanging 

mass, depicted in the k=0 panel.  With a mass hanging from an SMA wire, the stress in the SMA is 

always constant, constrained by the weight of the mass.  This case represents the limit of strain change 

for a given constant stress. 

 
Figure 9:  Effect of Spring (Structure) Stiffness on Stress-Strain Behavior of SMA Actuator System 

Figure 9 shows that having a stiff structure requires more heating power and more force that induces 

more stress in the SMA wire.  While this increases energy consumption and may reduce fatigue life, 
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some applications require more stiffness and the tradeoff is worthwhile.  Also, this simplification 

represents a trivial, conservative system.  In reality, it is impossible for any functional work to be 

done without some change in force from the “structure” and a resulting hysteresis in its load 

displacement characteristic, and higher forces do more work given a fixed stroke.  Fortunately, SMA 

wires generally have higher force output than conventional actuator systems, and the force of the 

SMAs can easily be scaled up by either using bigger wires or multiple small wires in parallel.   

It should also be noted that the SMA stress-strain curves in Figure 7 through Figure 9 depict the 

behavior of a perfect single crystal of SMA material.  In reality, an SMA wire is composed of many 

crystals with slightly different properties and orientations, so the behavior observed at the attachment 

points between the SMA wire and the structure will represent the average behavior over the entire 

length of the wire.  This averaging tends to smooth the stress-strain curve, as shown in the sample 

SMA characteristic in Figure 10 taken from experimental data of a real wire.  The experimental plot 

also shows that the wire exhibits a “two-way” effect at low temperature that causes the wire to favor 

the M + phase over the M −  phase when cooled under 0 stress.  As a result, the cool wire remains 

slack until about 3% of strain.   

 
Figure 10:  Stress vs. Strain Plot for 100 µm Diameter Flexinol SMA Wire at Low and High Temperature  

Other features of the experimental data are presented and discussed in detail in Appendix B and in 

Part 2.  For example, the stress and temperature fields are not homogenous over the length of the wire, 

in large part because of the conductive cooling that occurs where the massive structure draws heat 

away from the tiny wires at the attachment points.  The significant effect of this thermal 

inhomogeneity can be observed in Figure 10 but is fully documented with coupled thermo-mechanical 

FEA modeling and side-by-side experimental data in Appendix B.  One of the results indicated by the 

simulations and experiments in Appendix B is that the actuator stroke is reduced because of 

incomplete phase transformation near the attachment points.  In particular, for short SMA wires the 

stroke is reduced by up to 50% from heat loss near the wire ends.   
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Regardless of the behavioral complexities mentioned that are studied in greater detail in Appendix B 

as well as others discussed in Part 2, the basic understanding of kinematics garnered from the 

simplified pictures in Figure 7 through Figure 9 allow many of the design tradeoffs to be recognized 

and help motivate the steps required for a design process. 

1.1.2 Steps in the Design Process 

A systematic approach to the design process allows an engineer to not only check the feasibility of an 

SMA-based design but also to iterate through the process for the sake of design optimization.  The 

basic steps of embedded SMA actuator design are to: 

1) Define the design objectives, such as structural or actuator deformation. 

2) Determine the geometric constraints based on the application.  For example, answer the 

questions: “what should my final design look like, how big or small can it be, what does is its 

profile look like, and what design variables can be changed?” 

3) Develop a kinematic relationship between the SMA actuator wire length change and the 

structural deformations that are defined in the design objectives. 

4) Establish the force and moment balance between the SMA and the structure by drawing a 

free body diagram of the attachment points and determining how much force will be needed 

to induce the required structural deformation or bending. 

5) Identify the material constraints, such as limiting the maximum allowable SMA stress. 

6) Iterate through the process, changing the design variables such as structural stiffness, SMA 

wire diameter and attachment points to meet objectives without violating constraints. 

Concurrent to this whole process, it is also important to ask “can I build this?”  Section 1.3 discusses 

many of the fabrication challenges that should be considered.  As long as the design variables are 

limited such that they can be controlled during fabrication, the objectives and constraints can be used 

to formulate a design optimization problem and determine the best possible design for a given 

application. 

1.1.3 Formulation of a Design Optimization Problem 

A typical design constrained optimization problem consists of a set of design variables, x
�

, an 

objective function that dependent on those design variables, ( )F x
�

, and inequality, ( )ig x
�

, or 

equality, ( )jh x
�

, constraints that must be maintained while the objective function is minimized.  An 

optimization algorithm is responsible for changing the design variables such that the objective 

function is minimized without the constraints being violated.  In general, a single-objective 

constrained optimization problem is formed as 

 

( )
( )
( )

min              

subject to     0           1..

                     0         1..

i

j

F x

g x i n

h x j m

≤ =

= =

�

�

�

. (1.4) 
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This formulation of an optimization problem can be solved by many different types of optimization 

algorithms, such as a grid search, steepest decent method, or genetic algorithm [34].  Also, the 

objective function (or functions, in the case of a multi-objective problem) can be evaluated using a 

variety of different tools ranging from simple analytic expressions to fully-coupled multi-physics 

finite element simulations.  A detailed example of design optimization of a SMA-actuated robotic 

catheter including comparison of different algorithms and multi-objective studies is presented by 

Crews [4], where the objective functions are solved using COMSOL Multiphysics simulation 

software (COMSOL, Inc., Burlington, MA) with a coupled physics-based SMA material model [31].  

Similarly, work presented by Kohl uses computer aided optimization coupled with FEM simulations 

to optimize stress profiles in SMA microactuators [13],[14].  However, the goal of the embedded 

SMA-based design and optimization problem to be discussed in this dissertation is to demonstrate the 

process.  Therefore, the single objective will be to maximize structural deformation, the objective 

function will be derived from a simplified kinematic model, and first-order errors are accepted.  

Meanwhile, the geometric and material limits will be presented as constraints, and other potential 

objectives such as structural stiffness or heating power costs will be ignored.  
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1.2 Case Studies of SMA-Based Design and Optimization 

Process:  Adaptive Nozzle and Bio-Inspired Joint 

Applications 

The sections below present an overview of two applications – an adaptive Smart Inhaler nozzle and a 

bio-inspired bat wing – and the design objectives and process used for each.  A kinematic model of 

joint bending that applies to both applications is presented along with a parametric study showing how 

different geometric parameters affect joint bending.  Then a force model is developed for the bio-

inspired wing joint and used along with the kinematics model in a sample constrained optimization 

problem. 

1.2.1 Adaptive Inhaler Nozzle Application Overview and Design 

Objectives 

The Smart Inhaler nozzle introduced in section I.iv needs to be able to control the release position and 

trajectory of the medication that flows out from the tip of the nozzle.  The adaptive nozzle utilizes two 

compliant joints, each actuated by three SMA wires oriented in a Mercedes star that enable both joints 

to be rotated in an arbitrary direction independently, as shown in Figure 3.  Since the geometry of 

both joints is the same, only one is considered for the design problem.  Figure 11 shows a diagram of 

a joint with 3 SMA actuators wires on the left and the effect of actuating one wire on the right.  The 

joint on the left can be rotated to any (x,z) position by inducing different levels of contraction in one 

or two actuators at a time.  The motion of the tip based on super-position of displacement in two of 

the actuation directions is discussed in detail in section 2.2.3.  However, for this initial design process 

the effect of one actuator wire is isolated as shown in the right of Figure 11.  Also, for this discussion 

the effects of the force from opposing SMA wires are ignored. 

 
Figure 11:  Diagram of Adaptive Smart Inhaler Nozzle Joint 

The biggest design challenge with the adaptive nozzle is to keep everything streamlined.  The 

objective of the Smart Inhaler is to position medication within an inhaled air stream.  In principle, the 

location of that release position dictates where in the lung system the medication is deposited, so long 

as the inhaled air flow remains laminar [20].  Therefore, the adaptive nozzle must be streamlined such 
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that is does not include any protrusions that will disrupt the airflow.  This design objective constrains 

the geometry significantly.  The compliant joint material is a Viton rubber tube with the same outer 

diameter (1/8”) as the rigid structure, that is composed of layered brass and nylon tubing, as will be 

described in section 1.3.2.1.  Because of the necessity for a streamlined geometry, the SMA wire 

attachment points are constrained to locations directly on the surface of the tubing, and SMA to 

structure and to lead-wire attachment features cannot extend out into the airflow.  However, there is 

some flexibility in the length of the rubber joint and the total length of the SMA wire.  Since a 

bending angle of about 15 degrees is needed to induce the desired tip displacement, a kinematic model 

is needed to estimate how much bending can be expected based on the SMA length and attachment 

position.  Since the form of the joint bending kinematic model is identical to the model needed to 

describe the bio-inspired wing joint, it is derive in a general sense in section 1.2.3. 

1.2.2 Bio-Inspired Wing Application Overview and Design Objectives 

A second embedded SMA application is an SMA-actuated bat for an exhibit at the Nature Research 

Center at the North Carolina Museum of Natural Science.  The biologically-inspired concept, 

described in section I.v, is based on the BATMAV project started by Bunget and Seelecke [22],[23].  

The main goal is to generate a platform that replicates the kinematics of a bat’s natural flapping 

motion.  While the bat’s wing has many degrees of freedom, Bunget showed that most of the flap 

motion features can be captured by a simplified 2-degree-of-freedom wing with a flexible shoulder 

and elbow joint [22].  These joints must each be capable of a rotation of  80 degrees.  For the case of 

an actual flying bat, wing-beat frequencies of up to 10 Hz are required; however, for the museum 

exhibit a flapping frequency of 0.3 Hz was ideal to demonstrate the motion in the still-air conditions 

of the exhibit.  Figure 12 shows a museum exhibit bat with two functional elbow and two functional 

shoulder joints. 

 
Figure 12:  Museum Bat Prototype with Four Independent Joints 

The design objectives for the bat were to develop a bone structure on the same scale as a Plecotus 

auritus species bat and include SMA actuator wires as effective “metal muscles” to induce rotation in 

the joints [23].  For the museum exhibit, the joints had to be small to match the scale of the bat 

without throwing off the aesthetics of the exhibit.  Also, all 4 joints needed to be actuated 

independently for 100,000 cycles over the largest angular displacement range possible.  
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The bat bones are only ~3 mm in diameter, so the joints needed to be very small.  Also the desired 

actuation frequency required a SMA diameter of at most 75 µm.  Traditional joints with a hinge or 

ball screw mechanism inevitably introduce friction that is very significant on this small scale.  

Furthermore, an additional spring mechanism would be needed to provide a restoring force if a 

normal hinge were used.  As a result of these limitations, a flexure joint was chosen.  A flexure ribbon 

constrains the joint to rotation in 1 DOF, and has essentially no friction.  A super-elastic SMA 

material is used to enable the large rotation angles needed without plastically deforming the joints.  

Super-elastic SMA can undergo a 5-7% strain without developing much stress because the material 

changes from the austenite to martensite phase.  However, once sections of the joint are in the 

martensite phase, additional strain induces significant stress that will lead to failure over repeated 

cycles.  In the case of a bending ribbon, strain, and thus stress, is highest on the top and bottom 

surfaces of the ribbon, so a super-elastic SMA ribbon 75 µm thick was used for the joint.  A rough 

estimate of the peak stress in the joint material is used as a design constraint. 

1.2.3 Joint Bending Kinematics 

The bat and nozzle joint structures are pictured in the left of Figure 13 and a simplification of the rigid 

structure, compliant joint, and SMA wire are shown to the right.  This simplified diagram is used to 

constrain the geometry of the joint and formulate the kinematics of the joint rotation.   

 
Figure 13:  Picture of Deflected Nozzle and Bat Shoulder Joint with Simplified Kinematic Diagram 

To solve the coupled geometry problem, two coordinate systems are defined.  The fixed structure, 

namely the base of the nozzle or body of the bat, is located in the fixed ( ),x y  coordinate system (CS) 

with an origin at point 0  while the moving structure—nozzle tip or humerus of the bat—is on a 

moving CS ( ),x y′ ′  and has an origin at point 2 0P ′= .  

 
Figure 14:  Sketch of Flexible Joint Simplified as a Uniform Arc 
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The joint, made from Viton rubber in the nozzle and super-elastic SMA in the bat, is assumed to be a 

uniform arc labeled c  that is defined in Figure 14.  This is a liberal assumption that neglects the 

variable moment induced by the SMA force, but the goal is to make a rough estimate of bending for 

the sake of explaining the design process.  The location of the fixed structure attachment point of the 

SMA wire, 1P  and the origin of the local CS, 2P  are first in the global CS in equation (1.5) and (1.6).  

 1 , BP a r=< >  (1.5) 

 ( )2 sin , 1 cosP R Rθ θ=< − − >  (1.6) 

Then the location of the attachment point of the SMA wire to the moving structure, 3P
 
is written in 

the local CS in equation (1.7) before being transformed into the global CS via rotation transformation 

matrix T and translation 2P
 
in equation (1.9). 

 3 , HP b r′ =< − >  (1.7) 

 
cos sin

sin cos
T

θ θ
θ θ

− 
=  
 

 (1.8) 

 3 2 3P P TP′= +  (1.9) 

The contraction of the SMA wire stretching from 1P  to 3P reduces the length of the SMA, SMAL , to  

 ( )0 1SMA A SMAL L ε= +  (1.10) 

where SMAε  is the strain in the SMA, referenced from 0SMAε =  when the wire is at its austenitic 

reference length, 0AL .   

Once the points are located in the global CS and the length of the SMA is established, equations 

(1.11) and (1.12) are used to fully constrain the problem.  R  is the radius of curvature of the joint, θ  

is the maximum bending angle, and SMAL  is the length of the SMA wire.  The MATLAB ‘solve’ 

function is used to solve equation (1.12) for θ  then equation (1.11) for R  given a set of input 

parameters, a , b , c , Br , Hr , SMAε and 0AL .   

 c Rθ=  (1.11) 

 1 3SMAL P P= −  (1.12)  

For this problem, it is assumed that there is no bending in the joint when the SMA is pre-strained to 

preε , therefore  
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 ( )0 1 3 0
1A preL P P

θ
ε

=
+ = − . (1.13) 

1.2.3.1 Parameter Study of SMA-Actuated Joint Kinematic Model 

The kinematic bending model is used to determine the effect that several of the parameters have on 

max bending angle, θ ,  and joint radius of curvature.  The radius of curvature gives some indication 

of how much stress will be generated in the joint and accordingly how much force will be needed 

from the SMA wire, with more stress resulting from a tighter radius.  The geometry in the parameter 

study is the same as defined in Figure 13.  In all plots the austenitic free length of the SMA wire is set 

to 0 50AL = mm, and the pre-strain is 0.04preε =  (4%).  Figure 15 through Figure 18 show the 

effects of different parameter sweeps.  In these figures, the rigid structure and joints are shown in 

shades of gray, while the SMA wire is plotted in red, with its attachment points on the fixed and 

moving structures plotted in red and green, respectively.  Note that the SMA wire is assumed to be 

guided through the attachment points at the ends of the red wire line; its total length remains 50 mm 

for all cases shown. 

Figure 15 shows the effect of simply contracting the SMA wire.  Initially, the SMA is pre-strained to 

4%, then reductions of strain cause the wire to contract inducing bending.  Figure 15 shows that for 

4% strain, there is no bending angle and an infinite radius of curvature, and that bending angle 

increases as SMA strain decreases, as expected. 

 
Figure 15:  Effect of Changing SMA Strain on Bending Angle and Radius of Curvature 

The effect of changing  the location of the SMA attachment point is less intuitive.  Figure 16 shows 

the joint with the axial attachment point on the rigid structure a  set to 0, while the axial attachment 

point on the moving structure b  changes.  The highest bending is observed when the SMA wire is 

attached at 0b = , as close to the flexible joint as possible.  Note that the total length of the SMA wire 

is maintained at 50 mm even as the attachment point is changed. 
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Figure 16:  Effect of Changing Attachment Point ‘b’ on Bending Angle and Radius of Curvature 

Figure 17 shows the effect of changing the length of the compliant joint c .  The bending angle gets 

slightly higher when the joint is shortened; however, the small increase in bending angle is 

accompanied by a significant (~300%) reduction of the radius of curvature.  This means that using a 

shorter joint will cause significantly higher SMA wire and joint stress with only a slight increase in 

bending angle.  

 
Figure 17:  Effect of Changing Joint Length ‘c’ on Bending Angle and Radius of Curvature 

The radial attachment point also has a very significant effect on bending, as shown in Figure 18.  

Reducing the radial attachment point on the moving structure from 1 to 0 mm causes bending angle to 

increase from 50 to 77 degrees. 
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Figure 18:  Effect of Changing Radial Attachment Point ‘rH’ on Bending Angle and Radius of Curvature 

The parametric study alone cannot be used to determine a fully optimal solution.  However, the study 

does indicate that the highest bending comes from attaching the SMA wire as close to the flexible 

joint as possible, and maximizing the length change of the SMA wire during actuation.  Also, Figure 

17 indicates that reducing joint length also reduces the bending angle slightly, but a more detailed 

understanding of the force and moment balance discussed in section 1.2.4 is needed to determine 

whether the cost of added material stress is worthwhile.  

Smart Inhaler Nozzle Design Parameters 

The lessons learned from this parameter study were employed in the assembly of the adaptive nozzle 

for the Smart Inhaler concept.  The outer diameter of the nozzle is 3.2 mm, and the need to keep the 

nozzle streamlined constrained the radial attachment points to the surface of this outer tube, so 

1.6B Hr r= =  mm.  The other parameters are shown in Table 1, and the predicted bending response to 

an SMA wire contraction from 4% to 1% strain is plotted in Figure 19. 

Table 1:  Adaptive Smart Inhaler Geometric Parameters 

Variable Value Description 

a  0.5 mm Body attachment point axial coordinate 

Br  
1.6 mm Body attachment point radial coordinate 

b  4.0 mm Humerus attachment point axial coordinate 

Hr  
1.6 mm Humerus attachment point radial coordinate 

c  15 mm Length of super-elastic joint 

0AL
 

26 mm Austenitic free length of SMA wire 

preε
 

0.04 Pre-strain of SMA wire 
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Figure 19:  Predicted Bending of Adaptive Smart Inhaler Nozzle Joint Due to SMA Wire Contraction 

While this prediction ignores the influence of the force balance, the joint material is chosen to be very 

soft so that it can easily be deformed by the pairs of 50 µm diameter SMA wire.  The functional 

nozzle was tested with the setup described in section 2.1.4.2 that uses a camera tracking system to 

measure the change in strain in the SMA wire and the deflection of the nozzle tip.  In Figure 20, the 

measured strain in the three directions of a Smart Inhaler joint is plotted vs. the measured bending 

angle.  Also, the kinematic model is applied to each value of measured SMA strain and the predicted 

bending angle is plotted in black. 

Figure 20 shows that the measured strain vs. bending behavior is qualitatively similar to the 

prediction. However, the kinematic model predicts more bending than is measured.  This is not 

surprising, considering the simplifications and assumptions made in modeling the compliant joint.  

The joint is modeled  as a uniform arc with no axial compression, and the influence of the opposing 

SMA actuator wires are ignored.  The opposing SMA wires increase the axial stress and thus axial 

compression of the joint.  Therefore, some of the SMA contraction goes into shortening the joint, and 

less of the contraction is left to induce bending.  In the future, the force and moment balance that 

follow could be used to develop a coupled linear bending model that includes the axial compression 

and the variation of bending moment along the length of the joint.  

 
Figure 20:  Measured Adaptive Nozzle Joint Bending and Kinematic Model    



 

1.2.4 Force and Moment 

The force balance is also simplified under the as

This assumption requires the moment throughout the joint to be constant, therefore neglecting the 

variable moment that the axial component of the SMA force has at different points on the joint once 

significant bending begins.  This

The free-body diagram in Figure 

1P  and 3P as well as the moment generated by the cumulative bending of the joint, 

joint attachment points 0P  and 

gravF , acting on the center of mass of the wing contributes to the bending moment.

Figure 21:  Free-Body Diagram for Bio

The moment generated by the super

theory as shown in equation 

inertia of the rectangular beam

 

where JB  and JH  are the width and height of the joint cross

single constant value for E  is a very rou

joint that is actually highly non

demonstrate the kinematic and force balance process for a bending joint to get an estimate of the

extreme bending limits, not to model the SMA materials and observe the non

dependent behavior.   

 

The moment generated by the force of gravity is approximated as 

 

and Moment Balance of Bio-Inspired Joint 

simplified under the assumption that the joint bends along a constant radius

his assumption requires the moment throughout the joint to be constant, therefore neglecting the 

variable moment that the axial component of the SMA force has at different points on the joint once 

This simplifies the kinematics and force problems by decoupling them.  

Figure 21 shows the tensile force from the SMA wire, 

as well as the moment generated by the cumulative bending of the joint, 

and 2P .   Also, for the bio-inspired wing problem, the force of gravity, 

, acting on the center of mass of the wing contributes to the bending moment.

    
Body Diagram for Bio-Inspired Joint 

ated by the super-elastic joint is approximated based on Euler

theory as shown in equation (1.15), where E  is the Young’s modulus and I

rectangular beam, defined as 
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12
z J JI B H= , 

are the width and height of the joint cross-section, respectively.

E is a very rough approximation of the stiffness of the super

joint that is actually highly non-linear.  However, once again the main point in this section is to 

demonstrate the kinematic and force balance process for a bending joint to get an estimate of the

extreme bending limits, not to model the SMA materials and observe the non

z
J

EI
M

c

θ
=  

The moment generated by the force of gravity is approximated as  

( )cosG G cgM F x θ= , 
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ends along a constant radius.  

his assumption requires the moment throughout the joint to be constant, therefore neglecting the 

variable moment that the axial component of the SMA force has at different points on the joint once 

simplifies the kinematics and force problems by decoupling them.  

shows the tensile force from the SMA wire, SMAF , acting between 

as well as the moment generated by the cumulative bending of the joint, JM , that acts at 

inspired wing problem, the force of gravity, 

, acting on the center of mass of the wing contributes to the bending moment. 

 

is approximated based on Euler-Bernoulli beam 

zI  is the area moment of 

(1.14) 

section, respectively.  The use of a 

gh approximation of the stiffness of the super-elastic SMA 

the main point in this section is to 

demonstrate the kinematic and force balance process for a bending joint to get an estimate of the 

extreme bending limits, not to model the SMA materials and observe the non-linear, history-

(1.15) 

(1.16) 
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where 
G wingF m g=  with 

wingm  the mass of the wing and g  is the gravitational constant, and 
cgx  is 

the location of the center of  mass of the wing in the global CS.  Note that it is assumed that 
cgx c≫ . 

Since the only relevant forces in the x  and y  directions are from the SMA in tension, the force 

balance equations will be trivial.  However, the moment balance offers insight to the impact that the 

bending joint will have on the SMA wire.  The moments are summed about point 0P  in equation 

(1.17) 

 
0

, 3, , 3, 0J G SMA x y SMA y xP
M M M F p F p⇒ + − + =∑  (1.17) 

where the components of the SMA force vector are defined in equations (1.18) and (1.19) 
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Since the goal is to determine the force in the SMA required to bend the joint through an angle θ  as 

defined by the evaluation of the kinematic relationship, equations (1.15) (1.17), (1.18), and (1.19) are 

solved for SMAF  in equation (1.20). 

 ( )
1

1, 3,1, 3,
3, 3,

1 3 1 3

cos y yx xz
SMA G y x

p pp pEI
F F p p

c P P P P

θ
θ

−
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 (1.20) 

This force can then be used to determine the stress in the SMA wire via 
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4 SMA
SMA

SMA

F

d
σ

π
= , (1.21) 

where SMAd  is the diameter of the SMA wire.  Also, it is assumed that the maximum stress in the 

super-elastic joint under uniform bending is seen on the part of the joint furthest from the neutral axis, 

with compressive stresses on the inside radius and tensile stresses on the outside as shown in Figure 

22. 



29 

 

 
Figure 22:  Uniform Bending of Super-Elastic SMA Joint 

The maximum stress in the joint can be calculated based on the curvature and the distance from the 

neutral axis, assumed to be one half the height of the joint, JH , via equation (1.22).  This peak joint 

stress is one of the parameters that must be limited, particularly during repeated actuation.  Since the 

stress term in equation (1.22) is coupled with the geometry and objective bending angle, it is needed 

as a constraint in an optimal design problem. 

 max,
2
J

J

H E

c

θ
σ =  (1.22) 

1.2.5 Design Optimization of Bio-Inspired Joint 

Design optimization requires definition of design variables x
�

, objective function ( )F x
�

 and 

constraint functions ( )ig x
�

 and ( )jh x
�

 as listed in equation (1.4).  The design variables for the bio-

inspired joint bending problem are defined in Table 2, along with upper and lower bounds based on 

geometric restrictions. 

Table 2:  Design Variables for Bio-Inspired Joint Optimization 

Variable Unit Lower Bound Upper Bound Description 

a  mm 0 5 Body attachment point axial coordinate 

Br  mm 0 3 Body attachment point radial coordinate 

b  mm 0 5 Humerus attachment point axial coordinate 

Hr  mm 0 3 Humerus attachment point radial coordinate 

c  mm .5 10 Length of super-elastic joint 

0AL  mm 0 60 Austenitic free length of SMA wire 

SMAd
 

mm 0 0.1 Diameter of SMA wire  

SMAε   .02 0.04 Strain in SMA wire 

preε   0 0.05 Pre-strain of SMA wire 

E  MPa 0 inf Modulus of super-elastic joint 

JB  mm 0 3 Width of super-elastic joint 

JH  mm 0 1 Thickness of super-elastic joint 

 



30 

 

The objective function that is minimized is 

 ( )
( )
1

F x
xθ

=
�

�  (1.23) 

where the bending angle ( )xθ
�

 is calculated using the kinematics derived in section 1.2.1 and an 

iterative equation solver.  Minimizing the objective function in equation (1.23) effectively 

accomplishes the goal of maximizing the bending angle for 0θ > .   

The inequality constraint functions are defined in equation (1.24).  The peak stresses are determined 

for a given set of geometry variables over the entire range of SMA strain between the current strain 

value, SMAε , and the initial strain value, 
preε .  This is done because during an actuation the SMA 

contracts from the pre-strain value to the minimum strain that occurs after thermal and static 

equilibrium are attained, defined at ,eq SMAε .  However, the force balance may find the peak force to 

be at a strain that is different ,eq SMAε .   

 
( ) ( )( )
( ) ( )( )
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2 max, , , int

max ..

max ..
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J SMA eq SMA pre Y Jo
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σ ε ε ε σ

σ ε ε ε σ

= = −

= = −

�

�
 (1.24) 

For example, constraint ( )1g x
�

 in equation (1.24) can be interpreted as: ‘the maximum stress seen by 

the SMA wire during contraction from its initial pre-strain 
preε  to its actuated equilibrium strain value 

,eq SMAε  must be less than the yield stress of the SMA wire, ,Y SMAσ .  For this problem, ,Y SMAσ  is 

limited to 150 MPa to allow for many cycles [1], and the maximum stress allowed in the joint material 

during the contraction, , intY Joσ  is limited to 300 MPa.  The constrained optimization is solved using 

the MATLAB ‘fmincon’ function, and the upper and lower bounds that are defined in the function are 

also effectively inequality constraints.  Some of the design variables are limited by availability of 

materials and feasibility of fabrication.  Those design variables that are not subject to optimization are 

in this case simply set as equality constraints,  
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 (1.25) 

The optimum values of the design variables, xɶ , are listed in Table 3.  The predicted bending angle for 

the optimum design variables is o114.9θ = , and at the optimum the second inequality constraint, 

( )2g xɶ  is active, meaning that the predicted peak stress in the joint is 300 MPa.  Table 3 also lists the 

value of each design variable as measured after assembly.  In some cases these differ from the 
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optimum due to inaccuracies during fabrication.  The actual values resulted in a measured joint 

rotation of 80 degrees.  A summary of additional performance results is given in section 1.4.2. 

Table 3:  Optimal and Actual Design Variables and Objectives for Bio-Inspired Joint 

Variable Unit Lower Bound Upper Bound Optimum Actual Values Used 

a  mm 0 5 0 0 

Br  mm 0 3 0 0.2 

b  mm 0 5 0 0 

Hr  mm 0 3 0 1.2 

c  mm .5 10 7.5 8.5 

JB  mm 0 3 3* 3.5 

JH  mm 0 1 0.075* 0.075 

0AL  mm 0 60 50 60 

SMAd
 

mm 0 0.10 0.075* 0.075 

SMAε   .02 0.04 0.02  

preε   0 0.04 0.04* ~0.04 

E  MPa 0 Inf 30000*  

θ
 

deg   114.9 80 

R
 

mm   3.8 6.1 

* - value defined by equality constraint 
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1.3 Fabrication Methods for Embedded SMA Wires 

The process described in the previous sections can help engineers exploit the temperature-dependent 

non-linear behavior of SMA wires and produce a functional or optimal design.  However, even the 

best performing design is useless if it cannot be brought to life via a controlled, repeatable fabrication 

process.  This section addresses some of the biggest challenges of fabrication with small SMA 

actuator wires and presents solutions in the context of two case-studies. 

1.3.1 Challenges 

Fabrication with small (<100 µm diameter) SMA actuator wires involves many unique challenges, 

such as: 

• Making a firm mechanical connection between SMA wire and structure.  

• Making a reliable electrical connection between SMA wire and lead wires. 

• Guiding SMA actuator wires through a structure. 

• Tracking the SMA wire treatment history during fabrication. 

The successful mechanical and electrical attachment and wire guiding methods used in the 

development of the adaptive nozzle and bio-inspired applications are discussed in section 1.3.2.  An 

example of a controlled assembly procedure with tracking of the SMA actuator wire’s treatment 

history is documented for the adaptive inhaler in section 1.3.2.1. 

1.3.2 Case Studies of Fabrication Process:  Adaptive Nozzle and Bio-

Inspired Flapping Bat 

Fabrication methods and procedures are presented in this section for the adaptive nozzle and bio-

inspired bat applications based on the design parameters established in section 1.2.5.  First both of the 

applications are introduced with a description of the layout of the design.  Then the challenges above 

are addressed one at a time along with the solutions developed for both of the applications. 

1.3.2.1 Adaptive Inhaler Nozzle – Overview of Design for Fabrication 

Several generations of the Smart Inhaler have been designed and built to validate the concept [20].  

The main challenges associated with the adaptive nozzle fabrication involve making the most stream-

lined mechanical and electrical connections possible to avoid disturbing the air flow around the 

nozzle.  Additionally, a straight section is needed to facilitate attachment of the SMA wires under a 

controlled pre-stress.  A model of the adaptive nozzle design is shown in Figure 23.   

The nozzle consists of 3 rigid sections separated by 2 compliant joints (black).  The rigid sections are 

built up of layers of concentric tubes. The rigid tip section has a length of 13/16” (20.6 mm) and the 

rigid section between the top and bottom joints has a length of 1 5/8” (41.3 mm).  The inside layer of 

the rigid sections is made from brass with an inner diameter (ID) of 1/32” (0.79 mm) and outer 

diameter (OD) of  1/16” (1.59 mm).  The next layer consists mostly of open space, but also of small 

rings, shown in blue in Figure 23, that have groves that are used to guide coated copper lead wires.  

These rings also join the inner layer to the outer layer, a 0.093” (2.36 mm)  ID, 1/8” (3.18 mm) OD 
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clear nylon tube.  The compliant joints are made from Viton, a heat-resistant fluoro-elastomer (shore 

hardness 60A) with 1/16” ID and 1/8” OD, and a length of 5/8” (15.9 mm).   

 
Figure 23:  Model of Layer Smart Inhaler Adaptive Nozzle 

The sets of 3 SMA wires are distributed around each joint, as diagrammed in Figure 3 and Figure 11.  

In concept, the inside of the brass section may be coated with a thin-walled Teflon rube that extends 

the length of the 2-joint nozzle to provide a smooth, continuous corridor for medication to flow.  Also, 

the nozzle tip could be tapered to reduce turbulent flow right at the medication release point, and the 

entire length of the nozzle could be coated with a thin-walled Teflon or silicone tube.  

 
Figure 24:  Exploded View of Adaptive Nozzle Joint Assembly 

The 6 SMA actuators used in this design need 6 channels of controlled power that can be individually 

adjusted based on the resistance measurement of respective channels.  The power input is controlled 

through a custom-built power device presented previously by Hangekar and Seelecke [46],[69].  This 

power controller insures that the heating power remains constant even while the resistance of the 

SMA wire changes due to phase transformation.  Since Joule heating is proportional to power input, 

controlling the power effectively controls the heating and by extension the temperature of the SMA 

wire.  This is desirable because the material only responds directly to temperature, which scales with 

heating power as derived in Appendix B and section 2.1.1. 

1.3.2.2 Bio-Inspired Wing – Overview of Design for Fabrication 

Work on the bio-inspired flapping bat project was started by Bunget [22],[23] with the short-term goal 

of making a flapping platform capable of replicating the wing-beat frequencies and wing-tip 

trajectories needed for flight.  However, for the design presented in this section, the goals have been 

amended to creating a flapping platform capable of demonstrating a natural flapping motion at slow 

frequency for museum viewing.  Also, a second design goal was added to increase the number of 

flapping cycles that the bat could make before either joint or actuator fatigue failure.  Finally, the 
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assembly needed to be simple and repeatable so that the design could replicated in the future by other 

assemblers.  Figure 25 shows a 3D model of the flapping bat with two flexible shoulder and two 

flexible elbow joints designed for demonstration in the North Carolina Museum of Science Nature 

Research Center. 

 
Figure 25:  3D Model of Bio-Inspired Flapping Bat 

The rigid bone elements of the bat shown in Figure 25 are first modeled in SolidWorks and then 

created using a 3D printer.  The flexible joints are made from ribbons of super-elastic SMA, 

highlighted in Figure 26, that can bend through large strains and constrain rotation to a single degree 

of freedom.  The SMA actuator wires stretch across the flexible joints just like muscles.  The 

mechanical attachments are made using small, 000-120 bolts, as will be described in section 1.3.2.3.  

Electrical connections are made by plugging both the SMA wire and the lead wire into a socket, as 

shown in section 1.3.2.4.  The SMA wires are guided along the arms and body of the bat with small 

Teflon tube wire guides, as shown in section 1.3.2.5.   

Repeatability is ensured by the computer modeling and 3D printing with 0.003” resolution that 

enables small features to be placed throughout the structure where guide tubes and attachment bolts 

are inserted.  Some of these features are also labeled in Figure 26, where the components associated 

with the elbow and shoulder joints are labeled in blue and green, respectively.  In the case of the 

shoulder joint, the SMA actuator wire (red) makes a turn-around right at the shoulder and then passes 

through a corridor into the body, where it is guided to the belly on the opposite side of the bat before 

being attached to bolts near the tail end.  The elbow SMA actuator wire (yellow) makes a turnaround 

at the wrist and is guided along the arm bones before being attached to the bolts near the shoulder. 
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Figure 26:  Components of Bio-Inspired Flapping Bat Design 

When the bat is fabricated, the first step is to cut the profile of the super-elastic joints using a high-

speed CNC mill and carbide tool, and glue the joints into pre-printed slots in the bones.  Then the 

guide tubes are cut and inserted into the pre-printed groove before the SMA wires are threaded 

through and attached to the bolts.  Finally the electrical connections are made and the bat can be 

tested. 

1.3.2.3 Mechanical Attachments between SMA Wire and Structure 

The mechanical connection between the SMA actuator wire and structure needs to be strong and 

stable.  It must be robust to high temperatures and the changing stress and strain of the transforming 

wire, and it must be small so as not to negate the benefits of using an embedded actuator in the first 

place.  If the wire slips at the attachment point it will develop slack resulting in a reduction in 

structural deformation during actuation.  Standard welding or soldering is very difficult for SMA 

wires because exposing the wire to very high temperatures alters its properties.  Also, crimps and 

clamps by nature cause a stress concentration between the clamps that is likely to become a failure 

point, particularly after repeated cycling. 

Temperature-Resistant Adhesives 

One way to embed an SMA wire within a structure is to use adhesives.  Adhesives are especially 

feasible for small diameter SMA wires that have a large surface to cross-sectional area  ratio.  

Adhesives bond to the surface, so holding force is comparatively high, while actuation force is scaled 

by the cross-section and is therefore comparatively low.  However, maintaining a bond to a wire that 

is contracting and expanding while being heated and cooled is not necessarily straightforward, and the 

operational envelope of the bond between adhesives and SMA wires is not well understood.  Some 

researchers have endeavored to test adhesive bond strength for SMA-composite applications [74]-

[77], and others have searched for a way to improve adhesion using techniques such as oxide 

coatings, etching, or sand-blasting [77]-[79], but none have run a comprehensive spectrum of repeated 

pull-out tests on SMA actuator wires at different temperatures bonded with different types of 

adhesives.  Since adhesives can be as structurally streamlined as the SMA wires themselves, they 

could provide a simple, elegant means of wire attachment.  Some adhesives even boast electrical 

conductivity and could thus be considered for both the electrical and mechanical coupling.   
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A complete set of experiments was run in this work to quantify the effectiveness of various adhesives 

at holding an SMA wire during actuation.  These experiments are presented in detail in Appendix A at 

the end of Part 1.  The adhesive experiments found that the bonding strength of some adhesives, 

particularly Loctite E40-HT high temperature epoxy and SuperGlue, are high enough to hold SMA 

wires during actuation. 

For the case of an SMA wire, adhesive essentially bonds to the cylindrical surface of the wire.  The 

area of contact is therefore the surface area of the cylinder, 

 s sma adhA d Lπ=  (1.26) 

where adhL  is the measured length of the SMA wire that is exposed to adhesive, and smad  is the 

diameter of the SMA wire.  The maximum force expected from the SMA wire is then calculated 

based on the failure stress and the cross sectional area, 

 

2

,max , 2
sma

sma y sma

d
F σ π  

=  
 

 (1.27) 

where ,y sma
σ  is the yield stress of the SMA wire in the austenite phase (where contraction and thus 

force are highest), about 560 MPa [68].  Since it is only necessary for the adhesives to hold forces as 

high as the wire itself can hold, the bonding force defined in equation (1.28), where ,F adh
τ  is the 

failure shear stress of the bond, need only be as large as ,maxsma
F .  

 ,bond F adh s
F Aτ=  (1.28) 

The experiments in Appendix A show the failure shear stress for several different adhesives at 

different input current values.  Figure 27, reproduced from Appendix A, shows that JB Weld, Loctite 

E40-HT, and Loctite SuperGlue all hold a bond of about 6 MPa shear with a 100 µm diameter SMA 

wire heated with a 0.25 A electrical current.  Since it is infeasible to measure the temperature of these 

tiny wires directly without changing the temperature in the process, the temperature is inferred based 

on the input current relative to the listed austenite finish temperature.  The recommended actuation 

current for 100 µm SMA wire is 0.2 A [1], therefore Figure 27 indicates that when the wire reaches 

austenite finish temperature, the Loctite E40-HT is still capable of holding 10 MPa of shear stress.   

To use an adhesive for mechanical connection of an SMA wire to a structure, it is first necessary to 

choose the SMA wire diameter and adhesive, then equate equation (1.27)  to equation (1.28) and solve 

for the length of adhesive, adhL , that must be applied to hold the required force, as shown in equation 

(1.29).  It is also recommended that the SMA wire be scratched with fine grit sand paper and then 

cleaned before applying the adhesive and allowing it to fully cure according to manufacturer 

instructions. 
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Figure 27:  Shear Stress at Bond Failure between Different Adhesives and a 100 µm Diameter SMA Wire Under Electric 
Current 
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Case Study Using Adhesives to Assemble Smart Inhaler Nozzle with Pre-Stressed SMA Wires 

The Smart Inhaler nozzle was assembled with pre-stressed SMA wires to most closely replicate the 

analog SMA-spring system discussed in section 1.1.1 (and later in section 2.1.2).  Pre-stressing allows 

the SMA wires to return fully to the compressive-preferred martensite phase after each actuation 

cycle.  However, the hysteretic stress-strain characteristic of SMA wire necessitates constant 

consideration of the stress-strain state of the material during the pre-stressing and assembly process. 

Figure 28 shows a model of the pre-compressed joint with an SMA wire attached and a depiction of 

adhesive labeled.  The length of the SMA wire that needs to be exposed to the adhesive is defined by 

equation (1.29).  For the Smart Inhaler, 50 µm diameter SMA wires are used, their yield stress is 

taken to be 560 MPa [68], and the failure shear stress of the bond is assumed to be 6 MPa, based on 

Figure 27.  Therefore, the SMA wire should be exposed to at least 1.10 mm of either SuperGlue, 

Loctite E40-HT, or JB Weld, plus a reasonable safety factor if possible. 

The basic procedure for assembling the nozzle with SMA wires under pre-stress is to measure the 

length and stiffness of the compliant joint tube, then mnicoeasure the separation between the two rigid 

sections.  The space between the two rigid sections is then set such that when the compliant joint is 

inserted after all of the SMA wires are attached, it will be compressed and push back on the wires 

with enough force to pre-stress them. 



 

Figure 28:  Diagram of an SMA Wire attached to a Pre

The five components (3 rigid and 2

29.  The assembly setups and procedure is described in more detail in the sections below.

Figure 29:  Three Rigid and Two Flexible Elements Used in Adaptive Nozzle Assembly

Assembly Setups Used for Compliant Joint Measurement and SMA Wire Pre

The setup diagrammed in Figure 

and axial stiffness of the compliant Viton rubber joint material that is placed between the nozzle tip 

and base, as shown in Figure 

aligned at all times.  A small

ensure radial (y,z) alignment is maintained, even when the pieces are moved along the x

shown in Figure 30.  The nozzle base is attached in series with a Futek 

a 9 N load limit and a Zaber T

measurement that is used to locate the nozzle tip, while the nozzle base

can rotate about the x-axis on a thrust bearing.  

in the “Joint Stiffness Determination

Figure 30:  Setup for Pre-compressing Compliant 

:  Diagram of an SMA Wire attached to a Pre-Compressed Compliant Joint 

e five components (3 rigid and 2 flexible) that comprise the adaptive nozzle are pictured in 

The assembly setups and procedure is described in more detail in the sections below.

Three Rigid and Two Flexible Elements Used in Adaptive Nozzle Assembly 

Assembly Setups Used for Compliant Joint Measurement and SMA Wire Pre-stressing

Figure 30 and photographed in Figure 31 is used for measuring the length 

and axial stiffness of the compliant Viton rubber joint material that is placed between the nozzle tip 

Figure 2.  The assembly setups are designed to keep the nozzl

aligned at all times.  A small stiff rod made from tool steel is slid through both the base and tip to 

alignment is maintained, even when the pieces are moved along the x

.  The nozzle base is attached in series with a Futek Model LSB200 load cell with 

and a Zaber T-NA08A25 linear actuator.  The actuator provides a position feedback 

measurement that is used to locate the nozzle tip, while the nozzle base is fixed in 

axis on a thrust bearing.  The joint stiffness measurement

Determination” section of the procedure. 

sing Compliant Viton Rubber Joint 
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flexible) that comprise the adaptive nozzle are pictured in Figure 

The assembly setups and procedure is described in more detail in the sections below. 

 

stressing 

is used for measuring the length 

and axial stiffness of the compliant Viton rubber joint material that is placed between the nozzle tip 

designed to keep the nozzle base and tip 

rod made from tool steel is slid through both the base and tip to 

alignment is maintained, even when the pieces are moved along the x-axis, as 

Model LSB200 load cell with 

NA08A25 linear actuator.  The actuator provides a position feedback 

is fixed in “clamp 1”, which 

The joint stiffness measurement process is described 
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Figure 31:  Photo of Setup for Pre-compressing Compliant Silicon Joint

Figure 32 and Figure 33 show the setup used to attach the SMA wires acro

controlling pre-stress in each wire, as described in the 

the procedure.  The nozzle base is now slid onto a needled that is attached to the “bracket”.  The 

nozzle base can rotate on the needle whil

in red in Figure 32, can be stretched beyond the nozzle base to “clamp 2,” which allows the tensile 

force in the SMA to be measured by the load cell, and strain 

Actuator’s position feedback.  The bracket is mounted on a micrometer stage so that the position of 

the nozzle tip can be measured with respect to the nozzle base.

show a previous version of the adaptive nozzle that was 3D printed in blue. 

Figure 32:  Setup for Pre-stressing and Attaching SMA Wires

Figure 33:  Photo of Setup for Pre-stressing 

Nozzle Assembly Procedure 

The procedure for attaching the SMA wires with a controlled pre

consists of two parts:  first the stiffness of the compliant silicone is measured using the setup in

30.  This will tell the fabricator by how much the joint must be compressed to produce the prescribed 

pre-stress in all 3 SMA actuators.  Then the setup in 

between the nozzle tip and base to generate the needed joint compression.  

compressing Compliant Silicon Joint 

show the setup used to attach the SMA wires across the joint while 

each wire, as described in the “SMA and Lead Wire Attachment

the procedure.  The nozzle base is now slid onto a needled that is attached to the “bracket”.  The 

nozzle base can rotate on the needle while staying parallel to the nozzle base.  The SMA wire, shown 

, can be stretched beyond the nozzle base to “clamp 2,” which allows the tensile 

force in the SMA to be measured by the load cell, and strain to be measured by the Zaber Linear 

position feedback.  The bracket is mounted on a micrometer stage so that the position of 

the nozzle tip can be measured with respect to the nozzle base.  Note that Figure 

show a previous version of the adaptive nozzle that was 3D printed in blue.  

stressing and Attaching SMA Wires 

 and Attaching SMA Wires 

The procedure for attaching the SMA wires with a controlled pre-stress is listed below.  The assembly 

consists of two parts:  first the stiffness of the compliant silicone is measured using the setup in

by how much the joint must be compressed to produce the prescribed 

.  Then the setup in Figure 32 is used to place the proper spaci

between the nozzle tip and base to generate the needed joint compression.  Also, the SMA wires are 

 

ss the joint while 

SMA and Lead Wire Attachment” section of 

the procedure.  The nozzle base is now slid onto a needled that is attached to the “bracket”.  The 

e staying parallel to the nozzle base.  The SMA wire, shown 

, can be stretched beyond the nozzle base to “clamp 2,” which allows the tensile 

sured by the Zaber Linear 

position feedback.  The bracket is mounted on a micrometer stage so that the position of 

Figure 31 and Figure 33 

 

 

stress is listed below.  The assembly 

consists of two parts:  first the stiffness of the compliant silicone is measured using the setup in Figure 

by how much the joint must be compressed to produce the prescribed 

is used to place the proper spacing 

he SMA wires are 
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attached with the proper pre-stress while in the setup in Figure 32.  When the Viton joint is reinserted, 

it will be in compression and produce the proper stress in each wire. 

Wire Preparation 

Prepare three 50-µm diameter Dynalloy Flexinol [1] SMA wires for attachment using the following 

procedure: 

1. Cut each of the 3 wires to about 10 inch length. 

2. Clamp the wires and pull to 300 MPa to put the wire in M+ phase, shown in “Step 1” in 

Figure 34. 

3. Relieve the stress in the wire and pass 0.0015 W/mm into each wire under zero stress to 

put the wire into the austenite phase, as shown in “Step 2”  in Figure 34. 

4. Turn off the heat and allow the wire to cool into the M+/M- twin phase, as shown in 

“Step 3” in Figure 34. 

 
Figure 34:  Stress-Strain Equilibrium after Stressing (Step1), Heating (Step 2) and Cooling (Step3) 

Joint Stiffness Determination 

1. Insert Clamp the nozzle base in clamp 1 and use the “adapter” to hold the nozzle tip in 

series with the load cell, as shown in Figure 30. 

2. Advance the Zaber until the nozzle tip contacts the nozzle base (use the load cell 

measurement to detect contact).  Record this as a zero position, 0x . 

3. Cut a piece of Viton tubing about 15 mm long.  Make sure that the cut is straight, and the 

face of the Viton is perpendicular to the axial direction of the tubing. 

4. Retract the nozzle tip and place the Viton joint between the nozzle tip and base. 

5. Advance the Zaber so that the joint compresses.  Stop the Zaber when the load cell 

measures a force that is equal to the total tensile force to be generated from all 6 wires (2 

from each actuator) loaded to the desired pre-stress 
pσ  

 ( )26pre p smaF rσ π= . (1.30) 

6. Record this position as 1x  and the separation between the nozzle tip and base as 

0 1d x x= − . 

7. Remove the Viton joint from the setup. 
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SMA and Wire Pre-Stressing and Attachment 

1. Add the micrometer stage to the setup and replace the “adapter” with “clamp 2” to create 

the SMA pre-stressing and attachment setup shown in Figure 32. 

2. Fix the nozzle tip in clamp 1. 

3. Slide the nozzle base onto the needle attached to the “bracket” in Figure 32 and advance 

the micrometer stage until the nozzle base touches the nozzle tip (use a microscope to 

detect contact). 

4. Retract the micrometer stage by d  and insert the Viton joint element. 

5. Rotate the clamp 1 so that one of the anchors for SMA wire turn around, Figure 28, is 

facing up. 

6. Wrap the middle of the SMA wire around the anchor and use SuperGlue to tack the wire 

in place as shown in Figure 35.  Wait at least 10 minutes for the SuperGlue to cure. 

 
Figure 35:  SMA Wire Wrapped Around Turn-Around Anchor with SuperGlue 

7. Attach the SMA wire to clamp 2 and retract the Zaber slowly until the wire achieves the 

desired pre-stress, as measured by the load cell.  This will put the wire into the state 

shown in Figure 36. 

 
Figure 36:  Stress-Strain Equilibrium after Pre-Stressing 

8. Tack the SMA wire to the nozzle base using SuperGlue, as depicted in Figure 37 and 

photographed in Figure 38. 



 

Figure 37:  Stressed SMA Wire Tacked with SuperGlue

Figure 38:  Close-up Photo of SMA Wire Under Tension with SuperGlue Tack

9. Wait at least 10 minutes for the SuperGlue to cure, then rotate “clamp 1” on the thrust 

bearing and the nozzle base on the needle.  Tack the second strand of actuator 1 with 

SuperGlue.  Repeat for all 6 SMA wires.

10. Next, the electrical connections are made via th

11. After the electrical connections are made, u

reinforce the connections, as depicted

SMA wire exposed to the 

are encased in adhesive (1.5 mm in SuperGlue and 1.5 mm in Loctite E40

least 3 days to cure Loctite E40

Figure 39:  SMA Wires Secured with Loctite E40

The end result of this process is a nozzle joint with 6 strands of SMA wire under a pre

by the compression of the compliant joint.  The wires are all permanently attached w

An alternative method using a bolt or screw that can rotate is discussed next.

Adjustable Screw Method

Some of the drawbacks of using adhesives can be addressed by wrapping an SMA wire around a post 

that can be rotated, such as a screw

shown in Figure 40.  Wrapping a wire around a post

:  Stressed SMA Wire Tacked with SuperGlue 

up Photo of SMA Wire Under Tension with SuperGlue Tack 

minutes for the SuperGlue to cure, then rotate “clamp 1” on the thrust 

bearing and the nozzle base on the needle.  Tack the second strand of actuator 1 with 

SuperGlue.  Repeat for all 6 SMA wires. 

Next, the electrical connections are made via the wire loop method

After the electrical connections are made, use Loctite E40-HT high temperature epoxy to 

nforce the connections, as depicted in Figure 39.  As calculated above, the length of 

to the adhesive should be at least 1.1 mm.  In this case, 3 mm of wire 

are encased in adhesive (1.5 mm in SuperGlue and 1.5 mm in Loctite E40

least 3 days to cure Loctite E40-HT before attempting actuation.   

:  SMA Wires Secured with Loctite E40-HT High Temperature Epoxy 

The end result of this process is a nozzle joint with 6 strands of SMA wire under a pre

by the compression of the compliant joint.  The wires are all permanently attached w

An alternative method using a bolt or screw that can rotate is discussed next. 

Adjustable Screw Method 

Some of the drawbacks of using adhesives can be addressed by wrapping an SMA wire around a post 

that can be rotated, such as a screw.  An analog of this method is in the common guitar string winder, 

pping a wire around a post serves to transfer most of the mechanical load to 
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minutes for the SuperGlue to cure, then rotate “clamp 1” on the thrust 

bearing and the nozzle base on the needle.  Tack the second strand of actuator 1 with 

d. 

HT high temperature epoxy to 

As calculated above, the length of 

mm.  In this case, 3 mm of wire 

are encased in adhesive (1.5 mm in SuperGlue and 1.5 mm in Loctite E40-HT).  Allow at 

 

 

The end result of this process is a nozzle joint with 6 strands of SMA wire under a pre-stress supplied 

by the compression of the compliant joint.  The wires are all permanently attached with adhesives.  

Some of the drawbacks of using adhesives can be addressed by wrapping an SMA wire around a post 

analog of this method is in the common guitar string winder, 

serves to transfer most of the mechanical load to 
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friction between the small post and the wrapped wire.  Then only a 

keep the SMA wire from unwrapping itself

develops in the SMA wire, the screw can be rotated to remove the slack or tune the pre

wire, much like a guitar string. 

Figure 40:  Photo of Guitar String Winders [80]

Case Study in Bio-Inspired Application

In the bio-inspired bat application presented in section 

thread diameter of 0.88 mm was successfully used to hold a 75 

was tapped into the 3D-printed material 

bone during the printing process, and the brass screw was simply turned into the hole, cutting its own 

threads into the softer print material.  On the opp

tension on the bolt and prevent the bolt from rotating due to torque applied by the coiled SMA wire

during actuation.  The straight SMA actuator wire was first placed adjacent to the bolt, and a tiny drop

of instant-curing SuperGlue was placed on the junction to keep the SMA in place.  Then the SMA 

looped around the bolt once as shown in 

the SMA wire.  Behind the mechanical connection, the SMA is left slack, and the electrical 

connection is made to the slack wire.

Figure 42:  Structural Element with Screw for Mechanical Attachment of SMA Wire

friction between the small post and the wrapped wire.  Then only a small bit of adhesive is needed to 

wire from unwrapping itself, as shown in Figure 41.  Also, if at some point slack 

develops in the SMA wire, the screw can be rotated to remove the slack or tune the pre

 
[80] Figure 41:  Diagram of Adjustable Screw Method for SMA 

Attachment and Tensioning 

Inspired Application 

application presented in section 1.2.2, a brass 000-120 screw with an outer 

was successfully used to hold a 75 µm diameter SMA wire.  The screw 

printed material that comprised the bat’s bones.  A 0.5 mm hole was left in the 

bone during the printing process, and the brass screw was simply turned into the hole, cutting its own 

threads into the softer print material.  On the opposite side of the bone, a jam nut was used to apply 

tension on the bolt and prevent the bolt from rotating due to torque applied by the coiled SMA wire

.  The straight SMA actuator wire was first placed adjacent to the bolt, and a tiny drop

curing SuperGlue was placed on the junction to keep the SMA in place.  Then the SMA 

as shown in Figure 42.  Rotating the bolt gives control over the tension in 

mechanical connection, the SMA is left slack, and the electrical 

connection is made to the slack wire. 

:  Structural Element with Screw for Mechanical Attachment of SMA Wire 

small bit of adhesive is needed to 

.  Also, if at some point slack 

develops in the SMA wire, the screw can be rotated to remove the slack or tune the pre-stress in the 

 
:  Diagram of Adjustable Screw Method for SMA 

120 screw with an outer 

m diameter SMA wire.  The screw 

A 0.5 mm hole was left in the 

bone during the printing process, and the brass screw was simply turned into the hole, cutting its own 

osite side of the bone, a jam nut was used to apply 

tension on the bolt and prevent the bolt from rotating due to torque applied by the coiled SMA wire 

.  The straight SMA actuator wire was first placed adjacent to the bolt, and a tiny drop 

curing SuperGlue was placed on the junction to keep the SMA in place.  Then the SMA was 

.  Rotating the bolt gives control over the tension in 

mechanical connection, the SMA is left slack, and the electrical 

 



 

Figure 43:  Demonstration of SMA Wire Attached to Bio

Figure 44 shows the SMA wires from the elbow and shoulder joints of the museum exhibit bat 

connected to small bolts.  The pre

or testing process by rotating these bolts.

Figure 44:  Adjustable Screw Method Applied to Bat Elbow and Shoulder SMA Muscles

In this method, assembly is fast and simple, and i

failing for over 100,000 cycles.

junction.  In some cases, the SMA wire failed right at the junction.  However, this issue was remedied 

by ensuring that the SMA wire came off the junction tangent to the post so as to avoid any stress 

concentration at the attachment point.

The main drawback of this method of making the mechanical connection between the SMA wire and 

the structure is the added bulk.  The adjustment post takes up space and usually requir

the screw is too small compared to the SMA wire, the SMA will not be able to wind tightly around the 

screw without being subjected

1.3.2.4 Electrical Connections

The electrical connection between the SMA wire and lead wire 

the face of the transforming SMA wire.  

the mechanical connection, a

therefore contact resistance.  It is critical to keep contact resistance constant, because an

measurements of “wire” resistance actually include contr

SMA Wire Attached to Bio-Inspired Bone Structure with Adjustable Screw Method

shows the SMA wires from the elbow and shoulder joints of the museum exhibit bat 

connected to small bolts.  The pre-strain in the SMA wire can be tuned at any point in the fabrication 

or testing process by rotating these bolts. 

:  Adjustable Screw Method Applied to Bat Elbow and Shoulder SMA Muscles 

In this method, assembly is fast and simple, and in tests the connection held without soften

over 100,000 cycles.  In all cases, the SMA wire itself fatigued and failed before the 

In some cases, the SMA wire failed right at the junction.  However, this issue was remedied 

suring that the SMA wire came off the junction tangent to the post so as to avoid any stress 

concentration at the attachment point. 

The main drawback of this method of making the mechanical connection between the SMA wire and 

k.  The adjustment post takes up space and usually requir

the screw is too small compared to the SMA wire, the SMA will not be able to wind tightly around the 

subjected to very high stresses. 

Electrical Connections between SMA and Lead Wires

between the SMA wire and lead wire also needs to be stable and robust in 

the face of the transforming SMA wire.  If the electrical connection is made at the same location as 

the mechanical connection, a change in tension in the wire causes a change in contact pressure and 

therefore contact resistance.  It is critical to keep contact resistance constant, because an

measurements of “wire” resistance actually include contributions from the lead wires,
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Inspired Bone Structure with Adjustable Screw Method 

shows the SMA wires from the elbow and shoulder joints of the museum exhibit bat 

MA wire can be tuned at any point in the fabrication 

 

the connection held without softening or 

In all cases, the SMA wire itself fatigued and failed before the 

In some cases, the SMA wire failed right at the junction.  However, this issue was remedied 

suring that the SMA wire came off the junction tangent to the post so as to avoid any stress 

The main drawback of this method of making the mechanical connection between the SMA wire and 

k.  The adjustment post takes up space and usually requires a jam nut.  If 

the screw is too small compared to the SMA wire, the SMA will not be able to wind tightly around the 

een SMA and Lead Wires 

also needs to be stable and robust in 

If the electrical connection is made at the same location as 

ge in tension in the wire causes a change in contact pressure and 

therefore contact resistance.  It is critical to keep contact resistance constant, because any 

ibutions from the lead wires, electrical 
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contacts, and parasite resistance from within the measurement electronics.  Figure 45 depicts these 

contributions, which sum up to give the total measured resistance in equation (1.31).  When a slack 

SMA wire is heated and changes phase it often twists or squirms in response to the small residual or 

thermal stresses in the wire.  This can also lead to a change in contact resistance.  A noisy resistance 

measurement not only causes a measurement error in sensor applications, but it also causes errors in 

the power control algorithm employed by the adaptive power supply developed at NC State 

University for multifunctional SMA actuators and sensors [45],[46],[69]. 

 1 2 1 2 1 2Meas SMA C C lead lead P PR R R R R R R R= + + + + + +  (1.31) 

  
Figure 45:  Diagram Showing the Contributions to SMA Resistance Measurements 

In general, the effect of changing contact pressure on resistance motivates the need to put the 

electrical connection behind the mechanical connection.  Also, when placed behind the mechanical 

connection the electrical connection does not need to have the mechanical strength to carry any load.  

Since adhesives are electrically insulating they should not be used in the area of the electrical 

connection.  As was shown in Figure 27 and Appendix A, conductive epoxies that cure at room 

temperature do not hold firmly when exposed to high temperature, and the electrical connection also 

weakened significantly when the adhesive bond is broken. 

 
Figure 46:  Diagram of Electrical Connection Behind Mechanical Connection 

Wire Loop Method 

The electrical connection can be streamlined further by connecting the SMA wire directly to the lead 

wire, and using conductive paint to help improve conduction.  This method is presented as it was 

applied to an adaptive Smart Inhaler nozzle, introduced in section I.iv. 

Case Study in Smart Inhaler Nozzle 

In the adaptive nozzle, a 50 µm SMA wire is attached to a 36 gauge coated copper lead wire.  There 

are 4 lead wires – 3 channels and 1 common ground – for each of the flexible joints.  The steps used 

to make this connection are first demonstrated and documented in the test-system shown in Figure 47, 



 

while the same procedure is reiterated for the newest adaptive nozzle prototype in 

description of the steps are listed below.

• Step 1 – In step 1, the 

after the mechanical junction is made with SuperGlue adhesive.

• Step 2 – Step 2 shows the ground lead wrapped around the 

(black) wrapped around the ground lead

has been tinned with solder.  Tinning the ground lead makes it slightly thicker, thus providing 

more contact area.  

• Step 3 – In step 3, conductive 

of the lead wires compared to the SMA wire makes it difficult to get a consistent contact 

pressure while wrapping, so conductive paint helps create additional electrical pathways and 

keep contact resistance low

• Step 4 – First, step

material.  This material isolates the ground connections from the signal connections that will 

be laid on top of them.  It also helps keep contact resistance constant 

wire firm.  Step 4 also shows the signal lead wire loop consisting of a copper wire that is 

formed into a ~1 mm diameter loop and then tinned. 

• Step 5 – In step 5, the SMA wire is wrapped around the lead wire loop.  The loose end of the 

SMA is then glued to the side of th

in Step 1. 

• Step 6 – In step 6 conductive paint is added 

Figure 47:  Demonstration Lead Wire Loop Electrical Connection Proce

Figure 48 shows this same method applied to the 

described in sections 1.3.2.1.  In this case, the brass inner tube is maintained as the electrical gr

thus providing more surface area over which to make the ground connection.

while the same procedure is reiterated for the newest adaptive nozzle prototype in 

listed below. 

In step 1, the SMA wires are shown before the electrical connection is made, but 

after the mechanical junction is made with SuperGlue adhesive. 

2 shows the ground lead wrapped around the tube, and 1 end of the SMA wire 

(black) wrapped around the ground lead.  The copper ground lead appears silver because it 

has been tinned with solder.  Tinning the ground lead makes it slightly thicker, thus providing 

3, conductive silver paint is applied to the electrical junction.  The 

of the lead wires compared to the SMA wire makes it difficult to get a consistent contact 

pressure while wrapping, so conductive paint helps create additional electrical pathways and 

tact resistance low. 

First, step 4 shows the ground connection is wrapped with silicone dielectric 

material.  This material isolates the ground connections from the signal connections that will 

be laid on top of them.  It also helps keep contact resistance constant 

4 also shows the signal lead wire loop consisting of a copper wire that is 

mm diameter loop and then tinned.  

5, the SMA wire is wrapped around the lead wire loop.  The loose end of the 

SMA is then glued to the side of the tube adjacent to the original mecha

6 conductive paint is added onto the wire loop at the connection point.

Lead Wire Loop Electrical Connection Process 

shows this same method applied to the Smart Inhaler nozzle made from layered tubes, as 

.  In this case, the brass inner tube is maintained as the electrical gr

thus providing more surface area over which to make the ground connection. 
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while the same procedure is reiterated for the newest adaptive nozzle prototype in Figure 48.  A 

SMA wires are shown before the electrical connection is made, but 

, and 1 end of the SMA wire 

.  The copper ground lead appears silver because it 

has been tinned with solder.  Tinning the ground lead makes it slightly thicker, thus providing 

is applied to the electrical junction.  The small size 

of the lead wires compared to the SMA wire makes it difficult to get a consistent contact 

pressure while wrapping, so conductive paint helps create additional electrical pathways and 

s wrapped with silicone dielectric 

material.  This material isolates the ground connections from the signal connections that will 

be laid on top of them.  It also helps keep contact resistance constant by holding the SMA 

4 also shows the signal lead wire loop consisting of a copper wire that is 

5, the SMA wire is wrapped around the lead wire loop.  The loose end of the 

e tube adjacent to the original mechanical junction, labeled 

at the connection point. 

 

nozzle made from layered tubes, as 

.  In this case, the brass inner tube is maintained as the electrical ground, 
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Figure 48:  Lead Wire Loop Electrical Connection Process Applied to Adaptive Nozzle

Figure 49 shows the complete electrica

SMA actuator wire.  The electrical connection is coated with conductive paint, then the continuity of 

the electrical connection is checked before finally the Loctite E40

mechanical connection. 

Figure 49:  Adaptive Nozzle Electrical and Mechanical Connections

The connection is then encased in a sleeve of Teflon heat shrink that protects the connection and 

provides additional contact pressure, as shown in 

Figure 50:  Adaptive Nozzle Electrical Connection Encased with Teflon Heat Shrink Tubing

This method makes very small, streamlined electrical connections, and when configure

Figure 49 the lead wire loop can act as a second mechanical anchor, in case the adhesive fails.  

However, this method is labor intensive and occasionally causes unstable parasite resistance.  Also, it 

is difficult to alter the connection or the pre

:  Lead Wire Loop Electrical Connection Process Applied to Adaptive Nozzle 

shows the complete electrical and mechanical connection for the embedded adaptive nozzle 

SMA actuator wire.  The electrical connection is coated with conductive paint, then the continuity of 

the electrical connection is checked before finally the Loctite E40-HT adhesive is added to s

:  Adaptive Nozzle Electrical and Mechanical Connections 

ncased in a sleeve of Teflon heat shrink that protects the connection and 

sure, as shown in Figure 50.  

:  Adaptive Nozzle Electrical Connection Encased with Teflon Heat Shrink Tubing 

This method makes very small, streamlined electrical connections, and when configure

the lead wire loop can act as a second mechanical anchor, in case the adhesive fails.  

However, this method is labor intensive and occasionally causes unstable parasite resistance.  Also, it 

or the pre-strain in the SMA wire once it is made. 

 

l and mechanical connection for the embedded adaptive nozzle 

SMA actuator wire.  The electrical connection is coated with conductive paint, then the continuity of 

HT adhesive is added to secure the 

 

ncased in a sleeve of Teflon heat shrink that protects the connection and 

 

This method makes very small, streamlined electrical connections, and when configured as shown in 

the lead wire loop can act as a second mechanical anchor, in case the adhesive fails.  

However, this method is labor intensive and occasionally causes unstable parasite resistance.  Also, it 



 

Pin-Socket Connections
Case Study in Bio-Inspired Application

When the electrical connection is put behind the mechanical connection, as shown in 

electrical connection does not have to carry any load.  In the “pin

created in a block and then a soft, conductive, tightly fitting pin is pressed into the socket along with 

the SMA wire.  For the bat application, 4 dif

were needed.  An example of a s

terminals is shown in Figure 51

0.81 mm diameter is pressed in, as shown in 

Figure 51:  Socket Block with Slack End of an SMA Wire

Since neither the copper pin nor the PVC socket is harder than the SMA, there is little chance of the 

SMA wire being cut when the pin is inserted.  Also, the 

ensures a tight connection over a

Since the electrical connection is behind the mechanical junction and not exposed to changing wire 

stress, the contact resistance remains small and constant during heating and cooling 

downside of this socket-pin method is that it is large and bulky, particularly in this implementation.  

For the bat, it was desirable to have all of the socket connections together on one block, and the space 

between the sockets makes assembly

separating out the channels and using 8 small tubes instead of one large block

sockets directly into the body of the bat

of the bat. 

1.3.2.5 SMA Wire Guides

In actuator applications, the stroke provided by an SMA wire is proportional to a contraction strain 

scaled by the total length of the active wire.  Similarly, 

experience a larger change in the resistance and thus 

allows a long wire to be threaded on a curved path through a structure.  However, friction at contact 

points serves to increase the stress in the wire locally, and the sum 

a reduced actuation force at the attachment point.  Also, a hot SMA wire conducts heat away at each 

contact point, resulting in a reduction in actuation stroke, as discussed in 

guide will have very low friction and thermal conductivity, and it will guide the SMA wire around a 

large radius of curvature so as to 

Socket Connections 
Inspired Application 

When the electrical connection is put behind the mechanical connection, as shown in 

electrical connection does not have to carry any load.  In the “pin-socket method,” a socket 

and then a soft, conductive, tightly fitting pin is pressed into the socket along with 

the SMA wire.  For the bat application, 4 different channels requiring 8 separate electrical connections 

were needed.  An example of a socket block made from PVC with eight 0.

51.  First the SMA wire is inserted into the socket, t

essed in, as shown in Figure 52. 

 
:  Socket Block with Slack End of an SMA Wire Figure 52:  Socket Block with Copper P

Wire 

Since neither the copper pin nor the PVC socket is harder than the SMA, there is little chance of the 

SMA wire being cut when the pin is inserted.  Also, the tight tolerance between the SMA and the pin 

ensures a tight connection over a larger area that results in very small (<0.1 Ohm) contact resistance.  

Since the electrical connection is behind the mechanical junction and not exposed to changing wire 

stress, the contact resistance remains small and constant during heating and cooling 

pin method is that it is large and bulky, particularly in this implementation.  

For the bat, it was desirable to have all of the socket connections together on one block, and the space 

between the sockets makes assembly easier.  It is also possible to miniaturize the socket block by 

separating out the channels and using 8 small tubes instead of one large block

sockets directly into the body of the bat.  The latter method is successfully employed in la

Wire Guides 

In actuator applications, the stroke provided by an SMA wire is proportional to a contraction strain 

scaled by the total length of the active wire.  Similarly, in sensor applications a long wire 

ger change in the resistance and thus achieve higher resolution.  Using wire guides 

allows a long wire to be threaded on a curved path through a structure.  However, friction at contact 

points serves to increase the stress in the wire locally, and the sum of these local contributions causes 

a reduced actuation force at the attachment point.  Also, a hot SMA wire conducts heat away at each 

contact point, resulting in a reduction in actuation stroke, as discussed in Appendix B

e very low friction and thermal conductivity, and it will guide the SMA wire around a 

large radius of curvature so as to avoid creating a stress concentration in the wire.
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When the electrical connection is put behind the mechanical connection, as shown in Figure 46, the 

socket method,” a socket hole is 

and then a soft, conductive, tightly fitting pin is pressed into the socket along with 

ferent channels requiring 8 separate electrical connections 

ocket block made from PVC with eight 0.79 mm diameter socket 

et, then a copper pin with 

 
:  Socket Block with Copper Pin Holding SMA 

Since neither the copper pin nor the PVC socket is harder than the SMA, there is little chance of the 

between the SMA and the pin 

larger area that results in very small (<0.1 Ohm) contact resistance.  

Since the electrical connection is behind the mechanical junction and not exposed to changing wire 

stress, the contact resistance remains small and constant during heating and cooling cycles.  The 

pin method is that it is large and bulky, particularly in this implementation.  

For the bat, it was desirable to have all of the socket connections together on one block, and the space 

easier.  It is also possible to miniaturize the socket block by 

separating out the channels and using 8 small tubes instead of one large block, or by printing the 

The latter method is successfully employed in later versions 

In actuator applications, the stroke provided by an SMA wire is proportional to a contraction strain 

sensor applications a long wire can 

resolution.  Using wire guides 

allows a long wire to be threaded on a curved path through a structure.  However, friction at contact 

of these local contributions causes 

a reduced actuation force at the attachment point.  Also, a hot SMA wire conducts heat away at each 

Appendix B.  Ideally, a wire 

e very low friction and thermal conductivity, and it will guide the SMA wire around a 

avoid creating a stress concentration in the wire.   
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Figure 53 shows wire guides employed by 

were meticulously formed from coated copper motor wire and glued into the body of the bat.  This 

method requires a steady hand and a lot of labor, and the metal wire guides cause a lot of friction and 

heat loss at the contact points.  The friction will result in a loss of stroke, increase in stress, and 

localized wear that could lead to fatigue and failure.  The conductive cooling may prevent sections of 

wire from transforming to the austenite phase, als

study of the effects of thermal boundary layers in 

Figure 53:  Wire Guide Loops from Bunget BATMAV Prototype 

Case Study of Teflon Tubes in Bio

The Teflon tube method offers an improvement to the wire loops shown in 

low friction and is resistant to wear and to temperatures over 200 C.  

diameter (OD) and 0.4 mm inner diameter (ID) is shown next to a 3D printed 

Figure 54: Teflon Tube Used for Guiding SMA Wires

The series of pictures in Figure 55

point for an SMA wire on the wrist of the bio

structure 3D printed with a slot for a wire guid

and 0.4 mm ID.  In ‘Step 2’, the tube is inserted into to slot, and in ‘Step3’ the SMA wir

through the tube.  Figure 56 shows how 3 sets of Teflon wire guides are use

that actuates the elbow joint from one 

joint, around the wrist, and finally back to a second screw attachment point

the Teflon tubes also blend in with the bone, making them ideal for the museum exhibit application.

shows wire guides employed by Bunget for a previous BATMAV prototype.  These guides 

were meticulously formed from coated copper motor wire and glued into the body of the bat.  This 

method requires a steady hand and a lot of labor, and the metal wire guides cause a lot of friction and 

eat loss at the contact points.  The friction will result in a loss of stroke, increase in stress, and 

localized wear that could lead to fatigue and failure.  The conductive cooling may prevent sections of 

wire from transforming to the austenite phase, also resulting in a loss of stroke, as discussed in the 

study of the effects of thermal boundary layers in Appendix B. 

:  Wire Guide Loops from Bunget BATMAV Prototype [23] 

in Bio-Inspired Application 

The Teflon tube method offers an improvement to the wire loops shown in Figure 53

wear and to temperatures over 200 C.  A Teflon tube with 0.8

diameter (OD) and 0.4 mm inner diameter (ID) is shown next to a 3D printed bat wrist in 

: Teflon Tube Used for Guiding SMA Wires 

55 shows how Teflon tube wire guides were used as a turn

point for an SMA wire on the wrist of the bio-inspired bat wing.  In ‘Step 1” in Figure 

with a slot for a wire guide is shown along with a Teflon tube with 0.8 mm OD 

and 0.4 mm ID.  In ‘Step 2’, the tube is inserted into to slot, and in ‘Step3’ the SMA wir

shows how 3 sets of Teflon wire guides are used to bring the SMA wire 

tes the elbow joint from one screw attachment point near the shoulder, through the elbow 

joint, around the wrist, and finally back to a second screw attachment point by the shoulder

in with the bone, making them ideal for the museum exhibit application.

5 mm 

Bunget for a previous BATMAV prototype.  These guides 

were meticulously formed from coated copper motor wire and glued into the body of the bat.  This 

method requires a steady hand and a lot of labor, and the metal wire guides cause a lot of friction and 

eat loss at the contact points.  The friction will result in a loss of stroke, increase in stress, and 

localized wear that could lead to fatigue and failure.  The conductive cooling may prevent sections of 

o resulting in a loss of stroke, as discussed in the 

 

53.  Teflon has very 

A Teflon tube with 0.8 mm outer 

bat wrist in Figure 54.  

 

shows how Teflon tube wire guides were used as a turn-around 

Figure 55, the bone 

e is shown along with a Teflon tube with 0.8 mm OD 

and 0.4 mm ID.  In ‘Step 2’, the tube is inserted into to slot, and in ‘Step3’ the SMA wire is threaded 

bring the SMA wire 

, through the elbow 

by the shoulder.  Note that 

in with the bone, making them ideal for the museum exhibit application. 
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Figure 55:  Teflon Tube Wire Guides in Bio-Inspired Application 

 
Figure 56:  SMA Wire Guided Along Bat Wing with Teflon Tubes 
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1.4 Summary of Design and Fabrication for Embedded 

SMA Actuator Wire Applications 

Part 1 developed a systematic method for designing embedded SMA applications.  The kinematics of 

the unique interaction between a hysteretic, non-linear material – the SMA wire – and a structure with 

its own force-displacement characteristic was simplified to an SMA-spring system for the purpose of 

demonstration.  This system is studied in greater detail with side-by-side experiments and modeling in 

Part 2.  Next a design process was outlined that directs a designer to first determine the kinematic 

relationship between the contraction of the SMA wire and the structural deformation, then to 

determine what stresses are developed in the structure and the wire by force and moment balance.  

The kinematic equations and force balance presented can either be applied as a simple first-order 

prediction; or they can be solved iteratively through an optimization algorithm that considers the 

objective of structural deformation subject to the constraints of the material stresses.  Similarly, other 

methods like theory of linear elasticity or finite element analysis can be used to develop more accurate 

models that consider the coupling between the force and deformation problems at each step.   

The design and fabrication methods presented in Part 1 have produced an adaptive Smart Inhaler 

nozzle and a bio-inspired flapping wing that meet the initial design objectives.  The design process 

started with a prediction of the joint rotation that would result from a given SMA wire contraction, as 

determined by the kinematic relationship.  Then the moments required to induce such a rotation were 

used to produce an estimate of the tensile force in the SMA wire via a force and moment balance.  In 

the case of the Smart Inhaler nozzle, the estimates were used to validate that the simple geometric 

configuration would also produce the desired bending.  For the bio-inspired wing joints, these 

relationships were used iteratively in an optimization algorithm to determine how the geometry could 

be altered to maximize bending while limiting both SMA and joint stress.   

The designs were then fabricated using new techniques for mechanically joining the SMA wires to the 

structure and for making electrical connections between the SMA wire and lead wires.  One of these 

techniques is based on using temperature-resistant adhesives and is detailed further in Appendix A.  

Also, a method of using Teflon wire guides was developed to increase the length of SMA wire that 

could be embedded within the structure while limiting the drawbacks of friction and thermal coupling 

at the contact points (detailed in Appendix B).  These methods led to stable electrical and mechanical 

connections that produced repeatable results in the adaptive nozzle and bio-inspired wing. 

1.4.1 Summary of Adaptive Nozzle Design and Fabrication 

The two-joint Smart Inhaler nozzle uses adhesives to create streamlined mechanical connections, and 

tiny wire loops to make the electrical connection.  The SMA wires are assembled under pre-stress, 

and good repeatability is observed from one actuator to the next.  The joints are able to rotate through 

about 16 degrees in the direction of each actuator – greater than the 15 degree objective, but less than 

the 25 degrees predicted by the first-order kinematic model that neglects axial compression and 

assumes a constant joint curvature.  The distribution of Joule heating power to the 6 different 
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actuators allows the nozzle to be contorted to infinitely-many different configurations.  The two joints 

and complete nozzle is shown in Figure 57 through Figure 59. 

 
Figure 57:  Top Joint 

 
Figure 58:  SMA-Actuated Dual 
Joint Smart Inhaler Nozzle 

 
Figure 59:  Bottom Joint

1.4.2 Summary of Bio-Inspired Wing Design and Fabrication 

The bio-inspired flapping bat was designed using the same kinematic bending model as the nozzle.  In 

the case of the bat, however, a force and moment balance was added and a constrained optimization 

algorithm was used to weigh the benefits of maximal bending against the costs of high forces.  In the 

optimization problem, the objective was to maximize bending, and the constraints were on the peak 

stresses experienced in the SMA actuator wire and super-elastic SMA joint during the course of a 

complete joint rotation cycle.  The geometric parameters, such as wire attachment points, were the 

design variables, and the optimization algorithm produced the best geometry possible based on the 

simplified kinematic and force models.  Testing of the bat showed that the shoulder was capable of 

repeating a rotation of 80 degrees 100,000 times in response to a 0.3 Hz cyclic input wave with 1.1 W 

peak power.  The elbow was designed to rotate less than the shoulder, so it only bends 60 degrees.  In 

some tests the SMA actuator wire failed around 100,000 cycles, and in others the super-elastic joint 

failed, also right around 100,000 cycles.  

The final bat, pictured in Figure 60, uses small bolts as mechanical attachment junctions that enable 

tuning of the wire pre-stress after assembly.  Very stable electrical connections are made behind the 

mechanical connection with a plug and pin method.  Also, Teflon tubes are employed extensively to 

guide the SMA wires around the natural curves of the bat arms and body without subjecting them to 
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significant friction or contact cooling.  This enables the implementation of long “muscle” wires with 

large actuation strokes. 

 
Figure 60:  Bio-Inspired Bat with Two SMA-Actuated Shoulder and Elbow 

In the case of both the bat and the nozzle, the process described in Part 1 produced a theoretical basis 

for the initial designs, and the kinematic and force models identified trends so that the design 

improved with subsequent prototype generations.  Additionally, the case studies are accompanied by a 

summary of successful fabrication techniques that can be reliably employed in future embedded SMA 

actuator wire applications. 

1.5 Future Work for Part 1 

The design and fabrication successes in Part 1 also inspire future work.  Design is often based on 

predicting the behavior of a system before building it, and those predictions are never perfect.  

Further, fabrication often involves developing an ad hoc solution to the problem at hand, so it is 

impossible for all of the questions to ever be answered.  A number of points come to mind for 

improvement: 

• Couple the force and bending problems using an implementation of linear elasticity such as 

Euler-Bernoulli beam theory to get a more accurate prediction of joint bending and peak 

SMA stresses.  This will relax the first order assumption that the joint bends on a uniform arc 

and provide a better model for use with geometric design optimization.  

• Explore different methods for cutting super-elastic SMA ribbons or SMA actuators that are 

not already drawn into wire form.  Although SMA wires are convenient, many of the 

electrical and mechanical attachment challenges could be solved by cutting the actuator out of 

a sheet while leaving an attachment feature behind.  However, cutting SMA material is not 

trivial because local heating or plastic deformation can change the properties of the material. 

• Improve the understanding of the effects of thermo-mechanical coupling on actuator 

performance by simulating a 1D SMA wire with a polycrystalline SMA model and 

implementing more realistic thermal boundary conditions that are somewhere between 

isothermal and adiabatic. 
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2. Part 2:  SMA Wire Modeling, 

Characterization, and Multifunctional 

Sensing and Control  
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2.1 Modeling and Characterization of SMA Actuator 

Systems 

A systematic design process and reliable, repeatable fabrication are prerequisites for successfully 

creating an embedded SMA actuator or sensor device.  However, extracting meaningful sensor data 

from the available measurements and then accurately controlling that device requires a much greater 

understanding of the material’s behavior in the context of the relevant system.  The goal of Part 2 is to 

develop such an understanding through a series of carefully conducted characterization experiments 

side-by-side with a physics-based material model.  The model is used to identify qualitative trends 

and gain an understanding of how the physics of the material manifests itself in the behavior of the 

coupled SMA-structure system.  This understanding is then be used to motivate potential sensor 

mapping methods and control schemes that truly exploit the multi-functional capability of SMA 

wires.   

Two different SMA-structure systems with relevance to embedded SMA actuator and sensor 

applications are studied via physics-based modeling and experimental characterization.  The first is 

the single SMA-spring that approximates many actuator systems where the structure provides a 

passive restoring force, as was discussed in section 1.1.1.  The second system adds an opposing SMA 

wire that provides an active restoring force.  A simplification of the physics-based model developed 

by Seelecke, Mueller, and Achenbach [28],[32] is derived for the case of a 1D thin wire.  That 

material model is then implemented to simulate the practical actuator systems studied. 

2.1.1 SMA Single-Crystal Model 

An implementation of the SMA material model is developed to simulate the coupled electro-thermo-

mechanical behavior of an SMA wire that is heated by a controlled input power.  The implementation 

simplifies the system to 1D and assumes adiabatic thermal boundary conditions at the wire endpoints, 

resulting in a uniform temperature profile and eliminating the need for finite element analysis.  Also, 

R-phase and 2-way effects are ignored because the SMA is almost constantly in tension.  The 

compression-induced M −  phase is not observed for this same reason; however, it is included in the 

model formulation for completeness. 

The behavior of the SMA material is simulated by a single-crystal, free-energy based model described 

below and in further detail by Heintz [42] and Seelecke [31],[44].  A Helmholz free energy landscape 

is used to determine the probability of the single crystal of material changing phase.  These transition 

probabilities then drive the evolution of the phase fractions – the volume ratio of all material that is in 

a given phase – that can be used to quantify mechanical properties.  The energy landscape is 

dependent on temperature, so the thermal evolution is also tracked.  Table 4 shows the three 

differential equations that form the basis of the numerical model.  The terms in each relation and their 

bearing on the characteristic stress-strain behavior of an SMA wire are described in the sections 

below. 
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The differential equations that drive the SMA behavior are implemented into a Simulink model that 

facilitates coupling of multiple SMA wires and structural elements.  The inputs to the Simulink model 

are controlled by a MATLAB script that cycles through different wire pre-stresses, actuation 

frequencies, and input power amplitudes.  The different output variable arrays are then saved for later 

plotting. 

Table 4:  Numerical Model – Coupled Temperature and Phase Fraction Evolution Equations 

Description Differential Equation 

Change in martensite plus phase fraction A A Ax x p x p+ + + += − +ɺ  

Change in martensite minus phase fraction A A Ax x p x p− − − −= − +ɺ  

Change in wire temperature ( ) ( )02 /cT h T T R j H x xρ + −= − + − +ɺ ɺ ɺ  

2.1.1.1 Phase Fraction Evolution Equations 

The time rate of change of the phase fractions is governed by equations (2.1) and (2.2). 

 A A Ax x p x p+ + + += − +ɺ  (2.1) 

 A A Ax x p x p− − − −= − +ɺ  (2.2) 

where pαβ  is the transition probability between phase α  and phase β . Also,  Ax , x+ , and x−  are 

the volume fractions of the austenite, tensile-preferred martensite, and compression-preferred 

martensite phases, respectively.  The change in austenite is simply 1Ax x x+ −= − − . 

2.1.1.2 Phase Transition Probabilities 

The probabilities of an SMA constitutive element transitioning from one phase to another are the 

result of barriers in the energy landscape.  They ultimately reduce to functions of temperature and 

stress shown in equations (2.3) and (2.4).   
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The meaning of the terms in equations (2.3) and (2.4) are given in Table 5.  The derivation of the 

transition probabilities is based in statistical physics and can be seen in detail in [42] and [44]. 

Table 5:  List of Variables Used in Transition Probability Calculations 

Parameter Description [units] Unit 

���  Lattice element activation volume �� 

�� Transition attempt frequency of the layer 	
� 

�
  Boltzmann constant �/� 

� Specific heat 
�

���
 

� Density of Nitinol 
��

��
 

���� Radius of SMA wire �� 

�� Length of SMA wire �� 

�� Austenite Young’s modulus ��� 

�  Martensite Young’s modulus ��� 

!" Transformation strain  

#� Transformation stress (A to M) �� 

#  Transformation stress (M to A) �� 

# Wire stress �� 

∆# Hysteresis loop width %�� 

#��   Aσ  at low temperature %�� 

&#/&' Thermal dependence of stress 
%��

�
 

( Latent heat of phase transformation 
)

��
 

ℎ Convective cooling coefficient 
)

�+�
 

' Current wire temperature � 

'�  Temperature dependence parameter � 

 

Figure 61 shows how the transformation stresses are defined in the context of a typical single-crystal 

SMA stress-strain diagram.  From Figure 61, the martensite to austenite transformation stress can be 

written as shown in equation (2.5). 

 M Aσ σ σ= −∆  (2.5) 
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Figure 61:  Diagram of Model Parameters on Stress-Strain Hysteresis Loop 

The value of ( )A Tσ  is defined by equation (2.6). 

 ( ) ( )A AL L

d
T T T

dT

σ
σ σ= + −  (2.6) 

The parameter ALσ  is the plateau stress at a predetermined “low” temperature, LT , which is set such 

that Aσ  is less than zero when T  is less than the austenitic start temperature, as found on the product 

specification [1].  From equation (2.6), d dTσ  describes how much the hysteresis loop in a stress-

strain diagram will rise when the temperature of the material increases, and should be set based on 

experimental data showing the stress-strain behavior at two or more temperatures.  

2.1.1.3 Thermal Equilibrium Equation 

The time rate of change of SMA temperature T   is a function of the electrical power passed through 

the SMA wire, the rate of heating or cooling due to the latent heats of phase transformations, and the 

convective exchange between the surface of the wire and the ambient environment.  The balance of 

internal energy reduces to equation (2.7)  

 ( ) ( )02 /cT h T T R j H x xρ + −= − + − +ɺ ɺ ɺ  (2.7) 

where j  is the volume power density of applied joule heating, H is the latent heat of transformation 

for martensite [11], c is the specific heat, and ρ  is the density of the SMA [1].  The heat convection 

coefficient, h, is set by looking at experiments run at two different frequencies.  Further discussion on 

the terms in the internal energy balance can also be found in Appendix B, where heat conduction is 

also considered. 

2.1.1.4 Stress-Strain Relation 

The constitutive relationship between the applied stress σ  and the resultant strain ε  in a single-

crystal SMA material is given by equation (2.8).  The inverse relation of stress in terms of strain is 

shown in equation (2.9). 

 A

T T

A M M

x x x
E E E

σ σ σ
ε ε ε+ −     
= + + + −     

     
 (2.8) 
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 (2.9) 

The modulus of austenite and martensite are AE  and ME , respectively. The strain value Tε  

represents the maximum recoverable strain, as indicated in Figure 62. 

 
Figure 62:  Typical SMA Stress-Stain Curve with Austenitic and Martensitic Elastic Moduli 

2.1.1.5 Resistance Model 

This model implementation extends the model in [42] by including a relationship between the current 

phase fractions and SMA resistance. The average resistivity in the SMA is a function of the resistivity 

of the wire in each phase scaled by the fraction of each phase present, as shown in equation (2.10) 

 ( ) ( ) ( ) ( )A

SMA AT x T x T x Tρ ρ ρ ρ+ −
+ − = + +   (2.10)

  

where ( )A Tρ , ( )Tρ+ , and ( )Tρ−  are the temperature-dependent resistivity’s of each component 

phase. The temperature dependence of each resistivity value is defined in equation (2.11) through 

equation (2.13) 

 ( ) ( )0 1 A

A AT Tρ ρ α= + ∆  (2.11) 

 ( ) ( )0 1T Tρ ρ α +
+ += + ∆  (2.12) 

 ( ) ( )0 1T Tρ ρ α −
− −= + ∆  (2.13) 

where iα  is the percentage change in resistivity per degree Kelvin for material phase ,.  The total 

resistance of the SMA wire is then given by equation (2.14) 

 ( ) ( ) 0

0

, , ,
, , ,

A

SMAA
T x x x L

T x x x
A

ρ + −

+ −Ω =  (2.14) 
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where 0L  and 0A  are the fully-austenitic reference length and cross-sectional area of the wire, 

respectively.  This model captures the effects caused by the changing temperature of the wire as well 

as the change in phase.  The thermal effect is captured explicitly by equations (2.11) - (2.13).  The 

implementation of the resistance model in the opposing SMA system to be presented in section 

2.1.3.2 (and Appendix B) will also include explicit contributions from deformation due to the elastic 

straining and lateral contraction.   

The temperature dependence coefficients, shown in Table 8, were set so that the slope of the 

resistance-power curve of the fully martensitic and fully austenitic wires agreed between experiment 

and simulation.  Similarly, the phase resistivity’s were set so that the change in resistance of the 

macroscopic wire due to phase transformation agreed between experiments and simulation. 

2.1.2 Single SMA-Spring System 

Once defined, the simplified material model is implemented into a system that is relevant to 

embedded SMA applications.  For practical SMA actuator applications, a restoring force is needed to 

enable repeated actuation.  This restoring force is often provided by structural elements that flex when 

the wire is heated and thus actuated (contracted), then act as a spring to lengthen the SMA wire upon 

cooling.  The addition of a pre-stretched linear bias spring in series with an SMA wire, as shown in 

Figure 63, provides a generalization of that restoring force.  The spring also alters the stress-strain 

response of SMA material by constraining it to be linear. 

 
Figure 63:  Diagram of SMA and Spring in Series 

Figure 64 illustrates the effect of actuator behavior with increasing input power, and thus wire 

temperature, similar to Figure 8 in Part 1.  Depictions of the stress-strain responses of an SMA wire at 

increasing power levels are plotted, as well as the characteristic stress-strain curve of a spring (for a 

given pre-stress).  Note that the characteristics of the spring and SMA wire have stresses of different 

sign.  This is because a contraction of the SMA wire causes a lengthening of the spring, and vice 

versa.    

In Figure 64, the left branch of the hysteresis loops that pass through the origin represents the stress-

strain behavior expected from material while it is in the austenite phase.  The right branches represent 

the characteristic behavior of the tensile-preferred martensite phase.  When the strictly linear load-

deformation characteristic of the spring causes the material to find equilibrium on one of the 

horizontal plateaus, the wire is a mixture of the two phases.   

The actuator equilibrium points are the intersection points between the SMA and spring characteristic 

lines.  For an SMA wire pre-stressed to Pσ  as shown in the top-left panel in Figure 64, the stress-

strain equilibrium is indicated by triangles.  Upon thermal loading, the hysteresis loop will rise and 
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equilibrium will follow the bottom branch, indicated by black triangles pointing up.  Upon, thermal 

unloading, the equilibrium will follow the top branch as indicated by the gray, downward-pointing 

triangles.  This difference in path from loading to unloading will result in a hysteresis in the 

temperature (or input power) vs. strain, stress, and resistance curves.  

If additional pre-stress is added, the location of the spring characteristic and x-axis intercept will be 

shifted to the right, and the equilibrium position will be shifted up and to the right, as shown by the 

light gray lines in the top-left and bottom-right panels in Figure 64.  As a result, additional pre-stress 

will necessitate a higher heating input energy to achieve complete phase transformation.  This is 

apparent in the bottom-right panel in Figure 64; the higher pre-stress results in equilibrium, indicated 

by the gray circle, that is not fully on the austenite branch at T4. This behavior is modeled and 

presented extensively in the literature [40]-[44],[47]-[51], but now the effect on SMA resistance as 

pre-stress is added.   

 
Figure 64:  Stress-Strain Equilibrium Diagrams for an SMA Wire and Spring at Different Temperatures 

Also, most researchers compare SMA stress, strain, and resistance to a constant input voltage or 

current.  However, wire temperature is more directly related to the input power.  When subjected to a 

constant current, a wire will heat more as the wire is strained and its resistance increases.  The 

opposite occurs when the wire is heated with a constant voltage.  Finally, studies correlating SMA 

resistance to strain [36],[52]-[54] that are needed to enable the use of SMA wires as position sensors 

are few, and none are available for the case of an SMA actuator system under power-control. 

2.1.2.1 Objectives of Single SMA-Spring System Study 

The objective of the single SMA-spring system study presented in this section is to characterize 

numerically and experimentally the behavior of a shape memory alloy actuator system consisting of 

an SMA wire and spring in series. The effect of actuator pre-stress and actuation frequency are 
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studied, and the stress, strain, and resistance characteristics are plotted against Joule heating power.  A 

simplification of a previously presented physics-based model [31] is implemented to provide a 

framework for studying the material’s response to the input most relevant to SMA actuator 

applications: controlled heating power inputs at various cycling frequencies.  Further, a new model is 

developed to predict SMA resistance based on SMA wire temperature and phase fractions.  

Simulations are then compared to measurements taken using a multi-functional power supply 

[45],[46].  The resistance measurements are studied with the aim of using resistance measurements as 

a position feedback sensor in future applications.  The SMA wire studied in experiments is a 50 µm 

HT option Flexinol wire  from Dynalloy [1] and the spring is a cantilever beam with an equivalent 

linear spring stiffness of 0.34 N/mm.  

2.1.2.2 SMA Model Implementation and Parameters 

Kinematic  and Force Balance 

To simulate the coupled SMA-spring system shown in Figure 65, the material stress-strain in equation 

(2.8) is adjusted to include a the force contribution from the spring.  The force equilibrium for the 

system in Figure 65 is given by  

 SMA kF F= − . (2.15) 

where kF kδ=  is the force in the spring.  The deflection of the SMA junction shown in Figure 65 is 

defined as 

 ( )0 , SM A p
Lδ ε ε= − . (2.16) 

 
Figure 65:  Sketch of Coordinate System for Single SMA Wire and Spring System 

The pre-strain 
pε  is determined by calculating the strain in the SMA wire that will generate the 

desired pre-stress via equation (2.8).  It is common for the pre-stress to be chosen such that the SMA 

wire will be 100% in the M +  phase, in which case equation (2.8) simplifies to 

 
p

p T

M
E

σ
ε ε= + . (2.17) 

In order to compare spring force to SMA wire stress the spring force is normalized by the cross-

sectional area of the SMA wire, k
k

c

F

A
σ = , the force equilibrium in equation (2.23) can be written in 

terms of stresses 
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 kσ σ= − . (2.18) 

Substituting the constitutive stress-strain relationship (9) for each wire yields 

 

( ) ( )0,T SMA

pA
c

A M

x x kL

Ax x x

E E

ε ε
ε ε

+ −

+ −

− −
= − −

 +
+ 

 

. (2.19) 

The equilibrium strain is found by solving for ε , 

 

1

0,1 SMA

p

c

kLA
k

B B A
ε ε

−
  = − −  
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, (2.20) 

where 

 ( )TA x xε + −= − , (2.21) 

and 

 
A

A M

x x x
B

E E

+ − +
= + 
 

. (2.22) 

Finally the stress σ can be calculated directly using equation (2.9).   

Modeling Parameters 

The modeling parameters used in simulations of the single SMA-Spring system are listed in Table 6.  

Parameters relating to the resistance model are shown in Table 7. 
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Table 6:  SMA Wire and Heat Transfer Model Parameters 

Parameter Description [units] Value Unit 

���  Lattice element activation volume 5x10-23 �� 

�� Transition attempt frequency of the layer 0.01 	
� 

�
  Boltzmann constant 1.38044x10-23 �/� 

� Specific heat 600 
�

���
 

� Density of Nitinol 6400 
��

��
 

���� Radius of SMA wire 25 �� 

�� Length of SMA wire 53.35 �� 

k Linear spring constant 0.34 
-

��
 

�� Austenite Young’s modulus 75.0 ��� 

�  Martensite Young’s modulus 28.0 ��� 

!" Transformation Strain 0.024  

∆# Hysteresis loop width 150 %�� 

#��   Aσ  at low temperature 190 %�� 

&#/&' Thermal dependence of stress 4.6 
%��

�
 

( Latent heat of phase transformation 3.75 
)

��
 

ℎ Convective cooling coefficient 600 
)

�+�
 

'�  Temperature dependence parameter 318 � 

 

Table 7:  SMA Wire Resistance Model Parameters 

Parameter Description [units] Value Unit 

0Aρ  Resistivity of Austenite phase 8.9x10-8 mΩ  

0ρ ±  Resistivity of martensite phase 10.2x10-8 mΩ  

Aα  Temperature dependence of Austenite phase 0.0002 1K −
 

α ±
 Temperature dependence of martensite phase 0.00015 1K −

 

 

2.1.2.3 Effect of Using a Single Crystal Model to Simulate a Polycrystalline 

Material 

When looking at results in the next two sections it is important to note that this model assumes a 

perfect single-crystal SMA.  However, in reality an SMA wire is composed of many crystals, all of 

which have slightly different properties, such as transition temperature and stress.  The properties of 

the bulk wire then become an average of the properties of the different crystals.  Figure 66 shows the 

single crystal stress-strain characteristic in black with sharp edges along with a representation of the 

behavior expected from a real, polycrystalline material, shown in gray.  The polycrystalline material 
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will have smooth phase transitions resulting from different grains transforming at slightly different 

times.   

As in Figure 64, a characteristic of a linear spring is overlaid, and the equilibrium points are 

highlighted, with black squares showing equilibrium with the single-crystal SMA and gray circles 

showing equilibrium with the polycrystalline SMA.  Also note that in Figure 66 the subscripts “s” 

correlate to results derived from the single-crystal plot and the subscripts “p” from the polycrystalline.  

For a typical SMA wire, the maximum recoverable strain, Tε  in the top panel of Figure 66, is often 

taken to be between 4-5% [1].  However, the addition of the spring reduces the maximum recoverable 

strain when compared to a system with a constant applied stress (as in a hanging mass) by ensuring 

that the wire is under a higher stress when the SMA wire is heated and contracted into the austenite 

phase then when it is cool and martensitic.  The stress induced by the spring causes elastic straining 

along the austenite branch, shown by ,2S
ε  in the bottom panel of Figure 66.  As a result, Sδ  will be 

less than Tε .   

An additional reduction in stroke is apparent because of the polycrystalline nature of an actual SMA 

wire.  The expected strokes of a single-crystal and polycrystalline actuator are labeled by Pδ  and Sδ , 

respectively.  Clearly, when placed in series with a spring, a polycrystalline SMA wire will exhibit 

substantially less stroke than would be predicted by a single-crystal model.  The smooth curves delay 

transition to 100% austenite or martensite, so the maximum possible stroke is rarely realized.  This 

phenomenon becomes apparent in comparisons between experimental and initial simulated solutions.  

However, to account for this known shortcoming in the model, the Tε  parameter is simply reduced to 

2.4% for the implementation of the single SMA-spring system.  This ensures that the scale of the 

strain, and thus stress as coupled via the spring constant, remain comparable between the simulation 

and the experiments. 

 
Figure 66:  Depiction of Single Crystal (black) and Polycrystalline (gray) Stress-Strain Characteristics and Expected Stroke 
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An additional limitation of the single-crystal model is apparent on pre-stressing.  Since the pre-

stressing process is force (stress) controlled, the single-crystal model can only find equilibrium on 

either the austenite branch or the martensite branch, as shown in the left panel of Figure 67.  The 

horizontal plateau is unattainable during force-controlled loading.  Further, the two-way effect causes 

the wire to find an equilibrium with a higher fraction of martensite plus than martensite minus at low 

temperature under zero stress.  This causes the stress-strain curve to cross the x-axis to the right of the 

origin at 0Mε , which often measures up to 2% strain, as indicated by the dotted gray line in Figure 67.  

The smooth transitions of the polycrystalline characteristic and change in characteristic due to the 

two-way effect change the equilibriums, as shown in the right panel of Figure 67.   

 
Figure 67:  Equilibriums Attainable during Pre-stressing in a Single Crystal (left) and Polycrystalline (right) Material. 

2.1.2.4 Experiment Setup 

A simple tensile-testing setup is used to characterize the behavior of the SMA actuator wire in series 

with a flexure spring.  The electrical power used to heat the wire through Joule heating is input 

through a pulse-width-modulation (PWM) based power controller [45],[46].  Since the increase in 

temperature due to Joule heating is proportional to the power input, controlling power gives the best 

control over SMA temperature.  A constant, continuous current source would cause less heating as the 

wire shortens and its resistance decreases.   

The power supply ensures that the total power put into the wire remains constant, even as the 

resistance of the SMA wire changes during actuation.  It does this by pulsing a current wave with 

constant amplitude at high (~1 kHz) frequency, while adjusting the duty cycle of the pulse to adjust 

the total power going into the wire every millisecond.  Since the heating and cooling processes happen 

much more slowly than 1 ms, the temperature of the wire is not affected by the individual pulses, only 

the average of many pulses.  At the same time as the current is pulsed, the voltage across the SMA 

wire is measured.  As the wire is heated and strained during a tensile test its resistance changes; 

however, since peak current is constant, the peak voltage measured during each pulse can be used to 

calculate the wire resistance directly.  This resistance measurement is also used to update the duty 

cycle of the constant current pulse for the next cycle.   

The tensile test setup used to characterize the SMA wire is diagrammed in Figure 68 and 

photographed in Figure 69.  The 50 µm Flexinol SMA wire is connected in series with a spring-steel 

cantilever flexure with stiffness of 0.34 N/mm, as shown in Figure 68.  On the right boundary, a 

clamp transmits the tensile load to a Futek Model LSB200 load cell with a 9 N (4.6 GPa stress, for a 



 

50 µm diameter wire) load limit that is oversampled and filtered for a peak resolution of 0.14 mN (0.1 

Mpa) and a Zaber Model T-NA08A25

actuator provides position feedback, so the position of the right boundary of the SMA wire can be 

effectively tracked. A Micro

resolution is used to track the deflection of the flexure, and thus the left boundary of the wire while 

the wire is actuated.  All of the components are aligned on a ThorLabs rail and enclosed in a 

0.5x0.6x0.2 m acrylic box to isolate the wire from environmental distur

Figure 68:  Diagram of SMA-Flexure Test Setup

Figure 69:  Photograph of SMA-Flexure Testing Setup

2.1.2.5 Experiment Procedure

Because of the hysteretic nature of SMA wires, the procedure used to conduc

essential to understanding the results.  Also, the wire was actuated through 50 cycles to eliminate drift 

prior to the start of experimentation.  The steps taken to prepare the wire used in each test are 

documented below.   

1. Secure the wire between the clamp and the flexure mount, ensuring that there is slack in the 

wire. 

2. Heat the wire under 0 stress with 0.012 W/mm input power for 10 s.  

phase transformation due to conductive cooling at the wire endpoints (

transform the wire to ~

3. With the heat still applied, retract the linear actuator until the load cell and laser displacement 

sensor detect a small force and displacement, respectively.  Record the wire length as the 

austenitic length, L0A

m diameter wire) load limit that is oversampled and filtered for a peak resolution of 0.14 mN (0.1 

NA08A25 linear actuator with 0.6 µm controller resolution.  The linear 

actuator provides position feedback, so the position of the right boundary of the SMA wire can be 

effectively tracked. A Micro-Epsilon optoNCDT 1300 laser displacement sensor with 

used to track the deflection of the flexure, and thus the left boundary of the wire while 

the wire is actuated.  All of the components are aligned on a ThorLabs rail and enclosed in a 

0.5x0.6x0.2 m acrylic box to isolate the wire from environmental disturbances.

Flexure Test Setup 

Flexure Testing Setup 

Procedure 

Because of the hysteretic nature of SMA wires, the procedure used to conduc

essential to understanding the results.  Also, the wire was actuated through 50 cycles to eliminate drift 

prior to the start of experimentation.  The steps taken to prepare the wire used in each test are 

e wire between the clamp and the flexure mount, ensuring that there is slack in the 

Heat the wire under 0 stress with 0.012 W/mm input power for 10 s.  

phase transformation due to conductive cooling at the wire endpoints (

transform the wire to ~100% austenite. 

With the heat still applied, retract the linear actuator until the load cell and laser displacement 

sensor detect a small force and displacement, respectively.  Record the wire length as the 

0A. 
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m diameter wire) load limit that is oversampled and filtered for a peak resolution of 0.14 mN (0.1 

m controller resolution.  The linear 

actuator provides position feedback, so the position of the right boundary of the SMA wire can be 

Epsilon optoNCDT 1300 laser displacement sensor with 25 µm 

used to track the deflection of the flexure, and thus the left boundary of the wire while 

the wire is actuated.  All of the components are aligned on a ThorLabs rail and enclosed in a 

bances. 

 

 

Because of the hysteretic nature of SMA wires, the procedure used to conduct the tensile tests is 

essential to understanding the results.  Also, the wire was actuated through 50 cycles to eliminate drift 

prior to the start of experimentation.  The steps taken to prepare the wire used in each test are 

e wire between the clamp and the flexure mount, ensuring that there is slack in the 

Heat the wire under 0 stress with 0.012 W/mm input power for 10 s.  Neglecting incomplete 

phase transformation due to conductive cooling at the wire endpoints (Appendix B), this will 

With the heat still applied, retract the linear actuator until the load cell and laser displacement 

sensor detect a small force and displacement, respectively.  Record the wire length as the 
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4. Turn off the power into the wire, and allow the wire to cool for 10 s to the martensitic twin 

phase.  Note that the two-way effect will cause a greater percentage of the wire to be in the 

martensite plus phase. 

5. Retract the linear actuator until the load cell and laser displacement sensor detect a small 

force and displacement, respectively.  Record the wire length as the martensitic length, L0M. 

6. Retract the linear actuator until the load cell measures a stress in the wire equal to the desired 

pre-stress for this test. 

7. Stop the linear actuator and begin cycling the power input 10 times in a triangle wave with the 

desired frequency and amplitude, as shown in Figure 70. 

8. Repeat steps 1-7 for all desired pre-stresses and input power amplitudes and frequencies. 

2.1.2.6 Tensile Test Inputs 

For each of the desired pre-stress values, 9 different input power signals shown in Figure 70 were 

used to actuate the SMA wire.  Each signal was allowed to run for 10 cycles.  The frequencies used 

were 0.1, 0.5, and 1 Hz, and the amplitudes were 0.004, 0.008, and 0.012 W/mm.  Since the wire’s 

nominal length was 50 mm, these power densities result in 0.2, 0.4, and 0.6 W input power 

amplitudes.  Preliminary results showed that 0.008 W/mm was sufficient to induce complete phase 

transformation at all pre-stress values, so the plots taken at this power amplitude value are presented 

in the following sections. 

 
Figure 70:  Input Power Signals Shown over 10 s at 0.1 Hz (left), 0.5 Hz (middle), and 1.0 Hz (right) 

2.1.2.7 Numerical and Experimental Results 

The numerical and experimental results are compared and the effect of changing wire pre-stress and 

actuation frequency is studied.  Careful attention is paid to the relationship between wire strain and 

resistance, since this is the characteristic that will enable an SMA wire to be used as a position 

feedback sensor during actuation.  In all plots, experimental results are shown in the left panel and 

simulated results in the right panel. 

Effect of SMA Pre-stress.  

In this section, the effect of the wire pre-stress on the characteristic behavior of an SMA wire actuated 

at low (0.1 Hz) frequencies is examined.  Figure 71 shows how the wire strain changes as input power 

is cycled.  As pre-stress is increased, the hysteresis loops move up and to the right on the power-strain 
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curves.  This is because a larger input power is needed to overcome a larger pre-stress and induce wire 

contraction.  This behavior is accurately captured by the model; however, the model underestimates 

the magnitude of the upward motion of the hysteresis.  The discrepancy results from the fact that a 

single crystal model is employed in these simulations.  In a single crystal model, phase transformation 

results in an equilibrium state that is either on the horizontal plateau of the hysteresis, entirely on the 

austenitic branch, or entirely on the martensitic branch.  In reality, the material makes a smooth 

transition between the plateau and martensitic branch since not all grains change phase at the same 

instant.  A more realistic depiction of stress-strain behavior is indicated by the gray line in Figure 66.  

This means that the 50 MPa incremental increases in pre-stress actually may result in equilibrium 

states between the austenitic and martensitic branches, as shown in Figure 67.  In the case of the 

model, the material is already on the stiff martensite branch after 50 MPa, so any additional stress will 

only cause only small 0.07 % increases in strain per 50 MPa stress increase. 

 
Figure 71:  Power vs. Strain for Different Pre-stresses with 0.1 Hz Heating Frequency 

Figure 72 shows that increased pre-stress causes the power-stress hysteresis to move up, as expected.  

Also, note that the curves show that phase transformation is delayed (it requires a larger power input) 

when pre-stress is higher.  This is the same mechanism that causes the hysteresis loops in Figure 71 to 

move to the right.  Note that the 50 MPa pre-stress case exhibited very little change in stress, and thus 

strain.  This is because the 50 MPa pre-stress was unable to place the wire in the martensite plus phase 

prior to power cycling.  The magnitude of the measured stresses are different from the simulated 

stresses because the simulation requires that pre-stressing place the SMA on the austenite line or the 

martensite line, but the actual wire is polycrystalline and can be placed at points in between, as 

discussed in Section 2.1.2.2. 
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Figure 72:  Power vs. Stress for Different Pre-stresses with 0.1 Hz Heating Frequency 

The resistance plots in Figure 73 show that resistance follows approximately the same characteristic 

as strain in Figure 71.  However, the thermal contribution causes the resistance of the wire to increase 

as power input and thus temperature, are increased.  Once phase transformation and wire contraction 

are complete, the wire continues to heat due to further increases in input power, so resistance begins 

to increase again.  This is apparent for power inputs larger than 0.3 W.  The slope of this increase is 

found in Table 7 as Aα .   

The small loops on the top left of each hysteresis curve result from the rate-dependent cooling of the 

wire.  Since the wire can only cool as quickly as it conducts heat into the ambient environment, the 

temperature during power unloading is expected to be slightly higher than during power loading.  This 

results in a slightly higher resistance during power loading – the effect is especially noticeable prior to 

transformation while the wire is still in the martensitic phase. 

 
Figure 73:  Power vs. Resistance for Different Pre-stresses with 0.1 Hz Heating Frequency 

Figure 74 shows the stress-strain plots during the cycled power actuation.  Since the stress and strain 

are constrained by the characteristic of the flexure that is in series with the SMA wire, the relationship 

is a straight line with slope equivalent to the stiffness of the flexure: about 325 N/m.  The 

polycrystalline nature of the real SMA wire is evident in the experimental results once again.  As pre-
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stress is increased, the measured characteristics move further out on the strain axis than predicted by 

the simulation, just as in Figure 71.  The non-linearity that is apparent at high stress levels in the 

experimental stress-strain curves is a result of using an imperfect flexure.  

 
Figure 74:  Stress vs. Strain for Different Pre-stresses with 0.1 Hz Heating Frequency 

Figure 75 shows the relationship between strain and SMA wire resistance.  It is interesting to note that 

because the strain-dependent term dominates the resistance, the strain-resistance relationship is nearly 

linear while phase transformation is occurring.  However, since the wire continues to heat even after 

the phase transformation is complete, there is a slight drop in the resistance that occurs after 

maximum strain is reached.  Also, because the resistivity of the martensitic phase is slightly higher 

than the resistivity of the austenitic phase, there is a narrow hysteresis on thermal unloading.  It is 

important to note that the linearity and repeatability of this strain-resistance characteristic is essential 

for any application that endeavors to use the SMA wire as a position feedback sensor.  For the thermal 

loading case shown the characteristics show reasonably good linearity and repeatability with only a 

limited hysteresis.   

 
Figure 75:  Resistance vs. Strain for Different Pre-stresses with 0.1 Hz Heating Frequency 
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Effect of Actuation Frequency   

The frequency of the cycled input power has a significant impact on some of the characteristic 

behavior.  This is because the heating and cooling of the wire is rate-dependent.  The wire can be 

heated almost as quickly as desired by simply pushing a larger electrical power through it.  However, 

the wire can only cool as quickly as it can transfer heat out of its surface and into the ambient 

environment.  Since this process is relatively slow, its effects are apparent at thermal loading rates 

faster than about 0.2 Hz.  Figure 76 shows how the rate of loading affects the power-strain curve for a 

wire pre-stressed to 150 MPa.  All three curves start at the same spot:  0 W, and about 3 % strain 

generated from the 150 MPa pre-stress.  However, for rapid heating (1 Hz) the wire is unable to 

completely heat and contract by the time the power input reaches its maximum and starts to reduce 

again.  It continues to contract as the wire starts to cool, then begins to lengthen again after power is 

reduced below about 0.22 W.  However, it cannot completely cool and lengthen before the power 

begins to increase again.  As a result, the strain starts cycles 2 through 10 at about 2.2 % (for the 

experimental case shown in the left panel).  Similar behavior is observed for the 0.5 Hz actuation 

frequency, while 0.1 Hz is chosen to be approximately quasi-static – further reductions in actuation 

frequency have a negligible effect on the hysteresis.  

 
Figure 76:  Power vs. Strain for Different Heating Frequencies with 150 MPa Pre-stress 

Figure 77 shows the resulting stress as power is cycled.  The same effect is evident, and simulations 

verify that a widening of the hysteresis loop is expected along with the reduction in stress (and strain) 

amplitude.  
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Figure 77:  Power vs. Stress for Different Heating Frequencies with 150 MPa Pre-stress 

Since resistance measurement is largely dependent on strain, the rate dependent effects are evident in 

Figure 78 as well.  The simulations once again clearly predict the widening of the hysteresis loop as 

well as the smaller loops at the top-left of the characteristics that result from the dual dependence of 

resistance on wire strain and temperature. 

 
Figure 78:  Power vs. Resistance for Different Heating Frequencies with 150 MPa Pre-stress 

Once again, the stress-strain relationship is constrained by the load-deformation characteristic of the 

flexure.  The simulated results in the right panel of Figure 79 show that all of the lines are coincident, 

because only one pre-stress (150 MPa) is shown in the plot.  The actuation frequency has no affect on 

the shape of the stress-strain or resistance-strain plots.  However, higher frequency inputs result in an 

incomplete phase transformation and reduction of stroke.  For this reason the strain and resistance do 

not return to their initial values after the first cycle.  Figure 80 shows how the correlation between 

length and resistivity changes with actuation frequency.  Aside from the effect caused by incomplete 

phase transformation, the shapes of the strain-resistance characteristics are largely independent of 

frequency.   



78 

 

 
Figure 79:  Stress vs. Strain for Different Heating Frequencies with 150 MPa Pre-stress 

 
Figure 80:  Resistance vs. Strain for Different Heating Frequencies with 150 MPa Pre-stress 

The effects of the incomplete phase transformation are highlighted further in Figure 81 and Figure 82.  

In Figure 81, which shows the strain-resistance characteristic at 0.5 Hz actuation frequency, the 

resistance does not have time to decrease due to passive cooling before the next heating cycle begins.  

Figure 82 shows that when actuated at 1.0 Hz, the wire is not even able to completely transform back 

to its longest, highest-resistance martensitic state.  This effect is also evident in Figure 76 and Figure 

78.  However, this rate-dependent effect is irrelevant for controls applications because the 

characteristic (i.e. the slope and intercept) of the relationship between the resistance measurement and 

wire strain is still independent of frequency, as shown in Figure 80.  Using the resistance vs. strain 

plot as a sensor mapping is discussed in greater detail in section 2.2.1. 
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Figure 81:  Resistance vs. Strain for Different Pre-stresses with 0.5 Hz Heating Frequency 

 
Figure 82:  Resistance vs. Strain for Different Pre-stresses with 1.0 Hz Heating Frequency 

2.1.2.8 Conclusions from Single SMA-Spring System 

A number of important conclusions can be extracted from the side-by-side experimental-simulation 

study on the system of a single SMA wire in series with a spring.  First, the comparisons between the 

experimental and simulated results show that the numerical model can accurately capture the physics 

of several pre-stress and rate dependent characteristics.  When possible, model parameters were 

extracted from literature.  Otherwise they are chosen based to provide the best possible visual 

comparison for one or two select experiments, then maintained for all of the different pre-stress and 

rate inputs.  The model and experiments show a translation of characteristics in response to changing 

pre-stress, and a widening of hysteresis loops at higher actuation frequencies.   

The added resistance model based on an assumed strain and temperature dependence for both the 

austenite and martensite SMA phases captures the changes in resistance caused by phase transition 

and temperature change.  The experimental and simulated results suggest that the strain-resistance 

curve is roughly linear within the actuation range; only a narrow hysteresis resulting from the small 

difference between the resistivity of the austenite and martensite phases is observed.  The linearity 

and repeatability of this relationship, particularly at high pre-stresses, is encouraging for applications 

that endeavor to use the resistance measurement as a position feedback sensor, such as will be 
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presented in section 2.2.1.  Also, results show that actuation frequency does not affect the relationship 

between strain and resistance.  However, this relationship is only valid within a certain range of input 

powers – once power is increased beyond a certain threshold, additional heating causes an increase in 

resistance rather than a contraction-induced decrease.  Regardless, an understanding of the errors and 

limitations of the resistance measurement will help ensure that a position feedback controller will 

perform predictably in a practical setting. 

  



81 

 

2.1.3 Opposing SMA System 

In the single SMA-spring system studied in the previous section, the SMA wire induces deformation 

of the structure when it contracts due to heating while the passive structural element provides a 

restoring force that lengthens the wire again upon cooling, such as is depicted in the left panel of 

Figure 83.  In the configuration in the right panel of Figure 83, an opposing SMA wire can provide an 

active restoring force, thus increasing the potential actuation frequency and control over positioning.  

Figure 84 shows a simplification of the dual-SMA system. 

 
Figure 83:  Diagram of Embedded SMA Application with Single-SMA (left) and Dual-SMA Actuation (right)  

 
Figure 84:  Opposing SMA-Spring System  

2.1.3.1 Objectives 

In this section the behavior of the opposing SMA system is systematically studied in a controlled 

setting.  The stress, strain, and resistance of both wires in the coupled system are measured and 

simulated.  Simulations are once again provided solely as a means to identify the physical 

mechanisms behind observed behavior rather than to provide an optimal curve fit.  For some results, 

one wire is prescribed a constant heating power, while the power into the second wire is cycled.  In 

other tests, the input power  is alternated between one wire and the other, and the effect of the initial 

stress or strain state (pre-stress or pre-strain) of the SMA wires as well as the actuation frequency are 

studied.  Results are discussed in the context of using the SMA resistance as a strain or structural 

deformation measurement in future multi-functional controls applications. 

2.1.3.2 SMA Model Implementation and Parameters 

A number of adjustments to the force balance and kinematic relations are needed to add a second 

opposing SMA wire to the simulation.  Then the two SMA wires are each modeled with their own sets 

of phase fractions and temperature, but they are coupled by the kinematics and force equations. 
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Mechanical Equilibrium of Opposing SMA-Spring System 

The force equilibrium for the system in Figure 84 is given by  

 1 2SMA SMA kF F F= − . (2.23) 

where kF kδ=  is the force in the spring.  The deflection of the SMA junction is defined as 

 ( ) ( )0 , 1 1 0 , 2 2SM A p SM A p
L Lδ ε ε ε ε= − = − . (2.24) 

Using (2.24) and taking 0, 1 0, 2SMA SMAL L= , the strain in the wires are related by 

 
2 12 pε ε ε= − . (2.25) 

The pre-strain 
pε  is controlled to be equal in both SMA wires, and the force in the spring is taken to 

be zero when the strain of both SMA’s is equal to 
pε .   

 
Figure 85:  Sketch of Coordinate System for Coupled SMA Wire and Spring System 

Figure 86 shows the stress-strain characteristics of both SMA wires and the spring (dotted line) in the 

left and center panels, with both plotted on the same set of axes in the right panel.  Note that in order 

to plot both characteristics on the same set of axes, the strain in SMA 2 must be negated and 

translated by 2 pε  as in equation (2.25). 

 
Figure 86:  Stress-Strain Characteristics of SMA Wires and Spring 

When the spring force is normalized by the cross-sectional area of the SMA wires, k
k

c

F

A
σ = , the 

force equilibrium in equation (2.23) can be written in terms of stresses 

 1 2 kσ σ σ= − . (2.26) 

Substituting the constitutive stress-strain relationship from equation (2.9) for each wire yields 
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( ) ( ) ( )1 1 1 2 2 2 0, 1
1

1 1 1 2 2 2

T T SMA

pA A
c

A M A M

x x x x kL

Ax x x x x x

E E E E

ε ε ε ε
ε ε

+ − + −

+ − + −

− − − −
= − −

   + +
+ +   

   

. (2.27) 

The equilibrium strain is found by substituting equation (2.25) and solving for 1ε , 

 

1

2 01
1

1 2 1 2

2 1 1p

p

c

A kLA
k

B B B B A

ε
ε ε

−
−   

= + − + −  
   

, (2.28) 

where 

 ( )i T i iA x xε + −= − , (2.29) 

and 

 
A

i i i
i

A M

x x x
B

E E

+ − +
= + 
 

. (2.30) 

Finally, 2ε  
and the stresses in each wire, 1σ  and 2σ , can be calculated directly using equation (2.25) 

and equation (9). 

Updated Resistance Model 

For the simulations of the dual-SMA system the resistance model is an extension of the model used to 

study the single SMA-Spring system.  As before, the resistivity of the material is a sum of phase 

fractions scaled by the nominal resistivity of a length of wire in each phase  

 ( ) ( ) ( ) ( )A

SMA AT x T x T x Tρ ρ ρ ρ+ −
+ − = + +  .  (2.31) 

In equation (10), the nominal resistivity’s ( )A Tρ , ( )Tρ+ , and ( )Tρ−  are temperature-dependent. 

The temperature dependence of each resistivity value is defined in equation (2.32) through equation 

(2.34). 

 
( ) ( )0 1 A

A AT Tρ ρ α= + ∆
 (2.32) 

 
( ) ( )0 1T Tρ ρ α +

+ += + ∆
 (2.33) 

 
( ) ( )0 1T Tρ ρ α −

− −= + ∆
 (2.34) 
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where , ,Aα + − are the thermal dependence on resistivity of each phase.  

The updated model also accounts for the elastic deformation of the wire, also presented in Appendix 

B [57], because elastic strain causes the wire to stretch and the cross-sectional area to be reduced.  

The elastic component of the strain is derived from equation (2.8), only without the term accounting 

for strain change due to phase transformation, Tε .  Therefore, elastic strain is solved as  

 A
e

m A

x x x

E E
ε σ + −

 −
= + 

 
. (2.35) 

Elastic strain alters the active length of the SMA via equation (2.36), and the cross-sectional area via 

equation (2.37), where ν is the Poisson’s ratio and is taken as 0.3 [67]. 

 
( ) ( )0 1e eL Lε ε= +

 (2.36) 

 ( ) ( )22
0 1

e e
A Rε π νε= −  (2.37) 

Finally, the total resistance of the SMA wire can be calculated as the product of the temperature and 

phase dependent resistivity and the elastic-strain dependent length, divided by the area, as shown in 

equation (2.38).  Table 9 shows the parameters used for the SMA resistance model. 

 ( ) ( ) ( )
( )

, , , , SMA eA

e

e

T L
T x x x

A

ρ ε
ε

ε
+ −Ω =  (2.38) 

Modeling Parameters 

The modeling parameters used to simulate the opposing SMA system are listed in Table 8 and Table 

9. 
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Table 8: SMA Wire and Heat Transfer Model Parameters 

Parameter Value Unit Description 

EA 71.1e9 Pa Modulus of austenite 

EM 30.9e9 Pa Modulus of martensite 

εT 0.041  Maximum recoverable strain 

Vd 1e-22 m3 Volume element size 

τx 1e-2 s Scale factor on transition probability 

ρ 6.4e3 kg/ m3 Density of Nitinol 

H 24e3 J/kg Latent heat of phase transformation 

h 160 W/ m2/K Heat convection coefficient 

cv 600 J/kg/K Specific heat 

SMAr  25 µm Radius of SMA wire 

0L  50 mm Length of SMA wire 

k  0.098 N/mm Linear spring constant 

σL 135e6 Pa Austenitic transformation stress 

∆σT 6e6 Pa Stress-strain plateau temp. dependence 

TL 310 K Austenitic conversion temperature 

∆σ 200e6 Pa Width of stress-strain hysteresis 

 

Table 9:  SMA Resistance Model Parameters 

Parameter Value Unit Description 

0Aρ  8.9e-7 mΩ  Resistivity of austenite phase 

0ρ ±  10.2e-7 mΩ  Resistivity of martensite phase 

Aα  0.0002  1K −
 Temp. dependence of austenite phase 

α ±
 0.0003  1K −

 Temp. dependence of martensite phase 

 

2.1.3.3 Experimental Setup 

The tensile test setup used to characterize the SMA wire is diagrammed in Figure 87 and 

photographed in Figure 88.  The two 50 µm diameter Flexinol SMA (Dynalloy Inc., Tustin, CA) [1] 

wires are connected to each other at the SMA junction.  This junction is a cylinder that tracks on a 

‘frictionless’ slide bushing.  During certain stages of the pre-treatment procedure, the SMA junction 

cylinder is allowed to slide freely to ensure that both the SMA wires are under the same tensile stress.  

When the actuation experiment cycles are run, the cylinder is locked in the slide bushing so that the 

spring flexure will be forced to deflect along with the SMA wires.  On the right boundary, the tensile 

load is transmitted to a Futek Model LSB200 load cell with a 9 N (4.6 GPa stress, for a 50 µm 

diameter wire) load limit that is oversampled and filtered for a peak resolution of 0.14 mN (0.1 MPa) 

and Zaber Model TNA08A25 linear actuator.  The linear actuator provides position feedback, so the 
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position of the right boundary of the SMA wire

A Keyence LK-G82 laser displacement sensor with 0.2 

the SMA junction (and cantilever flexure) at 

using 

 

and 

 

where 0L  is the nominal length of the SMA wire, taken to be 50 mm for these experiments.  The load 

cell measures the tensile force in SMA 2 directly.  Since the cantilever flexure has a known, linear 

stiffness, the force in SMA 1 can be calculated from 

 

Then stress scales by the cross-sectional area of the 50 µm diameter SMA wire.  All of the 

components are aligned on a breadboard and enclosed in an acrylic box to isolate the wire from 

environmental disturbances. 

Figure 87:  Diagram of SMA-Flexure Test Setup

Figure 88:  Photograph of SMA-Flexure Testing Setup

2.1.3.4 Experiment Procedure

When dealing with non-linear, hysteretic wires the treatment of the wires must be carefully controlled 

and reported throughout the duration of the experiment for test results to be 

boundary of the SMA wire 1x  can be effectively tracked with 0.6 

G82 laser displacement sensor with 0.2 µm resolution is used to track the motion at 

the SMA junction (and cantilever flexure) at 2x . The length of each SMA wire can be determined 

2 0 1 2SMAL L x x= + −  

1 0 2SMAL L x= + , 

f the SMA wire, taken to be 50 mm for these experiments.  The load 

cell measures the tensile force in SMA 2 directly.  Since the cantilever flexure has a known, linear 

stiffness, the force in SMA 1 can be calculated from  

1 2 2F F kx= − . 

sectional area of the 50 µm diameter SMA wire.  All of the 

nts are aligned on a breadboard and enclosed in an acrylic box to isolate the wire from 

Flexure Test Setup 

sting Setup 

Experiment Procedure 

linear, hysteretic wires the treatment of the wires must be carefully controlled 

and reported throughout the duration of the experiment for test results to be 

with 0.6 µm resolution. 

m resolution is used to track the motion at 

. The length of each SMA wire can be determined 

(2.39) 

(2.40) 

f the SMA wire, taken to be 50 mm for these experiments.  The load 

cell measures the tensile force in SMA 2 directly.  Since the cantilever flexure has a known, linear 

(2.41) 

sectional area of the 50 µm diameter SMA wire.  All of the 

nts are aligned on a breadboard and enclosed in an acrylic box to isolate the wire from 

 

 

linear, hysteretic wires the treatment of the wires must be carefully controlled 

and reported throughout the duration of the experiment for test results to be meaningful and 
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reproducible.  This is particularly true when two SMA wires are coupled together, and the treatment 

history of one wire affects the behavior of the other.  In all of the experiments discussed in this paper, 

the wires go through a pre-treatment (memory-clearing) procedure and are then either pre-strained or 

pre-stressed to a certain level before the experiment cycling begins.  For the results shown in this 

paper, two different types of actuation cycles are run.  In “constant opposing power” experiments, the 

power input into SMA 2 is maintained at a constant level, and then the power into SMA Wire 1 is 

cycled using a triangle wave as shown in the left panel of Figure 90.  In “alternating actuation” 

experiments, the wires are cycled one at a time using triangle waves that are out of phase, as shown in 

the right panel of Figure 90. 

Pre-Treatment 

1. Unclamp the slide bushing so that the SMA junction can slide freely with respect to the spring 

flexure. 

2. Heat both SMA wires with 0.3 W while under 0 stress to transform them into the austenite 

phase. 

3. While the power is still high, retract the linear actuator until the load cell detects a small 

force.  Record the actuator position and the austenitic reference length, 0AL .  Record the 

position of the linear actuator as 1Ax . 

4. Allow both wires to cool under zero stress to the martensitic twin phase.  Note that some 

slack will develop as the martensite plus phase is favored due to the two-way effect. 

Pre-Straining 

1. Retract the linear actuator to position 1 0 02A A px L ε−  to put both wires at a strain level of 0pε , 

as shown in the left plot in Figure 89. 

2. Extend the linear actuator until the load cell detects no force. 

3. Record this position as 1pε , as shown in Figure 89.  This is the point from which experiment 

cycles will begin. 

4. Lock the slide bushing so that the spring flexure deflect when the SMA junction moves. 

Pre-Stressing 

1. Retract the linear actuator until the load cell detects a stress of 1pσ , as shown in the right plot 

in Figure 89.  This is the point from which experiment cycles will begin. 

2. Lock the slide bushing so that the spring flexure deflect when the SMA junction moves. 

 
Figure 89:  Stress-Strain Diagram of Pre-Straining (left) and Pre-Stressing (right) Procedure 
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Constant Opposing Power Experiment Cycles 

1. Heat SMA Wire 2 with a pre-determined power amplitude between 0 and 0.25 W. 

2. After 5 s, begin cycling the power to SMA 1 five times using a triangle wave with an 

amplitude of 0.25 W at a frequency of 0.1 Hz.  The input power signals for 2SMAP  equal to 

0.15 W is shown in the left panel of Figure 90, with Wire 2 input shown in gray and Wire 1 in 

black. 

Alternating Actuation Experiment Cycles 

1. Cycle Wire 1 then Wire 2 five times each using alternating triangle waves at the amplitudes 

and frequencies listed in Table 10.  Note that power amplitude is increased as actuation 

frequency is increased. 

2. Repeat for the pre-strain, pre-stress, and frequency/amplitude combinations shown in Table 

10.  

 
Figure 90: Power input to SMA Wires during Constant Opposing Power (left) and Alternating Actuation (right) 
Experiments. 

Table 10:  Pre-Strain, Pre-Stress and Actuation Frequency/Amplitudes for Alternating Actuation Experiments 

εp0 (%) σp (MPa) freq. (Hz) P (W) 

2.5 50 0.1 0.25 
3.0 100 0.2 0.30 
3.5 150 0.5 0.35 
4.0 200 1.0 0.40 
4.5  2.0 0.45 

2.1.3.5 Results and Discussion 

Results are presented for the experiments run with constant power in the opposing SMA wire and for 

alternating actuation cycles.  In the constant opposing power experiments, the impact of changing the 

opposing power is evaluated.  In alternating cycles experiments, the effect of changing the pre-strain 

or pre-stress and the actuation frequency is presented. 

Constant Opposing Power  

In the constant opposing power experiments, the power into SMA Wire 2 is set at a constant value, 

then the power into Wire 1 is cycled.  Figure 91 shows an approximation of the expected stress-strain 

equilibrium during the course of a constant opposing power experiment.  Since the addition of the 
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linear spring serves only to tilt the landscape by slightly increasing the stress in one wire compared to 

the other, its effect is not included in the approximation.  In Figure 91, the black circle represents the 

current stress-strain state.   

At the start of the experiment, both wires are at room temperature and pre-strained to 3.33% as shown 

in panel A of Figure 91.  Then Wire 2 is heated with the pre-determined power (0.13 W) as shown in 

panel B.  This process effectively adds a pre-stress to Wire 1 by pulling it into the martensite plus 

phase.  Then as Wire 1 is heated (panel C and D) and cooled (panel E and F), Wire 2 serves as a non-

linear, hysteretic spring element in series with Wire 1.  The resulting stress-strain pathway of Wire 2 

during this mock experiment is plotted with a dotted line.   

 
Figure 91:  Single-Crystal Approximation of the Stress-Strain Behavior during Constant Opposing Power Experiment 

The results in this section show the stress and resistance vs. strain characteristics for both wires.  In all 

plots, the simulated results are on the left, while the experimental results are on the right.  The fixed 

power input to Wire 2 increases from the top row to bottom row in Figure 92.   

When Wire 2 is given zero input power, as shown in the top row, its martensitic characteristic defines 

the equilibrium stress-strain state for the coupled system after the first cycle.  As a result, the 

resistance of Wire 2 only changes due to elastic deformation of the martensite plus phase as the load 

from Wire 1 cycles.  The resistance of Wire 1 changes due to its change in temperature, phase 

fraction, and elastic strain.  The coupling of the thermal and mechanical effects as well as the change 

in phase induced hysteresis in Wire 1.  Note that the power into Wire 1 is cycled at 0.1 Hz so that the 

thermal problem is approximately quasi-static. 

As the power to Wire 2 is increased, the hysteretic behavior becomes visible in the stress-strain 

characteristics, just as predicted by the model and the mock experiment shown in Figure 91.  

Interestingly, even as power to Wire 2 is increased to the point where it is able to transform itself back 
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to austenite after being stressed to martensite, the experiments show no hysteresis in the resistance of 

Wire 2.  The model predicts hysteresis because the modeled resistance is related to phase fractions (as 

well as elastic strain and temperature).   

However, a translation and a change in slope is observed in the measured resistance-strain curve of 

Wire 2 as its fixed heating power is increased.  When power into Wire 2 is high, Wire 2 resistance is 

reduced significantly at low stress as a result of the increased presence of the austenite phase.  For 

Wire 2 power inputs greater than 0.13 W the slope for Wire 2’s resistance-strain plot increases, 

indicating a greater change in resistance for the same change in strain.  This is evidence that the phase 

change is at least partially responsible for the larger change in resistance.  As Wire 2 input power is 

increased to 0.25 W, as shown in the bottom row of Figure 92, the “effective pre-stress” on Wire 1 

becomes so high that very little phase change is able to occur while its power is cycled, and the slope 

of the resistance-strain line is reduced once again.  The lack of hysteresis despite the clear indications 

of phase change was also observed in the study in Appendix B [57], and may be attributed to mixing 

of the coupled electro-thermo-mechanical effects as well as the smoothing effects that result from the 

polycrystalline nature of a real wire. 
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Figure 92:  Simulated (left) and Experimental (right) Resistance and Stress vs. Strain for Various Wire 2 Power Inputs 

Alternating Cycles 

In this section, results are shown from experiments where the power input is alternated between 

Wire1 and Wire 2, as shown in the right panel of Figure 90.  Figure 93 diagrams the stress-strain 

equilibrium at different stages of the alternating-cycle experiments.  Both wires start at pre-strain of 

pε  as shown in panel A.  When Wire 1 begins to heat, the bottom branch of its hysteresis loop rises 

and the stress-strain equilibrium is constrained along a minor loading loop of Wire 2, as shown in 

panel B.  As power into Wire 1 rises further, Wire 2 is strained up its M +  line as shown in panel C.  

After cooling of Wire 1, panel D shows that the equilibrium is expected to be different from the 

starting position.  Then the same behavior is expected on the heating and cooling of Wire 2 as 

indicated by panels E and F. 
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Figure 93:  Single-Crystal Approximation the Stress-Strain Behavior during Alternating Cycles Experiment 

In the results, the affect of wire pre-strain or pre-stress is first discussed for 0.1 Hz, “quasi-static” 

input triangle waves.  This discussion is essential for determining the stroke and force output that can 

be developed for a specific application.  Then a single pre-strain value (3.33%)  is chosen and the 

experiments are run at different frequencies to demonstrate how an opposing wire configuration can 

maintain the high stroke range at cycling frequencies up to 2 Hz (in still air). 

Effect of Changing Pre-Strain 

Each row of plots in Figure 94 shows the resistance and stress vs. strain behavior for the SMA Wires 

at a different pre-strain.  In a typical experiment with pre-strain of 2.48%, for example, Wire 1 is 

heated, resulting in a contraction from 2.48% to about 0.7%.  This contraction is accompanied by a 

equal elongation of Wire 2 into the M + phase to 4.3%.  Then Wire 2 is heated and contracts to 0.7%, 

while Wire 1 is elongated.  Since these tests are run at a slow, 0.1 Hz cycling frequency, the each wire 

has enough time to cool and relax before the opposing wire is heated.  As a result, there is a period 

where the wires are essentially slack (zero stress) between cycles. 

The stress-strain plots show that increasing the pre-strain from 2.48% to 3.65% serves to increase the 

maximum stress from 200 MPa to 400 MPa without having a significant impact on stroke that 

remains roughly constant at ±1.8%.  If a lower input power were used, it is likely that increasing pre-

strain would have resulted in a reduction in stroke, as one wire would not have been heated enough to 

overcome the opposing force of the other.  These observations are critical, as a lower pre-strain will 

allow prolonged cycling life in high-stroke applications by limiting the peak stress in the SMA wires.   

The resistance-strain plots show that the pre-strain also has an impact on the width of the hysteresis.  

In general, the experiments show that lower pre-strains result in wider hysteresis.  However, this 

effect is not captured by the single-crystal model.  Non-linearity occurs on thermal unloading because 

there is insufficient stress to immediately bias all of the material grains from the austenite phase to the 
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tensile-induced M +  phase.  Instead, some of the material grains are able to transform to the M −  

phase forming the twin /M M+ −  structure that has the same high resistivity as M + , but the low 

strain of austenite. The top (thermal unloading) branch of the resistance-strain plot shows when 

starting from the lowest strain state (0.7%), the resistance initially increases rapidly with little 

measured change in strain. 

This effect is critical for sensing applications that endeavor to use the resistance measurement as a 

strain or displacement measurement while the wire is being actuated.  Hysteresis in the characteristic 

necessitates a complex resistance to strain mapping method.  Also, for low pre-strains the wire that is 

not being actuated is essentially slack and in the martensite phase, so its resistance does not change 

until it is elastically strained up the M +  phase.  Once again, while the power input to a wire is not 

being changed its resistance-strain curve shows no hysteresis.  

 
Figure 94: Simulated (left) and Experimental (right) Resistance and Stress vs. Strain for Various Pre-Strain Values 
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Effect of Changing Pre-Stress 

When the SMA wire is pre-stressed instead of pre-strained, the wire essentially starts on the M +  line 

of the stress-strain curve.  This results in a high peak stress of 400 MPa and a reduction in stroke at 

higher pre-stress cases where the applied power is insufficient to overcome the high stresses.  

However, as described in section 2.1.2.3, since the material is actually polycrystalline, the low values 

of pre-stress actually result in a wire that is still a mixture of M +  and M −  after pre-stressing is 

finished.  When the wire experiences high stress on the first loading cycle, the M −  grains are mostly 

eliminated.  Therefore, the wire returns to a lower stress value upon cooling.  This is why the 

experimental results show the stress dropping to zero after the first cycle of the 50 MPa pre-stress 

case, while the single crystal model does not. 

The resistance plot for the 50 MPa case shows similar hysteresis as the 3.36% pre-strain case because 

of the amount of M −  that is still present in the wire after pre-stressing.  However, the resistance plots 

of higher pre-stress cases have very little hysteresis while contraction is occurring.  The hysteresis 

loop in the middle of the resistance-strain plot is a result of the thermal contribution to the resistance.  

When a wire is heated to a temperature that is too low to start transformation, the resistance initially 

rises due to the rise in wire temperature.  Once transformation begins, the wire changes to the 

austenite phase and both strain and resistance are reduced.  On the cooling part of the cycle, the 

transformation finishes at a different temperature than it started on the heating cycle, resulting in 

small square-like hysteresis loop around 3.6% strain that forms between the end of the cooling of 

Wire 1 and the beginning of heating of Wire 2.  

On either side of the hysteresis, the resistance-strain plots for pre-stresses greater than 50 MPa show 

two distinct lines.  The left portion of the plot (strain less than the initial strain induced by pre-stress, 

~4.3% strain for the simulations) shows the behavior of the wire while it is being actuated – this line 

results from the resistance change do to both elastic straining and phase transformation, and thus it has 

a steep slope.  The segment of line to the right of the hysteresis loop (strain greater than 4.3%) shows 

how the resistance changes when the wire is elastically strained in the martensite phase.  This line has 

a shallower slope because it does not include significant contributions from phase transformation.  For 

controls applications, these linear, non-hysteretic segments may allow for a linear mapping from 

resistance to strain to be employed under certain conditions, as will be discussed in section 2.2.1.  The 

shifting of this line (and reduction of slope) when the opposing wire is actuated also motivates a 

mapping method that considers the state of both coupled wires. 
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Figure 95:  Simulated (left) and Experimental (right) Resistance and Stress vs. Strain for Various Pre-Stress Values 

Actuation Frequency 

Figure 96 shows how actuation cycling frequency impacts the resistance and stress vs. strain behavior 

for a wire pre-strained to 3.33%.  In order to allow for sufficient heating at the higher frequencies, the 

peak input power was increased with frequency.  For frequencies of 0.1, 0.5, 1.0, and 2.0 Hz, the peak 

input power was 0.25, 0.35, 0.40, and 0.45 W, respectively, as shown in Table 10.  Results show that 

a stroke range of ±1.5% is maintained all the way up to 1 Hz for the 50 µm diameter wires tested in 

still air.  However, at frequencies higher than 0.5 Hz, the wire is not able to cool back to the 

martensite phase before the next cycle begins, so the wire is never fully relaxed into the zero stress 

state.  Also, above 0.1 Hz the heating and cooling process can no longer be considered quasi-static, so 

the thermal contribution to the resistance continues to change, even after the power to one wire is off 

and the other is on.  As a result, at high frequencies hysteresis appears in the right segment of the 

resistance-strain curve, whereas at low frequencies the right side is non-hysteretic because it shows 

the behavior of a totally cooled wire being elastically strained on the martensite branch.  Since this is 

a thermal effect, it is corroborated by the model.   
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Figure 96:  Resistance and Stress vs. Strain for Alternating Actuation Tests at Different Frequencies for a Pre-strain of 
3.33%. 

2.1.3.6 Conclusion from the Opposing SMA-Spring System 

Clearly, the behavior of two coupled hysteretic elements is complicated.  However, systematic study 

of the system consisting of two opposing SMA wires and a spring flexure has demonstrated many 

wire characteristics that are relevant to multi-functional sensor/actuator applications.  First, straining 

these 50 µm diameter Flexinol SMA wires [1] to 2.5% pre-strain produces a large ±1.8% stroke at a 

small peak stress of 200 MPa.  Increasing pre-strain reduces stroke and exposes the wires to higher 

stresses.  Pre-stressing the wires to over 100 MPa represents the extreme cases of pre-straining and 

also results in high stress and low stroke.  Therefore, low pre-strain values are desirable for actuation 

applications that endeavor to achieve large stroke over many cycles.   

However, the resistance-strain plot at low pre-strain values develops a wide hysteresis that 

complicates mapping for sensing applications.  For example, in the 2.48% pre-strain case, a measured 
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resistance value of 24.5 Ω could indicate that the SMA wire is strained anywhere between 1 and 

2.3%.  For the pre-stressed tests, the resistance-strain plot is nearly linear and non-hysteretic over 

certain ranges, so a single measured resistance value can be easily mapped to a strain with an error 

less than 15% of full scale. 

Results also show that coupling opposing SMA actuators allows for a stroke of ±1.2% even at high, 2 

Hz cycling frequency in still air.  The actuation rate would be increased substantially if the wire were 

exposed to moving air or water that removes the heat from the wire much more quickly, allowing the 

wire to elongate back to the martensite phase and then be heated rapidly via Joule heating again.  

Unfortunately, when heat cannot be removed rapidly enough by the surrounding environment the 

thermal problem cannot be considered quasi-static.  As a result, the thermal contribution to the 

resistance measurement complicates resistance-strain sensor mappings by introducing a cooling lag 

and thus hysteresis.  This cooling lag was not observed in the single SMA-spring system because 

there was no concurrent increase in opposing force from the second wire, only the passive force from 

the linear spring flexure. 

Despite the obvious design trade-offs between actuation stroke/frequency and sensing accuracy, these 

experiments and simulations provide a framework from which operation envelopes can be anticipated 

and model-based mapping methods can be calibrated.  So long as the SMA wire’s behavior is 

repeatable and the physical mechanisms behind the hysteresis and nonlinearities can be deciphered, an 

accurate sensor can be calibrated and used in conjunction with actuation.  Then the multi-functionality 

of the material can be fully exploited in embedded SMA applications, such as the adaptive Smart 

Inhaler nozzle characterized in the next section. 
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2.1.4 Smart Inhaler Nozzle Joint 

The Smart Inhaler nozzle joint shown in Figure 97 and introduced extensively in Part 1, is very much 

like the opposing SMA setup discussed in section 2.1.3.  Each actuator wire is opposed by two others; 

however they are oriented 120 degrees apart, so the two opposing SMA wires have only half the 

moment arm of the first. 

 
Figure 97:  Adaptive Smart Inhaler Nozzle Joint 

2.1.4.1 Objectives 

The adaptive nozzle design and assembly process outlined in section 1.3.2 was carefully controlled 

such that all 6 SMA wires were attached in the same way.  While some variation from one SMA 

actuator to the next is inevitable, calibration is possible if the behavior of each individual actuator is 

repeatable.  The goal of this section is to characterize all 6 SMA actuator wires to determine the 

effectiveness of the assembly process and validate the repeatability of each joint for future calibration 

purposes.  Characterization relates the heating power input to the response of the wire resistance and 

strain, as well as the response of the structure in terms of the nozzle tip displacement.  Also, the 

resistance vs. tip displacement plots are discussed as a potential sensor diagram for future closed-loop 

control that uses the SMA wire as both actuator and sensor.    

2.1.4.2 Experiment Setup 

The setup used for measuring the SMA wire strain and nozzle deformation during testing is shown in 

Figure 98.  Two cameras are analyzed by LabVIEW pattern matching software (Machine Vision) to 

track the displacement of 2 different track-points in different planes.  The top-view camera measures 

the displacement of the nozzle tip indicated by a green circle while the side-view camera measures the 

strain of the SMA wire by tracking the location of the wire endpoints, shown in yellow.  Since the 

bottom end of the SMA wire is fixed, it is set as the origin and only the top end of the wire is tracked.  

The nozzle is clamped in a rotational stage so that the three actuators at each joint can be tested 

independently.  The 6-channel power controller [46] is employed to simultaneously control and 

measure input power control and take resistance measurements. 
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Figure 98:  Diagram of Test Setup Used to Measure SMA Strain and Nozzle Tip Displacement Showing Un-deformed (left) 
and Deformed (middle) Nozzle Tip.  Photographed on Right. 

2.1.4.3 Flexible Joint Test Results 

The time history of the heating power input for actuator 1 in the top joint is shown in the top plot of 

Figure 99.  The SMA wire is 50 µm diameter and has a total length of 56 mm (28 mm out and back), 

so the heating power density is 0.005 W/mm of SMA wire.  In the characterization tests of joint 1 

(actuators 1, 2 ,and 3), the heating input is cycled at 0.1 Hz so that the thermal problem is roughly 

quasi-static.   

Figure 99 also shows the measured SMA resistance and strain, as well as the measured nozzle tip 

displacement resolved into the direction of actuator 1.   As expected, heating power input causes a 

drop in SMA resistance due to phase change and wire contraction, the measured strain reduces from 

the strain induced by the pre-stressing process, about 4.1 %, to about 2%, and the tip displaces about 6 

mm in the direction of actuator 1 from its unheated equilibrium position. 

Figure 100 through Figure 102 show the hysteresis plots for the three top joint actuators.  The power 

vs. displacement and resistance vs. tip displacement show a hysteretic character similar to the power-

strain and resistance-strain plots of the analog SMA-spring system discussed in section 2.1.2.  The 

strain vs. tip displacement relationship is constrained by the kinematics of the joint rotation, not the 

SMA material, so it has no hysteresis.   
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Figure 99:  Time History of Power Input, SMA Resistance and Strain, and Nozzle Tip Displacement for Actuator 1 at 0.1 Hz 

The hysteresis plots show reasonable repeatability from actuator 1 through actuator 3, validating the 

steps taken during fabrication.  There is a slight difference in the magnitude of the resistance of 

actuator 1, most likely because of a small variation in the contact resistance between the SMA wire 

and the lead wire connected by the wire loop method presented in section 1.3.2.4.  Also, the strain 

change is not uniform between the 3 actuators.  All three SMA wires start at 4.1 % pre-strain, but 

actuator 1 finishes at 2.1%, actuator 2 at 0.7 %, and actuator 3 at 1.6 %.  However, the tip 

displacement in all three actuator directions reaches is maximum at between 6.0 and 6.5%.  The 

variation in measured strain could be a result of a direction-dependent variation in structural stiffness 

of the joint.  This would cause an accompanying variation in the pre-stress (and therefore pre-strain) 

in the three actuators once the compliant joint is inserted as discussed in section 1.3.2.3.  A pre-strain 

reference point is needed for plotting, and it is assumed to be 4.1% for all actuators, but it seems that 

actuators 1 and 3 may actually have a smaller pre-strain and thus smaller recoverable strain.  

Fortunately the behavior is stable and repeatable from one cycle to the next, so the variation between 

actuators can be calibrated and compensated in sensing and controls applications.   
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Figure 100:  Hysteresis Plots for Top Joint Actuator 1 at 0.1 Hz 

 
Figure 101:  Hysteresis Plots for Top Joint Actuator 2 at 0.1 Hz 

 
Figure 102:  Hysteresis Plots for Top Joint Actuator 3 at 0.1 Hz 

The stable character of the SMA resistance vs. tip displacement plots is encouraging for sensor 

applications.  A sensor application would use the resistance of the SMA wire as a measurement for tip 

displacement, so the plots shown in Figure 103 would serve as sensor diagrams measuring 

displacement in each of the actuator directions.  The hysteresis in these diagrams as well as the small 

hooks that occur before and after phase transformation (as discussed in section 2.1.2.7) pose a sensing 

challenge.  However, because the SMA wires were pre-stressed instead of pre-strained, the hysteresis 

is narrow as discussed in section 2.1.3.5.  Section 2.2.3 discusses methods for overcoming the 

hysteresis in sensing applications.  
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Figure 103:  Top Joint Sensor Diagrams:  Resistance vs. Tip Displacement in Actuator Direction 1, 2, or 3 at 0.1 Hz 

Figure 104 shows how the resistance vs. tip displacement plots change when the actuators are cycled 

at a higher frequency.  At 0.5 Hz, the passive cooling process cannot complete before the next heating 

cycle begins, so the nozzle tip is not able to return to its zero position.  As a result, the plots follow 

inner loops on subsequent cycles.  However, the position of the hysteresis within the plot box does not 

change. 

 
Figure 104:  Top Joint Sensor Diagrams:  Resistance vs. Tip Displacement in Actuator Direction 1, 2, or 3 at 0.5 Hz 

The same results are shown for the actuators 4, 5, and 6 of the bottom joint in Figure 105 through 

Figure 109.  When the bottom joint rotates it must move a longer section of nozzle, including the top 

joint.  It therefore carries more inertia and is cycled at a lower 0.4 Hz frequency so that the passive 

cooling and the structural spring-back process can remain quasi-static.  There is once again some 

variation in the strain vs. tip displacement measurements, but there is also still good stability in the 

characteristics from one cycle to the next. 
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Figure 105:  Hysteresis Plots for Bottom Joint Actuator 4 at 0.04 Hz 

 
Figure 106:  Hysteresis Plots for Bottom Joint Actuator 5 at 0.04 Hz 

 
Figure 107:  Hysteresis Plots for Bottom Joint Actuator 6 at 0.04 Hz 
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Figure 108:  Bottom Joint Sensor Diagrams:  Resistance vs. Tip Displacement in Actuator Direction 4, 5, or 6 at 0.04 Hz 

 
Figure 109:  Bottom Joint Sensor Diagrams:  Resistance vs. Tip Displacement in Actuator Direction 4, 5, or 6 at 0.5 Hz 

Figure 110 shows the time history of an alternating power input test, where each actuator in the top 

joint was heated then cooled one at a time.  In this case, the tip displacement plot in Figure 110 shows 

the magnitude of displacement, not the component of displacement resolved in any actuator direction.  

When viewed from above, the nozzle tip follows the trace shown in Figure 111, resembling a 

Mercedes star.   

One interesting feature of the resistance plot in Figure 110 is the bump that occurs early in the heating 

cycle of each actuator.  For example, the bump measured in the resistance of wire 1 (red) between 0 

and 2 seconds.  This is a result of the stretching that occurred in wire 1 while wire 3 was heated 

during a previous cycle (not shown).  When wire 1 cools under low stress, some grain of M −  are able 

to develop alongside the M + , resulting in a somewhat shorter wire without observable slack.  When 

the opposing wire (wire 3) heats, wire 1 is stressed into almost entirely M + , and then when wire 3 

cools, wire 1 is unable to recover the M −  phase and slack develops.  As soon as heating of wire 1 

begins at t = 0s, this slack is recovered very quickly.  Once the slack is removed, the additional force 

needed to deform the structure necessitates more heat, resulting in the ~2 s delay, during which time 

the resistance of the wire actually increases slightly due to the thermal dependence of resistivity.  This 

process repeats for each actuator over the 100 s experiment shown in Figure 110. 
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Figure 110:  Time Histories for Top Joint Actuator 1 (red), 2 (green) and 3 (blue) for Mercedes Star Input at 0.05 Hz 

Figure 111 shows how the nozzle tip deflects in the direction of the actuated SMA wire, each oriented 

120 degrees apart.  Note that actuator 1 is aligned with the positive y axis and actuator 2 follows 

clockwise, into the positive x and negative y quadrant.  The trace has a slightly skewed appearance 

because actuator 1 is still about 0.5 mm from the origin when the nozzle tip is pulled in the actuator 2 

direction, and subsequently actuator 2 is still ~0.5 mm from the origin when actuator 3 is heated.  This 

is to be expected, and occurs because as wire 1 contracts, wires 2 and 3 are stretched.  Then when 

wire 1 is cooled again slack develops in wires 2 and 3, and the restoring force  provided by the 

structure alone is insufficient to bring the tip back to center. 

 
Figure 111:  Tip Displacement of Top Joint Mercedes Star Input 
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2.1.4.4 Conclusions from Nozzle Testing 

The results of nozzle testing validate that the fabrication processes discussed in Part 1 produced a 

stable electrical and mechanical connection between the SMA wires and nozzle structure.  This leads 

to repeatable behavior from one cycle to the next.  Although each actuator does not behave 

identically, they have qualitatively similar performance and repeatability, so the variations can be 

calibrated for sensing and controls purposes.  

Also, the sensor diagrams in Figure 103, Figure 104, Figure 108, and Figure 109 show that pre-

stressing the SMA wires helped keep hysteresis in the resistance vs. tip displacement curves narrow, 

as was predicted by the discussion in section 2.1.3.5.  In the sensing and control schemes in the 

sections that follow, the narrower hysteresis helps to simplify the sensor mapping method and reduce 

measurement errors.  
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2.2 Sensing and Controls with Multifunctional SMA Wires 

The multi-functional capabilities of SMA wires can be exploited by measuring the resistance change 

of the wire during phase change and correlating it to the strain change in the SMA and accompanying 

deformation of the structure.  The sensor information can then be used as the input to a feedback 

controller that commands a heating power.  In effect, the material has the ability to measure its own 

length change, then react to a small change in heating power to bring that measured length to a desired 

set-point.  In such an implementation, not only is the actuator system streamlined by removing 

conventional motors, but the need for an additional feedback sensor is also eliminated.   

The goal of this section is to develop a simple method for sensor mapping, then implement the 

mapping into closed-loop control of the systems discussed in Part 2 – starting with the single SMA-

spring system and building up to the adaptive nozzle joint.  While the complex behavior of SMA 

wires may inspire a wide range of sensor mapping and controls methods, this work focuses on 

developing the simplest functional sensor mapping technique and basic PID feedback control.  This 

approach reduces the complexity of mapping or controller dynamics, thus making the material-driven 

errors easier to identify.  Then physics-based methods for reducing errors and improving performance 

are discussed along with other areas for future work. 

2.2.1 Sensor Mapping and Control of Single SMA-Spring System 

As before, the first system studied is the single SMA-spring system discussed in section 2.1.2 and 

diagramed again in Figure 112.  The characteristics measured in section 2.1.2 are used to motivate a 

method for sensor mapping, then this method is applied to closed-loop control of the same flexure 

system used in characterization.  The coordinate frame is established such that 0δ =  when 
preε ε= . 

 
Figure 112:  Single SMA-Spring System 

2.2.1.1 Resistance to Deflection Sensor Mapping 

The simplifying assumption behind the scheme for mapping resistance to deflection is that resistance 

relates approximately linearly and non-hysteretically to SMA wire strain (and thus flexure deflection) 

while phase transformation is occurring.  Under this assumption, the plots in Figure 113 are used to 

motivate a general scheme for creating a position feedback sensor out of a SMA-spring system.  In the 

plots in Figure 113, reproduced from the characterization experiments in section 2.1.2, the 150 MPa 

pre-stress case is isolated and used to generate a resistance to displacement mapping based on 

characteristic data.  Other pre-stress or pre-strain situations would require a separate mapping.  The 

resistance vs. strain plot in the left panel of Figure 113 is qualitatively equivalent to resistance vs. 

displacement because in the flexure setup shown in Figure 69 strain is calculated directly from the 

measurement of flexure displacement scaled by the length of the SMA wire.  The characteristic for the 
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150 MPa case is highlighted in green, and a linear curve fit (blue) is generated to approximate the 

relationship.   

The objective of the mapping is to get a relation for displacement as a function of resistance.  First, in 

equation (2.42) resistance is mapped linearly to strain.  Then the deflection of the flexure, δ , is 

scaled with the change in length of the SMA wire, as shown in equation (2.43). Finally, equation 

(2.42) is substituted into equation (2.43) and constant coefficients are combined such that 

0, 1SMAk L k=  and ( )0 0, 0SMA preLδ ε ε= −  to create Equation (2.44) that maps resistance directly to 

deflection.  

 1 0k Rε ε= +  (2.42) 

 ( )0,SMA preLδ ε ε= −  (2.43) 

 
0kRδ δ= +  (2.44) 

 
Figure 113:  Example of Using Characteristics of a SMA-Spring System to Generate a Displacement Sensor Mapping 

Next, Figure 113 shows how the range of the sensor characteristic must be limited to avoid the 

hooked regions at the extremes of the R-ε relationship, where a single resistance value correlates to 

multiple strain (displacement) measurements.  As discussed in section 2.1.2.7, these hooks result from 

heating the SMA wire without inducing phase transformation, as is the case before the wire 

temperature reaches austenite start temperature and when additional heat is added after phase 

transformation is complete.  During these non-transformation periods, heating the SMA wire causes 

its resistance to increase, just as is the case in a non-active metal.  In order to prevent the hooked areas 

from causing mapping errors, the range of input power is simply limited to the range that induces 

transformation, as indicated by the red vertical lines in the right panel of Figure 113 – so for the case 

shown, the power input would be limited to between 0.03 and 0.23 W.  Although at first this 
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procedure limits the authority that a user may have over input power for high-speed control 

applications, one can easily imagine a controller that relaxes the range limitations for a short periods 

of time while tracking error is large.  

2.2.1.2 Feedback Control Scheme 

Once the mapping coefficients in equation (2.44) and the power ranges are obtained, the mapping can 

be employed in a simple feedback controller.  The block diagram in Figure 114 shows how the Joule 

heating power and electrical resistance that are measured by a custom-built power controller [46] are 

passed into the mapping algorithm.  Then the deflection, δ , is commanded, and a simple PI controller 

dictates the command power for the next loop.  The PI gains were tuned manually and then 

maintained for all experiments, but no significant effort was made to optimize them.  Additional 

control features, such as a feed-forward algorithm, a mechanism to relax input power range 

limitations for a short period of time while tracking errors are large, or model-based controller could 

be employed.  However, the primary focus is to analyze the performance of the mapping under the 

assumptions mentioned.   

 
Figure 114:  Controller and Mapping Block Diagram 

2.2.1.3 Closed-Loop Control of SMA-Spring System 

The performance of the controller and the accuracy of the resistance-based position feedback 

measurement were tested in response to sinusoid inputs at 0.2 Hz, 1.0 Hz, and 2.0 Hz as well step 

inputs.  Figure 115 shows that at 0.2 Hz, the controller is able to force the SMA to follow the 

command positions very well.  Tracking error, which is equal to the difference between the command 

position, Cδ , and the resistance-based position measurement, ,M resδ ,  

 ,T C M resE δ δ= −  (2.45) 

 is 8 µm RMS (root mean square).  This error is only measured over the last ¾ of the time series to 

avoid the larger initial peaks and make results comparable from one experiment to the next, and it 

represents the average deviation from 0 error.  The more significant error come from the 
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measurement.  The measurement error calculated by subtracting the resistance-based displacement 

measurement from the laser-based measurements, ,M laserδ , 

 , ,M M laser M resE δ δ= −  (2.46) 

is 21 µm RMS with a peak to peak error of 50 µm, or about 8% of full scale.  These two metrics are 

labeled on the “Error” plots in Figure 115 through Figure 118, and compiled in Table 11.  The 

measurement error has a tendency to change sign each time the displacement reverses direction.  This 

is not surprising, because the resistance vs. strain characteristic in Figure 113 has a slight hysteresis.  

This hysteresis affects the measurement accuracy every time the phase transformation process 

switches direction.  

The right plot in Figure 115 shows the SMA resistance plotted vs. displacement as measured by the 

laser (red) and the resistance-based mapping (blue).  Of course the mapping shows up as a straight 

line, since mapped displacement is calculated directly from the resistance measurement via the slope 

and intercept of the best-fit line.  In this implementation, the linear approximation is appears effective. 

 
Figure 115:  Position Tracking of 0.2 Hz Sinusoid (left) and Sensor Diagram Showing Displacement as measured by the 
Laser and the R-δ Mapping (right) 
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Figure 116:  Position Tracking of 1.0 Hz Sinusoid (left) and Sensor Diagram Showing Displacement as measured by the 
Laser and the R-δ Mapping (right) 

When the input frequency is increased to 2.0 Hz in Figure 117.  The measurement error is once again 

22 µm RMS, and it still changes direction with each cycle; however, now the lag causes a very large 

tracking error.  The power plots in Figure 116 and Figure 117 show how power quickly switches from 

the upper limit to the lower. 

 
Figure 117:  Position Tracking of 2.0 Hz Sinusoid (left) and Sensor Diagram Showing Displacement as measured by the 
Laser and the R-δ Mapping (right) 
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The most extreme cycling rate is captured by a step input, shown in Figure 118.  The position plots 

show that for the upper power limit established, it takes about 0.35 s for the SMA wire to contract by 

0.4 mm, correlating to a strain change of about 2%. 

 
Figure 118:  Position Tracking of Variable Step Input (left) and Sensor Diagram Showing Displacement as measured by the 
Laser and the R-δ Mapping (right) 

2.2.1.4 Conclusions from Single SMA-Spring Sensor Mapping and Control 

The simplest possible sensor mapping fit a line to the resistance vs. deflection plot and then limited 

the power to prevent the wire from being heated or cooled without phase transformation.  This 

produced a sensor with peak to peak accuracy of better than 50 µm over a range of 0.6 mm, or about 

9% of full scale.  Also, this measurement accuracy was robust to input wave frequency and type, as 

shown in the summary of RMS errors in Table 11.  The controller is able to drive enough power to 

fully actuate the wire and eliminate a positive tracking error in less than 0.4 s; however, this could be 

reduced significantly if the max heating power were not limited.  Also the passive cooling process 

makes eliminating negative tracking errors slower and subject to environmental conditions.  One way 

to regain control authority over negative tracking errors is to add a second opposing SMA wire, as is 

discussed in the next section. 

Table 11:  RMS Tracking and Measurement Error for Single SMA-Spring System Pre-stressed to 150 MPa. 

 Track. Err. (mm RMS) Meas. Err. (mm RMS) 
0.2 Hz 0.008 0.021 
1.0 Hz 0.057 0.022 
2.0 Hz 0.176 0.022 
Step 0.142 0.018 

  



 

2.2.2 Sensor Mapping and Control of 
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Also, the opposing SMA actuator

in section 2.1.3. 

Figure 119:  Opposing SMA-Spring System

2.2.2.1 Automated Sensor Mapping and 
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shown in the block diagram in Figure 120 and described in greater detail below

:  Block Diagram of Opposing SMA System Sensor Mapping and Control Scheme 

he first step is to calibrate the sensor mapping coefficients to convert the measured resistance of the 

SMA wires to two separate displacement measurements (dark green block in 

done by running an automated actuation test, using a procedure identical to the “constant opposing 

experiment procedure in section 2.1.3.4.  In this first implementation, an opposing power of 0 

115 

SMA System 

has the potential to improve sensing by providing two 

separate resistance measurements that can be combined to produce a single deflection measurement.  

improve control authority and actuation frequency, as discussed 

 

Scheme 

posing SMA system is similar to the single SMA system, in that a linear fit 

is made to the resistance vs. deflection curve, as shown in 

SMA system, each wire displacement will have its 

, and slope and intercept.  The two displacement 

easurements must then be reconciled into one measurement of the flexure displacement.  This can 

human variables inevitable in an ad hoc 

was used to systematically 

single displacement measurement. 

and described in greater detail below. 
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was used, and the sensor mapping is applied to the SMA wire being actuated.  Figure 121 shows an 

approximation of a fit (black) done on the cycled actuator’s resistance vs. strain plot (red).  

 
Figure 121:  Sensor Diagram for Coupled SMA System 

The calibration is repeated for the second SMA wire, then the sensor mapping coefficients can be 

written in matrix format, 

 
011 1 1

022 2 2

0

0

k R

k R

δδ
δδ
      

= +       
       

. (2.47) 

The power limits were also identified during the automated calibration procedure.  The lower limit 

was chosen by identifying the input power that corresponded to the highest measured resistance after 

the first cycle.  The experiments in section 2.1.3 showed that no minimum resistance value can be 

identified because the large opposing force from the second SMA wire prevents complete phase 

transformation in the first, so no upper power limit is needed to keep the SMA wire within the 

accurate measurement range. 

Convert 

The two separate measurements in equation (2.47) are then converted to a single measurement.  This 

is done by reviewing the power command from the previous control step.  Since the mapping 

coefficients were determined for an SMA wire during cyclic actuation, the sensing scheme chooses 

the measurement from the SMA wire that was being powered in the previous control step, as indicated 

by the purple block in Figure 120.   

Unfortunately, this method of simply choosing one measurement value or the other leads to inherent 

instability near zero tracking error where control power switches from one actuator to the other.  This 

occurs because inherent measurement errors cause the two SMA wires produce slightly different 

measurements, leading to noise in the chosen δ  value.  To reduce the chatter, a 4 point running 

average filter is applied to the displacement measurement in the yellow block in Figure 120.  Since 

the heating and cooling process occurs slowly compared to the control loop (~300 Hz), the averaging 

does not introduce significant measurement lag. 
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Control 

The filtered measurement value is then fed into a simple PID algorithm.  The gains are once again 

chosen such that the system does not become unstable, then maintained through all experiments.  The 

minimum power limit is imposed at all times, and a maximum power limit for the controller of 0.32 

W is chosen to prevent the wire from overheating.  However, in this implementation a 0.35 W burst of 

power is allowed for a short period of time when tracking errors greater than 0.2 mm. 

Choose 

The PID controller produced a positive control power to compensate negative tracking errors and 

negative control power to compensate positive tracking errors.  For negative tracking errors, the 

control power was applied to SMA 1, as labeled in Figure 119.  For positive tracking errors, the 

control power was negated and applied to SMA 2. 

2.2.2.2 Calibration and Experiment Procedure 

The mapping and control scheme was tested on the same experimental setup described in section 

2.1.3.3 and diagrammed in Figure 87.  Two opposing 50 µm diameter Flexinol SMA wire from 

Dynalloy [1] are used for testing.  The entire calibration scheme was automated to eliminate any 

potential bias from a user.  Once again, the hysteretic nature of the material requires that the 

pretreatment steps be documented as well so that the initial state of the wire is known.  Also, many of 

the sources of error in the results can be identified because they are a direct result of the particular 

steps taken during calibration. 

Automated Pretreatment and Calibration Procedure 

The pretreatment and calibration steps are fully automated using the real-time operating system 

onboard a National Instruments cRIO 9074 input/output device with LabVIEW 2010.  The 

pretreatment procedure is identical to that used in the experimental characterization of the coupled 

SMA system in section 2.1.3.4.  Also, after pretreatment the SMA wires are either pre-stressed or pre-

strained depending on the case being tested.  This procedure is also the same as in section 2.1.3.4.  

The listing of these procedures is repeated below: 

Pre-Treatment 

1. Unclamp the slide bushing so that the SMA junction can slide freely with respect to the spring 

flexure. 

2. Heat both SMA wires with 0.3 W while under 0 stress to transform them into the austenite 

phase. 

3. While the power is still high, retract the linear actuator until the load cell detects a small 

force.  Record the actuator position as 1Ax  and the austenitic reference length as 0AL . 

4. Allow both wires to cool under zero stress to the martensitic twin phase.  Note that some 

slack will develop as the martensite plus phase is favored due to the two-way effect. 
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Pre-Straining 

5. Retract the linear actuator to position 1 0 02A A px L ε−  to put both wires at a strain level of 0pε , 

as shown in the left plot in Figure 89. 

6. Extend the linear actuator until the load cell detects no force. 

7. Record this position as 1pε , as shown in Figure 89.  This is the point from which experiment 

cycles will begin. 

8. Lock the slide bushing so that the spring flexure deflect when the SMA junction moves. 

Pre-Stressing 

5. Retract the linear actuator until the load cell detects a stress of 1pσ , as shown in the right plot 

in Figure 89.  This is the point from which calibration cycles will begin. 

6. Lock the slide bushing so that the spring flexure deflect when the SMA junction moves. 

Calibration Cycles and Mapping Procedure 

1. Cycle the power to SMA 1 five times using a triangle wave with an amplitude of 0.25 W at a 

frequency of 0.1 Hz.  

2. Eliminate the data from the first cycle. 

3. Find the data-point with the highest measured resistance, and set the associated input power at 

minP , the lower bound on power input. 

4. Calculate the slope and intercept, 1k  and 01δ , of the resistance vs. displacement curve for the 

last 4 cycles using a least-square fit method. 

5. Repeat steps 1-4 for SMA 2 to find 2k  and 02δ . 

Controller Experiment Procedure 

1. Turn off the heating power to both SMA wires for 5 s after the calibration steps to allow them 

to cool. 

2. Choose the set-point waveform and run 10 cycles with the mapping and control scheme 

implemented as discussed in section 2.2.2.1.  Note:  in some comparison tests the resistance to 

displacement mapping is ignored and the laser displacement sensor is used directly as the 

position feedback measurement. 

3. Turn off the heat power to both SMA wires for 5 s while data from one experiment is being 

saved so that the wires are cool at the start of the next experiment. 

2.2.2.3 Results of Opposing SMA Control  

For the results shown, mapping and controller performance is studied in response to an sinusoid input 

with a commanded displacement of ±0.4 mm at 0.2, 1.0, and 2.0 Hz along with a variable step 

waveform.  Results also compare a case where the wires are pre-strained to 3.47% to a case where the 

wires are pre-stressed to 100 MPa.  For each case an additional experiment is run where the resistance 

to displacement mapping is removed from the control loop and the laser displacement sensor is used 

directly as the feadback measurement.  Since the Keyence LK-G82 laser displacement sensor 

measures much faster than the control loop rate (50 kHz compared to ~400 Hz) and is very accurate 
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(0.2 µm resolution), it is used as the “ideal” sensor to help differentiate between the controller 

performace from the mapping performance. 

In the right panel of each figure, the displacement measurement determined via resistance mapping is 

plotted overtop the laser measurement.  These plots give some indication of how well the resistance-

based measurements align with measurements from an ideal sensor.  Unlike in the single SMA 

system, the resistance-based mapping does not show up on these plots as a simple straight line.  As 

discussed in the “Convert” section above, the two SMA wires provide separate displacement 

measurements, and the measurement from the wire that is currently subjected to a heating power is 

chosen to represent the displacement of the flexure.  When SMA 1 is being heated, the sensor 

mapping is the magenta line in the displacement vs. resistance plots and the red line is the validation 

from the laser sensor.  When SMA 2 is heated, the controller uses the sensor mapping plotted in cyan 

(and blue).  Although the magenta and cyan lines are initially calculated directly from the linear 

mapping coefficients, they do not appear as straight lines because of the filtering that occurs after the 

displacement measurement is chosen.  The running average causes measurements by SMA 2 to be 

skewed by the measurements from SMA 1 in a previous time step, that was slightly different.   

In almost all of the plots shown, the tracking error switches between positive and negative, meaning 

that the control power switches between SMA 1 and SMA 2 frequently.  This switch is always 

associated with a small bump in measurement error, and therefore tracking error.  The controller’s 

attemps to compensate for this contributes to noise in they system and thus the RMS of the 

measurement and tracking error. 

Another observation that can be made for all of the plots in the pre-strained case is that SMA 1 has a 

higher minimum power input than SMA 2.  Recall that this power input was automatically determined 

as the power that induced the maximum resistance value during the calibration experiments.  SMA 1 

consistently shows up with a higher minimum power because of friction in the slide bearing of the 

experimental setup.  Since SMA 1 is behind the slide bearing, it invariably ends up under slightly less 

tensile force than SMA 2, with the difference being the friction in the bearing.  This is apparent from 

review of the pre-treatment and pre-straining steps.  Since a some slack forms in SMA 1 after pre-

straining, the first little bit of heating power actually causes a reduction in resistance as slack is 

eliminated, just as was observed in the time history of the nozzle tests in Figure 110.  Once the slack 

is removed, the heating power must increase substantially before the flexure and opposing SMA can 

be deformed and further contraction can occur.  In the meantime, the increasing heating power causes 

the resistance to increase again until phase transformation begins and the resistance finally reaches the 

maximum that is used to bound the lower limit of power.  So in effect, the minimum power is 

constantly maintained to ensure that no slack can form in the wires and that they are always on the 

verge of beginning martensite to austenite phase transformation.  Since SMA 1 has more slack then 

SMA 2, a higher minimum power is needed to eliminate the slack in SMA 1 than in SMA 2. The pre-

stressing procedure does not allow any slack to form, so the minimum power levels for SMA 1 and 

SMA 2 in the pre-stress section (next) are equal. 
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Pre-Strained SMA Wires 

Figure 122 through Figure 129 show results for SMA wires pre-strained to 3.47%.  The behavior 

observed is much more complex then in the single-SMA case.  Once again measurement and tracking 

errors are quantified via their RMS value, displayed on the “Error” plots.  The measurement error is 

between 59 and 93 µm RMS for all of the pre-strain cases.  The RMS of tracking error is highly 

dependent on the input waveform and is not the primary focus in this work because it is more a metric 

of controller performance rather than sensor mapping accuracy.  Also, it is important to note that there 

are many different possible methods of implementing the sensor mapping and control scheme.  These 

results focus on only a single method, and its merits and deficiencies are discussed.  Other methods 

may be suitable in different applications and will be subject for future work. 

To start, the displacement is shown tracking a slow sine wave in Figure 122, where the controller uses 

the resistance-based measurement as the feedback sensor.  Bumps in measurement error can be 

observed each time tracking error (and thus control power) switches direction.  These bumps are one 

of the reasons why the errors in the low frequency test of the opposing SMA system are greater than 

the errors in the low frequency test of the single SMA system in Figure 115.  However, in the case of 

the opposing SMA system, the displacement amplitude is slightly higher, and the SMA wires are pre-

strained rather than pre-stressed.   

When comparing Figure 122 with Figure 123, where the laser sensor is used as feedback, the chatter 

is reduced because there is no longer a discontinuity in the measurement.  The reduction in noise 

brings down both measurement (equation (2.46) and tracking error, now defined as 

 ,T C M laserE δ δ= −  (2.48) 

for the experiments where the laser is the feedback sensor.  There is still a small bump in tracking 

error when the control power switches from one SMA wire to the other.  Although it is not used in the 

feedback loop, the resistance-based measurement is still plotted in magenta and cyan on the resistance 

vs. displacement plots, and the bumps in measurement error defined by equation (2.46) can still be 

observed. 
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 Figure 122:  Tracking (left) and Sensor Diagram (right) of a 0.2 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 3.47% Pre-Strained SMA Wires 

 
Figure 123:  Tracking (left) and Sensor Diagram (right) of a 0.2 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 3.47% Pre-Strained SMA Wires 

When actuation frequency is increased to 1.0 Hz in Figure 124 and Figure 125, a lag becomes visible 

and tracking error increases significantly as a result.  Since the controller cannot quite keep up, the 

tracking error is more distinctly positive or negative, so the SMA wire that is used as the sensor 

switches less frequently. Like in the single SMA system, measurement error is much less effected by 
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the increase in command frequency than tracking error.  The plot in Figure 125 shows that the laser 

sensor once again provides a more effective feedback sensor, helping to bring down both errors. 

  
Figure 124:  Tracking (left) and Sensor Diagram (right) of a 1.0 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 3.47% Pre-Strained SMA Wires 

 
Figure 125:  Tracking (left) and Sensor Diagram (right) of a 1.0 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 3.47% Pre-Strained SMA Wires 

These trends continue to 2 Hz in Figure 126 and Figure 127.  However, as frequency increases the 

choice of sensor becomes less important because error is dominated by the controller’s inability to 



123 

 

track the input.  This could be predicted from the fact that measurement error is more or less constant.  

As tracking error increases the choice of sensor become less critical. 

 
Figure 126:  Tracking (left) and Sensor Diagram (right) of a 2.0 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 3.47% Pre-Strained SMA Wires 

 
Figure 127:  Tracking (left) and Sensor Diagram (right) of a 2.0 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 3.47% Pre-Strained SMA Wires 

Figure 128 and Figure 129 show the system’s response to a variable step function.  The step function 

provides a challenge for the resistance-based sensor because of the constant switching of control 
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power direction required to hold the displacement constant on a plateau.  As a result, using the laser 

sensor significantly reduces the noise in the control power input and measured errors. 

 
Figure 128:  Tracking (left) and Sensor Diagram (right) of a Step Function using Resistance Mapping as Feedback 
Measurement for 3.47% Pre-Strained SMA Wires 

 
Figure 129:  Tracking (left) and Sensor Diagram (right) of a Step Function using Laser Sensor as Feedback Measurement for 
3.47% Pre-Strained SMA Wires 
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Pre-Stressed SMA Wires 

The conclusions from characterization of the coupled SMA system (section 2.1.3.6) suggested that the 

SMA wires would make better sensors when pre-stressed then when pre-strained because pre-

stressing reduces the hysteresis in the resistance vs. strain relation and helps prevent formation of 

slack.  However, the results that follow (compiled in Table 12) indicate that pre-stressing actually 

increased measurement error slightly, while tracking error remained virtually unaffected.   

One cause for the increase in measurement error in the pre-stress case may be that the high opposing 

forces prevent resistance from getting low enough to reach the maximum and minimum of the 

commanded displacement.  Note in Figure 130 and Figure 131:  even at low frequency the resistance-

based measurement never reaches the -0.4 mm displacement value.  Once the opposing wire is pulled 

entirely into the M +  phase, the actuating wire requires a much larger heating power to overcome the 

opposing force.  The higher temperatures cause an increase in resistance that is not associated with a 

decrease in SMA strain.  This is the same mechanism that causes the resistance-strain plots to shift 

depending on pre-stress of the single SMA-spring system, as shown in Figure 75 and Figure 113.  

This effect causes a bump in measurement error to occur not only during the switch from one SMA to 

the other, but also at the maxima of displacement that is out of range of the resistance-based 

measurement.  These physics motivate the coupled mapping approach implement in control of the 

adaptive nozzle discussed in the next section.  

 
Figure 130:  Tracking (left) and Sensor Diagram (right) of a 0.2 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 100 MPa Pre-Stressed SMA Wires 
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Figure 131:  Tracking (left) and Sensor Diagram (right) of a 0.2 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 100 MPa Pre-Stressed SMA Wires 

 
Figure 132:  Tracking (left) and Sensor Diagram (right) of a 1.0 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 100 MPa Pre-Stressed SMA Wires 
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Figure 133:  Tracking (left) and Sensor Diagram (right) of a 1.0 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 100 MPa Pre-Stressed SMA Wires 

 
Figure 134:  Tracking (left) and Sensor Diagram (right) of a 2.0 Hz Sinusoid using Resistance Mapping as Feedback 
Measurement for 100 MPa Pre-Stressed SMA Wires 
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Figure 135:  Tracking (left) and Sensor Diagram (right) of a 2.0 Hz Sinusoid using Laser Sensor as Feedback Measurement 
for 100 MPa Pre-Stressed SMA Wires 

 
Figure 136:  Tracking (left) and Sensor Diagram (right) of a Step Function using Resistance Mapping as Feedback 
Measurement for 100 MPa Pre-Stressed SMA Wires 
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Figure 137:  Tracking (left) and Sensor Diagram (right) of a Step Function using Laser Sensor as Feedback Measurement for 
100 MPa Pre-Stressed SMA Wires 

2.2.2.4 Conclusions from Coupled SMA Controls Experiments 

These results demonstrate the challenges of working with the opposing SMA wire system, and is not 

surprising that coupling two hysteretic, non-linear elements together complicates the problem.  The 

variation in the reaction force from the opposing SMA has a significant impact on the resistance vs. 

deformation characteristic and therefore the sensor diagram.  This leads to an increase in measurement 

error compared to the single SMA system, where the reaction force was supplied by a simple linear 

spring.  However, as shown in Table 12, measurement error remains fairly constant through the 

different test inputs.  In the pre-stressed tests, the functional range of the resistance-based mapping 

sensor was insufficient to cover the displacement range, causing a slight increase in the RMS of 

measurement error.  So the increase in error does not necessarily invalidate the method. 

Table 12:  RMS of Tracking and Measurement Errors Using Resistance-Based and Laser Feedback Sensor 

Experiment Resistance-Based Sensor  Laser Sensor 
Track. Err. (mm) Meas. Err. (mm) Track. Err. (mm) Meas. Err. (mm) 

Pre-strain, 0.2 Hz 0.033 0.070 0.024 0.059 
Pre-strain, 1.0 Hz 0.162 0.093 0.102 0.084 
Pre-strain, 2.0 Hz 0.252 0.079 0.219 0.076 
Pre-strain, Step 0.077 0.078 0.064 0.043 
Pre-stress, 0.2 Hz 0.042 0.090 0.026 0.087 
Pre-stress, 1.0 Hz 0.148 0.109 0.121 0.104 
Pre-stress, 2.0 Hz 0.217 0.102 0.218 0.099 
Pre-stress, Step 0.075 0.066 0.067 0.094 

 

These results also may inspire a method to improve the sensor mapping.  The variation in the 

opposing force causes a shift in the resistance vs. displacement plot, so a scheme can be imagined 
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where the opposing force is somehow estimated, then used to adjust the mapping coefficients.  This 

could, for example, make better use of the available resistance and power input data from both SMA 

wires to improve sensor mapping.  If mapping accuracy is made to be more robust to changes in the 

opposing force, the opposing actuator system can offer advantages, such as higher actuation 

frequency, bi-directional control authority, and the possibility of eliminating the biasing spring 

entirely.  In the meantime, the information gained from this simplified setup provides a baseline for 

understanding the behavior of an even more complex embedded SMA system:  the Smart Inhaler 

nozzle joint. 
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2.2.3 Sensor Mapping and Control of Smart Inhaler Nozzle Joint 

Figure 138 depicts how the adaptive nozzle joint is another example of an opposing SMA system; as a 

result it shares many characteristics with the system described in the previous section.  However, the 

nozzle joint has a third actuator that enables arbitrary bending in the top-view plane.  This third 

actuator adds additional steps to the calibration and mapping procedure, and it adds more complexity 

to the control scheme.  Nevertheless, lessons learned from the systems studied in section 2.2.1 and 

2.2.2 are of great value in developing the mapping and control scheme for the adaptive nozzle joint. 

 
Figure 138:  Adaptive Nozzle Joint as an Opposing Actuator System 

2.2.3.1 Resistance to Deflection Mapping 

The following section describes how the resistances of the three SMA wires in a Smart Inhaler nozzle 

joint are mapped to the nozzle tip position.  In the case of the Smart Inhaler application, the geometry 

of the nozzle dictates that the strain in an SMA wire will map linearly to nozzle tip deflection along 

the direction of that actuator, so long as rotation angles are small.  For the first implementation 

discussed in this section, the role of the coupled force from the opposing SMA actuators wires are 

neglected.  A subsequent method presents a coupled mapping technique that uses the varying power 

input to opposing wires to alter the resistance to deformation mapping along the first direction. 

As before, it is important that the mapping and calibration procedures be well documented and 

motivated by the physics.  Otherwise the hysteretic nature of SMA wires may lead to mappings that 

are not reproducible.  The procedures documented below are automated to eliminate operator bias.  

They are used to: 

• Align the coordinate system of the top-view camera with the center position of the nozzle. 

• Transform the coordinate system from the [x,y] frame of the camera to the [δ1, δ2, δ3] frame of 

the nozzle joint. 

• Calibrate the mapping coefficients, including R-δ slopes, offsets, and power ranges. 

The centering of the camera system is important because the camera is used to measure nozzle 

deformation during calibration and to determine measurement errors during controller validation. 

Camera Coordinate System Centering Procedure 

The goal of centering the camera coordinate system is to place the non-deformed nozzle in the center 

of the camera’s coordinate frame, then align the motion induced by contraction of actuator 1 with the 
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camera’s y axis, as indicated in Figure 139.  In Figure 139, contraction of actuator 1 (behind) is 

assumed to induce bending in the δ1 direction.   

    
Figure 139:  Alignment of Nozzle [δ1, δ2,δ3] Coordinate System with Camera [x,y] Coordinate System 

The steps for centering the camera coordinate system are outlined below: 

1. Heat all 3 actuators simultaneously for 5 s with 0.25 W.  This exposes all of the wires to high 

stress to effectively erase their memory of their previous state.  Upon cooling, the wires 

should return to a M +  state.  

2. Command 5 cycles of a triangle input wave with an amplitude of 0.25 W and frequency of 0.1 

Hz to actuator 1. 

3. Using top view camera with LabVIEW pattern recognition software, track the x-y position of 

the nozzle tip. 

4. Once the 5 cycles are finished, throw away the x-y data associated with the first cycle and fit 

a line to the remaining x-y data using a least square method.  Save the slope and y-intercept of 

this line. 

5. Repeat steps 1 through 4 for each of the other 2 actuator channels. 

6. Find the intersection points of the three lines obtained, shown by P12, P23, and P13 in the left 

panel of Figure 140. 

7. Find the average of P12, P23, and P13 and take this as the center of the nozzle coordinate frame. 

8. Determine the angle θ based on the slope of δ1 then translate and rotate the nozzle frame to 

align with the camera frame. 

The right panel in Figure 140 shows an example of the calibration process.  The gray lines show the 

initial cycles in a non-oriented coordinate system, and the black lines show the same cycles rerun in 

the oriented coordinate system.  Note that for the case shown, the coordinate frame was translated 

0.16 mm in x and 1.64 mm in y, and it was rotated 133.8 degrees clockwise. 
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Figure 140:  Alignment of Camera and Nozzle Coordinate Frame Pre-Alignment (left), Aligned (middle) and Tested (right) 

Three Axis Coordinate Transformation 

In general, the strains of actuator 1, 2, and 3 are assumed to induce nozzle deflection only along each 

actuator axis, δ1, δ2, and δ3, respectively.  So in effect, the system is modeled as 3 independent single 

SMA-spring systems diagrammed in Figure 112.  These deflections are then superimposed to give the 

final position of the nozzle tip.  Figure 141 shows how a deflection in the δ1 and δ2 directions can be 

equated to a position in the x-y frame.  The form of the coordinate system transformation is important, 

particularly because the [δ1, δ2, δ3] coordinate system over-constrains a point, so only the two δ axes 

that are adjacent to the point being mapped can be considered.  So in the case shown in Figure 141, 

only the δ1 and δ2 axes are considered, and contributions made by δ3 are taken to be 0 and neglected.  

This assumption is valid, because in positioning controls applications, positioning the nozzle tip 

between the δ1 and δ2 axes requires that there be no power to actuator 3, effectively rendering it as a 

passive part of the structure.  The transformation in equations (2.49)-(2.51) are used to convert 

deflections in the [δ1, δ2, δ3] coordinate system to [x,y].  Each equation is only valid for points in one 

third of the [δ1, δ2, δ3] coordinate system.       

 
Figure 141:  Superposition of Nozzle Deflections in δ1 and δ2 Directions 

The [δ1, δ2, δ3] to [x,y] coordinate transform for points between the δ1 and δ2 axes is, 
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the [δ1, δ2, δ3] to [x,y] coordinate transform for points between the δ2 and δ3 axes is, 
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and the [δ1, δ2, δ3] to [x,y] coordinate transform for points between the δ3 and δ1 axes is, 
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The inverse transformation is given in equations (2.53)-(2.55).  Once again, each [x,y] to [δ1, δ2, δ3] 

coordinate transform is only valid in one third of the coordinate frame.  The angle between the y-axis 

and the [x,y] point φ , counting positive clockwise, is first determined via 

 1tan
x

y
φ −  
=  

 
. (2.52) 

For 0 3φ π≤ < , the [x,y] to [δ1, δ2, δ3] coordinate transform is 
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for 3 2 3π φ π≤ < , the [x,y] to [δ1, δ2, δ3] coordinate transform is 
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and for 2 3 2π φ π≤ < , the [x,y] to [δ1, δ2, δ3] coordinate transform is 
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 (2.55) 

This case-wise transformation is critical in controls applications.  For example, equation (2.53) shows 

how a commanded (x,y) position is converted to desired deflections of the 3 actuators.  However, note 

that once again equation (2.53) is only valid in the third of the [δ1, δ2, δ3] coordinate system between 

the δ1 and δ2 axes, and that the commanded deflection in the direction of actuator 3, δ3, will be 0.  This 

method does have potential drawbacks.   In a controller that excludes the δ3 actuator when positions 

are commanded between the δ1 and δ2 axes, the only mechanism for moving the nozzle tip in the δ3 

direction becomes setting the power to actuators 1 and 2 to zero and waiting for them to cool while 

the passive structural element pulls the nozzle back in the δ3 direction.  In this way, the nozzle joint 

mimics the single SMA-spring system studied in section 2.2.1. 

Resistance to Deflection Mapping Concept 

In this first implementation of R-δ mapping, it is assumed that the forces generated by one actuator 

have no impact on the slope and intercept of the R-δ line of the others.  As a result, when equation 

(2.44) is expanded to include all three actuators, the resistance to deformation mapping for the nozzle 

is defined in equation (2.56).  Although all of the actuators were assembled using an identical 

procedure, independently calibrating the characteristic slopes and intercepts for each actuator channel 

gives one the ability to compensate for inconsistencies between the three actuators identified in 

section 2.1.4.3. 
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 (2.56) 

This is the simplest viable mapping, and equation (2.56) in concert with the coordinate system 

transformation in equation (2.49) through (2.51) gives a complete mapping from the resistance of the 

three actuator wires to the deflection of the nozzle tip in the [x,y] coordinate system.  This 

measurement can then be compared to position data simultaneously taken by the camera system.  

Since the camera system is used to initially calibrate the k and δ0 values, comparing the camera data to 

deflections measured via the resistance mapping gives a good indication of the validity of the 

assumptions that inspired the mapping concept, and it also enables a measurement error to be 

quantified. 
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Sensor Mapping Procedure  

The procedure used to determine the k and δ0 values follows directly after the completion of the 

camera coordinate system centering procedure described above.  The first step is to determine the 

power limits discussed in the previous controller implementations. The ideal procedure for this would 

be to cycle the input power into each actuator and plot the R-δ characteristics.  These plots would be 

expected to look like the resistance vs. displacement plots in Figure 103, reproduced in the right panel 

of Figure 142, since nozzle deflection is assumed to be linearly dependent on SMA wire.  Then the 

power that induces the maximum and minimum resistances in the SMA wire would be taken as the 

minimum and maximum power limits, respectively, as was diagramed in Figure 113.  The R-δ curve 

of SMA actuator 1 measured after the memory clearing process (step 1 above) is shown in the left 

panel of Figure 142.  Cleary, the calibration process produced a different plot than characterization.  

Most notably, the calibration data shows a substantial plateau at the bottom where there is a resistance 

change of -1.7 Ω, but no measured deflection.  This behavior is similar to what was observed in 

Figure 110, where the SMA wires were actuated one after another to generate the Mercedes star trace. 

 
Figure 142:  Calibration (left) and Characterization  (right) Resistance vs. Nozzle Deflection Plot for Power Cycled between 
0-0.25 W 

The unexpected behavior observed in the bottom right of the calibration R-δ relationship can be 

explained by considering the physical mechanisms behind the resistance change and the steps taken 

before the calibration cycles were run.  It is observed that low input heating powers do not cause a 

slight increase in resistance, as is expected prior to the beginning of phase transformation.  Rather, a 

point starting at the bottom-right of the R-δ characteristic follows the bottom branch of the hysteresis 

loop during heating.  This branch begins with a significant reduction in resistance (about 1.7 Ohm) 

that does not result in any deformation of the nozzle along that axis.  In the case of the Mercedes 

trace, this behavior was attributed to slack that developed when the opposing SMA wires actuated.  In 

this case there is no visible slack, but there is a similar explanation for a reduction in resistance that 

does not result in wire strain (and thus nozzle deflection) that is derived from the effects of heating all 

3 SMA wires at once and allowing them to cool under stress. 

The left side (panels A-D) of Figure 143 shows the stress-strain and resistance-strain behavior for a 

“single-crystal” SMA wire.  At low temperature, the pre-stressed wire is expected to be fully 

martensitic, as indicated by panel A.  The resistance, panel B, is slightly below the maximum 

attainable resistance value.  As the wire is heated to just below the austenite start temperature (panel 
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C), the resistance rises slightly as it would for any metal (panel D).  Since phase transformation has 

not yet begun there is no reduction in resistance due to transformation to the austenite phase.   

The right side (panels E-H) of Figure 143 show the behavior that might be expected from a real, 

polycrystalline material that is cooled under the stress.  At low temperature and the same stress as 

before, the wire is not fully on the M +  line, as shown in panel E.  Rather, the material is a mixture of 

/M M+ − , biased towards M +  due to the positive stress.  However, since the resistance of M −  is the 

same as M + , the wire will have the resistance indicated in panel F, just as it did in panel B.  The 

difference is, that because of the martensite minus grains, the strain values are different.  Once heating 

begins, the first thing that happens is that some of the /M M+ −  twins change to austenite.  This 

results in a significant reduction in resistance, but no change in strain, as indicated in panel H.  This 

analysis explains the behavior observed in the left panel of Figure 142.  It also explains the behavior 

exhibited in the 50 MPa pre-stress case from the single SMA-spring characterization experiments 

shown in section 2.1.2.   

 
Figure 143:  Stress, Strain, and Resistance Behavior for Idealized Single-Crystal (left) and Poly-Crystal (right) SMA Wire 

Since the mapping from resistance to deflection is taken to be linear, a large reduction in resistance 

with no change in strain (or thus deflection) results in a large measurement error.  To avoid this, a 

minimum power input is maintained, just as it was in previous controller implementations.  However, 

this minimum power cannot be chosen based on the power needed to get attain maximum resistance.  

Rather, it is chosen based on the power needed to start nozzle deflection.   

As was shown in Figure 143, the SMA wires are probably never totally on the M +  line.  As a result, 

they are expected to have non-linear, hysteretic force-displacement characteristics that act in parallel 

with that of the passive structural element, just as in the case of the opposing SMA-spring system in 

sections 2.1.3 and 2.2.2.  This invariably leads to hysteresis in the R-δ curve of the SMA wire being 

actuated.  Additionally, in the nozzle joint control application multiple wires are being actuated at 

once.  A changing thermal state in opposing wires causes them to effectively output more force, also 

affecting all of the other wires in the system.  All of these coupling effects motivate the need for 

considering the state of opposing wires when generating the R-δ mappings.  However, as a first 

attempt, the R-δ mappings are made independent of coupling considerations.  The updated calibration 

procedure is listed below.  The plot in Figure 144 shows a typical R-δ characteristic with power limits 

imposed.  A line is fit to this curve to approximate displacement along each actuator direction. 
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1. Actuate all 3 actuators simultaneously for 5 s with 0.25 W to effectively erase their memory 

of their previous state.  Upon cooling under stress, the wires return to a martensitic state on 

the top plateau of the stress-strain hysteresis loop.  

2. Command 5 cycles of a triangle input wave with an amplitude of 0.27 W and a frequency of 

0.1 Hz to actuator channel 1.  Track the x-y position of the nozzle tip using the top view 

camera with Machine Vision.  

3. Convert the [x,y] position to the [δ1, δ2, δ3] coordinate system using equation (2.53). 

4. Plot the δ1 data against the R1 data. 

5. Eliminate the data points for the first cycle, and chose the point where δ1 was sufficiently high 

for the application (6 mm in this case).  Take the measured power at this point as the upper 

power limit, Pupper.  

6. Identify the point where deflection began, and set the corresponding power input as the lower 

power limit Plower. 

7. Repeat steps 1 through 4, for actuator channels 2 and 3 and determine the upper and lower 

power limits for each channel.  

Once power limits are determined the procedure for determining the R-δ characteristics is as follows: 

8. Actuate all 3 actuators simultaneously for 5 s with Pupper,i W.  This exposes all of the wires to 

high stress to effectively erase their memory of their previous state.  Upon cooling under 

stress, the wires return to a martensitic state on the top plateau of the stress-strain hysteresis 

loop.  

9. Command 5 cycles of a triangle input wave between Plower,1 and Pupper,1 W and a frequency of 

0.1 Hz to actuator channel 1.   

10. Eliminate the data points for the first cycle, and apply a least square linear fit to the remaining 

data.  The slope of this line is k1 and the y-intercept is δ01. 

11. Repeat steps 8 through 10 for actuator channels 2 and 3 to fill the k matrix and δ offset vector 

in equation (2.56). 

 
Figure 144:  Typical Resistance-Deformation Plot with Minimum Power Limit of 0.05 W 
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The set of mapping coefficients determined experimentally are shown in Table 13.  The performance 

of this simple mapping and a PID controller are shown in section 2.2.3.2; however, the coupled 

mapping concept is introduced next. 

Table 13:  Resistance to Deflection Mapping Coefficients for SMA-Actuated Joint 

 Slope (mm/Ohm) Intercept (mm) 

Channel k1 k2 k3 δ01 δ02 δ03 
Value -2.019 -2.315 -2.208 -1.994 -2.514 -1.685 

 
Coupled Mapping Concept 

One of the main assumptions made in the uncoupled mapping case discussed above was that the 

resistance-deformation line of one actuator was not influenced by forces applied by the other 

actuators—i.e. the nozzle was modeled as 3 independent SMA-spring systems.  However, because the 

wires oppose each other, the system is actually coupled, as shown in Figure 144, reproduced from the 

opposing SMA characterization in section 2.1.3.  In the system in Figure 144, the spring is 

uncompressed when the stress and strain in opposing wires are equal.  As actuator 1 contracts, the 

other actuators are forced to lengthen, along with the spring.  If the opposing actuators are fully in the 

M+ phase, then they simply act as additional linear springs in parallel with the structural spring.   

The assumption behind the coupling procedure described in this section is that forces exerted by the 

opposing actuators serves to alter the R-δ characteristic of the first actuator by effectively increasing 

its pre-stress.  This should affect the R-δ plot in the same way that increasing the pre-stress affected 

the R-ε plot from the single SMA-spring system reproduced in the left of Figure 146.  It is possible to 

couple the opposing actuator based on either its measured resistance, its measured deflection (as 

mapped by resistance), or its input power.  In this first attempt at a coupled actuator, the power input 

to the opposing actuators is used to alter the slope and intercept of the R-δ mapping line of the first 

actuator, as shown in the right of Figure 146.   

To first order, it is assumed that the slopes and intercepts of the R-δ plot for one actuator vary linearly 

with the change in power of opposing actuators.  In future implementations, the resistance of opposing 

actuators will be coupled, since it is already assumed that resistance maps linearly to strain and 

presumably force, in the opposing actuators.  Equations (2.57) and (2.58) show how the previous 

(uncoupled) values of slopes, now written as [k10, k20, k30], are updated by sensitivity coefficients 

scaled by the resistance of the other actuators.  The analogous transformation is applied for the offset 

deflection vector, and the new k and δ0 values are applied via Equation (2.56) to produce the coupled 

mapping. 

 
Figure 145:  Coupled SMA-Spring Diagram 
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Figure 146:  Diagram of Shifting R-δ Characteristics as a Result of Increasing Force 
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Coupled Mapping Procedure 

The procedure for calibrating the coupled mapping coefficients is described below.  The case 

presented makes the slope of 1 actuator dependent on its own R-δ mapping line, altered by the 

changing power inputs (temperatures) of the other actuators.  

1. Follow steps 1-3 in the sensor mapping procedure above to determine the uncoupled k10 and 

δ010 coefficients for actuator 1.  Plot the coefficients as shown in Figure 147. 

2. Repeat the calibration procedure above, but command a simultaneous constant power of 

0.25*Pupper,2 to channel 2.  Calculate the coupled mapping coefficients k121 and δ021 plotted in 

Figure 147. 

3. Repeat with a power of 0.50*Pupper,2 commanded to channel 2.  Calculate the coupled mapping 

coefficients k122 and δ022 plotted in Figure 147.  Then fit a line to the k and δ0 points – the 

slopes of these lines are the sensitivity of the slope or intercept of actuator 1 to power inputs 

in channel 2.   

Repeat this procedure for all other actuator and coupling actuator combinations and fill the S matrices 

in equations (2.57) and (2.58). 
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Figure 147:  Plot Showing How Sensitivity Matrix Coefficients are Determined Based on Coupled Mapping Coefficients 

The experimentally determined coupling coefficients are shown in the matrices in equations (2.59) 

and (2.60). 
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2.2.3.2 Controller Implementation and Testing 

Once the mapping coefficients are determined, the same controller used in the single SMA-spring 

system, diagrammed in Figure 114, is implemented.  However, in the case of the nozzle, all of the 

power inputs and resistance outputs are vectors of 3 elements, one for each actuator channel.  The 

power limits are imposed on all channels, and the PI gains are set and maintained, but not optimized.  

The primary focus at this stage is to validate the mapping concept and test it in the context of a 

controls application, not to optimize the controller itself. 

Uncoupled Mapping 

Results for the uncoupled mapping case (i.e. Sk=Sδ0=[0]) are shown in Figure 148.  The controller was 

programmed to command a Mercedes star (top) and a circle shape (bottom) in Figure 148.  These 

results show a large measurement error of up to 4 mm, but generally small tracking errors.  This is 

expected, because an inaccurate mapping will lead directly to measurement errors, since measurement 

error is the difference from the position mapped via the SMA resistances and the position measured 

by the validation camera, as in equation (2.46).  However, the controller is still able to keep tracking 

errors small by bringing the mapped position measurement close to the commanded position.  As in 

the other sensor/controller experiments, the measurement errors increase upon direction reversal 

because of the hysteresis in the R-δ characteristic that was neglected in the mapping scheme.  
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Figure 148:  Mapping and Controller Performance to Mercedes Star (top) and Circle (bottom) Command Trajectories  using 
Uncoupled R-δ Mapping 

Power-Coupled Mapping 

Figure 149 shows that the same test run using the power-coupled mapping technique and the same 

controller.  The measurement error is less than 2 mm, half what is was with the uncoupled mapping 

method. There is a slightly larger tracking error.  This is not surprising because the mapped position 

measurements are constantly being updated as the power input to the other wires changes.  This noise 

makes it more difficult for the controller to maintain good tracking.  If resistance were used as the 

coupling parameter, tracking error might be expected to be reduced.  Regardless, the plots of the x-y 

trajectories clearly show improved performance when the coupled mapping technique is employed.



143 

 

Figure 149:  Mapping and Controller Performance to Mercedes Star (top) and Circle (bottom) Command Trajectories  using 
Coupled R-δ Mapping Concept 

2.2.3.3 Conclusions 

The adaptive Smart Inhaler nozzle joint exploits the multi-functionality of SMA wires in an 

embedded SMA sensor/actuator application.  While measurement errors are at times large (~30% full 

scale), the results show that there is potential to using the resistance measurement across an SMA wire 

as a strain, and thus displacement sensor.  However, mapping resistance to deflection is complicated, 

particularly when the SMA wires are not sufficiently pre-stressed or SMA actuators are coupled to 

other opposing SMA actuators.  For an application with multiple opposing SMA wires, such as the 

adaptive nozzle, changing force output in one wire alters the mapping plot of opposing wires.  Also, 

because the stress-strain behavior of the coupled wires is non-linear and hysteretic, coupling begins to 

add significant hysteresis to the load-deformation characteristic of the entire structure, and thus to the 

resistance vs. strain plots of the SMA wires embedded within the structure.  However, it was found 
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that including a mapping scheme that considers not only the resistance of one wire to sense its own 

strain, but also the power input of opposing wires, greatly improves mapping accuracy.  This coupling 

method effectively utilizes more of the available heating power and resistance information based on 

lessons learned from the simplified SMA spring systems.   
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2.3 Summary of Part 2 

Part 2 builds an understanding of SMA actuator wire behavior by studying three systems:  a single 

SMA and linear spring in series, opposing SMA wires coupled with a linear spring, and an adaptive 

Smart Inhaler nozzle joint.  The first two simplified systems are easy to model and validate 

experimentally, and they represent a wide range of possible embedded actuator applications.  The 

study of the single SMA-flexure system demonstrates the effects of pre-stress and actuation frequency 

on the stress, strain, and resistance of 50 µm diameter Flexinol SMA wire [1].  A new resistance 

model is discussed to correlate the resistance of the SMA wire to modeled phase fractions and 

temperature.  In the single SMA-spring system the load-displacement characteristic is constrained by 

the linear spring, and the nearly linear, non-hysteretic character of the resistance vs. strain plot shows 

significant potential for sensing applications.   

The opposing SMA system explores the complications that arise when non-linear, hysteretic elements 

are coupled together.  In this case, one SMA constrains the force-displacement behavior of the other, 

causing a cross-linked interdependence between the actuation state of the two wires.  For example an 

increase in force from wire 2 necessitates an increase in temperature into wire 1 for the strains in the 

two wires to be maintained. This change in force also shifts the resistance vs. strain curve that would 

be used in applications that endeavor to use the resistance measurement as a displacement sensor.  

One example of such a system is the adaptive Smart inhaler nozzle, that employs 3 opposing SMA 

wires in a Mercedes star configuration.  The adaptive nozzle is characterized as the first step of 

developing a resistance to deflection sensor mapping. 

The systematic study of these systems alongside physics-based simulations leads to many practical 

conclusions.  For example, it is demonstrated that pre-stressing SMA wires helps to reduce the 

hysteresis in the resistance vs. strain characteristic, while pre-straining helps reduce stress in the 

opposing SMA system at a cost of wider hysteresis.  Also, results show that this coupled system is 

capable of actuating over larger ranges at a higher frequency than the single SMA-spring system 

because the opposing SMA wire provides an active restoring force.  Most discussions are made in the 

context of using the resistance vs. strain plot as a sensor diagram, and the systematic opposing-SMA 

experiments offer clues for how to calibrate the coupled sensor diagrams for such a system. 

Part 2 also makes a first attempt at using the gained understanding of the simplified systems to 

implement an SMA wire resistance to structural displacement sensor mapping, and using this 

measurement in closed-loop control.  As a first attempt at controlling the simplest, single SMA-

flexure system, a line is fit to the resistance vs. flexure displacement plot and the power is limited to 

avoid non-linear regions.  Results show that peak to peak sensor errors are less than 10% of full scale, 

but the displacement of a flexure can only be actively controlled in one direction.  Moving the spring 

flexure in the other direction requires waiting for the SMA wire to cool and the flexure to stretch the 

wire back out again. 



146 

 

This deficiency is remedied by adding a second opposing SMA wire, but at a cost of increased 

measurement errors.  The same linear fit mapping is applied to both SMA wires in the opposing SMA  

system, and the measurement from the wire being heated is chosen as the flexure displacement 

measurement.  This method leads to larger measurement errors on the order of 30% of full scale.  For 

the adaptive nozzle, a coupled sensor calibration and mapping scheme is presented that uses the 

power input to the opposing SMA actuators to shift the resistance vs. displacement sensor line.  This 

coupling method reduced measurement errors by about 50% compared to the uncoupled mapping 

technique.  Further development of more accurate sensor mapping and control techniques is left for 

future work. 

2.4 Future Work for Part 2 

The simplified analog SMA-spring systems studied in Part 2 provide a base of understanding for 

SMA wires in the context of actuator applications.  However, there are many useful ways of applying 

that understanding that have yet to be explored and are therefore points for future work.  These 

include: 

• Adjust the coupled mapping technique used on the adaptive nozzle joint to shift one 

actuator’s resistance vs. deformation mapping based on the change in resistance of the 

opposing wires, instead of the change in power.  The motivation behind the coupled mapping 

concept is that force of the opposing wires effectively alters the pre-stress in the first wire.  

Resistance may provide a more relevant measure of opposing force than heating power input. 

• Improve sensing accuracy by applying model-based resistance to deformation mapping 

instead of a simple linear fit.  This could be as simple as estimating the SMA temperature by 

tracking the history of power input to each wire and using it to capture some of the transient 

heating and cooling effects, or it could involve a full implementation of a poly-crystalline 

SMA model or neural network that approximates hysteresis. 

• Apply different control schemes to the multifunctional sensor-actuator wires.  The current 

work only discusses PI of PID control, with limits set on power input to help resolve mapping 

ambiguity.  There is substantial room for improvement with optimal or model-based control. 
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Appendix A:  Adhesive Strength 

Experiments 

A.1 Using Adhesives for Mechanical Attachments 

This appendix presents a set of experiments that quantify the shear strength of the bond between an 

SMA wire and various common and specialized adhesives.  Adhesives offer one of the most 

streamlined, customizable mechanical connections possible, but their reliability in bonding with an 

SMA wire that is heating, cooling, and changing phase is not well known  In these experiments, the 

effect of wire heating current on adhesive strength is studied along with the transient slipping or 

softening behavior that may result from prolonged exposure to repeated mechanical and thermal 

loading.  The effect of treating the SMA with acetone prior to adhesive application is also studied. 

A.2 Adhesive Experiment Setup 

A simple tensile testing setup is used to measure the tensile force in an SMA wire attached to a drop 

of adhesive, as depicted in Figure 150.  The droplet of adhesive is placed in a 0.5 mm wide and deep 

trough in the removable inserts shown in Figure 154.  Employing many removable inserts allows 

multiple samples to be cured simultaneously.  The force is measured using a strain-gage-based load 

cell (Futek Model LSB200) with a 2lb (~9N) load limit.  A ball screw linear actuator (Zaber Model 

TNA08A25) is used to pull on the wire.  Flexinol wire with 100 µm diameter from Dynalloy [1] is 

used in all of the tests reported.  Wires smaller than 100 µm diameter have a larger surface area to 

cross-sectional area ratio.  As a result, the smallest feasible adhesive drop developed a bonding area 

that was often too large for the bond to fail before the wire yielded. 

 
Figure 150:  Tensile Test Setup Diagram 

The insert holder shown in Figure 152 is fixed to a rail, and removable inserts, each holding one 

adhesive sample at a time, are placed in the holder for testing.  A clamp at the back of the insert 
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holder provides an electrical and mechanical contact.  However, when an adhesive is being tested 

slack is left between the adhesive drop and the mechanical clamp on the insert holder to ensure that 

the adhesive carries the load, not the clamp.  

Figure 151:  Tensile Test Setup Photo 

A photograph of the entire setup is shown

and SMA wire is shown in Figure 

form into a droplet with walls that are perpendicular to the SMA wire d

that is exposed to the adhesive, labeled

vertical walls make the measurements easier and more accurate.  A photograph

holding a 100 µm diameter SMA wire taken under a microscope is shown in 

Figure 153:  Microscopic view of adhesive drop and SMA 
Wire in trough 

A.3 Adhesive Testing Procedure and Matrix

Two separate tests, “constant current” and “constant displacement”, 

above to determine the strength of the adhesive

the tensile load while either wire heating current or end displacement, and therefore engineering 

strain, was cycled.  These two tests required samples be prepared such that the SMA wire was 

exposed to a measureable length of adhesive

description of the procedure and experimental matrix for each test and sample preparation is give

the following sections.  

1 mm

Ladh 

SMA 

holder provides an electrical and mechanical contact.  However, when an adhesive is being tested 

slack is left between the adhesive drop and the mechanical clamp on the insert holder to ensure that 

not the clamp.   

 
Figure 152:  Close-up of Clamps and Adhesive 

shown in Figure 151, and a close-up view of the clamps, adhesive, 

Figure 152.  The trough in the removable inserts causes the adhesive to 

form into a droplet with walls that are perpendicular to the SMA wire direction.  The length of wire 

, labeled adhL  in Figure 153, is measured under a microscope, and these 

walls make the measurements easier and more accurate.  A photograph of an adhesive drop 

SMA wire taken under a microscope is shown in Figure 153

 
:  Microscopic view of adhesive drop and SMA Figure 154:  Model of removable insert

Adhesive Testing Procedure and Matrix 

, “constant current” and “constant displacement”, were run on the setup described 

to determine the strength of the adhesive.  In both tests different adhesives were used to hold 

either wire heating current or end displacement, and therefore engineering 

was cycled.  These two tests required samples be prepared such that the SMA wire was 

eable length of adhesive that held the load while the wire was in tension.  A 

description of the procedure and experimental matrix for each test and sample preparation is give

1 mm 

 

holder provides an electrical and mechanical contact.  However, when an adhesive is being tested 

slack is left between the adhesive drop and the mechanical clamp on the insert holder to ensure that 

 
up of Clamps and Adhesive  

up view of the clamps, adhesive, 

.  The trough in the removable inserts causes the adhesive to 

irection.  The length of wire 

measured under a microscope, and these 

of an adhesive drop 

153.  

 
:  Model of removable insert 

were run on the setup described 

different adhesives were used to hold 

either wire heating current or end displacement, and therefore engineering 

was cycled.  These two tests required samples be prepared such that the SMA wire was 

held the load while the wire was in tension.  A 

description of the procedure and experimental matrix for each test and sample preparation is given in 
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A.3.1 Sample Preparation for Adhesive Tests 

The test samples were prepared by a repeatable procedure so that results could be averaged and 

compared statistically.  One of the goals of this study is to characterize the effect of treating the SMA 

wires with acetone compared to using a new, untreated wire, so the acetone treatment procedure is 

included.  Also, the preparation method for Loctite SuperGlue was different from the other epoxies 

because SuperGlue has very low viscosity prior to cure. 

Each SMA wire was glued to a removable insert, pictured in Figure 154.  The removable inserts were 

printed using a Visijet 3D printer.  The prototyped objects have a waxy film residue from the printing 

process that greatly reduced the ability of adhesives to bond to the inserts.  Soaking the 3D printed 

parts in mineral oil for about 1 minute, then acetone for another minute, removed much of this film 

and greatly improved the bond between the prototyping material and the adhesives.  This ensures that 

the bond fails at the interface between the adhesive and the SMA wire rather than the interface 

between the adhesive and the removable insert. 

For each sample tested, a 40 mm length of SMA wire was cut.  If no washing procedure was 

prescribed for a given sample, the sample was cut from a new role of SMA wire and handled with 

bare hands.  For the washed samples, the following steps, shown in Figure 155, were taken: 

1) Wear latex gloves at all times while handling the SMA wire. 

2) Soak a piece of lens paper with acetone and wipe all sides of the SMA wire several times. 

3) Use a clean, dry piece of lens paper to wipe all sides of the SMA wire.   

4) Place the prepared wires in a clean area on top of a piece of lens paper to ensure that no 

contamination occurs. 

 
Figure 155:  Materials used when cleaning residue from a SMA wire 

The adhesives tested, listed in Table 14, represent both common adhesives and specialty adhesives.  

Nanotool is a UV-cure resin with embedded ceramic particles that give it thermally insulating 

properties.  JB Weld is a common all-purpose epoxy for a wide range of materials, including metals 

and plastics.  Loctite SuperGlue is a fast-curing contact adhesive.  E40-HT and 1-min Epoxy are 
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Loctite brand adhesives that claim temperature-resistance and fast-curing, respectively.  ResinLabs 

SEC1233 is a two-part epoxy that has dissolved silver particles that make it conductive.  All of the 

adhesives used can be cured at room temperature, but Nanotool requires UV light. 

Table 14: Adhesives tested 

Adhesive Name Description 

1 Nanotool UV cure stereolythography material 

2 JB Weld All-purpose 2-part epoxy 

3 Loctite SuperGlue Single-part fast-curing contact adhesive 

4 Loctite E40-HT High temperature 2-part epoxy 

5 Loctite 1-min Epoxy Quick setting 2-part epoxy 

6 ResinLabs SEC1233 Conductive 2-part epoxy 

 

All of the adhesives aside from Loctite SuperGlue have viscosity roughly comparable to honey.  On 

the small scale, JB Weld has a fine-grain, sandy appearance, and ResinLabs SEC1233 conductive 

epoxy has the consistency of paste, not forming into droplets.  However, all of these viscous adhesives 

can be handled in the following way: 

1. Place the SMA wire lengthwise in a clean trough on one of the faces of the removable insert 

and tape it in place with masking tape such that about 15 mm hangs off each side of the block. 

2. Mix the prescribed epoxy as directed by the datasheet. 

3. Place the block under a stereoscope with about 25x zoom. 

4. Place a single drop of the mixed adhesive on the end of a needle transfer it into the trough 

(above the SMA wire).  The droplet should be less than 2 mm across for all adhesives except 

for Nanotool.  When Nanotool is used, 2-4 mm of the wire should be exposed to adhesive. 

5. Lift the SMA wire out of the trough then push it back down to ensure that the adhesive 

droplet surrounds all sides of the wire. 

6. Place the sample in a safe, clean place to cure according to datasheet instructions. 

7. Measure the length of the SMA wire that is exposed to the adhesive using a reticle in the 

stereoscope eyepiece (0.002”/divide was used for these experiments). 

The low-viscosity SuperGlue must be handled slightly differently.  SuperGlue samples are not 

attached in the trough.  Rather, the SMA wire is taped down on a face of the removable insert, and a 

droplet of glue is placed next to the wire.  Then a needle is used to drag a small line of glue over the 

wire, as shown in Figure 156.  Care is given to ensure that all sides of the wire are exposed to the 

adhesive.  



 

Figure 156:  Photo of Removable Insert Prepared with 

A.3.2 Experiment Matrix

The matrix used for testing adhesive strength as a function of different parameters 

15.  The test for each set of parameters in 

the measured length of the SMA wire that was exposed to the adhesive and the failure force

recorded for each of the repetitions.  The SMA wire surface

adhesives 1-4.  The adhesives and parameter key are listed in 

Table 15:  Experiment Parameter Mat

Adhesive Test 

1-6 Constant displacement

1-6 Constant current 

A.3.3 Procedure for Constant Displacement Tests 

In the constant displacement test

simulate a thermal-mechanical loading scenario that would be expected in a typical actuation 

application.  The wire was first heated under zero stress to clear the mater

strained to either 2, 3, or 4%, as shown in 

was ramped to a prescribed maximum 

maximum for 10 s before being ramped down

The pre-straining steps are labeled in 

with current shown in red, strain shown in black

blue.  The amplitude of the current on the first cycle was 150 mA, and the amplitude was increased by 

30 mA per cycle until the adhesive 

recorded. 

1) Heat the wire with 250 mA under 0 stress (note Dynalloy lists the input current for 

transformation of a 100 

2) Pull and detect the wire using the load cell and record the wire austenitic reference length, 

0AL . 

3) Turn off the current and give the wire 5 s to cool.

4) Pull the wire to the desired pre

5) Relax the wire by extending the linear actuator 

Photo of Removable Insert Prepared with SuperGlue Sample 

Experiment Matrix 

adhesive strength as a function of different parameters 

The test for each set of parameters in Table 15 was repeated ten times for each adhesive.  Both 

the measured length of the SMA wire that was exposed to the adhesive and the failure force

repetitions.  The SMA wire surface preparation field

.  The adhesives and parameter key are listed in Table 15. 

:  Experiment Parameter Matrix 

Preparation Pre-strain (%) 

Constant displacement Washed or Unwashed Fixed 2, 3, or 4 

Washed or Unwashed 0 

Procedure for Constant Displacement Tests  

displacement test the length of the wire was fixed and the input current was cycled to 

mechanical loading scenario that would be expected in a typical actuation 

on.  The wire was first heated under zero stress to clear the mater

strained to either 2, 3, or 4%, as shown in Table 15.  During each thermal-loading cycle

was ramped to a prescribed maximum at a rate of 15 mA/s.  Then the current was maintained a

r 10 s before being ramped down.  The steps used to run this test are enumerated below.  

straining steps are labeled in Figure 157 and the experiment steps are labeled in 

strain shown in black, and the measured stress in a clamped SMA wire in 

.  The amplitude of the current on the first cycle was 150 mA, and the amplitude was increased by 

30 mA per cycle until the adhesive bond failed.  The tensile force and input current at failure was 

Heat the wire with 250 mA under 0 stress (note Dynalloy lists the input current for 

transformation of a 100 µm wire in 1 s as 200 mA [1]). 

ct the wire using the load cell and record the wire austenitic reference length, 

Turn off the current and give the wire 5 s to cool. 

Pull the wire to the desired pre-strain value. 

Relax the wire by extending the linear actuator until 0 stress is measured.
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adhesive strength as a function of different parameters is shown in Table 

times for each adhesive.  Both 

the measured length of the SMA wire that was exposed to the adhesive and the failure force were 

preparation field was only varied on 

Current (mA) 

Cycle 

Fixed 0, 150, 200, or 250 

of the wire was fixed and the input current was cycled to 

mechanical loading scenario that would be expected in a typical actuation 

on.  The wire was first heated under zero stress to clear the material memory, then pre-

loading cycle, the current 

s.  Then the current was maintained at the 

The steps used to run this test are enumerated below.  

and the experiment steps are labeled in Figure 158,  

, and the measured stress in a clamped SMA wire in 

.  The amplitude of the current on the first cycle was 150 mA, and the amplitude was increased by 

bond failed.  The tensile force and input current at failure was 

Heat the wire with 250 mA under 0 stress (note Dynalloy lists the input current for 

ct the wire using the load cell and record the wire austenitic reference length, 

until 0 stress is measured. 
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6) Apply the adhesive to the wire, which is under 0 stress adjacent to the removable insert. 

7) Pull the wire again until the wire is detected by the load cell. 

8) Cycle the input current with a trapezoidal step function of increasing amplitude, as shown in 

Figure 158. 

 
Figure 157:  Constant Current Pre-straining Inputs and 
Wire Stress 

 
Figure 158:  Constant Current Experiment Inputs and 
Measured Wire Stress

A.3.4 Procedure for Constant Current Pullout Tests 

In the constant current tests, the current was maintained at a fixed value while the strain was cycled to 

simulate a mechanical loading scenario.  Once again, wire memory was cleared by heating the wire 

under 0 stress, then the reference strain was determined before the experiment cycles were run, as 

shown in Figure 159.  In the experiment cycles, the wire end displacement was controlled so that the 

average wire strain would follow a trapezoid wave shown in with a trapezoid of increasing amplitude 

until failure.  The trapezoid wave ramps up at a rate of 1%/s and the peak amplitude increases by 

0.5% per cycle, as shown in Figure 160.  The steps are once again enumerated below and labeled in 

the appropriate positions on Figure 159 and Figure 160. 

1) Heat wire with 250 mA under 0 stress. 

2) Pull and detect the wire using the load cell and record the austenitic reference length, 0AL . 

3) Turn off the current and give the wire 5 s to cool. 

4) Attach the adhesive under 0 stress. 

5) Turn on the current to the fixed value prescribed in Table 15. 

6) Once again detect the wire at 0AL . 

7) Cycle the input strain with the waveform shown in Figure 160. 
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Figure 159:  Test 2 pre-straining inputs and wire stress 

 
Figure 160:  Test 2 inputs and measured wire stress 

For each adhesive, 10 samples are prepared and tested.  The force at failure is recorded and used to 

calculate the shear stress between the SMA wire and the adhesive, adhτ , that is calculated based on the 

force measured in the load cell via equation (1), 

 sma
adh

sma adh

F

d L
τ

π
= , (1) 

where smaF   is the tensile force in the SMA wire, adhL  is the measured length of the SMA wire that is 

exposed to adhesive, and smad  is the diameter of the SMA wire (100 µm).   

A.4 Results and Discussion 

A.4.1 Constant Displacement Test Time Histories 

Figure 161 shows a typical time-history plot of the input signals and SMA wire stress for Loctite 

SuperGlue, E40-HT, and 1-Min Epoxy, as well as JB Weld and a steel clamp for the test run with a 

pre-strain of 3%.  Transient responses for Nanotool and SEC1233 are not shown because they failed 

almost immediately.  The top panel shows the inputs while the bottom panel shows the SMA wire 

stress, as calculated from the measured tensile force.  The first 50 s show the inputs and measurements 

during the pre-heating and pre-straining procedure, while the remainder of the time shows the 

response of the SMA wire in series with each different adhesive.  Note that the bottom plot shows 

wire stress, not the shear stress between the wire and the adhesive.  Shear stress is dependent on the 

length of wire that is exposed to adhesive, as shown in equation (1), so samples exposed to a longer 

column of adhesive can often survive for many cycles without any sign of weakening.  Since the goal 

of this work was to quantify failure shear stress, the exposed lengths were kept to a minimum to 

ensure the bond failed before the wire itself yielded under stress. 

Figure 162 shows a close-up image of the time histories.  First, note from Figure 162 that the wire 

does not see as much stress at the same strain in the adhesive tests as in the clamped test.  This is 

because there was compliance in the removable insert of the test setup.  In terms of the adhesive 

failure modes, the 1-Min Epoxy, SuperGlue, and JB Weld fail instantly, as indicated by the immediate 
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sharp drop in stress.  The wire attached with Loctite E40-HT first experiences a slow reduction in 

stress (around 470 s) before the adhesive finally fails and stress drops considerably.  This trend was 

observation in many of the tests, suggesting that the temperature-resistant epoxy has a tendency to 

soften before losing its grip.   

 
Figure 161:  Transient Behavior of Constant Displacement 
Test 

 
Figure 162:  Close-up of Transient Behavior 

Although it is possible to draw conclusions on failure modes from Figure 161 and Figure 162, it is not 

clear from just this one 3% pre-strain plot whether the failure is purely a result of the tension in the 

wire or whether the heat generated by the input current also plays a role.  This information comes 

from compiling the results of tests with many different pre-strains as well as the results of the constant 

current tests, where the heating current is held at various fixed levels while the wire is strained. 

A.4.2 Failure Shear Stress Results 

Figure 163 through Figure 168 show the compiled failure shear stress for each adhesive.  The failure 

points for the constant displacement tests (Test 1) vary in both current and stress, so an average 

cannot be taken and each point on the plots represents a single test.  However, in many cases, the 

adhesive failed while the current was on its plateau, indicating that either the adhesive weakens 

slowly under a given set of harsh conditions before finally failing, or that the temperature of the wire-

adhesive junction does not equilibrate until an input power is maintained for several seconds.  The 

samples that were washed with acetone and handled with latex gloves are shown in red, and the 

unwashed samples are shown in blue.  The square points from the constant current test (Test 2) 

represent the average failure shear stress for the 10 samples tested at each fixed current value.  The 

error bars are two standard-deviations, representing a 95% confidence interval for normally 

distributed data.  In general, the points from Test 1 fall within the confidence intervals from Test 2.  

However, the Test 1 samples that fall outside of the Test 2 confidence interval generally have a higher 

shear stress or current at failure.  This is most likely due to a lag in the thermal equilibrium problem.  

The plots show applied current vs. shear stress, but it is actually the rise in temperature that is 

suspected to cause a weakening of the adhesive.  Since temperature will inevitably lag input current 

slightly, it is expected that the Test 1 points will be skewed to the right, even though tests were 

intentionally run slowly so as to minimize this effect. 
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The data for both JB Weld and Loctite E40-HT epoxies plotted in Figure 164 and Figure 166, 

respectively, clearly show that treating the wire with an acetone wash actually reduced shear strain at 

failure by 10-70%.  In other words, the extra steps taken to clean the wire samples led to a weakening 

of bond strength.  This phenomenon was also observed by Jonnalagadda et. al. [77].  In general, oxide 

or other residues that may be left on the SMA wire surface increases bond strength; however, the 

acetone wash likely removes many of these materials.  Also, if any residue of acetone remains on the 

wire surface, the curing of the epoxy would be effected, possibly resulting in a loss of bond strength. 

 
Figure 163: Nanotool UV-Cured Ceramic Resin 

 
Figure 164:  JB Weld Epoxy

 
Figure 165:  Loctite Superglue 

 
Figure 166: Loctite E40-HT High Temperature Epoxy 
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Figure 167:  Loctite 1-Min Epoxy 

 
Figure 168:  SEC-1233 Conductive Epoxy 

The average failure stresses and currents from Test 2 for all of the adhesives are plotted together in 

Figure 169.  The Loctite E40-HT shows the highest failure shear stress for heating currents below 200 

mA; however, it required 5 days to fully cure, as prescribed by the product datasheet.  The Loctite 

SuperGlue and JB Weld both behave similarly and show better bonding strength than the temperature 

resistant E40-HT at 350 mA.  The JB Weld takes 24 hours to reach full cure, and the SuperGlue sets 

immediately on contact, but was given 30 minutes so that the areas that do not contact either the 

sample holder block or the SMA wire can harden.  The conductive epoxy fails instantly when any 

heating current is applied, and the Nanotool and 1-Min Epoxy register very poor bonding at all 

temperatures. 

 
Figure 169:  Comparison of Average Shear Stress at Failure of Unwashed, Test 2 Adhesive Samples 

Figure 169 also clearly shows that the failure shear stress decreases as input current increases for all 

of the adhesives.  This is entirely expected, as the input current raises wire temperature, in some cases 

above austenite finish temperature of the SMA wire (90 C).  Product datasheets for all of the 

adhesives tested suggest it is typical for bond strength to weaken at higher temperatures.  Also, the 
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adhesives themselves are generally insulating, so the temperature at the adhesive bond interface is 

likely substantially higher than in the center of the wire because the coating of insulating adhesive 

prevents heat from being transferred through the wire’s surface and into the surrounding air.  

A.5 Adhesive Test Conclusions 

The adhesive experiments successfully accomplished the stated objectives of quantifying the failure 

shear stress at the interface between various adhesives and SMA wires as a function of input current.  

Results show Loctite E40-HT, Loctite SuperGlue, and JB Weld hold relatively well.  The epoxy that 

was designed for high temperatures, Loctite E40-HT, indeed has the highest bond strength at current 

inputs up to 250 mA.  For this epoxy, when no acetone wash is used the bond can be expected to hold 

10 MPa shear stress when the wire is heated with the recommended actuation current of 200 mA.  For 

the case of a 2 mm exposure of the 100 µm diameter wire to E40-HT adhesive, a 10 MPa shear stress 

will correlate to a 6.3 N tensile force and 800 MPa of wire stress.  Since 800 MPa is approaching wire 

yield stress, and 200 mA will raise wire temperature to the austenite finish temperature, a 2 mm length 

of Loctite E40-HT can be expected to work for typical applications.  Loctite SuperGlue offers only a 

slightly weaker bond than the E40-HT epoxy, and it cures much faster.  However, the caustic nature 

of SuperGlue should be considered before it is applied to certain materials. 

Also, results found that the extra effort associated with washing SMA wires with acetone actually has 

a negative effect on bond strength of epoxies.  Although contamination of the wire surface by oils 

from human hands or dirt could be expected to weaken bond strength, washing with acetone is not 

recommended as a remedy.  Clean, new wires should be used whenever possible.  It is also likely that 

roughening the surface with sand paper or chemical etching would improve bonding strength, but 

these effects were not systematically tested. 

Results show that JB Weld does a fair job at all temperatures, but in general it offers no advantage 

over Loctite E40-HT.  Nanotool does a poor job holding in shear; however, it still offers advantages 

as a fast-curing thermal insulator.  Loctite 1-Minute Epoxy was difficult to work with because of how 

quickly it cured, and it did not hold a strong bond.  It should not be selected over the adhesives 

discussed above.  The conductive epoxy, ResinLabs SEC1233, was also poor as an adhesive, but its 

conductive properties were observed to be excellent.  It can be used in applications as a cold solder to 

make electrical connections, but it should not be relied on to hold substantial shear strain, particularly 

at high temperatures.  Also, the electrical contact resistance does increases when the adhesive bond is 

broken by exposure to high temperatures. 

The information learned during these tests can be used by designers to determine how much of what 

kind of adhesive can be used to make an adequate mechanical bond.  Different adhesives can be used 

in many applications as an elegant means of embedding SMA-actuator wires within a structure.  

However, it should also be noted that adhesives hold very little shear stress under extremely high 

temperatures.  Also, once an adhesive bond is broken, it cannot be easily repaired.  Along the same 

lines, once an adhesive cured, it cannot be uncured, moved and re-cured.  Therefore, if slack develops 
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in the SMA wire, it cannot be removed.  As a result of these drawbacks, adhesives should be avoided 

in applications where extreme over-heating or SMA relaxation is possible. 
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B. Appendix B:  The Effects of Thermal 

Boundary Conditions on SMA Actuator 

Wires 

B.1 Introduction 

B.1.1 Motivation 

Shape memory alloy (SMA) wires offer a unique solution to many applications requiring a small, 

embedded actuator or sensor with high power density.  However, the behavior of SMA wires is often 

misunderstood, leading many to believe they are unpredictable and unsuitable for practical 

implementation.  Oftentimes this is the result of an SMA wire exhibiting coupled thermo-mechanical 

behavior, whether it is embedded with an application or clamped into a controlled tensile test setup.   

SMA wires contract and produce useable force when heated, typically by Joule heating.  However, in 

most application settings the temperature of the wire cannot be directly controlled; only the power, 

voltage, or current input can.  The wire temperature, which is responsible for its state of contraction 

and mechanical force output, depends not only on the controlled heat input, but also on the heat losses 

that occur through convection with the environment or conduction into the structure at the attachment 

points.  In the case of a small SMA wire, the surface area through which convective cooling can occur 

is substantial, while the thermal mass that resists the conductive pull of large heat sinks at the 

connection points is extremely small.  A thorough analysis of these coupled thermo-mechanical 

considerations adds to the understanding of SMA materials making them more attractive for new 

applications, even those requiring precise position or force control.  

B.1.2 Background 

Substantial work has already been done to model the hysteretic stress-strain behavior of an SMA wire 

for a variety of applications.  Researchers such as Muller, Smith, Boyd, Lagoudas, and Seelecke have 

developed models based on the free energy function of the material [41]-[51].  These models help 

motivate the physical mechanisms that instigate the change in material properties that make SMA’s so 

attractive.  They also give engineers a means to optimize designs for real-world applications by 

predicting the behavior of a segment of material [4].  Implementing a SMA model into finite element 

software gives a designer the opportunity to study the effects of inhomogeneities along the length of 

SMA material as well as the interaction between the SMA and another structural element [62]-[64]. 

B.1.3 Objective 

The objective of this study is to conduct simulated and experimental tensile tests on a Dynalloy 

Flexinol SMA actuator wire [1].  In the tensile tests, the power input to the wire and the displacement 

of the wire endpoint are controlled; then the force generated by the wire is measured.  This results in 

an experimental measurement of the stress-strain hysteresis of an SMA wire at several different 
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temperatures.  Since the stress and strain are only measured at the end points of the wire, the 

experiments represent the average of the local behavior that may vary along the length of the wire.   

The tensile test is then simulated using COMSOL Multiphysics simulation software (COMSOL, Inc., 

Burlington, MA) that considers not only the SMA behavior, but also the thermal convection between 

the wire and environment and the conduction between the wire and clamps with a large thermal mass.  

This model allows for predictions to be made about inhomogeneities along the length of the wire and 

for the effects of such an inhomogeneities to be studied.  For example, a model simulates the effects 

that conductive heat loss has on the behavior of the SMA wires of different lengths.  For different 

length wires, the behavior at the thermal boundary contributes to the average behavior over the length 

of the wire with varying magnitude.  Therefore, conducting simulations and experiments on different 

length wires validates the existence of many of these effects.  The resistance across the wire is also 

measured and compared to modeled predictions.   

B.2 Numerical Simulation 

A numerical simulation is used to model the coupled thermo-mechanical behavior of an SMA wire 

during a tensile test.  The thermal and mechanical problems are derived from local internal energy and 

momentum balance laws.  Since the temperature is not constant along the length of the SMA wire, the 

balance laws must be solved locally.  Then bulk wire behavior is determined by integrating over the 

spatial domain.  The constitutive equations governing the non-linear, hysteretic stress-strain behavior 

of SMA wire come from an implementation of the SMA model proposed by Muller, Achenbach, and 

Seelecke, [28].  The balance laws and SMA model equations are solved with COMSOL Multiphysics 

finite element software.  

B.2.1 Balance Laws 

The momentum balance law dictates the state of stress in the wire, and the internal energy balance law 

can be used to predict the temperature field.  The homogeneity of the temperature field depends on the 

boundary condition prescribed during the solution of the internal energy equation.  In order to capture 

the coupled thermo-mechanical behavior of an SMA wire during a tensile test, the momentum and 

internal energy equations must be solved simultaneously with appropriate boundary conditions.  

Implementation into COMSOL requires that the governing equations be solved locally within the 

FEA structure, so the balance laws are derived as partial differential equations.    

Momentum Balance 

The momentum balance is used to define the mechanical stress state in the SMA wire.  The 

momentum balance in local form is 

 
( ) ( )i i j ij iv v v f

t x
ρ ρ σ ρ

∂ ∂
+ − =

∂ ∂ , (1) 
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where ρ  is density, iv  and jv  are velocity components, ijσ is the stress tensor, and if  is the sum of 

body forces. 

Since loading is slow and the inertia of a small wire is negligibly small, the analysis is assumed to be 

quasi-static.  Therefore, the velocity terms are eliminated from the momentum balance, which yields  

 
ij

if
x

σ
ρ

∂
=

∂
. (2) 

For the case of a 1D wire, only the axial load is considered and body forces such as gravity are 

neglected.  Therefore the momentum balance finally simplifies to  
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∂
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Equation (3) indicates that the tensile forces at all points along the wire are equal since there are no 

stress gradients. 

Internal Energy Balance 

The internal energy balance law governs the heating and cooling of a simulated SMA wire due to 

physical processes such as thermal convection, conduction, and Joule heating. The internal energy 

balance in local form is  

 ( ) ( ) i
j j ij
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where u  is the internal energy, 
jq  is the heat flux, and r  is an energy source term.   

Given the quasi-static simplification and inserting constitutive relationships, the internal energy 

balance reduces to equation (5). 
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 (5) 

In equation (5) the first term is derived from the relation for internal energy, where Vc  is the specific 

heat of the Nitinol wire.  The second term describes the heat flux along the length of the wire with 

conduction coefficient κ .  On the right hand side, the convective cooling from the surface of the wire 

is inserted as a negative source term, where h  is the convection coefficient in still air, R  is the radius 

of the wire, and extT  is the ambient temperature.  
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The contribution due to latent heating appears in the second term on the right hand side, where H  is 

the latent heat and x±  are the phase fractions, introduced in the SMA model constitutive equations in 

Section B.2.2.   

Finally, the increase in internal energy due to Joule heating is derived as another source term where j  

is the power input per unit length.   

B.2.2 SMA Model 

The model used to simulate the hysteretic thermo-mechanical behavior of an SMA is based on the 

Gibbs free energy landscape and the probability of a constitutive grain of SMA material switching 

phase from the low temperature martensite phase to the high temperature austenite phase.  The Gibbs 

free energy landscape is defined by the stress, strain, and temperature at each point in the wire.  The 

derivation of the model is described in more detail in [28],[61]. 

In this implementation, the SMA model consists of 3 first order partial differential equations that are 

solved locally using COMSOL FEA software.  The first two equations describe the change in the 

fraction of the wire in the martensite phases.  The third is the internal energy balance in equation (5) 

that models the wire temperature.  In this simulation the wire is assumed to be 1D, with the phase 

fractions and temperature varying only along the wire length x .  The evolution of the martensite plus 

phase fraction is 
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and the martensite minus phase fraction is  
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where x+ is the phase fraction of tension-induced martensite (martensite plus or M+), x− is the phase 

fraction of compression-induced martensite (martensite minus or M-). The austenitic phase fraction 
Ax  comes from the conservation relation 

 ( ) ( ) ( ), 1 , ,Ax x t x x t x x t+ −= − − . (8) 

The probabilities of a constitutive grain of SMA material transforming from one phase to another are 

described by the pαβ  terms, where 
Ap+

 represents the probability of a grain transforming from the 

martensite plus phase to the austenite phase, and so-forth.  Phase transition probabilities are described 

in detail in [61].  Stress and strain in the SMA are then related through  
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The elastic moduli of austenite and martensite are  ��  and � , respectively. The strain value Tε
represents the maximum recoverable strain of the SMA material.  Note in equation (9) that stress 

( ),x tσ  is written as a function of both space and time; however, the momentum balance in equation 

(3) inhibits stress gradients, so stress is in fact uniform over the length of the wire. 

Resistance Model 

The resistance model is an extension of the model proposed by Furst and Seelecke [67].  The local 

resistivity of the material is the sum of the phase-dependent resistivities weighted by the local phase 

fractions,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,A

SMA A M Mx t T x x t T x x t T x x t Tρ ρ ρ ρ+ − = + +  . (10) 

The resistivity of each phase is also temperature-dependent. The temperature dependence of the 

austenite resistivity value is given by 

 ( ) ( )( )0 1 ,A

A AT T x tρ ρ α= + ∆ , (11) 

and the martensite resistivity is given by 

 ( ) ( )( )0 1 ,M

M MT T x tρ ρ α= + ∆ . (12) 

Note that temperature ( ),T x t  is not homogenous over the length of the wire when an isothermal 

boundary condition is imposed on the internal energy balance. 

Additionally, the resistance model presented in [67] is extended by accounting for the elastic 

deformation of the wire, since elastic strain causes the wire to stretch and the cross-sectional area to 

be reduced.  The elastic component of the strain is resolved by removing the term for strain change 

due to phase transformation Tε  from equation (9) and solving for ( ),x tε , which gives 

 ( ) ( ) ( ) ( ) ( ), , ,
, ,

A

e

m A

x x t x x t x x t
x t x t

E E
ε σ

+ − +
= +  

 
. (13) 

Elastic strain alters the differential length of the SMA via  

 ( ) ( )( ) 0, 1 ,edx x t x t dxε= + , (14) 
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and the SMA effective radius via 

 
( ) ( )( )0, 1 ,eR x t R x tνε= − , (15) 

where ν  is the Poisson’s ratio and is taken as 0.3 [67].  Note that for the mechanical problem, the 

wire is assumed to be 1-D with uniform cross-sectional area – the changes to the radius due to elastic 

strain have a small impact on stress and are therefore ignored in this study.  Nevertheless, future 

implementations of the model will also solve for the inhomogeneous stress field that results from 

radius change. 

However, for the resistance model the change in radius is significant and easy to calculate in a post-

processing step, so it is included.  In general, the total resistance of a wire can be calculated as  

 
L

A

ρ
Ω = . (16) 

Therefore, the differential contribution to resistance is  

 ( )
( ) ( )( )

( )( )( )
0

2

0

, , 1 ,
, ,

1 ,

SMA e

e

x t T x t dx
d x t T

R x t

ρ ε

π νε

+
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−
. (17) 

Then total resistance of the SMA wire is the differential contributions integrated over the reference 

length 0L  

 ( )
( ) ( )( )

( )( )( )
0

02
0 0

, , 1 ,
,

1 ,

L

SMA e

e

x t T x t
t T dx

R x t

ρ ε

π νε

+
Ω =

−
∫ , (18) 

where SMAρ  and eε  are space and time dependent, as shown in equations (10) and (13), respectively.  

The nominal and temperature dependent resistivity’s of each phase are shown in Table 16 

Table 16:  SMA Wire Resistance Model Parameters 

Parameter Value Unit Description 

��� 8.9e-7 Ωm Resistivity of austenite phase 

��2 10.4e-7 Ωm Resistivity of martensite phase 

3� 0.0002  K-1 Temperature dependence of austenite phase 

32 0.0003  K-1 Temperature dependence of martensite phase 
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SMA Modeling Parameters 

The SMA model parameters need to be set such that the model closely replicates the behavior of the 

SMA wire without causing numerical instability.  Table 17 shows the material properties and model 

parameters that can be independently set to match published or experimental data.  The parameters xτ  

and dV  affect the rate at which a constitutive element changes phase.  All of the parameters in Table 

17 and Table 18 are used to calculate the probability of a constitutive grain of material changing 

phase.  These relations are omitted here but derived rigorously in [28],[61].  

Table 17:  SMA Model Material Parameters 

Parameter Value Unit Description 

EA 71.1e9 Pa Modulus of austenite 

EM 30.9e9 Pa Modulus of martensite 

εT 0.042  Maximum recoverable strain 

Vd 5e-23 m3 Volume element size 

τx 5e-2 s Scale factor on transition probability 

ρ 6.4e3 kg/ m3 Density of Nitinol 

H 24e3 J/kg Latent heat of phase transformation 

h 90 W/ m2/K Heat convection coefficient 

κ 40 W/m/K Heat conduction coefficient 

cv 500 J/kg/K Specific heat 

 

The parameters in Table 18 are inter-related, and they need to be set such that they do not violate a 

physically realizable material state.  Figure 61 shows the stress-strain hysteresis of an SMA wire at an 

elevated temperature, along with several modeling parameters.   

 
Fig. 1  Diagram of Model Parameters on Stress-Strain Hysteresis Loop 

The transition stress from austenite to martensite Aσ  is defined in the SMA model by 

 ( )( ),A L T LT x t Tσ σ σ= + ∆ −  (19) 
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where AsT  is the temperature at which austenite first becomes stable under zero stress and can be 

found in the product specifications.  In equation (19), Tσ∆  describes how much the hysteresis loop in 

a stress-strain diagram will rise when the temperature of the material increases and should be set first 

based on experimental data showing the stress-strain behavior at two or more temperatures.  The 

parameter σ∆  can be found by looking at the width any stress-strain hysteresis plot. 

Table 18:  Interrelated SMA Model Parameters 

Parameter Value Unit Description 

σL 100e6 Pa Austenitic transformation stress 

∆σT 4e6 Pa Stress-strain plateau temperature dependence 

TAs 343 K Austenitic start temperature 

TL 311 K Austenitic conversion temperature 

∆σ 225e6 Pa Width of stress-strain hysteresis 

B.2.3 COMSOL Implementation 

The 1D local balance laws described in equations (3) and (5) along with the phase fraction evolution 

equations (6) and (7) are fit into the general form PDE, equation (20).  COMSOL then uses the finite 

elements method to solve the coupled equations simultaneously at each point along the length of the 

wire. 

 
( ) ( )2

2

, ,u x t u x t
F

t t

∂ ∂
+ +∇⋅ =

∂ ∂a a
e d Γ

� �
�

 (20) 

ODE Solver Coefficients 

The terms in equation (20) are as follows: 

 ( ) ( ) ( ) ( ) ( ), , , , ,
T

u x t x t x x t x x t T x tδ + − =  
�

 (21) 

 [ ]0=ae  (22) 
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Boundary Conditions 

Appropriate initial and boundary conditions are needed to solve equation (20).  The phase fraction 

evolution equations for the SMA model do not have a spatial derivative term, so they only require 

initial conditions. 

The momentum balance equation requires boundary conditions on both ends of the wire.  The 

displacement is 0δ = on the left boundary at all times.  To simulate a tensile test experiment, the 

right boundary condition can either be set as force controlled or displacement controlled depending on 

the stage of the experiment being simulated.    

B.3 Experimental Tensile Test Setup and Procedure 

Tensile tests were run in a carefully controlled manner to experimentally characterize the force, 

displacement, and resistance behavior of an SMA wire.  Since the ultimate goal of the simulations is 

to capture the intricacies of the wire behavior that result from the treatment of the wire during the 

tensile tests, it is important to discuss the experimental procedure before defining the boundary and 

initial conditions that are set at different stages of the simulation. 

B.3.1 Tensile Test Setup 

The experimental setup used for the tensile tests is shown in Fig. 2 and Fig. 3.  The force in the SMA 

wire is measured using a strain-gage-based load cell (Futek Model LSB200) with a 9 N load limit.  A 

ball screw linear actuator (Zaber Model TNA08A25) is used to pull on the wire and report the 

position of the right end of the wire.  A 100 µm diameter Flexinol wire from Dynalloy [1] was used in 

all experiments.  The clamps are machined from steel.  Both of the clamps have a lead wire junction 

near the back of the clamp, and the mechanical load is carried by the front of the clamp, as noted in 

Fig. 2.  Although the lead wire connects near the back of the clamp, the steel clamp itself is 

conductive so the electrical connection to the SMA wire is actually made at the same location as the 

mechanical connection.   
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Fig. 2  Diagram of Tensile Test Experiment Setup

Fig. 3  Photograph of Tensile Test Setup 

Fig. 4 shows a close-up photo of the SMA wire at its junction with the steel clamp.  Note that three 

parallel lines have been etched into the clamp.  These lines are used to ens

enters and exits the clamping surface normal to its face.  This will reduce unwanted torsion or bending 

stresses.  Fig. 4 also shows how the lead wire is used to create a fulcrum at the back of the clamping 

surface.  This helps to ensure that there is a firm mechanical junction between the clamp and the SMA 

wire right at the front of the clamp.  It also ensures that there is enough pressure on the lead and SMA 

wires to reduce contact resistance.   

Fig. 4  Close-up Photo of SMA Wire in Steel Clamp

B.3.2 PWM-Based Power Controller

The electrical power used to heat the wire through Joule heating is 

power controller.  The power controller ensures that the total power p

Diagram of Tensile Test Experiment Setup 

up photo of the SMA wire at its junction with the steel clamp.  Note that three 

parallel lines have been etched into the clamp.  These lines are used to ensure that the SMA wire 

enters and exits the clamping surface normal to its face.  This will reduce unwanted torsion or bending 

also shows how the lead wire is used to create a fulcrum at the back of the clamping 

urface.  This helps to ensure that there is a firm mechanical junction between the clamp and the SMA 

wire right at the front of the clamp.  It also ensures that there is enough pressure on the lead and SMA 

 

 
up Photo of SMA Wire in Steel Clamp 

Based Power Controller 

The electrical power used to heat the wire through Joule heating is generated using

power controller.  The power controller ensures that the total power put into the wire remains 

 

 

up photo of the SMA wire at its junction with the steel clamp.  Note that three 

ure that the SMA wire 

enters and exits the clamping surface normal to its face.  This will reduce unwanted torsion or bending 

also shows how the lead wire is used to create a fulcrum at the back of the clamping 

urface.  This helps to ensure that there is a firm mechanical junction between the clamp and the SMA 

wire right at the front of the clamp.  It also ensures that there is enough pressure on the lead and SMA 

generated using a PWM-based 

ut into the wire remains 
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constant, even as the resistance of the SMA wire changes during a tensile test.  It does this by pulsing 

a current wave with constant amplitude at high (~1kH) frequency, while adjusting the duty cycle to 

adjust the total power going into the wire every millisecond.  Since the heating and cooling process 

happens much more slowly than 1 ms, the temperature of the wire is not affected by the individual 

pulses, only the average of many pulses. 

At the same time as the current is pulsed, the peak voltage across the SMA wire is measured.  As the 

wire is strained during a tensile test its resistance changes, thus causing a voltage drop across the 

SMA wire to change.  This feedback measurement is used to update the duty cycle of the constant 

current pulse for the next cycle.  Since the increase in temperature is proportional to the power input, 

as was shown in equation (5), controlling power gives the best control over SMA temperature; a 

constant, continuous current source would cause more heating as the wire lengthens and its resistance 

increases, and a constant voltage input would have the opposite effect. 

When using a constant power controller to heat a variable length wire, it is important to consider the 

effects of the parasite or loop resistance that exists between the actual SMA wire and the analog 

inputs of the power supply.  The parasite resistance arises from the resistance of the lead wires and the 

contact resistance made at each electrical connection, especially the connection between the SMA and 

the clamp.  In reality, the supply is providing power to both the SMA and these components, shown in 

Fig. 5. 

 
Fig. 5  Flow of Power from FPGA-Controlled Supply through SMA Wire 

Parasite resistance was measured and compensated for in the power control algorithm.  More 

information on the power controller development, calibration, and testing is presented in [69]. 

B.3.3 Procedure 

The exact treatment of the SMA wire before and during a tensile test is especially important because 

of the hysteretic nature of SMA wires.  The treatment of the SMA wire is chronicled below: 

1. Pre-cycle the SMA wire. 

a. Cut a 200 mm length of SMA wire off the roll. 

b. Secure about L = 150 mm of the wire between the Steel clamps. 

c. Pull the wire to a stress of 300 MPa. 
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d. Relax the wire and heat with 0.006 W/mm under zero load for 10 s. 

e. Pull the wire with the actuator until a load is detected and record the wire length at 

L0A. 

f. Turn off the power and wait for 10 s. 

g. Pull the wire with the actuator until a load is detected and record the wire length at 

L0M. 

h. Return to L0A and then heat the wire with Pset = 0.0045 W/mm for 10 s. 

i. Pull the wire between 0 and 6% strain at a rate of ±0.6%/s.  Repeat for 10 cycles. 

2. Run the Tensile Test 

a. Using the L = 150 mm wire in the clamps after pre-cycling (above), repeat steps 1c-

1i.  

b. Repeat step 2a with Pset = 0.004 W/mm. 

c. Repeat step 2a with Pset = 0.003 W/mm. 

d. Repeat step 2a with Pset = 0 W/mm. 

e. Release the left clamp and choke in on the wire until about 100 mm of wire (L) is 

between the clamps. 

f. Secure the left clamp and repeat steps 2a-2d for wire length L  = 100 mm. 

g. Repeat steps 2e-2f with L = 75 mm. 

h. Repeat steps 2e-2f with L = 50 mm. 

i. Repeat steps 2e-2f with L = 25 mm. 

The two inputs, strain and power, are shown alongside the measured stress in the SMA wire for a 

representative tensile test in Fig. 6.  For the test shown, preheat power per millimeter of SMA wire 

was set to 0.006 W/ mm and the cycles were run at a constant input power of 0.0045 W/mm.  The 

strain value on the y axis of the top panel is actually the engineering strain, the measured 

displacement divided by L0A.  The power plot shown in the middle panel is the total power put out by 

the FPGA-controlled power supply.  The measured stress plot in the bottom panel shows the 300 MPa 

stress (11 s) that the wire is pulled to prior to each experiment as well as the small ~5 MPa readings 

that result when the wire is detected at L0A (34 s) and L0M (62 s).  The strain at L0M is almost 4% for 

this particular experiment, as indicated by the strain value at 62-65 seconds in the top panel.        
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Fig. 6  Strain Input, Power Input, and Stress Measurement for Typical Tensile Test 

B.4 Results 

B.4.1 Effect of the Thermal Boundary Condition on Temperature 

Distribution 

The temperature and phase fraction distributions across simulated 60 mm and 20 mm long SMA wires 

are shown in Fig. 7 and Fig. 8, respectively.  The dash-dot lines represent the temperature and phase 

fractions that result from a 0.006 W/mm input power after thermal equilibrium has been reached.  The 

dotted lines and the solid lines show the same for a 0.004 and 0.003 W/mm input power, respectively.  

The isothermal boundary condition ensures that the ends of the wire are kept at 295 K; however, Fig. 

7 shows that the middle of the wire reaches substantially higher temperatures, and the larger input 

power results in a higher temperature in the middle of the wire.   

Also, Fig. 7 and Fig. 8 show that the thermal inhomogeneity has an impact on the phase fractions near 

the boundaries.  This is because austenite is only stable at temperatures above AsT , which cannot 

occur near the boundaries.  When a high input power (0.006 W/mm) is used, the region that is above 

AsT   extends closer to the boundary, resulting in a thin, 2 mm long boundary layer where the material 

remains in the M+ phase.   Conversely, the lowest power input (0.003 W/mm) results in a larger, 6.5 

mm boundary layer.  When the wire cools under zero stress, the section of the wire that is in austenite 

will divide up evenly to create the M+/M- twin phase, while the wire within the boundary layer will 

remain M+.  Since the M+ phase has drastically different geometric properties from the M+/M- twin 

phase, the length of the boundary layer can have a significant impact on the bulk behavior and strain 

of a wire during a tensile test.       
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Fig. 7  Comparison of Temperature and Phase Fractions of a 60 mm Wire with 0.003, 0.004, and 0.006 W/mm input Power 

Fig. 8 shows the same comparison for a 20 mm wire.  The trends in Fig. 8 are the same, with the 

larger input power resulting in a greater temperature increase in the middle of the wire and a smaller 

boundary layer at the end.  It is interesting to note that the peak temperature in the middle of the 20 

mm wire is nearly the same as the 60 mm wire.  Also, the boundary layers on the 20 mm wire are 

about 2 and 6 mm for the 0.006 and 0.003 W/mm power input cases, respectively.  These are the 

similar to the values noted for the 60 mm wire.  The uniformity of the boundary layer length for 

different length wires is expected, since the temperature in the center of the wire is almost able to 

reach the same plateau values of 400 and 350 K for the 0.006 and 0.003 W/mm cases.  However, it is 

important to note that in the case of the 20 mm wire, the boundary layer comprises a much larger 

percentage of the total wire length.   

The bulk load-deformation behavior observed at the endpoints during a tensile test represents the 

average of the behavior at each individual point along the length of the wire.  In the case of a 20 mm 

wire heated with 0.006 W/mm, only 80% of the wire transforms to austenite during heating, then 

M+/M- after cooling, while 20% remains in M+ throughout.  In the case of the 60 mm wire, 93% of the 

wire ends up in M+/M- after cooling, while only 7% remains in M+.  Since the reference position for 

0% strain is set after the heating stage, the two strain-controlled tensile will clearly have a different 

starting point in terms of both strain and phase fraction – the shorter the wire, the more M+ it will have 

at the start of the experiments.   
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Fig. 8  Comparison of Temperature and Phase Fractions of a 20 mm Wire with 0.003, 0.004, and 0.006 W/mm input Power 

When the simulation is run with adiabatic boundary conditions, as shown in Fig. 9, the temperature of 

the wire is homogenous, and the entire wire is able to transform to 100 % austenite during heating.  

As a result no boundary layer forms and the load-deformation behavior of the bulk wire will be 

independent of wire length. 
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Fig. 9 Comparison of Temperature and Phase Fractions of a 20 mm Wire with Adiabatic Boundary Conditions for 0.003, 
0.004, and 0.006 W/mm Input Power  

B.4.2 Using Boundary Conditions to Simulate a Tensile Test 

The initial conditions of the phase fractions, thermal boundary conditions on both ends of the wire, 

and mechanical boundary condition on the right end of the wire were used to simulate each stage of 

the experiment as outlined in Table 19.  The first step of each experiment is to pull the wire to 300 

MPa at low temperature; this step is simulated by simply setting the initial phase fraction to 100% 

martensite plus.   

During the simulated heating step, the Joule heating term, j  in Equation (5), is set to 0.006 W/mm, 

and the right end is free, simulating the zero stress condition.  This step is important for establishing 

the reference length that serves as the zero strain ( 0δ = ) starting point during the tensile 

experiments.  The isothermal boundary conditions prevent sections of the wire near the ends from 

heating and changing phase from M+ to austenite.  During cooling, the right end is once again free as 

the austenite that developed away from the isothermal ends switches to the M+/M- twin phase.  After 

the simulated heating/cooling step, the displacement of the right end is recorded as the reference 

length of the SMA.  Finally, the displacement at the right end is controlled using a triangle wave 

displacement input,  

 ( ) ( ) ( ) ( )maxmax
max

seg

seg seg

seg seg

t tt
t t t t t

t t

δδ
δ δ

 −
 = < + − ≥
 
 

 (26) 
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Table 19:  Boundary Conditions Used to Simulate Steps of a Tensile Test Experiment 

Experiment Step Thermal BC (both ends) Mechanical BC (right end) Phase Fractions 
Pull the wire to 300 MPa 
at low temperature 

NA NA 100 % M+ 

Heat wire under 0 stress externalT T=  0σ =  Continue from above 

Cool wire under 0 stress externalT T=  0σ =  Continue from above 

Displacement ( )tδ  
externalT T=  ( )tδ δ=  Continue from above 

 

In equation (26) maxδ is the maximum displacement that the wire endpoint is pulled to during a cycle 

of the tensile test and segt is the time that it takes to go from 0 strain to maxδ (10 s for all experiments).  

The end displacement δ  is centered such that 0δ =  when the SMA wire is in the austenite phase at 

zero stress.  The maximum displacement is set such that the average strain in the SMA will be 6%, so 

( )max 0 0.06Lδ =   The Boolean operation terms are equal to 1 when the inequality is true and 0 when 

it is false.  On unloading, a similar expression describes displacement as it slopes back to the starting 

point at the same rate.  Two loading/unloading cycles are repeated, and the phase fractions at the 

conclusion of one step are passed on as the initial conditions for the step that follows.     

B.4.3 Effect of the Thermal Boundary Condition on Hysteresis 

The difference in the load-deformation behavior of a tensile test simulated with adiabatic and 

isothermal boundary conditions is apparent in Fig. 10.  The adiabatic case plotted in the left panel 

shows 5 coincident hysteresis lines for the 5 different wire lengths.  However, in the isothermal case 

shown in the right panel, the difference in the percentage of the wire in the M+ phase at 0% strain has 

a significant impact on the load-deformation behavior.  The short 18.7 mm wire that contains a large 

percentage of M+ requires over 600 MPa of stress to reach 6% strain, while the 148.8 mm wire 

requires only 400 MPa.  This is not unexpected, because after the preheating step the shorter wire 

contains less austenite that can change phase to M+, and thus gets to the M+ line at lower strain value 

of strain.  The percentage of the wire that is encompassed by the constant length boundary layer BLx  

is  

 ( )0

0

% BLx
BL L

L
= . (27) 

As the wire gets longer, the impact of the boundary layer decreases until the load-deformation 

characteristic converges towards the adiabatic case.  This is verified in the Fig. 10, which shows a 

lessening variation in load-deformation behavior as the wire length approaches 148.8 mm.    

Fig. 10 also shows that the equilibrium state does not return directly to the austenite line and then the 

origin on unloading.  This is because at the start of cycle 1 the wire was in a state created by heating at 

0.006 W/mm, while during the tests, the wire is heated by a constant input power of only 0.004 

W/mm.  The large preheat power induces a small boundary layer at the start of cycle 1, but once the 

entire wire is pulled to M+, the lower 0.004 W/mm power allows for a larger boundary, as shown in 
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Fig. 7.  As a result, the wire returns to zero stress on unloading in a state that still contains some of the 

M+ phase.      

 
Fig. 10  Simulated Hysteresis for a SMA wire with Adiabatic (left) and Isothermal (right) Boundary Conditions 

B.4.4 Comparison with Experimental Results 

The simulated results are compared to experimental results in the sections below.  The simulation uses 

the measured length of the SMA wire as the reference length for the model.  

Effect of Active SMA Wire Length 

The impact of the SMA wire length on the force-deformation curves at 0, 0.003, 0.004, and 0.0045 

W/mm input powers are shown in Fig. 11 through Fig. 14, where the left panel shows experimental 

results and the right panel shows simulation.  Starting with Fig. 11, the effect of the thermal 

inhomogeneity while establishing the reference austenitic (zero strain) length is apparent.  Since the 

shorter wires contain a larger percentage of M+ when this reference length is set, less input strain is 

required to bring the wire to the 100% M+ line.  This effect is well captured by the model that shows 

the shorter wires reaching the M+ line at a lower value of strain, then reaching a higher maximum 

stress at 5.5% strain.  However, a known shortcoming with the SMA model is also apparent in Fig. 

11.  The experimental data shows that no force is generated until about 2.5% strain.  This is the strain 

at L0M mentioned in the procedure.  This results from the wire being biased towards the M+ phase 

(instead of M-) when cooled under 0 load via the so-called two-way effect, which is not captured by 

the model.  The two-way effect is a result of interstitial stresses and interactions between different 

grains within the material, and therefore cannot be captured by a single-crystal model.  

 
Fig. 11  Experimental (left) and Simulated (right) Hysteresis Loops for SMA Wires with 0 W/mm Input Power 
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When the input power increases, Fig. 12 through Fig. 14 show that the hysteresis loop begins to rise 

as expected.  The impact of the two-way effect begins to diminish as more of the wire is transformed 

into the austenite phase.  The effect of a higher percentage of M+ when reference length is established 

in the shorter wires is still apparent. 

 
Fig. 12  Experimental (left) and Simulated (right) Hysteresis Loops for SMA Wires with 0.003 W/mm Input Power 

As input power is increased further in Fig. 13 and Fig. 14, the effect of using a high input power 

during the preheating step and a constant, low input power during straining starts to become 

noticeable.  As discussed above, the high (0.006 W/mm) input power used during preheating results in 

a fairly low percentage of M+.  However, when the cycling begins the input power is only 0.004 

W/mm.  Therefore, some of the sections that are pulled to M+ during straining cannot be returned to 

austenite when the wire is relaxed, because of the lower input power.  The experimental results also 

show that the stress-strain curves return to the zero-stress axis at a non-zero value of strain, indicating 

that the wire contains more M+ than it did initially.  This is exactly what is expected and is 

corroborated by the simulations. 

Additionally, all of the experimental data shows that the longer wires have a boxier hysteresis loop 

with a nearly horizontal plateau on loading and unloading than do the shorter wires.  This effect is 

also expected, because of the fact that the shorter wires contain a higher percentage of M+ phase near 

the attachment points and thermal heat sinks.  The mixing of the soft (30.9 GPa modulus) M+ phase 

and the stiffer (71.1 GPa modulus) austenite phase has a softening effect on the hysteresis loops.  

Since both the experiments and simulations track behavior of the end points of the wire, the average 

behavior occurring between the clamp boundaries is represented by the plots.  As a result, this 

softening effect is expected to appear in both experiments and simulations, as it does.  
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Fig. 13  Experimental (left) and Simulated (right) Hysteresis Loops for SMA Wires with 0.004 W/mm Input Power 

 
Fig. 14  Experimental (left) and Simulated (right) Hysteresis Loops for SMA Wires with 0.0045 W/mm Input Power 

Effect of Input Power 

Fig. 15 through Fig. 19 show the effect of different input powers on the different length wires.  The 

simulated results show that input power should have no impact on the force level needed to generate 

5.5% strain for wires of the same length.  This is generally validated by the experimental data.  The 

only significant disparity occurs for very long wires with low input power, where the impact of the 

un-modeled two-way effect dominates the wire behavior. 

 
Fig. 15  Experimental (left) and Simulated (right) Hysteresis Loops for 18.7 mm SMA Wire 
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Fig. 16  Experimental (left) and Simulated (right) Hysteresis Loops for 29.4 mm SMA Wire 

 
Fig. 17  Experimental (left) and Simulated (right) Hysteresis Loops for 47.8 mm SMA Wire 

 
Fig. 18  Experimental (left) and Simulated (right) Hysteresis Loops for 100.5 mm SMA Wire 
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Fig. 19  Experimental (left) and Simulated (right) Hysteresis Loops for 148.8 mm SMA Wire 

Measured and Simulated Wire Resistance 

The resistance measured across different length SMA wires at different input powers is shown in Fig. 

20 through Fig. 24.  In these plots, the total resistance is normalized by the nominal length of the 

SMA wire to make comparisons easier to visualize on the same scale.  The simulated resistance 

model, plotted in the right panel, suggests that the resistance should be slightly hysteretic due to the 

phase fraction dependence.  However, the hysteresis is very narrow, because the elastic strain and 

thermal effects counter-act the effect of the phase fractions.   

On mechanical loading, the fraction of austenite is high, and as a result the resistance is expected to be 

lower than on unloading.  However, the stress is also higher on the loading, which leads to more 

elastic strain, and thus a longer, thinner wire with higher resistance.  

A number of observations can be made from comparing the experimental and simulated results.  First, 

the experimental results show almost no hysteresis while simulations show a narrow hysteresis.  The 

hysteresis in the simulation could be eliminated completely by adjusting the thermal dependence 

coefficients.  Also, the polycrystalline material generally has smoother behavior than the single crystal 

model will predict, which could contribute to the lack of hysteresis in the experimental results.  

Regardless, in both the experimental and simulated results, the plots for all length wires show a lower 

slope in austenite and martensite regimes (less than 1% and more than 4.5% strain) than in the phase 

transition regime.  The lower slope of the martensite phase is particularly noticeable in the zero input 

power cases of Fig. 20 through Fig. 24.  However, due to the polycrystalline nature of the real wire, 

the effects are smoothed and thus less noticeable than in the simulation.     
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Fig. 20  Experimental (left) and Simulated (right) Resistance for a 18.7 mm SMA Wire 

 
Fig. 21  Experimental (left) and Simulated (right) Resistance for a 29.4 mm SMA Wire 

 
Fig. 22  Experimental (left) and Simulated (right) Resistance for a 47.8 mm SMA Wire 
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Fig. 23  Experimental (left) and Simulated (right) Resistance for a 100.5 mm SMA Wire 

 
Fig. 24  Experimental (left) and Simulated (right) Resistance for a 148.8 mm SMA Wire 

Fig. 25 clearly shows the comparison between the resistance curves of different length wires for a 

single power input level.  Both the model and experimental results show that the normalized 

resistance per nominal length is expected to be higher in the shorter wires.  This is expected from the 

thermal inhomogeneity, because shorter wires will contain more martensite near the thermal 

boundaries.  Also, at high values of strain, the shorter wires achieve a higher stress and thus more 

elastic straining than the longer wires.   

 
Fig. 25  Experimental (left) and Simulated (right) Resistance for a 4.5 W/mm Input Power 
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B.5 Conclusions on the Effects of Thermal BCs on SMA 

Actuator Wires 

Both the experimental and modeled results show that the behavior of an SMA wire can vary greatly 

due to thermal inhomogeneity.  Large heat sinks at the wire attachment points lower the temperature 

near the end of the wire, resulting in a persistent region of martensite, even when large input power is 

applied.  Since these end-effects are more significant in shorter wires than in longer wires, a shorter 

wire will behave more “martensitically” than a longer wire. 

This inhomogeneity may lead to a loss of stroke, particularly for short wires.  Additionally, short 

wires have a different average resistivity than long wires.  This is important for applications that 

endeavor to employ the multi-functional capabilities of SMA wires by using the resistance as a strain 

measurement.  Surprisingly, experimental results indicate very little hysteresis in the strain-resistance 

characteristic for a constant-temperature tensile test.  This is critical for sensor applications and 

eliminates some of the challenges of using SMA wire resistance as a high stroke, low force 

displacement sensor. Regardless of the effect, understanding the impact of attaching a wire to a larger 

structure is critical to the design of embedded SMA applications.   


