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IV  Summary 

Summary Summary Summary Summary     

Cholesterol plays a crucial role for human life. It is a part of eukaryotic lipid bilayers, 

necessary for cell division and serves as a precursor for steroid hormones. The effects 

of cholesterol lowering agents are not yet fully understood. This study describes, for 

the first time, the effects of the HMG-CoA reductase inhibitor rosuvastatin and the 

new CYP51A1 inhibitor LEK-935 on the proteome of primary human hepatocytes. 

Samples derived from two different human donors were analysed. They were sub-

fractionated prior to the proteome analysis to enhance the resolution of the analysis. 

The cytosolic and microsomal fractions were analysed in a semi-quantitative manner 

by 2D-PAGE and nLC-MS respectively. A final set of 44 proteins was found to be 

differentially expressed. This set contains proteins already known to be affected and 

involved in the cholesterol biosynthesis. It also contains proteins that cannot be 

directly related to cholesterol metabolism and that have not yet been described to be 

affected by cholesterol lowering agents. The finding of the already known proteins 

validates the chosen experimental design while the other proteins provide new 

information and represent targets for further investigations. RT-PCR measurements 

performed at a chosen set of proteins validate the results. They furthermore underline 

the huge inter-individual differences observed during the proteome analysis. 



Summary (german)  V 

Summary (german)Summary (german)Summary (german)Summary (german)    

Cholesterin ist essentiell für das menschliche Leben. Es ist integraler Bestandteil 

eukaryotischer Membranen, notwendig für die Zellteilung und dient als 

Vorläufermolekül der Steroidhormone. Die Effekte von cholesterinsenkenden 

Medikamenten sind bis heute noch nicht vollständig aufgeklärt. Diese Arbeit 

beschreibt zum ersten Mal die Effekte des HMG-CoA Inhibitors Rosuvastatin und des 

neuen CYP51A1 Inhibitors LEK-935 auf das Proteom primärer humaner Hepatozyten. 

Die cytosolische sowie die mikrosomale Fraktion von zwei menschlichen Spendern 

wurde mittels 2D-PAGE und nLC-MS semi-quantitative analysiert. Insgesamt wurden 

44 Proteine als differenziell exprimiert gefunden. Unter diesen finden sich Proteine 

von denen bereits bekannt ist, dass sie beeinflusst werden und die in die 

Cholesterinbiosynthese involviert sind. Es finden sich aber auch Proteine die nicht 

direkt mit dem Cholesterinmetabolismus in Verbindung gebracht werden können und 

deren Beeinflussung durch cholesterinsenkende Medikamente noch nicht bekannt ist. 

Die bereits bekannten Proteine belegen den experimentellen Ansatz. Gleichzeitig 

stellen die anderen Proteine neue Informationen und damit neue Ziele für 

weitergehende Untersuchungen dar. Die gewonnenen Ergebnisse wurden durch RT-

PCR-Analysen eines ausgewählten Sets an Proteinen bestätigt. Diese 

Validierungsexperimente unterstreichen darüber hinaus die großen inter-individuellen 

Unterschiede, die auch schon in der Proteomanalyse gefunden wurden. 
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1.11.11.11.1    CholesterolCholesterolCholesterolCholesterol    

1.1.11.1.11.1.11.1.1    Physiological rolePhysiological rolePhysiological rolePhysiological role    

The basic structure of cholesterol is a voluminous steroidal skeleton, with a hydroxyl 

group at C 3 and a flexible carbon-hydrate tail at C 17 (see Figure 1-1). 

 

Figure 1-1    Structural formula of cholesterol    

 

Cholesterol has a high impact on the life of eukaryotic organisms. It is an essential 

part of lipid bilayer membranes, where it constrains the crystallisation of the lipids 

fatty acids and thereby maintains the fluidity of the membrane. Its presence in the 

membrane leads to additional steric hindrance of the fatty acids which in turn limits 

the fluidity of the membrane (Yeagle et al. 1990). 

Cholesterol serves as precursor molecule for the biosynthesis of the steroid hormones 

(Repa and Mangelsdorf 2000), indispensable for multiple regulation processes inside 

the human body. The steroid hormones are divided into three groups: the sexual 

hormones (estrogens and androgens) that are essential for the gender formation 

during the embryogenesis (Jacobs and Lewis 2002); the gestagens, mainly the 

progesterone, that are requisite for the reproduction (Bazer et al. 1979) and the 

mineralocorticoids, that control the salt- and water homeostasis (Rashid and Lewis 

2005) and thereby the blood pressure (Fuller and Young 2005). The third group, the 

glucocorticoids, are known to be signal molecules of the stress response (Rashid et al. 

2005). 
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Cholesterol and intermediate products of its biosynthetic pathway are involved in the 

regulation of signal molecules like Ras, Rab and Rho (Parhami et al. 2002) and 

essential for the replication and cell growth (Siperstein 1984). 

Cholesterol is known to the public for its negative effects on the organism. Elevated 

ratios of normal cholesterol to high density lipoprotein cholesterol levels are known to 

be one of the risk factors of coronary heart disease (Castelli 1984). Cholesterol is 

described as a constitutive part of atherosclerotique plaques (Wissler 1991). Elevated 

plasma concentrations of cholesterol, foremost in form of LDL-cholesterol, foster the 

formation of these plaques. These effects are intensified in patients with familial 

hypercholesterolemia. In this case, the high plasma concentrations are caused by a 

mutation in the LDL receptor (Goldstein and Brown 1984). Besides the formation of 

atherosclerotique plaques, elevated levels of cholesterol can lead to osteoporosis 

(Parhami et al. 2000). Moreover, recent studies describe a positive influence of 

cholesterol on the surveillance of cells from leucemic tumours and a possible 

treatment by drugs that inhibit the biosynthesis of cholesterol (Li et al. 2003). 

To summarise, cholesterol itself plays an important physiological role that is increased 

by the regulatory functions of some of its precursor and derivative molecules. Due to 

this important function it is also involved in several diseases. 

 

1.1.21.1.21.1.21.1.2    TransportTransportTransportTransport    

Cholesterol is transported throughout the human body bound to lipoprotein particles. 

The lipoprotein particles are classified according to their density. For nutrient derived 

cholesterol, two particles exist. The chylomicrons consist of apolipoprotein B-48, C 

and E, triacylglycerides and esterified cholesterol. After the release of the 

triacylglycerides and the apolipoprotein C, so called chylomicron-remnants retain, 

that transport the bound esterified cholesterol to the liver (Sherrill and Dietschy 1978). 

Cholesterol and triacylglycerides that are not used by the liver are excreted to the 

blood in form of very low density ipoproteins (VLDL). The protein part of these 

particles consists of apolipoprotein B-100, C and E . After releasing the lipid part of 

the particles, intermediate density lipoproteins (IDL) retain that are rich in esterified 

cholesterol. The IDLs are either taken up by the liver again or transformed to low 

density lipoproteins (LDL) consisting of esterified cholesterol and one single 

apolipoprotein B-100 only. These are the most important cholesterol carriers 



Introduction  3 

throughout the human body. They carry the cholesterol molecules to the periphery 

and thereby control the de novo cholesterol synthesis out there (Brown and Goldstein 

1986). In contrast, high density lipoproteins (HDL) incorporate the cholesterol that is 

released to the plasma by apoptotic cells and degraded membranes. This cholesterol 

is esterified by an acyltransferase and then passed to LDL particles (Brown et al. 1981) 

or the HDL particles transport the esterified cholesterol from the peripheral tissues 

back to the liver (Mahley 1983). 

The uptake of cholesterol from LDL-particles is performed via the LDL-receptor 

(Brown et al. 1981). This molecule is exposed to the outer surface of the cells and 

recognises the apoB-100 protein component of the LDL. The whole LDL-particle is 

ingested into the cells by endocytosis, the protein particles are hydrolysed to amino 

acids while the cholesteryl esters are hydrolysed to free cholesterol that is 

incorporated into membranes or re-esterified for storage purposes. In the case of 

familial hypercholesterolemia, the LDL receptor is mutated. This mutation leads to the 

accumulation of LDL particles, which in turn leads to an accumulation of cholesterol 

in different tissues with all the negative effects of elevated cholesterol levels described 

in 1.1.1. A level of about 150-200 mg/ml is regarded as “normal”, heterozygous 

patients of the familial hypercholesterolemia show a level of 300–500 mg/ml and 

homozygous patients one of about 500-1200 mg/ml (Hobbs et al. 1990)). 

The cholesterol level in the hepatic cells is mainly controlled via the control of de novo 

synthesis followed by HDL/LDL uptake (Rudney and Sexton 1986), the extra-hepatic 

tissues obtain their cholesterol by de novo synthesis and via uptake of the cholesterol 

transported through the plasma by LDL particles (Dietschy 1984). 

 

1.1.31.1.31.1.31.1.3    Biosynthesis and degradationBiosynthesis and degradationBiosynthesis and degradationBiosynthesis and degradation    

The daily need of cholesterol in the human body can be satisfied via two ways. Each 

day, 300-500 mg of cholesterol are absorbed from the nutrition while 700-900 mg are 

newly synthesised (Dietschy 1984). The nutrient derived cholesterol is transported by 

chylomicrons to the liver from which it is distributed through the whole body (see 

1.1.2). 

The biosynthesis starts from acetyl-CoA and acetoacetyl-CoA that are condensed to 3-

hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) by the cytosolic HMG-CoA synthase. The 

second step is rate-limiting and catalysed by the HMG-CoA reductase at the smooth 
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endoplasmic reticulum (ER). The HMG-CoA reductase reduces HMG-CoA to 

mevalonate that is later diphosphorylated and decarboxylated, leading to isopentenyl-

pyrophosphate (IPP), as precursor for either isoprenoids or squalene synthesis. In the 

case of squalene synthesis, an equilibrium isomarisation takes place, resulting in 

dimethylallyl-pyrophosphate which condenses with a second molecule IPP to 

geranylpyrophosphate. The synthesised geranylpyrophosphate again condenses with a 

third molecule IPP to farnesyl-pyrophosphate. The farnesyl-pyrophosphate is the last 

position of the isoprenoidal part of the mevalonate pathway. With the formation of 

squalene, it enters the steroidal part. Two molecules of farnesyl-pyrophosphate 

condense to one molecule squalene, catalysed by the squalene synthase. In two steps, 

lanosterol is formed from squalene by the squalene monooxygenase and the 

lanosterol synthase. This step as well as all the following steps are carried out at the 

smooth ER. The first step of 19 steps leading from lanosterol to cholesterol is the C14 

de-methylation, catalysed by the cytochrome P450 51A1 (CYP51, see Figure 1-2).  
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Figure 1-2 Simplified scheme of the isoprenoid and cholesterol biosynthetic pathway. Key enzymes of 
cholesterol biosynthesis are marked in blue, biosynthetic processes are marked by blue arrows. 
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The intermediates formed during the biosynthesis of cholesterol play an important 

role in other cellular processes, like the biosynthesis of dolichol, haem A, ubiquinone 

or posttranslational modifications of proteins by farnesylation (Goldstein and Brown 

1990). 

For the elimination, again, there are different pathways. Cholesterol can be excreted 

into the gastrointestinal tract (approximately 600 mg/day) or it is lost through the 

sloughing of skin (approximately 85 mg/day). Two other ways are its conversion to bile 

acids (approximately 400 mg/day) or steroid hormones (approximately 50 mg/day) 

which, in turn, are excreted from the body in bile or urine (Dietschy 1984). 

The bile acids are essential molecules for the uptake of nutrients (Repa et al. 2000). 

Furthermore, they support the resorption of lipophilic substances from the intestine. 

Many steps of the cholesterol degradation, the steroid biosynthesis and the synthesis 

of vitamin D are catalysed by members of the cytochrome P450 family (Handschin et 

al. 2002). 

 

1.1.41.1.41.1.41.1.4    Regulation of biosynthesis, transport and degradationRegulation of biosynthesis, transport and degradationRegulation of biosynthesis, transport and degradationRegulation of biosynthesis, transport and degradation    

The biosynthesis of cholesterol is mediated by the mevalonate pathway and regulated 

in many ways (Goldstein et al. 1990; Russell 1992). The HMG-CoA reductase is the 

rate-limiting enzyme for cholesterol biosynthesis. Its transcriptional regulation is 

carried out by sterol regulatory element binding proteins (SREBP). These are 

membrane proteins that belong to the helix-loop-helix-leucin-zipper family of 

transcription factors. In the case of cholesterol absence the cytosolic part of the SREBP 

is proteoliytically released, representing the active transcription factor. These 

transcription factors bind to sterol-regulate-elements 5’ to the promotor of key 

enzymes of the cholesterol biosynthesis (like HMG-CoA synthase, HMG-CoA 

reducatase and squalene synthase)(Goldstein et al. 1990). In addition to this 

transcriptional regulation, the HMG-CoA reductase is also post-transcriptionally 

regulated (Goldstein et al. 1990).  

The uptake and export of cholesterol also contributes to the overall cholesterol 

concentration inside the cell, so it is also regulated in a cholesterol dependent 

manner. The major regulatory element is the LDL-receptor. The amount of LDL-

receptors on the surface of liver cells increases after blocking cholesterol biosynthesis 
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with a HMG-CoA reductase inhibitor. This is the underlying reason for the reduced 

plasma LDL concentration after statin treatment (see 1.1.5.1). 

The regulation of cholesterol degradation is mainly carried out by regulating the rate-

limiting enzyme, the cholesterol 7α-hydroxylase (CYP7A1). This enzyme is regulated at 

the mRNA and the protein level by mevalonate, diurenal rhythm and bile acid 

feedback (Sundseth and Waxman 1990). The transcriptional regulation is carried out 

by members of a family of nuclear receptors (Repa et al. 2000). Those with the highest 

impact are:  

- Liver X Receptor (LXR):  It forces the degradation to bile acids by activation 

of the transcription of CYP7A1 in the case of 

elevated cholesterol concentration.  

- Farnesoid X Receptor (FXR): It lowers the transcription of CYP7A1 in the case of 

elevated bile acid concentrations. 

 

 

Figure 1-3 Simplified scheme of transcriptional control of the cholesterol homeostasis. Biosynthetic 
pathways are marked as blue arrows, positive regulations are marked as green arrows, negative 
regulations as red lines. Dotted lines represent transcriptional regulation. 
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1.1.51.1.51.1.51.1.5    Inhibitors of cholesterol biosynthesisInhibitors of cholesterol biosynthesisInhibitors of cholesterol biosynthesisInhibitors of cholesterol biosynthesis    

1.1.5.11.1.5.11.1.5.11.1.5.1    StatinsStatinsStatinsStatins    

Competitive inhibition of the HMG-CoA reductase by two fungal metabolites was 

firstly described in 1976 (Endo et al. 1976). During the past thirty years, many HMG-

CoA reductase inhibitors have been developed (Istvan and Deisenhofer 2001; Manzoni 

and Rollini 2002; Stark 2003). The amount of plasma cholesterol is regulated by the 

amount of lipoprotein receptors (Brown et al. 1981). The block of the hepatic 

cholesterol synthesis leads to an increase in the expression of LDL receptor, which in 

turn leads to a subsequent increase in the removal of plasma LDL (Brown et al. 1986). 

So statins are in clinical use to reduce the cholesterol plasma concentration of 

patients with elevated cholesterol levels to reduce the health risks coming along with 

these elevated levels. Statins also play a very important role in studies investigating 

the HMG-CoA reductase (Chin et al. 1982), the regulation of cholesterol biosynthesis 

by non-steroidal side products (Brown and Goldstein 1980), the influence of 

cholesterol and its intermediates onto the DNA synthesis (Siperstein 1984) and the role 

of isoprenylated proteins in cellular pathways and cholesterol biosynthesis (Russell 

1992). 

 

Figure 1-4 The chemical structures of HMG-CoA (A), mevastatin (B) and rosuvastatin (C). The HMG-like 
moiety is coloured in red. 

 

All statins have a HMG-like moiety and the resulting competitive inhibitory effect in 

common (see Figure 1-4, (Istvan et al. 2001)). Starting from mevastatin (Endo et al. 

1976) several naturally derived as well as synthetic statins have been developed, tested 
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and applied for clinical use (Manzoni et al. 2002; Stark 2003). Lipobay (cerivastatin) is 

a negative example for a statin. In 2001, it has been removed from the market 

worldwide, as a reaction to a multitude of rhabdomyloses (Information 2002; Yan et al. 

2003).  

Besides lowering cholesterol levels, several pleiotropic effects of statins are discussed 

in the literature (LaRosa 2001). They were shown to prevent plaque-rupture by 

inhibiting metalloproteases, increasing collagen and decreasing lipid content of 

carotid plaques (Crisby et al. 2001). The idea of pleiotropic effects of statins on 

plaques is further strengthened by reports about a decrease in adhesion of monocytes 

to the endothelium (Weber et al. 1997) and the inhibition of thromboxane biosynthesis 

and platelet function (Notarbartolo et al. 1995). In addition, an increase in fibrinolysis 

and a decrease of plasminogen activator inhibitor 1 has also been reported (Isaacsohn 

et al. 1994; Essig et al. 1998). Lovastatin was shown to suppress LDL oxidation and its 

uptake by macrophages (Aviram et al. 1992). As possibly atheroprotective effect, the 

up-regulation of the nitric oxide (NO) synthase, has been reported (Laufs et al. 1998). 

Most of the pleiotropic effects are not fully understood yet (Liao 2002; Liao and Laufs 

2005; Corsini et al. 2007).  

Among the younger generation of synthetic statins rosuvastatin (Smith et al. 2000) 

(RSV, see Figure 1-4 C) is one of the most promising ones. It is a potent inhibitor of the 

HMG-CoA reductase that is not metabolised by the major drug metabolising 

cytochromes P450 (McTaggart et al. 2001). In comparison to the other statins, it is 

relatively hydrophilic and has a high percentage of bioavailability that is not affected 

by food (Igel et al. 2002). Furthermore, it is taken up into liver cells by a high affinity 

active transport process (Nezasa et al. 2000). For RSV, an anti-inflammatory 

“pleiotropic” effect has already been described (Stalker et al. 2001). 

 

1.1.5.21.1.5.21.1.5.21.1.5.2    OthersOthersOthersOthers    

Due to the severe side-effects sometimes observed by the administration of statins and 

the high impact of intermediate products of the mevalonate pathway on cellular life, 

the inhibition of cholesterol biosynthesis downstream to the HMG-CoA synthase is 

under discussion. Thereby, three potential targets came into the focus. The squalene 

synthase, reviewed in (Charlton-Menys and Durrington 2007) seems to be the most 

promising one so far. The squalene epoxidase and the oxidosqualene cyclase are also 
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discussed as potential targets but with a minor impact on todays research as reviewed 

by (Seiki and Frishman 2009). 

More recently, the 2-((3,4-dichlorophenethyl)(propyl)amino)-1-(pyridin-3-yl)ethanol 

(LEK-935) has been shown to be a potent inhibitor of the lanosterol 14α-demethylase 

(see 1.1.3, (Korosec et al. 2008)). This enzyme is even more downstream towards the 

synthesis of cholesterol than all other targets studied before. The drug-interaction 

potential of LEK-935 has, in comparison to rosuvastatin, already been investigated 

(Monostory et al. 2009). It was shown to be a potent inducer of CYP3A4 transcription 

but also to be rapidly metabolised by primary human hepatocytes. RSV was shown to 

activate hCAR and thereby induce CYP3A4, CYP2C9 and CYP2B6 genes. So, both drugs 

show the potential for drug-drug interaction as side-effects of a co-administration with 

other drugs. 
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1.21.21.21.2    Primary human hepatocytesPrimary human hepatocytesPrimary human hepatocytesPrimary human hepatocytes    

Besides the brain, the liver represents the most complex organ of the human body 

(Malarkey et al. 2005). It has a high impact on physiological relevant homeostases. It 

serves as one of the major organs of energy homeostasis, as it stores glucose in form 

of glycogen and again releases the glucose (Gerich 1993) as a fast response to lowered 

blood sugar (Bondy et al. 1949). The liver is also the central organ for the 

gluconeogenesis (Exton 1972). It catalyses the major part of dietary amino acid 

catabolism (Brosnan 2000), is the major source of ketone bodies (Krebs 1966), 

important for fatty acid synthesis (Volpe and Vagelos 1973; Hellerstein et al. 1996) and 

triglyceride formation (Bell and Coleman 1980) as well as cholesterol synthesis 

(Russell 1992) and the production of coagulation factors and inflammatory mediators 

(Dhainaut et al. 2001). Besides these functions in the energy homeostasis, it plays a 

crucial role in the metabolism of endogenous and exogenous substances and their 

final excretion from the body.  

These functions require a high rate of metabolite exchange between the liver and the 

blood. This necessity is mirrored in the complex morphology of the liver. Nearly all of 

the liver cells lay next to blood filled lacunas, so called liver capillaries or liver 

sinusoids. Thereby, a huge surface is formed that facilitates the exchange of 

metabolites between the cells and the blood. Most of the liver functions are carried 

out by hepatocytes, the main cell type in the liver (Malik et al. 2002). They are 

arranged as cell strings inside the liver lobes. At least 14 other cell types are also 

present in the liver, like Kuppfer-Cells (liver macrophages), dendritic cells and 

haematopoetic cells for example (Malarkey et al. 2005). 

The high impact of the liver on total cholesterol-synthesis, uptake of exogenous 

cholesterol, cholesterol distribution throughout the body and the maintenance of 

plasma-cholesterol levels is of main interest of the present study. The cholesterol 

turnover is controlled by the hepatocytes, so these cells are the first choice trying to 

investigate effects on cholesterol homeostasis. As the liver displays big interindividual 

differences in its metabolic fluxes, the use of primary hepatocytes gained from 

different donors is superior to the use of hepatocytes of one donor or a pool of 

hepatocytes from different donors in cell culture. By the use of primary hepatocytes 

the experimental conditions are as near to an in vivo situation as possible. 



12  Introduction 

1.31.31.31.3    ProteomicsProteomicsProteomicsProteomics    

The term proteome was firstly introduced by the Australian scientist Marc Wilkins in 

1994 (Wasinger et al. 1995). The proteome is defined as the composition of the protein 

content of an organism, tissue or cell type at a specified point in time under specified 

conditions. The genome resembles a stable situation, while the other –omes, 

transcriptome, proteome and metabolome vary. Their composition is reliant on 

environmental circumstances, the composition of each other –ome, the time and so 

on. In contrast to genomic or transcriptomic analysis, the investigation of the 

proteome offers the advantage to analyse those molecules of the cell that exhibit the 

catalytic activities.  

In principal, a proteomic analysis can be divided into three steps (see Figure 1-5). The 

majority of nowadays proteomic studies do not only analyse the status of a sample 

under defined conditions but are used to compare different conditions (like healthy 

and sick or treated and untreated samples). Comparison is usually made in a semi-

quantitative manner, adding a fourth step, the quantification to the general 

experimental design (see Figure 1-5). 

 

Sample preparation 

 

Sample separation 

 

Protein identification 

 

Protein quantification 

Figure 1-5 General scheme of the four parts of a semi-quantitative proteomic analysis 

 

1.3.11.3.11.3.11.3.1    Sample preparationSample preparationSample preparationSample preparation    

The sample preparation is the most critical step of a proteomic analysis. Mistakes 

occurring at this stage of analysis are most often invisible and will only be detected at 

the end of the whole analysis. Therefore, special care has to be taken during sample 

preparation. The cells are lysed to release the proteins. Contaminant substances are 

removed that would disturb the analysis, like DNA or membrane fragments. 
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Mammalian cells display much higher complexity than those of more simple 

organisms. To cope with this complexity, the proteome is divided into sub proteomes 

by a fractionation into the cellular compartments. This fractionation is performed by 

differential centrifugation, whereby the different densities of the compartments are 

used to separate them from each other. The use of detergents to solve proteins has to 

be avoided prior to differential centrifugation, as this would disturb the fractionation 

process. 

 

1.3.21.3.21.3.21.3.2    Sample separationSample separationSample separationSample separation    

After sample preparation, the sample contains a mixture of several thousands of 

proteins. To efficiently analyse this mixture, it needs further separation. The final 

identification of the proteins inside this mixture is usually performed by a controlled 

proteolytic digestion of the proteins, followed by an analysis of the resulting peptide 

mixture by mass spectrometry (see 1.3.3). The way of proteome analysis is divided by 

two different strategies, depending on the level at which the separation is performed. 

In so called top-down approaches, the sample is separated prior to the proteolytic 

digestion at the protein level. In the bottom-up approaches, separation is performed 

after proteolytic digestion, at the peptide level. The 2D gel electrophoresis represents 

the classical top-down approach. Hereby, the proteins are separated according to 

their physico-chemical properties in two successive gel-based experimental designs. 

The two-dimensional gel electrophoresis was firstly described in the 70s of the last 

century (Klose 1975; O'Farrell 1975). It has further been developed and optimised and 

allows nowadays the reproducible resolution of up to 10000 proteins (Galeva et al. 

2003). One of the major drawbacks of 2D-gel electrophoresis is its inability to separate 

membrane proteins (Santoni et al. 2000). The gel-free separation of the peptide 

mixtures by liquid chromatography (LC) has evolved as an equivalent and 

complementing bottom-up approach (Aebersold and Mann 2003) during the past 

years. The complexity of the peptide mixture is much larger than that of the protein 

mixture, therefore also combinations of LC separation modes are used to enhance the 

resolution of the analysis. Gel-based and gel-free methods nowadays turn out to be 

effective partners that may compensate for disadvantages of each other. 
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1.3.2.11.3.2.11.3.2.11.3.2.1    TwoTwoTwoTwo----dimensional gel electrophoresis (2Ddimensional gel electrophoresis (2Ddimensional gel electrophoresis (2Ddimensional gel electrophoresis (2D----PAGE)PAGE)PAGE)PAGE)    

In the classical approach, firstly described by O’Farrel and Klose independently in 

1975, the proteins are separated according to their physico-chemical properties. At 

first, they are reduced and alkylated to expose as much of the primary structure to the 

buffer environment as possible. The proteins are separated in a pH gradient by 

applying an electric field to it. The net charge of the proteins is build by its carboxy 

and amino termini as well as the charged residues of its amino acids. In addition, it 

depends on the pH of the surrounding buffer. The pH at which the net charge equals 

zero is called the isoelectric point (pI) of the protein. By applying an electric field with 

the anode at the acidic end of the pH gradient and the cathode at the basic end the 

proteins migrate through the gel until they reach their pI or leave the gel, in the case 

their pI is out of the pH range (see Figure 1-6). At the end of the last and the 

beginning of this century, this technique was markedly improved by the development 

of so called immobilised pH gradients (IPG) which are commercially available and 

highly improve the reproducibility of the isoelectric focussing (Corbett 1994; Gorg et 

al. 2004). 

 

Figure 1-6 Theoretical scheme of IEF after sample load by in-gel rehydration and after focussing. The P 
marks a phosphorylated protein. 

 

After focussing the proteins at their pI, they are usually separated according to their 

molecular size by a denaturing polyacrylamid gel electrophoresis (PAGE). To enable 

this separation, they need to be fully denaturated and uniformly charged. The charge 

state should be in correlation to the size of the molecule, which is achieved by using 

the detergent sodiumdodeylsulfate (SDS). The complete event of denaturing and 

charging the proteins after IEF is called equilibration. The proteins are denaturated 

and negatively charged by incubation with a buffer containing SDS. The reductant 

dithiothreitol (DTT) reduces the proteins and reduces the disulfide bridges which 

further denaturates the protein and simplifies the attachment of SDS to the protein. In 
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a second step, the free –SH groups are blocked by incubtion with iodacetamide (IAA) 

to inhibit the reassembly of the protein. 

Separation is performed using a SDS polyacrylamide gel. By applying an electric field, 

the negatively charged proteins migrate towards the anode. During migration, they 

pass through the gel and are separated by the filtering effects of the cross-linked 

acrylamide monomers according to their molecular size. The smaller proteins pass 

more easily through the gel-matrix as the bigger ones. Applying a molecular weight 

standard as reference, this method also enables a rough estimation of the proteins 

molecular weight (Shapiro et al. 1967). To visualise the proteins on the gel, they are 

usually stained by silver (incompatible to mass spectrometry, high sensitivity) or a 

colloidal coomassie staining (compatible to mass spectrometry, lower sensitivity) 

(Miller et al. 2006). There are also high sensitive fluorescent stains available that are 

compatible to mass spectrometry but require additional equipment for analysis and 

spot picking. 

 

Figure 1-7 Theoretical scheme of a SDS-PAGE (2nd dimension) after IEF (1st dimension, see Figure 1-6) 

 

In this study, the classical approach with IEF in the 1st and SDS-PAGE in the 2nd 

dimension was used. The proteins were stained by colloidal coomassie staining. 
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1.3.2.21.3.2.21.3.2.21.3.2.2    Nano High Pressure Liquid Chromatography Nano High Pressure Liquid Chromatography Nano High Pressure Liquid Chromatography Nano High Pressure Liquid Chromatography –––– Mass Spectrometry (nLC Mass Spectrometry (nLC Mass Spectrometry (nLC Mass Spectrometry (nLC----MS)MS)MS)MS)    

Strong cation-exchange (SCX) (Alpert and Andrews 1988) coupled with either 

reversed-phase (RP) (Molnar and Horvath 1977) or ion-pair reversed-phase (IP-RP) 

(Horvath et al. 1977) high-performance liquid chromatography (HPLC) turned out to be 

effective combinations of chromatographic separation modes, for both soluble and 

membrane-bound proteins. Using SCX, the proteins are separated according to 

electrostatic interactions with the stationary phase while the separation during RP 

occurs according to their hydrophobic properties. In the case of IP-RP additional 

electrostatic interactions are introduced into the separation process (see Figure 1-8). 

 

Figure 1-8 Schematic display of SCX (A), RP (B) and RP-IP (C) liquid chromatography separation modes. 

 

Many efforts have been undertaken to improve the resolution of the gel free 

methodologies and their performance. Among others, nano scale experimental 

designs (Meiring et al. 2002) and monolithic columns (Premstaller et al. 2001) were 

introduced into this emerging field. The orthogonality of the combined separation is a 

prerequisite for an optimal result (Dugo et al. 2008). A new method of RP x IP-RP 

HPLC for shotgun proteomics (Delmotte et al. 2007) was recently set up and validated. 

It includes monolithic columns in a nano scale experimental design with a 

combination of chromatographic separation modes (RP x IP-RP) whose separation 

capacities have been shown before to be superior to that of the classical combinations 

(Gilar et al. 2005b, 2005a). This setup has been evaluated directly coupled to an 

electron spray ionisation mass spectrometer (ESI-MS) (Delmotte et al. 2007; Delmotte 

et al. 2009) as well as coupled to a matrix assisted laser disorption/ionisation time-of-
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flight mass spectrometer (MALDI-TOF-MS) (Lasaosa et al. 2009). The latter has been 

shown to be superior with regard to the number of peptides and proteins identified 

(Lasaosa et al. 2009). 

1.3.31.3.31.3.31.3.3    Protein identificationProtein identificationProtein identificationProtein identification    

Regardless of the kind of separation, gel-based or gel-free, the proteins inside the 

sample are identified by mass spectrometry followed by computational database 

search. Mass spectrometry bases on the ionisation of the sample molecule followed 

by the determination of the mass to charge ratio (m/z). The general assembly of a 

mass spectrometer is depicted in Figure 1-9. 

 

Figure 1-9 General scheme of a mass spectrometer, consisting of an ion source in which the analytes 
are ionised, followed by a mass analyser and an ion detector. 

 

A mass spectrometer consists of an ion source, a mass analyser and a detector. 

Different ways to ionise samples for mass analysis are available. Proteins or peptides 

as analytes are in general non-volatile and quite instable under the influence of high 

temperatures. Therefore, the identification of proteins by mass spectrometry has 

evolved since the introduction of two soft ionisation techniques in the late 80s of the 

last century. The matrix assisted laser desorption/ionisation (Karas et al. 1987; Tanaka 

et al. 1988) is beside the electron spray ionisation (ESI) (Fenn et al. 1989) the most 

widely used ionisation technique in the field of proteomics. 

 

1.3.3.11.3.3.11.3.3.11.3.3.1    MALDIMALDIMALDIMALDI----TOF/TOF TOF/TOF TOF/TOF TOF/TOF     

The general scheme of a MALDI-TOF analyser is illustrated in Figure 1-10. The sample 

is mixed with the matrix and this mixture is allowed to crystalise on a stainless steel 

target. To ionise the sample, the matrix sample mixture is subjected to a pulsed laser 

beam. The complete mechanism of ionisation is not yet fully understood. It is 

suggested that the laser heats the matrix and leads to small explosions in the frame of 

which the analytes enter the gaseous phase and are ionised by getting a proton from 
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the ionised matrix. In general, only singly charged ions are produced by MALDI 

(Karas et al. 2000). 

 

Figure 1-10 General scheme of a MALDI-TOF including a schematic view on the matrix assisted laser 
desorption/ionisation. The laser is shown as red lightning, matrix molecules and analyte molecules are 
shown in yellow and green respectively. 

 

MALDI ionisation sources are usually coupled to a time-of-flight (TOF) mass analyser. 

The charged analytes are accelerated in a strong electric field followed by drifting in a 

field free flight tube. They are accelerated with the same kinetic energy but their 

velocities differ according to their different masses. So, they separate during the drift 

according to their velocities that depend on their masses. Therefore, their mass to 

charge ratio (m/z) can be determined according to the time they need to pass the 

specified flight path to the detector. The detector collects the m/z of all ionised 

analytes that enter the gaseous phase and summarises these information in a mass 

spectrum. In the case of tandem mass spectrometry (MS/MS), a defined number of 

m/z ratios of each spectrum is chosen for fragmentation. Fragmentation can be 

performed as post-source decay (PSD) or by colliding the analyte ions with gas 

molecules (CID) (Medzihradszky et al. 2000). The CID is favourable to PSD 

(Medzihradszky et al. 2000) and occurs in a collision chamber where the analytes slow 
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down and collide with gas molecules. After fragmentation, the fragments are 

accelerated and analysed as the unfragmented analytes. 

 

1.3.3.21.3.3.21.3.3.21.3.3.2    Protein identification from mass spectraProtein identification from mass spectraProtein identification from mass spectraProtein identification from mass spectra    

The mass spectra collected from unfragmented peptides derived after the controlled 

proteolytic digestion of one protein are compared to the theoretical peptide masses 

obtained after “in-silico” digestion of all protein sequences in a database. To validate 

this comparative identification, different scoring algorithms can be applied. This 

method is called peptide-mass-fingerprint (PMF) (Pappin et al. 1993) and it is 

applicable for samples containing peptides derived from one protein only. In the case 

of bottom-up approaches, the sample peptides are derived from a mixture of proteins 

and some of them enter the mass spectrometer simultaneously. Therefore, a protein 

identification by PMF is not possible. In this case identification is performed by the 

use of the tandem mass spectra. This method is called peptide fragment fingerprint 

(PFF). Similar to PMF, experimental MS/MS spectra are compared and correlated to 

theoretical MS/MS spectra. This correlation is again statistically validated by 

calculating a matching score. Moreover, PFF are nowadays routinely used to validate 

PMF derived identifications. 

1.3.41.3.41.3.41.3.4    QuantitationQuantitationQuantitationQuantitation    

The majority of proteomic analysis are not only used to catch the composition of the 

proteome of a sample under defined conditions. They are used to compare the 

proteomes under different conditions. Therefore, the individual proteins have to be 

quantitated, either in the absolute or, more often used, in a semi-quantitative manner.  

In the case of the gel-based approaches, quantitation is performed in a semi-

quantitative manner by comparing the spot intensities of the gels. For this purpose, 

several software packages exist. Hereby, the quantitation is usually performed prior to 

protein identification.  

In gel-free proteomic analysis, quantitation can be performed in an absolute or semi-

quantitative manner (Lau et al. 2007). In semi-quantitative analyses, quantitation is 

either performed label free or by labelling the sample molecules (Lau et al. 2007). 

Methods for in vivo (SilAC (Ong et al. 2002) e.g.) or in vitro (ICAT (Gygi et al. 1999) or 

iTRAQ (Ross et al. 2004) e.g.) labelling exist. 
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In the case of iTRAQ™, the peptides are labelled with an isobaric tag (145 m/z). This 

tag consists of a reporter molecule, a balancer molecule and a protein reactive site 

(see Figure 1-11 A) and B)). 

The masses of the different reporter groups are balanced by the balancer group, 

leading to a mass of 145 m/z for each label independently from the reporter group 

(see Figure 1-11B)). Therefore, the iTRAQ™ does not lead to an increase in complexity 

of either MS or MS/MS spectra. The MS spectra of all peptides are changed by the 

addition of 145 m/z while the MS/MS spectra are identical to those observed without 

labelling the peptides, except for the reporter ion signals in the mass range of 114 –

 117 m/z (see Figure 1-11 C)). Semi-quantitation is performed by using the reporter ion 

signals. 
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Figure 1-11 Schematic scheme of the iTRAQ method. Scheme developed according to (Ross et al. 2004). 
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1.41.41.41.4    Aim of the workAim of the workAim of the workAim of the work    

Cholesterol has a high impact on cardiovascular diseases in industrial countries. 

Elevated amounts of plasma cholesterol are treated by the administration of HMG-

CoA reductase inhibitors that block de novo cholesterol biosynthesis. For these drugs, 

severe side-effects as well as pleiotropic effects have been described that are not yet 

fully understood. This study was carried out in order to get indications about proteins 

and thereby cellular pathways that are affected by treating primary human 

hepatocytes with rosuvastatin, one of the most promising new statins. In addition, the 

effects of the new CYP51A1 inhibitor LEK-935 were analysed to reveal indications 

about changes in the affected pathways by a block more downstream in the 

cholesterol biosynthesis. To get an impression about inter-individual differences that 

were supposed to be high, samples derived from two different human donors were 

analysed in parallel. The analysis should be carried out at the proteome of the cells. 

The cytosolic as well as the microsomal sub-proteomes were chosen as they contain 

many proteins involved in cholesterol biosynthesis as well as degradation. 

The results should deliver information about the general reactions of the cells to the 

statin or the CYP51A1 inhibitor. Furthermore, information about differences of the 

effects of rosuvastatin and LEK-935 as well as inter-individual differences were 

expected. To further evaluate the gained results in a higher amount of individual 

samples, some of the found proteins should be validated by RT-PCR.  

This study was performed to shed light into the biochemical pathways of primary 

human hepatocytes affected by the treatment with cholesterol lowering agents. The 

results should give indications for proteins or pathways that may be related to either 

some of the pleiotropic effects of the statins still unexplainable today or their more or 

less severe side-effects and thereby improve the understanding of statin action. 
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2222    Materials Materials Materials Materials     

2.12.12.12.1    ChemicalsChemicalsChemicalsChemicals    

ChemicalChemicalChemicalChemical    Supplied bySupplied bySupplied bySupplied by    PurityPurityPurityPurity    

2-iodo-acetamide Merck For synthesis 

Acetonitrile VWR HPLC, gradient grade 

Acetonitrile Sigma-Aldrich E Chromasolv 

Acrylamide stock solution National Diagnostics Protein & sequencing grade 

Ammoniumbicarbonate Sigma-Aldrich > 99.0 % 

Ammoniumpersulfat Sigma – Aldrich Analytical grade 

CHAPS Fluka > 98.0 % 

DeStreak GE Healthcare --- 

Di-potassium-hydrogenphosphat Roth ≥ 99.0 % p.a. free of water 

Dithiotreitol Diagnostic Chemicals Limited High purity for molecular biology 

EDTA ZChL-UdS ≥ 99.9 % p.a. 

Acetic acid ZChL-UdS 99.5 – 99.8 % 

Ethanol, embittered by 1% 

Petrolether 

ZChL-UdS 99.0 % 

Glycerol ZChL-UdS 99.0 % 

Urea Roth 99.5 % p.a. 

Potassium-di-hydrogenphosphate Merck p.a. 

LE Agarose Seakem® For gelelectrophoresis 

Methanol ZChL-UdS For synthesis 

Mineral oil GE Healthcare --- 

Sodium deoxycholate Serva Purissime 

Sodiumcarbonate, monohydrate Sigma-Aldrich 99.5 % 

Sodiumchloride Grüssing 99.5 % p.a. 

Sodiumdodecylsulfate Serva Research grade 

Sodiumthiosulfate, pentahydrate Merck p.a. 

Pharmalytes 3 – 10 GE Healthcare --- 

Phenylmethylsulfonlyfluoride 

(PMSF) 

Serva Research grade 

Phosphoric acid VWR Analytical grade 

Protease – inhibitor cocktail Sigma – Aldrich --- 

Protogel 

(30 % Acrylamide, 0.8 % 

Bisacrylamide) 

Biozym Ultra pure 

Sucrose Merck Biochemical research 

TEMED Roth 99.0 % p.a., for electrophoresis 
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ChemicalChemicalChemicalChemical    Supplied bySupplied bySupplied bySupplied by    PurityPurityPurityPurity    

Thio urea GE Healthcare  

Triacetic acid Merck For synthesis 

Trifluororic acid Roth For synthesis 

Tris Roth Ultra Quality, ≥ 99.9 % 

Trypsin Promega Sequencing grade, modified 

    



Materials  25 

2.22.22.22.2    Instruments / MaterialsInstruments / MaterialsInstruments / MaterialsInstruments / Materials    

Type of instrument / materialType of instrument / materialType of instrument / materialType of instrument / material    CompanyCompanyCompanyCompany    ProductProductProductProduct    

Autoclave Zirrbus LVSA 50/70 

Water purifier, distilled water Grünbeck Ion separator GENO-Sep 

 

Water purifier, distilled water Grünbeck Weichwassermeister2 VFR14-I 

Electrophoresis station SDS-PAGE  GE Healthcare Ettan Dalt II separation unit 

Electrophoresis station IEF  GE Healthcare IPGphor 

Liquid chromatography  

1st dimension 

Self-made 

(Delmotte et al. 2007) 

RP-HPLC - setup 

Liquid chromatography 

2nd dimension 

LCPackings nanoHPLC Ultimate 

Liquid chromatography 

column 

Phenomenex Gemini C18 

Liquid chromatography 

column 

Self-made 

(Premstaller et al. 2001) 

Trap column (PS-DVB monolith) 

Liquid chromatography 

column 

Self-made 

(Premstaller et al. 2001) 

Analytical column (PS-DVB  

monolith) 

Gel caster GE Healthcare Dalt II Gelcaster 

IPGstrips GE Healthcare IPGstrip pH 3-10 NL, 18 cm 

Mass standard, internal Sigma-Aldrich ProteoMass™ ACTH Fragment 

18-39 

Mass standard, internal Sigma-Aldrich [Glu1]-Fibrinopeptide B human 

Mass standard, external Applied Biosystems Mass Standards Kit for the 

4700 Proteomics Analyzer 

Mass spectrometer Applied Biosystems MALDI-TOF/TOF Proteomics 

Analyser 4800 

MALDI targets in-gel Applied Biosystems OptiTOF® 384well MALDI plate 

insert 

MALDI targets nLC-MS Applied Biosystems Opti-TOF® uLC MALDI Plate 

Inserts 

Power supply  

 

GE Healthcare Ettan Dalt II power supply and 

control unit 

Automated fractionation unit 

nLC-MS 

Dionex Probot 

Protein concentration determination GE Healthcare 2D Quant Kit 

Protein concentration determination Uptima BC – Assay 

Protein ladder Fermentas PageRuler unstained protein 

ladder 
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Type of instrument / materialType of instrument / materialType of instrument / materialType of instrument / material    CompanyCompanyCompanyCompany    ProductProductProductProduct    

ladder 

Protein ladder Biolabs Prestained Protein Marker 

Broad Range 

 

Rehydration tray GE Healthcare Reswellingtray 

Water purifier, ultra pure water Millipore Milli-Q (biocel) 

Column 1: Quantum EX 

Column 2: Q-Gard2 

 

Photometer Shimadzu UV-Vis recording 

spectrophotometer UV2101 

 

Sonication Emich USD 30 

Sonication probe Emich 6.4 mm in diameter 

Ultra centrifuge Hitachi himac CP75ß 

ZipTips Millipore Zip-Tip pipette tips 

(0.6 µl C18-resin) 

 

2.32.32.32.3    Buffer / Solutions / WaterBuffer / Solutions / WaterBuffer / Solutions / WaterBuffer / Solutions / Water    

The 2D-PAGE as well as the nLC-MS are quite sensitive methods and thereby 

susceptible to impurities in any way. Therefore, all chemicals were of highest purity 

and all buffers and solutions were prepared using ultra pure water, unless otherwise 

stated. 
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3333    MethodsMethodsMethodsMethods    

The general experimental setup of this study is depicted in Figure 3-1. To enable the 

parallel analysis of different subcellular proteomes, the raw cell lysate was 

fractionated. Moreover, a relatively high resolution was achieved by reducing the 

predominance of high abundant proteins without the loss of information. The 

cytosolic fraction was applied to analysis by two dimensional gel electrophoresis 

followed by mass spectrometry. To analyse the membrane proteins contained in the 

microsomal fraction, it was applied to two dimensional liquid chromatography 

followed by mass spectrometry. The nuclear and mitochondrial fractions that were 

also gained during sample preparation were stored at –80 °C until further use. The 

present study was performed in the frame of an international research project 

(European Comission project number: 512096, www.steroltalk.net). Therefore, some of 

the experiments were performed in collaboration: Dr. Katalin Monostory (Hungarian 

academy of science, Chemical research centre, Budapest) isolated, cultivated and 

treated the primary human hepatocytes and Dr. Jean-Marc Pascussi (Institut de 

Génomique Fonctionnelle, Département d'Oncologie, CNRS UMR5203 – INSERM U661 

– UFR de Médecine Montpellier-Nîmes) performed the RT-PCR experiments. 
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Figure 3-1 General experimental setup of the present study 
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3.13.13.13.1    Cell cultureCell cultureCell cultureCell culture    

 

3.1.13.1.13.1.13.1.1    Primary human hepatocytesPrimary human hepatocytesPrimary human hepatocytesPrimary human hepatocytes    

Isolation and cultivation of the primary human hepatocytes was performed by 

Dr. Katalin Monostory, Hungarian academy of science, Chemical research centre, 

Budapest. 

The livers were obtained from kidney transplant donors resected from adult patients 

for medical reasons unrelated to this study (Transplantation and Surgical Clinic, 

Semmelweis University, Budapest, Hungary). Permission of the Hungarian and 

Regional Committee of Science and Research Ethics was obtained to use human 

tissues. 

 

3.1.1.13.1.1.13.1.1.13.1.1.1    Liver perfusion and hepatocyte isolation Liver perfusion and hepatocyte isolation Liver perfusion and hepatocyte isolation Liver perfusion and hepatocyte isolation     

One of the branches of portal vein in the left lobe was cannulated and the tissue was 

perfused with Ca2+-free Earl’s balanced salt solution (EBSS) containing ethylene glycol 

tetraacetic acid (EGTA, 0.5 mM) and then with Ca2+-free EBSS, finally with the 

perfusate containing collagenase (Type IV, 25 mg/100 ml) and Ca2+
 

(2 mM). Perfusion 

was carried out at pH 7.4 and at 37 °C. Softened tissue was gently minced and 

suspended in ice-cold hepatocyte dispersal buffer. Hepatocytes were filtered and 

isolated by low-speed centrifugation (50 x g) and washed three times in hepatocyte 

dispersal buffer and once in culture medium.  

 

3.1.1.23.1.1.23.1.1.23.1.1.2    Plating and culture of hepatocytes Plating and culture of hepatocytes Plating and culture of hepatocytes Plating and culture of hepatocytes     

The yield and the percentage of cell viability according to the trypan blue exclusion 

test were determined. Hepatocytes were suspended to 1.3 x 106 cells/ml concentration 

in culture medium with foetal calf serum (5 %). Liver cells were plated 

(150,000 cells/cm2) in culture dishes coated with collagen and maintained in a humid 

atmosphere of air containing 5 % CO2
 
at 37 °C. Cell culture and treatment were 

performed as described in (Monostory et al. 2009). The samples used for proteome 

analysis were treated for 48 hrs with 10 µM of rosuvastatin (RSV), LEK-935 or 0.1 % 

dimethyl sulfoxide (DMSO, control). After harvesting, the cells were stored at – 80 °C 

and received on dry ice. Each vial obtained from Dr. Monostory contained 1 x 107 

cells. 
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Sample 1 and 2 were derived from cells of donor HH-129 and HH-114, respectively, 

see (Monostory et al. 2009). 

 

3.1.1.33.1.1.33.1.1.33.1.1.3    Buffer / SolutionsBuffer / SolutionsBuffer / SolutionsBuffer / Solutions    

Earl’s balanced salt solution pH 7.4 Earl’s balanced salt solution pH 7.4 Earl’s balanced salt solution pH 7.4 Earl’s balanced salt solution pH 7.4     
((((CaCaCaCa

2+2+2+2+

----freefreefreefree))))    
CultCultCultCulture mediumure mediumure mediumure medium    

Williams’ medium E : Ham’s F12 medium 1:1 (v/v)Williams’ medium E : Ham’s F12 medium 1:1 (v/v)Williams’ medium E : Ham’s F12 medium 1:1 (v/v)Williams’ medium E : Ham’s F12 medium 1:1 (v/v)    

NaCl 117 mM Gentamicin 50 mg/ml 

KCl 5.4 mM Amphotericin B  1.2 ]M  

NaH
2
PO

4
 0.9 mM (or 0.75 mg/l fungizone) 

NaHCO
3
 26.16 mM Glucose 6.9 mM 

Glucose 5.56 mM Pyruvate 0.4 mM 

    Ethanolamine 66.8 mM 

Hepatocyte dispersal buffer pH 7.4Hepatocyte dispersal buffer pH 7.4Hepatocyte dispersal buffer pH 7.4Hepatocyte dispersal buffer pH 7.4 Linoleic acid 40 nM 

HEPES 10 mM Vitamin C 142 ]M 

NaCl 142 mM Insulin 0.6 mg/ml 

KCl 7 mM Dexamethasone 0.1 ]M 

Glucagon 57.4 nM  

Transferrin 50 ]g/ml 

 

3.1.23.1.23.1.23.1.2    Human colon carcinoma cell line 116Human colon carcinoma cell line 116Human colon carcinoma cell line 116Human colon carcinoma cell line 116    

The cells of the human colon carcinoma cell line 116 (HCT 116), used for protein 

stability testing during this study, were obtained by courtesy of Dipl. Biol. Britta 

Wilzewski. 

3.1.33.1.33.1.33.1.3    Schizosaccharomyces pombeSchizosaccharomyces pombeSchizosaccharomyces pombeSchizosaccharomyces pombe    

The wild-type strain MB163 was used for the tests of protein stability. The cells used 

were a gift of Dipl. Biol. Ming-Kwai Tin.  

 

3.1.43.1.43.1.43.1.4    EcherichiaEcherichiaEcherichiaEcherichia    colicolicolicoli        

E. coli strain JM109 was used for stability tests, the cells were a courtesy of Dipl. 

Chem. Berna Mersinli. 
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3.23.23.23.2    Protein isolationProtein isolationProtein isolationProtein isolation    

 

3.2.13.2.13.2.13.2.1    Cell disruptionCell disruptionCell disruptionCell disruption    

Cells were thawed on ice, centrifuged for 3 min at 74 g and resuspended in 400 µl 

potassium phosphate buffer (0.1 M, pH 7.4). To avoid any kind of protein degradation 

caused by intracellular proteases, they were blocked by the addition of 10 µl of 

protease inhibitor cocktail, containing inhibitors for cystein and serin proteases, 

amino peptidases and acidic proteases. 

The use of lysis buffer during cell lysis, as usually performed, was avoided during this 

study. It would cause a solubilisation of membrane attached or integral membrane 

proteins prior to the fractionation by differential centrifugation, which would 

counteract the fractionation process. 

The samples derived from human cell lines and E. coli cultures were lysed by 

sonication, while the yeast cells were disrupted by shaking with glass beads. 

 

3.2.1.13.2.1.13.2.1.13.2.1.1    SonicationSonicationSonicationSonication    

Cell lysis was performed using an Emich USD 30 sonicator equipped with a 6.4 mm 

sonication probe, which was dipped 6 – 8 mm into the cell solution. Parameters are 

shown in Table 3-1 

 Table 3-1 Parameters applied for cell lysis by sonication 

Sonication parametersSonication parametersSonication parametersSonication parameters    

Pulse duration 10 seconds 

Repeats 7 

Pulse amplitude 20 µm 

Break between pulses 1.5 minutes 

Temperature 4 °C 

 

3.2.1.23.2.1.23.2.1.23.2.1.2    Cell lysis using glass beadsCell lysis using glass beadsCell lysis using glass beadsCell lysis using glass beads    

As the fission yeast cells are surrounded by a thick cell wall nearly unbreakable by 

sonication without lysis buffer, yeast samples were disrupted by shaking in an equal 

volume of glass beads, as previously described (Boehmer et al. 2006; Hwang et al. 

2006). 
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3.2.23.2.23.2.23.2.2    Differential CentrifugationDifferential CentrifugationDifferential CentrifugationDifferential Centrifugation    

The following steps were performed at 4 °C. The resulting pellets were stored at –20 °C 

while the supernatant was used for the following centrifugation step. The supernatant 

of step three was defined as the cytosolic fraction.  

 

1) Centrifugation of the cell lysate for 10 minutes at 3 000 g. 

� pellet = nuclei, cell debris 

 

2) Centrifugation of the supernatant from step 1) for 20 minutes at 20 000 g.  

� pellet = mitochondria 

 

3) Centrifugation of the supernatant from step 2) for 60 minutes at 117 000 g. 

� pellet = microsomes, supernatant = cytosol 

3.2.33.2.33.2.33.2.3    Cleaning the microsomesCleaning the microsomesCleaning the microsomesCleaning the microsomes    

The membrane attached proteins and parts of the proteins enclosed in the vesicle 

lumen during the vesicle formation were removed by washing with 0.15 % 

sodiumcholate and a sucrose step. 

Removal was performed, with minimal changes, as described by (Zgoda et al. 2006). 

Briefly, the microsomal pellet was washed in 1 ml 1.15 % potassium chloride solution 

(117 000 g, 4 °C, 60 minutes). The resulting pellet was resuspended in 1 ml potassium 

phosphate buffer (0,1 M, pH 7,4), diluted 1:2 in solution 1 and incubated on a 

platform shaker for 60 minutes, 4 °C. It was than applied onto a 0.4 M sucrose step 

and centrifuged at 117 000 g, 90 minutes, 4 °C. The pellet was washed in 1 ml solution 

2 (117 000 g, 4 °C, 60 minutes). The final pellet was stored at –20 °C. 

 

3.2.3.13.2.3.13.2.3.13.2.3.1    Buffer / SolutionsBuffer / SolutionsBuffer / SolutionsBuffer / Solutions    

SolSolSolSolution 1ution 1ution 1ution 1    Solution 2Solution 2Solution 2Solution 2    

Sodium cholate 0.15 % (w/v) EDTA  1 mM 

EDTA  1mM   

In potassium phosphate buffer (0.1 M, pH 7.4) 
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3.33.33.33.3    Determining the protein concentrationDetermining the protein concentrationDetermining the protein concentrationDetermining the protein concentration    

 

3.3.13.3.13.3.13.3.1    PlusOne™ 2D Quant KitPlusOne™ 2D Quant KitPlusOne™ 2D Quant KitPlusOne™ 2D Quant Kit    

The protein concentration of the cytosolic fraction was determined, using the 

„PlusOneTM 2D Quant Kit“ (GEHealthcare). This kit includes a precipitation step to 

remove contaminants. The whole procedure was performed according to the supplied 

instructions with slight modifications. Two times 5 µl of protein solution were 

subjected to protein determination. The resulting values were averaged to get the final 

protein concentration. The centrifugation step after precipitation was performed for 20 

minutes at 20000 g, 4 °C. 

 

3.3.23.3.23.3.23.3.2    Bicinchoninic acid assayBicinchoninic acid assayBicinchoninic acid assayBicinchoninic acid assay    

The protein concentration of the microsomal fraction was determined, using the 

bicinchoninic acid assay (Pierce, Uptima) following the suppliers instructions.  
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3.43.43.43.4    Two dimensional gel electrophoresisTwo dimensional gel electrophoresisTwo dimensional gel electrophoresisTwo dimensional gel electrophoresis (2D  (2D  (2D  (2D –––– PAGE) PAGE) PAGE) PAGE)    

The protocol used in this study follows the classical setup. At first, the proteins were 

separated according to their isoelectric point, then according to their physical size in 

the second dimension. 

The isoelectric focussing (IEF) was performed on immobilised pH gradient gels 

(IPGstrips), with a non-linear pH gradient from 3 – 10 and 18 cm in length. The strips 

were then applied to a 12.5 % sodium dodecyl sulfate (SDS) gel in the dimensions of 

20 x 26 cm (see Table 3-2). IEF was performed using the IPGphor (Amersham), the 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed in the EttanDALT II system. A maximum of 12 gels were run in parallel. 

Table 3-2 Characteristics of the 2D-PAGE 

 Dimension (cm)Dimension (cm)Dimension (cm)Dimension (cm)    

Length x Breadth x ThicknessLength x Breadth x ThicknessLength x Breadth x ThicknessLength x Breadth x Thickness    

Duration (h)Duration (h)Duration (h)Duration (h)    

IEF 18 x 0.5 x 0.1 8 

SDS-PAGE 20 x 26 x 0.1 5 to 6 

Coomassie 

staining 

- 132 to 140 

 

3.4.13.4.13.4.13.4.1    Isoelectric focussing Isoelectric focussing Isoelectric focussing Isoelectric focussing     

 

3.4.1.13.4.1.13.4.1.13.4.1.1    Sample preparationSample preparationSample preparationSample preparation    

In general, 100 µg of protein was applied per gel. The sample was loaded by in-gel 

rehydration. For this purpose the volume of sample solution corresponding to 100 µg 

protein was mixed with the same volume of lysis buffer. To further improve the 

solubilisation of the proteins, this mixture was incubated for 15 minutes at room 

temperature. The solution was adjusted to a volume of 340 µl with rehydration 

solution and Phenylmethylsufonylfluoride (PMSF) was added to a final concentration 

of 3 ng/µl. 

 

3.4.1.23.4.1.23.4.1.23.4.1.2    RehydrationRehydrationRehydrationRehydration    

Rehydration was performed in the rehydration tray, over night and at room 

temperature. To avoid evaporation, the strips were covered with mineral oil. 
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3.4.1.33.4.1.33.4.1.33.4.1.3    IEF IEF IEF IEF –––– Performance Performance Performance Performance    

The strips were transferred to the IPGphor and again covered with mineral oil. Filter 

paper wetted with 150 µl of double-distilled water was placed on top of both strip-

endings. The electrodes were placed on top of the filter paper but still above the gel. 

Parameters were the following: the temperature was set to 20 °C, a maximum current 

of 50 µA was applied per strip and the program shown in Table 3-3 was used. After 

focussing, the IPGstrips were stored at –20 °C until further use. 

Table 3-3 Program IPGphor 

StepStepStepStep    DurationDurationDurationDuration    

[h][h][h][h]    

VoltageVoltageVoltageVoltage    

[V][V][V][V]    

VolthVolthVolthVolthoursoursoursours    

[Vhrs][Vhrs][Vhrs][Vhrs]    

S1 1 150 150 

S2 2 300 600 

S3 1 600 600 

S4 1 600- 

8000 

4300 

(Gradient) 

S5 3 8000 24000 

Total: 29650 Vhrs 

 

3.4.1.43.4.1.43.4.1.43.4.1.4    Buffer / Solutions IEFBuffer / Solutions IEFBuffer / Solutions IEFBuffer / Solutions IEF    

LysisbufferLysisbufferLysisbufferLysisbuffer    Rehydration solutionRehydration solutionRehydration solutionRehydration solution    

Urea 7 M Urea 7 M 

Thio-urea 2 M Thiourea 2 M 

CHAPS 65 mM CHAPS 1 % (w/v) 

DTT 60 mM DTT 0.4 % (w/v) 

Pharmalytes 3-10 2 % (v/v) Pharmalytes 3-10 0.5 % (v/v) 

Bromphenolblue ≤ 0.002 % (w/v)  

DeStreak - reagent 1.2 % (v/v) 

Stored in aliquots at –20 °C Stored in aliquots at –20 °C 
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3.4.23.4.23.4.23.4.2    Sodium dodecylsulfateSodium dodecylsulfateSodium dodecylsulfateSodium dodecylsulfate––––polyacrylamide gel elecpolyacrylamide gel elecpolyacrylamide gel elecpolyacrylamide gel electrophoresis trophoresis trophoresis trophoresis     
 

3.4.2.13.4.2.13.4.2.13.4.2.1    Casting the gelsCasting the gelsCasting the gelsCasting the gels    

To cast the gels, the Ettan DALT gel caster was used. As overlay solution, either a 

butanol : water mixture (10:1) or 0.1 % SDS was used. Gels were cast over night, prior 

to use.  

 

3.4.2.23.4.2.23.4.2.23.4.2.2    EquilibrationEquilibrationEquilibrationEquilibration    

Strips were incubated in reducing equilibration solution followed by incubation in 

alcylating equilibration solution. Both steps were performed at room temperature by 

shaking for fifteen minutes on an orbital shaker. 

 

3.4.2.33.4.2.33.4.2.33.4.2.3    Gel electrophoresisGel electrophoresisGel electrophoresisGel electrophoresis    

The IPGstrips were washed in 1 x electrophoresis buffer directly after equilibration to 

lubricate them and improve their application onto the second dimension. Two 

different protein ladders were used (see 2.2) to enable an approximation of the 

molecular weight range. To prevent floating of the strips, they were covered with 2 –

 3 ml of sealing solution. The upper buffer chamber was filled with 2 x electrophoresis 

buffer while the lower chamber was filled with 1 x electrophoresis buffer. The SDS-

PAGE was run according to the settings shown in Table 3-4. 

 

Table 3-4 SDS-PAGE Program 

StepStepStepStep    DurationDurationDurationDuration    PowerPowerPowerPower    

S1 30-60 Min 5 W/Gel 

S2 5 h 15 W/Gel 

In total: 5 – 6 h 

 

Once the running dye reached the end of the gel, the experiment was stopped and the 

gels applied to fixation over night. 
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3.4.2.43.4.2.43.4.2.43.4.2.4    Buffer / Solutions SDSBuffer / Solutions SDSBuffer / Solutions SDSBuffer / Solutions SDS----PAGEPAGEPAGEPAGE    

Acrylamidsolution:Acrylamidsolution:Acrylamidsolution:Acrylamidsolution:    Displacing solutionDisplacing solutionDisplacing solutionDisplacing solution    

Acryl-/Bisacrylamid 12 % (v/v) TrisCl (pH 8.8) 375 mM 

TrisCl (pH 8.8) 375 mM Glycerol 50 % (v/v) 

SDS 0.1 % (w/v) Bromphenolblue ~0.002 % 

APS 0.1 % (w/v) 

TEMED 0.05 % (v/v) 

 

Always prepared ready-to-use Always prepared ready-to-use 

Equilibration solution, reducingEquilibration solution, reducingEquilibration solution, reducingEquilibration solution, reducing    Equilibration solution, alkylatingEquilibration solution, alkylatingEquilibration solution, alkylatingEquilibration solution, alkylating    

Urea 6 M Urea 6 M 

SDS 2 % (w/v) SDS 2 % (w/v) 

TrisCl (pH 8.8) 50 mM, pH 8.8 TrisCl (pH 8.8) 50 mM, pH 8.8 

Glycerol 30 % (v/v) Glycerol 30 % (v/v) 

DTT 1 % (w/v) IAA 4 % (w/v) 

Stored in aliquots at –20 °C, addition of reducing or alcylating reagent prior to use 

Electrophoresis buffer (1X)Electrophoresis buffer (1X)Electrophoresis buffer (1X)Electrophoresis buffer (1X)    Sealing solutionSealing solutionSealing solutionSealing solution    

Tris-Base 25 mM Agarose 0.5 % (w/v) 

SDS 0.1 % Bromphenolblue ~0.002 % 

Glycin  0.19 M In 1 X electrophoresis buffer 

Storage at room temperature Heated in the microwave, stored at 60 °C 
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3.4.33.4.33.4.33.4.3    StainingStainingStainingStaining    

Gels were stained by colloidal coomassie staining. All steps were performed at room 

temperature by gentle shaking on an orbital shaker. The volume was set to 0.5 l per 

gel. The solutions were prepared ready-to-use and the Coomassie brilliant blue was 

directly added to the shaking pre-incubation solution. The general procedure is shown 

in Table 3-5 

Table 3-5 Procedure of colloidal coomassie staining 

StepStepStepStep    DurationDurationDurationDuration    

Fixation Overnight 

Washing 2 x 15 minutes 

Pre-incubation 1.5 h 

Incubation 5 days 

Destaining 2 – 3 times washing 

 

3.4.3.13.4.3.13.4.3.13.4.3.1    Buffer / SolutionsBuffer / SolutionsBuffer / SolutionsBuffer / Solutions    

FixativFixativFixativFixativ    Wash / Destaining solutionWash / Destaining solutionWash / Destaining solutionWash / Destaining solution    

Ethanol 50 % (v/v) Water  

Phosphoric acid 2.55 % (v/v)   

PrePrePrePre----incubationincubationincubationincubation    IncubationIncubationIncubationIncubation    

Ammoniumsulfate 17 % (w/v) Ammoniumsulfate 17 % (w/v) 

Methanol 34 % (v/v) Methanol 34 % (v/v) 

Phosphoric acid 2.55 % (v/v) Phosphoric acid 2.55 % (v/v) 

  Coomassie brilliant blue G 

250 

1 % (w/v) 

 

3.4.43.4.43.4.43.4.4    Image digitalisationImage digitalisationImage digitalisationImage digitalisation    

The stained gels were digitalised to enable their bioinformatical analysis. Scanning 

was performed at the Image Scanner controlled via Image Master Labscan v.3.0.1. 

(Amersham). 

Parameters were the same for every gel (see Table 3-6). As the contrast/brightness 

parameters were set to auto, they changed according to the detail chosen to be 
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scanned in the scanner preview window. Therefore, a manual control of these values 

was done, to assure a final comparability of the gel images.  

        Table 3-6 Scanning parameters 

ParameterParameterParameterParameter    SettingsSettingsSettingsSettings    

Object type Transmissive 

Colours Grey, red 

channel 

Resolution 300 dpi 

Filter No filter 

Contrast/brightness Auto 

 

The pictures were stored as 16 bit greyscale .tiff images. The software PDQuest was 

applied to rotate or flip the images prior to semi-quantitative bioinformatical analysis. 

 

3.4.53.4.53.4.53.4.5    InInInIn----Gel digestionGel digestionGel digestionGel digestion    

Gel pieces, approximately 1 x 1 mm in size, were excised from the gels and stored at 

–20 °C prior to their enzymatic digestion. Until otherwise stated, all steps of the 

excision and digestion process were performed at room temperature. 

The tubes containing the gel pieces were placed in a Thermomixer comfort 

(Eppendorf). First, the gel plugs were washed for 10 minutes in 50 µl water. This step 

was followed by incubation for 15 minutes in 50 µl of an 50 % acetonitrile (ACN) 

solution; while they were shaken at 1 200 rpm, in intervals of 1 minute shaking 

followed by 1 minute break. Thereafter, the gel plugs were destained by incubation in 

50 µl ACN for 1 minute, followed by 5 minutes incubation in 20 µl bicarbonate buffer 

(40 mM) at 450 rpm. After adding 20 µl ACN, the solution was further incubated for 

15 minutes at 450 rpm. The destaining procedure was repeated until the dye was 

completely washed out of the plug. 

After destaining, the plugs were dried in a speed vac and digestion was started by 

adding 15 µl of a trypsin solution (27 ng/µl in bicarbonate buffer (40 mM)). Digestion 

was performed at 37 °C over night and stopped by freezing the peptide solution in 

liquid nitrogen. The final peptide solution was stored at – 80 °C until matrix mixing 

and spotting onto a stainless steel target for matrix assisted laser desorption/ionisation 

(MALDI) mass spectrometry. 
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3.4.63.4.63.4.63.4.6    SpottingSpottingSpottingSpotting    

 

3.4.6.13.4.6.13.4.6.13.4.6.1    Concentration using ZipTip™ Concentration using ZipTip™ Concentration using ZipTip™ Concentration using ZipTip™     

Prior to matrix mixing, the peptide solution was concentrated using ZipTips™. A 

volume of 0.5 µl of a 5 % trifluoro acetic acid (TFA) solution was spiked to each vial to 

adjust the pH of the peptide solution to a value below 4 and reach a TFA concentration 

of at least 0.1 %.  

The C18 resin was wetted and equilibrated by two times pipetting 10 µl ACN and 10 µl 

0.1 % TFA, respectively. Sample was loaded onto the C18 material by ten times 

aspirating/dispensing 5 - 8 µl sample solution. This step was followed by three times 

washing in 5 µl 0.1 % TFA.  

 

3.4.6.23.4.6.23.4.6.23.4.6.2    Matrix mixingMatrix mixingMatrix mixingMatrix mixing    

After washing, the sample was directly eluted in 5 µl of matrix (3 % alpha-cyano-4-

hydroxy-cinnamic acid (CHCA) in 50 % ACN, 0.1 % TFA) by three times 

aspirating/dispensing. 

 

3.4.6.33.4.6.33.4.6.33.4.6.3    SpottingSpottingSpottingSpotting    

Of the eluate, 1 µl was spotted onto the MALDI target. Each sample solution was 

spotted twice to minimise the influence of mistakes occurring during matrix mixing or 

pipetting. Remaining eluate was stored at 4 °C in a 99-well plate, covered with plastic 

lid. 
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3.53.53.53.5    Nano highNano highNano highNano high----pressure liquid chromatography (nHPLC)pressure liquid chromatography (nHPLC)pressure liquid chromatography (nHPLC)pressure liquid chromatography (nHPLC)    

This part of the project was performed in cooperation with Dr. Katja Melchior, 

member of the group of Prof. Dr. Huber, Department of Chemistry, Instrumental 

Analysis and Bioanalysis, Saarland University, Saarbruecken.  

 

3.5.13.5.13.5.13.5.1    Sample preparationSample preparationSample preparationSample preparation    

As separation by two dimensional liquid chromatography is quite sensitive to 

impurities like for example salt, the samples needed to be further prepared after 

cleaning the microsomes. The 2D-Quant Kit was found to be incompatible with the 

iTRAQ™ 4-plex kit, so the BCA-assay was used to determine the protein concentration. 

The sample preparation was developed according to the iTRAQ™ chemical reference 

guide. Except for the BCA-assay, the solutions were provided with the iTRAQ™ 4-plex 

kit. After cleaning the microsomal fraction (see 3.2.3), the final pellet was 

resuspended in 100 µL dissolution buffer (pH 8.5, 500 mmol l-1). To denaturate the 

sample, 5 µl of denaturant were added. The solution was then mixed and sonicated 

(15 seconds, 4 °C) to strengthen the denaturing process. After determining the protein 

concentration by BCA-assay, the disulfide bridges were reduced by adding an 

appropriate volume of reducing agent (60 minutes incubation at 60 °C) followed by 

adding cysteine blocking agent (10 minutes incubation at room temperature) to block 

the cysteines. Digestion was performed over night as described in the iTRAQ™ 

chemical reference guide. To label the samples, they were evaporated in a vacuum 

centrifuge to a volume of about 20 µl and adjusted with dissolution buffer to a volume 

of 120 µl (sample 1) and 60 µl (sample 2). Control samples were labelled with label 

114 and 116 while for RSV treated samples, label 115 and 117 were used. Labelling 

was performed at room temperature for 60 minutes. Thereafter, all four samples of 

each donor were pooled, centrifuged at 3000 g to remove remaining membranes 

which would disturb the nLC separation and stored at –80 °C. The correction values for 

the iTRAQ™ reporter signal are listed in Table 3-7 
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Table 3-7 iTRAQ™ reagent correction, as supplied with the iTRAQ™ 4-plex kit 

ReagentReagentReagentReagent    % of % of % of % of ––––2222    % of % of % of % of ––––1111    % of 0% of 0% of 0% of 0    % of +1% of +1% of +1% of +1    % of +2% of +2% of +2% of +2    

iTRAQ114 0.00 1.00 92.90 5.90 0.20 

iTRAQ115 0.00 2.00 92.30 5.60 0.10 

iTRAQ116 0.00 3.00 92.40 4.50 0.10 

iTRAQ117 0.10 4.00 92.30 3.50 0.10 

 

3.5.23.5.23.5.23.5.2    FiFiFiFirst dimension, basic eluentrst dimension, basic eluentrst dimension, basic eluentrst dimension, basic eluent    

For sample 1, 280 µg protein was applied to separation by nHPLC. For sample 2, only 

90 µg was applied to test the sensitivity of the approach. 

The samples were injected into a 150 x 2.0 mm i.d. Gemini C18 column. Sample 

loading was performed at 200 µL min-1 with Eluent A. Elution was performed with 

Eluent B. The gradient was 0 – 60 % B in A during 35 min, 60 - 100 % B in A during 

10 min, followed by isocratic elution at 100 % B for 2 min. 

Fractions were collected manually, evaporated to nearly dryness to eliminate ACN, 

and dissolved in a final volume of 100 µL 0.10 % aqueous heptafluorobutyric acid 

(HFBA). After dissolution, the samples were stored at –80 °C until further separation in 

the second dimension. For the application onto the second dimension, eleven 3-min 

fractions were collected from minute twelve. 

 

3.5.33.5.33.5.33.5.3    Second dimension, acidic eluent, ionSecond dimension, acidic eluent, ionSecond dimension, acidic eluent, ionSecond dimension, acidic eluent, ion----pairingpairingpairingpairing    

The second dimension separation setup consisted of a 2D capillary/nHPLC system, 

equipped with a low-pressure gradient micro-pump, a micro-column 10-port 

switching unit with loading pump, and a micro-autoinjector. Capillary 

preconcentration (10 x 0.2 mm i.d.) and capillary separation columns (60 x 0.1 mm 

i.d.) were PS-DVB monoliths. The chromatographic setup was coupled to an automatic 

fractionation unit, for matrix mixing prior to MALDI-MS/MS. Each fraction was 

analysed in triplicate. Of each fraction collected during the first dimension, 10 µL 

were injected into the second-dimension ion-pair reversed-phase nano-flow HPLC 

system described above. After injection, the peptides were isocratically concentrated 

and desalted on the precolumn for 3 min. The flow rate of 0.1 % aqueous HFBA 

solvent, delivered by the loading pump, was set to 10 µL min-1. After switching the 



Methods  43 

valve, the peptides were eluted in back-flush mode onto the separation column. A 50-

min gradient of 0-30 % ACN in 0.05 % aqueous TFA was applied followed by ramping 

to 100 % ACN in 10 min for fractions 1 to 5 of the samples. For fractions 6 to 11, a 5-

min gradient of 0-10 % ACN followed by a 50-min gradient of 10-40 % ACN and 

ramping to 100 % ACN in 10 min was applied. The flow rate was set to 0.7 µL min-1. 

 

3.5.43.5.43.5.43.5.4    Matrix mixing and spottingMatrix mixing and spottingMatrix mixing and spottingMatrix mixing and spotting    

The fractions collected after the second dimension were mixed with matrix, prior to 

mass measurement using the MALDI-TOF/TOF mass analyser. Mixing and parallel 

spotting onto a stainless steel target was realised using a spotting unit, directly 

coupled to the HPLC setup. The matrix flow was set to 3.1 µL min-1 with a spotting 

time of 5 s per spot (258 nL per spot). The samples of the HPLC run from min 8 to 75 

were spotted to obtain fractions one to five, and from min 13 to 75 to obtain fractions 

six to eleven. 

The spotted targets were stored for a maximum of two weeks at 20 °C until their 

application to mass analysis by MALDI-TOF/TOF. 

 

3.5.4.13.5.4.13.5.4.13.5.4.1    Buffer / Solutions nLCBuffer / Solutions nLCBuffer / Solutions nLCBuffer / Solutions nLC    

Eluent AEluent AEluent AEluent A    Eluent BEluent BEluent BEluent B    

Trieethylamine 72 mM Trieethylamine 72 mM 

 Acetic acid 52 mM 

Titrated to pH 10 with acetic acid In ACN 

MatrixMatrixMatrixMatrix    

CHCA 3 mg/mL 

Glu-fib 15 fmol/µL 

ACTH18-39 20 fmol/µL 

TFA 0.1 %(v/v) 

ACN 70 %(v/v) 
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3.63.63.63.6    Mass spectrometry by MALDIMass spectrometry by MALDIMass spectrometry by MALDIMass spectrometry by MALDI----TOF/TOFTOF/TOFTOF/TOFTOF/TOF    

Mass spectrometry was performed at a MALDI-TOF/TOF mass spectrometer 

(ProteomicsAnalyzer 4800™, Applied Biosystems). As different settings were used to 

measure the in-gel digests and the samples of the nLC-MS experiments, they are 

described in different sections. 

 

3.6.13.6.13.6.13.6.1    InInInIn----Gel digestsGel digestsGel digestsGel digests    

 

3.6.1.13.6.1.13.6.1.13.6.1.1    MS data acquistition and processingMS data acquistition and processingMS data acquistition and processingMS data acquistition and processing    

In MS mode, mass spectra were acquired in a mass range of 800 to 4000 m/z , with 

the focus mass set to 2100 m/z. Laser intensity was adapted for each measurement 

separately to get an optimal relation of signal intensity to resolution. Per sub-spectrum 

acquired, 50 laser shots were summarised. In total, eight sub-spectra were 

accumulated to the final MS-spectrum (400 shots). For data processing, the following 

parameters were set for peak filtering: raw spectrum filtering: subtract baseline; peak 

width: 50; smooth: no. Peak detection was performed according to the following 

settings: minimal S/N: 5; local noise window width (m/z): 50; minimal peak width at 

full width half max (bins): 2.9. The expected mass to resolution relations were: 

1200 m/z,  resolution of 17,000; 2400 m/z resolution of 22,000 and 3600 m/z resolution 

of 17,000. The monoisotopic peaks were flagged (adduct was set to H) and the cluster 

area S/N optimisation was enabled with a S/N threshold of 10.  

 

3.6.1.23.6.1.23.6.1.23.6.1.2    Percursor selection for MS/MSPercursor selection for MS/MSPercursor selection for MS/MSPercursor selection for MS/MS    

An interpretation method was written for precursor selection for MS/MS 

measurements containing the following parameters: minimal S/N: 35; adduct 

exclusion (Da): 21.982 and 37.956; adduct tolerance (m/z): ± 0.03; exclude precursors 

within: 200. The list of masses excluded from precursor selection is shown in Table 

3-8. The tolerance at 850 Da was set to 50 to exclude all precursors in the range of 

800-1000 as in this range also matrix clusters appear. A maximum of five precursors 

was chosen per spot. 
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Table 3-8 Mass exclusion list for precursor selection 

Mass Mass Mass Mass (Da)(Da)(Da)(Da)    ToleranceToleranceToleranceTolerance    

850 50 

996.5 0.1 

1051.6 0.1 

1165.7 0.1 

1940 1 

2082.9 0.2 

2211 0.5 

2222.1 0.2 

2225.1 0.1 

2239.1 0.1 

2283 0.5 

2407.9 0.1 

 

3.6.1.33.6.1.33.6.1.33.6.1.3    MS/MS data acquisition and processingMS/MS data acquisition and processingMS/MS data acquisition and processingMS/MS data acquisition and processing    

In MS/MS mode fragmentation was realised using the CID chamber with air as 

collision gas. The precursor mass window was set to a resolution of 200,000 and the 

metastable suppressor was turned on. Here again, laser intensity was manually 

adjusted prior to each measurement. In total, 40 sub-spectra with 50 shots per sub-

spectrum were acquired and accumulated to the final MS/MS-spectrum (2000 shots). 

The data processing settings were the same as for MS measurements, except for the 

parameters of peak detection. Changes were: the minimal S/N was set to 3, the local 

noise window width to 250 m/z and the expected mass to resolution relations were: 

100 m/z, resolution of 4000; 500 m/z resolution of 4500, 1000 m/z resolution of 7000 

and 1500 m/z resolution of 6000. 

 

3.6.1.43.6.1.43.6.1.43.6.1.4    Mass calibrationMass calibrationMass calibrationMass calibration    

To achieve an optimal mass accuracy, the instrument was calibrated in MS and MS/MS 

mode using a six-peptide calibration mix provided by Applied Biosystems spread over 

thirteen calibration spots on the MALDI target. The peak matching settings for the 

internal MS calibration were as follows: minimal S/N: 20; mass tolerance (m/z): 0.5; 

minimum number of peaks to match: 4; maximal outlier error (ppm): 5; use 
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monoisotopic peaks only: yes. The weighted fit was set to “equal”. The  peptides and 

corresponding reference masses used are shown in Table 3-9. 

Table 3-9 Peptides used for mass calibration in MS mode 

PeptidePeptidePeptidePeptide    Mass (Da)Mass (Da)Mass (Da)Mass (Da)    

Des-Arg1-bradykinin 904.468 

Angiotensin 1 1296.685 

Glu1-Fibrino peptide B 1570.677 

ACTH (1-17) 2093.087 

ACTH (18-39) 2465.199 

 

The peak matching settings for the internal calibration in MS/MS mode were as 

follows: minimal S/N: 10; mass tolerance (m/z): ± 1; minimum number of peaks to 

match: 5; maximal outlier error (ppm): 25; use monoisotopic peaks only: yes. The 

weighted fit was set to “equal”. Fragments for the glu-fib1 peptide (1560.677 m/z) of 

the calibration mix were used for calibration. The masses of those fragments used for 

calibration are shown in Table 3-10. A plate model and default calibration in MS 

mode was performed for each target, at first. This was followed by the calibration of 

the default calibration in MS/MS mode and a final calibration of the default 

calibration in MS mode. 

Table 3-10 Fragments of the glu-fib1 peptide used for calibration in MS/MS mode 

FragmentFragmentFragmentFragment    SequenceSequenceSequenceSequence    Mass (Da)Mass (Da)Mass (Da)Mass (Da)    

y1 R 175.199 

y6 RASFFG 684.346 

y7 RASFFGE 813.389 

y9 RASFFGEEN 1056.475 

y13 RASFFGEENDNVG 1441.634 
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3.6.23.6.23.6.23.6.2    nLCnLCnLCnLC----MS samplesMS samplesMS samplesMS samples    

 

3.6.2.13.6.2.13.6.2.13.6.2.1    MS data acquisition and processingMS data acquisition and processingMS data acquisition and processingMS data acquisition and processing    

The settings of data acquistition and processing were the same as in 3.6.1.1, except 

for the number of shots and spectra acquired. Here, 50 shots were acquired per sub-

spectrum and 20 sub-spectra accumulated to the final MS-spectrum (1000 shots).  

 

3.6.2.23.6.2.23.6.2.23.6.2.2    Precursor selection for MS/MSPrecursor selection for MS/MSPrecursor selection for MS/MSPrecursor selection for MS/MS    

A job-wide interpretation method was used in contrast to the per spot precursor 

selection performed during the in-gel measurements. The settings were the same as in 

3.6.1.2, except for the additional adduct exclusion mass of –1.00 Da and the different 

masses on the exclusion list shown in Table 3-11. By these settings the masses 

between 800 Da and 1000 Da were excluded to avoid fragmentation of matrix clusters 

that may appear here. In addition, the mass range of 3000 Da to 4000 Da was 

excluded molecules of this size tend to fragment insufficiently. 

Table 3-11 Mass exclusion list for precursor selection during nLC-MS mass measurements 

Mass (Da)Mass (Da)Mass (Da)Mass (Da)    ToleranceToleranceToleranceTolerance    

850.00 50.0 

1570.677 0.10 

2465.199 0.10 

3500.00 500.00 

 

3.6.2.33.6.2.33.6.2.33.6.2.3    MS/MS data acquisition and processingMS/MS data acquisition and processingMS/MS data acquisition and processingMS/MS data acquisition and processing    

The settings of data acquisition and processing were the same as described in 3.6.1.3. 

Only two changes were made: the precursor selection window was set to 280 and 

additional stop conditions were set to achieve optimal quality of the MS/MS spectra: 

after 3000 shots (60 sub-spectra, 50 shots each) or a signal to noise ratio of 35 for at 

least 10 peaks, the fragment ion data acquisition was stopped.  

 

3.6.2.43.6.2.43.6.2.43.6.2.4    Mass calibrationMass calibrationMass calibrationMass calibration    

The same settings as described in 3.6.1.4 were used here, resulting in a mass accuracy 

of 50 ppm (= default calibration). For optimised mass accuracy (5 ppm), an internal 

calibration of the m/z using glu1-fib (m/z 1570.677) and ACTH18-39 (m/z 2465.198) was 
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performed during sample acquisition. In the case of a calibration failure due to signal 

suppression caused by high intensities of sample peptides, the default calibration was 

automatically used (50 ppm). The mass-to-charge ratio of glu1-fib and ACTH18-39 was 

set on the precursor selection exclusion list to circumvent fragmentation of it (see 

Table 3-11). 
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3.73.73.73.7    RealRealRealReal----time polymerase chain reaction time polymerase chain reaction time polymerase chain reaction time polymerase chain reaction     

To validate differential protein expression, the results of some proteins found in 

altered amounts after the treatment with cholesterol lowering agents were also 

checked by real-time polymerase chain reaction (RT-PCR). These experiments were 

performed by Dr. Jean-Marc Pascussi (Institut de Génomique Fonctionnelle, 

Département d'Oncologie, CNRS UMR5203 – INSERM U661 – UFR de Médecine 

Montpellier-Nîmes). 

The primers used were designed on or spanning exon boundaries using www.primer3. 

They are listed in Table 3-12. Total RNA samples (0.5 ]g/ml) from four different primary 

cultures of human hepatocytes were used. The cells were treated for 48 hours with 

rosuvastatin (10] µM) or LK-935 (10 µ]M). cDNAs were synthesized from 0.5 ]g of total 

RNA using the MMLV (Invitrogen) at 37 °C for 60 min, in the presence of random 

hexamers (GE HealthCare Sciences), and then diluted 10-fold in water. RT-PCR 

amplifications were performed using a SYBR Green mix and a Mx3000P apparatus 

from Stratagene. Cts were corrected according to GAPDH Cts and expressed as fold 

induction compared to control for each donor.    

Table 3-12 Primer designed for RT-PCR 

ProteinProteinProteinProtein    PrimerPrimerPrimerPrimer    SequenceSequenceSequenceSequence    

F1 TCACGGACGACAACTTCGAGA 
R1 GGCAGTGCAATCAACCTTTGC 
F2 GGATGCTGGGCACAAACTCA 

PDIA3_HUMAN 

R2 CCCATCACGCGAGAACTCCT 
F1 GCCGAATCCCTTCTGCTGTG 
R1 AGCATCCAAATGGGCAAACG 
F2 AGGACCCGTGAAGGCAATGA 

ATPB_HUMAN 

R2 AGCCACAGTCAGCCCAGTCA 
F1 TGCTGATTGACATCGGCTCTG 
R1 TCACCACTGGGGACCAGTC 
F2 CAGGCTTCACCTCCAAGGACA 

NNMT_HUMAN 

R2 GGCCAGAGCCGATGTCAATC 
F1 CGCCAACTACGCGGAGAACT 
R1 CAGGGGTGGAGAGGATTCCA 
F2 TGGGCAAGCATGGGTTCTTT 

PGM1_HUMAN 

R2 TTCCAGCCAGTTGGGGTCTC 
F1 TCGTGGCTCACTCCCTTTCC 
R1 GGCCAGCAAGCTTCTGCATT 
F2 CATGCCCAGTGGCAGAAAGA 

HMCS1_HUMAN 

R2 AACATCCCCAAAGGCTTCCA 
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3.83.83.83.8    BioinfBioinfBioinfBioinformaticsormaticsormaticsormatics    

The use of computational aid is essential for proteomic approaches. Personal 

computers equipped with the appropriate software are involved in nearly every step, 

from the control of the instruments to the digitalisation, storage and handling of the 

data and finally their interpretation.  

The programs used for analysis and data interpretation are listed below. Those 

programs with a high impact on quantitation and/or identification are described in 

detail. 

 

3.8.13.8.13.8.13.8.1    Image analysisImage analysisImage analysisImage analysis    

 

3.8.1.13.8.1.13.8.1.13.8.1.1    PDQuestPDQuestPDQuestPDQuest    

PDQuest is a commercially available software (BioRad) used for the quantitative 

analysis of the 2D gels. For each analysis six to twelve gels were run (two to four per 

treatment), as the biggest difficulty in 2D-PAGE is the reproducibility of single gels. 

The differences between the gels are small in themselves but the sum of differences 

may significantly disturb semi-quantitative expression studies. PDQuest is able to cope 

with small differences in the protein pattern and staining intensities. Furthermore, it 

allows to collect replicate gels in groups and thereby enables a statistical test of 

significance. Finally, the quantitative comparison of gels in different replicate groups 

is possible. In these studies, PDQuest version 8.0.1 build 055 was used. 

 

3.8.1.1.13.8.1.1.13.8.1.1.13.8.1.1.1     Image preparation Image preparation Image preparation Image preparation    

The gel-images, scanned as described in 3.4.4, were opened and manipulated 

exclusively by using PDQuest prior to quantitative analysis. 

In general, up to twelve gels were run in each experiment, four gels of the control, 

four gels of RSV treated samples and four gels of LEK-935 treated samples. Prior to 

their analysis by PDQuest, the gels were checked visually and, if necessary, removed 

from further analysis. Possible reasons for their elimination were pattern distortions 

obviously caused by experimental mistakes, failed staining, excess of dust or bubbles 

etc. 
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To ease and speed up the analysis, only that area of the gels that contains the spots 

was cropped of the whole picture. An example is shown in Figure 3-2. For each 

analysis, the same area was cropped of all the gels. 

 

 

Figure 3-2 Example for the chosen crop area. Those regions of the gels, where no spots or only smear 
are visible, were excluded from bioinformatical analysis to ease and speed up the analytical process. 

 

3.8.1.1.23.8.1.1.23.8.1.1.23.8.1.1.2     Spot detection Spot detection Spot detection Spot detection    

Either three or four gels of each sample were merged per replicate group. To enable 

spot detection, the faint, the smallest and the biggest spot cluster were marked in one 

of the gels. The chosen parameters were tested and, in the case of suboptimal spot 

detection, adapted until a good relation between detected spots, false positives and 

false negatives was reached. After automatic spot detection, all spots were manually 

checked and corrected, if necessary. 

 

3.8.1.1.33.8.1.1.33.8.1.1.33.8.1.1.3     Matching Matching Matching Matching    

During the matching process, the signals detected as spots are summarised in a so-

called master gel. With the use of this master gel the corresponding spots can be 

identified throughout each individual gel. The master gel is a virtual image, build of 

the signals of one exemplary gel and those signals which do not appear in this gel but 

in all gels that are members of one replicate group. The automated matching resulted 
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in a compliance of about 50 %. To further improve the analysis a manual control of all 

spots was performed. Thereby, the matching was corrected and possibly missing spots 

or false positive detections were corrected. The final matching rates and correlation 

coefficients are shown in Table 3-13. 

Table 3-13 Final matching rates and correlation coefficients. Matching rate 1 is the percentage of 
matched spots relative to the total number of spots on the gel. Matching rate 2 is the percentage of 

matched spots relative to the total number of spots on the master gel. 

AnalysisAnalysisAnalysisAnalysis    Matching rate 1Matching rate 1Matching rate 1Matching rate 1    Matching rate 2Matching rate 2Matching rate 2Matching rate 2    Correlation coefficientCorrelation coefficientCorrelation coefficientCorrelation coefficient    

Sample 1 I > 96 % > 86 % > 0.847 

Sample 1 II > 98 % > 89 % > 0.855 

Sample 2 I > 95 % > 84 % > 0.766 

Sample 2 II > 96 % > 90 % > 0.815 

 

3.8.1.1.43.8.1.1.43.8.1.1.43.8.1.1.4    Quantitative AnalysisQuantitative AnalysisQuantitative AnalysisQuantitative Analysis    

PDQuest provides different analysis sets to perform a quantitative analysis. All of the 

analysis sets used in this study were written on the level of replicate groups. The 

analysis sets are shortly described below. In Figure 3-3 to Figure 3-5, the created sets 

are depicted. 

Qualitative analysis set Qualitative analysis set Qualitative analysis set Qualitative analysis set     

 Displays those spots present in one replicate group but not in another. 

 

Figure 3-3 Qualitative analysis sets used in this study 
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Quantitative analysis setQuantitative analysis setQuantitative analysis setQuantitative analysis set    

Allows the comparison of spot quantities and displays those spots whose 

quantity is “Y” times higher or lower in one replicate group compared to 

another. Throughout the analysis “Y” was set to be two. 

 

 

Figure 3-4 Quantitative analysis sets used in this study 

 

Statistical analysis setStatistical analysis setStatistical analysis setStatistical analysis set    

Allows the use of different statistical test to determine those spots that are 

significantly changed according to the corresponding test. Students t-test was 

used with a significance level of 99 %. 

 

Figure 3-5 Statistical analysis sets used in this study 
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Boolean analysis setBoolean analysis setBoolean analysis setBoolean analysis set    

Enables the comparison of two or more analysis sets. The scheme of boolean 

analysis sets used in the present study is shown below. 
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3.8.1.1.53.8.1.1.53.8.1.1.53.8.1.1.5     Higher level experiments Higher level experiments Higher level experiments Higher level experiments    

To cope with the critical point of reproducibility, groups of three to four gels were 

used for analysis and the experiment was run in duplicate. Higher level experiments 

were created to compare the individual experiments with each other. 

 

The basic steps were as follows: 

 The individual simple experiments were matched on each other 

 The matching was checked manually 

Analysis sets were written to create intersections of the Boolean analysis sets of 

the individual experiments 

 

Only those spots that were found to be differentially represented on the gels in both 

experiments were regarded as true positive hits. They were cut from one gel of each 

treatment in every experiment. This yielded a set of two to six gel pieces per spot, 

depending on its presence on the gels. The gel pieces were stored at –20 °C until they 

were applied to in-gel digestion, as described in 3.4.5. 

 

3.8.23.8.23.8.23.8.2    Protein identificationProtein identificationProtein identificationProtein identification    

 

3.8.2.13.8.2.13.8.2.13.8.2.1    Protein identification with MASCOTProtein identification with MASCOTProtein identification with MASCOTProtein identification with MASCOT    

 

In general, the MASCOT search engine based on the MOWSE scoring algorithm 

(Perkins et al. 1999) was used for protein identification. 

 

3.8.2.1.13.8.2.1.13.8.2.1.13.8.2.1.1     Identification after in Identification after in Identification after in Identification after in----gel digestiongel digestiongel digestiongel digestion    

The GPS explorer (Applied Biosystems) equipped with a MASCOT server (version 

2.1.03) was used. A combined MS and MS/MS search was performed in all the cases. 

The peak filtering parameter for MS data were as follows: mass range, 800 – 4000 Da; 

minimum S/N, 10; maximum peak density, 20 per 200 Da, maximum number of 

peaks, 65. The filtering parameter for MS/MS data were the same except for the mass 

range, which was set to 60 Da to precursor mass minus 35 Da. 

For identification, the following parameters were applied: taxonomy: no restriction; 

fixed modifications: none; variable modifications: carbamidomethyl (C), oxidation (M); 
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enzyme: trypsin; maximum missed cleavages: 1; precursor tolerance: 50 ppm, MS/MS 

tolerance: 0.1 Da; maximum peptide rank: 10. Search was performed against 

swissprot database (version 56.0). 

 

3.8.2.1.23.8.2.1.23.8.2.1.23.8.2.1.2     Identification after nLC Identification after nLC Identification after nLC Identification after nLC----MSMSMSMS    

Protein identification from nLC-MS samples was done on a stand-alone MASCOT 

server version 2.2.03.  

To enable identification of the samples, measured on the MALDI-TOF/TOF, the 

obtained mass spectra were exported using the launch-peaks-to-MASCOT tool 

(3.8.4.1) of the 4000series instrument software. The following parameters were 

applied: taxonomy: homo sapiens; fixed modification: iTRAQ 4-plex (N-term), 

iTRAQ 4-plex (K); variable modification: iTRAQ 4-plex (Y), methylthio (C), methionine 

oxidation; enzyme: trypsin; peptide tolerance: 50 ppm; MS/MS tolerance: ± 0.2 Da.  

The search was performed against swissprot database (version 54.7).  

 

3.8.2.23.8.2.23.8.2.23.8.2.2    Protein identification with ProteinPilotProtein identification with ProteinPilotProtein identification with ProteinPilotProtein identification with ProteinPilot    

In addition to identification by MASCOT, the nLC-MS data were further analysed by 

the ProteinPilot software, version 2 (Applied Biosystems).  

The parameters applied for protein identification by the paragon algorithm were as 

follows: sample type: iTRAQ 4-plex (peptide labelled); Cys alkylation: MMTS; 

digestion: trypsin; special factors: no; species: homo sapiens; ID focus: biological 

modifications; search effort: thorough ID; detected protein threshold: >2.0 (99 %). 

Search was performed against the same swissprot database used in 3.8.2.1.2. 

 

3.8.33.8.33.8.33.8.3    Protein quantitationProtein quantitationProtein quantitationProtein quantitation    

As the samples analysed by nLC-MS were labelled with iTRAQ™, the recorded mass 

spectra were analysed in a semi-quantitative manner. Three different software 

packages were used to evaluate the quantitation data. ProteinPilot was chosen as 

quantitation and identification software available from Applied Biosystems, able to 

interact directly with the mass data stored in the instruments Oracle database. Mascot 

was chosen as the most prominent identification tool. It also allows to quantify 

proteins, but the mass data had to be exported from the instruments database. At the 

last Quant, a freely available software package for quantitation was chosen (Boehm et 
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al. 2007). It uses Mascot result files as a starting point, as it does not contain an 

algorithm for identification. 

 

3.8.3.13.8.3.13.8.3.13.8.3.1    Protein quantitation with ProteinPilotProtein quantitation with ProteinPilotProtein quantitation with ProteinPilotProtein quantitation with ProteinPilot    

There are not many parameters that can be set, so only quantitation was enabled in 

addition to the parameters described in 3.8.2.2. 

 

3.8.3.23.8.3.23.8.3.23.8.3.2    Protein quantitation with MASCOTProtein quantitation with MASCOTProtein quantitation with MASCOTProtein quantitation with MASCOT    

To obtain reliable quantitation results, the TS2MASCOT – tool (see 3.8.4.2) was used 

for data export from the MALDI-TOF/TOF. The parameters for the quantitation of 

iTRAQ™ reporter signals were as follows: Constrain search: no; protein ratio type: 

weighted; protein score type: mudpit; report detail: yes; show subsets: two; require 

bold red: yes; mininum peptides: two; significance threshold: 0.05; modification 

groups: iTRAQ (Y) variable, iTRAQ4plex; protocol: reporter; integration method: none. 

Quality settings were: minimum precursor charge: 1; isolated precursor: no; minimum 

a(1): 0.0; peptide threshold: at least identity; exclusion: iTRAQ (Y) variable. No outlier 

removal was performed and normalisation method was set to median. 

 

3.8.3.33.8.3.33.8.3.33.8.3.3    Protein quantitation with QuantProtein quantitation with QuantProtein quantitation with QuantProtein quantitation with Quant    

Here again, the TS2MASCOT – tool (see 3.8.4.2) was used for data export from the 

MALDI-TOF/TOF. Protein identification was performed by MASCOT, as described in 

3.8.2.1.2. Quant uses the data stored in the raw MASCOT result files as starting point 

for quantitation. Prior to data application to Quant the files had to be modified as 

described in 3.8.4.3. For quantitation, the following parameters were set: reporter 

tolerance: ±0.5 Da; intensity range: no settings; absolute intensity error: 0.5 cts; 

experimental error: 0 %; only unique peptide: yes; Mascot significance threshold: p 

0.05. The “mresx_1265.exe” application was used to handle the MASCOT result files. 

 

3.8.43.8.43.8.43.8.4    Data handlingData handlingData handlingData handling    

 

3.8.4.13.8.4.13.8.4.13.8.4.1    Data export by Launch peaks to MascotData export by Launch peaks to MascotData export by Launch peaks to MascotData export by Launch peaks to Mascot    

To export the acquired mass data to .mgf files, the following settings were used: the 

mass range was set from 60 m/z to precursor mass minus 35 Da; the peak density was 
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set to a maximum of 20 peaks per 200 Da; a minimal S/N of 10 and a minimal area of 

200 was required. At maximum 65 peaks were exported per precursor. 

 

3.8.4.23.8.4.23.8.4.23.8.4.2    Data export by TS2MASCOTData export by TS2MASCOTData export by TS2MASCOTData export by TS2MASCOT    

It turned out that the “launch peaks to mascot” function does not export the peak area 

information in a way suitable for quantitation by external software packages. So, for 

quantitation purposes, the TS2MASCOT tool available at www.matrixscience.com was 

used. It enables an “error-free” export of the stored data in order to allow quantitation 

beside the commercial software packages supplied by Applied Biosystems. Default 

parameters were used during peak exporting. 

 

3.8.4.33.8.4.33.8.4.33.8.4.3    File modificationFile modificationFile modificationFile modification    

The “mres2x_1265.exe” part of the quant executable was not able to handle Mascot 

result files generated by a Mascot version 2.2 or higher. Therefore, the Mascot result 

files obtained from the stand-alone server were modified to enable their processing by 

Quant. Only those parts of the result files not recognized by Quant (“undeterminable 

variable”) were removed during modification. The text editor “Textpad” was used for 

this purpose. Modification only occurs as deletion of complete variable parts, no value 

changes or similar actions took place. Thereby, a “manipulation” of data, driving 

results into a possibly favoured direction was avoided. 

 

3.8.4.43.8.4.43.8.4.43.8.4.4    Data validation by PeptideData validation by PeptideData validation by PeptideData validation by Peptide---- and Pro and Pro and Pro and Proteinprophet (TransProteomicPipeline)teinprophet (TransProteomicPipeline)teinprophet (TransProteomicPipeline)teinprophet (TransProteomicPipeline)    

To check the amount of proteins identified by at least two unique peptides for 

quantitative experiments and validate the data gained by the nLC-MS approach, 

peptideprophet (Keller et al. 2002) and proteinprophet (Nesvizhskii et al. 2003) were 

used. Minimum peptide and protein probability were set to 0.95 and 0.99 respectively, 

forming of protein groups using protein prophet was excluded. 

Peptide- and Proteinprophet were used as parts of the TransProteomicsPipeline, 

available at http://tools.proteomecenter.org. 
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3.8.53.8.53.8.53.8.5    DatabasesDatabasesDatabasesDatabases    

The found proteins were further analysed according to their function, cellular 

localisation or possibly known interactions. For this purpose, the following databases 

were searched: 

 

3.8.5.13.8.5.13.8.5.13.8.5.1    SwissProt /TrEMBLSwissProt /TrEMBLSwissProt /TrEMBLSwissProt /TrEMBL    

To survey the cellular localisations described in the Expasy database the one written at 

first position was considered in the case of multiple descriptions. To get an overview 

about the cellular functions of those proteins identified during the nLC-MS 

experiments, they were summarised as follows: energy metabolism: proteins involved 

in glycolysis, mitochondrial respiratory chain etc.; protein biosynthesis and 

degradation: proteins involved in ribosomal complexes, translation, t-RNA synthesis, 

protein folding, post translational modifications and proteolysis; transcription: 

proteins involved in mRNA processing, DNA folding and histone complexes; cellular 

organisation: proteins involved in cell adhesion, signalling pathways, transmembrane 

and intracellular transport processes, vesicle forming, cell cycle and apoptosis, 

xenobiotic-lipid-cholesterol (XLC): proteins involved in xenobiotic/drug metabolism, 

fatty acid synthesis/degradation or cholesterol homeostasis. 

 

SwissProt / TrEMBL is available at www.expasy.org. 

 

3.8.5.23.8.5.23.8.5.23.8.5.2    Kyoto Encyclopaedia of Genes and Genomes (KEGG)Kyoto Encyclopaedia of Genes and Genomes (KEGG)Kyoto Encyclopaedia of Genes and Genomes (KEGG)Kyoto Encyclopaedia of Genes and Genomes (KEGG)    

The KEGG database provides pathways all over the cell and enables the targeted 

search for pathways in which a distinct protein is involved. It thereby allows to check 

for pathway coverages by searching with lists of proteins, as done for the proteins 

identified during the nLC-MS experiments. 

 

The KEGG database is available at www.genome.jp/kegg. 

 

3.8.5.33.8.5.33.8.5.33.8.5.3    Gene Ontology databaseGene Ontology databaseGene Ontology databaseGene Ontology database    

To determine GO terms statistically overrepresented in the sample compared to the 

whole genome Cytoscape 2.6.0 (www.cytoscape.org) equipped with the BiNGO plug in 

(Maere et al. 2005) was used to search the Gene Ontology database. Except for species 

settings (H. sapiens or S. pombe) default parameters were used. 

 

The GO is available at www.geneontology.org. 
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4444    ResultsResultsResultsResults    

4.14.14.14.1    General remarksGeneral remarksGeneral remarksGeneral remarks    

Starting point of this study was a general experimental setup for two dimensional gel 

electrophoresis, from sample preparation to staining, previously established with 

mouse protein and optimised for human liver proteins by the author (Woerner 2006). 

This setup was applied to the analysis of samples derived from primary human 

hepatocytes treated with cholesterol lowering agents.  

There are three issues using this sample material. First, a big part of the proteins 

possibly affected by the treatment are integral or at least attached to membranes and 

are therefore difficult to analyse by 2D gel electrophoresis. Secondly, primary human 

hepatocytes are rare material so only a low amount of sample material was available. 

Third, the human liver is not only one of the most complex organs in the human body 

but also displays big inter-individual differences. And finally, issue four in this study 

was the sample stability with respect to freeze-thawing cycles. 

First, methodical work was performed to cope with the issues one, two and four 

before the final proteomic analysis was started. Furthermore, samples derived from 

two different human donors were analysed to get an idea about the third issue, the 

inter-individual differences. 

Therefore, the results are divided into three parts. In the first one, the methodical 

work is described, that was performed to create and validate the analytical setup used 

for the semi-quantitative analysis described in the second part. Finally, the proteins 

found to be significantly altered were searched against databases containing 

information about their cellular functions in order to get an overview about the 

pathways affected. This information is summarised in the third part. 
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4.24.24.24.2    Evaluation of the methodical approachesEvaluation of the methodical approachesEvaluation of the methodical approachesEvaluation of the methodical approaches    

The primary human hepatocytes were isolated, cultured and treated by 

Dr. K. Monostory. They were received as frozen cell pellets and stored at –80 °C, until 

use. After cell lysis, the samples were fractionated by differential centrifugation to 

gain the cytosolic and microsomal sub-proteomes. The cytosolic fraction, containing 

almost exclusively soluble proteins, was applied to analysis by 2D gel electrophoresis, 

while for the analysis of the microsomal fraction, nLC-MS was chosen as promising 

and innovative analytical approach (seeFigure 4-1). 

Figure 4-1 General scheme of sample preparation and analysis 

 

In addition to some smaller adaptations of the 2D-PAGE setup to the low amount of 

sample material, the problem of protein stability during freeze-thawing cycles was 

faced and solved. During the nLC-MS analysis a new combination of separation 

modes was used for liquid chromatography; a RP x IP-RP setup with a basic eluent in 

the first and an acidic eluent in the second dimension. This had already been shown 

to be at least equivalent if not superior to the widely used SCX x RP setup (Gilar et al. 

2005b, 2005a; Delmotte et al. 2007). Now its application to eukaryotic subcellular 

proteomes and its compatibility with the iTRAQ™-label, either with respect to the label 

itself but also with respect to the bioinformatical analysis of the reporter ion signals 

were proven. 

Human hepatocytes 

    Cell lysis  

Differential centrifugation 

Cytosolic fraction Microsomal fraction 

Analysis by 2DAnalysis by 2DAnalysis by 2DAnalysis by 2D----PAGEPAGEPAGEPAGE    Analysis & Identification Analysis & Identification Analysis & Identification Analysis & Identification 

by nLCby nLCby nLCby nLC----MSMSMSMS    

Identification by Identification by Identification by Identification by 

MALDIMALDIMALDIMALDI----TOF/TOFTOF/TOFTOF/TOFTOF/TOF    
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4.2.14.2.14.2.14.2.1    Two dimensional gelTwo dimensional gelTwo dimensional gelTwo dimensional gel electrophoresis electrophoresis electrophoresis electrophoresis    

 

4.2.1.14.2.1.14.2.1.14.2.1.1    Protocol adaptationProtocol adaptationProtocol adaptationProtocol adaptation    

As only a small amount of sample material was available, the experimental protocol 

for two-dimensional gel electrophoresis had to cope with this fact. All experimental 

steps were tested and, if necessary, optimised for this purpose. The adapted steps are 

briefly described below. 

To avoid loosing sample material, the same 2D gels were used for semi-quantitative 

analysis as well as for spot excision. This also had the advantage that mistakes 

possibly occurring by the comparison of analytical and preparative gels were avoided. 

For protein visualisation colloidal coomassie staining was chosen, as the staining 

method had to be highly sensitive and, at the same time, compatible to mass 

spectrometry. Further optimisation steps were performed for the in-gel digestion. The 

basic protocol was developed and tested by Dr. S. Böhmer. It worked well with spots 

showing a high staining intensity, but it did not deliver satisfying identification results 

of those spots with low intensities. Therefore, accumulation/concentration of the 

peptides prior to matrix mixing and spotting was added to the protocol. Using 

ZipTips™ the amount of spots with identified proteins increased from 28 and 15 

without ZipTips™ to 64 and 27 for donor 1 and donor 2, respectively. The final 

optimised versions of the experimental protocols as used for the semi-quantitative 

analysis are described in the material and methods chapter.  

 

4.2.1.24.2.1.24.2.1.24.2.1.2    Effects of sample freezing on the gel qualityEffects of sample freezing on the gel qualityEffects of sample freezing on the gel qualityEffects of sample freezing on the gel quality    

Trying to reproduce preliminary results gained during a proof-of-principle experiment 

with donor 0 (HH-089) nearly no correlation of the spots that were found to be 

significantly altered after treatment was observed between three individual 

experiments. By retracing every experimental step, the freezing-thawing cycles of the 

samples turned out to be the reason of this low correlation. 

The decrease in overall quality of the gels by parallel increase in freezing-thawing 

cycles of the samples is obvious by looking at Figure 4-1 A–E. The presented gels were 

performed according to the same protocol. They only differ in an increasing number 

of freeze/thawing cycles of the samples prior to IEF. Even freezing the samples only 

once resulted in a worse picture (see Figure 4-2 A/B & C). In contrast, storing the 

IPGstrips after focussing for more than 2 weeks (see Figure 4-2 B) did not change the 
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spot pattern compared to short time freezing (see Figure 4-2 A). Freezing and thawing 

of the samples lead to an increase in horizontal smearing (see Figure 4-2), vanishing 

of spots and dispersing of single spots to a horizontal string of distinct spots. Until this 

observation was made, all protein samples were stored at –20 °C after protein 

isolation, prior to their application to IEF.  

Figure 4-2 Effect of freeze/thawing cycles on the protein pattern. All pictures: SDS-PAGE (12.5 %) 
cytosolic fraction of HH-089 RSV treated cells, IPG strips (pH 3-10NL, 18 cm), 100 µg protein loaded per 
strip. IPG strip stored at –20 °C after IEF. Visualisation by coomassie-staining. A) Sample application to 
IEF directly after protein isolation, no freezing; IPGstrip stored for 8 days. B) Sample application to IEF 
directly after protein isolation, no freezing; IPGstrip stored for 17 days. C) Sample application to IEF 
after 1 time freezing at –20 °C. D) Sample application to IEF after 2 times freezing at –20 °C. E)  Sample 
application to IEF after 3 times freezing at –20 °C. 

 

According to experiences with 2D gel electrophoretic analysis of protein samples 

derived from S.pombe, the severe effects observed were not expected at all. This lead 

to the suggestion that the severity of the effect may be related to the origin of the 

sample. To evaluate this assumption, additional experiments were performed with 

protein isolated from Escherichia coli, Schizosaccharomyces pombe and a human 

carcinoma cell line (HCT 116). Protein isolation, differential centrifugation and sample 

handling were performed in the same way as for the samples derived from primary 

human hepatocytes. The samples were untreated and frozen (–20 °C) one and two 

times prior to IEF. 
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Two areas of each gel were cropped for a detailed analysis. One of the areas was 

located in a molecular weight range of 40 to 80 kDa and a more acidic range of the pH 

gradient (called high molecular weight detail), the second area was located in a 

molecular weight range of 15 to 40 kDa and in a more neutral to basic range of the pH 

gradient (called low molecular weight detail, see Figure 4-3). These areas were 

manually checked for spot appearance, fading and disappearance (see Figure 4-4 and 

Table 4-1). 
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Figure 4-3 2D gels (IEF, 18 cm, pH 3-10 NL; SDS-PAGE, 12.5 %) of the cytosolic fraction of protein 
derived from E.coli (A), S. pombe (B), HCT 116 cells (C) and primary human hepatocytes (D). On the left 
side, the gels without freezing the sample prior to IEF are shown. The red rectangles mark those regions 
in the higher and lower molecular weight range cropped for a detailed analysis of the spot pattern (see 
Figure 4-4). Examples of cropped details after zero times, one time and two times freezing are shown 
on the right side. 
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Figure 4-4 Analysis of the effect of freeze-thawing cycles on the spot pattern of 2D gels. Shown are the 
details cropped according to Figure 4-3. Spots, appearing or fading after freezing are marked by red 
arrows. Red circles mark spots disappearing after freezing. For yeast and primary human hepatocyte 
samples two replicas are shown to demonstrate the consistency of the effects. 

 

For the E.coli sample, the analysis revealed two spots appearing in the high molecular 

weight area as well as in the low molecular weight area. These spots are part of the 

horizontal strings of spots mentioned above. Their origin seemed to lay in a spot 

fading away at the same time. For the yeast sample no changes were observed, that 
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are present in both replica. For both E.coli as well as S.pombe samples no 

disappearing of spots was found as it was observed in the human samples. 

Table 4-1 Number of spots appearing, fading or disappearing after one or two freezing cycles. Only 
those spots changed additionally to the first freezing cycle are mentioned for the second one. For yeast 
and primary human hepatocytes, only those reactions observed in two replicate experiments are 
mentioned. 

SpotsSpotsSpotsSpots    
SampleSampleSampleSample    DetailDetailDetailDetail    FreezingFreezingFreezingFreezing    

AppearingAppearingAppearingAppearing    FadingFadingFadingFading    DisappeDisappeDisappeDisappearingaringaringaring    

1 2 1 -- 
High MW 

2 -- -- -- 

1 2 1 -- 
Low MW 

2 -- -- -- 

E.coliE.coliE.coliE.coli    

CombinedCombinedCombinedCombined        4444    2222    --------    

1 -- -- -- 
High MW 

2 -- -- -- 

1 -- -- -- 
Low MW 

2 -- -- -- 

S.pombeS.pombeS.pombeS.pombe    

CombinedCombinedCombinedCombined        --------    --------    --------    

1 8 5 12 
High MW 

2 3 -- -- 

1 2 -- 8 
Low MW 

2 -- -- -- 

H.sapiensH.sapiensH.sapiensH.sapiens    

HCT 116HCT 116HCT 116HCT 116    

CombinedCombinedCombinedCombined        13131313    5555    20202020    

1 1 -- 7 
High MW 

2 1 -- 9 

1 2 -- -- 
Low MW 

2 -- 1 1 

H.sapiensH.sapiensH.sapiensH.sapiens    

Primary Primary Primary Primary 

HepatocytesHepatocytesHepatocytesHepatocytes    

CombinedCombinedCombinedCombined        4444    1111    17171717    

 

In contrast, just by looking over all the gels of the human samples severe effects on 

the protein pattern can be seen. Looking onto the details, the most severe effects were 

observed in the high molecular weight range. Freezing for only one time resulted in 

the loss of twelve and seven spots of the high molecular weight areas of HCT 116 and 

hepatocyte samples respectively. In addition, thirteen spots appeared and five spots 
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faded in the HCT 116 sample, while four spots appeared and one faded in the 

hepatocyte sample (see Figure 4-4 and Table 4-1). 

In total, 38 and 22 spots were changed after freezing and thawing of the human 

samples, compared to six spots in the bacterial samples and no spot in the yeast 

samples. The consistency of the effect was proven by one time replicating the 

experiments with yeast and primary human hepatocyte samples. 

Summarising, the spot pattern analysis revealed a high sensitivity of the samples 

derived from human cell culture to freeze-thawing prior to isoelectric focussing. 

Meanwhile samples derived from yeast seemed to be nearly unaffected and samples 

derived from bacteria showed only little effects. So, it was clearly demonstrated that 

the origin of the sample dramatically affects its stability against freeze-thawing cycles. 

To compensate the effects of freezing the samples prior to ioselectric focussing, the 

experimental protocol was further optimised. 

Figure 4-5 Final workflow, 2D-Gelelectrophoresis avoiding freezing before first dimensional separation 

 

The resulting workflow is depicted in Figure 4-5. According to the effects seen in 

Figure 4-2 and Figure 4-4 the best gel images were expected by avoiding any freezing 

prior to sample application to the first dimension (see also Table 4-1). To realise this 

way of sample application the parallel workflow of the different samples and the 

unchanged sample status were compromised. Since freeze-thawing of the IPGstrips 

did not show such significant changes of the protein pattern on 2D gels (see Figure 

4-2), every sample (control, RSV, LEK-935) was run individually in the first dimension. 

The focussed IPG strips were stored at –20 °C. After focussing all three samples the 

Control RSV LEK 

IEF 
pH 3-10 NL 

IEF 
pH 3-10 NL 

IEF 
pH 3-10 NL 

IPGbatch 1 IPGbatch 1 IPGbatch 1 IPGbatch 2 IPGbatch 2 IPGbatch 2 IPGbatch 3 IPGbatch 3 IPGbatch 3 

Storage of the strips at –20 °C 

SDS-PAGE 
1 

SDS-PAGE 
2 

SDS-PAGE 
3 

IPGbatch 1 IPGbatch 2 IPGbatch 3 
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strips were mixed together in the 2nd dimension. The average protein amount of the 

cytosolic fraction isolated from 107 cells was about 1200 to 1400 µg. This allowed to 

run up to twelve IPGstrips per sample in parallel (using 100 µg sample load per strip). 

Four of these twelve strips were used in one SDS-PAGE. This lead to a maximum of 

three final experiments, each consisting of twelve gels, four per sample.  

To avoid changes in the protein pattern due to differences in the pre-cast IPGstrips, 

the different batches of strips were portioned before sample application. Every final 

experiment (twelve SDS-PAGES) contained IPGstrips of one batch. 

Finally, the experimental setup allowed to run a maximum of three experiments per 

donor in “parallel”, without freezing the samples prior to the first dimension, ideally 

resulting in 36 gels for analysis (see Figure 4-5). 
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4.2.24.2.24.2.24.2.2    Nano high pressure liquid chromatographyNano high pressure liquid chromatographyNano high pressure liquid chromatographyNano high pressure liquid chromatography    

 

4.2.2.14.2.2.14.2.2.14.2.2.1    Proof of applicability to eucaryotic proteomes with fission yeastProof of applicability to eucaryotic proteomes with fission yeastProof of applicability to eucaryotic proteomes with fission yeastProof of applicability to eucaryotic proteomes with fission yeast    

 

This experiment was done in cooperation with Dr. N. Delmotte and Dr. K. H. Hwang. 

The combination of separation modes used in this study was developed by Dr. N. 

Delmotte and he demonstrated its applicability to real proteome samples on the 

prokaryote Chorynebacterium glutamicum (Delmotte et al. 2007). 

First of all, the applicability of this combination of separation modes to sub-

fractionated eukaryotic proteomes needed to be proven. This was done using the 

fission yeast Schizosaccharomyces pombe as model organism. The data and their 

interpretation were recently published (Woerner et al. 2009). Summarising the 

applicability of the protocol for the analysis of sub-fractionated eukaryotic proteomes 

was proven, even if no real sub-proteome was observed in case of S.pombe. This was 

possibly due to the harsh conditions applied to disrupt the thick cell wall of the yeast 

(shaking with glass beads for 60 minutes). This experiment is not described in detail 

here, as its impact on the results of this study is low, except for the fact that the 

applicability was proven. For details of the experiment performed with yeast see 

(Woerner et al. 2009). 

 

4.2.2.24.2.2.24.2.2.24.2.2.2    Application to human microsomal samplesApplication to human microsomal samplesApplication to human microsomal samplesApplication to human microsomal samples    

 

Following the successful application of the approach to the fission yeast proteome, the 

microsomal fraction of the primary human hepatocytes was analysed. From sample 2, 

only one third of the sample load was applied to check the ability of the approach to 

analyse also rare sample material, where only low amounts of protein are available 

(Sample 1: 280 µg vs. Sample 2: 90 µg). The comparison between the samples was 

made with respect to the amount of identified proteins, their identity, localisation and 

biological function. The UV-chromatograms of the first separation dimension as well 

as the UV-chromatograms of fraction 4 of the two samples are illustrated in Figure 4-6. 
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Figure 4-6 UV-chromatograms of the human samples. Chromatograms were recorded at 214 nm during 
first (A, B) and second (C, D) dimensional separation of the samples. Sample 1 is represented by A and 
C whereas B and D belong to Sample 2. The fractions collected in the first dimension are marked by 
alternating grey and white bars in A and B. Exemplary triplicate chromatograms of the second 
dimension are displayed in C and D, corresponding to fraction 4 collected in the first dimension. 

 

For Sample 1, 690 proteins were identified using the MASCOT search algorithm. Those 

proteins identified by only one peptide (23 %) were rejected from further analysis. The 

remaining proteins (534) showed an average sequence coverage of 10.8  (Table 4-2, 

Figure 4-7). Manual search using the Expasy database revealed some proteins where 

no information is available about the cellular localisation and/or the cellular function 

(approximately 30 %). A high percentage of the proteins where information is present 

are localised in the ER/microsomes (24 %), mitochondria (32 %) and cytoplasm (20 %, 

Figure 4-8). The majority of the proteins is involved in protein-biosynthesis/-

degradation (29 %), related to xenobiotic metabolism and/or sterol/lipid metabolism 

(23 %) or is involved in cellular organisation including transport processes (27 %, 

Figure 4-9). Searching the Gene Ontology ‘biological process’ for overrepresented GO 

terms the translational elongation (GO-ID 6455), the oxidation reduction (GO-ID 55114) 

and the metabolic process (GO-ID 8152) were found among the five most 

overrepresented GO terms (Table 4-3). 
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Table 4-2 Comparison of the experimental conditions and number of proteins identified during the 
different nLC-MS experiments. 

    
C. glutamicumC. glutamicumC. glutamicumC. glutamicum    

    
S. pombeS. pombeS. pombeS. pombe    

    
H. sapiensH. sapiensH. sapiensH. sapiens    
Sample 1Sample 1Sample 1Sample 1    

H. sapiensH. sapiensH. sapiensH. sapiens    
Sample 2Sample 2Sample 2Sample 2    

Experimental conditionsExperimental conditionsExperimental conditionsExperimental conditions    

Sample 
Cytosolic 
fraction 

Microsomal 
fraction 

Microsomal 
fraction 

Microsomal 
fraction 

Sample load [µg] 280 280 280 90 

Collected fractions 30 x 1-minute 42 x 1 minute 11 x 3-minute 11 x 3-minute 

Mass spectrometry ESI – MS/MS ESI – MS/MS 
MALDI – 
MS/MS 

MALDI – 
MS/MS 

ResultsResultsResultsResults    

Proteins identified 745a) 501 690 545 

Proteins Proteins Proteins Proteins     
(at least 2 peptides) 

594594594594    367367367367    534534534534    426426426426    

Average sequence coverage [%]b) 19.0 18.2 10.8 11.3 

Proteins identified by unique peptidesc)  456 271 375 298 

ProteinsProteinsProteinsProteins    
(at least 2 unique peptidesc)) 

427427427427    255255255255    318318318318    256256256256    

Average sequence coverage [%]d) 22.1 27.7 15.8 16.3 

a) Data from (Delmotte et al. 2007) 
b) Calculated from those proteins identified by at least two peptides 
c) Peptideprophet probability: 0.95, Proteinprophet probability: 0.99 
d) Calculated from those proteins identified by at least two unique peptides 
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 Figure 4-7 Distribution of the protein sequence coverage among the different samples. Data were 
collected from the MASCOT-results files; only those proteins identified by at least two peptides are 
included. Sequence coverage was split into four groups: 0-12.5 %, 12.5-25 %, 25-50 %, 50-100 % and 
plotted against the amount of proteins in the samples belonging to the corresponding group. 

 

    

Figure 4-8  Proportional distribution of the cellular localisation, of the proteins identified in the 
samples, as described in the Expasy database. Only those proteins identified by at least two peptides 
and with information available in the database are included. A and B display the distribution in the 
human sample 1 and sample 2, respectively. ER, Endoplasmic reticulum. 

 

Using MASCOT search algorithm 545 proteins were identified in Sample 2. Those 

proteins identified by only one peptide (22 %) were rejected from further analysis. The 

remaining proteins (426) showed an average sequence coverage of 11.3 % (Table 4-2, 
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Figure 4-7). For some proteins no information is available in the Expasy database 

about their cellular localisation and/or cellular function  (approximately 20 %). A high 

percentage of the proteins where information is present are localised in the 

ER/microsomes (27 %), mitochondria (34 %) and cytoplasm (19 %, Figure 4-8). As for 

Sample 1, the majority of the proteins is involved in protein-biosynthesis/-degradation 

(32 %), related to xenobiotic metabolism and/or sterol/lipid metabolism (24 %) or is 

involved in cellular organisation including transport processes (20 %, Figure 4-9). 

Searching the Gene Ontology ‘biological process’ for overrepresented GO terms, 

among the five most overrepresented terms again the translational elongation (GO-ID 

6455), the oxidation reduction (GO-ID 55114) and the metabolic process (GO-ID 8152) 

were found (Table 4-3). 

 

Figure 4-9 Proportional distribution of the cellular functions of the proteins identified in the samples, as 
described in the Expasy database. Only those proteins identified by at least two peptides and with 
information available in the database are included. A and B represent the human sample 1 and sample 
2 respectively. XLC (xenobiotic-lipid-cholesterol), proteins involved in the xenobiotic/drug metabolism, 
fatty acid synthesis/degradation or cholesterol homeostasis. 

 

Assuming that the origin of the samples from two different donors had no or only 

little effect, the reduction of the amount of sample loaded into the first dimension by 

66 % decreased the number of identified proteins by 20 %. The percentage of proteins 

identified by only one peptide (Sample 1: 23 %, Sample 2: 22 %) and the average 

sequence coverage (about 11 %) remained similar in both samples. 

Taking both donors together, 588 proteins were identified by at least 2 peptides with 

an average sequence coverage of 11 %. Among these proteins 372 (63 %) were 
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identified in both samples, while 162 proteins (27.6 %) were found only in Sample 1 

and 54 proteins (9.2 %) only in Sample 2 (Figure 5). The overall sample composition 

with regard to the cellular localisation and biological function correlated very well 

(compare Figure 4-8 and Figure 4-9). The five most over-represented GO terms were 

identical in both samples, only the order of positions four and five was exchanged 

(Table 4-3). Metabolism of the xenobiotics naphthalene, 1-nitronaphthalene, 

bromobenzene, 1,1-dichloroethylene and 1,2-dibromoethane as well as the 

metabolism of the drugs methadone and lidocaine, as described in the KEGG 

database were fully covered. Furthermore, the biosynthetic pathway from farnesyl-

pyrophosphate to zymosterol, the central part of the sterol biosynthesis was covered 

in 5 out of 9 positions (data not shown). 

To sum up these experiments, the applicability of the analytical approach to the 

analysis of human microsomal sub proteome was proven. In addition, it was shown 

that also low amounts of sample material can be applied. A complete list of the 

proteins identified is shown in Appendix V. 

Table 4-3 The five most over-represented GO terms in the ontology biological process of the two human 
samples compared to terms in the whole genome of the corresponding organism. x = number of 
annotations found in the sample set, n = number of annotated proteins in the whole GO dataset, 
X = number of proteins in the sample set, N = number of proteins in the whole GO dataset  

GOGOGOGO----IDIDIDID    corr corr corr corr pppp----valuevaluevaluevalue    xxxx    nnnn    XXXX    NNNN    DescriptionDescriptionDescriptionDescription    

Human Sample 1Human Sample 1Human Sample 1Human Sample 1    

6455 4,72E-51 54 102 458 14528 Translational elongation 

55114 2,87E-33 87 569 458 14528 Oxidation reduction 

8152 1,51E-30 348 7116 458 14528 Metabolic process 

6091 2,27E-23 49 243 458 14528 Generation of precursor metabolites and energy 

6416 1,93E-21 64 465 458 14528 Translation 

Human Sample 2Human Sample 2Human Sample 2Human Sample 2    

6455 4,03E-64 59 102 383 14528 Translational elongation 

55114 3,01E-35 82 569 383 14528 Oxidation reduction 

8152 5,32E-34 306 7116 383 14528 Metabolic process 

6416 7,30E-26 64 465 383 14528 Translation 

6091 3,84E-22 44 243 383 14528 Generation of precursor metabolites and energy 

 

4.2.2.34.2.2.34.2.2.34.2.2.3    Proof of compatibility with iTRAQ™ labelProof of compatibility with iTRAQ™ labelProof of compatibility with iTRAQ™ labelProof of compatibility with iTRAQ™ label    

 

The aim of the whole analysis was a semi-quantitative comparison of untreated with 

treated samples. To allow semi-quantitation in gel-free proteomic approaches several 
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methods have been applied (see 1.3.4). For this study iTRAQ™ labelling was chosen. 

As the LC-separation method contained a new combination of separation modes, the 

stability of the label under these conditions, especially the alkaline ones, was tested. 

A random examination of 2,000 MS/MS spectra was checked for the presence of the 

reporter ion signals. In 95 % - 99 % of this random examination all four (114, 115, 116, 

117) iTRAQ™ reporter ion signals were detectable, applying a mass tolerance of 

0.05 Da (an example is shown in Figure 4-10). Furthermore, peptideprophet and 

proteinprophet were used to identify those proteins for which at least two unique 

peptides were present in the sample. This resulted in a final set of 318 and 256 

proteins with an average sequence coverage of 16 % for Sample 1 and Sample 2 

respectively (Table 4-2). 
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Figure 4-10 Example for mass spectra recorded by the ProteomeAnalyzer 4800. In A, a standard MS 
spectrum is depicted. The MS/MS spectrum recorded after CID fragmentation of the precursor ion 
circled and marked with asterisk in A is shown in B. To prove the presence of the iTRAQ™ reporter 
ions, the area from 112.1 m/z to 120.4 m/z is enlarged in C. The signal of all four reporter ions was 
detectable in 95 % - 99 % of a random examination of about 2,000 MS/MS spectra. 

 

Accurate quantitative measurements are only possible if the labelling procedure for 

the control and the treated samples does not cause huge differences. The quality of 

the procedure was examined by labelling the control and the RSV treated samples 

with two different iTRAQ™ reporter labels each. The control samples were divided and 

labelled with the reporter 114 and 116 while the RSV samples were divided and 
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labelled with the reporter 115 and 117. Finally, the samples were mixed in a ratio of 

1:1:1:1. 

Subsequently after finishing the mass measurements and prior to any quantitative 

analysis, the reporter ion ratios of 114/116 and 115/117 were checked. The data were 

not examined as ratios but converted into a factor/divisor form. So, a ratio of 2.0 is 

regarded as a factor 2.0 as well as a ratio of 0.5 is regarded as a divisor of 2.0, 

reflecting the factors of up- or down-regulation of the underlying proteins. This way of 

data design was used for Figure 4-11 andAppendix IV. The factor/divisor should ideally 

be one for the internal controls (114/116 and 115/117), as the samples were mixed in a 

ratio of one to one. 

The majority of values was found in a range of 0.8 to 1.2, but some of them also laid 

beyond these bonds. The average was approximately one (see Table 4-4), with a 

standard deviations of about 10 %. An exemplary plot of the average of the internal 

control from sample 1 analysed by ProteinPilot is depicted in Figure 4-11, the figures 

of all other values including those about the overall factor/divisor distribution are 

shown inAppendix IV.  

Table 4-4 Ratios of the internal controls and the corresponding standard deviations. 

    InternalcontrolInternalcontrolInternalcontrolInternalcontrol    

 CTRL114/116 RSV 115/117 

 Sample 1 Sample 2 Sample 1 Sample 2 

 Ratio Error Ratio Error Ratio Error Ratio Error 

ProteinPilot 1.0042 0.0955 1.0041 0.1095 1.0095 0.1057 1.0056 0.0960 

Mascot 0.9984 0.1082 0.9983 0.1154 1.0020 0.1042 0.9926 0.1037 

Quant 0.9860 0.1072 0.9801 0.1284 0.9874 0.1147 0.9885 0.0968 

 

An experimental mistake by differences in the mixing ratios was excluded with these 

results. 
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Figure 4-11 Diagramm showing the averaged reporter ion ratio and corresponding standard deviations 
of the internal controls of sample 1, as calculated by ProteinPilot. 

 

To summarise, the stability of the label with respect to the separation conditions as 

well as appropriate labelling and mixing of the control and treated samples was 

proven. 

 

4.2.2.44.2.2.44.2.2.44.2.2.4    Bioinformatics for quantificationBioinformatics for quantificationBioinformatics for quantificationBioinformatics for quantification    

After proving the presence of the iTRAQ™ label as well as the presence of proteins 

identified by unique peptides (see chapter 4.2.2.3), the quantitative analysis of the 

reporter ion signals came into the focus. 

 

4.2.2.4.14.2.2.4.14.2.2.4.14.2.2.4.1    Data handlingData handlingData handlingData handling    

The ProteomicsAnalyser 4800 stores the measured data in an oracle database. On one 

hand, this allows the parallel use of the raw data from different workstations, on the 

other hand every software used for data interpretation has to be able to handle oracle 

databases. It turned out that both, the oracle database as well as the instrument itself, 

are quite sensitive to improvident use, so the choice of software used for data analysis 

was generally restricted to firmware to assure the stability of the system. 
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Previous to this study, no quantitation of iTRAQ™ reporter signals out of real 

proteomic data had been performed at Saarland University. So, different software 

packages were compared to evaluate the quantification results. To make the data 

accessible to quantification by two of the three software packages chosen, they had to 

be exported from the oracle database in a suitable way. The “launch peaks to Mascot” 

function provided with the instruments software is reported to misinterpret the peak 

areas used for quantitation (see www.matrixscience.com). Matrix sciences offers the 

free-of-charge TS2MASCOT – tool (www.matrixscience.com) which allows the export 

of peak areas in the same way as the firmwares ProteinPilot™ and GPSexplorer™.  

To evaluate the difference between both exporting tools, a random examination of ten 

MS/MS spectra was exported by the TS2MASCOT as well as the “launch peaks to 

Mascot” tool. The exported peaks were compared with regard to their area specified in 

the export files. This comparison lead to an averaged difference in the peak area of 

22.4 % (Table 4-5). Meaning the area of one peak exported by TS2MASCOT differed in 

average by 22.4 % from the area of the same peak exported by “launch peaks to 

Mascot”. Taking only the area of the iTRAQ™ reporter ion signal into account, this 

difference was reduced to 3.1 to 5.9 % (see Table 4-5).  

Table 4-5 Relative peak area difference of a random examination of ten MS/MS spectra exported by 
TS2MASCOT and “launch peaks to Mascot”, respectively 

Mass signalsMass signalsMass signalsMass signals    Averaged peak area difference [%]Averaged peak area difference [%]Averaged peak area difference [%]Averaged peak area difference [%]    

All 22.4 

ITRAQ 114 (114.1 m/z) 5.9 

ITRAQ 115 (115.1 m/z) 4.2 

ITRAQ 116 (116.1 m/z) 3.1 

ITRAQ 117 (117.1 m/z) 3.8 

 

To evaluate the influence of data export on protein identification, comparison was 

made with respect to the number of proteins identified, the number of proteins 

identified by at least two peptides and the sequence coverage (see Table 4-6). In both 

samples a higher number of proteins was identified using the data exported via 

“launch peaks to mascot”. Nevertheless, the number of proteins identified was 

drastically reduced by looking only for proteins identified by at least two peptides. 

This finally lead to a lower number of identified proteins for those data exported by 

“launch peaks to mascot” compared to the number of proteins identified after 
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TS2Mascot export. The sequence coverage was slightly increased for the proteins 

identified after data export by TS2Mascot. At last, the correlation between the sets of 

proteins identified by at least two peptides was examined. A correlation of about 

95 % was found for both samples (see Table 4-6). 

Table 4-6 Differences in protein identification caused by the choice of data exporting software and the 
corresponding parameters. The Mascot server as well as the settings and the database were the same in 
all the cases. 

    Donor 1Donor 1Donor 1Donor 1    Donor 2Donor 2Donor 2Donor 2    

 
Launch peaks 

to mascot 
TS2 Mascot 

Launch peaks 

to mascot 
TS2 Mascot 

Proteins 

identified 
690 670 545 543 

Proteins 

identified by at 

least two 

peptides 

534 526 426 420 

Sequence 

coverage [%]a) 
10.8 11.4 11.3 11.7 

CorrelationCorrelationCorrelationCorrelationa)a)a)a)    507 (94.9507 (94.9507 (94.9507 (94.9    %)%)%)%)    406 (95.3406 (95.3406 (95.3406 (95.3    %)%)%)%)    

a) of/between those proteins identified by at least two peptides 

 

The use of generalised data formats is strongly recommended among the proteomic 

society, to ease-up comparisons between different laboratories and data evaluation. 

Mass data conversion to this kind of files was tested several times. Unfortunately, no 

suitable conversion tool could be found. 

The identification results obtained by using TS2MASCOT are comparable to those 

gained with the “launch peaks to mascot tool”, it is recommended by matrix science 

to export data of quantitative experiments and the general difference of the exported 

peak areas between the two tools was proven. Therefore, TS2MASCOT was chosen for 

peak export to enable the further quantitative analysis by Mascot or Quant.  

 

4.2.2.4.24.2.2.4.24.2.2.4.24.2.2.4.2    Eliglibility crEliglibility crEliglibility crEliglibility criteriaiteriaiteriaiteria    

During 2D-PAGE a spot found to be significantly altered according to students t-test 

(99 %) and changed in its intensity by a factor of at least 2 was regarded as regulated if 
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it was found in two out of two individual experiments. For the proteins identified 

during nLC-MS the eligibility criteria needed to be set, too. 

At first, borderlines had to be defined beyond which a reporter ion ratio can be 

regarded as significant for a difference between the treated and the control sample. To 

determine this range, several possibilities exist. On one hand, some of the 

quantification software provides information about values deviating from the average. 

On the other hand, in the literature, the use of 1.2 and 0.8 is often found. These values 

correspond to the doubled standard deviation, estimated according to internal 

standards as presented above (about 10 % representing a value of 0.1, see 4.2.2.3). 

In this study, the double of the real standard deviation was used, calculated as the 

average of the standard deviations found in the four ratios examined. An individual 

threshold was determined for each software, as already the averaged internal controls 

differed from one software to another (see Table 4-4). The resulting thresholds are 

summarised in Table 4-7. 

Table 4-7 Thresholds calculated as the doubled standard deviation of all ratios per sample. 

Sample 1Sample 1Sample 1Sample 1    Sample 2Sample 2Sample 2Sample 2    
    

Up-regulated Down-regulated Up-regulated Down-regulated 

ProteinPilot 1.37 0.63 1.96 0.04 

Mascot 1.43 0.57 2.04 0.00 

Quant 1.39 0.61 2.04 0.00 

 

These thresholds are obviously higher than the expected values of 0.8 and 1.2. 

Especially in the case of donor 2 a high standard deviation was observed. This 

observation is in line with the impression of complete deregulation by plotting the 

factor/divisors of all proteins quantified in sample 2 (see Appendix IV). The high 

standard deviation led to a threshold of 0.04 to lower than zero for down-regulation. 

These values could not be matched by any protein factor/divisor. Therefore, only up-

regulation was detectable in sample 2. It has to be kept in mind that a huge 

deregulation was observed in sample 2, for which the criteria set may be wrong due to 

their theoretical assumption of a normal distribution of the values (see discussion). 

The control as well as the RSV treated sample were labelled with two reporter 

molecules, so four ratios of reporter ion areas could be calculated after mass 

measurements: 115/114 – 115/116 – 117/114 – 117/116. In theory all of them should 
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show the same value. This was not true, so criteria were set in a way that the protein 

values need to cross the threshold in at least three out of the four values. 

The third and last parameter is that the protein needed to match the first and second 

criterion in at least two of the three software packages used (see 4.2.2.4.3 and Table 

4-7). The parameters of significance a protein value had to match are summarised in 

Table 4-8. 

Table 4-8 Summary of the parameters and criteria of significance 

ParameterParameterParameterParameter    CriteriaCriteriaCriteriaCriteria    

Ion reporter ratio Match the determined threshold, see Table 4-7 

Four different reporter ratios 
Match the threshold in at least three out of the 

four ratios calculated 

Three different software packages 
Found in at least two of the three packages 

according to the above criteria 

 

These criteria are quite restrictive, compared to those often found in the literature. The 

reason for their choice was to avoid any false positive results by accepting the loss of 

information by false negative results. 

 

4.2.2.4.34.2.2.4.34.2.2.4.34.2.2.4.3    QuanQuanQuanQuantification softwaretification softwaretification softwaretification software    

In the case of protein identification, a strong influence of algorithm choice is 

described in the literature (Chamrad et al. 2004; Elias et al. 2005; Kapp et al. 2005). To 

evaluate the influence of the software tools used for quantification, three different 

packages were chosen. 

The GPSexplorer used for identification of the in-gel digests was not able to handle 

the huge amount of data produced during the nLC-MS experiments. In every case, 

when loading the twentieth spot set for identification and quantification it crashed 

down. So it was not used, despite of the fact that it is able to quantify the iTRAQ™ 

reporter signals. 

ProteinPilot® as recommended firmware tool was the first choice for quantification. 

Along with its quantification abilities, ProteinPilot® provides the Paragon algorithm 

(Shilov et al. 2007) for identification. Quantification of a protein is performed by only 

using peptides unique to this protein, while the sequence coverage of the protein is 

“strengthened” by peptides shared with other proteins. 



Results  85 

The second choice was a MASCOT stand alone server as a firmware independent tool 

and the third choice was Quant (Boehm et al. 2007). For both, MASCOT as well as 

Quant, data were exported by TS2MASCOT (see 4.2.2.4.1). Mascot was first used to 

identify the proteins that were later quantified. During quantification, Mascot did not 

differentiate between unique and shared peptides in the samples. In contrast, for 

quantification Quant only uses information about peptides unique to one protein in 

the sample. As the program does not offer an algorithm for identification, it was fed 

with the raw result files of the Mascot identification. For the final analysis, only those 

proteins were considered that were identified by at least two peptides.  

Comparison of the three packages was made with respect to identification (proteins 

identified by the Paragon algorithm vs Mascot) and quantification (data either 

identified by Paragon and quantified by ProteinPilot or identified by the Mascot stand-

alone server and quantified by Mascot or Quant). 

Using the Paragon algorithm 769 proteins were identified in sample 1 and 612 proteins 

in sample 2. This led to a set of 668 and 533 proteins identified by at least two 

peptides for sample 1 and sample 2 respectively. The averaged sequence coverage 

was 16.3 % for sample 1 and 20.3 % for sample 2. Compared to Mascot, the total 

number of proteins identified as well as their sequence coverage was obviously higher 

(see Table 4-6) using another algorithm for identification with direct access to the raw 

data.  

The proteins found to be differentially present after RSV treatment differed between 

the software packages used. Using ProteinPilot in sample 1 nineteen proteins were 

found in higher amounts and seven in lower amounts after RSV treatment, while the 

Mascot analysis resulted in fifteen up-regulated and two down-regulated proteins and 

Quant finally showed six up-regulated and four down-regulated proteins (see Table 

4-9). A similar discrepancy was observed for up-regulation in sample 2, in which 

ProteinPilot analysis ejected twenty-one proteins, Mascot fourteen proteins and Quant 

eight proteins. No down-regulated protein were observed for sample 2 (see 4.2.2.4.2 

and Table 4-7). 
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Table 4-9 Number of proteins found to be regulated in sample 1 and sample 2 by the use of three 
different software packages 

    No. of proteins found to be regulatedNo. of proteins found to be regulatedNo. of proteins found to be regulatedNo. of proteins found to be regulated    

 Sample 1 Sample 2 

 Up-regulated Down-regulated Up-regulated Down-regulated 

ProteinPilot 19 7 21 0 

Mascot 15 2 14 0 

Quant 6 4 8 0 

 

The correlation between the proteins found in altered amounts is listed in detail in 

Table 4-10. The use of ProteinPilot revealed 47 regulated proteins, while Mascot 

ejected 31 and Quant 18 hits. In average, the results correlated by 36.8 %, meaning 

every third protein was found by at least two of the three packages. To further evaluate 

whether the observed differences are caused by the quantification or the identification 

algorithms, the proteins differing between the software packages were further 

analysed. 
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Table 4-10 Correlation of the proteins found to be regulated by ProteinPilot, Mascot or Quant. 

    ProteinPilotProteinPilotProteinPilotProteinPilot    MascotMascotMascotMascot    QuantQuantQuantQuant    

Number of proteins foundNumber of proteins foundNumber of proteins foundNumber of proteins found    47474747    31313131    18181818    

Proteins not found by ProteinPilot 0 16 10 

Proteins not found by ProteinPilot due to 

differences in identification 
0 3 0 

Proteins not found by ProteinPilot due to 

differences in quantification 
0 13 10 

Proteins not found by Mascot 32 0 9 

Proteins not found by Mascot due to 

differences in identification 
18 0 0 

Proteins not found by Mascot due to 

differences in quantification 
14 0 9 

Proteins not found by Quant 39 22 0 

Proteins not found by Quant due to 

differences in identification 
33 17 0 

Proteins not found by Quant due to 

differences in quantification 
6 5 0 

 

The majority of hits found by ProteinPilot but not by one of the other packages was 

caused by differences in identification (70.4 %) rather than differences in 

quantification (29.6 %). In contrast, the differences leading to proteins found by other 

packages but not ProteinPilot were mainly due to differences in quantification (80.3 %) 

and not identification (19.7 %).  

For Mascot a balanced situation was found for those proteins detected by Mascot but 

not one of the others (48.0 % not identified/used by Mascot, 52.0 % differentially 

quantified). A diminished but comparable effect as observed with ProteinPilot was 

found for those hits not seen by Mascot (71.9 % due to quantification differences, 

28.1 % not identified/used by Mascot). 
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The quantification results of all proteins found only with the Quant package did not 

meet the significance criteria when calculated by the other packages. Those hits 

detected by others but not Quant were to 80.9 % due to differences in the 

identification/use of peptides, while only 19.1 % of them were differentially quantified. 

To summarise, 39.5 % of the differences observed were due to differences in 

identification processes, while the majority of 60.5 % were caused by a different 

performance of the used software package with respect to quantification. 

The borderlines between these two criteria blur as the number of peptides identified 

of course affected the number of peptides used for quantification. Nevertheless, the 

results demonstrate a dramatic impact of the software used for quantification on the 

outcome of semi-quantitative nLC-MS experiments. In addition to the differences in 

protein identification, here again, the choice of software affected the out-coming 

result. 

To incorporate this knowledge into this study, only proteins were considered to be 

regulated if they appear in at least two of the three packages as true positive hits. 

 

4.2.34.2.34.2.34.2.3    SummarySummarySummarySummary    

For both analytical approaches, 2D-PAGE as well as nLC-MS, some problems of either 

the experimental performance or the data handling and interpretation were faced 

during this study. In order to improve the approaches with the knowledge about 

theses problems some methodical work was performed as described above. 

Summarising, the protocol for 2D-PAGE was adapted and optimised, to provide an 

experimental procedure, capable of handling low amounts of sample material 

nonetheless able to identify 68 to 84 % of the spots subjected to mass spectrometry. At 

the same time, the experimental setup avoids sample freezing prior to IEF and allows 

to run a maximum of three experiments per donor in “parallel”, ideally resulting in 36 

gels for analysis.  

On the other hand, the general applicability of the nLC-MS setup to eukaryotic sub-

proteomes was proven. The data export and file handling was optimised in a way that 

enables accurate semi-quantification by different software packages. The differences 

observed by using three different programs for semi-quantification could be used to 

reduce the amount of false-positive hits during the analysis. This finally led to an 

improvement of the quality of the semi-quantitative data.  
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4.34.34.34.3    The effects of RSV and LEKThe effects of RSV and LEKThe effects of RSV and LEKThe effects of RSV and LEK----935 935 935 935     

The methodical approaches evaluated in 4.2 were now applied to analyse the effects 

of the cholesterol lowering agents RSV and LEK-935 on the proteome of primary 

human hepatocytes. The cytosolic fraction of the samples was applied to two-

dimensional gel electrophoresis. In addition, the microsomal fraction of the RSV 

treated cells was analysed by nLC-MS. Two individual experiments were performed 

with samples derived from two different donors. 

 

4.3.14.3.14.3.14.3.1    Cytosolic fraction / twoCytosolic fraction / twoCytosolic fraction / twoCytosolic fraction / two----dimensional gel electrophoresisdimensional gel electrophoresisdimensional gel electrophoresisdimensional gel electrophoresis    

 

The analysis of donor 1 was performed according to the optimised sample application 

procedure (Figure 4-5), while the cytosolic fraction of donor 2 has been frozen two 

times at –20 °C prior to analysis. A detailed view on each spot found to be 

differentially present, its regulation, identification and cellular function is shown in 

Appendix II and Appendix III. 

 

4.3.1.14.3.1.14.3.1.14.3.1.1    SemiSemiSemiSemi----quantificationquantificationquantificationquantification    

 

Two experiments were performed with samples derived from donor 1. These resulted 

in two bioinformatical analyses consisting of twelve (4 x ctrl, 4 x RSV, 4 x LEK 935) and 

eleven (4 x ctrl, 4 x RSV, 3 x LEK) gels respectively.  

For sample 2, a first analysis failed due to troubles occurring at the scanning process. 

So the remaining samples had to be used again in a second experiment. As the 

samples were already prepared prior to the knowledge about the effects of freezing-

thawing, the experiments were now run with samples frozen two times at –20 °C. The 

experiments of sample 2 also resulted in two bioinformatical analyses consisting of 

twelve (4 x ctrl, 4 x RSV, 4 x LEK 935) and eight (2 x ctrl, 2 x RSV, 4 x LEK) gels 

respectively.  

For sample 1 as well as for sample 2, the two simple bioinformatical analyses were 

matched and compared in one higher level experiment per sample. The results 

obtained in these analyses are summarised in     Table 4-11.  
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The averaged consistency between the two basic experiments was found to be 49.5 % 

and 41.1 % for sample 1 and sample 2 respectively. So, about every second spot found 

to be regulated per individual experiment was, with respect to the applied rules, a 

true positive hit (see     Table 4-11). 

A comparison between both samples at the level of gel image analysis was not 

possible due to the different freeze-thawing states of the samples when entering the 

experiment, leading to different gel images. 

After RSV treatment the intensity of 20 spots was found to be significantly increased in 

sample 1 while 31 spots seemed to appear in comparison to the control samples. The 

signal intensity of two spots was decreased and five spots completely disappeared, 

compared to the control. In sample 2, RSV treatment led to the appearance and 

disappearance of ten and four spots, respectively. In addition, the increase in signal 

intensity of five spots and decrease in signal intensity of one spot was detected (see     

Table 4-11). 

After LEK-935 treatment the intensity of 33 spots increased significantly in sample 1, 

while the appearance and disappearance of fourteen and three spots as well as a 

significant down-regulation of five spots was observed. Sample 2 treated with LEK-935 

showed appearance of eight as well as disappearance of nine spots, while an increase 

and decrease in signal intensity was observed for four and five spots respectively (see     

Table 4-11). 

Of the spots found to be altered in sample 1, thirteen increased in signal intensity and 

eight appeared after both treatments while no correlation was found regarding the 

decrease in intensity or disappearance of spots. In sample 2, the increase in signal 

intensity of four spots, decrease of intensity of one spot, appearance of seven and 

disappearance of three spots was observed to be similar after both treatments (see     

Table 4-11). 

For sample 1, a direct comparison of the gels made with the treated samples, led to 

the detection of ten spots in the RSV treated samples showing more than two-fold 

intensity compared to the ones found in the LEK-935 treated samples as well as ten 

spots showing less than two-fold intensity. Appearance of 18 spots was observed, in 

parallel to disappearance of twelve spots. In sample 2, only one spot was found to be 

diminished and 1 spot appeared after RSV treatment compared to LEK-935 treatment 

(see     Table 4-11).  
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4.3.1.24.3.1.24.3.1.24.3.1.2    IdentificationIdentificationIdentificationIdentification    

 

All of the spots found to be regulated, as described above, were again checked and 

some with doubts about their regulation were excluded from further investigations. A 

final set of 94 and 32 spots was subjected to identification for sample 1 and sample 2 

respectively (see Figure 4-12). These spots were excised from one control, RSV as well 

as LEK-935 gel of each experiment, resulting in a set of two to six gel slices per spot. 

The spots were applied to in-gel digestions followed by MALDI-TOF/TOF mass 

spectrometry and a database search for identification. 

 

Figure 4-12 Gels of sample 1 and sample 2 showing the spots found to be differentially present and cut 
for in-gel digestions followed by mass spectrometry and database search. 

 

The proteins were identified by a combination of peptide mass fingerprinting with 

peptide fragment mass fingerprinting (MS & MS/MS) and a GPS score of 100 %. For 

sample 1, they were identified out of one up to five individual gels, with an average 

sequence coverage of 37.5 % while for sample 2, identification was performed out of 

one up to six individual gels, with an average sequence coverage of 42.2 %. 

In both samples, the practically estimated pIs and molecular weights of the identified 

proteins correlated very well with the theoretically calculated values (see Appendix II). 
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4.3.1.2.14.3.1.2.14.3.1.2.14.3.1.2.1    Sample 1Sample 1Sample 1Sample 1    

 

In sample 1, 94 differentially present spots were subjected to mass spectrometry 

followed by database search. For 60 of these spots proteins could be identified (see 

Appendix III). In 46 of the 60 spots, the identified protein originated from E.coli. This 

dramatically high number (76.6 %) excludes a random event, leading to the 

assumption of a systematic mistake. Contamination of the samples by E.coli during 

the sonication step was assumed to be most probably the underlying reason (see 

discussion). All of the E.coli proteins were either up-regulated or appear in the treated 

samples, suggesting a stronger contamination in these than in the control. The spots 

with identified E.coli proteins were excluded from further analysis, the remaining 

fourteen spots were further checked to exclude false positive hits. In general, the 

contamination does not disrupt the analysis but restricts the results to the top-hits, as 

the increased amount of strange proteins in the treated samples reduces the amount 

of human proteins and thereby shifts the averaged relations of intensities below one. 

The spots down-regulated by the treatment needed a detailed view on their regulation 

(see Appendix II). The spots up-regulated or even appearing in treated samples were 

regarded as top hits as the bacterial contamination did not diminish their regulations 

below the threshold. 

Except for two spots, only one protein was identified per spot in sample 1 (see Table 

4-12). Spot 35 contained a heat-shock protein but differentiation to one specific 

enzyme was not possible, leading to the exclusion of this spot from further analysis. 

In spot 89 radixin, ezrin and moesin were identified. Here a relative differentiation to 

radixin was possible (see Appendix II). 

After manual control a set of eleven proteins identified out of nine spots was 

subjected to further analysis regarding their molecular and biological function. This 

set of proteins including their regulations is listed in Table 4-14. 
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4.3.1.2.24.3.1.2.24.3.1.2.24.3.1.2.2    Sample 2Sample 2Sample 2Sample 2    

 

For sample 2, identification succeeded for the proteins in 24 of the 32 spots found to 

be regulated. Two or more different protein species were identified out of three spots 

(spots 14, 17 and 24) while the specification of one distinct protein out of proteins with 

high sequence similarity was not possible in three other spots (spot 2, 11 and 26, see 

Table 4-13, Appendix II and Appendix III). The spots without clearly identified protein 

were excluded from further analysis. This lead to a set of 16 proteins (see Table 4-14 

subjected to further bioinformatical analysis to set them and their regulation into the 

cellular context. 
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4.3.1.34.3.1.34.3.1.34.3.1.3    Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2    

The consistency between the single experiments was similar in both donors with 

slightly lower values for sample 2 than for sample 1 (see     Table 4-11).  For both 

donors, a better consistency was observed in those analyses targeting the up-

regulation or appearance of spots, compared to those which target a down-regulation 

or disappearance (see     Table 4-11). The overall consistency was 40.1 to 49.5 % for 

donor 1 and donor 2 respectively. 

With respect to protein identification, both samples correlate well. In both cases it was 

possible to identify a high percentage of the differentially present spots. In sample 1 

63.8 % (60 out of 94) and in sample 2 75 % (24 out of 32) of the spots could be 

identified. The average sequence coverage is also similar with 37.5 % and 42.2 % for 

sample 1 and 2, respectively. 

A comparison of “regulated spots” between sample 1 and 2 was not possible due to 

the different freezing-thawing status of the samples when applied to IEF. So, 

comparison was made on the level of identified proteins but none of the proteins 

found to be regulated in sample 1 was also found in sample 2, and vice versa (see 

4.3.1.2 and Table 4-14). 

 

4.3.24.3.24.3.24.3.2    Microsomal fraction / nano high pressure liquid chromatographyMicrosomal fraction / nano high pressure liquid chromatographyMicrosomal fraction / nano high pressure liquid chromatographyMicrosomal fraction / nano high pressure liquid chromatography    

 

In addition to analysing the effects of RSV and LEK-935 on the cytosol of primary 

human hepatocytes by 2D gel electrophoresis, the microsomal fractions of the 

samples treated with RSV were analysed by nLC-MS. 

 

4.3.2.14.3.2.14.3.2.14.3.2.1    SemiSemiSemiSemi----quantitationquantitationquantitationquantitation    

 

In addition to the semi-quantitative analysis, the control as well as the treated samples 

were double-labelled. The samples were aliquoted, labelled with the iTRAQ™ labels 

114,116 and 115,117 for the control and treated samples respectively and finally mixed 

in a ratio of 1:1:1:1. By this, the experimental procedure was checked for technical 

variances as the ratios 114/116 and 115/117 were examined. Ideally the resulting 

values should be one. In reality, the values were about one with a standard deviation 

of about 10 %, see 4.2.2.3 and Figure 4-13 A and B. The factor/divisor distribution of 
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the internal controls was near to a normal distribution and a clear difference was 

observed between the factor/divisor distribution of the internal controls (see Figure 

4-13 A and B) and the factor/divisor distribution of the comparisons between RSV and 

control (see  C and D). These results prove a low technical variance of the 

experimental setup.  

In general, the factor/divisor distributions of the comparisons between RSV and 

control were considerably broader than that of the internal controls (see Figure 4-13). 

No proteins were found to appear or disappear after RSV treatment, only increases 

and decreases in the amount of proteins compared to the control samples were 

observed. For sample 1, the shape of factor/divisor distribution was similar to a 

normal distribution while sample 2 showed a distribution spread over the whole range 

of values (see Figure 4-13). 
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Figure 4-13 Exemplary comparison of the factor/divisor distributions of the internal control 114/116 (A, 
B) and the RSV to control comparison of 117/114 (C, D) for sample 1 (A, C) and sample 2 (B, D). The data 
were taken from the analysis by ProteinPilot, a comparable picture was observed with every 
quantitation software applied. A much stronger de-regulation can be seen in sample 2 compared to 
sample 1, leading to a shape of the diagram no more similar to that observed by a normally distributed 
set of values.  

 

In sample 1, twelve proteins were found to be significantly altered after RSV treatment. 

Among them, ten were found to be up-regulated while two were down-regulated. 

In sample 2, a set of nine proteins shows increased amounts after RSV treatment. 

Because of the high standard deviation, no protein could be found in decreased 

amounts.  

The detected proteins and their regulation are summarised in Table 4-15.  

A B 

C D 
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Table 4-15 Proteins found in the microsomal fraction of primary human hepatocyes by nLC-MS to be 
regulated after treatment with rosuvastatin 

RegulationRegulationRegulationRegulation    Proteins found by nLCProteins found by nLCProteins found by nLCProteins found by nLC----MSMSMSMS    
 Sample 1 Sample 2 

U
P
 

R
E
G
U
L
A
TE
D
 

Long chain fatty acid CoA ligase 

Apolipoprotein C1 

Apolipoprotein C3 

Succinate-dehydrogenase 

cytochrome b560 subunit, 

mitochondrial 

Lanosterol 14-alpha demethylase 

(CYP 51A1) 

Estradiol-17-beta-dehydrogenase 

12 

Transmembrane protein 56 

ATP-citrate synthase 

Squalene synthetase 

Mannose-P-dolichol utilisation 

defect 4 protein 

Mitochondrial dicarboxylate carrier 

Glyceraldehyde-3-phosphate 

dehydrogenase 

Hydroxy-methyl-glutaryl-CoA 

synthetase, cytoplasmic 

Peroxiredoxin 6 

Radixin 

Fibrinogen alpha 

Fibrinogen beta 

GTP-binding protein SAR1b 

Voltage-dependent anion-selective 

channel protein 2 

D
O
W
N
 -
 

R
E
G
U
L
A
TE
D
 

Actin 

60 S ribosomal protein L9 
 

  

4.3.2.24.3.2.24.3.2.24.3.2.2    Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2Comparison of sample 1 and sample 2    

 

As already shown during the analysis of the cytosolic fraction (0), no correlation 

between sample 1 and sample 2 was observed. None of the proteins found to be 

regulated in the microsomal fraction of donor 1 were also found to be regulated in the 

microsomal fraction of donor 2 and vice versa.  

However, some correlations between sample 1 and sample 2 were found by 

comparing the proteins detected during 2D gel electrophoresis and those detected 

during nLC-MS, as discussed in 4.3.4. 
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4.3.34.3.34.3.34.3.3    Validation of the results by RTValidation of the results by RTValidation of the results by RTValidation of the results by RT----PCRPCRPCRPCR    

To validate the results from the proteomic analysis, the effects of the treatments were 

also checked by RT-PCR on the level of transcription. These experiments were 

performed by Dr. Jean-Marc Pascussi (Institut de Génomique Fonctionnelle, 

Département d'Oncologie, CNRS UMR5203 – INSERM U661 – UFR de Médecine 

Montpellier-Nîmes). 

A set of five proteins was checked on samples derived from four different human 

donors (see Table 4-16). RT-PCR measurements were performed on cells treated for 24 

hours compared to the 48 hours treated samples used for proteomic analysis. The 

results are summarised in Table 4-16. Only for HMG-CoA synthase 1, the 

measurements were absolutely consistent between the six donors analysed. While the 

fold-changes of the proteome analysis correlate well, the values obtained by RT-PCR of 

four samples differed a lot (see Table 4-16). For two other proteins, ATPB and PDIA3 

changes correlating to those measured on the proteome were also observed by 

measuring the mRNA levels. Even if the regulations were not observed in all four 

samples. For NNMT as well as PGM1, values even opposite to those observed by the 

proteomic analysis were seen in the RT-PCR. Nevertheless, the majority of RT-PCR 

measurements underline the effects observed by the proteome analysis. 

Table 4-16 Validation of five of the proteins found in altered amounts after RSV and/or LEK-935 
treatment by RT-PCR. Values above a threshold of 2.0 are marked in green and values below a threshold 
of 0.5 are marked in orange. 

ATPBATPBATPBATPB    HMGCS1HMGCS1HMGCS1HMGCS1    NNMTNNMTNNMTNNMT    PDIA3PDIA3PDIA3PDIA3    PGM1PGM1PGM1PGM1    
 

RSV 
LEK-
935 

RSV 
LEK-
935 

RSV 
LEK-
935 

RSV 
LEK-
935 

RSV 
LEK-
935 

Sample1   3.4 1.0 1.0 0.4   0.4 0.7 

Sample2 2.7 2.3 3.0*    2.2 2.3   

HH-269 2.3 1.7 18.7 1.5 3.5 3.5 3.6 2.6 2.9 1.7 

HH-270 2.5 0.9 20.5 0.9 4.4 1.0 2.4 1.1 5.5 0.9 

HH-271 1.6 0.9 7.6 0.8 2.6 1.8 1.4 1.1 1.7 0.7 

HH-272 1.1 0.6 3.1 1.2 1.0 0.6 1.3 0.6 1.1 0.6 

 

4.3.44.3.44.3.44.3.4    Summary of regulationsSummary of regulationsSummary of regulationsSummary of regulations    

A set of 44 different proteins was found to be altered by treating primary human 

hepatocytes with the cholesterol lowering agents rosuvastatin and LEK-935. The 
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correlation between the two donors was relatively low. Only one protein was found to 

be regulated by the same drug into the same direction in both donors. This protein 

was identified as the cytoplasmic hydroxy-methyl-glutaryl CoA synthase, responsible 

for the formation of HMG-CoA from acetyl-CoA and acetoacetyl-CoA. Two other 

proteins were found to be regulated in the same direction but by different drugs. For 

glyceraldehydes-3-phosphat dehydrogenase, up-regulation by LEK-935 was observed 

in donor 1 while it was up-regulated by RSV in donor 2. For radixin, an up-regulation 

by RSV was observed in donor 2, while it was down-regulated by LEK-935 in donor 1. 

In general, much more proteins were found to be up-regulated (41) than down-

regulated (17) either reflecting the real situation inside the cell or the limitations of the 

analytical approaches used (see discussion). 

The majority of the results obtained by the validation experiments were in accordance 

to the proteome data. Nevertheless, changes in the opposite directions were also 

observed. The analysis of four donors during the validation experiments underline the 

big inter-individual differences as observed with two donors in the proteomic study. 

The whole set of proteins is depicted in Table 4-17. The table was simplified, only 

differentiating between up- and down-regulation and the proteins are named by their 

Swiss-Prot identifier. The HMG-CoA synthetase is marked in green while 

Glyceraldehyde-3-phosphate dehydrogenase is marked in blue and radixin is marked 

in red. A detailed view on the proteins can be found in Appendix II. 
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4.44.44.44.4    Bioinformatic analysis of the regulated proteinsBioinformatic analysis of the regulated proteinsBioinformatic analysis of the regulated proteinsBioinformatic analysis of the regulated proteins    

To get an impression about the cellular pathways and biological processes affected, 

the set of differentially expressed proteins found in 4.3 was further analysed by 

database searches. For a general overview about the processes affected, the expasy 

database (www.expasy.org) and the gene ontology (www.geneontology.org) were 

screened manually or with computational aid. To additionally deepen the view on 

biological pathways affected by the regulated proteins, the KEGG database 

(www.genome.jp/kegg) was also used for screening. The focus was set on 

functions/pathways either over-represented in the set of 45 proteins or related to 

cholesterol synthesis and metabolism.  

4.4.14.4.14.4.14.4.1    Rosuvastatin treatmentRosuvastatin treatmentRosuvastatin treatmentRosuvastatin treatment    

4.4.1.14.4.1.14.4.1.14.4.1.1    General overviewGeneral overviewGeneral overviewGeneral overview    

In sample 1 the amounts of eleven proteins were increased after RSV treatment 

opposed to only three proteins found in decreased amounts. Most of the proteins 

increased after RSV belong to the XLC group (8), related to either the metabolism of 

cholesterol (6) fatty acids or lipids (2). The remaining three proteins are involved in 

energy metabolism (1), protein-biosynthesis or –degradation (1) and cellular 

organisation (1). The down-regulated proteins are equally distributed to protein-

biosynthesis and –degradation (1), cellular organisation inclusive transport processes 

(1) and energy metabolism (1, see Figure 4-14 A and B). 
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Figure 4-14 Proportional distribution of the cellular functions of the proteins found to be regulated by 
RSV (A-F) or LEK-935 (G-L) in sample 1 (A-B,G-H) and sample 2 (C-D,I-J), as described in the Expasy 
database. The first (A,C,E,G,I,K) and second (B,D,F,H,J,L) column of diagrams show the distributions of 
the upregulated and downregulated proteins respectively. In E-F and K-L a summary is displayed of all 
proteins found to be regulated by RSV or LEK-935. XLC (xenobiotic-lipid-cholesterol), proteins involved 
the xenobiotic/drug metabolism, fatty acid synthesis/degradation or cholesterol homeostasis. 
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Using Cytoscape equipped with the Bingo plug-in for a search of GO terms in the 

category biological process, over-represented in the set of regulated proteins in 

comparison to the whole set of annotations, no result was found for the three proteins 

down-regulated in sample 1. For the proteins up-regulated, among the ten most over-

represented GO-terms, cholesterol biosynthetic process (GO-ID 6695), cholesterol 

transport (GO-ID 30301) and isoprenoid biosynthetic process (GO-ID 9241) were found. 

The remaining GO-terms were also related to either sterols or lipids (see Table 4-18). 

 

Table 4-18 The ten most over-represented GO terms in the ontology biological process of the set of 
proteins found to be up-regulated after RSV treatment of sample 1 and sample 2, compared to terms in 
the whole genome. x = number of annotations found in the sample set, X = number of proteins in the 
sample set, N = number of proteins in the whole GO dataset 

GOGOGOGO----IDIDIDID    pppp----valuevaluevaluevalue    corr pcorr pcorr pcorr p----valuevaluevaluevalue    xxxx    NNNN    XXXX    NNNN    DescriptionDescriptionDescriptionDescription    

Sample 1Sample 1Sample 1Sample 1    

6629 3,64E-07 5,02E-05 6 717 8 14529 Lipid metabolic process 

44255 4,92E-06 2,63E-04 5 577 8 14529 Cellular lipid metabolic process 

6694 6,42E-06 2,63E-04 3 72 8 14529 Steroid biosynthetic process 

8610 7,93E-06 2,63E-04 4 272 8 14529 Lipid biosynthetic process 

33700 9,53E-06 2,63E-04 2 9 8 14529 Phospholipid efflux 

33344 1,46E-05 3,35E-04 2 11 8 14529 Cholesterol efflux 

9241 3,17E-05 6,25E-04 2 16 8 14529 Isoprenoid biosynthetic process 

6695 5,54E-05 7,65E-04 2 21 8 14529 Cholesterol biosynthetic process 

15918 5,54E-05 7,65E-04 2 21 8 14529 Sterol transport 

30301 5,54E-05 7,65E-04 2 21 8 14529 Cholesterol transport 

Sample 2Sample 2Sample 2Sample 2    

51258 2,50E-05 7,28E-03 3 47 18 14529 Protein polymerisation 

 

In sample 2, eighteen proteins were found to be up-regulated and five were found to 

be down-regulated by RSV treatment. Among the up-regulated proteins, the majority 

are involved in energy metabolism (6), followed by cellular organisation (5) and the 

XLC group (4), herein distributed among cholesterol (1), fatty acids or lipids (2) and 

xenobiotics (1). The majority of the down-regulated proteins are involved in protein-

biosynthesis and –degradation (2) followed by energy metabolism (1), cellular 

organisation (1) and one protein has another or unknown function (see Figure 4-14 C 

and D). 

Looking for GO terms over-represented in the set of regulated proteins compared to 

the whole set of annotations, only one GO term was found among the up-regulated 
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proteins, protein polymerisation (GO-ID 51258). This is a more general GO term, 

whose finding is caused by fibrinogen alpha, fibrinogen beta and tubulin, present in 

this set of proteins. 

Table 4-19 The ten most over-represented GO terms in the ontology biological process of the set of 
proteins found to be down-regulated after RSV treatment of sample 1 and sample 2, compared to terms 
in the whole genome. x = number of annotations found in the sample set, n = number of annotated 
proteins in the whole GO dataset, X = number of proteins in the sample set, N = number of proteins in 
the whole GO dataset 

GOGOGOGO----IDIDIDID    pppp----valuevaluevaluevalue    corr pcorr pcorr pcorr p----valuevaluevaluevalue    xxxx    nnnn    XXXX    NNNN    DescriptionDescriptionDescriptionDescription    

Sample 1Sample 1Sample 1Sample 1    

No over-represented GO terms found 

Sample 2Sample 2Sample 2Sample 2    

10033 1,57E-04 1,46E-02 2 75 4 14529 Response to organic substance 

32287 2,75E-04 1,46E-02 1 1 4 14529 
Myelin maintenance in the peripheral 

nervous system 

43217 2,75E-04 1,46E-02 1 1 4 14529 Myelin maintenance 

22011 5,51E-04 1,46E-02 1 2 4 14529 
Myelination in the peripheral nervous 

system 

50665 5,51E-04 1,46E-02 1 2 4 14529 Hydrogen peroxide biosynthetic process 

2093 5,51E-04 1,46E-02 1 2 4 14529 Auditory receptor cell morphogenesis 

45939 5,51E-04 1,46E-02 1 2 4 14529 
Negative regulation of steroid metabolic 

process 

32292 5,51E-04 1,46E-02 1 2 4 14529 
Ensheathment of axons in the peripheral 

nervous system 

45541 5,51E-04 1,46E-02 1 2 4 14529 
Negative regulation of cholesterol 

biosynthetic process 

60117 5,51E-04 1,46E-02 1 2 4 14529 Auditory receptor cell development 

 

The terms negative regulation of steroid metabolic process (GO-ID 45939) and negative 

regulation of cholesterol biosynthetic process (GO-ID 45541) were found among the 

ten most over-represented terms in the set of down-regulated proteins of sample 2. 

Except for position one, all of the terms presented in Table 4-19 were related to only 

one protein, the superoxide-dismutase [Cu-Zn]. 

 

4.4.1.24.4.1.24.4.1.24.4.1.2    Cellular pathways affectedCellular pathways affectedCellular pathways affectedCellular pathways affected    

Searching the KEGG database with the proteins affected in sample 1, two of them 

were found in the citrate cycle (KEGG pathway hsa00020), the PPAR signalling 



110  Results 

pathway (KEGG pathway hsa03320) and the biosynthesis of steroids (KEGG pathway 

hsa00100).  

In the TCA cycle, the ATP citrate lyase (ACLY) and succinate dehydrogenase (SDHC) 

were found to be up-regulated. The ACLY is the enzyme responsible for the formation 

of acetyl-CoA in the cytoplasm, while the SDHC is a monoheme cytochrome b, part of 

the complex II of the respiratory chain, responsible for transferring electrons from 

succinate to ubiquinone. 

In the PPAR signalling pathway, the apolipoprotein C-III (APOC3) and the long-chain-

fatty-acid CoA ligase 3 (ACSL3) were found to be up-regulated. The APOC3 is a 

secreted protein and as a part of  VLDLs and HDLs it plays a role in the systemic 

cholesterol transport. The ACSL3 activates long-chain fatty acids by the ligation of 

CoA. It thereby plays a key role in the synthesis of cellular lipids as well as the 

degradation of fatty acids. 

The biosynthesis of steroids is affected at three different positions, which are directly 

linked to the synthesis of cholesterol from farnesyl-pyrophosphate. The squalene 

synthetase (FDFT1) as well as the lanosterol 14-alpha demethylase (CYP51A1) were 

found to be up-regulated. The FDFT1 catalyses the first specific step in the cholesterol 

biosynthetic pathway, the conversion of farnesyl-diphosphate to squalene. CYP51A1 

catalyses the 14-alpha demethylation of lanosterol, a step essential for cholesterol 

biosynthesis. 

In addition, several pathways were found in which only one of the regulated proteins 

is involved. In three of them, the HMG-CoA synthase 1 plays a role: the synthesis and 

degradation of ketone bodies (KEGG pathway 00072), the butanoate metabolism 

(KEGG pathway 00650) and the valine, leucine and isoleucine degradation (KEGG 

pathway 00280). Furthermore, five other pathways somehow related to cholesterol 

were present, terpenoid biosynthesis (KEGG pathway hsa00900), fatty acid metabolism 

(KEGG pathway hsa00071), biosynthesis of unsaturated fatty acids (KEGG pathway 

hsa01040), adipocytokine signalling pathway (KEGG pathway hsa04920) and androgen 

and estrogen metabolism (KEGG pathway hsa00150). 

 

Searching the KEGG database with the proteins affected in sample 2 revealed one 

pathway in which three of the proteins are involved, seven pathways in which two of 

the proteins are involved and several others in which one of the proteins is involved. 

The pathway for Huntington’s disease (KEGG pathway hsa05016) is covered in three 
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positions. The superoxide dismutase [Cu-Zn] (SOD1) was found to be down-regulated, 

while two positions in the mitochondria were up-regulated, the ATPsynthase subunit 

beta, mitochondrial (ATPB) and the voltage-dependent anion-selective channel protein 

2 (VDAC2). The SOD1 is involved in the ROS defence of the cells and its inhibition has 

been shown to induce apoptosis (Huang et al. 2000). Besides its role in energy 

production, the ATPB was recently shown to act as high selective receptor for 

apolipoprotein A1, possibly playing a role in endocytosis of HDL particles (Martinez et 

al. 2003). VDAC2 is somehow involved in the connection between the general 

mitochondrial physiology and apoptosis, moreover, the VDAC are the sites of binding 

of the hexokinase and glycerol kinase to the mitochondria. 

Not to loose focus on the effects on proteins somehow related to cholesterol synthesis 

or metabolism, the pathways of Parkinson’s disease (KEGG pathway hsa05012), 

Alzheimer’s disease (KEGG pathway hsa05010), the complement and coagulation 

cascades (KEGG pathway hsa04610) and antigen processing and presentation (KEGG 

pathway hsa04612) covered in two positions were not considered in detail.  

Two positions of the glycolysis/gluconeogenesis (KEGG pathway hsa00010) were 

covered. The fructose-bisphosphate aldolase B (ALDOB) was found to be down-

regulated and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was up-

regulated after RSV treatment. The reversible conversion of fructose-1,6 bisphosphate 

to glyceraldehydes-3-phosphate is catalysed by ALDOB, while GAPDH catalyses the 

reversible oxidative phosphorylation of glyceraldehydes-3-phosphate. Beside this role 

in energy metabolism, the GAPDH plays a crucial role in protecting the cells from 

caspase-indipendent cell-death (CICD, (Colell et al. 2007)). 

In the glutathione metabolism (KEGG pathway hsa00480) two positions were covered 

and both were up-regulated. The isocitrate dehydrogenase 1 (IDH1) catalyses the 

NADP-dependent decarboxylation of iso-citrate to alpha-ketoglutarate while the 

glutathione S-transferase omega-1 (GSTO1) is involved in detoxification processes. The 

IDH1 was already shown to be up-regulated in sterol-deprived HegG2 cells and 

suggested to deliver the NADPH necessary for cholesterol and fatty acid synthesis 

(Shechter et al. 2003). So, it is also involved in glutathione metabolism, as a producer 

of NADPH, necessary for the formation of glutathione from glutathione-disulfide.  

The fructose and mannose metabolism (KEGG pathway hsa00051) was covered in two 

positions, of which one, the ALDOB, also present in the Glycolysis/Gluconeogenesis, 

was down-regulated while the other, the Ketohexokinase (KHK) was up-regulated. The 
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KHK catalyses the conversion of fructose to fructose-1P, the first step in the fructose 

metabolism. 

The synthesis and degradation of ketone bodies (KEGG pathway 00072), the butanoate 

metabolism (KEGG pathway 00650) and the valine, leucine and isoleucine degradation 

(KEGG pathway 00280) were again found, as the HMG-CoA synthase was also found in 

sample 2.  

One more pathways related to cholesterol was covered in one position, the fatty acid 

metabolism (KEGG pathway hsa00071). 

 

4.4.24.4.24.4.24.4.2    LEKLEKLEKLEK----935 treatment935 treatment935 treatment935 treatment    

4.4.2.14.4.2.14.4.2.14.4.2.1    General overviewGeneral overviewGeneral overviewGeneral overview    

In sample 1, three proteins were found in elevated amounts after LEK-935 treatment. 

Two of them are involved in energy metabolism, while the remaining one was 

categorised into the group of other/unknown functions. In addition, four proteins were 

found to be down-regulated. Two are involved in cellular organisation including 

transport processes, one in the protein synthesis or degradation and one in 

detoxification processes (see Figure 4-14 G and H). 

In sample 2, a higher number of proteins was found to be affected. In total, nine 

proteins were found to be up-regulated. The majority is involved in energy metabolism 

(5) while the remaining four proteins are equally distributed among protein 

biosynthesis or degradation (1), cellular organisation (1), fatty acids/lipids (1) and 

detoxification (1). Six proteins were found to be down-regulated, they were distributed 

among cellular organisation (2), protein-biosynthesis or –degradation (2), energy 

metabolism (1) and other functions (1, see Figure 4-14 I and J). 

 

Searching for over-represented GO terms in the category biological process, a 

tendency to general metabolic processes as shown in Figure 4-14 was proven for 

sample 1. In addition, two of the terms were related to coagulation. For sample 2, no 

statistically over-represented terms were found (see Table 4-20). 
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Table 4-20 The ten most over-represented GO terms in the ontology biological process of the set of 
proteins found to be up-regulated after LEK-935 treatment in sample 1 and sample 2, compared to 
terms in the whole genome. x = number of annotations found in the sample set, n = number of 
annotated proteins in the whole GO dataset, X = number of proteins in the sample set, N = number of 
proteins in the whole GO dataset 

GOGOGOGO----IDIDIDID    pppp----valuevaluevaluevalue    corr pcorr pcorr pcorr p----valuevaluevaluevalue    xxxx    nnnn    XXXX    NNNN    Description Description Description Description     

Sample 1Sample 1Sample 1Sample 1    

6097 4,13E-04 1,49E-02 1 2 3 14529 Glyoxylate cycle 

46487 6,19E-04 1,49E-02 1 3 3 14529 Glyoxylate metabolic process 

6102 8,26E-04 1,49E-02 1 4 3 14529 Isocitrate metabolic process 

6091 8,27E-04 1,49E-02 2 243 3 14529 
Generation of precursor metabolites and 

energy 

44262 1,12E-03 1,61E-02 2 283 3 14529 Cellular carbohydrate metabolic process 

5975 2,75E-03 2,87E-02 2 445 3 14529 Carbohydrate metabolic process 

6081 3,51E-03 2,87E-02 1 17 3 14529 Aldehyde metabolic process 

50819 3,71E-03 2,87E-02 1 18 3 14529 Negative regulation of coagulation 

50818 4,33E-03 2,87E-02 1 21 3 14529 Regulation of coagulation 

55114 4,47E-03 2,87E-02 2 569 3 14529 Oxidation reduction 

Sample 2Sample 2Sample 2Sample 2    

No statistically over-represented GO terms found 

 

For both samples, GO terms could be found to be over-represented in the set of down-

regulated proteins. In sample 1, mainly terms related to organelle localisation and 

cation homeostasis were found (see Table 4-21). Some of the terms over-represented 

among the proteins of sample 2 were related to negative regulations of cholesterol 

and sterol biosynthetic processes (see Table 4-21). 
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Table 4-21 The ten most over-represented GO terms in the ontology biological process of the set of 
proteins found to be down-regulated after LEK-935 treatment in sample 1 and sample 2, compared to 
terms in the whole genome. x = number of annotations found in the sample set, n = number of 
annotated proteins in the whole GO dataset, X = number of proteins in the sample set, N = number of 
proteins in the whole GO dataset 

GOGOGOGO----IDIDIDID    pppp----valuevaluevaluevalue    corr pcorr pcorr pcorr p----valuevaluevaluevalue    xxxx    nnnn    XXXX    NNNN    DescriptionDescriptionDescriptionDescription    

Sample 1Sample 1Sample 1Sample 1    

51235 3,20E-05 1,79E-03 2 48 3 14529 Maintenance of location 

1666 4,21E-05 1,79E-03 2 55 3 14529 Response to hypoxia 

51659 2,06E-04 1,79E-03 1 1 3 14529 Maintenance of mitochondrion location 

51657 2,06E-04 1,79E-03 1 1 3 14529 Maintenance of organelle location 

31643 2,06E-04 1,79E-03 1 1 3 14529 Positive regulation of myelination 

15682 2,06E-04 1,79E-03 1 1 3 14529 Ferric iron transport 

65008 2,32E-04 1,79E-03 3 894 3 14529 Regulation of biological quality 

30005 3,07E-04 1,79E-03 2 148 3 14529 
Cellular di-, tri-valent inorganic cation 

homeostasis 

55066 3,20E-04 1,79E-03 2 151 3 14529 Di-, tri-valent inorganic cation homeostasis 

30003 4,05E-04 1,79E-03 2 170 3 14529 Cellular cation homeostasis 

Sample 2Sample 2Sample 2Sample 2    

10033 2,60E-04 1,70E-02 2 75 5 14529 Response to organic substance 

32287 3,44E-04 1,70E-02 1 1 5 14529 
Myelin maintenance in the peripheral nervous 

system 

43217 3,44E-04 1,70E-02 1 1 5 14529 Myelin maintenance 

22011 6,88E-04 1,70E-02 1 2 5 14529 Myelination in the peripheral nervous system 

50665 6,88E-04 1,70E-02 1 2 5 14529 Hydrogen peroxide biosynthetic process 

2093 6,88E-04 1,70E-02 1 2 5 14529 Auditory receptor cell morphogenesis 

45939 6,88E-04 1,70E-02 1 2 5 14529 Negative regulation of steroid metabolic process 

32292 6,88E-04 1,70E-02 1 2 5 14529 
Ensheathment of axons in the peripheral nervous 

system 

45541 6,88E-04 1,70E-02 1 2 5 14529 
Negative regulation of cholesterol biosynthetic 

process 

60117 6,88E-04 1,70E-02 1 2 5 14529 Auditory receptor cell development 

 

 

4.4.2.24.4.2.24.4.2.24.4.2.2    Cellular pathways affectedCellular pathways affectedCellular pathways affectedCellular pathways affected    

For sample 1, no pathways affected by more than one protein were found, searching 

the KEGG database. For a complete list of the pathways, see Appendix VI. 

Glycolysis/Gluconeogenesis was again covered by GAPDH (see 4.4.1.2). The Citrate 

cycle and glutathione metabolism were also found, both involving the isocitrate 
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dehydrogenase 2 (IDH2). The IDH2 is a mitochondrial protein that catalyses the 

oxidative decarboxylation of isocitrate to alpha-ketoglutarate. 

For sample 2, five pathways were found to be covered in two positions, the 

Huntington’s disease (KEGG pathway hsa05016), the pathogenic E.coli infection 

(KEGG pathway hsa05130), the glutathione metabolism (KEGG pathway hsa00480), the 

antigen processing and presentation (KEGG pathway hsa04612) and the fructose and 

mannose metabolism (KEGG pathway hsa00051). The proteins involved in these 

pathways were the same as described in 4.4.1.2, except for those not affected by LEK-

935 but by RSV. The fatty acid metabolism (KEGG pathway hsa00071) was the only 

pathway somehow related to cholesterol affected by one of the proteins. 



116  Results 

 



Discussion  117 

5555    DiscussionDiscussionDiscussionDiscussion    

 

The aim of this study was the analysis of the effects of cholesterol lowering agents on 

the proteome of primary human hepatocytes. In order to get information about low-

abundant proteins, the samples were fractionated. The cytosolic fraction and the 

microsomal fraction were analysed by two-dimensional gel electrophoresis and a nLC-

MS approach, respectively.  

For reasons of clarity, the discussion has been divided into two chapters. The first 

comprises the analytical approaches used during this study, the results gained, the 

advantages as well as the major drawbacks observed. In the second chapter, the 

proteins found to be regulated and their possible relationship to cholesterol 

homeostasis is critically discussed. 

 

5.15.15.15.1    Experimental approaches, their quirks and resultsExperimental approaches, their quirks and resultsExperimental approaches, their quirks and resultsExperimental approaches, their quirks and results    

 

5.1.15.1.15.1.15.1.1    ProteomicsProteomicsProteomicsProteomics    

Usually, 2D-PAGE and nLC-MS are used to determine the proteome of a cell or 

cellular compartment at a distinct time point under distinct conditions. In a semi-

quantitative analysis, there is an additional comparison of samples with different 

status, like health versus ill or untreated versus treated and so on.  

Only determining the protein content of a cellular status provides information about 

proteins present in the cell under distinct conditions and builds the basis for further 

investigations. In addition, the semi-quantitative experiments are sought either to 

deliver information about cellular processes initiated by a treatment or to help finding 

biomarkers present in sick but not in healthy cells or tissues. Quantification occurs at 

the level of protein abundance, measured by either the spot intensity or the presence 

of peptides derived from a protein. The proteomics does not analyse some kind of 

precursor or product molecules like the other–omics (genomics, transcriptomics or 

metabolimics), but the real executing molecules of a cell. 

The more and more evolving picture of high-complexity of cellular processes and 

regulations underlines the need for analytical approaches at the level of the proteome, 
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but at the same time clearly demonstrates the prospects and challenges of the 

approaches present today. To name a few, 2D gel electrophoresis provides a high 

resolution and enables the detection of post-translational modifications as well as the 

differentiation between protein-isoforms, both quite difficult to achieve with nLC-MS 

approaches. In contrast, it is quite difficult to display integral membrane proteins by 

2D-PAGE due to their hydrophobic nature. The nLC-MS in turn is able to display 

membrane proteins and quite high separation capacities can be achieved by adding 

some more separation steps. But an increasing number of separation steps reduces 

the reproducibility of the experiments. 

Both approaches should not be regarded as opponent players but as tools that may, in 

the frame of an experimental setup as used in this study, complement each other. The 

question arises as to whether the expression analysis alone is the method of choice to 

understand the effects of a drug or cellular behaviour. The final outcome of a 

proteomic study is a raw overview about the processes taking place inside the cell. 

Among the found proteins, some are specific for the treatment/cell status investigated 

but there are also a few that are related as unspecific reactions, caused by culturing, 

stress of the treatment and so on. So, each protein found during such a study needs a 

detailed further analysis to fully understand the processes inside the cells. The 

proteomic analysis thus leads to a starting point and gives some, of course important, 

impressions about where to go next, but its combination with other –omics, like 

transcriptomics and metabolomics is necessary to get a complete picture. 

 

5.1.25.1.25.1.25.1.2    TwoTwoTwoTwo----dimensional gel electrophoresisdimensional gel electrophoresisdimensional gel electrophoresisdimensional gel electrophoresis    

The general applicability of the approach for the analysis of different sub-cellular 

fractions derived from primary human hepatocytes has previously been proven 

(Woerner 2006). Nevertheless, strong effects of the sample handling on the protein 

pattern of the 2D-PAGE as well as a contamination with bacterial protein were 

observed. These issues will be discussed in the following sections in detail. An 

evaluation of the experimentally gained data as well as explanations and solutions for 

the observed effects will be given.  
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5.1.2.15.1.2.15.1.2.15.1.2.1    Sample handlingSample handlingSample handlingSample handling    

Freezing the protein only one time prior to its application to IEF led to dramatic 

changes in the spot pattern of the resulting gels (see 4.2.1.2). This is in accordance 

with studies in the literature that describe the effect of freeze-thawing cycles on the 

activity of some enzymes (see (Shikama and Yamazaki 1961; Seguro et al. 1989; Heinz 

et al. 1990; Seguro et al. 1990) for example). Several factors affect the severity of 

activity inhibition by freeze-thawing cycles, like the nature and condition of protective 

additives, the pH of the solution, the freeze-thawing rates and the protein 

concentrations (Tamiya et al. 1985). 

Protective additives were not used during this study to not disturb the following 

proteomic analysis. The pH was the same for each sample (potassium phosphate 

buffer adjusted to pH 7.4). Freezing samples in sodium phosphate buffer, a method 

widely used in molecular biology, is known to be not ideal due to a drop of the pH 

during the freezing process. This is caused by precipitation of the disodium salt 

(Na2HPO4) at low temperatures (Murase and Franks 1989) which acidifies the sample 

solution. Drops of the pH from 7.5 to 4.5 are described, leading to the dissociation of 

at least quarternary structures (Anchordoquy and Carpenter 1996). In contrast, 

potassium phosphate buffer as used in this study does not exhibit such a drop in pH 

at –20 °C. With a pH of 7.7 it remains more or less at the adjusted value (pH 7.5) 

(Anchordoquy et al. 1996). Moreover, (Cao et al. 2003) reported the recovery of lactate 

dehydrogenase activity stored (freezed and thawed) in potassium phosphate buffer 

that is at least equal if not superior to Tris or HEPES buffer, recommended for protein 

storage. To sum up, the buffer used during this study complied with the requirements 

of a system that provides a maximum of protein stability during storage. 

For the freeze-thawing rate, studies describing different effects on different proteins 

have been published (Shikama et al. 1961; Jiang and Nail 1998; Cao et al. 2003). Here, 

additional experiments were performed to examine the observed effects of freezing-

thawing rates on the spot pattern of 2D gels more closely. All samples of the 

experiments were handled in the same way, slowly freezing and fast thawing, as 

recommended by (Cao et al. 2003). The experiments were performed with proteins 

derived from primary human hepatocytes, HCT-116, S.pombe as well as E.coli cells, to 

validate the effect of the samples origin. 
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The obtained results clearly demonstrate an extreme effect of freezing-thawing in 

human samples. In contrast, the samples derived from the unicellular organisms seem 

to be more or less resistant (see 4.2.1.2). 

Between the four samples examined, only the protein concentration differed. While 

the protein concentration of the samples derived from HCT-116 was relatively low 

(1.7 µg/µl), that of the samples derived from primary human hepatocytes, yeast and 

bacteria was a bit higher (3.3 µg/µl, 2.5 – 2.8 µg/µl and 5.0 µg/µl for hepatocytes yeast 

and bacteria respectively). One may argue that the low protein concentration of the 

HCT-116 sample is the reason for the disturbed spot pattern. In contrast, (Jiang et al. 

1998) as well as (Cao et al. 2003) reported a recovery of nearly 100 % of enzymatic 

activity at a protein concentration of 0.5 - 1 µg/µl, which is considerably lower than 

that of the HCT-116 samples. While the concentrations reported belong to isolated 

single-proteins, the concentration used during this study is that of a mixture of 

proteins. Nevertheless, a cryoprotective effect of BSA or albumin has been reported 

that is related to the increase in total protein concentration (Tamiya et al. 1985; Heinz 

et al. 1990). In sum, the observed effect cannot be related to the protein concentration 

as the differences in the protein concentrations are too small to cause a detectable 

effect. 

One reason for the obviously increased sensitivity of the human samples could be 

their high complexity compared to the samples derived from single-cellular 

organisms. In the human samples, the loss of low amounts of protein may already be 

visible due to the high amount of different protein species. The more simple samples 

of the single-cellular organisms may compensate for this loss by the high amount of 

each protein in relation to the mass of protein present in the sample. In contrast, the 

number of spots present per gel does not count for this explanation, as it is more or 

less equal between the four different samples. Interestingly, the effect is not specific 

for primary human hepatocytes, what may be speculated due to its characteristic as a 

primary cell culture. The effect was observed in a similar manner in samples derived 

from HCT-116 cells, too. HCT-116 is a widely used maligne tumorigenic cell-line. 

To sum up, the proteins derived from human samples show a high sensitivity towards 

freeze-thawing cycles, while the bacterial and yeast samples do not. The reasons 

could not be determined. Nevertheless, the effect underlines the necessity, in 

particular in the case of human samples, to adapt the experimental conditions to each 

kind of sample for proteomic approaches separately. The effect of freeze-thawing 
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should be studied in detail, as its compensation may really ease up gel-based 

proteomic studies of human samples. 

 

5.1.2.25.1.2.25.1.2.25.1.2.2    Sample contaminationSample contaminationSample contaminationSample contamination    

After finishing all identifications (60 out of 94 spots were identified) a contamination 

of sample 1 was obvious as the protein in 46 (76 %) of the 60 spots identified 

originated from E.coli. Therefore, the further use of this sample was getting 

questionable as the contamination of the sample could also affect the proteome of the 

cells and thereby the result of the experiments. 

Retracing every experimental step, two possible entries for the E.coli proteins were 

found. The first one is a contamination already during cell culture. This entry point can 

most probably be excluded as no contamination of other samples was observed and 

the E.coli cells would have been detected during the culturing process. After their 

reception from Dr. Monostory, the vials were opened during sample preparation and 

prior to their application to analysis only. Luckily, a contamination occurring during 

these processes would not affect the protein expression of the cells in a way that 

disturbs the proteomic analysis.  

Furthermore, the first step after opening the vial is the addition of protease inhibitors 

to avoid the degradation of proteins by intracellular proteases. These inhibitors do not 

only target mammalian proteases but also prokaryotic proteases. Therefore, an effect 

of the E.coli contamination caused by degradation of the human proteins by bacterial 

proteases can also be excluded. In the second step, cell lysis is performed by 

sonication. Thereby, all cells are destroyed which prevents bacterial growth and any 

kind of large-scale bacterial protein expression. For these reasons an effect of the E. 

coli contamination on protein expression or degradation is quite implausible.  

At the same time, the sonication step is suggested to be the most probable point of 

entrance of the E. coli. In our lab, E. coli are widely used for heterologous protein 

expression and cell lysis is usually performed at the same sonicator that was used 

during the sample preparation of this study. Although the sonotrode was cleaned two 

times with a bulk of 70 % ethanol prior to each sonication, 100 % purity cannot be 

guaranteed here. In addition, this is the only step in which the sample is in touch with 

material that was in contact with E. coli protein. 

As mentioned above, an observable effect of the contamination on the synthesis or 

degradation of the human proteins is implausible to impossible. Nevertheless, there is 
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a general effect as the bacterial proteins replace or even squeeze out human proteins 

of the 100 µg protein load onto the IEF. Their detection occurred during the semi-

quantitative analysis, therefore the strength of contamination has to differ between the 

three samples. This resulted in their detection as “regulated” proteins. 

To evaluate the effect of squeezing on the results of the semi-quantitative analysis, a 

theoretical examination of a sample contamination was performed. It was assumed 

that each sample is divided into three vials and spiked with three different amounts of 

bacterial protein (high, middle and low amount). This would result in six different 

combinations of effects detectable at the level of regulation. The theoretical scheme is 

shown in Figure 5-1. 
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Figure 5-1 Theoretical examination of the effects observable at different strengths of relative sample 
contamination with protein derived from bacteria. On the left, the relative strength of contamination is 
depicted, where the strength correlates with the size of the arrows. The bigger the size of the arrow, the 
bigger is the contamination in this sample compared to the other. On the right, the theoretical effects 
are shown, green arrows mark up-regulated proteins, red arrows mark down-regulated proteins, B = 
bacterial protein identified, H = human protein identified. 

 

According to the relative strength of contamination in the three samples, different 

“regulation-patterns” have to be expected. For example, the strongest contamination 

in sample 2 (S2) followed by sample 1 (S1) and the lowest amount of bacterial protein 

in the control sample, would result in bacterial proteins “up-regulated” in the two 
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treatments compared to the control and “down-regulated” in S1 compared to S2 (see 

Figure 5-1, line 4). At the same time, the tendencies of the human proteins would 

point towards a “down-regulation” in the two treatments compared to control as well 

as an “up-regulation” in S1 compared to S2. 

All of the spots identified as E.coli protein in the LEK-935 treated sample were “up-

regulated” compared to the control. The same was true for the majority of spots in the 

RSV treated sample. In addition, four spots “disappeared” after RSV treatment. 

Compared to the LEK-935 treated sample the RSV sample showed both up- as well as 

down-regulated spots, with a tendency towards down-regulation, see Figure 5-2. 

For the human proteins, regulations into both directions were observed, with a 

stronger tendency towards down-regulations for RSV vs control and LEK-935 vs 

control. The comparison of RSV and LEK-935 pointed towards an up-regulation (see 

Figure 5-2). 

Setting RSV treatment as S1 and LEK-935 treatment as S2, comparison was made to 

the ideal contamination depicted in Figure 5-1. The contamination observed in reality 

clearly resembles the effects shown in line four of Figure 5-1 and described in the text 

above. The LEK-935 sample (S2) showed the strongest contamination, followed by the 

RSV sample (S1) and the control. The four proteins found to be down-regulated after 

RSV treatment are contradictory to this kind of contamination, but have to be regarded 

as a concession to reality. The overall tendencies clearly point towards a 

contamination according to the pattern of line four of Figure 5-1. 
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Figure 5-2 Summary of regulations as found in sample 1. Only those proteins that have been identified 
were concerned. 

 

Following the explanations above, the human proteins found to be up-regulated can 

be regarded as real regulations. Those proteins found to be down-regulated need a 

detailed view on their regulation. The same is true for the comparison of RSV and 

LEK-935, the proteins down-regulated can be regarded as positive hits, while the up-

regulated proteins also need a detailed view. 

During the nLC-MS analysis, the E.coli contamination would not have been detected 

as the identification is usually restricted to a specific organism to shorten the analysis 

time. To exclude an effect of the contamination at the level of quantitation, the MS/MS 

spectra were also applied to a species open search after detection of the 

contamination during 2D gel electrophoresis. No such contamination was detectable 

in the microsomal fraction (see Table 5-1). Even if the number of E.coli proteins 

identified in sample 1 was a bit higher (47) than that observed in sample 2 (9), it does 

not count for an E. coli contamination as it was a number comparable to other false 

positive identifications of bacterial as well as eukaryotic proteins in the open-species 

search (data not shown). This kind of false positive identifications is usually found in 

database searches performed with huge amounts of mass spectra, as gained during 

nLC-MS experiments.  
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Table 5-1 Number of human and bacterial proteins identified in an open-species search of the MS/MS 
spectra gained by nLC-MS analysis of the microsomal fraction of primary human hepatocytes. 

    Number of proteins identifiedNumber of proteins identifiedNumber of proteins identifiedNumber of proteins identified    

 Sample 1 Sample 2 

Homo sapiens 755 629 

Escherichia coli 47 9 

 

In general, the contamination did not disrupt the analysis but restricted the results of 

the 2D-PAGE of sample 1 to the top hits. The increased amount of strange proteins in 

the treated samples reduced the amount of human proteins. So, those spots down-

regulated by the treatment needed a detailed view on their regulation, mainly if their 

regulation was marginal, with a value near the cut-off of 0.5. The spots up-regulated 

or even appearing in treated samples are top hits as their regulation was not 

diminished below the threshold by the bacterial contamination. 
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5.1.35.1.35.1.35.1.3    Nano liquid chromatography coupled to mass spectrometryNano liquid chromatography coupled to mass spectrometryNano liquid chromatography coupled to mass spectrometryNano liquid chromatography coupled to mass spectrometry    

 

5.1.3.15.1.3.15.1.3.15.1.3.1    General applicabilityGeneral applicabilityGeneral applicabilityGeneral applicability    

A total of 588 proteins were identified with an average sequence coverage of 11.0 % 

and an overlap of 63.3 % (372 proteins) between the two human donors investigated. 

This shows that the reproducibility and comparability of the method regarding 

different donors is quite high (cf. Figure 4-8 and Figure 4-9). It has to be mentioned 

that this high correlation was obtained despite the reduced amount of sample load in 

the case of Sample 2 (90 µg) compared to Sample 1 (280 µg), demonstrating the high 

sensitivity of the approach. On the other hand, these results reflect the limits of the 

approach concerning the resolution, since a three times higher sample load leads to 

an only 1.25 times higher number of proteins identified (Sample 1: 534 proteins, 

Sample 2: 426 proteins) with the same average sequence coverage. This observation 

may be explained by the predominance of high abundant peptides in the sample 

superposing the signals of lower abundant peptides. To overcome this limitation, 

several possibilities exist. One would be the adaptation of the rules for precursor ion 

selection in the MALDI-TOF/TOF, excluding those precursor masses already used once 

or twice for fragmentation from further experiments. Other possibilities are the use of 

more shallow gradients or the collection of more and smaller fractions in the first 

and/or second dimension, which could lead to an increase in the number of identified 

proteins. However, this would proportionally increase the time for analysis, while the 

adaptation of the rules for precursor ion selection keeps the analysis time as short as 

possible. It should be mentioned that even the lower (90 µg) amount of sample 

material lead to a number of proteins identified in the microsomal fraction of 

mammalian cells which is comparable to other iTRAQ™ related approaches presented 

in the literature (Glen et al. 2008) where much higher sample loads were used (280 

proteins identified by unique peptides from 400 µg sample load compared to 298 

proteins identified by unique peptides from 90 µg sample load in our study). As 

shown in a previously published study (Archakov et al. 2007) the relationship between 

the number of identified proteins / peptides and the sample concentration has a 

logarithmic dependence. Thus, it seems that the amount of sample usually loaded 

onto 2D LC-MS experiments might be located in the saturation region of the curve. 

Taken together, our results paved the way for further proteomic studies with human 
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hepatocytes and possibly other cell types which are missing until now due to the low 

amounts of available sample material. 

To evaluate the usefulness of this experimental design for the analysis of the targeted 

microsomal fraction containing proteins involved in cholesterol homeostasis as well 

as drug metabolism, the identified proteins were analysed regarding cellular 

localisation and function. 

To check the subcellular localisations of the identified proteins, a manual search of 

the Expasy database, supported by bioinformatic analysis of the Gene Ontology 

database (data not shown), was performed. The high amount of mitochondrial and 

cytosolic proteins inside the microsomal fraction of a cell lysate as observed here is a 

common phenomenon, described several times in the literature (Filen et al. 2005; 

Stevens et al. 2008). Since microsomes are generated during cell lysis by 

fragmentation of intracellular membranes and their reassembly to smaller lipid-

bilayer micelles, they contain many cytoplasmic proteins. The huge amount of 

ribosomal subunits is due to the ribosomes localised at the rough endoplasmic 

reticulum, which is part of the microsomal fraction. The composition of the two 

samples correlates very well with respect to the cellular localisation of the proteins 

(see Figure 4-8). Additionally, the samples contained a huge amount (50 %) of 

membrane proteins, which is impossible to obtain using gel-based proteomic 

approaches. 

The proteins identified in the microsomal fraction (see Appendix V and 4.2.2.2) 

confirm the choice of nLC-MS for the analysis of this fraction. This high amount of 

membrane proteins would not be detectable by 2D gel electrophoresis. 

To further explore which cellular pathways are accessible for biological studies using 

this experimental design, the function of the identified proteins and their participation 

in corresponding biological networks was analysed using the Expasy (Figure 4-9), 

Gene Ontology (Table 4-3) and KEGG (data not shown) databases. The human samples 

contained many proteins involved in xenobiotic metabolism and/or lipid/cholesterol 

metabolism, reflecting the specialisation of hepatocytes. The quite interesting group of 

cytochromes P450 playing a central role in the xenobiotic and steroid metabolism 

(reviewed in (Bernhardt 2006) and (Schuster and Bernhardt 2007)) was covered by 

fourteen members, a number comparable to targeted approaches using SDS-PAGE – 

LC-MS combinations published during the last years (Galeva et al. 2003; Lane et al. 

2004; Jia et al. 2007). Together with the high coverage of distinct xenobiotic/drug 
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metabolising pathways and the central part of the sterol biosynthesis in the human 

samples, this opens the possibility for a deeper analysis of these crucial pathways in 

further proteomic studies. 

Finally, since a semi-quantitative proteomic approach was the aim of this study, the 

applicability of the method to iTRAQ™ labelling and further quantitation was checked. 

In 95 % - 99 % of a random examination of 2,000 MS/MS spectra the reporter masses 

were detected, proving the suitability of the approach for semi-quantitative 

experiments. Moreover, the identification of 60 % of the proteins by at least two 

unique peptides was proven. To get reliable quantitative data of single proteins in a 

LC-MS experimental design the use of unique peptides for quantification is strongly 

recommended (Boehm et al. 2007). So these results furthermore confirmed the 

practicability of the approach for quantitative studies and have recently been 

published (Woerner et al. 2009). 

 

5.1.3.25.1.3.25.1.3.25.1.3.2    BioinformaticsBioinformaticsBioinformaticsBioinformatics    

After proving the applicability of the approach for semi-quantitative experiments 

targeted towards the microsomal fraction of primary human hepatocytes, the semi-

quantitative analysis of the MS/MS spectra was evaluated. 

Almost no experience on semi-quantitative nLC-MS experiments using the iTRAQ™- 

label was present at Saarland University at the beginning of this study. But different 

results for protein identifications using the same data but different algorithms have 

already been described (Keller et al. 2005). Besides the identification, the quantitation 

is the second very important part of a proteomic study that is performed by 

computational aid.  

For the software packages available for the analysis of 2D gel images, studies are 

available comparing their handling, performance and the gained results (Raman et al. 

2002; Rosengren et al. 2003; Arora et al. 2005; Kang et al. 2009) as well as their impact 

on the experimental variance (Maurer et al. 2005; Wheelock and Buckpitt 2005). 

The iTRAQ™ label belongs to a quite young generation of semi-quantitative 

approaches, so the situation is different here. Only a few algorithms are available for 

iTRAQ™ reporter ion quantitation. Comparison of these algorithms was usually 

described on defined protein mixtures mixed in defined ratios. The publication 

introducing iTRACKER (Shadforth et al. 2005) for quantitation of iTRAQ™ reporter ion 

signals describes a good correlation (r2=0.98) between the results of iTracker and 
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ProQuant, the quantitation algorithm supplied by Applied Biosystems. The publication 

introducing Mulit-Q (Lin et al. 2006) for iTRAQ™ quantitation did not show any 

comparison to another quantitation software. In the publication introducing Quant 

(Boehm et al. 2007), the authors compare ProteinPilot™ (ProQuant algorithm), Mascot 

2.2 and Quant on quantitation of a six protein mixture. On this level (low amount of 

different proteins), they proved the consistency of their results with those gained by 

ProQuant™ and Mascot 2.2.  

In contrast to the studies above, a more recently published study (Lacerda et al. 2008) 

reported dramatic differences between the results of Peaks and Mascot after the 

quantitation of a six-protein mixture and a real proteomic sample.  

So far only one comparison of software packages available for iTRAQ quantitation has 

been performed on a real proteomic sample (Lacerda et al. 2008). This comparison 

revealed major differences in the results gained from these packages. Under defined 

conditions, most of the other packages finally come to consistent results according to 

the corresponding publications. 

The general consistency of ProteinPilot, Mascot and Quant has been proven by a six 

protein-mixture (Boehm et al. 2007). So they were chosen for quantitation. This should 

allow an evaluation of the effect of algorithm choice on detectable regulations in the 

context of a real proteomic analysis. 

ProteinPilot™ 2.0 incorporating the ProGroup™ algorithm is the recommended 

firmware. It allows identification (Shilov et al. 2007) as well as quantitation. 

Quantitation is performed on unique peptides only, while identification is “improved” 

by adding information about the shared peptides, too. 

MASCOT 2.0 also allows identification as well as quantitation. In contrast to 

ProteinPilot, a restriction of the quantitation to unique peptides is not possible in 

Mascot. 

The use of Quant should deliver data about the effect of the restriction to unique 

peptides as already described by (Boehm et al. 2007). It is a tool not able to identify 

proteins but to use the Mascot result file (.dat) as source for quantitation. 

The consistency between the quantitation results of the three software packages used 

in this study was unexpectedly low, which led to the suggestion of the detection of 

false-positive as well as false-negative results. A discrepancy between Mascot and 

Quant compared to ProteinPilot™ may be likely to be expected due to the differences 

in data extraction (see 4.2.2.4) and in the identification algorithms. But no systematic 



Discussion  131 

basis for the differences was observable. The parameters of quantitation that can be 

set in the packages differ from nearly no experimenter-influence for ProteinPilot™ to a 

variety of parameters that need to be set in Mascot 2.0 as well as Quant. These settings 

were made as similar as possible (see 3.8.3). Nevertheless, some of the differences 

observed may be related to different settings of the quantitation algorithms. 

As reported by (Boehm et al. 2007), the three packages correlate well under defined 

conditions, like a 1:1 mix of a six-protein mixture. This was proven in this study, as no 

big differences were observed at the level of internal controls. The averaged values 

ranged from 0.99 to 1.01, the corresponding standard deviations from 0.10 to 0.13. 

Both values are absolutely consistent with those reported in the literature (Ross et al. 

2004; Boehm et al. 2007; Wiese 2007).  

The number of proteins found to be regulated varied between the three software 

packages. The averaged correlation between the results was about 36.8 %. It was 

shown that this difference is, to some extend, related to differences in identification 

(either not or only insufficiently identified in one of the packages). About 39.5 % of the 

differences observed were due to differences in identification processes while the 

majority of 60.5 % was caused by different quantitation results. In fact, the borderlines 

between these two criteria blur, as the number of identified peptides finally affects the 

number of peptides used for quantitation.  

Another factor that has to be mentioned is the cut-off value set to detect regulated 

proteins. The criteria for the detection of regulated proteins developed and applied 

during this nLC-MS approach are highly stringent, which is true for those criteria used 

in the gel-based approach, too. This high stringency was chosen with the knowledge 

about the high risk of false negatives. Decision was made to accept a possibly high 

number of false negatives to avoid, if procurable, any false positive hit. False positives 

may dramatically interfere the following ranking of the hits into the biological 

background, while false negatives causes gaps which are, in the case of affected 

interesting pathways, easy to investigate by further studies using Western blots etc.. 

Nevertheless, this high stringency may further strengthen the differences between the 

software packages as the cut-off was set for each package separately. 

To summarise, a dramatic effect was observed for the choice of software used for 

quantitation on the outcome of semi-quantitative nLC-MS experiments. These results 

underline the fundamental and indispensable role of bioinformatics in proteomic 

approaches. 
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5.1.45.1.45.1.45.1.4    SummarySummarySummarySummary    

Both approaches, nLC-MS and 2D-PAGE, were successfully applied for the proteomic 

analysis of primary human hepatocytes. The 2D-PAGE was used to analyse cytosolic 

proteins while the protein content of the microsomal fraction was determined by nLC-

MS (see Appendix V). A set of 44 proteins was found to be regulated after treatment 

with one of the cholesterol lowering agents, rosuvastatin or LEK-935 by the 

combination of both approaches (see below). 

Despite the problems which occurred during this study, both the general experimental 

setup as well as the choice of 2D-PAGE and nLC-MS were proven for the analysis of 

primary human hepatocytes. Through the addition of the nLC-MS to the analytical 

setup, the targeted cholesterol related pathways were covered, while the 2D-PAGE 

revealed information about the soluble proteins in the cytosol, providing metabolic 

precursors for cholesterol biosynthesis (see below). 

Furthermore, the two dimensional gel electrophoresis delivered information about the 

sample status, like protein degradation and E.coli contamination, that are usually not 

visible during a nLC-MS approach. 
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5.25.25.25.2    The effects of cholesterol lowering agentsThe effects of cholesterol lowering agentsThe effects of cholesterol lowering agentsThe effects of cholesterol lowering agents    

 

5.2.15.2.15.2.15.2.1    The effects ofThe effects ofThe effects ofThe effects of rosuvastatin on the proteome of primary human  rosuvastatin on the proteome of primary human  rosuvastatin on the proteome of primary human  rosuvastatin on the proteome of primary human 

hepatocyteshepatocyteshepatocyteshepatocytes    

This study describes for the first time the effects of rosuvastatin on the proteome of 

primary human hepatocytes. The examination of the cytosolic and microsomal 

fraction of sample 1 treated with rosuvastatin revealed eleven proteins present in 

higher amounts than in the untreated samples, while the amounts of three proteins 

were found to be reduced. For sample 2, the amounts of 24 proteins were found to be 

significantly altered. Of these 24 proteins again the majority (19) was found in 

increased amounts. 

 

5.2.1.15.2.1.15.2.1.15.2.1.1    Cholesterol related proteinsCholesterol related proteinsCholesterol related proteinsCholesterol related proteins    

For sample 1, five of the proteins present in higher amounts could be somehow 

related to a possible compensating mechanism of the cell to enhance the cholesterol 

synthesis. 

The ATP citrate lyase (ACLY), found to be up-regulated, plays a crucial role for the 

synthesis of cytoplasmic acetyl-CoA (Wang et al. 2009) that is especially used by the 

cytoplasmic HMG-CoA synthase 1. This protein was found to be more than three times 

up-regulated and catalyses the synthesis of HMG-CoA. 

The acetyl-CoA produced by ACLY could also be used for fatty acid synthesis. But the 

increased amount of long-chain fatty acid coA ligase (ACSL) points towards a down-

regulation of this metabolic pathway. The ACSL produces long-chain fatty acyl CoAs 

that have an inhibitory effect on the acetyl-CoA carboxylase, catalysing the initiation 

step of de novo fatty acid synthesis (Goodridg.Ag 1973b, 1973a; Hardie 1989).  

This inhibitory effect of the long-chain fatty acyl-CoAs may only be a side-effect of the 

beta-oxidation of fatty acids started by the ACSL (Schoonjans et al. 1995). The up-

regulation of this pathway that leads to acetyl-CoA or acetoacetyl-CoA, has already 

been described for lovastatin (Singh et al. 1998). The finding of up-regulated ACSL 

may explain this previously described effect. A correlation between the expression 

level and the activity of all three proteins mentioned so far has previously been 

described (Spence and Pitot 1982; Mehrabian et al. 1986; Schoonjans et al. 1993). 
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Beside these enzymes delivering precursor molecules or acting at quite early steps of 

the mevalonate pathway, in sample 1, two more enzymes involved in the sterol-

targeted branch of the pathway were found in higher amounts. The squalene synthase 

(FDFT), a key enzyme for the metabolite flow into the sterol branch of the mevalonate 

pathway (Do et al. 2009) was detected as well as the lanosterol 14-demethylase 

(CYP51). 

For the estradiol 17-beta dehydrogenase 12 (DHB12), on the first sight, an effect is 

expected on the formation of estrogens. The 17-beta dehydrogenases catalyses the 

transformation of estrone to estradiol, which exhibits besides its function as sexual 

hormone also ROS protective functionality (Wang et al. 2001). Nevertheless, the 

(DHB12) was shown to be involved in fatty acid elongation, acting as a reductase of 

long-chain fatty acly-CoA as well as 3-keto-acyl-CoA (Moon and Horton 2003). 

Furthermore, only a poor correlation of the enzyme to estradiol levels is reported 

(Nagasaki et al. 2009). So, in addition to the beta-oxidation of the fatty acids activated 

by ACSL, they may also be elongated, leading to a set of different long-chain fatty 

acyl-CoAs involved in different regulation mechanisms, reviewed in (Faergeman and 

Knudsen 1997). 

As already shown for HMCS1, FDFT1, CYP51 and ACLY (Horton et al. 2002), the 

expression of DHB12 may also be regulated, at least in parts, by SREBP2, even if the 

regulation is not as strong as reported for the other enzymes (Moon et al. 2003). In 

contrast to SREBP1 that activates de novo fatty acid synthesis, SREBP2 is known to be 

mainly responsible for the regulation of cholesterogenic enzymes (Horton et al. 2002). 

In sample 2 two proteins related to cholesterol biosynthesis were found in increased 

amounts. The cytoplasmic isocitrate dehydrogenase plays a key role in lipogenesis by 

supplying the NADPH for fatty acid and cholesterol biosynthesis (Shechter et al. 2003) 

(Koh et al. 2004). Again, the HMG-CoA synthase 1 was found in increased amounts, 

necessary for the production of HMG from acetyl-CoA and acetoacetyl-CoA. An 

indication for activated beta-oxidation of fatty acids in sample 2 is given by the 

increased amounts of mitochondrial 3,2 trans-enoyl-CoA isomerase (D3D2). This 

enzyme catalyses a key-step of beta-oxidation of unsaturated fatty acids in both 

compartments peroxisomes (Hiltunen et al. 1996) as well as mitochondria (Janssen et 

al. 1994) (Stoffel et al. 1994). Another indication for an enhanced beta-oxidation may 

be the increased amount of carbonic anhydrase 2 (CAH2), catalysing the formation of 
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bicarbonate from carbon dioxide, which is a side-product of beta oxidation and has to 

be buffered in the bicarbonate system. 

Thus, enzymes involved into the biosynthesis of cholesterol and acting at key positions 

of these pathways were found to be up-regulated in both samples. For sample 1, a 

regulation via the SRBP2 can be suggested but that was not found for sample 2. 

Furthermore, the findings of ACSL, D3D2 and CAH2 point towards an increased beta-

oxidation in both samples. 

In addition, proteins involved in cholesterol transport were found to be regulated in 

both samples. The members of the apolipoprotein C family (ApoC) are protein 

constituents of chylomicrons, VLDL and HDL particles (Jong et al. 1999). The increased 

amounts of Apo CIII and Apo CI in sample 1 may be related to their role as important 

modulators of lipoprotein metabolism, as reviewed in (Shachter 2001). They exhibit 

inhibitory effects on the clearance of plasma lipoprotein particles. This way, their 

presence in the plasma is elongated and the supply of cholesterol and fatty acids to 

extrahepatic tissues is guaranteed. Therefore, the increased expression may directly 

be related to a decrease in hepatic clearance of lipoprotein particles, securing the 

supply of triglycerides and cholesterol to extrahepatic tissues. On the other hand, (Ooi 

et al. 2008) reported a decreased production and increased catabolism of VLDL Apo-

CIII in the metabolic syndrome after rosuvastatin treatment. So the question comes up 

as to whether the increased amount of Apo CI and Apo CIII is caused by an enhanced 

expression, a decreased exocytosis or an increased endocytosis leading to their 

accumulation in the ER. This question is further strengthened by the knowledge about 

the different actions of the two sub-types (CI and CIII) as well as their involvement in 

VLDL, chylomicrons but also HDL particles. For Apo CI for example (de Haan et al. 

2008) suppose an elevating effect on plasma HDL levels in vivo, suggesting an 

enhanced reverse cholesterol transport. 

In sample 2, the beta-chain of mitochondrial ATP synthase (ATPB) was found in 

increased amounts. This protein has recently been shown to be a high affinity receptor 

of apolipoprotein A1 and apolipoprotein E (Martinez et al. 2003). Thereby it triggers 

the endocytosis of HDL particles. The second protein of sample 2 involved into 

cholesterol transport processes is the GTP-binding protein SAR1b, required for the 

intracellular transport of chylomicrons and VLDL (Shoulders et al. 2004). Mutations of 

this protein are the reason for Anderson’s disease that has recently been shown to be 

related to myolysis (Silvain et al. 2008). This protein may serve as a starting point for 
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investigations targeted towards the rare side-effect of rhabdomyolysis caused by 

statins. In sample 2, a protein among those found in reduced amounts is also involved 

in cholesterol transport processes. The 78 kDa glucose-regulated protein protects 

against oxidative stress and apoptosis (Yu et al. 1999) but beside this effect, it was also 

shown to catalyse the rate-limiting step in LDL maturation (Jorgensen et al. 2000).  

 

5.2.1.25.2.1.25.2.1.25.2.1.2    Proteins related to sideProteins related to sideProteins related to sideProteins related to side----products of the mevalonate pathwayproducts of the mevalonate pathwayproducts of the mevalonate pathwayproducts of the mevalonate pathway    

The succinate dehydrogenase cytochrome b560 subunit (C560) is a mono-heme 

cytochrome b involved in complex II of the respiratiory chain, responsible for the 

electron transfer from succinate to ubiquinone. In sample 1 it was found in increased 

amounts after RSV treatment. This may be a kind of compensation for a possibly 

reduced amount of ubiquinone, one of the end-products of the non-sterol branch of 

the mevalonate pathway (Goldstein et al. 1990). In addition, the enhanced beta-

oxidation produces electrons that are normally directed into the ubiquinone pool of 

the respiratory chain. 

The “side-products” of the mevalonate pathway seem to be even more affected by the 

treatment through the increased expression of the FDFT in sample 1, directing the 

produced farnesyl-pyrophosphate towards the sterol-branch. 

Dolichol as another product of the non-sterol branch is normally used for 

glycosylation reactions, formation of GPI anchors and so on. The mannose-P-dolichol 

utilisation defect protein 1 is a key protein of glycosylation by catalysing the first step 

(Anand et al. 2001). Its increased amount may reflect the need of the cells for 

mannose-P-dolichol that is not present, due to the statin treatment and the increased 

FDFT. No proteins were found in sample 2 that could be related to the side-products of 

the mevalonate pathway. 

 

5.2.1.35.2.1.35.2.1.35.2.1.3    Energy metablisEnergy metablisEnergy metablisEnergy metablismmmm    

In sample 1, energy metabolism may be affected by the increased amounts of C560 as 

well as the decreased amount of phosphoglucomutase 1 (PGM1). The PGM1 catalyses 

the conversion of glucose-1-phosphate to glucose-6-phosphate. This step is necessary 

to use the glucose-1-phosphate, gained during glycogen decomposition, for glycolysis. 

Its down-regulation leads to the impression of a reduced use of glycogen as energy 

source. This is in line with the enhanced beta-oxidation and the high amount of 
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acetyl-CoA and most probably also increased amount of keton bodies through the 

block of the HMG-CoA reductase but high amounts of HMG-CoA synthase.  

In sample 2, four proteins were found to be involved in energy metabolism. The 

voltage-dependent anion-selective channel 2 (VDAC2) found in increased amounts 

mediates the flow of ATP through the mitochondrial membrane and thereby plays a 

crucial role in energy metabolism (Rostovtseva and Colombini 1997). In addition, the 

increased amount of ATPB may also point towards an increased need for ATP as 

energy source and the increased amount of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) towards an increase in glycolysis. Another part of the energy 

metabolism was affected by the increased amounts of ketohexokinase involved in 

fructose metabolism (Heinz et al. 1968). A second enzyme of the fructose metabolism, 

the fructose-bisphosphate aldolase B (ALDOB), responsible for the metabolism of 

fructose 1-phosphate (Lebherz and Rutter 1969) was found in decreased amounts in 

sample 2. 

 

5.2.1.45.2.1.45.2.1.45.2.1.4    ROS protection and inflammationROS protection and inflammationROS protection and inflammationROS protection and inflammation    

The effects towards cholesterol and fatty acids are in sample 2 superposed by 

increased amounts of proteins somehow involved in the protection against oxidative 

stress and inflammatory effects. Besides the glycolytic activity of GAPDH, different 

biological activities in apoptosis and proliferation of hepatocytes according to its 

subcellular localisation are described (Sirover 1999) (Barbini et al. 2007). Among 

others, it is involved in tubulin bundling (Sirover 1999), interacts with glutathione 

(Sirover 1999) and it shows a hepatoprotective effect against oxidative stress (Kuo and 

Slivka 1994). 

Two of the proteins found in increased amounts are directly related to the protection 

against oxidative stress. The glutathione-S-transferase omega 1 is not involved in 

xenobiotic detoxification as other glutathione transferases. But it shows a functionality 

comparable to glutaredoxins and may play a critical role in protection against 

oxidative stress by restoring enzymatic activity formerly blocked by S-thiol formation 

(Board et al. 2000). Furthermore, it was shown to be somehow involved in cytokine 

signalling and apoptosis (Laliberte et al. 2003). The second enzyme is the 

peroxidoredoxin 6, which is reduced by glutathione and shows at the neutral pH of 

the cytosol a protective effect against oxidative stress (Manevich et al. 2009). In 
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addition the GRP78 was also shown to exhibit ROS protective effects, but found in 

decreased amounts in sample 2. 

A possibly enhanced oxidative stress may be caused by the increased amount of 

Voltage-dependent anion-selective channel protein 2 (VDAC2_HUMAN) that controls 

the release of superoxide anion from mitochondria to the cytosol (Han et al. 2003). 

Moreover, the VDAC proteins affect the activity of the copper-zinc superoxide 

dismutase (SODC) (Budzinska et al. 2007). A deletion of the VADC was shown to 

decrease the SODC activity (Budzinska et al. 2007). This suggests an increased SODC 

activity after an increased amount of VDAC. This, in turn, may be part of the 

explanation of a decreased amount of SODC as a kind of compensation mechanism, 

after RSV treatment as observed for sample 2. Either, the increased activity of SODC 

leads to a decrease in its expression level or the increased amount of VDAC2 leads to 

increased import of SODC from the cytosol towards the mitochondrial inter-membrane 

space. Both reactions would reduce the amount of SODC that can be found in the 

cytoplasm. 

The N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 (DDAH1) increases basal 

levels of vascular NO and thereby protects against endothelial dysfunction induced by 

ADMA (Dayoub et al. 2008). ADMA was shown to be involved in the inflammatory 

effect of angiotensin II (Chen et al. 2007) and has negative effects on the 

cardiovascular system (Achan et al. 2003) counterbalanced by DDAH1. So the up-

regulation of DDAH1 may point towards the so called pleiotropic effects of statins, 

acting beside the low levels of cholesterol, like mitigating the cardiovascular effect of 

angiotensin II as described for pravastatin (Straznicky et al. 1995). Moreover, 

(Smirnova et al. 2004) reported an up-regulation of lectin-like oxidized low-density 

lipoprotein receptor by nitric oxide deficiency, caused by ADMA and (Atzler et al. 

2009) showed a reduced plaque-formation in ApoE deficient mice by DDAH1 

overexpression. So, the DDAH1 may play a critical role in the protective effects of 

statins towards the cardiovascular system. 

Another protein discussed in the context of inflammatory processes in other 

proteomic studies (Vivanco et al. 2005) is the protein disulfide isomerase A3 (PDIA3) 

also found in increased amounts in this study. Its relation to inflammatory diseases 

could not be proven, as the enzyme used for the study in which it is shown to 

suppress the NF-kappaB, a proinflammatroy signalling molecule (Higuchi et al. 2004) 

is the murine homologue to PDIA1, not PDIA3. So an inflammatory action of PDIA3 is 
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speculative. Nevertheless, its localisation was shown to be different from the ER and 

its function different from the “normal” action of disulfide isomerases (Turano Carlo et 

al. 2002). Furthermore, (Zhou et al. 2008) could correlate its downregulation in sepsis 

with increases in the cytokine expression and release.  

The increased amounts of fibrinogen alpha and beta may also point towards a kind of 

inflammatory reaction as they belong to the group of acute phase proteins (Redman 

and Xia 2000). In contrast, the assembly of fibrin fibers takes place in the ER (Redman 

et al. 2000) so its finding may also point towards an retention mechanism, prohibiting 

the export of fibrin into the plasma. The fibrinogen gamma, coordinately expressed 

with the alpha and beta chain may not be found due to the restrictive conditions of 

the true positive criteria. 

 

5.2.1.55.2.1.55.2.1.55.2.1.5    CytoskeletonCytoskeletonCytoskeletonCytoskeleton    

In sample 1 actin was found to be down-regulated, which may be explained by a 

study of (Endres and Laufs 2004). They reported that statins block Rho which in turn 

leads to a disruption of the actin cytoskeleton. At the same time, two of the proteins 

found in increased amounts in sample 2 are related to the cytoskeleton. The first one 

is tubulin, as a part of the microtubules (Desai and Mitchison 1997). The second one is 

radixin as part of the anchor structures that connect the cytoskeleton to the plasma 

membrane (Sato et al. 1992). 

 

5.2.1.65.2.1.65.2.1.65.2.1.6    Other / Unknown functionsOther / Unknown functionsOther / Unknown functionsOther / Unknown functions    

Nothing is known about the functionality of the eleventh up-regulated protein found in 

sample 1, the transmembrane protein 56. The finding of a down-regulated ribosomal 

protein in sample 1 was quite surprising as ribosomal proteins are normally regarded 

as house-keeping genes, not or only little effected in their expression level. 

In sample 2 the mitochondrial dicarboxylate carrier (DIC) was found in increased 

amounts. While (Lin et al. 2005) describes an increased ROS production and 

hyperpolarisation of the mitochondrial membrane after DIC overexpression, (Zhong et 

al. 2008) describes a ROS protective effect due to its partial involvement in glutathione 

transport into the rat liver mitochondria. The protein is also involved in 

gluceroneogenesis (Reshef et al. 2003), its mRNA is induced by fatty acids (Reshef et 

al. 2003) while its activity is inhibited by long-chain fatty acyl CoAs (Ventura et al. 

2005) and the enzyme itself mediates the protonotrophic action of long chain fatty 
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acids (Wieckowski and Wojtczak 1997). Moreover, the over-expression of DIC also led 

to an increased up-take of succinate which is directly fed into complex II, the rate-

limiting step of the respiratory chain (Lin et al. 2005). So a final conclusion about its 

role cannot be drawn but it remains a very interesting protein whose up-regulation 

should be kept in mind. The eukaryotic initiation factor 4A found to be down-

regulated in sample 2 exhibits RNA helicase activity. At the last, the retinal 

dehydrogenase 1 metabolises 4-hydroxynonenal (Esterbauer et al. 1985) a product 

formed during lipid peroxidation.  

 

5.2.1.75.2.1.75.2.1.75.2.1.7    SummarySummarySummarySummary    

At first sight, there was almost no correlation between the proteins found to be altered 

after RSV treatment in sample 1 and 2. Only HMG-CoA synthase 1 was found in both 

samples regulated similarly. This regulation was proven in four out of four samples of 

the RT-PCR validation experiments. The regulation is not surprising as this protein 

catalyses the first and thereby one of the most important steps of the mevalonate 

pathway, the formation of HMG-CoA. Its product is the substrate of the HMG-CoA 

reductase, catalysing the rate-limiting step of this pathway which is blocked by 

rosuvastatin. So its up-regulation is obviously a compensation mechanism of the 

hepatocytes for the block of the mevalonate pathway that has already been described. 

There was no correlation among the 35 remaining proteins. But by setting the proteins 

into the cellular context, the results switched to a higher degree of correlation as the 

proteins themselves differed but the cellular pathways and the direction of regulation 

correspond with each other. 

In both samples indication is given for an up-regulation of the mevalonate pathway, 

accompanied by an enhanced beta-oxidation of fatty acids and changes in the 

cholesterol and lipid transport processes. The cellular metabolism seems to be driven 

towards a compensation of the blocked cholesterol synthesis. 

The correlation of the samples may be even higher but in sample 2 a situation of 

nearly de-regulation in the protein content was observed in the microsomal samples. 

This may superpose the effects observed in sample 1. This effect of superposing could 

be forced by the criteria of evidence in the nLC-MS experiments chosen by the 

experimenter. The global changes in the protein amounts led to a high standard 

deviation that resulted in quite restrictive exclusion criteria. These led to the detection 
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of the top hits of changed proteins only. At the same time those proteins with minor 

changes remain undetectable below the threshold. 

The reason for the massive de-regulation in sample 2 remains unknown, as no clear 

conclusion can be drawn from the proteins found in altered amounts. Indication is 

given for an increase in oxidative stress of the cells which is counterbalanced by an 

increased expression of protective enzymes. A quite interesting player is the DDAH1 

involved in NO signaling and the maintenance of endothelial function. It may point 

towards the so called pleiotropic effects of statins that are discussed in the literature 

to work in addition to cholesterol lowering (LaRosa 2001; Liao 2002; Liao et al. 2005; 

Corsini et al. 2007). 

The way of proteomic data interpretation needs to be discussed briefly by looking at 

the apolipoproteins as well as the fibrinogen alpha and beta found in increased 

amounts in the ER of sample 2 and sample 1, respectively. These proteins belong to 

the group of secreted proteins, processed in the ER and later released into the 

plasma. A semi-quantitative proteomic study analyses the amount of proteins. In 

general, this changed amount of proteins is correlated to gene expression or protein 

degradation as a reaction of the cell to changed circumstances. In the case of sub-

cellular proteomes as well as secreted proteins, an additional fact needs to be kept in 

mind: retention or enhanced secretion could also take place, leading to 

increased/decreased amounts of the proteins in the cells (or compartments) while 

their plasma levels (or levels in other compartments) decreases/increases. This would 

explain the finding of fibrinogen but also of some of the apolipoproteins. Moreover, 

the finding of reduced amounts of 78GRP underlines this assumption as it is a protein 

catalysing the rate-limiting step of VLDL maturation. Here, one may argue that the 

down-regulation of this protein is energetically worthwhile for the cell by maintaining 

the normal expression levels of the other proteins involved. 

To summarise, the effect of RSV is in sample 1 mainly focussed on cholesterol and 

fatty acid metabolism and transport, accompanied by effects on the cytoskeleton and 

some proteins about which not enough is known to draw a clear picture. In sample 2, 

the eye-catching effects are on the side of oxidative stress response and inflammatory 

reactions but there are obviously also effects on cholesterol and fatty acid metabolism 

and transport as well as the cytoskeleton. 

The observed effects on the protein level are on one side easily ranked into already 

described effects of statins but also give some intentions about possibly starting points 
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for further investigations of not yet explainable effects (like the DDAH1 for endothelial 

function and the SAR1b for relations to myolysis, for example).  

 

5.2.25.2.25.2.25.2.2    The effects of LEKThe effects of LEKThe effects of LEKThe effects of LEK----935 on the proteome of primary human 935 on the proteome of primary human 935 on the proteome of primary human 935 on the proteome of primary human 

hepatocyteshepatocyteshepatocyteshepatocytes    

The treatment of sample 1 with LEK-935 led to the detection of eight proteins in 

significantly altered amounts. Among these proteins three were found in elevated 

amounts and five in reduced amounts compared to the control.  

All of the proteins detected in altered amounts in sample 2 had also been found after 

RSV treatment of sample 2.  

These proteins have already been discussed above, so they are not included in the 

detailed discussion presented below. 

 

5.2.2.15.2.2.15.2.2.15.2.2.1    Cholesterol related proteinsCholesterol related proteinsCholesterol related proteinsCholesterol related proteins    

No protein directly involved in the cholesterol biosynthetic pathway has been found in 

altered amounts after LEK-935 treatment of sample 1. Two of the found proteins are 

related to cholesterol transport processes. Serum-albumin, found in reduced 

amounts, is the major protein in the plasma and binds fatty acids (Spector 1975) as 

well as steroid hormones (Pardridge and Mietus 1979). It thereby serves as a 

transporter of these molecules. Its reduced amount in the cytoplasm may be an 

indication for an enhanced secretion rate to compensate for decreased amount of 

circulating VLDL particles. 

Endoplasmin (ENPL) found in decreased amounts has been shown to be co-ordinately 

regulated with GRP78 (Chang et al. 1989). GRP78 has been found to be reduced after 

RSV treatment of sample 2 and is involved in VLDL maturation (see 5.2.1.1). Even if an 

involvement of the ENPL in VLDL maturation is not described yet in the literature, the 

co-ordinate expression of the two proteins may indicate a correlation between their 

functionality. 

 

5.2.2.25.2.2.25.2.2.25.2.2.2    Energy metabolismEnergy metabolismEnergy metabolismEnergy metabolism    

The only protein involved in energy metabolism found in altered amounts in sample 1 

is the GAPDH. It has also been found in elevated amounts after RSV treatment in 

sample 2 (see 5.2.1.3). In general, GAPDH is often found by proteomic studies to be 
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regulated, as discussed in (Petrak et al. 2008). Its central role in the energy 

metabolism and the different other processes in which it is involved (see 5.2.1.4 and 

5.2.2.3) may turn it into a favourable target for regulation processes. 

 

5.2.2.35.2.2.35.2.2.35.2.2.3    ROS protection and inflammationROS protection and inflammationROS protection and inflammationROS protection and inflammation    

Three of the proteins found in altered amounts in sample 1 are related to ROS 

protection or inflammation. Annexin A5 (ANXA5) found in elevated amounts is used 

as an apoptosis analysis tool as it binds to phosphatidyl-serine, present at the outer 

cellular surface only during apoptosis (van Engeland et al. 1998). This binding may 

explain its anticoagulant (Thiagarajan and Tait 1990) and anti-inflammatory effects 

(Reutelingsperger and vanHeerde 1997). As already mentioned above, the GAPDH was 

found in elevated amounts. This finding could be related to its protective effect against 

oxidative stress (Kuo et al. 1994) but it also displays other functionalities in 

hepatocytes (Sirover 1999) (Barbini et al. 2007). The mitochondrial isocitrate 

dehydrogenase [NADP] (IDHP_HUMAN) was also found in elevated amounts and is a 

major NADPH producer in Mitochondria whose up-regulation has already been shown 

to enhance ROS protection (Jo et al. 2001). 

 

5.2.2.45.2.2.45.2.2.45.2.2.4    CytoskeletonCytoskeletonCytoskeletonCytoskeleton    

Both actin and radixin were found in reduced amounts. They are involved in the 

cytoskeleton (Bretscher 1991) (Sato et al. 1992) but also in some signalling processes 

(Tsukita and Yonemura 1997). 

 

5.2.2.55.2.2.55.2.2.55.2.2.5    Other / Unknown functionalitiesOther / Unknown functionalitiesOther / Unknown functionalitiesOther / Unknown functionalities    

For the nicotinamide N-methyltransferase (NNMT) found in reduced amounts, a direct 

correlation between the amount of protein and its activity has been shown (Smith et 

al. 1998). A reduced activity of the NNMT could result in a decrease in nicotinamide 

excretion. This would lead to an increased NAD or NADP synthesis, the latter 

necessary for cholesterol biosynthesis. As a second product of the reaction catalysed 

by NNMT, homocysteine is formed. (Souto et al. 2005) suggested NNMT as the major 

source of plasma homocysteine. Elevated plasma levels of homocysteine are 

associated with an increased risk of cardiovascular diseases. For simvastatin a 

decrease in plasma homocysteine has already been described (Luftjohann et al. 2001). 

This may be an effect of a reduced amount of NNMT. In addition, an increase in NNMT 
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expression along with atherosclerosis was recently described (Mateuszuk et al. 2009) 

so the decreased amount found here may exhibit atheroprotective effects. 

 

5.2.2.65.2.2.65.2.2.65.2.2.6    SummarySummarySummarySummary    

After LEK-935 treatment, the mevalonate pathway was not covered by any of the 

proteins found in altered amounts, neither in sample 1 nor sample 2. This can, in 

parts, be explained by the analysis of the cytosolic but not the microsomal fraction. 

Nevertheless, after RSV treatment, some of the proteins involved in the mevalonate 

pathway (like HMG-CoA synthase) were found in the cytosolic fraction. Thus, at least a 

hint is given that the mevalonate pathway itself may not be affected by blocking 

CYP51A1 as it is affected by a block of the HMG-CoA reductase. 

The proteins found to be affected in sample 1 are involved in general energetic 

metabolism, oxidative stress response and inflammation, the cytoskeleton and some 

transport processes, also including fatty acids and steroids. Nevertheless, a clear 

picture cannot be drawn due to the microsomal fraction which has not been analysed 

and of which the main information about the cholesterol and fatty acid related 

pathways were gained after RSV treatment. 

The proteins affected in sample 2 are also involved in general energetic metabolism, 

the cytoskeleton, oxidative stress protection and inflammation. In addition, the 

enhanced amounts of D3D2 indicate an increased beta-oxidation in sample 2.  

To summarise, analysing the cytosolic fraction only led to results that cannot be 

ranked in the same way as it was possible for the results gained by the additional 

analysis of the microsomal fraction after RSV treatment. This underlines the necessity 

of a complete analysis, including all sub-proteomes to come to a clear picture. 
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5.35.35.35.3    Summary and outlookSummary and outlookSummary and outlookSummary and outlook    

This study describes for the first time the effects of RSV and LEK-935 on the proteome 

of primary human hepatocytes. The analysis was performed on two independent 

cultures of primary human hepatocytes. The focus was set on the proteome of the 

cytosolic and the microsomal fraction of these cells.  

During the present study, more than 100 IEFs and SDS-PAGEs of the cytosolic fraction 

were run. About 500 spots were cut off the gels, applied to in-gel digestion and 

analysed by MALDI-TOF/TOF. Two runs of the RP x IP-RP HPLC setup were performed 

to analyse the microsomal fraction. These resulted in 33 MALDI targets with about 

1570 spots each, that were measured by MALDI-TOF/TOF. Via bioinformatical analyses 

of the experiments a sum of 44 proteins was found to be altered in their amounts after 

the two treatments. 

Treating the cells with RSV led to an increase in proteins involved in cholesterol 

biosynthesis, cholesterol transport and fatty acid beta-oxidation. In addition, some 

proteins involved in oxidative stress response and the cytoskeleton were found. 

Except for the elevated amounts of HMG-CoA synthase, no correlation was observed 

between the two samples. By ranking the proteins into the cellular pathways affected, 

the two samples reacted more similar to the RSV treatment. This observation may be a 

reflection of the big inter-individual differences of human beings in their response to 

administered drugs. At the same time it shows that, even if the proteins affected 

differ, the cellular pathways and thereby the real response of the cells does not differ 

that much. 

The observed differences on the protein level could also be the result of different ways 

of analysis, as the samples were in a different freeze-thawing status prior to 2D gel 

electrophoresis and the amount of protein applied to nLC-MS also differed. This has 

to be kept in mind, also for the interpretation of the LEK-935 treated samples. 

Nevertheless, the RT-PCR validation of some of the proteins explicitly underlines the 

huge differences between samples derived from different donors. 

The usefulness of the analysis of the microsomal fraction by nLC-MS to trigger the 

pathways in the focus of interest is getting obvious by looking at the results gained by 

2D-PAGE of the cytosolic fraction only. The analysis of the cytosolic fraction gave 

impressions about the changes taking place that were complemented and 

strengthened by the analysis of the microsomal fraction. This fraction enabled a 
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deeper insight into the cholesterol biosynthesis and transport due to the important 

role of the ER in transport processes and the cholesterol biosynthesis. This insight 

would not have been possible in the way achieved by the use of 2D-PAGE but was 

strengthened by the choice of nLC-MS for the analysis of membrane proteins, too. 

This way, the sub-fractionation process, the use of appropriate analysis methods and 

merging of the gained results led to clearer results about the processes taking place.  

In accordance with these findings, the stored mitochondrial and nuclear fractions 

need to be analysed, too, to complement the picture. The mitochondria as second 

important compartment in cholesterol biosynthesis and degradation are a hot spot for 

an analysis of these pathways. The nuclear fraction could deliver information about 

changed amounts of transcription factors etc. that can be used for a discussion of the 

signalling pathways affected. In addition, it would be interesting to specifically 

analyse proteins that were missed during this study as they fall outside the frames 

given by the experimental setups but that are known to be regulated by one or 

another transcription factor. 
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Information about the function and cellular localisation of the proteins, described 

here was collected from the Expasy/Uniprot database, available at www.expasy.org. 

Sample 1 2D spot details Sample 1 2D spot details Sample 1 2D spot details Sample 1 2D spot details     

Spot 2 / Proteasome subunit alpha Spot 2 / Proteasome subunit alpha Spot 2 / Proteasome subunit alpha Spot 2 / Proteasome subunit alpha ––––type5type5type5type5----    

 

Figure 0-1 Spot 2 found to be regulated in sample 1. The ratio of intensities is depicted in the left upper 
corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molercular weight 
and the isoelectric point are summarised on the right. 

 

For spot 2 no significant regulation compared to the control sample was detected, but 

it was found to be down-regulated in the RSV treated samples compared to the 

samples treated with LEK-935 (see Figure 0-1). The underlying protein was identified 

in two individual gels leading to a final sequence coverage of 41.5 %. It was regarded 

as a true positive hit. 

Proteasome subunit alpha type 5 directly interacts with an protein complex, which 

promotes the assembly of the 20S proteasome subunit. It is thereby involved in 

protein degradation by the proteasome. The observed molecular weight of the protein 
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correlates well with the theoretically examined one. The pI could not be determined 

experimentally.  

Spot 3 / Annexin A5Spot 3 / Annexin A5Spot 3 / Annexin A5Spot 3 / Annexin A5    

 

Figure 0-2 Spot 3 found to be regulated in sample 1. The ratio of intensities is depicted in the left upper 
corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molercular weight 
and the isoelectric point are summarised on the right. 

 

Spot 3 was found to be significantly up-regulated by LEK treatment. As RSV treatment 

lead to no detectable regulation, the ratio of intensities was also significantly different 

in the RSV samples compared to LEK samples. According to the up-regulation by LEK, 

it was regarded as a true positive hit. Mass spectrometry followed by database search 

lead to the identification of Annexin A5, out of four individual gels, with a final 

sequence coverage of 71.6 %. Nothing can be said about the molecular weight and the 

pI as the protein was used as reference for the practical estimations. 

Annexin A5 is an anti-coagulant protein, serving as an indirect inhibitor of the 

thromboplastin-specific complex. 
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Spot 8 / EndoplasminSpot 8 / EndoplasminSpot 8 / EndoplasminSpot 8 / Endoplasmin    

 

Figure 0-3 Spot 8 found to be regulated in sample 1. The ratio of intensities is depicted in the left upper 
corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molercular weight 
and the isoelectric point are summarised on the right. 

 

In the gels derived from samples treated with LEK-935, spot 8 was not detectable by 

the software, although a light shadow was visible on some of the gels (see Figure 0-3). 

In RSV treated samples no significant regulation could be shown, but looking at Figure 

0-3 one can see a tendency to down-regulation. As the spot disappears after LEK 

treatment, it was regarded as a true positive hit. The estimated molecular weight is a 

bit higher than theoretically examined. The pI could not be estimated. 

The protein in spot 8 was identified as endoplasmin by mass spectrometry. 

Identification was possible out of two gels with a final sequence coverage of 34.5 %. 

Endoplasmin belongs to the family of heatshock proteins. It serves as a chaperone 

during protein folding of, mainly, secreted proteins. 
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Spot 20 / HMGSpot 20 / HMGSpot 20 / HMGSpot 20 / HMG----CoA synthaseCoA synthaseCoA synthaseCoA synthase    

 

Figure 0-4 Spot 2ß found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molercular weight 
and the isoelectric point are summarised on the right. 

 

For spot 20, about 3.5 times up-regulation was detected in the RSV sample. The LEK-

935 sample showed no significantly different intensities for this spot. So, the ratio 

intensities for the comparison of RSV and LEK-935 samples remains the same as for 

the RSV – control comparison. This spot was regarded as a true positive hit, as it was 

up-regulated by RSV and no down-regulation was detectable at all. The practically 

estimated pI and molecular weight correlate well with the theoretically examined 

values. 

The protein in this spot was identified as HMG-Co A synthase. Identification 

succeeded out of four individual gels, with a final sequence coverage of 38.5 %.  

HMG-Co A synthase is an important protein for cholesterol-, steroid- and sterol-

biosynthesis. It catalyses the formation of hydroxy-methyl-glutaryl-CoA, which is the 

substrate of the HMG-CoA reductase, the enzyme inhibited by rosuvastatin. 
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Spot 23 / Nicotinamid NSpot 23 / Nicotinamid NSpot 23 / Nicotinamid NSpot 23 / Nicotinamid N----methyltransferasemethyltransferasemethyltransferasemethyltransferase    

 

Figure 0-5 Spot 23 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

LEK samples showed significant down-regulation of spot 23, while it was not changed 

by RSV treatment, at all. As the spot is down-regulated in LEK-935 sample, it is 

regarded as a true positive hit. It was identified as nicotinamind N-methyltransferase 

out of five individual gels, with a final sequence coverage of 38.3 %. Nothing can be 

said about the pI and MW as this protein was used as a reference for the estimations. 

Nicotinamid N-methytransferase catalyses the formation of pyridinium ions, important 

for the biotransformation of drugs and xenobiotics. 
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Spot 35 / Heat Spot 35 / Heat Spot 35 / Heat Spot 35 / Heat –––– shock protein shock protein shock protein shock protein    

 

Figure 0-6 Spot 35 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 35, a down-regulation was observer, caused by LEK-935 treatment. This spot 

was identified as a heat-shock protein. The identification of an individual protein was 

not possible as the proteins identified share a lot of peptides. HSP7C was the most 

prominent hit, with an sequence coverage of 53.9 %. Identification of HSP7C 

succeeded out of five gels. The functionality of all four proteins is similar, they are 

involved in stress response and mainly the reaction to unfolded proteins. They serve 

as chaperones for protein-folding. Nevertheless, the regulation is nearby the cut-off of 

two and it was not possible to identify the “real” protein underlying the spot. So this 

spot was excluded from further investigations. The pracitally estimated values for pI 

and molecular weight correlate well with the theoretical values. 
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Spot 49 / Isocitrate dehydrogenase [NADP], mitochondrialSpot 49 / Isocitrate dehydrogenase [NADP], mitochondrialSpot 49 / Isocitrate dehydrogenase [NADP], mitochondrialSpot 49 / Isocitrate dehydrogenase [NADP], mitochondrial    

 

Figure 0-7 Spot 49 found to be regulated in sample 1. The ratio of intensities could not be as the spot 
was not present in the control and RSV treated samples. Examples of the spot appearance on the 
analysed 2D gels are shown in the left lower corner. The parameters of identification as well as a 
comparison of theoretical to experimental data about the molecular weight and the isoelectric point are 
summarised on the right. 

 

Spot 49 appeared in the LEK samples. It was identified with 33.0 % sequence coverage 

out of one gel.  

Its theoretical pH is quite high (8.9) compared with the pIs of the other proteins 

identified and does not correlate well with the estimated pI. The strange pI together 

with the comparatively low sequence coverage (33.0 % compared to averaged 49.5 %) 

intends to handle this result with care. Nevertheless, it was included in further studies, 

as it cannot be influenced by the E.coli contamination and a low correlation of 

theoretical pIs and those observed during 2D gel electrophoresis is well known. 

Isocitrate dehydrogenase is involved in energy metabolism, namely the glyoxylate 

bypass and the tricarboxylic acid cycle.  
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Spot 71, Spot 86 / Serum albuminSpot 71, Spot 86 / Serum albuminSpot 71, Spot 86 / Serum albuminSpot 71, Spot 86 / Serum albumin    

 

Figure 0-8 Spot 71 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 71 a down-regulation by LEK-935 compared to the control as well as the RSV 

treated samples was observed. It was identified as serum albumin, out of five 

individual gels, with a sequence coverage of 52.5 %.  

Serum albumin is the major protein found in human plasma. It has a high binding 

capacity for mono- and divalent anions like Ca2+ and Na+ for example, but also for 

other molecules like hormones, fatty acids and so on. 
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Figure 0-9 Spot 86 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Regulation of spot 86 was similar to the regulation of spot 71. After identification it 

turned out, that here again serum albumin is the protein present in the spot. It was 

identified out of three individual gels, with a sequence coverage of 44.3 %. For further 

information see spot 71. In both cases the pracitally estimated values for pI and 

molecular weight correlate well with the theoretical ones. 



176                                       Appendix II: Details of the proteins found to be regulated 

Spot 83, Spot 88 / Phosphoglucomutase 1Spot 83, Spot 88 / Phosphoglucomutase 1Spot 83, Spot 88 / Phosphoglucomutase 1Spot 83, Spot 88 / Phosphoglucomutase 1    

 

Figure 0-10 Spot 83 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 83 was significantly down-regulated by RSV and some decreasing tendencies 

were observed in the LEK samples. It was identified as phosphoglucomutase 1. The 

regulations were regarded as a true positive hit because similar values were also 

found in spot 88, identified as phosphoglucomutase 1, too. Identification for spot 83 

was performed out of five individual gels, with a final sequence coverage of 37.2 %.  

Phosphoglucomutase 1 is highly involved in the breakdown as well as the synthesis of 

glucose. It catalyses the conversion of alpha-D-glucose-1-phosphate to alpha-D-

glucose-6-phosphate and back. So it plays a central role in the general energetic 

metabolism of cells. The practically estimated pI and molecular weight correlate very 

well with the theoretical values. Differentiating between two isoforms expressed, 

coming from alternative splicing, is not possible, due to the high similarities between 

their molecular weights and pIs.  
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Figure 0-11 Spot 88 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 88 was down-regulated by RSV treatment in comparison to the control as well as 

the LEK-935 treated sample. It was identified as phosphoglucomutase 1, with a 

sequence coverage of 29.2 %. Idenficiation was performed out of three individual gels. 
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Spot 89 / Radixin, Ezrin or MoesinSpot 89 / Radixin, Ezrin or MoesinSpot 89 / Radixin, Ezrin or MoesinSpot 89 / Radixin, Ezrin or Moesin    

 

Figure 0-12 Spot 89 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 89 was down-regulated by LEK-935 treatment and showed a strong tendency to 

down-regulation by RSV treatment. Therefore it was regarded as a true positive hit and 

further investigated. Identification lead to three possibilities for the protein inside the 

spot, whereby radixin showed the highest probability. For radixin a sequence 

coverage o 31.4 % was achieved, by identification out of two individual gels. The three 

proteins are  highly homologous in their amino acid sequence. All are involved in 

binding of cytoskeletal structures to the cell membrane. According to the Expasy 

database, ezrin can be excluded from the hit list because it is specifically expressed in 

neuronal tissues. As they have quite similar functions and radixin showed a higher 

sequence coverage than moesin, radixin was chosen for further investigations. 

The estimated molecular weight is significantly higher than the theoretically examined 

value. The pI could not be determined. 



Appendix II: Details of the proteins found to be regulated 179 

Spot 93 / GlyceraldehydeSpot 93 / GlyceraldehydeSpot 93 / GlyceraldehydeSpot 93 / Glyceraldehyde----3333----phosphate dehydrogenasephosphate dehydrogenasephosphate dehydrogenasephosphate dehydrogenase    

 

Figure 0-13 Spot 93 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Treatment with LEK-935 lead to 3.1 times higher intensity of spot 93 than that 

observed in the control samples. Mass spectrometry followed by database search 

revealed glyceraldehyde-3-phosphate dehydrogenase as the protein underlying this 

spot. Identification was possible out of one gel, with a final sequence coverage of 

23.0 %. 

Glyceraldehyde-3-phosphate dehydrogenase catalyses the rate-determining step in 

glycolysis and is further involved in membrane trafficking during the early steps of the 

secretory pathway. It shows a quite high theoretical pI, which does not correlate well 

with its position on the gels. It is located at the basic side of the spot pattern but other 

spots located in the same region were identified as proteins with lower pIs. The 

molecular weight correlates well with the theoretical value. 
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Spot 94 / SerotransferrinSpot 94 / SerotransferrinSpot 94 / SerotransferrinSpot 94 / Serotransferrin    

 

Figure 0-14 Spot 94 found to be regulated in sample 1. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 94 was significantly up-regulated in RSV treated sample compared to LEK-935 

treated sample. It was regarded as a true positive hit and identified out of two 

individual gels, with a sequences coverage of 40.4 %. The pI could not be estimated 

practically. The estimated molecular weight correlates well with the theoretical value. 

Serotransferrin is a secreted protein involved in iron transport processes. Beside this 

function it`s suggested to play a role in stimulating cell proliferation. Its expression is 

liver specific, followed by expression to the plasma. 
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Sample 1 nLCSample 1 nLCSample 1 nLCSample 1 nLC----MS resultsMS resultsMS resultsMS results    

UP 

Long chain fatty acid CoA ligase Long chain fatty acid CoA ligase Long chain fatty acid CoA ligase Long chain fatty acid CoA ligase     

(ACSL3_HUMAN or ACSL4_HUMAN) 

The same set of peptides was identified for either long-chain-fatty-acid CoA ligase 3 or 

4.  

They are integral membrane proteins, located in the microsomal, peroxisomal or 

inner mitochondrial membrane. As the name says, they are involved in fatty acid 

metabolism, either their activation for lipid synthesis or degradation via beta-

oxidation. They catalyse the ligation of CoA to a fatty acid under ATP cosumption. 

They differ in preferation of distinct fatty acids for ligation, while form 3 prefers 

myristate, laurate, arachidonate and eicosapentaenoate as substrates, only the latter 

twos are the favourites of form 4. 

Form 3 was used for further bioinformatical analysis, as they have quite similar 

behaviours and functions in the cells. 

 

Apolipoprotein C1 Apolipoprotein C1 Apolipoprotein C1 Apolipoprotein C1     

(APOC1_HUMAN) 

Apolipoprotein C1 is a secreted protein, involved in the VLDL (up to 10 % of its 

protein) and HDL (up to 2 % of its protein) cholesterol transport through the body. The 

protein seems to modulate the interaction of APOE with beta-migrating VLDL and 

inhibit binding of beta-VLDL to the LDL receptor-related protein.  

 

Apolipoprotein C3 Apolipoprotein C3 Apolipoprotein C3 Apolipoprotein C3     

(APOC3_HUMAN) 

The Apolipoprotein C3 is a secreted protein, too. It is part of the VLDL (50 %) and HDL 

(2 %). It inhibits lipoprotein lipase and hepatic lipase and decreased the uptake of 

lymph chylomicrons.  

 

Succinate dehydrogenase cytochrome b560 subunit, mitochondrialSuccinate dehydrogenase cytochrome b560 subunit, mitochondrialSuccinate dehydrogenase cytochrome b560 subunit, mitochondrialSuccinate dehydrogenase cytochrome b560 subunit, mitochondrial     

(C560_HUMAN) 

The succinate dehydrogenase cytochrome b560 subunit is a multi-pass membrane 

protein, located at the inner mitochondrial membrane. It is a mono-heme cytochrome 
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b, involved in system II of the mitochondrial electron transport chain, responsible for 

transferring electrons from succinate to ubiquinone. 

 

Lanosterol 14Lanosterol 14Lanosterol 14Lanosterol 14----alpha demethylasealpha demethylasealpha demethylasealpha demethylase    

(CP51A_HUMAN) 

The lanosterol 14-alpha demethylase, also known as cytochrome P450 51A1, is an 

integral membrane protein located in the microsomes. It catalyses the C14 

demethylation of lanosterol, transforming it into4,4'-dimethyl cholesta-8,14,24-triene-

3-beta-ol. Therefore it plays an important role in cholesterol biosynthetic pathways. 

 

Estradiol 17Estradiol 17Estradiol 17Estradiol 17----betabetabetabeta----dehydrogenase 12 dehydrogenase 12 dehydrogenase 12 dehydrogenase 12     

(DHB12_HUMAN) 

The estradiol 17-beta-dehydrogenase 12 is a multi-pass membrane protein, located in 

the membrane of the endoplasmic reticulum. It catalyses the conversion of estrone 

into estradiol. Thereby it plays a major role in the synthesis of estrogens. 

 

Transmembrane protein 56 Transmembrane protein 56 Transmembrane protein 56 Transmembrane protein 56     

(TMM56_HUMAN) 

The transmembrane protein 56 is a potential multi-pass membrane protein about 

which no deeper information is available yet.  

 

ATPATPATPATP----citrate synthasecitrate synthasecitrate synthasecitrate synthase    

(ACLY_HUMAN) 

The ATP-citrate synthase is a soluble protein, located in the cytoplasm. It is the 

primary enzyme responsible for synthesis of cytosolic acetyl-CoA and plays a central 

role in de novo lipid-biosynthesis. 

 

Squalene synthetase Squalene synthetase Squalene synthetase Squalene synthetase     

(FDFT_HUMAN) 

The squalene synthetase is a multi-pass membrane protein located in the endoplasmic 

reticulum membrane. It catalyses the two-step formation of squalene from two 

farnesyl diphosphates and thereby plays a central role in lanosterol and cholesterol 

synthesis. 
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MannoseMannoseMannoseMannose----PPPP----dolichol utilization dolichol utilization dolichol utilization dolichol utilization defect 1 proteindefect 1 proteindefect 1 proteindefect 1 protein     

(MPU1_HUMAN) 

The mannose-P-dolichol utilisation defect 4 protein is a potential multi-pass 

membrane protein. Only suggestions are available about its cellular functions. 

 

DOWN 

 

ActinActinActinActin    

(ACTS_HUMAN, ACTA_HUMAN, ACTH_HUMAN) 

Nearly the same set of peptides was identified for the three sub-forms of actin. All of 

them are soluble and play a role in cell structure and motion. ACTA seems to be 

improbable cause its normally located in aortic muscle cells and ACTS is found in 

skeletal muscle cells, while ACTH plays a role in nearly all cells in the cytoskeleton 

formation. Nevertheless, no real differentiation was possible due tot the high similarity 

between these subforms. As, there seems to be an effect on cytoskelectal structures, 

in general considerations reflected by all three, ACTH, was chosen as a representative 

of this group in further bioinformatical analysis. 

 

60S ribosomal protein L9 60S ribosomal protein L9 60S ribosomal protein L9 60S ribosomal protein L9     

(RL9_HUMAN) 

The 60S ribosomal protein L9 is a soluble protein, involved in the ribosomal complex 

during translation. No detailed information about this protein was available. 
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Sample 2 2D spot detailsSample 2 2D spot detailsSample 2 2D spot detailsSample 2 2D spot details    

 

Spot 2 / Tubulin beta chainSpot 2 / Tubulin beta chainSpot 2 / Tubulin beta chainSpot 2 / Tubulin beta chain    

 

Figure 0-15 Spot 2 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 2 was found to appear in the treated samples, while not being present in the 

control sample. The spot intensity in LEK treated samples was nearly double to that 

observed in RSV treated samples. 

With a sequence coverage of 35.5 % spot 2 was identified as tubulin beta chain out of 

three individual gels. Differentiation between beta chain alpha, beta or gamma was 

not possible. As the three subunits build the microtubules of the cytoskeleton and 

have thereby similar abilities. The gamma chain was chosen as a representative for 

further investigations of the regulated proteins regarding their cellular function. 
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Spot 3 / 78Spot 3 / 78Spot 3 / 78Spot 3 / 78    kDa glucose regulated protein precursorkDa glucose regulated protein precursorkDa glucose regulated protein precursorkDa glucose regulated protein precursor    

 

Figure 0-16 Spot 3 found to be regulated in sample 2. The ratio of intensities could not be depicted as 
the spot was not present in both treated samples. Examples of the spot appearance on the analysed 2D 
gels are shown in the left lower corner. The parameters of identification as well as a comparison of 
theoretical to experimental data about the molecular weight and the isoelectric point are summarised 
on the right. 

 

For spot 3, disappearance was observed after RSV and LEK treatment. The spot was 

identified as 78 kDa-glucose regulated protein precursor. Identification was performed 

out of one gel, with a sequence coverage of 37.9 %.  

This protein belongs to the group of heat-shock proteins and is involved in the 

assembly of multimeric protein complexes inside the ER lumen.  
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Spot 4 / Spot 4 / Spot 4 / Spot 4 / N(G),N(G)N(G),N(G)N(G),N(G)N(G),N(G)----dimethylarginine dimethylaminohydrolase 1dimethylarginine dimethylaminohydrolase 1dimethylarginine dimethylaminohydrolase 1dimethylarginine dimethylaminohydrolase 1    

 

Figure 0-17 Spot 4 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

In the samples treated with RSV as well as those treated with LEK-935, the appearance 

of spot 4 was observed. It was identified as N(G),N(G)-dimethylarginine 

dimethylaminohydrolase 1, out of four gels, leading to a final sequence coverage of 

54.0 %.  

This enzyme plays a role in nitic oxide generation by hydrolysing N(G),N(G)-dimethyl-

L-arginine and N(G)-monomethyl-L-arginine, acting as inhibitors of NOS. 
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Spot 7, Spot 8 / ATP synthase subunit beta, mitochondrial precursorSpot 7, Spot 8 / ATP synthase subunit beta, mitochondrial precursorSpot 7, Spot 8 / ATP synthase subunit beta, mitochondrial precursorSpot 7, Spot 8 / ATP synthase subunit beta, mitochondrial precursor    

 

Figure 0-18 Spot 7 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 7 as well as spot 8 were found to be up-regulated by RSV treatment, while LEK 

treatment lead to a significant up-regulation of spot 7 but a borderline up-regulation 

of spot 8. Both spots were identified as ATP synthase subunit beta with a sequence 

coverage above 44.0 %.  

ATP synthase is located at the mitochondrial membrane, catalysing the synthesis of 

ATP from ADP driven by a proton gradient across the membrane. These spots were 

chosen as reference for the molecular weight an pI. 
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Figure 0-19 Spot 8 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 
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Spot 11 / ActinSpot 11 / ActinSpot 11 / ActinSpot 11 / Actin    

 

Figure 0-20 Spot 11 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 11 was found to be significantly down-regulated after LEK treatment, while 

down-regulation observed after RSV treatment is a borderline event as the standard 

deviation of the ratio of intensities crosses the threshold line. Out of four individual 

gels, the spot was identified as a cytoplasmic form of actin, with a sequence coverage 

of 47.2 %. Differentiation between form one or two was not possible. 

They behave similar but not identical in the cellular context, serving as structural 

proteins involved in the cytoskeleton and cell motion.  

The cytoplasmic 1 form was chosen for further analysis. 
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Spot 12 / Eukaryotic initiation factor 4Spot 12 / Eukaryotic initiation factor 4Spot 12 / Eukaryotic initiation factor 4Spot 12 / Eukaryotic initiation factor 4AAAA----1111    

 

Figure 0-21 Spot 12 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 12 was found to disappear after treating the cells with rosuvastatin. The spot was 

identified out of one gel with a sequence coverage of 33.3 %- Eukaryotic initiation 

factor 4A-I was found to be the protein inside the spot. 

Its practically estimated pI and molecular weight correlate well with the theoretical 

values. It is a RNA helicase and part of a protein complex, necessary for mRNA 

binding to the small ribosomal subunit. 
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Spot 13 / Superoxide dismutase [CuSpot 13 / Superoxide dismutase [CuSpot 13 / Superoxide dismutase [CuSpot 13 / Superoxide dismutase [Cu----Zn]Zn]Zn]Zn]    

 

Figure 0-22 Spot 13 found to be regulated in sample 2. The ratio of intensities could not be depicted as 
the spot was not present in both treated samples. Examples of the spot appearance on the analysed 2D 
gels are shown in the left lower corner. The parameters of identification as well as a comparison of 
theoretical to experimental data about the molecular weight and the isoelectric point are summarised 
on the right. 

 

Spot 13 disappeared after both treatments. It was identified as superoxide dismutase 

[Cu-Zn], out of one gel, with a sequence coverage of 44.2 % 

In general, the superoxide dismutase removes radicals produced during biological 

processes inside the cell. But it is also known to be involved in a negative regulation 

of cholesterol biosynthetic processes. 
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Spot 14 / Heat shock protein beta 1, 3Spot 14 / Heat shock protein beta 1, 3Spot 14 / Heat shock protein beta 1, 3Spot 14 / Heat shock protein beta 1, 3----HydroxyisobutyratHydroxyisobutyratHydroxyisobutyratHydroxyisobutyrat----dehydrogenase, dehydrogenase, dehydrogenase, dehydrogenase, 

3333----hhhhydroxyanthanilate 3,4ydroxyanthanilate 3,4ydroxyanthanilate 3,4ydroxyanthanilate 3,4----dioxygenasedioxygenasedioxygenasedioxygenase    

 

Figure 0-23 Spot 14 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 14 was found to be borderline down-regulated by RSV compared to the LEK-935 

treated samples. As this was a borederline regulation and identification revealed three 

different proteins, this spot was excluded from further investigations. 
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Spot 15, spot 25 / Glutathione transferase omega 1Spot 15, spot 25 / Glutathione transferase omega 1Spot 15, spot 25 / Glutathione transferase omega 1Spot 15, spot 25 / Glutathione transferase omega 1    

 

Figure 0-24 Spot 15 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 15 as well as spot 25 appeared after LEK and RSV treatment. They were identified 

as glutathione-S-transferase omega 1, with a sequence coverage of 47.7 and 45.6 % for 

spots 15 and 25, respectively. Identification succeeded out of three and four different 

gels. The theoretical values for pI and molecular weight correlate with the estimated 

ones. 

It transfers glutathione to acceptor molecules, thereby forcing, like other GSTs, the 

detoxification of endogenous and exogenous substances. 
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Figure 0-25 Spot 25 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 
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Spot 16 / RetinalSpot 16 / RetinalSpot 16 / RetinalSpot 16 / Retinal----dehydrogenase 1dehydrogenase 1dehydrogenase 1dehydrogenase 1    

 

Figure 0-26 Spot 16 found to be regulated in sample 2. The ratio of intensities could not be depicted as 
the spot was not present in both treated samples. Examples of the spot appearance on the analysed 2D 
gels are shown in the left lower corner. The parameters of identification as well as a comparison of 
theoretical to experimental data about the molecular weight and the isoelectric point are summarised 
on the right. 

 

After LEK as well as RSV treatment, spot 16 could not be observed anymore on the 

gels. It was identified as retinal-dehydrogenase 1, out of two different gels. Its 

practially estimated pI and molecular weight correlate well with the theoretical values. 

The retinal-dehydrogenase 1 is involved in cellular aldehyde metabolic processes and 

catalyses the conversion of retinal to retinoic acid. 
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Spot 17 / Selenium binding protein 1, AldehydSpot 17 / Selenium binding protein 1, AldehydSpot 17 / Selenium binding protein 1, AldehydSpot 17 / Selenium binding protein 1, Aldehyd----dehydrogenasedehydrogenasedehydrogenasedehydrogenase    

 

Figure 0-27 Spot 17 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 17 up-regulation was observed after LEK-935 as well as RSV treatment. In 

nearly all the cases two proteins were identified out of spot 17, Selenium binding 

protein 1 and Aldehyde dehydrogenase. A differentiation between the two proteins 

was not possible, as either their molecular weight or their pI correlate with the 

theoretical values and. Furthermore they exhibit different cellular functions, like 

xenobiotic sensing and intracellular transport processes for selenium binding protein 

1 and alcohol metabolic processes for aldehyde dehydrogenase. Therefore, spot 17 

was excluded from further studies. 
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Spot 18, Spot 19 / ProteinSpot 18, Spot 19 / ProteinSpot 18, Spot 19 / ProteinSpot 18, Spot 19 / Protein----disulfiddisulfiddisulfiddisulfid----isomerase A3isomerase A3isomerase A3isomerase A3    

 

Figure 0-28 Spot 18 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 18 was found to be significantly up-regulated after both treatments, while spot 19 

was not present in the control sample. Appearance as well as up-regulation appeared 

in a similar manner in both RSV and LEK-935 treated samples. 

The spots were identified as protein-disulfide isomerase A3, with sequence coverages 

of 59.4 and 44.0 % for spots 18 and 19, respectively.  

The experimentally determined values for pI and molecular weight correlate well with 

the theoretical values. 

The protein disulfide isomerase catalyses the rearrangement of disulfide bonds in 

proteins. According to the GO ontologies in the category biological process it is 

involved in signalling processes as well as the retention of proteins in the ER lumen 

and their localisation to the nucleus. 
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Figure 0-29 Spot 19 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 



Appendix II: Details of the proteins found to be regulated       199 

Spot 20 / KetohexokinaseSpot 20 / KetohexokinaseSpot 20 / KetohexokinaseSpot 20 / Ketohexokinase    

 

Figure 0-30 Spot 20 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 20 was found to appear after RSV and LEK-935 treatment. It was identified as 

ketohexokinase with a sequence coverage of 33.6 %. Its theoretical values for the 

molecular weight and pI correlate more or less with the experimentally observed data. 

It phosphorylises D-fructose to D-fructose 1-phosphate by using ATP. So, it is part of 

the energy metabolism of the cells. 
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Spot 22 / 3,2Spot 22 / 3,2Spot 22 / 3,2Spot 22 / 3,2----transtranstranstrans----enoylenoylenoylenoyl----CoA isomeraseCoA isomeraseCoA isomeraseCoA isomerase    

 

Figure 0-31 Spot 22 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 22 was also shown to appear after treating the cells. It was identified as 3,2-

trans-enoyl-CoA isomerase. Identification succeeded out of three individual gels with 

a final sequence coverage of 21.5 %. The theoretical values for its pI and molecular 

weight do not correlate with the experimentally gained values.  

The enzyme is able to isomerise 3-cis as well as 3-trans double bounds into the 2-

trans form in a variety of enoyl-CoA species. So it is involved in fatty acid and thereby 

lipid metabolic processes. As GO ontology in the category biological process at first 

fatty acid beta-oxidation is listed. 
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Spot 23 / IsopentenylSpot 23 / IsopentenylSpot 23 / IsopentenylSpot 23 / Isopentenyl----diphosphate delta isomerasediphosphate delta isomerasediphosphate delta isomerasediphosphate delta isomerase    

 

Figure 0-32 Spot 23 found to be regulated in sample 2. The ratio of intensities could not be depicted as 
the spot was not present in the control and LEK-935 treated samples. Examples of the spot appearance 
on the analysed 2D gels are shown in the left lower corner. The parameters of identification as well as a 
comparison of theoretical to experimental data about the molecular weight and the isoelectric point are 
summarised on the right. 

 

Spot 23 was not present in the control samples but appeared after RSV treatment. It 

was identified as isopentenyl-diphosphate delta isomerase, with a sequence coverage 

of 35.7 %. The experimentally values for pI and MW correlate well with the theoretical 

ones. Because no MS/MS data could be used to support the identification, the protein 

score of identification was quite low (GPS protein score 54). Therefore, the protein was 

excluded from further considerations. 

The isopentenyl-diphosphate delta isomerase catalyses the 1,3-allylic rearrangement 

of isopentenyl to its isomer, dimethylallyl diphosphate. So it is involved in cholesterol 

biosynthesis as well as lipid synthesis. 
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Spot 24 / BetaSpot 24 / BetaSpot 24 / BetaSpot 24 / Beta----ureidopropionase / Aminoacylase 1ureidopropionase / Aminoacylase 1ureidopropionase / Aminoacylase 1ureidopropionase / Aminoacylase 1    

 

Figure 0-33 Spot 24 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 24 is down-regulated by LEK-935 treatment. During identification in two of three 

cases two proteins were found in the spot. The pI as well as the molecular weight of 

both correlate with the experimental data. The sequence coverage during 

identification is also similar.  

Both are able to bind zinc ions and somehow involved in metabolic processes related 

to amino acids.  

As there was no possibility to differentiate between these two enzymes, they were 

excluded from further investigations. 
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Spot 26 / EnolaseSpot 26 / EnolaseSpot 26 / EnolaseSpot 26 / Enolase    

 

Figure 0-34 Spot 26 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

A significant down-regulation was observed for spot 26 after both RSV as well as LEK-

935 treatment. This spot could be identified out of four different gels. Identification 

lead to enolase as underlying protein, with a sequence coverage of 34.3 %. As, in 

adult tissues, all forms of homo- or heterodimers are observable a differentiation 

between the isoforms alpha, beta and gamma was not possible. They are of the same 

size and may also be present at the same time.  

As they show different behaviours according to their dimerisation status, this spot was 

excluded from further studies. Nevertheless, their impact in energy metabolism by 

their function in glycolysis has to be kept in mind. 
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Spot 27 / Isocitrate dehydrogenaseSpot 27 / Isocitrate dehydrogenaseSpot 27 / Isocitrate dehydrogenaseSpot 27 / Isocitrate dehydrogenase    

 

Figure 0-35 Spot 27 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 27 again, appearance was observed after treating the cells. The underlying 

protein was identified as isocitrate dehydrogenase, with a sequence coverage of 

44.0 %. 

This enzyme plays a key role in the tricarboxyc acid cycle as well as the Glyoxylate 

bypass. Its precursor molecule was also found to appear after LEK treatment in 

sample 1. The precursor molecule showed much higher pI (8.9) not correlating with its 

position on the gel, while for spot 27, the values correlate very well. 
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Spot 29, Spot 32 / CatalaseSpot 29, Spot 32 / CatalaseSpot 29, Spot 32 / CatalaseSpot 29, Spot 32 / Catalase    

 

Figure 0-36 Spot 29 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 29 and 32, opposed regulations were observed. While spot 29 was down-

regulated by treating the cells, spot 32 was up-regulated. Nevertheless, both lay in one 

horizontal string of spots and were identified as Catalase. Identification succeeded out 

of 5 and 6 gels, leading to sequence coverages of 48.8 and 59.4 % for spots 29 and 32, 

respectively. 

Catalase protects the cells of the toxic effect of hydrogen peroxide. As up- as well as 

down-regulation was observed, in a horizontal string of spots, which may also be 

caused by freeze-thawing cycles of the sample these hits were excluded from further 

analysis. 
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Figure 0-37 Spot 32 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 
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Spot 30 / CarboniSpot 30 / CarboniSpot 30 / CarboniSpot 30 / Carbonic anhydrasec anhydrasec anhydrasec anhydrase    

 

Figure 0-38 Spot 30 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

For spot 30, appearance after treatment was observed, even if a shadow of a spot was 

also visible in some of the control gels (see Figure 0-38). It was identified as carbonic 

anhydrase, with a sequence coverage of 33.8 %. Experimental estimation of the pI was 

not possible as it lay outside the range of the reference spots. 

The carbonic anhydrase catalyses the reversible hydration of carbon dioxide and is 

thereby involved in one-carbon metabolic processes. 



208                                       Appendix II: Details of the proteins found to be regulated 

Spot 31 / FructoseSpot 31 / FructoseSpot 31 / FructoseSpot 31 / Fructose----bisphosphatbisphosphatbisphosphatbisphosphat----aldolase Baldolase Baldolase Baldolase B    

 

Figure 0-39 Spot 31 found to be regulated in sample 2. The ratio of intensities is depicted in the left 
upper corner, followed by examples of the spot appearance on the analysed 2D gels. The parameters of 
identification as well as a comparison of theoretical to experimental data about the molecular weight 
and the isoelectric point are summarised on the right. 

 

Spot 31 was significantly down-regulated by RSV and LEK-935 treatment. It was 

identified as fructose bisphosphate aldolase B. Sequence coverage was 35.2 % and 

identification succeeded out of five different gels. Its theoretical pI value is much 

higher (8.0) than the observed value of 6.8 while the values for the molecular weight 

correlate well. 

It catalyses one of the steps in glycolysis and is thereby involved in energy metabolism 

of the cell. 
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Sample 2 nLCSample 2 nLCSample 2 nLCSample 2 nLC----MS detailsMS detailsMS detailsMS details    

UP 

 

Mitochondrial dicarboxylate carrierMitochondrial dicarboxylate carrierMitochondrial dicarboxylate carrierMitochondrial dicarboxylate carrier    

(DIC_HUMAN) 

The mitochondrial dicarboxylate carrier is a multi-pass membrane protein, located in 

the inner mitochondrial membrane. It is involved in the translocation of malate, 

malonate and succinate in exchange for phosphate, sulfate, sulfite or thiosulfate. 

Among others, it thereby plays a role in gluconeogenesis. 

 

GlyceraldehydeGlyceraldehydeGlyceraldehydeGlyceraldehyde----3333----phosphate dehydrogenase phosphate dehydrogenase phosphate dehydrogenase phosphate dehydrogenase     

(G3P_HUMAN) 

The glyceraldehydes-3-phosphate dehydrogenase is located in the cytoplasm as well 

as nearby the membrane. It is highly involved in glycolysis but plays also a role 

membrane trafficking in the early steps of secretion pathway. 

 

HydroxyHydroxyHydroxyHydroxy----methylmethylmethylmethyl----glutarylglutarylglutarylglutaryl----CoA synthase, cytoplasmic CoA synthase, cytoplasmic CoA synthase, cytoplasmic CoA synthase, cytoplasmic     

(HMCS1_HUMAN) 

The hydroxy-methyl-glutaryl-CoA synthase is a soluble protein, located in the 

cytoplasm. It synthesises HMG-CoA from acetyl-CoA and acetoacetyl-CoA, thereby 

catalysing one of the major preliminary steps to cholesterol-biosynthesis. 

 

Peroxiredoxin 6Peroxiredoxin 6Peroxiredoxin 6Peroxiredoxin 6    

(PRDX6_HUMAN) 

The peroxiredoxin 6 is a soluble protein found in the cytoplasm, cytoplasmic vesicles 

and the lysosome. It is involved in the redox regulation of the cell and can reduce 

H2O2. Furthermore it is also able to reduce short chain organi, fatty acid and 

phospolipid hydroperoxides and therefore plays as role in phospholipid turnover and 

lipid degradation. 
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Radixin Radixin Radixin Radixin     

(RADI_HUMAN) 

Radixin is an peripheral membrane protein, located at the cytoplasmic side of the cell 

membrane. It probably plays a crucial role by anchoring the actin filaments of the 

cytoskeleton to the membrane. It is found in high concentration at the sites of cell-cell 

adherens. 

 

GTPGTPGTPGTP----binding protein SAR1bbinding protein SAR1bbinding protein SAR1bbinding protein SAR1b    

(SAR1B_HUMAN) 

The GTP-binding protein SAR1b is a peripheral membrane protein, located at the 

membranes of the endoplasmic reticulum and the Golgi-apparatus. It is involved in 

the transport processes from the ER to the Golgi. 

Defects in the SAR1B are the base for the chylomicron retention disease, suggesting a 

role in cholesterol tranport processes. 

 

VoltagVoltagVoltagVoltageeee----dependent aniondependent aniondependent aniondependent anion----selective channel protein 2selective channel protein 2selective channel protein 2selective channel protein 2    

(VDAC2_HUMAN) 

The voltage-dependent anion-selective channel protein 2 is an integral membrane 

protein located at the outer mitochondrial membrane. It allows the diffusion of small 

hydrophilic molecules and its open-close status depends on the electric potential 

across the membrane. 

 

FibrinogenFibrinogenFibrinogenFibrinogen    

(FIBA_HUMAN, FIBB_HUMAN 

The fibrinogen chainsi are secreted proteins, involved in platelet activation and 

building fibrin fibers by polymerisation. Both forms the alpha chain as well as the 

beta chain were independently found to be up-regulated. 
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Appendix III: Spot identifications from 2D gelsAppendix III: Spot identifications from 2D gelsAppendix III: Spot identifications from 2D gelsAppendix III: Spot identifications from 2D gels    

Sample 1Sample 1Sample 1Sample 1    

Spot Spot Spot Spot 
NumberNumberNumberNumber    

Spot number Spot number Spot number Spot number 
Exp IExp IExp IExp I    

(SSP PDQuest)    

Spot Number Spot Number Spot Number Spot Number 
Exp IIExp IIExp IIExp II    

(SSP PDQuest)    
identified asidentified asidentified asidentified as    

Originitating Originitating Originitating Originitating 
fromfromfromfrom  

Human  E.coli    
SwissProt SwissProt SwissProt SwissProt ---- ID ID ID ID    

MW MW MW MW 
[kDa][kDa][kDa][kDa]    

pIpIpIpI    
 Sequence  Sequence  Sequence  Sequence 
coverage coverage coverage coverage 

[%][%][%][%]    

Number of Number of Number of Number of 
individual individual individual individual 

gels gels gels gels 
1 SSP 0014 SSP 1010 Thiol peroxidase   x         1 

2 
SSP 0110 SSP 0109 

Proteasome subunit alpha type 

5 
x   PSA5_HUMAN 26.394 4.74 41.5 2 

3 SSP 0208 SSP 1201 Annexin A5 x   ANXA5_HUMAN 35.914 4.94 71.6 4 

4 

SSP 0406 SSP 1417 

6-phosphogluconate 

dehydrogenase; 

decarboxylating 

  x         1 

5 SSP 0605 SSP 0606 60kDa chaperonin    x         2 

6 SSP 0706 SSP 0703 Chaperone proteine Dank   x         5 

7 SSP 0707 SSP 0705 30 S ribosomal protein   x         1 

8 SSP 0803 SSP 0807 Endoplasmin x   ENPL_HUMAN 92.411 4.76 34.5 2 

9 SSP 1002 SSP 1002 Alkylhydroperoxid reduktase   x         2 

11 SSP 1209 SSP 1205 Elongation factor Ts   x         3 

13 SSP 1306 SSP 1307 Phosphoglycerate kinase   x         5 

14 
SSP 1308 SSP 1309 

Glycerophosphoryl diester 

phosphodiesterase 
  x         2 
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Spot Spot Spot Spot 
NumberNumberNumberNumber    

Spot number Spot number Spot number Spot number 
ExpExpExpExp I I I I    

(SSP PDQuest)    

Spot Number Spot Number Spot Number Spot Number 
Exp IIExp IIExp IIExp II    

(SSP PDQuest)    
identified asidentified asidentified asidentified as    

Originitating Originitating Originitating Originitating 
fromfromfromfrom  

Human  E.coli    
SwissProt SwissProt SwissProt SwissProt ---- ID ID ID ID    

MW MW MW MW 
[kDa][kDa][kDa][kDa]    

pIpIpIpI    
 Sequence  Sequence  Sequence  Sequence 
coverage coverage coverage coverage 

[%][%][%][%]    

Number of Number of Number of Number of 
individual individual individual individual 

gels gels gels gels 

16 

SSP 1405 SSP 1406 

6-phosphogluconate 

dehydrogenase; 

decarboxylating 

  x         2 

18 SSP 1416 SSP 1414 Isocitrate dehydrogenase   x         1 

19 SSP 1506 SSP 1512 Aspartate ammonia-lyase   x         3 

20 SSP 1511 SSP 1615 HMG-CoA synthase x   HMCS1_HUMAN 57.257 5.22 38.5 3 

21 
SSP 2009 SSP 2110 

Purine nucleoside 

phosphorylase deoD-type 
  x         3 

23 
SSP 2105 SSP 2103 

Nicotinamid N-

methyltransferase 
x   NNMT_HUMAN 29.555 5.56 38.3 5 

25 SSP 2303 SSP 2405 Elongation Factor Tu   x         5 

26 SSP 2307 SSP 2310 Mannonate dehydratase   x         1 

29 SSP 2403 SSP 2402 Adenoylsuccinate - synthase   x         3 

30 SSP 2408 SSP 2407 Enolase   x         4 

32 SSP 2501 SSP 1516 Glutamate decarboxylase beta   x         1 

33 
SSP 2508 SSP 1517 

Aminoacyl-histidine 

dipeptidase 
  x         1 

35 
SSP 2718 SSP 2701 

Heatshock cognate 71kDa 

protein 
x   HSP7C_HUMAN 70.854 5.37 53.9 5 

35           HSP72_HUMAN           

35           HSP76_HUMAN         
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Spot Spot Spot Spot 
NumberNumberNumberNumber    

Spot number Spot number Spot number Spot number 
Exp IExp IExp IExp I    

(SSP PDQuest)    

Spot Number Spot Number Spot Number Spot Number 
Exp IIExp IIExp IIExp II    

(SSP PDQuest)    
identified asidentified asidentified asidentified as    

Originitating Originitating Originitating Originitating 
fromfromfromfrom  

Human  E.coli    
SwissProt SwissProt SwissProt SwissProt ---- ID ID ID ID    

MW MW MW MW 
[kDa][kDa][kDa][kDa]    

pIpIpIpI    
 Sequence  Sequence  Sequence  Sequence 
coverage coverage coverage coverage 

[%][%][%][%]    

Number of Number of Number of Number of 
individual individual individual individual 

gels gels gels gels 
35            HS71L_HUMAN        

36 SSP 3003 SSP 3002 Superoxid-dismutase   x         4 

37 SSP 3004 SSP 3107 Triosephosphate isomerase   x         3 

41 SSP 3212 SSP 3206 L-asparaginase 2   x         1 

42 SSP 3216 SSP 3221 Malat dehydrogenase   x         4 

44 SSP 3306 SSP 3302 Fructose bisphosphate aldolase   x         4 

45 SSP 3312 SSP 3406 Peptidase B   x         2 

49 
SSP 3408 SSP 2413 

Isocitrate dehydrogenase 

[NADP]; mitochondrial  
x   IDHP_HUMAN 50.877 8.88 33.0 1 

50 
SSP 3504 SSP 2512 

Putative tagatose 6-phosphate 

kinase gatZ 
  x         4 

54 
SSP 3602 SSP 2610 

Phosphoenolpyruvate 

carboxykinase [ATP] 
  x         4 

58 SSP 3701 SSP 2715 Transketolase 1   x         3 

59 SSP 3706 SSP 3818 Formate acetyltransferase 1   x         2 

60 SSP 3709 SSP 3807 Formate acetyltransferase 1   x         1 

61 SSP 3814 SSP 3813  Aconitate hydratase 1   x         1 

62 SSP 4108 SSP 4104 Uridine phosphorylase   x         3 

64 SSP 4112 SSP 3116 
NADP-dependent L-serine/L-allo-threonine 

dehydrogenase ydfG 
  x         1 
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Spot Spot Spot Spot 
NumberNumberNumberNumber    

Spot number Spot number Spot number Spot number 
Exp IExp IExp IExp I    

(SSP PDQuest)    

Spot Number Spot Number Spot Number Spot Number 
Exp IIExp IIExp IIExp II    

(SSP PDQuest)    
identified asidentified asidentified asidentified as    

Originitating Originitating Originitating Originitating 
fromfromfromfrom  

Human  E.coli    
SwissProt SwissProt SwissProt SwissProt ---- ID ID ID ID    

MW MW MW MW 
[kDa][kDa][kDa][kDa]    

pIpIpIpI    
 Sequence  Sequence  Sequence  Sequence 
coverage coverage coverage coverage 

[%][%][%][%]    

Number of Number of Number of Number of 
individual individual individual individual 

gels gels gels gels 
65 SSP 4210 SSP 4204 Cysteine synthase A   x         1 

66 SSP 4310 SSP 4404 Acetate kinase   x         2 

67 SSP 4409 SSP 4410 Tryptophanase   x         1 

68 SSP 4509 SSP 4507 Dihydrolipoyl dehydrogenase   x         1 

70 SSP 4605 SSP 4602 Pyruvate Kinase I   x         3 

71 SSP 4702 SSP 3706 Serum Albumin x   ALBU_HUMAN 69.321 5.92 52.5 5 

72 SSP 4705 SSP 4703 Fumarate reductase   x         2 

76 SSP 5104 SSP 5102 D-ribose binding protein   x         5 

77 
SSP 5112 SSP 5114 

Tagatose-1;6-bisphosphate 

aldolase gatY 
  x         1 

78 SSP 5113 SSP 5112 D-ribose binding protein   x         1 

81 
SSP 5511 SSP 5615 

Inosine-5'-monophosphate 

dehydrogenase  
  x         2 

83 SSP 5610 SSP 5707 Phosphoglucomutase 1 x   PGM1_HUMAN 61.411 6.3 37.2 5 

86 SSP 5701 SSP 4710 Serum Albumin x   ALBU_HUMAN 69.321 5.92 44.3 3 

88 SSP 6606 SSP 6702 Phosphoglucomutase 1 x   PGM1_HUMAN 61.411 6.3 29.2 3 

89 SSP 6707 SSP 6821 Radixin x   RADI_HUMAN 68.521 6.03 31.4 2 

89     Ezrin x   EZRI_HUMAN 69.37 5.94 21.3 2 

89     Moesin x   MOES_HUMAN 67.778 6.08 14.9 2 

90 SSP 7012 SSP 7011 Superoxide dismutase [Mn]   x         1 
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Spot Spot Spot Spot 
NumberNumberNumberNumber    

Spot number Spot number Spot number Spot number 
Exp IExp IExp IExp I    

(SSP PDQuest)    

Spot Number Spot Number Spot Number Spot Number 
Exp IIExp IIExp IIExp II    

(SSP PDQuest)    
identified asidentified asidentified asidentified as    

Originitating Originitating Originitating Originitating 
fromfromfromfrom  

Human  E.coli    
SwissProt SwissProt SwissProt SwissProt ---- ID ID ID ID    

MW MW MW MW 
[kDa][kDa][kDa][kDa]    

pIpIpIpI    
 Sequence  Sequence  Sequence  Sequence 
coverage coverage coverage coverage 

[%][%][%][%]    

Number of Number of Number of Number of 
individual individual individual individual 

gels gels gels gels 

91 
SSP 7217 SSP 7211 

2-dehydro-3-

deoxyphosphooctonate aldolase 
  x         1 

92 
SSP 8202 SSP 7312 

Aldo-ketoreductase family 1 

member 
x           2 

92 
    

Glyceraldehyde-3 

dehydrogenase Salmonella 
  x         3 

93 
SSP 8210 SSP 8216 

Glyceraldehyde-3 

dehydrogenase  
x   G3P_HUMAN 36.03 8.57 23.0 1 

94 SSP 8706 SSP 8803 Serotransferrin x   TRFE_HUMAN 77 6.81 40.4 2 
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Sample 2Sample 2Sample 2Sample 2    

 

Spot NoSpot NoSpot NoSpot No    
Spot number Spot number Spot number Spot number 

Exp IExp IExp IExp I    

Spot Number Spot Number Spot Number Spot Number 

Exp IIExp IIExp IIExp II    
ididididentified asentified asentified asentified as    SwissSwissSwissSwiss----Prot IDProt IDProt IDProt ID    MW [kDa]MW [kDa]MW [kDa]MW [kDa]    pIpIpIpI    

Sequence Sequence Sequence Sequence 

coverage [%]coverage [%]coverage [%]coverage [%]    

Number of individual Number of individual Number of individual Number of individual 

gels. identified fromgels. identified fromgels. identified fromgels. identified from    

2 SSP 0504 SSP 604 Tubulin beta chain TBB2C_HUMAN 49.799 4.79 35.5 3 

       TBB2A_HUMAN        

       TBB2B_HUMAN        

       TBB5_HUMAN        

3 
SSP 0702 SSP 0702 

78kDa-glucose regulated protein 

precursor GRP78_HUMAN  72.288 5.07 
37.9 1 

4 
SSP 1201 SSP 2203R 

N(G);N(G)-dimethylarginine 

dimethylaminohydrolase 1 DDAH1_HUMAN 31.102 5.53 
54 4 

7 
SSP 1502R SSP 1502R 

ATP synthase subunit beta; 

mitochondrial precursor ATPB_HUMAN  56.525  5.26 
49.5 5 

8 
SSP 1505R SSP 506 

ATP synthase subunit beta; 

mitochondrial precursor ATPB_HUMAN  56.525  5.26 
44.2 4 

11 SSP 2307R SSP 1406 Actin; cytoplasmic 2 ACTG_HUMAN  41.766 5.31 47.2 3 

     Actin; cytoplasmic 1 ACTB_HUMAN          

12 SSP 2403R SSP 1310 Eukaryotic initiation factor 4A-I IF4A1_HUMAN  46.125 5.32 33.3 1 

13 SSP 3005R SSP 2004 Superoxide dismutase [Cu-Zn] SODC_HUMAN 15.926 5.7 44.2 1 
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Spot NoSpot NoSpot NoSpot No    
Spot number Spot number Spot number Spot number 

Exp IExp IExp IExp I    

Spot Number Spot Number Spot Number Spot Number 

Exp IIExp IIExp IIExp II    
identified asidentified asidentified asidentified as    SwissSwissSwissSwiss----Prot IDProt IDProt IDProt ID    MW [kDa]MW [kDa]MW [kDa]MW [kDa]    pIpIpIpI    

Sequence Sequence Sequence Sequence 

coverage [%]coverage [%]coverage [%]coverage [%]    

NuNuNuNumber of individual mber of individual mber of individual mber of individual 

gels. identified fromgels. identified fromgels. identified fromgels. identified from    

14 SSP 3101 SSP 3101 Heat shock protein beta 1 HSPB1_HUMAN 22.768 5.98 37.6 1 

 
SSP 3101 SSP 3101 

3-Hydroxyisobutyrat-dehydrogenase; 

mitochondrial precursor 
3HIDH_HUMAN 

35.306 
8.38 32.1 2 

 SSP 3101 SSP 3101 3-hydroxyanthranilate 3;4-dioxygenase 3HAO_HUMAN 32.522 5.62 38.1 1 

15 SSP 3115R SSP 3115R Glutathione transferase omega 1 GSTO1_HUMAN 27.548 6.23 47.7 3 

16 SSP 3501 SSP 3604 Retinal-dehydrogenase 1 AL1A1_HUMAN 54.862 6.3 29.7   

17 SSP 3513R SSP 3513R Selenium binding protein 1 SBP1_HUMAN 52.358 5.93 54.4 5 

     Aldehyd-dehydrogenase; mitochondrial ALDH2_HUMAN 56.346 6.63 44.3 4 

18 SSP 3608R SSP 3608R Protein-disulfid-isomerase A3 PDIA3_HUMAN 56.747 5.98 59.4 3 

19 SSP 3610R SSP 3610R Protein-disulfid-isomerase A3 PDIA3_HUMAN 56.747 5.98 44 3 

20 SSP 4102R SSP 3103 Ketohexokinase KHK_HUMAN 32.71 5.64 33.6 2 

22 SSP 4109 SSP 5105 3;2-trans-enoyl-CoA isomerase D3D2_HUMAN 32.795 8.8 21.5 3 

23 SSP 4112 SSP 4006R Isopentenyl-diphosphate delta isomerase IDI1_HUMAN 26.319 5.93 35.4   

24 SSP 4401 SSP 4301 Beta-ureidopropionase BUP1_HUMAN 43.139 6.09 40.9 3 

 SSP 4401 SSP 4301 Aminoacylase 1 ACY1_HUMAN 45.856 5.77 39.2 2 

25 SSP 5101R SSP 5101R Glutathione transferase omega 1 GSTO1_HUMAN 27.548 6.23 45.6 4 

26 SSP 5406R SSP 5406R Alpha-enolase ENOA_HUMAN 47.139 7.01 34.3 4 

     Beta-enolase ENOB_HUMAN         

     Gamma-enolase ENOG_HUMAN         

27 SSP 5410 SSP 5413 Isocitrate dehydrogenase IDHC_HUMAN 46.63 6.53 44 3 



218      Appendix III: Spot identifications from 2D gels 

Spot NoSpot NoSpot NoSpot No    
Spot number Spot number Spot number Spot number 

Exp IExp IExp IExp I    

Spot Number Spot Number Spot Number Spot Number 

Exp IIExp IIExp IIExp II    
identified asidentified asidentified asidentified as    SwissSwissSwissSwiss----Prot IDProt IDProt IDProt ID    MW [kDa]MW [kDa]MW [kDa]MW [kDa]    pIpIpIpI    

Sequence Sequence Sequence Sequence 

coverage [%]coverage [%]coverage [%]coverage [%]    

Number of individuNumber of individuNumber of individuNumber of individual al al al 

gels. identified fromgels. identified fromgels. identified fromgels. identified from    

29 SSP 7618R SSP 7603 Catalase CATA_HUMAN 59.719 6.9 48.8 5 

30 SSP 8106 SSP 9102 Carbonic anhydrase 2 CAH2_HUMAN 29.228 6.87 33.8 2 

31 SSP 8302R SSP 8302R Fructose-bisphosphat-aldolase B ALDOB_HUMAN 39.448 8 35.2 5 

32 SSP 8603 SSP 9504 Catalase CATA_HUMAN 59.719 6.9 59.4 6 
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Appendix IV: iTRAQ™ evaluationAppendix IV: iTRAQ™ evaluationAppendix IV: iTRAQ™ evaluationAppendix IV: iTRAQ™ evaluation    

Accurate quantitative measurements are only possible if the labelling procedure for 

the control and the treated samples does not cause huge differences. The quality of 

the procedure was examined by labelling the control and the RSV treated samples 

with two different iTRAQ™ reporter labels each. The control samples were divided and 

labelled with the reporter 114 and 116 while the RSV samples were divided and 

labelled with the reporter 115 and 117. Finally, the samples were mixed in a ratio of 

1:1:1:1. Below, the averaged internal controls as well as the factor/divisor distributions 

of the internal controls and the treatment vs control comparisons are depicted as 

founb by the three different software packages used. 

The data were not examined as ratios but converted into a factor/divisor form. So, a 

ratio of 2.0 is regarded as a factor 2.0 as well as a ratio of 0.5 is regarded as a divisor 

of 2.0, reflecting the factors of up- or down-regulation of the underlying proteins. The 

factor/divisor should ideally be one for the internal controls (114/116 and 115/117), as 

the samples were mixed in a ratio of one to one. Sample 1 is HH-129 and Sample 2 is 

HH-114.  
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Appendix V Complete liAppendix V Complete liAppendix V Complete liAppendix V Complete list of proteins identified by nLCst of proteins identified by nLCst of proteins identified by nLCst of proteins identified by nLC----

MSMSMSMS    

Sample 1 proteins identified by nLCSample 1 proteins identified by nLCSample 1 proteins identified by nLCSample 1 proteins identified by nLC----MS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export function    
NumberNumberNumberNumber    SwissProt accessionSwissProt accessionSwissProt accessionSwissProt accession    Protein nameProtein nameProtein nameProtein name    Protein scoreProtein scoreProtein scoreProtein score    

1 CPSM_HUMAN Carbamoyl-phosphate synthase [ammonia], mitochondrial precursor 3846 
1 PYR1_HUMAN CAD protein [Includes: Glutamine-dependent carbamoyl-phosphate synthase 118 
2 ECHA_HUMAN Trifunctional enzyme subunit alpha, mitochondrial precursor 3392 
3 ATPB_HUMAN ATP synthase subunit beta, mitochondrial precursor 3022 
4 MYH10_HUMAN Myosin-10 143 
4 MYH11_HUMAN Myosin-11 498 
4 MYH9_HUMAN Myosin-9 2911 
5 TBA1B_HUMAN Tubulin alpha-1B chain 2769 
6 ACTB_HUMAN Actin, cytoplasmic 1 2672 
6 ACTG_HUMAN Actin, cytoplasmic 2 2672 
6 ACTK_HUMAN Kappa-actin 676 

6 
POTAC_HUMAN 

(A26CB_HUMAN  - expasy) Chimeric POTE-actin protein 1263 
7 TBA1A_HUMAN Tubulin alpha-1A chain 2590 
7 TBA1C_HUMAN Tubulin alpha-1C chain 2642 
7 TBA3C_HUMAN Tubulin alpha-3C/D chain 2071 
7 TBA3E_HUMAN Tubulin alpha-3E chain 2045 
8 ACSL1_HUMAN Long-chain-fatty-acid--CoA ligase 1 2413 
9 NNTM_HUMAN NAD(P) transhydrogenase, mitochondrial precursor 2345 
10 TBB1_HUMAN Tubulin beta-1 chain 270 
10 TBB2A_HUMAN Tubulin beta-2A chain 2179 
10 TBB2B_HUMAN Tubulin beta-2B chain 2179 
10 TBB3_HUMAN Tubulin beta-3 chain 2056 
10 TBB6_HUMAN Tubulin beta-6 chain 442 
11 TBB5_HUMAN Tubulin beta chain 2131 
12 CH60_HUMAN 60 kDa heat shock protein, mitochondrial precursor 2056 
13 TBB2C_HUMAN Tubulin beta-2C chain 2040 
13 TBB4_HUMAN Tubulin beta-4 chain 1096 
13 TBB4Q_HUMAN Tubulin beta-4q chain 401 
14 ATPA_HUMAN ATP synthase subunit alpha, mitochondrial precursor 2037 
15 GFAP_HUMAN Glial fibrillary acidic protein 52 
15 K22O_HUMAN Keratin, type II cytoskeletal 2 oral 157 
15 K2C1B_HUMAN Keratin, type II cytoskeletal 1b 133 
15 K2C3_HUMAN Keratin, type II cytoskeletal 3 157 
15 K2C4_HUMAN Keratin, type II cytoskeletal 4 133 
15 K2C5_HUMAN Keratin, type II cytoskeletal 5 157 
15 K2C6A_HUMAN Keratin, type II cytoskeletal 6A 157 
15 K2C6B_HUMAN Keratin, type II cytoskeletal 6B 157 
15 K2C6C_HUMAN Keratin, type II cytoskeletal 6C 157 
15 K2C7_HUMAN Keratin, type II cytoskeletal 7 157 
15 K2C71_HUMAN Keratin, type II cytoskeletal 71 133 
15 K2C72_HUMAN Keratin, type II cytoskeletal 72 133 
15 K2C73_HUMAN Keratin, type II cytoskeletal 73 133 
15 K2C74_HUMAN Keratin, type II cytoskeletal 74 133 
15 K2C75_HUMAN Keratin, type II cytoskeletal 75 157 
15 K2C78_HUMAN Keratin, type II cytoskeletal 78 52 
15 K2C8_HUMAN Keratin, type II cytoskeletal 8 2023 
15 KRT81_HUMAN Keratin type II cuticular Hb1 52 
15 KRT83_HUMAN Keratin type II cuticular Hb3 52 
15 KRT84_HUMAN Keratin type II cuticular Hb4 157 
15 KRT85_HUMAN Keratin type II cuticular Hb5 52 
15 KRT86_HUMAN Keratin type II cuticular Hb6 52 
15 VIME_HUMAN Vimentin 52 
16 ENPL_HUMAN Endoplasmin precursor 1977 
17 GRP78_HUMAN 78 kDa glucose-regulated protein precursor 1887 
18 ETFD_HUMAN Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial precursor 1774 
19 ACTN3_HUMAN Alpha-actinin-3 271 
19 ACTN4_HUMAN Alpha-actinin-4 1762 
20 TBA4A_HUMAN Tubulin alpha-4A chain 1722 
21 CMC2_HUMAN Calcium-binding mitochondrial carrier protein Aralar2 1689 
22 AT12A_HUMAN Potassium-transporting ATPase alpha chain 2 281 
22 AT1A1_HUMAN Sodium/potassium-transporting ATPase subunit alpha-1 precursor 1676 
22 AT1A2_HUMAN Sodium/potassium-transporting ATPase subunit alpha-2 precursor 903 
22 AT1A3_HUMAN Sodium/potassium-transporting ATPase subunit alpha-3 1086 
22 AT1A4_HUMAN Sodium/potassium-transporting ATPase subunit alpha-4 821 
22 ATP4A_HUMAN Potassium-transporting ATPase alpha chain 1 281 
23 ACADV_HUMAN Very long-chain specific acyl-CoA dehydrogenase, mitochondrial precursor 1655 
24 FAS_HUMAN Fatty acid synthase 1624 
25 FLNA_HUMAN Filamin-A 364 
25 FLNB_HUMAN Filamin-B 1424 
25 FLNC_HUMAN Filamin-C 140 
26 IQGA1_HUMAN Ras GTPase-activating-like protein IQGAP1 101 
26 IQGA2_HUMAN Ras GTPase-activating-like protein IQGAP2 1406 
26 IQGA3_HUMAN Ras GTPase-activating-like protein IQGAP3 101 
27 HS90A_HUMAN Heat shock protein HSP 90-alpha 1339 
28 DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 1334 
29 ACTA_HUMAN Actin, aortic smooth muscle 1224 
29 ACTC_HUMAN Actin, alpha cardiac muscle 1 1326 
29 ACTH_HUMAN Actin, gamma-enteric smooth muscle 1224 
29 ACTS_HUMAN Actin, alpha skeletal muscle 1326 
30 ACTN1_HUMAN Alpha-actinin-1 1291 
31 ADH1A_HUMAN Alcohol dehydrogenase 1A 997 
31 ADH1B_HUMAN Alcohol dehydrogenase 1B 1283 
31 ADH1G_HUMAN Alcohol dehydrogenase 1C 730 
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NuNuNuNumbermbermbermber    SwissProt accessionSwissProt accessionSwissProt accessionSwissProt accession    Protein nameProtein nameProtein nameProtein name    Protein scoreProtein scoreProtein scoreProtein score    

32 AOFB_HUMAN Amine oxidase [flavin-containing] B 1276 
33 CLH1_HUMAN Clathrin heavy chain 1 1221 
33 CLH2_HUMAN Clathrin heavy chain 2 160 
34 HS90B_HUMAN Heat shock protein HSP 90-beta 1215 
35 AOFA_HUMAN Amine oxidase [flavin-containing] A 1184 
36 BDH_HUMAN D-beta-hydroxybutyrate dehydrogenase, mitochondrial precursor 1173 
37 CALX_HUMAN Calnexin precursor 1145 
38 K1C18_HUMAN Keratin, type I cytoskeletal 18 1110 
38 K1C19_HUMAN Keratin, type I cytoskeletal 19 62 
39 GDE_HUMAN Glycogen debranching enzyme 1012 
40 QCR2_HUMAN Cytochrome b-c1 complex subunit 2, mitochondrial precursor 1004 

41 
DAK_HUMAN 

(DHAK_HUMAN expasy) Dihydroxyacetone kinase 994 

42 
RIB1_HUMAN 

(RPN1_HUMAN expasy) Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 67 kDa subunit precursor 954 
43 ADH4_HUMAN Alcohol dehydrogenase 4 950 
44 AL1L2_HUMAN Probable 10-formyltetrahydrofolate dehydrogenase ALDH1L2 119 
44 FTHFD_HUMAN 10-formyltetrahydrofolate dehydrogenase 939 
45 UD110_HUMAN UDP-glucuronosyltransferase 1-10 precursor 435 
45 UD14_HUMAN UDP-glucuronosyltransferase 1-4 precursor 925 
46 ECHB_HUMAN Trifunctional enzyme subunit beta, mitochondrial precursor 920 
47 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 919 
48 HYEP_HUMAN Epoxide hydrolase 1 910 
49 AIFM1_HUMAN Apoptosis-inducing factor 1, mitochondrial precursor 888 
50 VDAC1_HUMAN Voltage-dependent anion-selective channel protein 1 869 
51 DHE3_HUMAN Glutamate dehydrogenase 1, mitochondrial precursor 862 
51 DHE4_HUMAN Glutamate dehydrogenase 2, mitochondrial precursor 109 
52 UD2B7_HUMAN UDP-glucuronosyltransferase 2B7 precursor 843 
53 DHSA_HUMAN Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial precursor 825 
54 SQRD_HUMAN Sulfide:quinone oxidoreductase, mitochondrial precursor 814 
55 HMCS2_HUMAN Hydroxymethylglutaryl-CoA synthase, mitochondrial precursor 806 
56 FMO3_HUMAN Dimethylaniline monooxygenase [N-oxide-forming] 3 795 
56 FMO4_HUMAN Dimethylaniline monooxygenase [N-oxide-forming] 4 109 
57 ATPO_HUMAN ATP synthase subunit O, mitochondrial precursor 767 
58 NB5R3_HUMAN NADH-cytochrome b5 reductase 3 765 
59 PDIA1_HUMAN Protein disulfide-isomerase precursor 731 
60 FIBA_HUMAN Fibrinogen alpha chain precursor [Contains: Fibrinopeptide A] 725 
61 FIBB_HUMAN Fibrinogen beta chain precursor [Contains: Fibrinopeptide B] 722 
62 1A01_HUMAN HLA class I histocompatibility antigen, A-1 alpha chain precursor 244 
62 1A02_HUMAN HLA class I histocompatibility antigen, A-2 alpha chain precursor 192 
62 1A03_HUMAN HLA class I histocompatibility antigen, A-3 alpha chain precursor 244 
62 1A11_HUMAN HLA class I histocompatibility antigen, A-11 alpha chain precursor 244 
62 1A23_HUMAN HLA class I histocompatibility antigen, A-23 alpha chain precursor 414 
62 1A24_HUMAN HLA class I histocompatibility antigen, A-24 alpha chain precursor 192 
62 1A29_HUMAN HLA class I histocompatibility antigen, A-29 alpha chain precursor 668 
62 1A30_HUMAN HLA class I histocompatibility antigen, A-30 alpha chain precursor 414 
62 1A31_HUMAN HLA class I histocompatibility antigen, A-31 alpha chain precursor 668 
62 1A32_HUMAN HLA class I histocompatibility antigen, A-32 alpha chain precursor 721 
62 1A36_HUMAN HLA class I histocompatibility antigen, A-36 alpha chain precursor 244 
62 1A43_HUMAN HLA class I histocompatibility antigen, A-43 alpha chain precursor 668 
62 1A74_HUMAN HLA class I histocompatibility antigen, A-74 alpha chain precursor 721 
62 1A80_HUMAN HLA class I histocompatibility antigen, A-80 alpha chain precursor 29 
62 1B54_HUMAN HLA class I histocompatibility antigen, B-54 alpha chain precursor 189 
62 1B57_HUMAN HLA class I histocompatibility antigen, B-57 alpha chain precursor 189 
62 1B58_HUMAN HLA class I histocompatibility antigen, B-58 alpha chain precursor 189 
62 1C02_HUMAN HLA class I histocompatibility antigen, Cw-2 alpha chain precursor 29 
62 1C04_HUMAN HLA class I histocompatibility antigen, Cw-4 alpha chain precursor 189 
62 1C05_HUMAN HLA class I histocompatibility antigen, Cw-5 alpha chain precursor 29 
62 1C08_HUMAN HLA class I histocompatibility antigen, Cw-8 alpha chain precursor 29 
62 1C12_HUMAN HLA class I histocompatibility antigen, Cw-12 alpha chain precursor 192 
62 1C14_HUMAN HLA class I histocompatibility antigen, Cw-14 alpha chain precursor 189 
62 1C15_HUMAN HLA class I histocompatibility antigen, Cw-15 alpha chain precursor 29 
62 1C16_HUMAN HLA class I histocompatibility antigen, Cw-16 alpha chain precursor 192 
62 1C17_HUMAN HLA class I histocompatibility antigen, Cw-17 alpha chain precursor 192 
63 ADT2_HUMAN ADP/ATP translocase 2 703 
63 ADT3_HUMAN ADP/ATP translocase 3 335 
63 ADT4_HUMAN ADP/ATP translocase 4 80 
64 ATP5H_HUMAN ATP synthase subunit d, mitochondrial 701 
65 1A25_HUMAN HLA class I histocompatibility antigen, A-25 alpha chain precursor 685 
65 1A26_HUMAN HLA class I histocompatibility antigen, A-26 alpha chain precursor 685 
65 1A33_HUMAN HLA class I histocompatibility antigen, A-33 alpha chain precursor 685 
65 1A34_HUMAN HLA class I histocompatibility antigen, A-34 alpha chain precursor 685 
65 1A66_HUMAN HLA class I histocompatibility antigen, A-66 alpha chain precursor 685 
65 1A68_HUMAN HLA class I histocompatibility antigen, A-68 alpha chain precursor 208 
65 1A69_HUMAN HLA class I histocompatibility antigen, A-69 alpha chain 208 
65 1B13_HUMAN HLA class I histocompatibility antigen, B-13 alpha chain precursor 39 
65 1B15_HUMAN HLA class I histocompatibility antigen, B-15 alpha chain precursor 206 
65 1B18_HUMAN HLA class I histocompatibility antigen, B-18 alpha chain precursor 39 
65 1B27_HUMAN HLA class I histocompatibility antigen, B-27 alpha chain precursor 39 
65 1B35_HUMAN HLA class I histocompatibility antigen, B-35 alpha chain precursor 206 
65 1B40_HUMAN HLA class I histocompatibility antigen, B-40 alpha chain precursor 39 
65 1B41_HUMAN HLA class I histocompatibility antigen, B-41 alpha chain precursor 39 
65 1B44_HUMAN HLA class I histocompatibility antigen, B-44 alpha chain precursor 39 
65 1B45_HUMAN HLA class I histocompatibility antigen, B-45 alpha chain precursor 39 
65 1B46_HUMAN HLA class I histocompatibility antigen, B-46 alpha chain precursor 206 
65 1B47_HUMAN HLA class I histocompatibility antigen, B-47 alpha chain precursor 39 
65 1B49_HUMAN HLA class I histocompatibility antigen, B-49 alpha chain precursor 39 
65 1B50_HUMAN HLA class I histocompatibility antigen, B-50 alpha chain precursor 39 
65 1B51_HUMAN HLA class I histocompatibility antigen, B-51 alpha chain precursor 206 
65 1B52_HUMAN HLA class I histocompatibility antigen, B-52 alpha chain precursor 206 
65 1B53_HUMAN HLA class I histocompatibility antigen, B-53 alpha chain precursor 206 
65 1B55_HUMAN HLA class I histocompatibility antigen, B-55 alpha chain precursor 206 
65 1B56_HUMAN HLA class I histocompatibility antigen, B-56 alpha chain precursor 206 
65 1B59_HUMAN HLA class I histocompatibility antigen, B-59 alpha chain precursor 206 
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65 1B73_HUMAN HLA class I histocompatibility antigen, B-73 alpha chain precursor 43 
65 1B78_HUMAN HLA class I histocompatibility antigen, B-78 alpha chain precursor 206 
66 CYB5_HUMAN Cytochrome b5 680 
67 ST2A1_HUMAN Bile salt sulfotransferase 671 
68 UD11_HUMAN UDP-glucuronosyltransferase 1-1 precursor 661 
69 PHB2_HUMAN Prohibitin-2 656 
70 RTN4_HUMAN Reticulon-4 654 
71 PDIA6_HUMAN Protein disulfide-isomerase A6 precursor 647 
72 QCR1_HUMAN Cytochrome b-c1 complex subunit 1, mitochondrial precursor 644 
73 ANXA6_HUMAN Annexin A6 640 
74 FRIL_HUMAN Ferritin light chain 610 
75 UD18_HUMAN UDP-glucuronosyltransferase 1-8 precursor 554 
75 UD19_HUMAN UDP-glucuronosyltransferase 1-9 precursor 607 
76 SPTB1_HUMAN Spectrin beta chain, erythrocyte 66 
76 SPTB2_HUMAN Spectrin beta chain, brain 1 607 
76 SPTN2_HUMAN Spectrin beta chain, brain 2 66 
76 SPTN4_HUMAN Spectrin beta chain, brain 3 30 

77 
RIB2_HUMAN 

(RPN2_HUMAN expasy) Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 63 kDa subunit precursor 601 
78 DCXR_HUMAN L-xylulose reductase 597 
79 ALDOB_HUMAN Fructose-bisphosphate aldolase B 584 
80 NCPR_HUMAN NADPH--cytochrome P450 reductase 582 
81 EF1A1_HUMAN Elongation factor 1-alpha 1 582 
81 EF1A2_HUMAN Elongation factor 1-alpha 2 285 
82 TMED4_HUMAN Transmembrane emp24 domain-containing protein 4 precursor 384 
82 TMED9_HUMAN Transmembrane emp24 domain-containing protein 9 precursor 579 
83 FIBG_HUMAN Fibrinogen gamma chain precursor 579 
84 MTP_HUMAN Microsomal triglyceride transfer protein large subunit precursor 570 
85 ADT1_HUMAN ADP/ATP translocase 1 568 
86 MVP_HUMAN Major vault protein 562 
87 AL1A2_HUMAN Retinal dehydrogenase 2 35 
87 ALDH2_HUMAN Aldehyde dehydrogenase, mitochondrial precursor 558 
88 S27A2_HUMAN Very long-chain acyl-CoA synthetase 556 
89 SAA_HUMAN Serum amyloid A protein precursor 547 
89 SAA3_HUMAN Putative serum amyloid A-3 protein 31 
90 ATPG_HUMAN ATP synthase subunit gamma, mitochondrial precursor 546 
91 IMMT_HUMAN Mitochondrial inner membrane protein 546 
92 PDIA3_HUMAN Protein disulfide-isomerase A3 precursor 544 
93 UD13_HUMAN UDP-glucuronosyltransferase 1-3 precursor 536 
93 UD15_HUMAN UDP-glucuronosyltransferase 1-5 precursor 463 
94 COX2_HUMAN Cytochrome c oxidase subunit 2 534 
95 CPT2_HUMAN Carnitine O-palmitoyltransferase 2, mitochondrial precursor 528 
96 SURF4_HUMAN Surfeit locus protein 4 513 
97 UD16_HUMAN UDP-glucuronosyltransferase 1-6 precursor 503 
98 UDB10_HUMAN UDP-glucuronosyltransferase 2B10 precursor 501 
98 UDB11_HUMAN UDP-glucuronosyltransferase 2B11 precursor 233 
98 UDB28_HUMAN UDP-glucuronosyltransferase 2B28 precursor 173 
99 MET7A_HUMAN Methyltransferase-like protein 7A precursor 493 
100 UGPA_HUMAN UTP--glucose-1-phosphate uridylyltransferase 490 
101 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase 489 
102 RS4X_HUMAN 40S ribosomal protein S4, X isoform 486 
102 RS4Y2_HUMAN 40S ribosomal protein S4, Y isoform 2 136 
103 ROA1_HUMAN Heterogeneous nuclear ribonucleoprotein A1 473 
104 PCBP1_HUMAN Poly(rC)-binding protein 1 468 
105 HNRPM_HUMAN Heterogeneous nuclear ribonucleoprotein M 456 
106 H2A1_HUMAN Histone H2A type 1 454 
106 H2A1A_HUMAN Histone H2A type 1-A 168 
106 H2A1B_HUMAN Histone H2A type 1-B 454 
106 H2A1C_HUMAN Histone H2A type 1-C 454 
106 H2A1D_HUMAN Histone H2A type 1-D 454 
106 H2A1E_HUMAN Histone H2A type 1-E 454 
106 H2A1H_HUMAN Histone H2A type 1-H 454 
106 H2A1J_HUMAN Histone H2A type 1-J 454 
106 H2A2A_HUMAN Histone H2A type 2-A 454 
106 H2A2B_HUMAN Histone H2A type 2-B 104 
106 H2A2C_HUMAN Histone H2A type 2-C 454 
106 H2A3_HUMAN Histone H2A type 3 454 
106 H2AV_HUMAN Histone H2AV 168 
106 H2AX_HUMAN Histone H2A.x 168 
106 H2AZ_HUMAN Histone H2A.Z 168 
107 RL10A_HUMAN 60S ribosomal protein L10a 452 
108 DIC_HUMAN Mitochondrial dicarboxylate carrier 452 
109 K6PL_HUMAN 6-phosphofructokinase, liver type 448 
110 RL6_HUMAN 60S ribosomal protein L6 442 
111 FTCD_HUMAN Formimidoyltransferase-cyclodeaminase 440 
112 PHB_HUMAN Prohibitin 439 
113 NDUS1_HUMAN NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial precursor 434 
114 EF2_HUMAN Elongation factor 2 433 
115 PPCKC_HUMAN Phosphoenolpyruvate carboxykinase, cytosolic [GTP] 83 
115 PPCKM_HUMAN Phosphoenolpyruvate carboxykinase [GTP], mitochondrial precursor 431 
116 AMPN_HUMAN Aminopeptidase N 431 
117 TCPB_HUMAN T-complex protein 1 subunit beta 430 
118 CP4F2_HUMAN Cytochrome P450 4F2 424 
118 CP4F3_HUMAN Cytochrome P450 4F3 371 
118 CP4F8_HUMAN Cytochrome P450 4F8 174 
118 CP4FC_HUMAN Cytochrome P450 4F12 118 
119 MPCP_HUMAN Phosphate carrier protein, mitochondrial precursor 422 
120 RL17_HUMAN 60S ribosomal protein L17 420 
121 THTR_HUMAN Thiosulfate sulfurtransferase 419 
122 RS5_HUMAN 40S ribosomal protein S5 417 
123 RS19_HUMAN 40S ribosomal protein S19 417 
124 SSRA_HUMAN Translocon-associated protein subunit alpha precursor 416 
125 EF1G_HUMAN Elongation factor 1-gamma 415 
126 TERA_HUMAN Transitional endoplasmic reticulum ATPase 414 
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127 TLN1_HUMAN Talin-1 413 
127 TLN2_HUMAN Talin-2 61 
128 RS3A_HUMAN 40S ribosomal protein S3a 411 
129 CP2E1_HUMAN Cytochrome P450 2E1 410 
130 RS2_HUMAN 40S ribosomal protein S2 406 
131 HSP72_HUMAN Heat shock-related 70 kDa protein 2 86 
131 HSP7C_HUMAN Heat shock cognate 71 kDa protein 401 
132 AT5F1_HUMAN ATP synthase subunit b, mitochondrial precursor 399 
133 SERA_HUMAN D-3-phosphoglycerate dehydrogenase 395 
134 VDAC2_HUMAN Voltage-dependent anion-selective channel protein 2 395 
135 FINC_HUMAN Fibronectin precursor 388 
136 CY1_HUMAN Cytochrome c1, heme protein, mitochondrial precursor 385 
137 DHB13_HUMAN 17-beta hydroxysteroid dehydrogenase 13 precursor 385 
138 LMAN2_HUMAN Vesicular integral-membrane protein VIP36 precursor 377 
139 SFXN1_HUMAN Sideroflexin-1 374 
140 PSME2_HUMAN Proteasome activator complex subunit 2 372 
141 CLUS_HUMAN Clusterin precursor 364 
142 ASSY_HUMAN Argininosuccinate synthase 362 
143 ABCD3_HUMAN ATP-binding cassette sub-family D member 3 361 
143 GEN_HUMAN Flap endonuclease GEN homolog 1 61 
144 GABT_HUMAN 4-aminobutyrate aminotransferase, mitochondrial precursor 360 
145 RL15_HUMAN 60S ribosomal protein L15 356 
146 RL3_HUMAN 60S ribosomal protein L3 356 
146 RL3L_HUMAN 60S ribosomal protein L3-like 105 
147 HNRPK_HUMAN Heterogeneous nuclear ribonucleoprotein K 354 
148 UBIQ_HUMAN Ubiquitin 353 
149 RS7_HUMAN 40S ribosomal protein S7 353 
150 AL3A2_HUMAN Fatty aldehyde dehydrogenase 350 
151 DHB11_HUMAN Estradiol 17-beta-dehydrogenase 11 precursor 348 
152 RDH16_HUMAN Retinol dehydrogenase 16 345 
153 RL18A_HUMAN 60S ribosomal protein L18a 343 
154 FABPL_HUMAN Fatty acid-binding protein, liver 342 
155 HNRCL_HUMAN Heterogeneous nuclear ribonucleoprotein C-like 1 167 
155 HNRPC_HUMAN Heterogeneous nuclear ribonucleoproteins C1/C2 340 
156 VDAC3_HUMAN Voltage-dependent anion-selective channel protein 3 337 
157 APOA1_HUMAN Apolipoprotein A-I precursor 333 
158 RL4_HUMAN 60S ribosomal protein L4 328 
159 COPG_HUMAN Coatomer subunit gamma 324 
160 ECHM_HUMAN Enoyl-CoA hydratase, mitochondrial precursor 324 
161 GRP75_HUMAN Stress-70 protein, mitochondrial precursor 320 
162 TOM70_HUMAN Mitochondrial precursor proteins import receptor 316 
163 AT2A1_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 185 
163 AT2A2_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 316 
164 MGST1_HUMAN Microsomal glutathione S-transferase 1 307 
165 RL23_HUMAN 60S ribosomal protein L23 307 
166 VAPA_HUMAN Vesicle-associated membrane protein-associated protein A 160 
166 VAPB_HUMAN Vesicle-associated membrane protein-associated protein B/C 305 
167 RL21_HUMAN 60S ribosomal protein L21 293 
168 AT1B1_HUMAN Sodium/potassium-transporting ATPase subunit beta-1 292 
169 RL7A_HUMAN 60S ribosomal protein L7a 292 
170 FRIH_HUMAN Ferritin heavy chain 291 
171 TMPSD_HUMAN Transmembrane protease, serine 13 90 
171 TRY1_HUMAN Trypsin-1 precursor 287 
172 ERG7_HUMAN Lanosterol synthase 286 
173 C1TC_HUMAN C-1-tetrahydrofolate synthase, cytoplasmic 284 
174 MYO1A_HUMAN Myosin-Ia 37 
174 MYO1B_HUMAN Myosin-Ib 277 
175 RL11_HUMAN 60S ribosomal protein L11 273 
176 TGM2_HUMAN Protein-glutamine gamma-glutamyltransferase 2 271 
177 MTCH2_HUMAN Mitochondrial carrier homolog 2 270 
178 PAIRB_HUMAN Plasminogen activator inhibitor 1 RNA-binding protein 270 

179 
SYV_HUMAN (SYVC_HUMAN 

expasy) Valyl-tRNA synthetase 266 
180 ACSL5_HUMAN Long-chain-fatty-acid--CoA ligase 5 266 
181 PON3_HUMAN Serum paraoxonase/lactonase 3 265 
182 RL19_HUMAN 60S ribosomal protein L19 264 
183 PYC_HUMAN Pyruvate carboxylase, mitochondrial precursor 261 
184 TXTP_HUMAN Tricarboxylate transport protein, mitochondrial precursor 259 
185 ASGR1_HUMAN Asialoglycoprotein receptor 1 259 
186 RSSA_HUMAN 40S ribosomal protein SA 258 
187 RL18_HUMAN 60S ribosomal protein L18 255 
188 MLRM_HUMAN Myosin regulatory light chain 2, nonsarcomeric 255 
188 MLRN_HUMAN Myosin regulatory light chain 2, smooth muscle isoform 46 
189 ACPM_HUMAN Acyl carrier protein, mitochondrial precursor 250 
190 RLA0_HUMAN 60S acidic ribosomal protein P0 250 
191 S10AA_HUMAN Protein S100-A10 249 
192 KPYR_HUMAN Pyruvate kinase isozymes R/L 249 
193 PECR_HUMAN Peroxisomal trans-2-enoyl-CoA reductase 249 
194 ROA3_HUMAN Heterogeneous nuclear ribonucleoprotein A3 248 
195 CISD1_HUMAN CDGSH iron sulfur domain-containing protein 1 244 
196 FDFT_HUMAN Squalene synthetase 241 
197 GSTA1_HUMAN Glutathione S-transferase A1 239 
197 GSTA2_HUMAN Glutathione S-transferase A2 239 
197 GSTA3_HUMAN Glutathione S-transferase A3 239 
197 GSTA5_HUMAN Glutathione S-transferase A5 45 
198 RL13_HUMAN 60S ribosomal protein L13 238 
199 H4_HUMAN Histone H4 238 
200 ATP5J_HUMAN ATP synthase-coupling factor 6, mitochondrial precursor 237 
201 UD2A1_HUMAN UDP-glucuronosyltransferase 2A1 precursor 28 
201 UD2A3_HUMAN UDP-glucuronosyltransferase 2A3 precursor 28 
201 UD2B4_HUMAN UDP-glucuronosyltransferase 2B4 precursor 237 
202 KAD4_HUMAN Adenylate kinase isoenzyme 4, mitochondrial 232 
203 NDUS8_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial precursor 228 
204 HYOU1_HUMAN Hypoxia up-regulated protein 1 precursor 227 
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205 IF4G1_HUMAN Eukaryotic translation initiation factor 4 gamma 1 226 
206 COPA_HUMAN Coatomer subunit alpha 226 
207 PSME1_HUMAN Proteasome activator complex subunit 1 220 
208 PLEC1_HUMAN Plectin-1 220 
209 CJ058_HUMAN Uncharacterized protein C10orf58 precursor 220 

210 
DYHC_HUMAN 

(DYHC1_HUMAN expasy) Dynein heavy chain, cytosolic 219 
211 RS4Y1_HUMAN 40S ribosomal protein S4, Y isoform 1 218 
212 TIM50_HUMAN Import inner membrane translocase subunit TIM50, mitochondrial precursor 216 
213 AAAD_HUMAN Arylacetamide deacetylase 214 
214 MMAB_HUMAN Cob(I)yrinic acid a,c-diamide adenosyltransferase, mitochondrial precursor 210 
215 RL27A_HUMAN 60S ribosomal protein L27a 210 
216 NDUAC_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 209 
217 OST48_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit precursor 209 
218 MMP19_HUMAN Matrix metalloproteinase-19 precursor 56 
218 VTNC_HUMAN Vitronectin precursor 208 
219 CTND1_HUMAN Catenin delta-1 208 
220 HNRPQ_HUMAN Heterogeneous nuclear ribonucleoprotein Q 208 
221 NDUA9_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial precursor 207 
222 APOC3_HUMAN Apolipoprotein C-III precursor 206 
223 DHB2_HUMAN Estradiol 17-beta-dehydrogenase 2 202 
224 NUCL_HUMAN Nucleolin 201 
225 QCR7_HUMAN Cytochrome b-c1 complex subunit 7 200 
226 RL14_HUMAN 60S ribosomal protein L14 200 
227 IF4A1_HUMAN Eukaryotic initiation factor 4A-I 197 
227 IF4A2_HUMAN Eukaryotic initiation factor 4A-II 142 
228 THIL_HUMAN Acetyl-CoA acetyltransferase, mitochondrial precursor 197 
229 H2B1A_HUMAN Histone H2B type 1-A 76 
229 H2B1B_HUMAN Histone H2B type 1-B 197 
229 H2B1C_HUMAN Histone H2B type 1-C/E/F/G/I 197 
229 H2B1D_HUMAN Histone H2B type 1-D 197 
229 H2B1H_HUMAN Histone H2B type 1-H 197 
229 H2B1J_HUMAN Histone H2B type 1-J 197 
229 H2B1K_HUMAN Histone H2B type 1-K 197 
229 H2B1L_HUMAN Histone H2B type 1-L 197 
229 H2B1M_HUMAN Histone H2B type 1-M 197 
229 H2B1N_HUMAN Histone H2B type 1-N 197 
229 H2B1O_HUMAN Histone H2B type 1-O 197 
229 H2B2E_HUMAN Histone H2B type 2-E 197 
229 H2B2F_HUMAN Histone H2B type 2-F 197 
229 H2B3B_HUMAN Histone H2B type 3-B 197 
229 H2BFS_HUMAN Histone H2B type F-S 197 
230 HSP71_HUMAN Heat shock 70 kDa protein 1 195 
230 HSP76_HUMAN Heat shock 70 kDa protein 6 88 
230 HSP77_HUMAN Putative heat shock 70 kDa protein 7 88 
231 COPD_HUMAN Coatomer subunit delta 195 
232 SYMC_HUMAN Methionyl-tRNA synthetase, cytoplasmic 194 
233 RL29_HUMAN 60S ribosomal protein L29 194 
234 HNRPD_HUMAN Heterogeneous nuclear ribonucleoprotein D0 193 
235 NNMT_HUMAN Nicotinamide N-methyltransferase 193 
236 ECHP_HUMAN Peroxisomal bifunctional enzyme 192 
237 SFRS3_HUMAN Splicing factor, arginine/serine-rich 3 192 
237 SFRS7_HUMAN Splicing factor, arginine/serine-rich 7 192 
238 ICAM1_HUMAN Intercellular adhesion molecule 1 precursor 190 
239 NDKA_HUMAN Nucleoside diphosphate kinase A 189 
239 NDKB_HUMAN Nucleoside diphosphate kinase B 189 
240 RS6_HUMAN 40S ribosomal protein S6 187 
241 UGDH_HUMAN UDP-glucose 6-dehydrogenase 186 
242 TR150_HUMAN Thyroid hormone receptor-associated protein 3 186 
243 DECR_HUMAN 2,4-dienoyl-CoA reductase, mitochondrial precursor 184 
244 EST1_HUMAN Liver carboxylesterase 1 precursor 184 
245 K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal 183 
245 K2C1_HUMAN Keratin, type II cytoskeletal 1 79 
246 RL31_HUMAN 60S ribosomal protein L31 183 
247 NSDHL_HUMAN Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 182 
248 NPM_HUMAN Nucleophosmin 181 
249 RAB7A_HUMAN Ras-related protein Rab-7a 181 
250 QCR6_HUMAN Cytochrome b-c1 complex subunit 6, mitochondrial precursor 180 
251 RS30_HUMAN 40S ribosomal protein S30 179 
252 S27A5_HUMAN Bile acyl-CoA synthetase 179 
253 MET7B_HUMAN Methyltransferase-like protein 7B precursor 178 
254 KMO_HUMAN Kynurenine 3-monooxygenase 177 
255 RS18_HUMAN 40S ribosomal protein S18 176 
256 UDB15_HUMAN UDP-glucuronosyltransferase 2B15 precursor 176 
257 RL12_HUMAN 60S ribosomal protein L12 176 
258 MYL6_HUMAN Myosin light polypeptide 6 175 
259 RS9_HUMAN 40S ribosomal protein S9 175 
260 PRS7_HUMAN 26S protease regulatory subunit 7 174 
261 BHMT1_HUMAN Betaine--homocysteine S-methyltransferase 1 174 
262 GNAI1_HUMAN Guanine nucleotide-binding protein G(i), alpha-1 subunit 144 
262 GNAI3_HUMAN Guanine nucleotide-binding protein G(k) subunit alpha 144 
262 GNAL_HUMAN Guanine nucleotide-binding protein G(olf) subunit alpha 144 
262 GNAO1_HUMAN Guanine nucleotide-binding protein G(o) subunit alpha 1 144 
262 GNAO2_HUMAN Guanine nucleotide-binding protein G(o) subunit alpha 2 144 
262 GNAS1_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas 173 
262 GNAS2_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms short 173 
262 GNAT1_HUMAN Guanine nucleotide-binding protein G(t) subunit alpha-1 144 
262 GNAT2_HUMAN Guanine nucleotide-binding protein G(t) subunit alpha-2 144 
263 DAD1_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1 173 
264 KU86_HUMAN ATP-dependent DNA helicase 2 subunit 2 173 
265 S39AE_HUMAN Zinc transporter ZIP14 172 
266 GSTK1_HUMAN Glutathione S-transferase kappa 1 171 
267 STOM_HUMAN Erythrocyte band 7 integral membrane protein 170 
268 CATA_HUMAN Catalase 170 
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269 RS12_HUMAN 40S ribosomal protein S12 168 
270 SND1_HUMAN Staphylococcal nuclease domain-containing protein 1 168 
271 ACLY_HUMAN ATP-citrate synthase 167 
272 DHSO_HUMAN Sorbitol dehydrogenase 167 
273 LRC59_HUMAN Leucine-rich repeat-containing protein 59 167 
274 GNAI2_HUMAN Guanine nucleotide-binding protein G(i), alpha-2 subunit 167 
275 RADI_HUMAN Radixin 164 
276 DHB12_HUMAN Estradiol 17-beta-dehydrogenase 12 163 
277 GALT2_HUMAN Polypeptide N-acetylgalactosaminyltransferase 2 163 
278 TMEDA_HUMAN Transmembrane emp24 domain-containing protein 10 precursor 162 
279 CP4FB_HUMAN Cytochrome P450 4F11 161 
280 MYO1C_HUMAN Myosin-Ic 160 
281 DHI1_HUMAN Corticosteroid 11-beta-dehydrogenase isozyme 1 160 
282 GBG12_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 precursor 160 
283 CATD_HUMAN Cathepsin D precursor 159 
284 M2OM_HUMAN Mitochondrial 2-oxoglutarate/malate carrier protein 158 
285 ROAA_HUMAN Heterogeneous nuclear ribonucleoprotein A/B 158 
286 APOE_HUMAN Apolipoprotein E precursor 158 
287 GNA12_HUMAN Guanine nucleotide-binding protein alpha-12 subunit 144 
287 GNA13_HUMAN Guanine nucleotide-binding protein alpha-13 subunit 158 
288 MPU1_HUMAN Mannose-P-dolichol utilization defect 1 protein 158 
289 RS3_HUMAN 40S ribosomal protein S3 157 
290 RHOA_HUMAN Transforming protein RhoA precursor 157 
290 RHOB_HUMAN Rho-related GTP-binding protein RhoB precursor 75 
290 RHOC_HUMAN Rho-related GTP-binding protein RhoC precursor 157 
291 RS20_HUMAN 40S ribosomal protein S20 156 
292 SYJ2B_HUMAN Synaptojanin-2-binding protein 156 
293 COX41_HUMAN Cytochrome c oxidase subunit 4 isoform 1, mitochondrial precursor 155 
294 TMED7_HUMAN Transmembrane emp24 domain-containing protein 7 precursor 154 
295 RL9_HUMAN 60S ribosomal protein L9 154 
296 PRDX6_HUMAN Peroxiredoxin-6 153 
297 AL8A1_HUMAN Aldehyde dehydrogenase family 8 member A1 152 
298 FUMH_HUMAN Fumarate hydratase, mitochondrial precursor 151 
299 ES8L2_HUMAN Epidermal growth factor receptor kinase substrate 8-like protein 2 150 
300 PECI_HUMAN Peroxisomal 3,2-trans-enoyl-CoA isomerase 150 
301 STT3A_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A 149 
302 SFRS1_HUMAN Splicing factor, arginine/serine-rich 1 148 
303 GATM_HUMAN Glycine amidinotransferase, mitochondrial precursor 147 
304 ACSL3_HUMAN Long-chain-fatty-acid--CoA ligase 3 147 
304 ACSL4_HUMAN Long-chain-fatty-acid--CoA ligase 4 147 
305 AR6P1_HUMAN ADP-ribosylation factor-like protein 6-interacting protein 1 146 
306 PRS10_HUMAN 26S protease regulatory subunit S10B 145 
307 G6PT1_HUMAN Glucose-6-phosphate translocase 143 
308 RAB12_HUMAN Putative Ras-related protein Rab-12 75 
308 RAB14_HUMAN Ras-related protein Rab-14 75 
308 RAB1A_HUMAN Ras-related protein Rab-1A 142 
308 RAB1B_HUMAN Ras-related protein Rab-1B 142 
308 RAB30_HUMAN Ras-related protein Rab-30 75 
308 RAB35_HUMAN Ras-related protein Rab-35 75 
308 RAB37_HUMAN Ras-related protein Rab-37 75 
308 RAB3A_HUMAN Ras-related protein Rab-3A 75 
308 RAB3B_HUMAN Ras-related protein Rab-3B 75 
308 RAB3C_HUMAN Ras-related protein Rab-3C 75 
308 RAB3D_HUMAN Ras-related protein Rab-3D 75 
308 RAB43_HUMAN Ras-related protein Rab-43 75 
308 RAB4A_HUMAN Ras-related protein Rab-4A 75 
308 RAB4B_HUMAN Ras-related protein Rab-4B 75 
308 RAB8A_HUMAN Ras-related protein Rab-8A 75 
308 RAB8B_HUMAN Ras-related protein Rab-8B 75 
308 RB39B_HUMAN Ras-related protein Rab-39B 75 
309 GANAB_HUMAN Neutral alpha-glucosidase AB precursor 142 
310 RL13A_HUMAN 60S ribosomal protein L13a 141 
311 ESYT1_HUMAN Extended-synaptotagmin-1 140 
312 PDLI5_HUMAN PDZ and LIM domain protein 5 140 
313 APOC1_HUMAN Apolipoprotein C-I precursor 139 
314 UBE2N_HUMAN Ubiquitin-conjugating enzyme E2 N 139 
314 UE2NL_HUMAN Putative ubiquitin-conjugating enzyme E2 N-like 48 
315 RS23_HUMAN 40S ribosomal protein S23 139 
316 AT5L2_HUMAN ATP synthase subunit g 2, mitochondrial 24 
316 ATP5L_HUMAN ATP synthase subunit g, mitochondrial 138 
317 SAM50_HUMAN Sorting and assembly machinery component 50 homolog 138 
318 PON1_HUMAN Serum paraoxonase/arylesterase 1 137 
319 TMED5_HUMAN Transmembrane emp24 domain-containing protein 5 precursor 136 
320 TM109_HUMAN Transmembrane protein 109 precursor 136 
321 ITA1_HUMAN Integrin alpha-1 precursor 135 
322 CX6B1_HUMAN Cytochrome c oxidase subunit VIb isoform 1 135 
323 NDK8_HUMAN Putative nucleoside diphosphate kinase 132 
324 1B07_HUMAN HLA class I histocompatibility antigen, B-7 alpha chain precursor 132 
324 1B08_HUMAN HLA class I histocompatibility antigen, B-8 alpha chain precursor 132 
324 1B14_HUMAN HLA class I histocompatibility antigen, B-14 alpha chain precursor 132 
324 1B37_HUMAN HLA class I histocompatibility antigen, B-37 alpha chain precursor 132 
324 1B38_HUMAN HLA class I histocompatibility antigen, B-38 alpha chain precursor 132 
324 1B39_HUMAN HLA class I histocompatibility antigen, B-39 alpha chain precursor 132 
324 1B42_HUMAN HLA class I histocompatibility antigen, B-42 alpha chain precursor 132 
324 1B48_HUMAN HLA class I histocompatibility antigen, B-48 alpha chain precursor 132 
324 1B67_HUMAN HLA class I histocompatibility antigen, B-67 alpha chain precursor 132 
324 1B81_HUMAN HLA class I histocompatibility antigen, B-81 alpha chain precursor 132 
324 1B82_HUMAN HLA class I histocompatibility antigen, B-82 alpha chain precursor 132 
324 1C01_HUMAN HLA class I histocompatibility antigen, Cw-1 alpha chain precursor 116 
324 1C18_HUMAN HLA class I histocompatibility antigen, Cw-18 alpha chain precursor 116 
324 HLAE_HUMAN HLA class I histocompatibility antigen, alpha chain E precursor 116 
325 PCBP2_HUMAN Poly(rC)-binding protein 2 132 
325 PCBP3_HUMAN Poly(rC)-binding protein 3 80 
326 DNJA3_HUMAN DnaJ homolog subfamily A member 3, mitochondrial precursor 131 
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327 CP51A_HUMAN Cytochrome P450 51A1 131 
328 PRS6A_HUMAN 26S protease regulatory subunit 6A 130 
329 TCPQ_HUMAN T-complex protein 1 subunit theta 130 
330 NDUB9_HUMAN NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9 128 
331 SNX5_HUMAN Sorting nexin-5 128 
332 RL32_HUMAN 60S ribosomal protein L32 127 
333 GBB1_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 127 
333 GBB2_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 70 
334 HYES_HUMAN Epoxide hydrolase 2 127 
335 MDR1_HUMAN Multidrug resistance protein 1 126 
336 NDUS3_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial precursor 124 
337 EST2_HUMAN Carboxylesterase 2 precursor 124 
338 EZRI_HUMAN Ezrin 123 
339 OPA1_HUMAN Dynamin-like 120 kDa protein, mitochondrial precursor 122 
340 SPCS2_HUMAN Signal peptidase complex subunit 2 121 
341 IR3IP_HUMAN Immediate early response 3-interacting protein 1 120 
342 DBPA_HUMAN DNA-binding protein A 118 
342 YBOX1_HUMAN Nuclease sensitive element-binding protein 1 118 
342 YBOX2_HUMAN Y-box-binding protein 2 118 
343 DDX17_HUMAN Probable ATP-dependent RNA helicase DDX17 118 
343 DDX3X_HUMAN ATP-dependent RNA helicase DDX3X 118 
343 DDX3Y_HUMAN ATP-dependent RNA helicase DDX3Y 118 
343 DDX5_HUMAN Probable ATP-dependent RNA helicase DDX5 118 
344 MOES_HUMAN Moesin 118 
345 SRP68_HUMAN Signal recognition particle 68 kDa protein 118 
346 LONM_HUMAN Lon protease homolog, mitochondrial precursor 117 
347 FLII_HUMAN Protein flightless-1 homolog 116 
348 HSPB1_HUMAN Heat shock protein beta-1 115 
349 AP2M1_HUMAN AP-2 complex subunit mu-1 114 
350 DHX9_HUMAN ATP-dependent RNA helicase A 114 
351 SRPRB_HUMAN Signal recognition particle receptor subunit beta 114 
352 RAB10_HUMAN Ras-related protein Rab-10 114 
353 RS15A_HUMAN 40S ribosomal protein S15a 114 
354 H17B6_HUMAN Hydroxysteroid 17-beta dehydrogenase 6 precursor 113 
355 TAGL2_HUMAN Transgelin-2 113 
356 DEOC_HUMAN Putative deoxyribose-phosphate aldolase 113 
357 RL27_HUMAN 60S ribosomal protein L27 112 
358 RS17_HUMAN 40S ribosomal protein S17 111 
359 REEP6_HUMAN Receptor expression-enhancing protein 6 111 
360 GPSN2_HUMAN Synaptic glycoprotein SC2 110 
361 RDH11_HUMAN Retinol dehydrogenase 11 110 
362 NDUS2_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial precursor 108 
363 TMOD3_HUMAN Tropomodulin-3 108 
364 COX5B_HUMAN Cytochrome c oxidase subunit 5B, mitochondrial precursor 107 
365 TOLIP_HUMAN Toll-interacting protein 107 
366 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 38 
366 PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B precursor 106 
366 PPIC_HUMAN Peptidyl-prolyl cis-trans isomerase C 38 
366 PPIH_HUMAN Peptidyl-prolyl cis-trans isomerase H 38 
367 SYLC_HUMAN Leucyl-tRNA synthetase, cytoplasmic 106 
368 TCPA_HUMAN T-complex protein 1 subunit alpha 105 
369 RS25_HUMAN 40S ribosomal protein S25 105 
370 C560_HUMAN Succinate dehydrogenase cytochrome b560 subunit, mitochondrial precursor 105 
371 CP2A6_HUMAN Cytochrome P450 2A6 105 
371 CP2AD_HUMAN Cytochrome P450 2A13 105 
372 SYRC_HUMAN Arginyl-tRNA synthetase, cytoplasmic 105 
373 KAD3_HUMAN GTP:AMP phosphotransferase mitochondrial 104 
374 ODO1_HUMAN 2-oxoglutarate dehydrogenase E1 component, mitochondrial precursor 104 
375 PSD11_HUMAN 26S proteasome non-ATPase regulatory subunit 11 104 
376 LMNA_HUMAN Lamin-A/C 104 

377 ODO2_HUMAN 
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, 

mitochondrial precursor 103 
378 HGD_HUMAN Homogentisate 1,2-dioxygenase 103 
379 ACDSB_HUMAN Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial precursor 103 
380 LMAN1_HUMAN Protein ERGIC-53 precursor 102 
381 CB047_HUMAN Uncharacterized protein C2orf47, mitochondrial precursor 101 
382 NDUS4_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial precursor 101 
383 IDHP_HUMAN Isocitrate dehydrogenase [NADP], mitochondrial precursor 101 
384 ODPB_HUMAN Pyruvate dehydrogenase E1 component subunit beta, mitochondrial precursor 100 
385 ANXA7_HUMAN Annexin A7 100 
386 SEC63_HUMAN Translocation protein SEC63 homolog 99 
387 ILF2_HUMAN Interleukin enhancer-binding factor 2 99 
388 ERLN1_HUMAN Erlin-1 precursor 24 
388 ERLN2_HUMAN Erlin-2 precursor 99 
389 COX6C_HUMAN Cytochrome c oxidase polypeptide VIc precursor 98 
390 PRDX1_HUMAN Peroxiredoxin-1 97 
391 PRKDC_HUMAN DNA-dependent protein kinase catalytic subunit 97 
392 CD81_HUMAN CD81 antigen 97 
393 RL24_HUMAN 60S ribosomal protein L24 97 
394 MOSC2_HUMAN MOSC domain-containing protein 2, mitochondrial precursor 96 
395 HPT_HUMAN Haptoglobin precursor [Contains: Haptoglobin alpha chain; Haptoglobin beta chain] 96 
396 KAD2_HUMAN Adenylate kinase isoenzyme 2, mitochondrial 95 
397 NDUAD_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 95 
398 F16P1_HUMAN Fructose-1,6-bisphosphatase 1 95 
399 QOR_HUMAN Quinone oxidoreductase 94 
400 RL30_HUMAN 60S ribosomal protein L30 94 
401 TCPG_HUMAN T-complex protein 1 subunit gamma 94 
402 GCS1_HUMAN Mannosyl-oligosaccharide glucosidase 93 
403 NDUA6_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 92 
404 AL1B1_HUMAN Aldehyde dehydrogenase X, mitochondrial precursor 92 
405 PTBP1_HUMAN Polypyrimidine tract-binding protein 1 92 
406 NB5R1_HUMAN NADH-cytochrome b5 reductase 1 91 
407 FMO5_HUMAN Dimethylaniline monooxygenase [N-oxide-forming] 5 91 
408 ITAV_HUMAN Integrin alpha-V precursor 91 
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409 ENOA_HUMAN Alpha-enolase 91 
409 ENOB_HUMAN Beta-enolase 91 
409 ENOG_HUMAN Gamma-enolase 91 
410 SPEB_HUMAN Agmatinase, mitochondrial precursor 91 
411 GTR2_HUMAN Solute carrier family 2, facilitated glucose transporter member 2 90 
412 NDUA8_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 90 
413 RS10_HUMAN 40S ribosomal protein S10 90 
414 KU70_HUMAN ATP-dependent DNA helicase 2 subunit 1 90 
415 HCDH_HUMAN Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial precursor 90 
416 MCAT_HUMAN Mitochondrial carnitine/acylcarnitine carrier protein 89 
417 TIM13_HUMAN Mitochondrial import inner membrane translocase subunit Tim13 89 

418 ODB2_HUMAN 
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, 

mitochondrial precursor 89 
419 COX1_HUMAN Cytochrome c oxidase subunit 1 88 
420 SDHL_HUMAN L-serine dehydratase 88 
421 PGM1_HUMAN Phosphoglucomutase-1 88 
422 TXND4_HUMAN Thioredoxin domain-containing protein 4 precursor 88 
423 RS13_HUMAN 40S ribosomal protein S13 88 
424 AL1A1_HUMAN Retinal dehydrogenase 1 87 
425 HCD2_HUMAN 3-hydroxyacyl-CoA dehydrogenase type-2 87 
426 ILF3_HUMAN Interleukin enhancer-binding factor 3 86 
427 ATLA3_HUMAN Atlastin-3 86 
428 SSRD_HUMAN Translocon-associated protein subunit delta precursor 85 
429 RL10_HUMAN 60S ribosomal protein L10 84 
429 RL10L_HUMAN 60S ribosomal protein L10-like 45 
430 EHD1_HUMAN EH domain-containing protein 1 55 
430 EHD2_HUMAN EH domain-containing protein 2 53 
430 EHD3_HUMAN EH domain-containing protein 3 55 
430 EHD4_HUMAN EH domain-containing protein 4 84 
431 APOB_HUMAN Apolipoprotein B-100 precursor 82 
432 CX7A2_HUMAN Cytochrome c oxidase polypeptide VIIa-liver/heart, mitochondrial precursor 82 
433 LACTB_HUMAN Serine beta-lactamase-like protein LACTB, mitochondrial precursor 81 
434 C1QBP_HUMAN Complement component 1 Q subcomponent-binding protein, mitochondrial precursor 80 
435 PCCA_HUMAN Propionyl-CoA carboxylase alpha chain, mitochondrial precursor 79 
436 TRAP1_HUMAN Heat shock protein 75 kDa, mitochondrial precursor 79 
437 DLDH_HUMAN Dihydrolipoyl dehydrogenase, mitochondrial precursor 79 
438 PSD12_HUMAN 26S proteasome non-ATPase regulatory subunit 12 77 
439 ATPK_HUMAN ATP synthase subunit f, mitochondrial 77 
440 MGLL_HUMAN Monoglyceride lipase 77 
441 EIF3F_HUMAN Eukaryotic translation initiation factor 3 subunit F 77 
442 PDC6I_HUMAN Programmed cell death 6-interacting protein 77 
443 DHC24_HUMAN 24-dehydrocholesterol reductase precursor 75 
444 DHRS1_HUMAN Dehydrogenase/reductase SDR family member 1 75 
445 PRS4_HUMAN 26S protease regulatory subunit 4 75 
446 NIPS1_HUMAN Protein NipSnap1 74 
446 NIPS2_HUMAN Protein NipSnap2 43 
447 CAZA1_HUMAN F-actin-capping protein subunit alpha-1 74 
448 HMOX1_HUMAN Heme oxygenase 1 73 
449 IF5A1_HUMAN Eukaryotic translation initiation factor 5A-1 73 
449 IF5A2_HUMAN Eukaryotic translation initiation factor 5A-2 73 
450 LYAG_HUMAN Lysosomal alpha-glucosidase precursor 73 
451 DHRS7_HUMAN Dehydrogenase/reductase SDR family member 7 precursor 73 
452 ORNT1_HUMAN Mitochondrial ornithine transporter 1 72 
453 AATM_HUMAN Aspartate aminotransferase, mitochondrial precursor 71 
454 RRBP1_HUMAN Ribosome-binding protein 1 71 
455 GLYAT_HUMAN Glycine N-acyltransferase 71 
456 METK1_HUMAN S-adenosylmethionine synthetase isoform type-1 71 
457 ECH1_HUMAN Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial precursor 71 
458 UCRI_HUMAN Cytochrome b-c1 complex subunit Rieske, mitochondrial precursor 71 
459 TRI25_HUMAN Tripartite motif-containing protein 25 70 
460 E2IG5_HUMAN E2-induced gene 5 protein 69 
461 RL37_HUMAN 60S ribosomal protein L37 68 
462 CHDH_HUMAN Choline dehydrogenase, mitochondrial precursor 67 
463 COPB_HUMAN Coatomer subunit beta 66 
464 LYRIC_HUMAN Protein LYRIC 66 
465 PABP1_HUMAN Polyadenylate-binding protein 1 66 
465 PABP4_HUMAN Polyadenylate-binding protein 4 66 
466 EFTU_HUMAN Elongation factor Tu, mitochondrial precursor 66 
467 PTTG_HUMAN Pituitary tumor-transforming gene 1 protein-interacting protein precursor 65 
468 AP1B1_HUMAN AP-1 complex subunit beta-1 65 
469 PCYOX_HUMAN Prenylcysteine oxidase 1 precursor 65 
470 THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 65 
471 RL34_HUMAN 60S ribosomal protein L34 65 
472 TYPH_HUMAN Thymidine phosphorylase precursor 65 
473 ADO_HUMAN Aldehyde oxidase 65 
474 AFAD_HUMAN Afadin 65 
475 ST1A1_HUMAN Sulfotransferase 1A1 65 
475 ST1A2_HUMAN Sulfotransferase 1A2 65 
476 NDUB8_HUMAN NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial precursor 64 
477 PRDX4_HUMAN Peroxiredoxin-4 64 
478 CATB_HUMAN Cathepsin B precursor 64 
479 ASPH_HUMAN Aspartyl/asparaginyl beta-hydroxylase 64 
480 RS15_HUMAN 40S ribosomal protein S15 63 
481 SPYA_HUMAN Serine--pyruvate aminotransferase 63 
482 CO4A_HUMAN Complement C4-A precursor 62 
482 CO4B_HUMAN Complement C4-B precursor 62 
483 VATA_HUMAN Vacuolar ATP synthase catalytic subunit A 62 
484 GYS2_HUMAN Glycogen [starch] synthase, liver 62 
485 A16A1_HUMAN Aldehyde dehydrogenase family 16 member A1 62 
486 RS16_HUMAN 40S ribosomal protein S16 62 
487 FKB11_HUMAN FK506-binding protein 11 precursor 62 
488 NOMO1_HUMAN Nodal modulator 1 precursor 61 
488 NOMO2_HUMAN Nodal modulator 2 precursor 61 
488 NOMO3_HUMAN Nodal modulator 3 precursor 61 
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489 CHD9_HUMAN Chromodomain-helicase-DNA-binding protein 9 61 
490 NDUA4_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 61 
491 H10_HUMAN Histone H1.0 61 
492 SYIC_HUMAN Isoleucyl-tRNA synthetase, cytoplasmic 60 
493 SC22B_HUMAN Vesicle-trafficking protein SEC22b 60 
494 HMDH_HUMAN 3-hydroxy-3-methylglutaryl-coenzyme A reductase 60 
495 MMSA_HUMAN Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial precursor 59 
496 CP4AB_HUMAN Cytochrome P450 4A11 precursor 59 
497 MIRO1_HUMAN Mitochondrial Rho GTPase 1 59 
498 EIF3A_HUMAN Eukaryotic translation initiation factor 3 subunit A 59 
499 APMAP_HUMAN Adipocyte plasma membrane-associated protein 59 
500 GSTM4_HUMAN Glutathione S-transferase Mu 4 59 
501 CCD56_HUMAN Coiled-coil domain-containing protein 56 59 
502 VNN1_HUMAN Pantetheinase precursor 59 
503 AFG31_HUMAN Putative AFG3-like protein 1 27 
503 AFG32_HUMAN AFG3-like protein 2 59 
504 AP2B1_HUMAN AP-2 complex subunit beta-1 58 
505 CPT1A_HUMAN Carnitine O-palmitoyltransferase I, liver isoform 57 
506 BZW1_HUMAN Basic leucine zipper and W2 domain-containing protein 1 57 
506 BZW2_HUMAN Basic leucine zipper and W2 domain-containing protein 2 57 
507 PRAF3_HUMAN PRA1 family protein 3 56 
508 CP3A4_HUMAN Cytochrome P450 3A4 56 
508 CP3A5_HUMAN Cytochrome P450 3A5 56 
508 CP3A7_HUMAN Cytochrome P450 3A7 56 
509 SNX1_HUMAN Sorting nexin-1 56 
509 SNX2_HUMAN Sorting nexin-2 56 
510 SPTA2_HUMAN Spectrin alpha chain, brain 56 
511 SC31A_HUMAN Protein transport protein Sec31A 56 
512 SC23A_HUMAN Protein transport protein Sec23A 56 
512 SC23B_HUMAN Protein transport protein Sec23B 56 
513 IF4E_HUMAN Eukaryotic translation initiation factor 4E 55 
514 SEPT2_HUMAN Septin-2 55 
515 RL22_HUMAN 60S ribosomal protein L22 55 
516 FBXL7_HUMAN F-box/LRR-repeat protein 7 55 
517 ZN207_HUMAN Zinc finger protein 207 55 
518 EF1D_HUMAN Elongation factor 1-delta 55 
519 APOO_HUMAN Apolipoprotein O precursor 55 
520 COMT_HUMAN Catechol O-methyltransferase 54 
521 EIF3B_HUMAN Eukaryotic translation initiation factor 3 subunit B 54 
522 VIGLN_HUMAN Vigilin 54 
523 SRP54_HUMAN Signal recognition particle 54 kDa protein 54 
524 RL8_HUMAN 60S ribosomal protein L8 54 

525 
COA2_HUMAN 

(ACACB_HUMAN expasy) Acetyl-CoA carboxylase 2 54 

526 
IREB1_HUMAN 

(ACOC_HUMAN expasy) Iron-responsive element-binding protein 1 54 
527 ATP5I_HUMAN ATP synthase subunit e, mitochondrial 53 
528 IDHC_HUMAN Isocitrate dehydrogenase [NADP] cytoplasmic 53 
529 TIF1B_HUMAN Transcription intermediary factor 1-beta 53 
530 CP27A_HUMAN Cytochrome P450 27, mitochondrial precursor 52 
531 RAB2A_HUMAN Ras-related protein Rab-2A 51 
532 TCPH_HUMAN T-complex protein 1 subunit eta 51 
533 HSP74_HUMAN Heat shock 70 kDa protein 4 51 
534 ITB1_HUMAN Integrin beta-1 precursor 51 
535 RSMB_HUMAN Small nuclear ribonucleoprotein-associated proteins B and B~ 51 
535 RSMN_HUMAN Small nuclear ribonucleoprotein-associated protein N 51 
536 EIF3I_HUMAN Eukaryotic translation initiation factor 3 subunit I 50 
537 ECM29_HUMAN Proteasome-associated protein ECM29 homolog 50 
538 NDK3_HUMAN Nucleoside diphosphate kinase 3 50 
539 BGLR_HUMAN Beta-glucuronidase precursor 50 
540 NDUB6_HUMAN NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 49 
541 LIPB2_HUMAN Liprin-beta-2 49 
542 TM167_HUMAN Transmembrane protein 167 precursor 49 
543 DDX1_HUMAN ATP-dependent RNA helicase DDX1 49 
544 TCPZ_HUMAN T-complex protein 1 subunit zeta 49 
545 EIF3C_HUMAN Eukaryotic translation initiation factor 3 subunit C 49 
546 CTNB1_HUMAN Catenin beta-1 45 
546 PLAK_HUMAN Junction plakoglobin 48 
547 PRP8_HUMAN Pre-mRNA-processing-splicing factor 8 48 
548 GBLP_HUMAN Guanine nucleotide-binding protein subunit beta-2-like 1 47 
549 RS8_HUMAN 40S ribosomal protein S8 47 
550 NDUA5_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 47 
551 AK1C1_HUMAN Aldo-keto reductase family 1 member C1 46 
551 AK1C2_HUMAN Aldo-keto reductase family 1 member C2 46 
551 AK1C3_HUMAN Aldo-keto reductase family 1 member C3 46 
551 AK1C4_HUMAN Aldo-keto reductase family 1 member C4 46 
552 BR44_HUMAN Brain protein 44 46 
553 SCRB2_HUMAN Lysosome membrane protein 2 46 
554 CFTR_HUMAN Cystic fibrosis transmembrane conductance regulator 46 
554 PLK2_HUMAN Serine/threonine-protein kinase PLK2 46 
555 RL35A_HUMAN 60S ribosomal protein L35a 45 
556 PRS6B_HUMAN 26S protease regulatory subunit 6B 45 
557 A1AG1_HUMAN Alpha-1-acid glycoprotein 1 precursor 45 
558 ECHD2_HUMAN Enoyl-CoA hydratase domain-containing protein 2, mitochondrial precursor 45 
559 GHC1_HUMAN Mitochondrial glutamate carrier 1 44 
560 TMM56_HUMAN Transmembrane protein 56 44 
561 AHSA1_HUMAN Activator of 90 kDa heat shock protein ATPase homolog 1 44 
562 CAH12_HUMAN Carbonic anhydrase 12 precursor 43 
563 WBP2_HUMAN WW domain-binding protein 2 43 
564 STAT1_HUMAN Signal transducer and activator of transcription 1-alpha/beta 43 
565 TNPO1_HUMAN Transportin-1 43 
565 TNPO2_HUMAN Transportin-2 30 
566 PGES2_HUMAN Prostaglandin E synthase 2 43 
567 STIM1_HUMAN Stromal interaction molecule 1 precursor 43 
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568 STRAP_HUMAN Serine-threonine kinase receptor-associated protein 43 
569 TCPD_HUMAN T-complex protein 1 subunit delta 43 
570 DRG1_HUMAN Developmentally-regulated GTP-binding protein 1 43 
571 HMGCL_HUMAN Hydroxymethylglutaryl-CoA lyase, mitochondrial precursor 43 
572 NSF_HUMAN Vesicle-fusing ATPase 43 
573 PRS8_HUMAN 26S protease regulatory subunit 8 42 
574 ACS2A_HUMAN Acyl-coenzyme A synthetase ACSM2A, mitochondrial precursor 42 
574 ACS2B_HUMAN Acyl-coenzyme A synthetase ACSM2B, mitochondrial precursor 42 
575 AL7A1_HUMAN Alpha-aminoadipic semialdehyde dehydrogenase 42 
576 4F2_HUMAN 4F2 cell-surface antigen heavy chain 42 
577 THIK_HUMAN 3-ketoacyl-CoA thiolase, peroxisomal precursor 42 
578 SCPDH_HUMAN Probable saccharopine dehydrogenase 42 
579 SYSC_HUMAN Seryl-tRNA synthetase, cytoplasmic 41 

580 MCA1_HUMAN 
Multisynthetase complex auxiliary component p43 [Contains: Endothelial monocyte-activating polypeptide 

2 41 
581 OPA3_HUMAN Optic atrophy 3 protein 41 
582 DHSB_HUMAN Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor 41 
583 ATP8_HUMAN ATP synthase protein 8 41 
584 H14_HUMAN Histone H1.4 40 
585 RS11_HUMAN 40S ribosomal protein S11 40 
586 RL7_HUMAN 60S ribosomal protein L7 39 
587 CEPT1_HUMAN Choline/ethanolaminephosphotransferase 1 39 
588 TIM14_HUMAN Mitochondrial import inner membrane translocase subunit TIM14 39 
589 MIA40_HUMAN Mitochondrial intermembrane space import and assembly protein 40 38 
590 HNRGT_HUMAN RNA-binding motif protein, X-linked-like-2 38 
590 HNRPG_HUMAN Heterogeneous nuclear ribonucleoprotein G 38 
591 TIM44_HUMAN Import inner membrane translocase subunit TIM44, mitochondrial precursor 38 
592 IF2G_HUMAN Eukaryotic translation initiation factor 2 subunit 3 38 
593 GEPH_HUMAN Gephyrin 38 
594 RLA1_HUMAN 60S acidic ribosomal protein P1 37 
595 CBPM_HUMAN Carboxypeptidase M precursor 37 
596 PDIA4_HUMAN Protein disulfide-isomerase A4 precursor 37 
597 COPB2_HUMAN Coatomer subunit beta~ 37 
598 RRAS2_HUMAN Ras-related protein R-Ras2 precursor 37 
599 PRDX5_HUMAN Peroxiredoxin-5, mitochondrial precursor 37 
600 BAAT_HUMAN Bile acid-CoA:amino acid N-acyltransferase 37 
601 IF2B_HUMAN Eukaryotic translation initiation factor 2 subunit 2 37 
602 S28A1_HUMAN Sodium/nucleoside cotransporter 1 37 
603 PYR5_HUMAN Uridine 5~-monophosphate synthase 37 
604 SNX3_HUMAN Sorting nexin-3 37 
605 EIF3E_HUMAN Eukaryotic translation initiation factor 3 subunit E 37 
606 ANXA2_HUMAN Annexin A2 37 
607 HIP1R_HUMAN Huntingtin-interacting protein 1-related protein 37 
608 NDUS5_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 37 
609 NDUV2_HUMAN NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial precursor 36 
610 K0774_HUMAN Uncharacterized protein KIAA0774 36 
611 AK1BA_HUMAN Aldo-keto reductase family 1 member B10 36 
612 CHP1_HUMAN Calcium-binding protein p22 36 
613 ATD3A_HUMAN ATPase family AAA domain-containing protein 3A 35 
613 ATD3C_HUMAN ATPase family AAA domain-containing protein 3C 35 
614 CE033_HUMAN UPF0465 protein C5orf33 35 
615 COX5A_HUMAN Cytochrome c oxidase subunit 5A, mitochondrial precursor 35 
616 BGAL_HUMAN Beta-galactosidase precursor 35 
617 RAP1A_HUMAN Ras-related protein Rap-1A precursor 35 
617 RAP1B_HUMAN Ras-related protein Rap-1b precursor 35 
618 CPNE2_HUMAN Copine-2 33 
618 CPNE3_HUMAN Copine-3 35 
618 CPNE4_HUMAN Copine-4 33 
618 CPNE5_HUMAN Copine-5 33 
618 CPNE6_HUMAN Copine-6 33 
618 CPNE7_HUMAN Copine-7 33 
618 CPNE8_HUMAN Copine-8 33 
619 INF2_HUMAN Inverted formin-2 35 
620 IF3EI_HUMAN Eukaryotic translation initiation factor 3 subunit E-interacting protein 35 
621 ODBB_HUMAN 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial precursor 35 
622 C144A_HUMAN Coiled-coil domain-containing protein 144A 35 
623 ATRX_HUMAN Transcriptional regulator ATRX 34 
624 B2MG_HUMAN Beta-2-microglobulin precursor [Contains: Beta-2-microglobulin form pI 5.3] 34 
625 ERAP2_HUMAN Endoplasmic reticulum aminopeptidase 2 34 
626 LAMP2_HUMAN Lysosome-associated membrane glycoprotein 2 precursor 34 
627 APOOL_HUMAN Apolipoprotein O-like precursor 34 
628 ALG5_HUMAN Dolichyl-phosphate beta-glucosyltransferase 34 
629 PXMP2_HUMAN Peroxisomal membrane protein 2 34 
630 GLRX3_HUMAN Glutaredoxin-3 34 
631 PPAL_HUMAN Lysosomal acid phosphatase precursor 34 
632 PGRC1_HUMAN Membrane-associated progesterone receptor component 1 33 
633 CP1A2_HUMAN Cytochrome P450 1A2 33 
634 RS26_HUMAN 40S ribosomal protein S26 33 
634 RS26L_HUMAN 40S ribosomal protein S26-like 1 33 
635 ACF_HUMAN APOBEC1 complementation factor 33 
635 RBM46_HUMAN Probable RNA-binding protein 46 33 
635 RBM47_HUMAN RNA-binding protein 47 33 
636 SDF2L_HUMAN Stromal cell-derived factor 2-like protein 1 precursor 33 
637 RS14_HUMAN 40S ribosomal protein S14 33 
638 PON2_HUMAN Serum paraoxonase/arylesterase 2 33 
639 MRP3_HUMAN Canalicular multispecific organic anion transporter 2 33 
640 ALBU_HUMAN Serum albumin precursor 33 
641 GHC2_HUMAN Mitochondrial glutamate carrier 2 33 
642 APOA2_HUMAN Apolipoprotein A-II precursor 32 
643 STML2_HUMAN Stomatin-like protein 2 32 
644 KIF5C_HUMAN Kinesin heavy chain isoform 5C 32 
645 NDUAA_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial precursor 32 
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646 CO3_HUMAN 

Complement C3 precursor [Contains: Complement C3 beta chain; Complement C3 alpha chain; C3a 
anaphylatoxin; Complement C3b alpha~ chain; Complement C3c alpha~ chain fragment 1; Complement 

C3dg fragment; Complemen... 32 
647 1433B_HUMAN 14-3-3 protein beta/alpha 32 
647 1433F_HUMAN 14-3-3 protein eta 32 
647 1433G_HUMAN 14-3-3 protein gamma 32 
647 1433S_HUMAN 14-3-3 protein sigma 32 
647 1433T_HUMAN 14-3-3 protein theta 32 
647 1433Z_HUMAN 14-3-3 protein zeta/delta 32 
648 ACOX1_HUMAN Acyl-coenzyme A oxidase 1, peroxisomal 32 
649 ASH2L_HUMAN Set1/Ash2 histone methyltransferase complex subunit ASH2 32 
650 ARF6_HUMAN ADP-ribosylation factor 6 32 
651 NDUAB_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 32 
652 CHCH3_HUMAN Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial precursor 31 
653 GDC_HUMAN Grave disease carrier protein 31 
654 PDXD1_HUMAN Pyridoxal-dependent decarboxylase domain-containing protein 1 31 
654 PDXD2_HUMAN Pyridoxal-dependent decarboxylase domain-containing protein 2 31 
655 RL23A_HUMAN 60S ribosomal protein L23a 31 
656 ANX11_HUMAN Annexin A11 31 
657 IC1_HUMAN Plasma protease C1 inhibitor precursor 31 
658 MOSC1_HUMAN MOSC domain-containing protein 1, mitochondrial precursor 30 
659 PTH2_HUMAN Peptidyl-tRNA hydrolase 2, mitochondrial precursor 30 
660 SC5A1_HUMAN Sodium/glucose cotransporter 1 30 
660 SC5A4_HUMAN Low affinity sodium-glucose cotransporter 30 
661 TM9S2_HUMAN Transmembrane 9 superfamily member 2 precursor 30 
662 OCAD1_HUMAN OCIA domain-containing protein 1 30 
663 DERL1_HUMAN Derlin-1 30 
664 KHDR1_HUMAN KH domain-containing, RNA-binding, signal transduction-associated protein 1 30 
664 KHDR2_HUMAN KH domain-containing, RNA-binding, signal transduction-associated protein 2 30 
664 KHDR3_HUMAN KH domain-containing, RNA-binding, signal transduction-associated protein 3 30 
665 BID_HUMAN BH3-interacting domain death agonist 30 
666 MET10_HUMAN Putative methyltransferase METT10D 30 
667 EMAL4_HUMAN Echinoderm microtubule-associated protein-like 4 30 
668 RM17_HUMAN 39S ribosomal protein L17, mitochondrial precursor 30 
669 HIG1A_HUMAN HIG1 domain family member 1A 30 
670 CP2C9_HUMAN Cytochrome P450 2C9 29 
671 PSMD3_HUMAN 26S proteasome non-ATPase regulatory subunit 3 29 
672 LETM1_HUMAN Leucine zipper-EF-hand-containing transmembrane protein 1, mitochondrial precursor 29 
673 FA98A_HUMAN Protein FAM98A 29 
674 SSRG_HUMAN Translocon-associated protein subunit gamma 29 
675 KCY_HUMAN UMP-CMP kinase 29 
676 RRAGA_HUMAN Ras-related GTP-binding protein A 29 
676 RRAGB_HUMAN Ras-related GTP-binding protein B 29 
677 DEN4C_HUMAN DENN domain-containing protein 4C 29 
678 ATP5E_HUMAN ATP synthase subunit epsilon, mitochondrial 29 
679 MFN1_HUMAN Mitofusin-1 29 
679 MFN2_HUMAN Mitofusin-2 29 
680 DDA1_HUMAN DET1- and DDB1-associated protein 1 29 
681 NAT10_HUMAN N-acetyltransferase 10 29 
682 MYOF_HUMAN Myoferlin 29 
683 SF3B2_HUMAN Splicing factor 3B subunit 2 28 

684 
CF066_HUMAN 

(HRP20_HUMAN expasy) UPF0240 protein C6orf66 28 
685 HNRPU_HUMAN Heterogeneous nuclear ribonucleoprotein U 28 
686 CS015_HUMAN Uncharacterized protein C19orf15 precursor 28 
687 RALA_HUMAN Ras-related protein Ral-A precursor 28 
687 RALB_HUMAN Ras-related protein Ral-B precursor 28 
688 NPTN_HUMAN Neuroplastin precursor 28 
689 SSRP1_HUMAN FACT complex subunit SSRP1 27 
690 GALK1_HUMAN Galactokinase 27 
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1 CPSM_HUMAN Carbamoyl-phosphate synthase [ammonia], mitochondrial precursor 3804 
1 PYR1_HUMAN CAD protein [Includes: Glutamine-dependent carbamoyl-phosphate synthase 142 
2 TBA1B_HUMAN Tubulin alpha-1B chain 2363 
3 TBA1A_HUMAN Tubulin alpha-1A chain 2172 
3 TBA1C_HUMAN Tubulin alpha-1C chain 2172 
3 TBA3C_HUMAN Tubulin alpha-3C/D chain 1886 
3 TBA3E_HUMAN Tubulin alpha-3E chain 1614 
3 TBA8_HUMAN Tubulin alpha-8 chain 1315 
4 CH60_HUMAN 60 kDa heat shock protein, mitochondrial precursor 2048 
5 TBA4A_HUMAN Tubulin alpha-4A chain 2013 
6 ACSL1_HUMAN Long-chain-fatty-acid--CoA ligase 1 1825 
7 ACTB_HUMAN Actin, cytoplasmic 1 1822 
7 ACTG_HUMAN Actin, cytoplasmic 2 1822 
7 ACTK_HUMAN Kappa-actin 579 

7 

POTAC_HUMAN 
(A26CB_HUMAN  - 

expasy) Chimeric POTE-actin protein 715 
8 ECHA_HUMAN Trifunctional enzyme subunit alpha, mitochondrial precursor 1772 
9 ATPB_HUMAN ATP synthase subunit beta, mitochondrial precursor 1550 
10 GFAP_HUMAN Glial fibrillary acidic protein 63 
10 K22O_HUMAN Keratin, type II cytoskeletal 2 oral 83 
10 K2C1B_HUMAN Keratin, type II cytoskeletal 1b 48 
10 K2C3_HUMAN Keratin, type II cytoskeletal 3 83 
10 K2C4_HUMAN Keratin, type II cytoskeletal 4 48 
10 K2C7_HUMAN Keratin, type II cytoskeletal 7 83 
10 K2C71_HUMAN Keratin, type II cytoskeletal 71 48 
10 K2C72_HUMAN Keratin, type II cytoskeletal 72 48 
10 K2C73_HUMAN Keratin, type II cytoskeletal 73 48 
10 K2C74_HUMAN Keratin, type II cytoskeletal 74 48 
10 K2C78_HUMAN Keratin, type II cytoskeletal 78 63 
10 K2C8_HUMAN Keratin, type II cytoskeletal 8 1548 
10 KRT81_HUMAN Keratin type II cuticular Hb1 63 
10 KRT83_HUMAN Keratin type II cuticular Hb3 63 
10 KRT84_HUMAN Keratin type II cuticular Hb4 83 
10 KRT85_HUMAN Keratin type II cuticular Hb5 63 
10 KRT86_HUMAN Keratin type II cuticular Hb6 63 
10 VIME_HUMAN Vimentin 63 
11 GDE_HUMAN Glycogen debranching enzyme 1536 
12 FMO3_HUMAN Dimethylaniline monooxygenase [N-oxide-forming] 3 1419 
13 TBB1_HUMAN Tubulin beta-1 chain 89 
13 TBB5_HUMAN Tubulin beta chain 1402 
14 ATPA_HUMAN ATP synthase subunit alpha, mitochondrial precursor 1364 
15 TBB2A_HUMAN Tubulin beta-2A chain 1309 
15 TBB2B_HUMAN Tubulin beta-2B chain 1309 
16 ACTN3_HUMAN Alpha-actinin-3 365 
16 ACTN4_HUMAN Alpha-actinin-4 1258 
17 TBB2C_HUMAN Tubulin beta-2C chain 1256 
17 TBB4Q_HUMAN Tubulin beta-4q chain 234 
18 NNTM_HUMAN NAD(P) transhydrogenase, mitochondrial precursor 1219 
19 ENPL_HUMAN Endoplasmin precursor 1150 
20 FTHFD_HUMAN 10-formyltetrahydrofolate dehydrogenase 1104 
21 MYH10_HUMAN Myosin-10 74 
21 MYH11_HUMAN Myosin-11 208 
21 MYH9_HUMAN Myosin-9 1104 
22 AOFA_HUMAN Amine oxidase [flavin-containing] A 1048 
23 CMC2_HUMAN Calcium-binding mitochondrial carrier protein Aralar2 1023 
24 ACTA_HUMAN Actin, aortic smooth muscle 978 
24 ACTC_HUMAN Actin, alpha cardiac muscle 1 1001 
24 ACTH_HUMAN Actin, gamma-enteric smooth muscle 978 
24 ACTS_HUMAN Actin, alpha skeletal muscle 1001 
25 UGPA_HUMAN UTP--glucose-1-phosphate uridylyltransferase 972 
26 HMCS2_HUMAN Hydroxymethylglutaryl-CoA synthase, mitochondrial precursor 961 
27 K1C18_HUMAN Keratin, type I cytoskeletal 18 947 
27 K1C19_HUMAN Keratin, type I cytoskeletal 19 89 
28 CALX_HUMAN Calnexin precursor 927 
29 MET7A_HUMAN Methyltransferase-like protein 7A precursor 895 
30 ADT2_HUMAN ADP/ATP translocase 2 881 
30 ADT4_HUMAN ADP/ATP translocase 4 33 
31 FAS_HUMAN Fatty acid synthase 804 
32 IQGA1_HUMAN Ras GTPase-activating-like protein IQGAP1 71 
32 IQGA2_HUMAN Ras GTPase-activating-like protein IQGAP2 802 
32 IQGA3_HUMAN Ras GTPase-activating-like protein IQGAP3 71 
33 ADH1A_HUMAN Alcohol dehydrogenase 1A 523 
33 ADH1B_HUMAN Alcohol dehydrogenase 1B 795 
33 ADH1G_HUMAN Alcohol dehydrogenase 1C 707 
34 DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 791 
35 FLNA_HUMAN Filamin-A 64 
35 FLNB_HUMAN Filamin-B 783 
36 CA161_HUMAN Uncharacterized protein C1orf161 28 
36 HYEP_HUMAN Epoxide hydrolase 1 780 
37 HS90B_HUMAN Heat shock protein HSP 90-beta 756 
38 UD11_HUMAN UDP-glucuronosyltransferase 1-1 precursor 274 
38 UD110_HUMAN UDP-glucuronosyltransferase 1-10 precursor 274 
38 UD14_HUMAN UDP-glucuronosyltransferase 1-4 precursor 739 
38 UD17_HUMAN UDP-glucuronosyltransferase 1-7 precursor 274 
38 UD18_HUMAN UDP-glucuronosyltransferase 1-8 precursor 274 
38 UD19_HUMAN UDP-glucuronosyltransferase 1-9 precursor 274 
39 AOFB_HUMAN Amine oxidase [flavin-containing] B 737 
40 HS90A_HUMAN Heat shock protein HSP 90-alpha 725 
41 NB5R3_HUMAN NADH-cytochrome b5 reductase 3 710 
42 UD2B7_HUMAN UDP-glucuronosyltransferase 2B7 precursor 697 
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43 PYGL_HUMAN Glycogen phosphorylase, liver form 679 
43 PYGM_HUMAN Glycogen phosphorylase, muscle form 63 
44 QCR2_HUMAN Cytochrome b-c1 complex subunit 2, mitochondrial precursor 678 
45 ETFD_HUMAN Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial precursor 677 
46 AT12A_HUMAN Potassium-transporting ATPase alpha chain 2 185 
46 AT1A1_HUMAN Sodium/potassium-transporting ATPase subunit alpha-1 precursor 667 
46 AT1A2_HUMAN Sodium/potassium-transporting ATPase subunit alpha-2 precursor 406 
46 AT1A3_HUMAN Sodium/potassium-transporting ATPase subunit alpha-3 490 
46 AT1A4_HUMAN Sodium/potassium-transporting ATPase subunit alpha-4 235 
46 ATP4A_HUMAN Potassium-transporting ATPase alpha chain 1 185 
47 ACTN1_HUMAN Alpha-actinin-1 666 
48 GSTK1_HUMAN Glutathione S-transferase kappa 1 654 
49 RL3_HUMAN 60S ribosomal protein L3 635 
49 RL3L_HUMAN 60S ribosomal protein L3-like 84 
50 ECHB_HUMAN Trifunctional enzyme subunit beta, mitochondrial precursor 628 
51 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 627 
52 VDAC1_HUMAN Voltage-dependent anion-selective channel protein 1 613 
53 RL10A_HUMAN 60S ribosomal protein L10a 613 
54 MVP_HUMAN Major vault protein 603 
55 ADH4_HUMAN Alcohol dehydrogenase 4 600 
56 ATPG_HUMAN ATP synthase subunit gamma, mitochondrial precursor 598 
57 AT5F1_HUMAN ATP synthase subunit b, mitochondrial precursor 598 
58 UDB10_HUMAN UDP-glucuronosyltransferase 2B10 precursor 585 
58 UDB11_HUMAN UDP-glucuronosyltransferase 2B11 precursor 484 
58 UDB28_HUMAN UDP-glucuronosyltransferase 2B28 precursor 286 
59 QCR1_HUMAN Cytochrome b-c1 complex subunit 1, mitochondrial precursor 578 
60 COX2_HUMAN Cytochrome c oxidase subunit 2 551 
61 PHB2_HUMAN Prohibitin-2 522 
62 RDH16_HUMAN Retinol dehydrogenase 16 522 
63 FTCD_HUMAN Formimidoyltransferase-cyclodeaminase 519 
64 EF1A1_HUMAN Elongation factor 1-alpha 1 519 
64 EF1A2_HUMAN Elongation factor 1-alpha 2 246 
65 UD2A1_HUMAN UDP-glucuronosyltransferase 2A1 precursor 64 
65 UD2B4_HUMAN UDP-glucuronosyltransferase 2B4 precursor 516 
66 NCPR_HUMAN NADPH--cytochrome P450 reductase 508 
67 1A02_HUMAN HLA class I histocompatibility antigen, A-2 alpha chain precursor 504 
67 1A23_HUMAN HLA class I histocompatibility antigen, A-23 alpha chain precursor 228 
67 1A24_HUMAN HLA class I histocompatibility antigen, A-24 alpha chain precursor 228 
67 1A68_HUMAN HLA class I histocompatibility antigen, A-68 alpha chain precursor 338 
67 1A69_HUMAN HLA class I histocompatibility antigen, A-69 alpha chain 414 
67 1B15_HUMAN HLA class I histocompatibility antigen, B-15 alpha chain precursor 228 
67 1B35_HUMAN HLA class I histocompatibility antigen, B-35 alpha chain precursor 228 
67 1B46_HUMAN HLA class I histocompatibility antigen, B-46 alpha chain precursor 228 
67 1B51_HUMAN HLA class I histocompatibility antigen, B-51 alpha chain precursor 228 
67 1B52_HUMAN HLA class I histocompatibility antigen, B-52 alpha chain precursor 228 
67 1B53_HUMAN HLA class I histocompatibility antigen, B-53 alpha chain precursor 228 
67 1B54_HUMAN HLA class I histocompatibility antigen, B-54 alpha chain precursor 228 
67 1B55_HUMAN HLA class I histocompatibility antigen, B-55 alpha chain precursor 228 
67 1B56_HUMAN HLA class I histocompatibility antigen, B-56 alpha chain precursor 228 
67 1B57_HUMAN HLA class I histocompatibility antigen, B-57 alpha chain precursor 317 
67 1B58_HUMAN HLA class I histocompatibility antigen, B-58 alpha chain precursor 317 
67 1B59_HUMAN HLA class I histocompatibility antigen, B-59 alpha chain precursor 228 
67 1B78_HUMAN HLA class I histocompatibility antigen, B-78 alpha chain precursor 228 
67 1C16_HUMAN HLA class I histocompatibility antigen, Cw-16 alpha chain precursor 228 
68 BDH_HUMAN D-beta-hydroxybutyrate dehydrogenase, mitochondrial precursor 498 
69 CYB5_HUMAN Cytochrome b5 497 
70 GRP78_HUMAN 78 kDa glucose-regulated protein precursor 492 
71 PDIA6_HUMAN Protein disulfide-isomerase A6 precursor 487 
72 UD13_HUMAN UDP-glucuronosyltransferase 1-3 precursor 483 
72 UD15_HUMAN UDP-glucuronosyltransferase 1-5 precursor 362 
73 NDUS3_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial precursor 475 
74 ADT1_HUMAN ADP/ATP translocase 1 470 
75 DHE3_HUMAN Glutamate dehydrogenase 1, mitochondrial precursor 465 
75 DHE4_HUMAN Glutamate dehydrogenase 2, mitochondrial precursor 100 
76 ADT3_HUMAN ADP/ATP translocase 3 465 
77 FIBA_HUMAN Fibrinogen alpha chain precursor [Contains: Fibrinopeptide A] 464 

78 

RIB1_HUMAN 
(RPN1_HUMAN 

expasy) Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 67 kDa subunit precursor 463 
79 ROA1_HUMAN Heterogeneous nuclear ribonucleoprotein A1 460 
80 SAA_HUMAN Serum amyloid A protein precursor 460 
80 SAA3_HUMAN Putative serum amyloid A-3 protein 45 
81 TMPSD_HUMAN Transmembrane protease, serine 13 242 
81 TRY1_HUMAN Trypsin-1 precursor 455 
82 CP2E1_HUMAN Cytochrome P450 2E1 449 
83 CLH1_HUMAN Clathrin heavy chain 1 440 
83 CLH2_HUMAN Clathrin heavy chain 2 59 
84 SQRD_HUMAN Sulfide:quinone oxidoreductase, mitochondrial precursor 433 
85 K2C1_HUMAN Keratin, type II cytoskeletal 1 430 
86 H2A1_HUMAN Histone H2A type 1 420 
86 H2A1A_HUMAN Histone H2A type 1-A 160 
86 H2A1B_HUMAN Histone H2A type 1-B 420 
86 H2A1C_HUMAN Histone H2A type 1-C 420 
86 H2A1D_HUMAN Histone H2A type 1-D 420 
86 H2A1E_HUMAN Histone H2A type 1-E 420 
86 H2A1H_HUMAN Histone H2A type 1-H 420 
86 H2A1J_HUMAN Histone H2A type 1-J 420 
86 H2A2A_HUMAN Histone H2A type 2-A 420 
86 H2A2B_HUMAN Histone H2A type 2-B 84 
86 H2A2C_HUMAN Histone H2A type 2-C 420 
86 H2A3_HUMAN Histone H2A type 3 420 
86 H2AV_HUMAN Histone H2AV 160 
86 H2AX_HUMAN Histone H2A.x 160 
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86 H2AZ_HUMAN Histone H2A.Z 160 
87 RS4X_HUMAN 40S ribosomal protein S4, X isoform 412 
87 RS4Y1_HUMAN 40S ribosomal protein S4, Y isoform 1 163 
87 RS4Y2_HUMAN 40S ribosomal protein S4, Y isoform 2 83 
88 ROA3_HUMAN Heterogeneous nuclear ribonucleoprotein A3 409 
89 ATPO_HUMAN ATP synthase subunit O, mitochondrial precursor 408 
90 ECHM_HUMAN Enoyl-CoA hydratase, mitochondrial precursor 405 
91 IF4A1_HUMAN Eukaryotic initiation factor 4A-I 402 
91 IF4A2_HUMAN Eukaryotic initiation factor 4A-II 305 
92 DECR_HUMAN 2,4-dienoyl-CoA reductase, mitochondrial precursor 398 
93 ACADV_HUMAN Very long-chain specific acyl-CoA dehydrogenase, mitochondrial precursor 398 
94 PCBP1_HUMAN Poly(rC)-binding protein 1 392 
95 S27A2_HUMAN Very long-chain acyl-CoA synthetase 388 
96 MMP19_HUMAN Matrix metalloproteinase-19 precursor 54 
96 VTNC_HUMAN Vitronectin precursor 380 
97 RS2_HUMAN 40S ribosomal protein S2 379 
98 RTN4_HUMAN Reticulon-4 378 
99 CP4F2_HUMAN Cytochrome P450 4F2 378 
99 CP4F3_HUMAN Cytochrome P450 4F3 312 
99 CP4F8_HUMAN Cytochrome P450 4F8 101 
99 CP4FB_HUMAN Cytochrome P450 4F11 86 
99 CP4FC_HUMAN Cytochrome P450 4F12 86 
100 ALDH2_HUMAN Aldehyde dehydrogenase, mitochondrial precursor 377 
101 H17B6_HUMAN Hydroxysteroid 17-beta dehydrogenase 6 precursor 376 
102 RS3A_HUMAN 40S ribosomal protein S3a 373 
103 RS5_HUMAN 40S ribosomal protein S5 372 
104 CP2C9_HUMAN Cytochrome P450 2C9 369 
104 CP2CJ_HUMAN Cytochrome P450 2C19 100 
105 RL14_HUMAN 60S ribosomal protein L14 367 
106 ACSL5_HUMAN Long-chain-fatty-acid--CoA ligase 5 361 
107 ATP5H_HUMAN ATP synthase subunit d, mitochondrial 357 
108 RS7_HUMAN 40S ribosomal protein S7 356 
109 NUCL_HUMAN Nucleolin 356 
110 UDB15_HUMAN UDP-glucuronosyltransferase 2B15 precursor 355 
111 UD16_HUMAN UDP-glucuronosyltransferase 1-6 precursor 348 
112 COX41_HUMAN Cytochrome c oxidase subunit 4 isoform 1, mitochondrial precursor 344 
113 RL7A_HUMAN 60S ribosomal protein L7a 343 
114 AIFM1_HUMAN Apoptosis-inducing factor 1, mitochondrial precursor 332 
115 KTN1_HUMAN Kinectin 23 
115 PRDX6_HUMAN Peroxiredoxin-6 332 
116 DHSA_HUMAN Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial precursor 332 
117 FMO5_HUMAN Dimethylaniline monooxygenase [N-oxide-forming] 5 330 
118 FRIH_HUMAN Ferritin heavy chain 327 
119 S27A5_HUMAN Bile acyl-CoA synthetase 322 
120 TMEDA_HUMAN Transmembrane emp24 domain-containing protein 10 precursor 317 
121 HNRPK_HUMAN Heterogeneous nuclear ribonucleoprotein K 313 
122 FIBG_HUMAN Fibrinogen gamma chain precursor 310 
123 MGST1_HUMAN Microsomal glutathione S-transferase 1 305 
124 RL6_HUMAN 60S ribosomal protein L6 303 
125 RL19_HUMAN 60S ribosomal protein L19 300 
126 RS3_HUMAN 40S ribosomal protein S3 300 
127 H4_HUMAN Histone H4 298 
128 GSTA1_HUMAN Glutathione S-transferase A1 297 
128 GSTA2_HUMAN Glutathione S-transferase A2 297 
128 GSTA3_HUMAN Glutathione S-transferase A3 255 
128 GSTA5_HUMAN Glutathione S-transferase A5 34 
129 AL1A1_HUMAN Retinal dehydrogenase 1 295 
130 MOSC2_HUMAN MOSC domain-containing protein 2, mitochondrial precursor 295 
131 FRIL_HUMAN Ferritin light chain 294 
132 RL9_HUMAN 60S ribosomal protein L9 288 
133 RL10_HUMAN 60S ribosomal protein L10 285 
133 RL10L_HUMAN 60S ribosomal protein L10-like 98 
134 RS6_HUMAN 40S ribosomal protein S6 281 
135 UBIQ_HUMAN Ubiquitin 280 
136 AL3A2_HUMAN Fatty aldehyde dehydrogenase 279 
137 VNN1_HUMAN Pantetheinase precursor 279 
137 VNN3_HUMAN Vascular non-inflammatory molecule 3 precursor 148 
138 SPTB1_HUMAN Spectrin beta chain, erythrocyte 45 
138 SPTB2_HUMAN Spectrin beta chain, brain 1 278 
138 SPTN2_HUMAN Spectrin beta chain, brain 2 45 
138 SPTN4_HUMAN Spectrin beta chain, brain 3 45 
139 DHB11_HUMAN Estradiol 17-beta-dehydrogenase 11 precursor 277 
140 MCAT_HUMAN Mitochondrial carnitine/acylcarnitine carrier protein 274 
141 1A01_HUMAN HLA class I histocompatibility antigen, A-1 alpha chain precursor 270 
141 1A03_HUMAN HLA class I histocompatibility antigen, A-3 alpha chain precursor 270 
141 1A11_HUMAN HLA class I histocompatibility antigen, A-11 alpha chain precursor 270 
141 1A25_HUMAN HLA class I histocompatibility antigen, A-25 alpha chain precursor 237 
141 1A26_HUMAN HLA class I histocompatibility antigen, A-26 alpha chain precursor 237 
141 1A29_HUMAN HLA class I histocompatibility antigen, A-29 alpha chain precursor 237 
141 1A30_HUMAN HLA class I histocompatibility antigen, A-30 alpha chain precursor 237 
141 1A31_HUMAN HLA class I histocompatibility antigen, A-31 alpha chain precursor 237 
141 1A32_HUMAN HLA class I histocompatibility antigen, A-32 alpha chain precursor 270 
141 1A33_HUMAN HLA class I histocompatibility antigen, A-33 alpha chain precursor 237 
141 1A34_HUMAN HLA class I histocompatibility antigen, A-34 alpha chain precursor 237 
141 1A36_HUMAN HLA class I histocompatibility antigen, A-36 alpha chain precursor 270 
141 1A43_HUMAN HLA class I histocompatibility antigen, A-43 alpha chain precursor 237 
141 1A66_HUMAN HLA class I histocompatibility antigen, A-66 alpha chain precursor 237 
141 1A74_HUMAN HLA class I histocompatibility antigen, A-74 alpha chain precursor 270 
141 1A80_HUMAN HLA class I histocompatibility antigen, A-80 alpha chain precursor 29 
141 1B07_HUMAN HLA class I histocompatibility antigen, B-7 alpha chain precursor 29 
141 1B08_HUMAN HLA class I histocompatibility antigen, B-8 alpha chain precursor 29 
141 1B40_HUMAN HLA class I histocompatibility antigen, B-40 alpha chain precursor 29 
141 1B41_HUMAN HLA class I histocompatibility antigen, B-41 alpha chain precursor 29 
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141 1B42_HUMAN HLA class I histocompatibility antigen, B-42 alpha chain precursor 29 
141 1B48_HUMAN HLA class I histocompatibility antigen, B-48 alpha chain precursor 29 
141 1B73_HUMAN HLA class I histocompatibility antigen, B-73 alpha chain precursor 29 
141 1B81_HUMAN HLA class I histocompatibility antigen, B-81 alpha chain precursor 29 
141 1C01_HUMAN HLA class I histocompatibility antigen, Cw-1 alpha chain precursor 29 
141 1C02_HUMAN HLA class I histocompatibility antigen, Cw-2 alpha chain precursor 29 
141 1C03_HUMAN HLA class I histocompatibility antigen, Cw-3 alpha chain precursor 29 
141 1C04_HUMAN HLA class I histocompatibility antigen, Cw-4 alpha chain precursor 237 
141 1C05_HUMAN HLA class I histocompatibility antigen, Cw-5 alpha chain precursor 29 
141 1C06_HUMAN HLA class I histocompatibility antigen, Cw-6 alpha chain precursor 29 
141 1C07_HUMAN HLA class I histocompatibility antigen, Cw-7 alpha chain precursor 29 
141 1C08_HUMAN HLA class I histocompatibility antigen, Cw-8 alpha chain precursor 29 
141 1C12_HUMAN HLA class I histocompatibility antigen, Cw-12 alpha chain precursor 237 
141 1C14_HUMAN HLA class I histocompatibility antigen, Cw-14 alpha chain precursor 237 
141 1C15_HUMAN HLA class I histocompatibility antigen, Cw-15 alpha chain precursor 29 
141 1C17_HUMAN HLA class I histocompatibility antigen, Cw-17 alpha chain precursor 237 
141 1C18_HUMAN HLA class I histocompatibility antigen, Cw-18 alpha chain precursor 29 
141 HLAH_HUMAN HLA class I histocompatibility antigen, alpha chain H precursor 29 
142 SSRA_HUMAN Translocon-associated protein subunit alpha precursor 269 
143 MTCH2_HUMAN Mitochondrial carrier homolog 2 266 
144 TMED4_HUMAN Transmembrane emp24 domain-containing protein 4 precursor 258 
144 TMED9_HUMAN Transmembrane emp24 domain-containing protein 9 precursor 266 
145 ANXA6_HUMAN Annexin A6 264 
146 THTR_HUMAN Thiosulfate sulfurtransferase 264 
147 FIBB_HUMAN Fibrinogen beta chain precursor [Contains: Fibrinopeptide B] 264 
148 RL15_HUMAN 60S ribosomal protein L15 260 
149 NDUA9_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial precursor 259 
150 EF1G_HUMAN Elongation factor 1-gamma 258 
151 RL23_HUMAN 60S ribosomal protein L23 253 
152 RS9_HUMAN 40S ribosomal protein S9 246 
153 RS13_HUMAN 40S ribosomal protein S13 243 
154 K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal 239 
155 EF2_HUMAN Elongation factor 2 238 
156 LMAN2_HUMAN Vesicular integral-membrane protein VIP36 precursor 236 
157 OST48_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit precursor 235 
158 MPCP_HUMAN Phosphate carrier protein, mitochondrial precursor 235 
159 RL17_HUMAN 60S ribosomal protein L17 235 
160 NDUV1_HUMAN NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial precursor 234 
161 APOC3_HUMAN Apolipoprotein C-III precursor 233 
162 PDIA1_HUMAN Protein disulfide-isomerase precursor 233 
163 CP3A4_HUMAN Cytochrome P450 3A4 233 
163 CP3A5_HUMAN Cytochrome P450 3A5 63 
163 CP3A7_HUMAN Cytochrome P450 3A7 233 
164 H2B1A_HUMAN Histone H2B type 1-A 139 
164 H2B1B_HUMAN Histone H2B type 1-B 233 
164 H2B1C_HUMAN Histone H2B type 1-C/E/F/G/I 233 
164 H2B1D_HUMAN Histone H2B type 1-D 233 
164 H2B1H_HUMAN Histone H2B type 1-H 233 
164 H2B1J_HUMAN Histone H2B type 1-J 233 
164 H2B1K_HUMAN Histone H2B type 1-K 233 
164 H2B1L_HUMAN Histone H2B type 1-L 233 
164 H2B1M_HUMAN Histone H2B type 1-M 233 
164 H2B1N_HUMAN Histone H2B type 1-N 233 
164 H2B1O_HUMAN Histone H2B type 1-O 233 
164 H2B2E_HUMAN Histone H2B type 2-E 233 
164 H2B2F_HUMAN Histone H2B type 2-F 233 
164 H2B3B_HUMAN Histone H2B type 3-B 233 
164 H2BFS_HUMAN Histone H2B type F-S 233 
165 NDUS1_HUMAN NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial precursor 230 
166 PHB_HUMAN Prohibitin 227 
167 RL4_HUMAN 60S ribosomal protein L4 226 
168 RL12_HUMAN 60S ribosomal protein L12 226 
169 HSP72_HUMAN Heat shock-related 70 kDa protein 2 43 
169 HSP7C_HUMAN Heat shock cognate 71 kDa protein 225 
170 PSME1_HUMAN Proteasome activator complex subunit 1 222 
171 NDUAC_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 217 
172 AT1B1_HUMAN Sodium/potassium-transporting ATPase subunit beta-1 217 
173 RL24_HUMAN 60S ribosomal protein L24 216 
174 BHMT1_HUMAN Betaine--homocysteine S-methyltransferase 1 215 
175 ALDOA_HUMAN Fructose-bisphosphate aldolase A 73 
175 ALDOB_HUMAN Fructose-bisphosphate aldolase B 214 
175 ALDOC_HUMAN Fructose-bisphosphate aldolase C 88 
176 RL27A_HUMAN 60S ribosomal protein L27a 213 
177 APMAP_HUMAN Adipocyte plasma membrane-associated protein 209 
178 RRBP1_HUMAN Ribosome-binding protein 1 208 
179 RS24_HUMAN 40S ribosomal protein S24 205 
180 PPCKM_HUMAN Phosphoenolpyruvate carboxykinase [GTP], mitochondrial precursor 204 
181 GRP75_HUMAN Stress-70 protein, mitochondrial precursor 204 
182 RLA1_HUMAN 60S acidic ribosomal protein P1 199 
183 RL18_HUMAN 60S ribosomal protein L18 197 
184 ATP5L_HUMAN ATP synthase subunit g, mitochondrial 197 
185 CX6B1_HUMAN Cytochrome c oxidase subunit VIb isoform 1 196 
186 HNRPU_HUMAN Heterogeneous nuclear ribonucleoprotein U 195 
187 VDAC3_HUMAN Voltage-dependent anion-selective channel protein 3 193 
188 RL13A_HUMAN 60S ribosomal protein L13a 192 
189 ERG7_HUMAN Lanosterol synthase 188 
190 RS15A_HUMAN 40S ribosomal protein S15a 186 
191 RSSA_HUMAN 40S ribosomal protein SA 186 
192 ASSY_HUMAN Argininosuccinate synthase 181 
193 CP2A6_HUMAN Cytochrome P450 2A6 180 
194 CP4AB_HUMAN Cytochrome P450 4A11 precursor 179 
195 NIPS1_HUMAN Protein NipSnap1 179 
195 NIPS2_HUMAN Protein NipSnap2 36 
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196 RL35_HUMAN 60S ribosomal protein L35 177 
197 RL13_HUMAN 60S ribosomal protein L13 177 

198 

DAK_HUMAN 
(DHAK_HUMAN 

expasy) Dihydroxyacetone kinase 171 
199 PAIRB_HUMAN Plasminogen activator inhibitor 1 RNA-binding protein 171 
200 HSPB1_HUMAN Heat shock protein beta-1 167 
201 SERA_HUMAN D-3-phosphoglycerate dehydrogenase 167 
202 ANXA2_HUMAN Annexin A2 166 
203 DHB2_HUMAN Estradiol 17-beta-dehydrogenase 2 161 
204 NDUS4_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial precursor 160 
205 CP51A_HUMAN Cytochrome P450 51A1 160 
206 COPG_HUMAN Coatomer subunit gamma 159 
207 C560_HUMAN Succinate dehydrogenase cytochrome b560 subunit, mitochondrial precursor 157 
208 DHI1_HUMAN Corticosteroid 11-beta-dehydrogenase isozyme 1 156 
209 CX7A2_HUMAN Cytochrome c oxidase polypeptide VIIa-liver/heart, mitochondrial precursor 155 
210 NDKA_HUMAN Nucleoside diphosphate kinase A 144 
210 NDKB_HUMAN Nucleoside diphosphate kinase B 153 
211 EST1_HUMAN Liver carboxylesterase 1 precursor 151 
212 NAT8_HUMAN Probable N-acetyltransferase 8 151 
213 LMAN1_HUMAN Protein ERGIC-53 precursor 151 
214 RL7_HUMAN 60S ribosomal protein L7 150 
215 APOE_HUMAN Apolipoprotein E precursor 150 
216 SFXN1_HUMAN Sideroflexin-1 150 

217 

RIB2_HUMAN 
(RPN2_HUMAN 

expasy) Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 63 kDa subunit precursor 149 
218 AR6P1_HUMAN ADP-ribosylation factor-like protein 6-interacting protein 1 148 
219 PDIA3_HUMAN Protein disulfide-isomerase A3 precursor 147 
220 CY1_HUMAN Cytochrome c1, heme protein, mitochondrial precursor 146 
221 RL32_HUMAN 60S ribosomal protein L32 146 
222 ST2A1_HUMAN Bile salt sulfotransferase 145 
223 S10AA_HUMAN Protein S100-A10 145 
224 RS30_HUMAN 40S ribosomal protein S30 145 
225 RS12_HUMAN 40S ribosomal protein S12 143 
226 C1TC_HUMAN C-1-tetrahydrofolate synthase, cytoplasmic 143 
227 OCAD2_HUMAN OCIA domain-containing protein 2 142 
228 NLTP_HUMAN Non-specific lipid-transfer protein 140 
229 NPM_HUMAN Nucleophosmin 139 
230 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase 139 
231 RS16_HUMAN 40S ribosomal protein S16 138 
232 IMMT_HUMAN Mitochondrial inner membrane protein 138 
233 TCPB_HUMAN T-complex protein 1 subunit beta 137 
234 RL21_HUMAN 60S ribosomal protein L21 137 
235 MET7B_HUMAN Methyltransferase-like protein 7B precursor 137 
236 TRAP1_HUMAN Heat shock protein 75 kDa, mitochondrial precursor 136 
237 DHSO_HUMAN Sorbitol dehydrogenase 136 
238 TXTP_HUMAN Tricarboxylate transport protein, mitochondrial precursor 136 
239 FINC_HUMAN Fibronectin precursor 135 
240 GNAI1_HUMAN Guanine nucleotide-binding protein G(i), alpha-1 subunit 117 
240 GNAI2_HUMAN Guanine nucleotide-binding protein G(i), alpha-2 subunit 117 
240 GNAI3_HUMAN Guanine nucleotide-binding protein G(k) subunit alpha 117 
240 GNAL_HUMAN Guanine nucleotide-binding protein G(olf) subunit alpha 117 
240 GNAO1_HUMAN Guanine nucleotide-binding protein G(o) subunit alpha 1 117 
240 GNAO2_HUMAN Guanine nucleotide-binding protein G(o) subunit alpha 2 117 
240 GNAS1_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas 135 
240 GNAS2_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms short 135 
240 GNAT1_HUMAN Guanine nucleotide-binding protein G(t) subunit alpha-1 117 
240 GNAT2_HUMAN Guanine nucleotide-binding protein G(t) subunit alpha-2 117 
241 RAP1A_HUMAN Ras-related protein Rap-1A precursor 133 
241 RAP1B_HUMAN Ras-related protein Rap-1b precursor 133 
242 AT2A1_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 81 
242 AT2A2_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 133 
242 AT2A3_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 81 
243 IDHP_HUMAN Isocitrate dehydrogenase [NADP], mitochondrial precursor 132 
244 VAPA_HUMAN Vesicle-associated membrane protein-associated protein A 131 
244 VAPB_HUMAN Vesicle-associated membrane protein-associated protein B/C 108 
245 NDUS5_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 131 
246 EFTU_HUMAN Elongation factor Tu, mitochondrial precursor 131 
247 STT3A_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A 130 
248 DHB13_HUMAN 17-beta hydroxysteroid dehydrogenase 13 precursor 130 
249 RL35A_HUMAN 60S ribosomal protein L35a 128 
250 RS18_HUMAN 40S ribosomal protein S18 127 
251 APOA1_HUMAN Apolipoprotein A-I precursor 127 
252 RLA0_HUMAN 60S acidic ribosomal protein P0 126 
253 DIC_HUMAN Mitochondrial dicarboxylate carrier 124 
254 SFRS1_HUMAN Splicing factor, arginine/serine-rich 1 124 
255 PCYOX_HUMAN Prenylcysteine oxidase 1 precursor 124 
256 PSME2_HUMAN Proteasome activator complex subunit 2 123 
257 HNRPQ_HUMAN Heterogeneous nuclear ribonucleoprotein Q 123 
257 HNRPR_HUMAN Heterogeneous nuclear ribonucleoprotein R 69 
258 PON3_HUMAN Serum paraoxonase/lactonase 3 122 
259 RLA2_HUMAN 60S acidic ribosomal protein P2 122 
260 IF4G1_HUMAN Eukaryotic translation initiation factor 4 gamma 1 120 
261 NDUS6_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial precursor 120 
262 DHB12_HUMAN Estradiol 17-beta-dehydrogenase 12 120 
263 RHOA_HUMAN Transforming protein RhoA precursor 119 
263 RHOC_HUMAN Rho-related GTP-binding protein RhoC precursor 119 
264 SURF4_HUMAN Surfeit locus protein 4 119 
265 GANAB_HUMAN Neutral alpha-glucosidase AB precursor 118 
266 PCBP2_HUMAN Poly(rC)-binding protein 2 116 
266 PCBP3_HUMAN Poly(rC)-binding protein 3 78 
267 REEP6_HUMAN Receptor expression-enhancing protein 6 116 



244                                     Appendix V Complete list of proteins identified by nLC-MS 

Sample 2 proteins identifiSample 2 proteins identifiSample 2 proteins identifiSample 2 proteins identified by nLCed by nLCed by nLCed by nLC----MS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export functionMS using MASCOT and the launch peaks to mascot export function    

NumberNumberNumberNumber    
SwissProt SwissProt SwissProt SwissProt 
accessionaccessionaccessionaccession    Protein nameProtein nameProtein nameProtein name    Protein scoreProtein scoreProtein scoreProtein score    

268 CPT2_HUMAN Carnitine O-palmitoyltransferase 2, mitochondrial precursor 116 
269 NDUA4_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 113 
270 SC22B_HUMAN Vesicle-trafficking protein SEC22b 113 
271 LMNA_HUMAN Lamin-A/C 112 
272 RS20_HUMAN 40S ribosomal protein S20 112 
273 SAR1A_HUMAN GTP-binding protein SAR1a 112 
273 SAR1B_HUMAN GTP-binding protein SAR1b 112 
274 RL27_HUMAN 60S ribosomal protein L27 112 
275 ASGR1_HUMAN Asialoglycoprotein receptor 1 111 
276 RS23_HUMAN 40S ribosomal protein S23 110 
277 CPT1A_HUMAN Carnitine O-palmitoyltransferase I, liver isoform 108 
278 COPB_HUMAN Coatomer subunit beta 108 
279 RL26_HUMAN 60S ribosomal protein L26 106 
279 RL26L_HUMAN 60S ribosomal protein L26-like 1 89 
280 HNRPD_HUMAN Heterogeneous nuclear ribonucleoprotein D0 106 
281 NDUA8_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 105 
282 CHDH_HUMAN Choline dehydrogenase, mitochondrial precursor 105 
283 SCPDH_HUMAN Probable saccharopine dehydrogenase 104 
284 CP2D6_HUMAN Cytochrome P450 2D6 104 
285 CATB_HUMAN Cathepsin B precursor 104 
286 APOC1_HUMAN Apolipoprotein C-I precursor 104 
287 JAM1_HUMAN Junctional adhesion molecule A precursor 102 
288 COX6C_HUMAN Cytochrome c oxidase polypeptide VIc precursor 102 
289 HNRPM_HUMAN Heterogeneous nuclear ribonucleoprotein M 101 
290 RS11_HUMAN 40S ribosomal protein S11 100 
291 GCS1_HUMAN Mannosyl-oligosaccharide glucosidase 100 
292 ICAM1_HUMAN Intercellular adhesion molecule 1 precursor 99 
293 RL34_HUMAN 60S ribosomal protein L34 99 
294 RDH11_HUMAN Retinol dehydrogenase 11 98 
295 CP2CI_HUMAN Cytochrome P450 2C18 98 
296 QCR7_HUMAN Cytochrome b-c1 complex subunit 7 98 
297 RS19_HUMAN 40S ribosomal protein S19 96 
298 RS8_HUMAN 40S ribosomal protein S8 96 
299 DHX9_HUMAN ATP-dependent RNA helicase A 93 
300 THIO_HUMAN Thioredoxin 93 
301 UBA1_HUMAN Ubiquitin-like modifier-activating enzyme 1 91 
302 SFRS3_HUMAN Splicing factor, arginine/serine-rich 3 91 
302 SFRS7_HUMAN Splicing factor, arginine/serine-rich 7 91 
303 LONM_HUMAN Lon protease homolog, mitochondrial precursor 90 
304 PYC_HUMAN Pyruvate carboxylase, mitochondrial precursor 90 
305 KAD4_HUMAN Adenylate kinase isoenzyme 4, mitochondrial 90 
306 UCRI_HUMAN Cytochrome b-c1 complex subunit Rieske, mitochondrial precursor 89 
307 FKBP8_HUMAN FK506-binding protein 8 88 
308 K6PL_HUMAN 6-phosphofructokinase, liver type 88 
309 PON1_HUMAN Serum paraoxonase/arylesterase 1 88 

310 

ACF_HUMAN 
(A1CF_HUMAN  

expasy) APOBEC1 complementation factor 87 
311 FABPL_HUMAN Fatty acid-binding protein, liver 86 
312 PCCB_HUMAN Propionyl-CoA carboxylase beta chain, mitochondrial precursor 85 
313 GLYAT_HUMAN Glycine N-acyltransferase 85 
314 RL31_HUMAN 60S ribosomal protein L31 85 
315 TMED2_HUMAN Transmembrane emp24 domain-containing protein 2 precursor 84 
316 RSMB_HUMAN Small nuclear ribonucleoprotein-associated proteins B and B~ 84 
316 RSMN_HUMAN Small nuclear ribonucleoprotein-associated protein N 84 
317 PYGB_HUMAN Glycogen phosphorylase, brain form 84 
318 NDUS2_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial precursor 84 
319 H10_HUMAN Histone H1.0 84 
320 NDUA6_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 83 
321 DDX1_HUMAN ATP-dependent RNA helicase DDX1 83 
322 KAD3_HUMAN GTP:AMP phosphotransferase mitochondrial 83 
323 TMM97_HUMAN Transmembrane protein 97 82 
324 CP1A2_HUMAN Cytochrome P450 1A2 82 
325 KMO_HUMAN Kynurenine 3-monooxygenase 82 
326 SC11A_HUMAN Signal peptidase complex catalytic subunit SEC11A 81 
327 DHRS7_HUMAN Dehydrogenase/reductase SDR family member 7 precursor 81 
328 AK1C1_HUMAN Aldo-keto reductase family 1 member C1 81 
328 AK1C2_HUMAN Aldo-keto reductase family 1 member C2 81 
328 AK1C3_HUMAN Aldo-keto reductase family 1 member C3 29 
328 AK1C4_HUMAN Aldo-keto reductase family 1 member C4 29 
329 ATP5I_HUMAN ATP synthase subunit e, mitochondrial 81 
330 AAAD_HUMAN Arylacetamide deacetylase 80 
331 RAB7A_HUMAN Ras-related protein Rab-7a 80 
332 RAB10_HUMAN Ras-related protein Rab-10 63 
332 RAB12_HUMAN Putative Ras-related protein Rab-12 63 
332 RAB14_HUMAN Ras-related protein Rab-14 63 
332 RAB1A_HUMAN Ras-related protein Rab-1A 80 
332 RAB1B_HUMAN Ras-related protein Rab-1B 80 
332 RAB30_HUMAN Ras-related protein Rab-30 63 
332 RAB35_HUMAN Ras-related protein Rab-35 63 
332 RAB37_HUMAN Ras-related protein Rab-37 63 
332 RAB3A_HUMAN Ras-related protein Rab-3A 63 
332 RAB3B_HUMAN Ras-related protein Rab-3B 63 
332 RAB3C_HUMAN Ras-related protein Rab-3C 63 
332 RAB3D_HUMAN Ras-related protein Rab-3D 63 
332 RAB43_HUMAN Ras-related protein Rab-43 63 
332 RAB4A_HUMAN Ras-related protein Rab-4A 63 
332 RAB4B_HUMAN Ras-related protein Rab-4B 63 
332 RAB8A_HUMAN Ras-related protein Rab-8A 63 
332 RAB8B_HUMAN Ras-related protein Rab-8B 63 
332 RB39B_HUMAN Ras-related protein Rab-39B 63 
333 GCSP_HUMAN Glycine dehydrogenase [decarboxylating], mitochondrial precursor 79 
334 ST1A1_HUMAN Sulfotransferase 1A1 78 
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334 ST1A2_HUMAN Sulfotransferase 1A2 78 
335 NSDHL_HUMAN Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 78 
336 PRS6B_HUMAN 26S protease regulatory subunit 6B 78 
337 ABCD3_HUMAN ATP-binding cassette sub-family D member 3 77 
338 ANXA5_HUMAN Annexin A5 77 
339 RL8_HUMAN 60S ribosomal protein L8 77 
340 COX1_HUMAN Cytochrome c oxidase subunit 1 77 
341 SPEB_HUMAN Agmatinase, mitochondrial precursor 77 
342 RS15_HUMAN 40S ribosomal protein S15 76 
343 GABT_HUMAN 4-aminobutyrate aminotransferase, mitochondrial precursor 76 
344 HMOX1_HUMAN Heme oxygenase 1 76 
345 ACS2A_HUMAN Acyl-coenzyme A synthetase ACSM2A, mitochondrial precursor 76 
345 ACS2B_HUMAN Acyl-coenzyme A synthetase ACSM2B, mitochondrial precursor 76 
346 PECI_HUMAN Peroxisomal 3,2-trans-enoyl-CoA isomerase 76 
347 SAA4_HUMAN Serum amyloid A-4 protein precursor 75 
348 ILF2_HUMAN Interleukin enhancer-binding factor 2 75 
349 GPSN2_HUMAN Synaptic glycoprotein SC2 75 
350 SPYA_HUMAN Serine--pyruvate aminotransferase 75 
351 HGD_HUMAN Homogentisate 1,2-dioxygenase 75 
352 TMED7_HUMAN Transmembrane emp24 domain-containing protein 7 precursor 75 
353 BASI_HUMAN Basigin precursor 74 
354 DHCR7_HUMAN 7-dehydrocholesterol reductase 74 
355 MFN1_HUMAN Mitofusin-1 73 
355 MFN2_HUMAN Mitofusin-2 73 
356 SYDC_HUMAN Aspartyl-tRNA synthetase, cytoplasmic 73 
357 CATA_HUMAN Catalase 73 
358 GATM_HUMAN Glycine amidinotransferase, mitochondrial precursor 73 
359 ACSL3_HUMAN Long-chain-fatty-acid--CoA ligase 3 73 
359 ACSL4_HUMAN Long-chain-fatty-acid--CoA ligase 4 73 
360 SSRG_HUMAN Translocon-associated protein subunit gamma 72 
361 VDAC2_HUMAN Voltage-dependent anion-selective channel protein 2 72 
362 GLYG_HUMAN Glycogenin-1 71 
363 TERA_HUMAN Transitional endoplasmic reticulum ATPase 71 
364 PCCA_HUMAN Propionyl-CoA carboxylase alpha chain, mitochondrial precursor 71 
365 PGRC1_HUMAN Membrane-associated progesterone receptor component 1 71 
366 DCXR_HUMAN L-xylulose reductase 71 
367 ATP8_HUMAN ATP synthase protein 8 71 
368 HSP71_HUMAN Heat shock 70 kDa protein 1 70 
368 HSP76_HUMAN Heat shock 70 kDa protein 6 30 
368 HSP77_HUMAN Putative heat shock 70 kDa protein 7 30 
369 UD2A3_HUMAN UDP-glucuronosyltransferase 2A3 precursor 70 
370 KU70_HUMAN ATP-dependent DNA helicase 2 subunit 1 70 
371 E2IG5_HUMAN E2-induced gene 5 protein 69 
372 NDUS8_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial precursor 68 

373 ODO2_HUMAN 
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, 

mitochondrial precursor 68 
374 THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 68 
375 ETFA_HUMAN Electron transfer flavoprotein subunit alpha, mitochondrial precursor 66 
376 CJ058_HUMAN Uncharacterized protein C10orf58 precursor 66 
377 PPAL_HUMAN Lysosomal acid phosphatase precursor 66 
378 PLEC1_HUMAN Plectin-1 66 
379 NDUA5_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 65 
380 PXMP2_HUMAN Peroxisomal membrane protein 2 65 
381 CATD_HUMAN Cathepsin D precursor 64 
382 AMPN_HUMAN Aminopeptidase N 64 
383 CTND1_HUMAN Catenin delta-1 64 
384 CCD56_HUMAN Coiled-coil domain-containing protein 56 63 
385 EZRI_HUMAN Ezrin 48 
385 MOES_HUMAN Moesin 48 
385 RADI_HUMAN Radixin 63 
386 TCPW_HUMAN T-complex protein 1 subunit zeta-2 34 
386 TCPZ_HUMAN T-complex protein 1 subunit zeta 63 

387 ODP2_HUMAN 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial 

precursor 63 
388 PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B precursor 63 
389 HYOU1_HUMAN Hypoxia up-regulated protein 1 precursor 62 
390 HMCS1_HUMAN Hydroxymethylglutaryl-CoA synthase, cytoplasmic 62 
391 TOLIP_HUMAN Toll-interacting protein 62 
392 NDUB6_HUMAN NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 61 
393 MGLL_HUMAN Monoglyceride lipase 61 
394 CD59_HUMAN CD59 glycoprotein precursor 61 

395 ODB2_HUMAN 
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial 

precursor 61 
396 ACPM_HUMAN Acyl carrier protein, mitochondrial precursor 61 
397 PTAD1_HUMAN Protein tyrosine phosphatase-like protein PTPLAD1 60 
398 UBE2N_HUMAN Ubiquitin-conjugating enzyme E2 N 60 
399 EBP_HUMAN 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase 60 
400 TGM2_HUMAN Protein-glutamine gamma-glutamyltransferase 2 60 
401 RL23A_HUMAN 60S ribosomal protein L23a 60 
402 G3BP1_HUMAN Ras GTPase-activating protein-binding protein 1 59 
403 ERLN2_HUMAN Erlin-2 precursor 59 
404 RL36_HUMAN 60S ribosomal protein L36 59 
405 AL4A1_HUMAN Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial precursor 58 
406 AP1B1_HUMAN AP-1 complex subunit beta-1 58 
406 AP2B1_HUMAN AP-2 complex subunit beta-1 58 
407 RL40_HUMAN 60S ribosomal protein L40 58 
408 SPCS2_HUMAN Signal peptidase complex subunit 2 58 
409 KCY_HUMAN UMP-CMP kinase 58 
410 LPPRC_HUMAN Leucine-rich PPR motif-containing protein, mitochondrial precursor 58 
411 AL8A1_HUMAN Aldehyde dehydrogenase family 8 member A1 58 
412 METK1_HUMAN S-adenosylmethionine synthetase isoform type-1 57 
413 PAPS2_HUMAN Bifunctional 3~-phosphoadenosine 5~-phosphosulfate synthetase 2 57 
414 RB11A_HUMAN Ras-related protein Rab-11A 56 
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415 PRS7_HUMAN 26S protease regulatory subunit 7 56 
416 PRS6A_HUMAN 26S protease regulatory subunit 6A 56 
417 MYL6_HUMAN Myosin light polypeptide 6 56 
418 TIM13_HUMAN Mitochondrial import inner membrane translocase subunit Tim13 55 
419 K1C9_HUMAN Keratin, type I cytoskeletal 9 54 
420 DNJA1_HUMAN DnaJ homolog subfamily A member 1 53 
421 SYJ2B_HUMAN Synaptojanin-2-binding protein 53 
422 PSMD1_HUMAN 26S proteasome non-ATPase regulatory subunit 1 53 
423 FDFT_HUMAN Squalene synthetase 53 
424 STRAP_HUMAN Serine-threonine kinase receptor-associated protein 53 
425 RETST_HUMAN All-trans-retinol 13,14-reductase precursor 52 
426 S61A1_HUMAN Protein transport protein Sec61 subunit alpha isoform 1 51 
427 ATP5J_HUMAN ATP synthase-coupling factor 6, mitochondrial precursor 51 
428 BAAT_HUMAN Bile acid-CoA:amino acid N-acyltransferase 50 
429 PURA_HUMAN Transcriptional activator protein Pur-alpha 50 
430 CD81_HUMAN CD81 antigen 49 
431 ARF6_HUMAN ADP-ribosylation factor 6 49 
432 LAMP2_HUMAN Lysosome-associated membrane glycoprotein 2 precursor 48 
433 PGM1_HUMAN Phosphoglucomutase-1 48 
434 PRS10_HUMAN 26S protease regulatory subunit S10B 48 
435 PH4H_HUMAN Phenylalanine-4-hydroxylase 48 
436 ARSE_HUMAN Arylsulfatase E precursor 47 
437 IF4E_HUMAN Eukaryotic translation initiation factor 4E 47 
438 SYYC_HUMAN Tyrosyl-tRNA synthetase, cytoplasmic 46 
439 CP2C8_HUMAN Cytochrome P450 2C8 46 
440 ARSA1_HUMAN Arsenical pump-driving ATPase 46 
441 CPNE2_HUMAN Copine-2 46 
441 CPNE3_HUMAN Copine-3 46 
441 CPNE4_HUMAN Copine-4 46 
441 CPNE5_HUMAN Copine-5 46 
441 CPNE6_HUMAN Copine-6 46 
441 CPNE7_HUMAN Copine-7 46 
441 CPNE8_HUMAN Copine-8 46 
442 K1C10_HUMAN Keratin, type I cytoskeletal 10 46 
443 NDK8_HUMAN Putative nucleoside diphosphate kinase 45 
444 TXND5_HUMAN Thioredoxin domain-containing protein 5 precursor 45 
445 RL30_HUMAN 60S ribosomal protein L30 45 
446 H2AY_HUMAN Core histone macro-H2A.1 44 
447 TPSN_HUMAN Tapasin precursor 44 
448 ITB1_HUMAN Integrin beta-1 precursor 44 
449 H14_HUMAN Histone H1.4 43 
450 DDX17_HUMAN Probable ATP-dependent RNA helicase DDX17 43 
450 DDX3X_HUMAN ATP-dependent RNA helicase DDX3X 43 
450 DDX3Y_HUMAN ATP-dependent RNA helicase DDX3Y 43 
450 DDX5_HUMAN Probable ATP-dependent RNA helicase DDX5 43 
451 S14L2_HUMAN SEC14-like protein 2 42 
452 RINI_HUMAN Ribonuclease inhibitor 42 
453 RL11_HUMAN 60S ribosomal protein L11 42 
454 COX5B_HUMAN Cytochrome c oxidase subunit 5B, mitochondrial precursor 42 
455 RS10_HUMAN 40S ribosomal protein S10 42 
456 XPO1_HUMAN Exportin-1 41 
457 BAP31_HUMAN B-cell receptor-associated protein 31 41 
458 ERLN1_HUMAN Erlin-1 precursor 41 
459 ARF4_HUMAN ADP-ribosylation factor 4 41 
460 NNMT_HUMAN Nicotinamide N-methyltransferase 41 
461 3BHS7_HUMAN 3 beta-hydroxysteroid dehydrogenase type 7 41 
462 FADS2_HUMAN Fatty acid desaturase 2 40 
463 K0774_HUMAN Uncharacterized protein KIAA0774 40 
464 CP8B1_HUMAN Cytochrome P450 8B1 40 
465 QCR6_HUMAN Cytochrome b-c1 complex subunit 6, mitochondrial precursor 40 
466 HNRPF_HUMAN Heterogeneous nuclear ribonucleoprotein F 40 
467 CRNL1_HUMAN Crooked neck-like protein 1 40 
468 RS25_HUMAN 40S ribosomal protein S25 39 
469 ACLY_HUMAN ATP-citrate synthase 39 
470 RAB2A_HUMAN Ras-related protein Rab-2A 39 
470 RAB2B_HUMAN Ras-related protein Rab-2B 39 
471 M2OM_HUMAN Mitochondrial 2-oxoglutarate/malate carrier protein 39 
472 DPYS_HUMAN Dihydropyrimidinase 39 
473 MGST2_HUMAN Microsomal glutathione S-transferase 2 38 
474 SC23A_HUMAN Protein transport protein Sec23A 38 
475 CLUS_HUMAN Clusterin precursor 38 
476 SYQ_HUMAN Glutaminyl-tRNA synthetase 38 
477 NDUB7_HUMAN NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7 38 
478 ARLY_HUMAN Argininosuccinate lyase 38 
479 COX7C_HUMAN Cytochrome c oxidase subunit 7C, mitochondrial precursor 38 
479 SLK_HUMAN STE20-like serine/threonine-protein kinase 28 
480 PAHX_HUMAN Phytanoyl-CoA dioxygenase, peroxisomal precursor 37 
481 MATR3_HUMAN Matrin-3 37 
482 TOM70_HUMAN Mitochondrial precursor proteins import receptor 36 
483 GYS2_HUMAN Glycogen [starch] synthase, liver 36 
484 CALR_HUMAN Calreticulin precursor 36 
485 LACTB_HUMAN Serine beta-lactamase-like protein LACTB, mitochondrial precursor 36 
486 CYB5B_HUMAN Cytochrome b5 type B precursor 36 
487 TCPE_HUMAN T-complex protein 1 subunit epsilon 36 
488 SYRC_HUMAN Arginyl-tRNA synthetase, cytoplasmic 36 
489 CFTR_HUMAN Cystic fibrosis transmembrane conductance regulator 36 
489 PLK2_HUMAN Serine/threonine-protein kinase PLK2 36 
490 SYEP_HUMAN Bifunctional aminoacyl-tRNA synthetase 36 
491 ODBB_HUMAN 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial precursor 36 
492 THIK_HUMAN 3-ketoacyl-CoA thiolase, peroxisomal precursor 35 
493 GALK1_HUMAN Galactokinase 35 
494 ORNT1_HUMAN Mitochondrial ornithine transporter 1 35 
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496 CBR1_HUMAN Carbonyl reductase [NADPH] 1 35 
496 CBR3_HUMAN Carbonyl reductase [NADPH] 3 35 
497 RL29_HUMAN 60S ribosomal protein L29 35 
498 G6PT1_HUMAN Glucose-6-phosphate translocase 34 
499 ECHP_HUMAN Peroxisomal bifunctional enzyme 34 
500 NDUA2_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 34 
501 DERL1_HUMAN Derlin-1 34 
502 AP2A2_HUMAN AP-2 complex subunit alpha-2 34 
503 CLC3A_HUMAN C-type lectin domain family 3 member A precursor 34 
504 SDF2L_HUMAN Stromal cell-derived factor 2-like protein 1 precursor 34 
505 EFTS_HUMAN Elongation factor Ts, mitochondrial precursor 33 
505 RGL1_HUMAN Ral guanine nucleotide dissociation stimulator-like 1 33 
506 ARMX2_HUMAN Armadillo repeat-containing X-linked protein 2 33 

507 

SYV_HUMAN 
(SYVC_HUMAN 

expasy) Valyl-tRNA synthetase 33 
508 UBR4_HUMAN E3 ubiquitin-protein ligase UBR4 33 
509 TMM56_HUMAN Transmembrane protein 56 33 
510 SMD3_HUMAN Small nuclear ribonucleoprotein Sm D3 32 
511 MIA40_HUMAN Mitochondrial intermembrane space import and assembly protein 40 32 
512 APOC2_HUMAN Apolipoprotein C-II precursor 32 
513 DAD1_HUMAN Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1 32 
514 1433B_HUMAN 14-3-3 protein beta/alpha 32 
514 1433F_HUMAN 14-3-3 protein eta 32 
514 1433G_HUMAN 14-3-3 protein gamma 32 
514 1433S_HUMAN 14-3-3 protein sigma 32 
514 1433T_HUMAN 14-3-3 protein theta 32 
514 1433Z_HUMAN 14-3-3 protein zeta/delta 32 
515 C144A_HUMAN Coiled-coil domain-containing protein 144A 32 
516 AASS_HUMAN Alpha-aminoadipic semialdehyde synthase, mitochondrial precursor 32 
517 SFXN2_HUMAN Sideroflexin-2 32 
518 LASS4_HUMAN LAG1 longevity assurance homolog 4 31 
519 NPTN_HUMAN Neuroplastin precursor 31 
520 LETM1_HUMAN Leucine zipper-EF-hand-containing transmembrane protein 1, mitochondrial precursor 31 
521 SPSY_HUMAN Spermine synthase 31 
522 ADO_HUMAN Aldehyde oxidase 31 
523 TOP2B_HUMAN DNA topoisomerase 2-beta 31 
524 COASY_HUMAN Bifunctional coenzyme A synthase 31 
525 MPU1_HUMAN Mannose-P-dolichol utilization defect 1 protein 30 
526 EHD2_HUMAN EH domain-containing protein 2 30 
526 EHD4_HUMAN EH domain-containing protein 4 30 
527 IMB1_HUMAN Importin subunit beta-1 30 
528 NEMO_HUMAN NF-kappa-B essential modulator 30 
529 AHNK_HUMAN Neuroblast differentiation-associated protein AHNAK 30 
530 PEX13_HUMAN Peroxisomal membrane protein PEX13 30 
531 MLRM_HUMAN Myosin regulatory light chain 2, nonsarcomeric 30 
532 CP27A_HUMAN Cytochrome P450 27, mitochondrial precursor 29 
533 RL5_HUMAN 60S ribosomal protein L5 29 
534 RIOK2_HUMAN Serine/threonine-protein kinase RIO2 29 
535 ANM7_HUMAN Protein arginine N-methyltransferase 7 29 
536 PRS4_HUMAN 26S protease regulatory subunit 4 28 
537 RL18A_HUMAN 60S ribosomal protein L18a 28 
538 TEC_HUMAN Tyrosine-protein kinase Tec 28 
539 ILF3_HUMAN Interleukin enhancer-binding factor 3 28 
540 SPTA2_HUMAN Spectrin alpha chain, brain 28 
541 AK1BA_HUMAN Aldo-keto reductase family 1 member B10 28 
542 PDS5A_HUMAN Sister chromatid cohesion protein PDS5 homolog A 28 
543 OCAD1_HUMAN OCIA domain-containing protein 1 27 
544 NDUAD_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 27 
545 WBP2_HUMAN WW domain-binding protein 2 27 
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The pathways listed below are affected by the proteins found to be regulated. 

 

Sample 1Sample 1Sample 1Sample 1    

 

RSV treatmentRSV treatmentRSV treatmentRSV treatment    

Following object(s) was/were not found hsa:148534 hsa:341 hsa:9526 

 

        hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle) - Homo sapiens (human) hsa:47 ACLY; ATP citrate lyase 

(EC:2.3.3.8); K01648 ATP citrate (pro-S)-lyase [EC:2.3.3.8] hsa:6391 SDHC; succinate dehydrogenase 

complex, subunit C, integral membrane protein, 15kDa; K00236 succinate dehydrogenase (ubiquinone) 

cytochrome b subunit [EC:1.3.5.1] 

  * * hsa03320 PPAR sighsa03320 PPAR sighsa03320 PPAR sighsa03320 PPAR signaling pathwaynaling pathwaynaling pathwaynaling pathway - Homo sapiens (human) hsa:2181 ACSL3; acyl-CoA synthetase 

long-chain family member 3 (EC:6.2.1.3); K01897 long-chain acyl-CoA synthetase [EC:6.2.1.3] hsa:345 

APOC3; apolipoprotein C-III ; K08759 apolipoprotein C-III 

    * hsa00100 Biosynthehsa00100 Biosynthehsa00100 Biosynthehsa00100 Biosynthesis of steroidssis of steroidssis of steroidssis of steroids - Homo sapiens (human) hsa:1595 CYP51A1; cytochrome P450, 

family 51, subfamily A, polypeptide 1 (EC:1.14.13.70); K05917 cytochrome P450, family 51, subfamily A 

(sterol 14-demethylase) [EC:1.14.13.70] hsa:2222 FDFT1; farnesyl-diphosphate farnesyltransferase 1 

(EC:2.5.1.21); K00801 farnesyl-diphosphate farnesyltransferase [EC:2.5.1.21] 

    * hsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's disease - Homo sapiens (human) hsa:6391 SDHC; succinate dehydrogenase 

complex, subunit C, integral membrane protein, 15kDa; K00236 succinate dehydrogenase (ubiquinone) 

cytochrome b subunit [EC:1.3.5.1] 

    * hsa00650 Butanoate metabolismhsa00650 Butanoate metabolismhsa00650 Butanoate metabolismhsa00650 Butanoate metabolism - Homo sapiens (human) hsa:3157 HMGCS1; 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 hydroxymethylglutaryl-CoA 

synthase [EC:2.3.3.10] 

    * hsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylation - Homo sapiens (human) hsa:6391 SDHC; succinate 

dehydrogenase complex, subunit C, integral membrane protein, 15kDa; K00236 succinate 

dehydrogenase (ubiquinone) cytochrome b subunit [EC:1.3.5.1] 

    * hsa00052 Galactose metabolismhsa00052 Galactose metabolismhsa00052 Galactose metabolismhsa00052 Galactose metabolism - Homo sapiens (human) hsa:5236 PGM1; phosphoglucomutase 1 

(EC:5.4.2.2); K01835 phosphoglucomutase [EC:5.4.2.2] 

    * hsa00150 Androgen and estrogen metabolismhsa00150 Androgen and estrogen metabolismhsa00150 Androgen and estrogen metabolismhsa00150 Androgen and estrogen metabolism - Homo sapiens (human) hsa:51144 HSD17B12; 

hydroxysteroid (17-beta) dehydrogenase 12 (EC:1.1.1.62); K00044 estradiol 17beta-dehydrogenase 

[EC:1.1.1.62]; K10251 beta-keto reductase [EC:1.1.1.-] 

    * hsa00500 Starch and sucrose metabolismhsa00500 Starch and sucrose metabolismhsa00500 Starch and sucrose metabolismhsa00500 Starch and sucrose metabolism - Homo sapiens (human) hsa:5236 PGM1; 

phosphoglucomutase 1 (EC:5.4.2.2); K01835 phosphoglucomutase [EC:5.4.2.2] 
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    * hsa01040 Biosynthesis of unsaturated fatty acidshsa01040 Biosynthesis of unsaturated fatty acidshsa01040 Biosynthesis of unsaturated fatty acidshsa01040 Biosynthesis of unsaturated fatty acids - Homo sapiens (human) hsa:51144 HSD17B12; 

hydroxysteroid (17-beta) dehydrogenase 12 (EC:1.1.1.62); K00044 estradiol 17beta-dehydrogenase 

[EC:1.1.1.62]; K10251 beta-keto reductase [EC:1.1.1.-] 

    * hsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesis - Homo sapiens (human) hsa:5236 PGM1; 

phosphoglucomutase 1 (EC:5.4.2.2); K01835 phosphoglucomutase [EC:5.4.2.2] 

    * hsa04270 Vascular smooth muscle contractionhsa04270 Vascular smooth muscle contractionhsa04270 Vascular smooth muscle contractionhsa04270 Vascular smooth muscle contraction - Homo sapiens (human) hsa:72 ACTG2; actin, 

gamma 2, smooth muscle, enteric ; K12315 actin, gamma-enteric smooth muscle 

    * hsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodies - Homo sapiens (human) hsa:3157 HMGCS1; 

3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 

hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] 

    * hsa04920 Adipocytokine signaling pathwayhsa04920 Adipocytokine signaling pathwayhsa04920 Adipocytokine signaling pathwayhsa04920 Adipocytokine signaling pathway - Homo sapiens (human) hsa:2181 ACSL3; acyl-CoA 

synthetase long-chain family member 3 (EC:6.2.1.3); K01897 long-chain acyl-CoA synthetase 

[EC:6.2.1.3] 

    * hsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolism - Homo sapiens (human) hsa:2181 ACSL3; acyl-CoA synthetase 

long-chain family member 3 (EC:6.2.1.3); K01897 long-chain acyl-CoA synthetase [EC:6.2.1.3] 

    * hsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's disease - Homo sapiens (human) hsa:6391 SDHC; succinate dehydrogenase 

complex, subunit C, integral membrane protein, 15kDa; K00236 succinate dehydrogenase (ubiquinone) 

cytochrome b subunit [EC:1.3.5.1] 

    * hsa00900 Terpenoid biosynthesishsa00900 Terpenoid biosynthesishsa00900 Terpenoid biosynthesishsa00900 Terpenoid biosynthesis - Homo sapiens (human) hsa:2222 FDFT1; farnesyl-diphosphate 

farnesyltransferase 1 (EC:2.5.1.21); K00801 farnesyl-diphosphate farnesyltransferase [EC:2.5.1.21] 

    * hsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's disease - Homo sapiens (human) hsa:6391 SDHC; succinate dehydrogenase 

complex, subunit C, integral membrane protein, 15kDa; K00236 succinate dehydrogenase (ubiquinone) 

cytochrome b subunit [EC:1.3.5.1] 

    * hsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathway - Homo sapiens (human) hsa:5236 PGM1; 

phosphoglucomutase 1 (EC:5.4.2.2); K01835 phosphoglucomutase [EC:5.4.2.2] 

    * hsa00720 Reduhsa00720 Reduhsa00720 Reduhsa00720 Reductive carboxylate cycle (CO2 fixation)ctive carboxylate cycle (CO2 fixation)ctive carboxylate cycle (CO2 fixation)ctive carboxylate cycle (CO2 fixation) - Homo sapiens (human) hsa:47 ACLY; ATP 

citrate lyase (EC:2.3.3.8); K01648 ATP citrate (pro-S)-lyase [EC:2.3.3.8] 

    * hsa03010 Ribosomehsa03010 Ribosomehsa03010 Ribosomehsa03010 Ribosome - Homo sapiens (human) hsa:6133 RPL9; ribosomal protein L9 ; K02940 large 

subunit ribosomal protein L9e 

    * hsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradation - Homo sapiens (human) hsa:3157 HMGCS1; 

3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 

hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] 

 

LELELELEKKKK----935 treatment935 treatment935 treatment935 treatment    

Following object(s) was/were not found hsa:213 hsa:308 hsa:7018 

 

        hsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's disease - Homo sapiens (human) hsa:2597 GAPDH; glyceraldehyde-3-

phosphate dehydrogenase (EC:1.2.1.12); K00134 glyceraldehyde 3-phosphate dehydrogenase 

[EC:1.2.1.12] 
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  * * hsa05215 Prostate cancerhsa05215 Prostate cancerhsa05215 Prostate cancerhsa05215 Prostate cancer - Homo sapiens (human) hsa:7184 HSP90B1; heat shock protein 90kDa 

beta (Grp94), member 1 ; K09487 heat shock protein 90kDa beta 

    * hsa00480 Glutathione metabolismhsa00480 Glutathione metabolismhsa00480 Glutathione metabolismhsa00480 Glutathione metabolism - Homo sapiens (human) hsa:3418 IDH2; isocitrate 

dehydrogenase 2 (NADP+), mitochondrial (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

    * hsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesis - Homo sapiens (human) hsa:2597 GAPDH; glyceraldehyde-

3-phosphate dehydrogenase (EC:1.2.1.12); K00134 glyceraldehyde 3-phosphate dehydrogenase 

[EC:1.2.1.12] 

    * hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle) - Homo sapiens (human) hsa:3418 IDH2; isocitrate 

dehydrogenase 2 (NADP+), mitochondrial (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

    * hsa007hsa007hsa007hsa00720 Reductive carboxylate cycle (CO2 fixation)20 Reductive carboxylate cycle (CO2 fixation)20 Reductive carboxylate cycle (CO2 fixation)20 Reductive carboxylate cycle (CO2 fixation) - Homo sapiens (human) hsa:3418 IDH2; 

isocitrate dehydrogenase 2 (NADP+), mitochondrial (EC:1.1.1.42); K00031 isocitrate dehydrogenase 

[EC:1.1.1.42] 

    * hsa05200 Pathways in cancerhsa05200 Pathways in cancerhsa05200 Pathways in cancerhsa05200 Pathways in cancer - Homo sapiens (human) hsa:7184 HSP90B1; heat shock protein 

90kDa beta (Grp94), member 1 ; K09487 heat shock protein 90kDa beta 

    * hsa00760 Nicotinate and nicotinamide metabolismhsa00760 Nicotinate and nicotinamide metabolismhsa00760 Nicotinate and nicotinamide metabolismhsa00760 Nicotinate and nicotinamide metabolism - Homo sapiens (human) hsa:4837 NNMT; 

nicotinamide N-methyltransferase (EC:2.1.1.1); K00541 nicotinamide N-methyltransferase [EC:2.1.1.1] 

 

Sample 2Sample 2Sample 2Sample 2    

 

RSV treatmentRSV treatmentRSV treatmentRSV treatment    

Following object(s) was/were not found hsa:1468 hsa:1973 hsa:23576 hsa:51128 

 

        hsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's disease - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] hsa:6647 SOD1; superoxide dismutase 1, soluble (EC:1.15.1.1); 

K04565 Cu/Zn superoxide dismutase [EC:1.15.1.1] hsa:7417 VDAC2; voltage-dependent anion channel 2 

; K05862 voltage-dependent anion channel 

  * * hsa04610 Complement and coagulation cascadeshsa04610 Complement and coagulation cascadeshsa04610 Complement and coagulation cascadeshsa04610 Complement and coagulation cascades - Homo sapiens (human) hsa:2243 FGA; 

fibrinogen alpha chain ; K03903 fibrinogen, A alpha polypeptide hsa:2244 FGB; fibrinogen beta chain ; 

K03904 fibrinogen, B alpha polypeptide 

    * hsa00480 Glutathione metabolismhsa00480 Glutathione metabolismhsa00480 Glutathione metabolismhsa00480 Glutathione metabolism - Homo sapiens (human) hsa:3417 IDH1; isocitrate 

dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

hsa:9446 GSTO1; glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase 

[EC:2.5.1.18] 

    * hsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesishsa00010 Glycolysis / Gluconeogenesis - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

hsa:2597 GAPDH; glyceraldehyde-3-phosphate dehydrogenase (EC:1.2.1.12); K00134 glyceraldehyde 3-

phosphate dehydrogenase [EC:1.2.1.12] 
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    * hsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentation - Homo sapiens (human) hsa:2923 PDIA3; protein 

disulfide isomerase family A, member 3 (EC:5.3.4.1); K08056 protein disulfide isomerase family A, 

member 3 [EC:5.3.4.1] hsa:3309 HSPA5; heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) 

; K09490 heat shock 70kDa protein 5 

    * hsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's disease - Homo sapiens (human) hsa:2597 GAPDH; glyceraldehyde-3-

phosphate dehydrogenase (EC:1.2.1.12); K00134 glyceraldehyde 3-phosphate dehydrogenase 

[EC:1.2.1.12] hsa:506 ATP5B; ATP synthase, H+ transporting, mitochondrial F1 complex, beta 

polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting ATPase subunit beta [EC:3.6.3.14] 

    * hsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's disease - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] hsa:7417 VDAC2; voltage-dependent anion channel 2 ; K05862 

voltage-dependent anion channel 

    * hsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolism - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

hsa:3795 KHK; ketohexokinase (fructokinase) (EC:2.7.1.3); K00846 ketohexokinase [EC:2.7.1.3] 

    * hsa00650 Butanoate metabolismhsa00650 Butanoate metabolismhsa00650 Butanoate metabolismhsa00650 Butanoate metabolism - Homo sapiens (human) hsa:3157 HMGCS1; 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 hydroxymethylglutaryl-CoA 

synthase [EC:2.3.3.10] 

    * hsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylation - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] 

    * hsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeleton - Homo sapiens (human) hsa:5962 RDX; radixin ; K05762 

radixin 

    * hsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infection - Homo sapiens (human) hsa:10383 TUBB2C; 

tubulin, beta 2C ; K07375 tubulin beta 

    * hsa04540 Gap junctionhsa04540 Gap junctionhsa04540 Gap junctionhsa04540 Gap junction - Homo sapiens (human) hsa:10383 TUBB2C; tubulin, beta 2C ; K07375 

tubulin beta 

    * hsa00680 Methane metabolismhsa00680 Methane metabolismhsa00680 Methane metabolismhsa00680 Methane metabolism - Homo sapiens (human) hsa:9588 PRDX6; peroxiredoxin 6 

(EC:1.11.1.7 1.11.1.15); K00430 peroxidase [EC:1.11.1.7]; K01066 esterase / lipase [EC:3.1.1.-]; K11188 

peroxiredoxin 6, 1-Cys peroxiredoxin [EC:1.11.1.15] 

    * hsa00020 Citrate cycle (TCA cycle)* hsa00020 Citrate cycle (TCA cycle)* hsa00020 Citrate cycle (TCA cycle)* hsa00020 Citrate cycle (TCA cycle) - Homo sapiens (human) hsa:3417 IDH1; isocitrate 

dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

    * hsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodieshsa00072 Synthesis and degradation of ketone bodies - Homo sapiens (human) hsa:3157 HMGCS1; 

3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 

hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] 

    * hsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolism - Homo sapiens (human) hsa:1632 DCI; dodecenoyl-Coenzyme A 

delta isomerase (3,2 trans-enoyl-Coenzyme A isomerase) (EC:5.3.3.8); K01825 dodecenoyl-CoA delta-

isomerase [EC:5.3.3.8] 

    * hsa00960 Alkaloid biosynthesis IIhsa00960 Alkaloid biosynthesis IIhsa00960 Alkaloid biosynthesis IIhsa00960 Alkaloid biosynthesis II - Homo sapiens (human) hsa:9588 PRDX6; peroxiredoxin 6 

(EC:1.11.1.7 1.11.1.15); K00430 peroxidase [EC:1.11.1.7]; K01066 esterase / lipase [EC:3.1.1.-]; K11188 

peroxiredoxin 6, 1-Cys peroxiredoxin [EC:1.11.1.15] 
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    * hsa04020 Calcium signaling pathwayhsa04020 Calcium signaling pathwayhsa04020 Calcium signaling pathwayhsa04020 Calcium signaling pathway - Homo sapiens (human) hsa:7417 VDAC2; voltage-dependent 

anion channel 2 ; K05862 voltage-dependent anion channel 

    * hsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathway - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

    * hsa00830 Retinol metabolismhsa00830 Retinol metabolismhsa00830 Retinol metabolismhsa00830 Retinol metabolism - Homo sapiens (human) hsa:216 ALDH1A1; aldehyde dehydrogenase 

1 family, member A1 (EC:1.2.1.36); K07249 retinal dehydrogenase [EC:1.2.1.36] 

    * hsa00982 Drug metabolism hsa00982 Drug metabolism hsa00982 Drug metabolism hsa00982 Drug metabolism ---- cytochrome P450 cytochrome P450 cytochrome P450 cytochrome P450 - Homo sapiens (human) hsa:9446 GSTO1; 

glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase [EC:2.5.1.18] 

    * hsa00980 Metabolism of xenobiotics by c* hsa00980 Metabolism of xenobiotics by c* hsa00980 Metabolism of xenobiotics by c* hsa00980 Metabolism of xenobiotics by cytochrome P450ytochrome P450ytochrome P450ytochrome P450 - Homo sapiens (human) hsa:9446 GSTO1; 

glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase [EC:2.5.1.18] 

    * hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation) - Homo sapiens (human) hsa:3417 IDH1; 

isocitrate dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase 

[EC:1.1.1.42] 

    * hsa05014 Amyotrophic lateral sclerosis (ALS)hsa05014 Amyotrophic lateral sclerosis (ALS)hsa05014 Amyotrophic lateral sclerosis (ALS)hsa05014 Amyotrophic lateral sclerosis (ALS) - Homo sapiens (human) hsa:6647 SOD1; superoxide 

dismutase 1, soluble (EC:1.15.1.1); K04565 Cu/Zn superoxide dismutase [EC:1.15.1.1] 

    * hsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradationhsa00280 Valine, leucine and isoleucine degradation - Homo sapiens (human) hsa:3157 HMGCS1; 

3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) (EC:2.3.3.10); K01641 

hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] 

    * hsa00360 Phenylalanine metabolismhsa00360 Phenylalanine metabolismhsa00360 Phenylalanine metabolismhsa00360 Phenylalanine metabolism - Homo sapiens (human) hsa:9588 PRDX6; peroxiredoxin 6 

(EC:1.11.1.7 1.11.1.15); K00430 peroxidase [EC:1.11.1.7]; K01066 esterase / lipase [EC:3.1.1.-]; K11188 

peroxiredoxin 6, 1-Cys peroxiredoxin [EC:1.11.1.15] 

    * hsa0hsa0hsa0hsa00910 Nitrogen metabolism0910 Nitrogen metabolism0910 Nitrogen metabolism0910 Nitrogen metabolism - Homo sapiens (human) hsa:760 CA2; carbonic anhydrase II 

(EC:4.2.1.1); K01672 carbonic anhydrase [EC:4.2.1.1] 

 

LEKLEKLEKLEK----935 treatment935 treatment935 treatment935 treatment    

Following object(s) was/were not found hsa: hsa:1973 hsa:23576 

 

        hsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's diseasehsa05016 Huntington's disease - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] hsa:6647 SOD1; superoxide dismutase 1, soluble (EC:1.15.1.1); 

K04565 Cu/Zn superoxide dismutase [EC:1.15.1.1] 

  * * hsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infectionhsa05130 Pathogenic Escherichia coli infection - Homo sapiens (human) hsa:10383 TUBB2C; 

tubulin, beta 2C ; K07375 tubulin beta hsa:60 ACTB; actin, beta ; K05692 actin beta/gamma 1 

    * hsa00480 Glutathiohsa00480 Glutathiohsa00480 Glutathiohsa00480 Glutathione metabolismne metabolismne metabolismne metabolism - Homo sapiens (human) hsa:3417 IDH1; isocitrate 

dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

hsa:9446 GSTO1; glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase 

[EC:2.5.1.18] 

    * hsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentationhsa04612 Antigen processing and presentation - Homo sapiens (human) hsa:2923 PDIA3; protein 

disulfide isomerase family A, member 3 (EC:5.3.4.1); K08056 protein disulfide isomerase family A, 
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member 3 [EC:5.3.4.1] hsa:3309 HSPA5; heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) 

; K09490 heat shock 70kDa protein 5 

    * hsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolismhsa00051 Fructose and mannose metabolism - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

hsa:3795 KHK; ketohexokinase (fructokinase) (EC:2.7.1.3); K00846 ketohexokinase [EC:2.7.1.3] 

    * hsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylationhsa00190 Oxidative phosphorylation - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] 

    * hsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeletonhsa04810 Regulation of actin cytoskeleton - Homo sapiens (human) hsa:60 ACTB; actin, beta ; 

K05692 actin beta/gamma 1 

    * hsa04540 Gap junctionhsa04540 Gap junctionhsa04540 Gap junctionhsa04540 Gap junction - Homo sapiens (human) hsa:10383 TUBB2C; tubulin, beta 2C ; K07375 

tubulin beta 

    * hsa00010 Glycolysis / Gluconeogenesis* hsa00010 Glycolysis / Gluconeogenesis* hsa00010 Glycolysis / Gluconeogenesis* hsa00010 Glycolysis / Gluconeogenesis - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

    * hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle)hsa00020 Citrate cycle (TCA cycle) - Homo sapiens (human) hsa:3417 IDH1; isocitrate 

dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

    * hsa05110 Vibrio cholerae infectionhsa05110 Vibrio cholerae infectionhsa05110 Vibrio cholerae infectionhsa05110 Vibrio cholerae infection - Homo sapiens (human) hsa:60 ACTB; actin, beta ; K05692 actin 

beta/gamma 1 

    * hsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolismhsa00071 Fatty acid metabolism - Homo sapiens (human) hsa:1632 DCI; dodecenoyl-Coenzyme A 

delta isomerase (3,2 trans-enoyl-Coenzyme A isomerase) (EC:5.3.3.8); K01825 dodecenoyl-CoA delta-

isomerase [EC:5.3.3.8] 

    * hsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's diseasehsa05010 Alzheimer's disease - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] 

    * hsa04530 Thsa04530 Thsa04530 Thsa04530 Tight junctionight junctionight junctionight junction - Homo sapiens (human) hsa:60 ACTB; actin, beta ; K05692 actin 

beta/gamma 1 

    * hsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's diseasehsa05012 Parkinson's disease - Homo sapiens (human) hsa:506 ATP5B; ATP synthase, H+ 

transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting 

ATPase subunit beta [EC:3.6.3.14] 

    * hsa04520 Adherens junctionhsa04520 Adherens junctionhsa04520 Adherens junctionhsa04520 Adherens junction - Homo sapiens (human) hsa:60 ACTB; actin, beta ; K05692 actin 

beta/gamma 1 

    * hsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathwayhsa00030 Pentose phosphate pathway - Homo sapiens (human) hsa:229 ALDOB; aldolase B, 

fructose-bisphosphate (EC:4.1.2.13); K01623 fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 

    * hsa04670 Leukocyte transendothelial migrationhsa04670 Leukocyte transendothelial migrationhsa04670 Leukocyte transendothelial migrationhsa04670 Leukocyte transendothelial migration - Homo sapiens (human) hsa:60 ACTB; actin, beta ; 

K05692 actin beta/gamma 1 

    * hsa00830 Retinol methsa00830 Retinol methsa00830 Retinol methsa00830 Retinol metabolismabolismabolismabolism - Homo sapiens (human) hsa:216 ALDH1A1; aldehyde dehydrogenase 

1 family, member A1 (EC:1.2.1.36); K07249 retinal dehydrogenase [EC:1.2.1.36] 

    * hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation)hsa00720 Reductive carboxylate cycle (CO2 fixation) - Homo sapiens (human) hsa:3417 IDH1; 

isocitrate dehydrogenase 1 (NADP+), soluble (EC:1.1.1.42); K00031 isocitrate dehydrogenase 

[EC:1.1.1.42] 
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    * hsa00980 Metabolism of xenobiotics by cytochrome P450hsa00980 Metabolism of xenobiotics by cytochrome P450hsa00980 Metabolism of xenobiotics by cytochrome P450hsa00980 Metabolism of xenobiotics by cytochrome P450 - Homo sapiens (human) hsa:9446 GSTO1; 

glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase [EC:2.5.1.18] 

    * hsa00982 Drug metabolism hsa00982 Drug metabolism hsa00982 Drug metabolism hsa00982 Drug metabolism ---- cytochrome P450 cytochrome P450 cytochrome P450 cytochrome P450 - Homo sapiens (human) hsa:9446 GSTO1; 

glutathione S-transferase omega 1 (EC:2.5.1.18); K00799 glutathione S-transferase [EC:2.5.1.18] 

    * hsa04510 Focal adhesionhsa04510 Focal adhesionhsa04510 Focal adhesionhsa04510 Focal adhesion - Homo sapiens (human) hsa:60 ACTB; actin, beta ; K05692 actin 

beta/gamma 1 

    * hsa05014 Amyotrophic lateral sclerosis (ALS)* hsa05014 Amyotrophic lateral sclerosis (ALS)* hsa05014 Amyotrophic lateral sclerosis (ALS)* hsa05014 Amyotrophic lateral sclerosis (ALS) - Homo sapiens (human) hsa:6647 SOD1; superoxide 

dismutase 1, soluble (EC:1.15.1.1); K04565 Cu/Zn superoxide dismutase [EC:1.15.1.1] 

    **** hsa00910 Nitrogen metabolism hsa00910 Nitrogen metabolism hsa00910 Nitrogen metabolism hsa00910 Nitrogen metabolism - Homo sapiens (human) hsa:760 CA2; carbonic anhydrase II 

(EC:4.2.1.1); K01672 carbonic anhydrase [EC:4.2.1.1] 
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