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 Zusammenfassung 6 

Zusammenfassung 

 

Im Rahmen dieser Arbeit sollte erstmals die Rolle des Autoantigens p62, das in HCC 

Tumoren nachgewiesen werden konnte, mit Hilfe eines Mausmodells untersucht 

werden. Hierzu wurden Mäuse generiert, die das humane p62 Protein unter Kontrolle 

des liver enriched activator proteins (LAP) leberspezifisch exprimieren. 

 

Aufgrund der postulierten insulin-like growth factor 2 (IGF2) mRNA-bindenden 

Eigenschaft von p62 wurde vermutet, dass p62 die Expression des metabolischen 

Wachstumsfaktors IGF2 regulieren könnte.  

 

In der Tat zeigten Untersuchungen einen starken Anstieg der IGF2 und H19 

Expression in p62 transgenen Tieren. Dabei übt p62 weder einen Einfluss auf die 

mRNA Stabilität aus, noch verursacht es eine Änderung der Allel-spezifischen 

Expression von IGF2 und H19.  

 

Mit Auftreten der höchsten IGF2 Expression in p62 transgenen Tieren konnte 

gleichzeitig der Phänotyp einer Fettleber zu einem frühen Alterszeitpunkt gezeigt 

werden. 

 

Untersuchungen von Zielstrukturen, die IGF2-vermittelt reguliert werden, konnten 

eine Aktivierung von AKT sowie eine Inaktiverung von PTEN zeigen. Nachdem diese 

Ergebnisse einen anti-apoptotischen Phänotyp vermuten ließen, wurde die 

Apoptoserate anhand der Caspase-3-Aktivität bestimmt. In Hepatozyten aus p62 

transgenen Tieren konnte in der Tat ein Schutz vor induzierter Apoptose 

nachgewiesen werden. 

 

Der Zusammenhang zwischen erhöhter p62, IGF2 und H19 Expression konnte 

abschließend mit Hilfe eines RNA-Interferenz Ansatzes im menschlichen System 

untermauert werden. 
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Abstract 

 

Although p62 was originally identified to be highly expressed in HCC tissue, its 

potential functional implications in liver disease have as yet been completely 

unknown. Therefore, aim of this work was to elucidate functional implications of 

hepatic overexpression of the tumor-associated autoantigen p62. This is why liver-

specific p62 transgenic mice were generated, which express hup62 under control of 

the liver enriched activator protein (LAP). 

 

Due to the IGF2 mRNA-binding properties of p62, a potential regulation of IGF2, a 

metabolically active growth factor, was hypothesized.  

 

In fact, a highly increased expression of IGF2 and the closely associated H19 RNA, 

with which it shares an imprinting control region, could be demonstrated. 

 

Investigations on IGF2 and H19 mRNA stability in isolated hepatocytes employing 

the transcription inhibitor actinomycin D (ActD) revealed no alterations in mRNA 

turnover upon p62 expression. Since IGF2 and H19 are imprinted genes, allele-

specific expression of both genes was investigated. However, no changes in allele-

specific expression could be determined upon expression of p62. 

 

Histological examinations showed the phenotype of a fatty liver in p62 transgenic 

mice at a very early age when also IGF2 expression was highest.  

 

Regarding potential IGF2 downstream targets, PTEN was downregulated in p62 

transgenic animals, whereas an increase in the phosphorylation of AKT was 

demonstrated.  

 

Since a respective signalling status might exert anti-apoptotic actions, apoptotic cell 

death was determined, measured as caspase-3-like activity. In fact, a decrease upon 

ActD/TNF-α induced apoptosis manifested in hepatocytes from p62 transgenic mice. 

 

In order to investigate the causal correlation between increased IGF2 and H19 and 

p62 overexpression also in a human system, siRNA-mediated knockdown of p62 was 
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performed in human hepatoma cell lines confirming p62 as a regulator of both IGF2 

and H19.  

 

In summary, these results for the first time characterize functional implications of p62 

overexpression and suggest the induction of an anti-apoptotic, fatty liver phenotype. 
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1.  Introduction  

 

1.1   Hepatocellular carcinoma 

 

Hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC) are primary 

maligant liver cancers. HCC is the sixth most common cancer worldwide in terms of 

numbers of cases (5.7%) and the third most common cause of death from cancer. 

500,000 to 800,000 incidences per year are observed with areas of high incidence 

(50-150 cases per 100,000 inhabitants) in parts of South East Asia and Africa (Figure 

1). In Germany, each year 6,000 newly diagnosed cases are registered. The overall 

sex ratio (male: female) is around 2.4 (Parkin, Bray et al. 2005). 

 

In most cases, HCC is developing from chronic liver cirrhosis caused by Hepatitis B 

and C virus infection, chronic alcohol consumption or hemochromatosis. Aflatoxins 

promote tumorigenesis in the case of an exisiting Hepatitis B, which might be a 

reason for the high incidence in the tropical areas of the world where food is 

frequently contaminated with the fungus Aspergillus (Yeh, Yu et al. 1989). 

 

 

 

 Figure 1: Age standardized incidence for liver cancer. Data show  
   incidences per 100,000 by sex (source:http://rafscience.com). 
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Recently, states of insulin resistance like obesity, diabetes mellitus, non-alcoholic 

fatty liver disease (NAFLD), and non-alcoholic steatohepatititis (NASH) have 

increasingly shown to represent metabolic risk factors contributing to HCC.  

 

These diseases might explain the rise in incidence, which doubled in men and 

women in the industrialized countries including the U. K. and Germany over the past 

20 years (Cancer Research UK) (Figure 2). 

 

age-standardized (Saarland, Germany) incidence, 
primary liver cancer, by sex, 1976-2006
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Figure 2:   Rates of incidence of primary liver cancer in Saarland, Germany  
between 1976 and 2006 (source: www.krebsregister.saarland.de) 

 

 

Overall survival (3-5%) shows a poor prognosis due to the lack of efficient systemic 

treatment options, leading to an average life span of about six month after diagnosis. 

As the molecular factors and interactions involved in hepatocarcinogenesis are 

poorly understood, it is necessary to gain an understanding of the pathogenesis to 

improve therapeutic treatment. Malignant transformation of hepatocytes may occur 

through an increase in liver cell turnover due to chronic liver injury and regeneration 

in a context of inflammation, immune response, and oxidative DNA damage, leading 

to genetic alterations. This may result in the activation of oncogenes, the inactivation 

of tumor suppressor genes or the overexpression of growth factors (Yang and Rogler 

1991). 
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1.2   NASH 

 

NAFLD encompasses a wide spectrum of diseases ranging from triglyceride 

accumulation in hepatocytes (hepatic steatosis) without and with inflammation 

(steatohepatitis), fibrosis, and cirrhosis (Neuschwander-Tetri and Caldwell 2003). 

NAFLD is more and more recognized as a major cause of liver-related morbidity and 

mortality due to its potential to promote the development of metabolic disorders, 

resulting in liver cirrhosis and HCC (Teli, James et al. 1995). NAFLD resembles the 

pathological picture of an alcohol induced liver disease but it is found in patients who 

do not abuse alcohol (Neuschwander-Tetri and Caldwell 2003). Meanwhile, this 

disease affects approximately 30 million Americans (Clark, Brancati et al. 2002) and 

prognosis prevalence is bad due to an increase in the epidemics diabetes and 

obesity.  

 

Day et al. proposed a “two-hit” model to explain the progression of NAFLD (Day and 

James 1998). The “first hit” constitutes the deposition of triglycerides in the cytoplasm 

of the hepatocyte whereas the “second hit” includes additional cellular events, e. g. 

inflammation, cell death and fibrosis, which progress the disease.  

 

1.3   The tumor-associated autoantigen p62 

 

p62 belongs to the family of insulin-like growth factor 2 (IGF2)-mRNA binding 

proteins (IMPs) containing two types of RNA-binding motifs, the consensus sequence 

RNA binding domain (CS-RBD) and four human heterogenous nuclear (hn) RNP K 

homology (KH) domains. These mRNA binding proteins contribute to tumorigenesis 

by regulating mRNA stability and localisation. Nielsen et al. showed in 1999 that 

IMPs bind to the 5´-sequence of the IGF2 leader 3 mRNA, thereby causing a 

translational repression of IGF2 expression (Nielsen, Christiansen et al. 1999). A 

potential regulation of IGF2 mRNA by p62 is of special interest since IGF2 has been 

shown to be overexpressed in HCC (Su, Schröder et al. 1998) and has been shown 

to promote tumors in transgenic mice (Christofori, Naik et al. 1994). p62 was 

originally isolated in 1999 (Zhang, Chan et al. 1999) as a 62 kDA autoantigen located 

in the cytoplasm of HCC tumor cells. It was demonstrated that p62 is 

developmentally regulated, i.e. it is expressed in malignant cancer cells as well as in 



 Introduction 12 

fetal tissue but it could not be detected in normal, non-neoplastic hepatocytes 

(Zhang, Zhu et al. 2001).  

 

1.4   DNA methylation 

 

DNA methylation is a type of chemical modification that can be inherited and 

subsequently removed without changing the original DNA sequence. Methylation and 

demethylation events of DNA are central to the epigenetic regulations in 

development (Russo, Tommasi et al. 1996). Beyond, DNA methylation is implicated 

in the regulation of transcription, in maintaining genome stability (i. e. by establishing 

the allele-specific expression status) and in the inactivation of the X-Chromosome (Li, 

Beard et al. 1993; Bestor 2000). The mechanisms controlling these events are of 

fundamental importance in developmental cell biology but also seem to be implicated 

in carcinogenesis and tumour progression (Patra, Patra et al. 2002). Only DNA 

methylation typically occurs in a CpG dinucleotide context. CpG stands for cytosine 

and guanine separated by a phosphate (—C—phosphate—G—), which links the two 

nucleosides together in DNA. 2-3 % of the mammalian genome contains methylated 

cytosines, whereby in mammals, most prominent is the methylation of the DNA on 

cytosine at the 5´-position in CpG dinucleotides, catalysed by DNA 

methyltransferases (DNMTs). Two enzyme classes are known, from which DNMT1 is 

responsible for methylation of the newly synthesized strand, thereby being essential 

for the maintainance of the DNA methylation pattern (Bestor 2000). DNA methylase 

MBD2 performs the reverse reaction (Bhattacharya, Ramchandani et al. 1999). 

 

Although DNMT2 shares high sequence homology with members of the DNA 

methyltransferase family, it was shown to have no DNA methyltransferase activity 

(Yoder and Bestor 1998). Surprisingly, DNMT2 represents an active RNA 

methyltransferase (Goll, Kirpekar et al. 2006).  

 

1.5   Genomic imprinting  

 

For the majority of genes both copies, one inherited from the father, one from the 

mother, are functional. However, in a small subset of genes, one copy is switched off 

in a parent-of-origin specific manner. These genes are called imprinted because one 
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copy is epigenetically marked leading to a monoallelic expression of the gene. 

Imprinting can vary between developmental stages, tissues, and species (Reik and 

Walter 2001). Paternally expressed imprinted genes tend to promote growth while it 

is suppressed by those genes that are maternally expressed.  

 

A genome-wide search for imprinted genes in the human genome with the use of 

computer-learning algorithms resulted in the identification of 156 novel candidate 

imprinted genes (Luedi, Dietrich et al. 2007). In 2008, the “catalogue of imprinted 

genes and parent-of-origin effects in humans and animals” contained 219 imprinted 

genes (http://igc.otago.ac.nz/Summary-table.pdf).  

 

The majority of imprinted genes show differences in DNA methylation between the 

parental alleles. Usually, a high density of cytosine-guanine dinucleotides (CpG) 

islands characterise imprinted genes. 

 

In 1983, Feinberg and Vogelstein reported differences in DNA methylation at CpG 

islands in tumors for the first time (Feinberg and Vogelstein 1983). A dysregulation of 

this functional haploid state by a single epigenomic change can cause tremendous 

health effects making imprinted genes a susceptible target for human pathologies. 

Imprinting associated diseases occur through early development (e. g. Beckwith-

Wiedemann, Prader-Willi or Angelman syndrome) or as cancer (e.g. breast, lung, 

liver, colorectal cancer) when altered later in life (Jirtle 1999). Moreover, imprinting 

disorders have an impact on metabolic diseases like diabetes mellitus or obesity. 

 

Allele-specific expression of genes was first detected in 1991 for the fetal growth-

factor IGF2, its receptor IGF2R and for H19 by restriction-fragment-length 

polymorphisms and RNAse protection assays (DeChiara, Robertson et al. 1991). 

 

Interestingly, imprinted genes are often arranged in clusters, i. e. imprinted genes are 

in vicinity of other imprinted genes. Activation of H19 expression on the maternal 

chromosome leads to the inactivation of the IGF2 gene, giving one example of two 

promotors competing for the same enhancer element, leading to a reciprocal gene 

expression. On the paternal allele, the IGF2 promotor drives IGF2 gene expression 

while at the same time inactivating H19 (Leighton, Saam et al. 1996). The imprinting 
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of IGF2 and H19 is controlled by a region located 4 kb upstream from the H19 

transcription unit, defined as the H19 differentially methylated region (DMR) or 

imprinting control region (ICR) (Thorvaldsen, Duran et al. 1998). 

 

1.6   The imprinted genes IGF2 and H19 

 

The genes for both IGF2 and H19 are mapped to a 90 kilobase (kb) region in a gene 

cluster on human chromosome 11p15.5 (Zemel, Bartolomei et al. 1992) and on the 

distal region of chromosome 7 in mice (Pachnis, Belayew et al. 1984). In the majority 

of human tissues, only the maternal allele of the H19 gene is expressed and only the 

paternal allele of the IGF2 gene is expressed. In liver, IGF2 is monoallelically 

expressed at birth, with a switch to biallelic expression during the first year of 

postnatal life (Ohlsson, Nystrom et al. 1993; Davies 1994; Ekström, Cui et al. 1995). 

In contrast, H19 is imprinted in normal human liver throughout life (Ekström, Cui et al. 

1995). Biallelic expression of IGF2 and H19 has been demonstrated in several 

paediatric (e. g. Wilms´ tumor) and adult malignancies (e.g. lung cancer) (Glassman, 

de Groot et al. 1996; Ross, Schmidt et al. 1999). 

 

1.6.1   H19 

 

The H19 gene encodes for a 2.3 kb non-coding RNA (Brunkow and Tilghman 1991). 

It was originally identified as a fetal liver-specific mRNA whose repression after birth 

paralleled that of the α-fetoprotein (AFP) gene (Pachnis, Belayew et al. 1984). 

 

Both genes are under the control of two trans-acting loci in the mouse, termed raf 

and Rif (Pachnis, Belayew et al. 1984). These loci determine the adult basal and 

inducible levels, i. e. they affect the transcription of H19 mRNA. The H19 gene is 

composed of five exons, along with four very small introns. Preceeding the 

translation initiation codon are four ATG codons, each of which is followed shortly 

thereafter by translation terminator codons (Pachnis, Brannan et al. 1988). This leads 

to H19 RNA transcription, splicing and poly-adenylation but probably not to 

translation. The localization of the H19 RNA to a cytoplasmic ribonucleoprotein 

(RNP) particle led to the conclusion that this RNA does not encode a protein 

(Brannan, Dees et al. 1990).  
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To identify the function of H19, several mouse models were established. The 

overexpression of H19 is lethal: mouse embryos die between day 14 and birth 

(Brunkow and Tilghman 1991). Loss of function of H19 does not lead to embryonic 

death in mice (Leighton, Saam et al. 1995). The overgrowth phenotype of H19 

deficient mice is most likely due to the biallelic expression of IGF2 (Ripoche, Kress et 

al. 1997). This is why H19 is supposed to act as a regulator of IGF2 (Leighton, Saam 

et al. 1995).  

 

The controversy whether H19 acts as a tumor suppressor or whether it promotes 

carcinogenesis has not yet been resolved, as numerous tumors display either over-

expression or lack of H19 expression (Matouk, DeGroot et al. 2007; Yoshimizu, 

Miroglio et al. 2008). 

 

Certain known carcinogens increase the level of H19. In this context 

diethylnitrosamine, a known carcinogen of the liver, has been regarded to induce 

H19 RNA expression in a mouse model (Graveel, Jatkoe et al. 2001). Also the c-Myc 

proto-oncogene plays an important role in the development of HCC (Coulouarn, 

Gomez-Quiroz et al. 2006) and is known to induce H19 expression (Barsyte-Lovejoy, 

Lau et al. 2006). H19 RNA is upregulated in HBV-associated HCC (Iizuka, Oka et al. 

2002). Furthermore, a biallelic expression of the H19 gene was found in human HCC 

patients (Kim and Lee 1997). 

 

Due to observations from Beckwith-Wiedemann syndrome, an overgrowth syndrome 

with an increased risk for embryonic tumors, it has been hypothesized that tumor 

predisposition is related to the 11p15.5 chromosomal region and the imprinting status 

at the H19-IGF2 locus, with a loss of imprinting (LOI) leading to a higher tumor risk 

(Rump, Zeegers et al. 2005).  

 

As a result of this observation, the H19-IGF2 locus can be looked upon as a tumor 

suppressor candidate. In vitro experiments support initial evidence that underline this 

hypothesis (Hao, Crenshaw et al. 1993). In vivo, the acceleration in the latency of 

appearance of SV40 induced tumors in mice was revealed in the absence of H19 

expression (Yoshimizu, Miroglio et al. 2008).  
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In addition, loss of the maternal and duplication of the paternal copy of the 

chromosomal region bearing the IGF2 and H19 genes occur at high frequency in 

HCC (Casola, Ungaro et al. 1995). These genetic events resemble the loss of 

heterozygosity (LOH) occurring at chromosome 11p15.5 loci in human cancers, 

result in the induction of IGF2, and lack of H19 expression. 

 

1.6.2  IGF2 

 

Insulin-like growth factor 2 (IGF-2) plays a key role in mammalian growth, influencing 

foetal cell division and differentiation and possibly metabolic regulation (Figure 3) 

(Nielsen 1992; O'Dell and Day 1998).  

 

 

Figure 3:   Interaction of IGF2 with its receptors and the multiple effects upon  
activation (source: (O'Dell and Day 1998)) 

 

 

The gene extends over approximately 12 kb of mouse chromosome 7 including six 

exons (Rotwein and Hall 1990). Exons 1-3 encode distinct 5'-untranslated regions 

and are transcribed by three different promoters, P1, P2, and P3, into three IGF2 

mRNAs sharing common coding and 3' untranslated sequences. Exons 4-6 code for 
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the 180 amino-acid IGF2 precursor and exon 6 contains a 3'-untranslated region, 

which ends at a single poly-adenylation site (Rotwein and Hall 1990).  

 

The mature 67 amino acid peptide shares sequence homology with both insulin and 

IGF1. The liver is the main endocrine source of IGFs, but autocrine/paracrine activity 

is found in most tissues (Moses, Nissley et al. 1980; Milner and Hill 1984). IGF2 

stimulates growth through the insulin-like growth factor I receptor (IGF-IR), a ligand-

activated tyrosine kinase (Baker, Liu et al. 1993). The IGF2 receptor appears to 

negatively regulate growth by targeting IGF2 to digestive lysosomes (Oka, Rozek et 

al. 1985).  

 

Heterozygous knockout of the IGF2 gene led to fetal growth restriction in mice 

(DeChiara, Efstratiadis et al. 1990). Transmission through the male germline resulted 

in heterozygous progeny, which were smaller than wild-type littermates (about 60% 

of normal body weight). In contrast, if knockout transmission occurred through the 

female germline, the offspring was phenotypically normal. 

 

Overexpression of IGF2 was detected in many tumours and for more than 20 years, 

it has been known that IGF2 contributes to tumorigenesis (Reeve, Eccles et al. 1985) 

through its anti-apoptotic and growth-stimulating effects (Pavelic, Bukovic et al. 

2002).  

 

Differential methylation of DNA in CpG islands is of fundamental importance in the 

maintainance of monoallelic gene expression (Li, Beard et al. 1993; Ward, Fisher et 

al. 1997). Transcription of the IGF2 gene is regulated by the H19 DMD region. On the 

paternal chromosome, the H19 DMD is methylated leading to the depression of the 

IGF2 promotor, while on the maternal chromosome the H19 DMD region is 

unmethylated. Loss of imprinting (LOI), resulting from the methylation of the maternal 

H19 DMD, leads to promoter activation on both alleles with the consequence of a 

biallelic IGF2 expression. This LOI might be a reason for IGF2 overexpression in 

tumors (Cui, Niemitz et al. 2001; Nakagawa, Chadwick et al. 2001). 

 

Moroever, three CpG-rich, differentially methylated regions (DMR 1, DMR 2 and 

DMR 3) are located in the IGF2 locus, playing a role in monoallelic expression during 
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embryogenesis (Feil, Walter et al. 1994; Moore, Constancia et al. 1997). Whereas 

DMR 1 has been shown to be a methylation sensitive silencer, methylation of DMR 2 

results in the upregulation of the IGF2 gene expression (Murrell, Heeson et al. 2001). 

In contrast to DMR 2, deletion of DMR 1 leads to silencing of IGF2 (Constancia, 

Dean et al. 2000). DMR 3 becomes temporarily demethylated before returning to the 

allele-specific pattern (Kuroiwa, Sakamoto et al. 2009). 

 

Christofori et al. (Christofori, Naik et al. 1995) observed that endogenous IGF2 gene 

expression was activated in precancerous lesions and islet cell carcinomas of the 

pancreas in transgenic mice, which express SV40 large T-antigen under regulation of 

the rat insulin promoter. To test the hypothesis that IGF2 has a functional role in the 

development of pancreatic tumors, SV40 T-antigen transgenic mice were crossed 

with IGF2-deficient mice (DeChiara, Efstratiadis et al. 1990; Christofori, Naik et al. 

1995). When tumors occured in the animals, a direct correlation was observed 

between the IGF2 gene and the volume of tumors formed in the pancreas. There was 

a fivefold higher apoptotic index in tumors which lacked IGF2, suggesting that IGF2 

plays a role in suppressing apoptosis. 

 

Evidence of IGF2 involvement in hepatocarcinogenesis was deduced from animal 

models as well as in human HCC. IGF2 reexpression in four independent mouse 

lines may contribute to hepatocarcinogenesis through an autocrine mechanism 

(Schirmacher, Held et al. 1992). Transforming-growth factor α (TGF-α) is reactivated 

during hepatocarcinogenesis. In TGFα- transgenic mice 100% of HCC expressed 

IGF2 with the paternal allele silent and the maternal allele activated (Harris, Rogler et 

al. 1998). A 40- to 100-fold increase in the level of IGF2 mRNA was detected in 22% 

of primary liver cancers (Cariani, Lasserre et al. 1988). This increase in liver IGF2 

transcripts is consistent with what was observed in a human hepatocellular 

carcinoma derived cell line (HepG2) (Koufos, Hansen et al. 1985). 

 

Growth promoting effects of IGF2 are mediated through binding to the IGF-IR. This 

binding induces activation through auto-phosphorylation of intracellular tyrosine 

residues. This follows the induction of downstream signal transduction pathways 

involved in differentiation, proliferation and apoptosis (O'Connor 1998): IGF-IR 

mediated signalling mainly induces the ERK 1/2 kinases and the PI3-kinase.  



 Introduction 19 

1.7   IGF2 downstream signalling pathways 

 

1.7.1   Phosphoi nositide 3 -kinase (PI3-kinase) 

 

The phosphatidylinositol 3-kinases (PI3-kinases) are a ubiquitously expressed 

enzyme family, playing a key role in the regulation of many cellular processes. They 

play a central role in cell survival and growth, vesicular trafficking, degranulation, 

cytoskeletal rearrangements and migration (Leevers, Vanhaesebroeck et al. 1999; 

Rameh and Cantley 1999). Hence, its potential role in cancer is of great interest. 

 

PI3-kinases are forming heterodimers, consisting of a regulatory and a catalytic 

subunit. The 3-phosphorylated inositol lipids fulfill roles as second messengers by 

interacting with the lipid binding domains of a variety of cellular proteins. They are 

activated by G-protein-coupled receptors or receptors with an intrinsic or associated 

protein tyrosine kinase activity and/or proteins that are tyrosine phosphorylated in 

response to extracellular stimuli (Kapeller and Cantley 1994). Another way in which 

PI3-kinases are activated is by a direct interaction with the small GTPase Ras 

(Rodriguez-Viciana, Warne et al. 1994; Rodriguez-Viciana, Marte et al. 1996). 

 

Phosphatidylinositol phosphates are composed of a membrane-associated 

phosphatidic acid group and a glycerol moiety that is linked to a cytosolic 

phosphorylated inositol head group (Figure 4).  

 

Figure 4:   Composition of phosphatidylinositol phosphates. 
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The hydroxyl residues of the inositol molecule can be phosphorylated in vivo at the 

3´- and 5´-position. Hence, these phosphorylated molecules are called 

phosphoinosites (PI). Phosphate transfer is mediated through PI-kinases. PI3-kinase 

transfers the terminal phosphate of adenosintriphosphate to the 3´-position of inositol 

(Divecha and Irvine 1995). Upon activation, these enzymes phosphorylate inositol 

lipids at the D-3 position of the inositol ring to generate the 3-phosphoinositides, 

phosphatidylinositol 3-phosphate [PtdIns(3)P], phosphatidyl-inositol 3,4-bisphosphate 

[PtdIns(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3]. 

Phosphorylation at the D3 position is necessary for binding to the pleckstrin-

homology domain of AKT. 

 

The tumor suppressor protein PTEN is able to downregulate PI3-kinase lipid 

formation by its lipid phosphatase activity (Figure 5).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:   Schematic representation of the PI3-kinase pathway.  

Numerous cell surfacemolecules initiate PI3-kinase signalling. Upon 
phosphorylation PIP3 is formed, which in turn activates the AKT 
pathway. Thereby, certain downstream effectors are mediated. In the 
absence of PTEN, the AKT pathway is hyperactivated, leading to an 
increase in apoptosis resistance and enhanced cell proliferation 
(source: (Kishimoto, Hamada et al. 2003)) 
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Three classes of PI3-kinases have been defined on the basis of their primary 

structure, regulation, and in vitro lipid substrate specificity. Class I consists of four 

p110 catalytic isoforms which associate with the p85 family of regulatory subunits 

(Stephens, Eguinoa et al. 1997). Class II enzymes are large proteins, which all 

contain a characteristic C-terminal region with homology to C2 domains.  Class III 

enzymes only contain a catalytic and a phosphoinositide kinase domain 

(Vanhaesebroeck, Leevers et al. 1997).  

 

1.7.1.1   AKT 

 

In mammals, three isoforms of AKT (also referred to as protein kinase B =PKB) are 

encoded: AKT1, AKT2 and AKT3. All genes have greater than 85% sequence 

identity and share a common structure that consists of an N-terminal regulatory 

domain resembling the pleckstrin homology domain (Franke, Tartof et al. 1994), a 

kinase domain with serine-threonine specificity (Ahmed, Franke et al. 1993), and a C-

terminal region required for the induction and maintainance of its kinase activity 

(Chan, Rittenhouse et al. 1999). It is postulated that the three isoforms are 

functionally redundant (Franke 2000). 

 

The function of the PI3-kinase/AKT pathway in cell survival was first published in 

1995 by Yao and Cooper (Yao and Cooper 1995). The mechanism by which PI3-

kinase protects cells from programmed cell death involves the downstream activation 

of the protein kinase AKT. PtdIns(3,4)P2 and PtdIns(3,4,5)P3 lipids produced by PI3-

kinase are able to bind AKT through its pleckstrin homology domain and recruit the 

kinase to the plasma membrane.  

 

PKB/AKT is cytosolic and moves to the plasma membrane following PI3-kinase 

induction. At the membrane, Ser473 phosphorylation occurs through 

autophosphorylation or by PDK2. This region forms the docking site for PDK1, which 

binds and phosphorylates Thr308 (Persad, Attwell et al. 2001) (Figure 6 a).  

 

Another model of activation after growth factor stimulation of PI3-kinase implicates 

that the pleckstrin homology domain binds to PtdIns (3,4,5) P3 (PIP3), thus allowing 

PDK1 to phosphorylate Thr 308 (Andjelkovic, Alessi et al. 1997). Subsequent 

activation of AKT promotes autophosphorylation of Ser473 or PDK2 (Figure 6 b). 
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Figure 6:   Two models of AKT activation.  

In response to PI3 kinase induction, AKT isactivated through PDK1 and PDK2 
through phosphorylation of Thr308 and Ser473 residues (source: (Scheid and 
Woodgett 2001)) 

 

 

AKT has several downstream targets, which mediate cell survival. One of these 

targets is the Bcl-2 family member BAD, a pro-apoptotic protein, which is 

phosphorylated by AKT and thereby inhibiton of anti-apoptotic Bcl-2 molecules is 

exerted (Datta, Dudek et al. 1997).  

 

AKT also phosphorylates and thereby inactivates the death protease caspase-9. A 

decrease in apoptosis is caused by a reduced release of cytochrom c from the 

mitochondria, controlled by caspase-9 (Cardone, Roy et al. 1998).  

 

Increased proliferation after AKT activation is mediated by glycogen synthase kinase- 

3 (GSK-3), which is involved in cell cycle regulation. Inactivation of GSK-3 through 

AKT mediated phosphorylation leads to the stabilization of cyclin D1 (Diehl, Cheng et 

al. 1998). 

 

The metabolic function of AKT as a regulator of glucose metabolism is exerted by 

enhancing the uptake of glucose through an increase of endocytosis (Foster, Li et al. 

2001). Glucose uptake is enhanced through AKT, which also affects glucose 

transporters by an induction of GLUT1 and GLUT3 expression and a translocation of 

GLUT4 to the plasma membrane (Cong, Chen et al. 1997; Barthel, Okino et al. 

1999). The inactivation of GSK3 in turn leads to an AKT mediated increase in 

glycogen synthesis (Cross, Alessi et al. 1995). 
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Knock-out of AKT in mice led to a significant retardation in growth and to reduction of 

body weight (after AKT1 deletion) (Chen, Kim et al. 2001). Defects in the regulation 

of blood glucose levels following insulin stimulation (after AKT2 disruption) (Cho, 

Thorvaldsen et al. 2001) were detected in a mouse model.  

 

After the overexpression of activated AKT in mouse mammary glands, apoptosis was 

suppressed, and confirmed the requirement of AKT activity in apoptosis suppression 

(Hutchinson, Jin et al. 2001). It is suggested that AKT expression itself does not 

promote oncogenic transformation but it is required to promote anti-tumorigenic 

properties of PTEN (Moorehead, Fata et al. 2001; Stiles, Gilman et al. 2002). In a 

mouse model, the overexpression of IGF2 lead to a reduction of apoptosis, 

accompanied by sustained phosphorylation of AKT. 

 

Taken together, these results demonstrate that an increase in copy number or a 

molecular mutation of specific PI3-kinase genes leading to a ’gain of function’ results 

in an oncogenic transformation of many cell types. 

 

1.7.1.2   PTEN 

 

The phosphatase and tensin homolog deleted from chromosome 10 (PTEN), also 

known as MMAC1 (mutated in multiple advanced cancers), is a tumor suppressor 

gene that is mutated in a large number of cancers at high frequency. It is located on 

human chromosome 10q23, a genomic region that suffers loss of heterozygosity 

(LOH) in many human cancers (Cantley and Neel 1999). 

 

PTEN contains a protein tyrosine phosphatase (PTP) domain, which is able to 

dephosphorylate both tyrosine and serine/threonine residues. PIP3 is the main PTEN 

substrate. PTEN specifically cleaves the D3 phosphate produced by PI3-kinase 

activity (Maehama and Dixon 1998). Accumulation of PIP3 allows recruitment of 

AKT. In this context, the role of PTEN is to keep the levels of PIP3 low. Loss of PTEN 

function results in AKT hyperphosphorylation, leading to protection from apoptotic 

stimuli (Stambolic, Suzuki et al. 1998). It has to be emphasized that PTEN 

counteracts the cell survival of activated PI3-kinase or AKT co-expression. On the 
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other hand, activated PI3-kinase or AKT efficiently antagonize PTEN-mediated 

growth suppression. 

 

PTEN inactivation might also result in an increase in cell cycle progression mediated 

through GSK-3 inactivation, which leads to cyclin D1 stabilization. Reduced cyclin D1 

levels were revealed upon PTEN overexpression (Paramio, Navarro et al. 1999).  

 

Heterozygosity of PTEN leads to the development of a broad range of tumors derived 

from prostate, lung, brain, bladder, breast carcinomas (Steck, Pershouse et al. 1997; 

Teng, Hu et al. 1997). Heterozygous mice also developed signs of autoimmune 

diseases (Di Cristofano, Kotsi et al. 1999). Homozygous knockout led to embryonic 

lethality at day E 9.5 (Di Cristofano, Pesce et al. 1998; Suzuki, de la Pompa et al. 

1998). 

 

Several studies revealed a correlation between HCC and PTEN inactivation. Loss of 

a PTEN allele was identified in 20-30% of patients with HCC (Kawamura, Nagai et al. 

1999; Fujiwara, Hoon et al. 2000). Moreover, PTEN heterozygous mice exhibited 

neoplasms in the liver, suggesting that loss of PTEN may participate in liver 

carcinogenesis (Di Cristofano, Pesce et al. 1998). 

 

1.7.2  Impact of PTEN and pAKT on lipid and glucose   

  metabolism  

 

In mice, hepatocyte-specific PTEN deficiency resulted in non-alcoholic 

steatohepatitis (NASH) with triglyceride accumulation followed by liver cirrhosis and 

HCC (Horie, Suzuki et al. 2004). Upon inactivation of PTEN, the inversely correlated 

AKT pathway is stimulated.The promotion of chronic inflammation, resulting from NF-

кB translocation, might contribute to the onset of hepatitis (Watanabe, Horie et al. 

2007). 

 

Vinciguerra et al. showed that unsaturated free fatty acids decreased PTEN 

expression in HepG2 cells through activation of a signaling complex made of mTOR 

and translocation of NF-қB/p65 into the nucleus (Vinciguerra, Veyrat-Durebex et al. 

2008). 
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The interplay between lipid and glucose metabolism is mediated by the reciprocal 

relationship of substrate availability and consumption between liver and peripheral 

tissues (Abel, Smuts et al. 2001; Yang, Lin et al. 2001). Glucose homeostasis is, in 

part, regulated by the insulin-stimulated uptake of glucose in adipose tissue (Abel, 

Smuts et al. 2001; Minokoshi, Kahn et al. 2003). 

 

The failure in the insulin-like growth factor signaling cascade causes insulin 

resistance and metabolic disease, such as glucose intolerance, obesity and 

dyslipidemia. Upon receptor activation, PIP3 is generated, which in turn activates the 

AKT pathway. AKT controls diverse cellular substrates that are involved in glucose 

homeostasis (Brazil, Yang et al. 2004). Figure 7 illustrates the effects of AKT on 

glucose metabolism. 

 

 

 

Figure 7:   Regulation of glucose homeostasis by AKT.  

Enhancement of glucose uptake is mediated by affecting Glucose 
transporters (GLUT). Glycogen synthesis is stimulated by inhibition of 
glycogen synthase kinase-3 (GSK-3). Through a general increase in 
endocytosis glucose uptake is activated (source:(Kandel and Hay 
1999)) 

 

 

Liver-specific PTEN deficient mice display enhanced glycogenosis, demonstrated by 

an improved glucose clearance and lower glucose levels (Stiles, Wang et al. 2004). 

 

A hint for the role of PTEN in glucose metabolism was found after in vivo 

administration of antisense oligonucleotides, which improved hyperglycemia in 

diabetic mice (Butler, McKay et al. 2002). 
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All these data from the literature implicated a participation of IGF2 in glucose and 

lipid homeostasis and a set of experiments was performed to clarify the possible role 

of p62 in metabolic liver regulation due to its upregulation of IGF2 expression. 

 

1.8   RNA interference 

 

In 1998, Fire and Mello described a new technology based on specific gene silencing 

by double-stranded RNA (dsRNA) (Fire, Xu et al. 1998). Two types of small RNA 

molecules are central to RNA interference, micro RNAs (miRNA) and small 

interfering RNAs (siRNA). RNA interference is a defense mechanism protecting 

against the integration of foreign genetic material into the host genome. 

RNA interference is initiated by the enzyme Dicer which catalyses the cleavage of 

long dsRNA to 21-23 nt siRNA products (Bernstein, Caudy et al. 2001). One of the 

two strands is then introduced to the RISC protein complex and sequence-specific 

mRNA degradation is facilitated (Pellino and Sontheimer 2003) (Figure 8). 

 

 

 

Figure 8:   Mechanism of RNA interference.  

Cleavage of dsRNA by Dicer initiates genesilencing by generating 
siRNA molecules, by incorporation of a single strand of the RNA 
molecule into the RISC complex, post-transcriptional gene silencing is 
facilitated (source: http://www.borc.cn) 
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After specific gene silencing of the p62 mRNA in human hepatoma cell lines, 

investigations were made on the expression of IGF2 and H19. As the upregulation of 

both genes in p62 transgenic mice is accompanied by p62 overexpression, the 

question occurred whether the expression levels of IGF2 and H19 would decrease 

after siRNA-mediated mRNA degradation of p62. 

 

1.9   Mice 

 

Mice are a powerful tool for biological and medical researchers. After targeted 

changes of genes, occurring phenotypes can be reduced to a defined endogenous 

gene. Either overexpression of foreign genes or deletion of endogenous genes, as 

well as the introduction of point mutations, are possible strategies in gene targeting 

experiments. 

 

1.9.1   The tet-system 

 

The regulatory elements of the tetracycline-dependent expression systems were 

adapted from the tetracycline resistance of E. coli having its origin in the operon of 

transposon 10. In bacteria, the binding of the dimeric Tet-repressor (tetR) to the 

specific operon sequence (tetO) of the tetracycline promoter prevents transcription of 

the tetracycline resistance gene (tetA). Binding of tetracycline to the tetR is followed 

by a conformational change of the repressor, leading to its dissociation from the 

operon, thereby allowing transcription of the tetA gene (Hillen and Berens 1994). 

 

Gossen et al. generated a tetracycline transactivator (tTA) through the fusion of the 

tetracycline repressor with the Herpes simplex virus (Gossen and Bujard 1992). The 

tTA-dependent promoter consists of the human cytomegalovirus (CMV) ‘immediate 

early promoter’ (Boshart, Weber et al. 1985) and a tet-operator sequence (Baron and 

Bujard 2000).  

 

In the presence of tetracycline, or its analogon doxycycline (dox), tTA is prevented 

from binding to the promoter, whereas its absence results in the contrary (Figure 9). 
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Figure 9:   Gene regulation by the tet system.  

Tet-off: The TRE is located upstream of the minimal immediate early 
promoter of the cytomegalovirus (CMVmin) which is slient in the 
absence of activation. tTA binds to the TRE, thereby activating gene 
transcription in the absence of tetracycline.  

Tet-on: The Tet repressor reverses the protein response to 
tetracycline. As a result, transcription is activated in the presence of 
tetracycline (source: (Romano 2004)) 

 

 

1.9.2  p62 transgenic mice 

 

To elucidate the function of the hepatic p62 protein expression, p62 transgenic mice 

were generated in Prof. Eng M. Tan´ s group at the Scripps Research Institute (La 

Jolla, California, USA).  

 

The targeting vector construct was designed in a way that put the human p62 protein 

under control of the transrepressive responsive element cytomegaly virus (TRE-

CMVmin) promotor, ensuring that the livers of p62 transgenic mice did not express 

p62 mRNA due to repression of the promoter sequence within the targeting construct 

itself. Expression of the transgene was realized by crossing LT2 mice with p62 

transgenic mice. LT2 mice carry a cis-acting locus control-like element called liver 

enriched activator protein (LAP) under control of a tetracycline regulatory element 

(tTA) (Kistner, Gossen et al. 1996). The tTA activates the TRE-CMWmin promotor 

leading to its activation, followed by p62 mRNA expression. The LAP promotor 

accounts for an exclusive and liver-specific p62 expression. Moreover, the tTA allows 
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that overexpression of the p62 protein in the p62 x LT2 offspring is suppressed by 

the application of doxycycline to the drinking water (Kistner, Gossen et al. 1996) 

(Figure 10).  

 

 

 

Figure 10:   Generation of p62 transgenic mice and mechanism of doxycyclin-
  dependentregulation of hepatic p62 expression.  

No expression of p62 mRNA in livers of mice transgenic for p62 under 
TRE-CMV promotor control (upper panel). Liver-specific expression of 
p62 mRNA mediated through the tTA modulation of the TRE-CMV 
promotor in double-positive p62+/LT2+ mice (middle panel). 
Application of doxycycline inhibits transgene expression (lower panel). 
TRE-CMVmin: transrepressor responsive element cytomegaly virus; 
tTA: tetracycline transactivator; LAP: liver enriched activator protein; 
dox: doxycycline 

 

 

1.10  Aim of this work 
 

In order to investigate the functions of the hepatic expression of the tumor-associated 

autoantigen p62, transgenic mice were generated showing a liver-specific p62 

expression. 

 

Aim of this work was to elucidate phenotypic alterations induced by p62 

overexpression.
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2.  Methods  

 

2.1  Animals 

 

2.1.1  Animal welfare 

 

The animals were maintained on a standard 12 h light-dark-cycle, at a constant 

temperature (22±2 °C) and a relative humidity of 55 ±10% with free access to water 

and chow (Altromin, Lage, Germany). All animals received human care. The study 

was registered with the local animal welfare committee. The animals´ stock breeding 

was performed at the animal laboratory at the Institute of Genetics (Saarland 

University). 

For identification, animals received an ear tag with a three-digit number, at the same 

time a biopsy of the tail was taken for DNA isolation. 

 

2.1.2   Generation of p62 transgenic animals 

 

Mice were generated at the Scripps Research Institute in Prof. Eng M. Tan´ s group. 

Using the tetracycline gene transcription system allows a repression/ derepression of 

the liver-specific expression of the p62 transgene. A liver-specific Tet-system is 

established in a mouse model constructed by Kistner et al. (Kistner, Gossen et al. 

1996). Therefore, it was necessary to generate a mouse carrying the p62 DNA 

sequence under control of the TRE-CMV promoter. 

 

The first step was to insert the sequence of the TRE-CMVmin promotor and the 

human endogenous DNA sequence of p62 flanking exon 1 (ENSG00000073792 

(1862 bp), leading to an insert of 2248 bp in total, into the targeting vector pUHG10-

3/p-p62 (5548 bp).  

 

In a second step, embryonic stem cells were transfected with the targeting construct. 

Southern Blot experiments were performed to screen recombinant embryonic stem 

cells (data not shown). The recombinant clone was microinjected into pronuclei of 0.5 

day old oocytes, which were implanted into a pseudo-foster mother. Microinjection 

was performed onto B6D2 mice. The target integration into the genome occurs in a 
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randomized order. Germ-line transmission was confirmed by Southern Blot (data not 

shown). The offspring were chimeric. Male chimeric mice were mated with female 

mice. This led to mice being heterozygous for the transgene.  

 

As the expression the p62 transgene is repressed by the TRE-CMV promoter, it is 

necessary to cross them with LT2 mice, which carry a transactivator, leading to a 

depression of the promoter, thereby allowing p62 expression in the p62+/LT2+ 

offspring. 

 

Male and female p62 transgenic mice and their non-transgenic control littermates as 

well as the LT2 mice were obtained from Prof. Dr. Eng M. Tan, The Scripps 

Research Institute, La Jolla, USA. p62 transgenic mice show a liver-specific 

expression of the human p62 autoantigene.  

 

For SNuPE analysis, SD7 mice (carrying the mus spretus IGF2-H19 region, (Guenet, 

Nagamine et al. 1990) (courtesy provided by Prof. Dr. Jörn Walter, Institute of 

Genetics, Saarland University) were crossed with p62 transgenic mice. Male or 

female heterozygous LT2 mice were crossed with homozygous SD7 males or 

females to produce reciprocal progeny (LT2 x Mus spretus). F1 hybrids were mated 

to homozygous SD7 to produce heterozygous F2 offspring. For imprinting studies, 

p62 transgenic females were mated with F2 hybrid males. Mice, carrying no p62 

transgene but the heterozygous LT2/SD7 background served as control. The 

offspring carried single nucleotide primer polymorphisms (SNPs) for IGF2 and H19 

on chromosome 7. For the experiments, livers from both sexes were removed on 

postnatal days P0 and P16. 

 

Livers of 2.5 up to 10 week old animals were used for gene and protein expression 

analysis; for histological staining of paraffin- and cryo-embedded liver sections, as 

well as for SNuPE analysis.  

 

Instantly after organ removal, livers were placed in safe-lock Eppendorf tubes and 

frozen in liquid nitrogen. For long term storage, tissues were stored at -80°C. 

Paraffin-embedded livers were put into 4% formalin for 24 h straight after withdrawal. 

The processing and preparation of paraffin tissue blocks was kindly taken over by the 
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Institute of Pathology (University Hospital, Saarland University, Homburg/Saar, 

Germany).  

 

Isolated hepatocytes were examined in mRNA stability and caspase-3-like activity 

assays.  

 

2.1.3  Isolation of genomic DNA from mouse tails 

 

For genotyping of mice under the age of 3 weeks, a tail biopsy was taken during 

organ extraction. Elsewise, an approximately 0.5-1 cm biopsy from the tail of 3-week 

old mice was incubated in 100 µl water/10x Taq buffer (9:1) at 55°C for several hours 

while shaking. Addition of 1 µl Proteinase K (20 mg/ml) guaranteed degradation of 

proteins. After heat-inactivation of Proteinase K at 95°C for 15 min, 1 µl of the 

supernatant was used in the PCR reaction. 

 

2.2   Bacteria 

 

2.2.1  Preparation of competent bacteria 

 

A bacterial culture was incubated in 50 ml LB medium o. n. at 37° C in a shaking 

incubator. The next morning, 1 ml of this culture was transferred into 100 ml LB 

medium and allowed to grow up to an OD600 of 0.3. Subsequent, cells were cooled 

down to 4°C and centrifuged for 5 min at 4,000 x g.  The pellet was resuspended in 

50 ml 50 mM CaCl2 and stored on ice for 20 min. After an additional centrifugation 

step for 5 min at 4,000 x g, the pellet was resuspended in 10 ml of a solution of CaCl2 

containing 15% Glycerol. Cells were aliquoted, frozen in liquid nitrogen and stored at 

-80°C. 

 

2.2.2  Transformation of plasmid DNA in competent b acteria 

 

5 ng of the transforming plasmid were mixed with an aliquot of the chemically 

competent bacteria. After incubation on ice for 30 min, heatshock was performed at 

42°C for 30 sec, subsequently followed by the addit ion of 1 ml LB medium. Bacteria 
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were shaken for 30 min in at 37°C in an incubator, before they were plated onto a LB 

agar plate. 

 

2.2.3 Isolation of plasmid DNA  

 

In order to allow absolute quantification in real-time RT-PCR, fragments of the target 

genes cloned into the pGEMTeasy® (Promega, Mannheim, Germany) vector were 

used as a standard. A 1:10 dilution series of the plasmid DNA was prepared, starting 

at a concentration of 20 attomol/µl (S1). Standards S1-S7 were run on each PCR 

plate in duplicates. 

 

The plasmids were amplified in competent bacteria (XL-1 Blue) and isolation was 

carried out with the MiniPrep kit (Qiagen, Hilden, Germany). 

 

7 ml of LB broth medium containing 14 µl ampicillin (50 µg/ml stock solution) were 

inoculated with a single clone of the designated colony and incubated at 37°C and 

225 rpm o. n. The bacterial culture was transferred into a centrifuge tube and spun 

down at 4,000 x g for 10 min. The supernatant was discarded and the pellet was 

processed using the QIAprep Miniprep Kit (Qiagen, Hilden, Germany). To dissolve 

the plasmid DNA, 50 µl TE buffer was added to the tube. 

 

2.2.4  Determination of DNA concentration 

 

The concentration of the nucleic acids was determined by photometric analysis. An 

OD260 of 1 corresponds to 50 µg/ml dsDNA. The quality of the isolation was verified 

by measuring the absorption at 280 nm, corresponding to the absorption maximum of 

proteins. The ratio of the two absorption values gives information on the purity of the 

sample, with optimal values ranging between 1.8 and 1.95. 

 

2.3  Agarose gel electrophoresis 

 

Agarose gel electrophoresis is a method to separate DNA molecules of 0.1 up to 25 

kb by size. In an electric field, the negatively charged DNA molecules migrate 

through the agarose matrix towards the anode. DNA molecules are separated 
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according to their size, i. e. the bigger the DNA fragment, the slower it runs through 

the gel.  

 

After boiling the agarose in 1x TBE in a microwave, the solution was stirred while 

cooling down below 56°C before 0.1-0.5 µg/ml ethidi um bromide (3,8-diamino-5-

ethyl-6-phenylphenanthridinium bromide) was added for later visualisation.  

 

The dye intercalates into base pairs (inclusion within a distance of 10 bp) of the DNA 

molecule. For detection, the gel is exposed to UV light. Typically, DNA fragments 

appear as luminous bands whereas areas without nucleic acids are dark. For size 

determination, a DNA-ladder can be applied onto the gel.  

 

In this work, a 1 kb-ladder from Invitrogen (Karlsruhe, Germany) as well as a 50 bp-

ladder (Amersham, GE-Healthcare, Munich, Germany) in a amount of 5 µl were used 

(supplement 7.7). 

 

DNA fragments obtained from PCR reactions were separated in 1.5% agarose gels 

in 1x TBE buffer. For the detection of polymorphisms, 2% agarose gels were 

employed. 10 µl of the PCR product were mixed in a ratio of 1:6 with 6x dye, 

containing bromophenol blue (migrates at the same rate as the 500 bp DNA 

fragment) and xylene cyanol (migrates at about the same rate as the 4,000 bp DNA 

fragment) as indicators that mark the process of gel electrophoresis. The mix was 

applied onto the gel and the run was carried out in a gel chamber with 1x TBE at 100 

V for ~30 min. 

 

2.4  PCR (Polymerase Chain Reaction) 

 

PCR is an in vitro technique for the replication of DNA segments enframed by two 

sequence-specific oligonucleotides (primers) (Mullis and Faloona 1987). In a chain 

reaction, a thermally stable DNA polymerase amplifies the target DNA through the 

assembly of nucleotides to the primer sequences along the single-stranded, 

denatured DNA matrix. New DNA strands were synthesised. As the newly 

synthesised DNA strands serve as templates in each cycle, the copy numbers 

increase exponentially (Cornel 2008). 
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A basic PCR set up requires several components and reagents: 

 

-  the DNA matrix (template) that contains the DNA region to be amplified 

- two oligonucleotides, i. e. short, single-stranded DNA molecules, that are 

 complementary to the 5´- or 3´-end of the DNA-strain  

- desoxynucleotidetriphosphates (dNTPs), the building blocks that are 

 incorporated during the DNA synthesis  

- DNA polymerase, usually Taq polymerase (thermally stable), for the 

 synthesis of new DNA double strands 

- polymerase buffer and Mg++ ions (important for incorporation of dNTPs, 

 required for optimal polymerase activity and stability) 

 

The PCR usually consists of a series of 25 to 40 repeated temperature cycles, each 

cycle typically consists of 2-3 discrete temperature steps. 

 

- Denaturation  step, causes melting of the doublestrand (ds), performed at 93-

 95°C 

- Annealing step, single-stranded primers bind to the single-stranded template

 at 56-62°C. The polymerase binds to the primer-tem plate hybrid and begins

 DNA synthesis.  

- Extension  step at 72°C, the DNA polymerase synthesizes a new  DNA strand 

 by adding dNTPs to the template in 5’- to 3’-direction. 

 

In this work, PCR was performed for: 

 

- genotyping of transgenic mice 

- generation of DNA fragments, serving as templates in the SNuPE analyses 

- controlling the quality of cDNA after syntheses 

- quantification of mRNA expression. 

 

Used DNA matrices were either genomic DNA from mouse tails or cDNA from liver 

tissues or isolated hepatocytes.  
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PCR protocol: 

 

The PCR reaction was carried out in a Px2 thermal cycler (Thermo Electron, 

Karlsruhe, Germany). Taq polymerase from GenScript (USA) was used as thermally 

stable DNA polymerase. Different PCR protocols were performed. 

 

dNTPs (GenScript)   1.25 mM 

dNTP 10 mM (stock)       125 µl 

H2O        ad    1,000 µl 

 

Taq Polymerase 5 U/µl 

 

primer A (10 pmol/µl)    1.0 µl 

primer B (10 pmol/µl)    1.0 µl 

dNTPs (1.25 mM)     2.0 µl 

10 x PCR buffer     2.0 µl 

polymerase (5 U/µl)    0.5 µl 

template DNA     1.0 µl 

H2O         ad 20.0 µl 

 

PCR program for genotyping of p62 mice: 

 

95°C   5 min 

95°C   30 sec 

56°C   30 sec 

72°C   30 sec (35x) 

72°C   5 min 

 

An aliquot of the PCR reaction (10 µl) was applied onto an agarose gel and 

separated electrophoretically. Bands in the ethidium-bromide containing gel were 

visualized under UV-light. 
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2.5   Reverse transcription 

 

RNA is isolated from the cells or tissue of interest and transcribed into a copy I DNA 

by the enzyme reverse transcriptase (RT). 

 

Three different enzymatic activities are combined in the RT enzyme: 

- RNA-dependent DNA polymerase (reverse transcription) 

- ribonuclease (RNAseH, degragation of RNA in RNA/DNA hybrids) 

- DNA-dependent DNA polymerase. 

 

The enzyme RT was originally isolated from retroviruses. The combination of the 

three functions allows in vivo transcription of the retroviral RNA-genome into a ds- 

DNA. In vitro, only the first and third function is necessary for the synthesis of the 

cDNA. Amplification starts at the 3´-hydroxyl end. 

 

Transcription of RNA into cDNA can be done with three different primers (Sellner 

1992): 

- random primer mix (hexanucleotide primer mix): mixture of short (6 bp long) 

 primers, showing every possible sequence 

- oligo (dT) primer mix: binds to the 3´-poly A-tail of mRNA 

- sequence specific primers. 

 

For the experiments described here, either random primers (used for templates from 

mouse tissues or from mouse derived tissue culture cells) or oligo (dT) primers (used 

for templates from human tissue culture cells) were applied. 

Afterwards, the cDNA served either as template in the real time PCR using 

sequence-specific primers or in the SNuPE-HPLC analysis. 

 

Performance: 

 

1) RNA preparation  

 

The one-step RNA isolation method is based on the GITC (guanidium-isothiocyanat) 

method described by Chomczynski and Sacchi (Chomczynski and Sacchi 1987). 
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Trizol is a monophasic solution from phenol and GITC, stabilizing RNA, whereas 

cells and soluble cell components are lysed. GITC is a strong inhibitor of 

ribonucleases. 

 

1a)  Preparation of liver tissue from mice 

 

Liver tissue was homogenized in 0.3 ml Trizol (Qiagen, Hilden, Germany) and 

subsequently filled up to 1.0 ml Trizol in an Eppendorf tube. After addition of 250 µl 

Chloroform and shaking, samples were incubated for 3 min at RT.  

 

1b)  Preparation from tissue culture cells  

 

Cells from 6-well plates were harvested by removing the tissue culture medium and 

washing twice with 1x PBS. Subsequently, 300 µl Trizol was added and cells were 

scraped off the bottom of the well with a cell scraper, before the Trizol solution 

containing the RNA was transferred into an Eppendorf tube. After addition of 63 µl 

Chloroform and shaking, samples were incubated for 3 min at RT. 

 

The RNA is now in the upper phase of the solution due to the pH value. By 

separating and spiking of the upper phase, RNA was precipitated with 1/1 volume of 

isopropanol. The RNA precipitates were washed in 70% ethanol and finally dissolved 

in 15 µl or 30 µl DEPC water. 

 

2) DNase treatment of isolated RNA  

 

To ensure exclusive amplification of cDNA during PCR, it is necessary to eliminate 

contaminations of sample RNA with genomic DNA. Ambion DNA free kit (Applied 

Biosystems, Darmstadt, Germany) was used for DNAse treatment: 1/10 volume of 

10x DNAse I buffer and 1 µl DNAse I were added to the RNA and incubated for 45 

min at 37°C. Subsequently, 1/10 volume of DNAse ina ctivating reagent was added. 

After centrifugation, the supernatant was transferred into a fresh Eppendorf tube. 
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3) Determination of the amount and quality of RNA i n a photometric assay  

 

RNA concentration was determined at a wavelength of 260 nm in a photometer 

(BioMate3, Thermo Electron Corporation, Karlsruhe, Germany). 40 µg RNA/ml 

corresponds to an optical density (OD260) of 1. 

 

Proteins have an absorption maximum at 280 nm. 1.8 mg/ml protein corresponds to 

an OD280 of 1. 

 

A ratio of 1.8 to 1.95 (for DNA), and of 1.9 to 2.0 (for RNA) of the measurements at 

260 and 280 nm suggest a high purity of the sample. Lower values suggest protein or 

phenol contamination, higher values result from denatured DNA or contamination of 

genomic DNA in RNA samples.  

 

4) Reverse transcription 

 

The first step consists of the denaturation of RNA for 10 min at 70°C. Either random 

or oligo (dT) primers are now able to bind to the single-stranded template. cDNA 

corresponding the RNA matrix is synthesized by the enzyme RT. Afterwards, cDNA 

can be used to perform PCR experiments. All steps were prepared on ice. 

 

The following RT(+) approach  (total volume: 10 µl) was used: 

 

10x RT buffer      2.0 µl 

25x dNTP mix (100 mM)     0.8 µl 

MultiScribeTM Reverse Transcriptase (50 U/µl)  1.0 µl 

Rnase Inhibitor (10 U/µl)     1.0 µl 

Nuclease-free H2O      3.2 µl 

10x RT random primers     2.0 µl or 

oligo (dT) primers (10 µM)     2.0 µl 

 

The RT(-) approach without enzyme was carried out with the same samples in order 

to check for leftovers of genomic DNA in a later β-actin PCR. 
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1 µg RNA in a total volume of 10 µl was reverse-transcribed. Incubation was done in 

a Px2 thermal cycler (Thermo Electron, Karlsruhe Germany). 

 

The following RT program  was used: 

 

Step 1     25 min at 10°C 

Step 2   120 min at 37°C 

Step 3       5 sec at 85°C 

 

followed by instant cooling of the cDNA samples to 4°C. The samples were diluted 

1:5 to a final volume of 100 µl. cDNA was stored at -20°C, for long time storage at  

-80°C. 

 

5) Alu-PCR  

 

Using primers specific for repetitive sequences in the human genome (‘Alu’ 

elements), it is possible to test on genomic DNA residues in RNA samples. Did 

separation of samples by gel electrophoresis reveal no amplification products, the 

RNA quality was verified and RNA could be used for reverse transcription. 

 

The following approach  was set up: 

 

10x Taq buffer      2.5 µl 

10 mM dNTP mix       2.0 µl 

Taq polymerase (5 U/µl)     0.5 µl 

primer AS1 (50 µM)      0.5 µl 

MgCl2 (50 mM)      1.25 µl 

template RNA      100 ng  

H2O              ad 25.0 µl 

 

As positive reaction, 5 ng genomic DNA from THP-1 cells (kindly provided by Jessica 

Hoppstädter, Pharmaceutical Biology, Saarland University) was used. The Alu PCR 

was carried out in a Px2 thermal cycler (Thermo Electron, Karlsruhe, Germany). 
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Alu PCR program : 

 

94°C    5 min 

94°C     1 min 

56°C    1 min 

72°C    1 min (30x) 

72°C     10 min 

 

Amplification products appear as several diffuse bands of heterogenous size on 

agarose gels. 

 

6) ß-actin PCR  

 

To assure for RNA sample quality, a β-actin PCR was performed with the RT (-) 

preparation. In the case of detection of an amplification product after gel 

electrophoresis, the band must result from genomic DNA contaminants because no 

reverse transcriptase enzyme is added to the RT (-) mix. 

 

The reaction  included: 

 

10x Taq buffer      3.0 µl 

10 mM dNTP mix       2.4 µl 

Taq polymerase (5 U/µl)     0.5 µl 

primer A (10 pmol/µl)     1.0 µl 

primer B (10 pmol/µl)     1.0 µl 

template RT(-)      1.5 µl  

H2O            ad 30.0 µl 

 

The β-actin PCR was run in a PX2 thermal cycler.  
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PCR program : 

 

94°C    3 min 

94°C    30 sec 

62°C    1 min 

72°C    1 min (30x) 

72°C     5 min 

 

10 µl of the amplification product were separated on an agarose gel. RNA samples 

were used in the reverse transcriptase reaction when no bands could be visualized. 

 

2.6   Real-time quantitative RT-PCR 

 

For detection and simultaneous quantification of gene expression patterns, real-time 

RT-PCR (Q-PCR) is a widely-used technique. PCR based methods have the 

advantage of being fast and highly sensitive.  

 

Real-time polymerase chain reaction is based on the use of fluorescence reporter 

molecules to observe product amplification during each cycle of the PCR. 

Fluorescence signal intensity increases proportionally to the amount of amplification 

product. 

 

The threshold cycle (Ct), which represents the PCR cycle at which an increase in 

reporter fluorescence above background is first detected, is determined in the real 

time assay. The Ct value inversely correlates with the initial amount of template, i.e. 

the more is in the reaction tube, the earlier the Ct value can be measured. Moreover, 

the Ct value defines the exponential phase of the PCR reaction, within which the 

extrapolation to the initial amount can be done. 

 

Detection can be verified with different methods (Figure 11): 

- unspecific intercalation of fluorescent dyes (e.g. SYBR® green) into the DNA 

- specific detection using fluorescent probes (TaqMan®, molecular beacons, 

 hybridised probes). 
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Figure 11:   Principles of real-time RT-PCR techniques.  

a)  SYBR Green I technique. SYBR Green I fluorescence is enormously 
increased upon binding to double-stranded DNA.  

b)  Hydrolysis probe technique. The hydrolysis probe is conjugated with a 
quencher fluorochrome, which absorbs the fluorescence of the 
reporter fluorochrome as long as the probe is intact. Upon 
amplification of the target sequence, the hydrolysis probe is displaced 
and hydrolyzed by the Taq polymerase. Due to the separation of the 
reporter and quencher fluorochrome, the increase in fluorescence 
becomes detectable. 
(http://www.nature.com/leu/journal/v17/n6/fig_tab/2402922f1.html) 

 

 

Within this work, SYBR® green was used for all experiments performed on cDNAs 

derived from human material, whereas TaqMan® probes, carrying a fluorescent dye 

(FAM) at the 5´-end, were used for cDNAs derived from mouse material. 

 

SYBR® green detection is based on the principle that the DNA-binding dye anneals to 

all ds-DNA in the PCR reaction, causing a fluorescence signal. An increase in DNA 

product during PCR leads to an increase in fluorescence intensity and is measured at 
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each cycle, thus allowing DNA concentrations to be quantified. As ds-binding dyes 

bind to all ds-DNA templates, it is necessary to perform a melting curve analysis after 

the end of the PCR reaction to distinguish specific from non-specific products. 

 

For the detection using fluorescent probes, TaqMan® probes carry a fluorescent 

reporter at one end and a quencher of fluorescence at the opposite end. The close 

proximity of the reporter to the quencher prevents detection of its fluorescence. Both 

primers and probe anneal to the DNA target. Polymerisation of the new strain starts 

from the primers, and once the polymerase reaches the probe, breakdown of the 

probe due to the 5’- to 3’-exonuclease activity of the Taq polymerase decreases the 

reporter-quencher proximity and thus allows detection of fluorescence emission. An 

increase in the product targeted by the reporter probe at each PCR cycle causes a 

proportional increase in fluorescence.  

 

The two  following approaches  were pipetted on ice: 

 

a) dNTPs (1.25 mM)      2.0 µl 

10x PCR buffer      2.5 µl 

primer A (10 pmol/µl)     1.25 µl 

primer B (10 pmol/µl)     1.25 µl 

Taq polymerase (5 U/µl)    0.5 µl 

MgCl2 (50 mM)      x µl 

TaqMan probe (1 pmol/µl)    x µl 

template DNA     5.0 µl 

H2O           ad 25.0 µl 

 

Amounts of the TaqMan® probes were 1.5 to 2.5 pmol. Concentrations for MgCl2 

differed from 3 to 5 mM depending on the approach (supplement 7.3). 

 

b) template DNA        5.0 µl 

 Dynamo Flash SYBR®green qPCR kit   12.5 µl 

 H2O             ad 25.0 µl 

 

Either cDNA or plasmid DNA served as template DNA in the PCR reaction. 



 Methods 45 

PCR program for TaqMan ® probe detection:  

95°C        8 min 

95°C        15 sec 

60°C        15 sec 

72°C        15 sec (40x- 45x) 

72°C        3 min 

 

PCR program for SYBR ®green detection:  

95°C       x min 

94°C       x sec 

60°C       x sec 

72°C       x sec (40x) 

55°C-95°C      7 sec in 0.5 temperature steps 

 

Initial denaturing step varied from 5 to 10 min. Denaturing at 94°C lasted between 10 

to 30 sec. Annealing and extension required 15 to 30 sec. Details regarding the 

cycling conditions are found in the supplement 7.3 and 7.4. 

 

Real time PCR reactions were performed in an iQ5 cycler (BioRad, Munich, 

Germany). Each sample was run in duplicate or triplicate. 

 

Quantification 

 

Relative concentrations of DNA present during the exponential phase of the reaction 

are determined by plotting relative fluorescent units against cycle number showing an 

exponential curve. A threshold value for detection of fluorescence above background 

is determined by the software, called Ct. Since the quantity of DNA doubles every 

cycle during the exponential phase, relative amounts of DNA can be calculated, e.g. 

a sample whose Ct is 4 cycles earlier than another´ s has 24 = 16 times more 

template. 

 

Amounts of mRNA are determined by comparing the results to a standard curve 

produced by serial dilutions of a plasmid DNA. To accurately quantify gene 

expression, the measured amount of mRNA from the gene of interest is divided by 
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the amount of RNA from a housekeeping gene measured in the same sample to 

normalise for variations in the amount and quality between different samples. 

Providing unregulated expression of the reference gene transcript, normalization 

permits accurate comparison of the gene expression of interest (Bustin 2000). 

 

2.7   SNuPE analysis 

 

PCRs were performed in a 30 µl reaction volume on cDNA. 

 

The reaction  included: 

10x Taq buffer      3.0 µl 

10 mM dNTP mix       2.4 µl 

Taq polymerase (5 U/µl)     0.5 µl 

primer A (10 pmol/µl)     1.0 µl 

primer B (10 pmol/µl)     1.0 µl 

template cDNA      1.5 µl  

 

The IGF2 and H19 PCRs were run in a Px2 thermal cycler.  

 

PCR program for IGF2 : 

 

95°C    5 min 

94°C    30 sec 

60°C    1 min 

72°C    1 min (32x) 

72°C     5 min 

 

PCR program for H19 : 

95°C    5 min 

94°C    1 min 

60°C    1 min 

72°C    30 sec (35x) 

72°C     5 min 
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Successful PCR was checked by loading 5 µl of the reaction on a 1.5% agarose gel. 

 

The following experimental procedure was kindly performed by Dr. Sascha Tierling, 

Institute of Genetics, Saarland University. 

 

SNuPE primers were placed immediately adjacent to the polymorphic sites (IGF2: C: 

T SNP at position nt 1678 in the mRNA, H19: C: T SNP at position nt 2437 in the 

mRNA. 5 µl of PCR products were purified using an Exonuclease I/SAP mix (1U/9U, 

USB) for 30 min at 37° C followed by a 15 min inact ivation step at 80° C. 14 µl primer 

extension mastermix was added and SNuPE reaction was performed. 

 

SNuPE program: 

 

96° C    2 min 

96° C    20 sec (50x) 

60° C    2 min 

 

Obtained products were loaded on a DNASepTM (Transgenomic) column and 

separated at 50°C applying an acetonitrile gradient  by continuously mixing buffer A 

and buffer B: IGF2 22-32% buffer B for 15 min, H19 17-30% buffer B for 15 min. The 

allele-specific expression index was determined by measuring the peak heights and 

calculating the ratio hI/ [hI + h(T)]. 

 

2.8  Western Blot  

 

PTEN, pAKT and p62 protein levels were investigated by Western Blot analysis. 

 

Western Blot is a technique used to identify and quantify specific proteins. Protein 

lysates are separated using denaturating SDS gel electrophoresis, allowing protein 

segregation according to the size.  

 

After immobilisation of the proteins on a PVDF membrane, free protein-binding sites 

of the membrane have to be blocked by proteins, which cannot be detected by the 

antibody. This is necessary to eliminate unspecific binding of the antibody. To detect 
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specific binding of the antibody to the epitope of the antigene, species-specific 

antibodies conjugated to a fluorescent dye are used. 

 

2.8.1   Preparation of protein extracts from mouse liver tissue 

 

All work was performed on ice. 100 mg liver tissue were homogenised in 1 ml lysis 

buffer. After centrifugation (15 min, 4°C, 14,000 g) proteins remain in the 

supernatant.  

 

After determination of protein concentrations by the method of Bradford (BioRad, 

Munich, Germany), each lysate was mixed with 1:3 with Roti®-Load sample buffer 

(Carl Roth, Karlsruhe, Germany) before denaturation was performed at 95°C for 5 

min.  

 

2.8.2   Preparation of protein extracts from isolat ed mouse hepatocytes

  and hepatoma cell lines  

 

Untreated or treated cells grown in tissue- culture plates were harvested by removing 

the cell culture medium before adding 100 µl lysis buffer. Cells were scraped off and 

the lysates were transferred to Eppendorf tubes. After centrifugation, the 

homogenates were treated as described above 2.8.1. 

 

2.8.3    Determination of protein concentration using the  Bradford assay 

 

This is a spectroscopic method to measure protein concentrations based on a 

change in colour of the dye coomassie. After protein binding, the absorbance shifts to 

595 nm due to coomassie red changes into coomassie blue. 

 

Out of a BSA stock solution, a dilution series (2.5/5.0/7.5/10/15/20/25 µg/ml) was 

made according to the following scheme: 

 

1.0 g BSA was dissolved in 100 ml H2O. 10 ml of this solution was diluted in 90 ml 

H2O to a concentration of 1 mg/ml (=stock). Aliquots of the dilution series were stored 

at -20°C. 
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Measurements were performed in a SunriseTM multiplate reader (Tecan, Crailsheim, 

Germany) in 96-well tissue culture plates. 10 µl protein or BSA standard was mixed 

with 190 µl Bradford reagent (1:5) and detected in triplicate. Protein concentrations 

were assessed compared to the BSA standard protein curve. 

 

2.8.4   SDS polyacrylamide gel electrophoresis (SDS -PAGE) 

 

Due to negative charging of samples, migration through the gel towards the anode 

simply corresponds to the molecular weight of the proteins. Equal amounts of protein 

were loaded and separated by SDS-PAGE (Mini Protean chamber, BioRad, Munich, 

Germany). Proteins were stacked at 110 V for 10 min and resolved at 130 V for 60 

min. 

 

2.8.5   Protein transfer onto PVDF membranes  

 

The blotting membrane (Immobilon PVDF-FL, Millipore, Schwalbach/Taunus, 

Germany) was cut to the size of the gel and equilibrated in methanol and 

subsequently in transfer buffer. 

 

For the transfer set-up, a fibrous web and three pieces of moisturised filter paper 

were put on the cathode plate. On top, the gel and the membrane followed by 

another three pieces of moisturised filter paper and a fibrous web, everything forming 

an air bubble free stack, were placed (Figure 12). With the membrane directing 

towards the anode, blotting was performed at 170 mA for 150 min.  
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Figure 12:  Western Blot setup.  

Schematic representation of the assembly for the transfer of proteins 
onto a PVDF membrane. (www.bme.gatech.edu) 

 

 

After the transfer, the membrane was incubated in Rockland Blocking Buffer (RBB) 

(Biomol, Hamburg, Germany) at room temperature for 60 min. The blocked 

membrane was incubated either at 4°C over night or at room temperature (10-60 

min) with the adequate primary antibody in a dilution of 1:1,000 in RBB. Proceeding 

three washing steps in PBST, the specific secondary antibody was incubated for 30-

60 min at room temperature under exclusion of light. After additional washing steps 

with PBST (2 x 20 min) and PBS (2 x 10 min), detection of immunoreactive bands 

was visualized by the Odyssey Infrared Imager (Licor Biosciences, Bad Homburg, 

Germany). To exclude loading differences, the blots were also probed with an 

antibody against the housekeeping protein α-tubulin (Sigma Aldrich, Munich, 

Germany). 

 

To distinguish between protein expressions in lysates gained from control versus 

transgenic animals, samples were (semi-) quantified using the Odyssey software 

tool. The integrated intensity values for all samples were normalized to a 

housekeeping protein to adjust for uncontrolled variability.  

 

Antibodies specific to phosphoAKT (Ser473), PTEN (both New England Biolabs, 

Frankfurt a. M., Germany), and anti α-tubulin (Sigma, Thermo Fisher Scientific, 

Karlsruhe, Germany) were incubated overnight at 4 °C in Odyssey Blocking buffer 

(LI-COR biosciences). Dilution factors can be found in the supplement 7.5. 
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For visualization of proteins with the Odyssey Infrared Imaging System (LI-COR 

Biosciences, Bad Homburg, Germany) membranes were blocked in Rockland 

Blocking buffer (Biomol). After washing, membranes were incubated with an 

IRdye680 conjugated goat anti-rabbit IgG secondary antibody (in case of PTEN and 

phosphoAKT detection) or with an IRdye800 CW conjugated goat anti-mouse 

antibody (in case of tubulin detection) in a 1/5,000 dilution in Odyssey Blocking Buffer 

(LI-COR Biosciences, Biomol, Hamburg, Germany). Secondary antibodies, goat anti-

rabbit IRdye®680 and goat anti-mouse IRdye®800 CW, were purchased from 

Rockland (Biomol, Hamburg, Germany). After a subsequent washing step, proteins 

were detected and quantified with the Odyssey Infrared Imaging System. 

 

2.9   Cell culture 

 

Since cells were cultured under sterile conditions, all solutions were autoclaved or 

sterile filtered. 

 

The human hepatocellular liver carcinoma cell lines HepG2, HUH7 and Alexander 

cells were originally isolated from male patients of different age and ethnicity, all 

suffering from primary liver carcinoma (Alexander, Bey et al. 1976; Aden, Fogel et al. 

1979; Nakabayashi, Taketa et al. 1982). HepG2 and HUH7 cells show a higher 

expression of IGF2 compared to Alexander cells (Desbois-Mouthon, Baron et al. 

2009). For H19 RNA, with which IGF2 is epigenetically closely related, low levels are 

reported in HepG2 and HUH7 (Banet, Bibi et al. 2000). Abnormal p53 gene 

expression is a frequent event associated with HCC. Alexander cells display greatly 

reduced p53 mRNA and protein expression levels in comparison to HepG2 and 

HUH7 cells (Bressac, Galvin et al. 1990). All three liver carcinoma cell lines were 

cultured in a humidified incubator at 37°C with 5% CO2 in RPMI-1640 (PAA, Cölbe, 

Germany) containing 10% FCS gold (PAA, Cölbe, Germany), 2 mM L-glutamine 

(PAA, Cölbe, Germany) and 1% Penicillin/Streptomycin (P/S, PAA, Cölbe, Germany) 

to prevent bacterial contamination. Cultures at ~80% confluence were routinely 

passaged and subcultured to 80-90% confluence before any experimental 

procedures. 
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For thawing of cells, 8 ml RPMI medium was provided in a 25 cm2 cell culture flask 

(Greiner Bio-one, Frickenhausen, Germany) before one cryovial of the appropriate 

cell line was added. Cultures at ~80% confluence were routinely split in a ratio of 1:3. 

Therefore, culture medium was removed and cells were washed with 1x PBS to 

remove dead cells, cell debris and to eliminate medium leftovers which would 

interfere with trypsin treatment. Approximately 5 ml 1x Trypsin/EDTA was added and 

cells were incubated at 37°C with 5% CO 2 until the cells were detached from the 

bottom of the flask. To inhibit trypsin activity, ~15 ml RPMI medium was added and 

cells were subsequently transferred into a Falcon tube to spin them down at 50 x g. 

After careful resuspension and separation of cell clusters, cells were plated to a new 

flask.  

 

From early passages, cryostocks were generated by adding 20% DMSO to the RPMI 

medium. Cryovials, containing 1 ml cell suspension, were stored at -20°C and -80°C 

before they were frozen in liquid nitrogen for long-term storage. 

 

2.9.1  Determination of cell amount and cell viabil ity 

 

Cell amount and viability were determined in an improved Neubauer counting 

chamber using trypan blue. As the dye penetrates through the cell membrane of 

dead cells, they can be distinguished from living cells. 

A 1:10 dilution of cells was mixed 1:1 with trypan blue. The cell suspension was 

inserted into the chamber before counting of cells within one square of the grid. 

 

2.9.2   Determination of living cells 

 

amount of cells x10,000 x dilution factor of cells = amount of living cells 

 

In an improved Neubauer counting chamber, the total number of cells per ml can be 

defined after counting one corner square by multiplying the total number of cells 

found in the grid by 104 (Figure 13).  
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Figure 13:  Improved Neubauer counting chamber. 
(www.nexcelom.com) 
 

 

2.9.3  Cell viability assay 

 

Toxic effects of INTERFERinTM were tested in the colorimetric MTT assay. Yellow 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is reduced to 

purple formazan only by living cells (Mosmann 1983). 

 

200 µl RPMI medium containing 1.5 x 104 cells were plated in a 96-well plate and 

incubated for 24 h. After removement of medium, cells were incubated for 20 h with 

different dilutions of the transfection reagent in RPMI. The supernatant was replaced 

by 150 µl MTT solution (0.5 mg/ml). After 2 h incubation at 37°C with 5% CO 2, 100 µl 

of the MTT solution was removed and cells were lysed by addition of 200 µl of the 

lysis reagent dimethylsulfoxide (DMSO). After gentle shaking, the absorption was 

measured in an ELISA reader at 550 nm.  

 

2.9.4   Treatment of human hepatocellular carcinoma  cell lines with 

  siRNA  

 

For transfection experiments cells were harvested from a flask and transferred into a 

12-well cell culture plate (Greiner Bio-One, Frickenhausen, Germany). Transfection 

was carried out with cells approximately 50% confluent. The high-purity, full-length 

siRNA against p62 used in this work was purchased from Qiagen (Hilden, Germany). 

As a negative control, the random siRNA ‘siGENOME non-targeting siRNA #2’ 
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(Dharmacon, Thermo Fisher Scientific, Karlsruhe, Germany) was used. Sequences 

of both siRNAs used within this work are given in supplement chapter 7.6. 1 nM 

siRNA was determined to be the optimal working concentration for efficiently knock-

down gene expression, avoiding ‘off-target’ effects. 

 

2.9.5  Preparation of siRNA  

 

Before using the siRNA for the first time, it was necessary to add 250 µl siRNA 

suspension buffer (Qiagen, Hilden, Germany) to the lyophilisate of siRNA to obtain a 

20 µM solution (= stock). After incubation at 95°C for 1 min and at 37°C for 1 hour, 

suspension buffer was added to produce a 2 µM solution of siRNA. Aliquots of 1 ml 

of the 2 µM solution were stored at -20°C until use . 

 

2.9.6   Transfection reagent 

 

For siRNA delivery into the cell, INTERFERinTM (Biomol, Hamburg, Germany) was 

used. INTERFERinTM consists of a cationic lipid complex, able to bind negatively 

charged siRNA. The resulting complex overcomes the cell membrane via 

endocytosis. In the cytoplasm siRNA is released from the siRNA-INTERFERin 

complex and can mediate RNA interference (RNAi). INTERFERinTM was stored at 

4°C. 

 

2.9.7   Transfection of human hepatocellular carcin oma cell lines 

 

Experiments were carried out in 12-well cell culture plates using the reverse 

transfection method. In reverse transfections, the siRNA-transfection reagent 

complexes are prepared inside the wells. Thereafter, cells and medium are added 

(Figure 14).  
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Figure 14:  Workflow comparison of transfections formats. 
(www.dharmacon.com/docs/RTF_Application_Note.pdf) 

 
 

A volume of 2 µl INTERFERinTM/well was chosen due to low cytotoxicity determined 

in the MTT assay. 2 µl INTERFERinTM and 0.125 µl siRNA (=1 nM/well) were 

preincubated in 250 µl of FCS- and P/S-free RPMI medium, allowing complexation at 

RT for 10 min. To eliminate possible effects caused by the transfection reagent, 

some cells only received INTERFERinTM without siRNA (= IF control). The complex 

was provided in the 12-well plate and 125,000 cells, in P/S-free RPMI medium 

containing 10% FCS, were pipetted to each well. After cell adhesion to the bottom of 

the plate, medium was replaced the following day by fresh, P/S- and FCS-containing 

RPMI medium. Cells were maintained for 48 h or 72 h, at 37°C at 5% CO 2 until they 

were harvested for RNA and protein isolation. 

 

2.10  Isolation of primary murine hepatocytes 

 

For hepatocyte isolation, the collagenase perfusion method was used. Both sexes of 

p62 transgenic and control mice aged 7-8 weeks were examined.  

 

2.10.1  Collagenase perfusion 

 

All buffer solutions were prepared freshly and tempered to 37°C until use. 

Collagenase A is added to the collagenase buffer directly before perfusion. Stock 

solutions were kept at RT or at 4°C and were replac ed every 4 weeks (see 

supplement for detailed composition). As a peristaltic pump, maintaining the flow-
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through of the perfusion solutions, the Sci-Q 323 from Watson-Marlow (Roth, 

Karlsruhe, Germany) was used. 

 

Mice received an intra-peritoneal anaesthesia (Rompun 2%: Xylazinchloride 5-20 

mg/kg b. w. + Ketamin 10%: Ketaminchlorid 75-100 mg/kg b. w.). As soon as no 

body reflexes were recognisable, the top skin layer was desinfected with 70% 

isopropanol and opened. Another disinfection step was carried out before the 

abdominal wall was opened. The inner organs were carefully put aside to gain 

access to the Vena cava inferior. A canula was introduced into the Vena cava after 

the vein was truncated with a scissor. Perfusion started with EGTA-buffer and soon 

after the liver was swelling due to buffer accumulation, a load-relieve was set into the 

Vena cava right under the heart. Perfusion with ~50 ml EGTA-buffer persisted 5 min 

at 25 rpm. Subsequently, the buffer was exchanged to collagenase buffer. After 

approximately 6 min of perfusion, the liver tissue was removed and placed in a cell 

culture dish containing suspension buffer. The bovine serum albumine (BSA) in this 

buffer efficiently inhibits the activity of collagenase A and therefore stops further 

digestion of the liver. The liver capsule is carefully minced with two forceps for 

hepatocyte release. Cells were transferred into a Falcon tube and put on ice.  

 

The following experimental steps were done under sterile conditions under a laminar-

air flow.  

 

The hepatocyte cell suspension was carefully filtered through a cell strainer and 

transferred into a Falcon tube. Cells were washed with suspension buffer, followed 

by centrifugation for 5 min at 37 x g, before they were carefully resuspended in 10 ml 

suspension buffer. For determination of cell viability the suspension was diluted 1:5 

with suspension buffer. This dilution was mixed 1:1 with trypan blue and living as well 

as dead cells were counted in an improved Neubauer counting chamber. Cells were 

cultured on collagen-coated plates for adjacent experiments when cell viability was 

80% or more. Four hours after plating, when cells adhered to the collagen-coated 

bottom, medium was refreshed.  

 

For mRNA stability and caspase-3-like activity experiments, medium was replaced by 

FCS-free William´ s medium E (Gibco, Invitrogen, Karlsruhe, Germany) two hours 
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before the experiments started and cells were maintained under serum-free 

conditions until harvest.  

 

2.11  Caspase-3-like activity assay 

 

In normal cells, caspases exist as inactive proenzymes that undergo proteolytic 

cleavage arranged in cascades during apoptosis. The downstream effector caspase-

3 has been identified as being a key mediator of programmed cell death in 

mammalian cells (Hengartner 2000). It has been shown that caspase-3 cleaves 

PARP [poly- (ADP-ribose) polymerase], an enzyme that is involved in DNA repair 

and genomic maintenance. The upstream sequence of the PARP cleavage site, 

DEVD (N-acetyl-Asp-Glu-Val-Asp), is utilized as a basis for the highly specific 

caspase-3 substrate DEVD-AFC (7-amino-4-trifluoromethylcoumarin). Caspase-3 

cleaves the tetra-peptide after the aspartate residue, thus releasing the dye which 

can be quantified by UV spectrofluorometry (extinction wave length: 400 nm / 

emission wave length: 505 nm). This assay is termed ‘Caspase-3-like activity’ due to 

the fact, that other downstream caspases besides caspase-3 (e. g. caspase-7) show 

similar substrate specifity.  

 

2.11.1  Measurement of caspase-3-like activity in m urine hepatocytes 

 

Apoptosis in hepatocytes (500,000 cells/well; 6-well cell culture plate) from p62 

transgenic and control mice was induced by addition of 0.4 µg/ml Actinomycin D (Act 

D) for 15 min at 37°C with 5% CO 2, followed by incubation with TNFα (100 ng/ml) for 

20 h in a humidified cell incubator. Medium was removed, cells were washed twice 

with 1x PBS, and 120 µl lysis buffer was added to each well. To complete cell lysis, 

cells were stored at -80°C o. n. Thawing was perfor med on ice. Cells were detached 

from the bottom of the plate with a cell scraper and transferred into Eppendorf tubes. 

After centrifugation at 13,000 x g at 4°C for 15 min, 10 µl of the supernatant was 

pipeted into a 96-well tissue culture plate. Subsequently 90 µl of the substrate buffer 

solution was added. Measurements of the generation of free AFC were performed in 

triplicates in a fluorometer multiplate reader (Wallac VICTOR2, Perkin Elmer, 

Rodgau-Jügesheim, Germany). Protein concentration of the corresponding samples 

was measured with the Bradford assay using a BSA standard.  
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2.11.2   Measurement of caspase-3-like activity in liver tissue 

 

Protein isolation from whole liver lysates, followed by the determination of the protein 

concentration was performed as described in 2.8.1. and 2.8.3. 10 µl of the protein 

lysate was pipeted into a 96-well tissue culture plate subsequently, 90 µl of the 

substrate buffer solution was added. Measurements were performed as described in 

2.11.1. 

 

2.12  Actinomycin D treatment and mRNA half-life es timation 

 

Transcriptional arrest followed by the measurement of mRNA levels of the transcripts 

of interest after certain time points, using real-time RT-PCR, allows the determination 

of the stability of the corresponding mRNA. To illuminate the question whether the 

reduction in the mRNA expression level results from reduced mRNA stability or from 

reduced transcriptional activity, transcription in murine hepatocytes was blocked by 

actinomycin D (Act D) for up to 10 hours.  

Act D blocks transcription through intercalation. By binding DNA during the 

elongation process, it prevents DNA-dependent RNA polymerase III from synthesis 

of the complementary mRNA strand. 

 

1.0 mg/ml Act D was dissolved in 100% ethanol (=stock solution), stored at -20°C for 

a maximum of 4 weeks, and diluted in cell culture medium to a final concentration of 

10 µg/ml.  

 

Experiments were performed the day after cell isolation. All cells were treated at 

different time points, but harvested simultaneously (0/4/6/8/10 hours) after Act D 

incubation. Therefore, the cell culture medium was removed, cells were washed 

twice with 1x PBS and 500 µl Qiazol lysis reagent was added to each well. Cells 

were detached from the plate bottom with a cell scraper and transferred into 

Eppendorf tubes. Until RNA isolation, samples were stored at -80°C. 
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2.13  Histological staining 

 

All histological staining were performed in the Institute of Pathology, Saarland 

University, Homburg/Saar (Germany) with kind assistance from Prof. Dr. Rainer M. 

Bohle, MTA Gertrud Walter and MTA Sieglinde Wagner.  

 

2.13.1 Fixation and embedding of liver tissue 

 

2.13.1.1 Cryostat histology 

 

For preparation of cryostat sections, tissues have to be cut into small blocks of 

several mm length and shock frozen in liquid nitrogen. Fixation of the tissue block as 

done in paraffin histology is not necessary. Directly before cutting sections, the tissue 

block has to be placed on a holder, which is prepared with cryostat embedding liquid.  

 

In this set of experiments sections were cut at 8 µm. Sections were mounted on 

Superfrost slides (Menzel GmbH, Braunschweig, Germany) and air-dried. 

Cyrosections were used for lipid staining and counter-stained with haematoxylin-

eosin (HE). 

 

2.13.1.2  Paraffin histology 

 

Paraffin embedded tissues require a more complex reprocessing but result in a much 

better conservation of the tissue structure. Tissues were kept in 4% neutral buffered 

formaldehyde for fixation (24 h) immediately after organ removal. Formaldehyde is 

the most commonly used fixative for immunohistology. Fixed tissues have to be 

embedded before it is possible to cut sections. Routinely, this is done in paraffin. 

 

After formalin fixation dehydration is carried out with an increasing alcohol series 

consisting of isopropanol 80%, 90% and 100%, followed by incubation in an 

intermediate medium like xylol, before the tissue blocks are embedded in paraffin.  

 

Paraffin-embedding procedures were kindly performed at the Institute of Pathology. 

Paraffin blocks were stored at RT and protected from moisture. 
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2.13.1.3   Preparation of slides 

 

For slide preparation a microtome is used. Hereby, it is possible to cut slides of 2 µm 

size. It is necessary to cool paraffin blocks down to -20°C before usage. The 

obtained section has to be straightened in a water bath (tempered 40°C) before it is 

mounted on a slide. Before immunostaining, slides have to be dried o. n. at ~37°C.  

 

Sections from p62 transgenic mice were placed on the slide together with a section 

from a control mouse not expressing the transgene. 

 

2.13.1.4 Embedding of stained slides 

 

After staining is finished, slides have to be rinsed in water and dehydrated in a 

decreasing alcohol and xylol series before embedding for long-term storage in 

Entellan® (solution of synthetic resin-bound polymers in xylene) is performed. One to 

two drops of Entellan® are put on the slide and a coverslip is placed air-bubble free 

over the section. 

 

2.13.2   Routine staining 

 

To evaluate pathological changes in the architecture and physiology in tissues, 

several staining methods are used. Routinely, HE-staining  is carried out. The cell 

nucleus is stained magenta-blue whereas the cytoplasm appears red-pink.  

 

2.13.2.1   Periodic acid Schiff staining (PAS) 

 

High proportions of carbohydrate macromolcules, e.g. glycoproteins, 

polysaccharides, glycolipids, phospholipids, and unsaturated fatty acids in the tissue 

can be visualised by PAS staining (Mulisch 1989). This method is primarily used to 

identify glycogen. The reaction of periodic acid selectively oxidizes the glucose 

residues, thereby creating aldehydes that react with the colourless acid fuchsine in 

Schiff reagent resulting in a purple-magenta color. Cell nuclei are counter-stained 

with haematoxyllin.  
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As lipids are dissolved from the tissue by any alcohol treatment of the slide, PAS 

staining on paraffin sections can only detect lipids indirectly as cavities in the tissue 

structure.  

 

2 µm thick paraffin tissue sections were produced and staining was performed 

automatically in a staining machine.  

 

2.13.2.2 Scharlach Red staining 

 

The principle of this method lies on the better solubility of the dye in the tissue lipids 

than in the moderately apolar solvent, in which it is solubilised (Mulisch 1989). The 

lysochrome diazo-dye Sudan IV is allowed to permeate into the highly apolar fat 

without the solvent solubilising the fat to be stained. 

 

6-8 µm thick tissue sections were stained for 40 min in Scharlach Red and counter-

stained for 3 min in haematoxyllin. Embedding was done with a 1:1 solution of 

glycerol-HCl. 

 

2.13.2.3 Counter-staining 

 

Specific detection methods require counter-staining, e.g. immune detection results in 

a specific brown colour of certain tissue areas. To emphasise this staining and to be 

easily able to distinguish positively from negatively stained structures, a haematoxylin 

or haemalaun counter-staining follows, which particularly stains cell nuclei blue. 

 

2.13.3  Immunostaining 

 

With this method, it is possible to detect antigens in the tissue by using specific 

antibodies directed against the antigen of interest. A secondary antibody carrying a 

marker is directed against the primary antibody.  

 

The APAAP (alkaline phosphatase anti-alkaline phosphatase) method uses three 

antibodies. The primary binds to the antigen, the secondary is used as a “bridge” 

between the first and the third, binding to both. The third antibody is enzyme-marked 
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and directed against alkaline phosphatase. An advancement of this method is the so 

called DAKO REALTM EnVisionTM detection system method. Hereby, the secondary 

antibody is conjugated to a dextrane molecule carrying multiple horseradish-

peroxidase (HRP) residues.  

 

A second staining method applied in this work was ‘CSA II Biotin-free Tryamide 

Signal Amplification’ System (DAKO, Hamburg, Germany). The primary antibody is 

first detected with a peroxidase-conjugated secondary antibody. The next step 

utilizes the bound peroxides to catalyse oxidation of a fluorescein-conjugated phenol. 

Hereby, fluoresceyl-tryamide precipitates onto the specimen. The procedure is 

continued with the detection of bound fluorescein by a peroxidase-conjugated anti-

fluorescein. Staining is completed using DAB/hydrogen peroxide for visualization 

(source: DAKO CSA II kit manual).  

 

Both methods share the same visualisation technique. For detection, a transparent 

substrate diaminobenzidine (DAB) is applied on the slide. Through enzymatic 

reaction with peroxidase, a coloured precipitation is generated staining the tissue 

structures towards the primary antibody binds. For successful immune detection, it is 

necessary to perform several pre-treatments with paraffin-embedded tissue blocks.  

 

2.13.3.1  Heat-induced epitope retrieval (HIER) 

 

For the detection of several antigens, it can be necessary to treat samples with heat 

prior to staining. This is supposed to “renature” proteins, i.e. the sterical changes 

(e.g. protein cross-links) that proteins undergo during fixation, leading to epitope 

retrieval, are reversed. Slides were put in an open, heat-stable container containing 

citrate buffer, and incubated in a closed water bath for 20 min at 65°C. Slides are not 

allowed to run dry during the procedure. Afterwards, slides are cooled down to RT for 

30 min. 

 

Citrate buffer  (pH 6.0) 

Tri-natrium-citrate-dihydrate (10 mM) 2.94 g 

Water ad     1.0 l 
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2.13.3.2  Peroxidase pre-treatment 

 

Endogenous peroxidases have to be blocked as they would cross-react with the DAB 

reagent, resulting in false positive staining. This procedure was carried out by 

application of DAKO REALTM peroxidase-blocking solution at RT for 15 min. During 

the incubation, it is important that slides are not covered.  

 

2.13.3.3  Biotin block 

 

If using the CSA II Signal Amplification System, it is necessary to block endogenous 

biotin in the tissue to eliminate potential background staining avoiding false positive 

signals. This procedure was carried out by application of serum-free protein block 

provided with the kit at RT for 5 min. The protein block was not rinsed off after 

treatment. 

 

2.13.3.4  CSA II kit staining procedure 

 

After the pre-treatment procedure, slides were incubated with the primary antibody 

for different incubation times. 

 

For usage with rabbit primary antibodies it is necessary to apply the CSA II rabbit link 

(DAKO, Hamburg, Germany) after incubation of the primary antibody, because the 

system is originally intended for the use with primary antibodies from mouse. The 

CSA II rabbit link was applied to cover the specimen and incubated for 30 min. In a 

next step, the amplification reagent was incubated for 15 min at RT. During this 

procedure, slides were protected against light. This step was followed by the 

application of Anti-Fluorescein-HRP labelled secondary antibody for 30 min. Finally, 

staining was performed by DAB substrate chromogen (CHROM) application onto the 

specimen for 5 min. Counterstaining was realized with HE for 30 sec and slides were 

mounted.  

 

During all incubation steps, slides were covered with coverslips and incubated in a 

humidified chamber to prevent them from drying out. Between all incubation steps, 
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the slides were carefully washed in 1x TBST. All steps in the procedure were carried 

out at RT. The kit was stored at 4°C and CHROM was prepared freshly every day. 

 

2.13.3.5  Detection using the DAKO REAL TM EnVison TM detection system 

 

In this work, also the DAKO REALTM EnVisonTM detection system with DAKO 

REALTM DAB+ (1-5% of 3,3´-diaminobenzidine hydrochloride) chromogene as 

visualisation reagent was applied. The dextran backbone is linked to up to 100 of 

peroxidase (HRP) molecules and up to 20 secondary antibody molecules coupled to 

it. The secondary antibody reacts with rabbit and mouse immunoglobulins.  

 

After the pre-treatment procedure, slides were incubated with the primary antibody 

for different incubation times at different temperatures (refer to supplement chapter 

7.5). After binding of the second, polymer-coupled antibody at RT for 30 min, the 

DAB-containing substrate working solution (CHROM) was mixed according to the 

manufacturer´ s instruction manual and applied to the slides for 8-10 min at RT. 

Haematoxylin counter-staining was performed for 2 min at RT. 

 

During all incubation steps, slides were covered with coverslips and incubated in a 

humidified chamber to prevent them from drying out. Between all incubation steps, 

the slides were carefully washed in 1x TBST. The kit was stored at 4°C and CHROM 

was prepared freshly every day. 

 

2.13.3.6  Quality control 

 

Unspecific binding can occur at different steps in the staining protocol, due to 

insufficient blocking of endogenous peroxidases, insufficient removal of paraffin or 

exhausted antigen retrieval. Usually, unspecific staining occurs because of 

undesirable binding of the primary antibody to unspecific structures in the tissue. 

Therefore, it is necessary to perform control experiments. 

 

Each staining run should include a negative control omitting the primary antibody to 

exclude non-specific staining, assuring at the same time the specificity of the primary 
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antibody. If non-specific staining is present, this will be recognized as a rather diffuse, 

brown staining on the slides.  

 

A positive control should ascertain a proper performance of all the applied reagents. 

Therefore, we stimulated mice with LPS for 15 and 30 min before tissue retrieval for 

the generation of positive control slides, supposing that the induction of the target 

antigen after LPS treatment was established (e.g. increase in NF-κB activation). 

Positive control slides should result in specific verification of the desired antigen.  

 

2.14   Intraperitoneal glucose tolerance test (IP-G TT) 

 

The blood glucose level is regulated by the hormones insuline and glucagone. 

Insuline lowers blood glucose levels by stimulating glucose uptake into the liver and 

muscle, at the same time blocking gluconeogenesis and lipolysis. On the contrary, 

the antagonist glucagon increases glycolysis leading to higher blood glucose levels. 

Determination and clinical outcome control of blood glucose levels are associated 

with hyperglycemias, like diabetes mellitus 

 

By performing intraperitoneal glucose tolerance tests (ip-GTT), it is possible to 

determine a time response of glucose decomposition in vivo. In this work, blood 

glucose was measured by the glucose dehydrogenase method using an Accu Check 

Aviva (Roche Diagnostics, Mannheim, Germany) glucometer. This method is based 

on the principle that glucose is converted into gluconolacton in the presence of a 

coenzyme (PQQ). During this reaction, released electrons build an electric current 

which is proportional to the glucose concentration in the sample. 

 

To minimize value variations, mice were fasted for 4 hours with free access to water. 

Mice were weighed and their tails were slit slightly with a scissor. By gently 

massaging the tail, a drop of blood was sampled onto a glucometer strip. The value 

from the baseline blood sample (0 min) was taken as the fasting glucose value. 

Afterwards, 10 µl/g body weight of a 20% glucose injection solution (Glucose-20% B. 

Braun, Melsungen, Germany) was administered intraperitoneally (i. p.). Subsequent 

blood samples were taken and glucose values were measured at 15 min, 30 min and 

75 min after injection. 
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2.15  Laboratory chemistry  

 

All serum parameters were determined by the ‘Zentrallabor des Universitätsklinikums 

des Saarlandes’ (Homburg, Germany) with kind assistance from MTA Marga Sand-

Hill and Prof. Dr. Jürgen Geisel.  

 

Mice were killed by cervical dislocation at the age of 2.5 weeks for blood sampling. 

To obtain the serum, whole blood was centrifuged for 10 min at 4,000 rpm before the 

supernatant was transferred into a fresh tube, diluted 1:3 with 0.9% NaCl, stored at   

-20°C and transported at 4°C until measurement. 

 

All samples were measured in a PPE Modular analyser using Roche® reagents at a 

constant temperature of 37°C (Roche Diagnostics, Ma nnheim, Germany). 

 

2.15.1   Enzymes 

 

Enzymes are biomolecules which catalyze chemical reactions (i. e. by lowering 

activation energy, they increase the conversion rate of substrates). Enzymes are 

solved in the cytoplasm or bound to specific cell compartments. Higher plasma 

enzyme levels are caused either by a physiological increase in enzyme synthesis 

during growth or by pathophysiological lesons in the cell membrane. Enzyme activity 

measurements are usually based on the principle of a photometrically determined 

change in absorption which is proportional to the enzyme activity. The measurement 

unit of 1 U corresponds to the turnover of 1 µmol substrate per minute. Determination 

of plasma enzyme concentrations is important in the diagnosis of tissue damage as 

well as for the severity and dimension of the damage. 

 

2.15.1.1  Transaminases 

 

Transaminases, i. e. alanine amino transferase ALT (GPT) and aspartate amino 

transferase AST (GOT) belong to a group of enzymes, which reversibly convert 

amino acids into the corresponding α-keto acids by transferring amino groups to 

coenzymes. Both transaminases were determined according to the International 
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Federation of Clinical Chemistry (IFCC). 7 µl of serum were measured. In case of the 

analyser making a second dilution of 1:20, 14 µl were used.  

 

2.15.1.1.1 ALT (GPT) 

 

ALT is located in the cytoplasm. Highest concentrations occur in the liver, followed by 

other organs like heart, kidney, skeletal muscle, pancreas, spleen and lung. ALT 

determinations are preliminary used for the diagnosis of liver parenchymal damage.  

 

Test principle: 

1. L-alanine + pyridoxalphosphate enzyme complex →  

  pyruvate + pyridoxaminphosphate enzyme complex 

 2. α- Ketoglutarat + pyridoxaminphosphate enzyme complex → 

  L-glutamate + pyridoxalphosphate enzyme complex 

 

The increase in pyruvate is measured in the linked lactate dehydrogenase reaction. 

 Pyruvate + NADH + H+ → lactate + NAD+ 

 

The speed of the decrease in extinction at a wave-length of 340 nm is determined by 

the degradation rate of NADH which is proportional to the development of pyruvate 

and therefore to the ALT activity. 

 

2.15.1.1.2 AST (GOT) 

 

70% of AST is bound to the mitochondria whereas 30% are located in the cytoplasm. 

With an increase in severity of the damage, the fraction of AST from the mitochondria 

will rise. A pathophysiological increase in AST levels is observed during liver, heart 

and skeletal muscle damages as well as in haemolysis. 

 

Test principle: 

1. L-aspartate + pyridoxalphosphate enzyme complex →    

  oxalacetate + pyridoxaminphosphate enzyme complex 

2. α- Ketoglutarat + pyridoxaminphosphate enzyme complex → 

  L-glutamate + pyridoxalphosphate enzyme complex 
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The increase in oxalic acetate is determined in the linked malate dehydrogenase 

reaction. 

Oxalic acetate + NADH + H+ → malate + NAD+ 

 

The speed of the decrease in extinction at a wave-length of 340 nm is determined by 

the degradation rate of NADH which is proportional to the development of oxalic 

acetate and therefore to the AST activity. 

 

2.15.2   Substrates and metabolites 

 

Substrates participate in metabolism. Physiological concentrations are normally kept 

up in the plasma. Often, the level of organ specific substrates does not change until 

metabolism and organ function are severely disturbed. 

 

2.15.2.1 Cholesterol and HDL 

 

Cholesterol is a lipidic steroid primarily synthesized de novo in the liver, required for 

membrane permeability and fluidity. Plasma cholesterol is bound to lipoproteins, 

which can be fractionized into low density lipoprotein (LDL), high density lipoprotein 

(HDL); very low density lipoprotein (VDL), and chylomicrons. HDL particles are 

thought to transport cholesterol back to the liver for excretion or to other tissues that 

use cholesterol to synthesize hormones.  

 

High levels of cholesterol in the blood are strongly associated with atherosclerosis 

and with lipid metabolic disorders. Hypercholesterolemia is diagnosed with several 

diseases, among which are cholestasis, cirrhosis and diabetes mellitus, while high 

levels of HDL correlate with a better health outcome. 

 

2.15.2.2   Triglycerides 

 

Triacylglycerol is a glyceride in which glycerol is esterified with three fatty acids. High 

levels of triglycerides are linked to atherosclerosis, heart disease and stroke and 

pancreatitis. Triglyceride measurements are used for the diagnosis of lipid metabolic 

disorders and for the classification of hyperlipidemias.  
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Cholesterol and triglycerides were measured according to the CHOD-PAP method. 

Detergents release cholesterol and his esters from lipoproteins. Cholesterol esterase 

hydrolyzes cholesterol which is then oxidized by cholesteroloxidase. Thereby, 

hydrogen peroxide is built, which is in the presence of peroxidase and 4-

aminoantipyrine, converted into chinonimine. Triglycerides were hydrolysed to 

glycerol and fatty acids. Glycerol is oxidized and thereby hydrogen peroxide is built.  

 

The resulting dye is measured at a wave-length of 505 nm. The intensity of the colour 

is thereby proportional to the concentration of triglycerides. HDL was determined by a 

homogenic enzymatic test. For measurement of cholesterol and triglycerides 2 µl 

serum and for measurement of HDL 2.1 µl of serum were used. 
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3.  Results 

 

p62 was originally identified as tumor-associated autoantigen in HCC (Zhang, Chan 

et al. 1999) but biological actions of the protein have as yet been completely 

unknown.  

 

Therefore, mice overexpressing p62 exclusively in the liver were generated by the 

group of Dr. Tan (The Scripps Research Institute, La Jolla, USA) in order to 

investigate functional implications of hepatic p62 expression. 

 

3.1  Liver specific expression of p62  
 
The chromosomal insertion of the transgene for the mouse lineage used for all 

experimental procedures is not known.  

 

Northern and Western Blots revealed that neither p62+/LT2- nor p62-/LT2+ mice but 

solely double-positive p62+/LT2+ mice from both lineages express p62 in the liver 

(Figure 15, data kindly provided by Dr. Fu-Dong Shi and data not shown). 

 

Doxycyclin administration abrogated p62 expression (data not shown, experiments 

performed by PD Dr.Alexandra K. Kiemer). 

 

All single- and double-transgenic mice are fertile and show normal development. No 

spontanous occurence of liver tumours for up to two years was observed. 
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Figure 15:   Northern Blot. 

p62 expression in different mouse organs. Only in livers of p62 
transgenic mice the 2.0 kb band corresponding to p62 mRNA could 
be detected. 

 

 

All experiments were performed either in liver tissue or in isolated hepatocytes from 

p62 transgenic mice (+/+: “p62”) in comparison to control mice (-/+: “co”) carrying the 

liver specific promoter but showing no overexpression of the p62 transgene. Mice 

homo- and heterozygous of both groups were used for the experiments.  

 

Figure 16 shows that p62 expression is restricted to the cytoplasm and that the 

transgene is expressed in a high percentage of hepatocytes.  

          co                       p62 

 
Figure 16:  p62 localization.  

Immunostaining of p62 in liver tissue. An increase in cytoplasmic 
staining was detected in p62 transgenic animals (right, p62) in 
comparison to controls (left, co) (paraffin-embedded; 20x original 
magnification). 
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3.1.1   Genotyping of p62 mice 

 

For genotyping of mice, a PCR was performed with two primer pairs, which allows 

detection of the p62 transgene and the LT2 gene. With the primer pair “p62 lower” 

and “p62 upper” a band of 350 bp was detected, whereas the primer pair “LT2 lower” 

and “LT2 upper” detected a band of 500 bp in size. With the PCR reaction, all 

possible genotypes can be detected. Figure 17 illustrates the two possible 

amplification products.  

 

In p62-/LT2+ mice only one band of 500 bp appeared, corresponding to the LT2 gene, 

whereas in p62+/LT2+ mice, two bands could be detected, one of 500 bp and one of 

350 bp, the latter corresponding to the p62 transgene. Also p62+/LT2- mice were 

detected, corresponding to a 350 bp band in size in the absence of a 500 bp LT2 

band (data not shown). These mice do not overexpress the transgene. 

 

 
 

Figure 17:   Genotyping of p62 transgenic mice.  

PCR products were loaded onto a 1.5% agarose gel. The 500 bp 
band corresponds to LT2, the 350 bp band matches p62.  

 
 

3.1.2   Genotyping of p62/LT2/SD7 mice by allele-specific PCR 

 

For the imprinting analyses, mice were selected for the insertion of the Mus spretus 

into the Mus domesticus background. SD7 mice carry the Mus spretus distal 

chromosome 7 on a C57BL/6 Mus domesticus background. By crossing these mice 

with mice on a Mus domesticus background, the inheritance of the parental alleles 

can be examined. To distinguish between the Mus spretus and the Mus domesticus 

background, two PCR reactions using microsatellite primers were performed to 

analyse the recombination events in the progeny of p62 x SD7 mice.  
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Microsatellites (also called single sequence repeats, SSR) are sequences composed 

of tandem repeats from one to six bases in length, which are arranged head-to-tail 

without interruption (Hancock, Worthey et al. 2001). 

  

The primer pair “D7 Mit 12 for” and “D7 Mit 12 rev” detected a band of 220 bp 

corresponding to the Mus spretus background, whereas a band of 197 bp was 

detected on the Mus domesticus C57BL/6 background (Figure 18 A). Only mice 

where both bands were detected in the genotyping PCR were selected for the 

experiments. 

 

The primer pair “D7 Mit 140 for” and “D7 Mit 140 rev” detected a band of 125 bp 

corresponding to the Mus spretus background. The band of 137 bp appeared when a 

Mus domesticus background existed (Figure 18 B). Only mice showing both bands in 

the genotyping PCR were used for the experiments. 

 

 
 
A 

 

 
 
 
B 

 

    
 
 

Figure 18: Genotyping of the progeny of p62 x SD7. 

A Bands show PCR products from “D7 Mit 12” amplification. The band 
of 220 bp in size corresponds to the Mus spretus origin of the parental 
allele. The band of 197 bp in size relates to the Mus domesticus 
origin. 

B Bands show PCR products from “D7 Mit 140” amplification The band 
of 125 bp corresponds to the Mus spretus origin, whereas the band of 
137 bp relates to the Mus domesticus origin. 
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3.1.3  p62 expression 

 

Figure 19 show that 5 week old p62 transgenic animals displayed the highest levels 

of p62 mRNA. 

 

 

 

Figure 19:   p62 mRNA expression.  

p62 expression was determined by real-time RT-PCR in p62 
transgenic mice (n>6), expressed as the mean ± S.E.M. A value of 
p<0.005 (*) represented a statistically significant difference compared 
to controls using student´ s t-test. 

 

 

3.2  Induction of a fatty liver disease phenotype 
 
In order to investigate changes in liver morphology caused by p62 overexpression, 

histological investigations were performed on liver tissue from p62 transgenic and 

control mice. Mice at the age of 2.5 and 5 weeks were examined.  

 

3.2.1   HE  

 

HE staining of sections suggested morphological changes in p62 transgenic livers. 

Stainings showed a homogenous distribution of HE in healthy tissue, whereas in p62 

transgenic livers the cytoplasm of eosinophilic cells, predominately located around 

the central veins (Rappaport zone 1), were stained stronger than pericentral and 

central-lobular (Rappaport zones 2 + 3)  (Rappaport 1960; Rappaport 1976) 

cytoplasmic areas, where basophilic cells predominated (Figure 20).  
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Leukocyte infiltration was not observed with p62 overexpression. Examination of 

livers from 5 week old animals displayed no such staining differences. Leukocyte 

infiltration was not elevated under p62 overexpression in both groups. 

 

    co          p62   

 

 

Figure 20:   Histological alterations in 2.5 week old mice.  

HE-stained liver tissue of control mice (left, co) in comparison to p62  
transgenic animals (right, p62) (paraffin-embedded, 20x original 
magnification). Basophilic cells are shown in both groups, whereas 
eosinophilic cells were only detected in p62 transgenic animals. Areas 
of basophilic cells (→) are pericentrally located. (►)displays 
accumulation of eosinophilic cells. 

 

 

3.2.2  Scharlach Red  

 

Liver architecture gave hints on an accumulation of fatty acids as presumed from the 

occurrence of empty vacuoles in paraffin-embedded liver tissue. Therefore, 

investigations on specific fat staining were performed. In comparison to controls, the 

p62 transgenic tissue of 2.5 week old mice showed a significant increase in finely 

dispersed fat droplets without a zonal preference (Figure 21).  
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Figure 21:   Fat droplets in 2.5 week old mice. 

Scharlach Red stained cryosected liver tissues of controls (left, co) in 
comparison to p62 transgenic mice (right, p62) (cryosected; 40x 
original magnification). A microvesicular distribution of fatty acids 
occurred in hepatocytes of transgenic animals. 

 

In 2.5 week old animals, 21 transgenic livers were stained and compared to 14 

controls. 12 transgenic livers, i. e. 57% showed a strong reaction with Scharlach Red 

due to the accumulation of fat, revealing the phenotype of a fatty liver. 

 

p62 transgenic females displayed a higher frequency in the occurrence of the fatty 

liver phenotype (66%) when compared to males (44%). In addition to microscopic 

differences, fatty livers macroscopically occurred with pale colour (data not shown). 

 

For the age of 5 weeks, no significant difference was observed between the two 

experimental groups (data not shown). 

 

3.2.3   PAS 

 

Metabolic differences were also seen regarding carbohydrate macromolecules, i. e. 

glycogen. At the age of 2.5 weeks, a decrease in glycogen staining was observed in 

livers of p62 transgenic mice (n=12) in comparison to controls (n=7) (Figure 22). 

Whereas an accumulation of glycogen in Rappaport zones 1 + 2 around the central 

veins could be detected in some transgenics (n=4), others displayed a homogenic 

distribution with no zonal preference (n=8).  
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For 5 week old mice, no significant changes between the two groups could be found 

(data not shown).  
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Figure 22:   Glycogen staining. 

PAS-stained liver tissue of control animals (left, co) in comparison to 
p62 transgenic animals (right, p62) (paraffin-embedded; 20x original 
magnification). (→) show the accumulation of glycogen around the 
central vein in p62 transgenic animals. 

 

3.3  Increased liver to body weight ratio 

 

Fatty livers might result from higher body weight due to impaired hepatic lipid export 

and favoured hepatic triglyceride (TG) accumulation (Angulo 2002). As we could 

detect hints on pathological changes similar to steatosis and steatohepatitis occurring 

under p62 overexpression, we were interested in potential changes in liver and/or 

body weight. 

 

For neither body nor liver weight, we could detect any significant differences between 

both examined groups at the age of 2.5, 5 and 10 weeks. Moreover, no gender-

specific differences were detected (data not shown). 

 

Interestingly, at the age of 2.5 weeks when the phenotypic alterations caused by p62 

overexpression were highest, the liver to body weight ratio revealed a significant 

difference between control and transgenic mice (Figure 23).  

 

→ 

→ 
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Figure 23:   Liver to body weight ratio. 

Liver to body weight ratio of 2.5 (co: n=26 / tr: n=29), 5 (co: n=12 / tr: 
n=12) and 10 (co: n=6/ tr: n=3) week old mice, expressed as the 
ratio*1000, representing the mean ± S.E.M. A p<0.05 (*) represents a 
statistically significant difference compared to controls using student´s 
t-test. 

 

 

3.4   Absence of liver damage 

 

Since alterations in metabolism and liver architecture were revealed only in 2.5 week 

old mice, we decided to determine lipid (cholesterol, HDLC, triglycerides) serum 

parameters also in this age group. Since the incidence of fatty livers seemed higher 

in female animals, we also considered gender-specific differences.  

 

3.4.1  Serum lipids 

 

No relevant differences in cholesterol or HDLC values were revealed, neither with 

regard to gender-specificity nor to the experimental groups (Table 1). 

 

Interestingly, a significant increase in triglyceride serum levels was found when p62 

transgenic male mice were compared to their corresponding control littermates 

(Table 1), whereas no difference was detected for females. 
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          HDLC           CHOL            TG 

both 
sexes 

         87 ± 5           102 ± 6        104 ± 12 

male         102 ± 7           108 ± 7          73 ± 7  

                 
      co             
                 

female          84 ± 5             93 ± 5        144 ± 15 

both 
sexes 

         84 ± 6           103 ± 7        104 ± 13 

male          90 ± 9             90 ±11 
       109 ± 8 
      (*p<0.05) 

                 
     p62           
                 

female          86 ± 6            105 ± 5        125 ± 37 

 

Table 1:  Serum parameters of 2.5 week old p62 transgenic mice. 

Determination of lipid serum parameters in p62 transgenic mice 
(n=10, of which n=6 male and n=4 female) after 4 hours of fasting vs. 
controls (n=16, of which n=9 male and n= 7 female). Serum 
parameters expressed in mg/dl, representing the mean ± S.E.M. A 
value of p<0.05 (*) was considered statistically significant from 
respective controls using student´ s t-test. 

 

 

3.5    Absence of inflammatory parameters 

 

Since p62 transgenic animals developed histological liver alterations similar to a non-

alcoholic fatty liver disease (NAFLD), we aimed to determine whether they also show 

characteristics of a non-alcoholic steatohepatitis (NASH), additionally encompassing 

inflammation.  

 

3.5.1  Serum transaminases 

 

Since alterations in liver architecture occured in 2.5 week old mice only, serum 

transaminase (ALT, AST) parameters were examined only in this age group. Due to 

the preferred incidence of fatty livers in female animals, gender-specific differences 

were also considered. 

 

ALT levels displayed a decrease in transgenic mice compared to controls, with a 

difference being most considerable in female animals.  
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Determination of serum AST levels, which would also indicate liver damage, showed 

the same non-significant result, with the most potent decrease in female 

transgenics´. 

The de Ritis ratio showed a significant increase in p62 transgenic females (Table 2). 

Although this single result might be interpreted as a hint on perturbations in liver 

function, the data do not suggest that a pronounced liver damage is induced in p62 

transgenic animals. 

 

 ALT AST De Ritis 
ratio 

both sexes 357 ± 40 2564 ± 299 6.29 ± 0.25 
male 312 ± 36 2289 ± 189 7.65 ± 0.55 

            
co        
            female 439 ± 112 2488 ± 592 4.02 ± 0.76 

both sexes 263 ± 43 1749 ± 254 5.99 ± 0.32 
male 278 ± 56 1972 ± 437 5.45 ± 1.35 

            
p62      
            female 248 ± 27 1677 ± 840 

6.81 ± 0.88   
(*p<0.05) 

  

Table 2:   Transaminase levels. 

Serum ALT and AST levels (U/l) determined after 4 hours of fasting of 
p62 transgenic mice (n=7, of which n=4 male and n=3 female) vs. 
controls (n=14, of which n=9 male and n=5 female). Data are 
expressed as the mean ± S.E.M. A value of p<0.05 (*) was 
considered statistically significant from controls of the respective 
gender using student´ s t-test. 

 

 

3.5.2  Immunohistology of NF- кB 

 

Although the absence of leukocyte infiltration did not suggest any signs of 

inflammation, a potential activation/ translocation of NF-кB (p65 subunit) was 

investigated, which plays a pivotal role in the inflammatory response (Winwood and 

Arthur 1993; Luedde, Beraza et al. 2006).  

 

15 min and 30 min LPS stimulated livers from C57BL/6 mice served as positive 

controls. Staining in LPS-treated positive control livers displayed an increase in 

nuclear staining of immune cells but neither in cytoplasmic nor nuclear staining of 

hepatocytes (Figure 24 A).  

 

p62 transgenic livers did not show increased nuclear p65 staining, indicating 

inflammatory activity (Figure 24 B). Therefore, it can be concluded that p62 does not 
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promote chronic inflammatory processes as already indicated by serum parameter 

values and by the absence of observed leukocyte infiltration.  

Interestingly, an increase in cytoplasmic staining of hepatocytes in p62 transgenic 

mice was revealed in 12 of 15 animals (80%). Moreover, about one third of the 

transgenic livers displayed a higher occurrence of positively stained hepatocytes in 

Rappaport zone 3.  

For 5 week old mice, no difference in neither cytoplasmic nor nuclear staining of liver 

cells between both experimental groups could be revealed (data not shown). 

 

    co               p62  

 A 

 

 

 

 

 

 

 

 

             B 

 

 

   

 

 

 

 

 

 

 

Figure 24:  20x original magnification of paraffin-embedded slides.  
Immunostaining of NF-кB p65. 

A NF-кB (p65) stained liver tissues 15 min (left) and 30 min (right) after 
LPS treatment. The increase in nuclear staining of immune cells is 
indicated by arrows (►). 

B NF-кB (p65) stained liver tissue of p62 mice (left: co), (right: p62). An 
increase in cytoplasmic hepatocyte staining was detected for p62 
transgenic animals. 
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3.6   Increased expression of IGF2 and H19  

 

Since p62 belongs to the family of IGF2 mRNA-binding proteins (Zhang, Chan et al. 

1999) and due to the fact that IGF2 has been associated with metabolic disorders, 

we were interested in potential changes in IGF2 expression in p62 transgenic mice. 

At the same time H19 was determined, due to the fact of the similar regulation of 

both genes by genomic imprinting (Sasaki, Ishihara et al. 2000). 

 

For all investigated ages (2.5, 5 and 10 weeks) an upregulation of IGF2 and H19 

could be shown for p62 transgenic animals in comparison to controls (Figure 25).  

 

Interstingly, however, expression of both IGF2 and H19 was highest at the age of 2.5 

weeks when phenotypic alterations were most obvious. 

 

At the age of 2.5 and 5 weeks a significant upregulation of IGF2 and H19 could be 

shown for p62 transgenic mice in comparison to control animals. 10 week old 

animals followed that tendency. 

 

 
 

Figure 25:   Time course of mRNA expression. 

Log ratio of IGF2 and H19 to 18S in p62 transgenic mice vs. controls, 
expressed as the mean ± S.E.M. Experiments were performed for a 
minimum of n=6 mice per group. A value of p<0.05 (*), a p<0.005 (**) 
and a p<0.001 (***) was considered statistically different from controls 
at the respective age using student´ s t-test. 
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Correlation data revealed that with raised p62 expression, the induction of IGF2 and 

H19 increased within one age group (Figure 26). Increased IGF2 expresssion was 

accompanied by elevated H19 expression. Noteworthy, female p62 transgenic mice 

displayed higher levels of p62, IGF2 and H19 than their corresponding male 

littermates.  

 

 
 

Figure 26:   Correlation graphics of p62, IGF2 and H19 mRNA expression of 2.5 
week old p62 transgenic animals.  

p62 is expressed as the ratio normalized to 18S and blotted against 
the x-fold values of IGF2 (B) or H19 (C) compared to controls. 
Correlation between IGF2 and H19 mRNA expression (D), expressed 
as x-fold values of control (n=4) and transgenic (n=9) mice. ♀ shows 
gene expression levels in female p62 transgenic animals. 
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To exclude genetic predisposition, the correlation of p62, IGF2 and H19 gene 

expression was demonstrated after application of doxycycline to p62 transgenic 

mice.  

 

Doxycycline abrogated p62 expression, and a reduction in mRNA expression of IGF2 

and H19 could be verified by real-time RT-PCR (Figure 27, data kindly provided by 

Prof. Dr. A. K. Kiemer). 

 

 
 

Figure 27:  Time course of mRNA expression after doxycycline (dox) 
administration.  

Ratio of p62, IGF2 and H19 normalized to 18S in p62 transgenic mice 
(dox) vs. untreated p62 transgenic animals (no dox), expressed as the 
mean ± S.E.M. 

 

 

3.7   Localisation of p62 and IGF2 

 

Staining of p62 and IGF2 in p62 transgenic livers revealed a diffuse pattern with 

areas of only weak staining and clusters of hepatocytes showing strong 

immunoreactivity within the cytoplasm and therefore high expression of p62 and 

IGF2. Both proteins are located in the cytoplasm. No zonal preference was observed 

(Figure 28). 

 

It is worth mentioning that immunostaining of p62 and IGF2 in serial sections from 

p62 transgenic livers demonstrated that hepatocytes, which display high expression 

levels of p62 showed an increase in IGF2 protein, too (Figure 28).  
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   p62                  IGF2 

 

 

Figure 28:   Immunostaining of p62 and IGF2. 

Serial sections of the tissue of a 2.5 week old p62 transgenic liver, 
stained with an antibody against p62 (left) and IGF2 (right) (paraffin-
embedded; 20x magnification). Cells displaying strong immunostaing 
of p62 also showed increased IGF2 expression, indicated by (→). 

 

 

3.8   No alteration of IGF2 and H19 mRNA stability  

 

p62 is known to belong to the family of insulin-like growth-factor 2 mRNA-binding 

proteins (Nielsen, Christiansen et al. 1999). mRNA-binding proteins can play a role in 

the regulation of mRNA stability.  

 

Because of the fact that p62 expression resulted in an upregulation of IGF2 and H19 

mRNA levels and IMPs have been shown to bind also to H19 (Runge, Nielsen et al. 

2000), mRNA stability of IGF2 and H19 in p62 transgenic mice were estimated in 

isolated and actinomycin D (Act D) treated hepatocytes.  

 

Figure 15 shows that steady-state levels of all mRNAs decreased after treatment with 

Act D, but more than 60% of mRNA levels were left after 10 h suggesting high mRNA 

half-lives for all three transcripts (Eberhardt, Doller et al. 2007). The decay of IGF2 

and H19 was comparable between both experimental groups over the time course. 

These results indicate that both IGF2 and H19 stability is not altered by the presence 

of p62 (Figure 29). 
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Figure 29:  mRNA stability. 

mRNA expression in hepatocytes isolated from p62 transgenic (n=3) 
vs. control (n=3) mice. Data are expressed as the mean ± S.E.M. 
relative mRNA expression after Act D (10 µg/ml) treatment for 4, 6, 8 
and 10 hours normalized to cyclophilin. Data expressed relative to 
untreated cells of the same isolation (0 h), set as 100%. 
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3.9   Monoallelic expression of IGF2 and H19 

 

To elucidate allele-specific expression of IGF2 and H19, single-nucleotide primer 

extension (SNuPE)-HPLC analysis was performed on liver tissues from newborns 

and 2.5 week old mice.  

 

To be able to distinguish between the origin of the paternal allele, SD7 mice (carrying 

the Mus spretus distal chromosome 7 on a C57BL/6 Mus domesticus background) 

were crossed with p62 transgenic mice (Moore, Constancia et al. 1997). SD7 mice 

provide a source of single-nucleotide polymorphisms (SNPs) to distinguish 

expression of all the genes present on this gene locus, including IGF2 and H19. 

 

For verification that endogenous, i. e. mup62, has no influence on allele-specific 

IGF2 or H19 expression, expression levels of mup62 were examined by real-time 

RT-PCR (Figure 30). Results showed a non-significant decrease in mup62 

expression in transgenic mice, which may be evoked by p62 overexpression. 

 

Real-time RT-PCR experiments on the cDNA of livers derived from p62 transgenic 

newborns showed only a weak increase in IGF2 and H19 compared to control 

animals (Figure 31). Since phenotypic alterations were most obvious when IGF2 and 

H19 expression was highest, a second set of experiments with 2.5 week old mice 

was performed. 
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Figure 30: mRNA expression of mup62 in newborn p62/SD7 mice.  

Data is expressed as the the relative expression ± S.E.M. Results 
show 1 experiment, performed with a minimum of 4 animals per 
group. 

 

 

            
Figure 31:  IGF2 and H19 mRNA expression in newborn and 2.5 week p62/SD7 

mice.  

Data expressed as the x-fold values ± S.E.M. of transgenic vs. control 
animals. (*) p<0.05 statistically different from controls of the 
respective age using student´ s t-test. 
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Besides, cDNA was used for the amplification of IGF2 and H19 transcripts in SNuPE 

reactions. A 16 bp primer, which ends directly before the 3´ end of the polymorphism, 

is annealed and elongated by exactly one allele-specific didesoxynucleotide 

(ddNTP). The reaction is aborted after incorporation of a ddNTP because ddNTPs do 

not carry a free hydroxyl group at the 3´ residue and cannot be elongated.  

 

An aliquot of the SNuPE reaction was loaded onto an HPLC column and eluted DNA 

was detected with a UV detector at 260 nm.  

 

IGF2 products derived from the Mus domesticus background (p62) led to the addition 

of a ddTTP whereas IGF2 products derived from the Mus spretus background (SD7) 

resulted in a ddCTP. 

 

H19 products reciprocally correlated with the IGF2 results: the ddCTP concluded for 

the Mus domesticus background whereas a ddTTP originated from Mus spretus.  

 

After amplification three products can be distinguished from each other: 

 

unextended primer    5´ TCAGTGAATCAAATTA 3´ 

 

T-extended primer (M. dom.) 5´ TCAGTGAATCAAATTAddTTP 3´ 

     → reaction stopp 

 

C-extended primer (M.spret.) 5´ TCAGTGAATCAAATTAddCTP 3´ 

     → reaction stopp 

 

The three products can be distinguished according to their hydrophobicities, thereby 

following the principle that with increasing hydrophoby, eluation occurs earlier, i. e. 

the unextended primer lacking a base compared to the extended ones leaves the 

column first. As cytosine (C) is more hydrophilic than thymidine (T), products carrying 

a C are eluted earlier than products carrying a T. 
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For both examined ages, a mono-allelic expression of IGF2 and H19 was shown 

(Figure 32) in control as well as p62 transgenic mice: IGF2 is paternally and H19 is 

maternally expressed, as can be seen for values on the allele-specific index (Table 

3). 

 

  H19 MW H19 ± SEM IGF2 MW IGF2 ± SEM 
newborn transgenic mice 0.94 0.01 1.00 0.00 
newborn control mice 0.92 0.02 1.00 0.00 
2.5 week transgenic mice 1.00 0.00 1.00 0.00 
2.5 week control mice 1.00 0.00 1.00 0.00 

 

Table 3:   Allele-specific index of H19 and IGF2 expression after SnuPE-HPLC 
detection.  

Results are obtained by determination of the peak heights of the C- 
and T-extended primers and calculating the ratio h(C)/ h(C)+ h(T) 
(newborn: p62: n=7, co: n=6; 2.5 week: p62: n=8; co: n=4). No 
statistically significant difference could be determined between both 
examined groups. 
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Figure 32:  Allele-specific expression of IGF2 and H19.  

Representative HPLC chromatograms showing amplification products 
for IGF2 (above) and H19 (below) in the SNuPE reaction in 2.5 week 
old transgenic heterozygous p62/SD7 mice (n=8, right) vs. controls 
(n=4, left). 
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3.10   Correlation between p62 and IGF2 and H19 
in human hepatoma cells 

 

The relationship between p62 and IGF2/H19 observed in p62 transgenic mice was 

investigated also in human cells by knocking down p62 by siRNA and determine 

IGF2 and H19 expression. 

 

We decided to use different hepatoma cell lines due to variations in basal expression 

levels of p62. In contrast to Alexander cells, HepG2 and HUH7 express more p62 

protein (Figure 33). 

 

Figure 33:  p62 protein expression in three different human hepatoma cell lines. 

Protein expression was determined by Western Blot with 3.5 µg whole 
protein lysate loaded onto an 8% SDS gel.  

 

 

For each experiment, cells were treated with a random siRNA to exclude unspecific 

gene knockdown. Western Blot experiments underline the specificity of the p62 

siRNA. As Figure 34 points out, random siRNA did not lead to alterations in the 

protein expression of p62.  

 

The effect of siRNA-mediated knockdown of p62 was observed on the protein level 

after 48 h and 72 h (Figure 34), whereas no effect was observed 24 h after cell 

transfection (data not shown).  
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Figure 34:   p62 protein in human hepatoma cells after RNAi transfection.  

The 62kDa band of p62 was determined by Western Blot. The 
difference in protein expression is shown after 48 h and 72 h after 
siRNA-mediated gene knockdown of p62 (lane #3) in comparison to 
InterferinTM (lane #2) and random siRNA (lane #1) treated cells. Equal 
concentrations of 5 µg whole protein lysates were loaded per lane.  

 

 

The observations made on the protein level could be confirmed for mRNA.  

 

According to mRNA expression levels no significant difference for each examined 

cell line, time point and gene was measured for random siRNA and InterferinTM 

treatment (Figure 35), whereas a significant decrease of p62 mRNA was detected, 

coexistent with a significantly reduced mRNA expression of IGF2 and H19 (Figure 

35) after p62-siRNA-mediated gene-knockdown.  
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Figure 35:   mRNA expression in (A) HepG2 (upper left), (B) HUH7 (upper right) and (C) 
  Alexander cells (below) after siRNA-mediated knockdown of p62.  

mRNA expression of p62, IGF2 and H19 48 h (upper) and 72 h (lower). Gene 
expression is shown in % relative to controls (Interferin/mock treatment), 
representing the mean ± S.E.M. A value of p<0.05 (*), of p<0.005 (**) and of 
p<0.0005 (***) was considered statistically different using student´ s t-test, whereas 
no statistical significance was detected for random siRNA-treated cells. 
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In summary, the RNAi experiments confirmed the relation of IGF2, H19 and p62 in 

human hepatoma cells.  

 

Further experiments focussed on the question whether the influence of p62 on IGF2 

exerted functional consequences on protein kinase B/AKT and the inversely 

correlated PTEN pathway in p62 transgenic mice.  

 

3.11   Increased phosphorylation of the protein kinase AKT   

 

IGF2 dependent downstream signalling is known to exert anti-apoptotic effects via 

AKT to counteract programmed cell death while at the same time supporting cell 

proliferation (Cory, Vaux et al. 1999). 

AKT phosphorylation at Ser473 was examined in liver protein extracts from 2.5, 5 

and 10 week old mice. Significantly enhanced AKT phosphorylation was observed in 

transgenic livers from 5 and 10 week old animals, whereas 2.5 week old animals 

showed no changes (Figures 36 A + B). 
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Figure 36:   AKT activation. 

A Western Blot experiments showing the phosphorylation of AKT in 
transgenic p62 animals at the age of 2.5, 5 and 10 weeks normalized to α-
tubulin. 

B Quantification of (A) expressed as the mean x-fold values ± S.E.M. 
Values of (*) p<0.05 and (**) p<0.01 were considered statistically different 
compared to values of control animals of the respective age using student´ s t-
test. (2.5 weeks co: n=6, tr: n=7; 5 weeks co: n=4, tr: n=5; 10 weeks co: n= 7, 
tr: n=6). 
 

 

3.12   ActD/TNF-α-induced apoptosis protection 

 

The observation of activated AKT in p62 transgenic animals suggested a potential 

anti-apoptotic phenotype since pAKT can prevent cells from undergoing apoptosis. 

This is why the extent of apoptosis induction was assayed using hepatocytes derived 

from control as well as from p62 transgenic mice.  

 

Figure 37 A shows that hepatocytes from p62 transgenic mice displayed significantly 

lower caspase-3-like activity upon apoptosis induction by Act D/TNF-α when 

compared to control hepatocytes.  

 

In order to investigate whether programmed cell death was detected in p62 

transgenic livers in vivo, caspase activities in whole liver lysates were examined. 

However, p62 transgenic animals showed no significant differences to controls 
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(Figure 37 B). These results suggested a prominent apoptosis protection of 

hepatocytes in the presence of the p62 transgene. 

 

 
 A 
 

 

 
 B 
 

 

 

Figure 37:   

A Caspase-3-like activity in isolated hepatocytes. 

Hepatocytes were left untreated (co) or were treated with ActD for 15 
min followed by TNF-α-incubation for 20 h (ActD + TNF-α). Data are 
expressed as x-fold enzyme activity with control cells set as 1 
expressed as the mean ± S.E.M. (performed in triplicate). White 
columns show control mice (n=3), black columns show p62 transgenic 
mice (n=2). A value of p<0.001 (***) was considered statistically 
different from treated ActD/TNF-α non-transgenic hepatocytes. 

B Caspase-3-activity in liver tissue. 

Caspase-3-like activity in livers of 2.5, 5 and 10 week old p62 
transgenic animals is expressed in comparison to controls of the 
respective age set equal to 100%. The white column shows control 
mice (n=3 per age), black columns show p62 transgenic mice (n=3 
per age), expressed as the mean ± S.E.M. (performed in triplicate). 
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3.13   Decreased PTEN expression 
 

3.13.1  PTEN in p62 transgenic mice 

 

IGF2 is known to influence PTEN expression, which inversely correlates with the 

phosphorylation of AKT. As the Western Blot experiments revealed an increase in 

pAKT, PTEN expression levels in p62 transgenic mice were hypothesized to be 

altered, too. This was examined by Western Blot and real time PCR experiments.  

 

In p62 transgenic livers, a significant downregulation of the PTEN protein could be 

detected in liver extracts derived from 5 and from 10 week old transgenic mice. The 

tendency was the same for 2.5 week old mice, but could not be considered 

significant (Figures 38 A + B). 

 

A significant reduction in PTEN mRNA expression levels could be shown for 2.5 as 

well as for 10 week old p62 transgenic mice. The same tendency was measured for 5 

week old mice, but could not be considered significant (Figure 38 C). 
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Figure 38:  PTEN expression. 

A  PTEN protein in p62 mice at the age of 2.5, 5 and 10 weeks 
normalized to α-tubulin. 

B  Quantification of (A) expressed as the mean x-fold values ± S.E.M. 
Values of p<0.05 (*) and of p<0.01 (**) were considered statistically 
differentt from control animals of the respective age using student´ s t-
test. (2.5 weeks co: n=6, tr: n=7; 5 weeks co: n=4, tr: n=5; 10 weeks 
co: n=7, tr: n=6) 

C PTEN mRNA expression (%), representing the mean ± S.E.M. 
compared to control animals. Values of p<0.05 (*) and p<0.01 (**) 
were considered statistically significant in comparison to control 
animals of the respective age using student´ s t-test. (2.5 weeks co: 
n=8, tr: n=13; 5 weeks co: n=4, tr: n=6; 10 week co: n=8, tr: n=12) 
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3.13.2  PTEN in HepG2 cells 

 

p62 expression was knocked down by siRNA followed by determination of PTEN 

expression. In fact, 72 h after p62 siRNA-transfection of HepG2 cells, we measured a 

significant downregulation of PTEN, suggesting a causal effect of p62 on PTEN 

expression. This effect was not seen 48 h hours after p62 siRNA-transfection (Figure 

39). 

0

20

40

60

80

100

120

140

48 h 72 h

time points

%
 g

en
e 

ex
pr

es
si

on

co

random siRNA

si RNA p62

  *

 

 

Figure 39:   PTEN expression in HepG2 cells after p62 knockdown. 

mRNA expression of PTEN (%) in HepG2 cells 48 h and 72 h after 
p62 siRNA-mediated knockdown. Data represents the mean ± S.E.M. 
A value of p<0.05 (*) was considered statistically different from 
controls (= cells treated with InterferinTM transfection reagent only) 
using student´ s t-test. No statistically significant changes were 
detected for random siRNA-treated cells.  

 

3.14   Improved glucose tolerance 

 

Since histological analyses suggested metabolic changes in p62 transgenic animals 

at the age of 2.5 weeks, an intraperitoneal glucose tolerance test (IP-GTT) was 

performed at that age.  

 

Fasting levels of glucose were similar in control and p62 transgenic animals; also the 

end point values corresponded to the normoglycemic controls. The time course 

revealed a slight but not significantly improved glucose clearance of p62 transgenic 

animals at 30 min after glucose administration (Figure 40). 
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Since the observation was made that female mice display higher IGF2 levels and 

develop fatty livers to a higher extent than their male littermates, potential gender-

specific differences were assessed. 

 

Whereas the glucose tolerance distribution curve in male p62 transgenic mice did not 

reveal any significant differences in neither glucose uptake nor clearance (data not 

shown), in female p62 transgenic mice, however, a significant reduction of glucose 

levels at 30 min (69.5 ±10.8 %) and at 75 min (75.2 ± 15.1%) (both: p<0.05) in 

comparison to normoglycemic controls could be revealed.  

 

 
 

Figure 40:  Glucose tolerance test. 

Blood glucose values of 2.5 week old p62 transgenic mice after i.p. 
injection of 10 µl/g body weight glucose (20%). Blood glucose values 
are expressed as mg/dl, representing the mean ± S.E.M. (control: 
n=17,  transgenic: n=11). 

 
 
The area under the concentration time curve (AUC) is useful for calculating the 

relative efficiency of the elimination of substances from the body (Current Protocols 

in Molecular Biology, unit 29 B.3.10 (Heikkinen 2007)).  

 

The AUC for both genders revealed trends towards a slight but not significant 

reduction in glucose metabolism (Figure 41). However, in p62 transgenic females the 

AUC was significantly lower compared to controls, meaning that blood glucose 

clearance is increased (Figure 41).  
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In summary, the results indicate enhanced glucose clearance, i. e. enhanced 

responsiveness to glucose in the presence of p62 in females. 

 

 

 

Figure 41:  AUC of glucose levels.  

Values represent means ± S.E.M. integrated over 75 min. A value of 
p<0.05 (*) was considered statistically different from gender-specific 
controls using student´ s t-test. 
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4.  Discussion 

 

4.1   The p62 protein and HCC 

 

HCC is the primary malignant liver cancer and has a very poor prognosis of survival 

after diagnosis. In order to improve therapy and to prevent carcinogenesis, it is 

important to gain knowledge of the complex pathways involved in tumor 

development. These very complex mechanisms result from multiple aberrations in 

cell proliferation, apoptosis, cell metabolism, chronic inflammatory processes and 

genetic alterations (Ito, Urabe et al. 1995; Piao, Kim et al. 1997; Thorgeirsson and 

Grisham 2002; Koike 2007). Multiple epidemiological risk factors are known from the 

literature, which contribute to HCC development, among which hepatitis B and C 

virus infection as well as metabolic diseases like obesity and diabetes mellitus are 

the most important ones (Wong, Limm et al. 2000; Davies, Mason et al. 2004; Ruhl 

and Everhart 2004; Younossi, McCullough et al. 2004). 

 

4.1.1   p62 transgenic mice 

 

The p62 protein was originally isolated from patients suffering from HCC, where it 

was exclusively expressed in cancer nodules (Zhang, Chan et al. 1999). This 

exclusive expression of p62 in malignant tissue together with its appearance in fetal 

liver make it an oncofetal protein (Lu, Nakamura et al. 2001). Functional implications 

of the protein have as yet been completely unknown.  

 

Transgenic mice provide a powerful tool to study specific genes enabling to see what 

consequences result from gene silencing or overexpression. This is why p62 

transgenic mice were generated to examine the consequences of p62 

overexpression in the liver. This thesis comprises the first phenotypic 

characterization of these animals.  

 

Three different ages (2.5, 5 and 10 weeks of age) were analysed to examine a 

potential age-dependent expression rate of the p62 transgene. Indeed, with the p62 

mouse lineage, which was used to perform all experiments described in this work, an 
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impact of the strength of the p62 overexpression on the extent of the examined 

alterations could be confirmed.  

 

As seen in p62 transgenic animals, variegation of transgene expression, a 

heterocellular or mosaic expression pattern seen in all mice in a given transgenic 

line, is a frequently observed but unexplained phenomenon (Dobie, Mehtali et al. 

1997) so far. Although the integration site of the p62 transgene was not determined, 

it is known that the degree of heterocellular expression is determined at least in part 

of the site of integration. A respective position-effect variegation (PEV) was seen in 

mice with X-chromosome translocation (Henikoff 1992).  

 

Gene inactivation is associated with proximity to heterochromatic regions, which may 

spread along the chromosome and exert a repressive effect on the expression of 

flanking genes, and is also influenced by the cis-acting elements flanking the gene 

(Walters, Magis et al. 1996) and the presence of multiple copies of the transgene 

(Dorer and Henikoff 1997).  

 

Tetracycline controlled transcriptional regulation describes a reversible process of 

inducible activation (Tet-on) or silencing (Tet-off) of genes through administration of 

tetracycline and its derivatives, e. g. doxycycline (Hillen and Berens 1994) in the 

drinking water. In p62 transgenic mice, the tTA protein binds as a ‘tet’ operator to the 

HRP-CMVmin promotor, initializing mRNA expression of p62 exclusively in the liver, 

which is realized upon the liver enriched activator protein (LAP).  

 

To exclude that the induction of the p62 transgene occurred due to genetic 

predisposition, doxycycline was administered to p62 transgenic mice, which 

abrogated the expression of the transgene. As a consequence of the knockdown of 

p62 expression, IGF2 and H19 mRNA levels in fact decreased. These findings 

confirm the causal relation between p62 overexpression and IGF2 and H19 

induction. 

 

In general, correlation graphics showed that the increase in p62 expression resulted 

in higher IGF2 and/ or H19 levels. Moreover, correlation between the expression 

levels of IGF2 and H19 displayed that the increase of one gene is accompanied by 
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the increase of the other gene. Worth mentioning was that females expressed higher 

levels of the p62 transgene than their male littermates. Since also the metabolic 

growth factor IGF2 was expressed highest in females, a causal interaction can be 

suggested from this observation. 

 

Since immunostaining of p62 and IGF2 performed on serial sections of p62 

transgenic liver tissues confirmed the co-localization of both proteins in the cytoplasm 

of hepatocytes, a correlation on the protein level could be suggested. 

 

The experiments described in this work focus on the phenotypic characterization of 

liver-specific p62 overexpression in p62 transgenic mice. 

 

4.2   Phenotypic alterations 

 

4.2.1  Appearance of basophilic cell foci 

 

HE is a routine staining, giving a general overview of the cell morphology. Foci of 

cellular alterations can be classified as eosinophilic, basophilic, vacuolated, clear cell 

or mixed. Foci might progress to preneoplastic lesions and to carcinomas (Frith, 

Boothe et al. 1980; Ward and Lynch 1984).  

A first hint on a pathophysiological impact of p62 was given by the HE-stained 

sections as eosinophilic and basophilic foci appeared in the livers of p62 transgenic 

mice, whereas in controls eosinophilic cells predominated. Basophilic cell foci are 

considered to be one criterion required to diagnose cell malignancy, as this 

phenotype suggests a progressive cellular dedifferentiation (Su, Benner et al. 1997). 

The occurrence of basophilic cell foci in p62 transgenic mice might give a first hint on 

the implication of p62 in tumorigenesis. 

 

Concomitant with the HE staining results was the observation of Horie et al. in mice 

with a hepatocyte-specific PTEN null mutation (Horie, Suzuki et al. 2004): p62 

transgenic mice also demonstrated a central location of cell nuclei and a weakly 

eosinophilic staining of the cytoplasm of hepatocytes. 
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Liver architecture gave hints on an accumulation of neutral lipids as presumed from 

the occurrence of empty vacuoles in paraffin-embedded liver tissue of p62 transgenic 

mice. The evidence of a fatty liver phenotype was indicated by pale liver colour in 

other mouse models of NAFLD (Takahashi, Qi et al. 2004; Matsuzawa, Takamura et 

al. 2007), an observation also made in p62 transgenic animals. 

 

4.2.2  Fatty liver phenotype 

 

Changes in liver structure due to lipid accumulation have deleterious effects as they 

increase the risk of the development of diseases (Bugianesi, Leone et al. 2002). 

Metabolic disorders, such as obesity, lead to non-alcoholic fatty liver disease 

(NAFLD) resulting from enhanced accumulation of fat droplets in the liver (Polesel, 

Zucchetto et al. 2009). After a “second hit”, steatohepatitis is induced by 

inflammatory processes, then called NASH, which is followed by liver cirrhosis, 

possibly ending in HCC (Wasmuth 2007). Since a first hint on a pathophysiological 

impact of p62 was given by the HE-stained tissue sections, the presumed role of p62 

on the accumulation of fat droplets in hepatocytes was examined.  

 

Specific fat staining impressively revealed the phenotype of a fatty liver in a high 

proportion of 2.5 week old p62 transgenic animals, with females displaying more 

frequent accumulation of fat droplets than males. Accumulation of fat droplets within 

hepatocytes of p62 transgenic mice was finely dispersed; i. e. hepatocytes were not 

ballooned by the insertion of fat into the cytoplasm as found mostly in other genetic 

mouse models and in most cases of NAFLD (Burt, Mutton et al. 1998; Valls, 

Iannacconne et al. 2006). 

 

Two distinct patterns of fat droplets can be distinguished: macro- and microvesicular. 

The large droplet type (macrovesicular) is hallmarked by a single fat droplet, which 

displaces the nucleus (Burt, Mutton et al. 1998), whereas the small droplet type 

(microvesicular) shows a finely dispersed accumulation of fat droplets with no 

displacement of the nucleus. The microvesicular type is associated with hepatic 

dysfunction (Sherlock 1983), e. g. defects in ß-oxidation and might therefore 

represent a ‘first hit’ in subsequent malignant liver transformation. 
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Although during liver preparation single fatty livers were also noticed in older mice, 

this phenotype could only be proven as being significant in the youngest examined 

group of transgenic mice (2.5 weeks of age). This is on the one hand quite 

remarkable due to its early appearance during life. On the other hand, the fatty liver 

phenotype could be explained by the fact that 2.5 week old p62 transgenic animals 

express the highest IGF2 levels in comparison to their older siblings. Such an 

increase in IGF2 protein was also observed in fatty liver disease (FLD) in steatotic 

livers in humans (Chiappini, Barrier et al. 2006).  

 

The phenotype of a fatty liver clearly demonstrates the impact of p62 on changes in 

lipid metabolism. This can represent a ‘first hit’ in the initiation of a progressive liver 

disease, thereby contributing to HCC development. 

 

4.2.3  Disturbance in glycogen storage 

 

Glycogen is a polysaccharide consisting of several glucose molecules serving as a 

glucose reservoir within the body. Glycogen synthesis is located in the liver and 

changes in glycogen levels indicate metabolic disorders. From glycogen storage 

disease (GSD) it is known that a deficiency in the enzyme glucose-6-phosphatase 

impairs the ability of the liver to produce free glucose from glycogen and 

gluconeogenesis, resulting in hypoglycemia and hyperlipidemia, accompanied by an 

accumulation of glycogen and fat droplets in the liver (Burchell 1998). 

 

In rats with chemically induced liver cirrhosis a decrease in hepatic glycogen content 

was observed (Krähenbühl, Talos et al. 1996) and also in humans with alcohol-

induced liver cirrhosis reduced hepatic glycogen stores have been described (Owen, 

Reichle et al. 1981). Krähenbühl et al. could show that this is due to an impaired 

hepatocellular glycogen metabolism (Krähenbühl, Lang et al. 2003).  

 

The observed decrease of glycogen detected in 2.5 week old p62 transgenic livers 

might therefore represent an early stage of liver dysfunction. In this context, it is 

interesting to note that an inhomogenic distribution of glycogen was detected. 

Glycogen accumulation occured around the central veins, whereas Rappaport zone 2 

contained less glycogen. Similarily, rats display glycogen appearance in Rappaport 
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zone 1 after a fat-rich diet due to a disappearance of glycogen-synthesizing enzymes 

in Rappaport zone 2 (Chen and Katz 1988). This finding might suggest a link 

between glycogen and lipid changes evoked by p62 overexpression. 

 

The noticed decrease in glycogen storage is contradictory to the increased glycogen 

storage observed in mice with a liver-specific PTEN deletion (Stiles, Wang et al. 

2004). Interstingly, however, despite the fact that in p62 transgenic animals the 

PTEN gene was reduced at the age of 2.5 weeks, no change in AKT phosphorylation 

was detected. Since glycogen is synthesized in a pAKT-dependent fashion an 

increase of glycogen is not to be expected. 

 

A reexpression of IGF2 is associated with GSK-3 hyperphosphorylation in an in vivo 

mouse model of hepatocarcinogenesis (Desbois-Mouthon, Wendum et al. 2006), 

followed by inhibiton of glycogen synthase. Thus, preneoplastic liver lesions involve 

focal lack of glycogen storage (Bannasch, Klimek et al. 1997). Such a decrease in 

glycogen concomitant with an induction of IGF2 was also noticed in p62 transgenic 

animals, leading to the proposal that p62-mediated IGF2 overexpression results in 

changes in energy metabolism, which support the progression of malignant liver 

diseases.  

 

Moreover, the reduction of endogenous hepatic glycogen induced by p62 

overexpression could be a consequence of the accumulation of fat droplets within 

hepatocytes, which would disturb glycogen synthesis, as known from GSD 

(Bandsma, Smit et al. 2002). 

 

4.2.4  Metabolic alterations 

 

The interplay between glucose and lipid metabolism is triggered by the substrate 

uptake and distribution between peripheral tissues and the liver, as it was shown in 

several mouse models (Bruning, Michael et al. 1998; Abel, Smuts et al. 2001).  
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4.2.4.1 Increased liver to body weight ratio 

 

Association of the incidence and mortality of liver cancers with obesity was revealed 

in several studies, which showed a relationship between the high incidence of HCC 

in obese patients (Nair, Mason et al. 2002). Obesity is associated with decreased 

IGF2, which is a mitogen that stimulated cell growth (Gaunt, Cooper et al. 2001). 

 

The liver weight to body weight ratio displayed a significant increase in 2.5 week old 

p62 transgenic animals. This result corresponds to observations made in fatty livers 

developing in animals after feeding a high-fat diet (Otogawa, Kinoshita et al. 2007) or 

upon genetic manipulations (Wagener, Schmitt et al. 2006). Positive effects for IGF2 

on body and organ weights are reported (Zaina, Pettersson et al. 2003).  

 

4.2.4.2  Alteration of serum levels 

 

Regarding alterations in serum parameters, an increase in serum triglycerides (TG) 

in male p62 transgenic animals was detected, which was also found in mice with a 

liver-specific nuclear respiratory factor 1 (NRF-1) deletion, although gender-specific 

differences were not considered in this study (Xu, Chen et al. 2005). In contrast, 

female serum TG levels were lower as it was also shown in a work by Anezaki et al. 

working on PTEN k. o. mice (Anezaki, Ohshima et al. 2009). These results suggest 

that in p62 transgenic males, the redistribution of fat from other tissues to the liver 

and/ or an enhanced fat synthesis, or decreased lipolysis, might be changed upon 

p62 overexpression.  

 

The accumulation of TGs in p62 transgenic males could also be secondary to the 

reduction in glycogen storage. An increase in glycolysis leads to an enforced 

production of acetyl-CoA, which in turn stimulates lipogenesis, while at the same time 

inhibiting fatty acid oxidation in the liver. Fatty acids released after lipolysis are 

transported to the liver where they are used for triglyceride synthesis. This finally 

ends in steatosis due to the discrepancy between fatty acid uptake and synthesis on 

the one hand and fatty acid oxidation and release on the other hand (Bandsma, Smit 

et al. 2002). Furthermore, an impact on the rate of the synthesis of fatty acids and 

their secretion could probably be amplified through the p62-caused downregulation of 
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PTEN in p62 transgenic mice, as it was shown by Stiles after liver-specific PTEN 

deletion in mice (Stiles, Wang et al. 2004). 

 

4.2.5  Non-inflammatory phenotype 

 

The observations on changes in lipid and glucose metabolism arose the question 

whether p62 might not solely contribute to the ‘first hit’, i. e. fat accumulation, but also 

to the ‘second hit’, i. e. inflammation, thereby supporting the progression of a 

steatohepatits. In addition to the investigation of metabolic alterations in p62 

transgenic animals, experiments were performed to elucidate whether the fatty liver 

phenotype is accompanied by NASH, i. e. the simultaneous occurrence of 

inflammation besides fat acumulation. 

 

4.2.5.1  Absence of inflammatory parameters 

 

Acute inflammation is a necessary response to tissue injury, directed towards the 

restoration of normal tissue structure and/ or function. The dysregulation of 

inflammatory processes is involved in the pathogenesis of diseases. 

 

Elevated transaminase levels are parameters, which indicate inflammatory processes 

in the body. Both genders revealed a lack of transaminase increases, also observed 

in a genetic mouse model of NAFLD (Xu, Chen et al. 2005) suggesting a non-

inflammatory phenotype. Noteworthy in this context is the observation made by 

Hashimoto et al., which could reveal low levels of AST and ALT as independent 

predictors of HCC development in humans (Hashimoto, Yatsuji et al. 2009). To 

transcribe this result onto p62 transgenic mice would lead to the conclusion that the 

decrease in serum transaminase levels in the presence of the p62 transgene might 

contribute to the onset of HCC. 

 

On the other hand, Horie et al. demonstrated increased transaminase levels in 

hepatocyte-specific PTEN-deficient mice (Horie, Suzuki et al. 2004). This result is in 

contrast to the observation made in p62 transgenic mice. On the other hand, neither 

an increased in serum transaminase levels nor an accumulation of leukocytes could 

be revealed in 2.5 week old p62 transgenic livers.  
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4.2.5.2 Absence of NF- қB translocation 

 

NF-қB is a pivotal transcription factor involved in inflammatory processes. Upon 

activation, it translocates into the nucleus where it supports transcription of pro-

inflammatory proteins (Sen and Baltimore 1986). One step in the manifestation of a 

steatohepatitis is the support of inflammation besides fat accumulation. After 

translocation into the nucleus, NF-қB plays an important role in the initiation of a 

cascade leading to liver injury. It mediates the inductions of adhesion molecules and 

chemokines and thereby the recruitment of neutrophilic cells into the liver. 

Sequestered neutrophils release proteases and reactive oxygen species, which 

directly damage hepatocytes and endothelial cells causing hepatic hypoperfusion 

(Jaeschke 1996; Vollmar, Schmidt et al. 1996). 

 

Several studies revealed the significance of the NF-қB p65 subunit in hepatocytes, 

which directly acts to promote cell survival (Verma, Stevenson et al. 1995; Bellas, 

FitzGerald et al. 1997). Schoemaker et al. showed that NF-қB regulates members of 

the inhibitor of apoptosis protein family (IAP) in hepatocytes, leading to an inhibition 

of caspase activity, thereby preventing apoptosis (Schoemaker, Ros et al. 2002). 

Moreover, studies revealed the implication of NF-қB activation in the progression of 

NASH (Luedde, Beraza et al. 2006; Luedde, Beraza et al. 2007). 

 

Interstingly, a high proportion of p62 transgenic hepatocytes showed a distinct 

increase in cytoplasmic NF-қB p65.  

 

Constitutive overexpression of the p65 protein has previosly been shown in thyroid 

carcinoma cells (Visconti, Cerutti et al. 1997) and an increased cytoplasmic staining 

of the NF-кB subunit p65 has also been demonstrated in malignant epithelial cells 

from colorectal tissue compared to normal epithelium (Charalambous, Lightfoot et al. 

2009). Moreover, it has been demonstrated that the oncogene MDM2 induces protein 

expression of the NF-қB p65 subunit in acute lypmphoblastic leukemia (Gu, Findley 

et al. 2002). From carcinoma cells it has been reported that NF-қB and IкK are linked 

in an autoregulatory loop, i. e. the p65 subunit itself stimulates IкK expression, which 

in turn results in self-inactivation (Scott, Fujita et al. 1993; Sun, Ganchi et al. 1994). 
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This observation could explain an enhanced cytoplasmic staining in the absence of a 

translocation into the nucleus in p62 transgenic hepatocytes. 

 

Although functional implications of increased levels of the regulatory NF-қB p65 

subunit in cancerogenesis are as yet largely unknown, they might enhance an 

inflammatory response upon respective stimuli. Whereas fat accumulation as 

coalesced lipid droplets in hepatocytes of p62 transgenic animals forms the 

borderline from a benign to a morbid condition (Neuschwander-Tetri 2005), the 

results from the investigations within this thesis confirme a non-inflammatory 

phenotype, i. e. the ‘second hit’ towards the progression of NASH, resulting from 

inflammation, is missing. 

 

4.3  Increased IGF2 and H19 expression 

 

The interaction of p62 with tumor-related factors was suggested due to the 

upregulation of IGF2 and H19 expression (Leighton, Saam et al. 1995) The use of 

doxycycline excluded that the overexpression of the three genes occurred due to 

genetic predisposition. Within one age group the extent of p62 correlated with the 

expression of IGF2 and H19.  

 

In order to address the question which steps in gene expression of IGF2 and H19 are 

modulated by p62, a set of experiments was performed, elucidating the possible 

impact on mRNA stability and on chromosomal changes. 

 

4.3.1  Absence of transcriptional stability changes  

 

Regulation of gene expression is used to turn the information of genes into gene 

products, either protein or RNA. The regulatory steps are versatile, reaching from 

chromatin domains, transcription, post-transcriptional modification, RNA transport, 

translation, mRNA degradation up to post-translational modification. Any step in gene 

expression can be modulated (Alberts 1992). The regulation of mRNA decay is a 

major control point in gene expression. Regulated mRNA stability is achieved either 

through cis-acting elements within mRNA (poly (A) tail, 3´- and 5´-untranslated 

regions, mRNA coding region) or by trans-acting regulatory factors (Ross 1995). One 



 Discussion 113 

way that dictates mRNA stability is mediated by mRNA binding proteins. Since p62 

was shown to belong to the family of IGF2 mRNA-binding proteins (IMPs) (Lu, 

Nakamura et al. 2001) and IMPs have been regarded to bind to H19 (Runge, Nielsen 

et al. 2000), IMPs are potential candidates to influence mRNA stability. 

 

Since the causal relationship of the upregulation of IGF2 and H19 in p62 transgenic 

mice still remained ambiguous, experiments to elucidate a regulation on the 

transcript level were performed on isolated hepatocytes. However, the results 

revealed no influence of p62 on mRNA stability of IGF2 and H19.  

 

Since both mRNAs turned out to be a rather stable mRNA (t1/2>10 h) the regulation 

via stabilizing mechanisms would be rather unexpected since stability-regulatory 

genes mostly regulate short-lived mRNAs (Eberhardt, Doller et al. 2007) 

 

Further transcriptional mechanisms of p62-evoked IGF2 upregulation are 

conceivable, as IGF2 is subjected to differential polyadenylation, alternative splicing, 

site-specific endonucleolytic cleavage, and postsecretory attenuation of IGF2 

function by IMPs (Sussenbach, Steenbergh et al. 1992; Stewart and Rotwein 1996).  

 

The similar spatiotemporal expressions of the IGF2 and H19 mRNAs as well as their 

complex counter-regulatory actions (Brannan, Dees et al. 1990) are characteristics 

that show the functional coupling of both genes. The putative role of the IMP-family 

member p62 in the upregulation of IGF2 and H19 mRNA levels could therefore result 

from IGF2-mediated induction of H19 mRNA, implicating a trans effect of H19 caused 

by p62 overexpression, as it was shown by Li et al. (Li, Franklin et al. 1998). 

 

Moreover, the maintainance of elevated IGF2 mRNA levels could be explained by the 

fact that H19 mRNA can bind four molecules of IMP1, which in turn binds to the 5´ 

UTR of IGF2 mRNA, thereby promoting post-transcriptional or translational IGF2 

expression (Runge, Nielsen et al. 2000).  

 

Mice with a targeted deletion of IMP1 display growth retardation accompanied by 

IGF2 downregulation (Hansen, Hammer et al. 2004). This suggests a general IGF2-

elevating action of IMPs. In fact, the expression patterns of IMPs and IGF2 overlap in 
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many tissues suggesting a controlling function on the production of IGF2 mRNA 

(Hansen, Hammer et al. 2004) 

 

4.3.2  Monoallelic expression of IGF2 and H19 

 

Both transcriptional as well as chromosomal changes could account for the 

upregulation. As no effects on mRNA turnover of IGF2 and H19 were detected in p62 

transgenic animals, implications on possible genetic alterations of the chromosomal 

expression of IGF2 and H19 evoked by p62 were examined.  

 

The oppositely imprinted genes IGF2 and H19 often show coordinate, reciprocal 

regulation (Ohlsson, Hedborg et al. 1994; Liu, Kahri et al. 1995). Imprinted 

expression is reciprocally controlled by a common CpG island located upstream of 

H19, which shows parent-specific methylation. Methylation alterations at this site are 

correlated with abnormal IGF2 and H19 expression and are linked to many tumors 

(Cui, Niemitz et al. 2001; Takai, Gonzales et al. 2001). 

 

Li et al. found parallel expression of IGF2 and H19 in HCC (Li, Nong et al. 1997). The 

overexpression of IGF2 was not only demonstrated in about 20% of human HCC 

(Cariani, Lasserre et al. 1988) but has also been detected in HCCs in transgenic 

mice (Schirmacher, Held et al. 1992).  

 

IGF2 is a growth factor, which is known to promote tumorigenesis after switching 

from mono- to biallelic expression (Kim and Lee 1997). But also loss of imprinting 

(LOI) of IGF2 was described in tumors (Kondo, Suzuki et al. 1995; Kim, Choi et al. 

1998). LOI of IGF2 in HCC is uncoupled from the downregulation of H19 expression 

but rather associated with coexpression for H19 and IGF2 (Ariel, Ayesh et al. 1997). 

Another common feature of human HCC which explains the frequent loss of biallelic 

IGF2 expression is explained by the disruption of the IGF2 promotor region, 

particularly the loss of the P1 activity (Li, Nong et al. 1997). 

 

The role of the untranslated RNA H19 in tumorigenesis is described controversely. 

By now, several studies indicate a tumor suppressor activity but also the necessity of 

H19 in tumor growth has been shown (Matouk, DeGroot et al. 2007; Yoshimizu, 
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Miroglio et al. 2008). Its implication for HCC development has been underlined in a 

mouse model of HCC, where diethylnitrosamine, a known carcinogen of the liver, 

induced H19 mRNA expression (Graveel, Jatkoe et al. 2001). Moreover, H19 

transcription was initiated after binding of c-myc near the imprinting control region 

(ICR) (Barsyte-Lovejoy, Lau et al. 2006). Consistent with the theory of H19 being a 

tumor suppressor gene (Yoshimizu, Miroglio et al. 2008) is the fact that 

tumorigenicity was ablated in vivo in nude mice after transfection with an H19 

expression construct (Hao, Crenshaw et al. 1993).  

 

For both examined ages, neither a change in allele-specific nor biallelic expression 

was detected for IGF2 and H19. This result is in concordance with the observation 

made by Feinberg et al. (Feinberg and Vogelstein 1983), leading to the conclusion 

that p62 does not contribute to the upregulation of the both genes through genetic 

alterations.  

 

One possible mechanism of p62 might be to change the DNA methylation pattern, 

since it is known from the literature that parent-specific methylation patterns have 

been detected in endogenous imprinted genes (Sasaki, Jones et al. 1992; Ferguson-

Smith, Sasaki et al. 1993; Reik and Allen 1994). The methylation of the paternal 

allele of IGF2 in the 3´ region correlates directly with expression and might therefore 

be a target for p62 (Feil, Walter et al. 1994). p62 could contribute to high IGF2 

expression levels by maintaining the methylation level high.  

 

The observed result from this experiment that LOI of the IGF2 locus is not involved in 

increased IGF2 gene expression in p62 transgenic animals has also deen described 

in HCC (Kaneda and Feinberg 2005).  

 

An accelerated liver tumor development was demonstrated in the absence of H19 

(Yoshimizu, Miroglio et al. 2008). Upregulated H19 expression could therefore 

account for the prevention of liver tumor development in p62 transgenic mice by 

antagonizing the tumorigenic potential of IGF2 and IGF2-induced metabolic 

alterations. In fact, H19 expression might also contribute to IGF2 downregulation at 

higher age (Leighton, Saam et al. 1995). 
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4.3.3  Silencing of p62 

 

siRNA-mediated knockdown is a RNA-dependent gene-silencing process that is 

controlled by the RISC complex, initiated by short double-stranded RNA molecules 

(Hannon 2002).  

 

Gene silencing by siRNA-mediated gene knockdown of p62 in human hepatoma 

cells, followed by the examination of IGF2 and H19 mRNA expression, was 

performed in order to address the relationship between the simultaneously occurring 

overexpression of the three genes in a human system. Indeed, a detected reduction 

in p62, IGF2 and H19 mRNA expression levels demonstrated the direct correlation.  

 

This experiment proved significance of the in vivo findings in mice also on the human 

level.  

 

A conceivable therapeutic treatment with siRNA could be gene-silencing of p62 to 

attenuate metabolic effects resulting from IGF2 expression. 

 

4.4  IGF2 downstream effects 

 

Although the detailed mechanisms how p62 increases IGF2 expression remain to be 

clarified, its downstream actions lead to severe pathophysiological consequences. 

They are most likely exerted by IGF2. Increased IGF2 expression in the absence of 

macroscopic signs of inflammation has been demonstrated in human steatosis 

(Chiappini, Barrier et al. 2006). These findings suggest IGF2 as a pathophysiological 

factor in fatty liver disease. Therefore, a second set of experiments performed within 

this work concentrated on downstream effects exerted by IGF2.  
 

4.4.1  Decreased PTEN expression 

 

Since IGF2 is known to mediate cell survival signals through the PI3-kinase pathway, 

experiments focused on the expression of two proteins within this cascade, i. e. 

PTEN and pAKT (Kandel and Hay 1999). Upon activation of PI3-kinase after initial 

binding of IGF2 to its receptor, PIP3 is generated. This molecule leads to the 
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activation of AKT through phosphorylation (Franke, Hornik et al. 2003). In contrast, 

PTEN is able to dephosphorylate PIP3 and thereby participates in the reciprocal 

regulation of AKT activity (Franke, Hornik et al. 2003).  

 

Experiments revealed attenuated PTEN expression in the presence of the p62 

transgene. This result could give a first hint on a potential participation of p62 in the 

development of HCC, as PTEN is a tumor suppressor gene and deletion of the PTEN 

gene as well as reduced PTEN expression was shown to be implicated in diverse 

tumors (Di Cristofano and Pandolfi 2000).  

 

Unsaturated fatty acids are known to downregulate PTEN expression (Terrettaz and 

Jeanrenaud 1983). It might therefore be possible that the reduction of PTEN 

expression in p62 transgenic animals at the age of 2.5 weeks results from the 

increase of free fatty acids, which accumulated in hepatocytes, as it was shown in 

liver-specific PTEN deficient mice, which displayed NASH (Stiles, Wang et al. 2004). 

On the other hand, the lipid phosphatase activity of PTEN controls the intracellular 

triglyceride content as shown in HepG2 when PTEN depletion resulted in enhanced 

accumulation of triglycerides (Vinciguerra and Foti 2008). Vice versa, unsaturated 

fatty acids are thought to contribute to the development of liver injury through their 

induction of a PTEN downregulation (Vinciguerra, Sgroi et al. 2009). An impact on 

the rate of the synthesis of fatty acids and their secretion by p62-induced IGF2 might 

be amplified through the p62-caused downregulation of PTEN as shown in the past 

through a liver-specific PTEN deletion in mice (Stiles, Wang et al. 2004). 

 

Since fatty acids play a role in PTEN downregulation (Vinciguerra, Carrozzino et al. 

2009), one might suggest that a reduction in PTEN expression is secondary to fatty 

liver induction. This is further supported by the observation of liver regeneration from 

pathophysiological to physiological conditions with increased age concomitant with a 

decline in IGF2 mRNA expression. The shared regulation of IGF2 and PTEN has 

also been shwon in several cancer cells (Perks, Vernon et al. 2007). 

 

Moreover, results are supported by the observations made in the study of Moorehead 

et al. where a negative feedback loop of IGF2 on PTEN was observed, i. e. IGF2 

induction itself inhibits PTEN expression (Moorehead, Hojilla et al. 2003).  
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To underline the relationship of p62 overexpression and PTEN downregulation found 

in p62 transgenic mice, PTEN transcript levels were determined in human hepatoma 

cell lines after siRNA-mediated knockdown of p62. The increase in PTEN mRNA 

levels correlated with the decrease in mRNA levels determined for p62, thereby 

underlining the theory that p62 promotes tumorigenesis by inhibiting PTEN activity. 

The contradictory result 72 h after p62 knockdown, i. e. the detection of elevated 

PTEN transcript levels, could be explained by a partical degradation of siRNA 

molecules, thereby allowing the recovery of p62 mRNA levels.  

 

4.4.2  Increased phosphorylation of AKT/protein kin ase B 

 

Growth promoting as well as metabolic effects of IGF2 are mediated upon binding to 

the IGF-1R. This follows the activation of downstream signal transduction pathways, 

mainly the activation of PI3-kinase. The signaling cascade following AKT activation is 

rather complex, not only apoptosis is inhibited but also metabolic and proliferative 

effects are exhibited (Cardone, Roy et al. 1998; Crowder and Freeman 1998; Diehl, 

Cheng et al. 1998; Gille and Downward 1999). Increased IGF2 expression thereby 

leads to constitutive AKT activation (Andjelkovic, Alessi et al. 1997; O'Connor 1998; 

O'Dell and Day 1998). 

 

The significant increase in AKT phosphorylation in p62 transgenic animals might 

therefore be explained by p62-mediated IGF2 induction. On the other hand, it has to 

be kept in mind that AKT phosphorylation culminated with increased age, while at the 

same time impaired IGF2 expression was detected.  

 

PTEN and pAKT are reciprocally regulated through the ability of PTEN to 

dephosphorylate the AKT activator PIP-3 (Parsons and Simpson 2003). Therefore, 

PTEN downregulation could support the IGF2-caused induction of AKT 

phosphorylation observed in p62 transgenic animals, thereby contributing to a 

progressive AKT activation. 

 

AKT has also been suggested to promote tumorigenesis as it appears to be 

hyperactivated in the majority of human cancers (Hay 2005; Hennessy, Smith et al. 
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2005). p62 overexpression might therefore contribute to tumor development as it 

leads to a constitutive activation of AKT. 

 

Upon AKT phosphorylation, GSK-3 is inhibited, ending in an enhanced glycogen 

synthesis in the liver (Cross, Alessi et al. 1995). Nevertheless, 2.5 week old p62 

transgenic animals displayed reduced glycogen levels. Since no increase in AKT 

activation was detected for that age group, this result might support the conclusion 

that an effect of AKT on GSK-3 could be neglected at the age of 2.5 weeks.   

 

4.4.3   Apoptosis protection  

 

Hepatocyte apoptosis is a cardinal feature of NAFLD and NASH and emerges as a 

critical mechanism contributing to the progression of liver diseases (Feldstein, 

Canbay et al. 2003; Wieckowska, Zein et al. 2006). On the other hand, apoptosis 

protection has been associated with poor prognosis of HCC (Ito, Monden et al. 

2000). 

 

In contrast to necrosis, which results from acute cellular injury, apoptosis describes a 

process of programmed cell death. Upon release of cytochrome c, a protein complex, 

the apoptosome, is formed which in turn activates the caspase cascade, triggering a 

cascade of caspase activation events leading to apoptosis (Li, Bergeron et al. 1997; 

Li, Nijhawan et al. 1997). 

 

Caspase-3 activation plays a key role in the initiation of cellular events during the 

early apoptotic process. After induction of apoptosis through Act D and TNF-α, 

detection of caspase-3 activity was measured in cellular lysates from isolated 

hepatocytes.  

 

The fatty liver phenotype and the constitutive AKT activation gave hints that 

apoptosis might be altered under p62 overexpression. 

 

In fact, after induction of apoptosis through Act D and TNF-α, caspase-3 activity was 

significantly lower in hepatocytes from p62 transgenic animals and can be explained 
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by the implication of AKT in caspases inhibition upon activation through 

phosphorylation (Cardone, Roy et al. 1998).  

 

Apoptosis inhibition results in a survival advantage of malignant cells, which in 

second line can convert to tumor cells, promoting carcinogenesis. Several studies 

demonstrated that the induction of apoptosis resulted in tumor regression (Hood and 

Cheresh 2002; Motoki, Mori et al. 2005). The results clearly support the theory of p62 

as a promotor of tumor progression. 

 

4.5  Improved glucose tolerance 

 

Insulin is the primary hormone involved in glucose homeostasis and in the stimulation 

of glucose transport. Insulin resistance is a common pathophysiological state in 

which target tissues fail to respond properly to normal levels of circulating insulin. 

Thereafter, impaired glucose tolerance can develop. Since the levels of circulating 

free fatty acids are thought to play a significant role in the establishment of insulin 

resistance (Shulman 2000), IP-GTT was performed.  

 

p62 transgenic mice demonstrated a non-significant decrease in the area under the 

curve (AUC). However, this decrease was demonstrated to be significant in p62 

transgenic females. 

 

The gender differences might simply reflect the observation that females expressed 

higher levels of the p62 transgene than their male littermates. Since also the 

metabolic growth factor IGF2 showed increased expression in females, a causal 

interaction can be suggested.  

 

The observation is in concordance with the improved glucose tolerance measured 

after liver-specific PTEN deletion in mice (Stiles, Wang et al. 2004). In this study, 

after an i. p. glucose load, the peak glucose concentration was lower and displayed a 

faster decline towards the basal level indicating an enhanced glucose disposal.  

 

The results might display an increased ability of p62 transgenic animals to clear 

glucose.
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5. Summary 

 

This study represents the first phenotypic characterization of mice showing a liver-

specific expression of the IGF2 mRNA-binding protein p62. It clearly demonstrates 

the interaction between p62/IGF2 and H19 expression in p62 transgenic mice and in 

human hepatoma cell lines and elucidates several effects of p62 on apoptosis 

regulation and metabolism. 

 

Since p62 belongs to the IGF2 mRNA binding proteins, investigations were made on 

the expression level of IGF2 mRNA. An increase in IGF2 as well as the reciprocally 

imprinted H19 mRNA could be verified. This effect did neither originate from changes 

in allele-specific gene expression nor from alterations in mRNA turnover.  

 

To elucidate the downstream effects of IGF2 induction caused by p62 

overexpression, the focus concentrated on the PI3-kinase pathway, known to 

regulate metabolism and apoptosis. Several experiments within this work 

demonstrated a reduction in PTEN gene expression concomitant with an increase in 

AKT phosphorylation, resulting in the prevention of p62 transgenic hepatocytes from 

undergoing apoptosis.  

 

In this study, the most prominent alteration discovered was a fatty liver phenotype in 

p62 transgenic mice accompanied by a decrease in glycogen storage. This indicated 

a rise in the usage of glucose for lipogenesis. The fatty liver phenotype displayed 

improved glucose tolerance, at least in female mice.  

 

Taken together, our data provide evidence that the oncofetal tumor-associated 

autoantigen p62 plays a distinct pathophysiological role in liver disease. Its 

overexpression induced both a fatty liver and an anti-apoptotic phenotype. These 

findings suggest that the observed increase of p62 expression during transition from 

liver disease to cancer has a causal role in disease progression. Alterations of p62 

levels might therefore serve as both a diagnostic marker and as a pharmacological 

target.
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6.  Outlook 

 

Further studies are necessary to elucidate the distinct pathophysiological role of the 

oncofetal tumor-associated autoantigen p62 in order to use p62 both as a diagnostic 

marker and as a pharmacological target.  

 

Since the pathways involved in the progression of the fatty liver phenotype are 

largely unknown and due to findings that the ratio of saturated to unsaturated fatty 

acids contributes to metabolic changes, gas chromatography experiments could give 

hints into the lipid composition of p62 transgenic livers.  

 

By now, the molecular pathways involved in the accumulation of fat droplets under 

p62 overexpression remains to be elucidated.  

Since the lipogenesis-promoting gene sterol regulatory element-binding protein 1 

(SREBP1) is known to play a significant role in hepatic steatosis through the 

regulation of the synthesis and storage of fatty acids in the liver, investigations on 

SREBP1 expression levels might be of interest.  

Another potential candidate might be the transcription factor peroxisome proliferator-

activated receptor gamma (PPAR-γ), as PPAR-γ deficient mice display massive 

steatosis.  
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7.  Supplement 

7.1   PCR primer 
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7.2  Taq Man probes 

 
probe name sequence 5´- 3´ 

hu-p62-FAM-BHQ 6-FAM d(TGT GAA TCT CTT CAT CCC AAC CCA GGC T) BHQ-1 

IGF2-FAM-BHQ 6-FAM d(CCT TCG CCT TGT GCT GCA TCG CTG CT) BHQ-1 

H19-FAM-BHQ 6-FAM d(TCA CTG AAG GCG AGG ATG ACA GGT GTG G) BHQ-1 

18S-FAM-BHQ 6-FAM d(CCA CGC CAA CCC ACC GCC CTG TG) BHQ-1 

Cyclophilin-FAM-BHQ 6-FAM d(TGG GCC GCG TCT CCT TCG A) BHQ-1 

 

7.3   Real-time PCR conditions using Taq Man probes  

 

gene 
amount of Taq Man 

probe  
Mg2+ concentration  

annealing 

temperature 
number of cycles 

hu p62 1.5 pmol 5 mM 60°C 40 

mu IGF2 1.5 pmol 4 mM 60°C 40 

mu H19 2.5 pmol 3 mM 60°C 40 

mu 18S 2.5 pmol 3 mM 60°C 45 

cyclophilin 1.5 pmol 3 mM 60°C 45 

mu p62 2.5 pmol 5 mM 60°C 40 

  

7.4   Real-time PCR conditions using SYBR green 

 

gene Initial 

denaturation 

(94°C) 

Denaturation 

(94°C) 

annealing 

(60°C)  

Elongation 

(72°C) 

number of cycles 

β- actin 10 min 10 sec 15 sec 15 sec 40 

hu p62 10 min 10 sec 15 sec  15 sec 40 

hu H19   5 min 30 sec 30 sec 30 sec 40 

hu IGF2   5 min 30 sec 30 sec 30 sec 40 

PTEN 10 min 15 sec 15 sec 15 sec 45 

mu 18S   8 min 15 sec 15 sec 15 sec 40 
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7.5 Antibodies 

 

antibody isotype Dilution  

monoclonal anti-α-tubulin mouse IgG1 1/500 in RBB 

phospho-AKT (Ser 473) rabbit IgG1 1/1000 in RBB 

PTEN rabbit IgG1 1/1000 in RBB 

hu p62 (Western Blot) human IgG1 1/1000 in RBB 

goat anti-rabbit Irdye® 680 rabbit IgG, whole molecule 1/5000 in RBB 

goat anti-mouse Irdye® 800 CW mouse IgG, whole molecule 1/5000 in RBB 

hu p62 (immunohistology) rabbit IgG1 1/500 in DRA 

IGF2 (immunohistology) rabbit IgG1 1/100 in DRA 

NFқB (immunohistology) rabbit IgG1 1/100 in DRA 

 

RBB= Rockland blocking buffer (purchased from Biomol, Hamburg, Germany) 

DRA= DakoREALTM Antibody diluent (purchased from DAKO, Hamburg, Germany) 

 

7.6 siRNA  

 

code name sequence purchased from 

hu p62 siRNA Hs-IMP-2_2_HP siRNA r(GGG UAG AUA UCC AUA GAA A)dTdT 
Qiagen, Hilden, 

Germany 

random 

siRNA 

siGENOME non-targeting 

siRNA #2 

including non-targeting siRNAs #2-#5, 

targeting firefly luciferase 

Dharmacon, Thermo 

Fisher Scientific,  

Bonn, Germany 

 

7.7 Molecular weight markers 

 

PageRulerTM Prestained Protein Ladder (Fermentas, St.Leon- Rot, Germany) 

1 kb DNA ladder (Invitrogen, Karlsruhe, Germany) 

50 base-pair ladder (Amersham, GE Healthcare, Munich, Germany) 
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7.8  Solutions and buffers 

 

7.8.1  Cell culture media 

 

Cell culture medium (hepatoma cell lines ) 

RPMI containing 

10% FCS gold 

1% penicillin/streptomycin 

2 mM L-glutamine stock 

 

L-glutamine stock 

200 mM L-glutamine  

 

Cell culture medium (primary murine hepatocytes) 

Gibco Williams E with GlutaMax 

10% FCS 

1% penicillin/streptomycin 

0.1% gentamycin 

 

7.8.2  Solutions for primary murine hepatocyte isol ation 

 

EGTA stock, pH 7.6 

125 mM EGTA 

 

Calcium chloride stock (CaCl 2) 

130 mM CaCl2*2 H2O 

 

Magnesium sulfate stock (MgSO 4) 

100 mM MgSO4*7 H2O 

 

KH-stock, pH 7.4 

1 M NaCl 

23 mM KCl 

12 mM KH2PO4 
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HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.6 or pH 8.5  

252 mM HEPES 

 

Glucose stock 

50 mM Glucose 

 

L-glutamine stock 

200 mM L-glutamine 

 

Amino-acid solution mix, pH 7.6 (sterile filtrated, stored at -20°C) 

0.27 g/l L alanine 

0.14 g/l L-aspartate-acid 

0.40 g/l asparagine 

0.27 g/l citrulline 

0.14 g/l L-cysteine 

1.0 g/l L-histidine 

1.0 g/l L-glutamine-acid 

1.0 g/l L-glycine 

0.4 g/l L-isoleucine 

0.80 g/l L-leucine 

1.30 g/l L-lysine 

0.55 g/l L-methionine 

0.65 g/l L-ornithine 

0.55 g/l L-phenylalanine 

0.55 g/l L-proline 

0.65 g/l L-serine 

1.35 g/l L-tryptophane 

0.55 g /l L-tryrosine 

0.80 g/l L-valine 

 

EGTA perfusion solution 

25 mM Glucose stock 

20 mM HEPES, pH 8.5 stock 

0.4 mM L-glutamine stock 
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0.4 mM EGTA stock 

12% amino acid solution mix 

8% KH stock 

 

Collagenase perfusion buffer 

30 mM glucose stock 

9.6% KH stock 

24 mM HEPES, pH 8.5 stock 

15% amino acid solution mix  

5 mM CaCl2 stock 

2 mM L-glutamine stock 

~0.25 g/l collagenase H 

 

Suspension buffer 

31 mM glucose stock 

25 mM HEPES, pH 7.6 

15% amino acid solution mix 

10% KH stock 

1 mM CaCl2 stock 

0.4 mM MgSO4 stock 

2 mM L-glutamine  

2 g/l BSA (bovine serum albumine) 

 

7.8.3  Solutions for Western Blotting 

 

Moini lysis buffer (proteins) 

50   mM Tris-HCl, pH 7.2 

150 mM NaCl 

1.0% Triton X-100 

0.5% sodium deoxycholat 

0.1% SDS (sodium dodecyl sulphate) 

1 mM EGTA 

25 mM NaF 
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(add immediately before use): 

1 mM sodium orthovanadate 

1 mM PMSF 

14% complete mini (7x) 

 

Running buffer (Western Blotting) 

25 mM Tris base 

86 mM glycin 

1% SDS (10% stock) 

 

Transfer buffer (Western Blotting) 

25 mM Tris base 

86 mM glycin 

0.5% SDS (10% stock) 

20% methanol 

 

Collecting gel stock, pH 6.8 

0.5 M Tris base 

0.4% SDS 

 

Separating gel stock, pH 8.8 

1.5 M Tris base 

0.4% SDS 

 

10 % SDS PAGE separating gel composition 

25% separating gel stock 

33% Rotiphorese gel 30 (Roth) 

1% APS (10%) 

1% SDS (10%) 

0.1% TEMED  

39.5% H2O 
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5% collecting gel for SDS- PAGE  

12% collecting gel stock 

16% Rotiphorese gel 30 (Roth) 

1% APS (10%) 

1% SDS (10%) 

0.1% TEMED 

68% H2O 

 

PBS, pH 7.4 

150 mM NaCl 

3 mM KCl 

10 mM Na2HPO4*2 H2O 

1.4 mM KH2PO4 

 

PBST, pH 7.4 

PBS, pH 7.4 

0.05% Tween 20 

 

7.8.4  Solutions for caspase measurements 

 

Lysis buffer (caspase activity) 

5 mM MgCl2 

1 mM EGTA 

0.1% Triton X-100 

25 mM HEPES, pH 7.5  

1 mM Pefabloc SC 

1 µg/ml Aprotinin/ Leupeptin/Pepstatin A 

 

Substrate buffer (caspase activity), pH 7.5 , (store at 4°C) 

50 mM HEPES, pH 7.5 

1% sucrose 

0.1% CHAPS (3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate) 
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DTT stock (store at -20°C) 

1 M DTT (Dithiothreitol) 

 

Ac-DEVD-AFC (stock) , (store at -20°C) 

10 mM ac-DEVD-AFC 

 

7.8.5  Material for SNuPE analysis 

 

SNuPE extension mastermix 

50 mM Tris-HCl, pH 9.5 

2.5 mM MgCl2  

0.05 mM ddTTP 

0.05 mM ddCTP 

3.6 µM SNuPE primer 

0.25 U Termipol [Solis BioDyne] 

 

SNuPE buffer A 

0.1 M triethylammonium acetate (TEAA) 

 

SNuPE buffer B 

0.1 M triethylammonium acetate (TEAA) and 25% acetonitrile 
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