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 Zusammenfassung 

Die Untersuchung von Sekundärmetaboliten gleitender Bakterien liefert weiterhin neue 

biologisch aktiver Verbindungen. Im Rahmen meiner Doktorarbeit wurden drei 

Substanzgruppen isoliert und mittels analytischer Methoden wie NMR-Spektroskopie, 

Massenspektrometrie und Röntgenkristallographie in ihrer Struktur aufgeklärt. 

Marinoquinolin A, ein Pyrroloquinolin, und fünf Derivate, die Marinoquinoline B - F, wurden 

aus dem Bacteroidetes Ohtaekwangia kribbensis isoliert. In einem zweiten Projekt wurden 

aus zwei Stämmen des Myxobakteriums Hyalangium minutum acht neue Verbindungen 

isoliert. Hyaladion, ein S-Methyl-cyclohexadien-dion und sieben Polyketide, die Hyafurone 

A1-D zusammen mit den Hyapyronen A und B. 

Alle Substanzen wurden auf ihre biologische Aktivität gegen pathogene Bakterien und Pilze, 

sowie auf Zytotoxizität und anti-parasitische Wirkung getestet. Hyaladion zeigte die besten 

Aktivitäten mit der Inhibierung des Methicillin-resistenten Staphylococcus aureus mit einer 

MIC von 0.83 µg/mL und einer Zytotoxizität gegen die Brustkrebs-Zelllinie MCF-7 mit einer 

IC50 von 1.23 µM, sowie Aktivität gegen den Malariaparasiten P. falciparum mit einer IC50 

von 0.92 µM. Auch die Marinoquinoline B und F waren aktiv gegen P. falciparum mit IC50-

Werten von 1.8 bzw. 1.7 µM. 
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Summary 

Investigation of secondary metabolites from gliding bacteria continues to provide new 

biologically active compounds. In the present thesis, three classes of compounds were isolated 

and their structures elucidated by analysis of NMR and HRESIMS data and by X-ray 

crystallography of crystalline compounds. Marinoquinoline A, a pyrroloquinoline, was 

isolated from the Bacteroidetes Ohtaekwangia kribbensis together with five analogues, 

marinoquinolines B - F. In a second project, eight new compounds, hyaladione, an S-methyl 

cylohexadiene dione, and seven polyketides, the hyafurones A1 - D, together with the 

hyapyrones A and B were isolated from two strains of the myxobacterium Hyalangium 

minutum.  

All compounds were evaluated for their biological activity against pathogenic bacteria and 

fungi, for cytotoxicity and anti-parasitic activity. Hyaladione displayed the highest activities 

with the inhibition of the methicillin-resistant Staphylococcus aureus (MRSA) with a MIC of 

0.83 µg/mL, cytotoxicity against the breast cancer cell line MCF-7 with an IC50 of 1.23 µM, 

and activity against the malaria parasite P. falciparum with an IC50 of 0.92 µM. 

Marinoquinolines B and F were also active against P. falciparum with IC50 values of 1.8 and 

1.7 µM, respectively.  
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1 Introduction 

1.1 The indisputable role of natural products in drug discovery 

Natural products, especially the secondary metabolites, are chemical substances from plants, 

animals or microorganisms that exhibit a wide variety of biological activities. They are 

structurally diverse with concomitant diverse bioactivities such as antibiotic, antifungal, 

immunosuppressive or cytotoxic. These molecules have been used to treat human and 

veterinary diseases since the dawn of medicine.1,2 Additionally, they have also been used in 

agriculture as pesticides or plant growth regulators. Natural products and derivatives thereof 

are the single most productive and successful source of drug leads3,4 that have contributed to 

the doubling of our life expectancy in the 20th century.5,6 Nearly, 50 % of the drugs in clinical 

use are natural products or their derivatives while more than two-thirds of all antibiotics and 

anticancer drugs are natural products or their semi synthetic derivatives (selected natural 

products are presented in Figure 1).7,8 Undoubtedly therefore, the combinatorial chemistry of 

nature to craft small organic molecules replete with structural complexity and biological 

potency is unrivalled.9 

1.1.1 The evolution of natural products as therapeutics 

Natural products as sources of drugs have evolved since time immemorial. The Chinese 

traditional medicines from plant natural products have been used for millennia arguably 

before 3000 BC. The ancient Egyptians used bark of trees to treat inflammation, but it was 

until the 5th century that Hippocrates, the father of modern medicine described several plants 

as sources of medicine among which was the use of willow bark extracts against fever and 

pain.10 Acetylsalicylic acid a derivative of the active ingredient (salicylic acid) in willow bark 

extract was first synthesized in 1853 and later developed into aspirin and marketed in 1899 by 

Bayer .11,12 Morphine crystals isolated from opium poppy plant in 1805 was among the first 

pure natural products to be isolated. It is used as analgesic and the standard against which all 

new opioids for postoperative pain relief are compared.13  

The search for antibiotics began in the late 19th century, after the acceptance of Louis 

Pasteur’s ‘germ theory of diseases’ that linked most infectious diseases to germs, i.e. bacteria 

and other microbes. In 1877, Pasteur demonstrated how virulent anthrax bacilli could be 

rendered harmless in animals with the injection of soil bacteria.14 It had been observed by 
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several scientists that the growth of bacteria was inhibited when contaminated with other 

microorganisms. For example, in 1897 Ernest Duchesne had shown in his dissertation the 

inhibition of the lethal typhoid bacilli by the fungus Penicillium glaucum. When more work 

was urged, Duschesne was unable to complete due to his commitment in the army and his 

work went unnoticed. It was however until 1928 that Alexander Fleming discovered in a Petri 

dish seeded with Staphylococcus aureus that a compound from the fungus Penicillium 

chrysogenum (formerly, P. notatum) killed the bacteria. He named this compound penicillin 

and the publication of his work one year later profoundly changed the course of medicine.15  
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Figure 1. Structural diversity of bioactive secondary metabolites from bacteria and fungi 
(activity and producing organism are given in parenthesis). penicillin G (1) (antibiotic, 
Penicillium chrysogenum); vancomycin (2) (antibiotic, Amycolaptosis orientalis); 
chlortetracycline (3) (antibiotic, Streptomyces aureofaciens);  erythromycin A (4) 
(antibiotic, Saccharopolyspora erythrea); streptomycin (5) (antibiotic, Streptomyces 
griseus); salinosporamide A (6) (anticancer, Salinispora tropica); rapamycin (7) 
(immunosuppressant, Streptomyces hygroscopicus); gramicidin (8) (antibiotic, 
Bacillus brevis). 
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Penicillin was isolated as a yellow powder in 1939 and used as a potent antibacterial during 

the Second World War. The discovery and application of penicillin as an antibiotic agent 

marked the beginning of the antibiotic revolution. Waksman and his group at Rutger 

University is credited for the discovery of more than twenty antibacterial and antifungal 

compounds from Streptomyces (Actinobacteria) including streptomycin, neomycin, 

actinomycin and candicidin. The term “antibiotic” was indeed coined by Waksman. A 

plethora of antibiotic research using Fleming’s and Waksman methods16 ensued in the years 

between 1940 and 1960s leading to the discoveries of diverse antibiotic classes including 

tetracyclines, ß-lactams, macrolides, aminoglycosides, glycopeptides and polypeptides 

(Figure 2)17 a period generally referred to as the “antibiotics golden age.”18  

 

 

Figure 2. Major classes of antibiotics discovered in the period between 1940 and 1962 that was 
followed by an innovation gap of almost 40 years.17 

It was during this period that terms like ‘wonder drugs’ and ‘magic bullet’ were coined to 

refer to the broad spectrum antibiotics. In fact, the battle against bacterial infections was 

considered won in the late 1960s. Nevertheless, it was too early to celebrate since methicillin-

resistant S. aureus (MRSA) strains were isolated as early as 196119 and ten years later 

penicillin resistant Klebsiella pneumoniae strains were isolated from humans.20 To-date, 

virtually all S. aureus isolates are resistant to ß-lactam antibiotics and to all the other 

antibiotic classes including vancomycin that was once daunted as the ultimate weapon against 

the worst hospital acquired infection.21 The emergence of multi-drug resistant strains and of 

new infectious disease pathogens is alarming. Currently, infectious diseases are the second-

leading cause of death worldwide and the third major cause of death in developed countries 
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predominated mainly by acute lower respiratory tract infections, HIV/AIDS, diarrheal 

diseases, tuberculosis and malaria.22,23 The development of new drugs particularly from 

unexplored and scarcely investigated natural sources may be thus an important key to the 

solution. 

Other important natural products developed into drugs include the cyclosporins and statins. 

Cyclosporin A is a cyclic non-ribosomal peptide that was initially isolated from the fungus 

Tolypocladium inflatum and it is widely used as an immunosuppressant.24,25 In addition to 

transplants, cyclosporine A is also used in psoriasis, severe atopic dermatitis, and 

infrequently, in rheumatoid arthritis and related diseases. It is also being investigated for the 

treatment of cardiac hypertrophy.26 Statins are a cholesterol-lowering class of drugs with a 

large market share. They act by inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) 

reductase, an important enzyme in cholesterol biosynthesis. Mevastatin, a polyketide derived 

natural product from the fungus P. citrinum was the first statin to be isolated as a potent 

inhibitor of HMG-CoA. However, its structural analogue, lovastatin isolated from Aspergillus 

terreus was the first to be marketed.27 Since then, several statins have been developed either 

as semi-synthetic derivatives or purely synthetic. They include among others, simvastatin, 

pravastatin, fluvastatin, rosuvastatin and atorvastatin. Atorvastatin, marketed as lipitor® by 

Pfizer has dominated the market as the best-selling drug of all time!  
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1.2 Gliding bacteria - a repository of novel secondary metabolites 

Bacteria that move by creeping or gliding on surfaces are generally called gliding bacteria.28 

They are a diverse group of microorganisms that have adapted to different environments 

including the tropical rain forest, hydrothermal vents, marine shores, waste water, desert sand 

and the gastro-intestinal tract of man and animals. Despite their ubiquitous nature, gliding 

bacteria are only found in a few taxa such as Chloroflexi, Proteobacteria, Bacteroidetes and 

Cyanobacteria.29,30 Other than actinomycetes, fungi, bacilli and pseudomonads which are the 

established sources of secondary metabolites contributing to almost 90 % of the 

approximately 50,000 microbial metabolites known,31 the last three decades have seen the 

emergence of gliding bacteria as alternative sources for drug discovery. Of these, the most 

studied for their secondary metabolism are cyanobacteria32 and myxobacteria (δ-

Proteobacteria) with a slow progress in investigation of the Bacteroidetes.  

1.2.1 Bacteroidetes – a promising source of novel natural products 

With the growing increase in resistance of infectious-disease pathogens to established 

pharmaceuticals compounded with the emergence of new pathogens , new drugs are urgently 

needed. Bacteroidetes, previously known as the Cytophaga-Flavobacteria-Bacteroides 

(CFB)33 are widely distributed in different habitats. They comprise a large group of 

heterotrophic bacteria that presently appears to be the highest growing phylum with new 

genera being added every month.29 However, most Bacteroidetes genera studied show a close 

association with human and animal hosts, where they perform useful functions including 

degradation of polysaccharides and synthesis of essential vitamins.34 They are known to be 

the most dominant part of the micro-flora in the human intestinal tract together with 

Firmicutes and Actinobacteria.35,36  

Bacteroidetes have only been scantly investigated for their production of secondary 

metabolites. Examples of these metabolites are shown in Figure 3. They include the, β-

lactams PB-5266 A (9), PB-5266 B (10), PB-5266-C (11) isolated from the gliding bacterium 

Flavobacterium johnsoniae, formerly known as Cytophaga johnsoniae.37,38Additionally, a cell 

growth promoting resorcinol derivative, resorcinin (12), also isolated from the same 

bacterium, F. johnsoniae.39 Other compounds isolated from Cytophaga sp. include the 

katanosin peptides (13, 14)40 that exhibited activity against Gram-positive bacteria including 

activity against methicillin resistant Staphylococcus aureus (MRSA)41 and the macrolides 
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YM-32890 A (15) and YM-32890 B (16) also with anti-MRSA activities.42 Besides 

compounds from Cytophaga, the ß-lactams, formacidins A, (17), B (18) and C (19)43 and the 

topoisomerase 1 inhibitors, topostins A (20) and B (21)44 have been isolated from Flexibacter 

strains. The preceding compounds were all isolated during the “antibiotics golden age”. In 

recent times, Bacteroidetes strains of the marine arctic have been investigated for the emission 

of volatile methyl ketones whose structures were established by retrosynthesis.45 The most 

recent investigation of secondary metabolites of this phylum is the isolation of the polyketide-

derived anti-Gram-positive antibiotic class, elansolids A1/A2* (22/23*) macrolide 

atropisomers and elansolid A3 (24) a quinonone methide from Flexibacter sancti,46,47 a 

species recently reclassified as Chitinophaga sancti.48 Biological screening of extracts from 

non-myxobacterial gliding bacteria from the strain collection at the Helmholtz Centre for 

Infection Research (HZI) continues to show promising results for antinfectives.  
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Figure 3. Bioactive secondary metabolites from the phylum Bacteroidetes. 
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1.2.2 Myxobacteria – an established source of natural products 

Myxobacteria are Gram-negative δ-proteobacteria characterized by their gliding motility and 

unusual formation of fruiting bodies upon starvation. They are found in diverse habitats 

including soil, bark of trees, decaying plant material, dung of herbivores and marine 

shores.49,50 Their taxonomy is dependent mainly on the morphology of vegetative cells, 

swarms, fruiting bodies, myxospores and currently also by phylogeny of the 16S rDNA.51 All 

known myxobacteria are grouped in the order Myxococcales, which is further divided into 

three suborders, Sorangiineae, Cystobacteraceae and Nannocystineae (Figure 4).52  

 

Figure 4. Systematic of myxobacteria, adapted from Bergey’s Manual of Systematic 
Bacteriology.52

 

After more than 30 years of research on the secondary metabolism of myxobacteria, at least 

120 unique basic structures and more than 800 derivatives have been characterized. 

Unquestionably, myxobacteria have therefore been established as source of novel bio-actives 

joining the ranks of actinomycetes, Bacillus species, pseudomonads and fungi.53,54 The 
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compounds have diverse ranges of biological activities spanning across most of the infectious 

pathogens including viruses, bacteria, fungi and protozoa in addition to cytotoxicities. Most of 

the activities are, however, against fungi and bacteria at 54 % and 29 %, respectively, 

supposedly due to the competitive pressure at the natural myxobacteria biotope.55  

Many myxobacterial compounds display unique structural features that were unknown at the 

time of their discoveries. Additionally, the compounds often exhibit novel modes of action 

when compared to other microbial compounds.53 These findings are appealing and therefore 

reinforce more research efforts into myxobacterial secondary metabolites for lead compounds 

in drug discovery. A few selected examples of structural diversity of some lead compounds 

are shown in Figure 5. Ixempra® (ixabepilone), a semi-synthetic amide derivative of the 

lactone epothilone B (25) is indeed in clinical use as an anti-breast cancer drug. Epothilone B 

(25) was isolated from Sorangium cellulosum and interacts with the cytoskeleton of 

eukaryotic cells by binding to ß-tubulin inducing microtubule polymerization.56 The resulting 

suppression of microtubule dynamics leads to the arrest of the cell cycle at the G2/M 

transition that finally induces apoptosis.57 Contrary to epothilones mode of action, tubulysin A 

(26) isolated from the myxobacterium Archangium gephyra, acts by depolymerizing 

microtubules which also induces mitotic arrest and finally leads to apoptosis.58,59 Tubulysin A 

(26) is a potential anticancer and antiangiogenic lead structure.60 Other  potential drug leads 

against cancer are argyrin (27)61 which is a proteasome inhibitor acting via the tumor 

suppressor protein p2762 and the recent disorazol Z (28) a highly cytotoxic macrodilactone 

that is in preclinical development (AEterna Zentaris) as an agent inhibiting tubulin 

polymerization in cancer cell lines.63,64 

The antifungals whose modes of action have been characterized include the quinolone 

aurachin (29)65 and myxothiazol (30),66,67 that act by inhibiting the electron flow within the 

mitochondrial respiratory chain and –further soraphen A (31), a macrolactone that exhibits a 

remarkable broad-spectrum of anti-fungal activity. Elucidation of the mode of action revealed 

that 31 inhibited the growth of yeasts and molds by selectively targeting the fungal acetyl-

CoA carboxylase (ACC). Consequently, there were concerted efforts that included 

cooperation with Ciba-Geigy (currently Norvatis) to develop 31 as a plant protective 

agent.68,69 However, further development was stopped due to teratogenic effects observed in 

rat experiments. Nevertheless, the novelty of the mode of action has been used in recent 
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studies to show that small-molecule inhibitors of human ACCs have potential in the treatment 

of both the metabolic syndrome70 and cancer.71  

Many myxobacterial compounds have been isolated that exhibit antibacterial activity. 

However, only few have been characterized for their modes of action as lead structures. The 

most recent promising lead compound is carolactone (32)72 a biofilm inhibitor that acts by 

disturbing membrane integrity and cell division of Streptococcus mutans through the 

serine/threonine protein kinase, PknB.73 Others include sorangicin A (33),74,75 as well as 

myxopyronin B (34),76 corallopyronin77 and ripostatin78 all of which bind to two different 

sites at the bacterial RNA polymerase (RNAP), an important target in the treatment of 

tuberculosis.  The activity and mode of action of 33 is similar to rifampicin, though it sustains  

some viability against rifampicin resistant mutants. A good drug candidate should be better 

than the existing drug and in this case 34 is superior. A detailed binding study of 34 identified  

the switch region of RNAP as novel antibiotic target.79 However, recently  microbiologists at 

Cubist Pharmaceuticals evaluated the activity of 34 and concluded that it is not a viable 

starting point for antibiotic development because of a high serum protein binding and a high 

resistance rate by S. aureus.80 
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Figure 5. Epothilon B (25) and selected lead structures of myxobacterial secondary metabolites 

displaying their structural diversity.  
 
1.3 Isolation and structure determination of organic compounds 

Isolating natural products and determining their structures used to be a daunting task in earlier 

times. The only tools available for early chemists were purification by distillation for liquids 

and recrystallization for solids. In recent times, a resurgence of interest in natural product 

research has seen an outstanding development in the areas of separation science, 

spectroscopic techniques, and microplate-based ultrasensitive in vitro assays.81 The new high- 



Introduction 

 

11 

 

tech chromatographic techniques make the isolation process relatively easy and faster while 

the modern spectroscopic techniques allow structure determination to be achieved in days to a 

few weeks depending on the complexity of the compound.  

1.3.1 Extraction and isolation 

The producer strains are cultivated under optimized conditions in shake flasks or bioreactors 

to produce the target secondary metabolites. The crude extracts are recovered by either liquid-

liquid extraction of the fermentation broth with an organic solvent or by eluting with an 

organic solvent from an adsorbent resin like XAD-16 that had been used during fermentation. 

Most products from gliding bacteria adsorb to XAD-16 resin that is quite efficient since it 

eliminates the end-product inhibition. The crude extract contains a cocktail of compounds that 

makes it difficult to apply a single method of separation to isolate an individual compound. 

However, initial stages of compound enrichment would include liquid- liquid phase 

partitioning exploiting the polarity of target compounds. A good isolation protocol is designed 

based on the features of the target molecule that would include solubility, acid-base 

properties, charge, stability and molecular weight. Chromatographic techniques employed 

may include high performance liquid chromatography (HPLC), high-performance thin layer 

chromatography (HPTLC), silica gel flash chromatography, solid-phase extraction, size 

exclusion chromatography on Sephadex LH-20, medium-pressure liquid chromatography 

(MPLC) or vacuum liquid chromatography (VLC) among others. Compounds from highly 

enriched fractions can be purified by recrystallization or by use of preparative HPLC or 

preparative silica gel flash chromatography.  

1.3.2 Mass spectrometry and NMR spectroscopy for structure elucidation 

The modern hyphenated ultra-high pressure liquid chromatography high resolution electro 

spray ionization mass spectrometry (UHPLC-HRESIMS) allows the determination of the 

precise molecular mass and molecular formula as well as the UV/vis absorption spectrum of a 

compound. Only very small samples are injected in the instrument. In the ion source of the 

MS instrument the analytes are vaporized by spraying and ionized by removal or addition of a 

proton or buffer ion from or to each molecule under high voltage. The resulting molecular ion 

is recorded as a mass to charge ratio m/z when it is passed through a magnetic field. Because 

the charge on essentially all the ions that are recorded in the positive ionization mode is 
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usually +1, m/z is taken to be the mass (m) of the ion, from which e.g. the molecular mass of 

the analyte can be calculated. 

1.3.3 Structure determination of organic compounds 

Structural assignment of natural products is mainly achieved by either structural elucidation 

by high resolution mass spectrometry (HRMS) combined with nuclear magnetic resonance 

(NMR) spectroscopy or by X-ray crystallography. The latter method is the “holy grail” for 

absolute molecular structural details if X-ray suitable mono-crystals are obtained. This is 

however rare in natural product isolations and thus the most widely used method for structural 

characterization is the integrated HRMS/NMR spectroscopic method. 

NMR spectroscopy has been an indispensable tool for the structure determination of organic 

molecules since the early 1960s.82 The older spectroscopies with low field strengths were 

relatively insensitive performing simple experiments. Over the last couple of years, NMR 

technology improvement has been impressive. The current state-of-the-art NMR 

spectrometers have superconducting cryogenic probe-heads, superconducting cryogenic high-

field magnets (up to 1000 MHz) and smaller sample volumes with enhanced sensitivity.83 

Additionally, the new NMR hardware enables liquid chromatography coupled NMR (LC- 

NMR) that offers the advantage of faster dereplication in high throughput screening (HTS) 

and structural elucidation of compounds from crude mixtures at nano-mole scale.84,85 

Basically, NMR spectroscopy is a physical phenomenon in which atomic nuclei in a magnetic 

field absorb and re-emit electromagnetic radiation at a specific resonance frequency. The 

frequency is directly proportional to the magnetic field strength and the magnetic properties of 

the isotope of the atoms. The most common studied nuclei are the 1H, 13C and 15N isotopes. 

The experiments involve the alignment of the atomic nuclear spins in an applied magnetic 

field and sequential perturbation of the aligned spins by a magnetic pulse radio frequency that 

causes chemical shifts recorded in Hz or parts per million (ppm). 

Structural elucidation begins with the determination of the molecular formula predicted by 

HRESIMS. From the molecular formula, the number of double bonds and rings are calculated 

using the double bond equivalence (DBE) formula [DBE = CaHbOcNd, ½ [(2a + 2) – (b-d)]]. 

The functional groups are then determined from the chemical shifts of the 1D 1H and 13C 

NMR spectra in combination with the information from IR- and UV/vis spectra. Structural 
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parts of the compound are then assembled using information from both the 1D and the 2D 

NMR experiments. A systematic method would initially involve identification of each proton 

directly bound to carbons (1JHC) by using heteronuclear multiple quantum coherence (HMQC) 

spectroscopy or the phase sensitive heteronuclear single quantum coherence (HSQC) 

spectroscopy. Additionally, HSQC provides information on the multiplicity of carbons, 

information that can also be obtained from attached proton transfer (APT) or distortionless 

enhancement by polarization transfer (DEPT) experiments. The 1H,1H correlation 

spectroscopy (COSY) experiments identify structural fragments of adjacent protons by bond-

coupling of vicinal, geminal or distant (up to 5 bonds) protons. A 2D TOCSY (total 

correlation spectroscopy) experiment is used to assign all protons within a spin system. It is 

mostly used in the analysis of peptides or polysaccharides where key COSY cross-peaks often 

are obscured. Finally, when all possible fragments have been assigned, the overall 

connectivity is established through a heteronuclear multiple-bond correlation (HMBC) 

experiment. HMBC is useful in revealing correlations through intervening heteroatoms and 

quarternary carbons by long-range interactions that correlate protons with more distant 

carbons.86 A summary of the above NMR experiments is found in Table 1.87 
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Table 1. Overview of the basic NMR experiments used for structure elucidation.87 

Abbreviation Experiment Purpose Comment Enhanced Experiments 

APT attached proton test 1D inverse technique 
for 13C multiplicity 

includes signals for quaternary 
carbons 

DEPTQ 

DEPT distortionless 
enhancement by 
polarization transfer 

1D inverse technique 
for 13C multiplicity 

standard  diverse  

HMQC heteronuclear 
multiple quantum 
coherence 

2D inverse H,C 
correlation 

decoupled 13C NMR spectrum diverse, better HSQC 

HSQC heteronuclear single 
quantum coherence 

2D inverse H,C 
correlation 

phase-sensitive gradient-
selected version 

gs-HSQC, E-HSQC 

COSY correlation 
spectroscopy 

2D spin coupling 
nuclei 

most important 2D NMR 
experiment: possible nuclei 1H, 
19F, 31P 

Long-Range COSY, 
COSY-45, E.COSY 

TOCSY total correlation 
spectroscopy 

2D correlations of 
protons in one spin-
system 

also called HOHAHA, used for 
peptides and oligosaccharides 

gs-TOCSY, 
 gs- SELTOCSY,  

HMBC heteronuclear 
multiple bond 
correlation 

2D long-range H,C 
correlation 

2J(C,H) and 3J(C,H) coupling gs-HMBC, ACCORD-
HMBC 

NOESY nuclear Overhauser 
enhancement 
spectroscopy 

2D dipolar cross-
relaxation of nuclei in 
close spatial 
relationship 

assignment of conformations 
and tertiary structures of e.g. 
peptides or proteins  

gs-NOESY,  
(3D): HN-NOESY-
HSQC, HC-NOESY-
HSQC  

ROESY rotating frame 
Overhauser 
enhancement 
spectroscopy 

2D dipolar cross-
relaxation of nuclei in 
close spatial 
relationship 

also called CAMELSPIN, 
shorter time compared to 
NOESY, also applied for molar 
mass of 1000-3000 

 

HETLOC heteronuclear long 
range coupling 

2D determination of 
long-range C,H spin 
coupling constants 

low sensitivity, overlapping 
signals and coupling constants 
of the same spin system, 
enhanced versions  

PS-HMBC, J-HMBC, 
HSQC-TOCSY, 
HSQMBC 

 

                                                                                                                                             

1.4 Stereochemistry of natural products 

1.4.1 The biological importance of chirality 

Most of the drugs derived from natural products are obtained as single enantiomer rather than 

as a racemic mixture. This is because most of the molecules that make up plants and animals 

are chiral i.e all the naturally occurring 20 amino acids except glycine are left handed (L-

amino acids), whereas all the natural sugars are right handed (D-sugars). The origin of 

biological properties relating to chirality is likened to the specificity of our hands for their 

respective gloves; the binding specificity for a chiral molecule at a chiral receptor is only 

favorable in one way. If either the molecule or the biological receptor site had the wrong 

handedness, the intended physiological response will not occur88. 
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Pure natural products are usually recovered in insufficient amounts for drug development. The 

synthesis of sufficient analogous bioactive natural compounds or modifications thereof 

requires the consideration of the arrangements of atoms in space. However, until recently 

most pure synthetic drugs with few exceptions were prepared, sold and administered as 

racemic mixtures even though the desired therapeutic activity resided in only one of the 

enantiomers. An example is in the enantiomeric mixture of the (R)-ibuprofen (35), which is 

inactive and  the (S)-ibuprofen (36) (Figure 6), the active  ingredient of  pain relief. 

Fortunately, the (R)-enantiomer  (35)  is converted in-vivo to the active (S)-form 

enzymatically by the isomerase, alpha-methyl CoA racemase.89,90 

O

OH

O

OH

35 36
 

Figure 6. The mirror images of the inactive (R)-ibuprofen (35) and the active (S)-form, 36.  

A deleterious consequence of using chiral drugs as racemic mixtures is illustrated by 

thalidomide that was administered to alleviate the symptoms of morning sickness in pregnant 

women between 1958 and 1962. Teratogenic effects involving shortened or absent limbs in 

babies whose mothers had used the drug were observed.91 The drug was sold in more than 40 

countries and approximately 10,000 births affected.92 The sleep-inducing properties are 

associated with the (R)-thalidomide (37) whereas the (S)-thalidomide (38) enantiomer (Figure 

7) was teratogenic. The two enantiomers are interconvertible under physiological conditions. 

Although thalidomide is no longer prescribed to women who are pregnant, or who may 

become pregnant, it is used in the treatment of leprosy and multiple myeloma.93,94  
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Figure 7. The mirror images of the sleep-inducing (R)-thalidomide (37) and the teratogenic  (S)- 
thalidomide (38).  
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1.4.2 Assignment of the relative and absolute stereochemistry 

Determination of both the relative and absolute configuration of compounds is a pre-requisite 

in drug discovery. Good quality mono-crystals of a compound would be ideal for the 

assignment of the stereochemistry by X-ray crystallography. Sadly, they are hardly produced 

for natural products where yields of pure substances are mostly low. NMR therefore became a 

practical alternative to X-ray diffraction for both structure elucidation and determination of 

the 3-D conformations of natural products. 

The 2D NMR experiments NOESY (nuclear Overhauser enhancement spectroscopy) and 

ROESY (rotating frame Overhauser enhancement spectroscopy) provide information about 

the dipolar  cross-relaxation of protons with close spatial relationships. This is achieved by 

selectively irradiating certain resonances which in effect increases the intensity of spatially 

proximal resonances. The cross peak intensities between the two spectra are inversely 

proportional to the sixth power of the distance separating the interacting protons and are 

therefore used in the assignment of relative configurations.95 The intensity of NOE 

correlations is heavily influenced by molecular weight and the choice of mixing time.96 

Conformational analysis of the direct correlation of dihedral angles of protons corresponding 

to their vicinal 3JH,H coupling constants was first described by Karplus.97 These vicinal 

couplings are well suited to the identification of 1,2–stereochemical relationships in 

cyclohexanes, olefins, and cyclopropanes. The proton-proton coupling constants are extracted 

directly from the first-order multiplets. However, when the spectral overlap or strongly 

coupled spectra preclude direct extraction, the simplest solution is to obtain 1D 1H NMR 

spectra in different solvents or to use J-resolved that additionally gives coupling constant of 

the overlapping signals.  Another alternative would be to use 1D-TOCSY to selectively 

irradiate a clearly resolved proton that lies in the same spin system as an obscured one.98  

The stereochemistry of many acyclic chains for which nJH,H and NOE measurements alone are 

inconclusive, proton-carbon ( nJC,H) coupling constants can be used. Geminal couplings (2JC,H) 

are usually negative, whereas vicinal couplings (3JC,H) are usually positive.99 The (2,3JC,H) 

values are measured using 2D HETLOC (hetero half-filtered TOCSY) or PS-HMBC (phase 

sensitive HMBC) NMR pulse sequences. Additionally, the relative geometries of unknown 

compounds can also be found by comparing the 1H and 13C NMR chemical shifts with model 

compounds of defined stereochemistry.100 However, complex structures with no close 
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relatives in the universal NMR database (UDB) can be analysed by molecular modeling using 

computer software that apply quantum mechanics in calculating NMR parameters e.g 

HyperChem. Briefly, the conformational search and geometry optimization of all significant 

conformers of each stereoisomer is carried out by empirical methods such as molecular 

mechanics (MM) or on the semi empirical level (PM3) followed by a quantum mechanical 

(QM) method for optimization. The 1H and 13C NMR chemical shifts are thereafter calculated 

for each stereoisomer and compared with the experimental data.101 

Several approaches are employed in determining the absolute stereochemistry of natural 

products. A common approach is the degradation by use of chemical reactions such as 

ozonolysis, hydrolysis or olefin metathesis. The resulting degradation products are then 

compared to their corresponding enantiomers by chiral HPLC or GC chromatography, a 

method commonly used for the amino acid analysis after hydrolysis of peptides.102,103 The 

derivatization of chiral alcohols and amines using Mosher’s reagent, α-methoxy-α-

trifluoromethyl-α-phenylacetic acid (MTPA) or MTPA-Cl is the most widely used 

method.104,105 The compound is derivatized with both the (R)- and (S)-enantiomers of the 

MTPA acid or MTPA-Cl to give diastereomers. The substituents of the MTPA ester shields or 

deshields the NMR signals of the neighboring protons next to the MTPA ester as shown in 

Figure 8. The shift differences ∆δ
SR of these protons in the two distereomers are calculated by 

subtracting the chemical shift δH of the (R)-MTPA ester derivative from the chemical shift δH 

of the (S)-MTPA ester derivative. The resulting ∆δ
SR values (+/-) of the protons are 

interpreted to give the configurational assignment based on the chiral center of the auxiliary 

(Figure 8 c and d).106 It is important to note that upon conversion of the MTPA acid to 

MTPA-acid chloride, the relative priority of the two substituents is switched, i.e. the 

trifluoromethyl group (CF3) is higher in priority than the carboxyl group (COOH) in the acid 

or ester, but lower than the chloro-carbonyl group (COCl) in the acid chloride. Thus, the R- 

enantiomer of the Mosher acid chloride (R)-(+)-MTPA-Cl ) gives rise to the (S)-MTPA esters 

and vice versa.107  
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Figure 8  Mosher model of the (R)-MTPA ester (a) and (S)-MTPA ester (b) of an alcohol and the 
interpretation of the observed ∆δ

SR values of protons for both possible configurations (c 
and d).106  
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1.5 Outline of this work 

The overall goal of the work described in this thesis was to isolate new biologically active 

secondary metabolites from gliding bacteria and elucidate their structures since new bioactive 

compound scaffolds have the potential of becoming lead structures for drugs against 

infectious diseases. Screening for biological activities against a panel of pathogenic bacteria 

and fungi with the crude methanol extracts of the strain collection at Helmholtz Centre for 

Infection Research (HZI) led to the selection of the Bacteroidetes Ohtaekwangia kribbensis 

strain PWU 25 and the Myxobacteria Hyalangium minutum strains NOCB-2T and Hym 3. The 

raw extract of PWU 25 was found to inhibit growth of Mucor himalis, Sacharomyces pombe, 

Nocardia flava, Micrococcus luteus and Staphylococcus aureus. Similarly, evaluation of the 

crude extracts of the H. minutum strains exhibited bioactivities against Chromobaterium 

violaceum, S. aureus and N. flava. 

 The work in this thesis presents the processes involved in the identification of the bioactive 

compounds in crude bacterial extracts and their eventual isolation and characterization. The 

raw extracts from shake flasks cultivation were fractionated by HPLC into 96 well plates for 

peak-biological activity correlation and dereplication by HPLC-UV-MS for peak-UV 

spectrum and peak-molecular mass correlations. Since both O. kribbensis and H. minutum 

strains were found to produce new compounds, large scale fermentations were performed and 

the crude extracts eluted in methanol. Compound isolations were carried out using several 

separation techniques and the structures of purified compounds elucidated by a combination 

of the molecular formulae derived from HRESIMS correlated to the UV/Vis spectral data and 

NMR spectroscopic data. The relative stereochemistries of the metabolites were determined 

from both the proton-proton coupling constants and from ROESY spectral data whereas 

structures of crystalline compounds were determined by X-ray crystallography. 

Finally, biological activities of the pure compounds were evaluated against pathogenic 

bacteria and fungi available at HZI. Additionally, where compound amounts were not 

limiting, cytotoxicity and anti-parasitic tests were also performed in collaboration with the 

laboratories of Dr. F. Sasse (HZI) and Prof. Dr. Reto Brun of the Swiss Tropical and Public 

Health Institute,  respectively.           
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2 Results   

2.1 Marinoquinolines A – F, pyrroloquinolines from the bacterium  

2.1.1 Strain selection and isolation of marinoquinolines A –F 

Strain PWU 25 was selected among other strains for the production of bioactivity  against the 

filamentous fungus Mucor himalis and the fission yeast Sacharomyces pombe. Additionally, 

the crude extract exhibited activities against the Gram-positive bacteria Nocardia flava, 

Micrococcus luteus and Staphylococcus aureus.  

Taxonomic studies (Dr. Kathrin Mohr) indicated strain PWU 25 cells to be Gram-negative, 

aerobic, non-flagellated, non-spore former and rod shaped. The cells measured 0.2 -0.5 µm in 

diameter and 1.5-7.0 µm long. The strain grows optimally at 30 oC and pH 6.8-7.2. Colonies 

on agar plate appear in deep yellow colour with amorphous shape (Figure 9). A 16S rDNA 

analysis identified PWU 25 at 99.9 % similarity to the recently described Ohtaekwangia 

kribbensis.108   

 

Figure 9. Colony of PWU 25 on agar plate; panel A and the vegetative cells; panel B. 

O. kribbensis, strain PWU 25 was optimized for large scale fermentation in a medium 

containing skimmed milk, defatted soy flour, yeast extract, starch, MgSO4, Fe-EDTA, and 

glycerol. A 70 L batch fermentation was performed in the presence of Amberlite XAD-16 

adsorber resin for production of the metabolites (fermentation details are explained in the 

experimental section). The resin was harvested by sieving and eluted with methanol and 

acetone. Subsequently, a methanol/n-heptane liquid-liquid partitioning was performed to 

enrich the active metabolites in methanol. An isolation strategy was developed that 

incorporated acid/base extraction, size exclusion chromatography (Sephadex LH-20), and 

final purification by preparative RP HPLC (Figure 10). Finally the major-compound 39 could 

be crystallized. 

A B 
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Figure 10. Isolation of marinoquinolines A – F (39-44) from XAD-16 adsorber resin of a 70 L 
fermentation of strain PWU 25.  
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2.1.2 Structure elucidation of marinoquinolines A – F (39-44) 

The crude extract was fractionated by RP HPLC on a 96 well micro-titre plate and each 

fraction tested against M. luteus. The growth inhibitions were correlated to two peaks, a major 

peak 39 at Rt 8.2 with a HRESIMS molecular ion at m/z 183.0919 [M + H]+ and a minor peak 

41 at Rt 15.4 min with a HRESIMS molecular ion at m/z 259.1236 [M + H]+ (Figure 11). 

 

 

 

 

 

 

Figure 11. HPLC fractionation of the crude extract of strain PWU 25. Peaks 39 and 41 were 
correlated to the growth inhibition of M. luteus. 

HRESIMS and isotopic pattern analysis of the pseudo-molecular ion peak at m/z 183.0919 

[M+H] + (calcd. for C12H10N2, 183.0922) was consistent with the molecular formula C12H10N2 

for the main product 39, which allowed the identification of two possible structures using the 

DNP data base, i.e. marinoquinoline A (39) and the pyridoindole isomer harman (45).109 

Since 39 has previously been isolated from the marine bacterium Rapidithrix thailandica110 

and characterized solely by X-ray analysis,111 the structural details were elucidated by IR, UV 

and a series of 1D (1H, 13C, DEPT) and 2D (COSY, ROESY, HMQC, HMBC) NMR 

experiments in acetone-d6 (Table 2). The presence of an NH group was deduced from the 

characteristic IR absorption band at vmax 3442 cm-1 in potassium bromide. The UV spectrum 

of 39 with λmax 239, 300, 312, and 326 nm was compatible with a heteroaromatic compound,  

which was also suggested by the nine calculated double-bond equivalents.  

The 13C NMR spectrum showed signals of twelve carbon atoms and all carbon-bound proton 

signals were correlated with their corresponding carbon signals from an 1H,13C HMQC NMR 

spectrum. The remaining NH proton was detected as a broad singlet at δH = 11.12 ppm while 

the methyl group C-10 appeared as a singlet at δH = 2.83 ppm, typical of aromatic methyl 

min 

39 

40 
42 

43 

41 

44 
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groups. The 1H,1H COSY NMR spectrum indicated the presence of four aromatic protons (H-

6 to H-9) in an ortho-disubstituted ring and of a pair of aromatic protons (H-4 and H-5) , 

which was completed by the quaternary carbons C-9a and C-5b (Figure 12).  

N

NH

1H,13C HMBC

1H,1H COSY

1H,1H ROESY

2

2a

45

5a

6

9
9a

5b

10

H         C

 

Figure 12. Selected 2D NMR correlations of marinoquinoline A (39)  

Carbon C-9a was identified from strong 1H,13C HMBC correlations with H-6 and H-8 while 

C-5b was assigned from HMBC correlations with H-6, -7 and -9. Similarly, the HMBC 

correlations of the quaternary carbon atoms C-5a and C-2a each with H-4 and H-5 allowed 

the assignment of the pyrrole ring in metabolite 39. The assignment was supported by the 

small vicinal coupling of 2.8 Hz between H-4 and H-5 and by the observation of their direct 
1H,13C coupling constants 1JC,H = 173 and 184 Hz, respectively, which are characteristic of 

pyrrole systems like 39.112  

Another HMBC correlation of C-5a with H-6 and the only NOE of 39 between H-5 and H-6 

indicated the connection of the aromatic rings. A further correlation of C-2a with H-10 and 

the single HMBC correlation of C-2 with the methyl protons H-10 were only consistent with 

the position of the methyl group at C-2. In particular, the absence of any further correlations 

of the methyl group bearing C-2 is only compatible with the isomer marinoquinoline A (39). 

(Table 2). Finally, 39 could be crystallized from acetone/petrol ether (1:1) to give crystals 

suitable for the replication of the X-ray analysis of Kanjana-Opas et al.111(Figure 13 and 14).  
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Figure 13.  X-ray crystal structure of marinoquinoline A (39). 

Crystal data:  

Empirical formula C12H10N2 

Formula weight 182.22 

Temperature 153(2) K 

Wavelength 0.71073Å 

Crystal size 0.37 x 0.23 x 0.13 mm3 

Volume 1867.79(14) Å3 

Density (calculated) 1.296 Mg/m3 

Colourless needles 
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Figure 14. Marinoquinolines A – F (39 – 44), the isomers, harman (45) and pityriacitrin (46). 
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HRESIMS analysis of marinoquinoline B (40) displayed a molecular ion [M+H]+ at m/z 

225.1382 consistent with the molecular formula C15H16N2. Similar to 39 and all further 

marinoquinolines the 1H,1H COSY and 1H,13C HMQC and HMBC correlations indicated the 

pyrroloquinoline core structure. Two new methyl group signals 12-H3 and 13-H3, overlapping 

as an aliphatic doublet at δH = 1.00 ppm, and a multiplet of a methine H-11 at δH = 2.44 ppm 

were observed in the 1H NMR spectrum of 40. According to the COSY and HMBC 

correlations between C-10 and H-12, H-13, and H-11 they constitute an isopropyl side chain 

that replaces the methyl group of 39 in marinoquinoline B (40). The connection of the side 

chain was confirmed by the HMBC correlation of C-2 with H-10 and H-11(Table 2). 

The molecular formula C18H14N2 was indicated from the [M+H]+ ion at m/z 259.1236 in the 

HRESIMS analysis of marinoquinoline C (41). Besides the pyrroloquinoline core structure in 

41 (Table 3) all further carbon-bound proton signals in the novel phenyl ring in 41 were 

correlated with their corresponding carbon signals from a 1H,13C HMQC NMR spectrum. The 

additional phenyl ring was assigned from the 1H,1H COSY correlations of the aromatic 

protons and from the HMBC correlations observed e. g. between C-6´ and H-4´ and H-2´ or 

between C-1´ and H-5´ and H-3´.  

Curiously, no HMBC correlations were observed with the methylene group C-7´ initially, 

though this remained as the only perfect link to complete structure 41. However, during NMR 

measurements the protons at C-7´ had been exchanged against deuterium from the acetone-d6 

solvent. Consequently, the singlet signal of methylene group C-7´, in the beginning observed 

in a 1H NMR spectrum was no longer present during later NMR experiments. The unexpected 

H/D exchange was verified by HRESIMS of the deuterated molecular ion [C18H12N2D2 + H]+ 

at m/z 261.1351. The H/D exchange with the solvent can be explained by keto-enol 

tautomerism of acetone-d6 providing deuterium ions. The enolization probably was catalyzed 

by the basic alkaloid 41 itself. In 41 H/D exchange at the methylene group bridging both 

aromatic systems was reversible. Similar H/D changes have been observed on aromatic rings 

during APCI LC/MS113, and are also used as a method in probing protein conformational 

changes in solution114 and for peptide identification and mapping in mass spectrometry.115 

HRESIMS analysis of marinoquinoline D (42) revealed a [M+H]+ ion at m/z 275.1180 with 

the elemental formula C18H14N2O indicating an additional oxygen atom compared to 41. 

Unlike 3, marinoquinoline D (42) was only poorly soluble in acetone. Hence its NMR data 
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were collected in methanol-d4 (Table 3). All carbon-bound proton signals in the new p-phenol 

unit were correlated with their corresponding carbon signals from a 1H,13C HMQC NMR 

spectrum. The phenol carbon atom (C-4´) at δC = 157.6 ppm provided HMBC correlations 

with the overlapping signals of H-5´/H-3´ and H-2´/H-6´ and allowed the assignment of the 

phenol unit. The signal of the bridging methylene group C-7´ was detected as a singlet at δH = 

4.60 ppm. A HMBC correlation of C-7´with H-2´ and H-6´ and the only HMBC correlation of 

C-2 with H-7´ in 42 indicated the direct connection to the marinoquinoline core structure. 

Similar to 41 a slow H/D exchange of the methylene protons H-7´ in 42 was observed. 

The [M+H]+ ion of marinoquinoline E (43) (C19H13N3) appeared at m/z 284.1182 in the 

HRESIMS analysis. Again the NMR spectra showed the presence of the pyrroloquinoline 

core structure (Table 4). However, the otherwise higher order multiplet of H-7 and H-8 was 

separated in 43, due to the enlarged conjugated system. The latter was assigned from the 

COSY correlations from H-4´ to H-7´ and the HMBC correlations observed between C-7´ and 

H-2´, -4´and -6´, and between C-3´a and H-2´, -5´ and -7´.  

The most complex of the hitherto known O. kribbensis metabolites is marinoquinoline F (44). 

HRESIMS analysis of 44 revealed a molecular ion peak [M+H]+ at m/z 312.1138 consistent 

with the molecular formula C20H13N3O. Thus 44 contain an additional CO group compared to 

43. In the 1H NMR spectrum several signals were overlapping and highly complex due to the 

second-order multiplets of H-6 to H-9 and H-4´ to H-7´, respectively. Nevertheless, the 

pyrroloquinoline core structure in 6 was easily recognized in the NMR data (Table 4) as well 

as an indole moiety from correlations, which were similar to those described above for 43. 

The additional carbonyl carbon C-8´ was detected at δC = 189.0 ppm, a shift characteristic for 

a ketone. Reliable HMBC correlations of the ketone carbon were not detected. However, its 

only possible position was the bridge between both aromatic systems. Advantageously, in 

addition to the NOE between protons H-5 and H-6, which was previously observed in 

marinoquinoline A (39), a weaker correlation between H-9 and H-2´ was detected in the 

ROESY spectrum of marinoquinoline F (44). Consistent with these NOEs, the distances of H-

5 to H-6 and H-9 to H-2´ were 2.50 and 3.33 Å, respectively, in a PM 3 generated model of 

44 [HyperChem Ver. 8. (PM3 Optimization)] (Figure 15). Noticeably, the singlet of the 2´-H 

proton was shifted about 1.4 ppm down-field to δ = 9.7 ppm. This de-shielding can also be 
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explained from the nearly planar keto-indole part which brings the indole methine H-2´ into 

the region affected by the carbonyl anisotropy.116  

 

 

 

Figure 15. 3D model of marinoquinoline F (44) [HyperChem Ver. 8. (PM3 Optimization)].  

 

Marinoquinoline F (44) is closely related to the isomer pityriacitrin (46), a potent UV filtering 

compound featuring a core structure derived from harman (45)117,118 which was produced by 

the yeast Malassezia furfur.  The indole ketone moiety was present in both. Consequently, 

comparison of the 1H and 13C NMR data of 44 and 46 in deuterated acetonitrile showed a high 

similarity of the indole signals (Table 5). 

 



Results 

 

28 

 

Table 2. NMR Data of Marinoquinoline A (39) and B (40) in acetone-d6. 

 39[a]    40[b]   

C/H δH, m (J in Hz) δC
[c] 

HMBC[e] 
(1JC,H in Hz) 

 
δH, m (J in Hz) δC

[c] 
HMBC  
(1JC,H in Hz) 

2  146.92, qC  10   149.99, qC 10 
2a  129.89, qC 4, 5, 10   129.69, qC  4, 5, 10, 
NH 11.12, br. s     11.16, br. s   
4 7.57, d (2.8) 127.11, CH  5 (184 Hz)  7.57, d (2.9) 127.05, CH 5 (184 Hz) 
5 7.12, d (2.8) 102.04, CH 4 (173 Hz)  7.12, d (2.9) 101.87, CH 4 (174 Hz) 
5a  128.41, qC 4, 5, 6   128.64, qC 4, 6 >5 
5b  124.26, qC 7, 9 >6   124.01, qC 7, 9 
6 8.22, dd (7.7, 2) 123.77, CH 8 >7  8.23, d (7.7, 1.8) 123.66, CH 8 
7 7.48, td (7-8, 2)[d] 125.71, CH  9 (163 Hz)  7.51, td (7-8, 2)[d] 125.63, CH 9 
8 7.51, td (7-8, 2)[d] 126.11, CH 6 (163 Hz)  7.51, td (7-8, 2)[d] 126.05, CH 6 
9 7.99, dd (7.7, 2) 129.98, CH 7, 6  8.04, d (7.7, 1.8) 129.87, CH 7 
9a  143.89, qC 6, 8 >9   143.53, qC 6, 7/8 
10 2.83, s 21.34, CH3 (120 Hz)  3.08, d (7.3) 43.91, CH2 12/13, >11 
11     2.44, tspt (7.3, 6.8) 29.01, CH 10, 12/13 
12     1.00, d (6.8) 22.96, CH3 10, 13 >11 
13     1.00, d (6.8) 22.96, CH3 10, 12 >11 

[a] 1H/13C 600/150 MHz; [b] 1H/13C 600/75 MHz; [c] 13C data are given with two digits in 
order to discriminate between narrowly separated signals; [d] complex first-order multiplets; [e] 
HMBC correlations provide the observed protons for the carbons.  
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Table 3. NMR Data of Marinoquinoline C (41) and D (42).  

 41[a]    42[b]   
C/H δH, m (J [Hz]) δC

[c] HMBC  δH, m(J [Hz]) δC
[c] HMBC 

2  148.98, qC n.o.[d]   148.83, qC 7’ 
2a  129.20, qC 5   128.76, qC[e] 4, 5 
NH 11.15, br. s  -  8.44, br. s   
4 7.55, d (2.9) 127.47, CH 5  7.85, d (2.8) 133.21, CH 5 
5 7.12, d (2.9) 102.10, CH 4  7.30, d (3.0) 103.42, CH 4 
5a  129.39, CH 4 >5, 6   132.87, qC 5, 6 
5b  124.30, qC 7   124.77, qC 9, 7/8 
6 8.24, d (6.2 ) 123.83, CH 8  8.12, d (1.0) 124.77, CH 7/8 
7 7.51, td (7.3, 2.2) 126.06, CH 9  7.71, m 127.77, CH 9 
8 7.54, td (8.4, 1.8) 126.33, CH 6  7.71, m 128.67, CH 6 
9 8.07, dd (7.7, 1.5) 130.21, CH 7  8.39, d (9.6) 125.32, CH 7/8 
9a  143.77, qC 6, 8 >9   139.30, qC 6, 7/8 
1´  139.93, qC 3´, 5´   128.81, qC[e] 3´, 5´ >7´ 
2´ 7.43, d (8.3, 1.3) 129.82, CH 4´, 6´  7.18, d (8.4) 130.60, CH 7´, 2´ /6´ 
3´ 7.24, m 129.24, CH 5´  6.74, d (8.6) 116.60, CH 5´, 2´/6´  
4´ 7.15, m 127.16, CH 2´, 6´  4.86, s 157.62, COH 2´/6´, 3´/5´ 
5´ 7.24, m 129.24, CH 3´  6.74, d (8.6) 116.60, CH 3´/5´ >2´ /6´  
6´ 7.43, d (8.3, 1.3) 129.82, CH 2´, 4´  7.18, d (8.4) 130.60, CH 7´, 2´ /6´ 
7´ 4.57, s 40.95, CH2 2´, 6´   4.60, s 38.64,CH2 2´/6´  

[a] in acetone-d6, 
1H/13C 600/150 MHz; [b] in methanol-d4, 

1H/13C 300/75 MHz; [c] 13C data are given 
with two digits in order to discriminate between narrowly separated signals; [d] not observed due to 
H/D-exchange of 7’-H2; 

[e] interchangeable.  
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Table 4. NMR Data of Marinoquinoline E (43) and F (44) in acetone-d6 (
1H/13C 600/150 MHz). 

 43     44   

C/H δH, m (J in Hz) δC
[c] 

1JC,H 
[Hz] 

HMBC[d]  
δH, m (J in Hz) δC

[c] HMBC[d] 
(1J [Hz]) 

2  144.50, qC - 4   143.23, qC  
2a  128.04, qC - 4 >5   131.43, qC 4, 5 
NH 10.79, br. s[a]     11.59, br. s -  
4 7.61, d (2.9)  127.50, CH 184 5  7.79, d(2.9) 129.24, CH 5 
5 7.20, d (2.9)  102.24, CH 174 4  7.25, d(2.9) 101.34, CH 4 (174 Hz) 
5a  129.67, qC - 6, 4, 5   128.95, qC 4, 5 
5b  123.72, qC[e] - 9, 7 >6[b]   125.85, qC 7, 9 
6 8.27, dd (8.1, 1.5)  123.71, CH 158 8[b]  8.39, dd(7.5, 2.0) 124.08, CH 7,8 
7 7.51, ddd (8.1, 6.9, 1.1)  125.62, CH 160 9  7.70, td(6.6, 1.8) 128.38, CH 9 
8 7.57, ddd (8.2, 6.9, 1.5) 126.48, CH 159 6  7.68, td(7.5, 1.8) 127.02, CH 6 
9 8.17, dd (8.1, 1.1)  129.94, CH 159 7  8.30, dd(7.7, 1.5) 131.58, CH 7 
9a  143.94, qC - 8, 6>9   142.40, qC 6, 8 
NH 10.95, br. s[a]     11.24, br. s -  
2´  8.25, br s  126.91, CH - -  9.70, s 139.19, CH  
3´  115.12, C - 2´ >4´   115.94, qC 2´ 
3´a  127.83, qC - 7´, 5´ >2´    128.71, qC 2´, 5´ 7´ 
4´ 8.77, d (7.3 br.) 123.64, CH 164 6´ >5´  8.65, dd(6.6, 2.5) 123.31, CH 5´,6´ 
5´  7.21, td (7.2, 1.0 br.) 121.17, CH 159 7´ >4´  7.29, td(7.3, 1.8) 124.05, CH 4´ 7´  
6´  7.25, ddd (7.8, 7.1, 0.9)  123.43, CH  4´  7.31, td(7.5, 1.4) 123.16, CH 7´ 
7´  7.53, d (7.8 br.)  112.33, CH 184 5´  7.60, m 112.89, CH 5´ 
7´a  137.93, qC - 4´, 6´, 2´   137.14, qC 2´, 4´, 6´ 
8´       189.01, qC  

[a] interchangeable; [b] C-5b overlapping with C-6 was assigned from strong HMBC-correlations with 
H-9 and H-7 at this position, which should not be present if only carbon-6 was located there. Further 
there is a weak correlation with H-6 at this position, which is not possible for C-6; [c] 13C data are 
given with two digits in order to discriminate between narrowly separated signals; [d] HMQC and 
HMBC spectra with enhanced 13C resolution; [e] quaternary carbons were observed in an APT 13C 
NMR spectrum.  
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Table 5. Comparison of the NMR Data of Marinoquinoline F (44) and Pityriacitrin (46) in 

acetonitrile-d3.  

 marinoquinoline F (44)[a]    pityriacitrin (46)[b]  
Atom δH, m (J in Hz) δC

[c]
   Atom δH, m (J in Hz) δC

[c] 
2  143.35  1  139.48 
2a  131.67  1a  137.09 
NH 11.06, br. s   3 8.58, d (4.8) 138.42 
4 7.71,m 129.54  4 8.27, d (4.8) 118.87 
5 7.18, d (2.2) 101.82  4a  132.15 
5a  128.91  5 8.26, d (7.8) 122.68 
5b  126.02  5a  121.69 
6 8.34, m 124.38  6 7.32, m 121.27 
7 7.68, m 128.91  7 7.62, dd (7.8,7.8) 129.92 
8 7.66, t (2.8) 127.61  8 7.77, d (7.8 ) 113.40 
9 8.32, m 131.81  8a  142.40 
9a  142.64  9 NH 10.96, s  
NH 10.13, br. s   1’NH 10.06, s  
2´ 9.56, d (2.9) 139.84  2‘ 9.40, d (2.9) 138.69 
3´  115.98  3‘  115.83 
3´a  128.71  3’a  128.48 
4´ 8.58, d (6.6) 123.38  4‘ 8.60, d (6.7) 123.12 
5´ 7.32, td (7.2, 1.5) 124.61  5‘ 7.32, m 123.30 
6´ 7.34, td (7.3, 1.5) 123.76  6‘ 7.32, m 124.20 
7´ 7.59, dd (6.4, 2.0) 113.33  7‘ 7.57, dd (6.7,1.9) 112.94 
7´a  137.33  7‘a  136.93 
8´  189.60  10  189.39 

[a] (1H/13C 600/75 MHz).[b] (1H/13C 400/100 MHz)8. [c] 13C data are given with two digits in order to 
discriminate between narrowly separated signals. 
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Figure 16. Marinoquinoline F (44) and its isomer pityriacitrin (46).  
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2.2 Biological activities of marinoquinolines A –F  

2.2.1 Antibacterial and antifungal activities 

Testing of marinoquinolines A - F (39 - 44) for antibiotic activity against a broad panel of 

bacteria and fungi showed weak activity with minimum inhibition concentration (MIC) of 

33.5 µg/mL against some of the strains tested. The indole variant 43 showed the broadest 

activity inhibiting Gram-positive bacteria (Nocardia flava and Micrococcus luteus) and three 

fungi (Schizosaccharomyces pombe, Mucor hiemalis and Rhodotorula glutinis) followed by 

the phenyl derivative 41 with antifungal activity only (S. pombe and R. glutinis). Both 39 and 

44 were active against Gram-negative Escherichia coli and S. pombe, respectively, while the 

phenyl variant 42 and isopropyl variant 40 were not active at 33.5 µg/mL. The MIC 

concentrations tested ranged from 33.5 to 0.052 µg/mL (Table 6).  

 
Table 6. Antibacterial and antifungal activity of Marinoquinolines A - F (39 - 44) [MIC, µg/mL]. 
 

Pathogen 39 40 41 42 43 44 Ref[a] Ref[b]  
Bacteria         
Chromobacterium violeceum >33.5 >33.5 >33.5 >33.5 >33.5 >33.5 0.21  
Escherichia coli 33.5 >33.5 >33.5 >33.5 >33.5 33.5 0.83  
Micrococcus luteus >33.5 >33.5 >33.5 >33.5 33.5 >33.5 0.104  
Nocardia flava >33.5 >33.5 >33.5 >33.5 33.5 >33.5 1.67  
Staphylococcus aureus >33.5 >33.5 >33.5 >33.5 >33.5 >33.5 0.104  
Fungi and yeasts         
Candida albicans >33.5 >33.5 >33.5 >33.5 >33.5 >33.5  1.67 
Mucor hiemalis >33.5 >33.5 >33.5 >33.5 33.5 >33.5  1.67 
Pichia anomala >33.5 >33.5 >33.5 >33.5 >33.5 >33.5  1.67 
Rhodotorula glutinis >33.5 >33.5 33.5 >33.5 33.5 >33.5  0.42 
Schizosaccharomyces pombe >33.5 >33.5 33.5 >33.5 33.5 33.5  1.67 

[a] Oxytetracyclin hydrochloride, (1 mg/mL; 2µL); [b]Nystatin (1 mg/mL; 2µL). 
 

2.2.2 Cytotoxic activities 

Marinoquinolines A - F (39 – 44) were moderately cytotoxic when evaluated against three 

growing cancer cell lines, L929, MCF -7, and KB-3-1 and a primary cell line, HUVEC (Table 

7).  Methanol was used as a negative control. The keto-indole variant 44 was the most toxic 

followed by the phenyl derivatives 41 and 42, while the isopropyl variant 40 showed the least 

cytotoxicity.119 
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Table 7. Cytotoxicity of Marinoquinolines A - F (39 – 44) (IC50 in µg/mL).   
 

Compound. L929 MCF-7 KB-3-1 HUVEC 
39 5.5 3.5 2.2 1.5 
40 8.0 6.5 5.0 3.6 
41 5.4 2.6 2.0 0.55 
42 1.1 3.2 3.2 2.5 
43 5.5 1.9 4.5 5.8 
44 4.1 1.6 0.3 2.8 

 

2.2.3 Antiparasitic activities 

In a screening against tropical parasites (Table 8) marinoquinoline B (40) and F (44) were 

identified as the most active structural variants with IC50 values of 1.8 and 1.7 µM, 

respectively, against P. falciparum. However, the IC50 values against the cell line L6 

indicated a considerable higher cytotoxicity compared to 3H-pyrrolo[2,3-c]quinoline (IC50 

173.2 µM).120 All the compounds were inactive when tested against Trypanosoma brucei 

rhodesia, Trypanosoma cruzi and Leishmania  donovani.  

 

Table 8. Antiprotozoal activity and cytotoxicity of marinoquinolines A–F (39–44) (IC50, µM). 

Compound no. 
Trypanosoma brucei 
rhodesia 

T. cruzi 
Leishmania 
donovani 

Plasmodium 
falciparum (K1) 

Cytotoxicity 
L6 cells 

39 54.4 29.5 >548.8 9.8 30.6 
40 45.9 53.1 86.5 1.8 58.7 
41 42.2 28.3 58.8 5.5 39.1 
42 61.2 27.0 119.9 15.0 66.4 
43 51.5 23.6 63.9 7.6 35.6 
44 39.0 21.8 16.1 1.7 12.5 
Melarsoprol 0.012     
Benznidazole  1.95    
Miltefosine   0.386   
Chloroquine    0.141  
Podophyllotoxin     0.021 
 

2.2.4 Acetylcholine esterase activity 

Marinoquinoline A (39) has also been characterized as an inhibitor of the acetylcholine 

esterase.121  
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2.3 Hyaladione, an S-methyl cyclohexadiene-dione from Hyalangium minutum  

2.3.1 Strain selection and cultivation 

The myxobacterium, Hyalangium minutum type strain NOCB-2T was isolated from a soil 

sample containing decaying plant material collected in the mountains of Izu and Manazuru in 

Japan as described by Reichenbach et al.122,123 The strain was selected because the crude 

methanol extract  indicated activity against the Gram-positive bacteria, S. aureus, N. flava and 

the Gram-negative bacterium C. violaceum. Peak activity correlations by fractionation and 

bioassays and subsequent initial dereplication with the chemical data of hyaladione (47), a 

UV/Vis chromophore at λmax, ca. 360 nm, HRESIMS [M+H]+ at m/z 203.9882, and 

comparison of the HPLC retention time (Rt) with the in-house Myxobase as well as searches 

in the DNP database and Chemical Abstracts online established 47 to be novel. The strain was 

cultivated and maintained in liquid soybean-flour medium. The cells appear orange-brown in 

color on agar plates or in liquid cultures (Figure 17 panel A and B) respectively.  

   

 

Figure 17. A: Growth of H. minutum strain NOCB-2T on agar plate; B: Cultivation in shake 
flasks. 

 

Isolation of 47 was achieved by an up-scale fermentation of strain NOCB-2T. The strain was 

inoculated in liquid soybean-flour medium containing 2% Amberlite XAD-16 adsorber resin 

and fermented in a 100 L bioreactor for 7 days. The adsorber resin was recovered from the 

culture broth by sieving and the crude extract was eluted from the resin with methanol. An 

isolation strategy was developed involving solvent-solvent partitioning, silca-gel flash 

chromatography, preparative RP MPLC and finally crystallization from acetone to produce 

pink needle shaped crystals of 47 (Figure 18). 

A B 
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Figure 18. Isolation of hyaladione from XAD-16 resin recovered from a 100 L fermentation of 
strain NOCB-2T (outlined numbers from 21.1 to 26.1 are representative of the 
experimental numbers). 

 

2.3.2 Structure elucidation of hyaladione (47) 

The structure of hyaladione (47) was established by extensive HRESIMS, NMR, and X-ray 

crystallographic analysis. Ultrahigh-resolution ESI-TOF MS and isotopic pattern analysis of 

the pseudo-molecular ion peak [M+H]+ at m/z 203.9882 revealed the molecular formula 

C7H6ClNO2S for 47 indicating five degrees of unsaturation. Supporting the empirical formula 

all seven carbon atoms were present in the 13C NMR spectrum of 47 in acetone-d6. The 

signals of a methyl carbon and a methine carbon were found at δC 13.9 (C-7) and δC 120.3 (C-
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5) respectively. Five quaternary signals of two carbonyl carbons [δC 177.9 (C-4), δC 174.9 (C-

1)] and three carbon signals [δC 106.2 (C-2), δC 146.4 (C-3), δC 159.2 (C-6)] suggested the 

presence of a substituted quinone-type aromatic system. This was supported by the IR 

spectrum showing two strong bands of α,β-unsaturated carbonyl groups at νmax 1604 and 1566 

cm-1. Additionally, the IR spectrum revealed two sharp bands of a primary amine at νmax 3438 

and 3308 cm-1 while the presence of UV absorption at λmax 360 nm supported the presence of 

a conjugated chromophore.  

The 1H NMR spectrum of 47 in acetone-d6 presented only three singlet signals of a methyl 

group (δH 2.41, CH3-7), a methine proton (δH 6.26, H-5), and a broad singlet of an amine (δH 

6.81) (Table 9). However, the few correlations from the COSY,124 HMBC and ROESY 

spectra were insufficient for a complete structure elucidation, because the ratio of 5 

quaternary carbons to 2 proton-bearing carbons was too unfavorable (Figure 19 and Table 9). 

Fortunately, the compound could be crystallized from acetone to obtain pink needle-shaped 

crystals for an unambiguous structure elucidation by X-ray analysis (Figure 20).  

 

Table 9. NMR Data of Hyaladione (47) in acetone-d6 (
1H 600 MHz; 13C 150 MHz). 

 

C/H δC, mult δH, mult COSYa ROESYa HMBCa  
(1JC,H in Hz) 

1 174.8, qC    5 
2 106.2, qC     
3 146.4, qC    5 
4 177.7, qC     
5 120.3, CH 6.26, s 7 7 5 (171), 7 
6 159.2, qC    7, 5 
7 13.9, CH3 2.41, s 5 5 7 (142) 
NH2  6.79, br s    

a positions of correlated protons. 
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Figure 19. All 1H,1H COSY, ROESY, and 1H,13C HMBC correlations of hyaladione (47).  

 

Figure 20. X-ray crystal structure of hyaladione (47).  

 

2.4 Biological activities of hyaladione 

2.4.1 Antibacterial and antifungal activities 

Hyaladione (47) displayed broad but weak antibacterial and antifungal activities with the best 

minimum inhibition concentration (MIC) value at 0.83 µg/mL against the methicillin-resistant 

Staphylococcus aureus (Table 10). 

 

Table 10. In vitro antibacterial and antifungal activity of hyaladione (47) and two control drugs. 

 

 

 

 

 

 

 

 

 

 

 
[a] broad spectrum antibacterial [b] broad spectrum antifungal. 
 

  MIC [ µg mL-1 ]  

Pathogen 
hyaladione 
(47) 

oxytetracycline 
hydrochloride[a] nystatin[b] 

Bacteria     
Micrococcus luteus 3.3 0.104  
Staphylococcus aureus 0.83 0.104  
Escherichia coli 33.3 0.83  
Nocardia flava 3.3 1.67  
Chromobacterium violaceum 2.1 0.21  
Pseudomonas aeruginosa 8.5   
Fungi and yeasts    
Mucor hiemalis 16.5  1.67 
Schizosaccharomyces pombe > 33.3  1.67 
Rhodotorula glutinis 1.7  0.42 
Pichia anomala 33.3  1.67 
Candida albicans > 33.3  1.67 
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2.4.2 Cytotoxic activity 

The cytotoxicity of 47 was evaluated against three growing cancer cell-lines and a primary 

cell-line using the MTT method.9 47 was cytotoxic against the breast cancer cell line MCF-7 

(IC50 1.23 µM), the mouse subcutaneous connective tissue fibroblast cell line L929 (IC50 1.47 

µM), the cervix carcinoma cell line KB-3-1 (IC50 3.93 µM), and the non-transformed human 

umbilical vein endothelial cell line HUVEC (IC50 2.21 µM). 

2.4.3 Antiparasitic activity 

Hyaladione (47) was moderately active against three mammalian parasites, T. b. rhodensia, T. 

cruzi, L. donovani, and P. falciparum K1 when compared with the respective reference drugs 

(Table 11). However, it was also cytotoxic against the rat myoblast L6 cells. The assays were 

performed at the Swiss Tropical and Public Health Institute, Basel Switzerland. 

 

Table 11. In vitro antiparasitic activity of hyaladione (47) (IC50 µg mL-1). 

Test 
drug/compound 

T. b. 
rhod. 

T. cruzi 
L. don. 
axen. 

P. falc. K1 
Cytotoxicity. 
L6 

 IC50 IC50 IC50 IC50 IC50 
Hyaladione (47) 0.055 1.84 0.197 0.186 0.552 
Melarsoprol 0.002         
Benznidazole   0.58       
Miltefosine     0.144     
Chloroquine       0.046   
Podophyllotoxin         0.005 
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2.5 The hyafurone family from Hyalangium minutum, strain NOCB-2T 

2.5.1 Identification and isolation of the hyafurones and hyapyrones 

Besides hyaladione (47), the myxobacterium H. minutum strain NOCB-2T also produced a 

novel family of polyketides with common typical UV spectra. Hyafurone A1 (48) was 

identified as the second major compound of the extract and the main product of the polyketide 

family. However, in the bioassay guided fractionations of the crude extract of NOCB-2T, 48 

was inactive against the bacterial and fungal pathogens tested. Nevertheless, the activity of 

hyafurone B (49) with a UV pattern similar to 48 was correlated to S. aureus, N. flava, C. 

violaceum, and M. hiemalis. HRESIMS analysis of 48 displayed a molecular ion at m/z 

547.3027 [M + Na]+ revealing the molecular formula C32H44O6. Hyafurone A1 (48) and all its 

derivatives (49-54) were established to be new according to the dereplication of their high 

resolution masses (HRESIMS) and UV data by searches in the in-house Myxobase, Chemical 

Abstracts online and the DNP. 

The hyafurones A1 - D and hyapyrone A (48 - 53) were isolated from the XAD-16 resin of a 

70 L large-scale fermentation of strain NOCB-2T. The adsorber resin was recovered from the 

culture broth by sieving and the crude extract eluted from the resin with methanol and 

acetone. An isolation strategy was developed involving methanol/n-heptane  partitioning, a 

subsequent partitioning of the extract in methanol layer between ethyl acetate and water, 

followed by silica-gel flash chromatography, preparative RP MPLC and RP HPLC to yield 

hyafurones A1 (48), A2 (49), B (50), C (52), D (53) and hyapyrone A (51) (Figure 21 ). 

Although initially detected in smaller amounts in strain NOCB-2T, hyapyrone B (54) was 

isolated preferably from H. minutum strain Hym 3, which showed a higher production. The 

isolation procedure was similar to the isolation of other hyafurones with the exception of the 

last purification step where acetonitrile, acidified with formic acid was used in the preparative 

RP-HPLC (Figure 22). 
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Figure 21. Isolation of hyafurones, A1 (48), A2 (49), B(50), C(52), D(53) and hyapyrone, A (51) 
from XAD resin of a 70 L fermentation of strain NOCB-2T. 
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Figure 22. Isolation scheme of hyapyrone B (54) from XAD resin of a 70 L fermentation of strain 
Hym 3. 



Results 

 

42 

 

2.5.2 Structure elucidation of hyafurones and hyapyrones 

Hyafurone A1 (48) was isolated as yellow oil. Ultrahigh-resolution ESI MS (UHRESIMS) 

and isotopic pattern analysis of the molecular ion m/z 547.3027 [M + Na]+ revealed the 

molecular formula C32H44O6 for hyafurone A1 (48). This was further verified by the presence 

of the molecular ion [M+H]+ at m/z 525.3206 giving rise to the same molecular formula 

(Figure 23).  

 

Figure 23. UV-MS of the molecular ion cluster of hyafurone A1 (48) at m/z 525.3206 and three 
other fragment clusters from loss of water molecules m/z 507.3104, 489.2998 and 
471.2885 respectively, i.e. a difference of 18 mass units between the clusters.  

Additionally, the presence of a sodiated double mass ion [2M+Na]+ at m/z 1071.6165 

unambiguously agreed to the assigned molecular formula (Figure 24). The empirical formula 

indicated eleven double-bond equivalents for 48 which were also reflected by the polyene 

type UV spectrum, with three main bands at vmax 292, 306 and 320 nm. 

 

Figure 24. UV and MS of hyafurone A1 (48) with the sodiated molecular ion clusters [M+Na]+ at 
m/z 547.3027 and [2M+Na]+ at m/z 1071.6165. 
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The skeletal structure of 48 was assigned through interpretation of both 1D and 2D NMR 

spectroscopic data (COSY, ROESY, HMQC, HMBC) acquired in methanol-d4 (Table 12). 

The 1H NMR spectrum revealed the presence of five methyl groups, four methylene and 

seven methine signals. The methyl signals CH3-1(δH 1.71, 1.71 ppm) and CH3-29 (δH 1.46, 

1.47 ppm) each with equal integral values to the other three methyl protons were 

conspicuously split into doublets. The 13C NMR spectrum showed signals for all 32 carbon 

atoms with 10 of them split in double signals (C-1, C-2, C-4, C-5, C-6, C-7, C-8, C-9, C-10, 

and C-13).  All carbon-bound proton signals were correlated to their corresponding carbon 

signals from an 1H,13C HMQC NMR spectrum. Additionally, a DEPT NMR spectrum 

revealed the four methylene signals (C-6, C-8, C-21, and C-22) and supported the assignment 

of the quaternary carbons C-2, C-4, C-5, C-14, and C-23. 

Analysis of the 1H,1H COSY NMR spectrum established three structural fragments (Figure 

25). The first fragment contained the five aromatic protons (H-24 - H-28) of a phenyl residue. 

Construction of the second fragment chain was based on the serial correlations of six adjacent 

methine protons from H-15 to H-20 with an extension to CH2-21 and CH2-22. Additionally, 

correlations were observed between the sp3-hybridized methines H-18 and H-20 and the 

methyl group protons CH3-31 and CH3-32, respectively. The last fragment was derived from a 

series of correlations between the methylene protons CH2-6 and the unsaturated methine 

proton H-13. Three hydroxyl groups were established on the basis of 13C NMR chemical shift 

at C-7 (δC 68.6), C-9 (δC 67.5) and C-19 (δC 79.3). 

OH OH OH O
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Figure 25. 1H,1H COSY and 1H,13C HMBC NMR correlations for elucidation of hyafurone A1 
(48).     



Results 

 

44 

 

The three main fragments were then linked using long-range HMBC correlations. The phenyl 

moiety was joined to the second COSY fragment from a mutual HMBC correlation between 

the methylene CH2-22 with the aromatic methines CH-24 and CH-28. Similarly the second 

aliphatic fragment was joined to the third fragment from mutual key HMBC correlations 

assigned between the methyl group CH3-30 with the methines CH-13 and CH-15 and a 

HMBC correlation of CH3-30 to the olefinic quaternary carbon (C-14). Additionally, a mutual 

HMBC correlation was observed between the methines CH-13 and CH-15.  

The furone moiety was assigned solely from the 1H,13C HMBC long-range correlations, i.e. 

correlations between the methyl protons CH3-1 (δH 22.1) with quaternary hemiketal carbon 

(C-2, δC 104.2) and with the carbonyl carbon C-3 (δC 205.3), correlations between the methyl 

protons CH3-29 (δH 1.71) with quaternary carbon C-5 (δc 186.6) and carbonyl carbon (C-3)  

and also with the quartenery carbon (C-4, δc 110.1). These data, and an HMBC correlation 

between the methylene CH2-6 and the quaternary carbon C-5, established the five-membered 

ring as 2,4-dimethylfuran-4-en-3-one, connecting to the afore assigned fragment at C-5 

(Figure 25). 

The relative stereochemistry of hyafurone A1 was assigned by analysis of both the vicinal 

proton coupling constants (3JH,H) and by 1D-NOE correlations. The ∆10,11 double- bond was 

assigned as cis (Z) on the basis of small vicinal coupling constant of 3J10,11
 = 11.0 Hz. 

Similarly, the double-bonds at ∆12,13 and  ∆16,17 were assigned as trans (E) from the large 

vicinal coupling constants of 3J = 15.0 Hz. Irradiation at the resonance frequency of CH3-30 

caused an NOE enhancement of the H-16 signal indicating a 14E double-bond geometry 

(Figure 26). 

 



Results 

 

45 

 

OH
OH

OH O

O

OH
2

1
29

530

31

32

28

25

23

21

8

11

14

16

cis-double bond configuration
 

Figure 26. Structure of hyafurone A1 (48)  

When exposed to light or stored in methanol hyafurone A1 (48) was converted to its isomer 

hyafurone A2 (49) as a degradation product, e.g. 30 % of 48 was found to have isomerized to 

49 after a while. Re-purification of 48 additionally led to isolation of 49. HRESIMS analysis 

of 49 displayed a molecular ion [M+Na]+ at m/z 547.3040 consistent with the molecular 

formula C32H44O6. 
1H and 13C NMR spectra (Table 13) were near identical to hyafurone A1 

(48) except for the overlap of three olefinic proton signals  H-11, H-12 and H-13. The trans 

(E) double bond configuration at methines C-10 and C-11 in 49 was assigned from the proton 

coupling constant 3J10,11
 = 14.0 Hz. Additionally, strong NOEs (Figure 27) between H-9 and 

H-11 and the methine protons H-10 and H-12 were observed. All the other 2D NMR 

correlations were identical to those observed in 48 thus establishing 49 as a stereoisomer  

(Figure 27). 
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Figure 27. Selected NOE correlations of hyafurone A2 (49).  
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Figure 28. Structures of hyafurones; A1 (48), A2 (49), B (50), C (52), D (53), and hyapyrones; A 
(51), B (54).  

 

Hyafurone B (50) was the second major compound of the hyafurones in the extract. Unlike 

hyafurone A1 (48), 50 was identified in the methanol crude extract of strain NOCB-2T as 

possessing activity against S. aureus, N. flava, C. violaceum, and M. hiemalis after 

fractionations with bioassays. The molecular formula C32H42O5 was established from the 

HRESIMS and isotopic pattern analysis of the molecular ion at m/z 507.3099 [M+H]+ and the 

sodiated ion [M+Na]+ at m/z 529.2923. Similar to 48, the ion clusters at m/z 489.2996, 

471.2885, 453.2772 (Figure 29) displayed sequential losses of water molecules from the 
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compound. The molecular ion at m/z 507.3099 had been identified as a fragment ion of 48 

from elimination of water.  

 

Figure 29. UV-MS of hyafurone B (50) with a λmax 306 nm and various molecular ion clusters. 
The base peak at m/z 529.2923 is the sodiated molecular ion cluster [M+Na]+ while 
the ion clusters at m/z 489.2996, 471.2885 and 453.2772 represented sequential loss of 
water from the actual [M+H]+ ion m/z 507.3099. 

 

The 1H and 13C NMR spectra of 50 in CD3OD were similar to 48. The only differences were 

found in the methylene CH2-8 (δH,C 1.69, 1.91/45.2) and methine CH-9 (δH,C 4.92/66.5) of 48 

(Table 12) which were shifted to the unsaturated methines δH,C 6.61/121.1 and δH,C 6.89/141.1 

in hyafurone B (50) (Table 14), respectively, showing the extension of the polyene by a 

formal elimination of water. The relative trans configuration of the new ∆
8,9 double bond was 

assigned from the large vicinal proton coupling constant 3J8,9 = 15.3 Hz , while the cis 

configuration of the ∆10,11 double bond (Figure 30) was assigned from a small vicinal coupling 

constant of 3J 10,11 = 11.1 Hz together with  strong NOE correlations between the methyl 

protons CH3-30 (δH 1.93) and CH-12 (δH  6.58) and between the methines CH-8 (δH  6.61) and 

CH-10 (δH 5.43).  
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Figure 30. A small vicinal proton coupling constant of 3J10,11 = 11.1 Hz together with  strong 
NOEs of neighbouring groups  supported the assignment of a cis configuration.  

 

Hyapyrone A (51) an isomer of hyafurone B (50) was isolated independently as a minor 

compound of the strain NOCB-2T. HRESIMS of 51 displayed an [M+H]+ peak at m/z 

507.3103  consistent with the molecular formula C32H42O5. 1D and 2D NMR data of 51 

acquired in CD3OD exhibited many similarities to those observed with hyafurone B (50) 

(Tables 14 and 15). The structural assignment of the western fragment from the phenyl 

moiety to the methine group CH-9 (δH 5.43, δC 132.8) of 51 was identical to the similar 

fragment of 50. Notable differences in the 1H NMR spectrum of 51 were a methine quartet at 

δH 4.89 (H-4), a methine triplet at δH 6.17 (H-6) and shifts of two methyl signals H-28 and H-

29 (δH 1.84, s and δH 1.52, d, J = 6.6) compared to similar methyl signals H-1 and H-29 (δH 

1.45, s and δH 1.76, s) in 50. The assignment of the eastern fragment of the structure was 

derived by COSY and long-range HMBC correlations. The short fragment from H-6 to H-9 

was assigned from the adjacent 1H,1H COSY cross peaks in the chain. Another COSY 

correlation was observed between the methine H-4 and methyl H-29 protons. The pyranone 

ring and its connection to the rest of the molecule were assigned from HMBC correlations 

shown in Figure 31. 
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Figure 31. Selected 1H,1H COSY and 1H, 13C HMBC correlations of hyapyrone B (51). 

Hyafurone C (52) was the third member of the polyketide family to be isolated. HRESIMS 

analysis of 52 showed a molecular ion [M+H]+ at m/z 568.3634 indicating an empirical 

formula of C34H49NO6 with eleven degrees of unsaturation (Figure 32). The ion cluster at m/z 

550.3538 represents the loss of a water molecule. Additionally present was the sodiated ion 

[M+Na]+ at m/z 590.3450 which supported the assigned molecular formula unambiguously. 

Two additional carbons, five protons, and nitrogen (C2H5N) were calculated from the 

elemental formulae in addition to the composition of the main component hyafurone A1 (48). 

The structure of hyafurone C (52) was elucidated from 1D and 2D NMR spectroscopic data in 

CD3OD (Table 16). In the NMR spectra the major part i.e. from the phenyl moiety to the 

furanone ring quaternary carbon at C-7 was similar to the same positions in 48.  The latter 52 

was only substituted at the hydroxyl group of the furanone ring. 

 

Figure 32. UV-MS of hyafurone C (15), with a UV λmax at 307 nm and the molecular ion [M+H]+ 
at m/z 568.3634. The sodiated ion cluster at m/z 590.3450 [M+Na]+ and two fragment 
ion clusters of sequential loss of water at m/z 550.3529 and 532.3413 are also 
indicated. 
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The nitrogen atom was observed as an amino group represented by a slowly exchanging broad 

singlet in the 1H NMR spectrum at δH 8.60. COSY cross peaks observed between the new 

methylene protons H-1 and H-2 together with corresponding HMBC correlations 

unambiguously indicated that CH2-1 and CH2-2 were adjacent to each other. Since oxygen is 

more electronegative compared to nitrogen, the hydroxyl group was assigned to C-1 (δC 62.5) 

with a higher chemical shift compared to δC 45.0 of C-2 which was left as the only possible 

link to the NH group. A HMBC correlation between CH2-2 (δH 3.52, 3.85) and the quaternary 

carbon C-4 (δC 89.5) indicated the connection of the ethanolamine residue to the hyafurone 

core structure. Hyafurone C (52) thus is the first compound with a nitrogen-linked 

ethanolamine at the furanone ring. 
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Figure 33. Selected COSY and HMBC correlations indicating the extension of the furanone ring 

in hyafurone C (52). 

Like the preceding polyketides, hyafurone D (53) was also isolated from the strain NOCB-2T. 

The structure of 53 was elucidated from the molecular formula C35H51NO6, indicating eleven 

degrees of unsaturation which was established by HRESIMS analysis of the molecular ion 

peak [M+H]+  at m/z 582.3788 (Figure 34). Compared to the empirical formula of hyafurone 

52, a formal addition of CH2 was calculated.  
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Figure 34. UV-MS of 16 showing the molecular ion cluster at m/z 582.3788 [M+H]+. 

Structure elucidation was done by analysis of 1D and 2D NMR spectroscopic data acquired in 

CD3OD. The NMR data of hyafurone 53 were near identical to 52 (Table 16). However, for 

53 the NMR spectra presented an additional methyl group CH3-36 with typical chemical 

shifts of a N-methyl group (δH 2.98, δC 52.2). A HMBC correlation was observed between the 

new methyl protons and the quaternary carbon C-4 (δC 93.7) supporting a methyl substitution 

at the amino group (Figure 35). Additionally, NOE’s were observed between these methyl 

protons (CH3-36, δH 2.98, s) and methylene protons (CH2-2) at δH 3.53 and δH 3.71 together 

with CH3-31 (δH 1.35, s) unambiguously indicating the position of the new N-methyl group. 

 

CH3 CH3

OH

CH3
OH

OH

O

CH3
O

N

CH3
OH1347

10

13

31

32
36

New 1H, 13C HMBC
 

Figure 35. The new 1H, 13C HMBC correlation between the methyl group (CH3-36) and the 
quaternary carbon at C-4 in hyafurone D (53). 

Hyapyrone B (54) was isolated from a 70 L large scale fermentation of H. minutum strain 

Hym 3. The molecular formula of 54 was determined as C33H44O4 from the HRESIMS 

analysis showing a molecular ion [M+H]+ at m/z 505.3323 with 12 degrees of unsaturation. 

The structure elucidation was achieved by analyzing both 1D and 2D NMR spectroscopic 

data in CD3OD (Table 17). The western fragment from the phenyl moiety to the aliphatic 
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group at CH-12 including the three methyl groups CH3-31 to CH3-33 and the hydroxyl group 

19-OH was assigned from identical correlations observed in the 2D NMR spectra of the other 

hyafurones. The remaining structural parts of 54 were elucidated by joining a fragment 

derived from COSY cross peaks (CH-6 to CH2-11) to a pyranone moiety elucidated from long 

range HMBC correlations (Figure. 36). The new pyranone moiety was assigned solely from 

the HMBC correlations observed between the methyl protons CH3-29 and carbonyl C-1 (δC 

167.8) and the enol carbon C-3 (δC 168.8) and from the correlations between methyl protons 

CH3-30 (δH 2.04) and C-3 and C-4 (δC 109.3). The chemical shifts of these methyl groups 

CH3-29 (δH 1.97, δC 9.0) and CH3-30 (δH 2.04, δC 9.5) were similar to those observed  for the 

pyranone moiety of the three polypropionates aglajne-3, -5, and -6, and dehydroaglajne-3 at 

equivalent positions125,126 supporting our assignment and leaving the quaternary carbon C-5 

(δC 153.5) as the only possible link to the remaining part of the molecule, which was 

supported by a small HMBC correlation between the olefin proton H-6 (δH 6.42) and C-5.  
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Figure 36. Selected 1H,1H COSY and 1H,13C HMBC NMR correlations of hyapyrone B (54).   
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Table 12. NMR data of hyafurone A1 (48) in CD3OD (1H 600 MHz, 13C 150 MHz). 

No.   δH, m (J in Hz) COSY ROESY δC HMBC (1JC,H [Hz]) 
1 1.46, br.s    22.1, CH3  1 (130) 
2    104.2, qC 1 
3    205.3, qC 1, 29 
4    110.1, qC 6a/b, 29 
5    186.6, qC 6a/b, 29 
6a 2.74,dd (13.9, 7.3) 6b, 7 7, 29 38.6, CH2 8a/b 
6b 2.79, dd (7, 5.5) 6a, 7 7, 29    
7 4.10, m 6b, 8a/b 6a/b, 9, 29  68.0, CH-OH 6a/b, 9 
8a 1.91, m 7, 8b, 9 8b, 9 45.2, CH2 6a/b, 9, 10 
8b 1.69, m  7, 8a, 9      
9 4.92, q (7.6)  8a/b, 10 12, 7, 8a >8b  66.5, CH-OH 8a/b, 11 
10  5.36, q (9.7) 9, 11 7, 8b>8a, 11 133.4, CH  8a/b, 13  
11 6.21, t (11.0) 10, 12 10, 13 132.0, CH 12, 13,  
12 6.68, dd (15.0, 11.4) 11, 13 9, 30 123.8, CH 10, 11  
13 6.36, d (15.0) 12 11, 15 140.6, CH 11, 15, 30 
14    134.5, qC 12, 16, 30 
15 6.14, d (11.4) 16 13, 17 134.0, CH 16, 17  
16 6.48, dd (14.9, 11.2) 15, 17 18, 30, 31 128.3, CH 15, 18 
17 5.80, dd (15.1, 8.4 ) 16, 18  15, 19, 31 140.0, CH 15, 19, 31  
18 2.49, dquin (8.4, 6.7) 17, 19, 31 16, 20, 31, 32 42.1, CH 16, 17, 19, 31 
19 3.28, t (5.9) 18, 20 17, 21a/b, 31,32 79.3, CH-OH 17, 21a/b, 31, 32 
20 1.63, m 19, 21a/b, 32 18, 21a/b, 22a/b 36.3, CH 21a/b, 32 
21a  1.83, ddd( 13.8, 9.4, 5.7) 20, 21b, 22a/b 19, 22a/b, 32 36.8, CH2 19, 22a/b, 32 
21b 1.52, ddd (13.6, 9.0, 5.5) 20, 21a, 22a/b 19, 22a/b, 32   
22a 2.71, ddd (13.8, 9.4 5.7) 21a/b, 22b, 19, 20 34.3, CH2 20, 21a/b, 24, 28 
22b 2.62, ddd (13.7, 9.3, 6.8) 21a/b, 22a 19, 20    
23    144.0 qC  25, 27 
25 7.20, d (7.0)   129.4, qC 22a/b, 26, 28 
24  7.26, t (7.3)   129.3, qC 23, 27  
26  7.16, t (7.3)   126.6, qC  24, 28 
28  7.26, t (7.3)   129.3, qC  23, 25, 
27 7.20, d (7.0)   129.4, qC  22a/b, 24, 26 
29 1.71, m - 6a/b 5.8, qC 29 (129) 
30 1.94, s 15 12, 16  12.8, qC 13, 15, 30 (125) 
31 1.03, d (6.6) 18 16, 17, 19  18.3, qC 16, 17, 19, 31 (126) 
32 1.00, d (6.6) 20 18, 21b , 22a/b  14.2, qC 19, 21a/b, 32 (125) 
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Table 13. NMR data of hyafurone A2 (49) in CD3OD (1H 600 MHz, 13C 150 MHz). 

No δH, m (J in Hz) COSY ROESY δC HMBC (1JC,H in Hz) 
1 1.47, br. s   22.2, CH3  1(128) 
2    104.2, qC   
3    205.3, qC  1, 29 
4    110.2, qC  6a/b, 29 
5    186.6, qC  
6a 2.75, m 6b, 7 8a/b, 29 >9  38.4, CH2  8a/b 
6b 2.79, dd (13.9, 7.3) 6a, 7 8a/b, 29 >9  8a/b 
7 4.14, br. s 6a/b, 8a/b 8a/b, 9, >10, 12 68.0, CH-OH 6a/b, 9, 8a/b 
8a 1.87, ddd (14.0, 7.0, 2.2) 7, 8b, 9 6a/b, 10 45.2, CH2  6a/b, 9, 10 
8b 1.74, m 7, 8a, 9 6a/b, 10   
9 4.39, q (7.0) 8a/b, 10 6a/b, 8a/b, 11 71.5, CH-OH 8a/8b, 10, 11 
10 5.73, dd (14.1, 6.8) 9, 11 8a/b, 12 135.8, CH   8a/b, 9, 10 (152) 
11 6.37 , ddd (14.0, 5.9, 2.6) 10, 12 9 >7 132.9, CH   
12 6.33, m[a] 11,13 10, 30 128.1, CH  10, 12(152), 13, 15 
13 6.35, m[a] 12 15 139.1, CH  13, 16, 30 
14    134.3, qC   
15 6.11, d (11.0) 16, 30[b] 13, 17 133.4, CH  13, 14, 15(151), 17 
16 6.47, dd (15.0, 11.4) 15, 17 18, 30, 31 128.3, CH  16(150), 18 
17 5.78, dd (15.0, 8.4) 16, 18 15, 19, 31 139.6, CH  15, 17(151) 19, 31 
18 2.49, dquin (8.4, 6.7) 17, 19, 31 16, 20, 31, 32 42.1, CH 16, 17, 19, 31 
19 3.28, t (5.7) 18, 20 17, 21a/b, 31, 32 79.3, CH-OH  17, 19 (139), 21a/b, 31, 32 
20 1.63, m 19, 21a/b, 32 18, 22a/b, 32 36.3, CH 21a/b 
21a 1.83, ddd (13.2, 9,9, 5.1) 20, 21b, 22a/b, 19, 22a/b, 32 36.8, CH2 19, 20, 22a/b, 32 
21b 1.52, ddd (13.6, 9.0, 5.5) 20, 21a, 22a/b 19, 22a/b   
22a 2.71, ddd (13.8, 9.4, 5.7) 21a/b, 22b 19, 20, 32 34.3, CH2 20, 21a/b, 24, 28 
22b 2.62, ddd (13.7, 9.3, 6.8) 21a/b, 22a 19, 20, 32   
23    143.9 qC  21a/b, 25, 27 
24 7.20, d (7.0) 25  129.4, qC 26, 28 
25 7.26, t (7.3) 24, 26  129.3, qC  27 
26 7.16, t (7.3) 25,27  126.6, qC 24, 26(162), 28 
27 7.26, t (7.3) 26, 28  129.3, qC 23, 25 
28 7.20, d (7.0) 27  129.4, qC 24, 26 
29 1.71, s  6a/b 5.8, qC 29(128) 
30 1.91, s 15[b] 12, 16,  12.7, qC 12, 15, 30 (126) 
31 1.03, d (7.0) 18 16, 17, 19 18.3, qC 16, 17, 19, 31 (127) 
32 1.00, d (6.6) 20 18, 21a/b, 22a/b  14.2, qC 19, 21a/b,26, 32 (125) 
 

 [a]overlapping signals, [b] 4-bond COSY correlations. 
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Table 14. NMR Data of Hyafurone B (50) in CD3OD (1H/13C 600/150 MHz).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a] overlapping signals [b] 4-bond COSY correlations. 

No. δH, m (J in Hz) COSY ROESY δC HMBC (1JC,H in Hz) 
1 1.45, s   22.3, CH3 1 (128) 
2    103.8, qC 1 
3    204.9, qC 1, 29 
4    108.4, qC 29 
5    178.3, qC 29, 8 
6a 2.63, m  6b, 7 8, 9 >10  42.5, CH2 8, >9, 4, 5 
6b 2.55, m 6a, 7 8, 9 >10   
7 4.81, m 6a/b, 8 9, >10 67.8, CH 6, 9,>>11 
8 6.61, m[a] 9 6a/b, 9, 10 121.1, CH 6,10 
9 6.89, ddt (15.3, 13.5,7.4) 8, 10 6a/b, 7, 8 141.1, CH 6, 7 
10 5.43, m 9, 11 6a/b, 8, 11 133.0, CH 8 >6 
11 6.20, td (11.1, 9.8) 10, 12 10, 13 131.7, CH 12, 13 
12 6.58, m[a]  11, 13 30 123.4, CH 11 
13 6.36, d (15.0) 12 11, 15, 30 140.8, CH 11, 30 
14    134.4, qC 12,30 
15 6.14, d (11.0) 16, 30[b] 13, 17 134.2, CH 16, 17, 30 
16 6.47, dd (15.0,11.1) 15, 17 18, 30, 31 128.2, CH 15, 18 
17 5.80, dd (15.0, 8.8) 16, 18 15, 19, 31 140.2, CH 15, 19, 31 
18 2.48, m 17, 19, 31 16, 20, 31, 32 42.1, CH 16, 20, 31 
19 3.28, t (5.7) 18, 20 17, 21a/b, 31, 32 79.2, CH 17, 21, 31, 32 
20 1.63, m 19, 21a/b, 32 18, 22a/b, 32 36.3, CH 19, 32 
21a 1.51, m 20, 21b, 22a/b,  19, 22a/b, 32 36.8, CH2 19, 22, 32 
21b 1.82, m 20, 21a, 22a/b 19, 22a/b   
22a 2.63, m 21a/b, 22b 19, 20, 32 34.3, CH2 20, 21, 24, 28 
22b 2.71, m 21a/b, 22a 19, 20, 32   
23    143.9, qC  
24 7.20, d (7.0) 25  129.4, CH 22, 26, 28 
25 7.26, t (7.0) 24, 26  129.3, CH 23, 27, 28 
26 7.16, t (7.0) 25,27  126.6, CH 24, 28 
27 7.26, t (7.0) 26, 28  129.3, CH 23,25 
28 7.20, d (7.0) 27  129.4, CH 22, 24, 26 
29 1.76, s   5.4, CH3 29 (128) 
30 1.93, s 15[b] 12, 16,  12.8, CH3 13, 15 
31 1.03, d (6.6) 18 16, 17, 19 18.3, CH3 31(127), 17, 18 
32 1.00, d (6.6) 20 18, 21a/b, 22a/b  14.2, CH3 32(127),19, 22 
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Table 15. NMR Data of Hyapyrone A  (51) in CD3OD (1H/13C 600/150 MHz). 

C/H δH, m (J [Hz]) COSY ROESY δC HMBC (1JC,H in Hz) 
1 -   189.8 qC 6, 28 
2 -   113.4 qC 28 >4 
3 -   181.0 qC 28, 29 >4 
4 4.89, q (6.6)  29 28 64.5 CH 29 
5    150.0 qC 6, 7a/7b 
6 6.17, t (8.1)  7a/7b 7a/7b 114.8 CH  7a/7b, 8 
7a 2.73, ddd (14.7, 8.1, 7.0) 6, 7b, 8  9 35.0 CH2 9 >8 
7b 2.63, m  6, 7a, 8  9   
8 4.82, m  7a/b, 9 6, 7a/b, 9, 11 67.6 CH 7a/7b, 10 
9 5.43, dd (10.6, 9.2 br.) 8, 10 6, 7a/b, 10 132.8 CH 7a/7b, 11 
10 6.19, t (11.0 br.)  9, 11 9, 12 131.9 CH 8, 11, 12,  
11 6.57, dd (15.2, 11.6) 10, 12 8, 30 123.3 CH 9, 10 
12 6.35, d (15.2)  11 10, 14, 30 140.9 CH 10, 30 
13 -   134.4 qC  
14 6.14, d (11.4) 15, 30 12, 16 134.2 CH 11, 12, 15, 16, 30, 
15 6.48, dd (14.9, 11.2)  14, 16 17, 30 128.3 CH 14, 17 
16 5.80, dd (15.0, 8.8)  15, 17 14, 18, 31 140.2 CH 14, 17, 18, 31 
17 2.49, dt (8.8, 6.6)  16, 18, 31 15, 19, 20a/b, 32 42.1 CH 15, 16, 18, 31 
18 3.28, t (5.9)  17, 19 16, 20a/b, 21a/b, 31 79.2 CH 16, 17, 20a/b, 31, 32, 
19 1.62, m  18, 20a/b, 32 17, 21a/b, 31 36.3 CH 32 
20a 1.52, m  20b, 21a/b, 19 17, 18, 32 >31 36.8 CH2 18, 19, 21a/b, 32 
20b 1.84, m  20a, 21a/b, 19  17, 18, 32 >31   
21a 2.63, m  21b, 20a/b 23, 27 34.3 CH2  19, 20a/b, 23, 27 
21b 2.70, dd (9.5, 5.9)  21a, 20a/b 23, 27   
22 -   143.9 qC 20a/b, 21a/b, 24, 26 
23 7.20, d (6.6)  24 21a/b 129.4 CH  
24 7.26, t (7.3) 23, 25  129.3 CH  
25 7.16, t (7.4)  24, 26  126.6 CH 23, 27 
26 7.26, t (7.3) 25, 27  129.3 CH 21a/b, 24, 25, 27 
27 7.20, d (6.6) 26 21a/b 129.4 CH 21a/b 
28 1.84, s   29 5.3 CH3 (128 Hz) 
29 1.52, d (6.6)  4 28 20.6 CH3 (129 Hz ),4 
30 1.92, s  14 11, 12, 15, 30 12.8 CH3 (127 Hz), 12, 14 
31 1.04, d (7.0)  17 15, 16, 18, 19 18.3 CH3 (127 Hz) 16, 17, 18 
32 1.00, d (6.6)  19 20a/b, 21a/b 14.2 CH3 (125 Hz),18, 19, 20a/b 
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Table 16. NMR Data of Hyafurone C (52) and Hyafurone D (53) in CD3OD (1H/13C 600/150
   MHz). 

 Hyafurone C     Hyafurone D    

C/H δH, m (J in Hz) δC 
HMBC  
(1JC,H in Hz) 

 
δH, m (J in Hz) δC 

HMBC  
(1JC,H in Hz) 

1a 3.66, m 62.5, CH2 2a/2b  3.72, m 62.0, CH2 2 
1b 3.74, m     3.74, m   
2a 3.52, dt (15,1, 5,9) 45.0, CH2 1a/b  3.53, m 44.9, CH2 1 
2b 3.85, dt (15,1, 5,9)    3.71, m   
NH 8.60, br, s    8.57, br. s   
4  89.5, qC 31, 2a/2b   93.7, qC 2, 31, 36 
5  201.1, qC 31, 32   199.0, qC 31, 32 
6  102.0, qC 8, 32   104.6, qC 8, 32 
7  178.2, qC 8, 32 >2a/2b   180.6, qC 2, 8, 32 
8 2.90, m 36.2, CH2  10  2.94, m 36.3, CH2 10 
9 4.03, m 68.6, CH 8, 10, 11  4.04, m 68.5, CH 8, 10, 11 
10a 1.96, m 45.7, CH2   1.94, m 46.2, CH2 8, 11 
10b 1.69, m    1.69, m   
11 4.92, quin (7.7) 66.6, CH 13  4.88,  66.6, CH 13 
12 5.36, ddd (14.3, 11.4, 2.2) 133.3, CH 10  5.33 133.4, CH  10 
13 6.22, td (11.0, 4.03) 132.1, CH 11, 15  6.17, td (11.0, 4.03) 131.9, CH  11, 15 
14 6.67, dd (15.0 11.4) 123.6, CH 12,13  6.63, dd (15.0, 11.4) 123.6, CH  12,13 
15 6.36, d (15.0) 140.7, CH 13, 17, 18, 33  6.32, dd (15.0, 2.2) 140.6, CH  13, 17, 18, 33 
16  134.5, qC 14, 33   134.4, qC  14, 33 
17 6.14, d (11.0)  134.0, CH 15, 19  6.10, d (11.0) 133.9, CH  17 (150.8), 15, 18 
18 6.48, dd (14.9, 11.2) 128.3, CH 17, 20  6.43, dd (15.0, 11.4) 128.2, CH  18 (150.9), 17 
19 5.80, dd (15.0, 8.4) 140.0, CH 17, 34  5.76, dd (15.0, 8.8) 140.0, CH  19 (150.8), 21, 34 
20 2.49, dquin (8.1, 6.6 br) 42.1, CH 18, 21, 34  2.45, m 42.1, CH 18, 21, 34 
21 3.28, t (5.7)  79.2, CH 19, 23, 34, 35  3.24, t (5.7) 79.2, CH 21(142.8), 34, 35 
22 1.61, m 36.3, CH 35  1.59, dt (12.9, 6.2) 36.3, CH 35 
23a 1.50, m  36.7, CH2 21, 22, 24, 35,  1.48, m 36.7, CH2  21, 22, 24, 35, 
23b 1.83, m    1.79, m   
24a 2.71, ddd (14.7, 9.5, 5.5) 34.3, CH2 23, 26, 30  2.67, ddd (14.7, 9.5, 5.5) 34.3, CH2 23, 26, 30 
24b 2.62, ddd (13.7, 9.5, 6.6)    2.58, ddd (13.7, 9.4)   
25 - 143.9, qC  23, 24, 27, 29   143.8, qC  23, 24, 27, 29 
26 7.20, d (7.3) 129.4, CH 24, 28, 30  7.16, d (7.3) 129.4, CH  24, 28, 30 
27 7.25, t (7.3) 129.3, CH 29, 25  7.22, t (7.3) 129.2, CH  29, 25 
28 7.15, t (7.3) 126.6, CH 26, 30  7.12, t (7.3) 126.6, CH  26, 30 
29 7.25, t (7.3) 129.3, CH 24, 27  7.22, t (7.3) 129.2, CH  24, 27 
30 7.20, d (7.3) 129.4, CH 24, 26, 28  7.16, d (7.3) 129.4, CH  24, 26, 28 
31 1.39, s 22.2, CH3 31 (129.6)  1.35, s 22.0, CH3 31 (129.9) 
32 1.71, s 6.8, CH3  32 (127.9)  1.69, s 6.5, CH3 32 (127.9) 
33 1.93, s 12.8, CH3 15, 17  1.89, s 12.7, CH3 33 (127.9) 15, 17 
34 1.03, d (7.0) 18.3, CH3 19, 21  0.99, d (6.6) 18.3, CH3 34 (127.1) 19, 21 
35 1.00, d (6.6) 14.2, CH3  35 (125.8), 21,                                                                                                                              0.96, d (7.0) 14.2, CH3 35 (125.8), 21 
36     2.98, s 52.2, CH3 4 
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Table 17. NMR Data of Hyapyrone B  (54) in CD3OD (1H 600 MHz, 13C 150 MHz). 

 

 

 

 

No. δH, m (J inHz) COSY ROESY δC HMBC (1JC,H in Hz) 
1    167.8, qC 29 
2    99.8, qC 29 
3    168.8, C-OH 29, 30 
4    109.3, qC 30 
5    153.5, qC 6, 7, 30 
6 6.42, t (5.5) 7, 8 8, 30 120.3, CH 8 
7 6.64, quin (7.6) 6, 8 9 139.2, CH 8, 9 
8 2.33, q (6.9) 6, 7, 9 6, 10 33.8, CH2 6, 7, 10 
9 1.53, m 8 6, 7, 11, 12, 29.6, CH2 7, 11 
10 1.53, m 11 8, 12 30.3, CH2 8, 9, 11, 
11 2.21, q (6.7) 10, 12, 13 9, 12, 31 33.8, CH2 9, 12, 13, 
12 6.13, d (15.4) 11, 13 10, 15, 31 136.5, CH 11, 14, 15, 31 
13 5.72, m 11, 12 11, 15, 31 129.7, CH 11, 14, 15, 31 
14    134.2, qC 12, 13, 16, 31 
15 5.97, d (11.0) 16, 31 13, 17,18, 31 130.8, CH 12, 13, 16, 31 
16 6.45, t (5.5) 15, 17 18, 31, 32 128.3, CH 15, 18 
17 5.72, m 16, 18 15, 19, 20, 32 138.1, CH 15, 18, 32 
18 2.46, m 17, 19, 32 16, 20, 21, 33 42.0, CH 16, 17, 19, 32 
19 3.27, t (5.9) 18, 20 17, 21a/b, 32, 33 79.3, CH-OH 17, 21a/b, 32, 33 
20 1.62, m 19, 33 18, 22a/b, 36.3, CH 19, 21a/b, 33 
21a 1.53, m 21b, 22a/b 18, 19,24, 28, 33 36.7, CH2 19, 22a/b, 33 
21b 1.82, m 21a, 22a/b 18, 19,24, 28, 33   
22a 2.71, ddd (13.6, 9.5, 6.4) 21a/b, 22b 19, 20, 24, 28, 33 34.3, CH2 21a/b, 24, 28 
22b 2.62, ddd (13.6, 9.5, 6.6) 21a/b, 22a 19, 20, 24, 28, 33   
23    143.9, qC 21a/b, 25, 27 
24 7.20, d (7.3) 25 22a/b 129.4, CH  
25 7.25, t (7.3) 24, 26  129.3, CH  
26 7.15, t (7.3) 25, 27  126.6, CH 24, 28 
27 7.25, t (7.3) 26, 28  129.3, CH 25 
28 7.20, d (7.3) 27 22a/b 129.4, CH 22a/b, 24, 26 
29 1.97, s   9.1, CH3 29 (130) 
30 2.04, s  6 9.5, CH3 30 (129) 
31 1.87, s 15 12, 13, 15, 16 12.9, CH3 12, 15, 31 (129) 
32 1.02, d (7.0) 18 16, 17, 18, 19 18.4, CH3 17, 19, 18, 32(127) 
33 1.00, d (7.0) 20 18, 19, 21a/b, 22a/b 14.2, CH3 19, 21a/b, 33 (125) 
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2.6  Biological activities of hyafurones and hyapyrones  

2.6.1 Antibacterial and antifungal activities  

Antibacterial and antifungal testing of the polyketide family showed no significant biological 

activity at MIC concentrations  between 67 and 0.52 µg/mL (Table 18). However, hyafurone 

B (50) displayed the highest activity with a MIC of 8.3 µg/mL against N. flava. Hyafurone D 

(53) was not active at 67 µg/mL in all the tests performed.  

Table 18. Minimum inhibition concentrations (MIC) of hyafurone A–F against selected bacterial 
and fungal pathogens in µg/mL. 

Test organisms 
MIC [µg/mL] of hyafurones/hyapyrones 

48 49 50 51 52 53 54 
Bacteria        
Micrococcus luteus >67 >67 >67 >67 >67 >67 >67 
Staphylococcus aureus >67 >67 67 67 67 >67 >67 
Escherichia coli TolC >67 >67 >67 >67 67 >67 >67 
Nocardia flava 67 >67 8.3 33.3 67 >67 16.6 
Chromobacterium violaceum 67 67 33.3 67 >67 >67 67 
Pseudomonas aeruginosa >67 >67 >67 >67 >67 >67 67 
Mycobacterium phlei >67 67 >67 >67 67 >67 >67 
Fungi and yeasts        
Mucor hiemalis >67 67 67 >67 67 >67 33.3 
Schizosaccharomyces pombe >67 >67 >67 >67 >67 >67 >67 
Rhodotorula glutinis >67 >67 >67 >67 >67 >67 >67 
Pichia anomala >67 >67 >67 >67 >67 >67 >67 
Candida albicans >67 >67 >67 >67 >67 >67 >67 
 
2.6.2 Cytotoxic activities 

Cytotoxicity tests against four mammalian cell lines are shown in Table 19. Hyafurone A1 

(48) was cytotoxic against the primary cell line HUVEC with an IC50 of 1.4 µg/mL.  

Table 19. Cytotoxicity of hyafurones (IC50 µg/mL) against four mammalian cell lines. Only 
hyafurone A1 (48) was tested against all the four cell lines. 

Compound L929 MCF-7 KB-3-1 HUVEC 
48 14 2.2 3 1.4 
50 >33.3    nt[a] nt nt 
52 >33.3 nt nt nt 
53 >33.3 nt nt nt 
54 11 nt nt nt 

[a] nt = not tested 
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2.6.3 Antiparasitic activity of hyafurone A1 (48) 

 

Only the major compound of the polyenes, hyafurone A1 (48) was evaluated for anti-parasitic 

activity and was found to be in-active (Table 20). The assays were performed at the Swiss 

Tropical and Public Health Institute, Basel. 

 

Table 20. In vitro anti-parasitic activity of hyafurone A1 (48) (IC50 µg mL-1). 

 

Test 
drug/compound 

T. b. 
rhod. 

T. cruzi 
L. don. 
axen. 

P. falc. K1 
Cytotoxicity 
L6 

 IC50 IC50 IC50 IC50 IC50 
48 7.54 18.6 5.75 2.13 12.25 
Melarsoprol 0.002         
Benznidazole   0.58       
Miltefosine     0.144     
Chloroquine       0.046   
Podophyllotoxin         0.005 
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3 Discussion 

3.1 General scope of this work 

The current thesis deals with isolation and structure elucidation of secondary metabolites from 

three strains of gliding bacteria, Ohtaekwangia kribbensis strain PWU 25 (a Bacteroidetes) 

and two strains from the myxobacterium Hyalangium minutum, strains NOCB-2T and Hym 3. 

Initially active extracts were dereplicated by analytical HPLC fractionation into 96-well 

plates. Following biological testing of each well with the target microorganism provided the 

peak-activity correlation. Similarly the active extract was analyzed by HPLC-UV-MS for 

peak-UV spectrum and peak-molecular mass or peak-elemental formula correlation. The data 

obtained were then used to recognize possibly known compounds in data bases, i.e. 

Dictionary of Natural Products on CD-Rom (DNP) (Chapman & Hall), the in-house 

Myxobase, and/or Chemical Abstracts (online).  

Dereplication of the extract of O. kribbensis strain PWU 25 indicated one known and five 

novel compounds. An isolation strategy was developed that led to the isolation of six 

pyrroloquinoline metabolites, marinoquinoline A (39) previously isolated but solely 

characterized by X–ray crystallography111 and five new derivatives (40-44). All structures 

were elucidated by detailed NMR analyses. When screened for biological activities, these 

pyrroloquinolines showed weak antibacterial and antifungal activities and moderate 

cytotoxicity against four growing mammalian cell lines. Additionally, they were also active 

when tested against Plasmodium falciparum, the parasite causing human malaria. 

In a second project, a complex isolation scheme was developed for the metabolites of H. 

minutum, strain NOCB-2T. The major compound, hyaladione (47) an S-methyl 

cyclohexadiene-dione was finally purified by crystallization and its structure elucidated by X-

ray analysis. Dereplication studies identified several other novel compounds in the crude 

extract of this strain. Consequently, six metabolites were isolated as members of a family, 

hyafurones and hyapyrones (48 -54). Hyafurone A2 (49) was isolated as a degraded isomer of 

hyafurone A1 (48) but not directly from the isolate. In both hyapyrone A (51) and hyapyrone 

B (54) a pyranone moiety replaced the furanone while the aliphatic chain and the phenyl 

moiety were similar to the other hyafurones. Hyapyrone B (54), though identified in strain 

NOCB-2T was isolated from H. minutum strain Hym 3.  Their structures were elucidated from 
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detailed HRESIMS and NMR data analyses. Comparison of the biological activity indicated 

47 to be the most active compound of H. minutum displaying a broad spectrum of anti-

bacterial, anti-fungal, cytotoxic and anti-parasitic activities. 

3.2 Marinoquinolines A – F (39 - 44) from O. kribbensis 

O. kribbensis strain PWU 25 was found to produce secondary metabolites, mainly 

marinoquinoline A (39), which had been identified previously from the marine 

microorganism   Rapidithrix thailandica as an acetylcholine esterase inhibiting agent.121 The 

strain further produced five novel metabolites related to 39. Since the main component, 

marinoquinoline A (39) was a pyrroloquinoline,111 an isolation strategy utilizing the basic 

properties of alkaloids was employed by an acid/base extraction technique. A further size 

exclusion chromatography on Sephadex LH-20 enriched the main product, 39 finally enabling 

the crystallization from acetone/petroleum ether (1:1). Purification of the other 

marinoquinolines B-F (40-44) by RP HPLC was improved by acidification of the 

methanol/water solvent system with formic acid. The resulting salt solution of 

pyrroloquinolines was stable in the solvent and offered highly resolved peaks for efficient 

isolation.  

Only marinoquinoline A (39) could be crystallized and its X-ray crystallographic analysis was 

replicated and compared with the analysis by the Kanjana group.111 However, all other 

spectroscopic data had not been reported. All 1D and 2D NMR data recorded in deuterated 

methanol were analysed and correlated to the structure of 39. Additionally, further physical 

characteristics including melting point, the UV- and IR-spectra were measured. The stretching 

vibration of the secondary amine in 39 was confirmed by a broad IR absorption band at vmax 

3442 cm-1 in potassium bromide. Structures of all the other marinoquinoline derivatives (40 - 

44) were elucidated by analyses of their molecular formulae generated from HRESIMS 

together with 1D and 2D NMR data. The 1D 13C NMR signals in most spectra of the 

marinoquinolines were narrowly separated and therefore reported in two decimal places 

contrary to the conventional one decimal place. Additionally, special 13C APT NMR 

experiments were performed to indicate the presence of some quaternary carbons that were 

otherwise observed as overlapping signals in the normal 13C NMR spectrum and could not be 

observed in DEPT spectrum. This was particularly useful in differentiating between methine 

C-5b (δC 123.71) and the quaternary C-6 (APT δC 123. 72) of marinoquinoline E (43). 
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Prior to isolation, the crude extract of strain PWU 25 had displayed growth inhibition of 

various microorganisms tested as described in chapter 2.1.1. Since compounds with antibiotic 

activity often have been known to possess further activities, marinoquinolines A-F (39-44) 

also were tested for cytotoxicity. But they showed only moderate activity when evaluated 

with three growing cancer cell lines and a primary cell line (Table 7). The keto-indole variant 

44 was the most toxic followed by the phenyl derivatives marinoquinolines C (41) and D (42), 

while the isopropyl variant 40 showed the least cytotoxicity.  

The WHO malaria world report127 showed that nearly a million people died from malaria in 

2006 alone and that the resistance of the causative parasite, Plasmodium falciparum continues 

to increase against the available drugs. This situation necessitates the screening of diverse 

sources for new lead compounds against P. falciparum and other tropical parasites. 

Marinoquinoline related compounds have previously been screened against malaria. For 

example nostocarboline hydroiodide (55) (Figure 37), which can be seen as a halogenated 

isomer of marinoquinoline A (39), was isolated from the cyanobacterium, Nostoc 78-12A128 

and showed selective activity against P. falciparum K1 with an IC50 of 0.194 µM.129 The IC50 

value of 3H-pyrrolo[2,3-c]quinoline (56), the core alkaloid part of the marinoquinolines, was 

determined as 6.4 µM.120 Other analogues include the plant alkaloid isoneocryptolepine (57) 

with an IC50 of 0.23 µM against P. falciparum K1 cells130 and the spiroindolone NITD609 

(58), an improved lead candidate in the fight against malaria. Mice infected with the highly 

virulent Plasmodium berghei were completely cured with a single oral dose (100 mg per kg) 

of NITD609, an effect that was not seen with similar doses of the current standard 

antimalarial drugs artesunate, artemether, chloroquine or mefloquine.131,132  

In a screening against tropical parasites (Table 8) marinoquinolines B (40) and F (44) were 

identified as the most active structural variants with IC50 values of 1.8 and 1.7 µM, 

respectively. Based on their biological activities and particularly the anti P. falciparum 

activities, marinoquinolines have aroused interest of medicinal chemists with the total 

syntheses of marinoquinolines A-C (39-41) already accomplished.133 Equally, another group 

from Australia has shown interest in the synthesis of marinoquinolines also because of their 

antiplasmodial activities.134  
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Figure 37. Structural analoques of mariquinolines active gainst P. falciparum; nostocarboline 
hydroiodide (55), 3H-pyrrolo[2,3-c]quinoline (56), isoneocryptolepine (57) and 
spiroindolone NITD609 (58). 

 

Although feeding experiments were not done to establish the amino acid precursors of these 

pyrrolloquinolines, a good guess would suggest leucine as an amino acid precursor in the 

biosynthesis of the isopropyl side chain of marinoquinoline B (40). Similarly, phenyl alanine 

and tyrosine may be seen as precursors of the side chains of marinoquinolines 41 and 42, 

respectively, whereas tryptophan might provide the indole moieties in marinoquinolines 43 

and 44.  

3.3 Hyaladione an S-methyl cyclohexadiene dione from H. minutum 

Hyalangium minutum strain NOCB-2T is an especially ‘talented’ organism producing 

structurally diverse metabolite families. Hyaladione (47) is the major and smallest compound 

to be isolated from this strain. It is a fairly polar compound eluting early at about six minutes 

in an ammonium acetate buffered acetonitrile/water gradient increasing the organic solvent 

from 10 % to 100 % in 40 minutes. It is a heteroatom-rich small-molecule with the elemental 

formula C7H6ClNO2S. Despite its small size, it was impossible to elucidate the structure from 

1D and 2D NMR spectra. Only three singlet signals were observed in the 1H NMR spectrum 

which only provided a limited number of correlations in COSY, HMQC, HMBC and ROESY 

2D spectra. Due to the low number of different protons, only one rare four-bond COSY cross 

peak correlation was observed between the S-methyl protons and the only methine proton at 
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C-7. The only NOE of the molecule was observed for the same proton pair (Figure 38). This 

long-range COSY correlation is not completely unusual, since it has been observed in 

thiopalymyrone, a cyanobacterial metabolite exhibiting molluscidal activity.135 Other than the 

HMBC correlation identical to the only COSY crosspeaks, additional HMBC correlations 

were observed between the methine proton  H-5 and the quaternary carbons at C-1, C-3, and 

C-6. 

Finally, 47 could be crystallized from acetone to obtain pink needle shaped crystals that 

enabled a complete structure elucidation by X-ray diffraction analysis to give a 2-amino-3-

chloro-5-(methyl sulfanyl)cyclohexa-2,5-diene-1,4-dione (hyaladione). There are no similar 

or related S-methyl cyclohexadiene diketones in the DNP or the Chemical abstracts-online 

database. Therefore, 47 with its unique structural elements represent a novel class of natural 

products. 
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Figure 38. The only 1H, 1H COSY and ROESY correlations of hyaladione (47). 

The best activity of 47 was observed against S. aureus with a MIC of 0.83 µgmL-1. S. aureus 

belong to the pathogens that are responsible for nosocomial infections. Methicillin-resistant S. 

aureus (MRSA) is the most dangerous strain which has developed resistance to most beta-

lactam antibiotics particularly cephalosporins and penicillins (e.g. methicillin, that gave rise to 

the prefix “methicillin resistant”). MRSA was initially associated with hospitals (hospital-

acquired [HA MRSA]), but has increasingly become prevalent in community-acquired (CA 

MRSA).136 Despite the efficacy of linezolid (59) (Figure 39) against both HA MRSA and CA 

MRSA it is prized as the most expensive antibiotic, limiting its use to a smaller population. 

The prices will however change as the first patents will run out in 2015. Already linezolid 

(59) resistant S. aureus (LRSA) strains have been identified recently,137 and alternative 

antibiotics against the ever emerging resistance are urgently needed. 
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Figure 39. Linezolid (59), with efficacy against MRSA. 

Biofilm formation of some bacteria species has contributed to the increased antibiotic 

resistance. The Gram-negative bacteria C. violeceum and P. aeruginosa are examples of 

bacteria forming biofims and are therefore prevalently used as models for the analyses of 

quorum sensing activity. Hyaladione (47) was found to be moderately active against these 

pathogens (Table 20). The mode of activity, though not investigated in the current thesis, 

might unravel new ideas that could help to fight biofilms of human pathogens.  

Anti-parasitic testing of 47 was done at the Swiss Tropical and Public Health Institute in 

Basel. Hyaladione is reported to be active against P. falciparum with an IC50 value of 0.186 

µg mL-1 and also cytotoxic to the rat myoblast L6 cells with an IC50 value of 0.552 µg mL-1. 

However, its antimalarial activity was reported as unspecific.  

The successful isolation and characterisation of 47 provides a new small and complex natural 

product that may find application in drug discovery programs, either as a tool to investigate 

the mode of action or as lead structure for derivatization in drug development. Its  name 

hyaladione, was derived by merging the name of the producer strain Hyalangium minutum 

with the diketo-functional group name “dione”. 

3.4 The hyafurones and hyapyrones 

In the screening program of myxobacteria at the Helmholtz Centre for Infection Research 

(HZI), ten strains of H. minutum were shown to produce hyafurones and the two hyapyrones 

in different proportions, as identified by HPLC-DAD-HRESIMS analyses. H. minutum strain 

NOCB-2T was the best producer both in amounts and variety of the derivatives. Besides these 

polyketides, the strain also produced hyaladione and hyaboron (Dr. J. Niggemann, 

unpublished result). The isolation of the light sensitive polyenes was achieved successfully by 
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use of amber glass ware or foiling of the sample bottles with aluminium. The first sample of 

hyafurone A1 (48) was completely degraded when exposed to light together for some time in 

DCM. Further degradations were circumvented by use of methanol as a softer solvent and 

keeping the compounds dry under nitrogen atmosphere and storing at freezing temperatures. 

Hyafurone A1 (48), the major compound of the family of polyketides was separated from the 

others by silica gel flash chromatography and subsequent purification by RP MPLC. Detailed 

analyses of its molecular ions in the HRESIMS in both negative and positive modes were in 

agreement with its empirical formula C32H44O6. Careful analyses of the NMR data in 

deuterated methanol together with the molecular formula led to structure 48 for hyafurone A1. 

The experimental 1H and 13C NMR data corroborated with their calculated values for 

hyafurone A1 (48) using the ACD NMR Predictor software. An unusual doubling of signals in 

the 13C NMR spectrum was observed for CH3-1, and the quarternary carbons C-2, C-4, and C-

5. However, this was not completely unique as it had been observed in other compounds that 

contain a similar furanone moiety.138,139,140 The doubling of peaks in these compounds results 

from the instable stereochemistry of the hemi-ketal group in the furanone ring. These 

compounds exist as a 1:1 mixture of epimers (respectively diastereomers) at the hemiketal 

stereocentre.  

Despite the similarity of the furanone ring system of hyafurone A1 (48) to other compounds, 

the producing organisms were completely diverse. For example, aglajne 2 (60) (Figure 40) 

was isolated from the mollusc Bulla striata and its prey Aglaja depicta,125
 aurafurone A (61) 

and B from the myxobacteria Stigmatella aurantiaca and Archangium gephyra,139 5-alkenyl-

3,3(2H)-furanones from Streptomyces aculeolatus141 and actinofuranones A (62) and B from 

Streptomyces of a marine actinomycete.138 The detection of structurally related compounds 

from a variety of sources may be attributed to various reasons, e.g. diet and or symbiotic 

relationships between different organism,142 horizontal gene transfer, or simply a coincidence 

of co-evolution of the biosynthetic pathways in response to a similar environmental stress. In 

all cases the 1H and 13C chemical shifts in the furanone systems were near identical. 
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Figure 40. Identical furanone moieties in hyafurone A1 (48), Aglajne 2 (60), aurafurone A (61) 
and actinofuranone A (62).  

The 1H NMR spectra of hyafurone A1 (48) and hyafurone A2 (49) were superficially similar. 

However, a closer examination of the latter spectrum revealed slight chemical shifts of proton 

resonances of methylene C-9 to methines C-12 (δH 4.92, 5.36, 6.21, 6.68) in the former 

spectrum shifted to δH 4.39, 5.73, 6.37 and 6.33, respectively. The most apparent difference 

was observed in the multiplicity and vicinal proton-proton coupling constant of the olefinic 

proton H-11 where a triplet and a coupling constant of 3J10,11
 = 11.0 Hz was observed for 48 

compared to the proton-proton coupling constants of 3J10,11
 = 14.0 Hz for the identical pair in 

49. This large coupling constant was decisive in the assignment of the trans configuration for 

the ∆10,11 bond in 49.  

The structure of hyafurone B (50) indicates an elimination of a water molecule from 48, a 

process that can be envisioned in vitro (Figure 41). The hydroxyl group at C-9 is protonated to 

–OH2
+, a good leaving group, and eliminated as a water molecule resulting in 12 degrees of 

unsaturation for 50.  
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Figure 41. Elimination of water from hyafurone A1 (48) to give hyafurone B (50). 

The new olefenic protons in hyafurone B (50) were displayed in the 1H NMR spectrum at δH 

6.61 (H-8) and δH 6.89 (H-9) compared to identical positions in hyafurone A1 (48) at δH 1.69, 

δH 1.91 (C-8) and δH 4.92 (C-9). Indeed, this was the sole difference in the NMR spectra data 

of the two compounds (Tables 12 and 14). Molecular ion clusters in HRESIMS analysis of 48 

indicated elimination of water molecules from the parent cluster. However, the experience of 

handling the two compounds separately indicated 50 to be more stable and biologically more 

active compared to 48 in the tests performed.  Hyafurone B (50) is the biologically most 

active member of the polyketide family when tested against a range of pathogenic bacteria 

and fungi with its best activity at 8.3 µg mL-1(MIC) against the Gram-positive N. flava 

(Chapter 2 Table 18). 

Hyapyrone A (51), was isolated as an isomer of 50. However, unlike 50, where the hydroxyl 

group at C-9 (δC 66.5) of 48 was eliminated as water, the dehydration has occurred at the OH 

group at C-7 (δC 68.0) and the formation of pyranone moiety in place of the furanone moiety, 

hence the name hyapyrone for 51. The biological activity of the two isomers was completely 

different, emphasizing the importance of structure-activity relationship with 50 being more 

active than 51. 
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Hyafurone C (52) and hyafurone D (53) are the first members of this polyketide group to have 

a nitrogen substituent on the furanone ring. The N atom was observed as an amino group 

represented by a slowly exchanging broad singlet in the proton NMR spectra for both 

compounds (Table 16). However, these metabolites were less active when screened against 

the common bacterial and fungal pathogens.  

Hyapyrone B (54), though produced by strain NOCB-2T was isolated from H. minutum strain 

Hym23 due to its relatively higher productivity of 54. Compared to the hyafurones (A -D) the 

furanone moiety was replaced by a pyranone moiety in 54 like in 51. Polypropionate 

compounds with a pyranone moiety have previously been isolated in marine molluscs. The 

compounds include aglajne-3,125 pectinatone,143 norpectinatone,144and diemenensin A.145 Like 

other members of the family, no significant biological activity was observed for hyapyrone B 

(54). The best antibiotic and cytotoxic activities were observed against the Gram-positive 

bacteria N. flava and the mouse fibroblast cell line L929 with MIC value of 16.6 µg/mL and 

IC50 value of 11 µg/mL, respectively. Hyapyrone B (54) is considered a relative of hyafurones 

because of the similarities in structure of the western fragment from the phenyl moiety to the 

methine C-12 (Figure 36).  

Determination of absolute configuration of natural product compounds is vital especially if 

they are to be developed into drugs as exemplified in the case of thalidomide in chapter one 

where the (S)-enantiomer was teratogenic. Substantial effort were made to determine the 

absolute configuration of 48 starting with the derivatization of the four chiral alcohols using 

the advanced Mosher method.107 Two derivatization methods were applied; first  a reaction 

involving the MTPA-Cl (α-methoxy-α-trifluoromethylphenylacetyl chloride), which seemed 

to work over 24 hours period according to TLC analysis. However the compound degraded 

during subsequent efforts to purify it. A second attempt with a MTPA-acid and 1,3-

dicyclohexyldiimide (DCC) in the presence of 4-(dimethylamino)-pyridine (DMAP) as 

catalyst also resulted in a degradation of the product. Finally, the remaining minute amount of 

the unstable 48 precluded further characterization of its stereochemistry, since the biggest 

challenge initially was the purification of enough material for these experiments and for 

detailed NMR analysis.  

The doubling of peaks in the 13C NMR spectra was not observed for the two hyapyrones, A 

and B (51 and 54) due to the absence of the hemiketal making them more stable than their 
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relative hyafurones counterparts. However, after biological activity screening, the minute 

amounts left forestalled any further characterization for the determination of their absolute 

configuration.  

Although feeding experiments were not performed to establish the biosynthetic precursors of 

the polyenes from H. minutum, structure of hyafurone A1 (48) closely resembles a 

combination of structural elements of aurafurone A (61) and phenalamide A1 (63), microbial 

metabolites of which the biosynthetic precursors have been elucidated as shown in Figure 42. 
146,147 
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Figure 42. Incorporation of labeled biosynthetic precusors into aurafurone A (61)147 and 
phenalamide A1 (63).146  

Based on this information, it is feasible to predict that hyafurone A1 (48) is a biosynthetic 

product of the condensation of the amino acid phenylalanine, propionate and acetate. The 

decarboxylation and deamination of phenylalanine provides the phenyl moiety as a starter unit 

while five propionate-derived methylmalonyl-CoA and five acetate-derived malonyl-CoA 

extender units are incorporated during the biosynthesis sequentially as shown in Figure 43. 

The furanone moiety should be identical to aurafurone A requiring the condensation of two 

propionates and an acetate. However, the C1 carbon derived from incorporation of the last 

propionate unit in this furanone moiety is lost, presumably due to a decarboxylation step.147 

Propionates as precursors for the methyl moieties have also been shown in the biosynthesis of 

polypropionates in the marine Siphonaria denticulata.148  
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Figure 43. Hypothetical incorporation of biosynthetic precursors into hyafurone A1 (48). 

 

3.5 Conclusion and future aspects 

With the growing escalation of pathogenic resistance to the available drugs and the 

emergency of new pathogens, expansion in drug discovery programs remains the corner stone 

to improvement in human health. Natural products continue to play an important role in 

providing new chemical entities with diverse biological activities. In the current thesis, 13 

novel and one known compounds [marinoquinoline A, (39)] were isolated, their structures 

elucidated and subsequently screened for biological activities. Marinoquinolines A-F (39-44) 

were isolated from the gliding bacterium Ohtaekwangia kribbensis a bacteroidetes while 

hyaladione (47), hyapyrone A, (51), hyapyrone B (54) and five hyafurones (48-53 except 49, 

which is a degradation product of 48) were isolated from Hyalangium minutum 

(myxobacteria). Marinoquinolines A-F (39-44), a family of six pyrroloquinolines exhibited a 

broad range of antibiotic, antifungal, cytotoxic and also anti-plasmodial activity. 

Marinoquinolines B (40) and F (44) exhibited good anti-plasmodial activities with IC50 values 

of 1.8 and 1.7 µM, respectively, and have generated great interest among the synthetic 

chemists leading to the total synthesis of marinoquinolines A –C (39 -41) and E (43).133,149 

Hyaladione (47), a small metabolite whose structure could not be resolved by NMR 

spectroscopy but by X-ray crystallography, re-emphasizes the power of X-ray diffraction as 

the undisputable technique in structure determination. It showed a range of biological 

activities including antibiotic activity against MRSA with a MIC value of 0.83 µg/mL and 

anti-parasitic activity against P. falciparum K1 cells with an IC50 value of 0.186 µg mL-1.  
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Hyafurone-like metabolites with furanone or pyranone moieties have previously been 

isolated.125,139  Hyafurone C (52) and D (53), however, represent the first hyafurones with an 

N-substitution of the hydroxyl group of the furanone ring. Their biosynthetic pathways have 

equally not been investigated and determination of their absolute configuration would 

definitely be of interest. 

Gliding bacteria and particularly the myxobacteria continue to excite with amazing 

discoveries of new and structurally diverse compounds.53,54 To date, the largest bacterium 

genome sequenced belongs to the myxobacterium Sorangium cellulosum with 13.0 Mbp150 

which together with Myxococcus xanthus (strain DK1622) with a genome of 9.1 Mbp reveal a 

great diversity of putative secondary metabolites.151,152  Natural product drug discovery 

programs have progressed tremendously over the last few years due to improvement in culture 

techniques to isolate and culture the “unculturables”,51 high throughput screening  in 

dereplication and biological activity profiling, ultra-sensitive detectors and automated 

purification equipment, ultra-high LC-HRESIMS and state of the art NMR facilities. Failure 

to get enough new lead compounds from rational drug design and combinatorial chemistry 

and the ever increasing multi-drug resistance pathogens as well as the emergency of new 

pathogens is alarming. Despite the closure of natural product R & D departments by the big 

pharma industries, there is a renewed effort from the governmental public funds to support 

natural product programs at the universities and small biotech companies. This is evidenced 

by the over 5,000 natural products discovered per annum, and the improvement of the journal 

impact factors in the field. There is no doubt therefore that natural product research has been 

re-launched and attention of many researchers attracted. 
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4 Experimental  

4.1 Materials  

4.1.1 General Chemicals 

Table 21. Chemicals used and their corresponding suppliers 

Chemical Supplier 

Acetone 

Calcium chloride (CaCl2 x 2 H2O) 

Glycerine (87 %) 

Methanol (technical grade) 

Methanol (Uvasol) 

Magnesium sulphate x 7 H2O 

Potassium hydroxide 

Sodium acetate 

Toluene 

Merck 

Acetonitrile 

Dichloromethane 

Diethyl ether 

Ethanol 

Ethyl acetate 

Methanol 

Water (HPLC) 

J.T. Baker 

Sodium-Fe-EDTA 

Dimethylaminopyridine (DMAP) 

Sodium hydrogen carbonate 

Pyridine-p-toluenesulfonic acid 

Sephadex LH-20 

Fluka 

 

Acetic acid 

Aluminium oxide 

Ammonium acetate 

Formic acid 

n-Heptane 

Roth 
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Table 21 continued 

 

Chemical  Supplier 

Sodium sulphate 

Sodium chloride 

Sulphuric acid 

HEPES 

Roth 

Soyabean flour 

Starch 12018 

Cargill 

Ammonia solution Riedel-de Haen 

Milli-Q-Water Millipore 

Casitone BD 

Glucose Cerestar 

Amberlite XAD -16 Rohm and Haas 

Skim milk 

Sulphuric acid 

AppliChem 

Yeast extract Ohly 

Tegosipon antifoam Evonik 

Acetone-d6 

Methanol-d4 

Chloroform-d1 

Acetonitrile-d3 

Deutero GmbH 
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4.2 General equipment and procedures 

4.2.1 Analytical reversed phase high performance liquid chromatography (RP-HPLC) 

The standard RP-HPLC and fractionations into well-plates were carried out using an Agilent 

1260 infinity series system equipped with two pumps, a fraction collector, an injection 

system, column chamber and a UV diode-array detector (DAD) [Agilent Technologies]. 

Additionally, the system was coupled to a corona ultra-detector (Dionex GmbH). The 

standard conditions for screening were: column 125×2 mm, Nucleodur 120 EC, 5 µm, C18, 

(Macherey-Nagel); temperature 40°C; solvent A: H2O/ACN (95/5), 5 mmol NH4Ac, 0.04 

mL/L acetic acid; solvent B: H2O/ACN (5/95), 5 mmol NH4Ac, 0.04 mL/L acetic acid, 

gradient: 10 % B increasing to 100 % B in 30 min, maintained at 100 % B for 10 min; and 

finally to 10 % B post-run for 10 min, flow rate 0.3 mL/min; UV detection 200-450 nm.  

4.2.2 Thin Layer Chromatography (TLC) 

Analytical TLC was carried out on TLC aluminum sheets, silica-gel 60 F254 (Merck 5554). 

The standard TLC analyses of crude extracts and pure compounds were done by applying 

approximately 5 µL solution (20mg/mL of crude extract and 2mg/mL of pure compounds) to 

silica gel TLC plates which were developed with DCM/MeOH (9/1; v/v) under solvent vapor 

saturation condition. Visualization under UV light at 254 or 366 nm (Camag) and by spraying 

with vanillin-sulfuric acid reagent (15g vanillin in 250 mL ethanol and 2.5 mL conc. sulfuric 

acid). The TLC plate was then heated to 120 oC.  

4.2.3 Preparative reversed phase high pressure liquid chromatography (pRP-HPLC) 

Two preparative RP-HPLC systems were used: an automated Agilent 1100 series system 

equipped with injection system, fraction collector, two pumps and DAD detector (Agilent 

Technologies) and the second system equipped with a manual injection port (Rheodyne), 

preparative K-1800 pump and a solvent mixing chamber (Knauer) connected to a UV- 

detector (Techlab). In both systems the column was a C18 Nucleodur 250×21 mm, 100–10 EC 

column (Machery-Nagel). 
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4.2.4 Preparative reversed phase medium pressure liquid chromatography (RP- 

MPLC) 

RP-MPLC was carried out using a Büchi chromatography system equipped with two pumps 

C-605, a fraction collector C-660, a UV photometer C-635, and a control unit C-620 

connected to a Kronlab RP-column (480×30 mm). 

4.2.5 Silica-gel flash chromatography systems 

Silica gel flash chromatography was carried out either using a manual Si-gel flash 

chromatography system from Biotage and Si 40 cartridges (Chromabond®) or an automated 

flash chromatography system (Reveleris) equipped with UV and ELSD detectors and a 

fraction collector. The software and the cartidges were supplied by Grace Davison Discovery 

Sciences.  

4.2.6 Size exclusion chromatography 

Size exclusion chromatography was performed on a Sephadex LH-20 column connected to a 

minipuls-3 pump (Gilson), a fraction collector, UV detector and a plotter (Pharmacia 

Biotech.) with methanol as solvent.  

4.2.7 HPLC-Ultrahigh resolution mass spectrometry (HPLC-HRESIMS) 

HRESIMS data were recorded on a Maxis ESI-TOF-MS spectrometer (Bruker) coupled to an 

Agilent 1200 series RP-HPLC system. HPLC-HRESIMS conditions: column 50×2.1 mm, 

Acquity UPLC BEH C-18, 1.7 µm (Waters), solvent A: 0.1 % formic acid in water; solvent B: 

0.1 % formic acid in ACN, gradient 5 % B for 0.5 min, increasing to 100 % B in 19.5 min and 

continued at 100 % B for 5 min, flow rate 0.6 mL/min; or NH4Ac-buffer gradient: column 

100×2.1 mm, XBridgeTM C18 3.5 µm (Waters), solvent A: H2O/ACN (95/5) + 5 mM/L of 

NH4Ac + 40 µL/L of acetic acid; solvent B: H2O/ACN (5/95) + 5 mM/L of NH4Ac + 40 µL/L 

of acetic acid, gradient from 10 % B increasing to 100 % B in 30 min and continued at 100 % 

B for 10 min, flow rate 0.3 mL/min, UV detection 200-450 nm. The molecular formulae were 

identified by including the isotopic pattern in the calculation using the SmartFormula 

algorithm of the Bruker software. 
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4.2.8 NMR spectroscopy 

1H NMR and 13C NMR spectra of extracts and pure compounds for purity check and structure 

elucidation were recorded on Bruker FT-NMR DPX-300 (1H 300 MHz, 13C 75 MHz), ARX-

400 (1H 400 MHz, 13C 100 MHz), or Bruker AVANCE DMX-600 (1H 600 MHz, 13C 150 

MHz) spectrometers. The instruments were calibrated using deuterium solvent signals as 

standards (CD3OD, δc 49.0, δH 3.35, 4.87 ppm; CD3COCD3, δc 29.9, δH 2.05 ppm; CDCl3, δc 

77.2, δH 7.26 ppm; CD3CN, δC 1.6 and 118.6, δH 1.93 ppm ). Multiplicity of 13C signals were 

deduced from DEPT and/or APT experiments; s = C, d = CH, t = CH2, q = CH3. For complete 

structural assignment of new compounds, 1D (1H, 13C, DEPT, ROESY) and 2D [1H-1H 

COSY, 1H-13C direct correlation (HMQC), 1H, 13C long-range correlation (HMBC)] NMR 

spectra were recorded. Data acquisition, processing and spectral analyses were performed 

with standard Bruker software and ACD/NMRWorkbook. The chemical shifts are given in 

parts per million (ppm) and coupling constants in Hz. 

4.2.9 Centrifugation 

Centrifugation was carried out with Centifuge-5416 (Eppendorf) or/and Varifuge 20RS 

(Heraeus Sepatech). 

4.2.10 Evaporation 

Vacuum rota-evaporation of organic solvents was perfomed on a Rotavapor R-200 system 

coupled to a heating bath B-490 (Büchi) and a PC 600 series vacuum pump (Vacuubrand). 

4.2.11 Optical rotation 

Optical rotations were measured using a Perkin-Elmer 241 MC polarimeter equipped with a 

1 mL cell, cell length 10 cm. 

4.2.12 UV spectra  

UV spectra were recorded on a Shimadzu UV/Vis-2450 spectrophotometer using 1 cm quartz 

cells. 

4.2.13 IR spectra 

Infra-red (IR) spectra were recorded on a Bruker IR Tensor 27 spectrophotometer. 
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4.2.14 Melting points 

The melting points were measured on a Büchi-510 melting point apparatus. 

4.2.15 Large-scale fermentations  

Large-scale fermentations were carried out in 100 and 130 L bioreactors (B. Braun) with 

culture volumes of  70 L or 100 L in the presence of  2 % Amberlite XAD-16 (Rohm and 

Haas), respectively. 

4.2.16 Milli-pore water  

Milli-Q water was purified by a Millipore purification system (Millipore). 

4.2.17 Microplate-shaker 

The 96-well bioassay culture plates were incubated at 30 0C on a microplate-shaker (Heidolph 

Titramax 1000). 

4.2.18 X-ray crystallography 

X-ray data set for marinoquinoline A (39) and hyaladione (47) was measured at 122 K on a 

X8-Apex Bruker-AXS diffractometer (Mo Kα radiation), collecting 18376 reflections 

(independent 5432 R(int) = 0.031). The monoclinic space group P21/n with a unit cell of a = 

3.8875(8) Å, b = 14.180(3) Å, c = 14.518(3) Å, β = 94.81(1)° was determined and the 

structure solved by direct methods.153 Full matrix least-squares refinement against Fo
2 with 

anisotropic thermal parameters and free refinement of the hydrogen positions (133 parameter) 

were used, resulting in RI = 0.031 and wR2 = 0.074 with I > 2σI. This was done by Dr. V. 

Huch, Department of Inorganic Chemistry, Saarland University. 
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4.3 Fermentation of PWU 25 and Isolation of Marinoquinolines A-F 

4.3.1 Isolation, identification and culture of strain PWU 25 

Strain PWU 25 was isolated from a soil sample with plant residues collected at Kukrail 

Reserve Forest and Crocodile Research Centre, Uttar Pradesh, India in March 1995. The 

strain was identified as Ohtaekwangia kribbensis by 16S rDNA analysis (Dr. K. Mohr, HZI). 

The strain was isolated using procedures described for isolation of myxobacteria.154 For 

maintenance it was grown on VY/2 agar plate [yeast 0.5 %, CaCl2. 2 H2O 0.1 %, 

cyanocobalamine 0.5 µg/ml, agar 1.5 %, pH 7.2]. Liquid batch cultures (100 mL) of the strain 

were cultivated in 250 mL Erlenmeyer flasks in a medium containing 0.4 % skimmed milk, 

0.4 % defatted soy flour, 0.2 % yeast extract, 1.0 % starch, 0.1 % MgSO4×7 H2O, 50 mM 

HEPES (11.9 g/L), 8 mg/L Fe–EDTA, 0.5 % glycerin and 2 % of Amberlite XAD-16 resin 

(E-medium) and incubated at 30 oC on a gyratory shaker at 160 rpm for 3 days. Aliquots of 

stock cultures in eppendorf tubes were stored at -80 oC. 

4.3.2 Large-Scale fermentation of strain PWU 25 

A 3 L pre-culture of O. kribbensis strain PWU performed in shaking flasks and cultivated for 

3 days were inoculated to 70 L of E-medium (without HEPES) in a 100 L bioreactor 

supplemented with 1.4 kg of Amberlite XAD -16 resin. The culture was kept at 30 oC, aerated 

with oxygen at 0.05 vvm per minute, pH regulated at 7.4 with 10 % KOH and 5 % H2SO4 

solutions, and agitated with a flat-blade turbine stirrer at 100 rpm. Foam formation was 

suppressed by addition of 100 mL of 30 % tegosipon. Fermentation was terminated after three 

days and XAD-16 adsorber resin and the cell mass (4.3 kg) were collected by sieving and 

centrifugation, respectively. 

4.3.3 Isolation of marinoquinolines A-F  

The adsorber resin was washed with distilled water and packed in a glass column (70×8 cm). 

Compounds were extracted by a three step process; first, polar compounds were extracted 

with 50 % aqueous methanol (4 L) followed by extraction with methanol (4 L) and a final 

elution with acetone (4 L), each at a flow rate of 2 L per hour. The eluent from 50 % aqueous 

methanol was discarded while methanol and acetone eluents were vacuo-evaporated to yield 

10.41 g and 7.08 g of crude extract, respectively. Lipophilic compounds in the methanol 
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extract were removed by partitioning with n-heptane to yield 9.25 g accumulated in the 

methanol layer. The compounds were further enriched by acid-base partitioning. First, they 

were partitioned under acidic conditions between water containing 2 % formic acid (pH 2) 

and ethyl acetate. Acidic and neutral compounds accumulated in the acidic layer of ethyl 

acetate weighed 2.5 g. The pH of the water layer was shifted to 11 by addition of ammonia, 

and subsequent partitioning and extraction with ethyl acetate yielded 692 mg of a basic 

extract. This was separated by Sephadex LH-20 (1000×50 mm) column chromatography with 

methanol as solvent and a UV detector set at 227 nm. The fraction containing the major 

compound 39 (marinoquinoline A) was evaporated and subjected to crystallization and 

recrystallization in acetone-petrol ether (1:1) yielding 62.5 mg of colorless needle-shaped 

single crystals whose X-ray crystallography data were identical to those described for 4-

methyl-3H-pyrrolo[2,3-c]quinolone.111 The byproducts were further purified by preparative 

RP HPLC [column 250×21 mm Nucleodur C18 (Macherey Nagel), solvent A: 0.5 % HCOOH 

in 80 % H2O and solvent B: 0.5 % HCOOH in 50 % CH3OH; gradient 7 % B, 60 min to 83 % 

B, 30 min 100 % CH3OH; flow rate 20 mL/min, UV detection at 240 nm] affording 40 (16.5 

mg), 41 (7.5 mg), 42 (23 mg), 43 (15.3 mg) and 44 (3 mg). All pure fractions of 39 were 

pooled to give a final yield of 232 mg. 

Marinoquinoline A (39): colorless needles; mp 236-237 °C; UV (MeOH): λmax (log ε) 239 

(4.561), 300 (4.034), 312 (3.959), 326 (3.792) nm; IR (KBr): νmax 3442, 2924, 2854, 1631, 

1587, 1441, 1366, 1125, 1026 cm-1; NMR data see Table 2; HRESIMS m/z 183.0919 [M + 

H]+ (calcd for C12H10N2, 183.0922). 

Marinoquinoline B (40): colorless amorphous solid; UV (MeOH): λmax (log ε) 226 (4.651), 

240 (4.678), 301 (4.093), 314 (4.028), 327 (3.867) nm; NMR data see Table 2; HRESIMS m/z 

225.1382 [M + H]+ (calcd for C15H16N2, 225.1386).  

Marinoquinoline C (41): colorless amorphous solid; UV (MeOH): λmax (log ε) 228 (4.755), 

239 (4.751) 302 (4.154), 314 (4.101), 329 (3.959) nm; NMR data see Table 3; HRESIMS m/z 

259.1236 [M + H]+ (calcd for C18H14N2, 259.1230).  

Marinoquinoline D (42): colorless amorphous solid; UV (MeOH): λmax (log ε) 227 (4.823), 

240 (4.816), 302 (4.233), 315 (4.186), 329 (4.032) nm; NMR data see Table 3; HRESIMS m/z 

275.1181 [M + H]+ (calcd for C18H14N2O, 275.1179). 
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Marinoquinoline E (43): yellow amorphous solid; UV (MeOH): λmax (log ε) 225 (4.563), 242 

(4.451) 306 (4.018), 315 (4.009), 339 (4.009) nm; NMR data see Table 4; HRESIMS m/z 

284.1182 [M + H]+ (calcd for C19H13N3 , 284.1182). 

Marinoquinoline F (44): yellow oil; UV (MeOH): λmax (log ε) 210 (4.638), 222 (4.602, sh), 

271 (4.050, sh), 328 (3.866), 361 (3.739) nm; for NMR data in methanol-d4 see Table 4; 1H 

NMR (600 MHz, CD3CN): δ [ppm] 11.06 (1H, br s, H-3), 7.71 (1H, m, H-4 ), 7.18 (1H, t, J = 

2.2 Hz, H-5), 8.34 (1H, m, H-6 ), 7.68 (1H, m, H-7), 7.66 (1H, t, J = 2.8 Hz, H-8 ), 8.32 (1H, 

m, H-9), 10.13 (1H, br s, H-1´) 9.56 (1H, d, J = 2.9 Hz, H-2´), 8.58 (1H, dd, J=6.6, 1.8 Hz, H-

4´), 7.32 (1H, td, J = 7.2, 1.5 Hz, H-5´) 7.34 (1H, td, J = 7.3, 1.5 Hz, H-6´) 7.59 (1H, dd, J = 

6.4, 2.0 Hz, H-7´); HRESIMS m/z 312.1138 [M + H]+ (calcd for C20H13N3O, 312.1131).  

4.4  Biological testing 

4.4.1 Determination of the minimum inhibition concentration (MIC) 

The MIC values of marinoquinoline A-F were determined against the Gram-positive bacteria 

Staphylococcus aureus, Nocardia flava, and Micrococcus luteus, and the Gram-negative 

bacteria Escherichia coli and Chromobacterium violaceum. In addition, the fungi Mucor 

hiemalis, the yeasts Candida albicans, Rhodotorula glutinis, Pichia anomala and the fission 

yeast Schizosaccharomyces pombe were tested. MIC assays were conducted in 96 well 

microtiter well plates in a serial dilution in EBS-medium [0.5 % casein pepton, 0.5 % glucose, 

0.1 % beef extract, 0.1 % yeast extract, 50 mM HEPES (11.9 g/L) at pH 7] for bacteria 

pathogens and MYC-medium [1 % phytone peptone, 1 % glucose and 50 mM HEPES (11.9 

g/L) at pH 7] for yeasts and fungi pathogens. First, 10 µL aliquots of each of the 

marinoquinolines A-F at 1 mg/mL in MeOH and 2 µL for the reference drugs (broad 

spectrum antibacterial oxytetracycline hydrochloride (sigma) at 1 mg/mL in Millipore water 

and antifungal nystatin (sigma) at 1 mg/mL in MeOH) were pipetted to the first row (A) of the 

plate. Negative control wells were left blank.  After the solvents were dried, 150 µL of a 

mixture of the test pathogen and the culture medium in the ratio of 1:100, respectively, was 

dispensed in all rows using a multichannel pipet. To the first row, an additional 150 µL of the 

pathogen-medium mixture was added and mixed by repeated pipetting, before transferring the 

same amount to the second row. A 1:1 serial dilution was done in the subsequent rows, and 

150 µL discarded after the last row (H). The micro-titre plates were incubated on a micro-

plate- shaker with 600 rpm at 30 oC for 24 - 48 hours. The lowest concentration of the drug 
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preventing visible growth of the pathogen was taken as the MIC. The concentrations tested 

ranged from 33.5 to 0.052 µg/mL. 

4.4.2 Cytotoxicity assay  

In vitro cytotoxicity (IC50) was determined against a panel of mammalian cell lines including 

the breast cancer cell line MCF-7, the cervix carcinoma cell line KB-3-1, the established 

mouse fibroblast cell line L929 and the non-transformed human umbilical vein endothelial 

cell line (HUVEC). KB-3-1 and L929 were cultured in DMEM (Lonza), HUVEC in EBM-2 

(Lonza), and MCF-7 in RPMI (Lonza) media, all supplemented with 10 % of fetal bovine 

serum (Gibco) under 10 % CO2 at 37 oC. The cytotoxicity assay was performed according to 

the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method in 96-well 

micro-plates.155 Briefly, 60 µL aliquots of serial dilutions from an initial stock of 1 mg/mL in 

MeOH of the test compounds were added to 120 µL aliquots of a cell suspension (50,000/mL) 

in 96-well micro-plates. Methanol was used as a negative control. After 5 days incubation at 

37 oC and 10 % CO2, the MTT assay was performed, and the absorbance measured at 590 nm 

using an ELISA plate reader (Victor). The concentration at which the growth of cells was 

inhibited to 50 % of the control (IC50) was obtained from the dose-response curves in µg/mL.  

4.4.3 Antiplasmodial activity 

Antiprotozoal activity of the pure compounds was determined at the Swiss Tropical and 

Public Health Institute (Swiss TPH) by Prof. R. Brun and M. Kaiser. Antimalarial activity 

was tested by a variation of the semiautomated microdilution assay against intraerythrocytic 

forms of Plasmodium falciparum derived from asynchronous stock cultures.156 The reference 

strain used was K1 (Thailand; resistant to chloroquine and pyrimethamine). Activity against 

hemoflagellates which cause human sleeping sickness (Trypanosoma brucei subsp. Rhodesia) 

and Chagas disease (Trypanasoma cruzi) and also activity against rat skeletal muscle 

myoblast (L-6) cells were assessed as described by Kaminsky and Brun157 

4.5 Fermentation and Isolation of hyaladione  from strain NOCB-2T 

4.5.1 Isolation of strain NOCB-2T 

Strain NOCB-2T was isolated in 1992 and characterized as belonging to the myxobacteria 

Hyalangium minutum by Prof. Dr. Reichenbach of the former German Centre for 
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Biotechnology (GBF) currently HZI and deposited at the German Resource Centre for 

Biological Material (DSMZ) as a type strain with accession number DSM 14724T.  

4.5.2 Large scale fermentation of strain NOCB-2T 

Large-scale fermentation of H. minutum strain NOCB-2T was performed in a medium 

containing 0.2 % soya meal, 0.2 % glucose, 0.2 % yeast extract, 0.8 % starch, 0.1 % CaCl2, 

0.1 % MgSO4 x 7 H20, 8 mg/L Fe-EDTA (H-medium) and 2 % of Amberlite XAD-16 resin in 

a 70 L bioreactor that was inoculated with a 6 L of shake-flask cultures grown for 7 days in 

the same medium. The bioreactor was kept at 30 °C, aerated at 0.05 vvm per minute, pH 

regulated at 7.4 with 2.5 % H2SO4 or 2.5 % KOH solution and agitated with a flat-blade 

turbine stirrer at 100 rpm.  

4.5.3 Extraction and isolation of hyaladione (47) 

The fermentation was terminated after 7 days and the adsorber resin collected by sieving and 

extracted sequentially in a glass column (70 × 8 cm) with methanol (7 L) and with acetone 

(4 L) at a flow rate of 2 L per hour. The combined solutions were evaporated to yield 34 g of 

extract. Enrichment of 47 was achieved by eliminating lipophilic compounds by partitioning 

between methanol and n-heptane to give 24 g of an enriched crude methanol extract. A further 

solvent-solvent partitioning with EtOAc/water resulted in 8.4 g residue from the EtOAc layer. 

2 g of this extract (8.4 g) were separated by silica gel flash chromatography (Biotage Flash+) 

with a gradient of 2 % to 10 % methanol in DCM resulting in 330 mg of enriched hyaladione 

(47) according to TLC and HPLC analyses (Rf = 0.7, DCM/MeOH (24/1) and Rt = 6.4 min, 

respectively). Further enrichment was performed by reverse phase preparative Medium 

Pressure Liquid Chromatography (RP-MPLC) on a Kronlab ODS-AQ 120/16 column (97 x 

4 cm) connected to a Büchi chromatography system with a gradient of 25 % B to 35 % B 

(solvent A: MeOH/H20 1/1, solvent B: MeOH) in 30 min. at a flow rate of 30 mL/min and 

UV detection at 360 nm.  Hyaladione (47) eluted at a retention time of 9.5 minutes. The 

fraction containing 47 was evaporated to eliminate MeOH and the compound recovered from 

the water layer by extraction with EtOAc to yield 98 mg of 47. Crystallization in acetone at 

room temperature yielded 23 mg of pink hyaladione (47) crystals that allowed structure 

determination by X-ray crystallography. 

Hyaladione (47): pink needles; mp 235-236 oC; UV (methanol): λmax (log ε) = 353 (3.743) 

nm; IR (KBr): νmax 3438, 3308, 3056, 1673, 1662, 1638, 1604, 1566, 1394, 1335, 1318, 1261, 
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1246, 1088, 1039, 952, 877 cm-1; 1H NMR and 13C NMR data are presented in Table 9; 

HRESIMS m/z 203.9882 [M+H]+ (calcd for C7H6ClNO2S [M+H]+, 203.9880 ). 

4.6 Extraction and isolation of hyafurones 

4.6.1 General remark 

The hyafurones with a polyene type UV chromophore were protected against light by use of 

amber glassware and stored in methanol solution supplemented with nitrogen gas at -20 °C.  

4.6.2 Isolation of hyafurones A1-D and hyapyrone A  

A second 100 L large-scale fermentation of strain NOCB-2T was performed in H-medium 

under conditions similar to the first fermentation. 2 kg of XAD were recovered. Upon 

washing with distilled water, the resin was packed in a column, washed again with 50 % 

aqueous methanol (4 L), extracted with 9 L of methanol and finally eluted with 6 L acetone. 

The methanol extract was evaporated to yield 11.8 g of crude extract. Partitioning in 90 % 

aqueous methanol/n-heptane resulted in 9.3 g accumulation in the methanol layer. Further 

partitioning in DCM/water resulted in 5.6 g of enriched compounds in methylene chloride 

layer. This residue was loaded to a 80 g silica gel flash cartridge and run on the automated 

flash chromatography system (Reveleris) with a gradient of 20 % to 30 % acetone in DCM for 

73 minutes. 20 fractions were collected according to analytical TLC und UV-absorption. The 

fraction containing hyafurone A1 (48) (689 mg) was purified by MPLC with a gradient of 

70 % to 80 % aqueous methanol to yield 82 mg of pure 48. Hyafurone A2 (49) was isolated 

from an isomerization of 25 mg of 48. The purification was performed by preparative HPLC 

on a C18 Nucleodur column, 250 x 21 mm with a gradient of 60 % to 72.5 % aqueous 

methanol and a flow rate of 20 mL/min to obtain 1.6 mg of 49. All subsequent hyafurone 

derivatives were purified by preparative HPLC using the same column but different gradients 

in aqueous methanol. Hyafurone B (50) was purified from a fraction containing 143 mg with 

a gradient of 72.5 % to 85 % aqueous methanol to yield 8 mg of pure hyafurone B (50). 

Hyapyrone A (51) was purified from a fraction containing 154 mg on the same column with a 

gradient of 75 % to 85 % aqueous methanol to yield 4.7 mg of 51. For hyafurone C (52), a 

fraction containing 33 mg was purified with a gradient of 70 % to 80 % aqueous methanol to 

yield 3.5 mg of 52, whereas hyafurone D (53) was purified from a fraction containing 79 mg 

with a gradient of 72.5 % to 80 % aqueous methanol to yield 3 mg of 53. 
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4.6.3 Fermentation of strain Hym 3 and isolation of hyapyrone B 

 Although hyapyrone (54) was detected in H. minutum strain NOCB-2T, its low production of 

less than 0.3 mg/L was insufficient for isolation. Luckily, other strains of H. minutum were 

also found to produce the hyafurones and hyapyrones in varying proportions. The strains 

include NOCB-10, Hym 3 and Hym 23. Of these, Hym 3 was found to be the best producer of 

54 with a production of ca. 0.5 mg/L. A 70 L fermenter was run in a medium containing 3 % 

probion, 3 % starch, 2 % MgSO4 and 0.5 % CaCl2 (Pol-medium) in the presence of 2 % of  

XAD-16 adsorber resin. The extract was eluted from the resin with methanol and acetone to 

obtain 17 g of crude extract. An ethyl acetate water partitioning resulted in 7.5 g of crude 

material accumulated in the ethyl acetate phase. Further enrichment was done by partitioning 

between MeOH/n-Heptane with 4.6 g raw extract accumulated in the MeOH layer. 

Fractionation by silica gel flash chromatography of 1.6 g of the extract with a gradient from 2 

% to 5 % MeOH in DCM yielded 297 mg of an enriched fraction. Several runs of preparative 

RP-HPLC with 75 % of acetonitrile in water in the presence of 0.1 % formic acid were run to 

obtain 7 mg of 54.  

Hyafurone A1 (48): yellow amorphous oil; [α]22
 D =  – 49.6 (c = 0.52, CH3OH); UV (MeOH): 

λmax (log ε) 280 (4.404, sh), 293 (4.498), 307 (4.563), 321 (4.498) nm; 1H, 13C, and 2D NMR 

data, see Table 12; HRESIMS m/z [M +Na ]+ 547.3027 (calcd for C32H44O6Na, 547.3030). 

Hyafurone A2 (49): yellow amorphous oil; [α]22
 D =  – 11.8 (c = 0.16, MeOH); UV(MeOH): 

λmax (log e) 279 (4.687, sh), 291 (4.799), 305 (4.862), 319 (4.792) nm; 1H, 13C and 2D NMR 

data, see Table 13; HRESIMS m/z [M +Na ]+ 547.3040 (calcd for C32H44O6Na, 547.3030).  

Hyafurone B (50): yellow amorphous oil; [α] 22
 D =  – 31.8 ( c = 1, MeOH); UV (MeOH): λmax 

(log ε) 294 (4.856, sh), 308 (4.948), 322 (4.879) nm; 1H, 13C, and 2D NMR data, see Table 

14; HRESIMS m/z [M +Na ]+ 529.2923 (calcd for C32H42O5Na, 529.2924). 

Hyapyrone A (51): yellow amorphous solid; [α]  22
 D =  – 69.1 (c = 0.43, MeOH); UV (MeOH): 

λmax (log ε) 294 (4.656 sh) 308 (4.774) 321 (4.700) nm; 1H, 13C, and 2D NMR data, see Table 

15; HRESIMS m/z [M +Na ]+ 529.2923 (calcd for C32H42O5Na, 529.2924). 



Experimental 

 

87 

 

Hyafurone C (52): deep yellow oil; [α]  22
 D =  – 54.2 (c = 0.24, MeOH); UV (MeOH): λmax (log 

ε) 294 (4.821), 307 (4.973), 321 (4.920) nm; 1H, 13C, and 2D NMR data, see Table 16; 

HRESIMS m/z [M +H ]+ 568.3634 (calcd for C34H50NO6, 568.3633). 

Hyafurone D (53): yellow oil; [α]  22
 D =   – 22.8 (c = 0.25, MeOH); UV (MeOH): λmax (log ε) 

294 (4.340), 307 (4.462), 321(4.412) nm; 1H, 13C, and 2D NMR data, see Table 16; 

HRESIMS m/z [M +H ]+ 582.3788 (calcd for C35H52NO6, 582.3789). 

Hyapyrone B (54): yellow oil [α]  22
 D =  + 10.8 (c = 0.65, MeOH); UV (MeOH): λmax (log ε) 

265 (4.943), 274 (4.978), 284 (4.907) nm; 1H, 13C, and 2D NMR data, see Table 17; 

HRESIMS m/z [M +H ]+ 505.3306 (calcd for C33H45O4, 505.3312). 

4.6.4 Determination of absolute configuration of hyafurone A1 (48) 

Two attempts were made to determine the absolute configuration of hyafurone A1 (48) using 

the advanced Mosher method.107 The first involved the reaction of MTPA-Cl for the 

derivatization of the chiral hydroxy groups. Vacuum dried hyafurone A1 (48) [5 mg, 9.5 

µmol] was transferred to a dry 5 mL amber glass vial with a Teflon-coated magnetic stir bar. 

500 µl of anhydrous CH2Cl2, 200 µl of pyridine and 15 µl of (R)–MTPA-Cl (Fluka) were 

dispensed into the vial. The reaction mixture was stirred at room temperature (ca. 22 oC) and 

was monitored after 4 hours by TLC analysis [dichloromethane/ethyl acetate/ petroleum ether 

(18:2:1)]. Additional 15 µl of (R)-MTPA-Cl were added. After 20 hours the reaction mixture 

had changed from colourless to orange-yellow and was quenched by addition of 3 mL of 1 % 

NaHCO3 and extracted three times with DCM in a 3:1 ratio (DCM:H20). 15.7 mg raw product 

was recovered after rota-evaporation of the DCM layer and a further TLC analysis showed 

two bands for the products. However, preparative purification on a 20 x 20 cm preparative 

silica gel glass plate (5 mm) eluted with the same solvent mixture as used above was 

unsuccessful. 

In a second attempt, Mosher acid was used. Dry hyafurone A1 (48) [7.3 mg, 13.9 µmol] in 

300 µl of anhydrous dichloromethane was stirred with (R)-MTPA-OH [14.7 mg, 62.7 µmol, 

4.5 equiv.], 1,3-dicyclohexylcarbodiimide (DCC) [12.9 mg, 62.7 µmol, 4.5 equiv.], and 4-

dimethylaminopyridine (DMAP) [7.6 mg, 62.7 µmol, 4.5 equiv.] at ambient temperature.  The 

reaction was monitored by TLC analysis as above. After 24 hours, all hyafurone A1 (48) had 

been used up, unfortunately the products were clearly degraded as only smears were observed. 
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The quenching was done as described above and vacuo-evaporation of the DCM extraction 

afforded 25.6 mg of degraded product. 
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6 Appendix 
 
6.1  Author’s effort in publications 
 

Marinoquinolines A-F, Pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes) 

Dereplication screening experiments were performed by the author in consultation with Dr. R. 

Jansen. Medium optimizations, antibacterial and antifungal activity testing were performed by 

Dr. K. Mohr. The author monitored secondary metabolite production during large-scale 

fermentation. Anti-parasitic assays were performed at the Swiss Tropical and Pubic Health 

Institute. The author performed the isolation of all the marinoquinolines and elucidated their 

structures with the help of Dr. R. Jansen and participated in the cytotoxicity assays in Dr. F. 

Sasse’s laboratory. The author wrote the manuscript.   

 

Hyaladione, an S-Methyl Cyclohexadiene-dione from Hyalangium minutum 

The producer strain was selected by Dipl.-Ing. H. Steinmetz. The author participated in 

antibacterial and antifungal activity testing, and performed the isolation and all the 

spectroscopic analyses of the compound. X-ray crystallography analysis was performed by 

Dr.V. Huch. The author wrote the manuscript. 
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6.2 Spectra and X-ray data tables of marinoquinolines A - F 

6.2.1 Spectra of marinoquinoline A (39) 
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Spectrum 1: 1H NMR spectrum of marinoquinoline A (39) (1H 600 MHz, acetone-d6). 
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Spectrum 2: 13C NMR spectrum of marinoquinoline A (39) (13C 150 MHz, acetone-d6). 
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Spectrum 3: 13C DEPT spectrum of marinoquinoline A (39) (13C 150 MHz, acetone-d6). 
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Spectrum 4: 1H, 1H COSY NMR spectrum of marinoquinoline A (39) (1H 600 MHz, acetone-d6). 
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Spectrum 5: 1H,13C HMQC NMR spectrum of marinoquinoline A (39) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 
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Spectrum 6: 1H,13C HMBC NMR spectrum of marinoquinoline A (39) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 

 

 

 

 

 

Spectrum 7: IR Spectrum of marinoquinoline A (39) (1 mg, 160 mg KBR). 
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Table 1: Crystal data and structure refinement of marinoquinoline A (39). 

 
 

Empirical formula C12 H10 N2  
Formula weight 182.22  
Temperature 153(2) K  
Wavelength 0.71073 Å  
Crystal system Orthorhombic  
Space group P2(1)2(1)2  
Unit cell dimensions a = 18.0708(8) Å α= 90°. 
 b = 20.2174(10) Å β= 90°. 
 c = 5.1124(2) Å σ = 90°. 
Volume 1867.79(14) Å3  

Z 8  
Density (calculated) 1.296 Mg/m3  

Absorption coefficient 0.079 mm-1  

F(000) 768  
Crystal size 0.37 x 0.23 x 0.13 mm3  

Theta range for data collection 1.51 to 27.10°.  
Index ranges -22<=h<=23, -25<=k<=25, -6<=l<=6  
Reflections collected 12803  
Independent reflections 4110 [R(int) = 0.0811]  
Completeness to theta = 27.10° 99.8 %  
Absorption correction None  
Max. and min. transmission 0.9895 and 0.9715  
Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 4110 / 0 / 333  

Goodness-of-fit on F2 1.298  

Final R indices [I>2sigma(I)] R1 = 0.0629, wR2 = 0.1539  
R indices (all data) R1 = 0.0723, wR2 = 0.1594  
Absolute structure parameter 1(3)  
Largest diff. peak and hole 0.332 and -0.313 e.Å-3  
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Table 2: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x  

         103) of marinoquinoline A (39) U(eq) is defined as one third of the trace of the 

orthogonalized Uij  tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
N(1) 9805(1) 3020(1) 2487(4) 18(1) 
N(2) 8105(1) 3890(1) 477(4) 20(1) 
C(1) 9734(1) 2494(1) 746(5) 18(1) 
C(2) 10283(1) 1998(1) 825(5) 22(1) 
C(3) 10248(1) 1469(1) -876(6) 25(1) 
C(4) 9677(1) 1416(1) -2715(5) 24(1) 
C(5) 9138(1) 1894(1) -2799(5) 22(1) 
C(6) 9149(1) 2436(1) -1073(5) 19(1) 
C(7) 8598(1) 2941(1) -1007(5) 19(1) 
C(8) 7940(1) 3068(1) -2416(5) 23(1) 
C(9) 7662(1) 3649(1) -1462(5) 24(1) 
C(10) 8686(1) 3457(1) 809(5) 18(1) 
C(11) 9290(1) 3485(1) 2544(5) 17(1) 
C(12) 9360(1) 4033(1) 4517(5) 21(1) 
N(3) 2818(1) 9814(1) 7453(4) 18(1) 
N(4) 3752(1) 8278(1) 5380(4) 20(1) 
C(13) 2236(1) 9772(1) 5715(5) 18(1) 
C(14) 1698(1) 10281(1) 5780(5) 22(1) 
C(15) 1113(1) 10276(1) 4050(6) 25(1) 
C(16) 1038(1) 9765(1) 2208(5) 24(1) 
C(17) 1546(1) 9261(1) 2130(5) 22(1) 
C(18) 2151(1) 9251(1) 3871(5) 17(1) 
C(19) 2701(1) 8744(1) 3931(5) 18(1) 
C(20) 2828(1) 8158(1) 2472(5) 22(1) 
C(21) 3472(1) 7895(1) 3416(5) 22(1) 
C(22) 3279(1) 8804(1) 5723(5) 17(1) 
C(23) 3329(1) 9345(1) 7501(5) 17(1) 
C(24) 3941(1) 9397(1) 9452(5) 22(1) 
________________________________________________________________________________ 
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Table 3:  Bond lengths [Å] and angles [°] of marinoquinoline A (39). Symmetry transformations  
 used to generate equivalent atoms. 
____________________________________________________ 
N(1)-C(11)  1.323(3) 
N(1)-C(1)  1.392(3) 
N(2)-C(9)  1.364(3) 
N(2)-C(10)  1.377(3) 
C(1)-C(2)  1.412(3) 
C(1)-C(6)  1.413(3) 
C(2)-C(3)  1.379(4) 
C(3)-C(4)  1.400(4) 
C(4)-C(5)  1.374(3) 
C(5)-C(6)  1.406(3) 
C(6)-C(7)  1.428(3) 
C(7)-C(10)  1.406(3) 
C(7)-C(8)  1.413(3) 
C(8)-C(9)  1.367(3) 
C(10)-C(11)  1.408(3) 
C(11)-C(12)  1.505(3) 
N(3)-C(23)  1.324(3) 
N(3)-C(13)  1.379(3) 
N(4)-C(21)  1.365(3) 
N(4)-C(22)  1.376(3) 
C(13)-C(14)  1.417(3) 
C(13)-C(18)  1.422(3) 
C(14)-C(15)  1.379(4) 
C(15)-C(16)  1.405(4) 
C(16)-C(17)  1.371(3) 
C(17)-C(18)  1.410(3) 
C(18)-C(19)  1.428(3) 
C(19)-C(22)  1.394(3) 
C(19)-C(20)  1.418(3) 
C(20)-C(21)  1.368(3) 
C(22)-C(23)  1.425(3) 
C(23)-C(24)  1.493(3) 
 
C(11)-N(1)-C(1) 119.49(19) 
C(9)-N(2)-C(10) 108.1(2) 
N(1)-C(1)-C(2) 117.4(2) 
N(1)-C(1)-C(6) 123.60(19) 
C(2)-C(1)-C(6) 119.0(2) 
C(3)-C(2)-C(1) 120.0(2) 
C(2)-C(3)-C(4) 121.1(2) 
C(5)-C(4)-C(3) 119.3(2) 
C(4)-C(5)-C(6) 121.2(2) 
C(5)-C(6)-C(1) 119.3(2) 
C(5)-C(6)-C(7) 124.2(2) 
C(1)-C(6)-C(7) 116.5(2) 
C(10)-C(7)-C(8) 107.3(2) 
C(10)-C(7)-C(6) 117.9(2) 
C(8)-C(7)-C(6) 134.8(2) 
C(9)-C(8)-C(7) 106.5(2) 
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N(2)-C(9)-C(8) 110.4(2) 
N(2)-C(10)-C(7) 107.6(2) 
N(2)-C(10)-C(11) 130.1(2) 
C(7)-C(10)-C(11) 122.3(2) 
N(1)-C(11)-C(10) 120.2(2) 
N(1)-C(11)-C(12) 118.7(2) 
C(10)-C(11)-C(12) 121.1(2) 
C(23)-N(3)-C(13) 119.93(19) 
C(21)-N(4)-C(22) 107.6(2) 
N(3)-C(13)-C(14) 117.6(2) 
N(3)-C(13)-C(18) 123.79(19) 
C(14)-C(13)-C(18) 118.6(2) 
C(15)-C(14)-C(13) 120.4(2) 
C(14)-C(15)-C(16) 120.6(2) 
C(17)-C(16)-C(15) 120.1(2) 
C(16)-C(17)-C(18) 120.7(2) 
C(17)-C(18)-C(13) 119.5(2) 
C(17)-C(18)-C(19) 124.3(2) 
C(13)-C(18)-C(19) 116.2(2) 
C(22)-C(19)-C(20) 107.3(2) 
C(22)-C(19)-C(18) 118.2(2) 
C(20)-C(19)-C(18) 134.4(2) 
C(21)-C(20)-C(19) 106.1(2) 
N(4)-C(21)-C(20) 110.7(2) 
N(4)-C(22)-C(19) 108.3(2) 
N(4)-C(22)-C(23) 129.4(2) 
C(19)-C(22)-C(23) 122.26(19) 
N(3)-C(23)-C(22) 119.6(2) 
N(3)-C(23)-C(24) 118.6(2) 
C(22)-C(23)-C(24) 121.8(2) 
_____________________________________________________________ 
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Table 4: Anisotropic displacement parameters (Å2x 103) of marinoquinoline A (39). The  

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k 

a* b* U12 ]. 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

N(1) 16(1)  18(1) 19(1)  -2(1) 2(1)  -1(1) 

N(2) 19(1)  19(1) 22(1)  -2(1) -2(1)  2(1) 

C(1) 20(1)  15(1) 18(1)  2(1) 6(1)  -3(1) 

C(2) 21(1)  23(1) 24(1)  3(1) 4(1)  0(1) 

C(3) 27(1)  18(1) 30(1)  2(1) 8(1)  4(1) 

C(4) 28(1)  20(1) 25(1)  -4(1) 9(1)  -3(1) 

C(5) 25(1)  23(1) 18(1)  1(1) 0(1)  -4(1) 

C(6) 19(1)  18(1) 19(1)  3(1) 5(1)  -5(1) 

C(7) 21(1)  20(1) 16(1)  2(1) 1(1)  -4(1) 

C(8) 23(1)  25(1) 21(1)  -1(1) -3(1)  -3(1) 

C(9) 23(1)  26(1) 22(1)  1(1) -1(1)  0(1) 

C(10) 15(1)  20(1) 19(1)  2(1) 4(1)  0(1) 

C(11) 18(1)  18(1) 15(1)  1(1) 1(1)  -3(1) 

C(12) 22(1)  20(1) 22(1)  -4(1) 0(1)  -1(1) 

N(3) 18(1)  19(1) 18(1)  0(1) 0(1)  -1(1) 

N(4) 20(1)  18(1) 22(1)  0(1) 1(1)  1(1) 

C(13) 13(1)  22(1) 19(1)  2(1) 4(1)  -1(1) 

C(14) 22(1)  21(1) 23(1)  2(1) 1(1)  0(1) 

C(15) 17(1)  25(1) 32(2)  6(1) 3(1)  4(1) 

C(16) 14(1)  35(1) 23(1)  6(1) -4(1)  -2(1) 

C(17) 21(1)  29(1) 17(1)  1(1) 0(1)  -3(1) 

C(18) 14(1)  21(1) 17(1)  5(1) 1(1)  -2(1) 

C(19) 17(1)  18(1) 20(1)  2(1) 4(1)  -2(1) 

C(20) 22(1)  24(1) 20(1)  -2(1) 3(1)  -4(1) 

C(21) 23(1)  20(1) 23(1)  0(1) 4(1)  -1(1) 

C(22) 13(1)  19(1) 20(1)  4(1) 3(1)  1(1) 

C(23) 15(1)  18(1) 18(1)  4(1) 3(1)  -2(1) 

C(24) 22(1)  24(1) 21(1)  -1(1) -4(1)  -3(1) 

______________________________________________________________________________ 
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Table 5: Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) 
of marinoquinoline A (39). 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  

H(1) 10677(18) 2088(15) 2010(70) 44(9) 

H(2) 10639(14) 1148(13) -920(60) 24(7) 

H(3) 9655(16) 1029(15) -3710(70) 41(9) 

H(4) 8744(15) 1915(12) -3950(60) 24(7) 

H(5) 7685(15) 2801(12) -3740(60) 25(7) 

H(6) 7191(13) 3878(11) -2040(50) 12(6) 

H(7) 8077(16) 4276(15) 1310(70) 42(9)  

H(8) 9429(16) 4464(16) 3840(70) 44(9) 

H(9) 9828(15) 4016(11) 5510(60) 18(6) 

H(10) 8900(20) 4064(17) 5630(80) 64(11) 

H(11) 1789(13) 10628(12) 7200(50) 16(6) 

H(12) 745(14) 10640(12) 4000(60) 23(7) 

H(13) 681(15) 9752(12) 1100(60) 22(7) 

H(14) 1484(15) 8930(13) 680(60) 31(8) 

H(15) 2546(15) 7971(12) 970(60) 28(7) 

H(16) 3725(13) 7513(12) 2910(50) 19(6) 

H(17) 4260(20) 8193(15) 6170(70) 47(9) 

H(18) 3809(19) 9801(17) 10460(70) 58(10) 

H(19) 3996(16) 9004(13) 10510(60) 31(8) 

H(20) 4446(18) 9497(14) 8380(60) 43(9) 

________________________________________________________________________________  
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6.2.2 Spectra of marinoquinoline B (40) 
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Spectrum 8: 1H NMR spectrum of marinoquinoline B (40) (1H 600 MHz, acetone-d6). 
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Spectrum 9: 13C NMR spectrum of marinoquinoline B (40) (13C 150 MHz, acetone-d6). 
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Spectrum 10: 13C DEPT NMR spectrum of marinoquinoline B (40) (13C 150 MHz, acetone-d6). 
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Spectrum 11: 1H,1H COSY NMR spectrum of marinoquinoline B (40) (1H 600 MHz, acetone-d6). 
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Spectrum 12: 1H,13C HMQC NMR spectrum of marinoquinoline B (40) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 
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Spetrum 13: 1H,13C HMBC NMR spectrum of marinoquinoline B (40) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 
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6.2.3 Spectra of marinoquinoline C (41) 
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Spectrum 14: 1H NMR spectrum of marinoquinoline C (41) (1H 600 MHz, acetone-d6). 
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Spectrum 15: 13C NMR spectrum of marinoquinoline C (41) (13C 150 MHz, acetone-d6). 
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Spectrum 16: 13C DEPT NMR spectrum of marinoquinoline C(41) (13C 150 MHz, acetone-d6). 
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Spectrum 17: 1H,1H COSY NMR spectrum of marinoquinoline C (41) (1H 600 MHz, acetone-d6). 
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Spectrum 18: 1H,13C HMQC NMR spectrum of marinoquinoline C (41) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 
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Spectrum 19: 1H,13C HMBC NMR spectrum of marinoquinoline C (41) (1H 600 MHz, 13C 150 
MHz, acetone-d6). 
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6.2.4 Spectra of marinoquinoline D (42) 
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Spectrum 20: 1H NMR spectrum of marinoquinoline D (42) (1H 300 MHz, CD3OD). 
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Spectrum 21: 13C NMR spectrum of marinoquinoline D (42) (13C 75 MHz, CD3OD). 
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Spectrum 22: 13C DEPT NMR spectrum of marinoquinoline D (42) (13C 75 MHz, CD3OD). 
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Spectrum 23: 1H,1H COSY NMR spectrum of marinoquinoline D(42) (1H 300 MHz, CD3OD). 
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Spectrum 24: 1H,13C HMQC NMR spectrum of marinoquinoline D(42) (1H 300 MHz,13C 75 MHz, 
CD3OD). 
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Spectrum 25: 1H,13C HMBC spectrum of marinoquinoline D (42) (1H 300 MHz,13C 75 MHz, 
CD3OD). 
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6.2.5 Spectra of marinoquinoline E (43) 
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Spectrum 26: 1H NMR spectrum of marinoquinoline E (43) (1H 600 MHz, acetone-d6). 
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Spectrum 27: 13C NMR spectrum of marinoquinoline E (43) (13C 150 MHz, acetone-d6). 
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Spectrum 28: 13C APT NMR spectrum of marinoquinoline E (43) (13C 150 MHz, acetone-d6). 
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Spectrum 29: 13C DEPT NMR spectrum of marinoquinoline E (43) (13C 150 MHz, acetone-d6). 
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Spectrum 30: 1H,1H COSY NMR spectrum of marinoquinoline E (43) (1H 600 MHz, acetone-d6). 
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Spectrum 31: 1H,13C HMQC NMR spectrum of marinoquinoline E(43) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 
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Spectrum 32: 1H,13C HMBC NMR spectrum of marinoquinoline E (43) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 
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6.2.6 Spectra of marinoquinoline F (44) 
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Spectrum 33: 1H NMR spectrum of marinoquinoline F (44) (1H 600 MHz, acetone-d6). 
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Spectrum 34: 13C NMR spectrum of marinoquinoline F (44) (13C 150 MHz, acetone-d6). 
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Spectrum 35: 13C DEPT NMR spectrum of marinoquinoline F (44) (13C 150 MHz, acetone-d6). 

 

COSY_D5298.ESP

8.5 8.0 7.5
F2 Chemical Shift (ppm)

7.0

7.5

8.0

8.5

F
1 

C
he

m
ic

al
 S

hi
ft 

(p
pm

)

 

Spectrum 36: 1H,1H COSY NMR spectrum of marinoquinoline F(44) (1H 600 MHz, acetone-d6). 

 



References and Appendix 

 

125 

 

                                                                                                                                                                                     

HMQC_D5298.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0
F2 Chemical Shift (ppm)

95

100

105

110

115

120

125

130

135

140

F
1 

C
he

m
ic

al
 S

hi
ft 

(p
pm

)

 

Spectrum 37: 1H,13C HMQC NMR spectrum of marinoquinoline F(44) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 
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Spectrum 38: 1H,13C HMBC NMR spectrum of marinoquinoline F(44) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 
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6.3 Spectra and X-ray data of hyaladione (47) 

6.3.1 Spectra of hyaladione (47) 
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Spectrum 39: 1H NMR spectrum of hyaladione (47) (1H 600 MHz, acetone-d6). 
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Spectrum 40: 13C NMR spectrum of hyaladione (47) (13C 150 MHz, acetone-d6). 
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Spectrum 41: 13C DEPT NMR spectrum of hyaladione (47) (13C 150 MHz, acetone-d6). 
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Spectrum 42: 1H,1H COSY NMR spectrum of hyaladione (47) (1H 600 MHz, acetone-d6). 
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Spectrum 42: 1H,1H ROESY NMR spectrum of hyaladione (47) (1H 600 MHz, acetone-d6). 
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Spectrum 43: 1H,13C HMQC NMR spectrum of hyaladione (47) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 
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Spectrum 44: 1H,13C HMBC NMR spectrum of hyaladione (47) (1H 600 MHz,13C 150 MHz, 
acetone-d6). 

 

 

 

Spectrum 45: IR spectrum of hyaladione (47) (1 mg, 160 mg KBR). 
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Spectrum 46: UV/vis spectrum of hyaladione (47) in Uvasol methanol (c = 0.5 mg/100 mL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References and Appendix 

 

131 

 

                                                                                                                                                                                     

6.3.2 X-ray data of hyaladione (47) 

Table 6: Crystal data and structure refinement of hyaladione (47)  

 
Empirical formula  C7 H6 Cl N O2 S  

Formula weight  203.64  

Temperature  122(2) K  

Wavelength  0.71073 Å  

Crystal system  Monoclinic  

Space group  P2(1)/n  

Unit cell dimensions a = 3.8875(8) Å α= 90°. 

 b = 14.180(3) Å β= 94.808(11)° 

 c = 14.518(3) Å σ = 90°. 

Volume 797.5(3) Å3  

Z 4  

Density (calculated) 1.696 Mg/m3  

Absorption coefficient 0.692 mm-1  

F(000) 416  

Crystal size 0.98 x 0.19 x 0.03 mm3  

Theta range for data collection 2.01 to 41.83°.  

Index ranges -7<=h<=7, -26<=k<=26, -27<=l<=27  

Reflections collected 18376  

Independent reflections 5432 [R(int) = 0.0309]  

Completeness to theta = 41.83° 98.2 %   

Max. and min. transmission 0.9769 and 0.5514  

Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 5432 / 0 / 133  

Goodness-of-fit on F2 1.036  

Final R indices [I>2sigma(I)] R1 = 0.0305, wR2 = 0.0739  

R indices (all data) R1 = 0.0473, wR2 = 0.0812  

Largest diff. peak and hole  
 

0.646 and -0.349 e.Å-3 

 

 
 Absorption correction Multiscan  
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Table 7: Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 

103) of hyaladione (47). U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor. 

 

 

___________________________________________________________________________ 
 x y z U(eq) 
___________________________________________________________________________ 
S 4734(1) 5820(1) 2400(1) 13(1) 
Cl 7234(1) 8950(1) 4516(1) 16(1) 
C(3) 4172(2) 7412(1) 5140(1) 12(1) 
C(2) 5551(2) 7820(1) 4396(1) 12(1) 
C(6) 4222(2) 6351(1) 3455(1) 11(1) 
C(1) 5642(2) 7347(1) 3522(1) 12(1) 
C(5) 2746(2) 5943(1) 4166(1) 13(1) 
C(4) 2542(2) 6447(1) 5029(1) 12(1) 
O(2) 1108(2) 6122(1) 5680(1) 18(1) 
N(1) 4085(2) 7794(1) 5972(1) 17(1) 
O(1) 6860(2) 7703(1) 2845(1) 18(1) 
C(7) 3252(2) 4635(1) 2576(1) 15(1) 
___________________________________________________________________________
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Table 8: Bond lengths [Å] and angles [°] of hyaladione (47). Symmetry transformations used  
  to generate equivalent atoms. 
_____________________________________________________  

S-C(6)  1.7340(8) 
S-C(7)  1.8018(9) 
Cl-C(2)  1.7350(8) 
C(3)-N(1)  1.3277(10) 
C(3)-C(2)  1.3717(10) 
C(3)-C(4)  1.5112(10) 
C(2)-C(1)  1.4391(11) 
C(6)-C(5)  1.3522(10) 
C(6)-C(1)  1.5171(10) 
C(1)-O(1)  1.2327(9) 
C(5)-C(4)  1.4505(11) 
C(4)-O(2)  1.2268(9) 
 
C(6)-S-C(7) 102.57(4) 
N(1)-C(3)-C(2) 125.90(7) 
N(1)-C(3)-C(4) 115.03(6) 
C(2)-C(3)-C(4) 119.07(6) 
C(3)-C(2)-C(1) 122.59(7) 
C(3)-C(2)-Cl 118.65(6) 
C(1)-C(2)-Cl 118.75(5) 
C(5)-C(6)-C(1) 121.69(6) 
C(5)-C(6)-S 125.19(6) 
C(1)-C(6)-S 113.12(5) 
O(1)-C(1)-C(2) 123.54(7) 
O(1)-C(1)-C(6) 119.47(6) 
C(2)-C(1)-C(6) 116.97(6) 
C(6)-C(5)-C(4) 120.40(7) 
O(2)-C(4)-C(5) 122.80(7) 
O(2)-C(4)-C(3) 118.18(7) 
C(5)-C(4)-C(3) 119.02(6) 
_____________________________________________________________  
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 Table 9: Anisotropic displacement parameters (Å2x 103) of hyaladione (47). The anisotropic  

displacement factor exponent takes the form:22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] 
___________________________________________________________________________ 

 U11 U22  U33 U23 U13 U12 
___________________________________________________________________________ 
S 16(1)  13(1) 10(1)  -1(1) 3(1)  0(1) 
Cl 21(1)  12(1) 16(1)  -1(1) 4(1)  -4(1) 
C(3) 14(1)  12(1) 10(1)  0(1) 2(1)  0(1) 
C(2) 15(1)  10(1) 11(1)  0(1) 3(1)  -1(1) 
C(6) 13(1)  11(1) 10(1)  0(1) 2(1)  0(1) 
C(1) 14(1)  11(1) 10(1)  1(1) 3(1)  0(1) 
C(5) 16(1)  12(1) 11(1)  0(1) 3(1)  -2(1) 
C(4) 15(1)  12(1) 10(1)  1(1) 2(1)  -1(1) 
O(2) 24(1)  18(1) 12(1)  1(1) 7(1)  -5(1) 
N(1) 25(1)  17(1) 11(1)  -3(1) 6(1)  -5(1) 
O(1) 26(1)  16(1) 12(1)  1(1) 8(1)  -3(1) 
C(7) 17(1)  13(1) 15(1)  -2(1) 3(1)  0(1) 
___________________________________________________________________________ 
 
 
 

 Table 10: Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 10 3) of 
hyaladione (47). 

___________________________________________________________________________ 
 x  y  z  U(eq) 
__________________________________________________________________________ 
  
H(1) 1710(30) 5344(10) 4138(8) 22(3) 
H(3) 3100(40) 7479(12) 6381(12) 44(4) 
H(2) 4960(40) 8302(11) 6087(10) 30(3) 
H(5) 970(30) 4622(10) 2659(9) 24(3) 
H(4) 4640(30) 4363(10) 3096(10) 25(3) 
H(6) 3620(40) 4308(10) 2023(10) 30(3) 
__________________________________________________________________________
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6.4 Spectra of hyafurones and hyapyrones 

6.4.1 Spectra of hyafurone A1 (48) 
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Spectrum 47: 1H NMR spectrum of hyafurone A1 (48) (1H 600 MHz, CD3OD). 
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Spectrum 48: 13C NMR spectrum of hyafurone A1 (48) (13C 150 MHz, CD3OD). 
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Spectrum 49: 13C DEPT NMR spectrum of hyafurone A1 (48) (13C 150 MHz, CD3OD). 
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Spectrum 50: 1H,1H COSY NMR spectrum of hyafurone A1 (48) (1H 600 MHz, CD3OD). 
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Spectrum 51: 1H,1H ROESY NMR spectrum of hyafurone A1(48) (1H 600 MHz, CD3OD). 
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Spectrum 52: 1H,13C HMQC NMR spectrum of hyafurone A1(48) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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Spectrum 53: 1H,13C HMBC NMR spectrum of hyafurone A1(48) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.2 Spectra of hyafurone A2 (49) 
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Spectrum 54: 1H NMR spectrum of hyafurone A2 (49) (1H 600 MHz, CD3OD). 
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Spectrum 55: 13C NMR spectrum of hyafurone A2 (49) (13C 150 MHz, CD3OD). 
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Spectrum 56: 13C DEPT NMR spectrum of hyafurone A2 (49) (13C 150 MHz, CD3OD). 
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Spectrum 57: 1H,1H COSY NMR spectrum of hyafurone A2 (49) (1H 600 MHz, CD3OD). 
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Spectrum 58: 1H,1H ROESY NMR spectrum of hyafurone A2 (49) (1H 600 MHz, CD3OD). 
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Spectrum 59: 1H,13C HMQC NMR spectrum of hyafurone A2 (49) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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Spectrum 60: 1H,13C HMBC NMR spectrum of hyafurone A2 (49) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.3 Spectra of hyafurone B (50) 
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Spectrum 61: 1H NMR spectrum of hyafurone B (50) (1H 600 MHz, CD3OD). 

 

13C_Z7300.esp

200 180 160 140 120 100 80 60 40 20
Chemical Shift (ppm)

METHANOL-d4

5.
41

12
.8

0
14

.2
2

18
.3

3
22

.2
734

.3
2

36
.3

1
36

.7
5

42
.1

1
42

.4
0

67
.8

4

79
.2

3

10
3.

78
10

8.
37

12
1.

0912
3.

4412
6.

64
12

9.
28

12
9.

41
13

1.
71

14
0.

17
14

0.
77

14
3.

90

17
8.

28

20
4.

96

 

Spectrum 62: 13C NMR spectrum of hyafurone B (50) (13C 150 MHz, CD3OD). 
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Spectrum 63: 13C DEPT NMR spectrum of hyafurone B (50) (13C 150 MHz, CD3OD). 
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Spectrum 64: 1H,1H COSY NMR spectrum of hyafurone B (50) (1H 600 MHz, CD3OD). 
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Spectrum 65: 1H,1H ROESY NMR spectrum of hyafurone B (50) (1H 600 MHz, CD3OD). 
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Spectrum 66: 1H,13C HMQC NMR spectrum of hyafurone B (50) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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Spectrum 67: 1H,13C HMBC NMR spectrum of hyafurone B (50) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.4 Spectra of hyapyrone A 
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Spectrum 68: 1H NMR spectrum of hyapyrone A (51) (1H 600 MHz, CD3OD). 
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Spectrum 69: 13C NMR spectrum of hyapyrone A (51) (13C 150 MHz, CD3OD). 
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Spectrum 70: 13C DEPT NMR spectrum of hyapyrone A (51) (13C 150 MHz, CD3OD). 
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Spectrum 71: 1H,1H COSY NMR spectrum of hyapyrone A(51) (1H 600 MHz, CD3OD). 
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Spectrum 72: 1H,1H ROESY NMR spectrum of hyapyrone A (51) (1H 600 MHz, CD3OD). 
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Spectrum 73: 1H,13C HMQC NMR spectrum of hyapyrone A (51) (1H 600 MHz, 13C 150MHz, 
CD3OD). 
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Spectrum 74: 1H,13C HMBC NMR spectrum of hyapyrone A (51) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.5 Spectra of hyafurone C (52) 
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Spectrum 75: 1H NMR spectrum of hyafurone C (52) (1H 600 MHz, CD3OD). 
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Spectrum 76: 13C NMR spectrum of hyafurone C (52) (13C 150 MHz, CD3OD). 
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Spectrum 77: 13C DEPT NMR spectrum of hyafurone C (52) (13C 150 MHz, CD3OD). 
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Spectrum 78: 1H,1H COSY NMR spectrum of hyafurone C (52) (1H 600 MHz, CD3OD). 

 

 



References and Appendix 

 

153 

 

                                                                                                                                                                                     

ROESY_D7272.ESP

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
F2 Chemical Shift (ppm)

1

2

3

4

5

6

7

F
1 

C
he

m
ic

al
 S

hi
ft 

(p
pm

)

 

Spectrum 79: 1H,1H ROESY spectrum of hyafurone C (52) (1H 600 MHz, CD3OD). 
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Spectrum 80: 1H,13C HMQC NMR spectrum of hyafurone C (52) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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Spectrum 81: 1H,13C HMBC NMR spectrum of hyafurone C (52) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.6 Spectra of hyafurone D (53) 
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Spectrum 82: 1H NMR spectrum of hyafurone D (53) (1H 600 MHz, CD3OD). 
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Spectrum 83: 13C NMR spectrum of hyafurone D (53) (13C 150 MHz, CD3OD). 
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Spectrum 84: 13C DEPT NMR spectrum of hyafurone D (53) (13C 150 MHz, CD3OD). 
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Spectrum 85: COSY NMR spectrum of hyafurone D (53) (1H 600 MHz, CD3OD). 
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Spectrum 86: 1H,1H ROESY NMR spectrum of hyafurone D (53) (1H 600 MHz, CD3OD). 
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Spectrum 87: 1H,13C HMQC NMR spectrum of hyafurone D (53) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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Spectrum 88: 1H,13C HMBC NMR spectrum of hyafurone D (53) (1H 600 MHz, 13C 150 MHz, 
CD3OD). 
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6.4.7 Spectra of hyapyrone B (54) 
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Spectrum 89: 1H NMR spectrum of hyapyrone B (54) (1H 600 MHz, CD3OD). 
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Spectrum 90: 13C NMR spectrum of hyapyrone B (54) (13C 150 MHz, CD3OD). 
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Spectrum 91: 13C DEPT NMR spectrum of hyapyrone B (54) (13C 150 MHz, CD3OD). 
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Spectrum 92: 1H,1H COSY NMR spectrum of hyapyrone B (54) (1H 600 MHz, CD3OD). 
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Spectrum 93: 1H,1H ROESY NMR spectrum of hyapyrone B (54) (1H 600 MHz, CD3OD). 

 

HMQC_D7993.ESP

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
F2 Chemical Shift (ppm)

0

20

40

60

80

100

120

140

F
1 

C
he

m
ic

al
 S

hi
ft 

(p
pm

)

 

Spectrum 94: 1H,13C HMQC NMR spectrum of hyapyrone B (54) (1H 600 MHz,13C 150 MHz, 
CD3OD). 
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Spectrum 95: 1H,13C HMBC NMR spectrum of hyapyrone B (54) (1H 600 MHz,13C 150 MHz, 
CD3OD). 

 

 

 

 

 
 

 


