Auswirkungen der *MAE1*-Gendeletion auf den Zentralstoffwechsel von *Saccharomyces cerevisiae* unter verschiedenen Physiologien

Dissertation

zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes

> von Konstantin Schneider

> > Saarbrücken

2011

Tag des Kolloquiums:27. 05. 2011

Dekan:Prof. Dr. Wilhelm F. MaierBerichterstatter:Prof. Dr. Elmar Heinzle
Prof. Dr. Friedrich GiffhornVorsitz:Prof. Dr. Volkahrd HelmsAkad. Mitarbeiter:Dr. Gert-Wieland Koring

"Holzhacken ist deshalb so beliebt, weil man bei dieser Tätigkeit den Erfolg sofort sieht."

Albert Einstein (1879 – 1955)

Meinen Eltern

Danksagung

Mein besonderer Dank gilt Herr Professor Dr. Elmar Heinzle für die Überlassung des Themas und die sehr gute wissenschaftliche Betreuung der Arbeit. Die stete Bereitschaft zur fachlichen Diskussion war bei der Bearbeitung immer eine große Hilfe.

Ich danke Herrn Professor Dr. Giffhorn für die Bereitschaft zur Begutachtung dieser Arbeit und die Möglichkeit in gemeinsamen Projekten über den Tellerand der eigenen Arbeit hinauszuschauen.

Herrn Dr. Tae-Hoon Yang danke ich für die Überlassung der Software zur Durchführung der metabolischen Flussanalyse, sowie der ständigen Bereitschafft zur Diskussion.

Prof. Dr. Wittmann, Prof. Dr. Tholey, Dr. Frick und Dr. Krömer danke ich herzlich für ihre Unterstützung zu Beginn meiner Zeit in Saarbrücken, sowie für den nachmittäglichen Stressabbau gefolgt von detaillierten taktischen Analysen.

Allen Mitarbeitern der Technischen Biochemie danke ich für die freundliche Atmosphäre und die gute Zusammenarbeit. Im Besonderen gilt dies für Michel Fritz und seinen heilenden Händen, die bis jetzt jede Maschine wieder zum Leben erweckt haben und Susanne Peifer für die ständige Diskussionsbereitschaft und die Hilfe bei den abschließenden experimentellen Arbeiten, sowie dem Korrekturlesen der Arbeit.

Meinen mittlerweile eher Freunden als Kollegen Andreas Neuner, Susanne Peifer, Tobias Klein und Vasileios Delis, sowie Christoph Bolten, Barbara Gregorius und Tom Jakoby, die mittlerweile weiter gezogen sind, möchte ich natürlich für die ständige Bereitschaft zur wissenschaftlichen Diskussion, aber auch für die gute Zeit jenseits der Arbeit und den ein oder anderen Neustart des gesamten Systems am Wochenende danken. Die Zeit in Saarbrücken ist dank euch nie langweilig geworden und hat mir immer viel Freude bereitet und neue Motivation für die Arbeit gegeben.

Meinen Freunden aus der Heimat und aus der Mannheimer Studienzeiten, danke ich für die Abwechslung vom Arbeitsalltag und für viele schöne Stunden.

Mein ganz besonderer, tiefer Dank gilt meinen Eltern Monika und Hans-Peter, sowie meinem Bruder David. Vielen Dank für eure Unterstützung während des Studiums und auch in der Zeit darüber hinaus, ohne die dies alles nicht möglich gewesen wäre. Ihr seid mir immer ein wichtiger Rückhalt.

Inhaltsverzeichnis

Symbole und Abkürzungen1					
Z	Zusammenfassung4				
A	bstra	±	5		
1		Einleitung	6		
2		Zielsetzung	8		
3		Grundlagen und theoretischer Hintergrund	9		
	3.1	Physiologie der Hefe S. cerevisiae	10		
	3.1.1	Wachstumscharakteristik von S. cerevisiae in Chemostat- und Batchkulturen	13		
	3.1.2	Zentralstoffwechsel von S. cerevisiae	15		
	3.1.3	Redoxmetabolismus und oxidative Phosphorylierung	23		
	3.2	Quantitative Analyse metabolischer Netzwerke	26		
	3.2.1	"Metabolite Balancing"	27		
	3.2.2	¹³ C Metabolische Flussanalyse	29		
	3.2.3	Elementarmodenanalyse	35		
4		Material und Methoden	40		
	4.1	Mikroorganismen	40		
	4.1.1	Saccharomyces cerevisiae BY4742	40		
	4.2	Nährmedien	40		
	4.2.1	YEPD Komplexmedium	40		
	4.2.2	Synthetisches Medium für S. cerevisiae	41		
	4.3	Stammhaltung und Kultivierung von S. cerevisiae	43		
	4.3.1	Stammhaltung	43		
	4.3.2	Kultivierung von S. cerevisiae im Schüttelkolben	44		
	4.3.3	Kultivierung von S. cerevisiae im Bioreaktor	44		
	4.4	Probenahme und -vorbereitung	47		
	4.4.1	Abstoppen des Stoffwechsels und Extraktion zur Analyse			
		intrazellulärer Metabolite	47		
	4.4.2	Probenahme zur Quantifizierung von Redox Kofaktoren	49		

	4.4.3	Hydrolyse des Zellproteins zur GC/MS Analytik	50
	4.5	Biochemische und analytische Methoden	51
	4.5.1	Bestimmung von optischer Dichte (OD) und Biotrockenmasse	51
	4.5.2	Zellvolumen von S. cerevisiae	52
	4.5.3	Quantifizierung von Glucose und Ethanol in Kulturüberständen mittels	
		enzymatischer Tests	52
	4.5.4	Quantifizierung von organischen Säuren, Alkoholen, Nukleobasen und	
		Kohlenhydraten mittels HPLC	53
	4.5.5	Quantifizierung von Aminosäuren mittels HPLC	54
	4.5.6	Quantifizierung von Redox Kofaktoren	56
	4.5.7	GC/MS Analytik	57
	4.5.8	On-line Abgasanalyse	60
	4.5.9	Quantifizierung des Gelöstsauerstoffes in Schüttelkolben	60
	4.5.10	Bestimmung des volumetrischen Stoffübergangskoeffizienten (k _L a)	
		für Sauerstoff in Schüttelkolben	60
	4.5.11	Bestimmung von in-vitro Enzymaktivitäten	62
	4.6	Berechnung von zentralen Kultivierungsparametern	66
	4.6.1	Ausbeutekoeffizienten	66
	4.6.2	Spezifische Raten	67
	4.6.3	Kohlenstoffbilanzierung	68
	4.6.4	Abgasbilanzierung	68
	4.7	Quantitative Netzwerkanalyse	69
	4.7.1	¹³ C Metabolische Flussanalyse	69
	4.7.2	Elementarmodenanalyse	70
5	Erg	gebnisse und Diskussion	71
	5.1	Physiologische und metabolische Charakterisierung von S. cerevisiae	
		BY4742 und BY4742 mae1 Δ	71
	5.1.1	Charakteristische Auxotrophien des Stammes S. cerevisiae BY4742 –	
		Einfluss auf den zellulären Stoffwechsel	71
	5.1.2	Physiologie von S. cerevisiae BY4742 und BY4742 mae 1Δ bei Wachstum	
		auf Glucose und Galactose in Batch-Kultur	81
	5.1.3	Physiologie von S. cerevisiae BY4742 und BY4742 mae 1Δ bei Wachstum in	
		kontinuierlicher Kultur auf Glucose	86

T 1 1			•	1	•
Inha	tsv	erz	2e10	hn	15
ma		VI 2	-010	/111	10

5.1.4	Einfluss der Kultivierungsbedingungen auf die in vitro Enzymaktivitäten	
	von <i>S. cerevisiae</i> BY4742 und BY4742 mae 1Δ	90
5.1.5	Einfluss verschiedener Wachstumszustände auf intrazelluläre	
	Kofaktorkonzentrationen und deren Verhältnisse	100
5.2	Quantitative Analyse metabolischer Netzwerke	103
5.2.1	Topologie des metabolischen Netzwerkes von S. cerevisiae	103
5.2.2	¹³ C Metabolische Flussanalyse in kontinuierlicher Kultur	111
5.2.3	Validierung des metabolisch und isotopisch stationären Zustandes	112
5.2.4	Qualität der simulierten MDVs	113
5.2.5	Einfluss der MAE1-Deletion auf den Stoffwechsel von S. cerevisiae in	
	kontinuierlicher Kultur	116
5.2.6	Bilanzierung der Redoxäquivalente, ATP und CO ₂	132
5.2.7	Einfluss der MAE1-Deletion auf den Stoffwechsel von S. cerevisiae in	
	Batch-Kultur bei Wachstum auf Glucose oder Galactose	141
5.2.8	Bilanzierung der Redoxäquivalente und ATP	155
5.3	Elementarmodenanalyse	161
7	Literatur	185
8	Anhang	200
8.1	Anabole und katabole Verhältnisse von NAD(P) ⁺ und NADPH	200
8.2	Netzwerke zur ¹³ C metabolischen Flussanalyse	201
8.2.1	Kontinuierliche Kulturen	201
8.2.2	Batch-Kulturen	203
8.3	Ergebnisse ¹³ C metabolische Flussanalyse	205
8.3.1	BY4742 respiratives Wachstum auf Glucose (D=0,16 h ⁻¹)	205
8.3.2	BY4742 mae1 Δ respiratives Wachstum auf Glucose (D=0,16 h ⁻¹)	208
8.3.3	BY4742 respiro-respiratives Wachstum auf Glucose (D=0,22 h ⁻¹)	211
8.3.4	BY4742 mae1 Δ respiro-respiratives Wachstum auf Glucose (D=0,22 h ⁻¹)	214
8.3.5	BY4742 aerob fermentatives Wachstum auf Glucose (B-Kultur)	216
8.3.6	BY4742 mae1 ^Δ aerob fermentatives Wachstum auf Glucose (B-Kultur)	219
8.3.7	BY4742 aerob fermentatives Wachstum auf Galactose (B-Kultur)	222
838	BY4742 mae1A aerob fermentatives Wachstum auf Galactose (B-Kultur)	

8.4	Elementarmodenanalyse	228
8.4.1	Stöchiometrisches Netzwerk nach Förster et al. (2002)	228
8.4.2	Konsensusnetzwerk nach Herrgrad (2008)	231
	Lebenslauf	299

Symbole und Abkürzungen

Symbole

c	Konzentration
CPR	CO ₂ -Produktionsrate
D	Verdünnungsrate
d	Schichtdicke
3	molarer Extinktionskoeffizient
m/z	Verhältnis Masse zu Ladungszahl
μ	spezifische Wachstumsrate
OUR	Sauerstoffaufnahmerate
q _{CO2}	spezifische CO ₂ -Produktionsrate
q_{O2}	spezifische Sauerstoffaufnahmerate
q_P	spezifische Produktbildungsrate
qs	spezifische Substrataufnahmerate
RQ	respiratorischer Quotient
t	Zeit
U	Units
v	metabolischer Fluss
$Y_{X\!/\!S}$	Biomasseausbeutekoeffizient
$Y_{P/S}$	Produktausbeutekoeffizient
δ	Reversibilität

Abkürzungen

Ac-CoA	Acetyl-CoA
ABU	α-Aminobuttersäure
ACA/AAD	Acetaldehyd
ACE	Acetat
ADP	Adenosindiphosphat
AKG	α-Ketoglutarat
AMM	"Atom Mapping Matrix"
AMP	Adenosinmonophosphat

ATCC	"American Type Culture Collection"
ATP	Adenosintriphosphat
BTM	Biotrockenmasse
P13G	1,3-Bisphosphoglycerat
BSA	bovines Serumalbumin
c, cyt	cytosolisch
CI/CIT	Citrat
DHAP/DHP	Dihydroxyacetonphosphat
DMF	Dimethylformamid
DNA	Desoxyribonukleinsäure
DTT	Dithiothreitol
et al.	und andere (et alii)
E4P	Erythrose-4-phosphat
ETH	Ethanol
FAD ⁺ /FADH ₂	Flavinadenindinukleotid, oxidiert/reduziert
F6P	Fructose-6-phosphat
F16P	Fructose-1,6-bisphosphat
FUM	Fumarat
GAL	Galactose
GC/MS	Gaschromatographie/Massenspektrometrie
GLC	Glucose
GA3P/GAP	Glycerinaldehyd-3-phosphat
G6P	Glucose-6-phosphat
G6PDH	Glucose-6-phosphat-Dehydrogenase
GLYC	Glycerin
G15L	6-Phosphogluconolacton
GTP	Guanosintriphosphat
HS-CoA	Coenzym A
HPLC	"High Performance Liquid Chromatography"
ICI	Isocitrat
IDV	"Isotopomer Distribution Vector"
IMM	"Isotopomer Mapping Matrix"
Konti	kontinuierliche Kultur

m, mit	mitochondriell
MAL	Malat
MBDSTFA	N-methyl-N-t-butyldimethylsilyl-trifluoracetamid
MDV	"Mass Distribution Vector"
MFA	Metabolische Flussanalyse
MSTFA	N-methyl-N-trimethylsilyl-trifluoracetamide
MTHF	Methyltetrahydrofolat
NAD ⁺ /NADH	Nicotinamidadenindinukleotid, oxidiert/reduziert
NADP ⁺ /NADPH	Nicotinamidadenindinukleotidphosphat, oxidiert/reduziert
OAA	Oxalacetat
OD	Optische Dichte
OPA	ortho-Phthaldialdehyd
P2G	2-Phosphoglycerat
P3G/3PG	3-Phosphoglycerat
pН	negativer dekadischer Logarithmus der Protonenkonzentration
P6G	6-Phospogluconat
PEP	Phosphoenolpyruvat
Pi	anorganisches Phosphat
РРР	Pentosephosphatweg
PYR	Pyruvat
RU5P	Ribulose-5-phosphat
R5P	Ribose-5-phosphat
RT	Raumtemperatur
P5P	Pentose-5-phosphat
S7P	Sedoheptulose-7-phosphat
SK	Schüttelkolben
SUCCOA	Succinyl-CoA
Tab.	Tabelle
TCA-Zyklus	Tricarbonsäurezyklus
THF	Tetrahydrofolat
Х	extrazellulär
X5P	Xylulose-5-phosphat

Zusammenfassung

Im Rahmen dieser Arbeit wurde die Deletion des *MAE1*-Gens auf den zentralen Metabolismus von *S. cerevisiae* untersucht. Im Zentrum stand die Analyse des Fluxoms beider Stämme unter verschiedenen physiologischen Zuständen. Vergleichenden Studien zwischen einem Referenzstamm und dem *MAE1*-Deletionsstamm resultierten in einer starken Beeinflussung der Flussverteilungen, sowohl im Pentosephosphatweg, als auch im Citratzyklus. Ferner wurde deutlich, dass NADPH in den Zellen akkumuliert, wodurch ein alternativer Weg zur Reoxidation, neben der Biomassebildung, notwendig ist. Die Deletion des *MAE1*-Gens resultierte also in einer Umstrukturierung der NADPH-Bereitstellung für den Anabolismus. Die aus der ¹³C metabolischen Flussanalyse erhaltenen Daten wurden mit Ergebnissen aus *in vitro* Aktivitätsbestimmungen zentraler Enzyme, sowie den intrazellulären Verhältnissen von NAD(P)⁺ und NAD(P)H korreliert, um Aussagen über die Aktivität und Regulierung der einzelnen Stoffwechselwege unter den jeweiligen Zuständen machen zu können.

Daneben wurde mittels der Elementarmodenanalyse eine *in silico* Betrachtung des zellulären Stoffwechsels durchgeführt. Ausgehend von einem Genom-weiten Modell des Stoffwechsels wurde dazu ein reduziertes Modell erstellt. Dies resultierte, neben diversen anderen Optionen, auch in der Notwendigkeit einer alternativen Reoxidationsmöglichkeit für NADPH außer der Biomassebildung, nämlich einen Transhydrogenase-ähnlichen Zyklus, um die mittels ¹³C metabolischer Flussanalyse bestimmten Flussverteilungen zu erhalten.

Abstract

This work yields towards the quantitative description of the influence of MAE1 gene deletion on the overall cellular metabolism of S. cerevisiae. Focusing on the fluxome of both strains under different physiological and metabolic states, the MAE1 gene deletion had a strong impact on the way carbon distributes throughout the metabolic network. Comparative studies using a reference strain and a MAE1 deletion strain showed a significant impact on the flux through pentose phosphate pathway and the citric acid cycle. It was obvious that an accumulation of NADPH occurred in all the metabolic states which made an alternative system of reoxidation, beside the formation of biomass, necessary. Therefore MAE1 gene deletion resulted in a complete restructuration of the way NADPH is supplied by the central metabolism. The data gained from ¹³C metabolic flux analysis was correlated with results from *in vitro* enzyme activity determinations and intracellular ratios of $NAD(P)^+$ and NAD(P)H, to comment on the activity and regulation of the single pathways under different physiological states. Additionally an elementary mode analysis was carried out. Starting from a genome scale metabolic model a more condensed network was applied. The in silico metabolic network analysis also resulted in the need for an alternative reoxidation system for NADPH to achieve the metabolic flux distribution observed by ¹³C metabolic flux analysis. This was implemented as a transhydrogenase-like cycle.

1 Einleitung

Mit der Sequenzierung des Genoms von Saccharomyces cerevisiae im Jahre 1996 (Goffeau et al., 1996) wurde einer der Grundsteine für die systembiologische Untersuchung dieses Organismus gelegt. Diese relativ junge Disziplin innerhalb der Biowissenschaften beschäftigt sich mit der ganzheitlichen Beschreibung zellulärer Vorgänge und deren Verständnis auf verschiedenen regulatorischen und organisatorischen Ebenen. Dies beginnt bei der Grundausstattung des Organismus (Genom), der Menge und Art der daraus transkribierten Gene (Transkriptom) bzw. translatierten Proteine (Proteom), den Konzentrationen der an den Enzymreaktionen beteiligten Metabolite (Metabolom) und endet bei der Aktivität der verschiedenen Stoffwechselwege in vivo (Fluxom). Ziel dieses Gebietes ist es, die verschiedenen Teilaspekte zu kombinieren, um damit einen Organismus als Ganzes zu verstehen und zu charakterisieren. Die Schwierigkeiten dabei stellen zum einen die komplexen nicht-linearen Verknüpfungen zwischen den einzelnen Ebenen und die große Zahl an involvierten Genen, Proteinen und Metaboliten dar. Des weiteren erschweren die zusätzlich auftretenden Interaktionen zwischen diesen einzelnen Komponenten, die abhängig von den Umgebungsbedingungen variieren können, das Verständnis (Sauer et al., 2007).

Ein wichtiger Teil im Rahmen der systematischen physiologischen und metabolischen Charakterisierung von Organismen stellt dabei die metabolische Netzwerkanalyse dar (Christensen und Nielsen, 2000). Durch die Bilanzierung des zellulären Stoffwechsels, auf der Grundlage eines bekannten metabolischen Netzwerkes, anhand extrazellulärer Raten, können Aussagen über die Aktivitäten intrazellulärer Stoffwechselwege getroffen werden. Für komplexere Netzwerktopologien bedient man sich der ¹³C metabolischen Flussanalyse (Niklas et al., 2010; Sauer, 2006; Wiechert, 2001; Wittmann, 2007), um feine Strukturen im Netzwerk auflösen zu können. Diese Methode der systematischen Charakterisierung des zellulären Stoffwechsels ist in besonderem Maße zum Vergleich des Metabolismus unter verschiedenen physiologischen Bedingungen bzw. dem metabolischen Vergleich verschiedener Mutanten geeignet und wurde schon für eine Vielzahl von biotechnologisch relevanten Organismen eingesetzt. Hierzu zählen Prokaryonten wie *E. coli* (Nanchen et al., 2008) oder *C. glutamicum* (Becker et al., 2007; Becker et al., 2008; Becker et al., 2005), verschiedene eukaryontische Organismen wie *Aspergillus niger* (Meijer et al., 2009;

Melzer et al., 2007), *Penicillium chrysogenum* (Geng und Yuan, 2009; Zhao et al., 2008), *Schizosaccharomyces pombe* (Dragan et al., 2006) und *Saccharomyces cerevisiae* (Frick und Wittmann, 2005; Gombert et al., 2001; Maczek et al., 2006; Velagapudi et al., 2007). Des Weiteren beschreibt diese Art der Analyse den Phänotyp eines Organismus deutlich besser als andere Methoden wie z. B. Metabolom- oder Proteomanalysen.

Zwei weitere rein stöchiometrische Methoden der metabolischen Netzwerkanalyse stellen die Elementarmodenanalyse und auch die "extreme pathway" Analyse dar (Papin et al., 2004; Schilling et al., 2000; Schuster et al., 1999). Das Ergebnis dieser Analysen stellt einen Lösungsraum mit allen möglichen stationären Flussverteilungen des entsprechenden Dies erlaubt Leistungsfähigkeit Netzwerks dar. die hinsichtlich maximaler Produktausbeuten oder Aktivitäten einzelner Stoffwechselaktivitäten, unter bestimmten Konfigurationen des metabolischen Netzwerkes oder verschiedener Physiologien, abzuschätzen. Auch hier seien einige Beispiele genannt, in denen die Elementarmodenanalyse zur Beschreibung verschiedener Produktionsprozesse in S cerevisiae (Carlson et al., 2002; Cox et al., 2006) bzw. zur Untersuchung des Stoffwechsels im allgemeinen in S. cerevisiae eingesetzt wurden (Duarte et al., 2004b; Forster et al., 2002).

Einen weiteren Zugang zur systematischen Charakterisierung des Stoffwechsels von *S. cerevisiae* stellt das *"Yeast Genome Deletion Project"* dar (Baudin et al., 1993; Brachmann et al., 1998). In diesem Projekt wurden über 5900 einzelne Gene deletiert, so dass gezielte Untersuchungen zur Auswirkung einer bestimmten Deletion auf den Organismus, auch im größeren Maßstab, einfach durchgeführt werden können (Ooi et al., 2006). Vorangegangene Untersuchungen ausgewählter *S. cerevisiae* Deletionsmutanten lieferten interessante Einblicke über die Auswirkungen der einzelnen Gendeletionen auf den Stoffwechsel. Hochdurchsatz-Experimente in Mikrotiterplatten zeigten verschiedene Ziele für eine tiefergehende Charakterisierung auf, wie der Deletion des *MAE1*-Gens, welches für das Malat-Enzym codiert (Velagapudi et al., 2006; Velagapudi et al., 2007). Die Auswirkungen dieser Deletion auf den Stoffwechsel in *S. cerevisiae* stellen den zentralen Punkt dieser Arbeit dar und wurden mit verschiedenen systembiologischen Methoden untersucht.

2 Zielsetzung

Ziel der Arbeit war es anhand systembiologischer Methoden der metabolischen Netzwerkanalyse die Auswirkungen der Deletion des *MAE1*-Gens auf den Metabolismus von *S. cerevisiae* unter verschiedenen physiologischen und metabolischen Zuständen zu untersuchen. In kontinuierlicher Kultur mit Glucose als Kohlenstoffquelle sollten die Einflüsse der Gendeletion auf den rein respirativen sowie den respiro-fermentativen Stoffwechsel von *S. cerevisiae*, bei unterschiedlichen spezifischen Wachstumsraten, bestimmt werden. In Batch-Kultivierungen mit Glucose oder Galactose als Kohlenstoffquelle wurde die Beeinflussung des zellulären Stoffwechsels unter nicht limitierenden Substratbedingungen bei der maximalen spezifischen Wachstumsrate untersucht. Als Referenzstamm diente für alle durchgeführten Untersuchungen der parentale Stamm *S. cerevisiae* BY4742.

Das Hauptaugenmerk lag auf der metabolischen Netzwerkanalyse der beiden Stämme unter verschiedenen physiologischen Bedingungen. Dazu fanden die ¹³C metabolische Flussanalyse, sowie die Elementarmodenanalyse Einsatz. Des Weiteren wurden detaillierte Charakterisierungen physiologische beider Stämme unter den verschiedenen Wachstumsbedingungen durchgeführt. Diese sollten neben der Bestimmung des extrazellulären Metaboloms und Respirationsanalysen die auch in vitro Aktivitätsbestimmung von zentralen Enzymen im Stoffwechsel von S. cerevisiae, sowie die Quantifizierung der intrazellulären Konzentrationen der Redoxkofaktoren NAD(P)⁺ und NAD(P)H beinhalten.

3 Grundlagen und theoretischer Hintergrund

Saccharomyces cerevisiae oder auch Bäckerhefe ist einer, wenn nicht sogar der bedeutendste eukaryontische Modellorganismus und gehört zur Ordnung der knospenden Hefen (Saccharomycetales). Kein anderer eukaryontischer Organismus ist in einer vergleichbaren Tiefe untersucht und charakterisiert worden. So war das Chromosom III der Hefe *S. cerevisiae* das erste komplett sequenzierte Chromosom überhaupt (Oliver et al., 1992). Nur wenige Jahre später wurde das vollständig sequenzierte Genom von *S. cerevisiae* veröffentlicht – als erstes eukaryontisches Genom (Goffeau et al., 1996). Dieser Schritt stellte den Grundstein zur funktionellen Analyse dieses Organismus dar.

Traditionell wurde S. cerevisiae zur Herstellung von Brot, Bier und Wein eingesetzt. Durch ein immer besseres Verständnis des Organismus und die Möglichkeiten neuer molekularbiologischer Techniken, wie die rekombinante DNA-Technologie, wurden weitere Einsatzfelder erschlossen. Diese beginnen bei der Herstellung von pharmazeutischen Proteinen wie Insulin oder verschiedenen Impfstoffen (Nielsen und Jewett, 2008), organischen Säuren wie Lactat (Ishida et al., 2006), Pyruvat (van Maris et al., 2003) und Glycerin (Geertman et al., 2006), sowie der Synthese von Isoprenoiden (Ro et al., 2006; Shiba et al., 2007) und Polyketiden (Wattanachaisaereekul et al., 2007) und endet bei der Produktion von Bioethanol. Auf der anderen Seite dient S. cerevisiae aufgrund seiner recht hohen Homologie zu tierischen Zellen, sowohl auf metabolischer als auch auf regulatorischer Ebene (Barr, 2003; Carpenter und Sabatini, 2004), auch als Modellorganismus zur Erforschung der molekularen Mechanismen verschiedener Krankheiten wie Krebs oder Diabetes (Nielsen und Jewett, 2008).

Hinsichtlich der Aufklärung dieser Mechanismen hat sich die phänotypische Charakterisierung, auch durch die Möglichkeit eines einfachen Zugriffs auf *S. cerevisiae* Deletionsmutanten aller nicht essentiellen Gene, als eine vielversprechende Methode zur funktionellen Charakterisierung von Genen und deren Auswirkungen auf den zellulären Mechanismus herausgestellt (Baudin et al., 1993; Brachmann et al., 1998; Carpenter und Sabatini, 2004).

3.1 Physiologie der Hefe S. cerevisiae

Der in dieser Arbeit untersuchte Organismus *S. cerevisiae* gehört zur Gruppe der fakultativ anaeroben Hefen und ist demnach in der Lage sowohl in Anwesenheit von Sauerstoff als auch in dessen Abwesenheit zu wachsen. Immer wiederkehrende Begriffe in diesem Zusammenhang sind das (i) respirative, (ii) respiro-fermentative, sowie das (iii) aerob fermentative/fermentative Wachstum.

- (i) Kohlenhydrate werden vollständig zu CO_2 oxidiert; keine Bildung fermentativer Produkte wie z. B. Ethanol. Respirativer Stoffwechsel bei niedrigen Verdünnungsraten (unterhalb μ_E) in kontinuierlicher Kultur unter Substratlimitierung oder in Batch-Kulturen bei Wachstum auf Ethanol/Acetat/Glycerin, welches zuvor fermentativ gebildet wurde (siehe Abbildung 1)
- (ii) Kohlenhydrate werden größten Teils zu CO_2 oxidiert, jedoch findet eine signifikante Bildung fermentativer Produkte wie Ethanol statt. Respirofermentativer Stoffwechsel in kontinuierlicher Kultur bei Verdünnungsraten oberhalb von μ_E unter substratlimitierenden Bedingungen (siehe Abbildung 1).
- (iii) Kohlenhydrate werden zum Großteil fermentativ zu Ethanol umgesetzt; geringer Anteil respirativer Stoffwechselwege am gesamten Stoffwechsel. Aerob fermentativer/fermentativer Stoffwechsel in aeroben Batch-Kulturen unter Substrat Reprimierung (Glucose Reprimierung) bei maximaler spezifischer Wachstumsrate μ_{max} (siehe Abbildung 1).

Die Verdünnungsrate μ_E , bei welcher die Ethanolbildung einsetzt, kann, wie bereits 1983 von Heinzle et al. beschrieben, durch einen pulsierenden Zulaufstrom verschoben werden. Es wurde dadurch auch bei höheren Verdünnungsraten ein rein respirativer Stoffwechselzustand erreicht. Wie bei allen anderen Hefen, die in der Lage sind Kohlenhydrate fermentativ zu metabolisieren, bilden auch bei *S. cerevisiae* Ethanol und CO₂ die Hauptprodukte dieses Stoffwechselweges (Van Dijken und Scheffers, 1986).

Abbildung 1: (A) Verlauf von RQ, CPR, OUR und der Ethanolbildung von *S. cerevisiae* in kontinuierlicher Kultur. μ_E bezeichnet diejenige Verdünnungsrate, bei der die Ethanolproduktion einsetzt. (B) Diauxisches Wachstumsprofil von *S. cerevisiae* in Batch-Kultur auf Kohlenhydraten (Glc). Zunächst aerobes fermentatives Wachstum, gefolgt von respirativem Wachstum auf Produkten (Ethanol) der fermentativen Phase.

Bei Wachstum unter nicht ausreichend respirativen Bedingungen findet zusätzlich die Bildung von Glycerin statt, um NADH aus dem Anabolismus zu reoxidieren (Verduyn et 1990a; Verduyn et al., 1990b), wohingegen dies bei ausreichender al., Sauerstoffversorgung über die Atmungskette geschieht. Neben diesen Hauptprodukten werden oft auch kleinere Mengen organischer Säuren wie z. B. Acetat, Succinat oder Lactat in das Medium sekretiert (Oura, 1977; Visser et al., 1995). Da der Anteil der Zellatmung, unter aeroben Bedingungen und nicht limitierenden Glucosekonzentrationen, bei S. cerevisiae weniger als 10 % am gesamten Glucosekatabolismus beträgt, wird dieser Organismus, wie auch Schizosaccharomyces sp., zu den fermentativen Hefen gezählt. Im Gegensatz dazu werden Hefen wie Pichia sp., Candida sp. und Kluyveromyces sp. den respirativen Hefen zugeschrieben. Hier beträgt der Anteil der fermentativen Stoffwechselwege am gesamten Glucosekatabolismus weniger als 30 % (Gancedo und Serrano, 1987). Der unterschiedliche Stoffwechsel beider Gruppen macht sich auch in einer ca. 10-mal höheren Glucoseaufnahmerate der fermentativen gegenüber den respirativen Hefen bemerkbar (Gancedo und Serrano, 1987).

Alle bekannten Hefen können Glucose als Kohlenstoffquelle verwerten, die Metabolisierung anderer Kohlenhydrate ist jedoch stark vom jeweiligen Organismus abhängig (Barnett et al., 1990). Wie *S. cerevisiae* gehört der Großteil der bekannten Hefen zur Gruppe der fakultativ fermentativen Hefen, die Kohlenhydrate entweder respirativ oder

fermentativ metabolisieren können (Pronk et al., 1996). Der Einfluss von Sauerstoff auf das Wachstum von S. cerevisiae wurde ausführlich von Furukawa et al. (1983) untersucht. Die jeweiligen Anteile des respiratorischen bzw. fermentativen Kohlenhydratmetabolismus können, unter Berücksichtigung der Sauerstoffversorgung, durch verschiedene Effekte zur Beschreibung verschiedener regulatorischer Phänomene in fakultativ fermentativen Hefen erklärt werden. Eines dieser regulatorischen Phänomene stellt der sogenannte Crabtree-Effekt dar. Crabtree-positive Organismen wie S. cerevisiae sind in der Lage auch unter aeroben Bedingungen Ethanol zu bilden. Dabei unterscheidet man den langfristigen ("long-term") Effekt, der, aufgrund einer zu geringen respiratorischen Kapazität, die Ethanolbildung sowohl unter Kohlenhydrat-limitierenden Bedingungen als auch bei Substratüberschuss beschreibt (Petrik et al., 1983; Postma et al., 1989; Rieger et al., 1983). Der kurzfristige ("*short-term"*) Effekt beschreibt die aerobe Ethanolbildung beim Wechsel von Substrat-limitierten Bedingungen hin zu einem Substratüberschuss. Grund hierfür ist die zunehmende Sättigung des respiratorischen Stoffwechsels, welche zu einem Überfluss auf der Stufe von Pyruvat führt (Rieger et al., 1983; van Urk et al., 1990). Der Pasteur Effekt beschreibt dagegen die Unterdrückung der aeroben alkoholischen Gärung, vermutlich aufgrund einer höheren Affinität der respiratorischen Systeme für NADH. Demnach wird dieser Effekt in allen fermentativen Hefen beobachtet, die Crabtree-negativ sind. In S. cerevisiae kann dieser Effekt bei geringen spezifischen Wachstums- und Substrataufnahmeraten, die das respiratorische System nicht an seine Grenzen bringen, beobachtet werden (Lagunas, 1986). Ein weiteres weit verbreitetes Phänomen ist der Kluyver Effekt. Er bezeichnet das Fehlen der alkoholischen Gärung unter Sauerstofflimitierenden Bedingungen auf bestimmten Kohlenhydraten und ist damit nicht Substrat-spezifisch. Organismensondern Grund hierfür sind geringe Substrataufnahmeraten bestimmter Kohlenhydrate, die zwar ausreichend für den energetisch effizienteren respiratorischen Metabolismus, nicht jedoch für den fermentativen Stoffwechsel sind. Dieser benötigt aufgrund der geringeren Energieausbeute höhere glykolytische Flussraten (Barnett, 1981; Fukuhara, 2003; Weusthuis et al., 1994). Die Inhibierung der alkoholischen Fermentation unter anaeroben Bedingungen durch reduktiven Stress wird als Custers Effekt bezeichnet. Custers-positive Hefen sind unter anaeroben Bedingungen nicht dazu in der Lage die Redoxbilanz durch die Bildung reduzierter Stoffwechselprodukte wie z. B. Glycerin zu schließen und sind unter diesen Bedingungen nicht in der Lage zu wachsen. Unter aeroben Bedingungen geschieht dies

über die Atmungskette (Bruinenberg et al., 1983a; Scheffers, 1966; Van Dijken und Scheffers, 1986).

Im Folgenden wird die Physiologie von *S. cerevisiae* unter verschiedenen Kultivierungsbedingungen beschrieben.

3.1.1 Wachstumscharakteristik von *S. cerevisiae* in Chemostat- und Batchkulturen

Die Charakterisierung von S. cerevisiae erfolgte zum einen in Batch-Kultur, zum anderen in kontinuierlicher Kultur. Die kontinuierliche Kultivierung eignet sich hierbei besonders zur physiologischen Charakterisierung von Mikroorganismen. Durch einen kontinuierlichen Zulauf von Medium, im Falle dieser Arbeit Kohlenstoff-limitiert und Ablauf aus dem Reaktor, bildet sich ein physiologisch und metabolisch stationärer Zustand aus, so dass sich der gesamte Metabolismus in einem Fließgleichgewicht befindet. Die metabolischen Flüsse, intrazellulären Konzentrationen und die Isotopomerverteilung, der in dieser Arbeit durchgeführten ¹³C Markierungsexperimenten, bleiben demnach über die Zeit konstant, so dass prinzipiell zu jedem Zeitpunkt der Kultivierung identische Proben entnommen werden können. Problematisch kann hierbei jedoch der permanente hohe Selektionsdruck aufgrund der Substratlimitierung sein. So ist zu beobachten, dass sich mit zunehmender Zahl der Reaktorverweilzeiten Mutanten mit effizienterer Substrataufnahme durchsetzten, was zum Teil auch an Konzentrationsänderungen intrazellulärer Metabolite ersichtlich wird (Jansen et al., 2005). Ein Adaptionsvorgang ist auch bei Sauerstofflimitierung in kontinuierlicher Kultur zu beobachten. Furukawa et al. (1983) dass an geringe Sauerstoffkonzentrationen adaptierte Kulturen höhere zeigten, Biomasseausbeuten erzielten, als dies bei nicht-adaptierten Kulturen der Fall war. Der Vorteil dieser Methode besteht jedoch darin, verschiedene Mutanten unter genau definierten Bedingungen zu vergleichen. S. cerevisiae ist in kontinuierlicher Kultur, abhängig von der eingestellten Verdünnungsrate, durch das Auftreten unterschiedlicher physiologischer Zustände charakterisiert. Mit Glucose als Kohlenstoffquelle läuft bei niedrigen Verdünnungsraten ein rein respirativer Metabolismus ohne Bildung fermentativer Stoffwechselprodukte wie Ethanol, Acetat oder Glycerin ab. Aufgrund der vollständigen Oxidation der Kohlenhydrate zu CO₂ nimmt sowohl die CO₂-Produktionsrate (CPR) als auch die Sauerstoffaufnahmerate (OUR) im gleichen Maße mit

einer steigenden Verdünnungsrate zu. Der respiratorische Quotient (RQ), definiert durch den Quotienten aus CPR und OUR, bleibt in diesem Bereich der Verdünnungsrate konstant (siehe Abbildung 1) und liegt im Falle des Wachstums auf Kohlenhydraten ungefähr bei 1. Ab einer bestimmten Verdünnungsrate stößt der respirative Metabolismus, da NADH nicht ausreichend schnell über die Atmungskette reoxidiert werden kann, an seine Grenzen und die Bildung fermentativer Stoffwechselprodukte wie z. B. Ethanol und Acetat beginnt. Ab dieser Verdünnungsrate bleibt die OUR konstant und die CPR steigt mit zunehmender Verdünnungsrate weiter an. Durch den mit zunehmender Wachstumsrate immer stärker werdenden fermentativen Metabolismus steigt der RQ-Wert in diesem Bereich stetig an (siehe Abbildung 1). Die Biomassekonzentration im Bioreaktor nimmt mit zunehmender Verdünnungsrate immer weiter ab, bis sie der maximalen spezifischen Wachstumsrate entspricht und die Zellen ausgewaschen werden.

Im Gegensatz zu den konstanten Wachstumsbedingungen in kontinuierlicher Kultur, ändert sich die Umgebung während einer Batch-Kultivierung ständig. Hier sind distinkte Wachstumsphasen (lag-Phase, exponentielle Phase, stationäre Phase, Absterbephase) der Kultur erkennbar. Weiterhin zeigt *S. cerevisiae* bei Wachstum auf Kohlenhydraten in der Regel ein diauxisches Verhalten (siehe Abbildung 1). Die Zucker werden zunächst unter aeroben Bedingungen fermentativ unter geringer Biomassebildung zu Ethanol, Acetat und Glycerin vergoren. Nachdem der Zucker vollständig verbraucht ist, beginnt das respirative Wachstum auf den zuvor gebildeten Produkten des fermentativen Metabolismus. In dieser Arbeit wurde lediglich der exponentielle Bereich bei Wachstum auf Glucose und Galactose für die Charakterisierung der Stämme herangezogen. Bei exponentiellem Wachstum wird ein pseudo-stationärer Zustand erreicht, der sich durch konstante Produktions- und Aufnahmeraten, sowie gleichbleibende intrazelluläre Konzentration der Metabolite und metabolischen Flüsse auszeichnet und sich daher ebenfalls für die Untersuchung mittels stationärer metabolischer Flussanalyse eignet (Provost und Bastin, 2004).

3.1.2 Zentralstoffwechsel von S. cerevisiae

S. cerevisiae kann eine Reihe verschiedener Substrate wie diverse Kohlenhydrate, Ethanol, Acetat und Glycerin unter aeroben und/oder anaeroben Wachstumsbedingungen als Kohlenstoff- und Energiequelle nutzen. Grundaufgabe der katabolen Reaktionen ist dabei vor allem die Bereitstellung freier Energie in Form von ATP, sowie die Synthese von Vorläufermolekülen und die Versorgung von Reduktionsäquivalenten in Form von NADPH für anaplerotische Reaktionen und den Aufbau von Biomasse.

Im Folgenden wird zunächst der zentrale Kohlenstoffmetabolismus von S. cerevisiae beschrieben.

Aufnahme von Glucose und Galactose

Die Aufnahme von Glucose und Galactose erfolgt über eine Reihe von Hexosetransportern, welche über verschiedene Substratspezifitäten verfügen und unterschiedliche Affinitäten besitzen (Boles und Hollenberg, 1997; Lagunas, 1993; Ozcan und Johnston, 1999). Der gemeinsame Eintrittspunkt beider Kohlenhydrate in den katabolischen Metabolismus ist Glucose-6-phosphat. Im Falle von Glucose geschieht dies durch die direkte Phosphorylierung innerhalb der Zelle, Galactose wird über den LeLoir-Weg (siehe Abbildung 2) in Glucose-6-phosphat überführt (Frey, 1996).

Glykolyse, Gluconeogenese und Pentosephosphatweg

Die Glykolyse stellt eine Serie von Enzymreaktionen dar, die Kohlenhydrate ausgehend von Glucose-6-phosphat zu Pyruvat umsetzen. Im Folgenden ist die Nettoreaktion der Glykolyse dargestellt.

$$G6P + 2ADP + 2P_i + 2NAD^+ \rightarrow 2PYR + 2ATP + 2NADH + 2H^+ + 2H_2O$$
Gl. 1

Abbildung 2: LeLoir-Weg. Umwandlung von Galactose über 3 Schritte zu Glucose-6-phosphat und Eintritt in die Glykolyse.

Die maximale Ausbeute von 2 mol Pyruvat pro mol Zucker wird allerdings aufgrund des stetigen Entzugs von Vorläufermolekülen für den Anabolismus aus der Glykolyse und der Aktivität des Pentosephosphatwegs jedoch nicht erreicht. Unter anaeroben Bedingungen stellt die Glykolyse die einzige Quelle für die Generierung freier Energie in Form von ATP dar. Der Pentosephosphatweg, ausgehend von Glucose-6-phosphat, lässt sich grundsätzlich in zwei Teile untergliedern; den irreversiblen oxidativen Teil, sowie den reversiblen nicht oxidativen Teil. Des Weiteren stellt der Pentosephosphatweg eine Quelle für Redoxäquivalenten in Form von NADPH für den Aufbau der Biomasse dar. Im oxidativen Teil wird Glucose-6-phosphat über zwei Schritte, unter Generierung von 2 mol NADPH pro mol G6P, zu Ribulose-5-phosphat decarboxyliert. Der reversible Teil, der ausgehend von Ribulose-5-phosphat die Verbindung zur Glykolyse herstellt, katalysiert die Umwandlung von Ribulose-5-phosphat in verschiedene Zuckerphosphate (Ribose-5phosphat, Xylulose-5-phosphat, Erythrose-4-phosphat, Sedoheptulose-7-phosphat), die entweder als biosynthetische Vorstufen verwendet werden oder über Fructose-6-phosphat und Glycerinaldehyd-3-phosphat wieder in die Glykolyse zurückfließen. Die nachfolgend aufgelisteten Gleichungen beschreiben dabei den oxidativen (Gl. 2) bzw. nicht-oxidativen Teil (Gl. 3).

$$G6P + 2NADP^+ + H_2O \rightarrow Ru5P + CO_2 + 2NADPH + 2H^+$$

Gl. 2

$$3Ru5P \leftrightarrow 2F6P + GAP$$

Gl. 3

In Crabtree-negativen Hefen wird 50 % des Kohlenstoffes über die Glykolyse und 30 % über den Pentosephosphatweg metabolisiert. 90 % des Kohlenstoffs, der über den Pentosephosphatweg metabolisiert wird, tritt wieder in die Glykolyse ein (Rodrigues et al., 2006). In Crabtree-positiven Hefen wie *S. cerevisiae* ist der Fluss durch den Pentosephosphatweg deutlich geringer (Blank und Sauer, 2004).

Bei Wachstum auf C₂-Körpern wie Ethanol oder Acetat läuft die Gluconeogenese zum Aufbau von C₆- und C₅-Körpern ab (Hexosen und Pentosen bzw. deren Phosphate). Dabei werden die beiden irreversiblen Schritte der Glykolyse, Pyruvat-Kinase und Phosphofructokinase, durch die Enzyme PEP-Carboxykinase und Fructose-1,6-bisphosphatase umgangen. Diese Enzyme unterliegen in der Regel einer strikten Regulation, um das Ablaufen sogenannter *"futile cycles"* zu verhindern (Gancedo und Serrano, 1989).

Der Pyruvatknotenpunkt

Eine Schlüsselposition im zentralen Kohlenstoffmetabolismus von *S. cerevisiae* stellt der Pyruvatknotenpunkt dar. Ausgehend von dem Endprodukt der Glykolyse können drei verschiedene Wege eingeschlagen werden (Pronk et al., 1996):

- (i) Die Umsetzung von Pyruvat über den Pyruvat-Dehydrogenase-Komplex zu Acetyl-CoA.
- (ii) Der Eintritt über die Pyruvat-Decarboxylase in den fermentativen Stoffwechsel zu Ethanol und Acetat. Ausgehend von Acetat wir über die Acetyl-CoA-Synthase cytosolisches Acetyl-CoA gebildet. Dies wird zum einen für die Fettsäurebiosynthese, zum anderen zum mitochondriellen Import mittels des Acetyl-Carnitin-Carriers benötigt (Kispal et al., 1991).
- (iii) Die anaplerotische Reaktion mittels der Pyruvat-Carboxylase zum Auffüllen des Citratzyklus.

Bei niedrigen glykolytischen Flussraten fließt aufgrund der größeren Affinität des mitochondriellen Pyruvat-Dehydrogenase-Komplexes der Großteil des Kohlenstoffes über den letztgenannten Weg. Dies ist gleichzeitig der energetisch günstigere Weg Acetyl-CoA zu generieren, da die cytosolische Acetyl-CoA-Synthase zur Bereitstellung von Acetyl-CoA ATP benötigt (Steensma, 1997). Mit zunehmender glykolytischer Flussrate wird auch der Pyruvat-Dehydrogenase-Bypass (siehe Abbildung 3) zunehmend gesättigt und die ein (Rodrigues al., 2006). Ethanolbildung setzt et Hohe extrazelluläre Glucosekonzentrationen führen sowohl zu einer Erhöhung der Pyruvat-Decarboxylase-Aktivität, als auch zu einer Erniedrigung der Acetaldehyd-Dehydrogenase-Aktivität und fördern so die alkoholische Gärung.

Abbildung 3: Cytosolischer und mitochondrieller Pyruvat-Dehydrogenase-Bypass in *S. cerevisiae*. Namen beteiligter Gene sind in kursiver Schrift angegeben. PYR – Pyruvat, ACA – Acetaldehyd, ACE – Acetat, ACCOA – Acetyl-CoA, TCA – Citratzyklus. *PDC1/5/6* Gene der Isoenzyme der Pyruvat-Decarboxylase, *ALD4/5/6* Gene der Isoenzyme der Acetaldehyd-Dehydrogenase, *ACS1/2* Gene der Isoenzyme der Acetyl-CoA-Synthetase, *PDX1* Pyruvat-Dehydrogenase-Komplex mit Beteiligung der Gene *LAT1*, *LPD1*, *PDB1* und *PDA1*.

Citratzyklus, Glyoxylatzyklus und Anaplerose

Die acht Enzyme des Citratzyklus, die von 15 Genen codiert werden (McAlister-Henn und Small, 1997; Przybyla-Zawislak et al., 1999), stellen über die oxidative Decarboxylierung von Acetyl-CoA zum einen Vorstufen für den Anabolismus und zum anderen Reduktionsäquivalente zur ATP Synthese über die Atmungskette (in Form von NADH und FADH₂) bzw. zur Biomassesynthese (in Form von NADPH) bereit. Die Nettoreaktion des Citratzyklus ist in Gl. 4 zusammengefasst.

$$Ac - CoA + 3NAD(P)^{+} + FAD^{+} + GDP + P_i + 2H_2O$$

$$\rightarrow H - CoA + NAD(P)H + FADH_2 + GTP + 2CO_2 + 3H^{+}$$

Gl. 4

Unter aeroben Bedingungen werden die gebildeten Redoxäquivalente über die Atmungskette reoxidiert (siehe Abbildung 5). Im Gegensatz zum cyclischen Betrieb des Citratzyklus unter aeroben Bedingungen, ist der Citratzyklus unter fermentativen Bedingungen (sauerstofflimitiert oder Glucose-Repression) zweigeteilt und dient der Bereitstellung der biosynthetischen Vorstufen für Glutamat und Aspartat (Gombert et al., 2001). Unter diesen Bedingungen ist die Succinat-Dehydrogenase nicht aktiv (Camarasa et al., 2003).

Bei Wachstum auf C₂-Körpern, wie Ethanol und Acetat, werden diese mittels des Glyoxylatzyklus in C₄-Körper überführt und fließen über Oxalacetat in die Gluconeogenese ein. Bei Wachstum auf fermentierbaren Kohlenstoffquellen wie Glucose ist der Glyoxylatzyklus jedoch nicht aktiv (Duntze et al., 1969; Minard und McAlister-Henn, 1992).

Da dem Citratzyklus ständig Intermediate zur Biomassesynthese (z. B. α -Ketoglutarat und Oxalacetat) entzogen werden, müssen diese durch auffüllende Reaktionen (anaplerotische Reaktionen) wieder ausgeglichen werden, da im Citratzyklus keine Nettosynthese dieser Intermediate stattfindet. Dies geschieht bei Wachstum auf Glucose in erster Linie durch die Reaktion der Pyruvat-Carboxylase, die Pyruvat durch Carboxylierung zu Oxalacetat umsetzt und durch ein hohes Verhältnis von ATP/ADP aktiviert wird (Stephanopoulos et al., 1998).

Das Malat-Enzym katalysiert die oxidative Decarboxylierung von Malat zu Pyruvat in der mitochondriellen Matrix unter Reduktion von NADP⁺ zu NADPH und stellt damit neben dem Import von cytosolischem Pyruvat eine zweite mitochondrielle Pyruvatquelle dar (Boles et al., 1998). Weiterhin ist das Malat-Enzym neben der NADP⁺-abhängigen Isocitrat-Dehydrogenase und der mitochondriellen NADP⁺-abhängigen Isoform der Acetaldehyd-Dehydrogenase ebenfalls eine mitochondrielle NADPH-Quelle.

Fermentative Stoffwechselwege

Als fakultativ fermentativer, Crabtree-positiver Organismus findet der fermentative Abbau von Kohlenhydraten bei *S. cerevisiae* sowohl unter aeroben als auch anaeroben Bedingungen statt. Der bedeutendste fermentative Abbauweg von Kohlenhydraten ist die alkoholische Gärung. Pro mol Glucose werden dabei 2 mol ATP generiert. Der Weg ist redoxneutral, da sämtliches in der Glykolyse gebildetes NADH über die Alkohol-Dehydrogenase reoxidiert wird (Van Dijken und Scheffers, 1986). Die theoretische Ausbeute beträgt dabei maximal 2 mol Ethanol pro mol aufgenommener Hexose. Da der Glykolyse jedoch Vorstufen zur Synthese der Biomasse entzogen werden und im Anabolismus NADH akkumuliert, ist ein Überschuss an NADH vorhanden, der unter anaeroben Bedingungen bzw. unter Glucose-Repression vollständig bzw. teilweise über die Bildung von Glycerin reoxidiert wird, um die Redoxneutralität zu wahren.

Neben den Hauptprodukten Ethanol und Glycerin bei fermentativem Wachstum auf Hexosen, werden außerdem geringen Mengen an Acetat gebildet. Die Synthese von Acetyl-CoA aus Acetat im Cytosol stellt die einzige Quelle zur Versorgung mit cytosolischem Acetyl-CoA dar, einer essentiellen Vorstufe zur Biosynthese von Fettsäuren (Flikweert et al., 1996; Van den Berg und Steensma, 1995). Von den 5 bekannten Acetaldehyd-Dehydrogenasen spielen bei der Acetatbildung während der Glucosefermentation, unter aeroben und anaeroben/sauerstofflimitierten Bedingungen, jedoch nur Ald4p, Ald5p und Ald6p eine Rolle (Remize et al., 2000; Saint-Prix et al., 2004). ALD6 codiert eine cytosolische Isoform, wohingegen ALD4 und ALD5 für mitochondrielle Isoformen codieren (Tessier et al., 1998; Wang et al., 1998). Alle Isoenzyme sind NADP⁺-abhängig und stellen damit zusätzliche NADPH-Quellen für den Anabolismus dar.

Biosynthese der Aminosäuren

Da die in dieser Arbeit durchgeführte ¹³C metabolische Flussanalyse zu einem großen Teil auf der Quantifizierung der Markierungsanreicherung in den proteinogenen Aminosäuren beruht, kommt deren Biosynthese eine besondere Bedeutung zu. Dies soll im Folgenden näher erläutert werden.

Alle 20 proteinogenen Aminosäuren lassen sich aus acht Vorläufermolekülen des zentralen Kohlenstoffstoffwechsels ableiten (siehe Abbildung 4). Aus 3-Phosphoglyerat, einem Intermediat der Glykolyse, werden Serin, Cystein und Glycin abgeleitet, wobei für Glycin noch weitere Synthesewege ausgehend von Threonin und Glyoxylat (siehe Abbildung 4) bekannt sind. Weitere Vorläufermoleküle aus der Glykolyse sind Pyruvat, von welchem Valin, Leucin und Isoleucin synthetisiert werden, ausgehend Alanin. sowie Phosphoenolpyruvat, welches zur Bildung der aromatischen Aminosäuren Phenylalanin, Tyrosin und Tryptophan dient. Vorstufen aus dem Pentosephosphatweg stellen Ribose-5phosphat und Erythrose-4-phosphat dar. Ausgehend von diesen Intermediaten werden Histidin bzw. die aromatischen Aminosäuren Phenylalanin, Tyrosin und Tryptophan gebildet. Oxalacetat stellt die Vorstufe der Aminosäuren Aspartat, Asparagin, Methionin, Threonin und Isoleucin dar. α-Ketoglutarat wird zur Biosynthese von Glutamat, Glutamin, Arginin, Prolin und Lysin herangezogen. Zur Synthese von Lysin und Leucin wird des weiteren Acetyl-CoA benötigt. Abbildung 4 zeigt zusammenfassend die Biosynthese der und ihre jeweiligen metabolischen Vorstufen des Aminosäuren zentralen Kohlenstoffstoffwechsels.

Ein weiterer wichtiger Punkt, der im Rahmen der metabolischen Untersuchungen von *S. cerevisiae* berücksichtigt werden muss, ist die Kompartimentierung des Stoffwechsels. Auf diese wird in den Kapiteln 3.1.3 und 5.2.1 näher eingegangen.

Abbildung 4: Biosynthese der 20 proteinogenen Aminosäuren aus ihren entsprechenden Vorstufen des zentralen Kohlenstoffstoffwechsel von *S. cerevisiae*. Die Kompartimentierung der einzelnen Metabolite bzw. der entsprechenden enzymatischen Reaktionen wurde nicht berücksichtigt.

3.1.3 Redoxmetabolismus und oxidative Phosphorylierung

Während des respirativen bzw. aeroben Wachstums, wird cytosolisch und mitochondriell gebildetes NADH über die Atmungskette reoxidiert. Dabei wird bei rein respirativem Wachstum sämtliches NADH über die Atmungskette reoxidiert, wohingegen bei respirofermentativem Wachstum bzw. dem aeroben fermentativen Wachstum die Ethanol- und einen erheblichen Teil Glycerinfermentation zur Reoxidation beitragen. Die Elektronenübertragung von NADH auf die Komplexe der Atmungskette wird in S. cerevisiae von drei NADH-Dehydrogenasen katalysiert. Die interne, mitochondriell lokalisierte NADH:Ubiquinon-Oxidoreduktase (Ndip) überträgt die Elektronen von mitochondriellem NADH auf Ubiquinon und katalysiert so die Reoxidation über die Atmungskette (de Vries und Marres, 1987; Marres et al., 1991). Neben der internen NADH-Dehydrogenase besitzt S. cerevisiae noch zwei weitere Gene, NDE1 und NDE2, die für zwei externe, unter aeroben Bedingungen exprimierte, NADH-Dehydrogenasen codieren, welche im Cytosol lokalisiert sind (Luttik et al., 1998; Small und McAlister-Henn, 1998). Dabei fehlt diesem Organismus jedoch, im Gegensatz zu vielen anderen eukaryontischen Organismen und Hefen, die aus mehreren Untereinheiten aufgebaute Typ-I NADH-Dehydrogenase (Nosek und Fukuhara, 1994). Da keine der NADH-Dehydrogenasen Protonen über die mitochondrielle Membran pumpt, ist die ATP-Ausbeute bei der oxidativen Phosphorylierung relativ gering (von Jagow und Klingenberg, 1970). Sie beträgt ca. 12 mol ATP pro mol Glucose bei rein respirativem Wachstum. Dazu kommen vier weitere ATP-Moleküle über die Substratkettenphosphorylierung. Aufgrund der höheren ATP-Ausbeute bei rein respirativem Wachstum, werden in Glucose-limitierten Kulturen etwa 5-mal höhere Biomasseausbeuten erreicht, als bei aeroben fermentativem Wachstum unter Glucose-Repression (Verduyn, 1991).

Die Aufrechterhaltung der Redoxbilanzen ist die Voraussetzung, um ein bilanziertes Zellwachstum zu ermöglichen. Die Pyridin-Nukleotid-Kofaktoren NAD⁺/NADH und NADP⁺/NADPH spielen dabei die zentrale Rolle. NADH wird dabei im dissimilatorischen, NADPH im assimilatorischen Stoffwechsel eingesetzt (Van Dijken und Scheffers, 1986). In diesem Zusammenhang ist von Bedeutung, dass die beiden Spezies NAD⁺/NADH und NADP⁺/NADPH, durch das Fehlen von Transhydrogenasen in *S. cerevisiae*, nicht in einander überführt werden können (Bruinenberg et al., 1983b; Bruinenberg et al., 1983c). Des Weiteren müssen die reduzierten Pyridin-Nukleotide im selben Kompartiment

reoxidiert werden, da kein direkter Austausch über biologische Membranen hinweg erfolgen kann.

Da *S. cerevisiae* nicht in der Lage ist NADPH über die Atmungskette zu reoxidieren, besteht die einzige Möglichkeit zur Reoxidation in der Biomassebildung. Dies hat dann ebenfalls zur Folge, dass der Pentosephosphatweg nur assimilatorsich genutzt wird (Gonzalez Siso et al., 1996). Eine mitochondrielle NADPH-Dehydrogenase, die die Oxidation von NADPH an die mitochondrielle Atmungskette koppelt ist zwar für *K. lactis* und *C. utilis* beschrieben (Bruinenberg, 1986; Gonzalez Siso et al., 1996; van Urk et al., 1989), jedoch gibt es keine Hinweise darauf, dass *S. cerevisiae* dazu in der Lage ist einen NADPH-Überschuss auf diese Weise zu reoxidieren (de Vries und Marres, 1987; Small und McAlister-Henn, 1998). Cytosolische Quellen für NADPH stellen in erster Linie der oxidative Teil des Pentosephosphatwegs, sowie die cytosolischen Isoformen der NADP⁺- abhängigen Isocitrat-Dehydrogenase sowie der Acetaldehyd-Dehydrogenase dar (Minard et al., 1998). Mitochondrielle Quellen stellen die entsprechenden Isoformen in der mitochondriellen Matrix, sowie das Malat-Enzym dar.

Die Reduktion von NAD⁺ erfolgt im Cytosol über die Glykolyse, in den Mitochondrien über den Pyruvat-Dehydrogenase-Komplex und die Dehydrogenasen des Citratzyklus. Die Reoxidation beider Pools kann über die mitochondrielle Atmungskette, mit Sauerstoff als terminaler Elektronenakzeptor, erfolgen (Bakker et al., 2001; Overkamp et al., 2000). Eine schematische Darstellung der beteiligten Prozesse ist in Abbildung 5 gegeben. Mitochondrielles NADH wird über die interne NADH-Dehydrogenase Nid1p reoxidiert, wohingegen für die Reoxidation von cytosolischem NADH zum einen die externen NADH-Dehydrogenasen Nde1p/Nde2p (Luttik et al., 1998; Small und McAlister-Henn, 1998), zum anderen das Glycerin-3-phosphat-Shuttle (Larsson et al., 1998) verwendet wird. Besondere Bedeutung kommt dem Glycerin-3-phosphat-Shuttle bei niedrigen Wachstumsraten zu. Die ATP-Ausbeute ist bei diesem System höher, jedoch zeichnen sich die externen NADH-Dehydrogenasen durch einen höheren Durchsatz aus. Daneben ist noch eine Reihe weiterer Redox-Shuttle-Mechanismen, wie das Ethanol-Acetaldehyd-Shuttle (siehe Abbildung 5), unter verschiedenen physiologischen Zuständen beschrieben (Bakker et al., 2001).

Abbildung 5: Schema des Redoxsystems und der oxidativen Phosphorylierung von *S. cerevisiae* in Anlehnung an Bakker et al. (2001). *ADH1/2/3*, Alkohol-Dehydrogenase; *NDE1/2*, externe NADH-Dehydrogenasen; *NDI1*, interne NADH-Dehydrogenase; Q, Ubiquinon; *GPD1/2*, lösliche Glycerin-3-phosphat-Dehydrogenasen; *GUT2*, membrangebundene Glycerin-3-phosphat-Dehydrogenase; bc1, bc1-Komplex; cox, Cytochrom c Oxidase; DHAP, Dihydroxyacetonphosphat; G3P, Glycerin-3-phosphat; gestrichelter Pfeil, Elektronenfluss; gepunkteter Pfeil, Protonenfluss.

Unter Glucose-Repression kommt der mitochondriellen Atmungskette hinsichtlich der Reoxidation von cytosolischem NADH eine geringere Bedeutung zu, da hier die Reoxidation fast ausschließlich über die Ethanol und Glycerinbildung erfolgt, wohingegen unter rein respirativen Bedingungen sowohl die externen NADH-Dehydrogenasen als auch das Glycerin-3-phosphat-Shuttle aktiv sind (Rigoulet et al., 2004).

3.2 Quantitative Analyse metabolischer Netzwerke

Die quantitative Analyse metabolischer Netzwerke kann grundsätzlich, je nach Ziel der Analyse, in drei Gruppen untergliedert werden. (1) Die metabolische Flussanalyse (Stephanopoulos et al., 1998; Wiechert, 2001), (2) "flux balance analysis" (Kauffman et al., 2003; Price et al., 2004) und (3) "metabolic pathway analysis" (Klamt und Stelling, 2003; Schilling et al., 2000; Trinh et al., 2009). Bei der metabolischen Flussanalyse und der "flux balance analysis" wird immer nur ein für die jeweiligen Randbedingungen gültiger Flussvektor ermittelt. Im Gegensatz dazu werden bei der "metabolic pathway analysis" alle, je nach Randbedingungen systematisch bzw. genomisch, unabhängigen Flussvektoren bestimmt. Die beiden in dieser Arbeit eingesetzten Methoden zur quantitativen Analyse metabolischer Netzwerke sind mit der ¹³C metabolischen Flussanalyse bzw. der Elementarmodenanalyse in den Bereichen (1) bzw. (3) angesiedelt. Die quantitative Analyse metabolischer Netzwerke beruht auf dem Prinzip der Massenerhaltung und der Umsetzung von Metaboliten in einem definierten System (Zelle), wobei die einzelnen Metabolite über reversible und irreversible enzymatische Reaktionen miteinander verknüpft sind. Die Umsetzung der Metabolite wird durch die folgende Gleichung (Gl. 5) beschrieben.

$$\frac{d}{dt}\underline{C} = \underline{\underline{S}} \times \underline{\underline{r}} - \mu \times \underline{\underline{C}}$$

Gl. 5

Hierbei beschreibt <u>C</u> den Konzentrationsvektor von m intrazellulären Metaboliten, <u>r</u> den Ratenvektor von n Reaktionen, <u>S</u> die stöchiometrische Matrix (m x n) und μ die spezifische Verdünnungsrate hervorgerufen durch Volumenänderungen, die praktisch der spezifischen Wachstumsrate entspricht.

Da in biologischen Systemen der Einfluss von Volumenänderungen auf die Änderung der Metabolitkonzentrationen zu vernachlässigen ist, reduziert sich Gleichung 5 im stationären Zustand zu Gleichung 6.

$$\underline{S} \times \underline{r} = 0$$
Im Falle der Analyse metabolischer Netzwerken ist das in Gleichung 6 beschriebene System in der Regel unterbestimmt. Zur Lösung des Systems und der Bestimmung der Raten werden, unter diversen Annahmen, wie experimentell bestimmten Raten und thermodynamischen Randbedingungen, verschiedenen Techniken eingesetzt. Die metabolische Flussanalyse, sowie die Elementarmodenanalyse ("*Metabolic Pathway Analysis"*) werden im Folgenden näher erläutert.

3.2.1 "Metabolite Balancing"

Die Bilanzierung von Metaboliten ("*Metabolie Balancing"*) kann in einigen Fällen zur Bestimmung metabolischer Flüsse herangezogen werden. Diese Methode beruht ausschließlich auf der Quantifizierung externer Produktions- und Aufnahmeraten, wie Substrat, Produkte Biomasse und CO₂, anhand derer die intrazellulären Raten berechnet werden. Desweiteren muss ein metabolisch stationärer Zustand vorherrschen, wie er in exponentiellen Phasen von Batch-Kulturen und in kontinuierlicher Kultur erreicht wird. Die Berechnung der unbekannten metabolischen Flüsse erfolgt dann anhand eines stöchiometrischen Modells des zu untersuchenden Stoffwechsels - den entsprechenden Massenbilanzen der einzelnen Metabolite (Christensen und Nielsen, 2000; Stephanopoulos et al., 1998; Wittmann und Heinzle, 1999). Dazu wird die stöchiometrische Matrix S und der Ratenvektor r in messbare metabolische Flüsse S_g und r_g sowie in unbestimmbare S_u und r_u zerlegt. Die zerlegte Gleichung lässt sich dann wie folgt lösen.

$$\underline{\mathbf{r}}_{u} = \underbrace{\mathbf{S}}_{=u}^{-1} \cdot \underbrace{\mathbf{S}}_{=g} \cdot \underline{\mathbf{r}}_{g}$$

Gl. 7

Eine eindeutige Lösung des linearen Gleichungssystems ist jedoch nur möglich, falls S_u quadratisch und damit invertierbar ist, sowie vollen Rang besitzt. Diese Methode eignet sich daher nur für einfache Netzwerke oder Netzwerke, bei denen eine Vielzahl extrazellulärer Raten messbar sind und die für die Bestimmung der intrazellulären Flüsse ausreichend sind. Letzteres wurde bereits für Säugerzellen gezeigt (Niklas et al., 2009; Quek et al., 2009). In der Regel sind komplexere Netzwerke jedoch unterbestimmt, wodurch die Matrix S_u nicht quadratisch ist. Dadurch ergibt sich das Problem einer Pseudoinversion, welche ohne weitere Annahmen nicht zu einer eindeutigen Lösung des Gleichungssystems führt. Überbestimmte Systeme können ebenfalls durch die Pseudoinversion der Matrix gelöst werden, wobei diese jedoch in der Regel zu einer eindeutigen Lösung führen.

Kritisch zu betrachten ist dabei auch die Bilanzierung der Kofaktoren NADH, NADPH und ATP, deren Synthese durch eine ganze Reihe von Reaktionen im Zentralstoffwechsel gewährleistet ist. Problematisch hierbei ist vor allem, dass in der Regel nicht alle diese Reaktionen genau verstanden oder bekannt sind. So sind zum Beispiel in *S. cerevisiae* eine Reihe von Isoenzymen der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase bekannt, die verschiedene Kofaktorspezifitäten hinsichtlich NAD⁺ und NADP⁺ besitzen und, je nach physiologischem Zustand, unterschiedlich zu den NADH- und NADPH-Pools beitragen. Des Weiteren ist die genaue Ausbeute der ATP-Synthese durch die Reoxidation von NADH über die mitochondrielle Atmungskette ebenfalls nicht exakt bekannt und schwankt zudem, je nach Physiologie des Organismus (siehe Kapitel 3.1). Daneben spielen bei der Bilanzierung von ATP vor allem die sogenannten *"futile cycles"* eine entscheidende Rolle. Eine Bilanzierung der Redoxäquivalente bzw. ATP eignet sich, aufgrund der beschriebenen Ungenauigkeiten, daher nur begrenzt zur Bestimmung der Flussparameter (Christensen und Nielsen, 2000).

Da die Bilanzierung von Metaboliten lediglich auf der Stöchiometrie des metabolischen Netzwerkes beruht. besteht keine Möglichkeit zur Quantifizierung (i) von Stoffwechselwegen mit gleicher Gesamtstöchiometrie, (ii) zyklischen Stoffwechselwegen und (iii) bidirektionalen, reversiblen Reaktionen (siehe Abbildung 6). Dies führte zur Entwicklung der ¹³C metabolischen Flussanalyse, die im folgenden Abschnitt erläutert wird. Hierbei werden spezifisch ¹³C-angereicherte Substrate verwendet und zusätzliche Informationen generiert, welche die Begrenzungen des "Metabolite Balancing" größtenteils aufheben (Wittmann, 2007; Wittmann et al., 2002). Des Weiteren müssen bei dieser Analyse keine Annahmen über den Energie- bzw. Redoxstoffwechsel getroffen werden, welche, wie bereits diskutiert, mit einigen nicht zu unterschätzenden Unsicherheiten verbunden sind.

Abbildung 6: Limitierungen des *"Metabolite Balancing"* bei alternativen Stoffwechselwegen (A), zyklischen Systemen (B) und reversiblen Reaktionen (C).

3.2.2 ¹³C Metabolische Flussanalyse

Ziel der ¹³C metabolischen Flussanalyse ist, wie beim *"Metabolite Balancing"*, die Quantifizierung der *in vivo* Enzymaktivitäten, d. h. der metabolischen Flüsse. Es wird im Folgenden zunächst auf die Theorie der Isotopomer-Bilanzierung und die mathematische Modellbildung eingegangen, bevor die praktische Durchführung der ¹³C metabolische Flussanalyse beschrieben wird.

Isotopomer-Bilanzierung und mathematische Modellbildung

Entscheidend für die ¹³C metabolische Flussanalyse ist die Quantifizierung der Massenisotopomerverteilungen bestimmter Metabolte mittels GC/MS. Da für diese Art der Analyse lediglich die Isotopomerverteilung des Kohlenstoffs von Bedeutung ist, werden alle anderen natürlich vorkommenden Isotopomere (siehe Tabelle 1) durch eine entsprechende Korrektur aus der Isotopomerverteilung heraus gerechnet, so dass lediglich das Kohlenstoffrückgrat der zu analysierenden Substanz übrig bleibt (Fernandez et al., 1996; van Winden et al., 2002; Wittmann und Heinzle, 1999; Yang et al., 2009). Betrachtet man im Falle des Elementes Kohlenstoff die beiden relevanten Isotope ¹²C und ¹³C, so besitzt jedes Kohlenstoffatom eines Moleküls entweder die Masse 12 Da oder 13 Da. Für ein Molekül mit n Kohlenstoff Atomen ergeben sich demnach 2ⁿ mögliche Positionsisotopomere (Wiechert, 2001).

	monoisotopische				
Element	Masse [Da]	[m+0]	[m+1]	[m+2]	[m+4]
	1	0 000885	0.000115		
II C	1	0,999005	0,000113		
C	12	0,9895	0,0107		
Ν	14	0,99632	0,00368		
Ο	16	0,99757	0,00038	0,00205	
Si	28	0,922297	0,046832	0,030872	
S	32	0,09493	0,0076	0,0429	0,0002

Tabelle 1: Isotopenzusammensetzung relevanter Elemente für die ¹³C metabolische Flussanalyse (relative Anteile) (Rosman und Taylor, 1997).

Dargestellt werden die einzelnen Positionsisotopomere in einem *"isotopomer distribution vector"* (IDV), der ihre relativen Anteile enthält, die sich zu 1 summieren (Wittmann und Heinzle, 1999). Da sich jedoch mittels Massenspektrometrie keine Positionsisotopomere gleicher Masse unterscheiden lassen, werden die einzelnen Positionsisotopomere in n+1 Massenisotopomeren zusammengefasst (siehe Abbildung 7). Analog zum IDV werden die relativen Anteile der Massenisotopomere im *"mass distribution vector"* (MDV) zusammengefasst. Dabei werden Positionsisotopomere, die die gleiche Anzahl der verschiedenen Isotope besitzen zusammengefasst. Ausgehend von den MDV's kann dann beispielsweise die Anreicherung von ¹³C in den Metaboliten über das *"summed fractional labeling"* (SFL) bestimmt werden, welches einer gewichteten Aufsummierung der einzelnen Massenisotopomere entspricht.

Die Transition der einzelnen Kohlenstoffatome zwischen den Edukten und den Produkten der biochemischen Reaktionen des metabolischen Netzwerkes wird durch sogenannte *"atom mapping matrices"* (AMM) genau definiert (Zupke und Stephanopoulos, 2002). Die AMM sind Matrizen der Form n x m wobei n der Anzahl der Kohlenstoff Atome im Produkt und m der Anzahl der Kohlenstoffatome im Edukt entspricht. Wird das Kohlenstoffskelet der Edukte und Produkte nicht neu angeordnet, so handelt es sich um eine Diagonaleinheitsmatrix. Im Folgenden ist als Beispiel die Reaktion der Citrat-Synthase dargestellt (siehe Gleichung 8). Der Wert 1 in der Matrix bedeutet, dass das entsprechende Kohlenstoffatom aus dem Edukt auf die entsprechende Position im Produkt der Reaktion transferiert wird.

Abbildung 7: Positions- und Massenisotopomere, sowie IDV und MDV eines Moleküls mit 3 Kohlenstoffatomen unter Berücksichtigung der ¹²C und ¹³C Isotope.

Bei dieser Reaktion werden also die Kohlenstoffatome 4, 3, 2 und 1 des Oxalacetats auf die Positionen 1, 2, 3 und 6 des Citrats übertragen. Die Kohlenstoffatome 2 und 1 des Acetyl-CoA werden entsprechend auf die verbleibenden Positionen 5 und 6 übertragen.

Aus den AMMs können dann analog zur Transition auf Ebene der Atome *"isotopomer mapping matrices"* (IMM) erstellt werden, die die Transition der einzelnen Isotopomere in gleicher Weise wie die AMM beschreiben. Die IMM legen somit fest welches Positionsisotopomer des Eduktes auf das entsprechende Positionsisotopomer des Produktes übertragen wird. Im Falle der Isotopen ¹²C und ¹³C besitzt die IMM die Dimensionen 2^m x 2ⁿ, wobei n wiederum der Anzahl der Kohlenstoffatome des Eduktes und m der entsprechenden Anzahl der Kohlenstoffatome im Produkt entspricht. Im Falle des Beispiels der Citrat-Synthase besitzt die IMM, die den Übergang der Positionsisotopomere von Oxalacetat auf Citrat beschreibt, die Dimensionen 2⁶ x 2⁴, sprich 64 x 16. Mit Hilfe der IMM, die Informationen über die Transition der Isotopomere beinhalten und die IDV

der Edukte, die die Isotopomerverteilung und somit die Anreicherung mit ¹³C-Isotopen enthalten, lassen sich nun die IDV der Produkte nach folgender Gleichung (Gl. 9) berechnen. Gezeigt ist wiederum das Beispiel der Citrat-Synthase.

$$IDV_{Citrat} = (IMM_{OAA \to Citrat} \times IDV_{OAA}) \otimes (IMM_{Ac-CoA \to Citrat} \times IDV_{Ac-CoA})$$
Gl. 9

Im isotopisch stationären Zustand gilt, analog dem metabolisch stationären Zustand, dass die Summe der Bildungsraten $\sum_{i=1}^{n} v_{i,ein}$ der einzelnen Isotopomere der Summe ihrer Verbrauchsraten $\sum_{i=1}^{m} v_{i,aus}$ entspricht (siehe Gl. 10). \otimes entspricht der paarweisen

Multiplikation der einzelnen Elemente beider Matrizen. Der metabolisch stationäre Zustand ist hierbei eine zwingende Voraussetzung, um einen stationären Zustand hinsichtlich der Isotopomere zu erreichen.

$$0 = \sum_{i=1}^{n} v_{i,ein} \cdot IDV_{Metabolit} - \sum_{j=1}^{m} v_{j,aus} \cdot IDV_{Metabolit}$$
Gl. 10

Wie bei der Metabolitbilanzierung, können auch für alle Isotopomere eines Metaboliten entsprechende Bilanzen aufgestellt werden (Schmidt et al., 1997). 1999 wurde das Konzept der kumulierten Isotopomere (Cumomere) von Wiechert et al. zur effizienten Lösung von Isotopomerbilanzen eingeführt. Die Lösung erfolgt dabei in der Regel über iterative Verfahren; eine analytische Lösung ist allerdings nur bei sehr einfachen Netzwerken möglich. Da die entsprechenden Isotopomer/Cumomerbilanzen komplexer Netzwerke zu komplexen Bilanzen mit einer Vielzahl an Variablen führen, wurde 2007 das Konzept der "elementary metabolite units" (EMUs) eingeführt. Dieses Konzept beruht auf der Nutzung des minimalen Informationsgehalts, der zur Simulation der Isotopomermarkierung innerhalb eines metabolischen Netzwerkes notwendig ist (Antoniewicz et al., 2007). Die einzelnen EMUs beschreiben dabei den Zusammenhang der metabolischen Flüsse und der Isotopomerverteilung. Aufgrund der effizienten Reduktion fallen die Variablen und die zu lösenden Gleichungen um Größenordnung geringer dies eine aus, als bei

Isotopomer/Cumomer Netzwerken der Fall ist. Ein Metabolit A mit 3 Atomen besitzt 7 EMUs (A₁, A₂, A₃, A₁₂, A₂₃, A₁₃, A₁₂₃), wobei die Zahlen angeben, welche der Atome im jeweiligen EMU berücksichtigt werden. Somit entspricht die Zahl der EMUs für ein Molekül mit 3 Atomen 2ⁿ⁻¹. Dabei wird in den meisten Fällen jedoch nur ein geringer Teil der EMUs zur vollständigen Simulation der Isotopomerverteilung benötigt, welches der grundlegende Unterschied zu den Cumomer/Isotopomer Bilanzen ist, da hier immer alle möglichen Isotopomere/Cumomere berücksichtigt werden (Antoniewicz et al., 2007). Das Konzept der EMUs wurde auch in dieser Arbeit für die ¹³C metabolische Flussanalyse eingesetzt.

Die Lösung erfolgt mit Hilfe eines iterativen globalen Hybridoptimierungsalgorithmus, mit dessen Hilfe die Abweichung zwischen gemessenen und simulierten Massenisotopomerverteilungen anhand der Variation der freien Flüsse minimiert wird (Yang et al., 2008). Die Zielfunktion ist dabei die Minimierung der Abweichungsquadrate ("sum of least squares"). Die statistische Absicherung der Qualität der Flussanpassung erfolgt dabei mittels Monte Carlo Simulation (Mollney et al., 1999; Wittmann, 2002; Yang et al., 2008). Für die gemessene Markierungsverteilung wird eine Normalverteilung der Werte angenommen, aus deren Breite sich das Intervall für die Variation der Startwerte der Monte Carlo Simulation bestimmen. Aus mehreren (100-200) Monte Carlo Simulationen werden schlussendlich die entsprechenden Flussparameter als Mittelwerte mit einer entsprechenden Standardabweichung bestimmt.

Durchführung der ¹³C metabolischen Flussanalyse

Der Großteil der Analysen zur Quantifizierung der ¹³C-Markierung der einzelnen Metabolite wird mittels GC/MS durchgeführt, um deren Markierungsmuster aus Markierungsexperimenten zu bestimmen. Dazu werden die Organismen zunächst auf spezifisch markierten Substraten kultiviert, in diesem Fall mit dem stabilen Kohlenstoffisotop ¹³C. Das ¹³C-markierte Substrat verteilt sich über genau definierte enzymatische Reaktionen über den gesamten Stoffwechsel der Zellen, wobei die Kohlenstoffatome des Substrates in festgelegter Weise in den einzelnen Produkten zu finden sind. Nachdem sich ein isotopisch stationärer Zustand eingestellt hat, kann die ¹³C-Markierungsanreicherung der Metabolite bestimmt werden. Diese stellt einen charakteristischen Fingerabdruck des zentralen Kohlenstoffstoffwechsels bzw. der

Aktivität einzelner Reaktionen und Stoffwechselwege dar. Die Anreicherung kann sowohl in freien intrazellulären Metaboliten als auch in Biomassehydrolysaten bestimmt werden, wobei letztere eine deutlich längere Zeit zum Erreichen eines isotopisch stationären Zustandes benötigen. Zur Analyse der Markierungsanreicherungen eignen sich neben der GC/MS-Analyse noch weitere Techniken, darunter verschiedene NMR-Techniken wie ¹³C-NMR (Amaral et al., 2010) und 2D[¹³C,¹H]-COSY-NMR (Goudar et al., 2010; van Winden et al., 2001), LC/MS-Ansätze (Kleijn et al., 2007), sowie MALDI-ToF-MS (Velagapudi et al., 2007). Die NMR-Analyse ermöglicht dabei die Analyse der Markierungsanreicherung auf der Ebene der einzelnen Atome, wohingegen die Massenspektrometrie die Markierungsanreicherung auf der Ebene ganzer Moleküle betrachtet.

Neben dem ersten, praktischen Teil, der Analyse, schließt sich im Folgenden die Flussberechnung aus den generierten Markierungsdaten der GC/MS-Analyse an. Dazu werden die Markierungsdaten genutzt, um die unbekannten Flussparameter über ein Modell, welches sowohl die Isotopomer- als auch die Metabolitbilanzen beinhaltet, zu berechnen. Ausgehend von zufällig gewählten freien Flüssen werden die Markierungsverteilungen der Metabolite für ein gewähltes Substrat *in silico* berechnet und anschließend mit den gemessenen Markierungsverteilungen verglichen.

Abbildung 8: Schema des experimentellen Teils und der Modellierung der ¹³C metabolischen Flussanalyse.

Über einen Optimierungsalgorithmus werden dann die Markierungsverteilungen so lange über die metabolischen Flüsse geändert, bis diese mit den gemessenen Markierungsverteilungen übereinstimmen. Falls extrazelluläre Flüsse bestimmt sind, können somit absolute intrazelluläre Stoffflüsse bestimmt werden. Abbildung 8 fasst das Vorgehen der ¹³C metabolischen Flussanalyse nochmals zusammen.

3.2.3 Elementarmodenanalyse

Das Konzept der Elementarmodenanalyse wurde 1994 von Schuster et al. (Schuster und Hilgetag, 1994) eingeführt. Im Gegensatz zur in Kapitel 3.2.2 beschriebenen ¹³C metabolischen Flussanalyse, wird bei der Elementarmodenanalyse nicht nur ein bestimmter metabolischer Flussvektor für einen gegebenen physiologischen Zustand bestimmt, sondern alle, auf Grundlage der Stöchiometrie und der thermodynamischen Eigenschaften

des Netzwerks, möglichen, genetisch unabhängigen, metabolischen Flussvektoren (Schuster et al., 2002a; Schuster et al., 2002b). Dabei ist kein detailliertes Wissen über die tatsächliche Flussverteilung oder die Verwendung einer Zielfunktion (Optimierung der Biomasseausbeute, Produktausbeute, ...) wie die bei der "flux balance analysis" nötig. Jeder Flussvektor stellt dabei einen Elementarmode dar, welcher dem minimalen Satz an Reaktionen zur Aufrechterhaltung eines stationären Zustandes des Systems entspricht und einzigartig ist. Jede Ausschaltung einer Reaktion eines Elementarmodes erlaubt diesen nicht mehr. Die verschiedenen Flussvektoren sind in einem Lösungsraum angeordnet (siehe Abbildung 9). Zur Lösung des Systems gibt es verschiedene Ansätze. Zum einen den der "extreme pathways" (Schilling et al., 2000), zum anderen den der Elementarmoden (Schuster und Hilgetag, 1994). Die "extreme pathways" stellen dabei eine Untergruppe der Elementarmoden eines Systems dar. Die Anzahl der "extreme pathways" ist mit der Anzahl der Elementarmoden identisch, sofern das gesamte untersuchte biochemische Netzwerk keine reversiblen Reaktionen beinhaltet. Die zunehmende Komplexität der zu untersuchenden metabolischen Netzwerke hat auch die Entwicklung leistungsstärkerer Algorithmen zur Lösung der entsprechenden Netzwerke vorangetrieben. Angefangen von METATOOL (Pfeiffer et al., 1999) über GEPASI/COPASI (Hoops et al., 2006), FluxAnalyser (Klamt et al., 2003), SNA (Urbanczik, 2006) und EFMtool (Terzer und Stelling, 2006; Terzer und Stelling, 2008) wurden die Algorithmen immer weiter entwickelt und erlauben heute durch verschiedene Ansätze, wie "parallel computing" (Klamt et al., 2005) und der Zerlegung der metabolischen Netzwerke weitaus komplexere Netzwerke zu analysieren (Schwarz et al., 2007a; Schwarz et al., 2007b).

Flüsse ganzer Stoffwechselwege, bezogen auf Substrataufnahmen bzw. Produktbildung, erlauben einen Vergleich der Ausbeuten verschiedener Moden, die in der Folge die Auswahl besonders effizienter Moden ermöglichen. Dies wiederum kann als Angriffspunkt für die gezielte Stammentwicklung genutzt werden. Dieses Konzept wurde bereits für eine Vielzahl von Produktionsprozessen in verschiedenen Organismen durchgeführt (Carlson et al., 2002; Carlson et al., 2005; Diniz et al., 2006; Krömer et al., 2006; Vijayasankaran et al., 2005). Daneben wurde aber auch eine Reihe von Studien durchgeführt, die keine Optimierung eines Produktionsprozesses, sondern die physiologische und metabolische Charakterisierung der Organismen bzw. funktionellen Vesikeln zum Ziel hatte (Klamt et al., 2002; Poolman et al., 2003; Van Dien und Lidstrom, 2002). Die verwandte Methode

der "*extreme pathway*"-Analyse wurde ebenfalls zur Charakterisierung des Stoffwechsels von roten Blutkörperchen, *Haemophilus influenzae* und *Helicobacter pylori* eingesetzt (Papin et al., 2002; Price et al., 2002; Wiback und Palsson, 2002).

Zur Durchführung der Elementarmodenanalyse erfolgt zunächst die Definition interner und externer Metabolite, sowie der entsprechenden enzymatischen Reaktionen, die die Metabolite ineinander umsetzen. Interne Metabolite befinden sich dabei im Fließgleichgewicht, so dass keine Akkumulation bzw. Auswaschung erfolgt. Externe Metabolite, wie aufgenommene Substrate und sekretierte Produkte, erfüllen diese Vorgabe nicht. Da das Ergebnis der Elementarmodenanalyse sämtliche möglichen Flussverteilungen des metabolischen Netzwerkes abdeckt, liegt die tatsächliche Flussverteilung immer innerhalb dieser Grenzen, meist als eine Kombination verschiedener Elementarmoden. Dies erlaubt somit die Leistungsfähigkeit eines Netzwerkes hinsichtlich verschiedener Parameter, wie Produktbildung, aber auch der maximal möglichen Aktivität verschiedener Stoffwechselwege, Arbeit durchgeführt, wie in dieser unter verschiedenen Netzwerkkonfigurationen zu bestimmen. Der Vergleich mit Real-Daten lässt dann wiederum Rückschlüsse auf die Notwendigkeit einer bestimmten Konfiguration des metabolischen Netzwerkes zu. In Abbildung 9 sind die verschiedenen Methoden zur quantitativen Analyse metabolischer Netzwerke, auch im Hinblick auf den jeweiligen Lösungsraum, vergleichend dargestellt.

Abbildung 9: Quantitative Analyse eines einfachen metabolischen Netzwerkes. (A) Formulierung des Problems. A, B, D, P externe Metabolite, verknüpft durch die Reaktionen $r_1 - r_9$, von denen r_6 und r_8 38

reversibel sind. S, stöchiometrische Matrix; r, Ratenvektor. (B) Lösung des Problems mittels metabolischer Flussanalyse, mit der Unterteilung der stöchiometrischen Matrix S und des Ratenvektors r in gemessene und nicht messbare Reaktionen. (C) Lösung des Problems mittels Elementarmodenanalyse. (D) Lösungsraum der metabolischen Netzwerkanalyse und Lösungen der metabolischen Flussanalyse (MFA) und Elementarmodenanalyse (EMA). (E) Darstellung aller möglichen Elementarmoden und "*extreme pathways*" (*) des Netzwerkes; in Anlehnung an (Trinh et al., 2009).

4 Material und Methoden

4.1 Mikroorganismen

4.1.1 Saccharomyces cerevisiae BY4742

Der haploide Stamm *Saccharomyces cerevisiae* BY4742 mit dem Genotyp MAT α his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0, sowie die von diesem Stamm abgeleiteten Deletionsmutante *S. cerevisiae* BY4742 mae1 Δ wurde von der Fa. Open Biosystems (Heidelberg, Deutschland) bezogen.

4.2 Nährmedien

Zur Kultivierung der verschiedenen *S. cerevisiae*-Stämme wurden die im Folgenden beschriebenen Nährmedien verwendet. Soweit nicht anders angegeben, wurden die Medien durch Autoklavieren (121 °C, 20 min) sterilisiert. Die Herstellung fester Nährböden erfolgte durch die Zugabe von 20 g/L Agar zu den jeweiligen Nährmedien.

4.2.1 YEPD Komplexmedium

Als komplexe Nährlösung zur Anzucht von *S. cerevisiae* auf Agarplatten und zur Durchführung der ersten Vorkultur wurde YEPD-Medium (siehe Tabelle 2) verwendet.

Tabelle 2: YEPD Medium zur Anzucht von S. cerevisiae.

Hefeextrakt	20 g
Pepton	10 g
Glucose	20 g

ad 1000 mL mit Aqua dest.

4.2.2 Synthetisches Medium für S. cerevisiae

4.2.2.1 Batch Kultivierung

Zur Durchführung der zweiten Vorkultur, sowie der Hauptkultur wurde das in Tabelle 3 beschriebene Mineralsalzmedium (pH 6,2) nach Theobald (Theobald et al., 1993) mit Glucose, Galactose oder Fructose als Kohlenstoffquelle verwendet. Um die Kultivierung der auxotrophen *S. cerevisiae*-Stämme zu ermöglichen, wurden dem Nährmedium die zusätzlich benötigten Substrate in den beschriebenen Konzentrationen (siehe Tabelle 5) zugesetzt.

Ι	$(NH_4)_2HPO_4$	1 g
	$(NH_4)_2SO_4$	8,75 g
		ad 200 mL mit Aqua dest.
II	MgSO ₄ ·7 H ₂ O	1 g
	Citrat	0,025 g
		ad 200 mL mit Aqua dest.
III	KCl	1,1 g
	CaCl ₂ ·2 H ₂ O	0,15 g
	$Glucose{\cdot}H_2O \ / \ Galactose$	22/20 g
		ad 440 mL mit Aqua dest.
IV	0,5 M Na-Phosphatpuffer, pH	6,0 100 mL
V	Spurenelement-Lösung (100 x	a) 10 mL
VI	Vitamin-Lösung (100 x)	10 mL
VII	Komponenten für auxotrophe	Stämme 40 mL

 Tabelle 3: Mineralsalzmedium zur Kultivierung der S. cerevisiae Stämme nach Theobald et al.

 (Angaben für 1 L Medium).

Die Herstellung des Na-Phosphatpuffers erfolgte durch die Mischung von 0,5 M NaH₂PO₄·2 H₂O und 0,5 M Na₂HPO₄ Lösungen im Verhältnis 90,6 : 9,4. Die Lösungen I-IV wurden getrennt autoklaviert und gelagert, da die Haltbarkeit des Nährmediengemisches durch die Ausbildung von Salzkristallen auf maximal 2 Tage beschränkt war. Die Spurenelement- und Vitaminlösungen, sowie die Substratlösungen für die Kultivierung auxotropher *S. cerevisiae*-Stämme, wurden dem Medium steril filtriert (Minisart 0,2 µm, Cellulose-Acetat-Membran, Sartorius, Göttingen, Deutschland) zugesetzt. Bei der Kultivierung auf Galactose wurde der Lösung III anstelle von 20 g Glucose die entsprechende Menge Galactose zugesetzt (siehe Tabelle 3). Die Spurenelementlösung wurde vor der Sterilfiltration mit 1 M HCl auf pH 1,5 eingestellt.

Tabelle 4: Spurenelement- (100 x) und Vitaminlösung (100 x) zur Kultivierung von *S. cerevisiae* nach Theobald et al. (1993).

Spurenelementlösung	g (100x)	Vitaminlösung (10	Vitaminlösung (100x)	
FeCl ₃ ·6 H ₂ O	75 mg	myo-Inositol	301,5 mg	
$MnSO_4 \cdot H_2O$	53 mg	Ca-Panthotenat	150 mg	
$ZnSO_4 \cdot 7 H_2O$	45 mg	Thiamin/HCl	30 mg	
$CuSO_4{\cdot}5~H_2O$	12 mg	Pyridoxin/HCl	7,5 mg	
		Biotin	0,15 mg	
- 1 50 m L m				

ad 50 mL mit Aqua dest.

ad 50 mL mit Aqua dest.

Tabelle 5: Nährmedienzusätze zur Kultivierung der auxotrophen Stämme S. cerevisiae BY4742.

Medienzusätze (100 x)		
Uracil	400 mg	
Leucin	600 mg	
Histidin	400 mg	
Lysin	600 mg	

ad 50 mL mit Aqua dest.

4.2.2.2 Chemostat Kultivierung

Die Chemostatkultivierungen wurden mit einer Glucosekonzentration von 2 g/L durchgeführt. Um die Stabilität des Mediums zu erhöhen, wurde die Salzfracht im Vergleich zu den Batch-Kultivierungen verringert. Die Zusammensetzung des Mediums für Chemostatkultivierungen ist in Tabelle 6 zusammengefasst.

Ι	$(NH_4)_2HPO_4$	0,5 g
	$(NH_4)_2SO_4$	1 g
		ad 200 mL mit Aqua dest.
II	MgSO ₄ ·7 H ₂ O	0,05 g
	Citrat	0,025 g
		ad 200 mL mit Aqua dest.
III	KCl	0,5 g
	$CaCl_2 \cdot 2 H_2O$	0,03 g
	$Glucose{\cdot}H_2O \ / \ Galactose$	2,2/2 g
		ad 474 mL mit Aqua dest.
IV	0,5 M Na-Phosphatpuffer, pH	6,0 100 mL
V	Spurenelement-Lösung (100 x	x) 2 mL
VI	Vitamin-Lösung (100 x)	10 mL
VII	Komponenten für auxotrophe	Stämme 4 mL
VIII	Antischaum	0,5 mL

Tabelle 6: Mineralsalzmedium zur kontinuierlichen Kultivierung der *S. cerevisiae*-Stämme nach Theobald et al. für 1 Liter Medium.

4.3 Stammhaltung und Kultivierung von S. cerevisiae

4.3.1 Stammhaltung

Zur Stammhaltung der Organismen wurden Glycerinkulturen angelegt. Dazu wurden die einzelnen Stämme in Komplexmedium (YEPD-Medium) bei 30 °C und 230 UpM angezogen. Nach Erreichen der exponentiellen Wachstumsphase wurde den Kulturen 40% (v/v) Glycerin zugesetzt. Die Lagerung erfolgte im Anschluss bei -70 °C in Kryoröhrchen.

4.3.2 Kultivierung von S. cerevisiae im Schüttelkolben

Die Anzucht erfolgte ausgehend von Gefrierkulturen auf Festmedium. Dazu wurde von der jeweiligen Kultur ein Verdünnungsausstrich auf YEPD-Agar aufgebracht. Nach 2-3 Tagen Inkubation bei 30 bzw. 37 °C im Brutschrank wurde die erste Vorkultur (YPD-Medium) aus einer einzelnen Kolonie angeimpft. Anschließend wurde eine zweite Vorkultur auf dem entsprechenden Minimalmedium durchgeführt und die Zellen in der exponentiellen Phase in die Hauptkultur überführt. Für alle Kultivierungen wurden, mit Ausnahme der Bestimmung der Sauerstoffaufnahmeraten, schikanierte Schüttelkolben verwendet, um eine Sauerstofflimitierung zu vermeiden. Das maximale Füllvolumen der Kolben betrug 10 % des Kolbenvolumens. Alle Experimente wurden in einem Schüttelschrank der Fa. Infors AG (Multitron, Infors AG, Bottmingen, Schweiz) durchgeführt. Die Tablarauslenkung betrug 5 cm und die Geschwindigkeit standardmäßig 230 UpM, die bei der Bestimmung der Sauerstofflaufnahmeraten variiert wurde. Bei allen Experimenten befanden sich die Kulturen zwischen OD_{660nm} 1 und 2 und lagen somit immer innerhalb der exponentiellen Wachstumsphase.

4.3.3 Kultivierung von S. cerevisiae im Bioreaktor

Die Fermentationen von S. cerevisiae wurden in Vario 1000 Mini-Reaktoren (Meredos, Bovenden, Deutschland) durchgeführt. Das Kulturvolumen betrug dabei 100 mL bei Batch-Kultivierungen und 50 mL bei kontinuierlichen Kultivierungen. Die Menge zugeführter Korrekturmittel (Lauge) für die pH-Regelung wurde gravimetrisch durch Laborwaagen (Sartorius, Göttingen, Deutschland) bestimmt. Bei der kontinuierlichen Kultivierung wurde außerdem die Menge an zugeführtem und abgepumptem Medium gravimetrisch bestimmt (Laborwaagen, Sartorius, Göttingen, Deutschland). Über die Steuereinheit FCE 03 (FairMenTec, Wald, Schweiz) wurden die zentralen Prozessparameter Temperatur und pH-Wert geregelt und die Rührerdrehzahl gesteuert. Die Temperaturmessung erfolgte mittels eines Pt100 Platin-Widerstandsthermometers. Die 0 °C Eichung erfolgte mittels einer 2-Punkt-Kalibrierung bei und der Kultivierungstemperatur von 30 °C. Zur Regelung der Reaktortemperatur wurde ein Umwälzthermostat (MV-4, Julabo, Seelbach, Deutschland) eingesetzt. Bei zu hohen Außentemperaturen wurde ein weiterer Thermostat (K10, Thermo Electron Corporation, 44

Karlsruhe, Deutschland) zugeschaltet, der mit einer konstanten Temperatur von 25 °C betrieben wurde. Die Regelung des pH-Wertes erfolgte potentiometrisch mit einer autoklavierbaren Glaselektrode (405 DPAS-SC-K8S/225, Mettler Toledo, Giessen, Deutschland). Die Zwei-Punkt-Kalibrierung erfolgte vor dem Autoklavieren bei den pH-Werten 4,01 und 6,81. Der Anteil des gelösten Sauerstoffs (pO₂) im Nährmedium wurde mit einer polarographischen Sonde (Oyxyprobe, Broadley James, Bedford, England) bestimmt. Die Eichung erfolgte bei Kultivierungsbedingungen mittels einer Zwei-Punkt-Kalibrierung mit Stickstoff (0 %) und Druckluft (100 %). Die Begasungsrate wurde mittels einer separaten Steuereinheit (WMR Compact 4, Brooks Instruments, Veenedaal, Niederlande) geregelt. Die Abluft des Reaktors wurde über einen Abluftkühler und gasundurchlässige Schläuche in Edelstahlkapillaren geführt, die das Abgas der Online-Gasanalyse zuleiteten. Die Volumenanteile von N₂, O₂, ¹²CO₂, ¹³CO₂, CO¹⁸O und Ar in Zu- und Abluft wurden mittels eines Quadropol-Massenspektrometers (Omnistar, Inficon, Vaduz, Liechtenstein) ermittelt (siehe Abbildung 10).

Sämtliche Messwerte wurden in ihrem zeitlichen Verlauf durch das Prozessleitsystem Lucullus PIMS (Biospectra, Schlieren, Schweiz) erfasst und graphisch aufbereitet.

Die Kultivierung von *S. cerevisiae* erfolgte in einem Reaktionsvolumen von 100 mL bzw. 50 mL bei einer Temperatur von 30 °C und einem pH-Wert von 6, der durch die Zudosierung von 2 M NaOH im Falle der Batch-Kultivierung und 0,2 M NaOH im Falle der kontinuierlichen Kultivierung auf einen konstanten Wert geregelt wurde. Die Begasungsrate betrug 1vvm (Druckluft) und die Rührerdrehzahl 800 UpM bei der Batch-Kultivierung und 550 UpM bei der kontinuierlichen Kultivierung. Die Anfangszelldichte $(OD_{660 nm})$ lag je nach Startzeitpunkt der Kultivierung zwischen 0,01 und 0,1.

Abbildung 10: Aufbau des Reaktors mit Peripherie zur kontinuierlichen Kultivierung. Übergeordnetes Prozessleitsystem Lucullus PIMS zur Datenaufnahme. Kontrolleinheit FCE 300 zur Regelung von Temperatur und pH, sowie zur Steuerung der Rührerdrehzahl und Aufnahme der Gelöstsauerstoffkonzentration. Massenspektrometer Omnistar MS zur Abgasanalyse. Steuereinheit zur Regelung des Massendurchflussbegrenzers (MDF) für die Begasung des Reaktors. P: Pumpe, D: Drei-Wege-Ventil, F: Sterilfilter. A: Abluftkühler im Gegenstrombetrieb, S1...3, Sonden (pH, Temperatur, DO).

4.4 Probenahme und -vorbereitung

4.4.1 Abstoppen des Stoffwechsels und Extraktion zur Analyse intrazellulärer Metabolite

Bei der Batch-Kultivierung im Bioreaktor fand die Probenahme mittels einer Probenahmevorrichtung (Meredos, Bovenden, Deutschland) statt, die eine Minimierung des Zeitintervalls während der Probenahme erlaubte. Die Verweilzeit der Probe in der Probenahmevorrichtung auf ihrem Weg aus dem Fermenter in die vorgekühlte Quenchinglösung betrug dabei weniger als 1 s. Die Probenahme während der kontinuierlichen Fermentation erfolgte aus dem Überlauf, da eine Probenahme aus dem Reaktor den stationären Zustand empfindlich gestört hätte. Auch hier dauerte die Probenahme vom Zeitpunkt des Absaugens an der Oberfläche des Reaktors bis zum Eintritt in die Quenchinglösung nicht länger als 2 s. Problematisch während der Probenahme sind vor allem die Sauerstoffund Substratlimitierung. Eine Sauerstofflimitierung wurde durch den Einsatz von gasdurchlässigen Silikonschläuchen vermieden. Des Weiteren die Zeit bis Absinken betrug zum der Gelöstsauerstoffkonzentration einer Probe aus dem Bioreaktor über 15 s. Auch die Restglucosekonzentration von 0,1 - 0,2 mM bei der kontinuierlichen Kultivierung stellte aufgrund der Zelldichten von 0.9 bis 1.2 g/L und den Glucoseaufnahmeraten von 1.39 bis 2,42 mmol g⁻¹ h⁻¹ keinen limitierenden Faktor während der Probenahme dar.

Um den Stoffwechsel der Zellen möglichst schnell abzustoppen und eine Verschiebung der intrazellulären Metabolitpools zu verhindern (Villas-Boas et al., 2005), wurden die entnommenen Proben sofort nach der Entnahme in 40 mL vorgekühlte Quenchinglösung (-50 °C, 60 % Methanol, 10 mM HEPES, pH 7,5) überführt. Bei einem maximalen Probenvolumen von 10 mL ergab sich für die gequenchte Probe eine maximale Temperatur von -25 °C. Nach Zugabe der Probe wurde die Lösung im Trockeneis-Aceton-Bad wieder auf ca. -50 °C abgekühlt. Als gepufferte Quenchinglösung wurde 60 % (v/v) Methanol in 10 mM 4-(2-Hydroxyethyl)piperazin-1-ethansulfonsäure Puffer (HEPES, pH 7,5) verwendet (Gonzalez et al., 1997). Anschließend wurden die Proben zentrifugiert (5 min, 8.000 x g, -19 °C, Biofuge stratos, Heraeus, Hanau, Deutschland) und erneut mit 40 mL kalter Quenchinglösung (-50 °C) gewaschen, um eine Verfälschung der intrazellulären Metabolitpools durch extrazelluläre Metabolite zu verhindern.

Abbildung 11: Vorgehensweise zum schnellen Abstoppen des zellulären Stoffwechsel, sowie der Extraktion intrazellulärer Metabolite.

Das erhaltene Zellpellet wurde zur Extraktion eingesetzt. Dazu wurde das gequenchte Zellpellet direkt nach dem Abdekantieren der Quenchinglösung mit kochender Extraktionslösung (Aqua dest., 246,9 μM α-Aminobuttersäure als interner Standard) vermischt und 15 min im kochenden Wasserbad (100 °C) inkubiert, um die polaren Metabolite zu extrahieren. Nach Abschluss der Zelllyse wurden die Proben auf Eis abgekühlt und die Zelltrümmer durch Zentrifugation (10 min, 1.500 x g, 4 °C, Labofuge 400R, Heraeus, Hanau, Deutschland) abgetrennt. Anschließend wurden die Phasen entnommen und getrennt bei -20 °C gelagert bzw. zur weiteren Analyse eingesetzt.

4.4.2 Probenahme zur Quantifizierung von Redox Kofaktoren

Aufgrund der unterschiedlichen Stabilität der reduzierten und oxidierten Spezies des Nicotinamidadenindinukleotidphosphats (NADP/H) und des Nicotinamidadenindinukleotids (NAD/H) im sauren bzw. basischen pH-Bereich wurden zwei unterschiedliche Extraktionen durchgeführt (Franco et al., 1984). Die im Sauren stabilen Spezies NAD⁺ und NADP⁺ wurden mittels 1 M HClO₄ extrahiert. NADH und NADPH wurden mittels basischer Extraktion mit ethanolischer Kalilauge (1 M KOH; 50 % Ethanol, v/v) gewonnen. Die Extraktionslösung wurde entweder in einer Spritze vorgelegt (Schüttelkolben) oder in einem Falkon an die Probenahme des Bioreaktors angeschlossen (kontinuierliche Kultivierung). In beiden Fällen wurde die Probe direkt in die jeweilige vortemperierte (55 °C) Extraktionslösung injiziert. Die Extraktion wurde für alle Spezies bei 55 °C für 3 und 15 min durchgeführt. Anschließend wurde den Extrakten Puffer zugesetzt (0,5 M K-Phosphat, pH 7,0). Die Neutralisation der Extrakte erfolgte dann entweder mit 1 M HCl bzw. 2 M KOH. Mit Ausnahme von NADP⁺, das zu NAD⁺ degradiert wird, wurden in biologischen Proben für beide Extraktionszeiten vergleichbare Konzentrationen detektiert. Die in der jeweiligen Extraktionslösung unstabilen Spezies konnten bereits nach 3 min Inkubation nicht mehr nachgewiesen werden. In Tabelle 7 sind die Wiederfindungsraten in Abhängigkeit von der Extraktionsdauer für alle Spezies zusammengefasst. Die Extrakte wurden im Anschluss zentrifugiert (10 min, 8.000 x g, 4°C, Biofuge stratos, Heraeus, Hanau, Deutschland) und die Überstände zur Quantifizierung der Nicotinamid-Adenin-Nukleotide eingesetzt (siehe Kapitel 4.5.6).

	saure Extraktion		basische Extraktion	
	Inkubationszeit	Wiederfindung	Inkubationszeit	Wiederfindung
	[min]	[%]	[min]	[%]
	3	97	3	0
NAD^+	5	101	5	0
	10	93	10	0
	30	92	30	0
	3	94	3	0
$NADP^+$	5	87	5	0
	10	81	10	0
	30	58	30	0
NADH	3	0	3	89
	5	0	5	91
	10	0	10	94
	30	0	30	95
NADPH	3	0	3	92
	5	0	5	109
	10	0	10	96
	30	0	30	107

Tabelle 7: Wiederfindungsraten von NAD/H und NADP/H bei saurer bzw. basischer Extraktion von Standardlösungen. Die Extraktionsdauer reichte von 3 bis 30 min.

1

4.4.3 Hydrolyse des Zellproteins zur GC/MS-Analytik

Der Flüssigkultur wurden zur Hydrolyse des Zellproteins Alliquots entnommen, die ca. 1 mg Biotrockenmasse entsprachen. Die Probe wurde 2-fach mit dest. Wasser gewaschen (5 min, 13.000 Upm, 4 °C, Biofuge fresco, Heraeus, Hanau, Deutschland). Die Hydrolyse erfolgte im Anschluss durch die Zugabe von 6 N HCl zu dem Pellet bei 105 °C über 12 h. Anschließend wurde die Probe mit 50 μ L 2 N NaOH neutralisiert und durch einen Filter (Ultrafree MC, 0,22 μ m, PVDF, Millipore Corporation, Bedford, USA) zentrifugiert, um die unlöslichen Bestandteile abzutrennen.

4.5 Biochemische und analytische Methoden

4.5.1 Bestimmung von optischer Dichte (OD) und Biotrockenmasse

Zur Bestimmung der Zellkonzentrationen der Kulturen wurde die optische Dichte spektralphotometrisch (Pharmacia Biotech, Novaspec II) bei 660 nm bestimmt. Falls der ermittelte Wert oberhalb von 0,3 lag, wurden die Proben entsprechend mit Wasser verdünnt. Es wurden jeweils Doppelbestimmungen gegen Wasser als Leerwert durchgeführt, wobei der exakte Verdünnungsfaktor gravimetrisch (CP225 D, Sartorius, Göttingen, Deutschland) bestimmt wurde.

Zur Bestimmung der Biotrockenmasse wurden 40 mL Kultur zunächst durch Zentrifugation vom Überstand getrennt (10 min, 8.000 x g, 4 °C, Biofuge stratos, Heraeus, Hanau, Deutschland) und anschließend zweimal mit kalten H₂O_{bidest.} gewaschen. Die gewaschenen Zellpellets wurden bei 80 °C bis zur Gewichtskonstanz getrocknet. Im Anschluss erfolgte die gravimetrische Ermittlung der Biotrockenmasse in Dreifach-Bestimmung (CP225 D, Sartorius, Göttingen, Deutschland).

Für die Korrelation von Biotrockenmasse und optischer Dichte wurde die folgende Geradengleichung aus Abbildung 12 ermittelt.

 $BTM[g/L] = 0,5065 \cdot OD_{660 \text{ nm}}$

Gl. 11

Abbildung 12: $OD_{660 \text{ nm}}$ – BTM [g/L] Korrelation von *S. cerevisiae* BY4742 bei Wachstum auf Minimalmedium mit Glucose als Kohlenstoffquelle. Die $OD_{660 \text{ nm}}$ Bestimmung wurde in Duplikaten, die Bestimmung der Biotrockenmasse in Triplikaten durchgeführt.

4.5.2 Zellvolumen von S. cerevisiae

Das Zellvolumen von *S. cerevisiae* zur Bestimmung intrazellulärer Konzentrationen wurde aus der Literatur entnommen. Die Korrelation zwischen Biotrockenmasse und Zellvolumen beträgt nach Reich und Sel'kov (1981) 0,00238 m³ kg⁻¹_{BTM}.

4.5.3 Quantifizierung von Glucose und Ethanol in Kulturüberständen mittels enzymatischer Tests

Die Glucose- und Ethanolkonzentrationen in den Kulturüberständen wurde mittels enzymatischer Testkits bestimmt (D-Glucose Enzymtest und Ethanol Enzymtest; Böhringer Mannheim, Mannheim, Deutschland). Beide Kits beruhen auf dem Prinzip der Reduktion von NAD(P)⁺ zu NAD(P)H. Im Falle der Glucosequantifizierung wird dabei Glucose zunächst zu Glucose-6-phosphat phosphoryliert und anschließend durch die Glucose-6-phosphat-Dehydrogenase oxidiert. Im Falle von Ethanol erfolgt die direkte Oxidation über Acetaldehyd zu Acetat mittels der Enzyme Alkohol-Dehydrogenase und 52 Acetaldehyd-Dehydrogenase. In beiden Fällen wird aus dem Anstieg der gebildeten NAD(P)H-Menge spektralphotometrisch bei 340 nm (Pharmacia Biotech, Novaspec II) die Glucose- bzw. Ethanolkonzentration bestimmt. Alle Quantifizierungen wurden als Duplikate durchgeführt.

4.5.4 Quantifizierung von organischen Säuren, Alkoholen, Nukleobasen und Kohlenhydraten mittels HPLC

Die Konzentrationen von Acetat, a-Ketoglutarat, Fumarat, Citrat, Succinat, Orotat, Glycerin, Ethanol, Uracil, Glucose, Galactose und Fructose im Kulturüberstand wurden mittels HPLC bestimmt. Die verwendete Anlage (Kroma System, Kontron Instruments, Neufahrn, Deutschland) setzt sich aus einem Pumpsystem (HPLC-System 522, Kontron Instruments, Neufahrn, Deutschland) mit Eluentenentgaser (Gegassex DG 4400, Phenomenex, Aschaffenburg, Deutschland), einem Autosampler (HPLC Autosampler 465, Kontron Instruments, Neufahrn, Deutschland), einem Säulenofen (Jetstream 2 plus, Thermotechnic Products, Langertsdorf, Deutschland) und einem UV-Detektor (HPLC 535, Kontron Instruments. Neufahrn. Deutschland) zusammen. Um die Detektionsmöglichkeiten zusätzlich des Systems erweitern wurde ein zu Brechungsindexdetektor (ERC-7515A, ERC Inc., Alteglofsheim, Deutschland) nachgeschaltet. Für die Analytik wurden 20 µL der entsprechenden Probe direkt injiziert. Die Kalibrierung erfolgte anhand externer Standards. Zur Trennung der einzelnen Substanzen fand eine Aminex-Säule (HPX-87H; 300 x 7,8 mm; Bio-Rad, Hercules, USA) Verwendung, wobei die Trennung isokratisch mit 22 mM H₂SO₄ als Eluent erfolgte. Die Säulentemperatur betrug 35 °C und die Flussrate 0,5 mL/min. Die organische Säuren und Uracil wurden anhand ihrer UV-Absorption bei 210 nm detektiert; Kohlenhydrate, Ethanol und Glycerin mit Hilfe des Brechungsindexdetektors. Die Trennmethode wurde dabei zunächst optimiert, um eine Trennung von Orotat und α-Ketoglutarat zu ermöglichen. In Abbildung 13 ist das UV-Chromatogramm eines Kulturüberstandes von S. cerevisiae BY4742 bei Wachstum auf Glucose dargestellt.

Abbildung 13: HPLC-Chromatogramm eines Kulturüberstandes von *S. cerevisiae* BY4742 bei Wachstum mit Glucose als Kohlenstoffquelle im Schüttelkolben. Gezeigt ist das UV-Chromatogramm bei einer Wellenlänge von 210 nm zur Detektion organischer Säuren und Uracil. Säule Aminex HPX-87H, 300 x 7,8 mm; 35 °C; 22 mM H₂SO₄; 0,5 mL/min.

4.5.5 Quantifizierung von Aminosäuren mittels HPLC

Die Aminosäurekonzentrationen in Kulturüberständen, sowie in Zellextrakten, wurden ebenfalls mittels HPLC bestimmt. Dabei kam die HPLC-Anlage Agilent 1100 Series (Agilent Technologies, Waldbronn, Deutschland) zum Einsatz. Die zu analysierenden Proben wurden zuvor mit 246,9 μM α-Aminobuttersäure als internem Standard verdünnt, wobei der exakte Verdünnungsfaktor gravimetrisch (CP225 D, Sartorius, Göttingen, Deutschland) bestimmt wurde. Anschließend wurde eine automatisierte Mercaptopropionat Vorsäulenderivatisierung mit o-Phthaldialdehyd (OPA) und durchgeführt (siehe Abbildung 14). Prolin, als sekundäre Aminosäure, wurde mit 9-Fluorenylmethoxycarbonyl (FMOC) derivatisiert. Die Detektion erfolgte ebenfalls über die Fluoreszenzeigenschaften des entstandenen Moleküls (Anregungswellenlänge 266 nm; Emissionswellenlänge 305 nm).

Zeit [min]	Eluent A [%]	Eluent B [%]
0,0	100	0
41,0	59	41
46,0	19	81
46,5	0	100

Tabelle 8: Zeitlicher Verlauf des Gradienten bei der Aminosäure HPLC.

Die entstandenen Isoindolderivate der Aminosäuren wurden nach der Trennung über eine C18 RP-Säule (Phenomenex, Aschaffenburg, Deutschland, Gemini 5u C18 110A; $150 \times 4,6$ mm; Vorsäule MAX-RP, 4mm \times 3 mm) mittels eines Fluoreszenzdetektors (Anregungswellenlänge 330 nm, Emissionswellenlänge 460 nm) detektiert. Zur Kalibrierung wurde ein externer Standard verwendet. Zur Trennung der einzelnen Aminosäuren wurde ein Gradient aus Eluent A (40 mM Na₂HPO₄, pH 7,8) und Eluent B (Methanol, Acetonitril und Wasser 45:45:10) verwendet, dessen zeitlicher Verlauf in Tabelle 8 dargestellt ist. Die Trennung erfolgte bei einer Säulentemperatur von 40 °C und einer Flussrate von 1 mL/min.

Abbildung 14: Schema zur Derivatisierung primärer Aminosäuren mit *ortho*-Phthaldialdehyd zu fluoreszierenden Isoindolderivaten.

4.5.6 Quantifizierung von Redox-Kofaktoren

Zur Quantifizierung der intrazellulären Konzentrationen von NAD⁺, NADH, NADP⁺ und NADPH wurde ein enzymatischer Cyclin-Assay nach Bernofsky und Swan (1973) eingesetzt. In Abbildung 15 ist der Ablauf des Cycling-Assays schematisch dargestellt. Zur Unterscheidung zwischen phosphorylierten und nicht-phosphorylierten Spezies werden die beiden Enzyme Alkohol-Dehydrogenase (NAD⁺-abhängig) und Glucose-6-phosphat-Dehydrogenase (NADP⁺-abhängig) eingesetzt. Zunächst werden die oxidierten Spezies durch die Aktivität des jeweiligen Enzyms reduziert und oxidieren ihrerseits wiederum Phenazin-Ethosulfat (PES). In der letzten Reaktion des Assays wird dann MTT zu Formazan reduziert. Die Formazanbildungsrate kann dabei spektralphotometrisch bei einer Wellenlänge von 560 nm verfolgt werden. Dabei ist die Bildungsrate der eingesetzten Adenin-Dinukleotidkonzentration direkt proportional. Aufgrund der zyklischen Struktur des Assays ist eine Unterscheidung zwischen reduzierten und oxidierten Spezies nicht möglich. Deshalb wurden unterschiedliche Extraktionsverfahren angewandt, um das Vorliegen von lediglich einer der beiden Formen zu gewährleisten (siehe Kapitel 4.4.2).

Abbildung 15: Prinzip des eingesetzten Cycling-Assays zur Bestimmung intrazellulärer Adenin-Dinukleotid-Konzentrationen. ADH = Alkohol-Dehydrogenase, G6P-DH = Glucose-6-phosphat-Dehydrogenase, PES = Phenazin-Ethosulfat (oxidiert), PESH₂ = Phenazin-Ethosulfat (reduziert), MTT = Thiazolyl-Blau.

4.5.7 GC/MS-Analytik

Die Quantifizierung der ¹³C-Anreicherung wurde in Kulturüberständen, Proteinhydrolysaten und Zellextrakten durchgeführt. Alle wässrigen Proben wurden zunächst lyophilisiert. Eine Ausnahme bildete die Bestimmung der ¹³C-Anreicherung von Ethanol. Hier wurde eine parallele Derivatisierung und Extraktion durchgeführt (siehe Kapitel 4.5.7.1).

4.5.7.1 Derivatisierung

Die Derivatisierung von Proteinhydrolysaten erfolgte mit N-Methyl-t-butyldimethylsilyltrifluoracetamid (MBDSTFA; Macherey-Nagel, Easton; USA). Dazu wurde den wasserfreien Proben jeweils 50 μ L 0,1 % Pyridin in Dimethylformamid (DMF) sowie MDSTFA-Lösung zugesetzt. Die Derivatisierung wurde für 30 min bei 80 °C durchgeführt. Zellextrakte wurden mit N-Methyl-N-(trimethylsilyl)trifluoracetamide (MSTFA; Macherey-Nagel, Easton; USA) und Methoxylamin (MOA) derivatisiert. Zunächst erfolgte eine Methoxymierung von Ketogruppen mittels MOA. Dazu wurde den getrockneten Proben 50 μ L 20 g/L MOA in Pyridin zugesetzt (80 °C, 30 min). Anschließend erfolgte durch die Zugabe von MSTFA die Silylierung (80 °C, 30 min). Um feste Bestandteile abzutrennen wurden die derivatisierten Proben zentrifugiert (5 min, 13.000 Upm, 4 °C, Biofuge fresco, Heraeus, Hanau, Deutschland) und der Überstand zur Analyse abgenommen.

Zur Derivatisierung von Ethanol in Kulturüberständen wurden 250 μ L Kulturüberstand mit 50 μ L Phenylacetylchlorid und 100 μ L n-Hexan versetzt. Die organische Phase wurde abgenommen und mittels GC/MS analysiert. In Abbildung 16 sind die verschiedenen Derivatisierungen zusammengefasst.

Abbildung 16: Derivatisierungsschemata für die GC/MS-Analyse. (A) Silylierung von –SH, -OH, -COOH, und -NH₂ Gruppen mittels MBDSTFA, (B) Silylierung von –SH, -OH, -COOH, und -NH₂ Gruppen mittels MSTFA, (C) Methoximierung von Ketogruppen mittels Methoxylamin und (D) Derivatisierung von Ethanol mittels Phenylacetylchlorid.

4.5.7.2 Analyse

Die Quantifizierung der ¹³C-Anreicherung der intrazellulären Metabolite, Aminosäuren aus Proteinhydrolysaten und extrazellulären Metabolite erfolgte mittels des GC/MS-Systems bestehend aus dem HP6890 GC System mit nachgeschaltetem Quadrupol-Mass-Selective-Detector 5973 Network (Agilent Technologies, Waldbronn, Deutschland). Zur Probenaufgabe (variabel 0,2 – 2 μ L) wurde ein 7683B Autosampler (Agilent, Waldbronn, Deutschland) verwendet. Als Injektor fand ein PTV-Injektor (Gerstel, Mühleheim a. d. Ruhr, Deutschland) Einsatz. Die Trennung erfolgte mit Helium als Trägergas über eine HP-5ms Säule (95% Dimethyl-, 5% Diphenylpolysiloxan, 60 m x 0,25 mm, 0,25 μ m 58

Waldbronn, Deutschland). Im Falle der Analyse Schichtdicke, Agilent, von Proteinhydrolysaten und Kulturüberständen wurde ein Fluss von 1,1 mL/min mit dem in Tabelle 9 gezeigten Temperaturprogramm verwendet. Die Analyse von Zellextrakten wurde mit einem Fluss von 0,7 mL/min und dem ebenfalls in Tabelle 9 gezeigten Temperaturprogramm des GC-Ofens durchgeführt. Für die Analyse der Zellextrakte wurde der PTV-Injektor mit einer Rate von 360 °C/min von 70 °C auf 360 °C aufgeheizt, bei den restlichen Analysen erfolgte die gleiche Aufheizung allerdings mit einer Rate von 720 °C/min. Die Ionisierung erfolgte mittels "electron impact" (EI) bei einer Energie von 70 eV. Die Temperatur des Interfaces zwischen GC und Quadropol betrug 320 °C, die des Quadrupols selbst 280 °C. Zur Identifikation der Metabolite wurden die Messungen im Scan-Mode über einen Bereich von 70 bis 650 m/z durchgeführt. Die Quantifizierung der ¹³C-Anreicherung erfolgte im SIM (*"single ion monitoring"*) Modus bei ausgewählten m/z Verhältnissen, die den entsprechenden Analyten entsprachen. Alle Bestimmungen wurden als technische Duplikate durchgeführt, der Fehler der ¹³C Markierung lag dabei in der Regel unter 1 %. Die Identifizierung erfolgte zum einen anhand der Retentionszeit der Analyte zum anderen anhand des charakteristischen Fragmentierungsmusters der Analyte durch Abgleich mit einer entsprechenden Datenbank (NIST). Durch die EI zerfallen die Derivate in charakteristische Fragmente. Neben dem Primärion sind vor allem die Fragmente [M-15]⁺, [M-57]⁺, [M-85]⁺ und [M-159]⁺ zu detektieren. Zur Validierung der GC/MS-Analysen wurden natürlich markierte Aminosäurestandardgemische eingesetzt und die gemessene Isotopomerverteilung mit der berechneten verglichen.

Proteinhydrolysate / Überstände				Zellextrakte	
Rate [°C/min]	Temp. [°C]	Dauer [min]	Rate [°C/min]	Temp. [°C]	Dauer [min]
	135	1		70	1
10	320	2	1	75	0
			5	315	0
			25	340	5

Tabelle 9: Verlauf der Temperaturgradienten des GC-Ofens bei der Analyse von Proteinhydrolysaten,Kulturüberständen und Zellextrakten.

4.5.8 Online-Abgasanalyse

Die Abgasanalyse bei Bioreaktorkultivierungen erfolgte mittels eines Quadropol-MS QMS 422 (Balzers, Inficon, Vaduz, Liechtenstein). Dazu wurden sowohl in der Zuluft als auch in der Abluft die Volumenanteile von N₂, O₂, Ar, CO₂, ¹³CO₂ und CO¹⁸O kontinuierlich gemessen. Die Ionisierungsenergie betrug 70 eV, die Verbindung der Kapillare zwischen dem Massenspektrometer und dem auf 30 °C temperierten Omnistar Gas Stream Selector (Balzers, Inficon, Vaduz, Liechtenstein) lag bei 70 °C. Die Kalibrierung erfolgte anhand von Luft und einem Gemisch aus synthetischer Luft und 1,5 % CO₂.

4.5.9 Quantifizierung des Gelöstsauerstoffes in Schüttelkolben

Zur Quantifizierung des Gelöstsauerstoffes (DO) in Schüttelkolben wurde ein optisches System der Fa. Presens (SFR, Presens GmbH, Regensburg, Deutschland) eingesetzt. Das Prinzip besteht in einem Fluoreszenzfarbstoff, dessen Fluoreszenzeigenschaften sich in Abhängigkeit von der Konzentration des gelösten Sauerstoffes ändern (Klimant und Wolfbeis, 1995). Die Kalibrierung erfolgte für den 100 % Wert mit Medium. Für die 0 % Kalibrierung wurde dem Medium Na-Sulfit zugesetzt, welches durch den vorhanden Sauerstoff zu Sulfat oxidiert wurde und damit den gelösten Sauerstoff verbrauchte. Ausgehend von dem Verlauf der gelösten Sauerstoffkonzentration wurden spezifische Sauerstoffaufnahmeraten im Schüttelkolben bestimmt.

4.5.10 Bestimmung des volumetrischen Stoffübergangskoeffizienten (k_La) für Sauerstoff in Schüttelkolben

Die Bestimmung des volumetrischen Stoffübergangskoeffizienten k_La für Sauerstoff wurde dynamisch mittels der in Kapitel 4.5.9 beschriebenen Technik der Online-DO-Messung im Schüttelkolben bestimmt. Mit Hilfe von Na-Sulfit wurde der die Sauerstoffkonzentration zunächst auf 0 % gebracht. Nach der vollständigen Oxidation des Sulfits wurde aus dem Anstieg der Gelöstsauerstoffkonzentration der k_La Wert nach folgender Gleichung mittels der Software BERKELEY MADONNA ermittelt (Dunn et al., 2000).

$$\frac{\mathrm{d}\mathbf{c}_{\mathrm{L}}}{\mathrm{d}t} = \mathbf{k}_{\mathrm{L}}\mathbf{a} \cdot (\mathbf{c}_{\mathrm{L}}^* - \mathbf{c}_{\mathrm{L}})$$

Gl. 12

mit	c_{L}	Gelöstsauerstoffkonzentration [mM]
	c_L^*	Sättigungskonzentration [mM]
	$k_L a$	volumetrischer Stoffübergangskoeffizient [h ⁻¹]

Abbildung 17 zeigt ein Beispiel für die Anpassung des Modells an gemessene Daten. Alle Bestimmungen wurden in dreifach-Bestimmung durchgeführt.

Abbildung 17: Anpassung des simulierten Verlaufes der Gelöstsauerstoffkonzentration (DO) an die gemessenen Daten zur Bestimmung des k_La-Wertes. Gezeigt ist eine mittels der Software BERKELEY MADONNA durchgeführte Simulation.

4.5.11 Bestimmung von in vitro Enzymaktivitäten

4.5.11.1 Herstellung von zellfreiem Extrakt

Der zellfreie Extrakt wurde mittels Ultraschallaufschluss hergestellt. Dazu wurden Zellen in Minimal-Medium kultiviert und in der exponentiellen Wachstumsphase (OD 1 – 2) geerntet (5 min, 4 °C, 8400 UpM, Biofuge stratos, Heraeus, Hanau, Deutschland). Anschließend wurden die Zellen zweimal in eiskaltem Aufschlusspuffer gewaschen (100 mM K-Phosphat pH 7,5, 2 mM MgCl₂, 1 mM Dithiothreitol) und in 4 mL/g Feuchtgewicht Aufschlusspuffer resuspendiert. Der Aufschluss erfolgte über 2 min mit 0,25 – 0,5 mm Glaskugeln und einem MSE Sonicater bei einer Leistung von 150 W und einer Amplitude von 8 µm. Die Zelltrümmer wurden durch Zentrifugation abgetrennt, um den zellfreien Extrakt zur Bestimmung der *in vitro* Enzymaktivitäten und des Gesamtproteingehaltes zu erhalten.

4.5.11.2 Bestimmung des Gesamtproteingehaltes

Der Gesamtproteingehalt des zellfreien Extraktes wurde nach Bradford (Bradford, 1976) bestimmt. Als Kalibrierprotein diente dabei bovines Serumalbumin.

4.5.11.3 Enzym Assays

Bei allen Assays, mit Ausnahme der Isocitrat-Lyase, wurde die enzymatische Umsetzung über die Kofaktoren NAD⁺/H bzw. NADP⁺/H spektralphotometrisch bei einer Wellenlänge von 340 nm bei 30 °C verfolgt. Je nach Bildung der reduzierten oder oxidierten Kofaktorspezies wurde dabei eine Zu- bzw. Abnahme der Absorption beobachtet. Der molare Extinktionskoeffizient ϵ_{340nm} von NADH und NADPH beträgt 6,22 $\text{mM}^{\text{-1}}$ und wurde zur Berechnung der Reaktionsraten verwendet, die bei vorhandenen endogenen Aktivitäten korrigiert wurden. Die Raten waren der zugesetzten Menge an Rohzellextrakt proportional. Die Reaktion der Isocitrat-Lyase wurde bei einer Wellenlänge von 324 nm verfolgt, die dem Absorptionsmaximum des gebildeten Glyoxylatphenylhydrazons entspricht (ϵ_{324nm} 17 mM⁻¹). Die spezifischen Enzymaktivitäten sind in U/mg angegeben und nach Lambert-Beer'schen berechnet (Gl. dem Gesetz 13). Alle
Aktivitätsbestimmungen wurden in einem Endvolumen von 1 mL in Polystyrol-Einwegküvetten durchgeführt. Die genauen Zusammensetzungen der Ansätze sind im Folgenden beschrieben, wobei die angegebenen Konzentrationen den Endkonzentrationen im Ansatz entsprechen. Alle Messungen wurden gegen Wasser durchgeführt, als Negativkontrollen dienten Ansätze ohne Substrat oder zellfreiem Extrakt. Falls nötig wurden die zellfreien Extrakte in Aufschlusspuffer verdünnt, es wurden immer 50 µL des Extraktes eingesetzt.

$$\frac{dA}{dt} = \varepsilon_{340nm} \cdot \frac{dc}{dt} \cdot d$$

Gl. 13

mit dA/dt zeitlichen Änderung der Absorption [s⁻¹]
dc/dt S zeitlichen Änderung der Konzentration [mM s⁻¹]
ε_{340 nm} molaren Extinktionskoeffizient (NADH/NADPH) 6,22 L mmol⁻¹ cm⁻¹
d Schichtdicke [cm]

Glucose-6-phosphat-Dehydrogenase (de Jong-Gubbels et al., 1995)

Glucose-6-phosphat wird durch die Glucose-6-phosphat-Dehydrogenase (G6P-DH) unter Reduktion von NADP⁺ zu NADPH zu Phosphogluconolacton oxidiert. Dabei wird die Menge an gebildeten NADPH gemessen. Die Bestimmung wurde in 100 mM Tris HCl (pH 7,5), 10 mM MgCl₂, 0,4 mM NADP⁺ und zellfreiem Extrakt durchgeführt. Die Reaktion wurde durch die Zugabe von 50 mM Glucose-6-phosphat gestartet.

Phosphoenolpyruvat-Carboxykinase (de Jong-Gubbels et al., 1995)

Der gekoppelte Assay verfolgt die Carboxylierung von Phosphoenolpyruvat (PEP) zu Oxalacetat. Durch die Zugabe des Enzyms Malat-Dehydrogenase wird Oxalacetat weiter zu Malat umgesetzt, wobei NADH zu NAD⁺ oxidiert wird. Um einen Umsatz von PEP durch die Pyruvat-Kinase zu verhindern, wurde dem Ansatz Glutathion in reduzierter Form zugesetzt. Die Phosphatgruppe wurde auf ADP übertragen. Der Ansatz enthielt 100 mM Imidazol HCl (pH 6,6), 50 mM NaHCO₃, 2 mM MnCl₂, 2 mM Glutathion reduziert, 2,5 mM ADP, 0,15 mM NADH, 3 U Malat-Dehydrogenase und zellfreien Extrakt. Die Reaktion wurde durch Zugabe von 2,5 mM PEP gestartet.

Pyruvat-Carboxylase (de Jong-Gubbels et al., 1995)

Die Quantifizierung der *in vitro* Aktivität der Pyruvat-Carboxylase erfolgte über den zeitlichen Verlauf der NADH Oxidation zu NAD⁺. Dabei findet zunächst die Carboxylierung von Pyruvat zu Oxalacetat statt, das im weiteren Verlauf des gekoppelten Assays durch die Aktivität der Malat-Dehydrogenase (Malat-DH) zu Malat reduziert wird. Dem Ansatz wurde Acetyl-CoA zugesetzt, um die Pyruvat-Dehydrogenase zu hemmen und somit die Aktivität der Pyruvat-Carboxylase bestimmen zu können.

Malat-Synthase (de Jong-Gubbels et al., 1995)

Die *in vitro* Aktivität der Malat-Synthase wird über einen gekoppelten Enzymtest bestimmt. Dabei wird zunächst Acetyl-CoA und Glyoxylat durch die Malat-Synthase zu Malat umgesetzt und anschließend durch die im Überschuss zugesetzte Malat-DH zu Oxalacetat oxidiert, wobei NAD⁺ zu NADH reduziert wird. Diese Zunahme wird photometrisch verfolgt. Das entstandene Oxalacetat wird mittels der Citrat-Synthase weiter zu Citrat umgesetzt. Der Test wird in Tris-HCl (pH 8,0) durchgeführt und enthält 0,4 mM Acetyl-CoA, 5 mM MgCl₂, 0,4 mM NAD⁺, 2 U Citrat-Synthase, 12 U Malat-DH und zellfreien Extrakt. Die Reaktion wurde durch Zugabe von 0,25 mM Glyoxylat gestartet.

Malat-Enzym (Boles et al., 1998)

Malat wird durch das Malat-Enzym oxidativ decarboxyliert und zu Pyruvat umgesetzt. Dabei wird NADP⁺ zu NADPH reduziert, welches direkt gemessen werden kann. Der Enzymassay wird in 100 mM Tris-HCl (pH 7,5) durchgeführt und enthält daneben 10 mM MgCl₂, 0,4 mM NADP⁺ und zellfreien Extrakt. Die Reaktion wurde durch Zugabe von 100 mM D,L-Malat gestartet.

Pyruvat-Decarboxylase (Maitra und Lobo, 1971)

Die Pyruvat-Decarboxylase katalysiert die Decarboxylierung von Pyruvat zu Acetaldehyd. Um den Umsatz photometrisch verfolgen zu können, ist diese Reaktion an die Reduktion von Acetaldehyd zu Ethanol mittels der Alkohol-Dehydrogenase (ADH) gekoppelt. Dabei wird NADH zu NAD⁺ oxidiert. Der Ansatz enthält weiter 100 mM Imidazol-HCl (pH 6,8), 5 mM Cystein, 0,15 mM NADH, 0,25 mM Thiaminpyrophosphat, 1 U ADH und zellfreien Extrakt. Die Reaktion wurde durch Zusatz von 50 mM Pyruvat gestartet.

Pyruvat-Kinase (de Jong-Gubbels et al., 1995)

Die Quantifizierung der Pyruvat-Kinase Aktivität erfolgt über einen gekoppelten Enzym-Assay. Dabei wird zunächst PEP zu Pyruvat umgesetzt, wobei die Phosphatgruppe auf ADP übertragen wird. Anschließend wird Pyruvat durch das zugegebene Enzym Lactat-Dehydrogenase (Lactat-DH) zu Lactat reduziert, wobei NADH zu NAD⁺ oxidiert wird. Fructose-1,6-bisphosphat wird dem Ansatz als allosterischer Aktivator der Pyruvat-Kinase zugegeben. Die Aktivitätsbestimmung wird in 100 mM Imidazol-HCl (pH 6,2) durchgeführt. Der Ansatz enthält außerdem 100 mM KCl, 10 mM ADP, 1 mM Fructose-1,6-bisphosphat, 25 mM MgCl₂, 0,15 mM NADH, 10 U Lactat-DH und zellfreien Extrakt. Die Bestimmung wurde durch Zugabe von 10 mM PEP gestartet.

Phosphofructokinase (de Jong-Gubbels et al., 1995)

Die Bestimmung der Phosphofructokinase-Aktivität erfolgt anhand mehrerer gekoppelter enzymatischer Reaktionen. Zunächst wird Fructose-6-phosphat (F6P) durch die Phosphofructokinase zu Fructose-1,6-bisphosphat (F16P) phosphoryliert. Anschließend wird F16P zu Dihydroxyacetonphosphat (DAP) und Glycerinaldehyd-3-phosphat (GAP) umgesetzt. Dihydroxyacetonphosphat wird durch die Glycerinphosphat-Dehydrogenase (GP-DH) zu Glycerin-3-phosphat reduziert, wobei NADH zu NAD⁺ oxidiert wird. GAP wird durch die Triosephosphatisomerase (TPI) in DAP umgewandelt. Die Bestimmung wird in Imidazol-HCl Puffer (pH 7) durchgeführt, der 6,4 mM (NH₄)₂SO₄, 5 mM MgCl₂, 0,15 mM NADH, 0,05 mM ATP, 0,5 U Aldolase, 0,6 U GP-DH, 1,8 U TPI und zellfreien Extrakt enthält. Der Start der Reaktion erfolgte durch Zugabe von 0,25 mM F6P.

Isocitrat-Lyase (de Jong-Gubbels et al., 1995)

Zur Quantifizierung der *in vitro* Aktivität der Isocitrat-Lyase wurde die Bildung des Glyoxylatphenylhydrazons photometrisch verfolgt. Dazu wurde zunächst Isocitrat durch

die Aktivität der Isocitrat-Lyase in Glyoxylat und Succinat gespalten. Die Bestimmung erfolgte in 100 mM K-Phosphatpuffer (pH 7,0), 4 mM Phenylhydrazine-HCl, 2,5 mM Cystein, 2,5 mM MgCl₂ und zellfreiem Extrakt. Die Reaktion wurde durch Zugabe von 2 mM D,L-Isocitrat gestartet.

Fructose-1,6-bisphosphatase (de Jong-Gubbels et al., 1995)

Fructose-1,6-bisphosphat (F16P) wird von der Fructose-1,6-bisphosphatase zu Fructose-6phosphat umgesetzt. Die Bestimmung der Aktivität erfolgt über eine Kopplung an die zugesetzten Enzyme Phosphoglucoisomerase (PGI) und Glucose-6-phosphat-Dehydrogenase, die Fructose-6-phosphat zunächst zu Glucose-6-phosphat umsetzen und anschließend G6P zu Phosphogluconolacton oxidieren, wobei NADP⁺ zu NADPH reduziert wird. NADPH kann anschließend photometrisch verfolgt werden. Der Ansatz wurde in 50 mM Imidazol-HCl (pH 7,0), 100 mM KCl, 0,5 mM EDTA, 10 mM MgCl₂, 0,4 mM NADP⁺, 0,5 U PGI, 0,5 U G6P-DH und zellfreien Extrakten durchgeführt. Der Umsatz wurde durch Zugabe von 0,1 mM F16P gestartet.

4.6 Berechnung von zentralen Kultivierungsparametern

Die zentralen Kultivierungsparameter (spezifische Raten, Ausbeutekoeffizienten, Abgasund Kohlenstoffbilanzierung) wurden nach den im Folgenden zusammengefassten Gleichungen berechnet.

4.6.1 Ausbeutekoeffizienten

Die Produkt- und Biomasseausbeutekoeffizienten wurden für Batch-Kultivierungen aus den Differenzen der Produkt- und Substratkonzentrationen zu zwei verschiedenen Zeitpunkten bestimmt (Batch-Kultivierungen) bzw. aus den Medien- und Reaktorkonzentrationen der entsprechenden Komponenten (kontinuierliche Kultur) nach der folgenden Gleichung berechnet.

$$Y_{P/S} = \frac{c_{P,2} - c_{P,1}}{c_{S,1} - c_{S,2}}$$

Gl. 14

mit c_{P,S} Produkt-, Substratkonzentrationen [mM, g/L]

4.6.2 Spezifische Raten

Die spezifischen Raten in batch und kontinuierlicher Kultur wurden nach den folgenden Gleichungen berechnet.

Spezifische Wachstumsrate

	dX 1	
Batch	$\mu = \cdot - $	GL 15
20000	dt X	

Kontinuierliche Kultur
$$\frac{dX}{dt} = X \cdot (\mu - D) \rightarrow \mu = D \qquad GI. 16$$

Spezifische Substrataufnahmerate

Batch
$$q_s = -\frac{dc_s}{dt} \cdot \frac{1}{X}$$
 Gl. 17

Kontinuierliche Kultur
$$q_{s} = \frac{1}{X} \cdot \left(D \cdot c_{s,Medium} - D \cdot c_{s,Reaktor} \right)$$
 Gl. 18

Spezifische Produktbildungsrate

Batch
$$q_{\rm P} = \frac{{\rm d}c_{\rm P}}{{\rm d}t} \cdot \frac{1}{{\rm X}}$$
 Gl. 19

Kontinuierliche Kultur
$$q_{\rm S} = \frac{1}{\rm X} \cdot \rm D \cdot c_{\rm P,Reaktor}$$
 Gl. 20

mitXBiomassekonzentration [g/L] μ spezifische Wachstumsrate [h⁻¹]DVerdünnungsrate [h⁻¹] $c_{S,P}$ Substrat-, Produktkonzentration [mmol/L]

67

4.6.3 Kohlenstoffbilanzierung

Um die vollständige Erfassung aller Substrate und Produkte über die Kultivierung zu verifizieren, wurde eine Kohlenstoffbilanzierung durchgeführt. Zu den Substraten zählten neben Glucose auch die zugesetzten Supplemente Histidin, Leucin, Lysin und Uracil. Die Produkte umfassten neben Biomasse und CO_2 auch Ethanol, Glycerin, Acetat, Pyruvat, α -Ketoglutarat und Orotat. Die Wiederfindungsrate des Kohlenstoffes sollte bei vollständiger Erfassung aller Produkte bei 100 % liegen; geringe Abweichungen sind dabei aufgrund von Messfehlern möglich.

4.6.4 Abgasbilanzierung

Zur Quantifizierung des aufgenommenen Sauerstoffs und produzierten des Kohlenstoffdioxids wurde Abgasanalyse durchgeführt. Aufgrund eine der unterschiedlichen molaren Zu- und Abströme wurde mittels Stickstoff eine Inertgasbilanz durchgeführt. Die Gleichungen zur Berechnung der Sauerstoffaufnahmerate (OUR) und der Kohlendioxidproduktionsrate (CPR), sowie der spezifischen Raten und des respiratorischen Quotienten (RQ) sind im Folgenden gegeben.

$$OUR = \frac{\dot{V}_{G,ein}}{V_{R,L} \cdot V_M} \cdot \left(x_{O_2,ein} - x_{O_2,aus} \frac{x_{N_2,ein}}{x_{N_2,aus}} \right) \qquad \text{Gl. 21}$$

$$CPR = \frac{\dot{V}_{G,ein}}{V_{R,L} \cdot V_M} \cdot \left(x_{CO_2,aus} \frac{x_{N_2,ein}}{x_{N_2,aus}} - x_{CO_2,ein} \right) \quad Gl. 22$$

$$RQ = \frac{CPR}{OUR}$$
 GI. 23

$$q_{O_2} = \frac{OUR}{X}$$
 Gl. 24

$$q_{CO_2} = \frac{CPR}{X}$$
 Gl. 25

mit $\dot{V}_{G,ein}$ Gasvolumenstrom [L/min]

X Biomassekonzentration [g/L]

V_{R,L} Reaktionsvolumen [L]

V_M molares Gasvolumen [L/mol]

x... Molenbruch [%]

4.7 Quantitative Netzwerkanalyse

4.7.1 ¹³C Metabolische Flussanalyse

Zur Quantifizierung der in vivo Enzymaktivitäten bzw. der metabolischen Stoffflüsse ^{13}C die wurde metabolische Flussanalyse durchgeführt. Die verwendeten stöchiometrischen und Isotopomermodelle sind in Kapitel 5.2.1 näher beschrieben. Das Modell beinhaltet neben dem Zentralstoffwechsel von S. cerevisiae (Glykolyse, Pentosephosphatweg, Tricarbonsäurezyklus, anaplerotische Reaktionen, fermentative Stoffwechselwege) auch die Biosynthese der Aminosäuren Serin, Glycin und Threonin, Alanin und Aspartat, sowie sämtliche relevanten Substrataufnahmeund Produktbildungsraten. Auch die Kompartimentierung zwischen Cytosol und mitochondrieller Matrix wurde bei der Aufstellung des Modells berücksichtigt und entsprechend Transportreaktionen zwischen beiden Kompartimenten eingeführt (siehe Kapitel 8.2.1). Die Protein-, Kohlenhydrat-, Fettsäure- und Nukleinsäurebiosynthese zum Aufbau der Biomasse aus den Vorstufen des Zentralstoffwechsels wurde ebenfalls in das Modell integriert.

Als Substrate wurden 50:50 Gemische aus [1]-¹³C-Glucose und [U]-¹³C-Glucose eingesetzt bzw. entsprechende Galactose- und Fructosegemische. Die Metabolitbilanzierung wurde anhand der experimentell bestimmten Substrataufnahme- und Produktbildungsraten, sowie dem anabolen Bedarf zur Bildung der Biomasse durchgeführt. Dieser wurde, ausgehend

von der Biomassezusammensetzung von *S. cerevisiae* bei verschiedenen spezifischen Wachstumsraten, durch Interpolation aus der Literatur entnommen (Oura, 1983). Da die vollständige Quantifizierung der *in vivo* Enzymaktivitäten allein durch Metabolitbilanzierung nicht durchzuführen ist, wurden die Massenisotopomerverteilungen einiger Intermediate aus dem Zentralstoffwechsel anhand von proteinogenen Aminosäuren, deren Kohlenstoffskelett diesen Intermediaten entspricht, aus Proteinhydrolysaten ermittelt. Für einige wenige Intermediate wurden die Massenisotopomerverteilungen direkt anhand der Zellextrakten bestimmt.

Die Quantifizierung der intrazellulären Flussverteilungen erfolgte mit Hilfe der von Tae-Hoon Yang entwickelten Matlab-basierten (Matlab ver. 2008a) Software, die auf dem Prinzip der *"elementar metabolite units"* beruht (Antoniewicz et al., 2007). Als Zielfunktion wird dabei die Summe der Abweichungsquadrate zwischen simulierter und gemessener Massenisotopomerverteilung, durch Veränderung der Modellparameter und damit der intrazellulären Flüsse, minimiert. Der zur Optimierung verwendete gradientenbasierte Hybridalgorithmus wurde ebenfalls von Tae-Hoon Yang entwickelt (Yang et al., 2008). Die verwendeten extrazellulären Raten werden anschließend auf die Substrataufnahmerate normiert (mmol_{Metabolit}/mmol_{Substrat}). Die Normierung des anabolen Bedarfs (mmol_{Metabolit}/g_{BTM}) erfolgt anhand des Biomasseausbeutekoeffizienten Y_{X/S} (g_{BTM}/mmol_{Substrat}). Experimente in Schüttelkolben wurden in Doppelbestimmung durchgeführt, Chemostatexperimente in Einfachbestimmung.

4.7.2 Elementarmodenanalyse

Die Elementarmodenanalyse erfolgte unter Verwendung der Software EFMtool (Terzer und Stelling, 2006; Terzer und Stelling, 2008). Die verwendete Version 4.7.1 (4. Dez 2009) ist unter folgender Adresse <u>http://www.csb.ethz.ch/tools/efmtool</u> frei zugänglich. Das metabolische Netzwerk wurde ausgehend von biochemischen und metabolischen Datenbanken KEGG (<u>http://www.genome.jp/kegg/</u>) und SGD (<u>http://www.yeastgenome.org/</u>) nach dem aktuellen Stand aufgestellt und ist dem Anahng zu entnehmen (Kapitel 8.4).

5 Ergebnisse und Diskussion

5.1 Physiologische und metabolische Charakterisierung von *S. cerevisiae* BY4742 und BY4742 mae1∆

Im Folgenden wurde die Physiologie von *S. cerevisiae* BY4742 und BY4742 mae1∆ unter verschiedenen physiologischen Zuständen untersucht. Zum einen erfolgten die Versuche in Batch-Kulturen mit Glucose bzw. Galactose als alleinigen Kohlenstoffquellen, zum anderen in kontinuierlicher Kultur mit Glucose als Kohlenstoffquelle bei verschiedenen Verdünnungsraten im Bereich des rein respirativen und respiro-fermentativen Wachstums.

5.1.1 Charakteristische Auxotrophien des Stammes *S. cerevisiae* BY4742 – Einfluss auf den zellulären Stoffwechsel

Der in dieser Arbeit verwendete Stamm S. cerevisiae BY4742 besitzt Auxotrophien für Lysin, Leucin, Histidin und Uracil, welche als Selektionsmarker dienen. Die entsprechenden biosynthetischen Stoffwechselwege zu diesen Substanzen sind mit den entsprechenden Deletionen in Abbildung 18 dargestellt. Im Falle der Lysinbiosynthese wurde das Gen LYS2 deletiert. Dieses Gen codiert für eine Untereinheit der Aminoadipatsemialdehyd-Dehydrogenase, welche zwei Reaktionen in der Lysinbiosynthese katalysiert. Dabei wird L-2-Aminoadipat über einen Zwischenschritt (5-Adenylyl-2-aminoadipat) zu L-2-Aminoadipat-6-semialdehyd reduziert. Die Leucinauxotrophie rührt von der Deletion des LEU2 Gens. Dieses codiert für die 3-Isopropylmalat-Dehydrogenase, welche (2R,3S)-3-Isopropylmalat zu (2S)-2-Isopropyl-3oxosuccinat oxidiert. In der Histidinbiosynthese ist das Gen HIS3 Gen deletiert, das für die Imidazolglycerinphosphat-Dehydratase codiert. Die durch dieses Enzym katalysierte Reaktion die Imidazolglycerin-3-phosphat ist Dehydrierung von zu Imidazolacetonphosphat. Das letzte Gen, welches im verwendeten Organismus S. cerevisiae BY4742 deletiert wurde, ist URA3. Es codiert für die Orotidin-5-phosphat-Decarboxylase, welche die Reaktion von Orotidin-5-phosphat zu UMP katalysiert.

Abbildung 18: Biosyntheseweg der Aminosäuren Lysin, Histidin, Leucin und der Nukleobase Uracil, ausgehend von Intermediaten des zentralen Kohlenstoffstoffwechsels. Die deletierten Gene *LYS2*, *HIS3*, *LEU2* und *URA3* sind in den entsprechenden Stoffwechselwegen markiert.

Im Folgenden werden die Einflüsse dieser Gendeletionen auf das Erreichen konstanter Aufnahmeraten der zusätzlich benötigten Substrate, auf das generierte Produktspektrum der Zellen während der Kultivierung und die Metabolisierung der zusätzlichen Substrate in *S. cerevisiae* BY4742 diskutiert.

5.1.1.1 Einfluss der Aminosäure-Auxotrophien auf die freien intrazellulären Aminosäurepools

Zunächst wurde der Einfluss der Auxotrophien für die Aminosäuren Lysin, Leucin und Histidin, sowie der Nukleobase Uracil auf die Physiologie von *S. cerevisiae* untersucht. Dazu wurde der auxotrophe Stamm *S. cerevisiae* BY4742 mit dem prototrophen Stamm ATCC 32167 verglichen. Die Stämme unterschieden sich bei Wachstum auf Glucose als Kohlenstoffquelle deutlich in ihrer spezifischen Wachstumsrate. Diese lag im Stamm BY4742 bei 0,29 h⁻¹ und im prototrophen Stamm ATCC 32167 bei 0,44 h⁻¹.

Um den Einfluss der zugesetzten Supplemente zu ermitteln, wurden zunächst die freien intrazellulären Aminosäurepools in beiden Stämmen bestimmt. Die Poolgrößen der nichtessentiellen Aminosäuren waren in beiden Stämmen vergleichbar, jedoch lagen die Poolgrößen der im Falle von *S. cerevisiae* BY4742 essentiellen Aminosäuren Lysin, Leucin und Histidin deutlich höher als im prototrophen Stamm *S. cerevisiae* ATCC32167. Die Poolgrößen dieser drei Aminosäuren waren in dem auxotrophen Stamm *S. cerevisiae* BY4742 in etwa um den Faktor 10 erhöht. Die intrazellulären Konzentrationen der 20 proteinogenen Aminosäuren sind in Tabelle 10 zusammengefasst und graphisch in Abbildung 19 dargestellt.

Abbildung 19: Konzentrationen freier intrazellulärer Aminosäuren bezogen auf das Zellinhaltsvolumen. Vergleichend dargestellt sind die Konzentrationen der beiden Stämme *S. cerevisiae* BY4742 und ATCC32167.

Um ein bilanziertes, gleichmäßiges Wachstum zu gewährleisten, muss sichergestellt sein, dass die aufgrund der verschiedenen Auxotrophien von *S. cerevisiae* BY4742 die benötigten Medienzusätze über die gesamte exponentielle Wachstumsphase, in der die verschiedenen Experimente durchgeführt werden sollen, mit konstanter Rate aufgenommen werden. Aus Abbildung 20 wird deutlich, dass dies für die Aminosäuren Lysin und Leucin mit den zu Beginn eingesetzten Mengen von 2,5 mM bzw. 3,7 mM über den gesamten exponentiellen Bereich bis zu einer Biotrockenmasse von ca. 2,8 bis 3,0 g/L nicht gewährleistet ist. Dies ist höchst wahrscheinlich durch die verringerte Aufnahme durch entsprechend hohe K_M-Werte der jeweiligen Transporter zu erklären. Für Histidin und Uracil (nicht gezeigt), den anderen beiden Medienzusätzen, wurden dagegen konstante Raten über den gesamten Bereich des exponentiellen Wachstums beobachtet. Durch eine Erhöhung der problematischen Aminosäuren Lysin und Leucin auf 4,2 mM bzw. 5 mM konnte auch für diese beiden Aminosäuren eine konstante Aufnahmerate während der gesamten Dauer der exponentiellen Wachstumsphase erreicht werden.

Die Daten sind für *S. cerevisiae* BY4742 in Abbildung 20 zusammengefasst. Für die in dieser Arbeit verwendeten Deletionsmutanten galt dies in gleicher Weise.

74

Tabelle	10:	Intrazellulä	re 4	Aminosäur	ekonzent	tratione	n der	20	proteinog	enen	Aminosäure	n in
exponent	iell	wachsenden	<i>S</i> .	cerevisiae	BY4742	und A	ATCC32	2167	Kulturen	bei	Verwendung	von
Glucose	als a	alleiniger Ko	ohlen	stoffquelle	in Batc	hkultur	· ^{a)} ess	entie	lle Aminos	äure	n für <i>S. cerev</i>	risiae
BY4742.												

A min a citura	intrazelluläre Konzentration [mM]				
Aminosaure	BY4742	ATCC32167			
Glu	$31,30 \pm 1,54$	$30,00 \pm 1,76$			
Gln	$6,31 \pm 0,52$	$7,00 \pm 0,62$			
Asp	$7,01 \pm 0,40$	$4,80 \pm 0,35$			
Asn	$0,\!98 \pm 0,\!09$	$0,40 \pm 0,05$			
^{a)} Lys	$39,72 \pm 1,15$	$4,01 \pm 0,24$			
Arg	$2,65 \pm 0,04$	$3,50 \pm 0,80$			
^{a)} His	$17,16 \pm 0,79$	$1,\!49 \pm 0,\!07$			
Ala	$4,00 \pm 0,16$	$3,52 \pm 0,13$			
Gly	$1,99 \pm 0,11$	$1,25 \pm 0,10$			
Ser	$2,34\pm0,07$	$1,11 \pm 0,04$			
Thr	$2,16 \pm 0,09$	$1,\!28 \pm 0,\!05$			
Val	$1,56 \pm 0,05$	$1,\!59\pm0,\!05$			
^{a)} Leu	$5,76 \pm 0,34$	$0,39 \pm 0,04$			
Ile	$0,18 \pm 0,01$	$0,41 \pm 0,02$			
Tyr	$0,41 \pm 0,02$	$0,32 \pm 0,02$			
Phe	$0,23 \pm 0,00$	$0,22 \pm 0,01$			
Trp	$0,12 \pm 0,05$	$0,06 \pm 0,01$			
Met	$0,17 \pm 0,01$	$0,\!08 \pm 0,\!01$			
Cys	$0,08\pm0,01$	$0,06 \pm 0,01$			
Pro	$1,15 \pm 0,15$	$1,01 \pm 0,10$			

Abbildung 20: Aufnahmeraten der zugesetzten Aminosäuren Lysin, Leucin und Histidin. (A) mit den Ausgangskonzentrationen der entsprechenden Supplemente, (B) mit erhöhten Konzentration der beiden Aminosäuren Lysin und Leucin. Aufgetragen sind BTM [g/L] gegen die Konzentration der jeweiligen Aminosäuren [mM] im Kulturüberstand. Gezeigt sind Kultivierungen des Stammes *S. cerevisiae* BY4742 mit Glucose als Kohlenstoffquelle im Schüttelkolben.

5.1.1.2 Einfluss der URA3 Deletion auf das Produktspektrum von *S. cerevisiae* BY4742

Da es sich bei *S. cerevisiae* um einen Crabtree-positiven Organismus handelt, sind die zu erwartenden Produkte bei aerober Batch-Kultivierung, neben geringen Mengen organischer Säuren aus dem Citratzyklus und Pyruvat, Ethanol, Glycerin und Acetat. Die HPLC-Analyse der Kulturüberstände zeigte jedoch einen weiteren Peak, welcher zunächst keiner Substanz zugeordnet werden konnte. Abbildung 21 zeigt ein HPLC-Chromatogramm am Anfang und Ende der exponentiellen Wachstumsphase.

Abbildung 21: HPLC Chromatogramme von Kulturüberständen zu Beginn (A) und am Ende (B) der exponentiellen Wachstumsphase von *S. cerevisiae* BY4742 bei Wachstum auf Glucose als Kohlenstoffquelle im Schüttelkolben. Der Pfeil zeigt das unbekannte Produkt.

Es ist deutlich zu erkennen, dass der Peak mit der Retentionszeit 5:25 min (siehe Pfeile in Abbildung 21) im Laufe der Kultivierung deutlich zunimmt. Zur Identifikation des unbekannten Produktes wurde die Fraktion des entsprechenden Peaks aufgefangen und mittels GC/MS analysiert. Der Abgleich des erhaltenen Spektrums mit der NIST-Datenbank lieferte Orotat als einzigen signifikanten Eintrag, der mit dem erhaltenen Spektrum übereinstimmte. Um dies weiter zu verifizieren wurde zusätzlich ein UV-VIS-Spektrum der Reinsubstanz und der entsprechenden Fraktion der HPLC-Analyse aufgenommen. Auch hier stimmten beide Spektren überein (siehe Abbildung 22), so dass es sich bei dem zusätzlich gebildeten Produkt tatsächlich um Orotat handelt. Orotat stellt ein Intermediat in der Pyrimidinbasen-Synthese dar und ist das Substrat der Uridin-Monophosphate-Synthetase, welche die Reaktion von Orotat und PRPP zu Orotidin-5-phosphat katalysiert. Diesem Schritt in der Pyrimidinbasen-Biosynthese wiederum folgt die Reaktion der Orotidin-5-phosphat-Decarboxylase, deren entsprechendes Gen *URA3* in *S. cerevisiae* BY4742 deletiert ist. Dies hat zur Folge, dass Orotat in den Zellen akkumuliert und ausgeschieden wird.

Abbildung 22: UV/VIS-Spektren von Orotat als Reinsubstanz und der entsprechenden Fraktion der HPLC-Analyse des Kulturüberstandes von *S. cerevisiae* BY4742 bei Wachstum auf Glucose als Kohlenstoffquelle im Schüttelkolben. Die Aufnahme der Spektren erfolgte in Elutionspuffer (22 mM H₂SO₄) bei Raumtemperatur.

5.1.1.3 Metabolisierung der Supplemente Histidin, Leucin, Lysin und Uracil

Zur Untersuchung der Metabolisierung der Supplemente Histidin, Leucin, Lysin und Uracil wurden Markierungsexperimente mit [U]-¹³C-Glucose durchgeführt. Vor allem hinsichtlich der durchgeführten ¹³C metabolischen Flussanalyse ist es essentiell, Kenntnisse über die Metabolisierung dieser zusätzlich eingesetzten Substrate zu erhalten. Wesentlich dabei ist, ob sie lediglich in die Biosynthese von Proteinen (im Falle der Aminosäuren) bzw. der Nukleinsäuresynthese (im Falle von Uracil) einfließen, oder ob ein Abbau stattfindet und die entsprechenden Substrate in den Zentralstoffwechsel eintreten.

Um dies zu verifizieren, wurden Proteinhydrolysate von *S. cerevisiae* BY4742 bei Wachstum auf Glucose im Schüttelkolben mittel GC/MS analysiert, um die Anreicherung von ¹³C im Kohlenstoffrückrat der einzelnen Aminosäuren zu bestimmen. Um den Einfluss der CO₂ Fixierung, durch die Reaktion der Pyruvat-Carboxylase, zu umgehen, wurde die Kultivierung zum einen mit Umgebungsluft, zum anderen mit einem CO₂-freien Sauerstoff/Stickstoff-Gemisch (20:80) durchgeführt. Die theoretische Markierungsverteilung

der entsprechenden Aminosäuren bei Wachstum auf [U-¹³C]-Glucose wurde nach der folgenden Gleichung berechnet:

$$P(k) = \frac{n!}{k! (n-k)!} \cdot p^k \cdot q^{n-k}$$

Gl. 26

mit q 0,99 (Häufigkeit ¹³C, Markierungsgrad 99 % ¹³C)

p 0,01 (Häufigkeit ¹²C, Markierungsgrad 99 % ¹³C)

k Anzahl der ¹³C Atome

n Gesamtzahl der Kohlenstoffatome

Die Ergebnisse der GC/MS-Analysen und der berechneten Markierungsverteilung sind in Tabelle 11 zusammengefasst. Eine schematische Darstellung des Zentralstoffwechsels mit den entsprechenden Vorläufermolekülen der analysierten Aminosäuren ist in Abbildung 23 dargestellt.

Die analysierten Aminosäuren Alanin, Valin, Phenylalanin, Aspartat, Threonin, Glutamat, Serin und Glycin decken mit ihren entsprechenden Vorläufermolekülen alle Bereiche des zentralen Kohlenstoffstoffwechsels ab, so dass festgestellt werden kann inwieweit eine Metabolisierung der eingesetzten Supplemente und ein Eintritt in den Zentralstoffwechsel anhand des erhaltenen Markierungsmusters der analysierten Aminosäuren stattfindet. Bei allen Aminosäuren findet man ca. 1 % des monoisotopischen Massenisotopomers [m+0]. Dies rührt von der Inokulation aus einer auf natürlicher-markierter Glucose wachsenden Vorkultur her und nicht etwa von metabolisierten Supplementen. Abgesehen von dieser Ausnahme entsprechen die gemessenen Massenisotopomerverteilungen der Aminosäuren aus Vorläufermolekülen der Glykolyse (Ser, Gly, Phe, Ala und Val) und des Pentosephosphatwegs (Phe) im Rahmen der Messgenauigkeit den berechneten Massenisotopomerverteilungen für die ausschließliche Synthese aus [U-¹³C]-Glucose. Eine Ausnahme bilden hier die Aminosäuren Aspartat, Glutamat und Threonin. In diesen Fällen ist bei der Begasung mit Luft das [m_{max}-1]-Massenisotopomer im Vergleich zu dem berechneten Massenisotopomerverhältnis deutlich erhöht; im Fall von Aspartat 13 % anstatt 4 %, im Falle von Glutamat 14 % anstatt 5 % und im Fall von Threonin ebenfalls 13 % anstatt 4 %. Bei Verwendung des Stickstoff/Sauerstoff-Gemisches dagegen stimmte die erhaltene Markierungsverteilung mit den theoretischen Berechnungen überein.

Tabelle 11: Relativer Anteil der einzelnen Massenisotopomere an der Summe aller Massenisotopomere in Prozent. Die Daten stammen aus zwei Kultivierungen von *S. cerevisiae* BY4742 im Schüttelkolben mit [U]-¹³C-Glucose als Kohlenstoffquelle. Gezeigt sind die relativen Anteile bei Luftbegasung und bei Begasung mit einem CO₂-freien Sauerstoff/Stickstoff-Gemisch (20:80). Zum Vergleich sind die, für Synthese aus [U]-¹³C-Glucose berechneten Isotopomerverteilungen gezeigt (Rosman und Taylor, 1997)

	Ala [260]				Val [288]		Phe [236]			
	Luft	O_2/N_2	theor.	Luft	O_2/N_2	theor.	Luft	O_2/N_2	theor.	
[m+0]	1	1	0	2	1	0	2	0	0	
[m+1]	0	0	0	0	0	0	0	0	0	
[m+2]	5	3	3	0	0	0	0	0	0	
[m+3]	93	95	97	0	0	0	0	0	0	
[m+4]				5	5	5	0	0	0	
[m+5]				92	94	95	0	0	0	
[m+6]							0	0	0	
[m+7]							0	1	0	
[m+8]							7	8	8	
[m+9]							90	91	91	

		Asp [418]]	Glu [432]				
	Luft	O_2/N_2	theor.	Luft	O_2/N_2	theor.		
[m+0]	1	1	0	1	1	0		
[m+1]	0	0	0	0	0	0		
[m+2]	1	1	0	0	0	0		
[m+3]	13	4	4	1	1	0		
[m+4]	85	93	96	14	5	5		
[m+5]				83	93	95		

		Ser [390]		Gly [246]			
	Luft	O_2/N_2	theor.	Luft	O_2/N_2	theor.	
[m+0]	1	1	0	1	1	0	
[m+1]	0	0	0	3	3	2	
[m+2]	3	3	3	96	97	98	
[m+3]	96	96	97				

•

Abbildung 23: Schematische Darstellung der unteren Glykolyse, des Citratzyklus und der anaplerotischen Reaktionen, sowie die Aminosäurebiosynthese von Alanin, Valin, Aspartat, Glutamat, Methionin und Threonin unter Berücksichtigung der Kompartimentierung des zellulären Stoffwechsels. Die CO₂-Fixierung erfolgt über die Reaktion der Pyruvat-Carboxylase.

Dieses Ergebnis zeigt deutlich, dass das unterschiedliche Markierungsmuster durch die Fixierung von ¹²C-CO₂ über die Pyruvat-Carboxylase aus der Luft herrührt.

Anhand der gezeigten Daten lässt sich schlussfolgern, dass keines der zugesetzten Supplemente in den zentralen Kohlenstoffstoffwechsel eintritt, sondern lediglich zur Protein- bzw. Nukleinsäuresynthese eingesetzt wird.

5.1.2 Physiologie von *S. cerevisia*e BY4742 und BY4742 mae1∆ bei Wachstum auf Glucose und Galactose in Batch-Kultur

Glucose und Fructose stellen die beiden bevorzugten Substrate von *S. cerevisiae* dar. Die Präsenz einer dieser beiden Zucker führt zur Repression der Enzymsynthesen, welche zur Metabolisierung anderer Zucker notwendig sind. Andere Zucker werden nur in Abwesenheit von Glucose bzw. Fructose metabolisiert. Dieses Phänomen ist unter den Namen Katabolit-Repression oder Glucose-Repression bekannt (Gancedo, 1998).

Zunächst wurden beide Stämme im Schüttelkolben unter aeroben Wachstumsbedingungen auf den beiden Substraten Glucose und Galactose kultiviert. Da es sich bei *S. cerevisiae* um einen Crabtree-positiven Organismus handelt (Petrik et al., 1983; Postma et al., 1989), geht die aerobe Fermentation mit der Bildung von Ethanol einher. Dies ist auf die unzureichende respiratorische Kapazität der Atmungskette bei hohen spezifischen Wachstumsarten zurückzuführen, welche zu einem Überfluss auf der Höhe von Pyruvat führt. Dieses wird in der Folge in Form von Ethanol zur Reoxidation des in der Glykolyse gebildeten NADHs genutzt. Dies gilt gleichermaßen für Glucose wie Galactose. Galactose wird dabei, im Gegensatz zu Glucose nicht direkt, in Form von Glucose-6-phosphat, der Glykolyse zugeführt, sondern zunächst über den LeLoir-Weg (siehe Abbildung 2) in Glucose-1-phosphat überführt, bevor der Eintritt als Glucose-6-phosphat in die Glykolyse erfolgt (Frey, 1996).

Das Wachstum des Referenzstammes und der MAE1-Deletionsmutante unterschieden sich bei Wachstum auf Glucose, wie bereits beschreiben (Velagapudi et al., 2007), nicht signifikant voneinander. Die spezifischen Wachstumsraten waren mit 0,29 h⁻¹ identisch. Auch hinsichtlich der spezifischen Glucose- und Sauerstoffaufnahme-, sowie der Ethanolproduktionsraten, wiesen beide Stämme keine signifikanten Unterschiede auf. Die spezifische Glucoseaufnahmerate betrug im Falle des Referenzstammes BY4742 20,8 mmol g⁻¹_{BTM} h⁻¹ und im Falle der *MAE1*-Deletionsmutante 18,8 mmol g⁻¹_{BTM} h⁻¹. Die spezifische Sauerstoffaufnahmerate lag bei 0,27 mmol g⁻¹_{BTM} h⁻¹ (BY4742) bzw. 0,22 mmol g^{-1}_{BTM} h⁻¹ (BY4742 mae1 Δ). Die spezifischen Ethanolproduktionsraten waren mit 0,42 mmol g^{-1}_{BTM} h⁻¹ (BY4742) und 0,44 mmol g^{-1}_{BTM} h⁻¹ (BY4742 mae1 Δ) ebenfalls nahezu identisch. Alle spezifischen sowie die Raten, entsprechenden Ausbeutekoeffizienten sind in Tabelle 12 zusammengefasst.

Im Falle der Kultivierung auf Galactose zeigte sich ein anderes Bild. Hier wird schon an der spezifischen Wachstumsrate der beiden Stämme ein geringer Unterschied deutlich. Der Referenzstamm (BY4742) wächst mit einer spezifischen Rate von 0,18 h⁻¹, wohingegen der MAEI-Deletionsstamm mit einer spezifischen Rate von 0,16 h⁻¹ wächst. Noch deutlicher fallen Unterschiede spezifischen die bei der Galactoseund Sauerstoffaufnahmerate auf. Die spezifische Sauerstoffaufnahmerate ist mit 1,90 mmol g⁻¹_{BTM} h⁻¹ im Referenzstamm BY4742 etwa 70 % höher als bei der Deletionsmutante mit 1,11 mmol g⁻¹_{BTM} h⁻¹. Auch die spezifische Galactoseaufnahmerate ist mit 11,5 mmol g_{BTM}^{-1} h⁻¹ im Referenzstamm ca. 25 % höher als im Falle der *MAE1*-Deletionsmutante mit

82

8,38 mmol g_{BTM}^{-1} h⁻¹. Die Ethanolausbeute der *MAE1*-Deletionsmutante ist mit 1,30 mol/mol im Vergleich zum Referenzstamm BY4742 mit 1,17 mol/mol, entsprechend dem Wachstum auf Glucose, erhöht. Alle spezifischen Raten und Ausbeutekoeffizienten sind in Tabelle 12 zusammengefasst.

Wie bereits beschrieben, ist die spezifische Substrataufnahmerate bei Wachstum auf Glucose höher als bei Wachstum auf Galactose als Kohlenstoffquelle (Ostergaard et al., 2000). Dies gilt sowohl für den Referenzstamm BY4742, als auch für die MAE1-Deletionsmutante. Ein Grund für die verringerte spezifische Substrataufnahme- und Wachstumsrate ist vermutlich in der Akkumulation von toxischen Metaboliten wie z. B. Galactose-1-phosphat, einem Intermediat des LeLoir-Weges, bzw. einer unzureichenden Expression der Hauptisoform der Phosphoglucomutase (PGM2) zu finden (Bro et al., 2005). Die Überexpression des PGM2 Gens resultiert in einer höheren spezifischen Galactoseaufnahme- als auch Wachstumsrate (Bro et al., 2005). Das schnellere Wachstum hat außerdem eine gesteigerte Ethanolausbeute zur Folge. Des Weiteren wurde gezeigt, dass die intrazellulären Galactose-6-phosphat-Konzentrationen in einem PGM2 überexprimierenden S. cerevisiae-Stamm erhöht sind (Bro et al., 2005). Da Pgm2p ebenfalls die Reaktion von Galactose-1-phosphat zu Galactose-6-phosphat katalysiert (Lowry und Passonneau, 1969), kann dies zusätzlich eine Akkumulation von Galactose-1phosphat verhindern und eine gesteigerte Galactoseaufnahme begünstigen. Daneben zeigten Van den Brink et al. (2009), dass S. cerevisiae bei einem Substratwechsel von Glucose auf Galactose in anaerober kontinuierlicher Kultur nicht in der Lage ist auf Galactose weiter zu wachsen. Grund hierfür ist die alleinige ATP-Gewinnung aus der Substratkettenphosphorylierung unter anaeroben Wachstumsbedingungen. Unter aeroben Wachstumsbedingungen stellte die Umstellung auf das neue Substrat kein Problem dar, da hier zusätzlich ATP über die oxidative Phosphorylierung generiert werden kann. Diese ATP-Knappheit unter anaeroben Bedingungen wird als Grund für die fehlende Synthese der notwendigen Enzyme für die Galactosemetabolisierung angeführt, die unter aeroben Wachstumsbedingungen zu den meist abundanten Enzymen zählen (van den Brink et al., 2009). Bis zu 50 % der freien Energie in der Zelle in Form von ATP wird zur Aminosäurebiosynthese und Polymerisierung aufgewendet (Verduyn et al., 1991), so dass die verringerte spezifische Wachstumsrate auf Galactose zum Teil durch einen erhöhten ATP-Bedarf zur Synthese der Enzyme des LeLoir-Weges erklärt werden kann, da durch die Verringerung der spezifischen Wachstumsrate ein stärker respirativer Stoffwechsel

abläuft und somit mehr ATP über die oxidative Phosphorylierung generiert werden kann, als dies bei Wachstum auf Glucose der Fall ist.

Ein weiterer Grund für die Unterschiede im Wachstum auf Glucose und Galactose ist in den unterschiedlichen regulatorischen Eigenschaften der beiden Zucker begründet. Bei aeroben Wachstum und einem Überschuss an Glucose kommt der sogenannte "Glucose-Effekt" zum Tragen. Durch das Vorhandensein von Glucose im Medium wird die Expression einer ganzen Reihe von Genen reprimiert. Dies bezieht sich vor allem auf die Aufnahme- bzw. Abbauwege alternativer Kohlenstoffquellen, wie Galactose, Maltose und Saccharose, sowie nicht fermentierbare Kohlenstoffquellen wie Ethanol oder Acetat. Daneben wird auch die Expression von Genen, die für gluconeogene Enzyme bzw. Enzyme der Atmungskette kodieren, reprimiert (Trumbly, 1992).

Galactose besitzt einen ähnlichen Effekt auf den Stoffwechsel, jedoch ist dieser nicht so stark ausgeprägt wie bei Wachstum mit Glucose als Kohlenstoffquelle. So wurde gezeigt, dass die Expression von Enzymen der Atmungskette in der Gegenwart von Galactose höher war, als bei Wachstum mit Glucose als Kohlenstoffquelle (Polakis et al., 1965). Herrero et al. (1985) zeigten ebenfalls, dass Galactose ein ineffektiverer Inhibitor als Glucose ist. Dies bezieht sich vor allem auf die mitochondriellen Enzyme, die sensitiver auf Glucose als auf Galactose reagieren. Dies erklärt den erhöhten Sauerstoffbedarf der Zellen bei Wachstum auf Galactose - um etwa eine Größenordnung - im Vergleich zum Wachstum auf Glucose. Durch die größere Kapazität des Citratzyklus bei Wachstum auf Galactose entstehen somit auch ein geringerer Überfluss auf der Stufe von Pyruvat und damit eine verringerte Ethanolbildung. Auf beiden Kohlenstoffquellen benötigt der MAE1-Deletionsstamm bei Wachstum weniger Sauerstoff als der Referenzstamm BY4742. Besonders deutlich wird dies bei Wachstum auf Galactose. Die mit einer verringerten Sauerstoffaufnahmerate einhergehende geringere Aktivität des Citratzyklus geht in beiden Fällen mit einer gesteigerten Ethanolproduktion des MAE1-Deletionsstammes einher. Bei Wachstum auf Glucose ist die Ethanolausbeute der Deletionsmutante um 5 % erhöht, bei Wachstum auf Galactose dagegen um 11 %.

Tabelle 12: Zentrale Kultivierungsparameter der Stämme *S. cerevisiae* BY4742 (Referenz) und BY4742 mae1 Δ (mae1 Δ). Gezeigt sind Mittelwerte aus zwei parallelen Batch-Kultivierungen auf Glucose bzw. Galactose. Die Fehler entsprechen den jeweiligen Standardabweichungen der Doppelbestimmung. μ , spezifische Wachstumsrate; q, spezifische Raten; Y, Ausbeutekoeffizienten, Hex, Hexose; EtOH, Ethanol.

		G	lc	Gal			
		Referenz	mae1 Δ	Referenz	mae1∆		
μ	[h ⁻¹]	$0,\!29\pm0,\!00$	$0,\!29\pm0,\!00$	$0,\!18 \pm 0,\!00$	$0,16 \pm 0,00$		
q_{Hex}	$[mmol g^{-1} h^{-1}]$	$20,8 \pm 0,2$	$18,8 \pm 1,7$	$11,5 \pm 0,2$	$8,\!38\pm0,\!72$		
$Y_{X\!/\!S}$	[g mmol ⁻¹]	$0,014 \pm 0,000$	$0,014 \pm 0,002$	$0,016 \pm 0,000$	$0,018 \pm 0,002$		
$Y_{EtOH/S}$	[mol mol ⁻¹]	$1,45 \pm 0,00$	$1,50 \pm 0,02$	$1,17 \pm 0,04$	$1,30 \pm 0,04$		
Y _{Acetat/S}	[mol mol ⁻¹]	$0,04 \pm 0,00$	$0,04 \pm 0,00$	$0,10 \pm 0,01$	$0,10 \pm 0,01$		
$Y_{Pyruvat/S}$	[mol mol ⁻¹]	$0,03 \pm 0,00$	$0,\!02\pm0,\!00$	$0,01 \pm 0,00$	$0,01 \pm 0,00$		
$Y_{Glycerin/S}$	[mol mol ⁻¹]	$0,17 \pm 0,00$	$0,16 \pm 0,00$	$0,03 \pm 0,00$	$0,03 \pm 0,00$		
Y _{Orotat/S}	[mol mol ⁻¹]	$0,01 \pm 0,01$	$0,01 \pm 0,01$	$0,\!02\pm0,\!00$	$0,01 \pm 0,00$		
q_{O2}	$[\text{mmol } g^{-1} h^{-1}]$	$0,\!27 \pm 0,\!03$	$0,\!22 \pm 0,\!01$	$1,\!90\pm0,\!16$	$1,11 \pm 0,18$		
Y _{O2/S}	[mmol mmol ⁻¹]	$0,17 \pm 0,01$	$0,14 \pm 0,01$	$1,91 \pm 0,19$	$1,27 \pm 0,20$		

Der Sauerstoffbedarf sinkt im Falle der *MAE1*-Deletion bei Wachstum auf Glucose um 17 % und bei Wachstum auf Galactose um 34 %. Hinsichtlich der Biomasseausbeuten sind keine signifikanten Unterschiede, sowohl zwischen den beiden Stämmen, als auch den beiden Substraten zu beobachten. Die Kultivierungsprofile beider Stämme auf den unterschiedlichen Kohlenstoffquellen sind in Abbildung 24 dargestellt.

Abbildung 24: Kultivierungsprofile der Stämme *S. cerevisiae* BY4742 auf Glucose (A) und Galactose (C) sowie *S. cerevisiae* BY4742 mae1∆ auf Glucose (B) und Galactose (D). Gezeigt sind Konzentrationsverläufe von Biotrockenmasse (BTM), Ethanol, Acetat, Glycerin und den Substraten Glucose bzw. Galactose, sowie die Gelöstsauerstoffkonzentration. Sprünge im Verlauf der Gelöstsauerstoffkonzentrationskurve durch Probenahme. Kultivierung im Schüttelkolben bei 30 °C und 70 UpM, im Verlauf der Galactosekultivierungen auf 90 UpM erhöht um Sauerstofflimitierung zu vermeiden.

5.1.3 Physiologie von *S. cerevisia*e BY4742 und BY4742 mae1∆ bei Wachstum in kontinuierlicher Kultur auf Glucose

Da die Effekte der Deletion des für das Malat-Enzym codierenden Gens *MAE1* bei Wachstum von *S. cerevisiae* in Batch-Kultur im Schüttelkolben, bei eher respirativem Wachstum auf Galactose deutlich ausgeprägter waren, als bei eher fermentativem Wachstum auf Glucose, wurden die beiden Stämme *S. cerevisiae* BY4742 und BY4742 mae1 Δ in kontinuierlicher Kultur bei verschiedenen Verdünnungsraten näher untersucht: Zum einen bei einer Verdünnungsrate von 0,16 h⁻¹, die einem rein respirativen Wachstum ohne Ethanolbildung entsprach, zum anderen bei einer Verdünnungsrate von 0,22 h⁻¹. Letztere zeigte ebenfalls Wachstum, welches überwiegend respirativ geprägt ablief, jedoch fand bereits eine Bildung von Ethanol in geringen Mengen statt. Abbildung 25 zeigt ein X-D-Diagramm des Referenzstammes BY4742, um die verschiedenen Zustände unter denen die Experimente durchgeführt wurden, näher zu charakterisieren. Bei rein respirativem Wachstum mit Glucose als Kohlenstoffquelle (2 g/L) bei einer Verdünnungsrate von 0,16 h^{-1} unterschieden sich beide Stämme nicht signifikant voneinander.

Die Biotrockenmassekonzentration lag sowohl im Referenzstamm BY4742, als auch bei der *MAE1*-Deletionsmutante bei 1,2 g/L. Die Restglucosekonzentration im Medium betrug 0,1 mM und eine messbare Ethanolbildung fand nicht statt. Eine signifikante Sekretion von Acetat, Pyruvat, α -Ketoglutarat und Orotat wurde nicht beobachtet (siehe Tabelle 13). Die Glucose wurde demnach fast ausschließlich in Biomasse und CO₂ umgewandelt. Dies gilt für beide Stämme gleichermaßen. Der respiratorische Quotient lag im Referenzstamm und der *MAE1*-Deletionsmutante bei 1,0 ± 0,1, so dass bei beiden Stämmen von einem rein respirativen Stoffwechsel auszugehen ist. Eine Steigerung der Verdünnungsrate auf 0,22 h⁻¹ führt zu einer geringeren Biomassekonzentration im neuen stationären Zustand.

Abbildung 25: X-D Diagramm des Referenzstammes *S. cerevisiae* BY4742 bei Wachstum auf Glucose (schwarze Symbole). Die Pfeile 0,16 h⁻¹ und 0,22 h⁻¹ entsprechen den Verdünnungsraten, bei denen die jeweiligen Experimente durchgeführt wurden. μ_{max} entspricht der maximalen spezifischen Wachstumsrate von 0,29 h⁻¹, erhalten in Batch-Kulturen. Rote Symbole - Referenzstamm BY4742, grüne Symbole - *MAE1*-Deletionsstamm, bei den relevanten Verdünnungsraten. BTM, Biotrockenmasse.

Bei der Kultivierung des Referenzstammes BY4742 wurde eine Zelldichte von 0,90 g/L erreicht, bei der *MAE1*-Deletionsmutante tendenziell eine etwas höhere von 0,92 g/L; jedoch ist hier kein signifikanter Unterschied, welcher die erreichte Zelldichte im stationären Zustand angeht, zu beobachten. Bei beiden Stämmen kommt es unter diesen Wachstumsbedingungen zu einer Ethanol- und Acetatproduktion (siehe Tabelle 13). Beim Referenzstamm beträgt die im Medium gemessene Konzentration 4,0 mM, bei der Deletionsmutante liegt der Wert mit 6,0 mM höher. Dies zeigt sich auch im tendenziell höheren RQ-Wert der *MAE1*-Deletionsmutante von 1,5 ± 0,0 im Vergleich zu 1,4 ± 0,1 beim Referenzstamm BY4742. Auch die Restglucosekonzentration im Medium ist bei der *MAE1*-Deletionsmutante größer; sie beträgt 0,29 mM im Gegensatz zu 0,12 mM im Falle des Referenzstammes BY4742. Auch hier kommt es nicht zur Bildung signifikanter Mengen von Pyruvat, α -Ketoglutarat und Orotat (siehe Tabelle 13). Eine Glycerinbildung wurde bei keinem der beiden Stämme, weder bei einem rein respirativen, noch bei respirofermentativem Stoffwechsel festgestellt. Alle zentralen Parameter der Kultivierungen der beiden Stämme sind in Tabelle 13 zusammengefasst.

Bei der durchgeführten Steigerung der spezifischen Wachstumsrate von 0,16 h⁻¹ auf 0,22 h⁻¹ bzw. der damit gesteigerten Substratzufuhr stoßen die Zellen an die Grenzen ihrer respiratorischen Kapazität (Sonnleitner und Kappeli, 1986) und es findet ein Übergang von rein respirativem zum respiro-fermentativen Stoffwechsel statt (von Meyenburg, 1969). Diese Umstellung des Stoffwechsels ist in beiden Stämmen zu beobachten. Unter beiden MAE1-Deletionsstamm physiologischen Zuständen besitzt der geringere Kohlendioxidproduktions- und Sauerstoffaufnahmeraten als der Referenzstamm BY4742 (siehe Tabelle 13). Wie bereits im Schüttelkolben bei Wachstum auf Galactose zeichnet sich der MAE1-Deletionsstamm durch eine verringerte Sauerstoffaufnahmerate aus, sowohl bei respirativem, als auch bei respiro-fermentativem Stoffwechsel. Die verringerten Sauerstoffaufnahme- und Kohlendioxidproduktionsraten stellen, neben der gesteigerten Ethanolproduktion des MAE1-Deletionsstammes bei respiro-fermentativem Stoffwechsel, den entscheidenden Unterschied zwischen den beiden Stämmen dar.

Da die Reoxidation von NADH bei respirativem Wachstum ausschließlich über die Atmungskette erfolgt, ist aufgrund des geringeren Sauerstoffbedarfs davon auszugehen, dass der *MAE1*-Deletionsstamm geringere Mengen an NADH produziert.

Tabelle 13: Spezifische Raten (q) und Ausbeutekoeffizienten (Y) der Kultivierungen von *S. cerevisiae* BY4742 (Referenz) und BY4742 mae1 Δ auf Glucose in kontinuierlicher Kultur. Gezeigt sind Experimente bei den Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹. Glc, Glucose; EtOH, Ethanol; AKG, α -Ketoglutarat; CPR, spezifische CO₂-Produktionsrate; OUR; spezifische Sauerstoffaufnahmerate; RQ, respiratorischer Quotient; n. b., nicht bestimmbar.

		Verdünnungsrate [h ⁻¹]						
		0,	16	0,22				
	-	Referenz	mae1 Δ	Referenz	mae1 Δ			
q _{Glc}	$[\text{mmol g}^{-1} \text{ h}^{-1}]$	$1,46 \pm 0,01$	$1,\!39\pm0,\!01$	$2,42 \pm 0,01$	$2,40 \pm 0,01$			
$Y_{X\!/\!S}$	[g mmol ⁻¹]	$0,11 \pm 0,01$	$0,12 \pm 0,01$	$0,\!09\pm0,\!00$	$0,\!09\pm0,\!00$			
$Y_{\text{EtOH/S}}$	[mol mol ⁻¹]	n. b.	n. b.	$0{,}39 \pm 0{,}02$	$0,\!54\pm0,\!05$			
Y _{Acetat/S}	[mol mol ⁻¹]	$0,01 \pm 0,00$	n. b.	$0,\!21 \pm 0,\!02$	$0,\!19\pm0,\!02$			
$Y_{Pyruvat/S}$	[mol mol ⁻¹]	$0,01\pm0,00$	$0,01 \pm 0,00$	$0,\!02\pm0,\!00$	$0,\!01\pm0,\!00$			
Y _{AKG/S}	[mol mol ⁻¹]	$0,01\pm0,00$	$0,01 \pm 0,00$	$0,01 \pm 0,00$	n. b.			
Y _{Orotat/S}	[mol mol ⁻¹]	$0,\!07\pm0,\!01$	$0,\!08\pm0,\!01$	$0,06 \pm 0,00$	$0,03 \pm 0,00$			
$q_{\rm CO2}$	$[\text{mmol } \text{g}^{-1} \text{ h}^{-1}]$	$2,\!97 \pm 0,\!12$	$2,\!43\pm0,\!10$	$5,32 \pm 0,12$	$4,73 \pm 0,21$			
q_{O2}	$[\text{mmol } \text{g}^{-1} \text{ h}^{-1}]$	$3,01 \pm 0,25$	$2,\!45 \pm 0,\!20$	$3,\!79\pm0,\!23$	$3,20 \pm 0,20$			
CPR	$[mmol L^{-1} h^{-1}]$	$3,56 \pm 0,14$	$2,\!92\pm0,\!12$	$4,79 \pm 0,11$	$4,35 \pm 0,19$			
OUR	$[mmol L^{-1} h^{-1}]$	$3,61 \pm 0,30$	$2,94 \pm 0,24$	$3,41 \pm 0,21$	$2,94 \pm 0,18$			
RQ	[-]	$1,0 \pm 0,1$	$1,0 \pm 0,1$	$1,4 \pm 0,1$	$1,5 \pm 0,0$			
C-Bilanz	[%]	98	95	100	98			

Dies kann zum einen eine Steigerung des Pentosephosphatwegs bedeuten, da hier Kohlenstoff in Form von CO₂ durch die Decarboxylierung von 6-Phosphogluconat abgespalten wird und somit weniger Kohlenstoff zum Wiedereintritt in die Glykolyse zur Verfügung steht. Dies hat somit eine geringere NADH-Bildung in der Glykolyse und dem Citratzyklus zur Folge. Bei respiro-fermentativem Stoffwechsel kann dieser Unterschied zwischen den beiden Stämmen zusätzlich durch die gesteigerte Ethanolbildung des *MAE1*-Deletionsstammes erklärt werden, da hier mehr NADH über die Ethanolbildung reoxidiert wird, als dies im Referenzstamm BY4742 der Fall ist. Ein weiterer Unterschied könnte jedoch auch in der unterschiedlichen Aktivität von Isoenzymen mit unterschiedlicher Kofaktorspezifität (NAD⁺ bzw. NADP⁺) begründet sein. Dies gilt vor allem für die Isocitrat-Dehydrogenase (Cupp und McAlister-Henn, 1991; Cupp und McAlister-Henn, 1992; Haselbeck und McAlister-Henn, 1991; Haselbeck und McAlister-Henn, 1993) und die Acetaldehyd-Dehydrogenase (Navarro-Avino et al., 1999; Saint-Prix et al., 2004; Tessier et al., 1998; Wang et al., 1998), jedoch müsste das zusätzlich gebildete NADPH über eine gesteigerte Biomassebildung reoxidiert werden, da dies in S. cerevisiae die einzige Möglichkeit der Reoxidation von NADPH darstellt. Da im Falle der MAE1-Deletion jedoch keine gesteigerte Biomassebildung zu beobachten ist, ist davon nicht auszugehen.

Zur Verifizierung der Analytik wurde eine Kohlenstoffbilanzierung durchgeführt, um sicherzustellen, dass alle relevanten Produkte und Substrate quantifiziert wurden. Für beide Stämme konnten die Kohlestoffbilanzen unter beiden metabolischen Zuständen geschlossen werden (95 – 100 %, siehe Tabelle 13). Neben dem Substrat Glucose wurden der Auxotrophien auch die aufgrund zugesetzten Supplemente in die Kohlenstoffbilanzierung mit einbezogen.

5.1.4 Einfluss der Kultivierungsbedingungen die in vitro auf Enzymaktivitäten von S. cerevisiae BY4742 und BY4742 mae1A

Um den Einfluss der verschiedenen metabolischen Zustände des respirativen und des respiro-fermentativen Stoffwechsels in kontinuierlicher Kultur bei Wachstum von S. cerevisiae BY4742 und BY4742 mae1A auf Glucose als Kohlenstoffquelle auf die intrazellulären Enzymniveaus zu bestimmen, wurden in vitro Aktivitätsbestimmungen von verschiedenen Schlüsselenzymen des Zentralstoffwechsels durchgeführt. Bei Batch-Kultivierungen der beiden Stämme auf Glucose und Galactose wurden ebenfalls die intrazellulären Enzymniveaus mittels in vitro Aktivitätsbestimmungen ermittelt. Daneben wurde die Kofaktorspezifität der Isocitrat-Dehydrogenase, sowie der Acetaldehyd-Dehydrogenase hinsichtlich NAD⁺ bzw. NADP⁺ geklärt. Aus dem Pentosephosphatweg wurde das erste Enzym des oxydativen Teils, die Glucose-6-phosphat-Dehydrogenase vermessen. Weitere Dehydrogenasen, welche auch hinsichtlich ihrer Kofaktorspezifität (NAD⁺ bzw. NADP⁺) untersucht wurden, waren die Isocitrat-Dehydrogenase und die Acetaldehyd-Dehydrogenase. Die Aktivitäten der Glyoxylatzyklus-Enzyme Malat-Synthase und Isocitrat-Lyase wurden ebenfalls quantifiziert. Rund um den Pyruvat-, Oxalacetat-, PEP-Knotenpunkt wurden die Aktivitäten der Enzyme PEP-Carboxykinase, Malat-Enzym, Pyruvat-Decarboxylase und Pyruvat-Kinase bestimmt. Aus der oberen Glykolyse bzw. Gluconeogenese wurden die beiden Enzyme Phosphofructokinase und Fructose-1,6-bisphosphatase vermessen.

5.1.4.1 Kofaktorspezifität der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase

Ein weiteres Augenmerk galt der Kofaktorspezifität der Acetaldehyd-Dehydrogenase-Isoenzyme, sowie der Isocitrat-Dehydrogenase-Isoenzyme hinsichtlich NAD⁺ und NADP⁺, da für beide Enzyme mehrere codierende Gensequenzen zu finden sind, die für Isoenzyme mit unterschiedlicher Lokalisation und Kofaktorspezifität codieren. Insgesamt sind jeweils fünf Gene für die beiden Dehydrogenasen beschrieben, deren Kofaktorspezifität sowie zelluläres Kompartiment in den Tabelle 14 und Tabelle 15 zusammengefasst sind. Idh1p und Idh2p sind mitochondriell lokalisierte NAD⁺-abhängige Isocitrat-Dehydrogenasen, die an der oxidativen Decarboxylierung von Isocitrat im Citratzyklus beteiligt sind (Cupp und McAlister-Henn, 1991; Cupp und McAlister-Henn, 1992), Idp1p ist eine NADP⁺abhängige Isocitrat-Dehydrogenase, die ebenfalls in der mitochondriellen Matrix lokalisiert ist. Sie wird nicht für die Zellatmung benötigt und dient vermutlich der Bereitstellung von α -Ketoglutarat und NADPH für den Anabolismus der Zelle (Haselbeck und McAlister-Henn, 1991; Haselbeck und McAlister-Henn, 1993). Die im Cytosol lokalisierte NADP⁺-abhängige Isocitrat-Dehydrogenase Idp2p wird bei Wachstum auf nicht-fermentierbaren Substraten benötigt. Hier ist die Aktivität deutlich höher als bei Wachstum auf fermentierbaren Kohlenstoffguellen (Haselbeck und McAlister-Henn, 1993; Loftus et al., 1994). Die NADP⁺-abhängige Isocitrat-Dehydrogenase Idp3p ist peroxisomal lokalisiert und ist für die β-Oxidation bei Wachstum auf ungesättigten Fettsäuren essentiell (Henke et al., 1998). Die Aldehyd-Dehydrogenasen Ald2p und Ald3p sind NAD⁺abhängig und im Cytosol lokalisiert. Eine Induktion der beiden Gene Ald2 bzw. Ald3 erfolgt durch Ethanol; Glucose dagegen reprimiert die Expression der beiden Gene (Navarro-Avino et al., 1999).

Enzym	Kofaktor	zelluläres Kompartiment
Idh1p	NAD^+	Mitochondrium
Idh2p	NAD^+	Mitochondrium
Idp1p	$NADP^+$	Mitochondrium
Idp2p	$NADP^+$	Cytosol
Idp3p	$NADP^+$	Peroxisom

Tabelle 14: Kofaktorspezifität und Kompartimentierung der Isocitrat-Dehydrogenase-Isoenzyme.

Enzym	Kofaktor	zelluläres Kompartiment
Ald2p	NAD^+	Cytosol
Ald3p	NAD^+	Cytosol
Ald4p	$NAD^{+} / NADP^{+}$	Mitochondrium
Ald5p	$NADP^+$	Mitochondrium
Ald6p	\mathbf{NADP}^+	Cytosol

Tabelle 15: Kofaktorspezifität und Kompartimentierung der Aldehyd-Dehydrogenase-Isoenzyme.

Ald4p und Ald5p sind in der mitochondriellen Matrix lokalisiert. Ald4p akzeptiert sowohl NAD⁺ als auch NADP⁺ als Kofaktor; die Expression wird durch Glucose reprimiert. Ald5p hingegen ist NADP⁺-abhängig und wird konstitutiv auf geringem Niveau exprimiert (Saint-Prix et al., 2004; Tessier et al., 1998; Wang et al., 1998). Das Isoenzym Ald6p ist cytosolisch lokalisiert, NADP⁺-abhängig und konstitutiv exprimiert (Navarro-Avino et al., 1999; Saint-Prix et al., 2004). Über die verschiedenen Isoenzyme kann die Acetyl-CoA-Synthese über den Pyruvat-Dehydrogenase-Komplex umgangen werden. Dieser Bypass ist in Abbildung 3 dargestellt. Dabei wird Pyruvat im ersten Schritt durch die Pyruvat-Decarboxylase zu Acetaldehyd umgesetzt, welches dann wiederrum im Cytosol oder der mitochondriellen Matrix zu Acetat oxidiert wird. Die Synthese von Acetyl-CoA findet dann wieder ausschließlich im Cytosol durch die Acetyl-CoA-Synthetasen Acs1p und Acs2p statt. Anschließend wird Acetyl-CoA in die Mitochondrien importiert und fließt dort in den Citratzyklus (Boubekeur et al., 1999). Daneben wird anstelle von NADH pro mol Pyruvat ein mol NADPH gebildet, was in den Anabolismus fließt und nicht über die Atmungskette reoxidiert werden muss. Insbesondere bei hohen spezifischen Wachstumsraten bietet sich dieser Weg, aufgrund der begrenzten respiratorischen Kapazität von S. cerevisiae, an.

Die *in vitro* Enzymaktivitätsbestimmungen, die im Folgenden beschrieben werden, lieferten sowohl mit NAD⁺ als auch mit NADP⁺ als Kofaktor eine nachweisbare Isocitrat-Dehydrogenase-Aktivität (siehe Abbildung 26). Unter allen untersuchten physiologischen Bedingungen kam der Großteil der Gesamtaktivität aller Isocitrat-Dehydrogenase-Isoenzyme durch NADP⁺-abhängige Isoformen zustande.

Die Gesamtaktivitäten in kontinuierlicher Kultur lagen mit 158 mU/mg $(0,16 h^{-1})$ bzw. 236 mU/mg $(0,22 h^{-1})$ beim Referenzstamm BY4742 signifikant höher als beim *MAE1*-Deletionsstamm. Dies gilt besonders für die höhere der beiden Verdünnungsraten. Hier betrugen die spezifischen Aktivitäten 147 mU/mg $(0,16 h^{-1})$ bzw. 176 mU/mg $(0,22 h^{-1})$. 92

Bei Wachstum auf Glucose im Schüttelkolben ist kein signifikanter Unterschied zwischen den beiden Stämmen zu beobachten, wohingegen der Referenzstamm BY4742 bei Wachstum auf Galactose im Schüttelkolben mit 202 mU/mg eine höhere Gesamtaktivität der Isocitrat-Dehydrogenase-Isoenzyme besitzt als der Deletionsstamm mit 176 mU/mg. Unterschiede sind auch im relativen Anteil der NADP⁺- und NAD⁺-abhängigen Isoenzyme an der Gesamtaktivität zu beobachten. Beim Übergang vom rein respirativen Stoffwechsel des Referenzstammes BY4742 zum respiro-fermentativen Stoffwechsel nimmt der relative Anteil der NAD⁺-abhängigen Isoform von 5,5 % auf 24 % zu. Beim gleichen Übergang des Stoffwechsels im Falle des *MAE1*-Deletionsstammes bleiben die Verhältnisse nahezu unverändert und liegen bei etwa 10 %.

Tendenziell zeigt sich also eine höhere Gesamtaktivität der Isocitrat-Dehydrogenase im Referenzstamm, mit Ausnahme der Schüttelkolbenkultivierung auf Glucose. Dies kann auf eine verringerte Citratzyklus-Aktivität im Falle der *MAE1*-Deletion hinweisen.

Eine Aktivität der Acetaldehyd-Dehydrogenase konnte dabei nur mit NADP⁺ als Kofaktor detektiert werden (siehe Abbildung 26). Dies war unter allen Kultivierungsbedingungen der Fall. Der Referenzstamm BY4742 zeigt in kontinuierlicher Kultur bei beiden Verdünnungsraten eine höhere spezifische Aktivität der Acetaldehyd-Dehydrogenase als der *MAE1*-Deletionsstamm.

Ergebnisse und Diskussion

Abbildung 26: *In vitro* Aktivitätsbestimmungen der Isocitrat-Dehydrogenase (A, C) und der Acetaldehyd-Dehydrogenase (B, D) in Rohzellextrakten der Stämme *S. cerevisiae* BY4742 (Referenz) und BY4742 mae1 Δ (mae1 Δ). Gezeigt sind spezifische Enzymaktivitäten (mU/mg), unter verschiedenen physiologischen Bedingungen. A und B kontinuierliche Kultur bei den Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹ mit Glucose als Kohlenstoffquelle, C und D im Schüttelkolben mit Glucose und Galactose als Kohlenstoffquelle.

Des Weiteren ist die spezifische Aktivität bei der höheren Verdünnungsrate in beiden Stämmen niedriger. Dieselbe Tendenz zeigt sich auch in den Schüttelkolbenkultivierungen; auch hier ist die spezifische Aktivität der Acetaldehyd-Dehydrogenase im Referenzstamm BY4742 auf beiden Kohlenstoffquellen höher als beim *MAE1*-Deletionsstamm.

5.1.4.2 Auswirkungen verschiedener physiologischer und metabolischer Zustände auf intrazelluläre Enzymniveaus

Unter verschiedenen physiologischen Bedingungen wurden die spezifischen Aktivitäten zentraler Enzyme im Stoffwechsel von *S. cerevisiae* bestimmt. Sämtliche Aktivitäten sind in Tabelle 16 zusammengefasst. Der Einfluss der verschiedenen physiologischen Bedingungen auf die Isocitrat-Dehydrogenase und die Acetaldehyd-Dehydrogenase wurden bereits in Kapitel 5.1.4.1 diskutiert.

Obere Glykolyse und Pentosephosphatweg

Die Glucose-6-phosphat-Dehydrogenase, das erste Enzym des oxidativen Teils des Pentosephosphatwegs, zeigt bei rein respirativem Stoffwechsel die geringste spezifische Aktivität. Diese beträgt im Referenzstamm BY4742 64 mU/mg und in der *MAE1*-Deletionsmutante 47 mU/mg. Mit der Steigerung der spezifischen Wachstumsrate auf $0,22 h^{-1}$ in kontinuierlicher Kultur steigerte sich die spezifische Enzymaktivität unter nun respiro-fermentativem Stoffwechsel auf 80 mU/mg (Referenzstamm BY4742) bzw. 53 mU/mg (*MAE1*-Deletionsmutante). Die spezifische Aktivität der Phosphofructokinase, dem ersten irreversiblen Enzym der Glykolyse, betrug bei rein respirativem Stoffwechsel im Referenzstamm BY4742 36 mU/mg sowie 60 mU/mg in der *MAE1*-Deletionsmutante. Auch hier führte die Steigerung der spezifischen Wachstumsrate auf $0,22 h^{-1}$ in kontinuierlicher Kultur, wie bereits zuvor für die Glucose-6-phosphat-Dehydrogenase beobachtet, zu einer erhöhten spezifischen Aktivität der Phosphofructokinase. Diese betrug im Referenzstamm 70 mU/mg und verdoppelte sich somit im Vergleich zum rein respirativen Stoffwechsel. In der *MAE1*-Deletionsmutante betrug die spezifische Aktivität 100 mU/mg, was entsprechend einem 60 %-igem Anstieg entspricht. Tabelle 16: Spezifische Aktivitäten zentraler Enzyme aus *S. cerevisiae* BY4742 (Referenz) und BY4742 mae1 Δ . Gezeigt sind Daten aus kontinuierlicher Kultur (D= μ) auf Glucose bei den Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹, sowie Daten aus Schüttelkolbenkulturen (SK) auf Glucose und Galactose als Kohlenstoffquelle. n. b., Aktivität nicht bestimmbar, da unterhalb der Nachweisgrenze. Eine Aktivität von < 0,2 mU/mg konnte nicht mehr detektiert werden.

	BY4742 (Referenz)				BY4742 mae1 Δ			
	D=µ	$[h^{-1}]$	SK µ	[h ⁻¹]	D=µ [h ⁻¹]		SK μ [h ⁻¹]	
Engum	0.16	0.22	Glc	Gal	0.16	0.22	Glc	Gal
Enzym	0,10	0,22	0,29	0,18	0,10	0,22	0,29	0,16
Glucose-6-phosphat-DH	64	80	53	66	47	53	58	79
Phosphofructokinase	36	70	837	1278	60	100	758	925
Pyruvat-Kinase	3693	3547	9833	4422	4010	3995	7196	4029
Pyruvat-Decarboxylase	320	363	633	400	435	183	730	462
Acetaldehyd-DH (NADP ⁺)	221	166	216	127	80	52	153	113
Acetaldehyd-DH (NAD ⁺)	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.
Malat-Enzym	4,9	8,3	1,1	1,8	n. b.	n. b.	n. b.	n. b.
Isocitrat-DH (NADP ⁺)	149	180	147	178	115	132	148	154
Isocitrat-DH (NAD ⁺)	8,6	56	16	24	31	33	22	21
Fructose-1,6-bisphosphatase	12	12	1,1	3,0	5,6	6,0	1,2	2,8
PEP-Carboxykinase	27	20	78	70	23	19	76	87
Isocitrat-Lyase	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.
Malat-Synthase	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.

spez. Aktivität [mU/mg]

Der Anstieg der spezifischen Aktivität der Glucose-6-phosphat-Dehydrogenase war in beiden Stämmen deutlich geringer (siehe Tabelle 16). Auf der Grundlage der intrazellulären Enzymmengen ist also davon auszugehen, dass die relative Aktivität des Pentosephosphatwegs, zur Glykolyse gesehen, mit zunehmender spezifischer Wachstumsrate abnimmt, was bereits gezeigt wurde (Frick und Wittmann, 2005). Es ist jedoch anzumerken, dass die tatsächlichen in vivo Aktivitäten - die metabolischen Flüsse nicht zwangsläufig den spezifischen Enzymaktivitäten entsprechen. Da die Aktivität dieser Wege nicht nur auf der Translationsebene reguliert wird, kann dies nur als Anhaltspunkt gesehen werden und es bedarf somit einer weiteren Abklärung dieses Sachverhaltes (siehe Kapitel 5.2.2).

Die Kultivierung beider Stämme bei der maximalen spezifischen Wachstumsrate im Schüttelkolben mit Glucose und Galactose als Kohlenstoffquelle lieferte deutlich höhere spezifische Aktivitäten der Phosphofructokinase. Im Falle des Referenzstammes lagen diese bei Wachstum auf Glucose bei 837 mU/mg, bei Wachstum auf Galactose bei 1278 mU/mg. Der MAE1-Deletionsstamm besaß auf beiden Kohlenstoffquellen geringere spezifische Aktivitäten, 758 mU/mg (Glc) und 925 mU/mg (Gal). Die spezifische Aktivität der Glucose-6-phosphat-Dehydrogenase ist im Falle der MAE1-Deletion auf beiden Kohlestoffquellen höher als dies im Referenzstamm BY4742 der Fall ist. In der MAE1-Deletionsmutante beträgt sie 58 mU/mg (Glucose) bzw. 79 mU/mg (Galactose) wohingegen im Referenzstamm spezifische Aktivitäten von 53 mU/mg (Glucose) bzw. 66 mU/mg (Galactose) ermittelt wurden. Die Aktivitäten liegen somit im Rahmen der in kontinuierlicher Kultur bestimmen spezifischen Aktivitäten der Glucose-6-phosphat-Dehydrogenase. Anhand der bestimmten spezifischen Enzymaktivitäten bei fermentativem Wachstum im Schüttelkolben wird deutlich, dass der Hauptfluss des Kohlenstoffes über die Glykolyse läuft. Auch hier wiederum gilt die Einschränkung, dass die spezifischen Enzymaktivitäten nicht zwangsläufig den tatsächlichen in vivo Fluss widerspiegeln.

Gluconeogenese und Glyoxylatzyklus

Als charakteristisches Enzym der Gluconeogenese wurde die spezifische Aktivität der Fructose-1,6-bisphosphatase bestimmt. Die spezifische Aktivität lag bei respirativem und respiro-fermentativem Stoffwechsel im Falle des Referenzstammes BY4742 mit 12 mU/mg höher als mit 6 mU/mg im *MAE1*-Deletionsstamm unter den entsprechenden physiologischen Bedingungen. Der Glucose-Überschuss in der Batch-Kultur reprimierte die Synthese der Fructose-1,6-bisphosphatase nahezu vollständig. Galactose reprimierte die Synthese der Fructose-1,6-bisphosphatase ebenfalls deutlich stärker als dies in kontinuierlicher Kultur der Fall war. Die bestimmten spezifischen Aktivitäten lagen jedoch, im Vergleich zu Batch-Wachstum auf Glucose, um den Faktor 2-3 höher.

Bei keinem der beiden Stämme wurden unter den untersuchten Wachstumsbedingungen Aktivitäten der beiden Glyoxylatzyklus-Enzyme Isocitrat-Lyase und Malat-Synthase beobachtet. Die beiden Enzyme werden bei respirativem, respiro-fermentativem und fermentativem Stoffwechsel auf Glucose vollständig reprimiert. Dasselbe gilt für das Wachstum auf Galactose im Schüttelkolben.

Pyruvatknotenpunkt

Die untersuchten Enzyme PEP-Carboxykinase, Pyruvat-Kinase, Pyruvat-Decarboxylase und das Malat-Enzym, rund um den zentralen Metaboliten Pyruvat sind in

Abbildung 27 dargestellt. Die spezifischen Aktivitäten der Pyruvat-Kinase waren mit 3693 mU/mg bzw. 3547 mU/mg im Referenzstamm BY4742 bei beiden Verdünnungsraten vergleichbar. Dasselbe gilt für die entsprechende spezifische Aktivität im *MAE1*-Deletionsstamm. Hier lagen die spezifischen Aktivitäten der Pyruvat-Kinase mit ca. 4000 mU/mg bei den beiden untersuchten Verdünnungsraten leicht höher als im Falle des Referenzstammes. Bei der maximalen spezifischen Aktivitäten der Pyruvat-Kinase im Falle des Referenzstammes bei 9833 mU/mg und im Falle der *MAE1*-Deletionsmutante bei 7196 mU/mg. Bei Wachstum auf Galactose im Schüttelkolben zeigten sich deutlich geringere spezifische Aktivitäten des Enzyms. Diese lagen im Referenzstamm bei 4422 mU/mg und in der *MAE1*-Deletionsmutante bei 4029 mU/mg.

Abbildung 27: Untersuchte Enzyme rund um den Pyruvatknotenpunkt.
Die spezifische Aktivität der Pyruvat-Decarboxylase war bei Wachstum im Schüttelkolben auf Glucose, im Falle der Deletion des *MAE1*-Gens, mit 730 mU/mg am höchsten. Der Referenzstamm besaß in Batch-Kultur auf Glucose eine 15 % niedrigere spezifische Aktivität von 633 mU/mg. Während des respirativeren Metabolismus bei Wachstum auf Galactose im Schüttelkolben ist die spezifische Aktivität der Pyruvat-Decarboxylase in beiden Stämmen geringer als bei fermentativem Stoffwechsel auf Glucose. Dabei liegt die Aktivität des *MAE1*-Deletionsstamms mit 462 mU/mg, wie bereits bei Wachstum auf Glucose, höher als die des Referenzstammes BY4742 mit 400 mU/mg. Dies zeigt sich auch in den geringeren Ethanolausbeuten beider Stämme bei Wachstum auf Galactose (siehe Tabelle 12). Da aufgrund des höheren Sauerstoffbedarfes der beiden Stämme bei Wachstum auf Galactose ebenfalls von einer erhöhten Aktivität des Citratzyklus auszugehen ist, können diese spezifischen Aktivitäten als Indiz für einen geringeren Kohlenstofffluss durch den Pyruvat-Dehydrogenase-Bypass (siehe Abbildung 3) bei respirativerem Wachstum auf Galactose angesehen werden.

Bei einem rein respirativen bzw. respiro-fermentativen Stoffwechsel in kontinuierlicher Kultur ist die Aktivität der Pyruvat-Decarboxylase im Vergleich zum fermentativen Wachstum auf Glucose deutlich geringer (siehe Tabelle 16). Auch hier kann demnach von einem verringerten Fluss durch den Pyruvat-Dehydrogenase-Bypass ausgegangen werden und somit von einem verstärkten Eintritt von Pyruvat über den Pyruvat-Dehydrogenase-Komplex in den Citratzyklus.

Unter allen Bedingungen wurde eine Aktivität der PEP-Carboxykinase nachgewiesen. Sowohl in kontinuierlicher Kultur, als auch bei Wachstum im Schüttelkolben wiesen beide Stämme vergleichbare spezifische Aktivitäten dieses Enzyms auf. In Batch-Kultur im Schüttelkolben waren die spezifischen Aktivitäten, im Vergleich zu den kontinuierlichen Kulturen, auf beiden Kohlenstoffquelle um den Faktor vier erhöht. Eine komplette Reprimierung der zentralen gluconeogenen Enzyme Fructose-1,6-bisphosphatase bzw. PEP-Carboxykinase durch Glucose und Galactose wurde nicht beobachtet. Durch die parallele Expression gluconeogener sowie glykolytischer Enzyme entstehen die Möglichkeiten von sogenannten "*futile cycles*", die mit einer Nettohydrolyse von ATP einhergehen. Zum einen sei hier der Zyklus der Fructose-1,6-bisphosphatase und der Phosphofructokinase genannt, zum anderen der Zyklus bestehend aus Pyruvat-Kinase, Pyruvat-Carboxylase und PEP-Carboxykinase. Letzterer scheint auf der Grundlage der gemessenen spezifischen Enzymaktivitäten der entscheidendere zu sein. Das mögliche Vorhandensein dieser *"futile cycles"* könnte auch einer der Gründe für die geringere spezifische Wachstumsrate des Stammes BY4742 und seiner entsprechenden Abkömmlinge sein, da der Stamm *S. cerevisiae* ATCC32167, in dessen Zellextrakten keine Aktivität der beiden Enzyme nachgewiesen werden konnte, mit einer spezifischen Wachstumsrate von $\mu = 0,44$ h⁻¹ deutlich schneller wächst, da kein ATP über die entsprechenden Kreisläufe hydrolysiert wird und somit mehr für den Aufbau der Biomasse zur Verfügung steht.

Eine Aktivität des Malat-Enzyms konnte wie erwartet nur in den Zellextrakten des Referenzstammes ermittelt werden. Dabei war die spezifische Aktivität mit 4,9 mU/mg bei rein respirativem Stoffwechsel und 8,3 mU/mg bei respiro-fermentativem Metabolismus höher als bei der Kultivierung des Referenzstammes BY4742 im Schüttelkolben mit 1,1 mU/mg (Glucose) bzw. 1,8 mU/mg (Galactose).

5.1.5 Einfluss verschiedener Wachstumszustände auf intrazelluläre Kofaktorkonzentrationen und deren Verhältnisse

Intrazelluläre Konzentrationen von NAD⁺, NADH, NADP⁺ sowie NADPH, sowie die entsprechenden anabolen und katabolen Verhältnisse der oxidierten und reduzierten Spezies wurden unter allen untersuchten physiologischen und metabolischen Zuständen bestimmt. Während des Wachstums auf Glucose in kontinuierlicher Kultur weist der Referenzstamm S. cerevisiae BY4742, im Vergleich zum MAE1-Deletionsstamm sowohl bei respirativem $(0,16 \text{ h}^{-1})$ als auch bei respiro-fermentativem $(0,22 \text{ h}^{-1})$ Wachstum leicht höhere Konzentrationen der Pyridin Nukleotide NAD⁺ und NADH auf (siehe Tabelle 17). Die katabolen Verhältnisse der oxidierten und reduzierten Spezies (NAD⁺/NADH) sind bei beiden Stämmen sowohl bei respirativem als auch bei respiro-fermentativem Stoffwechsel nahezu identisch (siehe Abbildung 28). Sie liegen im Bereich von 0,89 bis 0,96, unterscheiden sich jedoch nicht signifikant voneinander. Die genauen Werte der entsprechenden Verhältnisse sind dem Anhang zu entnehmen. Das Wachstum der beiden Stämme unter Glucose-Repression im Schüttelkolben zeichnet sich ebenfalls durch vergleichbare katabole Verhältnisse aus, wie dies zuvor für die kontinuierliche Kultivierung der beiden Stämme beschrieben wurde. Allerdings sind die Konzentrationen im Falle der MAE1-Deletion höher, als dies im Referenzstamm BY4742 der Fall ist (siehe Tabelle 17). 100

Tabelle 17: Intrazelluläre Konzentration der Kofaktoren NAD⁺, NADH, NADP⁺ und NADPH in μ mol/g BTM. Gezeigt sind entsprechende Konzentration in den beiden Stämmen *S. cerevisiae* BY4742 (Referenz) und BY4742 mae1 Δ in kontinuierlicher Kultur bei den Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹, sowie in Schüttelkultur auf Glucose (Glc) bzw. Galactose (Gal). Angegebene Fehler entsprechen den Standardabweichungen aus 3-fach Bestimmungen (kontinuierliche Kultur) bzw. 4-fach Bestimmungen (Schüttelkolben). n. b. – nicht bestimmbar, da unterhalb der Nachweisgrenze von 1 pmol im Ansatz.

		Kofaktorkonzentration [µmol/g BTM]					
		\mathbf{NAD}^{+}	NADH	$NADP^+$	NADPH		
BY4742	0,16 h ⁻¹	$2,07 \pm 0,01$	$2,26 \pm 0,02$	$0,27 \pm 0,01$	$0,\!48\pm0,\!02$	-	
(Referenz)	0,22 h ⁻¹	$1,63 \pm 0,08$	$1,84 \pm 0,02$	$0,\!29\pm0,\!03$	$0,\!60\pm0,\!02$		
	SK Glc	$1,20 \pm 0,02$	$1,28 \pm 0,09$	$0,03 \pm 0,00$	$0,14 \pm 0,00$		
	SK Gal	$3,52 \pm 0,04$	$2,81 \pm 0,20$	$0,03 \pm 0,01$	$0,\!27\pm0,\!05$		
mae1 Δ	0,16 h ⁻¹	$1,88 \pm 0,07$	$2,01 \pm 0,04$	$0,31 \pm 0,02$	$0,44 \pm 0,03$	-	
	0,22 h ⁻¹	$1,36 \pm 0,01$	$1,41 \pm 0,02$	$0,\!26 \pm 0,\!02$	$0,\!48\pm0,\!03$		
	SK Glc	$1,73 \pm 0,06$	$1,69 \pm 0,13$	$0,02 \pm 0,00$	$0,\!10\pm0,\!01$		
	SK Gal	$1,\!47\pm0,\!09$	$0,\!52\pm0,\!06$	n. b.	$0,06 \pm 0,03$		

1

Waren die Konzentration der reduzierten und oxidierten Spezies bei Wachstum auf Glucose unter allen Bedingungen in beiden Stämmen nahezu identisch, so zeichnet sich das Wachstum auf Galactose im Schüttelkolben durch eine deutlich höhere Konzentration der oxidierten Spezies gegenüber der reduzierten aus. Die katabolen Verhältnisse sind hier mit 1,25 im Falle des Referenzstammes BY4742 und 2,83 im Falle der *MAE1*-Deletion deutlich höher, als unter den bereits diskutierten physiologischen Zuständen auf Galactose (siehe Abbildung 28). Dieses erhöhte katabole Verhältnis bei Wachstum auf Galactose kann auf eine erhöhte Aktivität des Citratzyklus im Vergleich zu Glucose hindeuten, welche bereits durch den erhöhten Sauerstoffbedarf beider Stämme bei Wachstum auf Galactose vermutet wurde (Moreira dos Santos et al., 2004; Zubay, 1998).

Die anabolen Verhältnisse der oxidierten und reduzierten Spezies (NADP⁺/NADPH) wiesen deutlich größere Unterschiede zwischen den einzelnen Stämmen und physiologischen Zuständen auf. Tendenziell ist zu erkennen, dass das anabole Verhältnis bei Wachstum auf Glucose mit zunehmender spezifischer Wachstumsrate abnimmt. Dies gilt für beide Stämme gleichermaßen (siehe Abbildung 28).

Abbildung 28: Katabole (A) und anabole (B) Verhältnisse von NAD⁺/NADH (A) und NADP⁺/NADPH (B). Gezeigt sind die entsprechenden Verhältnisse bei Kultivierung der beiden Stämme *S. cerevisiae* BY4742 und BY4742 mae1 Δ in kontinuierlicher Kultur mit Glucose als Kohlenstoffquelle bei den Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹, sowie in Batch-Kulturen der beiden Stämme mit Glucose oder Galactose als Kohlenstoffquelle. n. b. – nicht bestimmbar, da unterhalb der Nachweisgrenze von 1 pmol im Ansatz.

In kontinuierlicher Kultur sind die anabolen Verhältnisse sowohl bei respirativem (0,16 h⁻¹), als auch bei respiro-fermentativem Stoffwechsel (0,22 h⁻¹), im Falle der *MAE1*-Deletion erhöht. Der höchste Wert vom 0,7 wird in der *MAE1*-Deletionsmutante bei rein respirativem Wachstum erreicht. Im Referenzstamm dagegen beträgt das Verhältnis lediglich 0,58. Auch bei respiro-fermentativem Stoffwechsel in kontinuierlicher Kultur ist das anabole Verhältnis des Referenzstammes mit 0,48 tendenziell niedriger als das des *MAE1*-Deletionsstammes mit 0,54. Die anabolen Verhältnisse in Batch-Kultur mit Glucose als Kohlenstoffquelle waren bei beiden Stämmen vergleichbar. Das Verhältnis von NADP⁺ und NADPH beeinflusst die Aktivität der beiden ersten Enzyme des oxidativen Teils des Pentosephosphatwegs. Ein erhöhtes anaboles Verhältnis von NADP⁺ zu NADPH aktiviert die beiden Enzyme, um einen Mangel an NADPH zur Biosynthese vorzubeugen.

5.2 Quantitative Analyse metabolischer Netzwerke

Zunächst wird die Topologie des metabolischen Netzwerkes von *S. cerevisiae* diskutiert, bevor näher auf die ¹³C metabolische Flussanalyse, sowie die Elementarmodenanalyse eingegangen wird.

5.2.1 Topologie des metabolischen Netzwerkes von S. cerevisiae

Das Netzwerk des zentralen Kohlenstoffstoffwechsels, welches für die ¹³C metabolische Flussanalyse verwendet wurde, wird im Folgenden genauer beschrieben. Es beinhaltet die Glykolyse, Pentosephosphatweg, Citratzyklus, anaplerotische Reaktionen, sowie den fermentativen Stoffwechselweg zur Ethanol- und Acetatbildung. Darüber hinaus ist auch die Bildung von Makromolekülen zur Biomassebildung ebenfalls in dem Modell durch die Biosynthese von Proteinen, Nukleinsäuren, Lipiden und Speicherkohlenhydraten berücksichtigt.

Glykolyse

Der erste Schritt der Glykolyse, der durch das Enzym Glucose-6-phosphat-Isomerase katalysiert wird, wurde als reversibel angenommen. Alle weiteren Schritte der Glykolyse wurden bei Wachstum auf Glucose und Galactose als irreversible Reaktionen festgelegt. Anabole Flüsse gehen von den Metaboliten Glucose-6-phosphat (Kohlenhydrat-, Lipidsynthese), Glycerinaldehyd-3-phosphat (Lipidsynthese), 3-Phosphoglycerat (Nukleotid-, Protein-, Lipidsynthese), Phosphoenolpyruvat (Proteinsynthese) und cytosolisches Pyruvat (Proteinsynthese) aus.

Pentosephosphatweg

Im Pentosephosphatweg wurden vier Reaktionen berücksichtigt. Der oxidative irreversible Teil wird durch die Aktivität der Glucose-6-phosphtat-Dehydrogenase in einem Schritt zusammengefasst. Transaldolase und Transketolase charakterisieren den reversiblen Teil des Pentosephosphatwegs und wurden daher in dem aufgestellten Modell als reversibel betrachtet. Die Zuckerphosphate Ribose-5-phosphat, Xylose-5-phosphat und Ribulose-5phosphat können aufgrund gleichbleibender Markierungsmuster als ein Metabolit, Pentose-5-phosphat, angesehen werden. Anabole Flüsse gehen von Pentose-5-phosphat (Protein-, Purinsynthese) und Erythrose-4-phosphat (Proteinsynthese) aus. Die Deletion des *HIS3* Gens wurde im anabolen Fluss ausgehend von Pentose-5-phosphat berücksichtigt.

Citratzyklus

Der Citratzyklus läuft vollständig in der mitochondriellen Matrix ab. Im Modell sind die Reaktionen der Enzyme Citrat-Synthase, Isocitrat-Dehydrogenase und Fumarat-Hydratase, sowie die zusammengefassten Reaktionen des α -Ketoglutarat-Dehydrogenase-Komplexes und der Succinyl-CoA-Ligase realisiert. Für die Metabolite Citrat und Isocitrat, sowie Fumarat und Succinat wurden die Pools aufgrund identischer Markierungsmuster zusammengefasst. Gleiches gilt für Oxalacetat und Malat. Die Symmetrie des Succinats wurde dahingehend berücksichtigt, dass beide Orientierungen bei der Umsetzung zu Fumarat mit gleicher Wahrscheinlichkeit auftreten. Anabole Flüsse gehen von mitochondriellem Pyruvat (Proteinsynthese) und α -Ketoglutarat (Proteinsynthese) aus.

Das Enzym Citrat-Synthase ist sowohl mitochondriell Cit1p (Suissa et al., 1984) und Cit3p (Jia et al., 1997) als auch peroxisomal, Cit2p, vorhanden. Die peroxisomale Isoform des Enzyms ist am Glyoxylatzyklus beteiligt (Lewin et al., 1990), welcher jedoch unter dem vorherrschenden aeroben Wachstum auf fermentierbaren C-Quellen nicht aktiv ist. Die Aconitase ist nur in der mitochondriellen Matrix zu finden Aco1p (Gangloff et al., 1990). Die NAD⁺-abhängige Isocitrat-Dehydrogenase Idh1p/Idh2p ist im Mitochondrium lokalisiert (Cupp und McAlister-Henn, 1991; Cupp und McAlister-Henn, 1992). Des Weiteren gibt es 3 NADP⁺-abhängige Isocitrat-Dehydrogenase, von denen eine, Idp1p, mitochondriell (Haselbeck und McAlister-Henn, 1991) lokalisiert ist. Idp2p (Loftus et al., 1994) ist eine cytosolische Isocitrat-Dehydrogenase, deren Aktivität bzw. Expression durch Wachstum auf nicht fermentierbaren C-Quellen gesteigert wird und bei Wachstum auf Glucose reduziert wird. Idp3p (Henke et al., 1998) ist eine peroxisomal lokalisierte Isocitrat-Dehydrogenase, die an der β -Oxidation ungesättigter Fettsäuren beteiligt ist. Es kann also davon ausgegangen werden, dass die Oxidation von Isocitrat zu α -Ketoglutarat in den Mitochondrien im Rahmen des Citratzyklus abläuft.

Der NAD⁺-abhängige α-Ketoglutarat-Dehydrogenase-Komplex (Kgd1p/Kgd2p) ist ebenso wie der Succinyl-CoA-Ligase-Komplex Lsc1p/Lsc2p (Przybyla-Zawislak et al., 1998) und die FAD-abhängige Succinat-Dehydrogenase Sdh1-4p (Oyedotun und Lemire, 2004) in der mitochondriellen Matrix lokalisiert.

Die Fumarase Fum1p ist sowohl mitochondriell als auch cytosolisch (Wu und Tzagoloff, 1987) zu finden. Eine NAD⁺-abhängige Malat-Dehydrogenase Mdh1p ist mitochondriell lokalisiert (McAlister-Henn und Thompson, 1987) und am Citratzyklus beteiligt. Eine weitere NAD⁺-abhängige Malat-Dehydrogenase Mdh2p ist im Cytosol zu finden und ist an der Gluconeogenese bei Wachstum auf Ethanol oder Acetat beteiligt (Gibson und McAlister-Henn, 2003; Minard und McAlister-Henn, 1991). Die dritte NAD⁺-abhängige Malat-Dehydrogenase Mdh3p ist peroxisomal lokalisiert und wird für die Aktivität des Glyoxylatzyklus benötigt (Steffan und McAlister-Henn, 1992). Da die beiden Malat-Dehydrogenasen bei den hier vorherrschenden Wachstumsbedingungen nicht benötigt werden, kann davon ausgegangen werden, dass die Umwandlung von Malat zu Oxalacetat ausschließlich in den Mitochondrien im Rahmen des Citratzyklus stattfindet.

Das Malat-Enzym ist ebenfalls in den Mitochondrien lokalisiert und katalysiert die oxidative Decarboxylierung von Malat zu Pyruvat unter der Regeneration von NADPH aus NADP⁺ (Boles et al., 1998).

Interkompartimenteller Transport

Das in dieser Arbeit verwendete Modell beinhaltet Transportreaktionen zwischen Cytosol und mitochondrieller Matrix für Pyruvat, Oxalacetat sowie Acetyl-CoA. Im Falle des Pyruvats und Acetyl-CoAs wurde ein Import in die mitochondrielle Matrix angenommen, wohingegen der Transport von Oxalacetat bidirektional stattfand.

Bei Wachstum auf Ethanol oder Acetat wird über den Glyoxylatzyklus Succinat aus Isocitrat gebildet. Da die Succinat-Dehydrogenase des Citratzyklus mitochondriell lokalisiert ist, wird das im Glyoxylatzyklus gebildete Succinat mittels des Succinat-Fumarat-Carriers (*SFC1*) in die Mitochondrien transportiert. Das aus den Mitochondrien exportierte Fumarat fließt bei Wachstum auf nicht fermentierbaren C-Quellen in die Gluconeogenese (Palmieri et al., 1997). Da der Transporter mit den Enzymen des Glyoxylatzyklus (Isocitrat-Lyase, Malat-Synthetase), die unter allen physiologischen Zuständen keine nachweisbare Aktivität besaßen (siehe Tabelle 16), ko-reguliert wird (Redruello et al., 1999), wird bei Wachstum auf Glucose bzw. Galactose auf die Einbindung dieses Transporters in das Stoffwechselmodell verzichtet.

Die Hauptaufgabe des Dicarboxylat-Carriers ist der Transport von Dicarboxylaten in die mitochondrielle Matrix. Dies geschieht im Austausch mit mitochondriellem Phosphat, das über den Phosphattransporter regeneriert wird. Der Export von Malat aus den Mitochondrien in das Cytosol im Rahmen der Gluconeogenese wird vermutlich nicht durch diesen Transporter katalysiert (Palmieri et al., 1999b).

Die physiologische Funktion des Oxalacetat-Carriers ist die Aufnahme von Oxalacetat aus dem Cytosol in die Mitochondrien im Austausch mit Sulfat, da die Pyruvat-Carboxylase im Cytosol lokalisiert ist (Palmieri et al., 1999a).

Die beiden Isoformen Odc1p und Odc2p exportieren 2-Oxoadipat aus den Mitochondrien in das Zytoplasma zur Biosynthese von Lysin (Palmieri et al., 2001); den Part des Countersubstrats können α -Ketoglutarat, Malat, Citrat oder Succinat übernehmen. Unter respiratorischen Wachstumsbedingungen ist Odc1p die vorherrschende Isoform, bei Wachstum auf Glucose bzw. Galactose ist die Isoform Odc2p vorherrschend. Dagegen beschreiben Förster et al. (2003), dass die beiden Isoformen des Dicarboxylat-Carriers für den Transport von α -Ketoglutarat und Oxaloglutarat verantwortlich sind, der bidirektional stattfinden kann, wobei jeweils einer der Transportpartner aus dem Cytosol bzw. dem Mitochondrium stammt.

Agp2 katalysiert den Transport von Acetyl-CoA in die mitochondrielle Matrix (van Roermund et al., 1999). Dies geschieht in Form von Acetyl-Carnitin-Estern; die Acetyl-Gruppen werden in der mitochondriellen Matrix wieder auf HS-CoA übertragen.

Des weiteren wurde ein Pyruvat-Carrier beschrieben, der den Import von Pyruvat aus dem Cytosol in die mitochondrielle Matrix katalysiert (Hildyard und Halestrap, 2003; Sugden und Holness, 2003).

Export von Metaboliten

Es wurden Exportsysteme für alle im Kulturmedium detektierten Metabolite in das Modell aufgenommen. Dies sind Acetat, Glycerin, Ethanol, Pyruvat, Orotat und α -Ketoglutarat.

Aminosäurebiosynthese

Die Aminosäuresynthese findet sowohl im Cytosol, als auch in den Mitochondrien statt. Im Cytosol bzw. aus cytosolischen Vorläufermolekülen werden die Aminosäuren Tryptophan, Tyrosin, Histidin, Phenylalanin, Serin, Cystein, Glycin, Threonin, Methionin, Arginin und Prolin gebildet. Valin und Glutamat/Glutamin werden in den Mitochondrien bzw. aus mitochondriellen Vorläufermolekülen synthetisiert. Für die Synthese von Alanin und Aspartat/Asparagin gibt es sowohl cytosolische, als auch mitochondrielle Enzyme, ausgehend von Pyruvat bzw. Oxalacetat. Isoleucin, Lysin und Leucin werden sowohl aus mitochondriellen, als auch aus cytosolischen Vorläufermolekülen synthetisiert. Der relative Bedarf an Vorläufermolekülen zur Synthese der einzelnen Aminosäuren ist in Tabelle 18 eingeschlossen. In Tabelle 18 ist das Carbamoylphosphat, welches zur Synthese von Arginin benötigt wird, nicht berücksichtigt. Für die beiden Aminosäuren Alanin und Aspartat, die sowohl im Cytosol als auch in der mitochondriellen Matrix synthetisiert werden können, wurde ein gemeinsamer Pool in das Modell integriert, von dem der anabole Fluss ausgeht. Die gemessenen Markierungen wurden ebenfalls an den gemischten Pool angepasst, da a priori keine Aussage über die Aktivität der cytosolisch bzw. mitochondriell lokalisierten Enzyme getroffen werden kann.

 Tabelle 18: Relativer Bedarf an Vorläufermolekülen (mol Vorläufermolekül / mol Aminosäure) der

 zur Proteinbiosynthese benötigten Aminosäuren modifiziert nach Stephanopoulos et al. (1998).

Aminosäure	Vorläufermolekül	ATP	NADH	NADPH	1-C	NH ₃	S
L-Ala	1 PYR _{cvt.} od. 1 PYR _{mit}	0	0	-1	0	-1	0
L-Arg	1 α-KG	-7	1	-4	0	-4	0
L-Asn	1 OAA _{cyt.} od. 1 OAA _{mit.}	-3	0	-1	0	-2	0
L-Asp	1 OAA _{cyt.} od. 1 OAA _{mit.}	0	0	-1	0	-1	0
L-Cys	1 3PG	-4	1	-5	0	-1	-1
L-Gln	1 α-KG	-1	0	-1	0	-2	0
L-Glu	1 α-KG	0	0	-1	0	-1	0
L-Gly	1 3PG	0	1	-1	1	-1	0
L-His	1 R5P	-6	3	-1	-1	-3	0
L-Ile	1 OAA _{cyt} , 1 PYR _{mit}	-2	0	-5	0	-1	0
L-Leu	2 PYR _{mit} , 1 AcCoA _{mit} .	0	1	-2	0	-1	0
L-Lys	1 α-KG, 1 AcCoA _{cyt.}	-2	2	-4	0	-2	0
L-Met	1 OAA _{cyt.}	-7	0	-8	-1	-1	-1
L-Phe	2 PEP, 1 E4P	-1	0	-2	0	-1	0
L-Pro	1 α-KG	-1	0	-3	0	-1	0
L-Ser	1 3 PG	0	1	-1	0	-1	0
L-Thr	1 OAA _{cyt.}	-2	0	-3	0	-1	0
L-Trp	1 PEP, 1 E4P, 1 R5P	-5	2	-3	0	-2	0
L-Tyr	2 PEP, 1 E4P	-1	1	-2	0	-1	0
L-Val	2 PYR _{mit.}	0	0	-2	0	-1	0

Anaboler Bedarf zur Biomassebildung

Die Biomassesynthese wurde aus dem Bedarf an Vorläufermolekülen aus dem Zentralstoffwechsel in Anlehnung an Gombert et al. (2001), unter Einbeziehung der Auxotrophien des Stammes *S. cerevisiae* BY4742, beschrieben. Der Bedarf an Vorstufen aus dem Katabolismus zur Biomassesynthese, sowie die Biomassezusammensetzung sind in Tabelle 19 und Tabelle 20 für verschiedene spezifische Wachstumsraten zusammengefasst.

Tabelle 19: Anaboler Bedarf an Vorläufermolekülen, Redoxäquivalenten und ATP aus dem Katabolismus zum Aufbau der Biomasse von *S. cerevisiae* BY4742 bei verschiedenen spezifischen Wachstumsraten. Der Bedarf ist in mmol / g BTM angegeben.

spezifische Wachstumsrate μ	0,16 h ⁻¹	0,22 h ⁻¹	0,29 h ⁻¹
Acetyl-CoA, cytosolisch	1,90	1,90	1,90
α-Ketoglutarat	0,85	0,88	0,93
Erythrose-4-phosphat	0,26	0,27	0,28
3-Phosphoglycerat	0,75	0,79	0,84
Glycerin-3-phosphat	0,08	0,08	0,08
Phosphoenolpyruvat	0,48	0,51	0,53
Pyruvat, cytosolisch	0,32	0,34	0,35
Pyruvat, mitochondriell	0,58	0,61	0,64
Ribose-5-phosphat	0,13	0,15	0,16
Glucose-6-phosphat	2,08	1,92	1,73
Oxalacetat, cytosolisch	0,71	0,74	0,78
NAD^+ , cytosolisch	1,03	1,10	1,17
NAD^+ , mitochondriell	0,15	0,15	0,16
NADPH, cytosolisch	4,65	4,73	4,82
NADPH, mitochondriell	4,16	4,3	4,57
ATP	47,06	41,52	38,27

spezifische Wachstumsrate μ	0,16 h ⁻¹	0,22 h ⁻¹	0,29 h ⁻¹
Proteine [g / g BTM]	0,44	0,46	0,48
Lipide [g / g BTM]	0,07	0,07	0,07
Kohlenhydrate [g / g BTM]	0,37	0,34	0,31
Nukleinsäuren [g / g BTM]	0,08	0,09	0,10
Asche [g / g BTM]	0,04	0,04	0,04

Tabelle20:BiomassezusammensetzungvonS.cerevisiaebeiverschiedenenspezifischenWachstumsraten und Wachstum auf Glucose als Kohlenstoffquelle nach Gombert et al. (2001).

Der Bedarf an Mannose-6-phosphat und geringer Mengen an Fructose-6-phosphat für die Zellwandbiosynthese sind in dem anabolen Bedarf für Glucose-6-phosphat eingeschlossen. Das zwölfte Vorläufermolekül Succinyl-CoA wird für die Biomassesynthese von S. cerevisiae nicht benötigt und daher nicht berücksichtigt. Sämtliche makromolekulare Bausteine der Biomasse wurden bei der Modellbildung berücksichtigt. Die Proteinbiosynthese stellt dabei den komplexesten Teil dar, da sie sowohl in der mitochondriellen Matrix, als auch im Cytosol abläuft. Alanin und Aspartat/Asparagin stellen dabei die einzigen Aminosäuren dar, die in beiden Kompartimenten synthetisiert werden können. Im Falle von Alanin ist sowohl eine mitochondrielle Alanin-Transaminase Alt1p beschrieben (Garcia-Campusano et al., 2009), als auch eine cytosolische Isoform Alt2p (Blank et al., 2005). Eine cytosolische Alaninbiosynthese wurde bei der Kometabolisierung von Glucose und Acetat beobachtet (dos Santos et al., 2003), jedoch nicht bei Nutzung von Glucose als alleiniger Kohlenstoffquelle (Blank und Sauer, 2004; Schlosser et al., 2004). Auf dieser Grundlage wurde eine cytosolische Alaninbiosynthese angenommen. Die Gene AAT1 und AAT2 codieren für zwei Isoformen der Aspartat-Aminotrasferase, eine cytosolisch und eine mitochondriell lokalisierte, so dass prinzipiell zwei verschiedene Wege zur Biosynthese der Aminosäuren Aspartat/Asparagin zur Verfügung stehen (Morin et al., 1992; Verleur et al., 1997). Auch hier wurde gezeigt, dass bei Wachstum auf Glucose als Kohlenstoffquelle hauptsächlich die cytosolische Isoform des Enzyms an der Biosynthese von Aspartat und Asparagin beteiligt ist (Blank et al., 2005). Die Aminosäuren Tryptophan, Tyrosin, Histidin, Phenylalanin, Serin, Cystein, Glycin, Threonin und Methionin werden im Cytosol synthetisiert. Valin und Glutamat/Glutamin werden ausschließlich aus mitochondriellen Vorläufermolekülen synthetisiert. Isoleucin, Lysin, Arginin, Prolin und Leucin dagegen werden sowohl aus cytosolischen mitochondriellen als auch Vorstufen synthetisiert. Die aus

Kompartimentierung der Aminosäurebiosynthese wurde zum einen hinsichtlich der Lokalisation der benötigten Vorläufermoleküle und zum anderen hinsichtlich der Lokalisation der benötigten Redoxäquivalente in Form von NADPH im Modell berücksichtigt. Da der Stamm *S. cerevisiae* BY4742 Deletionen im Lysin-, Leucin- und Histidinstoffwechsel besitzt und die entsprechenden Aminosäuren dem Medium zugesetzt werden, wurden die zur Synthese benötigten Moleküle im Rahmen des anabolen Bedarfes nicht berücksichtigt. Der relative Bedarf an Vorläufermolekülen zur Proteinbiosynthese ist in Tabelle 18 zusammengefasst.

Nukleotid- / Lipidbiosynthese

Die Nukleotidbiosynthese findet vollständig im Cytosol statt. Da die verwendeten Stämme *S. cerevisiae* BY4742 und dessen Abkömmlinge eine Deletion des *URA3* Gens besitzen, werden die Pyrimidinbasen bzw. die entsprechenden Nukleotide ausgehend von Uracil synthetisiert. Dieses wird dem Medium zugesetzt, so dass als Vorläufermolekül lediglich 1 mol Ribose-5-phosphat pro mol Nukleotid für den Zuckeranteil benötigt wird. Das Grundgerüst der Purinbasen wird pro mol ausgehend von 1 mol Glycin, 1 mol CO₂ und 2 mol 10-Formyl-THF aufgebaut. Die zur Synthese der Nukleotide benötigten Vorläufermoleküle sind in Tabelle 21 zusammengefasst, wobei bei den Pyrimidinbasen das benötigte Carbamoylphosphat und bei den Purinbasen 10-Formyl-THF nicht berücksichtigt sind. Die Angaben des C₁-Bedarfs beziehen sich lediglich auf CO₂ bei den Purinbasen und 5,10-Methylen-THF bei Thymidin. Der relative Bedarf an Vorläufermolekülen ist in Tabelle 21 zu finden, ebenfalls in korrigierter Form. Die Synthese der Lipide findet ebenfalls im Cytosol statt. Die benötigten Vorläufermoleküle sind in Tabelle 21 zusammengefasst.

Tabelle 21: Relativer Bedarf an Vorläufermolekülen (mol Vorläufermolekül / mol Nukleotid) der zur DNA/RNA-Synthese benötigten Nukleotide aus Stephanopoulos et al. (1998).

Nukleotid	Vorläufermolekül	ATP	NADH	NADPH	1 - C	NH ₃	S
AMP	1 3PG, 1 R5P	-9	3	-1	-1	-5	0
GMP	1 3PG, 1 R5P	-11	3	0	-1	-5	0
UMP	1 OAA _{cyt.} , 1 R5P	-5	0	-1	0	-2	0
CMP	1 OAA _{cyt} , 1 R5P	-7	0	-1	0	-3	0
dAMP	1 3PG, 1 R5P	-9	3	-2	-1	-5	0
dGMP	1 3PG, 1 R5P	-11	3	-1	-1	-5	0
dTMP	1 OAA _{cyt.} , 1 R5P	-5	0	-3	-1	-2	0
dCMP	1 OAA _{cvt} , 1 R5P	-7	0	-2	0	-3	0

Einheit	Vorläufermolekül	ATP	NADH	NADPH	1-C	NH ₃	S
Glycerin-3P	1 G3P	0	-1	0	0	0	0
Palmitoleoyl-CoA	8 AcCoA _{cyt.}	-7	0	-14	0	0	0
Oleat	9 AcCoA _{cyt}	-8	1	-16	0	0	0
Palmitoyl-CoA	8 AcCoA _{cyt.}	-7	0	-14	0	0	0
Stearat	9 AcCoA _{cyt.}	-8	0	-16	0	0	0
Ethanolamin	1 3PG	0	1	-1	0	-1	0
Cholin	1 3PG	0	1	-1	-3	-1	0
Inositol	1 G6P	0	1	0	0	0	0
Serin	1 3PG	0	1	-1	0	1	0
Ergosterol	18 AcCoA _{cvt.}	-18	0	-13	0	0	0

Tabelle 22: Relativer Bedarf an Vorläufermolekülen (mol Vorläufermolekül / mol Einheit) der zur Lipid-Synthese benötigten Verbindungen aus Stephanopoulos et al., (1998).

5.2.2 ¹³C Metabolische Flussanalyse in kontinuierlicher Kultur

Die ¹³C metabolische Flussanalyse stellt einen zentralen Punkt in der vorliegenden Arbeit dar. Mit ihrer Hilfe wurde die Charakterisierung des Stoffwechsels hinsichtlich der Auswirkungen der Deletion des MAE1-Gens, welches für das Malat-Enzym codiert, durchgeführt und deren Einfluss auf die in vivo Aktivität der Enzyme abgeschätzt. Dazu bedarf bereits diskutiert, extrazellulärer Substrataufnahmees. wie und Produktbildungsraten, des anabolen Bedarfs zur Biomassebildung, sowie der ^{13}C Markierungsverteilung der analysierten Metabolite. Letztere wurden aus Markierungsstudien mit ¹³C angereicherter Glucose bzw. Galactose erhalten. Anhand des beschriebenen metabolischen Netzwerkes von S. cerevisiae (siehe Kapitel 5.2.1) wurde dann mittels geeigneter mathematischer Modelle die ¹³C metabolische Flussanalyse durchgeführt (Wittmann, 2002; Wittmann, 2007; Wittmann und Heinzle, 2001; Yang et al., 2008).

Verglichen wurden dabei die beiden Stämme *S. cerevisiae* BY4742 und BY4742 mae 1Δ unter verschiedenen physiologischen Bedingungen. Diese umfassten wiederum das rein respirative, sowie das respiro-fermentative Wachstum in kontinuierlicher Kultur. Daneben wurden ¹³C Markierungsexperimente in Batch-Kultur mit Glucose oder Galactose als Kohlenstoffquelle durchgeführt.

Letztendlich wurden die erhaltenen Daten der ¹³C metabolischen Flussanalyse mit bisher erhaltenen Informationen aus der Bestimmung der *in vitro* Enzymaktivitäten zentraler Enzyme des Kohlenhydratstoffwechsels (siehe Kapitel 5.1.4), sowie der Quantifizierung von Redoxkofaktoren (siehe Kapitel 5.1.5) korreliert, um so ein umfassenderes Bild der

Auswirkungen der *MAE1*-Deletion auf den zellulären Stoffwechsel zu erhalten. Außerdem fand ein weiterer Vergleich mit den Ergebnissen der Elementarmodenanalyse statt, um Aussagen über die Kompartimentierung des Redoxstoffwechsels und der Aktivität verschiedener Isoenzyme treffen zu können (siehe Kapitel 5.3).

5.2.3 Validierung des metabolisch und isotopisch stationären Zustandes

Entscheidend für die stationäre ¹³C metabolische Flussanalyse ist das Erreichen eines metabolisch und isotopisch stationären Zustandes. Die Einstellung des Fließgleichgewichtes hinsichtlich des Stoffwechsels wurde in Batch-Kultur durch konstante extrazelluläre Produktionsund Aufnahmeraten, sowie konstanter Ausbeutekoeffizienten gezeigt. In kontinuierlicher Kultur erfolgte die Validierung über den zeitlichen Verlauf konstanter Konzentrationen von Substraten und Produkten während der Kultivierung. Zur Validierung des isotopisch stationären Zustandes wurde sowohl in Batch- als auch in kontinuierlicher Kultur zu verschiedenen Zeitpunkten Proben entnommen und die ¹³C-Anreicherung der proteinogenen Aminosäuren aus dem Zellhydrolysat mittels GC/MS-Analyse bestimmt.

Alle Markierungsexperimente wurden mit einem 50:50 Gemisch aus [1]-¹³C-Glucose und [U]-¹³C-Glucose durchgeführt. Entsprechendes gilt für die Markierungsexperimente, in denen Galactose zum Einsatz kam. Aus Abbildung 29 wird deutlich, dass der isotopisch stationäre Zustand zu allen drei Zeitpunkten erreicht ist, da sich die MDVs der analysierten proteinogenen Aminosäuren nicht mehr ändern. Der isotopisch stationäre Zustand wurde auch für die restlichen proteinogenen Aminosäuren, sowie für die intra- und extrazellulären Metabolite beobachtet, welche zur Flussanalyse eingesetzt wurden. Auch in den weiteren durchgeführten kontinuierlichen Kulturen der beiden Stämme BY4742 und BY4742 mae1 Δ sowie in den Batch-Kulturen auf Glucose und Galactose konnte die stimmtes Fragment nicht gezeigt werden - in der Regel durch eine nicht ausreichende Qualität des Spektrums oder Koelution störender Substanzen mit ähnlichem Fragmetmuster bedingt - so wurde dieses nicht zur Berechnung der intrazellulären Flüsse herangezogen.

Abbildung 29: Überprüfung des isotopisch stationären Zustandes am Beispiel der kontinuierlichen Kultur von *S. cerevisiae* BY4742 bei einer Verdünnungsrate von 0,16 h⁻¹. Gezeigt sind die MDVs der Aminosäuren Valin [288], Threonin [404], Phenylalanin [336] und Aspartat [418] zu drei verschiedenen Zeitpunkten (t_1 , t_2 , t_3). Die Projektion auf die entsprechenden Ebenen verdeutlicht den isotopisch stationären Zustand zu allen Zeitpunkten.

5.2.4 Qualität der simulierten MDVs

Die Abweichung der Anpassung der simulierten an die gemessenen Massenisotopomerverteilungen gibt Aufschluss über die Qualität der berechneten intrazellulären Flüsse. Dazu wurden die isotopenkorrigierten MDVs der analysierten Aminosäuren aus Proteinhydrolysaten, sowie der intrazellulären und sekretierten Metabolite mit den simulierten verglichen. In Abbildung 30 sind diese Vergleiche für die Chemostatexperimente graphisch dargestellt.

Abbildung 30: Vergleich der simulierten Massenisotopomerverteilungen der ¹³C metabolischen Flussanalyse mit den experimentell bestimmten MDVs. Gezeigt sind die Anpassungen der kontinuierlichen Kulturen. (A) BY4742 bei einer Verdünnungsrate von 0,16 h⁻¹, (B) BY4742 bei einer Verdünnungsrate von 0,22 h⁻¹, (C) BY4742 mae1 Δ bei einer Verdünnungsrate von 0,16 h⁻¹ und (D) BY4742 mae1 Δ bei einer Verdünnungsrate von 0,22 h⁻¹.

Bei allen durchgeführten Experimenten wurde eine sehr gute Anpassung der simulierten Massenisotopomerverhältnisse an die gemessenen erreicht, wodurch der zelluläre Metabolismus durch das verwendete Modell hinreichend gut beschrieben wird. Dies bedeutet, dass auf Grundlage der ermittelten intrazellulären Flüsse ein dem gemessenen Markierungsmuster vergleichbares simuliert werden kann. Die Ermittlung der experimentellen ¹³C Verteilung in den Metaboliten erfolgte in technischen Duplikaten im SIM-Modus der GC/MS-Analyse (siehe Kapitel 4.5.7). Die Fehler hierbei lagen deutlich unterhalb von 1 %, was in etwa der Genauigkeit entspricht, mit der eine natürliche Isotopenverteilung von Standardsubstanzen bestimmt werden kann. Somit ist dieser Fehler der Bestimmung der Isotopomerverteilungen auf die Flussanalyse zu vernachlässigen.

Abbildung 31: Vergleich der simulierten Massenisotopomerverteilungen der ¹³C metabolischen Flussanalyse mit den experimentell bestimmten MDVs. Gezeigt sind die Anpassungen der Batch-Kultivierungen. (A) BY4742 Glucose, (B) BY4742 mae1∆ Glucose, (C) BY4742 Galactose und (D) BY4742 mae1∆ Galactose.

Auch für die Batch-Kultivierungen auf Glucose oder Galactose wurde eine gute Anpassung der experimentell bestimmten an die simulierten Massenisotopomerverteilungen erreicht, wie aus Abbildung 31 ersichtlich wird.

Im Folgenden wird nun zunächst der Einfluss der *MAE1*-Deletion auf den rein respirativen, sowie den respiro-fermentativen Stoffwechsel von *S. cerevisiae* unter Substratlimitierenden Bedingungen in kontinuierlicher Kultur diskutiert. Der Einfluss der Deletion des *MAE1*-Gens auf den aerob fermentativen Stoffwechsel in Batch-Kultur bei Wachstum auf Glucose oder Galactose wird in Kapitel 5.2.7 diskutiert.

5.2.5 Einfluss der *MAE1*-Deletion auf den Stoffwechsel von *S. cerevisiae* in kontinuierlicher Kultur

Im Folgenden werden die beiden Stämme BY4742 und BY4742 mae1∆ hinsichtlich ihres Fluxoms verglichen. Dies geschieht zum einen unter rein respirativen Wachstumsbedingungen bei einer Verdünnungsrate von 0,16 h⁻¹, sowie unter respirofermentativen Bedingungen bei einer Verdünnungsrate von 0,22 h⁻¹ in kontinuierlicher Kultur mit Glucose als Kohlenstoffquelle. Die ermittelten Flüsse sind in prozentualen Anteilen der spezifischen Glucoseaufnahmerate angegeben, die auf 100 % normiert wurde. Zur Ermittlung der Flüsse wurden jeweils 100 Monte Carlo Simulationen durchgeführt; die angegebenen Fehler entsprechen 95 % Konfidenzintervallen.

Glykolyse und Pentosephosphatweg

Die Analyse der intrazellulären Flüsse der beiden Stämme lieferte unter beiden Stoffwechselzuständen unterschiedliche Verteilungen der Kohlenstoffflüsse an der Verzweigung zwischen Glykolyse und Pentosephosphatweg auf der Stufe von Glucose-6-phosphat (siehe Abbildung 32 und 33). Bei respirativem Stoffwechsel betrug der relative Fluss durch den oxidativen Teil des Pentosephosphatwegs im Referenzstamm BY4742 42,6 %, was in Übereinstimmung mit dem in der Literatur angegebenen Splitverhältnis zwischen Glykolyse und Pentosephosphatweg liegt (Moreira dos Santos et al., 2004). Der relative Fluss in die Glykolyse beträgt bei BY4742 36,6 %. Auch dieser Wert ist nahezu mit dem bereits beschriebenen Fluss in die Glykolyse identisch (Moreira dos Santos et al., 2004). Die Deletion des *MAE1*-Gens hat mit 54,1 % einen deutlich höheren Kohlenstofffluss durch den Pentosephosphatweg zur Folge; dementsprechend niedriger ist der glykolytische Fluss über die Phosphoglucoisomerase. Er beträgt lediglich 21,3 % in der *MAE1*-Deletionsmutante.

Abbildung 32: Metabolische Flussverteilung in *S. cerevisiae* BY4742 in kontinuierlicher Kultur bei einer Verdünnungsrate von 0,16 h⁻¹ und Kultivierung auf einem 50:50 Gemisch aus [1-¹³C]-Glucose und [U-¹³C]-Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von q_s = 1,46 mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Da die spezifischen Substrataufnahmeraten beider Stämme mit 1,46 mmol g^{-1} h⁻¹ (BY4742) und 1,39 mmol g^{-1} h⁻¹ (BY4742 mae1 Δ) ähnlich sind, gilt der in den relativen Flüssen beobachtete Unterschied auch für die entsprechenden absoluten Flüsse durch den Pentosephosphatweg. Demnach wird in BY4742 1,24 mmol g^{-1} h⁻¹ NADPH über den Pentosephosphatweg generiert, in der Deletionsmutante dagegen 1,50 mmol g^{-1} h⁻¹. Dieser höhere Fluss durch den Pentosephosphatweg schlägt sich jedoch nicht in den bestimmten *in vitro* Enzymaktivitäten nieder, die eine Aussage über die Menge des vorhandenen Enzyms in der Zelle möglich machen.

Aktivitäten Die spezifischen der Glucose-6-phosphat-Dehydrogenase, dem geschwindigkeitsbestimmenden Schritt des oxidativen Teils des Pentosephosphatwegs, betrugen im Referenzstamm BY4742 64,4 mU/mg sowie 46,7 mU/mg im MAE1-Deletionsstamm (siehe Tabelle 16). Letzterer besitzt jedoch einen höheren absoluten Fluss durch den Pentosephosphatweg. Das NADP⁺/NADPH Verhältnis übt einen entscheidenden Einfluss auf die Aktivität dieses Enzyms aus, wobei im Verhältnis zu NADP⁺ hohe NADPH Konzentrationen die Aktivität der Glucose-6-phosphat-Dehydrogenase inhibieren. Das in der MAE1-Deletionsmutante ermittelte anabole Verhältnis von NADP⁺ zu NADPH von 0,70, war im Vergleich zu dem des Referenzstamms BY4742 von 0,56 signifikant erhöht. Diese Änderung erklärt den erhöhten Fluss durch den Pentosephosphatweg, trotz der geringeren Enzymmengen der Glucose-6-phosphat-Dehydrogenase im MAE1-Deletionsstamm.

Dem Pentosephosphatweg werden anabole Vorstufen zur Synthese der Biomasse auf den Stufen von Ribose-5-phosphat, sowie Erythrose-4-phosphat entzogen. Diese machen jedoch jeweils nur etwa 3 - 4 % Prozent aus (siehe Abbildung 32 und Abbildung 33), so dass die Hauptaufgabe des Pentosephosphatwegs nicht die Bereitstellung von anabolen Vorstufen, sondern die Generierung von NADPH darstellt. Dabei ist der Bedarf an Vorläufermolekülen in der *MAE1*-Deletionsmutante im Vergleich zum Referenzstamm leicht erhöht, was durch eine tendenziell gesteigerte Biomasseausbeute bedingt ist.

Aufgrund des erhöhten Flusses in den oxidativen Teil des Pentosephosphatwegs, sind auch die Flüsse im reversiblen Teil und der Rückfluss in die Glykolyse auf der Stufe von Fructose-6-phosphat und Glucose-6-phosphat in der *MAE1*-Deletionsmutante höher, als dies im Referenzstamm BY4742 der Fall ist.

Fumaratex a-Ketoglutaratex

Abbildung 33: Metabolische Flussverteilung in *S. cerevisiae* BY4742 mae1 Δ in kontinuierlicher Kultur bei einer Verdünnungsrate von 0,16 h⁻¹ und Kultivierung auf einem 50:50 Gemisch aus [1-¹³C]-Glucose und [U-¹³C]-Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von q₈ = 1,39 mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Der erhöhte Verlust von Kohlenstoff durch die Decarboxylierung im oxidativen Teil des Pentosephosphatwegs, sowie der erhöhte Bedarf anaboler Vorstufen des *MAE1*-Deletionsstammes, führen in diesem Stamm zu einer Erniedrigung des glykolytischen Flusses. Dieser beträgt auf der Stufe der Pyruvat-Kinase im Referenzstamm BY4742 122 % und in der *MAE1*-Deletionsmutante 107 %.

Des Weiteren ist zu beobachten, dass die spezifischen *in vitro* Aktivitäten der beiden glykolytischen Enzyme Phosphofructokinase bzw. Pyruvat-Kinase in der *MAE1*-Deletionsmutante mit 60,4 mU/mg sowie 4010 mU/mg höher liegen, als dies im Referenzstamm BY4742 der Fall ist (36,3 mU/mg bzw. 3693 mU/mg; siehe Tabelle 16). Dies bedeutet, dass auch hier der verminderte glykolytische Fluss im Falle der *MAE1*-Deletion nicht an einer Verringerung der intrazellulären Enzymmenge festgemacht werden kann. Im Falle der Phosphofructokinase kann eine Hemmung durch erhöhte ATP-Konzentrationen, sowie ein verringertes kataboles Verhältnis erfolgen, d. h. im Verhältnis zu NAD⁺- hohe NADH-Konzentrationen oder auch durch Citrat. Ein Einfluss des katabolen Verhältnisses von NAD⁺ zu NADH auf die Aktivität kann hierbei jedoch ausgeschlossen werden, da dieses mit 0,92 bzw. 0,94 in beiden Stämmen nahezu identisch war. Analog wird die Pyruvat-Kinase ebenfalls durch im Verhältnis hohe ATP-Konzentrationen allosterisch inhibiert. Den entscheidenden Schritt für den weiteren Verlauf von Glykolyse und Pentosephosphatweg scheint deshalb jedoch die Steuerung des oxidativen Teils des Pentosephosphatwegs darzustellen.

Interessant in diesem Zusammenhang ist die spezifische *in vitro* Aktivität der Fructose-1,6bisphosphatase, einem gluconeogenen Enzym. Die spezifische Aktivität war im Referenzstamm BY4742 mit 12,2 doppelt so hoch wie dies in der *MAE1*-Deletionsmutante der Fall war (siehe Tabelle 16), was zu einer erhöhten ATP-Hydrolyse über diesen "*futile cycle*" führen kann und somit das Verhältnis zwischen ATP und ADP im Referenzstamm zu Gunsten der energieärmeren Form verschieben kann. Dies kann sich, wie bereits diskutiert, auf die Regulation und Aktivität der glykolytischen Enzyme Phosphofructokinase und Fructose-1,6-bisphosphatase auswirken.

Unter respiro-fermentativen Wachstumsbedingungen zeigt sich ein vergleichbares Verhalten beider Stämme, wie bereits zuvor bei rein-respirativem Stoffwechsel beobachtet. Auch hier konnten unterschiedliche Verzweigungen zwischen Glykolyse und Pentosephosphatweg zwischen der *MAE1*-Deletionsmutante und dem Referenzstamm beobachtet werden (siehe Abbildung 34 und Abbildung 35).

Fumaratex a-Ketoglutaratex

Abbildung 34: Metabolischen Flussverteilung in *S. cerevisiae* BY4742 in kontinuierlicher Kultur bei einer Verdünnungsrate von 0,22 h⁻¹ und Kultivierung auf einem 50:50 Gemisch aus $[1-^{13}C]$ -Glucose und $[U-^{13}C]$ -Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von q_s = 2,42 mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile bezeichnen anabole Flüsse zur Biomassesynthese, rote Pfeile extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Die relativen Flüsse durch den oxidativen Teil des Pentosephosphatwegs ausgehend von Glucose-6-phopshat betrugen in der *MAE1*-Deletionsmutante 20,8 % und im Referenzstamm 16,9 %. Durch die erhöhten spezifischen Glucoseaufnahmeraten von 2,42 mmol g⁻¹ h⁻¹ (BY4742) bzw. 2,40 mmol g⁻¹ h⁻¹ (BY4742 mae1 Δ), ergaben sich damit die absoluten Flüsse durch den oxidativen Teil des Pentosephosphatwegs zu 0,41 mmol g⁻¹ h⁻¹ bzw. 0,50 mmol g⁻¹ h⁻¹.

Generell waren die bestimmten relativen Flüsse durch den Pentosephosphatweg bei respiro-fermentativem Stoffwechsel in beiden Stämmen geringer, als dies bei rein respirativem Stoffwechsel, wie schon früher für den Stamm *S. cerevisiae* ATCC 32167 beschrieben, der Fall war (Frick und Wittmann, 2005).

Die in diesem Zusammenhang generierte Menge an NADPH war entsprechend doppelt so hoch wie die zuvor genannten Flüsse. Der Vergleich der spezifischen in vitro Enzymaktivitäten beider Stämme lieferte für den respiro-fermentativen Stoffwechsel jeweils höhere Werte (siehe Kapitel 5.1.4), obwohl die absoluten Flüsse durch den Pentosephosphatweg bei respiro-fermentativem Stoffwechsel geringer waren, als dies bei rein respirativem Stoffwechsel der Fall war. Allerdings wurden auch hier bei beiden Stämmen bei respiro-fermentativem Stoffwechsel geringere anabole Verhältnisse von NADP⁺ und NADPH bestimmt, als bei rein respirativem Stoffwechsel. Diese betrugen im Referenzstamm 0,56 (respiratives Wachstum) bzw. 0,48 (respiro-fermentatives Wachstum), sowie im MAE1-Deletionsstamm 0,70 (respiratives Wachstum) bzw. 0,54 (respiro-fermentatives Wachstum). Die Diskrepanz zwischen in vivo Flüssen und in vitro Enzymaktivitäten kann somit auf Änderungen des anabolen Verhältnisses von NADP⁺ und NADPH zurückgeführt werden, welche einen entscheidenden Einfluss auf die Regulation der Aktivität des oxidativen Teils des Pentosephosphatwegs besitzen. Gleiches gilt auch für beide Stämme untereinander bei respiro-fermentativem Stoffwechsel. Auch hier weist der Referenzstamm höhere spezifische in vitro Aktivitäten der Glucose-6-phosphat-Dehydrogenase auf, bei geringerem absolutem Fluss durch den oxidativen Teil des Pentosephosphatwegs. Dies kann jedoch in diesem Fall durch ein erhöhtes anaboles Verhältnis von NADP⁺ und NADPH in der *MAE1*-Deletionsmutante erklärt werden.

Abbildung 35: Metabolische Flussverteilung in *S. cerevisiae* BY4742 mae1 Δ in kontinuierlicher Kultur bei einer Verdünnungsrate von 0,22 h⁻¹ und Kultivierung auf einem 50:50 Gemisch aus [1-¹³C]-Glucose und [U-¹³C]-Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von q_s = 2,40 mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Die anabolen Vorstufen für die Biomassesynthese, die dem Pentosephosphatweg und der Glykolyse entzogen werden, sind aufgrund der geringeren Biomasseausbeute bei respirofermentativem Wachstum, im Vergleich zum bereits diskutierten rein respirativen Stoffwechsel geringer und zwischen beiden Stämmen vergleichbar (siehe Abbildung 34 und 35). Dies gilt ebenso für den glykolytischen Fluss auf der Stufe der Pyruvat-Kinase. Dieser beträgt im Referenzstamm 139 % und in der *MAE1*-Deletionsmutante 143 %. Die spezifischen *in vitro* Aktivitäten der glykolytischen Enzyme Phosphofructokinase und Pyruvat-Kinase sind, wie auch bei rein respirativem Stoffwechsel bereits diskutiert, in der *MAE1*-Deletionsmutante erhöht (siehe Tabelle 16).

Die glykolytischen Flüsse jedoch sind in beiden Stämmen vergleichbar. Auch unter respiro-fermentativem Wachstumsbedingungen wurde eine zweifach erhöhte spezifische in vitro Aktivität der Fructose-1,6-bisphosphatase im Referenzstamm BY4742 bestimmt, was wiederum zu einer Steigerung der ATP-Hydrolyse führen kann und somit zu einem veränderten Verhältnis zwischen ATP und den weniger energiereichen Formen ADP und AMP. Dies führt wiederum dazu, dass die beiden untersuchten Enzyme im Referenzstamm stärker aktiviert, bzw. schwächer inhibiert werden, wodurch, im Vergleich zur MAE1-Deletionsmutante, ein vergleichbarer glykolytischer Fluss auch bei geringeren Enzymmengen zustande kommen kann. Der Vergleich der absoluten glykolytischen in vivo Flüsse korreliert dagegen mit den bestimmten spezifischen in vitro Enzymaktivitäten der Phosphofructokinase (siehe Kapitel 5.1.4). Hierbei sind die Unterschiede zwischen rein respirativem und respiro-fermentativem Stoffwechsel bei beiden Stämmen sehr deutlich. Im Referenzstamm steigt der glykolytische Fluss von 0,53 mmol g⁻¹ h⁻¹ (respirativer Stoffwechsel) auf 1,57 mmol g⁻¹ h⁻¹ (respiro-fermentativer Stoffwechsel), im MAE1-Deletionsstamm steigt er von 0,30 mmol g⁻¹ h⁻¹ (respirativer Stoffwechsel) auf 1.50 mmol g^{-1} h⁻¹ (respiro-fermentativer Stoffwechsel).

Zuletzt seien die Reversibilitäten der Transaldolase- und der beiden Transketolasereaktionen im reversiblen Teil des Pentosephosphatwegs diskutiert. Die Reversibilität ζ ist definiert aus dem Quotient des Rückflusses durch den Nettofluss einer reversiblen Reaktion und wird nach folgender Gleichung berechnet:

$$\zeta = \frac{\mathbf{v}_{\text{rück}}}{\left|\mathbf{v}_{\text{hin}} - \mathbf{v}_{\text{rück}}\right|}$$

Die Reversibilitäten der Transketolase ausgehend von Xylulose-5-phosphat und Ribose-5phosphat, konnten nur bei einer Verdünnungsrate von 0,16 h⁻¹ bestimmt werden. Im Referenzstamm BY4742 war die Reaktion irreversibel, in der MAE1-Deletionsmutante besaß die Reaktion eine Reversibilität von 1,1. Die Reaktion der Transaldolase besaß in beiden Stämmen sowohl bei respirativem als auch bei respiro-fermentativem Stoffwechsel vergleichbare Reversibilitäten von 2,2 bis 2,5. Die einzige Ausnahme stellte der Referenzstamm BY4742 bei respiro-fermentativem Stoffwechsel dar. Hier betrug die Reversibilität der Transaldolasereaktion 4,2. Die zweite Transketolasereaktion, ausgehend von Xylulose-5-phosphat und Erythrose-4-phosphat, wies größere Unterschiede hinsichtlich der Reversibilitäten auf. Dabei war die Reaktion bei rein respirativem Wachstum des Referenzstamme irreversibel ($\zeta = 0$), wohingegen die Reversibilität des MAE1-Deletionsstammes bei gleichem Stoffwechsel bei 1,1 lag. Bei respiro-fermentativem Stoffwechsel lagen die Reversibilitäten sowohl des Referenzstammes BY4742 mit 6,3 als auch die des MAE1-Deletionsstammes mit 4,7 deutlich höher. Änderungen in den Reversibilitäten von Reaktionen können aus Änderungen der Konzentrationen ihrer Substrate und Produkte herrühren. Tendenziell kann gesagt werden, dass bei respirofermentativem Stoffwechsel in beiden untersuchten Stämmen ein höherer Austausch zwischen den Substrat- und Produktpools stattfindet, als dies in beiden Stämmen bei respirativem Stoffwechsel der Fall ist. Da die Bestimmung der Reversibilitäten jedoch ungenau ist, der relative Fehler lag bei den Bestimmungen im Bereich von 20 %, sind diese Aussagen mit der nötigen Skepsis zu betrachten (Wiechert und de Graaf, 1997). Die Reversibilität der Phosphoglucoisomerase, dem reversiblen ersten Schritt der Glykolyse ausgehend von Glucose-6-phosphat zu Fructose-6-phosphat, konnte nicht bestimmt werden. Jedoch ist hier aufgrund der ermittelten Daten von einem starken Austausch der beiden Pools auszugehen.

Interkompartimenteller Transport und Verzweigung am Pyruvatknotenpunkt

Insgesamt wurden drei verschiedene Transporter zwischen dem Cytosol und der mitochondriellen Matrix berücksichtigt. Neben unidirektionalen Pyruvat und Acetyl-CoA-Transportern wurde auch ein bidirektionaler Transporter für Oxalacetat/Malat in das Modell integriert. Die intrazellulären Pools von Malat und Oxalacetat wurden in dem verwendeten Modell zusammengelegt. Mitochondrielles Acetyl-CoA kann über zwei

Wege generiert werden; zum einen über den Pyruvat-Transport in die mitochondrielle Matrix, gefolgt von einer Decarboxylierung durch den Pyruvat-Dehydrogenase-Komplex, zum anderen über den Pyruvat-Dehydrogenase-Bypass (siehe Abbildung 3). Aufgrund ähnlicher Markierungen dieser beiden alternativen Wege konnte deren getrennte Bestimmung nur mit einer gewissen Unsicherheit erfolgen, was durch die entsprechend breiten Konfidenzintervalle deutlich wird (siehe Abbildungen 32 - 35). Der benötigte Fluss durch den Pyruvat-Dehydrogenase-Bypass wird dabei durch den anabolen Bedarf an cytosolischem Acetyl-CoA zur Fettsäurebiosynthese sowie durch die extrazellulären Flüsse von Ethanol und Acetat bestimmt. Diese sind in Tabelle 23 zusammengefasst. Der maximale Fluss wird durch die gebildete Menge an NADPH über die Acetaldehyd-Dehydrogenase vorgegeben, die über die Biomassebildung unter Berücksichtigung weiterer NADPH-Quellen (Pentosephosphatweg) reoxidiert werden kann. Da jedoch hinsichtlich der NADPH-Bildung eine weitere Unsicherheit, namentlich die NAD⁺- und NADP⁺-abhängigen Isoenzyme der Isocitrat-Dehydrogenase, besteht, kann dieser maximale Fluss nicht exakt bestimmt werden (siehe dazu auch Tabelle 16). Der maximale Fluss wurde daher für eine rein NAD⁺-abhängige Isocitrat-Dehydrogenase im Citratzyklus abgeschätzt. Jedoch kann auch mit dieser Annahme bei respirativem Stoffwechsel das minimal über den Bypass gebildete NADPH, aufgrund des benötigten cytosolischen Acetyl-CoAs zur Fettsäurebiosynthese, nicht über die Biomassebildung reoxidiert werden.

Tabelle 23: Benötigter Fluss durch den Pyruvat-Dehydrogenase-Bypass zur Bereitstellung des cytosolischen Acetyl-CoAs für die Fettsäurebiosynthese, sowie der max. zulässige Fluss durch den Bypass unter der Annahme einer ausschließlichen NADPH-Reoxidation über die Biomassebildung unter der Beachtung des anabolen Bedarfs an cytosolischem Acetyl-CoA sowie der extrazellulären Ethanol-und Acetat-Flüsse. Angegebene prozentuale Flüsse sind auf die jeweilige spezifische Glucoseaufnahmerate bezogen (siehe Tabelle 13).

		benötigter Fluss zur Bereitstellung von cyt. Acetyl-CoA [%]	max. Fluss bei ausschließlicher NADPH Reoxidation über die Biomasse [%]	tatsächlicher Fluss [%]
BY4742	0,16 h ⁻¹	20,7	3,1	$31,1 \pm 0,9$
(Ref)	0,22 h ⁻¹	74,9	80	$84,1 \pm 0,9$
mae1 Δ	0,16 h ⁻¹	25,1	- 2,5	$44,7 \pm 1,7$
	0,22 h ⁻¹	89,6	94,1	$94,5 \pm 1,0$

Besonders deutlich wird dies bei der *MAE1*-Deletionsmutante. Hier wird über den Pentosephosphatweg insgesamt 108,2 % NADPH generiert; alleine schon mehr als die zur Biomassebildung benötigte Menge von 105,7 %. Dies hat zur Konsequenz, dass neben der Biomassebildung alternative Wege für die Reoxidation von NADPH zur Verfügung stehen müssen, da auch eine nicht detektierte (siehe Abbildung 26) aktive NAD⁺-abhängige Acetaldehyd-Dehydrogenase, im Falle der *MAE1*-Deletion, die NADPH-Bilanz nicht schließen kann.

Boles et al. zeigten bereits 1993, dass die anabolische NADPH-abhängige und die katabolische NADH-abhängige Glutamat-Dehydrogenase einen Kreislauf zur Übertragung von Elektronen von NADPH auf NADH bilden können, vorausgesetzt die NADH-abhängige Isoform wird überexprimiert. Moreira dos Santos et al. beobachteten 2004 bei der Überexpression des mitochondriellen Malat-Enzyms und einer cytosolischen Variante des Enzyms erhöhte Enzymaktivitäten eben dieser beiden Enzyme und schlossen daraus auf die Aktivität des entsprechenden Zyklus zum Abbau eines cytosolischen NADPH-Überschusses zu NADH. In Kapitel 5.2.6 wird im Rahmen der Bilanzierung der Redoxäquivalente näher auf diese Fragestellung eingegangen. Bei respiro-fermentativem Stoffwechsel lagen die Flüsse durch den Pyruvat-Dehydrogenase-Bypass im Bereich der oberen Grenze. Jedoch ist auch hier höchstwahrscheinlich von einem NADPH-Überschuss auszugehen, da zur Berechnung des maximalen Flusse eine rein NAD⁺-abhängige Isoform der Isocitrat-Dehydrogenase im Citratzyklus angenommen wurde, was aufgrund der bestimmten *in vitro* Enzymaktivitäten jedoch als eher unwahrscheinlich anzusehen ist.

Des Weiteren wurde der Transport von Oxalacetat als bidirektionale Reaktion in das Modell aufgenommen. Tabelle 24 zeigt die mittels ¹³C metabolischer Flussanalyse bestimmten Export- und Importflüsse. Zwischen dem mitochondriellen und dem cytosolischen Pool findet ein starker Austausch statt, was zu ähnlichen Markierungsverteilungen in beiden Pools führt. Dies wird anhand der hohen Reversibilitäten der Reaktion deutlich.

Eine weitere Reaktion am Pyruvatknotenpunkt ist die der Pyruvat-Carboxylase, einer anaplerotischen Reaktion zum Auffüllen des Citratzyklus. Der metabolische Fluss über die Pyruvat-Carboxylase ist im Referenzstamm BY4742 mit 35,6 % unter respirativen Wachstumsbedingungen und 27,1 % bei respiro-fermentativem Stoffwechsel höher als in der *MAE1*-Deletionsmutante mit 28,9 % bzw. 18,2 % unter den entsprechenden metabolischen Bedingungen. Dies macht sich auch in einem geringeren Nettofluss aus dem

cytosolischen in den mitochondriellen Oxalacetatpool bemerkbar. Der Grund hierfür ist nicht in dem Entzug anaboler Vorstufen aus dem Citratzyklus zu suchen, da diese bei beiden Stämmen, unter den jeweiligen physiologischen Zuständen vergleichbar bzw. in der Deletionsmutante leicht erhöht waren. Vielmehr ist die Reaktion des Malat-Enzyms im BY4742 für den erhöhten Bedarf anaplerotischer Referenzstamm Vorstufen verantwortlich, da dem Citratzyklus durch dessen Reaktion C₄-Körper entzogen werden, die dann über Pyruvat als Acetyl-CoA und somit als C2-Körper wieder in den Citratzyklus eintreten. Die Reaktion der PEP-Carboxykinase wurde aufgrund ihrer schlechten Bestimmbarkeit nicht in das Modell integriert, jedoch ist von einer Aktivität des Enzyms in beiden Stämmen auszugehen, sowohl unter respirativem als auch unter respirofermentativem Stoffwechsel. Dies wird auch durch die bestimmten in vitro Aktivitäten bestätigt. Somit ist vermutlich, neben dem bereits beschriebenen "futile cycle" aus Phosphofructokinase und Fructose-1,6-bisphosphatase, ein weiterer bestehend aus Pyruvat-Carboxylase, PEP-Carboxykinase und Pyruvat-Kinase aktiv, der zu einer Nettohydrolyse von ATP führt. Zwischen den einzelnen Stämmen und Wachstumsbedingungen ist jedoch aufgrund der vergleichbaren in vitro Aktivität (siehe Kapitel 5.1.4) keine Aussage über die Aktivität dieser Reaktion zu treffen.

Tabelle 24: Import-und Export-Flüsse des Oxalacetat-Transportes. Angegeben sind des Weiteren die jeweiligen Nettoflüsse und die Reversibilitäten der Stämme *S. cerevisiae* BY4742 und BY4742 mae1 Δ bei rein respirativem Wachstum (0,16 h⁻¹) und respiro-fermentativen Wachstum (0,22 h⁻¹). Flüsse als prozentuale Anteile der entsprechenden spezifischen Glucoseaufnahmeraten q_s (siehe Tabelle 13); n. b. – nicht bestimmbar aufgrund zu hoher Ungenauigkeiten (Standardabweichung der Flüsse im Bereich ihres Mittelwertes).

		Importfluss [%]	Exportfluss [%]	Nettofluss [%]	Reversibilität
BY4742	0,16 h ⁻¹	80,5 ± 1,3	61,1 ± 1,3	$19,3 \pm 0,4$	3,1
(Ref)	0,22 h ⁻¹	$67,3\pm0,8$	$53,0 \pm 0,8$	$14,3 \pm 0,2$	3,7
mae1 Δ	0,16 h ⁻¹	n. b.	n. b.	$16,1 \pm 0,0$	n. b.
	0,22 h ⁻¹	$20,9 \pm 0,1$	$13,2 \pm 0,1$	$7,7 \pm 0,1$	1,7

Citratzyklus und Malat-Enzym

Der Eintritt des Kohlenstoffes in den Citratzyklus erfolgt über Acetyl-CoA. Dies wird entweder über den Pyruvat-Dehydrogenase-Komplex in der mitochondriellen Matrix gebildet oder aus dem Cytosol importiert. Aufgrund der zuvor diskutierten Unsicherheit der beiden alternativen Wege zur Acetyl-CoA-Generierung, ist die Aktivität des Pyruvat-Dehydrogenase-Komplexes auch mit einer relativ großen Unsicherheit behaftet (siehe Abbildungen 32 - 35). Die höchste Aktivität des Citratzyklus weist der Referenzstamm unter respirativen Wachstumsbedingungen mit einem Isocitrat-Dehydrogenase-Fluss von 63,5 % auf. Der MAE1-Deletionsstamm besitzt unter vergleichbaren physiologischen Bedingungen nur einen Fluss von 40,1 %. Dies entspricht einem absoluten Fluss von 0,93 mmol g^{-1} h⁻¹ im Referenzstamm und 0,56 mmol g^{-1} h⁻¹ in der MAE1-Deletionsmutante. Die in vitro Aktivität der Isocitrat-Dehydrogenase ist im Referenzstamm mit 157,7 mU/mg ebenfalls leicht höher als in der Deletionsmutante mit 146,5 mU/mg. Ein Einfluss des katabolen Verhältnisses von NAD⁺ zu NADH auf die Aktivität des Citratzyklus kann aufgrund gleichbleibender Verhältnisse von 0,92 und 0,94 der oxidierten und reduzierten Spezies ausgeschlossen werden. Die geringere Aktivität des Citratzyklus im Falle der MAE1-Deletion ist auf den verringerten glykolytischen Fluss, sowie die nicht vorhandene Aktivität des Malat-Enzyms zurückzuführen. Die maximale Menge an mitochondriell gebildetem NADPH, bei einer rein NADP⁺-abhängigen Isocitrat-Dehydrogenase beträgt im Referenzstamm, unter Beachtung der Aktivität des Malat-Enzyms, 1,05 mmol g⁻¹ h⁻¹. In der *MAE1*-Deletionsmutante beträgt die mitochondriell gebildete Menge an NADPH 0,56 mmol g⁻¹ h⁻¹. Dies reicht im Falle des Referenzstammes aus, um den mitochondriellen anabolen Bedarf von 0,67 mmol g⁻¹ h⁻¹ an NADPH zu decken. In der Deletionsmutante ist dies jedoch nicht der Fall. Dabei macht die spezifische in vitro Aktivität der NAD⁺-abhängigen Isocitrat-Dehydrogenase im Referenzstamm mit 8,6 mU/mg 5,5 % der Gesamtaktivität der NAD⁺- und NADP⁺-abhängigen Isoenzyme aus, in der MAE1-Deletionsmutante dagegen mit 31 mU/mg 21 % der Gesamtaktivität (siehe Tabelle 16). Bei keinem der beiden Stämme ist somit von einer rein NADP⁺-abhängigen Isocitrat-Dehydrogenase auszugehen und daher liegt die tatsächliche Menge an mitochondriell gebildetem NADPH unterhalb des zuvor genannten maximalen Wertes. Der größere Anteil der NAD⁺-abhängigen Isocitrat-Dehydrogenase an der Gesamtaktivität im Falle der MAE1-Deletion kann evtl. über einen größeren cytosolischen NADPH-

Überschuss erklärt werden. Um das mitochondriell fehlende NADPH auszugleichen sind grundsätzlich zwei Wege möglich:

- (i) Import von cytosolischem NADPH in die mitochondrielle Matrix über Shuttlesysteme und
- (ii) das Ablaufen des Pyruvat-Dehydrogenase-Bypasses in zwei Kompartimenten (siehe Abbildung 3) durch die Beteiligung der cytosolischen Acetaldehyd-Dehydrogenase ALD4, sowie der mitochondriellen Isoformen ALD5/6.

Da Shuttlesysteme, die den Austausch von NADPH zwischen dem Cytosol und der mitochondriellen Matrix katalysieren bisher nicht beschrieben wurden, ist Möglichkeit (ii) die wahrscheinlichere der beiden. Das bereits im Zusammenhang mit dem Pentosephosphatweg diskutierte Problem des NADPH-Überschuss bei rein respirativem Wachstum bleibt nach wie vor bestehen, da z. B. in der *MAE1*-Deletionsmutante mehr NADPH über den Pentosephosphatweg gebildet wird, als sowohl in der mitochondriellen Matrix als auch im Cytosol über die Bildung von Vorläufermolekülen für die Biomassesynthese reoxidiert werden kann. Auf dieses Problem wird im Rahmen der Bilanzierung der Redoxäquivalente in Kapitel 5.2.6 näher eingegangen.

Auch unter respiro-fermentativen Bedingungen lag die Aktivität der Isocitrat-Dehydrogenase als charakteristisches Enzym des Citratzyklus mit 32,6 % im Referenzstamm höher als in der *MAE1*-Deletionsmutante mit 25,7 %. Hauptverantwortlich hierfür ist vor allem die erhöhte Ethanolproduktion des *MAE1*-Deletionsstammes von 54,4 % gegenüber 37,5 % im Referenzstamm, sowie die Aktivität des Malat-Enzyms im Referenzstamm. Auch hier korreliert die spezifische Gesamtaktivität (NAD⁺- und NADP⁺anhängige Isoenzyme) der Isocitrat-Dehydrogenase von 236,4 mU/mg im Referenzstamm bzw. 165,3 mU/mg im *MAE1*-Deletionsstamm mit den absoluten Flüssen von entsprechend 0,79 mmol g⁻¹ h⁻¹ bzw. 0,62 mmol g⁻¹ h⁻¹. Der Anteil der spezifischen Aktivität der NAD⁺abhängigen Isocitrat-Dehydrogenase an der Gesamtaktivität der NAD⁺- und NADP⁺abhängigen Isoformen in beiden Stämmen ist vergleichbar und beträgt im Referenzstamm 23,9 %, sowie 20,0 % in der *MAE1*-Deletionsmutante (siehe Tabelle 16). Der mitochondrielle anabole Bedarf an NADPH beträgt bei den eingestellten respirofermentativen Wachstumsbedingungen 0,95 mmol g⁻¹ h⁻¹. Das Maximum der mitochondriellen NADPH-Produktion, wiederum bei angenommener rein NADP⁺abhängiger Isocitrat-Dehydrogenase beträgt im Referenzstamm 0,91 mmol g⁻¹ h⁻¹, sowie 0,62 mmol g⁻¹ h⁻¹ im Falle der *MAE1*-Deletion. Demnach sind beide Stämme nicht in der Lage ihren anabolen Bedarf an NADPH in der mitochondriellen Matrix über den Citratzyklus bzw. im Falle des Referenzstammes auch über das Malat-Enzym zu decken. Auch hier kann der in beiden Kompartimenten ablaufende Pyruvat-Dehydrogenase-Bypass das benötigte NADPH in der mitochondriellen Matrix generieren. Auch bei respirofermentativem Stoffwechsel ist von einem signifikanten NADPH-Überschuss auszugehen, wie bereits im Zusammenhang mit dem Pentosephosphatweg beschrieben, da auch hier das cytosolisch gebildete NADPH mehr als ausreicht, um den Bedarf zur Biosynthese zu decken, ohne mitochondriell gebildetes NADPH zu berücksichtigen (siehe Tabelle 23).

Eine Aktivität des Malat-Enzyms wurde ausschließlich im Referenzstamm bestimmt. Die *in vivo* Aktivität lag bei respirativem Wachstum bei 8,6 %, sowie bei 5,0 % unter respiro-fermentativen Wachstumsbedingungen.

Auch bei der Aktivität des Citratzyklus zeigte sich wie bereits früher für *S. cerevisiae* ATCC 32167 beschrieben, dass dessen Aktivität bei respiro-fermentativem Stoffwechsel unterhalb der des rein respirativen Stoffwechsels lag (Frick und Wittmann, 2005). Dies gilt sowohl für den Referenzstamm BY4742, als auch für die *MAE1*-Deletionsmutante.

Aminosäure-Biosynthese

In das Modell wurden alternative Synthese-Wege der Aminosäuren Alanin, Aspartat und Glycin aufgenommen. In der *MAE1*-Deletionsmutante konnte aufgrund der identischen Markierung von cytosolischem und mitochondriellem Pyruvat keine Aussage über die Kompartimentierung der Alanin-Biosynthese getroffen werden. Im Referenzstamm wurde bei respirativem Stoffwechsel der Großteil des Alanins in der mitochondriellen Matrix synthetisiert; bei respiro-fermentativem Stoffwechsel wurde jeweils die Hälfte des Alanins in einem der beiden Kompartimente synthetisiert. Die Glycinbildung erfolgte bei respiro-fermentativem Wachstum bei beiden Stämmen ausschließlich aus Serin, wohingegen bei rein respirativem Stoffwechsel auch geringe Mengen aus Threonin gebildet wurden (siehe Abbildungen 32 - 35). Unter respiro-fermentativen Bedingungen fand des Weiteren die Aspartat-Biosynthese hauptsächlich im Cytosol statt; in der mitochondriellen Matrix wurden nur geringe Mengen gebildet. Ein anderes Bild zeigte der rein respirative

Stoffwechsel; hier erfolgte die Aspartatbildung bei der *MAE1*-Deletionsmutante ausschließlich in der mitochondriellen Matrix, wohingegen sie im Referenzstamm ausschließlich im Cytosol stattfand.

Zusammenfassend wird deutlich, dass sowohl bei rein respirativem, als auch bei respirofermentativem Stoffwechsel, im Falle der Deletion des Malat-Enzyms, ein deutlich erhöhter Fluss durch den Pentosephosphatweg vorlag. Dies wird jedoch nicht aus den bestimmten spezifischen in vitro Enzymaktivitäten deutlich, kann jedoch durch Einbeziehung der anabolen Verhältnisse von NADP⁺ und NADPH, die im Falle der Deletion des MAE1-Gens unter beiden Stoffwechselzuständen signifikant erhöht sind, erklärt werden. Des Weiteren ist der Fluss durch den Citratzyklus im Falle der Deletion des MAE1-Gens deutlich erniedrigt. Dabei reicht lediglich bei respirativem Stoffwechsel des Referenzstammes BY4742 die Menge an mitochondriell gebildetem NADPH aus, um den anabolen Bedarf in den Mitochondrien zu decken. Kompensierend kann hier der Pyruvat-Dehydrogenase-Bypass wirken. Des Weiteren ist in beiden Stämmen unter beiden physiologischen Zuständen ein Überschuss an NADPH zu beobachten, der nicht über die Biomassebildung reoxidiert werden kann. Dies hat als Konsequenz, dass Transhydrogenase-ähnliche Wege vorhanden sein müssen, um NADPH in NADH umzuwandeln und über die Atmungskette zu reoxidieren. Auf diesen Sachverhalt wird im folgenden Kapitel näher eingegangen.

5.2.6 Bilanzierung der Redoxäquivalente, ATP und CO₂

Aufgrund der unterschiedlichen Flussverteilungen, sowohl zwischen den zwei verglichenen Stämmen als auch zwischen den unterschiedlichen physiologischen Zuständen, sind auch Auswirkungen auf die Bilanzen der anabolen und katabolen Reduktionsäquivalente sowie ATP zu erwarten. Zunächst wird auf die NADPH-Bilanz eingegangen.

NADPH-Bilanzierung

Zur Bilanzierung von NADPH wurden die Reaktionen der Enzyme Glucose-6-phosphat-Dehydrogenase und der 6-Phosphogluconat-Dehydrogenase aus dem oxidativen Teil des Pentosephosphatwegs berücksichtigt. Des Weiteren wurden die Isocitrat-Dehydrogenase, und das Malat-Enzym, beide in der mitochondriellen Matrix lokalisiert, herangezogen. Die Isocitrat-Dehydrogenase wurde dabei zunächst als rein NADP⁺-abhängig angenommen, um die Berechnungen zu vereinfachen. Zuletzt wurde die Acetaldehyd-Dehydrogenase zur NADPH-Bilanzierung berücksichtigt.

Bei respirativem Metabolismus übernimmt der Pentosephosphatweg die Generierung des Großteils an gebildetem NADPH. Deutlich wird auch, dass der NADPH-Überschuss, der bei respirativen Wachstum in beiden Stämmen gebildet wird, mit 91,5 % (Referenzstamm) bzw. 87,9 % (*MAE1*-Deletionsstamm) deutlich höher ist, als dies bei respirofermentativem Stoffwechsel mit 37,2 % (Referenzstamm) bzw. 26,1 % (*MAE1*-Deletionsmutante) der Fall ist. Die über den Pyruvat-Dehydrogenase-Bypass gebildete Menge NADPH ist, wie bereits zuvor diskutiert, aufgrund der schlechten Bestimmbarkeit der Verzweigung zwischen dem Bypass und dem Weg über den Pyruvat-Dehydrogenase-Komplex, mit einem gewissen Fehler behaftet. Jedoch wird auch bei der Annahme, dass lediglich die benötigte Menge an cytosolischem Acetyl-CoA sowie die unter respirofermentativem Stoffwechsel stattfindende Acetatproduktion den Fluss durch die Acetaldehyd-Dehydrogenase bestimmen und kein cytosolisches Acetyl-CoA in die mitochondrielle Matrix importiert wird, ein NADPH-Überschuss gebildet.

Tabelle 25: Bilanzierung der NADPH-Bildung und des Verbrauchs durch den Anabolismus. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm für respirativen $(0,16 \text{ h}^{-1})$ und respiro-fermentativen Stoffwechsel $(0,22 \text{ h}^{-1})$; Angegebene prozentuale Werte sind auf die entsprechende spezifische Glucoseaufnahmerate normiert.

BY4742		mae	$e1\Delta$
0,16 h ⁻¹	0,22 h ⁻¹	0,16 h ⁻¹	0,22 h ⁻¹
42,6	16,9	54,1	20,8
42,6	16,9	54,1	20,8
8,6	5,0	0	0
63,5	32,6	32,6	25,7
31,1	47,1	47,1	40,1
188,4	118,5	193,6	107,4
- 96,9	-81,3	-105,7	-81,3
91,5	37,2	87,9	26,1
	BY2 0,16 h ⁻¹ 42,6 42,6 8,6 63,5 31,1 188,4 - 96,9 91,5	BY4742 0,16 h ⁻¹ 0,22 h ⁻¹ 42,6 16,9 42,6 16,9 8,6 5,0 63,5 32,6 31,1 47,1 188,4 118,5 - 96,9 -81,3 91,5 37,2	BY4742 made 0,16 h ⁻¹ 0,22 h ⁻¹ 0,16 h ⁻¹ 42,6 16,9 54,1 42,6 16,9 54,1 42,6 16,9 54,1 8,6 5,0 0 63,5 32,6 32,6 31,1 47,1 47,1 188,4 118,5 193,6 -96,9 -81,3 -105,7 91,5 37,2 87,9

Dies macht den bereits diskutierten Übergang der Elektronen von NADPH auf NADH notwendig, um dieses über die Atmungskette zu reoxidieren. Des Weiteren ändert diese Unsicherheit nicht die Gesamtmenge an gebildeten NADPH bzw. NADH, da der alternative Weg über den Pyruvat-Dehydrogenase-Komplex führt. Lediglich der Referenzstamm ist in der Lage unter respirativen Wachstumsbedingungen die in den einzelnen Kompartimenten benötigte Menge an NADPH für den anabolen Bedarf dort zu bilden, unabhängig von der Lokalisation der Acetaldehyd-Dehydrogenase (siehe Abbildung 36). Der cytosolische anabole Bedarf an NADPH beträgt in diesem Fall 0,74 mmol h⁻¹ g⁻¹, die Bildung 1,24 mmol g⁻¹ h⁻¹. In der mitochondriellen Matrix kann der anabole Bedarf an NADPH von 0,67 mmol g⁻¹ h⁻¹ ebenfalls durch eine Bildung von 0.75 mmol g⁻¹ h⁻¹ gedeckt werden. Auch der MAE1-Deletionsstamm ist in der Lage den cytosolischen Bedarf von 1,52 mmol g⁻¹ h⁻¹ über den Pentosephosphatweg zu gewährleisten (siehe Abbildung 36), jedoch reicht die Aktivität der Isocitrat-Dehydrogenase im Citratzyklus nicht aus, um den mitochondriellen Bedarf an NADPH von 0,70 mmol g⁻¹ h⁻¹ vollständig zu decken (siehe Abbildung 36). Dies kann jedoch durch die zum Teil mitochondriell ablaufende Reaktion der Acetaldehyd-Dehydrogenase kompensiert werden, die in beiden Kompartimenten 0,63 mmol g⁻¹ h⁻¹ generiert (siehe Abbildung 36).

Abbildung 36: Generierung von NADPH und anaboler Bedarf zur Biosynthese unterteilt in die beiden Kompartimente Cytosol und Mitochondrium. Angegeben sind relative Werte normiert auf die jeweilige spezifische Glucoseaufnahmerate der Stämme *S. cerevisiae* BY4742 und mae1 Δ unter respirativen (0,16 h⁻¹) und respiro-fermentativen (0,22 h⁻¹) Wachstumsbedingungen. Die Acetaldehyd-Dehydrogenase ist aufgrund der nicht vollständig geklärten Kompartimentierung der Reaktion separat gezeigt.

Unter respiro-fermentativem Stoffwechsel ist keiner der beiden Stämme in der Lage seinen anabolen Bedarf in beiden Kompartimenten ohne das über die Acetaldehyd-Dehydrogenase bereitgestellte NADPH zu decken (siehe Abbildung 36). Die fehlende Menge kann jedoch wiederum vollständig durch die Reaktion der Acetaldehyd-Dehydrogenase kompensiert werden, die unter diesen Wachstumsbedingungen in beiden Kompartimenten ablaufen muss. Der cytosolische bzw. mitochondrielle Bedarf liegt in beiden Stämmen bei 1,00 mmol g⁻¹ h⁻¹ bzw. 0,96 mmol g⁻¹ h⁻¹. Die NADPH-Bildung im Cytosol beträgt im Falle des Referenzstammes BY4742 0,83 mmol g⁻¹ h⁻¹ und im Falle des *MAE1*-Deletionsstammes 0,98 mmol g⁻¹ h⁻¹. In der mitochondriellen Matrix wird im Referenzstamm 0,94 mmol g⁻¹ h⁻¹ NADPH gebildet, beim *MAE1*-Deletionstamm 0,66 mmol g⁻¹ h⁻¹.

Die gezeigten, mitochondriell gebildeten NADPH-Mengen stellen den maximalen Fluss dar, da zur Berechnung eine rein NADP⁺-abhängige Isocitrat-Dehydrogenase angenommen wurde. Die tatsächlich gebildeten Mengen liegen somit höchst wahrscheinlich unterhalb der in Abbildung 36 gezeigten Mengen. So ist auch der mitochondrielle Überschuss, der bei rein respirativem Stoffwechsel des Referenzstammes gebildet wird mit der nötigen Skepsis zu betrachten. Da der bereits beschriebene Transhydrogenase-ähnliche Zyklus im ein mitochondrieller NADPH-Überschuss Cytosol abläuft, würde einen dementsprechenden Transport ins Cytosol zur Folge haben. Denkbar wären zwei Möglichkeiten für ein Shuttlesystem zur Translokation von mitochondriellem NADPH. Zum einen die cytosolische Acetaldehyd-Dehydrogenase (ALD6) und zum anderen die cytosolische Isocitrat-Dehydrogenase (IDP2).

Eine Beteiligung der Acetaldehyd-Dehydrogenase ist jedoch unwahrscheinlich (Flikweert et al., 1996). Des Weiteren ist in *S. cerevisiae* der Transport von Isocitrat aus der mitochondriellen Matrix in das Cytosol beschrieben (Kaplan et al., 1995). Dort kann die Oxidation zu α -Ketoglutarat unter NADPH-Generierung durch die cytosolische Isoform der Isocitrat-Dehydrogenase erfolgen, wobei das gebildete α -Ketoglutarat wieder in den Citratzyklus fließt. Da beide Systeme jedoch nicht in der beschriebenen Form für *S. cerevisiae* bekannt sind, ist ein mitochondrieller NADPH-Überschuss eher als unwahrscheinlich anzusehen.

Im Folgenden wird davon ausgegangen, dass der cytosolische NADPH-Überschuss über Transhydrogenase-ähnliche Zyklen vollständig zu NADH umgewandelt wird. Außer Acht gelassen wird hierbei NADPH, welches zur Beseitigung von oxidativem Stress und Ähnlichem benötigt wird.

NADH- und CO₂-Bilanzierung

Die Bilanzierung der NADH-Bildung erfolgte anhand der Reaktionen der Glycerinaldehyd-3-phosphat-Dehydrogenase, des Pyruvat-Dehydrogenase-Komplexes, sowie der Citratzyklus assoziierten Reaktionen (α -Ketoglutarat-Dehydrogenase, Succinat-Dehydrogenase (FADH₂) und Malat-Dehydrogenase).

Des Weiteren wurde bei respiro-fermentativem Stoffwechsel die Aktivität der Ethanol-Dehydrogenase berücksichtigt. Letztendlich wurde das überschüssige NADPH in die NADH-Bilanz aufgenommen. Die Bilanzen beider Stämme sind in Tabelle 26 für einen

h⁻¹), (0.16)Stoffwechsel sowie für rein respirativen respiro-fermentative Wachstumsbedingungen (0,22 h⁻¹) gezeigt. Generell wird wie erwartet unter respirativen Wachstumsbedingungen, aufgrund der höheren Citratzyklus-Aktivität, mehr NADH gebildet, als dies bei respiro-fermentativem Stoffwechsel der Fall ist. Der NADH-Überschuss ist unter beiden physiologischen Zuständen in der MAE1-Deletionsmutante geringer als im Referenzstamm; ebenfalls aufgrund des niedrigeren Flusses durch den Citratzyklus in der MAE1-Deletionsmutante. Bei respiro-fermentativem Stoffwechsel senkt außerdem die höhere Ethanolproduktion in der MAE1-Deletionsmutante den NADH-Überschuss gegenüber dem Referenzstamm. Zur Bestimmung des RQ-Wertes aus der modellierten intrazellulären Flussverteilung erfolgte zusätzlich die Bilanzierung des freigesetzten CO₂. Berücksichtigt wurden die Reaktionen der 6-Phosphogluconat-Dehydrogenase, der Pyruvat-Decarboxylase, der Pyruvat-Carboxylase und des Pyruvat-Dehydrogenase-Komplexes, sowie der Citratzyklus assoziierten Reaktionen der Isocitratα-Ketoglutarat-Dehydrogenase und des Malat-Enzyms. Die CO₂-Dehvdrogenase, Produktion war bei rein respirativem Stoffwechsel im Referenzstamm mit 211 % am höchsten. Ansonsten lag der Wert zwischen 152 % und 159 % (siehe Tabelle 27).

Tabelle 26: Bilanzierung der NADH-Bildung. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm für respirativen $(0,16 \text{ h}^{-1})$ und respiro-fermentativen Stoffwechsel $(0,22 \text{ h}^{-1})$; Angegebene prozentuale Werte sind auf die entsprechende spezifische Glucoseaufnahmerate normiert.

	BY4742		mae1 Δ	
	0,16 h ⁻¹	0,22 h ⁻¹	0,16 h ⁻¹	0,22 h ⁻¹
GAP-DH	135	150	121	154
Pyruvat-DH	53,1	22,1	19,9	21,1
α -Ketoglutarat-DH	53,0	23,8	28,0	19,0
Succinat-DH (FADH ₂)	53,0	23,8	28,0	19,0
Malat-DH	44,3	18,6	27,8	19,0
Ethanol-DH	0	-37,5	0	-54,4
$\mathrm{NADPH} \rightarrow \mathrm{NADH}$	91,5	37,2	87,9	26,1
Anabolismus	13	11,3	14,2	11,3
Summe	443	249	327	215

Die aus der ¹³C metabolischen Flussanalyse ermittelten RQ-Werte stimmten gut mit den experimentell bestimmten überein. Für das rein respirative Wachstum betrugen die experimentell bestimmten Werte für beide Stämme $1,0 \pm 0,1$. Das Modell lieferte für den Referenzstamm BY4742 ebenfalls einen RQ-Wert von $1,0 \pm 0,1$, der Wert des *MAE1*-Deletionsstammes lag bei $0,9 \pm 0,1$. Bei respiro-fermentativem Stoffwechsel wurde für den Referenzstamm ein experimenteller RQ-Wert von $1,4 \pm 0,1$, sowie ein RQ-Wert von $1,5 \pm 0,0$ für die *MAE1*-Deletionsmutante bestimmt. Der aus dem Modell bestimmte RQ-Wert des Referenzstammes lag mit $1,2 \pm 0,1$ leicht unterhalb, wohingegen der RQ-Wert der Deletionsmutante mit $1,5 \pm 0,1$ dem experimentell bestimmten entsprach. Die erhöhte Ethanolproduktionsrate der Deletionsmutante macht sich auch im bestimmten RQ-Wert Wachstum deutlich.

Tabelle 27: Bilanzierung der CO₂-Bildung und dessen Verbrauch. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm für respirativen $(0,16 \text{ h}^{-1})$ und respiro-fermentativen Stoffwechsel $(0,22 \text{ h}^{-1})$; Angegebene prozentuale Werte sind auf die entsprechende spezifische Glucoseaufnahmerate normiert.

	BY4	1742	mae	$e1\Delta$
	0,16 h ⁻¹	0,22 h ⁻¹	0,16 h ⁻¹	0,22 h ⁻¹
6-Phosphogluconat-DH	42,6	16,9	54,1	20,8
Pyruvat-Decarboxylase	30,6	84,1	44,7	94,5
Pyruvat-DH	53,1	22,1	19,9	21,1
Isocitrat-DH	63,5	32,6	40,1	25,7
α -Ketoglutarat-DH	53,0	23,8	28,0	19,0
Malat-Enzym	8,6	5,0	0	0
Pyruvat-Carboxylase	-35,6	-27,1	-28,9	-18,2
Anabolismus	-5,1	-4,2	-5,5	-4,2
Summe	211	153	152	159

Des Weiteren zeigt sich aufgrund der guten Übereinstimmung der RQ-Werte aus dem Modell mit den experimentell bestimmten, dass überschüssiges NADPH in Form von NADH in die Atmungskette eintreten muss, da die RQ-Werte ansonsten, vor allem bei rein respirativen Metabolismus, deutlich höher als die experimentell bestimmten liegen würden. Dies kann z. B. über den bereits beschriebenen Transhydrogenase-ähnlichen Zyklus aus NAD⁺- und NADP⁺-abhängiger Glutamat-Dehydrogenase bewerkstelligt werden.

ATP-Bilanzierung

Der Überschuss an NADH (FADH₂) wird über die Atmungskette reoxidiert; die Elektronen werden dabei zur ATP-Synthese mit einem P/O Verhältnis von $\approx 1,5$ eingesetzt. Tabelle 28 zeigt die beteiligten Reaktionen zur ATP-Synthese, sowie dessen Verbrauch.

Tabelle 28: Bilanzierung der ATP/GTP-Bildung und dessen Verbrauch. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm für respirativen (0,16 h⁻¹) und respiro-fermentativen Stoffwechsel (0,22 h⁻¹); Angegebene prozentuale Werte sind auf die entsprechende spezifische Glucoseaufnahmerate normiert. Daneben ist auch der absolute ATP-Überschuss in mmol g^{-1}_{BTM} h⁻¹ angegeben.

	BY4742		ma	$e1\Delta$
	0,16 h ⁻¹	0,22 h ⁻¹	0,16 h ⁻¹	0,22 h ⁻¹
3-Phosphoglycerat-Kinase	135	150	121	154
Pyruvat-Kinase	122	139	107	143
Succinyl-CoA-Synthetase (GTP)	53	23,8	28,0	19,0
Atmungskette	665	374	491	323
Hexokinase	-100	-100	-100	-100
Phosphofructokinase	-61,9	-73,6	-53,7	-75
Anabolismus	-518	-374	-565	-374
Überschuss	295	139	28,3	90
Überschuss [mmol _{ATP} $g_{BTM}^{-1} h^{-1}$]	4,3	3,4	0,4	2,2

Den größten Überschuss weist dabei der Referenzstamm bei respirativem Stoffwechsel mit 295 % auf. Generell ist der Überschuss im Referenzstamm größer als in der *MAE1*-Deletionsmutante. Der absolute Überschuss an ATP beträgt bei rein respirativem Wachstum im Referenzstamm BY4742 4,3 mmol g⁻¹ h⁻¹, im *MAE1*-Deletionsstamm dagegen nur 0,4 mmol g⁻¹ h⁻¹. Unter respiro-fermentativen Wachstumsbedingungen weißt der Referenzstamm BY4742 einen höheren ATP-Überschuss von 3,4 mmol g⁻¹ h⁻¹ gegenüber dem *MAE1*-Deletionsstamm mit 2,2 mmol g⁻¹ h⁻¹ auf. Verduyn *et al.* zeigten 1990, dass der ATP-Bedarf für den Erhaltungsstoffwechsel von *S. cerevisiae* weniger als 1 mmol g⁻¹ h⁻¹ betrug. Somit kann für den Referenzstamm bei rein-respirativem Stoffwechsel und für beide Stämme unter respiro-fermentativen Wachstumsbedingungen von einer ausreichenden ATP-Versorgung ausgegangen werden. Im Falle des *MAE1*-Deletionsstammes kann diese Aussage aufgrund des niedrigen ATP-Überschusses nicht getroffen werden.

Dies kann auch eine Erklärung für die erhöhten spezifischen Fructose-1,6-bisphosphatase-Aktivitäten im Referenzstamm BY4742 darstellen (siehe Kapitel 5.1.4), da über diesen "*futile cycle*" nicht benötigtes ATP hydrolysiert werden kann. Die spezifischen Aktivitäten lagen im Referenzstamm mit 12 mU/mg doppelt so hoch wie die im *MAE1*-Deletionsstamm mit 6 mU/mg. Da diese Aktivität auch bei rein respirativem Stoffwechsel in der *MAE1*-Deletionsmutante bestimmt werden konnte, kann als Indiz dienen, dass auch hier keine ATP-Limitierung vorliegt. Des Weiteren wird ein ATP-Überschuss für den Erhaltungsstoffwechsel ("*maintenance*") der Zellen benötigt, wie z. B. Reparatur der DNA, die Aufrechterhaltung von Membranpotentialen und Gradienten, sowie die Umsetzung von Makromolekülen, vor allem mRNA aber auch Proteine, die ständig abgebaut und neu synthetisiert werden.

5.2.7 Einfluss der *MAE1*-Deletion auf den Stoffwechsel von *S. cerevisiae* in Batch-Kultur bei Wachstum auf Glucose oder Galactose

Im Folgenden werden die beiden Stämme BY4742 und BY4742 mae1∆ hinsichtlich ihres Fluxoms in Batch-Kultur bei Wachstum auf Glucose oder Galactose als Kohlenstoff- und Energiequelle verglichen. Die ermittelten Flüsse sind in prozentualen Anteilen der spezifischen Glucose- bzw. Galactoseaufnahmerate angegeben, die auf 100 % normiert wurde. Zur Ermittlung der Flüsse wurden jeweils 100 Monte Carlo Simulationen durchgeführt, die angegebenen Fehler entsprechen 95 % Konfidenzintervallen.

Glykolyse und Pentosephosphatweg

Die Analyse der intrazellulären Flussverteilung am Knotenpunkt zwischen Glykolyse und Pentosephosphatweg lieferte signifikante Unterschiede zwischen beiden Stämmen, sowohl bei Wachstum auf Glucose, als auch bei Einsatz von Galactose (siehe Abbildungen 37 -40). Der Referenzstamm zeigte bei Wachstum auf Glucose einen relativen Fluss von 9,1 % durch den oxidativen Teil des Pentosephosphatwegs. Im Falle der Deletion des *MAE1*-Gens betrug dieser Fluss lediglich 3,0 %. Dementsprechend höher war der Fluss ausgehend von Glucose-6-phopshat in Richtung Glykolyse in der Deletionsmutante. Dieser betrug 93,5 % im Vergleich zu 87,7 % im Referenzstamm. Beide Stämme zeigen somit eine deutlich verringerte Aktivität des Pentosephosphatwegs, als dies zuvor bei respirativem bzw. respiro-fermentativem Stoffwechsel beobachtet wurde (siehe Kapitel 5.2.7). Die absolute Menge an NADPH, welches über den Pentosephosphatweg gebildet wird, liegt im Referenzstamm BY4742 bei 3,79 mmol g⁻¹ h⁻¹ und in der *MAE1*-Deletionsmutante bei 1,1 mmol g⁻¹ h⁻¹. Wie bereits zuvor diskutiert (siehe Kapitel 5.2.5), korrelierten auch in diesem Fall die ermittelten *in vitro* Enzymaktivitäten nicht mit den bestimmten *in vivo* Flüssen.

Abbildung 37: Flussverteilung in *S. cerevisiae* BY4742 in Batch-Kultur auf einem 50:50 Gemisch aus $[1-^{13}C]$ -Glucose und $[U-^{13}C]$ -Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von $q_s = 20,8$ mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile - extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Die spezifische Aktivität der Glucose-6-phosphat-Dehydrogenase, dem Schlüsselenzym des oxidativen Teils des Pentosephosphatwegs, betrug im Referenzstamm 52,9 mU/mg und in der Deletionsmutante 58,4 mU/mg. Anders als zuvor in kontinuierlicher Kultur konnte diese Diskrepanz nicht über die anabolen Verhältnisse von NADP⁺ zu NADPH erklärt werden. Diese lagen in beiden Stämmen bei 0,2 und waren somit identisch. Eventuell kann dieses Verhalten über geänderte Konzentrationen der entsprechend beteiligten Substrate und Produkte erklärt werden.

Die Flüsse durch die obere und untere Glykolyse waren in beiden Stämmen nahezu identisch. Jedoch waren auch hier die ermittelten in vitro Enzymaktivitäten der Phosphofructokinase und der Pyruvat-Kinase mit 837 mU/mg (PFK) und 9833 mU/mg (PK) im Referenzstamm höher als in der MAE1-Deletionsmutante mit 758 mU/mg (PFK) und 7196 mU/mg (PK). Aufgrund der deutlich niedrigeren Biomasseausbeuten der beiden Stämme im Vergleich zu den bereits diskutierten Ergebnissen in kontinuierlicher Kultur war die benötigte Menge anaboler Vorstufen in Form von Ribose-5-phosphat und Erythrose-4-phosphat ebenfalls deutlich geringer. Sie machte im Falle des Referenzstammes 10 % des Kohlenstoffes aus, der über den oxidativen Teil in den Pentosephosphatweg fließt. Im MAE1-Deletionsstamm betrug ihr Anteil aufgrund der niedrigeren Aktivität des oxidativen Teils 30 %. Im Vergleich zu den kontinuierlichen Kultivierungen war der Anteil des Referenzstammes vergleichbar, in der MAE1-Deletionsmutante lag der Anteil jedoch deutlich höher, als dies in kontinuierlicher Kultur der Fall war. Der erhöhte Fluss im oxidativen Teil des Pentosephosphatwegs führt im Referenzstamm im Vergleich zur Deletionsmutante auch zu höheren Aktivitäten der Transketolase und Transaldolase im reversiblen Teil des Stoffwechselweges. Aufgrund des geringen Anteils des Pentosephosphatwegs am gesamten Kohlenstofffluss macht sich der Verlust in Form von CO₂ in diesem Fall nicht so stark bemerkbar, wie dies zuvor in kontinuierlicher Kultur der Fall war (siehe Kapitel 5.2.5). Auf der Stufe der Pyruvat-Kinase unterscheiden sich die glykolytischen Flüsse mit 170 % (Referenzstamm) und 172 % (MAE1-Deletionsstamm) nicht signifikant.

Anders als in kontinuierlicher Kultur ist das Ablaufen des "*futile cycles*" aus Fructose-1,6bisphosphatase und Phosphofructokinase bei Batch-Wachstum auf Glucose nicht anzunehmen.

Abbildung 38: Flussverteilung in *S. cerevisiae* BY4742 mae1 Δ in Batch-Kultur auf einem 50:50 Gemisch aus [1-¹³C]-Glucose und [U-¹³C]-Glucose. Die prozentualen Flüsse wurden auf die spezifische Glucoseaufnahmerate von $q_s = 18,8$ mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile - extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Die spezifische *in vitro* Aktivität des gluconeogenen Enzyms lag in beiden Stämmen bei 1 mU/mg. Wobei die spezifische Aktivität der Phosphofructokinase im Referenzstamm bei 837 mU/mg und in der *MAE1*-Deletionsmutante bei 758 mU/mg lag. Bei rein respirativem Stoffwechsel in kontinuierlicher Kultur lag die spezifische Aktivität der Fructose-1,6bisphosphatase bei 12 mU/mg, im *MAE1*-Deletionsstamm bei 6 mU/mg (siehe Kapitel 5.2.5). Die spezifische Aktivität der Phosphofructokinase betrug unter diesen physiologischen Bedingungen 36 mU/mg (Referenzstamm BY4742) bzw. 60 mU/mg (*MAE1*-Deletionsstamm).

Ähnliches gilt für den respiro-fermentativen Stoffwechsel in kontinuierlicher Kultur. Hier betrug die spezifische *in vitro* Aktivität des Referenzstammes ebenfalls 12 mU/mg und die der *MAE1*-Deletionsmutante 6 mU/mg. Die spezifische Aktivität der Phosphofructokinase betrug dabei im Referenzstamm BY4742 70 mU/mg und in der *MAE1*-Deletionsmutante 100 mU/mg. Somit ist unter fermentativen Wachstumsbedingungen im Schüttelkolben nicht von einem unterschiedlich stark ablaufenden Zyklus in den beiden Stämmen auszugehen, wie dies im Falle der kontinuierlichen Kulturen vermutet wird (siehe Kapitel 5.2.5).

Der Einsatz von Galactose als Kohlenstoffquelle zeichnet sich in beiden Stämmen durch eine Steigerung der Aktivität des oxidativen Teils des Pentosephosphatwegs aus. Im Referenzstamm beträgt die Aktivität 12,7 %, in der *MAE1*-Deletionsmutante 8,8 %. Aufgrund der unterschiedlichen Galactoseaufnahmeraten ist der Unterschied zwischen den absoluten Flüssen durch den oxidativen Teil des Pentosephosphatwegs größer. Diese betragen im Referenzstamm BY4742 1,46 mmol g⁻¹ h⁻¹ und in der Deletionsmutante 0,74 mmol g⁻¹ h⁻¹. Die NADPH Produktion über den oxidativen Teil ist entsprechend doppelt so hoch. Die *in vitro* Enzymaktivitäten der Glucose-6-phosphat-Dehydrogenase sind in beiden Stämmen mit 65,8 mU/mg (Referenzstamm) und mit 79,2 mU/mg (*MAE1*-Deletionsmutante) höher als bei Wachstum auf Glucose, jedoch sind die absoluten Flüsse durch den oxidativen Teil aufgrund der im Vergleich zum Wachstum auf Glucose verringerten Galactoseaufnahmerate niedriger. Als Erklärung dient wiederum das anabole Verhältnis von NADP⁺ zu NADPH. Dieses beträgt im Referenzstamm BY4742 bei Wachstum auf Glucose 0,21 und bei Galactose als Kohlenstoffquelle 0,11.

Abbildung 39: Flussverteilung in *S. cerevisiae* BY4742 in Batch-Kultur auf einem 50:50 Gemisch aus $[1^{-13}C]$ -Galactose und $[U^{-13}C]$ -Galactose. Die prozentualen Flüsse wurden auf die spezifische Galactoseaufnahmerate von $q_s = 11,5$ mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile - extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Da ein erhöhtes anaboles Verhältnis von NADP⁺ zu NADPH bzw. relativ zu NADPH gesehen hohe NADP⁺-Konzentrationen die Glucose-6-phosphat-Dehydrogenase aktivieren, benötigen der Stamm bei Wachstum auf Glucose aufgrund des niedrigeren anabolen Verhältnisses eine größere Enzymmenge, um den entsprechend hohen Fluss durch den oxidativen Teil des Pentosephosphatwegs zu gewährleisten. Im Falle der *MAE1*-Deletion konnte das anabole Verhältnis bei Wachstum auf Galactose nicht bestimmt werden. Da sich die beiden Stämme jedoch unter allen anderen Zuständen vergleichbar verhalten hatten, ist mit hoher Wahrscheinlichkeit davon auszugehen, dass gleiches im Falle der *MAE1*-Deletion bei Wachstum auf Galactose gilt.

Der glykolytische Fluss ist in beiden Stämmen vergleichbar und beträgt auf der Stufe der Pyruvat-Kinase 183 % (Referenzstamm) bzw. 184 % (*MAE1*-Deletionsstamm). Die Flüsse sind aufgrund einer geringeren Glycerinbildung bei Wachstum auf Galactose relativ höher als dies bei der Kultivierung auf Glucose der Fall ist. Absolut gesehen jedoch ist der glykolytische Fluss, wiederum auf der Stufe der Pyruvat-Kinase, mit 35,4 mmol g⁻¹ h⁻¹ (Referenzstamm) bzw. 32,3 mmol g⁻¹ h⁻¹ (*MAE1*-Deletionsmutante) bei Wachstum auf Glucose deutlich höher als dies bei Galactose mit 21,0 mmol g⁻¹ h⁻¹ (Referenzstamm) bzw. 15,4 mmol g⁻¹ h⁻¹ (*MAE1*-Deletionsmutante) der Fall ist. Bei beiden Substraten sind die glykolytischen Flussraten jedoch um eine Größenordnung höher als bei respirativem oder respiro-fermentativem Wachstum in kontinuierlicher Kultur. Der niedrigere glykolytische Fluss spiegelt sich auch in den *in vitro* Enzymaktivitäten der Pyruvat-Kinase wieder. Diese halbiert sich ebenfalls in beiden Stämmen von 9833 mU/mg auf 4422 mU/mg im Referenzstamm und von 7196 mU/mg auf 4029 mU/mg in der Deletionsmutante beim Vergleich von Glucose und Galactose als Kohlenstoffquelle.

Abbildung 40: Flussverteilung in *S. cerevisiae* BY4742 mae1 Δ in Batch-Kultur auf einem 50:50 Gemisch aus [1-¹³C]-Galactose und [U-¹³C]-Galactose. Die prozentualen Flüsse wurden auf die spezifische Galactoseaufnahmerate von $q_s = 8,38$ mmol g⁻¹ h⁻¹ normiert. Gestrichelte Pfeile - anabole Flüsse zur Biomassesynthese, rote Pfeile - extrazelluläre Produktions- bzw. Aufnahmeflüsse. Bei reversiblen Reaktionen erfolgt die Angabe der Nettorichtung durch einen Pfeil.

Interkompartimenteller Transport und Verzweigung am Pyruvatknotenpunkt

Wie bereits diskutiert (siehe Kapitel 5.2.5) ist die Bestimmung der Verzweigung zwischen dem Import von Pyruvat in die mitochondrielle Matrix und dem Eintritt über den Pyruvat-Dehydrogenase-Bypass in Form von Acetyl-CoA mit einer relativ großen Unsicherheit behaftet. Wie bereits bei den Chemostatexperimenten wurde der zur Deckung des cytosolischen Acetyl-CoA-Bedarfs für die Biosynthese der Fettsäuren benötigte Fluss durch den Pyruvat-Dehydrogenase-Bypass bestimmt. Daneben wurde ebenfalls der maximal mögliche Fluss durch den Bypass, unter der Annahme einer ausschließlichen Reoxidation des NADPHs über die Biomassebildung bestimmt. Die entsprechenden Werte der beiden Stämme bei Wachstum auf Glucose oder Galactose im Schüttelkolben sind in Tabelle 29 zusammengefasst. Dabei bestimmen der im Vergleich zu den kontinuierlichen Kulturen niedrigere Bedarf anabole an cvtosolischem Acetyl-CoA zur Fettsäurebiosynthese, sowie die hier deutlich höheren extrazellulären Flüsse von Ethanol und Acetat, den benötigten Fluss durch den Pyruvat-Dehydrogenase-Bypass zur Deckung des anabolen Bedarfs an Acetyl-CoA im Cytosol. Der maximale Fluss bei ausschließlicher NADPH-Reoxidation über die Biomasse wird wiederum durch die gebildete Menge an NADPH über Acetaldehyd-Dehydrogenase vorgegeben, die welche über die Biomassebildung, Berücksichtigung weiterer NADPH-Quellen unter (Pentosephosphatweg), reoxidiert werden kann. Da jedoch hinsichtlich der NADPH-Bildung eine weitere Unsicherheit, namentlich die NAD⁺- und NADP⁺-abhängigen Isoenzyme der Isocitrat-Dehydrogenase, besteht, kann dieser Fluss nicht exakt abgeschätzt werden (siehe dazu auch Kapitel 5.2.5).

Der maximale Fluss den eine ausschließliche NADPH-Reoxidation über die Biomasse erlaubt, wurde wie bereits bei der Abschätzung für den respirativen und respirofermentativen Stoffwechsel daher für eine rein NAD⁺-abhängige Isocitrat-Dehydrogenase im Citratzyklus berechnet. Das Wachstum auf Galactose zeichnet sich bei beiden Stämmen durch einen, unter der entsprechenden Annahme einer rein NAD⁺-abhängigen Isocitrat-Dehydrogenase, maximalen Fluss durch den Pyruvat-Dehydrogenase-Bypass von 107 % % (*MAE1*-Deletionsstamm) (Referenzstamm) bzw. 129 die unterhalb der Ethanolproduktionsraten von 117 % (Referenzstamm) bzw. 130 % (MAE1-Deletionsstamm) liegen, aus.

Tabelle 29: Benötigter Fluss durch den Pyruvat-Dehydrogenase-Bypass zur Bereitstellung des cytosolischen Acetyl-CoAs für die Fettsäurebiosynthese, sowie der max. zulässige Fluss durch den Bypass unter der Annahme einer ausschließlichen NADPH-Reoxidation über die Biomassebildung unter der Beachtung des anabolen Bedarfs an cytosolischem Acetyl-CoA, sowie der extrazellulären Ethanol-und Acetat-Flüsse. Angegebene prozentuale Flüsse sind auf die jeweilige spezifische Hexoseaufnahmerate (siehe Tabelle 12) bei fermentativem Wachstum im Schüttelkolben auf Glucose oder Galactose bezogen.

		benötigter Fluss zur	max. Fluss bei ausschließlicher	tatsächlicher
		Acetyl-CoA [%]	NADPH-Reoxidation uber die Biomasse [%]	Fluss [%]
BY4742	Glc	157	143	157 ± 0
(Ref)	Gal	130	107	133 ± 0
	Glc	161	159	162 ± 0
mae1Δ	Gal	144	129	159 ± 1

Dies heißt, dass NADPH, welches über den Pentosephosphatweg generiert wird, nicht vollständig über die Biomassebildung reoxidiert werden kann. Dasselbe gilt ebenfalls für das Wachstum des Referenzstammes auf Glucose. Hier berechnet sich der maximal Fluss zu 143 % wohingegen die Ethanolbildungsrate 148 % beträgt. Lediglich die MAE1-Deletionsmutante ist in der Lage sämtliches über den Pentosephosphatweg gebildetes NADPH über die Biomassebildung zu reoxidieren. Die Ethanolbildungsrate liegt hier mit 152 % unterhalb des berechneten maximalen Flusses von 159 %. Dies wiederum bestätigt die bereits im Falle der kontinuierlichen Kulturen gewonnene Erkenntnis, dass alternative Wege zur Reoxidation von NADPH bestehen müssen, um die entsprechenden Bilanzen zu schließen (siehe Kapitel 5.2.5). Auch bei dieser Betrachtung wurde die NADPH-Generierung über die NADP⁺-abhängige Isoform der Isocitrat-Dehydrogenase zunächst außer Acht gelassen. Alternative Wege der NADPH-Reoxidation erlauben höhere maximale Flüsse durch den Pyruvat-Dehydrogenase-Bypass und erlauben somit die benötigten Flüsse zur Deckung des cytosolischen Acetyl-CoA-Bedarfs (siehe Tabelle 29). Entsprechendes gilt für die kontinuierlichen Kulturen beider Stämme, die in Kapitel 5.2.5 diskutiert wurden.

Die Reaktion der Pyruvat-Decarboxylase stellt den Eintrittspunkt in den Pyruvat-Dehydrogenase-Bypass dar. Bei Wachstum auf Glucose beträgt der absolute Fluss durch den Bypass im Referenzstamm 32,7 mmol g⁻¹ h⁻¹ und in der MAE1-Deletionsmutante 30,5 mmol g⁻¹ h⁻¹. Galactose als Kohlenstoffquelle dagegen führt zu einer deutlichen Erniedrigung des Flusses im Referenzstamm mit 15,3 mmol g⁻¹ h⁻¹ und in der MAE1-Deletionsmutante mit 13,3 mmol $g^{-1} h^{-1}$. Dies macht sich auch in einer 37 % Verringerung der spezifischen Aktivität der Pyruvat-Decarboxylase im Referenzstamm und in der MAE1-Deletionsmutante bemerkbar. Im Gegensatz zu den kontinuierlichen Kulturen der beiden Stämme findet in Batch-Kultur ein geringerer Austausch zwischen dem mitochondriellen und dem cytosolischen Oxalacetatpool statt. Der Transport ist im Referenzstamm bei Wachstum auf beiden Kohlenhydraten und in der MAEI-Deletionsmutante bei Wachstum auf Galactose nahezu irreversibel. Lediglich der MAEI-Deletionsstamm auf Glucose weist eine vergleichbare Reversibilität der Transportreaktion auf, wie dies zuvor in kontinuierlicher Kultur bei beiden Stämmen beobachtet wurde. Wie bereits erwähnt geht eine Änderung in der Reversibilität einer Reaktion oft mit Konzentrationsänderungen der daran beteiligten Metabolite einher.

Tabelle 30 zeigt die Import-, Export- und Nettoflüsse des Oxalacetat-Transportes in und aus der mitochondriellen Matrix. Der Nettofluss beider Stämme ist im Vergleich zum respirativen und respiro-fermentativen Stoffwechsel deutlich niedriger. Ursache hierfür ist in erster Linie der geringere Entzug anaboler Vorstufen aus dem Citratzyklus, als dies in kontinuierlicher Kultur der Fall ist. Die Nettoflüsse beider Stämme bei Wachstum auf Glucose sind nahezu identisch (siehe Tabelle 30). Im Gegensatz zu den kontinuierlichen Kulturen der beiden Stämme findet in Batch-Kultur ein geringerer Austausch zwischen dem mitochondriellen und dem cytosolischen Oxalacetatpool statt. Der Transport ist im Referenzstamm bei Wachstum auf Galactose nahezu irreversibel. Lediglich der *MAE1*-Deletionsmutante bei Wachstum auf Galactose nahezu irreversibel. Lediglich der *MAE1*-Deletionsstamm auf Glucose weist eine vergleichbare Reversibilität der Transportreaktion auf, wie dies zuvor in kontinuierlicher Kultur bei beiden Stämmen beobachtet wurde. Wie bereits erwähnt geht eine Änderung in der Reversibilität einer Reaktion oft mit Konzentrationsänderungen der daran beteiligten Metabolite einher.

Bei Wachstum auf Galactose dagegen besitzt der Referenzstamm mit 6,5 % einen deutlich höheren Nettofluss als der *MAE1*-Deletionsstamm mit 1,4 %. Dies ist in erster Linie auf den erhöhten Fluss durch das Malat-Enzym zurückzuführen.

Tabelle 30: Import und Export Flüsse des Oxalacetat-Transportes. Angegeben sind des Weiteren die
jeweiligen Nettoflüsse und die Reversibilitäten der Stämme S. cerevisiae BY4742 und BY4742 mae1∆
in Batch-Kultur mit Glucose oder Galactose als Kohlenstoff- und Energiequelle. Flüsse als prozentuale
Anteile der entsprechenden spezifischen Hexoseaufnahmeraten q_S (siehe Tabelle 12).

		Importfluss [%]	Exportfluss [%]	Nettofluss [%]	Reversibilität
BY4742	Glc	$4,0 \pm 0,0$	$1,0 \pm 0,0$	$2,9 \pm 0,0$	0,3
(Ref)	Gal	$7,5 \pm 0,1$	$1,1 \pm 0,0$	$6,5 \pm 0,1$	0,2
mae1A	Glc	$12,8 \pm 0,2$	$10,4 \pm 0,2$	$2,4 \pm 0,0$	4,3
mac 12	Gal	$1,4 \pm 0,0$	$0,0 \pm 0,0$	$1,4 \pm 0,1$	0

Da diese Reaktion dem Citratzyklus C₄-Körper entzieht, muss dieser Verlust über anaplerotische Reaktionen wieder ausgeglichen werden.

Im Gegensatz zu den kontinuierlichen Kulturen der beiden Stämme findet in Batch-Kultur ein geringerer Austausch zwischen dem mitochondriellen und dem cytosolischen Oxalacetatpool statt. Der Transport ist im Referenzstamm bei Wachstum auf beiden Kohlenhydraten und in der *MAE1*-Deletionsmutante bei Wachstum auf Galactose nahezu irreversibel. Lediglich der *MAE1*-Deletionsstamm auf Glucose weist eine vergleichbare Reversibilität der Transportreaktion auf, wie dies zuvor in kontinuierlicher Kultur bei beiden Stämmen beobachtet wurde. Wie bereits erwähnt geht eine Änderung in der Reversibilität einer Reaktion oft mit Konzentrationsänderungen der daran beteiligten Metabolite einher.

Eine Änderung der mitochondriellen bzw. cytosolischen Oxalacetatkonzentration im Falle der *MAE1*-Deletion bei Wachstum auf Glucose könnte die erhöhte Reversibilität unter Umständen erklären. Einen Einfluss kann in diesem Zusammenhang auch die Aktivität des Citratzyklus besitzen, der in der *MAE1*-Deletionsmutante lediglich bis zur Stufe von α -Ketoglutarat läuft, wohingegen unter allen anderen Zuständen eine zyklische Betriebsweise beobachtet wurde.

Die anaplerotische Reaktion der Pyruvat-Carboxylase liegt bei beiden Stämmen bei Wachstum auf Glucose bei etwa 4-5 %. Dasselbe gilt auch für die Aktivität in der *MAE1*-Deletionsmutante bei Wachstum auf Galactose. Lediglich der Referenzstamm zeichnet sich, analog zur Aktivität des Oxalacetat-Transporters, aufgrund der erhöhten Aktivität des Malat-Enzyms durch einen gesteigerten Fluss durch die Pyruvat-Carboxylase aus. Die

niedrigeren Flüsse im Vergleich zu den kontinuierlichen Kulturen sind in erster Linie auf einen geringeren Entzug anaboler Vorstufen aus dem Citratzyklus zurückzuführen.

Die Reaktion der PEP-Carboxykinase wurde, wie bereits diskutiert (siehe Kapitel 5.2.5) nicht in das Modell integriert. Jedoch ist auch bei aerob fermentativem Stoffwechsel in Batch-Kultur bei beiden Stämmen sowohl auf Glucose, als auch auf Galactose von einer Aktivität dieses Enzyms auszugehen. Dies spiegelt sich auch in den *in vitro* Aktivitäten der PEP-Carboxykinase wieder, die in allen vier Zuständen vergleichbar waren (siehe Kapitel 5.1.4). Auch hier ist von einer gewissen Signifikanz des *"futile cycles"* bestehend aus Pyruvat-Carboxylase, PEP-Carboxykinase und Pyruvat-Kinase, der zu einer Nettohydrolyse von ATP führt, auszugehen.

Citratzyklus und Malat-Enzym

Der Eintritt des Kohlenstoffes in den Citratzyklus erfolgt über Acetyl-CoA, das, wie bereits beschreiben, über den Pyruvat-Dehydrogenase-Komplex generiert bzw. über den entsprechenden Pyruvat-Dehydrogenase-Bypass nach cytosolischer Synthese in die mitochondrielle Matrix importiert wird. Zwischen dem Wachstum auf Glucose und Galactose zeigt sich in beiden Stämmen ein drastischer Unterschied in der Aktivität des Citratzyklus. Vergleicht man die Flüsse auf der Stufe der Isocitrat-Dehydrogenase, so beträgt der Wert bei Wachstum auf Glucose im Referenzstamm 3,5 % und in der MAE1-Deletionsmutante 1,9 %. Bei Wachstum auf Galactose dagegen sind die Flüsse mit 43,9 % im Referenzstamm und 34,1 % in der MAE1-Deletionsmutante drastisch erhöht. Dies spiegelt sich auch in einem um den Faktor zehn erhöhten Sauerstoffbedarf beider Stämme bei Wachstum auf Galactose wieder (siehe Tabelle 12). Bei Wachstum auf Glucose wird der Citratzyklus nahezu ausschließlich zur Bereitstellung anaboler Vorstufen genutzt (siehe Abbildung 37 und Abbildung 38). Dabei läuft der Zyklus im Falle der MAE1-Deletion nicht mehr vollständig ab, sondern kommt auf der Stufe von α -Ketoglutarat zum Erliegen. Hier zeigt sich auch, dass Glucose ein deutlich besserer Repressor der respiratorischen Stoffwechselwege als Galactose ist.

Die bestimmten spezifischen *in vitro* Enzymaktivitäten der Isocitrat-Dehydrogenase (NAD⁺- und NADP⁺-abhängige Isoform) sind bei Wachstum auf Glucose in beiden Stämmen vergleichbar (siehe Tabelle 16). Bei Wachstum auf Galactose zeichnet sich der Referenzstamm jedoch durch eine höhere spezifische Aktivität von 202 mU/mg im

Vergleich zur *MAE1*-Deletionsmutante mit 176 mU/mg aus. Dies spiegelt sich auch in den absoluten Citratzyklus-Flüssen unter diesen Zuständen wieder. Im Referenzstamm beträgt der absolute Fluss auf der Stufe der Isocitrat-Dehydrogenase 5,0 mmol g⁻¹ h⁻¹, in der *MAE1*-Deletionsmutante 3,0 mmol g⁻¹ h⁻¹. Der mitochondrielle Bedarf an NADPH von 6,4 % kann bei Wachstum auf Glucose, auch bei der Annahme einer rein NADP⁺- abhängigen Isocitrat-Dehydrogenase-Bypass generiert werden. Bei Wachstum auf Galactose stellt die Bereitstellung entsprechender mitochondrieller NADPH-Moleküle aufgrund der stark erhöhten Aktivität des Citratzyklus kein Problem dar. Wie bereits bei rein respirativem und respiro-fermentativem Stoffwechsel zeichnet sich die *MAE1*-Deletionsmutante durch eine verringerte Citratzyklus-Aktivität aus.

Ein Fluss durch das Malat-Enzym konnte erwartungsgemäß wiederum nur im Referenzstamm bestimmt werden. Bei Wachstum auf Galactose beträgt der relative Fluss 4,9 %, auf Glucose dagegen lediglich 1,2 %.

Aminosäure-Biosynthese

Wie bereits bei den Untersuchungen zum respirativen und respiro-fermentativen Stoffwechsel, wurden alternative Synthesewege der Aminosäuren Alanin, Aspartat und Glycin berücksichtigt. Im Falle des Wachstums auf Galactose teilte sich die Biosynthese von Alanin auf beide Kompartimente auf. Der Einsatz von Glucose als Kohlenstoffquelle hatte im Referenzstamm eine rein mitochondrielle Alaninsynthese und in der *MAE1*-Deletionsmutante eine fast ausschließlich cytosolische Synthese zur Folge. Die Biosynthese erfolgte unter allen Zuständen, mit Ausnahme des Referenzstammes bei Wachstum auf Galactose, ausschließlich über Serin. Bei Wachstum des Referenzstammes auf Galactose wurden geringe Mengen ausgehend von Threonin synthetisiert. Die Aspartatbildung fand unter allen Zuständen ausschließlich im Cytosol statt. Der im Falle der *MAE1*-Deletionsmutante bei Wachstum auf Glucose ausgewiesene mitochondrielle Anteil ist vermutlich ebenfalls der cytosolischen Synthese zuzuschreiben, da der Citratzyklus nicht vollständig abläuft und somit nicht zwischen der Markierung von cytosolischem und mitochondriellem Oxalacetat unterschieden werden kann.

Zusammenfassend bleibt zu sagen, dass die Deletion des *MAE1*-Gens, sowohl bei Wachstum auf Glucose als auch bei Wachstum auf Galactose, eine Verringerung des Flusses durch den oxidativen Teil des Pentosephosphatweges und des Citratzyklus zur Folge hat. Dementsprechend akkumuliert in der *MAE1*-Deletionsmutante ein geringerer NADPH-Überschuss, als dies im Referenzstamm der Fall ist (beschrieben im folgenden Kapitel 5.2.8). Des Weiteren wird wiederum deutlich, dass alternative Systeme, neben der Biomassebildung, zur Reoxidation von NADPH bestehen müssen. Im Falle des Wachstums auf Glucose zeigt sich erneut, dass der Pyruvat-Dehydrogenase-Bypass zur Deckung des mitochondriellen NADPH-Bedarfs in beiden Kompartimenten ablaufen muss. Aufgrund des deutlich respirativeren Wachstums beider Stämme auf Galactose stellte die mitochondrielle NADPH-Bereitstellung hier kein Problem dar. Auf die genaue Bilanzierung der Redoxäquivalente und ATP der Batch-Kulturen auf Glucose und Galactose wird im folgenden Kapitel näher eingegangen.

5.2.8 Bilanzierung der Redoxäquivalente und ATP

Die unterschiedlichen Flussverteilungen der beiden Stämme bei Wachstum auf Glucose und Galactose hatten auch Unterschiede in der Bereitstellung von NADPH für den Anabolismus zur Folge. Im Folgenden wird auch näher auf die Bilanzierung von NADH und ATP eingegangen.

NADPH-Bilanzierung

Die Bilanzierung von NADPH erfolgte anhand der beiden Dehydrogenasereaktionen des oxidativen Teils des Pentosephosphatweges, der Isocitrat-Dehydrogenase, die als rein NADP⁺-abhängig angenommen wurde, sowie des Malat-Enzyms und der Acetaldehyd-Dehydrogenase.

Das Wachstum auf Galactose hat, hauptsächlich durch die hohe Aktivität des Citratzyklus einen deutlichen Überschuss an NADPH zur Folge. Dieser beträgt im Referenzstamm 74,9 % und in der *MAE1*-Deletionsmutante 64,2 %. Im Gegensatz dazu weisen die beiden Stämme bei Wachstum auf Glucose einen deutlich geringeren Überschuss an NADPH auf. Im Referenzstamm beträgt dieser 19,3 % und in der Deletionsmutante 4,3 %.

Tabelle 31: Bilanzierung der NADPH-Bildung und des Verbrauchs durch den Anabolismus. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm bei Wachstum auf Glucose und Galactose; angegebene prozentuale Werte sind auf die entsprechende spezifische Hexoseaufnahmerate normiert.

	BY4	742	mae	$e1\Delta$
	Glc	Gal	Glc	Gal
Glucose-6-phosphat-DH	9,1	12,7	3,0	8,8
6-Phosphogluconat-DH	9,1	12,7	3,0	8,8
Malat-Enzym	1,2	4,9	0	0
Isocitrat-DH	3,5	43,9	1,9	34,1
Acetaldehyd-DH	9,5	15,7	9,5	29,4
Summe	32,4	89,9	17,4	81,1
anaboler Bedarf	- 13,1	-15,0	-13,1	-16,9
Überschuss	19,3	74,9	4,3	64,2

Wie bereits erwähnt ist die Bestimmung des Flusses über den Pyruvat-Dehydrogenase-Bypass mit einem gewissen Fehler behaftet. Dies ändert jedoch nichts an der Gesamtmenge an gebildetem NADH und NADPH. Jedoch reicht auch bei minimalem Fluss durch den Pyruvat-Dehydrogenase-Bypass zur Generierung des cytosolisch benötigten Acetyl-CoAs die Biomassebildung nicht zur Reoxidation des gebildeten NADPH aus, wodurch auch unter diesen physiologischen Bedingungen eine Übertragung der Elektronen von NADPH auf NADH und dessen Reoxidation in der Atmungskette notwendig wird. Bei Wachstum auf Galactose sind beide Stämme in der Lage, die in den einzelnen Kompartimenten benötigte Menge an NADPH unabhängig von der Aktivität der Acetaldehvd-Dehvdrogenase zu synthetisieren. Der mitochondrielle Bedarf kann von keinem der beiden Stämme bei Wachstum auf Glucose ohne einen in der mitochondriellen Matrix ablaufenden Pyruvat-Dehydrogenase-Bypass gedeckt werden. Zur Deckung des cytosolischen anabolen NADPH-Bedarfs, alleine aus dem Pentosephosphatweg, ist bei Wachstum auf Glucose lediglich der Referenzstamm in der Lage. Der MAE1-Deletionsstamm benötigt auch hierzu die Aktivität der Acetaldehyd-Dehydrogenase. Wie bereits bei den kontinuierlichen Kulturen diskutiert (siehe Kapitel 5.2.6), ist die Acetaldehyd-Dehydrogenase in der Lage, benötigtes NADPH in beiden Kompartimenten zur Verfügung zu stellen (siehe Abbildung 41). Die gezeigten mitochondriell gebildeten

NADPH-Mengen stellen den maximalen Fluss dar, da eine rein NADP⁺-abhängige Isocitrat-Dehydrogenase angenommen wurde, was aufgrund der spezifischen in vitro Enzymaktivitäten jedoch nicht anzunehmen ist. Wie bereits in Kapitel 5.2.6 diskutiert, ist ein mitochondrieller Überschuss NADPH unwahrscheinlich, da an keine Transportmechanismen aus der mitochondriellen Matrix bekannt sind. Sehr viel wahrscheinlicher ist, dass der Überschuss durch die Aktivität der NAD⁺-abhängigen Isoform der Isocitrat-Dehydrogenase in Form von NADH vorliegt, welches durch die Atmungskette reoxidiert werden kann. Des Weiteren wird, wie bereits diskutiert, von der Elektronenübertragung von cytosolischem NADPH auf NADH durch den beschriebenen Transhydrogenase-ähnlichen Zyklus aus NAD⁺- und NADP⁺-abhängiger Glutamat-Dehydrogenase, ausgegangen.

Abbildung 41: Generierung von NADPH und anaboler Bedarf zur Biosynthese unterteilt in die beiden Kompartimente Cytosol und Mitochondrium. Angegeben sind relative Werte normiert auf die jeweilige spezifische Hexoseaufnahmerate der Stämme *S. cerevisiae* BY4742 und mae1∆ bei Wachstum auf Glucose und Galactose. Die Acetaldehyd-Dehydrogenase ist aufgrund der nicht vollständig geklärten Kompartimentierung der Reaktion separat gezeigt.

NADH-Bilanzierung

Die Bilanzierung von NADH erfolgte anhand der Reaktionen der Glycerinaldehyd-3phosphat-Dehydrogenase, des Pyruvat-Dehydrogenase-Komplexes, sowie der Citratzyklus assoziierten Reaktionen der α -Ketoglutarat-Dehydrogenase, der Succinat-Dehydrogenase (FADH₂) und der Malat-Dehydrogenase. Verbrauchende Reaktionen der Ethanol-Dehydrogenase und der Glycerin-3-phosphat-Dehydrogenase wurden ebenso berücksichtigt, wie die Übertragung von Elektronen von NADPH auf NADH und durch den Anabolismus generiertes NADH. Wie bereits bei respirativem und respirofermentativem Stoffwechsel weist der MAE1-Deletionsstamm sowohl bei Wachstum auf Glucose, als auch bei Wachstum auf Galactose einen geringeren NADH-Überschuss als der Referenzstamm auf (siehe Tabelle 32). Der Vergleich beider Stämme bei Wachstum auf Glucose und Galactose zeigt den deutlichen Anstieg des NADH-Überschusses im Falle des respirativeren Wachstums auf Galactose, der in etwa eine Größenordnung beträgt. Der gleiche Unterschied lässt sich auch im Sauerstoffbedarf (siehe Tabelle 12) der beiden Stämme bei Wachstum auf den beiden Kohlenhydraten beobachten. Aufgrund des größeren NADH-Überschusses bei Wachstum auf Galactose kann mehr ATP über die oxidative Phosphorylierung gebildet werden. Im Folgenden wird darauf näher eingegangen.

Tabelle 32: Bilanzierung der NADH-Bildung. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm bei Wachstum auf Glucose und Galactose in Batch-Kultur; angegebene prozentuale Werte sind auf die entsprechende spezifische Hexoseaufnahmerate normiert.

	BY4	1742	mae	$e1\Delta$
	Glc	Gal	Glc	Gal
GAP-DH	172	185	174	186
Pyruvat-DH	3,5	41,5	1	17,9
α -Ketoglutarat-DH	1,8	42,4	0	32,7
Succinat-DH (FADH ₂)	1,8	42,4	0	32,7
Malat-DH	0,6	37,5	0	32,7
Glycerin-3-phosphat-DH	-17	-2,6	-16,1	-3,3
Ethanol-DH	-148	-117	-152	-130
$\mathrm{NADPH} \rightarrow \mathrm{NADH}$	19,3	74,9	4,3	64,2
Anabolismus	1,9	2,1	1,9	2,4
Summe	35,9	268	13,1	235

ATP-Bilanzierung

Der durch den Stoffwechsel generierte Überschuss an NADH (FADH₂) wird unter aeroben Bedingungen über die Atmungskette unter ATP-Generierung reoxidiert. Der P/O-Quotient liegt dabei bei etwa 1,5. In Tabelle 33 sind alle Reaktionen zur ATP-Synthese bzw. zu dessen Verbrauch zusammengefasst. Wie bereits bei respirativem und respirofermentativem Stoffwechsel besitzt der *MAE1*-Deletionsstamm bei Wachstum auf beiden Zuckern einen geringeren ATP-Überschuss als dies im Referenzstamm der Fall ist. Deutlich wird auch, dass der bei Wachstum auf Galactose stärker ablaufende Citratzyklus enorm zum ATP-Überschuss beiträgt. Der absolute ATP-Überschuss beträgt bei Wachstum auf Glucose als Kohlenstoffquelle 31,2 mmol g⁻¹ h⁻¹ im Referenzstamm und 21,8 mmol g⁻¹ h⁻¹ in der *MAE1*-Deletionsmutante. Auf Galactose ist der ATP-Überschuss mit 64,2 mmol g⁻¹ h⁻¹ im Referenzstamm und 41,2 mmol g⁻¹ h⁻¹ in der *MAE1*-Deletionsmutante höher als bei Wachstum auf Glucose. Der ATP-Überschuss ist bei beiden Stämmen auf beiden Kohlenstoffquellen deutlich höher, als dies in kontinuierlicher Kultur der Fall war (siehe Tabelle 28). Tabelle 33: Bilanzierung der ATP/GTP-Bildung und dessen Verbrauch. Gezeigt sind die Daten für *S. cerevisiae* BY4742 (Referenzstamm) und den *MAE1*-Deletionsstamm bei Wachstum auf Glucose und Galactose. Angegebene prozentuale Werte sind auf die entsprechende spezifische Hexoseaufnahmerate normiert. Daneben ist auch der absolute ATP-Überschuss in mmol g⁻¹_{BTM} h⁻¹ angegeben.

	BY4	1742	mae	$e1\Delta$
	Glc	Gal	Glc	Gal
3-Phosphoglycerat-Kinase	171	183	173	185
Pyruvat-Kinase	170	183	172	184
Succinyl-CoA Synthetase (GTP)	1,8	42,4	0	32,7
Atmungskette	53,9	402	19,7	353
Hexokinase	-100	-100	-100	-100
Phosphofructokinase	-93,4	-91,7	-95,1	-93,4
Anabolismus	-53,6	-61,2	-53,6	-68,9
Überschuss	150	558	116	492
Überschuss [mmol $g^{-1}_{BTM} h^{-1}$]	31,2	64,2	21,8	41,2

5.3 Elementarmodenanalyse

Die Elementarmodenanalyse (Schuster et al., 2000) in dieser Arbeit hatte das Ziel die Kompartimentierung der NADPH-Bereitstellung unter verschiedenen physiologischen Zuständen quantitativ zu analysieren. Dabei wurden verschiedene physiologische Zustände, wie rein respiratives und respiro-fermentatives Wachstum, untersucht. Auch die Auswirkung der Deletion des *MAE1*-Genes auf die Netzwerkstöchiometrie und den zellulären Stoffwechsel wurde zur Klärung der Funktion des entsprechenden Enzyms genauer bestimmt.

In den letzten Jahren wurden von verschiedenen Gruppen Genom-weite Netzwerke des zellulären Stoffwechsels von *S. cerevisiae* ausgehend von Literatur- und Genomdaten aufgestellt, die auch die Kompartimentierung der einzelnen Reaktionen berücksichtigen. 2003 veröffentlichten Förster et al. (2003) das Netzwerk iFF708, das 708 ORFs, 1175 Reaktionen und 584 Metabolite beinhaltet. Ein weiteres Genom-weites Modell, iLL672, welches ausgehend von iFF708 entwickelt wurde, wurde 2005 veröffentlicht und beinhaltet 672 Gene, 745 Reaktionen und 636 Metabolite (Kuepfer et al., 2005). Daneben wurde 2004 ein voll kompartimentiertes Modell, iND750 des zellulären Stoffwechsels publiziert (Duarte et al., 2004a). Es beinhaltet 750 Gene und 1149 Reaktionen, die sich auf acht Kompartimente aufteilen. Das aus iND750 weiterentwickelte Genom-weite Modell iMM904 wurde 2009 veröffentlicht und besteht aus 904 Genen, die 1412 Reaktionen katalysieren, an denen wiederum 713 Metabolite beteiligt sind (Mo et al., 2009).

Zum Aufsetzten dieser Modelle, sowie deren fortwährenden Instandhaltung und Aktualisierung, wurden unter anderem die "*Kyoto Encyclopedia of Genes and Genomes* (*KEGG*)" (Kanehisa et al., 2006), sowie die "*Saccharomyces Genome Database (SGD*)" herangezogen (Caspi et al., 2008; Nash et al., 2007).

In einer gemeinsamen Anstrengung wurde 2008 von einem Konsortium, ausgehend von den beiden bereits erwähnten Genom-weiten Modellen iMM904 und iLL672 des *S. cerevisiae*-Stoffwechsels, ein Konsensusnetzwerk rekonstruiert (Herrgard et al., 2008). Dieses Netzwerk besteht aus 832 Genen, 1857 Reaktionen und 1168 Metaboliten.

Die einzelnen Reaktionen der 4. Version dieses Netzwerkes (Stand April 2010, <u>http://www.comp-sys-bio.org/yeastnet/</u>) wurden metabolisch verwandten Gruppen zugeordnet. Diese 23 Gruppen sind in Tabelle 34 zusammengefasst.

Tabelle 34: Zuordnung der Reaktionen des Konsensusnetzwerkes nach Herrgard et al. (2008) in Gruppen verwandter Stoffwechselwege. Die gesamten Reaktionen und beteiligten Enzyme sind dem Anhang zu entnehmen (siehe Kapitel 8.4.2). Die Grundlage bildete die 4. Version des Konsenusnetzwerkes (http://www.comp-sys-bio.org/yeastnet/).

Gruppe	Nr. im Anhang	Beschreibung	Anzahl Reaktionen	
Aminosäure	1	Synthese der 20 proteinogenen Aminosäuren	106	
Biosynthese	1	Synthese der 20 protentogenen Annhosauren	100	
Transport	2	Transport von Metaboliten zwischen	470	
Tunsport	2	Kompartimenten oder dem extrazellulären Raum	470	
Bildung von	3	Reaktionen, die die Zusammenlagerung	104	
Proteinkomplexen	5	einzelner Proteine zu Komplexen beschreiben	104	
		Reaktionen, die die Übertragung von		
Proteinsynthese	4	Aminosäuren ausgehend von AS-tRNA	35	
		beschreiben		
tRNA Synthetasan	5	Übertragung der Aminosäuren auf	35	
titititi asen	5	entsprechende tRNAs	55	
Durin / Dyrimidin		Synthese der Purin- und Pyrimidinbasen, der		
Metabolismus	6	entsprechenden Nukleotide und Nukleoside,	108	
		sowie Salvage-Wege		
		Reaktionen, die vorhanden sein müssen, bei		
Reaktionen ohne	7	denen das entsprechende Gen jedoch nicht	100	
bekanntes Gen	/	bekannt ist, sowie spontan ablaufende	100	
		Reaktionen		
		Glykolyse, Pentosephosphatweg,		
zentraler		Gluconeogenese, Anaplerose, Citratzyklus,		
Kohlenstoff-	8	Glyoxylatzyklus, fermentative	91	
metabolismus		Stoffwechselwege, Kohlenhydrat-, Acetat-,		
		Glycerin-, Ethanol-Metabolisierung		
Synthese von				
Kofaktoren,		Thiamin, Riboflavin, Pyridoxin, Folat,		
prosthetische	0	Pantothenat, Biotin, NAD(P), FMN, FAD,	101	
Gruppen,)	SAM, Gluthation, Thioredoxin, Porphyrine,	101	
Elektronen-Carrier,		Ubiquinon, Polyprenyle, Tetrapyrrol		
Vitamine				

Synthese von		Putrescin, Spermidin, Spermin, UDP-N-	
Aminen /	10	Acetylglucosamin Methylthioadenosin	9
Polyaminen			
Kohlenhydrat-	11	Chitin, Chitosan, Trehalose, Glycogen,	12
Synthese	11	Dolichyl-phosphate	
Biosynthese von	12	Fettsäuren, Phospholipide, Sterole, Mevalonat,	380
Fettsäuren / Lipiden	12	Sphingolipide, Triglyceride	569
Synthese von	12	mus Inspital Inspital phasehota	10
Zucker-Derivaten	15	<i>myo</i> -mositor, mositor-phosphate	19
Degradierende- /		Abbau von Alkoholen, Aldehyden, Aminen,	
assimilatorische	14	Polyaminen, Fettsäuren / Lipiden; Assimilation	131
Stoffwechselwege		von Sulfat und Formaldehyd	
Strassontwort	15	Oxidativer / osmotischer Stress, Redox-	14
Stressantwort	15	Homöostatse, Entgiftung	14
A trave calcotto	16	Proteine der oxidativen Phosphorylierung, sowie	11
Atmungskette	10	die ATP-Synthase	11
Diala sizaha Dramasa		Putative Proteine, Nebenreaktionen, Reaktionen	
biologische Plozesse	17	die keinem Stoffwechselweg zugeordnet werden	
теп оекапт		können	
Membran- / GPI-	10		19
Anker	10	-	10
Glycin-Cleavage-	10		8
System	19	-	0
Wachstum /		Glykosylierung, De-/Acylierung, Ubiquinierung,	
Biomasseaufbau /	20	DNA-Methylierung, Zytoskelett, Aufbau von	56
Prozessierung von	20	Zellwand / Membran / Ascosporen, Organellen-	30
Makromolekülen		Organisation	
Anaerobes			
Wachstum /	21	Reaktionen verschiedener Fumarat-Reduktase-	2
anoxische	21	Isoenzyme	3
Bedingungen			
C M-t-h-1'	22	Methylgruppen-Bereitstellung über verschiedene	1 1
C ₁ -Metabolismus	22	Folatderivate	11
Aldehyd- / Alkohol-	22		16
Dehydrogenasen	25	Syntnese von Fuseialkonolen, Aldehydtoleranz	10

Ausgehend von diesen Genom-weiten Modellen wurde in dieser Arbeit zur Elementarmodenanalyse ein Sub-Netzwerk des Stoffwechsels verwendet, da eine Berechnung der Elementarmoden auf Grundlage der äußerst komplexen Genom-weiten Modelle nicht möglich war. Diese komplexen Modelle führen aufgrund der kombinatorischen Möglichkeiten schnell zu einer unüberschaubaren Menge an Lösungen, die mit herkömmlichen PCs nicht berechnet werden können. Ziel war es ausgehend von einem einfachen Modell (Forster et al., 2002) des zellulären Zentralstoffwechsels von S. cerevisiae durch gezielte Änderungen die experimentell bestimmten Phänotypen mittels der Elementarmodenanalyse darzustellen, um so die Mindestanforderungen an das metabolische Netzwerk hinsichtlich der Aktivität verschiedener Isoenzyme und dem Redoxmetabolismus zu bestimmen. Die Liste der Reaktionen ist dem Anhang zu entnehmen (siehe Kapitel 8.4.1). Das verwendete Netzwerk besteht aus 46 Reaktionen und 61 Metaboliten, sowie 104 Genen, von denen 38 für die Proteine der Atmungskette codieren. Die Auxotrophien der untersuchten Stämme BY4742 und BY4742 mae1∆ für Lysin, Leucin, Histidin und Uracil wurden im Gegensatz zu dem zu Grunde liegenden Modell von Förster et al. (2002) bei der Berechnung der Biomassebildung entsprechend berücksichtigt. Neben den bereits erwähnten 46 Reaktionen sind in der Biomassebildung sämtliche Reaktionen ausgehend von den Vorläufermolekülen aus dem Zentralstoffwechsel zu den entsprechenden Aminosäuren, Fettsäuren, Nukleotiden und Kohlenhydraten, sowie die entsprechenden Reaktionen zum Aufbau der jeweiligen Makromoleküle (Proteine, Lipide, Nukleinsäuren und der Speicherkohlenhydrate, Zellwand) berücksichtigt.

Hinsichtlich des Genom-weiten Konsensusnetzwerkes (siehe Tabelle 34 und Anhang Kapitel 8.4.2) bedeutet dies, dass die Reaktionen der Aminosäurebiosynthese (Gruppe 1), des Purin- und Pyrimidinmetabolismus (Gruppe 6), die Fettsäure- und Lipidbiosynthese (Gruppe 12), sowie der Kohlenhydratstoffwechsel (Gruppe 11) in zusammengefasster Form ausgehend von ihren jeweiligen Vorläufermolekülen aus dem zentralen Kohlenstoffstoffwechsel unter Berücksichtigung der benötigten ATP- und NADPH-Mengen zur jeweiligen Synthese berücksichtigt. Des Weiteren wurde der ATP-Bedarf für die Übertragung der Aminosäuren auf die entsprechenden tRNAs (Gruppe 5), sowie die anschließende Proteinsynthese (Gruppe 4) in der Biomassebildung berücksichtigt. Demnach sind auch die Reaktionen der Gruppe 20 (Wachstum / Biomasseaufbau / Prozessierung von Makromolekülen) zum Teil berücksichtigt, wobei die Prozessierung der

Makromoleküle nicht explizit in das Modell aufgenommen wurde. Die Reaktionen des zentralen Kohlenstoffmetabolismus (Gruppe 8) wurden explizit im Modell berücksichtigt, sofern sie für die untersuchten physiologischen Bedingungen relevant waren. Nicht berücksichtigt wurden beispielsweise die Reaktionen des Glyoxylatzyklus, die bei Wachstum auf Kohlenhydraten nicht aktiv waren (experimentell nachgewiesen, siehe Tabelle 16). Auf die Aufnahme alternativer Aldehyd- und Alkohol-Dehydrogenasen (Gruppe 23) wurde ebenfalls verzichtet, da Ethanol und Acetat die einzigen in diesem Zusammenhang detektierten Produkte waren. Daneben ist die oxidative Phosphorylierung (Gruppe 16) im verwendeten Modell enthalten. Im Gegensatz zu dem bereits beschriebenen Genom-weiten Netzwerk von Herrgard et al. (2008) wurden einige Vereinfachungen angenommen. Zunächst erfolgte die Kompartimentierung des Stoffwechsels lediglich in zwei Kompartimente – Cytosol und mitochondrielle Matrix. Das Konsensusnetzwerk beinhaltet dagegen 16 verschiedene Kompartimente. Dementsprechend wurden lediglich Transportreaktionen für den Austausch von Metaboliten zwischen dem Cytosol und der mitochondriellen Matrix in das Modell aufgenommen. Jedoch wurde der Energiebedarf sämtlicher energieabhängiger Transportreaktionen (Gruppe 2) in dem ATP-Bedarf der Biomassebildung berücksichtigt. Die Bildung von Proteinkomplexen (Gruppe 3) wurde in dem verwendeten Modell nicht berücksichtigt, da diese Zusammenlagerungen weder energetisch, noch unter dem Gesichtspunkt des Substrat- bzw. Kohlenstoffbedarfs relevant sind. Auf eine Berücksichtigung der Synthesen der in Gruppe 9 zusammengefassten Metabolite (Kofaktoren, prostethische Gruppen, Elektronen-Carrier und Vitamine) wurde verzichtet, da ein Großteil der Vitamine dem Medium zugesetzt wurde und die intrazellulären Mengen mindestens um 1-3 Größenordnungen niedriger sind, als dies beispielsweise bei Aminosäuren der Fall ist. Somit stellt die Synthese dieser Stoffe nur einen geringen Anteil des Energie- und Substratbedarfs dar und hat damit nur einen geringen Einfluss auf den Gesamtbedarf des kompletten Netzwerks. Gleiches gilt für die Synthese von Aminen und Polyaminen (Gruppe 10); hier wurde jedoch der Kohlenhydrat- und Energiebedarf zur Synthese von Acetylglucosamin für den Zellwandaufbau berücksichtigt. Da myo-Inositol zugesetzt wurde, wurde auf die Reaktionen der Gruppe 13 ebenfalls verzichtet.

Da die Untersuchungen auf wachsende Zelle abzielten, wurde auf die Einbeziehung degradierender Stoffwechselwege (Gruppe 14) verzichtet; die Assimilation von Sulfat (Gruppe 14) wurde aus energetischer Sicht berücksichtigt. Des Weiteren wurden die Reaktionen als Antwort auf Umweltstress nicht berücksichtigt (Gruppe 15). Außerdem fang keine Berücksichtigung des *"glycine-cleavage-systems"* (Gruppe 19), des C₁-Metabolismus (Gruppe 22) über die Aminosäure- und Nukleotidsynthese hinaus, sowie der Synthese von Membran- und GPI-Ankern (Gruppe 18) statt. Reaktionen die keinem biologischen Prozess zugeordnet sind (Gruppe 17), fanden ebenfalls keinen Eingang in das Modell.

Bei der Gruppe der Reaktionen, für die kein entsprechendes Gen bekannt ist (Gruppe 7), handelt es sich in der Regel um einzelne Reaktionen aus Stoffwechselwegen verschiedener anderer Gruppen oder um spontan ablaufende Reaktionen, darunter beispielsweise auch die Stoffdiffusion.

Stöchiometrische Analyse des metabolischen Netzwerkes von S. cerevisiae

Zur stöchiometrischen Analyse des metabolischen Netzwerkes von S. cerevisiae wurden zunächst mehrere Netzwerktopologien untersucht, um eine Korrelation der aus der Elementarmodenanalyse erhaltenen Daten mit denen realer Kultivierungen und der ¹³C metabolischen Flussanalyse zu erhalten. Dazu wurde das Grundmodell zum einen schrittweise um die Isoenzyme der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase, sowie einem Redox-Shuttle bzw. Transporter für NADP/H, der den Import von NADPH aus dem Cytosol in die mitochondrielle Matrix erlaubt, erweitert. Die Berücksichtigung der Isoenzyme erlaubte in beiden Fällen sowohl die Verwendung von NAD⁺ als auch von NADP⁺ als Kofaktor für die jeweiligen Reaktionen. Um den Einfluss eines Redox-Shuttles für NAD/H zu verdeutlichen, wurde ebenfalls ein weiteres Modell ohne eben diesen Austausch von cytosolischem und mitochondriell lokalisiertem NADH erstellt. Die Gesamtzahl der erhaltenen Moden, sowie der relative Anteil an biomasseproduzierenden Moden für die verschiedenen beschriebenen Netzwerktopologien, ist in Abbildung 42 dargestellt. Tabelle 35 fasst nochmals die verschiedenen verwendeten Netzwerktopologien zusammen. Die entsprechenden Netzwerke sind dem Anhang zu entnehmen. Dabei wird deutlich, dass die Anzahl der möglichen Moden mit zunehmender Komplexität des metabolischen Netzwerkes ebenfalls ansteigt. Im Falle des kleinsten Netzwerkes (Nr. 2) liegt die Gesamtzahl der Moden noch bei 26. Unter Berücksichtigung des Redox-Shuttle für NADH liegt die Zahl der Moden bei 48 (Nr. 1), die zusätzliche Implementierung eines Redox-Shuttles / Transporter für NADPH führt zu 116 möglichen

Moden (Nr. 4). Berücksichtigt man die Isoenzyme der Isocitrat-Dehydrogenase, so führt dies mit (Nr. 5) und ohne (Nr. 3) NADPH-Translokalisation zu jeweils 130 Elementarmoden. Die Integration der Isoenzyme der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase in das metabolische Modell, führt im Falle eines NAPH-Importes in die mitochondrielle Matrix (Nr. 7) zu 618 Moden und ohne den Transporter (Nr.6) zu 320 elementaren Flussverteilungen. Die Anzahl der Elementarmoden der verschiedenen Netzwerktopologien ist in Abbildung 42 dargestellt. Als externe Metaboliten wurden Glucose, Ethanol, Biomasse, Acetat, Glycerin, Sauerstoff und CO₂ zugelassen.

Tabelle 35: Topologie der verwendeten Netzwerke für die Elementarmodenanalyse. Netzwerk 1 entspricht dabei dem 2002 von Förster et al. beschriebenen unter Berücksichtigung der entsprechenden Auxotrophien (Lysin, Leucin, Histidin und Uracil) bei der Biomassebildung.

Netzwerk	Änderung gegenüber Netzwerk Nr. 1
1	
2	ohne Redox-Shuttle für NAD/H
3	Isoenzyme der Isocitrat-Dehydrogenase
4	Redox-Shuttle / Transporter für NADP/H
5	Isoenzyme der Isocitrat-Dehydrogenase + Redox-Shuttle / Transporter für NADP/H
6	Isoenzyme der Isocitrat-Dehydrogenase + Acetaldehyd-Dehydrogenase
7	IE der Isocitrat-DH + Acetaldehyd-DH + Redox-Shuttle / Transporter für NADP/H

Abbildung 42: Vergleich der Anzahl der Elementarmoden bei verschiedenen Topologien des metabolischen Netzwerkes von *S. cerevisiae*. Die Charakteristik der entsprechenden Netzwerke ist Tabelle 35 zu entnehmen.

Einfluss eines NAD/H Redox-Shuttles auf theoretische Flussverteilungen und Biomassebildung

Das Fehlen eines Transporters oder Redox-Shuttle Mechanismus für den Import von cytosolischem NADH in die mitochondrielle Matrix führt zur Notwendigkeit, sämtliches cytosolisch gebildetes NADH über Ethanol- oder Glycerinbildung zu reoxidieren, da dies nicht durch die in der mitochondriellen Matrix ablaufende Atmungskette möglich ist. Dies spiegelt sich in den hohen Ethanol- und Glycerinausbeuten der Elementarmoden wieder. Das Maximum liegt hier bei 2 mol/mol im Falle von Ethanol und 0,4 mol/mol im Falle von Glycerin. Die minimale Ethanolausbeute liegt bei 1,09 mol/mol. Entsprechend gering sind dadurch die Biomasseausbeuten bei dieser Netzwerktopologie (Nr.2). Das Maximum liegt bei 0,03 g_{BTM}/mmol_{Substrat}, da der Großteil des verfügbaren Kohlenstoffes nicht für die Biomassebildung, sondern für die Aufrechterhaltung des Redoxstatus der Zelle aufgewendet werden muss. Dies wiederum führt zu einem geringen Verhältnis zwischen Glykolyse und Pentosephosphatweg, das maximal bei 0,05 liegt, da sämtliches im

Pentosephosphatweg gebildetes NADPH im Rahmen der Biomassebildung reoxidiert werden muss. Weiter ist der Citratzyklus mit nur maximal 13 % der Substrataufnahmerate nur schwach aktiv. Das mitochondriell gebildete NADH muss bei dieser Topologie des metabolischen Netzwerkes über die Atmungskette reoxidiert werden, was sich in einer moderaten Sauerstoffaufnahme wiederspiegelt. Diese Netzwerktopologie erlaubt aufgrund des fehlenden Transportes von NADH aus dem Cytosol in die mitochondrielle Matrix kein rein respiratives Wachstum, was anhand des minimalen RQ-Werts von 7 deutlich wird. Ferner können auch die höheren Biomasseausbeuten, wie sie bei rein respirativem Wachstum in Chemostatkulturen erzielt werden, mittels dieses Modells nicht erreicht werden. Das gilt in gleicher Weise für den Pentosephosphatweg-Split und die Aktivität des Citratzyklus, die in Chemostatkulturen bei verringerter spezifischer Wachstumsrate deutlich höher sind. Die charakteristischen Kenngrößen dieser Gruppe an Elementarmoden sind in Abbildung 44 graphisch dargestellt. In einem nächsten Schritt wurde, wie bereits beschrieben (Forster et al., 2002), ein NADH-Shuttle in das Modell aufgenommen, wie es beispielsweise für Ethanol und Acetaldehyd in der Literatur beschrieben ist (Bakker et al., 2001). Dies erlaubte nun cytosolisch gebildetes NADH in die mitochondrielle Matrix zu importieren und über die Atmungskette zu reoxidieren. Abbildung 43 zeigt die Resultate für das daraus resultierende metabolische Netzwerk (Nr. 1).

Abbildung 43: Darstellung charakteristischer Kenngrößen der Elementarmoden mit extrazellulären Flüssen bei Netzwerktopologie Nr. 1. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Abbildung 44: Darstellung charakteristischer Kenngrößen der Elementarmoden mit extrazellulären Flüssen bei Netzwerktopologie Nr. 2. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].
Durch den Import von cytosolischem NADH und die Möglichkeit einer Reoxidation über die Atmungskette ist ein stärker respiratives Wachstum möglich. Der niedrigste RQ-Wert sinkt mit dem Vorhandensein eines NADH-Shuttles von 7 auf 1,6. Desweiteren steigt die maximal mögliche Biomasseausbeute auf 0,08 g/mmol an, da für die Reoxidation von cytosolischem NADH weniger Kohlenstoff in Ethanol bzw. Glycerin umgewandelt werden muss, der somit der Biomassebildung zur Verfügung steht. Die erhöhte Biomassebildung geht mit einem erhöhten Pentosephosphatweg und Citratzyklus einher. Φ_{PPP} beträgt bei dieser Konfiguration des metabolischen Netzwerkes maximal 0,11, die maximale Aktivität des Citratzyklus bezogen auf die Substrataufnahmerate beträgt 34 %. Jedoch ist auch bei dieser Topologie des metabolischen Netzwerkes kein Elementarmodus für rein respiratives Wachstum möglich. Dies wird zum einen durch RQ-Werte größer als 1 deutlich, zum anderen beträgt die minimale Ethanolausbeute über alle möglichen Moden 0,59 mol/mol. Diese Netzwerkkonfiguration entspricht der Möglichkeit NADH sowohl in der mitochondriellen Matrix als auch außerhalb zu reoxidieren, wie es durch die internen und externen NADH-Dehydrogenasen möglich ist (siehe Kapitel 3.1.3). Womit immer noch ein deutlicher Unterschied zwischen den theoretisch bestimmten Flussverteilungen und den, mittels ¹³C metabolischer Flussanalyse experimentell bestimmten Flussverteilungen besteht. Um die experimentell bestimmten Flussverteilungen auch modellhaft zu beschreiben, wurde, wie im Folgenden beschrieben, die Kofaktorspezifität der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase im Modell berücksichtigt.

Effekt der Kofaktorspezifität der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase auf die theoretischen Flussverteilungen

Auf dieser Grundlage wurden daher zunächst beide Isoenzyme der Isocitrat-Dehydrogenase im Modell berücksichtigt (Netzwerk Nr. 3). Einige charakteristische Größen zur Beschreibung der Elementarmoden sind in Abbildung 45 zusammengefasst. Mit dieser Netzwerktopologie ist erstmalig ein rein respirativer Metabolismus möglich. Dies wird zum einen durch RQ-Werte von 1, zum anderen aus den Elementarmoden ohne Bildung fermentativer Produkte wie Ethanol oder Glycerin deutlich. Durch die Berücksichtigung einer NAD⁺-abhängigen Isocitrat-Dehydrogenase ist die Citratzyklus-Aktivität nicht mehr direkt an die Biomassebildung gekoppelt, was zuvor bei den beiden Netzwerken 1 und 2 der Fall war. Dies ermöglicht deutlich höhere CitratzyklusAktivitäten, die auch im Bereich der experimentell bestimmten liegen. Die höchste Aktivität liegt hier bei 200 %, was einem Elementarmodus entspricht, bei dem lediglich die Glykolyse aktiv ist und bei dem der gesamte Kohlenstoff über den Citratzyklus ohne die Bildung von Biomasse oxidiert wird. Auch die Biomasseausbeute liegt mit einem Maximum von 0,12 g/mmol in einem Bereich, der bei den Chemostatkulturen (siehe Tabelle 13) erreicht wurde. Allerdings beträgt das Splitverhältnis zwischen Glykolyse und Pentosephosphatweg maximal 0,22, was zwar im Vergleich zu den beiden Netzwerken 1 und 2 höher ist, aber nicht mit den experimentell bestimmten Verhältnissen beider Stoffwechselwege übereinstimmt. Die Entkopplung des Citratzyklus von der NADPH-Produktion erlaubt höhere Biomasseausbeuten, da nun NADH zur ATP-Synthese unabhängig von einer NADPH-Synthese über den Citratzyklus generiert werden kann, was bei den Modellen mit NADP⁺-abhängiger Isocitrat-Dehydrogenase nicht der Fall war. In einem nächsten Schritt wurden zusätzlich zu den Isocitrat-Dehydrogenase-Isoenzymen, Isoenzyme der Acetaldehyd-Dehydrogenase in das metabolische Netzwerk von *S. cerevisiae* aufgenommen (Netzwerktopologie Nr. 6).

Abbildung 45: Darstellung charakteristischer Kenngrößen der Elementarmoden mit extrazellulären Flüssen bei Netzwerktopologie Nr. 3. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Eine Übersicht hinsichtlich der Ausbeuten und einiger charakteristischer Größen ist in Abbildung 46 gegeben. Mit dieser Konfiguration des metabolischen Netzwerkes steigt der maximal mögliche Pentosephosphatweg-Split auf 0,38 an. Dabei übernimmt der oxidative Teil des Pentosephosphatweges die Bereitstellung von cytosolischem NADPH zur Biomassesynthese, welches im Falle einer aktiven NAD⁺-abhängigen Acetaldehyd-Dehydrogenase nicht über den Pyruvat-Dehydrogenase-Bypass gebildet werden kann. Jedoch liegt auch dieses maximal mögliche Verhältnis zwischen Glykolyse und Pentosephosphatweg deutlich unterhalb der experimentell bestimmten Verhältnisse in kontinuierlicher Kultur. Allein durch die Berücksichtigung der verschiedenen Isoenzyme, sowohl der Isocitrat-Dehydrogenase, als auch der Acetaldehyd-Dehydrogenase hinsichtlich ihrer Kofaktorspezifität für NAD⁺ bzw. NADP⁺, wird der tatsächliche metabolische Zustand von *S. cerevisiae* nicht hinreichend beschrieben. Im Folgenden wird daher der Einfluss eines NADPH-Transportes aus dem Cytosol in die mitochondrielle Matrix diskutiert und dessen Einfluss auf die Stöchiometrie des metabolischen Netzwerkes von *S. cerevisiae* analysiert.

Abbildung 46: Darstellung charakteristischer Kenngrößen der Elementarmoden mit extrazellulären Flüssen bei Netzwerktopologie Nr. 6. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Auswirkungen eine NADPH-Importes aus dem Cytosol in die mitochondrielle Matrix auf die Stöchiometrie des metabolischen Netzwerkes von *S. cerevisiae*

Der Einfluss eines NADPH-Importes aus dem Cytosol in die mitochondrielle Matrix wurde mit verschiedenen Konfigurationen des metabolischen Netzwerkes analysiert. Zum einen wurde der Import in ein Netzwerk mit ausschließlich NADP⁺-abhängigen Isocitratund Acetaldehyd-Dehydrogenasen implementiert (Nr. 4), zum anderen mit Isoenzymen (NAD⁺- und NADP⁺-abhängig) der Isocitrat-Dehydrogenase (Nr. 5) und beiden Isoenzymen (NAD⁺- und NADP⁺-abhängig) der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase (Nr.7). Die entsprechenden spezifischen *in vitro* Enzymaktivitäten sind in Tabelle 16 zusammengefasst. Die Charakteristika der verschiedenen metabolischen Netzwerke sind in den Abbildungen 47 – 49 zusammengefasst.

Ein NADPH-Import in die mitochondrielle Matrix, bei ausschließlich NADP⁺-abhängiger Isocitrat- und Acetaldehyd-Dehydrogenase, führt zu keiner Steigerung des metabolischen Flusses und damit der NADPH-Bereitstellung über den Pentosephosphatweg. Das maximale Splitverhältnis zwischen Glykolyse und Pentosephosphatweg liegt bei dieser Konfiguration (Nr. 4) des metabolischen Netzwerkes bei maximal 0,13. Dies verdeutlicht, dass der limitierende Faktor zur Synthese der Biomasse nicht die Reduktionskraft in Form von NADPH darstellt, sondern die zur Biomassesynthese zur Verfügung gestellte Energie in Form von ATP. Bei respirativem Wachstum wird der Großteil an ATP durch die Reoxidation von katabol gebildetem NADH über die Atmungskette in der mitochondriellen Matrix gebildet. Der Großteil von NADH wird bei respirativem Wachstum über den Citratzyklus gebildet. Da dieser aber im Falle einer ausschließlich NADP⁺-abhängigen Isocitrat-Dehydrogenase direkt an die Biomassebildung gekoppelt ist, weil dies in S. cerevisiae den einzigen Weg zur Reoxidation darstellt, ist eine erhöhte ATP-Bereitstellung über den Citratzyklus bei dieser Topologie des metabolischen Netzwerkes nicht möglich. Dies hätte einen NADPH-Überschuss zur Folge. Pro Umlauf des Citratzyklus werden bei einem angenommenen P/O-Verhältnisses von 1,2 pro mol NADPH 4,6 mol ATP gebildet.

Abbildung 47: Darstellung charakteristischer Kenngrößen der Elementarmoden bei Netzwerktopologie Nr. 4. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Dies entspricht in etwa der Menge von 5,3 mol ATP, die für die Reoxidation von einem mol NADPH über die Biomassebildung benötigt werden, so dass eine erhöhte ATP-Generierung über den Citratzyklus keine höheren relativen Pentosephosphatweg-Flüsse zulässt, da nicht ausreichend ATP für die Reoxidation von NADPH über die Biomasse zur Verfügung steht. Höhere relative Pentosephosphatweg-Flüsse sind demnach erst dann möglich, wenn die Aktivität des Citratzyklus nicht mehr direkt an die Biomassebildung gekoppelt ist. Dies wird durch die Aufnahme von NAD⁺-abhängigen Isoenzymen der Isocitrat-Dehydrogenase erreicht, welche im Folgenden in das stöchiometrischen Netzwerk Nr. 5 implementiert wurde. Die Entkopplung von Citratzyklus und Biomassesynthese erlaubte nun Elementarmoden mit einem deutlich höheren Pentosephosphatweg-Split von bis zu 0,56. Dabei wird deutlich, dass alle Elementarmoden mit einem Splitverhältnis über 0,13 rein NAD⁺-abhängige Isoformen der Isocitrat-Dehydrogenasen bzw. beide Isoenzyme besitzen. Die beiden Elementarmoden mit den jeweils höchsten Splitverhältnissen von 0,56 und 0,25 zwischen Pentosephosphatweg und Glykolyse besitzen dabei die rein NAD⁺abhängige Isoform der Isocitrat-Dehydrogenase. Bei dem nächst niedrigeren Φ_{PPP} von 0.22 beträgt der Anteil des NAD⁺-abhängigen Isoenzyms an der gesamten Isocitrat-Dehydrogenase-Aktivität 25 %.

Abbildung 48: Darstellung charakteristischer Kenngrößen der Elementarmoden bei Netzwerktopologie Nr. 5. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Alle weiteren Elementarmoden bis zu einem Splitverhältnis von 0,13 besitzen ausschließlich die NAD⁺-abhängige Isoform des Enzyms. Ein höheres Splitverhältnis wird durch die noch vorhandene Kopplung der NADPH-Synthese an die Biomassebildung über die Acetaldehyd-Dehydrogenase verhindert, da der cytosolische Bedarf an Acetyl-CoA zur Lipidsynthese ausschließlich über den Weg ausgehend von Pyruvat über Acetaldehyd und Acetat bereitgestellt werden kann. Dies liegt darin begründet, dass der Transport von Acetyl-CoA als unidirektional vom Cytosol in die mitochondrielle Matrix angenommen wird. Es wird deutlich, dass diejenigen Elementarmoden mit einem hohen Splitverhältnis zwischen Glykolyse und Pentosephosphatweg, lediglich die Aktivität der Acetaldehyd-Dehydrogenase besitzen, die die zur Biomassebildung benötigte Menge an cytosolischem Acetyl-CoA in die mitochondrielle Matrix findet bei diesen Elementarmoden nicht statt.

Nachdem die NADPH-Bildung über die Einführung einer NAD⁺-abhängigen Isocitrat-Dehydrogenase nicht mehr über den Citratzyklus an die Biomasse gekoppelt ist, wurde nun entsprechend eine NAD⁺-abhängige Acetaldehyd-Dehydrogenase in das metabolischen Netzwerk von *S. cerevisiae* implementiert. Dies erlaubte nun erstmalig Splitverhältnisse zwischen Pentosephosphatweg und Glykolyse, wie sie für *S. cerevisiae* BY4742 und BY4742 mae1 Δ experimentell mittels ¹³C metabolischer Flussanalyse bestimmt wurden. 176 Das maximale Verhältnis liegt bei dieser Topologie des metabolischen Netzwerkes bei 0,70. Zentrale Größen der Elementarmoden Analyse dieses metabolischen Netzwerkes sind in Abbildung 49 graphisch zusammengefasst. Die Elementarmoden mit den höchsten Splitverhältnissen von 0,70, 0,63 und 0,55 besitzen alle die rein NAD⁺-abhängige Isoform der Isocitrat-Dehydrogenase und der Acetaldehyd-Dehydrogenase. Jedoch könnten mittels *in vitro* Bestimmungen der entsprechenden Enzymaktivitäten nur im Falle der Isocitrat-Dehydrogenase dagegen nur mit NADP⁺ (siehe Abbildung 26). *In vitro* Bestimmungen der Enzymaktivität stellen jedoch auch nicht immer zwangsläufig die *in vivo* Aktivität in korrekter Art und Weise dar. Desweiteren wird bei Wachstum auf Glucose der NADP⁺-abhängigen Isoform der Acetaldehyd-Dehydrogenase der Großteil der Aktivität zugeschrieben, wohingegen die NAD⁺-abhängige Isoform nur eine untergeordnete Rolle spielt.

Nahezu identische Flussverteilungen werden ebenfalls durch die Integration eines Transhydrogenase-ähnlichen Zyklus aus NAD⁺-abhängiger und NADP⁺-abhängiger Glutamat-Dehydrogenase im Cytosol erreicht (siehe Kapitel 5.2.5). Die Splitverhältnisse zwischen Glykolyse und Pentosephosphatweg entsprechen den experimentell beobachteten von 0,7 im Falle der Deletion des Malat-Enzyms. Der Elementarmodus mit dem höchsten Splitverhältnis von 0,7 besitzt ebenfalls, wie unter realen Bedingungen, kein aktives Malat-Enzym. Im Folgenden wird eine weitere Möglichkeit diskutiert diese hohen Verzweigungen zwischen Glykolyse und Pentosephosphatweg zu erreichen.

Abbildung 49: Darstellung charakteristischer Kenngrößen der Elementarmoden bei Netzwerktopologie Nr. 7. Jede Kenngröße ist für jeden der erhaltenen Moden dargestellt. A respiratorischer Quotient, B Verhältnis zwischen Pentosephosphatweg und Glykolyse, C Citratzyklusaktivität in % der Substrataufnahmerate, D Biomasseausbeute [g/mmol], E, F, G Ethanol-, Glycerin- und Acetatausbeute [mol/mol].

Acetyl-CoA Export aus der mitochondriellen Matrix vs. NAD⁺-abhängige Acetaldehyd-Dehydrogenase und Transhydrogenase-Zyklus

Aufgrund der zuvor diskutierten Ergebnisse wurde eine weitere Möglichkeit in Betracht gezogen, die Aktivität der Acetaldehyd-Dehydrogenase von der Biomassebildung zu entkoppeln. Dies kann durch den Export von mitochondriell gebildetem Acetyl-CoA in das Cytosol erreicht werden. Dabei wird über den Pyruvat-Dehydrogenase-Komplex gebildetes Acetyl-CoA zur Synthese von Fettsäuren und Lipiden aus der mitochondriellen Matrix exportiert. Dieser Transport ist zwar nicht explizit in der Literatur beschrieben, aber durchaus denkbar. In tierische Zellen geschieht dies beispielsweise über das "*Citrat-Malat Shuttle"*, wobei Acetyl-CoA im Cytosol durch die Aktivität der ATP-Citrat-Lyase freigesetzt wird. Diese Enzym ist in Hefe jedoch nicht beschreiben. Dies wäre eine vorstellbare Alternative zu den bereits beschriebenen Wegen über eine rein NAD⁺-abhängige Acetaldehyd-Dehydrogenase oder einen Transhydrogenase-ähnlichen Zyklus. Da an den entsprechenden Elementarmoden keine NADP⁺-abhängige Isoform der Acetaldehyd-Dehydrogenase beteiligt ist, obwohl die *in vitro* Bestimmungen der spezifischen Aktivität diese Enzyms eine NADP⁺-abhängige Isoform vermuten lassen

(siehe Tabelle 16), ist von dieser Konstellation einer rein NAD+-abhängigen Isoform der Acetaldehyd-Dehydrogenase eher abzusehen.

Cytosolisches Acetyl-CoA wird ausgehend von Acetat durch die Acetyl-CoA-Synthasen ACS1 und ACS2 gebildet. Das Isoenzym ACS1 wird in Gegenwart von Glucose reprimiert, Ethanol und Acetat dagegen induzieren die Expression des Gens (Van den Berg und Steensma, 1995). Das konstitutiv exprimierte Gen ACS2 ist für das Wachstum auf Glucose als Kohlenstoffquelle essentiell. Neben Erklärungen wie der Inhibierung des Pyruvat-Dehydrogenase-Komplexes oder der toxischen Akkumulation von Acetat, wird vor allem die Kompartimentierung der Acetyl-CoA-Synthese für die Notwendigkeit einer aktiven Acetyl-CoA-Synthase angeführt (Van den Berg und Steensma, 1995). Jedoch ist nicht bekannt, ob die mitochondrielle Carnitin-Acetyltransferase die Acetyl-Einheiten aus der mitochondriellen Matrix exportieren kann. Unabhängig davon ist die Aktivität der Carnitin-Acetyltransferase unter den gewählten Kultivierungsbedingungen fraglich, da S. cerevisiae nicht in der Lage ist Carnitin zu synthetisieren und auf extrazellulär verfügbares Carnitin angewiesen ist (Swiegers et al., 2001). Takahashi et al. (2006) schlagen vor, dass Acs1p und Acs2p die einzigen nukleocytosolischen Acetyl-CoA-Quellen darstellen. Acetyl-CoA kann dabei frei zwischen dem Kernkomplex und dem Cytosol diffundieren, jedoch ist dieser Pool von dem mitochondriellen getrennt. Für eine ATP-Citrat-Lyase, welche Acetyl-CoA aus der mitochondriellen Matrix in das Cytosol transportieren kann, ist keine codierende Sequenz im Genom S. cerevisiae vorhanden (Pronk et al., 1996). Prinzipiell gibt es noch weitere Wege, um mitochondriell synthetisiertes Acetyl-CoA in das Cytosol zu exportieren; zum einen die cytosolische Carnitin-Acetyltransferase (Swiegers et al., 2001), zum Anderen die Hydrolyse von Acetyl-CoA in der mitochondriellen Matrix durch die Acetyl-CoA-Hydrolase Ach1p (Buu et al., 2003) und schließlich der Transport von Acetat in das Cytosol mit anschließender Reaktivierung durch Acs1p bzw. Acs2p. Durch letztgenannten Weg kann die Acetaldehyd-Dehydrogenase bei der cytosolischen Bildung von Acetyl-CoA umgangen werden. Dieser Weg wäre energetisch gesehen jedoch ineffizient.

Auf der Grundlage der bekannten Literatur und der durchgeführten Experimente ist also vermutlich weder davon auszugehen, dass eine NAD⁺-abhängige Acetaldehyd-Dehydrogenase aktiv ist, noch dass Acetyl-CoA aus der mitochondriellen Matrix exportiert wird. Jedoch wird bei der ¹³C metabolischen Flussanalyse bzw. der Bilanzierung der Kofaktoren deutlich, dass ein gewisser Austausch zwischen den beiden Kompartimenten bzw. ein gewisser Austausch zwischen NADPH und NADH notwendig ist, um die experimentell bestimmten Splitverhältnisse zwischen Glykolyse und Pentosephosphatweg zu erreichen. Der wahrscheinlichste Weg dazu besteht in dem bereits erwähnten Transhydrogenase-ähnlichen Zyklus der beiden Isoformen der Glutamat-Dehydrogenase im Cytosol.

6 Schlussfolgerung und Ausblick

Im Rahmen der vorliegenden Arbeit wurden die Auswirkungen der Deletion des *MAE1*-Gens auf den Zentralstoffwechsel von *S. cerevisiae* untersucht. Dazu wurden vergleichende Studien auf der Ebene intrazellulärer Metabolite, der intrazellulären Enzymmengen, sowie des Fluxoms des Referenzstammes und der entsprechenden *MAE1*-Deletionsmutante durchgeführt. Daneben wurde ein mittels Elementarmodenanalyse aufgestellter *in silico* Ansatz zur Beschreibung des metabolischen Netzwerkes von *S. cerevisiae* angewendet.

Die ¹³C metabolische Flussanalyse zeigte sowohl bei rein respirativem, als auch bei respiro-fermentativem Stoffwechsel in kontinuierlicher Kultur auf Glucose einen deutlichen Einfluss der *MAE1*-Gendeletion auf die Aktivität des Pentosephosphatwegs und des Citratzyklus. Im Falle der Deletion stieg der relative Fluss durch den oxidativen Teil des Pentosephosphatwegs deutlich an, wobei der stärkste Anstieg bei rein respirativem Stoffwechsel zu beobachten war. Gleichzeitig führte die Deletion des Gens auch zu einer signifikanten Verringerung der Citratzyklus-Aktivität, die wiederum am stärksten bei einem rein respirativen Stoffwechsel ausgeprägt war. In diesem Zusammenhang wurde auch deutlich, dass *in vitro* bestimmte spezifische Enzymaktivtäten, gerade bei strikt bzw. komplex regulierten Enzymen wie z. B. der Glucose-6-phosphat-Dehydrogenase nicht notwendiger Weise die *in vivo* Aktivitäten dieser Enzyme widerspiegeln. Jedoch konnte dies größtenteils über das NADP⁺/NADPH-Verhältnis der verschiedenen Zustände erklärt werden, das sich deutlich unterschied.

Ferner zeigte sich, dass in beiden Stämmen, sowohl bei respirativem, als auch bei respirofermentativem Stoffwechsel ein signifikanter Überschuss an NADPH akkumulierte. Die bisher gängige These, dass in *S. cerevisiae* leidglich die Biomassebildung zur Reoxidation genutzt werden könne, konnte in dieser Arbeit nicht bestätigt werden. Da bei rein respirativem Wachstum auch keine Reoxidation über die Bildung reduzierter Stoffwechselprodukte wie z. B. Ethanol oder Glycerin erfolgen kann, müssen Systeme zur Reoxidation über die Atmungskette zur Verfügung stehen. Alternative NAD⁺-abhängige Isoenzyme der Isocitrat-Dehydrogenase und Acetaldehyd-Dehydrogenase können dies auch nicht erklären, zumal eine NAD⁺-abhängige Isoform der Acetaldehyd-Dehydrogenase nicht nachgewiesen werden konnte. Die Bilanzierung der Redoxäquivalente machte ebenfalls deutlich, dass zur Übereinstimmung der experimentell bestimmten respiratorischen Quotienten mit den aus der ¹³C metabolischen Flussanalyse abgeleiteten die Reoxidation des überschüssigen NADPHs über die Atmungskette notwendig war. Dies könnte über einen Transhydrogenase-ähnlichen Zyklus aus NAD⁺- und NADP⁺-abhängiger Glutamat-Dehydrogenase im Cytosol erfolgen (siehe Kapitel 5.2.5).

Das Wachstum der beiden Stämme in Batch-Kultur mit Glucose oder Galactose als alleinige Kohlenstoffquelle zeigte ein ähnliches Bild. Auch hier hatte die Deletion des *MAE1*-Gens einen signifikanten Einfluss auf den zellulären Stoffwechsel. In diesem Zusammenhang bewirkte die Deletion des *MAE1*-Gens wie bereits bei respirativem bzw. respiro-fermentativem Stoffwechsel eine Verringerung der Citratzyklus-Aktivität. Jedoch führte die Gendeletion bei aerob fermentativem Wachstum ebenfalls zu einer Verringerung des Flusses durch den oxidativen Teil des Pentosephosphatwegs. Auch hier zeigte sich eine Akkumulation von NADPH, welche bei Wachstum auf Galactose, aufgrund des deutlich respirativeren Stoffwechsels, höher ausfiel, als dies bei fermentativem Wachstum auf Glucose der Fall war. Auch in diesem Zusammenhang bestand die Notwendigkeit das überschüssige NADPH in die Atmungskette einzubringen.

Ob Acetyl-CoA auch ohne Zusatz von Carnitin zum Medium in Form von Acetyl-Carnitin in die mitochondrielle Matrix importiert werden kann, bleibt weiter fraglich. Jedoch reicht bereits die über den oxidativen Teil des Pentosephosphatwegs gebildete Menge an NADPH zusammen mit der Menge, die über die Acetaldehyd-Dehydrogenase minimal gebildet werden muss für die Versorgung der Biosynthese von Fettsäuren mit Acetyl-CoA aus, um einen Überschuss an NADPH im Cytosol zu generieren, der über die oxidative Phosphorylierung reoxidiert werden muss.

Neben den experimentellen Arbeiten wurde auch ein *in silico* Ansatz zur quantitativen Analyse des metabolischen Netzwerkes von *S. cerevisiae* eingesetzt. Es wurden unterschiedliche Netzwerktopologien, hauptsächlich hinsichtlich verschiedener Isoenzyme und der Kompartimentierung des Redoxstoffwechsels untersucht. Dabei stellte sich heraus, dass auch bei der rein auf der Stöchiometrie und den thermodynamischen Eigenschaften des Netzwerks basierten Elementarmodenanalyse ein zur Glucoseaufnahmerate relativ

hoher Fluss durch den oxidative Teil des Pentosephosphatwegs nur unter bestimmten Konfigurationen des metabolischen Netzwerkes möglich war. Die Lösung, die aufgrund der bekannten Literatur und der durchgeführten Experimente als am wahrscheinlichsten anzusehen ist, ist wiederum die Übertragung von Elektronen von NADPH auf NADH und dessen Eintritt in die Atmungskette.

Zusammenfassend bleibt zu sagen, dass die Deletion des *MAE1*-Gens einen entscheidenden Einfluss auf die Bereitstellung von NADPH hat. Durch die verringerte Aktivität des Citratzyklus im Falle der Deletion des *MAE1*-Gens konnte unter einigen Zuständen der anabole Bedarf in der mitochondriellen Matrix nicht mehr ausschließlich über den Citratzyklus gedeckt werden, was jedoch bei beiden untersuchten Stämmen unter allen physiologischen Zuständen über die Aktivität des Pyruvat-Dehydrogenase-Bypasses kompensiert werden konnte. Interessant kann der Einfluss der geänderten Bereitstellung von NADPH für Produktionsprozesse sein, die in einem der Kompartimente einen erhöhten Bedarf an NADPH besitzen. So wurde bereits gezeigt, dass eine Überexpression des Malat-Enzyms eine Verringerung der Aktivität des oxidativen Teils des Pentosephosphatweges zur Folge hat und somit gezielt auf die Kompartimentierung der NADPH-Synthese Einfluss genommen werden kann (Moreira dos Santos et al., 2004).

Die Arbeit zeigte auch, dass *in silico* Ansätze ergänzend eingesetzt werden können, um alternative Flussverteilungen auf stöchiometrischer Basis zu erhalten, die ebenfalls die experimentell bestimmten Flussverteilungen widerspiegeln und Rückschlüsse auf die zugrunde liegende Netzwerktopologie erlauben. Die eingesetzte Methode der Elementarmodenanalyse mit einem reduzierten Netzwerk, welches ausgehend von einem Genom-weiten Konsensusnetzwerk (Herrgard et al., 2008) aufgestellt wurde, zeigte dies. Die Elementarmodenanalyse ist jedoch auf relativ einfache Netzwerke beschränkt, da die Analyse eines Genom-weiten Netzwerkes mittels dieser Methode, neben einer erheblichen Steigerung des Rechenaufwandes, auch zu einer unüberschaubaren Menge an Lösungen führen würde, die eine Aussage erschweren würden. Für die Analyse von metabolischen Netzwerken dieser Größe eignet sich beispielsweise die *"flux balance analysis"*, deren Resultate jedoch nicht so umfassend sind wie die der Elementarmodenanalyse.

Ein weiteres Problem bei der Analyse metabolischer Netzwerke eukaryontischer Organismen stellt die komplexe Kompartimentierung des Stoffwechsels dar. Vor allem der Transport zwischen den einzelnen Kompartimenten und dessen Richtung stellen dabei immer wieder Probleme dar. Als Beispiel hierfür kann der Transport von Acetyl-CoA in Form von Acetyl-Carnitin in die mitochondrielle Matrix genannt werden. Dies stellt auch einen der zukünftigen Ansatzpunkte dieser Arbeit dar, um ein besseres Verständnis über die Kompartimentierung des Redox-Stoffwechsels und der damit verknüpften Reaktionen zu erhalten. Weitere Untersuchungen zur tatsächlichen Existenz des Transhydrogenaseähnlichen Zyklus der beiden Isoformen der Glutamat-Dehydrogenase werden in Zukunft ebenso erforderlich sein.

7 Literatur

- Albers, E., Liden, G., Larsson, C. und Gustafsson, L. (1998). Anaerobic redox balance and nitrogen metabolism in *Saccharomyces cerevisiae*. *Recent Res Dev Microbiol* 2, 253-279.
- Amaral, A. I., Teixeira, A. P., Martens, S., Bernal, V., Sousa, M. F. und Alves, P. M. (2010). Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. *J Neurochem* 113, 735-48.
- Antoniewicz, M. R., Kelleher, J. K. und Stephanopoulos, G. (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. *Metab Eng* **9**, 68-86.
- Bakker, B. M., Overkamp, K. M., van Maris, A. J., Kotter, P., Luttik, M. A., van Dijken, J. P. und Pronk, J. T. (2001). Stoichiometry and compartmentation of NADH metabolism in *Saccharomyces cerevisiae. FEMS Microbiol Rev* 25, 15-37.
- Barnett, J. A. (1981). The utilization of disaccharides and some other sugars by yeasts. Adv Carbohydr Chem Biochem **39**, 347-404.
- Barnett, J. A., Payne, R. W. und Yarrow, D. (1990). *Yeasts: Characteristics and Identification*. Cambridge University Press.
- Barr, M. M. (2003). Super models. Physiol Genomics 13, 15-24.
- Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. und Cullin, C. (1993). A simple and efficient method for direct gene deletion in *Saccharomyces cerevisiae*. *Nucleic Acids Res* 21, 3329-30.
- Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C. J. und Wittmann, C. (2007). Metabolic flux engineering of L-lysine production in *Corynebacterium glutamicum*--over expression and modification of G6P dehydrogenase. *J Biotechnol* 132, 99-109.
- Becker, J., Klopprogge, C. und Wittmann, C. (2008). Metabolic responses to pyruvate kinase deletion in lysine producing *Corynebacterium glutamicum*. *Microb Cell Fact* **7**, 8.
- Becker, J., Klopprogge, C., Zelder, O., Heinzle, E. und Wittmann, C. (2005). Amplified expression of fructose 1,6-bisphosphatase in *Corynebacterium glutamicum* increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. *Appl Environ Microbiol* **71**, 8587-96.
- Bernofsky, C. und Swan, M. (1973). An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53, 452-8.
- Blank, L. M., Lehmbeck, F. und Sauer, U. (2005). Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. *FEMS Yeast Res* **5**, 545-58.
- Blank, L. M. und Sauer, U. (2004). TCA cycle activity in *Saccharomyces cerevisiae* is a function of the environmentally determined specific growth and glucose uptake rates. *Microbiology* 150, 1085-93.

- Boles, E., de Jong-Gubbels, P. und Pronk, J. T. (1998). Identification and characterization of MAE1, the *Saccharomyces cerevisiae* structural gene encoding mitochondrial malic enzyme. *J Bacteriol* **180**, 2875-82.
- Boles, E. und Hollenberg, C. P. (1997). The molecular genetics of hexose transport in yeasts. *FEMS Microbiol Rev* 21, 85-111.
- Boles, E., Lehnert, W. und Zimmermann, F. K. (1993). The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a *Saccharomyces cerevisiae* phosphoglucose isomerase mutant. *Eur J Biochem* **217**, 469-77.
- Boubekeur, S., Bunoust, O., Camougrand, N., Castroviejo, M., Rigoulet, M. und Guerin, B. (1999). A mitochondrial pyruvate dehydrogenase bypass in the yeast *Saccharomyces cerevisiae*. J Biol Chem 274, 21044-8.
- Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. und Boeke, J. D. (1998). Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14, 115-32.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**, 248-54.
- Bro, C., Knudsen, S., Regenberg, B., Olsson, L. und Nielsen, J. (2005). Improvement of galactose uptake in *Saccharomyces cerevisiae* through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. *Appl Environ Microbiol* **71**, 6465-72.
- Bruinenberg, P. M. (1986). The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52, 411-29.
- Bruinenberg, P. M., de Bot, P. H. M., Van Dijken, J. P. und Scheffers, W. A. (1983a). The role of the redox balance in the fermentation of xylose by yeasts. *Eur J Appl Microbiol Biotechnol* 18, 287-292.
- Bruinenberg, P. M., van Dijken, J. P. und Scheffers, W. A. (1983b). An enzymic analysis of NADPH production and consumption in *Candida utilis*. J Gen Microbiol **129**, 965-71.
- Bruinenberg, P. M., van Dijken, J. P. und Scheffers, W. A. (1983c). A theoretical analysis of NADPH production and consumption in yeasts. *J Gen Microbiol* **129**, 953-964.
- Buu, L. M., Chen, Y. C. und Lee, F. J. (2003). Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in *Saccharomyces cerevisiae*. *J Biol Chem* **278**, 17203-9.
- Camarasa, C., Grivet, J. P. und Dequin, S. (2003). Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in *Saccharomyces cerevisiae* during anaerobic fermentation. *Microbiology* **149**, 2669-78.
- Carlson, R., Fell, D. und Srienc, F. (2002). Metabolic pathway analysis of a recombinant yeast for rational strain development. *Biotechnol Bioeng* **79**, 121-34.
- Carlson, R., Wlaschin, A. und Srienc, F. (2005). Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in *Escherichia coli*. Appl Environ Microbiol **71**, 713-20.

- Carpenter, A. E. und Sabatini, D. M. (2004). Systematic genome-wide screens of gene function. *Nat Rev Genet* 5, 11-22.
- Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., Walk, T. C., Zhang, P. und Karp, P. D. (2008). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. *Nucleic Acids Res* 36, D623-31.
- Christensen, B. und Nielsen, J. (2000). *Metabolic network analysis*. A powerful tool in metabolic engineering. In: Advances in Biochemical Engineering / Biotechnology. Springer-Verlag.
- Cox, S. J., Shalel Levanon, S., Sanchez, A., Lin, H., Peercy, B., Bennett, G. N. und San, K. Y. (2006). Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. *Metab Eng* 8, 46-57.
- Cupp, J. R. und McAlister-Henn, L. (1991). NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from *Saccharomyces cerevisiae*. J Biol Chem 266, 22199-205.
- Cupp, J. R. und McAlister-Henn, L. (1992). Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from *Saccharomyces cerevisiae*. J Biol Chem 267, 16417-23.
- de Jong-Gubbels, P., Vanrolleghem, P., Heijnen, S., van Dijken, J. P. und Pronk, J. T. (1995). Regulation of carbon metabolism in chemostat cultures of *Saccharomyces cerevisiae* grown on mixtures of glucose and ethanol. *Yeast* **11**, 407-18.
- de Vries, S. und Marres, C. A. (1987). The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. *Biochim Biophys Acta* **895**, 205-39.
- Diniz, S. C., Voss, I. und Steinbuchel, A. (2006). Optimization of cyanophycin production in recombinant strains of *Pseudomonas putida* and *Ralstonia eutropha* employing elementary mode analysis and statistical experimental design. *Biotechnol Bioeng* **93**, 698-717.
- dos Santos, M. M., Gombert, A. K., Christensen, B., Olsson, L. und Nielsen, J. (2003). Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by *Saccharomyces cerevisiae* by using 13C-labeled substrates. *Eukaryot Cell* **2**, 599-608.
- Dragan, C. A., Blank, L. M. und Bureik, M. (2006). Increased TCA cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. *Yeast* 23, 779-94.
- Duarte, N. C., Herrgard, M. J. und Palsson, B. O. (2004a). Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14, 1298-309.
- Duarte, N. C., Palsson, B. O. und Fu, P. (2004b). Integrated analysis of metabolic phenotypes in *Saccharomyces cerevisiae. BMC Genomics* **5**, 63.
- Dunn, I. J., Heinzle, E., Ingham, J. und Prenosil, J. E. (2000). *Biological reaction engineering*. *Dynamic modelling fundamentals with simulation exampels*. Wiley-VCH.

- Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W. und Holzer, H. (1969). Studies on the regulation and localization of the glyoxylate cycle enzymes in *Saccharomyces cerevisiae*. *Eur J Biochem* **10**, 83-9.
- Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. und Brunengraber, H. (1996). Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31, 255-62.
- Flikweert, M. T., Van Der Zanden, L., Janssen, W. M., Steensma, H. Y., Van Dijken, J. P. und Pronk, J. T. (1996). Pyruvate decarboxylase: an indispensable enzyme for growth of *Saccharomyces cerevisiae* on glucose. *Yeast* 12, 247-57.
- Forster, J., Famili, I., Fu, P., Palsson, B. O. und Nielsen, J. (2003). Genome-scale reconstruction of the *Saccharomyces cerevisiae* metabolic network. *Genome Res* **13**, 244-53.
- Forster, J., Gombert, A. K. und Nielsen, J. (2002). A functional genomics approach using metabolomics and in silico pathway analysis. *Biotechnol Bioeng* **79**, 703-12.
- Franco, C. M. M., Smith, J. E. und Berry, D. R. (1984). Effect of nitrogen and phosphate on the levels of intermediates in baker's yeast grown in continuous culture. *J Gen Microbiol* 130, 2465-2472.
- Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. *Faseb J* **10**, 461-70.
- Frick, O. und Wittmann, C. (2005). Characterization of the metabolic shift between oxidative and fermentative growth in *Saccharomyces cerevisiae* by comparative 13C flux analysis. *Microb Cell Fact* **4**, 30.
- Fukuhara, H. (2003). The Kluyver effect revisited. FEMS Yeast Res 3, 327-31.
- Furukawa, K., Heinzle, E. und Dunn, I. J. (1983). Influence of oxygen on the growth of *Saccharomyces cerevisiae* in continuous culture. *Biotechnol Bioeng* **25**, 2293-317.
- Gancedo, C. und Serrano, R. (1987). Energy-yielding metabolism. In: The Yeasts. Metabolism and physiology of yeasts. Academic Press.
- Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334-61.
- Gangloff, S. P., Marguet, D. und Lauquin, G. J. (1990). Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. *Mol Cell Biol* **10**, 3551-61.
- Garcia-Campusano, F., Anaya, V. H., Robledo-Arratia, L., Quezada, H., Hernandez, H., Riego, L. und Gonzalez, A. (2009). ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in *Saccharomyces cerevisiae*. *Can J Microbiol* 55, 368-74.
- Geertman, J. M., van Maris, A. J., van Dijken, J. P. und Pronk, J. T. (2006). Physiological and genetic engineering of cytosolic redox metabolism in *Saccharomyces cerevisiae* for improved glycerol production. *Metab Eng* **8**, 532-42.
- Geng, J. und Yuan, J. (2009). Cybernetic modeling based on pathway analysis for *Penicillium* chrysogenum fed-batch fermentation. *Bioprocess Biosyst Eng* **33**, 665-74.

- Gibson, N. und McAlister-Henn, L. (2003). Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. *J Biol Chem* **278**, 25628-36.
- Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H. und Oliver, S. G. (1996). Life with 6000 genes. *Science* 274, 546, 563-7.
- Gombert, A. K., Moreira dos Santos, M., Christensen, B. und Nielsen, J. (2001). Network identification and flux quantification in the central metabolism of *Saccharomyces cerevisiae* under different conditions of glucose repression. *J Bacteriol* **183**, 1441-51.
- Gonzalez, B., Francois, J. und Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. *Yeast* **13**, 1347-55.
- Gonzalez Siso, M. I., Freire Picos, M. A. und Cerdan, M. E. (1996). Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by *Kluyveromyces lactis* rag2 mutants. *FEBS Lett* **387**, 7-10.
- Goudar, C., Biener, R., Boisart, C., Heidemann, R., Piret, J., de Graaf, A. und Konstantinov, K. (2010). Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. *Metab Eng* 12, 138-49.
- Haselbeck, R. J. und McAlister-Henn, L. (1991). Isolation, nucleotide sequence, and disruption of the Saccharomyces cerevisiae gene encoding mitochondrial NADP(H)-specific isocitrate dehydrogenase. J Biol Chem 266, 2339-45.
- Haselbeck, R. J. und McAlister-Henn, L. (1993). Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. *J Biol Chem* **268**, 12116-22.
- Heinzle, E., Moes, J. und Dunn, I. J. (1985). The influence of cyclic glucose feeding on a continous bakers' yeast culture. *Biotechnol Lett* **4**, 235-240.
- Henke, B., Girzalsky, W., Berteaux-Lecellier, V. und Erdmann, R. (1998). IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids. J Biol Chem 273, 3702-11.
- Herrero, P., Fernandez, R. und Moreno, F. (1985). Differential sensitivities to glucose and galactose repression of gluconeogenic and respiratory enzymes from *Saccharomyces cerevisiae*. Arch Microbiol **143**, 216-9.
- Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J. und Kell, D. B. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. *Nat Biotechnol* 26, 1155-60.
- Hildyard, J. C. und Halestrap, A. P. (2003). Identification of the mitochondrial pyruvate carrier in *Saccharomyces cerevisiae. Biochem J* **374**, 607-11.

- Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P. und Kummer, U. (2006). COPASI--a COmplex PAthway SImulator. *Bioinformatics* 22, 3067-74.
- Ishida, N., Saitoh, S., Ohnishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K. und Takahashi, H. (2006). Metabolic engineering of *Saccharomyces cerevisiae* for efficient production of pure L-(+)-lactic acid. *Appl Biochem Biotechnol* 131, 795-807.
- Jansen, M. L., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P. und Pronk, J. T. (2005). Prolonged selection in aerobic, glucose-limited chemostat cultures of *Saccharomyces cerevisiae* causes a partial loss of glycolytic capacity. *Microbiology* 151, 1657-69.
- Jia, Y. K., Becam, A. M. und Herbert, C. J. (1997). The CIT3 gene of *Saccharomyces cerevisiae* encodes a second mitochondrial isoform of citrate synthase. *Mol Microbiol* **24**, 53-9.
- Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. und Hirakawa, M. (2006). From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res* 34, D354-7.
- Kaplan, R. S., Mayor, J. A., Gremse, D. A. und Wood, D. O. (1995). High level expression and characterization of the mitochondrial citrate transport protein from the yeast *Saccharomyces cerevisiae*. J Biol Chem 270, 4108-14.
- Kauffman, K. J., Prakash, P. und Edwards, J. S. (2003). Advances in flux balance analysis. *Curr* Opin Biotechnol 14, 491-6.
- Kispal, G., Cseko, J., Alkonyi, I. und Sandor, A. (1991). Isolation and characterization of carnitine acetyltransferase from *S. cerevisiae. Biochim Biophys Acta* **1085**, 217-22.
- Klamt, S., Gagneur, J. und von Kamp, A. (2005). Algorithmic approaches for computing elementary modes in large biochemical reaction networks. *Syst Biol (Stevenage)* **152**, 249-55.
- Klamt, S., Schuster, S. und Gilles, E. D. (2002). Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. *Biotechnol Bioeng* **77**, 734-51.
- Klamt, S. und Stelling, J. (2003). Two approaches for metabolic pathway analysis? *Trends Biotechnol* **21**, 64-9.
- Klamt, S., Stelling, J., Ginkel, M. und Gilles, E. D. (2003). FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. *Bioinformatics* **19**, 261-9.
- Kleijn, R. J., Geertman, J. M., Nfor, B. K., Ras, C., Schipper, D., Pronk, J. T., Heijnen, J. J., van Maris, A. J. und van Winden, W. A. (2007). Metabolic flux analysis of a glyceroloverproducing *Saccharomyces cerevisiae* strain based on GC-MS, LC-MS and NMRderived C-labelling data. *FEMS Yeast Res* 7, 216-31.
- Klimant, I. und Wolfbeis, O. S. (1995). Oxygen-sensitive luminescent materials based on siliconesoluble ruthenium diimine complexes. *Anal. Chem.* **67**, 3160-3166.

- Krömer, J. O., Wittmann, C., Schroder, H. und Heinzle, E. (2006). Metabolic pathway analysis for rational design of L-methionine production by *Escherichia coli* and *Corynebacterium glutamicum*. *Metab Eng* **8**, 353-69.
- Kuepfer, L., Sauer, U. und Blank, L. M. (2005). Metabolic functions of duplicate genes in *Saccharomyces cerevisiae. Genome Res* 15, 1421-30.
- Lagunas, R. (1986). Misconceptions about the energy metabolism of *Saccharomyces cerevisiae*. *Yeast* 2, 221-8.
- Lagunas, R. (1993). Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 10, 229-42.
- Larsson, C., Pahlman, I. L., Ansell, R., Rigoulet, M., Adler, L. und Gustafsson, L. (1998). The importance of the glycerol 3-phosphate shuttle during aerobic growth of *Saccharomyces cerevisiae*. *Yeast* 14, 347-57.
- Lewin, A. S., Hines, V. und Small, G. M. (1990). Citrate synthase encoded by the CIT2 gene of *Saccharomyces cerevisiae* is peroxisomal. *Mol Cell Biol* **10**, 1399-405.
- Loftus, T. M., Hall, L. V., Anderson, S. L. und McAlister-Henn, L. (1994). Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase. *Biochemistry* **33**, 9661-7.
- Lowry, O. H. und Passonneau, J. V. (1969). Phosphoglucomutase kinetics with the phosphates of fructose, glucose, mannose, ribose, and galactose. *J Biol Chem* **244**, 910-6.
- Luttik, M. A., Overkamp, K. M., Kotter, P., de Vries, S., van Dijken, J. P. und Pronk, J. T. (1998). The *Saccharomyces cerevisiae* NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. *J Biol Chem* **273**, 24529-34.
- Maczek, J., Junne, S., Nowak, P. und Goetz, P. (2006). Metabolic flux analysis of the sterol pathway in the yeast *Saccharomyces cerevisiae*. *Bioprocess Biosyst Eng* **29**, 241-52.
- Maitra, P. K. und Lobo, Z. (1971). A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem 246, 475-88.
- Marres, C. A., de Vries, S. und Grivell, L. A. (1991). Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195, 857-62.
- McAlister-Henn, L. und Small, W. C. (1997). Molecular genetics of yeast TCA cycle isozymes. *Prog Nucleic Acid Res Mol Biol* 57, 317-39.
- McAlister-Henn, L. und Thompson, L. M. (1987). Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. *J Bacteriol* **169**, 5157-66.
- Meijer, S., Otero, J., Olivares, R., Andersen, M. R., Olsson, L. und Nielsen, J. (2009). Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in *Aspergillus niger. Metab Eng* 11, 107-16.

- Melzer, G., Dalpiaz, A., Grote, A., Kucklick, M., Gocke, Y., Jonas, R., Dersch, P., Franco-Lara, E., Nortemann, B. und Hempel, D. C. (2007). Metabolic flux analysis using stoichiometric models for *Aspergillus niger*: comparison under glucoamylase-producing and nonproducing conditions. *J Biotechnol* 132, 405-17.
- Minard, K. I., Jennings, G. T., Loftus, T. M., Xuan, D. und McAlister-Henn, L. (1998). Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 273, 31486-93.
- Minard, K. I. und McAlister-Henn, L. (1991). Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from *Saccharomyces cerevisiae:* evidence for three isozymes of yeast malate dehydrogenase. *Mol Cell Biol* **11**, 370-80.
- Minard, K. I. und McAlister-Henn, L. (1992). Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. *J Biol Chem* **267**, 17458-64.
- Mo, M. L., Palsson, B. O. und Herrgard, M. J. (2009). Connecting extracellular metabolomic measurements to intracellular flux states in yeast. *BMC Syst Biol* **3**, 37.
- Mollney, M., Wiechert, W., Kownatzki, D. und de Graaf, A. A. (1999). Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. *Biotechnol Bioeng* 66, 86-103.
- Moreira dos Santos, M., Raghevendran, V., Kotter, P., Olsson, L. und Nielsen, J. (2004). Manipulation of malic enzyme in *Saccharomyces cerevisiae* for increasing NADPH production capacity aerobically in different cellular compartments. *Metab Eng* **6**, 352-63.
- Morin, P. J., Subramanian, G. S. und Gilmore, T. D. (1992). AAT1, a gene encoding a mitochondrial aspartate aminotransferase in *Saccharomyces cerevisiae*. *Biochim Biophys* Acta 1171, 211-4.
- Nanchen, A., Schicker, A., Revelles, O. und Sauer, U. (2008). Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in *Escherichia coli*. *J Bacteriol* **190**, 2323-30.
- Nash, R., Weng, S., Hitz, B., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hong, E. L., Livstone, M. S., Oughtred, R., Park, J., Skrzypek, M., Theesfeld, C. L., Binkley, G., Dong, Q., Lane, C., Miyasato, S., Sethuraman, A., Schroeder, M., Dolinski, K., Botstein, D. und Cherry, J. M. (2007). Expanded protein information at SGD: new pages and proteome browser. *Nucleic Acids Res* 35, D468-71.
- Navarro-Avino, J. P., Prasad, R., Miralles, V. J., Benito, R. M. und Serrano, R. (1999). A proposal for nomenclature of aldehyde dehydrogenases in *Saccharomyces cerevisiae* and characterization of the stress-inducible ALD2 and ALD3 genes. *Yeast* **15**, 829-42.
- Nielsen, J. und Jewett, M. C. (2008). Impact of systems biology on metabolic engineering of *Saccharomyces cerevisiae. FEMS Yeast Res* **8**, 122-31.
- Niklas, J., Noor, F. und Heinzle, E. (2009). Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2. *Toxicol Appl Pharmacol* **240**, 327-36.

- Niklas, J., Schneider, K. und Heinzle, E. (2010). Metabolic flux analysis in eukaryotes. *Curr Opin Biotechnol* **21**, 63-9.
- Nosek, J. und Fukuhara, H. (1994). NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. *J Bacteriol* **176**, 5622-30.
- Oliver, S. G., van der Aart, Q. J., Agostoni-Carbone, M. L., Aigle, M., Alberghina, L., Alexandraki, D., Antoine, G., Anwar, R., Ballesta, J. P., Benit, P. und et al. (1992). The complete DNA sequence of yeast chromosome III. *Nature* **357**, 38-46.
- Ooi, S. L., Pan, X., Peyser, B. D., Ye, P., Meluh, P. B., Yuan, D. S., Irizarry, R. A., Bader, J. S., Spencer, F. A. und Boeke, J. D. (2006). Global synthetic-lethality analysis and yeast functional profiling. *Trends Genet* 22, 56-63.
- Ostergaard, S., Roca, C., Ronnow, B., Nielsen, J. und Olsson, L. (2000). Physiological studies in aerobic batch cultivations of *Saccharomyces cerevisiae* strains harboring the MEL1 gene. *Biotechnol Bioeng* **68**, 252-9.
- Oura, E. (1977). Reaction products of yeast fermentations. Process Biochem 12, 19-21.
- Oura, E. (1983). Biomass from carbohydrates. In: Biotechnology. VCH Verlag.
- Overkamp, K. M., Bakker, B. M., Kotter, P., van Tuijl, A., de Vries, S., van Dijken, J. P. und Pronk, J. T. (2000). In vivo analysis of the mechanisms for oxidation of cytosolic NADH by *Saccharomyces cerevisiae* mitochondria. *J Bacteriol* **182**, 2823-30.
- Oyedotun, K. S. und Lemire, B. D. (2004). The quaternary structure of the *Saccharomyces cerevisiae* succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. *J Biol Chem* **279**, 9424-31.
- Ozcan, S. und Johnston, M. (1999). Function and regulation of yeast hexose transporters. *Microbiol Mol Biol Rev* **63**, 554-69.
- Palmieri, L., Agrimi, G., Runswick, M. J., Fearnley, I. M., Palmieri, F. und Walker, J. E. (2001). Identification in *Saccharomyces cerevisiae* of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. *J Biol Chem* 276, 1916-22.
- Palmieri, L., Lasorsa, F. M., De Palma, A., Palmieri, F., Runswick, M. J. und Walker, J. E. (1997). Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. *FEBS Lett* **417**, 114-8.
- Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M. J., Palmieri, F. und Walker, J. E. (1999a). Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274, 22184-90.
- Palmieri, L., Vozza, A., Honlinger, A., Dietmeier, K., Palmisano, A., Zara, V. und Palmieri, F. (1999b). The mitochondrial dicarboxylate carrier is essential for the growth of *Saccharomyces cerevisiae* on ethanol or acetate as the sole carbon source. *Mol Microbiol* **31**, 569-77.
- Papin, J. A., Price, N. D., Edwards, J. S. und Palsson, B. B. (2002). The genome-scale metabolic extreme pathway structure in *Haemophilus influenzae* shows significant network redundancy. *J Theor Biol* 215, 67-82.

- Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S. und Palsson, B. O. (2004). Comparison of network-based pathway analysis methods. *Trends Biotechnol* 22, 400-5.
- Petrik, M., Käppeli, O. und Fiechter, A. (1983). An expanded concept for the glucose eject in the yeast *Saccharomyces uvarum:* involvement of short- and long-term regulation. *J Gen Microbiol* **129**, 42-49.
- Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J. C., Montero, F. und Schuster, S. (1999). METATOOL: for studying metabolic networks. *Bioinformatics* 15, 251-7.
- Polakis, E. S., Bartley, W. und Meek, G. A. (1965). Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. *Biochem J* 97, 298-302.
- Poolman, M. G., Fell, D. A. und Raines, C. A. (2003). Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. *Eur J Biochem* **270**, 430-9.
- Postma, E., Verduyn, C., Scheffers, W. A. und Van Dijken, J. P. (1989). Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of *Saccharomyces cerevisiae*. Appl Environ Microbiol 55, 468-77.
- Price, N. D., Papin, J. A. und Palsson, B. O. (2002). Determination of redundancy and systems properties of the metabolic network of *Helicobacter pylori* using genome-scale extreme pathway analysis. *Genome Res* **12**, 760-9.
- Price, N. D., Reed, J. L. und Palsson, B. O. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. *Nat Rev Microbiol* **2**, 886-97.
- Pronk, J. T., de Steensma, H. und Van Dijken, J. P. (1996). Pyruvate metabolism in *Saccharomyces cerevisiae*. *Yeast* **12**, 1607-33.
- Provost, A. und Bastin, G. (2004). Dynamic metabolic modelling under the balanced growth condition. *J Process Contr* **14**, 717-728.
- Przybyla-Zawislak, B., Dennis, R. A., Zakharkin, S. O. und McCammon, M. T. (1998). Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. Eur J Biochem 258, 736-43.
- Przybyla-Zawislak, B., Gadde, D. M., Ducharme, K. und McCammon, M. T. (1999). Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. *Genetics* 152, 153-66.
- Quek, L. E., Dietmair, S., Kromer, J. O. und Nielsen, L. K. (2009). Metabolic flux analysis in mammalian cell culture. *Metab Eng* **12**, 161-71.
- Redruello, B., Valdes, E., Luz Lopez, M. und Rodicio, R. (1999). Multiple regulatory elements control the expression of the yeast ACR1 gene. *FEBS Lett* **445**, 246-50.
- Reich, J. G. und Sel'kov, E. E. (1981). Energy metabolism of the cell. London: Academic Press.
- Remize, F., Andrieu, E. und Dequin, S. (2000). Engineering of the pyruvate dehydrogenase bypass in *Saccharomyces cerevisiae:* role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. *Appl Environ Microbiol* **66**, 3151-9.

- Rieger, M., Käppeli, O. und Fiechter, A. (1983). The role of a limited respiration in the complete oxidation of glucose by *Saccharomyces cerevisiae*. J Gen Microbiol **129**, 653-661.
- Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand, N., Grandier-Vazeille, X., Larsson, C., Pahlman, I. L., Manon, S. und Gustafsson, L. (2004). Organization and regulation of the cytosolic NADH metabolism in the yeast *Saccharomyces cerevisiae*. *Mol Cell Biochem* 256-257, 73-81.
- Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C., Withers, S. T., Shiba, Y., Sarpong, R. und Keasling, J. D. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. *Nature* 440, 940-3.
- Rodrigues, F., Ludovico, P. und Leao, C. (2006). Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism in Biodiversity and Ecophysiology of Yeasts. Springer.
- Rosman, K. J. R. und Taylor, P. D. P. (1997). Isotopic Compositions of the Elements 1997.
- Saint-Prix, F., Bonquist, L. und Dequin, S. (2004). Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. *Microbiology* **150**, 2209-20.
- Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2, 62.
- Sauer, U., Heinemann, M. und Zamboni, N. (2007). Genetics. Getting closer to the whole picture. *Science* **316**, 550-1.
- Scheffers, W. A. (1966). Stimulation of fermentation in yeasts by acetoin and oxygen. *Nature* **210**, 533-4.
- Schilling, C. H., Letscher, D. und Palsson, B. O. (2000). Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathwayoriented perspective. J Theor Biol 203, 229-48.
- Schlosser, T., Gatgens, C., Weber, U. und Stahmann, K. P. (2004). Alanine : glyoxylate aminotransferase of *Saccharomyces cerevisiae*-encoding gene AGX1 and metabolic significance. *Yeast* 21, 63-73.
- Schmidt, K., Carlsen, M., Nielsen, J. und Villadsen, J. (1997). Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. *Biotechnol Bioeng* 55, 831-40.
- Schuster, S., Dandekar, T. und Fell, D. A. (1999). Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. *Trends Biotechnol* 17, 53-60.
- Schuster, S., Fell, D. A. und Dandekar, T. (2000). A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. *Nat Biotechnol* **18**, 326-32.

- Schuster, S., Hilgetag, C., Woods, J. H. und Fell, D. A. (2002a). Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45, 153-81.
- Schuster, S. und Hilgetag, S. (1994). On elementary flux modes in biochemical reaction systems at steady state. *J Biol Syst* **2**, 165-182.
- Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. und Dandekar, T. (2002b). Exploring the pathway structure of metabolism: decomposition into subnetworks and application to *Mycoplasma pneumoniae. Bioinformatics* **18**, 351-61.
- Schwarz, J., Gaugain, C., Nacher, J., de Daruvar, A. und Kanehisa, M. (2007a). Observing metabolic functions at the genome scale. *Genome Biol* **8**, 123.
- Schwarz, R., Liang, C., Kaleta, C., Kuhnel, M., Hoffmann, E., Kuznetsov, S., Hecker, M., Griffiths, G., Schuster, S. und Dandekar, T. (2007b). Integrated network reconstruction, visualization and analysis using YANAsquare. *BMC Bioinformatics* 8, 313.
- Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K. und Keasling, J. D. (2007). Engineering of the pyruvate dehydrogenase bypass in *Saccharomyces cerevisiae* for high-level production of isoprenoids. *Metab Eng* 9, 160-8.
- Small, W. C. und McAlister-Henn, L. (1998). Identification of a cytosolically directed NADH dehydrogenase in mitochondria of *Saccharomyces cerevisiae*. *J Bacteriol* **180**, 4051-5.
- Sonnleitner, B. und Kappeli, O. (1986). Growth of *Saccharomyces cerevisiae* is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. *Biotechnol Bioeng* **28**, 927-37.
- Steensma, H. Y. (1997). From pyruvate to acetyl-CoA and oxaloacetate. In: Yeast sugar metabolism biochemistry, genetics, biotechnology, and applications. Technomic.
- Steffan, J. S. und McAlister-Henn, L. (1992). Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. *J Biol Chem* **267**, 24708-15.
- Stephanopoulos, G., Aristidou, A. und Nielsen, J. (1998). *Metabolic engineering: principles and methodology*. Academic, San Diego.
- Sugden, M. C. und Holness, M. J. (2003). Trials, tribulations and finally, a transporter: the identification of the mitochondrial pyruvate transporter. *Biochem J* **374**, e1-2.
- Suissa, M., Suda, K. und Schatz, G. (1984). Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. *Embo J* **3**, 1773-81.
- Swiegers, J. H., Dippenaar, N., Pretorius, I. S. und Bauer, F. F. (2001). Carnitine-dependent metabolic activities in *Saccharomyces cerevisiae*: three carnitine acetyltransferases are essential in a carnitine-dependent strain. *Yeast* 18, 585-95.
- Takahashi, H., McCaffery, J. M., Irizarry, R. A. und Boeke, J. D. (2006). Nucleocytosolic acetylcoenzyme a synthetase is required for histone acetylation and global transcription. *Mol Cell* 23, 207-17.
- Terzer, M. und Stelling, J. (2006). Accelerating the Computation of Elementary Modes Using Pattern Trees. WABI.

- Terzer, M. und Stelling, J. (2008). Large-scale computation of elementary flux modes with bit pattern trees. *Bioinformatics* 24, 2229-35.
- Tessier, W. D., Meaden, P. G., Dickinson, F. M. und Midgley, M. (1998). Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of *Saccharomyces cerevisiae. FEMS Microbiol Lett* **164**, 29-34.
- Theobald, U., Mailinger, W., Reuss, M. und Rizzi, M. (1993). In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. *Anal Biochem* **214**, 31-7.
- Trinh, C. T., Wlaschin, A. und Srienc, F. (2009). Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. *Appl Microbiol Biotechnol* 81, 813-26.
- Trumbly, R. J. (1992). Glucose repression in the yeast *Saccharomyces cerevisiae*. *Mol Microbiol* **6**, 15-21.
- Urbanczik, R. (2006). SNA--a toolbox for the stoichiometric analysis of metabolic networks. *BMC Bioinformatics* **7**, 129.
- Van den Berg, M. A. und Steensma, H. Y. (1995). ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231, 704-13.
- van den Brink, J., Akeroyd, M., van der Hoeven, R., Pronk, J. T., de Winde, J. H. und Daran-Lapujade, P. (2009). Energetic limits to metabolic flexibility: responses of *Saccharomyces cerevisiae* to glucose-galactose transitions. *Microbiology* **155**, 1340-50.
- Van Dien, S. J. und Lidstrom, M. E. (2002). Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph *Methylobacterium extorquens* AM1, with application to reconstruction of C(3) and C(4) metabolism. *Biotechnol Bioeng* **78**, 296-312.
- Van Dijken, J. P. und Scheffers, W. A. (1986). Redox balances in the metabolism of sugars by yeasts. *FEMS Microbiol Rev* **32**, 199-224.
- van Maris, A. J., Luttik, M. A., Winkler, A. A., van Dijken, J. P. und Pronk, J. T. (2003). Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of *Saccharomyces cerevisiae*. *Appl Environ Microbiol* **69**, 2094-9.
- van Roermund, C. W., Hettema, E. H., van den Berg, M., Tabak, H. F. und Wanders, R. J. (1999). Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in *Saccharomyces cerevisiae* and identification of a plasma membrane carnitine transporter, Agp2p. *Embo J* 18, 5843-52.
- van Urk, H., Bruinenberg, P. M., Veenhuis, M., Scheffers, W. A. und van Dijken, J. P. (1989). Respiratory capacities of mitochondria of *Saccharomyces cerevisiae* CBS 8066 and *Candida utilis* CBS 621 grown under glucose limitation. *Antonie van Leeuwenhoek* 56, 211-220.
- van Urk, H., Voll, W. S., Scheffers, W. A. und Van Dijken, J. P. (1990). Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts. *Appl Environ Microbiol* 56, 281-7.

- van Winden, W., Schipper, D., Verheijen, P. und Heijnen, J. (2001). Innovations in generation and analysis of 2D [(13)C,(1)H] COSY NMR spectra for metabolic flux analysis purposes. *Metab Eng* **3**, 322-43.
- van Winden, W. A., Wittmann, C., Heinzle, E. und Heijnen, J. J. (2002). Correcting mass isotopomer distributions for naturally occurring isotopes. *Biotechnol Bioeng* **80**, 477-9.
- Velagapudi, V. R., Wittmann, C., Lengauer, T., Talwar, P. und Heinzle, E. (2006). Metabolic Screening of Saccharomyces cerevisiae Single Knockout Strains Reveals Unexpected Mobilization of Metabolic Potential. Process Biochem 41, 2170-79.
- Velagapudi, V. R., Wittmann, C., Schneider, K. und Heinzle, E. (2007). Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol 132, 395-404.
- Verduyn, C. (1991). Physiology of yeasts in relation to biomass yields. *Antonie Van Leeuwenhoek* **60**, 325-53.
- Verduyn, C., Postma, E., Scheffers, W. A. und van Dijken, J. P. (1990a). Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136, 405-12.
- Verduyn, C., Postma, E., Scheffers, W. A. und van Dijken, J. P. (1990b). Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136, 395-403.
- Verduyn, C., Stouthamer, A. H., Scheffers, W. A. und van Dijken, J. P. (1991). A theoretical evaluation of growth yields of yeasts. *Antonie van Leeuwenhoek* 59, 49-63.
- Verleur, N., Elgersma, Y., Van Roermund, C. W., Tabak, H. F. und Wanders, R. J. (1997). Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae. Eur J Biochem 247, 972-80.
- Vijayasankaran, N., Carlson, R. und Srienc, F. (2005). Metabolic pathway structures for recombinant protein synthesis in *Escherichia coli*. Appl Microbiol Biotechnol **68**, 737-46.
- Villas-Boas, S. G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J. und Nielsen, J. (2005). Global metabolite analysis of yeast: evaluation of sample preparation methods. *Yeast* 22, 1155-69.
- Visser, W., van Spronsen, E. A., Nanninga, N., Pronk, J. T., Gijs Kuenen, J. und van Dijken, J. P. (1995). Effects of growth conditions on mitochondrial morphology in *Saccharomyces cerevisiae*. *Antonie Van Leeuwenhoek* 67, 243-53.
- von Jagow, G. und Klingenberg, M. (1970). Pathways of hydrogen in mitochondria of *Saccharomyces carlsbergensis. Eur J Biochem* **12**, 583-92.
- von Meyenburg, H. (1969). Energetics of the budding cycle of *Saccharomyces cerevisiae* during glucose limited aerobic growth. *Arch Mikrobiol* **66**, 289-303.
- Wang, X., Mann, C. J., Bai, Y., Ni, L. und Weiner, H. (1998). Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in *Saccharomyces cerevisiae*. J Bacteriol 180, 822-30.

- Wattanachaisaereekul, S., Lantz, A. E., Nielsen, M. L., Andresson, O. S. und Nielsen, J. (2007). Optimization of heterologous production of the polyketide 6-MSA in *Saccharomyces cerevisiae*. *Biotechnol Bioeng* 97, 893-900.
- Weusthuis, R. A., Visser, W., Pronk, J. T., Scheffers, W. A. und van Dijken, J. P. (1994). Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. *Microbiology* 140 (Pt 4), 703-15.
- Wiback, S. J. und Palsson, B. O. (2002). Extreme pathway analysis of human red blood cell metabolism. *Biophys J* 83, 808-18.
- Wiechert, W. (2001). ¹³C metabolic flux analysis. *Metab Eng* 3, 195-206.
- Wiechert, W. und de Graaf, A. A. (1997). Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. *Biotechnol Bioeng* 55, 101-17.
- Wiechert, W., Mollney, M., Isermann, N., Wurzel, M. und de Graaf, A. A. (1999). Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. *Biotechnol Bioeng* 66, 69-85.
- Wittmann, C. (2002). Metabolic flux analysis using mass spectrometry. Adv Biochem Eng Biotechnol 74, 39-64.
- Wittmann, C. (2007). Fluxome analysis using GC-MS. Microb Cell Fact 6, 6.
- Wittmann, C., Hans, M. und Heinzle, E. (2002). In vivo analysis of intracellular amino acid labelings by GC/MS. Anal Biochem 307, 379-82.
- Wittmann, C. und Heinzle, E. (1999). Mass spectrometry for metabolic flux analysis. *Biotechnol Bioeng* 62, 739-750.
- Wittmann, C. und Heinzle, E. (2001). Modeling and experimental design for metabolic flux analysis of lysine-producing *Corynebacteria* by mass spectrometry. *Metab Eng* **3**, 173-91.
- Wu, M. und Tzagoloff, A. (1987). Mitochondrial and cytoplasmic fumarases in *Saccharomyces cerevisiae* are encoded by a single nuclear gene FUM1. *J Biol Chem* **262**, 12275-82.
- Yang, T. H., Bolten, C. J., Coppi, M. V., Sun, J. und Heinzle, E. (2009). Numerical bias estimation for mass spectrometric mass isotopomer analysis. *Anal Biochem* 388, 192-203.
- Yang, T. H., Frick, O. und Heinzle, E. (2008). Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. *BMC Syst Biol* **2**, 29.
- Zhao, Z., Kuijvenhoven, K., Ras, C., van Gulik, W. M., Heijnen, J. J., Verheijen, P. J. und van Winden, W. A. (2008). Isotopic non-stationary 13C gluconate tracer method for accurate determination of the pentose phosphate pathway split-ratio in *Penicillium chrysogenum*. *Metab Eng* 10, 178-86.
- Zubay, G. (1998). The tricarboxylic acid cycle. In: Biochemistry. Wm. C. Brown Publishers.
- Zupke, C. und Stephanopoulos, G. (2002). Modeling of Isotope Distributions and Intracellular Fluxes in Metabolic Networks Using Atom Mapping Matrixes. *Biotechnology Progress* 10, 489-498.

8 Anhang

8.1 Anabole und katabole Verhältnisse von NAD(P)⁺ und NADPH

Tabelle 36: Anabole und katabole Verhältnisse von NAD(P)⁺ und NAD(P)H der Stämme *S. cerevisiae* BY4742 und BY4742 mae1 Δ . Gezeigt sind Verhältnisse aus kontinuierlicher Kultur (Verdünnungsraten 0,16 h⁻¹ und 0,22 h⁻¹) sowie aus Schüttelkolben mit Glucose bzw. Galactose als Kohlenstoffquelle. n. b. – nicht bestimmbar.

		NAD ⁺ /NADH	NADP ⁺ /NADPH
BY4742	0,16 h ⁻¹	$0,92 \pm 0,01$	$0,56 \pm 0,03$
(Ref)	0,22 h ⁻¹	$0,89 \pm 0,04$	$0,\!48 \pm 0,\!06$
	SK Glc	$0,94 \pm 0,05$	$0,21 \pm 0,03$
	SK Gal	$1,25 \pm 0,02$	$0,11 \pm 0,04$
mae 1Δ	0,16 h ⁻¹	$0,94 \pm 0,07$	$0,70 \pm 0,06$
	0,22 h ⁻¹	$0,96\pm0,02$	$0,54 \pm 0,06$
	SK Glc	$1,02 \pm 0,09$	$0,\!20 \pm 0,\!04$
	SK Gal	$2,83 \pm 0,37$	n. b.

8.2 Netzwerke zur ¹³C metabolischen Flussanalyse

8.2.1 Kontinuierliche Kulturen

Abbildung 50: Stöchiometrisches Netzwerk des Stoffwechsels von *S. cerevisiae* für die ¹³C metabolische Flussanalyse in kontinuierlicher Kultur. Das Modell beinhaltet 28 Metabolite, die durch 33 Reaktionen verknüpft sind. Daneben beinhaltet das Modell 7 extrazelluläre und 14 anabole Flüsse.

Die stöchiometrischen Bilar	zen für die 28	8 Metabolite lauten	wie folgt:
-----------------------------	----------------	---------------------	------------

G6P	$(v_1+v_8+v_{b1})-(v_{inp}+v_{1r})$
F6P	$(v_{1r}+v_{11r}+v_{10r}+v_2)-(v_1+v_{11}+v_{10})$
DHP	(v ₃)-(v ₂)
GAP	$(v_4+v_{9r}+v_{10}+v_{11r}+v_{b4})-(v_2+v_3+v_9+v_{10r}+v_{11})$
3PG	$(v_5+v_{31}+v_{b5})-(v_4)$
PEP	$(v_6+v_{b6})-(v_5)$
PYR _c	$(v_7+v_{16}+v_{22}+v_{25}+v_{ext3})-(v_6)$
P5P	$(2v_9+v_{11}+v_{b2})-(v_8+2v_{9r}+v_{11r})$
S7P	$(v_{9r}+v_{10})-(v_{9}+v_{10r})$
E4P	$(v_{10r}+v_{11}+v_{b3})-(v_{10}+v_{11r})$
PYR _m	$(v_{21}+v_{26}+v_{b13})-(v_7+v_{20})$
Acetyl-CoA _m	$(v_{12})-(v_{21}+v_{19})$
CIT/ICT	(v ₁₃)-(v ₁₂)
AKG	$(v_{14}+v_{b12}+v_{ext4})-(v_{13})$
SUC/FUM	$(v_{15}+v_{ext5})-(v_{14}+v_{15r})$
OAA/MAL _m	$(v_{12}+v_{15r}+v_{18r}+v_{20}+v_{28})-(v_{15}+v_{18})$
OAAc	$(v_{18}+v_{27})-(v_{16}+v_{18r})$
AAD	$(v_{23}+v_{30r}+v_{ext1})-(v_{22}+v_{30})$
ACE	$(v_{24}+v_{ext2})-(v_{23})$
Acetyl-CoA _c	$(v_{19}+v_{b12})-(v_{24})$
SER	$(v_{32}+v_{b7})-(v_{31}+v_{32r})$
GLY	$(v_{30r}+v_{32r}+v_{b8})-(v_{30}+v_{32})$
THR	$(v_{30}+v_{b9})-(v_{29}+v_{30r})$
ASX _c	$(v_{29}+v_{34}+v_{ext6})-(v_{27})$
ASX _m	(v ₃₃)-(v ₂₈)
ASX	$(v_{b14})-(v_{33}+v_{34})$
ALA _{c/m}	(v_{b10}) - $(v_{25}+v_{26})$

8.2.2 Batch-Kulturen

Abbildung 51: Stöchiometrisches Netzwerk des Stoffwechsels von *S. cerevisiae* für die ¹³C metabolische Flussanalyse in Batch-Kultur. Das Modell beinhaltet 28 Metabolite, die durch 33 Reaktionen verknüpft sind. Daneben beinhaltet das Modell 6 extrazelluläre und 14 anabole Flüsse.

G6P	$(v_1+v_8+v_{b1})-(v_{inp}+v_{1r})$
F6P	$(v_{1r}+v_{11r}+v_{10r}+v_2)-(v_1+v_{11}+v_{10})$
DHP	$(v_3+v_{ext4})-(v_2+v_{3r})$
GAP	$(v_{3r}+v_4+v_{9r}+v_{10}+v_{11r}+v_{b4})-(v_2+v_3+v_9+v_{10r}+v_{11})$
3PG	$(v_5+v_{31}+v_{b5})-(v_4)$
PEP	$(v_6+v_{b6})-(v_5)$
PYR _c	$(v_7+v_{16}+v_{22}+v_{25}+v_{ext3})-(v_6)$
P5P	$(2v_9+v_{11}+v_{b2})-(v_8+2v_{9r}+v_{11r})$
S7P	$(v_{9r}+v_{10})-(v_{9}+v_{10r})$
E4P	$(v_{10r}+v_{11}+v_{b3})-(v_{10}+v_{11r})$
PYR _m	$(v_{21}+v_{26}+v_{b13})-(v_7+v_{20})$
Acetyl-CoA _m	$(v_{12})-(v_{21}+v_{19})$
CIT/ICT	(v ₁₃)-(v ₁₂)
AKG	$(v_{14}+v_{b12})-(v_{13})$
SUC/FUM	$(v_{15})-(v_{14}+v_{15r})$
OAA/MAL _m	$(v_{12}+v_{15r}+v_{18r}+v_{20}+v_{28})-(v_{15}+v_{18})$
OAAc	$(v_{18}+v_{27})-(v_{16}+v_{18r})$
AAD	$(v_{23}+v_{30r}+v_{ext1})-(v_{22}+v_{30})$
ACE	$(v_{24}+v_{ext2})-(v_{23})$
Acetyl-CoA _c	$(v_{19}+v_{b12})-(v_{24})$
SER	$(v_{32}+v_{b7})-(v_{31}+v_{32r})$
GLY	$(v_{30r}+v_{32r}+v_{b8})-(v_{30}+v_{32})$
THR	$(v_{30}+v_{b9})-(v_{29}+v_{30r})$
ASX _c	$(v_{29}+v_{34}+v_{ext6})-(v_{27})$
ASX _m	(v ₃₃)-(v ₂₈)
ASX	(v_{b14}) - $(v_{33}+v_{34})$
ALA _{c/m}	(v_{b10}) - $(v_{25}+v_{26})$

Die stöchiometrischen Bilanzen für die 28 Metabolite lauten wie folgt:

8.3 Ergebnisse ¹³C metabolische Flussanalyse

8.3.1 BY4742 respiratives Wachstum auf Glucose (D=0,16 h⁻¹)

Tabelle 37: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 1,46 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei respirativem Wachstum (0,16 h⁻¹) von *S. cerevisiae* BY4742 in kontinuierlicher Kultur mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
\mathbf{v}_1	36,6	0,1	V ₂₃	31,1	0,9
v_2	61,9	0,1	V ₂₄	31,0	0,9
V ₃	61,9	0,1	V ₂₅	1,2	0,0
v_4	135	0	V ₂₆	2,5	0,0
V ₅	128	0	V ₂₇	16,3	0,1
v ₆	122	0,3	V ₂₈	0,0	0,0
\mathbf{v}_7	53,5	1,0	V ₂₉	4,8	0,0
v_8	42,6	0,2	V ₃₀	0,5	0,0
V 9	14,1	0,1	v ₃₁	6,5	0,0
V ₁₀	14,1	0,1	V ₃₂	2,3	0,0
\mathbf{v}_{11}	11,2	0,1	V ₃₃	0,0	0,0
v ₁₂	63,5	0,5	V ₃₄	3,2	0,0
V ₁₃	63,5	0,5	\mathbf{v}_{inp}	100	n. b.
V ₁₄	53,0	0,6	V _{ext1}	0,0	0,0
V ₁₅	52,9	0,6	V _{ext2}	0,1	0,0
V ₁₆	35,6	0,4	V _{ext3}	1,2	0,0
v_{18}	19,3	0,4	V _{ext4}	0,9	0,0
V ₁₉	10,4	0,8	V _{ext5}	0,2	0,0
V ₂₀	8,6	0,4	V _{ext6}	7,8	0,1
V ₂₁	53,1	1,2			
V ₂₂	30,6	0,9			

Metabolit	relative Massenisotopomerfraktionen									
	M_0	M_1	M ₂	M ₃	M4	M ₅	M ₆	M ₇	M ₈	M9
Ala (m/z 260)										
gemessen	0,277	0,200	0,090	0,434						
simuliert	0,277	0,206	0,086	0,432						
Ala (m/z 232)										
gemessen	0,309	0,213	0,478							
simuliert	0,329	0,214	0,457							
Glu (m/z 432)										
gemessen	0,043	0,109	0,215	0,280	0,210	0,145				
simuliert	0,047	0,106	0,206	0,276	0,214	0,151				
Val (m/z 288)										
gemessen	0,082	0,121	0,204	0,248	0,143	0,203				
simuliert	0,093	0,121	0,196	0,241	0,139	0,209				
Val (m/z 260)										
gemessen	0,092	0,135	0,337	0,211	0,225					
simuliert	0,098	0,129	0,325	0,218	0,230					
Val (m/z 302)										
gemessen	0,422	0,120	0,457							
simuliert	0,422	0,115	0,463							
Thr (m/z 404)										
gemessen	0,457	0,111	0,215	0,196	0,251	0,228				
simuliert	0,463	0,115	0,207	0,196	0,250	0,232				
Thr (m/z 376)										
gemessen	0,144	0,258	0,313	0,285						
simuliert	0,145	0,254	0,315	0,285						
Gly (m/z 246)										
gemessen	0,438	0,103	0,460							
simuliert	0,441	0,108	0,450							
Ile (m/z 200)										
gemessen	0,044	0,110	0,221	0,278	0,212	0,135				
simuliert	0,070	0,102	0,206	0,268	0,215	0,139				

Tabelle 38: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren und intrazellulärer Trehalose von *S. cerevisiae* BY4742 bei respirativem Wachstum (0,16 h⁻¹) mit Glucose (50:50 [1-¹³C]-Glucose : [U-¹³C]-Glucose) in kontinuierlicher Kultur.
Asp (m/z 418)										
gemessen	0,111	0,215	0,196	0,251	0,228					
simuliert	0,114	0,209	0,196	0,250	0,231					
Asp (m/z 390)										
gemessen	0,144	0,258	0,312	0,285						
simuliert	0,145	0,252	0,316	0,287						
Phe (m/z 336)										
gemessen	0,033	0,051	0,086	0,125	0,128	0,169	0,136	0,120	0,068	0,083
simuliert	0,044	0,054	0,084	0,123	0,125	0,164	0,135	0,118	0,072	0,081
Phe (m/z 234)										
gemessen	0,036	0,054	0,139	0,121	0,174	0,124	0,167	0,096	0,089	
simuliert	0,047	0,055	0,131	0,125	0,170	0,130	0,161	0,099	0,083	
Tyr (m/z 466)										
gemessen	0,033	0,051	0,086	0,125	0,128	0,169	0,136	0,120	0,068	0,083
simuliert	0,047	0,054	0,083	0,122	0,127	0,165	0,137	0,116	0,071	0,079
Tre (m/z 361)										
gemessen	0,024	0,339	0,072	0,063	0,087	0,058	0,357			
simuliert	0,037	0,336	0,073	0,066	0,080	0,056	0,352			

8.3.2 BY4742 mae1∆ respiratives Wachstum auf Glucose (D=0,16 h⁻¹)

Tabelle 39: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 1,39 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei respirativem Wachstum (0,16 h⁻¹) von *S. cerevisiae* BY4742 mae1 Δ in kontinuierlicher Kultur mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall95%	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
v ₁	21,3	0,1	V ₂₃	45,3	1,7
v_2	53,7	0,0	V ₂₄	44,6	1,7
V ₃	53,7	0,0	V ₂₅	2,8	0,3
\mathbf{V}_4	121	0	V ₂₆	1,6	0,3
\mathbf{v}_5	113	0	V ₂₇	12,8	0,1
v_6	106	0	V ₂₈	3,9	0,0
\mathbf{v}_7	29,3	1,9	V ₂₉	5,8	0,0
\mathbf{v}_8	54,1	0,1	V ₃₀	0,7	0,0
V 9	17,9	0,0	V ₃₁	7,6	0,0
v_{10}	17,9	0,0	V ₃₂	2,7	0,0
\mathbf{v}_{11}	14,5	0,0	V ₃₃	3,9	0,0
v ₁₂	40,1	0,1	V ₃₄	0,0	0,0
V ₁₃	40,1	0,1	\mathbf{v}_{inp}	100	n. b.
v_{14}	28,0	0,2	V _{ext1}	0,0	0,0
v ₁₅	27,8	0,2	V _{ext2}	0,7	0,0
V ₁₆	28,9	0,1	V _{ext3}	1,0	0,0
v_{18}	16,1	0,0	V _{ext4}	0,7	0,0
V ₁₉	20,2	1,7	V _{ext5}	0,2	0,0
V ₂₀	0,0	0,0	V _{ext6}	6,5	0,1
V ₂₁	19,9	1,7			
V ₂₂	44,7	1,7			
			1		

Tabelle 40: Au	is dem Mod	ell berech	nete u	nd experir	nentell b	pestimmte	e Massen	isotopomer	verteilun	gen
proteinogener	Aminosäur	en und i	intraze	llulärer T	rehalose	e von S.	cerevisia	ae BY4742	mae1∆	bei
respirativem	Wachstum	(0,16 h ⁻) mit	Glucose	(50:50	[1- ¹³ C]-	Glucose	: [U- ¹³ C]-	Glucose)	in
kontinuierlich	er Kultur.									

Metabolit			re	lative M	asseniso	topomer	fraktion	en		
	M_0	M_1	M ₂	M ₃	M_4	M ₅	M ₆	M ₇	M ₈	M9
Ala (m/z 260)										
gemessen	0,299	0,188	0,078	0,436						
simuliert	0,286	0,204	0,069	0,441						
Ala (m/z 232)										
gemessen	0,330	0,197	0,473							
simuliert	0,340	0,205	0,455							
Glu (m/z 432)										
gemessen	0,052	0,118	0,233	0,272	0,202	0,121				
simuliert	0,075	0,148	0,233	0,270	0,168	0,107				
Val (m/z 288)										
gemessen	0,099	0,121	0,204	0,248	0,123	0,206				
simuliert	0,096	0,121	0,196	0,249	0,125	0,212				
Val (m/z 260)										
gemessen	0,109	0,130	0,351	0,187	0,223					
simuliert	0,104	0,128	0,331	0,204	0,233					
Val (m/z 302)										
gemessen	0,443	0,098	0,459							
simuliert	0,440	0,094	0,466							
Thr (m/z 404)										
gemessen	0,131	0,215	0,194	0,251	0,208					
simuliert	0,129	0,225	0,214	0,237	0,195					
Thr (m/z 376)										
gemessen	0,160	0,264	0,324	0,252						
simuliert	0,168	0,274	0,306	0,252						
Gly (m/z 246)										
gemessen	0,441	0,101	0,458							
simuliert	0,447	0,107	0,446							
Ile (m/z 200)										
gemessen	0,053	0,119	0,235	0,272	0,203	0,119				
simuliert	0,076	0,117	0,225	0,267	0,196	0,118				

Asp (m/z 418)										
gemessen	0,128	0,211	0,204	0,250	0,208					
simuliert	0,128	0,227	0,214	0,235	0,196					
Asp (m/z 390)										
gemessen	0,160	0,264	0,321	0,256						
simuliert	0,168	0,275	0,306	0,251						
Phe (m/z 336)										
gemessen	0,034	0,052	0,086	0,128	0,132	0,166	0,140	0,117	0,066	0,078
simuliert	0,040	0,053	0,083	0,122	0,126	0,166	0,137	0,119	0,073	0,080
Phe (m/z 234)										
gemessen	0,038	0,054	0,138	0,124	0,176	0,131	0,165	0,091	0,084	
simuliert	0,043	0,054	0,130	0,127	0,171	0,133	0,160	0,099	0,081	
Tyr (m/z 466)										
gemessen	0,034	0,052	0,086	0,128	0,132	0,166	0,140	0,117	0,066	0,078
simuliert	0,044	0,054	0,084	0,123	0,130	0,165	0,135	0,115	0,071	0,079
Tre (m/z 361)										
gemessen	0,023	0,348	0,069	0,067	0,079	0,060	0,354			
simuliert	0,025	0,345	0,072	0,063	0,078	0,054	0,363			

8.3.3 BY4742 respiro-respiratives Wachstum auf Glucose (D=0,22 h⁻¹)

Tabelle 41: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 2,42 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei respirativem Wachstum (0,22 h⁻¹) von *S. cerevisiae* BY4742 in kontinuierlicher Kultur mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall95%	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
\mathbf{v}_1	65,0	0,1	V ₂₃	47,1	0,8
v_2	73,6	0,0	V ₂₄	28,4	0,7
V ₃	73,6	0,0	V ₂₅	1,6	0,0
\mathbf{V}_4	145	0	V ₂₆	1,5	0,0
\mathbf{v}_5	144	0	V ₂₇	12,7	0,0
v_6	139	0	V ₂₈	0,3	0,0
\mathbf{v}_7	24,3	0,8	V ₂₉	4,2	0,0
\mathbf{v}_8	16,9	0,1	V ₃₀	0,5	0,0
V 9	5,6	0,0	v ₃₁	5,6	0,0
\mathbf{v}_{10}	5,6	0,0	V ₃₂	2,0	0,0
\mathbf{v}_{11}	3,0	0,0	V ₃₃	0,3	0,0
V ₁₂	32,6	0,3	V ₃₄	2,6	0,0
V ₁₃	32,6	0,3	\mathbf{v}_{inp}	100	n. b.
v ₁₄	23,8	0,3	v _{ext1}	37,5	0,1
v ₁₅	23,6	0,3	v _{ext2}	18,7	0,2
V ₁₆	27,1	0,2	V _{ext3}	2,0	0,0
v_{18}	14,3	0,2	V _{ext4}	0,5	0,0
V ₁₉	10,5	0,7	V _{ext5}	0,2	0,0
V ₂₀	5,0	0,2	V _{ext6}	5,6	0,0
v ₂₁	22,1	0,9			
V ₂₂	84,1	0,9			

Tabelle 42: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen
proteinogener Aminosäuren und intrazellulärem Fumarat und extrazellulärem Ethanol von S.
cerevisiae BY4742 bei respirativem Wachstum (0,22 h ⁻¹) mit Glucose (50:50 [1- ¹³ C]-Glucose : [U- ¹³ C]-
Glucose) in kontinuierlicher Kultur.

Metabolit			re	lative M	asseniso	topomer	fraktion	en		
	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M9
Fum (m/z 245)										
gemessen	0,095	0,183	0,245	0,267	0,211					
simuliert	0,093	0,185	0,235	0,268	0,219					
Ala (m/z 260)										
gemessen	0,254	0,215	0,091	0,440						
simuliert	0,253	0,215	0,091	0,441						
Ala (m/z 232)										
gemessen	0,276	0,240	0,485							
simuliert	0,277	0,240	0,483							
Glu (m/z 432)										
gemessen	0,045	0,100	0,202	0,278	0,222	0,152				
simuliert	0,039	0,103	0,214	0,278	0,222	0,144				
Val (m/z 288)										
gemessen	0,076	0,120	0,195	0,247	0,153	0,208				
simuliert	0,067	0,120	0,200	0,248	0,158	0,208				
Val (m/z 260)										
gemessen	0,083	0,132	0,317	0,234	0,233					
simuliert	0,074	0,135	0,322	0,239	0,231					
Thr (m/z 404)										
gemessen	0,124	0,213	0,177	0,264	0,221					
simuliert	0,119	0,218	0,176	0,267	0,220					
Gly (m/z 246)										
gemessen	0,445	0,097	0,459							
simuliert	0,442	0,094	0,464							
Asp (m/z 418)										
gemessen	0,123	0,217	0,183	0,263	0,215					
simuliert	0,117	0,216	0,180	0,267	0,220					
Phe (m/z 336)										
gemessen	0,035	0,050	0,081	0,120	0,127	0,172	0,140	0,122	0,074	0,080
simuliert	0,026	0,049	0,084	0,121	0,126	0,173	0,135	0,123	0,076	0,087

Phe (m/z 234)										
gemessen	0,040	0,057	0,132	0,127	0,164	0,125	0,159	0,108	0,087	
simuliert	0,028	0,053	0,131	0,126	0,169	0,124	0,166	0,110	0,093	
Tyr (m/z 466)										
gemessen	0,033	0,049	0,081	0,121	0,129	0,170	0,135	0,122	0,076	0,085
simuliert	0,026	0,049	0,084	0,121	0,126	0,173	0,135	0,123	0,076	0,087
EtOH (m/z 361)										
gemessen	0,310	0,226	0,464							
simuliert	0,282	0,233	0,485							

8.3.4 BY4742 mae1∆ respiro-respiratives Wachstum auf Glucose (D=0,22 h⁻¹)

Tabelle 43: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 2,40 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei respirativem Wachstum (0,22 h⁻¹) von *S. cerevisiae* BY4742 mae1 Δ in kontinuierlicher Kultur mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
v ₁	62,7	0,2	V ₂₃	40,1	1,0
v_2	75,0	0,1	V ₂₄	21,1	0,9
V ₃	75,0	0,1	V ₂₅	2,9	0,0
\mathbf{V}_4	154	0	V ₂₆	0,0	0,0
\mathbf{v}_5	147	0	V ₂₇	10,5	0,0
v_6	143	0	V ₂₈	0,5	0,0
\mathbf{v}_7	26,0	0,9	V ₂₉	3,5	0,0
\mathbf{v}_8	20,8	0,1	V ₃₀	0,0	0,0
V9	7,3	0,1	v ₃₁	5,6	0,0
v_{10}	7,3	0,1	V ₃₂	2,3	0,0
\mathbf{v}_{11}	4,9	0,1	V ₃₃	0,5	0,0
v ₁₂	25,7	0,2	V ₃₄	3,8	0,0
V ₁₃	25,7	0,2	\mathbf{v}_{inp}	100	n. b.
v_{14}	19,0	0,2	V _{ext1}	54,4	0,6
V ₁₅	19,0	0,2	V _{ext2}	19,0	0,3
v ₁₆	18,2	0,1	V _{ext3}	1,0	0,0
v_{18}	7,7	0,1	V _{ext4}	0,2	0,0
V ₁₉	4,6	0,9	V _{ext5}	0,1	0,0
V ₂₀	0,5	0,1	V _{ext6}	3,2	0,0
v_{21}	21,1	1,0			
V ₂₂	94,5	1,0			
			1		

Metabolit	relative Massenisotopomerfraktionen									
	M_0	M_1	M_2	M ₃	M_4	M_5	M_6	M_7	M_8	M9
Ala (m/z 260)										
gemessen	0,267	0,214	0,059	0,460						
simuliert	0,271	0,203	0,069	0,457						
Glu (m/z 432)										
gemessen	0,045	0,096	0,197	0,277	0,224	0,161				
simuliert	0,038	0,099	0,204	0,280	0,218	0,161				
Val (m/z 288)										
gemessen	0,083	0,118	0,188	0,247	0,134	0,231				
simuliert	0,079	0,117	0,197	0,249	0,133	0,224				
Thr (m/z 404)										
gemessen	0,121	0,208	0,180	0,255	0,237					
simuliert	0,112	0,215	0,179	0,261	0,234					
Gly (m/z 246)										
gemessen	0,447	0,091	0,462							
simuliert	0,446	0,091	0,463							
Asp (m/z 418)										
gemessen	0,115	0,208	0,188	0,257	0,232					
simuliert	0,109	0,211	0,186	0,261	0,233					
Phe (m/z 336)										
gemessen	0,036	0,051	0,084	0,123	0,127	0,173	0,132	0,118	0,073	0,083
simuliert	0,028	0,049	0,084	0,121	0,125	0,171	0,134	0,124	0,075	0,089
Tyr (m/z 466)										
gemessen	0,037	0,051	0,082	0,119	0,124	0,170	0,134	0,120	0,075	0,086
simuliert	0,028	0,049	0,084	0,121	0,125	0,171	0,134	0,124	0,075	0,089

Tabelle 44: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren von *S. cerevisiae* BY4742 mae1∆ bei respirativem Wachstum (0,22 h⁻¹) mit Glucose (50:50 [1-¹³C]-Glucose : [U-¹³C]-Glucose) in kontinuierlicher Kultur.

8.3.5 BY4742 aerob fermentatives Wachstum auf Glucose (Batch-Kultur)

Tabelle 45: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 20,8 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei aerob fermentativem Wachstum von *S. cerevisiae* BY4742 mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
v ₁	87,7	0,1	V ₂₃	9,5	0,0
v_2	93,4	0,1	V ₂₄	4,0	0,0
V ₃	76,5	0,0	V ₂₅	0,0	0,0
\mathbf{V}_4	172	0	V ₂₆	0,7	0,0
\mathbf{v}_5	171	0	V ₂₇	1,9	0,0
v_6	170	0	V ₂₈	0,0	0,0
\mathbf{v}_7	4,2	0,0	V ₂₉	0,8	0,0
\mathbf{v}_8	9,1	0,1	V ₃₀	0,0	0,0
V9	3,1	0,0	V ₃₁	1,3	0,0
v_{10}	3,1	0,0	V ₃₂	0,5	0,0
\mathbf{v}_{11}	2,6	0,0	V ₃₃	0,0	0,0
v ₁₂	3,5	0,0	V ₃₄	0,7	0,0
v ₁₃	3,5	0,0	\mathbf{v}_{inp}	100	n. b.
v_{14}	1,8	0,0	V _{ext1}	148	0
v ₁₅	1,8	0,0	V _{ext2}	5,5	0,0
V ₁₆	4,8	0,1	V _{ext3}	3,4	0,0
v_{18}	2,9	0,0	V _{ext4}	17,0	0,0
V ₁₉	0,0	0,0	V _{ext6}	0,4	0,0
V ₂₀	1,2	0,0			
V ₂₁	3,5	0,1			
V ₂₂	157	0			

Metabolit	relative Massenisotopomerfraktionen									
	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M ₉
Ala (m/z 260)										
gemessen	0,232	0,239	0,078	0,451						
simuliert	0,236	0,236	0,079	0,449						
Ala (m/z 232)										
gemessen	0,254	0,249	0,498							
simuliert	0,255	0,255	0,489							
Val (m/z 288)										
gemessen	0,060	0,117	0,191	0,253	0,153	0,225				
simuliert	0,060	0,120	0,196	0,250	0,154	0,220				
Val (m/z 260)										
gemessen	0,067	0,125	0,308	0,248	0,252					
simuliert	0,065	0,130	0,315	0,250	0,239					
Thr (m/z 404)										
gemessen	0,137	0,241	0,122	0,274	0,225					
simuliert	0,135	0,240	0,134	0,269	0,223					
Thr (m/z 376)										
gemessen	0,140	0,247	0,374	0,239						
simuliert	0,144	0,252	0,363	0,241						
Gly (m/z 246)										
gemessen	0,475	0,063	0,462							
simuliert	0,478	0,037	0,485							
Ile (m/z 200)										
gemessen	0,054	0,097	0,220	0,270	0,240	0,119				
simuliert	0,037	0,101	0,227	0,278	0,239	0,118				
Ser (m/z 390)										
gemessen	0,232	0,258	0,047	0,463						
simuliert	0,231	0,261	0,058	0,450						
Ser (m/z 362)										
gemessen	0,235	0,291	0,474							
simuliert	0,241	0,295	0,463							

Tabelle 46: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren von *S. cerevisiae* BY4742 bei aerob fermentativem Wachstum mit Glucose (50:50 [1-¹³C]-Glucose : [U-¹³C]-Glucose).

Ser (m/z 288)										
gemessen	0,249	0,288	0,462							
simuliert	0,241	0,295	0,463							
Phe (m/z 336)										
gemessen	0,025	0,049	0,079	0,118	0,121	0,177	0,136	0,124	0,080	0,091
simuliert	0,022	0,048	0,080	0,120	0,125	0,177	0,139	0,124	0,077	0,088
Phe (m/z 302)										
gemessen	0,490	0,032	0,478							
simuliert	0,478	0,037	0,485							
Phe (m/z 234)										
gemessen	0,026	0,051	0,119	0,133	0,166	0,132	0,159	0,121	0,092	
simuliert	0,023	0,050	0,122	0,131	0,169	0,132	0,164	0,118	0,091	
Asp (m/z 418)										
gemessen	0,140	0,241	0,126	0,271	0,222					
simuliert	0,133	0,241	0,132	0,269	0,224					
Simulert	0,100	5,211	0,152	0,207	0,224					

8.3.6 BY4742 mae1∆ aerob fermentatives Wachstum auf Glucose (Batch-Kultur)

Tabelle 47: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Glucoseaufnahmerate von $q_s = 18,8 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei aerob fermentativem Wachstum von *S. cerevisiae* BY4742 mae1 Δ mit Glucose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
\mathbf{v}_1	93,5	0,1	V ₂₃	9,5	0,1
v_2	95,1	0,1	V ₂₄	5,2	0,0
V ₃	79,0	0,0	V ₂₅	0,6	0,0
\mathbf{v}_4	174	0	V ₂₆	0,1	0,0
\mathbf{v}_5	173	0	V ₂₇	1,8	0,0
v_6	172	0	V ₂₈	0,5	0,0
\mathbf{v}_7	2,4	0,1	V ₂₉	0,8	0,0
\mathbf{v}_8	3,0	0,1	V ₃₀	0,0	0,0
V 9	1,1	0,0	v ₃₁	1,4	0,0
V ₁₀	1,1	0,0	V ₃₂	0,6	0,0
\mathbf{v}_{11}	0,5	0,0	V ₃₃	0,5	0,0
V ₁₂	1,9	0,0	V ₃₄	0,2	0,0
V ₁₃	1,9	0,0	\mathbf{v}_{inp}	100	n. b.
V ₁₄	0,0	0,0	v _{ext1}	152	0
V ₁₅	0,0	0,0	V _{ext2}	4,4	0,0
V ₁₆	4,5	0,1	V _{ext3}	2,7	0,0
v_{18}	2,4	0,0	V _{ext4}	16,1	0,0
V ₁₉	0,9	0,1	V _{ext6}	0,7	0,0
V ₂₀	0,0	0,0			
V ₂₁	1,0	0,1			
V ₂₂	162	0			

Metabolit			re	lative M	asseniso	topomer	fraktion	en		
	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M9
Ala (m/z 260)										
gemessen	0,247	0,239	0,027	0,487						
simuliert	0,249	0,242	0,026	0,483						
Ala (m/z 232)										
gemessen	0,253	0,248	0,499							
simuliert	0,255	0,250	0,495							
Val (m/z 288)										
gemessen	0,065	0,121	0,185	0,249	0,133	0,248				
simuliert	0,063	0,124	0,190	0,249	0,134	0,239				
Val (m/z 260)										
gemessen	0,066	0,124	0,309	0,248	0,253					
simuliert	0,065	0,128	0,315	0,248	0,245					
Thr (m/z 404)										
gemessen	0,135	0,240	0,125	0,269	0,231					
simuliert	0,131	0,244	0,131	0,265	0,229					
Thr (m/z 376)										
gemessen	0,147	0,246	0,342	0,265						
simuliert	0,148	0,251	0,336	0,265						
Gly (m/z 246)										
gemessen	0,467	0,077	0,457							
simuliert	0,483	0,029	0,488							
Ile (m/z 200)										
gemessen	0,051	0,098	0,216	0,270	0,233	0,132				
simuliert	0,038	0,101	0,222	0,276	0,232	0,131				
Ser (m/z 390)										
gemessen	0,230	0,258	0,051	0,460						
simuliert	0,230	0,261	0,048	0,461						
Ser (m/z 362)										
gemessen	0,232	0,297	0,470							
simuliert	0,236	0,292	0,472							

Tabelle 48: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren von *S. cerevisiae* BY4742 mae1∆ bei aerob fermentativem Wachstum mit Glucose (50:50 [1-¹³C]-Glucose : [U-¹³C]-Glucose).

Ser (m/z 288)										
gemessen	0,236	0,298	0,466							
simuliert	0,236	0,292	0,472							
Phe (m/z 336)										
gemessen	0,025	0,049	0,080	0,119	0,123	0,177	0,136	0,122	0,079	0,090
simuliert	0,021	0,048	0,080	0,118	0,123	0,178	0,137	0,125	0,079	0,091
Phe (m/z 302)										
gemessen	0,488	0,033	0,480							
simuliert	0,482	0,029	0,488							
Phe (m/z 234)										
gemessen	0,026	0,051	0,120	0,133	0,166	0,130	0,160	0,122	0,093	
simuliert	0,021	0,049	0,122	0,133	0,167	0,129	0,163	0,123	0,093	
Asp (m/z 418)										
gemessen	0,137	0,241	0,128	0,269	0,226					
simuliert	0,130	0,244	0,130	0,266	0,229					
Glu (m/z 432)										
gemessen	0,044	0,104	0,221	0,270	0,226	0,135				
simuliert	0,039	0,102	0,219	0,274	0,226	0,139				

8.3.7 BY4742 aerob fermentatives Wachstum auf Galactose (Batch-Kultur)

Tabelle 49: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Galactoseaufnahmerate von $q_s = 11,5 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei aerob fermentativem Wachstum von *S. cerevisiae* BY4742 mit Galactose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
\mathbf{v}_1	83,6	0,1	V ₂₃	15,7	0,5
v_2	91,7	0,0	V ₂₄	5,9	0,5
V ₃	89,2	0,0	V ₂₅	0,2	0,0
\mathbf{V}_4	185	0	V ₂₆	0,4	0,0
\mathbf{v}_5	183	0	V ₂₇	3,7	0,0
v_6	183	0	V ₂₈	0,0	0,0
\mathbf{v}_7	38,1	0,5	V ₂₉	0,8	0,0
\mathbf{v}_8	12,7	0,1	V ₃₀	0,2	0,0
V 9	4,3	0,0	V ₃₁	1,0	0,0
v_{10}	4,3	0,0	V ₃₂	0,3	0,0
\mathbf{v}_{11}	3,8	0,0	V ₃₃	0,0	0,0
v ₁₂	43,9	0,2	V ₃₄	0,4	0,0
V ₁₃	43,9	0,2	\mathbf{v}_{inp}	100	n. b.
v_{14}	42,4	0,0	V _{ext1}	117	0
V ₁₅	42,4	0,2	V _{ext2}	9,9	0,1
V ₁₆	10,2	0,1	V _{ext3}	1,4	0,0
v_{18}	6,5	0,1	V _{ext4}	2,6	0,0
V ₁₉	2,4	0,5	V _{ext6}	2,2	0,0
V ₂₀	4,9	0,1			
V ₂₁	41,5	0,6			
V ₂₂	133	0			

Metabolit	relative Massenisotopomerfraktionen									
	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M9
Ala (m/z 260)										
gemessen	0,251	0,240	0,056	0,451						
simuliert	0,252	0,237	0,059	0,457						
Ala (m/z 232)										
gemessen	0,265	0,254	0,479							
simuliert	0,269	0,250	0,480							
Val (m/z 288)										
gemessen	0,068	0,127	0,193	0,250	0,142	0,218				
simuliert	0,065	0,126	0,197	0,249	0,146	0,215				
Val (m/z 260)										
gemessen	0,072	0,134	0,314	0,245	0,233					
simuliert	0,070	0,135	0,319	0,244	0,230					
Thr (m/z 404)										
gemessen	0,148	0,237	0,134	0,280	0,198					
simuliert	0,133	0,240	0,148	0,273	0,204					
Thr (m/z 376)										
gemessen	0,164	0,253	0,335	0,245						
simuliert	0,144	0,258	0,362	0,234						
Gly (m/z 246)										
gemessen	0,476	0,066	0,457							
simuliert	0,477	0,059	0,463							
Ile (m/z 200)										
gemessen	0,058	0,108	0,227	0,267	0,219	0,117				
simuliert	0,038	0,105	0,231	0,278	0,233	0,112				
Ser (m/z 390)										
gemessen	0,222	0,275	0,080	0,421						
simuliert	0,220	0,279	0,082	0,417						
Ser (m/z 362)										
gemessen	0,231	0,330	0,437							
simuliert	0,233	0,328	0,437							

Tabelle 50: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren von *S. cerevisiae* BY4742 bei aerob fermentativem Wachstum mit Galactose (50:50 [1-¹³C]-Galactose : [U-¹³C]-Galactose).

gemessen 0,234 0,331 0,433 simuliert 0,233 0,328 0,437 Phe (m/z 336)	Ser (m/z 288)										
simuliert 0,233 0,328 0,437 Phe (m/z 336) gemessen 0,028 0,056 0,088 0,126 0,128 0,175 0,130 0,115 0,071 0,077 simuliert 0,025 0,052 0,085 0,124 0,126 0,175 0,130 0,115 0,071 0,077 simuliert 0,025 0,052 0,085 0,124 0,126 0,175 0,134 0,120 0,072 0,081 Phe (m/z 302) gemessen 0,493 0,047 0,459 . <td< td=""><td>gemessen</td><td>0,234</td><td>0,331</td><td>0,433</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	gemessen	0,234	0,331	0,433							
Phe (m/z 336) gemessen 0,028 0,056 0,088 0,126 0,128 0,175 0,130 0,115 0,071 0,077 simuliert 0,025 0,052 0,085 0,124 0,126 0,175 0,134 0,120 0,072 0,081 Phe (m/z 302) gemessen 0,493 0,047 0,459 simuliert 0,484 0,048 0,466 Phe (m/z 234) gemessen 0,028 0,057 0,129 0,167 0,156 0,113 0,081 simuliert 0,026 0,054 0,131 0,133 0,167 0,129 0,156 0,113 0,081 gemessen 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418) gemessen 0,148 0,237 0,273 0,204 0,204 0,204	simuliert	0,233	0,328	0,437							
gemessen0,0280,0560,0880,1260,1280,1750,1300,1150,0710,077simuliert0,0250,0520,0850,1240,1260,1750,1340,1200,0720,081Phe (m/z 302)gemessen0,4930,0470,459	Phe (m/z 336)										
simuliert 0,025 0,052 0,085 0,124 0,126 0,175 0,134 0,120 0,072 0,081 Phe (m/z 302) gemessen 0,493 0,047 0,459 .	gemessen	0,028	0,056	0,088	0,126	0,128	0,175	0,130	0,115	0,071	0,077
Phe (m/z 302) gemessen 0,493 0,047 0,459 simuliert 0,484 0,048 0,466 Phe (m/z 234)	simuliert	0,025	0,052	0,085	0,124	0,126	0,175	0,134	0,120	0,072	0,081
gemessen 0,493 0,047 0,459 simuliert 0,484 0,048 0,466 Phe (m/z 234) gemessen 0,028 0,057 0,129 0,136 0,167 0,129 0,156 0,113 0,081 simuliert 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418)	Phe (m/z 302)										
simuliert 0,484 0,048 0,466 Phe (m/z 234) gemessen 0,028 0,057 0,129 0,136 0,167 0,129 0,156 0,113 0,081 simuliert 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418) gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	gemessen	0,493	0,047	0,459							
Phe (m/z 234) gemessen 0,028 0,057 0,129 0,136 0,167 0,129 0,156 0,113 0,081 simuliert 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418) gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	simuliert	0,484	0,048	0,466							
gemessen 0,028 0,057 0,129 0,136 0,167 0,129 0,156 0,113 0,081 simuliert 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418) gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	Phe (m/z 234)										
simuliert 0,026 0,054 0,131 0,133 0,169 0,127 0,160 0,111 0,085 Asp (m/z 418) gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	gemessen	0,028	0,057	0,129	0,136	0,167	0,129	0,156	0,113	0,081	
Asp (m/z 418) gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	simuliert	0,026	0,054	0,131	0,133	0,169	0,127	0,160	0,111	0,085	
gemessen 0,148 0,237 0,137 0,278 0,196 simuliert 0,132 0,240 0,148 0,273 0,204	Asp (m/z 418)										
simuliert 0,132 0,240 0,148 0,273 0,204	gemessen	0,148	0,237	0,137	0,278	0,196					
	simuliert	0,132	0,240	0,148	0,273	0,204					

8.3.8 BY4742 mae1∆ aerob fermentatives Wachstum auf Galactose (Batch-Kultur)

Tabelle 51: Prozentuale relative intrazelluläre und extrazelluläre Stoffflüsse bezogen auf die spezifische Galactoseaufnahmerate von $q_s = 8,38 \text{ mmol g}^{-1} \text{ h}^{-1}$ bei aerob fermentativem Wachstum von *S. cerevisiae* BY4742 mae1 Δ mit Galactose. Die angegebenen Konfidenzintervalle für 95 % wurden aus 200 Monte Carlo Läufen bestimmt. n. b., nicht bestimmt.

Nettofluss	Mittelwert	Konfidenzintervall _{95%}	Nettofluss	Mittelwert	Konfidenzintervall _{95%}
	[%]	[%]		[%]	[%]
v ₁	87,8	0,0	V ₂₃	24,9	1,2
v_2	93,4	0,0	V ₂₄	19,5	1,2
V ₃	90,1	0,0	V ₂₅	0,3	0,0
v_4	186	0	V ₂₆	0,2	0,0
V ₅	185	0	V ₂₇	2,4	0,0
v ₆	184	0	V ₂₈	0,0	0,0
\mathbf{v}_7	19,5	1,2	V ₂₉	0,7	0,0
v_8	8,8	0,0	V ₃₀	0,0	0,0
V 9	3,0	0,0	v ₃₁	1,1	0,0
V ₁₀	3,0	0,0	V ₃₂	0,4	0,0
\mathbf{v}_{11}	2,6	0,0	V ₃₃	0,0	0,0
V ₁₂	34,1	0,2	V ₃₄	0,6	0,0
V ₁₃	34,1	0,2	\mathbf{v}_{inp}	100	n. b.
V ₁₄	32,7	0,2	V _{ext1}	130	0
V ₁₅	32,7	0,2	V _{ext2}	10,0	0,1
V ₁₆	3,9	0,0	V _{ext3}	1,3	0,0
V ₁₈	1,4	0,0	V _{ext4}	3,3	0,0
V ₁₉	16,3	1,2	V _{ext6}	1,2	0,0
V ₂₀	0,0	0,0			
V ₂₁	17,9	1,2			
V ₂₂	159	1			

Metabolit			re	lative M	asseniso	topomer	fraktion	en		
	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M9
Ala (m/z 260)										
gemessen	0,263	0,238	0,037	0,461						
simuliert	0,264	0,238	0,038	0,460						
Ala (m/z 232)										
gemessen	0,274	0,248	0,478							
simuliert	0,279	0,240	0,481							
Val (m/z 288)										
gemessen	0,077	0,129	0,190	0,248	0,132	0,225				
simuliert	0,069	0,128	0,196	0,251	0,140	0,217				
Val (m/z 260)										
gemessen	0,080	0,134	0,315	0,239	0,233					
simuliert	0,073	0,135	0,322	0,240	0,230					
Thr (m/z 404)										
gemessen	0,162	0,241	0,124	0,281	0,192					
simuliert	0,152	0,245	0,131	0,273	0,198					
Thr (m/z 376)										
gemessen	0,179	0,251	0,335	0,236						
simuliert	0,161	0,256	0,376	0,207						
Gly (m/z 246)										
gemessen	0,488	0,067	0,445							
simuliert	0,487	0,045	0,468							
Ile (m/z 200)										
gemessen	0,065	0,111	0,229	0,263	0,217	0,115				
simuliert	0,043	0,109	0,243	0,273	0,232	0,099				
Ser (m/z 390)										
gemessen	0,237	0,269	0,074	0,420						
simuliert	0,236	0,268	0,079	0,417						
Ser (m/z 362)										
gemessen	0,245	0,318	0,438							
simuliert	0,248	0,317	0,434							

Tabelle 52: Aus dem Modell berechnete und experimentell bestimmte Massenisotopomerverteilungen proteinogener Aminosäuren von *S. cerevisiae* BY4742 mae1∆ bei aerob fermentativem Wachstum mit Galactose (50:50 [1-¹³C]-Galactose : [U-¹³C]-Galactose).

Ser (m/z 288)										
gemessen	0,249	0,319	0,433							
simuliert	0,248	0,317	0,434							
Phe (m/z 336)										
gemessen	0,038	0,056	0,086	0,123	0,125	0,173	0,130	0,117	0,073	0,078
simuliert	0,026	0,054	0,086	0,125	0,126	0,176	0,133	0,120	0,072	0,082
Phe (m/z 302)										
gemessen	0,503	0,049	0,448							
simuliert	0,487	0,045	0,468							
Phe (m/z 234)										
gemessen	0,039	0,057	0,127	0,135	0,164	0,129	0,156	0,112	0,081	
simuliert	0,027	0,055	0,133	0,133	0,169	0,126	0,160	0,111	0,086	
Asp (m/z 418)										
gemessen	0,159	0,243	0,128	0,280	0,190					
simuliert	0,150	0,248	0,124	0,280	0,197					

8.4 Elementarmodenanalyse

8.4.1 Stöchiometrisches Netzwerk nach Förster et al. (2002)

Netzwerk 1:

```
'GLC + ATP \rightarrow G6P + ADP'
'G6P \leftrightarrow F6P'
'ATP + F6P \rightarrow ADP + F16P'
'F16P \rightarrow F6P'
'F16P \leftrightarrow GA3P + DHAP'
'DHAP \leftrightarrow GA3P'
'GA3P + NADcyt \leftrightarrow P13G + NADHcyt'
'ADP + P13G \leftrightarrow ATP + P3G'
'P3G \leftrightarrow P2G'
'P2G \leftrightarrow PEP'
'PEP + ADP \rightarrow PYR + ATP'
'G6P + NADPcyt \rightarrow G15L + NADPHcyt'
^{\prime}\text{G15L} \rightarrow \text{P6G'}
'P6G + NADPcyt \rightarrow RU5P + CO2 + NADPHcyt'
'RU5P \leftrightarrow R5P'
'RU5P \leftrightarrow X5P'
'R5P + X5P \leftrightarrow S7P + GA3P'
'GA3P + S7P \leftrightarrow F6P + E4P'
'E4P + X5P \leftrightarrow F6P + GA3P'
'DHAP + NADHcyt \rightarrow GP + NADcyt'
'GP \rightarrow GLYC'
'PYR \rightarrow ACA + CO2'
'ACA + NADHcyt \rightarrow NADcyt + ETH'
'ACA + NADPcyt \rightarrow ACE + NADPHcyt'
'2 ATP + ACE \rightarrow 2 ADP + ACCOAcyt'
'PYR + NADmit \rightarrow ACCOAmit + NADHmit + CO2'
'PYR + ATP + CO2 \rightarrow OAA + ADP'
'ACCOAmit + OAA \rightarrow CI'
'CI \leftrightarrow ICI'
'ICI + NADPmit \rightarrow AKG + CO2 + NADPHmit'
'AKG + NADmit → SUCCOA + NADHmit + CO2'
'SUCCOA + ADP \leftrightarrow SUC + ATP'
'SUC + FAD \rightarrow FUM + FADH2'
'FUM + FADH2 \rightarrow SUC + FAD'
'FUM \leftrightarrow MAL'
'MAL + NADmit \leftrightarrow OAA + NADHmit'
'MAL + NADPmit \rightarrow PYR + NADPHmit + CO2'
'OAA + ATP \rightarrow PEP + ADP + CO2'
'ACCOAcyt \rightarrow ACCOAmit'
'ACE \rightarrow ACEX'
'CO2 \rightarrow CO2X'
```

```
'NADHcyt + NADmit \rightarrow NADcyt + NADHmit'
'20 NADHmit + 10 O2 + 24 ADP \rightarrow 20 NADmit + 24 ATP'
'20 FADH2 + 10 O2 + 24 ADP \rightarrow 20 FAD + 24 ATP'
'ATP \rightarrow ADP'
'3 ACCOAmit + 24 ACCOAcyt + 11 AKG + 3 E4P + 6 P3G + 1 GP + 6 PEP + 18 PYR + 3 R5P + 25 G6P +
10 OAA + 16 NADcyt + 6 NADmit + 90 NADPHcyt + 22 NADPHmit + 254 ATP → 10 BIOMASS + 16
NADHcyt + 6 NADHmit + 90 NADPcyt + 22 NADPmit + 254 ADP'
\rightarrow GLC'
\rightarrow 02'
'BIOMASS \rightarrow'
'CO2X \rightarrow '
'ETH \rightarrow '
'ACEX \rightarrow'
'GLYC \rightarrow '
Änderungen gegenüber Netzwerk 1:
Netzwerk 2:
ohne:
                 'NADHcyt + NADmit \rightarrow NADcyt + NADHmit'
Netzwerk 3:
mit:
                 'ICI + NADmit \rightarrow AKG + CO2 + NADHmit'
Netzwerk 4:
mit:
                 'NADPHcyt + NADPmit \leftrightarrow NADPcyt + NADPHmit'
Netzwerk 5:
mit:
                 'ICI + NADmit \rightarrow AKG + CO2 + NADHmit'
                 'NADPHcyt + NADPmit \leftrightarrow NADPcyt + NADPHmit'
Netzwerk 6:
mit:
                 'ICI + NADmit \rightarrow AKG + CO2 + NADHmit'
                 'ACA + NADcyt \rightarrow ACE + NADHcyt'
```

Netzwerk 7:

mit: $'ICI + NADmit \rightarrow AKG + CO2 + NADHmit'$ 'NADPHcyt + NADPmit \leftrightarrow NADPcyt + NADPHmit' 'ACA + NADcyt \rightarrow ACE + NADHcyt

8.4.2 Konsensusnetzwerk nach Herrgrad (2008)

Tabelle 53: 4. Version des Konsensusnetzwerks nach (Herrgard et al., 2008). Stand April 2010 (<u>http://www.comp-sys-bio.org/yeastnet/</u>). Gr. – Gruppe, der die entsprechende Reaktion zugeordnet ist (siehe Tabelle 34). R-Nr. – ursprüngliche Nummerierung der Reaktionen nach (Herrgard et al., 2008).

Gr.	R-Nr.	Enzymname	Reaktion
1	8	1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide isomerase	1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino)methylideneamino]imidazole-4-carboxamide [cytoplasm] = "5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm]"; "YIL020C [cytoplasm]"
1	13	2,3-diketo-5-methylthio-1-phosphopentane degradation reaction	5-(methylsulfanyl)-2,3-dioxopentyl phosphate [cytoplasm] + 3 * "water [cytoplasm]" = "4-methylthio-2-oxobutanoate [cytoplasm]" + "formate [cytoplasm]" + 6 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YEL038W:YMR009W [cytoplasm]"
1	16	2-aceto-2-hydroxybutanoate synthase	2-oxobutanoate [mitochondrion] + "H+ [mitochondrion]" + "pyruvate [mitochondrion]" = "(S)-2-acetyl-2-hydroxybutanoate [mitochondrion]" + "carbon dioxide [mitochondrion]"; "YCL009C:YMR108W [mitochondrion]"
1	21	2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase	D-erythrose 4-phosphate(2-) [mitochondrion] + "phosphoenolpyruvate [mitochondrion]" + "water [mitochondrion]" = "7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid [mitochondrion]" + "phosphate [mitochondrion]"; "YDR035W [mitochondrion]"
1	25	2-isopropylmalate hydratase	2-isopropylmaleic acid [cytoplasm] + "water [cytoplasm]" = "2-isopropylmalate(2-) [cytoplasm]"; "YGL009C [cytoplasm]"
1	26	2-isopropylmalate synthase	3-methyl-2-oxobutanoate [cytoplasm] + "acetyl-CoA [cytoplasm]" + "water [cytoplasm]" = "2-isopropylmalate(2-) [cytoplasm]" + "coenzyme A [cytoplasm]" + "H+ [cytoplasm]"; "YNL104C [cytoplasm]" "YOR108W [cytoplasm]"
1	27	2-isopropylmalate synthase_2	3-methyl-2-oxobutanoate [mitochondrion] + "acetyl-CoA [mitochondrion]" + "water [mitochondrion]" = "2-isopropylmalate(2-) [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"; "YNL104C [mitochondrion]"
1	29	2-methylcitrate dehydratase	homocitrate(3-) [mitochondrion] = "but-1-ene-1,2,4-tricarboxylic acid [mitochondrion]" + "water [mitochondrion]"; "YDR234W [mitochondrion]"
1	31	2-oxo-4-methyl-3-carboxypentanoate decarboxylation	(2S)-2-isopropyl-3-oxosuccinate(2-) [cytoplasm] + "H+ [cytoplasm]" = "4-methyl-2-oxopentanoate [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YJR148W [cytoplasm]"
1	32	2-oxo-4-methyl-3-carboxypentanoate decarboxylation_2	(2S)-2-isopropyl-3-oxosuccinate(2-) [mitochondrion] + "H+ [mitochondrion]" = "4-methyl-2-oxopentanoate [mitochondrion]" + "carbon dioxide [mitochondrion]"; "YHR208W [mitochondrion]"
1	42	3-dehydroquinate dehydratase	3-dehydroquinate [cytoplasm] = "3-dehydroshikimate [cytoplasm]" + "water [cytoplasm]"; "YDR127W [cytoplasm]"
1	43	3-dehydroquinate synthase	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid [cytoplasm] = "3-dehydroquinate [cytoplasm]" + "phosphate [cytoplasm]"; "YDR127W [cytoplasm]"
1	45	3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase	D-erythrose 4-phosphate(2-) [cytoplasm] + "phosphoenolpyruvate [cytoplasm]" + "water [cytoplasm]" = "7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid [cytoplasm]" + "phosphate [cytoplasm]"; "YBR249C [cytoplasm]" "YDR035W [cytoplasm]"
1	63	3-isopropylmalate dehydratase	(2R,3S)-3-isopropylmalate(2-) [cytoplasm] = "2-isopropylmaleic acid [cytoplasm]" + "water [cytoplasm]"; "YGL009C [cytoplasm]"
1	64	3-isopropylmalate dehydrogenase	(2R,3S)-3-isopropylmalate(2-) [cytoplasm] + "NAD(+) [cytoplasm]" = "(2S)-2-isopropyl-3-oxosuccinate(2-) [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YCL018W [cytoplasm]"
1	68	3-phosphoshikimate 1-carboxyvinyltransferase	3-phosphoshikimic acid [cytoplasm] + "phosphoenolpyruvate [cytoplasm]" = "5-O-(1-carboxyvinyl)-3-phosphoshikimic acid [cytoplasm]" + "phosphate [cytoplasm]"; "YDR127W [cytoplasm]"
1	100	5-methyltetrahydropteroyltriglutamate-homocysteine S- methyltransferase	5-methyltetrahydropteroyltri-L-glutamic acid [cytoplasm] + "L-homocysteine [cytoplasm]" = "L-methionine [cytoplasm]" + "tetrahydropteroyltri-L-glutamic acid [cytoplasm]"; "YER091C [cytoplasm]"
1	111	acetohydroxy acid isomeroreductase	2-acetyllactic acid [mitochondrion] + "H+ [mitochondrion]" + "NADPH [mitochondrion]" = "(R)-2,3-dihydroxy-3-methylbutanoate [mitochondrion]" + "NADP(+) [mitochondrion]"; "YLR355C

			[mitochondrion]"
1	112	acetolactate synthase	H+ [mitochondrion] + 2 * "pyruvate [mitochondrion]" = "2-acetyllactic acid [mitochondrion]" + "carbon dioxide [mitochondrion]"; "YCL009C:YMR108W [mitochondrion]"
1	130	acetylglutamate kinase	ATP [mitochondrion] + "N-acetyl-L-glutamate(2-) [mitochondrion]" = "ADP [mitochondrion]" + "N-acetyl-L-gamma-glutamyl phosphate [mitochondrion]"; "YER069W [mitochondrion]"
1	133	acteylornithine transaminase	2-acetamido-5-oxopentanoate [mitochondrion] + "L-glutamate [mitochondrion]" = "2-oxoglutarate [mitochondrion]" + "N(2)-acetyl-L-ornithine [mitochondrion]"; "YOL140W [mitochondrion]"
1	174	alanine glyoxylate aminotransferase	glyoxylate [cytoplasm] + "L-alanine [cytoplasm]" = "glycine [cytoplasm]" + "pyruvate [cytoplasm]"; "YFL030W [cytoplasm]"
1	220	anthranilate phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "anthranilate [cytoplasm]" = "diphosphate [cytoplasm]" + "N-(5-phospho-beta-D-ribosyl)anthranilate [cytoplasm]"; "YDR354W [cytoplasm]"
1	221	anthranilate synthase	chorismate(2-) [cytoplasm] + "L-glutamine [cytoplasm]" = "anthranilate [cytoplasm]" + "H+ [cytoplasm]" + "L-glutamate [cytoplasm]" + "pyruvate [cytoplasm]"; "YER090W:YKL211C [cytoplasm]"
1	225	argininosuccinate lyase	(N(omega)-L-arginino)succinic acid [cytoplasm] = "fumarate(2-) [cytoplasm]" + "L-arginine [cytoplasm]"; "YHR018C [cytoplasm]"
1	226	argininosuccinate synthase	ATP [cytoplasm] + "L-aspartate [cytoplasm]" + "L-citrulline [cytoplasm]" = "(N(omega)-L-arginino)succinic acid [cytoplasm]" + "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YOL058W [cytoplasm]"
1	229	asparagine synthase (glutamine-hydrolysing)	ATP [cytoplasm] + "L-aspartate [cytoplasm]" + "L-glutamine [cytoplasm]" + "water [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]" + "L-asparagine [cytoplasm]" + "L-glutamate [cytoplasm]"; "YGR124W [cytoplasm]" "YPR145W [cytoplasm]"
1	233	aspartate kinase	ATP [cytoplasm] + "L-aspartate [cytoplasm]" = "4-phospho-L-aspartate [cytoplasm]" + "ADP [cytoplasm]"; "YER052C [cytoplasm]"
1	235	aspartate transaminase	2-oxoglutarate [cytoplasm] + "L-aspartate [cytoplasm]" = "L-glutamate [cytoplasm]" + "oxaloacetate(2-) [cytoplasm]"; "YLR027C [cytoplasm]"
1	236	aspartate transaminase_2	2-oxoglutarate [mitochondrion] + "L-aspartate [mitochondrion]" = "L-glutamate [mitochondrion]" + "oxaloacetate(2-) [mitochondrion]"; "YKL106W [mitochondrion]"
1	237	aspartate transaminase_3	2-oxoglutarate [peroxisome] + "L-aspartate [peroxisome]" = "L-glutamate [peroxisome]" + "oxaloacetate(2-) [peroxisome]"; "YLR027C [peroxisome]"
1	238	aspartate-semialdehyde dehydrogenase	4-phospho-L-aspartate [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "L-aspartate 4-semialdehyde [cytoplasm]" + "NADP(+) [cytoplasm]" + "phosphate [cytoplasm]"; "YDR158W [cytoplasm]"
1	245	ATP phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "ATP [cytoplasm]" = "5-phosphoribosyl-ATP [cytoplasm]" + "diphosphate [cytoplasm]"; "YER055C [cytoplasm]"
1	304	chorismate mutase	chorismate(2-) [cytoplasm] = "prephenate(2-) [cytoplasm]"; "YPR060C [cytoplasm]"
1	306	chorismate synthase	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid [cytoplasm] = "chorismate(2-) [cytoplasm]" + "phosphate [cytoplasm]"; "YGL148W [cytoplasm]"
1	337	cystathionine b-lyase	L-cystathionine [cytoplasm] + "water [cytoplasm]" = "ammonium [cytoplasm]" + "L-homocysteine [cytoplasm]" + "pyruvate [cytoplasm]"; "YFR055W [cytoplasm]" "YGL184C [cytoplasm]"
1	338	cystathionine beta-synthase	L-homocysteine [cytoplasm] + "L-serine [cytoplasm]" = "L-cystathionine [cytoplasm]" + "water [cytoplasm]"; "YGR155W [cytoplasm]"
1	339	cystathionine g-lyase	L-cystathionine [cytoplasm] + "water [cytoplasm]" = "2-oxobutanoate [cytoplasm]" + "ammonium [cytoplasm]" + "L-cysteine [cytoplasm]"; "YAL012W [cytoplasm]"
1	341	cysteine synthase	hydrogen sulfide [cytoplasm] + "O-acetyl-L-serine [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "L-cysteine [cytoplasm]"; "YGR012W [cytoplasm]"
1	384	dihydroxy-acid dehydratase (2,3-dihydroxy-3- methylbutanoate)	(R)-2,3-dihydroxy-3-methylbutanoate [mitochondrion] = "3-methyl-2-oxobutanoate [mitochondrion]" + "water [mitochondrion]"; "YJR016C [mitochondrion]"
1	385	dihydroxy-acid dehydratase (2,3-dihydroxy-3- methylpentanoate)	(2R,3R)-2,3-dihydroxy-3-methylpentanoate [mitochondrion] = "(S)-3-methyl-2-oxopentanoate [mitochondrion]" + "water [mitochondrion]"; "YJR016C [mitochondrion]"
1	506	glutamate 5-kinase	ATP [cytoplasm] + "L-glutamate [cytoplasm]" = "ADP [cytoplasm]" + "L-gamma-glutamyl phosphate [cytoplasm]"; "YDR300C [cytoplasm]"
1	508	glutamate dehydrogenase (NAD)	L-glutamate [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "ammonium [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YDL215C [cytoplasm]"
1	509	glutamate dehydrogenase (NADP)	2-oxoglutarate [cytoplasm] + "ammonium [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "L-glutamate [cytoplasm]" + "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YAL062W [cytoplasm]" "YOR375C [cytoplasm]"

1	510	glutamate synthase (NADH2)	2-oxoglutarate [cytoplasm] + "H+ [cytoplasm]" + "L-glutamine [cytoplasm]" + "NADH [cytoplasm]" = 2 * "L-glutamate [cytoplasm]" + "NAD(+) [cytoplasm]"; "YDL171C [cytoplasm]"
1	511	glutamate-5-semialdehyde dehydrogenase	H+ [cytoplasm] + "L-gamma-glutamyl phosphate [cytoplasm]" + "NADPH [cytoplasm]" = "L-glutamic 5-semialdehyde [cytoplasm]" + "NADP(+) [cytoplasm]" + "phosphate [cytoplasm]"; "YOR323C [cytoplasm]"
1	512	glutamate-5-semialdehyde dehydrogenase_2	H+ [cytoplasm] + "L-gamma-glutamyl phosphate [cytoplasm]" + "NADH [cytoplasm]" = "L-glutamic 5-semialdehyde [cytoplasm]" + "NAD(+) [cytoplasm]" + "phosphate [cytoplasm]"; "YOR323C [cytoplasm]"
1	515	glutamine synthetase	ammonium [cytoplasm] + "ATP [cytoplasm]" + "L-glutamate [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "L-glutamine [cytoplasm]" + "phosphate [cytoplasm]"; "YPR035W [cytoplasm]"
1	539	glycine hydroxymethyltransferase	5,6,7,8-tetrahydrofolic acid [cytoplasm] + "L-serine [cytoplasm]" = "5,10-methylenetetrahydrofolate(2-) [cytoplasm]" + "glycine [cytoplasm]" + "water [cytoplasm]"; "YLR058C [cytoplasm]"
1	540	glycine hydroxymethyltransferase,	5,6,7,8-tetrahydrofolic acid [mitochondrion] + "L-serine [mitochondrion]" = "5,10-methylenetetrahydrofolate(2-) [mitochondrion]" + "glycine [mitochondrion]" + "water [mitochondrion]"; "YBR263W [mitochondrion]"
1	575	histidinol dehydrogenase	L-histidinol [cytoplasm] + 2 * "NAD(+) [cytoplasm]" + "water [cytoplasm]" = 3 * "H+ [cytoplasm]" + "L-histidine [cytoplasm]" + 2 * "NADH [cytoplasm]"; "YCL030C [cytoplasm]"
1	576	histidinol-phosphatase	L-histidinol phosphate [cytoplasm] + "water [cytoplasm]" = "L-histidinol [cytoplasm]" + "phosphate [cytoplasm]"; "YFR025C [cytoplasm]"
1	577	histidinol-phosphate transaminase	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "L-histidinol phosphate [cytoplasm]"; "YIL116W [cytoplasm]"
1	581	homoacontinate hydratase	but-1-ene-1,2,4-tricarboxylic acid [mitochondrion] + "water [mitochondrion]" = "homoisocitrate(3-) [mitochondrion]"; "YDR234W [mitochondrion]"
1	583	homocitrate synthase_2	2-oxoglutarate [nucleus] + "acetyl-CoA [nucleus]" + "water [nucleus]" = "coenzyme A [nucleus]" + "H+ [nucleus]" + "homocitrate(3-) [nucleus]"; "YDL131W [nucleus]" "YDL182W [nucleus]"
1	585	homoisocitrate dehydrogenase	homoisocitrate(3-) [mitochondrion] + "NAD(+) [mitochondrion]" = "2-oxaloglutaric acid [mitochondrion]" + "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YIL094C [mitochondrion]"
1	586	homoserine dehydrogenase (NADH)	H+ [cytoplasm] + "L-aspartate 4-semialdehyde [cytoplasm]" + "NADH [cytoplasm]" = "L-homoserine [cytoplasm]" + "NAD(+) [cytoplasm]"; "YJR139C [cytoplasm]"
1	587	homoserine dehydrogenase (NADP)	H+ [cytoplasm] + "L-aspartate 4-semialdehyde [cytoplasm]" + "NADPH [cytoplasm]" = "L-homoserine [cytoplasm]" + "NADP(+) [cytoplasm]"; "YJR139C [cytoplasm]"
1	588	homoserine kinase	ATP [cytoplasm] + "L-homoserine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "O-phospho-L-homoserine [cytoplasm]"; "YHR025W [cytoplasm]"
1	589	homoserine O-trans-acetylase	acetyl-CoA [cytoplasm] + "L-homoserine [cytoplasm]" = "coenzyme A [cytoplasm]" + "O-acetyl-L-homoserine [cytoplasm]"; "YNL277W [cytoplasm]"
1	604	Imidazole-glycerol-3-phosphate synthase	5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm] + "L-glutamine [cytoplasm]" = "5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxamide [cytoplasm]" + "D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate [cytoplasm]" + "H+ [cytoplasm]" + "L-glutamate [cytoplasm]"; "YBR248C [cytoplasm]"
1	605	imidazoleglycerol-phosphate dehydratase	D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate [cytoplasm] = "3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate [cytoplasm]" + "water [cytoplasm]"; "YOR202W [cytoplasm]"
1	608	indole-3-glycerol-phosphate synthase	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate [cytoplasm] + "H+ [cytoplasm]" = "1-C-(indol-3-yl)glycerol 3-phosphate [cytoplasm]" + "carbon dioxide [cytoplasm]" + "water [cytoplasm]"; "YKL211C [cytoplasm]"
1	631	isocitrate dehydrogenase (NADP+)	isocitrate(3-) [mitochondrion] + "NADP(+) [mitochondrion]" = "2-oxoglutarate [mitochondrion]" + "carbon dioxide [mitochondrion]" + "NADPH [mitochondrion]"; "YDL066W [mitochondrion]"
1	634	isoleucine transaminase	2-oxoglutarate [cytoplasm] + "L-isoleucine [cytoplasm]" = "(S)-3-methyl-2-oxopentanoate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YJR148W [cytoplasm]"
1	635	isoleucine transaminase_2	2-oxoglutarate [mitochondrion] + "L-isoleucine [mitochondrion]" = "(S)-3-methyl-2-oxopentanoate [mitochondrion]" + "L-glutamate [mitochondrion]"; "YHR208W [mitochondrion]"
1	640	ketol-acid reductoisomerase (2-aceto-2-hydroxybutanoate)	(S)-2-acetyl-2-hydroxybutanoate [mitochondrion] + "H+ [mitochondrion]" + "NADPH [mitochondrion]" = "(2R,3R)-2,3-dihydroxy-3-methylpentanoate [mitochondrion]" + "NADP(+) [mitochondrion]"; "YLR355C [mitochondrion]"
1	647	L-alanine transaminase	2-oxoglutarate [mitochondrion] + "L-alanine [mitochondrion]" = "L-glutamate [mitochondrion]" + "pyruvate [mitochondrion]"; "YLR089C [mitochondrion]"
1	648	L-allo-threonine aldolase	L-allothreonine [cytoplasm] = "acetaldehyde [cytoplasm]" + "glycine [cytoplasm]"; "YEL046C [cytoplasm]"
1	650	L-aminoadipate-semialdehyde dehydrogenase (NADH)	ATP [cytoplasm] + "H+ [cytoplasm]" + "L-2-aminoadipate(2-) [cytoplasm]" + "NADH [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "L-allysine [cytoplasm]" + "NAD(+) [cytoplasm]"; "YBR115C:YGL154C [cytoplasm]"
1	651	L-aminoadipate-semialdehyde dehydrogenase (NADPH)	ATP [cytoplasm] + "H+ [cytoplasm]" + "L-2-aminoadipate(2-) [cytoplasm]" + "NADPH [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "L-allysine [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR115C:YGL154C [cytoplasm]"
1	661	L-hydroxyproline reductase (NAD)	1-pyrroline-3-hydroxy-5-carboxylic acid [cytoplasm] + 2 * "H+ [cytoplasm]" + "NADH [cytoplasm]" = "NAD(+) [cytoplasm]" + "trans-4-hydroxy-L-proline [cytoplasm]"; "YER023W [cytoplasm]"

1	662	L-hydroxyproline reductase (NADP)	1-pyrroline-3-hydroxy-5-carboxylic acid [cytoplasm] + 2 * "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "NADP(+) [cytoplasm]" + "trans-4-hydroxy-L-proline [cytoplasm]"; "YER023W [cytoplasm]"
1	668	L-threonine deaminase_2	L-threonine [mitochondrion] = "2-oxobutanoate [mitochondrion]" + "ammonium [mitochondrion]"; "YER086W [mitochondrion]"
1	674	leucine transaminase	2-oxoglutarate [cytoplasm] + "L-leucine [cytoplasm]" = "4-methyl-2-oxopentanoate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YJR148W [cytoplasm]"
1	675	leucine transaminase_2	2-oxoglutarate [mitochondrion] + "L-leucine [mitochondrion]" = "4-methyl-2-oxopentanoate [mitochondrion]" + "L-glutamate [mitochondrion]"; "YHR208W [mitochondrion]"
1	702	methionine synthase	5-methyltetrahydrofolate(2-) [cytoplasm] + "L-homocysteine [cytoplasm]" = "5,6,7,8-tetrahydrofolic acid [cytoplasm]" + "H+ [cytoplasm]" + "L-methionine [cytoplasm]"; "YER091C [cytoplasm]"
1	728	N-acetyl-g-glutamyl-nhosnhate reductase	H+ [mitochondrion] + "N-acetyl-L-gamma-glutamyl phosphate [mitochondrion]" + "NADPH [mitochondrion]" = "2-acetamido-5-oxopentanoate [mitochondrion]" + "NADP(+) [mitochondrion]" +
1	720	reactyr-g-glutaniyr-phosphate reductase	"phosphate [mitochondrion]"; "YER069W [mitochondrion]"
1	731	N-acteviolutamate synthase	acetyl-CoA [mitochondrion] + "L-glutamate [mitochondrion]" = "coenzyme A [mitochondrion]" + "H+ [mitochondrion]" + "N-acetyl-L-glutamate(2-) [mitochondrion]"; "YJL071W [mitochondrion]"
	,51		"YMR062C [mitochondrion]"
1	782	O-acetylhomoserine (thiol)-lyase	methanethiol [cytoplasm] + "O-acetyl-L-homoserine [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "L-methionine [cytoplasm]"; "YLR303W [cytoplasm]"
1	783	O-acetylhomoserine (thiol)-lyase_2	hydrogen sulfide [cytoplasm] + "O-acetyl-L-homoserine [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "L-homocysteine [cytoplasm]"; "YLR303W [cytoplasm]"
1	789	ornithine carbamoyltransferase	carbamoyl phosphate [cytoplasm] + "ornithine [cytoplasm]" = "H+ [cytoplasm]" + "L-citrulline [cytoplasm]" + "phosphate [cytoplasm]"; "YJL088W [cytoplasm]"
1	791	ornithine transacetylase	L-glutamate [mitochondrion] + "N(2)-acetyl-L-ornithine [mitochondrion]" = "N-acetyl-L-glutamate(2-) [mitochondrion]" + "ornithine [mitochondrion]"; "YMR062C [mitochondrion]"
1	825	phenylalanine transaminase	2-oxoglutarate [cytoplasm] + "L-phenylalanine [cytoplasm]" = "keto-phenylpyruvate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YGL202W [cytoplasm]" "YHR137W [cytoplasm]"
1	864	phosphoglycerate dehydrogenase	3-phospho-D-glyceric acid [cytoplasm] + "NAD(+) [cytoplasm]" = "3-phosphonatooxypyruvate(3-) [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YER081W [cytoplasm]" "YIL074C [cytoplasm]"
1	881	phosphoribosyl-AMP cyclohydrolase	1-(5-phosphoribosyl)-5'-AMP [cytoplasm] + "water [cytoplasm]" = "1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino)methylideneamino]imidazole-4-carboxamide [cytoplasm]"; "YCL030C [cytoplasm]"
1	882	phosphoribosyl-ATP pyrophosphatase	5-phosphoribosyl-ATP [cytoplasm] + "water [cytoplasm]" = "1-(5-phosphoribosyl)-5'-AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YCL030C [cytoplasm]"
1	887	phosphoribosylanthranilate isomerase	N-(5-phospho-beta-D-ribosyl)anthranilate [cytoplasm] = "1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate [cytoplasm]"; "YDR007W [cytoplasm]"
1	892	phosphoserine phosphatase (L-serine)	O-phospho-L-serine [cytoplasm] + "water [cytoplasm]" = "L-serine [cytoplasm]" + "phosphate [cytoplasm]"; "YGR208W [cytoplasm]"
1	893	phosphoserine transaminase	3-phosphonatooxypyruvate(3-) [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "O-phospho-L-serine [cytoplasm]"; "YOR184W [cytoplasm]"
1	911	prephenate dehydratase	H+ [cytoplasm] + "prephenate(2-) [cytoplasm]" = "carbon dioxide [cytoplasm]" + "keto-phenylpyruvate [cytoplasm]" + "water [cytoplasm]"; "YNL316C [cytoplasm]"
1	913	prephenate dehydrogenase (NADP)	NADP(+) [cytoplasm] + "prephenate(2-) [cytoplasm]" = "3-(4-hydroxyphenyl)pyruvate [cytoplasm]" + "carbon dioxide [cytoplasm]" + "NADPH [cytoplasm]"; "YBR166C [cytoplasm]"
1	969	saccharopine dehydrogenase (NAD, L-lysine forming)	L-saccharopine [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "H+ [cytoplasm]" + "L-lysine [cytoplasm]" + "NADH [cytoplasm]"; "YIR034C [cytoplasm]"
1	970	saccharopine dehydrogenase (NADP, L-glutamate forming)	H+ [cytoplasm] + "L-allysine [cytoplasm]" + "L-glutamate [cytoplasm]" + "NADPH [cytoplasm]" = "L-saccharopine [cytoplasm]" + "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YNR050C [cytoplasm]"
1	976	shikimate dehydrogenase	3-dehydroshikimate [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "NADP(+) [cytoplasm]" + "shikimate [cytoplasm]"; "YDR127W [cytoplasm]"
1	977	shikimate kinase	ATP [cytoplasm] + "shikimate [cytoplasm]" = "3-phosphoshikimic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YDR127W [cytoplasm]"
1	1026	threonine aldolase	L-threonine [cytoplasm] = "acetaldehyde [cytoplasm]" + "glycine [cytoplasm]"; "YEL046C [cytoplasm]"
1	1027	threonine synthase	O-phospho-L-homoserine [cytoplasm] + "water [cytoplasm]" = "L-threonine [cytoplasm]" + "phosphate [cytoplasm]"; "YCR053W [cytoplasm]"
1	1042	tryptophan synthase (indoleglycerol phosphate)	1-C-(indol-3-yl)glycerol 3-phosphate [cytoplasm] + "L-serine [cytoplasm]" = "glyceraldehyde 3-phosphate [cytoplasm]" + "L-tryptophan [cytoplasm]" + "water [cytoplasm]"; "YGL026C [cytoplasm]"
1	1043	tryptophan transaminase	2-oxoglutarate [cytoplasm] + "L-tryptophan [cytoplasm]" = "3-(indol-3-yl)pyruvate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YGL202W [cytoplasm]" "YHR137W [cytoplasm]"
1	1050	tyrosine transaminase	3-(4-hydroxyphenyl)pyruvate [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "L-tyrosine [cytoplasm]"; "YGL202W [cytoplasm]" "YHR137W [cytoplasm]"

~
Ē
2
8
cin

1	1051	tyrosine transaminase_2	3-(4-hydroxyphenyl)pyruvate [mitochondrion] + "L-glutamate [mitochondrion]" = "2-oxoglutarate [mitochondrion]" + "L-tyrosine [mitochondrion]"; "YKL106W [mitochondrion]"
1	1052	tyrosine transaminase_3	3-(4-hydroxyphenyl)pyruvate [peroxisome] + "L-glutamate [peroxisome]" = "2-oxoglutarate [peroxisome]" + "L-tyrosine [peroxisome]"; "YLR027C [peroxisome]"
1	1073	valine transaminase	2-oxoglutarate [cytoplasm] + "L-valine [cytoplasm]" = "3-methyl-2-oxobutanoate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YJR148W [cytoplasm]"
1	1074	valine transaminase, mitochondiral	2-oxoglutarate [mitochondrion] + "L-valine [mitochondrion]" = "3-methyl-2-oxobutanoate [mitochondrion]" + "L-glutamate [mitochondrion]"; "YHR208W [mitochondrion]"
1	649	157	L-allothreonine [cytoplasm] + "NADP(+) [cytoplasm]" = "H+ [cytoplasm]" + "L-2-amino-3-oxobutanoate [cytoplasm]" + "NADPH [cytoplasm]"; "YMR226C [cytoplasm]"
2	249	ATPase, cytosolic	ATP [cytoplasm] + "water [cytoplasm]" = "ADP [cytoplasm]" + "H+ [extracellular]" + "phosphate [cytoplasm]"; "YCR024C-A:YEL017C-A:YGL008C [cell envelope]" "YCR024C-A:YEL017C-A:Y
2	279	carnitine O-acetyltransferase	(R)-carnitine [cytoplasm] + "acetyl-CoA [cytoplasm]" = "coenzyme A [cytoplasm]" + "O-acetylcarnitine [cytoplasm]"; "YAR035W [cytoplasm]" "YER024W [cytoplasm]"
2	280	carnitine O-acetyltransferase_2	(R)-carnitine [peroxisome] + "acetyl-CoA [peroxisome]" = "coenzyme A [peroxisome]" + "O-acetylcarnitine [peroxisome]"; "YML042W [peroxisome]"
2	281	carnitine O-aceyltransferase	(R)-carnitine [mitochondrion] + "acetyl-CoA [mitochondrion]" = "coenzyme A [mitochondrion]" + "O-acetylcarnitine [mitochondrion]"; "YML042W [mitochondrion]"
2	769	nucleoside-diphosphatase (GDP), Golgi	GDP [Golgi] + "water [Golgi]" = "GMP [Golgi]" + "H+ [Golgi]" + "phosphate [Golgi]"; "YEL042W [Golgi]"
2	795	OSH1 cytoplasm to plasma membrane	oxysterol:YAR042W [cytoplasm] = "oxysterol [cell envelope]" + "YAR042W [cytoplasm]"
2	796	OSH1 endoplasmic reticulum to cytoplasm	oxysterol [endoplasmic reticulum] + "YAR042W [cytoplasm]" = "oxysterol:YAR042W [cytoplasm]"
2	797	OSH2 cytoplasm to plasma membrane	oxysterol:YDL019C [cytoplasm] = "oxysterol [cell envelope]" + "YDL019C [cytoplasm]"
2	798	OSH2 endoplasmic reticulum to cytoplasm	oxysterol [endoplasmic reticulum] + "YDL019C [cytoplasm]" = "oxysterol: YDL019C [cytoplasm]"
2	799	OSH3 cytoplasm to plasma membrane	oxysterol:YHR073W [cytoplasm] = "oxysterol [cell envelope]" + "YHR073W [cytoplasm]"
2	800	OSH3 endoplasmic reticulum to cytoplasm	oxysterol [endoplasmic reticulum] + "YHR073W [cytoplasm]" = "oxysterol:YHR073W [cytoplasm]"
2	801	OSH4 endoplasmic reticulum to cytoplasm	oxysterol [endoplasmic reticulum] + "YPL145C [cytoplasm]" = "oxysterol:YPL145C [cytoplasm]"
2	802	OSH5 cytoplasm to plasma membrane	oxysterol:YPL145C [cytoplasm] = "oxysterol [cell envelope]" + "YPL145C [cytoplasm]"
2	803	OSH5 endoplasmic reticulum to cytoplasm	oxysterol [endoplasmic reticulum] + "YOR237W [cytoplasm]" = "oxysterol:YOR237W [cytoplasm]"
2	945	reduced glutathione via ABC system	ATP [vacuole] + "glutathione [cytoplasm]" + "water [vacuole]" = "ADP [vacuole]" + "glutathione [vacuole]" + "H+ [vacuole]" + "phosphate [vacuole]"; "YDR135C [vacuolar membrane]"
2	1009	taurcholate via ABC system	ATP [vacuole] + "taurocholic acid [cytoplasm]" + "water [vacuole]" = "ADP [vacuole]" + "H+ [vacuole]" + "phosphate [vacuole]" + "taurocholic acid [vacuole]"; "YLL048C [vacuolar membrane]"
2	1084	(1->3)-beta-D-glucan transport	(1->3)-beta-D-glucan [cell envelope] = "(1->3)-beta-D-glucan [cytoplasm]"
2	1085	(R,R)-butanediol transport	(R,R)-butane-2,3-diol [cytoplasm] = "(R,R)-butane-2,3-diol [extracellular]"
2	1086	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate transport	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [cytoplasm] = "1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [nucleus]"
2	1087	1-phosphatidyl-1D-myo-inositol 4-phosphate transport	1-phosphatidyl-1D-myo-inositol 4-phosphate [cytoplasm] = "1-phosphatidyl-1D-myo-inositol 4-phosphate [nucleus]"
2	1088	1-phosphatidyl-1D-myo-inositol transport	1-phosphatidyl-1D-myo-inositol [cytoplasm] = "1-phosphatidyl-1D-myo-inositol [nucleus]"
2	1089	1-phosphatidyl-1D-myo-inositol transport_2	1-phosphatidyl-1D-myo-inositol [mitochondrion] = "1-phosphatidyl-1D-myo-inositol [cytoplasm]"
2	1090	1D-myo-inositol 1,3,4,5,6-pentakisphosphate diffusion	myo-inositol 1,3,4,5,6-pentakisphosphate [cytoplasm] = "myo-inositol 1,3,4,5,6-pentakisphosphate [nucleus]"
2	1091	1D-myo-inositol 1-phosphate transport	1D-myo-inositol 1-phosphate [cytoplasm] = "1D-myo-inositol 1-phosphate [Golgi]"
2	1092	2-dehydro-3-deoxy-D-arabino-heptonate7-phohsphate transport	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid [cytoplasm] = "7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid [mitochondrion]"
2	1093	2-dehydropantoate transport	2-dehydropantoate [cytoplasm] = "2-dehydropantoate [mitochondrion]"
2	1094	2-hydroxybutyrate transport	2-hydroxybutyric acid [extracellular] + "H+ [extracellular]" = "2-hydroxybutyric acid [cytoplasm]" + "H+ [cytoplasm]"
2	1095	2-isopropylmalate transport	2-isopropylmalate(2-) [cytoplasm] = "2-isopropylmalate(2-) [extracellular]"
2	1096	2-isopropylmalate transport_2	2-isopropylmalate(2-) [cytoplasm] = "2-isopropylmalate(2-) [mitochondrion]"

2	1097	2-methyl-1-butanol transport	2-methylbutan-1-ol [cytoplasm] = "2-methylbutan-1-ol [extracellular]"
2	1098	2-methyl-1-butanol transport_2	2-methylbutan-1-ol [cytoplasm] = "2-methylbutan-1-ol [mitochondrion]"
2	1099	2-methylbutanal transport	2-methylbutanal [cytoplasm] = "2-methylbutanal [extracellular]"
2	1100	2-methylbutanal transport_2	2-methylbutanal [cytoplasm] = "2-methylbutanal [mitochondrion]"
2	1101	2-methylbutyl transport	2-methylbutyl acetate [cytoplasm] = "2-methylbutyl acetate [extracellular]"
2	1102	2-methylpropanal transport	isobutyraldehyde [cytoplasm] = "isobutyraldehyde [extracellular]"
2	1103	2-methylpropanal transport_2	isobutyraldehyde [cytoplasm] = "isobutyraldehyde [mitochondrion]"
2	1104	2-oxoadinate and 2-oxoglutarate transport	2-oxoadipic acid [cytoplasm] + "2-oxoglutarate [mitochondrion]" = "2-oxoadipic acid [mitochondrion]" + "2-oxoglutarate [cytoplasm]"; "YOR222W [mitochondrial membrane]" "YPL134C
2	1104	2 oxolumptic and 2 oxogratarite transport	[mitochondrial membrane]"
2	1105	2-oxoadipate transport	2-oxoadipic acid [mitochondrion] = "2-oxoadipic acid [cytoplasm]"
2	1106	2-oxobutanoate transporter	2-oxobutanoate [cytoplasm] = "2-oxobutanoate [mitochondrion]"
2	1107	2-oxoglutarate transport	2-oxoglutarate [cytoplasm] + "H+ [cytoplasm]" = "2-oxoglutarate [nucleus]" + "H+ [nucleus]"
2	1108	2-oxoglutarate transport_2	2-oxoglutarate [extracellular] + "H+ [extracellular]" = "2-oxoglutarate [cytoplasm]" + "H+ [cytoplasm]"
2	1109	2-phenylethanol transport	2-phenylethanol [extracellular] = "2-phenylethanol [cytoplasm]"
2	1110	2-phenylethanol transport_2	2-phenylethanol [mitochondrion] = "2-phenylethanol [cytoplasm]"
2	1111	3-(4-hydroxyphenyl)pyruvate transport	3-(4-hydroxyphenyl)pyruvate [cytoplasm] + "H+ [cytoplasm]" = "3-(4-hydroxyphenyl)pyruvate [mitochondrion]" + "H+ [mitochondrion]"
2	1112	3-(4-hydroxyphenyl)pyruvate transport_2	3-(4-hydroxyphenyl)pyruvate [cytoplasm] + "H+ [cytoplasm]" = "3-(4-hydroxyphenyl)pyruvate [peroxisome]" + "H+ [peroxisome]"
2	1113	3-carboxy-4-methyl-2-oxopentanoate transport	(2S)-2-isopropyl-3-oxosuccinate(2-) [cytoplasm] = "(2S)-2-isopropyl-3-oxosuccinate(2-) [mitochondrion]"
2	1114	3-hexaprenyl-4,5-dihydroxybenzoate transport	3-hexaprenyl-4,5-dihydroxybenzoic acid [cytoplasm] = "3-hexaprenyl-4,5-dihydroxybenzoic acid [mitochondrion]"
2	1115	3-methyl-2-oxopentanoate transport	3-methyl-2-oxobutanoate [cytoplasm] = "3-methyl-2-oxobutanoate [mitochondrion]"
2	1116	3-methyl-2-oxopentanoate transport_2	(S)-3-methyl-2-oxopentanoate [cytoplasm] = "(S)-3-methyl-2-oxopentanoate [mitochondrion]"
2	1117	3-methyl-oxopentanoate trasport	(S)-3-methyl-2-oxopentanoate [extracellular] = "(S)-3-methyl-2-oxopentanoate [cytoplasm]"
2	1118	3-methylbutanal transport	3-methylbutanal [cytoplasm] = "3-methylbutanal [extracellular]"
2	1119	3-methylbutanal transport_2	3-methylbutanal [cytoplasm] = "3-methylbutanal [mitochondrion]"
2	1120	3-octaprenyl-4-hydroxybenzoate transport	3-hexaprenyl-4-hydroxybenzoic acid [cytoplasm] = "3-hexaprenyl-4-hydroxybenzoic acid [mitochondrion]"
2	1121	4-aminobenzoate transport	4-aminobenzoate [cytoplasm] = "4-aminobenzoate [extracellular]"
2	1122	4-aminobenzoate transport_2	4-aminobenzoate [cytoplasm] = "4-aminobenzoate [mitochondrion]"
2	1123	4-aminobutanal transport	4-aminobutanal [cytoplasm] = "4-aminobutanal [mitochondrion]"
2	1124	4-aminobutyrate transport	gamma-aminobutyrate [cytoplasm] = "gamma-aminobutyrate [mitochondrion]"
2	1125	4-aminobutyrate transport_2	gamma-aminobutyrate [extracellular] + "H+ [extracellular]" = "gamma-aminobutyrate [cytoplasm]" + "H+ [cytoplasm]"; "YDL210W [cell envelope]" "YOR348C [cell envelope]"
2	1126	4-hydroxy-2-oxoglutarate transport	4-hydroxy-2-oxoglutarate(2-) [cytoplasm] = "4-hydroxy-2-oxoglutarate(2-) [mitochondrion]"
2	1127	4-hydroxy-2-oxoglutarate transport_2	4-hydroxy-2-oxoglutarate(2-) [cytoplasm] = "4-hydroxy-2-oxoglutarate(2-) [peroxisome]"
2	1128	4-hydroxybenzoate transport	4-hydroxybenzoate [cytoplasm] = "4-hydroxybenzoate [mitochondrion]"
2	1129	5-aminolevulinate transport	5-aminolevulinate [cytoplasm] = "5-aminolevulinate [mitochondrion]"
2	1130	5-aminolevulinate transport 2	5-aminolevulinate [extracellular] + "H+ [extracellular]" = "5-aminolevulinate [cytoplasm]" + "H+ [cytoplasm]", "YDL210W [cell envelope]"

H	
Б	
a	
ñ	
09	

115 S-Jaminosonional (ratacultur) = "In-[catacultur] = "Ta-Jaminosonianoti (stoppian)" = "In-[cstoptian]" 115 S-Aminosonianoti (rangoti Soniosonianoti (rangoti) = "Arcidobyle (ratacultur) = "Arcidobyle (stoppian)" = "In-[cstoptian]" = "In-[cstoptian] = "In-[cstoptian] = "In-[cstoptian] = "In-[cstoptian]" = "In-[cstoptian]" = "In-[cstoptian]" = "In-[cstoptian] = "In-[cstopti	1131	6-phospho-D-glucono-1,5-lactone transport	6-O-phosphono-D-glucono-1,5-lactone [cytoplasm] = "6-O-phosphono-D-glucono-1,5-lactone [endoplasmic reticulum]"
113FARME-7-SARROMARK INSPORTFARME-7-SARROMARK INSPORTFARME-7-SARROMARK INSPORT113scatably fermiontcontably fermiontcontably fermiont113scatably fermiontcontably fermiontcontably fermiont113scatably fermiontcontably fermiontfermiont113scatably fermiontcontably fermiontfermiont113scata trappetcontably fermiontfermiont113scata trappetcontably fermiontfermiont114scata trappetcontably fermiontfermiont115scata trappetcontably fermiontfermiont116scata trappetcontably fermiontfermiont117scata trappetcontably fermiontfermiont118scata scatafermiontfermiont119scata transportdeptectiontfermiont110scata transportdeptectiontfermiont1114scata scatafermiontfermiont1124scata scatafermiontfermiont1134scata scatafermiontfermiont1144scata scatafermiontfermiont1144scata scatafermiontfermiont1144scata scatafermiontfermiont1144scatafermiontfermiont1144scatafermiontfermiont1144scatafermiontfermiont1144scatafermiontfermiont1145ADP mogortdomin	1132	7,8-diaminononanoate transport	7,8-diaminononanoate [extracellular] + "H+ [extracellular]" = "7,8-diaminononanoate [cytoplasm]" + "H+ [cytoplasm]"
1114ActiAblyAc [Interbodie] "Section (Sysphan]" - Section (Sysphan]", "It (Sysphan]", "YCRD2X [cell excdept]"115Section (Interport)Section (Sysphan] - "Section (Sysphan]", "The (Sysphan]", "YCRD2X [cell excdept]"117Section (Interport)Section (Sysphan] - "Section (Sysphan]", "It (Sysphan]", "YCRD2X [cell excdept]"118Rest (Sysphan], "Section (Sysphan], "Section (Sysphan]", "YCRD2X [cell excdept]"119Section (Interport)Section (Sysphan], "Section (Sysphan]", "YCRD2X [cell excdept]"110Section (Sysphan], "Section (Sysphan], "Section (Sysphan]", "YCRD2X [cell excdept]"111Section (Sysphan], "Section (Sysphan], "Section (Sysphan]", "YCRD2X [cell excdept]", "YCRD2X [cell excdept]", "YCRD3X [cell excdept], "YCRD3X [cell excd	1133	8-Amino-7-oxononanoate transport	8-amino-7-oxononanoate [extracellular] + "H+ [extracellular]" = "8-amino-7-oxononanoate [cytoplasm]" + "H+ [cytoplasm]"; "YNR056C [cell envelope]"
1115scaladabyde ramour.2scaladabyde (ramoultus) "-scaladabyde (psycham]"116scalad tangordscalad (stangold)117scalad tangordscalad (stangold)118scalad tangord.2scalad (stangold)119scalad tangord.3scalad (stangold)119scalad tangord.4scalad (stangold)110scalad tangord.4scalad (stangold)1114scalad tangord.4scalad (stangold)1124scalad tangord.4scalad (stangold)1124scalad tangord.4scalad (stangold)1124scalad tangoldscalad (stangold)1124scalad tangoldscalad (stangold)1124scalad tangoldscalad (stangold)1124scalad tangoldscalad (stangold)1124scalad tangoldscalad tangold1124scalad tangoldscalad tangold1124scalad tangoldscalad tangold1124scalad tangoldscalad tangold1124scalad tangoldscalad tangold1124scalad tangoldscalad tangold1125scalad tangoldscalad tangold1126scalad tangoldsc	1134	acetaldehyde transport	acetaldehyde [mitochondrion] = "acetaldehyde [cytoplasm]"
1115scalar transportcontrol [Stylenum] "-scalar [muckeng]"1175scalar transport 2scalar [Stylenum] "-scalar [muckeng/muckeng]", "VCR032W [sell envelope]"1186scalar transport 4scalar [Stylenum] "-scalar [muckeng/muckeng]", "VCR032W [sell envelope]"1197scalar transport 4scalar [stylenum] "-scalar [muckeng/muckeng]"1198scalar transport 4scalar [stylenum] "-scalar [muckeng]"1191scyleck transport 4scalar [stylenum] "-scalar [stylenum]", "VCR032W [sell envelope]"1191scyleck transport 4scalar (stylenum] "-scalar [stylenum]", "Stylenum]"1191scyleck transport 4scalar (stylenum] "-scalar [stylenum]"1193scyleck transport 4Scalar (stylenum] "-scalar [stylenum]"1194scyleck transport 4Scalar (stylenum] "-scalar [stylenum]"1194scilar transport 4scalar (stylenum] "-scalar [stylenum]"1194scilar transport 4scilar (stylenum] "-scalar [stylenum]"1195scilar transport 4scilar (stylenum] "-scalar [stylenum]"1194scilar transport 4scilar (stylenum] "-scalar [stylenum]"1194scilar transport 4scilar transport 41195scilar transport 4scilar transport 41196scilar transport 4scilar transport 41197scilar transport 4scilar trans	1135	acetaldehyde transport_2	acetaldehyde [extracellular] = "acetaldehyde [cytoplasm]"
117 accase transport center (zetascellad) - "In-(cetascellad] = "accase (zetopaloan]", "YCR052W [cell envelope]" 118 accase transport, 4 accase (zetopaloan)", "YCR052W [cell envelope]" 118 accase transport, 4 accase (zetopaloan)", "YCR052W [cell envelope]" 118 accase transport, 4 accase (zetopaloan)", "YCR052W [cell envelope]" 118 accase transport, 4 baccase (zetopaloan)", "YCR052W [cell envelope]", "YCR052W [cell envelope]," "YR052W [cell envelope]," "YR052W [cell envelope]," "YR052W [cell envelope]," "YR052W [cell	1136	acetate transport	acetate [cytoplasm] = "acetate [nucleus]"
III8 scalar banagort, 3 Scalar banagort, 4 Scalar banagort, 4 II9 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 scalar transport, 4 Scalar transport, 4 Scalar transport, 4 Scalar transport, 4 II8 ADP (scalar memory, 4/P) [index/scalar memory, 4/P)	1137	acetate transport_2	acetate [extracellular] + "H+ [extracellular]" = "acetate [cytoplasm]" + "H+ [cytoplasm]"; "YCR032W [cell envelope]"
1119 exate transport, 9 exate transport, 9 exate transport, 9 114 exite transport exite (stransport, 9 exite (stransport, 9 114 exite transport exite (stransport, 9 exite (stransport, 9 114 exite transport, 9 exite (stransport, 9 exite (stransport, 9 114 exite transport, 9 exite (stransport, 9 exite (stransport, 9 114 derine transport, 2 obtaine (stransport, 9 exite (stransport, 9 exite (stransport, 9 114 derine transport, 2 obtaine (stransport, 9 exite (stransport, 9 exite (stransport, 9 114 derine transport, 2 obtaine (stransport, 9 exite (stransport, 9 exite (stransport, 9 114 derine transport, 2 OP (stytesm) = "ADP (stytesm) = "ADP (stytesm)" = "ADP (stytesm)" = "ADP (stytesm)" = "ADP (stytesm) = "ADP	1138	acetate transport_3	acetate [cytoplasm] = "acetate [mitochondrion]"
III wiesder transport ehle aceter (compound) wiesder (compound) "texter-(compound)" III keyl-CoA transport ober/CoA transport ober/CoA (compound) "texter-(compound) "texter-	1139	acetate transport_4	acetate [extracellular] = "acetate [cytoplasm]"; "YCR010C [cell envelope]"
Integration Rest/CoA fungeoptin Rest/CoA fungeoptin Rest/CoA fungeoptin Integration Rest/CoA fungeoptin Coadystamine (prosiden) ⁴ "Coadystamine (prosiden) ⁴ " "Coadystamine (prosiden) ⁴ " "Rest/CoAdystamine (prosiden) ⁴ " "Rest/CoAdyst	1140	acetic ester transport	ethyl acetate [cytoplasm] = "ethyl acetate [extracellular]"
112 solventime transport	1141	acetyl-CoA transport	acetyl-CoA [cytoplasm] = "acetyl-CoA [nucleus]"
1/13 admin Extracellular] * "It+ [extracellular] * "admine [extracellular] * "Admi	1142	acetylcarnitine transport	O-acetylcarnitine [peroxisome] = "O-acetylcarnitine [cytoplasm]"
1144 admine transport 2 admine transport 2 admine transport 2 1145 admosine 3/5-bisphophate transport admosine 3/5-bismonophophate [cytoplasm] = "admosine 3/5-bismonophophate [micochondrio]" 1146 admosine Taxsport admosine Taxsport ADP [cytoplasm] = "ADP [micolus]" 1147 ADP transport ADP [cytoplasm] = "ADP [micolus]" 1148 ADP transport 2. ADP [cytoplasm] = "ADP [micolus]" 1149 ADP.ATP transporter ADP [cytoplasm] = "ADP [micolus]" = "ADP [micolus]" = "ADP [cytoplasm] = "ADP [cytoplasm	1143	adenine transport	adenine [extracellular] + "H+ [extracellular]" = "adenine [cytoplasm]" + "H+ [cytoplasm]"; "YER056C [cell envelope]" "YER060W [cell envelope]" "YER060W-A [cell envelope]" "YGL186C [cell envelope]"
144 adenosine 3',5'-bisphoophate transport denosine 3',5'-bismoophophate [rutochular]" "adenosine 3',5'-bismoophophate [rutochular]", "YAL022 [cell envelope]" 1146 adenosine transport ADP (ransport, ADP (ransport, 1147 ADP transport, ADP [cytoplasm] = "ADP [endoplasmic reticulum]" 1148 ADP-ATP transport,2 ADP [cytoplasm] = "ADP [endoplasmic reticulum]" 1150 ADP/ATP transport,2 ADP [cytoplasm] = "ADP [cotoplasm]" = "ADP [cotoplasm] = "ADP [cotoplasm]"	1144	adenine transport_2	adenine [cytoplasm] = "adenine [mitochondrion]"
146 adenosine transport adenosine (stransport adenosine (stransport)* "H+ [extracellular]" = "adenosine [cytoplasm]", "YAL022C [cell envelope]" 117 ADP transport ADP (cytoplasm] = "ADP [nuckes]" 118 ADP transport ADP [cytoplasm] = "ADP [nuckes]" 119 ADP/ATP transporter ADP [cytoplasm] = "ADP [nuckes]" 110 ADP/ATP transporter ADP [cytoplasm] + "ATP [nuckeodniron]" + "H+ [cytoplasm]" + "ATP [cytoplasm]" + "ATP [cytoplasm]", "YRD32C [peroxisomal membrane]" 1151 ADP/ATP transporter_2 ADP [cytoplasm] = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "ATP [cytoplasm]", "YRD32C [cell envelope]" 1152 ADF/ATP transporter_2 ADP [cytoplasm] = "ADP [cytoplasm]", "The [cytoplasm]", "The [cytoplasm]", "YRD32C [cell envelope]" 1153 Ialmoate diffusion ADP-ribose [cytoplasm] = "ADP [cytoplasm]", "YRD32W [cell envelope]" 1154 allanota uniport allanotae [cytoplasm], "ATP [cytoplasm]", "YRD32W [cell envelope]" 1154 allanotae uniport allanotae [cytoplasm], "ADP [cytoplasm]", "YRD32W [cell envelope]" 1155 alpha-ketoglutar/a enaporter (Symalate2) [cxtracellular] = "allanotae [cytoplasm]", "YRD32W [cell envelope]", "YNL142W [cell envelope]" "YRL132C [cell envelop	1145	adenosine 3',5'-bisphosphate transport	adenosine 3',5'-bismonophosphate [cytoplasm] = "adenosine 3',5'-bismonophosphate [mitochondrion]"
I147 ADP transport ADP [cytoplasm] = "ADP [nudeus]" I148 ADP transport_2 ADP [cytoplasm] = "ADP [nudeus]" I148 ADP transport_2 ADP [cytoplasm] = "ADP [nudeus]" I149 ADP/ATP transporter ADP [cytoplasm] + "ATP [nuicehondrion]" + "IH+ [cytoplasm]" = "ADP [nuicehondrion]" + "ATP [cytoplasm]" + "IH+ [nuicehondrion]", "YBL030C [nuicehondrial membrane]" I150 ADP/ATP transporter_2 ADP [provisome] + "ATP [cytoplasm] + "IH+ [provisome]" = "ADP [cytoplasm]" = "ATP [cytoplasm] = "ATP [cytoplasm]" = "ATP [cytoplasm]" = "ATP [cytoplasm]" = "ATP [cytoplasm]" = "ATP [cytoplasm] = "ATP [cytoplasm]" = "ATP [cytoplasm]" = "ATP [cytoplasm]" = "ATP [cytoplasm] = "ATP [cytoplasm] = "ATP [cytoplasm] = "ATP [cytoplasm] = "ATP [cytoplasm]" = "ATP [cytoplasm] = "ATP [cy	1146	adenosine transport	adenosine [extracellular] + "H+ [extracellular]" = "adenosine [cytoplasm]" + "H+ [cytoplasm]"; "YAL022C [cell envelope]"
148 ADP transport_2 ADP [cytoplasm] = "ADP [endoplasmic reticulum]" 148 ADP/ATP transporter ADP [cytoplasm] = "ADP [cytoplasm]" = "ADP [initchondrin]", "H+ [cytoplasm]" = "ADP [cytoplasm]" + "ATP [initchondrin]", "YBR085 119 ADP/ATP transporter_2 ADP [cytoplasm] + "ADP [initchondrin]", "H+ [cytoplasm]" = "ADP [cytoplasm]" + "ATP [perxisome]" = "ADP [cytoplasm]" + "ATP [perxisome]" = "ADP [cytoplasm]", "YR128C [perxisomal membrane]" 1151 ADPritose diffusion ADP-ritose [cytoplasm] = "ADP [cytoplasm]", "YR128C [perxisomal membrane]" 1152 AKG transporter, perxisome 2-oxoglutarate [perxisome]" = "ADP [cytoplasm]" + "ATP [perxisome]" = "ADP [cytoplasm]", "YR128C [perxisomal membrane]" 1153 allantota uniport ALB [antotia uniport] allantotate [cytoplasm] = "ADP [cytoplasm]", "YR128C [cel envelope]" 1154 allantoin uniport allantoin [cytoplasm] = "ADP [cytoplasm]" + "INP [perxisome]" = "ADP [cytoplasm]" + "2-oxoglutarate [cytoplasm]" = "2-oxoglutarate [cytoplasm]", "YR1828C [cel envelope]" 1155 allantoin uniport allantoin (cytoplasm] = "ADP [cytoplasm]" = "2-oxoglutarate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" = "3-oxoglutarate [cytoplasm]" = "2-oxoglutarate [cytoplasm	1147	ADP transport	ADP [cytoplasm] = "ADP [nucleus]"
1149 ADP/ATP transporter ADP [cytoplasm] + "ATP [mitochondrion]" + "H+ [cytoplasm]" = "ADP [mitochondrion]" + "ATP [cytoplasm]" + "H+ [mitochondrion]", "YBL030C [mitochondrial membrane]" 1150 ADP/ATP transporter_2 ADP [proxisome] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "ATP [proxisome]" + "H+ [mitochondrion]", "YPR128C [proxisomal membrane]" 1151 ADP/ATP transporter_2 ADP [proxisome] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "ATP [proxisome]" = "ADP [cytoplasm]" + "ATP [proxisome]" + "H+ [cytoplasm]", "YPR128C [proxisome]" = "ADP [cytoplasm]" + "ATP [proxisome]" + "H+ [cytoplasm]", "YPR128C [proxisome]" + "H+ [mitochondrion]", "YPR128C [proxisome]" + "ATP [cytoplasm]", "YPR128C [proxisome]" + "ATP [proxisome] + "ATP [proxisome] + "ATP [proxisome]" + "ATP [proxisome]" + "ATP [proxisome]" + "ATP [proxisome]" + "ATP [proxisome] + "ATP [proxisome] + "ATP [proxisome] + "ATP [proxisome] +	1148	ADP transport_2	ADP [cytoplasm] = "ADP [endoplasmic reticulum]"
NoInterformation[mitochondrial membrane]" "VMR056C [mitochondrial membrane]"1151ADP/ATP transporter_2ADP [peroxisome] + "ATP [eytoplasm]" + "H+ [peroxisome]" = "ADP [eytoplasm]" + "ATP [pertoxisome]" + "H+ [eytoplasm]", "YPR128C [peroxisomal membrane]"1151ADPribose diffusionADP-ribose (cytoplasm] = "ADP-ribose [nucleus]"1152AKG transporter, peroxisomeallantoate [extraellular] = "ADP-ribose [nucleus]"1153allantoate uniportallantoate [extraellular] = "allantoate [extraellul	1149	ADP/ATP transporter	ADP [cytoplasm] + "ATP [mitochondrion]" + "H+ [cytoplasm]" = "ADP [mitochondrion]" + "ATP [cytoplasm]" + "H+ [mitochondrion]"; "YBL030C [mitochondrial membrane]" "YBR085W
1150ADP/ATP transporter_2ADP [peroxisome] * "ATP [cytoplasm]" * "H+ [peroxisome]" = "ADP [cytoplasm]" * "ATP [peroxisome]" * "H+ [cytoplasm]"; "YPR128C [peroxisomal membrane]"1151ADPribose diffusionADP-ribose [cytoplasm] * "ADP-ribose [nucleus]"1152AKG transporter, peroxisome-coxoglutarate [cytoplasm] = "2-oxoglutarate [peroxisome]" * YIR128V [cell envelope]"1153allantota uniportallantota [cxtracellular] = "allantota [cytoplasm]", "YIR128W [cell envelope]"1154allantoti uniportallantota [cxtracellular] = "allantoti [cytoplasm]", "YIR128W [cell envelope]"1155alpha-ketoglutarate/malate transporter(S)-malate[-2) [cxtracellular] = "allantoti [cytoplasm]", "YIR128W [cell envelope]"1156amnonina transportamnoninin [cytoplasm] = "annoninin [cytoplasm]", "YIR128W [cell envelope]"1157amnonina transportamnoninin [cytoplasm] = "annoninin [cytoplasm]", "YIR128W [cell envelope]" "YR1212C [cell envelope]" "YR138C [cell envelope]"1158amnonina transportamnoninin [cytoplasm] = "annoninin [cytoplasm]", "YDR384C [cell envelope]" "YR128C [peroxisome]" = "YPR138C [cell envelope]"1159MP transportAMP [cytoplasm] = "AMP [cytoplasm]", "YDR384C [cell envelope]" "YR128C [cell envelope]" "YPR138C [cell envelope]"1159MP transportAMP [cytoplasm] = "AMP [cytoplasm]", "H+ [peroxisome]" = "AMP [cytoplasm]", "YPR384C [cell envelope]" "YR128C [cell envelope]" "YPR138C [cell envelope]"1159MP transportAMP [cytoplasm] = "AMP [cytoplasm]", "H+ [peroxisome]" = "AMP [cytoplasm]", "YPR384C [cell envelope]", "YPR128C [cell envelope]", "YPR138C [cell envelope]"1160amnonin transportAMP [cytoplasm] =	,		[mitochondrial membrane]" "YMR056C [mitochondrial membrane]"
151ADPribose diffusionADP-ribose [cytoplasm] = "ADP-ribose [nucleus]"152AGG transporter, peroxisome2-oxoglutarate [cytoplasm] = "2-oxoglutarate [peroxisome]"153allanotae uniportallanotae (extracellular] = "allanotae [cytoplasm]"; "YIR152W [cell envelope]"154allanotin uniportallanotae [extracellular] = "allantoin [cytoplasm]"; "YIR028W [cell envelope]"155alpha-ketoglutarate/malate transporter(S)-malate(2) [extracellular] = "allanoninu [cytoplasm]"; "YIR028W [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"156anmonia transport_2ammonium [cytoplasm] = "AMP [cytoplasm]"; "YIR028W [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"158AMP transport_2AMP [cytoplasm] = "AMP [cytoplasm]"; "HTP [cytoplasm]"; "YIR028W [cell envelope]" "YGR121C [cell envelope]" "YR128C [peroxisomal membrane]"160agnariae transport_2AMP [cytoplasm] = "AMP [cytoplasm]"; "HTP [cytoplasm]"; "YR028W [cytoplasm]"; "YR028W [cytoplasm]"; "YR128C [peroxisomal membrane]"176infini transport_2AMP [cytoplasm] = "AMP [cytoplasm]"; "HTP [cytoplasm]"; "YR128C [peroxisomal membrane]"180agnariae transportHt= [cytoplasm] = "HTP [cytoplasm]" = "AMP [cytoplasm]" = "AMP [cytoplasm]"; "YR128C [peroxisomal]", "YR128C [peroxiso	1150	ADP/ATP transporter_2	ADP [peroxisome] + "ATP [cytoplasm]" + "H+ [peroxisome]" = "ADP [cytoplasm]" + "ATP [peroxisome]" + "H+ [cytoplasm]"; "YPR128C [peroxisomal membrane]"
1152AKG transporter, peroxisome2-oxoglutarate [cytoplasm] = "2-oxoglutarate [peroxisome]"1153allantoate uniportallantoate [extracellular] = "allantoate [cytoplasm]", "YIR052W [cell envelope]"1154allantoin uniportallantoin [extracellular] = "allantoin [cytoplasm]", "YIR028W [cell envelope]"1155alpha-ketoglutarate/malate transporter(5)-malate(2)- [extracellular] = "almonium [nucleus]"1156anmonia transportammonium [cytoplasm] = "ammonium [nucleus]"1157anmonia transport_2ammonium [cytoplasm] = "ammonium [cytoplasm]", "YDR384C [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"1158AMP transport_2AMP [cytoplasm] = "AMP [cytoplasm]", "HP [peroxisome]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]"1160AMP/ATP transporterAMP [peroxisome] = "AMP [cytoplasm]" = "AMP [cytoplasm]" = "AMP [cytoplasm]", "YDR32M [cytoplasm]", "YPR128C [peroxisomal membrane]"1161argaine transportH+ [cytoplasm] = "AMP [cytoplasm]" = "H+ [mitochondrion]" + "L-argainine [mitochondrion]"1161argaine transportH+ [cytoplasm] = "AMP [cytoplasm]" = "H+ [mitochondrion]" + "L-argainine [mitochondrion]"1162aparagine transportH+ [cytoplasm] + "L-agaragine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]", "YPR021C [mitochondrial membrane]"1163aparate transportH+ [cytoplasm] + "L-agaratie [peroxisome]" = "L-asparate [peroxisome]" = "L-asparate [cytoplasm]", "YPR021C [mitochondrial membrane]"1164aparate transportH+ [cytoplasm] + "L-aguratane [peroxisome]" = "L-asparate [cytoplasm]" = "L-asparate [cyto	1151	ADPribose diffusion	ADP-ribose [cytoplasm] = "ADP-ribose [nucleus]"
1153allantoate uniportallantoate [extracellular] = "allantoate [cytoplasm]"; "YIR152W [cell envelope]"1154allantoi nuiportallantoin [extracellular] = "allantoin [cytoplasm]"; "YIR028W [cell envelope]"1155alpha-ketoglutarate/malate transporter(S)-malate(2-) [extracellular] = "allantoin [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "2-oxoglutarate [extracellular]"1155ammonia transportammonium [cytoplasm] = "ammonium [nucleus]"1156ammonia transport_2ammonium [extracellular] = "almonium [cytoplasm]"; "YDR384C [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"1158AMP transport_2AMP [cytoplasm] = "AMP [peroxisome]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]"1160AMP/ATP transporterAMP [peroxisome] + "ATP [cytoplasm]" = "AMP [cytoplasm]" + "ATP [peroxisome]" + "H+ [cytoplasm]"; "YPR128C [peroxisomal membrane]"1161arginine transportH+ [cytoplasm] = "AMP [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]"1162asparagine transportH+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]"1163asparate transportH+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]"1164asparate transportH+ [cytoplasm] + "L-asparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]", "YPR021C [mitochondrial membrane]"1165asparate transportH+ [cytoplasm] + "L-agutamate [peroxisome]" = "L-asparate [peroxisome]" = "L-asparate [cytoplasm]" = "H-asparate [peroxisome]" = "L-asparate [peroxisome]" = "L-asparate [peroxisome]" = "L-as	1152	AKG transporter, peroxisome	2-oxoglutarate [cytoplasm] = "2-oxoglutarate [peroxisome]"
1154allantoin uniportallantoin [extracellular] = "allantoin [extracellular]], "YIR028W [cell envelope]"1155alpha-ketoglutarate/malate transporter(S)-malate(2-) [extracellular] + "2-oxoglutarate [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "2-oxoglutarate [extracellular]]1156ammonia transportammonium [cytoplasm] = "ammonium [nucleus]"1157ammonia transport_2ammonium [extracellular] = "ammonium [cytoplasm]", "YDR384C [cell envelope]" "YRL142W [cell envelope]" "YPR138C [cell envelope]"1158AMP transport_2AMP [cytoplasm] = "AMP [peroxisome]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]" = "He [cytopla	1153	allantoate uniport	allantoate [extracellular] = "allantoate [cytoplasm]"; "YJR152W [cell envelope]"
1155alpha-ketoglutarate/malate transporter(S)-malate(2-) [extracellular] * "2-oxoglutarate [extracellular] *	1154	allantoin uniport	allantoin [extracellular] = "allantoin [cytoplasm]"; "YIR028W [cell envelope]"
1156ammonia transportammonia transportammonia manonium [cytoplasm] = "ammonium [nucleus]"1157ammonia transport_2ammonia transport_2ammonium [cytoplasm]; "YDR384C [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"1158AMP transport_2AMP [cytoplasm] = "AMP [cytoplasm]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]"1160AMP/ATP transporterAMP [cytoplasm] = "AMP [cytoplasm]" = "AMP [cytoplasm] = "AMP [cytoplas	1155	alpha-ketoglutarate/malate transporter	(S)-malate(2-) [extracellular] + "2-oxoglutarate [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "2-oxoglutarate [extracellular]"
1157ammonia transport_2ammonia manonium [extracellular] = "ammonium [cytoplasm]"; "YDR384C [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"1158AMP transportAMP [cytoplasm] = "AMP [peroxisome]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]"1160AMP/ATP transporterAMP [peroxisome] + "T+ [peroxisome]" = "AMP [cytoplasm]" + "T+ [peroxisome]" + "T+ [cytoplasm]", "YPR128C [peroxisomal membrane]"1161arginine transportH+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]"1162asparagine transportH+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]", "YPR021C [mitochondrial membrane]"1163asparate transportH+ [cytoplasm] + "L-agparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]", "YPR021C [mitochondrial membrane]"1164asparate transportL-asparate [cytoplasm] + "L-glutamate [peroxisome]" = "L-asparate [cytoplasm]" = "L-asparate [cytoplasm]"	1156	ammonia transport	ammonium [cytoplasm] = "ammonium [nucleus]"
1158AMP transportAMP [cytoplasm] = "AMP [peroxisome]"1159AMP transport_2AMP [nucleus] = "AMP [cytoplasm]"1160AMP/ATP transporterAMP [peroxisome] + "ATP [cytoplasm]" + "H+ [peroxisome]" = "AMP [cytoplasm]" + "H+ [cytoplasm]", "YPR128C [peroxisomal membrane]"1161arginine transportH+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]"1162asparagine transportH+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]"1163asparate transportH+ [cytoplasm] + "L-asparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]", "YPR021C [mitochondrial membrane]"1164asparate transportL-asparate [cytoplasm] + "L-glutamate [peroxisome]" = "L-asparate [peroxisome]" + "L-glutamate [cytoplasm]"	1157	ammonia transport_2	ammonium [extracellular] = "ammonium [cytoplasm]"; "YDR384C [cell envelope]" "YGR121C [cell envelope]" "YNL142W [cell envelope]" "YPR138C [cell envelope]"
1159 AMP transport_2 AMP [nucleus] = "AMP [cytoplasm]" 1160 AMP/ATP transporter AMP [perxisome] + "ATP [cytoplasm]" = "H+ [perxisome]" = "AMP [cytoplasm]" + "H+ [cytoplasm]", "YPR128C [perxisomal membrane]" 1161 arginine transport H+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]" 1162 asparate transport H+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]" 1163 asparate transport H+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]", "YPR021C [mitochondrial membrane]" 1164 asparate transport L-asparate [cytoplasm] = "H+ [mitochondrion]" + "L-asparate [mitochondrion]", "YPR021C [mitochondrial membrane]" 1164 asparate transporter L-asparate [cytoplasm] + "L-glutamate [perxisome]" = "L-asparate [cytoplasm]" = "L-asparate [cytoplasm]"	1158	AMP transport	AMP [cytoplasm] = "AMP [peroxisome]"
1160 AMP/ATP transporter AMP [peroxisome] + "ATP [cytoplasm]" + "H+ [peroxisome]" + "ATP [peroxisome]" + "H+ [cytoplasm]"; "YPR128C [peroxisomal membrane]" 1161 arginine transport H+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" 1162 asparatie transport H+ [cytoplasm] + "L-asparatie [cytoplasm]" = "H+ [mitochondrion]" + "L-asparatie [mitochondrion]" 1163 asparate transport H+ [cytoplasm] + "L-asparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]", "YPR021C [mitochondrial membrane]" 1164 asparate-glutamate transport L-asparate [cytoplasm] + "L-glutamate [peroxisome]" = "L-asparate [peroxisome]" + "L-glutamate [cytoplasm]"	1159	AMP transport_2	AMP [nucleus] = "AMP [cytoplasm]"
1161 arginine transport H+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]" 1162 asparagine transport H+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]" 1163 asparate transport H+ [cytoplasm] + "L-asparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]"; "YPR021C [mitochondrial membrane]" 1164 asparate-glutamate transporter L-asparate [cytoplasm] + "L-glutamate [peroxisome]" = "L-asparate [peroxisome]" + "L-glutamate [cytoplasm]"	1160	AMP/ATP transporter	AMP [peroxisome] + "ATP [cytoplasm]" + "H+ [peroxisome]" = "AMP [cytoplasm]" + "ATP [peroxisome]" + "H+ [cytoplasm]"; "YPR128C [peroxisomal membrane]"
1162 asparagine transport H+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]" 1163 asparate transport H+ [cytoplasm] + "L-asparate [cytoplasm]" = "H+ [mitochondrion]" + "L-asparate [mitochondrion]"; "YPR021C [mitochondrial membrane]" 1164 asparate transport L-asparate [cytoplasm] + "L-glutamate [peroxisome]" = "L-asparate [peroxisome]" + "L-glutamate [cytoplasm]"	1161	arginine transport	H+ [cytoplasm] + "L-arginine [cytoplasm]" = "H+ [mitochondrion]" + "L-arginine [mitochondrion]"
1163 aspartate transport H+ [cytoplasm] + "L-aspartate [cytoplasm]" = "H+ [mitochondrion]"; "YPR021C [mitochondrial membrane]" 1164 aspartate-glutamate transporter L-aspartate [cytoplasm] + "L-glutamate [peroxisome]" = "L-aspartate [peroxisome]" + "L-glutamate [cytoplasm]"	1162	asparagine transport	H+ [cytoplasm] + "L-asparagine [cytoplasm]" = "H+ [mitochondrion]" + "L-asparagine [mitochondrion]"
1164 aspartate-glutamate transporter L-aspartate [cytoplasm] + "L-glutamate [peroxisome]" = "L-aspartate [peroxisome]" + "L-glutamate [cytoplasm]"	1163	aspartate transport	H+ [cytoplasm] + "L-aspartate [cytoplasm]" = "H+ [mitochondrion]" + "L-aspartate [mitochondrion]"; "YPR021C [mitochondrial membrane]"
	1164	aspartate-glutamate transporter	L-aspartate [cytoplasm] + "L-glutamate [peroxisome]" = "L-aspartate [peroxisome]" + "L-glutamate [cytoplasm]"

2	1165	aspartate-glutamate transporter_2	L-aspartate [mitochondrion] + "L-glutamate [cytoplasm]" = "L-aspartate [cytoplasm]" + "L-glutamate [mitochondrion]"; "YPR021C [mitochondrial membrane]"
2	1166	ATP diffusion	ATP [cytoplasm] = "ATP [nucleus]"
2	1167	ATP transport	ATP [cytoplasm] = "ATP [endoplasmic reticulum]"
2	1168	ATP transport_2	ATP [cytoplasm] = "ATP [peroxisome]"
2	1169	bicarbonate transport	bicarbonate [cytoplasm] = "bicarbonate [nucleus]"
2	1170	biotin uptake	biotin [extracellular] + "H+ [extracellular]" = "biotin [cytoplasm]" + "H+ [cytoplasm]"; "YGR065C [cell envelope]"
2	1171	carnithine-acetylcarnithine carrier	(R)-carnitine [mitochondrion] + "O-acetylcarnitine [cytoplasm]" = "(R)-carnitine [cytoplasm]" + "O-acetylcarnitine [mitochondrion]"; "YOR100C [mitochondrial membrane]"
2	1172	carnitine transport	(R)-carnitine [cytoplasm] = "(R)-carnitine [peroxisome]"
2	1173	carnitine-acetylcarnitine carrier	(R)-carnitine [cytoplasm] + "O-acetylcarnitine [peroxisome]" = "(R)-carnitine [peroxisome]" + "O-acetylcarnitine [cytoplasm]"
2	1174	CDP transport	CDP [cytoplasm] = "CDP [nucleus]"
2	1175	ceramide-2' (sphinganine:n-C24:0OH) transport	N-(24-hydroxytetracosanyl)sphinganine [endoplasmic reticulum] = "N-(24-hydroxytetracosanyl)sphinganine [Golgi]"
2	1176	ceramide-2' (sphinganine:n-C26:0OH) transport	N-(26-hydroxyhexacosanyl)sphinganine [endoplasmic reticulum] = "N-(26-hydroxyhexacosanyl)sphinganine [Golgi]"
2	1177	ceramide-3 (Phytosphingosine:n-C24:0OH) transport	N-(24-hydroxytetracosanyl)phytosphingosine [endoplasmic reticulum] = "N-(24-hydroxytetracosanyl)phytosphingosine [Golgi]"
2	1178	ceramide-3 (Phytosphingosine:n-C26:0OH) transport	N-(26-hydroxyhexacosanyl)phytosphingosine [endoplasmic reticulum] = "N-(26-hydroxyhexacosanyl)phytosphingosine [Golgi]"
2	1179	choline transport	choline [cell envelope] = "choline [cytoplasm]"
2	1180	choline transport_2	choline [extracellular] + "H+ [extracellular]" = "choline [cytoplasm]" + "H+ [cytoplasm]"; "YGL077C [cell envelope]"
2	1181	citrate transport	citrate(3-) [extracellular] + "H+ [extracellular]" = "citrate(3-) [cytoplasm]" + "H+ [cytoplasm]"
2	1182	citrate transport_2	(S)-malate(2-) [mitochondrion] + "citrate(3-) [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "citrate(3-) [mitochondrion]"; "YBR291C [mitochondrial membrane]"
2	1183	citrate transport_3	citrate(3-) [cytoplasm] + "phosphoenolpyruvate [mitochondrion]" = "citrate(3-) [mitochondrion]" + "phosphoenolpyruvate [cytoplasm]"; "YBR291C [mitochondrial membrane]"
2	1184	citrate transport_4	citrate(3-) [cytoplasm] + "isocitrate(3-) [mitochondrion]" = "citrate(3-) [mitochondrion]" + "isocitrate(3-) [cytoplasm]"; "YBR291C [mitochondrial membrane]"
2	1185	citrate/isocitrate antiport	citrate(3-) [cytoplasm] + "isocitrate(3-) [peroxisome]" = "citrate(3-) [peroxisome]" + "isocitrate(3-) [cytoplasm]"
2	1186	citrate/malate antiport	(S)-malate(2-) [cytoplasm] + "citrate(3-) [peroxisome]" = "(S)-malate(2-) [peroxisome]" + "citrate(3-) [cytoplasm]"
2	1187	CMP transport	CMP [cytoplasm] = "CMP [mitochondrion]"; "YBR192W [mitochondrial membrane]"
2	1188	CO2 transport	carbon dioxide [cytoplasm] = "carbon dioxide [endoplasmic reticulum]"
2	1189	CO2 transport_2	carbon dioxide [cytoplasm] = "carbon dioxide [Golgi]"
2	1190	CO2 transport_3	carbon dioxide [cytoplasm] = "carbon dioxide [vacuole]"
2	1191	CO2 transport_4	carbon dioxide [nucleus] = "carbon dioxide [cytoplasm]"
2	1192	CO2 transport_5	carbon dioxide [cytoplasm] = "carbon dioxide [peroxisome]"
2	1193	CO2 transport_6	carbon dioxide [cytoplasm] = "carbon dioxide [mitochondrion]"
2	1194	CO2 transport_7	carbon dioxide [extracellular] = "carbon dioxide [cytoplasm]"
2	1195	coenzyme A transport	coenzyme A [cytoplasm] = "coenzyme A [mitochondrion]"; "YHR002W [mitochondrial membrane]"
2	1196	coenzyme A transport_2	coenzyme A [cytoplasm] = "coenzyme A [endoplasmic reticulum]"
2	1197	coenzyme A transport_3	coenzyme A [cytoplasm] = "coenzyme A [nucleus]"
2	1198	CTP transport	CTP [cytoplasm] = "CTP [mitochondrion]"; "YBR192W [mitochondrial membrane]"

2	1199	CTP/CMP antiport	CMP [mitochondrion] + "CTP [cytoplasm]" + 2 * "H+ [cytoplasm]" = "CMP [cytoplasm]" + "CTP [mitochondrion]" + 2 * "H+ [mitochondrion]"; "YBR192W [mitochondrial membrane]"
2	1200	cytidine transport	cytidine [extracellular] + "H+ [extracellular]" = "cytidine [cytoplasm]" + "H+ [cytoplasm]"; "YAL022C [cell envelope]"
2	1201	cytosine transport	cytosine [extracellular] + "H+ [extracellular]" = "cytosine [cytoplasm]" + "H+ [cytoplasm]"; "YER056C [cell envelope]" "YER060W [cell envelope]" "YER060W-A [cell envelope]" "YGL186C [cell
-	1201		envelope]"
2	1202	D-arabinose transport	D-arabinose [extracellular] = "D-arabinose [cytoplasm]"
2	1203	D-erythrose 4-phosphate transport	D-erythrose 4-phosphate(2-) [cytoplasm] = "D-erythrose 4-phosphate(2-) [mitochondrion]"
			D-fructose [extracellular] + "H+ [extracellular]" = "D-fructose [cytoplasm]" + "H+ [cytoplasm]"; "YDL245C [cell envelope]" "YDR342C [cell envelope]" "YDR343C [cell envelope]" "YDR345C [cell
2	1204	D-fructose transport	envelope]" "YEL069C [cell envelope]" "YFL011W [cell envelope]" "YHR092C [cell envelope]" "YHR094C [cell envelope]" "YHR096C [cell envelope]" "YJL214W [cell envelope]" "YJL219W [cell
			envelope]" "YJR158W [cell envelope]" "YMR011W [cell envelope]" "YNR072W [cell envelope]" "YOL156W [cell envelope]"
2	1205	D-galactose transport	D-galactose [extracellular] + "H+ [extracellular]" = "D-galactose [cytoplasm]" + "H+ [cytoplasm]"; "YDR536W [cell envelope]" "YFL011W [cell envelope]" "YJL219W [cell envelope]" "YLR081W
-	1205	D guidelose transport	[cell envelope]" "YNL318C [cell envelope]" "YOL156W [cell envelope]"
2	1206	D-glucosamine 6-phosphate uniport	alpha-D-glucosamine 6-phosphate [extracellular] = "alpha-D-glucosamine 6-phosphate [cytoplasm]"
2	1207	D-lactate transport	(R)-lactate [extracellular] + "H+ [extracellular]" = "(R)-lactate [cytoplasm]" + "H+ [cytoplasm]"; "YKL217W [cell envelope]"
2	1208	D-lactate transport_2	(R)-lactate [cytoplasm] + "H+ [cytoplasm]" = "(R)-lactate [mitochondrion]" + "H+ [mitochondrion]"
2	1209	D-lactate/pyruvate antiport	(R)-lactate [cytoplasm] + "pyruvate [mitochondrion]" = "(R)-lactate [mitochondrion]" + "pyruvate [cytoplasm]"
			D-mannose [extracellular] + "H+ [extracellular]" = "D-mannose [cytoplasm]" + "H+ [cytoplasm]"; "YDL245C [cell envelope]" "YDR342C [cell envelope]" "YDR343C [cell envelope]" "YDR343C [cell envelope]" "YDR345C [cell
2	1210	D-mannose transport	envelope]" "YEL069C [cell envelope]" "YFL011W [cell envelope]" "YHR092C [cell envelope]" "YHR094C [cell envelope]" "YHR096C [cell envelope]" "YJL214W [cell envelope]" "YJL219W [cell
			envelope]" "YJR158W [cell envelope]" "YMR011W [cell envelope]" "YNR072W [cell envelope]" "YOL156W [cell envelope]"
2	1211	D-sorbitol transport	D-glucitol [extracellular] = "D-glucitol [cytoplasm]"
2	1212	D-xylose transport	D-xylose [extracellular] = "D-xylose [cytoplasm]"
2	1213	dADP transport	dADP [cytoplasm] = "dADP [nucleus]"
2	1214	dCDP transport	dCDP [cytoplasm] = "dCDP [nucleus]"
2	1215	deamino-NAD+ diffusion	deamido-NAD(+) [cytoplasm] = "deamido-NAD(+) [nucleus]"
2	1216	deoxyadenosine transport	2'-deoxyadenosine [extracellular] + "H+ [extracellular]" = "2'-deoxyadenosine [cytoplasm]" + "H+ [cytoplasm]"
2	1217	deoxycytidine transport	2'-deoxycytidine [extracellular] + "H+ [extracellular]" = "2'-deoxycytidine [cytoplasm]" + "H+ [cytoplasm]"
2	1218	deoxyguanosine transport	2'-deoxyguanosine [extracellular] + "H+ [extracellular]" = "2'-deoxyguanosine [cytoplasm]" + "H+ [cytoplasm]"
2	1219	deoxyinosine transport	2'-deoxyinosine [extracellular] + "H+ [extracellular]" = "2'-deoxyinosine [cytoplasm]" + "H+ [cytoplasm]"
2	1220	deoxyuridine transport	2'-deoxyuridine [extracellular] + "H+ [extracellular]" = "2'-deoxyuridine [cytoplasm]" + "H+ [cytoplasm]"
2	1221	dGDP transport	dGDP [cytoplasm] = "dGDP [nucleus]"
2	1222	dhnpt transport	7,8-dihydroneopterin [cytoplasm] = "7,8-dihydroneopterin [mitochondrion]"
2	1223	diglyceride transport	diglyceride [cytoplasm] = "diglyceride [nucleus]"
2	1224	dihydrofolate transport	dihydrofolic acid [cytoplasm] = "dihydrofolic acid [mitochondrion]"
2	1225	dihydropteroate transport	7,8-dihydropteroate [cytoplasm] = "7,8-dihydropteroate [mitochondrion]"
2	1226	dihydroxyacetone phosphate transport	glycerone phosphate [mitochondrion] = "glycerone phosphate [cytoplasm]"
2	1227	diphosphate transport	diphosphate [cytoplasm] = "diphosphate [peroxisome]"
2	1228	DNF1 flippase	phosphatidylethanolamine [cytoplasm] = "phosphatidylethanolamine [cell envelope]"; "YDR093W [cell envelope]" "YER166W [cell envelope]"

2	1229	DNF1 flippase_2	phosphatidyl-L-serine [cytoplasm] = "phosphatidyl-L-serine [cell envelope]"; "YDR093W [cell envelope]" "YER166W [cell envelope]"
2	1230	DNF1 flippase_3	phosphatidylcholine [cytoplasm] = "phosphatidylcholine [cell envelope]"; "YDR093W [cell envelope]" "YER166W [cell envelope]"
2	1231	DNF3 flippase	phosphatidylcholine [Golgi] = "phosphatidylcholine [cytoplasm]"; "YMR162C [Golgi membrane]"
2	1232	DNF3 flippase_2	phosphatidylethanolamine [cytoplasm] = "phosphatidylethanolamine [Golgi]"; "YMR162C [Golgi membrane]"
2	1233	DNF3 flippase_3	phosphatidyl-L-serine [Golgi] = "phosphatidyl-L-serine [cytoplasm]"; "YMR162C [Golgi membrane]"
2	1234	dolichol phosphate transport	dolichyl phosphate [cytoplasm] + "H+ [cytoplasm]" = "dolichyl phosphate [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]"
2	1235	dTTP uniport	dTTP [extracellular] = "dTTP [cytoplasm]"
2	1236	dUDP diffusion	dUDP [cytoplasm] = "dUDP [nucleus]"
2	1237	dUMP transport	dUMP [cytoplasm] = "dUMP [nucleus]"
2	1238	episterol transport	episterol [extracellular] = "episterol [cytoplasm]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1239	ergosta-5,6,22,24,(28)-tetraen-3beta-ol transport	ergosta-5,7,22,24(28)-tetraen-3beta-ol [cytoplasm] = "ergosta-5,7,22,24(28)-tetraen-3beta-ol [endoplasmic reticulum]"
2	1240	ergosterol ester transport	ergosterol ester [cytoplasm] = "ergosterol ester [lipid particle]"
2	1241	ergosterol ester transport_2	ergosterol ester [cytoplasm] = "ergosterol ester [cell envelope]"
2	1242	ergosterol transport	ergosterol [endoplasmic reticulum] = "ergosterol [cytoplasm]"
2	1243	ergosterol transport_2	ergosterol [extracellular] = "ergosterol [cytoplasm]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1244	ergosterol transport_3	ergosterol [cell envelope] = "ergosterol [cytoplasm]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1245	ergosterol transport_4	ergosterol [cytoplasm] = "ergosterol [lipid particle]"
2	1246	ergosterol transport_5	ergosterol [cytoplasm] = "ergosterol [cell envelope]"
2	1247	ethanol transport	ethanol [extracellular] = "ethanol [cytoplasm]"
2	1248	ethanol transport_2	ethanol [cytoplasm] = "ethanol [mitochondrion]"
2	1249	ethanolamine transport	ethanolamine [extracellular] = "ethanolamine [cytoplasm]"
2	1250	fad/FMN antiport	FAD [cytoplasm] + "FMN [mitochondrion]" = "FAD [mitochondrion]" + "FMN [cytoplasm]"; "YIL134W [mitochondrial membrane]"
2	1251	fadH2 transport	FADH2 [cytoplasm] = "FADH2 [mitochondrion]"; "YIL134W [mitochondrial membrane]"
2	1252	farnesyl diphosphate transport	2-trans,6-trans-farnesyl diphosphate [cytoplasm] = "2-trans,6-trans-farnesyl diphosphate [mitochondrion]"
2	1253	fatty acid transport	hexacosanoyl-CoA [cytoplasm] = "hexacosanoyl-CoA [peroxisome]"
2	1254	fatty acid transport_2	tetracosanoyl-CoA [cytoplasm] = "tetracosanoyl-CoA [peroxisome]"
2	1255	fatty acid transport_3	decanoate [cytoplasm] = "decanoate [peroxisome]"
2	1256	fatty acid transport_4	laurate [cytoplasm] = "laurate [peroxisome]"
2	1257	fatty acid transport_5	myristate [cytoplasm] = "myristate [peroxisome]"
2	1258	fatty acid transport_6	myristoleate [cytoplasm] = "myristoleate [peroxisome]"
2	1259	fatty acid transport_7	palmitate [cytoplasm] = "palmitate [peroxisome]"
2	1260	fatty acid transport_8	palmitoleate [cytoplasm] = "palmitoleate [peroxisome]"
2	1261	fatty acid transport_9	lignocerate [cytoplasm] = "lignocerate [peroxisome]"; "YBR041W [peroxisomal membrane]"
2	1262	fatty acid transport_10	cerotate [cytoplasm] = "cerotate [peroxisome]"; "YBR041W [peroxisomal membrane]"

2	1263	fatty acid transport_11	octanoate [cytoplasm] = "octanoate [peroxisome]"
2	1264	fatty acid transport_12	myristate [extracellular] = "myristate [cytoplasm]"
2	1265	fatty acid transport_13	fatty acid [cytoplasm] = "fatty acid [lipid particle]"
2	1266	fatty acid transport_14	fatty acid [cytoplasm] = "fatty acid [cell envelope]"
2	1267	fatty acid transport via ABC system	ATP [peroxisome] + "myristoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "myristoyl-CoA [peroxisome]" + "phosphate [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1268	fatty acid transport via ABC system_2	ATP [peroxisome] + "tetradecenoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "phosphate [peroxisome]" + "tetradecenoyl-CoA [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1269	fatty acyl-CoA transport via ABC system	ATP [peroxisome] + "palmitoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "palmitoyl-CoA [peroxisome]" + "phosphate [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1270	fatty acyl-CoA transport via ABC system_2	ATP [peroxisome] + "hexadec-2-enoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "hexadec-2-enoyl-CoA [peroxisome]" + "phosphate [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1271	fatty acyl-CoA transport via ABC system_3	ATP [peroxisome] + "oleoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "oleoyl-CoA [peroxisome]" + "phosphate [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1272	fatty acyl-CoA transport via ABC system_4	ATP [peroxisome] + "octadec-9-ynoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "octadec-9-ynoyl-CoA [peroxisome]" + "phosphate [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1273	fatty acyl-CoA transport via ABC system_5	ATP [peroxisome] + "stearoyl-CoA [cytoplasm]" + "water [peroxisome]" = "ADP [peroxisome]" + "H+ [peroxisome]" + "phosphate [peroxisome]" + "stearoyl-CoA [peroxisome]"; "YKL188C:YPL147W [peroxisomal membrane]"
2	1274	fatty-acyl-ACP transport	lauroyl-[acyl-carrier protein] [mitochondrion] = "lauroyl-[acyl-carrier protein] [cytoplasm]"
2	1275	fatty-acyl-ACP transport_2	myristoyl-[acyl-carrier protein] [mitochondrion] = "myristoyl-[acyl-carrier protein] [cytoplasm]"
2	1276	fatty-acyl-ACP transport_3	(Z)-tetradec-7-enoyl-[acyl-carrier protein] [mitochondrion] = "(Z)-tetradec-7-enoyl-[acyl-carrier protein] [cytoplasm]"
2	1277	fatty-acyl-ACP transport_4	palmitoyl-[acyl-carrier protein] [mitochondrion] = "palmitoyl-[acyl-carrier protein] [cytoplasm]"
2	1278	fatty-acyl-ACP transport_5	cis-palmitoleoyl-[acyl-carrier protein] [mitochondrion] = "cis-palmitoleoyl-[acyl-carrier protein] [cytoplasm]"
2	1279	fatty-acyl-ACP transport_6	stearoyl-[acyl-carrier protein] [mitochondrion] = "stearoyl-[acyl-carrier protein] [cytoplasm]"
2	1280	fatty-acyl-ACP transport_7	cis-vaccenoyl-[acyl-carrier protein] [mitochondrion] = "cis-vaccenoyl-[acyl-carrier protein] [cytoplasm]"
2	1281	fatty-acyl-ACP transport_8	octadec-9-ynoyl-[acyl-carrier protein] [mitochondrion] = "octadec-9-ynoyl-[acyl-carrier protein] [cytoplasm]"
2	1282	fecosterol transport	fecosterol [extracellular] = "fecosterol [cytoplasm]", "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1283	fecosterol transport_2	fecosterol [cell envelope] = "fecosterol [cytoplasm]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1284	fecosterol transport_3	fecosterol [cytoplasm] = "fecosterol [endoplasmic reticulum]"
2	1285	formate transport	formate [mitochondrion] = "formate [cytoplasm]"
2	1286	formate transport_2	formate [extracellular] = "formate [cytoplasm]"
2	1287	formate transport_3	fumarate(2-) [extracellular] + "H+ [extracellular]" = "fumarate(2-) [cytoplasm]" + "H+ [cytoplasm]"
2	1288	GDP transport	GDP [Golgi] + "H+ [cytoplasm]" = "GDP [cytoplasm]" + "H+ [Golgi]"
2	1289	GDP transport_2	GDP [cytoplasm] = "GDP [nucleus]"
2	1290	GDP-alpha-D-mannose transport	GDP-alpha-D-mannose [cytoplasm] = "GDP-alpha-D-mannose [Golgi]"
2	1291	GDP-mannose antiport	GDP-alpha-D-mannose [cytoplasm] + "GMP [Golgi]" = "GDP-alpha-D-mannose [Golgi]" + "GMP [cytoplasm]"; "YGL225W [Golgi membrane]"

2	1292	glucose 6-phosphate transport	aldehydo-D-glucose 6-phosphate [cytoplasm] = "aldehydo-D-glucose 6-phosphate [endoplasmic reticulum]"
2	1293	glucose transport	D-glucose [extracellular] = "D-glucose [cytoplasm]"; "YDL245C [cell envelope]" "YDR342C [cell envelope]" "YDR343C [cell envelope]" "YDR345C [cell envelope]" "YDR536W [cell envelope]"
			"YEL069C [cell envelope]" "YFL011W [cell envelope]" "YHR092C [cell envelope]" "YHR094C [cell envelope]" "YHR096C [cell envelope]" "YJL214W [cell envelope]" "YJL219W [cell envelope]"
			"YJR158W [cell envelope]" "YLR081W [cell envelope]" "YMR011W [cell envelope]" "YNR072W [cell envelope]" "YOL156W [cell envelope]"
2	1294	glucose transport_2	D-glucose [cytoplasm] = "D-glucose [vacuole]"
2	1295	glutathione transport	glutathione [extracellular] = "glutathione [cytoplasm]"; "YJL212C [cell envelope]"
2	1296	glutathione transport_2	glutathione [cytoplasm] = "glutathione [vacuole]"; "YDR135C [vacuolar membrane]" "YLL015W [vacuolar membrane]"
2	1297	glycero-3-phospho-1-inositol transport	1-(sn-glycero-3-phospho)-1D-myo-inositol [extracellular] = "1-(sn-glycero-3-phospho)-1D-myo-inositol [cytoplasm]"; "YCR098C [cell envelope]"
2	1298	glycero-3-phosphocholine transport	sn-glycero-3-phosphocholine [extracellular] = "sn-glycero-3-phosphocholine [cytoplasm]"; "YCR098C [cell envelope]"
2	1299	glycerol transport via channel	glycerol [cytoplasm] = "glycerol [extracellular]"; "YLL043W [cell envelope]"
2	1300	glycerol transport via symport	glycerol [extracellular] + "H+ [extracellular]" = "glycerol [cytoplasm]" + "H+ [cytoplasm]"; "YDR536W [cell envelope]"
2	1301	glycerol-3-phosphate shuttle	sn-glycerol 3-phosphate [cytoplasm] = "sn-glycerol 3-phosphate [mitochondrion]"
2	1302	glycine transport	glycine [cytoplasm] + "H+ [cytoplasm]" = "glycine [mitochondrion]" + "H+ [mitochondrion]"
2	1303	glycine transport_2	glycine [extracellular] + "H+ [extracellular]" = "glycine [cytoplasm]" + "H+ [cytoplasm]"; "YCL025C [cell envelope]" "YKR039W [cell envelope]" "YOL020W [cell envelope]" "YOR348C [cell
			envelope]" "YPL265W [cell envelope]"
2	1304	glycoaldehyde transport	glycolaldehyde [cytoplasm] = "glycolaldehyde [mitochondrion]"
2	1305	glycoaldehyde transport_2	glycolaldehyde [extracellular] = "glycolaldehyde [cytoplasm]"
2	1306	glycogen vacuolar 'transport' via autophagy	glycogen [cytoplasm] = "glycogen [vacuole]"
2	1307	glyoxylate transport	glyoxylate [cytoplasm] = "glyoxylate [extracellular]"
2	1308	glyoxylate transport_2	glyoxylate [cytoplasm] = "glyoxylate [peroxisome]"
2	1309	GTP/GDP translocase	GDP [mitochondrion] + "GTP [cytoplasm]" + "H+ [cytoplasm]" = "GDP [cytoplasm]" + "GTP [mitochondrion]" + "H+ [mitochondrion]"; "YDL198C [mitochondrial membrane]"
2	1310	guanine transport	guanine [cytoplasm] = "guanine [mitochondrion]"
2	1311	guanine transport_2	guanine [extracellular] + "H+ [extracellular]" = "guanine [cytoplasm]" + "H+ [cytoplasm]"; "YER056C [cell envelope]" "YER060W [cell envelope]" "YER060W-A [cell envelope]" "YGL186C [cell
			envelope]"
2	1312	guanosine transport	guanosine [cytoplasm] + "H+ [cytoplasm]" = "guanosine [mitochondrion]" + "H+ [mitochondrion]"
2	1313	guanosine transport_2	guanosine [extracellular] + "H+ [extracellular]" = "guanosine [cytoplasm]" + "H+ [cytoplasm]"
2	1314	H2O transport	water [cytoplasm] = "water [endoplasmic reticulum]"
2	1315	H2O transport_2	water [extracellular] = "water [cytoplasm]"; "YLL052C [cell envelope]" "YPR192W [cell envelope]"
2	1316	H2O transport_3	water [cytoplasm] = "water [Golgi]"
2	1317	H2O transport_4	water [cytoplasm] = "water [mitochondrion]"
2	1318	H2O transport_5	water [nucleus] = "water [cytoplasm]"
2	1319	H2O transport_6	water [cytoplasm] = "water [peroxisome]"
2	1320	H2O transport_7	water [cytoplasm] = "water [vacuole]"
2	1321	H2O transport_8	water [cytoplasm] = "water [lipid particle]"
2	1322	hexacosanoyl-CoA transport	hexacosanoyl-CoA [cytoplasm] = "hexacosanoyl-CoA [endoplasmic reticulum]"
\mathbf{b}			
--------------	---		
Ę.			
เล			
Ξ			
άQ	(

2	1323	hexadecanoate (n-C16:0) transport	palmitate [extracellular] = "palmitate [cytoplasm]"
2	1324	hexadecenoate (n-C16:1) transport	palmitoleate [extracellular] = "palmitoleate [cytoplasm]"
2	1325	histidine transport	H+ [mitochondrion] + "L-histidine [mitochondrion]" = "H+ [cytoplasm]" + "L-histidine [cytoplasm]"
2	1326	hydrogen peroxide transport	hydrogen peroxide [cytoplasm] = "hydrogen peroxide [nucleus]"
2	1327	hydroxymethylglutaryl-CoA transport	3-hydroxy-3-methylglutaryl-CoA [cytoplasm] = "3-hydroxy-3-methylglutaryl-CoA [mitochondrion]"
2	1328	hypoxanthine transport	H+ [extracellular] + "hypoxanthine [extracellular]" = "H+ [cytoplasm]" + "hypoxanthine [cytoplasm]"
2	1329	indole-3-acetaldehyde transport	indol-3-ylacetaldehyde [cytoplasm] = "indol-3-ylacetaldehyde [mitochondrion]"
2	1330	indole-3-acetaldehyde transport_2	indol-3-ylacetaldehyde [cytoplasm] = "indol-3-ylacetaldehyde [extracellular]"
2	1331	indole-3-acetate transport	indole-3-acetate [cytoplasm] = "indole-3-acetate [mitochondrion]"
2	1332	inosine transport	H+ [extracellular] + "inosine [extracellular]" = "H+ [cytoplasm]" + "inosine [cytoplasm]"
2	1333	inositol hexakisphosphate transport	myo-inositol hexakisphosphate [cytoplasm] = "myo-inositol hexakisphosphate [nucleus]"
2	1334	inositol phosphomannosylinositol phosphoceramide transport	inositol phosphomannosylinositol phosphoceramide [cytoplasm] = "inositol phosphomannosylinositol phosphoceramide [Golgi]"
2	1335	inositol transport	H+ [extracellular] + "myo-inositol [extracellular]" = "H+ [cytoplasm]" + "myo-inositol [cytoplasm]"; "YDR497C [cell envelope]" "YOL103W [cell envelope]"
2	1336	iron (II) transport	iron(2+) [extracellular] = "iron(2+) [cytoplasm]"; "YMR319C [cell envelope]"
2	1337	iron (II) transport_2	iron(2+) [cytoplasm] = "iron(2+) [mitochondrion]"
2	1338	isoamyl acetate transport	isoamyl acetate [cytoplasm] = "isoamyl acetate [extracellular]"
2	1339	isoamyl alcohol transport	isoamylol [cytoplasm] = "isoamylol [extracellular]"
2	1340	isoamyl alcohol transport_2	isoamylol [cytoplasm] = "isoamylol [mitochondrion]"
2	1341	isobutyl acetate transport	isobutyl acetate [cytoplasm] = "isobutyl acetate [extracellular]"
2	1342	isobutyl alcohol transport	isobutanol [cytoplasm] = "isobutanol [extracellular]"
2	1343	isobutyl alcohol transport_2	isobutanol [cytoplasm] = "isobutanol [mitochondrion]"
2	1344	isopentenyl diphosphate transport	isopentenyl diphosphate [cytoplasm] = "isopentenyl diphosphate [mitochondrion]"
2	1345	L homocysteine transport	H+ [cytoplasm] + "L-homocysteine [cytoplasm]" = "H+ [peroxisome]" + "L-homocysteine [peroxisome]"
2	1346	L-alanine transport	L-alanine [mitochondrion] = "L-alanine [cytoplasm]"
2	1347	L-alanine transport_2	H+ [extracellular] + "L-alanine [extracellular]" = "H+ [cytoplasm]" + "L-alanine [cytoplasm]"; "YBR068C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YKR039W [cell envelope]" "YOR348C [cell envelope]" "YPL265W [cell envelope]"
2	1348	L-arabinitol transport	L-arabinitol [extracellular] = "L-arabinitol [cytoplasm]"
2	1349	L-arabinoase transport	L-arabinose [extracellular] = "L-arabinose [cytoplasm]"
2	1350	L-arganine transport	H+ [extracellular] + "L-arginine [extracellular]" = "H+ [cytoplasm]" + "L-arginine [cytoplasm]"; "YEL063C [cell envelope]" "YKR039W [cell envelope]" "YNL270C [cell envelope]"
2	1351	L-arganine transport_2	H+ [vacuole] + "L-arginine [cytoplasm]" = "H+ [cytoplasm]" + "L-arginine [vacuole]"; "YBR293W [vacuolar membrane]"
2	1352	L-asparagine transport	H+ [extracellular] + "L-asparagine [extracellular]" = "H+ [cytoplasm]" + "L-asparagine [cytoplasm]"; "YCL025C [cell envelope]" "YDR508C [cell envelope]" "YKR039W [cell envelope]" "YPL265W [cell envelope]"
2	1353	L-asparagine transport_2	H+ [vacuole] + "L-asparagine [cytoplasm]" = "H+ [cytoplasm]" + "L-asparagine [vacuole]"; "YJR001W [vacuolar membrane]"
2	1354	L-aspartate transport	H+ [vacuole] + "L-asparagine [vacuole]" = "H+ [cytoplasm]" + "L-asparagine [cytoplasm]"; "YKL146W [vacuolar membrane]" "YNL101W [vacuolar membrane]"
2	1355	L-aspartate transport_2	H+ [vacuole] + "L-aspartate [vacuole]" = "H+ [cytoplasm]" + "L-aspartate [cytoplasm]"; "YER119C [vacuolar membrane]"
2	1356	L-aspartate transport_3	H+ [extracellular] + "L-aspartate [extracellular]" = "H+ [cytoplasm]" + "L-aspartate [cytoplasm]"; "YFL055W [cell envelope]" "YKR039W [cell envelope]" "YPL265W [cell envelope]"

2	1357	L-carnitine transport	(R)-carnitine [extracellular] = "(R)-carnitine [cytoplasm]"; "YBR132C [cell envelope]"
2	1358	L-carnitine transport_2	(R)-carnitine [mitochondrion] = "(R)-carnitine [cytoplasm]"
2	1359	L-cystine transport	H+ [extracellular] + "L-cysteine [extracellular]" = "H+ [cytoplasm]" + "L-cysteine [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR046C [cell envelope]" "YDR0508C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR046C [cell envelope]" "YDR0508C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR0508C [cell envelope]" [cell envelope]" "YDR0508C [cell envelope]" [cell env
2	1360	L-cystine transport_2	H+ [vacuole] + "L-cystine [vacuole]" = "H+ [cytoplasm]" + "L-cystine [cytoplasm]"; "YCR075C [vacuolar membrane]"
2	1361	L-erythro-4-hydroxyglutamate transport	erythro-4-hydroxy-L-glutamic acid [cytoplasm] = "erythro-4-hydroxy-L-glutamic acid [mitochondrion]"
2	1362	L-erythro-4-hydroxyglutamate transport_2	erythro-4-hydroxy-L-glutamic acid [cytoplasm] = "erythro-4-hydroxy-L-glutamic acid [peroxisome]"
2	1363	L-glutamate transport	L-glutamate [cytoplasm] = "L-glutamate [mitochondrion]"; "YPR021C [mitochondrial membrane]"
2	1364	L-glutamate transport_2	H+ [cytoplasm] + "L-glutamate [cytoplasm]" = "H+ [nucleus]" + "L-glutamate [nucleus]"
2	1365	L-glutamate transport_3	hydroxide [mitochondrion] + "L-glutamate [cytoplasm]" = "hydroxide [cytoplasm]" + "L-glutamate [mitochondrion]"
2	1366	L-glutamate transport_4	H+ [vacuole] + "L-glutamate [vacuole]" = "H+ [cytoplasm]" + "L-glutamate [cytoplasm]"; "YER119C [vacuolar membrane]"
2	1367	L-glutamate transport_5	H+ [extracellular] + "L-glutamate [extracellular]" = "H+ [cytoplasm]" + "L-glutamate [cytoplasm]"; "YCL025C [cell envelope]" "YFL055W [cell envelope]" "YKR039W [cell envelope]" "YPL265W [cell envelope]"
2	1368	L-glutamine transport	H+ [cytoplasm] + "L-glutamine [cytoplasm]" = "H+ [nucleus]" + "L-glutamine [nucleus]"
2	1369	L-glutamine transport_2	H+ [vacuole] + "L-glutamine [cytoplasm]" = "H+ [cytoplasm]" + "L-glutamine [vacuole]"; "YJR001W [vacuolar membrane]"
2	1370	L-glutamine transport_3	H+ [vacuole] + "L-glutamine [vacuole]" = "H+ [cytoplasm]" + "L-glutamine [cytoplasm]"; "YKL146W [vacuolar membrane]" "YNL101W [vacuolar membrane]"
2	1371	L-glutamine transport_4	H+ [extracellular] + "L-glutamine [extracellular]" = "H+ [cytoplasm]" + "L-glutamine [cytoplasm]"; "YCL025C [cell envelope]" "YDR508C [cell envelope]" "YKR039W [cell envelope]" "YPL265W [cell envelope]"
2	1372	L-histidine transport	H+ [vacuole] + "L-histidine [cytoplasm]" = "H+ [cytoplasm]" + "L-histidine [vacuole]"; "YBR293W [vacuolar membrane]" "YCL069W [vacuolar membrane]" "YMR088C [vacuolar membrane]"
2	1373	L-histidine transport_2	H+ [extracellular] + "L-histidine [extracellular]" = "H+ [cytoplasm]" + "L-histidine [cytoplasm]"; "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YGR191W [cell envelope]" "YKR039W [cell envelope]"
2	1374	L-isoleucine transport	L-isoleucine [mitochondrion] = "L-isoleucine [cytoplasm]"
2	1375	L-isoleucine transport_2	L-isoleucine [vacuole] = "L-isoleucine [cytoplasm]"; "YCL038C [vacuolar membrane]"
2	1376	L-isoleucine transport_3	H+ [vacuole] + "L-isoleucine [cytoplasm]" = "H+ [cytoplasm]" + "L-isoleucine [vacuole]"; "YJR001W [vacuolar membrane]"
2	1377	L-isoleucine transport_4	H+ [vacuole] + "L-isoleucine [vacuole]" = "H+ [cytoplasm]" + "L-isoleucine [cytoplasm]"; "YKL146W [vacuolar membrane]" "YNL101W [vacuolar membrane]"
2	1378	L-isoleucine transport_5	H+ [extracellular] + "L-isoleucine [extracellular]" = "H+ [cytoplasm]" + "L-isoleucine [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YKR039W [cell envelope]"
2	1379	L-lactate transport	(S)-lactate [cytoplasm] = "(S)-lactate [mitochondrion]"; "YKL217W [mitochondrial membrane]"
2	1380	L-lactate transport_2	(S)-lactate [extracellular] + "H+ [extracellular]" = "(S)-lactate [cytoplasm]" + "H+ [cytoplasm]"; "YKL217W [cell envelope]"
2	1381	L-leucine transport	L-leucine [vacuole] = "L-leucine [cytoplasm]"; "YCL038C [vacuolar membrane]"
2	1382	L-leucine transport_2	H+ [vacuole] + "L-leucine [cytoplasm]" = "H+ [cytoplasm]" + "L-leucine [vacuole]"; "YJR001W [vacuolar membrane]"
2	1383	L-leucine transport_3	H+ [vacuole] + "L-leucine [vacuole]" = "H+ [cytoplasm]" + "L-leucine [cytoplasm]"; "YKL146W [vacuolar membrane]" "YNL101W [vacuolar membrane]"
2	1384	L-leucine transport_4	H+ [extracellular] + "L-leucine [extracellular]" = "H+ [cytoplasm]" + "L-leucine [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR046C [cell envelope]" "YDR0508C [cell envelope]" "YKR039W [cell envelope]"
2	1385	L-lysine transport	H+ [vacuole] + "L-lysine [cytoplasm]" = "H+ [cytoplasm]" + "L-lysine [vacuole]"; "YBR293W [vacuolar membrane]" "YCL069W [vacuolar membrane]" "YMR088C [vacuolar membrane]"

2	1386	L-lysine transport_2	H+ [extracellular] + "L-lysine [extracellular]" = "H+ [cytoplasm]" + "L-lysine [cytoplasm]"; "YKR039W [cell envelope]" "YNL268W [cell envelope]"
2	1387	L-malate transport	(S)-malate(2-) [extracellular] + "H+ [extracellular]" = "(S)-malate(2-) [cytoplasm]" + "H+ [cytoplasm]"
2	1200	I mothioning transport	H+ [extracellular] + "L-methionine [extracellular]" = "H+ [cytoplasm]" + "L-methionine [cytoplasm]"; "YBR068C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR508C
2	1300	L-methonne transport	[cell envelope]" "YGR055W [cell envelope]" "YHL036W [cell envelope]" "YKR039W [cell envelope]"
2	1389	L-nhenvlalanine transnort	H+ [extracellular] + "L-phenylalanine [extracellular]" = "H+ [cytoplasm]" + "L-phenylalanine [cytoplasm]"; "YBR068C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]"
-	1507		"YKR039W [cell envelope]" "YOL020W [cell envelope]"
2	1390	L-proline transport	H+ [extracellular] + "L-proline [extracellular]" = "H+ [cytoplasm]" + "L-proline [cytoplasm]"; "YKR039W [cell envelope]" "YOR348C [cell envelope]"
2	1391	L-proline transport_2	L-proline [cytoplasm] = "L-proline [mitochondrion]"
2	1392	L-serine transport	L-serine [cytoplasm] = "L-serine [endoplasmic reticulum]"
n	1202	L corino transport 2	H+ [extracellular] + "L-serine [extracellular]" = "H+ [cytoplasm]" + "L-serine [cytoplasm]"; "YCL025C [cell envelope]" "YDR508C [cell envelope]" "YFL055W [cell envelope]" "YKR039W [cell
2	1393	L-serile transport_2	envelope]" "YPL265W [cell envelope]"
2	1394	L-sorbitol transport	L-glucitol [extracellular] = "L-glucitol [cytoplasm]"
2	1395	L-sorbose transport	L-sorbose [extracellular] = "L-sorbose [cytoplasm]"
n	1206	L thraoning transport	H+ [extracellular] + "L-threonine [extracellular]" = "H+ [cytoplasm]" + "L-threonine [cytoplasm]"; "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell envelope]" "YDR508C [cell
2	1390	L-threonine transport	envelope]" "YKR039W [cell envelope]"
n	1207	L trustonhon transport	H+ [extracellular] + "L-tryptophan [extracellular]" = "H+ [cytoplasm]" + "L-tryptophan [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YDR046C [cell envelope]" "YKR039W
2	1397	597 L-tryptopnan transport	[cell envelope]" "YOL020W [cell envelope]"
2	1398	L-tyrosine transport	L-tyrosine [vacuole] = "L-tyrosine [cytoplasm]"; "YCL038C [vacuolar membrane]"
2	1399	L-tyrosine transport_2	H+ [vacuole] + "L-tyrosine [cytoplasm]" = "H+ [cytoplasm]" + "L-tyrosine [vacuole]"; "YBR293W [vacuolar membrane]" "YJR001W [vacuolar membrane]"
2	1400	L-tyrosine transport_3	H+ [vacuole] + "L-tyrosine [vacuole]" = "H+ [cytoplasm]" + "L-tyrosine [cytoplasm]"; "YKL146W [vacuolar membrane]" "YNL101W [vacuolar membrane]"
2	1401	I transing transment 4	H+ [extracellular] + "L-tyrosine [extracellular]" = "H+ [cytoplasm]" + "L-tyrosine [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell
2	1401	L-tyrosine transport_4	envelope]" "YKR039W [cell envelope]" "YOL020W [cell envelope]"
2	1402	L-valine transport	H+ [extracellular] + "L-valine [extracellular]" = "H+ [cytoplasm]" + "L-valine [cytoplasm]"; "YBR068C [cell envelope]" "YBR069C [cell envelope]" "YCL025C [cell envelope]" "YDR046C [cell
2	1402		envelope]" "YKR039W [cell envelope]"
2	1403	lanosterol transport	lanosterol [extracellular] = "lanosterol [cytoplasm]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
2	1404	lysine transport	H+ [cytoplasm] + "L-lysine [cytoplasm]" = "H+ [mitochondrion]" + "L-lysine [mitochondrion]"
2	1405	malate transport	(S)-malate(2-) [cytoplasm] + "phosphate [mitochondrion]" = "(S)-malate(2-) [mitochondrion]" + "phosphate [cytoplasm]"; "YLR348C [mitochondrial membrane]"
2	1406	malate/oxaloacetate shuttle	(S)-malate(2-) [peroxisome] + "oxaloacetate(2-) [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "oxaloacetate(2-) [peroxisome]"
2	1407		H+ [extracellular] + "maltose [extracellular]" = "H+ [cytoplasm]" + "maltose [cytoplasm]"; "YBR298C [cell envelope]" "YDL247W [cell envelope]" "YGR289C [cell envelope]" "YJR160C [cell
2	1407	maitose transport	envelope]"
2	1408	mannan transport	mannan [cytoplasm] = "mannan [endoplasmic reticulum]"
2	1409	melibiose transport	H+ [extracellular] + "melibiose [extracellular]" = "H+ [cytoplasm]" + "melibiose [cytoplasm]"
2	1410	methionine transport	H+ [mitochondrion] + "L-methionine [mitochondrion]" = "H+ [cytoplasm]" + "L-methionine [cytoplasm]"
2	1411	myo-inositol transport	myo-inositol [cytoplasm] = "myo-inositol [mitochondrion]"
2	1412	N,N'-diformyldityrosine transport	N,N'-diformyldityrosine [cytoplasm] = "N,N'-diformyldityrosine [extracellular]"; "YBR180W [cell envelope]"
2	1413	NAD transport	NAD(+) [cytoplasm] = "NAD(+) [mitochondrion]"; "YEL006W [mitochondrial membrane]" "YIL006W [mitochondrial membrane]"

2	1414	NAD transport_2	dAMP [cytoplasm] + "NAD(+) [cytoplasm]" = "dAMP [mitochondrion]" + "NAD(+) [mitochondrion]"; "YIL006W [mitochondrial membrane]"
2	1415	NAD transport_3	AMP [cytoplasm] + "NAD(+) [cytoplasm]" = "AMP [mitochondrion]" + "NAD(+) [mitochondrion]"; "YIL006W [mitochondrial membrane]"
2	1416	NAD transport_4	dGMP [cytoplasm] + "NAD(+) [cytoplasm]" = "dGMP [mitochondrion]" + "NAD(+) [mitochondrion]"; "YIL006W [mitochondrial membrane]"
2	1417	NAD transport_5	GMP [cytoplasm] + "NAD(+) [cytoplasm]" = "GMP [mitochondrion]" + "NAD(+) [mitochondrion]"; "YIL006W [mitochondrial membrane]"
2	1418	NAD transport_6	deamido-NAD(+) [cytoplasm] + "NAD(+) [cytoplasm]" = "deamido-NAD(+) [mitochondrion]" + "NAD(+) [mitochondrion]"; "YIL006W [mitochondrial membrane]"
2	1419	NAD transport_7	NAD(+) [nucleus] = "NAD(+) [cytoplasm]"
2	1420	NAD transport_8	NAD(+) [cytoplasm] = "NAD(+) [endoplasmic reticulum]"
2	1421	NADH transport	NADH [cytoplasm] = "NADH [endoplasmic reticulum]"
2	1422	NADP transport	NADP(+) [cytoplasm] = "NADP(+) [extracellular]"
2	1423	NADP(+) transport	NADP(+) [cytoplasm] = "NADP(+) [endoplasmic reticulum]"
2	1424	NADPH transport	NADPH [cytoplasm] = "NADPH [endoplasmic reticulum]"
2	1425	NH3 transport	ammonium [cytoplasm] = "ammonium [mitochondrion]"
2	1426	nicotinamide diffusion	nicotinamide [cytoplasm] = "nicotinamide [nucleus]"
2	1427	nicotinate transport	nicotinate [extracellular] = "nicotinate [cytoplasm]"; "YGR260W [cell envelope]"
2	1428	NMN transport	H+ [cytoplasm] + "NMN [cytoplasm]" = "H+ [mitochondrion]" + "NMN [mitochondrion]"
2	1429	NMN transport_2	H+ [cytoplasm] + "NMN [cytoplasm]" = "H+ [nucleus]" + "NMN [nucleus]"
2	1430	NMN transport_3	H+ [cytoplasm] + "NMN [cytoplasm]" = "H+ [peroxisome]" + "NMN [peroxisome]"
2	1431	NMN transport_4	H+ [extracellular] + "NMN [extracellular]" = "H+ [cytoplasm]" + "NMN [cytoplasm]"
2	1432	O-acetylcarnintine transport into mitochondria	O-acetylcarnitine [cytoplasm] = "O-acetylcarnitine [mitochondrion]"
2	1433	O2 transport	oxygen [cytoplasm] = "oxygen [endoplasmic reticulum]"
2	1434	O2 transport_2	oxygen [cytoplasm] = "oxygen [mitochondrion]"
2	1435	O2 transport_3	oxygen [extracellular] = "oxygen [cytoplasm]"
2	1436	O2 transport_4	oxygen [cytoplasm] = "oxygen [peroxisome]"
2	1437	octadecanoate (n-C18:0) transport	stearate [cytoplasm] = "stearate [peroxisome]"; "YPL147W [peroxisomal membrane]"
2	1438	octadecanoate (n-C18:0) transport_2	stearate [extracellular] = "stearate [cytoplasm]"
2	1439	octadecenoate (n-C18:1) transport	oleate [extracellular] = "oleate [cytoplasm]"
2	1440	octadecynoate (n-C18:2) transport	linoleic acid [extracellular] = "linoleic acid [cytoplasm]"
2	1441	ornithine transport	H+ [cytoplasm] + "ornithine [mitochondrion]" = "H+ [mitochondrion]" + "ornithine [cytoplasm]"; "YOR130C [mitochondrial membrane]"
2	1442	orntithine transport	H+ [extracellular] + "ornithine [extracellular]" = "H+ [cytoplasm]" + "ornithine [cytoplasm]"; "YEL063C [cell envelope]" "YKR039W [cell envelope]"
2	1443	oxaloacetate transport	oxaloacetate(2-) [cytoplasm] = "oxaloacetate(2-) [extracellular]"
2	1444	oxaloacetate transport_2	H+ [cytoplasm] + "oxaloacetate(2-) [cytoplasm]" = "H+ [mitochondrion]" + "oxaloacetate(2-) [mitochondrion]"; "YKL120W [mitochondrial membrane]"
2	1445	oxidized glutathione uniport	glutathione disulfide [extracellular] = "glutathione disulfide [cytoplasm]"
2	1446	oxidized thioredoxin transport	thioredoxin disulfide [cytoplasm] = "thioredoxin disulfide [peroxisome]"
2	1447	palmitoyl-CoA transport	palmitoyl-CoA [cytoplasm] = "palmitoyl-CoA [endoplasmic reticulum]"

	1448	palmitoylated protein insertion	palmitoylated protein [cytoplasm] = "palmitoylated protein [cell envelope]"
!	1449	panthetheine 4'-phosphate transport	pantetheine 4'-phosphate [cytoplasm] = "pantetheine 4'-phosphate [mitochondrion]"
!	1450	pantothenate transport	(R)-pantoate [cytoplasm] = "(R)-pantoate [mitochondrion]"
!	1451	pantothenate transport_2	(R)-pantothenate [extracellular] + "H+ [extracellular]" = "(R)-pantothenate [cytoplasm]" + "H+ [cytoplasm]"; "YCR028C [cell envelope]"
!	1452	PAP uniport	adenosine 3',5'-bismonophosphate [extracellular] = "adenosine 3',5'-bismonophosphate [cytoplasm]"
!	1453	pentaprenyl diphosphate transport	pentaprenyl diphosphate [cytoplasm] = "pentaprenyl diphosphate [mitochondrion]"
!	1454	phenethyl acetate transport	phenethyl acetate [cytoplasm] = "phenethyl acetate [extracellular]"
!	1455	phenylacetaldehyde transport	phenylacetaldehyde [cytoplasm] = "phenylacetaldehyde [extracellular]"
	1456	phenylacetaldehyde transport_2	phenylacetaldehyde [cytoplasm] = "phenylacetaldehyde [mitochondrion]"
	1457	phenylalanine transport	H+ [mitochondrion] + "L-phenylalanine [mitochondrion]" = "H+ [cytoplasm]" + "L-phenylalanine [cytoplasm]"
!	1458	phosphate transport	H+ [cytoplasm] + "phosphate [cytoplasm]" = "H+ [nucleus]" + "phosphate [nucleus]"
!	1459	phosphate transport_2	H+ [cytoplasm] + "phosphate [cytoplasm]" = "H+ [peroxisome]" + "phosphate [peroxisome]"
	1460	phosphate transport_3	hydroxide [mitochondrion] + "phosphate [cytoplasm]" = "hydroxide [cytoplasm]" + "phosphate [mitochondrion]"; "YER053C [mitochondrial membrane]"
	1461	nhosnhate transport 4	H+ [extracellular] + "phosphate [extracellular]" = "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YBR296C [cell envelope]" "YCR037C [cell envelope]" "YJL198W [cell envelope]" "YML123C [cell
	1401	phosphate transport_4	envelope]" "YNR013C [cell envelope]"
	1462	phosphate transport_5	H+ [cytoplasm] + "phosphate [cytoplasm]" = "H+ [mitochondrion]" + "phosphate [mitochondrion]"; "YJR077C [mitochondrial membrane]"
!	1463	phosphate transport_6	H+ [cytoplasm] + "phosphate [cytoplasm]" = "H+ [vacuole]" + "phosphate [vacuole]"
!	1464	phosphatidate transport	phosphatidate [cytoplasm] = "phosphatidate [mitochondrion]"
!	1465	phosphatidate transport_2	phosphatidate [endoplasmic reticulum] = "phosphatidate [cytoplasm]"
!	1466	phosphatidate transport_3	phosphatidate [cell envelope] = "phosphatidate [cytoplasm]"
	1467	phosphatidyl-L-serine transport	phosphatidyl-L-serine [cytoplasm] = "phosphatidyl-L-serine [Golgi]"
	1468	phosphatidyl-L-serine transport_2	phosphatidyl-L-serine [cytoplasm] = "phosphatidyl-L-serine [mitochondrion]"
!	1469	phosphatidyl-L-serine transport_3	phosphatidyl-L-serine [cytoplasm] = "phosphatidyl-L-serine [vacuole]"
!	1470	phosphatidylcholine transport	phosphatidylcholine [mitochondrion] = "phosphatidylcholine [cytoplasm]"
!	1471	phosphatidylethanolamine transport	phosphatidylethanolamine [cytoplasm] = "phosphatidylethanolamine [mitochondrion]"
!	1472	phosphatidylethanolamine vacuolar transport	phosphatidylethanolamine [cytoplasm] = "phosphatidylethanolamine [vacuole]"
	1475	phospholipid translocation	phospholipid [extracellular] = "phospholipid [cytoplasm]"; "YNL323W [cell envelope]"
	1476	potassium transport	H+ [extracellular] + "potassium [extracellular]" = "H+ [cytoplasm]" + "potassium [cytoplasm]"; "YJL129C [cell envelope]"
	1477	protoporphyrinogen IX transport	protoporphyrinogen [cytoplasm] = "protoporphyrinogen [mitochondrion]"
	1478	PRPP transport	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] = "5-O-phosphono-alpha-D-ribofuranosyl diphosphate [mitochondrion]"
!	1479	putrescine excretion	putrescine [cytoplasm] = "putrescine [extracellular]"; "YKL174C [cell envelope]"
	1480	putrescine transport	H+ [cytoplasm] + "putrescine [extracellular]" = "H+ [extracellular]" + "putrescine [cytoplasm]"; "YLL028W [cell envelope]" "YOR273C [cell envelope]"
	1481	pyridoxine symport	H+ [extracellular] + "pyridoxine [extracellular]" = "H+ [cytoplasm]" + "pyridoxine [cytoplasm]"; "YGL186C [cell envelope]"
	1482	pyruvate transport	H+ [cytoplasm] + "pyruvate [cytoplasm]" = "H+ [mitochondrion]" + "pyruvate [mitochondrion]"
	1483	pyruvate transport_2	H+ [cytoplasm] + "pyruvate [cytoplasm]" = "H+ [peroxisome]" + "pyruvate [peroxisome]"
	1484	pyruvate transport_3	H+ [extracellular] + "pyruvate [extracellular]" = "H+ [cytoplasm]" + "pyruvate [cytoplasm]"; "YKL217W [cell envelope]"

2	1485	quinolinate transport	quinolinate(2-) [cytoplasm] = "quinolinate(2-) [mitochondrion]"
2	1486	reduced thioredoxin transport	thioredoxin dithiol [cytoplasm] = "thioredoxin dithiol [peroxisome]"
2	1487	riboflavin transport	riboflavin [cytoplasm] = "riboflavin [mitochondrion]"
2	1488	riboflavin transport_2	H+ [extracellular] + "riboflavin [extracellular]" = "H+ [cytoplasm]" + "riboflavin [cytoplasm]"
2	1489	ribose transporter	D-ribose [extracellular] + "H+ [extracellular]" = "D-ribose [cytoplasm]" + "H+ [cytoplasm]"
2	1490	S-adenosyl-L-homocysteine transport	S-adenosyl-L-homocysteine [cytoplasm] = "S-adenosyl-L-homocysteine [mitochondrion]"
2	1491	S-adenosyl-L-methionine transport	H+ [extracellular] + "S-adenosyl-L-methionine [extracellular]" = "H+ [cytoplasm]" + "S-adenosyl-L-methionine [cytoplasm]"; "YPL274W [cell envelope]"
2	1492	S-adenosyl-L-methionine transport_2	S-adenosyl-L-methionine [cytoplasm] = "S-adenosyl-L-methionine [mitochondrion]"; "YNL003C [mitochondrial membrane]"
2	1493	S-methylmethionine permease	H+ [extracellular] + "S-methyl-L-methionine [extracellular]" = "H+ [cytoplasm]" + "S-methyl-L-methionine [cytoplasm]"; "YLL061W [cell envelope]"
2	1494	serine transport	H+ [cytoplasm] + "L-serine [cytoplasm]" = "H+ [mitochondrion]" + "L-serine [mitochondrion]"
2	1495	sn-glycero-3-phosphocholine transport	sn-glycero-3-phosphocholine [cytoplasm] = "sn-glycero-3-phosphocholine [mitochondrion]"
2	1496	sn-glycerol 3-phosphate transport	sn-glycerol 3-phosphate [cytoplasm] = "sn-glycerol 3-phosphate [endoplasmic reticulum]"
2	1497	sodium proton antiporter	H+ [extracellular] + "sodium [cytoplasm]" = "H+ [cytoplasm]" + "sodium [extracellular]"; "YLR138W [cell envelope]"
2	1498	spermidine excretion	spermidine [cytoplasm] = "spermidine [extracellular]"; "YKL174C [cell envelope]"
2	1499	spermidine transport	H+ [cytoplasm] + "spermidine [extracellular]" = "H+ [extracellular]" + "spermidine [cytoplasm]"; "YBR132C [cell envelope]" "YHL016C [cell envelope]" "YKR039W [cell envelope]" "YLL028W [cell envelope]" [cell envelo
2	1500	spermine transport	H+ [cytoplasm] + "spermine [extracellular]" = "H+ [extracellular]" + "spermine [cytoplasm]"; "YLL028W [cell envelope]"
2	1501	squalene transport	squalene [cytoplasm] = "squalene [endoplasmic reticulum]"
2	1502	squalene-2,3-epoxide transport	(S)-2,3-epoxysqualene [endoplasmic reticulum] = "(S)-2,3-epoxysqualene [cytoplasm]"
2	1503	succinate transport	H+ [extracellular] + "succinate(2-) [extracellular]" = "H+ [cytoplasm]" + "succinate(2-) [cytoplasm]"
2	1504	succinate transport_2	phosphate [mitochondrion] + "succinate(2-) [cytoplasm]" = "phosphate [cytoplasm]" + "succinate(2-) [mitochondrion]"; "YLR348C [mitochondrial membrane]"
2	1505	succinate-fumarate transport	fumarate(2-) [mitochondrion] + "succinate(2-) [cytoplasm]" = "fumarate(2-) [cytoplasm]" + "succinate(2-) [mitochondrion]"; "YJR095W [mitochondrial membrane]"
2	1506	sucrose transport	H+ [extracellular] + "sucrose [extracellular]" = "H+ [cytoplasm]" + "sucrose [cytoplasm]"
2	1507	sulfate uniport	sulphate [extracellular] = "sulphate [cytoplasm]"; "YBR294W [cell envelope]" "YLR092W [cell envelope]"
2	1508	sulfite transport	sulphite [cytoplasm] = "sulphite [extracellular]"; "YPL092W [cell envelope]"
2	1509	taurine transport	taurine [cytoplasm] = "taurine [extracellular]"
2	1510	tetracosanoyl-CoA transport	tetracosanoyl-CoA [cytoplasm] = "tetracosanoyl-CoA [endoplasmic reticulum]"
2	1511	thiamine diphosphate transport	thiamine(1+) diphosphate(1-) [cytoplasm] = "thiamine(1+) diphosphate(1-) [mitochondrion]"; "YGR096W [mitochondrial membrane]"
2	1512	thiamine transport	H+ [extracellular] + "thiamine(1+) [extracellular]" = "H+ [cytoplasm]" + "thiamine(1+) [cytoplasm]"; "YLR237W [cell envelope]" "YOR071C [cell envelope]" "YOR192C [cell envelope]"
2	1513	threonine transport	H+ [cytoplasm] + "L-threonine [cytoplasm]" = "H+ [mitochondrion]" + "L-threonine [mitochondrion]"
2	1514	thymidine transport	H+ [extracellular] + "thymidine [extracellular]" = "H+ [cytoplasm]" + "thymidine [cytoplasm]"
2	1515	thymine transport	H+ [extracellular] + "thymine [cytoplasm]" = "H+ [cytoplasm]" + "thymine [extracellular]"
2	1516	trans-4-hydroxy-L-proline transport	trans-4-hydroxy-L-proline [cytoplasm] = "trans-4-hydroxy-L-proline [mitochondrion]"
2	1517	trehalose transporter	alpha,alpha-trehalose [extracellular] + "H+ [extracellular]" = "alpha,alpha-trehalose [cytoplasm]" + "H+ [cytoplasm]"
2	1518	trehalose vacuolar transport	alpha,alpha-trehalose [cytoplasm] + "H+ [cytoplasm]" = "alpha,alpha-trehalose [vacuole]" + "H+ [vacuole]"

	1520	tryptophol transport	tryptophol [cytoplasm] = "tryptophol [extracellular]"
	1521	tryptophol transport_2	tryptophol [cytoplasm] = "tryptophol [mitochondrion]"
	1522	tyrosine transport	H+ [cytoplasm] + "L-tyrosine [cytoplasm]" = "H+ [mitochondrion]" + "L-tyrosine [mitochondrion]"
	1523	tyrosine transport_2	H+ [cytoplasm] + "L-tyrosine [cytoplasm]" = "H+ [peroxisome]" + "L-tyrosine [peroxisome]"
	1524	UDPgalactose transport	UDP-D-galactose [cytoplasm] = "UDP-D-galactose [Golgi]"; "YPL244C [Golgi membrane]"
	1525	UMP transport	UMP [cytoplasm] = "UMP [nucleus]"
	1526	UMP transport_2	UMP [cytoplasm] = "UMP [mitochondrion]"; "YBR192W [mitochondrial membrane]"
	1527	uracil transport	H+ [extracellular] + "uracil [extracellular]" = "H+ [cytoplasm]" + "uracil [cytoplasm]"; "YBR021W [cell envelope]"
	1528	urea transport	2 * "H+ [extracellular]" + "urea [extracellular]" = 2 * "H+ [cytoplasm]" + "urea [cytoplasm]"; "YHL016C [cell envelope]"
	1529	uridine transport	H+ [extracellular] + "uridine [extracellular]" = "H+ [cytoplasm]" + "uridine [cytoplasm]"; "YBL042C [cell envelope]"
	1530	UTP transport	UTP [cytoplasm] = "UTP [mitochondrion]"; "YBR192W [mitochondrial membrane]"
	1531	UTP/UMP antiport	2 * "H+ [cytoplasm]" + "UMP [mitochondrion]" + "UTP [cytoplasm]" = 2 * "H+ [mitochondrion]" + "UMP [cytoplasm]" + "UTP [mitochondrion]"; "YBR192W [mitochondrial membrane]"
	1532	valine transport	H+ [cytoplasm] + "L-valine [cytoplasm]" = "H+ [mitochondrion]" + "L-valine [mitochondrion]"
	1533	xanthine transport	9H-xanthine [extracellular] = "9H-xanthine [cytoplasm]"
	1534	xanthosine transport	H+ [extracellular] + "xanthosine [extracellular]" = "H+ [cytoplasm]" + "xanthosine [cytoplasm]"
Ì	1535	xylitol transport	xylitol [extracellular] = "xylitol [cytoplasm]"
	1536	zymosterol transport	zymosterol [extracellular] = "zymosterol [cell envelope]"; "YIL013C [cell envelope]" "YOR011W [cell envelope]"
	1537	zymosterol transport_2	zymosterol [cell envelope] = "zymosterol [cytoplasm]"
Ì	1538	zymosterol transport_3	zymosterol [cytoplasm] = "zymosterol [endoplasmic reticulum]"
	134	acyl carrier protein synthase	coenzyme A [mitochondrion] + "water [mitochondrion]" = "adenosine 3',5'-bismonophosphate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "pantetheine 4'-phosphate [mitochondrion]"; "YPL148C
_			[Initectionation]
		Q0045, Q0250, Q0275, YDL067C, YEL039C, YGL187C,	WGL187C [mitochondria] membrane]" + "YGL191W [mitochondria] membrane]" + "YHR051W [mitochondria] membrane]" + "YIL111W [mitochondria] membrane]" + "YIR038C [mitochondria]
	1539	YGL191W, YHR051W, YIL111W, YLR038C, YLR395C	, membrane]" + "YLR395C [mitochondrial membrane]" + "YMR256C [mitochondrial membrane]" =
		YMR256C	"Q0045:Q0250:Q0275:YDL067C:YEL039C:YGL187C:YGL191W:YHR051W:YIL111W:YLR038C:YLR395C:YMR256C [mitochondrial membrane]"
		00045 00050 00075 NBL0676 NEL0206 NGL1076	Q0045 [mitochondrial membrane] + "Q0250 [mitochondrial membrane]" + "Q0275 [mitochondrial membrane]" + "YDL067C [mitochondrial membrane]" + "YEL039C [mitochondrial membrane]" +
	1540	Q0045, Q0250, Q0275, YDL067C, YEL059C, YGL187C,	"YGL187C [mitochondrial membrane]" + "YGL191W [mitochondrial membrane]" + "YHR051W [mitochondrial membrane]" + "YLR038C [mitochondrial membrane]" + "YLR395C [mitochondrial
	1340	YNL052W	membrane]" + "YMR256C [mitochondrial membrane]" + "YNL052W [mitochondrial membrane]" =
			"Q0045:Q0250:Q0275:YDL067C:YEL039C:YGL187C:YGL191W:YHR051W:YLR038C:YLR395C:YMR256C:YNL052W [mitochondrial membrane]"
		00045, 00250, 00275, YDL067C, YGL187C, YGL191W,	Q0045 [mitochondrial membrane] + "Q0250 [mitochondrial membrane]" + "Q0275 [mitochondrial membrane]" + "YDL067C [mitochondrial membrane]" + "YGL187C [mitochondrial membrane]" +
	1541	YHR051W, YIL111W, YJR048W, YLR038C, YLR395C,	"YGL191W [mitochondrial membrane]" + "YHR051W [mitochondrial membrane]" + "YIL111W [mitochondrial membrane]" + "YJR048W [mitochondrial membrane]" + "YLR038C [mitochondrial
		YMR256C	membrane]" + "YLR39SC [mitochondrial membrane]" + "YMR256C [mitochondrial membrane]" =
		00045 00250 00275 VDL067C VGL197C VGL191W	Quues. Quues. Quues. Quues. 1 DLUU/C. 1 DLU/C. 1
	1542	VHR051W VIR048W VIR038C VIR395C VMP256C	2004/5 [mitochondria] membrane] + 20230 [mitochondria] membrane] + 202/5 [mitochondria] membrane] + 1DL00/C [mitochondria] membrane] + "VLR38/C [mitochondria] membrane] + "VL
		YNL052W	membrane]" + "YMR256C [mitochondrial membrane]" + "YNL052W [mitochondrial membrane]" =

H+ [cytoplasm] + "L-tryptophan [cytoplasm]" = "H+ [mitochondrion]" + "L-tryptophan [mitochondrion]"

1519 tryptophan transport

2

2

PR020W	
PR020W	
hondrial	
DR065W	
PR191W	
hondrial	
)R065W	
PR 191W	

Anhang

			"Q0045:Q0250:Q0275:YDL067C:YGL187C:YGL191W:YHR051W:YJR048W:YLR038C:YLR395C:YMR256C:YNL052W [mitochondrial membrane]"
			Q0080 [mitochondrial membrane] + "Q0085 [mitochondrial membrane]" + "Q0130 [mitochondrial membrane]" + "YBL099W [mitochondrial membrane]" + "YBR039W [mitochondrial membrane]" +
		Q0080, Q0085, Q0130, YBL099W, YBR039W, YDL004W,	"YDL004W [mitochondrial membrane]" + "YDR298C [mitochondrial membrane]" + "YDR322C-A [mitochondrial membrane]" + "YDR377W [mitochondrial membrane]" + "YJR121W [mitochondrial
3	1543	YDR298C, YDR322C-A, YDR377W, YJR121W, YKL016C,	membrane]" + "YKL016C [mitochondrial membrane]" + "YLR295C [mitochondrial membrane]" + "YML081C-A [mitochondrial membrane]" + "YPL078C [mitochondrial membrane]" + "YPL271W
		YLR295C, YML081C-A, YPL078C, YPL271W	[mitochondrial membrane]" = "Q0080:Q0085:Q0130:YBL099W:YBR039W:YDL004W:YDR298C:YDR322C-A:YDR377W:YJR121W:YKL016C:YLR295C:YML081C-A:YPL078C:YPL271W
			[mitochondrial membrane]"
			Q0080 [mitochondrial membrane] + "Q0085 [mitochondrial membrane]" + "Q0130 [mitochondrial membrane]" + "YBL099W [mitochondrial membrane]" + "YBR039W [mitochondrial membrane]" +
3		Q0080, Q0085, Q0130, YBL099W, YBR039W, YDL004W,	"YDL004W [mitochondrial membrane]" + "YDR298C [mitochondrial membrane]" + "YDR377W [mitochondrial membrane]" + "YJR121W [mitochondrial membrane]" + "YKL016C [mitochondrial
	1544	YDR298C, YDR377W, YJR121W, YKL016C, YLR295C,	membrane]" + "YLR295C [mitochondrial membrane]" + "YML081C-A [mitochondrial membrane]" + "YPL078C [mitochondrial membrane]" + "YPL271W [mitochondrial membrane]" + "YPR020W
		YML081C-A, YPL078C, YPL271W, YPR020W	[mitochondrial membrane]" = "Q0080:Q0085:Q0130:YBL099W:YBR039W:YDL004W:YDR298C:YDR377W:YJR121W:YKL016C:YLR295C:YML081C-A:YPL078C:YPL271W:YPR020W
			[mitochondrial membrane]"
		00105 YBI 045C YDR 529C YEL 024W YEL 039C	Q0105 [mitochondrial membrane] + "YBL045C [mitochondrial membrane]" + "YDR529C [mitochondrial membrane]" + "YEL024W [mitochondrial membrane]" + "YEL039C [mitochondrial
3	1545	VER033C VGR183C VHR001W-A VII 166W VOR065W	membrane]" + "YFR033C [mitochondrial membrane]" + "YGR183C [mitochondrial membrane]" + "YHR001W-A [mitochondrial membrane]" + "YJL166W [mitochondrial membrane]" + "YOR065W
	1040	VPR101W	[mitochondrial membrane]" + "YPR191W [mitochondrial membrane]" = "Q0105:YBL045C:YDR529C:YEL034W:YEL039C:YFR033C:YGR183C:YHR001W-A:YJL166W:YOR065W:YPR191W
		II KI/I W	[mitochondrial membrane]"
		Q0105 VBL045C VDR529C VEL024W VER033C	Q0105 [mitochondrial membrane] + "YBL045C [mitochondrial membrane]" + "YDR529C [mitochondrial membrane]" + "YEL024W [mitochondrial membrane]" + "YFR033C [mitochondrial
	1546	VGP183C VHP001W-A VII 166W VIP048W VOP065W	membrane]" + "YGR183C [mitochondrial membrane]" + "YHR001W-A [mitochondrial membrane]" + "YJL166W [mitochondrial membrane]" + "YJR048W [mitochondrial membrane]" + "YOR065W
	1540	VPR191W	[mitochondrial membrane]" + "YPR191W [mitochondrial membrane]" = "Q0105:YBL045C:YDR529C:YEL024W:YFR033C:YGR183C:YHR001W-A:YJL166W:YJR048W:YOR065W:YPR191W
		II KI/I W	[mitochondrial membrane]"
	1547	YAL023C, YDL095W	YAL023C [endoplasmic reticulum membrane] + "YDL095W [endoplasmic reticulum membrane]" = "YAL023C:YDL095W [endoplasmic reticulum membrane]"
	1548	YAL023C, YDL095W_2	YAL023C [endoplasmic reticulum] + "YDL095W [endoplasmic reticulum]" = "YAL023C:YDL095W [endoplasmic reticulum]"
	1540	VAL044C VBR221C VDR019C VER178W VMR189W	YAL044C [mitochondrion] + "YBR221C [mitochondrion]" + "YDR019C [mitochondrion]" + "YER178W [mitochondrion]" + "YMR189W [mitochondrion]" =
	1547	TALOHIC, TEREZZIC, TEREZZZ	"YAL044C:YBR221C:YDR019C:YER178W:YMR189W [mitochondrion]"
;	1550	YAL044C, YDR019C, YFL018C, YMR189W	YAL044C [mitochondrion] + "YDR019C [mitochondrion]" + "YFL018C [mitochondrion]" + "YMR189W [mitochondrion]" = "YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"
;	1551	YBL064C, YCR083W	YBL064C [mitochondrion] + "YCR083W [mitochondrion]" = "YBL064C:YCR083W [mitochondrion]"
	1552	YBR026C, YER061C, YHR067W, YKL055C, YKL192C,	YBR026C [mitochondrion] + "YER061C [mitochondrion]" + "YHR067W [mitochondrion]" + "YKL055C [mitochondrion]" + "YKL192C [mitochondrion]" + "YOR221C [mitochondrion]" =
	1552	YOR221C	"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
3	1553	YBR036C, YDR297W	YBR036C [Golgi] + "YDR297W [Golgi]" = "YBR036C:YDR297W [Golgi]"
;	1554	YBR036C, YPL057C	YBR036C [Golgi] + "YPL057C [Golgi]" = "YBR036C:YPL057C [Golgi]"
;	1555	YBR115C, YGL154C	YBR115C [cytoplasm] + "YGL154C [cytoplasm]" = "YBR115C:YGL154C [cytoplasm]"
3	1556	YBR126C, YML100W, YMR261C	YBR126C [cytoplasm] + "YML100W [cytoplasm]" + "YMR261C [cytoplasm]" = "YBR126C:YML100W:YMR261C [cytoplasm]"
		VER127C VEL185W VEL027W VEL051W VER020CC	YBR127C [Golgi membrane] + "YDL185W [Golgi membrane]" + "YEL027W [Golgi membrane]" + "YEL051W [Golgi membrane]" + "YGR020C [Golgi membrane]" + "YHR026W [Golgi
	1557	VID026W VID020C A VKL080W VID447C	membrane]" + "YHR039C-A [Golgi membrane]" + "YKL080W [Golgi membrane]" + "YLR447C [Golgi membrane]" + "YMR054W [Golgi membrane]" + "YOR332W [Golgi membrane]" + "YPL234C
	1337	VMR054W VOR332W VPI 234C VPR036W	[Golgi membrane]" + "YPR036W [Golgi membrane]" = "YBR127C:YDL185W:YEL027W:YEL051W:YGR020C:YHR026W:YHR039C-
		1WR054W, 10R552W, 11L254C, 11R050W	A:YKL080W:YLR447C:YMR054W:YOR332W:YPL234C:YPR036W [Golgi membrane]"
	1559	YBR127C, YDL185W, YEL027W, YEL051W, YGR020C,	YBR127C [vacuolar membrane] + "YDL185W [vacuolar membrane]" + "YEL027W [vacuolar membrane]" + "YEL051W [vacuolar membrane]" + "YGR020C [vacuolar membrane]" + "YHR026W
1	1338	YHR026W, YHR039C-A, YKL080W, YLR447C, YOR270C,	[vacuolar membrane]" + "YHR039C-A [vacuolar membrane]" + "YKL080W [vacuolar membrane]" + "YLR447C [vacuolar membrane]" + "YOR270C [vacuolar membrane]" + "YOR332W [vacuolar

		YOR332W, YPL234C, YPR036W	membrane]" + "YPL234C [vacuolar membrane]" + "YPR036W [vacuolar membrane]" = "YBR127C:YDL185W:YEL027W:YEL051W:YGR020C:YHR026W:YHR039C-
			A:YKL080W:YLR447C:YOR270C:YOR332W:YPL234C:YPR036W [vacuolar membrane]"
3	1559	YBR221C, YER178W, YFL018C, YGR193C, YNL071W	YBR221C [mitochondrion] + "YER178W [mitochondrion]" + "YFL018C [mitochondrion]" + "YGR193C [mitochondrion]" + "YNL071W [mitochondrion]" = "YBR221C:YER178W:YFL018C:YGR193C:YNL071W [mitochondrion]"
3	1560	YCL009C, YMR108W	YCL009C [mitochondrion] + "YMR108W [mitochondrion]" = "YCL009C:YMR108W [mitochondrion]"
3	1561	YCL035C, YPL091W	YCL035C [cytoplasm] + "YPL091W [cytoplasm]" = "YCL035C:YPL091W [cytoplasm]"
3	1562	YCR024C-A, YEL017C-A, YGL008C	YCR024C-A [cell envelope] + "YEL017C-A [cell envelope]" + "YGL008C [cell envelope]" = "YCR024C-A:YEL017C-A:YGL008C [cell envelope]"
3	1563	YCR024C-A, YEL017C-A, YPL036W	YCR024C-A [cell envelope] + "YEL017C-A [cell envelope]" + "YPL036W [cell envelope]" = "YCR024C-A:YEL017C-A:YPL036W [cell envelope]"
3	1564	YCR034W, YDL015C, YLR372W	YCR034W [cytoplasm] + "YDL015C [cytoplasm]" + "YLR372W [cytoplasm]" = "YCR034W:YDL015C:YLR372W [cytoplasm]"
3	1565	YCR083W, YHR106W	YCR083W [mitochondrion] + "YHR106W [mitochondrion]" = "YCR083W:YHR106W [mitochondrion]"
3	1566	YCR083W, YPL091W	YCR083W [mitochondrion] + "YPL091W [mitochondrion]" = "YCR083W:YPL091W [mitochondrion]"
3	1567	YDL090C, YKL019W	YDL090C [cytoplasm] + "YKL019W [cytoplasm]" = "YDL090C:YKL019W [cytoplasm]"
3	1568	YDL090C, YKL019W	YDL090C [endoplasmic reticulum] + "YKL019W [endoplasmic reticulum]" = "YDL090C:YKL019W [endoplasmic reticulum]"
3	1569	YDL174C, YEL039C	YDL174C [mitochondrial membrane] + "YEL039C [mitochondrial membrane]" = "YDL174C:YEL039C [mitochondrial membrane]"
3	1570	YDL174C, YJR048W	YDL174C [mitochondrial membrane] + "YJR048W [mitochondrial membrane]" = "YDL174C:YJR048W [mitochondrial membrane]"
3	1571	YDL178W, YEL039C	YDL178W [mitochondrion] + "YEL039C [mitochondrion]" = "YDL178W:YEL039C [mitochondrion]"
3	1572	YDL178W, YJR048W	YDL178W [mitochondrion] + "YJR048W [mitochondrion]" = "YDL178W:YJR048W [mitochondrion]"
3	1573	YDR098C, YPL091W	YDR098C [cytoplasm] + "YPL091W [cytoplasm]" = "YDR098C:YPL091W [cytoplasm]"
3	1574	YDR148C, YFL018C, YIL125W	YDR148C [mitochondrion] + "YFL018C [mitochondrion]" + "YIL125W [mitochondrion]" = "YDR148C:YFL018C:YIL125W [mitochondrion]"
3	1575	YDR178W, YJL045W, YKL141W, YLL041C	YDR178W [mitochondrion] + "YJL045W [mitochondrion]" + "YKL141W [mitochondrion]" + "YLL041C [mitochondrion]" = "YDR178W:YJL045W:YKL141W:YLL041C [mitochondrion]"
3	1576	YDR178W, YKL141W, YKL148C, YLL041C	YDR178W [mitochondrion] + "YKL141W [mitochondrion]" + "YKL148C [mitochondrion]" + "YLL041C [mitochondrion]" = "YDR178W:YKL141W:YKL148C:YLL041C [mitochondrion]"
3	1577	YDR204W, YGL119W, YGR255C, YLR201C, YML110C,	YDR204W [mitochondrion] + "YGL119W [mitochondrion]" + "YGR255C [mitochondrion]" + "YLR201C [mitochondrion]" + "YML110C [mitochondrion]" + "YOL096C [mitochondrion]" +
5	1577	YOL096C, YOR125C	"YOR125C [mitochondrion]" = "YDR204W:YGL119W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
3	1578	YDR331W YDR434W YHR188C YLR088W YLR459W	YDR331W [endoplasmic reticulum] + "YDR434W [endoplasmic reticulum]" + "YHR188C [endoplasmic reticulum]" + "YLR088W [endoplasmic reticulum]" + "YLR459W [endoplasmic reticulum]" =
			"YDR331W:YDR434W:YHR188C:YLR088W:YLR459W [endoplasmic reticulum]"
3	1579	YDR353W, YGR209C	YDR353W [cytoplasm] + "YGR209C [cytoplasm]" = "YDR353W:YGR209C [cytoplasm]"
3	1580	YDR353W, YLR043C	YDR353W [cytoplasm] + "YLR043C [cytoplasm]" = "YDR353W:YLR043C [cytoplasm]"
3	1581	YDR376W, YER141W, YPL252C	YDR376W [mitochondrion] + "YER141W [mitochondrion]" + "YPL252C [mitochondrion]" = "YDR376W:YER141W:YPL252C [mitochondrion]"
3	1582	YDR400W, YLR017W, YLR209C	YDR400W [cytoplasm] + "YLR017W [cytoplasm]" + "YLR209C [cytoplasm]" = "YDR400W:YLR017W:YLR209C [cytoplasm]"
3	1583	YDR402C, YHR042W	YDR402C [cytoplasm] + "YHR042W [cytoplasm]" = "YDR402C:YHR042W [cytoplasm]"
3	1584	YDR453C, YGR209C	YDR453C [cytoplasm] + "YGR209C [cytoplasm]" = "YDR453C:YGR209C [cytoplasm]"
3	1585	YDR453C, YLR043C	YDR453C [cytoplasm] + "YLR043C [cytoplasm]" = "YDR453C:YLR043C [cytoplasm]"
3	1586	YDR513W, YPL091W	YDR513W [cytoplasm] + "YPL091W [cytoplasm]" = "YDR513W:YPL091W [cytoplasm]"
3	1587	YEL038W, YMR009W	YEL038W [cytoplasm] + "YMR009W [cytoplasm]" = "YEL038W:YMR009W [cytoplasm]"
3	1588	YEL039C, YEL071W	YEL039C [mitochondrial membrane] + "YEL071W [mitochondrial membrane]" = "YEL039C:YEL071W [mitochondrial membrane]"
3	1589	YEL039C, YKR066C	YEL039C [mitochondrion] + "YKR066C [mitochondrion]" = "YEL039C:YKR066C [mitochondrion]"

3	1590	YEL039C, YML054C	YEL039C [mitochondrial membrane] + "YML054C [mitochondrial membrane]" = "YEL039C:YML054C [mitochondrial membrane]"
3	1591	YEL071W, YJR048W	YEL071W [mitochondrial membrane] + "YJR048W [mitochondrial membrane]" = "YEL071W:YJR048W [mitochondrial membrane]"
3	1592	YER070W, YGR180C, YGR209C	YER070W [nucleus] + "YGR180C [nucleus]" + "YGR209C [nucleus]" = "YER070W:YGR180C:YGR209C [nucleus]"
3	1593	YER070W, YGR180C, YLR043C	YER070W [nucleus] + "YGR180C [nucleus]" + "YLR043C [nucleus]" = "YER070W:YGR180C:YLR043C [nucleus]"
3	1594	YER070W, YGR209C, YJL026W	YER070W [cytoplasm] + "YGR209C [cytoplasm]" + "YJL026W [cytoplasm]" = "YER070W:YGR209C:YJL026W [cytoplasm]"
3	1595	YER070W, YJL026W, YLR043C	YER070W [cytoplasm] + "YJL026W [cytoplasm]" + "YLR043C [cytoplasm]" = "YER070W:YJL026W:YLR043C [cytoplasm]"
3	1596	YER090W, YKL211C	YER090W [cytoplasm] + "YKL211C [cytoplasm]" = "YER090W:YKL211C [cytoplasm]"
3	1597	YER174C, YPL091W	YER174C [cytoplasm] + "YPL091W [cytoplasm]" = "YER174C:YPL091W [cytoplasm]"
3	1598	YFL022C, YLR060W	YFL022C [cytoplasm] + "YLR060W [cytoplasm]" = "YFL022C:YLR060W [cytoplasm]"
3	1599	YFR015C, YJL137C	YFR015C [cytoplasm] + "YJL137C [cytoplasm]" = "YFR015C:YJL137C [cytoplasm]"
3	1600	YFR015C, YKR058W	YFR015C [cytoplasm] + "YKR058W [cytoplasm]" = "YFR015C:YKR058W [cytoplasm]"
3	1601	YGL155W, YKL019W	YGL155W [endoplasmic reticulum] + "YKL019W [endoplasmic reticulum]" = "YGL155W:YKL019W [endoplasmic reticulum]"
3	1602	YGL205W, YIL160C, YKR009C	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" = "YGL205W:YIL160C:YKR009C [peroxisome]"
3	1603	YGL205W, YIL160C, YKR009C, YLR284C	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" + "YLR284C [peroxisome]" = "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]"
3	1604	YGL205W, YIL160C, YKR009C, YLR284C, YNL202W	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" + "YLR284C [peroxisome]" + "YNL202W [peroxisome]" = "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W
			[peroxisome]"
3	1605	YGL205W, YIL160C, YKR009C, YLR284C, YNL202W, YOR180C	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" + "YLR284C [peroxisome]" + "YNL202W [peroxisome]" + "YOR180C [peroxisome]" = "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]"
3	1606	YGL205W, YIL160C, YKR009C, YNL202W, YOR180C	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" + "YNL202W [peroxisome]" + "YOR180C [peroxisome]" = "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]"
3	1607	YGL205W, YIL160C, YKR009C, YOR180C	YGL205W [peroxisome] + "YIL160C [peroxisome]" + "YKR009C [peroxisome]" + "YOR180C [peroxisome]" = "YGL205W:YIL160C:YKR009C:YOR180C [peroxisome]"
3	1608	YGR037C, YKL182W, YNR016C, YPL231W	YGR037C [cytoplasm] + "YKL182W [cytoplasm]" + "YNR016C [cytoplasm]" + "YPL231W [cytoplasm]" = "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
3	1609	YGR175C, YHR042W	YGR175C [endoplasmic reticulum] + "YHR042W [endoplasmic reticulum]" = "YGR175C:YHR042W [endoplasmic reticulum]"
3	1610	YGR175C, YIL043C, YNL111C	YGR175C [endoplasmic reticulum] + "YIL043C [endoplasmic reticulum]" + "YNL111C [endoplasmic reticulum]" = "YGR175C:YIL043C:YNL111C [endoplasmic reticulum]"
3	1611	YGR175C, YKL150W, YNL111C	YGR175C [endoplasmic reticulum] + "YKL150W [endoplasmic reticulum]" + "YNL111C [endoplasmic reticulum]" = "YGR175C:YKL150W:YNL111C [endoplasmic reticulum]"
3	1612	YGR180C, YGR209C, YIL066C	YGR180C [nucleus] + "YGR209C [nucleus]" + "YIL066C [nucleus]" = "YGR180C:YGR209C:YIL066C [nucleus]"
3	1613	YGR180C, YIL066C, YLR043C	YGR180C [nucleus] + "YIL066C [nucleus]" + "YLR043C [nucleus]" = "YGR180C:YIL066C:YLR043C [nucleus]"
3	1614	YGR209C, YIL010W	YGR209C [nucleus] + "YIL010W [nucleus]" = "YGR209C:YIL010W [nucleus]"
3	1615	YGR209C, YIL066C, YJL026W	YGR209C [cytoplasm] + "YIL066C [cytoplasm]" + "YJL026W [cytoplasm]" = "YGR209C:YIL066C:YJL026W [cytoplasm]"
3	1616	YGR209C, YLR109W	YGR209C [peroxisome] + "YLR109W [peroxisome]" = "YGR209C:YLR109W [peroxisome]"
3		VGR209C VPR167C	YGR209C [cytoplasm] + "YPR167C [cytoplasm]" = "YGR209C:YPR167C [cytoplasm]"
1	1617	1012070, 1111070	
3	1617 1618	YGR240C, YMR205C	YGR240C [cytoplasm] + "YMR205C [cytoplasm]" = "YGR240C:YMR205C [cytoplasm]"
3 3	1617 1618 1619	YGR240C, YMR205C YGR244C, YOR142W	YGR240C [cytoplasm] + "YMR205C [cytoplasm]" = "YGR240C:YMR205C [cytoplasm]" YGR244C [mitochondrion] + "YOR142W [mitochondrion]" = "YGR244C:YOR142W [mitochondrion]"
3 3 3	1617 1618 1619 1620	YGR240C, YMR205C YGR244C, YOR142W YHR005C myristoylation	YGR240C [cytoplasm] + "YMR205C [cytoplasm]" = "YGR240C:YMR205C [cytoplasm]" YGR244C [mitochondrion] + "YOR142W [mitochondrion]" = "YGR244C:YOR142W [mitochondrion]" YHR005C [cytoplasm] = "YHR005C, myristoylated at G2 [cytoplasm]"

98 988 98888 9888 9888 9	3	1622	YHR007C, YIL043C, YNL111C	YHR007C [cytoplasm] + "YIL043C [cytoplasm]" + "YNL111C [cytoplasm]" = "YHR007C:YIL043C:YNL111C [cytoplasm]"
S S MissRew, YMB015C MissRew, YMB125C MissRew, YMB125C MissRew, YMB125C MissRew, YMB125C MissRew, YMB1	3	1623	YHR007C, YKL150W, YNL111C	YHR007C [cytoplasm] + "YKL150W [cytoplasm]" + "YNL111C [cytoplasm]" = "YHR007C:YKL150W:YNL111C [cytoplasm]"
5 55 VILL0W, VILLSXC VILL0W [null.an]. "VILLSUC [complam]" "VILL0S [complam]" "VILL0S [complam]" 5 555 VILL0SK, VILL0SKX VILL0SKC [complam]" "VILL0SKC [complam]" "VILL0SKC [complam]" 5 562 VILL0SKC, VILL0SKX VILL0SKC [complam]" "VILL0SKC [complam]" "VILL0SKK [complam]" 5 563 VILL0SKK VILL0SKK VILL0SKK 5 563 VILL0SKK VILL0SKK VILL0SKK VILL0SKK 5 563 VILL0SKK VILL0SKK VILL0SKK VILL0SKK 5 VILL0SKK VILL0SKK VILL0SKK VILL0SKK 5 VILL0SKK VILL0SKK	3	1624	YHR042W, YMR015C	YHR042W [cytoplasm] + "YMR015C [cytoplasm]" = "YHR042W:YMR015C [cytoplasm]"
Integra Final Control Market Contro Market Control Market Control Market Control Market Control Marke	3	1625	YIL010W, YLR043C	YIL010W [nucleus] + "YLR043C [nucleus]" = "YIL010W:YLR043C [nucleus]"
51 52 V11.06.CV11.06.CV11.00.C<	3	1626	YIL043C, YMR015C, YNL111C	YIL043C [cytoplasm] + "YMR015C [cytoplasm]" + "YNL111C [cytoplasm]" = "YIL043C:YMR015C:YNL111C [cytoplasm]"
Integra VLL32W VLL3W	3	1627	YIL066C, YJL026W, YLR043C	YIL066C [cytoplasm] + "YJL026W [cytoplasm]" + "YLR043C [cytoplasm]" = "YIL066C:YJL026W:YLR043C [cytoplasm]"
International state VIRAUMY_VICLASSC VIRAUMY_VICLAS	3	1628	YJL137C, YLR258W	YJL137C [cytoplasm] + "YLR258W [cytoplasm]" = "YJL137C:YLR258W [cytoplasm]"
1 16.0 VR048W, VR050C VR048W [macheniam] **VR050C [macheniam]**/WR050C [macheniam]**/WR050C [macheniam] 1 16.1 VR050V, VR050W VR050V, VR030W [vs0plam] **VR050C [macheniam]**/WR050C [vs0plam]* 1 16.2 VR150V, VR050W VR150V [vs0plam] **VR050C [vs0plam]* **VR150V [vs0plam]** 1 16.3 VR150V, VR050W VR150V [vs0plam] **VR050C [vs0plam]* **VR150V [vs0plam]* **VR150V [vs0plam]** 1 16.3 VR150V, VR050V VR150V [vs0plam] **VR050V [vs0plam]***VR150V [vs0plam]** 1 16.3 VR050V, VR150V VR150V [vs0plam]**VR150V [vs0plam]***VR150V [vs0plam]** 1 16.3 VR050V, VR150V VR050V [vs0plam]***VR150V [vs0plam]***VR150V [vs0plam]** 1 16.3 VR050V [vs0plam]** VR050V [vs0plam]***VR150V [vs0plam]*** 1 16.3 VR050V [vs0plam]** VR050V [vs0plam]*** VR050V [vs0plam]*** 1 16.3 VR050V [vs0plam]** VR050V [vs0plam]*** VR050V [vs0plam]*** 1 16.3 VR050V [vs0plam]*** VR050V [vs0plam]*** VR050V [vs0plam]*** 1 16.3 VR050V [vs0plam]** VR050V [vs0plam]*** VR050V [vs0plam]***	3	1629	YJR013W, YCL052C	YCL052C [endoplasmic reticulum membrane] + "YJR013W [endoplasmic reticulum membrane]" = "YJR013W:YCL052C [endoplasmic reticulum membrane]"
8 161 VIR048W, VML049C VIR048W (Mutochadia membrane) ⁺ "VML048C (Inicelondatia membrane) ⁺ "VML048W VML048C (Inicelondatia) 17 163 VIR109C, VOR030W VIR109C (stoplaam) ⁺ "VR030W (stoplaam) ⁺ "VR111C (stoplaam) ⁺ "VR1110C (stoplaam) ⁺ "VR1100C (stoplaam) ⁺ "VR110C (stoplaam) ⁺ "VR1100C (stoplaam) ⁺ "VR110C (stoplaam) ⁺ "VR1100C (stoplaam) ⁺ "VR110C (stoplaam) ⁺ "VR110C (stoplaam) ⁺ "VR1100C (stoplaam) ⁺ "VR110C (stoplaam) ⁺ "VR1100C (stoplaam) ⁺ "VR110C	3	1630	YJR048W, YKR066C	YJR048W [mitochondrion] + "YKR066C [mitochondrion]" = "YJR048W:YKR066C [mitochondrion]"
8 1642 VIRU0C, VORU0W VIRU0C, VORU0W VIRU0C, VORU0W VIRU0W, VORU0U, VORU0W VIRU0W, VORU0W VIRU0W, VORU0W, VORU0W, VORU0W, VORU0W VIRU0W, VORU0W, VORUW, VOR	3	1631	YJR048W, YML054C	YJR048W [mitochondrial membrane] + "YML054C [mitochondrial membrane]" = "YJR048W:YML054C [mitochondrial membrane]"
Instrume Instrume YKL150W_YKRR015C_YKL111C YKL15W_YCR01sbm1* "YKL15W_YCR111W_Cytoplasm1" Instrume Instrume YKL13W_YKR015C_YKL11W YKL13W_YCR01sbm1* "YKL13W_YCR01sbm1" Instrume Instrume YKL13W_YKR015C_YKL11W YKL13W_YCR01sbm1* "YKL13W_YCR01sbm1" Instrume Instrume YKKL3W_YKR01sbm1 YKL13W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1 YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1 YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1 YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1" Instrume YKKL3W_YKR01sbm1" YKKL3W_YKR01sbm1	3	1632	YJR109C, YOR303W	YJR109C [cytoplasm] + "YOR303W [cytoplasm]" = "YJR109C:YOR303W [cytoplasm]"
9 1644 VKL82W, VPL33W VKL182W (stypelsam) ⁺ "VPL33W (stypelsam) ⁻ " "VKL138V (Previsional membrane) ⁺ " 9 1655 VKL88C, VPL47W VKL188C [provisional membrane) ⁺ "VPL47W [provisional membrane] ⁺ "VKL138V (VL138U (Previsional membrane] ⁺ " 9 1650 VKK058W, VL1253W VKR058W (stypelsam) ⁺ "VRL38W (stypelsam) ⁻ "VKR058W [stypelsam] ⁻ 16 1654 VKR04C, VLR10W VLR045C [provisional = "VLR34W (stypelsam] ⁻ "VKR058W [stypelsam] ⁻ 16 1654 VKR04V, VLR10W VLR045C [provisional = "VRL67C [stypelsam] ⁻ 16 1654 VKR04V, VLL10W VLR045C [provisional = "VRL67C [stypelsam] ⁻ 17 1649 VLR24W, VOL110W VLR24W (stypelsam] ⁺ "VL035C [stypelsam] ⁺ "VKL037C [stypelsam] ⁺ 16 17 VRL67W, VRL010W VER095C [stypelsam] ⁺ "VKL037C [stypelsam] ⁺ "VRL037C [stypelsam] ⁺ "VRL037C [stypelsam] ⁺ "VRL037C [stypelsam] ⁺ "VRL037C [stypelsam] ⁺ "VRL03W [stypelsam] ⁺ "VRL037C [stypelsam] ⁺ "VRL03W [stypelsam] ⁺ "VRL037C [styp	3	1633	YKL150W, YMR015C, YNL111C	YKL150W [cytoplasm] + "YMR015C [cytoplasm]" + "YNL111C [cytoplasm]" = "YKL150W:YMR015C:YNL111C [cytoplasm]"
5 1635 VKL18SC_VPL47W VKL18SC_VPL47W VKL18SC_VPL47W Processional membrane] ^{+*} 3 1640 VK05SW,V123SW VK05SW (ytopiasm] ^{+*} 'YLPL47W [proxisome] ^{**} "XL18SC_VPL147W [proxisome] ^{**} 3 1657 VK04SC_VPL67W VK04SW (ytopiasm] ^{+*} 'YLPL47W [proxisome] ^{**} 3 1638 VL04JC_VPL67C VL04JC_(proxisome] ^{**} "YL04JCW [proxisome] ^{**} "YL04JCW [proxisome] ^{**} 3 1649 VL04JC_VPL67C VL04JC [proxisome] ^{**} "YL04JCW [proxisome] ^{**} "YL04JCW [proxisome] ^{**} 3 1640 YL04JCW,VDL10W YL844W (polpasmic reficulum membrane] * 'YL0JSC [cytoplasm] ^{**} * 'YL03OK [cytoplasm] ^{**} * 'YL04OW [cytoplasm] ^{**} * 'YL04DW [cytoplasm] [*]	3	1634	YKL182W, YPL231W	YKL182W [cytoplasm] + "YPL231W [cytoplasm]" = "YKL182W:YPL231W [cytoplasm]"
1846 VKR058W, VLR258W	3	1635	YKL188C, YPL147W	YKL188C [peroxisomal membrane] + "YPL147W [peroxisomal membrane]" = "YKL188C:YPL147W [peroxisomal membrane]"
Instal VLR043C, VLR109W VLR043C (provisione) = "VLR043C, VLR109W [perovisione]" Instal VLR043C, VLR109W VLR043C, VLR109W [perovisione]" = "VLR043C, VLR109W [perovisione]" Instal VLR043C, VLR109W VLR043C, VLR109W [Perovisione]" = "VLR043C, VLR109W [perovisione]" = "VLR043C, VLR109W [perovisione]" Instal VLR246W, VOL110W_2 VLR246W [redplasmic reticulum membrane] = "VLR043C, VLR106W [cytoplasm]" = "VLR045C, [cytoplasm] = "V	3	1636	YKR058W, YLR258W	YKR058W [cytoplasm] + "YLR258W [cytoplasm]" = "YKR058W:YLR258W [cytoplasm]"
Instrume Instrume YRR45C, YRR67C YLR44SC (stoplasm) * "YRR67C (stoplasm)" * "YLR043C. (stoplasm)" * "YLR043C. (stoplasm)" * "YLR246W. YOL110W [endoplasmic eticulum membrane] * "YOL110W [endoplasmic eticulum membrane] * "YOL110W [endoplasmic eticulum membrane] * "YOL078W [stoplasm)" * "YRL068W [stoplasm]" * "YNL068W [stoplasm] * "YNL068W [stoplasm] * "YNL078W [stoplasm]" * "YNL068W [stoplasm] * "YNL068W [stoplasm] * "YNL078W	3	1637	YLR043C, YLR109W	YLR043C [peroxisome] + "YLR109W [peroxisome]" = "YLR043C:YLR109W [peroxisome]"
Instrument Instrument YLR246W, YOL110W YLR246W, YOL110W [endoplasmic reticulum membrane] "YUL10W [endoplasmic reticulum]" "YLR246W, YOL110W [endoplasmic reticulum membrane]" Instrument YLR246W, YOL110W_2 YLR246W, YOL110W_2 YLR246W, YOL110W_2 YLR246W, YOL108SC, YLR03SC, YLR0SC, YLR0SC, YLR03SC, YLR0SC,	3	1638	YLR043C, YPR167C	YLR043C [cytoplasm] + "YPR167C [cytoplasm]" = "YLR043C:YPR167C [cytoplasm]"
3 Ic40 YLR246W, YOL110W_2 YER093C [cytoplasm] + "YJL058C [cytoplasm]" + "YKL203C [cytoplasm]" + "YML060W [cytoplasm]" + "YNL006W [cytoplasm]" + "YNL00FW [mitchondrion]" + "YNL00FW [mitchondrion] + "protein [cytoplasm] + "YNL00FW [mitchondrion] + "YNL00FW [mitchondrion] + "YNL00FW [mitchondrion] + "protein [cytoplasm] + "protein [cytoplasm] + "protein [cytoplasm] + "YNL00FW [mitchondr	3	1639	YLR246W, YOL110W	YLR246W [endoplasmic reticulum membrane] + "YOL110W [endoplasmic reticulum]" = "YLR246W:YOL110W [endoplasmic reticulum membrane]"
Inference Precessor Precessor Precessor Precessor Inference Inference Inference Precessor Preces	3	1640	VI R246W VOI 110W 2	YER093C [cytoplasm] + "YJL058C [cytoplasm]" + "YKL203C [cytoplasm]" + "YMR068W [cytoplasm]" + "YNL006W [cytoplasm]" + "YOL078W [cytoplasm]" =
Null Nullo37C, YORI36W Nullo37C [mitochondrion] + "VORI36W [mitochondrion]" = "YNL037C:YORI36W [mitochondrion]" Nullo37C Nullo37C Nullo37C Nullo37C: YORI36W Nullo37C: YORI36W Nullo37C: YORI36W Nullo37C: YORI36W Nullo37C: YORI36W Nullo37C: YORI36W [mitochondrion]" Nullo37C: YORI36W [mitochondrion]" Nullo37C YoL039W, YPL09IW YuL039W, YPL09IW YuL039W, YPL09IW [mitochondrion]" YuL037C: YORI36W YuL037C: YORI36W [mitochondrion]" Nullo37C YuL037C: YORI36W YuL037C: YORI36W [mitochondrion]" YuL037C: YORI36W [mitochondrion]" YuL037C: YORI36W [mitochondrion]" Nullo37C YuL037C: YORI36W YuL037C: YORI36W [mitochondrion]" YuL037C: YORI36W [mitochondrion]" Nullo37C YuL037C: YORI36W YuL037C: YORI36W [mitochondrion]" YuL037C: YORI36W [mitochondrion]" Nullo37C: Yorian Alexandal [cytoplasm] - Syntein [cytoplasm] YuL037C: Yorian	5	1040		"YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope]"
11642YPL059W, YPL091WYPL059W (Pl059W, YPL091WYPL059W, YPL091W [mitochondrion]" = "YPL059W, YPL091W [mitochondrion]"11872protein productionGly4RNA(Gly) [cytoplasm] > "protein [cytoplasm]"11878protein production_2AlarRNA(Ala) [cytoplasm] > "protein [cytoplasm]"11879protein production_3Arg4RNA(Arg) [mitochondrion] > "protein [mitochondrion]"11870protein production_4Arg4RNA(Arg) [mitochondrion] > "protein [mitochondrion]"11870protein production_5Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11870protein production_6Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11870protein production_6Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11870protein production_6Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11871protein production_6Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11872protein production_6Asr4RNA(Arg) [cytoplasm] > "protein [mitochondrion]"11873protein production_8Asr4RNA(Asp) [cytoplasm] > "protein [mitochondrion]"11874protein production_8Asr4RNA(Asp) [cytoplasm] > "protein [cytoplasm]"11875protein production_10GlutRNA(Glu) [cytoplasm] > "protein [cytoplasm]"11876protein production_11GlutRNA(Glu) [cytoplasm] > "protein [cytoplasm]"11878protein production_12GlutRNA(Glu) [cytoplasm] > "protein [cytoplasm]"11878protein production_13 </td <td>3</td> <td>1641</td> <td>YNL037C, YOR136W</td> <td>YNL037C [mitochondrion] + "YOR136W [mitochondrion]" = "YNL037C:YOR136W [mitochondrion]"</td>	3	1641	YNL037C, YOR136W	YNL037C [mitochondrion] + "YOR136W [mitochondrion]" = "YNL037C:YOR136W [mitochondrion]"
4 827 preten production Gly-rRAA(Gly (proplasm) > "protein [cytoplasm]" 4 828 preten production_2 Ala-rRAA(Ala [cytoplasm] > "protein [cytoplasm]" 4 829 preten production_3 Arg-rRNA(Ala) [cytoplasm] > "protein [cytoplasm]" 4 829 preten production_3 Arg-rRNA(Arg) [mitochondrion] > "protein [mitochondrion]" 4 830 preten production_4 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_5 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_4 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_5 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_6 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_7 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_9 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 4 830 preten production_10 Arg-rRNA(Arg) [cytoplasm] > "protein [cytoplasm]" 5 9 preten production_11	3	1642	YPL059W, YPL091W	YPL059W [mitochondrion] + "YPL091W [mitochondrion]" = "YPL059W:YPL091W [mitochondrion]"
4182protein production_2Ala-tRNA(Ala) (zytoplasm] > "protein [cytoplasm]"4183protein production_3Ag-tRNA(Arg) [mitochondrion] > "protein [mitochondrion]"4183protein production_4Ag-tRNA(Arg) [cytoplasm] > "protein [cytoplasm]"4183protein production_5Ag-tRNA(Arg) [cytoplasm] > "protein [cytoplasm]"4183protein production_6Ag-tRNA(Arg) [cytoplasm] > "protein [cytoplasm]"4183protein production_6Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_6Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_7Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_8Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_9Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_18Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_9Ag-tRNA(As) [cytoplasm] > "protein [cytoplasm]"4183protein production_9Cys-tRNA(Cys) [cytoplasm] > "protein [cytoplasm]"4183protein production_10Gu-tRNA(Glu) [cytoplasm] > "protein [cytoplasm]"4183protein production_11Gu-tRNA(Glu) [cytoplasm] > "protein [cytoplasm]"4183protein production_12Gu-tRNA(Glu) [cytoplasm] > "protein [cytoplasm]"4183protein production_11Gu-tRNA(Glu) [cytoplasm] > "protein [cytoplasm]"4183protein pro	4	1827	protein production	Gly-tRNA(Gly) [cytoplasm] -> "protein [cytoplasm]"
41829rotein production_3Arg-RNA(Arg) [mitochondrion]~ "protein [mitochondrion]"41830rotein production_4Arg-RNA(Arg) [cytoplasm]~ "protein [cytoplasm]"41831rotein production_5Asn-tRNA(Asn) [cytoplasm]~ "protein [mitochondrion]"41832rotein production_6Asn-tRNA(Asn) [cytoplasm]~ "protein [mitochondrion]"41833rotein production_6Asn-tRNA(Asn) [cytoplasm]~ "protein [mitochondrion]"41834rotein production_6Asn-tRNA(Asn) [cytoplasm]~ "protein [mitochondrion]"41834rotein production_7Asn-tRNA(Asn) [cytoplasm]~ "protein [mitochondrion]"41834rotein production_8Asn-tRNA(Asn) [cytoplasm]~ "protein [cytoplasm]"41835rotein production_9Asn-tRNA(Ss) [cytoplasm]~ "protein [cytoplasm]"41836rotein production_9Cys-tRNA(Cs) [cytoplasm]~ "protein [cytoplasm]"41837rotein production_10Gn-tRNA(Glu) [cytoplasm]~ "protein [cytoplasm]"41838rotein production_11Gn-tRNA(Glu) [cytoplasm]~ "protein [cytoplasm]"41839rotein production_12Gn-tRNA(Glu) [cytoplasm]~ "protein [cytoplasm]"41839 <td>4</td> <td>1828</td> <td>protein production_2</td> <td>Ala-tRNA(Ala) [cytoplasm] -> "protein [cytoplasm]"</td>	4	1828	protein production_2	Ala-tRNA(Ala) [cytoplasm] -> "protein [cytoplasm]"
41830protein production_4Arg-tRNA(Arg) [cytoplasm] -> "protein [cytoplasm]"41831protein production_5Asn-tRNA(Asn) [mitochondrion] -> "protein [mitochondrion]"41832protein production_6Asn-tRNA(Asn) [cytoplasm] -> "protein [cytoplasm]"41833protein production_7Asp-tRNA(Asp) [cytoplasm] -> "protein [mitochondrion]"41834protein production_8Asp-tRNA(Asp) [cytoplasm] -> "protein [mitochondrion]"41835protein production_9Asp-tRNA(Asp) [cytoplasm] -> "protein [cytoplasm]"41836protein production_10Asp-tRNA(Asp) [cytoplasm] -> "protein [cytoplasm]"41837protein production_10Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41838protein production_110Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41839protein production_12Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41838protein production_111Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41839protein production_12Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41839protein production_12Gin-tRNA(Gin [cytoplasm] -> "protein [cytoplasm]"41839protein production_13Gin-tRNA(Gin [cytoplasm] -> "protein [4	1829	protein production_3	Arg-tRNA(Arg) [mitochondrion] -> "protein [mitochondrion]"
41831production_5Asn-tRNA(Asn) [mitochondrion] > "protein [mitochondrion]"41832protein production_6Asn-tRNA(Asn) [cytoplasm] > "protein [cytoplasm]"41833protein production_7Asp-tRNA(Asp) [mitochondrion] > "protein [mitochondrion]"41834protein production_8Asp-tRNA(Asp) [cytoplasm] > "protein [cytoplasm]"41835protein production_9Cys-tRNA(Cys) [cytoplasm] > "protein [cytoplasm]"41836protein production_10Cys-tRNA(Gs) [cytoplasm] > "protein [cytoplasm]"41837protein production_110Glu-tRNA(Glu) [cytoplasm] > "protein [mitochondrion]"41838protein production_12Glu-tRNA(Glu) [cytoplasm] > "protein [mitochondrion]"41839protein production_13Glu-tRNA(Glu) [cytoplasm] > "protein [mitochondrion]"41839protein production_112Glu-tRNA(Glu) [cytoplasm] > "protein [mitochondrion]"41839protein production_13His-tRNA(His) [cytoplasm] > "protein [cytoplasm]"41839protein production_14His-tRNA(His) [cytoplasm] > "protein [cytoplasm]"	4	1830	protein production_4	Arg-tRNA(Arg) [cytoplasm] -> "protein [cytoplasm]"
41832protein production_6Asn-tRNA(Asn) [cytoplasm]-> "protein [cytoplasm]"41833protein production_7Asp-tRNA(Asp) [mitochondrion]-> "protein [mitochondrion]"41834protein production_8Asp-tRNA(Asp) [cytoplasm]-> "protein [cytoplasm]"41835protein production_9Cys-tRNA(Cys) [cytoplasm]-> "protein [cytoplasm]"41836protein production_10Gh-tRNA(Gh) [cytoplasm]-> "protein [cytoplasm]"41837protein production_110Gh-tRNA(Gh) [cytoplasm]-> "protein [cytoplasm]"41838protein production_12Gh-tRNA(Ghu) [mitochondrion] > "protein [mitochondrion]"41838protein production_13Gh-tRNA(Ghu) [cytoplasm]-> "protein [cytoplasm]"41839protein production_12Gh-tRNA(Ghu) [cytoplasm]-> "protein [mitochondrion]"41839protein production_13His-tRNA(His) [mitochondrion] > "protein [mitochondrion]"41839protein production_13His-tRNA(His) [cytoplasm]-> "protein [cytoplasm]"	4	1831	protein production_5	Asn-tRNA(Asn) [mitochondrion] -> "protein [mitochondrion]"
41833protein production_7Asp-tRNA(Asp) [mitochondrion] -> "protein [mitochondrion]"41834protein production_8Asp-tRNA(Asp) [cytoplasm] -> "protein [cytoplasm]"41835protein production_9Cys-tRNA(Cys) [cytoplasm] -> "protein [cytoplasm]"41836protein production_10Gh-tRNA(Gh) [cytoplasm] -> "protein [cytoplasm]"41837protein production_110Gh-tRNA(Gh) [cytoplasm] -> "protein [cytoplasm]"41838protein production_12Gh-tRNA(Ghu) [mitochondrion] -> "protein [mitochondrion]"41838protein production_12Gh-tRNA(Ghu) [cytoplasm] -> "protein [mitochondrion]"41839protein production_13His-tRNA(His) [mitochondrion] -> "protein [mitochondrion]"41840protein production_14His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1832	protein production_6	Asn-tRNA(Asn) [cytoplasm] -> "protein [cytoplasm]"
4 1834 protein production_8 Asp-tRNA(Asp) [cytoplasm] -> "protein [cytoplasm]" 4 1835 protein production_9 Cys-tRNA(Cys) [cytoplasm] -> "protein [cytoplasm]" 4 1836 protein production_10 Gh-tRNA(Gh) [cytoplasm] -> "protein [cytoplasm]" 4 1837 protein production_11 Gh-tRNA(Gh) [cytoplasm] -> "protein [mitochondrion]" 4 1838 protein production_12 Gh-tRNA(Gh) [mitochondrion] -> "protein [mitochondrion]" 4 1838 protein production_13 Gh-tRNA(Gh) [cytoplasm] -> "protein [cytoplasm]" 4 1839 protein production_12 Gh-tRNA(Gh) [cytoplasm] -> "protein [mitochondrion]" 4 1839 protein production_13 His-tRNA(Gh) [cytoplasm] -> "protein [cytoplasm]" 4 1839 protein production_13 His-tRNA(His) [mitochondrion] -> "protein [mitochondrion]" 4 1840 protein production_14 His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1833	protein production_7	Asp-tRNA(Asp) [mitochondrion] -> "protein [mitochondrion]"
4 1835 protein production_9 Cys-tRNA(Cys) [cytoplasm] -> "protein [cytoplasm]" 4 1836 protein production_10 Gln-tRNA(Gln) [cytoplasm] -> "protein [cytoplasm]" 4 1837 protein production_11 Glu-tRNA(Glu) [mitochondrion] -> "protein [mitochondrion]" 4 1838 protein production_12 Glu-tRNA(Glu) [mitochondrion] -> "protein [mitochondrion]" 4 1839 protein production_13 Glu-tRNA(Glu) [cytoplasm] -> "protein [mitochondrion]" 4 1839 protein production_13 His-tRNA(His) [mitochondrion] -> "protein [mitochondrion]" 4 1840 protein production_14 His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1834	protein production_8	Asp-tRNA(Asp) [cytoplasm] -> "protein [cytoplasm]"
4 1836 protein production_10 Gln-IRNA(Gln) [cytoplasm] -> "protein [cytoplasm]" 4 1837 protein production_11 Glu-IRNA(Glu) [mitochondrion] -> "protein [mitochondrion]" 4 1838 protein production_12 Glu-IRNA(Glu) [cytoplasm] -> "protein [mitochondrion]" 4 1838 protein production_13 Glu-IRNA(Glu) [cytoplasm] -> "protein [mitochondrion]" 4 1839 protein production_13 His-IRNA(His) [mitochondrion] -> "protein [mitochondrion]" 4 1840 protein production_14 His-IRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1835	protein production_9	Cys-tRNA(Cys) [cytoplasm] -> "protein [cytoplasm]"
4 1837 protein production_11 Glu-tRNA(Glu) [mitochondrion] -> "protein [mitochondrion]" 4 1838 protein production_12 Glu-tRNA(Glu) [cytoplasm] -> "protein [cytoplasm]" 4 1839 protein production_13 Glu-tRNA(His) [mitochondrion] -> "protein [mitochondrion]" 4 1840 protein production_14 His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1836	protein production_10	Gln-tRNA(Gln) [cytoplasm] -> "protein [cytoplasm]"
4 1838 protein production_12 Glu-tRNA(Glu) [cytoplasm] -> "protein [cytoplasm]" 4 1839 protein production_13 His-tRNA(His) [mitochondrion] -> "protein [mitochondrion]" 4 1840 protein production_14 His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1837	protein production_11	Glu-tRNA(Glu) [mitochondrion] -> "protein [mitochondrion]"
4 1839 protein production_13 His-tRNA(His) [mitochondrion] ~> "protein [mitochondrion]" 4 1840 protein production_14 His-tRNA(His) [cytoplasm] ~> "protein [cytoplasm]"	4	1838	protein production_12	Glu-tRNA(Glu) [cytoplasm] -> "protein [cytoplasm]"
4 1840 protein production_14 His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"	4	1839	protein production_13	His-tRNA(His) [mitochondrion] -> "protein [mitochondrion]"
	4	1840	protein production_14	His-tRNA(His) [cytoplasm] -> "protein [cytoplasm]"

4	1841	protein production_15	Ile-tRNA(Ile) [mitochondrion] -> "protein [mitochondrion]"
4	1842	protein production_16	Ile-tRNA(Ile) [cytoplasm] -> "protein [cytoplasm]"
4	1843	protein production_17	Leu-tRNA(Leu) [mitochondrion] -> "protein [mitochondrion]"
4	1844	protein production_18	Leu-tRNA(Leu) [cytoplasm] -> "protein [cytoplasm]"
4	1845	protein production_19	Lys-tRNA(Lys) [mitochondrion] -> "protein [mitochondrion]"
4	1846	protein production_20	Lys-tRNA(Lys) [cytoplasm] -> "protein [cytoplasm]"
4	1847	protein production_21	Met-tRNA(Met) [mitochondrion] -> "protein [mitochondrion]"
4	1848	protein production_22	Met-tRNA(Met) [cytoplasm] -> "protein [cytoplasm]"
4	1849	protein production_23	Phe-tRNA(Phe) [mitochondrion] -> "protein [mitochondrion]"
4	1850	protein production_24	Phe-tRNA(Phe) [cytoplasm] -> "protein [cytoplasm]"
4	1851	protein production_25	Pro-tRNA(Pro) [cytoplasm] -> "protein [cytoplasm]"
4	1852	protein production_26	Ser-tRNA(Ser) [cytoplasm] -> "protein [cytoplasm]"
4	1853	protein production_27	Thr-tRNA(Thr) [mitochondrion] -> "protein [mitochondrion]"
4	1854	protein production_28	Thr-tRNA(Thr) [cytoplasm] -> "protein [cytoplasm]"
4	1855	protein production_29	Trp-tRNA(Trp) [mitochondrion] -> "protein [mitochondrion]"
4	1856	protein production_30	Trp-tRNA(Trp) [cytoplasm] -> "protein [cytoplasm]"
4	1857	protein production_31	Tyr-tRNA(Tyr) [mitochondrion] -> "protein [mitochondrion]"
4	1858	protein production_32	Tyr-tRNA(Tyr) [cytoplasm] -> "protein [cytoplasm]"
4	1859	protein production_33	Val-tRNA(Val) [mitochondrion] -> "protein [mitochondrion]"
4	1860	protein production_34	Val-tRNA(Val) [cytoplasm] -> "protein [cytoplasm]"
4	1861	protein production_35	fMet-tRNA(fMet) [mitochondrion] -> "protein [mitochondrion]"
5	175	alanyl-tRNA synthetase	ATP [cytoplasm] + "L-alanine [cytoplasm]" + "tRNA(Ala), cytoplasmic [cytoplasm]" = "Ala-tRNA(Ala) [cytoplasm]" + "AMP [cytoplasm]" + "diphosphate [cytoplasm]"; "YOR335C [cytoplasm]"
5	227	arginyl-tRNA synthetase	ATP [cytoplasm] + "L-arginine [cytoplasm]" + "tRNA(Arg), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "Arg-tRNA(Arg) [cytoplasm]" + "diphosphate [cytoplasm]"; "YDR341C [cytoplasm]"
5	228	arginyl-tRNA synthetase 2	ATP [mitochondrion] + "L-arginine [mitochondrion]" + "tRNA(Arg), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "Arg-tRNA(Arg) [mitochondrion]" + "diphosphate [mitochondrion]";
5	220	arginyi actor synatouso_2	"YHR091C [mitochondrion]"
5	230	Asparaginyl-tRNA synthetase	ATP [cytoplasm] + "L-asparagine [cytoplasm]" + "tRNA(Asn), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "Asn-tRNA(Asn) [cytoplasm]" + "diphosphate [cytoplasm]"; "YHR019C [cytoplasm]"
5	231	asparaginyl-tRNA synthetase, miotchondrial	ATP [mitochondrion] + "L-asparagine [mitochondrion]" + "tRNA(Asn), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "Asn-tRNA(Asn) [mitochondrion]" + "diphosphate [mitochondrion]";
	-		"YCR024C [mitochondrion]"
5	239	Aspartyl-tRNA synthetase	ATP [cytoplasm] + "L-aspartate [cytoplasm]" + "tRNA(Asp), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "Asp-tRNA(Asp) [cytoplasm]" + "diphosphate [cytoplasm]"; "YLL018C [cytoplasm]"
5	240	Aspartyl-tRNA synthetase_2	ATP [mitochondrion] + "L-aspartate [mitochondrion]" + "tRNA(Asp), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "Asp-tRNA(Asp) [mitochondrion]" + "diphosphate [mitochondrion]";
			"YPL104W [mitochondrion]"
5	342	cysteinyl-tRNA synthetase	ATP [cytoplasm] + "L-cysteine [cytoplasm]" + "tRNA(Cys), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "Cys-tRNA(Cys) [cytoplasm]" + "diphosphate [cytoplasm]"; "YNL247W [cytoplasm]"
5	517	glutamınyl-tRNA synthetase	ATP [cytoplasm] + "L-glutamine [cytoplasm]" + "tRNA(Gln), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Gln-tRNA(Gln) [cytoplasm]"; "YOR168W [cytoplasm]"
5	518	glutamyl-tRNA synthetase	ATP [cytoplasm] + "L-glutamate [cytoplasm]" + "tRNA(Glu), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Glu-tRNA(Glu) [cytoplasm]"; "YGL245W [cytoplasm]"
5	519	glutamyl-tRNA synthetase_2	ATP [mitochondrion] + "L-glutamate [mitochondrion]" + "tRNA(Glu), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Glu-tRNA(Glu) [mitochondrion]";

			"YOL033W [mitochondrion]"
5	549	glycyl-tRNA synthetase	ATP [cytoplasm] + "glycine [cytoplasm]" + "tRNA(Gly), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Gly-tRNA(Gly) [cytoplasm]"; "YBR121C [cytoplasm]" "YPR081C [cytoplasm]"
5	578	Histidyl-tRNA synthetase	ATP [cytoplasm] + "L-histidine [cytoplasm]" + "tRNA(His), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "His-tRNA(His) [cytoplasm]"; "YPR033C [cytoplasm]"
5	579	histidyl-tRNA synthetase	ATP [mitochondrion] + "L-histidine [mitochondrion]" + "tRNA(His), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "His-tRNA(His) [mitochondrion]"; "YPR033C [mitochondrion]"
5	636	isoleucyl-tRNA synthetase	ATP [cytoplasm] + "L-isoleucine [cytoplasm]" + "tRNA(Ile), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Ile-tRNA(Ile) [cytoplasm]"; "YBL076C [cytoplasm]"
5	637	isoleucyl-tRNA synthetase_2	ATP [mitochondrion] + "L-isoleucine [mitochondrion]" + "tRNA(Ile), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Ile-tRNA(Ile) [mitochondrion]"; "YPL040C [mitochondrion]"
5	676	leucyl-tRNA synthetase	ATP [cytoplasm] + "L-leucine [cytoplasm]" + "tRNA(Leu), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Leu-tRNA(Leu) [cytoplasm]"; "YPL160W [cytoplasm]"
5	677	leucyl-tRNA synthetase_2	ATP [mitochondrion] + "L-leucine [mitochondrion]" + "tRNA(Leu), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Leu-tRNA(Leu) [mitochondrion]"; "YLR382C [mitochondrion]"
5	686	lysyl-tRNA synthetase	ATP [cytoplasm] + "L-lysine [cytoplasm]" + "tRNA(Lys), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Lys-tRNA(Lys) [cytoplasm]"; "YDR037W [cytoplasm]"
5	687	lysyl-tRNA synthetase_2	ATP [mitochondrion] + "L-lysine [mitochondrion]" + "tRNA(Lys), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Lys-tRNA(Lys) [mitochondrion]"; "YNL073W [mitochondrion]"
5	704	methionyl-tRNA synthetase	ATP [cytoplasm] + "L-methionine [cytoplasm]" + "tRNA(Met), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Met-tRNA(Met) [cytoplasm]"; "YGR264C [cytoplasm]"
5	705	methionyl-tRNA synthetase_2	ATP [mitochondrion] + "L-methionine [mitochondrion]" + "tRNA(Met), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Met-tRNA(Met) [mitochondrion]"; "YGR171C [mitochondrion]"
5	826	phenylalanyl-tRNA synthetase	ATP [cytoplasm] + "L-phenylalanine [cytoplasm]" + "tRNA(Phe), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Phe-tRNA(Phe) [cytoplasm]"; "YFL022C:YLR060W [cytoplasm]"
5	827	phenylalanyl-tRNA synthetase_2	ATP [mitochondrion] + "L-phenylalanine [mitochondrion]" + "tRNA(Phe), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Phe-tRNA(Phe) [mitochondrion]"; "YPR047W [mitochondrion]"
5	915	prolyl-tRNA synthetase	ATP [cytoplasm] + "L-proline [cytoplasm]" + "tRNA(Pro), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]" + "Pro-tRNA(Pro) [cytoplasm]"; "YHR020W [cytoplasm]"
5	975	seryl-tRNA synthetase	ATP [cytoplasm] + "L-serine [cytoplasm]" + "tRNA(Ser), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Ser-tRNA(Ser) [cytoplasm]"; "YDR023W [cytoplasm]" "YHR011W [cytoplasm]"
5	1028	threonyl-tRNA synthetase	ATP [cytoplasm] + "L-threonine [cytoplasm]" + "tRNA(Thr), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Thr-tRNA(Thr) [cytoplasm]"; "YIL078W [cytoplasm]"
5	1029	threonyl-tRNA synthetase_2	ATP [mitochondrion] + "L-threonine [mitochondrion]" + "tRNA(Thr), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Thr-tRNA(Thr) [mitochondrion]"; "YKL194C [mitochondrion]"
5	1044	tryptophanyl-tRNA synthetase	ATP [cytoplasm] + "L-tryptophan [cytoplasm]" + "tRNA(Trp), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Trp-tRNA(Trp) [cytoplasm]"; "YOL097C [cytoplasm]"
5	1045	tryptophanyl-tRNA synthetase_2	ATP [mitochondrion] + "L-tryptophan [mitochondrion]" + "tRNA(Trp), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Trp-tRNA(Trp) [mitochondrion]"; "YDR268W [mitochondrion]"
5	1053	tyrosyl-tRNA synthetase	ATP [cytoplasm] + "L-tyrosine [cytoplasm]" + "tRNA(Tyr), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Tyr-tRNA(Tyr) [cytoplasm]"; "YGR185C [cytoplasm]"
5	1054	tyrosyl-tRNA synthetase_2	ATP [mitochondrion] + "L-tyrosine [mitochondrion]" + "tRNA(Tyr), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Tyr-tRNA(Tyr) [mitochondrion]"; "YPL097W [mitochondrion]"
5	1075	valyl-tRNA synthetase	ATP [cytoplasm] + "L-valine [cytoplasm]" + "tRNA(Val), cytoplasmic [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "Val-tRNA(Val) [cytoplasm]"; "YGR094W [cytoplasm]"
5	1076	valyl-tRNA synthetase_2	ATP [mitochondrion] + "L-valine [mitochondrion]" + "tRNA(Val), mitchondrial [mitochondrion]" = "AMP [mitochondrion]" + "diphosphate [mitochondrion]" + "Val-tRNA(Val) [mitochondrion]";

			"YGR094W [mitochondrion]"
5	1083	vI IMP synthetisse	alpha-D-ribose 5-phosphate [cytoplasm] + "uracil [cytoplasm]" = "pseudouridine 5'-phosphate [cytoplasm]" + "water [cytoplasm]"; "YFL001W [cytoplasm]" "YGL063W [cytoplasm]" "YNL292W
5	1005	yown syndictuse	[cytoplasm]" "YPL212C [cytoplasm]"
6	35	3',5'-cyclic-nucleotide phosphodiesterase	3',5'-cyclic AMP [cytoplasm] + "water [cytoplasm]" = "AMP [cytoplasm]" + "H+ [cytoplasm]"; "YGL248W [cytoplasm]" "YOR360C [cytoplasm]"
6	36	3',5'-cyclic-nucleotide phosphodiesterase_2	3',5'-cyclic dAMP [cytoplasm] + "water [cytoplasm]" = "dAMP [cytoplasm]" + "H+ [cytoplasm]"; "YOR360C [cytoplasm]"
6	37	3',5'-cyclic-nucleotide phosphodiesterase_3	3',5'-cyclic IMP [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "IMP [cytoplasm]"; "YOR360C [cytoplasm]"
6	38	3',5'-cyclic-nucleotide phosphodiesterase_4	3',5'-cyclic GMP [cytoplasm] + "water [cytoplasm]" = "GMP [cytoplasm]" + "H+ [cytoplasm]"; "YOR360C [cytoplasm]"
6	39	3',5'-cyclic-nucleotide phosphodiesterase_5	3',5'-cyclic CMP [cytoplasm] + "water [cytoplasm]" = "CMP [cytoplasm]" + "H+ [cytoplasm]"; "YOR360C [cytoplasm]"
6	83	5'-nucleotidase (CMP)	CMP [cytoplasm] + "water [cytoplasm]" = "cytidine [cytoplasm]" + "phosphate [cytoplasm]"; "YGL224C [cytoplasm]"
6	90	5'-nucleotidase (IMP)	IMP [cytoplasm] + "water [cytoplasm]" = "inosine [cytoplasm]" + "phosphate [cytoplasm]"; "YOR155C [cytoplasm]"
6	91	5'-nucleotidase (UMP)	UMP [cytoplasm] + "water [cytoplasm]" = "phosphate [cytoplasm]" + "uridine [cytoplasm]"; "YGL224C [cytoplasm]"
6	153	adenine deaminase	adenine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "hypoxanthine [cytoplasm]"; "YNL141W [cytoplasm]"
6	154	adenine phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "adenine [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]"; "YML022W [cytoplasm]"
6	155	adenosine deaminase	adenosine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "inosine [cytoplasm]"; "YNL141W [cytoplasm]"
6	156	adenosine hydrolase	adenosine [cytoplasm] + "water [cytoplasm]" = "adenine [cytoplasm]" + "D-ribose [cytoplasm]"; "YDR400W [cytoplasm]"
6	157	adenosine kinase	adenosine [cytoplasm] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "AMP [cytoplasm]" + "H+ [cytoplasm]"; "YJR105W [cytoplasm]"
6	158	adenosine monophosphate deaminase	AMP [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "IMP [cytoplasm]"; "YML035C [cytoplasm]"
6	162	adenylate cyclase	ATP [cytoplasm] = "3',5'-cyclic AMP [cytoplasm]" + "diphosphate [cytoplasm]"; "YJL005W [cytoplasm]"
6	163	adenylate kinase	AMP [cytoplasm] + "ATP [cytoplasm]" = 2 * "ADP [cytoplasm]"; "YDR226W [cytoplasm]"
6	164	adenylate kinase_2	AMP [mitochondrion] + "ATP [mitochondrion]" = 2 * "ADP [mitochondrion]"; "YER170W [mitochondrion]"
6	165	adenylate kinase (GTP)	AMP [cytoplasm] + "GTP [cytoplasm]" = "ADP [cytoplasm]" + "GDP [cytoplasm]"; "YDR226W [cytoplasm]"
6	166	adenylate kinase (GTP)_2	AMP [mitochondrion] + "GTP [mitochondrion]" = "ADP [mitochondrion]" + "GDP [mitochondrion]"; "YER170W [mitochondrion]"
6	167	adenylate kinase (ITP)	AMP [cytoplasm] + "ITP [cytoplasm]" = "ADP [cytoplasm]" + "IDP [cytoplasm]"; "YDR226W [cytoplasm]"
6	168	adenylate kinase (ITP)_2	AMP [mitochondrion] + "ITP [mitochondrion]" = "ADP [mitochondrion]" + "IDP [mitochondrion]"; "YER170W [mitochondrion]"
6	169	adenulosuccinate luase	(2S)-2-[5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamido]succinic acid [cytoplasm] = "5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm]" + "fumarate(2-)
0	105	adenyiosacemate ryase	[cytoplasm]"; "YLR359W [cytoplasm]"
6	170	adenvlosuccinate synthase	GTP [cytoplasm] + "IMP [cytoplasm]" + "L-aspartate [cytoplasm]" = "GDP [cytoplasm]" + 2 * "H+ [cytoplasm]" + "N(6)-(1,2-dicarboxyethyl)-AMP [cytoplasm]" + "phosphate [cytoplasm]";
			"YNL220W [cytoplasm]"
6	171	adenylsuccinate lyase	N(6)-(1,2-dicarboxyethyl)-AMP [cytoplasm] = "AMP [cytoplasm]" + "fumarate(2-) [cytoplasm]"; "YLR359W [cytoplasm]"
6	173	ADP-ribose 2,3-cyclic phosphodiesterase	2',3'-cyclic AMP [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "adenosine 2'-phosphate [cytoplasm]"; "YGR247W [cytoplasm]"
6	241	ATP adenylyltransferase	ADP [cytoplasm] + "ATP [cytoplasm]" + "H+ [cytoplasm]" = "P(1),P(4)-bis(5'-adenosyl) tetraphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YDR530C [cytoplasm]"
6	242	ATP adenylyltransferase_2	ADP [cytoplasm] + "GTP [cytoplasm]" + "H+ [cytoplasm]" = "P1-(5'-adenosyl), P4-(5'-guanosyl) tetraphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YCL050C [cytoplasm]"
6	243	ATP adenylyltransferase_3	GDP [cytoplasm] + "GTP [cytoplasm]" + "H+ [cytoplasm]" = "P(1),P(4)-bis(5'-guanosyl) tetraphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YCL050C [cytoplasm]"
6	359	deoxyadenosine deaminase	2'-deoxyadenosine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "2'-deoxyinosine [cytoplasm]" + "ammonium [cytoplasm]"; "YNL141W [cytoplasm]"
6	362	deoxyguanylate kinase (dGMP:ATP)	ATP [cytoplasm] + "dGMP [cytoplasm]" = "ADP [cytoplasm]" + "dGDP [cytoplasm]"; "YDR454C [cytoplasm]"

6	514	glutamine phosphoribosyldiphosphate amidotransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "L-glutamine [cytoplasm]" + "water [cytoplasm]" = "5-phospho-beta-D-ribosylamine [cytoplasm]" + "diphosphate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YMR300C [cytoplasm]"
6	551	GMP synthase	5'-xanthylic acid [cytoplasm] + "ATP [cytoplasm]" + "L-glutamine [cytoplasm]" + "water [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "GMP [cytoplasm]" + 2 * "H+ [cytoplasm]" + "L-glutamate [cytoplasm]"; "YMR217W [cytoplasm]"
6	552	gnnuc	guanosine [cytoplasm] + "water [cytoplasm]" = "D-ribose [cytoplasm]" + "guanine [cytoplasm]"; "YDR400W [cytoplasm]"
6	564	guanine deaminase	guanine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "9H-xanthine [cytoplasm]" + "ammonium [cytoplasm]"; "YDL238C [cytoplasm]"
6	565	guanine phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "guanine [cytoplasm]" = "diphosphate [cytoplasm]" + "GMP [cytoplasm]"; "YDR399W [cytoplasm]"
6	567	guanylate kinase (GMP:ATP)	ATP [cytoplasm] + "GMP [cytoplasm]" = "ADP [cytoplasm]" + "GDP [cytoplasm]"; "YDR454C [cytoplasm]"
6	568	guanylate kinase (GMP:dATP)	dATP [cytoplasm] + "GMP [cytoplasm]" = "dADP [cytoplasm]" + "GDP [cytoplasm]"; "YDR454C [cytoplasm]"
6	603	hypoxanthine phosphoribosyltransferase (Hypoxanthine)	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "hypoxanthine [cytoplasm]" = "diphosphate [cytoplasm]" + "IMP [cytoplasm]"; "YDR399W [cytoplasm]"
6	606	IMP cyclohydrolase	IMP [cytoplasm] + "water [cytoplasm]" = "5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm]"; "YLR028C [cytoplasm]" "YMR120C [cytoplasm]"
6	607	IMP dehydrogenase	IMP [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "5'-xanthylic acid [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YHR216W [cytoplasm]" "YLR432W [cytoplasm]"
6	772	nucleoside-diphosphate kinase (ATP:dADP)	ATP [cytoplasm] + "dADP [cytoplasm]" = "ADP [cytoplasm]" + "dATP [cytoplasm]"; "YKL067W [cytoplasm]"
6	774	nucleoside-diphosphate kinase (ATP:dGDP)	ATP [cytoplasm] + "dGDP [cytoplasm]" = "ADP [cytoplasm]" + "dGTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	777	nucleoside-diphosphate kinase (ATP:GDP)	ATP [cytoplasm] + "GDP [cytoplasm]" = "ADP [cytoplasm]" + "GTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	778	nucleoside-diphosphate kinase (ATP:IDP)	ATP [cytoplasm] + "IDP [cytoplasm]" = "ADP [cytoplasm]" + "ITP [cytoplasm]"; "YKL067W [cytoplasm]"
6	883	phosphoribosylaminoimidazole carboxylase	5-amino-1-(5-phospho-D-ribosyl)imidazole [cytoplasm] + "carbon dioxide [cytoplasm]" = "5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylic acid [cytoplasm]" + "H+ [cytoplasm]"; "YOR128C [cytoplasm]"
6	884	phosphoribosylaminoimidazole synthase	2-formamido-N(1)-(5-phospho-D-ribosyl)acetamidine [cytoplasm] + "ATP [cytoplasm]" = "5-amino-1-(5-phospho-D-ribosyl)imidazole [cytoplasm]" + "ADP [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YGL234W [cytoplasm]"
6	885	phosphoribosylaminoimidazolecarboxamide formyltransferase	10-formyltetrahydrofolic acid [cytoplasm] + "5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm]" = "5,6,7,8-tetrahydrofolic acid [cytoplasm]" + "5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide [cytoplasm]" + "5-formamido-1-(5-phospho-D-ribosyl)imida
6	886	phosphoribosylaminoimidazolesuccinocarboxamide synthase	5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylic acid [cytoplasm] + "ATP [cytoplasm]" + "L-aspartate [cytoplasm]" = "(2S)-2-[5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4- carboxamido]succinic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YAR015W [cytoplasm]"
6	888	phosphoribosylformylglycinamidine synthase	ATP [cytoplasm] + "L-glutamine [cytoplasm]" + "N(2)-formyl-N(1)-(5-phospho-D-ribosyl)glycinamide [cytoplasm]" + "water [cytoplasm]" = "2-formamido-N(1)-(5-phospho-D-ribosyl)acetamidine [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]" + "L-glutamate [cytoplasm]" + "phosphate [cytoplasm]"; "YGR061C [cytoplasm]"
6	889	phosphoribosylglycinamide formyltransferase	10-formyltetrahydrofolic acid [cytoplasm] + "N(1)-(5-phospho-D-ribosyl)glycinamide [cytoplasm]" = "5,6,7,8-tetrahydrofolic acid [cytoplasm]" + "H+ [cytoplasm]" + "N(2)-formyl-N(1)-(5-phospho-D-ribosyl)glycinamide [cytoplasm]", "YDR408C [cytoplasm]"
6	890	phosphoribosylglycinamide synthase	5-phospho-beta-D-ribosylamine [cytoplasm] + "ATP [cytoplasm]" + "glycine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "N(1)-(5-phospho-D-ribosyl)glycinamide [cytoplasm]" + "phosphate [cytoplasm]"; "YGL234W [cytoplasm]"
6	891	phosphoribosylpyrophosphate synthetase	alpha-D-ribose 5-phosphate [cytoplasm] + "ATP [cytoplasm]" = "5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm]" + "AMP [cytoplasm]" + "H+ [cytoplasm]"; "YBL068W [cytoplasm]" "YER099C [cytoplasm]" "YHL011C [cytoplasm]" "YKL181W [cytoplasm]" "YOL061W [cytoplasm]"
6	918	purine-nucleoside phosphorylase (adenosine)	adenosine [cytoplasm] + "phosphate [cytoplasm]" = "adenine [cytoplasm]" + "alpha-D-ribose 1-phosphate [cytoplasm]"; "YLR209C [cytoplasm]"
6	919	purine-nucleoside phosphorylase (adenosine)_2	adenosine [mitochondrion] + "phosphate [mitochondrion]" = "adenine [mitochondrion]" + "alpha-D-ribose 1-phosphate [mitochondrion]"; "YLR209C [mitochondrion]"
6	920	purine-nucleoside phosphorylase (deoxyadenosine)	2'-deoxyadenosine [cytoplasm] + "phosphate [cytoplasm]" = "2-deoxy-D-ribofuranose 1-phosphate [cytoplasm]" + "adenine [cytoplasm]"; "YLR209C [cytoplasm]"
6	921	purine-nucleoside phosphorylase (deoxyguanosine)	2'-deoxyguanosine [cytoplasm] + "phosphate [cytoplasm]" = "2-deoxy-D-ribofuranose 1-phosphate [cytoplasm]" + "guanine [cytoplasm]"; "YLR209C [cytoplasm]"
6	922	purine-nucleoside phosphorylase (deoxyinosine)	2'-deoxyinosine [cytoplasm] + "phosphate [cytoplasm]" = "2-deoxy-D-ribofuranose 1-phosphate [cytoplasm]" + "hypoxanthine [cytoplasm]"; "YLR209C [cytoplasm]"

6	923	purine-nucleoside phosphorylase (Guanosine)	guanosine [cytoplasm] + "phosphate [cytoplasm]" = "alpha-D-ribose 1-phosphate [cytoplasm]" + "guanine [cytoplasm]"; "YLR209C [cytoplasm]"
6	924	purine-nucleoside phosphorylase (Guanosine)_2	guanosine [mitochondrion] + "phosphate [mitochondrion]" = "alpha-D-ribose 1-phosphate [mitochondrion]" + "guanine [mitochondrion]"; "YLR209C [mitochondrion]"
6	925	purine-nucleoside phosphorylase (inosine)	inosine [cytoplasm] + "phosphate [cytoplasm]" = "alpha-D-ribose 1-phosphate [cytoplasm]" + "hypoxanthine [cytoplasm]"; "YLR209C [cytoplasm]"
6	926	purine-nucleoside phosphorylase (Xanthosine)	phosphate [cytoplasm] + "xanthosine [cytoplasm]" = "9H-xanthine [cytoplasm]" + "alpha-D-ribose 1-phosphate [cytoplasm]"; "YLR209C [cytoplasm]"
6	951	ribonucleoside-diphosphate reductase	ADP [nucleus] + "thioredoxin dithiol [nucleus]" = "dADP [nucleus]" + "water [nucleus]" + "thioredoxin disulfide [nucleus]"; "YER070W:YGR180C:YGR209C [nucleus]" "YER070W:YGR180C:YLR043C [nucleus]" "YGR180C:YGR209C:YIL066C [nucleus]" "YGR180C:YIL066C:YLR043C [nucleus]"
6	952	ribonucleoside-diphosphate reductase (ADP)	ADP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dADP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YER070W:YGR209C:YJL026W [cytoplasm]" "YER070W:YJL026W:YLR043C [cytoplasm]" "YGR209C:YJL026W [cytoplasm]" "YIL066C:YJL026W:YLR043C [cytoplasm]"
6	955	ribonucleoside-diphosphate reductase (GDP)	GDP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dGDP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YER070W:YGR209C:YJL026W [cytoplasm]" "YER070W:YJL026W:YLR043C [cytoplasm]"
6	956	ribonucleoside-diphosphate reductase (GDP)_2	GDP [nucleus] + "thioredoxin dithiol [nucleus]" = "dGDP [nucleus]" + "water [nucleus]" + "thioredoxin disulfide [nucleus]"; "YER070W:YGR180C:YGR209C [nucleus]" "YER070W:YGR180C:YLR043C [nucleus]"
6	959	ribonucleoside-triphosphate reductase (ATP)	ATP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dATP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YGR209C [cytoplasm]" "YLR043C [cytoplasm]"
6	960	ribonucleoside-triphosphate reductase (CTP)	CTP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dCTP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YGR209C [cytoplasm]" "YLR043C [cytoplasm]"
6	961	ribonucleoside-triphosphate reductase (GTP)	GTP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dGTP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YGR209C [cytoplasm]" "YLR043C [cytoplasm]"
6	962	ribonucleoside-triphosphate reductase (UTP)	UTP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dUTP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YGR209C [cytoplasm]" "YLR043C [cytoplasm]"
6	1079	xanthine phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "9H-xanthine [cytoplasm]" = "5'-xanthylic acid [cytoplasm]" + "diphosphate [cytoplasm]"; "YJR133W [cytoplasm]"
6	222	Ap4A hydrolase	P(1),P(4)-bis(5'-adenosyl) tetraphosphate [cytoplasm] + "water [cytoplasm]" = 2 * "ADP [cytoplasm]" + 2 * "H+ [cytoplasm]"; "YDR305C [cytoplasm]"
6	1811	2',3'-cyclic AMP production	-> "2',3'-cyclic AMP [cytoplasm]"
6	232	aspartate carbamoyltransferase	carbamoyl phosphate [cytoplasm] + "L-aspartate [cytoplasm]" = "H+ [cytoplasm]" + "N-carbamoyl-L-aspartate [cytoplasm]" + "phosphate [cytoplasm]"; "YJL130C [cytoplasm]"
6	277	carbamoyl-phosphate synthase (glutamine-hydrolysing)	2 * "ATP [cytoplasm]" + "bicarbonate [cytoplasm]" + "L-glutamine [cytoplasm]" + "water [cytoplasm]" = 2 * "ADP [cytoplasm]" + "carbamoyl phosphate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "L-glutamate [cytoplasm]" + "phosphate [cytoplasm]"; "YJL130C [cytoplasm]" "YJR109C:YOR303W [cytoplasm]"
6	335	CTP synthase (glutamine)	ATP [cytoplasm] + "L-glutamine [cytoplasm]" + "UTP [cytoplasm]" + "water [cytoplasm]" = "ADP [cytoplasm]" + "CTP [cytoplasm]" + 2 * "H+ [cytoplasm]" + "L-glutamate [cytoplasm]" + "phosphate [cytoplasm]"; "YBL039C [cytoplasm]" "YJR103W [cytoplasm]"
6	336	CTP synthase (NH3)	ammonium [cytoplasm] + "ATP [cytoplasm]" + "UTP [cytoplasm]" = "ADP [cytoplasm]" + "CTP [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YBL039C [cytoplasm]" "YJR103W [cytoplasm]"
6	343	cytidine deaminase	cytidine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "uridine [cytoplasm]"; "YLR245C [cytoplasm]"
6	344	cytidine kinase (GTP)	cytidine [cytoplasm] + "GTP [cytoplasm]" = "CMP [cytoplasm]" + "GDP [cytoplasm]" + "H+ [cytoplasm]"; "YNR012W [cytoplasm]"
6	349	cytosine deaminase	cytosine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "uracil [cytoplasm]"; "YPR062W [cytoplasm]"
6	357	dCMP deaminase	dCMP [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "dUMP [cytoplasm]"; "YHR144C [cytoplasm]"
6	358	dCTP deaminase	dCTP [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "dUTP [cytoplasm]"; "YHR144C [cytoplasm]"
6	361	deoxycytidine deaminase	2'-deoxycytidine [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "2'-deoxyuridine [cytoplasm]" + "ammonium [cytoplasm]"; "YLR245C [cytoplasm]"
6	373	dihydoorotic acid (ubiquinone-6)	(S)-dihydroorotate [cytoplasm] + "ubiquinone-6 [mitochondrion]" = "orotate [cytoplasm]" + "ubiquinol-6 [mitochondrion]"; "YKL216W [mitochondrial membrane]"
6	374	dihydoorotic acid dehydrogenase	(S)-dihydroorotate [cytoplasm] + "oxygen [cytoplasm]" = "hydrogen peroxide [cytoplasm]" + "orotate [cytoplasm]"; "YKL216W [cytoplasm]"
6	381	dihydroorotase	(S)-dihydroorotate [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "N-carbamoyl-L-aspartate [cytoplasm]"; "YLR420W [cytoplasm]"

6	395	dTMP kinase	ATP [cytoplasm] + "dTMP [cytoplasm]" = "ADP [cytoplasm]" + "dTDP [cytoplasm]"; "YJR057W [cytoplasm]"
6	396	dUTP diphosphatase	dUTP [cytoplasm] + "water [cytoplasm]" = "diphosphate [cytoplasm]" + "dUMP [cytoplasm]" + "H+ [cytoplasm]"; "YBR252W [cytoplasm]"
6	487	Fumarate dependent DHORD	(S)-dihydroorotate [cytoplasm] + "fumarate(2-) [cytoplasm]" = "orotate [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YKL216W [cytoplasm]"
6	771	nucleoside-diphosphate kinase (ATP:CDP)	ATP [cytoplasm] + "CDP [cytoplasm]" = "ADP [cytoplasm]" + "CTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	773	nucleoside-diphosphate kinase (ATP:dCDP)	ATP [cytoplasm] + "dCDP [cytoplasm]" = "ADP [cytoplasm]" + "dCTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	775	nucleoside-diphosphate kinase (ATP:dTDP)	ATP [cytoplasm] + "dTDP [cytoplasm]" = "ADP [cytoplasm]" + "dTTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	776	nucleoside-diphosphate kinase (ATP:dUDP)	ATP [cytoplasm] + "dUDP [cytoplasm]" = "ADP [cytoplasm]" + "dUTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	779	nucleoside-diphosphate kinase (ATP:UDP)	ATP [cytoplasm] + "UDP [cytoplasm]" = "ADP [cytoplasm]" + "UTP [cytoplasm]"; "YKL067W [cytoplasm]"
6	793	orotate phosphoribosyltransferase	diphosphate [cytoplasm] + "orotidine 5'-(dihydrogen phosphate) [cytoplasm]" = "5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm]" + "orotate [cytoplasm]"; "YML106W [cytoplasm]" "YMR271C [cytoplasm]"
6	794	orotidine-5'-phosphate decarboxylase	H+ [cytoplasm] + "orotidine 5'-(dihydrogen phosphate) [cytoplasm]" = "carbon dioxide [cytoplasm]" + "UMP [cytoplasm]"; "YEL021W [cytoplasm]"
6	953	ribonucleoside-diphosphate reductase (CDP)	CDP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dCDP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YER070W:YGR209C:YJL026W [cytoplasm]" "YER070W:YJL026W:YLR043C [cytoplasm]"
6	954	ribonucleoside-diphosphate reductase (CDP)_2	CDP [nucleus] + "thioredoxin dithiol [nucleus]" = "dCDP [nucleus]" + "water [nucleus]" + "thioredoxin disulfide [nucleus]"; "YER070W:YGR180C:YGR209C [nucleus]" "YER070W:YGR180C:YLR043C [nucleus]"
6	957	ribonucleoside-diphosphate reductase (UDP)	UDP [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "dUDP [cytoplasm]" + "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YER070W:YGR209C:YJL026W [cytoplasm]" "YER070W:YJL026W:YLR043C [cytoplasm]"
6	958	ribonucleoside-diphosphate reductase (UDP)_2	UDP [nucleus] + "thioredoxin dithiol [nucleus]" = "dUDP [nucleus]" + "water [nucleus]" + "thioredoxin disulfide [nucleus]"; "YER070W:YGR180C:YGR209C [nucleus]" "YER070W:YGR180C:YLR043C [nucleus]"
6	1007	sulfate adenylyltransferase (ADP)	ADP [cytoplasm] + "H+ [cytoplasm]" + "sulphate [cytoplasm]" = "5'-adenylyl sulfate [cytoplasm]" + "phosphate [cytoplasm]"; "YCL050C [cytoplasm]"
6	1032	thymidylate synthase	5,10-methylenetetrahydrofolate(2-) [cytoplasm] + "dUMP [cytoplasm]" = "dihydrofolic acid [cytoplasm]" + "dTMP [cytoplasm]"; "YOR074C [cytoplasm]"
6	1059	UMP kinase	ATP [cytoplasm] + "UMP [cytoplasm]" = "ADP [cytoplasm]" + "UDP [cytoplasm]"; "YKL024C [cytoplasm]"
6	1060	UMP kinase_2	ATP [nucleus] + "UMP [nucleus]" = "ADP [nucleus]" + "UDP [nucleus]"; "YKL024C [nucleus]"
6	1061	uracil phosphoribosyltransferase	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "uracil [cytoplasm]" = "diphosphate [cytoplasm]" + "UMP [cytoplasm]"; "YHR128W [cytoplasm]"
6	1064	uridine kinase (ATP:uridine)	ATP [cytoplasm] + "uridine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "UMP [cytoplasm]"; "YNR012W [cytoplasm]"
6	1065	uridine kinase (GTP:uridine)	GTP [cytoplasm] + "uridine [cytoplasm]" = "GDP [cytoplasm]" + "H+ [cytoplasm]" + "UMP [cytoplasm]"; "YNR012W [cytoplasm]"
6	1066	uridylate kinase (dUMP)	ATP [cytoplasm] + "dUMP [cytoplasm]" = "ADP [cytoplasm]" + "dUDP [cytoplasm]"; "YKL024C [cytoplasm]"
6	1067	uridylate kinase (dUMP)_2	ATP [nucleus] + "dUMP [nucleus]" = "ADP [nucleus]" + "dUDP [nucleus]"; "YKL024C [nucleus]"
7	12	1-pyrroline-5-carboxylate dehydrogenase	1-pyrroline-5-carboxylate [mitochondrion] + "NAD(+) [mitochondrion]" + 2 * "water [mitochondrion]" = "H+ [mitochondrion]" + "L-glutamate [mitochondrion]" + "NADH [mitochondrion]"
7	18	2-aminoadipate transaminase	2-oxoadipic acid [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "L-2-aminoadipate(2-) [cytoplasm]"
7	24	2-hydroxybutyrate:NAD+ oxidoreductase	2-hydroxybutyric acid [cytoplasm] + "NAD(+) [cytoplasm]" = "2-oxobutanoate [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"
7	28	2-keto-4-methylthiobutyrate transamination	4-methylthio-2-oxobutanoate [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "L-methionine [cytoplasm]"
7	33	2-oxobutanoate dehydrogenase	2-oxobutanoate [mitochondrion] + "coenzyme A [mitochondrion]" + "NAD(+) [mitochondrion]" = "carbon dioxide [mitochondrion]" + "NADH [mitochondrion]" + "propionyl-CoA [mitochondrion]"
7	41	3-(4-hydroxyphenyl-)lactate formation	3-(4-hydroxyphenyl)pyruvate [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" = "3-(4-hydroxyphenyl)lactate [mitochondrion]" + "NAD(+) [mitochondrion]"
7	46	3-hexaprenyl-4,5-dihydroxybenzoate hydroxylase	3-hexaprenyl-4-hydroxybenzoic acid [cytoplasm] + 0.5 * "oxygen [cytoplasm]" = "3-hexaprenyl-4,5-dihydroxybenzoic acid [cytoplasm]"
7	47	3-hexaprenyl-4-hydroxy-5-methoxybenzoate decarboxylase	3-hexaprenyl-4-hydroxy-5-methoxybenzoic acid [mitochondrion] + "H+ [mitochondrion]" = "2-hexaprenyl-6-methoxyphenol [mitochondrion]" + "carbon dioxide [mitochondrion]"

7	69	4-acetamidobutyrate deacetylase	4-acetamidobutanoate [cytoplasm] + "water [cytoplasm]" = "acetate [cytoplasm]" + "gamma-aminobutyrate [cytoplasm]"
7	71	4-amino-5-hydroxymethyl-2-methylpyrimidine synthetase	5-amino-1-(5-phospho-D-ribosyl)imidazole [cytoplasm] + 2 * "H+ [cytoplasm]" = "4-amino-5-hydroxymethyl-2-methylpyrimidine [cytoplasm]" + "glycolaldehyde [cytoplasm]" + "phosphate [cytoplasm]"
7	75	4-hydroxybenzoate formation	4-hydroxybenzoyl-CoA [mitochondrion] + "water [mitochondrion]" = "4-hydroxybenzoate [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"
7	76	4-hydroxybenzoyl-CoA formation	4-coumaroyl-CoA [mitochondrion] + "coenzyme A [mitochondrion]" + "NAD(+) [mitochondrion]" + "water [mitochondrion]" = "4-hydroxybenzoyl-CoA [mitochondrion]" + "acetyl-CoA [mitochondrion]" + "H+ [mitochondrion]" + "NADH [mitochondrion]"
7	77	4-hydroxycinnamate formation	3-(4-hydroxyphenyl)lactate [mitochondrion] = "trans-4-coumarate [mitochondrion]" + "water [mitochondrion]"
7	82	5'-nucleotidase (AMP)	AMP [cytoplasm] + "water [cytoplasm]" = "adenosine [cytoplasm]" + "phosphate [cytoplasm]"
7	84	5'-nucleotidase (dAMP)	dAMP [cytoplasm] + "water [cytoplasm]" = "2'-deoxyadenosine [cytoplasm]" + "phosphate [cytoplasm]"
7	85	5'-nucleotidase (dCMP)	dCMP [cytoplasm] + "water [cytoplasm]" = "2'-deoxycytidine [cytoplasm]" + "phosphate [cytoplasm]"
7	86	5'-nucleotidase (dGMP)	dGMP [cytoplasm] + "water [cytoplasm]" = "2'-deoxyguanosine [cytoplasm]" + "phosphate [cytoplasm]"
7	87	5'-nucleotidase (dTMP)	dTMP [cytoplasm] + "water [cytoplasm]" = "phosphate [cytoplasm]" + "thymidine [cytoplasm]"
7	88	5'-nucleotidase (dUMP)	dUMP [cytoplasm] + "water [cytoplasm]" = "2'-deoxyuridine [cytoplasm]" + "phosphate [cytoplasm]"
7	89	5'-nucleotidase (GMP)	GMP [cytoplasm] + "water [cytoplasm]" = "guanosine [cytoplasm]" + "phosphate [cytoplasm]"
7	92	5'-nucleotidase (XMP)	5'-xanthylic acid [cytoplasm] + "water [cytoplasm]" = "phosphate [cytoplasm]" + "xanthosine [cytoplasm]"
7	98	5-formethyltetrahydrofolate cyclo-ligase_2	5-formyltetrahydrofolic acid [mitochondrion] + "ATP [mitochondrion]" = "(6R)-5,10-methenyltetrahydrofolic acid [mitochondrion]" + "ADP [mitochondrion]" + "phosphate [mitochondrion]"
7	99	5-formyltetrahydrofolate:10-formyltetrahydrofolate isomerase	5-formyltetrahydrofolic acid [cytoplasm] + "ATP [cytoplasm]" + "water [cytoplasm]" = "10-formyltetrahydrofolic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"
7	101	5-methylthio-5-deoxy-D-ribulose 1-phosphate dehydratase	S-methyl-5-thio-D-ribulose 1-phosphate [cytoplasm] = "5-(methylsulfanyl)-2,3-dioxopentyl phosphate [cytoplasm]" + "water [cytoplasm]"
7	102	5-methylthioribose-1-phosphate isomerase	S-methyl-5-thio-alpha-D-ribose 1-phosphate [cytoplasm] = "S-methyl-5-thio-D-ribulose 1-phosphate [cytoplasm]"
7	109	8-amino-7-oxononanoate synthase	L-alanine [cytoplasm] + "pimeloyl-CoA [cytoplasm]" = "8-amino-7-oxononanoate [cytoplasm]" + "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 4 * "H+ [cytoplasm]"
7	218	Aminoacetone:oxygen oxidoreductase(deaminating)(flavin- containing)	aminoacetone [cytoplasm] + "oxygen [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "hydrogen peroxide [cytoplasm]" + "methylglyoxal [cytoplasm]"
7	234	aspartate oxidase	FAD [mitochondrion] + "L-aspartate [cytoplasm]" = "FADH2 [mitochondrion]" + "H+ [cytoplasm]" + "iminoaspartic acid [cytoplasm]"
7	251	bicarbonate formation	carbon dioxide [mitochondrion] + "water [mitochondrion]" = "bicarbonate [mitochondrion]" + "H+ [mitochondrion]"
7	252	bicarbonate formation_2	carbon dioxide [nucleus] + "water [nucleus]" = "bicarbonate [nucleus]" + "H+ [nucleus]"
7	253	bicarbonate formation_3	carbon dioxide [peroxisome] + "water [peroxisome]" = "bicarbonate [peroxisome]" + "H+ [peroxisome]"
7	254	bicarbonate formation_4	carbon dioxide [cytoplasm] + "water [cytoplasm]" = "bicarbonate [cytoplasm]" + "H+ [cytoplasm]"
7	255	bicarbonate formation_5	carbon dioxide [extracellular] + "water [extracellular]" = "bicarbonate [extracellular]" + "H+ [extracellular]"
7	298	cholestenol delta-isomerase, lumped reaction	oxygen [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" + "zymosterol [cytoplasm]" = "ergosta-5,7,22,24(28)-tetraen-3beta-ol [cytoplasm]" + "H+ [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]" + 2 * "water [cytoplasm]"
7	305	chorismate pyruvate lyase	chorismate(2-) [cytoplasm] = "4-hydroxybenzoate [cytoplasm]" + "pyruvate [cytoplasm]"
7	332	CMP nucleosidase	CMP [cytoplasm] + "water [cytoplasm]" = "alpha-D-ribose 5-phosphate [cytoplasm]" + "cytosine [cytoplasm]"
7	334	coumaroyl-CoA formation	ATP [mitochondrion] + "coenzyme A [mitochondrion]" + "trans-4-coumarate [mitochondrion]" = "4-coumaroyl-CoA [mitochondrion]" + "AMP [mitochondrion]" + "diphosphate [mitochondrion]"
7	345	cytidylate kinase (CMP)	ATP [cytoplasm] + "CMP [cytoplasm]" = "ADP [cytoplasm]" + "CDP [cytoplasm]"
7	346	cytidylate kinase (dCMP)	ATP [cytoplasm] + "dCMP [cytoplasm]" = "ADP [cytoplasm]" + "dCDP [cytoplasm]"

⊳
Ы
b
n
άġ

7	360	deoxyadenylate kinase	ATP [cytoplasm] + "dAMP [cytoplasm]" = "ADP [cytoplasm]" + "dADP [cytoplasm]"
7	365	deoxyuridine kinase (ATP:deoxyuridine)	2'-deoxyuridine [cytoplasm] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "dUMP [cytoplasm]" + "H+ [cytoplasm]"
7	367	dephospho-CoA kinase	3'-dephospho-CoA [cytoplasm] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "coenzyme A [cytoplasm]" + "H+ [cytoplasm]"
7	368	dephospho-CoA kinase_2	3'-dephospho-CoA [mitochondrion] + "ATP [mitochondrion]" = "ADP [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"
7	372	diamine transaminase	acetyl-CoA [cytoplasm] + "spermine [cytoplasm]" = "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" + "N(1)-acetylspermine [cytoplasm]"
7	380	dihydroneopterin triphosphate pyrophosphatase	7,8-dihydroneopterin 3'-triphosphate [cytoplasm] + "water [cytoplasm]" = "7,8-dihydroneopterin 3'-phosphate [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]"
7	473	FMN adenylyltransferase_2	ATP [mitochondrion] + "FMN [mitochondrion]" + "H+ [mitochondrion]" = "diphosphate [mitochondrion]" + "FAD [mitochondrion]"
7	477	formate dehydrogenase, cytosolic/mitochondrial	formate [cytoplasm] + "H+ [cytoplasm]" + "ubiquinone-6 [mitochondrion]" = "carbon dioxide [cytoplasm]" + "ubiquinol-6 [mitochondrion]"
7	481	fructose-1-phosphate kinase	ATP [cytoplasm] + "D-fructose 1-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "D-fructose 1,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"
7	495	geranylgeranyltranstransferase	2-trans,6-trans,10-trans-geranylgeranyl diphosphate [cytoplasm] + "isopentenyl diphosphate [cytoplasm]" = "diphosphate [cytoplasm]" + "pentaprenyl diphosphate [cytoplasm]"
7	500	glucosamine-6-phosphate deaminase	alpha-D-glucosamine 6-phosphate [cytoplasm] + "water [cytoplasm]" = "ammonium [cytoplasm]" + "D-fructose 6-phosphate [cytoplasm]"
7	502	glucose 6-phosphate dehydrogenase_2	aldehydo-D-glucose 6-phosphate [endoplasmic reticulum] + "NADP(+) [endoplasmic reticulum]" = "6-O-phosphono-D-glucono-1,5-lactone [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]"
7	513	glutaminase	L-glutamine [cytoplasm] + "water [cytoplasm]" = "ammonium [cytoplasm]" + "L-glutamate [cytoplasm]"
7	537	glycine C-acetyltransferase	coenzyme A [cytoplasm] + "L-2-amino-3-oxobutanoate [cytoplasm]" = "acetyl-CoA [cytoplasm]" + "glycine [cytoplasm]"
7	566	guanosine kinase	ATP [cytoplasm] + "guanosine [cytoplasm]" = "ADP [cytoplasm]" + "GMP [cytoplasm]" + "H+ [cytoplasm]"
7	582	homocitrate synthase	2-oxoglutarate [mitochondrion] + "acetyl-CoA [mitochondrion]" + "water [mitochondrion]" = "coenzyme A [mitochondrion]" + "H+ [mitochondrion]" + "homocitrate(3-) [mitochondrion]"
7	602	hypothetical enyme	pyridoxamine 5'-phosphate [cytoplasm] + "water [cytoplasm]" = "phosphate [cytoplasm]" + "pyridoxamine [cytoplasm]"
7	617	inositol-P-ceramide C to D	inositol-P-ceramide C [Golgi] = "inositol-P-ceramide D [Golgi]"
7	619	insosine kinase	ATP [cytoplasm] + "inosine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "IMP [cytoplasm]"
7	644	L-1-pyrroline-3-hydroxy-5-carboxylate spontaneous conversion to L-4-hydroxyglutamate semialdehyde	1-pyrroline-3-hydroxy-5-carboxylic acid [mitochondrion] + "H+ [mitochondrion]" + "water [mitochondrion]" = "L-4-hydroxyglutamic semialdehyde [mitochondrion]"
7	645	L-2-amino-3-oxobutanoate decarboxylation (spontaneous)	H+ [cytoplasm] + "L-2-amino-3-oxobutanoate [cytoplasm]" = "aminoacetone [cytoplasm]" + "carbon dioxide [cytoplasm]"
7	657	L-glutamate 5-semialdehyde dehydratase	L-glutamic 5-semialdehyde [cytoplasm] = "1-pyrroline-5-carboxylate [cytoplasm]" + "H+ [cytoplasm]" + "water [cytoplasm]"
7	658	L-glutamate 5-semialdehyde dehydratase,	L-glutamic 5-semialdehyde [mitochondrion] = "1-pyrroline-5-carboxylate [mitochondrion]" + "H+ [mitochondrion]" + "water [mitochondrion]"
7	671	lactaldehyde dehydrogenase	(S)-lactaldehyde [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "(S)-lactate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "NADH [cytoplasm]"
7	709	methylglyoxal synthase	glycerone phosphate [cytoplasm] = "methylglyoxal [cytoplasm]" + "phosphate [cytoplasm]"
7	727	myristicoyl-CoA desaturase (n-C14:0CoA -> n-C14:1CoA)	H+ [cytoplasm] + "myristoyl-CoA [cytoplasm]" + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "NADP(+) [cytoplasm]" + "tetradecenoyl-CoA [cytoplasm]" + 2 * "water [cytoplasm]"
7	730	N-acetylputrescine: oxygen oxireductase (deaminating)	N-acetylputrescine [cytoplasm] + "oxygen [cytoplasm]" + "water [cytoplasm]" = "4-acetamidobutanal [cytoplasm]" + "ammonium [cytoplasm]" + "hydrogen peroxide [cytoplasm]"
7	734	N4-acetylaminobutanal:NAD+ oxidoreductase	4-acetamidobutanal [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "4-acetamidobutanoate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "NADH [cytoplasm]"
7	738	NAD nucleosidase	NAD(+) [cytoplasm] + "water [cytoplasm]" = "ADP-ribose [cytoplasm]" + "H+ [cytoplasm]" + "nicotinamide [cytoplasm]"
7	746	NADP phosphatase	NADP(+) [cytoplasm] + "water [cytoplasm]" = "NAD(+) [cytoplasm]" + "phosphate [cytoplasm]"
7	747	NADP phosphatase_2	NADP(+) [mitochondrion] + "water [mitochondrion]" = "NAD(+) [mitochondrion]" + "phosphate [mitochondrion]"
7	765	non-enzymatic reaction	2-oxaloglutaric acid [mitochondrion] + "H+ [mitochondrion]" = "2-oxoadipic acid [mitochondrion]" + "carbon dioxide [mitochondrion]"
7	767	nucleoside-diphosphatase (dGDP)	dGDP [cytoplasm] + "water [cytoplasm]" = "dGMP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"
7	780	nucleoside-triphosphatase (dGTP)	dGTP [cytoplasm] + "water [cytoplasm]" = "dGDP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"

7	781	nucleoside-triphosphatase (GTP)	GTP [cytoplasm] + "water [cytoplasm]" = "GDP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"
7	787	O-succinylhomoserine lyase (L-cysteine)	L-cysteine [cytoplasm] + "O-succinyl-L-homoserine [cytoplasm]" = "H+ [cytoplasm]" + "L-cystathionine [cytoplasm]" + "succinate(2-) [cytoplasm]"
7	788	Oleoyl-CoA desaturase (n-C18:1CoA -> n-C18:2CoA)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "oleoyl-CoA [cytoplasm]" + "oxygen [cytoplasm]" = "NADP(+) [cytoplasm]" + "octadec-9-ynoyl-CoA [cytoplasm]" + 2 * "water [cytoplasm]"
7	814	pantetheine-phosphate adenylyltransferase	ATP [cytoplasm] + "H+ [cytoplasm]" + "pantetheine 4'-phosphate [cytoplasm]" = "3'-dephospho-CoA [cytoplasm]" + "diphosphate [cytoplasm]"
7	815	panthetheine-phosphate adenylyltransferase	ATP [mitochondrion] + "H+ [mitochondrion]" + "pantetheine 4'-phosphate [mitochondrion]" = "3'-dephospho-CoA [mitochondrion]" + "diphosphate [mitochondrion]"
7	878	nhosnhonantothenate-cysteine ligase	(R)-4'-phosphopantothenic acid [cytoplasm] + "CTP [cytoplasm]" + "L-cysteine [cytoplasm]" = "CMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]" + "N-[(R)-4-
<i>′</i>	070	phosphopantonenate cysteme ngase	phosphonopantothenoyl]-L-cysteine [cytoplasm]"
7	879	phosphopantothenoylcysteine decarboxylase	H+ [cytoplasm] + "N-[(R)-4-phosphonopantothenoyl]-L-cysteine [cytoplasm]" = "carbon dioxide [cytoplasm]" + "pantetheine 4'-phosphate [cytoplasm]"
7	912	prephenate dehydrogenase	NAD(+) [cytoplasm] + "prephenate(2-) [cytoplasm]" = "3-(4-hydroxyphenyl)pyruvate [cytoplasm]" + "carbon dioxide [cytoplasm]" + "NADH [cytoplasm]"
7	927	pyridoxal kinase	ATP [cytoplasm] + "pyridoxal [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "pyridoxal 5'-phosphate [cytoplasm]"
7	930	pyridoxamine kinase	ATP [cytoplasm] + "pyridoxamine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "pyridoxamine 5'-phosphate [cytoplasm]"
7	932	pyridoxine kinase	ATP [cytoplasm] + "pyridoxine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "pyridoxine 5'-phosphate [cytoplasm]"
7	934	pyrimidine phosphatase	5-amino-6-(5-phosphoribitylamino)uracil [cytoplasm] + "water [cytoplasm]" = "5-amino-6-(D-ribitylamino)uracil [cytoplasm]" + "phosphate [cytoplasm]"
7	935	pyrimidine-nucleoside phosphorylase (uracil)	phosphate [cytoplasm] + "uridine [cytoplasm]" = "alpha-D-ribose 1-phosphate [cytoplasm]" + "uracil [cytoplasm]"
7	942	quinolinate synthase	glycerone phosphate [cytoplasm] + "iminoaspartic acid [cytoplasm]" = "phosphate [cytoplasm]" + "quinolinate(2-) [cytoplasm]" + 2 * "water [cytoplasm]"
7	943	quinolinate synthase_2	2-amino-3-(3-oxoprop-1-enyl)but-2-enedioate [cytoplasm] = "H+ [cytoplasm]" + "quinolinate(2-) [cytoplasm]" + "water [cytoplasm]"
7	974	serine O-acetyltransferase	acetyl-CoA [cytoplasm] + "L-serine [cytoplasm]" = "coenzyme A [cytoplasm]" + "O-acetyl-L-serine [cytoplasm]"
7	981	spermidine acetyltransferase	acetyl-CoA [cytoplasm] + "spermidine [cytoplasm]" = "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" + "N(1)-acetylspermidine [cytoplasm]"
7	989	spontaneous cis-aconitate(3-) to trans-aconitate	cis-aconitate(3-) [mitochondrion] = "trans-aconitate(3-) [mitochondrion]"
7	990	spontaneous cis-aconitate(3-) to trans-aconitate_2	cis-aconitate(3-) [cytoplasm] = "trans-aconitate(3-) [cytoplasm]"
7	1014	thiamin phosphatase	thiamine(1+) monophosphate [cytoplasm] + "water [cytoplasm]" = "phosphate [cytoplasm]" + "thiamine(1+) [cytoplasm]"
7	1016	thiaminase	thiamine(1+) [cytoplasm] + "water [cytoplasm]" = "4-amino-5-hydroxymethyl-2-methylpyrimidine [cytoplasm]" + "5-(2-hydroxyethyl)-4-methylthiazole [cytoplasm]" + "H+ [cytoplasm]"
7	1020	thiamine-phosphate kinase	ATP [cytoplasm] + "thiamine(1+) monophosphate [cytoplasm]" = "ADP [cytoplasm]" + "thiamine(1+) diphosphate(1-) [cytoplasm]"
7	1021	thiazole phosphate synthesis (ribose 5-phosphate)	alpha-D-ribose 5-phosphate [cytoplasm] + "glycine [cytoplasm]" + "H+ [cytoplasm]" + "L-cysteine [cytoplasm]" + "O-acetyl-L-homoserine [cytoplasm]" = "4-methyl-5-(2-phosphonooxyethyl)thiazole
<i>,</i>	1021	unazore phosphate synthesis (noose 5 phosphate)	[cytoplasm]" + "acetate [cytoplasm]" + "ammonium [cytoplasm]" + "carbon dioxide [cytoplasm]" + "gamma-aminobutyrate [cytoplasm]" + "pyruvate [cytoplasm]" + 3 * "water [cytoplasm]"
7	1022	thiazole phosphate synthesis (xylulose 5-phosphate)	D-xylulose 5-phosphate [cytoplasm] + "glycine [cytoplasm]" + "H+ [cytoplasm]" + "L-cysteine [cytoplasm]" + "O-acetyl-L-homoserine [cytoplasm]" = "4-methyl-5-(2-phosphonooxyethyl)thiazole
·			[cytoplasm]" + "acetate [cytoplasm]" + "ammonium [cytoplasm]" + "carbon dioxide [cytoplasm]" + "gamma-aminobutyrate [cytoplasm]" + "pyruvate [cytoplasm]" + 3 * "water [cytoplasm]"
7	1030	thymidine kinase (ATP:thymidine)	ATP [cytoplasm] + "thymidine [cytoplasm]" = "ADP [cytoplasm]" + "dTMP [cytoplasm]" + "H+ [cytoplasm]"
7	1077	water auto-dissociation	H+ [cytoplasm] + "hydroxide [cytoplasm]" = "water [cytoplasm]"
7	1078	water auto-dissociation_2	H+ [mitochondrion] + "hydroxide [mitochondrion]" = "water [mitochondrion]"
8	1	(R)-lactate:ferricytochrome-c 2-oxidoreductase	(R)-lactate [cytoplasm] + 2 * "ferricytochrome c [mitochondrion]" = 2 * "ferrocytochrome c [mitochondrion]" + "pyruvate [cytoplasm]"; "YDL174C:YEL039C [mitochondrial membrane]"
		· · · ·	"YDL174C:YJR048W [mitochondrial membrane]" "YEL039C:YEL071W [mitochondrial membrane]" "YEL071W:YJR048W [mitochondrial membrane]"
8	2	(R)-lactate:ferricytochrome-c 2-oxidoreductase_2	(R)-lactate [mitochondrion] + 2 * "ferricytochrome c [mitochondrion]" = 2 * "ferrocytochrome c [mitochondrion]" + "pyruvate [mitochondrion]"; "YDL178W:YEL039C [mitochondrion]"
			"YDL178W:YJR048W [mitochondrion]"
8	4	(S)-lactate:ferricytochrome-c 2-oxidoreductase	[S)-lactate [cytoplasm] + 2 * "ferricytochrome c [mitochondrion]" = 2 * "ferrocytochrome c [mitochondrion]" + "pyruvate [cytoplasm]"; "YEL039C:YML054C [mitochondrial membrane]"

			"YJR048W:YML054C [mitochondrial membrane]"
8	106	6-phosphogluconolactonase	6-O-phosphono-D-glucono-1,5-lactone [cytoplasm] + "water [cytoplasm]" = "6-phospho-D-gluconate [cytoplasm]" + "H+ [cytoplasm]"; "YCR073W-A [cytoplasm]" "YGR248W [cytoplasm]" "YHR163W [cytoplasm]" "YNR034W [cytoplasm]"
8	125	acetyl-CoA hydrolase	acetate [cytoplasm] + "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" = "acetyl-CoA [cytoplasm]" + "water [cytoplasm]"; "YBL015W [cytoplasm]"
8	126	acetyl-CoA hydrolase_2	acetyl-CoA [mitochondrion] + "water [mitochondrion]" = "acetate [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"; "YBL015W [mitochondrion]"
8	127	acetyl-CoA synthetase	acetate [cytoplasm] + "ATP [cytoplasm]" + "coenzyme A [cytoplasm]" = "acetyl-CoA [cytoplasm]" + "AMP [cytoplasm]" + "diphosphate [cytoplasm]"; "YAL054C [cytoplasm]" "YLR153C [cytoplasm]"
8	128	acetyl-CoA synthetase_2	acetate [mitochondrion] + "ATP [mitochondrion]" + "coenzyme A [mitochondrion]" = "acetyl-CoA [mitochondrion]" + "AMP [mitochondrion]" + "diphosphate [mitochondrion]"; "YAL054C [mitochondrion]"
8	129	acetyl-CoA synthetase nuclear	acetate [nucleus] + "ATP [nucleus]" + "coenzyme A [nucleus]" = "acetyl-CoA [nucleus]" + "AMP [nucleus]" + "diphosphate [nucleus]"; "YLR153C [nucleus]"
8	181	alcohol dehydrogenase (ethanol)	ethanol [cytoplasm] + "NAD(+) [cytoplasm]" = "acetaldehyde [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
8	191	aldehyde dehydrogenase (acetaldehyde, NADP)	acetaldehyde [cytoplasm] + "NADP(+) [cytoplasm]" + "water [cytoplasm]" = "acetate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "NADPH [cytoplasm]"; "YPL061W [cytoplasm]"
8	192	aldehyde dehydrogenase (acetylaldehyde, NAD)	acetaldehyde [mitochondrion] + "NAD(+) [mitochondrion]" + "water [mitochondrion]" = "acetate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YOR374W [mitochondrion]"
8	193	aldehyde dehydrogenase (acetylaldehyde, NADP)	acetaldehyde [mitochondrion] + "NADP(+) [mitochondrion]" + "water [mitochondrion]" = "acetate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADPH [mitochondrion]"; "YER073W [mitochondrion]" "YOR374W [mitochondrion]"
8	307	cis-aconitate(3-) to isocitrate	cis-aconitate(3-) [mitochondrion] + "water [mitochondrion]" = "isocitrate(3-) [mitochondrion]"; "YLR304C [mitochondrion]"
8	308	cis-aconitate(3-) to isocitrate_2	cis-aconitate(3-) [cytoplasm] + "water [cytoplasm]" = "isocitrate(3-) [cytoplasm]"; "YLR304C [cytoplasm]"
8	328	citrate synthase	acetyl-CoA [mitochondrion] + "oxaloacetate(2-) [mitochondrion]" + "water [mitochondrion]" = "citrate(3-) [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"; "YNR001C [mitochondrion]" "YPR001W [mitochondrion]"
8	329	citrate synthase_2	acetyl-CoA [peroxisome] + "oxaloacetate(2-) [peroxisome]" + "water [peroxisome]" = "citrate(3-) [peroxisome]" + "coenzyme A [peroxisome]" + "H+ [peroxisome]"; "YCR005C [peroxisome]"
8	330	citrate to cis-aconitate(3-)	citrate(3-) [mitochondrion] = "cis-aconitate(3-) [mitochondrion]" + "water [mitochondrion]"; "YLR304C [mitochondrion]"
8	331	citrate to cis-aconitate(3-)_2	citrate(3-) [cytoplasm] = "cis-aconitate(3-) [cytoplasm]" + "water [cytoplasm]"; "YLR304C [cytoplasm]"
8	354	D-sorbitol dehydrogenase (D-fructose producing)	D-glucitol [cytoplasm] + "NAD(+) [cytoplasm]" = "D-fructose [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YJR159W [cytoplasm]"
8	364	deoxyribokinase	2-deoxy-D-ribose [cytoplasm] + "ATP [cytoplasm]" = "2-deoxy-D-ribose 5-phosphate [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YCR036W [cytoplasm]"
8	398	enolase	2-phospho-D-glyceric acid [cytoplasm] = "phosphoenolpyruvate [cytoplasm]" + "water [cytoplasm]"; "YGR254W [cytoplasm]" "YHR174W [cytoplasm]"
8	401	ethyl acetate-hydrolyzing esterase	ethyl acetate [cytoplasm] + "water [cytoplasm]" = "acetate [cytoplasm]" + "ethanol [cytoplasm]" + "H+ [cytoplasm]"; "YOR126C [cytoplasm]"
8	482	fructose-2,6-bisphosphate 2-phosphatase	beta-D-fructofuranose 2,6-bisphosphate [cytoplasm] + "water [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YJL155C [cytoplasm]"
8	483	fructose-bisphosphatase	D-fructose 1,6-bisphosphate [cytoplasm] + "water [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YLR377C [cytoplasm]"
8	484	fructose-bisphosphate aldolase	D-fructose 1,6-bisphosphate [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"
8	485	fumarase	fumarate(2-) [cytoplasm] + "water [cytoplasm]" = "(S)-malate(2-) [cytoplasm]"; "YPL262W [cytoplasm]"
8	486	fumarase_2	fumarate(2-) [mitochondrion] + "water [mitochondrion]" = "(S)-malate(2-) [mitochondrion]"; "YPL262W [mitochondrion]"
8	492	galactokinase	ATP [cytoplasm] + "D-galactose [cytoplasm]" = "ADP [cytoplasm]" + "alpha-D-galactose 1-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YBR020W [cytoplasm]"
8	493	galactose-1-phosphate uridylyltransferase	alpha-D-galactose 1-phosphate [cytoplasm] + "H+ [cytoplasm]" + "UTP [cytoplasm]" = "diphosphate [cytoplasm]" + "UDP-D-galactose [cytoplasm]"; "YBR018C [cytoplasm]"
8	499	glucokinase	ATP [cytoplasm] + "D-glucose [cytoplasm]" = "ADP [cytoplasm]" + "beta-D-glucose 6-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YCL040W [cytoplasm]"

8	501	glucose 6-phosphate dehydrogenase	aldehydo-D-glucose 6-phosphate [cytoplasm] + "NADP(+) [cytoplasm]" = "6-O-phosphono-D-glucono-1,5-lactone [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]"; "YNL241C [cytoplasm]"
8	504	glucose-6-phosphate isomerase_2	beta-D-glucose 6-phosphate [cytoplasm] = "D-fructose 6-phosphate [cytoplasm]"; "YBR196C [cytoplasm]"
8	525	alveraldehvde-3-nhosnhate dehvdrogenase	glyceraldehyde 3-phosphate [cytoplasm] + "NAD(+) [cytoplasm]" + "phosphate [cytoplasm]" = "3-phospho-D-glyceroyl dihydrogen phosphate [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]";
0	525	gryceraidenyde-5-pilospilate denydrogenase	"YGR192C [cytoplasm]" "YJL052W [cytoplasm]" "YJR009C [cytoplasm]"
8	526	glycerol dehydrogenase (NADP-dependent)	glycerol [cytoplasm] + "NADP(+) [cytoplasm]" = "glycerone [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]"; "YOR120W [cytoplasm]"
8	527	glycerol kinase	ATP [cytoplasm] + "glycerol [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "sn-glycerol 3-phosphate [cytoplasm]"; "YHL032C [cytoplasm]"
8	528	glycerol-3-phosphatase	sn-glycerol 3-phosphate [cytoplasm] + "water [cytoplasm]" = "glycerol [cytoplasm]" + "phosphate [cytoplasm]"; "YER062C [cytoplasm]" "YIL053W [cytoplasm]"
8	529	glycerol-3-phosphate dehydrogenase (fad)	FAD [mitochondrion] + "sn-glycerol 3-phosphate [mitochondrion]" = "FADH2 [mitochondrion]" + "glycerone phosphate [mitochondrion]"; "YIL155C [mitochondrion]"
8	530	glycerol-3-phosphate dehydrogenase (NAD)	glycerone phosphate [cytoplasm] + "H+ [cytoplasm]" + "NADH [cytoplasm]" = "NAD(+) [cytoplasm]" + "sn-glycerol 3-phosphate [cytoplasm]"; "YDL022W [cytoplasm]" "YOL059W [cytoplasm]"
8	531	glycerol-3-phosphate dehydrogenase (NAD)_2	glycerone phosphate [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" = "NAD(+) [mitochondrion]" + "sn-glycerol 3-phosphate [mitochondrion]"; "YOL059W [mitochondrion]"
8	572	hexokinase (D-fructose:ATP)	ATP [cytoplasm] + "D-fructose [cytoplasm]" = "ADP [cytoplasm]" + "D-fructose 6-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YFR053C [cytoplasm]" "YGL253W [cytoplasm]"
8	573	hexokinase (D-glucose:ATP)	ATP [cytoplasm] + "D-glucose [cytoplasm]" = "ADP [cytoplasm]" + "aldehydo-D-glucose 6-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YCL040W [cytoplasm]" "YFR053C [cytoplasm]" "YGL253W [cytoplasm]"
8	574	hexokinase (D-mannose:ATP)	ATP [cytoplasm] + "D-mannose [cytoplasm]" = "ADP [cytoplasm]" + "D-mannose 6-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YFR053C [cytoplasm]" "YGL253W [cytoplasm]"
8	627	isoamyl acetate-hydrolyzing esterase	isoamyl acetate [cytoplasm] + "water [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "isoamylol [cytoplasm]"; "YOR126C [cytoplasm]"
8	628	isobutyl acetate-hydrolyzing esterase	isobutyl acetate [cytoplasm] + "water [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "isobutanol [cytoplasm]"; "YOR126C [cytoplasm]"
8	629	isocitrate dehydrogenase (NAD+)	isocitrate(3-) [mitochondrion] + "NAD(+) [mitochondrion]" = "2-oxoglutarate [mitochondrion]" + "carbon dioxide [mitochondrion]" + "NADH [mitochondrion]"; "YNL037C:YOR136W
0	(20		
8	630	isocitrate dehydrogenase (NADP)	isocitrate(3-) [cytopiasm] + "NADP(+) [cytopiasm]" = "2-oxogiutarate [cytopiasm]" + "carbon dioxide [cytopiasm]" + "NADPH [cytopiasm]"; "YLKI/4W [cytopiasm]"
8	633	isocitrate lyase	isocitrate(3-) [cytoplasm] = "glyoxylate [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YER065C [cytoplasm]"
8	666	L-sorbitol dehydrogenase (L-sorbose-producing)	L-glucitol [cytoplasm] + "NAD(+) [cytoplasm]" = "H+ [cytoplasm]" + "L-sorbose [cytoplasm]" + "NADH [cytoplasm]"; "YJR159W [cytoplasm]"
8	688	malate dehydrogenase	(S)-malate(2-) [cytoplasm] + "NAD(+) [cytoplasm]" = "H+ [cytoplasm]" + "NADH [cytoplasm]" + "oxaloacetate(2-) [cytoplasm]"; "YOL126C [cytoplasm]"
8	689	malate dehydrogenase_2	(S)-malate(2-) [mitochondrion] + "NAD(+) [mitochondrion]" = "H+ [mitochondrion]" + "NADH [mitochondrion]" + "oxaloacetate(2-) [mitochondrion]"; "YKL085W [mitochondrion]"
8	690	malate dehydrogenase_3	(S)-malate(2-) [peroxisome] + "NAD(+) [peroxisome]" = "H+ [peroxisome]" + "NADH [peroxisome]" + "oxaloacetate(2-) [peroxisome]"; "YDL078C [peroxisome]"
8	691	malate synthase	acetyl-CoA [cytoplasm] + "glyoxylate [cytoplasm]" + "water [cytoplasm]" = "(S)-malate(2-) [cytoplasm]" + "coenzyme A [cytoplasm]" + "H+ [cytoplasm]"; "YIR031C [cytoplasm]" "YNL117W [cytoplasm]"
8	692	malate synthase_2	acetyl-CoA [peroxisome] + "glyoxylate [peroxisome]" + "water [peroxisome]" = "(S)-malate(2-) [peroxisome]" + "coenzyme A [peroxisome]" + "H+ [peroxisome]"; "YNL117W [peroxisome]"
8	693	malic enzyme (NAD)	(S)-malate(2-) [mitochondrion] + "NAD(+) [mitochondrion]" = "carbon dioxide [mitochondrion]" + "NADH [mitochondrion]" + "pyruvate [mitochondrion]"; "YKL029C [mitochondrion]"
8	694	malic enzyme (NADP)	(S)-malate(2-) [mitochondrion] + "NADP(+) [mitochondrion]" = "carbon dioxide [mitochondrion]" + "NADPH [mitochondrion]" + "pyruvate [mitochondrion]"; "YKL029C [mitochondrion]"
8	698	mannose-6-phosphate isomerase	D-mannose 6-phosphate [cytoplasm] = "D-fructose 6-phosphate [cytoplasm]"; "YER003C [cytoplasm]"
8	804	oxoglutarate dehydrogenase (dihydrolipoamide S- succinyltransferase)	coenzyme A [mitochondrion] + "S(8)-succinyldihydrolipoamide [mitochondrion]" = "dihydrolipoamide [mitochondrion]" + "succinyl-CoA [mitochondrion]"; "YDR148C:YFL018C:YIL125W [mitochondrion]"
0	905		2-oxoglutarate [mitochondrion] + "H+ [mitochondrion]" + "lipoamide [mitochondrion]" = "carbon dioxide [mitochondrion]" + "S(8)-succinyldihydrolipoamide [mitochondrion]";
Ó	805	oxogiutarate denydrogenase (iipoamide)	"YDR148C:YFL018C:YIL125W [mitochondrion]"
8	857	phosphoenolpyruvate carboxykinase	ATP [cytoplasm] + "oxaloacetate(2-) [cytoplasm]" = "ADP [cytoplasm]" + "carbon dioxide [cytoplasm]" + "phosphoenolpyruvate [cytoplasm]"; "YKR097W [cytoplasm]"

\rightarrow
F.
Ę
la
8
άQ

No. Polysophiloconnace Polysophiloconnace <th>8</th> <th>859</th> <th>phosphofructokinase</th> <th>ATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "D-fructose 1,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YGR240C:YMR205C [cytoplasm]"</th>	8	859	phosphofructokinase	ATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "D-fructose 1,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YGR240C:YMR205C [cytoplasm]"
B_{2} absphe/letionte ddy/degenate Comparison ["standard contact [cytoplasm]" - "CathDel [cytoplasm] - "CathDel [cytoplasm]" - "CathDel [cytoplasm]" - "CathDel [cytoplasm] - "CathDel [cytoplasm] - "CathDel [cytoplasm]" - "CathDel [cyt	8	861	phosphoglucomutase	D-glucose 1-phosphate [cytoplasm] = "aldehydo-D-glucose 6-phosphate [cytoplasm]"; "YKL127W [cytoplasm]" "YMR105C [cytoplasm]"
86 Josphaghov-Dejverie and (spoplasm) + ATP (spoplasm) + "ATP (spoplasm) + "Spipospher (spoplasm) + "ATP (spoplasm)	8	862	phosphogluconate dehydrogenase	6-phospho-D-gluconate [cytoplasm] + "NADP(+) [cytoplasm]" = "carbon dioxide [cytoplasm]" + "D-ribulose 5-phosphate [cytoplasm]" + "NADPH [cytoplasm]"; "YGR256W [cytoplasm]" "YHR183W [cytoplasm]"
64 bookspace polyage/space polyage/space polyage/space 65 66 bookspace piles-D-biose f-phosphate (sysplam) ⁻ "WL122W (syspla	8	865	phosphoglycerate kinase	3-phospho-D-glyceric acid [cytoplasm] + "ATP [cytoplasm]" = "3-phospho-D-glyceroyl dihydrogen phosphate [cytoplasm]" + "ADP [cytoplasm]"; "YCR012W [cytoplasm]"
Sol Instance Apple-Debose Fploophane [=splophane] = "Apple-Debose Splopphane] = "XKL12W [coophane]" = "XKL12W [coophane] = "XKL12W [coophane]" = "XKL12W [coophane] = "XKL12W [Coopha	8	866	phosphoglycerate mutase	2-phospho-D-glyceric acid [cytoplasm] = "3-phospho-D-glyceric acid [cytoplasm]"; "YKL152C [cytoplasm]"
97 provide carboxylace ATP (cyopham) = "namehouse (cyopham)" = "yporvate (cyopham)" = "ATP (cyopham)" = "includedyde (cytopham)" = "includedyd (cytopham) = "includedyd (cytopham) = "includedyd (cytopham) = "includedyd (cytopham)" = "includedyd (cytopham) = "includedyd (cytopham) = "includedyd (cytopham) = "includedyd (cytopham)" = "includedyd (cytopham)" = "includedyd (cytopham) = "includedy	8	880	phosphopentomutase	alpha-D-ribose 1-phosphate [cytoplasm] = "alpha-D-ribose 5-phosphate [cytoplasm]"; "YKL127W [cytoplasm]" "YMR105C [cytoplasm]"
98 99 99<	8	937	pyruvate carboxylase	ATP [cytoplasm] + "bicarbonate [cytoplasm]" + "pyruvate [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "oxaloacetate(2-) [cytoplasm]" + "phosphate [cytoplasm]"; "YBR218C [cytoplasm]" "YGL062W [cytoplasm]"
8 9 yprvade daydogenase centry one A [mitochondring] + "NADH [mitochondring]" + "netry one [mitochondring]" + "netry one dioxide [mitochondring]" + "NADH [mitochondring]" 8 941 yprvade kinase OPE [coptilisin] * "It-[coptilisin]" * The [coptilisin]" * The [coptilisin] * The [cop	8	938	pyruvate decarboxylase	H+ [cytoplasm] + "pyruvate [cytoplasm]" = "acetaldehyde [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]"
8 44 pyruate kinase ADP [cytoplasm] + "H-[cytoplasm] + "Discopheonogycytop [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "Displace [cytoplasm] * "Displace [cytoplasm] * "ADP [cytoplasm] * "ADP [cytoplasm] * "Di	8	940	pyruvate dehydrogenase	coenzyme A [mitochondrion] + "NAD(+) [mitochondrion]" + "pyruvate [mitochondrion]" = "acetyl-CoA [mitochondrion]" + "carbon dioxide [mitochondrion]" + "NADH [mitochondrion]"; "YBR221C:YER178W:YFL018C:YGR193C:YNL071W [mitochondrion]"
8 950 nbknase ATP [cytoplasm] * "D-rhose [cytoplasm] * "ADP [cytoplasm]" * "labp-D-rhose 5-phosphate [cytoplasm]" * "H= [cytoplasm]", "YCR036W [cytoplasm]", "YCR036W [cytoplasm]" 8 963 nbkes-5-phosphate isomerase alpha-D-rhose 5-phosphate [cytoplasm] * D-rhouse 5-phosphate [cytoplasm], "YCR036W [cytoplasm]", "YCR036W [cytoplasm], "YCR036W [cytoplasm], " 8 050 accinate dehydrogenase (ubiquinone-6)	8	941	pyruvate kinase	ADP [cytoplasm] + "H+ [cytoplasm]" + "phosphoenolpyruvate [cytoplasm]" = "ATP [cytoplasm]" + "pyruvate [cytoplasm]"; "YAL038W [cytoplasm]" "YOR347C [cytoplasm]"
68 obses-5phosphate isomerase alpha-D-fibrose 5-phosphate [cytoplasm] = "D-rbluose 5-phosphate [cytoplasm]", "YUR095C [cytoplasm]" 68 obses 5-phosphate isomerase D-rbluose 5-phosphate [cytoplasm] = "D-xyluose 5-phosphate [cytoplasm]", "YUR095C [cytoplasm]", "VUR178W-YIL045W-YKL141W-YIL1041C [mitechondrion]", "VDR178W-YIL045W-YKL141W-YIL1041C [mitechondrion]", "VDR178W-YIL045W-YKL141W-YIL041C [mitechondrion]", "VR0787E [8	950	ribokinase	ATP [cytoplasm] + "D-ribose [cytoplasm]" = "ADP [cytoplasm]" + "alpha-D-ribose 5-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YCR036W [cytoplasm]"
965 nblose 5-phosphate 3-epinosphate (syciplasm] = "D-xylulose 5-phosphate (syciplasm]", "YL121C [cyciplasm]" 965 nblose 5-phosphate 3-epinosphate (syciplasm] = "D-xylulose 5-phosphate [cyciplasm]", "YL121C [cyciplasm]" 976 accinate dehydrogenase (ubiquinone-6) Specinate 3-phosphate 3-epinosphate [cyciplasm] = "D-xylulose 5-phosphate [cyciplasm]" 977 97773W YL114W YKL148C YLL041C [mitochondrion]" "wbiquinol-6 [mitochondrion]", "YDR178W YLL041C [mitochondrion]" 9708 9703 saccinate dehydrogenase (ubiquinone-6)_2 PTP/178W YKL141W YKL148C YLL041C [mitochondrion]" "wbiquinol-6 [mitochondrion]", "YDR178W YLL041C [mitochondrion]" 9708 saccinate CoA ligase (ADP-forming) PTP [mitochondrion] = "coccaryme A [mitochondrion]" = "succinate[cyciplasm] = "ADP [mitochondrion]" = "D-rythoxe 4-phosphate [mitochondrion]" + "succinate[cyciplasm]" = "D-rythoxe 4-phosphate[cyciplasm]" = "PD-rythoxe 4-phosphate[cyciplasm]" = "PD-rythoxe 4-phosphate[cyciplasm]" = "PD-rythoxe 4-phosphate[cyciplasm]" = "PD-rythoxe 4-phosphate[cyciplasm]" = "SPR074C [cyciplasm]" = "gyceraldehyde 3-phosphate[cyciplasm]" = "D-rythoxe 4-phosphate[cyciplasm]" = "Gyceraldehyde 3-phosphate[cyciplasm]" = "Gyceraldehyde 3-phosphate[cyciplasm]" = "Gyceraldehyde 3-phosphate[cyciplasm]" = "PD-rythoxe 4-phosphate[cyciplasm]" = "gyceraldehyde 3-phosphate[cyciplasm]" = "Gyceraldehyde 3-ph	8	963	ribose-5-phosphate isomerase	alpha-D-ribose 5-phosphate [cytoplasm] = "D-ribulose 5-phosphate [cytoplasm]"; "YOR095C [cytoplasm]"
8 10/1 succinate dehydrogenase (ubiquinone-6) succinate(2-) [mitochondrion] * "ubiquinone-6 [mitochondrion]" * "ubiquinone-6 [mitochondrion]" * "ubiquinone-6 [mitochondrion]", "YDR178W:YLL04SW:YKL14W:YLL04IC [mitochondrion]" 8 10/2 succinate dehydrogenase (ubiquinone-6)_2 FADIE [mitochondrion] * "ubiquinone-6 [mitochondrion]" * "FAD [mitochondrion]" * "ubiquinone-6 [mitochondrion]", "YDR178W:YLL04SW:YKL14W:YLL04IC [mitochondrion]" 8 10/2 succinate CoA ligase (ADP-forming) ATP [mitochondrion] * "ubiquinone-6 [mitochondrion]" * "succinate(2-) [mitochondrion]" * "ADP [mitochondrion]" * "DR178W:YKL14W:YLL04IC [mitochondrion]" 9 10/3 succinate CoA ligase (ADP-forming) ATP [mitochondrion] * "oenzyme A [mitochondrion]" * succinate(2-) [mitochondrion]" * "ADP [mitochondrion]" * "DR07Equiption]" * "VGR344C:YOR142W [mitochondrion]" 9 10/3 transketolase gloernabe/phose [cytoplasm] * "secoheptulose 5-phosphate [cytoplasm]" * "D-cytutose 4-phosphate[cytoplasm]" * "Bornset 4-phosphate[cytoplasm]" * "D-cytutose 4-phosphate[cytoplasm]" * "gloernabe/phose 4-phosphate[cytoplasm]" * "Bornset 4-phosphate[cytoplasm]" * "D-fractose 6-phosphate [cytoplasm]" * "gloernabe/phose 4-phosphate[cytoplasm]" * "DF074C[cytoplasm]" * "DF074C[cytoplasm]" * "DF074C[cytoplasm]" * "DF074C[cytoplasm]" * "DF074C[cytoplasm]" * "Bornset 4-phosphate[cytoplasm]" * "DF074C[cytoplasm]" * "DF074C[cytoplasm	3	965	ribulose 5-phosphate 3-epimerase	D-ribulose 5-phosphate [cytoplasm] = "D-xylulose 5-phosphate [cytoplasm]"; "YJL121C [cytoplasm]"
8 1002 succinate dehydrogenase (ubiquinone-6)_2 FADH2 [mitochondrion] + "ubiquinone-6 [mitochondrion]" + "ubiquinone-6 [mitochondrion]", "YDR178W:YLL04SW:	8	1001	succinate dehydrogenase (ubiquinone-6)	succinate(2-) [mitochondrion] + "ubiquinone-6 [mitochondrion]" = "fumarate(2-) [mitochondrion]" + "ubiquinol-6 [mitochondrion]"; "YDR178W:YJL045W:YKL141W:YLL041C [mitochondrion]" "YDR178W:YKL141W:YKL148C:YLL041C [mitochondrion]"
8 103 sccinate-CoA ligase (ADP-forming) ATP [mitochondrion] + "coenzyme A [mitochondrion]" + "succinate(2-) [mitochondrion]" + "phosphate [mitochondrion]" + "succinate(2-) [mitochondrion]" + "phosphate [mitochondrion]" + "succinate(2-) [mitochondrion]" + "phosphate [mitochondrion]" + "succinate(2-) [cytoplasm]" = "D-cryttrose 4-phosphate(2-) [cytoplasm]" + "D-fructose 6-phosphate [cytoplasm]", "YLR354C [cytoplasm] 8 1036 transketolase glyceraldehyde 3-phosphate [cytoplasm] + "D-sylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]", "YBR117C [cytoplasm] 8 1037 transketolase D-cryttrose 4-phosphate(2-) [cytoplasm] + "D-sylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]", "YBR117C [cytoplasm] 8 1037 transketolase D-cryttrose 4-phosphate[cytoplasm] + "D-sylulose 5-phosphate [cytoplasm]", "YDR050C [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]", "YBR117C [cytoplasm]", "YBR014C [cytoplasm]", "YLR044C [cytoplasm]", "YLR044C [cytoplasm], "TLR044C [cytoplasm], "TLR044C [cytoplasm], "TLR044C [cytoplasm], "YLR044C [cytoplasm], "TLR044C [cytoplasm], "YLR044C [cytoplasm], "YLL04C [cytoplasm], "YLL04C [cytoplasm], "YLL04C [cytoplasm], "YLL04C [cytoplasm], "YLL04C [cytopla	8	1002	succinate dehydrogenase (ubiquinone-6)_2	FADH2 [mitochondrion] + "ubiquinone-6 [mitochondrion]" = "FAD [mitochondrion]" + "ubiquinol-6 [mitochondrion]"; "YDR178W:YJL045W:YKL141W:YLL041C [mitochondrion]" "YDR178W:YKL141W:YKL148C:YLL041C [mitochondrion]"
8 1035 transaldolase glyceraldehyde 3-phosphate [cytoplasm]* "Sedoheptulose 7-phosphate [cytoplasm]" = "D-erythrose 4-phosphate[cytoplasm]" + "D-fructose 6-phosphate [cytoplasm]", "YLR354C [cytoplasm]", "YRR354C [cytoplasm] 8 1036 transketolase alpha-D-ribose 5-phosphate [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "glyceraldehyde 3-phosphate [cytoplasm]" + "glyceraldehyde (cytoplasm]" + "glyceraldehyde [cytoplasm]" + "D-fyucose [cytoplasm]" = "D-glucose [cytoplasm]" = "D-glucose [cytoplasm]" = "D-gluc	8	1003	succinate-CoA ligase (ADP-forming)	ATP [mitochondrion] + "coenzyme A [mitochondrion]" + "succinate(2-) [mitochondrion]" = "ADP [mitochondrion]" + "phosphate [mitochondrion]" + "succinyl-CoA [mitochondrion]"; "YGR244C:YOR142W [mitochondrion]"
8 1036 ransketolase alpha-D-ribose 5-phosphate [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "glyceraldehyde 3-phosphate [cytoplasm]" + "sedoheptulose 7-phosphate [cytoplasm]"; "YBR117C [cy "YPR074C [cytoplasm]" 8 1037 transketolase_2 D-erythrose 4-phosphate [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]"; "YBR117C [cy "YPR074C [cytoplasm]" 8 1037 trasketolase_2 D-erythrose 4-phosphate [cytoplasm] = "D-xylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]"; "YBR117C [cy "YPR074C [cytoplasm]"] 8 1041 triose-phosphate isomerase glycerone phosphate [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" = "D-glucose [cytoplasm]"] 8 1041 triose-phosphate isomerase UDP-D-glucose [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]" = "D-glucose [cytoplasm]" 8 1058 UDPglucosehexose-1-phosphate uridylyltransferase glpa-D-galactose [cytoplasm] = "UDP-D-glucose [cytoplasm]" = "D-glucose [-phosphate [cytoplasm]" = "CB-eatorine [cytoplasm]" = "RD-eatorine [cytopl	8	1035	transaldolase	glyceraldehyde 3-phosphate [cytoplasm] + "sedoheptulose 7-phosphate [cytoplasm]" = "D-erythrose 4-phosphate(2-) [cytoplasm]" + "D-fructose 6-phosphate [cytoplasm]"; "YLR354C [cytoplasm]"
8 1037 transketolase_2 D-erythrose 4-phosphate(2-) [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]"; "YBR117C [cytoplasm] 8 1041 trose-phosphate isomerase glycerone phosphate [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]"; "YDR050C [cytoplasm]" 8 1057 UDPglucose 4-epimerase UDP-D-glucose [cytoplasm] = "UDP-D-galactose [cytoplasm]; "YBR019C [cytoplasm]" 8 1058 UDPglucose-hexose-1-phosphate uridylyltransferase alpha-D-galactose 1-phosphate [cytoplasm] = "UDP-D-glucose [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]" + "UDP-D-galactose [cytoplasm]" + "YBR018C [cytoplasm]" 8 058 UDPglucose-hexose-1-phosphate uridylyltransferase alpha-D-galactose 1-phosphate [cytoplasm] + "H+ [cytoplasm] + "Private [cytoplasm]" = "ADP [cytoplasm]" = "Checotin [cytoplasm]" + "arbon dioxide [cytoplasm]", "YGR087C [cytoplasm]", "YLL07C [cytoplasm]" 8 106 ectaldehyde condensation 2 * "acetaldehyde [cytoplasm] = "(R)-acetoin [cytoplasm]" + "beta-D-fructofuranose 2,6-bisphosphate [cytoplasm]", "YLL07C [cytoplasm]" 8 107 actaldehyde condensation 2 * "acetaldehyde [cytoplasm] = "(R)-acetoin [cytoplasm]" * "LR044C [cytoplasm]", "YLR144W [cytoplasm]", "YLL07C [cytoplasm]" 8 100 acetaldehyde condensation 2 * "acetaldehyde [cytoplasm] = "(R)-acetoin [cytoplasm]" * "LR044C [cytoplasm]", "YLR044C [cytoplasm]", "YLR044C [cytoplasm]", "YLR	8	1036	transketolase	alpha-D-ribose 5-phosphate [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "glyceraldehyde 3-phosphate [cytoplasm]" + "sedoheptulose 7-phosphate [cytoplasm]"; "YBR117C [cytoplasm]" "YPR074C [cytoplasm]"
81041tiose-phosphate isomeraseglycerone phosphate [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]"; "YDR050C [cytoplasm]"81057UDPglucose 4-epimeraseUDP-D-glucose [cytoplasm] = "UDP-D-glacose [cytoplasm]"; "YBR019C [cytoplasm]"81058UDPglucosehexose-1-phosphate uridylytransferasealpha-D-galactose 1-phosphate [cytoplasm] = "UDP-D-glucose [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]" + "UDP-D-glacose [cytoplasm]" = "CR-acetoin [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]"8 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 8 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 9 0^{2} 0^{2} </td <td>8</td> <td>1037</td> <td>transketolase_2</td> <td>D-erythrose 4-phosphate(2-) [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]"; "YBR117C [cytoplasm]" "YPR074C [cytoplasm]"</td>	8	1037	transketolase_2	D-erythrose 4-phosphate(2-) [cytoplasm] + "D-xylulose 5-phosphate [cytoplasm]" = "D-fructose 6-phosphate [cytoplasm]" + "glyceraldehyde 3-phosphate [cytoplasm]"; "YBR117C [cytoplasm]" "YPR074C [cytoplasm]"
81057UDPglucose 4-epimeraseUDP-D-glucose [cytoplasm] = "UDP-D-galactose [cytoplasm]"; "YBR019C [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]"; "UDP-D-galactose [cytoplasm]"; "YBR019C [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]"; "UDP-D-galactose [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]"; "UDP-D-galactose [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]"; "YGR087C [cytoplasm]"; "YGR087C [cytoplasm]"; "YGR087C [cytoplasm]"; "YGR087C [cytoplasm]"; "YIL07C	3	1041	triose-phosphate isomerase	glycerone phosphate [cytoplasm] = "glyceraldehyde 3-phosphate [cytoplasm]"; "YDR050C [cytoplasm]"
81058UDPglucose-hexose-1-phosphate uridylyltransferasealpha-D-galactose 1-phosphate [cytoplasm] = "D-glucose 1-phosphate [cytoplasm] + "UDP-D-galactose [cytoplasm]"; "YBR018C [cytoplasm]";8399pruvate decarboxylase (acetoin-forming)acetaldehyde [cytoplasm] + "H+ [cytoplasm]" + "pyruvate [cytoplasm]" = "(R)-acetoin [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "8105chosphoffucto-2-kinaseATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "beta-D-fructoffuranose 2,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL107C [cytoplasm]"8104acetaldehyde condensation2 * "acetaldehyde [cytoplasm]" = "(R)-acetoin [cytoplasm]" + "beta-D-fructoffuranose 2,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL107C [cytoplasm]"8105acetaldehyde condensation2 * "acetaldehyde [cytoplasm]" = "NADP [cytoplasm]" = "L-arabiniol [cytoplasm]" = "NADP(+) [cytoplasm]" = "NADP(+) [cytoplasm]"; "YIR104W [cytoplasm]";8105achiose cenductaseH+ [cytoplasm] = "C-gluceraldehyde [cytoplasm]" = "L-arabiniol [cytoplasm]" = "NADP(+) [cytoplasm]"; "YR044C [cytoplasm]";8303D-fructose 1-phosphate D-glyceraldehyde-3-phosphate1-gateD-fructose 1-phosphate [cytoplasm]" = "L-arabiniol [cytoplasm]" = "L-arabiniol [cytoplasm]"; "YKL060C [cytoplasm]";	8	1057	UDPglucose 4-epimerase	UDP-D-glucose [cytoplasm] = "UDP-D-galactose [cytoplasm]"; "YBR019C [cytoplasm]"
8 939 pruvate decarboxylase (acetoin-forming) acetaldehyde [cytoplasm] + "H+ [cytoplasm]" + "pyruvate [cytoplasm]]" + "carbon dioxide [cytoplasm]"; "YGR087C [cytoplasm]" * "YLR044C [cytoplasm]" * " [cytoplasm]" 8 105 6-phosphofructo-2-kinase ATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "beta-D-fructofuranose 2,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL107C [cytoplasm]" * " [cytoplasm]" 8 100 acetaldehyde condensation 2 * "acetaldehyde [cytoplasm]" = "(R)-acetoin [cytoplasm]"; "YGR087C [cytoplasm]" * "NADPH [cyt	3	1058	UDPglucosehexose-1-phosphate uridylyltransferase	alpha-D-galactose 1-phosphate [cytoplasm] + "UDP-D-glucose [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]" + "UDP-D-galactose [cytoplasm]"; "YBR018C [cytoplasm]"
8 105 bepapabefueto-2-kinase ATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "beta-D-fructofuranose 2,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL107C [cytoplasm]" = "Gupalsm]" 8 100 actaldebyde condensation 2 * "acetaldebyde [cytoplasm]" = "(R)-acetoin [cytoplasm]"; "YGR087C [cytoplasm]" * "NADPH [cytoplasm]" *	3	939	pyruvate decarboxylase (acetoin-forming)	acetaldehyde [cytoplasm] + "H+ [cytoplasm]" + "pyruvate [cytoplasm]" = "(R)-acetoin [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]"
8 10 acetaldehyde condensation 2 * "acetaldehyde [cytoplasm]" = "(R)-acetoin [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]" 8 223 arabinose reductase H+ [cytoplasm] + "L-arabinose [cytoplasm]" = "L-arabinitol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR104W [cytoplasm]" 8 353 D-fructose 1-phosphate D-glyceraldehyde-3-phosphate-lyase D-fructose 1-phosphate [cytoplasm] = "D-glyceraldehyde [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"	8	105	6-phosphofructo-2-kinase	ATP [cytoplasm] + "D-fructose 6-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "beta-D-fructofuranose 2,6-bisphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL107C [cytoplasm]" "YOL136C [cytoplasm]"
8 223 arabinose reductase H+ [cytoplasm] + "L-arabinose [cytoplasm]" + "NADPH [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR104W [cytoplasm]" 8 353 D-fructose 1-phosphate D-glyceraldehyde-3-phosphate-lyase D-fructose 1-phosphate [cytoplasm] = "D-glyceraldehyde [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"	8	110	acetaldehyde condensation	2 * "acetaldehyde [cytoplasm]" = "(R)-acetoin [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]"
3 53 D-fructose 1-phosphate D-glyceraldehyde-3-phosphate-lyase D-fructose 1-phosphate [cytoplasm] = "D-glyceraldehyde [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"	8	223	arabinose reductase	H+ [cytoplasm] + "L-arabinose [cytoplasm]" + "NADPH [cytoplasm]" = "L-arabinitol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR104W [cytoplasm]"
	8	353	D-fructose 1-phosphate D-glyceraldehyde-3-phosphate-lyase	D-fructose 1-phosphate [cytoplasm] = "D-glyceraldehyde [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"

8	355	D-sorbitol reductase	D-glucose [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "D-glucitol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR104W [cytoplasm]"
8	388	diphosphoglyceromutase	3-phospho-D-glyceroyl dihydrogen phosphate [cytoplasm] = "2,3-bisphospho-D-glyceric acid [cytoplasm]" + "H+ [cytoplasm]"; "YKL152C [cytoplasm]"
8	503	glucose-6-phosphate isomerase	aldehydo-D-glucose 6-phosphate [cytoplasm] = "beta-D-glucose 6-phosphate [cytoplasm]"; "YBR196C [cytoplasm]"
8	505	glucose-6-phosphate isomerase_3	aldehydo-D-glucose 6-phosphate [cytoplasm] = "D-fructose 6-phosphate [cytoplasm]"; "YBR196C [cytoplasm]"
9	14	2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate deaminase	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone [cytoplasm] + "H+ [cytoplasm]" + "water [cytoplasm]" = "5-amino-6-(5-phosphoribitylamino)uracil [cytoplasm]" + "ammonium [cytoplasm]"; "YOL066C [cytoplasm]"
9	15	2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate reductase (NADPH)	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR153W [cytoplasm]"
9	17	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase	2-amino-6-(hydroxymethyl)-7,8-dihydropteridin-4-ol [mitochondrion] + "ATP [mitochondrion]" = "(2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl trihydrogen diphosphate [mitochondrion]" + "AMP [mitochondrion]" + "H+ [mitochondrion]"; "YNL256W [mitochondrion]"
9	19	2-dehydropantoate 2-reductase	2-dehydropantoate [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "(R)-pantoate [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR063C [cytoplasm]"
9	20	2-dehydropantoate 2-reductase_2	2-dehydropantoate [mitochondrion] + "H+ [mitochondrion]" + "NADPH [mitochondrion]" = "(R)-pantoate [mitochondrion]" + "NADP(+) [mitochondrion]"; "YLR355C [mitochondrion]"
9	22	2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase	2-hexaprenyl-6-methoxy-1,4-benzoquinone [mitochondrion] + "S-adenosyl-L-methionine [mitochondrion]" = "2-hexaprenyl-6-methoxy-3-methyl-1,4-benzoquinone [mitochondrion]" + "H+ [mitochondrion]" + "S-adenosyl-L-homocysteine [mitochondrion]"; "YDR204W:YGL119W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
9	23	2-hexaprenyl-6-methoxyphenol monooxygenase	2-hexaprenyl-6-methoxyphenol [mitochondrion] + "oxygen [mitochondrion]" = "2-hexaprenyl-6-methoxy-1,4-benzoquinone [mitochondrion]" + "water [mitochondrion]"; "YDR204W:YGL119W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
9	40	3,4-dihydroxy-2-butanone-4-phosphate synthase	D-ribulose 5-phosphate [cytoplasm] = "2-hydroxy-3-oxobutyl phosphate [cytoplasm]" + "formate [cytoplasm]" + "H+ [cytoplasm]"; "YDR487C [cytoplasm]"
9	66	3-methyl-2-oxobutanoate hydroxymethyltransferase	3-methyl-2-oxobutanoate [cytoplasm] + "5,10-methylenetetrahydrofolate(2-) [cytoplasm]" + "water [cytoplasm]" = "2-dehydropantoate [cytoplasm]" + "5,6,7,8-tetrahydrofolic acid [cytoplasm]"; "YBR176W [cytoplasm]"
9	70	4-amino-4-deoxychorismate synthase	chorismate(2-) [cytoplasm] + "L-glutamine [cytoplasm]" = "4-amino-4-deoxychorismate(2-) [cytoplasm]" + "L-glutamate [cytoplasm]"; "YNR033W [cytoplasm]"
9	72	4-aminobenzoate synthase	4-amino-4-deoxychorismate(2-) [cytoplasm] = "4-aminobenzoate [cytoplasm]" + "H+ [cytoplasm]" + "pyruvate [cytoplasm]"; "YMR289W [cytoplasm]"
9	74	4-hydroxy-L-threonine synthase	4-(phosphonooxy)-L-threonine [cytoplasm] + "water [cytoplasm]" = "4-hydroxy-L-threonine [cytoplasm]" + "phosphate [cytoplasm]"; "YCR053W [cytoplasm]"
9	94	5-aminolevulinate synthase	glycine [mitochondrion] + "H+ [mitochondrion]" + "succinyl-CoA [mitochondrion]" = "5-aminolevulinate [mitochondrion]" + "carbon dioxide [mitochondrion]" + "coenzyme A [mitochondrion]"; "YDR232W [mitochondrion]"
9	161	adenosylmethionine-8-amino-7-oxononanoate transaminase	8-amino-7-oxononanoate [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "7,8-diaminononanoate [cytoplasm]" + "S-adenosyl-4-methylthio-2-oxobutanoate [cytoplasm]"; "YNR058W [cytoplasm]"
9	190	aldehyde dehydrogenase (3-aminopropanal, NAD)	3-aminopropanal [cytoplasm] + "NAD(+) [cytoplasm]" + "water [cytoplasm]" = "beta-alanine [cytoplasm]" + 2 * "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YMR169C [cytoplasm]" "YMR170C [cytoplasm]"
9	206	alkaline phosphatase (dihydroneopterin)	7,8-dihydroneopterin 3'-triphosphate [cytoplasm] + 3 * "water [cytoplasm]" = "7,8-dihydroneopterin [cytoplasm]" + 2 * "H+ [cytoplasm]" + 3 * "phosphate [cytoplasm]"; "YDR481C [cytoplasm]"
9	256	biotin synthase	dethiobiotin [cytoplasm] + "polysulphur [cytoplasm]" = "biotin [cytoplasm]" + 2 * "H+ [cytoplasm]"; "YGR286C [cytoplasm]"
9	333	coproporphyrinogen oxidase (O2 required)	coproporphyrinogen III [cytoplasm] + 2 * "H+ [cytoplasm]" + "oxygen [cytoplasm]" = 2 * "carbon dioxide [cytoplasm]" + "protoporphyrinogen [cytoplasm]" + 2 * "water [cytoplasm]"; "YDR044W [cytoplasm]"
9	366	deoxyuridine phosphorylase	2'-deoxyuridine [cytoplasm] + "phosphate [cytoplasm]" = "2-deoxy-D-ribofuranose 1-phosphate [cytoplasm]" + "uracil [cytoplasm]"; "YLR209C [cytoplasm]"
9	369	dethiobiotin synthase	7,8-diaminononanoate [cytoplasm] + "ATP [cytoplasm]" + "carbon dioxide [cytoplasm]" = "ADP [cytoplasm]" + "dethiobiotin [cytoplasm]" + 3 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YNR057C [cytoplasm]"
9	375	dihydrofolate reductase	dihydrofolic acid [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "5,6,7,8-tetrahydrofolic acid [cytoplasm]" + "NADP(+) [cytoplasm]"; "YOR236W [cytoplasm]"

266

Anhang

9	376	dihydrofolate reductase_2	dihydrofolic acid [mitochondrion] + "H+ [mitochondrion]" + "NADPH [mitochondrion]" = "5,6,7,8-tetrahydrofolic acid [mitochondrion]" + "NADP(+) [mitochondrion]"; "YOR236W [mitochondrion]"
9	377	dihydrofolate synthase	7,8-dihydropteroate [cytoplasm] + "ATP [cytoplasm]" + "L-glutamate [cytoplasm]" = "ADP [cytoplasm]" + "dihydrofolic acid [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YMR113W [cytoplasm]"
9	378	dihydroneopterin aldolase	7,8-dihydroneopterin [mitochondrion] = "2-amino-6-(hydroxymethyl)-7,8-dihydropteridin-4-ol [mitochondrion]" + "glycolaldehyde [mitochondrion]"; "YNL256W [mitochondrion]"
9	382	dihydropteroate synthase	2-amino-6-(hydroxymethyl)-7,8-dihydropteridin-4-ol [mitochondrion] + "4-aminobenzoate [mitochondrion]" = "7,8-dihydropteroate [mitochondrion]" + "water [mitochondrion]"; "YNL256W [mitochondrion]"
9	383	dihydropteroate synthase_2	(2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl trihydrogen diphosphate [mitochondrion] + "4-aminobenzoate [mitochondrion]" = "7,8-dihydropteroate [mitochondrion]" + "diphosphate [mitochondrion]"; "YNL256W [mitochondrion]"
9	405	farnesyltranstransferase	2-trans,6-trans-farnesyl diphosphate [cytoplasm] + "isopentenyl diphosphate [cytoplasm]" = "2-trans,6-trans,10-trans-geranylgeranyl diphosphate [cytoplasm]" + "diphosphate [cytoplasm]"; "YPL069C [cytoplasm]"
9	468	ferrochelatase	iron(2+) [mitochondrion] + "protoporphyrin [mitochondrion]" = "ferroheme b [mitochondrion]" + 2 * "H+ [mitochondrion]"; "YOR176W [mitochondrion]"
9	472	FMN adenylyltransferase	ATP [cytoplasm] + "FMN [cytoplasm]" + "H+ [cytoplasm]" = "diphosphate [cytoplasm]" + "FAD [cytoplasm]"; "YDL045C [cytoplasm]"
9	491	g-glutamyltransferase	glutathione [cytoplasm] + "L-alanine [cytoplasm]" = "L-cysteinylglycine [cytoplasm]" + "L-gamma-glutamyl-L-alanine [cytoplasm]"; "YLR299W [cytoplasm]"
9	494	gamma-glutamylcysteine synthetase	ATP [cytoplasm] + "L-cysteine [cytoplasm]" + "L-glutamate [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "L-gamma-glutamyl-L-cysteine [cytoplasm]" + "phosphate [cytoplasm]"; "YJL101C [cytoplasm]"
9	520	glutathione oxidoreductase	glutathione disulfide [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = 2 * "glutathione [cytoplasm]" + "NADP(+) [cytoplasm]"; "YCL035C:YPL091W [cytoplasm]" "YDR098C:YPL091W [cytoplasm]" "YDR13W:YPL091W [cytoplasm]" "YER174C:YPL091W [cytoplasm]"
9	521	glutathione oxidoreductase_2	glutathione disulfide [mitochondrion] + "H+ [mitochondrion]" + "NADPH [mitochondrion]" = 2 * "glutathione [mitochondrion]" + "NADP(+) [mitochondrion]"; "YPL059W:YPL091W [mitochondrion]"
9	522	glutathione peridoxase	2 * "glutathione [cytoplasm]" + "hydrogen peroxide [cytoplasm]" = "glutathione disulfide [cytoplasm]" + 2 * "water [cytoplasm]"; "YBR244W [cytoplasm]" "YCL035C [cytoplasm]" "YDR513W [cytoplasm]" "YIR037W [cytoplasm]" "YKL026C [cytoplasm]"
9	524	glutathione synthetase	ATP [cytoplasm] + "glycine [cytoplasm]" + "L-gamma-glutamyl-L-cysteine [cytoplasm]" = "ADP [cytoplasm]" + "glutathione [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YOL049W [cytoplasm]"
9	561	GTP cyclohydrolase I	GTP [cytoplasm] + "water [cytoplasm]" = "7,8-dihydroneopterin 3'-triphosphate [cytoplasm]" + "formate [cytoplasm]" + "H+ [cytoplasm]"; "YGR267C [cytoplasm]"
9	562	GTP cyclohydrolase II	GTP [cytoplasm] + 3 * "water [cytoplasm]" = "2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine [cytoplasm]" + "diphosphate [cytoplasm]" + "formate [cytoplasm]" + 2 * "H+ [cytoplasm]"; "YBL033C [cytoplasm]"
9	569	Heme O monooxygenase	heme o [mitochondrion] + "NADH [mitochondrion]" + "oxygen [mitochondrion]" = "heme a [mitochondrion]" + "NAD(+) [mitochondrion]" + "water [mitochondrion]"; "YDR376W:YER141W:YPL252C [mitochondrion]"
9	570	Heme O synthase	2-trans,6-trans-farnesyl diphosphate [mitochondrion] + "ferroheme b [mitochondrion]" + "water [mitochondrion]" = "diphosphate [mitochondrion]" + "heme o [mitochondrion]"; "YPL172C [mitochondrion]"
9	571	hexaprenyldihydroxybenzoate methyltransferase	2-hexaprenyl-5-hydroxy-6-methoxy-3-methyl-1,4-benzoquinone [mitochondrion] + "H+ [mitochondrion]" + "S-adenosyl-L-methionine [mitochondrion]" = "S-adenosyl-L-homocysteine [mitochondrion]" + "ubiquinol-6 [mitochondrion]"; "YDR204W:YGL119W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
9	584	homocysteine S-methyltransferase	L-homocysteine [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "H+ [cytoplasm]" + "L-methionine [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YLL062C [cytoplasm]" "YPL273W [cytoplasm]"
9	595	hydroxybenzoate octaprenyltransferase	4-hydroxybenzoate [mitochondrion] + "hexaprenyl diphosphate [mitochondrion]" = "3-hexaprenyl-4-hydroxybenzoic acid [mitochondrion]" + "diphosphate [mitochondrion]"; "YNR041C [mitochondrion]"
9	596	hydroxyethylthiazole kinase	5-(2-hydroxyethyl)-4-methylthiazole [cytoplasm] + "ATP [cytoplasm]" = "4-methyl-5-(2-phosphonooxyethyl)thiazole [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YPL214C [cytoplasm]"

9	597	hydroxymethylbilane synthase	4 * "porphobilinogen [cytoplasm]" + "water [cytoplasm]" = 4 * "ammonium [cytoplasm]" + "preuroporphyrinogen [cytoplasm]"; "YDL205C [cytoplasm]"
9	601	hydroxymethylpyrimidine kinase (ATP)	4-amino-5-hydroxymethyl-2-methylpyrimidine [cytoplasm] + "ATP [cytoplasm]" = "4-amino-2-methyl-5-phosphomethylpyrimidine [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YOL055C [cytoplasm]" "YPL258C [cytoplasm]" "YPR121W [cytoplasm]"
9	641	kynureninase	L-kynurenine [cytoplasm] + "water [cytoplasm]" = "anthranilate [cytoplasm]" + "H+ [cytoplasm]" + "L-alanine [cytoplasm]"; "YLR231C [cytoplasm]"
9	701	methionine adenosyltransferase	ATP [cytoplasm] + "L-methionine [cytoplasm]" + "water [cytoplasm]" = "diphosphate [cytoplasm]" + "phosphate [cytoplasm]" + "S-adenosyl-L-methionine [cytoplasm]"; "YDR502C [cytoplasm]" "YLR180W [cytoplasm]"
9	732	N-formyl-L-kynurenine amidohydrolase	N-formyl-L-kynurenine [cytoplasm] + "water [cytoplasm]" = "formate [cytoplasm]" + "H+ [cytoplasm]" + "L-kynurenine [cytoplasm]"; "YJL060W [cytoplasm]"
9	735	NAD diphosphatase	NAD(+) [peroxisome] + "water [peroxisome]" = "AMP [peroxisome]" + 2 * "H+ [peroxisome]" + "NMN [peroxisome]"; "YGL067W [peroxisome]"
9	736	NAD kinase	ATP [cytoplasm] + "NAD(+) [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "NADP(+) [cytoplasm]"; "YEL041W [cytoplasm]" "YJR049C [cytoplasm]"
9	737	NAD kinase_2	ATP [mitochondrion] + "NAD(+) [mitochondrion]" = "ADP [mitochondrion]" + "H+ [mitochondrion]" + "NADP(+) [mitochondrion]"; "YPL188W [mitochondrion]"
9	739	NAD nucleosidase nuclear	NAD(+) [nucleus] + "water [nucleus]" = "ADP-ribose [nucleus]" + "H+ [nucleus]" + "nicotinamide [nucleus]"; "YDL042C [nucleus]" "YDR191W [nucleus]" "YOL068C [nucleus]" "YOR025W [nucleus]" "YPL015C [nucleus]"
9	740	NAD synthase (nh3)	ammonium [cytoplasm] + "ATP [cytoplasm]" + "deamido-NAD(+) [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]" + "NAD(+) [cytoplasm]"; "YHR074W [cytoplasm]"
9	741	NAD synthase (nh3)_2	ammonium [nucleus] + "ATP [nucleus]" + "deamido-NAD(+) [nucleus]" = "AMP [nucleus]" + "diphosphate [nucleus]" + "H+ [nucleus]" + "NAD(+) [nucleus]"; "YHR074W [nucleus]"
9	743	NADH kinase	ATP [cytoplasm] + "NADH [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]"; "YEL041W [cytoplasm]" "YJR049C [cytoplasm]"
9	744	NADH kinase mitochondrial	ATP [mitochondrion] + "NADH [mitochondrion]" = "ADP [mitochondrion]" + "H+ [mitochondrion]" + "NADPH [mitochondrion]"; "YEL041W [mitochondrion]" "YJR049C [mitochondrion]"
9	748	NAPRtase	S-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + "H+ [cytoplasm]" + "nicotinate [cytoplasm]" = "diphosphate [cytoplasm]" + "nicotinic acid D-ribonucleotide [cytoplasm]"; "YOR209C [cytoplasm]"
9	749	NAPRtase_2	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [mitochondrion] + "H+ [mitochondrion]" + "nicotinate [mitochondrion]" = "diphosphate [mitochondrion]" + "nicotinic acid D-ribonucleotide [mitochondrion]"; "YOR209C [mitochondrion]"
9	756	nicotinamidase	nicotinamide [cytoplasm] + "water [cytoplasm]" = "ammonium [cytoplasm]" + "nicotinate [cytoplasm]"; "YGL037C [cytoplasm]"
9	757	nicotinamidase,	nicotinamide [mitochondrion] + "water [mitochondrion]" = "ammonium [mitochondrion]" + "nicotinate [mitochondrion]"; "YGL037C [mitochondrion]"
9	758	nicotinamide N-methyltransferase	nicotinamide [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "1-methylnicotinamide [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YLR285W [cytoplasm]"
9	759	nicotinamide-nucleotide adenylyltransferase	ATP [cytoplasm] + "H+ [cytoplasm]" + "NMN [cytoplasm]" = "diphosphate [cytoplasm]" + "NAD(+) [cytoplasm]"; "YGR010W [cytoplasm]"
9	760	nicotinamide-nucleotide adenylyltransferase_2	ATP [nucleus] + "H+ [nucleus]" + "NMN [nucleus]" = "diphosphate [nucleus]" + "NAD(+) [nucleus]"; "YLR328W [nucleus]"
9	761	nicotinate-nucleotide adenylyltransferase	ATP [cytoplasm] + "H+ [cytoplasm]" + "nicotinic acid D-ribonucleotide [cytoplasm]" = "deamido-NAD(+) [cytoplasm]" + "diphosphate [cytoplasm]"; "YGR010W [cytoplasm]" "YLR328W [cytoplasm]"
9	762	nicotinate-nucleotide adenylyltransferase_2	ATP [mitochondrion] + "H+ [mitochondrion]" + "nicotinic acid D-ribonucleotide [mitochondrion]" = "deamido-NAD(+) [mitochondrion]" + "diphosphate [mitochondrion]"; "YLR328W [mitochondrion]"
9	785	O-phospho-4-hydroxy-L-threonine:2-oxoglutarate aminotransferase	(R)-3-hydroxy-2-oxo-4-phosphonooxybutanoic acid [cytoplasm] + "L-glutamate [cytoplasm]" = "2-oxoglutarate [cytoplasm]" + "4-(phosphonooxy)-L-threonine [cytoplasm]"; "YOR184W [cytoplasm]"
9	816	pantothenate kinase	(R)-pantothenate [cytoplasm] + "ATP [cytoplasm]" = "(R)-4'-phosphopantothenic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YDR531W [cytoplasm]"
9	817	pantothenate synthase	(R)-pantoate [cytoplasm] + "ATP [cytoplasm]" + "beta-alanine [cytoplasm]" = "(R)-pantothenate [cytoplasm]" + "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "H+ [cytoplasm]"; "YIL145C [cytoplasm]"

9	876	phosphomethylpyrimidine kinase	4-amino-2-methyl-5-phosphomethylpyrimidine [cytoplasm] + "ATP [cytoplasm]" = "4-amino-2-methyl-5-diphosphomethylpyrimidine [cytoplasm]" + "ADP [cytoplasm]"; "YOL055C [cytoplasm]"
9	908	porphobilingen synthase	2 * "5-aminolevulinate [cvtoplasm]" = "H+ [cvtoplasm]" + "porphobilinogen [cvtoplasm]" + 2 * "water [cvtoplasm]". "YGL040C [cvtoplasm]"
9	909	poylamine oxidase	N(1)-acetylspermine [cytoplasm]" + "water [cytoplasm]" = "3-aminopropanal [cytoplasm]" + "hydrogen peroxide [cytoplasm]" + "N(1)-acetylspermidine [cytoplasm]"; "YMR020W [cytoplasm]"
9	910	poylamine oxidase_2	oxygen [cytoplasm] + "spermine [cytoplasm]" + "water [cytoplasm]" = "3-aminopropanal [cytoplasm]" + "hydrogen peroxide [cytoplasm]" + "spermidine [cytoplasm]"; "YMR020W [cytoplasm]"
9	916	protoporphyrinogen oxidase	3 * "oxygen [mitochondrion]" + 2 * "protoporphyrinogen [mitochondrion]" = 2 * "protoporphyrin [mitochondrion]" + 6 * "water [mitochondrion]"; "YER014W [mitochondrion]"
9	917	purine-nucleoside phosphorylase	N-ribosylnicotinamide [cytoplasm] + "phosphate [cytoplasm]" = "alpha-D-ribose 1-phosphate [cytoplasm]" + "H+ [cytoplasm]" + "nicotinamide [cytoplasm]"; "YDR400W:YLR017W:YLR209C [cytoplasm]"
9	928	pyridoxal oxidase	ammonium [cytoplasm] + 0.5 * "oxygen [cytoplasm]" + "pyridoxal [cytoplasm]" + 2 * "water [cytoplasm]" = 2 * "hydrogen peroxide [cytoplasm]" + "pyridoxamine [cytoplasm]"; "YBR035C [cytoplasm]"
9	929	pyridoxamine 5'-phosphate oxidase	oxygen [cytoplasm] + "pyridoxamine 5'-phosphate [cytoplasm]" + "water [cytoplasm]" = "ammonium [cytoplasm]" + "hydrogen peroxide [cytoplasm]" + "pyridoxal 5'-phosphate [cytoplasm]"; "YBR035C [cytoplasm]"
9	931	pyridoxine 5'-phosphate oxidase	oxygen [cytoplasm] + "pyridoxine 5'-phosphate [cytoplasm]" = "hydrogen peroxide [cytoplasm]" + "pyridoxal 5'-phosphate [cytoplasm]"; "YBR035C [cytoplasm]"
9	933	pyridoxine oxidase	oxygen [cytoplasm] + "pyridoxine [cytoplasm]" = "hydrogen peroxide [cytoplasm]" + "pyridoxal [cytoplasm]"; "YBR035C [cytoplasm]"
9	944	quinone oxidoreductase	2-hexaprenyl-6-methoxy-3-methyl-1,4-benzoquinone [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" + "oxygen [mitochondrion]" = "2-hexaprenyl-5-hydroxy-6-methoxy-3-methyl- 1,4-benzoquinone [mitochondrion]" + "NAD(+) [mitochondrion]" + "water [mitochondrion]"; "YDR204W:YGL119W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
9	946	riboflavin kinase	ATP [cytoplasm] + "riboflavin [cytoplasm]" = "ADP [cytoplasm]" + "FMN [cytoplasm]" + "H+ [cytoplasm]"; "YDR236C [cytoplasm]"
9	947	riboflavin kinase_2	ATP [mitochondrion] + "riboflavin [mitochondrion]" = "ADP [mitochondrion]" + "FMN [mitochondrion]" + "H+ [mitochondrion]"; "YDR236C [mitochondrion]"
9	948	riboflavin synthase	2-hydroxy-3-oxobutyl phosphate [cytoplasm] + "5-amino-6-(D-ribitylamino)uracil [cytoplasm]" = "6,7-dimethyl-8-(1-D-ribityl)lumazine [cytoplasm]" + "phosphate [cytoplasm]" + 2 * "water [cytoplasm]"; "YOL143C [cytoplasm]"
9	949	riboflavin synthase_2	2 * "6,7-dimethyl-8-(1-D-ribityl)lumazine [cytoplasm]" = "5-amino-6-(D-ribitylamino)uracil [cytoplasm]" + "riboflavin [cytoplasm]"; "YBR256C [cytoplasm]"
9	964	ribosylnicotinamide kinase	ATP [cytoplasm] + "N-ribosylnicotinamide [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "NMN [cytoplasm]"; "YNL129W [cytoplasm]"
9	966	S-adenosyl-L-methionine:3-hexaprenyl-4,5-dihydroxylate O- methyltransferase	3-hexaprenyl-4,5-dihydroxybenzoic acid [mitochondrion] + "S-adenosyl-L-methionine [mitochondrion]" = "3-hexaprenyl-4-hydroxy-5-methoxybenzoic acid [mitochondrion]" + "H+ [mitochondrion]" + "S-adenosyl-L-homocysteine [mitochondrion]"; "YDR204W:YGL19W:YGR255C:YLR201C:YML110C:YOL096C:YOR125C [mitochondrion]"
9	978	sirohydrochlorin dehydrogenase	NADP(+) [cytoplasm] + "precorrin-2 [cytoplasm]" = "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "sirohydrochlorin [cytoplasm]"; "YBR213W [cytoplasm]"
9	979	sirohydrochlorin ferrochetalase	iron(2+) [cytoplasm] + "sirohydrochlorin [cytoplasm]" = 3 * "H+ [cytoplasm]" + "siroheme [cytoplasm]"; "YBR213W [cytoplasm]"
9	1012	tetrahydrofolate:L-glutamate gamma-ligase (ADP-forming)	5,6,7,8-tetrahydrofolic acid [cytoplasm] + "ATP [cytoplasm]" + "L-glutamate [cytoplasm]" = "5,6,7,8-tetrahydrofolyl-L-glutamic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YOR241W [cytoplasm]"
9	1013	thiamin diphosphatase	thiamine(1+) diphosphate(1-) [extracellular] + 2 * "water [extracellular]" = "H+ [extracellular]" + 2 * "phosphate [extracellular]" + "thiamine(1+) [extracellular]"; "YBR092C [extracellular]"
9	1015	thiamin phosphatase_2	thiamine(1+) monophosphate [extracellular] + "water [extracellular]" = "phosphate [extracellular]" + "thiamine(1+) [extracellular]"; "YBR092C [extracellular]"
9	1017	thiamine diphosphokinase	ATP [cytoplasm] + "thiamine(1+) [cytoplasm]" = "AMP [cytoplasm]" + "H+ [cytoplasm]" + "thiamine(1+) diphosphate(1-) [cytoplasm]"; "YOR143C [cytoplasm]"
9	1018	thiamine-diphosphate kinase	ATP [cytoplasm] + "thiamine(1+) diphosphate(1-) [cytoplasm]" = "ADP [cytoplasm]" + "thiamine(1+) triphosphate [cytoplasm]"; "YOR143C [cytoplasm]"
9	1019	thiamine-phosphate diphosphorylase	4-amino-2-methyl-5-diphosphomethylpyrimidine [cytoplasm] + "4-methyl-5-(2-phosphonooxyethyl)thiazole [cytoplasm]" + "H+ [cytoplasm]" = "diphosphate [cytoplasm]" + "thiamine(1+) monophosphate [cytoplasm]"; "YPL214C [cytoplasm]"
9	1024	thioredoxin reductase (NADPH)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "thioredoxin disulfide [cytoplasm]" = "NADP(+) [cytoplasm]" + "thioredoxin dithiol [cytoplasm]"; "YDR353W [cytoplasm]" "YDR353W:YGR209C [cytoplasm]" "YDR353W:YLR043C [cytoplasm]"

9	1025	thioredoxin reductase (NADPH)_2	H+ [mitochondrion] + "NADPH [mitochondrion]" + "thioredoxin disulfide [mitochondrion]" = "NADP(+) [mitochondrion]" + "thioredoxin dithiol [mitochondrion]"; "YCR083W:YHR106W [mitochondrion]" = "NADP(+) [mitochondrion]" + "thioredoxin dithiol [mitochondrion]"; "YCR083W:YHR106W [mitochondrion]" + "thioredoxin disulfide [mitochondrion]" = "NADP(+) [mitochondrion]" + "thioredoxin dithiol [mitochondrion]"; "YCR083W:YHR106W [mitochondrion]" + "thioredoxin disulfide [mitochondrion]" = "NADP(+) [mitochondrion]" + "thioredoxin dithiol [mitochondrion]"; "YCR083W:YHR106W [mitochondrion]" + "thioredoxin disulfide [mitochondrion]" = "NADP(+) [mitochondrion]" + "thioredoxin dithiol [mitochondrion]"; "YCR083W:YHR106W [mitochondrion]" + "thioredoxin disulfide [mitochondrion]" + "thioredoxin d
9	1031	thymidine phosphorylase	nhosnbate [cyton]asm] + "thumidine [cyton]asm]" = "2-deoxy-D-ribofuranose [-nhosnbate [cyton]asm]" + "thumine [cyton]asm]". "YI R209C [cyton]asm]"
9	1034	trans-nentanrenvltranstransferase	isopenteryl diphosphate [mitochondrion] + "nentanrenyl diphosphate [mitochondrion]" = "diphosphate [mitochondrion]" + "hexanrenyl diphosphate [mitochondrion]" - "VBR003W [mitochondrion]"
0	1069	uuns pentuprenyntunstenistense	solvening approximate (international primate international
9	1008	uroporphyrmogen decarboxyrase (uroporphyrmogen m)	* in [cytoptastin] + uopoptiyimogen in [cytoptastin] -+ * cation uoxue (cytoptastin] + copropripriyimogen in [cytoptastin] + Uopoptiyimogen in [cytoptastin] + copropripriyimogen in [cytoptastin] + copropripripripripripripripripripripripriprip
9	1069	uroporphyrinogen methyltransferase	2 * "S-adenosyl-L-methionine [cytoplasm]" + "uroporphyrinogen III [cytoplasm]" = "H+ [cytoplasm]" + "precorrin-2 [cytoplasm]" + 2 * "S-adenosyl-L-homocysteine [cytoplasm]"; "YKR069W [cytoplasm]"
9	1070	uroporphyrinogen-III synthase	preuroporphyrinogen [cytoplasm] = "uroporphyrinogen III [cytoplasm]" + "water [cytoplasm]"; "YOR278W [cytoplasm]"
9	379	dihydroneopterin monophosphate dephosphorylase	7,8-dihydroneopterin 3'-phosphate [cytoplasm] + "water [cytoplasm]" = "7,8-dihydroneopterin [cytoplasm]" + "phosphate [cytoplasm]"; "YDL100C [cytoplasm]"
10	160	adenosylmethionine decarboxylase	H+ [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "carbon dioxide [cytoplasm]" + "S-adenosylmethioninamine [cytoplasm]"; "YOL052C [cytoplasm]"
10	516	glutamine-fructose-6-phosphate transaminase	D-fructose 6-phosphate [cytoplasm] + "L-glutamine [cytoplasm]" = "alpha-D-glucosamine 6-phosphate [cytoplasm]" + "L-glutamate [cytoplasm]"; "YKL104C [cytoplasm]"
10	720	N aaatulaluaasamina 6 nkasnkata sunthasa	acetyl-CoA [cytoplasm] + "alpha-D-glucosamine 6-phosphate [cytoplasm]" = "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" + "N-acetyl-D-glucosamine 6-phosphate [cytoplasm]"; "YFL017C
10	129	n-acetyigiucosainine-o-phosphate synthase	[cytoplasm]"
10	790	ornithine decarboxylase	H+ [cytoplasm] + "ornithine [cytoplasm]" = "carbon dioxide [cytoplasm]" + "putrescine [cytoplasm]"; "YKL184W [cytoplasm]"
10	855	phosphoacetylglucosamine mutase	N-acetyl-D-glucosamine 6-phosphate [cytoplasm] = "N-acetyl-alpha-D-glucosamine 1-phosphate [cytoplasm]"; "YEL058W [cytoplasm]"
10	982	spermidine synthase	putrescine [cytoplasm] + "S-adenosylmethioninamine [cytoplasm]" = "5'-S-methyl-5'-thioadenosine [cytoplasm]" + "H+ [cytoplasm]" + "spermidine [cytoplasm]"; "YPR069C [cytoplasm]"
10	983	spermine synthase	S-adenosylmethioninamine [cytoplasm] + "spermidine [cytoplasm]" = "5'-S-methyl-5'-thioadenosine [cytoplasm]" + "H+ [cytoplasm]" + "spermine [cytoplasm]"; "YLR146C [cytoplasm]"
10	1056	UDP-N-acetylglucosamine diphosphorylase	H+ [cytoplasm] + "N-acetyl-alpha-D-glucosamine 1-phosphate [cytoplasm]" + "UTP [cytoplasm]" = "diphosphate [cytoplasm]" + "UDP-N-acetyl-alpha-D-glucosamine [cytoplasm]"; "YDL103C [cytoplasm]"
10	902	polyamine oxidase	N(1)-acetylspermidine [cytoplasm] + "oxygen [cytoplasm]" + "water [cytoplasm]" = "3-aminopropanal [cytoplasm]" + "hydrogen peroxide [cytoplasm]" + "N-acetylputrescine [cytoplasm]"; "YMR020W [cytoplasm]"
11	6	1,4-alpha-glucan branching enzyme	amylose [cytoplasm] = "glycogen [cytoplasm]" + "water [cytoplasm]"; "YEL011W [cytoplasm]"
11	212	alaka alaka teakalaga akaankata gunthaga (UDD farmina)	aldehydo-D-glucose 6-phosphate [cytoplasm] + "UDP-D-glucose [cytoplasm]" = "alpha,alpha-trehalose 6-phosphate [cytoplasm]" + "H+ [cytoplasm]" + "UDP [cytoplasm]";
11	215	aipita,aipita-trenatose-phospitate synthase (ODF-forming)	"YBR126C:YML100W:YMR261C [cytoplasm]"
11	214	alpha-1,2 glucosyltransferase	D-glucose [endoplasmic reticulum] + "glycan G10599 [endoplasmic reticulum]" = "glycan G00008 [endoplasmic reticulum]"; "YGR227W [endoplasmic reticulum]"
11	296	chitin deacetylase	chitin [cytoplasm] + "water [cytoplasm]" = "acetate [cytoplasm]" + "chitosan [cell envelope]" + "H+ [cytoplasm]"; "YLR307W [cytoplasm]" "YLR308W [cytoplasm]"
11	297	chitin synthase	UDP-N-acetyl-alpha-D-glucosamine [cytoplasm] = "chitin [cytoplasm]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YBR023C [cytoplasm]" "YBR038W [cytoplasm]" "YNL192W [cytoplasm]"
11	393	dolichyl-phosphate D-mannosyltransferase	dolichyl phosphate [cytoplasm] + "GDP-alpha-D-mannose [cytoplasm]" = "dolichyl D-mannosyl phosphate [endoplasmic reticulum]" + "GDP [cytoplasm]"; "YPR183W [endoplasmic reticulum membrane]"
11	547	glycogen (starch) synthase	UDP-D-glucose [cytoplasm] + "water [cytoplasm]" = "amylose [cytoplasm]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YFR015C:YJL137C [cytoplasm]" "YFR015C:YKR058W [cytoplasm]" "YJL137C:YLR258W [cytoplasm]" "YKR058W:YLR258W [cytoplasm]"
11	697	mannose-1-phosphate guanylyltransferase	D-mannose 1-phosphate [cytoplasm] + "GTP [cytoplasm]" + "H+ [cytoplasm]" = "diphosphate [cytoplasm]" + "GDP-alpha-D-mannose [cytoplasm]"; "YDL055C [cytoplasm]"
11	863	phosphoglucosamine mutase	alpha-D-glucosamine 1-phosphate [cytoplasm] = "alpha-D-glucosamine 6-phosphate [cytoplasm]"; "YEL058W [cytoplasm]"
11	875	phosphomannomutase	D-mannose 1-phosphate [cytoplasm] = "D-mannose 6-phosphate [cytoplasm]"; "YFL045C [cytoplasm]"
11	1038	trehalose-phosphatase	alpha,alpha-trehalose 6-phosphate [cytoplasm] + "water [cytoplasm]" = "alpha,alpha-trehalose [cytoplasm]" + "phosphate [cytoplasm]"; "YDR074W [cytoplasm]"

11	1072	UTP-glucose-1-phosphate uridylyltransferase	D-glucose 1-phosphate [cytoplasm] + "H+ [cytoplasm]" + "UTP [cytoplasm]" = "diphosphate [cytoplasm]" + "UDP-D-glucose [cytoplasm]"; "YKL035W [cytoplasm]"
12	9	1-acyl-sn-gylcerol-3-phosphate acyltransferase	1-acyl-sn-glycerol 3-phosphate [endoplasmic reticulum] + "acyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + 4 * "H+ [endoplasmic reticulum]" + "phosphatidate [endoplasmic reticulum]"; "YDL052C [endoplasmic reticulum]"
12	10	1-phosphatidylinositol-3-phosphate 5-kinase	1-phosphatidyl-1D-myo-inositol 3-phosphate [vacuole] + "ATP [vacuole]" + "H+ [vacuole]" = "1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [vacuole]" + "ADP [vacuole]"; "YFR019W [vacuole]"
12	11	1-phosphatidylinositol-3-phosphate 5-kinase_2	l-phosphatidyl-1D-myo-inositol 3-phosphate [cell envelope] + "ATP [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [cell envelope]" + "ADP [cytoplasm]"; "YFR019W [cell envelope]"
12	44	3-dehydrosphinganine reductase	3-dehydrosphinganine [endoplasmic reticulum] + 2 * "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "NADP(+) [endoplasmic reticulum]" + "sphinganine [endoplasmic reticulum]"; "YBR265W [endoplasmic reticulum]"
12	113	acetyl-CoA ACP transacylase	acetyl-CoA [cytoplasm] + "acyl-carrier protein [cytoplasm]" = "acetyl-[acyl-carrier protein] [cytoplasm]" + "coenzyme A [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	114	acetyl-CoA ACP transacylase_2	acetyl-CoA [mitochondrion] + "acyl-carrier protein [mitochondrion]" = "acetyl-[acyl-carrier protein] [mitochondrion]" + "coenzyme A [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	118	acetyl-CoA C-acetyltransferase	2 * "acetyl-CoA [cytoplasm]" = "acetoacetyl-CoA [cytoplasm]" + "coenzyme A [cytoplasm]"; "YPL028W [cytoplasm]"
12	119	acetyl-CoA C-acetyltransferase_2	2 * "acetyl-CoA [mitochondrion]" = "acetoacetyl-CoA [mitochondrion]" + "coenzyme A [mitochondrion]"; "YPL028W [mitochondrion]"
12	123	acetyl-Coa carboxylase	acetyl-CoA [mitochondrion] + "ATP [mitochondrion]" + "bicarbonate [mitochondrion]" = "ADP [mitochondrion]" + "H+ [mitochondrion]" + "malonyl-CoA [mitochondrion]" + "phosphate [mitochondrion]"; "YMR207C [mitochondrion]"
12	124	acetyl-CoA carboxylase, reaction	acetyl-CoA [cytoplasm] + "ATP [cytoplasm]" + "bicarbonate [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + "phosphate [cytoplasm]"; "YNR016C [cytoplasm]"
12	141	acyl-CoA:sterol acyltransferase	episterol [endoplasmic reticulum] + "oleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "episteryl oleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	142	acyl-CoA:sterol acyltransferase_2	ergosterol [endoplasmic reticulum] + "oleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "ergosteryl oleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]" reticulum]" "YNR019W [endoplasmic reticulum]"
12	143	acyl-CoA:sterol acyltransferase_3	fecosterol [endoplasmic reticulum] + "oleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "fecosteryl oleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	144	acyl-CoA:sterol acyltransferase_4	lanosterol [endoplasmic reticulum] + "oleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "lanosteryl oleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	145	acyl-CoA:sterol acyltransferase_5	oleoyl-CoA [endoplasmic reticulum] + "zymosterol [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "zymosteryl oleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	146	acyl-CoA:sterol acyltransferase_6	episterol [endoplasmic reticulum] + "palmitoleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "episteryl palmitoleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	147	acyl-CoA:sterol acyltransferase_7	ergosterol [endoplasmic reticulum] + "palmitoleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "ergosteryl palmitoleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]" "YNR019W [endoplasmic reticulum]"
12	148	acyl-CoA:sterol acyltransferase_8	fecosterol [endoplasmic reticulum] + "palmitoleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "fecosteryl palmitoleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	149	acyl-CoA:sterol acyltransferase_9	lanosterol [endoplasmic reticulum] + "palmitoleoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "lanosteryl palmitoleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	150	acyl-CoA:sterol acyltransferase_10	palmitoleoyl-CoA [endoplasmic reticulum] + "zymosterol [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "zymosteryl palmitoleate [endoplasmic reticulum]"; "YCR048W [endoplasmic reticulum]"
12	258	C-14 sterol reductase	4,4-dimethyl-Salpha-cholesta-8,14,24-trien-3beta-ol [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "14-demethyllanosterol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YNL280C [cytoplasm]"

12	259	C-22 sterol desaturase (NAD)	ergosta-5,7,24(28)-trien-3beta-ol [cytoplasm] + "H+ [cytoplasm]" + "NADH [cytoplasm]" + "oxygen [cytoplasm]" = "ergosta-5,7,22,24(28)-tetraen-3beta-ol [cytoplasm]" + "NAD(+) [cytoplasm]" + 2 * "water [cytoplasm]"; "YIL043C:YMR015C:YNL111C [cytoplasm]" "YKL150W:YMR015C:YNL111C [cytoplasm]"
12	260	C-22 sterol desaturase (NADP)	ergosta-5,7,24(28)-trien-3beta-ol [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "ergosta-5,7,22,24(28)-tetraen-3beta-ol [cytoplasm]" + "NADP(+) [cytoplasm]" + 2 * "water [cytoplasm]"; "YHR042W:YMR015C [cytoplasm]"
12	261	C-3 sterol dehydrogenase	NADP(+) [cytoplasm] + "zymosterol intermediate 1c [cytoplasm]" = "carbon dioxide [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "zymosterol intermediate 2 [cytoplasm]"; "YGL001C [cytoplasm]"
12	262	C-3 sterol dehydrogenase (4-methylzymosterol)	4beta-methylzymosterol-4alpha-carboxylic acid [cytoplasm] + "NAD(+) [cytoplasm]" = "3-dehydro-4-methylzymosterol [cytoplasm]" + "carbon dioxide [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YGL001C [cytoplasm]"
12	263	C-3 sterol keto reductase (4-methylzymosterol)	3-dehydro-4-methylzymosterol [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "4alpha-methylzymosterol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YLR100W [cytoplasm]"
12	264	C-3 sterol keto reductase (zymosterol)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "zymosterol intermediate 2 [cytoplasm]" = "NADP(+) [cytoplasm]" + "zymosterol [cytoplasm]"; "YLR100W [cytoplasm]"
12	265	C-4 methyl sterol oxidase	4alpha-methylzymosterol [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "NADP(+) [cytoplasm]" + "water [cytoplasm]" + "zymosterol intermediate 1a [cytoplasm]"; "YGR060W [cytoplasm]"
12	266	C-4 methyl sterol oxidase_2	H+ [cytoplasm] + "NADPH [cytoplasm]" + "cytoplasm]" + "zymosterol intermediate 1a [cytoplasm]" = "NADP(+) [cytoplasm]" + 2 * "water [cytoplasm]" + "zymosterol intermediate 1b [cytoplasm]"; "YGR060W [cytoplasm]"
12	267	C-4 methyl sterol oxidase_3	H+ [cytoplasm] + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" + "zymosterol intermediate 1b [cytoplasm]" = "NADP(+) [cytoplasm]" + "water [cytoplasm]" + "zymosterol intermediate 1c [cytoplasm]"; "YGR060W [cytoplasm]"
12	268	C-4 sterol methyl oxidase (4,4-dimethylzymosterol)	14-demethyllanosterol [cytoplasm] + 3 * "H+ [cytoplasm]" + 3 * "NADPH [cytoplasm]" + 3 * "oxygen [cytoplasm]" = "4beta-methylzymosterol-4alpha-carboxylic acid [cytoplasm]" + 3 * "NADP(+) [cytoplasm]" + 4 * "water [cytoplasm]"; "YGR060W [cytoplasm]"
12	269	C-5 sterol desaturase	episterol [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "ergosta-5,7,24(28)-trien-3beta-ol [cytoplasm]" + "NADP(+) [cytoplasm]" + 2 * "water [cytoplasm]"; "YLR056W [cytoplasm]"
12	270	C-8 sterol isomerase	fecosterol [cytoplasm] = "episterol [cytoplasm]"; "YMR202W [cytoplasm]"
12	271	C-s24 sterol reductase	ergosta-5,7,22,24(28)-tetraen-3beta-ol [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "ergosterol [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YGL012W [endoplasmic reticulum]"
12	278	cardiolipin synthase	CDP-diacylglycerol [mitochondrion] + "phosphatidylglycerol [mitochondrion]" = "cardiolipin [mitochondrion]" + "CMP [mitochondrion]"; "YDL142C [mitochondrion]"
12	284	CDP-diacylglycerol synthase	CTP [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "phosphatidate [endoplasmic reticulum]" = "CDP-diacylglycerol [endoplasmic reticulum]" + "diphosphate [endoplasmic reticulum]"; "YBR029C [endoplasmic reticulum]"
12	285	CDP-diacylglycerol synthase_2	CTP [mitochondrion] + "H+ [mitochondrion]" + "phosphatidate [mitochondrion]" = "CDP-diacylglycerol [mitochondrion]" + "diphosphate [mitochondrion]"; "YBR029C [mitochondrion]"
12	286	ceramide-1 hydroxylase (24C)	H+ [endoplasmic reticulum] + "N-tetracosanylsphinganine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-tetracosanylphytosphingosine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]", "YDR297W [endoplasmic reticulum]"
12	287	ceramide-1 hydroxylase (24C)_2	H+ [endoplasmic reticulum] + "N-tetracosanylsphinganine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-(24-hydroxytetracosanyl)sphinganine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YMR272C [endoplasmic reticulum]"
12	288	ceramide-1 hydroxylase (26C)	H+ [endoplasmic reticulum] + "N-hexacosanylsphinganine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-hexacosanylphytosphingosine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]", "YDR297W [endoplasmic reticulum]"
12	289	ceramide-1 hydroxylase (26C)_2	H+ [endoplasmic reticulum] + "N-hexacosanylsphinganine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-(26- hydroxyhexacosanyl)sphinganine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YMR272C [endoplasmic reticulum]"
12	290	ceramide-1 synthase (24C)	sphinganine [endoplasmic reticulum] + "tetracosanoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "N-tetracosanylsphinganine

			[endoplasmic reticulum]"; "YHL003C [endoplasmic reticulum]" "YKL008C [endoplasmic reticulum]" "YPL087W [endoplasmic reticulum]"
12	291	ceramide-1 synthase (26C)	hexacosanoyl-CoA [endoplasmic reticulum] + "sphinganine [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "N-hexacosanylsphinganine [endoplasmic reticulum]"; "YHL003C [endoplasmic reticulum]" "YKL008C [endoplasmic reticulum]" "YPL087W [endoplasmic reticulum]"
12	292	ceramide-2 synthase (24C)	phytosphingosine [endoplasmic reticulum] + "tetracosanoyl-CoA [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "N-tetracosanylphytosphingosine [endoplasmic reticulum]"; "YBR183W [endoplasmic reticulum]" "YHL003C [endoplasmic reticulum]" "YKL008C [endoplasmic reticulum]" "YPL087W [endoplasmic reticulum]"
12	293	ceramide-2 synthase (26C)	hexacosanoyl-CoA [endoplasmic reticulum] + "phytosphingosine [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "N-hexacosanylphytosphingosine [endoplasmic reticulum]"; "YBR183W [endoplasmic reticulum]" "YHL003C [endoplasmic reticulum]" "YKL008C [endoplasmic reticulum]" "YPL087W [endoplasmic reticulum]"
12	294	ceramide-3 synthase (24C)	H+ [endoplasmic reticulum] + "N-tetracosanylphytosphingosine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-(24- hydroxytetracosanyl)phytosphingosine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YMR272C [endoplasmic reticulum]"
12	295	ceramide-3 synthase (26C)	H+ [endoplasmic reticulum] + "N-hexacosanylphytosphingosine [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" = "N-(26- hydroxyhexacosanyl)phytosphingosine [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YMR272C [endoplasmic reticulum]"
12	299	choline kinase	ATP [cytoplasm] + "choline [cytoplasm]" = "ADP [cytoplasm]" + "choline phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YLR133W [cytoplasm]"
12	300	choline phosphate cytididyltransferase	choline phosphate [cytoplasm] + "CTP [cytoplasm]" + "H+ [cytoplasm]" = "CDP-choline [cytoplasm]" + "diphosphate [cytoplasm]"; "YGR202C [cytoplasm]"
12	301	choline/ethanolaminephosphotransferase	CDP-ethanolamine [cytoplasm] + "diglyceride [cytoplasm]" = "CMP [cytoplasm]" + "H+ [cytoplasm]" + "phosphatidylethanolamine [cytoplasm]"; "YHR123W [cytoplasm]"
12	302	cholinephosphotransferase	1,2-dioleoylglycerol [endoplasmic reticulum] + "CDP-choline [endoplasmic reticulum]" = "1,2-dioleoyl-sn-glycero-3-phosphocholine [endoplasmic reticulum]" + "CMP [endoplasmic reticulum]"; "YNL130C [endoplasmic reticulum]"
12	303	cholinephosphotransferase_2	CDP-choline [endoplasmic reticulum] + "diglyceride [endoplasmic reticulum]" = "CMP [endoplasmic reticulum]" + "phosphatidylcholine [endoplasmic reticulum]"; "YNL130C [endoplasmic reticulum]"
12	309	cis-prenyltransferase step 01	farnesyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "geranylgeranyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	310	cis-prenyltransferase step 02	geranylgeranyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + 3 * "H+ [lipid particle]" + "pentaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	311	cis-prenyltransferase step 03	isopentenyl diphosphate [lipid particle] + "pentaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "hexaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	312	cis-prenyltransferase step 04	3 * "H+ [lipid particle]" + "hexaprenyl diphosphate [lipid particle]" + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "heptaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	313	cis-prenyltransferase step 05	heptaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "octaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	314	cis-prenyltransferase step 06	isopentenyl diphosphate [lipid particle] + "octaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "nonaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	315	cis-prenyltransferase step 07	isopentenyl diphosphate [lipid particle] + "nonaprenyl diphosphate [lipid particle]" = "decaprenyl diphosphate [lipid particle]" + "diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	316	cis-prenyltransferase step 08	decaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "undecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	317	cis-prenyltransferase step 09	isopentenyl diphosphate [lipid particle] + "undecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "dodecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
12	318	cis-prenyltransferase step 10	dodecaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "tridecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"

12	319	cis-prenyltransferase step 11	isopentenyl diphosphate [lipid particle] + "tridecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "tetradecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]" "YMR101C [lipid particle]"
10	220	· · · · · · · · · · · · · · · · · · ·	isopentenyl diphosphate [lipid particle] + "tetradecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "pentadecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]"
12	320	cis-prenyltransferase step 12	"YMR101C [lipid particle]"
12	221		isopentenyl diphosphate [lipid particle] + "pentadecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "hexadecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]"
12	321	cis-prenymansterase step 15	"YMR101C [lipid particle]"
12	222		hexadecaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "heptadecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]"
12	322	cis-prenyitransierase step 14	"YMR101C [lipid particle]"
12	222	-i	heptadecaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "octadecaprenyl diphosphate [lipid particle]"; "YBR002C [lipid particle]"
12	323	cis-prenyltransferase step 15	"YMR101C [lipid particle]"
12	324	cis-prenyltransferase step 16	isopentenyl diphosphate [lipid particle] + "octadecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "nonadecaprenyl diphosphate [lipid particle]"; "YMR101C [lipid particle]"
12	325	cis-prenyltransferase step 17	isopentenyl diphosphate [lipid particle] + "nonadecaprenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "icosaprenyl diphosphate [lipid particle]"; "YMR101C [lipid particle]"
12	326	cis-prenyltransferase step 18	icosaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "henicosaprenyl diphosphate [lipid particle]"; "YMR101C [lipid particle]"
12	327	cis-prenyltransferase step 19	henicosaprenyl diphosphate [lipid particle] + "isopentenyl diphosphate [lipid particle]" = "diphosphate [lipid particle]" + "docosaprenyl diphosphate [lipid particle]"; "YMR101C [lipid particle]"
12	247	and showing D450 laws should be deviate down should be QLAD)	2 * "H+ [cytoplasm]" + "lanosterol [cytoplasm]" + 3 * "NADH [cytoplasm]" + 3 * "oxygen [cytoplasm]" = "4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol [cytoplasm]" + "formate [cytoplasm]" + 3
12	547	cytochrome P450 lanosterol 14-alpha-demethylase (NAD)	* "NAD(+) [cytoplasm]" + 4 * "water [cytoplasm]"; "YHR007C:YIL043C:YNL111C [cytoplasm]" "YHR007C:YKL150W:YNL111C [cytoplasm]"
10	2.40	cytochrome P450 lanosterol 14-alpha-demethylase (NADP)	2 * "H+ [cytoplasm]" + "lanosterol [cytoplasm]" + 3 * "NADPH [cytoplasm]" + 3 * "oxygen [cytoplasm]" = "4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol [cytoplasm]" + "formate [cytoplasm]" +
12	348		3 * "NADP(+) [cytoplasm]" + 4 * "water [cytoplasm]"; "YHR007C:YHR042W [cytoplasm]"
12	370	diacylglycerol acyltransferase	acyl-CoA [lipid particle] + "diglyceride [lipid particle]" = "coenzyme A [lipid particle]" + 4 * "H+ [lipid particle]" + "triglyceride [lipid particle]"; "YOR245C [lipid particle]"
12	387	dimethylallyltranstransferase	isopentenyl diphosphate [cytoplasm] + "prenyl diphosphate [cytoplasm]" = "diphosphate [cytoplasm]" + "geranyl diphosphate [cytoplasm]"; "YJL167W [cytoplasm]"
12	399	enoyl-CoA hydratase	3-hydroxyacyl-CoA [endoplasmic reticulum] = "trans-2,3-didehydroacyl-CoA [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YJL097W [endoplasmic reticulum]"
12	400	ethanolamine kinase	ATP [cytoplasm] + "ethanolamine [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "O-phosphoethanolamine [cytoplasm]"; "YDR147W [cytoplasm]" "YLR133W [cytoplasm]"
12	417	fotty, and symthese (n. C10,0)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" + "octanoate [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "decanoate [cytoplasm]" + 2 *
12	41/	arry actu synthiase (II-C 10.0)	"NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	419	fotty, agid gymthogo (n. C12)()	decanoate [cytoplasm] + 3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "laurate [cytoplasm]" + 2 *
12	410	latty acid synthase (n-C12.0)	"NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	410	fotty and symtheses (n. C1440)	3 * "H+ [cytoplasm]" + "laurate [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "myristate [cytoplasm]" + 2 *
12	419	fatty acid synthase (n-C14:0)	"NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	120	fetter and emphase (n. C14.1)	4 * "H+ [cytoplasm]" + "laurate [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 3 * "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" +
12	420	fatty acid synthase (n-C14:1)	"myristoleate [cytoplasm]" + 3 * "NADP(+) [cytoplasm]" + 3 * "water [cytoplasm]"; "YJL196C [cytoplasm]"
12	421	fotty agid symphons (n C16:0)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + "myristate [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" +
12	421	latty acto synthase (II-C10.0)	"palmitate [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	422	fatty acid synthase (n-C16:1)	4 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + "myristate [cytoplasm]" + 3 * "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 3 *
12	722	and synthese (n=010.1)	"NADP(+) [cytoplasm]" + "palmitoleate [cytoplasm]" + 3 * "water [cytoplasm]"; "YJL196C [cytoplasm]"
12	423	fatty acid synthase (n-C18:0)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" + "palmitate [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" +
<u> </u>	.25	s many acta synumese (n=e10.0)	"stearate [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"

12	424	fatty acid synthase (n-C18:1)	4 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 3 * "NADPH [cytoplasm]" + "oxygen [cytoplasm]" + "palmitate [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 3 *
	424		"NADP(+) [cytoplasm]" + "oleate [cytoplasm]" + 3 * "water [cytoplasm]"; "YJL196C [cytoplasm]"
12	425	fatty acid synthase (n-C24:0), lumped reaction	9 * "H+ [cytoplasm]" + 3 * "malonyl-CoA [cytoplasm]" + 6 * "NADPH [cytoplasm]" + "stearate [cytoplasm]" = 3 * "carbon dioxide [cytoplasm]" + 3 * "coenzyme A [cytoplasm]" + "lignocerate
	425		[cytoplasm]" + 6 * "NADP(+) [cytoplasm]" + 3 * "water [cytoplasm]"; "YCR034W:YDL015C:YLR372W [cytoplasm]"
12	426	fatty acid synthase (n-C26:0)	3 * "H+ [cytoplasm]" + "lignocerate [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "cerotate [cytoplasm]" + "cerotate [cytoplasm]" + 2 *
	-120		"NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YCR034W:YDL015C:YLR372W [cytoplasm]"
12	427	fatty acid synthase (n-C8:0), lumped reaction	acetyl-CoA [cytoplasm] + 8 * "H+ [cytoplasm]" + 3 * "malonyl-CoA [cytoplasm]" + 6 * "NADPH [cytoplasm]" = 3 * "carbon dioxide [cytoplasm]" + 4 * "coenzyme A [cytoplasm]" + 6 * "NADP(+)
	12/		[cytoplasm]" + "octanoate [cytoplasm]" + 2 * "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
		fatty acyl-ACP synthase (n-C8:0ACP), lumped reaction	acetyl-[acyl-carrier protein] [mitochondrion] + 3 * "carboxyacetyl-[acyl-carrier protein] [mitochondrion]" + 9 * "H+ [mitochondrion]" + 6 * "NADPH [mitochondrion]" = 3 * "carbon dioxide
12	428		[mitochondrion]" + 6 * "NADP(+) [mitochondrion]" + "octanoyl-[acyl-carrier protein] [mitochondrion]" + 3 * "water [mitochondrion]" + 3 * "acyl-carrier protein [mitochondrion]";
			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	429	fatty acyl-CoA synthase (n-C10:0CoA)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" + "octanoyl-CoA [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "decanoyl-CoA
			[cytoplasm]" + 2 * "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	430	fatty acyl-CoA synthase (n-C8:0CoA), lumped reaction	acetyl-CoA [cytoplasm] + 9 * "H+ [cytoplasm]" + 3 * "malonyl-CoA [cytoplasm]" + 6 * "NADPH [cytoplasm]" = 3 * "carbon dioxide [cytoplasm]" + 3 * "coenzyme A [cytoplasm]" + 6 * "NADP(+)
			[cytoplasm]" + "octanoyl-CoA [cytoplasm]" + 3 * "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	447	fatty-acyl-ACP hydrolase	lauroyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "laurate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	448	fatty-acyl-ACP hydrolase_2	myristoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "myristate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	449	fatty-acyl-ACP hydrolase_3	(Z)-tetradec-7-enoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "myristoleate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	450	fatty-acyl-ACP hydrolase_4	palmitoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "palmitate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	451	fatty-acyl-ACP hydrolase_5	cis-palmitoleoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "palmitoleate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	452	fatty-acyl-ACP hydrolase_6	stearoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "stearate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	453	fatty-acyl-ACP hydrolase_7	cis-vaccenoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "oleate [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	454	fatty-acyl-ACP hydrolase_8	octadec-9-ynoyl-[acyl-carrier protein] [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "linoleic acid [cytoplasm]" + "acyl-carrier protein [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
		fatty-acyl-ACP synthase (n-C10:0ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 3 * "H+ [mitochondrion]" + 2 * "NADPH [mitochondrion]" + "octanoyl-[acyl-carrier protein] [mitochondrion]" = "carbon dioxide [mitochondrion]"
12	455		+ "decanoyl-[acyl-carrier protein] [mitochondrion]" + 2 * "NADP(+) [mitochondrion]" + "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]";
			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
		fatty-acyl-ACP synthase (n-C12:0ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + "decanoyl-[acyl-carrier protein] [mitochondrion]" + 3 * "H+ [mitochondrion]" + 2 * "NADPH [mitochondrion]" = "carbon dioxide
12	456		[mitochondrion]" + "lauroyl-[acyl-carrier protein] [mitochondrion]" + 2 * "NADP(+) [mitochondrion]" + "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]";
			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
			carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 3 * "H+ [mitochondrion]" + "lauroyl-[acyl-carrier protein] [mitochondrion]" + 2 * "NADPH [mitochondrion]" = "carbon dioxide [mitochondrion]"
12	457	fatty-acyl-ACP synthase (n-C14:0ACP)	+ "myristoyl-[acyl-carrier protein] [mitochondrion]" + 2 * "NADP(+) [mitochondrion]" + "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]";
			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
	458	fatty-acyl-ACP synthase (n-C14:1ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 4 * "H+ [mitochondrion]" + "lauroyl-[acyl-carrier protein] [mitochondrion]" + 3 * "NADPH [mitochondrion]" + "oxygen [mitochondrion]" = "(Z)-
12			tetradec-7-enoyl-[acyl-carrier protein] [mitochondrion]" + "carbon dioxide [mitochondrion]" + 3 * "NADP(+) [mitochondrion]" + 3 * "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]";
			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	459	fatty-acyl-ACP synthase (n-C16:0ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 3 * "H+ [mitochondrion]" + "myristoyl-[acyl-carrier protein] [mitochondrion]" + 2 * "NADPH [mitochondrion]" = "carbon dioxide
	,		[mitochondrion]" + 2 * "NADP(+) [mitochondrion]" + "palmitoyl-[acyl-carrier protein] [mitochondrion]" + "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]";

			"YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	460	fatty-acyl-ACP synthase (n-C16:1ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 4 * "H+ [mitochondrion]" + "myristoyl-[acyl-carrier protein] [mitochondrion]" + 3 * "NADPH [mitochondrion]" + "oxygen [mitochondrion]" = "carbon dioxide [mitochondrion]" + "cis-palmitoleoyl-[acyl-carrier protein] [mitochondrion]" + 3 * "NADP(+) [mitochondrion]" + 3 * "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	461	fatty-acyl-ACP synthase (n-C18:0ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 3 * "H+ [mitochondrion]" + 2 * "NADPH [mitochondrion]" + "palmitoyl-[acyl-carrier protein] [mitochondrion]" = "carbon dioxide [mitochondrion]" + 2 * "NADP(+) [mitochondrion]" + "stearoyl-[acyl-carrier protein] [mitochondrion]" + "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	462	fatty-acyl-ACP synthase (n-C18:1ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 4 * "H+ [mitochondrion]" + 3 * "NADPH [mitochondrion]" + "oxygen [mitochondrion]" + "palmitoyl-[acyl-carrier protein] [mitochondrion]" = "carbon dioxide [mitochondrion]" + "cis-vaceenoyl-[acyl-carrier protein] [mitochondrion]" + 3 * "NADP(+) [mitochondrion]" + 3 * "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	463	fatty-acyl-ACP synthase (n-C18:2ACP)	carboxyacetyl-[acyl-carrier protein] [mitochondrion] + 5 * "H+ [mitochondrion]" + 4 * "NADPH [mitochondrion]" + 2 * "oxygen [mitochondrion]" + "palmitoyl-[acyl-carrier protein] [mitochondrion]" = "carbon dioxide [mitochondrion]" + 4 * "NADP(+) [mitochondrion]" + "octadec-9-ynoyl-[acyl-carrier protein] [mitochondrion]" + 5 * "water [mitochondrion]" + "acyl-carrier protein [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	464	fatty-acyl-CoA synthase (n-C12:0CoA)	decanoyl-CoA [cytoplasm] + 3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "lauroyl-CoA [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	465	fatty-acyl-CoA synthase (n-C14:0CoA)	3 * "H+ [cytoplasm]" + "lauroyl-CoA [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + "myristoyl-CoA [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	466	fatty-acyl-CoA synthase (n-C16:0CoA)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + "myristoyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" + "palmitoyl-CoA [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	467	fatty-acyl-CoA synthase (n-C18:0CoA)	3 * "H+ [cytoplasm]" + "malonyl-CoA [cytoplasm]" + 2 * "NADPH [cytoplasm]" + "palmitoyl-CoA [cytoplasm]" = "carbon dioxide [cytoplasm]" + "coenzyme A [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" + "stearoyl-CoA [cytoplasm]" + "water [cytoplasm]"; "YGR037C:YKL182W:YNR016C:YPL231W [cytoplasm]"
12	496	geranyltranstransferase	geranyl diphosphate [cytoplasm] + "isopentenyl diphosphate [cytoplasm]" = "2-trans,6-trans-farnesyl diphosphate [cytoplasm]" + "diphosphate [cytoplasm]"; "YJL167W [cytoplasm]"
12	532	glycerol-3-phosphate/dihydroxyacetone phosphate acyltransferase	acyl-CoA [endoplasmic reticulum] + "glycerone phosphate [endoplasmic reticulum]" = "acylglycerone phosphates [endoplasmic reticulum]" + "coenzyme A [endoplasmic reticulum]"; "YBL011W [endoplasmic reticulum]" "YKR067W [endoplasmic reticulum]"
12	533	glycerol-3-phosphate/dihydroxyacetone phosphate acyltransferase_2	acyl-CoA [lipid particle] + "glycerone phosphate [lipid particle]" = "acylglycerone phosphates [lipid particle]" + "coenzyme A [lipid particle]"; "YKR067W [lipid particle]"
12	534	glycerol-3-phosphate/dihydroxyacetone phosphate acyltransferase_3	acyl-CoA [endoplasmic reticulum] + "sn-glycerol 3-phosphate [endoplasmic reticulum]" = "1-acyl-sn-glycerol 3-phosphate [endoplasmic reticulum]" + "coenzyme A [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]"; "YBL011W [endoplasmic reticulum]" "YKR067W [endoplasmic reticulum]"
12	535	glycerol-3-phosphate/dihydroxyacetone phosphate acyltransferase_4	acyl-CoA [lipid particle] + "sn-glycerol 3-phosphate [lipid particle]" = "l-acyl-sn-glycerol 3-phosphate [lipid particle]" + "coenzyme A [lipid particle]" + 2 * "H+ [lipid particle]"; "YKR067W [lipid particle]"
12	598	hydroxymethylglutaryl CoA reductase	(R)-mevalonate [cytoplasm] + "coenzyme A [cytoplasm]" + 2 * "NADP(+) [cytoplasm]" = "3-hydroxy-3-methylglutaryl-CoA [cytoplasm]" + 2 * "H+ [cytoplasm]" + 2 * "NADPH [cytoplasm]"; "YLR450W [cytoplasm]" "YML075C [cytoplasm]"
12	599	hydroxymethylglutaryl CoA synthase	3-hydroxy-3-methylglutaryl-CoA [cytoplasm] + "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" = "acetoacetyl-CoA [cytoplasm]" + "acetyl-CoA [cytoplasm]" + "water [cytoplasm]"; "YML126C [cytoplasm]"
12	600	hydroxymethylglutaryl CoA synthase_2	3-hydroxy-3-methylglutaryl-CoA [mitochondrion] + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]" = "acetoacetyl-CoA [mitochondrion]" + "acetyl-CoA [mitochondrion]" + "water [mitochondrion]"; "YML126C [mitochondrion]"

	۰ ۱ ۲
а Ш	3

12	618	inositolphosphotransferase	1D-myo-inositol 1-phosphate [Golgi] + "mannosylinositol phosphorylceramide [Golgi]" = "inositol phosphomannosylinositol phosphoceramide [Golgi]"; "YDR072C [Golgi]"
12	621	IPC synthase	1D-myo-inositol 1-phosphate [Golgi] + "N-(24-hydroxytetracosanyl)sphinganine [Golgi]" = "inositol-P-ceramide B [Golgi]"; "YKL004W [Golgi]"
12	622	IPC synthase_2	1D-myo-inositol 1-phosphate [Golgi] + "N-(26-hydroxyhexacosanyl)sphinganine [Golgi]" = "inositol-P-ceramide B [Golgi]"; "YKL004W [Golgi]"
12	623	IPC synthase_3	1D-myo-inositol 1-phosphate [Golgi] + "N-(24-hydroxytetracosanyl)phytosphingosine [Golgi]" = "inositol-P-ceramide C [Golgi]"; "YKL004W [Golgi]"
12	624	IPC synthase_4	1D-myo-inositol 1-phosphate [Golgi] + "N-(26-hydroxyhexacosanyl)phytosphingosine [Golgi]" = "inositol-P-ceramide C [Golgi]"; "YKL004W [Golgi]"
12	638	isopentenyl-diphosphate D-isomerase	isopentenyl diphosphate [cytoplasm] = "prenyl diphosphate [cytoplasm]"; "YPL117C [cytoplasm]"
12	673	lanosterol synthase	(S)-2,3-epoxysqualene [cytoplasm] = "lanosterol [cytoplasm]"; "YHR072W [cytoplasm]"
12	678	leukotriene A4 hydrolase	leukotriene A4 [cytoplasm] + "water [cytoplasm]" = "(5S,6S)-di-HETE [cytoplasm]"; "YNL045W [cytoplasm]"
12	679	leukotriene A4 hydrolase_2	leukotriene A4 [nucleus] + "water [nucleus]" = "(5S,6S)-di-HETE [nucleus]"; "YNL045W [nucleus]"
12	680	leukotriene A4 hydrolase_3	leukotriene A4 [cytoplasm] + "water [cytoplasm]" = "Delta(6)-trans,Delta(8)-cis-leukotriene B4 [cytoplasm]"; "YNL045W [cytoplasm]"
12	681	leukotriene A4 hydrolase_4	leukotriene A4 [nucleus] + "water [nucleus]" = "Delta(6)-trans,Delta(8)-cis-leukotriene B4 [nucleus]"; "YNL045W [nucleus]"
12	682	leukotriene A4 hydrolase_5	leukotriene A4 [cytoplasm] + "water [cytoplasm]" = "leukotriene B4 [cytoplasm]"; "YNL045W [cytoplasm]"
12	683	leukotriene A4 hydrolase_6	leukotriene A4 [nucleus] + "water [nucleus]" = "leukotriene B4 [nucleus]"; "YNL045W [nucleus]"
12	684	lipid phosphate phosphatase	1,2-diacylglycerol 3-diphosphate [cell envelope] + "water [cytoplasm]" = 2 * "H+ [cell envelope]" + "phosphate [cytoplasm]" + "phosphatidate [cell envelope]"; "YDR503C [cell envelope]"
12	685	lysophosphatidylcholine acyltransferase	1-acylglycerophosphocholine [mitochondrion] + "fatty acid [mitochondrion]" = "phosphatidylcholine [mitochondrion]" + "water [mitochondrion]"; "YPR140W [mitochondrion]"
12	695	malonyl-CoA-ACP transacylase	malonyl-CoA [cytoplasm] + "acyl-carrier protein [cytoplasm]" = "carboxyacetyl-[acyl-carrier protein] [cytoplasm]" + "coenzyme A [cytoplasm]"; "YKL182W:YPL231W [cytoplasm]"
12	696	malonyl-CoA-ACP transacylase_2	malonyl-CoA [mitochondrion] + "acyl-carrier protein [mitochondrion]" = "carboxyacetyl-[acyl-carrier protein] [mitochondrion]" + "coenzyme A [mitochondrion]"; "YBR026C:YER061C:YHR067W:YKL055C:YKL192C:YOR221C [mitochondrion]"
12	711	mevalonate kinase (atp)	(R)-mevalonate [cytoplasm] + "ATP [cytoplasm]" = "(R)-5-phosphomevalonic acid [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YMR208W [cytoplasm]"
12	712	mevalonate kinase (ctp)	(R)-mevalonate [cytoplasm] + "CTP [cytoplasm]" = "(R)-5-phosphomevalonic acid [cytoplasm]" + "CDP [cytoplasm]" + "H+ [cytoplasm]"; "YMR208W [cytoplasm]"
12	713	mevalonate kinase (gtp)	(R)-mevalonate [cytoplasm] + "GTP [cytoplasm]" = "(R)-5-phosphomevalonic acid [cytoplasm]" + "GDP [cytoplasm]" + "H+ [cytoplasm]"; "YMR208W [cytoplasm]"
12	714	mevalonate kinase (utp)	(R)-mevalonate [cytoplasm] + "UTP [cytoplasm]" = "(R)-5-phosphomevalonic acid [cytoplasm]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YMR208W [cytoplasm]"
12	715	mevalonate pyrophoshate decarboxylase	(R)-5-diphosphomevalonic acid [cytoplasm] + "ATP [cytoplasm]" = "ADP [cytoplasm]" + "carbon dioxide [cytoplasm]" + "isopentenyl diphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YNR043W [cytoplasm]"
12	716	microsomal beta-keto-reductase	3-oxoicosanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "3-hydroxyicosanoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"
12	717	microsomal beta-keto-reductase_2	3-oxodocosanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "3-hydroxydocosanoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"
12	718	microsomal beta-keto-reductase_3	3-oxotetracosanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "3-hydroxytetracosanoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"
12	719	microsomal beta-keto-reductase_4	3-oxohexacosanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "(S)-3-hydroxyhexacosanoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"
12	720	microsomal beta-keto-reductase_5	3-oxopalmitoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "(S)-3-hydroxypalmitoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"
12	721	microsomal beta-keto-reductase 6	3-oxooctadecanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "3-hydroxyoctadecanoyl-CoA [endoplasmic reticulum]" + "NADP(+)

12	722	microsomal beta-keto-reductase_7	3-oxotetradecanoyl-CoA [endoplasmic reticulum] + "H+ [endoplasmic reticulum]" + "NADPH [endoplasmic reticulum]" = "(S)-3-hydroxytetradecanoyl-CoA [endoplasmic reticulum]" + "NADP(+) [endoplasmic reticulum]"; "YBR159W [endoplasmic reticulum]"	
12	723	MIPC synthase	GDP-alpha-D-mannose [Golgi] + "inositol-P-ceramide B [Golgi]" = "mannosylinositol phosphorylceramide [Golgi]"; "YBR036C:YPL057C [Golgi]"	
12	724	MIPC synthase_2	GDP-alpha-D-mannose [Golgi] + "inositol-P-ceramide C [Golgi]" = "mannosylinositol phosphorylceramide [Golgi]"; "YBR036C:YDR297W [Golgi]"	
12	810	palmitoyl-CoA desaturase (n-C16:0CoA -> n-C16:1CoA)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" + "palmitoyl-CoA [cytoplasm]" = "hexadec-2-enoyl-CoA [cytoplasm]" + "NADP(+) [cytoplasm]" + 2 * "water [cytoplasm]"; "YGL055W [cytoplasm]"	
12	831	phosphatidylethanolamine methyltransferase	e phosphatidylethanolamine [mitochondrion] + "S-adenosyl-L-methionine [mitochondrion]" = "H+ [mitochondrion]" + "phosphatidyl-N-methylethanolamine [mitochondrion]" + "S-adenosyl-L-homocysteine [mitochondrion]"; "YJR073C [mitochondrion]"	
12	832	phosphatidylethanolamine methyltransferase_2	hethanolamine methyltransferase_2 phosphatidylethanolamine [endoplasmic reticulum] + "S-adenosyl-L-methionine [endoplasmic reticulum]" = "H+ [endoplasmic reticulum]" + "phosphatidyl-N-methylethanolamine [endoplasmic reticulum]"; "YGR157W [endoplasmic reticulum]"	
12	833	phosphatidylglycerolphosphate synthase	3-(3-sn-phosphatidyl)-sn-glycerol 1-phosphate [mitochondrion] + "CMP [mitochondrion]" = "CDP-diacylglycerol [mitochondrion]" + "sn-glycerol 3-phosphate [mitochondrion]"; "YCL004W [mitochondrion]"	
12	834	phosphatidylinositol 3,5-bisphosphate phosphatase	1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [vacuole] + "water [vacuole]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [vacuole]" + 2 * "H+ [vacuole]" + "phosphate [vacuole]"; "YNL325C [vacuole]"	
12	835	phosphatidylinositol 3-phosphate phosphatase	1-phosphatidyl-1D-myo-inositol 3-phosphate [cytoplasm] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YJR110W [cytoplasm]" "YNL106C [cytoplasm]" "YOR109W [cytoplasm]"	
12	836	phosphatidylinositol 4,5-bisphosphate 5-phosphatase	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [cell envelope] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [cell envelope]" + 2 * "H+ [cell envelope]" + "phosphate [cytoplasm]"; "YIL002C [cell envelope]" "YNL106C [cell envelope]" "YOR109W [cell envelope]"	
12	837	phosphatidylinositol 4,5-bisphosphate 5-phosphatase_2	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [cytoplasm] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YIL002C [cytoplasm]" "YNL106C [cytoplasm]" "YOR109W [cytoplasm]"	
12	838	phosphatidylinositol 4,5-bisphosphate 5-phosphatase_3	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphate [endoplasmic reticulum]"; "YOL065C [endoplasmic reticulum]"	
12	839	phosphatidylinositol 4-kinase	1-phosphatidyl-1D-myo-inositol [Golgi] + "ATP [Golgi]" + "H+ [Golgi]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [Golgi]" + "ADP [Golgi]"; "YNL267W [Golgi]"	
12	840	phosphatidylinositol 4-kinase_2	1-phosphatidyl-1D-myo-inositol [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [nucleus]" + "ADP [nucleus]"; "YNL267W [nucleus]"	
12	841	phosphatidylinositol phosphate phosphatase	1-phosphatidyl-1D-myo-inositol 3-phosphate [mitochondrion] + "water [mitochondrion]" = "1-phosphatidyl-1D-myo-inositol [mitochondrion]" + 2 * "H+ [mitochondrion]" + "phosphate [mitochondrion]"; "YKL212W [mitochondrion]"	
12	842	phosphatidylinositol phosphate phosphatase_2	1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [mitochondrion] + "water [mitochondrion]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "phosphate [mitochondrion]"; "YKL212W [mitochondrion]"	
12	843	phosphatidylinositol phosphate phosphatase_3	1-phosphatidyl-1D-myo-inositol 4-phosphate [mitochondrion] + "water [mitochondrion]" = "1-phosphatidyl-1D-myo-inositol [mitochondrion]" + 2 * "H+ [mitochondrion]" + "phosphate [mitochondrion]"; "YKL212W [mitochondrion]"	
12	844	phosphatidylinositol phosphate phosphatase_4	1-phosphatidyl-1D-myo-inositol 3-phosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphate [endoplasmic reticulum]"; "YKL212W [endoplasmic reticulum]"	
12	845	phosphatidylinositol phosphate phosphatase_5	1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphate [endoplasmic reticulum]"; "YKL212W [endoplasmic reticulum]"	
12	846	phosphatidylinositol phosphate phosphatase_6	1-phosphatidyl-1D-myo-inositol 4-phosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphate [endoplasmic reticulum]"; "YKL212W [endoplasmic reticulum]"	
12	847	phosphatidylinositol synthase	CDP-diacylglycerol [mitochondrion] + "myo-inositol [mitochondrion]" = "1-phosphatidyl-1D-myo-inositol [mitochondrion]" + "CMP [mitochondrion]" + 2 * "H+ [mitochondrion]"; "YPR113W	
----	-------	---	---	
			[mitochondrion]"	
12	848	phosphatidylinositol synthase_2	CDP-diacylglycerol [cell envelope] + "myo-inositol [cell envelope]" = "1-phosphatidyl-1D-myo-inositol [cell envelope]" + "CMP [cytoplasm]" + 2 * "H+ [cell envelope]"; "YPR113W [cell envelope]"	
12	849	phosphatidylinositol-4-phosphate 5-kinase	1-phosphatidyl-1D-myo-inositol 4-phosphate [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [nucleus]" + "ADP [nucleus]"; "YDR208W [nucleus]"	
12	850	phosphatidylserine decarboxylase	phosphatidyl-L-serine [mitochondrion] = "carbon dioxide [mitochondrion]" + "phosphatidylethanolamine [mitochondrion]"; "YNL169C [mitochondrion]"	
12	851	phosphatidylserine decarboxylase_2	phosphatidyl-L-serine [Golgi] = "carbon dioxide [Golgi]" + "phosphatidylethanolamine [Golgi]"; "YGR170W [Golgi]"	
12	852	phosphatidylserine decarboxylase_3	phosphatidyl-L-serine [vacuole] = "carbon dioxide [vacuole]" + "phosphatidylethanolamine [vacuole]"; "YGR170W [vacuole]"	
12	853	phosphatidylserine synthase	CDP-diacylglycerol [mitochondrion] + "L-serine [mitochondrion]" = "CMP [mitochondrion]" + 2 * "H+ [mitochondrion]" + "phosphatidyl-L-serine [mitochondrion]"; "YER026C [mitochondrion]"	
12	854	phosphatidylserine synthase_2	CDP-diacy[glycerol [endoplasmic reticulum] + "L-serine [endoplasmic reticulum]" = "CMP [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphatidyl-L-serine [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + "phosphatidyl-L-serine [endoplasmic reticulum]" + 2 * "H+ [endoplasmic reticulum]" + 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2	
10	0.50			
12	828	phosphoethanolamine cytidyltransferase	CTP [cytoplasm] + "H+ [cytoplasm]" + "O-phosphoethanolamine [cytoplasm]" = "CDP-ethanolamine [cytoplasm]" + "diphosphate [cytoplasm]", "YGR00/W [cytoplasm]"	
12	867	phospholipase B	fatty acid [cell envelope] + "H+ [cell envelope]" + "sn-glycero-3-phosphocholine [cell envelope]" = "1-acylglycerophosphocholine [cell envelope]" + "water [cytoplasm]"; "YMR006C [cell envelope]" "YOL011W [cell envelope]"	
12	868	nhospholingse B 2	fatty acid [extracellular] + "H+ [extracellular]" + "sn-glycero-3-phosphocholine [extracellular]" = "1-acylglycerophosphocholine [extracellular]" + "water [extracellular]"; "YMR006C [extracellular]"	
12	000	phospholipase B_2	"YOL011W [extracellular]"	
12	869	phospholipase B_3	2 * "fatty acid [cell envelope]" + "H+ [cell envelope]" + "sn-glycero-3-phosphocholine [cell envelope]" = "phosphatidylcholine [cell envelope]" + 2 * "water [cytoplasm]"; "YMR008C [cell envelope]"	
12	870	phospholipase B_4	2 * "fatty acid [cell envelope]" + "glycerophosphatidylethanolamine [cell envelope]" = "phosphatidylethanolamine [cell envelope]" + 2 * "water [cytoplasm]"; "YMR008C [cell envelope]"	
12	873	phospholipid methyltransferase	phosphatidyl-N,N-dimethylethanolamine [mitochondrion] + "S-adenosyl-L-methionine [mitochondrion]" = "phosphatidylcholine [mitochondrion]" + "S-adenosyl-L-homocysteine [mitochondrion]";	
12	075		"YJR073C [mitochondrion]"	
12	874	nhosnholinid methyltransferase 2	phosphatidyl-N-methylethanolamine [mitochondrion] + "S-adenosyl-L-methionine [mitochondrion]" = "H+ [mitochondrion]" + "phosphatidyl-N,N-dimethylethanolamine [mitochondrion]" + "S-	
12	074	phosphonpha meanyidansierase_2	adenosyl-L-homocysteine [mitochondrion]", "YJR073C [mitochondrion]"	
12	877	phosphomevalonate kinase	(R)-5-phosphomevalonic acid [cytoplasm] + "ATP [cytoplasm]" = "(R)-5-diphosphomevalonic acid [cytoplasm]" + "ADP [cytoplasm]"; "YMR220W [cytoplasm]"	
12	894	Phytosphingosine phosphate lyase	phytosphingosine 1-phosphate [endoplasmic reticulum] = "2-hydroxyhexadecanal [endoplasmic reticulum]" + "O-phosphoethanolamine [endoplasmic reticulum]"; "YDR294C [endoplasmic reticulum]"	
12	895	Phytosphingosine synthesis	H+ [endoplasmic reticulum] + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" + "sphinganine [endoplasmic reticulum]" = "NADP(+) [endoplasmic reticulum]" +	
12	075	r nytospiningosine synthesis	"phytosphingosine [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YDR297W [endoplasmic reticulum]"	
12	896	PI3P formation by Vps34	ATP [vacuole] + "phosphatidylinositol [vacuole]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [vacuole]" + "ADP [vacuole]"; "YLR240W [vacuolar membrane]"	
12	903	nolynhosnhatidylinositol nhosnhatase	1-phosphatidyl-1D-myo-inositol 3-phosphate [cell envelope] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol [cell envelope]" + 2 * "H+ [cell envelope]" + "phosphate [cytoplasm]";	
12	,05	poryphosphala ynnositor phosphalase	"YNL106C [cell envelope]" "YOR109W [cell envelope]"	
12	904	polyphosphatidylinositol phosphatase_2	1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [cell envelope] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [cell envelope]" + 2 * "H+ [cell envelope]" + "phosphate [cytoplasm]"; "YNL106C [cell envelope]" "YOR109W [cell envelope]"	
	0.0.5		1-phosphatidyl-1D-myo-inositol 4-phosphate [cell envelope] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol [cell envelope]" + 2 * "H+ [cell envelope]" + "phosphate [cytoplasm]";	
12	905	polyphosphatidylinositol phosphatase_3	"YNL106C [cell envelope]" "YOR109W [cell envelope]"	
10	006		1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate [cytoplasm] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 3-phosphate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]";	
12	906	polyphosphatidylinositol phosphatase_4	"YNL106C [cytoplasm]" "YOR109W [cytoplasm]"	
12	007	nalunhaanhatidulinaaital nhaanhatasa 5	1-phosphatidyl-1D-myo-inositol 4-phosphate [cytoplasm] + "water [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YNL106C	
12	907	poryphosphandynnosnoi phosphatase_3	[cytoplasm]" "YOR109W [cytoplasm]"	
12	967	S-adenosyl-methionine delta-24-sterol-c-methyltransferase	S-adenosyl-L-methionine [cytoplasm] + "zymosterol [cytoplasm]" = "fecosterol [cytoplasm]" + "H+ [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YML008C [cytoplasm]"	

12	972	serine C-palmitoyltransferase	L-serine [endoplasmic reticulum] + "palmitoyl-CoA [endoplasmic reticulum]" = "3-dehydrosphinganine [endoplasmic reticulum]" + "carbon dioxide [endoplasmic reticulum]" + "coenzyme A [endoplasmic reticulum]"; "YDR062W [endoplasmic reticulum]" "YMR296C [endoplasmic reticulum]"
10	072	serine esterase	2 * "fatty acid [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "sn-glycero-3-phosphocholine [endoplasmic reticulum]" = "phosphatidylcholine [endoplasmic reticulum]" + 2 * "water
12	975		[endoplasmic reticulum]"; "YML059C [endoplasmic reticulum]"
12	984	sphinganine phosphate lyase	sphinganine 1-phosphate [endoplasmic reticulum] = "hexadecanal [endoplasmic reticulum]" + "O-phosphoethanolamine [endoplasmic reticulum]"; "YDR294C [endoplasmic reticulum]"
12	085	sphingoid base-phosphate phosphatase (phytosphingosine 1	-phytosphingosine 1-phosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "phosphate [endoplasmic reticulum]" + "phytosphingosine [endoplasmic reticulum]"; "YJL134W
12	985	phosphate)	[endoplasmic reticulum]" "YKR053C [endoplasmic reticulum]"
12	086	sphingoid base-phosphate phosphatase (sphinganine 1	-sphinganine 1-phosphate [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "phosphate [endoplasmic reticulum]" + "sphinganine [endoplasmic reticulum]"; "YJL134W [endoplasmic
12	200	phosphatase)	reticulum]" "YKR053C [endoplasmic reticulum]"
12	987	snhingolinid long chain base kinase (nhytosnhingosine)	ATP [endoplasmic reticulum] + "phytosphingosine [endoplasmic reticulum]" = "ADP [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "phytosphingosine 1-phosphate [endoplasmic
12	101	spiningonpid long chain base kinase (phytospiningosine)	reticulum]"; "YLR260W [endoplasmic reticulum]" "YOR171C [endoplasmic reticulum]"
12	988	sphingolinid long chain base kinase (sphinganine)	ATP [endoplasmic reticulum] + "sphinganine [endoplasmic reticulum]" = "ADP [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "sphinganine 1-phosphate [endoplasmic reticulum]";
	,00	springenpra rong enam ouse kinase (springanne)	"YLR260W [endoplasmic reticulum]" "YOR171C [endoplasmic reticulum]"
12	991	squalene enoxidase (NAD)	H+ [endoplasmic reticulum] + "NADH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" + "squalene [endoplasmic reticulum]" = "(S)-2,3-epoxysqualene [endoplasmic reticulum]" +
		squarene epontause (11113)	"NAD(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YGR175C:YIL043C:YNL111C [endoplasmic reticulum]" "YGR175C:YKL150W:YNL111C [endoplasmic reticulum]"
12	992	squalene epoxidase (NADP)	H+ [endoplasmic reticulum] + "NADPH [endoplasmic reticulum]" + "oxygen [endoplasmic reticulum]" + "squalene [endoplasmic reticulum]" = "(S)-2,3-epoxysqualene [endoplasmic reticulum]" +
		• • • • • • • • • • • • • • • • • • •	"NADP(+) [endoplasmic reticulum]" + "water [endoplasmic reticulum]"; "YGR175C:YHR042W [endoplasmic reticulum]"
12	993	squalene synthase	2 * "2-trans,6-trans-farnesyl diphosphate [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = 2 * "diphosphate [cytoplasm]" + "NADP(+) [cytoplasm]" + "squalene [cytoplasm]"; "YHR190W
		· · · · · · · · · · · · · · · · · · ·	[cytoplasm]"
12	994	stearoyl-CoA desaturase (n-C18:0CoA -> n-C18:1CoA)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" + "stearoyl-CoA [cytoplasm]" = "NADP(+) [cytoplasm]" + "oleoyl-CoA [cytoplasm]" + 2 * "water [cytoplasm]"; "YGL055W
		•	[cytoplasm]"
12	995	steryl ester hydrolase	ergosterol [lipid particle] + "fatty acid [lipid particle]" = "ergosterol ester [lipid particle]" + "water [lipid particle]"; "YKL140W [lipid particle]" "YLL012W [lipid particle]"
12	996	steryl ester hydrolase_2	fatty acid [lipid particle] + "fecosterol [lipid particle]" = "fecosterol ester [lipid particle]" + "water [lipid particle]"; "YKL140W [lipid particle]" "YLL012W [lipid particle]"
12	997	steryl ester hydrolase_3	fatty acid [lipid particle] + "zymosterol [lipid particle]" = "water [lipid particle]" + "zymosterol ester [lipid particle]", "YKL140W [lipid particle]" "YLL012W [lipid particle]"
12	998	steryl ester hydrolase_4	ergosterol [cell envelope] + "fatty acid [cell envelope]" = "ergosterol ester [cell envelope]" + "water [cytoplasm]"; "YLR020C [cell envelope]"
12	999	steryl ester hydrolase_5	fatty acid [cell envelope] + "fecosterol [cell envelope]" = "fecosterol ester [cell envelope]" + "water [cytoplasm]"; "YLR020C [cell envelope]"
12	1000	steryl ester hydrolase_6	fatty acid [cell envelope] + "zymosterol [cell envelope]" = "water [cytoplasm]" + "zymosterol ester [cell envelope]"; "YLR020C [cell envelope]"
12	1039	triacylglycerol lipase	diglyceride [cytoplasm] + "short-chain fatty acid [cytoplasm]" = "triglyceride [cytoplasm]"; "YDR058C [cytoplasm]"
12	1040	triacylglycerol lipase_2	diglyceride [lipid particle] + "fatty acid [lipid particle]" = "triglyceride [lipid particle]" + "water [cytoplasm]"; "YKR089C [lipid particle]" "YMR313C [lipid particle]" "YOR081C [lipid particle]"
12	1046	type II phosphatidylinositol 4-kinase	1-phosphatidyl-1D-myo-inositol [cytoplasm]" + "ATP [cytoplasm]" + "H+ [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [cytoplasm]" + "ADP [cytoplasm]"; "YJL100W [cytoplasm]"
12	1047	type II phosphatidylinositol 4-kinase_2	1-phosphatidyl-1D-myo-inositol [vacuole] + "ATP [vacuole]" + "H+ [vacuole]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [vacuole]" + "ADP [vacuole]"; "YJL100W [vacuole]"
12	1048	type II phosphatidylinositol 4-kinase_3	ATP [vacuole] + "phosphatidylinositol [vacuole]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [vacuole]" + "ADP [vacuole]"; "YJL100W [vacuole]"
12	1049	type II phosphatidylinositol 4-kinase_4	ATP [cytoplasm] + "phosphatidylinositol [cell envelope]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [cell envelope]" + "ADP [cytoplasm]"; "YJL100W [cell envelope]"
12	1055	UDP-glucose:ergosterol glucosyltransferase	ergosterol [cytoplasm] + "UDP-D-glucose [cytoplasm]" = "ergosterol 3-beta-D-glucoside [cytoplasm]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YLR189C [cytoplasm]"
12	1473	phosphatidylinositol 4-kinase_3	1-phosphatidyl-1D-myo-inositol [cell envelope] + "ATP [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 4-phosphate [cell envelope]" + "ADP [cytoplasm]"; "YJL100W [cell envelope]" "YLR305C [cell envelope]"

280

12	1474	phosphatidylinositol-4-phosphate 5-kinase_2	1-phosphatidyl-1D-myo-inositol 4-phosphate [cell envelope] + "ATP [cytoplasm]" = "1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [cell envelope]" + "ADP [cytoplasm]"; "YDR208W [cell envelope]"
12	1643	isa acyl-CoA	(S)-3-hydroxydecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1644	isa acyl-CoA_2	(S)-3-hydroxylauroyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1645	isa acyl-CoA_3	(S)-3-hydroxyhexacosanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1646	isa acyl-CoA_4	(S)-3-hydroxypalmitoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1647	isa acyl-CoA_5	3-hydroxyoctadecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1648	isa acyl-CoA_6	(S)-3-hydroxytetradecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1649	isa acyl-CoA_7	3-oxodecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1650	isa acyl-CoA_8	3-oxolauroyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1651	isa acyl-CoA_9	3-oxohexacosanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1652	isa acyl-CoA_10	3-oxopalmitoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1653	isa acyl-CoA_11	3-oxooctadecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1654	isa acyl-CoA_12	3-oxotetradecanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1655	isa acyl-CoA_13	4-hydroxybenzoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1656	isa acyl-CoA_14	acetoacetyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1657	isa acyl-CoA_15	acetyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1658	isa acyl-CoA_16	decanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1659	isa acyl-CoA_17	3'-dephospho-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1660	isa acyl-CoA_18	lauroyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1661	isa acyl-CoA_19	hexacosanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1662	isa acyl-CoA_20	3-hydroxy-3-methylglutaryl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1663	isa acyl-CoA_21	itaconyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1664	isa acyl-CoA_22	malonyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1665	isa acyl-CoA_23	oleoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1666	isa acyl-CoA_24	octanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1667	isa acyl-CoA_25	4-coumaroyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1668	isa acyl-CoA_26	palmitoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1669	isa acyl-CoA_27	pimeloyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1670	isa acyl-CoA_28	propionyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1671	isa acyl-CoA_29	stearoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1672	isa acyl-CoA_30	succinyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1673	isa acyl-CoA_31	tetracosanoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1674	isa acyl-CoA_32	myristoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1675	isa acyl-CoA_33	trans-dec-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1676	isa acyl-CoA_34	trans-dodec-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"

12	1677	isa acyl-CoA_35	trans-hexacos-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1678	isa acyl-CoA_36	hexadec-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1679	isa acyl-CoA_37	trans-octadec-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1680	isa acyl-CoA_38	trans-tetradec-2-enoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
12	1681	isa acyl-CoA_39	(S)-3-hydroxydecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1682	isa acyl-CoA_40	(S)-3-hydroxylauroyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1683	isa acyl-CoA_41	(S)-3-hydroxyhexacosanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1684	isa acyl-CoA_42	(S)-3-hydroxypalmitoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1685	isa acyl-CoA_43	3-hydroxyoctadecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1686	isa acyl-CoA_44	(S)-3-hydroxytetradecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1687	isa acyl-CoA_45	3-oxodecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1688	isa acyl-CoA_46	3-oxolauroyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1689	isa acyl-CoA_47	3-oxohexacosanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1690	isa acyl-CoA_48	3-oxopalmitoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1691	isa acyl-CoA_49	3-oxooctadecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1692	isa acyl-CoA_50	3-oxotetradecanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1693	isa acyl-CoA_51	4-hydroxybenzoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1694	isa acyl-CoA_52	acetoacetyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1695	isa acyl-CoA_53	acetyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1696	isa acyl-CoA_54	decanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1697	isa acyl-CoA_55	3'-dephospho-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1698	isa acyl-CoA_56	lauroyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1699	isa acyl-CoA_57	hexacosanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1700	isa acyl-CoA_58	3-hydroxy-3-methylglutaryl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1701	isa acyl-CoA_59	itaconyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1702	isa acyl-CoA_60	malonyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1703	isa acyl-CoA_61	oleoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1704	isa acyl-CoA_62	octanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1705	isa acyl-CoA_63	4-coumaroyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1706	isa acyl-CoA_64	palmitoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1707	isa acyl-CoA_65	pimeloyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1708	isa acyl-CoA_66	propionyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1709	isa acyl-CoA_67	stearoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
12	1710	isa acyl-CoA_68	succinyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"

2	1711	isa acyl-CoA_69	tetracosanoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1712	isa acyl-CoA_70	myristoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1713	isa acyl-CoA_71	trans-dec-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1714	isa acyl-CoA_72	trans-dodec-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1715	isa acyl-CoA_73	trans-hexacos-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1716	isa acyl-CoA_74	hexadec-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1717	isa acyl-CoA_75	trans-octadec-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1718	isa acyl-CoA_76	trans-tetradec-2-enoyl-CoA [lipid particle] -> "acyl-CoA [lipid particle]"
2	1719	isa acyl-CoA_77	palmitoleoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
2	1720	isa acyl-CoA_78	oleoyl-CoA [endoplasmic reticulum] -> "acyl-CoA [endoplasmic reticulum]"
2	1721	isa dolichol	tetradecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1722	isa dolichol_2	pentadecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1723	isa dolichol_3	hexadecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1724	isa dolichol_4	heptadecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1725	isa dolichol_5	octadecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1726	isa dolichol_6	nonadecaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1727	isa dolichol_7	icosaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1728	isa dolichol_8	henicosaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1729	isa dolichol_9	docosaprenyl diphosphate [lipid particle] -> "dolichol [lipid particle]"
2	1730	isa ergosterol ester	ergosteryl oleate [endoplasmic reticulum] -> "ergosterol ester [endoplasmic reticulum]"
2	1731	isa ergosterol ester_2	ergosteryl palmitoleate [endoplasmic reticulum] -> "ergosterol ester [endoplasmic reticulum]"
2	1732	isa fatty acid	(S)-3-methyl-2-oxopentanoate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1733	isa fatty acid_2	gamma-aminobutyrate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1734	isa fatty acid_3	8-amino-7-oxononanoate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1735	isa fatty acid_4	gamma-amino-gamma-cyanobutanoic acid [mitochondrion] -> "fatty acid [mitochondrion]"
2	1736	isa fatty acid_5	decanoate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1737	isa fatty acid_6	laurate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1738	isa fatty acid_7	palmitate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1739	isa fatty acid_8	palmitoleate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1740	isa fatty acid_9	hexadecanal [mitochondrion] -> "fatty acid [mitochondrion]"
2	1741	isa fatty acid_10	linoleic acid [mitochondrion] -> "fatty acid [mitochondrion]"
2	1742	isa fatty acid_11	octanoate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1743	isa fatty acid_12	lignocerate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1744	isa fatty acid_13	myristate [mitochondrion] -> "fatty acid [mitochondrion]"
2	1745	isa fatty acid_14	myristoleate [mitochondrion] -> "fatty acid [mitochondrion]"

12 1746	isa fatty acid_15	(S)-3-methyl-2-oxopentanoate [lipid particle] -> "fatty acid [lipid particle]"
12 1747	isa fatty acid_16	gamma-aminobutyrate [lipid particle] -> "fatty acid [lipid particle]"
12 1748	isa fatty acid_17	8-amino-7-oxononanoate [lipid particle] -> "fatty acid [lipid particle]"
12 1749	isa fatty acid_18	gamma-amino-gamma-cyanobutanoic acid [lipid particle] -> "fatty acid [lipid particle]"
12 1750	isa fatty acid_19	decanoate [lipid particle] -> "fatty acid [lipid particle]"
12 1751	isa fatty acid_20	laurate [lipid particle] -> "fatty acid [lipid particle]"
12 1752	isa fatty acid_21	palmitate [lipid particle] -> "fatty acid [lipid particle]"
12 1753	isa fatty acid_22	palmitoleate [lipid particle] -> "fatty acid [lipid particle]"
12 1754	isa fatty acid_23	hexadecanal [lipid particle] -> "fatty acid [lipid particle]"
12 1755	isa fatty acid_24	linoleic acid [lipid particle] -> "fatty acid [lipid particle]"
12 1756	isa fatty acid_25	octanoate [lipid particle] -> "fatty acid [lipid particle]"
12 1757	isa fatty acid_26	lignocerate [lipid particle] -> "fatty acid [lipid particle]"
12 1758	isa fatty acid_27	myristate [lipid particle] -> "fatty acid [lipid particle]"
12 1759	isa fatty acid_28	myristoleate [lipid particle] -> "fatty acid [lipid particle]"
12 1760	isa fatty acid_29	(S)-3-methyl-2-oxopentanoate [cell envelope] -> "fatty acid [cell envelope]"
12 1761	isa fatty acid_30	gamma-aminobutyrate [cell envelope] -> "fatty acid [cell envelope]"
12 1762	isa fatty acid_31	8-amino-7-oxononanoate [cell envelope] -> "fatty acid [cell envelope]"
12 1763	isa fatty acid_32	gamma-amino-gamma-cyanobutanoic acid [cell envelope] -> "fatty acid [cell envelope]"
12 1764	isa fatty acid_33	decanoate [cell envelope] -> "fatty acid [cell envelope]"
12 1765	isa fatty acid_34	laurate [cell envelope] -> "fatty acid [cell envelope]"
12 1766	isa fatty acid_35	palmitate [cell envelope] -> "fatty acid [cell envelope]"
12 1767	isa fatty acid_36	palmitoleate [cell envelope] -> "fatty acid [cell envelope]"
12 1768	isa fatty acid_37	hexadecanal [cell envelope] -> "fatty acid [cell envelope]"
12 1769	isa fatty acid_38	linoleic acid [cell envelope] -> "fatty acid [cell envelope]"
12 1770	isa fatty acid_39	octanoate [cell envelope] -> "fatty acid [cell envelope]"
12 1771	isa fatty acid_40	lignocerate [cell envelope] -> "fatty acid [cell envelope]"
12 1772	isa fatty acid_41	myristate [cell envelope] -> "fatty acid [cell envelope]"
12 1773	isa fatty acid_42	myristoleate [cell envelope] -> "fatty acid [cell envelope]"
12 1774	isa fatty acid_43	(S)-3-methyl-2-oxopentanoate [extracellular] -> "fatty acid [extracellular]"
12 1775	isa fatty acid_44	gamma-aminobutyrate [extracellular] -> "fatty acid [extracellular]"
12 1776	isa fatty acid_45	8-amino-7-oxononanoate [extracellular] -> "fatty acid [extracellular]"
12 1777	isa fatty acid_46	gamma-amino-gamma-cyanobutanoic acid [extracellular] -> "fatty acid [extracellular]"
12 1778	isa fatty acid_47	decanoate [extracellular] -> "fatty acid [extracellular]"
12 1779	isa fatty acid_48	laurate [extracellular] -> "fatty acid [extracellular]"

12	1780	isa fatty acid_49	palmitate [extracellular] -> "fatty acid [extracellular]"
12	1781	isa fatty acid_50	palmitoleate [extracellular] -> "fatty acid [extracellular]"
12	1782	isa fatty acid_51	hexadecanal [extracellular] -> "fatty acid [extracellular]"
12	1783	isa fatty acid_52	linoleic acid [extracellular] -> "fatty acid [extracellular]"
12	1784	isa fatty acid_53	octanoate [extracellular] -> "fatty acid [extracellular]"
12	1785	isa fatty acid_54	lignocerate [extracellular] -> "fatty acid [extracellular]"
12	1786	isa fatty acid_55	myristate [extracellular] -> "fatty acid [extracellular]"
12	1787	isa fatty acid_56	myristoleate [extracellular] -> "fatty acid [extracellular]"
12	1788	isa fatty acid_57	(S)-3-methyl-2-oxopentanoate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1789	isa fatty acid_58	gamma-aminobutyrate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1790	isa fatty acid_59	8-amino-7-oxononanoate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1791	isa fatty acid_60	gamma-amino-gamma-cyanobutanoic acid [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1792	isa fatty acid_61	decanoate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1793	isa fatty acid_62	laurate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1794	isa fatty acid_63	palmitate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1795	isa fatty acid_64	palmitoleate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1796	isa fatty acid_65	hexadecanal [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1797	isa fatty acid_66	linoleic acid [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1798	isa fatty acid_67	octanoate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1799	isa fatty acid_68	lignocerate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1800	isa fatty acid_69	myristate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1801	isa fatty acid_70	myristoleate [endoplasmic reticulum] -> "fatty acid [endoplasmic reticulum]"
12	1802	isa fatty acid_71	short-chain fatty acid [cytoplasm] -> "fatty acid [cytoplasm]"
12	1803	isa fatty acid_72	cerotic acid [lipid particle] -> "fatty acid [lipid particle]"
12	1804	isa fecosterol ester	fecosteryl oleate [endoplasmic reticulum] -> "fecosterol ester [endoplasmic reticulum]"
12	1805	isa fecosterol ester_2	fecosteryl palmitoleate [endoplasmic reticulum] -> "fecosterol ester [endoplasmic reticulum]"
12	1806	isa phosphatidylcholine	1,2-dioleoyl-sn-glycero-3-phosphocholine [endoplasmic reticulum] -> "phosphatidylcholine [endoplasmic reticulum]"
12	1807	isa short-chain fatty acid	decanoate [cytoplasm] -> "short-chain fatty acid [cytoplasm]"
12	1808	isa short-chain fatty acid_2	octanoate [cytoplasm] -> "short-chain fatty acid [cytoplasm]"
12	1809	isa zymosterol ester	zymosteryl oleate [endoplasmic reticulum] -> "zymosterol ester [endoplasmic reticulum]"
12	1810	isa zymosterol ester_2	zymosteryl palmitoleate [endoplasmic reticulum] -> "zymosterol ester [endoplasmic reticulum]"
12	1862	sterol salvage	episteryl palmitoleate [endoplasmic reticulum] ->
12	1863	sterol salvage_2	lanosteryl palmitoleate [endoplasmic reticulum] ->
13	79	4PP-IP5 depyrophosphorylation to IP6	4-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "myo-inositol hexakisphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YLR410W [cytoplasm]" "YOR163W [cytoplasm]"
13	80	4PP-IP5 pyrophosphorylation to 4,5-PP2-IP4	4-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]" = "4,5-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm]" + "water

			[cytoplasm]"; "YDR017C [cytoplasm]"
13	95	5-diphosphoinositol-1,2,3,4,6-pentakisphosphate diphosphohydrolase	5-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "myo-inositol hexakisphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YOR163W [cytoplasm]"
13	96	5-diphosphoinositol-1,2,3,4,6-pentakisphosphate synthase	ATP [cytoplasm] + "H+ [cytoplasm]" + "myo-inositol hexakisphosphate [cytoplasm]" = "5-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm]" + "ADP [cytoplasm]"; "YDR017C [cytoplasm]"
13	103	5PP-IP5 pyrophosphorylation to 4,5-PP2-IP4	5-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]" = "4,5-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm]" + "water [cytoplasm]"; "YLR410W [cytoplasm]"
13	104	5PP-IP5 pyrophosphorylation to 5,6-PP2-IP4	5-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]" = "5,6-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm]" + "water [cytoplasm]"; "YLR410W [cytoplasm]"
13	107	6PP-IP5 depyrophosphorylation to IP6	6-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "myo-inositol hexakisphosphate [cytoplasm]" + "phosphate [cytoplasm]"; "YLR410W [cytoplasm]" "YOR163W [cytoplasm]"
13	108	6PP-IP5 pyrophosphorylation to 5,6-PP2-IP4	6-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm] + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]" = "5,6-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm]" + "water [cytoplasm]"; "YDR017C [cytoplasm]"
13	389	diphosphoinositol-1,3,4,6-tetrakisphosphate diphosphohydrolase	5,6-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm] + 3 * "water [cytoplasm]" = 6 * "H+ [cytoplasm]" + "myo-inositol 1,3,4,5,6-pentakisphosphate [cytoplasm]" + 3 * "phosphate [cytoplasm]"; "YOR163W [cytoplasm]"
13	390	diphosphoinositol-1,3,4,6-tetrakisphosphate synthase	ATP [cytoplasm] + 5 * "H+ [cytoplasm]" + "myo-inositol 1,3,4,5,6-pentakisphosphate [cytoplasm]" + 2 * "phosphate [cytoplasm]" = "5,6-bis(diphospho)-1D-myo-inositol tetrakisphosphate [cytoplasm]" + "ADP [cytoplasm]" + 2 * "water [cytoplasm]"; "YDR017C [cytoplasm]"
13	612	inositol-1,3,4,5,6-pentakisphosphate 2-kinase	ATP [nucleus] + "H+ [nucleus]" + "myo-inositol 1,3,4,5,6-pentakisphosphate [nucleus]" = "ADP [nucleus]" + "myo-inositol hexakisphosphate [nucleus]"; "YDR315C [nucleus]"
13	613	inositol-1,3,4,5-triphosphate 6-kinase, nucleus	1D-myo-inositol 1,3,4,5-tetrakisphosphate [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "ADP [nucleus]" + "myo-inositol 1,3,4,5,6-pentakisphosphate [nucleus]"; "YDR173C [nucleus]"
13	614	inositol-1,4,5,6- tetrakisphosphate 3-kinase, nucleus	1D-myo-inositol 1,4,5,6-tetrakisphosphate [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "ADP [nucleus]" + "myo-inositol 1,3,4,5,6-pentakisphosphate [nucleus]"; "YDR173C [nucleus]"
13	615	inositol-1,4,5-triphosphate 6-kinase, nucleus	1D-myo-inositol 1,4,5-trisphosphate [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "1D-myo-inositol 1,4,5,6-tetrakisphosphate [nucleus]" + "ADP [nucleus]"; "YDR173C [nucleus]"
13	616	inositol-1,4,5-trisphosphate 3-kinase, nucleus	1D-myo-inositol 1,4,5-trisphosphate [nucleus] + "ATP [nucleus]" + "H+ [nucleus]" = "1D-myo-inositol 1,3,4,5-tetrakisphosphate [nucleus]" + "ADP [nucleus]"; "YDR173C [nucleus]"
13	620	IP6 pyrophosphorylation to 5PP-IP5	2 * "H+ [cytoplasm]" + "myo-inositol hexakisphosphate [cytoplasm]" + "phosphate [cytoplasm]" = "5-diphospho-1D-myo-inositol pentakisphosphate [cytoplasm]" + "water [cytoplasm]"; "YDR017C [cytoplasm]"
13	725	myo-inositol 1-phosphatase	1D-myo-inositol 1-phosphate [cytoplasm] + "water [cytoplasm]" = "myo-inositol [cytoplasm]" + "phosphate [cytoplasm]"; "YDR287W [cytoplasm]" "YHR046C [cytoplasm]"
13	726	myo-inositol-1-phosphate synthase	aldehydo-D-glucose 6-phosphate [cytoplasm] = "1D-myo-inositol 1-phosphate [cytoplasm]"; "YJL153C [cytoplasm]"
13	871	phospholipase C	1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [nucleus] + "water [nucleus]" = "1D-myo-inositol 1,4,5-trisphosphate [nucleus]" + "diglyceride [nucleus]"; "YPL268W [nucleus]"
14	48	3-hydroxy-L-kynurenine hydrolase	3-hydroxy-L-kynurenine [cytoplasm] + "water [cytoplasm]" = "3-hydroxyanthranilate [cytoplasm]" + "L-alanine [cytoplasm]"; "YLR231C [cytoplasm]"
14	61	3-hydroxyanthranilate 3,4-dioxygenase	3-hydroxyanthranilate [cytoplasm] + "oxygen [cytoplasm]" = "2-amino-3-(3-oxoprop-1-enyl)but-2-enedioate [cytoplasm]" + "H+ [cytoplasm]"; "YJR025C [cytoplasm]"
14	65	3-methyl-2-oxobutanoate decarboxylase	3-methyl-2-oxobutanoate [cytoplasm] + "H+ [cytoplasm]" = "carbon dioxide [cytoplasm]" + "isobutyraldehyde [cytoplasm]"; "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]"
14	67	3-methyl-2-oxopentanoate decarboxylase	(S)-3-methyl-2-oxopentanoate [cytoplasm] + "H+ [cytoplasm]" = "2-methylbutanal [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YDL080C [cytoplasm]" "YDR380W [cytoplasm]" "YGR087C [cytoplasm]" "YLR134W [cytoplasm]"
14	73	4-aminobutyrate transaminase	2-oxoglutarate [cytoplasm] + "gamma-aminobutyrate [cytoplasm]" = "L-glutamate [cytoplasm]" + "succinic semialdehyde [cytoplasm]"; "YGR019W [cytoplasm]"
14	78	4-methyl-2-oxopentanoate decarboxylase	4-methyl-2-oxopentanoate [cytoplasm] + "H+ [cytoplasm]" = "3-methylbutanal [cytoplasm]" + "carbon dioxide [cytoplasm]"; "YDL080C [cytoplasm]" "YDR380W [cytoplasm]"
14	81	5'-methylthioadenosine phosphorylase	5'-S-methyl-5'-thioadenosine [cytoplasm] + "phosphate [cytoplasm]" = "adenine [cytoplasm]" + "S-methyl-5-thio-alpha-D-ribose 1-phosphate [cytoplasm]"; "YLR017W [cytoplasm]"

14	159	adenosylhomocysteinase	S-adenosyl-L-homocysteine [cytoplasm] + "water [cytoplasm]" = "adenosine [cytoplasm]" + "L-homocysteine [cytoplasm]"; "YER043C [cytoplasm]"
14	184	aldehyde dehydrogenase (2-methylbutanol, NAD)	2-methylbutanal [cytoplasm] + "H+ [cytoplasm]" + "NADH [cytoplasm]" = "2-methylbutan-1-ol [cytoplasm]" + "NAD(+) [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
14	187	aldehyde dehydrogenase (2-phenylethanol, NAD)	H+ [cytoplasm] + "NADH [cytoplasm]" + "phenylacetaldehyde [cytoplasm]" = "2-phenylethanol [cytoplasm]" + "NAD(+) [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
14	197	aldehyde dehydrogenase (isoamyl alcohol, NAD)	3-methylbutanal [cytoplasm] + "H+ [cytoplasm]" + "NADH [cytoplasm]" = "isoamylol [cytoplasm]" + "NAD(+) [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
14	200	aldehyde dehydrogenase (isobutyl alcohol, NAD)	H+ [cytoplasm] + "isobutyraldehyde [cytoplasm]" + "NADH [cytoplasm]" = "isobutanol [cytoplasm]" + "NAD(+) [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
14	204	aldehyde dehydrogenase (tryptophol, NAD)	H+ [cytoplasm] + "indol-3-ylacetaldehyde [cytoplasm]" + "NADH [cytoplasm]" = "NAD(+) [cytoplasm]" + "tryptophol [cytoplasm]"; "YBR145W [cytoplasm]" "YDL168W [cytoplasm]" "YGL256W [cytoplasm]" "YMR303C [cytoplasm]" "YOL086C [cytoplasm]"
14	224	arginase	L-arginine [cytoplasm] + "water [cytoplasm]" = "ornithine [cytoplasm]" + "urea [cytoplasm]"; "YPL111W [cytoplasm]"
14	356	D1-pyrroline-5-carboxylate dehydrogenase	L-glutamic 5-semialdehyde [mitochondrion] + "NADP(+) [mitochondrion]" + "water [mitochondrion]" = 2 * "H+ [mitochondrion]" + "L-glutamate [mitochondrion]" + "NADPH [mitochondrion]"; "YHR037W [mitochondrion]"
14	507	glutamate decarboxylase	H+ [cytoplasm] + "L-glutamate [cytoplasm]" = "carbon dioxide [cytoplasm]" + "gamma-aminobutyrate [cytoplasm]"; "YMR250W [cytoplasm]"
14	609	indole-3-pyruvate decarboxylase	3-(indol-3-yl)pyruvate [cytoplasm] + "H+ [cytoplasm]" = "carbon dioxide [cytoplasm]" + "indol-3-ylacetaldehyde [cytoplasm]"; "YDR380W [cytoplasm]" "YGR087C [cytoplasm]" "YLR044C [cytoplasm]" "YLR134W [cytoplasm]"
14	642	kynurenine 3-monooxygenase	H+ [cytoplasm] + "L-kynurenine [cytoplasm]" + "NADPH [cytoplasm]" + "oxygen [cytoplasm]" = "3-hydroxy-L-kynurenine [cytoplasm]" + "NADP(+) [cytoplasm]" + "water [cytoplasm]"; "YBL098W [cytoplasm]"
14	643	L-1-pyrroline-3-hydroxy-5-carboxylate dehydrogenase	1-pyrroline-3-hydroxy-5-carboxylic acid [mitochondrion] + "NAD(+) [mitochondrion]" + 2 * "water [mitochondrion]" = "erythro-4-hydroxy-L-glutamic acid [mitochondrion]" + "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YHR037W [mitochondrion]"
14	646	L-4-hydroxyglutamate semialdehyde dehydrogenase	L-4-hydroxyglutamic semialdehyde [mitochondrion] + "NAD(+) [mitochondrion]" + "water [mitochondrion]" = "erythro-4-hydroxy-L-glutamic acid [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YHR037W [mitochondrion]"
14	652	L-asparaginase	L-asparagine [cytoplasm] + "water [cytoplasm]" = "ammonium [cytoplasm]" + "L-aspartate [cytoplasm]"; "YDR321W [cytoplasm]"
14	653	L-asparaginase_2	L-asparagine [extracellular] + "water [extracellular]" = "ammonium [extracellular]" + "L-aspartate [extracellular]"; "YLR155C [extracellular]" "YLR157C [extracellular]" "YLR158C [extracellular]" "YLR160C [extracellular]"
14	659	L-hydroxyproline dehydrogenase (NAD)	NAD(+) [mitochondrion] + "trans-4-hydroxy-L-proline [mitochondrion]" = "1-pyrroline-3-hydroxy-5-carboxylic acid [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YHR037W [mitochondrion]"
14	660	L-hydroxyproline dehydrogenase (NADP)	NADP(+) [mitochondrion] + "trans-4-hydroxy-L-proline [mitochondrion]" = "1-pyrroline-3-hydroxy-5-carboxylic acid [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADPH [mitochondrion]"; "YHR037W [mitochondrion]"
14	664	L-serine deaminase	L-serine [cytoplasm] = "ammonium [cytoplasm]" + "pyruvate [cytoplasm]"; "YCL064C [cytoplasm]"
14	665	L-serine dehydrogenase	L-serine [cytoplasm] + "NADP(+) [cytoplasm]" = "H+ [cytoplasm]" + "L-alpha-formylglycine [cytoplasm]" + "NADPH [cytoplasm]"; "YMR226C [cytoplasm]"
14	667	L-threonine deaminase	L-threonine [cytoplasm] = "2-oxobutanoate [cytoplasm]" + "ammonium [cytoplasm]"; "YCL064C [cytoplasm]"
14	669	L-tryptophan:oxygen 2,3-oxidoreductase (decyclizing)	L-tryptophan [cytoplasm] + "oxygen [cytoplasm]" = "N-formyl-L-kynurenine [cytoplasm]"; "YJR078W [cytoplasm]"
14	710	methylisocitrate lyase	(2S,3R)-3-hydroxybutane-1,2,3-tricarboxylic acid [mitochondrion] = "pyruvate [mitochondrion]" + "succinate(2-) [mitochondrion]"; "YPR006C [mitochondrion]"
14	763	nicotinate-nucleotide diphosphorylase (carboxylating)	5-O-phosphono-alpha-D-ribofuranosyl diphosphate [cytoplasm] + 2 * "H+ [cytoplasm]" + "quinolinate(2-) [cytoplasm]" = "carbon dioxide [cytoplasm]" + "diphosphate [cytoplasm]" + "nicotinic acid D- ribonucleotide [cytoplasm]"; "YFR047C [cytoplasm]"

			5-O-phosphono-alpha-D-ribofuranosyl diphosphate [mitochondrion] + 2 * "H+ [mitochondrion]" + "guinolinate(2-) [mitochondrion]" = "carbon dioxide [mitochondrion]" + "diphosphate]
14	764	nicotinate-nucleotide diphosphorylase (carboxylating)_2	[mitochondrion]" + "nicotinic acid D-ribonucleotide [mitochondrion]"; "YFR047C [mitochondrion]"
14	792	ornithine transaminase	2-oxoglutarate [cytoplasm] + "ornithine [cytoplasm]" = "L-glutamate [cytoplasm]" + "L-glutamic 5-semialdehyde [cytoplasm]"; "YLR438W [cytoplasm]"
14	010	nhanulnumuata daaarhayulasa	H+ [cytoplasm] + "keto-phenylpyruvate [cytoplasm]" = "carbon dioxide [cytoplasm]" + "phenylacetaldehyde [cytoplasm]"; "YDR380W [cytoplasm]" "YGR087C [cytoplasm]" "YLR044C [cytoplasm]"
14	020	phenyipyiuvate decarboxyiase	"YLR134W [cytoplasm]"
14	914	proline oxidase (NAD)	L-proline [mitochondrion] + "NAD(+) [mitochondrion]" = "1-pyrroline-5-carboxylate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADH [mitochondrion]"; "YLR142W [mitochondrion]"
14	936	pyrroline-5-carboxylate reductase	1-pyrroline-5-carboxylate [cytoplasm] + 2 * "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "L-proline [cytoplasm]" + "NADP(+) [cytoplasm]"; "YER023W [cytoplasm]"
14	1004	succinate-semialdehyde dehydrogenase (NADP)	NADP(+) [cytoplasm] + "succinic semialdehyde [cytoplasm]" + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "NADPH [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YBR006W [cytoplasm]"
14	3	(R,R)-butanediol dehydrogenase	(R,R)-butane-2,3-diol [cytoplasm] + "NAD(+) [cytoplasm]" = "(R)-acetoin [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YAL060W [cytoplasm]"
14	34	3',5'-bisphosphate nucleotidase	adenosine 3',5'-bismonophosphate [cytoplasm] + "water [cytoplasm]" = "AMP [cytoplasm]" + "phosphate [cytoplasm]"; "YOL064C [cytoplasm]"
14	49	3-hydroxyacyl-CoA dehydratase (3-hydroxydecanoyl-CoA)	(S)-3-hydroxydecanoyl-CoA [peroxisome] = "trans-dec-2-enoyl-CoA [peroxisome]" + "water [peroxisome]"; "YKR009C [peroxisome]"
14	50	3-hydroxyacyl-CoA dehydratase (3-hydroxydodecanoyl-CoA)	(S)-3-hydroxylauroyl-CoA [peroxisome] = "trans-dodec-2-enoyl-CoA [peroxisome]" + "water [peroxisome]"; "YKR009C [peroxisome]"
14	51	3-hydroxyacyl-CoA dehydratase (3-hydroxyhexacosyl-CoA)	trans-hexacos-2-enoyl-CoA [peroxisome] + "water [peroxisome]" = "(S)-3-hydroxyhexacosanoyl-CoA [peroxisome]"; "YKR009C [peroxisome]"
1.4	52	3-hydroxyacyl-CoA dehydratase (3-hydroxyhexadecanoyl-	
14	52	CoA)	(S)-s-nydroxypalmitoyi-CoA [peroxisome] = nexadec-2-enoyi-CoA [peroxisome] + water [peroxisome]; YKR009C [peroxisome]
14	52	3-hydroxyacyl-CoA dehydratase (3-hydroxyoctadecanoyl-	2 hudroxyaatadaanayi CoA [naravisama] = "trans aatadaa 2 anayi CoA [naravisama]" + "yyatar [naravisama]"; "VKP000C [naravisama]"
14	55	CoA)	s-nyuroxyocaaccanoyr-cox [peroxisonie] – uans-ocaacc-2-enoyr-cox [peroxisonie] , i kkoo/e [peroxisonie]
14	54	3-hydroxyacyl-CoA dehydratase (3-hydroxytetradecanoyl-	(S)-3-hydroxytetradecanoyl-CoA [neroxisome] = "trans-tetradec-2-enoyl-CoA [neroxisome]" + "water [neroxisome]" "YKR009C [neroxisome]"
		CoA)	
14	55	3-hydroxyacyl-CoA dehydrogenase (3-oxodecanoyl-CoA)	3-oxodecanoyl-CoA [peroxisome] + "H+ [peroxisome]" + "NADH [peroxisome]" = "(S)-3-hydroxydecanoyl-CoA [peroxisome]" + "NAD(+) [peroxisome]"; "YKR009C [peroxisome]"
14	56	3-hydroxyacyl-CoA dehydrogenase (3-oxodecanoyl-CoA)_2	3-oxolauroyl-CoA [peroxisome] + "H+ [peroxisome]" + "NADH [peroxisome]" = "(S)-3-hydroxylauroyl-CoA [peroxisome]" + "NAD(+) [peroxisome]"; "YKR009C [peroxisome]"
14	57	3-hydroxyacyl-CoA dehydrogenase (3-oxohexacosyl-CoA)	(S)-3-hydroxyhexacosanoyl-CoA [peroxisome] + "NAD(+) [peroxisome]" = "3-oxohexacosanoyl-CoA [peroxisome]" + "H+ [peroxisome]" + "NADH [peroxisome]"; "YKR009C [peroxisome]"
14	58	3-hydroxyacyl-CoA dehydrogenase (3-oxohexadecanoyl-CoA	3-oxopalmitoyl-CoA [peroxisome] + "H+ [peroxisome]" + "NADH [peroxisome]" = "(S)-3-hydroxypalmitoyl-CoA [peroxisome]" + "NAD(+) [peroxisome]"; "YKR009C [peroxisome]"
14	59	3-hydroxyacyl-CoA dehydrogenase (3-oxooctadecanoyl-CoA)	3-oxooctadecanoyl-CoA [peroxisome] + "H+ [peroxisome]" + "NADH [peroxisome]" = "3-hydroxyoctadecanoyl-CoA [peroxisome]" + "NAD(+) [peroxisome]"; "YKR009C [peroxisome]"
14	60	3-hydroxyacyl-CoA dehydrogenase (3-oxotetradecanoyl-CoA)	3-oxotetradecanoyl-CoA [peroxisome] + "H+ [peroxisome]" + "NADH [peroxisome]" = "(S)-3-hydroxytetradecanoyl-CoA [peroxisome]" + "NAD(+) [peroxisome]"; "YKR009C [peroxisome]"
14	115	acetyl-CoA acyltransferase (hexadecanoyl-CoA)	3-oxooctadecanoyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "palmitoyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	116	acetyl-CoA acyltransferase (tetracosanoyl-CoA)	3-oxohexacosanoyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "tetracosanoyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	117	acetyl-CoA acyltransferase (tetradecanoyl-CoA)	3-oxopalmitoyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "myristoyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	120	acetyl-CoA C-acetyltransferase (dodecanoyl)	3-oxotetradecanoyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "lauroyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	121	acetyl-CoA C-acetyltransferase (octanoyl-CoA)	3-oxodecanoyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "octanoyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	122	acetyl-CoA C-acyltransferase (decanoyl-CoA)	3-oxolauroyl-CoA [peroxisome] + "coenzyme A [peroxisome]" = "acetyl-CoA [peroxisome]" + "decanoyl-CoA [peroxisome]"; "YIL160C [peroxisome]"
14	135	acyl-CoA oxidase (decanoyl-CoA)	decanoyl-CoA [peroxisome] + "oxygen [peroxisome]" = "hydrogen peroxide [peroxisome]" + "trans-dec-2-enoyl-CoA [peroxisome]"; "YGL205W [peroxisome]"
14	136	acyl-CoA oxidase (dodecanoyl-CoA)	lauroyl-CoA [peroxisome] + "oxygen [peroxisome]" = "hydrogen peroxide [peroxisome]" + "trans-dodec-2-enoyl-CoA [peroxisome]"; "YGL205W [peroxisome]"
14	137	acyl-CoA oxidase (hexacanoyl-CoA)	hexacosanoyl-CoA [peroxisome] + "oxygen [peroxisome]" = "hydrogen peroxide [peroxisome]" + "trans-hexacos-2-enoyl-CoA [peroxisome]"; "YGL205W [peroxisome]"
14	138	acyl-CoA oxidase (hexadecanoyl-CoA)	oxygen [peroxisome] + "palmitoyl-CoA [peroxisome]" = "hexadec-2-enoyl-CoA [peroxisome]" + "hydrogen peroxide [peroxisome]"; "YGL205W [peroxisome]"

14	139	acyl-CoA oxidase (octadecanoyl-CoA)	oxygen [peroxisome] + "stearoyl-CoA [peroxisome]" = "hydrogen peroxide [peroxisome]" + "trans-octadec-2-enoyl-CoA [peroxisome]"; "YGL205W [peroxisome]"
14	140	acyl-CoA oxidase (tetradecanoyl-CoA)	myristoyl-CoA [peroxisome] + "oxygen [peroxisome]" = "hydrogen peroxide [peroxisome]" + "trans-tetradec-2-enoyl-CoA [peroxisome]"; "YGL205W [peroxisome]"
14	172	adenylyl-sulfate kinase	5'-adenylyl sulfate [cytoplasm] + "ATP [cytoplasm]" = "3'-phospho-5'-adenylyl sulfate [cytoplasm]" + "ADP [cytoplasm]" + "H+ [cytoplasm]"; "YKL001C [cytoplasm]"
14	207	allantoate amidinohydrolase	allantoate [cytoplasm] + "water [cytoplasm]" = "urea [cytoplasm]" + "ureidoglycolic acid [cytoplasm]"; "YIR029W [cytoplasm]"
14	208	allantoinase, reaction	allantoin [cytoplasm] + "water [cytoplasm]" = "allantoate [cytoplasm]" + "H+ [cytoplasm]"; "YIR027C [cytoplasm]"
14	209	allophanate hydrolase	3 * "H+ [cytoplasm]" + "urea-1-carboxylic acid [cytoplasm]" + "water [cytoplasm]" = 2 * "ammonium [cytoplasm]" + 2 * "carbon dioxide [cytoplasm]"; "YBR208C [cytoplasm]"
14	211	alpha,alpha-trehalase	alpha,alpha-trehalose [cytoplasm] + "water [cytoplasm]" = 2 * "D-glucose [cytoplasm]"; "YDR001C [cytoplasm]"
14	212	alpha,alpha-trehalase_2	alpha,alpha-trehalose [vacuole] + "water [vacuole]" = 2 * "D-glucose [vacuole]"; "YPR026W [vacuole]"
14	216	alpha-glucosidase	maltose [cytoplasm] + "water [cytoplasm]" = 2 * "D-glucose [cytoplasm]"; "YBR299W [cytoplasm]" "YGR287C [cytoplasm]" "YGR292W [cytoplasm]"
14	350	D-arabinono-1,4-lactone oxidase	D-arabinono-1,4-lactone [cytoplasm] + "oxygen [cytoplasm]" = "dehydro-D-arabinono-1,4-lactone [cytoplasm]" + "hydrogen peroxide [cytoplasm]"; "YML086C [cytoplasm]"
14	351	D-arabinose 1-dehydrogenase (NAD)	D-arabinose [cytoplasm] + "NAD(+) [cytoplasm]" = "D-arabinono-1,4-lactone [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YMR041C [cytoplasm]"
14	352	D-arabinose 1-dehydrogenase (NADP)	D-arabinose [cytoplasm] + "NADP(+) [cytoplasm]" = "D-arabinono-1,4-lactone [cytoplasm]" + "H+ [cytoplasm]" + "NADPH [cytoplasm]"; "YBR149W [cytoplasm]"
14	406	fatty acid oxidation	6 * "coenzyme A [peroxisome]" + 6 * "NAD(+) [peroxisome]" + 5 * "oxygen [peroxisome]" + "tetradecenoyl-CoA [peroxisome]" + 6 * "water [peroxisome]" = 7 * "acetyl-CoA [peroxisome]" + 6 * "H+ [peroxisome]" + 5 * "hydrogen peroxide [peroxisome]" + 6 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YOR180C [peroxisome]"
14	407	fatty acid oxidation_2	7 * "coenzyme A [peroxisome]" + "hexadec-2-enoyl-CoA [peroxisome]" + 7 * "NAD(+) [peroxisome]" + "NADPH [peroxisome]" + 7 * "oxygen [peroxisome]" + 7 * "water [peroxisome]" = 8 * "acetyl- CoA [peroxisome]" + 6 * "H+ [peroxisome]" + 7 * "hydrogen peroxide [peroxisome]" + 7 * "NADH [peroxisome]" + "NADP(+) [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]"
14	408	fatty acid oxidation_3	7 * "coenzyme A [peroxisome]" + "hexadec-2-enoyl-CoA [peroxisome]" + 7 * "NAD(+) [peroxisome]" + 6 * "oxygen [peroxisome]" + 7 * "water [peroxisome]" = 8 * "acetyl-CoA [peroxisome]" + 7 * "H+ [peroxisome]" + 6 * "hydrogen peroxide [peroxisome]" + 7 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" = 7 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" = 7 * "NADH [peroxisome
14	409	fatty acid oxidation_4	8 * "coenzyme A [peroxisome]" + 8 * "NAD(+) [peroxisome]" + "NADPH [peroxisome]" + "oleoyl-CoA [peroxisome]" + 8 * "oxygen [peroxisome]" + 8 * "water [peroxisome]" = 9 * "acetyl-CoA [peroxisome]" + 7 * "H+ [peroxisome]" + 8 * "hydrogen peroxide [peroxisome]" + 8 * "NADH [peroxisome]" + "NADP(+) [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]" "YGL205W:YNL202W:YOR180C [peroxisome]" "Y
14	410	fatty acid oxidation_5	8 * "coenzyme A [peroxisome]" + 8 * "NAD(+) [peroxisome]" + "oleoyl-CoA [peroxisome]" + 7 * "oxygen [peroxisome]" + 8 * "water [peroxisome]" = 9 * "acetyl-CoA [peroxisome]" + 8 * "H+ [peroxisome]" + 7 * "hydrogen peroxide [peroxisome]" + 8 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YOR180C [peroxisome]"
14	411	fatty acid oxidation_6	8 * "coenzyme A [peroxisome]" + 8 * "NAD(+) [peroxisome]" + 2 * "NADPH [peroxisome]" + "octadec-9-ynoyl-CoA [peroxisome]" + 8 * "oxygen [peroxisome]" + 8 * "water [peroxisome]" = 9 * "acetyl-CoA [peroxisome]" + 6 * "H+ [peroxisome]" + 8 * "hydrogen peroxide [peroxisome]" + 8 * "NADH [peroxisome]" + 2 * "NADP(+) [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]"
14	412	fatty acid oxidation_7	8 * "coenzyme A [peroxisome]" + 8 * "NAD(+) [peroxisome]" + "NADPH [peroxisome]" + "octadec-9-ynoyl-CoA [peroxisome]" + 7 * "oxygen [peroxisome]" + 8 * "water [peroxisome]" = 9 * "acetyl- CoA [peroxisome]" + 7 * "H+ [peroxisome]" + 7 * "hydrogen peroxide [peroxisome]" + 8 * "NADH [peroxisome]" + "NADP(+) [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]"
14	413	fatty acid oxidation_8	8 * "coenzyme A [peroxisome]" + 8 * "NAD(+) [peroxisome]" + "octadec-9-ynoyl-CoA [peroxisome]" + 6 * "oxygen [peroxisome]" + 8 * "water [peroxisome]" = 9 * "acetyl-CoA [peroxisome]" + 8 * "H+ [peroxisome]" + 6 * "hydrogen peroxide [peroxisome]" + 8 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" + 8 * "NADH [peroxisome]" + 8 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" + 8 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" + 8 * "NADH [peroxisome]" + 8 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C [peroxisome]" + 8 * "NADH [peroxisome]" + 8 *

Γ	1		
			6 * "coenzyme A [peroxisome]" + 6 * "NAD(+) [peroxisome]" + "NADPH [peroxisome]" + 6 * "oxygen [peroxisome]" + "tetradecenoyl-CoA [peroxisome]" + 6 * "water [peroxisome]" = / * "acetyl-
14	414	fatty acid oxidation_9	CoA [peroxisome]" + 5 * "H+ [peroxisome]" + 6 * "hydrogen peroxide [peroxisome]" + 6 * "NADH [peroxisome]" + "NADP(+) [peroxisome]"; "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W
			[peroxisome]" "YGL205W:YIL160C:YKR009C:YLR284C:YNL202W:YOR180C [peroxisome]" "YGL205W:YIL160C:YKR009C:YNL202W:YOR180C [peroxisome]"
			3 * "coenzyme A [peroxisome]" + 3 * "NAD(+) [peroxisome]" + "octanoyl-CoA [peroxisome]" + 3 * "oxygen [peroxisome]" + 3 * "water [peroxisome]" = 4 * "acetyl-CoA [peroxisome]" + 3 * "H+
14	415	fatty acid oxidation (octanoyl-CoA)	[peroxisome]" + 3 * "hydrogen peroxide [peroxisome]" + 3 * "NADH [peroxisome]"; "YGL205W:YIL160C:YKR009C [peroxisome]"
			3 * "coenzyme A [peroxisome]" + 3 * "NAD(+) [peroxisome]" + 3 * "oxygen [peroxisome]" + "tetracosanoyl-CoA [peroxisome]" + 3 * "water [peroxisome]" = 3 * "acetyl-CoA [peroxisome]" + 3 * "H+
14	416	fatty acid oxidation (tetradecansoyl-CoA)	[peroxisome]" + 3 * "hydrogen peroxide [peroxisome]" + 3 * "NADH [peroxisome]" + "stearoyl-CoA [peroxisome]"; "YGL205W;YIL160C;YKR009C [peroxisome]"
14	431	fatty-acidCoA ligase (decanoate)	ATP [peroxisome] + "coenzyme A [peroxisome]" + "decanoate [peroxisome]" = "AMP [peroxisome]" + "decanoyl-CoA [peroxisome]" + "diphosphate [peroxisome]": "YER015W [peroxisome]"
14	432	fatty-acidCoA ligase (dodecanoate)	ATP [peroxisome] + "coenzyme A [peroxisome]" + "laurate [peroxisome]" + "diphosphate [peroxisome]" + "laurovl-CoA [peroxisome]"; "YER015W [peroxisome]"
			The standown is a standown in the standown in
14	433	fatty-acidCoA ligase (hexadecanoate)	Arr [Cytoplasm] / Coenzyme A [Cytoplasm] / pannitate [Cytoplasm] – Awr [Cytoplasm] / upnosphate [Cytoplasm] / pannitoy-CoA [Cytoplasm] , Theory (Cytoplasm] Twit240w
14	134	fatty-acid_CoA ligase (havadecanoata) 2	(cyc)nasinj = 100517 w [cyc)nasinj
14	454	laty-acidCoA ligase (liexadecalioare)_2	Arr provisonej - conzyme A (provisone) - paminate (provisone) - Arri (provisone) - uprospinate (provisone) - paminaty-con (provisone) - interventing - Arri (provisone) - uprospinate (provisone) - paminaty-con (provisone) - interventing - arri (provisone) - uprospinate (provisone) - paminaty-con (provisone) - interventing - arri (provisone) - uprospinate (provisone) - provisone) - uprospinate (provisone) -
14	435	fatty-acidCoA ligase (hexadecenoate)	ATP [cytoplasm] + "coenzyme A [cytoplasm]" + "palmitoleate [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "hexadec-2-enoyl-CoA [cytoplasm]"; "YIL009W [cytoplasm]"
			"YMR246W [cytoplasm]" "YOR317W [cytoplasm]"
14	126	fotty and CaA ligase (havedeennate) 2	ATP [peroxisome] + "coenzyme A [peroxisome]" + "palmitoleate [peroxisome]" = "AMP [peroxisome]" + "diphosphate [peroxisome]" + "hexadec-2-enoyl-CoA [peroxisome]"; "YER015W
14	430	lany-acidCoA ligase (nexadecenoale)_2	[peroxisome]"
14	437	fatty-acidCoA ligase (n-C24:0)	ATP [peroxisome] + "coenzyme A [peroxisome]" + "lignocerate [peroxisome]" = "AMP [peroxisome]" + "diphosphate [peroxisome]" + "tetracosanoyl-CoA [peroxisome]"; "YBR041W [peroxisome]"
14	438	fatty-acidCoA ligase (n-C26:0)	ATP [peroxisome] + "cerotate [peroxisome]" + "coenzyme A [peroxisome]" = "AMP [peroxisome]" + "diphosphate [peroxisome]" + "hexacosanoyl-CoA [peroxisome]"; "YBR041W [peroxisome]"
			ATP [cytoplasm] + "coenzyme A [cytoplasm]" + "stearate [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "stearoyl-CoA [cytoplasm]"; "YIL009W [cytoplasm]" "YMR246W
14	439	fatty-acidCoA ligase (octadecanoate)	[cytoplasm]" "YOR317W [cytoplasm]"
			ATP [cytoplasm] + "coenzyme A [cytoplasm]" + "oleate [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "oleoyl-CoA [cytoplasm]"; "YIL009W [cytoplasm]" "YMR246W
14	440	fatty-acidCoA ligase (octadecenoate)	[cytoplasm]" "YOR317W [cytoplasm]"
			ATP [cvtoplasm] + "coenzyme A [cvtoplasm]" + "linoleic acid [cvtoplasm]" = "AMP [cvtoplasm]" + "diphosphate [cvtoplasm]" + "cetadec-9-vnovl-CoA [cvtoplasm]"; "YIL009W [cvtoplasm]"
14	441	fatty-acidCoA ligase (octadecynoate)	"YMR246W [cvtoplasm]" "YOR317W [cvtoplasm]"
14	442	fatty-acid_CoA ligase (octanoste)	ATP Instructional + "octanoste Instructional" = "AMP Instructional" + "dishosshate Instructional" + "octanost.CoA Instructional" - "VEP015W Instructional"
14	772	larty-acidcorr rigase (octanoace)	Arr provisonej - conzyne A (provisone) - ocanoac (provisone) - Ana (provisone) - ocanoy-cos (provisone) - fictory (provisone)
14	443	fatty-acidCoA ligase (tetradecanoate)	AIP [cytoplasm] + "coenzyme A [cytoplasm]" + "myristate [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "myristoyl-CoA [cytoplasm]"; "YIL009W [cytoplasm]" "YMK246W
			[cytoplasm]" "YOR317W [cytoplasm]"
14	444	fatty-acidCoA ligase (tetradecanoate)_2	ATP [peroxisome] + "coenzyme A [peroxisome]" + "myristate [peroxisome]" = "AMP [peroxisome]" + "diphosphate [peroxisome]" + "myristoyl-CoA [peroxisome]"; "YER015W [peroxisome]"
14	115	fotty and CaA ligase (tatendeenante)	ATP [cytoplasm] + "coenzyme A [cytoplasm]" + "myristoleate [cytoplasm]" = "AMP [cytoplasm]" + "diphosphate [cytoplasm]" + "tetradecenoyl-CoA [cytoplasm]"; "YIL009W [cytoplasm]"
14	445	latty-actuCOA ligase (leffadecentrate)	"YMR246W [cytoplasm]" "YOR317W [cytoplasm]"
14	446	fatty-acidCoA ligase (tetradecenoate)_2	ATP [peroxisome] + "coenzyme A [peroxisome]" + "myristoleate [peroxisome]" = "AMP [peroxisome]" + "diphosphate [peroxisome]" + "tetradecenoyl-CoA [peroxisome]"; "YER015W [peroxisome]"
14	476	formaldehyde dehydrogenase	formaldehyde [cytoplasm] + "glutathione [cytoplasm]" + "NAD(+) [cytoplasm]" = "H+ [cytoplasm]" + "NADH [cytoplasm]" + "S-formylglutathione [cytoplasm]"; "YDL168W [cytoplasm]"
14	478	formate dehydrogenase	formate [cytoplasm] + "NAD(+) [cytoplasm]" = "carbon dioxide [cytoplasm]" + "NADH [cytoplasm]"; "YOR388C [cytoplasm]" "YPL275W [cytoplasm]" "YPL276W [cytoplasm]"
14	497	glucan 1,4-alpha-glucosidase	glycogen [cytoplasm] + "water [cytoplasm]" = "D-glucose [cytoplasm]"; "YPR184W [cytoplasm]"
14	498	glucan 1,4-alpha-glucosidase, vacuole	glycogen [vacuole] + "water [vacuole]" = "D-glucose [vacuole]"; "YIL099W [vacuole]"
14	536	glycerophosphodiester phosphodiesterase	sn-glycero-3-phosphocholine [cytoplasm] + "water [cytoplasm]" = "choline [cytoplasm]" + "H+ [cytoplasm]" + "sn-glycerol 3-phosphate [cytoplasm]"; "YPL110C [cytoplasm]"

Aı
ıha
ng

		(glycerophosphocholine)	
14	548	glycogen phosphorylase	glycogen [cytoplasm] + "phosphate [cytoplasm]" = "D-glucose 1-phosphate [cytoplasm]"; "YPR160W [cytoplasm]"
14	593	hydroxyacylglutathione hydrolase	(R)-S-lactoylglutathione [cytoplasm] + "water [cytoplasm]" = "(R)-lactate [cytoplasm]" + "glutathione [cytoplasm]" + "H+ [cytoplasm]"; "YDR272W [cytoplasm]"
14	594	hydroxyacylglutathione hydrolase_2 (R)-S-lactoylglutathione [mitochondrion] + "water [mitochondrion]" = "(R)-lactate [mitochondrion]" + "glutathione [mitochondrion]" + "H+ [mitochondrion]"; "YOR040W [mitochondrion]"	
14	625	IPS phospholipase C	inositol phosphosphingolipid [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "1D-myo-inositol 3-phosphate [endoplasmic reticulum]" + "ceramide [endoplasmic reticulum]"; "YER019W
	020		[endoplasmic reticulum]"
14	626	IPS phospholipase C_2	inositol phosphosphingolipid [mitochondrion] + "water [mitochondrion]" = "1D-myo-inositol 3-phosphate [mitochondrion]" + "ceramide [mitochondrion]"; "YER019W [mitochondrion]"
14	632	isocitrate dehydrogenase (NADP+)_2	isocitrate(3-) [peroxisome] + "NADP(+) [peroxisome]" = "2-oxoglutarate [peroxisome]" + "carbon dioxide [peroxisome]" + "NADPH [peroxisome]"; "YNL009W [peroxisome]"
14	672	lactoylglutathione lyase	glutathione [cytoplasm] + "methylglyoxal [cytoplasm]" = "(R)-S-lactoylglutathione [cytoplasm]"; "YML004C [cytoplasm]"
14	818	peroxisomal acyl-CoA thioesterase	decanoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "decanoate [peroxisome]" + "H+ [peroxisome]"; "YJR019C [peroxisome]"
14	819	peroxisomal acyl-CoA thioesterase_2	lauroyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "laurate [peroxisome]"; "YJR019C [peroxisome]"
14	820	peroxisomal acyl-CoA thioesterase_3	tetracosanoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "lignocerate [peroxisome]"; "YJR019C [peroxisome]"
14	821	peroxisomal acyl-CoA thioesterase_4	palmitoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "palmitate [peroxisome]"; "YJR019C [peroxisome]"
14	822	peroxisomal acyl-CoA thioesterase_5	myristoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "myristate [peroxisome]"; "YJR019C [peroxisome]"
14	823	peroxisomal acyl-CoA thioesterase_6	stearoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "stearate [peroxisome]"; "YJR019C [peroxisome]"
14	824	peroxisomal acyl-CoA thioesterase_7	octanoyl-CoA [peroxisome] + "water [peroxisome]" = "coenzyme A [peroxisome]" + "H+ [peroxisome]" + "octanoate [peroxisome]"; "YJR019C [peroxisome]"
14	829	phosphatidyl glycerol phospholipase C	phosphatidylglycerol [lipid particle] + "water [lipid particle]" = "diglyceride [lipid particle]" + "sn-glycerol 3-phosphate [lipid particle]"; "YPL206C [lipid particle]"
14	830	phosphatidyl glycerol phospholipase C_2	phosphatidylglycerol [mitochondrion] + "water [mitochondrion]" = "diglyceride [mitochondrion]" + "sn-glycerol 3-phosphate [mitochondrion]"; "YPL206C [mitochondrion]"
14	856	nhosnhoadenylyl-sulfate reductase (thioredoxin)	3'-phospho-5'-adenylyl sulfate [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = "adenosine 3',5'-bismonophosphate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "sulphite [cytoplasm]" + "thioredoxin disulfide
1-1	050	phosphoudenyryr sunute reductase (unoredoxin)	[cytoplasm]"; "YGR209C:YPR167C [cytoplasm]" "YLR043C:YPR167C [cytoplasm]"
14	872	phospholipase D	phosphatidylcholine [cell envelope] + "water [cytoplasm]" = "choline [cell envelope]" + "phosphatidate [cell envelope]"; "YKR031C [cell envelope]"
14	968	S-formylglutathione hydralase	S-formylglutathione [cytoplasm] + "water [cytoplasm]" = "formate [cytoplasm]" + "glutathione [cytoplasm]" + "H+ [cytoplasm]"; "YJL068C [cytoplasm]"
14	1005	sucrose hydrolyzing enxyme	sucrose [extracellular] + "water [extracellular]" = "D-fructose [extracellular]" + "D-glucose [extracellular]"; "YIL162W [extracellular]"
14	1006	sulfate adenylyltransferase	ATP [cytoplasm] + "H+ [cytoplasm]" + "sulphate [cytoplasm]" = "5'-adenylyl sulfate [cytoplasm]" + "diphosphate [cytoplasm]"; "YJR010W [cytoplasm]"
14	1008	sulfite reductase (NADPH2)	hydrogen sulfide [cytoplasm] + 3 * "NADP(+) [cytoplasm]" + 3 * "water [cytoplasm]" = 5 * "H+ [cytoplasm]" + 3 * "NADPH [cytoplasm]" + "sulphite [cytoplasm]"; "YFR030W [cytoplasm]" "YJR137C [cytoplasm]"
14	1062	urea carboxylase	ATP [cytoplasm] + "bicarbonate [cytoplasm]" + "urea [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]" + "urea-1-carboxylic acid [cytoplasm]"; "YBR208C [cytoplasm]"
14	1063	ureidoglycolate hydrolase	2 * "H+ [cytoplasm]" + "ureidoglycolic acid [cytoplasm]" + "water [cytoplasm]" = 2 * "ammonium [cytoplasm]" + "carbon dioxide [cytoplasm]" + "glyoxylate [cytoplasm]"; "YIR032C [cytoplasm]"
14	1080	xylitol dehydrogenase (D-xyulose-forming)	NAD(+) [cytoplasm] + "xylitol [cytoplasm]" = "D-xylulose [cytoplasm]" + "H+ [cytoplasm]" + "NADH [cytoplasm]"; "YLR070C [cytoplasm]"
14	1081	xylose reductase	D-xylose [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "NADP(+) [cytoplasm]" + "xylitol [cytoplasm]"; "YHR104W [cytoplasm]"
14	1082	xylulokinase	ATP [cytoplasm] + "D-xylulose [cytoplasm]" = "ADP [cytoplasm]" + "D-xylulose 5-phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YGR194C [cytoplasm]"
14	786	O-succinylhomoserine lyase (elimination)	O-succinyl-L-homoserine [cytoplasm] + "water [cytoplasm]" = "2-oxobutanoate [cytoplasm]" + "ammonium [cytoplasm]" + "H+ [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YML082W [cytoplasm]"
15	176	alcohol acetyltransferase (2-methylbutanol)	2-methylbutan-1-ol [cytoplasm] + "acetyl-CoA [cytoplasm]" = "2-methylbutyl acetate [cytoplasm]" + "coenzyme A [cytoplasm]"; "YGR177C [cytoplasm]" "YOR377W [cytoplasm]"
15	177	alcohol acetyltransferase (ethanol)	acetyl-CoA [cytoplasm] + "ethanol [cytoplasm]" = "coenzyme A [cytoplasm]" + "ethyl acetate [cytoplasm]"; "YGR177C [cytoplasm]" "YOR377W [cytoplasm]"
15	178	alcohol acetyltransferase (isoamyl alcohol)	acetyl-CoA [cytoplasm] + "isoamylol [cytoplasm]" = "coenzyme A [cytoplasm]" + "isoamyl acetate [cytoplasm]"; "YGR177C [cytoplasm]" "YOR377W [cytoplasm]"
·			

15	179	alcohol acetyltransferase (isobutyl alcohol)	acetyl-CoA [cytoplasm] + "isobutanol [cytoplasm]" = "coenzyme A [cytoplasm]" + "isobutyl acetate [cytoplasm]"; "YGR177C [cytoplasm]" "YOR377W [cytoplasm]"	
15	180	alcohol acetyltransferase (phenylethanol alcohol) 2-phenylethanol [cytoplasm] + "acetyl-CoA [cytoplasm]" = "coenzyme A [cytoplasm]" + "phenethyl acetate [cytoplasm]"; "YGR177C [cytoplasm]" "YOR377W [cytoplasm]"		
15	282	catalase 2 * "hydrogen peroxide [cytoplasm]" = "oxygen [cytoplasm]" + 2 * "water [cytoplasm]"; "YGR088W [cytoplasm]"		
15	283	catalase_2	2 * "hydrogen peroxide [peroxisome]" = "oxygen [peroxisome]" + 2 * "water [peroxisome]"; "YDR256C [peroxisome]"	
15	386	dihydroxyacetone kinase	ATP [cytoplasm] + "glycerone [cytoplasm]" = "ADP [cytoplasm]" + "glycerone phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YFL053W [cytoplasm]" "YML070W [cytoplasm]"	
15	523	glutathione peroxidase, mitochondria	2 * "glutathione [mitochondrion]" + "hydrogen peroxide [mitochondrion]" = "glutathione disulfide [mitochondrion]" + 2 * "water [mitochondrion]"; "YPL059W [mitochondrion]"	
15	590	hydrogen peroxide reductase (thioredoxin)	hydrogen peroxide [cytoplasm] + "thioredoxin dithiol [cytoplasm]" = 2 * "water [cytoplasm]" + "thioredoxin disulfide [cytoplasm]"; "YDR453C:YGR209C [cytoplasm]" "YDR453C:YLR043C [cytoplasm]"	
15	591	hydrogen peroxide reductase (thioredoxin)_2	hydrogen peroxide [mitochondrion] + "thioredoxin dithiol [mitochondrion]" = 2 * "water [mitochondrion]" + "thioredoxin disulfide [mitochondrion]"; "YBL064C:YCR083W [mitochondrion]"	
15	592	hydrogen peroxide reductase (thioredoxin)_3	hydrogen peroxide [peroxisome] + "thioredoxin dithiol [peroxisome]" = 2 * "water [peroxisome]" + "thioredoxin disulfide [peroxisome]"; "YGR209C:YLR109W [peroxisome]" "YLR043C:YLR109W [peroxisome]"	
15	663	L-lactaldehyde:NADP+ 1-oxidoreductase	H+ [cytoplasm] + "methylglyoxal [cytoplasm]" + "NADPH [cytoplasm]" = "(S)-lactaldehyde [cytoplasm]" + "NADP(+) [cytoplasm]"; "YHR104W [cytoplasm]" "YOL151W [cytoplasm]"	
15	1023	thioredoxin	hydrogen peroxide [nucleus] + "thioredoxin dithiol [nucleus]" = 2 * "water [nucleus]" + "thioredoxin disulfide [nucleus]"; "YGR209C:YIL010W [nucleus]" "YIL010W:YLR043C [nucleus]"	
16	246	ATP synthase	ADP [mitochondrion] + 3 * "H+ [cytoplasm]" + "phosphate [mitochondrion]" = "ATP [mitochondrion]" + 2 * "H+ [mitochondrion]" + "water [mitochondrion]"; "Q0080:Q0085:Q0130:YBL099W:YBR039W:YDL004W:YDR298C:YDR322C-A:YDR377W:YJR121W:YKL016C:YLR295C:YML081C-A:YPL078C:YPL271W [mitochondrial membrane]" "Q0080:Q0085:Q0130:YBL099W:YBR039W:YDL004W:YDR298C:YDR377W:YJR121W:YKL016C:YLR295C:YML081C-A:YPL078C:YPL271W:YPR020W [mitochondrial membrane]"	
16	247	ATP synthase, Golgi Apparatus	ADP [Golgi] + 3 * "H+ [cytoplasm]" + "phosphate [Golgi]" = "ATP [Golgi]" + 2 * "H+ [Golgi]" + "water [Golgi]"; "YBR127C:YDL185W:YEL027W:YEL051W:YGR020C:YHR026W:YHR039C- A:YKL080W:YLR447C:YMR054W:YOR332W:YPL234C:YPR036W [Golgi membrane]"	
16	248	ATP synthase, vacuole	ADP [vacuole] + 3 * "H+ [cytoplasm]" + "phosphate [vacuole]" = "ATP [vacuole]" + 2 * "H+ [vacuole]" + "water [vacuole]"; "YBR127C:YDL185W:YEL027W:YEL051W:YGR020C:YHR026W:YHR039C-A:YKL080W:YLR447C:YOR270C:YOR332W:YPL234C:YPR036W [vacuolar membrane]"	
16	469	ferrocytochrome-c:hydrogen-peroxide oxidoreductase	e oxidoreductase 2 * "ferrocytochrome c [mitochondrion]" + "hydrogen peroxide [mitochondrion]" = 2 * "ferricytochrome c [mitochondrion]" + 2 * "water [mitochondrion]"; "YEL039C:YKR066C [mitochondrion]" "YJR048W:YKR066C [mitochondrion]"	
16	470	ferrocytochrome-c:oxygen oxidoreductase	4 * "ferrocytochrome c [mitochondrion]" + 2 * "H+ [mitochondrion]" + "oxygen [mitochondrion]" = 4 * "ferricytochrome c [mitochondrion]" + 2 * "H+ [cytoplasm]" + 2 * "water [mitochondrion]"; "Q0045:Q0250:Q0275:YDL067C:YEL039C:YGL187C:YGL191W:YHR051W:YIL111W:YLR038C:YLR395C:YMR256C [mitochondrial membrane]" "Q0045:Q0250:Q0275:YDL067C:YEL039C:YGL187C:YGL191W:YHR051W:YLR038C:YLR395C:YMR256C: [mitochondrial membrane]" "Q0045:Q0250:Q0275:YDL067C:YEL039C:YGL187C:YGL191W:YHR051W:YLR038C:YLR395C:YMR256C: [mitochondrial membrane]" "Q0045:Q0250:Q0275:YDL067C:YGL187C:YGL191W:YHR051W:YLL111W:YJR048W:YLR038C:YLR395C:YMR256C [mitochondrial membrane]" "Q0045:Q0250:Q0275:YDL067C:YGL187C:YGL191W:YHR051W:YLR048W:YLR038C:YLR395C:YMR256C [mitochondrial membrane]"	
16	471	ferrocytochrome-c:oxygen oxidoreductase_2	2 * "ferricytochrome c [mitochondrion]" + 1.5 * "H+ [mitochondrion]" + "ubiquinol-6 [mitochondrion]" = 2 * "ferrocytochrome c [mitochondrion]" + 1.5 * "H+ [cytoplasm]" + "ubiquinone-6 [mitochondrion]"; "Q0105:YBL045C:YDR529C:YEL024W:YEL039C:YFR033C:YGR183C:YHR001W-A:YJL166W:YOR065W:YPR191W [mitochondrial membrane]" "Q0105:YBL045C:YDR529C:YEL024W:YFR033C:YGR183C:YHR001W-A:YJL166W:YJR048W:YOR065W:YPR191W [mitochondrial membrane]"	
16	488	fumarate reductase	FADH2 [mitochondrion] + "fumarate(2-) [mitochondrion]" = "FAD [mitochondrion]" + "succinate(2-) [mitochondrion]"; "YJR051W [mitochondrion]" "YDR178W:YJL045W:YKL141W:YLL041C [mitochondrion]" "YDR178W:YKL141W:YLL041C [mitochondrion]"	
16	742	NADH dehydrogenase, cytosolic/mitochondrial	H+ [cytoplasm] + "NADH [cytoplasm]" + "ubiquinone-6 [mitochondrion]" = "NAD(+) [cytoplasm]" + "ubiquinol-6 [mitochondrion]"; "YDL085W [mitochondrial membrane]" "YMR145C [mitochondrial membrane]"	
16	745	NADH:ubiquinone oxidoreductase	2.5 * "H+ [mitochondrion]" + "NADH [mitochondrion]" + "ubiquinone-6 [mitochondrion]" = 1.5 * "H+ [cytoplasm]" + "NAD(+) [mitochondrion]" + "ubiquinol-6 [mitochondrion]"; "YML120C [mitochondrial membrane]"	

16	474	FMN reductase	FMN [cytoplasm] + "H+ [cytoplasm]" + "NADH [cytoplasm]" = "FMNH2 [cytoplasm]" + "NAD(+) [cytoplasm]"; "YLR011W [cytoplasm]"	
16	475	FMN reductase_2	FMN [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "FMNH2 [cytoplasm]" + "NADP(+) [cytoplasm]"; "YLR011W [cytoplasm]"	
17	62	3-isopropylmalate 3-methyltransferase	(2R,3S)-3-isopropylmalate(2-) [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "3-hydroxy-2-isopropyl-4-methoxy-4-oxobutanoate [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YER175C [cytoplasm]"	
17	1033	trans-aconitate 3-methyltransferase	S-adenosyl-L-methionine [cytoplasm] + "trans-aconitate(3-) [cytoplasm]" = "(2E)-3-(methoxycarbonyl)pent-2-enedioic acid [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YER175C [cytoplasm]"	
17	30	2-methylcitrate synthase	oxaloacetate(2-) [mitochondrion] + "propionyl-CoA [mitochondrion]" + "water [mitochondrion]" = "2-methylcitrate(3-) [mitochondrion]" + "coenzyme A [mitochondrion]" + "H+ [mitochondrion]"; "YPR001W [mitochondrion]"	
17	131	acid phosphatase (secreted)	FMN [extracellular] + "water [extracellular]" = "phosphate [extracellular]" + "riboflavin [extracellular]"; "YAR071W [extracellular]" "YBR093C [extracellular]"	
17	132	aconitase	2-methylcitrate(3-) [mitochondrion] = "(2S,3R)-3-hydroxybutane-1,2,3-tricarboxylic acid [mitochondrion]"; "YPR002W [mitochondrion]"	
17	340	cystathionine gamma-synthase	L-cysteine [cytoplasm] + "O-acetyl-L-homoserine [cytoplasm]" = "acetate [cytoplasm]" + "H+ [cytoplasm]" + "L-cystathionine [cytoplasm]"; "YJR130C [cytoplasm]" "YML082W [cytoplasm]"	
17	363	deoxyhypusine synthase, cytosolic/mitochondrial	spermidine [cytoplasm] + "ubiquinone-6 [mitochondrion]" + "water [cytoplasm]" = "4-aminobutanal [cytoplasm]" + "trimethylenediamine [cytoplasm]" + "ubiquinol-6 [mitochondrion]"; "YHR068W [mitochondrial membrane]"	
17	371	diacylglycerol pyrophosphate phosphatase	phosphatidate [cytoplasm] + "water [cytoplasm]" = "diglyceride [cytoplasm]" + 2 * "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YDR284C [cytoplasm]"	
17	610	inorganic diphosphatase	diphosphate [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + 2 * "phosphate [cytoplasm]"; "YBR011C [cytoplasm]"	
17	611	inorganic diphosphatase_2 diphosphate [mitochondrion] + "water [mitochondrion]" = "H+ [mitochondrion]" + 2 * "phosphate [mitochondrion]"; "YMR267W [mitochondrion]"		
17	639	itaconate-CoA ligase (ADP-forming)	ATP [mitochondrion] + "coenzyme A [mitochondrion]" + "itaconate(2-) [mitochondrion]" = "ADP [mitochondrion]" + "itaconyl-CoA [mitochondrion]" + "phosphate [mitochondrion]"; "YGR244C:YOR142W [mitochondrion]"	
17	654	L-erythro-4-hydroxyglutamate:2-oxoglutarate aminotransferase	2-oxoglutarate [cytoplasm] + "erythro-4-hydroxy-L-glutamic acid [cytoplasm]" = "4-hydroxy-2-oxoglutarate(2-) [cytoplasm]" + "L-glutamate [cytoplasm]"; "YLR027C [cytoplasm]"	
17	655	L-erythro-4-hydroxyglutamate:2-oxoglutarate aminotransferase_2	2-oxoglutarate [mitochondrion] + "erythro-4-hydroxy-L-glutamic acid [mitochondrion]" = "4-hydroxy-2-oxoglutarate(2-) [mitochondrion]" + "L-glutamate [mitochondrion]"; "YKL106W [mitochondrion]"	
17	656	L-erythro-4-hydroxyglutamate:2-oxoglutarate aminotransferase_3	2-oxoglutarate [peroxisome] + "erythro-4-hydroxy-L-glutamic acid [peroxisome]" = "4-hydroxy-2-oxoglutarate(2-) [peroxisome]" + "L-glutamate [peroxisome]"; "YLR027C [peroxisome]"	
17	860	phosphofructokinase (s7p)	ATP [cytoplasm] + "sedoheptulose 7-phosphate [cytoplasm]" = "ADP [cytoplasm]" + "H+ [cytoplasm]" + "sedoheptulose 1,7-bisphosphate [cytoplasm]"; "YGR240C:YMR205C [cytoplasm]"	
17	971	sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3- phosphate-lyase	sedoheptulose 1,7-bisphosphate [cytoplasm] = "D-erythrose 4-phosphate(2-) [cytoplasm]" + "glycerone phosphate [cytoplasm]"; "YKL060C [cytoplasm]"	
17	1010	taurine dioxygenase	2-oxoglutarate [cytoplasm] + "vxygen [cytoplasm]" + "taurine [cytoplasm]" = "aminoacetaldehyde [cytoplasm]" + "carbon dioxide [cytoplasm]" + "H+ [cytoplasm]" + "succinate(2-) [cytoplasm]" + "sulphite [cytoplasm]"; "YLL057C [cytoplasm]"	
18	152	acylation of GPI inositol at 2 position, GPI-anchor assembly, step 3	6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "palmitoyl-CoA [endoplasmic reticulum]" = "6-(alpha-D-glucosaminyl)-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]" + "coenzyme A [endoplasmic reticulum]"; "YJL091C [endoplasmic reticulum membrane]"	
18	553	GPI-anchor assembly, step 10, GPI-modification of newly synthesised protein	6-[6-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-alpha-2-(2-aminoethylphosphoryl)mannosyl-(1->4)-alpha-glucosaminyl]-O-acyl-1- phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "protein with GPI signal [endoplasmic reticulum membrane]" = "glycan G13045 [endoplasmic reticulum]"; "YDR331W:YDR434W:YHR188C:YLR088W:YLR459W [endoplasmic reticulum]"	
18	554	GPI-anchor assembly, step 11, deacylation reaction as part of glycosylation	glycan G13045 [endoplasmic reticulum] = "glycan G13046 [endoplasmic reticulum]"; "YFL025C [endoplasmic reticulum membrane]"	
18	555	GPI-anchor assembly, step 2	6-(N-acetyl-alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "water [endoplasmic reticulum]" = "6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol	

1			[endoplasmic reticulum]" + "acetate [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]"; "YMR281W [endoplasmic reticulum membrane]"	
18	556	GPI-anchor assembly, step 5	6-(alpha-D-glucosaminyl)-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "dolichyl D-mannosyl phosphate [endoplasmic reticulum]" = "6-O-[alpha-D-mannosyl-(1->4)-alpha-D- glucosaminyl]-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]" + "dolichyl phosphate [endoplasmic reticulum]"; "YJR013W:YCL052C [endoplasmic reticulum membrane]"	
18	557	GPI-anchor assembly, step 6	6-O-[alpha-D-mannosyl-(1>4)-alpha-D-glucosaminyl]-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "phosphatidylethanolamine [endoplasmic reticulum]" = "6-O-{2-O-[(2-aminosyl-(1>4)-alpha-D-glucosaminyl]-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]". "VKL 165C [endoplasmic reticulum]"	
			annuoenyn jonospion yn en annuosy (1 ~ 4)-annuo yn (1 ~ 4)-annuo yn en ar yn en annuoen yn jonospion en en annuoen yn jonospion yn en annuoen yn jonospion yn en annuoen yn yn en annuoen	
18	558	GPI-anchor assembly, step 7	$6-0-\{2-0-[(2-animotenty)]$ prosphory]-appra-D-mannosyl-(1->4)-appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-O-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-0-acyl-1-phosphandyl-1D-myo-mostor [endoplasmic retroutum] + doncnyl D-mannosyl [1->6, 2, 0, [2] appra-D-gucosaninyl-0-acyl-1-phosphandyl-1-phosphandyl-0-acyl-1-ph	
10	556		reticulum]" + "dolichyl phosphate [endoplasmic reticulum]"; "YBR004C [endoplasmic reticulum]"	
			6-O-{alpha-D-mannosyl-(1->6)-2-O-[(2-aminoethyl)phosphoryl]-alpha-D-mannosyl-(1->4)-alpha-D-glucosaminyl}-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum] + "dolichyl D-	
18	559	GPI-anchor assembly, step 8	mannosyl phosphate [endoplasmic reticulum]" = "6-O-{alpha-D-mannosyl-(1->2)-alpha-D-mannosyl-(1->6)-2-O-[(2-aminoethyl)phosphoryl]-alpha-D-mannosyl-(1->4)-alpha-D-glucosaminyl}-O-acyl-1-	
			phosphatidyl-1D-myo-inositol [endoplasmic reticulum]"; "YGL142C [endoplasmic reticulum membrane]"	
			6-O-{alpha-D-mannosyl-(1->2)-alpha-D-mannosyl-(1->6)-2-O-{(2-aminoethyl)phosphoryl]-alpha-D-mannosyl-(1->4)-alpha-D-glucosaminyl}-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic	
19	560	GPL anghor accomply, stop 0	reticulum] + "phosphatidylethanolamine [endoplasmic reticulum]" = "6-[6-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-Parlos)-4[->6)-alpha-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-alpha-mannosyl-(1->6)-2-(2-aminoethylphosphoryl)-2-(2-aminoe	
10	500	Or r-anchor assentory, step 9	aminoethylphosphoryl)mannosyl-(1>4)-alpha-glucosaminyl]-O-acyl-1-phosphatidyl-1D-myo-inositol [endoplasmic reticulum]" + "diglyceride [endoplasmic reticulum]"; "YDR302W [endoplasmic	
			reticulum membrane]" "YLL031C [endoplasmic reticulum membrane]"	
18	1817	7 membrane anchor YHR005C, myristoylated at G2, palmitoylated at C3 [cytoplasm] ->		
18	1818	membrane anchor_2 farnesylated protein with methylated C-terminal [endoplasmic reticulum] ->		
18	1819	membrane anchor_3	achor_3 geranylgeranylated protein with methylated C-terminal [endoplasmic reticulum] ->	
18	1820	membrane anchor_4	palmitoylated YAL014C [cytoplasm] ->	
18	1821	membrane anchor_5	palmitoylated YAL030W [cytoplasm] ->	
18	1822	membrane anchor_6	palmitoylated YBR023C [cytoplasm] ->	
18	1823	membrane anchor_7	palmitoylated YDR468C [cytoplasm] ->	
18	1824	membrane anchor_8	palmitoylated YEL013W [vacuolar membrane] ->	
18	1825	membrane GPI anchor	glycan G13046 [endoplasmic reticulum] ->	
19	538	glycine cleavage system	5,6,7,8-tetrahydrofolic acid [mitochondrion] + "glycine [mitochondrion]" + "NAD(+) [mitochondrion]" = "5,10-methylenetetrahydrofolate(2-) [mitochondrion]" + "ammonium [mitochondrion]" + "carbon	
.,	550		dioxide [mitochondrion]" + "NADH [mitochondrion]"; "YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	
19	541	glycine-cleavage complex (lipoamide)	glycine [mitochondrion] + "H+ [mitochondrion]" + "lipoamide [mitochondrion]" = "carbon dioxide [mitochondrion]" + "S(8)-aminomethyldihydrolipoamide [mitochondrion]";	
			"YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	
19	542	glycine-cleavage complex (lipoamide) 2	dihydrolipoamide [mitochondrion] + "NAD(+) [mitochondrion]" = "H+ [mitochondrion]" + "lipoamide [mitochondrion]" + "NADH [mitochondrion]"; "YAL044C:YDR019C:YFL018C:YMR189W	
			[mitochondrion]" "YDR148C:YFL018C:YIL125W [mitochondrion]"	
19	543	glycine-cleavage complex (lipoylprotein)	glycine [mitochondrion] + "H+ [mitochondrion]" + "lipoylprotein [mitochondrion]" = "carbon dioxide [mitochondrion]" + "S(8)-aminomethyldihydrolipoylprotein [mitochondrion]";	
			"YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	
19	544	glycine-cleavage complex (lipoylprotein)_2	5,6,7,8-tetrahydrofolic acid [mitochondrion] + "H+ [mitochondrion]" + "S(8)-aminomethyldihydrolipoylprotein [mitochondrion]" = "5,10-methylenetetrahydrofolate(2-) [mitochondrion]" + "ammonium	
			[mitochondrion]" + "dihydrolipoylprotein [mitochondrion]"; "YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	
19	545	glycine-cleavage complex (lipoylprotein)_3	dihydrolipoylprotein [mitochondrion] + "NAD(+) [mitochondrion]" = "H+ [mitochondrion]" + "lipoylprotein [mitochondrion]" + "NADH [mitochondrion]";	
1	1		"YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	

10	546	alvaina alaavaga system (linaamida)	5,6,7,8-tetrahydrofolic acid [mitochondrion] + "S(8)-aminomethyldihydrolipoamide [mitochondrion]" = "5,10-methylenetetrahydrofolate(2-) [mitochondrion]" + "ammonium [mitochondrion]" +	
19	540	ryeme-ereavage system (npoannue)	"dihydrolipoamide [mitochondrion]"; "YAL044C:YDR019C:YFL018C:YMR189W [mitochondrion]"	
19	1011	tetrahydrofolate aminomethyltransferase	(6R)-5,10-methenyltetrahydrofolic acid [mitochondrion] + "water [mitochondrion]" = "5-formyltetrahydrofolic acid [mitochondrion]" + "H+ [mitochondrion]"; "YAL044C:YBR221C:YDR019C:YER178W:YMR189W [mitochondrion]"	
20	5	1,3-beta-glucan synthase	UDP-D-glucose [cytoplasm] = "(1->3)-beta-D-glucan [cell envelope]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YGR032W [cytoplasm]" "YLR342W [cytoplasm]"	
20	7	1,6-beta-glucan synthase	UDP-D-glucose [cytoplasm] = "(1->6)-beta-D-glucan [cell envelope]" + "H+ [cytoplasm]" + "UDP [cytoplasm]"; "YGR143W [cytoplasm]" "YPR159W [cytoplasm]"	
20	151	acyl-protein thioesterase	YHR005C, myristoylated at G2, palmitoylated at C3 [cytoplasm] = "YHR005C, myristoylated at G2 [cytoplasm]"; "YLR118C [cytoplasm]"	
			beta-D-mannosyldiacetylchitobiosyldiphosphodolichol [Golgi] + "GDP-alpha-D-mannose [Golgi]" = "alpha-D-mannosyl-beta-D-mannosyldiacetylchitobiosyldiphosphodolichol [Golgi]" + "GDP [Golgi]"	
20	210	alpha 1,2-mannosyltransferase	+ "H+ [Golgi]"; "YBR205W [Golgi]" "YDR483W [Golgi]" "YJL139C [Golgi]" "YKR061W [Golgi]" "YOR099W [Golgi]"	
20	215	alpha-1,3 mannosyltransferase	dolichyl D-mannosyl phosphate [endoplasmic reticulum] + "glycan G00006 [endoplasmic reticulum]" = "glycan G10595 [endoplasmic reticulum]"; "YBL082C [endoplasmic reticulum membrane]"	
20	244	ATP diphosphohydrolase	ATP [cytoplasm] + 2 * "water [cytoplasm]" = "AMP [cytoplasm]" + 2 * "H+ [cytoplasm]" + 2 * "phosphate [cytoplasm]"; "YER005W [cytoplasm]"	
			GDP-alpha-D-mannose [cvtoplasm] + "N.N-diacetylchitobiosyldiphosphodolichol [cvtoplasm]" = "beta-D-mannosyldiacetylchitobiosyldiphosphodolichol [cvtoplasm]"; "YBR110W [endoplasmic	
20	250	beta-1,4 mannosyltransferase	reticulum membrane]"	
20	257	biotin-[acetyl-CoA-carboxylase] ligase	ATP [cytoplasm] + "biotin [cytoplasm]" + "H+ [cytoplasm]" = "biotinyl-5'-AMP [cytoplasm]" + "diphosphate [cytoplasm]"; "YDL141W [cytoplasm]"	
			farnesvlated protein with AAX motif at C terminal. X={Ser.Cvs.Met.Ala} [endoplasmic reticulum] = "farnesvlated protein with hydroxyl C-terminal [endoplasmic reticulum]": "YJR117W [endoplasmic]	
20	272	C-terminal processing of farnesylated proteins I	reticulum]"	
20	273	C-terminal processing of farnesylated proteins II	arnesylated protein with hydroxyl C-terminal [endoplasmic reticulum] = "farnesylated protein with methylated C-terminal [endoplasmic reticulum]"; "YDR410C [endoplasmic reticulum]"	
20	274	C-terminal processing of geranylgeranylated proteins I	geranylgeranylated protein with AAX motif at C terminal, X={Leu,Phe} [endoplasmic reticulum] = "geranylgeranylated protein with hydroxyl C-terminal [endoplasmic reticulum]"; "YJR117W	
	274		[endoplasmic reticulum]"	
20	275	C-terminal processing of geranylgeranylated proteins II	ssing of geranylgeranylated proteins II geranylgeranylated protein with hydroxyl C-terminal [endoplasmic reticulum] = "geranylgeranylated protein with methylated C-terminal [endoplasmic reticulum]"; "YDR410C [endoplasmic reticulum]"	
20	276	CAAX farnesultransferase	4-hydroxybenzoate [cytoplasm] + "nonaprenyl diphosphate [cytoplasm]" = "diphosphate [cytoplasm]" + 2 * "H+ [cytoplasm]" + "nonaprenyl 4-hydroxybenzoate [cytoplasm]"; "YDL090C:YKL019W	
20	270	CAAA lamesyltansielase	[cytoplasm]"	
20	392	dolichol kinase CTP [cytoplasm] + "dolichol [cytoplasm]" + "dolichyl phosphate [cytoplasm]" + "H+ [cytoplasm]"; "YMR013C [cytoplasm]"		
20	204	deliebul abconhete mennege, anotein mennegulturanformer	dolichyl D-mannosyl phosphate [endoplasmic reticulum] = "dolichyl phosphate [endoplasmic reticulum]" + "H+ [endoplasmic reticulum]" + "mannan [endoplasmic reticulum]"; "YDL093W	
20	394	donenyi-phosphate-mannoseprotein mannosyntansierase	[endoplasmic reticulum]" "YGR199W [endoplasmic reticulum]" "YJR143C [endoplasmic reticulum]" "YOR321W [endoplasmic reticulum]" "YAL023C:YDL095W [endoplasmic reticulum]"	
20	397	endopolygalacturonase	pectin [extracellular] + "water [extracellular]" = "D-galacturonate [extracellular]"; "YJR153W [extracellular]"	
20	402		(1->3)-beta-D-glucan [extracellular] + "water [extracellular]" = "D-glucose [extracellular]"; "YDR261C [extracellular]" "YGR282C [extracellular]" "YLR300W [extracellular]" "YNR067C	
20	402	exo-1,3-beta-glucan gluconydrase	[extracellular]" "YOR190W [extracellular]"	
20	402	farnesyltransferase to proteins with CAAX motif at C-	farnesyl diphosphate [endoplasmic reticulum] + "protein with CAAX motif at C terminal, X={Ser,Cys,Met,Ala} [endoplasmic reticulum]" = "farnesylated protein with AAX motif at C terminal,	
20	405	terminus, where X={ser,cys,Met,ala}	X={Ser,Cys,Met,Ala} [endoplasmic reticulum]"; "YDL090C:YKL019W [endoplasmic reticulum]"	
20	404	farnesyltransferase to proteins with CAAX motif at C-	farnesyl diphosphate [endoplasmic reticulum] + "protein with CAAX motif at C terminal, X={Leu,Phe} [endoplasmic reticulum]" = "geranylgeranylated protein with AAX motif at C terminal,	
20	404	terminus, where X={ser,cys,Met,ala}_2	X={Leu,Phe} [endoplasmic reticulum]"; "YGL155W:YKL019W [endoplasmic reticulum]"	
20	550	glycylpeptide N-tetradecanoyltransferase	glycylpeptide [cytoplasm] + "myristoyl-CoA [cytoplasm]" = "coenzyme A [cytoplasm]" + "H+ [cytoplasm]" + "N-tetradecanoylglycylpeptide [cytoplasm]"; "YLR195C [cytoplasm]"	
20	563	GTP diphosphohydrolase	GTP [cytoplasm] + 2 * "water [cytoplasm]" = "GMP [cytoplasm]" + 2 * "H+ [cytoplasm]" + 2 * "phosphate [cytoplasm]"; "YER005W [cytoplasm]"	
20	580	hnRNP arginine N-methyltransferase	L-histidine [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "H+ [cytoplasm]" + "N(pros)-methyl-L-histidine [cytoplasm]" + "S-adenosyl-L-homocysteine [cytoplasm]"; "YBR034C [cytoplasm]"	
20	670	L-tyrosine N-formyltransferase	10-formyltetrahydrofolic acid [cytoplasm] + "L-tyrosine [cytoplasm]" = "5,6,7,8-tetrahydrofolic acid [cytoplasm]" + "H+ [cytoplasm]" + "N-formyl-L-tyrosine [cytoplasm]"; "YDR403W [cytoplasm]"	
20	733	N-formyltyrosine oxidase	H+ [cytoplasm] + 2 * "N-formyl-L-tyrosine [cytoplasm]" + "NADPH [cytoplasm]" = "N,N'-diformyldityrosine [cytoplasm]" + "NADP(+) [cytoplasm]"; "YDR402C:YHR042W [cytoplasm]"	

20	750	NatC acetylation	acetyl-CoA [cytoplasm] + "protein with N-terminal(Met-Glu) [cytoplasm]" = "coenzyme A [cytoplasm]" + "acetylated protein with terminal(Met-Glu) [cytoplasm]"; "YCR020C-A:YEL053C:YPR051W [cytoplasm]"	
20	751	NatC acetylation_2	acetyl-CoA [cytoplasm] + "protein with N-terminal(Met-Ile) [cytoplasm]" = "coenzyme A [cytoplasm]" + "acetylated protein with terminal(Met-Ile) [cytoplasm]"; "YCR020C-A:YEL053C:YPR051W	
20	752	NatC acetylation_3	acetyl-CoA [cytoplasm] + "protein with N-terminal(Met-Leu) [cytoplasm]" = "coenzyme A [cytoplasm]" + "acetylated protein with terminal(Met-Leu) [cytoplasm]"; "YCR020C-A:YEL053C:YPR051W [cytoplasm]"	
20	753	NatC acetylation_4	acetyl-CoA [cytoplasm] + "protein with N-terminal(Met-Trp) [cytoplasm]" = "coenzyme A [cytoplasm]" + "acetylated protein with terminal(Met-Trp) [cytoplasm]"; "YCR020C-A:YEL053C:YPR051W [cytoplasm]"	
20	754	NatC acetylation_5	acetyl-CoA [cytoplasm] + "protein with N-terminal(Met-Phe) [cytoplasm]" = "coenzyme A [cytoplasm]" + "acetylated protein with terminal(Met-Phe) [cytoplasm]"; "YCR020C-A:YEL053C:YPR051W [cytoplasm]"	
20	755	NatC complex assembly	YCR020C-A [cytoplasm] + "YEL053C [cytoplasm]" + "YPR051W [cytoplasm]" = "YCR020C-A:YEL053C:YPR051W [cytoplasm]"	
20	766	nucleoside-diphosphatase (ADP)	ADP [cytoplasm] + "water [cytoplasm]" = "AMP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YER005W [cytoplasm]"	
20	768	nucleoside-diphosphatase (GDP)	GDP [cytoplasm] + "water [cytoplasm]" = "GMP [cytoplasm]" + "H+ [cytoplasm]" + "phosphate [cytoplasm]"; "YER005W [cytoplasm]"	
20	770	nucleoside-diphosphatase (UDP)	UDP [cytoplasm] + "water [cytoplasm]" = "H+ [cytoplasm]" + "phosphate [cytoplasm]" + "UMP [cytoplasm]"; "YER005W [cytoplasm]"	
20	784	O-glycosylation of proteins by PMT1:PMT2	dolichyl D-mannosyl phosphate [endoplasmic reticulum] + "secretory protein with appropriate seryl or threonyl group [endoplasmic reticulum]" = "O-mannosylated protein [endoplasmic reticulum]"; "YAL023C;YDL095W [endoplasmic reticulum membrane]"	
20	806	palmitoyl transferase	palmitoyl-CoA [cytoplasm] + "protein with dicysteine at C-terminal [cytoplasm]" = "coenzyme A [cytoplasm]" + "palmitoylated protein [cytoplasm]"; "YDR264C [cytoplasm]"	
20	807	palmitoyl transferase for SNarE YAL014C	palmitoyl-CoA [cytoplasm] + "YAL014C [cytoplasm]" = "palmitoylated YAL014C [cytoplasm]"; "YDR126W [cytoplasm]"	
20	808	palmitoyl transferase for SNarE YAL030W	palmitoyl-CoA [cytoplasm] + "YAL030W [cytoplasm]" = "palmitoylated YAL030W [cytoplasm]"; "YDR126W [cytoplasm]"	
20	809	palmitoyl transferase for SNarE YDR468C	palmitoyl-CoA [cytoplasm] + "YDR468C [cytoplasm]" = "palmitoylated YDR468C [cytoplasm]"; "YDR126W [cytoplasm]"	
20	811	palmitoylation of chs3p	palmitoyl-CoA [cytoplasm] + "YBR023C [cytoplasm]" = "palmitoylated YBR023C [cytoplasm]"; "YOL003C [cytoplasm]"	
20	812	palmitoylation of Ras(CaaX) proteins	palmitoyl-CoA [cytoplasm] + "Ras protein with CaaX motif at C terminal, a=aliphatic residue, X=any residue [endoplasmic reticulum]" = "coenzyme A [endoplasmic reticulum]" + "palmitoylated Ras protein [endoplasmic reticulum]"; "YLR246W:YOL110W [endoplasmic reticulum membrane]"	
20	813	palmitoylation of YEL013W	palmitoyl-CoA [vacuole] + "YEL013W [vacuolar membrane]" = "palmitoylated YEL013W [vacuolar membrane]"; "YNL326C [vacuolar membrane]"	
20	901	Pib1-Ptdins(3)P binding	1-phosphatidyl-1D-myo-inositol 3-phosphate [vacuole] + "YDR313C [vacuolar membrane]" = "phosphatidylinositol 3-phosphate:YDR313C [vacuole]"	
20	1071	UTP diphosphohydrolase	UTP [cytoplasm] + 2 * "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + 2 * "phosphate [cytoplasm]" + "UMP [cytoplasm]"; "YER005W [cytoplasm]"	
20	1812	biomass production	1.1358 * "(1->3)-beta-D-glucan [cytoplasm]" + 0.023371 * "alpha,alpha-trehalose [cytoplasm]" + 0.051 * "AMP [cytoplasm]" + 59.276 * "ATP [cytoplasm]" + 0.05 * "CMP [cytoplasm]" + 0.003587 * "dAMP [cytoplasm]" + 0.002432 * "dGMP [cytoplasm]" + 0.003587 * "dTMP [cytoplasm]" + 0.35734 * "L-alpanine [cytoplasm]" + 0.002432 * "dGMP [cytoplasm]" + 0.03587 * "dTMP [cytoplasm]" + 0.35734 * "L-alpanine [cytoplasm]" + 0.13579 * "L-arginine [cytoplasm]" + 0.17152 * "L-asparagine [cytoplasm]" + 0.17152 * "L-asparatie [cytoplasm]" + 0.25014 * "L-eucine [cytoplasm]" + 0.25024 * "L-glutamate [cytoplasm]" + 0.25027 * "L-methionine [cytoplasm]" + 0.11435 * "L-phenylalanine [cytoplasm]" + 0.12864 * "L-poline [cytoplasm]" + 0.25371 * "L-serine [cytoplasm]" + 0.19653 * "L-threonine [cytoplasm]" + 0.0288 * "L-tryptophan [cytoplasm]" + 0.096481 * "L-tyrosine [cytoplasm]" + 0.2578 * "L-valine [cytoplasm]" + 0.82099 * "mannan [cytoplasm]" + 0.027 * "UMP [cytoplasm]" + 0.0009 * "riboflavin [cytoplasm]" -> 59.276 * "ADP [cytoplasm]" + "biomass [cytoplasm]" + 59.305 * "phosphate [cytoplasm]"	
20	1813	glycosylation	O-mannosylated protein [endoplasmic reticulum] ->	
20	1814	growth	biomass [cytoplasm] -> "biomass [extracellular]"	

20	1815	IPC to biomass	inositol-P-ceramide D [Golgi] ->	
20			0.001531 * "1-phosphatidyl-1D-myo-inositol [cytoplasm]" + 5.6e-005 * "14-demethyllanosterol [cytoplasm]" + 9.6e-005 * "episterol [cytoplasm]" + 0.000125 * "ergosta-5,7,22,24(28)-tetraen-3beta-ol	
	1016		[cytoplasm]" + 0.005603 * "ergosterol [cytoplasm]" + 0.000812 * "ergosterol ester [cytoplasm]" + 0.000206 * "fatty acid [cytoplasm]" + 0.000114 * "fecosterol [cytoplasm]" + 0.000417 * "inositol	
	1810	ipid production	phosphomannosylinositol phosphoceramide [cytoplasm]" + 3.2e-005 * "lanosterol [cytoplasm]" + 0.000373 * "phosphatidyl-L-serine [cytoplasm]" + 0.002884 * "phosphatidylcholine [cytoplasm]" +	
			0.000697 * "phosphatidylethanolamine [cytoplasm]" + 0.000781 * "triglyceride [cytoplasm]" + 1.5e-005 * "zymosterol [cytoplasm]" -> "lipid [cytoplasm]"	
20	1826	phosphatidylinositol 3-phosphate:YDR313C to signalling	phosphatidylinositol 3-phosphate:YDR313C [vacuole] ->	
20	897	PI4,5P2 binding by YIL105C	1D-myo-inositol 4,5-bisphosphate [cytoplasm] + "YIL105C [cytoplasm]" = "1D-myo-inositol 4,5-bisphosphate:YIL105C [cytoplasm]"	
20	898	PI4,5P2 binding by YNL047C	1D-myo-inositol 4,5-bisphosphate [cytoplasm] + "YNL047C [cytoplasm]" = "1D-myo-inositol 4,5-bisphosphate:YNL047C [cytoplasm]"	
20	800		1D-myo-inositol 4,5-bisphosphate:YIL105C [cytoplasm] + "YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope]" = "1D-myo-inositol 4,5-	
20	899	r14,5r2. T1L105C binding to TOKC2 at plasma membrane	bisphosphate:YIL105C:YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope]"	
20	000	DIA 5D2 VNII 047C hinding to TODC2 of plasma mombrane	1D-myo-inositol 4,5-bisphosphate:YNL047C [cytoplasm] + "YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope]" = "1D-myo-inositol 4,5-	
20	900	r14,5r2.1 NE04/C binding to TORC2 at plasma memorane	bisphosphate:YNL047C:YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope]"	
20	217	amidase	4-guanidinobutanamide [cytoplasm] + "water [cytoplasm]" = "4-guanidinobutanoic acid [cytoplasm]" + "ammonium [cytoplasm]"; "YMR293C [cytoplasm]"	
20	1864	TOR complex use	1D-myo-inositol 4,5-bisphosphate:YIL105C:YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope] ->	
20	1865	TOR complex use_2 1D-myo-inositol 4,5-bisphosphate:YNL047C:YER093C:YJL058C:YKL203C:YMR068W:YNL006W:YOL078W [cell envelope] ->		
21	489	fumarate reductase FMN FMNH2 [cytoplasm] + "fumarate(2-) [cytoplasm]" = "FMN [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YEL047C [cytoplasm]"		
21	490	fumarate reductase FMN_2	ase FMN_2 FMNH2 [mitochondrion] + "fumarate(2-) [mitochondrion]" = "FMN [mitochondrion]" + "succinate(2-) [mitochondrion]"; "YJR051W [mitochondrion]"	
21	980	ble fumarate reductase FADH2 [cytoplasm] + "fumarate(2-) [cytoplasm]" = "FAD [cytoplasm]" + "succinate(2-) [cytoplasm]"; "YEL047C [cytoplasm]"		
22	93	5,10-methylenetetrahydrofolatereductase (NADPH)	eductase (NADPH) 5,10-methylenetetrahydrofolate(2-) [cytoplasm] + 2 * "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "5-methyltetrahydrofolate(2-) [cytoplasm]" + "NADP(+) [cytoplasm]"; "YGL125W [cytoplasm]"	
22	97	5-formethyltetrahydrofolate cyclo-ligase	5-formyltetrahydrofolic acid [cytoplasm] + "ATP [cytoplasm]" = "(6R)-5,10-methenyltetrahydrofolic acid [cytoplasm]" + "ADP [cytoplasm]" + "phosphate [cytoplasm]"; "YER183C [cytoplasm]"	
22	170	formate-tetrahydrofolate ligace	5,6,7,8-tetrahydrofolic acid [cytoplasm] + "ATP [cytoplasm]" + "formate [cytoplasm]" = "10-formyltetrahydrofolic acid [cytoplasm]" + "ADP [cytoplasm]" + "phosphate [cytoplasm]"; "YGR204W	
22	4/9	formate-tetranydrofolate figase	[cytoplasm]"	
าา	480	formata tatrahudrafalata liansa 2	5,6,7,8-tetrahydrofolic acid [mitochondrion] + "ATP [mitochondrion]" + "formate [mitochondrion]" = "10-formyltetrahydrofolic acid [mitochondrion]" + "ADP [mitochondrion]" + "phosphate	
22	400	formate-tetranydroforate figase_2	[mitochondrion]"; "YBR084W [mitochondrion]"	
22	699	methenyltetrahydrifikate cyclohydrolase	(6R)-5,10-methenyltetrahydrofolic acid [mitochondrion] + "water [mitochondrion]" = "10-formyltetrahydrofolic acid [mitochondrion]" + "H+ [mitochondrion]"; "YBR084W [mitochondrion]"	
22	700	methenyltetrahydrofolate cyclohydrolase	(6R)-5,10-methenyltetrahydrofolic acid [cytoplasm] + "water [cytoplasm]" = "10-formyltetrahydrofolic acid [cytoplasm]" + "H+ [cytoplasm]"; "YGR204W [cytoplasm]"	
าา	702	mothionyl tDNA formyltranoforaça	10-formyltetrahydrofolic acid [mitochondrion] + "Met-tRNA(Met) [mitochondrion]" = "5,6,7,8-tetrahydrofolic acid [mitochondrion]" + "fMet-tRNA(fMet) [mitochondrion]" + "H+ [mitochondrion]";	
22	703	methonyi-uxivA ionnyitansierase	"YBL013W [mitochondrion]"	
22	706	methylenetetrahydrofolate dehydrogenase (NAD)	5,10-methylenetetrahydrofolate(2-) [cytoplasm] + "NAD(+) [cytoplasm]" = "(6R)-5,10-methenyltetrahydrofolic acid [cytoplasm]" + "NADH [cytoplasm]"; "YKR080W [cytoplasm]"	
22	707	methylenetetrahydrofolate dehydrogenase (NADP)	5,10-methylenetetrahydrofolate(2-) [cytoplasm] + "NADP(+) [cytoplasm]" = "(6R)-5,10-methenyltetrahydrofolic acid [cytoplasm]" + "NADPH [cytoplasm]"; "YGR204W [cytoplasm]"	
22	709	mothylanototechydeofoloto dohydeoconoco (NADD) 2	5,10-methylenetetrahydrofolate(2-) [mitochondrion] + "NADP(+) [mitochondrion]" = "(6R)-5,10-methenyltetrahydrofolic acid [mitochondrion]" + "NADPH [mitochondrion]"; "YBR084W	
22	/08	ineuryienetetranyuroioiate denyurogenase (NADF)_2	[mitochondrion]"	
22	201	diabthing comthogo	2-(3-amino-3-carboxypropyl)-L-histidine [cytoplasm] + "S-adenosyl-L-methionine [cytoplasm]" = "2-[3-carboxy-3-(methylammonio)propyl]-L-histidine [cytoplasm]" + "H+ [cytoplasm]" + "S-adenosyl-	
22	391	dipititine synthase	L-homocysteine [cytoplasm]"; "YLR172C [cytoplasm]"	
23	182	alcohol dehydrogenase (glycerol, NADP)	D-glyceraldehyde [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "glycerol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YDR368W [cytoplasm]" "YHR104W [cytoplasm]"	
23	183	alcohol dehydrogenase, reverse rxn (acetaldehyde -> ethanol)	acetaldehyde [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" = "ethanol [mitochondrion]" + "NAD(+) [mitochondrion]"; "YMR083W [mitochondrion]"	
23	185	aldehyde dehydrogenase (2-methylbutanol, NAD)_2	2-methylbutanal [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" = "2-methylbutan-1-ol [mitochondrion]" + "NAD(+) [mitochondrion]"; "YMR083W [mitochondrion]"	

23	186	aldehyde dehydrogenase (2-methylbutanol, NADP)	2-methylbutanal [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "2-methylbutan-1-ol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR036C [cytoplasm]" "YCR105W [cytoplasm]" "YDR368W [cytoplasm]" "YMR318C [cytoplasm]"	
23	188	aldehyde dehydrogenase (2-phenylethanol, NAD)_2	H+ [mitochondrion] + "NADH [mitochondrion]" + "phenylacetaldehyde [mitochondrion]" = "2-phenylethanol [mitochondrion]" + "NAD(+) [mitochondrion]"; "YMR083W [mitochondrion]"	
23	189	aldehyde dehydrogenase (2-phenylethanol, NADP)	H+ [cytoplasm] + "NADPH [cytoplasm]" + "phenylacetaldehyde [cytoplasm]" = "2-phenylethanol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR036C [cytoplasm]" "YCR105W [cytoplasm]" "YMR318C [cytoplasm]"	
23	194	aldehyde dehydrogenase (indole-3-acetaldehyde, NAD)	dol-3-ylacetaldehyde [mitochondrion] + "NAD(+) [mitochondrion]" + "water [mitochondrion]" = 2 * "H+ [mitochondrion]" + "indole-3-acetate [mitochondrion]" + "NADH [mitochondrion]" (OR374W [mitochondrion]"	
23	195	aldehyde dehydrogenase (indole-3-acetaldehyde, NADP)	indol-3-ylacetaldehyde [cytoplasm] + "NADP(+) [cytoplasm]" + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "indole-3-acetate [cytoplasm]" + "NADPH [cytoplasm]"; "YPL061W [cytoplasm]"	
23	196	aldehyde dehydrogenase (indole-3-acetaldehyde, NADP)_2	dol-3-ylacetaldehyde [mitochondrion] + "NADP(+) [mitochondrion]" + "water [mitochondrion]" = 2 * "H+ [mitochondrion]" + "indole-3-acetate [mitochondrion]" + "NADPH [mitochondrion]"; YER073W [mitochondrion]" "YOR374W [mitochondrion]"	
23	198	aldehyde dehydrogenase (isoamyl alcohol, NAD)_2	-methylbutanal [mitochondrion] + "H+ [mitochondrion]" + "NADH [mitochondrion]" = "isoamylol [mitochondrion]" + "NAD(+) [mitochondrion]"; "YMR083W [mitochondrion]"	
23	199	aldehyde dehydrogenase (isoamyl alcohol, NADP)	3-methylbutanal [cytoplasm] + "H+ [cytoplasm]" + "NADPH [cytoplasm]" = "isoamylol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR036C [cytoplasm]" "YCR105W [cytoplasm]" "YMR318C [cytoplasm]"	
23	201	aldehyde dehydrogenase (isobutyl alcohol, NAD)_2	H+ [mitochondrion] + "isobutyraldehyde [mitochondrion]" + "NADH [mitochondrion]" = "isobutanol [mitochondrion]" + "NAD(+) [mitochondrion]"; "YMR083W [mitochondrion]"	
23	202	aldehyde dehydrogenase (isobutyl alcohol, NADP)	H+ [cytoplasm] + "isobutyraldehyde [cytoplasm]" + "NADPH [cytoplasm]" = "isobutanol [cytoplasm]" + "NADP(+) [cytoplasm]"; "YBR036C [cytoplasm]" "YCR105W [cytoplasm]" "YMR318C [cytoplasm]"	
23	203	aldehyde dehydrogenase (phenylacetaldehyde, NAD)	NAD(+) [cytoplasm] + "phenylacetaldehyde [cytoplasm]" + "water [cytoplasm]" = 2 * "H+ [cytoplasm]" + "NADH [cytoplasm]" + "phenylacetic acid [cytoplasm]"; "YMR169C [cytoplasm]" "YMR170C [cytoplasm]"	
23	205	aldehyde dehydrogenase (tryptophol, NAD)_2	H+ [mitochondrion] + "indol-3-ylacetaldehyde [mitochondrion]" + "NADH [mitochondrion]" = "NAD(+) [mitochondrion]" + "tryptophol [mitochondrion]"; "YMR083W [mitochondrion]"	
23	219	Aminobutyraldehyde dehydrogenase	4-aminobutanal [mitochondrion] + "NAD(+) [mitochondrion]" + "water [mitochondrion]" = "gamma-aminobutyrate [mitochondrion]" + 2 * "H+ [mitochondrion]" + "NADH [mitochondrion]" "YER073W [mitochondrion]" "YOR374W [mitochondrion]"	

Curriculum vitae

zu meiner Person

Vorname:	Konstantin
Nachname:	Schneider
Geburtsdatum:	16. 05. 1981
Geburtsort:	Mannheim
Staatsangehörigkeit:	Deutsch

aktuelle Tätigkeit

seit 10. 2010

Postdoc-Projekt in der Technischen Biochemie: Rekombinante Produktion von süßen Proteinen mit der Spalthefe *S. pombe*. Förderung durch das BMBF. Kooperation mit der Christian-Albrechts-Universität, Kiel, dem Karlsberg Institute of Biosience GmbH & Co. KG, Homburg und der PomBioTech GmbH, Saarbrücken.

akademische Ausbildung

02. 2006 - 10. 2010

Doktorarbeit am Institut für Technische Biochemie von Prof. Dr. E. Heinzle an der Universität des Saarlandes. Titel der Arbeit: Auswirkungen der *MAE1*-Gendeletion auf den Zentralstoffwechsel von *Saccharomyces cerevisiae* unter verschiedenen Physiologien.

03. 2001 – 10. 2005	Biotechnologiestudium an der Hochschule Mannheim.
hochschule mannheim	Vordiplom 2002. Note sehr gut (1,3). Abschluss 2005 als
	Diplom-Ingenieur (FH) Fachrichtung Biotechnologie.
	Note sehr gut (1,2).
BASF	Diplomarbeit bei der BASF AG, Ludwigshafen.
The Chemical Company	Titel der Arbeit: Entwicklung einer thermostabilen
	Phytase durch Enzym-Engineering.
09. 2003 – 02. 2004	Praxissemester bei der BASF AG, Ludwigshafen.
03. 2002 - 08. 2002	Metabolic Engineering von Corynebacterium glutamicum
	zur Riboflavin- und Lysin-Produktion.
schulische Ausbildung	
1991 - 2000	Carl-Friedrich-Gauss-Gymnasium, Hockenheim. 2000
	Abitur. Leistungskurse: Mathematik und Physik.

1987 - 1991

Hartmann-Baumann-Grundschule, Hockenheim.

eigene Publikationen

J. Niklas, **K. Schneider** und E. Heinzle. (2010). Metabolic flux analysis in eukaryotes. *Curr Opin Biotech* **21**. 63.

K. Schneider, V. Schütz, G.T. John und E. Heinzle. (2010). Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures. *Bioprocess Biosyst Eng* **33**. 541.

K. Schneider, J. O. Krömer, C. Wittmann, I. Alves-Rodrigues, A. Meyerhans, J. Diez und E. Heinzle. (2009). Metabolite profiling studies in *Saccharomyces cerevisiae*: an assisting tool to prioritize host targets for antiviral drug screening. *Microb Cell Fact* **8**. 12.

V. R. Velagapudi, C. Wittmann, **K. Schneider** und E. Heinzle. (2007). Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. *J Biotechnol* **132**. 395.

Konferenzbeiträge

K. Schneider und E. Heinzle. Detailed ¹³C metabolic flux analysis of *Saccharomyces cerevisiae* deletion mutants growing on glucose and galactose reveals NADPH supplying function of malic enzyme. 9th International Conference on Systems Biology 22.-28.08. 2008. Göteborg, Schweden (ICSB-2008).

K. Schneider, V. Schütz, E. Heinzle, G. T. John und C. Krause. New device for parallel optical online measurement of DO and pH in shake flask cultures. 7th European Symposium on *Biochemical Engineering Science* 07.-10.09. 2008. Faro, Portugal (**ESBES-7**).

K. Schneider und E. Heinzle. Characterization of the Function of Malic Enzyme in *Saccharomyces cerevisiae* Using ¹³C Metabolic Flux Analysis. *European BioPerspectives* 07.-09.10. 2008. Hannover.

K. Schneider, G. T. John und E. Heinzle. Characterization of the malic enzyme deletion in *Saccharomyces cerevisiae* BY4742 grown on glucose and galactose using ¹³C metabolic flux analysis. *Society of Industrial Microbiology Annual Meeting* 26.-30.07. 2009. Toronto, Kanada (**SIM 2008**).

K. Schneider, G. T. John und E. Heinzle. Characterization of *Saccharomyces cerevisiae* BY4742 and *mae1* Δ grown on glucose and galactose using a novel device for optical online dissolved oxygen and pH measurement in shake flasks. *27. DECHEMA Jahrestagung der Biotechnologen* 08.-10.09. 2009. Mannheim.

K. Schneider, J. O. Krömer,C. Wittmann, I. Alves-Rodrigues, A. Meyerhans, J. Diez und E. Heinzle. Metabolite profiling studies in *Saccharomyces cerevisiae*: an assisting tool to prioritize host targets for antiviral drug screening. *14th European Congress on Biotechnology* 13.-16.09. 2009. Barcelona, Spanien (**ECB14**).

K. Schneider, T.-H. Yang und E. Heinzle. Compartmentation of NADPH Supply during Respiratory and Respiro-fermentative Growth of *Saccharomyces cerevisiae* – The Role of Malic Enzyme. *Metabolic Engineering VII* 13.-18.06. 2010. Jeju Island, Südkorea.