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Zusammenfassung 

Myxobakterien sind außergewöhnliche Bodenbakterien und vielseitige Produzenten von 

zahlreichen biologisch aktiven Naturstoffen. Ziel dieser Arbeit war die Charakterisierung von 

neuen Sekundärstoffen dieser gleitenden Bakterien. 

Im Rahmen dieser Arbeit wurde das Sauerstoff- und Licht- empfindlichen Roimatacene (26) 

aus dem Rohextrakt von Cystobacter ferrugineus Stamm Cb G35 auf Grund einer Aktivitäts-

basierten Isolierung identifiziert. Die milde Isolierungsstrategie beinhaltete neben weiteren 

Stabilisierungstechniken die Zugabe des Radikalfängers 4-Ethoxyphenol. Die relative 

Konfiguration von 26 wurde mit Hilfe von Rychonovsky´s Acetonid Methode sowie 1D und 

2D NMR Studien in Kombination mit Molekulardesign hergeleitet. Anschließend wurde die 

absolute Konfiguration mit der Mosher Methode bestimmt. Der Stamm Cb G35 produzierte 

zusätzlich sechs p-Hydroxyacteophenon Amide 34a-f. Die biologischen Vorstufen von 

Roimatacene (26) und p-Hydroxyacetophenon iso-Butanamid (34a) wurden durch 

Fütterungsexperimente mit den D, 13C und 15N-Isotopenmarkierten Vorstufen ermittelt. 

Die Strukturen der myxobakteriellen Sulfangolide 25a-d wurden mit Hilfe ihrer NMR Daten 

verifiziert. Durch detaillierte NMR Analysen und dem Vergleich der modellierten 13R* und 

13S* Diastereomere von Sulfangolid C (25c) wurde die relative Konfiguration als all-trans 

13R*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* hergeleitet. Zusätzlich wurden die 

biosynthetischen Vorstufen von 25c durch Fütterungsexperimente bestimmt. 



     

Abstract 

Myxobacteria are an extraordinary group of soil bacteria and versatile producers of numerous 

biologically active natural products. The aim of the thesis was the characterisation of novel 

secondary metabolites from these gliding bacteria. 

An activity guided isolation procedure for the oxygen- and light-sensitive roimatacene (26) 

from the crude extract of Cytsobacter ferrugineus strain Cb G35 was developed. The mild 

isolation strategy included among other stabilization techniques the addition of the free 

radical scavenger 4-ethoxyphenol. The relative configuration of 26 was establishing by 

applying Rychonovsky´s acetonide method combined with 1D and 2D NMR studies and 

molecular modelling. The absolute configuration of 26 was assigned by Mosher´s method. In 

addition, strain Cb G35 was found to produce a family of six p-hydroxyacetophenone amides 

34a-f. The biosynthetic precursors of roimatacene (26) and p-hydroxyacetophenone iso-

butanamide (34a) were studied by feeding experiments with D-, 13C- and 15N-labelled 

precursors. 

The structures of the myxobacterial sulfangolids 25a-d were verified from their NMR data. 

The relative configuration of sulfangolid C (25c) was derived by detailed NMR analyses and 

comparison of the modelled 13R* and 13S* diastereomeres of 25c to finally establish the 

relative all-trans 13R*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* configuration. The 

biosynthetic precursors of 25c were studied by feeding experiments. 
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1 Introduction 

1.1 The Role of Natural Products in Drug Discovery 

Human medicine has been revolutionized by the application of natural products, which have 

assisted to double the life expectancy from 40 years to more than 77 years in the 20th century.1 

1.1.1 Natural Products as a Source for Drug Development 

The influence of natural products in medicine is enormous. By 2002 over 60% of the 

approved drugs were derived from natural products as a drug themselves, derivative or as lead 

structure.2 The power of Nature is already known for centuries. As one example, Hippocrates 

described the use of willow tree bark extracts against fever and pain in the 5th century B.C..3 

However it is just 200 years ago that morphine was isolated from opium introducing purified 

drugs from plants in drug application.1 It was as late as the 1870s that microorganisms were 

recognized for their therapeutic potential, and it took until 1929, when Alexander Flemming 

published his observation that Penicillium notatum inhibited the growth of Staphylococcus 

aureus. Ten years later the first stable penicillin was described and started the industrial 

production of penicillin during the Second World War. The antibacterial use of penicillin in 

human and animal medicine initiated the golden age of antibiotics, and different classes of the 

“wonder drug” were identified until the 1980s.4 All antibiotics are classified according to their 

structural relations and targets. The commercial antibiotic classes include the most important 

β-lactams, quinolones, tetracyclines, macrolides, aminoglycosides, ansamycins, glycopeptides 

and polypeptides.5 A number of examples of the antibiotic classes are presented in Figure 1. 

The golden age of antibiotics lead to the assumption that infectious diseases were no longer 

life threatening. But today resistances among microbes from hospital and community-

acquired pathogens are continuously rising and infectious diseases have become the third 

major cause of death in developed nations again.6,7 S. aureus isolates resistant to penicillin G 

were already found in the 1940s and today virtually all S. aureus isolates are resistant to β-

lactam antibiotics.8 The number of “superbugs” resistant to nearly all antibiotics has increased 

enormously among hospital and also community-acquired pathogens in the last years. 

Abesides S. aureus isolates resistant to methicillin and glycopeptides, the vancomycin and 

multidrug resistant enterococci sp. and multidrug resistant Gram-negative bacteria as e.g. 

Pseudomonas aeruginosa are the new threats in infectious diseases with high mortality rates.7 
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Figure 1.  Examples of different antibiotic classes (class and targets are given in parentheses): penicillin 
G (1, β-lactame; transpeptidase cell wall); vanosamin (2, glycopeptide, cell 
wall); chlortetracycline (3, tretracycline, 30S-ribosome); erythromycin A (4, macrolide, 50S-
ribosome); sulfamerazin (5 , sulfonamide, nucleic acid synthesis); streptomycin (6, 
aminoglycoside, 30S ribosome); moxifloxacin (7, quinolone, gyrase inhibitor); polymyxin B 
(8, polypeptides, cell membrane). 
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1.1.2 Drug Development 

New drugs and cellular targets are urgently needed to fight multidrug-resistant pathogens like 

MRSA, VRE and Pseudomonas aeruginosa.9 The combination of combinatorial chemistry 

and high-throughput-screening (HTS) has failed to meet these demands over the last 25 

years.10 Due to the high development cost and fast development of resistances, large 

pharmaceutical companies have abandoned their antibiotic research programs leaving this 

field to biotechnology companies and universities.11 

Figure 2.  Chemical processes involved in natural product discovery: Starting from a biologically active 
sample, avoiding replication, purification and characterization of the active natural product, 
carrying out structure-activity relationship (SAR) studies to finally develop a lead compound.12 

The combination of synthetic libraries and HTS enabled a fast screening of numerous 

compounds, which were easily available through chemical synthesis. The low “hit rate” of 

purely synthetic libraries of < 0.001% induced the screening of privileged libraries, which are 

based on biological active drugs.13-15 Although purified natural products can be applied in 

HTS, the purification costs of complex extracts resulting from fermentation of microorganism 

or other natural sources are extremely high. The identification of an active secondary 

metabolite from a complex fermentation mixture and the effort associated with isolation and 

identification are challenging. Known antibiotics, as for example streptomycin, can mask 

other biological activities in crude extracts and it occurs in 1% of soil actinomycetes.1 

Separation techniques like high-performance liquid chromatography (HPLC) can reduce the 

complexity of crude extracts before applying biological assays. The combination of HPLC 

and high-resolution mass spectrometry can avoid replication of known secondary metabolites. 
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The biological test systems differ from whole-cell screenings, for example conducted with 

MRSA strains as well as hypersensitive mutants for the identification of selective protein-

inhibitors,16,17 as well as target specific biochemical assays, like enzyme-linked 

immunosorbent assays (ELISA) for kinases activity.18 Natural products are complex 

structures with a high number of oxygen-containing substituent and stereocentres.19 For these 

reasons, an unambiguous identification is time consuming and larger amounts of material are 

essential (Figure 2). Therefore, the supply has to be secured in order to successfully 

accomplish the verification and development of a drug candidate through medicinal 

chemistry.12 

In order to provide the necessary amount of metabolite, different microbiological techniques 

that include feeding strategies, mutagenesis and up-scale fermentation are necessary. For 

example, optimized producer strains are capable of synthesizing 1.8 g/L of penicillin, which 

reduced the costs from 11.000 $/kg penicillin in 1945 to 4.5 $/kg 50 years later.4 After 40 

years of “brute force” genetics to improve production, combinatorial biology with genome-

based strain reconstruction and heterologous expression are the new tools to increase the 

biotechnological out-put of “biological engineers”.4 

Today a large number of biologically active natural products are known, but only one out of 

10,000-150,000 compounds is of medical use. One out of 3,600 active candidates from 

pharmaceutical screenings is developed further, and only three functional antibiotics were 

found in a screening of 400,000 microorganisms over 10 years. Five out of 5,000 compounds 

approached clinical trials, while only one was approved by the FDA.5 

Figure 3.  Current status of antibiotic R&D activity at each development stage (source IMS Health 
2009).20 
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Figure 3 presents the current status of the development of new antibiotics. In 2009 there were 

152 candidates in preclinical testing, but such a low number as 52 candidates were in clinical 

phase I/II and III. The five candidates in pre-registration are ceftobiprole (new class of 

cephalosporin, Basilea Pharmaceutica), dalbavancin (glycopeptide, Pfizer), iclaprim 

(dihydroholate reductase inhibitor, Arpida) and oritavancin (glycopeptide, the Medicines 

Company). Some of these were especially designed against resistant pathogens and the 

majority is targeting MRSA.20 

1.2 Myxobacteria: a Promising Source for Secondary Metabolites 

“Myxobacteria are a rich source of novel structural ideas.”21 

1.2.1 The Social Life of Myxobacteria 

Myxobacteria belong to the Gram-negative bacteria allocated at the delta branch of the 

Proteobacteria. They have rod-shaped vegetative cells about 4-12 µm long and 0.7–1.2 µm 

wide. Myxobacteria were first recognized by their extraordinary and sophisticated social life: 

they live in swarm colonies, which move by gliding over surfaces (Figure 4a).22 They have a 

remarkable intercellular communication system for swarming in colonies and forming 

myxospores upon starving conditions.23 The formation of fruiting bodies guarantees the start 

of a new life cycle as a swarm rather as an individual cell. The fruiting bodies can have simple 

shapes of soft slime balls like Myxococcus fulvus (Figure 4b) or complex structures as the 

trees of the Chondromyces crocatus (Figure 4c), which consists of a brown slime stalk and 

bright yellow sporangioles. Fruiting bodies come usually in bright colours of yellow, orange, 

red, brown, or black and measure 20-1000 µm. 

 
Figure 4.  (a) Swarming colony of Sorangium cellulosum from cellulose paper on agar, fruiting bodies of 

(b) Myxococcus fulvus and (c) Chondromyces crocatus (pictures by K. Gerth, HZI). 
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Living in large colonies is indispensable for myxobacteria. They are commonly known as soil 

bacteria, even though some halo-tolerant myxobacteria were isolated from the marine 

environment of the Pacific.24,25 The environment, from which the majority of myxobacteria 

were isolated, is rich in organic matter providing sufficient nutrition of soil, rotting plant 

material or dung of various animals as well as other microorganisms.26 Myxobacteria are 

specialized in degrading biomacromolecules, like cellulose or other bacteria and fungi, using 

extracellular enzymes. 

These environmental niches are not only rich regarding nutrition, but also accommodate 

numerous microbial inhabitants. For this reasons myxobacteria are not only interesting 

organisms for studying their remarkable life style, but are also a rich source for structurally 

novel secondary metabolites with new modes-of-action that are excreted from their 

biochemical defence systems in order to protect themselves against other predators such as 

bacteria or fungi.21,27,28 

1.2.2 Secondary Metabolites from Myxobacteria 

During a screening of 1700 Sorangium cellulosum strains about 90% of the extracts were 

found to be biological active. Some secondary metabolite families were frequently found 

during this screening, like icumazole (9) (unpublished data R. Jansen, H. Irschik, HZI), and 

spirangien (10),29 while others are relatively rare, e.g. jerangolid (11)30 was synthesised by 

only 4 producer strains (Figure 5).31 The immense biological activity and high diversity of 

secondary metabolites from myxobacteria is presumably due to their microorganism-rich 

habitat. In the three decades of myxobacterial research approximately 7500 strains have been 

isolated at the Gesellschaft für Biotechnologische Forschung (GBF, today Helmholtz Centre 

for Infection Research, HZI) and about 100 distinct core structures (about 67 have been 

published) and about 500 derivatives have been isolated.28 



Introduction 

- 7 - 

Figure 5.  Frequency of selected secondary metabolite families in the screening of 1700 strains of the 
genus Sorangium cellulosum.31 

At the time of their publication 40% of these secondary metabolites had a completely new 

structural carbon skeleton, while others were still new but contained structural elements 

previously known from other microorganism as Streptomyces or marine microorganism 

(sponges, tunicates and mollusks).21 Myxobacterial secondary metabolites not only possess a 

high structural diversity, as the few examples in Figure 6 show, but exhibit remarkable new 

modes-of-action.28 The soraphen family (12) for example was found to inhibit the growth of 

yeasts and molds (MIC 0.03-4 µg/mL) by selectively targeting fungal acetyl-CoA 

carboxylase.32 Field trials with soraphen against numerous plant pathogenic fungi were 

carried out in cooperation with Ciba-Geigy, although its teratogenic activity prevented a 

commercial application as antifungal agent.31 
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Figure 6.  Examples of the structural diversity of myxobacterial secondary metabolites: 
icumazole A (9), spirangien A (10), jerangolid A (11), soraphen A1α (12), sorangicin A (13), 
myxopyronin A (14), corallopyronin A (15), epothilon B (16), tubulysin (17), agyrin F (18). 
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Other antimicrobial metabolites proved to be active against known targets, but established a 

new mode-of-action: the myxobacterial antibiotic myxopyronin (14)33 and 

corallopyronin(15)34,35 bind to bacterial RNA polymerase (RNAP) as do the rifamycins36 and 

sorangicins (13),37,38 but show a different mode-of-action. Figure 7 shows the mode-of-action 

of myxopyronin (15) at the switch region of RNAP, which inhibits the opening of the clamp 

needed for DNA transcription.39 

 
Figure 7.  Initiation of RNA polymerase (RNAP) transcription: the RNAP can open (B) and close (A) by 

a 30° rotation of the clamp domain (cyan) at the switch region. The clamp is open (B) in order 
for DNA to bind to the catalytic cleft (C), before the clamp is closed (D) and transcription is 
promoted. Myxopyronin binds in the switch region and inhibits opening the clamp (E).40 

Astonishingly, 10% of myxobacterial metabolites specifically interact with the cytoskeleton 

of eukaryotes.21 Epothilon (16) was found to stabilize microtubule formation in eukaryotic 

cells. Consequently a semi-synthetic azaepothilon B was developed by Bristol-Myers Squibb 

(Ixempra®) and is used currently as an antineoplastic agent against Paclitaxel-resistant 

tumours.41-43 In contrast to the microtubule stabilization of epothilon (16), the highly affective 

antimitotic peptide tubulysin (17) dissolved microtubules (IC50 of 0.01-10 nM).44 Further 

investigation of the tubulysin family revealed 23 natural metabolites as well as the initial 

enzyme-free derivative pre-tubulysin.45,46 Various synthetic approaches lead to optimized 

tubulysin–folate conjugates specifically targeting folate-receptor enriched tumours with 

especially good in vivo activity and favourable toxicity profile as drug candidates.47-49 An 

additional myxobacterial compound for therapeutically application against intestinal cancer is 

the proteasome inhibitor (protein p27) argyrin (18) which is currently under investigation.50 
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The last three decades of research have demonstrated that myxobacteria are a rich source of 

potent natural products. The number of myxobacteria-derived secondary metabolites 

established these microorganisms as multiproducers comparable with the Cyanobacteria, 

Actinomycetales (~ 8000 compounds), Bacilli (1400 compounds) and Pseudomonads (400 

compounds). Genome analyses of myxobacteria indicate that the isolated 100 core structures 

just scratch the surface of the true potential of these bacteria.51 With 13.0 Mbp the genome of 

Sorangium cellulosum So ce56 is the largest bacterial genome known.53 The genome of the 

model strain DK1622 from Myxococcus xanthus assigns more than 8.5% to natural product 

synthesis.54 A study comparing the metabolic profiles by liquid chromatography coupled mass 

spectrometry (LC-MS) analysis of 98 M. xanthus strains collected worldwide insinuated the 

numbers of non-ubiquitous compounds per strain ranged from 6 to 24 metabolites.55 

1.3 Structure Elucidation of Natural Products 

“Indeed, structural miss-assignments clearly provide opportunities for synthetic chemists to 

make discoveries through total synthesis, and certainly show that there is still adventure to be 

had in the process of structure assignment.”56 

1.3.1 Structure Elucidation of Natural Products by 1D and 2D NMR Spectroscopy  

Nuclear magnetic resonance (NMR) spectroscopy is the most important method for structure 

elucidation of natural products combined with high resolution mass (HRMS) spectrometry. 

Improvement of hardware and development of multi-pulse sequences for NMR techniques 

(discussed below) in the last years has made NMR spectroscopy a powerful tool in structure 

elucidation of unknown complex natural products. The ultimate tool for molecular structure 

determination will remain X-ray crystallography, but suitable monocrystals of X-ray quality 

are rare in natural products research.57 NMR technology has been dramatically improved over 

the last decade through the use of superconducting cryogenic probeheads, superconducting 

cryogenic high-field magnets (1000 MHz) and smaller sample volumes (30 µL) to enhance 

sensitivity.58 The new NMR hardware enabled liquid chromatography coupled NMR (LC-

NMR) analysis for fast dereplication in high-throughput-screenings (HTS). This approach has 

recently been further improved by Bruker Biospin, who have developed a post column-solid-

phase-extraction unit (LC-SPE-NMR/MS) coupled HPLC/NMR/MS system in order to 

reduce costs and accumulate the metabolite on cartridge systems allowing smaller NMR 

sample volumes (30 µL).59 Figure 8 shows the amount of natural product which was required 
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for complete structure analysis in the year 1995 up to the year 2009 to give an impression of 

the practical advances in analytical technology.60 

 
Figure 8.  Decrease in the required amount of three generations of marine natural products for complete 

structure elucidation due to the continuous improvement in analytical technology.60  

Practical structure elucidation begins with the molecular formula predicted by HRMS. 

Subsequently verification of the proposed molecular formula is based on 1D 1H and 13C NMR 

experiments, as well as on the calculated degree of unsaturation* and on information about 

functional groups obtained from IR- and UV/Vis spectra. The skeleton of an unknown 

compound can be further explored with 2D NMR experiments. The first step is to uniquely 

identify each proton directly bound to carbons by using heteronuclear HMQC (heteronuclear 

multiple quantum coherence) or the phase sensitive HSQC (heteronuclear single quantum 

coherence) experiments. HSQC provides information about carbon multiplicity, which can 

also be gained by 1D NMR experiments like APT or DEPT (see Table 1). The homonuclear 
1H,1H COSY (correlation spectroscopy) experiment identifies structural fragments by 

through-bond coupling of geminal, vicinal and long-range protons. A TOCSY (total 

correlation spectroscopy) experiment is helpful for the analysis of polysaccharides or peptides 

by revealing proton correlations within one spin-system. After the assignment of structural 

fragments, the overall skeletal connectivity is established through a HMBC (heteronuclear 

multiple-bond correlation) experiment, revealing correlations through intervening 

                                                 
* Degree of unsaturation = a + 1 – ½(b – d); CaHbOcNd 
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heteroatoms and quaternary carbons linking the structural fragments to an overall connectivity 

of a compound.57,61 All NMR experiments mentioned are tabulated in Table 1 which provides 

basic information about the experiments.62 

Table 1:  Overview of the basic NMR experiments used for structure elucidation.62 
Abbreviation Experiment Purpose Comment Enhanced Experiments 

APT attached proton test 1D inverse technique 
for 13C multiplicity 

includes signals for quaternary 
carbons 

DEPTQ 

DEPT distortionless 
enhancement by 
polarization transfer 

1D inverse technique 
for 13C multiplicity 

standard  diverse  

HMQC heteronuclear 
multiple quantum 
coherence 

2D inverse H,C 
correlation 

decoupled 13C NMR spectrum diverse, better HSQC 

HSQC heteronuclear single 
quantum coherence 

2D inverse H,C 
correlation 

phase-sensitive gradient-
selected version 

gs-HSQC, E-HSQC 

COSY correlation 
spectroscopy 

2D spin coupling 
nucleus 

most important 2D NMR 
experiment: possible nucleus 1H, 
19F, 31P 

Long-Range COSY, 
COSY-45, E.COSY 

TOCSY total correlation 
spectroscopy 

2D correlations of 
protons in one spin-
system 

also called HOHAHA, used for 
peptides and oligosaccharides 

gs-TOCSY, gs-
SELTOCSY,  

HMBC heteronuclear 
multiple bond 
correlation 

2D long-range H,C 
correlation 

2J(C,H) and 3J(C,H) coupling gs-HMBC, ACCORD-
HMBC 

NOESY nuclear Overhauser 
enhancement 
spectroscopy 

2D dipolar cross-
relaxation of nuclei in 
close spatial 
relationship 

assignment of peptide 
conformation and tertiary 
structure of proteins  

gs-NOESY,  
(3D): HN-NOESY-
HSQC, HC-NOESY-
HSQC  

ROESY rotating frame 
Overhauser 
enhancement 
spectroscopy 

2D dipolar cross-
relaxation of nuclei in 
close spatial 
relationship 

also called CAMELSPIN, 
shorter time compared to 
NOESY, also applied for molar 
mass of 1000- 3000 

 

HETLOC heteronuclear long 
range coupling 

2D determination 
long-range C,H spin 
coupling constants 

low sensitivity, overlapping 
signals and coupling constants 
of the same spin system, 
enhanced versions  

PS-HMBC, J-HMBC, 
HSQC-TOCSY, 
HSQMBC 

1.3.2 Assignment of the Relative Configuration of Natural Products 

The biological behaviour of compounds is strongly affected, not only by the connectivity and 

diversity of functional groups, but also by their spatial arrangement. Disclosing the relative 

and absolute configuration is therefore necessary to fully understand their chemical behaviour 

and biological interaction.63 

NMR techniques play an important role providing geometric information of organic 

compounds. The 2D NMR experiments NOESY (nuclear Overhauser enhancement 

spectroscopy) and ROESY (rotating frame Overhauser enhancement spectroscopy) provide 

information about the dipolar cross-relaxation of protons with close spatial relationships. The 

cross peak intensities in these spectra are inversely proportional to the sixth power of the 
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distance separating the interacting protons and are therefore used in the assignment of relative 

configurations.64 Another phenomenon in NMR spectroscopy is the scalar coupling of nuclei. 

The direct correlation of dihedral angles of protons corresponding to their vicinal 3JH,H 

coupling constant was first described by Karplus and became a very essential tool for 

conformation analysis.65 This method has been further developed for heteronuclear coupling 

constants 2,3JC,H and different substituent patterns. Murata´s method is a J-based configuration 

analysis comparing experimental and predicted 3JH,H and 2,3JC,H values of possible rotamers of 

(1,2) or (1,3) acyclic carbon chains.66 The 2,3JC,H values are measured using 2D HETLOC 

(hetero half-filtered TOCSY) or PS-HMBC (phase sensitive HMBC) NMR pulse-sequences. 

Another approach is the comparison of carbon and proton chemical shifts of an unknown 

configuration with model compounds of defined stereochemistry.67 A compound library is 

realized in the universal NMR database (UDB).68,69 Larger molecules with diverse 

stereocentres like natural products can be divided into fragments for comparison with suitable 

known compounds in the database, as shown in the example of oasomycin in Figure 9.68 

Figure 9.  Example of an UDB approach for the natural product oasomycin and suitable fragments for the 
library search.68  

In the last decade computational developments in quantum mechanical (QM) methods have 

progressed into fast empirical methods for calculating NMR parameters useful for the 

configuration assignment of natural products. Here the conformational search and geometry 

optimization of all significant conformers of each stereoisomer are carried out by empirical 

methods such as molecular mechanics (MM) or on the semiempirical level (PM3) followed 

by a QM method for final optimization.70 The 13C and 1H NMR chemical shifts are calculated 

for each stereoisomer and compared with the experimental data. In addition, the resulting 

geometries can be compared with calculated coupling constants analoguously to Murata’s 

method and nOe interactions.71 
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The relative configuration of 1,3-diols can also be established by the synthetic approach of 

Rychonovsky´s acetonide method.72 For this method a six-membered acetonide is synthesized 

from the 1,3-diol. A syn-1,3-diol furnishes a chair conformation of the six-membered 

acetonide, which is indicated by distinct chemical shifts, like δC < 100 ppm for the quaternary 

carbon CMe2, δC of 20.0 ppm for the axial methyl group and δC of 30.0 ppm for the one in the 

equatorial position. An anti-configuration of the 1,3-diol leads to a twisted-boat conformation 

with a characteristic CMe2 δC value > 100 ppm and an average δC value for both methyl 

groups at about 25.0 ppm. The two conformation and the resulting characteristic chemical 

shifts are shown in Figure 10.72 The relative structure of the natural products dermostatins A 

and B were assigned by synthesising multiple acetonides simultaneously and subsequently 

analysing their positions and their chemical shift with 2D NMR spectroscopy.73  

Figure 10.  The chair and the twisted-boat configuration of the six-membered acetonides derived from 
either syn-1,3-diols or anti-1,3-diols, with the resulting characteristic δC shift for 
Rychonovsky`s acetonide method.72 
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1.3.3 Assignment of the Absolute Configuration of Natural Products 

Good quality monocrystals of a compound would be required for an assignment of the 

absolute stereochemistry by X-ray crystallography. Unfortunately they are rarely produced for 

small natural products. Another common approach is the degradation of natural products by 

chemical synthesis using for example ozonolysis, hydrolysis or olefin metathesis. The 

degradation products can be compared to their corresponding enantiomeres by chiral HPLC or 

GC (gas chromatography), as commonly used for amino acid analysis of peptides after 

hydrolyses.74,75 Chiro-optical methods are instrumental approaches that include optical 

rotatory dispersion (ORD) and circular dichroism (CD). The differential absorption of chiral 

molecules of either the specific optical rotation in ORD or the absorption bands in CD are 

used to compare synthetic material to the original natural product for determination of the 

absolute stereochemistry.76,77 The universal NMR database (UDB) uses chiral NMR solvents 

to generate a chiral environment for the enantiomers. This causes small chemical shift 

differences allowing discrimination of the enantiomers, which are subsequently compared 

with the NMR data of the natural product or degradation products.78-80 A larger chemical shift 

difference is produced by covalent binding of a chiral reagent producing diastereomers. 

Lanthanide shift reagents such as chiral complexes of europium (Eu), ytterbium (Yb) and 

praseodymium (Pr) are used to determine enantiomeric purity.81 Mosher´s method is most 

widely used to explore the absolute stereochemistry of alcohol and amine moieties by using 

methoxy(trifluoro-methyl)phenylacetyl (MTPA) acids or derivatives.82,83 For this method the 

compound is derivatized with both enantiomers of the MTPA acids to give diastereomers. The 

ligand of the MTPA ester shields or deshields the proton NMR signal of the neighbouring 

protons next to the MTPA ester as is shown in Figure 11. The shift difference ∆δSR of the 

neighbouring protons in the two distereomers is calculated by subtracting the chemical shift 

δH of the (R)-MTPA ester derivative from the chemical shift δH of the (S)-MTPA ester 

derivative. The resulting ∆δSR values (+/-) of the neighbouring protons are interpreted to give 

the configurational assignment based on the chiral centre of the auxiliary (Figure 11 c and 

d).84 
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Figure 11.  Mosher model of the (R)-MTPA ester (a) and (S)-MTPA ester (b) of an alcohol and the 
interpretation of the observed ∆δSR values of protons for both possible configurations (c and 
d).84 

Research of Reid et al. and Caffrey et al. on stereospecific ketoreductases (KR) enabled a 

complementary genetic approach to assign the absolute configuration of ketoreductase- 

derived hydroxyl-bearing stereogenic centres.85,86 The stereochemical determination of the 

complex myxobacterial polyketide etnangien (35) for example was established by a 

combination of high-field NMR studies, molecular modelling, synthetic derivatization and by 

biosynthetic studies.87  

The improvement of NMR and CD instrumentation permitted the absolute structure 

elucidation of muironolide A (21) (see Chapter 1.3.1, Figure 8) with only 90 µg of material. 

The absolute stereochemistry was assigned by using microcryoprobe NMR spectroscopy, 

high resolution mass spectrometry, circular dichroism (CD), and synthesis.88  

The first results of a structural elucidation of a natural product using atomic-resolution 

scanning probe microscopy for structural determination have been published recently, 

suggesting a novel tool for structure elucidation of organic natural products.89 

1.3.4 Structure Elucidation of Natural Products by Total Synthesis 

The final step in the structure elucidation of natural products is the verification of a proposed 

structure by checking all the data for consistency and by comparison of similar natural 

products with common biosynthetic origins. However, the stereoselective total synthesis 

remains the final proof. A review by Nicolaou and Snyder investigated 300 revised structures 

between January 1990 and April 2004 through all classes of natural products.56 The progress 
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in spectroscopic skills has made structure elucidation of unknown compounds a routine task, 

but does not rule out all pitfalls. 

An exciting discussion of structure elucidation is the case of maitotoxin (23), the largest 

polyether from marine organism and a highly active biotoxin.90,91 The gross structure of 

maitotoxin was described in 1993 by Yasumoto et al.92 and the relative structure by Kishi et 

al.,93 contemporaneously with the absolute stereochemistry by Tachibana et al. in 1996.94,95 

Biosynthetic studies of polyethers by Gallimore and Spencer suggested an opposite 

configuration of two stereocentres connecting the polyether rings J and K (marked red in 

Figure 12).96 Nicolaou et al. applied computational chemistry to support the original 

published structure97 and finally proved the molecular architecture by synthesis of the 

GHIJKLMNO ring system of maitotoxin 2008.98 A total synthesis of the largest natural 

polyether known has not been accomplished as yet. 
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Figure 12.  The structure of the largest polyether isolated so far, maitotoxin (23). The stereocentres 
questioned by Gallimore and Spencer at the connection of the J and K ether ring system are 
highlighted in red. 

This is one of many examples in which the final proof of stereochemistry will be clarified by 

total or partial synthesis. Total synthesis can also provide confirmation if the proposed 

structure correlates with the assigned biological activity.99 
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1.4 Outline of this Work 

Since myxobacteria have proved to be very versatile producers of biologically active 

secondary metabolites, the aim of the present thesis was to identify novel natural products 

from this extraordinary group of gliding bacteria. This thesis comprises the process of the 

isolation of a biologically active metabolite from a complex crude extract, as well as the 

structure elucidation not only the planar structures, but also the determination of the relative 

and absolute configuration of the complex compounds by applying chemical derivatization 

techniques, and detailed 1D and 2D NMR studies combined with molecular modelling.  

Figure 13.  Fruiting bodies of the Cystobacter ferrugineus strain Cb G35 on agar plates (pictures by K. 
Gerth). 

The Cystobacter ferrungineus strain Cb G35 was isolated from a soil sample by Klaus Gerth 

at the Helmholtz Centre for Infection Research (HZI). The crude extract of this strain was 

found to inhibit growth of Staphylococcus aureus, Nocardia flava, Escherichia coli, Mucor 

hiemalis, and Rhodotorula glutinis in an antimicrobial screening of myxobacteria. The strain 

was found to produce myxalamide C (24c), which is responsible for the Nocardia flava, 

Mucor hiemalis, and Rhodotorula glutinis growth inhibition by the crude extract.100 Four 

homologues metabolites of the myxalamide family (Figure 14) were previously described 

from Myxococcus xanthus Mx x12,101,102 and were further reported from the gene cluster 

analysis of Stigmatella aurantiaca Sg a15.103 The aim of this work was to identify the 

unknown secondary metabolites synthesized by this strain and to subsequently elucidate their 

structures. Of special interest was the compound responsible for the Escherichia coli 

inhibition, due to the low number of effective antibiotics against Gram-negative bacteria. 
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Figure 14.  The myxalamide family described from Myxococcus xanthus and Stigmatella aurantiaca. 

This thesis presents the developed isolation procedure of the light- and oxygen-sensitive 

polyunsaturated carboxylic acid roimatacene (26). The absolute stereochemistry of 

roimatacene (26) was derived by 1D and 2D NMR spectroscopy, derivatization to acetonides 

and Mosher´s esters as well as by molecular modelling. In addition, six novel p-

hydroxyacetophenone amides (34a-f) were isolated from the crude extract of strain Cb G35 

and their structures were elucidated. The biosynthetic precursors of 26 and 34a were studied 

by feeding experiments and are presented in the course of this thesis.  

Another project involved the family of sulfangolids (25a-d). Sulfangolid A (25a) and B (25b) 

were first reported in the annual report of the GBF 1996.104 Further the sulfangolids were 

mentioned in numerous review articles as frequently found metabolites from the genus 

Sorangium cellulosum.21,31,51,105 In the past the four myxobacterial sulfangolids 25a-d were 

isolated from different strains of Sorangium cellulosum and the planar structures presented in 

Figure 15 were postulated in the research groups of Prof. Dr. H. Reichenbach and Prof. Dr. G. 

Höfle, but unfortunately not described exhibiting the required data (unpublished data H. 

Augustiniak, M. Herrmann, R. Jansen, H. Steinmetz, K. Gerth, H. Irschik, H. Reichenbach, 

W. Kessler, G. Höfle at HZI, former GBF). During my diploma thesis I concentrated on the 

isolation and further structure elucidation of sulfangolids A (25a) and C (25c). Subsequently 

to the isolation, complete sets of NMR data of 25a and 25c were measured and analysed. In 

my diploma thesis I presented a first proposal of the relative configuration of sulfangolid C 

(25c), subsequently I continued to verify the proposed relative configuration of 25c by 

molecular modelling studies and extensive comparison of the NMR data. In addition, the 

biosynthetic precursors of sulfangolid C (25c) were studied by feeding experiments as a basis 

for further genetic studies. Further I verified all proposed structures of sulfangolids 25a-d 

from their NMR data and summarized the combined detailed data (Manuscript is to be 

submitted). 



Introduction 

- 20 - 

Figure 15.  The proposed planar structures of the sulfangolid family (25a-d) isolated from different strains 
of the genus Sorangium cellulosum in the research groups of Prof. Dr. Reichenbach and Prof. 
Dr. Höfle at the HZI (former GBF). 
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2 Results 

2.1 Roimatacene, a Polyunsaturated Carboxylic Acid from Cystobacter 

ferrugineus Cb G35 

2.1.1 Development of an Isolation Procedure for Roimatacene (26) 

The antibiotic activity of Cystobacter ferrugineus, strain Cb G35, against E. coli was detected 

in a broad antimicrobial screening. The crude extract was fractionated by HPLC and each 

fraction was tested against E. coli. Thus, the growth inhibition of E. coli was correlated to an 

unknown compound with a HRESIMS molecular ion cluster [M-H]- at m/z 515.3021 and a 

corresponding molecular formula of C30H44O7 (calc. 515.3014). Accordingly, the unknown 

compound was isolated from the Amberlite XAD-16 adsorber resin of fermentation (70 L) in 

a bioactivity-guided procedure. Because the compound repeatedly decomposed during the 

isolation process, several fermentations were necessary for the development of a protective 

protocol for the oxygen- and light-sensitive polyene roimatacene (26). General aspects 

stabilizing the compound during the isolation were considered to finally result in the isolation 

strategy presented in Figure 16. Especially, all extracts had to be kept dissolved in methanol 

containing 4-ethoxyphenol as free radical scavenger. Prior to use, all solvents were saturated 

with nitrogen gas and all operations were carried out under nitrogen atmosphere. Ethyl acetate 

was filtered over aluminum oxide to remove peroxides, and extracts and fractions were 

handled in amber glassware. 

Figure 16.  Isolation procedure for roimatacene (26), starting from Amberlite XAD-16 resin. 

XAD-16 resin Elution MeOH Ethyl acetate 
extraction

HPLC 
chromatography

Acid-base partitionn-Heptane/MeOH 
partition

Ethyl acetate 
extraction

Water layer

Water layer

Strata X cartridge

pH 9

pH 4.5

Ethyl acetate 
extraction

n-Heptane 
extraction

Water layer

- All solvents were saturated with N2-gas

- All ethyl acetate was filtered over aluminum oxide

- All extracts were kept in solution

- All evaporations and extractions were carried out under N2-protection gas 

- 4-Ethoxyphenol was present as antioxidant
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The Amberlite XAD-16 resin was harvested from the fermentation by sieving and was then 

eluted with methanol. Subsequently to evaporation of the organic solvent, the water layer was 

extracted with filtered ethyl acetate, and after evaporation of the ethyl acetate an n-

heptane/methanol partition was carried out, in order to remove lipophilic by-products from the 

crude extract. The antibiotic 26 was further enriched by an advanced acid-base partition. The 

partition started with an ethyl acetate extraction of the alkaline water layer, which was 

subsequently acidified to pH 4.5. An additional extraction of the acidic water layer with n-

heptane removed large amounts of fatty acid, which otherwise interfered with the further 

purification process by RP-chromatography. The enriched roimatacene (26) was extracted 

from the acidic water layer with ethyl acetate. The final purification was carried out by RP-

chromatography using N2-saturated solvents and providing 4-ethoxyphenol to each HPLC 

fraction. The methanol of the combined roimatacene (26) fractions was evaporated in vacuo 

and the residual water was applied on a strata-X cartridge (phenomenex) under nitrogen 

atmosphere. The newly established isolation procedure permitted the isolation of sufficient 

material for a complete structure elucidation as well as for all biological assays. 

2.1.2 Structure Elucidation of the Core Structure of Roimatacene (26) 

The biological active roimatacene (26), isolated according to the isolation protocol described 

in chapter 2.1.1, was analysed by HRESIMS, as well as 1D and 2D NMR spectroscopy for 

structure elucidation. Due to the instability of roimatacene (26) meaningful IR data were not 

obtained. HRESIMS of the molecular ion cluster [M-H]- at m/z 515.3021 established the 

molecular formula C30H44O7 (calc. 515.3014) for 26 with 9 degrees of unsaturation. The 

molecular formula was supported by the NMR data, presented in Table 2.  

Figure 17.  Structural elements A to D of roimatacene (26) assigned from the 1H,1H COSY spectrum and 
selected 1H,13C HMBC correlations. 
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All protons were assigned to their directly bound carbons from the 1H,13C HMQC spectrum. 

The interpretation of the 1H,1H COSY spectrum furnished four structural elements A to D 

presented in Figure 17. The connection of the structural elements was accomplished by the 

interpretation of the 1H,13C HMBC spectrum, allocating the carboxylic acid carbon C1 to 

subunit A by its HMBC correlations with 2H and 3H. The quaternary carbon C8 (δC 134.4 

ppm) was verified by 13C ATP NMR spectroscopy under the overlapping 13C signal of C13 

(δC 134.4 ppm). C8 was correlated to methyl group C28 and subsequently identified as 

connection between the structural fragments A and B from HMBC correlations with 7H and 

9H, and correlations of methyl group C28 with the same protons (7H and 9H). Further, 

methines C7 and methine C9 showed mutual HMBC correlations securing the connection of 

subunits A and B. Similarly, the quaternary carbon C16 and the directly bound methyl group 

C29 showed HMBC correlations with 15H of subunit B, as well as with 17H and 18Hβ of 

subunit C. The final connection of structural unit D was indicated by HMBC correlations of 

C20 with 18H and 22H, as well as by mutual correlations of the methyl group C30 at C20 

with methines 19H and 21H. In addition, methines 19H and 21H showed the expected mutual 

HMBC correlation between subunit C and D.  

The interpretation of the 1H NMR spectrum of roimatacene (26) clearly indicated the trans-

configurations of the double bonds by vicinal coupling constants of 15 Hz. The trans-

configurations were additionally supported by the corresponding nOes (Table 2). 

The resulting planar structure of the polyunsaturated carboxylic acid roimatacene (26) is 

presented in Figure 18. The structure revealed an unusual accumulation of reactive functional 

groups, like a tertiary alcohol at C16, as well as three α-polyunsaturated alcohol groups at C5, 

C15 and C19, an acrylic acid residue and polyenes, altogether providing a well-founded 

justification for the observed sensitivity of 26. 

Figure 18.  The planar structure of roimatacene (26). 
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Table 2:  NMR data of roimatacene (26) (1H 600 MHz, 13C 150 MHz, [D6]DMSO). 

Atom δH H m J [Hz] COSY 
δC HMBC ROESY[d] 

1 - - - - - 167.1 3, 2 - 

2 5.79 1 d 16.0 3, 4 123.6 4 > 3 (3) 

3 6.80 1 ddd 16.0, 7.0, 7.0 2, 4 145.6 4 (2) >(4),5 

4 2.35 2 m[b] - 3, 5[d] 40.0 3, 2, 6, 5OH >(5), 2, (3) 

5 4.18 1 ddd 11.0, 6.7, 5.5 4 > 6, 5OH 69.9 7, 6, 4 >3 7, (4,6), 3 

5OH 5.01 (1) s(br) - 5 - - - 

6 5.67 1 dd(br) 15.8, 5.9 7, 5 132.0 7, 4 28, (7, 5), 4 

7 6.25 1 d 15.8 6 133.6 28, 6, 9, 10 9, 5, (6) 

8 - - - - - 134.4[c] 28, 10, 7, 9[d] - 

28 1.80 3 s - 9 12.6 7, 9 6, 10 

9 6.10 1 m[a] - 10, 12 131.0 7, 11, 28 7, 11 

10 6.47 1 dd 14.6, 11.6 7, 9 126.9 12 28, 12 

11 6.27 1 dd 14.6, 10.6 10, 12 133.9 13, 9 13, 9 

12 6.16 1 m[a] - 11, 13 131.7 10, 11 > 14α/β 10 

13 5.82 1 ddd 15.1, 7.3, 7.3 12, 14β 134.4 14α/β, 11 11, 15, (14α/β) 

14α 2.35 1 m[b] - 13, 15, 14β 34.6 12, 13 > 15OH (14β, 15, 13), 12, 17 

14β 2.02 1 dddd 15.4,7.7,7.7, 1.5 14 α, 15, 13 - - (14α, 13) 

15 3.51 1 dd[d] 9.7, 1.7[d] 15OH, 14β 73.4 29, 18β 13, 17, (14α), 29, 18α/β 

15OH 4.52 (1) s(br) - 15 - - - 

16 - - - - - 74.3 29, 18β - 

16OH 4.43 (1) s(br) - 17 > 15OH - - - 

29 0.93 3 s - - 18.2 17OH 17, 15 > 12, 18α 

17 3.29 1 dd[d] 10.5, 1.5[d] 18 β[d] 73.5 29[d], 18β 19, 15, (18α), 29, 30, 21 

17OH 4.08 (1) s(br) - 17 - - - 

18α 1.70 1 ddd 13.8, 10.2, 1.3 19, 18 β 36.1 > 18β (18β, 17), 15, 29 

18β 1.49 1 ddd 13.8, 10.2, 6.4 19, 18 α >17 - - 30, 15, (19) 

19 4.14 1 dd 7.0, 6.4 18 α/β > 19OH 74.9 29, 30, 21, 18α/β 21, 17, (18α/β) 

19OH 4.85 (1) s(br) - 19 - - - 

20 - - - - - 140.2 30, 18α/β > 22 - 

30 1.67 3 s - 21 11.6 21, 19 19, 22 

21 6.00 1 d(br) 11.2 22, 30 125.2 30, 23, 19 23, 19 > (22), 17 

22 6.37 1 dd 14.5, 11.2 23, 21 126.9 21, 23 30, 24, (23, 21) 

23 6.14 1 m[a] - 22, 24 132.2 21, 25 21, (22) > 25, 30 

24 6.14 1 m[a] - 25, 23 129.9 22, 26 26, (23, 25) 

25 5.74 1 ddd 14.3,7.1, 7.1 24, 26 135.6 27, 26, 23 (24, 26), 27 

26 2.08 2 dt 7.1, 7.5 27, 25 25.2 27, 25, 24 (27, 25), 24 

27 0.97 3 t 7.5 26 13.5 26, 25 (26), 25 

The compound was stabilized with 4-ethoxyphenol (1H NMR (600 MHz, [D6]DMSO) δ ppm 1.26 (t, J = 6.97 Hz, 3 H) 3.89 
(q, J = 6.97 Hz, 2 H) 6.65 (d, J = 8.80 Hz, 2 H) 6.72 (d, J = 8.80 Hz, 2 H); 13C NMR (150 MHz, [D6]DMSO) δ ppm 14.8, 
63.3, 115.3, 115.7, 151.0, 151.3. [a] multiplet of 4 protons at 6.15 ppm, one AA'-system consisting of 23/24H and an overlap 
with 9H and 12H. All proton shifts were taken from the HMQC spectrum. [b] overlap of 4H and 14Hα. Proton shifts from the 
HMQC spectrum. [c] 13C shift from APT spectrum after H/D exchange. [d] data after H/D exchange.  
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2.1.3 The Relative Configuration of Roimatacene (26) 

In order to establish the relative configuration of the polyol fragment C15 to C19, three 

acetonides (28-30) were prepared from roimatacene methyl ester (27) by the reaction with 

2,2-dimethoxypropane presented in Scheme 1. 

Scheme 1.  Preparation of acetonides 28 to 30 from roimatacene methyl ester (27); a) 2,2-
dimethoxypropane, PPTS, 4°C, 18h. 

Subsequent to the isolation of all three acetonides, their complete NMR data were intensely 

studied. The analysis of the 17,19-acetonide 28 revealed a typical shift of δC 98.9 ppm for the 

quaternary carbon CMe2 (C32) and δC 20.0 and 30.1 ppm (Table 3) for the methyl groups 

C33/34, characteristic for a chair conformation of acetonides as analyzed by Rychnovsky´s 

method.72 The chair conformation was further supported by nOe correlations of 33H, 17H and 

19H in coaxial positions. Supplementary, 18Hβ in the equatorial position was distinguished 

from the axial 18Hα by nOes with 17H and 19H. A chair conformation is only possible for 

syn-1,3-diols, and therefore 17OH and 19OH take the syn-configuration. 

Conversely, the second product assigned as 15,17-acetonide 29, showed chemical shifts of δC 

100.2 ppm for the quaternary carbon CMe2 (C32) and very similar carbon shifts of δC 25.2 

and 23.7 ppm for the methyl groups C33/34, unambiguously indicating a twisted-boat 

conformation and thus the anti-configuration of 15OH and 17OH (see Table 4).72 An 

unambiguous assignment of the relative configuration of stereocentre C16 considering the 

nOe correlations from the 1H,1H ROESY spectrum is impossible from this twisted-boat 

conformation. 
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Table 3:  NMR data of 17,19-acetonide 28 (1H, 600 MHz, 13C 150 MHz, CDCl3) 

Atom δH  H m J [Hz] COSY 
δC HMBC  ROESY 

31 3.74 3 s - - 51.5 - - 

1 - - - - - 166.7 31, 3 > 2 - 

2 5.94 1 d 15.8 3 > 4 123.7 4 (3) 

3 6.98 1 ddd 15.7, 7.2, 2.2 4, 2 144.7 4 (2, 4) 

4 2.51 2 m - 5, 3 >2 40.3 > 2, 6, 3 (3), 2, (5), 6 

5 4.37 1 ddd 12.0, 7.0, 1.8 4, 6 71.8 4, 7, 6 7, (4) > 3, (6) 

5OH 1.43 1 m - 5  - - 

6 5.7 1 dd 15.4, 7.0 7, 5 129.7 4 > 7 (7, 5), 28, 4 

7 6.32 1 d 15.4 6 136.1 28, 9 5, (6), 9, 4 

8 - - - - - 139.7 - - 

28 1.87 3 s - 9 12.8 9 10, 6 

9 6.09 1 m - 10, 28 132.2 28, 7, 11 7, 9 

10 6.50 1 dd 13.6, 11.4 9, 11 127.7 9 (11, 9), 28 

11 6.28 1 dd 15.0, 11.2 12, 10 133.7 28, 9 (10), 13 

12 6.26 1 dd 15.0, 11.0 11, 13 133.2 10 > 14α/β 10, (13) 

13 5.86 1 ddd 14.4, 7.3, 7.3 12, 14α/β 132.1 14α, 11, 10 11, 15, (14α/β) 

14α 2.51 1 m - 14β, 15, 13 35.9 11 29, (14β), 16OH, (15) 17, 12 

14β 2.21 1 ddd 14.5, 10.1, 7.7 14α, 13, 15   (14α), 17, 29, 13, 12 

15 3.58 1 ddd 10.3, 8.1, 2.2 14α/β 77.3 29, 14α/β 29, 16OH, (14α), 13, 17 

15OH 2.58 1 m - 15  - - 

16 - - - - - 73.7 15OH, 14α - 

16OH 2.84 1 s - 29  - - 

29 1.06 3 s - - 18.8 16OH 17, 15, 16OH, 15OH, 18β 

17 4.11 1 dd 11.6, 2.4 18α/β 72.9 29, 18α 
19, 33, 18β, 29, 15OH, 16OH, 
15, 18α 

18α 1.84 1 m - 19, 17, 18β 28.6 - (18β), 29, 16OH 

18β 1.45 1 m - 18α, 19, 17   (18α), 29, 19, 17 

19 4.31 1 dd 11.7, 1.8 18α/β 74.0 29, 30, 21 33, 21, 17, 30, 18β 

32 - - - - - 98.9 33, 34 - 

33 1.52 3 s - >34 20.0 34 17, 19 

34 1.45 3 s - >33 30.1 33 - 

20 - - - - - 136.4 
30, 22, 21, 
19 

- 

30 1.80 3 s - 21 12.9 21 22, 19 

21 6.09 1 m - 22, 30 126.0 30, 22, 19 19 

22 6.34 1 dd 14.5, 11.0 21, 23 126.2 23, 30 30, (21), 24 

23 6.21 1 dd 15.0, 11.0 22, 24 133.6 25 25, (22, 24) 

24 6.09 1 m - 23 > 25 129.6 26 26 

25 5.76 1 dt 15.0, 6.8 24, 26 136.8 26, 27, 23 23, (24, 26) > 27 

26 2.13 2 quintet 7.3 27, 25 25.8 27, 25, 24 (27, 25), 24 

27 1.03 3 t 7.3 26 13.5 -  

The compound was stabilized with 4-ethoxyphenol: 1H NMR (600 MHz, CDCl3): δ 1.39 (t, J = 7.2 Hz, 3 H) 3.99 (q, J = 7.0 
Hz, 2 H) 6.78 ppm (q, J = 9.2 Hz, 4 H); 13C NMR (150 MHz, CDCl3): δ 14.9, 64.1, 115.6, 116.0, 149.4, 153.2 ppm. 



Results 

- 27 - 

Table 4:  NMR data of 15,17-acetonide 29 (1H 600 MHz, 13C 150 MHz, CDCl3). 

Atom δH  H m J [Hz] COSY 
δC HMBC  ROESY 

31 3.74 3 s - - 51.5 - - 

1 - - - - - 166.7 31, 3 - 

2 5.94 1 d 15.8 3 123.6 4 (3) > 4 

3 6.98 1 dt 15.4, 6.6 4, 2 144.8 4 (2), (4) 

4 2.50 2 t 7.3 5, 3 40.3 2 (3), (5), 2 > 6 

5 4.36 1 q(br) 6.4 4, 6, 5OH 71.8 7 > 4, 6  

5OH 1.76 1 s (br)  5   5 

6 5.68 1 dd 15.8, 7.0 7, 5 129.3 4, 7 28, (7, 5)> 4 

7 6.32 1 m[a] - 6 136.2 9, 28 5, 9 

8 - - - - - 135.4 28 > 9 - 

28 1.88 3 s - >>9 12.8 7, 9 6, 10 

9 6.11 1 m[a] - 10> 28 132.4 7, 10 (10), 7, 11 

10 6.44 1 dd 13.2, 11.7 9, 11 127.1 - (9, 11), 28 

11 6.26 1 m[a] - 10, 12 134.3 9, 13 (10), 13, 9 

12 6.26 1 m[a] - 13, 11 132.5 10 (13), 10 

13 5.79 1 ddd 15.0,7.5,1.5 14α, 12, 14β 132.2 14α/β (12), 11> 15 

14α 2.41 1 ddd 14.9, 7.4, 1.8 14β, 13, 15 32.1 - (14β,15)> 29, 12, (13)  

14β 2.15 1 ddd 14.9, 10.0, 7.4 15, 14α >13 - - (14α), 29 > (15) 

15 3.65 1 s - 14β > 14α 72.3 29 33/34 , 19, 17 > 13, (14α) 

16 - - - - - 85.2 29, 18 - 

29 1.18 3 s - - 19.3 - 17>> 30, 14β, 18 

17 4.00 1 dd 6.0, 3.5 18 78.5 29, 18 (18), 33/34, 29, 15 

32 - - - - - 100.2 33/34 - 

33 1.35 3 m - - 25.2 34 15, 17 

34 1.35 3 m - - 23.7 33 15, 17 

18  1.93 2 m - 19, 17 37.1 - (17, 19), 30 >29 

19 4.67 1 dd (br) 8.6, 6.8 18 84.0 30 > 21 21, 15, 18 > 30 

20 - - - - - 133.6 > 30 - 

30 1.75 3 s - > 21 12.1 19, 21 >22, 19 

21 6.15 1 m[a] - 22 126.5 30, 23, 19 19 

22 6.33 1 m[a] - 21, 23 126.3 30, 23 (23),30 

23 6.19 1 m[a] - 24, 22 > 30 133.4 25 > 22 19, 21 

24 6.12 1 m[a] - 25, 23 129.7 26, 22 >26 

25 5.75 1 dt 7.2, 14.7 24, 26 136.7 27, 26> 23 (24), 23, (26) 

26 2.13 2 quint 7.2 27 > 25 25.8 27 > 25> 24 (27) > (25), 24 

27 1.02 3 t 7.3 26 13.5 26 > 25 (26) 

The compound was stabilized with 4-ethoxyphenol: 1H NMR (600 MHz, CDCl3): δ 1.39 (t, J = 7.2 Hz, 3 H) 3.99 (q, J = 7.0 
Hz, 2 H) 6.78 ppm (q, J = 9.2 Hz, 4 H); 13C NMR (150 MHz, CDCl3): δ 14.9, 64.1, 115.6, 116.0, 149.4, 153.2 ppm. [a] 
multiplet of 8 protons in between 6.35 – 6.10, proton shifts from 1H,13C HSQC spectrum 
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In order to establish the relative configuration of stereocentre C16 in roimatacene (26), the 

NMR data of bis-acetonide 30 were studied in detail (Table 5). The syn-configuration of the 

17,19-acetonide was secured by the observation of the same chemical shifts and nOe 

correlations in bis-acetonide 30 as for 28. Further, the relative configuration of the anti-15,17-

acetonide 29 was considered, before the two possible diastereomers of C16 were modelled 

applying the “Conformational Search” module of HyperChem (Version 8.5) using MM+ 

calculations. Both optimized alternative conformers were then carefully compared with the 

NMR data of 30 (Table 5, Figure 19). 

 

Figure 19.  Partial view of 30 resulting from modelling studies with HyperChem and selected nOe of 30, a) 
the relative 15S*,16R*,17S*,19R* isomer and b) the relative 15S*,16S*,17S*,19R* isomer of the 
bis-acetonide 30. 

The nOes of the chair conformation of the 17,19-syn-acetonide unit in 30, differentiating the 

equatorial 18Hβ (δH 1.41 ppm) and axial 18Hα (δH 1.77 ppm) protons as in 28, are presented 

in Figure 19b. The methyl group C29 at C16 in the 15,16-acetonide unit of 30 showed 

ROESY correlations with 18Hβ and 17H of the 17,19-syn-acetonide. These nOe correlations 

are feasible for both isomers of 30 presented in Figure 19a and b. However, the strongest nOe 

of methyl group C29 was indicated with 15H, thus enabling a discrimination between both 

isomers, because this observation is only compatible with the distance of 2.5 Å in the relative 

15S*,16S*,17S*,19R* configuration in Figure 19b. The distance of 3.8 Å in the 

15S*,16R*,17S*,19R* configuration (Figure 19a), besides the trans-orientation of methyl group 

C29 and 15H, would not allow a strong nOe. Instead, a strong nOe between 15H and 18Hα 

would be expected from a distance of 2.6 Å in the model, which is missing in the 1H,1H 

ROESY spectrum of 30 (Figure 19a). Further, a nOe between 17H and 14Hβ of the side chain 

was observed, which is impossible for the S*,R*,S*,R* isomer (Figure 19a), even after rotation 
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of the side chain. However, the observation is fully compatible with the distance of 2.5 Å 

between 17H and 14Hβ in the S*,S*,S*,R* configuration (Figure 19b). A strong nOe between 

19H and 21H strongly supports the orientation of the triene side chain as it is presented in the 

S*,S*,S*,R* model, although the expected nOe between methyl group 30H (δH 1.79 ppm) and 

18Hα (δH 1.71 ppm) could not be observed, due to their overlapping 1H NMR signals.  

The extensive NMR analyses and the comparison with the result of the molecular modelling 

of both possible 16R* and 16S*-diastereomeres strongly support the 15S*,16S*,17S*,19R* 

configuration of roimatacene (26) as presented in Figure 20. 

Figure 20.  The relative 15S*,16S*,17S*,19R* configuration of roimatacene (26). 
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Table 5:  NMR data of 15,16,17,19-bis-acetonide 30 (1H 600 MHz, 13C 100 MHz, CDCl3). 

Atom δH  H m J [Hz] COSY 
δC HMBC  ROESY 

31 3.74 3 s - - 51.5 (31) - 

1 - - - - - 166.7 31, 3 >2 - 

2 5.94 1 dd 15.8, 1.1 3 123.6 4 (3) 

3 6.98 1 dt 15, 7 2, 4 144.7 4, 5 (2) > (4) 

4 2.51 2 ddd 7.4, 6.2, 1.3 5, 3 40.3 2, 3, 5, 6 (5,3), 2, 6 

5 4.38 1 m - 4, 6 71.7 7,4,6>3 (4), 7 

6 5.70 1 dd 15, 7 7, 5 126.6 4,7,5 28, (7),4, (5) 

7 6.33 1 d 15.4 6 136.1 28, 9, 5 5, (6), (9 overlap with 22) 

8 - - - - - 134.1 28, 6, 7,9 - 

28 1.88 3 s - - 12.8 7 6, 10 

9 6.12[a] 1 m[a] - 10 132.2 28, 7 (10), 11, 7 

10 6.48 1 dd 15, 11 9, 11 127.7 28 28 > (9,11) 

11 6.28[a] 1 m[a] - 10, 12 133.8 9, 13 (12), 9, 13 

12 6.27[a] 1 m[a] - 13,11 132.7 14α/β, 10 10, (13,11) 

13 5.81 1 ddd 14.6,7.9,6 12 >14α 131.6 15, 14α/β (12), 11 

14α 2.74 1 ddd 15,9,6 14β,15 32.4 >12 (14β) 

14β 2.55 1 m - 14α, 15   (14α) 

15 3.91 1 dd 8.1, 5.5 14α/β 84.2 29> 14α/β 33, 29 

16 - - - - - 82.1 29,18α,14α - 

29 1.18 3 s - - 23.0 15 15 >17, 18β 

32 - - - - - 108.0 33,34 - 

33 1.38 3 s - - 26.8 34 34, 15 

34 1.53 3 s - 33 26.8 33 - 

17 3.76 1 m - 18α/β 71.6 29,18α, 15 36,19>29,14β,18β 

18α  1.77 1 m - 18β,19, 17 29.4 - 18β 

18β 1.41 1 m - 18α   18α>17,19, 29 

19 4.26 1 dd 11.9, 1.7 >18α/β 74.2 30>18α,21 36,21,17,30,18β 

20 - - - - - 136.9 30>22, 19 - 

35 - - - - - 98.5 36,37 - 

36 1.50 3 s - - 19.6 37 19,17,33 

37 1.47 3 s - - 30.1 36 - 

30 1.79 3 s - - 12.9 21,22>>19 >22, 19 

21 6.10[a] 1 m[a] - 22 >30 125.8 30>23,22,19 19, (22) 

22 6.34[a] 1 dd 15,11 21,23 126.4 >23,21/24 24, (23) 

23 6.20 1 dd 15,11 22,24 133.4 25, 24,22 25, (22,24) 

24 6.12[a] 1 m[a] - 25, 23 129.7 26, 22 22, (25) 

25 5.75 1 dt 13.6, 6.6 26, 24 136.6 27, 26, 23 (24) >23, (26) 

26 2.13 2 quin 7.2 27 >25 25.8 27, 25, 24 (27)>(25),24 

27 1.02 3 t 7.3 26 13.5 26,25 (26) 

The compound was stabilized with 4-ethoxyphenol: 1H NMR (600 MHz, CDCl3): δ 1.39 (t, J = 7.2 Hz, 3 H) 3.99 (q, J = 7.0 
Hz, 2 H) 6.78 ppm (q, J = 9.2 Hz, 4 H); 13C NMR (150 MHz, CDCl3): δ 14.9, 64.1, 115.6, 116.0, 149.4, 153.2 ppm. [a] 
multiplet of 8 protons between 6.35 – 6.10 ppm, proton shifts from 1H,13C HSQC spectrum 
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2.1.4 The Absolute Stereochemistry of Roimatacene (26) 

The absolute stereochemistry of roimatacene (26) was established applying Mosher´s 

method.82 Exasperatingly, the methoxy(trifluoro-methyl)phenylacetyl (MTPA) esters 

prepared directly from 26 or from the acetonides 28, 29 decomposed during isolation. In order 

to stabilize the MTPA esters, roimatacene (26) was completely hydrogenated under mild 

conditions, although two additional isomeric stereocentres at C8 and C20 were created. A 

separation of the four resulting diastereomeres was not accomplished. Neither a more 

selective hydrogenation procedure was successfully applied. The octahydroroimatacene (31) 

was then further esterified with p-bromophenacyl bromide to give the UV-active p-

bromophenacyl octahydroroimatacene ester (32). Finally, the tris-(R)- and the tris-(S)-MTPA 

esters 33a/b were derived by Yamaguchi esterification of p-bromoacetophenone-

octahydroroimatacene ester 32.106 Without further optimization 36.6 mg of roimatacene (26) 

finally yielded 2.8 mg of the tris-(S)-MTPA ester and 2.1 mg of tris-(R)-MTPA ester of the p-

bromoacteophenone-octahydroroimatacene ester 33a/b. The synthesis route is presented in 

Scheme 2. 

Scheme 2.  Preparation of the tris-(R)- and the tris-(S)-MTPA esters of p-bromoacetophenone-
octahydroroimatacene ester 33a/b. a) Pd/C (10%), H2, RT, 4.5 h; b) p-bromophenacyl bromide, 
3Å mol sieve, Et3N, acetone, 19 h; c) MTPA, 2,4,6-trichlorobenzoyl chloride, DMAP, Et3N, 
0°C to RT, 4 h. 
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The structure elucidations of the tris-(R)- and tris-(S)-MTPA esters of p-bromoacetophenone-

octahydroroimatacene ester 33a/b were accomplished by using complete NMR data sets of 

each ester. Due to the epimeric centres at C8 and C20 two of the four possible diastereomers 

were visible in the NMR data in the vicinity of each epimeric centre. In Table 6 and Table 7 

the consequential assignments of the protons and carbons based on 1H,13C HMQC, 1H,1H 

COSY, 1H,13C HMBC, and 1H,1H ROESY spectra are presented. The integrals of the proton 

signals were defined for each visible isomer at both epimeric centres. 
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Table 6:  Tris (S)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33a) 
Atom δH  H m J [Hz] COSY 

δC HMBC  ROESY calc. δC 

36 - - - - - 128.9[b] 34,34’ - 129.1 
35,35’ 7.65 4 d br. 8.4 34,34’ 132,3 (35,35’),35,35’ 34,34’ 132.3 
34,34’ 7.77 4 d br. 8.4 35,35’ 129.2 (35,35’) 31 129.4 

33 - - - - - 132.9 35,35’ - 133.0 
32 - - - - - 191.1[b] 34,34’,31 - 190.7 
31 5.27 4 d 0.7 - 65.7 - 2 65.5 
1 - - - - - 189.2 31,2 - 173.0 
2 2.44 4 t br 7.0 3 33.3 >3,4 31 33.9 

3α 1.67[a] c m - 2,4 20.3 2>4 5,4 20.8 
β 1.59[a] c m -      
4 1.71[a] c m - 5,3 32.8 2 - 33.1 
5 5.12[e] 2 m - 4,6 77.3[a] >6,3 4,3,6 74.8 

6α 1.67[a] c m - - 31.3 - (5) 32.7 
β 1.60[a] c m - 5,7   (5),8  
7 [f]          
8 1.35[a] d m - 28,9 32.7 28 (28,9)>6 32.6 

28 0.84 6 t br 7.0 8 19.4 - (8),9 20.2 
9α 1.24[a] d m - CH2 36.8[a] 28 (9) 37.2 
β 1.07[a] d m - 8,CH2  28 (9)  

10-13 CH2         
14α 1.82 c m - 15 28.7[a] - - 30.9 
β 1.57 c m - 15     

15 5.10[e] 2 m - 14 78.9[a] 29 29,CH2 77.6 
16 - - - - - 74.7[b] 29 - 76.8 
29 1.04 6 d 5.9 - 17.2 - 18,17,15 16.7 
17 3.38[a] 1 m - 18 70.2[b] 29 29,18,15,19 72.8 

18α 1.91 d m - 17,19,18β 31.2 30 20,19 31.5 
β 1.75[a] c m - 18α - - -  

19 5.25 1 m - 20,18 78.1[b] 30 (18,20),CH2 76.6 
20 1.75[a] c m - 19,CH2 36.1 30 18,30 37.4 
30 0.78 3 d 7.0 20 15.0 - 20 14.7 

17’ 3.40[a] 1 m - 18’ 71.0[b] 29 29,15 72.8 
18’ 1.86[a]  c m - 17’,19’ 30.7[a] - (18’) 31.5 
19’ 5.12[e] 1 m - 30’,18’α 79.8[a] - 30’ 76.6 
20’ 1.62[a] c m - 19` 35.3 30’ 30’ 37.4 
30’ 0.80 3 d 6.6 20` 13.4 - 20’ 14.7 

21-24 CH2         
25α 1.24[b] d m - 25,CH2 31.8 27,26 - 32.0 
β 1.29b d m - CH2   -  

26 1.30[a] d m - 27,25 22.6 27,25 (27) 22.7 
27 0.89 6 td 7.1, 1.3 26 14.1 - (26) 14.1 
37 [f]        168.9 
38 - - - - - 84.4[b] 44>40,40’ - 84.0 
39 - - - - - 128.3 41,41’ - 132.5 

40,40’ 7.56 12 m - 41,41’,42 127.4 - 41,41’,42 127.4 
41,41’ 7.40 12 m - 42,40,40’ 129.5, 128.4 - - 128.4 

42 7.43 6 m - 41,41’,40,40’ 129.9, 128.6 41,41’,40,40’ - 128.7 
43 [f]        127.5 
44 3.56, 3.50 18 m -  55.5, 55.4  40,40’ 55.5 

33a contains two isomeric centres at C8 and C20 and the integrals are normalized for each visible isomer at each epimeric 
centre; some signals are doubled or broad, the signals from C15 to C20 could be assigned to each isomer. [a] proton shift from 
1H,13C HSQC; [b] 13C shift from the 1H,13C HMBC; [c] integral of overlapping protons between 1.90 – 1.55 ppm of 26 protons; 
[d] integral of overlapping protons between 1.35 – 1.15 ppm of 53 protons; [e] 1H shift from the J-resolved spectrum; [f]  not 
assigned, due to the low amount of compound. 
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Table 7:  Tris (R)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33b)  

Atom δH  H m J [Hz] COSY 
δC HMBC  ROESY calc. δC 

36 - - - - - 129.3[b] 34,34’,35,35’ - 129.1 
35,35’ 7.65 4 d 8.4 34,34’ 132.3 35,35’ 35,35’ 132.3 
34,34’ 7.77 4 d 8.4 35,35’ 129.2 34,34’,35,35’ 34,34’,31 129.4 

33 - - - - - 133.1[b] 35,35’ - 133.0 
32 - - - - - 191.0[b] 31,34,34’ - 190.7 
31 5.29 4 s - - 65.6[a] - 34,34’ 65.5 
1 - - - - - 172.3[b] 31,2,3  - 173.0 
2 2.51 4 t br 6.6 3 33.4 4 4 33.9 

3α 1.79[b] [c] m - 2,4 20.4[a] 2,4,5 5,2 20.8 
β 1.74[b]         
4 1.76[b] [c] m - 5 32.9[b] 2,3,6 4,5 33.1 
5 5.11[d] [e] m - 4,6 77.2[a] 3,7 3,8 74.8 

6α  1.60[d] [c] m - 5,7 30.9 - 5,4 32.7 
β 1.56[d]         

7α 1.22[a] [c] m - 6,7β,8 31.6[b] 28,5 - 33.1 
β 1.01[a] [c] m - 7α   -  
8 1.26[f] [g] m - 7 32.5[b] 28,28’,6 >28,28’,9 32.6 

28 0.80 3 d 6.6 - 19.5 9 8 20.2 
28’ 0.78 3 d 6.6 - 19.3 9 8  
9α 1.20[a] [g] m - 8 36.7[a] 28,28’ - 37.2 
β 1.02 [g] m - - - - -  

10-13 CH2         
14α 1.85[a] [c] m - 15 28.8 CH2 - 30.9 
β 1.58[a] [c] m - 15     

15 5.10[a] [c] m - 14 78.7[a] 29,CH2 CH2 77.6 
16 - - - - - 75.0[b] 29,15,17 - 76.8 
29 0.97 6 d 6.6 - 16.9+16.8 >15 CH2 16.7 
17 3.31[a] 1 m - 18 70.2[a] 29>18 15 72.8 

18α 1.85[a] [c] m - 17,18β,19 28.8 - 18β 31.5 
β 1.58[a] [c] m - 18α,19   18α,19  

19 5.20 1 m - 18 78.4 30,18α 17,18β 76.6 
20 1.67 [c] m - 30,19 35.3[a] 30 30,18 37.4 
30 0.84 3 d 6.6 20 13.1 - 20 14.7 

17’ 3.28 1 m - 18’ 71.0 29,18’ 19’,20’>30’ 72.8 
18’   1.68[a] [c] m - 17’,19’ 30.7 17’ 19’,17’,30’ 31.5 
19’ 5.07[d] [e] m - 18’ 79.9 30’ 17’,30’ 76.6 
20’ 1.76 [c] m - 30’ 36.0 30’,18’ 19` 37.4 
30’ 0.90[b] [h] m - 20` 13.5 - 20` 14.7 

21-24 CH2         
26 1.29 [g] m - 27,CH2 22.6 27,CH2 (27),CH2 22.7 
27 0.90 [h] m - 26 15.3+14.1 CH2 (26) 14.1 
37 - - - - - 167.2+166.8+166.1[b] 5,15,19 - 168.9 
38 - - - - - 84.7[b] 44, Aromatic - 84.0 
39 - - - - - 128.7+132.3+131.7[b] Aromatic - 132.5 

40,40’ 7.57 12 m - Aromatic 127.6+127.5+127.4 Aromatic Aromatic 127.4 
 41,41’,42 7.41 18 m - Aromatic 129.5-128.4 Aromatic Aromatic 128.4 

43 - - - - - [i]  - - 127.5 

44 3.57 6 
s 
br 

- - 55.4 - - 55.5 

 3.53 12 m - - 55.3 - -  

33b contains two isomeric centres at C8 and C2; integrals were normalized for each visible isomer at the epimeric centre; 
some signals are doubled or broad; the signals from C15 to C20 could be assigned to each isomer. [a] proton shift from 1H,13C 
HSQC; [b] carbon shift from 1H,13C HMBC; [c] integral of overlapping protons 1.88- 1.57 ppm = 26 protons; [d] proton shift 
from 1H,1H COSY correlation; [e] integral of overlapping protons 5.13 – 5.06 ppm = 5 protons; [f] no assignment, due to low 
amount of compound, proton shift from 1H,1H ROESY; [g] integral of overlapping protons from 1.32- 0.99 ppm = 70 protons; 
[h] integral of 9 protons at 0.90 ppm; [i]  could not be assigned. 
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The presence of the p-bromophenacyl residue was indicated by the expected signals in the 1H 

and 13C NMR spectra as well as several HMBC correlations presented in Figure 21. Between 

31H and 16H only very small shift differences were visible and for both MTPA esters 33a/b 

the common values of this structural element were noted in the NMR tables (Table 6 and 

Table 7). The partial structure between C17 and C20 including methyl group C30, the two 

isomeric structures were separately identified in both esters 33a/b. 

Figure 21 shows the structural elements assigned from the 1H,1H COSY spectra and selected 

HMBC correlations of the tris-(S)-MTPA esters of p-bromoacetophenone-

octahydroroimatacene ester 33a. The position of the MTPA ester residues were indicated by 

their characteristic acyl shifts of 5H (δH 5.12 ppm), 15H (δH 5.10 ppm) and 19H (δH 5.25 and 

5.12 ppm). A COSY sequence between 2H and 6H was assigned and supported by HMBC 

correlations (Table 6). The COSY sequence between methyl group C28 and 9H was allocated 

from unambiguous correlations between 28H and 8H, as well as 8H with 9Hβ. All protons 

between 31H of the p-bromophenacyl residue and 9H showed a doubling of their 1H signals 

with small shift differences due to isomerisation at C8.  

The doublet signals of methyl groups 30H (δH 0.78 ppm) and 30’H (δH 0.80 ppm) were used 

as starting points to establish the COSY sequence between C17 and C20 of both isomers, 

which were confirmed by mutual HMBC correlations. The further connection was revealed by 

the HMBC cross correlations of C17 with 29H and 29’H. The methyl groups C29/29’ 

identified the quaternary carbon C16 by a broad HMBC cross peak. The signal of C15 was 

identified from its HMBC correlation with methyl group C29. Additionally, 15H showed a 

COSY correlation with 14H (δH/C 1.82 and 1.57/28.7 ppm). 

Figure 21. COSY sequences of the tris-(S)-MTPA esters of p-bromoacetophenone-octahydroroimatacene 
ester 33a and selected HMBC correlations. The two separately assigned isomers from 
C15/C15’ to C20/C20’ are presented with their COSY sequence and selected HMBC 
correlations. 
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The (R)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester 33b was assigned 

analogously to 33a (Figure 22). The methylene group C7 was identified from HMBC 

correlations with methyl group 28C and 5H, as well as 7H revealed a COSY correlation with 

6H and 8H. The methyl groups C30 (δH 0.84 ppm) and C30’ (δH 0.90 ppm) were separately 

assigned and used as starting point for the COSY sequences of each isomer up to 17/17’H. 

The quaternary carbon C16 was assigned from HMBC correlations with 15H, 17H and 

29/29’H. The 1H chemical shift of the narrow singlets of methyl group 29H and 29’H was 

averaged to δH 0.97 ppm. Oxymethine C15 was assigned from HMBC correlations with C16 

and mutual HMBC correlations with the methyl groups C29/29’. In addition 15H showed 

COSY cross peaks with 14H at δH 1.85 and 1.58 ppm. 

Figure 22.  COSY sequences of the tris-(R)-MTPA esters of p-bromoacetophenone-octahydroroimatacene 
ester 33b and selected HMBC correlations. The two separately assigned isomers from 
C15/C15’ to C20/C20’ are presented with their COSY sequence and selected HMBC 
correlations. 

After detailed NMR assignment of the diastereomeric MTPA-esters 33a and 33b, the 1H 

chemical shifts of the two Mosher esters 33a/b were compared to calculate the ∆δ
SR values in 

the vicinity of the MTPA esters (Table 8). 

Table 8:  ∆δ
SR values of the tris-(S)- and tris-(R)-MTPA esters of p-bromoacetophenone-

octahydroroimatacene ester (33a/b) 
H Ø δH(S-MTPA) Ø δH (R-MTPA)  ∆δSR H Ø δH(S-MTPA) Ø δH (R-MTPA)  ∆δSR 
31 5.27 5.29 -0.02 14α 1.82 1.85 -0.03 
2 2.44 2.51 -0.07 14β 1.57 1.58 -0.01 
3α 1.67 1.79 -0.12 15 5.10 5.10 0.00 
3β 1.59 1,74 -0.15 29 1.04 0.97 0.07 
4 1.71 1.76 -0.05 17 3.39 3.30 0.07 
5 5.12 5.11 0.01 18α 1.91 1.83 0.08 
6α 1.67 1.60 0.07 18β 1.75 1.66 0.09 
6β 1.60 1.56 0.04 18` 1.80 1.68 0.12 
8 1.35 1.26 0.09 19 5.19 5.14 0.05 
28 0.84 0.79 0.05 20 1.69 1.72 -0.03 
9α 1.24 1.20 0.04 30 0.79 0.87 -0.08 
9β 1.07 1.02 0.05     
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Consequently, the absolute configuration of the stereocentres C5, C15 and C19 were 

assigned. The (S)-configuration of C5 was indicated by negative ∆δ
SR values for 31H to 4H 

and positive values for 6H, 8H, 9H and methyl group 28H (Figure 23). Similarly, the 15S- and 

19R-configurations were identified from completely positive ∆δSR values between both 

stereocentres C15 and C19, and from negative ∆δ
SR values of 14H, 20H and 30H on both 

sides (Figure 23,Table 8). 

Figure 23.  ∆δ
SR values after comparison of the 1H NMR data of the tris-MTPA esters 8a/b and the 

evaluation of the stereocentres C5, C15, C19. 

The Mosher-derived 15S,19R-configuration agrees with the relative configuration of 26 

assigned from the acetonide derivatives 28-30 of roimatacene methyl ester (27) described in 

chapter 2.1.3. Thus, the absolute configuration of roimatacene (26) was unambiguously 

derived as all-trans-5S,15S,16S,17S,19R configuration presented in Figure 24. 

Figure 24.  The absolute configuration of all-trans-5S,15S,16S,17S,19R roimatacene (26). 
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2.1.5 The Biosynthetic Precursors of Roimatacene (26) 

In order to determine the biosynthetic precursors of roimatacene (26), Cystobacter 

ferrugineus strain Cb G35 was fed with different amounts of acetate, methionine and 

propionate in pre-experiments to evaluate the optimal feeding concentration for the labelled 

precursors. For this reason 100 mL cultures of Cb G35 were fed with 25, 50, and 100 mg of 

the precursors. The roimatacene (26) production of these cultures are presented in Figure 25. 

Feeding acetate increased the roimatacene (26) production from 1.08 mg/L to 1.20 mg/mL in 

100 mL cultures. This observation was transferred to the up-scale fermentation feeding 1.15-

1.75 g/h sodium acetate (100g/kg). The feeding experiments were conducted with 100 mg of 

[1-13C]- and [2-13C]-labelled acetate and 50 mg of labelled [13CH3]-methionine and [1-13C]-

propionate. 

 

Figure 25. Different concentrations of acetate, methionine and propionate were fed to a Cb G35 culture, 
controlling the roimatacene (26) production under feeding conditions to evaluate the limiting 
concentration of the labelled precursors.  

After feeding [1-13C]- and [2-13C]-labelled acetate, as well as [13CH3]-methionine and [1-13C]-

propionate to 100 mL cultures of strain Cb G35, the labelled roimatacene (26) was isolated 

and 13C NMR spectra were measured. According to 13C NMR analysis, the C3 starter unit 

derives from S-adenosyl-L-methionine (SAM) and acetate as in the case of the biosynthesis of 

apicularen.107 The remaining carbon chain of roimatacene (26) was exclusively assembled 

from acetyl-CoA. The labelling of all methyl groups originated from [13CH3]-methionine. For 
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this reason, roimatacene (26) derived from the [1-13C]-propionate feeding showed no enriched 
13C signals. The results of the feeding experiments are summarized in Figure 26. 

 

Figure 26.  Incorporation of 13C-labelled precursors in roimatacene (26). 
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2.1.6 Biological Activity of Roimatacene (26) 

Roimatacene (26) was screened against various Gram-positive and Gram-negative bacteria, 

yeasts and the fungus Mucor hiemalis (Table 9).108 26 exclusively showed antimicrobial 

activity against Gram-negative bacteria. Due to the instability of roimatacene (26), 26 was 

introduced in methanolic as well as in DMSO solution into the serial dilution test assays. In 

addition, the supernatant of an E. coli tolC assay was analysed by HPLC-HRESIMS to prove 

the stability of roimatacene (26) during incubation of the assays (Appendix, Spectrum 16). 

Accessorily, the test solutions were stabilized by the radical scavenger 4-ethoxyphenol. The 

radical scavenger showed no growth inhibition up to a concentration of 3.4 µg/mL. Thus, the 

maximum concentration of 4-ethoxyphenol used in the roimatacene-test solutions was limited 

to 3.0 µg/mL. The MICs of roimatacene (26) in the µg/mL range are rather moderate. 

In the proliferation assay of the mouse fibroblast cell line L-929 the IC50 of roimatacene is ≥ 

18 µg/mL. At this dilution the IC50 (8.8 µg/mL) of the radical scavenger 4-ethoxyphenol in 

the roimatacene (26)-test solution limited the experiment and therefore no explicit results are 

available. 

Table 9:  MIC of roimatacene (26) in DMSO (1.28 mg/mL + 0.46 mg/mL 4-ethoxyphenol) and in methanol 
(1.34 mg/mL + 0.44 mg/mL 4-ethoxyphenol) 

organism 
MIC  

(µg/mL, 
DMSO) 

MIC  
(µg/mL, 
MeOH) 

organism 
MIC  

(µg/mL, MeOH and 
DMSO) 

Escherichia coli 2 DC 14 PS 2.2 2.3 Micrococcus luteus >9.0 

Pseudomonas stutzeri 4.2 4.4 Schizosaccharomyces pombe >9.0 

Escherichia coli tolC 0.1 0.1 Pichia anomala >9.0 

Escherichia coli CG 8.6 9.0 Rhodotorula glutinis >9.0 

Chromobacterium violaceum 0.3 0.3 Candida albicans >9.0 

Klebsiella pneumonia >8.6 >9.0 Mucor hiemalis >9.0 

Bacillus subtilis >8.6 >9.0 Nocardia flava >9.0 

Staphylococcus aureus >8.6 >9.0 Pseudomonas aeruginosa >9.0 
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2.2 Six p-Hydroxyacetophenone Amides Isolated from Cystobacter 

ferrugineus Cb G35 

2.2.1 Isolation of the p-Hydroxyacetophenone Amides 34a-f 

In addition to roimatacene (26), Cystobacter ferrugineus strain Cb G35 was found to produce 

myxalamide C (24c) and a family of six novel p-hydroxyacetophenone amides 34a-f. These 

were isolated from one fermentation (70 L), which showed a significantly decreased 

production of roimatacene (26). A chromatogram of the crude extract, showing the UV 

spectra of p-hydroxyacetophenone iso-butanamide 34a at 8.2 min, a tremendously decreased 

roimatacene (26) signal at 13.5 min and the myxalamide C (24c), peak at 21.5 min, presented 

in Figure 27. 

 

 
Figure 27.  Standard analytical HPLC of the crude extract of fermentation KVT 268, showing signals of 

roimatacene (26) (peak at 13.5 min), p-hydroxyacetophenone iso-butanamide (34a) (8.2 min) 
and myxalamide C (25c) (21.5 min), detected at 200-500 nm. 

The Amberlite XAD-16 absorber resin was recovered from the culture broth by sieving and 

was eluted with methanol. After evaporation of the organic solvent the remaining aqueous 

mixture was extracted with ethyl acetate. Lipophilic by-products were removed from the raw 

extract by a methanol/n-heptane partition yielding 17.5 g of polar raw material. 1.0 g of the 

methanol extract was fractionated by silica gel flash chromatography and further purified by 

RP-HPLC to yield 59.6 mg of 34a, 7.1 mg of 34b, 3.3 mg of 34c and 6.9 mg of 34d, 

respectively. In order to isolate the minor metabolites, 4.4 g of the polar crude extract was 

processed similarly to yield 0.8 mg of 34e and 1.1 mg of 34f after RP-chromatography. The 

isolation process is displayed in Figure 28. 
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Figure 28.  Isolation of the six p-hydroxyacetophenone amides 34a-f from XAD-16 resin of the Cb G35 
fermentation KVT 268 

2.2.2 Structure Elucidation of the p-Hydroxyacetophenone Amides 34a-f 

The structures of the p-hydroxyacetophenone amides 34a-f were unambiguously elucidated 

using a combination of HRESIMS, as well as 1D and 2D NMR spectroscopic data. 

Table 10:  NMR data of p-hydroxyacetophenone iso-butanamide (34a) 
    34a    

No. δH  H m J [Hz] COSY δC HMBC 

1      164.2 3/5 > 2/6 

2/6 6.90 2 d 8.7 3/ 5 116.4  

3/5 7.94 2 d 8.7 2/ 6 > 8 131.6  

4      128.2 2/6 

7      194.6 8 > 3/5 

8 4.66 2 s  > 3/ 5 46.6  

9      176.0 8, 10 >11 

10 2.21 2 d 7.1 11 > 8 46.2 12/13 > 11 

11 2.14 1 m  12/13 > 10 27.4 12/13, 11 

12/13 1.03 6 d 6.6 11 22.8 12/13, 11 

The main component 34a was crystallized from methanol as white needles and had a 

molecular formula of C13H17NO3 for the [M+H]+ ion at m/z 236.1287 (calcd. 236.1281) 

according to HRESIMS analysis. Subsequent to the assignment of the directly bound protons 

to the corresponding carbons from 1H,13C HSQC, the 1H,1H COSY and 1H,13C HMBC NMR 
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data revealed two substructures, a p-hydroxybenzoyl and a 3-methylbutanoyl unit (Table 10, 

Figure 29). One characteristic key fragment in the HRESIMS was found at m/z 152.0710 with 

an elemental composition C8H10NO2 indicating the presence of an amidic nitrogen linking the 

two subunits. This observation was confirmed by characteristic chemical shifts of the attached 

carbon atoms C8 (δH/C 4.66/46.6 ppm) and the amide C9 (δC 176.0 ppm), as well as congruent 

long-range HMBC correlations shown in Figure 29. Of particular importance, the position of 

the carbonyl group C7 in the aromatic subunit was unambiguously evident from the HMBC 

correlations with 3/5H and 8H as well as from the characteristic chemical shift at δC = 194.6 

ppm. Compatible observations were reported for hibispeptin A (39), a cyclic peptide 

containing an analogous aromatic ketone unit.109 

Figure 29.  The structure of p-hydroxyacetophenone iso-butanamide 34a with COSY derived structural 
elements, selected HMBC correlations and the key fragment in the ESI mass spectrum. 

In addition to 34a, five secondary metabolites of this family were isolated from the crude 

extract of strain Cb G35 presented in Figure 30. The structures of p-hydroxyacetophenone 

amides 34b-f derived from NMR studies analogously to 34a and the NMR data are presented 

in Table 11-12. 
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Figure 30.  p-Hydroxyacetophenone amides 34a-f isolated from Cystobacter ferrugineus, strain Cb G35. 
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Metabolite 34b had a HRESIMS molecular ion at m/z 222.1125 and a corresponding 

molecular formula of C13H17NO3 for the [M+H]+ ion (calc. m/z 222.1125). In 34b an n-propyl 

residue replaced the iso-butyl side chain of 34a. The smallest metabolite 34c with an 

HRESIMS molecular ion at m/z 194.0809 for the molecular formula C10H11NO3 (calc. 

194.0812) showed an acetyl residue with the characteristic methyl singlet at δH = 2.05 ppm as 

amide side chain. The main UV absorption of compound 34d, which had a HRESIMS 

molecular ion at m/z 220.1331 and a corresponding molecular formula of C13H17NO2 (calc. 

220.1332), shifted from 278 nm to 285 nm due to the replacement of the C7 carbonyl group 

by a trans-double bond (3J = 14.5 Hz) conjugated to the aromatic system (Appendix, 

Spectrum 17 and 18). Analogously to 34a, the amide moiety of 34d was an iso-butyl residue. 

The minor compounds 34e and 34f were lipophilic isomers with a common molecular 

formula of C14H19NO3 corresponding to their [M+H]+ ions at m/z 250.1447 (calc. 250.1438). 

Their NMR structure elucidation revealed the difference of their side chains, i.e. an iso-pentyl 

group in 34e and an n-pentyl group in 34f. 

Table 11:  NMR data of p-hydroxyacetophenone n-butanamide (34b) and p-hydroxyacetophenone acetamide 
(34c) (1H 300 MHz, 13C 75 MHz, CD3OD) 

   34b        34c     

No. δH H m J [Hz]  COSY 
δC HMBC  No. δH H m J [Hz]  COSY 

δC HMBC  

1      164.2 3/5, 2/6 1      164.4 3/5, 2/6 

2/6 6.90 2 d 8.7 3/5 116.4 2/6 >3/5 2/6  6.86 2 d 8.8 3/5 116.6 2/6 >3/5 

3/5 7.93 2 d 8.7 2/6 > 8 131.6 3/5 3/5 7.90 2 d 8.8 2/6 131.7 3/5 

4      128.1 2/6 > 8 4      128.2 2/6 > 8 

7      194.6 3/5, 8  7      194.7 3/5, 8 

8 4.66 2 s  > 10, 3/5 46.6  8 4.62 2 s  > 10 46.9  

9      176.5 10, 8, 11 9      173.8 8, 10 

10 2.33 2 t 7.4 11, 8 > 12 38.8 11, 12 10 2.05 3 s  > 8 22.5  

11 1.72 2 tq 7.4, 7.4 12, 10 20.3 10, 12         

12 1.03 3 t 7.4 11  14.0 10, 11         

Table 12:  NMR data of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 13C 100 MHz, CD3OD) 

   34d     

No. δH H m J [Hz]  COSY 
δC HMBC  

1      157.6 3/5, 2/6 

2/6 6,75 2 d 8.7 3/5 116.5 2/6 

3/5 7.19 2 d 8.7 2/6 127.7 7, 3/5 

4      129.2 2/6, 8 

7 6.18 1 d 14.5 8 114.8 3/5 > 8 

8 7.31 1 d 14.5 7 121.5 7 

9      172.9 11, 8 

10 2.18 2 m  11 46.2 12/13 > 11 

11 2.16 1 m  12/13, 10 27.5 10, 12/13 

   12/13 1.02 6 d 6.6 11 22.7 12/13 > 10, 11 
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Table 13.  NMR data of p-hydroxyacetophenone iso-pentanamide (34e) and p-hydroxyacetophenone n-
pentanamide (34f) (1H 600 MHz, 13C 150 MHz, CD3OD) 

   34e        34f     

No. δH H m J [Hz]  COSY 
δC HMBC  No. δH H m J [Hz]  COSY 

δC HMBC  

1      164.5 2/6,3/5 1 - - - - - 164.4 3/5,2/6 

2/6 6.91 2 d 8.8 3/5 116.6 3/5 2/6 6.86 2 d 8.8 3/5 116.6 3/5 

3/5 7.95 2 d 8.8 2/6 131.7 2/6 3/5 7.90 2 d 8.8 2/6 131.7 2/6 

4      128.2 2/6 4 - - - - - 128.3 2/6 

7      194.8 8,3/5  7 - - - - - 194.4 3/5,8 

8 4.66 2 s   46.8  8 4.62 2 s - - 46.8 - 

9      177.0 10,8,11 9 - - - - - 176.9 8,7>11 

10 2.38 2 m  11>12 35.2 11>12 10 2.31 2 t 7.5 11 37.1 11 

11 1.60 2 m  10,13/14,12 36.1 10,13/14,12 11 1.66 2 quintet 7.5 12,10 26.8 10 

12 1.66 1 m  13/14, 11 29.1 13/14,11,10 12 1.39 2 m - 11,13,14 32.7 14,12,11 

   13/14 0.99 6 d 6.6 12,11, 13/14 22.9 13/14,11,12 13 1.38 2 m - 14,12 23.6 14,12,11 

        14 0.93 3 t 6.6 13,12 14.4 - 
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2.2.3 Biosynthetic Precursors of p-Hydroxyacetophenone iso-Butanamide (34a) 

The biosynthetic precursors of the main metabolite 34a were determined by feeding 

experiments with D-, 13C- and 15N-labelled amino acids in 100 mL cultures. These were 

supplemented with traces of unlabelled methionine to increase the production of 34a in strain 

Cb G35 under feeding conditions. 

Feeding [D10]-leucine resulted in HRESIMS molecular ion clusters at m/z 236.1268 for 

[M+H] + of the unlabelled compound 34a and at m/z 245.1834 for [C13H7D9NO3+H]+ of the 

[D9]-labelled metabolite 34a showing an incorporation of 65% of the precursor (Appendix, 

Spectrum 59). Consistent with the high incorporation of deuterium, the 1H NMR spectrum of 

the raw sample showed decreased intensities of the 1H signals for the N-acyl residue of 34a 

(Appendix, Spectrum 58). 

Table 14:  13C Incorporation in labelled 34a from feeding experiments with [13C9,
15N]-tyrosine.  

Position 13C incorporation [%] from 13C NMR 13C incorporation [%] from 1H NMR 

1 53 - 

2/6 53 51[c] 

3/5 53 53[c] 

4 53 - 

7 53[a] - 

8 53 n.a. 

9 8[b] n.a. 

10 7-8 n.a. 

11 7-8 n.a. 

12/13 7[b] n.a. 

n.a. = signals were not analyzed; [a] calculation with reference C9; [b] calculated from labelled to natural 13C signal ratio;110 
[c] calculated 13C incorporation from the 1H NMR spectrum. 

After feeding [13C9,
15N]-tyrosine the complete molecule 34a was found to be 13C-enriched in 

the 13C NMR analysis, which is presumably due to partial scrambling of the precursor by 

primary metabolism via fumarylacetoacetate to doubly 13C-labelled acetate. The NMR 

analysis of the [13C9,
15N]-tyrosine labelled p-hydroxyacetophenone iso-butanamide (34a) are 

presented in Table 14. Due to the scrambling, the acyl residue showed a low 13C incorporation 

of 7-8%, which was calculated from the doublet signals of the 13C-labelled C9 and the methyl 

groups C12 and C13 compared to their corresponding natural singlet signals (Appendix, 

Spectrum 57).110 In contrast, the 13C signals of the p-hydroxyacetophenone unit in 34a 

showed complex signal patterns due to the intact incorporation of the completely 13C-labelled 

tyrosine (Appendix, Spectrum 57). Representative for this structural unit, a 53% 13C 

incorporation of carbonyl C7 was calculated, compared to the natural singlet signal of C9, the 
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second carbonyl group in 34a. Reference 13C signals for the other carbon types were not 

available. In addition, the 1H NMR spectrum showed broad doublets for the aromatic protons 

of the 13C-labelled part of the sample with a direct CH coupling of 1JC,H ~ 150 Hz.111 

Compared to the unlabelled aromatic proton signals, the doublets indicated 52% 13C 

incorporation, fully supporting the 13C NMR result (Appendix, Spectrum 56). In order to 

assess the incorporation of 15N, the 1H doublet signal of the 15N-labelled NH proton with a 

direct coupling of 1JN,H ~ 95 Hz was compared to the unlabelled singlet NH signal in the 1H 

NMR spectrum to give a 15N incorporation of 30% (Appendix, Spectrum 56). This result was 

supported by HRESIMS of the sample, which showed the natural key fragment 

[C8H9NO2+H]+ at m/z 152.0701 and two labelled monoisotopic ions (Appendix, Spectrum 

60). One peak at m/z 161.0938 for [13C8H9
15NO2+H]+ with 29% incorporation of the complete 

labelled fragment and a second ion with 30% at m/z 160.0966 for [13C8H9NO2+H]+ missing 

the labelled nitrogen. The total 13C incorporation of 59% for the fragment ion of 34a is in 

good agreement with the results from the NMR analyses. 

2.2.4 Biological Activity of p-Hydroxyacetophenone Amides 34a-f 

The p-hydroxyacetophenone amides 34a-f were tested up to a concentration of 100 µg/mL but 

did not show any significant antibiotic activity against Mucor hiemalis, Gram-positive 

bacteria (Staphylococcus aureus, Nocardia flava, Micrococcus luteus), Gram-negative 

bacteria (Escherichia coli, Chromobacterium violaceum) or yeasts (Candida albicans, 

Rhodotorula glutinis, Pichia anomala, Schizosaccharomyces pombe). In addition 34a-f were 

screened against various micro algae (Scenedesmus bajacalifornicus, Chlamydomonas sp., 

Bracteacoccus sp., Pseudococcomyxa simplex and Botryococcus brauni), and only 34d 

induced growth inhibition of Pseudococcomyxa simplex at the highest concentration tested 

(100 µg/mL). Similarly, 34a-f showed no cytotoxic effect or growth inhibition in cell culture 

assays with human leukemic U-937 cells up to a concentration of 100 µg/mL. 
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2.3 Sulfangolids, Macrolide Sulfate Esters from Sorangium cellulosum  

2.3.1 Verification of the Proposed Structures of Sulfangolids 25a-d 

Sulfangolid A (25a) was isolated from Sorangium cellulosum strain So ce666 during my 

diploma thesis. In the HRESIMS 25a showed a molecular ion cluster [M-H]- at m/z 663.3208 

for the molecular formula C35H51O10S (calc. 663.3206). In the direct chemical ionisation mass 

spectrum 25a provided a highly abundant negative charged fragment ion at m/z 566 (100%). 

The characteristic loss of 97 u suggested the elimination of a HSO4
- residue. The sulfate 

residue was also present in the IR spectrum with strong bands at 1252 (s) and 1011 (s) cm-1. 

The absorption at 342 nm in the UV spectrum indicated a tetraene chromophore conjugated 

with a carbonyl group and a second absorption at 283 nm suggested a dienone chromophore.  

The detailed structure was elucidated by 1D and 2D NMR spectroscopy (Table 15). A 1H,13C 

HMQC spectrum correlated the protons to their directly bound carbons and the analysis of the 
1H,1H COSY spectrum furnished four structural elements A–D (Figure 31). The exchangeable 

protons of the alcohols were assigned to oxygenated methines C14 and C17 from their 1H,1H 

COSY correlations, thus locating the sulfate moiety to the oxygenated methine C13 (δH/C 

4.36/77.4 ppm). The lactone carbon C1 (δC 165.1 ppm) showed HMBC correlations with 2H 

and 3H of subunit A. Due to the high order spin system of the olefinic protons, the coupling 

constants in Table 15 were deduced from a simulated 1H spectrum using ACD/C+H Predictor 

(Version 11) to match the observed 1H NMR signal pattern of 25a (Appendix, Spectrum 69). 

All double bonds of the tetraene in subunit A were trans-configured according to their vicinal 

coupling constants 3J of 15 Hz. 

The structural elements A and B were connected via carbonyl C15 (δC 217.5 ppm) by HMBC 

correlations with 14H, 14OH of subunit A and 16H and methyl group C32 of subunit B. 

Carbonyl C21 (δC 202.2 ppm) displayed cross peaks in the HMBC spectrum with methyl 

group C33 of subunit B and with the unsaturated methines 22H and 23H of subunit C. 

Subunit C was further connected to the quaternary carbon C24 (δC 134.2 ppm) and subunit D 

following several HMBC correlations: the mutual HMBC correlations between methyl group 

C34 and methines 23H and 25H, as well as between methines 23H and 25H, and the 

quaternary C24 with 22H and 34H. The trans-configuration of the double bonds was 

unravelled from the vicinal coupling constant 3J22,23 of 15.4 Hz and the 1H,1H ROESY 

correlation of methyl group C34 with 22H and 25H, as well as correlations between 23H and 

25H. The last double bond equivalent was used to close the macrolide ring of sulfangolid A 
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(25a) at position C27, which was indicated by a characteristic acyl shift of 27H (δH/C 

4.91/74.2 ppm). 

Figure 31.  The structures of sulfangolid A (25a) and sulfangolid B (25b) with the COSY sequences and 
selected HMBC correlation. 

Sulfangolid B (25b) was isolated from Sorangium cellulosum strain So ce192 (H. Irschik, R. 

Jansen) and showed a molecular ion cluster [M-H]- at m/z 693.3314 in the HRESIMS 

establishing the molecular formula of C36H53O11S (calc. 693.3308). Similar to sulfangolid A 

(25a), variant B (25b) showed analogue COSY sequences and HMBC correlations presented 

in Figure 31. Sulfangolid B (25b) differed from 25a by an additional methoxy group in the 

unusual position at C2 (Table 16). The position of the methoxy group was indicated by the 

chemical shift of quaternary carbon C2 at δC 145.5 ppm showing HMBC correlations with the 

methoxy group (δH/C 3.75/60.8 ppm) and with methines 3H and 4H (Figure 31). 

Sulfangolid C (25c) was isolated from Sorangium cellulosum strain So ce12 during my 

diploma thesis. The compound 25c showed a molecular ion [M-H]- at m/z 681.3314 in the 

HRESIMS establishing the molecular formula C35H53O11S (calc. 681.3317). The UV 

maximum at 311 nm indicated the loss of one conjugated double bond from the unsaturated 

lactone chromophore compared to 25a. Subsequently to 1H,13C HSQC analysis, the 1H,1H 

COSY data revealed five structural fragments A-E (Figure 32). The lactone C1 was connected 

with fragments A and D from HMBC correlations with 2H and the acyl proton 27H (δH/C 

4.94/74.4 ppm). The quaternary carbon C15 was correlated with 13H and 14H of fragment A 

and 16H and methyl group C31 of fragment B. In addition, C15 showed a characteristic 

carbon shift of a hemiketal at δC 100.4 ppm. A six-membered ketal ring was formed with the 
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oxymethine C19 (δH/C 3.84/68.3 ppm) of fragment B, which was supported by nOe 

correlations between 15OH, 17H and 19H. Further carbonyl C21 showed HMBC correlations 

with methyl group C32 and 23H of subunit C. The quaternary carbon C24 connected 

fragment C and D, evident from various HMBC correlations of C24 with 22H and 23H, as 

well as with 25H. In addition the directly bound methyl group C34 showed HMBC 

correlations with 23H, and the mutual HMBC cross peaks between C23 of subunit C and C25 

of subunit D (Figure 32). The final connection of the iso-butyl side chain was accomplished 

by HMBC correlations of C27 and C29, as well as mutual HMBC cross peaks between the 

methyl groups C30, C31 and C28. 

Figure 32.  The structures of sulfangolid C (25c) and sulfangolid D (25d) with the COSY sequences and 
selected HMBC correlations important for the structure elucidation. 

Sulfangolid D (25d) was isolated from Sorangium cellulosum strain So ce1375 (K. Gerth, M. 

Herrmann). The HRESIMS analysis showed a molecular ion cluster [M-H]- at m/z 677.3343 

for the elemental composition C36H53O10S (calc. 677.3365). After 1H,13C HSQC analysis, four 

structural subunits were assigned from the 1H,1H COSY spectrum of 25d. Subunit A was 

correlated by HMBC correlations of C1 with 2H and 3H, and on the other side to carbonyl 

C15 by HMBC cross peaks of C15 with 14H. On the other hand, C15 showed HMBC 

correlations with 16H and 32H of fragment B. The quaternary carbon C21 was HMBC 

correlated with a methoxy group (δH/C 3.15/49.8 ppm) while its characteristic carbon shift at 

δC 103.2 ppm indicated a ketal carbon. This ketal was formed within subunit B as six-

membered ring with the ether at C17, due to the characteristic chemical shifts of δH 3.63 ppm 

and δC 72.5 ppm. Further C21 was connected to fragment C by HMBC correlations of 22H 
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and 23H. The quaternary carbon C24 and the methyl group C33 interconnected fragment C 

and fragment D according to various HMBC correlations of C24 with 22H and 23H, as well 

as mutual HMBC correlations of methyl group C34 with 23H and 25H presented in Figure 32. 
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Table 15:  NMR data of sulfangolid A (25a) (1H 600 MHz; 13C 150 MHz, [D6]DMSO) 

Atom δH m J [Hz] COSY[a] ROESY[a,b] δC HMBC [c] 

1 - - -   165.1 2>>3 
2 5.76 d 14.8[d] 3 4 o. 5>>34 119.8  
3 6.88 m 14.8, 11.0[d] 4 o. 5, 2 4 o. 5>>34 145.2  
4 6.35 m 11.0, 15.0[d] 3, 6 o. 7 2 o. 3>>33, 34 128.4 2 
5 6.36 m 15.0, 11.0[d] 3, 6 o. 7 2 o. 3>>33, 34 142.1 6 o. 7 
6 6.23 m 15.0, 11.0[d] 4 o. 5, 8 4 o. 5, 9>33 128.9 4 o. 5 
7 6.22 m 15.0, 11.0[d] 4 o. 5, 8 4 o. 5, 9>33 138.6  
8 6.14 m 14.8, 11.0[d] 7 o. 6, 9 (9), 10β 130.6  
9 5.67 ddd 14.8,  10.1, 4.8 8, 10α/β (10α),10β,  6 o. 7 139.0  

10α 2.30 m  10β, 9, 11α/β (10β) 32.1  
10β 1.92 m  10α, 9 (10α, 9), 8   
11α 1.69 m  11β, 12β>10α/β (10α), 9, 8 24.9  

11β 1.26 m  
11α, 12β>10 α /β, 
12α 

13>9   

12α 1.00 m  12β, 11β>13 (13)>9 28.4 14 
12β 1.47 m  12α, 11α/β, 13 (13)   

13 4.36 dd 10.0, 2.1 14, 12α/β 
14OH, 12β, 
11β>12α>11α>10α 

77.4 14OH 

14 4.46 dd 6.6, 2.1 13, 14OH 32, (14OH), 16 77.2  
14OH 5.76 d 6.6 14    

15 - - -   217.5 
32, 16, 14, 
14OH 

16 3.01 dq 9.3, 7.2 17, 32 
(32), 14OH, 18β>18α, 14, 
17OH 

47.9 32 

 32 1.00 d 7.2 16 (16), 17>17OH, 14 14.6  

17 3.34 dddd(br) 
9.3, 7.3, 1.3, 
9.5 

16, 18α>18β 32, 19β, 18α, 19α 71.3 32 

17OH 4.39 d 7.3 17 32, 16>19α   
18α 1.33 m  18β, 19α, 17 33 33.8 17OH 

18β 0.83 m Σ32.2[f] 18α, 19α/β, 17 (19α), 16>20   

19α 1.92 m  
19β, 18α>11α/β, 
18β  

(20, 19β), 22, 14OH 28.9 33 

19β 0.89 m Σ31.4[f]  19α, 18α/β >17   
20 2.34 ddq 9.5, 7.0, 2.5 33, 19α/β 22, 19α>18β 45.6 33 
 33 0.95 d 7.0[e] 20 (20), 22>4 o. 5 15.4  
21 - - -   202.2 33>22, 23 
22 6.20 d 15.4 23 34, 20>19α 122.8  
23 7.20 d 15.4 22 25  145.9 34>25  
24 - - -   134.2 34>22 
 34 1.52 s  25 26, 22>3>2>4 o. 5 12.6 23, 25 
25 5.98 d 11.2 26, 34 23, 28α, 35 142.3 35, 34>23 
26 2.93 ddq 11.2, 11.5, 7.0 25, 35>27 34, (27>35) 35.4 30, 31, 35 
 35 0.95 d 7.0[e] 26 25>27, 28β, (26) 15.9 26, 25 
27 4.91 ddd 11.5, 4.5, 2.0 26, 28α/β 35, 31, 26, 29, (28β) 74.2 35 

28α 1.58 m  28β, 27 25 35.3 35 
28β 1.33 m  28α, 27, 29 35, (27)   
29 1.47 m  28β, 30, 31 27 24.2 30, 31 
30 0.85 d 6.4 29 (29) 23.4 31 
31 0.81 d 6.4 29 (29), 27  21.0 30 

NH4
+ 7.03 s(br)      

[a] signals are sorted by intensity. [b] vicinal nOe are indicated by brackets. [c] sorted by intensity of the cross peaks. 
[d] overlapping signals of higher order, coupling constants were calculated by ACD/C+H NMR Predictor (Version 11). 
[e] overlapping signals. [f]  data from J-resolved spectrum. 
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Table 16:  NMR data of sulfangolid B (25b) (1H 600 MHz; 13C 150 MHz, CD3OD) 

Atom δH m J [Hz] COSY 
δC HMBC  

1 - - - - 164.6 3, 27 
2 - - - - 145.5 3, OMe 

OMe 3.75 s - - 60.8 - 
3 6.55 ma - 4 128.2 5,4 
4 6.55 ma - 3,5 125.2 6 
5 6.36 m - 4,6 140.6 3,7 
6 6.29 mb - 5,7 131.1 4,8 
7 6.29 mb - 6,8 138.6 5,9 
8 6.19 m - 7,9 132.5 6, 10 
9 5.78 ddd 14.8, 10.1, 4.7 8,10 139.1 10β, 11β 

10α 2.46 m - 9, 11 33.7 - 
10β 2.08 md -    
11α 1.80 m - 10,12 26.1 9 
11β 1.50 m -    
12α 1.63 m - 11, 13 29.6 14, 10 
12β 1.28 m -    
13 4.75 dt 10.1, 2.2 12, 14 81.6 - 
14 4.79 d 2.2 13 78.8 - 
15 - - - - 217.5 14,16,32 
16 3.18 mc - 32,17 48.7 - 
 32 1.20 d 7.1 16 14.4 17,16 
17 3.66 ddd 10.5,9.3,1.9 16, 18 73.7 32,19 

18α 1.57 m - 17,19 35.0 16 
18β 1.12 m -    
19α 2.08 md - 18, 20 30.7 17, 33 
19β 1.23 m -    
20 2.58 qt 7.0, 6.7 19,33 47.3 - 
 33 1.14 d 6.7 20 16.5 19 
21 - - - - 205.9 22,23,20,33,19 
22 6.34 d 15.5 23 124.1 - 
23 7.37 d 15.5 22 148.4 25, 34 
24 - - - - 136.3 22,26,34 
 34 1.70 d 3.9 - 13.1 26,25,23 
25 6.03 d 10.9 26 143.7 27,35, 34, 23 
26 3.18 mc - 27,25,35 37.0 - 
 35 1.09 d 6.9 26 16.3 25,26 
27 5.12 ddd 11.4, 4.8, 2.0 26,28 77.3 25 

28α 1.68 m - 27,29 37.1 30,31,26 
28β 1.50 m -    
29 1.63 m - 30,31,28 25.9 27 
30 0.99 d 6.6 29 24.0 28,31 
31 0.96 d 6.6 29 21.6 29,30 

[a] multiplet of 3H and 4H at 6.55 ppm; [b] multiplet of 6H and 7H at 6.29 ppm; [c] multiplet of 16H and 26H at 3.18 ppm; 
[d] multiplet of 10Hβ and 19Hα in between 2.12 and 2.03 ppm. 
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Table 17:  NMR data of sulfangolid C (25c) (1H 600 MHz, 13C 150 MHz, [D6]DMSO) 
Atom δH  m J [Hz] COSY[a] ROESY[a,b] 

δC HMBC [c] 

1 - - -   165.1 2, 3>27 

2 5.81 d 15.2 3 (3), 4, 33 120.3 4 

3 6.91 dd 15.2, 11.2 2,4 (2, 4), 5, 33 144.4 5 

4 6.31 dd 14.7, 11.2 3,5 (3, 5), 2>6 127.5 2>3,6 

5 6.44 dd 14.7, 10.6 4, 6 (4, 6), 3, 7>>8α, 32  141.3 3, 4, 7 

6 6.19 dd 15.1, 10.6 5, 7 (5), 4>8α 130.3 4>8α 

7 5.87 ddd 15.1, 9.3, 5.3 6, 8α/β (6, 8α/β), 5 >>32 140.8 5>8α 

8α 2.08 m  7, 8β, 9α/β (7, 9α/β), 6 31.0 6 

8β 2.19 m  7, 8α, 9α/β (8α, 9α/β), 6>5   

9α 1.45 m  8α/β, 10  28.9 >>8α/β 

9β 1.32 m  8α/β, 11α, 10    

10 1.26 m  11, 9α/β 13 27.7 8α/β 

11α 1.41 m  12, 10  13 26.3  

11β 1.26 m  12    

12 1.51 m  13  30.7 13, 6 

13 4.39 t (br) 6.4 12, 14 (14), 15OH, (12β), 11, 33 78.1 11 

14 3.87 d (br) 7.55, (1.1[d] ) 14OH > 13 > 15OH (13, 14OH), 15OH, 32, 16 75.1 14OH, 15OH 

14OH 4.73 d (br)  14 (14>15OH), 16   

15 - - -   100.4 32, 16, 14OH, 15OH > 14, 13 

15OH 5.49 s   13, 14, 19 (17, 32)   

16 1.65 dq (br) 10.4, 6.6 17, 31, 14OH (32, 17), 17OH, 14OH, 14 41.6 15OH, 14OH, 14 

32 0.86 d 6.6 16 14, 17OH>15OH>14OH 11.2 16>>17 

17 3.39 ddd (br) 10.4, 10.8,  5.3 18α, 16, 18β (18α, 17OH), 19, 32>15OH 67.6 32, 17OH, 16 

17OH 4.33 d 5.3 17 (>17, 18α), 16   

18α 1.77 ddd(br) 11.7, 4.5, 1.8 18β, 19, 17 (17OH, 19, 17) 39.0  

18β 0.88 ddd[e] 11.7, 11.8, 10.8[e] 18α, 19, 17 (19, 17), 20   

19 3.84 ddd(br) 11.8, 10.0, 1.8 20, 18α/β (20, 18α), 17, 33 68.3 33 

20 2.68 dq 10.0, 7.2 19, 33 (33, 19), 22, 18β, 23 51.4 33 

33 1.05 d 7.2 20 (20), 19, 22, 5, 13>7 15.2 20>>19 

21 - - -   201.5 33>23, 22>20  

22 6.34 d 15.5 23 (23), 34, 20>32 124.2  

23 7.18 d 15.5 22 (22), 25, 34>>20 146.2 34>25 

24      134.2 34, 22>23, 26 

34 1.61 d(br) 0.8 25 22, 26>3 12.6 23>25 

25 6.0 d 11.0 26, 33 23>(26), 34, 28α 142.7 34, 23>27 

26 3.01 ddd 11.0, 7.2, 4.6 27, 25, 35 (35, 25, 27), 34, 30, 28β  35.2 35 

35 1.00 d 7.2 26 27, 25, (26), 28β 15.8 26, 25 

27 4.94 ddd 11.5, 4.6, 2.8 26, 28α/β 34, 35, 30, 29, (28β, 26) 74.4 35, 26>28α 

28α 1.58 ddd(br) 14.2, 11.5, 4.2 27, 28β (28β), 25, 27 35.6 30, 31, 26 

28β 1.36 m  27, 28α (27), 35>>25, 26   

29 1.49 m  30, 34, 28β 27 24.2 30, 35, 27 

30 0.88 d 6.8 29  23.4 31, 28α/β 

31 0.84 d 6.8 29 27, 26 21.1 30>28α/β 

NH4
+ 7.06 s(br)   15OH, 14OH, 17OH   

[a] signals are sorted by intensity. [b] vicinal nOe are indicated by brackets. [c] signals are sorted by intensity of the cross peaks. 
[d] after H/D-exchange. [e] data from J-resolved spectrum. 
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Table 18:  NMR data of sulfangolid D (25d) (1H 300 MHz, 13C 75 MHz, CD3OD) 

Atom δH  m J [Hz] COSY[a] 
δC HMBC [b] 

1 - - - - 168.3 2 >3 

2 5.80 d 15.5 3 121.5 - 

3 7.11 m - 2, 4 o. 5 147.0 - 

4 6.46[c] m - [d] 130.5 3,2 

5 6.45[c] m - [d] 143.3 3 >6 o. 7 

6 6.33[c] m - [d] 131.1 4 o. 5 

7 6.34[c] m - [d] 139.2 - 

8 6.26[c] m - [d], 9 132.9 - 

9 5.69 ddd 14.2, 10.6, 3.7 10α/β, 8 140.2 - 

10α 2.52 m - 9, 10β, 11α 34.2 - 

10β 2.02 m - 9,10β, 11α/β   

11α 1.98 m - 12α/β, 11β, 10α/β 26.3 - 

11β 1.36 m - 12α/β,11α   

12α 1.60 m - 11α/β, 13,12β 30.5 14 

12β 1.30 m - 11α/β, 13,12α   

13 4.40 dt 10.7, 1.5 14, 12α >β 83.1 14 

14 4.76 d 1.5 13 80.6 - 

15 - - - - 218.3 14,32>16 

16 3.12 dq 9.6,6.9 17, 32 49.3[e] 32, 17 

32 1.20 d 6.9 16 15.4 >16 

17 3.63 m - 16,18α/β 72.5 32>16 

18α 1.60 m - 17, 19, 18β 32.1 - 

18β 1.09 m - 19,18α   

19 1.64 m - 18α, 20 28.7 33 

20 1.57 m - 19, 33 40.3 33 

33 1.04 d 6.8 20 16.4 >20 

21 - - - - 103.2 23,22,33 >>OMe 

OMe 3.15 s - - 49.8[e] >20 

22 5.15 d 16.4 23 128.0 >23 

23 6.22 d 16.4 22 138.2 35, 22 

24 - - - - 136.2 35, 23, 22 

34 1.60 d 0.9 - 13.7 23 

25 5.44 d 10.5 26>35, 23 133.5 35,36,23 

26 3.06 m - 25,36> 27 36.2 36 

35 1.07 d 6.8 26 16.7 >26,25 

27 5.04 ddd 10.5,4.7,2.4 26,28 α/β 77.1 36 

28α 1.63 m - 27,29 37.4 30,31 

28β 1.46 m - 27   

29 1.65 m - 30,31,28α 26.1 30,31 

30 0.98 d 6.4 29 24.1 31 >29 

31 0.94 d 6.4 29 21.9 30 >29 

[a] signals are sorted by intensity. [b] signals are sorted by intensity of the cross peaks. [c] multiplet from 6.46 to 6.26 ppm 
containing 5 protons. [d] Overlapping COSY cross correlations in the multiplet from 6.46 to 6.26 ppm. [e] 13C shift from the 
HMBC correlation. 
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2.3.2 The Relative Configuration of Sulfangolid C (25c) 

The relative configuration of sulfangolid C (25c) was determined utilizing 1D and 2D NMR 

studies (Table 17) assisted by molecular modelling with HyperChem (Version 8.5). The 28-

membered macrolide ring of sulfangolid C (25c) contains three large inflexible structural 

elements, the triene lactone, the six-membered hemiketal ring and the dienone, which 

alleviated the modelling. Analogously to sulfangolid A (25a), the double bonds of the lactone 

and the unsaturated ketone of 25c maintain the all-trans-configuration. The six-membered 

hemiketal formed the basis for the elucidation of the relative configuration. Initially, the seat 

conformation of the hemiketal was assigned from nOe correlations of 15OH, 17H, 19H 

indicating their coaxial positions (Figure 33). Further nOes of 15OH, 17H and 19H with 

18Hα and methyl group C32 defined the equatorial positions of 18Hα and C32 in the 

hemiketal. The axial position of 18Hβ (δH 0.88 ppm, ddd) was supported by three trans 

coupling constants between 11.8 and 10.8 Hz for 3J17,18β, 
3J19,18β, and the geminial 2J18α,18β 

coupling constants observed in the J-resolved NMR spectrum (Appendix, Spectrum 91). 

Further, the vicinal coupling constant 3J16,17
 of 10.4 Hz between 16H and 17H was only 

feasible for a coaxial relation of both protons. Another large vicinal coupling constant 3J19,20 

of 10.0 Hz positioned 20H anti to 19H, which is realized in the model (Figure 33) by a 

dihedral angle φ19H,20H of 165.9°. This anti-position was supported by the nOe of 20H with the 

axial 18Hβ (2.4 Å) while the methyl group C33 at C20 points into the macrolide ring as 

indicated by nOe correlations with 19H, 13H, 5H and 7H. The nOe observations are fully 

compatible with the modelled configuration (Figure 33) by the calculated distances of 2.4 Å 

between 33H and 13H, as well as 1.7 Å between 33H and 5H and 2.4 Å between 33H and 7H 

across the macrolide ring. The methyl group C34 substituting the trans-diene inclines towards 

the lactone ring according to the nOe correlation with 3H. The vicinal coupling 3J25,26 of 11.0 

Hz indicates a transoid-relation between both methines 25H/26H which is compatible with 

the dihedral angle φ25H,26H of 167.3° in the model. This position is additionally indicated by 

the nOe between 26H and methyl group C34. Consequently, the exocyclic orientation of 

methyl group C35 was supported by the nOe with 25H. The position of the macrolide at C27 

was assigned on the basis of the small coupling constant 3J26,27 of 4.6 Hz compatible with a 

calculated torsion angle φ26H,27H of 57.2° and the nOe correlation between 27H and 35H.  

On the opposite side of the ketal ring, the position of 14H was indicated by nOe correlations 

with the axial 16H and the equatorial methyl group C32 feasible for an anti-orientation of 

14H and 15OH. The small coupling constant 3J13,14 of 1.1 Hz observed after H/D-exchange 
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reflects the calculated torsion angle φ13H,14H of 75.5° in the model. In addition, the nOe 

between 13H and 33H crossing the lactone ring was observed in the 1H,1H ROESY spectrum 

of sulfangolid C (25c). Both relative configurations, the 13R* and the 13S* of 25c, were 

modelled with HyperChem (Figure 33 and Figure 34). In each case the configuration with the 

lowest global minimum showed very similar torsion angles for φ13H,14H (13R* = 75.5°, 13S* = 

82.9°) and a similar distance between 13H and 33H with 2.6 and 2.4 Å (Table 19 and Table 

20), well matching the observed nOes. However, in the 13R*-model the smaller distances 

across the macrolide ring between methyl group C33 with 5H (1.7 Å) and 7H (2.4 Å) agree 

with the observed nOes of 33H far better than the corresponding distances of 3.7 and 4.2 Å in 

the 13S*-model (Table 20). Additionally, the 13R*-configuration included two hydrogen 

bonds stabilizing the position of the sulfate ester residue. For these reasons the 13R* 

configuration of sulfangolid C (25c) is favoured. The resulting all-trans 

13R*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* configuration of sulfangolid C (25c) is 

presented in Figure 35. 

Figure 33.  The model of all-trans 13R*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* sulfangolid C (25c) 
with selected nOe correlations. Two hydrogen bonds are formed between the sulfate group at 
C13 and 15OH and between 15OH and 14OH. 
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Table 19.  The proton/proton distances and dihedral angles φ of all-trans 13R*,14S*,15R*,16R*,17S*,19S*, 
20R*,26R*,27R* model of sulfangolid C (25c) presented in Figure 33. 

 

 
Figure 34.  Model with the lowest global minimum of sulfangolid C (25c) with 13S*,14S*,15R*,16R*,17S*, 

19S*,20R*,26R*,27R* configuration and selected nOe enhancements. 

Table 20:  The measured proton/proton distances and dihedral angles φ of the modelled 
13S*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* configuration of sulfangolid C (25c) presented in 
Figure 34. 

Position 

 

dihedral angle φ  

[degree] 

atom distance 

[Å] 

Position 

 

dihedral angle φ  

[degree] 

atom distance 

[Å] 

13H,14H 82.9  33H,5H  3.7 
13H,33H  2.6 33H,7H  4.2 
14H,32H  3.0 22H,34H  1.8 
14H,16H  2.2 23H,25H  2.4 
16H,17H 171.5  34H,3H  3.7 
17H,18Hβ 173.8  34H,26H  1.8 
17H,18Hα 56.9  25H,35H  2.6 
18Hβ,19H 176.6  25H,26H 174.5  
18Hβ,20H  2.6 25H,28Hα  2.2 
19H,33H  2.6 26H,27H 46.7  
19H,20H 173.5  35H,27H  2.6 
33H,22H  1.8 27H,29H  2.6 

 

Position dihedral angle φ 
[degree] 

atom distance [Å] Position dihedral angle 
φ [degree] 

atom distance 
[Å] 

13H,14H 75.5  33H,5H  1.7 
13H,33H  2.4 33H,7H  2.4 
14H,32H  3.3 22H,34H  1.8 
14H,16H  2.4 23H,25H  2.4 
16H,17H 169.2  34H,3H  3.8 
17H,18Hβ 174.1  34H,26H  1.8 
17H,18Hα  2.5 25H,35H  2.8 
18Hβ,19H 176.7  25H,26H 167.3  
18Hβ,20H  2.4 25H,28Hα  2.5 
19H,33H  2.7 26H,27H 57.2  
19H,20H 165.9  35H,27H  2.6 
33H,22H  2.8 27H,29H  2.3 
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Figure 35.  The relative configuration of all-trans 13R*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* 
sulfangolid C (25c). 
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2.3.3 Studies towards the Biosynthetic Precursors of Sulfangolid C (25c) 

Two sulfangolid C (25c) producer strains So ce757 and So ce804 were analysed for their 

sulfangolid C (25c) production and found to synthesise 19 mg/L and 8.5 mg/L, respectively. 

Subsequently, strain So ce757 was used to inoculate a 70 L fermentation to observe the 

production kinetics of 25c presented in Figure 36. Sulfangolid C (25c) is produced during 

days 2-8 in the exponential growth phase of the strain. In addition, the increasing glucose 

concentration in the supernatant was correlated to the 25c production (Figure 36). As the 

strain grew in lumps this observation was used to determine the beginning of feeding the 

labelled precursor. In order to have a high incorporation, the precursors were fed in equal 

portions during sulfangolid C (25c) production starting at a glucose content of 0.25% in the 

medium.  
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Figure 36.  Sulfangolid C (25c) production in a 70 L fermentation of strain So ce757, measuring the 
glucose concentration in the media. 

[1-13C]-, [2-13C]- and [1,2-13C]-acetate, as well as [1-13C]-propionate, and [D10]-leucine were 

fed as biosynthetic precursors to Sorangium cellulosum strain So ce757. Subsequent to 

purification from the crude extract, 13C NMR spectra of each isolated compound were 

measured. The resulting 13C enriched NMR signals of sulfangolid C (25c) are listed in Table 

21.  

The starter unit of the sulfangolid C (25c) biosynthesis was identified as isovaleryl-CoA 

derived from leucine followed by two extensions with methylmalonyl-CoA precursors.112,113 
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The following ketone at C21 originates from C1 of malonyl-CoA. The metabolite 25c is then 

elongated by units derived from propionate, acetate and the last propionate unit within the 

hemiketal, synthesising all methyl groups from propionate. The remaining part of 25c is 

assembled from acetate exclusively. The sulfate residue at C13 presumable originates from 

sulfate in the medium, since the production of 25c decreased dramatically from 19 to 2 mg/L 

after two passages in the same but sulfate-free medium. The final product 25c is presumably 

released from the polyketide synthase assembly line (PKS) by lactonization.51  

Table 21:  Results of the feeding experiments: 13C enriched NMR signals of labelled acetate (table) and 
propionate (table footnote) as well as HRESIMS and 1H NMR analysis of [D10]-leucine feeding 
experiments (table footnote). 

n.e. = not enriched carbon signal, [a] high enrichment ratio signal/noise (= 1), [b] enrichment calculated with unlabelled 
reference signal; [c] enrichment calculated by the ratio of labelled doublet signal to unlabelled singulett signal of the 
respective carbon; [d] signal was not observed, [e] in. = incorporation, no reference carbon available for the calculation of the 
enrichment, [f]  13C signal is overlapping with DMSO signal and no analysis was possible. [1-13C] propionate labelled carbons 
(enrichment) [a]: C15 (43.8), C19 (35.8), C23 (33.8) and C25 (29.5); [D10]-leucine incorporation as [M-H+9D]- in HRESIMS 
obsd. 690.3867 (calc. 690.3879 for [C35H44D9O11S]-) and decreased 1H NMR signals for 30H (δH 0.88 ppm) and 31H (δH 
0.84 ppm). 

Pos.[1-13C] acetate 
enrichment[a] 

[2-13C] acetate 
enrichment 
[%] [b] 

[1,2-13C] acetate 
enrichment [%, m, 
1Jc,c Hz][c] 

Pos. [1-13C] acetate 
enrichment[a] 

[2-13C] acetate 
enrichment 
[%] [b] 

[1,2-13C] acetate 
enrichment [%, m, 
1Jc,c Hz][c] 

1 30 n.e. 2, d, 75.7 18 n.e.[d] n.e. n.e. 
2 n.e.[d] 6 2, d, 75.7 19 n.e.[d] n.e. n.e. 
3 27.5 n.e. 1, d, 55.8 20 n.e.[d] n.e. n.e. 
4 n.e.[d] 5 1, d, 55.8 33 n.e.[d] n.e. n.e. 
5 33.5 n.e. 1, d, 54.6 21 29.5 n.e. 3, d, 52.8 
6 n.e.[d] 7 1, d, 54.6 22 n.e.[d] 4 2, d, 52.8 
7 27 n.e. 1, d, 42.2 23 n.e.[d] n.e. n.e. 
8 n.e.[d] in.[e] 1, d, 42.2 24 n.e.[d] n.e. n.e. 
9 27 n.e. 2, d, 36.0 34 n.e.[d] n.e. n.e. 
10 n.e.[d] in.[e] 1, d, 36.0 25 n.e.[d] n.e. n.e. 
11 25 n.e. 2, d, 35.7 26 n.e.[d] n.e. n.e. 
12 n.e.[d] in.[e] 1, d, 35.7 35 n.e.[d] n.e. n.e. 
13 26 n.e. 1, d, 42.8 27 n.e.[d] n.e. n.e. 
14 n.e.[d] in.[e] 2, d, 42.8 28 n.e.[d] n.e. n.e. 
15 n.e.[d] n.e. n.e. 29 n.e.[d] n.e. n.e. 
16 n.e.[d] n.e. n.e. 30 n.e.[d] n.e. n.e. 
32 n.e.[d] n.e. n.e. 31 n.e.[d] n.e. n.e. 
17 27 n.e. 1, d, 34.7     
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Figure 37.  Biosynthetic precursors of sulfangolid C (25c) according to feeding experiments with labelled 

precursors. 
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3 Conclusion 

3.1 General Scope of this Work 

The present thesis deals with the isolation and identification of secondary metabolites from 

myxobacteria. At first, a protective isolation strategy for the light- and oxygen- sensitive 

polyunsaturated carboxylic acid roimatacene (26) has been developed. Furthermore the 

absolute configuration of 26 was established by chemical derivatization techniques, detailed 

NMR analyses and molecular modelling. Besides roimatacene (26) and traces of the known 

myxalamid C (24c) Cystobacter ferrugineus strain Cb G35 was found to produce six novel p-

hydroxyacetophenone amides 34a-f, which were isolated and characterised. 

A further project included the verification of the proposed structures of the four natural 

sulfangolid variants 25a-d by elucidation of their NMR data. These compounds were 

previously isolated from different Sorangium cellulosum strains. The relative configuration of 

sulfangolid C (25c) was finally established by comparison of detailed NMR data and the 

calculated diastereomeres from molecular modelling. 

The biosynthetic precursors of roimatacene (26), p-hydroxyacetophenone iso-butanamide 

(34a) and sulfangolid C (25c) were studied by feeding experiments with D-,13C- and 15N- 

labelled precursors.  

3.2 Novel Secondary Metabolites from Cystobacter ferrugineus Cb G35 

3.2.1 Roimatacene (26), a Novel Polyunsaturated Carboxylic Acid 

The activity guided isolation of the oxygen- and light- sensitive polyunsaturated carboxylic 

acid 26 often terminated prematurely due to the decomposition of roimatacene (26). The 

compound decomposed during silica flash chromatography, exposure to oxygen of dried 

extracts, and due to traces of peroxides in solvents. The compound rearranged under acidic 

conditions (below pH 3). MPLC or size exclusion chromatography (Sephadex LH-20) were 

also unfavourable for the isolation of roimatacene (26). The first enriched sample of 26 

contained about 50% fatty acids, which stabilized the compound and allowed measurement of 

a complete set of NMR data for structure elucidation. The structure elucidation revealed 

numerous sensitive structural elements in close proximity, e.g. an unsaturated carboxylic acid, 

a high degree of unsaturation, three α-polyunsaturated alcohol moieties and one tertiary 
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alcohol group (Figure 39). These structural elements are all combined in one carbon chain 

consisting of only 27 carbons, thus explaining the instability of roimatacene (26). The acryl 

acid residue in 26 led to use an antioxidant for stabilization. Different stabilization agents 

were tested and 4-ethoxyphenol proved to be slightly more effective compared to 4-

brenzcatechol, which was previously used for the stabilization of etnangien (35).114 The 

stabilizer did not exhibit growth inhibition of the antimicrobial screening. In addition, it could 

be removed by chromatography and was commercial available. Advantageously, the NMR 

signals of 4-ethoxyphenol did not overlap with the signals of roimatacene (26), thus 

permitting a straightforward structure elucidation. 

Subsequent to the first structural analysis of roimatacene (26), the protective isolation strategy 

described in chapter 2.1.1 was successfully developed. Amber glass ware was used in order to 

protect roimatacene (26) against light, and the extracts were kept dissolved in methanol 

supplemented with the free radical scavenger 4-ethoxyphenol. During chromatography the 

mobile phases were buffered with ammonium acetate and saturated with nitrogen gas. The 

free radical scavenger 4-ethoxyphenol was added to each fraction during chromatography, 

since the separation could not be carried out under nitrogen gas. An advanced acid-base 

partition plays an important role in this isolation. Herewith the majority of by-products are 

selectively removed from the crude extract and roimatacene (26) is strongly enriched using 

the acidic character of the carboxylic acid. Previously, acid-base partition proved to be a very 

powerful tool in the isolation of sorangicins (13), as well as of etnangien (35).114,115 In the 

case of the roimatacene (26) isolation fatty acids were co-purified and also showed a similar 

retention time in the RP-chromatography. In the advanced partition process an additional n-

heptane extraction was carried out, in order to remove the large amount of fatty acids and to 

facilitate the following chromatography, before the acidic water layer was extracted with ethyl 

acetate. The newly developed isolation strategy and several 70 L fermentations finally 

provided sufficient material for a complete structure elucidation and for a biological screening 

of roimatacene (26). 
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Figure 38. The secondary metabolite etnangien (35) isolated from myxobacteria and the atropisomeres 
elansolid A1 and A2 (36a and 36b) isolated from Chitinophaga sancti.87,116 

Chemical derivatization of a sensitive compound like roimatacene (26) usually involves 

difficulties. In order to synthesize the roimatacene methyl ester (27) the diazomethane 

solution had to be purified from the initial reaction mixture by distillation, in order to prevent 

decomposition of 26 by alkaline impurities. This observation also proved useful for the 

repeated esterification of etnangien (35) (R. Jansen; personal communication).87 

Subsequently, the derivatization to the corresponding acetonides 28-30 from 27 was 

straightforward. 

The relative configuration of C15, C17, and C19 of the polyol fragment in roimatacene (26) 

was unambiguously established as 15OH, 17OH anti-, and 17OH, 19OH syn-configuration 

from the corresponding acetonides 28 and 29 analyzed by Rychonovsky´s method (chapter 

2.1.3). The assignment of the relative configuration of the stereocentre C16 from either 28 or 

29 comprising coupling constants and nOe correlations alone remained unconvincing. Finally, 

the relative configuration of roimatacene (26) was established from the resulting relative 

configuration of C15, C17 and C19 from 28 and 29, as well as from a detailed study of the 

NMR data of the bis-acetonide 30 combined with molecular modelling. The comparison of 

the NMR data with the two possible diastereomeres at C16 of roimatacene bis-acetonide 30 

revealed a very good agreement of observed nOes and calculated distances in the 

15S*,16S*,17S*,19R*-isomere (Figure 19b, chapter 2.1.3). Detailed NMR analysis supported 

by molecular modelling studies was also used for the assignment of the absolute 

stereochemistry of etnangien (35), and for the elucidation of the two atropisomeres of 

elansolid (36) presented in Figure 38.87,116 
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The definition of the relative configuration of roimatacene (26) was essential for the 

assignment of the absolute stereochemistry of the natural product. The synthesis and isolation 

of MTPA esters from the acetonides 28 and 29 or directly from roimatacene (26) was 

impossible. For this reason, 26 was gently hydrogenated to the octrahydroroimatacene (31) by 

Pd/C catalysis under H2 atmosphere. The formation of two additional stereocentres at C8 and 

C20 could not be avoided, e.g. by using Raney-nickel, or Ru(PPh3)3Cl catalyst. After 

esterification of the carboxylic acid with p-bromophenacyl bromide, the tris-(R)- and the tris-

(S)-MTPA ester 33a/b were derived by Yamaguchi esterification.106 The elucidation of the 

structures of the tris-MTPA esters 33a/b from complete NMR data sets was rather complex as 

presented in chapter 2.1.4. The observed ∆δ
SR values of the 1H chemical shifts of the tris-(S)-

MTPA ester of octahydroroimatacene (33a) and the tris-(R)-MTPA ester of 

octahydroroimatacene (33b), revealed the absolute configuration of the stereocentres C5, C15 

and C19 as 5S, 15S and 19R, which was followed by the assignment of the relative 

configuration of the polyol fragment of C15 to C19 found in chapter 2.1.3. The absolute 

configuration of roimatacene (26) was determined as all-trans-5S,15S,16S,17S,19R, shown in 

Figure 39. 

Figure 39.  The absolute configuration of all-trans-5S,15S,16S,17S,19R roimatacene (26). 

Subsequent to the isolation, roimatacene (26) was screened against various microorganisms 

and a mouse fibroblast cell line as described in chapter 2.1.6. Roimatacene (26) showed 

biological activity against Gram-negative bacteria summarized in Table 22. 
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Table 22:  Minimum inhibitory concentration (MIC) of roimatacene (26) against selected Gram-negative 
bacteria. 

test organism MIC [µg/mL] 

Escherichia coli tolC 0.1 

Escherichia coli CG 8.6 

Escherichia coli 2 DC 14 PS 2.2 

Chromobacterium violaceum 0.3 

Pseudomonas stutzeri 4.2 

Pseudomonas aeruginosa >9.0 

Klebsiella pneumoniae >9.1 

The MICs in the µg/mL range are rather moderate. The lowest MIC (0.1 µg/mL) was found 

against E. coli tolC, which can be expected due to the inactivation of the major RND 

(resistance-nodulation-cell division) efflux pumps in this strain. One mechanism known for 

multi-drug resistance of Gram-negative bacteria is the ability to drain off drugs by the efflux 

pump systems of the outer membrane.117 Since 26 was also active against the E. coli 2 

DC14PS mutant (MIC = 2.2 µg/mL), which shows an overexpression of one RND efflux 

pump,118 the target of roimatacene (26) is most likely not related to the resistance against the 

tripartite efflux pump systems of the RND family. Chromobacterium violaceum is prevalently 

used as model strain for simple analysis of quorum sensing activity. The biosynthesis of the 

quorum sensing indicator violacein was inhibited by 26 with a MIC of 0.3 µg/mL. The mode-

of-action against Pseudomonas stutzeri, (MIC = 4.2 µg/mL) was further investigated against 

the Pseudomonas aeruginosa, because of the rapidly increasing clinical multi-drug resistance, 

but 26 showed no significant growth inhibition.7,119-121  

The sensitivity of roimatacene (26) and the origin of the soil sample motivated the name for 

the carboxylic acid 26. The conserved soil sample, from which the strain was isolated, was 

collected in New Zealand at the Franz Josef glacier. The Franz Josef glacier is called Kā 

Roimata o Hine Hukatere in Māori, with “Roimata” meaning tear. Therefore the name 

roimatacene (26) translates to tear of the Cystobacter ferrugineus polyene. 

The work on roimatacene (26) can be seen as a representative example of the development of 

an activity-guided isolation, starting with a biologically active crude extract of a 

myxobacterium to finally establish the absolute configuration of the active secondary 

metabolite.  
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3.2.2 A Family of Six Novel p-Hydroxyacetophenone Amides 34a-f  

In addition to the polyunsaturated carboxylic acid roimatacene (26), a family of six p-

hydroxyacetophenone amides 34a-f was isolated and described from Cystobacter ferrugineus 

Cb G35 in the course of this thesis. The p-hydroxyacetophenone acetamide 34c has 

previously been described as synthetic product in the partial synthesis of chloramphenicol 

derivatives and in the total synthesis of tyrosine kinase inhibitors.122,123 Further the two 

closely related natural product families, the arylethylamides 37a-n and the acylated tyramides 

38a-j , are presented in Figure 40. The first arylethylamines 37a-f were isolated from three 

limnic strains of a new subspecies of bacillus,124 while the arylethylamines 37g-n were 

obtained in a screening of numerous Cytophaga, Frigoribacter, and marine Streptomyces 

extracts.125 In this screening of 500 bacterial isolates ten acylated tyramides 38a-j were found, 

produced by different Vibrio sp. 
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Figure 40:  The p-hydroxyacetophenone amides 34a-f and the closely related families of acylated 

arylethylamides (37a-n) and tyramides (38a-j ). 
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Of particular importance in the family p-hydroxyacetophenone amides is the carbonyl group 

at C7, which was unambiguously identified by the chemical shifts of C7 and C8, as well as 

the corresponding HMBC correlations described in chapter 2.2.2. These data correspond well 

with the observed chemical shifts and correlations of the cyclic peptide hibispeptin A (39) 

isolated from Hibiscus syriacus, which contained an analogous aromatic ketone moiety 

(Figure 41).109 

Figure 41: The structure of hibispeptin A (39), a cyclic peptide isolated from Hibiscus syriacus.109 

The biosynthetic precursors of 34a were studied by feeding experiments with D, 13C and 15N- 

labelled leucine and tyrosine, presented in chapter 2.2.3. The combined 13C and 1H NMR as 

well as HRESIMS data indicate tyrosine as precursor of the complete p-hydroxyacetophenone 

amine moiety, including the amide nitrogen, and leucine as precursor of the aliphatic iso-butyl 

residue of 34a. Thus, Cystobacter ferrugineus strain Cb G35 is able to oxidize tyrosine to the 

atypical carbonyl at C7, revealed from the high significant incorporation of 13C-labelled 

tyrosine. A degradation pathway discussed in biosynthesis studies of ubiquinone (41, 

coenzyme Q) involves the formation of 4-hydroxycinnamate (40d) and 4-hydroxybenzoate 

(40g), which could be conceivable precursors for 34d and the carbonyl group of C7 in the 

other p-hydroxyacetophenone amides (Figure 42).126 However, the amine of tyrosine is lost in 

the first step of this pathway, which is not correlating with the observed significant 

incorporation of the 15N originating from the [15N,13C9]-labelled tyrosine in the feeding 

experiments, as well as the high incorporation of C8. For this reason the biosynthetic pathway 

of tyrosine to form the p-hydroxyacetophenone amides should be further investigated. The 

side chains of 34a originated from leucine, while the modified side chains of 34b-f can be 

suggested to derive from different amino acid or fatty acid precursors. 
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Figure 42.  Proposed pathway of tyrosine for the biosynthesis of ubiquinone (41, coenzyme Q) and the 
structures of p-hydroxyacetophenone amides 34a and d. Tyrosine (40a); 4-
hydroxyphenylpyruvate (40b); 4-hydroxy-phenyllacetate (40c); 4-hydroxycinnamate (40d), p-
coumaroyl-CoA (40e); 4-hydroxybenzoyl-CoA (40f); 4-hydroxybenzoate (40g).126 

An antimicrobial screening of the p-hydroxyacetophenone amides 34a-f showed no 

significant growth inhibition of the tested microorganisms. Due to the described biological 

activity of arylethylamide 37e against the microalgae Chlorella sorokiniana, Chlorella 

vulgaris and Scenedesmus subspicatus,124 the p-hydroxyacetophenone amides 34a-f were 

further tested against various microalgae presented in chapter 2.2.4. In this screening of 

microalgae only 34d inhibited growth of Pseudococcomyxa simplex at a concentration of 

100 µg/mL. 
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3.3 Sulfangolids 25a-d from Sorangium cellulosum 

The four sulfangolid derivatives 25a-d were isolated from different strains of the species 

Sorangium cellulosum. In a screening of 1700 Sorangium cellulosum strains remarkably 90% 

of the isolates were found to produce biologically active secondary metabolites. Especially 

members of the genus Sorangium are versatile multiproducers, for example strain So ce1525 

produces chivosazoles,127,128 disorazols,129,130 sorangicins,37,38 soraphens,32,131 sorangolide,132 

chlorotonil133 and sulfangolid simultaneously.31 The sulfangolids 25a-d were isolated as side-

products during the investigation of biologically active metabolites from Sorangium 

cellulosum. Sulfangolid A (25a) and D (25d) were isolated from strain So ce1375, at that time 

investigated for fungicidal soraphen derivatives (unpublished data K. Gerth, H. Reichenbach 

M. Herrmann, G. Höfle). So ce666 and So ce192 produced the cytotoxic chivosazols and 

disorazols as biologically active metabolites, as well as traces of sulfangolid A (25a) and B 

(25b). Whereas strain So ce12 mainly synthesised sorangicin, diszorasol, chivosazol and 

sorangolid derivatives in addition to traces of sulfangolid C (25c) (unpublished data K. Gerth, 

H. Reichenbach, R. Jansen, G. Höfle). All the NMR data for the structure elucidation, as well 

as from the previous isolations of the four sulfangolids 25a-d have been assembled. The NMR 

data were analyzed to verify the proposed structures for sulfangolid A to D (25a-d) as 

presented in chapter 2.3.1. The final NMR data are combined in this thesis and the manuscript 

“Sulfangolids, Macrolide Sulfate Esters from Sorangium cellulosum” (W. Zander, H. Irschik, 

H. Augustiniak, M. Herrmann, R. Jansen, H. Steinmetz, K. Gerth, W. Kessler, M. Kalesse, G. 

Höfle, R. Müller, to be submitted). 

The structure of sulfangolid C (25c) containing three inflexible structural elements in the 28-

membered macrolide ring, i.e. the polyunsaturated ester, the α,β-unsaturated ketone at C21, 

and the six-membered hemiketal, altogether stabilize the conformation of the macrolide ring, 

thus allowing elucidation of the relative stereochemistry. The relative all-trans 

13S*,14S*,15R*,16R*,17S*,19S*,20R*,26R*,27R* configuration of sulfangolid C (25c) proposed 

in my diploma thesis was revised to the all-trans 13R*,14S*,15R*,16R*,17S*,19S*,20R*, 

26R*,27R* configuration, due to the better agreement of interatomic distances of the modelled 

diastereomere in comparison with the NMR data presented in chapter 2.3.2. In addition the 

biosynthetic precursors of sulfangolid C (25c) were studied as a basis for further genetic 

research of the frequently observed sulfangolids. 
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The four sulfangolid derivatives 25a-d present an extraordinary group of polyketides, because 

they are the first group of myxobacterial secondary metabolites containing a sulfate ester 

residue. A sulfate-free analogue of the sulfangolids is the myxobacterial kulkenon (42) 

isolated from Sorangium cellulosum So ce1426 (unpublished data R. Jansen, H. Irschik, G. 

Höfle, H. Reichenbach). Comparing kulkenon (42) to the family of sulfangolids 25a-d, 42 has 

one additional methyl group at position C2, while the southern fragment shows high similarity 

to sulfangolid C (25c). The 26-membered macrolide of 42 is reduced by two carbons 

compared to the 28-membered macrolide rings of the sulfangolid family, and the sulfate ester 

moiety is absent. Further the northern fragment of kulkenon (42) is identical to sulfangolid A 

(25a). Due to the high similarity of kulkenon (42) to the sulfangolids, 42 can be considered as 

a sulfate-free analogue. 

Commonly, sulfate ester residues are known from Streptomyces sp. or marine 

microorganisms, like the earlier described marine polyether maitotoxin (23). Structural 

similarities are found in the Streptomyces natural products clethramycins (43c) and the 

analogue family of mediomycins, here represented by mediomycin A (43a) and B (43b) in 

Figure 43.134,135 These secondary metabolites are highly functionalized polyketides containing 

a sulfate ester residue at C29, multiple hydroxyl groups and a ketone at C31 in addition to 

several double bonds. Of special interest are the differences between the secondary 

metabolites from Streptomyces and the sulfangolid family. A sulfate-free derivative with 

identical carbon skeleton of these metabolites was described with mediomycin B (43b). In 

addition, a derivative of mediomycin A (43a) with hydrogenated double bonds was 

characterised, while such derivatives have not been found for the sulfangolids. The ketal 

found in sulfangolid C (25c) and D (25d) would also be feasible between 35OH and the 

carbonyl group at C31 in 43a-c, but such a derivative has not been described to data. 
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Figure 43  The secondary metabolites mediomycin A (43a) and B (43b) and the analogue clethramycin 
(43c) isolated from Streptomyces, the myxobacterial sulfangolids 25a-d and the analog 
kulkenon (42).135 
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3.4 Summary and Future Aspects 

The thesis presents results of extensive studies in the field of structure elucidation of labile 

secondary metabolites. On the one hand, the assignment of the relative configuration of 

sulfangolid C (25c) based mainly on detailed NMR studies and molecular modelling, while on 

the other hand the absolute configuration of roimatacene (26) is supported by derivatization 

techniques coupled to NMR analysis and sustained by molecular modelling. The structure 

analysis of roimatacene (26) lead to the development of a protective isolation strategy creating 

the basis for solving the relative and later the absolute configuration of a compound that 

already proved problematic during isolation. The assignment of the absolute stereochemistry 

of the novel secondary metabolite roimatacene (26) is the basis for a total synthesis, and 

required for the synthesis of stable derivatives of 26, for example by selective hydrogenation 

of double bonds. In addition to SAR-studies, the evaluation of the biological target would be 

indicated as next step.  

The p-hydroxyacetophenone amides 34a-f with the atypical oxidation of the tyrosine moiety 

and the family of sulfangolids 25a-d with the sulfate ester residue present two novel motives 

of myxobacterial biosynthesis worthy of further investigations.136 The high biodiversity of 

myxobacteria is also unambiguously revealed in the genome sequencing projects of 

Sorangium cellulosum (strain So ce56, 13.0 Mbp),53 Myxococcus xanthus (strain DK1622, 9.1 

Mbp),54 Stigmatella aurantiaca (10.2 Mbp)137 and Anaeromyxobacter dehalogenans (strain 

2CP-C, 5.1 Mbp).138 The Sorangium cellulosum genome with 13.0 Mbp is the largest genome 

sequenced from any bacterium so far. In Myxococcus xanthus DK1622 over 8.5% of the 

genome are dedicated to secondary metabolism, which is more than it has been observed in 

other microorganisms.139 This observation leads to the conclusion, that still a high number of 

natural products can be discovered from myxobacteria in the future and will reveal more of 

the true potential of these gliding bacteria.27 
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4 Experimental 

4.1 Material 

4.1.1 Instruments 

The standard analytical reversed phase liquid chromatography (RP-HPLC) system was a 

Agilent 1100 series HPLC system [column 125×2 mm, Nucleosil 120 EC, 5 µm, C18, 

(Macherey-Nagel); temperature 40°C; solvent A: H2O/ACN (95/5) + 5 mM/L of NH4Ac + 40 

µL/L of acetic acid; solvent B: H2O/ACN (5/95) + 5 mM/L of NH4Ac + 40 µL/L of acetic 

acid, gradient: 10% B increasing to 100% B in 30 min, maintained 100% B for 10 min; flow 

rate (FR) = 0.3 mL/min; UV detection 210-500 nm]. 

The HPLC- high resolution mass spectrometry (HPLC-HRESIMS) was done on a Agilent 

1200 series RRLC system, ESI-TOF-MS Maxis (Bruker) [column 50×2.1 mm, Acquity 

UPLC BEH C-18, 1.7 µm (Waters), solvent A: 0.1% formic acid in water; solvent B: 0.1% 

formic acid in ACN, gradient 5% B for 0.5 min, increasing to 100% B in 19.5 min and 

continued at 100% B for 5 min, FR = 0.6 mL/min; NH4Ac-buffer gradient: column 100×2.1 

mm, XBridgeTM C18 3.5 µm, (Waters), solvent A: H2O/ACN (95/5) + 5 mM/L of NH4Ac + 

40 µL/L of acetic acid; solvent B: H2O/ACN (5/95) + 5 mM/L of NH4Ac + 40 µL/L of acetic 

acid, gradient from 10% B increasing to 100% B in 30 min and continued at 100% B for 10 

min, FR = 0.3 mL/min, UV detection 210-500 nm]. 

The preparative reversed phase high pressure liquid chromatography (RP-HPLC) 

system was a preparative Agilent 1100 series HPLC system or the HPLC system consisting of 

a manual injection system (Rheodyne), the preparative K-1800 pump system with mixing 

chamber (Knauer) connected to an UV-detector (Techlab). 

The preparative reversed phase- medium pressure liquid chromatography (RP-MPLC) 

system consisted of two pumps C-605, control unit C-620, fraction collector C-660 and 

photometer C-635 (Büchi). 

Silica-gel-flash chromatography was carried out with the silica-gel-flash system from 

Biotage and the cartridge Si 40 S 2976-1 (Biotage), or with open-glass columns packed with 

silica gel 60, particle size 0.063-0.200 mm (Merck). 
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Thin-layer chromatography (TLC)  in analytical scale was carried out with TL-Silica-Gel 

60 F254-Aluminium (Merck), staining was done with aqueous cer-dye (10 g cer(IV)-sulfate, 

25 g phosphor-molybdäne acid, 80 mL sulphuric acid in 1 L) and heating 120°C. For semi-

preparative scale PSC-plates (20×20×0.1 cm, silica gel 60 F254, Merck) with concentration 

zone were used. The RP-cartridge system of strata-X cartridges (0.5 g and 1.0 g, 

Phenomenex) were used for concentration from water layers. 

Optical rotation  was determined with a Perkin-Elmer 241 instrument, UV spectra were 

recorded with a Shimadzu UV-Vis spectrophotometer UV-2450, and IR spectra were 

measured with a Nicolet 20DXB FT-IR spectrometer.  

Centrifugation  was carried out with a Varifuge 20RS (Heraeus Sepatech). 

NMR spectra were recorded with Bruker NMR spectrometer DPX-300 (1H 300 MHz, 13C 75 

MHz), ARX-400 (1H 400 MHz, 13C 100 MHz); AVANCE DMX-600 (1H 600 MHz, 13C 150 

MHz) with the assistance of C. Kakoschke, B. Jaschok-Kenter and M. Rettstadt (University 

Hannover). 

The up-scale fermentation was carried out in a 100 L fermentor (Giovanola Frères SA, 

Monthey, Switzerland) with an inoculation volume of 70 L in the presence of Amberlite 

XAD-16 (Rohm & Haas) with the assistance of K. I. Mohr, H. Irschik, K. Gerth, D. 

Telkemeyer, W. Kessler, B. Ebert, A. Perreth, A. Schulz and R. Sterlinski. 
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4.1.2 General Chemicals 

Table 23. Chemicals used (in alphabetical order) and the supplying company  

Chemicals Supplying Company 

acetic acid Roth 

acetone Merck 

acetone, dry Merck 

acetonitrile, p.a. J.T. Baker 

ammonia Riedel-de Haen 

ammonium acetate Roth 

buffer, pH 7 Roth 

celite Merck 

diazald® Aldrich 

dichloromethane J.T. Baker 

diethyl ether J.T. Baker 

dimethoxypropanne Sigma-Aldrich 

DMAP Fluka 

ethanol J.T. Baker 

4-ethoxyphenol Aldrich 

ethyl acetate J.T. Baker 

formic acid Roth 

H2SO4  Roth 

KOH Merck 

methanol Merck 

methanol p.a. J.T. Baker 

methanol (Uvasol) Merck 

Milli-Q-Wasser Millipore 

mol sieve (3Å) Merck 

(R)/(S)-MTPA Fluka 

NaCl Roth 

NaHCO3 Fluka 

n-heptane Roth 

p-dibromoacetophenone Aldrich 

Pd/C Merck 
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continuing Table 23:  

Chemicals Supplying Company 

pyridin-p-toluenesulfonic acid Fluka 

sodium acetate Roth 

TEA Fluka 

toluene Merck 

2,4,6-trichlorobenzoyl chloride Aldrich 

water, p.a. J.T. Baker 

Media  

Amberlide XAD-16 Rohm and Haas 

CaCl2 × 2H2O Merck 

casitone BD 

1-docosanol Merck 

fructose Fluka 

glucose Cerestar 

glycerine (87%) Merck 

HEPES Roth 

H2SO4 AppliChem 

leucine Merck 

methionine Merck 

MgSO4 × 7H2O Merck 

Na-Fe-EDTA Fluka 

NaNO3 Merck 

skim milk AppliChem 

sodium acetate Merck 

sodium propionate Merck 

soyabean flour Cargill 

starch 12018 Cargill 

tegosipon antifoam Evonik 

tyrosine Merck 

yeast extract Ohly 
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continuing Table 23:  

Chemicals Supplying Company 

Feeding Experiments  

[1-13C]-acetate (99%) Cambridge Isotope Laboratories 

[1,2-13C]-acetate (99%) Cambridge Isotope Laboratories 

[2-13C]-acetate (99%) Cambridge Isotope Laboratories 

[D10]-leucine (98%) Campro Scientific 

[13CH3]-methionine (98%) Cambridge Isotope Laboratories 

[1-13C]-propionate (97%) Cambridge Isotope Laboratories 

[13C9,
15N]-tyrosine(98% 13C, 98% 15N) Campro Scientific 

NMR-solvents  

CDCl3 Deutero GmbH 

CD3OD Deutero GmbH 

[D6]DMSO Deutero GmbH 

[D3]trifluoroethanol Deutero GmbH 
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4.2 Fermentation of Cb G35 and Isolation of Roimatacene (26) 

4.2.1 Fermentation of Cb G35 for the Isolation of Roimatacene (26) 

Cystobacter ferrugineus strain Cb G35 (deposited at Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH; DSM 24415) was transferred to a liquid medium 

consisting of soybean flour 4 g/L, glucose 2 g/L, starch 8 g/L, CaCl2 × 2 H2O 1 g/L, MgSO4 × 

7 H2O 1 g/L, HEPES 11.9 g/L and Na-Fe-EDTA 8 mg/L at pH 7.4. 5 L of a 4 day old pre-

culture was used to inoculate a volume of 70 L of the same medium in a 100 L fermentor in 

the presence of 1.4 kg adsorber resin Amberlite XAD-16. The culture was supplemented with 

1.15-1.75 g/h of NaAc solution (100 g/kg) during seven days of cultivation (blade impeller 

150 rpm, aeration 7 L/min, 30°C, pO2 20%, pH regulated between pH 7.15 and 7.25 with 10% 

KOH and 5% H2SO4). For harvesting the culture broth was passed through a process filter 

collecting the absorber resin. Residual cells were floated from the recovered XAD-16 resin 

with water. 

4.2.2 Isolation Procedure of Roimatacene (26) 

General remark: Handling of roimatacene (26) extracts and ethyl acetate: Extracts 

containing roimatacene (26) were kept in solution (methanol) supplemented with 4-

ethoxyphenol. As far as possible N2-gas was used at all times. Ethyl acetate was filtrated over 

aluminium oxide before use. Amber glassware was used for handling and for storage at 4°C. 

The XAD-16 absorber resin was eluted with methanol/water (3/7), methanol and acetone (4 L 

each) saturated with N2-gas. After addition of saturated NaCl solution (250 mL), the water 

layer (300 mL) remaining after evaporation of the methanol was adjusted to pH 4.2 with 

formic acid and extracted with ethyl acetate (5 portions of 100 mL). The ethyl acetate was 

supplemented with 0.1 M 4-ethoxyphenol (100 µL) and methanol (100 mL). The ethyl acetate 

layer was evaporated and dissolved to a 140 mL methanol layer, without drying the samples. 

The extract was analysed by HPLC to contain 504 mg of roimatacene (26) in 13.4 g of crude 

extract. The extract was partitioned between methanol and n-heptane to provide 12.9 g of 

polar raw material, containing 440 mg roimatacene (26) according to HPLC analyses 

(supplemented with 200 µL of 0.1 M 4-ethoxyphenol). The methanol extract was stored in 

142 mL of methanol (c = 3.1 mg/mL) at 4°C. After 6 weeks HPLC analysis showed 

degradation to 256 mg of 26 (58%, c = 1.8 mg/mL) in the crude extract. Half of the extract 

was dissolved in 2 N ammonia (75 mL) and methanol was evaporated. The pH of the water 
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layer was adjusted to pH 9.5 with 2N ammonia and extracted with ethyl acetate (3 portions of 

95 mL). The water layer was acidified to pH 4.2 with formic acid and then extracted twice 

with n-heptane (55 mL) to remove fatty acids from the crude extract. The acidic water layer 

was then extracted with ethyl acetate (4 portions of 75 mL) supplemented with 4-

ethoxyphenol (200 µL, 0.1 M), methanol and toluene before evaporation of the ethyl acetate. 

The methanol/toluene solution yielded 99.4 mg enriched roimatacene (26) according to HPLC 

analyses. 26 was further purified by preparative RP-HPLC in 7 batches [column VP250/21 

Nucleodur 100-10 C-18 ec (Macherey-Nagel), solvent methanol/water (6:4) containing 

50 mM/L of NH4Ac and 400 µL/L of acetic acid; the solvents were saturated with N2-gas and 

10 µL of 0.1 M 4-ethoxyphenol were provided in each test tube of the fraction collector]. 26 

eluted at Rt = 34 min. The fraction was evaporated and the water layer was passed through a 

strata-X cartridge (1.0 g) under N2-protection gas, washed with water, and eluted with 

methanol. 4-Ethoxyphenol (200 µL, 0.1 M) was added to the methanol layer before the 

concentration was adjusted to 50 mL containing 38.5 mg of roimatacene (26).  

Roimatacene (26): Pale yellow solution in methanol; [α]D
RT = + 58.4 (c = 0.65, methanol); 

NMR data (1H NMR 600 MHz, 13C NMR 150 MHz, [D6]DMSO): Table 2; UV (methanol) 

λmax (lg ε) = 276 (4.323), 286 (4.332), 308 (4.369), 323 nm (4.309); HRESIMS: m/z: calcd. 

for C30H43O7: 515.3014, found 515.3021. 
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4.2.3 Derivatization of Roimatacene (26) 

Roimatacene methyl ester (27): Diazald(R) (5.3 g) was dissolved in ether (20 mL) and 

ethanol (3 mL), and was stirred with aqueous KOH (2.0 g in 3.2 mL H2O). After heating to 

35°C the ether/diazomethane solution was distilled and then added drop-wise to a stirred 

solution of roimatacene (26) and 4-ethoxyphenol in methanol at room temperature. After 20 

min ether and diazomethane were evaporated under nitrogen gas to the crude product in 

methanol. The product was purified by preparative RP-HPLC [column VP250/21 Nucleodur 

100-10 C-18 ec (Macherey-Nagel); solvent A: methanol water (6/4) supplemented with 

50 mM/L NH4Ac and 400 µL/L formic acid, solvent B: methanol same buffer concentration; 

gradient: 100% A increasing to 100% B in 50 min, continued for 15 min, FR = 20 mL/min, 

UV detection 278 nm, Rt = 60 min]. After evaporation of the methanol, the water layer was 

diluted and passed through a strata-X cartridge (1.0 g) under nitrogen atmosphere. The 

cartridge was rinsed with water and roimatacene ester (27) was eluted with methanol 

(supplemented with 40 µL of 0.1 M 4-ethoxyphenol).  

Roimatacene methyl ester (27): Pale yellow solution in methanol; 1H NMR (600 MHz, 

[D6]DMSO): δ = 0.92 (s, 4 H) 0.93 - 0.95 (m, 1 H) 0.95 (t, J = 7.52 Hz, 4 H) 1.45 - 1.52 (m, 2 

H) 1.66 (s, 4 H) 1.67 - 1.72 (m, 2 H) 1.79 (s, 4 H) 1.90 (s, 2 H) 1.98 - 2.04 (m, 1 H) 2.07 (t, J 

= 7.34 Hz, 3 H) 2.32 - 2.43 (m, 5 H) 2.50 (dt, J = 3.67, 1.83 Hz, 2 H) 3.32 (d, J = 10.27 Hz, 2 

H) 3.48 - 3.55 (m, 7 H) 3.63 (s, 4 H) 4.12 - 4.22 (m, 3 H) 5.66 (dd, J=15.59, 6.05 Hz, 1 H) 

5.70 - 5.76 (m, 1 H) 5.81 (dt, J = 14.95, 7.38 Hz, 1 H) 5.89 (d, J = 15.41 Hz, 1 H) 5.97 (d, J = 

11.00 Hz, 1 H) 6.08 - 6.19 (m, 5 H) 6.24 (dd, J = 15.22, 8.25 Hz, 2 H) 6.36 (dd, J=13.94, 

11.37 Hz, 1 H) 6.46 (dd, J = 14.67, 11.74 Hz, 1 H) 6.87 ppm (d, J = 15.77 Hz, 1 H); 13C NMR 

(150 MHz, [D6]DMSO): δ = 172.4, 166.3, 146.8, 140.2, 135.9, 134.5, 134.1, 133.8, 132.4, 

132.4, 132.0, 131.9, 131.2, 130.0, 127.0, 125.5, 122.4, 75.0, 74.5, 73.6, 70.0, 63.5, 51.4, 48.8, 

40.0, 36.2, 34.7, 25.4, 21.2, 18.3, 13.6, 12.8, 11.7 ppm; 4-ethoxyphenol: 1H NMR (600 MHz, 

[D6]DMSO): δ = 1.25 (t, J = 6.97 Hz, 4 H) 3.88 (q, J = 6.97 Hz, 3 H) 6.63 - 6.66 (m, 2 H) 

6.69 - 6.73 ppm (m, 2 H); 13C NMR (150 MHz, [D6]DMSO): δ = 151.5, 151.1, 115.9, 115.5, 

15.0 ppm; HRESIMS: m/z: calcd. for C31H46O7Na  553.3136, found 553.3128. 
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Acetonides of roimatacene methyl ester (28-30): 31.7 mg of 27 were dried and dissolved in 

2,2-dimethoxypropane (4 mL). Pyridium-p-tolouenesulfonic acid (12.5 mg) was added and 

the reaction was stirred over night at 4°C. After quenching with 5% NaHCO3 solution the 

reaction was extracted with DCM (3 portions of 50 mL). After evaporation of DCM the crude 

extract was further purified by RP-HPLC [column VP250/21 Nucleodur 100-10 C-18 ec 

(Macherey-Nagel), solvent A: methanol/water 1/1; solvent B: methanol; gradient: 70% B 

increasing to 100% B in 50 minutes and maintained at 100% B for 10 minutes, FR = 20 

mL/min, UV detection 210-500 nm] yielding 17,19-acetonide 28 (5.5 mg, Rt = 9.1 min), 

15,17-acetonide 29 (2.4 mg, Rt = 22.9 min) and the bis-acetonide 30 (4.2 mg, Rt = 20.9 min).  

17,19 acetonide of roimatacene methyl ester (28): yellow oil, NMR data (1H NMR 600 MHz, 
13C NMR 150 MHz, CDCl3): Table 3; HRESIMS m/z: calcd. for C34H50O7Na 593.3449, 

found 593.3448.  

15,17 acetonide of roimatacene methyl ester (29): yellow oil, NMR data (1H NMR 600 MHz, 
13C NMR 150 MHz, CDCl3): Table 4; HRESIMS m/z: calcd. for C34H54O7N 570.3789, found 

570.3801.  

15,16,17,19-bis-acetonide of roimatacene methyl ester (30): yellow oil, NMR data (1H NMR 

600 MHz, 13C NMR 150 MHz, CDCl3): Table 5; HRESIMS m/z: calcd. for C37H54O7Na 

633.3762, found 633.3768. 

Tris-(S)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33a): For 

the (S)-Mosher ester about 25 mg of roimatacene (26) were hydrogenated in methanol in 

presence of Pd/C (10%, 31.4 mg) under H2-atmosphere at RT for 4.5 h. The reaction mixture 

was filtered over celite and dried in vacuo to yield 35.2 mg extract of octahydroroimatacene 

(31). The extract was dissolved in dry acetone (2 mL) and stirred for 19 h at RT with TEA 

(15 µL) and p-dibromoacetophenone (24.1 mg) in the presence of 3Å mol sieve. The mixture 

was filtered over celite and dried to give 66.9 mg. p-Bromoacetophenone-

octahydroroimatacene ester (32) was separated by silica gel plate chromatography [two PSC-

plates 20×20×0.1 cm, silica gel 60 F254 with concentration zone (Merck), solvent ethyl 

acetate/n-heptane 8/2]. The UV active zone (Rf = 0.42) was eluted with ethyl acetate to give 

5.3 mg of p-bromoacetophenone-octahydroroimatacene ester (32). 2,4,6-trichlorobenzoyl 

chloride (12.5 µL) and 5.3 mg of 32 were dissolved in dry toluene (0.7 mL) and added to a 

solution of (S)-MTPA (16.2 mg), DMAP (14.4 mg) and TEA (12.5 µL) in dry toluene (0.4 

mL) at 0°C. The reaction mixture was stirred for 15 min at 0°C and 4 h at RT. The reaction 
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was quenched with buffer (pH 7) and extracted with ethyl acetate (3 portions of 50 mL) to 

yield 14.6 mg crude product. The tris-(S)-MTPA derivative 33a was further purified by RP-

HPLC [column VP 250/10 Nucleodur 100-7 C-18 ec (Macherey-Nagel); solvent A: 

methanol/water 1/1, solvent B: methanol, gradient: 85% B in 20 min to 86% B, in 3 min to 

90% B, maintained at 90% B; FR = 6 mL/min, UV detection at 259 nm, Rt = 49 min] to yield 

2.8 mg of 33a. 

Tris-(R)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33b): Tris-(R)-

MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33b) was prepared 

analogously starting with 11.6 mg of roimatacene (26) and obtaining 2.1 mg of tris-(R)-

MTPA ester 33b for NMR spectroscopy. 

Octahydroroimatacene (31): yellowish oil; 1H NMR (300 MHz, CD3OD): δ = 0.88 - 0.93 (m, 

10 H) 1.06 - 1.17 (m, 5 H) 1.31 – 1.35 (m, 24 H) 1.56 -1.84 (m, 10 H) 2.44 (m, 4 H) 3.35 (br. 

s, 1 H) 3.54 (m, 2 H) 3.65 ppm (br. s, 1 H); 13C NMR ( 75 MHz, CD3OD): δ = 177.8, 76.6, 

76.6, 76.5, 76.4, 76.2, 76.1, 76.1, 76.0, 72.6, 72.6, 38.4, 38.2, 37.9, 37.8, 36.0, 36.0, 34.4, 

34.3, 34.2, 34.1, 33.8, 33.2, 32.2, 31.3, 31.2, 31.0, 30.9, 30.7, 30.6, 28.7, 28.7, 28.3, 28.1, 

23.9, 20.4, 20.2, 15.68, 15.5, 14.5 ppm; doubling of signals due to isomers at C8 and C20; 

4-ethoxyphenol 1H NMR (300 MHz, CD3OD): δ = 3.94 (q, J = 6.97), 6.71 (m, Hz, 4 H), CH3 

in 1.31 – 1.35 ppm (m, 24 H); 13C NMR ( 75 MHz, CD3OD): δ = 153.8, 152.4, 116.9, 116.8, 

65.3, 14.6 ppm; HRESIMS m/z: calcd. for C30H60O7Na 555.4231, found 555.4233. 

p-bromoacetophenone-octahydroroimatacene ester (32): yellowish oil, 1H NMR (300 MHz, 

CDCl3) δ = 0.85 - 0.96 (m, 11 H) 1.05 (s, 3 H) 1.08 - 1.18 (m, 4 H) 1.27 – 1.33 (m, 17 H) 1.39 

- 1.51 (m, 8 H) 1.63 - 1.81 (m, 4 H) 2.55 (t, J = 7.25 Hz, 2 H) 3.45 (m, 1 H) 3.62 (m, 1 H) 

3.83 (m, 1 H) 3.98 (m, 1 H) 5.31 (s, 2 H) 7.65 (d, J = 8.7 Hz, 2 H) 7.79 ppm (d, J = 8.7 Hz, 2 

H), 13C NMR (75 MHz, CDCl3) δ = 191.5, 173.2, 133.0, 132.3, 129.3, 129.2, 80.3, 77.3, 74.0, 

74.0, 71.9, 71.8, 65.7, 39.8, 39.6, 36.9, 36.8, 36.7, 36.6, 35.1, 34.9, 33.8, 33.4, 32.9, 32.7, 

32.1, 32.0, 31.9, 29.9, 29.8, 29.6, 29.3, 27.4, 27.3, 26.9, 22.7, 21.2, 21.0, 19.8, 19.7, 14.9, 14.1 

ppm; doubling of signals due to the isomers at C8 and C20; HRESIMS m/z: calcd. for 

C38H66BrO8 729.3936, found 729.3972. 

Tris-(S)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33a): oil; NMR 

data (1H NMR 600 MHz, 13C NMR 150 MHz, CDCl3): Table 6; HRESIMS m/z: calcd. for 

C68H90BrF9O14N 1394.5395, found 1394.5404. 
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Tris-(R)-MTPA ester of p-bromoacetophenone-octahydroroimatacene ester (33b): oil; NMR 

data (1H NMR 600 MHz, 13C NMR 150 MHz, CDCl3): Table 7; HRESIMS m/z: calcd. for 

C68H86BrF9O14Na 1399.4949, found 1399.4957. 

4.2.4 Biosynthetic Studies of Roimatacene (26) by Feeding Experiments 

100 mL cultures of strain Cb G35 of the described medium were supplemented with 25 mg, 

50 mg and 100 mg of methionine, acetate and propionate additionally to 1% XAD-16 

absorber resin. After 7 days of incubation at 30°C the XAD-16 resin of each culture was 

harvested, eluted with methanol and acetone supplemented with 4-ethoxyphenol (100 µL, 

0.1 M) and analysed by HPLC. 

50 mg of [13CH3] sodium methionine (98%), 50 mg of [2-13C] sodium propionate (97%), 100 

mg of [1-13C]- and [2-13C] sodium acetate (99%, all Cambridge Isotope Laboratories) were 

fed in two portions after 16 and 40 hours of incubation to shaken cultures (100 mL) of strain 

Cb G35. The cultures were incubated at 30°C for 7 days. After washing with water each 

XAD-16 resin was eluted twice with 3 bed volumes of methanol and twice with acetone. The 

organic layers of each experiment were evaporated to a small volume before adjusting their 

concentration to 100:1 under the addition of 4-ethoxyphenol (50 µL, 0.1 M). All extracts were 

partitioned between methanol and n-heptane. The methanol layers were subjected to acid-base 

partition. They were dissolved in 2 N ammonia (10 mL) and the methanol was evaporated. 

The aqueous layer was extracted with ethyl acetate (3 portions of 10 mL). The water layers 

were acidified to pH 3.3 with formic acid and extracted with n-heptane (10 mL) and then with 

ethyl acetate (3 portions of 10 mL). 4-ethoxyphenol (20 µL, 0.1 M) was added to the ethyl 

acetate layers of each experiment. Ethyl acetate was evaporated after addition of toluene and 

methanol. The solvents were evaporated after addition of [D6]DMSO and 13C-NMR spectra of 

all samples of the feeding experiments were measured.  

[13CH3]-methionine labelled roimatacene (26): 13C NMR (100 MHz, [D6]DMSO): δ 

(signal/noise) = 18.3 (16.5/1), 13.6 (19.2/1), 12.7 (13.2/1), 11.7 ppm (14.4/1). 

[1-13C]-acetate labelled roimatacene (26): 13C NMR (100 MHz, [D6]DMSO): δ (signal/noise) 

= 167.3 (4.3/1), 145.8 (5.1/1), 135.8 (3.5/1), 134.5 (2.1/1), 134.0 (2.7/1), 133.8 (2.9/1), 132.4 

(3.5/1), 131.2 (3.1/1), 125.4 (2.2/1), 75.1 (2.3/1), 73.6 (2.3/1), 70.1 ppm (3.1/1). 
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[2-13C]-acetate labelled roimatacene (26): 13C NMR (100 MHz, [D6]DMSO): δ (signal/noise) 

= 140.3 (5.0/1), 133.7 (5.5/1), 132.1 (5.5/1), 131.8 (6.0/1), 130.0 (9/1), 127.0 (9.5/1), 123.7 

(11/1), 74.4 (9/1), 36.1 (5.5/1), 34.7 (5.0/1), 25.3 ppm (10/1). 

[2-13C]-acetate labelled roimatacene (26): APT 13C NMR (100 MHz, [D6]DMSO): δ ppm 

(signal/noise) = 134.4 (1.4/1).  

[1-13C]-propionate labelled roimatacene (26): no enriched signals. 

4.3 Fermentation of Cb G35 and Isolation of p-Hydroxyacetophenone 

Amides 34a-f 

4.3.1 Fermentation of Cb G35 for the Isolation of p-Hydroxyacetophenone Amides 

34a-f  

Cystobacter ferrugineus, strain Cb G35 was transferred to a liquid medium consisting of 

soybean flour 4 g/L, glucose 2 g/L, starch 8 g/L, CaCl2 x 2 H2O 1 g/L, MgSO4 x 7 H2O 1 g/L, 

HEPES 11.9 g/L and Fe-EDTA 8 mg/L at pH 7.4. 70 L of the same medium in a 100 L 

fermentor (blade impeller 150 rpm, aeration 9 L/min, 30°C, pO2 20%, pH regulated between 

pH 7.15 and 7.25) were inoculated in the presence of 1.4 kg of XAD-16 resin. After 7 days 

the culture broth was passed through a process filter to collect the absorber resin. Residual 

cells were floated from recovered XAD-16 resin with water. 

4.3.2 Isolation of p-Hydoxyacetophenone Amides 34a-f  

Isolation of p-hydroxyacetophenone amides 34a-c: The XAD resin was eluted with 4 L of 

methanol/H2O (30/70), methanol (4 L) and acetone (4 L) in a column. The organic solvent 

was evaporated from the methanol fraction to give 550 mL of an aqueous mixture, which was 

extracted with ethyl acetate (5 portions of 250 mL). The combined ethyl acetate layer was 

dried in vacuo to give 18.6 g crude extract. The extract was dissolved in methanol and 

partitioned between methanol and n-heptane, to provide 17.5 g of more polar raw material. 

1.0 g of this extract was separated by silica gel flash chromatography [Flash40 (Biotage), 

cartridge Si 40 S 2976-1 (Biotage); solvent DCM/methanol/n-heptane (18/1/1)]. 4 main 

fractions were collected according to the analysis of all fractions by thin layer 

chromatography (TLC). Fraction 3 yielded 124.4 mg which were further purified in 3 batches 

by preparative RP-HPLC [column 250×21 mm, Nuleodur 100 EC (10 µm, C18) (Macherey-

Nagel); solvent A: methanol/H2O (10/90 + 0.01% acetic acid), solvent B: methanol/H2O 
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(90/10 + 0.01% acetic acid); gradient 25% B for 5 min, increasing to 45% B over 35 min, 

maintained at 45% for 10 min, increasing to 100% B over 5 min; FR = 20 mL/min, UV 

detection 210-500 nm]. Fractions were combined peak wise. The organic solvent was 

evaporated from the fractions after addition of toluene and the water layer was extracted with 

ethyl acetate yielding compound 34c (Rt = 7 min, 3.3 mg), 34b (Rt = 19 min, 7.1 mg) and 34a 

(Rt = 29 min, 59.6 mg). 

Isolation of p-hydroxyacetophenone amide 34d: Fraction 2 (221.2 mg) from the silica gel 

flash chromatography was separated by preparative RP-HPLC in 5 batches [column 250×21 

mm, Nuleodur 100 EC (10 µm, C18) (Macherey-Nagel); solvent A: methanol/H2O 10/90 + 

0.01% acetic acid, solvent B: methanol/H2O 90/10 + 0.01% acetic acid; gradient 25% B for 5 

min, increasing to 35% B in 25 min, increasing to 100% B in 1 minutes maintained at 100% B 

for 20 minutes; FR = 20 mL/min, UV detection at 210-500 nm]. Compound 34d (6.9 mg) 

eluted at Rt = 38 min. 

Isolation of p-hydroxyacetophenone amide 34e and 34f: 4.4 g of the methanol extract were 

subjected to silica gel flash chromatography (300 g silica gel 60, particle size 0.063-0.200 

mm, Merck) and eluted stepwise with ethyl acetate/DCM/n-heptane (3/3/4) (3 L) and ethyl 

acetate (6 L). 15 fractions were collected and dried in vacuo according to TLC analyses. 

Fraction 5 (48.6 mg) was further separated in 3 batches by preparative RP-HPLC [column 

250×21 mm, Nuleodur 100 EC (10 µm, C18) (Macherey-Nagel); gradient 37% B for 30 min, 

increasing to 100% B over 20 min; solvent A: methanol/H2O (10/90), solvent B: methanol; 

FR = 20 mL/min, UV detection 210-500 nm]. Compound 34e eluted at 33.5 min (0.8 mg). 

Fraction 9 (314 mg) of the silica gel chromatography was separated by preparative RP-MPLC 

[column 480×30 mm, ODS-AQ, 120 Å, S 16 µm, C-18 (Macherey-Nagel); solvent A:  

H2O/methanol (90/10), solvent B: methanol, gradient: 35% B to 38% B in 3 h, to 100% B in 

30 min, isocratic 30 min; FR = 30 mL/min, UV detection 280 nm). 11 fractions were 

collected and evaporated. The remaining aqueous layers were extracted with ethyl acetate. 

Compound 34f (1.1 mg) eluted at Rt = 185 min. 
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p-Hydroxyacetophenone iso-butanamide (34a): white needles; mp 188°C; analytical TLC: Rf 

= 0.07; UV (methanol): λmax (lg ε) = 202 (4.864), 218 (4.724), 278 (4.893) nm; IR (KBr): ν = 

3356, 3195, 2960, 1649, 1577, 1546, 1245, 1170 cm-1; NMR (CD3OD): Table 10; HRESIMS 

m/z: calcd. for C13H18NO3 236.1281, found: 236.1287. 

p-Hydroxyacetophenone n-butanamide (34b): white needles; mp 184°C; analytical TLC: Rf = 

0.05. UV (methanol): λmax (lg ε) = 201 (4.736), 219 (4.553), 278 (4.721) nm; IR (KBr): ν = 

3358, 3101, 2962, 1633, 1581, 1519, 1243, 1174 cm-1; NMR (CD3OD): Table 11; HRESIMS 

m/z: calcd. for C12H16NO3 222.1125, found 222.1125. 

p-Hyroxyacetophenone acetamide (34c): white needles; mp 187°C; analytical TLC: Rf = 0.02; 

UV (methanol): λmax (lg ε) = 201 (4.363), 219 (4.211), 278 (4.396) nm; IR (KBr): ν = 3344, 

3200, 2931, 1652, 1577, 1548, 1243, 1170 cm-1; NMR (CD3OD): Table 11; HRESIMS m/z: 

calcd. for C10H12NO3 194.0812, found 194.0809. 

p-Hydroxyethenphenyl iso-butanamide (34d): oil; analytical TLC: Rf = 0.24; UV (methanol): 

λmax (lg ε) = 200 (4.330), 219 (4.454), 285 (4.747) nm; IR (KBr): ν = 3289, 3074, 2969, 1670, 

1539, 1228, 1170 cm-1; NMR (CD3OD): Table 12; HRESIMS m/z: calcd. for C13H18NO2 

220.1332, found 220.1331. 

p-Hyrdoxyacetophenone iso-pentanamide (34e): analytical TLC: Rf = 0.07; UV (ethanol) λmax 

(lg ε) = 219 nm (4.228), 279 nm (4.350), 331 nm (3.388); NMR (CD3OD): Table 13; (+)-

HRESIMS m/z: calcd. for C14H20NO3 250.1438, found 250.1447. 

p-Hydroxyacetophenone n-pentanamide (34f): analytical TLC: Rf = 0.09; UV (ethanol): 

λmax (lg ε) = 218 (4.021), 279 (4.111), 331 (3.150) nm; NMR (CD3OD): Table 13; HRESIMS 

m/z: calcd. For C14H20NO3 250.1438, found 250.1447. 
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4.3.3 Biosynthetic Studies of p-Hydroxyacetophenone Amide 34a by Feeding 

Experiments 

Three cultures (100 mL medium described above) were provided with XAD 16 resin (2 mL). 

The cultures were supplemented with [13CH3]-sodium methionine (50 mg, 98%, Cambridge 

Isotope Laboratories), [D10]-leucine (50 mg, 98%, Campro Scientific) or [13C9,
15N]-tyrosine 

(50 mg, 98% 13C, 98% 15N, Campro Scientific). The cultures were incubated at 30°C with 

shaking at 180 rpm for 6 days. After sieving off the XAD resin, the resin was eluted with 

acetone (60 mL) for 16 h. The extracts were evaporated and re-dissolved in methanol (1 mL) 

for HPLC-HRESIMS or CD3OD for NMR spectroscopy analysis. 

p-Hydroxyacetophenone iso-butanamide (34a) from feeding [13C9,
15N]-tyrosine: 13C NMR 

(CD3OD, 75.5 MHz): δ = 194.6 (m, 1 C, C-7, labelled, calculated 50% incorporation rate (ir)), 

176.0 (m, 0.16 C, C-9, labelled, 8% ir), 176.0 (s, 0.02 C, C-9, unlabelled), 164.2 (m, 0.93 C, 

C-1, labelled), 131.6 (m, 5.33 C, C-3,5, labelled), 128.0 (m, 3.02 C, C-4, labelled), 116.4 (m, 

5.63 C, C-2,6, labelled), 46.5 (m, 3.13 C, C-8,10, labelled), 27.4 (m, 0.86 C, C-11, labelled), 

22.8 (d, J = 34.9, 0.81 C, C-12,13, labelled, 7% ir), 22.8 (s, 0.11 C, C-12,13, unlabelled), % 
13C incorporation = 1.1 × (integrallabelled/integralunlabelled) - 1.1; 1H NMR 

([D3]trifluoroethanol/H2O 1/1, 600MHz): reference spectrum δ = 0.99 (d, J = 6.6 Hz, 6 H, H-

12,13) 2.08 (dq, J = 7.7, 6.6 Hz, 1 H, H-11) 2.23 (d, J = 7.7 Hz, 2 H, H-10) 4.68 (d, J = 5.0 

Hz, 2 H, H-8) 7.00 (d, J = 8.8 Hz, 2 H, H-2,6) 7.56 (t, J = 5.0 Hz, 1 H, N-H) 7.94 (d, J = 8.8 

Hz, 2 H, H-3,5); labelled spectrum δ = 7.00 (d, 8.8 Hz, 3.74 H, H-2,6, unlabelled), 7.00 (dm, J 

= 150 Hz, 3.81 H, H-2,6, labelled, 51% ir), 7.56 (m, 1.0 H, N-H, unlabelled), 7.56 (dm, J = 95 

Hz, 0.42 H, N-H, labelled, 30% ir), 7.94 (d, J = 8.8 Hz, 2.88 H, H-3,5, unlabelled), 7.94 (dm, 

J = 150 Hz, 3.22 H, H-3,5, labelled, 53% ir); (% ir = (integrallabelled/ (integrallabelled + 

integralunlabelled))× 100); (+)-HRESIMS: m/z (%) = 250.1677 (2), 249.1647 (14), 248.1663 

(11), 247.1584 (10), 246.1584 (9), 245.1515 (42), 244.1537 (51), 237.1272 (27), 236.127 

(94), 161.0938 (69), 160.0966 (70), 153.0688 (24), 152.0701 (100%). (% ir = intensitylabelled/ 

(intensitylabelled + intensityunlabelled) × 100) 

p-Hydroxyacetophenone iso-butanamide (34a) from feeding [D10]-leucine: 1H NMR (CD3OD, 

300 MHz): identified signals from the crude extract δ = 1.03 (d, J = 6.4 Hz, 2.2 H, H-12,13), 

4.66 (s, 2.0 H, H-8), 6.91 (d, J = 8.8 Hz, 2.0 H, H-2,6), 7.94 (d, J = 8.8 Hz, 1.9 H, H-3,5); (+)-

HRESIMS: m/z (%) = 245.1834 (100), 236.1268 (53). (% ir = %labelled / (%labelled + %unlabelled) × 

100) 
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4.4 Isolation of Sulfangolids 24a-d 

4.4.1 Isolation of Sulfangolid A (25a) 

Sulfangolid A (25a) was produced by the Sorangium cellulosum strain So ce666 in a 60 L 

fermentor at 30°C containing the following medium: Starch 6 g/L, soybean flour 2 g/L, skim 

milk 1 g/L, casitone 1 g/L, glucose × H2O 1 g/L, CaCl2 × 2 H2O 1 g/L, MgSO4 × 7 H2O 1 g/L, 

Na-Fe-EDTA 8 mg/L at pH 7.4 in the presence of 1 % of adsorber resin Amberlite XAD-16 

and 1-docosanol 55 mg/L. The pH was regulated between pH 7.0 and 7.8. After 14 days of 

cultivation, starch and glucose were used up and the culture broth was passed through a 

process filter to collect the absorber resin. Residual cells were floated from the XAD-16 resin 

with water. The resin was eluted with MeOH/acetone 1/1 (3 L) and acetone (4 L). The organic 

solvents were evaporated and the remaining water/oil mixture (350 mL) was extracted with 

ethyl acetate (5 portions of 500 mL) after addition of saturated NaCl solution (150 mL). The 

ethyl acetate-layer yielded 30.0 g crude extract after evaporation. A MeOH/n-heptane 

partition was carried out to remove 10.9 g lipophilic by-products in the n-heptane layer (4 

portions of 200 mL). The remaining methanol layer was evaporated and dissolved in Et2O 

(200 mL) and 2 M ammonia. The ammonia layer was extracted with Et2O (5 portions of 200 

mL) at 0°C (centrifugation at 0°C, 5 min, 3000 rpm). After evaporation the Et2O-layer yielded 

2.1 g of lipophilic material. The ammonia layer was acidified to pH 4 and extracted with Et2O 

(3 portions of 200 mL) to yield 18.5 g of crude extract after evaporation. The water layer was 

finally extracted with ethyl acetate (3 portions of 250 mL) to give 10.2 g. In order to remove 

format salts this fraction was partitioned between water and DCM to yield 5.3 g in the DCM 

layer. This fraction was purified by RP-MPLC [column 480×30 mm (Kronlab), RP-ODS-AQ 

C18 (Macherey-Nagel), solvent A: H2O/ACN 95/5 + 50 mM/L NH4Ac + 400 µL/L acetic 

acid; solvent B: H2O/ACN 5/95 + 10 mM/L NH4Ac + 80 µL/L acetic acid, gradient: 35% B 

for 20 min, increasing to 40% B in 80 min, maintaining for 60 min, FR = 20 mL/min, UV 

detection 278 nm]. The fractions at Rt = 44 min were combined and neutralized with 2 M 

ammonia before the organic solvent was evaporated. The water layer was passed through a 

strata-X cartridge (0.5 g). After washing with water, the product was eluted from the cartridge 

with methanol to give 74.8 mg of dried material, which was further purified by RP-HPLC 

[column 250×21 mm, 10 µm, C18 RP-Nucleodur 100-EC (Macherey-Nagel), solvent A: 

H2O/ACN 95/5 + 50 mM/L NH4Ac + 400 µL/L acetic acid; solvent B: H2O/ACN 5/95 + 10 

mM/L NH4Ac + 80 µL/L acetic acid, gradient: 35% B for 5 min, increasing to 40% B in 20 

min, maintaining for 40 min, FR = 20.0 mL/min, UV detection 278 nm]. Sulfangolid A (25a) 
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had a Rt = 36 min and yielded 2.8 mg as ammonium salt after work up analogously to the RP-

MPLC chromatography. 

Sulfangolid A (25a): yellowish oil; analytical TLC: DCM/MeOH 8.5/1.5: Rf = 0.16; [α]D
RT = 

+ 74.3 (c = 0.7 in methanol); NMR data (1H 600 MHz, 13C 150 MHz, [D6]DMSO): Table 15; 

UV/Vis (methanol): λmax (lg ε) = 283 (4.462), 342 nm (4.435); IR (KBr): ν = 3431 (b, s), 2958 

(m), 2932 (m), 1704 (s), 1624 (m), 1252 (s), 1011 (s) cm-1; MS (DCI): reactant gas ammonia, 

m/z (%): 548 (25), 566 (100), 567 (35), 568 (10), 584 (15); HRESIMS m/z: for C35H51O10S 

calcd. 663.3208; found 663.3206. 

4.4.2 Isolation of Sulfangolid B (25b)  

Sulfangolid B (25b) was produced by strain So ce192 in a 100 L fermentor at 30°C in a 

medium consisting of starch 8 g/L, soybean meal 2 g/L, yeast extract 2 g/L, glucose × 2 H2O 

2 g/L, CaCl2× 2 H2O 1 g/L, MgSO4 × 7 H2O 1 g/L, Na-Fe-EDTA 8 mg/L at pH 7.4 in the 

presence of 2% Amberlite XAD-16 and 10 mL of tegosipon antifoam. The pH was regulated 

analogue to the sulfangolid A (25a) production. After 7 days of cultivation the culture broth 

was passed through a process filter to collect the absorber resin. Residual cells were floated 

from XAD-16 resin with water. The resin was eluted with MeOH/H2O 6/4 and MeOH (each 5 

L). The methanol layer was evaporated in vacuo to give 22.0 g of crude extract. Lipophilic 

by-products were removed by MeOH/n-heptane partition to give 20.0 g MeOH extract and 

1.0 g of by-products. The methanol extract was dissolved in DCM and filtered over celite 

before silica-gel-flash chromatography (column 80 mL). The silica gel chromatography was 

eluted step wise with DCM (yield 9.0 g), DCM/MeOH 19/1 (yield 6.65 g), DCM/MeOH 9/1 

(yield 0.72 g) and finally with MeOH (yield 0.22 g) (500 mL of each solvent). The 

DCM/MeOH 9/1 extract was further purified by silica-flash chromatography [column 37×420 

mm HD-Sil 15µ, 60Å (Macherey-Nagel), gradient: 10 min with petroleum ether/DCM/MeOH 

50/48/2, increasing the MeOH proportion to 4% in 120 min, maintaining 4% for 30 min, 

increasing to 5% MeOH in 30 min, maintaining 5% for 30 min, rinsing the column with 

DCM/MeOH 7/3, FR = 35 mL/min, UV detection 278 nm]. The sulfangolid B (25b) 

containing fraction had a Rt of 124 min and a dry weight of 114 mg after evaporation. This 

fraction was further purified by RP-HPLC chromatography [column 20.5×250 mm Nucleosil 

100-7 C18 (Macherey-Nagel), 65% MeOH isocratic, FR = 18 mL/min, UV detection 278 

nm]. Sulfangolid B (25b) (8 mg) was isolated at Rt = 11 min. 
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Sulfangolid B (25b): yellowish oil, analytical TLC: DCM/MeOH 8.5/1.5: Rf = 0.16; NMR 

data (1H 600 MHz, 13C 150 MHz, CD3OD): Table 16; HRESIMS m/z: calcd. for C36H53O11S 

693.3314, found 693.3308. 

4.4.3 Isolation of Sulfangolid C (25c)  

Sulfangolid C (25c) was produced by Sorangium cellulosum strain So ce12 in the same 

medium as So ce192, supplemented with fructose 1 g/L and KNO3 1 g/L. Two fermentors 

with 70 L media each were performed. They were supplemented with 1% of adsorber resin 

XAD-16 and 100 mg/L 1-docosanol. The pH was regulated between pH 7.0 and 7.8. After 9 

days the culture broths were passed through a process filters. Residual cells of the combined 

XAD-16 resin were floated with water. The absorber resin was then eluted with MeOH/H2O 

1/1 (3.5 L) and MeOH (4.5 L). The organic solvent was evaporated from the layers in vacuo 

and the water layers of each fraction were extracted with ethyl acetate (5 portions of 250 mL) 

after addition of saturated NaCl solution (150 mL). The layers were combined and the solvent 

was evaporated in vacuo to give 33.8 g of crude extract. Lipophilic by-products were 

extracted by MeOH/n-heptane partition to yield 22.5 g methanol extract and 1.8 g n-heptane 

extract. The methanol extract was dissolved in Et2O (250 mL) and 2 M ammonia (125 mL). 

The Et2O-layer was extracted with 2 M ammonia (3 portions of 300 mL). The Et2O-layer 

yielded 11.8 g non-polar compounds. The combined ammonia layers were neutralized with 

formic acid to pH 7 and then extracted with Et2O (3 portions of 300 mL), yielding 6.2 g 

residue after evaporation. The water layer was further extracted with ethyl acetate (3 portions 

of 300 mL), yielding 5.9 g of enriched sulfangolid C (25c). This crude extract was dissolved 

in Et2O and H2O and acidified with formic acid to pH 4 to be extracted with Et2O (3 portions 

of 150 mL) at 0°C (centrifugation at 0°C, 8 min, 3000 rpm), yielding 2.6 g of the enriched 

carboxylic acid sorangicin A (13). The water layer was neutralized with 2M ammonia and 

extracted with ethyl acetate (3 portions of 200 mL) under the addition of saturated NaCl 

solution (80 mL). The ethyl acetate extract was evaporated in vacuo to yield 1.4 g enriched 

sulfangolid C (25c). This fraction was further purified by LH-20 chromatography (50×1000 

mm column, solvent: MeOH, FR = 4.0 mL/min, UV detection 278 nm) in 3 batches. The 

fractions were combined according to the UV-chromatogram and fraction 7 at Rt = 560 min 

with 85 mg product contained the highest concentration of sulfangolid C (25c). This fraction 

was further purified by RP-HPLC in three batches [column 250×21 mm, 10 µm, C18 RP-

Nucleodur 100-EC (Macherey-Nagel), solvent A: H2O/ACN 95/5 + 50 mM/L NH4Ac + 400 

µL/L acetic acid; solvent B: H2O/ACN 5/95 + 10 mM/L NH4Ac + 80 µL/L acetic acid, 
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gradient: 25% B maintaining for 15 min, increasing to 50% B in 90 min, maintaining 15 min, 

FR = 20.0 mL/min, UV detection 278 nm]. The UV peak at Rt = 81 min was neutralized with 

2 M ammonia, the organic solvent was evaporated and the water layer passed through a strata-

X cartridge (0.5 g, Phenomenex). After washing with water the compound was eluted from 

the cartridge with methanol to yield 29.6 mg. Sulfangolid C (25c) was further purified by RP-

HPLC [column 250×21 mm, 10 µm, C18 RP-Nucleodur 100-EC (Macherey-Nagel), solvent 

A: H2O/ACN 95/5 + 50 mM/L NH4Ac + 400 µL/L acetic acid; solvent B: H2O/ACN 5/95 + 

10 mM/L NH4Ac + 80 µL/L acetic acid, gradient: 30% B maintaining for 5 min, increasing to 

40% B in 40 min, maintaining at 40% B for 20 min, FR = 20 mL/min, UV detection 278 nm]. 

Sulfangolid C (25c) had a Rt = 17 min and yielded 17.7 mg of the ammonium salt after work 

up by strata-X cartridge (1.0 g). 

Sulfangolid C (25c): yellowish oil; analytical TLC: DCM/MeOH 8.5/1.5, Rf = 0.15; [α]D
RT = 

+ 153.3 (c = 0.5 in methanol); NMR data (1H 600 MHz, 13C 150 MHz, [D6]DMSO): Table 

17; UV/Vis (methanol): λmax (lg ε) = 288 nm (4.446); IR (KBr): ν = 3421 (b, s), 2957 (s), 

2931 (s), 1705 (s), 1616 (m), 1255 (s), 1006 (s) cm-1; HRESIMS m/z: calcd. for C35H53O11S 

681.3314, found 681.3317. 

4.4.4 Isolation of Sulfangolid D (25d)  

Sulfangolid D (25d) was produced by Sorangium cellulosum, strain So ce1375, in a 70 L 

fermentor at 30°C with medium consisting of soybean meal 5 g/L, glucose × H2O 1 g/L, 

starch 10 g/L, CaCl2 × 2 H2O 1 g/L, MgSO4 × 7 H2O 1 g/L, NaNO3 80 mg/L and Na-Fe-

EDTA 8 mg/L at pH 7.2. The fermentor was additionally supplemented with 0.1% of 

Amberlite XAD-16 resin and 100 mg/L 1-docosanol. The pH was regulated as described 

above. After 10 days the resin was collected by sieving in a process filter. The recovered 

XAD resin containing residual cells (3.25 kg) was stirred for 1 h in methanol (15 L) before 

the organic solvent was passed through a celite filter. The organic solvent was evaporated and 

the water was extracted with ethyl acetate to yield 21.5 g of crude extract, which was 

dissolved in methanol and partitioned between methanol and n-heptane to remove 8.7 g 

lipophilic by-products. The methanol layer yielded 12.1 g after evaporation. The methanol 

extract was separated by silica gel chromatography (1.2 L silica gel 60 (Merck)) and stepwise 

eluted with DCM (2 L), DCM + 10% methanol (2.5 L) and DCM + 20% methanol. 

Sulfangolid D (25d) eluted in the last fraction to give 1.6 g of residue after evaporation. The 

extract was further purified by silica gel MPLC in two batches [column 500×70 mm HD-Sil 

18-20-60, MeOH/H2O (85/15) supplemented with 50 mM/L NH4Ac, FR = 8 mL/min, UV 
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detection 365 nm]. Sulfangolid A (25a) was recovered at Rt = 105 min (yield 566 mg) and 

Sulfangolid D (25d) at Rt = 210 min (yield 281 mg) as ammonium salts. 

Sulfangolid D (25d): yellowish oil; TLC: DCM/MeOH (85/15): Rf = 0.27; NMR data (1H 300 

MHz, 13C 75 MHz, CD3OD): Table 18; UV/Vis (methanol): λmax (lg ε) = 237 (3.954), 339 nm 

(5.741); IR (KBr): ν = 3447 (b, s), 2959 (s), 2935 (s), 1704 (s), 1617 (m), 1597 (s), 1457 (m), 

1256 (s), 1227 (s), 1165 (m), 1124 (m), 1079 (m), 1045 (m), 1008 (s), 980 (m), 922 (m) cm-1; 

HRESIMS m/z: calcd. for C36H53O10S 677.3365, found 677.3343. 

4.4.5 Fermentation of So ce757 for the Production Kinetics of Sulfangolid C (25c) 

Sorangium cellulosum strain So ce757 inoculated a 70 L fermentor at 30°C containing the 

following medium: starch 10 g/L, soybean meal 2 g/L, skim milk 2 g/L, glycerine (87%) 1 

g/L, CaCl2 × 2 H2O 1 g/L, MgSO4 × 7 H2O 1 g/L, glucose × 2 H2O 0.5 g/L, Na-Fe-EDTA 8 

mg/L at pH 7.8, supplemented with 1% Amberlite XAD-16. The pH was regulated between 

pH 7.0 and 7.8. A sample of about 100 mL culture was taken on day 2, 4, 6, 7, 8 and 9, the 

glucose concentration of the supernatant was tested with Diabur-Test 5000 (Roche), the 

XAD-16 was eluted twice with methanol and twice with acetone. The organic layers of each 

sample were combined and the solvent evaporated. The residue was concentrated 1:100 and 

analysed for the sulfangolid C (25c) concentration by HPLC. The XAD-resin was harvested 

on day 9 of cultivation. 
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4.4.6 Biosynthetic Studies of Sulfangolid C (25c) by Feeding Experiments  

Sorangium cellulosum strain So ce757 producing 19 mg/L sulfangolid C (25c) was used in the 

feeding experiments with the following medium: starch 10 g/L, soybean meal 2 g/L, milk 

powder 2 g/L, glycerine 87% 1 g/L, CaCl2× 2 H2O 1 g/L, MgSO4 × 7 H2O 1 g/L, glucose × 

H2O 0.5 g/L, Na-Fe-EDTA 8 mg/L at pH 7.8 and Amberlite XAD 16 resin 10 g/L. For the 
13C-labelled acetate and [D10]-leucine 4 Erlenmeyer flasks with 350 mL medium and for 

propionate a 700 mL culture were provided. As the strain grew in lumps, start of the 

cultivation with an exact inoculum was not possible. Alternatively, the kinetic of the 

production was correlated with the glucose content of the medium. Feeding was started with 

the beginning of the production at a glucose concentration of 0.25%. During 4 days the 

precursors were added in equal portions with a final amount of 252 mg [1-13C]-sodium acetate 

(99%), 251 mg of [2-13C-D3]-sodium acetate (99%, 98%), 250 mg [1,2-13C]-sodium acetate 

(99%), 504 mg [1-13C]-sodium propionate (97%) (Cambridge Isotope Laboratories) and 253 

mg [D10]-leucine (98%, Campro Scientific, under the addition of HCl). The XAD resin of 

each culture was harvested after starch and glucose consumption by sieving and then eluted 

with methanol and acetone. The extracts of each experiment were combined and partitioned 

between methanol and n-heptane. The methanol layers were further purified by RP-HPLC 

[column 250×21 mm, 10 µm, C18 RP–Nucleodur 100-EC (Macherey-Nagel), solvent A: 95/5 

H2O/ACN + 50 mM/L + 400 µL/L acetic acid, solvent B: 5/95 H2O/ACN + 10 mM/L + 80 

µL/L acetic acid, gradient: 10% B in 60 min to 65% B, FR = 20 mL/min, UV detection 287 

nm] and 3 was recovered at a Rt = 45 min. After evaporation of the organic solvent the water 

layers were extracted with ethyl acetate. Yields: [1-13C]-acetate labelled 25c 5.4 mg, [2-13C-

D3]-acetate labelled 25c 2.6 mg, [1,2-13C]-acetate labelled 25c 3.6 mg, [1-13C]-propionate 

labelled 25c 7.3 mg and [D10]-leucine labelled 25c 9.5 mg. The summarized NMR data are 

presented in Table 21. In addition, strain So ce757 was transferred to an analogous but 

sulfate-free medium and the sulfangolid C (25c) production decreased from 19 mg/L to 2 

mg/L after two passages. 
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6 Appendix 

6.1 Author´s Effort in Publication 

Roimatacene, a Polyunsaturated Carboxylic Acid from Cystobacter ferrugineus Cb G35 

WZ monitored the production of roimatacene (26) during all fermentations, developed the 

isolation strategie, as well as planed and carried out all derivatization experiments. The 

molecular modelling was done by R. Jansen, while the complete structure elucidation and the 

comparison of the modelling results were done by WZ. The feeding experiments were done 

by K. I. Mohr, while the isolation and analyses was done by WZ. The antimicrobial screening 

was conducted by K. I. Mohr and the proliferation assays in the lab of Florenz Sasse. WZ 

wrote the manuscript. 

Six p-Hydroxyacetophenone Amides from Cystobacter ferrugineus Cb G35 

The secondary metabolite production during fermentation was monitored by WZ. The 

isolation and the structure elucidation, as well as planning and analysing the feeding 

experiments were done by the author. WZ wrote the manuscript. 

Sulfangolids, Macrolide Sulfate Esters from Sorangium cellulosum 

The fermentation of strain So ce666 (sulfangolid A), So ce192 (sulfangolid B) and So ce12 

(sulfangolid C) were done by H. Irschik. The fermentation of So ce1375 was carried out by K. 

Gerth. The isolation of sulfangolid B was done by R. Jansen and of sulfangolid D by M. 

Herrmann. The isolation of sulfangolid A and C as it is presented here and in the manuscript 

was planned by R. Jansen and carried out by WZ during the Diploma Thesis. The verification 

of the proposed structures of 25a-d by NMR data and the presented NMR tables were done by 

the author. The relative configuration was done by WZ and extensively discussed with R. 

Jansen. The molecular modelling was done by R. Jansen. The feeding experiments were 

carried out and analysed by WZ. The manuscript was written by WZ. 
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6.2 Spectra 

6.2.1 Spectra of Roimatacene (26) 

 

 
Spectrum 1:   UV spectrum of roimatacene (26) in methanol (c = 0.5 mg/100 mL). 

 
Spectrum 2:   1H NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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Spectrum 3:   13C NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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Spectrum 4:   13C DEPT NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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DEPT-roimatacene.esp
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Spectrum 5:   13C DEPT NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 



Appendix 

- 107 - 
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Spectrum 6:   1H,13C HMQC NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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Spectrum 7:   1H,1H COSY NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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Spectrum 8:   1H,13C HMBC NMR spectrum of roimatacene (26) (1H 600MHz, 13C 150 MHz, [D6]DMSO). 
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Spectrum 9:   1H NMR spectrum of roimatacene (26) after H/D exchange (1H 600 MHz,13C 150 MHz, 
[D6]DMSO).  
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Spectrum 10:  13C NMR spectrum of roimatacene (26) after H/D exchange (13C 150 MHz, [D6]DMSO).  
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Spectrum 11:   13C DEPT NMR spectrum of roimatacene (26) after H/D exchange (13C 150 MHz, 

[D6]DMSO).  
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Spectrum 12:   13C DEPT NMR spectrum of roimatacene (26) after H/D exchange (13C 150 MHz, 

[D6]DMSO).  
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Spectrum 13:   13C APT spectrum of roimatacene (26) after H/D exchange (13C 100 MHz, [D6]DMSO). 
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Spectrum 14:   1H,13C HSQC NMR spectrum of roimatacene (26) after H/D exchange (1H 600 MHz,13C 150 
MHz, [D6]DMSO). 
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Spectrum 15:   1H,13C HMBC NMR spectrum of roimatacene (26) after H/D exchange (1H 600 MHz,13C 150 
MHz, [D6]DMSO). 
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Spectrum 16.   HPLC-HRESIMS chromatogram of the supernatant of the E. coli tolC MIC dilution assay after 
incubation, the supernatant was centrifuged (5 min, 3000 g) and 5 µL were analyzed. The peak 
at 10.3 min showed the roimatacene (26) characteristic chromophore and the mass spectrum 
represented the molecular ion of [M+Na]+ (calc. 539.2979). 
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6.2.2 Spectra of p-Hydroxyacetophenones (34a-f) 

 
Spectrum 17:   UV spectrum of p-hydroxyacetophenone iso-butanamide (34a) in methanol (c = 0.5 mg/100 

mL). 

 
Spectrum 18:   UV spectrum of p-hydroxyethenphenyl-iso-butanamide (34d) in methanol (c = 1 mg/100mL). 
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Spectrum 19:  IR spectrum of compound p-hydroxyacetophenone iso-butanamide (34a) (0.5 mg, KBr). 
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Spectrum 20:   1H NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (1H 400 MHz, CD3OD). 
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Spectrum 21:   13C NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (13C 100 MHz, CD3OD). 
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Spectrum 22:   DEPT NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (1H 400 MHz, 13C 100 
MHz, CD3OD). 
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Spectrum 23:   1H,13C HMQC NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 24:   1H,1H COSY NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 25:   1H,13C HMBC NMR spectrum of p-hydroxyacetophenone iso-butanamide (34a) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 26:   1H NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (1H 300 MHz, CD3OD). 
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Spectrum 27:   13C NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (13C 75 MHz, CD3OD). 
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Spectrum 28:   13DEPT NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (1H 300 MHz, 13C 75 
MHz, CD3OD). 
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Spectrum 29:   1H,13C HMQC NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (1H 300 MHz, 
13C 75 MHz, CD3OD). 



Appendix 

- 125 - 

 

Spectrum 30:   1H,1H COSY NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (1H 300 MHz, 
13C 75 MHz, CD3OD). 
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Spectrum 31:   1H,13C HMBC NMR spectrum of p-hydroxyacetophenone n-butanamide (34b) (1H 300 MHz, 
13C 75 MHz, CD3OD). 
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Spectrum 32:   1H NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 75 MHz, 
CD3OD). 
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Spectrum 33:   13C NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 75 MHz, 
CD3OD). 
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Spectrum 34:   13C DEPT NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 75 
MHz, CD3OD). 
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Spectrum 35:   1H,13C HMQC NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 
75 MHz, CD3OD). 
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Spectrum 36:   1H,1H COSY NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 
75 MHz, CD3OD). 
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Spectrum 37:   1H,13C HMBC NMR spectrum of p-hydroxyacetophenone acetamide (34c) (1H 300 MHz, 13C 
75 MHz, CD3OD). 
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Spectrum 38:   1H NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 13C 100 
MHz, CD3OD). 
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Spectrum 39:   13C NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 13C 100 
MHz, CD3OD). 
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Spectrum 40:   13C DEPT NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 13C 
100 MHz, CD3OD). 
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Spectrum 41:   1H,13C HMQC NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 42:   1H,1H COSY NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 43:   1H,13C HMBC NMR spectrum of p-hydroxyethenphenyl iso-butanamide (34d) (1H 400 MHz, 
13C 100 MHz, CD3OD). 
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Spectrum 44:   1H NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 MHz, 13C 

150 MHz, CD3OD). 
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Spectrum 45:   13C NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 MHz, 13C 

150 MHz, CD3OD). 
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Spectrum 46:   13C DEPT NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 MHz, 

13C 150 MHz, CD3OD). 
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Spectrum 47:   1H,13C HMQC NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 

MHz, 13C 150 MHz, CD3OD). 
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Spectrum 48:   1H,1H COSY NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 MHz, 

13C 150 MHz, CD3OD). 
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Spectrum 49:   1H,13C HMBC NMR spectrum of p-hydroxyacetophenone iso-pentanamide (34e) (1H 600 

MHz, 13C 150 MHz, CD3OD). 
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Spectrum 50:   1H NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 13C 150 
MHz, CD3OD). 
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Spectrum 51:   13C NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 13C 150 

MHz, CD3OD). 
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Spectrum 52:   13C DEPT NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 13C 

150 MHz, CD3OD). 
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Spectrum 53:   1H,13C HMQC NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 

13C 150 MHz, CD3OD). 
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Spectrum 54:   1H,1H COSY NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 

13C 150 MHz, CD3OD). 
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Spectrum 55:   1H,13C HMBC NMR spectrum of p-hydroxyacetophenone n-pentanamide (34f) (1H 600 MHz, 
13C 150 MHz, CD3OD). 
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Spectrum 56:   Comparison of 1H NMR signals of 34a unlabeled (above) and [13C,15N]-tyrosine labelled 

(below) (1H 600 MHz, TFE/H2O). 
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Spectrum 57:   13C NMR spectrum of [13C9,

15N]- tyrosine labelled 34a (13C 75.5 MHz, CD3OD). 
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Spectrum 58:   1H NMR spectrum of [D10]-leucine labelled 34a in the crude extract (1H 300 MHz, CD3OD). 

 

 
Spectrum 59:   UV and HRESIMS spectrum of [D10]-leucine labelled 34a. 
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Spectrum 60:   UV and HRESIMS spectrum of [13C9,

15N]-tyrosine labelled 34a. 
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6.2.3 Spectra of Sulfangolids 25a-d 

 
Spectrum 61:   UV-spectrum of sulfangolid A (25a) in methanol (2 mg/100 mL). 

 

 
Spectrum 62:   IR spectrum of sulfangolid A (25a) (KBr). 
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Spectrum 63:   UV spectrum of sulfangolid C (25c) in methanol (2mg/100 mL). 

 

 
Spectrum 64:   IR spectrum of sulfangolid C (25c) (KBr). 
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Spectrum 65:   UV spectrum from sulfangolid D (25d) in methanol. 

 

 

 
Spectrum 66:   IR spectrum from sulfangolid D (25d) (KBr). 
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Spectrum 67:   1H NMR spectrum of sulfangolid A (25a) (600 MHz, [D6]DMSO). 
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Spectrum 68:   1H NMR spectrum of sulfangolid A (25a) (600 MHz, [D6]DMSO after H/D exchange). 
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Spectrum 69:   simulated 1H NMR spectrum of sulfangolid A (25a) with ACD 11. 
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Spectrum 70:   13C NMR spectrum of sulfangolid A (25a) (13C 75 MHz, [D6]DMSO). 



Appendix 

- 155 - 

deptbearb.esp

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16
Chemical Shift (ppm)

13
.4

6
15

.5
2

16
.7

3
19

.4
1

21
.9

0
24

.3
2

25
.0

7

25.36
25.78

26.51
29.27

29
.5

8

29.81
32.82

33.00
34.65

36.22

36
.3

1
39

.7
9

40.14

40
.3

6

40.41

40
.6

4

40.70

40
.9

1

41.00

41
.1

9

41.32

46
.5

048
.7

3

56.88

70.43
70.64

72
.1

6

75
.0

6

78
.0

6
78

.2
4

12
0.

49
12

0.
6612

3.
65

12
9.

29

13
1.

46

13
9.

44
13

9.
84

14
2.

96
14

3.
15

14
6.

04
14

6.
78

169.28
169.37

19
4.

23

 
Spectrum 71:   13C DEPT NMR spectrum of sulfangolid A (25a) (13C 75 MHz, [D6]DMSO). 
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Spectrum 72:   1H,1H COSY NMR spectrum of sulfangolid A (25a) (1H 600 MHz, [D6]DMSO). 
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Spectrum 73:   1H,13C HSQC NMR spectrum of sulfangolid A (25a) (1H 600 MHz, 13C 150 MHz, 

[D6]DMSO). 
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Spectrum 74:   1H,13C HMBC NMR spectrum of sulfangolid A (25a) (1H 600 MHz, 13C 150 MHz, 

[D6]DMSO). 
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Spectrum 75:   1H,1H ROESY NMR spectrum of sulfangolid A (25a) (1H 600 MHz, [D6]DMSO). 
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Spectrum 76:   J-resolved NMR spectrum of sulfangolid A (25a) (1H 600 MHz, [D6]DMSO). 
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Spectrum 77:   1H NMR spectrum of sulfangolid B (25b) from 9.0 to 4.5 ppm (1H 600 MHz, CD3OD). 

 

Spectrum 78:  1H NMR spectrum of sulfangolid B (25b) 4.0 to 0.0 ppm (1H 600 MHz, CD3OD). 
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Spectrum 79:   13C NMR spectrum of sulfangolid B (25b) (13C 150 MHz, CD3OD). 

 
Spectrum 80:   13C- DEPT spectrum of sulfangolid B (25b) (150 MHz, CD3OD). 
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Spectrum 81:   Basic-HMQC spectrum of sulfangolid B (25b) (1H 600 MHz, 13C 150 MHz, CD3OD). 
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Spectrum 82:   1H,1H COSY spectrum of sulfangolid B (25b) (1H 600 MHz, CD3OD). 
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Spectrum 83:   1H,13C HMBC of sulfangolid B (25b) (1H 600 MHz; 13C 150 MHz, CD3OD).  
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Spectrum 84:   1H NMR spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO). 
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Spectrum 85:   1H NMR spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO after H/D exchange). 
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Spectrum 86:   13C NMR spectrum of sulfangolid C (25c) (13C 150 MHz, [D6]DMSO). 
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Spectrum 87:  1H,13C HSQC NMR spectrum of sulfangolid C (25c) (1H 600 MHz, 13C 150 MHz, 

[D6]DMSO). 
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Spectrum 88:   1H,1H COSY NMR spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO after H/D-
exchange). 
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Spectrum 89:   1H,13C HMBC NMR spectrum of sulfangolid C (25c) (1H 600 MHz, 13C 150 MHz, 

[D6]DMSO). 
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Spectrum 90:   1H,1H ROESY NMR spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO). 
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Spectrum 91:   J-resolved NMR spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO after H/D 

exchange). 
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Spectrum 92:   Partial view of J-resolved spectrum of sulfangolid C (25c) (1H 600 MHz, [D6]DMSO after H/D 
exchange). 
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Spectrum 93: 1H NMR spectrum of sulfangolid D (25d) (1H 300 MHz, CD3OD). 
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Spectrum 94:   13C NMR spectrum of sulfangolid D (25d) (13C 75 MHz, CD3OD). 
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Spectrum 95:   13C DEPT NMR spectrum of sulfangolid D (25d) (13C 75 MHz, CD3OD). 
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Spectrum 96:   1H,13C HSQC spectrum of sulfangolid D (25d) (1H 300 MHz, 13C 75 MHz, CD3OD). 
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Spectrum 97:   1H,1H COSY spectrum of sulfangolid D (25d) (1H 300 MHz, CD3OD). 
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Spectrum 98:   1H,13C HMBC spectrum of sulfangolid D (25d) (1H 300 MHz, 13C 75 MHz, CD3OD). 


