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Short Summary 

 

Skin penetration of nanoparticles was the focus of several recent studies. This is of 

major importance in basic research for potential future applications, e.g. designing 

topical and transdermal delivery systems, as well as for health risk analysis. Yet, 

there is a controversy among researchers on the status of their skin penetration due 

to different experimental setups. Meanwhile, there is little known about the 

mechanism and determinants of nanoparticle penetration. 

The main thesis objective was hence to study the penetration of model gold 

nanoparticles of different physicochemical and formulation parameters through 

human skin of different degrees of barrier integrity. Multiphoton microscopy was 

used for nanoparticle detection. Imaging parameters were determined in terms of 

resolution and depth profiling of gold nanoparticles in skin. A semiquantitative 

approach based on pixel analysis of gold nanoparticles was developed to compare 

nanoparticle localization in different skin locations under different conditions. Based 

on penetration experiments, determinants that favor or limit particle penetration were 

determined as well as the barrier to penetration (intercellular lipids). Finally 

nanoparticle penetration was successfully enhanced using a chemical enhancement 

approach. 

Results obtained are important to enhance our understanding of nanoparticle 

interaction with the skin barrier. Future studies are required to reduce the gap 

between research and applications. 
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Kurzzusammenfassung 

 

Die Penetration von Nanopartikeln ist Gegenstand der aktuellen Forschung. Diese 

Frage ist von großer Bedeutung für die Anwendung im Bereich der Nanomedizin als 

auch für die Abschätzung des Risikopotenzials bei Kontakt mit solchen Systemen. 

Bis dato sind allerdings keine eindeutigen Aussagen möglich.  

Das Ziel dieser Arbeit war daher die Untersuchung des Penetrationsverhaltens 

anhand von kolloidalem Gold (AuNP). Dieses Modellsystem erlaubt die 

Untersuchung der Penetration in Abhängigkeit von verschiedenen 

physikochemischen Eigenschaften der Partikel (oberflächenmodifiziert), als auch von 

Formulierungseigenschaften (Vehikel). Die AuNP erlauben eine Visualisierung 

mittels Multiphotonen Mikroskopie. Daher wurden die Auflösung und die optischen 

Parameter für AuNP in Haut bestimmt. Des Weitern wurde ein Pixel-basiertes 

Verfahren ermittelt, dass eine semiquantitative Analyse der penetrierten Objekten 

ermöglicht. Dies erlaubt eine Abschätzung der Partikelpenetration.   

Penetrationsexperimente erlaubten die Parameter, die die Penetration beeinflussen, 

hinsichtlich Größe und Oberflächenpolarität einzuschränken. Außerdem konnte 

gezeigt werden, dass auch die Penetration von Nanopartikeln mit Hilfe von 

Penetrationsverbesserern gesteigert werden kann. 

Die Ergebnisse dieser Arbeit sind wichtige Bausteine für das Verständnis der 

Interaktion von Nanopartikeln mit der Hautbarriere. Zukünftige Studien sind dennoch 

nötig, um die Lücke zwischen Forschung und möglicher Anwendung zu schließen. 
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The chapter is part of a review article in due publication: 

Hagar I. Labouta and Marc Schneider, ―Interaction of inorganic nanoparticles with 

the skin barrier: current status and critical review‖. 
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1.1. Introduction 

Nanomaterials of approximately 1 – 100 nm size range show new functions and 

applications rather than bulk materials primarily because of their high surface to 

volume ratio. Additionally, unusual physical, chemical, and biological properties can 

emerge in materials at this nanoscale dimension. These properties may significantly 

differ from that of bulk materials and single atoms or molecules [1]. However, there is 

no guarantee that unique properties appear below such boundary, 100 nm [2]. In 

most cases, these unusual new properties are attributed to inorganic nanomaterials. 

Gold in the bulk state, for instance, is an excellent conductor of heat and electricity, 

but no heat transfer reaction occurs on directing light onto it. Gold nanoparticles 

(AuNP) can however absorb light and transfer it into heat acting like miniature 

thermal scalpels that can kill unwanted cells in the body, such as cancer cells [3]. 

Titanium dioxide and zinc oxide, used as sunscreen agents, have the disadvantage 

of being visible masking the skin with a white color. Titanium dioxide and zinc oxide 

nanoparticles are transparent and are thus preferred to microparticle counterparts in 

sunscreen products [4]. On the other hand, polymeric nanosystems usually acquire 

properties that are essentially an interpolation of that of the same material at the 

larger scale. It is also relatively easy to prepare inorganic nanoparticles in such size 

range rather than polymeric nanoparticles. Last but not least, inorganic nanoparticles 

have been recently the subject of several applications in nanomedicine and drug 

delivery. Fine-tuning the surface properties of inorganic nanoparticles by surface 

functionalization has further extended their applications [5]. Selected applications of 

some inorganic nanoparticles are highlighted in the next section and relevant review 

articles are cited for further more detailed readings. 

 

1.1.1. Inorganic nanoparticles and their pharmaceutical and biomedical 

applications 

Quantum dots (QD). QD are nanocrystals comprised of a semiconductor material, 

e.g. CdS. QD have attracted widespread interest in biology and medicine due to their 

unique electronic and optical properties over organic dyes and fluorescent proteins, 

e.g. size- and composition-tunable emission wavelength, improved signal to noise 

ratio, higher photostability, etc. Therefore, QD have rapidly emerged as a new class 
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of fluorescent probes for biomolecular and cellular imaging [6-7]. Surface 

functionalization of QD and bioconjugation to biomolecules via a covalent linkage 

was then adopted to enhance the dispersibility of QD, reduce toxicity and for better 

in vivo and cellular targeting. This has further allowed for the use of QD in medical 

diagnostics especially in cancer diagnosis [6-9]. Further development of QD might 

enable their application in tracking drug delivery, and monitoring the efficacy of 

therapeutics non-invasively in real time [7]. 

 

Silica nanoparticles. Another fascinating bioprobes are nanosized silica particles, 

which were also reported to be an ideal protein host because of their high chemical, 

physical and mechanical stability, large surface area, good dispersibility in aqueous 

solution and relative inertness. Silica nanoparticles have a high surface silanol 

concentration which facilitates a wide variety of surface reactions and the binding of 

biomolecules [10]. Therefore they attracted wide spread interest in applications in 

bioanalysis, and diagnosis especially in the diagnosis of cancer cells. Silica 

nanoparticles were also considered good candidates for drug and gene  

delivery [10-11]. 

 

Silver nanoparticles. Silver compounds are well-known for centuries as 

antimicrobial agents and are widely exploited in the treatment of bacterial infections 

encountered in burns, open wounds, and chronic ulcers [12]. Recently, however, 

silver nanoparticles showed higher antimicrobial efficiency compared to silver salts 

due to their extremely large surface area with diameters generally smaller than 100 

nm containing 20-15000 silver atoms, providing better contact with microorganisms. 

Thus, on cellular or tissue exposure to silver nanoparticles, the active surface of 

silver nanoparticles would be large compared to silver compounds, and thereby 

exhibiting remarkably unusual physicochemical properties and biological activities 

[13-16]. They interact with bacteria and produce electronic effects, which enhance 

the reactivity of nanoparticles [16]. Thus, the bactericidal effect of silver 

nanoparticles was proved to be size [14] and shape [17] dependent due to different 

interactions with the microorganism. Several dressings for wound healing 

incorporating silver nanoparticles as a topical antibacterial agent have already found 
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their way to the market, e.g. ActicoatTM (Westaim Biomedical Inc., Fort 

Saskatchewan, Alberta, Canada) and Silverlon® (Argentum Medical, L.L.C., 

Lakemont, Georgia). They have the advantage of providing a more controlled and 

prolonged release of nanocrystalline silver to the wound area. This mode of silver 

delivery allows the dressings to be changed less frequent, thereby reducing the risk 

of nosocomial infection, cost of care, further tissue damage and definitely improves 

patient compliance [12]. 

 

Gold nanoparticles (AuNP). Applications of AuNP in biology and life sciences is a 

fast growing field. These bio-applications can be classified into four areas: labeling, 

delivery, hyperthermia, and sensing [18]. Similar to silver nanoparticles, AuNP have 

unique optical properties. They have the ability to resonantly scatter visible and near-

infrared light upon the excitation of their surface plasmon oscillation. The scattering 

light intensity is sensitive to the size and shape of particles [19]. Therefore they were 

useful as biosensors and diagnostic agents, especially in cancer diagnosis [20-21]. 

AuNP hold promise as the future ―magic bullet‖ for cancer treatment. Based on their 

physical properties, AuNP cause local heating when they are irradiated with light in 

the range of 800–1200 nm. El-Sayed group [22] has showed the potential use of 

AuNP in photothermal destruction of tumors. Recently, AuNP have emerged as a 

delivery system for various payloads [23-24] either drug molecules [25-27] or large 

biomolecules such as proteins [28], DNA [29-30] and RNA [31].  

 

Magnetic nanoparticles. Nanoparticles with a magnetic core allow for the magnetic 

manipulation of the particles in presence of an external magnetic field. In this size 

range, below 100 nm, there is a fundamental change in the magnetic structure of 

ferro- and ferrimagnetic materials. Their superparamagnetic moment with high 

magnetic saturation value has resulted in exploring the use of magnetic 

nanoparticles as targeting agents in a number of applications including drug and 

gene delivery, in addition to tumor diagnostics and therapeutics. Another important 

therapeutic application is hyperthermia, which involves heating organs or tissues 

resulting in tumor cell necrosis [32-36]. Functionalization of magnetic nanoparticles 

has further extended their in vivo applications based on higher biocompatibility and 
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reduced toxicity, in addition to adopting additional targeting approach on coating the 

surface with biofunctional molecules and thus enhancing the targeting efficiency of 

the final developed system [35-36]. 

 

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. TiO2 and ZnO 

nanoparticles are currently used in many sunscreen formulations as UV filters to 

protect against UV-induced skin damage. TiO2 and ZnO have the advantage over 

other chemical agents not to undergo any chemical decomposition on exposure to 

UV radiation. Moreover, they offer a wider range of protection against UVA and UVB 

types of radiation, compared to other organic compounds. Nowadays in the 

cosmetics industry, TiO2 and ZnO are included as nanosized particles because in 

this form they are transparent and more esthetically acceptable to consumers [4, 37]. 

This is in addition to the size-dependent antibacterial activity of ZnO  

nanoparticles [38]. 

 

1.1.2. Significance and scope of the chapter 

 

One could so far reach a conclusion that inorganic nanoparticles have found several 

applications, especially in cancer diagnosis and therapy and more recently in drug 

and gene delivery. This potential for applications has triggered the investigation of 

the nanoparticle interaction with the various biological barriers. An excellent 

biological barrier, the skin, has been addressed in several recent studies regarding 

nanoparticle penetration. 

Skin is a unique barrier composed of several highly organized and heterogeneous 

layers that also includes a number of appendages such as hair follicles, sweat and 

sebaceous glands. Skin is composed of three layers from outwards moving deeper 

inside the skin: epidermis, dermis, and hypodermis. However, from a penetration 

perspective only epidermis and dermis are important. The outermost layer of the 

epidermis is the stratum corneum (SC), to which the main barrier function of the skin 

is attributed [39-40]. Nevertheless, topical and transdermal drug delivery systems 

has always been a main target of many researchers avoiding the numerous 

problems encountered with the oral route. Though the mechanism is still unclear, 
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nanoparticles were shown to enhance the skin penetration of several active  

agents [41-42]. 

 

Hence, studying the skin penetration of nanoparticles is crucial for the following 

reasons: 

 Design of potential topical and transdermal nanocarriers and biomedical 

diagnostic agents.  

Understanding the behavior of nanoparticles when coming in contact with the 

skin surface and their interaction with the different skin layers would ultimately 

lead to the design of the ―ideal‖ carrier or diagnostic agent in terms of the 

physicochemical parameters of the nanoparticles, e.g. size, shape, surface 

chemistry, in addition to other factors, e.g. formulation and environmental 

factors, influencing skin penetration of nanoparticles. 

 Health risk analysis.  

The public could come in contact with nanomaterials intentionally on applying 

topical cosmetic preparations containing nanoparticles, or non-intentionally 

through the handling of several products used in our daily life and contain 

nanoparticles such as sport clothes, surface cleaning agents, computer 

devices, paints, etc. [16, 37]. Environmental exposure comprises water or 

even air contaminated with nanoparticles. This is in addition to the people 

handling nanoparticles in research and industry. In hospitals, physicians and 

patients may also come in contact with nanoparticles e.g. silver impregnated 

medical devices such as surgical masks and implantable devices [16]. The 

exposure occasions to nanoparticles are thus increasing constantly. 

In this chapter, recent research on the interaction of inorganic nanoparticles with the 

skin barrier are discussed and analyzed in an attempt to answer still open questions; 

(1) How do inorganic nanoparticles, in the size range less than 100 nm, as well as 

sub-micron particles interact with the skin barrier? (2) Do they have the ability to 

penetrate the SC into the viable deeper skin layers (DSL)? And if so, (3) what is the 

possible mechanism of skin penetration? Finally, (4) what are the factors contributing 

to their penetration? 
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But first, it is important to define two important terms used in this chapter, ―skin 

penetration‖ and ―skin permeation‖. The first indicates transport of an agent, here 

nanoparticles, across the SC into DSL. The latter however stands for transport 

across the whole skin into the receptor solution, (in vitro) or to the systemic 

circulation (in vivo) [43]. 

 

1.2. Current dilemma in the status of skin penetration of inorganic 

nanoparticles 

Investigating the ability and the possible mechanism of particle penetration through 

skin is a recent area of research receiving great interest of researchers due to the 

aforementioned reasons. Starting from the year 2004 till now the number of studies 

focusing on skin penetration of inorganic particles is generally increasing. To the 

best of our knowledge, the total number of research papers in this field is 40 

(excluding replicate studies common in skin penetration/permeation experiments and 

including the papers presented in this thesis), in which 125 different 

penetration/permeation experiments (different in particle type and size, skin type, 

skin treatment, etc.) were conducted. Yet, the ability of inorganic nanoparticles to 

overcome the barrier function of the SC into DSL is a point of debate among 

researchers. Different outcomes were reported for particle penetration as shown in 

Table 1.1. About 49% of all these experiments were reported to result in particle 

penetration with or without adopting a mechanical or a chemical enhancement 

approach or a combination thereof. Some of these studies, four studies, showed 

even particle permeation of the whole skin thickness either in vitro [44-45]  or  

in vivo [44, 46-47]. The other 51% of these experiments however resulted in neither 

passive particle penetration nor particle penetration on physical or chemical skin 

treatment (discussed in section  1.4). Further analysis of the reported outcomes over 

the years 2008-2010, witnessing most of the conducted particle skin experiments, 

one could observe an increase in the frequency of research articles reporting particle 

penetration, increasing from ~ 38% in 2008 to ~ 67% in 2010, relative to the total 

number of research papers reported at that year. This could be due to implementing 

more and more approaches for enhancing skin penetration in addition to the 

improvements of the analytical techniques for detection of nanoparticles inside the 
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skin (discussed in section  1.7). Unfortunately, the feasibility to publish studies 

showing particle penetration, being more attractive to the research community could 

be also a contributing factor. Nevertheless, to further add to this dilemma, the size 

range of inorganic particles, regarded as the primary determinant of skin penetration, 

is overlapping for particles reported to penetrate the SC (4 nm to 1.5 µm) and 

particles that could not (4 nm to few microns). 

Overall, the reported experimental set-ups regarding skin type, environmental and 

mechanical conditions, revealed a high diversity. This might be the basis of the 

current controversy among researchers on whether nanoparticles do or do not 

penetrate the SC into DSL, as highlighted in the following points: 

 Animal versus human skin. Though excised human skin is regarded as the 

―gold standard‖ for in vitro skin penetration studies especially in human dermal 

risk assessment [48], it was only used in 51 % of the used experimental set-

ups in particle penetration studies (35 % in vitro and 16 % in vivo). However, 

47 % of these experiments were conducted on animal skin (pig, mouse and 

rat skin) in vitro (31 %) or in vivo (16 %) (Figure 1.1). This is apparently due to 

the limited availability of human skin driving most of the research laboratories 

to depend on animal skin. However, structural and morphological differences 

between human and animal skin especially in terms of the density of the hair 

follicles, SC and total skin thickness, the amount of skin lipids, in addition to 

variations among animal species could certainly result in different penetration 

behaviors [48-49]. Furthermore, only one study was conducted on an in vitro 

reconstructed human skin model using 7 nm QD [50]. However, no 

penetration was reported though these models are generally known to 

overestimate drug flux across human skin due to the lower barrier properties 

relative to human skin [48, 51].  

All this makes it quite difficult to compare the data generated by different 

laboratories and reach a conclusion regarding the current status of skin 

penetration of inorganic nanoparticles.  
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Figure 1.1: In vitro and in vivo skin penetration/permeation experiments in the literature classified 
according to the skin type: human, reconstructed human and animal (pig, mouse and rat) skin. 
Percentage frequency of using each of these skin models in examining nanoparticles penetration, 
either in vitro or in vivo, is indicated in the figure. 
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Table 1.1: Overview on the skin penetration studies of various inorganic particles applied to different 

skin types under different experimental conditions (including our research papers presented in this 

thesis). 

Particle Diameter, nm 
Skin type 

(in vitro/in vivo) 

Additional 

enhancement approach 
Reported outcome Ref 

QD-COOH 4 Human (in vitro) 

- 

Massage 

Tape-stripping 

Tape-stripping+Massage 

No penetration 

No penetration 

No penetration 

Penetration 

[52] 

Fe2O3-TMAOH 4.9±1.3 ‖ - Penetration [53] 

AuNP 10 ‖ 

- 

 

Dermaportation by 

pulsed electromagnetic 

field 

No Penetration 

 

Penetration 

 

 

[54] 

AuNP-thiol
*
 

AuNP-lecithin 

AuNP-cetrimide
*
 

 

AuNP-citrate 

 

~6 

~6 

~15 

 

~15 

 

‖ 

- 

- 

- 

 

- 

CHCl3/methanol 

Tape-stripping 

Penetration 

Penetration 

Penetration 

 

No Penetration 

Penetration 

Penetration 

[55-

56] 

 

TiO2 10–50 Human (in vivo) - Penetration
† 

[57] 

AuNP ~12.9 Human (in vitro) 
- 

Dermabrasion 

Penetration 

Penetration 
[58] 

AuNP ~15 ‖ 

- 

Urea 

Tween 80 

SLS 

DMSO 

No penetration 

No penetration 

Negligible penetration 

No penetration 

Penetration 

[59] 

ZnO 15–40 ‖ - No penetration [60] 

TiO2 20 Human (in vivo, in vitro) 
- 

- 

No penetration 

No penetration 
[61] 

TiO2 

TiO2 in 

sunscreens with 

and without ZnO 

20 

 

 

 

Human (in vitro) 
- 

 
No penetration [62] 

ZnO 20–30 Human (in vitro, in vivo) - No penetration [63] 

TiO2 

ZnO 

20–70 

< 200 
Human (in vitro) 

- 

- 

No penetration 

No penetration 

[64] 

 

AgNP 25±7.1 ‖ 
- 

Abrasion 

Low penetration 

(both),   but higher 

for damaged skin 

[65-

66] 

ZnO 30 ‖ - No penetration [67] 

TiO2(Hydrophobic) 

TiO2 (Amphiphilic) 

TiO2 (Hydrophilic) 

20–100 nm aggregates Human (in vivo) 

- 

- 

- 

No penetration 

No penetration 

No penetration 

[68-

69] 

TiO2 platelets 

ZnO platelets 

not stated (nm range) 

116.8 length, 57.5 width 
Human (in vitro) 

- 

- 

No penetration 

No penetration 
[70] 

AuNP not stated (nm range) ‖ Electrophoresis No penetration [71] 
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Particle Diameter, nm 
Skin type 

(in vitro/in vivo) 

Additional 

enhancement approach 
Reported outcome Ref 

TiO2 not stated (nm range) 
Human(in vivo, healthy) 

Human(in vivo, psoriatic) 

- 

- 

No penetration 

No penetration 
[72] 

QD-PEG, QD-PEG-

amine & QD-COOH 

12.65–29.35 nm 

(at different pH values) 
Human (in vitro) 

- 

 

 

Tape-stripping 

Penetration of only  

QD-PEG at pH8.3 

 

Penetration 

[73] 

QD-PEG-amine 7±2 Reconstructed human skin - No penetration [50] 

AuNP 4.6±1.5 
Porcine-full thickness(in vitro) 

Porcine-dermatomed(in vitro) 

Ultrasound & SLS 

Ultrasound & SLS 

Penetration 

Penetration 
[74] 

QD-PEG, QD-PEG-

amine & QD-COOH 

15–45 

(spherical & ellipsoid) 
Porcine (in vitro) - Penetration [75] 

Polymer coated QD 20 ‖ 
Ultrasound with or 

without SLS 

Penetration (further 

increased with 

SLS) 

[76] 

AgNP-uncoated 

AgNP -carbon coated 

20, 50 & 80 

25 & 35 
Porcine (In vivo) - No penetration [77] 

TiO2 with different 

coatings 

35uncoat.,35coat., 

10x100,250
‡ Porcine (in vitro) 

- 

Tape-stripping 

Hair removal 

No penetration 

No Penetration 

Penetration for 

35coat. 

[78] 

PEG-coated QD 

Nail shaped: 

5.78 width & 8.4 length 

39±1 hydrodynamic 

diameter 

Porcine-dermatomed 

(in vitro) 
- No penetration [79] 

TiO2 

(four formulations) 

45-150 length, 17-35 

width 

(lanceolate shape) 

Porcine (in vitro) - Penetration [80] 

ZnO 

TiO2 Agglomerates 

80 

up to 200 
‖ - 

No penetration 

 
[81] 

Au particles 900±600 ‖ Ballistic delivery Penetration [82] 

TiO2 (uncoated sub-

micron sized, 

uncoated nano- or 

Al(OH)3, 

dimethicone/methico

ne copolymer-

coated nano-sized 

207±53
§
, 

30±8
§
 & 

Fibrils of 57±18 

length & 15±5 

width
§
 

 

Porcine (in vivo) - No penetration [83] 

QD-COOH 4.1 Mouse (in vitro & in vivo) 
- 

 
Permeation [44] 

Fe2O3 4.6–10 Mouse (in vitro) 
Blade incision, 1 µm 

width 
Penetration [84] 

ZnO 10 ‖ 
- 

OA, EtOH & OA-EtOH 

No penetration 

Penetration 
[85] 

AuNP 11.6 Mouse (in vivo) - Penetration [86] 

QD-COOH 
~20 & ~33 [87]/ 

~12-20 [88] 
‖ 

- 

UV exposure 

Low penetration for 

both but higher on 

UV exposure 

[87-

88] 
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Particle Diameter, nm 
Skin type 

(in vitro/in vivo) 

Additional 

enhancement approach 
Reported outcome Ref 

QD-PEG 37 ‖ 

- 

Acetone pretreated 

Tape-stripped 

Dermabraded 

No penetration 

No penetration 

No penetration 

Permeation 

[47] 

Diphtheria toxoid-QD-

COOH conjugate 

Size not stated  

(nm range) 

(nail-shaped) 

‖ Hyperthermea Penetration
¶
 [89] 

QD-COOH 6±2 
Rat (in vitro) 

 

- 

Flexion 

Tape-stripping 

Abrasion 

No penetration 

No penetration 

No penetration 

Penetration 

[90] 

AuNP 15, 102, 198 ‖ - Permeation [45] 

TiO2 

4,10,21,25,60,90 

4,60 

10,21,25,60 

Porcine (in vitro-1 day) 

Porcine (in vivo-30days) 

Mouse (in vivo-60 days)
# 

- 

- 

- 

No penetration 

Penetration 

Permeation 

[46] 

TiO2 Width: 20, length 100 
Human (in vitro) 

Porcine (in vitro) 

- 

 
No penetration [91] 

TiO2 20–100 

Porcine (in vitro) 

human skin grafted on 

SCID mouse (in vivo) 

- 

- 

 

No penetration 

No penetration 

 

[92] 

TiO2 
Size not stated 

(commercial formulation) 

Human foreskin grafted on 

SCID mouse (in vivo) 
- No penetration [93] 

 

* 
Dispersed in toluene.

 † 
Non-statistically significant higher Ti levels in the deeper layers versus 

background levels of Ti normally present in the skin (non-exposed control). 
‡ 
These reported sizes (35 

nm (uncoated and coated particles), 10x100 and 250 nm) are the primary sizes, however aggregation 

was reported for these nanodispersions. 
§
 These sizes are not the primary size diameters but are 

those determined by TEM of the particles in skin after application. 
¶ 

No proof for penetration was 

provided by the authors (only fluorescent images without depth information). 
# 

Different pathological 

lesions were observed in several organs especially the skin and liver. AgNP: silver nanoparticles, 

AuNP: gold nanoparticles, DMSO: dimethyl sulphoxide, DOTAP: 1,2-dioleoyl-3-trimethylammonium 

propane chloride (cationic surfactant), EtOH: ethanol, Fe2O3: iron oxide nanoparticles, OA: oleic acid, 

QD: quantum dots, SCID: severe combined immune deficient, SLS: sodium lauryl sulphate, TGA: 

thioglycolic acid, TiO2: titanium dioxide nanoparticles, TMAOH: tetramethylammonium hydroxide, VE: 

viable epidermis and ZnO: zinc oxide nanoparticles. 

―Skin penetration‖ indicates transport of nanoparticles, across the SC (stratum corneum) into the DSL 

(deeper skin layers). ―skin permeation‖ stands for transport across the whole skin thickness into the 

receptor solution, in vitro or to the systemic circulation, for in vivo experiments. 
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 Among the different animal species, there are hairy animals used for 

conducting particle penetration experiments. Therefore, hair removal is often 

indicated to be able to apply a formulation. Removal of hair by means of a 

clipper, cosmetic grade hair removal cream or even by shaving before the 

penetration experiment possibly has an effect on the barrier function of the 

used skin. Consequently, particle penetration might also be affected. For 

instance, 11.6 nm AuNP could penetrate into mouse skin in vivo after hair was 

clipped [86]. On the other hand, no penetration was reported for QD having 

nearly the same size, ~ 12 nm, through hairless mouse skin in vivo [88]. 

Recently, Senzui et al. [78] have shown the effect of hair removal on 

penetration of TiO2 nanoparticles through pig skin. Particles were shown not 

to penetrate through intact or stripped skin, however penetration was 

observed on hair removal possibly by entering empty hair follicles. Therefore, 

hair removal should be taken into consideration especially when assessing 

the safety of nanoparticles. This also implies that the dermatomed skin of 

thickness 200-400 µm recommended by the OECD (Organization for 

Economic Co-operation and Development) according to the guideline 428 for 

in vitro testing of skin absorption [94] could possibly overestimate the skin 

penetration/permeation of nanoparticles. Overestimation is especially the 

case for particles likely to accumulate in the hair follicles, because the hair 

follicle is cut on splitting the dermis and the nanoparticles can then diffuse into 

the dermis/receptor solution [78]. 

 Skin exposure time to particles also differed greatly among previous studies. 

Penetration of particles were tracked over a period of as short as a few hours, 

e.g. 1 hour [71], 3 hours [86] up to several days (60 days) [46]. However, 

unlike monitoring penetration of drug molecules especially lipophilic 

molecules, it is usually not practically feasible to generate appropriate 

pharmacokinetic parameters for particles, including the flux for normalizing the 

effect of exposure time, due to absence or a scarce concentration of particles 

penetrating into the skin. This further limits the ability to analyze data based 

on different studies raising an analytical problem in determination of the 

amount of nanoparticles present in the skin in typical penetration-permeation 

experiments. This will be discussed in detail later in section  1.7. 
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 The application dose and volume and the diffusion area are important 

factors that would significantly affect the results of any penetration 

experiment.  

 Different skin treatment approaches, physical or chemical, were adopted for 

inducing or enhancing skin penetration of nanoparticles. This would rather 

limit the ability of a study-with-study comparison which will be discussed in 

detail in Section  1.4. This is in addition to other factors such as formulation 

factors, e.g. surface coatings, vehicle, etc. which differ greatly from one study 

to another. These factors were shown as important determinants of particle 

penetration as detailed in the next section. 

 

1.3. Factors affecting skin penetration 

In addition to the aforementioned experimental variations among different studies, 

there are several factors which were systematically studied and found to contribute 

significantly in the skin penetration of nanoparticles. Critical determinants of skin 

penetration of nanoparticles could be categorized into physicochemical attributes of 

the nanoparticles (size, surface charge and surface chemistry), formulation factors 

(vehicle) and experimental factors (concentration and skin exposure time to 

nanoparticles). 

1.3.1. Physicochemical attributes of the nanoparticles and formulation factors 

The physicochemical attributes of nanoparticles and the nature of the dispersing 

vehicle are key factors governing their skin penetration. Sonavane et al. [45] showed 

size-dependent skin permeation of AuNP through rat skin. Higher permeation for 

15 nm AuNP compared to 102 nm and 198 nm AuNP was described through rat skin 

and the permeability coefficient was reported to decrease on increasing the particle 

size.  

The effect of particle surface charge and shape on penetration through skin was the 

focus of a study by Ryman-Rasmussen et al. [75]. They studied the effect of different 

surface charge imparting coatings (cationic, anionic and neutral) on the skin 

penetration of two types of QD of different size and shape, spherical QD of 4.6 nm 
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core/shell diameter and ellipsoid QD 12 nm (major axis) by 6 nm (minor axis) 

core/shell diameter. Following skin exposure, confocal examination of longitudinal 

skin sections showed penetration of the spherical nanoparticles into the viable 

epidermis and dermis after only 8 h regardless of the surface charge. Similar 

behavior was reported for cationic and neutral ellipsoid nanoparticles. However, 24 h 

of contact of the anionic ellipsoid QD with the skin surface was required for their 

penetration into DSL. Based on these findings, the authors concluded a shape 

dependency for particle penetration, especially due to the fact that the two anionic 

spherical and ellipsoid QD had a more or less similar hydrodynamic diameter, 14 

and 18 nm, respectively. Faster skin penetration for cationic and non-ionic ellipsoid 

QD relative to anionic ellipsoid QD could be attributed to the negative surface charge 

of the pig skin used in the latter study; isoelectric point of pig skin is ~ 4.4 [95].  

1.3.2. Experimental factors 

Concentration of the applied nanodispersion and skin exposure time could greatly 

influence the skin penetration of nanoparticles. For instance, Baroli et al. [53] studied 

the penetration of magnetic nanoparticles through human skin after 3, 6, 12 and 24 

h, where particle penetration was reported starting from 6 h skin exposure time.  

Though more studies are still required at the basic level to advance our 

understanding and to gain a deeper insight into the mechanism and determinants of 

skin penetration of nanoparticles, several approaches have been adopted by 

researchers in an attempt to enhance skin penetration of inorganic nanoparticles via 

breaching the barrier function of the skin. These approaches, however, did not 

always assure an increase or even occurrence of skin penetration of particles. 

 

1.4. Approaches adopted to enhance skin penetration of inorganic 

nanoparticles 

There is no study systemically investigating the possibilities of enhancement of 

particle penetration. Some approaches were however adopted to enhance skin 

penetration of inorganic nanoparticles. Most of these approaches were physical 

methods. Yet, the use of chemical enhancers was also explored. 
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1.4.1. Physical/mechanical enhancement 

UV-exposure. UV radiation is known to have a deleterious effect on the skin barrier 

function by causing  biophysical and morphological changes of the SC lipids [96]. As 

mentioned earlier, inorganic nanoparticles, titanium dioxide and zinc oxide 

nanoparticles,  are currently used in sunscreen formulations [4]. Therefore studying 

particle penetration into the skin was of outmost importance for these applied 

particles [87-88]. 

Increased penetration of QD, by the effect of UV radiation, as a model particle, by 

the effect of UV radiation, was observed through damaged skin, by the effect of UV 

radiation compared to intact mouse skin [87-88]. Though in both cases, low levels of 

penetration were qualitatively detected. However, according to the authors, 

penetration was mostly detected in areas with defects in the SC or around hair 

follicles, referring to this as another possible mechanism for the transport of particles 

in addition to the SC intercellular weakening effect of UV radiation. These results 

should raise the public concern regarding the use of nanoparticle-based formulations 

intended for topical use. However, one should also consider the effect of the surface 

properties on skin penetration of the applied particles when extrapolating these 

results to commercial sunscreens containing titanium dioxide and zinc oxide 

nanoparticles.  

Hyperthermia. Upadhyay [89] explored the application of mild local hyperthermia for 

transdermal delivery of diphtheria toxoid (DT) vaccine. DT-conjugated to QD were 

applied to mice in vivo with concomitant application of pads for local hyperthermia. 

According to the author, this has led to skin transport of the QD-labeled vaccine. 

However, it should be noted here that the evidence the author provided for skin 

penetration was based on top-view fluorescence images of QD in skin specimens 

with no depth information. However, the unlabeled vaccine was found to induce an 

immune response when applied topically to mice as effective as intramuscular 

injection of the vaccine. Nevertheless, care should be taken construing the results of 

this study with respect to particle penetration. 

Iontophoresis. Iontophoresis provides a mechanism to enhance the penetration of 

hydrophilic and charged molecules across the skin by application of constant  

current [97]. Similarly, a transdermal delivery chip system was used to deliver 
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negatively charged citrate-stabilized AuNP across human skin [71]. At zero voltage, 

AuNP were localized on the surface of the SC. On application of 6 V, AuNP were 

shown to pass through the intercellular routes of the SC. Further transport to the 

DSL was not shown. The results obtained from this particular study however are 

quite questionable as the experimental set-up was not fully explained in terms of the 

particle size, surface charge, concentration and volume of the applied dispersion. 

Dermaportation. Dermaportation is a novel transdermal drug delivery technology 

that uses pulsed electromagnetic fields to enhance the transport across the skin. A 

preliminary experiment by Krishnan et al. [54] showed enhanced penetration of 10 

nm AuNP into epidermal human skin sheets. A potential mechanism proposed by the 

authors for enhanced transport is the formation of transient pores through which 

particles can diffuse more easily. 

Sonophoresis. Sonophoresis, defined as the application of ultrasound, particularly 

at low frequency (20-100 kHz) has been shown to greatly enhance the skin 

permeability of a variety of drugs [98]. Based on this, low frequency sonophoresis 

was also applied for enhancing the skin penetration of 20 nm QD [76]. Application of 

ultrasound on porcine skin increased the frequency of the formation of scattered and 

separated lacunar spaces in the SC which are assumed to eventually lead to higher 

connectivity of these voids and formation of porous networks within the SC. This has 

induced significant transport of QD through the lipid regions of the SC into the viable 

tissue. However, QD were also found in few occasions in the corneodesmosomes 

and even occasionally inside the corneocytes [76]. Simultaneous application of this 

technique and sodium lauryl sulphate induced similar but more pronounced effect on 

the SC ultrastucture and consequently higher QD penetration. The same combined 

approach was recently exploited by Seto et al. [74] to enhance the skin penetration 

of smaller particles, ~ 4.6 nm AuNP, through porcine skin. 

Tape-stripping and dermabrasion. In view of the fact that the skin barrier function 

resides primarily in the SC, its total or partial removal by tape-stripping or 

dermabrasion can disrupt the skin barrier enhancing transport across the skin. Tape-

stripping has been commonly used to enhance drug delivery across the skin, and to 

obtain information about the SC function. Moreover, tape-stripping has been 

proposed by the FDA as a part of the standard method to evaluate the 
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bioequivalence of topical dermatological dosage forms [99-100]. However, tape-

stripping of the SC prior to application of inorganic nanoparticles did not always lead 

to satisfactory results. For instance, ~ 4 nm [52], 6 nm [90] and ~ 37 nm [47] QD 

could not penetrate tape-stripped human (20 tape-strips), rat (10 tape-strips) and 

mouse (5-20 tape-strips) skin, respectively. Abrasion is another technique which 

involves the removal or disruption of the upper skin layers to facilitate the skin 

permeation of several drugs [101-103]. Dermabrasion is often used in clinical 

practice by dermatologists as a facial resurfacing technique in the treatment of acne, 

scars, hyperpigmentaion, and other skin blemishes [101]. Based on this, the effect of 

abrasion on skin penetration of rigid inorganic nanoparticles was examined. 

Dermabrasion of excised rat skin [90] and mouse (in vivo) [47] resulted in skin 

penetration and permeation of 6 nm and 37 nm QD, respectively, whereas no 

penetration was reported through intact skin in these studies. 

Skin flexion and massage. The impact of mechanical stress on the barrier function 

of the skin with regard to skin penetration of inorganic nanoparticles was further 

examined via flexion and massage. Skin flexion is a method that simulates flexing 

movements such as repetitive wrist bending. Zhang and Monteiro-Riviere [90] 

studied the effect of mechanical flexion on skin penetration of ~ 6 nm QD. However, 

no penetration was reported after flexing the skin on an automated apparatus for 60 

min. More clinically acceptable manual approach, massaging, for short time (5-10 

min) was later explored by Gratieri et al. [52] to drive QD to penetrate into the DSL of 

human skin. However, QD could be found in the DSL only after massaging of tape-

stripped skin for 10 min.  

Ballastic bombardment. Ballastic bombardment of particles, a needle free 

technique of targeting cells within defined layers of the viable epidermis, was used 

by Kendall et al. [82]. A hand-held supersonic device was used to impact porcine 

skin at high rate with sub-micron gold particles, 900 ± 600 nm, resulting expectedly 

in skin penetration. Environmental relative humidity and temperature were shown to 

affect particle penetration using this method. 
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1.4.2. Chemical enhancement 

Chemical permeation enhancers are defined as agents that promote drug diffusion 

through the SC and the epidermis. These agents have been extensively studied and 

used as enhancers in favoring transdermal drug permeation. They work mainly by 

temporarily reducing the barrier function of the SC allowing for more drug  

transport [104]. Few studies however focused on the use of these enhancers for skin 

delivery of inorganic nanoparticles. Kuo et al. [85] studied the effect of chemical 

enhancers, oleic acid and ethanol, on the penetration of ~ 10 nm zinc oxide 

nanoparticles through mouse skin. They showed enhanced transport values for 

nanoparticles in presence of oleic acid, ethanol and oleic acid-ethanol mixture. 

Gopee et al. [47] have also pretreated mouse skin with acetone, however no 

penetration of QD was observed.  

As a conclusion so far, many studies have focused on treating the skin physically or 

chemically for enhancing the skin penetration of inorganic nanoparticles based on 

the previous knowledge and understanding of transdermal drug delivery. However, 

some of these have shown contradictory results on using the same enhancing 

approach. In other cases, non-satisfactory results were obtained. This could be 

again attributed to the different experimental set-ups used in different studies. 

Nevertheless, the basic knowledge on the potential mechanism is still somehow 

missing or at least not yet clear. 

 

1.5. Mechanism of skin penetration 

The exact contribution of the relevant parameters for potential skin penetration of 

inorganic nanoparticles is still unknown. Studying the skin architecture could provide 

a possible explanation for the skin penetration of nanoparticles (Figure 1.2). The 

intercellular lipids in the SC arrange themselves in a head-to-head and a tail-to-tail 

manner. The lipophilic pores formed by tail-to-tail configuration of the lipids are 

estimated to be approximately ≤ 6.94 nm. The aqueous pores, hydrophilic regions 

delimited by lipid heads, have been estimated to have a diameter of 2.8 ± 1.3 nm 

[105]. However, it has been suggested that the skin may contain different types of 

aqueous pores, whose dimensions of superficial openings (0.4–36 nm) may not be 
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maintained in the internal channel [105]. Though the aqueous pores provide a 

possible route for penetration of hydrophilic penetrants, the penetration of water and 

polar molecules is reported to be poor [106]. Based on this, one could question 

whether the penetration of inorganic nanoparticles is dependent on these pores. 

Nevertheless, from an exclusively dimension point of view, agents of size < 5-7 nm 

or 36 nm can penetrate SC through lipidic intercellular route or aqueous pores, 

respectively. Even larger agents may enter the skin appendages, hair follicles and 

pilosebaceous pores (10 - 70 µm) or sweat gland pores (60 - 80 µm) but still have to 

penetrate the respective tissue [105]. 

 

In a study by Zhang et al. [79], TEM examination showed the localization of most 

PEG- coated QD in the intercellular lipids of the outermost SC layers, thereby 

concluding that nanoparticles penetrate the skin via the intercellular pathway. They 

suggested theoretically that since the outer PEG coating is a soft coating, it thereby 

allows the particles to squeeze through the intercellular spaces. In contrast, Lee et 

al. [84], showed that on application of iron oxide nanoparticles (4.6-10 nm) on skin 

after superficial skin incision, 1 µm width, particles were found to distribute in both 

the intercellular and intracellular spaces of the SC and viable epidermis near the 

area of incision, but only in the intracellular spaces of the viable epidermis at longer 

distances.  
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Figure 1.2: A sketch showing possibilities for nanoparticle penetration and localization in the 
skin barrier. Nanoparticles could penetrate the skin through intercellular pathways and 
localize in the stratum corneum or even permeate the whole stratum corneum into deeper 
skin layers. On the other hand, hair follicles could be a depot for particles that could further 
penetrate into the deeper skin layers. 

 

Finally, the follicular pathway is also a possible mechanism for skin penetration of 

inorganic nanoparticles, however the skin appendages occupy only a small fraction 

(about 1/1000) of the entire skin surface [107]. It has been hypothesized by 

Lademann et al. [108] that the hair and the hair follicle might act as a pumping 

system pushing the nanoparticles into the hair follicles when the hair is moving (in 

vivo). Hair movement could be simulated in vitro by massaging excised skin. Based 

on this, medium-sized nanoparticles (approximately 400-700 nm) could diffuse 

deeper into the porcine hair follicles rather than smaller or larger particles allowing 

for selective follicular targeting by size modification [108-109]. Lekki et al. [91] have 

studied the possible role of the follicular pathway on the percutaneous uptake of TiO2 

nanoparticles of 20 nm width and 100 nm length. Though particles were observed as 

deep as ~400 nm inside the hair follicle, no particles were observed in the 

surrounding viable tissue. Overall, nanoparticle penetration into the appendages is 

apparently not sufficient for increased skin penetration. 
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Away from the exact mechanism of skin penetration of inorganic nanoparticles, it is 

important to know whether nanoparticles potentially penetrate the skin only due to 

the ―nano‖ effect, i.e. passive penetration or under the influence of other factors.  

 

1.6. Penetration of inorganic nanoparticles through human skin: Dissecting 

the “nano” effect 

Whether particle penetration is studied for risk assessment or drug delivery 

purposes, the basic knowledge about the underlying mechanisms is an essential 

aspect. For nanoparticles, the size is the most prominent parameter. Hence the 

contribution and importance of the particle size was always in focus facing several 

difficulties. 

Following in vivo studies on human volunteers (difficult to perform), excised human 

skin is regarded as the ―gold standard‖ for in vitro skin penetration studies especially 

in human dermal risk assessment [48]. Therefore, careful analysis of the reported 

data using either human skin in vivo was done in an attempt to reach to a conclusion 

on the feasibility of skin penetration of nanoparticles in real-case scenarios. To our 

knowledge, there are 22 different studies investigating skin penetration of inorganic 

nanoparticles through human skin (including the studies presented in the thesis). Of 

these studies, 14 studies reported no particle penetration into the DSL using either in 

vitro [60-64, 67, 70, 72, 91-92] or in vivo [61, 63, 68, 71-72] human skin, as well as 

human skin grafted in severe combined immune deficient mice [92-93]. In three other 

studies, skin penetration was only induced by skin treatment, such as massage of 

tape-stripped skin [52], dermaportation using pulsed electromagnetic field [54] or by 

the use of chemical penetration enhancers [59]. For the other remaining studies, the 

skin was not treated physically or chemically prior to or concomitant with the 

application of the particulate formulations. However, the applied nanodispersion 

included some ingredients used in the synthesis of nanoparticles that could have an 

effect on the skin integrity, hence favoring particle penetration. For instance, some 

particles were coated with trimethylammonium hydroxide (skin corrosive) [53], 

docusate sodium (anionic surfactant) [53] or dispersed in absolute alcohol, 99% [65-

66]. Even if the amounts used do not allow the skin penetration of nanoparticles, this 

should be regarded as a contributing factor. As a conclusion, it is very difficult to 
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dissect the single effect of bringing inorganic materials to the nano-range on their 

behavior with the skin barrier. This is presumably due to interplay of multivariate 

factors including the physicochemical attributes of the nanoparticles as well as the 

formulation, environmental and mechanical factors. The challenge would be to have 

a system which is tunable in size in the respective range of interest providing the 

same chemistry and hence the same properties regarding dispersibility and skin 

interaction. 

 

1.7. Qualitative and quantitative analysis of inorganic nanoparticles in the 

skin 

The rapid development of sensitive analytical techniques in the past decades has 

enabled researchers to monitor and accurately quantitate the amount of drugs 

present in the skin after penetration/permeation experiments and study the factors 

which either hinder or enhance their penetration. Among these techniques, HPLC 

provides a convenient method with a suitable limit of detection for accurate drug 

quantitation. On the other hand, quantitation of nanoparticles often represents a 

great analytical challenge; the scarce concentration of nanoparticles able to 

penetrate the skin with regard to the detection limit as well as the integrity of the 

particulate nature limits the available techniques or requires combination of at least 

two approaches of the available techniques. Table 1.2 lists the currently employed 

techniques with some examples from literature. 

As shown from Table 1.2, so far monitoring skin penetration of nanoparticles is 

mostly based on qualitative microscopical visualization. This includes histology, SEM 

and TEM, fluorescence microscopy, confocal and multiphoton microscopy. Of all 

these methods, development of both confocal and multiphoton laser scanning 

microscopy was considered a great addition to the field allowing obtaining 3D 

information of the distribution of nanoparticles in different skin layers via optical 

sectioning. This would rather avoid artifacts due to mechanical sectioning and 

sample preparation. However, this is limited by the loss of laser power and the loss 

of resolution with depth inside the skin tissue [110-111].  
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Further attempts were made with the aim of establishing a quantitative approach 

which would allow for a better understanding of skin penetration of nanoparticles and 

provide a sound scientific basis for diverse biomedical applications and health risk 

assessment. This involves adopting quantitative analytical methods such as 

inductively-coupled plasma optical emission spectroscopy, inductively-coupled 

plasma mass spectroscopy and atomic absorption spectroscopy. However, these 

techniques suffer the disadvantage of not detecting the particles themselves but their 

elemental composition. This would raise doubts whether these analyzed atoms or 

ions originate from the nanoparticles themselves or from raw salts or chemical 

ingredients used in particle synthesis. This is in addition to possible interference with 

trace elements in biological materials, skin, such as zinc. Other approaches involved 

intensity measurement of fluorescence [89] and confocal [52] images or even 

manual counting of the number of fluorescent spots per field in confocal  

images [112].  

This leads us to a side-question: what would be a good model for studying skin 

penetration of nanoparticles? From the analytical perspective, away from the clinical 

significance (mentioned earlier), inorganic nanoparticles especially quantum dots, 

gold and silver nanoparticles could be better tracked inside the skin rather than 

polymeric ones. This represents a further reason why most of the studies concerned 

with skin penetration of nanoparticles were conducted using inorganic particles 

rather polymeric ones. Other technical reason for that is the relative ease to prepare 

inorganic nanoparticles with respect to polymeric nanoparticles with a size smaller 

than 100 nm down to around 4 nm. 

 

Table 1.2: Analytical methods used for monitoring particle penetration in the skin barrier. 

Analytical method 
Examples from 

literature 
Comments 

Microscopical visualization 

Light microscopy of 
stained skin samples 

[82, 86] 
Advantage: easy technique. 

Disadvantage: artifacts on staining 
and mechanical sectioning. 
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SEM [53, 63, 78] Advantage: high resolution. 

Disadvantage: artifacts on mechanical 
sectioning. 

TEM [45, 71, 76-77, 83-
84, 87, 92] 

Advantage: high resolution for 
electron dense materials. 

Disadvantage: artifacts on mechanical 
sectioning. 

Fluorescence 
microscopy 

[88-89] Advantage: higher selectivity, 
availability. 

Disadvantage: no depth information. 

Confocal laser 
scanning microscopy 

[47, 52, 75-76, 87] Advantage: optical sectioning. 

Disadvantage: loss of laser power 
with depth in the skin specimen, 
expensive. 

Multiphoton laser 
scanning microscopy 

[63, 85] Advantages: intrinsic optical 
sectioning, less scattering by the 
tissues and less phototoxicity than 
confocal. 

Disadvantage: loss of laser power 
with depth in the skin specimen, 
expensive. 

MPM-FLIM [54, 67] Advantages: capability of studying the 
effect of nanoparticles on skin 
metabolism by measuring 
autofluorescence of the endogenous 
fluorophores without the need of 
extrinsic labels. 

Disadvantage: loss of laser power 
with depth in the skin specimen, more 
expensive. 

Nuclear imaging [62, 113] 

[91]: Ion microscopy 
and autoradiography 

such as particle-induced X-ray 
emission, scanning transmission ion 
microscopy and Rutherford 
backscattering. 

Disadvantages: determination of the 
elemental composition of the 
particles, not the particle themselves 
thus an interference possibility. 
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Other analytical techniques 

ICP-optical emission 
spectrometry 

[44, 53] Advantage: quantitative techniques. 

Disadvantage: determination of the 
elemental composition of the 
particles, not the particle themselves 
thus an interference possibility. 

ICP-MS [47, 60, 74, 78, 83] 

Atomic absorption 
spectroscopy 

[46, 65-66, 81]  

 

1.8. Standpoint and recommendations for future directions 

Applications of inorganic nanoparticles in pharmaceutical and biomedical fields have 

been established and are increasing progressively. Yet, their behavior with the skin 

barrier is still in question with several contradicting results reported in literature. In an 

attempt to solve this dilemma some points should be taken into consideration as 

recommendations for future investigations: 

 Human skin should be used as the first choice ―gold‖ standard skin model for  

in vitro penetration experiments. In parallel, more studies should be 

conducted on finding a correlation between in vitro and in vivo animal 

experiments and human studies with regard to penetration for several 

particles of different physicochemical parameters. This would allow better 

prediction of in vitro absorption when using these validated animal models. 

 At the level of the experimental set-up, development of a more or less 

―universal‖ model with technical guidelines for testing skin 

penetration/permeation of nanoparticles is required. This also involves 

incubation times and concentration which are critical for sufficient and 

detectable penetration. 

 Both the experimental conditions and the characteristics of the nanoparticles 

should be fully described; publications with missing information such as size 

were occasionally published. 

 Formulation ingredients should be always addressed when discussing the 

results of the penetration/permeation experiments. Similarly, skin preparation 

prior to the experiment, such as shaving of the hair, should be considered as 
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critical parameter influencing the barrier function of the skin model and thus 

the results of the penetration/permeation experiment. 

 Last but not least, data obtained should be well-presented to allow the reader 

to extract the same conclusion made by the authors. For instance,  

Upadhyay, P. [89] has reported penetration of diphtheria toxoid-QD conjugate 

through mouse skin in vivo using local thermia. However, only images 

captured by conventional fluorescence microscope were presented with no 

depth information. As another example, the FLIM-multiphoton images shown 

by Krishnan et al. [54] for AuNP in human epidermis are also somehow 

unclear. It is not stated by the authors whether these images do show depth 

information of AuNP in the SC and the underlying viable epidermal layers or 

not. This would unfortunately leave the reader in a state of uncertainty of the 

reported results.  

Nevertheless, investigation of the skin penetration of nanoparticles, especially 

inorganic nanoparticles, for the aim of designing ideal transdermal carriers or for 

health risk analysis, is a very recent area of research that holds great promise 

especially on development of new analytical approaches and higher sensitivity 

techniques which allow tracking and quantitation of minute concentration of 

nanoparticles present in the skin. A further challenge facing future studies, however, 

could be the ability to dissect the ―nano‖ effect on nanoparticle penetration through 

the skin barrier, since the resultant penetration indicated in several studies was not 

exclusively due to bringing the material into the nano-size range, but also due to 

other concomitant formulation and environmental factors, in addition to the barrier 

state of the skin. 
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From the literature survey and the introductory part of the thesis, it can be concluded 

that studying nanoparticle interaction with the skin barrier is a topic of major 

importance that still needs further research efforts. This is on the level of basic 

research, as well as in the aim of designing potential topical and transdermal 

nanocarriers and biomedical diagnostic agents, in addition to health risk analysis. 

The main focus of the present thesis was to investigate the potential penetration of 

nanoparticles, using model gold nanoparticles, through human skin and studying the 

effect of the physicochemical properties of nanoparticles, namely size and surface 

properties, other formulation factors such as the vehicle of the nanodispersion, skin 

barrier conditions, etc., on their skin interaction. 

 Excised human skin was the selected skin model for penetration experiments, 

being regarded as the ―gold standard‖ for in vitro penetration experiments related 

to human dermal risk assessment [48]. 

 

 Gold nanoparticles (AuNP) were chosen as a good model for our study for the 

following reasons: 

 

 They have unique optical properties. They show distinctive extinction bands in 

the visible region, due to surface plasmon oscillation of free electrons [114]. 

This allows for visible, as well as spectrophotometric detection of particle 

aggregation. This is in addition to feasibility of detection in human skin on 

non-linear photon excitation. 

 They can be tailored in terms of size and surface chemistry offering a flexible 

system for studying the effect of physicochemical properties of nanoparticles 

on skin penetration. 

 Besides, AuNP have recently emerged as a delivery system of various  

payloads [23-24]. The payload could be a drug molecule [25-27] or a large 

biomolecule, such as protein [28], DNA [29-30], or RNA [31].  

 In addition, their physical properties could be exploited for clinical 

applications. AuNP cause local heating when they are irradiated with light in 

the range of 800-1200 nm. El-Sayed et al. [22] have showed the potential use 

of AuNP in photothermal destruction of tumors.  
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In summary, it was hypothesized that AuNP could serve as a good model for 

nanoparticle penetration of high pharmaceutical and clinical significance. 

 

Penetration of AuNP through human skin was previously induced or enhanced by 

dermaportation using pulsed electromagnetic field [54] and dermabrasion [58]. 

Seto et al. [74] investigated the simultaneous application of ultrasound and 

sodium lauryl sulphate to pig skin as a synergistic mechanical and chemical 

approach to enhance the delivery of AuNP.  

 

 Finally, multiphoton laser scanning microscopy was used for detection of gold 

nanoparticles in skin specimens. Multiphoton was found an efficient technique to 

track the penetration of nanoparticles in skin [85, 115]. 

 

In order to achieve the aimed research objectives (outlined in Figure 2.1), the work in 

this thesis passed through several stages: 

Stage one: Development of a method for detection of gold nanoparticles in human 

skin using multiphoton microscopy. For a better understanding, this was followed by 

establishment of an experimental approach for semi-quantitation of gold 

nanoparticles in the different skin regions. The goals of this stage were met in 

―Publication 3.1”. 

Stage two: Determination of the imaging parameters of multiphoton microscopy in 

skin in terms of the achievable detection depths and the resolution limit. 

Reconstructed human skin and excised human skin were employed for the study 

and the results were presented in “Publication 3.2”. 

Stage three: Investigation of the behavior of the prepared gold nanoparticles, of 

different physicochemical and formulation parameters, when coming in contact with 

the skin barrier, as well as tracking possible penetration. The results of this stage 

were published in “Publications 3.3 and 3.4”. 

Stage four: Enhancement of the skin penetration of gold nanoparticles using 

chemical penetration enhancers. This was in focus in “Publication 3.5”. 
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Figure 2.1: outline of the main research objective of the present thesis. 
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Abstract 

Interaction of nanoparticles with the skin barrier is a recent area of research that 

draws a lot of attention from the researchers. However, monitoring nanoparticles in 

or through the skin is mainly based on qualitative microscopical techniques. Yet, a 

quantitative approach is required for a better basic understanding. In response, a 

combined ―multiphoton-pixel analysis‖ method was developed in this study for 

semiquantitation of gold nanoparticles penetration into different skin layers. The 

developed approach provides a useful tool for future studies focusing on skin 

penetration of nanoparticles for the aim of health risk assessment or for the design of 

topical and transdermal drug delivery systems. 

 

Keywords: multiphoton imaging; semiquatitation nanoparticles skin penetration; 

gold nanoparticles. 
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Studying the skin penetration of nanoparticles is of great pharmaceutical importance 

for the design of potential topical and transdermal nanocarriers. Understanding the 

behavior of nanoparticles and their interaction with different skin layers would 

ultimately lead to the design of the ―ideal‖ carrier [42]. Hence exploration of the 

relevant parameters of the nanoparticles, e.g. size, shape, surface chemistry, 

influencing skin penetration of nanoparticles is necessary. Furthermore, the amount 

of penetrating particles is crucial. Quantitative estimation of skin penetration of 

nanoparticles is however problematic due to detection limits of the available 

techniques with regard to the scarce concentrations of nanoparticles present in the 

skin in typical permeation-penetration experiments. The uncertainty whether 

penetration really occurs and the expected reduced diffusion rates of  

nanoparticles [42] are the key reasons for that. Therefore, monitoring skin 

penetration of nanoparticles has been based mainly on qualitative visualization by 

microscopy techniques. These include electron [77], fluorescence [88], confocal and 

multiphoton [115], Raman [116] and nuclear [113] microscopy. Other analytical 

methods including inductively-coupled plasma mass [86] and atomic absorption [46] 

spectroscopy do not detect the particles themselves. A quantitative approach based 

on nanoparticles’ detection would allow a better understanding of skin penetration of 

nanoparticles and provide a sound scientific basis for diverse biomedical applications 

and health risk assessment. 

We have established a method by multiphoton microscopy for investigating skin 

penetration of gold nanoparticles (AuNP) based on gold luminescence [56]. The 

objective of this study was to explore this method for semiquantification of AuNP 

penetrating into the stratum corneum (SC) and deeper skin layers (DSL). Pixel 

frequency was chosen as an indicator for the amount of AuNP avoiding the 

limitations of intensity measurement introduced previously [85]. 

Thiol-coated AuNP dispersion (diameter=6.00 ± 0.81 nm) were applied on human 

skin in vitro at CAuNP = 437 µg/ml in a vertical Franz diffusion set-up at 32°C for 24 h 

under occlusive conditions. Skin was then longitudinally cryo-sectioned, 10 µm 

thickness, at –20°C and subjected to two-photon excitation fluorescence microscopy 

(ZEISS_LSM_510_META system, Carl Zeiss, Jena, Germany). On sectioning, skin 

piece was not placed parallel to the cutting blade to avoid dislocation of the particles 

from outside into DSL or vice versa, but in a perpendicular position limiting 
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sectioning artifacts (Figure 3.1.1). Furthermore, imaging was done within the tissue 

and not on the surface of the cut. Longitudinal skin sections were used over full-

thickness skin to reduce loss of laser power going deeper inside the skin. A 

wavelength of 800nm and energy of 0.485 and 0.647mW in the focal plane were 

used for both excitation of AuNP and scanning the skin, respectively. Signal due to 

gold luminescence and a light transmission image of the skin were simultaneously 

collected with no signal interference among tracks. 

 

Figure 3.1.1: A schematic presentation showing different possibilities for longitudinal cryosectioning 
of a skin punch. The arrows indicate the direction of cutting. Placing the skin punch parallel to the 
cutting blade (a, b) results in possible dislocation of the particles on the surface into the DSL (a) or 
vice versa (b). On the other hand, placing the skin punch in a perpendicular position (c) (adopted 
cryosectioning method) avoids particle dislocation limiting sectioning artifacts. 

 

Images of the longitudinal skin sections were then analyzed using ZEISS-LSM 

software, also feasible by any image analysis software. Semiquantitative data for the 

distribution of AuNP in different skin layers were extracted as follows: z-stacks, with 

optical layers 1µm thickness each, were adopted for analysis. The starting position 

(n=1) was defined as the first optical layer with detected signals in the AuNP track. 

Similarly, the end position (n=x) was the last optical layer showing AuNP. Each 

optical scan was composed of 512x512 pixel2 and 71.4x71.4 µm2. For each layer, 

the intensity was first thresholded in order to remove the contribution of the 

background such as second harmonic generation from collagen [117]. The pixels 

due to gold luminescence were determined in the SC and in the DSL for this optical 

layer. Summing up these values for all the optical layers of the z-stack resulted in 

∑pixel frequency (∑Pixel) due to AuNP in the SC and in the DSL of this z-stack. 

Figure 3.1.2 illustrates the method used for semiquantitation. 
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Figure 3.1.2: A schematic presentation of the experimental approach used for semiquantitation of the 
penetration of AuNP in a z-stack of a longitudinal skin section imaged by multiphoton microscopy. SC 
and DSL stand for the stratum corneum and the deeper skin layers, respectively. 

 

Finally, ∑Pixel of AuNP was normalized to determine the weighed number of 

particles (Nw) as follows: Considering an emission spectrum for AuNP of λ=~530-640 

nm [118], the mean theoretical lateral resolution (rxy) was calculated from Equation 

3.1.1 [119] as ~0.341 µm, i.e. the area of a single diffraction-limited AuNP (Aparticle) 

=~0.365 µm2. 

NA

70 λ.
rxy   (Equation 3.1.1), 

where NA is the objective numerical aperture. Knowing the area of one pixel (Apixel), 

0.139 x 0.139 µm² in this study, Nw, the weighed number of nanoparticles, is 

calculated from: 

particle

pixel

A

APixel
wN  (Equation 3.1.2) 
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This method of analysis has the advantage of measuring the number of events not 

their intensity. Therefore, the gain settings of multiphoton imaging could be freely 

adjusted for each measurement individually according to the energy of the laser 

required to excite AuNP at different depths in the examined skin specimens reducing 

the limitations for typical comparative measurements. Only the objective (water 

immersion objective, 63X magnification, NA=1.2) and the image size should be kept 

the same throughout the measurements. This represents a great advantage over 

methods based on intensity measurement [85], where the gain settings have to be 

fixed for all experiments. This would rather limit the imaging capability of 

nanoparticles in deep positions of some imaged skin specimens resulting possibly in 

inaccurate results. This limitation was discussed by Gratieri et al. [52] when 

measuring the intensity of quantum dots as an indicator of their concentration in 

different skin layers using multiphoton microscopy. Our method overrides previous 

attempts involving manual counting of the number of fluorescent spots per field in 

confocal images [112]. Apart from human errors, adoption of the latter approach 

results in overlooking the area of the fluorescent spots if larger than the resolution 

limit. Moreover, a previous attempt to analyze fluorescence images [89] used only 

one image field of the examined skin for each experimental condition for analysis. 

However, as shown in Figure 3.1.3(i), one optical layer is not always descriptive for 

the overall penetration profile of nanoparticles. On the other hand, calculation of 

∑Pixel and Nw of AuNP in the SC and DSL in optical z-stacks of the examined 

longitudinal skin sections showed a depth-profile for AuNP concentrating more in the 

SC rather than in DSL (Figure 3.1.3(iii)).  

In conclusion, a combined multiphoton imaging-pixel analysis approach was 

developed for semiquantitation of AuNP population in different skin locations in terms 

of pixels, from which the weighed number of particles could be calculated. These 

values could be used to determine the amount of AuNP penetrating into the SC and 

DSL in the same skin penetration experiment and correlate data among different 

experiments. The experimental approach described herein provides a valuable tool 

to advance our understanding of the interaction of nanoparticles with biological 

barriers, e.g. skin, and help identify various factors that enhance or limit their 

penetration. For future work, this method should be validated by the aid of analytical 

techniques such as inductively-coupled plasma mass and atomic absorption 

spectroscopy. 
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Figure 3.1.3: (i) Representative overlaid multiphoton/transmission images (upper panel) and the 
correspondent AuNP track (lower panel), each showing AuNP (indicated as white spots) at 
different optical layers of a z-stack of a longitudinal skin section, in which different amounts of 
AuNP in the SC (stratum corneum) and DSL (deeper skin layers) after 24 h of skin exposure were 
detected in each layer. A single layer is not descriptive for the overall penetration pattern. This is 
in comparison to (ii) an only vehicle-treated control skin specimen; the left image is an overlaid 
multiphoton/transmission image and the right image is the gold track only. (iii) Skin penetration of 
AuNP into the SC and DSL, expressed as ∑pixel frequency of AuNP (∑Pixel) in all optical layers 
of the z-stack was determined and the respective weighed number of particles (Nw) were then 
calculated, as shown above, showing depth-profile for AuNP concentrating more in the SC rather 
than in DSL. Note that pixel values due to AuNP nanoparticles were recorded following 
thresholding of background intensity. Therefore, zero pixels were recorded for control skin 
specimens (not displayed). 
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Abstract 

Multiphoton microscopy has become popular in studying dermal nanoparticle 

penetration. This necessitates studying the imaging parameters of multiphoton 

microscopy in skin as an imaging medium, in terms of achievable detection depths 

and the resolution limit. This would simulate real-case scenarios rather than 

depending on theoretical values determined under ideal conditions. This study has 

focused on depth profiling of sub-resolution gold nanoparticles (AuNP) in 

reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. 

Point spread functions (PSF) were determined for the used water-immersion 

objective of 63X/NA=1.2. Factors such as skin tissue compactness and the presence 

of wrinkles were found to deteriorate the accuracy of depth profiling. Broad range of 

AuNP detectable depths (20-100μm) in reconstructed skin was observed. AuNP 

could only be detected up to ~14μm depth in human skin. Mean lateral (0.5±0.1μm) 

and axial (1.0±0.3μm) PSF in reconstructed and human specimens were 

determined. Skin cells and intercellular components didn’t degrade the PSF with 

depth. In summary, the imaging parameters of multiphoton microscopy in skin and 

practical limitations encountered in tracking nanoparticle penetration using this 

approach were investigated. 

 

Keywords: multiphoton imaging; gold nanoparticles; skin nanoparticle penetration; 

point spread function; nanoparticle depth profiling. 
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3.2.1. Introduction 

Optical techniques are of great importance as a non-destructive tool to study dermal 

penetration. Especially laser scanning microscopy (LSM) has shown its great 

potential. In confocal microscopy, a fluorophore is excited by the absorption of one 

photon of relatively high energy in the visible or ultraviolet spectrum. Multiphoton 

excitation, however, is a non-linear process in which a fluorophore is excited by two 

or more photons simultaneously of lower energy and longer wavelength in the 

infrared region [120]. Lower energy input, hence a reduced phototoxicity, and higher 

penetration of the excitation light are the distinct advantages over conventional  

LSM [121].  

An important aspect for particle imaging is the ability to distinguish them from each 

other and to estimate if single or agglomerated particles are present. This ability is, 

however, limited by the resolution which is the minimal size when a sub-resolution 

light emitting object is imaged. Therefore, the imaging function, represented by the 

point spread function (PSF) needs to be known, to judge the image quality and for 

possible quantification of particle number. For biological systems the optical 

conditions are not well defined as scattering occurs when the refractive index 

changes e.g. due to mismatch of refractive index between the specimen and the 

objective or due to localized particles with refractive indices different from their 

surrounding imaging environment. This is clearly evident in imaging biological 

tissues with several scattering centers, cells and their organelles, different in size, 

shape and structure [122-124]. These effects limit and reduce the resolving power. 

Furthermore, absorption and scattering of excitation and emission radiations lead to 

signal attenuation with depth limiting the useful range of depth penetration [125-127]. 

Aberrations encountered on imaging biological samples are discussed in details by 

de Grauw et al. [124]. Skin represents a highly complex system due to its high 

optical density and complex structure, being composed of several skin layers 

different in physicochemical parameters of the cells in addition to the different inter- 

and intra-cellular components. As a consequence, experimental investigations are 

the only direct approach to determine reliable PSF in lateral and axial direction.  

Two-photon excitation PSF was previously determined in water [128], glycerol [129] 

and in turbid media (gel and lipid emulsion) [130] containing fluorescent beads of 

diameter 100-220 nm. Interestingly, PSF was further determined in biological 
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specimens, lymph nodes [125], brain [125] and fixed kidney tissues [126] using sub-

resolution fluorescent beads, showing strong dependence on tissue constitution and 

depth into the tissue. Possibly due to the great difficulty in inserting fluorescent 

nanoparticles inside the skin due to the barrier properties of the stratum corneum 

(SC), the early trial to measure PSF in skin was based on imaging beads placed on 

the top of skin samples of different thickness. This experimental setup, however, 

could not yield true PSF in the different skin layers [131]. Later, Guldbrand  

et al. [110-111] measured the PSF of fluorescent nanoparticles in human skin 

inserting them inside the skin specimen either by injection [110] or passive diffusion 

into the tissue after tape-stripping the SC [111]. However, both insertion methods did 

not assure homogenous distribution of the beads throughout the specimen and 

across the whole thickness.  

Therefore, the objective of this study was the depth profiling of gold nanoparticles 

(AuNP) having sub-resolution dimensions in reconstructed skin specimens using 

two-photon excitation laser scanning microscopy, in addition to axial and lateral PSF 

determination at different depths from the skin surface. Reconstructed skin was 

grown from keratinocytes and fibroblasts together with AuNP in the culture medium. 

This would allow for the uniform particles distribution throughout the tissue. The 

compactness of the skin tissue was addressed by using fixed and non-fixed 

reconstructed skin specimens for examination. To complete the study, human skin 

injected with AuNP was also chosen for examination. 

 

3.2.2. Materials and Methods 

Preparation and characterization of AuNP. Ionically-stabilized, polar gold 

nanoparticles (AuNP) were prepared according to Turkevich method [25, 132]. 

Briefly, 70 ml solution of hydrogen tetrachloroaurate (HAuCl4·3H2O, Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) containing about 100 µg/ml was reduced by 

trisodium citrate dihydrate (Na3C6H5O7·2H2O, Sigma-Aldrich) containing 5-fold the 

molar concentration of the gold salt under reflux at 100°C.  

The mean particle size of the gold core of the prepared nanodispersion was then 

determined by transmission electron microscopy (TEM) using a JOEL Model JEM 

2010 instrument (JOEL GmbH, Eching, Germany) operated at an accelerating 

voltage of 120 kV. The hydrodynamic diameter and the polydispersity were 
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measured using Malvern Zetasizer Nano (Malvern Instruments, Malvern, UK) based 

on dynamic light scattering at 25°C. The surface charge was estimated by measuring 

the zeta potential based on the electrophoretic mobility using Malvern Zetasizer 

Nano (Malvern Instruments, Malvern, UK). 

AuNP were sterilized by filtration then dispersed in Dulbecco’s Modified Eagle’s 

medium (DMEM) containing 10% fetal calf serum (FCS) under sterile conditions. 

Samples with two different concentrations, 97.4 and 487.1 µg/ml, in the culture 

medium were prepared. Under these conditions, colloidal gold dispersion was stable. 

 

Growing a reconstructed skin from fibroblasts and keratinocytes together with 

the provided AuNP in the culture medium. A reconstructed skin equivalents were 

grown from human foreskin fibroblasts and keratinocytes in which AuNP were 

provided in the culture medium to be dispersed throughout the tissue according to 

the following protocol: Collagen gel containing human fibroblasts was pipetted on the 

top of a cell culture insert in a standard 24 well cell culture plate. The fibroblast-

containing gel was cultured for 1 day at 37°C and 5% CO2 under submersed 

conditions applying a total of 2.5 ml DMEM medium with 5% FCS per well and insert. 

On the following day, 25 µl of the prepared AuNP dispersion in culture medium was 

added on each of the prepared gels, in either of the two concentrations of AuNP and 

incubated for 1 h at 37°C. A volume of 50 µl fibronectin solution (5 µg/ml) was then 

added and incubated again for 10 min at 37°C. Human foreskin keratinocytes in 100 

µl KBM basal medium (Cambrex Bio Sciences) with 5% FCS were subsequently 

seeded on the top of the collagen gels. After 1 h incubation at 37°C, a total of 2.5 ml 

keratinocyte basal medium (KBM) containing FCS (5%), hEGF (0.1 µg/ 500 ml) and 

BPE (15 mg/ 500 ml) was added to each insert. While maintaining submersed 

culture conditions, medium was exchanged on day 3, 4 and 5, thereby gradually 

lowering the FCS concentration from 5% to 0%. At the end of the submersed culture 

period, inserts with the skin equivalents were transferred into 6 well cell culture plate. 

KBM medium with 1.88 mM CaCl2 was filled into each well up to the level of the 

insert membrane (air-lift culture). The air-lift culture was performed for up to 13 days. 
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Treatment of human skin with AuNP. Human skin was obtained from female 

patients, who had undergone abdominal plastic surgery after approval of the ethic 

committee of Saarland, Germany (Ärztekammer des Saarlandes, Dec. 2008). After 

excision, the skin was cut into pieces and the subcutaneous fatty tissue was 

removed from the skin specimen using a scalpel. The surface of each specimen was 

cleaned with water, dried, wrapped in aluminum foil and stored in polyethylene bags 

at –26°C until usage. 

Human skin was exposed to AuNP under extreme conditions to assure distribution of 

the AuNP all over the tissue, but carefully so as not to damage the skin tissue. A 

punch of human skin, 8 mm in diameter, was injected with 1 ml of AuNP with a 

concentration 97.4 µg/ml using a hypodermic needle, 0.3 mm in diameter (Sterican®, 

absolute medical healthcare, Prague, Czech Republic). Injection sites were chosen 

on the top surface (SC), bottom surface (bottom layer of the viable deeper skin 

layers (DSL)) and from lateral sides of the skin punch. After injection, the skin turned 

red and was swollen in comparison to untreated skin punch (Supplementary 3.2.1). 

Human skin was, further, soaked in a dispersion of AuNP, 97.4 µg/ml, for 24 h.  

 

Preparation of the skin specimens for examination using multiphoton 

microscopy. 

i. Reconstructed skin 

(a) Non-fixed (duplicate samples for each concentration of AuNP).  

The culture media were carefully removed and freshly prepared phosphate buffer 

saline (pH 7.4) was added and specimens were then stored in an incubator (37°C, 

5% CO2) till further use. Specimens were stored under these conditions no longer 

than 1 day before usage. Specimens are either examined directly from the top by 

multiphoton microscopy or after longitudinal sectioning, 10 µm thickness, at –26°C 

using a SLEE cryostat type mev (SLEE medical GmbH, Mainz, Germany). 

(b) Fixed (duplicate samples for each concentration of AuNP) 

The culture media were removed and skin specimens were fixed with 3.7% formalin 

in phosphate buffer saline for 2 h, followed by washing with phosphate buffer saline. 

Skin specimens were then treated as described above. 
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ii. Human skin 

The treated skin specimen was frozen and 5 mm punch was taken for further 

examination. As mentioned before, the skin was examined from the top view and 

after longitudinal sectioning to examine the distribution of the particles throughout the 

skin tissue. Skin samples were then measured in duplicate using multiphoton 

microscopy as detailed below. 

 

Multiphoton microscopy. Imaging was performed using an inverted confocal/two 

photon excitation fluorescence microscope (ZEISS LSM 510 META system, Carl 

Zeiss, Jena, Germany), equipped with a tunable Chameleon IR laser (λ=720-930 

nm) for multiphoton laser microscopy, in addition to other conventional laser lines for 

confocal microscopy. A wavelength of 800 nm was used for both excitation of AuNP 

and the skin autofluorescence with a transmission energy of 0.467 and 0.485 mW, 

respectively, and a water immersion objective 63X (NA=1.2). The pulse width at the 

laser output was less than 140 femtosecond and the repetition frequency was 80 

MHz. Only for longitudinal skin sections, a light transmission image of the skin was 

taken. The gain settings were adjusted for each measurement individually. No 

significant photobleaching was observed in our experiments under the conditions 

used for imaging AuNP in the different skin layers. z-stacks of the skin samples were 

acquired at 0.5 μm step. Each optical scan was composed of 512 x 512 pixel2 or 

higher (2048 X 2048 pixel2). 

z-stacks were subjected to analysis using the software of the supplier. Images were 

analyzed for depth profiling of AuNP in the imaged skin specimens and to determine 

the PSF of multiphoton microscopy in skin specimens at different depths from the 

surface in both XY (lateral resolution) and XZ (axial resolution) directions. 

Measurements were based on measurement of the mean intensity per pixel ± 

standard deviation and pixel frequency. Prior to intensity and pixel measurements, 

the track of AuNP was only selected. The high background signals masking that from 

the particles were thresholded until only particles are selected. The threshold value 

was thus different from one case to another. Signals due to AuNP were then 

semiquatified in terms of pixels and intensity. 
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Data analysis. Generated data of PSF measurement were fitted to Gaussian 

function using Sigmaplot®, version 11 (Systat Software GmBH, Germany) as follows: 

2)(5.0

exp)( 






x

axf  Equation 3.2.1 

Where, 

a: height of the curve’s peak 

µ: position of the peak 

σ: standard deviation which controls the width of the peak 

 

For each function, FWHM was then calculated using the following equation: 

 

2ln22FWHM    Equation 3.2.2 

Measuring FWHM of the central peak of PSF in XY and Z directions is a quite 

common experimental approach to determine lateral (rxy) and axial (rz) resolution. 

Practically-determined FWHM were compared to theoretically calculated lateral (rxy) 

and axial resolution (rz), determined based on Rayleigh criterion. Rayleigh criterion 

suggests that two point objects are resolved when the first minimum of one airy disc 

is aligned with the central maximum of the second airy disc. Therefore resolution, 

according to Rayleigh criterion, is defined as the distance between the central 

maximum and first minimum of the first airy disc and could be calculated from [119]: 

 

NA

7.0 
xyr   Equation 3.2.3 

2NA

3.2 n
rz


    Equation 3.2.4 

where, λ is the wavelength of the emitted radiation, NA is the numerical aperture of 

the objective and n is the refractive index of the medium. 

Lateral and axial PSF were determined for reconstructed skin specimens containing 

a concentration of 97.4 and 487.1 µg/ml (fixed and non-fixed specimens) and for 

human skin specimens. For each of them, five z-stacks were analyzed for axial and 

lateral PSF at different depths from which the respective FWHM were determined. 
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Experimental FWHM in lateral and axial directions were compared to theoretical 

values calculated based on Rayleigh criterion according to Equations 3.2.3 and 

3.2.4. 

 

3.2.3. Results and discussion 

The main objective of this study was to examine the imaging properties of 

multiphoton microscopy in skin specimens, reconstructed and human skin in which 

AuNP are distributed throughout the skin tissue. Therefore, AuNP with a size of 

(14.9±1.8) nm for gold core and a hydrodynamic diameter of (15.3±0.7) nm 

(polydispersity index 0.1±0.0) and a zeta potential of (-35.1±1.9) mV were prepared, 

sterilized by filtration, then redispersed in the culture medium together with 

keratinocytes and fibroblasts under sterile conditions to build up a reconstructed skin 

tissue in which AuNP are dispersed as shown in the protocol above. AuNP from the 

same batch were also used in treatment of human skin specimens. 

On applying AuNP at the beginning of the growth phase of the reconstructed skin, 

the tissue could grow normally with a well distribution of AuNP throughout the tissue. 

This was shown from examination of the longitudinal sections (Figure 3.2.1). 

However, on examination of skin specimens from the top (Figure 3.2.2), AuNP could 

only be detected up to variable depths from the skin surface varying from around 20 

to 100 µm (Table 3.2.1). Variable detection depths of the AuNP could be attributed to 

variable compactness of the examined tissues, with spaces of no particular pattern 

and of variable areas separating skin layers, where laser suffers much less 

scattering. Compact organization is not easy to obtain when the artificial organ is 

constructed in vitro, reconstructed skin in this case. However, the use of fixatives 

was found effective in structural preservation of reconstructed skin [133]. This could 

explain the limited variations in detection depths of AuNP in examined skin 

specimens after fixation with formalin, where AuNP could be detected up to a depth 

of around 20 µm, except for one replicate (~50 µm) which could be attributed to 

imaging round wrinkles, representing another problem of accurate determination of 

depth of nanoparticles in skin specimen examined from the top by means of 

multiphoton microscopy. In other words, the inaccurate definition of the skin surface 

would contribute in the variation of the maximum detectable depth for AuNP in skin 
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specimens. This would represent a problem when tracking skin penetration of 

nanoparticles, especially on detecting whether particles are located on the SC-viable 

epidermis border or have already penetrated into the viable tissue. This could be 

shown by imaging smaller skin areas (an optical image of 23.8 x 23.8 µm2 rather 

than 47.6 x 47.6 µm2, where AuNP could be only detected up to a depth of around 

20 µm from the skin surface (Figure 3.2.2d). In Figure 3.2.2, the initial increase in the 

intensity per pixel values or the number of detected events for AuNP (pixel 

frequency) is mainly due to surface washing of skin specimen before examination. 

Note that intensity per pixel and pixel values shown in Figure 3.2.2 are thresholded 

values to eliminate the contribution of the background. 

 

 

Table 3.2.1: Maximum depths for detected signals of AuNP in reconstructed skin specimens, grown 
from fibroblasts and keratinocytes examined from the top view by multiphoton laser scanning 
microscopy. The size of each optical scan of the z-stack was 47.62 x 47.62 µm

2
. 

Treatment of skin specimen Un-fixed Fixed 

AuNP concentration, µg/ml 97.4 487.1 97.4 487.1 

Maximum detection depth, µm 

(duplicate skin specimens)* 

~ 20 ~ 50 
~ 20 

~ 20 

~ 90-100 ~ 90 ~ 50 

*For each skin specimen, the whole skin surface was roughly scanned for detection depth. 
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Figure 3.2.1: Representative images of AuNP (indicated as white spots) in longitudinal sections of 
reconstructed skin, grown from fibroblasts and keratinocytes together with AuNP at a concentration of 
487.1 µg/ml, imaged by multiphoton laser scanning microscopy, showing distribution of AuNP in (a) 
the SC (stratum corneum) and DSL (deeper skin layers) and (b) even in much deeper layers inside 
the skin. The left panel is overlaid multiphoton/transmission images of AuNP in skin, while signals due 
to AuNP alone are shown in the right panel. 
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(a)            (b) 

 

(c)            (d) 

 

Figure 3.2.2: (a, c) Intensity-depth and (b, d) pixel-depth profiles of AuNP in z-stacks of a 
reconstructed skin specimen grown from fibroblasts and keratinocytes together with AuNP in a 
concentration of 487.1 µg/ml imaged by multiphoton laser scanning microscopy from the top. Profiles 
are generated based on z-stacks with an optical scan size of 47.6 x 47.6 µm

2
 (a, b) and 23.8 x 23.8 

µm
2
 (c, d) The intensity and pixel frequency increase at the beginning then decrease going deeper 

inside the skin, however zero intensity and pixel values were reached at different depths from the skin 
surface. The presented intensity and pixel values were thresholded to eliminate the contribution of the 
background and skin autofluorescence. 
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Another aim of this study was to determine the PSF for multiphoton microscopy in 

skin as an imaging medium instead of water [128] and turbid liquids [130] already 

explored before. This would represent a more realistic condition when imaging ultra-

small particles (particles with sub-resolution dimensions) in skin specimens for the 

purpose of resolution estimation, penetration estimation, etc. Determined PSF values 

could be useful to get more precise number of nanoparticles in skin specimens using 

multiphoton microscope, rather than depending on theoretical values [55, 134]. 

Lateral and axial PSF of multiphoton microscopy under these conditions were then 

determined by fitting the generated data to Gaussian function (Equation 3.2.1) then 

measuring the respective FWHM according to Equation 3.2.2 (Figure 3.2.3 and 

Figure 3.2.4). This was determined in reconstructed skin specimens grown from 

fibroblasts and keratinocytes together with AuNP in the culture medium at a 

concentration of 97.4 (fixed specimens) and 487.1 (non-fixed and fixed specimens) 

µg/ml using a water immersion objective 63 X (NA = 1.2). At least five z-stacks were 

analyzed for each of them at different levels from the skin surface. Considering an 

objective NA of 1.2, a broad emission spectrum for AuNP of around 530-640 nm 

[118] and a refractive index for skin around 1.4 µm (1.443-1.448 µm and 1.378-1.396 

µm for the epidermis and dermis, respectively) [135], theoretical lateral (rxy) and axial 

resolution (rz) could be calculated from Equations 3.2.3 and 3.2.4. The theoretical 

value of lateral resolution in both the epidermis and the dermis was calculated in the 

range of ~0.3-0.4 µm due to a broad emission spectrum. The theoretical axial 

resolution, however, should be in the range of ~1.2-1.5 µm and ~1.2-1.4 µm for the 

epidermis and dermis, respectively. 

For PSF determination, the pixel size must be reduced sufficiently so that at least 

one pixel at a measurably lower intensity separates the objects of interest. 

Practically, a pixel 2.3 times smaller than the optical resolution limit of the system is 

required to digitally resolve that separation. This is known as the Nyquist criterion 

[136]. Therefore, on imaging, the pixel size was always kept 2.3 times below the 

theoretical values for lateral and axial resolution calculated from Equations 3.2.3 and 

3.2.4, preventing undersampling for the aim of accurate determination of PSF 

experimentally. Sub-diffraction limited spots with individual out-of-focus rings (airy 

discs) not intersecting with out-of-focus rings from neighboring ones at different 

depths from the skin surface were chosen for PSF determination. 
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Figure 3.2.3: Multiphoton image of AuNP in reconstructed skin, grown from keratinocytes and 
fibroblasts together with AuNP at a concentration of 487.1 µg/ml at a depth of 5.5 µm from the skin 
surface. A single representative particle is viewed from lateral, denoted as XY, and axial, denoted as 
XZ, for calculation of FWHM (full-width half maxima) for the determination of lateral and axial point 
spread functions of the imaging system. 
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Figure 3.2.4: Point spread functions in lateral (a) and axial (b) directions in reconstructed skin grown 
from fibroblasts and keratinocytes together with AuNP at a concentration of 487.1 µg/ml at variable 
depths from the skin surface (4-44 µm) fitted to Gaussian function showing independency of the 
lateral (XY) and axial (XZ) FWHM (full-width half maxima) on the depth from the skin surface. 

 

  

0 

0.2 

0.4 

0.6 

0.8 

1 

0 20 40 60 

FW
H

M
(x

y)
, µ

m
 

Depth from the skin surface, µm 

0 

0.5 

1 

1.5 

0 20 40 60 

FW
H

M
(z

),
 µ

m
 

Depth from the skin surface, µm 



Labouta, HI et al., J Biophotonics, 5 (2011) 85-96                               Publications 

-63- 
 

The mean value of lateral PSF, determined in terms of FWHM, in all examined 

reconstructed skin specimens determined at different depths from the surface was 

(0.50±0.1) µm and that for axial FWHM (1.0±0.3) µm. Both determined lateral and 

axial FWHM in skin specimens were higher than experimental values determined in 

water [128], glycerol [129] and turbid media [130] due to higher optical density of the 

skin as an imaging medium. On the other hand, only lateral FWHM values 

determined practically were higher than theoretical values calculated from Equations 

3.2.3 and 3.2.4. However experimental axial FWHM values were in accordance with 

theoretical values. This could be attributed to the high refractive index of skin [135] 

and the consequent mismatch in refractive index of the skin specimen and the 

objective since theoretical lateral FWHM values were calculated independent of the 

refractive index of the skin (Equation 3.2.3). This calls for re-adaptation of the 

mathematical equation to include the refractive index of the medium as one of the 

determinants of lateral resolution, when imaging biological specimens. However for 

axial resolution, the refractive index of the medium is already considered (Equation 

3.2.4) yielding closer values to the real case. Experimentally measured axial PSF 

were even slightly lower in some cases than theoretically computed ones. This could 

be due to the broad emission spectrum of AuNP on two-photon excitation [118]. It 

was also reported that axial FWHM is 10% lower than resolution determined based 

on Rayleigh criterion (Equation 3.2.4) [119]. 

No statistical significance (p > 0.05) was found between the resolution in fixed and 

non-fixed specimens. The mean values ± SD are shown in Table 3.2.2. Though 

lateral and axial resolution were expected to get worse going deeper inside the skin 

due to scattering of incident radiation, this was not the case with no or slight variation  

(p > 0.05) among lateral and axial PSF values versus depth from the skin surface 

(Figure 3.2.4). This could be attributed to the poor compactness of the reconstructed 

skin, with spaces of no particular pattern and of variable areas separating various 

skin layers, where the laser suffers much less scattering. The same results were 

obtained for specimens with different concentration of AuNP (94.7 and 487.1 µg/ml). 

This would rather indicate that the determined values are for sub-resolution particles 

and not for aggregated population of particles; otherwise great variation among 

results would have been observed depending on the size of aggregates. Moreover, 

much higher values would have been generally expected on examining skin 
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specimens with higher concentration of AuNP in case of aggregation, since it is a 

phenomenon that is expected to increase on increasing concentration. All this 

eliminates the possibility of aggregation and insures that the measured values are 

essentially higher than the values reported in literature for lateral and axial resolution 

under ideal conditions, for instance ~0.2 and 0.7 µm [130], respectively due to the 

scattering phenomenon in the complex non-homogenous skin tissue. 

Optical z-sectioning was further performed on longitudinal sections in different skin 

regions, SC and DSL, and lateral FWHM were determined, where nearly the same 

values were obtained (Table 3.2.2). Again, the lateral resolution did not change 

significantly going deeper inside the SC from the side view. Similarly, this could be 

due to the non-dense fibrous structure of the SC characterizing reconstructed skin. 

In DSL, a relatively denser part of the skin full of living cells, showed an increase in 

the lateral FWHM going deeper inside the tissue (Figure 3.2.5). This emphasizes the 

effect of tissue compactness on the imaging parameters by multiphoton microscopy. 
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Figure 3.2.5: lateral point spread functions (fitted to Gaussian function) at different depths from the 
surface, 2.5, 6 and 7 µm in DSL (deeper skin layers) of a longitudinal section of reconstructed skin 
grown from fibroblasts and keratinocytes together with AuNP, at a concentration of 487.1 µg/ml. 
Determined values of FWHM are noted on the curves. 
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Table 3.2.2: (a) Summary of the results of determination of lateral and axial PSF of a multiphoton 
microscope using a water immersion objective of 63X, NA 1.2 in fixed and non-fixed specimens of 
reconstructed skin grown from fibroblasts and keratinocytes together with AuNP at a concentration of 
94.7 and 487.1 µg/ml. (b) Mean values of lateral PSF in longitudinal sections of skin specimens grown 
with AuNP, 487.1 µg/ml, in the SC (stratum corneum) and DSL (deeper skin layers) measured at 
different depths from the surface (first layer of the side view). 

(a) 

 
Lateral PSF, µm 

(mean±SD) 

Axial PSF, µm 

(mean±SD) 

All data 0.5±0.1 1.0±0.3 

At a depth from the skin surface of *: 

1-15 µm: 0.5±0.1 0.9±0.3 

15-20 µm: 0.5±0.1 1.0±0.3 

>20 µm: 0.5±0.1 1.1±0.4 

Fixed** 0.5±0.1 1.0±0.2 

Non-fixed specimens with a concentration of AuNP (µg/ml) of: 

97.4 0.5±0.1 1.0±0.2 

487.1 0.5±0.1 1.0±0.3 

*For each depth from the skin surface, at least 3 particles were used for analysis for each AuNP 
concentration in fixed and unfixed skin specimens.  
**AuNP concentration = 487.1 µg/ml. 

 

(b) 

Location in the longitudinal skin 
section 

Lateral PSF, µm 

(mean±SD) 

SC 0.6±0.1 

DSL 0.6±0.1 

AuNP Concentration = 487.1 µg/ml  

 
 

A complementary part of the study was the depth profiling of the prepared AuNP in 

human skin and measuring the PSF in human skin instead. The results were then 

compared to that of reconstructed skin to further study the effect of the skin type and 

tissue compactness on imaging using multiphoton microscopy. Human skin is of 

more complex and denser structure. To assure distribution of AuNP allover the skin 
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thickness, human skin was exposed to AuNP, at a concentration of 97.4 µg/ml, 

under extreme conditions, as shown above. Longitudinal skin sections showed 

distribution of AuNP in almost all skin layers (Supplementary 3.2.2). On examination 

of the skin punch from the top view, however, AuNP could be detected up to a depth 

of only ~ 14 µm. Maximum detected depth was 23 µm. The latter was in an area of 

evident wrinkles on the skin surface, a parameter which contributes negatively to the 

accuracy of depth determination from the top view. A representative intensity-depth 

profile is shown in Figure 3.2.6a, where signal levels slowly attenuate with depth into 

the tissues reaching zero-intensity at a depth of 14.5 µm. Figure 3.2.6b shows a 

pixel-depth profile of this z-stack, where the number of events for AuNP detected 

signals initially increased followed by a subsequent decrease until 14.5 µm depth. 

Determined penetration depths were independent of the scan size (data not shown). 

Nevertheless, this again implies that the wide variations in detected penetration 

depths on z-optical sectioning of the examined reconstructed skin specimens could 

be due to its loose structure [133].  More important, our results in human skin show 

that nanoparticles could be tracked up to a shallow depth less than or equal to the 

average thickness of the SC due to scattering phenomenon in the heterogenous skin 

tissue with depth. This represents a major problem when tracking the penetration of 

nanoparticles into DSL. Different results were, however, obtained by  Guldbrand  

et al. [110-111] detecting a signal due to their fluorescent particles up to a depth of 

35-40 µm, implying an effect of the emission wavelength of the imaged fluorescent 

particles, 580 nm relative to a broad emission spectrum for AuNP 530-640 nm, as 

reported by Farrer et al. [118] and the high emission intensity. A second contributing 

factor would be the anatomical region of the excised skin, using breast skin versus 

abdominal skin used in our study. Moreover, in one approach they reported tissue 

damage on injecting their particles in the skin [110] and in another they stripped the 

SC before application of AuNP to allow for better penetration into the skin tissue 

[111]. This would certainly have an impact on the refractive index of the tissue; the 

epidermis has higher optical density than the dermis [135], and consequently on the 

spherical aberrations caused by the mismatch of the refractive index of the skin and 

the objective. 
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(a)               (b) 

 

Figure 3.2.6: (a) Intensity-depth and (b) pixel-depth profiles of AuNP in a z-stack (optical scan size of 
47.6 x 47.6 µm

2
) of human skin treated with AuNP in a concentration of 97.4 µg/ml imaged by 

multiphoton laser scanning microscopy from the top. Both the intensity and pixel frequency increased 
at the beginning then decreased going deeper inside the skin. The presented intensity and pixel 
values were thresholded to eliminate the contribution of the background. 

 

Table 3.2.3 shows the mean values of FWHM determined in human skin specimens 

from the top view and after longitudinal sectioning in the SC and DSL. Results of 

FWHM determination in human skin were comparable to our results in reconstructed 

skin with slightly higher values for human skin possibly due to the higher complexity 

and density of human skin compared to in vitro skin models grown from skin cell 

lines. These values are in line with previously determined FWHM by Guldbrand et al. 

[111] reporting a lateral resolution in the range of ~0.4-0.6 µm and an axial resolution 

of ~0.9-1.6 µm. However, up to the limited imaging depth achievable in skin tissue by 

multiphoton microscopy, ~ 14 µm, scattering did not appear to significantly degrade 

the imaging PSF (p > 0.05) (Table 3.2.3). The same trend was recently reported by 

Guldbrand et al. [111], showing no influence of the imaging depth on the FWHM 

when imaging fluorescent beads in human skin. According to them, this was 

attributed to the higher influence of the distortions caused by the optical system.  
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Table 3.2.3: (a) Summary of the results of determination of lateral and axial PSF of a multiphoton 
microscope using a water immersion objective of 63X, NA 1.2 in human skin injected and soaked in 
AuNP at a concentration of 94.7 µg/ml. (b) Mean values of lateral PSF in longitudinal sections of 
human skin specimens injected and soaked in AuNP, 487.1 µg/ml, in the SC (stratum corneum) and 
DSL (deeper skin layers) measured at different depths from the surface (first layer of the side view). 
 

(a) 

 
Lateral PSF, µm 

(mean±SD) 

Axial PSF, µm 

(mean±SD) 

All data 0.5±0.1 1.3±0.3 

At a depth from the skin surface of *: 

1-6 µm: 0.5±0.1 1.3±0.2 

6-10 µm: 0.6±0.0 1.1±0.3 

10-20 µm: 0.5±0.1 1.3±0.5 

*For each depth from the skin surface, at least 3 particles were used for analysis  

 

(b) 

Location in the longitudinal skin 
section 

Lateral PSF, µm 

(mean±SD) 

SC 0.6±0.1 

DSL 0.7±0.1 

 

3.2.4. Conclusion 

In conclusion, multiphoton laser scanning microscopy is a promising non-invasive 

technique in tracking skin penetration of nanoparticles. However, it suffers some 

limitations and thus results based on this technique should be interpreted with care. 

This was shown on depth profiling of AuNP in skin, where AuNP could be detected 

up to variable depths from the skin surface ranging from 14-100 µm, depending on 

the skin type (reconstructed skin and human skin), skin pretreatment (tissue fixation) 

and area of examination (presence or absence of wrinkles). Surprisingly, measured 

lateral and axial PSF were found not to degrade with depth, possibly due to the low 

tissue compactness, in case of reconstructed skin, or due to possible dominance of 

the distortions caused by the optical system along the relatively short detection depth 

for AuNP in human skin (~ 14 µm). Another limitation which should also be taken into 
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consideration on depth profiling of nanoparticles in skin from the top is the variable 

thickness of the SC. Therefore, particles located at a depth more or less than 20 µm 

are not essentially in the DSL or yet in the SC, respectively. This means that 

examination of longitudinal skin sections, though suffering possible sectioning 

artifacts, still provides more accurate information on the status of skin penetration of 

nanoparticles rather than optical sectioning of skin specimens examined from the 

top. 
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Supplementary information 

 

Supplementry 3.2.1: Human skin punch, 8 mm in diameter, injected with 1 ml AuNP at a 
concentration 97.4 µg/ml (left) in comparison to control non-treated skin punch (right). 

 

 

Supplementary 3.2.2: Representative images of AuNP (indicated as white spots) in longitudinal 
sections of human skin treated with AuNP at a concentration of 97.4 µg/ml, imaged by multiphoton 
laser scanning microscopy, showing distribution of AuNP in (a) the SC (stratum corneum) and DSL 
(deeper skin layers) and (b) even in much deeper layers inside the skin. The left panel is overlaid 
multiphoton/transmission images of AuNP in skin, while signals due to AuNP alone are shown in the 
right panel. 

(a) 

(b) 
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Abstract 

Purpose: To measure penetration and metabolic effects of ion-stabilized, polar, 15 

nm gold nanoparticles in aqueous solution (AuNP-Aq) and sterically stabilized, non-

polar, 6 nm gold nanoparticles in toluene (AuNP-TOL) on excised human skin.  

Methods: Gold nanoparticles were characterized with dynamic light scattering and 

transmission electron microscopy (TEM). Skin penetration studies were done on 

frozen or fresh excised skin using static Franz diffusion cells. Viable treated skin was 

assessed by dermoscopy, reflectance confocal microscopy (RCM), multiphoton 

tomography (MPT) with fluorescence lifetime imaging microscopy (FLIM), and TEM.  

Results: Dermoscopy and RCM showed large aggregates in the furrows of AuNP-

Aq-treated skin. Treatment of thawed and viable skin only showed enhanced 

permeability to nanoparticles in the AuNP-TOL group with MPT and FLIM imaging to 

stratum spinosum of epidermis. TEM analysis revealed gold nanoparticles within 

AuNP-treated stratum corneum. FLIM analysis of NAD(P)H showed a significant 

decrease in total NAD(P)H in all toluene-treated groups.  

Conclusions: Gold nanoparticles, 15 nm, in aqueous solution aggregated on the 

skin surface. Toluene treatment eliminated skin metabolism; skin treated with 

toluene/gold nanoparticles (6 nm) for 24 h, but not at 4 h, showed increased 

nanoparticle permeability. These results are of value to nanotoxicology.  

Keywords: confocal reflectance microscopy; fluorescence lifetime; multiphoton 

microscopy; nanoparticle; skin. 
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Abbreviations 

ANOVA: analysis of variance 

AuNP: gold nanoparticle(s) 

AuNP-Aq: gold nanoparticle in aqueous solution 

AuNP-TOL: gold nanoparticle in toluene 

BP: band pass filter 

EDXS: energy-dispersed X-ray spectroscopy 

FLIM: fluorescence lifetime imaging microscopy 

HFT KP: dichroic low pass filter 

ICP: inductively coupled plasma 

MPT: multiphoton tomography 

MPT-FLIM: multiphoton tomography with fluorescence lifetime imaging microscopy 

NA: numerical aperture 

NAD(P)H: nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide 
phosphate 

RCM: reflectance confocal microscopy 

SB: stratum basale 

SC: stratum corneum 

SG: stratum granulosum 

SS: stratum spinosum 

TEM: transmission electron microscopy 

TEWL: trans-epidermal water loss 

VE: viable epidermis 
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3.3.1. Introduction 

Penetration and adverse effects of topical nanoparticle exposure is an important 

issue for public health, regulatory agencies, and industry [42, 137-138]. Our skin is 

exposed to a number of nanoparticles from natural and manmade sources. 

Nanoparticulates, such as zinc oxide and titanium dioxide, are useful sunscreens 

found in cosmetics. The penetration and nanotoxicology in skin is a debated topic in 

academia, from small interest groups and regulatory agencies [139-140]. The 

capacity of nanoparticles to overcome the SC and reach the viable skin is dependent 

on the model, barrier integrity, nanoparticle (size, shape, surface properties, and 

charge) and nanoparticle degradation kinetics [137, 141-142]. Tape stripping [143], 

mechanical flexion [144], UV exposure [87], sonophoresis [76], and microneedles 

[145] have all been shown to increase nanoparticle penetration in skin. However, 

there is a gap in the literature with regard to nanoparticle studies done in human skin 

with a focus on workplace exposure. Yet, there are several toxicity studies based on 

cell-culture experiments as well as skin penetration studies to evaluate the safety of 

topical application of nanoparticles. These studies were previously reviewed by 

Crosera et al. [146], Cevc and Vierl [41], Prow et al. [142], Schneider et al. [42], and 

others. 

Nanoparticle skin exposure can come from topical products, but, importantly, 

workplace exposure is a critical area of nanotoxicology without a significant 

knowledge base [141, 147-148]. Solvents are commonly used in the workplace [149] 

and in the synthesis of nanomaterials [150]. While solvent effects on drug 

penetration kinetics have been studied extensively [151-152], very few studies exist 

on penetration and toxic effects of solvent/nanoparticle in topical exposure 

scenarios[148]. 

Beyond the workplace, separating solvent and nanoparticle effects is critical for 

estimating toxicity. One example is the case of colloidal fullerene nanoparticles 

reported to be toxic in a variety of tests, where the toxicity is now being attributed to 

the solvent, tetrahydrofuran, and not the nanoparticle [153]. We hypothesised that 

AuNP could serve as model nanoparticles for examining the combined effects of 

topical nanoparticles and solvents. This is the first report to simultaneously quantify 
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nanoparticle penetration and metabolic effects of toluene and nanoparticles in 

human skin. 

Xia et al. (2010) reported on the penetration of small fullerene nanoparticles, 1 nm, in 

four solvents—toluene, cyclohexane, chloroform, and mineral oil—on Yorkshire 

weanling pigs [148]. Chloroform, cyclohexane, and toluene increased nanoparticle 

penetration into deeper layers of the SC. Toluene was the second solvent after 

chloroform promoting fullerene penetration into SC. Xia et al. proposed that the 

mechanism of action was not wholly due to the solubility of the nanoparticle in the 

solvent. Further, two other mechanisms were proposed including solvent flux and 

solvent evaporation-induced supersaturation [148]. Our goal was to evaluate the 

solvent and nanoparticle combination. We chose AuNP as a model nanoparticle 

because of the inert nature of gold and the capacity to track these particles by two-

photon luminescence [118, 134]. 

Noble metal photoluminescence was described in 1969 [137] and two-photon 

luminescence reported in 1986 [154]. The optical and photonic properties of AuNP 

are favorable for biomedical imaging, in part because of enhanced light absorption to 

1.4×107 and 3.7×108 M−1cm−1 for 5 nm and 15 nm particles, respectively. However, 

the body of literature in the field of dermatology is limited with regard to topical AuNP 

application. There are several reports on AuNP effects on cultures of skin-derived 

cell lines [155-157]. However, there are no reports on the metabolic consequences 

of topical AuNP application on skin or any reports measuring penetration depth of 

nanoparticles less than 12 nm in human skin. Sonavane et al. (2008), showed 

penetration of 15 nm AuNP through excised rat skin after 24 h [45]. These data show 

that there is potential for small AuNP to penetrate deep enough through skin to reach 

the circulatory system in the dermis; thus, there may be some risk of systemic 

nanoparticle exposure. A recent report by Larese Filon et al. (2011) supports the 

earlier findings of Sonavane. They found similar results when evaluating AuNP 

penetration (12.9 nm) in thawed human skin [58]. AuNP were detected in the 

receiving solution of the Franz cells after 24 h of skin exposure. The authors also 

investigated the effects of skin abrasion on AuNP penetration. 

The objectives of this study include an in-depth investigation of the consequences of 

topical exposure to two AuNP formulations, with different size, charge, surface 
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chemistry, and vehicle, in terms of penetration and metabolic changes in human skin 

using multiphoton tomography (MPT), TEM, reflectance confocal microscopy (RCM), 

dermoscopy, and fluorescence lifetime imaging microscopy (FLIM). Our data 

suggest that toluene, a common industrial solvent, is associated with increased 

nanoparticle penetration through viable human skin, but only after long-term 

exposure. 

 

3.3.2. Materials and methods 

AuNP-Aq synthesis. Ionically-stabilized polar AuNP were prepared using the 

Turkevich method [132]. A 100 μg/ml solution of hydrogen tetrachloroaurate (70 ml, 

HAuCl4·3H2O, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was heated to 

100°C under stirring at 440 rpm and then reduced by adding a solution of trisodium 

citrate dihydrate (Na3C6H5O7·2H2O, Sigma-Aldrich) containing 5-fold molar 

concentration of gold salt. After the gold colloid had formed, the temperature was 

lowered to 25°C. The colloid was then stored at 4°C in the dark. 

AuNP-TOL synthesis. Sterically stabilized apolar AuNP were synthesized as 

described by Zheng et al. [158]. AuNP were formed upon gold reduction by an 

amine-borane complex in the presence of an alkyl thiol. In a typical synthesis, 0.31 g 

chlorotriphenylphosphine gold (purity 98%, ABCR, Karlsruhe, Germany) was 

dissolved in 50 ml of benzene (purity >99.5%, Riedel-de Haen, Germany), forming a 

colorless solution. A mixture of 0.53 g tert-butylamineborane (purity, 97%, Fluka, 

Germany) and 0.31 ml dodecanethiol (purity >98%, Fluka, Germany) was added to 

the formed solution and left to react at 55°C for 1 h. Upon completion of the 

reduction reaction, the red solution was cooled to room temperature, precipitated by 

the addition of ethanol and washed by centrifugation and subsequent resuspension 

in toluene. Finally, the resuspended particles were stored at room temperature away 

from light. 

Nanoparticle characterization. The optical properties of the AuNP were recorded 

using a UV/Vis spectrophotometer (lambda 35, Perkin Elmer LAS, Germany) in the 

range of 400–800 nm. Mean particle size of the gold core (n=30) and morphology 

were determined by transmission electron microscopy (TEM) using a JOEL Model 
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JEM 2010 instrument (JOEL GmbH, Eching, Germany) operated at an accelerating 

voltage of 120 kV. Samples for TEM analysis were prepared by placing 12 μl of 

dispersed nanoparticles on carbon-coated 400 mesh copper grids. The solvent was 

allowed to evaporate at room temperature. The nanoparticle hydrodynamic radius 

was measured using a Malvern Zetasizer Nano (Malvern Instruments, Malvern, UK) 

based on dynamic light scattering at 25°C. The surface charge of AuNP-Aq was 

estimated by measuring the zeta potential based on the electrophoretic mobility 

(Zetasizer Nano, Malvern Instruments, Malvern, UK) in water. The samples (1.5 ml) 

were run in triplicate using disposable folded capillary cells that contained the 

electrodes. 

Excised human skin preparation. Human skin was obtained from abdominoplasty 

patients with the approval of either the Research Ethic Committee of Saarland, 

Germany (Ärztekammer des Saarlandes, Dec. 2008) (thawed skin experiments) or 

Princess Alexandra Hospital Research Ethics Committee (No. 1997/097), Australia 

(viable skin experiments). All volunteers had previously signed informed consent 

forms. Eleven skin donors were used in this study. The subcutaneous fatty tissue 

was immediately removed from the skin. The surface of each specimen was cleaned 

with water. For thawed skin experiments, skin specimens were wrapped in aluminum 

foil and stored in polyethylene bags at 4°C or −26°C for less than 6 months before 

further usage. Previous investigations have shown that there is no change in the 

penetration characteristics of drugs through thawed skin stored frozen for 6 

months [159]. 

Skin discs, 25 mm in diameter, were cut, thawed, cleaned with deionized 

water/Ringer solution, and transferred into the Franz diffusion cells. Transepidermal 

water loss (TEWL) was measured with a Biox AquaFlux Condenser Chamber unit 

(model AF200) to assess barrier integrity before and after 24 h treatment. 

Skin penetration studies. Ex vivo penetration experiments were carried out in static 

Franz diffusion cells with previously frozen and viable skin. Skin was mounted in 

Franz cells with a diffusion area of 1.8 cm2 and 1.1 cm2 and receptor compartment 

volumes of 12 ml and 3.2 ml volume for frozen and viable skin experiments, 

respectively.  Receptor solution was phosphate-buffered saline, pH 7.4, magnetically 

stirred at 500 rpm. Nanoparticle-containing solutions in their original dispersion 
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medium, 500 μl at 90 μg/ml, were topically applied in the donor cell. Diffusion cells 

were maintained at 32°C throughout the 4 and 24 h exposure experiments. Following 

treatment, the excess nanoparticle solution was drained, and the skin was removed. 

Cryosectioning. Skin was fixed, embedded, and sectioned as previously  

described [138]. Skin was fixed in 2% paraformaldehyde in 0.1 M phosphate buffer 

pH 7.4 for 2 h at room temperature. Skin sections (10–50 μm thick) were cut at 

−20°C using a SLEE cryostat type mev (SLEE medical GmbH, Mainz, Germany) or 

Leica CM1850 cryostat (Leica microsystems, Heidelberger, Nussloch, Germany). 

The sections were mounted in Prolong Gold (Invitrogen, Mulgrave, Victoria, 

Australia) or FluorSaveTM (Calbiochem, San Diego, USA) prior to microscopic 

analysis. On cryosectioning, placement of the skin punch was not parallel to the 

cutting blade of the cryotome to avoid dislocation of the particles from outside into 

the deeper skin layers or vice versa, but in a perpendicular position limiting 

sectioning artifacts [134]. 

Dermoscopy and reflectance confocal microscopy (RCM). Treated skin was 

visualized using RCM (Vivascope 1500, Lucid Inc., Henrietta, NY) with an in-built 

dermascope used for visualization of treated skin surface and localization of 

nanoparticle aggregates on and within skin. Color dermoscopy images were taken to 

6×6 mm2 at 1000×1000 px2. RCM carried out at 830 nm with an optical power 

between the range of 3–6.9 mW was used to take 500×500 μm images at 30X 

magnification.  

A z-stack was taken with images taken every 2 μm from the skin surface to a depth 

of 100 μm. ImageJ (National Institutes of Health, Bethesda, Washington, D.C., USA) 

was used to analyse the mean intensity of AuNP in the SC of furrow depth using a 

threshold of 240–255 to identify highly reflective areas and to render RCM images in 

3D. 

Thawed skin MPT. MPT imaging was performed using an inverted confocal/two-

photon excitation fluorescence microscope (Zeiss LSM 510 META system, Carl 

Zeiss, Jena, Germany), equipped with a Chameleon infrared laser (λ=710–930 nm). 

The objective was a water immersion lens 63X NA=1.2; an excitation wavelength of 

800 nm, dichroic beam splitters HFT KP 700/488 nm, and an emission filter BP 560–

615 nm filter were used. Transmission light images of the skin sections were also 
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taken simultaneously and shown as overlays with the nanoparticle luminescence. Z-

stacks were taken with steps every 1 μm until there was no detectable signal. An 

excitation radiation with transmission energy of 0.6 and 0.5 mW was used for skin 

and nanoparticle tracks, respectively. 

Viable skin MPT and FLIM. A multiphoton tomograph (DermaInspect®, JenLab 

GmbH, Jena, Germany) equipped with a time-correlated single photon counting 

detectors, FLIM system (Becker and Hickl, Berlin, Germany) was used to 

simultaneously image nanoparticles and endogenous NAD(P)H as described 

previously [142]. A tuneable laser (Mai Tai, Spectra physics, Mountain View, USA) 

with a range of 710–920 nm was used as the excitation source and ultra-short pulse 

width (65 fs) in pulsed mode-locked at 80 MHz. Treated skin was optically sectioned 

using MPT-FLIM with a 740 nm excitation wavelength from SC to SB in 5 μm 

increments using 40X objective lens with an image size of 210×210 μm2. The 

emission was filtered with a 350–650 nm band pass filter (BG39), a <700 nm short 

pass optical filter, and a 350–450 nm band pass filter. A constant excitation power of 

30 mW at the rear of the objective was used. At least three biological replicates were 

analysed at 4 and 24 h of treatment for each group. 

Resulting FLIM data were analyzed with SPC 830 2.9 Image software (Becker and 

Hickl) to generate fluorescence lifetime decay and photon contribution curves from 

NAD(P)H autofluorescence and gold luminescence. The instrument response 

function of each FLIM image was calibrated to a sucrose crystal standard (Ajax 

Finechem Pty Ltd.). The fluorescence decay curve was fitted with a double 

exponential model,           
          

     , that defines the short and long 

lifetime/amplitude values. NAD(P)H-related metabolic rate and AuNP luminescence 

were quantified as previously described [142, 160]. NAD(P)H autofluorescence was 

isolated using α1% from 45–85, and AuNP luminescence was isolated from NAD(P)H 

using α1% from 90–100. The α1% is the proportion of the emission photons that 

return to the detector during the short lifetime phase of the decay curve, and the α2% 

represents the proportion of long lifetime photons. Although fluorescence lifetime 

changes with changes in the microenvironment, the α1% does not. This allows the 

AuNP luminescence positive pixels to be separated from skin autofluorescence. 
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Transmission electron microscopy. A high resolution TEM microscope, fitted with 

EDXS and selected area electron diffraction, was used to visualize AuNP in treated 

skin samples. High pressure freezing was used to preserve the skin ultrastructure 

using a Leica EM PACT2 system. Skin was placed in a 1.5×0.2 mm well with a 

membrane carrier coated with 1-hexadecene and filled with 1-hexadecene and then 

rapidly frozen. Samples were then stored in liquid nitrogen and transferred to vials 

containing 1% osmium tetroxide (OsO4), 0.5% uranyl acetate, and 5% H2O in 

acetone. Samples were then cryosubstituted at −85°C for two days before being 

gradually warmed to room temperature. After cryosubstitution, the sample was 

removed from the membrane carrier, washed in acetone, and infiltrated in Epon resin 

with the use of a microwave (3×40 s, 250 W, no vacuum). Infiltration was gradually 

carried out with Epon in steps of 1:3, 1:2, 1:1, 2:1, 3:1, 100% and 100% 

Epon:acetone steps (2×3 min, 250 W, vacuum) using a microwave (Biowave, Pelco) 

at 60°C. Ultrathin sections (60 nm thickness) were cut from the polymerised block, 

collected on Formvar-coated 200 mesh copper grids, and examined using a JOEL 

2010 transmission electron microscope with 80 kV power. 

 

Statistical analysis. Differences in measured macroscopic parameters of treated 

and control groups were tested applying the non-parametric Mann-Whitney t-test. 

Two-way ANOVA analysis was used to determine significance within multiple 

groups. Level of significance was accepted at p≤0.05.  

 

3.3.3. Results 

 

Characterization of AuNP. Dynamic light scattering was used to assess physical 

properties of two nanoparticles formulations (Table 3.3.1). Both nanoparticles were 

monodisperse as shown by TEM. Nanoparticle diameters were confirmed with TEM 

(Figure 3.3.1). Zeta potential measurements showed that the AuNP-Aq were 

negatively charged and the AuNP-TOL were uncharged. Both prepared AuNP 

dispersions showed physical stability and no aggregation. Aggregation of AuNP 

would be indicated by a large red-shift of the spectral peak and/or strong peak 

broadening [161]. 
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Table 3.3.1: Characteristics of the Prepared AuNP Dispersion 

AuNP-code Surface 

chemistry 

Size of gold 

core, nm 

DLS 

diameter, nm 

Zeta 

potential, mV 
Vehicle 

AuNP-Aq Citrate ions 14.9±1.8 15.3±0.7 -35.1±1.87 Water 

AuNP-TOL Dodecanethiol 6.0±0.8 7.2±0.9 Uncharged Toluene 

 

(a)             (b) 

 

Figure 3.3.1: (a) Citrate-stabilized AuNP-Aq and (b) thiol-coated AuNP-TOL imaged with TEM. 

 

Excised human skin barrier integrity. Transepidermal water loss was used as an 

indicator of barrier integrity. After receipt, skin was cut into circular pieces and 

mounted in Franz cells. We then evaluated TEWL in specimens before and after 24 

h of treatment. The mean±SE of TEWL was 26±1, 25±1, 25±2 and 27±1 g/(m2h) for 

the aqueous, toluene, AuNP-Aq, and AuNP-TOL groups before treatment. After 24 h, 

TEWL had increased to double for all groups. There was no statistical significance 

between any two groups within a single time point, and there was significant TEWL 

increase in all groups after 24 h treatment to p<0.0001. 

 

Dermoscopy of AuNP-treated skin. After 24 h treatment, skin surface of AuNP-

treated and vehicle-only skin samples was visualized using dermoscopy (Figure 

3.3.2a–d). Fine purple lines corresponding to the furrows can be seen in AuNP-

treated skin (Figure 3.3.2c–d). The color is reminiscent of AuNP aggregates. There 

was more intense and bluer color associated with the AuNP-Aq treated skin 
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compared to the AuNP-TOL group, pointing towards increased aggregation with the 

aqueous-formulated AuNP. 

 

RCM of AuNP-treated skin. The resolution of RCM enables visualization of cellular 

morphology and large, reflective nanoparticle aggregates [142]. Treated skin was 

imaged with RCM after 24 h treatment. With RCM we observed distinct 

morphological changes that suggested toxicity in toluene-treated skin (Figure 3.3.2f, 

h) but not in skin treated with aqueous dispersions (Figure 2e, g). Highly reflective 

aggregates were seen in both nanoparticle treated groups (Figure 2g, h) but not in 

vehicle-only controls (Figure 3.3.2e, f). Aggregates were most prominent in the 

AuNP-Aq group, supporting the hypothesis that the AuNP-Aq were highly 

aggregated on the skin surface (Figure 3.3.2c, g). As in the dermoscopy images, 

there were fewer AuNP-TOL aggregates than observed in the AuNP-Aq group 

(Figure 3.3.2g, h). Aggregates were only observed on and within the upper SC in 

nanoparticle-treated groups. The dermoscopy and en face RCM images showed that 

there were AuNP aggregates within the skin furrows. A 3D reconstruction of the 

RCM z-stacks confirmed the presence of large aggregates within the furrows of 

AuNP-Aq treated groups and the absence of these aggregates in all other groups 

(Figure 3.3.3). Figure 3.3.3 shows treated skin from a cross-sectional point of view. 

The dotted line highlights the surface of the skin; the arrowhead in Figure 3.3.3b 

indicates a representative cluster deep within a furrow. 
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Figure 3.3.2: Dermoscopy, RCM and MPT-FLIM images of treated human skin. Dermoscopy and 
RCM images showing the surface of skin specimens treated with aqueous solution, toluene, AuNP-
Aq, and AuNP-TOL for 24 h for dermoscopy (a–d) and for RCM images (e–h). Black dashed line 
indicates abnormal reflectance structure within the toluene treated skin (f, h); white dashed line shows 
highly reflective particles on the surface of the skin (g). FLIM images from the stratum granulosum 
layer of the epidermis from skin treated for 4 (i–l) and 24 h (m–p). Scale bars: 4 mm (d); 50 μm (h, l, 
p); pseudocolored MPT-FLIM images are α1% 50–100 from blue to red. Blue-green coloration 
indicates cellular autofluorescence, i.e. NAD(P)H, and gold nanoparticle luminescence is orange to 
red (k, l, o, p). 
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Figure 3.3.3: 3D reconstructed RCM images rendered in cross section. 3D reconstructed RCM 
images of skin specimens treated with aqueous solution, AuNP-Aq, toluene and AuNP-TOL. The 
stratum corneum within the furrows is highlighted with dotted lines. The arrowhead indicates gold 
nanoparticle aggregates deep within the furrow. Scale bar: 50 μm. 

 

En Face MPT-FLIM analysis of viable skin treated for 4 and 24 hours. The 

fluorescence lifetime decay curve contains a short and a long component in this 

context. The short component represents the photons that return to the detectors 

quickly, i.e. in the ultrafast multiphoton excited photoluminescence that results from 

metal nanoparticles and second harmonic generation from collagen. The lifetime is 

usually reported in picosecond or nanosecond units. Fluorescence lifetimes can 

change with the microenvironment and are thus not optimal for separating AuNP and 

NAD(P)H. The α% is the proportion of photons that have short or long lifetimes; this 

proportion does not change with changes in the microenvironment or concentration. 

Therefore, we use α% ranges to separate AuNP and NAD(P)H, where intensity 

changes represent changes in concentration. Skin treated for 4 and 24 h was 

subjected to MPT-FLIM analysis. The images shown in Figure 3.3.2i–p are from the 

SG layer and are pseudocolored at α1% 50–100% (blue to red). The autofluorescent 

components of living skin, i.e. NAD(P)H and keratin, can be seen in Figure 3.3.2i, m, 

k, o in green and blue. AuNP luminescence is shown in orange to red in Figure 

(a) 

(b) 

(c) 

(d) 
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3.3.2k, l, o, p. AuNP signal can be seen primarily in the furrows of nanoparticle 

treated skin. Skin treated with aqueous formulations shows clear keratinocyte 

morphology due to NAD(P)H, found primarily in active mitochondria. Toluene-treated 

skin shows an absence of NAD(P)H autofluorescence. Skin treated for 24 h with 

AuNP-TOL revealed AuNP signals from the SG suggesting some nanoparticle 

penetration. This phenomenon was not observed in any other group. 

 

Cross-section analysis of nanoparticle penetration with TEM, MPT, and MPT-

FLIM. Frozen sections of thawed skin treated with nanoparticle formulations for 24 h 

showed AuNP luminescence within the epidermis in AuNP-TOL but not in AuNP-Aq 

treated samples (Figure 3.3.4). We then used TEM to assess nanoparticle 

penetration and tissue ultrastructure in viable human skin. Skin treated for 24 h was 

subject to high pressure freezing for TEM or cryopreservation for MPT-FLIM (Figure 

3.3.5). TEM imaging showed ultrastructure indications of toxicity in toluene-treated 

skin. SC showed some delamination, but there were significant signs of toxicity in the 

viable epidermis. Cell membranes were severely disrupted, including mitochondria 

and cell junctions (Figure 3.3.5b, d). The electron-dense nature of AuNP results in 

increased electron scattering of the incident electrons and thus appears as dark 

spots in TEM images. AuNP were found on the skin surface and up to two cell layers 

deep in SC of AuNP-Aq-treated skin (Figure 3.3.5g). AuNP were found up to ten cell 

layers deep in the AuNP-TOL-treated skin, but could not be identified within the 

viable epidermal layers. This may be due to increased particulate background from 

the staining solution binding to particulates associated with toluene-damaged tissue 

(Figure 3.3.5c, d). 
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    (a)      (b) 

 
    (c)      (d) 

 

Figure 3.3.4: MPT of thawed skin treated for 24 h. (a–d) 10 μm-thick cryosectioned skin from 
aqueous, toluene, AuNP-Aq, and AuNP-TOL groups. The images are overlays of light transmission 
and gold luminescence images. The stratum corrneum and viable epidermis are labelled SC and VE; 
the SC is outlined in white. The white arrows indicate AuNP in the AuNP-Aq image and the circle 
indicates AuNP in the AuNP-TOL image that is 13 μm deep. 
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Figure 3.3.5: Gold nanoparticle penetration in cross-sections using TEM and MPT-FLIM. Low and 
high magnification images of the epidermis and superficial stratum corneum from each of the 
treatment groups (a–h). Scale bars: 1 μm (a–d); 200 nm (e, f); 500 nm (g, h). Pseudocolored MPT-
FLIM images (i–l) show the penetration pattern of gold nanoparticles (orange to red). MPT-FLIM 
imaging with a 740 nm excitation wavelength and emission was filtered with a 350-650 nm band pass 
filter (BG39). (i–l) Scale bar: 50 μm; pseudocolored MPT-FLIM images are α1% 50–100 from blue to 
red. 
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Quantification of multiphoton images was conducted. Representative optical z-

stacks, 1 μm nominal step width, for examined thawed skin cross-sections were then 

quantified, according to a method we developed and recently published elsewhere 

[134]. Briefly, the method of quantification is based on calculation of Σpixel frequency 

due to AuNP in the SC and DSL, from which weighed number of particles were 

calculated. No particles were quantified in DSL of thawed skin specimens treated 

with AuNP-Aq. On the other hand, results showed depth-profile for AuNP-TOL 

having higher numbers of AuNP in the upper skin layer, SC (1082 nanoparticles) 

rather than viable epidermis (470 nanoparticles) [134]. 

We used MPT-FLIM to separate cellular autofluorescence from AuNP luminescence. 

In Figure 3.3.5i, j, cryosections of treated skin are shown with MPT-FLIM and are 

pseudocolored from blue to red for α1% 50–100%. Cellular autofluorescence is 

shown in green to yellow; AuNP luminescence is shown in orange to red. These 

colors correspond to relatively slow autofluorescence lifetime and relatively 

instantaneous nature of AuNP luminescence. Images are oriented so the SC is at 

the top and dermis is towards the bottom. Aqueous-treated samples (Figure 3.3.5i, j) 

show an even green signal through the viable epidermis with dark ellipsoids 

suggestive of nuclei in position, size, and absence of NAD(P)H signals. These 

morphological queues are not prominent in toluene-treated skin (Figure 3.3.5k, l), 

suggesting a lack of the usual membranes that partition NAD(P)H out of the nucleus. 

The orange signal at the bottom of Figure 3.3.5j, k is likely to be collagen second 

harmonic generation, where the green-orange interface is the dermal epidermal 

junction. The second harmonic signal from collagen has overlapping lifetime 

characteristics with gold luminescence, resulting in an indistinguishable lifetime 

signature that limits identifying AuNP signals to the epidermis. Only AuNP-treated 

groups show strong signals at the skin surface (Figure 3.3.5k, l). The key difference 

between the AuNP-Aq and AuNP-TOL images was the presence of punctuate AuNP 

signals with a depth-dependent decrease in number from within the viable epidermis 

in the AuNP-TOL (Figure 3.3.5l), but not in the AuNP-Aq-treated skin (Figure 3.3.5j). 

These data indicate that AuNP penetrated deeper within human skin in presence of 

toluene for 24 h. Importantly, these images were taken from the centre of thick (50 

μm) cryosections to minimize potential edge contamination effects, and the 

punctuate signal pattern was not observed in any of the other treatment groups, 

including toluene-only control.  
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En Face MPT-FLIM intensity measurement of AuNP luminescence in human 

skin. Penetration profiles of AuNP luminescence signals are shown for 4 and 24 h 

treatment groups in Figure 3.3.6a, b. Depth stacks of MPT-FLIM images were taken 

of treated human skin; AuNP luminescence signal was quantified using a stringent 

range of α1% 90–100 to exclude skin autofluorescence. Significantly more AuNP 

signal was detected deep in the SC in the AuNP-TOL group at 4 h (p<0.001), but not 

in the other 4-hour treatment groups (Figure 3.3.6a). AuNP luminescence signals 

were found within the SC in both AuNP treatment groups after 24 h treatment, but 

not in vehicle-only groups (Figure 3.3.6b). AuNP luminescence signals were found 

significantly deeper in the AuNP-TOL-treated group than AuNP-Aq group at 24 h 

(p<0.05), supporting the histological findings above. Intensity of gold aggregate 

reflectance signal in furrows was quantified from RCM analysis (Figure 3.3.6c). 

These data show the presence of significantly more highly reflective aggregates 

deep within the furrows of AuNP-Aq-treated skin (p<0.0001), compared to all other 

groups. 

 

MPT-FLIM analysis of NAD(P)H at 4 and 24 hours post-treatment. MPT-FLIM 

analysis of NAD(P)H was carried out in epidermis of excised human skin. FLIM data 

were taken via a depth series of en face images that were processed to quantify total 

NAD(P)H intensity and α1/α2 ratio. The α1/α2 ratio is inversely related to the metabolic 

rate [162]. Toluene-treated skin, including toluene alone and AuNP-TOL, at both 4 

and 24 h showed low NAD(P)H signals similar to those seen in non-viable skin 

(Figure 3.3.2j, n, l, p; Figure 3.3.7a, b) [163]. Total NAD(P)H signal in toluene-treated 

groups was significantly depressed when compared to the aqueous groups, p<0.001. 

After 4-hour treatment with AuNP-Aq, total NAD(P)H levels were significantly lower 

than aqueous-only controls, p<0.01. α1/α2 data mirrored the total NAD(P)H results 

with a significant increase in the ratio of toluene-treated groups compared to the 

aqueous groups (p<0.001) (Figure 3.3.7c, d). At 24-hour treatment, differences in 

α1/α2 ratio were less pronounced than in total NAD(P)H analysis. This may be due to 

natural skin necrosis after removal from the donor, as we have previously reported 

[163]. Unlike the total NAD(P)H data, the α1/α2 ratio data showed no differences 

between the aqueous groups. 
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Figure 3.3.6: Gold nanoparticle luminescence and reflectance skin profiles. Data from MPT-FLIM 
depth series (SG indicates the stratum granulosum) were processed to identify gold nanoparticle 
luminescence intensity as a function of depth in non-furrow-containing regions. Data are shown for 
both 4 and 24 h treatment groups (a, b). Furrow reflectance intensity was derived from the stratum 
corneum and outer surface of furrow areas; the top of the skin is at 0 μm (c). These data were 
gathered from a depth series of en face images. 
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3.3.4. Discussion 

 

Nanoparticle skin penetration is a multi-factorial and multistep process that is 

affected by a number of factors, including the skin type, barrier damage, and 

inherent physicochemical attributes (size, shape, surface charge, etc.) and vehicle of 

the applied colloids. Measuring nanoparticle penetration and NAD(P)H effects in 

excised human skin was the focus of this microscopy study. Human skin was 

chosen, being regarded as the ―gold standard‖ and most reliable set-up for in vitro 

skin penetration studies, especially in human dermal risk assessment [48]. The 

public could come in contact with nanoparticles non-intentionally in daily life via 

handling of several products such as cleaning agents, sport clothes, paints, etc., in 

addition to environmental exposure to water and air contaminated with nanoparticles.  

 

 
Figure 3.3.7: NAD(P)H effects from MTP-FLIM imaging. NAD(P)H signals were separated from gold 
nanoparticle luminescence by selecting α1% 45–85. NAD(P)H intensity with depth in non-furrow areas 
(SG (stratum granulosum), SS (stratum spinosum) and SB (stratum basale)) from skin treated for 4 
and 24 h (a, b). The α1/α2 ratio is inversely related to the metabolic rate and was calculated for each of 
the treatment groups at 4 and 24 h (c, d). 
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Last but not least, the safety of personnel working in industry and research handling 

nanoparticles was not in focus. Though nanotechnology is finding a lot of 

applications in pharmaceutical industry, safety issues should be further studied, 

highlighting the importance of this study. Aside from occupational health issues, 

studying the behavior of nanoparticles with the skin barrier is a very important basic 

research approach for later application in designing topical drug delivery systems 

with optimal parameters. This is especially true when solvents like terpenes are used 

in topical formulations [164]. Our experimental design was congruent with previous 

gold nanoparticle skin penetration studies with similar exposure times and use of 

static Franz cells. Our study design was unique because we evaluated viable human 

skin and utilized clinical dermoscopy, RCM and MPT-FLIM. Therefore, our results 

can be directly compared to future clinical studies because our assessment 

technologies can be applied in vivo. 

Sonavane et al. (2008) showed that 15-nm AuNP in aqueous solution were capable 

of penetrating through full thickness rat skin over 24 h using spectrophotometry and 

TEM [45]. Similarly, Larese Filon et al. (2011) showed AuNP penetration after 24 h 

using ICP to detect gold ions in the receptor [58]. Our study showed penetration into 

SC but not beyond using 14.9-nm AuNP in aqueous solution with TEM, MPT-FLIM, 

and RCM. This incongruity with the rat skin study by Sonovane et al. and thawed 

human skin by Larese Filon et al. might be due to the type of skin used. Viable rat 

skin is thinner and more permeable to nanoparticles than viable human skin [73, 

142]. Thawed human skin is non-viable [163] and, therefore, is likely to be more 

permeable to nanoparticles than viable human skin. The use of MPT-FLIM to detect 

luminescent nanoparticles eliminates the possibility of solubilized nanoparticle 

residues from our analysis because luminescence only occurs in the presence of the 

intact particle, thus eliminating potentially confounding factors like soluble or 

endogenous ions, as can occur with ICP analysis. The inability of the 15-nm AuNP-

Aq to cross skin barrier could be also attributed to their surface aggregation, as 

observed by dermoscopy. This could be attributed to the exchange of the citrate ions 

on the AuNP surface with skin proteins or lipids, as shown in other biological 

environments [165-166]. 

There were substantial similarities between our results with nanoparticles in toluene 

and the study by Xia et al. (2010) [148]. They showed increased nanoparticle 

penetration in the presence of solvents that included toluene. As pig skin is more 
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similar to human skin and this study was done in vivo using Yorkshire weanling pigs, 

it is a more relevant comparison to our study than rat skin or thawed human skin. 

The expected similarities in nanoparticle penetration between human and porcine 

skin are based on similar solute fluxes previously observed [167-168]. 

Our TEM data showed widespread disruption of the epidermal ultrastructure in 

toluene-treated samples. These TEM images showed discontinuous cell membranes 

and particulates throughout the samples that were not present in aqueous-treated 

groups. Disruption of lipid barriers by toluene could have directly led to the increased 

nanoparticle penetration we observed in the AuNP-TOL-treated skin. We observed 

dramatic decreases in total NAD(P)H autofluorescence with toluene treatment. 

These data were similar to those from necrotic skin we previously published [163]. 

Therefore, we hypothesize that toluene-treated skin was metabolically disrupted 

within 4 h of treatment by chemically induced necrosis. TEWL measurements 

indicate the integrity of the skin specimens with general increase in values after 24 h 

of occlusive conditions due to over-hydration of the skin. Regarding nanoparticle 

penetration only, long-term incubation revealed some penetration, indicating that 

skin barrier was not completely disrupted. Skin treated with AuNP in aqueous 

solution revealed lower total NAD(P)H signal, but metabolic rate appeared 

unchanged. We have observed decreases in the metabolic rate of silver 

nanoparticle-treated human skin [142], so we hypothesize that the unchanged 

metabolic rate data from AuNP treatments suggest that the total NAD(P)H signal 

may have been reduced by AuNP light scattering and not metabolic effects. 

 

3.3.5. Conclusion 

 

Our data showed that 15-nm AuNP in aqueous solution tended to aggregate on the 

superficial SC after 24 h exposure, while 6-nm AuNP in toluene penetrated through 

SC and into epidermal layers of human skin. Our NAD(P)H imaging data showed 

that epidermis was not viable at 4 and 24 h post-toluene treatment regardless of the 

presence of AuNP. Nevertheless, an exclusive role of the size or solvent on skin 

penetration should not be the conclusion of this research work. A more in-depth 

study of the single size and solvent effects is therefore in need. The results of this 

paper, however, should raise public awareness regarding the environmental 

exposure to nanoparticles, especially for personnel in research and industry. In the 
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future, similar studies are needed characterizing the impact of different 

physicochemical properties of nanoparticles with regard to penetration and metabolic 

effect on the skin. 
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Abstract 

The ability of nanoparticles to penetrate the stratum corneum was the focus of 

several studies. Yet, there are controversial issues available for particle penetration 

due to different experimental setups. Meanwhile, there is little known about the 

mechanism and determinants of their penetration. In this paper the penetration of 

four model AuNP, of diameter 6 and 15 nm differing in surface polarity and the 

vehicle nature through human skin was studied using multiphoton microscopy. This 

is in an attempt to profoundly investigate the parameters governing particle 

penetration through human skin. Our results imply that nanoparticles at this size 

range permeate the stratum corneum in a similar manner to drug molecules, mainly 

through the intercellular pathways. However, due to their particulate nature, 

permeation is also dependent on the complex microstructure of the stratum corneum 

with its tortuous aqueous and lipidic channels, as shown from our experiments 

performed using skin of different grades of barrier integrity. The vehicle (toluene-

versus-water) had a minimal effect on skin penetration of gold nanoparticles. Other 

considerations in setting-up a penetration experiment for nanoparticles were also 

studied. Results obtained are very important for designing a new transdermal carrier 

and for the basic understanding of skin-nanoparticles interaction. 
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3.4.1. Introduction 

The potential ability of nanoparticles to overcome the barrier function of the stratum 

corneum (SC) has been recently the target of several studies. Nevertheless, there is 

a controversy among researchers whether nanoparticles do penetrate the SC into 

the viable tissue [50, 75] or not [60, 62, 115]. The different results are mainly due to 

different experimental setups, in terms of the skin type, skin surface area, exposure 

time and type and concentration of applied nanoparticles. A great deal of the recent 

work was mainly focused on treating the skin physically, e.g., tape stripping [73, 90], 

mechanical flexion [144], UV exposure [87], sonophoresis [76], microneedles [145] 

or chemically using penetration enhancers [85] to cause or enhance the penetration 

of nanoparticles into the deeper skin layers (DSL). In this study, however, a well-

designed skin penetration experiment, using excised human skin as the gold 

standard for ex vivo skin penetration is considered crucial in regard to the extensive 

studies on animal skin [45, 75, 90, 144, 148]. The physicochemical parameters, size, 

surface polarity, physical state of the nanoparticles, in addition to the effect of vehicle 

were in focus. 

Surface polarity of nanoparticles and the vehicle nature are expected to play a role in 

skin penetration of nanoparticles. Yet, to our knowledge, only three studies 

investigated the effect of surface charge of nanoparticles on skin penetration, though 

they were also controversial in terms of the surface charge which leads to higher 

affinity of the particles to porcine skin [75, 169-170]. Senzui et al. [78] studied the 

penetration of 35 nm titanium dioxide nanoparticles, uncoated and coated with 

alumina/silica/silicon, through porcine skin. However, no penetration was reported for 

both particles.  

Apart from the size factor, the effect of surface polarity of nanoparticles, having the 

same size diameter, on skin penetration was not the scope of any investigation so 

far. On the other hand, the only evidence for the effect of solvents on the skin 

penetration of nanomaterials was recently reported by Xia et al. [148] for pristine 

fullerenes of 1 nm in diameter. Several industrial organic solvents: chloroform, 

toluene, cyclohexane and mineral oil were examined. Porcine skin biopsies showed 

penetration of particles for all of the tested solvents except for mineral oil, with much 

higher penetration in case of chloroform. Baroli et al. [53], however, compared the 

effect of nanoparticle formulation to blank solutions on human skin resistivity and 
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concluded a minor effect of the vehicle on their results. Finally, the physical stability 

of nanoparticles when coming in contact with the skin and its effect on skin 

penetration, though not studied so far, is an important parameter that could partly 

explain the disagreement of results reported by different researchers concerning the 

penetration of nanoparticles of the same size range [60, 75]. Hence, a more 

systematic study on the penetration of nanoparticles through human skin taking into 

account that all the mentioned relevant physicochemical parameters together has 

not been done so far. 

Several nanoparticles, polymeric or inorganic nanoparticles, were investigated for 

possible skin penetration [42]. Among these particles, gold nanoparticles (AuNP) are 

considered a good model for studying skin penetration of nanoparticles [58, 86, 134]. 

They have unique optical properties. They show distinctive extinction bands in the 

visible region, due to surface plasmon oscillation of free electrons [114]. This 

property allows for tracking the physical state of the particles under different 

conditions throughout the experiment and for their detection in human skin. AuNP 

have also high clinical significance due to their ability to deliver various payloads [5, 

23-24] such as drug molecules [25], large biomolecules, such as proteins [28], DNA 

[29-30], or RNA [31]. Moreover, AuNP cause local heating when they are irradiated 

with light in the visible range allowing for the potential use of AuNP in photothermal 

destruction of tumors [22]. 

In an earlier study, we reported on the consequences of topical exposure to two 

selected polar and apolar gold nanoparticles in regard to their effect on skin 

metabolism and penetration into deeper layers of human skin using multiphoton 

tomography and fluorescence lifetime imaging [55]. The present work, however, is a 

mechanistic study of the penetration of nanoparticles into human skin using a full 

matrix of particles of different surface polarity, size and vehicle. In addition, 

concentration of applied nanoparticles, skin exposure time, physical state of the 

particles on skin exposure and skin integrity were investigated. 

 

3.4.2. Materials and Methods 

Preparation of AuNP. Sterically stabilized, apolar gold nanoparticles (AuNP1) were 

synthesized from an organometallic precursor. The synthetic procedure was adapted 

from Zheng et al. [158]. Gold nanoparticles were formed upon reduction of the gold 
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source by an amine-borane complex in the presence of an alkyl thiol. In a typical 

synthesis, 0.31 g chlorotriphenylphosphine gold (purity 98%, ABCR, Karlsruhe, 

Germany) was dissolved in 50 ml of benzene (purity >99.5%, Riedel-de Haen, 

Germany) forming a colorless solution. A mixture of 0.53 g tert-butylamineborane 

(purity, 97%, Fluka, Germany) and 0.31 ml dodecanethiol (purity >98%, Fluka, 

Germany) were added to the formed solution and left to react at 55°C for 1 hour. 

Upon completion of the reduction reaction, the red solution was cooled to room 

temperature, precipitated by the addition of ethanol and washed by centrifugation 

and subsequent resuspension in toluene. Finally, the particles were resuspended in 

toluene and stored at room temperature protected from light. 

Phase transfer of apolar AuNP1 into water. AuNP1 were transferred into water using 

an emulsification method. A solution of 10 g lecithin (Pure lecitine (98% 

phospholipids), Boma-Lecithin GmbH, Otter, Germany) in 400 ml water was 

prepared and stirred overnight to ensure complete dissolution. About 40 ml of the 

AuNP dispersion in toluene was added to the solution and the mixture was shaken 

and further emulsified at the maximum energy of an ultrasonic bath (Elmasonic 

S100H, Elma GmbH & Co KG, Singen, Germany) for 5 min and at half its maximum 

energy for 15 min, followed by heating it to 90°C under stirring for 1 h. This 

procedure was repeated several times to ensure emulsification and toluene 

evaporation. Unemulsified parts of the AuNP dispersion were separated from the 

mixture and emulsified separately using additional sonication steps. Finally, AuNP2 

dispersion with hydrophilized surface was stirred at 90°C until all toluene had 

evaporated leaving a clear red aqueous solution. 

 

Ionically-stabilized, polar gold nanoparticles (AuNP3) were prepared according to 

Turkevich method [132]. Briefly, 70 ml solution of hydrogen tetrachloroaurate  

(HAuCl4·3H2O, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) containing 

about 100 µg/ml gold was first heated to boiling at 100°C under magnetic stirring at 

about 440 rpm and then reduced by a solution of trisodium citrate dihydrate 

(Na3C6H5O7·2H2O, Sigma-Aldrich) containing 5-fold the molar concentration of the 

gold salt. All solutions were used without filtration. After the gold colloid had formed, 

the temperature was lowered to about 25°C. The colloid was then transferred into a 

suitable glass container and stored in the refrigerator protected from light. 
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Phase transfer of polar AuNP3 into toluene. The method of phase transfer followed 

the protocol published by Zhu et al. [171] after several modifications. Practically, a 

volume of thioglycolic acid (TGA) (C2H4O2S, 99%, Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany) equivalent to 1.29x10-3 moles was added to 2 ml of AuNP 

dispersion, with a concentration of 99.05 µg/ml gold and stirred until the solution gets 

purple, indicating chemical bonding of –SH group of TGA onto the surface of AuNP. 

N-cetyl-N,N,N-trimethylammonium bromide (cetrimide) (C19H42BrN, Merck KGaA, 

Darmstadt, Germany) was then introduced to the AuNP dispersion portionwise while 

stirring. The molar ratio between TGA and cetrimide is 2:1. Stirring was continued for 

30 min to allow for the adsorption of surfactant molecules through electrostatic 

interaction between TGA and cetrimide. A volume of 2 ml toluene was then mixed 

with the dispersion for 10 min, resulting in O/W emulsion. Finally, 2 ml ethanol, 

containing 0.21 M cetrimide, was added to break the emulsion, in addition to 3 ml 

toluene for better extraction of AuNP with hydrophobized surface. The whole two-

phase system was vigorously shaken for 20 min. Ethanol is miscible with water, thus 

the dissolved cetrimide further coat AuNP that are still in the aqueous phase 

resulting in more particles transfered into toluene. Extracted AuNP in toluene were 

further treated with cetrimide. A weight of cetrimide equivalent to 6.86 x 10-6 moles is 

required for each 1 ml of prepared AuNP4 dispersion to keep it stable over a 

prolonged period of time. 

 

Characterization of the optical and colloidal properties for the prepared AuNP. 

The optical properties of prepared AuNP were checked using a UV/Vis 

Spectrophotometer (lambda 35, Perkin Elmer, Rodgau-Jürgesheim, Germany) in the 

range of 400-800 nm. The mean particle size and the morphology of the gold core 

were determined by transmission electron microscopy (TEM) using a JOEL Model 

JEM 2010 instrument (JOEL GmbH, Eching, Germany) operated at an accelerating 

voltage of 120 kV. Core diameters determined by TEM were used as particle size 

facilitating comparison of particle diameters as hydrodynamic radius is only available 

in aqueous solution. Samples for TEM analysis were prepared by placing 12 µL drop 

of dispersed nanoparticles in water on carbon-coated 400 mesh copper grid. The 

solvent was allowed to evaporate slowly at room temperature. Finally, the surface 

charge of AuNP2 and AuNP3 was estimated by measuring the zeta potential based 
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on the electrophoretic mobility (Zetasizer Nano, Malvern Instruments, Malvern, UK). 

The prepared dispersions (1.5ml) were directly measured (solvent is water) in 

triplicate using disposable folded capillary cells that contained the electrodes. 

Measurements were done at room temperature. Since particle dispersion in the non-

polar solvent, toluene, in case of AuNP1 and AuNP4, would not allow for 

development of surface charge (though a value near zero could be measured by 

zetasizer), this was denoted as ―uncharged‖ in Table 3.4.1. 

 

Table 3.4.1: Characteristics of the prepared AuNP dispersions. 

AuNP 

code 

Surface 

chemistry 

Diameter of gold core* 

[nm] 

Zeta potential** 

[mV] 
Vehicle 

AuNP1 Dodecanethiol 6.00 ± 0.81 Uncharged Toluene 

AuNP2 Lecithin ‖ -53.5 ± 1.44 Water 

AuNP3 Citrate ions 14.90 ± 1.76 -35.1 ± 1.87 Water 

AuNP4 cetrimide ‖ Uncharged Toluene 

* measured by TEM (n is more than 30). 
** given as a criterion indicating surface charge. 
 

Study of the penetration of AuNP through Human Skin. 

 

Skin preparation. Human skin was obtained from female patients aged 30 to 57 

years, who had undergone abdominal plastic surgery after approval of the ethic 

committee of Saarland, Germany (Ärztekammer des Saarlandes, Dec. 2008); three 

skin donors were used in the study. Adequate health and no medical history of 

dermatological disease were required. Immediately after excision, the skin was cut 

into pieces and the subcutaneous fatty tissue was removed from the skin specimen 

using a scalpel. Afterwards the surface of each specimen was cleaned with water, 

wrapped in aluminium foil and stored in polyethylene bags at –26°C until used. 

Previous investigations have shown that no change in the penetration characteristics 

occurs during the storage time of 6 months [159]. 

Skin discs, 25 mm in diameter, were punched out from frozen skin, thawed, cleaned 

with deionized water and transferred into the Franz diffusion model. 

 

Skin penetration study. In vitro penetration experiments were run in static Franz 

diffusion cells having a diffusion area of 1.76 cm2 and a receptor compartment of 12 
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ml volume. The prepared human skin was fastened carefully between the donor and 

receptor compartments, with the SC side up and held in place with a clamp. The 

dermal side of the chamber contained a receptor solution of phosphate buffer saline, 

pH 7.4 magnetically stirred at 500 rpm. A volume of 500 µl of the prepared AuNP 

dispersion was placed on the skin then the donor compartment was occluded. The 

diffusion cells were maintained at 32°C throughout the experiment. Following 

exposure, the skin was removed and the skin surface was gently cleaned with 

cotton. Collected skin was examined after longitudinal cryo-sectioning and the donor 

solution was analyzed directly by UV/Vis spectroscopy to determine the physical 

state of the particles following skin contact.  

Additional penetration experiments involved skin pre-exposure to toluene (vehicle) or 

chloroform/methanol mixture (discussed later) or tape-stripping of the stratum 

corneum before application of particle dispersion. Infrared densitometry was used for 

determining the endpoint of tape-stripping, i.e. complete SC removal, a method 

described by Hahn et al. [172].  

 

Longitudinal skin cryo-sectioning. Cross-sections of ~10 μm thickness were 

performed at −20°C using a SLEE cryostat type mev (SLEE medical GmbH, Mainz, 

Germany). It is important to note here that on sectioning, the skin piece should not 

be placed tangential to the blade to avoid dislocation of the particles from outside 

into DSL or vice versa, but in a perpendicular direction to the cutting blade limiting 

sectioning artifacts. Skin sections were placed on microscopical slides and were 

stored at −20°C until imaged by multiphoton laser scanning microscopy. Before 

examination, specimens were mounted by an aqueous mounting medium 

(FluorSaveTM reagent, Calbiochem, San Diego, USA) and covered with glass cover 

slips. At least 20 cuts were used for microscopical examination. 

 

Multiphoton laser scanning microscopy. Fluorescence imaging was performed using 

an inverted confocal/two photon excitation fluorescence microscope (ZEISS LSM 

510 META, Carl Zeiss, Jena, Germany), equipped with a tunable pulsed IR laser 

(λ=720-930 nm) (Chameleon, Coherent, Dieburg, Germany) for multiphoton laser 

microscopy, in addition to other conventional laser lines for confocal microscopy. The 

objective used was water immersion lens 63X (NA=1.2). A wavelength of 800 nm 

was used for both excitation of AuNP and scanning the skin using a transmission 

http://www.biocompare.com/Links/Product.aspx?i=438768&v=45&cy=74
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energy of 0.485 and 0.647 mW in the focal plane, respectively. The optical settings, 

discussed in detail earlier [55], allowed for the separation of both signals with no 

signal interference among tracks. Z-stacks of the skin samples were taken with steps 

every 1 μm. Each optical scan is composed of 512 x 512 pixels² and a size of 0.14 x 

0.14 µm². The gain settings were adjusted for each measurement individually. No 

significant photobleaching has been observed in our experiments under the 

conditions used to quantify penetration. 

 

Data analysis. Multiphoton images of the longitudinal skin sections were then 

analyzed using the software by the supplier. Semiquantitative data for the distribution 

of AuNP in different skin layers were extracted as published earlier. Shortly, z-stacks 

were adopted for analysis. For each optical layer, the intensity was first thresholded 

in order to remove the background. Pixels due to luminescence of AuNP were 

determined in the SC and in the DSL for this optical layer. Summing up these values 

in all the optical layers of the z-stack ends up with ∑pixel frequency due to AuNP in 

the SC and in DSL of this z-stack, from which the weighed number of particles were 

calculated according to Equation 3.4.1, where Apixel = 0.139 x 0.139 µm² and Aparticle 

(area of diffraction-limited AuNP) =~0.365 µm2 for the optical settings used in this 

study as detailed elsewhere [134]. It should be noted here that the summed value 

developed by data analysis is regarded as a semi-quantitative index to compare 

penetration into the SC and DSL under the same conditions as well as for different 

formulations and conditions. Summed values were found more informative than 

mean values (±SD) due to the non-homogeneous distribution of the particles 

throughout the diffusion area. In other words, a summed value on analysis of x 

number of image fields offers a relatively more rigid and resistant parameter to the 

great variability of particle localization.  

 

particle

pixel

A

APixel
wN

            

Equation 3.4.1 [134], 

Finally, maximum penetration depths could be also determined for these skin 

experiments. 
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Study of the vehicle effect on skin penetration of AuNP. 

 

i. Gravimetric analysis 

 

(a) Preparation of epidermal sheets. 

 

Heat-separated human epidermal sheets were prepared from specimens of full 

thickness human skin of 15 or 25 mm diameter according to Kligman and  

Christophers [173]. Shortly, full thickness human skin was immersed in water of 

60°C for 90 seconds. The epidermis was then carefully peeled off the dermis using 

forceps.  

 

(b) Determination of the wet and dry weights of the epidermis. 

 

Heat-separated epidermal sheets are then carefully dried using a filter paper and 

weighed on Teflon sheets. This represents the wet weight of the epidermis. 

Epidermal sheets were then dried for two days in a desiccator at room temperature 

then weighed once more to obtain the dry weight of the epidermis. 

 

(c) Determination of lipid amount extracted by toluene. 

 

Epidermal sheets, prepared from 25 mm skin punches, were fitted in static vertical 

Franz diffusion cells having a diffusion area of 1.76 cm2 and a receptor compartment 

of 12 ml volume. The receptor compartment was filled with phosphate buffer saline, 

pH 7.4 and magnetically stirred at 500 rpm. A volume of 500 µL toluene was used as 

a donor solution for 0.5, 2, 6 and 24 h and the donor compartment was occluded. At 

the end of the skin exposure time, the donor solution was filtered and dried under 

nitrogen. Dried lipid extracted by the donor solution was then placed in a desiccator 

overnight and weighed for the lipid amount. 

 

(d) Determination of the total epidermal lipid content. 

 

Another set of epidermal sheets, prepared from 15 mm skin punches, were used to 

determine the total amount of lipid present in the epidermis of this skin donor having 
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the same diffusion area as in Franz diffusion experiment. Each epidermal sheet was 

extracted with 5 ml chloroform/methanol, 2: 1 in well-closed test tubes for 24 h under 

mild shaking. As described above, solutions were filtered, dried and lipid amounts 

were weighed. 

 

ii. High performance thin layer chromatography (HPTLC) 

 

Dried lipid extracts of 2 h skin exposure were then redispersed in 100 µl toluene or 

chloroform /methanol, 2: 1 and a volume of 1-5 µl of the lipid extract was spotted on 

silica gel 60-HPTLC plates (Merck KGaA, Darmstadt, Germany) along with 1 µl spots 

of standard solutions containing serial concentrations of cholesterol, cholesteryl 

oleate, glyceryl trioleate, oleic acid and ceramide NP (a ceramide consisting of a 

nonhydroxy N-acyl fatty acid and phytosphingosine). A maximum of 8 spots are 

applied on each plate of 20 x 10 cm dimensions. Plates are then separated into two 

groups according to the developing system. The first group was developed using the 

following sequential development system: (1) n-Hexane: diethyl ether: acetic acid 

(80:20:10) for a distance of 12 cm from the spotting level, (2) n-hexane for 14 cm 

distance, for separation of cholesterol, oleic acid, triglycerides and cholestryl ester. 

The plates were allowed to dry before the second development step. The second 

group of plates were developed using chloroform: methanol: acetic acid (95:4.5:0.5) 

for separation of skin ceramides. All plates were then dried and sprayed with a 

solution 10% CuSO4 in 8.5% H3PO4 under nitrogen flow. The plates were then 

placed on a thermoplate of preadjusted temperature of 110°C and heated until 

160°C. Separated lipid fractions were then quantified using IR densitometry using 

Image J (version 1.43, available as freeware from http://rsbweb.nih.gov/ij/). Area 

under the curve was calculated for all the separated spots and quantification was 

based on the known quantities of the co-migrated standards used to develop a 

calibration curve. 

 

3.4.3. Results and Discussion 

 

Monodisperse gold nanoparticles, AuNP1 and AuNP3, with ~ 6 and 15 nm diameter, 

respectively, were successfully prepared. AuNP1 were uncharged, thiol coated and 
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dispersed in toluene. On the contrary, AuNP3 were negatively charged due to 

stabilization with citrate ions and dispersed in water. In order to study the effect of 

surface polarity, vehicle nature, in addition to size of nanoparticles on their skin 

penetration, each of the prepared AuNP1 and AuNP3 were transferred into water 

and toluene, respectively, using a suitable phase transfer agent, as indicated in the 

experimental section. The surface chemistry was therefore changed accordingly 

keeping the core size unchanged hence having same-sized particles of different 

surface polarity and different vehicle stability. All AuNP were fully characterized. The 

characteristics of the prepared AuNP are summarized in Table 3.4.1 and their TEM 

images are shown in Figure 3.4.1. 

Prepared and characterized AuNP were then applied to excised human skin at 

different concentrations and skin exposure times (Table 3.4.2). After skin penetration 

experiment, skin punches were longitudinally sectioned and analyzed using 

multiphoton microscopy (Figure 3.4.2), an efficient technique to track the penetration 

of nanoparticles in skin [55, 85, 115, 134, 174]. All AuNP formulations could 

penetrate the SC into the DSL after 24 h of skin exposure, except for AuNP3. It 

should be noted here that though penetration of AuNP was observed not being 

homogenous throughout the examined longitudinal sections, conclusion was made 

based on repetitive observation as indicated in the methodology section. 

Representative optical z-stacks, 1 µm nominal step width, for all examined 

longitudinal skin sections were then quantified by calculation of signal pixel 

frequency due to AuNP in the stratum corneum (SC) and deeper skin layers (DSL) 

for each optical layer. Finally a summed value of pixels (∑pixel) due to AuNP in each 

the SC and DSL were calculated. From this parameter the weighed number of 

particles was calculated [134]. Therefore this method takes into account the non-

homogeneous distribution of AuNP all over the diffusion area and is not depending 

on one image field only. Results showed depth-profiles for AuNP having higher 

values in the upper skin layer, SC, decreasing reaching DSL (Figure 3.4.3). The 

following factors were found critical in skin penetration of nanoparticles. 
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Table 3.4.2: Conditions of skin penetration experiments for the prepared AuNP dispersions. 

AuNP 

code 

Concentration 

[µg/ml] 

Time of skin exposure 

[h] 

AuNP1 

90 0.5, 2, 6 and 24 

437 0.5, 2, 6 and 24 

AuNP2 90 24 

AuNP3 90 24 

AuNP4 90 24 
 

 

Effect of size and surface polarity of AuNP. The physicochemical attributes of 

nanoparticles are key factors governing their skin penetration and permeation. 

Overlaid multiphoton/transmission microscopy images of longitudinal sections from 

skin specimens after 24 h exposure to 90 µg/ml concentration of AuNP1-4, different 

in size and surface chemistry are shown in Figure 3.4.2. Only hydrophilic, citrate-

stabilized, 15 nm diameter AuNP3 were shown not to penetrate the SC into  

DSL [55]. 

Interestingly, surface modification of AuNP3 using thioglycolic acid and cetrimide, 

resulted in AuNP4 with hydrophobic surface showing skin penetration into deeper 

layers. A similar pattern was observed for the smaller particles, AuNP1 and AuNP2. 

Surface modification of hydrophobic AuNP1 using lecithin yielded hydrophilic AuNP2 

with lower skin penetration ability under the experimental conditions, as indicated by 

the number of AuNP in the SC and DSL in representative optical z-stacks of the 

respective 10 µm thickness longitudinal skin sections examined by multiphoton 

microscopy (Figure 3.4.3a). Therefore, nanoparticles with more hydrophobic 

character, AuNP1 and AuNP4, were more favorable for skin penetration. This 

indicates that nanoparticles, in this size range, follow the same penetration pathways 

postulated for the penetration of drug molecules. However their particulate nature will 

reduce the speed of diffusion [42] through the intercellular route dominated mainly by 

fluid lipidic pores [175].  
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Figure 3.4.1: TEM images of prepared (a) AuNP1 (6 nm thiol-coated AuNP, dispersed in toluene), (b) 
AuNP2 (6 nm lecithin-coated AuNP, dispersed in water), (c) AuNP3 (15 nm citrate-stabilized AuNP, 
dispersed in water) and (d) AuNP4 (15 nm cetrimide-coated AuNP, dispersed in toluene). 

 

(a) (b) 

(c) (d) 
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Figure 3.4.2: Selected overlaid multiphoton/transmission images of AuNP (indicated as green 
pseudo-colored spots) in longitudinal skin sections in which the stratum corneum (SC) is outlined by 
a white line to separate it from the deeper skin layers (DSL). Skin sections were obtained from skin 
punches exposed for 24 h to (a) AuNP1 (6 nm thiol-coated AuNP, dispersed in toluene), (b) AuNP2 (6 
nm lecithin-coated AuNP, dispersed in water), (c), AuNP3 (15 nm citrate-stabilized AuNP, dispersed 
in water) and (d) AuNP4 (15 nm cetrimide-coated AuNP, dispersed in toluene). As indicated in the 
figure, exclusive localization of nanoparticles in the SC for AuNP3 and penetration of AuNP1, AuNP2 
and AuNP4 into the DSL at variable penetration depths were observed. 
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Figure 3.4.3: The effect of the physicochemical parameters of nanoparticles, the vehicle and skin 
integrity on skin penetration of AuNP as extracted from optical layers of z-stacks (1 µm step width) 
of longitudinal skin sections imaged by multiphoton microscopy. (a) Skin penetration of AuNP1 (6 nm 
thiol-coated AuNP, dispersed in toluene), AuNP2 (6 nm lecithin-coated AuNP, dispersed in water), 
AuNP4 (15 nm cetrimide-coated AuNP, dispersed in toluene) at a concentration of 90 µg/ml of gold 
after 24 h of skin exposure. (b) Skin penetration of AuNP3 (15 nm citrate-stabilized AuNP, dispersed 
in water) on 22 h skin exposure following 2 h pre-exposure to toluene in comparison to skin 
penetration of AuNP1 and AuNP4 dispersed in toluene into the SC and DSL after 24 h of skin 
exposure. (c) Effect of 2 h pre-exposure to toluene “1” in comparison to removal of skin lipids using 
chloroform/methanol mixture, 2:1 “2” and to complete removal of the SC by tape stripping “3” on 
skin penetration of AuNP3 into DSL after 22 h of skin exposure. 
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Smaller sized AuNP1 and AuNP2, 6nm in diameter, showed higher skin penetration 

than 15 nm AuNP3 (no penetration into DSL) and AuNP4, as shown in Figure 3.4.3a. 

A similar pattern was also reported for drug penetration where high molecular weight 

compounds could penetrate the SC to a less extent than small molecules [176]. 

Though our results are partly contrary to the findings of Sonavane et al. [45] who 

showed skin permeation of AuNP, 15 nm in diameter after only 1 h (they used rat 

skin of different histology than human skin in our study), their results also indicated 

size-dependent skin permeation. According to them, higher permeation for 15nm 

AuNP compared to 102 nm and 198 nm AuNP was indicated and the permeability 

coefficient was reported to decrease on increasing the particle size. Another report 

also indicated skin penetration of latex nanoparticles of 50, 100, 200 and 500 nm 

diameter in a size-dependent manner [170].  

 

Effect of the physical state of AuNP dispersion. The physical state of the applied 

nanodispersion, whether composed of individual particles or aggregated ones, is 

considered critical and should be analyzed carefully in parallel with skin penetration 

study. This is to avoid any misinterpretation of the results in regard to the 

significance of particle size as a determinant of skin penetration. Here AuNP serve 

as a good model whose Plasmon band provides precise and easily accessible 

information on the aggregation state of the colloidal gold. Aggregation is indicated by 

a big red-shift of the spectral peak and/or strong peak broadening [161]. Therefore, it 

was important to analyze the applied AuNP dispersion spectrophotometrically before 

and after skin penetration experiment (Figure 3.4.4). At the beginning of the skin 

experiment, all applied AuNP dispersions showed physical stability. No significant 

red-shift was observed for the test nanodispersions AuNP1, AuNP2 and AuNP4, 

applied at a concentration of 90 µg/ml, after 24 h of skin contact. However, after 24 h 

of skin exposure, aggregation was observed for AuNP3 (hydrophilic, citrate-

stabilized and 15 nm in diameter) as evident from peak broadening (Figure 3.4.4c). 

The zeta potential also increased by about 2-fold. Aggregation of AuNP3 could be 

attributed to the exchange of citrate ions on the surface of gold nanoparticles with 

skin proteins or lipids, as shown in other biological environments [166, 177]. This 

could be also due limited citrate ionization in the slightly acidic pH of the skin 

surface. This overnight aggregation further decreased the availability of single 
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dispersed particles of higher probability to penetrate the SC into DSL (Figure 3.4.2). 

On the other hand, all other particles (AuNP1, AuNP2 and AuNP4), penetrating the 

SC (Figure 3.4.2), showed no significant aggregation following skin contact (Figure 

3.4.4a, b, d).  

 

Effect of the vehicle of AuNP dispersion. Away from the physicochemical 

properties of nanoparticles, the vehicle is known to influence skin penetration 

profiles. Hence this effect also should hold true for nanoparticle penetration. 

Unfortunately, this effect of the vehicle was usually disregarded in skin penetration 

studies of nanoparticles. Here, however, the effect of the vehicle was in the focus of 

this study. AuNP1 and AuNP4 were dispersed and applied in toluene, in comparison 

to AuNP2 and AuNP3 (water). Therefore, the effect of toluene under the applied 

experimental conditions on the intercellular lipids of the SC, providing the main 

barrier function [175], was investigated. The percentages of lipid extracted from heat 

separated epidermal sheets on applying toluene for exposure times between 0.5 - 24 

h, relative to the dry weight of the epidermis were determined by gravimetry (Table 

3.4.3). These values were compared (as a percentage) to the total lipid content in 

the equivalent epidermal area for this skin donor (extracted by chloroform/methanol 

mixture, 2:1 after 24 h incubation), also calculated with respect to the dry weight of 

the epidermis. As shown in Table 3.4.3, a percentage of about 8 – 17% of the total 

epidermal lipid content was extracted by toluene. However, a closer look to the 

standard deviation values, one could conclude that the amount of lipid extracted by 

toluene is time-independent, i.e. the amount of lipid extracted after 0.5 h is not 

significantly different than that after 24 h. 
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Figure 3.4.4: UV/Vis spectra of (a) AuNP1 (6 nm thiol-coated AuNP, dispersed in toluene), (b) AuNP2 
(6 nm lecithin-coated AuNP, dispersed in water), (c) AuNP3 (15 nm citrate-stabilized AuNP, dispersed 
in water) and (d) AuNP4 (15 nm cetrimide-coated AuNP, dispersed in toluene) at a concentration of 
90 µg/ml of gold, showing particle stability before and after 24 h of skin contact. 

 

Table 3.4.3: Gravimetric analysis of toluene lipid extract of heat separated epidermis after 0.5, 2, 6 

and 24 h exposure time versus total epidermal lipids. 

Incubation time [h] 
% lipid extracted with 

respect to dry skin wt 

% lipid extracted with 

respect to total epidermal 

lipids 

0.5 2.43±0.08 7.82±0.26 

2 3.20±1.25 10.29±4.02 

6 2.79±1.89 8.97±6.08 

24 5.32±3.29 17.08±10.60 

Control (total 

epidermal lipids) [a] 
31.13±3.55  

 [a] determined by shaking the epidermal sheets with chloroform/methanol mixture, 2:1 for 24 h) 
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Furthermore, the barrier function of the SC depends not only on the lipid quantity in 

the SC but also on the lipid composition. The main lipid classes in the SC are 

ceramides, cholesterol and fatty acids. Detection of triglycerides in the SC has been 

explained in literature either by contamination with sebum glycerides or by extraction 

of subcutaneous fat. Other lipid ingredients present in minute amount include 

cholesterol esters [175, 178]. The quantitative composition of the SC lipids differs 

depending on the extraction method [179] and inter- and intraindividual variations. 

Among all the lipid members, ceramides are known to be the most important 

component of the SC multilamellar lipid structure with defined physicochemical 

properties necessary for the barrier function of the skin [178]. After 2 h of skin 

exposure, epidermal lipid members extracted by toluene or chloroform/methanol 

mixture (total lipid extract) were quantified using HPTLC versus increasing serial 

concentrations of standard lipid mixture. The lipid composition of each extract was 

then determined by densitometric analysis and the results are shown in Figure 3.4.5. 

Toluene could extract the surface lipids, however the structural lipids of the SC, 

ceramides, were not extracted by toluene. In contrast ceramides were found in the 

total lipid extract of this skin donor.  

Nevertheless, it could be concluded so far that toluene has an effect on the barrier 

function of the SC through lipid extraction. However, a drastic structural change in 

the skin barrier on toluene application is not likely, evident by the absence of 

ceramides in the toluene extract. Afterwards, it was important at this stage to 

determine whether the penetration of AuNP1 and AuNP4, dispersed in toluene, was 

mainly due to the effect of toluene on the barrier function of the skin, or this is only a 

contributing factor. Therefore, further skin penetration experiments were conducted, 

preincubating the skin with 500 µl toluene for 2 h, followed by application of non-

penetrating AuNP3, dispersed in water. The number of AuNP penetrating into the SC 

and DSL in a representative z-stack of a 10 µm thickness skin section was 

semiquantified according to a method we published recently [134] and the result was 

compared to that due to application of AuNP1 and AuNP4, dispersed in toluene, at a 

concentration of 90 µg/ml for 24 h (Figure 3.4.3b). It was found, however, that the 

number of AuNP penetrating into DSL was 16- and 7-fold higher for AuNP1 and 

AuNP4, respectively. This indicates that penetration of nanoparticles did not depend 

mainly on the vehicle, toluene. Yet, it is a complex mechanism depending on several 

parameters; and removal of SC lipids enhances the penetration ability. 
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Figure 3.4.5: Lipid composition of toluene extract of heat separated epidermis after 2 h of skin 
exposure time (a) versus total lipid extract using chloroform/ methanol mixture, 2: 1 (b). 

 

Effect of formulation ingredients. Skin penetration of nanoparticles should not be 

studied without considering formulation factors. Ingredients used in synthesis of 

nanoparticles could have an influence on their interaction with the skin when present 

in the dispersion. However, previous studies did not always take these factors into 

account when discussing nanoparticles penetration. This raises a question, whether 

nanoparticles do passively penetrate the SC due to their small size or this is a result 

of the physicochemical attributes of the nanoparticles as well as formulation, 

environmental and mechanical factors. In this study, chemicals used in particle 

synthesis could affect the skin hence possibly favoring more skin penetration 

including dodecanethiol and tert-butylamineborane (AuNP1), and thioglycolic acid 

(AuNP4). Furthermore, lecithin and cetrimide used in the preparation of AuNP2 and 

AuNP4, respectively are considered as penetration enhancers [104]. However, 

based on the amounts used relative to those described in literature [104, 180-181], 

they are assumed not to contribute much in skin penetration of nanoparticles. Yet, 

this is only an assumption and possibility for contribution is not discarded. 
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Effect of deteriorating the barrier function of the SC. In general, damaged skin is 

assumed to facilitate penetration. Hence, additional experiments were carried out to 

determine the effect of deteriorating the skin barrier function (i.e., the SC) on 

penetration of nanoparticles. AuNP3, shown not to penetrate the SC, were chosen 

for these experiments. The results were compared to skin penetration of AuNP3 after 

2 h skin pre-exposure to toluene.  

(1) Skin lipids were removed by treating the skin surface with 1 ml of 

chloroform/methanol mixture, 2: 1 for 22 h. HPTLC of the applied mixture showed 

extraction of the epidermal lipids: ceramides, cholesterol, fatty acids (oleic acid), 

triglycerides and cholestryl ester (cholestryl oleate) (data not shown). Removal of 

epidermal lipids was then followed by application of AuNP3 for further 22 h. 

However, it should be noted here that in order to set-up such an experiment a total of 

44 h skin treatment was required (22 h for removal of epidermal lipids, followed by 

22 h exposure to AuNP3). This would contribute to the penetrated amount due to 

decreased skin integrity [94]. Therefore, a supplementary experiment was performed 

which involves application of AuNP3 for only 2 h after skin treatment with 

chloroform/methanol mixture for 22 h, i.e. a total of only 24 h skin experiment. 

(2) SC was completely removed by 30 times tape stripping followed by application of 

AuNP3 for 22 h. The experimental setup was carefully adjusted to insure that the 

stripped skin area is the same area exposed to nanoparticles. At the end of the 

penetration experiment, the skin surface was cleaned before further sectioning and 

examination by multiphoton microscopy. 

As shown in Figure 3.4.3c, removal of the skin lipids using chloroform/methanol 

mixture resulted in AuNP3 penetrating the SC after 22 h of skin exposure. Even on 

skin exposure to AuNP3 for 2 h (Data not shown), 2-fold increase in penetration into 

the DSL was observed, compared to skin penetration of AuNP3 after 2 h skin pre-

exposure to toluene. This again confirms that as for drug molecules, the intercellular 

lipids are the main barrier for skin penetration of nanoparticles. Intercellular 

localization of nanoparticles was previously reported for QD [79, 89].  

On the other hand, for tape-stripping, previous reports did not show satisfactory 

results concerning particle penetration on the tape stripping part of the SC for QD of 

diameter ~ 4 nm [52], 6 nm [90] and ~ 37 nm [47] through human (20 tape-strips), rat 

(10 tape-strips) and mouse (5-20 tape-strips) skin, respectively. In this study, 
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complete removal of the SC by tape-stripping resulted, however, in about 16-fold 

further increase in penetration into DSL. This would rather indicate that the barrier 

function of the SC to particle penetration does not only rely on the intercellular lipids, 

however it is a complex mechanism that overall provides the rate-limiting step to 

penetration of nanoparticles. 

For both conducted experiments, the number of AuNP3 penetrating into DSL was 2- 

and 53-fold, respectively, higher than that after 2 h exposure to toluene (Figure 

3.4.3c). This again supports our previously drawn conclusion that toluene does have 

an effect on skin penetration of AuNP, however it is only a contributing factor and not 

the main factor. 

 

Effect of concentration of applied AuNP dispersion and skin exposure time. All 

studies investigating skin penetration of nanoparticles so far based their conclusion, 

whether the particles are penetrating or not on a single point concentration. This 

does not imply that their conclusion applies for dispersions with higher or lower 

concentrations leaving the reader sometimes with a degree of uncertainty about the 

results. This also partly explains the current controversy among researchers on the 

status of skin penetration of nanoparticles. Moreover, the time of skin exposure to 

nanoparticles is very critical on studying possible skin penetration of nanoparticles 

since they diffuse slower. Yet, variable exposure times, e.g. 0.5 [182], 5 [115], 6 

[169], 18 [183] and 24 [60] h, were reported in literature for in vitro particle 

penetration studies. Only few studies checked skin penetration on different time 

intervals. For instance, Baroli et al. [53] studied the penetration of magnetic 

nanoparticles through human skin after 3, 6, 12 and 24 h in which penetration was 

indicated by TEM images starting from 6 h skin exposure to the applied 

nanodispersion. 

In this study, AuNP1 were applied on skin with two different concentrations, 90 and 

437 µg/ml of gold, for exposure times of 0.5, 2, 6 and 24 h (Table 3.4.2). AuNP1 in 

both concentrations could penetrate the SC at 24 h. Applying AuNP1 dispersion with 

a concentration of 437 µg/ml resulted in higher number of AuNP in z-sections of 

longitudinal skin sections of 10 µm thickness in the SC as well as in DSL (Figure 

3.4.6). For the two tested concentrations, incubation time showed a strong effect on 

the amount of AuNP penetrating into the SC and DSL. An exposure time of 6 h was 
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required for AuNP1 with a concentration of 90 µg/ml to permeate the SC whereas 2 

h were enough for the high concentration AuNP dispersion (437 µg/ml) to penetrate 

into the DSL though this was a negligible amount. The longer the skin exposure time, 

the larger the amount of AuNP1 penetrating into the SC and DSL (Figure 3.4.6). This 

is also attributed to the amount of particles necessary to be detected favoring high 

concentrations to be visualized. 

Maximum penetration depths of AuNP1 inside the skin were further determined for 

these skin penetration experiments (Table 3.4.4). The same trend was also observed 

on changing the concentration and the skin exposure time. The higher the 

concentration and/or the longer the skin exposure time, the longer the distance that 

could be travelled by AuNP1 inside the skin. The longest penetration depth by 

AuNP1 in DSL after crossing the whole thickness of the SC was 51.38 µm (Table 

3.4.4). Knowing that the average thickness of the viable epidermis is 50-100 µm 

[184], particles could only reach the viable epidermis of human skin after 24 h of skin 

exposure. Longer exposure times could be needed for the particles to penetrate 

more into the dermis however skin penetration experiments were terminated at 24 h 

to avoid loss of skin integrity [94]. 

 

On further analysis of Figure 3.4.6, one could observe a gradually increasing 

difference between the densities of particle localization in the DSL for the two applied 

concentrations with time, reaching maximum at 24 h. This could be attributed to: 

(a) The higher the concentration of the nanodispersion the more the particles are 

available for penetration leading to much more particle accumulation in the deeper 

skin layers. 

(b) The higher concentration dispersion requires also a shorter exposure time (2 

h) than that at low concentration (6 h) to cross the stratum corneum (Table 3.4.4) 

leading to a higher cumulative concentration of particles in the deeper skin layer.  

It should be noted here that the whole area of the deeper skin layer in the image field 

is included in analysis. This means that the concentration measured is a more or 

less ―cumulative‖ concentration. 

Based on this, care should be taken on meta-analysis of the available literature on 

skin nanoparticle penetration. This means that extrapolation of the studies based on 

a single concentration or a short exposure time to indicate safety of nanoparticles or 

the opposite case should be avoided 
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Figure 3.4.6: Effect of concentration of applied AuNP1 (6 nm thiol-coated AuNP, dispersed in 
toluene) and skin exposure time on their penetration into the SC (a) and to DSL (b) after 24 h of skin 
exposure. 
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Table 3.4.4: Maximum skin penetration depths of AuNP1 (6 nm thiol-coated AuNP, dispersed in 
toluene) in 90 and 437 µg/ml concentration after 0.5, 2, 6 and 24 h of skin exposure, normalized to the 
thickness of the SC (i) and penetration depth inside DSL after crossing the whole thickness of SC (ii). 

(i) 

Incubation time [h] 

a Percentage depth of SC penetrated by AuNP1,% 

90 µg/ml 437 µg/ml 

0.5 48.55 77.99 

2 92.65 100 

6 100 100 

24 100 100 

a 
Percentage SC penetrated= penetration depth in SC / thickness of SC x 100 

 

(ii) 

Incubation time, h 

b Penetration depth of AuNP1 in DSL, µm 

90 µg/ml 437 µg/ml 

0.5 0 0 

2 0 23.86 

6 7.21 29.82 

24 35.72 51.38 

b 
Penetration depth in DSL = Total penetration depth - thickness of SC 

 

 

3.4.4. Conclusions 

As for drug molecules, the main barrier for particle penetration is the SC lipids, 

however it is not only the intercellular lipids that limit penetration of particles but the 

whole microstructure of the SC with its tortuous intercellular aqueous and lipidic 

channels. Furthermore, the varying polarities of the skin layers further reduce 

permeation into deeper skin layers. AuNP are expected to penetrate mainly through 

intercellular pathways. This penetration behavior is primarily dependent on their 

physicochemical attributes, of which the size is the most significant determinant of 
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penetration where 6 nm AuNP showed a greater extent of penetration than 15 nm 

AuNP. Similar to drug penetration, the surface hydrophobicity was also found as an 

important factor favoring skin penetration. This again implies that nanoparticles at 

this size range (6-15 nm) behave similar to drug molecules in permeation through 

the skin barrier but to a lower extent. On the other hand, the vehicle was found to 

have a minimal effect on skin penetration of AuNP.  

Skin exposure time was also found to be of crucial impact. Incubation times of at 

least 6 h were required to have a significant penetration extent for studying the effect 

of the different physicochemical, formulation and environmental factors. Shorter 

exposure time is thus not recommended by the authors for conducting experiments 

focusing on determination of skin penetration of nanoparticles. For a certain skin 

exposure time, the concentration of the applied nanodispersion could greatly 

influence or even determine the status of skin penetration of nanoparticles, whether 

they could be detected or not in the DSL. This should be regarded in future studies. 

The results obtained in this study are of great importance especially for the basic 

understanding of the interaction of nanoparticles with the skin barrier. 
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3.5. Could chemical enhancement of gold nanoparticle penetration 

be extrapolated from established approaches for drug permeation? 

 

Hagar I. Labouta, Labiba K. El-Khordagui and Marc Schneider 

 

In due publication.(submitted) 

 

Abstract 

Investigations on chemical enhancement of skin penetration of gold nanoparticles 

are considered crucial not only for the high clinical significance, but also for 

designing an ideal nanocarrier for transdermal drug delivery and to have a deeper 

insight into the main barrier of particle penetration. In this study, penetration of gold 

nanoparticles in presence of several chemical enhancers -urea, sodium lauryl 

sulphate, polysorbate 80 and dimethyl sulphoxide (DMSO)- through human skin was 

studied. Among the tested chemical enhancers, DMSO could induce the penetration 

of hydrophilic (citrate-stabilized) gold colloid of no intrinsic penetration ability, in a 

concentration-dependent manner. Pretreatment of the skin with DMSO however 

reduced penetration of hydrophobic (thiol-coated) gold nanoparticles as a result of 

aggregation in the top layers of the stratum corneum limiting penetration into the 

deeper skin layers. In addition, nanoparticles-vehicle interaction and the stability of 

the nanoparticles in the applied vehicle were found important determinants of skin 

penetration. Our results demonstrate that the already established approaches for 

chemical permeation enhancement of drug molecules and their postulated 

mechanisms could be used as preliminary guidelines for enhancing the penetration 

of nanoparticles. At this size range, 15 nm, intercellular lipids provide the main 

barrier to particle permeation through the stratum corneum. 
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3.5.1. Introduction 

The main barrier of the skin resides in the stratum corneum (SC) due to its complex 

micro- and macrostructure. Several pathways are postulated for drug transport 

across the skin including intercellular, intracellular and transappendageal pathways, 

of which the intercellular route is regarded as the most likely route for transdermal 

drug permeation. In this context, the barrier function of the SC against penetration of 

drugs or molecules in general depends mainly on the intercellular lipids [175]. 

Currently, the most widely used approach to drug permeation enhancement is the 

use of chemical penetration enhancers with already several theories and postulated 

mechanisms of action of the different classes of chemical enhancers in favoring 

transdermal drug permeation. They work mainly by temporarily reducing the barrier 

function of the SC allowing for more drug transport [104]. 

Skin penetration of nanoparticles in presence of these chemical enhancers would be 

of interest to evaluate if data from skin penetration enhancement of drug molecules 

can be extrapolated to particles. Among formulation factors influencing skin 

penetration, stand both the vehicle nature and vehicle-nanoparticles interaction as 

important parameters that should be carefully studied. In this context, changing the 

vehicle composition together with investigating the effect of chemical permeation 

enhancers on skin penetration of nanoparticles would ultimately lead to more insight 

into the possible barrier of skin penetration of nanoparticles. Kuo et al. [85] studied 

the effect of oleic acid and ethanol on the penetration of zinc oxide nanoparticles 

(Ø = 10 nm) through mouse skin. They showed enhanced transport values for 

nanoparticles in presence of oleic acid, ethanol and oleic acid-ethanol mixture. 

However, no penetration of quantum dots (Ø = 37 nm) was observed on 

pretreatment of mouse skin with acetone [47]. Yet, in these two studies, mouse skin, 

known to have different penetration and structural characteristics than human skin, 

was used as the skin model. 

The aim of this work was therefore to study the penetration of gold nanoparticles 

(AuNP) through human skin in presence of selected chemical enhancers from 

different classes: Urea (amide), sodium lauryl sulphate (SLS) (anionic surfactant), 

polysorbate 80 (non-ionic surfactant) and dimethyl sulphoxide (DMSO) 

(sulphoxide/solvent) proved effective in promoting transdermal drug permeation. 
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AuNP were used as a model due to their multiphoton-induced luminescence [134]. 

Hydrophilic citrate-stabilized AuNP, 15 nm in diameter at a gold concentration of 90 

µg/ml (2.7 x 1012 particles/ml) were selected for this study, since they were shown to 

lack an intrinsic ability to penetrate human skin after 24 h skin contact [55]. 

Furthermore, the enhancement of penetration of hydrophobic AuNP was studied.  

 

3.5.2. Materials and methods 

Preparation of AuNP. Ionically-stabilized, polar gold nanoparticles (AuNP1) were 

prepared according to Turkevich method [25, 132]. Briefly, 70 ml solution of 

hydrogen tetrachloroaurate (HAuCl4·3H2O, Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany) containing about 100 µg/ml gold was reduced by trisodium citrate 

dihydrate (Na3C6H5O7·2H2O, Sigma-Aldrich) containing 5-fold the molar 

concentration of the gold salt at 100°C. 

 

Phase transfer of AuNP into toluene. Thioglycolic acid (TGA) (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) equivalent to 1.29x10-3 moles was added to 2 

ml of AuNP dispersion, with a concentration of 198.1 µg/ml gold and stirred until the 

solution gets purple. Cetrimide (Merck KGaA, Darmstadt, Germany) was then 

introduced to the AuNP dispersion. The molar ratio between TGA and cetrimide was 

2:1. Stirring was continued for 30 min to allow for the adsorption of surfactant 

molecules through electrostatic interaction between TGA and cetrimide. The 

dispersion was then mixed with 2 ml toluene for 10 min, resulting in O/W emulsion. 

Finally, 2 ml ethanol, containing 0.21 M cetrimide, was added to break the emulsion, 

in addition to 3 ml toluene for better extraction of AuNP2 with hydrophobized surface. 

The whole two-phase system was vigorously shaken for 20 min. Extracted AuNP in 

toluene were further treated with cetrimide (6.86 x 10-6 moles for each 1 ml of AuNP 

dispersion) to enhance stability. 

Characterization of the optical and colloidal properties for the prepared AuNP. 

The optical properties of prepared AuNP were checked using a UV/Vis 

Spectrophotometer (lambda 35, Perkin Elmer, Rodgau-Jürgesheim, Germany) in the 

range of 400-800 nm. The mean particle size and the morphology of the gold core 

were determined by transmission electron microscopy (TEM) using a JOEL Model 
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JEM 2010 instrument (JOEL GmbH, Eching, Germany) operated at an accelerating 

voltage of 120 kV. Finally, the surface charge was estimated by measuring the zeta 

potential based on the electrophoretic mobility (Zetasizer Nano, Malvern 

Instruments, Malvern, UK). 

 

Study of the penetration of AuNP through human skin. 

Skin preparation. Healthy human skin was obtained from female patients, who had 

undergone abdominal plastic surgery after approval of the ethic committee of 

Saarland, Germany (Ärztekammer des Saarlandes, Dec. 2008). Immediately after 

excision, the subcutaneous fatty tissue was removed from the skin specimen using a 

scalpel. Afterwards the surface of each specimen was cleaned with water, dried, 

wrapped in aluminum foil and stored in polyethylene bags at –26°C until use. 

Previous investigations have shown that no change in the penetration characteristics 

occurs during the storage time of 6 months [159]. 

Skin discs, 25 mm in diameter, were punched out from frozen skin, thawed, cleaned 

with water and transferred into a Franz diffusion cell. 

Skin penetration study. In vitro penetration experiments were run in static Franz 

diffusion cells having a diffusion area of 1.76 cm2 and a receptor compartment of 12 

ml, containing phosphate buffer saline, pH 7.4 magnetically stirred at 500 rpm. A 

volume of 500 µl of AuNP dispersion was placed on the skin then the donor 

compartment was occluded. The diffusion cells were maintained at 32°C throughout 

the experiment. Following exposure, the skin was removed and the skin surface was 

gently cleaned with cotton. Collected skin was examined after longitudinal cryo-

sectioning. 

 

Longitudinal skin cryo-sectioning. Cross-sections of 10 μm thickness were 

performed at –26 °C using a cryomicrotome (Slee, Mainz, Germany). The skin punch 

was placed in a perpendicular direction to the cutting blade piece to avoid dislocation 

of the particles from outside into DSL or vice versa, thus limiting sectioning artifacts 

[134]. Skin sections were placed on microscopical slides and mounted by an 

aqueous mounting medium (FluorSaveTM reagent, Calbiochem, San Diego, USA) 

and covered with glass cover slips. 

http://www.biocompare.com/Links/Product.aspx?i=438768&v=45&cy=74
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Multiphoton Laser Microscopy. Imaging was performed using an inverted 

confocal/two photon excitation fluorescence microscope (ZEISS LSM 510 META 

system, Carl Zeiss, Jena, Germany). The objective used was water immersion lens 

63X (NA=1.2). A wavelength of 800 nm was used for both excitation of AuNP and 

scanning the skin using an energy of 0.485 and 0.647 mW, respectively. The optical 

settings, discussed in detail earlier [55], allowed for separation of both signals with 

no signal interference among tracks. Z-stacks of the skin samples were taken with 

steps every 1 μm. Each optical scan is composed of 512 x 512 pixel2 and a size of 

0.14 x 0.14 µm2. The gain settings were adjusted for each measurement individually. 

Data analysis. Detailed description of the method of analysis is published earlier 

[134]. In short, semiquantitative data for the distribution of AuNP in the SC and DSL 

were extracted based on calculation of ∑pixel frequency due to AuNP in the optical 

layers, 1 µm thickness, of the respective z-stacks of the examined longitudinal skin 

sections. These values were then used to calculate the total number of AuNP in the 

SC and DSL according to Equation 3.5.1: 

 

particle

pixel

A

APixel
wN

            

Equation 3.5.1 [134], 

,where Apixel = 0.139 x 0.139 µm² and Aparticle (area of diffraction-limited AuNP) 

=~0.365 µm2 for the optical settings used in this study as detailed elsewhere [134]. 

 

3.5.3. Results and discussion 

AuNP1 (hydrophilic, negatively charged (zeta-potential -35.1±1.87 mV), citrate-

stabilized, Ø = 14.90±1.76 nm) were shown earlier not to penetrate the SC into DSL 

(deeper skin layers) [55]. Skin penetration of AuNP1 was studied in presence of 

different chemical enhancers at concentrations reported in literature to enhance 

transdermal drug permeation, as shown in Table 3.5.1. AuNP1 were stable for at 

least 2 days in all the tested systems (data not shown). 

Figure 3.5.1a shows the behavior of AuNP1, at a concentration of 90 µg/ml, when 

topically applied on human skin dispersed in 5% urea solution. The particles can be 

found exclusively within the SC. Hence, Urea was found ineffective to drive AuNP to 

penetrate into DSL. Urea is known to promote transdermal drug permeation by 
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facilitating hydration of the SC and formation of hydrophilic diffusion channels, and 

by acting on the SC corneocytes (protein deformation). Yet, urea itself is a 

hydrophilic compound of no lipid disruption mechanism [104]. This suggests that the 

intercellular lipids represent the barrier to skin penetration of hydrophilic AuNP1. 

Moreover, as suggested for drugs [185], the physicochemical parameters of the 

nanoparticles and the chemical enhancer should be considered on selecting an 

appropriate enhancer, for example, the penetration of hydrophilic nanoparticles 

maybe increased by using a lipophilic enhancer. On the other hand, the aggregation 

state of the applied nanodispersion, is considered critical and should be analyzed 

carefully in parallel with skin penetration study. Aggregation of AuNP is indicated by 

a big redshift of the spectral peak and/or peak broadening [161]. Aggregation of 

AuNP result in big redshift of λmax. Depending on the number of particles in the 

aggregate, the shift can easily exceed 150 nm [161].  This is in addition to significant 

peak broadening. Weisbecker et al. [186] calculated the AUC from 600 to 800 nm as 

a marker for broadening of gold colloids. As shown in Figure 3.5.2, AuNP1 in water 

aggregate on skin contact (an index higher than 6 is assumed to indicate strong 

aggregation). Similarly, topical application of AuNP1 in 5% urea solution for 24 h 

resulted in strong aggregation and precipitation of AuNP (Figure 3.5.2). This reduces 

the ability of the nanodispersion to penetrate through the SC into DSL. 

 

  



Labouta, HI et al., in due publication                                                    Publications 

 

-127- 
 

 

 

 

 

Table 1: Conditions of skin penetration experiments for the prepared AuNP dispersions, at a 
concentration of 90 µg/ml. 

Nanoparticles 

code 
Chemical enhancer* 

Concentration of 

chemical enhancer 

[%] 

Skin exposure 

time to AuNP 

dispersion, [h] 

AuNP1** 

- - 24 

Urea 5 24 

Sodium lauryl sulphate 

(SLS) 
5 24 

Polysorbate 80 5 24 

Dimethyl sulphoxide 

(DMSO) 

20 24 

50 24 

80 24 

 - 

22 (after 2 h 

exposure to 

100% DMSO) 

AuNP2*** 

 - 24 

 - 

22 (after 2 h 

exposure to 

100% DMSO) 

*added to the nanodispersion. 
**hydrophilic, citrate-stabilized AuNP, ~15 nm in diameter 
***hydrophobic, coated with thioglycolic acid and cetrimide, ~15 nm in diameter. 
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Figure 3.5.1 (a-c): Overlaid multiphoton/transmission images of AuNP1 (indicated as green spots) at 
a concentration of 90 µg/ml in longitudinal skin sections, showing exclusive localization of AuNP in the 
SC (stratum corneum) when applied in 5% concentration of urea (a) or SLS (sodium lauryl sulphate) 
(b) after 24 h of skin exposure or penetration of minute amounts into DSL (deeper skin layers) in case 
of polysorbate 80, 5% in concentration (c). 

 

 

 

 

(a) (b) 

(c) 
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Figure 3.5.1 (d-g): Overlaid multiphoton/transmission images of AuNP1 (indicated as green spots) at 
a concentration of 90 µg/ml in longitudinal skin sections. AuNP1 applied in 20% (d), 50% (e) and 80% 
DMSO (dimethyl sulphoxide) (f) for 24 h, as well as pre-exposure of the skin to 100% DMSO for 2 h, 
followed by 22 h exposure to AuNP1 (g) resulted in permeation of AuNP1 of the SC (stratum 
corneum) into DSL (deeper skin layers). 

 

  

(d) (e) 

(f) (g) 
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Figure 3.5.2: Plasmon peak broadening over wavelengths from 600 to 800 nm of AuNP1 in the 
prepared polysorbate 80, SLS (sodium lauryl sulphate), urea and DMSO (dimethyl sulphoxide) at a 
concentration of 90 µg/ml and redshift of the respective maximum wavelength compared to that of 
AuNP1 dispersion in water, designated as ―control‖, as markers for particle stability before and after 
24 h skin contact. 

 

As an alternative strategy, anionic (SLS) and non-ionic (polysorbate 80) surfactants 

were investigated as potential chemical penetration enhancers for nanoparticles 

through human skin. The use of cationic surfactants was excluded due to possible 

electrostatic interaction with the negatively charged AuNP1. SLS and polysorbate 80 

are water-soluble with fatty acid moieties, lauric and oleic acid, respectively, 

providing a lipophilic character for better penetration of the nanoparticles. However, 

both applied surfactants, applied at a concentration of 5% (above critical micelle 

concentration ―CMC‖) were found ineffective for driving AuNP1 to penetrate the SC 

in considerable amounts (Figure 3.5.1b, c). 

In general, the mechanisms of action of the different classes of surfactants for 

promoting drug permeation are still not clear. Yet, the action of anionic surfactants, 

including SLS, on skin was previously postulated to be mainly due to their ability to 

interact with and bind to epidermal proteins, thus causing a reversible denaturation 

and an uncoiling of the filaments, exposing more water binding sites, possibly 

increasing the hydration level of the tissue. This is in addition to possible effect on 

the lipid organization above CMC concentration, though penetration into the skin lipid 

channels is likely hindered by micelle formation [187]. On the other hand, nonionic 

surfactants, e.g. polysorbate 80 were generally reported to have little effect in 
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promoting percutaneous drug absorption. Unexpectedly, however, minute amounts 

of AuNP were found in DSL in case of polysorbate 80 but not on applying AuNP1 in 

SLS solution. This observation could be related to the aggregation behavior of the 

AuNP1 in surfactant solutions on topical application. The different chemical 

enhancers after being in contact with the skin affected the plasmon resonance peak 

of the particles. Peak broadening of AuNP1 in presence of SLS after 24 h of skin 

contact, as well as the big redshift of λmax (111 nm) is a clear indication of 

aggregation (Figure 3.5.2). This would rather limit the probability of skin penetration 

due to the bigger sized objects. On the other hand, aggregation was also observed 

in case of polysorbate 80, but to a lesser extent (Figure 3.5.2). Nevertheless, 

application of AuNP1 in surfactant solutions was not an effective strategy in 

promoting skin penetration of nanoparticles in this study. 

Therefore, it was important at this stage to choose a penetration enhancer with an 

evident effect on the intercellular lipids. DMSO is a solvent that is absorbed into the 

corneocytes changing the keratin conformation. However, at a concentration ≥ 60%, 

DMSO has an additional evident effect on the intercellular lipid domains. It causes 

reversible disorder or fluidization of the lipid structure of the SC. It forms 

microcavities within the lipid bilayers and increases the drug partitioning across the 

skin [188]. DMSO has a long clinical history of topical use to treat allergy, 

inflammation, especially in combination with NSAIDs; the applied concentrations 

varies largely reaching to 90 or 100% concentration [189-194]. 

AuNP1 were applied in DMSO solutions of 20 and 50% concentrations on human 

skin for 24 h, in which the main mechanism of penetration enhancement should be 

through the effect of DMSO on skin proteins resulting in higher intracellular transport. 

AuNP1 was also applied in a higher DMSO concentration, 80% to study the effect of 

lipid fluidization on penetration of AuNP1. For these three experiments, there was a 

possible change in the surface properties of AuNP that could also have an influence 

on penetration. Therefore, another skin experiment was conducted involving skin 

exposure to DMSO (100%) for 2 h followed by application of AuNP1 in water for 

another 22 h to study the intrinsic effect of DMSO. 

All skin penetration experiments involving the use of DMSO as a chemical 

penetration enhancer resulted in penetration of AuNP1 into DSL (Figure 3.5.1d-g). 
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The sum of the pixels due to gold luminescence was then determined in the SC and 

DSL in representative optical z-stacks, 1 µm thickness for each layer, of the 

examined longitudinal skin sections and finally the weighed number of AuNP in the 

SC and DSL was calculated using a method we developed earlier [134]. Results of 

semiquantitative analysis are shown in Figure 3.5.3. In all skin experiments, more 

AuNP were found in the SC rather than DSL. Depending on the concentration of 

DMSO, variable amounts of AuNP penetrated into the SC and DSL. Application of 

AuNP1 in 20% resulted in 261 and 38 fold increase in the SC and DSL, respectively, 

compared to control AuNP1 (no penetration). Increasing the concentration of DMSO 

from 20 to 50% resulted in 1.4 and 1.6 fold further increase in the amount of AuNP 

penetrating into the SC and DSL, respectively. This is possibly due to looser and 

more permeable SC. An equivalent increase in DMSO concentration from 50 to 80% 

resulted however in more pronounced skin penetration of AuNP into the SC and DSL 

(3.1 and 5.7 fold, respectively). This underlines the expectation that as for drug 

molecules, intercellular lipids provide the main barrier to penetration of nanoparticles. 

 

Figure 3.5.3: Effect of DMSO (dimethyl sulphoxide) in a concentration of 20%, 50% and 80% on skin 
penetration of AuNP1, at a concentration of 90 µg/ml into the SC (stratum corneum) and DSL (deeper 
skin layers) on 24 h skin exposure, in comparison to pre-exposure of the skin to 100% DMSO for 2 h, 
followed by 22 h exposure to AuNP1, expressed as the total number of AuNP in optical layers, 1 µm 
thickness, of 10 µm longitudinal skin sections imaged by multiphoton microscopy. 
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Spectrophotometric analysis of the applied AuNP1 in DMSO dispersions was also 

performed in parallel with skin penetration study in order to determine the physical 

state of nanoparticles under the variable experimental conditions. Results of 

spectrophotometric analysis, shown in Figure 3.5.2, indicate the stability of AuNP1 in 

DMSO solutions on skin contact compared to control AuNP1 dispersion without 

DMSO. This is evident from the only small plasmon redshifts of 8, 11 and 17 nm for 

the applied AuNP1 in 20, 50 and 80% DMSO, respectively after 24 h contact with 

human skin in addition to unobvious peak broadening (Figure 3.5.2). However, 

application of hydrophilic citrate-stabilized AuNP without DMSO on human skin 

resulted in clear aggregation, as shown in Figure 3.5.2. This indicates that DMSO 

increased the stability of AuNP1 and prevented their aggregation when coming in 

contact with the skin surface. This represents an additional mechanism by which 

DMSO favors skin penetration of AuNP1 into DSL from these applied dispersions 

keeping the number of single dispersed nanoparticles high. On the other hand, 

application of AuNP1 dispersion on human skin following 2 h skin exposure to 

DMSO does not prevent aggregation of nanoparticles as shown by peak broadening 

in Figure 3.5.2. This explains the decrease in the population of AuNP that could 

penetrate into the SC by 1.4 fold compared to those on application of AuNP1 in 80% 

DMSO solution. This also explains an even higher decrease in AuNP penetration 

into the DSL, relative to all other experiments involving application of AuNP1 in 

DMSO solutions (Figure 3.5.3). This is despite the fact that DMSO at this high 

concentration, 100%, acts on both the corneocytes’ keratin and the intercellular lipids 

compromising the barrier function of the SC to a great extent. This implies that 

nanoparticles-vehicle interaction is a critical determinant of skin penetration of 

nanoparticles and should be carefully considered when choosing a suitable chemical 

penetration enhancer. This is of even more importance as the particle aggregation is 

not instantaneous and hence might be overlooked. 

The results so far show that DMSO is effective as a skin penetration enhancer for 

the hydrophilic nanoparticles, AuNP1. Therefore, it was employed in further 

experiments were conducted to investigate the effect of the physicochemical 

properties of nanoparticles on skin penetration enhancement mechanism using 

hydrophobic AuNP2, prepared by phase transfer of AuNP1 into toluene using 

thioglycolic acid and cetrimide. AuNP2 are uncharged and of the same core-

diameter as for AuNP1. However, due to instability of AuNP2 in DMSO even at very 
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low concentration, 2.4% (data not shown), AuNP2 was applied on human skin for 22 

h after 2 h pre-exposure to DMSO. The weighed number of AuNP in the SC and in 

DSL in a representative optical z-stack of the examined longitudinal skin sections 

were then determined. The results were compared to those of a control experiment 

involving skin exposure to AuNP2 for 24 h in absence of DMSO as shown in Figure 

3.5.4a. Skin exposure to DMSO for 2 h before AuNP2 application resulted in 1.6 and 

1.5 fold decrease in the number of AuNP penetrating into the SC and DSL, 

respectively, relative to the control experiment. This is despite the fact that AuNP2 in 

the donor compartment was stable on skin contact for 24 h (Figure 3.5.4b). It is 

assumed that DMSO could not enhance the penetration of the hydrophobic AuNP2 

as much as for hydrophilic particles since the intercellular lipids, fluidized by DMSO, 

are less barrier to their transport than for the hydrophilic nanoparticles, AuNP1. Yet, 

the decrease in skin penetration of AuNP2 following skin exposure to DMSO can be 

explained by the assumption that particle aggregation could have taken place in the 

upper layers of the SC due to absorption of a trace amount of DMSO during the pre-

incubation stage with the solvent. This would decrease the probability of their 

penetration into the deeper layers of the SC and furthermore into the DSL. To prove 

this assumption, circular discs of a dialysis membrane MW-cut-off 12-14 kDa 

(Medicell International Ltd, London, UK), 15 mm in diameter (the same skin 

exposure area in Franz diffusion experiment) were placed in small vials and exposed 

to aqueous solutions with increasing concentration of DMSO (0, 20, 50, 80 and 

100%) for 2 h. DMSO was then removed and the dialysis membranes in the vials 

were left to dry in the hood, then AuNP2 were added for another 22 h. At the end of 

the experiment, AuNP2 dispersions were analyzed using UV/Vis spectrophotometry 

and the results are shown in (Figure 3.5.5). The higher the initial concentration of the 

applied DMSO solution, the more aggregation of the nanodispersion was observed. 

This represents a proof of concept that the trace amount of DMSO absorbed into the 

upper layers of the SC which could not be removed by cleaning the skin surface 

resulted in aggregation of AuNP2. Hence penetration deeper inside the skin was 

hindered. 

 

In conclusion, chemical enhancement of skin penetration of gold nanoparticles could 

be extrapolated from already established approaches for transdermal permeation of 

drug molecules. In the size range of 15 nm, the intercellular lipids provide the main 
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barrier for penetration. As for drugs, the physicochemical attributes of nanoparticles 

and the chemical enhancer determine the success of the approach. However, the 

nanoparticles-vehicle interaction and the stability of the nanoparticles in the applied 

vehicle represent critical parameters in transdermal delivery of nanoparticles. 

 
 

Figure 3.5.4: (a) Effect of skin pre-exposure to 100% DMSO (dimethyl sulphoxide) for 2 h on skin 
penetration of AuNP2, at a concentration of 90 µg/ml into the SC (stratum corneum) and DSL (deeper 
skin layers) on 22 h skin exposure, expressed as the total number of AuNP in optical layers, 1 µm 
thickness, of a representative Z-stack in a 10 µm thickness longitudinal skin section imaged by 
multiphoton microscopy, in comparison to control skin penetration experiment of AuNP2 for 24 h.  
(b) UV/Vis spectra of AuNP2 at a concentration of 90 µg/ml showing particle stability before, 
designated as ―control‖, and after 24 h skin contact in comparison to their stability following 22 h 
contact with a skin pre-exposed to 100% DMSO for 2 h. 

 

 

Figure 3.5.5: Stability of AuNP2 dispersions of a concentration of 90 µg/ml after 22 h contact with 
dialysis membranes presoaked in increasing concentrations of DMSO (0-100%) in comparison to 
control AuNP2 dispersion. 
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3.6. Statements of effort 

ad publication 3.1 

The author of the thesis performed all the skin experiments, multiphoton microscopy, 

data analysis and interpretation, as well as writing the manuscript and planning for 

the experiments under the guidance of the supervisor and the other authors. Tobias 

Kraus was responsible for gold nanoparticles preparation and characterization. 

 

ad publication 3.2 

The author of the thesis prepared the gold nanoparticles, treatment of human skin 

with the prepared particle dispersion, preparation of all skin specimens for 

microscopy, multiphoton microscopy, data analysis, as well as writing the manuscript 

and planning for the experiments under the guidance of the supervisor and the other 

authors. Dr. Martina Hampel, Sibylle Thude and Katharina Reutlinger prepared the 

reconstructed human skin models. 

 

ad publication 3.3 

The author of this thesis prepared and characterized AuNP-Aq and performed 

thawed skin experiments (skin preparation, penetration experiments and multiphoton 

microscopy). Dr. Tobias Kraus was responsible for preparation and characterization 

of AuNP-TOL. Our partners from Australia performed the other experiments done on 

viable human skin (skin preparation, penetration experiments, cryosectioning, 

dermoscopy and reflectance confocal microscopy, TEM of skin samples). Both 

laboratories contributed equally in terms of practical work and writing the manuscript. 

 

ad publication 3.4 

The author of this thesis prepared and characterized AuNP3 and AuNP4. The author 

performed all the skin experiments, multiphoton microscopy, semiquantitative 

analysis, gravimetry and high performance thin layer chromatography, as well as 

writing the manuscript and planning for the experiments under the guidance of the 

supervisor and the other authors. Dr. Tobias Kraus was responsible for preparation 

and characterization of the two gold nanoparticles of diameter 6 nm. 
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ad publication 3.5 

The author of this thesis prepared the nanoparticles and characterized them, 

performed skin experiments, microscopy, data analysis, as well as writing the 

manuscript and planning for the experiments under the guidance of the supervisor 

and the other author. 

 

All the work done was directly supervised by Junior Prof. Dr. Marc Schneider, my 

principal supervisor. In addition, since the work done throughout the thesis was 

initially funded by the Egyptian government and the DAAD as a joint channel project, 

part of this work was also co-supervised by Prof. Dr Labiba K. El-khordagui, Dept. of 

Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt. 



 

-138- 
 

 

 

 

 

 

 

 

 

 

 

4. Summary 

 



Summary 

 

-139- 
 

4.1. Results and discussion 

The potential ability of nanoparticles to overcome the skin barrier, attributed mainly 

to the stratum corneum (SC), has been the subject of recent research. Studying skin 

penetration of nanoparticles is considered crucial in the field of nanotoxicology, as 

well as on the basic research level for future pharmaceutical and clinical 

applications. 

We have established a method by multiphoton microscopy for investigating skin 

penetration of gold nanoparticles (AuNP) based on gold luminescence. The 

optimized optical settings allowed for the separation of both skin and gold signals 

with no signal interference among tracks. This was also confirmed by examination of 

control skin (Figure 4.1).  

  

  

Figure 4.1: Overlaid multiphoton/transmission images of AuNP (indicated as green spots) in 
longitudinal skin sections (b), in comparison to control longitudinal skin section (a). Multiphoton 
images of skin-treated with AuNP from the top view (d), in comparison to control skin (c). 

(a) (b) 

(d) 

SC 

DSL 

SC 

DSL 
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A combined multiphoton imaging-pixel analysis approach was then developed for 

semiquantitation of AuNP population in the SC and deeper skin layers (DSL) in 

terms of pixels, from which the weighed number of particles could be calculated 

(Figure 4.2). This method offers a relatively higher degree of accuracy and more 

freedom on selecting the optical settings and thus overrides previous approaches 

involving intensity measurement of fluorescence [89] and confocal [52] images. The 

latter approach necessitates fixed optical settings for all the experiments. This would 

rather limit the imaging capability of nanoparticles deep inside the skin using optical 

sectioning. 

 

Figure 4.2: A schematic presentation of the combined multiphoton imaging-pixel analysis developed 

throughout the thesis [134].   

 

Further work has been directed to the determination of the imaging parameters of 

multiphoton microscopy in skin in terms of achievable detection depths and the 

resolution limit. Multiphoton microscopy was shown to be a promising non-invasive 

technique with some limitations. Factors such as skin compactness and presence of 

wrinkles were found to deteriorate the accuracy of depth profiling. Lateral 

(0.5±0.1μm) and axial (1.0±0.3μm) point spread functions (PSF) in reconstructed 

and human skin specimens were determined practically. Both determined values 
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were higher than experimental values determined in water [128], glycerol [129] and 

turbid media (gel and lipid emulsion) [130]. This was explained by the higher optical 

density of the skin as an imaging medium. Surprisingly, lateral and axial PSF did not 

deteriorate with depth. This was attributed to the low tissue compactness, in case of 

reconstructed human skin or due to dominance of optical distortions caused by the 

optical system along the relatively short detection depth (~14 µm) in human skin. 

More importantly, our results in human skin showed that AuNP could be tracked up 

to a shallow depth, ~14 µm, less than or equal to the average thickness of the SC 

due to scattering phenomenon in the heterogeneous skin tissue with depth, 

representing a major problem when tracking the penetration of nanoparticles into the 

DSL. According to our findings, examination of longitudinal skin sections was found 

more accurate and informative, rather than examination of non-sectioned skin from 

the top view. Therefore, longitudinal skin sections were used for further 

examinations. 

AuNP of diameter 6 and 15 nm differing in surface polarity and vehicle nature (water 

and toluene) were successfully prepared and characterized. Their penetration 

through the skin was studied using multiphoton microscopy after validating the 

method as discussed earlier. Before studying the penetration of nanoparticles 

through the skin barrier, the effect of two selected nanoparticle dispersions (citrate-

stabilized 15 nm AuNP in water and thiol-coated 6 nm AuNP in toluene) on the 

metabolic machinery of the skin was investigated using MP-FLIM (Multiphoton-

fluorescence life-time imaging microscopy). Our results showed that the viability of 

the epidermis was deteriorated with distinct morphological changes after skin 

exposure to toluene regardless of AuNP presence. This was also shown by TEM and 

dermoscopy. The toluene-extracts after skin application were then analyzed 

gravimetrically and by means of HPTLC (high performance thin layer 

chromatography). Toluene was shown to have an effect on the barrier function of the 

SC by means of lipid extraction. Yet, only about 17% of the epidermal lipids were 

extracted after 24 h of skin application. Moreover, there were no drastic changes in 

the intercellular lipid structure on toluene application. Ceramides, known as the most 

important component of the SC multilamellar lipid structure with definite 

physicochemical properties necessary for the barrier function of the skin [178], were 

not extracted by toluene. This was supported by further results of the skin 
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penetration experiments conducted in this thesis indicating that the vehicle did not 

have a major effect on the penetration of the prepared nanoparticles. 

Penetration studies involved skin application of four types of AuNP differing in size (6 

and 15 nm), surface chemistry and vehicle (water and toluene). Results indicated 

penetration of all applied AuNP after 24 h of skin exposure except for citrate-

stabilized AuNP, 15 nm in diameter. The physicochemical parameters were found 

key factors governing their skin penetration and permeation. Surface hydrophobicity 

of the nanoparticles was shown to favor skin penetration of AuNP through human 

skin. Citrate-stabilized ~ 15 nm AuNP could not penetrate human skin after 24 h of 

skin exposure. However, surface modification having cetrimide on the outer surface, 

i.e., hydrophobic surface, resulted in skin penetration into the deeper layers. A 

similar pattern was observed for smaller ~ 6 nm AuNP, in which surface modification 

of hydrophobic thiol-coated AuNP using lecithin yielded relatively hydrophilic AuNP 

with lower skin penetration ability under the same experimental conditions.  

Away from the particle physicochemical and formulation factors, concentration of the 

applied nanodispersion and skin exposure time could greatly influence the skin 

penetration of nanoparticles. We applied thiol-coated AuNP on human skin with two 

different concentrations, 90 and 437 µg/ml of gold, for exposure times of 0.5, 2, 6 

and 24 h. Both the amount of AuNP penetrating into the DSL and the penetration 

depth increased with higher concentration and longer skin exposure time. Some 

other studies investigated skin particle penetration on different time intervals. For 

instance, Baroli et al. [53] studied the penetration of magnetic nanoparticles through 

human skin after 3, 6, 12 and 24 hr, where particle penetration was reported starting 

from 6 h skin exposure time. Based on these studies, generalized conclusions 

indicating safety of nanoparticles on topical application or the opposite case, based 

on studying a single concentration, is inappropriate.  

The effect of deteriorating the barrier function of human skin by removal of the all 

epidermal lipids (using chloroform/methanol mixture) or by even total removal of the 

SC via tape-stripping on the skin penetration of citrate-stabilized 15 nm AuNP (no 

intrinsic penetration ability) was investigated. Removal of the epidermal lipids 

resulted in penetration of the tested AuNP indicating that the intercellular lipids are 

the main barrier for skin penetration of nanoparticles. Complete removal of the SC 

resulted, however, in about 28 fold further increase in penetration into DSL. This 
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would rather indicate that the barrier function of the SC to particle penetration does 

not rely only on the intercellular lipids but on the whole microstructure of the SC with 

its tortuous intercellular aqueous and lipidic channels. 

Finally, attempts to induce the penetration of citrate-stabilized 15 nm AuNP were 

conducted. Penetration in presence of selected chemical enhancers from different 

classes, urea (amides), sodium lauryl sulphate (SLS) (anionic surfactant), 

polysorbate 80 (non-ionic surfactant) and dimethyl sulphoxide (DMSO) (sulphoxides) 

was investigated. The nanoparticles-vehicle interaction and the stability of the 

nanoparticles in the applied vehicle were shown to be a critical parameter in 

transdermal delivery of nanoparticles. DMSO could significantly induce the 

penetration of the applied gold colloid, in a concentration-dependent manner. On the 

other hand, pretreatment of the skin with DMSO reduced the penetration of 

cetrimide-coated 15 nm gold nanoparticles. This was experimentally shown to be 

attributed to aggregation in the top layers of the stratum corneum limiting penetration 

into the deeper skin layers, since the latter particles were found unstable in DMSO 

solutions. In addition, nanoparticles-vehicle interaction and the stability of the 

nanoparticles in the applied vehicle were found important determinants of skin 

penetration.  

4.2. Conclusion 

Multiphoton microscopy was found a promising technique in tracking skin penetration 

of nanoparticles with several limitations. Hence, the results based on this technique 

should be interpreted with care. Our results showed that examination of longitudinal 

skin sections, though suffering possible sectioning artifacts, still provides more 

accurate information on the status of AuNP penetration rather than optical sectioning 

of skin specimens examined from the top. 

A combined multiphoton imaging-pixel analysis was successfully developed to 

semiquantify gold nanoparticles in the stratum corneum (SC) and DSL. Detection of 

gold nanoparticles in skin by multiphoton microscopy was based on gold 

luminescence. This experimental approach should be used as a tool in future studies 

to advance our basic understanding of nanoparticle interaction with the skin barrier. 
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As for molecules, the main barrier to particle penetration through the skin barrier was 

found to be the intercellular lipids. However, the whole microstructure of the SC with 

its intercellular aqueous and lipidic channels significantly limited particle penetration. 

This was shown from experiments performed using different grades of skin integrity. 

The penetration behavior was primarily dependent on their physicochemical 

attributes, of which the size is the most significant determinant of penetration where 

6 nm AuNP showed much higher extent of penetration rather than 15 nm AuNP. Our 

results however indicate a minimal effect of the vehicle on particle penetration. 

Furthermore, experimental considerations in setting-up a penetration experiment for 

nanoparticles were also studied. For instance, exposure times of at least 6 h are 

recommended for future studies on skin penetration of nanoparticles.  

Findings obtained in the thesis are very important for the basic understanding of the 

interaction of nanoparticles with the skin barrier. This would find future 

pharmaceutical and clinical applications, e.g. designing optimal topical and 

transdermal delivery systems. This has also a direct impact on the field of 

nanotoxicology, especially in the area of work-place exposure. 
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