The \textit{IGF2} mRNA binding protein p62 as a regulator of \textit{IGF2} and \textit{H19} expression – potential implications in tumorigenesis

Dissertation
zur Erlangung des Grades
des Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultät III
Chemie, Pharmazie, Bio- und Werkstoffwissenschaften
der Universität des Saarlandes

von
Sonja M. Keßler

Saarbrücken
2011
1. Berichterstatter: Prof. Dr. Alexandra K. Kiemer
2. Berichterstatter: Prof. Dr. Rolf W. Hartmann
Erklärung

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, März 2011

(Sonja M. Keßler)
Contents

Abbreviations.. V

Abstract ...1

1 Introduction..3

1.1 Hepatocellular carcinoma... 4
1.1.1 HCC as a complication of non-alcoholic steatohepatitis (NASH).............. 4
1.2 Insulin-like growth factor 2-mRNA binding protein p62 7
1.3 Imprinted genes ... 9
1.3.1 Insulin-like growth factor (IGF) 2 .. 10
1.3.2 The non-coding RNA H19 .. 11
1.4 The phosphatase and tensin homolog deleted from chromosome 10 12
1.5 Extracellular-activated kinases (ERKs) ... 13

2 Materials and Methods ..17

2.1 Materials... 18
2.2 Mice.. 19
2.2.1 Animal welfare .. 19
2.2.2 Generation of p62 transgenic animals .. 19
2.2.3 Genotyping ... 19
2.2.4 Treatment .. 21
2.2.5 Serum parameters ... 21
2.3 Cell culture ... 21
2.3.1 Cell lines .. 21
2.3.2 Determination of cell viability... 22
2.3.3 Detection of mycoplasma ... 22
2.4 Bacterial culture .. 23
2.4.1 Generation of competent E.coli ... 23
2.4.2 Transformation .. 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Plasmid generation</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Vectors for mammalian cell transfections</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2</td>
<td>siRNA</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Real-Time RT-PCR standard plasmids</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Isolation of bacterial DNA</td>
<td>25</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Plasmid purification</td>
<td>25</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Determination of DNA concentrations</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Agarose gel electrophoresis</td>
<td>25</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Detection of DNA</td>
<td>25</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Detection of RNA</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>RNA isolation and reverse transcription</td>
<td>26</td>
</tr>
<tr>
<td>2.8.1</td>
<td>RNA isolation</td>
<td>26</td>
</tr>
<tr>
<td>2.8.2</td>
<td>DNase digestion</td>
<td>26</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Measurement of RNA concentrations</td>
<td>26</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Alu PCR</td>
<td>27</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Reverse transcription</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Restriction fragment length polymorphism</td>
<td>28</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Genomic DNA Isolation and screening</td>
<td>28</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Digestion with restriction enzymes</td>
<td>30</td>
</tr>
<tr>
<td>2.10</td>
<td>SNUPE analysis</td>
<td>30</td>
</tr>
<tr>
<td>2.11</td>
<td>Real-time RT-PCR</td>
<td>32</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Primer and probe sequences</td>
<td>32</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Standard dilution series</td>
<td>33</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Experimental procedure</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Western Blot analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Preparation of protein samples</td>
<td>36</td>
</tr>
<tr>
<td>2.12.2</td>
<td>SDS-polyacrylamide gel electrophoresis (SDS-PAGE)</td>
<td>36</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Blotting</td>
<td>37</td>
</tr>
</tbody>
</table>
Contents

2.12.4 Immunodetection .. 37
2.13 Transfection of HepG2 cells ... 38
2.13.1 Plasmid transfection.. 38
2.13.2 siRNA transfection .. 38
2.14 Determination of mRNA stability .. 39
2.15 Caspase-3-activity assay ... 39
2.16 ELISA ... 39
2.17 Fatty acid measurement... 40
2.18 Human HCC samples... 41
2.19 Statistics ... 42

3 Results...43
3.1 Effects of p62 on hepatic metabolism .. 44
3.1.1 p62 expression in DEN-treated mice .. 44
3.1.2 Effect of p62 on the metabolism of fatty acids....................................... 44
3.1.3 p62 downregulates PTEN expression ... 47
3.1.4 Expression of glucocorticoid-induced leucine zipper (GILZ) 48
3.1.5 p62 induces inflammatory cytokines ... 49
3.2 Antiapoptotic effect of p62.. 52
3.2.1 p62 expression results in high expression of Igf2 52
3.2.2 Role of p62 and IGF2 in human HCC ... 54
3.2.3 Role of IGF2 in anti-apoptotic action of p62.. 56
3.2.4 The antiapoptotic effect of p62 is facilitated via ERK phosphorylation .. 60
3.3 Role of H19 in HCC.. 62
3.3.1 H19 expression in DEN-treated mice.. 62
3.3.2 H19 expression in human HCC... 64
3.3.3 H19 expression in hepatoma cells .. 65

4 Discussion ...67
4.1 Effects of p62 on metabolism and inflammation.. 68
4.1.1 Effects of p62 on fatty acid metabolism ... 68
4.1.2 p62 downregulates PTEN ... 70
4.1.3 Interaction of p62 and GILZ .. 71
4.1.4 p62 induces inflammatory cytokines ... 72
4.2 Antiapoptotic effect of p62 .. 74
4.2.1 p62 expression in human HCC ... 74
4.2.2 Mechanism of the anti-apoptotic action of p62 75
4.3 Role of H19 in HCC ... 79
5 Summary .. 81
6 References .. 85
Publications .. 105
Acknowledgements .. 107
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>amp</td>
<td>ampicilline</td>
</tr>
<tr>
<td>AP-1</td>
<td>activator protein 1</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>BHQ1</td>
<td>black hole quencher 1</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CCD</td>
<td>centrally conserved domain</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>co</td>
<td>control</td>
</tr>
<tr>
<td>CpG</td>
<td>undermethylated 5'-CG-3' sequences</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element-binding protein</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethyl dicarbonate</td>
</tr>
<tr>
<td>DMR</td>
<td>differential methylated region</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>desoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>desoxyribonucleosidtriphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine-N,N,N,N'-tetra acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular-activated kinase</td>
</tr>
<tr>
<td>f</td>
<td>femto ((10^{-15}))</td>
</tr>
<tr>
<td>FAM</td>
<td>6-carboxy-fluorescein</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GILZ</td>
<td>glucocorticoid-induced leucine zipper</td>
</tr>
<tr>
<td>GSK-3</td>
<td>glycogen synthase kinase-3</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HBV</td>
<td>hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>ICR</td>
<td>imprinting control region</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IκB</td>
<td>inhibitory protein kappa B</td>
</tr>
<tr>
<td>IMP</td>
<td>IGF2 mRNA binding protein</td>
</tr>
<tr>
<td>IL6</td>
<td>interleukin 6</td>
</tr>
<tr>
<td>kb</td>
<td>kilo bases</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>KH</td>
<td>hnRNP K homology domain</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LDL</td>
<td>low density protein</td>
</tr>
<tr>
<td>LOI</td>
<td>loss of imprinting</td>
</tr>
<tr>
<td>m</td>
<td>milli ((10^{-3}))</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MEK</td>
<td>mitogen extracellular protein kinase</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>μ</td>
<td>micro ((10^{-6}))</td>
</tr>
</tbody>
</table>
Abbreviations

n nano \(10^{-9}\)
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NF-\(\kappa B\) nuclear factor kappa B
PAGE polyacrylamide gel electrophoresis
PBS phosphate buffered saline
PBST phosphate buffered saline with Tween 20
PCR polymerase chain reaction
PI3-K phosphatidylinositol 3-kinase
PMSF phenylmethylsulfonyl fluoride
PTEN phosphatase and tensin homolog deleted from chromosome 10
RAF v-raf murine leukemia viral oncogene homolog
RAS rat sarcoma
RNA ribonucleic acid
RNase ribonuclease
rpm rounds per minute
RRM RNA recognition motif
RT reverse transcriptase
SDS sodium dodecyl sulfate
s second
SEM standard error of mean
siRNA short interfering RNA
SREBP trans-unsaturated fatty acids activate sterol regulatory binding protein
STAT signal transducer and activator of transcription
TBE tris-boric acid-EDTA buffer
TE tris-EDTA buffer
tg transgenic
TGF-\(\beta\) Transforming growth factor beta
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor alpha</td>
</tr>
<tr>
<td>Tris</td>
<td>α,α,α-tris-(hydroxymethyl)-methylamine</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>[v/v]</td>
<td>volume per volume</td>
</tr>
<tr>
<td>[w/v]</td>
<td>weight per volume</td>
</tr>
<tr>
<td>xg</td>
<td>fold gravitational force</td>
</tr>
</tbody>
</table>
Abstract

Hepatocellular carcinoma (HCC) represents the fifth most common cancer worldwide. The overall survival of patients with HCC is low due to both late diagnosis and the lack of efficient systemic treatment options. Autoantigens are considered as possible diagnostic markers for several types of cancer. Aim of this work was to characterize functional implications of p62/IMP2-2, an insulin-like growth factor 2 (IGF2) mRNA binding protein and autoantigen in HCC, in liver pathogenesis. In transgenic mice expressing p62 only in the liver, levels of both Igf2 mRNA and H19, a non-coding RNA with which it shares an imprinting control region, were strongly elevated. Interestingly, although elevated p62 levels in human HCC tissues correlated with Igf2 expression, the observed antiapoptotic effect of p62 was IGF2-independent, but rather facilitated via extracellular regulated kinase (ERK) activation. p62 attenuated the expression on the tumor suppressor phosphatase and tensin homolog (PTEN), increased the levels of inflammatory cytokines, and altered hepatic fatty acid composition. Taken together, this work provides evidence for p62 being a new interesting target for both diagnostic and therapeutic options in HCC.
Zusammenfassung

1 Introduction
1.1 Hepatocellular carcinoma
The incidence of primary liver cancers including hepatocellular carcinoma (HCC) has dramatically increased in the last years. HCC is one of the most lethal types of cancer and represents the fifth most common solid tumor in the world (Sherman, 2005). Although most HCC cases occur in Asian and African countries (Duvoux, 1998) due to a higher prevalence of hepatitis C virus (HCV) and hepatitis B virus (HBV) (Bosch et al., 2004; McGlynn et al., 2001), incidence of and mortality from HCC are rising also in most industrialized countries including Germany (figure 1).

![Graph showing incidence of liver cancer in Germany](image)

Figure 1: Incidence of liver cancer in Germany (Krebsregister Saarland)

1.1.1 HCC as a complication of non-alcoholic steatohepatitis (NASH)
Alcohol intake induces a fatty liver by various mechanisms, which alter the balance between delivery and removal of fatty acids: enhanced esterification of fatty acids due to higher hepatic levels of glycerol 3-phosphate, increased levels of free fatty acids, enhanced lipolysis because of a direct stimulatory effect on the adrenal and pituitary axis, inhibition of fatty acid oxidation in the liver, and the release of very low-density lipoprotein (VLDL) (Purohit et al., 2009). Nonalcoholic fatty liver disease (NAFLD) was first identified in patients after long-term treatment with glucocorticoids (Itoh et al., 1977). NAFLD is a chronic liver disease characterized by the histological features of steatohepatitis in the absence of alcohol consumption. Simple steatosis generally follows a benign course (Page and Harrison, 2009). NAFLD, commonly occurring in obese patients, can result in cirrhosis and HCC when associated with
necrosis and inflammation. The disease is then referred to as NASH (Matteoni et al., 1999). The prevalence of NAFLD is 10-25% in western countries (Farrell and Larter, 2006) and more than one third of the adult population of the United States of America suffers from a fatty liver (Browning et al., 2004). Approximately 70% of obese patients, i.e. patients with a body mass index > 30 kg/m², develop some kind of a fatty liver disease (Neuschwander-Tetri and Caldwell, 2003).

The progression from NAFLD to NASH might be explained by the 'two hit' hypothesis, which proposes that steatosis is the first hit resulting in a higher susceptibility of the liver to subsequent hits, such as inflammation, lipid peroxidation, and the generation of reactive oxygen species (McAvoy et al., 2006).

Development of NASH

Several different factors, including environmental as well as genetic conditions associated with obesity and type 2 diabetes, have been reported to promote fat accumulation in the human liver (Koutsari and Lazaridis). Hepatic steatosis is defined as liver fat in more than 5% of hepatocytes (Tsochatzis et al., 2009), the mechanisms involved influence fatty acid metabolism. There are different sources of fatty acids in the liver, which contribute to the pathophysiology of NAFLD (Donnelly et al., 2005). Interestingly, the fatty acid pattern may be more important than the total amount (Cortez-Pinto et al., 2006). Saturated and trans-unsaturated fatty acids activate sterol regulatory binding protein (SREBP)-1c, which is involved in lipogenesis and triglyceride synthesis (Biddinger et al., 2005). In fact, overexpression of a dominant-positive SREBP-1 in transgenic mice is associated with severe hepatic steatosis (Shimano et al., 1996), whereas SREBP-1 knockout mice are resistant to fatty liver development (Yahagi et al., 2002).

Accumulation of free fatty acids in the liver can result in inflammation by activating nuclear factor kappa B (NF-κB), which subsequently increases cytokine levels, e.g. of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL6) (Arkan et al., 2005; Cai et al., 2005; Feldstein et al., 2004). Studies with patients suffering from NASH have shown increased cytokine gene expression in hepatic tissue as well as in peripheral fat (Crespo et al., 2001). Additionally, lipids in hepatocytes are able to activate c-Jun N-terminal kinase (JNK)/activator protein-1 (Malhi et al., 2006), which also play an
important role in inflammation (Shoelson et al., 2006). Therefore, steatosis can lead to the development of NASH via an establishment of chronic inflammation (figure 2).

Progression to HCC

Patients with a chronic HCV infection combined with a fatty liver carry a higher risk for the development of HCC than those suffering from only one of these diseases (Pekow et al., 2007). In fact, also a rodent model recently gave evidence for the progression from NASH to cirrhosis and HCC (de Lima et al., 2008). The NF-κB pathway, which is already activated in NASH, also plays an important role in carcinogenesis (Pikarsky et al., 2004). Furthermore, the accumulation of free fatty acids leads to an excess of reactive oxygen species (ROS), which can cause DNA damage and therefore malignancy (Stickel and Hellerbrand, 2010). Activated lipogenic pathways correlate with poor prognosis in HCC (Yamashita et al., 2009). Moreover, insulin resistance and subsequent hyperinsulinemia activate the PI3-K/AKT pathway often altered in HCC (Stickel and Hellerbrand, 2010). Other gene alterations and signaling pathways implicated in HCC, such as p53, Wnt, TGF-β, MAPK, can also trigger the progression from NASH to cirrhosis and HCC (figure 2).
1.2 Insulin-like growth factor 2-mRNA binding protein p62

p62 is a member of the family of insulin-like growth factor II (IGF2)-mRNA binding proteins (IMPs). It represents a splice variant of IMP2 lacking exon 10 of the IMP2 gene. p62/IMP2-2 was originally identified in 1999 as an autoantigen in an HCC patient (Zhang et al., 1999). In the following years, p62 was demonstrated to be overexpressed in HCC in about one third to two thirds of patients with HCC (Lu et al., 2001; Qian et al., 2005; Zhang et al., 1999). Interestingly, p62 was shown to be also expressed in α-fetoprotein negative HCC as well as in cirrhotic nodules (Lu et al., 2001).

IMPs are mRNA binding proteins, whose functions are only marginally described. Known IMP functions include effects on mRNA stability, translatability, localization,
and transport (Hansen et al., 2004; Nielsen et al., 1999; Runge et al., 2000). IMPs have been regarded as oncofetal, but some reports also suggest postnatal expression (Hansen et al., 2004; Mori et al., 2001; Wang et al., 2003), especially for IMP2 (Hammer et al., 2005).

The IMP2 gene is located on chromosome 3 q27.2 and is encoded by 16 exons. RNA binding proteins contain one or more RNA-binding motifs. IMPs show a characteristic pattern of two RNA recognition motifs (RRM-1 and -2) and four hnRNP K homology domains (KH1-4) (figure 3), which might bind to a putative 5'UTR binding motif of the IGFII-leader 3 mRNA (Nielsen et al., 1999). Compared to IMP2 p62 lacks 43 amino acids between KH2 and KH3 (figure 3), but as IMP2 p62 is able to form homodimers (Nielsen et al., 2004). Interestingly, the KH4 domain of IMP1 and -2 was demonstrated to be important for modulating human immunodeficiency virus type 1-RNA expression (Zhou et al., 2009). Although the structures of the KH domains and the two RRM domains are conserved within in the IMP family, they may have different RNA sequence preference and binding affinity (Chao et al., 2010).

![Figure 3: Structure of the IMP2 protein (Christiansen et al., 2009)](image)

The splice variant p62 lacks exon 10 between KH2 and KH3 of IMP2 gene.

Recent reports suggest the family member IMP3 as a prognostic marker for malignancy and poor prognosis in several tumors (Hutchinson, 2010) including HCC (Jeng et al., 2008a; Jeng et al., 2008b). p62 has been shown to be overexpressed not only in HCC but also in other digestive tumors and surrounding tissues (Su et al., 2005). In a mouse model with p62 transgenic animals expressing the transgene exclusively in the liver, 66% of female and 44% of male mice develop a fatty liver phenotype (Tybl et al., 2011), suggesting a critical role for p62 in liver disease.
1.3 Imprinted genes

The human chromosome 11p15.5 contains a cluster of imprinted genes including the insulin-like growth factor 2 (IGF2) and the non-translated H19 RNA. The IGF2 gene is localized only 90 kb upstream of the H19 gene and both genes are reciprocally expressed: IGF2 is encoded by the paternal (Giannoukakis et al., 1993) and H19 by the maternal allele (Rachmilewitz et al., 1992). In mice the Igf2/H19 locus is located on chromosome 7 and similarly imprinted. The promoters of both genes use the same enhancers (Leighton et al., 1995). In a small subset of tissues of mesodermal and neural crest origin an additional enhancer region at the centrally conserved domain (CCD) was observed to drive expression of Igf2 (Charalambous et al., 2004).

Imprinting of Igf2 on the maternal allele is achieved by the insulator factor CTCF, which can bind to the unmethylated imprinting control region (ICR) and therefore block enhancer access to the Igf2 promoter (figure 4). The ICR displays a 42 bp sequence that is highly homologous between human and mouse (Frevel et al., 1999). In order to block the enhancer access, the ICR interacts with a matrix attachment region and the DMR1 or DMR2 at the Igf2 locus to generate a tight loop around the Igf2 gene, cutting off Igf2 expression (Kurukuti et al., 2006). On the paternal allele methylation of CpGs within the CTCF-binding sites eliminates binding of the insulator, thereby allowing Igf2 gene transcription (Bell and Felsenfeld, 2000) (figure 4). Deletion of a cis-acting silencing element in the ICR results in the relaxation of H19 silencing after paternal inheritance, without disrupting expression of Igf2 (Drewell et al., 2000) (figure 4).

![Imprinting mechanisms at the H19/Igf2 locus](Gabory et al., 2006b)
Loss of imprinting (LOI) is believed to be caused by *de novo* methylation of the differential methylated region (DMR), which controls the expression of *Igf2* and *H19* (Xu et al., 2006). Deletion of the DMD/ICR can be regarded as an epigenetic alteration, which leads to biallelic expression of *Igf2* and silencing of the *H19* gene (Thorvaldsen et al., 1998).

Interestingly, both *H19* and *IGF2* have been shown to encode microRNAs of as yet largely unknown function (Cai and Cullen, 2007; Landgraf et al., 2007).

1.3.1 Insulin-like growth factor (IGF) 2

IGF2 is an autocrine/paracrine growth factor which is only expressed in the embryonic and neonate state in most tissues. IGF2 expression dramatically decreases after birth (Takeda et al., 1996). The 67 amino acid peptide belongs to the insulin-like growth factor family and is encoded by nine exons (Schofield et al., 1991). *Igf2* was shown to be tumorigenic in mice and is highly overexpressed in subsets of different human tumors including HCC (Cariani et al., 1988a; Lu et al., 2005; Thorgeirsson and Grisham, 2002). In addition, a loss of imprinting (LOI) was demonstrated in several tumors (Cruz-Correa et al., 2004; Cui et al., 2003; Nonomura et al., 1997b; Rainier et al., 1993; Steenman et al., 1994) including hepatoblastoma (Rainier et al., 1995). Overexpression of IGF2 in HCC is associated with re-expression of the fetal pattern of IGF2 transcripts in HCC, i.e. through activation of the fetal promoters P2–P4 (Uchida et al., 1997) and loss of activity of the adult promoter P1 (Li et al., 1997). Hypomethylation at the *IGF2* locus in the liver might be predictive for HCC occurrence in HCV cirrhosis (Couvert et al., 2008). Overexpression of the DNA methyltransferases (DNMT) DNMT1 and DNMT3a, DNA hypermethylation on CpG islands, and DNA hypomethylation on pericentromeric satellite regions are early events during hepatocarcinogenesis (Lin et al., 2001; Saito et al., 2001). In contrast to the data mentioned above, it was also demonstrated that LOI of *Igf2* in mouse hepatic tumor cells is not necessarily linked to abnormal methylation in the *Igf2* locus (Ishizaki et al., 2003).

Circulating IGF2 protein and mRNA might be utilized as molecular markers for HCC differential diagnosis and metastasis (Qian et al.). IGF2 binds to the IGF-1 receptor, which activates mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K) signalling (Sepp-Lorenzino, 1998; Zhang et al., 2000), two pathways
Introduction

often altered in tumorigenesis. The mechanism by which PI3-K protects cells from apoptosis involves a downstream activation of the protein kinase AKT. AKT in turn has several downstream targets, which mediate cell survival, such as the Bcl-2 family member BAD leading to the release of anti-apoptotic Bcl-2 (Datta et al., 1997). AKT also phosphorylates and thereby inactivates the death protease caspase-9 (Cardone et al., 1998). Increased proliferation after AKT activation is mediated by phosphorylation of glycogen synthase kinase-3 (GSK-3), which is involved in cell cycle regulation (Diehl et al., 1998).

1.3.2 The non-coding RNA H19

The H19 gene encodes a 2.3-kb non-coding mRNA which is only expressed during embryogenesis and in cancerous tissue (Brannan et al., 1990; Gabory et al., 2006b). After birth H19, like IGF2, is strongly down-regulated in all tissues with the exception of skeletal muscle, in which H19 continues to be expressed (Weber et al., 2001).

Presently the biological functions of H19 remain elusive. H19 has been described to influence growth by means of a cis control on Igf2 expression, which is suggested to interfere with post-transcriptional regulation or translation of the Igf2 mRNA (Gabory et al., 2006b; Vernucci et al., 2000). Several studies imply H19 being a tumor suppressor gene (Hao et al., 1993; Juan et al., 2000), whereas expression of H19 has also been reported to be increased in different tumors and during hepatocarcinogenesis (Yvonne P. Dragan, 2004). Furthermore, biallelic expression of H19 has been shown for several tumors (Nonomura et al., 1997a; Rachmilewitz et al., 1992), especially HCC (Kim and Lee, 1997; Matouk et al., 2007). It is as yet unknown, however, whether H19 plays an active role in tumorigenesis or whether its expression is induced secondary to tumorigenesis. In fact, H19 might even antagonize tumor development (Gabory et al., 2006a). Taken together, the role of the H19 RNA in tumorigenesis still remains unclear.
1.4 The phosphatase and tensin homolog deleted from chromosome 10

The phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is located on human chromosome 10q23, a genomic region that suffers from loss of heterozygosity (LOH) in many human cancers (Cantley and Neel, 1999). PTEN is a lipid phosphatase that removes the phosphate from the D3 position of phosphatidylinositol 3,4,5-triphosphate (PIP3) (Maehama and Dixon, 1998). Phosphatidylinositol (PI) is a membrane phospholipid that can be phosphorylated at the 3, 4 and 5 position of the inositol ring to produce PI-3/4/5-phosphate, PI-3,4/3,5-biphosphate, PI-4,5-biphosphate (PIP2), and PI-3,4,5-triphosphate (PIP3) (Bunney and Katan). PIP3 recruits the serine/threonine kinase AKT to the plasma membrane, where it is phosphorylated by a variety of activators, such as the mammalian target of rapamycin, integrin-linked kinase, and 3-phosphoinositide–dependent protein kinase 1 (Persad et al., 2000). By dephosphorylating PIP3 to PIP2 PTEN directly antagonizes the action of the phosphatidylinositol 3-kinases (PI3-K) (Stambolic et al., 1998). This accentuates PTEN as a critical negative regulator of the ubiquitous PI3-K/AKT pathway that transduces signals regulating growth, proliferation and survival (Vivanco and Sawyers, 2002). Therefore, PTEN represents a tumor suppressor gene.

PTEN can also act independent of PI3-K/AKT: PTEN was reported to differentially block cell cycle progression through down-regulation of the positive cell cycle regulator cyclin D1 by its protein phosphatase activity, and up-regulating the negative cell cycle regulator p27 by its lipid phosphatase activity (Weng et al., 2001). Interestingly, PTEN also improves protein stability of another tumor suppressor gene, p53, and regulates the transcriptional activity of p53 by modulating its DNA binding (Freeman et al., 2003).

Epigenetic PTEN silencing by hypermethylation of its promoter has been suggested as a potential mechanism contributing to PTEN downregulation in several forms of cancer, including HCC (Tamguney and Stokoe, 2007). Weak expression or mutations/deletions of PTEN, as well as upregulation of microRNAs specifically targeting PTEN for degradation, are frequently observed in human HCC (Dong-Dong et al., 2003; Meng et al., 2007; Yao et al., 1999). Genetic inhibition of PTEN expression, specifically in the liver of rodents, was shown to trigger liver steatosis and steatohepatitis at early stages of development, as well as hepatomegaly and HCC in
Later life (Di Cristofano et al., 1998; Horie et al., 2004; Stiles et al., 2004). Loss of a PTEN allele was identified in 20-30% of patients with HCC (Fujiwara et al., 2000; Kawamura et al., 1999). Reactive oxygen species and carbonyl species can inhibit PTEN protein function via alkylation, which represents a link between persistent inflammation and cancer (Covey et al.).

1.5 Extracellular-activated kinases (ERKs)

The RAF/mitogen extracellular protein kinase (MEK)/ERK pathway regulates cellular processes, including proliferation, differentiation, angiogenesis, and survival (Gollob et al., 2006). Importantly, the activation of components of this pathway is believed to contribute to tumorigenesis, tumor progression, and metastasis in a variety of solid tumors (Leicht et al., 2007).

Activation of the RAF/MEK/ERK pathway triggers a cascade of specific phosphorylation events (Avila et al., 2006). Within this cascade, the small GTPase RAS and the serine/threonine kinase RAF are the key signal regulators (Avila et al., 2006). RAS, stimulated by growth factors or cytokines, binds to RAF and conveys it to the plasma membrane (Jelinek et al., 1996; Morrison and Cutler, 1997), where MEK1 and MEK2 get phosphorylated (Seger et al., 1992) (figure 5). MEK1/2 consist of an amino-terminal negative regulatory domain and a carboxy-terminal mitogen-activated protein kinase (MAPK)-binding domain, which are necessary for binding and activation of ERKs due to phosphorylation (Creys and Erikson, 1992) (figure 5).

These 44 and 42 kDa proteins (ERK1/2) were originally isolated due to their ability to phosphorylate microtubule-associated protein 2 (Sturgill and Ray, 1986). Phosphorylated ERK translocates into the nucleus and interacts with various transcription factors, such as CREB, AP-1, Ets, and c-Myc (Chang et al., 2003). ERK1/2 also regulate cytoskeletal proteins, other kinases, and phosphatases (Kolch et al., 2002).
It has been shown that the RAF/MEK/ERK pathway is activated in many malignant tumors, including HCC (Hoshino et al., 1999; Schmidt et al., 1997; Schmitz et al., 2008). Activation of this pathway is often established due to mutations in one of the three isoforms of the RAF gene: A-RAF, B-RAF and C-RAF. B-RAF mutations have been detected in 70% of melanomas, 30% of thyroid cancers, 15% of colon cancers, and in several other cancer types (Emuss et al., 2005; Mercer et al., 2005; Wellbrock et al., 2004). Thereby, a single amino acid substitution accounts for up to 90% of the mutations. This mutation results \textit{in vivo} in a constitutive activation of RAF downstream targets MEK and ERK (Davies et al., 2002; Wellbrock et al., 2004). In HCC, mutations within the B-RAF gene are extremely rare (Tannapfel et al., 2003).

As a second mechanism C-RAF has been found to be overexpressed in a variety of primary human cancers, such as lung, liver, prostate, primitive neuroectodermal tumors, myeloid leukemia and head and neck squamous cell carcinoma (Hwang et
al., 2004) due to dysregulated overexpression of growth factors and their receptors (Gollob et al., 2006).

Hwang et al. observed an up-regulation of C-RAF-1, MEK, and MAPK in 40%, 80%, and 86.7% of 45 cirrhosis specimens, respectively. In 22 HCC samples, 50%, 63.6%, and 59.1% showed an up-regulation of C-RAF-1, MEK, and MAPK, respectively. Western blot analysis showed that activated RAF-1 was overexpressed in 91.2% (52/57) of cirrhosis and in 100% (30/30) of hepatocellular carcinoma tissues (Hwang et al., 2004). Furthermore, an immunohistochemical evaluation of tissue samples revealed an approximately seven-fold increase in MEK1/2 phosphorylation in HCC tissues compared to adjacent benign liver tissues (Huynh et al., 2003). Other studies have shown an increase in ERK phosphorylation compared to surrounding liver tissue (Feng et al., 2001; Ito et al., 1998; McKillop et al., 1997).

Additionally, the phosphatidylethanolamine binding protein 1 (RKIP) and the Sprouty/Spred proteins, both negative regulators of MAPK, are downregulated in HCC, resulting in an excessive activation of the MAPK pathway (Schuierer et al., 2006; Yoshida et al., 2006). RKIP expression alters cell proliferation and cell migration in HCC cell lines (Lee et al., 2006).

MAPK/ERK activity was also shown to correlate positively with tumor size in human HCC tissue samples (Ito et al., 1998). A more recent study of 208 HCC samples reports ERK1/2 activation to be associated with poor prognosis (Schmitz et al., 2008). Moreover, activation of the RAF/MEK/ERK pathway confers a chemoresistant phenotype and induces rapid tumor cell proliferation. Interruption of this cascade may increase drug sensitivity and promote apoptosis (Dent and Grant, 2001; Weinstein-Oppenheimer et al., 2001).

Importantly, RAS also has a regulatory role in other signaling pathways, e.g. the PI3-K/AKT pathway and the phospholipase C/protein kinase C pathway (Harden and Sondek, 2006; To et al., 2005). Furthermore, ERK mediates STAT activity, indicating a point of interaction between the RAF/MEK/ERK and JAK/STAT pathways (Winston and Hunter, 1995).
1.6 Aim of the present work

IMPs have been reported to be overexpressed in various types of cancer. Still, very few is known about cellular mechanisms of action of IMPs, especially p62. p62 has been identified as an autoantigen in HCC. The potential involvement in hepatocarcinogenesis and molecular mechanisms involved, however, are as yet poorly understood.

Aim of the present work was to elucidate the role of p62 in liver disease, especially HCC.

Concerning the characterization of p62 and its role in HCC the following aspects were investigated:

1) Effects of p62 on metabolism and inflammation
2) Anti-apoptotic action of p62
3) Role of H19 in HCC
2 Materials and Methods
2.1 Materials
Cell media, fetal calf serum (FCS), penicillin, streptomycin and glutamine were purchased from PAA (Cölbe, Germany). Doxorubicin, PI3K-inhibitors (Ly294002, wortmannin) and ERK-inhibitors (PD98059, U126) were obtained from Sigma-Aldrich (Taufkirchen, Germany), dissolved in DMSO under sterile conditions at a stock concentration of 50 mg/ml and 1 mg/ml, respectively, aliquoted and stored according to the manufacturer’s guidelines. IGF2-antibody was purchased from Abcam (Cambridge, United Kingdom), aliquoted and stored at -20°C. siRNA targeting p62 mRNA (Hs-IMP-2_2_HP siRNA) was purchased from Qiagen (Hilden, Germany), control siRNA (siGENOME) was from Dharmacon (Nidderau, Germany). Both siRNAs were diluted in siRNA buffer as recommended by the supplier. INTERFERIN™ and jetPEI™-Hepatocyte were obtained from peqlab (Erlangen, Germany). Real-Time RT-PCR primers, standard PCR primers and dual-labelled probes were obtained from Eurofins MWG Operon (Ebersberg, Germany). Taq-Polymerase (5 U/µl), 10 x Taq buffer and the dNTP mix (containing dATP, dCTP, dGTP and dTTP at a concentration of 10 mM, each) were from Genscript (Piscataway, NJ, USA). Restriction enzymes Apal (ER1411) and AluI (ER0011) were purchased from Fermentas (St. Leon-Rot, Germany). Rabbit anti-phosphoAKT antibody (#9271), anti-phosphoERK1/2 (#4376), anti-ERK1/2 (#4696), anti-PTEN (#9552) were obtained from Cell Signaling Technology (Danvers, MA, USA), anti-\(\text{IκB}\alpha\) (sc-371) was from Santa Cruz Biotechnology (Heidelberg, Germany). Mouse anti-tubulin (T9026) was purchased from Sigma-Aldrich (Tauflichen, Germany). IRDye 680 or IRDye 800 conjugated antibodies (anti-mouse #926-32220, anti-rabbit #926-32221) were obtained from Licor Biosciences (Bad Homburg, Germany). 7-Amino-4-trifluoro-methylcoumarin (AFC) was purchased from Sigma-Aldrich (Taufkirchen, Germany), Ac-Asp-Glu-Val-Asp-AFC (Ac-DEVD-AFC) was from Alexis Biochemicals (Lörrach, Germany).

All other chemicals were purchased either from Sigma-Aldrich or Roth unless marked otherwise.
2.2 Mice

2.2.1 Animal welfare
Mice were kept under controlled conditions in terms of temperature, humidity, 12 h day/night rhythm and food delivery. Animals were 2.5 and 5 weeks of age when experiments were performed. All animal procedures were performed in accordance with the local animal welfare committee.

2.2.2 Generation of p62 transgenic animals
In the DBA2J p62 transgenic mice the p62 expression is repressed by the TRE-CMV promoter. For experiments animals were crossed with C57BL/6 LT2 mice, which carry a transactivator (Kistner et al., 1996), leading to a depression of the promoter, thereby allowing p62 expression in the p62+/LT2+ offspring (Tybl et al., 2011).

For SNuPE analysis, homozygous SD7 mice carrying the Mus spretus allele on chromosome 7 (courtesy provided by Prof. Dr. Jörn Walter, Institute of Genetics, Saarland University), were crossed with LT2 mice to produce reciprocal progeny (LT2 x Mus spretus) (Lewis et al., 2004). F1 hybrids were mated to homozygous SD7 to produce heterozygous F2 offspring. For imprinting studies, p62 transgenic mice were mated with F2 hybrids. Mice carrying no p62 transgene but the heterozygous LT2/SD7 background served as control.

The offspring carried single nucleotide primer polymorphisms (SNPs) for IGF2 and H19 on chromosome 7.

2.2.3 Genotyping
For genotyping of mice, an ear biopsy was taken and incubated in 89 µl water premixed with 10 µl 10x Taq buffer and 1 µl Proteinase K (20 mg/ml) at 55°C for several hours while shaking. After total lysis of the tissue Proteinase K was heat-inactivated at 95°C for 15 min. 1 µl of the supernatant was used in the PCR reaction.
Materials and Methods

Table 1: Primer sequences as used for genotyping PCR.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>primer sense, 5'→3'</th>
<th>primer antisense, 5'→3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>p62</td>
<td>CATCAAAACAGCTGGGCGAGAT</td>
<td>GTGCCCGATAATTCTGACGA</td>
</tr>
<tr>
<td>LT2</td>
<td>CTTATGAGGTCGGAATCGA</td>
<td>GCTTGTCGTAATAATGGCAGG</td>
</tr>
<tr>
<td>D7Mit140</td>
<td>GGAAGTTGTCGGACCTTTAGG</td>
<td>CCTCTTCTGGCCTGTGAGGG</td>
</tr>
<tr>
<td>D7Mit12</td>
<td>GCTGGGTTTATTCATTGAAA</td>
<td>TCCAGCTCAGGGTAAAGA</td>
</tr>
</tbody>
</table>

Reaction mixture

- *Taq*-Polymerase 2.5 U
- dNTPs 125 µM
- 10 x Taq-buffer 2.0 µl
- primers (10 µM, each) 400 nM
- template 1 µl
- H₂O ad 20 µl

Conditions

- denaturation 5 min 95°C
- denaturation 30 s 95°C
- annealing 30 s 56°C
- elongation 30 s 72°C
- final elongation 5 min 72°C

\[\text{35 cycles}\]
2.2.4 Treatment
Mice were injected intraperitoneally with 100 µg diethylnitrosamine (DEN) diluted in saline. 48 h after injection, mice were sacrificed and serum and livers were removed for experiments.

2.2.5 Serum parameters
Mice were killed by cervical dislocation at the age of 48 h after treatment for blood sampling. To obtain serum, whole blood was centrifuged for 10 min at 4,000 rpm before the supernatant was transferred into a fresh tube, diluted with 0.9% NaCl, stored at -20°C and transported at 4°C until measurement.

All samples were measured in a PPE Modular analyser using Roche® reagents at a constant temperature of 37°C (Roche Diagnostics, Mannheim, Germany). Measurement was performed at the “Zentrallabor des Universitätsklinikums des Saarlandes” (Homburg, Germany).

2.3 Cell culture
2.3.1 Cell lines
HepG2, HUH-7 and PLC/PRF/5 ‘Alexander’ cells

Cells were cultivated in RPMI-1640 supplemented with 10% [v/v] FCS, 1% [v/v] glutamine and 1% [v/v] penicillin/streptomycin at 37°C and 5% CO2 in a cell incubator (Hepa Class 100, Thermo Electron Corporation, Germany). Upon reaching confluence, cells were washed with PBS and detached from culture flasks by treatment with trypsin/EDTA solution (PAA). After 2-3 min, digestion was stopped with RPMI-1640 containing 10% FCS [v/v], penicillin (100 U/ml), and streptomycin (100 µg/ml). The suspension was centrifuged and resuspended in RPMI 1640 medium with 10% FCS, 1% glutamine [v/v] and 1% penicillin/streptomycin [v/v] and appropriate aliquots of the cell suspension were added to new culture vessels.
Freezing and thawing of cells

For freezing, cell suspensions were washed with PBS and cells were resuspended in ice cold freezing medium (70% [v/v] RPMI 1640, 20% [v/v] FCS, 10% [v/v] DMSO). After cells were transferred into cryovials, they were stored at -80°C for 1 d and afterwards in liquid nitrogen.

To minimize the cytotoxic effects of DMSO, cells were rapidly thawed for 2 or 3 min at 37°C and instantly transferred into the respective pre-warmed cell growth medium.

2.3.2 Determination of cell viability
Viable cell counts were assessed using a hemocytometer and trypan blue (0.5% [v/v] in PBS) exclusion.

Additionally, MTT assays were performed in order to determine potential cytotoxic effects of cell treatment. Cells were seeded at a density of 1x10^4 cells per well in a 96-well plate and treated as indicated. Afterwards, cells were washed and 200 µl medium containing MTT (0.5 µg/ml) were added for 2 h. After medium was removed, cells were lysed and the water-insoluble purple formazan was solubilized by the addition of 80 µl DMSO. Absorbance was detected at a wavelength of 550 nm using a Sunrise absorbance reader (Tecan).

2.3.3 Detection of mycoplasma
To exclude contamination with mycoplasma, cell lines were tested using the Venor®GeM-Mycoplasma Detection Kit (#11-1025, Minerva Biolabs, Berlin), a PCR-based test with a detection limit of 1-5 fg mycoplasma DNA. The test was performed according to the manufacturer’s instructions.
2.4 Bacterial culture

The following *Escherichia coli* (*E.coli*) strains were used as host organisms for plasmid amplification:

- XL1 Blue (Stratagene), genotype *endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F’[:Tn10 proAB+ lacF Δ(lacZ)M15] hsdR17(rK- mK*)

- TOP10 (Invitrogen), genotype *F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ−*

Bacteria were grown in Luria-Bertani (LB; 10% tryptone [w/v], 5% yeast extract [w/v], 5% [w/v] NaCl, diluted in H₂O, pH 7.5) medium supplemented with ampicillin (100 µg/ml). For selection of single clones, LBamp agar (30% [w/v] agar in LB containing ampicillin) plates were used.

2.4.1 Generation of competent *E.coli*

Competent *E.coli* were generated using the CaCl₂ method. Briefly, 100 ml of an overnight culture (OD₆₅₀ = 0.4) were incubated on ice for 30 min, centrifuged (2,000 x g, 5 min, 4°C) and resuspended in 2.5 ml ice cold CaCl₂ solution containing 75 mM CaCl₂ and 15% glycerol. Another 20 ml ice cold CaCl₂ were added, and the mixture was incubated on ice for 20 min. Cells were obtained by centrifugation (2,000 x g, 5 min, 4°C), resuspended in 2.5 ml CaCl₂, aliquoted and stored at -80°C.

2.4.2 Transformation

Transformation was carried out by adding 50-150 ng plasmid DNA to 100 µl competent bacteria. After incubation on ice for 20 min, bacteria were heat-shocked for 2 min at 42°C and 900 µl prewarmed LB were added, followed by incubation at 37°C for 1.5 h. 100 µl of the suspension were plated on LBamp plates and incubated at 37°C and 5% CO₂ over night.
2.5 Plasmid generation

2.5.1 Vectors for mammalian cell transfections
GFP Fusion TOPO® TA Expression vector

For protein overexpression the open reading frame of the p62 transcript amplified by PCR was cloned into the pcDNA3.1/CT-GFP-TOPO® (Invivogen, Toulouse, France) oriented in sense or antisense direction according to the manufacturer's instructions. After cloning, insert sequences were checked using the Eurofins MWG sequencing service.

Table 2: Primer sequences as used for amplification of the open reading frame of the p62 transcript.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>primer sense, 5' → 3'</th>
<th>primer antisense, 5' → 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>p62_ORF</td>
<td>GATGATGAACAAGCTTTACATCGG</td>
<td>CTTGCTGCGCTGTGAGGC</td>
</tr>
</tbody>
</table>

2.5.2 siRNA

The high-purity, full-length siRNA against p62 used in this work was purchased from Qiagen (Hilden, Germany). As a negative control, the random siRNA siGENOME non-targeting siRNA #2-5, targeting firefly luciferase (Dharmacon, Thermo Fisher Scientific, Karlsruhe, Germany) was used.

p62 siRNA: r(GGG UAG AUA UCC AUA GAA A)dTdT

2.5.3 Real-Time RT-PCR standard plasmids

Standards of the PCR product of the gene of interest were cloned into the pGEM-T Easy vector (Promega) according to the manufacturer's guidelines. Standard plasmids were provided by Prof. Dr. Alexandra K. Kiemer (Saarland University, Pharmaceutical Biology). See 2.9.2 for primer sequences.
2.6 Isolation of bacterial DNA

2.6.1 Plasmid purification
Plasmid DNA was isolated from overnight cultures by using the Mini or Midi plasmid isolation kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions.

2.6.2 Determination of DNA concentrations
DNA concentrations were determined by measuring the extinction of the DNA solutions at 260 nm, whereas an extinction of 1 equates a concentration of 50 µg/ml. The purity of the DNA preparations was checked by absorption measurement at 280 nm, the characteristic absorption maximum of aromatic amino acids. Measurements were done with a BioMate UV-Vis spectrophotometer (ThermoElectron, Schwerte, Germany).

2.7 Agarose gel electrophoresis

2.7.1 Detection of DNA
Depending on the DNA size, 0.5 – 2.5% [w/v] agarose gels containing 0.04% [v/v] ethidium bromide were used for DNA detection. Upon addition of a suitable volume of 6 x loading buffer (18% Ficoll, 0.5 M EDTA, 60 ml 10 x TBE, 0.04% bromphenol blue, 0.04% xylencyanol, H₂O ad 100 ml), DNA was loaded onto a gel and separated in TBE (89.1 mM Tris, 89.1 mM boric acid, 2.21 mM EDTA in H₂O) at 100 V. To determine the size of the DNA, a 50 bp ladder (Fermentas, St. Leon-Rot, Germany) or a 1 kb ladder (Invitrogen, Darmstadt, Germany) was used. Detection of the DNA bands was carried out using a UV transilluminator and the software ArgusX1 (Biostep, Jahnsdorf, Germany).

2.7.2 Detection of RNA
In contrast to DNA gels, RNA gels contained 1% fomaldehyde to ensure denaturation of the samples and were prepared with MOPS buffer (0.02 M 3-(N-morpholino)propanesulfonic acid (MOPS), 5 mM sodium acetate, 0.5 mM EDTA in DEPC-treated H₂O, pH 7) instead of TBE with 1% [w/v] agarose. Prior to loading
onto the gels, RNA was denatured at 65°C for 5 min in an appropriate volume of loading buffer (10 ml formamide, 3.5 ml formaldehyde, 1.5 ml 10 x MOPS). Samples were separated in MOPS buffer at 100 V and detected as described in 2.7.1.

2.8 RNA isolation and reverse transcription

2.8.1 RNA isolation
Total RNA was extracted in 500-1,000 µl QIAzol Lysis Reagent (#79306, Qiagen) using a micro grinder (Pellet Pestle® Motor, Kontes, Vineland, USA) for the murine liver tissue. After incubation for 5 min at room temperature, 125-250 µl chloroform were added. The mixture was vortexed (15 s), incubated at room temperature (2 min), and centrifuged (12,000 rpm, 15 min, 4°C). Supernatants were transferred to a new reaction tube and RNA was precipitated by addition of 1 volume of ice-cold isopropanol 100% at -20°C over night. For further processing, samples were centrifuged (12,000 rpm, 10 min, 4°C) and the resulting pellets were washed with ice-cold ethanol 70% (v/v), dried and dissolved in DEPC-H₂O. RNA integrity was checked using agarose gel electrophoresis.

From human paraffin embedded tissues RNA was isolated using RNaseasy FFPE Kit (Qiagen) was used according to the manufacturer’s instructions.

2.8.2 DNase digestion
RNA samples were digested with DNase to exclude contamination of genomic DNA. Therefore DNA free kit (#1906, Ambion) was used according to manufacturers’ guidelines.

2.8.3 Measurement of RNA concentrations
Photometric determination of RNA concentrations at 260 nm was carried out using a BioMate UV-Vis spectrophotometer (ThermoElectron). An extinction of 1 equates a concentration of 40 µg/ml.
2.8.4 Alu PCR
To confirm the absence of DNA in our RNA preparations, a PCR for Alu elements, which occur in large numbers throughout the human genome, was performed using the following primer: 5’-TCATGTCGACGCGAGACTCCATCTCTCAAA-3’.

Reaction mixture

- Taq-Polymerase 2.5 U
- dNTPs 800 µM
- 10 x Taq-buffer 2.5 µl
- MgCl₂ (50 mM) 5 mM
- primer (50 µM) 100 nM
- template 100 ng RNA
- H₂O ad 25 µl

5 ng THP-1 DNA (provided by Jessica Hoppstädter, Saarland University, Pharmaceutical Biology) served as a positive control.

The PCR was carried out in a Thermocycler PX2 (Px2 Thermal Cycler, Thermo Electron Corporation, Germany) using the following conditions:

- denaturation 5 min 94°C
- denaturation 1 min 94°C
- annealing 1 min 56°C
- elongation 1 min 72°C
- final elongation 10 min 72°C

30 cycles
Products were detected by agarose gel electrophoresis. RNA was considered to be DNA-free when no product was visible.

2.8.5 Reverse transcription

200 – 1,000 ng of RNA were denatured at 65°C for 5 min, placed on ice, and then reverse transcribed in a total volume of 20 µl using oligo-dT primers (5'-TTT TTT TTT TTT TTT-3') for human samples and random primers for murine samples using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Darmstadt, Germany) according to the manufacturer’s instructions. The resulting cDNA was diluted by addition of 80 µl water (AppliChem, Darmstadt, Germany) and used for real-time RT-PCR.

2.9 Restriction fragment length polymorphism

2.9.1 Genomic DNA Isolation and screening

Genomic DNA (gDNA) was isolated from paraffin-embedded tissues using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

Genomic DNA was amplified to screen liver tissue samples for heterozygosity at a known Apal polymorphism at the Igf2 gene (Tadokoro et al., 1991) and an AluI polymorphism at the H19 gene (Zhang and Tycko, 1992). If heterozygous and hence informative, cDNA was amplified to test for biallelic expression.

Table 3: Primer sequences as used for IGF2 and H19 PCR.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>primer sense, 5’→3’</th>
<th>primer antisense, 5’→3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF2</td>
<td>CTTGGACTTTTAGCTAAATGG</td>
<td>GGTCGTGCAATTACATTCA</td>
</tr>
<tr>
<td>H19</td>
<td>TACAACCAGTGCACCTCTG</td>
<td>TGGCCATGAAGATGGAGTCG</td>
</tr>
</tbody>
</table>
Materials and Methods

Reaction mixture for the IGF2 PCR

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq-polymerase</td>
<td>5 U</td>
</tr>
<tr>
<td>10 x Taq-buffer</td>
<td>2.5 µl</td>
</tr>
<tr>
<td>primer sense</td>
<td>400 nM</td>
</tr>
<tr>
<td>primer antisense</td>
<td>400 nM</td>
</tr>
<tr>
<td>dNTPs</td>
<td>125 µM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>3 mM</td>
</tr>
<tr>
<td>template</td>
<td>5 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 25 µl</td>
</tr>
</tbody>
</table>

Reaction mixture for the H19 PCR

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyNAmo Flash SYBR® Green Master mix</td>
<td>2.5 U</td>
</tr>
<tr>
<td>primer sense</td>
<td>400 nM</td>
</tr>
<tr>
<td>primer antisense</td>
<td>400 nM</td>
</tr>
<tr>
<td>template</td>
<td>5 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 25 µl</td>
</tr>
</tbody>
</table>

Conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Igf2:</td>
<td>H19:</td>
</tr>
<tr>
<td>denaturation</td>
<td>denaturation</td>
</tr>
<tr>
<td>5 min 94°C</td>
<td>1 min 94°C</td>
</tr>
<tr>
<td>denaturation</td>
<td>denaturation</td>
</tr>
<tr>
<td>1 min 94°C</td>
<td>1 min 94°C</td>
</tr>
<tr>
<td>annealing</td>
<td>annealing</td>
</tr>
<tr>
<td>1 min 64°C</td>
<td>40 cycles</td>
</tr>
<tr>
<td>elongation</td>
<td>elongation</td>
</tr>
<tr>
<td>1 min 72°C</td>
<td>cycles</td>
</tr>
<tr>
<td>final elongation</td>
<td>final elongation</td>
</tr>
<tr>
<td>5 min 72°C</td>
<td>8 min 72°C</td>
</tr>
</tbody>
</table>

Amplification was performed in a Thermal Cycler (Px2 Thermal Cycler, Thermo Electron Corporation, Schwerte, Germany).
2.9.2 Digestion with restriction enzymes

PCR products were digested for 2 h at 37°C with ApaI or AluI, respectively.

Reaction mixture

- PCR product 25 µl
- buffer 3 µl
- restriction enzyme 1 µl
- H₂O 3 µl

Detection of existence of polymorphisms and expression status was done by agarose gel electrophoresis as described in 2.7.1.

2.10 SNuPE analysis

Reaction mixture

- Taq-Polymerase 2.5 U
- 10 x Taq-buffer 3.0 µl
- primer sense 400 nM
- primer antisense 400 nM
- dNTPs 800 µM
- template cDNA 1.5 µl
- H₂O ad 30 µl

Conditions Igf2:

- denaturation 5 min 95°C
- denaturation 30 s 94°C
- annealing 1 min 60°C
- elongation 1 min 72°C
- final elongation 5 min 72°C

32 cycles
Materials and Methods

Conditions H19:

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturation</td>
<td>5 min</td>
<td>95°C</td>
</tr>
<tr>
<td>Denaturation</td>
<td>1 min</td>
<td>94°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>1 min</td>
<td>60°C</td>
</tr>
<tr>
<td>Elongation</td>
<td>30 s</td>
<td>72°C</td>
</tr>
</tbody>
</table>

35 cycles

Final elongation 5 min 72°C

Successful PCR was checked by loading 5 µl of the reaction on a 1.5% agarose gel.

The following experimental procedure was kindly performed by Dr. Sascha Tierling, Institute of Genetics, Saarland University (Tierling et al., 2006). SNuPE primers were placed immediately adjacent to the polymorphic sites (Igf2: C/T SNP at position nt 1678 of the mRNA, H19: C/T SNP at position nt 2437 of the mRNA). 5 µl of PCR products were purified using an Exonuclease I/SAP mix (1U/9U, USB) for 30 min at 37°C followed by a 15 min inactivation step at 80°C. 14 µl primer extension mastermix was added and SNuPE reaction was performed.

SNuPE conditions:

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturation</td>
<td>2 min</td>
<td>96°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>20 s</td>
<td>96°C</td>
</tr>
</tbody>
</table>

35 cycles

Elongation 2 min 60°C

Obtained products were loaded on a DNASep™ (Transgenomic) column and separated at 50°C applying an acetonitrile gradient. The allele-specific expression index was determined by measuring the peak heights.
2.11 Real-time RT-PCR

2.11.1 Primer and probe sequences

Table 4: Primer sequences as used for real-time RT PCR.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>primer sense, 5'→3'</th>
<th>primer antisense, 5'→3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu 18S</td>
<td>GCGCTTCTCTTTCCGCCA</td>
<td>AGCTCTCCGACACCTCTCTTT</td>
</tr>
<tr>
<td>mu cyclophilin</td>
<td>GGCGGATGACGAGCCC</td>
<td>TGTCTTTGGAATTTGTCTGC</td>
</tr>
<tr>
<td>mu H19</td>
<td>CAGAGGTGGATGGCTCTGCC</td>
<td>CGACCATGTCTGAATTTCTCTGT</td>
</tr>
<tr>
<td>mu Igf2</td>
<td>GGAAGTGGATGTGGATTTCT</td>
<td>CCAACAGCAACACTGAAGCGTG</td>
</tr>
<tr>
<td>mu Gilz</td>
<td>GGAGTGATTGTCTCCTTTAAA</td>
<td>ATGCCTGCTCAATCTTTGT</td>
</tr>
<tr>
<td>mu PTEN</td>
<td>GTGAGGGATCTGAGGAGGAG</td>
<td>CACCACGTTCACAGAGAAA</td>
</tr>
<tr>
<td>mu TNF-α</td>
<td>CCAGGGGAGAACAGAAAC</td>
<td>CCAGTGAGTAAAGGACAGA</td>
</tr>
<tr>
<td>mu IL6</td>
<td>CCTCTGGTCTTCTGAGATC</td>
<td>CTCTCTGAAGGACTCTTGCC</td>
</tr>
<tr>
<td>hu β-actin</td>
<td>TCGGCGACATTAAGGAGAAG</td>
<td>GTCAGGCAGCTGAGCTCTCT</td>
</tr>
<tr>
<td>hu p62</td>
<td>GTCAGGCTCTTTGCCTTTAT</td>
<td>GAATCTGCGCAAGCTTGGTA</td>
</tr>
<tr>
<td>hu H19</td>
<td>TCTCGGACTCAGCTTATTAC</td>
<td>CTGAGACTCAAGGGCTTGCT</td>
</tr>
<tr>
<td>hu IGF2</td>
<td>GGAATGGATCTCCTGGACCA</td>
<td>GAAAATCTCCCGTGAGAGG</td>
</tr>
<tr>
<td>hu PTEN</td>
<td>GCTGAAATTGTGCTACTAGCTG</td>
<td>GCTCTATCTTGGCAGATCA</td>
</tr>
<tr>
<td>hu GILZ</td>
<td>TCCTGTCGAGCCCTGAAGAG</td>
<td>AGCCACTTACACCAGCAAC</td>
</tr>
</tbody>
</table>

Table 5: Probe sequences as used for real-time RT-PCR.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>probe, 5' FAM → 3' BHQ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu 18S</td>
<td>CCACGCGCAACCCACGGCCCTGTG</td>
</tr>
<tr>
<td>mu cyclophilin</td>
<td>TGGGCGCGCTCCTCCTTGCA</td>
</tr>
<tr>
<td>mu Igf2</td>
<td>CCTCGCCTTGTGCTGATCCTGTGCT</td>
</tr>
<tr>
<td>mu H19</td>
<td>TCAGTGAGGCGGAGGACAGGTGTG</td>
</tr>
<tr>
<td>hu β-actin</td>
<td>CACGGCTGCTCCGAGCTCCTC</td>
</tr>
<tr>
<td>hu p62</td>
<td>TGTAATAGTTCTGAGAAGGCTG</td>
</tr>
<tr>
<td>hu GILZ</td>
<td>TCCTCGGACACCCAGAGCGT</td>
</tr>
</tbody>
</table>
2.11.2 Standard dilution series

In order to determine real-time RT-PCR efficiency and to quantify target mRNAs in a cDNA sample, standards from 10 to 0.0001 attomoles of the PCR product cloned into pGEM-T Easy were run alongside the samples to generate a standard curve. Plasmids were isolated as described in 2.6.1 and diluted in TE-buffer (AppliChem, Darmstadt, Germany). The required amount of plasmid DNA was calculated as follows:

\[
c (\text{target-DNA}) [\mu\text{mol/ml}] = \frac{c (\text{plasmid}) [\mu\text{g/ml}]}{\text{MW} \times l}
\]

with MW = molecular weight of the DNA (approx. 660 g/mol) and l = length of plasmid and insert in bp.

2.11.3 Experimental procedure

Real-time RT-PCR using dual-labelled probes

Reaction mixtures were assembled on ice and 20 µl of the mixture were added to 5 µl template cDNA or standard plasmid solution in a 96 well plate. dNTP, probe and MgCl₂ concentrations for each target gene are listed in table 6.

The iCycler iQ5 (Bio-Rad, München, Germany) was used for real-time RT-PCR. Primer and probe sequences are given in table 1 and 2. All samples and standards were analyzed in triplicate. The starting amount of cDNA in each sample was calculated using the iCycler iQ5 software package (Bio-Rad, München, Germany). Absolute mRNA amounts were normalized to mRNA levels or of human β-actin or murine 18S or cyclophilin, respectively.
Materials and Methods

Reaction mixture

- Taq-Polymerase: 2.5 U
- 10 x Taq-buffer: 2.5 µl
- primer sense: 400 nM
- primer antisense: 400 nM
- dNTPs: 125, 200 or 800 µM
- dual-labelled probe: 1.5 or 2.5 pmole
- MgCl₂: 3-5 mM
- template: 5 µl
- H₂O: ad 25 µl

Conditions

- denaturation: 8 min 95°C
- denaturation: 15 s 95°C
- annealing: 15 s 58-60°C (40 cycles)
- elongation: 15 s 72°C
- final elongation: 25 s 25°C

Target gene specific annealing temperatures are given in table 6.
Table 6: dNTP-, dual-labelled probe-, MgCl₂, and anning temperatures as used for real-time RT-PCR.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>dNTPs</th>
<th>probe</th>
<th>MgCl₂</th>
<th>annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu 18S</td>
<td>125 µM</td>
<td>2.5 pmole</td>
<td>3 mM</td>
<td>60 °C</td>
</tr>
<tr>
<td>mu p62</td>
<td>125 µM</td>
<td>2.5 pmole</td>
<td>5 mM</td>
<td>60 °C</td>
</tr>
<tr>
<td>mu Igf2</td>
<td>125 µM</td>
<td>1.5 pmole</td>
<td>4 mM</td>
<td>60 °C</td>
</tr>
<tr>
<td>mu H19</td>
<td>125 µM</td>
<td>2.5 pmole</td>
<td>3 mM</td>
<td>58 °C</td>
</tr>
<tr>
<td>mu cyclophilin</td>
<td>125 µM</td>
<td>1.5 pmole</td>
<td>3 mM</td>
<td>60°C</td>
</tr>
<tr>
<td>hu β-actin</td>
<td>800 µM</td>
<td>2.5 pmole</td>
<td>5 mM</td>
<td>58°C</td>
</tr>
<tr>
<td>hu p62</td>
<td>125 µM</td>
<td>1.5 pmole</td>
<td>5 mM</td>
<td>60°C</td>
</tr>
<tr>
<td>hu GILZ</td>
<td>200 µM</td>
<td>2.5 pmole</td>
<td>4 mM</td>
<td>60°C</td>
</tr>
</tbody>
</table>

Real-time RT-PCR using SYBR Green

For human β-actin, IGF2, H19, PTEN and murine PTEN, GILZ, IL6, TNF-α and 18S PCR, the Dynamo Flash SYBR Green qPCR kit (Finnzymes, Espoo, Finland) was used according to the manufacturer’s guidelines. The reaction conditions resembled those described above. An annealing temperature of 60°C was used for the human genes β-actin, IGF2, H19, PTEN and for the murine genes 18S, PTEN, GILZ and TNF-α. The annealing temperature for murine IL6 was set to 64°C. The starting cDNA quantity was calculated using the iCycler iQ5 software (Bio-Rad, München, Germany). Absolute mRNA amounts of the target gene were normalized to β-actin or 18S mRNA levels, respectively.
2.12 Western Blot analysis

2.12.1 Preparation of protein samples
Cells were lysed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% [v/v] Triton X-100, 0.5% [w/v] sodiumdeoxycholate, 0.1% [m/v] SDS, 1 mM EGTA, 25 mM NaF) supplemented with 1 mM sodiumorthovanadate, 1 mM PMSF and a protease inhibitor mixture (Complete®, Roche Diagnostics, Mannheim, Germany) according to the manufacturer's instructions. Murine liver tissue was disrupted using a high-performance disperser (T25 digital ULTRATURRAX®, IKA®-Werke, Staufen, Germany) and lysed accordingly. Subsequently, samples were centrifuged (10 min, 20,000 x g, 4°C) and supernatants were removed and stored at -80°C.

2.12.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Composition of 15% gels:

<table>
<thead>
<tr>
<th></th>
<th>resolving gel</th>
<th>stacking gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>4.6 ml</td>
<td>H2O</td>
</tr>
<tr>
<td>30 % acrylamide / 0.8 % bisacrylamide solution</td>
<td>10 ml</td>
<td>30 % acrylamide / 0.8 % bisacrylamide solution</td>
</tr>
<tr>
<td>Tris (1.5 M, pH 8.0)</td>
<td>5 ml</td>
<td>Tris (1 M, pH 6.8)</td>
</tr>
<tr>
<td>SDS (10 % [w/v])</td>
<td>200 µl</td>
<td>SDS (10 % [w/v])</td>
</tr>
<tr>
<td>APS (10 % [w/v])</td>
<td>200 µl</td>
<td>APS (10 % [w/v])</td>
</tr>
<tr>
<td>TEMED</td>
<td>20 µl</td>
<td>TEMED</td>
</tr>
</tbody>
</table>

Procedure

Samples were thawed on ice, mixed with Roti®-Load 2 loading buffer and denatured for 5 min at 95°C. A pre-stained protein marker (Fermentas) was used to estimate the molecular masses. Equal sample amounts and a suitable marker volume were loaded onto the gel and separated in electrophoresis buffer (24.8 mM Tris, 1.92 mM glycine, 0.1% [w/v] SDS) for 130 min at 80 V, followed by 2 h at 120 V. Gel
preparation and electrophoresis were carried out using the Bio-Rad Mini PROTEAN system (Bio-Rad, München, Germany).

2.12.3 Blotting
The Mini-Transblot cell (Bio-Rad, München, Germany) system was employed to transfer separated protein samples onto a polyvinylidene fluoride (PVDF) membrane (Immobilon-FL, Millipore, Schwalbach am Taunus, Germany). Prior to blotting, the membrane was incubated for 30 s in methanol. Sponges, blotting papers, the gel and membrane were equilibrated in transfer buffer, followed by gel sandwich preparation. Blotting was carried out at 80 mA overnight. Afterwards, the membrane was incubated in Rockland Blocking Buffer (RBB) for near-infrared Western Blotting (Rockland, Gilbertsville, PA, USA) for 1 h in order to block unspecific binding sites.

2.12.4 Immunodetection
Antibodies were either diluted in PBST (0.1% [v/v] tween 20 in PBS) containing 5% [m/v] dried milk or BSA or RBB according to table 7.

Table 7: Antibody dilutions used for immunodetection.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-human p62, rabbit IgG</td>
<td>1:1,000 in PBST + 5% [m/v] BSA</td>
</tr>
<tr>
<td>anti-human/mouse PTEN, rabbit IgG</td>
<td>1:500 in PBST + 5% [m/v] BSA</td>
</tr>
<tr>
<td>anti-human/mouse Erk, mouse IgG</td>
<td>1:1,000 in RBB</td>
</tr>
<tr>
<td>anti-human/mouse pErk, rabbit IgG</td>
<td>1:1,000 in RBB</td>
</tr>
<tr>
<td>anti-human/mouse Akt, rabbit IgG</td>
<td>1:1,000 in RBB</td>
</tr>
<tr>
<td>anti-human/mouse pAkt, rabbit IgG</td>
<td>1:1,000 in RBB</td>
</tr>
<tr>
<td>anti-human/mouse IκBα, rabbit IgG</td>
<td>1:1,000 in RBB</td>
</tr>
<tr>
<td>anti-human tubulin, mouse IgG</td>
<td>1:1,000 in PBST + 5% [m/v] dried milk</td>
</tr>
<tr>
<td>IRDye® 800CW conjugated goat anti-mouse IgG</td>
<td>1:5,000 in RBB</td>
</tr>
<tr>
<td>IRDye® 680 conjugated mouse anti-rabbit IgG</td>
<td>1:5,000 in RBB</td>
</tr>
</tbody>
</table>
Membranes were incubated with primary antibodies for 2 h (p62, tubulin) or 3 h (ERK, AKT) at room temperature or overnight at 4°C (pErRK, pAKT, IкBα, PTEN). Subsequently, they were washed either in PBST + 5% [m/v] dried milk or BSA for p62 and PTEN blots (2 x 5 min), followed by additional washing steps in PBST (2 x 5 min). Afterwards, membranes were incubated with the secondary antibody for 1.5 h at room temperature. After washing twice in PBST and PBS for 5 min, blots were scanned with an Odyssey Infrared Imaging System (LI-COR Bioscience, Bad Homburg, Germany) and relative signal intensities were determined using the Odyssey software.

2.13 Transfection of HepG2 cells

2.13.1 Plasmid transfection
Plasmids were introduced into HepG2 cells using jetPEi™-Hepatocyte transfection reagent according to the manufacturer’s guidelines for transfection of hepatocyte cells. Briefly, 10^4 cells were plated in 0.2 ml growth medium per well in 96 well plates. For each well, 0.25 µg plasmid DNA was diluted in a total volume of 10 µl NaCl 150 mM, mixed with 0.8 µl of jetPEi™-Hepatocyte in 10 µl NaCl 150 mM and incubated for 15 min at room temperature prior to its addition to HepG2 cells. For p62 overexpression assays, cells were treated 48 h after they were transfected with pcDNA3.1/CT-GFP-TOPO® p62-sense or the antisense control construct and harvested 68 h after transfection.

2.13.2 siRNA transfection
For knockdown of p62 by siRNA, cells were reverse transfected with sip62 and control siRNA using INTERFERin™ transfection reagent as recommended by the supplier. In short, 250 nmole siRNA were diluted in 248 µl serum- and antibiotic-free RPMI-1640, mixed with 2 µl of INTERFERin™ and incubated at room temperature for 10 min. Afterwards the mixture was transferred to a 12 well plate with 250 µl per well and HepG2 cells were seeded at a density of 1.25 x 10⁵ cells per well. Experiments were performed 48 h after transfection.
2.14 Determination of mRNA stability
To analyze the effects of the p62 transgene on PTEN and GILZ mRNA stability, the transcription inhibitor actinomycin D (10 µg/ml) was added to primary hepatocytes isolated from p62 transgenic mice. 4 to 10 h thereafter, cells were harvested and RNA was isolated. The relative amount of PTEN and GILZ mRNA was determined by real-time RT-PCR.

2.15 Caspase-3-activity assay
After treatment cells were washed twice with ice-cold PBS, incubated with 70 µl ice-cold lysis buffer (25 mM HEPES, 5 M MgCl₂, 1 M EGTA, 0.1% [v/v] Triton X-100) and frozen at -80°C overnight. Tissue was homogenized in lysis buffer. After thawing on ice, cells were scratched off the culture plates, collected by centrifugation (14,000 rpm, 10 min, 4°C) and 10 µl of the supernatants were transferred to a flat-bottom 96well microtiter plate (TPP, Trasadingen, Switzerland). After dilution with 90 µl substrate buffer (50 mM HEPES, 0.1% [w/v] CHAPS, 1% [w/v] sucrose, pH 7.5), generation of free 7-amino-4-trifluoro-methylcoumarin (AFC) at 37°C was kinetically determined by fluorescence measurement (excitation: 385 nm; emission: 535 nm) using a fluorometer microplate reader (Wallac Victor2, PerkinElmer). Enzyme activity was calculated using an external AFC standard curve. The time point at which highest enzyme activity was measured was set to 100%.

2.16 ELISA
Serum concentrations of the murine cytokines IL-6 and TNF-α were determined using Quantikine® Mouse IL-6 Immunoassay and Quantikine® Mouse TNF-α/TNFSF1A Immunoassay (R&D Systems Europe, Abingdon, United Kingdom) according to the manufacturer's instructions. The plate was read at an absorbance microplate reader (Wallac Victor2, PerkinElmer, Radgau-Jüdsheim, Germany). Total protein concentrations were determined by Bradford protein assay using a Sunrise absorbance reader (Tecan, Mainz, Germany)
2.17 Fatty acid measurement

Murine liver samples were lyophilized to dryness, dissolved in a mixture of 500 µl methanol/toluene/sulfuric acid (50:50:2 [v/v/v]) and incubated at 55°C overnight. Subsequently, 400 µl of a 0.5 M NH₄CO₃, 2 M KCl solution were added to the samples, which were then centrifuged at room temperature, transferred to a GC vial and derivatized with 25 µl N-methyl-N-(trimethylsilyl)trifluoroacetamide at 37°C for 1 h. Fatty acid analysis was performed on an Agilent 6890N gas chromatograph coupled to an Agilent 5973N mass selective detector (both Agilent Technologies, Waldbronn, Germany) and equipped with a non-polar J&W DB-5HT capillary column. Fatty acid analysis was performed by Dominik Pistorius (Saarland University, Pharmaceutical Biotechnology).
2.18 Human HCC samples

Paraffin-embedded liver samples from HCC patients were obtained from the Institute of Pathology, Saarland University, Homburg, Germany. Clinical patient data are shown in table 8.

Table 8: Clinical data of human HCC samples. m: male, f: female, hemochr.: hemochromatosis n/a: not available.

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>gender</th>
<th>etiology</th>
<th>BCLC</th>
<th>nodularity</th>
<th>tumor size</th>
<th>grading</th>
<th>follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>m</td>
<td>HBV</td>
<td>C</td>
<td>no</td>
<td>5 cm</td>
<td>G2</td>
<td>death after 3 months</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>f</td>
<td>alcohol</td>
<td>B</td>
<td>no</td>
<td>1.1 cm</td>
<td>G2</td>
<td>recurrence 4 months</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>f</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>9.5 cm</td>
<td>G2</td>
<td>recurrence 4 months</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>m</td>
<td>alcohol</td>
<td>B</td>
<td>yes</td>
<td>5.2 cm</td>
<td>G2</td>
<td>recurrence 19 months</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>m</td>
<td>HBV</td>
<td>B</td>
<td>no</td>
<td>6 cm</td>
<td>G2</td>
<td>ongoing 19 months</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>m</td>
<td>HBV</td>
<td>B</td>
<td>no</td>
<td>5 cm</td>
<td>G2</td>
<td>recurrence 6 months</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>m</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>8 cm</td>
<td>G3</td>
<td>n/a</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
<td>m</td>
<td>cryptogen</td>
<td>A</td>
<td>yes</td>
<td>9 cm</td>
<td>G2</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>f</td>
<td>NASH</td>
<td>A</td>
<td>yes</td>
<td>26 cm</td>
<td>G2</td>
<td>recurrence 6 months</td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>m</td>
<td>HCV</td>
<td>A</td>
<td>yes</td>
<td>2.2 cm</td>
<td>G2</td>
<td>ongoing 18 months</td>
</tr>
<tr>
<td>11</td>
<td>57</td>
<td>f</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>4.2 cm</td>
<td>G2</td>
<td>ongoing 8 months</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>f</td>
<td>HCV</td>
<td>A</td>
<td>yes</td>
<td>2.2 cm</td>
<td>G2</td>
<td>HCC free 52 months</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>m</td>
<td>ASH</td>
<td>A</td>
<td>yes</td>
<td>6.5 cm</td>
<td>G3</td>
<td>ongoing 6 months</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>f</td>
<td>alcohol</td>
<td>B</td>
<td>no</td>
<td>3.7 cm</td>
<td>G2</td>
<td>ongoing 10 months</td>
</tr>
<tr>
<td>15</td>
<td>68</td>
<td>m</td>
<td>HBV</td>
<td>0</td>
<td>yes</td>
<td>1.6 cm</td>
<td>G2</td>
<td>ongoing 12 months</td>
</tr>
<tr>
<td>16</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>17</td>
<td>65</td>
<td>m</td>
<td>alcohol</td>
<td>A</td>
<td>no</td>
<td>2.3 cm</td>
<td>G2</td>
<td>n/a</td>
</tr>
<tr>
<td>18</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>19</td>
<td>65</td>
<td>f</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>4.2 cm</td>
<td>G1</td>
<td>ongoing 11 months</td>
</tr>
<tr>
<td>20</td>
<td>73</td>
<td>f</td>
<td>HCV</td>
<td>B</td>
<td>yes</td>
<td>2.9 cm</td>
<td>G2</td>
<td>ongoing 42 months</td>
</tr>
<tr>
<td>21</td>
<td>73</td>
<td>m</td>
<td>hemochr.</td>
<td>A</td>
<td>yes</td>
<td>2.2 cm</td>
<td>G2</td>
<td>ongoing 6 months</td>
</tr>
<tr>
<td>22</td>
<td>79</td>
<td>f</td>
<td>porphyria</td>
<td>A</td>
<td>yes</td>
<td>7 cm</td>
<td>G2</td>
<td>recurrence 25 months</td>
</tr>
<tr>
<td>23</td>
<td>66</td>
<td>m</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>2.7 cm</td>
<td>G1</td>
<td>n/a</td>
</tr>
<tr>
<td>24</td>
<td>66</td>
<td>m</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>6 cm</td>
<td>G2</td>
<td>ongoing 14 months</td>
</tr>
<tr>
<td>25</td>
<td>70</td>
<td>m</td>
<td>NASH</td>
<td>B</td>
<td>yes</td>
<td>13 cm</td>
<td>G3</td>
<td>n/a</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>m</td>
<td>NASH</td>
<td>B</td>
<td>no</td>
<td>13 cm</td>
<td>G2</td>
<td>ongoing 7 months</td>
</tr>
<tr>
<td>27</td>
<td>67</td>
<td>m</td>
<td>NASH</td>
<td>A</td>
<td>yes</td>
<td>3.4 cm</td>
<td>G2</td>
<td>recurrence 56 months</td>
</tr>
<tr>
<td>28</td>
<td>57</td>
<td>f</td>
<td>hemochr.</td>
<td>A</td>
<td>yes</td>
<td>2.1 cm</td>
<td>G2</td>
<td>postoperative death</td>
</tr>
<tr>
<td>29</td>
<td>69</td>
<td>m</td>
<td>alcohol</td>
<td>A</td>
<td>yes</td>
<td>3.2 cm</td>
<td>G1</td>
<td>recurrence 6 months</td>
</tr>
<tr>
<td>30</td>
<td>71</td>
<td>m</td>
<td>HCV</td>
<td>A</td>
<td>yes</td>
<td>2.4 cm</td>
<td>G2</td>
<td>n/a</td>
</tr>
<tr>
<td>31</td>
<td>51</td>
<td>f</td>
<td>HCV</td>
<td>B</td>
<td>no</td>
<td>3 cm</td>
<td>G3</td>
<td>recurrence 23 months</td>
</tr>
<tr>
<td>32</td>
<td>68</td>
<td>m</td>
<td>NASH</td>
<td>A</td>
<td>yes</td>
<td>3.5 cm</td>
<td>G2</td>
<td>n/a</td>
</tr>
</tbody>
</table>
2.19 Statistics
Data analysis and statistics were performed using Origin software (OriginPro 8.1G; OriginLabs, Northampton, MA, USA). All data are displayed as mean values ± SEM. Statistical differences were estimated by independent two-sample t-test unless stated otherwise. Differences were considered statistically significant when p values were less than 0.05.
3 Results
3.1 Effects of p62 on hepatic metabolism

3.1.1 p62 expression in DEN-treated mice
In order to confirm the transgene expression in DEN-treated p62 transgenic mice real-time RT-PCR was performed to determine p62 mRNA expression. There was no difference in expression levels between 2.5- and 5-week-old animals (figure 6). Furthermore, no gender specificity was observed (figure 6).

![Graph showing p62 expression](image)

Figure 6: p62 expression in DEN-treated transgenic mice – RNA was isolated from snap-frozen liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) and 17 (5 weeks) animals (A). Mice were treated with DEN and sacrificed 48 h later at the indicated age. f+m: female and male mice, m: male mice, f: female mice.

3.1.2 Effect of p62 on the metabolism of fatty acids
The determination of serum parameters of DEN-treated mice revealed a significant increase of triglycerides, HDL, and cholesterol levels in the transgenic group (table 9). Five-week-old transgenic mice also showed decreased glucose levels compared to controls (table 9).
Table 9: Table shows mean serum levels ± SEM of 28 (2.5 weeks) or 17 (5 weeks) wild-type (co) or transgenic (tg) animals. * $P < 0.05$, ** $P < 0.01$ compared to wild-type (co) at the same age.

<table>
<thead>
<tr>
<th></th>
<th>2.5 weeks</th>
<th>5 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>co</td>
<td>tg</td>
</tr>
<tr>
<td>AST [U/l]</td>
<td>3,055 ± 310</td>
<td>3,259 ± 971</td>
</tr>
<tr>
<td>ALT [U/l]</td>
<td>571 ± 105</td>
<td>614 ± 167</td>
</tr>
<tr>
<td>Glucose [mg/dl]</td>
<td>89.5 ± 8.3</td>
<td>78.5 ± 6.1</td>
</tr>
<tr>
<td>Triglycerides [mg/dl]</td>
<td>110.2 ± 8.9</td>
<td>229.5 ± 43.3*</td>
</tr>
<tr>
<td>HDL [mg/dl]</td>
<td>44.2 ± 6.10</td>
<td>75.9 ± 7.4**</td>
</tr>
<tr>
<td>Cholesterol [mg/dl]</td>
<td>74.1 ± 9.3</td>
<td>129.9 ± 12.5**</td>
</tr>
</tbody>
</table>

Because of the metabolic changes in the transgenic animals it was interesting to investigate the fatty acid composition of liver tissue (table 10). Due to the fact that DEN itself provokes changes in fat metabolism (Canuto 1989), also liver tissues of untreated animals were analysed in comparison. DEN evoked changes in fatty acid composition of wild-type mice leading to increased levels of palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), adrenic acid (22:4), and cholesterol compared to untreated control. Docosapentaenoic acid (22:5) was reduced in DEN-treated versus untreated wild-type animals.

Despite these already remarkable changes transgenic animals showed even more pronounced changes upon DEN-treatment: compared to DEN-treated wild-type animals the DEN-treated transgenic group showed significantly increased amounts of oleic acid (18:1), gadoleic acid (20:1), eicosadienoic acid (20:2), eicosatrienoic acid (20:3), eicosapentaenoic acid (20:5), docosapentaenoic acid (22:5), and cholesterol in the liver. Stearic acid (18:0) and docosahexaenoic acid (22:6) were decreased.

In the absence of DEN transgenic mice showed higher amounts of lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), gadoleic acid (20:1), eicosadienoic acid (20:2), eicosatrienoic acid (20:3), adrenic acid (22:4), and cholesterol compared to untreated wild-type mice. These massive changes in both the amount and pattern of fatty acids
in the liver due to p62 expression was hypothesized to change activation of signaling pathways or cytokine production, in which fatty acids are involved.

Table 10: Table shows mean serum levels ± SEM of 7 (untreated wild-type (co)), 19 (untreated transgenic (tg)), 15 (DEN treated wild-type (co)), and 11 (DEN treated transgenic (tg)) animals 2.5 weeks of age. Liver tissues were lyophilized and analysed by GC-MS. * P < 0.05, ** P < 0.01, *** P < 0.001 compared to untreated control; # P < 0.05, ## P < 0.01 compared to DEN-treated control.

<table>
<thead>
<tr>
<th>Fatty acid composition</th>
<th>untreated</th>
<th>DEN-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>co</td>
<td>tg</td>
</tr>
<tr>
<td>12:0</td>
<td>0.05 ± 0.05</td>
<td>0.57 ± 0.13***</td>
</tr>
<tr>
<td>14:0</td>
<td>0.32 ± 0.11</td>
<td>1.48 ± 0.30***</td>
</tr>
<tr>
<td>16:0</td>
<td>16.66 ± 0.77</td>
<td>25.82 ± 1.54***</td>
</tr>
<tr>
<td>16:1</td>
<td>0.04 ± 0.03</td>
<td>0.44 ± 0.10**</td>
</tr>
<tr>
<td>18:0</td>
<td>11.71 ± 0.20</td>
<td>14.15 ± 0.44***</td>
</tr>
<tr>
<td>18:1</td>
<td>5.54 ± 0.47</td>
<td>15.40 ± 1.68***</td>
</tr>
<tr>
<td>18:2</td>
<td>9.75 ± 0.62</td>
<td>24.46 ± 2.46***</td>
</tr>
<tr>
<td>20:1</td>
<td>n.d.</td>
<td>0.14 ± 0.06*</td>
</tr>
<tr>
<td>20:2</td>
<td>0.34 ± 0.07</td>
<td>0.82 ± 0.14**</td>
</tr>
<tr>
<td>20:3</td>
<td>0.29 ± 0.07</td>
<td>1.11 ± 0.16***</td>
</tr>
<tr>
<td>20:4</td>
<td>10.91 ± 0.26</td>
<td>12.08 ± 0.65</td>
</tr>
<tr>
<td>20:5</td>
<td>n.d.</td>
<td>0.05 ± 0.05</td>
</tr>
<tr>
<td>22:4</td>
<td>0.11 ± 0.07</td>
<td>0.58 ± 0.15**</td>
</tr>
<tr>
<td>22:5</td>
<td>2.20 ± 0.92</td>
<td>2.33 ± 0.54</td>
</tr>
<tr>
<td>22:6</td>
<td>1.55 ± 0.52</td>
<td>0.90 ± 0.18</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>8.06 ± 1.18</td>
<td>16.04 ± 1.60***</td>
</tr>
</tbody>
</table>
3.1.3 p62 downregulates PTEN expression

It has been shown previously that the accumulation of fatty acids reduces the expression of the tumor suppressor PTEN (Vinciguerra et al., 2009a). As expected, the p62 transgenic mice show decreased PTEN expression on both mRNA and protein level at 2.5 weeks of age (figure 7 A, C, D). No gender-specific changes were observed (figure 7 A, C, D). However, in 5-week-old animals protein expression was decreased, but mRNA expression was not altered (figure 7 B, E, F). In transgenic male mice even a slight but non-significant increase in mRNA levels could be noted.

Figure 7: PTEN downregulation in p62 transgenic mice – Wild-type (co) or transgenic (tg) mice were treated with DEN at the age of 2.5 weeks or 5 weeks. A, B: RNA was isolated from liver tissue and real-time RT-PCR was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) (A) and 17 (5 weeks) (B) animals. f+m: female and male mice, m: male mice, f: female mice. C-F: Western Blot analysis from liver tissue was performed using tubulin as a loading control. Data show representative blots performed with tissue from 28 (2.5 weeks) (C) and 17 (5 weeks) (E) animals. D, F: PTEN protein signal intensities were quantified and normalized to tubulin values. Data are expressed as percentage of wild-type animals (co) values. * P < 0.05 compared to DEN-treated wild-type mice.
Knockdown experiments in HepG2 cells underlined the connection between p62 and PTEN also in the human system: knockdown of p62 increased PTEN expression (figure 8).

![Figure 8: p62 regulates PTEN expression – HepG2 cells were transfected with either random siRNA (co) or p62 siRNA (si p62). After 48 h cells were harvested, RNA was isolated and real-time RT-PCR analysis was performed. Data show means ± SEM of three independent experiments. * P < 0.05 compared to random siRNA.](image)

3.1.4 Expression of glucocorticoid-induced leucine zipper (GILZ)

Elevated GILZ levels have previously been shown to play a role in alcoholic hepatitis (Hamdi et al., 2007). We therefore hypothesized that GILZ might also be a mediator in NASH. Thus, we investigated the expression of Gilz mRNA in p62 transgenic mice. There was in fact an upregulated expression of Gilz in DEN-treated transgenic animals, but only at the age of five weeks (figure 9 A, B). This upregulation was more pronounced in male mice (figure 9 B).

![Figure 9: GILZ expression in DEN-treated mice – Wild-type (co) or transgenic (tg) mice were treated with DEN at the age of 2.5 weeks (A) or 5 weeks (B). f+m: female and male mice, m: male mice, f: female mice. A, B: RNA was isolated from liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) (A) and 17 (5 weeks) (B) animals. * P < 0.05 compared to DEN-treated control mice.](image)
After knockdown of p62 in HepG2 cells, GILZ mRNA was significantly downregulated (figure 10 A). Because GILZ mRNA expression is known to be altered via changes in its stability (Hoppstädter, 2010), mRNA stability was determined in primary murine hepatocytes from transgenic animals. Transgenic animals displayed a t1/2 of GILZ mRNA of 9.0 h, whereas GILZ mRNA half-life was only 3.5 h in hepatocytes from control mice (figure 10 B).

Figure 10: GILZ expression in hepatoma cells and mRNA stability of GILZ - A: HepG2 cells were transfected with either random siRNA (co) or p62 siRNA (si p62). After 48 h cells were harvested, RNA was isolated, and real-time RT-PCR analysis was performed. Data show means ± SEM of three independent experiments. B: RNA of primary murine hepatocytes, which were isolated from co and tg animals and treated with Actinomycin D (10 µg/ml) for the indicated time points, done by Elisabeth Tybl (Saarland University), was used for real-time RT-PCR analysis. Data show means ± SEM of hepatocytes from 3 control and 3 transgenic animals. * P < 0.05 compared to random siRNA (A) or hepatocytes from control animals (B), respectively.

Due to the altered expression of GILZ, known to be a regulator of inflammatory processes, by p62, we aimed to investigate the inflammatory response upon p62 expression in DEN-treated mice.

3.1.5 p62 induces inflammatory cytokines
In p62 transgenic animals the transcription factor NF-κB has been shown to be overexpressed in the cytosol (Tybl et al., 2011). We hypothesized that inflammatory activation, as it can be induced by fatty acids (Mollica et al., 2011), might be amplified in p62 transgenic animals. Therefore, serum cytokine levels of TNF-α and IL6 were determined by ELISA. A significant increase in TNF-α protein was detected for five-week-old animals (figure 11 B). The observed increase in IL6 levels was not statistically significant, but more pronounced in 2.5-week-old transgenic mice (figure 49).
Results

11 A).

Figure 11: Induction of inflammatory cytokines in p62 transgenic mice – Levels of IL6 (A) and TNFα (B) were analysed in sera of 27 (2.5 weeks) and 9 animals (5 weeks) by ELISA. Data show means ± SEM. * P < 0.05 compared to sera of DEN-treated wild-type (co) mice.

Enhanced cytokine levels are typically transcriptionally induced. Thus, we measured mRNA expression in the livers of DEN-treated animals. Here, we could also observe a tendency of increased IL6 and TNF-α mRNA expression (figure 12 A-D).

Figure 12: Induction of inflammatory cytokines in p62 transgenic mice – Mice were treated with DEN at the age of 2.5 weeks (A, C) or 5 weeks (B, D). f+m: female and male mice, m: male mice, f: female mice. A-D: RNA was isolated from liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) (A, C) and 17 (5 weeks) (B, D) animals.
Transcriptional upregulation of inflammatory cytokines is mediated by transcription factors, nuclear factor κB (NF-κB) being the most important one of them. The degradation of NF-κB-inhibitor (IκBα) represents a necessary step in the activation of the transcription factor NF-κB, (Kiemer et al., 2002; Vinciguerra et al., 2008). Its degradation could be observed by Western Blot analysis in 2.5-week-old transgenic mice to a higher extent than in control animals (figure 13 A, B). In 5 week old mice, IκBα levels were not significantly different, but appeared to be slightly lower (figure 13 C, D).

Figure 13: Degradation of IκBα in p62 transgenic mice – Western Blot analysis from liver tissue was performed using tubulin as a loading control. Data show representatives out of 28 (2.5 weeks) (A, B) and 17 (5 weeks) (C, D) animals. B, D: Relative IκBα protein signal intensities were quantified and normalized to tubulin values. Data are expressed as percentage of wild-type (co) animal values. ** P < 0.01 compared to DEN-treated wild-type (co) mice.
3.2 Antiapoptotic effect of p62

3.2.1 p62 expression results in high expression of Igf2

Untreated transgenic mice show high $Igf2$ levels compared to control animals (Tybl et al. 2011). This was also true for transgenic mice treated with DEN at 2.5 and 5 weeks of age (figure 14). In transgenic females the induction of $Igf2$ expression is more pronounced than in males.

In order to determine whether this increase in $Igf2$ expression was due to a switch from normal monoallelic to biallelic expression, five week old heterozygous SD7 mice were treated with DEN and genomic imprinting status was investigated by SNUPE analysis. Expression of $Igf2$ remained monoallelic (table 11).

![Figure 14: Igf2 expression in DEN treated mice – RNA was isolated from snap-frozen liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) and 17 (5 weeks) animals. Mice were treated with DEN at the age of 2.5 weeks (A, B) or 5 weeks (C, D). * $p < 0.05$, ** $p < 0.01$ compared to control mice.](image)

In figure 15 one representative SNUPE chromatogram is shown.

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>transgenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igf2</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
</tr>
</tbody>
</table>
Figure 15: Continuation of genomic imprinting of \textit{Igf2} in \textit{p62} transgenic mice treated with DEN - RNA was isolated from liver tissue and SNuPE analysis was performed. Mice were treated with DEN at the age of 5 weeks. The figure shows a representative SNuPE chromatogram for \textit{Igf2}.

Due to high \textit{Igf2} expression levels in \textit{p62} transgenic mice and because of well described antiapoptotic effects of \textit{Igf2} (Lamonerie et al., 1995), we determined the effect of \textit{p62} on apoptosis. In transgenic mice induction of apoptosis with DEN was reduced compared to wild-type animals (figure 16 A, B).

Figure 16: \textit{p62} has an antiapoptotic effect – A, B: Protein lysates were prepared from snap-frozen liver tissue of DEN-treated mice 2.5 (A) or 5 (B) weeks of age and caspase-3-like activity assay was performed. Data show means ± SEM of 28 (A) or 17 (B) animals. ** $P < 0.01$ compared to DEN-induced apoptosis induction in wild-type (co) animals.
3.2.2 Role of p62 and IGF2 in human HCC

In order to investigate a connection between p62 and IGF2 in human HCC, paraffin-embedded samples of human HCC tissues and matched normal tissues were analysed. p62 as well as IGF2 expression was increased in tumor tissues when compared to their respective surrounding tissue (figure 17 A). We also found a positive correlation between p62 and IGF2 in tumor tissues (figure 17 B). A comparison of p62 expression increases between cirrhotic and non-cirrhotic tissue did not indicate differences between the two groups.

When comparing absolute p62 levels from cirrhotic versus non-cirrhotic tumor tissue, however, p62 expression revealed to be higher in tumor tissues surrounded by non-cirrhotic tissue (figure 18 A). Within this non-cirrhotic group tumor tissues revealed a strong correlation between p62 and IGF2 (figure 18 B).

Figure 17: Expression of p62 and IGF2 in human HCC - A, B: RNA was isolated from paraffin-embedded HCC tissues and matched normal tissues and real-time RT-PCR analysis was performed. Data were normalized to β-actin. Data show means ± SEM (A) or distribution (B) of cirrhotic (c) and non-cirrhotic (n-c) samples from 32 patients. * P < 0.05

Figure 18: High p62 expression in non-cirrhotic tissue - A, B: RNA was isolated from paraffin embedded HCC tissues and real-time RT-PCR analysis was performed. Data were normalized to β-actin. Data show means ± SEM of samples from 32 patients (A) or distribution of non-cirrhotic samples from 13 patients (B). * P < 0.05 compared to cirrhotic tissues.
Interestingly, the upper third of higher p62-expressing samples showed poorer prognosis characterized by an intermediate or advanced Barcelona staging (BCLC B or C), multinodularity, increased tumor size (> 5 cm), and early recurrence (< 20 month) (figure 19).

![Figure 19: p62 expression and clinical prognosis - RNA was isolated from paraffin embedded HCC tissues and real-time RT-PCR analysis was performed. Data were normalized to β-actin. Data show p62 mRNA expression and corresponding clinical data. n/a: not available, black rectangles: applicable, white rectangles: not applicable, striped rectangles: ongoing monitoring less than 20 months.](image)

Table 12 shows p62 expression of the specific clinical groups.

Table 12: Table shows p62 expression in HCC tissues and corresponding clinical data. p62 mRNA expression was determined by real-time RT-PCR analysis from 32 paraffin-embedded HCC tissues. Data show mean ± SEM and median of indicated groups. p-value was calculated by Mann-Whitney U test.

<table>
<thead>
<tr>
<th></th>
<th>p62/β-actin</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/C</td>
<td>0.106 ± 0.053</td>
<td>0.030 ± 0.020</td>
</tr>
<tr>
<td>median</td>
<td>0.034</td>
<td>0.005</td>
</tr>
<tr>
<td>nodularity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>multinodular</td>
<td>0.123 ± 0.065</td>
<td>0.030 ± 0.017</td>
</tr>
<tr>
<td>uninodular</td>
<td>0.034</td>
<td>0.005</td>
</tr>
<tr>
<td>tumor size (diameter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5 cm</td>
<td>0.089 ± 0.043</td>
<td>0.030 ± 0.024</td>
</tr>
<tr>
<td>< 5 cm</td>
<td>0.029</td>
<td>0.004</td>
</tr>
<tr>
<td>recurrance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20 months</td>
<td>0.197 ± 0.075</td>
<td>0.011 ± 0.004</td>
</tr>
<tr>
<td>> 20 months</td>
<td>0.077</td>
<td>0.005</td>
</tr>
</tbody>
</table>

55
3.2.3 Role of IGF2 in anti-apoptotic action of p62

Due to the correlation of high p62 expression with poor prognosis and due to the knowledge of disturbed apoptosis in HCC we aimed to focus in more detail on the mechanisms being responsible for p62’s anti-apoptotic action. In order to verify whether the anti-apoptotic action of p62 exists also in the human system, we induced apoptosis in HepG2 cells with doxorubicin after knockdown of p62. Knockdown of p62 in HepG2 cells in fact increased apoptosis upon doxorubicin treatment (figure 20 A). Vice versa, overexpression of p62 resulted in a decline of apoptosis in HepG2 cells (figure 20 B). These findings demonstrate antiapoptotic properties of p62 also in human hepatoma cells.

Figure 20: Effect of p62 on apoptosis induction by doxorubicin in hepatoma cells - HepG2 cells were transfected with random siRNA (co) or p62 siRNA (A), or p62 antisense control vector (co-v) or p62 sense vector (B). 48 h after transfection cells were treated with doxorubicin (12.5 µg/ml) for 20 h, lysed, and caspase-3-like activity assay was performed. Data were normalized to untreated control cells. Data show means ± SEM of 3 independent experiments. ** p < 0.01 compared to respective control.
Results

Due to the correlation between \(p62 \) and \(IGF2 \) expression we aimed to clarify whether the antiapoptotic effect of \(p62 \) is \(IGF2 \)-dependent. We first used an siRNA approach to test whether \(IGF2 \) expression is causally linked to \(p62 \). In fact, \(IGF2 \) expression was downregulated after knockdown of \(p62 \) in HepG2 cells (figure 21).

![Graph showing mRNA levels of \(p62 \) and \(IGF2 \) after siRNA treatment.](image)

Figure 21: A: Cells were transfected with random siRNA (co) or \(p62 \) siRNA (si \(p62 \)). 48 h and 72 h after transfection cells were lysed, RNA was isolated and real-time RT-PCR was performed. Data were normalized to \(\beta \)-actin. Data show means ± SEM. * \(p < 0.05 \), *** \(p < 0.001 \) compared to transfection reagent control (co). Experiments were performed by Elisabeth Tybl (Saarland University).

To elucidate whether the observed antiapoptotic effect of \(p62 \) in HepG2 cells is due to higher \(IGF2 \) expression and activation of \(IGF2 \)-dependent PI3-K/AKT signalling, we used a neutralizing \(IGF2 \)-antibody as well as inhibitors of the PI3-K/AKT pathway. However, neither the \(IGF2 \)-antibody nor the widely used PI3-K-inhibitors Ly294002 and wortmannin affected the reduced induction of apoptosis caused by overexpression of \(p62 \) (figure 22).

![Graph showing inhibition of doxorubicin-induced apoptosis.](image)

Figure 22: Antiapoptotic effect of \(p62 \) is independent of \(IGF2 \) signaling – HepG2 cells were treated with doxorubicin (12.5 \(\mu \)g/ml) for 20 h after pretreatment with either 4.6 ng \(IGF2 \) antibody (Ab) for 2 h or PI3K-inhibitors (Ly294002 (Ly) 10 \(\mu \)M and wortmannin (Wo) 800 nM) for 1 h, 48 h after transfection with either \(p62 \) antisense control vector (co-v) or \(p62 \) sense vector (p62). Cells were lysed and caspase-3-like activity assay was performed. Data are expressed as percent inhibition of doxorubicin-induced apoptosis in \(p62 \) versus co-v transfected cells. Data show means ± SEM of 3 independent experiments. n.s.: not significantly different from doxorubicin-treated \(p62 \)-transfected control cells (co).
The lack of effect of PI3-K/AKT signaling suggested no involvement of this pathway in p62-facilitated anti-apoptotic action. Still, p62 transgenic animals showed elevated Akt phosphorylation at the age of 5 weeks (Tybl et al., 2011). We therefore investigated whether p62 influences AKT also in hepatoma cells. However, Western Blot analysis did not show any effect on AKT phosphorylation after knockdown or overexpression of p62 in HepG2 cells. (figure 23).

Figure 23: No alterations in AKT phosphorylation by p62 – A, B: HepG2 cells were transfected with either random siRNA (co-si) or p62 siRNA (si p62), treated only with tranfection reagent Interferin® (co IF) or left untreated (co). C, D: HepG2 cells were transfected with either p62 antisense control vector (co-v) or p62 sense vector or left untreated (co). Cells were harvested and Western Blot analysis was performed using tubulin as a loading control. Data show representative blots out of two (C) or three (A) independent experiments. B, D: Relative pAKT protein signal intensities were quantified and normalized to tubulin values. Data are expressed as percentage of co-si or co-v values. n.s.: not significantly different from co (B) or co-v (D).
In addition to the unchanged levels of phosphorylated AKT in hepatoma cells, there was no change regarding Akt activity in DEN-treated transgenic mice compared to control animals (figure 24 A-D) at 2.5 and 5 weeks of age.

Figure 24: No alterations in AKT phosphorylation by p62 − Western Blot analysis from liver tissue was performed using tubulin as a loading control. Data show representative blots performed with tissue from 28 (2.5 weeks) (A, B) and 17 (5 weeks) (C, D) animals. B, D: Relative pAkt protein signal intensities were quantified and normalized to tubulin values. Data are expressed as percentage of control animal (co) values. n.s.: not significantly different from wild-type mice (co).
3.2.4 The antiapoptotic effect of p62 is facilitated via ERK phosphorylation

Since we could exclude PI3K/AKT to mediate p62-facilitated anti-apoptotic action, we hypothesized that ERK as another important survival pathway in hepatocytes might play a role. In fact, Western Blot analysis showed increased levels of phosphorylated ERK1/2 (pERK) in HepG2 cells overexpressing p62 (figure 25 A, B) and decreased levels of pERK in respective knockdown experiments (figure 25 C-F).

![Western Blot Analysis](Figure 25: p62 increases ERK1/2 phosphorylation – A, B: HepG2 cells were transfected with either p62 antisense control vector (co-v) or p62 sense vector or left untreated (co). C, D: HepG2 cells were transfected with either random siRNA (co-si) or p62 siRNA (si p62), treated only with tranfection reagent Interferin® (co IF) or left untreated (co). Cells were harvested and Western Blot analysis was performed using tubulin as a loading control. Data show one representative blot out of two (A, B) or six (C, D) independent experiments. B, D: Relative pERK protein signal intensities were quantified and normalized to total ERK values. Data are expressed as percentage of co-v or co-si values. * p < 0.05, ** p < 0.01 compared to respective control.)
We then tested the role of ERK activation in the antiapoptotic effect of p62. Therefore, p62 overexpressing cells were treated with the ERK inhibitors PD98059 and U126. The protecting effect of p62 against apoptosis was completely abrogated (figure 26). Again, p62 action was independent of IGF2 since the antibody did not affect apoptosis protection (figure 26).

Figure 26: The antiapoptotic effect of p62 is facilitated via ERK1/2 phosphorylation – HepG2 cells were treated with doxorubicin (12.5 µg/ml) for 20 h after pretreatment with either 4.6 ng Igf2 antibody (Ab) for 2 h or ERK1/2-inhibitors (PD98059 (PD) 10 µM and U126 (U) 10 µM) for 1 h 48 h after transfection with either p62 antisense control vector (co-v) or p62 sense vector (p62). Afterwards, cells were lysed and caspase-3-like activity was determined. Data are expressed as percent inhibition of doxorubicin-induced apoptosis in p62 versus co-v transfected cells. Data show means ± SEM of 3 independent experiments. * p < 0.05, n.s.: not significant compared doxorubicin-treated p62-transfected control cells (co).

Furthermore, ERK2 was slightly but not significantly activated in transgenic mice treated with DEN at the age of 2.5 weeks (figure 27 A, B).

Figure 27: ERK phosphorylation in DEN-treated mice - Western Blot analysis from liver tissue was performed using tubulin as a loading control. Data show one representative blot performed with tissue from 28 animals. B: Relative pErk protein signal intensities were quantified and normalized to total Erk values. Data are expressed as percentage of control animal (co) values.
3.3 Role of \textit{H19} in HCC

3.3.1 \textit{H19} expression in DEN-treated mice

Untreated transgenic mice show high \textit{H19} levels compared to control animals (Tybl et al. 2011). This was also true for transgenic mice treated with DEN (figure 28) at 2.5 and 5 weeks of age. \textit{H19} expression did not differ between both genders in transgenic mice, but rather in the control group, in which females showed higher expression than male mice.

![Figure 28: H19 expression in DEN-treated mice – RNA was isolated from snap-frozen liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 28 (2.5 weeks) and 17 (5 weeks) animals. Mice were treated with DEN at the age of 2.5 weeks (A) or 5 weeks (B). f+m: female and male mice, m: male mice, f: female mice. * \(p < 0.05\), ** \(p < 0.01\) compared to wild-type (co) mice.](image)

In order to determine if the increase in \textit{H19} expression was due to a switch from normal monoallelic to biallelic expression, five-week-old heterozygous SD7 mice were treated with DEN and genomic imprinting status was investigated by SNuPE analysis. Expression of \textit{H19} remained monoallelicly (table 13).

Table 13: Table shows allele-specific index of \textit{H19} and \textit{IGF2} expression after SNuPE-HPLC detection. Values were obtained by determination of the peak heights of the C- and T-extended primers and calculating the ratio \(h(C)/ h(C)+ h(T)\) (5 weeks: 7 transgenic and 1 control animal).

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>transgenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{H19}</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
</tr>
</tbody>
</table>

In figure 29 one representative SNuPE chromatogram is shown.
Results

In control mice administration of DEN induced a decline in H19 RNA expression (figure 30). In DEN-treated transgenic mice H19 RNA was still highly expressed, but strongly reduced compared to untreated transgenic animals (figure 30).

Figure 29: Continuation of genomic imprinting in p62 transgenic mice treated with DEN - RNA was isolated from frozen liver tissue and SNUPE analysis was performed. Mice were treated with DEN at the age of 5 weeks. The figure shows one representative SNUPE chromatogram for H19.

Figure 30: Effect of DEN treatment on H19 expression in mice – RNA was isolated from liver tissue and real-time RT-PCR analysis was performed. Data were normalized to 18S. Data show means ± SEM of 9 (2.5 weeks, untreated), 12 (2.5 weeks, DEN-treated), 14 (5 weeks, untreated), and 10 (5 weeks, DEN-treated) animals. Mice were treated with DEN at the age of 2.5 weeks (A) or 5 weeks (B). * p < 0.05, ** p < 0.01 compared to untreated animals of the respective genotype.
3.3.2 *H19* expression in human HCC

Investigation of human HCC samples revealed a significant decrease in *H19* RNA expression in tumor tissue compared to surrounding normal tissue (figure 31).

![Figure 31](image)

Figure 31: *H19* expression in human HCC - RNA was isolated from paraffin embedded HCC tissues and real-time RT-PCR analysis was performed. Data were normalized to β-actin. Data are presented as 25th and 75th percentile boxes with arithmetic medians (square), geometric median (line), and 10th and 90th percentiles as rhombi. Data were generated out of a set of samples from 32 patients. *p*-value was calculated by Mann-Whitney U test.

Due to the fact that epigenetic variations of *H19* and *IGF2* have been reported in several types of cancer, RFLP analysis on HCC tissues was performed (table 14). In figure 32 representative agarose gels of RFLP analysis are shown.

![Figure 32](image)

Figure 32: RFLP analysis of human HCC samples – gDNA and RNA were isolated, PCR was performed, gDNA and cDNA was digested with restriction enzymes and agarose gel electrophoresis was performed. Figure shows one representative gel for IGF2 (left) and H19 (right).

Table 14: Table shows proportion of samples with biallelic expression determined by RFLP analysis. RFLP analysis was performed on cDNA samples of corresponding informative gDNA samples of 32 HCC tissues and matched normal tissues.

<table>
<thead>
<tr>
<th></th>
<th>normal</th>
<th></th>
<th>tumor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>biallelic</td>
<td>informative</td>
<td>biallelic</td>
<td>informative</td>
</tr>
<tr>
<td>IGF2</td>
<td>4/10</td>
<td>10/32</td>
<td>6/10</td>
<td>10/32</td>
</tr>
<tr>
<td>H19</td>
<td>3/9</td>
<td>9/32</td>
<td>3/9</td>
<td>9/32</td>
</tr>
</tbody>
</table>

Samples, which had alterations in imprinting status did not show specific changes in
Results

total IGF2 or H19 mRNA expression. Interesting, however, samples with biallelic expression of IGF2 showed significantly higher H19 expression than monoallelic samples (figure 33).

Figure 33: Distribution of H19 expression in samples with mono- or biallelic IGF2 expression. RNA was isolated from paraffin embedded HCC tissues and matched normal tissues and real-time RT-PCR analysis was performed. Data were normalized to β-actin. Data show distribution of values and means ± SEM of 10 samples, which were informative for RFLP analysis. * p < 0.05 compared to tissues expressing IGF2 monoallelicly.

3.3.3 H19 expression in hepatoma cells

Since H19 expression was decreased both upon DEN-treatment as well as in human HCC samples, we hypothesized a tumor suppressor activity for H19. Therefore, we tested the connection between H19 expression and chemosensitivity in hepatoma cells. Comparison of two hepatoma cell lines, HepG2 and HUH-7, revealed higher basal H19 RNA levels in HUH-7 cells (figure 34 A). HUH-7 cells were more sensitive to doxorubicin-induced cell death determined by MTT-assay (figure 34 B).

Figure 34: H19 expression and chemosenstivity – A: RNA was isolated and real-time RT-PCR was performed (by Elisabeth Tybl, Saarland University). Data show means ± SEM of 6 independent experiments. B: Cells were treated with indicated concentrations [µg/ml] of doxorubicin for 24 h and cell viability was determined by MTT-assay. Data show means ± SEM of 2 independent experiments.

65
In order to verify the connection between $H19$ expression and response to chemotherapeutics, we performed an $H19$ siRNA-knockdown in HepG2 cells (figure 35 A). Knockdown of $H19$ resulted in reduced caspase-3-like activity in HepG2 cells (figure 35 B).

Figure 35: Effect of $H19$ on apoptosis induction by doxorubicin in hepatoma cells - HepG2 cells were either left untreated (control) or transfected with random siRNA (random si) or $H19$ siRNA (H19 si). A: At the indicated time points, cells were harvested, RNA was isolated and real-time RT-PCR was performed. Data were normalized to β-actin. B: 48 h after transfection cells were treated with doxorubicin (12.5 µg/ml) for 20 h, lysed and caspase-3-like activity assay was performed. Data were normalized to cells transfected with random siRNA. Data show means ± SEM of 3 independent experiments. * $P < 0.05$ compared to respective control.

Treatment with the demethylating agent 5-azacytidine strongly increased $H19$ expression (figure 36 A) suggesting that $H19$ expression is suppressed by DNA promoter methylation in this tumor cell line. Interestingly, the expression of the tumor-promoting growth factor $IGF2$ was suppressed under the same conditions (figure 36 B).

Figure 36: Effect of 5’-azacytidine on $H19$ and $IGF2$ expression in hepatoma cells - HepG2 cells were either left untreated (control) or treated with ... µM 5’-azacytidine for ... (5-aza). RNA was isolated and real-time RT-PCR was performed. RNA isolation and $H19$ real-time RT-PCR was kindly performed by Rebecca Risch (Saarland University). Data were normalized to β-actin. Data show means ± SEM of three independent experiments. * $p < 0.05$, ** $p < 0.01$ compared to untreated control.
4 Discussion
4.1 Effects of p62 on metabolism and inflammation

p62 can be regarded as an oncofetal protein because of its exclusive expression in HCC cancer nodules and its appearance in fetal liver (Lu et al., 2001). Functional implications of the protein have as yet been almost unknown. We recently presented a first phenotypic characterization of liver-specific overexpression of human p62 in transgenic mice (Tybl et al., 2011). Although no evidence of spontaneous tumor formation upon $p62$ overexpression was detected, a hint on an impact of p62 on liver pathogenesis was given by histological fat staining, which revealed the phenotype of a fatty liver in $p62$ transgenic mice. Whereas the fatty liver in $p62$ transgenic mice can be regarded as a benign condition, the “second hit” towards the progression of NASH, resulting from inflammation, is missing. Within this project the DEN-model with a short period of treatment, which imitates an early stage of liver damage with inflammation, was exhibited as a second hit in transgenic animals and compared to wild-type mice.

4.1.1 Effects of p62 on fatty acid metabolism

Fatty acids can be regarded as essential components of cellular growth and survival. Therefore, tumor tissues of different origin contain high levels of lipids in comparison to normal tissues due to a distinct increase in lipogenesis (Kuhajda, 2000; Menendez and Lupu, 2007). The enhanced cholesterol and triglyceride plasma levels in $p62$ transgenic mice were a first hint on changes in the fat metabolism of these animals. The amount of cholesterol in liver tissues was doubled in untreated transgenic animals compared to wild-type mice and 1.4-fold increased in DEN-treated transgenic mice compared to treated control. In human HCC tissues cholesterol levels were also found to be doubled compared to normal liver tissues (Eggen and Elmberger, 1990). Hypertriglyceridemia was reported to be connected to decreased lipoprotein lipase activity, which was observed in hepatoma bearing rats (Carbo et al., 1994). In esophageal carcinomas hyperlipidemia could be correlated with a higher risk of metastases (Sako et al., 2004). Given that information, we had a closer look on the fatty acid composition of the liver tissue of $p62$ transgenic animals.

DEN itself has been reported to change fatty acid metabolism in rats (Canuto et al., 1986). Hyperlipidemia and changes in hepatic fatty acid composition has also been
observed in DEN-treated rats (Ramakrishnan et al., 2008). Therefore, the effect of DEN-treatment in control animals was investigated in detail. In fact, most of the fatty acids were increased due to DEN-treatment, except for docosapentanoic acid, which was decreased.

The liver tissue of untreated p62 transgenic mice showed increased levels in almost all fatty acids, except of docosahexanoic acid (22:6), indicating a general enhancement of storage and/or synthesis of fatty acids in the transgenics.

Interestingly, the group of DEN-treated p62 transgenic mice showed a different pattern. Palmitic acid (16:0) was not altered in the DEN-treated transgenic animals, whereas slightly higher levels of palmitoleic acid (16:1) were determined, resulting in an increased palmitoleic acid (16:1) to palmitic acid (16:0) ratio. Such an increased ratio has already been shown for human NAFLD and NASH tissues compared to control livers (Puri et al., 2009). In DEN-treated p62 transgenic mice, a rise in oleic acid levels could be observed which is in concordance with findings in NASH patients (Puri et al., 2009). In a matrigel assay treatment with oleic acid induced the invasion of breast cancer cells into the gel, which demonstrates a role of oleic acid in tumor invasiveness (Byon et al., 2009). Though incorporated oleic acid was shown to protect against oxygen-induced cytotoxicity in vitro (Kinter et al., 1996), which is important regarding the inflammatory properties of fatty acids due to generation of reactive oxygen species, oleic as well as palmitoleic acid is able to decrease expression of the tumor suppressor PTEN (Vinciguerra et al., 2009b). Both the higher palmitoleic acid to palmitic acid ratio as well as the increased amount of oleic acid have been reported to reflect an activation of the stearoyl-CoA desaturase (SCD) system (De Alaniz and Marra, 1994; Ntambi and Miyazaki, 2004). One could therefore hypothesize that SCD activity is enhanced in p62 transgenic animals. This is supported by decreased levels of stearic acid in DEN-treated transgenic mice, with stearic acid being the source for conversion to oleic acid by SCD. In HCC tissues it was demonstrated that the ratio of stearic acid to unsaturated C18 acids is lower in tumor tissue compared to non-tumorous tissue (Wood et al., 1985).

Eicosapentaenoic acid (20:5) has been decribed to ameliorate steatohepatitis and HCC in PTEN-deficient mice (Ishii et al., 2009). However, we found increased levels of eicosapentaenoic acid in DEN-treated p62 transgenic mice. We suggest that this might be some kind of counter-regulation in this complex metabolic system.
Discussion

Docosapentaenoic acid (22:5) was significantly increased in DEN-treated transgenic animals, which corresponds to higher levels in NAFLD and NASH (Puri et al., 2009). The downstream product of docosapentaenoic acid, docosahexaenoic acid (22:6), was decreased in DEN-treated p62 transgenics suggesting dysfunction of the metabolizing steps in peroxisomes corresponding to human NAFLD and NASH (Puri et al., 2009). In breast cancer cells treatment with docosahexaenoic acid caused enhanced expression of the peroxisome proliferator-activated receptor γ (PPARγ) and a subsequent decrease in NF-κB activity (Horia and Watkins, 2007). Metabolites of docosahexaenoic acid were identified as potent PPARγ agonists with antidiabetic activity. In contrast, however, untreated p62 transgenic mice had an improved glucose tolerance (Tybl et al., 2011). In addition, lower glucose levels were measured in the DEN-treated transgenic animals compared to control mice. The reason for this might partly be the conversion of glucose to fatty acids in de novo lipogenesis, which is denoted by increased levels of palmitoleic acid (Hellerstein et al., 1996). Interestingly, insulin hypersensitivity was also found in PTEN deficient mice (Stiles et al., 2004), which show a similar fatty acid composition of the liver as our untreated p62 transgenic mice (Horie et al., 2004).

Taken together, these findings suggest that p62 might lead to shorter tumor initiation and progression times due to its impact on fat metabolism and the fatty acid pattern of the liver.

4.1.2 p62 downregulates PTEN
Fatty acids have been shown to inhibit the tumor suppressor PTEN (Vinciguerra et al., 2009b). PTEN was first identified as a tumor suppressor, which is frequently mutated in several cancers including HCC (Chow and Baker, 2006; Dong-Dong et al., 2003; Hu et al., 2003). PTEN downregulation is achieved by different mechanisms, among which are epigenetic alterations, genetic mutations, and reduction of mRNA and protein expression. Several transcription factors act in PTEN regulation: p53 and PPARγ upregulate PTEN transcription by binding to its promoter (Stambolic et al., 2001; Zhang et al., 2006), whereas NF-κB and c-Jun negatively regulate PTEN transcription (Hettinger et al., 2007; Vasudevan et al., 2004). We have already shown that PTEN mRNA and protein is downregulated in untreated p62 transgenic mice (Tybl et al., 2011). This is also true for DEN-treated p62 transgenic animals.
Discussion

Interestingly, in five-week-old mice mRNA levels were not decreased in contrast to protein levels, suggesting an involvement of microRNAs in p62-induced inhibition of PTEN (Vinciguerra et al., 2009b)

PTEN was shown to regulate the IGF system via insulin-like growth factor binding-proteins (IGFBPs) in gastric cancer cells (Yi et al., 2005). In a hepatoma cell line it was also shown that PTEN expression inversely correlates with IGF2 expression (Kang-Park et al., 2003), proving that PTEN has several implications in the IGF system in both ways, i.e. IGF2-dependent and independent, without direct dephosphorylation of AKT. The higher extent of PTEN expression in five weeks old male mice compared to females could therefore explain the lower Igf2 expression in male mice.

Our findings show that p62 decreases PTEN expression in both early liver damage in vivo as well as in hepatoma cells in vitro, and therefore affects a crucial tumor suppressor gene in liver disease and cancer.

4.1.3 Interaction of p62 and GILZ

Thirty-four years ago a fatty liver was diagnosed in patients after long-term treatment with glucocorticoids. These livers showed pathohistological features of alcoholic hepatitis (Itoh et al., 1977). In the following years, hepatic steatosis could be linked to Cushing’s syndrome (Rockall et al., 2003). Recently, it was demonstrated that glucocorticoids increase both activity and expression of lipogenic enzymes (Cai et al.). Glucocorticoids can therefore be regarded as important inducers of NAFLD. Several of the beneficial, i.e. anti-inflammatory actions of glucocorticoids have been linked to critically dependend on GILZ (Ayroldi and Riccardi, 2009). In this context it is interesting to note that GILZ expression was suggested to be responsible for beneficial effects of glucocorticoid treatment in patients with alcoholic hepatitis (Hamdi et al., 2007). In NASH patients GILZ levels were reported to negatively correlate with the amount of liver lesions (Boujedidi, 2010).

We investigated the connection between p62 and GILZ expression. In five weeks old p62 transgenic mice we found increased Gilz expression. This increase in Gilz mRNA expression can be regulated by both transcriptional and post-transcriptional mechanisms. Post-transcriptional modulation is commonly procured by changes in
Discussion

mRNA stability, which allows cells to dynamically adapt gene expression to environmental challenges (Wilusz and Wilusz, 2004). Thus, we used primary hepatocytes isolated from transgenic and control animals to investigate changes in mRNA stability. In fact, GILZ mRNA stability was increased in hepatocytes of transgenic origin compared to control hepatocytes. Interestingly, the IMP family members IMP1 and IMP3 were previously described to prolong the half-life of CD44 mRNA (Vikesaa et al., 2006) and the RNA-binding protein AUF1 was found to directly interact with IMP2 (Moraes et al., 2003). This information suggests an important role for IMPs in post-transcriptional control of gene expression.

Little is known about the functional implications of GILZ in tumorigenesis and cancer. In ovarian cancer tissues GILZ was shown to promote tumor cell proliferation due to increased AKT activation (Redjimi et al., 2009). Contrarily, GILZ expression is essential for induction of apoptosis in multiple myeloma by glucocorticoids and inhibition of the PI3K/AKT pathway results in upregulated GILZ expression (Grugan et al., 2008). Thus, the role of GILZ seems to be specific for the type of cancer. Interestingly, GILZ has been reported to inhibit Raf-1 phosphorylation, which results in the suppression of ERK phosphorylation (Ayroldi et al., 2002) suggesting an antagonizing role of GILZ for p62. However, in HCC functional implications of GILZ in tumorigenesis and the interaction of p62 and GILZ need to be further investigated.

Similar to glucocorticoid treatment, GILZ is able to inhibit the production of inflammatory mediators (Berrebi et al., 2003). GILZ inhibits the translocation of NF-κB to the nucleus due to a direct interaction with the NF-κB subunits (Ayroldi et al., 2001). Increased Gilz expression in five-week-old p62 transgenic mice could contribute to higher levels of IκBα compared to 2.5-week-old mice via inhibition of NF-κB. Therefore, we next investigated the inflammatory actions in p62 transgenic animals.

4.1.4 p62 induces inflammatory cytokines

In a mouse model it has been shown that obesity-promoted HCC development is dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF-α, which cause hepatic inflammation (Park et al., 2010). Also in DEN-treated mice IL6 has been shown to be strongly upregulated and to be causally involved in
tumorigenesis (Naugler et al., 2007). We therefore investigated the inflammatory response in DEN-treated $p62$ transgenic mice. In fact, we found increased IL6 levels in DEN-treated $p62$ transgenic mice compared to control. Interestingly, IL6 signaling has antiapoptotic effects in myeloma cells (Catlett-Falcone et al., 1999) and high IL6 levels have been demonstrated to cause resistance against apoptosis in chronic inflammatory diseases (Atreya, 2000; Yamamoto et al., 2000). Also the risk of Hodgkin lymphoma is associated with IL6 levels (Cozen et al., 2004). In a cell culture model treatment with a neutralizing IL6 antibody retarded tumorigenesis (Ancrile et al., 2007). These findings underline that the increased IL6 levels in response to liver damage due to DEN-treatment potentiate the risk of HCC development. Regarding HCC as a result of a long-term liver inflammation, p62 could accelerate tumor initiation due to an increased inflammatory response to liver-damaging stimuli. Increased IL6 expression can also contribute to the observed reduction in PTEN expression by activating the transcription factor STAT3, which leads to inhibition of PTEN via induction of microRNA miR-21 (Iliopoulos et al.). Since ERKs are downstream targets of IL6 (Pricola et al., 2009), IL6 might even amplify the p62-induced ERK activation in DEN-treated transgenic animals compared to control mice.

The role of TNF-α in cancer is controversial. TNF-α has been shown to have tumor-promoting effects (Mocellin et al., 2005), but also anti-tumor actions have been described (Van Etten et al., 2003; van Horssen et al., 2006). Our data showed increased TNF-α levels in DEN-treated $p62$ transgenic mice. For HCC, a rodent model revealed obesity to promote tumorigenesis by enhancing both IL6 and TNF-α expression (Park et al., 2010). Both cytokines can activate the transcription factor NF-κB, which has been described to play a role in cancer development and progression (Dolcet et al., 2005; He and Karin). We have recently demonstrated increased cytoplasmatic expression of NF-κB in $p62$ transgenic mice (Tybl et al., 2011). Here, we show decreased levels of IκBα in $p62$ transgenic animals treated with DEN, modeling a pretumorous state of liver disease. IκBα-degradation is responsible for NF-κB-activation (Kiener et al., 2002; Vinciguerra et al., 2008) and the IKK-complex, which triggers phosphorylation of IκBα, has been demonstrated to be necessary for the malignant transformation to HCC in the liver (Jiang et al., 2009). Therefore, $p62$ affects tumor initiation and progression via changes in the inflammatory response, especially through activation of NF-κB.
4.2 Antiapoptotic effect of p62

4.2.1 p62 expression in human HCC

In a knockout mouse model the IMP family member IMP1 was demonstrated to be essential for normal growth and development (Hansen et al., 2004). For p62, we observed an 11-fold increased expression in tumor tissues compared to matched normal tissues. In fact, enhanced p62 mRNA expression was found in 53% of HCC tissues (17/32). In the literature, aberrant expression of the protein p62 was described for 30% (Lu et al., 2001; Zhang and Chan, 2002), but also for 61.5% of HCCs (Su et al., 2005). Autoantibodies against p62 were detected in 21% of HCC patients (Zhang et al., 1999) and in several other types of cancer (Zhang et al., 2001). The high amount of p62-positive tumor tissues in our study could be explained by the sensitivity of the method, which was used. Real-time RT-PCR is much more sensitive than protein quantification methods like Western Blot, ELISA or immunohistochemistry. In addition, variation in the proportion of p62-positive cases could be due to a different set of samples. HCC can be the result of a variety of underlying diseases, such as viral hepatitis, alcoholic or non-alcoholic steatohepatitis. We used samples with mixed etiology, whereas other reports on p62 in HCC did not give any information on disease etiology. Molecular mechanisms regarding these precursor conditions and the respective tumor progression can be completely different.

IMP3 was suggested as a prognostic marker for tumor malignancy and prognosis (Hutchinson, 2010). Also for p62 we observed a correlation between p62 expression and poor prognosis. High p62 expression was observed in tissues from tumors, which were categorized as intermediate (B) or advanced (C) by using the BLCL staging system. These categories include multinodularity and increased tumor size (Forner et al.). Also early recurrence of tumors with high p62 expression underlined the more severe status of disease. Interestingly, p62 expression was increased specifically in non-cirrhotic HCCs. Okuda et al. observed lower differentiation in tumors of non-cirrhotic livers (Okuda et al., 1982). In HCCs from non-cirrhotic livers the existence of dysplastic lesions has been reported (Grando-Lemaire et al., 1999), which are now established as precancerous pathological changes (Kojiro and Roskams, 2005). One study reported a prevalence of 26.8% of dysplasia in HCCs in non-cirrhotic livers (Okuda et al., 1989). Absence of cirrhosis was also related to increased tumor size and faster tumor growth (Trevisani et al., 1995; Van Roey et al.,
Discussion

2000). These findings combined with the observation, that elevated levels of α-fetoprotein, the common marker for HCC, are more frequent in cirrhotic tumors (Trevisani et al., 1995; Van Roey et al., 2000), display p62 as a useful marker for HCC, especially for HCC developing in the non-cirrhotic liver.

The balance between survival and apoptosis is often disrupted due to antiapoptotic signals occurring in cancer (Fabregat et al., 2007). During hepatocarcinogenesis apoptosis is diminished compared to proliferation resulting in an early expansion of neoplastic hepatocytes (Park et al., 2001). Interestingly, both knockdown and overexpression of p62 in hepatoma cells verified an antiapoptotic effect of p62. DEN-treatment of p62 transgenic and control mice indicated this antiapoptotic action of p62 also in vivo. As mentioned before, investigation of human HCC tissues revealed higher p62 expression in non-cirrhotic versus non-cirrhotic tissues. Cirrhosis development critically depends on the activation of hepatic stellate cells (Canbay et al., 2004). The activation of hepatic stellate cells, connected to inflammation, increases hepatocyte apoptosis (Canbay et al., 2004). Persistent activation of hepatic stellate cells results in exacerbation of hepatocyte apoptosis, hepatic inflammation, and progression to liver cirrhosis (Guicciardi and Gores, 2005). In regenerative cirrhotic nodules, 14% showed higher rates of apoptosis than proliferation (Park et al., 2010). In contrast, hepatocarcinogenesis and promotion of HCC is characterized by defective apoptosis and increased cell proliferation (Guicciardi and Gores, 2005). Taken together, the antiapoptotic effects p62 seem to have implications in tumor initiation and promotion, especially in the non-cirrhotic liver.

4.2.2 Mechanism of the anti-apoptotic action of p62

We recently reported that liver-specific transgenic p62 expression in mice leads to enhanced Igf2 expression in liver tissue (Tybl et al., 2011). IGF2 is a well known antiapoptotic factor, overexpressed in HCC (Cariani et al., 1988b; Liu et al., 1997; Scharf and Braulke, 2003; Schirmacher et al., 1992; Tovar et al., 2010), and demonstrated to be an inducer of angiogenesis and vasculogenesis (Kim et al., 1998; Maeng et al., 2009). Overexpression of imprinted genes can be induced by two different mechanisms: higher transcription levels of the active allele or reactivation of the silenced allele resulting in biallelic expression of the gene. In murine hepatocellular carcinoma cell lines LOI of Igf2 has been reported (Ooasa et al.,
Regarding the influence of DEN on Igf2 expression, we determined the allelic expression of Igf2 in the transgenic mice. As reported before for untreated animals (Tybl et al., 2011), no switch to biallelic expression in the transgenics was observed upon DEN-treatment. In fact, it has been reported that IGF2 expression is unrelated to its imprinting status in colorectal cancer (Cheng et al.).

The increased expression of the transcriptional regulator Aire determined in untreated animals is most likely responsible for the high expression of Igf2 in p62 transgenic animals (Tybl et al., 2011). Igf2 was described to be highly regulated by Aire expression (Johnnidis et al., 2005). Although Aire has been described to be found in hepatocytes to a high extent (Halonen et al., 2001), functional implications of Aire expression in the liver are as yet completely unknown. Aire is known to act gender-specifically (Hässler et al., 2006), which explains the higher expression of Igf2 in female transgenic mice, although p62 levels were similar in males and females.

HCC is characterized by alterations in several important cellular signaling pathways including the PI3-K- and the ERK-pathway (Whittaker et al.). Constitutive activation of the PI3-K/AKT signalling pathway has been firmly established as a major determinant of tumor cell growth and survival in several tumors (Chen et al., 2005). In HepG2 cells IGF1 has been demonstrated to have the ability to reverse apoptotic signaling by activation of the PI3-K/AKT signalling (Alexia et al., 2006). IGF1 binds to the IGF1 receptor whose autophosphorylation is followed by phosphorylation of intracellular targets and finally leads to activation of the PI3-K and the ERK pathway (Pollak et al., 2004).

We demonstrate that p62 expression in HCC correlates with IGF2 expression in tumor tissue. IGF2 was also demonstrated to act via the PI3-K/AKT pathway (Liang et al.). Unexpectedly, the altered Igf2 expression in DEN-treated p62 transgenic mice did not result in an increased activation of Akt. In untreated transgenic animals, we reported increased Akt phosphorylation in five-week-old animals. Younger or older animals, however, did not show altered phosphor-Akt levels (Tybl et al., 2011). Unchanged phosphorylation levels after both p62 knockdown and overexpression in HepG2 cells were in concordance with this observation. Due to highly increased levels of Igf2 mRNA in p62 transgenic animals, one would expect an IGF2-dependent action of p62. However, our data clearly indicate that the antiapoptotic effect is IGF2/PI3-K/AKT-independent and rather facilitated via ERK phosphorylation.
Silencing ERK1/2 expression using RNA interference led to suppression of ovarian tumor cell proliferation (Steinmetz et al., 2004). One report displayed aberrant ERK phosphorylation in 69% of HCCs (Huynh et al., 2003). In a rodent model tumor growth and apoptosis resistance of intraperitoneally applied hepatoma cells was enhanced by overexpression of MEK1 (Huynh et al., 2003). Schmitz et al. showed increased ERK1/2 phosphorylation, especially in HCCs with poor prognosis (Schmitz et al., 2008). Also Caja et al. reported that overactivation of the MAPK pathway in liver tumor cells might play a role in initiation and development of HCC through resistance to apoptosis (Caja et al., 2009).

ERK phosphorylation is not only altered in malignant tissue, but also in patients with severe chronic hepatitis B (Han et al., 2008), suggesting a transition step to HCC. In fact, in the context of both HBV- and HCV-infection, activation of the ERK pathway was demonstrated to enhance cell cycle progression, cell proliferation, and survival (Ewings et al., 2007; Zhao et al., 2005). We demonstrate for the first time that ERK phosphorylation in a hepatoma cell line, which leads to resistance against apoptosis, is due to expression of the IMP p62. In line with these findings, ERK also seems to be involved in modulating drug resistance of HCC cells (Yan et al., 2009). Clinical relevance is underlined by the suggestion of a combined doxorubicin and ERK targeted therapy for enhanced anti-cancer effects in HCC (Choi et al., 2008).

Only in 2.5 week old DEN-treated p26 transgenic mice we could observe a slight but not significant increase solely in ERK2 phosphorylation. Interestingly, only ERK2 has been reported to be a pivotal mediator of hepatocyte cell cycle progression both in vitro and in vivo: whereas Erk1 knockout and knockdown had no effect on rodent hepatocyte proliferation, specific Erk2 knockdown abolished cell cycle progression (Frémin et al., 2007). Regarding liver cancer, two recent studies revealed knockdown of ERK2 but not ERK1 abolishes liver tumor cell proliferation in vitro as well as growth of xenografted tumors in rodents (Bessard et al., 2008; Gailhouste et al., 2010). Also in fibroblasts, ERK2 seems to have a positive role in controlling cell proliferation, whereas ERK1 could probably affect the overall signaling by antagonizing ERK2 activity (Vantaggiato et al., 2006). Another study proved the competition between ERK1 and ERK2 for their binding and activation by MEKs with an ERK1 knockout which was accompanied by an increase in ERK2 signaling (Mazzucchelli et al., 2002). Conversely, silencing ERK1 expression alone is sufficient
Discussion

to significantly decrease tumor cell viability (Zeng et al., 2005). Given this information, Erk2 activation might be more important in DEN-induced carcinogenesis.

Taken together, ERK activation due to p62 expression seems to display a prominent step in liver pathogenesis considering the multiple targets of ERK.
4.3 Role of \(H19\) in HCC

In our previous study we reported that transgenic \(p62\) expression in mice leads to overexpression of \(H19\) (Tybl et al., 2011). Also in DEN-treated mice \(H19\) is still highly expressed. Interestingly, however, in the livers of DEN-treated \(p62\) transgenic mice \(H19\) was overexpressed to a lower extent, when compared to our data from untreated transgenic mice (Tybl et al., 2011). The role of \(H19\) in tumorigenesis is controversially discussed. \(H19\) was described as both an oncogene (Matouk et al., 2007) and a tumor suppressor gene (Hao et al., 1993; Yoshimizu et al., 2008). In human HCC samples we found decreased expression of \(H19\) in tumor tissue compared to surrounding normal tissue. Cui et al. showed that inactivation of \(H19\) resulted in blastema overgrowth in Wilms’ tumorigenesis (Cui et al., 1997). Investigation of different hepatoma cell lines also indicated a tumor suppressor activity for \(H19\). We observed different basal levels of \(H19\) in two hepatoma cell lines, HepG2 and HUH-7. HUH-7 cells, which had higher expression levels of \(H19\), were more sensitive to doxorubicin. This is in concordance with the literature (Lee et al., 2002).

Our findings corroborate the tumor suppressor activity of \(H19\). We speculate that the expression of \(H19\) could be responsible for the lack of tumor development in untreated \(p62\) transgenic animals. In order to test this hypothesis, \(p62\) transgenic mice will be crossed with \(H19\) deficient animals in the future. The mechanisms involved in the biological activities of \(H19\) remain elusive. \(H19\) was already shown to bind IMP1 (Nielsen et al., 2004; Runge et al., 2000) and might also interact with other IMPs, such as \(p62\). Another mechanism of the action of \(H19\) may be via induction of miRNAs (Cai and Cullen, 2007).

The imprinted genes \(IGF2\) and \(H19\) often show coordinate, reciprocal regulation (Reik et al., 2001; Vernucci et al., 2004). In the human liver imprinting analysis is more complex due to biallelic expression of \(IGF2\) in the adult liver (Davies, 1994; Ekstrom et al., 1995), but monoallelic expression of \(H19\). Interestingly, in the HCC samples which displayed biallelic \(IGF2\) expression, \(H19\) was significantly overexpressed compared to samples with abnormal monoallelic expression. In the fetal liver \(IGF2\) is transcribed from P2, P3, and P4 promoters from the paternal allele. In the adult liver transcription is switched to P1 promoter resulting in biallelic expression of \(IGF2\) (Kalscheuer et al., 1993; Vu and Hoffman, 1994). Therefore, our
findings further support the hypothesis about \textit{H19} being a tumor suppressor, which is downregulated in samples showing epigenetic changes of the \textit{IGF2} gene by monoallelic expression. Classification of the observed biallelic expression as normal adult expression would need a promoter analysis to distinguish between a fetal and an adult promoter methylation pattern (Li et al., 1997; Wu et al., 2008). Transcripts from the fetal promoters have been reported to be highly expressed in HCC (Cariani et al., 1988b; Nardone et al., 1996).

The fact that also surrounding non-tumorous tissue showed an aberrant imprinting status of \textit{IGF2} and \textit{H19} indicate that epigenetic changes could predict cancer risk or disease progression (Couvert et al., 2008; Kaneda et al., 2007). It is noteworthy that both DNMT1 and DNMT3a are upregulated in human HCCs (Lin et al., 2001; Saito et al., 2001) and methylation abnormalities in the DMR of the \textit{IGF2} locus were detected in HCC (Poirier et al., 2003). Thus, changes in DNA methylation might have a great influence on the dysregulated expression of \textit{IGF2} and \textit{H19} (Thorgeirsson and Grisham, 2002). We therefore performed expression analysis of \textit{IGF2} and \textit{H19} in HepG2 cells after treatment with the demethylating substance azacytidine, which was shown to affect human IGF2 promoter P3 and P4 in colorectal cancer (Hu et al., 1996). Whereas \textit{H19} was strongly upregulated, \textit{IGF2} mRNA was downregulated. This further supports a regulation of \textit{Igf2} by \textit{H19}, which was also observed in both \textit{H19} transgenic and knockout mice (Gabory et al., 2009).
5 Summary
Summary

Primary liver cancers including hepatocellular carcinoma (HCC) have dramatically increased in the last years. Although HCC is prevalent in Asian and African countries, incidence of HCC and mortality is also rising in most industrialized countries. Patients suffering from diseases of the metabolic syndrome complex show an increasing incidence of HCC.

The IMP p62 was found as an autoantigen in an HCC patient. Functional implications of p62, however, have as yet been almost completely unknown.

Samples from HCC patients showed increased p62 expression, especially in non-cirrhotic tissue. p62 expression correlated with IGF2 expression, suggesting IGF2-dependent actions for p62. The antiapoptotic effect of p62 in both human hepatoma cells as well as p62 transgenic mice, which express p62 liver-specifically, however, turned out to be IGF2-independent. Investigations on the underlying mechanism revealed that antiapoptotic signalling is due to ERK activation.

Although p62 transgenic mice develop a fatty liver, no tumors are formed during lifetime. Therefore, we wanted to employ a second hit to promote liver damage in these animals. Intraperitoneal application of the carcinogen DEN, which is a common HCC model, was used. In p62 transgenic mice a downregulation of the tumor suppressor PTEN was observed, which can make the liver more susceptible to tumorigenesis. Additionally, increased levels of inflammatory cytokines were measured in livers of transgenic mice. An enhanced inflammatory response can indicate a more severe liver damage. Interestingly, the fatty acid composition of the DEN treated p62 transgenic mice compared to control animals was changed in a comparable pattern to NASH patients compared to NAFLD patients.

Although these observations would indicate a spontaneous tumor development in p62 transgenic mice, tumor formation does not occur in untreated transgenic animals. The reason for the inhibition of tumor initiation could be the high levels of H19 RNA in p62 transgenic mice. In human HCC samples H19 was downregulated in tumor tissue compared to normal tissue. In hepatoma cells knockdown of H19 led to increased resistance against doxorubicin, suggesting a tumor suppressor role of H19 in HCC.
Summary

Taken together, this characterization of IMP p62 provides new insight into possible functional targets of p62 and its influence on liver disease. Regarding clinical aspects, a further characterization of the role of p62 in liver pathogenesis as well as in tumor initiation and progression can lead to new diagnostic and treatment options.

This work was supported by the Deutsche Krebshilfe (grant #107751).
Summary

6 References

References

He, G. and Karin, M. NF-κB and STAT3- key players in liver inflammation and cancer. *Cell Research, 21*, 159.

Koutsari, C. and Lazaridis, K.N. Emerging genes associated with the progression of nonalcoholic fatty liver disease. *Hepatology, 52*, 807.

MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. *Neuron*, **34**, 807.

Nielsen, J., Kristensen, M.A., Willemoës, M., Nielsen, F.C. and Christiansen, J. (2004) Sequential dimerization of human zipcode-binding protein IMP1 on

References

Publications

Original publications

Abstracts to short talks / poster presentations

Acknowledgements

Prof. Dr. Alexandra K. Kiemer danke ich ganz herzlich für die Möglichkeit, in ihrer Arbeitsgruppe promovieren zu dürfen. Ihr großes Interesse an diesem Thema, ihre Diskussionsbereitschaft und ihre hilfreichen Anregungen haben diese Arbeit entscheidend vorangebracht. Ich bedanke mich für ihr entgegengebrachtes Vertrauen, ihre Geduld und ihre beständige Motivation.

Prof. Dr. Rolf W. Hartmann danke ich für die freundliche Übernahme des Zweitgutachtens.

Herrn Prof. Rainer M. Bohle und Frau Juliane Pokorny möchte ich für die sorgfältige Zusammenstellung der humanen HCC-Proben danken. Den Mitarbeitern des Instituts für Pathologie danke ich für die methodische Unterstützung.

Herrn Prof. Dr. Frank Lammert und seinen Mitarbeitern Herrn Dr. Vincent Zimmer und Frau Dr. Susanne Weber danke ich für die Beratung bezüglich der verschiedenen Mausmodelle sowie der Zusammenstellung der klinischen Patientendaten.

Aus der Arbeitsgruppe von Herrn Prof. Dr. Rolf Müller möchte ich mich besonders bei Herrn Dominik Pistorius für die Durchführung der Fettsäurebestimmung bedanken.

Des Weiteren danke ich aus der Arbeitsgruppe von Herrn Prof. Dr. Jörn Walter Herrn Dr. Sascha Tierling für die Hilfe bei der Durchführung der SNuPE-Analysen. Mein besonderer Dank gilt Frau Eva Dilly für ihre geduldige und stets mit großer Unterstützung verbundene Einführung in die Mauszucht.

Frau Dr. Diesel danke ich für ihre Hilfestellung bei Problemen und Fragen aller Art.

Meiner Familie danke ich für die langjährige Unterstützung und ihre ständige Bereitschaft, mir mit Rat und Tat zur Seite zu stehen.

Zu guter Letzt danke ich von ganzem Herzen meiner Verlobten Christine Krausch für ihre wunderbare Unterstützung und die vielen motivierenden Worte, stets zum rechten Zeitpunkt.