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1. Summary 
 

 

Major issues in both toxicological as well as pharmaceutical research are biological 

barriers, impeding the invasion of pathogens but also the delivery of beneficial substances 

into the body. The upper lungs as site of application of such substances exhibit a 

particularly efficient biological barrier: the mucus blanket and its mucociliary clearance. 

The fate of particles upon deposition onto the moving mucus barrier is yet unsolved and 

was central theme of this work. In this context, mucociliary clearance of nanoparticles and 

its fluid dynamics were investigated. These results were correlated with the analysis of 

microscopic and macroscopic particle penetration behavior in mucus and mucus structure. 

Here, the application of complex methods such as cryoscopic scanning electron 

microscopy (cryo-SEM), atomic force microscopy (AFM) and optical tweezers revealed 

the mechanisms of particle mobility in mucus. It could be shown that mucociliary 

clearance is independent on particle properties such as size, shape, charge or surface 

chemistry. It was demonstrated that this is due to the only poor particle mobility in mucus: 

The polymer scaffold of mucus is highly rigid which, in combination with the extensive 

heterogeneity in pore size, impedes particle translocation. In contrast to model gels and due 

to this rigidity, particles in mucus which are exposed to external force fields cannot deform 

or rupture the polymer scaffold of mucus. 
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2. Zusammenfassung 
 

 

Ein zentrales Thema sowohl in der toxikologischen als auch der pharmazeutischen 

Forschung sind biologische Barrieren, welche die Aufnahme von Krankheitserregern aber 

auch Pharmazeutika in den Körper erschweren. Die obere Lunge als Applikationsort 

solcher Substanzen weist eine besonders effiziente biologische Barriere auf: die Mukus-

Schicht mit ihrer mukoziliären Clearance. Das Schicksal von Partikeln nach deren 

Deposition auf der bewegten Mukus-Schicht ist noch ungeklärt und war zentrales Thema 

dieser Arbeit. In diesem Kontext wurde die mukoziliäre Clearance von Nanopartikeln und 

deren Fluid Dynamik untersucht. Die Ergebnisse wurden mit der Analyse des mikro- und 

makroskopischen Penetrationsverhaltens von Partikeln in Mukus und dessen Struktur 

korreliert. Dabei deckte die Anwendung von Kryo-Elektronenmikroskopie, 

Rasterkraftmikroskopie und der optischen Pinzette die Mechanismen der Partikelmobilität 

in Mukus auf. Zusammenfassend konnte gezeigt werden, dass die mukoziliäre Clearance 

unabhängig von Partikelgröße, -form, -ladung, oder -oberflächenchemie ist. Es wurde 

nachgewiesen, dass dies auf die vernachlässigbare Partikelmobilität in Mukus 

zurückzuführen ist: Das Polymergerüst von Mukus ist hoch rigide, was aufgrund der 

großen Heterogenität der Porengröße die Partikeltranslokation behindert. Im Gegensatz zu 

den verwendeten Modell-Gelen und aufgrund dieser Rigidität können Partikel, die einem 

externen Kraftfeld ausgesetzt sind, das Polymergerüst von Mukus nicht zerstören. 
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3.1 Pulmonary Drug Delivery and Nanocarriers 
 

The pulmonary route to deliver drugs is one of the earliest forms of drug administration to 

treat diseases (Bailey and Berkland, 2009). Not considering the use of “vapors” by 

Egyptians in 1500 B.C., such applications even date as early as the late 17th century when 

Bennet used inhalation treatments to cure tuberculosis (Patton and Byron, 2007). With 

growing technological knowledge, inhalation made its way into the 20th century and 

became a convenient and effective treatment in various therapies. By now, inhalation of 

drugs as droplet aerosol or dry powder is used not only in local but also systemic 

applications. While the former has played a more important role in the beginning of 

inhalation therapy (asthma, tuberculosis and obstructive disorders), the latter is already 

being exploited in various diseases (e.g. insulin delivery) with more applications still to 

come. The advantages of pulmonary delivery, grasped only empirically in the beginning, 

are now being widely appreciated in particular with respect to the delivery of modern 

formulations: Crucial for any type of drug delivery application is the performance in 

uptake/absorption, stability and retention, i.e. the (time dependent) concentration in the 

blood of the delivered active pharmaceutical ingredient (API) in comparison to intravenous 

application which can be summarized by the term “bioavailability”. Not only in this 

respect, the pulmonary route holds great potential: The large surface area, high epithelial 

permeability and low catabolic enzymatic activity allow for rapid and effective uptake of 

drugs. In addition, it has the specific advantage of avoiding first-pass effects and potential 

side-effects of high systemic concentrations typical of conventional delivery methods 

(Bailey and Berkland, 2009). Furthermore, the convenience and adherence of such a form 

of delivery versus oral dosage forms or even injections are highly relevant in clinical 

practice or pediatrics. Especially with respect to therapies or vaccination in third world 

countries, where injections pose a major risk to infections, this aspect is particularly 

important.  

In the past, the focus of research in aerosol medicine has been laid on the optimization of 

drug carrier deposition in the lungs. Here, implications of physical and aerodynamic 

properties of such carriers and of the design of inhalation devices on the deposited particle 

or droplet fraction had to be thoroughly understood to control deposition in the desired 

way. Especially particle size distribution and the respective size-associated deposition 

mechanisms (impaction, sedimentation and diffusion) were extensively investigated: In 
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particular in terms of systemic delivery, it is often desired to deposit particles in the deeper 

lungs where the large surface area and thin epithelium enhance drug uptake. To advance 

this deep into the lungs, the aerosol needs a certain particle/droplet size distribution to 

avoid deposition or impaction in the upper parts of the lungs. Particles with aerodynamic 

diameters of approximately 1-5 µm are considered ideal for alveolar deposition (Scheuch, 

Kohlhaeufl et al., 2006). Above and below this size, particles or droplets are preferably 

deposited in the trachea or bronchia (figure 1). However, new technologies such as larger 

carriers doped with nanoparticles which can be released after deposition are applied to 

overcome these aerodynamic restriction. Thus, it is possible to combine existing 

knowledge of optimal aerosolization and thus deposition patterns with the advantages of 

the more recent concept of nanocarriers. In current opinion, these nanoparticles are objects 

with at least one dimension < 100 nm (Oberdorster, Oberdorster et al., 2005) while in the 

pharmaceutical context, this is often extended to particulate matter of several hundred 

nanometers in size (Kreuter, 1991).  

 

 

Figure 1: Particle deposition in dependency of particle size (aerodynamic diameter). Particles of an 

aerodynamic diameter between 1 and 5 µm are considered ideal for alveolar deposition whereas smaller and 

larger particles are preferably deposited in the airways or the mouth and throat, respectively. By courtesy of 

Christian Ruge, adopted from (Patton and Byron, 2007).  

 

One key feature of these benefits of the application of nanoparticles is linked with the 

mentioned term of bioavailability: In current research, the development of new 

applications for systemic delivery, mostly involving fragile and costly (macro)molecules or 

proteins, demands more than an optimal particle or droplet deposition as stability and 
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delivered amount are much more restricted than in conventional drugs. Therefore, in this 

case, an optimization of dissolution properties, stability and targeting is enormously more 

important. These factors can be positively influenced by the use of nanocarriers. The small 

size and thus the surface area of these particles greatly improves dissolution behavior even 

without the use of enhancers with often unknown long-term safety (Bailey and Berkland, 

2009). Furthermore, it is widely accepted that smaller particles (< 0.5 µm) may be taken up 

in a more effective way by cells than larger particles (Koch, Reynolds et al., 2005; Bailey 

and Berkland, 2009). This may be the reason that nanoparticles exhibit prolonged retention 

compared to micoparticles (Geiser and Kreyling, 2010). These uptake properties also 

provide the potential to improve the targeting to specific cell types or intracellular 

compartments.  

One big issue in the characterization of the potential of nanocarriers in terms of 

bioavailability refers to the aspects of retention and penetration. Retention describes the 

performance of a formulation in resisting the respective forms of clearance characteristic 

for the site of delivery. For intravenous delivery the prominent forms are typically the renal 

and hepatic clearance. In pulmonary delivery, however, this refers mainly to the 

mucociliary- and the macrophage clearance. Mucociliary clearance is the dominant form of 

clearance in the central and upper lungs whereas macrophage clearance is more dominant 

in the alveoli. Penetration is important, as the thick mucus layer in the upper lungs 

(figure 2) is not only excreting deposited particles by mucociliary clearance but forms a 

compact non-epithelial barrier which nanocarriers have to cross before reaching the 

epithelium or even the blood stream. The work presented here, focuses on the local 

pulmonary delivery in the upper lungs as it is relevant for diseases such as chronic 

obstructive pulmonary disease (COPD) or pulmonary hypertension where frequent and 

long-lasting local treatment is necessary. Here, the need for modern formulations with 

sustained, local release, and thus a minimized drug or carrier clearance, is paramount. 

Therefore, mucociliary clearance and mucus penetration which have been under 

investigation for quite some time but are not sufficiently understood so far, are very 

important in this field, particularly for nanoparticle delivery. Here several mechanisms are 

exclusive for such small carriers (e.g. wetting phenomena and fluid dynamics) and have to 

be thoroughly considered to evaluate the pharmaceutical potential of the carrier. 
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3.2 Mucus and Mucociliary Clearance 

 

Mucociliary clearance is an innate airway defense mechanism enabling the body to excrete 

foreign material in a very efficient way. The underlying principle is the constant secretion 

of mucus and its fast cranial propulsion (3-25 mm/min in humans (Hofmann and 

Asgharian, 2003; Antunes and Cohen, 2007)) by the concerted action of beating cilia 

attached to the tips of the epithelial cells (figure 2). Thus, airborne pathogens, dust or other 

foreign material can be trapped inside the mucus layer and removed from the airways. 

Mucus is a complex fluid consisting of proteins, electrolytes and water. As biological 

hydrogel, the water content is very high (95 % by weight). The macromolecular hydrogel 

structure is given by mucins (< 5 % by weight). The remaining components are inorganic 

salts, carbohydrates and lipids (Peppas and Huang, 2004). Mucins are large proteins 

containing highly hydrophilic glycosylated regions as well as “naked” and thus more 

hydrophobic domains. The sugar content usually represents up to 50 % of the protein 

weight where the sugar chains are attached via O-glycosidic bounds between N-

acetylgalactosamine and serine or threonine residues (Sanders, Rudolph et al., 2009); 

further sugar residues are galactose, fucose and sialic acids. The dominating amino acids in 

the protein backbone are serine, threonine and proline (Peppas and Huang, 2004). The 

typical monomer length is 500 nm with a weight of 2-16 MDa (Sanders, Rudolph et al., 

2009). Each mucosal surface has its own characteristic mucin composition: in pulmonary 

mucus, MUC5AC and MUC5B are the most abundant mucins (Thornton and Sheehan, 

2004). 

The hydrogel structure of mucus is given by polymerization of these mucin monomers to 

form block copolymers. Here, mucin monomers are linked by disulfide bridges, physical 

entanglement or hydrophobic interactions between non-glycosylated domains (Thornton 

and Sheehan, 2004; Cone, 2009). The underlying principles of mucin polymerization, 

especially with regard to the formation of the complex structure of the different layers of 

the pulmonary mucosa remain yet unsolved. One of the more established models for the 

formation of the mucin hydrogel is the so called “jack-in-the-box” model, describing the 

formation of the gel by quick hydration of the mucins upon secretion in a condensed and 

non- or only less hydrated form (Verdugo, Deyrup-Olsen et al., 1987; Verdugo, 1991). 
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Figure 2: The lungs are lined with different non-epithelial barriers. In the peripheral lungs, the epithelium is 

lined with a very thin layer of surfactant. In the upper lungs, the epithelium is additionally covered with a 

thick barrier composed of the pericilary layer (PCL) of low viscosity and the highly viscoelastic “tenacious” 

(Florey, 1962) mucus layer. 

 

 

This mechanism is also believed to contribute to the formation of the distinct two layer 

structure of the pulmonary mucosa: The epithelium of the upper lungs is lined with cells 

bearing 50-200 cilia per cell (Antunes and Cohen, 2007) which beat in a coordinated way 

to transport the mucus layer resting on the tips of these cilia. The cilia itself are moving in 

a layer of different properties, the periciliary layer (PCL). The PCL is located beneath the 

mucus blanket and is thought to be established by a gradient in mucin concentration 

proportional to the distance from the epithelium. Recent findings support the hypothesis of 

the PCL being interfused with tethered mucins, giving it some internal structure (Randell 

and Boucher, 2006). These more or less distinct layers differ mainly in rheological 

properties. Whereas the several micron thick mucus layer (0.2-30 µm (Sims and Horne, 

1997; Widdicombe, 2002; Sanders, Rudolph et al., 2009)) is a gel of quite high viscosity, 

the underlying PCL is of lesser viscosity, believed to thus enable efficient ciliary beating. 

This difference in rheology is considered to be due to complex interactions between 

hydration status regulated by ion transporters, a gradient in mucin concentration and 

adaptation to environmental factors and mechanical stress (Tarran, Trout et al., 2006; 

Button and Boucher, 2008). The height of the PCL of approximately 7 µm (Button and 

Boucher, 2008) is given by the length of the cilia and is a key factor in the investigation of 

diseases such as cystic fibrosis (CF) which is associated with a defect in ion transport 

pathways affecting the volume of the PCL, the efficient ciliary beating and thus an 

impaired mucociliary clearance, leading to increased bacterial invasion. The thin layer (on 

average 200 nm (Bastacky, Lee et al., 1995)) of pulmonary surfactant (mainly composed of 
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phospholipids and proteins) on top of the mucus blanket has its major function in the 

deeper lungs, where it is the only non-epithelial barrier and contributes to the structural 

stability of the alveoli and immunological homeostasis. 

 

 

 

Figure 3: Metachronal fields describe areas of homogeneous mucus transport direction (blue arrows). The 

size of the field can differ over a large size range and is also different in healthy or diseased state (Iravani and 

Melville, 1976). 

 

 

The beating pattern of the cilia is organized in so-called “metachronal fields” (Iravani and 

Melville, 1976) referring to the slight variance in space and time in the beating pattern of 

the cilia: The direction and the phase of the beating cycle (9-15 Hz in humans (Antunes 

and Cohen, 2007)) can be divergent in neighboring areas of the mucus blanket (figure 3). 

The areas of homogeneous transport direction and velocity are called metachronal fields.  

While mucus clearance direction is heterogeneously organized in the horizontal (x-y) 

plane, other features of mucociliary clearance depend on the vertical position and thus the 

height above the epithelium. So far, the beating cycle of the cilia and the physical 

implications on mucus flow (fluid dynamics) are not completely solved. In the past years 

large efforts were focused on the mathematical modeling of the ciliary beating cycle 

(Barton and Raynor, 1967; Fulford and Blake, 1986; Smith, Gaffney et al., 2007), the 

complexity of the models and the results of this modeling approach clearly depending on 

the computing resources of the respective period. However, with only marginal 

experimental counterweight, these results show high variation, in particular for mucus flow 
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profiles, describing the velocity of the mucociliary transport in dependency of the height 

above the epithelium (Smith, Gaffney et al., 2008).  

Similar to the (mathematical) description of the ciliary beating cycle, the interaction of 

particles with the mucus blanket and their mucociliary clearance has attracted much 

attention in the last years. Here, the focus was clearly laid on epidemiological or 

toxicological considerations, in particular with respect to pollution and exhaust, asbestos or 

the potential risk of exposure to newer materials such as carbon nanotubes. Therefore most 

of the data is acquired via szintigraphic or similar ensemble averaged methods, giving 

insight into the overall distribution or the cleared fraction of an inhaled particle species 

(Moller, Felten et al., 2008; Geiser and Kreyling, 2010). Parameters under investigation 

were particle size, shape and material, exposure and clearance time. Although it seems that 

there is consensus on the point that particle translocation through mucus and uptake into 

the blood stream is a minor clearance pathway compared to macrophage uptake and 

mucociliary clearance (Geiser and Kreyling, 2010), those studies do not give insight into 

the underlying mechanism of particle deposition onto and translocation within the mucus 

blanket on the single particle level. The investigation of the last point was previously 

assessed by microscopic methods to describe particle translocation phenomena in vivo. 

Here, large particles (> 10 µm) were observed to translocate into the pulmonary 

epithelium, which was concluded to be mainly due to wetting forces of the pulmonary 

surfactant (Schürch, Gehr et al., 1990; Gehr, Green et al., 1996). However, these results 

cannot be used to judge nanoparticle fate upon deposition onto the mucus blanket 

(figure 4). 

 

 

Figure 4: Particle translocation upon deposition onto the mucus blanket depends on size. Wetting forces can 

maximally submerse small particles completely but not cause further translocation through mucus (A). 

Particles with a diameter approaching the thickness of PCL and mucus, however, can be pushed inside the 

epithelium due to wetting forces (B). 
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In this case, wetting forces may cause a immersion of nanoparticles below the surface of 

the mucus blanket, but do not influence particle mobility inside mucus and thus do not 

cause a translocation through mucus towards the epithelium. This is particularly true if the 

fluid layer on top of the epithelium is several microns thick as it is in the upper lungs. 

Therefore, the fate of nanoparticle upon deposition onto mucus is not sufficiently solved 

yet and satisfying studies are still missing. 

 

 

3.3 Particle Mobility in Mucus and Hydrogels 

 

The non-epithelial barrier of the pulmonary mucus blanket in the upper lungs derives its 

barrier properties not only from the ciliary clearance and thus the fast excretion of inhaled 

material. As mentioned before, the highly viscous and compact mucus layer impedes 

translocation of pathogens or particulate matter to the epithelium. Similar to other 

hydrogels, hydrated mucins in mucus form a tight mesh of entangled fibers, trapping any 

material entering the mucus. In physical terms, this system can be described as complex 

fluid, exhibiting properties of a viscous liquid as well as of an elastic solid. Such 

rheological properties are usually quantified by the two parameters viscosity and elasticity. 

While the former refers to the resistance of the fluid to flow, the latter describes the more 

solid like property of the material stiffness. Both parameters are complex quantities that 

depend on further parameters like temperature, shear rate, shear frequency, time and length 

scale etc. and can therefore only hardly be applied to grasp the complete behavior of such 

systems if evaluated without experimental details and boundary conditions. Nevertheless, 

viscosity and elasticity or derived parameters represent an established measure to describe 

rheological properties of mucus and are given by 

 

.                                                                              (1) 

 

Here, µ* is the complex viscosity with its real and imaginary part µ’ and µ’’ corresponding 

to the viscosity and the elasticity, τ* = shear stress, γ = shear strain and G’ and G’’ 

represent storage and loss modulus respectively; µ is often denoted with the symbol η as 
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well. The viscosity of mucus ranges between 102 and 10-2 Pas (Lai, Wang et al., 2009), 

referring to ten to 100000 times that of water depending on the parameters mentioned 

above as well as disease state and species. 

Not only within one species or even within one individual, the variation in the magnitude 

of the above mentioned parameters is significant, which demonstrates the highly 

heterogeneous nature of this fluid. This heterogeneity impedes general conclusions 

regarding the modeling and prediction of rheological behavior of mucus. It is however 

quite established that any disturbance in the homeostasis of mucus secretion (e.g. in CF) 

affects mucus rheology and thus mucociliary clearance of particles trapped inside the 

mucus blanket. 

Before particles are cleared they make contact with the mucus blanket. Once submersed 

inside this hydrogel, particle mobility within this matrix and the mechanisms influencing 

the extent of this mobility are yet unsolved. Driving forces for a particle translocation into 

or even through this barrier are impaction, gravity, diffusion and external forces such as 

magnetic or electrostatic force fields. The first three of these mechanisms depend mainly 

on particle properties such as impaction trajectory and velocity, particle density, shape and 

size and rheological properties of the fluid. Diffusion behavior in dependency of particle 

properties is of great importance in the investigation of particle mobility in mucus. 

Diffusion in viscous fluids is a complex topic which demands sophisticated mathematical 

models. The most established model for diffusion is given by the Stokes-Einstein equation, 

relating particle size and diffusion constant 

 

           (2) 

 

with D = diffusion constant, kB = Bolzmann constant, T = temperature and r = particle 

radius. The diffusion constant describes how fast a particle diffuses. This can be seen by 

the relation between D and the mean squared displacement (MSD,  ൏ ሻݐଶሺݎ∆ ൐) for three-

dimensional diffusion: 

 

         (3) 
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Here, t represents the correlation time of the experiment while α has the value of 1 in a 

purely viscous fluid but can be different for complex fluids such as mucus or other 

hydrogels. In this case r denotes the distance from the location at the previous time step. 

The MSD is proportional to the width of the probability distribution of particle location 

(figure 5) i.e. it quantifies the probability to diffuse a certain distance within the given 

correlation time t. 

However, as seen in equation 3, in particular for complex fluids, this determination of 

diffusion behavior is strongly dependent on the correlation time t, i.e. the time span for 

which the MSD is measured. Therefore, it is not easy to distinguish between different types 

of diffusion, such as hindered or free diffusion (figure 6) by only considering short 

correlation time spans.  

Although being particularly important concerning the mobility of particles in mucus, this 

strict discrimination is therefore not often addressed in current research. Much more, the 

focus of studies investigating particle-mucus interactions has been laid on the mechanisms 

involved in the restriction of particle mobility. Here, the goal is in the determination of 

particle properties influencing the mobility such as adhesion to mucus or particle size. 

These parameters are important to describe the filtering ability of mucus as being primarily 

a size sieving (Sanders, Rudolph et al., 2009) or interaction filtering (Lieleg and Ribbeck, 

2011) process. While the former model pronounces the sizes of the pores inside mucus or 

other biological hydrogels as limiting factor, the latter favors adhesive interactions between 

particles and gel components. Whatever mechanism will be dominant in the respective 

case, the reason will surely lay within the structure of mucus on the microscale which is -in 

detail- still not clear (Peppas and Huang, 2004). Unfortunately, recent studies relied only 

on microscopic analysis with rather harsh conditions or very indirect methods to clarify 

mucus structure. Therefore, the investigation of the structure of native pulmonary mucus in 

its physiological state is very important to understand particle mobility in mucus and their 

interactions with mucus components such as mucins. 

 

 



INTRODUCTION 

 

- 14 - 
 

  

 

Figure 5: The meaning of the MSD can be visualized by plotting the probability of a particle to be located at 

a certain distance from the origin. With increasing time (t1 < t2 < t3) this distribution broadens and the MSD, 

being proportional to the width (full width at half maximum, FWHM) of the distribution, increases. This 

means, the probability to find the particle away from the origin increases (as quantified by the MSD), 

whereas the origin is still the most probable location of the particle. Image by courtesy of Dominik Selzer. 

 

 

 

 

Figure 6: Free (B) and hindered diffusion (A) cannot easily be distinguished by MSD measurement. For 

short correlation times t (highlighted by the box) plateau values for the MSD are not reached, thus showing 

similar behavior for both types of diffusion behavior. 
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3.4 Aim of This Work 

 

As presented in the previous sections, the thick mucus blanket and its clearance by ciliary 

action acts as significant barrier to the translocation of deposited particles down to the 

epithelium and thus the blood stream. The mobility of particles in mucus and the 

dependence of yet unknown parameters or the controllability of the mucociliary clearance 

are largely unexplored. Especially for pharmaceutical purposes intending to maximize such 

translocation, this is of great importance. However, it is not desired to decrease or even 

abort mucociliary clearance, as it is the primary innate defense mechanism in the lungs and 

thus crucial for pulmonary health. Due to the same reason, it is not desired to diminish the 

overall barrier properties of the pulmonary mucus. A much more elegant way to reach 

increased bioavailability of formulations administered via the lungs would be to 

circumvent mucociliary clearance on the individual particle level and to manufacture 

particles capable of a fast penetration through an unaltered mucus layer. 

Not only for the reasons mentioned above but also for toxicological considerations it is 

absolutely crucial to first understand the interactions of particles with such non-cellular 

barriers of the lungs. Here, several still open questions remain and are tackled in the 

presented work:  

• The study presented here aimed to give insight into the yet unknown dependence of 

the mucociliary clearance of particulate material on various particle properties such 

as size, shape, charge or surface properties to understand the mucociliary clearance 

on the microscopic level.  

• Furthermore, the investigation of the process of particle sedimentation and 

impaction upon deposition onto the mucus blanket was expected to explain what 

happens between the events of particle deposition and mucociliary clearance of the 

particle.  

• However, once deposited and while being transported via mucociliary clearance, it 

is still not clear if and by which mechanism (nano)particles may translocate through 

the mucus blanket, how this affects biodistribution of inhaled material and how this 

can be controlled by smart particle design. This is particularly important in terms of 

the connection between mucus’ microstructure, diffusion and overall particle 
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retention in the lungs. Therefore, the mobility of particles once trapped inside the 

mucus blanket and their interactions with the mucus mesh were assessed. Here, not 

only (adhesive) interactions between particles and mucus components and 

diffusion, but also the response of nanoparticles suspended in mucus and model 

gels to external force fields and the implications on mucus structure on the 

microscopic level were investigated as they were hypothesized to play a crucial role 

for particle mobility. 
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4.1 Abstract 

 

The fate of inhaled particles after deposition onto the pulmonary mucosa is far from being 

solved, in particular with respect to mucociliary clearance and mucus penetration. Due to 

the fact that these phenomena govern pulmonary residence time and thus bioavailability, 

they are highly relevant for any kind of controlled release formulation delivered via that 

route. The work presented in the following section applied ex vivo approaches to 

investigate the dependency of muciliary clearance of micro-, submicron and nanoparticles 

on size, shape, charge and surface chemistry of such particles. In addition, measurement of 

mucociliary clearance of different particles also provided information about their 

penetration into mucus. Surprisingly, no significant differences in mucociliary clearance 

could be found for any type of particle under investigation. We hypothesized that particle 

penetration into the mucus gel layer is negligible at least within the time frame allowed by 

horizontal mucus transport. The presented data suggests that the observed lack of 

difference in mucociliary clearance is caused by the lack of immediate penetration of 

deposited aerosol particles into the mucus blanket.  

 

 

4.2 Introduction 

 

Before reaching the epithelial barrier, particulate drug carriers deposited onto mucosal 

tissues have to cross the mucus gel layer (Khanvilkar, Donovan et al., 2001; Cone, 2009; 

Sanders, Rudolph et al., 2009). In the context of local pulmonary drug delivery in the 

upper lungs, rapid mucociliary clearance of trapped drug carriers will put a serious 

limitation to any attempt of designing inhalable controlled release systems. Strategies to 

control the mucociliary clearance of pulmonary drug carriers without jeopardizing the 

important barrier function of pulmonary mucus e.g. by innovative particle design, therefore 

need to be addressed first, both scientifically and technologically.  

Mucociliary clearance dramatically influences the fate of deposited drug carriers: Inhaled 

particulate material is trapped and moved along with the moving mucus to be excreted by 

transport to the larynx (Iravani and Melville, 1976; Fulford and Blake, 1986; Antunes and 
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Cohen, 2007). Those processes have long been under investigation (Geiser, Cruz-Orive et 

al., 1990; Geiser, Serra et al., 1995; Geiser, Im Hof et al., 1997; Geiser, Gerber et al., 

2000), but are still not fully understood. In previous studies, the focus has mainly been laid 

on the macroscopic investigation of processes and parameters which influence the 

regulation of mucus secretion (Boucher, 2007) and clearance (King, 2006). Here, 

characterization of mucociliary clearance in healthy and diseased state (Donaldson, 

Corcoran et al., 2007; Livraghi and Randell, 2007) and under pharmacologically relevant 

conditions (Bennett, 2002) plays a large role in current research.  

Translocation of particles through pulmonary mucus has not been satisfactorily clarified so 

far, especially considering the fact that the pulmonary mucus blanket is continuously 

moving due to mucociliary clearance. This is particularly true for nanosized particles 

which are much smaller in diameter than the thickness of the mucus blanket.  

Considering the interaction of particles with a moving gel layer, it is not clarified yet, how 

such a translocation can be correlated with dynamic processes of the ciliary propulsion of 

this moving layer (e.g. fluid dynamics) as well as particle properties such as size, shape, 

charge and surface chemistry. Therefore, the aim of this study was to investigate and 

possibly identify critical particle properties which may influence their mucociliary 

clearance and translocation within the mucus blanket. Measuring the mucociliary clearance 

velocity of particles may also give insight into their penetration behavior into mucus: 

Whereas non-penetrating particles will be cleared with the moving mucus (figure 7A), 

particles that cross the mucus layer or even make contact with the epithelium (figure 7B) 

will on average be slowed down as they reach layers of smaller flow velocity (PCL and 

vicinity of the epithelium). Thus, they will show no, or at least a decreased average 

clearance velocity, which can be measured by particle tracking.  

The influence of particle properties, such as surface chemistry, size, charge and shape on 

mucociliary clearance (and indirectly on penetration potential) can be determined 

experimentally by the recently described ex vivo Embryonic Chicken Trachea (ECT) 

model (Henning, Schneider et al., 2008; Henning, Schneider et al., 2010) where horizontal 

particle trajectories can be imaged and analyzed. To improve comparison of clearance 

velocities of different particles and to reduce the statistical individual variance, we 

successfully applied a method to track particles of different type simultaneously.  
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Figure 7: Non-penetrating particles (A) will be cleared with the moving mucus blanket. Penetrating particles 

(B) will, on average, be transported slower or even not at all by translocating to areas with negligible 

horizontal mucus velocity such as the vicinity of the epithelium. 

 

 

4.3 Experimental 

 

4.3.1 Materials 

Experiments were conducted with three main groups of particles: Size dependency was 

investigated with differently sized polystyrene (PS) particles, shape and charge 

dependency was analyzed with differently charged (COOH surface or polyethylenimin 

(PEI) coating, respectively) rod-shaped (aspect ratio ≈ 4) and spherical PS particles. 

Dependency on surface chemistry was investigated with maghemite particles of different 

surface chemistry.  

Spherical PS-COOH particles (nominal density ρp = 1050 kg/m³) were purchased from 

BangsLabs (Fishers, USA), rod-shaped particles were made by stretching spherical PS-

COOH particles purchased from Polysciences (Warrington, USA) according to the film 

stretching procedure previously described (Champion, Katare et al., 2007). PEI was coated 

on particle surface through passive adsorption: Particle suspension (108 particles/ml) was 

incubated 1:1 in 2 mg/ml PEI solution overnight with end-to-end mixing. Particles were 

washed two times in phosphate buffered saline (PBS, 5 mM) and stored at 4 °C. Washing 

was performed by 15 min centrifugation at 7000 rpm and subsequent resuspension. 

Maghemite particles were obtained from Chemicell (Berlin, Germany), had a mean density 

of ρp = 1250 kg/m³ and were assembled from 20 nm subunits. All particles, except for rod-
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shaped and PEI coated particles were purchased from commercial sources. Fluorescent 

label was fluorescein isothiocyanate (FITC) or 4',6-diamidino-2-phenylindole (DAPI) for 

reference particles, respectively, incorporated in the polymer matrix of the PS particles by 

the manufacturer.  

Maghemite particles, were coated with a lipophilic dye by the manufacturer. Subsequently, 

a second layer enveloping the particle with a hydrophilic polymer was attached by the 

manufacturer to protect the particles against aggregation by foreign ions (Tseng, Di Carlo 

et al., 2009; Cinti, Taranta et al., 2011). All chemical modifications were linked covalently 

to the surface of maghemite particles by the manufacturer (chitosan, starch, 

phosphatidylcholine (PC), polyacrylamide (PAA)). PS-COOH particles of 555 nm 

hydrodynamic diameter were applied as reference particles in all experiments. All 

chemicals used were of analytical grade and purchased from standard commercial sources. 

Fertilized eggs, specified as pathogen free, were obtained from Lohmann (Cuxhafen, 

Germany).  

 

 

4.3.2 Particle Tracking Experiments 

In the ECT model, particles were deposited onto excised trachea from chicken embryos. 

Particle movement was monitored by optical means. In this study, fertilized eggs were 

incubated for 18-19 days at 37 °C and 60 % humidity in a breeding chamber. Trachea were 

excised and particles deposited as described earlier (Henning, Schneider et al., 2008). 

Briefly, after isolation, trachea were cut into half pipes and aqueous particle suspension 

was deposited on their inner (mucosal) side by using a MicrosprayerTM (PennCentury Inc., 

Wyndmoor, USA) as displayed in figure 8. Particles were applied as a mixture of two 

different types of particles suspended in millipore water; in each case PS-COOH particles 

of 555 nm hydrodynamic diameter were used as a reference particle. The applied amount 

of particle suspension was approximately 0.1 µl (0.04-0.06 % solid fraction) per trachea.  
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Figure 8: Trachea were cut in half pipes and particles are deposited on top. Trapped particles (green) are 

transported horizontally by mucociliary clearance and can be tracked by fluorescent labeling. 

 

 

With an assumed joint thickness of 20 µm for PCL and mucus layer, the amount of liquid 

on top of the tracheal epithelium is 1.6 µl (taking into account average length and diameter 

of embryonic chicken trachea). The application of the particle suspension therefore 

represents the addition of 6.25 % fluid. According to previous studies (Powell, Aharonson 

et al., 1974) this was assumed not to influence the rheological properties of mucus 

significantly. Throughout the experiment, the half pipes were placed onto Locke-Ringer 

solution soaked tissue. After particle deposition, the half pipes were transferred into a 

humidity (99 %) and temperature (33 °C) controllable chamber. Particle transport velocity 

due to mucociliary clearance was measured by fluorescence microscopy (Axioimager, 

Zeiss, Jena, Germany). Clearance rates measured by this method are comparable to human 

clearance rates (Henning, Schneider et al., 2008) which range between 3-25 mm/min 

(Hofmann and Asgharian, 2003; Antunes and Cohen, 2007) All particles were fluorescent-

labeled to allow tracking of their transport in the x-y plane. Reference particles and 

particles under investigation were labeled with a different fluorophore and could therefore 

be distinguished. Particle trajectories were recorded as image sequences of 10 s length. 

Due to the fact that most particles left the frame after this time, longer sequences could not 

be imaged. Several sequences were recorded on different spots on each trachea and particle 

trajectories were analyzed. On average, 10-20 particle trajectories per sequence were 

analyzed. To investigate the dependency of transport velocity on particle shape, spherical 

and rod shaped PS particles were applied and tracked simultaneously. To investigate 

charge dependency of transport velocity, reference particles were applied and tracked 
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simultaneously with positively or negatively charged rod shaped and spherical particles, 

respectively. To complete these studies, the dependency of transport velocity on particle 

surface chemistry was investigated with maghemite particles coated with chitosan, PC, 

PAA and starch. In each case, the particle type under investigation was applied and tracked 

simultaneously with reference particles or compared directly (e.g. in the case of shape 

dependency). The mean transport velocity of each type of particle was calculated by 

MtrackJ software. The mean transport velocity of the reference particles in each sequence 

was set to 100 %. For each sequence, the mean transport velocity of reference particles was 

compared to the mean velocity of the particle type under investigation. 

 

 

4.3.3 Particle Characterization 

Particles were characterized by dynamic light scattering (DLS), scanning electron 

microscopy (SEM) and atomic force microscopy (AFM). DLS measurements were 

conducted with particle suspensions in millipore water with a Zetasizer Nano-ZS (Malvern 

Instruments, Herrenberg, Germany): Here, particle solutions provided by the manufacturer 

were diluted with millipore water to yield concentrations of approximately 108 particles per 

ml. SEM measurements were conducted with a JSM 7001F Field Emission SEM (Jeol, 

Tokyo, Japan) under high vacuum conditions and room temperature. Prior to scanning by 

SEM, particles were sputter-coated with gold (layer thickness approximately 10 nm). 

Accelerating voltage was 20 kV with a focal distance of 10 mm. Samples for microscopic 

imaging were prepared by coating freshly cleaved mica with aqueous particle suspensions 

(1:100 dilution of stock solution provided by the manufacturer) followed by gentle drying 

with compressed air. AFM scans were done using a Multimode V (Veeco, Plainview, 

USA). Particles were scanned using non-contact mode and scan rates of 0.7 Hz. Standard 

non-contact mode cantilevers were used to image dried particles on mica (OMCL-

AC160TS, Olympus, Essex, Great Britain). 
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4.4 Results 

 

4.4.1 Particle Characterization 

Characterization of the particles by DLS showed that all particles were monodisperse 

(table 1) with the criterion for sufficient monodispersity being a polydispersity index (PDI) 

below 0.2. Measurement of zetapotential could confirm the charge given by the 

manufactures as either clearly positive, negative or neutral. Visualization by microscopic 

means was used to examine morphology of the particles and to estimate values of size and 

dispersity as measured by DLS. Rod shaped particles could not be measured by DLS 

because this technique incorporates spherical particles as boundary condition and thus 

gives misleading results for nonspherical particles. Figure 9 displays AFM and SEM 

images of PS spheres, PS rods and maghemite particles. SEM and AFM data were in 

accordance with values measured by DLS. Maghemite particles show greater 

polydispersity as proposed by DLS data. Disintegration of maghemite particles (which had 

been assembled from smaller subunits) due to dehydration effects during sample 

preparation can apparently not be avoided completely. The assembly of the maghemite 

particles from smaller subunits (“multi domain magnetic core” as specified by the 

manufacturer) can be seen by the cluster-like appearance of the particles. PS particles seem 

much smoother and display very low polydispersity. 

 

 

 

Table 1: Particle characterization by DLS. All particle types show sufficient monodispersity (* indicates 

measurement in millipore water). 

 

 Particle surface 
chemistry 

Size 
 
[nm] 

Zeta potential 
* 
[mV] 

PDI 
[a.u.] 

maghemite 
particles 

chitosan 146.0 ± 0.5 40.1 ± 0.9 0.1 ± 0.01 

PC 160.6 ± 0.6 -39.9 ± 1.9 0.07 ± 0.01 

starch 176.5 ± 1.2 -0.9 ± 0.1 0.09 ± 0.02 

PAA 197 ± 1.5 -32.7 ± 0.8 0.12 ± 0.02 

uncoated 
maghemite 

165 ± 0.7 38 ± 1.1 0.14 ± 0.03 
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PS 

(reference particle) 

555 ± 6.3 -49.5 ± 0.4 0.04 ± 0.07 

PS (“200 nm”) 248.3 ± 1.4 -44.9 ± 0.4 0.004 ± 0.002 

PS (“1000 nm”) 926 ± 115 -32.4 ± 0.8 0.17 ± 0.09 

PS (“6000 nm”) 6242 ± 469 -32.7 ± 0.7 0.09 ± 0.07 

PEI-terminated PS (positively charged 
spheres) 

600.5 ± 7.0 41 ± 2.0 0.14 ± 0.08 

COOH-terminated PS (negatively 
charged spheres) 

555 ± 7.0 -42 ± 2.1 0.06 ± 0.03 

 

 

 

 

 

Figure 9: SEM (A-C) images as well as AFM images (D-F) of spherical and rod shaped PS particles (A, B, 

D, E) and maghemite particles (C, F). Maghemite particles show rougher surface and more heterogeneous 

shape than PS particles. Scale bar represents 1 μm for PS particles or 100 nm for maghemite particles. 
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4.4.2 Particle Tracking Experiments 

The ECT model was employed to visualize and analyze the transport of deposited particles 

by mucociliary clearance. Particle trajectories showed the effective and well directed 

clearance of trapped particles (figure 10). Particles were transported mainly 

homogeneously throughout the imaged sequences. Slight divergences in direction or 

velocity of transport by mucociliary clearance were probably caused by the convergence of 

different metachronal fields. Trachea with impaired ciliary activity could be distinguished 

by strongly heterogeneous, circular or even reverse particle transport.  

 

 

 

 

Figure 10: Trajectories of particles transported by mucociliary clearace. Slight differences in transport 

direction may be caused by the convergence of metachronal fields. Single trajectories (numbered) are shown 

in different color. Image size is 120 µm in width. 

 

 

The aim of this study was to investigate the influence of different parameters such as 

shape, size, charge and surface properties on the clearance behavior of micro- and 

nanoparticles after deposition. In this context, clearance transport velocity of different 

types of particles was analyzed. No significant difference in transport velocity between 

reference particles and particle type under investigation could be found for any data set, be 

it dependency on size, charge, shape or surface chemistry (One Way ANOVA-Sigma Plot, 

systat, Chicago, USA). To exclude a retarding influence of PS reference particles on mucus 
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clearance, chitosan coated and starch coated maghemite particles were compared by 

applying a different type of reference particle (maghemite uncoated). Again, the compared 

types of particles did not show a significant difference in mean transport velocity. Results 

regarding the possible dependency of clearance transport velocities of particles under 

investigation on particle size, charge, shape and surface chemistry are summarized in 

table 2. Comparably high error in table 2F is probably due to smaller sample size 

(ntrachea = 3). Although most particle ensembles were transported as uniform formation, 

demonstrating complete immobilization in the mucus blanket with little relative trajectories 

to each other, few particles in deeper layers could be observed. The magnitude of this 

effect was independent of particle characteristics and may indicate the existence of voids 

inside the mucus blanket.   

 

 

Table 2: Relative mucociliary clearance velocities of particles under investigation. Transport by mucociliary 

clearance is independent of particle size (A), shape (B), charge (rod shaped particles (C), spherical particles 

(D)) and surface chemistry (E). A retardation of all particles by PS reference particles may be excluded: The 

application of a different type of reference particle reproduces previously found velocity relations (F). Values 

are means ± CV, (trachea: n ≥ 4 (A-E), n = 3 (F); particles: n ≥ 100). 

Size dependency of clearance velocity (A)

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

200 nm 2.7 10.7 

1000 nm 2.1 8.9 

6000 nm -6.0 8.8 

Shape dependency of clearance velocity (B)

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

Rods 4.2 17.9 

Spheres 0 (reference)  

Charge dependency of clearance velocity (rod shaped particles) (C) 

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

rods (+) 2.8 6.4 

rods (-) 7.6 11.5 
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Charge dependency of clearance velocity (spherical particles) (D) 

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

spheres (+) 2.2 9.1 

spheres (-) 0.5 8.1 

Dependency of clearance velocity on surface chemistry (E) 

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

PC -1.0 6.8 

chitosan 0.5 8.1 

starch 1.7 6.0 

PAA 10 14.0 

Dependency of clearance velocity on surface chemistry (influence of reference) (F) 

Particle Relative difference of transport 
velocity to reference particle [%] 

Statistical error [CV] 

chitosan 11.6 42.6 

starch 8.2 23.9 

 

 

 

4.5 Discussion 

 

The presented study describes the investigation of trajectories of individual particles upon 

impaction onto the mucus layer. This process is rather fast and horizontal transport by 

mucociliary clearance governs the order of magnitude of the relevant velocities. ECT 

experiments showed that relative clearance velocity of the particles under investigation did 

not differ from that of simultaneously measured reference particles. This simultaneous 

measurement allowed for a direct comparison of reference particles and particles under 

investigation. A dependency of shape, size, charge or particle coating on the relative 

transport velocity was not observed. Therefore, the clearance behavior and the transport 

velocity of particles deposited onto the mucus blanket seems to be mainly determined by 

the characteristics of the underlying mucus and its flow properties.  
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Experimental and theoretical studies (Matsui, Randell et al., 1998; Smith, Gaffney et al., 

2007; Smith, Gaffney et al., 2008) predicted heterogeneous flow velocities along the height 

of the mucus layer with smaller average velocities in the region of the PCL, the vicinity of 

the epithelium and finally vanishing flow at the epithelium. Therefore, penetrating particles 

will on average experience a decreased flow velocity and thus slower transport while 

advancing deeper towards the epithelium (figure 7). This is the reason for mucociliary 

clearance velocity of deposited particles being able to provide information about the 

penetration potential of such particles. Taking into account the presented results, the 

mentioned particle properties might thus not influence particle penetration.  

However, we have so far not considered the role of wetting and diffusion: It is well known 

from previous studies that wetting is a strong driving force to submerge particles in 

biological fluids (Gehr, Green et al., 1996; Gehr, Im Hof et al., 2000; Fiegel, Jin et al., 

2005). Although this behavior might not be influenced by shape, surface topography or 

surface free energy (Geiser and Kreyling, 2010) its influence on particle penetration can be 

important. It could previously be demonstrated that the existence of a surfactant lining 

strongly influences the immersion of particles into airway fluids (Schurch, Gehr et al., 

1990; Gehr, Green et al., 1996; Fiegel, Jin et al., 2005). The force caused by the interplay 

of particle wetting and surface tension of the surfactant layer can be strong enough to result 

in the displacement of the particle into the epithelium. From the physical point of view, it 

is important to stress that this particular effect only comes to pass (and has so far only been 

reported (Geiser and Kreyling, 2010)) if the particle size approaches the thickness of the 

fluid layer. In the scenario described here, smaller particles (especially submicron or 

nanosized particles) are deposited onto airway fluids. For those small particles, the 

described forces can maximally immerse the particle completely but cannot contribute to 

any further displacement within the mucus layer.  

Overall the presented results lead to the conclusion that the particle properties under 

investigation (size, shape, charge, surface chemistry) play only a minor role in their 

clearance behavior, i.e particles that are trapped in the mucus will be cleared at a velocity 

that is equal to the clearance velocity of the mucus, independent of particle properties. 

However, the mucus blanket does not appear totally uniform, either in surface coverage as 

well as in thickness (van As and Webster, 1972; Iravani and Melville, 1976; Sims and 

Horne, 1997). Therefore, besides fast penetration through the mucus blanket, the 

deposition on poorly covered patches of the epithelium (van As and Webster, 1972; 
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Moller, Felten et al., 2008; Geiser and Kreyling, 2010) followed by epithelial adhesion  

represents a further possibility to escape the mucociliary clearance. The latter 

phenomenon, although there has been extensive proof for such heterogeneity of the mucus 

blanket in thickness and coverage of the epithelium (Iravani and Melville, 1976; Im Hof, 

Gehr et al., 1997; Sims and Horne, 1997), is not easily accessed and has so far rarely been 

exploited for pharmaceutical purposes. Nanoparticles deposited on such patches of the 

epithelium which are only poorly covered with mucus, can slip through these voids inside 

the mucus blanket and reach the PCL or even the epithelium. The existence of a fraction of 

particles which may undergo this process was observed in this study and this may also be 

the reason for the discrepancy between fast horizontal transport of individual particles and  

previously reported long term (> 24 h) retention of fractions of inhaled nanomaterial 

(Moller, Felten et al., 2008) (with a clearance velocity of 2 mm/min particles deposited in 

the airways should be cleared from the lungs within maximally 2 h). Hence, for 

pharmaceutical applications, the more passive approach of enhancing the adhesion of 

particles to the epithelial cell surface as shown by Fischer et al. (Fischer, Aleman et al., 

2009) deserves high attention. The experimental results described here clearly suggest that 

in quantitative terms of particle retention in the airways, this mechanism of translocation 

may be at least equally important than direct particle penetration through mucus; an 

approach which combines these mechanisms is considered ideal. 

 In further studies, the role of mucus fluid dynamics and microstructure in the directed, 

vertical translocation of particles should be investigated: Here, not the local particle 

mobility and diffusion (Sanders, De Smedt et al., 2003; Lai, O'Hanlon et al., 2007; Lai, 

Wang et al., 2009; Sanders, Rudolph et al., 2009)  as usually described by quantifying the 

mean-squared displacement of particles (Valentine, Perlman et al., 2004; Lai, O'Hanlon et 

al., 2007; Crater and Carrier, 2010) should be measured; rather should it be cleared if voids 

inside the mucus blanket in its in vivo state are possibly interconnected and if and under 

which preconditions they allow particle translocation. Furthermore it should be clarified, 

how particle impaction and their trajectories influence sedimentation of deposited particles 

in mucus. Here, the underlying physical principles have been seldom considered in 

previous studies but need to be characterized first, before being able to describe particle-

mucus interactions satisfactorily. These points are further assessed in the following 

sections. 

 



MUCOCILIARY CLEARANCE OF NANOPARTICLES 

 

- 31 - 
 

4.6 Conclusion 

 

In summary, clearance velocity of micro-, and nanoparticles, trapped in the pulmonary 

mucus blanket and transported by mucociliary clearance, was shown to be independent of 

size, shape, charge and surface properties of the particles under investigation. Direct 

comparison of transport velocities of simultaneously measured particle types allowed for 

an estimation of particle penetration through the mucus blanket, revealing that vertical 

penetration of particles into the mucus blanket may be negligible compared to their 

horizontal transport due to mucociliary clearance. Possible strategies to design particles 

capable to escape the otherwise very effective mucociliary clearance remain either a 

substantial increase in their diffusivity in mucus (mucopenetration), or minimizing 

mucoadhesion, targeting possible voids in the mucus blanket and seeking direct 

bioadhesion to the epithelial surface. Such a substantial increase in diffusivity or mobility 

of particles in mucus may be reached by the application of external forces to pull the 

particles through mucus. Before such approaches can be realized, however, the process of 

sedimentation in and impaction onto the mucus blanket of nanoparticles have to be 

clarified. Furthermore, mobility of particles inside the mucus mesh and the implications of 

mucus’ microstructure on such mobility have to be investigated. 
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5. Fluid Dynamics of Particle-Mucus Interactions 
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disposition in the airways: mucus interactions and mucociliary clearance. Comput Visual 
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5.1 Abstract 

 

Interactions of nanoparticles with respiratory fluids such as pulmonary mucus are currently 

under investigation and are involved in a variety of applications. The clearance processes 

especially for nanoparticles are still not fully understood. The study presented in the 

following section represents an approach to describe deposition, sedimentation and 

clearance of nanoparticles within mucus with numerical and analytical models. Here, the 

physical background of nanoparticle behavior in fluid flow was taken into account for the 

first time within this context. Particle impaction as well as sedimentation and mucociliary 

clearance were simulated with computational fluid dynamics (CFD) and described 

analytically. Furthermore mucus plasticity as pathway for complex particle translocation 

was simulated using advanced CFD methods. We could demonstrate that fluid dynamics 

strongly influence the fate of deposited nanoparticles in mucus: Sedimentation and 

impaction were shown to be unlikely to contribute to particle translocation. However, 

intrinsic plasticity of mucus slabs and collision of such slabs may enhance particle 

translocation towards the pulmonary epithelium. 

 

  

5.2 Introduction 

 

This study aims to describe interactions of nanoparticles with mucus as the major non-

cellular element of the mucosal barrier. Mucus is a complex fluid containing hydrogel-

forming glycoproteins (mucins) and forms a compact barrier in the upper lungs. It has a 

very active role in the protection from inhaled material: Material deposited in the lungs 

usually adheres to mucus and can therefore be transported cranially and finally be excreted. 

This process is called mucociliary clearance.  

Elimination of particulate matter by this mucociliary escalator reduces residence time and 

thus the amount of the drug at the site of action. Therefore, current approaches to increase 

bioavailability aim to enhance penetration of mucus by particles. On the other hand, one 

aims to increase the probability that particles remain at the deposition site (which seems 

only feasible if deposited on patches not covered with mucus). Which approach may be 
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favorable is not clear yet. Recent publications have described nanoparticle mobility in 

mucus depending on particle surface chemistry (Lai, Wang et al., 2009). However, those 

approaches solely rely on investigations concerning the MSD of particles already 

submersed in mucus but do not take into account any clearance processes or deposition 

effects. Although these processes have been under experimental investigation for quite 

long time (Geiser, Cruz-Orive et al., 1990; Geiser, Im Hof et al., 1997; Geiser, Gerber et 

al., 2000) they are still largely unexplored. The aim of this study was the description of 

particle deposition onto mucus with computational methods to clear if particles deposited 

onto the mucus blanket are able to cross the mucus layer and reach the underlying 

epithelium by impaction or sedimentation. In addition, the applicability of an analytical 

solution to the problem was investigated. The aim of such numerical and analytical 

approaches is the development of a model which allows for a quick estimation of particle-

mucus interactions in terms of particle trajectory inside the mucus blanket upon the 

deposition. This is necessary because it is seldom known how all physical interactions that 

are involved in particle displacement balance and thus determine the behavior of deposited 

particles of different properties. Furthermore, mucus plasticity was analyzed by CFD to 

assess additional possibilities of particle attachment or translocation to the epithelium 

(figure 11): It is known that the mucus blanket is heterogeneous not only in thickness but 

also in surface coverage, transport velocity and direction (Iravani and Melville, 1976). 

Therefore, mucus droplets of potentially even varying size may collide if being transported 

within different metachronal fields. Upon such collisions, particles deposited on the mucus 

blanket may be submerged and pushed deeper inside the mucus layer and may thus 

encounter the epithelium in the end. Another possibility of particles reaching the 

epithelium besides diffusion and impaction is the translocation due to mucus spreading: 

Mucus droplets, either directly upon secretion or after separation from larger entities, may 

spread if no confining barriers are located on the sides. This spreading was modeled to 

determine the magnitude of the time spans of such spreading phenomena and to find out if 

this behavior can indeed contribute to particle translocation to the epithelium. 
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Figure 11: Mucus plasticity due to spreading (top) and deformation upon collision of mucus slabs (bottom) 

may be the reason for particle translocation to the epithelium: Particles deposited on top of the mucus blanket 

will get into close contact of the epithelium during the spread of the mucus droplet. Collision may cause 

immersion of particle into the depth of the mucus layer. 

 

 

5.3 Experimental 

 

5.3.1 CFD and Analytical Solution of Particle Trajectories 

 

5.3.1.1 Computational Model 
To simulate particle deposition on top and sedimentation within the mucus layer a 2D 

model was applied. The plane chosen was orthogonal to the mucus and parallel to the 

mucus flow. The computation domain (figure 12) used was quadratic and had a side length 

of 100 µm. Numerical computation of the fluid flow and the particle dynamics was done by 

the commercial CFD tool Ansys Fluent 12.1 with an underlying regular rectangular 

numerical grid. For the upper and lower boundary, a no-flux boundary was set. On the 

upper boundary that represents non-moving air, the velocity is set to be zero. The lower 

boundary simulates propulsion of mucus by cilia by a moving wall approach. Here, a 

constant velocity was assumed as first approximation. All other boundaries were periodic. 

The hereby simulated flow was a multiphase flow, where air, mucus and particles are 

different phases. The interface between the air and the mucus phase is a so-called free 
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boundary, i.e. no shape can be prescribed. The shape of the interface is the result of several 

balanced forces. We could expect that the interface is a straight line since there is no force 

which might destroy this line shape. Hence, the surface tension could be neglected in this 

section. The simulations were done using the volume-of-fluid (VOF) model (Hirt and 

Nichols, 1981) to take into account the free boundary. The simulation of the particles’ 

paths was done by a Lagrangian method using Fluent’s discrete phase model (DPM). For 

the numerical as well as the analytical model viscosity of the mucus layer increased 

according to physiological values from 1 mPas at the bottom to 6 Pas (Lai, Wang et al., 

2009) at the mucus/air interface to represent gradual transition of the watery PCL to highly 

viscous mucus layer (Randell and Boucher, 2006). Determination of mucus flow velocity 

u(z) was achieved by simulating mucus flow as steady-state process. Particle motion inside 

mucus after impaction onto this fluid layer, however, is a non-steady-state process with 

adapted time step control. Maximum resolution in time was 2.2 x 10-9 s. Convergence was 

surveyed by monitoring the decrease of residuals. Here, a decrease of residuals to a plateau 

value of 10-6 was accepted as convergence criterion for all simulation results. 

 

 

 

 

Figure 12: Computation domain of particle mucus interactions displaying both phases (mucus and air). 

Boundaries are periodic and the grid consisted of 100 vertical and 320 horizontal cells.  
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5.3.1.2 Analytical Model 

In order to find the basic equation describing mucus flow only the important forces and 

effects had to be considered. By neglecting all terms not relevant for the described 

situation, the Navier-Stokes equation could be solved analytically. Due to the fact that 

propulsion of the mucus layer is uniform and continuous, the flow can be considered to be 

stationary. Additionally, as velocity and pressure are low the fluid can be considered to be 

an incompressible fluid. Further simplification could be made considering the Reynolds 

number. With the height of the mucus layer as the characteristic length a very small 

Reynolds number was obtained, as the height is small and the viscosity is rather high i.e. 

inertial forces are very small compared to the viscous forces. Therefore a laminar flow 

without turbulence could be assumed and the flow could be described by the stationary 

Navier-Stokes equation: 

 

       (4) 

 

Here, p represents the pressure, v = (u, k, w)T the velocity, µ the viscosity and f additional 

volume forces. In non-newtonian fluids the viscosity is usually dependent on ∂u/∂z. Here 

we could approximate by using µ = µ(z) which yields the same results if ∂u/∂z is linear. In 

the following, direction parallel to the mucus is denoted with x and the direction 

orthogonal to the mucus with z. The y-direction was not considered as the computation 

domain was chosen parallel to the flow direction. First, it could be assumed that the 

boundary conditions and the fluid properties in the x-direction are uniform and do not 

change in time. Furthermore, the pressure gradient in this direction is zero. That means all 

quantities do not depend on the position on x-direction. All these assumptions allowed for 

writing the equation for the velocity in x-direction u in the following form: 

 

         (5) 

 

Further simplification was included with respect to diffusion or Brownian motion of 

particulate matter: For spherical particles, the time t(b,b0) required to reach the cilia by 

Brownian motion is 
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         (6) 

 

with b = thickness of mucus, b0 = starting height of the particle trajectory. D is given by 

equation (2). Mucus viscosities range between 102 and 10-2 Pas (Lai, Wang et al., 2009). 

Therefore we could determine a diffusion coefficient for a viscosity of 50 Pas which lead 

(with an assumed thickness of 10 µm for the mucus blanket) to a value of 

t(10 µm) = 1.1 x 106 s (= 12.9 days). Even for highly diffusive particles (Lai, O'Hanlon et 

al., 2007) with t(10 mm) = 500 s, mucociliary transport velocity (typical value in ex vivo 

experiments: 2 mm/min) exceeds diffusional transport by far. Therefore it is plausible to 

neglect diffusional transport through the mucus blanket in a simple analytical model. 

Applied variables and parameters are summarized in table 3. 

 

 

Table 3: Applied variables and their denotations 

Variable Denotation 

 

p pressure 

µ viscosity 

v flow velocity 

u, k, w flow velocity in x, y, z direction 

V particle velocity 

U, K, W particle velocity in x, y, z direction 

uM, uA flow velocity in mucus or air respectively 

u0 drive velocity of the mucus layer 

r particle radius 

 

 

5.3.2 Simulation of Mucus Plasticity 

Numerical simulations of mucus plasticity and mucus slab deformation were done using 

the software tool Finite-Pointset Method (FPM) recently developed at the Fraunhofer-

Institute for Industrial Mathematics in Kaiserslautern, Germany (Tiwari and Kuhnert, 

2002; Tiwari, Hietel et al., 2006). FPM solves fluid dynamic problems and its numerics are 

based on a grid-free method, i.e. unlike other CFD tools like Fluent, FPM needs no mesh to 
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discretize fluid mechanics equations but utilizes virtual particles which are transported 

with the fluid flow and act similar to fluid elements (Tiwari and Kuhnert, 2002). One 

major advantage of the method is the treatment of free boundaries as surfaces of the 

described mucus. A 2D-model of a mucus slab with a width of 20 µm and a height of 10 

µm was considered here. The friction force between the mucus and its underground cannot 

be determined exactly, however the composition and nature of the underlying watery PCL 

is known. Although the fluid within the PCL is not very viscous, support by constantly 

beating cilia, secretion and absorption mechanisms and macromolecular structures enables 

it to be retained as distinct layer. Therefore, we placed the mucus slab on a 60 µm wide and 

5 µm high layer of the same material but higher viscosity. This was done to result in a non-

moving stable substrate with, however, similar interfacial properties to simulate underlying 

PCL. Mucus density was chosen to be 1000 kg/m3 with a viscosity of 6 Pas (Lai, Wang et 

al., 2009). The viscosity of the underlying substrate was chosen 10 times larger. The 

temperature influence was not regarded. The resolution can be expressed by mean distance 

of virtual particles which is 0.13 µm in this case. As a solver for non-stationary problems, 

convergence is surveyed in each time step. The intrinsic convergence level for the equation 

solver is implied by the developer and the magnitude of this parameter cannot be given 

here. 

 

 

5.4 Results 

 

5.4.1 Particle Trajectories 

 

5.4.1.1 Analytical Solution 

In order to find an analytical solution the domain was divided into the mucus domain (M) 

and the air domain (A). Mucus is located in the height 0 < z < ΔH, the air domain is located 

in the height ΔH < z < H, where H is chosen large compared to ΔH. The velocities are 

denoted by uM(z) and uA(z) for the flow velocity in mucus and in air, respectively. The 

general solution of the Stokes equation could be obtained by integrating the equation two 

times: 
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                                                                                                               (7a) 

 .                                                                                           (7b) 

 

For the velocities in mucus and air following equations could be obtained: 

 

       .                             (8) 

 

It can be assumed that the viscosity of air is almost constant so that the equations could be 

simplified to 

 

       .                                                    (9)  

          

It remained to determine the unknown constants C1, C2, C3, C4. The complete solution 

could be obtained by choosing boundary and interface conditions. Therefore, the drive 

velocity of cilia was chosen as u0. Finally, the following velocities could be obtained: 

 

                                                                 (10a) 

.                       (10b) 

 

These two equations describe flow velocity u(z) of the mucus layer and the air above. The 

analytical solution of the flow velocity of the mucus layer uM(z) is compared to its 

numerical solution in figure 13. These results qualitatively match experimental (Matsui, 

Randell et al., 1998) as well as numerical results of previous studies which apply much 

more complex models for the ciliary drive of the mucus layer (Smith, Gaffney et al., 2007; 

Smith, Gaffney et al., 2008). Similar to those studies, mucus flow velocity was found to be 

almost constant along the mucus’ height. The knowledge about flow velocities of mucus 

depending on z was used to describe particle trajectories after deposition. 
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Figure 13: Comparison between numerical and analytical solution of mucus flow velocity depending on the 

height above the surface (interface between PCL and mucus). 

 

 

5.4.1.2 Particle Velocity and Path Inside Mucus 

In the following section, the velocity and the path of a particle inside the mucus flow after 

deposition is described. Under the assumption of a laminar flow, the drag force for a 

spherical particle can be written according to the Stokes law: 

 

                                                                                                                 (11) 

 

with µM = viscosity of the mucus, r = particle radius and Vrel = relative velocity between 

particle and fluid flow. To consider the vertical movement of particles (in z-direction, 

orthogonal to mucus flow), we released a particle into the mucus with some initial velocity 

W0 in z-direction. The particle motion is essentially determined by the balance of inertia 

force and drag force. As there is no flow in z-direction now, the equation of motion was 

given by 

 

                 (12) 

 

where mP is the particle mass. Here, f represents constant forces like gravitation and 

buoyant forces. The solution of this (ordinary differential) equation was 
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                           (13) 

 

where ρP is the density of the particle. To estimate the behavior of the velocity V(t), 

relevant values, for instance, ρP = 1125 kg/m3, r = 100 x 10-9m were considered. Mucus 

viscosity µM(z) was modeled as linearly increasing from 1 mPas at the bottom to 6 Pas at 

the mucus/air interface. As particles do not move much in z-direction, this can be 

approximated by using the constant value of 6 Pas at the air interface. Buoyant forces and 

gravitation forces result in values in the order of the size 10-17 N, whereas friction force is 

about 10-11 N for a typical mucus velocity of 2 mm/min. Thus, buoyant forces and 

gravitation force could be neglected compared to the friction force. Looking on the particle 

velocity, after t = 1.9 x 10-12 s the initial velocity has decreased to approximately 1 % of its 

original value. In addition, horizontal velocity (x-direction, parallel mucus flow) could be 

considered. The equation of motion was given by 

 

                (14) 

 

where uf is the flow velocity of the mucus (depends on z). Approximating that the particle 

does not move much in vertical direction it could be assumed that the particle is located in 

a constant height, hence, the fluid flow velocity at particle position is constant (uf = u0 = 

mucus drive velocity) which is feasible by looking at the only slightly decreasing flow 

velocity (figure 13, section 5.4.1.1). Using the equivalent equation of motion for the 

horizontal direction, the following solution could be obtained: 

 

.                (15) 

 

That means, the size of acceleration of a particle is the same as the deceleration in vertical 

direction. Hence, the particle immediately accelerates to flow velocity. Now, the particle 

path could be computed. In our case (with f = 0) the following equations could be 

obtained: 
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                                                                                    (16a) 

                                                                                            (16b) 

.                  (16c) 

 

In summary, particles deposited at the mucus air interface (t = 0) immediately accelerate to 

mucus transport velocity and uniform motion. This behavior is displayed in figure 14. Fast, 

de facto immediate, acceleration of particles trapped inside the mucus blanket causes the 

particles to show linear horizontal transport without a visible lag time. Here, numerical and 

analytical solution are in very good agreement.  

 

 

 

Figure 14: Vertical and horizontal particle transport upon deposition onto the the mucus layer. Particles are 

accelerated to horizontal mucus velocity by entrapment in the moving mucus layer which causes immediate 

horizontal transport. (A). Vertical particle velocity is decelerated immediately upon deposition to cause only 

slight penetration into mucus (B). 

 

 

Regarding the vertical motion of deposited particles, inertia does not play a role in particle 

kinematics, as their vertical motion is decelerated close to zero even if particles impact 

with a velocity of 100 m/s perpendicular to the mucus blanket. This causes only slight 

penetration into mucus. Here analytical and numerical solution show some difference, as 

step size in the numerical solution leads to falsely increased penetration depth. 
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5.4.2 Simulation of Mucus Plasticity 

Considering the presented results of particle mobility upon deposition, it could be shown 

that sedimentation of such particles within the mucus layer might not be a very probable 

mechanism for particle translocation across this layer. The question of possible further 

ways to access the underlying epithelium remains. One of those possibilities might be the 

displacement of particles by plastic deformation of the mucus slab itself or deposition on 

poorly covered patches of the epithelium. Here, on the one hand, the aim was to investigate 

if such mucus slabs are likely to retain their shape (i.e. retention of existing gaps within the 

mucus layer would also be possible) within physiologically relevant time spans (minutes to 

hours, the time needed to clear particles from the lungs). On the other hand plasticity of 

mucus slabs was analyzed to investigate whether particles deposited on top could access 

the epithelium by deformation of mucus slabs involving mass transport from top to bottom. 

Therefore, numerical grid-free methods (FPM) were applied which could simulate the 

plasticity of 2D mucus slabs of a given cuboid shape upon removal of restraining 

boundaries at the sides of the slab. These simulations gave insight into the time frame of 

deformation of mucus slabs and the velocity and direction of deformation by gravitational 

forces and diffusion. It was shown that mucus slabs can be considered rather stable in 

terms of deformation within physiologically relevant time spans: Figure 15 shows mucus 

slab deformation within a time span of 800 s. Here, figure 15A and 15B display the initial 

situation (t = 0), figure 15C and 15D represent mucus deformation after 400 s. Figure 15E 

and 15F display mucus deformation after 800 s.  

Within this time, the cuboid mucus slab decreases in height by approximately 40 %. 

Similarly, the slab flattens out and increases in surface. It can be shown that the magnitude 

of deformation velocity of mucus is greatest in the area of the upper edges whereas mucus 

in the area of the center of the slab shows smallest flow velocities. Concerning the 

magnitude of the horizontal mucus deformation velocity (ux, figure 15B, 15D, 15F), it 

could be shown that, again, areas of greatest velocity are located on the upper edges of the 

cuboid mucus slab. In summary, it can be concluded that the shape of such mucus slabs 

will be maintained within time spans of physiological relevance, where areas of greatest 

deformation and flow velocity are located on the upper edges of the mucus slab. 
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Figure 15: Deformation of cuboid mucus slab by gravitational forces and diffusion after 0 s (A+B), 400 s 

(C+ D) and 800 s (E+F). Images on the left (A, C, E) show magnitude of horizontal deformation velocity 

whereas images on the right (B, D, F) represent magnitude of total deformation velocity. Dimension of all 

data is m/s.  

 

 

5.5 Discussion 

 

5.5.1 Particle Trajectories 

The aim of this study was to describe the mobility of nanoparticles in a complex biological 

fluid such as respiratory mucus and the interactions of such particles with this fluid. 

Particle trajectories and mobility of inhaled particles during impaction and sedimentation 

within mucus and mucociliary clearance were solved numerically and analytically. In 

addition, mucus plasticity was numerically solved to investigate further possibilities for 

particle translocation across the mucus layer. Analytical and numerical considerations of 
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particles trajectories deposited onto mucus showed that inertia does not play a significant 

role in the movement of particles within mucus. It could be shown analytically as well as 

by simulation that particles which are deposited at the air-mucus interface immediately 

accelerate to the velocity of the moving mucus layer. Vertical motion of particles during 

deposition could also be solved numerically and analytically: Immediately upon 

deposition, vertical particle velocity is decelerated quickly close to zero i.e. particles do not 

penetrate significantly inside the mucus layer. Here, impaction velocity only plays a 

marginal role in the quantitative behavior of particle sedimentation. Although simulations 

were in good accordance with the analytical solution, slight differences were visible. These 

were most probably due to step size during simulation. However, all these findings are in 

accordance with previous experimental studies and simulations concerning mucus flow, 

even for models involving much more complex mathematical description of mucus 

propulsion by ciliated cells (Barton and Raynor, 1967; Fulford and Blake, 1986; Smith, 

Gaffney et al., 2007; Smith, Gaffney et al., 2008). 

 

 

5.5.2 Mucus Plasticity 

To assess further possibilities for nanoparticles to reach the underlying epithelium, 

plasticity of mucus structures was studied: It could be shown that deformation of mucus 

slabs might be slow enough to allow retention of mucus structures within physiologically 

relevant time spans, i.e. before the structures are cleared by ciliary propulsion (minutes to 

hours). This finding is supported by previous experimental work which showed that the 

mucus layer is heterogeneous in height, appearance and surface coverage over the whole 

airways and does not form one continuous layer (Iravani and Melville, 1976; Im Hof, Gehr 

et al., 1997; Sims and Horne, 1997; Gehr, Im Hof et al., 2000). From this, one could 

conclude that possible gaps within the mucus layer might be retained in shape such that 

particles deposited there would have direct access to the underlying epithelium. 

Furthermore, it could be shown that during deformation the upper edges of the mucus slabs 

are deformed with greatest velocity. Particles deposited there might be transported towards 

the epithelium within the mucus. Clearly the presented approach represents only a rough 

approximation to the real situation, as interfacial physico-chemistry was not included in the 

model. Surface tension and other related effects cannot easily be modeled and need to be 

thoroughly assessed to completely mimic mucus spreading. In addition to that, further 
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studies concerning exact particle position in this situation and collision of two or more 

mucus slabs and its influence on deposited particles should follow. In summary, the 

question of particle translocation across the mucus layer can be addressed in the following 

way: The presented findings show that particles deposited on top of the mucus layer are 

very unlikely to cross this layer by sedimentation, diffusion or impaction, at least within 

time spans of physiological relevance, i.e. before particles entrapped by mucus are 

excreted by mucociliary clearance. However, deposition of particles in gaps within the 

mucus layer which were shown in our studies to retain their shape at least for short- and 

mid-term considerations, may be a possibility for particles to directly access the 

epithelium. Furthermore, deformation or collision mucus slabs may also lead to 

translocation of entrapped particles to the epithelium due to mass transport on the edges of 

the mucus slabs.  

 

 

5.6 Conclusion 

 

In this section the role of mucus fluid dynamics in the process of mucociliary clearance for 

the fate of deposited particles was investigated. Both numerical and analytical solutions to 

the problem were applied. Although using several approximations, it could be shown that 

the presented results were in accordance to previous studies with much more complex 

models. Both solutions were also in sufficient accordance to each other. In principle, the 

presented study displayed the kinematic behavior of deposited particles. One main 

conclusion from the presented results is the fact that particles cannot penetrate the mucus 

blanket by impaction or sedimentation alone and seem to be rather immobile once 

deposited onto the mucus blanket. This is a fact which is in accordance to the results 

described in the previous section: Here no difference in mucociliary clearance of several 

parameters was found. This is particularly feasible as there is no relative velocity between 

the particles and the moving mucus layer as suggested by the results presented here. 

However, particle mobility and diffusion on the microscale have to be considered to 

complete the understanding of particle fate within the mucus layer of the lungs. This is 

approached in the section to come. 

 



THE ROLE OF MICRO- AND MACROSTRUCUTRE OF MUCUS IN PARTICLE MOBILITY 

 

- 48 - 
 

 

 

 

 

6. The Role of Micro- and Macrostructure of Mucus in 

Particle Mobility  
 

Parts of this chapter were published in: 

 

Kirch, J., Schneider, A., et al. (2012). Optical tweezers reveal relationship between 

microrheology and particle penetration of pulmonary mucus. submitted for publication 
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6.1 Abstract 

 

In this study the mobility of nanoparticles in mucus and similar hydrogels as model 

systems was assessed to elucidate the so far missing linkage between microscopic diffusion 

behavior and macroscopic penetration of such gels. Differences in particle adhesion to 

mucus components were strongly dependent on particle coating. Particles coated with 

2 kDa PEG exhibited a decreased adhesion to mucus components whereas chitosan 

strongly increased the adhesion. In spite of such mucoinert properties of PEG, magnetic 

nanoparticles of both coatings did not penetrate through native respiratory mucus, resisting 

high magnetic forces even for several hours. However, model hydrogels were, indeed, 

penetrated by both particles in dependency of particle coating, obeying the theory of 

particle mobility in an external force field. Comparison of penetration data with cryo 

scanning electron microscopy (cryo-SEM) images of mucus and the applied model systems 

suggested particularly high rigidity of the mucin scaffold and a broad pore size distribution 

in mucus as reason for the observed particle immobilization. Active probing of the rigidity 

of mucus and model gels with optical tweezers was used for the first time within this 

context to confirm such properties of mucus on the microscale, thus presenting the missing 

linkage between micro- and macroscopical observations: Due to high heterogeneity in the 

size of the voids and pores of mucus, on small scales, particle mobility will depend on 

adhesive or inert properties. However, particle translocation over distances larger than a 

few microns is restricted by highly rigid structures within the mucus mesh. 

 

 

6.2 Introduction 

 

Mucus is a complex fluid of spatially varying properties containing hydrogel-forming 

glycoproteins (mucins) that enable the exchange of nutrients, provide lubrication, and 

protect the body from environmental influences. A compact layer of this hydrogel covers 

the complete gastrointestinal tract, the urogenital tract and the epithelium of the upper and 

central lung. Especially in pharmaceutical research, the barrier function of mucus is of 

special importance. Translocation of particulate matter such as dust, pathogens like viruses, 

or pharmaceutical (nano)carriers through this barrier is currently under investigation but 
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still not completely understood. In contrast to pathogens or toxic agents, penetration of this 

mucus barrier is strongly desired for any kind of drug delivery device, such as 

(nano)particulate application systems. Here, especially modification of particles with 

polyethylenglycol (PEG) was reported to enhance particle diffusivity within the probed 

timeframe. On the contrary, chitosan is established as mucoadhesive, intending to increase 

bioavailability, but may thus decrease particle diffusivity.  

In the last years, the investigation of the microrheology of mucus in this context has been 

gaining momentum (Lai, Wang et al., 2009). In particular the discrimination between 

different filtering effects, their correlation with gel structure and further details on how 

such filtering is controlled are being investigated (Lieleg and Ribbeck, 2011). Furthermore, 

the influence of electrolytes such as bile salts on particle mobility in mucus is tackled 

(Macierzanka, Rigby et al., 2011). The most established parameters to describe filtering 

effects are pore size (Sanders, De Smedt et al., 2000) and particle-mucus interactions 

(Mura, Hillaireau et al., 2011). The pore size is derived either from imaging data or particle 

tracking experiments. Particle tracking also provides information on mucociliary clearance 

and particle interactions with components of the mucus' polymer mesh (adhesion to 

mucins). Current studies in this field either focus on pore size as limiting factor (Olmsted, 

Padgett et al., 2001; Dawson, Wirtz et al., 2003) or suggest the more complex interaction 

filtering of mucus rather than size-exclusion effects (Lieleg and Ribbeck, 2011). 

Concerning non-cryo microscopic imaging, a disadvantage of such methods is their 

susceptibility to artifacts due to their harsh conditions, staining, or sputtering. Particle 

tracking experiments on the other hand suffer from limitations either in short correlation 

time, small observed area, or both. An alternative to such small-scale mobility of particles 

in mucus are classical diffusion chamber studies which quantify translocated particle 

fractions (Sanders, De Smedt et al., 2000). Those studies, however, do not provide 

information about microscopic particle behavior and mucus structure. 

Therefore, although each being extensively investigated, the major problem in this field is 

the still missing linkage between penetration behavior on scales larger than a few 

micrometers and microrheology and -structure of mucus. The presented study bridges this 

gap through combination of advanced methods which, to our knowledge, have not been 

applied so far in this context. Initially, particle-mucus interactions were investigated by 

force spectroscopy to quantify adhesion of differently coated nanoparticles to mucus 

components to confirm mucoinert or mucoadhesive properties of the applied particles. 
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Penetration of such differently adhesive particles through mucus and model gels was 

investigated by quantifying penetration velocity of magnetic particles through capillaries 

filled with mucus or model gels. Penetration behavior was assessed considering the theory 

of particle mobility in a distinct force field. This macroscopic particle mobility was 

correlated to microscopic mucus rheology and structure. Here, cryo scanning electron 

microscopy (cryo-SEM) was applied which allowed for an unbiased determination of the 

native mucus structure. Furthermore, optical tweezers were used to passively and actively 

probe native respiratory mucus. This approach is unique in this context and demonstrated 

that one crucial point in particle mobility is not only the pore size distribution but also 

mucin scaffold rigidity which is not captured in regular methods to measure mucus 

microrheology. This combination of pore size and rigidity in mucus could be used to 

explain the mentioned discrepancy between micro- and macrorheology of mucus as well as 

between low long distance mucus penetration and previously observed microscopic 

particle mobility. 

 

 

6.3 Experimental 

 

6.3.1 Materials 

All particles were obtained from commercial sources: For force measurements, PS 

particles with covalently linked coating (chitosan and polyethylenglycol (PEG, 2 kDa), 

500 nm diameter, Kisker Biotech, Steinfurt, Germany) were used. Capillary penetration 

experiments were conducted with dextran iron oxide composite particles with covalently 

linked coating (chitosan and PEG, 2 kDa) with a diameter of 170-200 nm (Micromod, 

Rostock, Germany). For the experiments with the optical tweezers, either 

polymethylmethacrylate (PMMA) beads (Fluka Productions GmbH, Buchs, Switzerland) 

with a size of 4 µm or melamine resin beads (Fluka Productions GmbH, Buchs, 

Switzerland) with a size of 5 µm were used. For optical tweezer experiments, the 

observation of the samples was done with a Gene Frame (ABgene, Epsom, United 

Kingdom), a special sample cell with a low volume of 25 µl. All chemicals used were of 

analytical grade and purchased from standard commercial sources. Nanoparticles were 

characterized regarding their size distribution by nanoparticle tracking analysis (NTA). 
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Measurements were performed with a LM10-HS (NanoSight, Amesbury, United 

Kingdom). This technique was previously demonstrated to be more precise in determining 

particle size distributions than standard dynamic light scattering (DLS) especially for 

polydisperse samples (Filipe, Hawe et al., 2010). Particle size distribution is displayed 

below (figure 16).  

 

 

 

Figure 16: Particle size distribution (hydrodynamic diameter) of PS particles (A+C) and magnetic dextran 

particles (B+D) with PEG 2 kDa coating (right) or chitosan coating (left). Size distribution is averaged over 

n = 3 independent experiments. 

 

 

6.3.2 Atomic Force Microscopy 

AFM cantilevers were cleaned and modified according to a previously described procedure 

(Gfeller, Nugaeva et al., 2005). In short, cantilevers were cleaned twice in piranha etch 

(97 % H2SO4 in 30% H2O2; 1:1), rinsed in millipore water and dried under nitrogen flow. 

Cantilevers were suspended in silane solution (1 % 3-glycidyloxypropyl-trimethoxysilane, 
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0.5 % N-ethyldiisopropylamine in water-free toluene) for 4 h at room temperature to form 

a self-assembled monolayer (SAM), providing a hydroxyl-reactive surface towards 

primary hydroxyl groups of mucins. After silanization, cantilevers were rinsed twice for 

20 min with dry toluene and dried under nitrogen flow. Subsequently, cantilevers were 

suspended overnight in 1 % mucin solution followed by a rinsing with millipore water. The 

sample substrate was silica, cleaned equally as the used cantilevers. A drop of particle 

suspension (chitosan or 2 kDa PEG coated polystyrene particles respectively in millipore 

water) was placed onto the substrate and dried in air. These samples were used in 

subsequent force imaging. Samples were inserted into the fluid cell of the AFM 

(Multimode V, Bruker, Santa Barbara, USA). Measurements of force plots (force 

spectroscopy) were done via so-called force volume imaging in fluid conditions where a 

surface is scanned while recording force-distance plots for each pixel of the image 

(figure 17). Force volume images (4096 force plots per image) were taken of the samples 

with 10 nN trigger force and a surface dwell time of 1 s. Force plots attributed to the 

particles were extracted, analyzed and compared to the force plots attributed to the 

substrate with nanoscope 7.13 software (Bruker, Santa Barbara, USA). Adhesion force was 

averaged over all force plots attributed to one particle. Several particles (n > 6) were 

analyzed and the statistical variation in average adhesion force among the particles 

considered as statistical error. 

 

 

 

Figure 17: Force volume imaging allowed for the discrimination between mucoadhesive (red) and mucoinert 

particles (blue) by the magnitude of adhesion to the mucin functionalized cantilever tip (left). SEM images of 

the modified tip (right) display the dense layer of mucin on the tip. 
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6.3.3 Capillary Penetration Experiments 

Capillary penetration experiments were conducted according to a method recently 

introduced by Kuhn et al. (Kuhn, Hallahan et al., 2006). Briefly, capillaries were filled 

with a model gel or respiratory mucus, respectively and sealed with vacuum grease on one 

end. 10 µl of particle suspensions (chitosan or 2 kDa PEG coated magnetic dextran iron 

oxide composite particles, Micromod, Rostock, Germany) were pipetted on top of the gel 

column. Filled capillaries were placed upright with their sealed end in a reproducible 

position in 2 mm distance to the pole of a neodymium magnet (figure 18). Capillaries were 

fixed in a reproducible position next to the pole of the magnet (neodymium permanent 

magnet). 

 

 

Figure 18: Gel filled columns were placed upright next to the magnet. Nanoparticle suspensions were filled 

on top of the gel columns. Magnetic particles were pulled through the hydrogel mesh upon exposure to the 

magnetic field. 

 

 

A fit with the model of Chrambach and Rodbard was done according to a procedure 

described previously (Sarbolouki, Mahnam et al., 2004). Here particle mobility in an 

external force field as described as function of gel concentration is given by 

 

                  (17) 
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where m is the particle mobility, m0 the mobility in water, c the polymer concentration, and 

k the system specific constant. Velocity of the magnetic particles while being pulled 

through model gels or mucus was obtained by measuring the travelling time of the particle 

at a fixed position in 2-4 mm distance to the pole of the magnet.  

Native respiratory mucus was obtained during bronchoscopy of a healthy horse and stored 

at -80 °C. According to previous studies, storage should not influence mucus rheological 

properties (Gastaldi, Jardim et al., 2000). There was no access to mucus of further healthy 

individuals. Model gel was hydroxyl-ethyl-cellulose (HEC, SE Tylose GmbH & Co. KG, 

Wiesbaden, Germany) of various concentrations. To prepare model gels, the respective 

amount of HEC was dissolved under overnight stirring in millipore water. 

 

 

6.3.4 Cryo-SEM 

HEC hydrogels and native respiratory mucus were imaged by cryo-SEM. HEC gels were 

prepared by dissolving the respective amount of HEC in millipore water. Before SEM 

imaging, HEC gels and mucus were collected in a thin dialysis capillary. Gel-filled 

capillaries were immediately frozen in liquid propane, to only allow formation of 

amorphous- and circumvent formation of crystalline water. Capillaries were cut into 

smaller pieces to subsequently image the brim of the cut. Sublimation of frozen, 

amorphous water inside the porous HEC gel and mucus was carried out for 1 h at -100 °C 

(Baltec SCD 500 Sputter coater, Baltec/Leica, Germany). Subsequently, the surface of the 

dry polymer scaffold was sputter coated with platinum (layer thickness approximately 

12 nm. After sputtering, samples were transferred into the SEM (DSM 982 Gemini, Zeiss, 

Jena, Germany) and imaged at -120 °C and 5 keV with 5-6 mm working distance. 

 

 

6.3.5 Optical Tweezers 

To probe the microstructure of the respective medium, the choice of the bead had to be 

adapted to the optical properties of the fluid. In 1 % HEC gel (refractive index ≈ 1.33) 

PMMA beads (refractive index ≈ 1.48) were used while in mucus melamin resin beads 
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(refractive index ≈ 1.68) proved to be the optimal choice. Here, the difference in 

refractive index should be maximized. For the preparation of the samples, a small volume 

of beads (2-4 µl) with a solid content 10 % was mixed with about 100 µl of the respective 

fluid. The concentration of beads was chosen in a range of 200-2000 ppm, so that 

hydrodynamic interactions between multiple beads could be neglected. Following the 

mixing process, all samples were vortexed for about five minutes to make sure that the 

beads were distributed homogeneously within the fluid. 25 µl of this mixture were filled 

into the sample holder and sealed airtight with cover glasses and vacuum grease. 

The setup of the optical tweezers was identical with the one used by Ziehl et al. (Ziehl, 

Bammert et al., 2009). The beam of a solid state laser (Ciel, Laser Quantum, Cheshire, 

United Kingdom) was guided towards the oil immersion objective (numerical 

aperture = 1.4, 60 x magnification) to create a harmonical trapping potential within its 

focal region inside an inverted microscope (Eclipse TE2000-S, Nikon GmbH, Duesseldorf, 

Germany). The visualization of trapped beads was achieved by illuminating the sample 

with an LED illumination source (ZLED CLS 9000, Zett Optics, Braunschweig, Germany) 

from above in the inverse direction of the laser beam through the sample cell onto the chip 

of a high speed camera (HiSpec 2G, Fastec Imaging, San Diego, CA, USA). The beads 

were recorded for a duration of 16 s with a sample rate of 16 kHz and tracked afterwards 

by the means of a cross correlation algorithm realized in LabView 2011 (National 

Instruments Germany GmbH, Munich, Germany) which allowed for the determination of 

the particle displacements with a spatial resolution of approximately 2 nm (Cheezum, 

Walker et al., 2001).  

Two types of measurements were conducted: In passive tracking experiments, a bead was 

held in place by the trap and the Brownian motion was recorded as reported above. Active 

experiments were performed by moving the piezoelectric stage of the setup in a triangular 

oscillation pattern induced by the signal of a waveform generator. The amplitude and 

frequency of the oscillation were chosen according to the mobility of the bead at its current 

position (usually between 1 µm and 4 µm and respectively 0.1 Hz and 0.2 Hz). The 

observation time was chosen in a way that at least two full oscillation periods could be 

recorded. Synchronous to image acquisition the voltage signal driving the stage was 

recorded by a data acquisition card (National Instruments Germany GmbH, Munich, 

Germany). All optical tweezers measurements were performed at a temperature of 20 °C. 
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6.3.5.1 Determination of the Shear Moduli 

The shear moduli were determined from the displacement data of beads that were confined 

in the focal region of the optical trap. This was achieved for mucus as well as for the HEC 

model gel by a method proposed in 1997 by Schnurr et al. (Schnurr, Gittes et al., 1997) 

according to which the Fourier-transformed displacements (࢞෥) are linked to the force 

spectrum of Brownian motion (ࡲ෩) by a response function ࢻ෥, the compliance, which is a 

complex function of the frequency ω for non-Newtonian fluids. 

 

.                  (18) 

 

Here, Fourier-transformed quantities are denoted by a tilde and the compliance is given by  

 

                        (19) 

 

while the power spectral density (PSD, ൏ ෤ሺ߱ሻ|ଶݔ| ൐) of the particle displacements can be 

related directly to the imaginary part of the response function α'' by applying the 

fluctuation-dissipation-theorem (Landau and Lifshitz, 1966). The parameter α' can be 

obtained by applying the Kramers-Kronig-relations as previously demonstrated (Addas, 

Schmidt et al., 2004): 

 

                                                                                        (20a) 

.                                 (20b) 

 

The connection between the compliance of the material and its shear modulus is finally 

given by 

 

                   (21) 
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where the shear modulus is given as  

 

.                 (22) 

 

At this point knowledge of the strength k of the optical trap is required because it 

influences the elastic properties of the fluid over the whole frequency regime in form of an 

additive constant: 

 

.                  (23) 

 

In the case of the HEC model gel these were determined directly out of the passive 

measurements by using the equipartition of energy relating the thermal energy with the 

harmonic trapping potential (Simmons, Finer et al., 1996). Due to the strong confinement 

of the polymer network however this was not possible in mucus. Instead the calibration of 

the trap strength was performed within a second sample cell containing water. The typical 

strength of the optical trap used in the experiment ranged between 3 pN/µm and 8 pN/µm. 

The frequency at which the corresponding apparent elastic modulus was reached also 

defined the lower data cut-off, typically around 1 Hz. The shear modulus at even lower 

frequencies would only represent the characteristics of the trap instead of those of the 

fluids. As upper cut-off, a frequency of 3.5 kHz was chosen which lies well below the 

Nyquist frequency (Shannon, 1949) of in our case 8.192 kHz. This choice was motivated 

by the minimization of aliasing errors. 
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6.4 Results 

 

6.4.1 Force Spectroscopy 

Determination of adhesive interactions between mucin fibers and nanoparticles of different 

surface chemistry could be realized by force spectroscopy. Direct comparison of adhesion 

forces between nanoparticles and silica substrate allowed for an unbiased comparison 

between chitosan and PEG (2 kDa) coated PS-nanoparticles. Relative adhesion compared 

to the substrate as shown in figure 19 demonstrated that chitosan coated particles adhered 

much stronger to mucin fibers attached to the tip of the cantilever than PEG coated 

particles. Whereas adhesion force between mucin functionalized tip and chitosan coated 

particles was over 250 % stronger than to the substrate, PEG coating of nanoparticles even 

resulted in a reduced adhesion compared to the bare silica substrate. 

 

 

Figure 19: Adhesion of differently coated nanoparticles to mucin fibers compared to underlying silica 
substrate. Data shown as mean ± SD. 

 

 

6.4.2 Capillary Experiments 

Penetration of magnetic particles over macroscopic distances in mucus and model gels was 

investigated by the method of Kuhn et al. (Kuhn, Hallahan et al., 2006). This method 

allowed for the analysis of direct translocation and penetration behavior of differently 

coated magnetic nanoparticles over defined distances in mucus and model systems. 

Investigation of penetration behavior over such distances may predict the potential of 
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particles to translocate through thick physiological mucus barriers rather than other 

methods. 

To show the feasibility of the method and to perform a proof-of-principle, capillary 

experiments were conducted with HEC gels as a model system. Here, gradual transition 

from water to dense hydrogels was realized by applying HEC gels of gradually increasing 

concentration and thus also gradually increasing viscosity and elasticity. Penetration 

experiments were conducted with both types of particles (chitosan coating as well as 

PEGylated nanoparticles) which penetrated HEC gels allowing for the calculation of 

penetration velocities (figure 20). 

 

 

Figure 20: Penetration of PEGylated and chitosan coated magnetic nanoparticles through 1% HEC gel 

within 5 minutes (top). Penetration velocity wass inversely related to gel viscosity and thus polymer 

concentration which could be fitted with the Chrambach-Rodbard model (R2 PEG = 0.93). Adhesion of 

chitosan coated particles to cellulose fibers can be confirmed by drop in penetration velocity (bottom). Data 

shown as mean ± SD, n ≥ 3. 

 

 



THE ROLE OF MICRO- AND MACROSTRUCUTRE OF MUCUS IN PARTICLE MOBILITY 

 

- 61 - 
 

It was shown that penetration velocity was indeed strongly dependent on rheological 

properties and polymer concentration of the model gel (figure 20, bottom): Penetration 

velocities of the particles in the HEC gel of the highest concentration decreased to 

approximately a tenth of their initial value as measured in millipore water. Correlation of 

particle velocity with polymer concentration of the respective hydrogel can be used to 

assess the accordance of penetration behavior with theoretical models describing particle 

mobility in a force field. Fitting of penetration velocities with the model of Chrambach and 

Rodbard (Chrambach and Rodbard, 1971; Sarbolouki, Mahnam et al., 2004) shows that in 

general, sufficient congruence can be reached for the penetration behavior of PEG particles         

(R2 
PEG = 0.93) which exhibits greater conformity with the mentioned model than 

penetration behavior of chitosan coated nanoparticles: Here a fit with sufficient goodness 

could not be achieved. Performing the same experiments with native respiratory mucus, it 

could be shown that mucus is indeed a “tenacious fluid” (Florey, 1962): No penetration 

into, let alone through the mucus column could be observed (figure 21). This was true even 

for very long exposure (> 3 h) to the magnetic field. A difference between chitosan coated 

or PEGylated nanoparticles in this behavior could at no point be observed. 

 

 

Figure 21: Magnetic PEG coated nanoparticles did not penetrate into a mucus filled column even within 

incubation times longer than 3 h. 

 

 



THE ROLE OF MICRO- AND MACROSTRUCUTRE OF MUCUS IN PARTICLE MOBILITY 

 

- 62 - 
 

6.4.3 Cryo-SEM 

Structural analysis of mucus and HEC gels was performed with cryo-SEM. The structure 

of the polymer matrix of mucus and the differently concentrated HEC gels could be 

imaged in their native state. The porous polymer scaffold of the gels could be visualized 

with high resolution (figure 22-25) Pore size could be determined to range between 

approximately 100 nm to 500 nm in HEC of 0.5 % concentration (figure 22). With 

increasing polymer concentration, HEC hydrogels exhibit decreasing pore sizes as the 

polymer mesh becomes more condensed (figure 23). The average thickness of the fibers of 

the polymer scaffold can be determined to approximately 20 nm. Cryo-SEM imaging of 

mucus gel revealed a very different structure of the mucin polymer mesh: In mucus, large 

pores are heterogeneously combined with very small pores. Pore sizes of mucus ranged 

between approximately 100 nm and voids of several micrometers in diameter (figure 24). 

Furthermore, the thickness of the fibers of the polymer scaffold could be determined to be 

much higher than in HEC gels (figure 25). 

 

 

 

Figure 22: HEC gels of low concentration exhibit a very airy mesh structure with thin polymer fibers and 

large, quite homogeneous pore sizes. 
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Figure 23: With increasing polymer concentration, the mesh of HEC hydrogel becomes more condensed and 

the sizes of the pores become smaller. 

 

 

 

 

Figure 24: Mucus exhibits a very heterogeneous structure with a very broad pore size distribution from voids 

of several micrometers to small pores below 100 nm. The area marked with a white square is displayed in 

figure 25. 
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Figure 25: Polymer fibers in mucus are much thicker than in HEC hydogels and form very thick pore walls, 

suggesting a high rigidity of the polymer mesh. Pores can be very small and do not seem to be very well 

connected. 

 

 

6.4.4 Optical Tweezers 

Optical tweezers as a non-invasive tool were applied to probe the microrheology and 

particularly the rigidity of the polymer scaffold on the micrometer scale. Here, native 

respiratory mucus as well as HEC model gels were analyzed in this regard with stationary 

and oscillating optical traps. In the case of the stationary, passive tracking experiment, a 

single bead was confined to a small spacial volume and the displacement from the center 

of the trap was recorded. Afterwards the MSD was calculated (figure 26 & 27). It is linked 

to the diffusion coefficient D of a fluid by the generalized Stokes-Einstein-equation 

(equation 3). In the case of a simple Newtonian fluid which does not show any elastic 

behavior, the coefficient α is equal to 1 and the MSD increases linearly with time. In 

contrast, for complex fluids like hydrogels the history of former deformations plays an 

important role on its flow properties and α may become bigger (superdiffusive behavior) or 

smaller than 1 (subdiffusive behavior). The one-dimensional MSD of the beads out of the 

center of the optical trap in dependency of the correlation time t of mucus (figure 26) and 

the HEC model gel (figure 27) is displayed below.  
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Figure 26: MSD values of the applied microparticles measured in native pulmonary mucus. Large range in 

the slope of the MSD values determines strongly heterogeneous, locally varying rheological properties. 

Symbols refer to different samples and different sites within the sample (nsamples ≥ 3). 

 

 

 

 

Figure 27: MSD values of the applied microparticles measured in HEC hydogel (1 %). MSD values do not 

depend on site as observable by the highly homogeneous slopes. Symbols refer to different samples and 

different sites within the sample (nsamples ≥ 3). 
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The data cut-off for long times was chosen at the point where the MSD reached a plateau 

defined by the constrictions either due to the optical trap or the polymer scaffold. 

Extensive heterogeneity of mucus morphology as suggested by cryo-SEM studies could be 

confirmed: Highly diverse slopes of the MSD of particles in mucus in dependence of 

correlation time indicate strongly varying local properties. Consequently, the observed 

range in absolute values suggests a large variety in particle mobilities that spans more than 

an order of magnitude at all observable correlation times. On the contrary, for HEC (1 %) 

the measured MSD values lay within a much smaller range, thus demonstrating a high 

rheological homogeneity of the bulk hydrogel. 

Calculating storage and loss moduli, it was found that the microrheology of mucus presents 

itself much more diverse than that of HEC. While the mean range of the storage modulus 

in mucus (figure 28A) covered a whole order of magnitude at each frequency over the 

whole frequency regime, the fluctuations in HEC (figure 28C) were a lot narrower and 

typically did not move further apart than a factor of 2. The only exception were the moduli 

at lower frequencies than 20 Hz which showed a significant scatter which may be due to 

thermal drift of the piezo stage. Similar information could be deducted from the loss 

moduli (figure 28B and 28D), where, again, the range in mucus is even more significant. 

In general the presented results imply a similar elastic as well as viscous behavior of 

mucus and HEC at frequencies between 10 Hz and 1000 Hz, differing mainly in terms of 

high material heterogeneity in mucus and high homogeneity in HEC gels respectively. 

In the HEC model gel, material homogeneity could be recovered not only from the 

uniformity of the MSDs at different locations within the gel but also when considering 

displacements at a certain spot in different directions i.e. along the x- and y-axis of the 

pictures taken by the high-speed camera (figure 29). As displayed in figure 29B both 

curves overlap almost completely. On the contrary, in mucus strong deviations in the 

behavior of the MSD could be seen when comparing the x- and the y-direction of the 

trajectories (figure 29A). When comparing the values of the MSD along the y-axis at  

0.35 ms and 1 s, there is only an increase by a factor of 3.25 while along the x-axis the 

values increase much steeper by a factor of 10.  
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Figure 28: Storage- and loss moduli of mucus and HEC gel. Similar to MSD data, mucus (A+B) exhibits 

broad ranges of loss- and storage moduli. Contrary, HEC hydrogel shows homogeneous distribution of both 

moduli (C+D). Symbols refer to different samples and different sites within the sample (nsamples ≥ 3). 

 

 

Figure 29: Material homogeneity is additionally displayed by comparing MSD data for x- and y-direction for 

mucus (A) and HEC gel (B). In mucus, both curves differ significantly demonstrating high material 

anisotropy whereas for HEC gels, both curves align well, demonstrating isotropic behavior. 
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Importantly, although suggesting quite similar microrheology for both systems (either the 

MSDs or the shear moduli), the clear difference in material homogeneity between mucus 

and HEC gel is in accordance with the completely different macroscopic penetration 

behavior of particles in mucus and HEC. Yet, according to the fluctuation data, both 

materials should react similarly at least on a microscopic scale. To grasp these seemingly 

contradictory properties, additional, active experiments had to be performed: Here, a bead 

was caught in the trap and the piezoelectric stage the probe cell rested on was moved in a 

triangular wave pattern. The motion of the stage and the displacements of the bead 

relatively to the center of the trap were recorded. It could be shown that trapped particles 

can easily be moved through the HEC gel (1 %) as the particle followed the moving trap 

(figure 30B), i.e. the force exerted on it by the laser was sufficient to distort, stretch, or 

even rupture the polymer scaffold of the dense HEC gel. On the contrary, active 

measurements within mucus (figure 30A) showed that most beads could not be moved 

significantly, demonstrating the high rigidity of the polymer scaffold.  

 

 

Figure 30: Active measurements by oscillating trapped beads reveals rigidity of the mucus mesh as trapped 

beads cannot be moved within the mesh while the trap is displaced by 1 µm in each direction (A). In HEC gel 

(B) the trapped bead follows the trap during the complete oscillation cycle. 
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6.5 Discussion 

 

6.5.1 Force Spectroscopy 

So far adhesive interactions between mucin fibers and differently coated nanoparticles 

were usually investigated via quantification of mucin adsorption to these particles. In such 

studies (Yoncheva, Lizarraga et al., 2005), PEGylation was shown to reduce mucin 

adsorption and thus adhesion. The presented results are in good agreement with those 

studies as increased adhesion with chitosan coating and decreased adhesion by PEGylation 

could be confirmed. However, the approach presented here has the advantage of comparing 

both types of particles directly with the underlying substrate as intrinsic control. Thus, the 

results presented here are independent on the used cantilever and its tip geometry which 

greatly influences adhesion data and has so far been an unsolved problem in the 

methodology of force spectroscopy. While PEGylation of particles to decrease adhesive  

interactions with mucus or mucins is a quite recent approach, application of chitosan 

coating to increase such interactions has been widely accepted (Smart, 2005). Thus, the 

influence of such different coatings on particle mobility in mucus of various sources has 

been accessed by different methods. However, as mentioned before, those methods suffer 

from several limitations. Therefore we applied a just recently developed method to probe 

long-distance/long-term particle mobility to increase to proximity to the in vivo situation. 

Here, particle mobility in mucus is investigated for time scales and spatial distances of 

higher physiological relevance as presented in section 6.4.2. 

 

 

6.5.2 Capillary Experiments 

The observed behavior was in accordance with theoretical description of the particle 

penetration through gels: The applied model describes penetration of spherical particles 

through hydrogels by application of an external force field (e.g. electrostatic or magnetic 

forces). The fact that this model incorporates inert i.e. non-adhesive particles as boundary 

condition may be the reason for the greater goodness of the fit for PEGylated particles: 

Similar to their interaction with mucins, chitosan coated particles may interact adhesively 

with HEC fibers. As HEC fibers are polysaccharides, chemical similarities to 

polysaccharide side chains of mucins over large areas cannot be doubted. Thus, HEC gels 
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might mimic mucus gel and its adhesion to chitosan or chitosan coated particles. This 

adhesive interaction is supposed to be largely due to electrostatic interactions (Andrews, 

Laverty et al., 2009).  

Furthermore, the model of Chrambach and Rodbard allowed for an estimation of the 

average pore size of the gel: According to this model, the pore size equals the size of the 

probe particles when penetration velocity drops to 50 % of its initial value. Considering the 

fit of penetration velocity of PEGylated particles, this means that the average pore size of 

HEC gels should be approximately 200 nm for concentrations around 0.5 % which could 

later be confirmed by cryo-SEM images of HEC hydrogels (section 6.4.3). 

The fact that both types of particle did show penetration through HEC gels but not through 

mucus indicated the need to further characterize both systems. Therefore, the structure of 

mucus and HEC gels was analyzed by cryo-SEM imaging of native respiratory mucus. 

 

 

6.5.3 Cryo-SEM 

The results presented here could confirm the findings obtained by the described capillary 

experiments: Indeed, a pore size approaching the diameter of the penetrating particles of 

approximately 200 nm can be expected to lie between HEC gel concentrations of 0.5 % to 

1 %, as predicted by the Chrambach and Rodbard model. Furthermore, cryo-SEM images 

pointed out, that in general, particles do penetrate hydrogels upon the application of 

external forces, even if the pores are much smaller than the particles. 

This fact revealed two considerable features of the mucus hydrogel which may have an 

impact on particle mobility and penetration in this polymer mesh: pore size distribution in 

conjunction with the thickness of the polymer scaffold. As mentioned above, comparison 

of cryo-SEM images of HEC gels with the results presented in section 6.4.2 showed that 

pore size is not always the limiting factor for penetration. Therefore, considering that 

particles did not penetrate mucus, one would postulate either a high rigidity of the mucin 

scaffold which resists any rupture or deformation upon application of external forces so 

that particles are indeed captured in the smaller pores (if existing) or strong adhesive 

interactions between particles and mucus. The observation of the thick polymer scaffold, a 

very heterogeneous pore size distribution in mucus (which is in accordance with recent 
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findings for cervical mucus (Lai, Wang et al., 2010)) and the fact that mucoinert 

PEGylated particles did not show better penetration into mucus, suggests the former to be 

the dominant mechanism here. The very thick polymer scaffold in mucus (figure 25) may 

be composed of thick mucin bundles as suggested by an earlier study (Lai, Wang et al., 

2010). The consequences of such rigid and thick polymer structure were further assessed in 

section 6.4.4. In summary, to describe mobility of particles in mucus, both size sieving 

effects as well as interaction filtering have to be considered - however only in addition to 

the evaluation of mechanical properties of the polymer scaffold: The results described 

above demonstrate that the key feature of mucus is its highly rigid structure in conjunction 

with the observed heterogeneous pore size distribution of very small but also large pores. 

Assessment of the first point was performed with optical tweezers as advanced tool to 

study active microrheology in a non-invasive way. 

 

 

6.5.4 Optical Tweezers 

The broad distribution of pore size in mucus (section 6.4.3) may be the reason for a broad 

statistical spread of its rheological behavior (figures 26, 28, 29). Particles located in 

smaller pores seem less mobile than particles located in large pores. In any case, however, 

particles in mucus could not be translocated by trapping and the deflection of optical traps.  

Contrary, no comparably large pores exist within HEC gels. This resulted in a much more 

homogeneous material response. Together with relatively small pore sizes, the elastic as 

well as the viscous modulus measured by passive tracking experiments in the setup of 

optical tweezers showed comparable or even bigger values for HEC gels depending on the 

excitation frequency. Active deflection of the beads was, however, possible for HEC gels. 

Thus, while in mucus the MSD may pretend a large spread in particle mobility (with few 

quite mobile particles), macroscopic capillary penetration experiments (see corresponding 

section) and active particle deflection by optical traps challenged this result: In HEC gels, 

particles could be driven actively through the fluid despite the MSD indicating a more 

homogeneous but yet a similar confinement as in mucus. As sketched in figure 31, 

particles in HEC gels are probably dispersed in dense gels of small pore sizes.  
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Figure 31: Particles in HEC hydrogels can be displaced easily by external force fields due to a polymer mesh 

which can be deformed or even ruptured (left). In mucus, particle mobility is determined mainly by the size 

of the respective pore the particle is located in. The rigidity of the mucin scaffold, however, impedes 

displacement of the particle out of such voids (right). 

 

 

The key feature here is that contrary to mucus, upon actively displacing a bead, the 

polymer scaffold of HEC gels may be deformed or even ruptured. In mucus, the mobility 

of particles depends on the local pore size as the encounter of the bead with the wall of the 

respective pore limits its mobility: Due to the polymer scaffold rigidity the beads cannot be 

moved over larger distances. Therefore, the investigation of the microrheology by passive 

particle tracking (measurement of MSD and further processing to calculate rheological 

parameters) must not remain the sole method to extrapolate to particle translocations over 

larger distances. This is particularly true for tracking experiments with very short 

correlation times. It was shown in this study that a setup of optical tweezers is a reliable 

tool not only to determine the microrheology of a material but also auxiliary parameters 

such as pore rigidity and size on the micron scale. 
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6.6 Conclusion 

 

A combination of novel tools such as cryo-SEM, capillary penetration or optical tweezers 

was applied to assess particle mobility in and penetration through mucus and model 

hydrogels on various length scales. It could be shown that the thorough assessment of 

particle penetration through mucus cannot be described solely by methods focusing on 

only one scale, be it micro-, meso-, or macroscopic behavior. It was demonstrated that 

neither adhesive or non-adhesive particle-mucus interactions, nor the pore size of the 

hydrogel alone are sufficient parameters to describe particle mobility in mucus: HEC 

hydrogels with much smaller pore sizes and comparable elastic and viscous modulus were 

even shown to be penetrated more easily by magnetic particles than mucus. It was 

discovered, that this discrepancy may be caused by differences in rigidity of the polymer 

scaffold which was assessed by optical tweezers and a broad pore size distribution in 

mucus. The observed differences in particle mobility due to surface chemistry as described 

in the literature may thus be due to differences in particle adhesion to mucins within larger 

voids of mucus. Therefore, this study presents the so far missing linkage between 

microrheology and macroscopical observations regarding particle mobility in mucus. 
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7. Overall Conclusion and Outlook 
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The presented work illuminates the fate of inhaled material after encountering the mucus 

layer as primary and most important non-cellular component of the air-blood barrier of the 

upper lungs. Here, all main aspects of particle-mucus interactions such as fluid dynamics 

and physical interactions were taken into account, in particular with respect to mucociliary 

clearance and particle mobility in mucus.  

• The identification of possible, yet unknown parameters affecting mucociliary 

clearance was one of the major goals of the presented work. As it is displayed in the 

first section of this study, we could show for the first time to our knowledge that 

particle fate upon deposition as influenced by mucociliary clearance does not 

depend on particle properties such as size, shape, charge and surface chemistry of 

the particles under investigation. This was demonstrated in an ex vivo setup with 

high relevance to the in vivo situation. A lack of relative velocity between 

transported particles and their surrounding medium, the moving mucus blanket, 

was concluded to be the reason for the observed independency on individual 

particle properties. With mucociliary clearance velocity giving indirect evidence for 

particle penetration through mucus, it was hypothesized that particles do not 

sediment upon deposition on an intact and compact mucus layer. Therefore, a 

possible small fraction of particles translocating to the epithelium was considered to 

take advantage of turbulent mucus flow or of heterogeneities in the mucus mesh 

such as larger voids or poorly covered patches of the epithelium. This hypothesis 

was the foundation of the work presented in the second section. 

• Here, mucus fluid dynamics was assessed by analytical and numerical methods. It 

could be confirmed that, indeed, nanoparticles being deposited onto the mucus 

blanket do not sediment or translocate into mucus due to impaction or gravitation. 

This behavior leads to an only negligible time span where a relative velocity 

between mucus and the particles still exists which is however a precondition to 

observe differences in mucociliary clearance. Again, this approach is unique in 

current research and contributed to clarify the fate of particles deposited on the 

mucus blanket. The remaining mechanism potentially susceptible to particle 

properties and thus being able to cause differences in translocation trough the 

mucus blanket is translocation due to turbulent mucus flow, heterogeneous surface 

coverage or collision and spreading of mucus flakes. This was proven feasible in a 

computational approach. Particle diffusion as further mechanism for particle 
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translocation however, so far only considered in a simplified approach in the 

described experiments and calculations, is highly dependent on mucus structure, 

rheology and particle-mucus interactions. Therefore, these parameters needed to be 

additionally investigated as it is shown in the third experimental section. 

• As specified in the aim of the thesis, the parameters mentioned above were 

hypothesized to be crucial factors for particle mobility in mucus. Here, the 

presented unique approach combining macro- and microscopic investigation of 

particle mobility, mucopenetration, mucus structure and rheology revealed several 

key features of mucus inhibiting particle mobility on mesoscopic scales: Contrary 

to chitosan coated particles, PEGylated particles were shown not to adhere to mucin 

fibers. Despite of these, indeed, large differences in adhesive particle-mucus 

interactions, particle penetration through mucus filled capillaries could surprisingly 

not be observed for any particle type, resisting the applied external magnetic field. 

Cryo-SEM analysis of the structure of mucus and HEC gels lead to the following 

conclusion: Mucus heterogeneity in pore size and the thick, possibly rigid, polymer 

scaffold may be the reason for large differences in particle mobility on the 

microscopic scale but impede translocation over larger distances. These postulated 

points were confirmed by experiments involving optical tweezers where active 

deflection of trapped beads revealed that, indeed, even high forces cannot overcome 

the restricting rigid walls of the pores inside mucus. 

In the future, possibilities to overcome this rigid mucus barrier on the individual particle 

level need to be assessed. Here, previous works as presented by Kuhn et al. (Kuhn, 

Hallahan et al., 2006) proposed effective mechanisms such as the degradation of the 

surrounding polymer mesh by enzymes bound to the particles’ surface as highly potential 

delivery system for mucosal surfaces. Furthermore the indirect approach of using particles 

adhesive to the epithelial cells and thus taking advantage of patches of the epithelium 

which are poorly covered with mucus, seems to be suitable to increase the particle 

concentration in the vicinity of the epithelium.  
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