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Summary

This dissertation presents novel beamforming methods for distant speech recog-

nition (DSR). Such techniques can relieve users from the necessity of putting on

close talking microphones. DSR systems are useful in many applications such

as humanoid robots, voice control systems for automobiles, automatic meeting

transcription systems and so on.

A main problem in DSR is that recognition performance is seriously de-

graded when a speaker is far from the microphones. In order to avoid the

degradation, noise and reverberation should be removed from signals received

with the microphones.

Acoustic beamforming techniques have a potential to enhance speech from

the far field with little distortion since they can maintain a distortionless con-

straint for a look direction. In beamforming, multiple signals propagating from

a position are captured with multiple microphones. Typical conventional beam-

formers then adjust their weights so as to minimize the variance of their own

outputs subject to a distortionless constraint in a look direction. The variance

is the average of the second power (square) of the beamformer’s outputs. Ac-

cordingly, it is considered that the conventional beamformer uses second order

statistics (SOS) of the beamformer’s outputs.

The conventional beamforming techniques can effectively place a null on any

source of interference. However, the desired signal is also canceled in reverberant

environments, which is known as the signal cancellation problem. To avoid

that problem, many algorithms have been developed. However, none of the
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algorithms can essentially solve the signal cancellation problem in reverberant

environments.

While many efforts have been made in order to overcome the signal cancel-

lation problem in the field of acoustic beamforming, researchers have addressed

another research issue with the microphone array, that is, blind source separa-

tion (BSS) [1]. The BSS techniques aim at separating sources from the mixture

of signals without information about the geometry of the microphone array

and positions of sources. It is achieved by multiplying an un-mixing matrix

with input signals. The un-mixing matrix is constructed so that the outputs

are stochastically independent. Measuring the stochastic independence of the

signals is based on the theory of the independent component analysis (ICA) [1].

The field of ICA is based on the fact that distributions of information-bearing

signals are not Gaussian and distributions of sums of various signals are close

to Gaussian. There are two popular criteria for measuring the degree of the

non-Gaussianity, namely, kurtosis and negentropy. As described in detail in

this thesis, both criteria use more than the second moment. Accordingly, it is

referred to as higher order statistics (HOS) in contrast to SOS.

HOS is not considered in the field of acoustic beamforming well although

Arai et al. showed the similarity between acoustic beamforming and BSS [2].

This thesis investigates new beamforming algorithms which take into consider-

ation higher-order statistics (HOS). The new beamforming methods adjust the

beamformer’s weights based on one of the following criteria:

• minimum mutual information of the two beamformer’s outputs,

• maximum negentropy of the beamformer’s outputs and

• maximum kurtosis of the beamformer’s outputs.

Those algorithms do not suffer from the signal cancellation, which is shown in

this thesis. Notice that the new beamforming techniques can keep the distor-

tionless constraint for the direction of interest in contrast to the BSS algorithms.
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The effectiveness of the new techniques is finally demonstrated through a se-

ries of distant automatic speech recognition experiments on real data recorded

with real sensors unlike other work where signals artificially convolved with mea-

sured impulse responses are considered. Significant improvements are achieved

by the beamforming algorithms proposed here.
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Zusammenfassung

Diese Dissertation präsentiert neue Methoden zur Spracherkennung auf Ent-

fernung. Mit diesen Methoden ist es möglich auf Nahbesprechungsmikro-

fone zu verzichten. Spracherkennungssysteme, die auf Nahbesprechungsmikro-

fone verzichten, sind in vielen Anwendungen nützlich, wie zum Beispiel bei

Humanoiden-Robotern, in Voice Control Systemen für Autos oder bei automa-

tischen Transcriptionssystemen von Meetings.

Ein Hauptproblem in der Spracherkennung auf Entfernung ist, dass mit

zunehmendem Abstand zwischen Sprecher und Mikrofon, die Genauigkeit der

Spracherkennung stark abnimmt. Aus diesem Grund ist es elementar die

Störungen, nämlich Hintergrundgeräusche, Hall und Echo, aus den Mikro-

fonsignalen herauszurechnen.

Durch den Einsatz von mehreren Mikrofonen ist eine räumliche Trennung

des Nutzsignals von den Störungen möglich. Diese Methode wird als akustisches

Beamformen bezeichnet.

Konventionelle akustische Beamformer passen ihre Gewichte so an, dass die

Varianz des Ausgangssignals minimiert wird, wobei das Signal in ”Blickrich-

tung” die Bedingung der Verzerrungsfreiheit erfüllen muss.

Die Varianz ist definiert als das quadratische Mittel des Ausgangssignals.

Somit werden bei konventionellen Beamformingmethoden Second-Order Statis-

tics (SOS) des Ausgangssignals verwendet.

Konventionelle Beamformer können Störquellen effizient unterdrücken, aber

leider auch das Nutzsignal. Diese unerwünschte Unterdrückung des Nutzsignals
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wird im Englischen signal cancellation genannt und es wurden bereits viele Al-

gorithmen entwickelt um dies zu vermeiden. Keiner dieser Algorithmen, jedoch,

funktioniert effektiv in verhallter Umgebung.

Eine weitere Methode das Nutzsignal von den Störungen zu trennen, dieses-

mal jedoch ohne die geometrische Information zu nutzen, wird Blind Source

Separation (BSS) [1] genannt. Hierbei wird eine Matrixmultiplikation mit dem

Eingangssignal durchgeführt. Die Matrix muss so konstruiert werden, dass die

Ausgangssignale statistisch unabhängig voneinander sind. Die statistische Un-

abhängigkeit wird mit der Theorie der Independent Component Analysis (ICA)

gemessen [1].

Die ICA nimmt an, dass informationstragende Signale, wie z.B. Sprache,

nicht gaußverteilt sind, wohingegen die Summe der Signale, z.B. das Hinter-

grundrauschen, gaußverteilt sind. Es gibt zwei gängige Arten um den Grad der

Nichtgaußverteilung zu bestimmen, Kurtosis und Negentropy. Wie in dieser Ar-

beit beschrieben, werden hierbei höhere Momente als das zweite verwendet und

somit werden diese Methoden als Higher-Order Statistics (HOS) bezeichnet.

Obwohl Arai et al. zeigten, dass sich Beamforming und BSS ähnlich sind,

werden HOS beim akustischen Beamforming bisher nicht verwendet [2] und

beruhen weiterhin auf SOS. In der hier vorliegenden Dissertation werden neue

Beamformingalgorithmen entwickelt und evaluiert, die auf HOS basieren. Die

neuen Beamformingmethoden passen ihre Gewichte anhand eines der folgenden

Kriterien an:

• Minimum Mutual Information zweier Beamformer Ausgangssignale

• Maximum Negentropy der Beamformer Ausgangssignale und

• Maximum Kurtosis der Beamformer Ausgangssignale.

Es wird anhand von Spracherkennerexperimenten (gemessen in Wortfehler-

rate) gezeigt, dass die hier entwickelten Beamformingtechniken auch erfolgre-

ich Störquellen in verhallten Umgebungen unterdrücken, was ein klarer Vorteil

gegenüber den herkömmlichen Methoden ist.
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Chapter 1

Introduction

There has been great and growing interest in microphone array processing for

distant speech recognition (DSR) [3, 4, 5, 6]. Such techniques have the po-

tential to relieve users from the necessity of donning close talking microphones

(CTMs) before dictating or otherwise interacting with automatic speech recog-

nition (ASR) systems. DSR techniques can be used in many applications such

as intelligent room environments, humanoid robots, voice control systems for

automobiles, automatic speech annotation systems in meetings and speech-to-

speech translation systems.

A main problem in DSR is that a speech signal is corruped in realistic en-

vironments. In the case that a speaker is far from microphones, the sensors

capture noise signals as well as a speech signal from the speaker. Because of

the noise signals, the performance of ASR systems is seriously degraded. In

addition to the noise, there are reverberation effects which also deteriorate the

performance of ASR systems. The reverberation effects occur when hard sur-

faces such as tables and walls reflect a sound wave signal which conveys speech

information.

In order to remove those unwanted noise or reverberation effects, many tech-

niques have been developed [6]. Table 1.1 shows traditional speech enhance-

ment techniques. As shown in Table 1.1, those techniques could be grouped

21
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Table 1.1: Speech enhancement techniques.

Input type Method Additive Noise Reverberation

Spectral subtraction [6, §6] Yes No

Wiener filtering [8, §2] Yes No

Single Channel Bayesian filtering [6, §4] Yes No

Blind de-convolution [8, §16] Yes No

Joint particle filter approach [7] Yes Yes

Multi-channel Beamforming [6, §13] Yes Yes

into two categories, single channel and multi-channel processing techniqes. Al-

though most of the speech enhancement techniques with the single sensor have

addressed either noise or reverberation, Wölfel proposed a method which can

remove both the effects [7]. However, those signle channel processing techniques

rely on noise spectral estimation which may fail in realistic environments. The

errors of the noise estimation cause unexpected distortion of the speech signal,

which also leads to the deterioration of the performance of ASR systems.

Acoustic beamforming is a promising technique for the DSR systems. Unlike

single-channel speech enhancement techniques, it can take account of spatial in-

formation from sound sources to a microphone array and enhance speech coming

from a target speaker while suppressing interference signals propagating from

the other positions.

Beamforming algorithms are normally implemented in the frequency or sub-

band domain for computational efficiency. In such a system, multi-channel in-

put signals are first transformed into the subband domain with an analysis filter

bank. The beamforming algorithm is then used to process these subband com-

ponents and produce a single-channel output for each subband. After that, the

processed signals are transformed back into the time domain, where a synthesis

filter bank is used to obtain the final time-domain signal.
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However, the filter bank design for beamforming poses problems not seen in

traditional applications such as speech coding [9][10]. It was shown in [10] that

the perfect reconstruction (PR) filter banks were not suitable for beamforming

applications because PR is achieved through aliasing cancellation [11, §5], which

can reconstruct an input signal correctly only if the outputs of the individual

subbands are not subject to arbitrary magnitude scaling and phase shifts.

In this dissertation, filter bank design methods for beamforming are inves-

tigated. This thesis also describes a new filter bank design method which mini-

mizes the magnitude of an individual aliasing term instead of canceling it. New

filter banks are thoroughly analyzed. The effectiveness of beamforming with the

filter banks is demonstrated through speech recognition experiments.

Beamformers are usually adapted to a specific acoustic environment in order

to improve the performance of speech enhancement further. This is, for example,

achieved by estimating the weights of the beamformer so as to minimize the

variance of its outputs subject to a distortionless constraint in a look direction [6,

§13.3.1].

We can efficiently implement such beamformers in generalized sidelobe can-

celler (GSC) configuration [6, §13.3.7]. Typical GSC beamformers consist of

three blocks, a quiescent vector, a blocking matrix and an active weight vector.

The quiescent vector is calculated to provide unity gain for the direction of

interest. The blocking matrix is usually constructed in order to maintain the

distortionless constraint for the signal filtered with the quiescent vector. Sub-

ject to this constraint, the total output power of the beamformer is minimized

through the adjustment of the active weight vector, which effectively places a

null on any source of interference, but can also lead to undesirable signal cancel-

lation [12]. To avoid the latter, many algorithms have been developed. These

approaches fall into one of the following categories:

• updating the active weight vector only when noise signals are domi-

nant [13, 14, 15];

• constraining the update formula for the active weight vector with the leaky
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least mean square (LMS) algorithm [16, 17] or with power of outputs of

the blocking matrix [18];

• using multi-channel target signals received by the microphone array and

correlation matrices of the clean and noise corrupted target signals in a

calibration phase, [19];

• blocking the leakage of desired signal components into the sidelobe can-

celler by appropriately designing the blocking matrix [18, 20, 21, 22];

• taking speech distortion due to the leakage of a target signal into account

using a multi-channel Wiener filter which aims at minimizing a weighted

sum of residual noise and speech distortion terms [23]; and

• using acoustic transfer functions from a desired source to microphones

instead of merely compensating for time delays of arrival of a signal [15,

22, 24, 25].

Blind source separation (BSS) might be considered as another approach to

DSR [26]. The general goal of BSS is to separate each source signal from mix-

tures based solely on statistical independence of each signal. It is assumed in

BSS that a priori knowledge such as the geometry of a microphone array and

source positions are not given except for the number of active multiple sources.

BSS techniques have two well-known problems, that is, the scaling ambiguity

and permutation problems [26]. The scaling ambiguity is eliminated by forcing

the determinant of the unmixing matrix to unity [27]. The permutation problem

is typically alleviated through use of the geometry of the microphone array [28].

However, many BSS techniques correct possible permutation by using the layout

of the microphones once a solution to the BSS problem is obtained. It might be

straightforward if the solution is sought with the distortionless constraint based

on the geometry of the microphone array in order to prevent permutation from

happening. Moreover, the BSS algorithms only provide a local solution which

is highly dependent on the initial values. Furthermore, a lower bound on the

performance of the speech separation is unpredictable. The unmixing matrix
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obtained with this technique may fail to extract the target signal in some situ-

ations. Such uncertain behavior would be unacceptable for many applications.

Low et al. [29] proposed a method that combines a BSS technique and an

adaptive noise canceller with the modified leaky LMS algorithm. Their algo-

rithm first estimates the unmixing matrix with the information maximization

technique [26], followed by solving the permutation problem by using the geom-

etry information of the microphone array [28] and removing the scaling ambigu-

ity by keeping the determinant of the unmixing matrix unity [27]. The output

channel with the highest kurtosis value is then taken as the target speech and

the others are labeled as reference signals. The adaptive noise canceller finally

removes any components that are correlated to the reference signals, which also

leads to the signal cancellation problem. To prevent it, Low et al. proposed the

modified leaky LMS algorithm, which adjusts a step-size used for the weight

update with a non-linear function. In their algorithm, the weights of the un-

mixing matrix for extracting the desired signal can be regarded as the block of

the upper branch in the GSC structure and the other weights can be associated

with the blocking matrix. Then, the active noise canceller corresponds to the

active weight vector. Therefore, the method proposed by Low et al. could be

viewed as a GSC beamforming algorithm without the distortionless constraint.

However, their algorithm has the same problems as the BSS techniques.

One of the different points between acoustic beamforming and BSS ap-

proaches would be the criterion for adjusting the parameters. The traditional

acoustic beamforming techniques have employed criteria based on the variance

of the beamformer’s outputs. Since the variance is the second moment of the

outputs, it is referred to as second order statistics (SOS) in this thesis. On the

other hand, most of the BSS techniques consider not only SOS but also higher

order statistics (HOS) such as kurtosis and negentropy. The BSS algorithms use

the fact that the distribution of information-bearing signals such as speech is

not Gaussian but non-Gaussian. In contrast to the Gaussian probability density

function, non-Gaussian probability density functions are not fully characterized

by the first and second moment of their random variables only. This is why
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HOS is employed in the field of BSS.

In this dissertation, HOS is considered for adjusting the active weight vectors

of the GSC beamformers. More specifically, this thesis presents new HOS-based

beamforming methods that optimize the active weight vectors of the GSC so

as to make the distribution of the beamformer’s outputs as non-Gaussian as

possible.

There are three popular ways of measuring the distance between different

distributions. First, the mutual information criterion is used for a speech sepa-

ration task. Second, the negentropy and kurtosis criteria are taken into consid-

eration for the beamformers in GSC configuration for a situation where only a

single sound source is active. In particular, the latter two criteria measure the

distance between Gaussian and non-Gaussian distributions, how far a distribu-

tion of a particular signal is from Gaussian. Computing the mutual information

value requires the existence of multiple sound sources. In other words, it cannot

be applied to the speech enhancement problem in the case that only a single

speaker is speaking. In contrast to it, the negentropy and kurtosis criteria can

be used in the single speaker scenario. Notice that all the criteria can take HOS

into account.

As the author will demonstrate, these new beamforming algorithms with

HOS can remove or suppress noise and reverberation without the signal can-

cellation problem encountered in conventional beamforming algorithms [12].

Moreover, these techniques can avoid the permutation and scaling ambiguity

problems by maintaining the distortionless constraint in the look direction.

The effectiveness of the new techniques is demonstrated through a series of

distant automatic speech recognition experiments on the Multi-Channel Wall

Street Journal Audio Visual Corpus (MC-WSJ-AV) collected under the Euro-

pean Union integrated project Augmented Multi-party Interaction (AMI) [3].

The data was recorded with real sensors in a real meeting room, and hence con-

tains noise from computers, fans, and other apparatus in the room. Moreover,

some recordings include noise coming from outside the meeting room, such as

that produced by passing cars or speakers in an adjacent room. The test data
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is neither artificially convolved with measured impulse responses nor unrealisti-

cally mixed with separately recorded noise.

The balance of this thesis is organized as follows. Chapter 2 reviews the

properties of propagating waves which convey human speech. Such signals can

be expressed as functions of time and space. Knowledge of these properties is

crucial for understanding array signal processing since an essential difference

between single-channel signal processing and array processing is the incorpora-

tion of geometrical information. The most fundamental beamforming technique

in array signal processing, delay-and-sum beamforming, is then described in

Chapter 3. Beamforming in time and frequency domains is also discussed in

Chapter 3. Chapter 4 describes the filter bank implementation for subband

beamforming. In Chapter 5, conventional data-dependent beamforming algo-

rithms are described. These beamformers adaptively update their weights based

on the covariance matrices of the subband signals captured by the individual

sensors, which are, of course, second order statistics. Chapter 6 reviews the the-

ory of independent component analysis (ICA). The BSS technique is well-known

as one of the applications of the ICA. Chapter 7 presents the novel beamforming

algorithms which take HOS into consideration. In contrast to the conventional

beamforming methods described in Chapter 5, the new beamforming algorithms

do not suffer from the signal cancellation problem as demonstrated in simula-

tions and experiments. Chapter 8 describes modern ASR systems which are

used to evaluate the beamforming algorithms presented here. Chapter 9 shows

the results of distant automatic speech recognition (ASR) experiments of two

kinds of tasks, a speech separation challenge and single speaker scenario. In

Chapter 10, the conclusions of this work are presented.

Contributions

Contributions of this thesis are summarized as follows:

• Filter bank design for beamforming. The undesired aliasing effects can
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be alleviated in the case that the property of the perfect reconstruction is

destroyed by arbitrary scaling of magnitude and phase shift [30, 31].

• Minimum mutual information (MMI) beamforming. It can separate sound

sources without the signal cancellation problem encountered in the con-

ventional beamforming techniques. Moreover, it is free from any problem

seen in the BSS techniques [4].

• Maximum negentropy (MN) beamforming. Distant speech can be en-

hanced by this technique without the signal cancellation problem [32].

• Maximum kurtosis (MK) beamforming. This beamforming algorithm has

the same advantage as MN beamforming. Furthermore, it can be simply

implemented since the prior speech model is not required. However, the

MK beamforming algorithm is influenced by outliers [33].

The list of publications related to this dissertation is presented in Chapter 11.



Chapter 2

Signals in Space and Time

Array processing techniques deal with propagating waves which convey signals

from a source to the array. Such signals are functions of not only time but also

space and referred to as spatio-temporal signals in this thesis.

The properties of the spatio-temporal signals are governed by the wave equa-

tion. In other words, we can analyze the signals by solving the wave equation.

A well-known plane wave is derived by solving the wave equation in the Carte-

sian coordinate system. A spherical wave, which is also sometimes assumed in

acoustic beamforming, can be derived from the wave equation represented in

the spherical coordinates.

The balance of this chapter is organized as follows. Section 2.1 describes

coordinate systems which are essential for representing the spatio-temporal sig-

nals. In Section 2.2, the wave equation is described. Section 2.3 and 2.4 describe

the solutions of the wave equations in Cartesian coordinates and spherical co-

ordinates, respectively.

2.1 Coordinate Systems

Figure 2.1 shows two coordinate systems, the Cartesian coordinate system and

spherical coordinate system.

29
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Figure 2.1: The Cartesian coordinate system and spherical coordinate system.

As illustrated in Figure 2.1, spatio-temporal signals are expressed as

s(x, y, z, t) with the spatial variables, x, y and z, and temporal variable, t,

in the Cartesian coordinate system. We represent the unit vectors in the three

spatial directions as lx, ly and lz. Relationships between these directions are

written as

lx · lx = ly · ly = lz · lz = 1

lx · ly = ly · lz = lz · lx = 0

lx × ly = lz.

Let the position vector pc denote the triple of the spatial variables (x, y, z) in the

Cartesian coordinate system. We can then rewrite the spatio-temporal signal

as s(pc, t).

The spherical coordinate system is also used in array processing. As shown

in Figure 2.1, a point in the spherical coordinate system is indicated with the
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distance from the origin r, the azimuth on the xy-plane θ and polar angle

down from the vertical axis φ. The spherical coordinate system is generally

convenient for representing waves with spherical symmetry. For example, an

isotropically spreading spherical wave can be represented by s(r, t) without the

angular coordinates.

The relations between the Cartesian and spherical coordinates are described

as

r =
√

x2 + y2 + z2

θ = cos−1

(

x
√

x2 + y2

)

= sin−1

(

y
√

x2 + y2

)

φ = cos−1

(

z
√

x2 + y2 + z2

)

x = r sinφ cos θ

y = r sinφ sin θ

z = r cos φ.

2.2 Wave Equation

Information about a distant source signal is carried to the sensors through prop-

agating waves which are governed by the wave equation. For a sound wave in a

general field, the acoustic pressure s(pc, t) satisfies the wave equation

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
=

1

c2

∂2s

∂t2
, (2.1)

where the parameter of the wave equations c can be interpreted as the speed of

propagation [34]. The wave equation (2.1) has information about how signals

propagate from a source radiating energy to an array.

Table 2.1 shows the sound speed and parameters in a gas and fluid [35].

As shown in Table 2.1, the sound signal depends on the medium which a wave

passes through.
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Table 2.1: Sound speed and parameters in different mediums.

Medium Formula Values

Air c =
√

γRT0/M 330.7 m/s

γ : the specific heat ratio 1.4

R : the gas constant per mole 8.3 × 107 erg/oK

T0 : the ambient temperature 273 oK

M : the molar mass 29 g

Sea water c =
√

γB/ρ 1, 498 m/sb

γ : the specific heat ratio 1.01

B : the isothermal bulk modulus 2.28 × 109 N/m2

ρ : the density 1.026 × 103 kg/m3

2.3 Solutions of the Wave Equation in Cartesian

Coordinates

There are several well-known solutions to the wave equation. In this section, we

derive the solution corresponding to the plane wave.

Let us first assume that the acoustic pressure s(pc, t) has a complex form

s(pc, t) = A exp {j(ωt − k · pc)} , (2.2)

where A is a complex constant, ω is a real constant and k = (kx, ky, kz) is a

constant vector with real values called the wave number vector. Substituting

(2.2) into the wave equation (2.1) and expanding the components of the wave

number vector, we have

k2
xs(pc, t) + k2

ys(pc, t) + k2
zs(pc, t) =

ω2

c2
s(pc, t). (2.3)

Canceling s(pc, t), we obtain the constraint

k2
x + k2

y + k2
z = |k|2 =

ω2

c2
. (2.4)
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Figure 2.2: Visualization of a propagating plane wave with a constant phase.

As long as (2.4) is satisfied, the signal expressed with (2.2) satisfies the wave

equation (2.1).

The solution to the wave equation given by (2.2) may be interpreted as a

monochromatic plane wave. The term plane wave arises because the values of

the signal at any instant of time t0 are the same at all the points on the plane

given by kxx+ kyy + kzz = C, where C is a constant. The surface on which the

values of the signal are the same is referred to as the wavefront.

Let us consider a case where a plane with a constant phase moves by a

distance δpc during time δt as shown in Figure 2.2. In this case, we have

s(pc + δpc, t + δt) = s(pc, t). (2.5)

By expressing (2.5) as in (2.2), we have

A exp {j(ω(t + δt) − k · (pc + δpc))} = A exp {j(ωt − k · pc)} . (2.6)

Upon dividing both sides of (2.6) by A exp {j(ωt − k · pc)}, we obtain

exp {j(ωδt − k · δpc)} = 1, (2.7)
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which indicates

ωδt − k · δpc = 0. (2.8)

We may take the direction of δpc to be the same as that of k. In the case

that δpc and k have the same direction, the inner product δpc · k is |δpc||k|.
Then, upon modifying (2.8), we have

|δpc|
δt

=
ω

|k| . (2.9)

The ratio |δpc|/δt can be interpreted as the speed of propagation of the plane

wave.

Based on (2.4) and (2.9), we have

|δpc|
δt

= c, (2.10)

where c is the speed of propagation.

The distance propagated during one temporal period T = 2π/ω is called the

wavelength λ. Substituting δt = 2π/ω into (2.9), we obtain

|δpc| = λ =
2π

|k| . (2.11)

The magnitude of the wave number vector |k| expresses the number of cycles in

radians per meter.

For the sake of simplicity, we rewrite (2.2) as

s(pc, t) = A exp {ω(t − α · pc)} , (2.12)

where α = k/ω. Then, s(pc, t) can be expressed as a function of a single

argument

ś(t − α · pc), (2.13)

where ś(u) = A exp(jωu). The vector α has the magnitude which is equal to

the reciprocal of the propagation speed. For this reason, it is often called a

slowness vector.

The wave equation is linear: If s1(pc, t) and s2(pc, t) are solutions of the

wave equation, then the linear combination A1s1(pc, t) + A2s2(pc, t) is also a
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solution. By using the linear property, we can obtain a more detailed solution

s(pc, t) = ś(t − α · pc) =

∞
∑

n=−∞
Sn exp {jnω0(t − α · pc)} . (2.14)

Equation (2.14) represents the harmonic series with a fundamental frequency

ω0. With Fourier’s Theorem, the coefficient Sn can be written as

Sn =
1

T

∫ T

0

ś(u) exp(−jnω0u)du, (2.15)

where T = 2π/ω0.

2.4 Solutions of the Wave Equation in Spherical

Coordinates

The wave equation (2.1) can be also expressed in the spherical coordinates

(r, θ, φ). The calculations result in the general spherical wave equation

1

r2

∂

∂r

(

r2 ∂s

∂r

)

+
1

r2 sinφ

∂

∂φ

(

sinφ
∂s

∂φ

)

+
1

r2 sin2 φ

∂2s

∂φ2
=

1

c2

∂2s

∂t2
. (2.16)

This equation can be solved by the method of separation of variables [35]. Gen-

eral solutions involve Bessel functions and associated Legendre polynomials.

In this section, we derive a simple solution in the case that the signal has

spherical symmetry. By removing the dependencies on φ and θ, the spherical

wave equation can be simplified to

1

r2

∂

∂r

(

r2 ∂s

∂r

)

=
1

c2

∂2s

∂t2
. (2.17)

By expanding the left side of (2.17) and multiplying both sides with r, we have

2
∂s

∂r
+ r

∂2s

∂r2
=

r

c2

∂2s

∂t2
. (2.18)

Then, by manipulating
∂2(rs)

∂r2
= 2

∂s

∂r
+ r

∂2s

∂r2

and
∂2(rs)

∂t2
= r

∂2s

∂t2
,
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equation (2.17) can be modified as

∂2(rs)

∂r2
=

1

c2

∂2(rs)

∂t2
. (2.19)

One solution of (2.19) is a monochromatic wave

s(r, t) =
A

r
exp {j(ωt − kr)} . (2.20)

This can be interpreted as a spherical wave propagating outward from the origin.

With k2 = ω2/c2, we can rewrite (2.20) as

s(r, t) =
A

r
exp

{

jω
(

t − r

c

)}

. (2.21)

The propagating spherical wave has another form

s(r, t) =
B

r
exp

{

jω
(

t +
r

c

)}

. (2.22)

Notice that the wave expressed with (2.22) propagates toward the origin.

In the similar way with the Cartesian case, we can build up more compli-

cated inwardly propagating waves by superimposing complex exponentials of

this form. Because of the linearity of the equation, it is also possible to ob-

tain solutions that consist of the superposition of both inwardly and outwardly

propagating waves.



Chapter 3

Beamforming

Beamforming can be generally described as spatial filtering. Due to the ge-

ometry of the array, the sensors in fact sample the propagating wave both in

time and space. This enables the subsequent signal processing on the output of

each sensor to make the array more sensitive in a desired direction, and to sup-

press undesired signals arriving from other directions. Beamforming techniques

have been applied to many areas such as radar, sonar, seismology and speech

enhancement.

This chapter reviews beamforming techniques in the context of signal en-

hancement. Section 3.1 describes the most fundamental delay-and-sum beam-

forming algorithm. In Section 3.2, discrete-time beamforming is described. Sec-

tion 3.3 discusses discrete-time beamformers operating in the frequency domain.

Section 3.4 depicts null-steering beamforming techniques which are able to null

interference signals.

3.1 Delay-and-Sum Beamforming

Delay-and-sum beamforming is the oldest and simplest array signal processing

algorithm and still used in many applications today.

Let xi(t) denote a wave signal measured at the i-th sensor at a time instant

37
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y(t)

Figure 3.1: The delay-and-sum beamformer.

t. With a sensor weight for the i-th sensor wi, the delay-and-sum beamformer’s

output can be written as

y(t) =
I−1
∑

i=0

wi xi(t + ∆i), (3.1)

where I is the number of microphones and ∆i is the time delay for the i-

th microphone. The amplitude weighting wi enhances the beam’s shape and

reduces sidelobe levels. The delays are compensated to strengthen the signal

coming from a particular point or direction in space.

Figure 3.1 shows a block diagram of the delay-and-sum beamformer. The

delay-and-sum beamforming algorithm applies the delay and weight to the re-

ceived signal and sums the resulting signals.

3.1.1 Far-field and Near-field Assumptions

In delay-and-sum beamforming, the choices of methods to compensate delays

would depend on whether the sources are located in the far-field or near-field.

A majority of literature assume that the sound source is at an infinite dis-

tance from the array - in the far-field. Under the far-field assumption, the sound

wave is assumed to be the plane wave described in Chapter 2, which indicates

that the surface of the wave (wavefront) received from a single point source is

plane. Figure 3.2 illustrates the planar wavefront under the far-field assumption.
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Figure 3.2: Illustration of the plane wave arriving at each sensor in the far-field

case.

Under the near-field assumption, the wavefront is assumed to be spherical.

Figure 3.3 shows the spherical wave propagating in the near-field. Several au-

thors have shown that beamforming under the near-field assumption provides

superior enhancement performance as compared to beamforming under the far-

field assumption [36, 37].

It is clear from Figure 3.2 and Figure 3.3 that the measurement of the de-

lay to each sensor in the far-field is different from that in the near-field. The

common rule for the approximate distance at which the far-field approximation

begins to be valid is r = 2d2
L/λ, where dL is the aperture of the array; i.e., the

distance between the two most distantly spaced elements of the array [38]. How-

ever, many studies employ the far-field assumption regardless of the inaccurate

approximation since it significantly simplifies problems in beamforming.

3.1.2 Beam Patterns

An analysis of the frequency response of a linear time-variant system to a si-

nusoidal input provides the relationship between system’s input and output

in single-channel signal processing. We can analyze the delay-and-sum beam-

former’s output in the similar way. It is only necessary to examine the delay-

and-sum beamformer’s response to a monochromatic plane wave propagating
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Figure 3.3: Illustration of the spherical wave arriving at each sensor in the

near-field case.

with the slowness vector described in Section 2.3. The delay-and-sum beam-

former’s response to a monochromatic wave is often called a beam pattern. The

beam pattern is sometimes called directivity pattern or spatial pattern.

Linear Array

Let us first denote a monochromatic signal propagating with a frequency ωo

and slowness vector αo at a position pc as

s(t − αo · pc) = exp {jωo(t − αo · pc)} . (3.2)

In the case that the i-th sensor is located at a position pc,i, the output of the

delay-and-sum beamformer with the sensor weight for the i-th sensor wi can be

expressed as

z(t) =

I−1
∑

i=0

wis
(

t + (α − αo) · pc,i

)

=

[

I−1
∑

i=0

wi exp
{

jωo(α − αo) · pc,i

}

]

exp(jωot). (3.3)
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It is clear from (3.3) that if we set the wrong look direction α 6= αo, we obtain

the degraded signal.

In order to investigate the response of the delay-and-sum beamformer with

the sensors which spatially sample signals propagating from specific directions,

let us introduce the Fourier transform of the sensor weight wi as

W (ωα) =
I−1
∑

i=0

wi exp(jωα · pc,i). (3.4)

Based on (3.4), we can re-write (3.3) as

z(t) = W (ωo(α − αo)) exp(jωot). (3.5)

It is clear from (3.5) that the quantity W (ωo(α − αo)) determines the ampli-

tude and phase of the beamformer’s output.

Consider a situation where a plane wave is arriving at a linear array of I =

2I1/2 +1 equally spaced microphones separated by d m, as shown in Figure 3.2.

In such a situation, when all the sensor weights are equal to 1, the response of

the delay-and-sum beamformer can be expressed [35, §4] as

W (ωo(α − αo)) =
1

I

sin I
2 (ωo(αx − αo

x))d

sin 1
2 (ωo(αx − αo

x))d
. (3.6)

In applications, the beam pattern as a function of the incident angle is useful.

For the linear array, the argument of the beam pattern can be written as

ωo (α − αo) = ωo(αx − αo
x)

=
ωo

c
(cos θ − cos θo)

=
2π

λ
(cos θ − cos θo) (3.7)

Notice that a relationship ωo/c = 2π/λ can be easily obtained based on substi-

tuting (2.10) and (2.11) into (2.9).

Upon substituting (3.7) into (3.6), we have the beam pattern as a function

of the incident angle [35, §4]

W (θ) =
1

I

sin I
2

(

2π
λ (cos θ − cos θo)d

)

sin 1
2

(

2π
λ (cos θ − cos θo)d

) . (3.8)
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Figure 3.4: Beam patterns of the linear array with 7 sensors with λ = 2d: (a)

in Cartesian coordinates and (b) in polar coordinates.

Figure 3.4 shows the beam patterns of the equi-spaced linear array as a func-

tion of the incident angle θ with I = 7 and λ = 2d in the case that the look

direction θo is π/2 (= 90o). In Figure 3.4, the region with the highest ampli-

tude is called a mainlobe and the others are called sidelobes. One important

parameter regarding the mainlobe is a beamwidth which is defined as the region

between the first zero-crossings on either side of the mainlobe. The height of

the sidelobes represents suppression performance for interference signals arriving

from the directions other than the desired look direction.

Figure 3.5 and Figure 3.6 also plot the beam patterns with 7 sensors with

λ = 4d and λ = 8d, respectively. By comparing Figure 3.5 with Figure 3.6, we

can see that the larger the wavelength of the propagating signal is, the broader

the beamwidth is. We can also find that there is no deep null in Figure 3.6,

which implies that interference signals cannot be suppressed very well.

The performance of the array can be improved by increasing the number of

sensors. Figure 3.8 shows the beam patterns with 15 sensors, where the other

parameters are the same as those in Figure 3.6. Comparing Figure 3.6 with

Figure 3.8, it is obvious that the larger number of sensors leads to a sharper

beam.

Figure 3.8 illustrates the beam patterns of the linear array with 7 sensors
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Figure 3.5: Beam patterns of the linear array with 7 sensors with λ = 4d: (a)

in Cartesian coordinates and (b) in polar coordinates.
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Figure 3.6: Beam patterns of the linear array with 7 sensors with λ = 8d: (a)

in Cartesian coordinates and (b) in polar coordinates.
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Figure 3.7: Beam patterns of the linear array with 15 sensors with λ = 8d: (a)

in Cartesian coordinates and (b) in polar coordinates.

in the case that the frequency value f is 400 Hz and each distance between

sensors d is 0.05 m (λ/d=17.2). On the other hand, Figure 3.9 shows the beam

patterns with the frequency value f = 400 Hz and the distance between sensors

d = 0.2 m (λ/d=4.3). It is clear by comparing Figure 3.8 to Figure 3.9 that

the suppression performance for interference signals is poor in the case that the

distance between sensors is small.

It could be expected that the performance of the array is improved by placing

sensors further apart. However, a problem called the spatial aliasing arises when

d is larger than λ/2 = c/(2/f) [39, §2.5]. Figure 3.10 shows the beam patterns

in the case of f = 3200 Hz and d = 0.2 m (λ/d=0.54). Observe that there

are five additional lobes that are as large as the mainlobe. These undesired

lobes are known gratinglobes and represent strong sensitivities of the array in

undesired directions. Their appearance is known as spatial aliasing because it

implies that the array is incapable of distinguishing between the directions of

arrival of plane waves that are not arriving from the look direction.

Circular Array

In order to illustrate the fundamental properties of beamforming, we considered

the beam patterns of linear microphone arrays. Even if the geometry of the array
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Figure 3.8: Beam patterns of the linear array with 7 sensors with f = 400

Hz, d = 0.05 m (λ/d = 17.19): (a) in Cartesian coordinates and (b) in polar

coordinates.
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Figure 3.9: Beam patterns of the linear array with 7 sensors with f = 400

Hz, d = 0.2 m (λ/d = 4.297): (a) in Cartesian coordinates and (b) in polar

coordinates.
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Figure 3.10: Beam patterns of the linear array with 7 sensors with f = 3200

Hz, d = 0.2 m (λ/d = 0.5371): (a) in Cartesian coordinates and (b) in polar

coordinates.

is not linear, the fundamental properties remain the same. Let us consider a

circular array with uniformly spaced microphones as shown in Figure 3.11. In

such a case, with a radius of the circular array R and azimuth from the x-axis

to the i-th sensor on the xy-plane θi, the position vector for the i-th microphone

in the Cartesian coordinate can be expressed by

ri = [ R cos θi, R sin θi, 0 ]
T

. (3.9)

Then, in the case that the delay-and-sum beamformer is constructed to steer

the beam for the look direction [θo, φo], the beam pattern of the circular array

for the direction [θ, φ] can be expressed as

Wc(θ, φ) =
1

I

I−1
∑

i=0

exp

[

j
2π

λ
R sinφ cos(θ − θi) + jβi

]

, (3.10)

where βi is a phase factor with respect to the origin [39, §4.2] and

βi = −2π

λ
R sin φo cos(θo − θi). (3.11)

Figure 3.12, 3.13 and 3.14 show the beam patterns of a uniform circular

array with eight microphones as a function of the azimuth θ, where the polar

angle φ is π/2. In these figures, the look direction of [θ = π/2, φ = π/2] is
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Figure 3.11: The geometry of the circular array with equally spaced micro-

phones.
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Figure 3.12: Beam patterns of the circular array with 8 sensors with λ = 2darc:

(a) in Cartesian coordinates and (b) in polar coordinates.
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Figure 3.13: Beam patterns of the circular array with 8 sensors with λ = 4darc:

(a) in Cartesian coordinates and (b) in polar coordinates.

maintained. The beam patterns shown in Figure 3.12 are computed in the case

of λ = 2darc, where darc indicates the distance on the arc of the circular array

between two adjacent microphones and hence darc = 2πR/I. In Figure 3.13

and Figure 3.14, λ = 4darc and λ = 8darc are set. We can see the same trend

as the case of the linear microphone array from Figure 3.12, Figure 3.13 and

Figure 3.14 that the beamwidth becomes large when the wavelength is large.

Figure 3.15 shows the beam patterns of the uniform circular array with 16

microphones as a function of the incident angle θ. The other conditions are the

same as those for Figure 3.14. By comparing Figure 3.14 with Figure 3.15, we
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Figure 3.14: Beam patterns of the circular array with 8 sensors with λ = 8darc:

(a) in Cartesian coordinates and (b) in polar coordinates.
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Figure 3.15: Beam patterns of the circular array with 16 sensors with λ = 8darc:

(a) in Cartesian coordinates and (b) in polar coordinates.

can confirm that we can make the shape of the beam sharper by increasing the

number of the microphones, which is also the case in the linear array.

Figure 3.16 and 3.17 show beam patterns of the circular array with 8 micro-

phones for frequencies 400 Hz and 6400 Hz, respectively. In order to calculate

the beam patterns in Figure 3.16 and 3.17, the diameter of the circular array is

set to 0.2 m and the plane wave is assumed to propagate parallel to the plane

of the circular array.

It is clear from Figure 3.16 that the performance of the circular array at low

frequencies is also poor since the wavelength is much longer than the aperture
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Figure 3.16: Beam patterns of the circular array with 8 sensors with f = 400

Hz, λ = 0.8594 (λ/darc = 10.94): (a) in Cartesian coordinates and (b) in polar

coordinates.
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Figure 3.17: Beam patterns of the circular array with 8 sensors with f = 6400

Hz, λ = 0.0537 (λ/darc = 0.6838): (a) in Cartesian coordinates and (b) in polar

coordinates.
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of the array at low frequencies. From Figure 3.17, it is also clear that at high

frequencies, the beam patterns are characterized by very large sidelobes.

3.2 Discrete-Time Beamforming

We have considered beamforming for analog signals. Here we consider the digital

version of the delay-and-sum beamformer. The output of the discrete-time

delay-and-sum beamformer can be expressed as

y[n] =

I−1
∑

i=0

wi xi[n + τi], (3.12)

where τi is an integer which represents the delay corresponding to the i-th micro-

phone and wi is a weight which amplifies a signal attenuated by the propagation

effect.

If the i-th microphone is located at a position pc,i and the monochromatic

signal is sampled with a period T , the discrete-time signal is expressed as

xi[n] = exp
{

jωo
(

nT − αo · pc,i

)}

. (3.13)

The beamformer’s output for the discrete-time signal with the frequency ωo

is then written as

y[n] =

[

I−1
∑

i=0

wi exp
{

jωo(τiT − αo · pc,i)
}

]

exp (jωonT ) . (3.14)

We ideally adjust the discrete-time delay τiT to equal −αo ·pc,i in order to steer

a beam to the propagation direction. However, these ideal delays are generally

not integer multiples of the sampling period T . We can no longer steer beams

to arbitrary directions precisely. In order to form more accurate beams with

integer delays, we have to adjust d and T so that d ≫ cT . The reduction of

T leads to the higher resolution for the original continuous signal. Increasing d

makes the beamwidth shorter but might cause the spatial aliasing.
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3.3 Discrete-Time Frequency-Domain Beam-

forming

Frequency-domain beamforming systems have advantages compared to the time-

domain implementation [40]. These advantages are summarized as follows:

1. saving a great deal of computation time by using the Fast Fourier Trans-

form (FFT) and

2. obtaining approximately uncorrelated signals by orthogonal transforma-

tion, which leads to the fast convergence of the estimation of beamformer’s

weights.

The short-time Fourier transform (STFT) of a sampled signal xi[n] is given

by

Xi(k, ω) =

k+Lh−1
∑

n=k

h[n − k]xi[n] exp(−jnωT ), (3.15)

where h[n] is a window function with duration Lh which assumes nonzero val-

ues only in the interval [0, Lh − 1]. The Hanning and Hamming window func-

tions [41] are popular in acoustic and speech processing. Figure 3.18 shows

the conceptual procedure of the STFT for a sound signal. The samples within

the analysis window are first transformed by the Fourier transform and then

the analysis window is shifted to the next incoming samples. This process is

repeated until the analysis window reaches the end of the signal.

The beamformer’s output can be expressed as

Y (k, ω) =

I−1
∑

i=0

wi Xi(k, ω) exp {jω(k + ∆i)} . (3.16)

With a little modification of (3.15), we have

Xi(k, ω) exp(jkωT ) =

Lh−1
∑

n=0

h[n]xi[k + n] exp(−jnωT ). (3.17)
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Figure 3.18: The procedure of the STFT.

We now re-write (3.17) with discrete frequency values ωT = 2π m/Lh, where

m = 0, · · · , Lh − 1. The simplified form can be written as

Xi(k,m) exp

(

j
2πmk

Lh

)

=

Lh−1
∑

n=0

h[n]xi[k + n] exp

(

−j
2πmn

Lh

)

. (3.18)

If you closely look at the right side of (3.18), you will find that it represents the

discrete Fourier transform (DFT) of the signal z[n] = h[n]xi[k + n]. The win-

dow function h[n] can be considered the unit-sample response of a narrowband

lowpass filter. The term h[n] exp (−j2πmn/Lh) thus represents the unit-sample

response of a bandpass filter centered at the frequency of the index m. The

equation (3.18) represents the response of the bandpass filter to the signal xi[n].

With the notations of the discrete-time and discrete-frequency, the

frequency-domain beamformer’s output can be expressed as

Y (k,m) =

I−1
∑

i=0

wi Xi(k,m) exp

{

j
2πm

Lh

(

k +
∆i

T

)}

, (3.19)

where ∆i indicates a time delay.

Upon substituting (3.18) into (3.19), we have

Y (k,m) =

I−1
∑

i=0

Lh−1
∑

n=0

wi h[n]xi[k + n] exp

{

−j
2πmn

Lh

}

exp

{

j
2πm

Lh

∆i

T

}

. (3.20)

After beamforming in the frequency domain, we have to transform the fre-

quency components back into time-sampled signals. However, multiplication of

the DFT by a phase factor would perform the circular convolution which results
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in the circular shift of the corresponding time-domain signal [41]. This effect is

called the circular aliasing wherein values trailing over a frame, once circular

shifted to the right, appear as leading samples. In more detail, the inverse DFT

(IDFT) of the beamformer’s output is expressed as

y[k, l] = IDFT [Y (k,m)]

=

I−1
∑

i=0

IDFT

[

wiXi(k,m) exp

{

j
2πmk

Lh

}

exp

{

j
2πm

Lh

∆i

T

}]

=

I−1
∑

i=0

wi h[l + ∆i/T ]Lh
xm[k + (l + ∆i/T )]Lh

, (3.21)

where (n)Lh
denotes that the index n is evaluated modulo Lh. We can see

from (3.21) that the circular convolution is different from the linear convolu-

tion as described in [40, 42]. The time-domain output of the frequency-domain

beamformer might contain the circular aliasing.

There are two techniques which can perform the linear convolution using the

DFT, that is, the overlap-save and overlap-add methods [40]. By overlapping

elements of the data sequence and discarding the components of the circular

shift from the output of the DFT product, the linear convolution of a finite

length sequence and an infinite-length sequence is obtained. However, in order

to avoid the circular aliasing, both methods require two additional DFT for the

beamformer’s weights. It is computationally expensive.

The circular aliasing can be also avoided by replacing the STFT with one

of the filter banks discussed in Chapter 4. It would be unnecessary in the filter

bank system to perform the DFT additionally.

3.4 Null-steering Beamformer

The delay-and-sum beamformer can pick up a signal propagating from a direc-

tion of interest. However, it cannot suppress interference signals coming from

other directions explicitly. How can we remove those undesired signals while em-

phasizing the desired signal? It could be achieved by a null-steering beamformer

which is obtained by solving a multiple linear constraint problem.
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Let us first define the steering vector for a source n at a (subband) frequency

bin m as dn(m). The weight vector of the delay-and-sum beamformer wds(m)

then satisfies a linear constraint

dn(m)Hwds(m) = cg, (3.22)

where cg is a constant. Note that dn(m) and wds(m) are M -by-1 vectors.

We may generalize the notion of the linear constraint by introducing multiple

liner constraints defined as

Cn(m)Hwnull(m) = cg, (3.23)

where the columns of the constraint matrix Cn(m) consist of the steering vectors

and the gain vector cg determines which source is emphasized or suppressed.

The desired weight vector can be obtained by solving the linear equation (3.23).

For example, in the case that we would like to emphasize the source 0 and

eliminate the other, (3.23) can be simplified as

[d0(m) d1(m) ]
H

wnull(m) = [ 1 0 ]T . (3.24)

It follows the two constraints

d0(m)Hwnull(m) = 1 (3.25)

d1(m)Hwnull(m) = 0 (3.26)

(3.25) implies that any signal coming from the direction associated with the

steering vector dH
0 (m) is kept unity. We can also see from (3.26) that the

interference signal propagating along the direction indicated with the vector

d1(m) is nulled.

As mentioned above, we can null out interference signals while maintaining

the unity constraint to the look direction if the positions of all the sources are

known. Such a beamformer is called the null-steering beamformer.

Figure 3.19, 3.20 and 3.21 illustrate beam patterns of the null-steering beam-

formers of the equally spaced linear array in the case that the nulls are placed on

the waves propagating with incident angle 0 and the distortionless constraints
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Figure 3.19: Beam patterns of the null-steering beamformer with 2 linear con-

straints and 7 sensors at f = 400 Hz and d = 0.05 m (λ/d = 17.19): (a) in

Cartesian coordinates and (b) in polar coordinates.

are put on arrival angle π/2. Figure 3.19 and 3.20 show the plots at frequency

f = 400 Hz with distances between the sensors 0.05 m and 0.2 m, respectively.

The beam patterns at frequency f = 3200 Hz are shown in Figure 3.21 where

the distance between the sensors is 0.2 m. It is clear from these figures that the

responses to the incident angle 0 are zero while they are kept unity against the

angle π/2.

The beam patterns of the null-steering beamformers have the same charac-

teristics as those of the delay-and-sum beamformers, that is, the larger distance

between the sensors makes the beamwidth smaller while it can cause spatial

aliasing as seen in Figure 3.21. However, we have to pay more careful attention

to the fact that interference signals could be emphasized by the null-steering

beamformer. We can see from 3.19 that the responses for the signals coming

from the angle θ < −π/2 and θ > π/2 exceed unity.
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Figure 3.20: Beam patterns of the null-steering beamformer with 2 linear con-

straints and 7 sensors at f = 400 Hz and d = 0.2 m (λ/d = 4.297): (a) in

Cartesian coordinates and (b) in polar coordinates.
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Figure 3.21: Beam patterns of the null-steering beamformer with 2 linear con-

straints and 7 sensors at f = 3200 Hz and d = 0.2 m (λ/d = 0.5371): (a) in

Cartesian coordinates and (b) in polar coordinates.
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Chapter 4

Filter Bank Systems

In this chapter, we discuss a more general form of filter bank implementation

which includes the STFT implementation. In the filter bank framework, band-

pass filters with high stop-band suppression are generally used to obtain subband

components of an input signal. Accordingly, such subband components are

more separated from each other than the frequency components obtained by

STFT. The better separation of each frequency component could lead to the

better convergence performance of estimation of beamformer’s weights at each

frequency bin. In addition, computational amounts are significantly reduced by

down-sampling the subband signals to a lower rate (decimation). Moreover, a

longer analysis duration can be taken into account without too high frequency

resolution while the analysis length in the simple SFFT analysis is equal to the

number of the frequency bins.

Various filter bank design approaches have been proposed for speech cod-

ing [11]. However, the filter bank design for subband adaptive filtering poses

problems not encountered in speech coding [9, 10, 30]. De Haan showed in [10]

that the perfect reconstruction (PR) filter banks were not suitable for beam-

forming applications because PR is achieved through aliasing cancellation [11,

§5], which can reconstruct an input signal correctly only if the outputs of the

individual subbands are not subject to arbitrary magnitude scaling and phase

59
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shifts. In [9], de Haan et al. proposed a method to design analysis and synthesis

prototypes for modulated filter banks so as to minimize the weighted combina-

tion of the response error and aliasing distortion. The filter banks proposed

in [9] are referred to as de Haan filter banks here.

This chapter shows that the response error defined in [9] can be driven to

null by constraining the analysis and synthesis prototypes to be Nyquist(M)

filters [11, §4.6.1]. Thereafter, the minimization of the aliasing distortion is

shown to reduce to the solution of an eigenvalue problem in the case of the

analysis prototype, and to the solution of a set of linear equations in the case

of the synthesis prototype. We also discuss the performance limitations of the

filter banks due to numerical problems, and propose an alternate solution for

a special case for which we can eliminate not only the total response error but

also residual aliasing distortion completely.

The rest of this chapter is organized as follows. In Section 4.1, the defini-

tion of the uniform DFT filter bank is reviewed and the notation to be used

throughout this chapter is introduced. Most importantly, Section 4.1 describes

expressions for the total response error and residual aliasing distortion that will

subsequently be minimized. In Section 4.2, we consider the design of suitable

analysis and synthesis prototypes for the modulated filter banks discussed in

Section 4.1. In particular, Sections 4.2.1 and 4.2.2 briefly present the proto-

types design methods of [9], and then show how slight modifications of those

techniques can produce prototypes with zero response error and the minimal

aliasing distortion. Section 4.3 presents an alternate method which provides

null residual aliasing distortion as well as zero total response error in a special

case. In Section 4.5, we analyze new filter banks and compare the total response

errors and aliasing distortions obtained with them to those obtained with the

de Haan filter bank design.
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Figure 4.1: Schematic of a modulated subband analysis-synthesis filter bank.

4.1 Modulated Filter Bank

Figure 4.1 illustrates the filter bank implementation in the Z-transform in the

case that single channel data is processed [11]. The filter bank analysis splits

the speech signal into frequency subbands. In Figure 4.1, a uniform DFT filter

bank with M subbands and a decimation factor of D is described. The im-

pulse responses hm[n] of the analysis filters are obtained by modulating a single

prototype h[n] according to

hm[n] = h[n]W−mn
M ↔ Hm(z) = H(zWm

M ), (4.1)

where WM = e−j2π/M denotes the M -th root of unity. As noted in [9][10], how-

ever, PR is achieved through the aliasing cancellation, which functions properly

only when the outputs of the individual subbands are not subject to arbitrary

magnitude scalings and phase shifts. Hence, the PR design is not suitable for

beamforming and adaptive filtering.

Following [9], we will define a separate prototype g[n] for the synthesis bank,

and stipulate that the individual prototypes gm[n] are related to g[n] according

to

gm[n] = g[n]W−mn
M ↔ Gm(z) = G(zWm

M ). (4.2)

The outputs Vm(z) of the analysis filters can be expressed as

Vm(z) = Hm(z)X(z) = H(zWm
M )X(z). (4.3)
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Then the decimators expand the spectrums [11, §4.2] according to

Xm(z) =
1

D

D−1
∑

d=0

Vm(z1/DW d
D)

=
1

D

D−1
∑

d=0

H(z1/DWm
MW d

D)X(z1/DW d
D). (4.4)

The last equation indicates that Xm(z) consists of the sum of a stretched output

of the mth filter bank and D − 1 aliasing terms.

At this point, the fixed subband weights Fm can be applied to the decimated

signals to achieve the desired adaptive filtering effect

Ym(z) = FmXm(z). (4.5)

The expanders then compress the signals Ym(z) according to

Um(z) = Ym(zD) =
1

D
Fm

D−1
∑

d=0

H(zWm
MW d

D)X(zW d
D). (4.6)

In the last step, the signals Um(z) are processed by the synthesis filters Gm(z) in

order to suppress the spectral images created by the expanders, and the outputs

of the synthesis filters are summed together according to

Y (z) =

M−1
∑

m=0

Um(z)Gm(z). (4.7)

The final relation between the input and output signals can be expressed as

Y (z) =
1

D

D−1
∑

d=0

X(zW d
D)

M−1
∑

m=0

Fm H(zWm
MW d

D)G(zWm
M ). (4.8)

Upon defining

Am,d(z) =
1

D
Fm H(zWm

MW d
D)G(zWm

M ), (4.9)

the output relation (4.8) can be written more conveniently as

Y (z) =

D−1
∑

d=0

Ad(z)X(zW d
D), (4.10)

where

Ad(z) =

M−1
∑

m=0

Am,d(z). (4.11)
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The transfer function A0(z) produces the desired signal, while the remaining

transfer functions Ad(z) for d = 1, . . . ,D − 1 give rise to the residual aliasing

distortion in the output signal.

Subband beamforming deals with multi-channel inputs. As you might easily

imagine, it will be realized by adding the blocks of the analysis filter banks

for the multiple channels to Figure 4.1 and replacing FmX with beamformer’s

weights so that filtering can be performed on every channel data.

4.2 Prototype Design

4.2.1 Analysis Prototype Design

In order to design the analysis prototype h[n], de Haan et al. [9] define the

objective function

ǫh = αh + βh, (4.12)

where the passband response error is

αh =
1

2ωp

∫ ωp

−ωp

∣

∣H(ejω) − Hd(ejω)
∣

∣

2
dω, (4.13)

and the inband-aliasing distortion is given by

βh =
1

2π

∫ π

−π

D−1
∑

d=1

∣

∣

∣
H(ejω/DW d

D)
∣

∣

∣

2

dω. (4.14)

In (4.13) the desired filter bank response Hd(ejω) is assumed to correspond to a

pure delay of τH samples, such that

Hd(ejω) = e−jωτH . (4.15)

Notice that the time delay corresponds to the phase shift in the frequency do-

main. Defining

h =
[

h[0] h[1] · · ·h[Lh − 1]
]T

, (4.16)

φh(z) =
[

1 z−1 · · · z−(Lh−1)
]T

, (4.17)
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they then demonstrate that the passband response error can be expressed as

αh = hT Ah − 2hT b + 1, (4.18)

where

A = 1
2ωp

∫ ωp

−ωp
φh(ejω)φH

h (ejω)dω, (4.19)

b = 1
2ωp

∫ ωp

−ωp
Re

{

ejωτH φh(ejω)
}

dω. (4.20)

Based on (4.19–4.20), the components of A and b can be expressed as

Ai,j =
sin(ωp(j − i))

ωp(j − i)
, (4.21)

bi =
sin(ωp(τH − i))

ωp(τH − i)
. (4.22)

The inband-aliasing term (4.14) can be expressed as

βh =
1

2π

D−1
∑

d=1

hT

[∫ π

−π

φh
(

ej ω
D W d

D

)

φH
h

(

ej ω
D W d

D

)

dω

]

h. (4.23)

The last equation can be rewritten as

βh = hT Ch, (4.24)

where

C =
1

2π

D−1
∑

d=1

∫ π

−π

φh

(

ej ω
D W d

D

)

φh
H

(

ej ω
D W d

D

)

dω. (4.25)

The components of C can then be expressed as

Ci,j =
ϕ[j − i] sin

(

π(j−i)
D

)

π(j − i)
(4.26)

where

ϕ[n] = D
∞
∑

k=−∞
δ[n − kD] − 1.

Combining all terms above, de Haan et al. then seek to minimize the objec-

tive function

ǫh = αh + βh

= hT (A + C)h − 2hT b + 1. (4.27)

Thus, the prototype h proposed in [9] must satisfy

(A + C)h = b. (4.28)
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Polyphase Components

Any given filter function H(z) can be decomposed as

H(z) =

M−1
∑

l=0

z−l El(z
M ), (4.29)

where

El(z) ,
∞
∑

n=−∞
el(n) z−n (4.30)

and

el[n] , h(Mn + l), for all 0 ≤ l ≤ M − 1. (4.31)

Equation (4.29) is known as the Type 1 polyphase representation of H(z) and

the set {El(z)} is, by definition, composed of the Type 1 polyphase components

of H(z); see [11, §4.3]. The Type 1 polyphase components are very useful for

the efficient implementation of a modulated analysis filter bank. The implemen-

tation of a modulated synthesis bank typically relies on the Type 2 polyphase

representation:

H(z) =

M−1
∑

l=0

z−(M−1−l) Rl(z
M ), (4.32)

where the set of Type 2 polyphase components {Rl(z)} are obtained from per-

mutation of the Type 1 polyphase components,

Rl(z) = EM−1−l(z). (4.33)

Nyquist(M) Filters

Suppose that a filter function H(z) has been represented in Type 1 polyphase

form, and the 0-th polyphase component is constant, such that

H(z) = c + z−1 E1(z
M ) + · · · + z−(M−1) EM−1(z

M ). (4.34)

A filter with this property is said to be a Nyquist(M) or M -th band filter [11,

§4.6.1], and its impulse response clearly satisfies

h[Mn] =











c, n = 0

0, otherwise

(4.35)
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The definition in (4.34) can be generalized by assuming that

H(z) = cz−mdM + z−1 E1(z
M ) + · · ·

+z−(M−1) EM−1(z
M ).

(4.36)

The impulse response of H(z) must then satisfy

h[Mn] =











c, n = md

0, otherwise

(4.37)

If H(z) satisfies (4.34) with c = 1/M , then

M−1
∑

k=0

H(zW k) = Mc = 1, (4.38)

where W = e−j2π/M . Hence, all M uniformly shifted versions of H(ejω) add up

to a constant. Similarly, if H(z) satisfies (4.36), then

M−1
∑

k=0

H(zW k) = z−mdM , (4.39)

in which case, in the absence of decimation, the output of the analysis filter

bank would be equivalent to the input delayed by mdM samples.

Notice that (4.39) represents a much stronger condition than that aimed

at by the minimization of (4.13), in that (4.39) implies the response error will

vanish, not just for the pass band of a single filter, but for the entire working

spectrum, including the transition bands between the passbands of adjacent fil-

ters. Hence, we can replace the term αh in the optimization criterion (4.12)

with a constraint of the form (4.37), then minimize the inband-aliasing distor-

tion (4.23) subject to this constraint. The inband-aliasing distortion reduces

to (4.24), the optimization of which clearly admits the trivial solution h = 0.

To exclude this solution, we impose the additional constraint

hT h = 1, (4.40)

which is readily achieved through the method of undetermined Lagrange multi-

pliers. We posit the modified objective function

f(h) = hT Ch + λ(hT h − 1) (4.41)



4.2. PROTOTYPE DESIGN 67

where λ is a Lagrange multiplier. Upon setting

∇f(h) = 0,

we find

Ch + λh = 0,

which implies

Ch = −λh. (4.42)

Hence, h is clearly an eigenvector of C. Moreover, in order to ensure h mini-

mizes (4.24), it must be that eigenvector associated with the smallest eigenvalue

of C. Note that, in order to ensure that h satisfies either (4.35) or (4.37), we

must delete those rows and columns of C corresponding to the components of

h that are identically zero. We then solve the eigenvalue problem (4.42) for the

remaining components of h, and finally reassemble the complete prototype by

appropriately concatenating the zero and non-zero components. This is similar

to the construction of the eigenfilter described in [11, §4.6.1].

4.2.2 Synthesis Prototype Design

In order to design the synthesis prototype, de Haan et al. [9] take as an objective

function

ǫg(h) = γg(h) + δg(h) (4.43)

where the total response error is defined as

γg(h) =
1

2π

∫ π

−π

∣

∣A0(e
jω) − e−jωτT

∣

∣

2
dω, (4.44)

the total analysis-synthesis filter bank delay is denoted as τT , and the residual

aliasing distortion is

δg(h) =
1

2π

D−1
∑

d=1

M−1
∑

m=0

∫ π

−π

∣

∣Am,d(e
jω)

∣

∣

2
dω. (4.45)

Through manipulations similar to those used in deriving the quadratic objective

criterion for the analysis filter bank, it can be shown that

γg(h) = gT Eg − 2gT f + 1. (4.46)
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The components of E and f are given by

Ei,j =
M2

D2

∞
∑

k=−∞
h∗[kM − i]h[kM − j] (4.47)

fi =
M

πD
h[τT − i]. (4.48)

Similarly, the quadratic form for the residual aliasing distortion is

δg(h) = gT Pg, (4.49)

where the components of P are given by

Pi,j =
M

D2

∞
∑

l=−∞
h∗[l + j]h[l + i]ϕ[i − j],

ϕ[n] = D

∞
∑

k=−∞
δ[n − kD] − 1.

De Haan et al. [9] introduced a weighting factor v to emphasize either the total

response error (for 0 < v < 1) or residual aliasing distortion (for v > 1):

ǫg(h) = γg(h) + vδg(h) (4.50)

= gT (E + vP)g − 2gT f + 1. (4.51)

Hence, their synthesis prototype g must satisfy

(E + vP)g = f . (4.52)

Nyquist(M) Constraint

As with the analysis prototype, we can now impose the Nyquist(M) constraint

on the complete analysis-synthesis prototype (h ∗ g)[n] such that

(h ∗ g)[Mn] =











c, n = md,

0, otherwise,

(4.53)

in which case the total response error (4.44) must be identically zero. Subject to

this constraint, we minimize the residual aliasing distortion (4.51). Satisfaction
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of (4.53) clearly reduces to a set of linear constraints of the form

gT h−m+1 = 0,

...

gT h0 = c, (4.54)

...

gT hm−1 = 0,

where hk is obtained by shifting a time-reversed version of h by kM samples

and padding with zeros as needed. Equation (4.54) can be rewritten as

gT H = cT , (4.55)

where

H = [h−m+1, . . . ,h0, . . . ,hm−1], (4.56)

cT = [0, . . . , c, . . . , 0]. (4.57)

For the constrained minimization problem at hand, we again draw upon

the method of undetermined Lagrange multipliers and formulate the objective

function

f(g) = gT Pg + (gT H − cT )λ, (4.58)

where λ = [λ−m+1, . . . , λ0, . . . , λm+1]
T . Setting

∇f(g) = 2Pg + Hλ = 0, (4.59)

we find

g = −1

2
P−1Hλ. (4.60)

The values of the multipliers {λk} can be determined by substituting (4.60)

into (4.55) and solving

λ = −2
(

HT P−1H
)−1

c. (4.61)

By substituting (4.61) into (4.60), we finally obtain a synthesis prototype

g = P−1H
(

HT P−1H
)−1

c. (4.62)
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4.3 Alternative Method for Singular C and P

The optimal prototypes can be obtained by solving (4.42) and (4.62) if the

matrices C and P are not singular. When those matrices are ill-conditioned,

however, a different solution is required.

Theoretically speaking, the matrices C and P should not be singular because

they are positive definite. From (4.14) and (4.24), the matrix C clearly satisfies

hT Ch ≥ 0. (4.63)

With (4.45) and (4.49), we also find

gT Pg ≥ 0. (4.64)

It is obvious from (4.63) and (4.64) that the matrices C and P are positive defi-

nite unless the frequency responses of the analysis and synthesis prototypes are

identically zero in the stopbands. In our cases, those matrices should be positive

definite and accordingly invertible. We have observed, however, that as energy

in the stopbands of the analysis and synthesis prototypes approaches zero, the

matrices C and P became computationally singular due to the limitations of

floating point accuracy. This typically occurs when the decimation factor D is

small compared to the length of the prototype filter Lh. In those cases when

C singular, we can denote its nullspace as Cnull, which consists of those column

vectors q ∈ Rn : Cq = 0. The singular value decomposition (SVD) [43] can be

used in order to obtain a basis for the nullspace of C. Under the SVD, C is

decomposed into

C = UΣVT . (4.65)

The bases of the null space of C can be obtained from the columns of V, which

correspond to singular values below a threshold. In this work, the threshold σ

is chosen such that

σ = max(m,n) × max(σi) × ǫf

where m and n are respectively the number of rows and columns in C, the ith

singular value is denoted by σi, and ǫf is the floating point accuracy of the

machine used for SVD computations.
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Obviously, the inband-aliasing distortion can be driven to null by an analysis

prototype which is represented as a linear combination of the basis vectors of the

nullspace h = Cnull x. The free parameters x are determined so as to minimize

the passband response error (4.18), the solution of which can be expressed as

h = Cnull(C
T
nullACnull)

−1CT
nullb, (4.66)

where rows and columns of Cnull, A and b, corresponding to the components

of h that are identically zero, are deleted, and h is reassembled so as to keep

the Nyquist(M) constraint.

For the synthesis prototype design, we can also eliminate residual aliasing

distortion (4.49) in a similar manner. Denoting the nullspace of P as Pnull, we

can express the synthesis prototype as g = Pnully. Then by substituting it into

(4.55), we have

y = (HT Pnull)
+c (4.67)

where (·)+ indicates the peseudoinverse of (·). If the number of column vectors

of Pnull is greater than or equal to 2m − 1, we can find a synthesis prototype

g = Pnully with zero total response error and residual aliasing distortion. We

finally express the synthesis prototype with basis of the nullspace as

g = Pnull(H
T Pnull)

+c. (4.68)

In practice, as the inband-aliasing distortion is very small, P becomes practically

singular. In that case, with the method described here, we can achieve zero

inband-aliasing and residual aliasing distortions.

4.4 Design Examples

Energy in the stopband of the filters results in aliasing. The stopband atten-

uation is one of the important factors to indicate how good a prototype is.

Figures 4.2, 4.3 and 4.4 show the frequency responses of the analysis, synthesis

and composite analysis-synthesis prototypes respectively. Each figure presents

the frequency responses of a uniform DFT filter bank using the PR prototype
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Figure 4.2: Frequency response of analysis filter bank prototypes with M = 8

subbands, decimation factor D = 4, and filter length Lh = 16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 [d

B
]

 

 

Nyquist(M) FB
de Haan FB
PR FB

Figure 4.3: Frequency response of synthesis filter bank prototypes with M = 8

subbands , decimation factor D = 4, and filter length Lh = 16.
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Figure 4.4: Frequency response of proposed composite analysis-synthesis filter

bank prototypes with M = 8 subbands, decimation factor D = 4 and filter

length Lh = 16.
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Figure 4.5: Inband aliasing distortion βh for the number of subbands M . The

filter length is set to Lh = 2M .

design (PR FB), de Haan prototype design (de Haan FB), and the proposed

prototype design (Nyquist(M) FB), where the number of subbands is M = 8

and the decimation factor is D = 4. From those figures, we can readily see that

the filter banks designed by the proposed algorithm provide the highest suppres-

sion in the stopband, followed by de Haan prototype and then by the PR filter

prototype. Again, in the case that arbitrary magnitude scalings and phase shifts

are applied to the subband samples, the PR property is not retained. Hence, it

is important to minimize the stopband energy of each filter individually.

4.5 Evaluation of Errors in Filter Prototypes

From the inband and residual aliasing distortions, we can predict the robustness

of filter banks for aliasing caused by arbitrary magnitude scaling and phase

shifts [10].

A relationship between the aliasing distortions and the number of subbands
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Figure 4.6: Residual aliasing distortion ǫg(h) for the number of subbands M .

The filter length is set to Lh = 2M .

might be helpful for designing a beamforming system. Figures 4.5 and 4.6 show

the inband and residual aliasing distortions against the number of subbands,

where the decimation factor is set to D = M/2.

Inasmuch as decreasing the inband-aliasing distortion leads to smaller resid-

ual aliasing distortion, it is important to minimize the inband-aliasing distortion.

As shown in Figure 4.5, the proposed Nyquist(M) filter prototype provides a

smaller inband-aliasing distortion than the prototype designed by de Haan’s al-

gorithm, because the proposed design algorithm minimizes the inband-aliasing

distortion directly while de Haan’s minimize a linear combination of the pass-

band response error and inband-aliasing distortion.

We can see from Figure 4.6 that the proposed algorithm can keep the residual

aliasing distortion much lower than the conventional method. It is also clear

from Figure 4.6 that the residual aliasing distortion of the Nyquist(M) filter

banks monotonically decreases with respect to the number of subbands M while

those of de Haan filter banks are rather invariant to it. De Haan’s algorithm



76 CHAPTER 4. FILTER BANK SYSTEMS

Figure 4.7: Inband-aliasing distortion βh for decimation factor D. The number

of subbands is M = 256 or M = 512 and the filter length is set to Lh = 2M .

minimizes the linear combination of the total response error and residual aliasing

distortion, equation (4.50). Hence, the additional term of the total response

error γg(h) prevents the residual aliasing error δg(h) from being suppressed.

In contrast, the new design technique minimizes the residual aliasing distortion

only while keeping zero total response error. As a result, the residual aliasing

distortion of the Nyquist(M) filter simply decreases as M increases, due mostly

to the increase of the number of free parameters with respect to the number of

constraints.

The aliasing errors can be also reduced by decreasing the decimation factor

D although it increases the computational cost associated with adaptive pro-

cessing. Figure 4.7 presents the inband-aliasing distortions for decimation factor

D with de Haan’s and proposed filter banks, where each line corresponds to a

number of subbands, M = 256 or 512, and the filter length is set to 2M . It is

clear from Figure 4.7 that the proposed method suppresses the inband-aliasing

distortion more than de Haan’s algorithm in most cases.
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Figure 4.8: Residual aliasing distortion ǫg(h) for decimation factor D. The

number of subbands is M= 256 or M = 512 and the filter length is set to

Lh = 2M .

In calculating the inband-aliasing distortion for the decimation factor, it was

observed that the matrix C was singular when the number of subbands and the

decimation factor were set to M = 256 and D ≤ 32 or M = 512 and D ≤ 64. In

such cases, we could find the nullspace and then use the alternate solution for

the design of the analysis prototype instead of the eigen decomposition solution.

Figure 4.8 shows the residual aliasing distortion calculated with (4.49) in the

same conditions as Figure 4.7. In Figure 4.8, de Haan filter banks are calculated

with weighting factor v = 100.0. It is clear from Figure 4.8 that the smallest

residual aliasing distortions are achieved with the proposed Nyquist(M) filter

banks. It is worth noting that when C was singular, P was also singular and

the synthesis prototypes were calculated with the bases of the nullspace of the

matrix P.

Figure 4.9 shows the residual aliasing distortions of the Nyquist(M) filter

banks with the alternate method and without it, where the number of sub-
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Figure 4.9: Comparison of the Nyquist(M) filter banks designed with the alter-

nate method and without it. The number of subbands is M = 512 and the filter

length is set to Lh = 2M .

bands is set to 512. As a reference, the residual aliasing distortion of the de

Haan filter bank is also shown in Figure 4.9. In the case that the filterbanks

whose decimation factor D is set to less than 128 are entirely designed based

on (4.42) and (4.62), the obtained solutions are instable due to the singular ma-

trices. It is clear from Figure 4.9 that the residual aliasing distortion does not

decrease monotonically but increases when the matrices C and P are singular.

The nullspace based method can suppress the aliasing distortion even if these

matrices are singular.

It could be important to know when the matrices C and P are ill-conditioned

and computationally singular. We show common logarithms of condition num-

bers of those matrices in Figure 4.10. It is generally considered that a matrix is

ill-conditioned when the condition number is too big, i.e. close to a reciprocal

of floating point accuracy which is described as the threshold in Figure 4.10. As

indicated in Figure 4.10, the smaller the decimation factor is set, the larger the
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Figure 4.10: The common logarithm of the condition number of C and P for

decimation factor D. The number of subbands is M = 512 and the filter length

is set to Lh = 2M .
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Figure 4.11: Residual aliasing distortion ǫg(h) for weighting factor v. The

number of subbands is M = 512 and the filter length is Lh = 2M .

condition number becomes. The condition numbers reach the threshold in the

case of decimation factor D ≤ 64 in Figure 4.10.

One might intuitively consider that the residual aliasing distortion would

decrease for the decimation factor monotonically. However, Figure 4.8 shows

that each curve of the residual aliasing distortion of de Haan’s filter bank has a

peak at D = M/2.

In order to look further into the reason, we calculated the residual aliasing

distortions with D = 256 and D = 512. Figure 4.11 shows the residual aliasing

distortions for weighting factor v. From Figure 4.11 it is seen that the residual

aliasing distortion of D = 512 is smaller than that of D = 256 in the case of

v ≥ 100.0.

We also show the total response errors for weighting factor v in Figure 4.12.

It is clear from Figure 4.11 and Figure 4.12 that the residual aliasing distortion

can be reduced by setting a large weighting factor v at the expense of the total

response error. Notice that the total response error is zero in the Nyquist(M)
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Figure 4.12: Total response error γg(h) for weighting factor v. The number of

subbands is M = 512 and the filter length is Lh = 2M .

filter bank.

Since the Nyquist(M) filter banks achieve zero total response error and their

residual aliasing distortion can be driven down below machine precision through

a suitable selection of the decimation factor, it could be that such filter banks

provide reconstruction that is “perfect” up to machine precision . In order

to investigate this possibility, we calculated the mean square (MS) error ǫMS

between the input x[n] and output y[n] of the filter bank normalized by the MS

amplitude of the input, which can be expressed as

ǫMS = 10 log10

∑N−1
n=0 (x[n] − y[n])

2

∑N−1
n=0 x2[n]

.

Figure 4.13 shows the MS errors of the PR, Nyquist(M), de Haan filter banks

for the decimation factor. Of course, the PR filter bank can reconstruct an

exact input signal through the aliasing cancellation. Therefore, as shown in

Figure 4.13, the PR filter bank provides the smallest MS error. The error of the

PR filter bank is mainly because of the round-off error. We can also see from
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Figure 4.13: Mean square error (dB) for the decimation factor D, where M=512

Figure 4.13 that the MS errors of the Nyquist(M) filter banks with D ≤ 128

are negligibly small. The total response error of de Haan’s filter banks can be

decreased by setting the small weighting factor v. However, even if v is set to

0.01, as indicated in Figure 4.13, its MS error is the highest of the three filter

banks.

Amplification of a signal would make no difference for automatic speech

recognition (ASR), given that ASR front-ends all apply gain control. Therefore

we also consider the normalized MS error which is invariant to such a scaling

can be expressed as

ǫNorm MS = 10 log10

∑N−1
n=0

(

x[n] − y[n]

√

PN−1
n=0 x2[n]

PN−1
n=0 y2[n]

)2

∑N−1
n=0 x2[n]

.

In this measure, the output signal is scaled so that its MS amplitude is equiv-

alent to that of the input. Figure 4.14 shows the normalized MS errors of the

PR, Nyquist(M), de Haan filter banks for the decimation factor. Just as in

Figure 4.13, the de Haan filter bank provides the worst MS error, followed by

the Nyquist(M) filter bank, then by the PR filter bank. It can also seen from
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Figure 4.14: Normalized mean square error (dB) for the decimation factor D,

where M=512

Figure 4.14 that the weighting factor v of de Haan’s filter bank has no impact

on the normalized MS error. This would seem to suggest that it is better to set

the weighting factor v to a large value for ASR.
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Chapter 5

Beamforming with Second

Order Statistics

The delay-and-sum beamforming methods discussed in Chapter 3 do not take

into consideration characteristics of a desired signal and noise which are avail-

able in many cases. By incorporating the characteristics of the signals into the

beamforming algorithm, we might improve performance of the speech enhance-

ment.

Several beamforming techniques for adaptively adjusting the sensor weights

according to the characteristics of the observed signals have been developed.

Most of the conventional adaptive beamforming algorithms use covariance ma-

trices of noise and observed signals which are referred to as second order statis-

tics(SOS) in this dissertation. The adaptive beamforming algorithms with SOS

can generally suppress noise better than delay-and-sum beamforming. They

have the sharper directivity pattern at low frequency.

The literature uses the term adaptive inconsistently. The term can mean

any algorithm whose characteristics depend on the observed data or refer to

only those algorithms that update the weights as each observation is received.

This thesis refers to the former as adaptive algorithms while denoting the latter

85
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as dynamic adaptive algorithms. In this thesis, unless the dynamic adaptive

beamforming algorithms are described, the time index is omitted for the sake

of simplicity.

The balance of this chapter is organized as follows. Section 5.1 reviews

the most basic adaptive beamforming algorithm which minimizes the variance

of beamformer’s outputs subject to a distortionless constraint. In 5.2, an al-

ternative implementation in generalized sidelobe canceller (GSC) configuration

is presented. Section 5.3 describes a different GSC beamformer which takes

into account a transfer function (TF) from a desired signal to microphones.

That beamformer is referred to as the TF-GSC beamformer. A beamforming

algorithm viewed as an extension of the TF-GSC beamformer is described in

Section 5.4.

5.1 Minimum Variance Distortionless Response

Beamformer

Interference signals can be suppressed by minimizing the variance of beam-

former’s output while maintaining the distortionless constraint in the direction

of the desired signal.

Let us first define the steering vector d(m) at subband m as

d(m) =

[

exp

{

−j
2πm

M

∆1

T

}

, · · · , exp

{

−j
2πm

M

∆i

T

}

, · · · , exp

{

−j
2πm

M

∆I−1

T

}]T

.

(5.1)

We then determine the optimum weight vector that minimizes the variance

of the beamformer’s output

wH(m)ΣVV(m)w(m), (5.2)

subject to the distortionless constraint in the look direction

wH(m)d(m) = 1, (5.3)

where ΣVV(m) is the covariance matrix of noise.
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The well-known solution is called a minimum variance distortionless response

(MVDR) beamformer [6, §13.3.1]. The weight vector of the MVDR beamformer

at subband m can be expressed as

wMVDR(m) =
Σ−1

VV(m)d(m)

dH(m)ΣVV
−1(m)d(m)

. (5.4)

In order to avoid excessively large sidelobes in the beam pattern and the

attendant non-robustness , small values are typically added to the main diagonal

of ΣVV(m), which is called the diagonal loading [6, §13.3.7]. With the amount

of diagonal loading σd, the weight vector of the MVDR beamformer can be

written as

wMVDR(m) =
(ΣVV + σdI)

−1
(m)d(m)

dH(m) (ΣVV + σdI)
−1

(m)d(m)
. (5.5)

Figure 5.1, 5.2 and 5.3 show the beam patterns of the MVDR beamformer at

frequencies 400 Hz, 800 Hz and 3200 Hz, respectively. In the figures, the MVDR

beamformer is constructed for a linear array with seven equally-spaced sensors,

that have an intersensor spacing of d = 0.2 m. The diagonal loading of the

MVDR beamformer is 0.001, and the look direction is set to π/2 (= 90o); the

interference signal is assumed to come from angle 0. It is clear from Figure 5.1,

5.2 and 5.3 that the MVDR beamformer can maintain the unity gain for the

look direction π/2. It is also clear that the MVDR beamformer can place a null

on the arrival direction of the interference signal. It is also clear from Figure 5.2

that the gain for other than the look direction can exceed unity since there is no

constraint except for the directions 0 in this case. This implies that performance

of the noise suppression of the MVDR beamformer can be seriously degraded

in the event of a steering error, which by definition occurs when the direction

of arrival of the desired source is not precisely known.

The MVDR beamformer can suppress I − 1 directional interference signals,

where I is the number of sensors. In the case that there are two interference

signals at directions 0 and π (= 180o), the beam patterns at 400 Hz, 800 Hz

and 3200 Hz are shown in Figure 5.4, 5.5 and 5.6, respectively. The plots in

Figure 5.4, 5.5 and 5.6 are computed under the same conditions as in Fig-

ure 5.1, 5.2 and 5.3 except for the number of the interference signals. It is clear
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Figure 5.1: Beam patterns of the MVDR beamformer with 7 sensors at f = 400

Hz and d = 0.2 m (λ/d = 4.297): (a) in Cartesian coordinates and (b) in polar

coordinates.
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Figure 5.2: Beam patterns of the MVDR beamformer with 7 sensors at f = 800

Hz and d = 0.2 m (λ/d = 2.148): (a) in Cartesian coordinates and (b) in polar

coordinates.
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Figure 5.3: Beam patterns of the MVDR beamformer with 7 sensors at f = 3200

Hz and d = 0.2 m (λ/d = 0.5371): (a) in Cartesian coordinates and (b) in polar

coordinates.

from Figure 5.4, 5.5 and 5.6 that the MVDR beamformer can suppress two in-

terference signals by putting nulls on the directions 0 and π while maintaining

the distortionless constraint for the look direction π/2.

The MVDR beamfomers would attempt to null out any interfering signal,

but are prone to the signal cancellation problem [12] whenever there is an inter-

fering signal that is correlated with the desired signal. In realistic environments,

interference signals are highly correlated with a target signal since the target

signal is reflected from hard surfaces such as walls and tables. Therefore, the

adaptation of the weight vector is usually halted whenever the desired source is

active.

5.1.1 Model of Noise Field

It is often better to use a noise filed model than to calculate the covariance ma-

trix from actual noise observations directly. Two models that appear frequently

in the literature are the incoherent and diffuse noise models [44].

In the case that a noise field is spatially uncorrelated (incoherent), the cor-

relation of noise signals received at microphones at any given spatial location

is zero. The covariance matrix in (5.2) then becomes an identity matrix, that
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Figure 5.4: Beam patterns of the MVDR beamformer with 7 sensors at f = 400

Hz and d = 0.2 m (λ/d = 4.297) in the case that there are two interference

signals arriving from 0 and π (=180◦): (a) in Cartesian coordinates and (b) in

polar coordinates.
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Figure 5.5: Beam patterns of the MVDR beamformer with 7 sensors at f = 800

Hz and d = 0.2 m (λ/d = 2.148) in the case that there are two interference

signals arriving from 0 and π (=180◦): (a) in Cartesian coordinates and (b) in

polar coordinates.
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Figure 5.6: Beam patterns of the MVDR beamformer with 7 sensors at f = 3200

Hz and d = 0.2 m (λ/d = 0.5371) in the case that there are two interference

signals arriving from 0 and π (=180◦): (a) in Cartesian coordinates and (b) in

polar coordinates.

is, ΣVV(m) = I. Under these conditions, the MVDR solution for the sensor

weights becomes equivalent to those of the delay-and-sum beamformer. The

incoherent noise model is often appropriate when the distance between micro-

phones is large and there are no coherent noise sources.

If spatially separated microphones receive equal energy and random phase

noise signals from all directions simultaneously, it is called a spatially isotropic

(diffuse) noise field. In the case of the diffuse noise field, each component of the

matrix ΣVV(m) can be expressed as

Σvivj
(m) = sinc

(

2π
m

M

dij

c

)

, (5.6)

where dij is the distance between the i-th and j-th microphones [44].

5.2 Generalized Sidelobe Canceller

The MVDR beamformer could be implemented in a more computationally effi-

cient way where the beamformer is constructed in generalized sidelobe canceller

(GSC) configuration. McCowan et al. [36] reported that the GSC beamformer

can improve performance of speech enhancement as well as speech recognition.
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Figure 5.7: The Generalized Sidelobe Canceller (GSC) beamformer.

Figure 5.7 illustrates a beamformer in GSC configuration. The weights of

the GSC beamformer at frequency bin m consists of three components, the

quiescent vector wq(m), the blocking matrix B(m) and the active weight vector

wa(m).

The output of the beamformer at frame k for a given subband can be ex-

pressed as

Y (k,m) = (wq(m) − B(m)wa(m))
H

X(k,m), (5.7)

where X(k,m) is the input subband snapshot vector.

In keeping with the GSC formalism, wq(m) is chosen to give unity gain

in the desired look direction [6, §13.3.7]; i.e., to satisfy the distortionless con-

straint. The blocking matrix B(m) is chosen to be orthogonal to wq(m) such

that BH(m)wq(m) = 0. The blocking matrix can be calculated with an orthog-

onalization technique such as the modified Gram-Schmidt method, QR decom-

position or singular value decomposition (SVD) [45]. The orthogonality implies

that the distortionless constraint will be satisfied for any choice of wa(m). In

the case that the position of a sound source is static, the active weight vector is

typically adjusted so that the variance of the beamformer’s outputs is minimized

as

min
wa(m)

E{|Y (k,m)|2}. (5.8)
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By using (5.7), we can rewrite the variance as

E{|Y (k,m)|2} = (wq(m) − B(m)wa(m))
H

ΣXX(m) (wq(m) − B(m)wa(m)) ,

(5.9)

where ΣXX(m) is the covariance matrix of the inputs. Without the diagonal

loading, the solution of the active weight vector can be expressed as

wa(m) =
(

BH(m)ΣXX(m)B(m)
)−1

BH(m)ΣXX(m)wq(m). (5.10)

The diagonal loading is often applied in order to penalize large active weight

vectors, and thereby improve robustness by inhibiting the formation of exces-

sively large sidelobes [6, §13.3.8]. Such a regularization term can be applied in

the present instance by defining the modified optimization criterion

J (Y (m);α) = J(Y (m)) + α‖wa(m)‖2, (5.11)

where α > 0 and J(Y (m)) = E{|Y (k,m)|2}.
Like the MVDR beamformer, the GSC beamformer can suppress interference

signals effectively. However, it also leads to the signal cancellation in the case

that there are signals which are correlated with the desired signal. In order to

avoid the signal cancellation problem, the blocking matrix has to be carefully

designed [18, 20].

5.3 Transfer Function GSC Beamformer

The quiescent vectors of the conventional GSC beamformer described in the

previous section compensate each delay of arrival of the desired signal. Although

the desired signal should be eliminated by the blocking matrix, the outputs of

the blocking matrix usually contain components of the desired signal in practice

due to steering errors or reverberation effects. The leakage of the desired signal

to the adaptive noise canceller causes the signal cancellation problem. One of

the solutions to that problem is to build a blocking matrix which is orthogonal to

the acoustic transfer function (TF) from the desired source to the microphones.
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As discussed in more detail below, such a blocking matrix can remove the desired

signal from the output of the blocking matrix.

This section first formulates the description of the problem and then de-

scribes that the signal cancellation problem can be solved by using the ratios

of the TFs instead of just compensating the delays. After that, a method for

estimating the TF ratio is briefly explained.

5.3.1 Problem formulation

In realistic environments, sounds reflect from hard surfaces such as tables, walls,

cellings and so on. Accordingly, sensors receive echoes of a desired signal. Con-

sider that a source signal S(k,m) is captured with I microphones in a reverber-

ant enclosure. Let us define the time invariant TF from the source to the i-th

microphone Ai(m) and an additive noise signal at the i-th microphone Vi(k,m).

Subband components of the received signals at frame k and frequency bin

m can be expressed as

X(k,m) = A(m)S(k,m) + V(k,m), (5.12)

where

A(m) = [A0(m), A1(m), · · · , AI−1(m)]
T

V(k,m) = [V0(k,m), V1(k,m), · · · , VI−1(k,m)] .T

The final goal of the beamforming algorithms is to extract the source signal

from the received noisy signal.

5.3.2 GSC Beamformer with TF Ratio

In the case that we know the actual acoustic TF exactly, we can extract the

source signal. It is, however, difficult to estimate it in practice. Instead, Gannot

et al. [24] estimated the ratios of the TFs.

That ratio can be written as

H̃(m) =
AT (m)

A0(m)
= [1,

A1(m)

A0(m)
, · · · ,

AI−1(m)

A0(m)
]T . (5.13)
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In [24], the quiescent vector is then replaced with the TF ratio. The output

of the fixed beamformer at the upper branch can be expressed as

Yup(k,m) =
H̃H(m)

||H̃(m)||2
X(k,m) (5.14)

= A0(m)S(k,m) +
H̃H(m)

||H̃(m)||2
V(k,m). (5.15)

It is clear from (5.15) that the output at the upper branch has components of

the desired signal distorted by the first TF.

The blocking matrix should prevent the components of the desired signal

from entering into the following noise canceller in order to avoid the signal

cancellation. It will be achieved if we design the blocking matrix so that AHB =

0 is satisfied. In order to satisfy that orthogonality, Gannot et al. in [24]

considered the following blocking matrix with the TF ratio

B(m) =























−A∗

1(m)
A∗

0(m) −A∗

2(m)
A∗

0(m) · · · −A∗

I−1(m)

A∗

0(m)

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1























. (5.16)

The output of the blocking matrix can be then expressed as

Yb,i(k,m) = Xi(k,m) − Ai(m)

A0(m)
X0(k,m) i = 1, · · · , I − 1. (5.17)

This matrix can null out the acoustic paths from the desired signal to the

microphones, which implies that any component of the desired signal is blocked.

Accordingly, we can expect to obtain the ideal reference noise signal from the

output of the blocking matrix.

Recall that the goal is to minimize the total output power of the beamformer

under the constraint on the response at the desired direction. It is achieved by

adjusting the active weight vectors in the same way as the conventional GSC

beamformer. If the blocking matrix can remove the desired signal component

perfectly, the adaptive canceller will suppress noise only without the signal
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cancellation. Gannot et al. used the leaky least mean square (LMS) algorithm

for this purpose [24].

5.3.3 Methods for Estimating the TF Ratios

In practice, the TF ratio is not known and must be estimated. From (5.17), we

have

Xi(k,m) = Hi(k)X0(k,m) + Yb,i(k,m). (5.18)

Gannot et al. assumed that the TF ratios were slowly changing in time com-

pared to the time variations of the desired signal. Furthermore, they assumed

that the statistics of the noise signal were also slowly changing compared with

those of the desired signal. An analysis interval is then divided into frames

such that the desired signal might be considered stationary during each frame.

Let φXiXj
(k,m) denote the cross power spectral density (PSD) between Xi

and Xj , i-th and j-th noisy signal observations, during the k-th frame for all

k = 0, · · · ,K −1. Further define φYb,iX0
(k,m) to be the cross-PSD between the

m-th reference noise signal and X0. Finally let φ̂XiXj
(k,m) and φ̂Yb,iX0

(k,m)

represent the corresponding estimates. An unbiased estimate for Hi(m) is ob-

tained by applying the least squares fit to the following set of over-determined

equations

















φ̂XiX0
(0,m)

φ̂XiX0
(1,m)
...

φ̂XiX0
(K − 1,m)

















=

















φ̂X0X0
(0,m) 1

φ̂X0X0
(1,m) 1
...

...

φ̂X0X0
(K − 1,m) 1





















Hi(m)

φYb,iX0
(m)





+

















ǫi(0,m)

ǫi(1,m)
...

ǫi(K − 1,m)

















i = 1, · · · , I − 1 (5.19)
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where K is the number of frames within the analysis interval. The solution

to (5.19) is given by

Hi(k) =
E{φ̂X0X0

(m)φ̂XiX0
(m)} − E{φ̂X0X0

(m)}E{φ̂XiX0
(m)}

E{φ̂2
X0X0

(m)} − E{φ̂X0X0
(m)}2

, (5.20)

where E{} is the expectation operator. The ratios of the TF are estimated with

the least squares method in periods when the speech signal is present.

5.4 Generalized Eigenvector Beamformer

Warsitz et al. [22] also proposed a new design method for the blocking ma-

trix. They first find the weight vector which maximizes the signal-to-noise ratio

(SNR) criterion. It was shown in [22] that the weight vector which provides the

maximum SNR has the component of the TF from the source signal to each

microphone. Thus, in the similar manner as described in Section 5.3, we can

construct the blocking matrix which stops the desired signal from leaking into

the noise canceler.

5.4.1 Maximum SNR Criterion

For the blocking matrix design, Warsitz et al. indirectly used information about

the transfer functions from the signal source to the microphones. This infor-

mation can be obtained from the weight vector of a generalized eigenvector

beamformer [46]. The weight vector which provides the maximum SNR of the

outputs at the frequency bin m can be expressed as

wSNR(m) = argmax
w(m)

wH(m)ΣSS(m)w(m)

wH(m)ΣVV(m)w(m)
, (5.21)

where

ΣSS(m) = E{S2(k,m)A(m)AH(m)},

ΣVV(m) = E{V(k,m)VH(k,m)},

(5.22)
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and k indicates a frame index.

We here consider an analysis interval where the source and noise signals are

assumed to be stationary. We can thus omit the frame index for the correspond-

ing PSD. We further assume that the speech and noise are uncorrelated and that

each of the signals has zero mean. This allows the PSD of the microphone signals

to be split into two parts

ΣXX(m) = ΣSS(m) + ΣVV(m). (5.23)

In that case, the solution of (5.21) is equivalent to the eigenvector belonging to

the largest eigenvalue of a generalized eigenvalue problem (GEVP) [46]

ΣXX(m)w(m) = λ(m)ΣVV(m)w(m). (5.24)

With the assumption that ΣVV(m) is not singular, the GEVP can be trans-

formed to the special eigenvalue problem (SEVP)

Σ−1
VV(m)ΣXX(m)w(m) = λ(m)w(m). (5.25)

The TFs from the desired source to the sensors are assumed to change slowly

in time. Then for a large window length, we could approximate

ΣXX(m) ≈ φS0S0
(k,m)A(m)AH(m) + ΣVV(m). (5.26)

In that case, the SEVP (5.25) can be reformulated as follows

Σ−1
VV(m)A(m)AH(m)w(m) =

λ(m) − 1

φS0S0
(k,m)

w(m). (5.27)

As the rank of the positive semidefinite matrix Σ−1
VV(m)A(m)AH(m) is one,

there is obviously only one eigenvector belonging to an eigenvalue greater than

zero. This eigenvector can be expressed as

w(m) = ζ(m)Σ−1
VV(m)A(m), (5.28)

where ζ(m) is an arbitrary complex constant. This can be easily verified by

substituting (5.28) into (5.27). We can now see that the weight of the GEV

beamformer contains the TF such as the TF-GSC beamformer.
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5.4.2 Blocking Matrix Design for the GEV Beamformer

The optimal transfer function wSNR(m) is used to construct a blocking ma-

trix which projects any space into the orthogonal complement of A(m). That

blocking matrix would produce noise reference signals which are orthogonal to

a speech reference.

The speech reference can be written as

YSNR(k,m) = wH
SNR(m)X(k,m). (5.29)

We suppose that the the noise reference signal can be expressed with a

projection vector P(m) as

U(k,m) = X(k,m) − P(m)YSNR(k,m). (5.30)

P(m) should be solved in order to satisfy the following orthogonality condition

E{U(k,m)Y ∗
SNR(k,m)} = 0. (5.31)

Upon substituting (5.30) into (5.31), we have

P(k,m) =
E{X(k,m)Y ∗

SNR(k,m)}
E{Y 2

SNR(k,m)} . (5.32)

By substituting (5.29) into (5.32), we then obtain

P(m) =
ΣXX(m)wSNR(m)

wH
SNR(m)ΣXX(m)wSNR(m)

. (5.33)

By using (5.24), (5.33) can be further modified as

P(m) =
ΣVV(m)wSNR(m)

wH
SNR(m)ΣVV(m)wSNR(m)

. (5.34)

Upon taking X(k,m) out of (5.30), we can extract the blocking matrix

BH(m) = I − P(m)wH
SNR(m), (5.35)

where I is the identity matrix. By substituting (5.34) into (5.35) and replacing

wSNR in the resultant equation based on (5.28), we have

BH(m) = I − A(m)AH(m)ΣVV
−1(m)

AH(m)ΣVV
−1(m)A(m)

. (5.36)
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Finally, we have the output of the blocking matrix

U(k,m) = BH(m)X(k,m) (5.37)

=

(

I − A(m)AH(m)ΣVV
−1(m)

AH(m)ΣVV
−1(m)A(m)

)

V(m). (5.38)

We can easily see that the output of the blocking matrix does not contain

any component of the desired signal. Hence, the signal cancellation will be

avoided whenever all the assumptions mentioned above are satisfied. From

those formulae, the blocking matrix in the TF-GSC beamformer can be viewed

as a special case of that of the GEV beamformer.



Chapter 6

Independent Component

Analysis (ICA)

Independent component analysis (ICA) is a method for finding underlying fac-

tors or components from multi-variate statistical data. ICA looks for compo-

nents that are statically independent.

One of the popular applications based on the ICA theory is blind source

separation (BSS). Consider a situation where multiple speakers are talking si-

multaneously and mixed signals are captured with a microphone array. BSS

algorithms attempt to separate each source signal from the mixture of speech

captured with the multiple microphones. These algorithms do not use prior

knowledge such as the geometry of the microphones and source positions al-

though the number of the sources is usually assumed to be known. Blind source

separation is achieved by multiplying an un-mixing matrix with an input vector

of a multi-channel signal. The un-mixing matrix is constructed so that compo-

nents of the output vector obtained by that multiplication are statically inde-

pendent. Each element of the output vector would correspond to each source

signal.

However, those blind assumptions lead to the well-known permutation and

101



102 CHAPTER 6. INDEPENDENT COMPONENT ANALYSIS (ICA)

scaling ambiguity problems [1]. The components of the output vector might be

permutated and criteria for measuring the statistical independence are unable to

determine the scale uniquely. The scaling ambiguity problem can be avoided by

calculating the pseudo-inverse of the un-mixing matrix [27]. The permutation

problem could be alleviated by interchanging the components based on the

property of continuity of speech spectral envelopes [47]. The geometry of the

array is sometimes used for solving the permutation problem [28]. However, in

that case, it is not blind anymore since the prior knowledge is used.

Another problem of the BSS techniques is that they rely on numerical op-

timization algorithms which only provide a local solution. Consequently, the

performance of the BSS algorithms always depends on the initial values. The

un-mixing matrix obtained with those techniques may fail to extract the target

signal in some situations. One of the solutions to the problem is to repeatedly

initialize the un-mixing matrix with the weights of beamformers which use in-

formation about the geometry of the array [48]. After all, the beamforming

techniques are used for solving the problems caused by the blind assumption.

It is worth mentioning that the relationship between beamforming and BSS

techniques has been thoroughly analyzed in [2].

In contrast to those BSS approaches, the current author directly applies the

ICA method to the GSC beamformer, which will be described in Chapter 7.

The rest of this chapter is organized as follows. Basic concepts of ICA is

described in Section 6.1. Section 6.1 also shows that the distribution of clean

speech is in fact non-Gaussian. It is then illustrated that the distribution gets

closer to Gaussian in the case that speech signals are corrupted with noise or

reverberation. These facts lead to the conclusion that noise can be removed

by a beamformer by making the distribution of its outputs as super-Gaussian

as possible. Section 6.2 introduces several super Gaussian probability functions

(pdfs). Section 6.3 describes criteria for measuring degree of super-Gaussianity,

which is essential for developing the new beamforming algorithms. An actual

speech distribution modeled with one of the super-Gaussian pdfs is investigated

in Section 6.4.
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6.1 ICA and its Application to Speech

The entire field of ICA is founded on the assumption that all signals of real

interest are not Gaussian-distributed [1]. Briefly, the reasoning is grounded on

two points:

1. The central limit theorem states that the pdf of the sum of independent

random variables (r.v.s) will approach Gaussian in the limit as more and more

components are added, regardless of the pdfs of the individual components.

This implies that the sum of several r.v.s will be closer to Gaussian than any

of the individual components. Thus, if the original independent components

comprising the sum are sought, one must look for components with pdfs that

are the least Gaussian.

2. The entropy for a continuous complex-valued r.v. Y is defined as

H(Y ) , −
∫

pY (v) log pY (v)dv = −E {log pY (v)} , (6.1)

where pY (.) is the pdf of Y . Entropy is the basic measure of information in

information theory [49]. It is well known that a Gaussian r.v. has the highest

entropy of all r.v.s with a given variance [49, Thm. 7.4.1], which also holds

for complex Gaussian r.v.s [50, Thm. 2]. Hence, a Gaussian r.v. is, in some

sense, the least predictable of all r.v.s. Information-bearing signals, on the

other hand, are redundant and thus contain structure that makes them more

predictable than Gaussian r.v.s. Hence, if an information-bearing signal is

sought, one must once more look for a signal that is not Gaussian.

The fact that the pdf of speech is super-Gaussian has often been reported

in the literature [4, 51, 52]. Noise, on the other hand, is more nearly Gaussian-

distributed. In fact, the pdf of the sum of several super-Gaussian r.v.s. becomes

closer to Gaussian. Thus, a mixture consisting of a desired signal and several

interfering signals can be expected to be nearly Gaussian-distributed.

The Gaussian and four super-Gaussian univariate pdfs are plotted in Fig. 6.1.

From the figure, it is clear that the Laplace, K0, Γ, and generalized Gaussian
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Figure 6.1: Gaussian and super-Gaussian pdfs.

(GG) densities exhibit the “spikey” and “heavy-tailed” characteristics that are

typical of super-Gaussian pdfs. This implies that they have a sharp concen-

tration of probability mass at the mean, relatively little probability mass as

compared with the Gaussian at intermediate values of the argument, and a

relatively large amount of probability mass in the tail; i.e., far from the mean.

Fig. 6.2 shows a histogram of the real parts of subband samples of speech

at fs = 800 Hz. To generate the histograms, the author used 43.9 minutes of

clean speech recorded with a close-talking microphone (CTM) from the develop-

ment set of the Speech Separation Challenge, Part 2 (SSC2) [3]. The Gaussian,

Laplace, K0, Γ, and GG pdfs are also shown in Fig. 6.2. For this plot, parameters

of the GG pdf was estimated from training data. It is clear from Fig. 6.2 that

the distribution of clean speech is not Gaussian but super-Gaussian. Fig. 6.2

also suggests that the GG pdf can be suitable for modeling subband samples of

speech.
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Fig. 6.3 shows a histogram of magnitude in the subband domain1. We can

see from Fig. 6.3 that the GG pdf can model the distribution of magnitude in

the subband domain very well.

Fig. 6.4 shows histograms of real parts of subband components calculated

from clean speech and noise-corrupted speech. It is clear from this figure that the

pdf of the noise-corrupted speech has less probability mass around the center

spike, and less probability mass in the tail than the clean speech, but more

probability mass in the intermediate regions. This indicates that the pdf of the

noise-corrupted signal, which is in fact the sum of the speech and noise signals,

is closer to Gaussian than that of clean speech.

Fig. 6.5 shows histograms of clean speech and reverberant speech in the sub-

band domain. In order to produce the reverberant speech, a clean speech signal

was convolved with an impulse response measured in a room; see Section 9.1

for the configuration of the room. We can observe from Fig. 6.5 that the pdf of

reverberated speech is also closer to Gaussian than the original clean speech.

We also present a histogram of magnitude of noise corrupted speech in

Fig. 6.6 and that of reverberant speech in Fig. 6.7. We can again see from

Fig. 6.6 and Fig. 6.7 that the pdfs of corrupted speech have less probability

mass around the mean and less probability mass in the tail, but once more

more probability mass in the intermediate regions. Interestingly, Fig. 6.7 shows

that the peak of the histogram of the speech is shifted from zero to the right by

the reverberation effect.

These facts would indeed support the hypothesis that seeking an enhanced

speech signal that is maximally non-Gaussian is an effective way to suppress the

distorting effects of noise and reverberation.

1The pdfs in Fig. 6.3 are generally defined over the interval (-∞, +∞). Precisely speaking,

the double-sided pdfs should be modified in order to model magnitude whose value is always

positive. This is easily done by multiplying both sides by a factor of two and redefining the

interval as [0, +∞). Such modifications, however, are not necessary in our algorithm in that

the factor of two in the normalization is constant in the log-likelihood domain and has no

effect on the gradient algorithm.
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Figure 6.2: Histogram of real parts of subband components and pdfs.

6.2 Super-Gaussian pdf

In this section, two classes of representative super-Gaussian pdfs are described.

One is the pdfs derived from the Meijer G-function. The other is the generalized

Gaussian (GG) pdf.

The author starts with the explanation of the pdfs derived from Meijer G-

function and then describe the GG pdf.

6.2.1 Super-Gaussian pdf derived from the Meijer G-

function

As explained in Brehm and Stammler [53], it is useful to assume that the

Laplace, K0, and Γ pdfs belong to the class of SIRPs for two principal reasons.

Firstly, this implies that multivariate pdfs of all orders can be readily derived

from the univariate pdf using the theory of Meijer G-functions based solely on

the knowledge of the covariance matrix of the random vectors. Secondly, such

variates can be extended to the case of complex r.v.s, which is essential for our
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Figure 6.3: Histogram of magnitude in the subband domain and pdfs.

current development.

For complex Laplace r.v.s Yi ∈ C, the univariate pdf can be expressed as

pLap(Yi) =
4√
πσ2

Y

K0

(

2
√

2|Yi|
σY

)

(6.2)

where K0(z) is an irregular modified Bessel function and σ2
Y = E{|Yi|2}. For

Y ∈ C2, the bivariate Laplace pdf is given by

pLap(Y) =
16

π3/2|ΣY|√s
K1

(

4
√

s
)

(6.3)

where ΣY = E{YYH} and

s = YHΣ−1
Y Y.

Similarly, we can write the univarite K0 pdf for complex r.v.s Yi ∈ C as

pK0
(Yi) =

1√
πσY |Yi|

exp (−2 |Yi|/σY ) . (6.4)

The bivariate K0 pdf for Y ∈ C2 can be expressed as

pK0
(Y) =

√
2 + 4

√
s

2π3/2 |ΣY| s3/2
exp

(

−2
√

2 s
)

. (6.5)
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Figure 6.4: Histograms of clean speech and noise corrupted speech in the sub-

band domain.

Derivations of (6.2)–(6.5) are provided in Appendix A. For the Γ pdf, the

complex univariate and bivariate pdfs cannot be expressed in closed form in

terms of elementary or even special functions. As explained in Appendix A,

however, it is possible to derive Taylor series expansions that enable the required

variates to be calculated to arbitrary accuracy. These developments are also

described in [4].

Table 6.1 shows the average log-likelihood of subband samples of speech

recorded with the close-talking microphone as calculated with the Gaussian

and three super-Gaussian pdfs, namely, the Laplace, K0, and Γ pdfs averaged

over K = 1000 time instants and M = 512 subbands. It is clear from these

log-likelihood values that the complex subband samples of speech are in fact

better modeled by the super-Gaussian pdfs considered here than the Gaussian.

Hence, the abstract arguments on which the field of ICA are founded corre-

spond well to the actual characteristics of speech. It is worth noting that the

use of spherically-invariant random processes (SIRPs) in the context of BSS is
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Figure 6.5: Histograms of clean speech and reverberant speech in the subband

domain.

discussed by Buchner et al. [26].

6.2.2 Generalized Gaussian pdf

Due to its definition as a contour integral, finding maximum likelihood estimates

for the parameters of the Meijer G-function must necessarily devolve to a grid

search over the relevant parameter space [53]. Instead, it might be better to

use a simple super-Gaussian pdf whose parameters can easily be adjusted so as

to match the actual subband samples. The generalized Gaussian (GG) pdf is

well-known and finds frequent application in the BSS and ICA fields. Moreover,

it subsumes the Gaussian and Laplace pdfs as special cases. The GG pdf with

zero mean for a real-valued r.v. y can be expressed as

pGG(y) =
1

2Γ(1 + 1/p)A(p, σ̂)
exp

[

−
∣

∣

∣

∣

y

A(p, σ̂)

∣

∣

∣

∣

p]

, (6.6)
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Figure 6.6: Histograms of the magnitude of clean speech and noise corrupted

speech in the subband domain.

where p is the shape parameter, σ̂ is the scale parameter which controls how fast

the tail of the pdf decays, and

A(p, σ̂) = σ̂

[

Γ(1/p)

Γ(3/p)

]1/2

. (6.7)

In (6.7), Γ(.) is the gamma function. Note that the GG with p = 1 corresponds

to the Laplace pdf, and that setting p = 2 yields the Gaussian pdf, whereas in

the case of p → +∞ the GG pdf converges to a uniform distribution.

Fig. 6.8 shows the GG pdf with the same scale parameter σ̂2 = 1 and different

shape parameters, p = 0.5, 1, 2, 4. From the figure, it is clear that a smaller

shape parameter yields a spikier pdf with a heavier tail.

The differential entropy of the GG pdf for the real-valued r.v. y is obtained

with the help of Mathematica [54] as

HGG(y) = −
∫ +∞

−∞
pgg(ξ) log pgg(ξ)dξ

=
1

p
+ log [2Γ(1 + 1/p)A(p, σ̂)] . (6.8)
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Figure 6.7: Histograms of magnitude of clean speech and reverberated speech

in the subband domain.

Maximum likelihood (ML) estimates of the shape and scale parameters can be

determined from a set of training data, as described in Section 6.4.

6.3 Criteria for Super-Gaussianity

There are two popular criteria for measuring non-Gaussianity, namely, kurto-

sis and negentropy. In addition to these criteria, mutual information is also

frequently used in the field of ICA [1].

Mutual information can be viewed as a direct measure of representing how

r.v.s are independent of each other. However, we can calculate the mutual

information measure only if multiple signal sources are active. In other words,

we cannot apply the mutual information criterion to a situation where a single

source is active.

Kurtosis and negentropy criteria indicate how the distribution of r.v.s is far

from the Gaussian distribution. These criteria can be used for speech enhance-
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Table 6.1: Average log-likelihoods of subband speech samples for various pdfs.

pdf 1
KM

∑K−1
k=0

∑M−1
m=0 log p(X(k,m); pdf)

Γ –0.779

K0 –1.11

Laplace –2.48

Gaussian –9.93
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Figure 6.8: The generalized Gaussian (GG) pdfs.

ment of a single speaker.

In this section, mutual information under Gaussian and super-Gaussian as-

sumptions is first reviewed. The definitions of kurtosis and negentropy are then

described.

6.3.1 ICA by Minimization of Mutual Information

Mutual information indicates how useful a given random variable is for explain-

ing one or more other random variables. By definition, mutual information of
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two random variables, Y1 and Y2, is given by

I(Y) , E
{

log
p(Y)

p(Y1)p(Y2)

}

(6.9)

where E{} denotes ensemble expectation and Y = [Y1, Y2]
T . Two random

variables are statistically independent whenever the mutual information between

them is zero.

Mutual information is always non-negative, and zero if and only if the vari-

ables are statistically independent. Mutual information takes into account the

whole dependence structure of the r.v.s, and includes the covariance. On the

other hand, the SOS-based methods ignore it.

Most of the work consider a situation where two sound sources are active

and the extension to the case of the multiple sources is rather easy. Accordingly,

this thesis explains the case of two r.v.s which correspond to the active sound

sources. From (6.9), we have the mutual information of two variables

I(Y1, Y2) = E
{

log
p(Y1, Y2)

p(Y1)p(Y2)

}

= E{log p(Y1, Y2)} − E{log p(Y1)} − E{log p(Y2)}. (6.10)

MMI under a Gaussian Assumption

The basic concept of ICA is that every signal of interest is not Gaussian but

super-Gaussian. Nevertheless, the Gaussian assumption is useful in many situ-

ations and employed in various applications.

Here, mutual information of two r.v.s under the Gaussian assumption is

derived. The resultant formula indicates that it is a simple function of their

cross-correlation coefficient.

For Gaussian r.v.s, we have

p(yn) =
1

√

2πσ2
n

exp

(

− y2
n

2σ2
n

)

.
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Hence, we can solve the latter two expectations in (6.10) as

E{log p(Yn)} = E
{

−1

2
log 2πσ2

n − 1

2

Y 2
n

σ2
n

}

= −1

2
log 2πσ2

n − 1

2

∫ ∞

−∞

y2
n

σ2
n

p(yn) dyn. (6.11)

For jointly Gaussian r.v.s,

p(Y1, Y2) =
1

√

|2πΣ|
exp

[

−1

2
YT Σ−1Y

]

where Y =
[

Y1 Y2

]T

and the covariance matrix of Y is given by [55, §2.3]

Σ =





σ2
1 σ1σ2ρ12

σ1σ2ρ12 σ2
2



 (6.12)

with

ρ12 =
ǫ12

σ1 σ2

where ǫ12 = E{Y1 Y ∗
2 }. Hence, the first expectation in (6.9) can be rewritten as

E{log p(Y1, Y2)} = E
{

−1

2
log |2πΣ| − 1

2
YT Σ−1Y

}

= −1

2
log |2πΣ| − 1

2

∫

Y

YT Σ−1Y p(Y) dY. (6.13)

Due to the whitening [56, §2.3] provided by the term Σ−1, the integral in (6.13)

decouples into two integrals of the form of the integral in (6.11). Hence,

when (6.11) and (6.13) are substituted back into (6.9), the integral terms cancel

out, and what remains is

I(Y1, Y2) = − 1
2 log

[

4π2σ2
1σ

2
2(1 − ρ2

12)
]

+ 1
2 log 2πσ2

1 + 1
2 log 2πσ2

2

or, upon cancelling common terms,

I(Y1, Y2) = − 1
2 log

(

1 − ρ2
12

)

.

For the complex r.v.s which will be considered in Section 7.1.1, it is straightfor-

ward to show that

I(Y1, Y2) = − log
(

1 − |ρ12|2
)

. (6.14)
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From (6.14) it is clear that minimizing the mutual information between two

zero-mean Gaussian r.v.s is equivalent to minimizing the squared magnitude of

their cross correlation coefficient and that

I(Y1, Y2) = 0 ↔ |ρ12| = 0.

MMI under a super-Gaussian Assumption

The mutual information for the Laplace, K0 and Γ pdfs can no longer be ex-

pressed in closed form as in (6.14) for the super-Gaussian pdfs. We can, however,

replace the exact mutual information with the empirical mutual information

I(Y1, Y2) ≈
1

K

K−1
∑

k=0

log p(Y(k)) −
2

∑

n=1

[

1

K

K−1
∑

k=0

log p(Yn(k))

]

. (6.15)

The details for calculating the probabilities under each super-Gaussian assump-

tion are described in Appendix A.

6.3.2 ICA by Maximization of Kurtosis

The excess kurtosis or simply kurtosis of a complex-valued r.v. Y with zero

mean is defined as

kurt(Y ) , E{|Y |4} − 3(E{|Y |2})2. (6.16)

The Gaussian pdf has zero kurtosis, pdfs with positive kurtosis are super-

Gaussian, those with negative kurtosis are sub-Gaussian.

As shown in (6.16), the kurtosis measure considers not only the variance but

also the fourth moment of HOS. Notice that the Gaussian pdf can be specified

with the mean and variance up to SOS only. Accordingly, it could be viewed

that the Gaussian assumption would ignore HOS.

Of the three super-Gaussian pdfs in Fig. 6.1, the Γ pdf has the highest kur-

tosis, followed by the K0, then by the Laplace pdf. As is clear from Fig. 6.1, as

the kurtosis increases, the pdf becomes more spikey and heavy-tailed. Note that

the kurtosis of the GG pdf can be controlled by adjusting the shape parameter

p, as explained in Section 6.4.



116 CHAPTER 6. INDEPENDENT COMPONENT ANALYSIS (ICA)

In practice, kurtosis can be calculated by simply averaging samples according

to

kurt(Y ) =
1

K

K−1
∑

k=0

|Y (k)|4 − 3

(

1

K

K−1
∑

k=0

|Y (k)|2
)2

. (6.17)

The kurtosis criterion does not require any explicit assumption as to the ex-

act form of the pdf. Due to its simplicity, it is widely used as a measure of

non-Gaussianity. The value calculated for kurtosis, however, can be strongly

influenced by a few samples with a low observation probability. Hyvärinen and

Oja [1] noted that negentropy is generally more robust in the presence of outliers

than kurtosis.

6.3.3 ICA by Maximization of Negentropy

The negentropy of a complex-valued r.v. Y is defined as

J(Y ) , H(Ygauss) − H(Y ) (6.18)

where Ygauss is a Gaussian variable which has the same variance σ2
Y as Y . The

entropy of Ygauss can be expressed as

H(Ygauss) = log
∣

∣σ2
Y

∣

∣ + (1 + log π) . (6.19)

Note that negentropy is non-negative, and zero if and only if Y has a Gaussian

distribution.

Computing entropy of the super-Gaussian variables H(Y ) normally requires

for a specific pdf assumption. It is, thus, important to find the pdf which closely

matches to the distributions of actual speech signals.

Negentropy also takes HOS into account by using super-Gaussian pdfs.

Super-Gaussian pdfs are not represented with SOS only and their higher mo-

ments are normally specified with parameters other than the mean and variance.

For example, as described in Appendix B, the GG pdf can be specified with the

shape and scale parameters which are not SOS. On the other hand, each mo-

ment of the Gaussian pdf is determined with the variance and the order of the

moment only.
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6.4 Speech Modeling with the GG pdf

We can model the clean speech signals by estimating the parameters of the GG

pdf. In this section, the estimation method is first described and the properties

of the GG pdf estimated with actual speech samples are then investigated.

6.4.1 Estimating Scale and Shape Parameters

Among several methods for estimating the shape parameter p of the GG

pdf [57][58], the moment and ML methods are arguably the most straightfor-

ward. In this work, we used the moment method in order to initialize the pa-

rameters of the GG pdf and then updated them with the ML estimate [58]. The

shape parameters are estimated from training samples offline and are then held

fixed during beamforming. The shape parameters are estimated independently

for each subband, as the optimal pdf is frequency-dependent.

For a set Y = {y0, y1, . . . , yK−1} of K real-valued training samples, the

log-likelihood function under the GG pdf can be expressed as

l(Y ; σ̂, p) = −K log {2Γ(1 + 1/p)A(p, σ̂)}

− 1

A(p, σ̂)p

K−1
∑

k=0

|y(k)|p.
(6.20)

In this work, we considered three kinds of training sample y(k), namely, the

magnitude as well as the real and imaginary parts of the subband samples of

speech.

The parameters σ̂ and p can be obtained by solving the following equations

∂l(Y; σ̂, p)

∂σ̂
= −K

σ̂
+

p

σ̂p+1

[

Γ(1/p)

Γ(3/p)

]− p

2
K−1
∑

k=0

|y(k)|p = 0, (6.21)

∂l(Y; σ̂, p)

∂p
=Ka(p) −

K−1
∑

k=0

( |y(k)|
A(p, σ̂)

)p

×
[

log

{ |y(k)|
A(p, σ̂)

}

+ b(p)

]

= 0,

(6.22)
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where

a(p) = (p−2/2)[2Ψ(1 + 1/p) + Ψ(1/p) − 3Ψ(3/p)],

b(p) = (p−1/2)[Ψ(1/p) − 3Ψ(3/p)],

and Ψ(.) is the digamma function. By solving (6.21) for σ̂, we obtain

σ̂ =

[

Γ(3/p)

Γ(1/p)

]1/2
(

p

K

K−1
∑

k=0

|y(k)|p
)1/p

. (6.23)

Due to the presence of the special functions, it is impossible to solve (6.22)

for p explicitly. Varanasi [59] showed, however, that (6.22) has a unique root

given the scale parameter. Hence, the gradient descent algorithm [60] can be

used to find the unique solution which maximizes the likelihood. The solution

of (6.22) can be also obtained with the secant algorithm [54, 59]. The estimation

of the parameters is repeated until the log-likelihood function (6.20) converges.

6.4.2 Analysis of the Estimated Parameters

Subband components of speech can be precisely modeled by estimating the

parameters of the GG pdf from training samples. From the trained parame-

ters, insight can be gained into statistical properties of human speech. Fig. 6.9

shows the scale parameter σ̂|Y | and the shape parameter p calculated from the

magnitude of subband components plotted as functions of frequency, where the

number of the subbands is 256. The training samples used for estimating the GG

pdf here were also taken from clean speech data recorded with a close-talking

microphone.

It is clear from Fig. 6.9 that the scale parameter σ̂|Y | becomes smaller at

higher frequencies. The scale parameter σ̂|Y | is related to the variance of |Y |,
although not identical to it in the case that the ML method is used in its

estimation. Fig. 6.9 indicates that the magnitude at lower frequencies varies

more than that at higher frequencies. Moreover, the GG pdfs trained with actual

speech data are super-Gaussian with p < 2 in all subbands; they are in fact

super-Laplacian with p < 1 in all subbands. As mentioned previously, kurtosis
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Figure 6.9: The parameters of the GG pdf for frequency; (a) scale parameter

σ̂|Y | and (b) shape parameter p, where the sampling frequency is 16 kHz.

is a measure of super-Gaussianity of a pdf. It is therefore of interest to examine

the behavior of kurtosis of the GG pdf. As demonstrated in Appendix B, the

latter can be expressed as

kurt(Ygg) = σ̂4

{

Γ(1/p) Γ(5/p)

Γ2(3/p)
− 3

}

. (6.24)

Fig. 6.10 shows a plot of kurtosis values as a function of frequency. In Fig. 6.10,

a solid line indicates the kurtosis of the GG pdf calculated with (6.24) and a

broken line presents the empirical kurtosis computed with (6.17). It is clear

from Fig. 6.10 that the GG pdf can also model the kurtosis of speech, which

would make the negentropy criterion more robust for outliers than the empirical

kurtosis. It is also clear from Fig. 6.10 that kurtosis becomes smaller at higher

frequencies, which indicates that the pdf of lower frequency components are

more super-Gaussian than those of higher frequency components.
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Figure 6.10: Kurtosis vs. frequency, where the sampling rate is 16 kHz.



Chapter 7

Beamforming with

Higher-Order Statistics

This chapter presents novel GSC beamforming algorithms which take into con-

sideration higher order statistics (HOS). As described in Chapter 6, HOS can

be obtained by measuring the degree of super-Gaussianity such as the kurtosis

and negentropy. The new HOS-based beamforming methods adjust the active

weight vectors of the GSC so as to make the distribution of the output signals

as much as super-Gaussian.

Chapter 5 described the GSC beamformers with second order statistics

(SOS) which is typically associated with the covariance matrix. The conven-

tional GSC beamforming algorithms are based on utilization of SOS in quasi-

linear discrete-time systems. These algorithms effectively place a null on any

source of interference. Although they are useful in many applications and their

theory is well-developed, their performance is limited due to the assumptions of

the Gaussianity and linearity.

Not only the interference signal but also the desired signal can be removed

by those SOS-based beamforming algorithms in the case that there are signals

correlated with the target signal. That problem is referred to as the signal

121
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cancellation [12].

The new algorithms can suppress noise and reverberation without the signal

cancellation problems encountered in the conventional beamforming algorithms.

This will be demonstrated through simulations and experiments.

The balance of this chapter is organized as follows. Section 7.1 describes

new GSC beamforming algorithms which minimize mutual information of the

beamformer’s outputs [4]. These algorithms have been fundamentally devel-

oped for a speech separation task where multiple coherent sound sources are

active. As described in Section 6.3.1, mutual information measures a distance

between two distributions. Therefore, outputs of more than two beamformers

are required in order to adjust the active weight vectors based on the minimum

mutual information criterion. Such beamforming algorithms are not suitable for

the situation where there is only one active source. Section 7.2 presents another

new beamforming algorithm which estimates the active weight vectors so as

to maximize negentropy of beamformer’s outputs subject to the distortionless

constraint [32]. Furthermore, the GSC beamformer which provides maximum

kurtosis [33] is depicted in Section 7.3. The beamforming techniques described

in Section 7.2 and Section 7.3 have been developed for a situation where a single

active sound source exists (single-speaker scenario).

7.1 Minimum Mutual Information Beamformer

Assuming there are two GSC beamformers aimed at different sources, as shown

in Fig. 7.1, the output of the nth beamformer at frame k for subband m can be

expressed as,

Yn(k,m) = (wq,n(m) − Bn(m)wa,n(m))
H

X(k,m), (7.1)

where wq,n(m) is the quiescent weight vector for the nth source, Bn(m) is the

blocking matrix, wa,n(m) is the active weight vector, and X(k,m) is the input

subband snapshot vector, which is common to both sources.

In the same manner as described in Section 5.2, the blocking matrix Bn(m) is
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Figure 7.1: Schematic of generalized sidelobe cancelling (GSC) beamformers for

each active source.

chosen to be orthogonal to wq,n(m). While the active weight vector wa,n(m) has

been chosen to maximize the total power of beamformer’s outputs or the SNR

in the conventional beamformers, we have developed an optimization procedure

to find the wa,n(m) that minimizes the mutual information I(Y1(m), Y2(m));

based on the development of Section 6.3.1.

7.1.1 MMI Beamforming with the Gaussian Assumption

As shown in Section 6.3.1, minimizing mutual information under the assumption

of the Gaussian r.v.s is equivalent to minimizing the magnitude |ρ12| of the

cross-correlation coefficient. Let the variance of Yn(k,m) be denoted by σ2
n =

E{|Yn(k,m)|2} for the sake of simplicity, where E{|Yn(k,m)|2} can be calculated

in the same way as (5.9).

The cross-correlation coefficient ρ12 between Y1(k,m) and Y2(k,m) can be

expressed as [55, §2.3]

ρ12 =
ǫ12

σ1 σ2
(7.2)
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where

ǫ12 = E{Y1(k,m)Y ∗
2 (k,m)}

= (wq,1(m) − B1(m)wa,1(m))
H

ΣXX(m) (wq,2(m) − B2(m)wa,2(m)) .

(7.3)

Hence,

|ρ12|2 =
|ǫ12|2
σ2

1 σ2
2

. (7.4)

Minimizing the mutual information criterion yields a weight vector wa,n(m)

capable of canceling interference that leaks through the sidelobes without the

signal cancellation problems encountered in conventional beamforming.

Parameter Optimization

In the absence of a closed-form solution for those wa,n(m) minimizing |ρ12|2, we

must use a numerical optimization algorithm. Such an optimization algorithm

typically requires gradient information. We here omit the frequency index m

for convenience sake.

Let us apply the chain rule [39, §A.7.4] to (7.4), and write

∂|ρ12|2
∂w∗

a,1

=
1

σ4
1 σ4

2

(

∂ǫ12
∂w∗

a,1

ǫ∗12σ
2
1σ2

2 − ∂σ2
1

∂w∗
a,1

|ǫ12|2σ2
2

)

=
1

σ4
1 σ4

2

[

−BH
1 ΣXX(wq,2 − B2wa,2)ǫ

∗
12σ

2
1σ2

2

+BH
1 ΣXX(wq,1 − B1wa,1)|ǫ12|2σ2

2

]

.

The last equation can be simplified to

∂|ρ12|2
∂w∗

a,1

=
1

σ4
1 σ4

2

BH
1 ΣXX

[

|ǫ12|2σ2
2(wq,1 − B1wa,1)

− ǫ∗12σ
2
1σ

2
2(wq,2 − B2wa,2)

]

.

(7.5)

From symmetry it then follows

∂|ρ12|2
∂w∗

a,2

=
1

σ4
1 σ4

2

BH
2 ΣXX

[

|ǫ12|2σ2
1(wq,2 − B2wa,2)

−ǫ12σ
2
1σ

2
2(wq,1 − B1wa,1)

]

.

(7.6)
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Equations (7.5) and (7.6) are sufficient to implement a numerical optimiza-

tion algorithm based, for example, on the method of conjugate gradients which

is described in Appendix C.

Regularization

The regularization term can be applied in the present instance by defining the

modified optimization criterion

I(Y1(m), Y2(m);α) = I(Y1(m), Y2(m)) + α‖wa,1(m)‖2 + α‖wa,2(m)‖2 (7.7)

for some real α > 0. Taking the partial derivative on both sides of (7.7) yields

∂I(Y1(m), Y2(m);α)

∂w∗
a,n(m)

=
1

2 (1 − |ρ12|2)
· ∂|ρ12|2
∂w∗

a,n(m)
+ αwa,n(m). (7.8)

7.1.2 MMI Beamforming with the Super-Gaussian As-

sumption

The mutual information can no longer be expressed in closed form as in (7.7) for

the super-Gaussian pdfs. We can, however, replace the exact mutual information

with the empirical mutual information

I(Y1(m), Y2(m)) ≈ 1

K

K−1
∑

k=0

log p(Y(k,m)) −
2

∑

i=1

[

1

K

K−1
∑

k=0

log p(Yi(k,m))

]

.

(7.9)

The relations necessary to evaluate the partial derivative of (7.9) with respect to

wa,i(m) for the super-Gaussian pdfs considered here are given in Appendix A.

Notice that calculating mutual information under the super-Gaussian assump-

tions requires HOS, which is not the case in the Gaussian assumption.

7.1.3 Geometric Source Separation (GSS)

Parra and Alvino [61] proposed a geometric source separation (GSS) algorithm

with many similarities to the MMI beamforming algorithm under the Gaus-

sian assumption. Their work was based on two beamformers with geometric
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constraints that made them functionally equivalent to GSC beamformers. The

principal difference between GSS and the algorithm proposed here is that GSS

seeks to minimize |ǫ12|2 instead of |ρ12|2. Although the difference between mini-

mizing |ǫ12|2 instead of |ρ12|2 may seem very slight, it can in fact lead to radically

different behavior.

To achieve the desired optimum, both criteria will seek to place deep nulls

on the unwanted source; this characteristic is associated with |ǫ12|2, which also

comprises the numerator of |ρ12|2. Such null steering is also observed in con-

ventional adaptive beamformers [39, §6.3].

The difference between the two optimization criteria is due to the presence

of the terms σ2
i in the denomimnator of |ρ12|2, which indicate that, in addition

to nulling out the unwanted signal, an improvement of the objective function is

also possible by increasing the strength of the desired signal. For acoustic beam-

forming in realistic environments, there are typically strong reflections from hard

surfaces such as tables and walls. A conventional beamformer would attempt

to null out strong reflections of an interfering signal, but strong reflections of

the desired signal can lead to signal cancellation. The GSS algorithm would

attempt to null out those reflections from the unwanted signal. But in addition

to nulling out reflections from the unwanted signal, the MMI beamforming al-

gorithm would attempt to strengthen those reflections from the desired source;

assuming statistically independent sources, strengthening a reflection from the

desired source would have little or no effect on the numerator of |ρ12|2, but

would increase the denominator, thereby leading to an overall reduction of the

optimization criterion.

Of course, any reflected signal would be delayed with respect to the direct

path signal. Such a delay would, however, manifest itself as a phase shift in the

subband domain, and could thus be removed through a suitable choice of wa

as far as the number of delayed samples is less than the length of the analysis

filter. Hence, the MMI beamformer offers the possibility of steering both nulls

and sidelobes; the former towards the undesired signal and its reflections, the

latter towards reflections of the desired signal.
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Figure 7.2: Configuration of sources, sensors, and reflective surface for a simu-

lation comparing GSS and MMI beamformer.

In order to verify that the MMI beamforming algorithm forms sidelobes

directed towards the reflections of a desired signal, we conducted experiments

with a simulated acoustic environment. As shown in Fig. 7.2, we considered

a simple configuration where there are two sound sources, a reflective surface,

and an eight-channel linear microphone array that captures both the direct and

reflected waves from each source. Actual speech data were used as sound sources

in this simulation, which was based on the image method [62].

Fig. 7.3 shows beam patterns at fs = 1500 Hz and fs = 3000 Hz obtained with

the MMI beamformer and the GSS algorithm. In order to make the techniques

directly comparable, the implementation of the GSS algorithm used for the

simulation, as well as the ASR experiments described in Chapter 9, was based

on two GSCs, each aimed at one target. Both MMI beamformer and GSS

algorithm formed the beam patterns so that the signal from Source 2 in Fig. 7.2

was enhanced while the other from Source 1 was suppressed. It is clear that

both algorithms have unity gain in the look direction, and place deep nulls

on the direct path of the unwanted source. The suppression of Reflection 1,

the undesired interference, by the MMI beamformer is equivalent to or better

than that provided by the GSS algorithm for both frequencies. Moreover, the
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Figure 7.3: Beam patterns produced by the MMI beamformer and GSS algo-

rithm using a spherical wave assumption for (a) fs = 1500 Hz and (b) fs = 3000

Hz.

enhancement of Reflection 2, the desired signal, by the MMI beamformer is

stronger than that of the GSS algorithm.

Given that a beam pattern shows the sensitivity of an array to plane waves,

but the beam patterns in Fig. 7.3 were made with near-field sources and reflec-

tions, we also ran a second set of simulations in which all sources and reflections

were assumed to produce plane waves. The results of this second simulation

are shown in Fig. 7.4. Once more, it is apparent that the MMI beamformer

emphasizes Reflection 2 from the desired source.

If a regularization term is added as before, we obtain the GSS optimization

criterion

I ′(Y1(m), Y2(m);α) = |ǫ12|2 + α‖wa,1(m)‖2 + α‖wa,2(m)‖2. (7.10)

Then taking partial derivatives of (7.10) gives

I ′(Y1(m), Y2(m);α)

∂w∗
a,1(m)

= −BH
1 (m)ΣXX(m)(wq,2(m) − B2(m)wa,2(m))ǫ∗12

+αwa,1(m)

(7.11)
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Figure 7.4: Beam patterns produced by the MMI beamformer and GSS algo-

rithm using a plane wave assumption for (a) fs = 1500 Hz and (b) fs = 3000

Hz.

I ′(Y1(m), Y2(m);α)

∂w∗
a,2(m)

= −BH
2 (m)ΣXX(m)(wq,1(m) − B1(m)wa,1(m)) ǫ12

+αwa,2(m).

(7.12)

Although at first blush it may seem that a closed-form solution for wa,1(m)

and wa,2(m) could be derived, the presence of ǫ∗12 and ǫ12 in (7.11) and (7.12)

respectively actually makes this impossible. Hence, a numerical optimization

algorithm is needed, as before.

7.2 Maximum Negentropy Beamformer

In some cases, we might not have multiple active sources. The MMI beamform-

ing algorithm cannot be applied to a situation where there is only one coherent

signal since the calculation of mutual information requires more than two kinds

of r.v.s. In contrast, negentropy and kurtosis can be computed with r.v.s gener-

ated from a single source. The GSC beamformer with the maximum negentropy

criterion would be expected to have the same advantage as MMI beamforming.

This section describes a method of estimating the active weight vectors of
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the GSC beamformer so as to obtain the maximum negentropy of the outputs.

Section 7.2.1 describes the formulae necessary for estimating the active weight

vectors under the assumption of the pdf derived from the Meijer G-function.

Section 7.2.2 depicts the beamforming algorithm in the case that the generalized

Gaussian is used as the speech model. Section 7.2.1 discusses differences between

the MN and SOS-based beamformers.

7.2.1 Estimation of Active Weights under the Γ pdf

For the empirical studies reported here, the Γ pdf was used, as it achieved a

higher likelihood than the other two named pdfs, namely, Laplace, and K0

The differential entropy for the Γ pdf cannot be expressed in closed form.

Hence, in order to use the Γ pdf, it is necessary to replace the exact differential

entropy with the empirical entropy

H(Y ) = −E {log pY (v)} ≈ − 1

K

K−1
∑

k=0

log pY (Y (k,m)), (7.13)

where Y (k,m) is an observed subband sample.

Substituting (7.13) and (6.19) into (6.18), we can express the negentropy as

J(Y (m)) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π) +
1

K

K−1
∑

k=0

log pY (Y (k,m)), (7.14)

where K is the number of frames used for weight vector adaptation and σ2
Y =

E{Y (k,m)Y ∗(k,m)}.
By applying the regularization term, we have the modified object function

J (Y (m);α) = J(Y (m)) − α‖wa(m)‖2 (7.15)

for some real α > 0. We maximize the objective function (7.15).

In the absence of a closed-form solution for the wa(m) maximizing the ne-

gentropy (7.15), we must resort to the conjugate gradients method [63, §1.6]. By

substituting (7.14) into (7.15) and taking the partial derivative on both sides,
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we obtain the gradient function

∂J (Y (m);α)

∂wa
∗(m)

=
∂J(Y (m);α)

∂wa
∗(m)

− αwa(m)

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗(m)

+
1

K

K−1
∑

k=0

1

pY (Y (k,m))

∂pY (Y (k,m))

∂wa
∗(m)

− αwa(m),

(7.16)

where

∂|σ2
Y |

∂wa
∗(m)

=
1

K

K−1
∑

k=0

{

−BH(m)X(k,m)Y ∗(k,m)
}

. (7.17)

Equations (7.16) and (7.17) are sufficient to implement a numerical optimization

algorithm, whereby the negentropy J(Y (m)) can be maximized. The details of

the conjugate gradient algorithm are described in Appendix C.

7.2.2 Parameter Optimization under the Generalized

Gaussian Assumption

Parameter optimization with magnitude of outputs

Unlike the pdfs that can be expressed as Meijer G-functions, the GG pdf cannot

be readily extended from the univariate to the multi-variate. Hence, we use the

magnitude of the beamformer’s output as the r.v. for calculating the entropy.

By substituting (6.8) and (6.19) into (6.18) and applying the regularization

term, we arrive at the following expression for negentropy

J (Y (m);α) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π) − HGG(|Y |) − α‖wa(m)‖2, (7.18)

where α > 0.

In order to apply the conjugate gradients algorithm, we must once more

derive an expression for the gradient. By taking the partial derivative on both

sides of (7.18) while holding the shape parameter fixed, we obtain

∂J (Y (m);α)

∂wa
∗(m)

=
1

σ2
Y

∂σ2
Y

∂wa
∗(m)

− ∂HGG(|Y |)
∂wa

∗(m)
− αwa(m), (7.19)

where

∂HGG(|Y |)
∂wa

∗(m)
=

1

σ̂|Y |

∂σ̂|Y |
∂wa

∗(m)
. (7.20)
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Taking the derivative on both sides of (6.23), we find

∂σ̂|Y |
∂wa

∗(m)
=

p

K

[

Γ(3/p)

Γ(1/p)

]
1
2

×
[

p

K

K−1
∑

k=0

|Y (k,m)|p
]

1
p
−1

×
[

K−1
∑

k=0

|Y (k,m)|p−1 ∂|Y (k,m)|
∂wa

∗(m)

]

, (7.21)

where the gradient of the magnitude at each frame is

∂|Y (k,m)|
∂wa

∗(m)
= − 1

2|Y (k,m)|B
H(m)X(k,m)Y ∗(k,m). (7.22)

Based on (7.19) through (7.22), a numerical algorithm for optimizing the

active weight vector can be implemented; See Appendix C for the details.

Parameter optimization with each component of a complex value

It is conceivable that the entropy of the GG pdf for the complex valued r.v.

could be approximated by assuming that the real and imaginary parts are in-

dependent. Under such an assumption, the differential entropy of the GG pdf

can be expressed as

H(Y ) ≈ Hr(Yr) + Hi(Yi), (7.23)

where Yr is the real part of Y and Yi is its imaginary part. Notice that the shape

parameters for the real and imaginary parts must be trained individually.

Then, upon substituting (6.19) and (7.23) into (6.18) and adding the regu-

larization term, we obtain the objective function

J (Y (m);α) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π)

− Hr(Yr) − Hi(Yi) − α‖wa(m)‖2.
(7.24)

In order to employ the gradient algorithm, we take the partial derivative

of (7.24)

∂J (Y (m);α)

∂wa
∗(m)

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗(m)

− ∂Hr(Yr)

∂wa
∗(m)

− ∂Hi(Yi)

∂wa
∗(m)

− αwa(m)

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗(m)

− 1

σ̂|Yr|

∂σ̂|Yr|
∂wa

∗(m)
− 1

σ̂|Yi|

∂σ̂|Yi|
∂wa

∗(m)
− αwa(m).

(7.25)
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We can readily calculate σ̂|Yr| and σ̂|Yi| in (7.25) based on (6.23). Each derivative

can be obtained by replacing the magnitude |Y (k,m)| with an absolute value

of the real part |Yr(k,m)| or that of the imaginary part |Yi(k,m)| in (7.21).

The derivatives of the absolute values of the real and imaginary parts can be

expressed, respectively, as

∂|Yr(k,m)|
∂wa

∗(m)
= −1

2
BH(m)X(k,m) · sign(Yr(k,m)) (7.26)

and

∂|Yi(k,m)|
∂wa

∗(m)
= j

1

2
BH(m)X(k,m) · sign(Yi(k,m)). (7.27)

Equations (7.25) through (7.27) are used for the gradient algorithm.

7.2.3 Simulations and Discussions

The conventional beamforming algorithms would attempt to null out any in-

terfering signal, but are prone to the signal cancellation problem [12] whenever

there is an interfering signal that is correlated with the desired signal. In realis-

tic environments, interference signals are highly correlated with a target signal

since the target signal is reflected from hard surfaces such as walls and tables.

Therefore, the adaptation of the weight vector is usually halted whenever the

desired source is active.

Many techniques have been proposed in the literature to avoid signal can-

cellation. Perhaps the best-known of such algorithms is the robust beamformer

in GSC configuration proposed by Hoshuyama et al. [18]. In the lower branch,

their algorithm adaptively estimates a blocking matrix which cancels the signal

correlated with the output from the upper branch. Accordingly, the reflections

of a desired signal can be eliminated from the lower branch by the adaptive

blocking matrix (ABM). The coefficient of the ABM has upper and lower limits

in order to specify the maximum allowable target-direction error. Then, the

active weight vectors are estimated so as to minimize the output of the beam-

former. Since the ABM can remove the reflections from the lower branch, the

signal cancellation problem is alleviated. However, the ABM cancels not only
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the reflections but also interference signals in the case that the output of the up-

per branch contains the interference components. In this case, their algorithm

is unable to suppress the leaked interference signals. In reality, the interference

signals are often present in the upper branch due to steering errors and spatial

aliasing [6, §13.1.4]. Therefore, Hoshuyama’s algorithm requires in some sense a

trade-off between the avoidance of signal cancellation and suppression of the in-

terference signals. This problem can be solved by simply halting the adaptation

of the ABM and only updating the active weight vectors in the case of a high

signal-to-noise ratio (SNR) [20]. Such a switching algorithm is based on SNR,

however, and requires complicated rules which must generally be determined

empirically.

The TF-GSC beamformer described in Section 5.3 takes into account the

transfer functions from the desired source to the microphones into the upper

branch of the GSC. The quiescent vectors are calculated with the estimated

ratios as indicated in (5.13). The blocking matrices are then computed so as to

satisfy the orthogonality condition with those quiescent weight vectors. Thus,

it can avoid the leakage of the desired signal into the lower branch. It, however,

needs to estimate the ratios of the transfer function without source positions

in acoustically stationary environments. It is difficult to obtain stable solutions

under non-stationary conditions. Although the algorithm proposed by Gannot

et al. can be used in moderately reverberant environments, it does not reduce

the amount of reverberation in the final signal [64].

As explained in Section 5.4, the generalized eigenvector (GEV) beamforming

algorithm also incorporates the transfer function from the source to the micro-

phones indirectly. It was demonstrated that their method could reduce signal

distortion and noise more than the TF-GSC without post-filtering. It was also

shown in [22] that their GEV beamforming algorithm can achieve almost the

same noise suppression performance of the theoretical upper bound obtained by

Hoshuyama’s beamformer.

Based on the solutions mentioned above that have appeared in the literature,

it could be argued that conventional robust beamforming algorithms with SOS
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Figure 7.5: Configuration of a source, sensors, and reflective surface for simula-

tion.

have essentially addressed the problem of removing reflections that are highly

correlated with the target signal in order to circumvent the signal cancellation

problem.

In contrast, the MN beamforming algorithm uses the reflections from the

desired source in order to enhance the target signal in addition to eliminating

the interference signals. Although the reflected signals could be delayed with

respect to the direct path, such delays would be compensated through appro-

priate adjustments of the active weight vectors. Notice that the length of the

analysis filter should be long enough to take in the delayed reflections. The

MN beamformer can steer both nulls and sidelobes, assuming the desired sound

source is statistically independent of the other sources.

In order to verify that the MN beamforming algorithm forms sidelobes di-

rected towards the reflection of a desired signal, we conducted experiments with

a simulated acoustic environment. As shown in Fig. 7.5, we considered a simple

configuration with a sound source, a reflective surface, and a linear array of

eight microphones positioned with 10 cm inter-sensor spacing. Actual speech

data were used as a source in this simulation, which was based on the image

method [62]. White Gaussian noise was added to the output of each microphone

to achieve a SNR of 0 dB. It was assumed that the speed of sound is 343.74

meter per second and used a reflection coefficient of 0.7 for the wall. Fig. 7.6

shows beam patterns at fs = 150 Hz, fs = 650 Hz and fs = 1600 Hz obtained
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Figure 7.6: Beam patterns produced by a delay-and-sum beamformer, the

MVDR beamformer and the MN beamforming algorithm using a spherical wave

assumption for (a) fs = 150 Hz, (b) fs = 650 Hz and (c) fs = 1600 Hz.
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Figure 7.7: Beam patterns produced by a delay-and-sum beamformer, the

MVDR beamformer and the MN beamforming algorithm using a plane wave

assumption for (a) fs = 150 Hz, (b) fs = 650 Hz and (c) fs = 1600 Hz.

with a delay-and-sum (D&S) beamformer, the MVDR beamformer and the MN

beamforming algorithm with the GG pdf of the magnitude. The weights of the

MVDR beamformer were optimized for isotropic (diffuse) noise in the simula-

tion; See Section 5.1.1.

The beam patterns in Fig. 7.6 were produced with a near-field source and

reflection although a beam pattern shows the sensitivity of an array to plane

waves. The author also ran a second set of simulations in which the source

and reflection were assumed to produce plane waves. The results of this sec-

ond simulation are shown in Fig. 7.7. It is clear from these figures that the

MN beamformer emphasizes reflections from the desired source. The MVDR
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beamformer optimized for the diffuse noise, on the other hand, tends to sup-

press such reflections. It is also apparent from Fig. 7.6 (a) and Fig. 7.7 (a)

that MVDR and MN beamformers can suppress interference at low frequencies,

while the suppression performance of the delay-and-sum beamformer is poor at

low frequencies.

7.3 Maximum Empirical Kurtosis Beamformer

This section considers kurtosis as a criterion for estimating the active weight

vectors in a GSC and describes the beamforming algorithm which optimizes the

active weight vectors so as to achieve the output with the maximum kurtosis

(MK).

Much like the MN beamformer, the MK beamformer can suppress noise and

reverberation without the signal cancellation problem. In contrast to negen-

tropy, kurtosis does not require knowledge of the actual pdf of subband samples

of speech. Rather, kurtosis can be simply calculated in the non-parametric

manner. However, the kurtosis measure is influenced by samples with a low

observation probability [1].

It is worth mentioning that Gillespie et al. [65] used the MK criterion to

build a multi-microphone speech enhancement system without the GSC imple-

mentation and demonstrated speech enhancement with relatively little enroll-

ment data. Applying the MK criterion to a beamformer in GSC configuration

enables the beam to be steered as desired.

7.3.1 Estimation of the Active Weight Vectors

With the variance of the outputs Y (k,m), σ2
Y , the kurtosis of beamformer’s

output can be expressed as

J(Y (m)) =

(

1

K

K−1
∑

k=0

Y 4(k,m)

)

− 3
(

σ2
Y

)2
. (7.28)
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By applying the regularization term, we obtain the objective function

J (Y (m);α) = J(Y (m)) − α‖wa(m)‖2. (7.29)

We want to find the active weight vectors which maximize the objective func-

tion (7.29)

In the absence of a closed-form solution, we must resort to one of the nu-

merical optimization algorithms again. By taking the partial derivative (7.29),

we obtain

∂J (Y (m);α)

∂wa
∗(m)

=

(

1

K

K−1
∑

k=0

−2Y 2(k,m)BH(m)X(k,m)Y ∗(k,m)

)

− 6σ2
Y

(

1

K

K−1
∑

k=0

−BH(m)X(k,m)Y ∗(k,m)

)

+ αwa(m),

(7.30)

Equation (7.30) is sufficient to implement a numerical optimization algorithm

based on the method of conjugate gradients [60, §1.6], whereby the kurtosis of

the beamformer’s output can be maximized.



Chapter 8

Automatic Speech

Recognition (ASR)

The final goal of this thesis is to construct an automatic speech recognition

(ASR) system capable of robustly recognizing speech captured with far-field

sensors. Therefore, the beamforming algorithms proposed here are all evaluated

in terms of recognition performance.

The key point in all ASR systems is to model various sounds of a language

to be recognized. In other words, signal components which are unnecessary for

speech recognition are disregarded. For example, a minimum variance distor-

tionless response (MVDR) feature extraction technique for the ASR smooths

valleys which are readily corrupted by noise while estimating spectrum peaks

more accurately [6]. Recognition accuracy, as measured by word error rate

(WER), is our metric of choice because improvements in simpler metrics such

as signal-to-noise ratio (SNR) correlate poorly with reductions in WER. Hence,

evaluating WER directly is necessary to establish effectiveness of new acoustic

beamforming algorithms. This is what is meant by the often repeated adage,

”You improve what you measure.”

This chapter introduces one of the state-of-the-art ASR systems. The rest

139
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of this chapter is organized as follows. Section 8.1 overviews configuration of a

modern ASR system. Section 8.2 describes a metric for measuring the recogni-

tion performance, a word error rate (WER). The front-end of the ASR system is

then reviewed in Section 8.3. Section 8.4 describes how to stochastically model

phones with the hidden Markov model (HMM). Section 8.5 reviews methods

that adapt parameters of models to an unseen speaker and new environment

with little data.

8.1 Framework of a Modern ASR System

Figure 8.1 illustrates a block chart of a typical large vocabulary continuous

speech recognizer (LVCSR) with a beamformer for recognizing speech from the

far-field. In that system, the speaker’s position is first determined by a speaker

tracking system [66]. Multi-channel signals are then processed with one of the

beamforming techniques described in the previous chapters. After that, the

LVCSR converts the enhanced speech signal into a sequence of vectors which

represents the speech feature for discriminating phonemes. Finally, a decoder

finds a sequence of words which is most likely to have generated the sequence

of the feature vectors. This problem in the decoding process can be formulated

as

ŵ = argmax
w

P (w|O), (8.1)

where O = [o0,o1, . . . ,oTo−1] is the sequence of the feature vectors and

w = [w0, w1, . . . , wNw−1] is the sequence of words. Since it is difficult to model

P (w|O) directly, Bayes’ Rule is usually applied to (8.1) and the problem can

be re-rewritten

ŵ = argmax
w

P (O|w)P (w). (8.2)

The probablity P (O|w) is calculated with an acoustic model and P(w) is re-

ferred to as a language model. Those probabilities are normally computed in

the log domain in order to avoid the floating point underflow error.
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Figure 8.1: Basic block chart of ASR with the beamforming front-end.
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8.2 Word Error Rate

The word error rate (WER) is often used for evaluating the performance of the

ASR system. In the case that mechanisms of human perception are incorporated

into the ASR system, the WER would be related to human perception.

Recognition errors are typically grouped into three types:

• an insertion which occurs when an extra word which is not spoken is

recognized

• a substitution which occurs when a correct word is replaced by an incorrect

word and

• a deletion which happens when a recognizer fails to hypothesize a word

which is spoken.

The minimum error rate can be determined by aligning the hypothesized

word string with the correct reference string. This problem is know as maximum

substring matching and can be solved by dynamic programming [67]. After the

alignment, the WER is calculated as

WER =
substitutions + deletions + insertions

total number of word tokens in the reference
× 100. (8.3)

8.3 Feature Extraction

Human speech contains information and characteristics such as pitch, prosody

and accent, that, while lending individuality and charm to the voice of a given

speaker, are irrelevant to distinguishing between different phones. To obtain

optimal performance, such irrelevant characteristics must be eliminated from

the features used for recognition. Thus, the feature extraction techniques play

an important role in the ASR systems.

Many speech feature extraction algorithms have been proposed and stud-

ied over the years. The most widely used methods are based on Mel-frequency

cepstral coefficients (MFCCs) [6] and perceptual linear prediction (PLP) [68].
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MFCCs are obtained by truncating discrete cosine transformation (DCT) coef-

ficients of log power spectra smoothed with Mel-filter banks, which mimic the

frequency resolution of the human ear. PLP computes linear prediction (LP) co-

efficients from a perceptually weighted non-linearly compressed power spectrum

and then transforms LP coefficients to cepstral coefficients. PLP features can

give small improvements over the MFCCs in moderately noisy environments.

The LP methods minimize the squared prediction error, which leads to the

elimination of the harmonics present in the original spectrum [69, §3.4] [70]. The

effect of nulling out the harmonics is emphasized by increasing the model order

of LP. In this process, contours in the spectral envelope become sharper and the

harmonics are overestimated [70]. Such effects are problematic for estimating

the power spectrums at the harmonic frequencies in voiced speech.

In order to overcome the problems associated with LP, Murthi et al. pro-

posed the minimum variance distortionless response (MVDR) spectral estima-

tion method in [71]. The detailed discussions are found in [70]. Wölfel and

McDonough recently proposed a new feature extraction algorithm based on the

MVDR spectral estimation [72]. They estimate the MVDR spectral envelope

in the frequency domain warped by the bi-linear transformation (BLT) [73, 74],

which takes into account the human perception. In order to improve robustness

against additive noise, the warped MVDR spectral envelope is then scaled to

the highest peak of the logarithmic power spectrum. They demonstrated that

their MVDR feature extraction algorithm can provide the better recognition

performance than the MFCC and PLP features. Three different front-ends are

thoroughly analyzed in [6]

This section briefly reviews the feature extraction method based on the

MVDR spectral estimation.

8.3.1 MVDR-envelope

The MVDR also known as Capon’s method or the maximum-likelihood

method [75] was originally introduced in [76]. It has been demonstrated in [77]
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that this method provides an unbiased minimum variance estimate of the spec-

tral components. Detailed discussions of the speech spectral estimation using

the MVDR can be found in [70].

MVDR spectral estimation can be posed as a problem in filter bank design,

wherein the final filter bank is subject to the distortionless constraint [78]:

The signal at the frequency of interest ωfoi must pass undistorted

with unity gain.

This can be expressed as

H(ejωfoi) =

M
∑

m=0

h[m] e−jmωfoi = 1,

where h[m] is the mth sample in the time signal associated with H(ejωfoi). This

constraint can be rewritten in vector form as

vH(ejωfoi)h = 1,

where v(ejωfoi) is the fixed frequency vector

v(ejω) = [1, e−jω, . . . , e−jMω]T ,

and

h = [h[0], h[1], . . . , h[M ]]T .

The distortionless filter h can now be obtained by solving the constrained

minimization problem

min
h

hHΦh subject to vH(ejωfoi)h = 1, (8.4)

where Φ is the (M + 1) · (M + 1) Toeplitz autocorrelation matrix with (m,n)th

element φm,n = R[m − n] of the input signal

R[n] =

M
∑

m=0

x[m]x[m − n].

The solution to the constrained minimization problem can be found, for exam-

ple, in [78] as

h =
Φ−1v(ejωfoi)

vH(ejωfoi)Φ−1v(ejωfoi)
.
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This implies that h is the impulse response of the distortionless filter for the

frequency ωfoi. The MVDR-envelope of the spectrum S(e−jω) at frequency ωfoi

is then obtained as the output of the optimized constrained filter

SMVDR(ejωfoi) =
1

2π

∫ π

−π

∣

∣H(ejωfoi)
∣

∣

2
S(e−jω)dω. (8.5)

Although MVDR spectral estimation was posed as a problem of designing a

distortionless filter for a given frequency ωfoi, this was only a conceptual device.

The MVDR spectral envelope can in fact be represented in parametric form for

all frequencies and computed as

SMVDR(ejωfoi) =
1

vH(ejωfoi)Φ−1v(ejωfoi)
. (8.6)

Under the assumption that the (M +1) · (M +1) Hermitian Toeplitz correlation

matrix Φ is positive definite and thus invertible, [75] derived a fast algorithm

to calculate the MVDR spectral envelope from a set of LP coefficients.

The MVDR-envelope copes well with the problem of overestimation of the

spectral power at the harmonics of voiced speech [6]. Hence, the MVDR-

envelope models the perceptually important speech harmonics very well. Unlike

warped-envelopes, however, it neither mimics the human auditory system nor

model the different frequency bands with varying accuracy.

8.3.2 Warped MVDR-envelope

To overcome the problems inherent in LP while emphasizing the perceptually

relevant portions of the spectrum, the bi-linear transformation must be applied

prior to MVDR spectral envelope estimation [72]. The derivation of the so-called

warped MVDR will be presented in this section.

To obtain the solution of the distortionless filter h̃ in the warped domain,

we must once more solve the constrained minimization problem, wherein the

constraint is applied in the warped frequency domain

min
h̃

h̃HΦ̃h̃ subject to ṽH(ejωfoi)h̃ = 1 (8.7)
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where ṽ is defined as the warped frequency vector

ṽ(ejω) =

[

1,
e−jω − α

1 − α · e−jω
, . . . ,

e−jMω − α

1 − α · e−jMω

]T

.

and Φ̃ is the Toeplitz autocorrelation matrix which can be, for example, calcu-

lated by Matsumoto’s method [79]; see also [6, §5.3.6] for details.

The solution to the warped constrained minimization problem is very similar

to its unwarped counterpart. The warped MVDR-envelope of the spectrum

S(e−jω) at frequency ωfoi can be obtained as the output of the optimal filter,

SwarpedMVDR(ejωfoi) =
1

2π

∫ π

−π

∣

∣

∣H̃(ejωfoi)
∣

∣

∣

2

S(e−jω)dω, (8.8)

under the constraint

H̃(ejωfoi) =

M
∑

m=0

h̃(m)
e−jmωfoi − α

1 − α · e−jmωfoi
= 1.

Assuming that the Hermitian Toeplitz correlation matrix Φ̃ is positive definite

and thus invertible, Musicus’s algorithm [75] can be readily applied to compute

the warped MVDR spectral envelope with a little modification [6, §5.3.6].

A warped envelope estimate on the linear frequency scale can be expressed

as

S̃MVDR(ejω) =
1

∑M
m=−M µ̃m

e−jmω−α
1−α·e−jmω

. (8.9)

where with the prediction error in the warped domain ẽM and the LPC a
(M)
0···M

of order M

µm =



























1

ẽM

M−m
∑

i=0

(M + 1 − m − 2i)a
(M)
i a

∗(M)
i+m , m = 0, · · · ,M

µ∗
−m , m = −M, · · · ,−1.

8.3.3 Scaled MVDR-envelope

The spectral peaks in the non-logarithmic domain can be influenced by addi-

tive noise. In contrast, the peaks in the logarithmic domain are known to be

particularly robust to additive noise, as log(a + b) ≈ log(max{a, b}) [80]. It was
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shown in [72] that the spectral peaks of the logarithmic warped MVDR envelope

are also not as robust to noise as the spectral peaks of the logarithmic power

spectrum. Accordingly, the MVDR spectrum is matched to the highest spectral

peak of the logarithmic power spectrum [72].

8.3.4 Feature Projection

Feature projection is used for reducing the number of dimensions of a feature

vector. It can improve robustness of estimation of classifier’s parameters espe-

cially when the amount of training data is scarce.

Although the feature extraction algorithms described in the previous sec-

tions can reduce the dimensionality of the feature vector at each frame, the

feature projection method is generally used for capturing dynamics of speech

characteristics from the sequence of the feature vectors effectively.

The most straightforward approach would be the linear transformation

ot = A[p]ōt, (8.10)

where A[p] is a p × d matrix, d is the dimension of the source vector ōt formed

by concatenating the static feature vectors of several frames.

Different criteria for estimating A[p] have been used in the ASR systems and

are summarized as:

• the minimum reconstruction error achieved by principal component anal-

ysis (PCA),

• the maximum class separability obtained by linear discriminant analysis

(LDA) [81] or heteroscedastic discriminant analysis (HDA) [82], and

• the best class separability whilst ensuring that distributions for all dimen-

sions to be removed are the same, e.g., heteroscedastic LDA (HLDA) [83].

Although the HLDA-based method outperforms the other algorithms, it is

more computationally expensive and requires more memory. Full covariance
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matrix statistics for each component are required to estimate an HLDA trans-

form, whereas only the average within and between class covariance matrices are

required for LDA. This makes the HLDA projections from large dimensional fea-

tures spaces with large numbers of components impractical. Accordingly, LDA

is used in experiments described in Chapter 9.

8.4 HMM Parameter Estimation

The hidden Markov model (HMM) can represent a variety of speech characteris-

tics. Modern ASR systems are based on the HMM trained from a huge amount

of speech data associated with correct transcriptions [84, 85, 86, 87, 88, 89, 90].

Training algorithms of the HMMs could be grouped into two approaches

: maximum likelihood (ML) estimation and discriminative estimation. The

parameter estimation based on the ML criterion is perhaps simpler and more

popular. Therefore, the ML estimation algorithm will be explained here. Read-

ers who are interested in the discriminative training algorithms can find the

details in [6].

The rest of this section is organized as follows. Section 8.4.1 describes a

structure of a HMM. Initialization and re-estimation algorithms are then de-

scribed in Section 8.4.2 and 8.4.3, respectively. A transformation method of

HMM’s covariance matrix is depicted in Section 8.4.4.

8.4.1 Structure of HMM

In the similar manner with the decomposition of the words as mentioned in

Section 8.1, each spoken word w can be also decomposed into a sequence of

Kw phones. This sequence is called its pronunciation q
(w)
1:Kw

= q1, · · · , qKw
. To

allow for the possibility of multiple pronunciations, the likelihood P (O|w) can

be expressed

P (O|w) =
∑

Q

P (O|Q)P (Q|w), (8.11)
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Figure 8.2: An example of a HMM structure.

where the summation is over all the valid pronunciation sequences for w, Q is

a particular sequence of pronunciations,

P (Q|w) =

L
∏

l=1

P (q(wl)|wl), (8.12)

and where each q(wl) is a valid pronunciation for word wl.

Figure 8.2illustrates a phone model represented by a continuous density

HMM with states {sj} which are associated with output distributions {bj(·)}
and their transition probabilities {aij}. At the state sj , a feature vector is emit-

ted with the probability bj(o) and the state transition from the state si to sj

occurs with the probability aij . In particular, the HMM shown in Figure 8.2is

called the left-to-right HMM which allows states to transit in temporal order.

For the output distribution, a Gaussian mixture model (GMM) is typically

used as

bj(o) =

M
∑

m=1

cjmN (o;µjm,Σjm), (8.13)

where cjm is the mixture weight which satisfies
∑M

m=1 cjm = 1, N (·;µ,Σ) is a

multivariate Gaussian with the mean vector µ and covariance matrix Σ.

In the case that the HMM uses the GMMs, we have to estimate the mixture

weights, the mean vectors and covariance matrices as well as the transition

probabilities {aij} for each phone.
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The observation vectors might consist of different modal features such as

speech (audio) and lip image (visual) features. A concept of the stream has

been introduced to the HMM in order to represent such multi-modal features.

The output probability of the HMM with the multiple streams can be expressed

as

bj(o) =

Nr
∏

s=1

bj(os)

=

Nr
∏

s=1

Ms
∑

m=1

cjsmN (os;µjsm,Σjsm)

(8.14)

where os represents the observation vector at stream s and Nr is the number of

streams.

In the multi-stream HMM, events of a stream are assumed to be stochasti-

cally independent of each other at a state while the transition probabilities can

be tied together, which implies that the events changes synchronously [91, 92].

The multi-stream HMM framework is often applied to the audio-visual ASR

which can improve the recognition performance by using visual information such

as images around mouths.

Although the single-stream HMM is used in experiments which will described

in Chapter 9, the following sections present update formulae for the multi-stream

HMM which are more general expressions. We can easily obtain the formulae

for the normal HMM by setting the number of streams to 1.

8.4.2 Viteribi Training (Initialization)

After the basic structure of the HMM is defined, the HMM’s parameters such as

the mean vectors, covariance matrices and mixture weights have to be initialized.

For the initialization, each training observation, Or, 1 ≤ r ≤ R, is uniformly

divided into N equal segments so that each uniform segment is associated to

each state. The parameters of the HMM are then computed with the uniformly

segmented features.
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After the first estimation with the uniform segmentation, the Viterbi algo-

rithm finds the most likely state sequence corresponding to the feature vectors

and then assign a set of the observation vectors to each state. These processes

are repeated until the total likelihood converges. The parameters of the state

are then estimated with the associated feature vectors.

Apart from the first iteration on the new model, each training sequence O

is segmented using the Viterbi algorithm which results from maximizing

φNs
(T − 1) = max

i
φi(T − 1)aiNs

where

φj(t) =
[

max
i

φi(t − 1)aij

]

bj(ot)

with initial conditions given by

φ1(0) = 1

φj(0) = a1jbj(o0).

In this and all subsequent cases, i indicates the previous state, j is the index

of the state at the time instance t, and the output probability bj(·) is defined

as (8.14).

If Aij represents the total number of transitions from state i to state j in

performing the above maximizations, then the transition probabilities can be

estimated by counting the relative frequencies

âij =
Aij

∑Ns

k=1 Aik

The sequence of states which maximizes φN (T − 1) implies an alignment of

training samples with states. Within each state, a further alignment of obser-

vations to the mixture components is made. For each state and each stream

1. use clustering to allocate each observation ost to one of Ms clusters, or

2. associate each observation ost with the mixture component with the high-

est probability
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In either case, the result is that every observation is associated with a single

unique mixture component. This association can be represented by the indicator

function ψr
jsm(t) which is 1 if or

st is associated with mixture component m of

stream s of state j and is zero otherwise.

The means and variances are then estimated via simple averages

µ̂jsm =

∑R
r=1

∑Tr−1
t=0 ψr

jsm(t)or
st

∑R
r=1

∑Tr−1
t=0 ψr

jsm(t)

Σ̂jsm =

∑R
r=1

∑Tr−1
t=0 ψr

jsm(t)(or
st − µ̂jsm)(or

st − µ̂jsm)′
∑R

r=1

∑Tr−1
t=0 ψr

jsm(t)

Finally, the mixture weights are based on the number of observations allo-

cated to each component

cjsm =

∑R
r=1

∑Tr−1
t=0 ψr

jsm(t)
∑R

r=1

∑Tr−1
t=0

∑Ms

l=1 ψr
jsl(t)

8.4.3 Baum-Welch Training (Re-estimation)

Baum-Welch training is similar to the Viterbi training method described in the

previous section except that the hard boundary determined by the ψ function

is replaced by a soft boundary function L which represents the probability of

an observation associated with a Gaussian mixture component. This occupation

probability is computed from the forward and backward probabilities. Baum-

Welch training has two styles, an isolated training style where each phone model

is individually updated and embedded training one where a word model con-

catenated from several phone models without phone labels is re-estimated.

Isolated training

For the isolated-unit style of training, the forward probability αj(t) for 1 ≤ j ≤
Ns and 0 < t < T is calculated by the forward recursion

αj(t) =

[

Ns
∑

i=1

αi(t − 1)aij

]

bj(ot)
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Figure 8.3: Visualization of computing the forward probabilities.

with initial conditions given by

αj(0) = aIjbj(o0)

for 1 ≤ j ≤ Ns and final condition given by

αF (T − 1) =

Ns
∑

i=1

αi(T − 1)aiF

where aIj indicates the initial transition path to the state j and aiF is the

transition probability from state i to the last state with no emission.

Figure 8.3 visualizes the procedure of the calculation of the forward probabil-

ities in the case of T = 5 and Ns = 3. In the figure, the horizontal axis indicates

the frame t, the vertical axis corresponds to the state s and each rectangle box

in the trellis is associated with the forward probability of each state at each

frame. The forward probability can be obtained by recursively multiplying the

transition probabilities with the emission probabilities along the paths indicated

by the broken arrows in Figure 8.3.

The backward probability βi(t) for 1 ≤ i ≤ Ns and T−1 > t ≥ 0 is calculated

by the backward recursion

βi(t) =

Ns
∑

j=1

aijbj(ot+1)βj(t + 1)
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with initial conditions given by

βi(T − 1) = aiF

for 1 ≤ i ≤ Ns and final condition given by

βI(0) =

Ns
∑

j=1

aIjbj(o0)βj(0).

Notice that isolated training requires phone labels.

In this style of model training, a set of training observations Or, 1 ≤ r ≤ R,

is used to estimate the parameters of a single HMM. The basic formula for the

re-estimation of the transition probabilities is

âij =

∑R
r=1

1
Pr

∑Tr−2
t=0 αr

i (t)aijbj(o
r
t+1)β

r
j (t + 1)

∑R
r=1

1
Pr

∑Tr−1
t=0 αr

i (t)β
r
i (t)

where 1 ≤ i ≤ Ns and 1 ≤ j ≤ Ns and Pr is the total probability P =

prob(Or|λ) of the r-th observation. The transitions from the non-emitting entry

state are re-estimated by

âIj =
1

R

R
∑

r=1

1

Pr
αr

j(0)βr
j (0)

where 1 ≤ j ≤ Ns and the transitions from the emitting states to the final

non-emitting exit state are re-estimated by

âiF =

∑R
r=1

1
Pr

αr
i (T − 1)βr

i (T − 1)
∑R

r=1
1

Pr

∑Tr−1
t=0 αr

i (t)β
r
i (t)

where 1 ≤ i ≤ Ns.

For the HMM with Ms mixture components in stream s, the means, covari-

ances and mixture weights are re-estimated as follows. Firstly, the probability

of occupying the m-th mixture component in stream s at time t for the r-th

observation is

Lr
jsm(t) =

1

Pr
Ur

j (t)cjsmbjsm(or
st)β

r
j (t)b∗js(o

r
t )

where

Ur
j (t) =







aIj if t = 0
∑Ns

i=1 αr
i (t − 1)aij otherwise

(8.15)
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and

b∗js(o
r
t ) =

∏

k 6=s

bjk(or
kt)

For a single Gaussian stream, the probability of mixture component occupancy

is equal to the probability of state occupancy and hence it is more efficient in

this case to use

Lr
jsm(t) = Lr

j(t) =
1

Pr
αj(t)βj(t)

Given the above definitions, the re-estimation formulae may now be ex-

pressed in terms of Lr
jsm(t) as follows.

µ̂jsm =

∑R
r=1

∑Tr−1
t=0 Lr

jsm(t)or
st

∑R
r=1

∑Tr−1
t=0 Lr

jsm(t)

Σ̂jsm =

∑R
r=1

∑Tr−1
t=0 Lr

jsm(t)(or
st − µ̂jsm)(or

st − µ̂jsm)′
∑R

r=1

∑Tr−1
t=0 Lr

jsm(t)
(8.16)

cjsm =

∑R
r=1

∑Tr−1
t=0 Lr

jsm(t)
∑R

r=1

∑Tr−1
t=0 Lr

j(t)

Embedded training

In the case of embedded training, the HMM spanning the observations is a

composite constructed by concatenating Q subword models. An advantage of

embedded training is that the phone labels which require labor of expert labelers

are not needed.

For the forward probability, the initial conditions are established at

time t = 0 as follows

α
(q)
j (0) =







α
(q)
j (0) = a

(q)
Ij b

(q)
j (o0) if q = 1

0 otherwise

where the superscript q in parentheses refers to the index of the model in the

sequence of concatenated models. All unspecified values of α are zero. For time

t > 0,

α
(q)
j (t) =







[

a
(q)
Ij +

∑N(q−1)
s

i=1 α
(q)
i (t − 1)a

(q)
ij

]

b
(q)
j (ot) if q = 1

[

∑N(q−1)
s

i=1 α
(q−1)
i (t − 1)a

(q−1,q)
ij +

∑N(q)
s

i=1 α
(q)
i (t − 1)a

(q)
ij

]

b
(q)
j (ot) otherwise
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α
(q)
F (t) =

N(q)
s

∑

i=1

α
(q)
i (t)a

(q)
iF

For the backward probability, the initial conditions are set at time t = T − 1 as

follows

β
(q)
i (T − 1) =







a
(q)
iF if q = Q

0 otherwise

where once again, all unspecified β values are zero. For time t < T − 1,

β
(q)
i (t) =







∑N(q)
s

j=1 a
(q)
ij b

(q)
j (ot+1)β

(q)
j (t + 1) +

∑N(q)
s

j=1 a
(q)
ij b

(q)
j (ot+1)a

(q)
jF if q = Q
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(q)
ij b

(q)
j (ot+1)β

(q)
j (t + 1) +

∑N(q+1)
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j=1 a
(q,q+1)
ij b

(q+1)
j (ot+1)β

(q+1)
j (t + 1) otherwise

β
(q)
I (t) =

N(q)
s

∑

j=1

a
(q)
Ij b

(q)
j (ot)β

(q)
j (t)

The total probability Pr = prob(O|λ) can be computed from either the

forward or backward probabilities

Pr = αF (T − 1) = βI(0)

The basic formula for the re-estimation of the transition probabilities within

a phone model is

â
(q)
ij =

∑R
r=1

1
Pr

∑Tr−2
t=0 α

(q)r
i (t)a

(q)
ij b

(q)
j (or

t+1)β
(q)r
j (t + 1)

∑R
r=1

1
Pr

∑Tr−1
t=0 α

(q)r
i (t)β

(q)r
i (t)

.

The transitions between two phone HMMs are re-estimated by

â
(q,q+1)
ij =

∑R
r=1

1
Pr

∑Tr−2
t=0 α

(q)r
i (t)a

(q,q+1)
ij b

(q+1)
j (or

t+1)β
(q+1)r
j (t + 1)

∑R
r=1

1
Pr

∑Tr−1
t=0 α

(q)r
i (t)β

(q)r
i (t) + α

(q)r
i (t)a

(q,q+1)
ij b

(q+1)
j (or

t+1)β
(q+1)r
j (t + 1)

and the transitions from the non-emitting entry to the first emission states are

re-estimated by

â
(q)
Ij =

∑R
r=1

1
Pr

∑Tr−1
t=0 a

(q)
Ij b

(q)
j (or

t )β
(q)r
j (t)

∑R
r=1

1
Pr

∑Tr−1
t=0 β

(q)r
I (t)

Finally, the direct transitions to the non-emitting exit state are re-estimated by

â
(q)
iF =

∑R
r=1

1
Pr

∑Tr−1
t=0 α

(q)r
i (t)a

(q)
iF

∑R
r=1

1
Pr

∑Tr−1
t=0 α

(q)r
i (t)β

(q)r
i (t)
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The re-estimation formulae for the output distributions are the same as

those for the single model case except for the obvious additional subscript for q.

However, the probability calculations must now allow for transitions from the

entry states by changing Ur
j (t) in (8.15) to

U
(q)r
j (t) =







a
(q)
Ij b

(q)
j (or

t ) if t = 0
∑N(q−1)

s

i=1 α
(q−1)
i (t − 1)a

(q−1,q)
ij +

∑Nq

i=1 α
(q)r
i (t − 1)a

(q)
ij otherwise

8.4.4 Semi-Tied Covariance

Semi-tied transforms [93] and the updates for HLDA are very similar.

Semi-tied covariance matrices have the form

µmr
= µmr

, Σmr
= HrΣ

diag
mr

HT
r . (8.17)

For efficiency reasons the transforms are stored and likelihoods are calculated

using

N (o;µmr
,HrΣ

diag
mr

HT
r ) =

1

|Hr|
N (H−1

r o;H−1
r µmr

,Σdiag
mr

)

= |Ar|N (Aro;Arµmr
,Σdiag

mr
), (8.18)

where Ar = H−1
r . The transformed mean, Arµmr

, is stored in advance for

efficiency.

The estimation of the semi-tied transforms is a doubly iterative process.

Given a current set of covariance matrix estimates, the semi-tied transforms are

estimated in a similar fashion to the full variance transforms.

ari = criG
(i)−1
r

√

√

√

√

(

βr

criG
(i)−1
r cT

ri

)

, (8.19)

where ari is ith row of Ar, the 1× n row vector cri is the vector of cofactors of

Ar, crij = cof(Arij), and G
(i)
r is defined as

G(i)
r =

Mr
∑

mr=1

1

σ
diag2
mri

T−1
∑

t=0

Lmr
(t)(o(t) − µmr

)(o(t) − µmr
)T Σmr

. (8.20)
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This iteratively estimates one row of the transform at a time.

Having estimated the transform, the diagonal covariance matrix is updated

as

Σdiag
mr

= diag

(

Ar

∑T−1
t=0 Lmr

(t)(o(t) − µmr
)(o(t) − µmr

)T AT
r

∑T−1
t=0 Lmr

(t)

)

. (8.21)

8.5 Adaptation and Normalization

In reality, we cannot collect speech data of every speaker in all the acoustic

environments. It is inevitable for ASR systems to encounter a new speaker and

noise which acoustic models do not represent well. The recognition performance

will degrade seriously because of the mismatch between training and test data.

One of the best solutions to that problem is adaptation. Adaptation tech-

niques transform the acoustic models with a small amount of data so as to

match them to a target speaker. The adaptation algorithms are performed in

either supervised manner or unsupervised way. The supervised adaptation tech-

niques require correct transcriptions for all of the adaptation data and update

the acoustic models to the target speaker and environment. In unsupervised

training, those transcriptions must be hypothesized.

The rest of this section is organized as follows. First, Section 8.5.1 dis-

cusses about the feature transformation techniques which remove unnecessary

characteristics for speech recognition from feature vectors. Second, model trans-

formation techniques, where parameters of HMMs are adapted, are described

in Section 8.5.2.

8.5.1 Feature Transformation Techniques

The most common feature space adaptation techniques transforms intermediate

or the final features used for recognition. These algorithms are used for removing

speaker and/or environment-dependent components which have no information

to discriminate different phones.
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Vocal Tract Length Normalization

A vocal tract length of an individual would shift formant frequencies. Much like

a longer pipe in an organ produces a lower tone than a short pipe, the resonances

or formants produced by the vocal tract of a taller speaker will generally be lower

than those of a shorter speaker, simply because the former will, on average,

have a longer vocal tract. Although the vocal tract length is useful information

for identifying a speaker, it will not help discriminating different phonemes.

Variations in the vocal tract length degrade the performance of ASR.

Although a lot of vocal tract length normalization (VLTN) techniques have

been proposed in ASR, one basic idea of the normalization methods is to cap-

ture features that appear to have been generated by some average speaker so

that differences of the vocal tract lengths are compensated. It is, for example,

achieved by linearly scaling the center frequencies of the Mel-filter bank [94].

In order to develop the VTLN algorithm, two issues first need to be ad-

dressed:

• definition of the scaling function and

• estimation of the appropriate warping parameters of the scaling function

for each speaker

In an early stage of the VTLN development, the linear transformation was

used as the scaling function. In contrast, Acero [95] and McDonough et al.

[73, 74] have proposed applying the bilinear transform (BLT) as a means of

achieving a frequency warping effect. The BLT has a useful property that

such warping can be achieved through a linear transformation of the cepstral

coefficients.

In the VTLN algorithms, the different warping parameters which control

how much the formants are mapped up or down are usually estimated for each

speaker so that the likelihood of the resulting features with respect to a GMM

or HMM is maximized. Parameter estimation is performed using a grid search

plotting likelihoods against the parameter values. Once the optimal values for
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all training speakers have been computed, the training data is normalized and

the acoustic models are re-estimated. This is repeated until the parameters

have converged. In the case of very large systems, the amount of computation

becomes problematic. An alternative is to approximate the effect of VTLN

by a linear transform. The advantage of this approach is that the optimal

transformation parameters can be determined from the auxiliary function in a

single pass over the data [96].

Most investigators have reported that the performance of recognition can be

improved by the VTLN algorithms and further enhanced using the other forms

of normalization and speaker adaptation.

8.5.2 Model Transformation Techniques

Model transformation techniques [97, §5.2] update the parameters of the acous-

tic HMMs with a limited amount of adaptation data.

These model transformation techniques can adapt the acoustic models to not

only new speakers but also unknown acoustic environments. In that sense, the

model-based adaptation techniques are more powerful than the feature trans-

formation techniques.

Transcriptions for the adaptation data have to be given. In the case that they

are not available, outputs from an ASR system with high confidence measures

are typically used as the transcriptions.

Maximum Likelihood Linear Regression

Maximum likelihood linear regression (MLLR) algorithms estimate a set of lin-

ear transformations for the mean and variance parameters of Gaussian mixtures

so as to match the acoustic models to new adaptation data. The parameters

are normally estimated based on the maximum likelihood criterion.

MLLR is generally very robust and well suited to unsupervised incremental

adaptation. This section presents MLLR in the form of a single global lin-

ear transform for all the Gaussian components. The multiple transform case,



8.5. ADAPTATION AND NORMALIZATION 161

where different transforms are used depending on the Gaussian component to

be adapted, is discussed later.

There are two main variants of MLLR: unconstrained and constrained [98,

99]. In unconstrained MLLR, separate transforms are trained for the means and

variances

µ̂
(sm) = A(s)µ(m) + b(s)

Σ̂
(sm)

= H(s)Σ(m)H(s)T (8.22)

where s indicates the speaker. Although (8.22) suggests that the likelihood

calculation is expensive to compute, unless H is constrained to be diagonal, it

can in fact be made efficient using the following equality

N (o; µ̂(sm), Σ̂
(sm)

) =

1

|H (s)|
N (H(s)−1o;H(s)−1(A(s)µ(m) + b(s)),Σ(m)). (8.23)

If the original covariances are diagonal, then by appropriately caching the trans-

formed observations and means, the likelihood can be calculated at the same

cost as when using the original diagonal covariance matrices. For MLLR there

are no constraints between the adaptation applied to the means and the co-

variances. If the two matrix transforms are constrained to be the same, then a

linear transform related to the feature-space transforms described earlier may

be obtained. This is constrained MLLR (CMLLR)

µ̂(sm) = Ã
(s)

µ(m) + b̃
(s)

Σ̂
(sm)

= Ã
(s)

Σ(m)Ã
(s)T

. (8.24)

In this case, the likelihood can be expressed as

N (o; µ̂(sm), Σ̂
(sm)

) = |A(s)|N (A(s)o + b(s);µ(m),Σ(m)), (8.25)

where A(s) = Ã
(s)−1

and b(s) = −Ã
(s)−1

b̃
(s)

.

Thus, the actual model parameters are not transformed with this constraint.

CMLLR is the form of linear transform most often used for adaptive training.
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For both forms of linear transform, the matrix transformation may be full, block-

diagonal, or diagonal. For a given amount of adaptation data, more diagonal

transforms may be reliably estimated than full ones. However, in practice, full

transforms normally outperform larger numbers of diagonal transforms [100].

Hierarchies of transforms of different complexities may also be used [101].

Parameter Estimation The maximum likelihood estimation formulae for

the various forms of linear transform are given in [98, 99]. Whereas there are

closed-form solutions for the unconstrained mean MLLR, the constrained and

unconstrained variance cases are similar to the semi-tied covariance transform

discussed in Section 8.4.4 and they require an iterative solution.

Both forms of linear transforms require transcriptions of the adaptation data

in order to estimate the model parameters. For supervised adaptation, the

transcription is known and may be directly used without further considera-

tion. When used in the unsupervised mode, the transcription must be derived

from the recognizer output and in this case, MLLR is normally applied iter-

atively [102] to ensure that the best hypothesis for estimating the transform

parameters is used. First, unknown speech is recognized, then the hypothesized

transcription is used to estimate MLLR transforms. The unknown speech is then

re-recognized using the adapted models. This is repeated until convergence is

achieved. Using this approach, all words within the hypothesis are treated as

equally probable.

A refinement is to use recognition lattices in place of the 1-best hypothesis

to accumulate the adaptation statistics. This approach is more robust to recog-

nition errors and avoids the need to re-recognize the data since the lattice can

be simply re-scored [133]. An alternative use of lattices is to obtain confidence

scores, which may then be used for confidence-based MLLR [103].

An initial development of transform-based adaptation methods used the ML

criterion and it was then extended to include maximum a posteriori estima-

tion [104]. Linear transforms can also be estimated using discriminative crite-

ria [105]. For supervised adaptation, any of the standard approaches may be
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used. However, if unsupervised adaptation is used, for example in BN transcrip-

tion systems, then there is an additional concern. As discriminative training

schemes attempt to modify the parameters so that the posterior of the tran-

scription (or a function thereof) is improved, it is more sensitive to errors in the

transcription hypotheses than ML estimation. This is the same issue as was ob-

served for unsupervised discriminative training and, in practice, discriminative

unsupervised adaptation is not commonly used.

Regression Class Trees A powerful feature of model transformation tech-

niques is that it can control the number of transforms based on the amount

of adaptation data. When the amount of adaptation data is limited, a global

transform can be shared across all the Gaussians in the system. As the amount

of data increases, the HMM state components can be grouped into regression

classes with each class having its own transform, for example A(r) for regression

class r. As the amount of data increases further, the number of classes and

therefore transforms can be increased correspondingly to give better and better

adaptation [99].

In order to automatically determine which tranforms are shared, a regression

tree is usually used [84]. Figure 8.4 illustrates the regression tree whose node

is typically associated with the class of Gaussian components. A set of trans-

forms which belongs to each node in the tree is shared and treated as a single

transform. The total occupation count associated with any node in the tree can

easily be computed since the counts are known at the leaf nodes. Then, for a

given set of adaptation data, the tree is descended so that the most specific set

of nodes is associated with sufficient data. Regression class trees may either be

specified using expert knowledge, or more commonly by automatically training

the tree by assuming that Gaussian components that are close to one another

are transformed using the same linear transform [99].



164 CHAPTER 8. AUTOMATIC SPEECH RECOGNITION (ASR)

Global Class

Figure 8.4: An illustration of a regression tree.

Speaker Adaptived Training

In order to build a speaker-independent (SI) speech recognition system, we have

to train acoustic models with a large number of speakers. That SI acoustic mod-

els will have characteristics of speakers which are irrelevant to information to

discriminate phones. One approach to handling this problem is speaker adaptive

training (SAT) [106].

Figure 8.5 illustrates schematic of SAT. As shown in Figure 8.5, SAT pro-

ceeds along much the same lines as conventional HMM training, with a forward-

backward step followed by a parameter update designed to maximize an appro-

priate auxiliary function. Before training, all utterances in the training set are

partitioned by speakers, and the adaptation parameters for the given speaker

are used to transform the means of the SI model before the forward-backward

pass over each partition. With the completion of the forward-backward step, the

speaker-dependent (SD) transformation parameters for the relevant speaker are

re-estimated, just as in normal speaker adaptation. The maximization step in

SAT includes an iterative parameter update wherein the SI means and variances

are each updated in turn while holding all other HMM parameters fixed at their

current values. The advantage of the iterative approach lies in the fact that
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SD modelsSI models

Estimate Transformation Parameters

Estimate Mixture Weights

Estimate Mixture Weights

Forward-backward Iteration

Transform SD Models 
into SI Models

Initialize the Parameters

Figure 8.5: Flow charts of SAT training.

a closed-form solution exists for the optimal values for each set of parameters

when the other sets are held constant.
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Chapter 9

Distant Speech Recognition

Experiments

Beamforming algorithms have been traditionally evaluated from the viewpoint

of the signal-to-noise ratio (SNR) or speech distance measures such as Itakura-

Saito distance [107, §5.3.5]. Subjective tests have been also employed. Not

surprisingly, such evaluation results are often based on a few utterance data

whose length is less than 10 minutes. The experimental results highly depend

on which test data is used or which experimental condition is chosen.

Unlike those skeptical experiments, this work uses real speech data for eval-

uations of beamforming algorithms. Here, the real data does not mean the data

artificially convoluted with measured impulse responses. The author evaluates

beamforming algorithms through a set of speech recognition experiments on

data captured with real sensors in a real meeting room.

The rest of this chapter is organized as follows. Section 9.1 describes the

specification of multi-channel speech data used in recognition experiments. In

Section 9.3, recognition performance achieved by MMI beamforming described

in Section 7.1 is investigated in the speech separation task where two speak-

ers are simultaneously speaking. In particular, Section 9.3.1 shows how much

167
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separation performance can be improved by MMI beamforming and examines re-

lationships between recognition performance and pdf assumptions used in MMI

beamforming. In Section 9.3.2, we see how important filter bank design methods

are in terms of acoustic beamforming. The Nyquist(M) filter bank is also com-

pared to other conventional methods, that is, the perfect reconstruction and de

Haan’s filter banks. Furthermore, relationships between filter parameters and

beamforming performance are thoroughly studied. Section 9.4 shows recogni-

tion experiments in the case that a single speaker is talking. In Section 9.4.1,

the beamforming methods proposed in Section 7.2 and Section 7.3 are compared

to the conventional SOS-based beamformers. Effects of the regularization term

on beamforming performance are analyzed in Section 9.4.2. Section 9.4.3 in-

vestigates which numerical optimization algorithm is suitable for estimating the

active weight vectors in MN and MK beamforming.

9.1 Database Specification

Distant automatic speech recognition (ASR) experiments are performed on the

Multi-Channel Wall Street Journal Audio Visual Corpus (MC-WSJ-AV) col-

lected by the Augmented Multi-party Interaction (AMI) project.

Fig. 9.1 illustrates a configuration of a meeting room where speech data was

recorded. The details of the data collection apparatus are also described in [3].

The room size was 650 cm × 490 cm × 325 cm and reverberation time T60 was

approximately 380 milliseconds. In addition to being reverberant, the meeting

room data collected includes background noise from computers and the building

ventilation. Some recordings also contain audible noise from outside the meeting

room, such as that generated by passing cars and speakers in an adjacent room.

The MC-WSJ-AV database contains multi-channel speech data recorded un-

der two conditions:

• Overlapping Speakers Stationary. Here, two speakers are asked to simulta-

neously read their sentences from different positions within the room. The
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Figure 9.1: A configuration of a meeting room (measurements in cm).

speakers remain in the same positions for the entirety of these recordings

and separate recordings are made from each of the 15 pairs of positions.

• Single Speaker Stationary. For this condition the speaker is asked to read

sentences from six positions within the meeting room four seated around

the table, one standing at the whiteboard and one standing at the presen-

tation screen. One sixth of each speaker’s sentences are read from each

position.

The far-field speech data was captured with a circular, eight-channel micro-

phone array with a diameter of 20 cm. Additionally, a close-talking microphone

was used for each speaker to capture the best possible signal as a reference. The

sampling rate of the recordings was 16 kHz.

As the data was recorded with real speakers in a realistic acoustic environ-

ment, the positions of the speakers’ heads as well as the speaking volume varied

even though the speakers were largely stationary. Indeed, it is exactly this

behavior of real speakers that makes working with data from corpora such as

MC-WSJ-AV so much more challenging than working with data that was played
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through a loudspeaker into a room, not to mention data that was artificially

convolved with previously-measured impulse responses.

9.2 Specification of the ASR system

The distant ASR experiments reported here were conducted with the Mille-

nium automatic speech recognition system. Millenium is based on the Enigma

weighted finite-state transducer (WFST) library, which contains implemen-

tations of all standard WFST algorithms, including weighted composition,

weighted determinization, weight pushing, and minimization [108]. The word

trace decoder in Millenium is implemented along the lines suggested by Saon

et al. [109], and is capable of generating word lattices, which can then be opti-

mized with WFST operations as in [110]; i.e., the raw lattice from the decoder

is projected onto the output side to discard all arc information save for the word

identities, and then compacted through epsilon removal, determinization, and

minimization. In addition to the word trace decoder, Millenium also contains

a state trace decoder, which maintains the full alignment of acoustic features to

states during decoding and lattice generation. This state trace decoder is use-

ful for both speaker adaptation and hidden Markov model (HMM) parameter

estimation.

The feature extraction of the ASR system was based on cepstral features

estimated with the warped MVDR spectral envelope of model order 30. Due to

the properties of the warped MVDR, neither the Mel-filterbank nor any other

filterbank was needed. The warped MVDR provides an increased resolution in

low–frequency regions relative to the conventional Mel-filterbank. The MVDR

also models spectral peaks more accurately than spectral valleys, which leads

to improved robustness in the presence of noise. Front-end analysis involved

extracting 20 cepstral coefficients per frame of speech and performing global

cepstral mean subtraction (CMS) with variance normalization. The final fea-

tures were obtained by concatenating 15 consecutive frames of cepstral features

together, then performing a linear discriminant analysis (LDA) to obtain a fea-
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ture of length 42. The LDA transformation was followed by a second global

CMS, then the global STC transform.

Acoustic models estimated with two different HMM training schemes were

used for several decoding passes: conventional maximum likelihood (ML) HMM

training described in Section 8.4, and speaker-adapted training under a ML

criterion (ML-SAT) [106]; See also Section 8.5.2.

The four decoding passes are performed on the beamformed waveforms.

Each pass of decoding used a different acoustic model, language model, or

speaker adaptation scheme. For all passes save the first unadapted pass, speaker

adaptation parameters were estimated using the word lattices generated during

the prior pass, as in [103]. A description of the four decoding passes follows:

1. Decode with the unadapted, conventional ML acoustic model and bigram

language model (LM).

2. Estimate vocal tract length normalization (VTLN) [111] parameters and con-

strained maximum likelihood linear regression parameters (CMLLR) [98] for

each speaker, then redecode with the conventional ML acoustic model and

bigram LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear regression

(MLLR) [99] parameters for each speaker, then redecode with the conven-

tional model and bigram LM.

4. Estimate VTLN, CMLLR, MLLR parameters for each speaker, then redecode

with the ML-SAT model and bigram LM.
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9.3 ASR Experiments in the Speech Separation

Task

9.3.1 Evaluation of MMI Beamforming Algorithms

Prior to beamforming, the speaker’s positions are estimated by the Orion source

tracking system [66]. In addition to the speaker’s position, Orion is also capable

of determining when each speaker is active. This information proved very useful

segmenting the utterances of each speaker, given that an utterance spoken by

one speaker was often much longer than that spoken by the other. In the absence

of perfect separation, which we could not achieve with the algorithms described

here, running the speech recognizer over the entire waveform produced by the

beamformer instead of only that portion where a given speaker was actually

active would have resulted in significant insertion errors. These insertions would

also have proven disastrous for speaker adaptation, as the adaptation data from

one speaker would have been contaminated with speech of the other speaker.

Based on the average speaker position estimated for each utterance,

utterance-dependent active weight vectors wa,1(m) and wa,2(m) at each fre-

quency bin m were estimated. The active weights for each subband were ini-

tialized to zero for estimation with the Gaussian pdf. The snapshot covariance

matrix ΣXX(m) was estimated for an entire utterance. This matrix was all that

was required to estimate {wa,i} for the Gaussian case. For estimation with the

super-Gaussian pdfs, the active weights were initialized to their optimal values

under the Gaussian assumption. Thereafter iterations of the conjugate gradients

algorithm were run on the entire utterance until convergence was achieved.

The training data used for the experiments was taken from the ICSI, NIST,

and CMU meeting corpora, as well as the Transenglish Database (TED) corpus,

for a total of 100 hours of training material. In addition to these corpora,

approximately 12 hours of speech from the WSJCAM0 corpus [112] were used for

HMM training in order to provide coverage of the British accents for the speakers

in the MC-WSJ-AV database [3]. The baseline system was fully continuous with
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Table 9.1: WERs for every beamforming algorithm after every decoding passes,

as well as the close-talking microphone (CTM).

Beamforming Pass (%WER)

Algorithm 1 2 3 4

Delay & Sum 85.1 77.6 72.5 70.4

GSS 80.1 65.5 60.1 56.3

MMI: Gaussian 79.7 65.6 57.9 55.2

MMI: Laplace 81.1 67.9 59.3 53.8

MMI: K0 78.0 62.6 54.1 52.0

MMI: Γ 80.3 63.0 56.2 53.8

CTM 37.1 24.8 23.0 21.6

3,500 codebooks and a total of 180,656 Gaussian components.

Table 9.1 shows the word error rate (WER) for each beamforming algorithm

after every decoding pass on the overlapping speech data. After the fourth

pass, the delay-and-sum beamformer has the worst recognition performance of

70.4% WER. This is not surprising given that the mixed speech was not well

separated by the delay-and-sum beamformer for the reasons mentioned above.

The WER achieved by the MMI beamformer with a Gaussian pdf of 55.2%

was somewhat better than the 56.3% WER from GSS algorithm, which is what

should be expected given the reasoning in Section 7.1.3. The best performance of

52.0% WER was achieved with the MMI beamformer by assuming the subband

samples are distributed according to the K0 pdf.

The WER of 52.0% achieved with the best beamforming algorithm is still

more than double the WER of 21.6% achieved with the close-talking microphone

(CTM). Hence, there is still a great need for further research to reduce the

WER obtained with the separated speech to that obtained with the CTM.

A WER of 15–20% is sufficient for a variety of applications including audio

indexing; a WER of over 50%, on the other hand, would lead to greatly degraded
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performance.

Although the Γ pdf assumption gave the highest log-likelihood, as reported

in Table 6.1, the K0 pdf achieved the best recognition performance. This is

because data recorded in real environments contains background noise as well

as speech. If the pdf of the noise signal is super-Gaussian, it could conceivably

be emphasized by the MMI beamformer with a super-Gaussian pdf assump-

tion. Feature and model adaptation algorithms such as CMLLR and MLLR

can, however, robustly estimate parameters to compensate for the background

noise. As a result, such an effect is mitigated by the speaker adaptation. From

Table 9.1, this is evident from the significant improvement after the second pass

when the Γ pdf is used; to wit, the results obtained with the Γ pdf go from be-

ing somewhat worse than the Gaussian results after the first unadapted pass to

significantly better after the second pass with VTLN and CMLLR adaptation,

and remain significantly better after all subsequent adapted passes.

9.3.2 Evaluation of Filter Bank Design Methods

In order to see if separation performance is influenced by filter banks, recognition

experiments on speech separated are conducted with MMI beamforming only

and investigated four methods :

1. Conventional frequency domain processing based on the FFT [47],

2. Cosine modulated filter bank described by [11, §6], which yields PR under

optimal conditions,

3. de Haan filter bank [9], and

4. Nyquist(M) filter banks designed by the proposed algorithms.

Table 9.2 shows the word error rates (WERs) for every filter bank when we

set parameters for each filter bank to obtain the best recognition performance.

As a baseline, WERs for speech recorded with close-talking microphones are

shown in Table 9.2
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Table 9.2: WERs without post-filtering for every filter bank design algorithm

after every decoding passes.

Filter bank Pass (%WER)

1 2 3 4

FFT 88.5 71.1 58.8 55.5

PR 87.7 65.2 54.0 50.7

de Haan 88.7 68.2 56.1 53.5

Nyquist(M) 88.5 67.0 55.6 52.5

CTM 37.1 24.8 23.0 21.6

MMI beamforming with the PR filter banks provided the best recognition

performance when post-filtering was not applied. Although it certainly scaled

magnitudes and shifted phases of input subband components, strong aliasing

noise was not observed. Hence, we were led to conclude that MMI beamforming

could estimate active weight vectors while retaining aliasing cancellation. On the

other hand, de Haan filter banks have a total response error which deteriorates

the recognition performance. FFT analysis achieved the worst performance of

all the subband processing methods.

Table 9.3 depicts the WERs when different parameters for filter banks were

set. In all the experiments, the filter lengths are set to twice the number of

subbands, 2×M . It is clear from Table 9.3 that the proposed filter banks can

provide smaller WERs than those of de Haan filter banks. These improve-

ments are mainly because the proposed Nyquist(M) filter banks can have zero

total response error. From Table 9.3, one can also see that as the number of

subbands M increases, the WER decreases. the MMI beamforming algorithm

can strengthen a target wave by using its echoes which are caused by a reflec-

tion on a hard surface such as a table. Thus, the larger number of subbands

generally leads to the better performance of speech enhancement of the MMI

beamformer. In order to enhance this advantageous effect, we need to make the
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Table 9.3: WERs without post-filtering for 2 filter bank design algorithms after

every decoding passes.

Filter bank Parameters Pass (%WER)

M D 1 2 3 4

de Haan 64 32 88.1 69.5 57.9 55.3

256 128 87.3 69.9 58.2 54.4

512 256 88.1 68.8 57.5 53.8

512 128 87.8 68.9 56.6 53.7

512 64 88.7 68.2 56.1 53.5

Nyquist(M) 64 32 88.6 69.5 57.3 55.2

256 128 88.0 70.0 57.1 54.5

512 256 88.0 67.1 55.7 53.4

512 128 88.5 67.0 55.6 52.5

512 64 88.1 68.5 57.1 53.9

length of the analysis filter enough long to include such reflected waves in the

analysis window. This can be done by increasing the number of subbands.

Contrary to our expectations, Table 9.3 shows that the WER of the

Nyquist(M) filter bank does not monotonically decrease with a decreasing dec-

imation factor although the residual aliasing distortion does. We suppose that

it is because of the numerical instability discussed in Section 4.5.

Finally, speech recognition experiments are performed on speech enhanced

with Zelinski post-filtering [113] and binary masking after MMI beamforming.

Table 9.4 shows WERs in those experiments. In this case, the PR property was

not kept because of the rapid change of filter weights. The aliasing distortions

were not observed when the PR filter banks were used. In contrast, de Haan

and the proposed filter banks could suppress such aliasing noise because those

filter banks are designed so as to minimize aliasing terms individually.
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In Table 9.4, unlike the trend seen in Table 9.3, the larger number of sub-

bands, which leads a higher frequency resolution, does not necessarily provide

the better recognition performance. That is perhaps due to inaccurate estima-

tion of noise spectrums in Zelinski post-filtering. In the case of a high frequency

resolution, many filter coefficients must be estimated for Zelinski post-filtering,

which could lead to robustness problems.

One could find correlation between the WER and the residual aliasing dis-

tortion by paying attention to the relationship between Table 9.4 and Figure 4.8.

Generally, as the residual aliasing distortion is reduced, the WER becomes

smaller. However, this is not always true because there are many other fac-

tors impacting recognition performance. For example, although the residual

aliasing distortion of the Nyquist(M) filter bank vanishes with an increase in

the number of subbands, increasing the number of subbands can lead to robust-

ness problems in estimating the post-filter coefficients; hence, the WER does

not monotonically decrease for an increasing number of subbands.

Table 9.4 also shows that the systems with de Haan and Nyquist(M) filter

banks can reduce the absolute WER by about 5.0 % compared to those with

the PR filter banks. This suggests that the PR filter bank is less suitable for

adaptive processing. It is also clear from Table 9.4 that the proposed method

achieved a bigger WER reduction than de Haan’s algorithm. In particular, the

improvement of the recognition performance is significant with M = 256. The

proposed filter banks achieved the best recognition performance, WER 39.6 %

with the number of subbands M = 512 and decimation factor D = 128. On the

other hand, de Haan filter banks provided the same number with M = 512 and

D = 64. Therefore, our method can be thought of as halving the computational

cost of that of de Haan.
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Table 9.4: WERs with post-filtering for every filter bank design algorithm after

every decoding passes.

Filter bank Parameters Pass (%WER)

M D 1 2 3 4

PR 64 - 83.7 61.5 47.5 44.7

512 - 84.6 60.5 47.6 44.4

de Haan 64 32 82.4 59.2 46.2 43.3

256 128 82.0 60.5 44.7 42.0

512 256 83.9 59.1 43.2 41.3

512 128 81.6 58.9 43.2 40.3

512 64 82.7 57.7 42.7 39.6

Nyquist(M) 64 32 80.7 57.0 44.3 42.0

256 128 81.0 56.2 41.8 39.8

512 256 84.1 58.6 43.4 40.6

512 128 81.8 54.9 42.2 39.6

512 64 81.4 56.5 42.6 40.3

9.4 ASR Experiments in the Single-Speaker

Scenario

9.4.1 Evaluation of Beamforming Algorithms

In addition to the speech separation task, speech recognition experiments in the

single-speaker scenario are also conducted in order to investigate performance

of MN and MK beamforming.

Thirty hours of American WSJ and the 12 hours of Cambridge WSJ data are

used in order to train triphone acoustic models for the experiments in this task.

The latter was found to be necessary in order to provide coverage of the British

accents. The ASR system used here is fully continuous with 1,743 codebooks and
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a total of 67,860 Gaussian components. The four decoding passes are performed

on the waveforms obtained with each of the beamforming algorithms described

in prior sections. The decoding algorithm in each pass is the same as that

described in the previous section except that all passes used the full trigram

LM for the 5,000 word WSJ task, which was made possible through the fast-

on-the-fly composition algorithm described in [114].

The parameters of the GG pdf for MN beamforming were trained with 43.9

minutes of speech data recorded with the CTM in the SSC development set.

The training data set for the GG pdf contains recordings of 5 speakers.

The speaker’s position is first estimated with a speaker tracking system [66].

Based on the average speaker position estimated for each utterance, utterance-

dependent active weight vectors wa were estimated for a source. The active

weight vector for each subband was initialized to zero for estimation. Iterations

of the conjugate gradients algorithm were run on the entire utterance until the

convergence was obtained. After beamforming, Zelinski post-filtering [113] was

performed.

Table 9.5 shows the word error rates (WERs) for every beamforming algo-

rithm. As references, WERs in recognition experiments on speech data recorded

with the single distant microphone (SDM) and CTM are also given.

It is clear from Table 9.5 that every MN beamforming algorithm can pro-

vide better recognition performance than the simple delay-and-sum beamformer

(D&S BF) which can be improved by Zelinski post-filtering (D&S BF with PF).

It is also clear from Table 9.5 that MN beamforming with the GG pdf assump-

tion which uses the magnitude in calculating the negentropy (MN BF with GG

pdf (1)) achieves the best recognition performance. This is due to the fact that

the GG pdf models the magnitudes of the subband samples of speech better

than the other pdfs in that the shape parameter for each subband is estimated

individually from training data.

The recognition performance, however, did not improve for MN beamforming

with the GG pdf when the real and imaginary parts of the subband components

were assumed to be independent (MN BF with GG pdf (2)). These results
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imply that it is better to treat the subband components as spherically-invariant

random processes (SIRPs) as in [4, 53] and we are led to conclude that the real

and imaginary parts are dependent as mentioned in [52].

Table 9.5 suggests that the Γ pdf assumption (MN BF with Γ pdf) can lead

to better noise suppression performance to some extent. The reduction over the

D&S BF with the PF case, however, is limited because the Γ pdf cannot model

the subband components of speech as precisely as the GG pdf which takes the

magnitude as the r.v.

Table 9.5 also shows that MK beamforming (MK BF) can achieve almost the

same recognition performance as MN beamforming where one utterance speech

data was used for calculating the active weight vectors.

Recognition experiments are also performed on speech enhanced by the

MVDR beamformer with Zelinski post-filtering, which is equivalent to the min-

imum mean-squared error beamformer (MMSE BF) [6, §13.3.5]. Table 9.5

demonstrates that the MVDR beamformer with post-filtering (MMSE BF) pro-

vides better recognition performance than D&S BF with PF. The MMSE beam-

former would suppress the reflections of the desired signal. On the other hand, as

demonstrated in Section 7.2.3, the MN beamforming algorithms can strengthen

the target signal by using the reflections solely based on the maximum negen-

tropy criterion. The same thing is applied to MK beamforming. Note that the

MVDR beamforming algorithms require speech activity detection in order to

avoid signal cancellation. For the adaptation of the MVDR beamformer, we

used the first 0.1 and last 0.1 seconds in each utterance, which contain only

background noise.

Table 9.5 also shows the recognition results obtained with the generalized

eigenvector beamformer (GEV BF) proposed by E. Warsitz et al. [22]. It

achieved slightly better recognition performance than the MMSE beamformer.

In this task, the transfer function from the sound source to the microphone

array changes in time due to movements of the speaker’s head. Moreover, it is

difficult to determine whether or not the signal observed at any given time con-

tains both speech and noise components in each frequency bin, which is required
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to estimate the transfer function. Due to these difficulties, the performance of

the GEV beamformer is limited in realistic environments. Once more, in con-

trast to conventional beamforming methods, the new beamforming algorithms

with HOS do not need to detect the start and end points of target speech since

the proposed method can suppress noise and reverberation without the signal

cancellation problem.

Super-directive beamforming is data-independent and thus does not suf-

fer the signal cancellation. As shown in Table 9.5, the super-directive beam-

former with Zelinski post-filtering (SD BF) provides the better recognition per-

formance, 14.1 % WER, than the GEV beamformer. However, since it cannot

adapt the beamformer’s weights to the specific environment, the recognition per-

formance is limited and worse than those obtained with maximum negentropy

and maximum kurtosis beamforming in the fourth pass.

It is worth noting that the best result of 13.2% in Table 9.5 is significantly

less than half the word error rate reported elsewhere in the literature on this

distant ASR task [3].

We implemented each beamforming algorithm in C/C++ and python. The

computational cost of the MN beamforming algorithm (MN BF with GG pdf

(1)) is approximately 2.6 times as much as that of the MMSE beamformer per

frame on a machine with an Intel Core 2 DUO E6750/2.66GHz processor and

3.36 GB RAM.

9.4.2 Dependence of WER on Regularization Term

We also examined the effect of the regularization term in equation (7.18). Ta-

ble 9.6 shows WERs as a function of the regularization parameter α, where we

used the MN beamforming algorithm with the GG pdf of the magnitude r.v.

We can see from the table that the regularization parameter α = 10−2 pro-

vided the lowest word error rate, although the impact of different values of α

on recognition performance was slight. The regularization parameter α could

be interpreted as an indicator of the sufficiency of the input data in estimating
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Table 9.5: WERs for each beamforming algorithm after every decoding pass.

Beamforming Pass (%WER)

Algorithm 1 2 3 4

D&S BF 80.1 39.9 21.5 17.8

D&S BF with PF 79.0 38.1 20.2 16.5

MMSE BF 78.6 35.4 18.8 14.8

GEV BF 78.7 35.5 18.6 14.5

SD BF 71.4 31.9 16.6 14.1

MN BF with Gamma pdf 75.6 34.9 19.8 15.8

MN BF with GG pdf (1) 75.1 32.7 16.5 13.2

MN BF with GG pdf (2) 79.0 37.2 20.0 16.7

MK BF 76.6 33.5 17.2 13.6

SDM 87.0 57.1 32.8 28.0

CTM 52.9 21.5 9.8 6.7

Note that WERs of 12.3% for CTM and 66.5% for SDM were achieved with the adaption techniques

described by Lincoln et al [3], who also reported that their beamforming algorithm achieved a WER

of 28.1%. To the best of our knowledge, no other error rates at present have been reported in the

literature on this ASR task.

the active weight vector. Thus, the requirement of a small α may imply that

the input data are not sufficiently reliable to completely determine the active

weight vector due to, for example, steering errors.

Fig. 9.4.2 shows the waveforms of (a) noisy speech recorded with the far-field

microphone, (b) the speech signal enhanced with MMSE BF, (c) the speech sig-

nal processed with the proposed method (MN BF with GG pdf (1)), and speech

recorded with the CTM. Informal listening tests confirmed that the annoying

distortions were not particularly observed in speech enhanced by MN beam-

forming algorithm.
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Table 9.6: WERs against the regularization parameter α.

Regularization parameter α Pass (%WER)

1 2 3 4

α = 0.0 72.7 31.9 16.4 13.7

α = 10−3 73.9 32.2 16.6 13.6

α = 10−2 75.1 32.7 16.5 13.2

α = 10−1 76.2 32.5 17.5 13.5

9.4.3 Influence of Gradient Algorithm in MK Beamform-

ing

In MK beamforming, the estimation of the active weight vectors is greatly influ-

enced by outliers. We observed that the active weight vectors became extremely

large in the case that the amount of data for the adaptation was insufficient.

It could not be avoided even if the regularization weight α was increased. The

author, therefore, put a constraint on the active weight vector: ‖wa‖ = 1 if

‖wa‖ ≥ 1. The active weight vector is projected on the unit circle after ev-

ery step if the vector norm exceeds unity. Such a projection procedure could

destroy the convergence property of the Polak-Ribiere conjugate gradient algo-

rithm because it uses the sequence of search directions in order to approximate

the curvature of the objective function around an evaluation point. Hence, we

implemented the projection procedure in the steepest descent algorithm [1].

Table 9.7 shows the WERs for the amount of data for each beamforming

algorithm. It is clear from Table 9.7 that MN beamforming can provide good

recognition performance even if very little adaptation data are available. That

is mainly because the speech models trained with sufficient data are used for

the calculation of negentropy. Such prior speech models make MN-beamforming

robust for outliners. It is also clear from Table 9.7 that good recognition perfor-

mance is not obtained by MK beamforming with the Polak-Ribiere conjugate

gradient algorithm because the active weight vector wa grows excessively large.
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Table 9.7: WERs for the number of frames used in adaptation for each beam-

forming algorithm .

Beamforming milli- Pass (%WER)

Algorithm second 1 2 3 4

MN BF with 192 73.2 38.2 19.2 15.3

Polak-Ribiere 384 75.7 35.0 18.9 15.4

conjugate gradient 576 75.8 33.5 17.8 14.5

1 utt. 75.1 32.7 16.5 13.2

MK BF with the 192 94.1 90.1 81.3 -

Polak-Ribiere 384 93.3 87.2 77.0 74.7

conjugate gradient 576 87.3 79.3 52.9 50.0

1 utt. 76.6 33.5 17.2 13.6

MK BF with the 192 80.2 41.7 21.9 18.6

steepest descent 384 82.0 44.0 21.5 18.5

with the unit NC 576 80.1 41.1 20.5 17.5

1 utt. 75.7 32.8 17.3 13.7

Table 9.7 suggests that such a problem can be alleviated by projecting the active

weight vector into the unit circle.
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(a) speech recorded with the microphone array.
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(b) speech processed with MMSE BF.
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(c) speech processed with MN BF with GG pdf (1).
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(d) speech recorded with the CTM.

Figure 9.2: normalized speech wave forms
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Conclusions

The distant automatic speech recognition in the real meeting room has been

studied in this work. In particular, the author has addressed two main issues:

• separating speech of a target speaker from overlapping speech, and

• enhancing speech in the single speaker scenario.

In contrast to the majority of literature, the real speech data captured with the

real sensors is used in the distant speech recognition experiments. The speech

data also contains variations in characteristics of speakers as well as various

phonemes.

Beamforming is one of the most important techniques for the distant auto-

matic speech recognition. This thesis has proposed three novel beamforming

algorithms with generalized sidelobe canceller (GSC) configuration, minimum

mutual information (MMI) beamforming, maximum negentropy (MN) beam-

forming and maximum kurtosis (MK) beamforming. The new beamformers

proposed here estimate the active weight vectors with the criteria based on

higher order statistics (HOS) subject to the distortionless constraint for the

look direction.

MMI beamforming estimates the active weight vectors so as to minimize

mutual information of outputs of two GSC beamformers. This technique has

187
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been applied to the speech separation task and its effectiveness has been demon-

strated through the speech recognition experiments. However, we can use the

MMI beamforming algorithm only for the situation where there are multiple

directional sound sources. In other words, it cannot be applied to the case that

a single speaker is only active.

In contrast, MN and MK beamforming can be available for the single speaker

scenario. The basic idea of both algorithms is to maximize the degree of super-

Gaussianity of the distributions of the beamformer’s outputs. The difference

between the algorithms proposed here is just the criterion of measuring the

degree of super-Gaussianity. It has been shown in the experiments that the ne-

gentropy criterion is more robust than the empirical kurtosis measure although

prior knowledge for the distribution of clean speech is required for calculating

negentropy.

It has been shown in the simulations that the new beamforming algorithms

can strengthen the target signal by manipulating the reflected wave. It has been

also observed in the speech recognition experiments that all the beamforming

algorithms proposed here can continue updating active weight vectors with-

out degrading the recognition performance while the target signals are active,

which suggests that the new beamforming algorithms are free from signal can-

cellation problems encountered in the conventional beamforming with second

order statistics (SOS).

The permutation and scaling ambiguity problems seen in the blind source

separation (BSS) can be also avoided by the proposed methods owing to the

distortionless constraint for the look direction. Moreover, the optimization of the

active weight vectors with the distortionless constraint enables the performance

of speech enhancement to be higher than that of the delay-and-sum beamformer

at least. In contrast, any BSS algorithm depends on initial weight values and

has instability of finding the weights of un-mixing matrices. As a consequence,

the separation performance could be worse than delay-and-sum beamformer.

Notice that the BSS techniques cannot applied to the single speaker stationary

condition.
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It could be considered that beamforming algorithms with HOS take the best

parts of the conventional beamformers and BSS techniques. Finally, it is clear

from the experimental results that the new beamforming techniques can provide

the better recognition performance than that of the SOS-based beamformers.

Contributions of this thesis are summarized as follows:

• Filter bank design for beamforming. The undesired aliasing effects can

be alleviated in the case that the property of the perfect reconstruction is

destroyed by arbitrary scaling of magnitude and phase shift [30, 31].

• Minimum mutual information (MMI) beamforming. It can separate sound

sources without the signal cancellation problem encountered in the con-

ventional beamforming techniques. Moreover, it is free from any problem

seen in the BSS techniques [4].

• Maximum negentropy (MN) beamforming. Distant speech can be en-

hanced by this techniques without the signal cancellation problem [32].

• Maximum kurtosis (MK) beamforming. This beamforming algorithm has

the same advantage as MN beamforming. Furthermore, it can be simply

implemented since the prior speech model is not required. However, the

MK beamforming algorithm is influenced by outliers [33].
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Appendix A

Super-Gaussian

Distributions

As explained in Brehm and Stammler [53], it is useful to assume that the

Laplace, K0, and Γ pdfs belong to the class of spherically invariant random

processes (SIRPs) for two principal reasons. Firstly, this implies that multi-

variates of all orders can be derived from the univariate pdf as soon as the

covariance matrix is known; this is most readily accomplished using the formal-

ism of the Meijer G-function. Secondly, such variants can be extended to the

case of complex r.v.s, which is essential for our current development. In this

appendix, we provide a brief exposition of the Meijer G-function and its use in

deriving multivariate super-Gaussian pdfs for complex r.v.s.

A.1 Meijer G-functions

In this section, we very briefly introduce the notation of the Meijer G-function,

along with the most important relations required to use G-functions to model

super-Gaussian pdfs.

To denote the Meijer G-function, we will use one of the following equivalent
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forms
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The G-function is defined by the contour integral
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where Γ(z) is the Gamma function and ΓL is a contour of integration defined

as in [53]. The definition (A.1) implies
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where ap + u and bq + u indicate that u is to be added to all a1, . . . , ap and all

b1, . . . , bq, respectively. To determine the normalizing constants of the several

pdfs generated from the Meijer G-function, it will be useful to apply the Mellin

transform

M{f(x); z} =

∫ ∞

0

dx xz−1 f(x). (A.3)

Under suitable conditions [53], the Mellin transform of a Meijer G-function can
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be expressed as

M







Gm n
p q



z

∣

∣

∣

∣

∣

∣

ap

bq



 ; z







=

m
∏

i=1

Γ(bi + z)
n

∏

i=1

Γ(1 − ai − z)

m
∏

i=1

Γ(1 − bi − z)

n
∏

i=1

Γ(ai + z)

. (A.4)

A.2 Spherically Invariant Random Processes

We now show how G-functions can be used to represent SIRPs. To begin, we

can express a univariate pdf of a SIRP as

p1(x) = AGm n
p q



λx2

∣

∣

∣

∣

∣

∣

ap

bq



 (A.5)

for all −∞ < x < ∞. As can be verified by the Mellin transform relations (A.3)–

(A.4), the normalization factor A and the constant λ, which assures unity vari-

ance, must be chosen according to

A = λ1/2

q
∏

i=m+1

Γ( 1
2 − bi)

p
∏

i=n+1

Γ( 1
2 + ai)

m
∏

i=i

Γ( 1
2 + bi)

n
∏

i=1

Γ( 1
2 − ai)

(A.6)

λ = (−1)ǫ

q
∏

i=1

( 1
2 + bi)

p
∏

i=1

( 1
2 + ai)

, ǫ = n − (q − m). (A.7)

Brehm and Stammler [53] note that the subclass of SIRPs that are useful

for modeling the statistics of speech can be expressed as

p1(y) = AG2 0
0 2(λx2|b1, b2) (A.8)

for the real parameters b1 and b2, where (A.6–A.7) are specialized as

A =
λ1/2

Γ( 1
2 + b1)Γ( 1

2 + b2)
(A.9)
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Table A.1: Meijer G-function parameter values for the Laplace, K0, and Γ pdfs.

pdf p(x) b1 b2 A λ

Laplace 1√
2
e−

√
2|x| 0 1

2 (2π)−1/2 1
2

K0
1
π K0(|x|) 0 0 (2π)−1 1

4

Γ
√

3
4
√

π

(√
3|x|
2

)−1/2

e−
√

3|x|/2 - 1
4

1
4

√
3/2

4π
3
16

and

λ = ( 1
2 + b1)(

1
2 + b2). (A.10)

Table A.1, taken from Brehm and Stammler [53], lists the values of these pa-

rameters for the Laplace, K0, and Γ pdfs. In many cases of interest, a Meijer

G-function with a given set of parameters can be represented in closed-form in

terms of elementary or special functions. These special cases are tabulated in

reference books such as Luke [115]. Alternatively, they have been programmed

into computer algebra systems, such as Mathematica [54, §3.2.10]. In particular,

we can write

G2 0
0 2(z|0, 1

2 ) =
√

πe−2
√

z (A.11)

G2 0
0 2(z|0, 0) = 2K0(2

√
z). (A.12)

These equations can be used to verify the correctness of the Laplace and K0

pdfs. To verify the correctness of the Γ density, we write

G2 0
0 2(z| − 1

4 , 1
4 ) = z−1/4G2 0

0 2(z|0, 1
2 ) (A.13)

=
√

π z−1/4 e−2
√

z (A.14)

where (A.13) follows from (A.2), and (A.14) follows from (A.11).

In general, the multivariate density of order ν can also be expressed in terms

of Meijer’s G-functions according to [53]

pν(x) = π−ν/2fν(s) (A.15)
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where

fν = π1/2 Aν s(1−ν)/2

× G3 0
1 3



λνs

∣

∣

∣

∣

∣

∣

0

1
2 (ν − 1), b1, b2



 (A.16)

and s = xT x. In this case (A.6) and (A.7) can be specialized as

ǫ = 0

Aν = λ1/2
ν

Γ( 1
2 )

Γ( 1
2ν)Γ( 1

2 + b1) Γ( 1
2 + b2)

(A.17)

λν = ν ( 1
2 + b1) (1

2 + b2). (A.18)

The bivariate pdf is obtained by specializing (A.15) and (A.16) as,

p2(x) =
A2√
πs

G3 0
1 3



λ2s

∣

∣

∣

∣

∣

∣

0

1
2 , b1, b2



 . (A.19)

For the moment, assume x is real-valued; this analysis will be extended to the

case of complex x in Section A.6. If the components of x are correlated, we

must set

s = xT ΣX
−1x

and modify (A.19) according to

p2(x) =
A2

√

πs|ΣX|
G3 0

1 3



λ2s

∣

∣

∣

∣

∣

∣

0

1
2 , b1, b2



 (A.20)

where ΣX = E{XXT } is the covariance matrix of X.

For the four-variate case, we have

p4(x) =
A4

(πs)3/2 |ΣX|1/2
G3 0

1 3



λ4s

∣

∣

∣

∣

∣

∣

0

3
2 , b1, b2



 . (A.21)

A.3 Laplace Density

The Laplace density is perhaps the simplest and best known super-Gaussian

distribution. In Table A.1, the univariate form of the Laplace density is given,
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along with the parameter values required to represent it with Meijer’s G-function

as in (A.8–A.10). With the help of Mathematica, we learn

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

1
2 , 0, 1

2



 = 2
√

z K0(2
√

z).

Hence, specializing (A.20) with b1 = 0 and b2 = 1
2 , then simplifying provides

the bivariate pdf

p2(x) =
2A2

√
λ2

√

π|ΣX|
K0

(

2
√

λ2s
)

(A.22)

where from (A.17–A.18) we have

λ2 = 2 (1
2 + 0) (1

2 + 1
2 ) = 1 (A.23)

A2 =
Γ( 1

2 )

Γ(1) Γ( 1
2 ) Γ(1)

=
1

Γ2(1)
= 1. (A.24)

Substituting (A.23–A.24) into (A.22), we have

p2(x) =
2

√

π|ΣX|
K0(2

√
s). (A.25)

Once more resorting to Mathematica, we find

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

3
2 , 0, 1

2



 = 2z K1(2
√

z).

Hence, specializing (A.21) provides the four-variate pdf

p4(x) =
2A4λ4

π3/2 s1/2 |ΣX|1/2
K1

(

2
√

λ4s
)

(A.26)

where

λ4 = 2 · 1 = 2 (A.27)

A4 =
√

2 · Γ( 1
2 )

Γ(2) Γ( 1
2 ) Γ(1)

=

√
2

Γ(2)Γ(1)
=

√
2. (A.28)

Substituting (A.27–A.28) back into (A.26) provides

p4(x) =
4
√

2

π3/2 s1/2 |ΣX|1/2
K1(2

√
2s). (A.29)
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A.4 K0 Density

From Mathematica

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

1
2 , 0, 0



 =
√

πe−2
√

z

so that the bivariate K0 pdf can be obtained by substituting b1 = b2 = 0

into (A.20), whereupon we find

p2(x) =
A2

√

s|ΣX|
e−2

√
λ2s (A.30)

where

λ2 = 1
2 (A.31)

A2 =

√
2

2
· Γ( 1

2 )

Γ(1) Γ( 1
2 ) Γ( 1

2 )
=

√
2

2Γ(1) Γ( 1
2 )

=
1√
2π

. (A.32)

Substituting (A.31–A.32) into (A.30), we find

p2(x) =
1

√

2π s|ΣX|
e−

√
2s. (A.33)

From Mathematica

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

3
2 , 0, 0



 =

√
π(1 + 2

√
z)

2
e−2

√
z,

so the four-variate K0 pdf can be obtained from (A.21),

p4(x) =
A4(1 + 2

√
λ4s)

2πs3/2|ΣX|1/2
e−2

√
λ4 s (A.34)

where

λ4 = 2 · 1
2 = 1 (A.35)

A4 =
Γ( 1

2 )

Γ(2) Γ( 1
2 ) Γ( 1

2 )
=

1

Γ(2) Γ( 1
2 )

=
1√
π

. (A.36)

Substituting (A.35–A.36) into (A.34), we have

p4(x) =
(1 + 2

√
s)

2(πs)3/2|ΣX|1/2
e−2

√
s. (A.37)
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A.5 Γ Density

For the Γ pdf, b1 = − 1
4 , b2 = 1

4 . Subsituting these values into the G-functions

appearing in (A.20–A.21) and applying (A.2), we find

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

1
2 ,− 1

4 , 1
4



 =

z−1/4G3 0
1 3



z

∣

∣

∣

∣

∣

∣

1
4

3
4 , 0, 1

2





(A.38)

and

G3 0
1 3



z

∣

∣

∣

∣

∣

∣

0

3
2 ,− 1

4 , 1
4



 =

z−1/4G3 0
1 3



z

∣

∣

∣

∣

∣

∣

1
4

7
4 , 0, 1

2



 .

(A.39)

Then, the bi-variate Γ pdf can be expressed as

p2(x) =
A2

√

πs|ΣX|
(λ2s)

−1/4g2(λ2s) (A.40)

where

g2(z) = G3 0
1 3



z

∣

∣

∣

∣

∣

∣

1
4

3
4 , 0, 1

2



 (A.41)

λ2 =
( 1
2 + 1

2 )( 1
2 − 1

4 )( 1
2 + 1

4 )

( 1
2 + 0)

=
3

8
(A.42)

A2 =

√

3

8
· Γ( 1

2 + 0)

Γ( 1
2 + 1

2 ) Γ( 1
2 − 1

4 ) Γ( 1
2 + 1

4 )
≅ 0.2443. (A.43)

For the four-variate Γ pdf, we can write

p4(x) =
A4

(πs)3/2
√

|ΣX|
(λ4s)

−1/4g4(λ4s) (A.44)
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where

g4(z) = G3 0
1 3



z

∣

∣

∣

∣

∣

∣

1
4

7
4 , 0, 1

2



 (A.45)

λ4 =
( 1
2 + 3

2 )(1
2 − 1

4 )(1
2 + 1

4 )

( 1
2 + 0)

=
3

4
(A.46)

A4 =

√
3

2
· Γ( 1

2 + 0)

Γ( 1
2 + 3

2 ) Γ( 1
2 − 1

4 ) Γ( 1
2 + 1

4 )
≅ 0.1949. (A.47)

Unfortunately, the G-functions appearing on the R.H.S. of (A.38–A.39) cannot

be expressed in closed-form in terms of elementary or special functions. Hence,

it is necessary to use a series expansion to calculate them. The Taylor series [116,

§19] of any function f(z) about z = z0 can be expressed as

f(z) =

∞
∑

n=0

(z − z0)
n

n!
f (n)(z0)

where f (n)(z) indicates the nth derivative of f(z) evaluated at z = z0. For series

expansions of G-functions, the relation [115, §5.4]

zk dk

dzk







Gm n
p q



z−1

∣

∣

∣

∣

∣

∣

ap

bq











= (−)kGm n+1
p+q q+1



z−1

∣

∣

∣

∣

∣

∣

1 − k, ap

bq, 1





can be used to evaluate the required derivatives. Note that it is not possible to

expand the G-function about the origin z = 0, as the G-function has a branch

point singularity at the origin [117, §10.2]. The G-function can, however, be

expanded about any point on the positive real axis, which is sufficient for our

purposes here.

In practice, a log-likelihood of the Γ pdf is required. Accordingly we need to

calculate the logarithm of the G-function. In order to calculate it precisely, the

series expansion is performed about 74 points, and we use the series expanded

about the point closest to the given argument up to the 12th order. In the case

of s ≧ 70 in (A.40) or (A.44), we use the derivative to the first order, that is, we

used a linear approximation in the log domain. This is because the G-function

for those values effectively vanishes leading to floating point errors. Table A.2

shows the series coefficients when log g2(z) and log g4(z) are expanded about

z0 = 1.
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Table A.2: Series coefficients of log g2(z) and log g4(z).

n (log g2)
(n)

(z = 1) (log g4)
(n)

(z = 1)

0 0.254766 0.389422

1 -0.198347 -0.17901

2 0.228596 0.0967777

3 -0.382523 -0.0266552

4 0.887333 -0.179479

5 -2.70435 1.17531

6 10.3182 -6.79936

7 -47.3711 42.6283

8 253.441 -299.361

9 -1538.09 2358.89

10 10330.3 -20730.1

11 -74825.6 201601.8

12 565360.5 -2.15304 ×106

A.6 Complex Densities

The multivariate pdfs derived thus far have been for real-valued random vectors.

In order to extend this development for complex-valued subband samples, we

will adapt a theorem proven by Neeser and Massey [50, Appendix].

The following definition is due to Neeser and Massey [50, Appendix].

Definition 1 The random vector Y ∈ CN is a proper random vector if

E{YYT } = 0. (A.48)

Neeser and Massey [50] call the matrix on the L.H.S. of (A.48), the pseudo-

covariance matrix. Hence, a proper complex random vector is one for which the

psuedo-covariance matrix vanishes.

Lemma 1 Let CN ∋ Y = Xc + iXs be a proper random vector with pseudo-
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covariance matrix.

ΣY = E{YYT } = Σcc − Σss + i(Σsc + ΣT
sc

) (A.49)

where

Σcc = E{XcXc
T } (A.50)

Σss = E{XsXs
T } (A.51)

Σsc = E{XsXc
T }. (A.52)

Then

Σcc = Σss (A.53)

Σsc = −ΣT
sc. (A.54)

Proof: The definition of properness requires that the R.H.S. of (A.49) van-

ishes, which implies (A.53) and (A.54). ¤

Note that a matrix satisfying (A.54) is said to be skew symmetric. Hence,

the conditions (A.53) and (A.54) state that the covariance matrices of the real

and imaginary parts of a proper complex random vector must be equal, and the

cross-covariance matrices must be skew symmetric.

We now state another intermediate result.

Lemma 2 Let Mcc, Mss, Msc, and Msc, be real N × N matrices, where Mcc

and Mss are symmetric and MT
cs = Msc. Define the N × N Hermitian matrix

M = Mc + iMs , Mcc + Mss + i(Msc − Msc
T ) (A.55)

and the symmetric 2N × 2N matrix

Υ , 2





Mcc Mcs

Msc Mss



 . (A.56)

Then the quadratic forms

E , zHMz (A.57)
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and

E ′ ,
[

zT
c zT

s

]

Υ





zc

zs



 (A.58)

are equal for all z , zc + izs, if and only if

Mcc = Mss and Msc = −MT
sc

. (A.59)

Moreover, under conditions (A.59) M is positive (semi-)definite if and only if

Υ is positive (semi-)definite.

Proof: See Neeser and Massey [50, Appendix]. ¤

We now state and prove the main result of this section based on [50, Ap-

pendix].

Theorem 1 Consider a proper complex random vector

CN ∋ Y = Xc + iXs

with the covariance matrix

ΣY = 2(Σcc + iΣsc) (A.60)

where Σcc and Σsc are defined in (A.50) and (A.52), respectively. Define the

stacked random vector

R2N ∋ X =





Xc

Xs





with covariance matrix

ΣX = E{XXT } =





Σcc Σcs

Σsc Σss



 .

Then,

xT Σ−1
X x = 2yHΣ−1

Y y (A.61)

for all

y = xc + ixs and x =





xc

xs



 .
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Moreover,
√

|ΣX| = 2−N |ΣY|. (A.62)

Proof: Based on a well-known result for the inverse of block matrices [118,

pg. 656], we can write

Σ−1
X =





∆−1 Σcc
−1Σsc∆

−1

−∆−1ΣscΣcc
−1 ∆−1



 (A.63)

where

∆ , Σcc + ΣscΣcc
−1Σsc (A.64)

is symmetric. We must now show that the upper-right block of Σ−1
X is skew

symmetric. Observe that

∆Σcc
−1Σsc = Σsc + ΣscΣcc

−1ΣscΣcc
−1Σsc = ΣscΣcc

−1∆

which implies

Σcc
−1Σsc∆

−1 = ∆−1ΣscΣcc
−1 =

(

Σcc
−1Σsc

T ∆−1
)T

= −
(

Σcc
−1Σsc∆

−1
)T

.

Hence, the upper and lower blocks are skew symmetric. Therefore, Σ−1
X satis-

fies (A.59) and Lemma 2 applies for Υ , 1
2Σ

−1
X and

M , ∆−1(I − iΣscΣcc
−1) (A.65)

where (A.65) follows from associating the block components in (A.56) with

their counterparts in (A.63), then applying (A.55). Multiplying M in (A.65)

with (A.60) yields the identity matrix, which implies M = Σ−1
Y . There-

fore (A.61) follows from Lemma 1.

Using a well-known result on the determinant of block matrices [118, pg. 650]

and the skew symmetry of Σcs, we find

|ΣX| = |Σcc| |∆|. (A.66)
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Observe that

ΣT
Y = 2(Σcc − iΣsc)

= 2(I − iΣscΣcc
−1)Σcc. (A.67)

Hence, from (A.65) and (A.67), along with M = Σ−1
Y , it follows that

Σ−1
Y = 1

4∆−1ΣT
YΣcc

−1 (A.68)

Now

∣

∣ΣYΣ−1
Y

∣

∣ =
∣

∣

∣

1
4ΣY∆−1ΣT

YΣcc
−1

∣

∣

∣ (A.69)

=
|ΣY|2

22N |∆| |Σcc|
= 1 (A.70)

where (A.69) follows from (A.68), and (A.70) follows from a basic property of

determinants of matrices. Substituting as in (A.66) for |∆| |Σcc| in (A.70) and

rearranging is sufficient to prove (A.62). ¤

Based on Theorem 1, we can rewrite (A.25) for proper y ∈ C as

pLaplace(y) =
4√
πσ2

Y

K0

(

2
√

2|y|
σY

)

(A.71)

where σ2
Y = E{|Y |2}. For proper y ∈ C2, we can rewrite (A.29) as

pLaplace(y) =
16

π3/2s1/2|ΣY| K1

(

4
√

s
)

(A.72)

where ΣY = E{YYH} and

s = yHΣ−1
Y y.

Similarly, for the K0 density, we can rewrite (A.33) and (A.37) respectively

as

pK0
(y) =

1√
π|y|σY

e−2 |y|/σY (A.73)

pK0
(y) =

√
2 + 4

√
s

2 (πs)
3/2 |ΣY|

e−2
√

2 s. (A.74)

For the Γ pdf, it is necessary to calculate the bi– and four–variates with a

series expansion, as mentioned previously. It is clear from (A.40) and (A.44),
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however, that the functional dependence of the Γ pdf on the subband samples

and their statistics enters exclusively through the terms |ΣX| and s = xT Σ−1
X x.

Hence, variates of the Γ pdf can also be specialized for complex data using the

results of Theorem 1.

A.7 Partial Derivate Calculation

In order to estimate beamforming parameters with an MMI criterion using non-

Gaussian pdfs, we first approximate

I(Y1, Y2) ≈
1

N

N−1
∑

t=0

[

log p
(

y
(t)
1 , y

(t)
2

)

− log p
(

y
(t)
1

)

− log p
(

y
(t)
2

)]

(A.75)

where

y
(t)
i = (wq,i − Biwa,i)

Hx(t)

for each x(t) drawn from a training set X =
{

x(t)
}N−1

t=0
. From (A.75), it follows

that

∂I(Y1, Y2)

∂wa,i
∗ ≈ 1

N

N−1
∑

t=0





∂ log p
(

y
(t)
1 , y

(t)
2

)

∂wa,i
∗

−
∂ log p

(

y
(t)
1

)

∂wa,i
∗ −

log p
(

y
(t)
2

)

∂wa,i
∗



 .

(A.76)

The partial derivative (A.76) is specialized for the Laplace, K0 and, Γ pdfs

in [119].
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Appendix B

The r-th moment and

kurtosis of the GG pdf

Here, we derive two useful statistics of the GG pdf, the r-th moment and kur-

tosis.

The rth moment of the GG pdf can be expressed as

E {yr} =
1

2Γ(1 + 1/p)A(p, σ̂)

∫ ∞

−∞
yr exp

[

− |y|p
A(p, σ̂)

]

dy. (B.1)

Since the GG pdf is an even function about the mean, we can rewrite (B.1) as

E {yr} =
1

Γ(1 + 1/p)A(p, σ̂)

∫ ∞

0

yr exp

[

− yp

Ap(p, σ̂)

]

dy. (B.2)

Upon defining

v =
yp

Ap(p, σ̂)
,

from which it follows
dv

dy
=

pyp−1

Ap(p, σ̂)
,

then (B.2) can be solved as

E {yr} =
Ar(p, σ̂)

pΓ(1 + 1/p)

∫ ∞

0

v
r+1

p
−1 e−v dv

=
Ar(p, σ̂)

pΓ(1 + 1/p)
Γ

(

r + 1

p

)

. (B.3)
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By substituting the second and fourth moments obtained from Equa-

tion (B.3), the kurtosis of the GG pdf can now be expressed as

kurt (Ygg) =
A(p, σ̂)4

pΓ(1 + 1/p)
Γ (5/p) − 3

{

A(p, σ̂)2

pΓ(1 + 1/p)
Γ (3/p)

}2

. (B.4)

As pΓ(1 + 1/p) = Γ(1/p), Eqn. (B.4) can be simplified to

kurt (Ygg) = σ̂4

{

Γ(1/p) Γ(5/p)

Γ2(3/p)
− 3

}

. (B.5)



Appendix C

The implementation of the

optimization algorithm

Here we describe a nonlinear conjugate gradient method for our beamforming

algorithm. Gradient algorithms are generally used to find the local minimum

of a function [60, §1.6]. However, we have to maximize the objective function

in the case that either negentropy or kurtosis is used. Accordingly, the author

explain how to find the local minimum of the negative of the corresponding

objective function with a conjugate gradient algorithm, which is equivalent to

seeking the local maximum. Notice that we do not need it when the minimum

mutual information criterion is used.

The conjugate algorithms proceed as a succession of line minimizations. The

sequence of conjugate directions is used to approximate the curvature of a cost

function in the neighborhood of the minimum.

Expressing the objective function as I(wa
∗) = −J (Y ;α), we can calculate

the initial search direction as that opposite to the gradient according to

∆wa
∗
(0) = −

∂I(wa
∗
(0))

∂wa
∗ ,

where the required partial derivative is specified by one of (7.16), (7.19) or (7.25).
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A line search is performed in that direction and a step size is optimized as follows:

β(0) := argminβ I(wa
∗ + β∆wa

∗
(0)) and

wa
∗
(1) = wa

∗
(0) + β(0)∆wa

∗
(0),

where the initial active weight vector is set to zero in this work.

After the first iteration, the following steps constitute one iteration of

searching the minimum along a subsequent conjugate direction Λwa
∗
(n), where

Λwa
∗
(0) = ∆wa

∗
(0) :

1. Calculate the gradient of the objective function

∆wa
∗
(n) = −

∂I(wa
∗
(n))

∂wa
∗ .

2. Compute the modified Polak-Ribière formula

γ(n) = Re







∆wa
T
(n)

(

∆wa
∗
(n) − ∆wa

∗
(n−1)

)

∆wa
T
(n−1)∆wa

∗
(n−1)







,

where (·)T denotes the transpose operation.

3. Update the conjugate direction

Λwa
∗
(n) = ∆wa

∗
(n) + γ(n)Λwa

∗
(n−1).

4. Perform the line search and optimize the step size

β(n) = argminβ I(wa
∗
(n) + βΛwa

∗
(n)). (C.1)

5. Update the estimate of the active weight vector

wa
∗
(n+1) = wa

∗
(n) + β(n)Λwa

∗
(n).

In each step, the line search is repeated until

Re
{

∆wa(n) · Λwa
∗
(n)

}

< tol |∆wa(n)| |Λwa(n)|. (C.2)
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where tol indicates the accuracy of the line search. We set tol = 0.001 in

our experiments. The convergence properties of the numerical search were not

significantly altered by changing the method used to calculate γ(n), nor by

adjusting the accuracy of the line search. Applying a more accurate model for

the pdf of the subband samples of speech had a larger effect on the speed of

convergence than any adjustment of the parameters of the conjugate gradients

search.
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Appendix D

Beamforming Toolkit

D.1 Introduction

This appendix describes how to construct beamforming applications with speech

feature extraction (sfe) and beamforming toolkit (btk). The fundamental com-

ponents are written in C++. Users can build the entire system in C++. In

addition to the C++ program interface, sfe and btk provide the Python interface

produced by SWIG [120]. Programming in Python is much easier and quicker

just at the expense of computational time; See [121] for the detail. The toolkits

are developed on the Linux platform and we confirmed that they worked on

Suse and Debian Linux.

D.2 Installation and Configuration

You need to compile sfe and btk. Before you do it, you might need to set the

environmental variables, PKG CONFIG PYTHONPATH LD LIBRARY PATH

and LIBRARY PATH.

Those can be specified in .cshrc by writing:

setenv PYTHONPATH $DIST/lib/python2.4/site-packages

setenv PKG CONFIG PATH $DIST/lib/pkgconfig
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setenv LD LIBRARY PATH $DIST/lib:.:$LD LIBRARY PATH

setenv LIBRARY PATH $LD LIBRARY PATH

where we assume that you want to install the toolkit in $DIST.

You can download the latest version from the Subversion (SVN) repository,

http://distant-automatic-speech-recognition.org/repos. Those can be done by

typing the commands,

svn co http://distant-automatic-speech-recognition.org/repos/sfe/trunk

and svn co http://distant-automatic-speech-

recognition.org/repos/btk/branches/kenichi.

In order to obtain a user account for the access, you have to ask an admin-

istrator. The contact is JohnDOTMcDonoughATlsvDOTuni-saarlandDOTde.

After you download them, you have to first install the sfe. You change the

directory which contains autogen.sh, and execute ./autogen.sh, ./configure –

prefix=$DIST. If you are lucky, Makefile will be produced in the current directly.

Otherwise, you will have errors in the case that your system does not have

required software. Typically you have to install libsndfile, libsamplerate, FFTW,

GSL, SWIG, pkg-config, Python, Numerical python (24.2) and pygsl. We do

not yet incorporate numpy and scipy. Therefore, you have to download the old

version of the numpy and scipy, Numerical python 24.2.

If you successfully obtain the Makefile, you just type make;make install. The

sfe will be installed in $DIST.

The btk can be installed in the same way as you did sfe.

D.3 How to use the Toolkits in Python

After you installed sfe and btk and configured the environmental variables prop-

erly, you should be able to use the libraries from Python.
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Figure D.1: Schematic of a modulated subband analysis-synthesis filter bank.

D.3.1 Subband Processing

Here we describe a sample script for reconstructing a speech signal with over-

sampled uniform DFT filter banks.

Figure D.2 shows a schematic of a modulated filter bank with M subbands

and a decimation factor of D.

First you have to design prototypes for the filter banks. The btk provides the

several scripts for the filter bank design. You can find them in tools/filterbank.

The Nyquist(M) filter bank is most suitable for adaptive beamforming[30]. The

path of the script is tools/filterbank/DesignNyquistFilterBank.m. You may

have to convert an output ASCII file produced with DesignNyquistFilterBank.m

to a different file format so that Python scripts can load those filter coefficients.

That can be done by the script, tools/filterbank/convertPythonBin.py. Once

you have the binary file of the coefficients of the analysis and synthesis filter

prototype, you can enjoy subband processing.

Here is the sample script for that:

import os . path

import p i c k l e

import wave

import copy
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import getopt , sys

from Numeric import ∗
from types import FloatType

from s f e . common import ∗
from s f e . stream import ∗
from s f e . f e a t u r e import ∗
from s f e . u t i l s import ∗

from btk . modulated import ∗

M = 256 # the number o f subbands

m = 2 # f i l t e r l e n g t h f a c t o r ( f i l t e r l e n g t h = m ∗ M)

r = 1 # decimation f a c t o r

R = 2∗∗ r

D = M / R # corresponds to the frame s h i f t

# Read ana l y s i s p ro to t ype ’ h ’

pro toF i l e = ’%s /h−M=%d−m=%d−r=%d . txt ’ %(protoPath , M, m,

r )

print ’ Loading ana l y s i s prototype from \’%s \ ’ ’ %pro toF i l e

fp = open ( protoF i l e , ’ r ’ )

h fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# Read s yn t h e s i s p ro to t ype ’ g ’

pro toF i l e = ’%s /g−M=%d−m=%d−r=%d . txt ’ %(protoPath , M, m,

r )

print ’ Loading s yn th e s i s prototype from \’%s \ ’ ’ %

pro toF i l e
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fp = open ( protoF i l e , ’ r ’ )

g fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# A Python i t e r a t i v e o b j e c t f o r read ing wave data .

sampleFeature = SampleFeaturePtr ( blockLen = D, sh i f tLen =

D, padZeros = True )

# A Python i t e r a t i v e o b j e c t which re turns the subband

components .

analys isFB = OverSampledDFTAnalysisBankPtr ( sampleFeature

, prototype =

h fb , M = M, m = m, r = r , delayCompensationType=2 )

# A Python i t e r a t i v e o b j e c t which r e con s t r u c t s the wave

data .

synthes isFB =

OverSampledDFTSynthesisBankPtr (

PyVectorComplexFeatureStreamPtr ( analys isFB ) ,

prototype = g fb , M = M, m = m, r = r ,

delayCompensationType=2 )

# read wave data o f sampling ra t e 16k from f i l e ’ sample .

wav ’ .

sampleFeature . read ( ’ sample . wav ’ , 16000 )

wavebuf fer = [ ]

# recons t ru c t input wave data

# The methods next ( ) o f the C++ ob j e c t s are a c t u a l l y

c a l l e d at each s t ep .

# This s c r i p t e x ecu t e s SampleFeature . next ( ) ,

OverSampledDFTAnalysisBank . next ( ) and
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# OverSampledDFTSynthesisBank . next ( ) in the C++ module .

for b in synthes isFB :

# The va l u e s re turned by OverSampledDFTSynthesisBank .

next ( ) are

# accumulated in t o wavebu f f e r .

wavebuf fer . extend ( copy . deepcopy (b) )

# wr i t e the wave data in t o a Microso f t wave f i l e .

storewave = array ( wavebuffer , Float )

wave f i l e = wave . open ( ’ output . wav ’ , ’w ’ )

wave f i l e . s e tnchanne l s (1 )

wave f i l e . setsampwidth (2 )

wave f i l e . s e t f r amera t e ( i n t ( sampleRate ) )

storewave ∗= f l o a t (D)

wave f i l e . s e tn f rames ( l en ( storewave ) )

wave f i l e . wr i t e f rames ( storewave . astype ( ’ s ’ ) . t o s t r i n g ( ) )

wave f i l e . c l o s e ( )

Figure D.2 also shows the relationship between the Python object and process in

adaptive subband processing. As shown in Figure D.2, Python object Sample-

FeaturePtr() corresponds to the input signal to the subband processing system.

OverSampledDFTAnalysisBankPtr() is also connected to processing with the

analysis filter banks. The outputs of the analysis filter banks are obtained with

OverSampledDFTAnalysisBankPtr().next(). Those outputs will be processed

with a beamforming technique which is described in the next section. The

process with the synthesis filter banks is associated with OverSampledDFTSyn-

thesisBankPtr() whose member next() returns the reconstructed signal in the

time domain. The dependency between two objects is usually created by feeding

an object to the other. In the above script, the object for analysis filterbank

processing, analysisFB, is given to the object for the synthesis filter bank, syn-

thesisFB. Notice that analysisFB has the object, sampleFeatureis. In such a
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relationship, the execution of the iterator of synthesisFB calls every iterator im-

plemented in all the dependent objects, analysisFB and sampleFeatureis. The

iterator is normally implemented as a method next() in Python or C++ module.

The scripts for the experiment are in /idiap/kkumata/project/ssc1/bf/ssc[1-

2]/bf/5814.

D.3.2 Subband Beamforming

Delay-and-sum Beamforming

Now you are ready to implement beamforming algorithm. Let us begin with

the delay-and-sum beamformer. In addition to files for subband processing, the

delay-and-sum beamforming algorithm generally requires source positions and

geometry information of a microphone array. You can estimate source posi-

tion with the source localization toolkit sltk (although this document does not

describe how to use sltk). You can see the scripts in /idiap/kkumata/projec-

t/ssc1/bf/ssc1/bf/000001 for the actual experiments.

import sys

import os

import os . path

import s h u t i l

import p i c k l e

import glob

import wave

from Numeric import ∗
from types import FloatType

import getopt , sys

from copy import ∗

import s t r i n g

import re
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from s f e . common import ∗
from s f e . stream import ∗
from s f e . f e a t u r e import ∗
from s f e . u t i l s import ∗

from btk import dbase

from btk . modulated import ∗
from btk . subbandBeamforming import ∗
from btk . beamformer import ∗

def ca l cDe laysPo la r2 ( phi , theta , mpos ) :

# @br ie f Ca l cu l a t e the de l ay s .

sspeed = 343740.0

chanN = len (mpos )

de lays = [ ]

c x = − Numeric . s i n ( theta ) ∗ Numeric . cos ( phi )

c y = − Numeric . s i n ( theta ) ∗ Numeric . s i n ( phi )

c z = − Numeric . cos ( theta )

for i in range ( chanN) :

t = ( c x ∗ mpos [ i , 0 ] + c y ∗ mpos [ i , 1 ] + c z ∗
mpos [ i , 2 ] ) / sspeed

de lays . append ( t )

de lays = Numeric . array ( de lays , Numeric . Float )

return de lays
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def beamform( inpu tF i l eP r e f i x , azimuth , e l eva t i on , M, m,

r , p o s t f i l t e rType ) :

# Geometry o f the microphone array ( c i r c u l a r

microphone array )

chanN = 8

arrgeom = [ ]

arrgeom . append ( [ 1 0 0 . 0 , 0 . 0 , 0 . 0 ] )

arrgeom . append ( [ 70 . 7106781 , 70 .7106781 , 0 . 0 ] )

arrgeom . append ( [ 0 . 0 , 100 .0 , 0 . 0 ] )

arrgeom . append ( [ −70.7106781 , 70 .7106781 , 0 . 0 ] )

arrgeom . append ( [ −100.0 , 0 . 0 , 0 . 0 ] )

arrgeom . append ( [ −70.7106781 , −70.7106781 , 0 . 0 ] )

arrgeom . append ( [ 0 . 0 , −100.0 , 0 . 0 ] )

arrgeom . append ( [ 70 . 7106781 , −70.7106781 , 0 . 0 ] )

# F i l t e r bank parameters

R = 2∗∗ r

D = M / R # frame s h i f t

sampleRate = 16000

outSampleRate = 16000

alpha = 0 .2 # for post− f i l t e r i n g

# Load f i l t e r bank pro to t ype

# Read ana l y s i s p ro to t ype ’ h ’

pro toF i l e = ’ . / h−M=%d−m=%d−r=%d . txt ’ %(protoPath , M,

m, r )

fp = open ( protoF i l e , ’ r ’ )

h fb = p i c k l e . load ( fp )
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fp . c l o s e ( )

# Read s yn t h e s i s p ro to t ype ’ g ’

pro toF i l e = ’%s /g−M=%d−m=%d−r=%d . txt ’ %(protoPath , M,

m, r )

fp = open ( protoF i l e , ’ r ’ )

g fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# output f i l e name

f i l ename = ’ . /wav .PF%d a%0.2f M=%d−m=%d−r=%d/output .

wav ’ %(po s t f i l t e rType , alpha , M, m, r )

# In i t the beamformer o b j e c t

pBeamformer = SubbandGSCPtr ( f f tLen=M, ha l fBandSh i f t=

False )

output = Ze l i n s k iPo s tF i l t e rP t r (

PyVectorComplexFeatureStreamPtr ( pBeamformer ) ,

f f tLen , alpha , p o s t f i l t e rType )

# Bui ld the ana l y s i s chain

sampleFeats = [ ]

ana lys i sFBs = [ ]

for chX in range ( chanN) :

sampleFeature = SampleFeaturePtr ( blockLen=D,

sh i f tLen=D, padZeros=True )

sampleFeats . append ( sampleFeature )

analys isFB = OverSampledDFTAnalysisBankPtr (

sampleFeature , prototype=h fb , M=M, m=m, r=r )

ana lys i sFBs . append ( analys isFB )
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pBeamformer . setChannel ( analys isFB )

# In i t synthes isFB

synthes isFB = OverSampledDFTSynthesisBankPtr (

PyVectorComplexFeatureStreamPtr ( output ) , prototype

=g fb , M=M, m=m, r=r )

# read mult i−channel data .

for chanX in range ( chanN) :

nex tF i l e = ’%s%02d . wav ’ %( inpu tF i l eP r e f i x , chanX)

i f not os . path . e x i s t s ( nex tF i l e ) :

print ’ Could not f i nd f i l e %s ’ %nextF i l e

print ’ Loading f i l e %s ’ %nextF i l e

sampleFeats [ chanX ] . read ( nextFi l e , samplerate =

sampleRate )

# ca l c u l a t e time de l ay s and beamformer ’ s we i gh t s .

de lays1 = ca l cDe laysPo la r2 ( azimuth , e l eva t i on , array

( arrgeom ) )

pBeamformer . calcGSCWeights ( sampleRate , de lays1 )

# Here we go . . . .

wavebuf fer = [ ]

# The methods next ( ) o f the C++ modules are c a l l e d at

each s t ep .

# In t h i s case , SampleFeature . next ( ) ,

# OverSampledDFTAnalysisBank . next ( ) ,

# SubbandGSC . next ( ) and OverSampledDFTSynthesisBank .

next ( )

# are c a l l e d .
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for b in synthes isFB :

output . setBeamformer ( pBeamformer )

wavebuf fer . extend ( deepcopy (b) )

# Write WAV f i l e to d i s k

storewave = array ( wavebuffer , Float )

i f not os . path . e x i s t s ( os . path . dirname ( f i l ename ) ) :

os . makedirs ( os . path . dirname ( f i l ename ) )

wave f i l e = wave . open ( f i l ename , ’w ’ )

wave f i l e . s e tnchanne l s (1 )

wave f i l e . setsampwidth (2 )

wave f i l e . s e t f r amera t e ( i n t ( outSampleRate ) )

wave f i l e . s e tn f rames ( l en ( storewave ) )

wave f i l e . wr i t e f rames ( storewave . astype ( ’ s ’ ) . t o s t r i n g ( )

)

wave f i l e . c l o s e ( )

pBeamformer . r e s e t ( )

try :

opts , a rgs = getopt . getopt ( sys . argv [ 1 : ] , ” h i : s : p : ” , [

” he lp ” , ” input=” , ” pf=” ] )

except getopt . GetoptError :

# pr in t he l p in format ion and e x i t :

sys . e x i t (2 )

# parameters f o r f i l t e r banks

M = 256 # the number o f subbands

m = 2 # f i l t e r l e n g t h f a c t o r
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r = 1 # decimation f a c t o r

# the d i r e c t i o n o f a r r i v a l o f a sound source

azimuth = 0 .0

e l e v a t i o n = 0 .0

# path f o r mu l t i p l e wave f i l e s

i n pu tF i l eP r e f i x = ’ i npu td i r / t e s t−ch ’

# which type o f post− f i l t e r i n g i s used

po s t f i l t e rType = 0 # 0 (no post− f i l t e r ) , 2 ( Z e l i n s k i

wi th abs ( ) r e a l opera tor ) , 8 ( use beamformer output )

for o , a in opts :

i f o in ( ”−h” , ”−−help ” ) :

sys . e x i t ( )

e l i f o in ( ”− i ” , ”−−input ” ) :

i n pu tF i l eP r e f i x = a

e l i f o in ( ”−p” , ”−−pf ” ) :

p o s t f i l t e rType = in t ( a )

beamform( inpu tF i l eP r e f i x , M, m, r , p o s t f i l t e rType )

D.4 How to use the Toolkits in Python

After you installed sfe and btk and configured the environmental variables prop-

erly, you should be able to use the libraries from Python.

D.4.1 Subband Processing

Here we describe a sample script for reconstructing a speech signal with over-

sampled uniform DFT filter banks.

Figure D.2 shows a schematic of a modulated filter bank with M subbands

and a decimation factor of D.
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Figure D.2: Schematic of a modulated subband analysis-synthesis filter bank.

First you have to design prototypes for the filter banks. The btk provides the

several scripts for the filter bank design. You can find them in tools/filterbank.

The Nyquist(M) filter bank is most suitable for adaptive beamforming[30]. The

path of the script is tools/filterbank/DesignNyquistFilterBank.m. You may

have to convert an output ASCII file produced with DesignNyquistFilterBank.m

to a different file format so that Python scripts can load those filter coefficients.

That can be done by the script, tools/filterbank/convertPythonBin.py. Once

you have the binary file of the coefficients of the analysis and synthesis filter

prototype, you can enjoy subband processing.

Here is the sample script for that:

import os . path

import p i c k l e

import wave

import copy

import getopt , sys

from Numeric import ∗
from types import FloatType

from s f e . common import ∗
from s f e . stream import ∗
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from s f e . f e a t u r e import ∗
from s f e . u t i l s import ∗

from btk . modulated import ∗

M = 256 # the number o f subbands

m = 2 # f i l t e r l e n g t h f a c t o r ( f i l t e r l e n g t h = m ∗ M)

r = 1 # decimation f a c t o r

R = 2∗∗ r

D = M / R # corresponds to the frame s h i f t

# Read ana l y s i s p ro to t ype ’ h ’

pro toF i l e = ’%s /h−M=%d−m=%d−r=%d . txt ’ %(protoPath , M, m,

r )

print ’ Loading ana l y s i s prototype from \’%s \ ’ ’ %pro toF i l e

fp = open ( protoF i l e , ’ r ’ )

h fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# Read s yn t h e s i s p ro to t ype ’ g ’

pro toF i l e = ’%s /g−M=%d−m=%d−r=%d . txt ’ %(protoPath , M, m,

r )

print ’ Loading s yn th e s i s prototype from \’%s \ ’ ’ %

pro toF i l e

fp = open ( protoF i l e , ’ r ’ )

g fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# A Python i t e r a t i v e o b j e c t f o r read ing wave data .

sampleFeature = SampleFeaturePtr ( blockLen = D, sh i f tLen =
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D, padZeros = True )

# A Python i t e r a t i v e o b j e c t which re turns the subband

components .

analys isFB = OverSampledDFTAnalysisBankPtr ( sampleFeature

, prototype =

h fb , M = M, m = m, r = r , delayCompensationType=2 )

# A Python i t e r a t i v e o b j e c t which r e con s t r u c t s the wave

data .

synthes isFB =

OverSampledDFTSynthesisBankPtr (

PyVectorComplexFeatureStreamPtr ( analys isFB ) ,

prototype = g fb , M = M, m = m, r = r ,

delayCompensationType=2 )

# read wave data o f sampling ra t e 16k from f i l e ’ sample .

wav ’ .

sampleFeature . read ( ’ sample . wav ’ , 16000 )

wavebuf fer = [ ]

# recons t ru c t input wave data

# The methods next ( ) o f the C++ ob j e c t s are a c t u a l l y

c a l l e d at each s t ep .

# This s c r i p t e x ecu t e s SampleFeature . next ( ) ,

OverSampledDFTAnalysisBank . next ( ) and

# OverSampledDFTSynthesisBank . next ( ) in the C++ module .

for b in synthes isFB :

# The va l u e s re turned by OverSampledDFTSynthesisBank .

next ( ) are

# accumulated in t o wavebu f f e r .

wavebuf fer . extend ( copy . deepcopy (b) )
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# wr i t e the wave data in t o a Microso f t wave f i l e .

storewave = array ( wavebuffer , Float )

wave f i l e = wave . open ( ’ output . wav ’ , ’w ’ )

wave f i l e . s e tnchanne l s (1 )

wave f i l e . setsampwidth (2 )

wave f i l e . s e t f r amera t e ( i n t ( sampleRate ) )

storewave ∗= f l o a t (D)

wave f i l e . s e tn f rames ( l en ( storewave ) )

wave f i l e . wr i t e f rames ( storewave . astype ( ’ s ’ ) . t o s t r i n g ( ) )

wave f i l e . c l o s e ( )

Figure D.2 also shows the relationship between the Python object and process in

adaptive subband processing. As shown in Figure D.2, Python object Sample-

FeaturePtr() corresponds to the input signal to the subband processing system.

OverSampledDFTAnalysisBankPtr() is also connected to processing with the

analysis filter banks. The outputs of the analysis filter banks are obtained with

OverSampledDFTAnalysisBankPtr().next(). Those outputs will be processed

with a beamforming technique which is described in the next section. The

process with the synthesis filter banks is associated with OverSampledDFTSyn-

thesisBankPtr() whose member next() returns the reconstructed signal in the

time domain. The dependency between two objects is usually created by feeding

an object to the other. In the above script, the object for analysis filterbank

processing, analysisFB, is given to the object for the synthesis filter bank, syn-

thesisFB. Notice that analysisFB has the object, sampleFeatureis. In such a

relationship, the execution of the iterator of synthesisFB calls every iterator im-

plemented in all the dependent objects, analysisFB and sampleFeatureis. The

iterator is normally implemented as a method next() in Python or C++ module.

The scripts for the experiment are in /idiap/kkumata/project/ssc1/bf/ssc[1-

2]/bf/5814.
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D.4.2 Subband Beamforming

Delay-and-sum Beamforming

Now you are ready to implement beamforming algorithm. Let us begin with

the delay-and-sum beamformer. In addition to files for subband processing, the

delay-and-sum beamforming algorithm generally requires source positions and

geometry information of a microphone array. You can estimate source posi-

tion with the source localization toolkit sltk (although this document does not

describe how to use sltk). You can see the scripts in /idiap/kkumata/projec-

t/ssc1/bf/ssc1/bf/000001 for the actual experiments.

import sys

import os

import os . path

import s h u t i l

import p i c k l e

import glob

import wave

from Numeric import ∗
from types import FloatType

import getopt , sys

from copy import ∗

import s t r i n g

import re

from s f e . common import ∗
from s f e . stream import ∗
from s f e . f e a t u r e import ∗
from s f e . u t i l s import ∗

from btk import dbase
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from btk . modulated import ∗
from btk . subbandBeamforming import ∗
from btk . beamformer import ∗

def ca l cDe laysPo la r2 ( phi , theta , mpos ) :

# @br ie f Ca l cu l a t e the de l ay s .

sspeed = 343740.0

chanN = len (mpos )

de lays = [ ]

c x = − Numeric . s i n ( theta ) ∗ Numeric . cos ( phi )

c y = − Numeric . s i n ( theta ) ∗ Numeric . s i n ( phi )

c z = − Numeric . cos ( theta )

for i in range ( chanN) :

t = ( c x ∗ mpos [ i , 0 ] + c y ∗ mpos [ i , 1 ] + c z ∗
mpos [ i , 2 ] ) / sspeed

de lays . append ( t )

de lays = Numeric . array ( de lays , Numeric . Float )

return de lays

def beamform( inpu tF i l eP r e f i x , azimuth , e l eva t i on , M, m,

r , p o s t f i l t e rType ) :

# Geometry o f the microphone array ( c i r c u l a r

microphone array )

chanN = 8

arrgeom = [ ]
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arrgeom . append ( [ 1 0 0 . 0 , 0 . 0 , 0 . 0 ] )

arrgeom . append ( [ 70 . 7106781 , 70 .7106781 , 0 . 0 ] )

arrgeom . append ( [ 0 . 0 , 100 .0 , 0 . 0 ] )

arrgeom . append ( [ −70.7106781 , 70 .7106781 , 0 . 0 ] )

arrgeom . append ( [ −100.0 , 0 . 0 , 0 . 0 ] )

arrgeom . append ( [ −70.7106781 , −70.7106781 , 0 . 0 ] )

arrgeom . append ( [ 0 . 0 , −100.0 , 0 . 0 ] )

arrgeom . append ( [ 70 . 7106781 , −70.7106781 , 0 . 0 ] )

# F i l t e r bank parameters

R = 2∗∗ r

D = M / R # frame s h i f t

sampleRate = 16000

outSampleRate = 16000

alpha = 0 .2 # for post− f i l t e r i n g

# Load f i l t e r bank pro to t ype

# Read ana l y s i s p ro to t ype ’ h ’

pro toF i l e = ’ . / h−M=%d−m=%d−r=%d . txt ’ %(protoPath , M,

m, r )

fp = open ( protoF i l e , ’ r ’ )

h fb = p i c k l e . load ( fp )

fp . c l o s e ( )

# Read s yn t h e s i s p ro to t ype ’ g ’

pro toF i l e = ’%s /g−M=%d−m=%d−r=%d . txt ’ %(protoPath , M,

m, r )

fp = open ( protoF i l e , ’ r ’ )

g fb = p i c k l e . load ( fp )
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fp . c l o s e ( )

# output f i l e name

f i l ename = ’ . /wav .PF%d a%0.2f M=%d−m=%d−r=%d/output .

wav ’ %(po s t f i l t e rType , alpha , M, m, r )

# In i t the beamformer o b j e c t

pBeamformer = SubbandGSCPtr ( f f tLen=M, ha l fBandSh i f t=

False )

output = Ze l i n s k iPo s tF i l t e rP t r (

PyVectorComplexFeatureStreamPtr ( pBeamformer ) ,

f f tLen , alpha , p o s t f i l t e rType )

# Bui ld the ana l y s i s chain

sampleFeats = [ ]

ana lys i sFBs = [ ]

for chX in range ( chanN) :

sampleFeature = SampleFeaturePtr ( blockLen=D,

sh i f tLen=D, padZeros=True )

sampleFeats . append ( sampleFeature )

analys isFB = OverSampledDFTAnalysisBankPtr (

sampleFeature , prototype=h fb , M=M, m=m, r=r )

ana lys i sFBs . append ( analys isFB )

pBeamformer . setChannel ( analys isFB )

# In i t synthes isFB

synthes isFB = OverSampledDFTSynthesisBankPtr (

PyVectorComplexFeatureStreamPtr ( output ) , prototype

=g fb , M=M, m=m, r=r )
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# read mult i−channel data .

for chanX in range ( chanN) :

nex tF i l e = ’%s%02d . wav ’ %( inpu tF i l eP r e f i x , chanX)

i f not os . path . e x i s t s ( nex tF i l e ) :

print ’ Could not f i nd f i l e %s ’ %nextF i l e

print ’ Loading f i l e %s ’ %nextF i l e

sampleFeats [ chanX ] . read ( nextFi l e , samplerate =

sampleRate )

# ca l c u l a t e time de l ay s and beamformer ’ s we i gh t s .

de lays1 = ca l cDe laysPo la r2 ( azimuth , e l eva t i on , array

( arrgeom ) )

pBeamformer . calcGSCWeights ( sampleRate , de lays1 )

# Here we go . . . .

wavebuf fer = [ ]

# The methods next ( ) o f the C++ modules are c a l l e d at

each s t ep .

# In t h i s case , SampleFeature . next ( ) ,

# OverSampledDFTAnalysisBank . next ( ) ,

# SubbandGSC . next ( ) and OverSampledDFTSynthesisBank .

next ( )

# are c a l l e d .

for b in synthes isFB :

output . setBeamformer ( pBeamformer )

wavebuf fer . extend ( deepcopy (b) )

# Write WAV f i l e to d i s k

storewave = array ( wavebuffer , Float )

i f not os . path . e x i s t s ( os . path . dirname ( f i l ename ) ) :
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os . makedirs ( os . path . dirname ( f i l ename ) )

wave f i l e = wave . open ( f i l ename , ’w ’ )

wave f i l e . s e tnchanne l s (1 )

wave f i l e . setsampwidth (2 )

wave f i l e . s e t f r amera t e ( i n t ( outSampleRate ) )

wave f i l e . s e tn f rames ( l en ( storewave ) )

wave f i l e . wr i t e f rames ( storewave . astype ( ’ s ’ ) . t o s t r i n g ( )

)

wave f i l e . c l o s e ( )

pBeamformer . r e s e t ( )

try :

opts , a rgs = getopt . getopt ( sys . argv [ 1 : ] , ” h i : s : p : ” , [

” he lp ” , ” input=” , ” pf=” ] )

except getopt . GetoptError :

# pr in t he l p in format ion and e x i t :

sys . e x i t (2 )

# parameters f o r f i l t e r banks

M = 256 # the number o f subbands

m = 2 # f i l t e r l e n g t h f a c t o r

r = 1 # decimation f a c t o r

# the d i r e c t i o n o f a r r i v a l o f a sound source

azimuth = 0 .0

e l e v a t i o n = 0 .0

# path f o r mu l t i p l e wave f i l e s

i n pu tF i l eP r e f i x = ’ i npu td i r / t e s t−ch ’

# which type o f post− f i l t e r i n g i s used
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po s t f i l t e rType = 0 # 0 (no post− f i l t e r ) , 2 ( Z e l i n s k i

wi th abs ( ) r e a l opera tor ) , 8 ( use beamformer output )

for o , a in opts :

i f o in ( ”−h” , ”−−help ” ) :

sys . e x i t ( )

e l i f o in ( ”− i ” , ”−−input ” ) :

i n pu tF i l eP r e f i x = a

e l i f o in ( ”−p” , ”−−pf ” ) :

p o s t f i l t e rType = in t ( a )

beamform( inpu tF i l eP r e f i x , M, m, r , p o s t f i l t e rType )


