
Stochastic modeling of
active biological transport

in inhomogeneous
environments

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultät II
— Physik und Mechatronik —
der Universität des Saarlandes

von
Philip Greulich

Saarbrücken
2009



Tag des Kolloquiums: 26. März 2010

Dekan: Prof. Dr. Christoph Becher

Mitglieder des
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Abstract

This thesis considers systems of actively driven particles on biased tracks in
inhomogeneous environments. One example is vehicular- and pedestrian traffic.
The main focus of this work, however, is on modeling collective directed motion
of molecular motors involved in protein production or the transport of cargo on
intracellular filaments.

Transport on inhomogeneous tracks exhibits a jamming transition that
emerges if the particle current attains the transport capacity of a bottleneck,
which marks the maximum current. Jamming can be observed in traffic, but
also for molecular motors. An analytical scheme to predict the transport capac-
ity and critical parameters of this transition is developed. The presented models
apply to tracks with slow sites (defects). These can for example be induced by
biomedical drugs. In the context of intracellular traffic, defects are presently
discussed as a cause of several diseases, e.g. Alzheimer’s disease. Particular
codons on mRNA can also slow down ribosomes.

Furthermore, transport on (filament-) networks is investigated. It is shown
that particle clusters emerge. In contrast to regular networks or diffusion limited
(reversible) aggregation, inhomogeneous networks exhibit a scale-free distribu-
tion of cluster sizes. This result can help to distinguish microscopic dynamics
and structures by analyzing macroscopic particle cluster patterns. Applied to
clusters of membrane proteins that promote the internalization of toxins, an
analysis of clusters might improve the understanding of toxic pathways.
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Kurzzusammenfassung

Diese Arbeit behandelt Systeme aktiv getriebener Teilchen auf gerichteten
Pfaden in inhomogenen Umgebungen. Ein Beispiel ist Straßenverkehr. Haupt-
gesichtspunkt ist jedoch die Modellierung gerichteter kollektiver Bewegung von
molekularen Motoren bei Proteinproduktion oder Transport auf intrazellulären
Filamenten.

Auf inhomogenen Bahnen können Staus auftreten, wenn die Transportka-
pazität eines Engpasses (Maximalwert des Stromes) erreicht wird. Staus können
sowohl im Verkehr, als auch bei molekularen Motoren beobachtet werden. Es
wird eine Analytische Methode zur Vorhersage von Transportkapazität und kri-
tischen Parametern für Staubildung entwickelt. Das Model kann auf Systeme
mit langsamen Stellen (Defekte) angewandt werden, die z.B. durch künstliche
Wirkstoffe erzeugt werden. Es wird vermutet, dass Defekte in intrazellulärem
Transport Auslöser von Krankheiten wie z.B. der Alzheimerkrankheit seien.
Bestimmte Kodone können außerdem Ribosomen auf mRNA bremsen.

Zusätzlich wird Transport in (Filament-) Netzwerken untersucht. Es wird
gezeigt, dass Teilchen-Cluster entstehen. Im Gegensatz zu regulären Netzen
oder (reversibler) diffusionsbegrenzter Aggregation, weisen inhomogene Netze
eine skalenfreie Größenverteilung auf. Diese Ergebnisse können helfen, von
makroskopischen Cluster-Mustern auf mikroskopische Strukturen und Dynamik
zu schließen. Im Hinblick auf Membranprotein-Cluster, die die Aufnahme von
Toxinen fördern, kann eine Untersuchung der Cluster das Verständnis der In-
ternalisierung von Toxinen verbessern.
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Chapter 1

Introduction

The dynamics of many complex systems is based on active transport processes.
For example vehicle and pedestrian traffic constitute part of the infrastructure
for human society and economy, while the metabolism of biological cells is main-
tained by transport of vesicles and organelles mediated by motor proteins. In
this terminology active transport is characterized by biased dynamics of driven
or self-propelled objects with a preferred direction in contrast to passive, undi-
rected transport e.g. by diffusion.

In recent decades modeling active transport systems in social and biological
context increasingly came into the focus of statistical physics [14, 15, 23, 27,
48, 53, 54, 64, 69, 71, 75, 85]. At first glance most of these systems do not
appear to be treated by physics. However, despite their diversity in scale and
interactions, these systems are conceptually quite similar and they can in fact be
analyzed by applying methods of non-equilibrium statistical mechanics. First
of all, modeling implies a simplification of (the usually quite complex) dynamics
and states of the system. A powerful approach for modeling complex systems
without losing crucial properties is the introduction of stochastic transition rates
instead of deterministic dynamics. This way, complex subprocesses that are
involved in a specific transition process of one state of the system into another
can be captured by phenomenological transition rates that serve as parameters
for the model system. For given discrete time steps, these rates are implemented
as transition probabilities. The stochastic approach is appropriate, since due to
the complexity of the considered systems a deterministic prediction of the time
evolution is not possible. Thus stochastic model systems can be constructed that
are accessible by analytical and numerical methods of statistical mechanics.

This work is mainly motivated by transport processes in biological cells,
in particular transport by molecular motors attached to biopolymers. These
macromolecules consume chemical energy to move along biopolymer tracks in
a directed manner. For example cargo is transported by motor proteins that
move along polarized cytoskeletal filaments in one direction. A similar process
is performed by RNA-polymerase and ribosomes [2]. These molecular motors
move along nucleic acid strands to read the DNA/RNA-sequence template se-
quentially and polymerize mRNA/proteins. Although no cargo is transported in
this process, the basic dynamics and topology (collective directed motion with
steric interactions) are similar and the production rate of mRNA/proteins as
well as the delivery rate of cargo is determined by the particle current. There-
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fore they are treated in a similar manner as “transport” systems, using the same
terminology.

Many results (at least those of chapter 3) are generic for a larger class of
transport systems which show the following common features:

1. They are “driven” systems, i.e. the average motion of components is, at
least locally, biased in one direction, corresponding to a permanent drift.
This drift can originate from an external potential gradient (combined
with a pumping mechanism) or by self-propelled components (i.e. vehicles,
pedestrians, molecular motors). The continuous drift implies that they are
non-equilibrium systems requiring a steady energy input.

2. Components cannot interpenetrate each other. This is due to their steric
repulsion. In traffic models this interaction is implemented as an exclusion
rule.

3. The active transport takes place on quasi-one-dimensional tracks that are
strongly confining the components in all but one dimension, so that block-
ing of components due to exclusion is relevant.

These features are obviously exhibited for example in highway traffic, pedes-
trian and evacuation dynamics, intracellular transport and granular transport
through narrow tubes. Also data processing in computer networks exhibit sim-
ilar features [14].

In the past, many transport systems have been modelled and extensively
investigated by numerical and analytical methods. A widely used class of sys-
tems that are used to model active transport with the features listed above are
stochastic cellular automata known as driven lattice gases which describe biased
particle hopping dynamics on a lattice. One prominent example of a model sys-
tem for active transport on a single track is the asymmetric simple exclusion
process (ASEP) [66, 92] whose totally asymmetric version (TASEP) is probably
the most simple non-trivial active transport model that covers the properties
listed above. Its dynamics and phenomenology are spotlighted in chapter 2.3.
The TASEP serves as a paradigmatic model, since, despite its simplicity, it ex-
hibits some generic phenomena that can be observed in real transport systems.
One observes boundary induced phase transitions [60], e.g. one between a low
and high density phase if particle influx exceeds a critical value, leading to a
situation similar to a traffic jam. Slight extensions of the TASEP [75, 27] make
it suitable for modeling intracellular transport processes and predict some of
their phenomenology [71]. What makes the TASEP interesting from a theoret-
ical point of view is the fact that its steady state can be exactly solved [17, 86],
which is a rare feature of non-equilibrium systems.

Most of the investigations on transport systems have been performed for
homogeneous systems where transition rates do not depend on the position in
the system and are equal for all components. However, usually real systems are
spatially inhomogeneous. For example in highway traffic there can be roadworks
where the average velocity of vehicles is decreased. In particular in the biolog-
ical example of intracellular transport inhomogeneities are abundant. Macro-
molecules can bind to cell filaments and locally impede movement of motor
proteins (e.g. microtubule associated proteins (MAPs) [2, 93] or artificial block-
ages [22, 88]). Polymerization of proteins by ribosomes (translation) does not
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occur with constant velocity, but the process depends on local patterns of the
mRNA-sequence. Modeling these systems requires spatially varying transition
rates.

Candidates for modeling inhomogeneous single track systems are driven lat-
tice gases with site-dependent transition rates. Most investigations have been
performed on the inhomogeneous ASEP, mainly with periodic boundary con-
ditions [5, 12, 19, 24, 29, 46, 47, 50, 61], that revealed a number of effects not
observed in homogeneous systems. Even the presence of a single defect (site with
lower transition rate) leads to the emergence of qualitative new macroscopic phe-
nomena such as a jamming transition in front of the defect [46]. However, right
now only for inhomogeneities associated to particles, the TASEP is solved ex-
actly (for periodic boundary conditions in [62]). For generic driven lattice gases
with site-associated inhomogeneities, despite a few analytical results [47, 12, 56],
a deep analytical understanding is still pending.

In many transport systems, several tracks for transport are connected with
each other to form complex networks (streets, actin filaments in cells). Since
objects cannot interpenetrate each other, objects travelling on different tracks
can block each others movement1. The inhibition of movement effectively lowers
the passing rate at these points, hence intersections act as defects on either of
the crossing tracks and traffic jams can be induced [15].

Not only just the presence of intersections but also the global structure of
networks appears to have impact on large scale dynamics of transport. In [73]
transport of particles on an inhomogeneous topological network (graph with
nodes connected by links) was shown to exhibit an inhomogeneous distribution
of particles despite undirected particle dynamics and absence of interactions.
However, until now studies of transport on inhomogeneous networks did not
take into account the explicit spatial structure (i.e. distances and angles) to-
gether with steric interactions of active transport objects. In these systems new
phenomena are expected.

Due to the complexity of intracellular processes and thermal fluctuations,
microbiological systems often assemble in a rather random fashion. Single
cytoskeletal filaments can exhibit an inhomogeneous, disordered structure,
since macromolecules attach randomly at distinct binding sites of filaments
(e.g. degenerated tau proteins in neurons affected by Alzheimer’s disease [93]).
On the other hand networks of filaments that constitute the cytoskeleton often
exhibit a non-regular structure (in particular actin networks) due to the growth
dynamics and thermal fluctuations on prevailing length scales. A main focus
of this thesis will therefore be on disordered model systems, characterized by
a random generation of the system structure, hence statistical properties of
ensembles of systems appear to capture the properties of the system rather
than single samples. While disordered driven lattice gases, exhibiting randomly
distributed defects are used to model transport on single inhomogeneous
filaments, a network of randomly distributed and orientated TASEP-like tracks
appears appropriate to model transport on parts of the cytoskeleton.

The investigations presented in this work will be separated in two parts:
Chapter 3 considers driven lattice gases with inhomogeneous transition rates,

1This interaction can also be mediated indirectly, e.g. by traffic lights at intersections, see
e.g. [15].
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suited to model transport on inhomogeneous filaments and nucleotide templates,
such as actin, microtubules and DNA/mRNA. The goal of this part is the de-
velopment of an analytical approximation scheme for macroscopic properties
like average transport currents and phase transitions. The main interest will be
in disordered systems, where site-wise inhomogeneities (defects) are randomly
distributed. Therefore statistical tools like extreme value statistics are used to
relate properties of random configurations to specific configurations of single
stretches of defects (bottlenecks), for which analytical results can be obtained.
While in this chapter mainly the TASEP with some extensions is considered,
it is claimed that the introduced principles have a rather generic character and
can be applied in a similar manner also to other disordered driven lattice gases.

In chapter 4, a model for intracellular transport of vesicles on actin filament
networks is introduced. The model explicitly includes the growth dynamics of
actin filaments, whose stochastic character leads to an disordered, inhomoge-
neous structure of the network. By modeling vesicles as extended hard-core
particles, one observes the formation of particle clusters. While in most recent
publications, cluster formation was related to attractive interactions of particles
(e.g. [18, 67, 31]) this indicates that transport induced cluster formation can
also play a role in aggregation of macromolecules inside cells and in the plasma
membrane. The goal is to identify robust properties of cluster distributions and
point out differences to diffusion limited aggregation and regular networks. On
a cellular level it is easier to observe clusters than single proteins by optical
techniques. Hence, relating macroscopic properties of cluster distributions with
microscopic dynamics can provide tools for experimental identification of micro-
scopic dynamics. The second part of the chapter studies the effect of confining
boundaries on network structure and particle dynamics. These boundaries break
translational symmetry of the system that influences particle- and network dy-
namics.
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Chapter 2

Theoretical background

In this chapter the biological and physical facts that constitute the foundation
for the theoretical treatment of (intracellular) active transport systems, includ-
ing gene expression processes, are introduced. In the first section the biological
background is discussed, basically referring to the textbook of Alberts et al.
[2], if not stated differently. Also figures are taken from this book. In sec-
tion 2.2 some basic concepts to develop stochastic models for complex systems
are presented, especially those tailored for intracellular transport and their im-
plementation as computer simulations. Models of this kind are driven lattice
gases, for example their most simple and common representative, the totally
asymmetric simple exclusion process (TASEP), which are presented in section
2.3. Despite being a rather simple system, the relevance of the TASEP is due
to its wide applicability, since it is the basic system from which most stochastic
transport models are derived.

2.1 Collective movement of molecular motors on
biopolymers

The functions of biological cells are mainly performed and regulated by proteins.
These are polymers of amino acids that perform specific tasks in the cell like
catalytic reactions (enzymes), work (motor proteins) or acting as structural
units of the cell. Any amino acid sequences is determined according to partial
nucleotide sequences (genes) on the DNA1.

In order to execute their function, first proteins must be produced using
the information stored in the DNA templates (gene expression). Then they
have to be (actively) transported to the location where there action is required
(active intracellular transport). Both processes are mainly driven by molecular
motors that move along biopolymers, serving as tracks, in a directed manner.
In contrast to undirected processes like Brownian motion, directed motion is
a non-equilibrium process that needs to dissipate energy to maintain biased
motion. Molecular motors obtain this energy by hydrolysis of nucleotides like
adenosine triphosphate (ATP): By dissociation of a phosphate ligand, adenosine

1The function of a protein is not fully determined by the sequence of amino acids, but by
its three dimensional structure after folding. This structure can also be modified by other
proteins, hence its function may indirectly also depend on other genes.
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diphosphate (ADP) remains while the energy released by this process induces a
conformational change that can exert work on the track bound to a molecular
motor. If there are many motors on these tracks their mutual steric interaction
can lead to traffic-like collective behavior.

The information for protein (amino acid) sequences is stored as sequences
of nucleotides on DNA. The production of proteins by interpreting the gene
templates occurs in two main steps2: First a gene is transcribed into a comple-
mentary mRNA-strand by the molecular motor RNA-polymerase (RNAP) that
moves along the DNA sequence in a directed manner and polymerizes mRNA-
strands. The latter fits the DNA-sequence nucleotide by nucleotide (transcrip-
tion). Then ribosomes attach to the mRNA-strands and move along them to
polymerize amino acid chains according to the nucleotide sequence (transla-
tion). The detailed dynamics will be discussed in Sec. 2.1.1. There can be
many RNAPs/ribosomes on a single strand and their mutual steric interaction
inhibit each others movement which can lead to traffic-like phenomena (see Fig.
2.1) 3.

Transport of proteins, but also of many other macromolecules, is crucial
for maintenance of cell metabolism, since usually their function is associated
with a specific location in the cell. The transport pathways can be between
different cell organelles and the cytosol but also the distribution of internalized
proteins from the exterior of the cells must be handled. On the other hand,
secretory cells produce proteins in the interior which have to be transported
to the cell membrane in order to release them to the exterior. In addition to
macromolecules being transported, the organelles itself must be moved to their
destined position.

Although some of these tasks can be accomplished by undirected passive
transport processes like diffusion, in many cases it is necessary to transport
objects to a specific position. Moreover, the size of some macromolecules and
cell organelles is large, so that diffusive processes are quite slow resulting in
large transport times. For the purpose of active transport, proteins are usually
packed in vesicles (see Sec. 2.1.2). Active transport of organelles and vesicles is
performed by motor proteins that attach to cytoskeletal (intracellular) filaments
and move along them. For this purpose, work obtained by ATP hydrolysis
is used to displace the protein-cargo complex steadily in a specific direction
determined e.g. by the orientation and polarity of filaments and motor species.
There are various kinds of filaments and motor proteins which are described in
the following subsections.

Another kind of active transport by non-equilibrium processes is transport
through membrane-pores against concentration gradients. However, processes
of this kind are not considered in this work, since they do not exhibit traffic
behavior.

While the processes involved in gene expression are not associated with the
transport of cargo, not only their dynamics, but also their function is simi-
lar to collective transport: The protein production rate as well as the cargo-
delivery rate of active intracellular transport is determined by the current/flow

2There are other subprocesses of gene expression which do not depend on molecular motors
that we do not consider here.

3In fact the TASEP (with extended particles), commonly denoted the most simple stochas-
tic transport (traffic) process was first developed to model RNA- and protein polymerization
[66].
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of involved molecular motors. In this view transcription/translation are also
“transport” processes.

2.1.1 Molecular motors in gene expression

Both nucleic acids, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid),
are polymers constituted by sequences of nucleotides that can contain the nucle-
obases adenine (A), guanine (G), cytosine (C), thymine (T) (only in DNA) and
uracil (U) (only in RNA), and genes are determined by the sequence of these
bases. Nucleotides are complementary in a way that they fit each other in a
distinct manner by hydrogen bonds to form (base-)pairs. G does preferentially
pair with C, while A can be paired with T or U. The difference of DNA and
RNA are on a structural level: Most significant is that DNA is double stranded
(in a helical form), consisting of two complementary strands, paired as C-G and
A-T, while RNA is usually single stranded. RNA has U instead of T in its
sequence. However, T and U, while chemically different, carry the same genetic
information, since they never appear together in the same sequence and both
are complementary to A. Another structural difference is that nucleotides in
RNA contain ribose, while in DNA they contain deoxyribose. This, however,
does not affect the information procession.

The processes that transfer the information from DNA to synthesize a pro-
tein are performed in two steps: First a gene on DNA is used as template to poly-
merize a complementary RNA-strand (transcription). Some RNA-molecules can
perform catalytic functions and do not code proteins (e.g. tRNA, rRNA). They
are end-products of gene expression itself. However, particular RNA-molecules,
so called messenger RNA (mRNA), serve as template to polymerize proteins
(translation).

Transcription is mediated by the molecular motor RNA-polymerase that at-
taches to the promotor sequence at the beginning of a gene and opens the DNA
double helix. Hence it moves along the DNA in one direction polymerizing
RNA with a sequence that is complementary to the DNA sequence. The RNA-
polymerase moves step by step from one nucleotide to the next, while to each
nucleotide a complementary one, dissolved in the surrounding, attaches. After
finding the complementary nucleotide, it is added to the RNA-strand and re-
moved from DNA. When the RNAP reaches the end of the gene, the nucleotide
sequence is finished making up a complete mRNA-strand that is complementary
to the DNA template.

The process of translation has similar dynamics, while the involved compo-
nents differ: A molecular motor called ribosome attaches to an mRNA-strand,
moves along it to synthesize a protein by translating the nucleotide sequence
into a amino acid sequence. However this translation cannot be done by simple
pairing of complementary parts as it is the case in translation. The relevant
units are triples of consecutive nucleotides, so called codons. For each codon
there is a specific type of tRNA which has a anti-codon (A codon with the com-
plementary sequence) on one side and a distinct amino acid on the other side4.
A ribosome moves from one codon to the next. At each codon the ribosome
waits until the corresponding tRNA binds and the amino acid of the tRNA is

4Since a codon consists of three nucleotides, each one taken out of four possibilities
(A,U,G,C), there can be up to 64 different codons. 61 of them code the 20 amino acids
(degeneracy) and 3 signal the end of translation.
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Figure 2.1: Top: Electron-microscopy of ribosomes on an mRNA-strand. One observes
highly crowded ribosomes that polymerize proteins simultaneously on a single mRNA-strand.
Bottom: schematic illustration of ribosome traffic. Many ribosomes move along mRNA-
strands recognizing the complementary amino acids for sequential codons and polymerizing
the amino acid chain. Taken from [78].

added to the polymer. This way the mRNA is uniquely translated into a protein
chain.

Since the the basic properties of the dynamics are similar we assume that
on a coarse grained level transcription and translation can be described by the
same models. A simple model will be introduced in Sec. 2.3. The requirement
of tRNA for translation gives rise to inhomogeneities in the progress of ribo-
somes5. Each codon needs a specific species of tRNA. Since the concentration
of corresponding tRNA can vary between different codons, the reading velocity
depends on the codon. Indeed, there are so called “slow codons” which are
associated with a low concentration of corresponding tRNA, hence acting as
obstacles in translation.

In general there can be many ribosomes/RNAP on a single RNA/DNA-
strand. While the function of transcription/translation is not transport of cargo,
the system of nucleotide strand and molecular motors has the features (1)-(3)
as described in the introduction (Chapter 1) which allow traffic phenomena like
jamming: Collective directed movement of particles that inhibit each others
movement which makes them capable for the models that will be introduced
in Sec. 2.3. Indeed, jamming of ribosomes was observed experimentally [101]
(illustrated in Fig. 2.1). While in transport systems the average amount of
transported cargo is relevant, here it is the production rate of RNA/proteins.
However, both quantities are related to the particle current which we are inter-
ested in.

2.1.2 Vesicular trafficking

The main focus will be in the transport of folded proteins. Besides trans-
port between intracellular compartments, there are two main processes where

5The complex internal dynamics of ribosomes also give rise to other sources of inhomo-
geneity [28].
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Figure 2.2: Illustration of vesicle budding from and fusion to compartment membranes. The
red dots represent proteins in the lumen while pins in the membrane are membrane proteins.[2]

molecules, especially proteins, have to be transported to distinct destinations
in the cell. On the secretory pathway, proteins that have been synthesized and
folded in the interior of the cell (cytoplasm) are transported to the cell mem-
brane. Here proteins might be liberated to the exterior or membrane proteins,
e.g. receptors, are inserted in the cell membrane. On the endocytic pathway,
molecules from the exterior or the cell membrane itself are internalized and
transported to intracellular compartments or liberated into the cytosol. On
the active pathways molecules are transported in vesicles. Vesicles are small
(compared to other organelles), usually spherical, compartments that can pack
folded proteins and other macromolecules in their lumen or embrace membrane
proteins in the vesicle membrane (cf. Fig. 2.2) The membrane of vesicles is
equivalent to the cell membrane or the membrane of cell compartments. Vesi-
cles are generated by budding from other intracellular compartments that are
enclosed by a bilipid membrane. The process is displayed in Fig. 2.2: Pro-
teins are engulfed in their lumen (red dots) and membrane proteins (pins) are
embraced by the vesicle membrane which has a coat that serves as a signa-
ture marking the target compartment for the cargo. Vesicles generated this
way are hence led to their destination by a combination of passive and active
transport processes. If the coat fits the signature of the target compartment,
the vesicle membrane fuses with the compartment membrane. Internalized pro-
teins are liberated into the lumen, while membrane proteins become part of the
compartment membrane.

Vesicles can also bud from the cell membrane, internalizing membrane pro-
teins and molecules from the exterior (endocytosis). On the other hand, vesicles
from the cytoplasm can fuse with the cell membrane releasing molecules (ex-
ocytosis). Note that the exterior of the cell is topologically equivalent to the
interior of cellular compartments.

By budding, vesicular transport and fusing, molecules are transported be-
tween different intracellular compartments. Fig. 2.3 displays the compartments
proteins pass through on this way. Usually, proteins are folded into their final
form at the Endoplasmic Reticulum (ER) near the cell nucleus. From the ER
they first travel to the Golgi Apparatus where they are modified and distributed
into vesicles that are transported to the cell membrane to fuse and release the
proteins. On the endocytic pathway, proteins also pass through other compart-
ments where they are modified.
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Figure 2.3: Schematic illustration of the secretory and endocytic pathways. The blocks rep-
resent cellular compartments, proteins visit on these pathways. Endocytic and secretory path-
ways are illustrated with green and red arrows respectively, while blue arrows denote retrieval
pathways for some molecules.[2]

2.1.3 Dynamics and structure of the cytoskeleton

In cells there are two kinds of filaments that serve as tracks for motor proteins:
actin filaments and microtubules. These filaments, together with intermediate
filaments, constitute the cytoskeleton. The cytoskeleton serves as infrastructure
for active vesicle transport as well as stabilizes cell structure and mediates cell
motility. As mentioned above, the direction of active vesicle transport by motor
proteins is determined by the direction and polarity of filaments. Therefore it
is important how filaments are arranged in the cytoplasm. In this subsection
the dynamical processes determining the structure of the cytoskeleton are dis-
cussed. For the purpose to study transport properties, only actin filaments and
microtubules are considered.

Intracellular filaments are polymers which assemble and disassemble con-
tinuously. Actin filaments consist of actin monomers that are aligned linearly,
forming a helical structure with a period of 37nm (cf. Fig. 2.4). Microtubules
however have a more complicated structure. They consist of α − β−tubulin
dimers that form linear protofilaments. Thirteen parallel protofilaments, ar-
ranged in a cylindrical form with a diameter of about 25nm, form a complete
microtubule (cf. Fig. 2.5). Polymerization and depolymerization can in princi-
ple occur at both sides of either filament species. However, the actin monomers
as well as the tubulin dimers are polarized, exhibiting a plus-end and a minus-
end 6. This polarity results in different binding rates for filament subunits at
the two ends. For both microtubule and actin filaments it is more favorable for
subunits to bind at the plus-end.

For dissociation of subunits one has to consider hydrolysis of nucleotides
bound to filament subunits. Actin monomers are usually bound to ATP/ADP

6The plus-end of actin is also called barbed end, while the minus-end is the pointed end.
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Figure 2.4: Structure of actin filaments and actin monomers. [2]

Figure 2.5: Structure of microtubules and α− β−tubulin dimers. [2]

while tubulin dimers are bound to GTP/GDP (guanosine-tri-/di-phosphate).
The basic dynamics is the same for actin filaments and microtubules. Hence
for convenience we denote the nucleotides as XTP/XDP, where X represents
the nucleosides A and G respectively for corresponding filament types. The
dissociation rate of subunits containing XTP is low, while after hydrolysis (dis-
sociation of one phosphate ligand) the dissociation rate of subunits containing
XDP is strongly enhanced. Due to the asymmetry of the filaments it is much
more favorable for subunits to attach to the plus-end than to the minus-end.
Since usually free subunits do not hydrolyze immediately after binding, the nu-
cleotides are in the XTP-state. Therefore the plus-end usually has a cap with
XTP units with low dissociation rate. Subunits at the minus-end however have
been remaining in the bound state for a longer time so that the probability that
they have hydrolyzed to turn into the weakly bound XDP state is enhanced.
Therefore the dissociation rate of subunits at the minus-end is much higher
than at the plus-end. In summary, there is a net dissociation of subunits at the
minus-end and polymerization at the plus-end which results in a process called
treadmilling that effectively moves the filament in plus-direction. This process
is displayed in Fig. 2.6.

Although the process of growing and shrinking of filaments is similar for
both actin filaments and microtubules, their network structure and observed
dynamics differ significantly. The microtubules are usually arranged in an or-

17



Figure 2.6: Illustration of the treadmilling process that leads to effective growth at the plus-
end and shrinking at the minus-end of actin filaments and microtubules. It is driven by
preferred binding to plus-end and subsequent hydrolysis of nucleoside triphosphate. [2]

dered fashion. In most cell types of multi-cellular organisms they usually form
an aster-like radial structure, while e.g. in neuronal axons they are arranged
longitudinally. In contrast, actin filaments often form an undirected network
with an internal dendritic structure 7. The reason for these different structures
lies in the mechanisms that nucleate new filaments and inhibit dissociation at
the minus-end.

In-vivo, not all actin-ATP complexes can contribute to polymerization.
There are other proteins like profilin that can bind to actin monomers, so that
they are not able to attach to actin filaments. Therefore the actual concentration
of free actin monomers which can take part in polymerization is usually much
less than the total concentration [16]. Spontaneous nucleation only occurs if
the concentration of free monomers exceeds a critical value. Since in living cells
corresponding concentrations of free actin monomers are usually much less, nu-
cleation seeds are needed. One nucleation seed for actin filaments is the ARP2/3
protein complex. These complexes are abundant in the cytosol, so that actin
filaments can nucleate anywhere in the cytosol with arbitrary initial direction.
However, actin filaments are most frequently observed at the cell membrane,
forming a quasi-two-dimensional disordered cortical network beneath the mem-
brane [84]. ARP2/3 can also bind to the sides of existing filaments. Hence
filaments also nucleate at the sides of filaments with a plus-end at an angle
of 70o to the parent filament (branching). In addition ARP2/3 stays bound
for some time inhibiting dissociation at the minus-end so that dendritic struc-
tures of actin-filaments can form by branching (cf. Fig. 2.7). After some time
ARP2/3 unbinds from both filaments, so that filaments shrink at minus-ends
performing the treadmilling mechanism described above. While actin filaments
are correlated by branching, the global structure of actin networks does not
exhibit a preferred direction and orientations of filaments are randomly dis-
tributed. In addition to dendritic structures bundles of actin filaments are often
encountered. These emerge due to crosslinking by several proteins like villin,

7Actually actin filaments mediating cell motility are directed in moving direction of the
cell and also contractile bundles of actin are present. However here we only focus on transport
features of actin.
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Figure 2.7: Branching of actin filaments. ARP2/3-complexes (sickles) attach at the sides of
actin filaments and initialize the growth of new filaments at an angle of 70o to the existing
one. Since ARP2/3 inhibits dissociation, dendritic structures emerge [2].

fimbrin and motor proteins (see Sec. 2.1.4). Bundles can act e.g. as contractile
elements in muscles or to deform the cell membrane. However structures of this
kind usually do not contribute to vesicle transport. Actin networks can also
use self-organizing mechanisms to form patterns. In [21] it was shown theoreti-
cally that transport of actin filament nuclei (actin-monomers+ARP2/3) in the
minus-direction of filaments can organize the network in an aster-like pattern
with radially orientated plus-ends.

For microtubules the concentration of α− β−tubulin dimers is also usually
less than the critical density. The nucleation of microtubules is then mediated by
ring like complexes consisting of γ−tubulin. These rings aggregate to more com-
plex bodies, the microtubule organizing centers (MTOC) e.g. centrosomes in
animal cells. γ−tubulin rings are arranged in the MTOC such that microtubules
nucleated there are orientated away from the MTOC [100]. Microtubules grow
with their minus-end fixed at the MTOC, forming a radial aster-like structure,
since γ−tubulin rings inhibit dissociation at the minus-end. When plus-ends
of the microtubule aster reach the cell membrane they exhibit a force on it
that leads to a positioning of the centrosome at the center of the cell near the
nucleus. In contrast to actin filaments, minus-ends are liberated only rarely,
so that minus-ends usually do not dissociate and treadmilling is not observed.
However, one usually observes rapid dissociation of large parts of microtubules
at the plus-ends (catastrophe) which stops at some point such that they resume
growing. Beneath the cap of recently associated GTP-tubulin-dimers, usually
most microtubule subunits have hydrolyzed into the weakly bound GDP-state.
If due to stochastic fluctuations the cap is dissociated and GDP-dimers are at
the plus-end, the microtubule starts to rapidly dissociate until an island of one
or more remaining GTP-dimers is at the tip. Then dissociation is stopped and
the microtubule can grow again (rescue). The process illustrated in Fig. 2.8
displays a possible scenario that causes catastrophe. A stochastic model for
this process is e.g. studied in [3]. However, GTP islands are rare. In order
to stabilize microtubules and avoid dissociation of large parts of a microtubule,
proteins can stabilize microtubules. The CLIP protein, for example, attaches
at the tip of a microtubule and stabilizes it by increasing the rescue rate [58].

The structures of microtubule and actin filament networks correspond to
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Figure 2.8: Illustration of dynamic instability of microtubules. A growing microtubule usu-
ally has a cap of tubulin dimers with GTP that inhibits dissociation. If this cap disappears,
the microtubule depolymerizes fast at the plus-end until a island with GTP is reached. [2]

their function in vesicular transport of mammalian cells. The radial arrange-
ment of long microtubules is suited for long range transport of vesicles on the
endocytic and secretory pathway. The disordered structure of actin does not
appear to be suited for directed transport on large scale, rather a non-directed
distribution of vesicles is assumed to be mediated by the actin network. In this
point of view the actin network enhances diffusion on large scales. However,
results for transport on networks in chapter 4 will indicate that there might be
features of transport on actin networks that provide aggregation of vesicles and
macromolecules as well as radial bias of transport. This might be relevant in
lower developed organisms like yeast or prokaryotes where microtubules do not
contribute significantly to directed vesicle transport [45].

2.1.4 Directed movement of motor proteins

Molecular motors bind to cell structures and perform steady directed movement
along them, using the energy of cyclic ATP hydrolysis. Examples are ribosomes
or RNA-polymerase which bind to the corresponding nucleic acid and move
along it to catalyze polymerization. However, here only cytoskeletal motor
proteins are considered in order to exemplify the processes.

In general there are three super-classes of cytoskeletal motor proteins:
myosin, kinesin and dynein. While myosin is associated with actin filaments,
kinesin and dynein bind to microtubules. In figure 2.9 a kinesin motor protein
is illustrated schematically. The basic structure of cytoskeletal motor proteins
is the same for all three families. A globular motor domain that can bind to
filaments and ATP, and a tail whose end can bind to cargo i.e. vesicles, or-
ganelles or other filaments. The motor domain is polarized and can only bind
to filaments with an orientation fitting the filaments polarity. Most of the motor
proteins form dimers with two coiled amino acid strands and two motor heads,
while e.g. myosin II can even associate with other motors to constitute large
thick filaments with the motor heads at the surface. Alternating patterns of
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Figure 2.9: Schematic illustration of a kinesin motor protein. The main structure is generic
for most motor proteins: they have a tail where cargo (e.g. vesicles) can bind and a motor
domain (head) that attaches to filaments and uses the energy from hydrolysis of ATP to
perform directed movement by cyclic conformational changes (taken from the homepage of
K.J. Böhm).

Figure 2.10: Illustration of the step mechanism of kinesin. ATP binds to the rear head of
the kinesin. After unbinding of the rear head, the energy obtained by ATP hydrolysis is used
for a conformational change which moves the rear head to the front where it binds to the next
tubulin dimer in plus-direction of the microtubule. [2]
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myosin II and actin filaments make up contractile bundles with a striated ap-
pearance. The directed movement of motor heads along actin filaments mediates
contraction of these bundles as for example in muscle fibers.

The process that enables directed displacement of motors along filaments is
displayed in Fig. 2.10 exemplified by kinesin. Motor proteins bind to a filament
with a given polarity that fits the polarity of the motor domain. The rear head
binds ATP that is dissolved in the cytosol. ATP hydrolysis, i.e. dissociation
of a phosphate, provides energy and triggers a conformational change of the
motor domain which releases the rear head and moves it to the front (power
stroke). Now the latter head can bind to the tubulin dimer in front, hence the
motor protein has moved one discrete step to the front direction of the filament.
Thus the movement looks similar to “walking” of two-legged creatures. The
length of these steps depends on the periodicity of actin filaments (37nm) and
microtubule protofilaments (8nm) for respective motor proteins. The direction
depends on the polarity of filaments and preferred binding orientation of motor
proteins. While kinesin and most myosin species move to the plus-direction of
actin filaments and microtubules respectively, dynein and myosin VI move to
the minus-ends of filaments.

Also single-headed motor proteins can perform directed movement. In this
case a dissipative ratchet mechanism rectifies Brownian motion, driven by an
asymmetric binding potential for the motor head (cf. Fig. 2.11) [71, 36]. The
motor protein can bind to a microtubule and interchanges between a strongly
bound state S and electrostatic bound state W. In state S it is covalently bound
to a minimum of the asymmetric potential. By use of energy from ATP hydrol-
ysis, the motor can unbind and the potential becomes flat, though the motor
cannot diffuse away from the filaments, due to an electrostatic attractive in-
teraction [74, 36]. However, the motor protein can move freely parallel to the
filament and performs Brownian motion along the microtubule. Assuming an
asymmetric form of the binding potential like in Fig. 2.11, by rebinding to the
filament the motor head accomplishes one step, while the probability that the
motor head is at the potential well right of the initial one is higher than to be
at the left one. Cyclic repetition of these steps leads to a biased net movement
to the right, while left steps are not strictly inhibited.

Using these movement processes motor proteins can steadily move along
filaments in their preferred direction carring cargo to their destination. Usually
there is not only one molecular motor on a filament. If two motors are next to
each other, they might interact by physical or chemical interactions. It is not
possible for two motors to bind to the same binding site. On the other hand
steric interaction of proteins and cargo objects impede free movement. This
inhibition of motion can lead to collective phenomena like jamming transitions
which have been observed e.g. for KIF1A-kinesin motors in vitro (cf. Fig. 2.12).
This thesis mainly considers these collective phenomena that strongly influence
the macroscopic transport properties of the system, while microscopic single
component dynamics are only considered on a rather coarse grained scale.

In addition to motor proteins there are other molecules that bind to fil-
aments like microtubule associated proteins (MAPs) that control the growth
dynamics of microtubules. The presence of these proteins can influence the ki-
netic properties of motor protein movement, e.g. decreasing the probability that
a processive step is accomplished. These inhomogeneities on cytoskeletal fila-
ments influence the transport properties of the intracellular vesicle transport.
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Figure 2.11: Ratchet mechanism driven by switching between a asymmetric and flat binding
potential for kinesin class KIF1A. Switching occurs by dissipation of chemical energy. Since
the minimum of the binding potential is nearer to the right adjacent potential well, rebinding
after diffusion in the weakly bound state to the right adjacent well is larger than to the left
one. This leads to a bias of movement if cyclic steps are performed. [71]

Figure 2.12: Microscopy of fluorescently labeled kinesin motors (red) and microtubule
(green). The motor density is increased from the upper to lower pictures. In the middle
picture, one observes a long connected stretch of kinesin, indicating the emergence of a jam.
This jam coexists with a more dilute region of kinesin. [71]
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They not only lower the average velocity of motor proteins but, in combina-
tion with mutual blocking, can induce additional jamming, lowering transport
performance in cells. For example in neuronal axons of people suffering from
Alzheimer’s disease the abundant presence of tau proteins binding to micro-
tubules is assumed to inhibit transport of neurotransmitters to the synapse and
might therefore be a cause for the deleterious effect of the disease [93]. On the
other hand blockages can also be artificially induced in in-vitro systems [22, 88].
The network structure of the cytoskeleton also gives rise to interactions. If two
or more filaments are near to each other, e.g. at crosslinks of actin filaments,
motor proteins/vesicles travelling on different filaments can mutually impede
movement by steric interactions. Filament crossings hence act as defects and
might be able to induce jams.

In the following the problem of quantifying the combined effects of inhomo-
geneities and steric interactions is approached. Therefore we look for systems
that serve as models for intracellular transport processes and take into account
collective effects, while being simple enough to be treatable by theoretical con-
cepts.

2.2 Stochastic modeling

“All models are wrong, but some of them are useful”
George E.P. Box

In order to treat a real system quantitatively, one has to find a model for this
system. Developing a model usually means to simplify dynamics and structure
of the system by neglecting less relevant states and processes. The reasons for
simplification of complex processes are manifold:

Lack of knowledge Usually not all individual processes of a real system
are known in detail. Especially on the intracellular scale, sophisticated
experimental techniques are necessary to identify microscopic processes
and the nature of interactions. Even if they were known it would be
hopeless to represent such a system in detail.

Applicability of analytical methods From a theoretical point of view it
might be interesting to investigate a system by analytical or numerical
methods. This, however, is not possible for very complex systems. Ac-
tually only simple non-equilibrium systems can be treated analytically
yielding accurate results. Although the performance of computers is con-
tinuously increasing, it is so far not even possible to study the dynamics
of single proteins in atomistic detail if they undergo large conformational
changes.

Identification of relevant microscopic mechanisms A thorough identifi-
cation of the most relevant processes that determine robust properties of
the system is crucial for theoretical investigations. This helps to find rela-
tions between microscopic processes and macroscopic behavior of complex
systems. If the underlying processes of an observed phenomenology are
not known due to limited experimental techniques, modeling can help to
distinguish between possible scenarios. Comparison of the robust macro-
scopic phenomenology (e.g. phase diagrams) of models that take into
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account different microscopic mechanisms can help to identify relevant
and irrelevant mechanisms for the considered phenomenology.

In order to be useful, a model must reproduce at least qualitative properties
of the system. In the case of complex systems consisting of a high number of
presumably interacting components, one is usually interested in macroscopic
properties emerging from microscopic dynamics.

Models (even simple ones) can be used to predict new phenomena that are
currently not observed experimentally. For this purpose a model must be tested
on experimental data to reproduce the observed results and parameters must
be carefully adjusted. Then a model can further predict phenomena e.g. in
parameter regimes which are out of reach for current experimental methods.

Usually a first model only captures a part of qualitative phenomena, not
to mention the quantitative accuracy. Thus existing models are gradually ex-
tended to reproduce more and more the phenomenology of the systems while
distinguishing the impact of single aspects of the dynamics.

2.2.1 Developing a stochastic model

One powerful approach of modeling systems consisting of many interacting com-
ponents is the introduction of stochastic transition rates instead of deterministic
dynamics. This way complex subprocesses of single components can be summa-
rized and substituted by a single transition rate that reproduces the dynamical
behavior on a coarse-grained scale. This becomes necessary because the nature
of interactions and microscopic details is often not known.

Models whose dynamics is given by transition probabilities are a subclass of
stochastic processes (see e.g. [20]). The state of a system at time t is given by a
configuration vector η = (η1, η2, ...). Time evolution is given by transition rules
that determine the probabilities of possible transitions between configurations
within a time interval ∆t:

η(t+ ∆t) = η′ with probability pη(t)→η′ = ωη(t)→η′∆t for all η′ . (2.1)

where ωη(t)→η′ is the transition rate which gives the probability per time in-
terval. Usually a system without intrinsic time scale fixing ∆t is defined by
fixed transition rates, while the transition probabilities depend on the time step
chosen in a particular implementation of the model (e.g. in computer simula-
tions; cf. next subsection). In general, transition rates/probabilities can also
depend on past states η(t′ < t), though in this thesis only Markov processes
are considered where transitions only depend on the present state of the sys-
tem η(t). Markov processes can also be continuous so that infinitesimal time
steps ∆t → dt have to be considered. In this case individual probabilities
per time interval dt vanish while stochastic integrals as

∫
ω dt retain a finite

value. Processes of this kind are treated by Stochastic Calculus. In this work
time-continuous systems will be approximated by discrete times so that we will
always deal with time-discrete Markov processes.

Simplification of a complex process by a simple stochastic transition prob-
ability/rate can be exemplified by regarding the stepping process of molecular
motors if one is interested in the collective behavior of many interacting motors.
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First of all, the structure of the system is simplified. All molecular motors pre-
sented in Sec. 2.1 (cytoskeletal motor proteins, ribosomes, RNA-polymerase)
move along polymers (actin/microtubules, RNA- and DNA-strands), while they
can only bind to discrete sites with uniform distance a (monomers). Hence the
polymer can be discretized by a one-dimensional chain or lattice of discrete sites.
Although the structure of a molecular motor is quite complex, one can repre-
sent the motor as a particle at the binding position, by neglecting interactions.
Instead of taking into account rates for XTP-hydrolysis (X=A,T,C,G) and the
molecular dynamics involved in conformational changes, the displacement of
the motor and change of the binding sites is simply modeled by the hopping of
the particle to a right adjacent site with a probability p, within a considered
time interval ∆t 8. While microscopic biochemical dynamics are difficult to
observe experimentally, the rate that a motor goes from one site to the next
can be obtained by experimental observation of the velocity v of free motors
and corresponds to the hopping rate p = v/a. The steric interaction with the
constraint that two motors cannot bind to the same place can be implemented
in the model by prohibiting double occupation of sites, thus cancelling all hop-
ping events that attempt to do. The model in this paragraph corresponds to
the TASEP which will be considered in detail in the following section9. While
the model does not provide insight into biochemical dynamics, despite its sim-
plifications, it retains large scale collective phenomena emerging due to steric
motor-motor interactions, as will be seen in the following section.

If a model in form of a Markov process with certain transition rules (2.1) is
developed, it can be studied by analytical and numerical methods. The object
containing the full information of a system is the probability distribution of
system states at given time t, P (η, t), whose time evolution is given by the
discrete time Master equation [87]:

P (η, t+ ∆t) = P (η, t) + ∆t
∑
η′ 6=η

[ωη′→ηP (η′, t)− ωη→η′P (η, t)] . (2.2)

The terms ωη′→ηP (η′, t) are the probability current from state η′ to η. Due to
conservation of probability,

∑
η P (η, t) = 1, the Master equation can be seen as

the continuity equation for the probability distribution P (cf. Kirchhoff’s law).
It can be shown [87] that in ergodic systems a unique stationary state with

P (η) := P (η, t) = const. is reached after some time. In physical systems
without input of external energy, the stationary state is characterized by a
balancing of probability currents between any two states η and η′. In this case
the stationary state Master equation simplifies to the detailed balance condition

ωη′→ηP (η′, t) = ωη→η′P (η, t) for all η, η′ (2.3)

which is the characteristic of an equilibrium state that obeys time reversal in-
variance.

In case of active transport however, dynamics are directed and (particle)
currents do not vanish. This steady current is achieved by permanent energy

8the time interval has to be chosen such that the transition probability is less or equal to
one.

9In principle a model with extended particles must be considered. However if the system
size is rescaled by subtracting the covered total length of particles, it can be mapped on
single-site particles.
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input (e.g. by ATP-hydrolysis). Therefore detailed balance is violated and sta-
tionary states of active transport systems are non-equilibrium stationary states.
However if only partial aspects of systems are considered, some quantities (e.g.
the number of attached particles in case of Langmuir kinetics) obey detailed
balance and tools from equilibrium statistical physics can be applied.

There are a number of analytical approaches to solve the Master equation
of non-equilibrium systems, though only for a few systems it was successful
to obtain the exact form of the stationary state. Most analytical approaches
rely on sophisticated approximations, while usually one is only interested in
partial aspects of the system that do not rely on the explicit form of the Master
equation. Not all these approaches will be discussed in general, but in the
following section and in chapter 3 and 4 analytical techniques that are suited
to treat particular classes of stochastic systems will be introduced.

Numerical approaches usually can be implemented in a straightforward man-
ner for a larger class of stochastic systems which will be discussed in the following
subsection.

2.2.2 Implementation as computer simulation

Stochastic systems can be analyzed by numerical methods e.g. applying com-
puter simulations using pseudo random numbers (Monte Carlo simulations
(MC)). For the implementation of simulations one has to meet some further
conditions for Markov processes:

1. The state of the system must be representable by a finite number of vari-
ables, i.e. the configuration vector η must be finite-dimensional.

2. Time steps must be discrete. If a continuous system with fixed transition
rates ωi is modeled, one has to take care that ∆t < min(1/ωi) to guarantee
that all probabilities pi = ωi∆t < 1.

For continuous systems further approximations are necessary in this case. The
system state can be implemented by a vector of variables or, using object-
oriented programming, by a number of objects which posses internal variables
representing their individual state.

The simulation is done by computing the state of the system gradually for
consecutive time steps. Assume that the system is in a state η at time t and
transitions to other states ηi with probabilities pi = ωi∆t are possible within the
next time step. In order to calculate the state at a time step t+∆t, one first sub-
divides the interval [0, 1] in intervals of length pi each, i.e. [0, p1], [p1, p1 +p2], ...,
associating each interval with one of the possible transitions η → ηi. Now a
pseudo random number within [0, 1] is generated (see e.g. [94]). Depending
on the interval this number falls in, the corresponding transition η → ηi will
be performed and the state of the system will be updated to ηi. During the
simulation a number of quantities can be computed. Usually one is interested
in averages and fluctuations of state variables and derived quantities. The ob-
tained data can then be evaluated and compared with experimental or analytical
results.

The updating scheme discussed above is usually denoted parallel update,
since each entry of η is updated at the same time depending on the state of
the system at time t. However, in order to implement a continuous-time system
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where no intrinsic time-scale is present, it is rather convenient to use random
sequential update rules to implement it on a discrete-time computer system. In
this case not the full system is updated at once, but the system is subdivided in
N subunits that mark the interacting components of the system (e.g. particles
or sites in lattice systems). N times per time step, a single subunit is chosen
randomly and updated following the rules. This way each subunit is chosen on
average once per time step ∆t, while there might be subunits that can be chosen
more than once or not at all during an individual time step. In the following
sections this kind of updating rule is usually used, if not stated else.

2.3 Driven lattice gases as models for active
transport processes

In order to model active transport processes and extract useful results, one
has to find a model simple enough to be theoretical treatable while exhibiting
most crucial properties of active transport. In recent years driven lattice gases
(DLGs) have been widely used to model active transport processes like highway
traffic [69, 14], pedestrian dynamics [85] and intracellular transport processes
[66, 13, 75, 64, 71]. In general, driven lattice gases are stochastic systems in
which particles residing on lattice sites perform stochastic dynamics with a bias
in moving direction, i.e. a macroscopic particle current is usually present. In
addition to their position, particles can be characterized by internal states, that
have influence on the dynamics. In most considerations an exclusion principle
is applied that does not allow that two particles occupy the same site.

In the last section we have seen that the stepping process of molecular motors
can be modeled by hopping of particles in a preferred direction, while steric
interactions of motors are taken into account by prohibiting double occupation
of sites (exclusion principle). The system performing these processes is known
as the totally asymmetric simple exclusion process (TASEP) and serves as a
paradigmatic model for many active transport processes. Although its dynamics
is quite simple, the model exhibits some interesting macroscopic phenomena that
are common in transport systems. Indeed, allowing entry and exit of particles
at the boundaries, the TASEP exhibits phase transitions which are usually not
known in one-dimensional equilibrium systems at finite temperatures. On the
other hand it is one of the few interacting non-equilibrium systems that can be
exactly solved [17, 86].

In this section the TASEP and related models are presented which are used
to model active transport on single tracks, especially collective movement of
molecular motors on single polymers (filaments or DNA/RNA-strands). In Sec.
2.3.3 some analytical approaches to these systems are introduced which can be
applied to extract properties for a given subclass of driven lattice gases. Treating
the systems as stochastic processes, in general we denote rates in units of the
time steps and choose for simplicity a time step ∆t = 1, hence probabilities and
rates have the same values.

2.3.1 The homogeneous TASEP

First of all we consider the homogeneous TASEP with L sites (also referred to as
system size), where hopping rates are equal for all sites and for all particles. The
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In the bulk:

τi(t) τi+1(t) τi(t+ ∆t) τi+1(t+ ∆t) Probability
0 x 0 x 1
1 1 1 1 1
1 0 0 1 p
1 0 1 0 1-p

On left boundary:

τ1(t) τ1(t+ ∆t) Probability
0 1 α
0 0 1− α
1 X obey bulk dynamics

On right boundary:

τL(t) τL(t+ ∆t) Probability
0 0 1
1 0 β
1 1 1− β

Table 2.1: Transition rules for the open TASEP if a site i is chosen by random sequential
update rules. x means an arbitrary occupation state. Note that the transition of site i was
chosen to depend only on the front site by convention. This way actually the bond (i, i + 1)
is updated once per time step on average.

Figure 2.13: Illustration of the stochastic dynamics in the TASEP. Particles may hop to the
right adjacent site with probability p if not occupied. Taken from [80].

state of the system is given by the occupation numbers τi at the sites i = 1, ..., L
aligned in one dimension. The occupation number τi = 0 if site i is empty and
τi = 1 if it is occupied by a particle. At each time step, a particle can hop
to the right adjacent site with probability p if this site is empty. If not stated
explicitly, for random sequential update, we choose a time step such that p = 1.
Stochasticity is maintained by the stochastic choice of updated sites. If the
target site is occupied, no transition occurs (exclusion principle). The system
can be implemented with periodic boundary conditions, exhibiting the topology
of a ring, or open boundary conditions where in addition particles can enter at
the left if τ1 = 0 and they can exit at the right with a rate β (open TASEP). At
each time step, L times a site i is chosen randomly (random sequential update)
and transitions take place in dependence on the occupation of the front site. The
transition rules are explicitly given in Table 2.1 and illustrated in Fig. 2.13.

The TASEP exhibits a unique stationary state [17]. Due to the biased dy-
namics, detailed balance is broken and the stationary state cannot be an equi-
librium state. Instead a macroscopic particle current remains. The current
Ji,i+1 (also denoted as “flow”) is defined as the average net number of particles
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crossing a bond between site i and site i + 1 in the positive direction at each
time step. The current marks the performance of a transport system, since it
corresponds to the average amount of cargo reaching a given point per time
unit. Therefore this quantity is of high interest. In higher dimensional systems
the current is defined as the rate of particles crossing a given plane (or other
submanifold), e.g. electric charge current. The current can also be expressed in
terms of the average velocity of particles 〈v〉 by J = ρ 〈v〉, where ρ denotes the
particle density, which is defined as the average occupation number at a given
site: ρi = 〈τi〉. Moreover, the density can be used to express the boundary
rates in terms of boundary reservoirs. The boundary conditions can also be
implemented by assuming virtual sites with fixed densities ρ0 = α/p at the left
boundary and ρL+1 = (1− β)/p at the right boundary [60].

Due to the high relevance of the quantities J and ρ, a relation between
the two contains much information about the system. Indeed for many driven
lattice gases including the TASEP, a unique current-density relation (CDR)10

J(ρ) exists [17] which does not depend explicitly on the considered position in
the system and its environment, at least in the continuum limit 11. The current-
density relation of the TASEP is shown in Fig. 2.14. One observes a maximum
at half filling of the system marking the optimal density for transport. The
CDR can be understood by a simple mean-field argument: since a step from
site i to site i+ 1 crossing a bond and contributing to the current Ji,i+1 occurs
with probability p if τi = 1 and τi+1 = 0, the current takes the form

Ji,i+1 = p〈τi(1− τi+1)〉 (2.4)

Applying a mean-field approximation 〈τiτj〉 ≈ 〈τi〉〈τj〉 and going to the contin-
uum limit 〈τi〉 ≈ 〈τi+1〉 one obtains

J(ρ) ≈ p ρ(1− ρ) (2.5)

which depends only on the local density ρ. Actually one can show that this
approximation is exact for periodic systems and in the continuum limit also for
open systems [17]. A characteristic property of driven systems, where particles
cannot be created or annihilated in the bulk is the spatial invariance of the
current. This is a consequence of mass conservation.

For open systems where particles can enter at the left end with rate α and exit
with rate β, the system exhibits non-trivial behavior under tuning of boundary
rates for p = 1. As long as α < β, the current and the density profile far from
the boundaries are completely determined by the entry rate α.

J = α(1− α); ρ = α, for α < β (2.6)

Only within a finite distance from the right boundary there is an exponentially
decaying boundary layer in the density profile whose shape depends on β. If
α > β, however, particles form a queue12 and the current as well as the density
(except a small boundary layer) are completely determined by the exit rate β

J = β(1− β); ρ = 1− β, for α > β (2.7)
10In traffic literature the CDR is usually called the fundamental diagram.
11In finite systems shocks and boundary layers can cover a finite length where this relation

is not valid.
12The density is not exactly one, hence the queue is disrupted by holes.
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Figure 2.14: Current-density relation (CDR) of the TASEP. One observes a maximum at
half filling ρ = 0.5. The current grows with increasing density until this point but decreases
hence due to particles impeding movement by mutual exclusion interaction.
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Figure 2.15: Density profiles of the TASEP in the different phases. For α < β, the density
profile is determined by the entry rate α in the L-phase. for α > β, the density profile
is determined by β (H-phase). For α, β > 0.5, the density profile exhibits long-ranged, non-
constant boundary layers (M-phase), while the current J = 1/4 is independent of the boundary
rates.
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Figure 2.16: Phase diagram of the TASEP for hopping probability p = 1. The transition
from low- (L) to high density phase (H) (bold dashed line) is of first order with a discontinuity
in the density. The transition to the maximum current phase (M) is of second order since no
discontinuity emerges. The insets sketch some typical density profiles 〈τ〉(x) in the respective
phases. The thin dashed lines mark subphases, where density profiles do not differ in the
bulk, but in characteristics of boundary layers [87].

Therefore at the transition point α = β the density performs a leap of 1 − 2β.
This discontinuity in the dependence on boundary rates is called a boundary
induced phase transition [60]. The phase for α < β is called a low density
phase (L), while for α > β one refers to a high density phase (H), since the
transition from L to H corresponds to a discontinuous increase of the density
(see Fig. 2.15). Note that the current does not jump at this point. Besides
these two phases there is a third phase for α > 0.5 and β > 0.5, where the
current is completely independent of boundary rates taking the value J = 1/4.
In this case the current is limited by the exclusion of particles in the bulk.
Long range (algebraic) boundary layers emerge, leading to an spatially varying
density profile [87]. Since the current cannot exceed this value by tuning the
boundary rates, the phase is called maximum current phase (M). The phase
diagram of the TASEP in dependence on entry and exit rate is shown in Fig.
2.16.

A crucial feature of the TASEP is the particle-hole symmetry : Performing
the particle-hole symmetry operation

τi ↔ 1− τi, α↔ β, i↔ L− i (2.8)

does not change system properties. This yields some restrictions on macroscopic
quantities, e.g. the phase diagram must be symmetric to the diagonal in the
α − β−phase diagram and the CDR must be symmetric to the vertical line at
ρ = 0.5.

Analytical treatment of the TASEP is not restricted to mean-field techniques.
In fact the TASEP is one of the few interacting non-equilibrium systems that can
be solved exactly, as was shown in the works [17, 86, 26] for random sequential
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update and in [82] for other update rules. In [17] e.g. the TASEP with random
sequential update and hopping probability p = 1 was solved applying a Matrix-
Product-Ansatz (which is not discussed in detail here) yielding a “partition
function” for a system of size L

Z(α, β, L) =
∑

{τi=0,1}

P({τi}) =
L∑
j=1

j(2L− 1− j)!
L!(L− j)!

(1/β)j+1 − (1/α)j+1

(1/β)− (1/α)
. (2.9)

Here P({τi}) is the unnormalized probability of finding the stationary system
in a configuration {τi}. The current can be obtained by Z yielding

J0(α, β, L) =
Z(α, β, L− 1)
Z(α, β, L)

. (2.10)

As we will see in the following chapter this exact solution is even useful to
develop an approximation scheme for the TASEP with inhomogeneous hopping
rates.

2.3.2 Extended models

The phases of the TASEP indeed represent some qualitative features of trans-
port systems with particles on narrow tracks that cannot overlap, e.g. vehicles
on roads or molecular motors on polymers like intracellular filaments and nu-
cleic acids. If only few carriers are on a track, there is free flow and the flow
can be controlled by the input of carriers. However, if the input exceeds the
number of carriers leaving the track a traffic jam emerges, which corresponds
to the transition to the high density phase in the TASEP. Thus the TASEP,
though quite simple, captures qualitative features of real active transport sys-
tems. Nonetheless, if one is interested in more detailed properties, one has to
extend the model (e.g. in [69] for highway traffic). Actually in in-vitro ex-
periments with a high number of motor proteins (kinesin KIF1A) Okada and
Hirokawa observed domains on microtubules where motor proteins are crowded,
exhibiting a high density, while in other domains they are dilute [74] (cf. Fig.
2.12).

In these images one observes that high and low density domain coexist on the
same track. In the TASEP with open boundary conditions, however, high- and
low density domains respectively always extend over the whole system. Phase
coexistence is not observed in the TASEP.

Actually a crucial feature of intracellular motor-protein transport is missing
in the TASEP: Motor proteins can attach and detach to cytoskeletal filaments at
any site (Langmuir kinetics (LK)). In order to capture this feature, the TASEP
was extended by introducing a bulk reservoir that allows attachment and de-
tachment of particles with rate ωa and ωd respectively (TASEP-LK [75, 27]).
This can be implemented effectively by allowing creation of particles at ran-
domly chosen sites with rate ωa if a site is empty and annihilation of a particle
with rate ωd .

The time evolution of sites j, j+1 of the TASEP-LK can be written in terms
of transition rates (1=̂ occupied, 0=̂ empty):
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Figure 2.17: Illustration of the dynamics in the TASEP with Langmuir kinetics. In addition
to TASEP rules, particles can be created with rate ωa (attachment) and annihilated with rate
ωd (detachment). (edited from Fig. 2.13)

For 1 < j < L:

Hopping : 10→ 01 with rate p
Attachment : 0→ 1 with rate ωa
Detachment : 1→ 0 with rate ωd

(2.11)

for j = 1:
Hopping : 10→ 01 with rate p
Entry : 0→ 1 with rate α
Detachment : 1→ 0 with rate ωd

(2.12)

and for j = L:
Attachment : 0→ 1 with rate ωa
Exit : 1→ 0 with rate β (2.13)

Other transitions are prohibited. We can write the time evolution of the density
ρj = 〈τj〉 as

dρj
dt

(t) = p〈τj−1(t)(1− τj(t))〉 − p〈τj(t)(1− τj+1(t))〉

+ ωa(1− ρj(t))− ωdρj(t) (2.14)

in the bulk and

dρ1

dt
(t) = −p〈τ1(t)(1− τ2(t))〉

+ α(1− ρ1(t))− ωdρ1(t) (2.15)
dρL
dt

(t) = p〈τL−1(t)(1− τL(t))〉

− βρL(t) + ωa(1− ρL(t)) (2.16)

at the left and right boundary, respectively. The dynamics of the system with
bulk rates is also illustrated in Fig. 2.17. Note that for ωa = ωd = 0 the TASEP
is reproduced. Thus the TASEP-LK is a generalization of the TASEP.

Due to these new rules new phenomena arise, which are also shown in Fig.
2.18 and 2.19:

1. In contrast to the TASEP, the current is not spatially constant and de-
pends on the position in the system. The same is valid for the density
even far from the boundaries.
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Figure 2.18: Some typical density profiles of the TASEP with LK for different relations
K = Ωa/Ωd, Ωa,d = ωa,dL [75]: (a) Density profiles obtained by numerical simulations
(continuous lines) and by mean-field approximation (dashed line with α = 0.2, β = 0.6 and
K = 3, from (2.28)). (b) Density profiles exhibiting a shock from numerical simulations for
different system sizes. One observes that for increasing system size this slope becomes steeper,
indicating a discontinuity in the continuum limit (L = 10k, k = 2, 3, 4, 5, α, β and K like
in (a) and Ωd = 0.1. (c) Density profiles by mean-field approximation. α, β,K like in (a).
The horizontal line at ρ = 0.75 is the Langmuir equilibrium ρLK = Ωa/(Ωa + Ωd for K = 3.
Taken from [75].
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Figure 2.19: Comparison of current and density profile in the presence of a shock. One
observes that the current is spatially varying and a kink is present at the position of the
shock. The current profile can be constructed by two profiles determined by the boundary
conditions that intersect at the shock position, as done in [27]. The mechanism of selecting
global current profiles will be discussed in Sec. 2.3.3 and generalized to disordered systems in
Sec. 3.3. Taken from [76].

Figure 2.20: Phase diagrams in the TASEP-LK for (Ωa,d = ωa,dL, K = Ωa/Ωd) (a) Ωd =
0.1, K = 3: The diagram for K < 1 can be obtained by the particle-hole symmetry operation,
together with K → 1/K, α→ β, β → α. For large K the low density phase vanishes as does
the high density phase for low K. (b) Ωd = 0.1, K = 1: New subphases where a maximum-
current and other phases coexist (LM,HM,LMH) emerge. Taken from [27].
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2. There are parameter regimes where a high- and a low density domain
coexist. They separated by a domain wall which manifests as a steep
slope in the density profile. The slope increases for increasing system size.
This domain wall is called a shock and it appears to be stationary in the
TASEP-LK. The finite width of this domain wall is due to fluctuations of
the shock [27, 49].

The emergence of phase coexistence corresponds to a new phase which is
usually called shock phase (S) [27]. The phase diagram of the TASEP-LK is
shown in Fig. 2.20. One observes that the S-phase is situated between L- and
H-phase, the transitions between S- and H/L-phase are now of second order.
For decreasing ωa and ωd the S-phase becomes smaller, fading into the L-H-
transition line of the TASEP for ωa = ωd = 0. The phenomena emerging due
to attachment and detachment of particles are explained by the equation of
continuity in Sec. 2.3.3.

It can be shown [27, 81] that a mean-field treatment yields results for the
density profiles which are exact in the continuum limit. In mean-field approxi-
mation, the time development of the the local densities can be written by

d

dt
ρi = ρi−1(1− ρi)− ρi(1− ρi+1) + ωa(1− ρi)− ωdρi (2.17)

in the bulk and

d

dt
ρ1 = α(1− ρ1)− ρ1(1− ρ2) (2.18)

d

dt
ρL = ρL−1(1− ρL)− βρL (2.19)

at the boundaries. In the following section an analytical method will be intro-
duced, that allows to find mean-field solutions for the density profiles for given
boundary conditions in the continuum limit.

A more detailed model for intracellular transport is the NOSC model (named
according to the authors of [71] where it was introduced). This model is tailored
to describe transport by single-headed KIF1A kinesin motors. Those motors use
the ratchet mechanism described in sec 2.1.4 to rectify thermal fluctuations. The
NOSC model is also a driven lattice gas with exclusion interaction (no double
occupancy allowed), but in addition accounts for internal chemical states of
motors. Particles are allowed to be in two states, a strongly bound state 1 and
a weakly bound state 2. In state 1, particles cannot move, but can change to the
weakly bound state 2 with rate ωh. This corresponds to hydrolysis of ATP which
allows motors to unbind. In state 2 particles can perform a random walk along
the filament, as KIF1A motors perform Brownian motion along the filament
(see Sec. 2.1.4). At some point motors rebind to turn into the strongly bound
state, while due to the asymmetric potential, binding to a site in front of the
potential is much more favorable than binding to back site. In the model this is
implemented by introducing rates ωs for turning into state 1 at the current site,
and ωf to rebind but in addition hopping one site to the front, if the respective
site is empty. In its original version, the NOSC model also includes Langmuir
kinetics, i.e. particles can attach and detach (only) in state 1.

In the NOSC model movement depends explicitly on the internal particles
state (only particles in the state 2 can move), while transition between states
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Figure 2.21: Illustration of the dynamics in the NOSC model. Particle dynamics depend on
internal states of the particles, representing chemical states of motor proteins. In addition
the rebinding probability depends on occupation of the front site, which marks an additional
interaction to exclusion. Taken from [36]

also depends on the occupation of adjacent sites, since the total return rate to
state 1 is decreased if the front state is occupied (ωs if front site is occupied
vs. ωs + ωf if front site is not occupied). Hence particle-particle interaction is
not merely restricted to exclusion of particles. The dynamics of the model is
illustrated in Fig. 2.21, while the explicit transition rules at sites j, j + 1 are:

in the bulk:

Attachment: 0→ 1 with rate ωa
Detachment: 1→ 0 with rate ωd
Hydrolysis: 1→ 2 with rate ωh
Rebind at site j: 2→ 1 with rate ωs
Rebind at site j+1: 20→ 01 with rate ωf
Random Walk: 20→ 02 with rate ωb

02→ 20 with rate ωb

(2.20)

in addition on left boundary:

Entry: 0→ 1 with rate α 6= ωa (2.21)

in addition on right boundary:

Exit: 1→ 0 with rate β 6= ωd (2.22)
random walk step to the front and rebinding to front not possible

2.3.3 Analytical approach in the continuum limit

One general property of particle conserving systems is that the particle current
obeys the equation of continuity. Thus in a discrete system for any closed region
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V the current obeys in the stationary state (∂ρ/∂t = 0) the relation∑
<i,j>∈∂V

Ji,j = 0 (2.23)

where < i, j >∈ ∂V denotes bonds crossing the boundary of the volume V .
In one-dimensional driven lattice gases that allow exchange of particles with

bulk reservoirs this corresponds to

Ji − Ji−1 = si (2.24)

where for convenience we denoted Ji := Ji,i+1 and the term si summarizes the
net flux of particles in the bulk from the bulk reservoir at site i. In case of
the TASEP-LK the bulk reservoir flux takes the form si = ωa(1 − τi) − ωdτi,
while in other systems (e.g. the model in [83]), s might also depend on the
occupation of neighboring sites. The continuity equation implies an interesting
feature: for systems that conserve particles in the bulk, the current is always
spatially constant, while if particles can be exchanged with some reservoir like
in the TASEP-LK, the current might vary throughout the system.

Investigating transport systems one is often interested in systems which are
large compared to its microscopic components. Therefore we consider the system
in the continuum limit where the number of sites L → ∞, while the lattice
constant a → 0 such that the total system size La remains constant. We
introduce the continuous variable x = i−1

L−1 that denotes the relative position
in the system between the left boundary at x = 0 and the right boundary at
x = 1. Usually the lattice constant is not explicitly a system parameter, but
the limit can be performed by rescaling other parameters that depend on the
lattice spacing. Performing a Taylor expansion, one can write:

Ji+1 = Ji +
∂J

∂x

1
L

+O

(
1
L2

)
(2.25)

Inserting (2.25) into (2.24) yields the ordinary differential equation (ODE)

∂J(x)
∂x

= Ls(x) =: S(x) (2.26)

In order to keep the crucial features of attachment and detachment, parameters
have to be rescaled, so that the global source term S(x) remains finite in the
continuum limit. This can be achieved e.g. for the TASEP-LK by postulating
that Ωa := ωa L and Ωd := ωd L stay constant in the continuum limit. Then
also the global source term S(x) = Ωa(1−ρ(x))−Ωdρ(x) stays constant and the
ODE (2.26) is well defined. Note that in this case, the local quantities ωa, ωd
and s vanish in the continuum limit.

If a unique current-density relation J(ρ) exists in the continuum limit and
the source term depends only on the density as well, the chain rule can be
applied to yield the differential equation for the density profile [81]

∂ρ

∂x
= S(ρ)/J ′(ρ) . (2.27)

If the explicit forms of J(ρ) and S(ρ) are known, the differential equation can
be solved for a given initial condition. Usually S(ρ) is a monotonically decreas-
ing function if attachment and detachment do not depend on adjacent sites.
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Including interactions, however, S can increase with ρ. In this case the system
might even be non-ergodic in the continuum limit (see e.g. [83]).

The problem is that usually there is more than one initial condition for the
current or density profile, although the ODE is of first order. In an open system
the boundary rates fix the density at the boundaries, hence at least two initial
conditions are present. Each of the boundary conditions provides a completely
determined solution to (2.26) or (2.27). In contrast to the physically realized
profiles (global solution), we call solutions to individual boundary conditions
local solutions. The global profiles must be selected from the local solutions by
other criteria. In the case of the TASEP-LK the current and density profiles are
spatially varying due to the finite in- and outflow of particles in the bulk. In
mean-field treatment, J(ρ) = ρ(1− ρ) and S(ρ) = Ωa(1− ρ)−Ωdρ and implicit
formulas for the density profiles can be obtained by solving (2.27). For Ωa 6= Ωd
one obtains for respective boundary conditions α and β [27]:

x =
2(ρα − α) + K−1

K+1 ln
(
K−(K+1)ρα
K−(K+1)α

)
Ωd(1 +K)

(2.28)

1− x =
2(1− β − ρβ) + K−1

K+1 ln
(
K−(K+1)(1−β)
K−(K+1)ρβ

)
Ωd(1 +K)

.

The formulas can be evaluated for ρα,β to obtain the density profiles. For
Ωa = Ωd =: Ω the solution is even linear to yield

ρα(x) = α+ Ωx and ρβ(x) = (1− β) + (x− 1)Ω (2.29)

In general more than one local solution can be realized at the same time,
though spatially separated and connected by a discontinuity (in the continuum
limit) in the density profile called shock (see for example Fig. 2.18). In finite
systems a shock fluctuates around its mean position, hence there is no strict
discontinuity in the density profile [27, 49]. However, it can be identified by
scaling the system size, if the slope becomes steeper with increasing system
size. The stationary (global) current and density profiles hence result from the
condition that shocks are stationary. The dynamics of shocks in driven lattice
gases is discussed in a number of works (e.g. [55, 81], reviewed in [87]). Denoting
the density and the current left of the shock as ρ− and J− respectively, while
right of the shock as ρ+ and J+, the velocity of a discontinuity ∆ρ = ρ+ − ρ−
results to:

vs =
J+ − J−
ρ+ − ρ−

[87] (2.30)

Since this relation is valid for any difference of the density ∆ρ, the limit ∆ρ→ 0
can be performed yielding the collective velocity

vc = lim
∆ρ→0

J+ − J−
∆ρ

= J ′(ρ) (2.31)

which is just the slope of the current-density relation. The collective velocity
represents the velocity of perturbations dρ to stationary density profiles given
by solutions of (2.27). Initial conditions, like the boundary rates which fix the
density, correspond to such a perturbation, thus a local solution of a respective
boundary condition can only propagate into the bulk if the collective velocity
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points away from the boundary [87]. I.e. the local solutions of the left boundary
condition Jα / ρα can only represent physical profiles if vc(ρα(x = 0)) > 0 while
the local solution of the right boundary condition Jβ / ρβ only propagates into
the bulk for vc(ρβ(x = 1)) < 0. For the TASEP (p = 1) ρα = α and ρβ =
1−β. Since the current-density relation has a single maximum at ρ = 0.5, these
conditions are fullfilled for α < 0.5 and β < 0.5 respectively. Hence for α, β > 0.5
none of the boundary solutions is taken in the bulk, instead the perturbations
form long range boundary layers that connect to a more complicated density
profile [87]. In this case, the maximum current takes the maximum value J =
αmax(1 − αmax) = 1/4. It can be shown [55] that for any connection of the
boundary solutions by a shock for α < β (either α < 0.5 or β < 0.5), the
shock velocity is positive, such that shocks move to the right boundary, form
a boundary layer suppressing the influence of β. In the opposite case, shocks
with vs < 0 move to the left boundary suppressing the influence of α. These
three cases, characterized by the influence of boundaries that is distinguished by
shock- and perturbation dynamics (bulk current profile only depending either
on α (L-phase) or β (H-phase), or neither of them (M-phase)), constitute the
phase diagram of the TASEP.

Since the local source term s(ρ) vanishes in the continuum limit, the current
profile must be continuous for L → ∞. Therefore an equilibrium position xs
for shocks with shock velocity vs(xs) = 0 can only exist at some point if local
solutions for the current profile of the boundary conditions are equal there. The
current profiles are always flat for particle conserving systems, therefore this is
only the case if both are identical. In this case however vs = 0 everywhere in the
system and the equilibrium position is indifferent. A stable equilibrium position
allowing a stationary shock only establishes if vs(x < xs) > 0 and vs(x > xs) <
0 which can only result from intersecting non-constant profiles that are only
present in systems that allow bulk in-/outflow of particles. Langmuir-kinetics
therefore appear to be a crucial property to enable the formation of stationary
shocks similar to the phase separation observed in the in-vitro experiments [74]
with kinesin KIF1A and microtubules.

The global current- and density profile are hence determined by connecting
boundary solutions by shocks at intersection points of the local current profiles.
The shock fluctuations in finite systems smear out these discontinuities [27,
49], as can be seen in Fig. 2.18. It was analytically approved that a single
stable upward shock (ρ+ > ρ−) can emerge in ergodic systems if local boundary
solutions intersect and if following conditions are given [81, 35]:

1. Particle-particle interactions have a finite distance

2. The global bulk influx of particles S is finite in the continuum limit

3. The current-density-relation J(ρ) has a single maximum

4. S(ρ) is a monotonically decreasing function

The existence of a unique current-density relation and source function S(ρ) is
assured if conditions (1)-(2) are satisfied [35]. Moreover in this case the CDR
is the same as in the corresponding particle conserving system, since the local
source term s vanishes in the continuum limit. The TASEP-LK for example
complies with the criteria, hence the hydrodynamic approach can be used to
determine current and density profiles in dependence on system parameters
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[27], using the CDR of the ordinary particle conserving TASEP. The procedure
to determine the global density and current profile is exemplified in Fig. 2.19.
In driven lattice gases fullfilling (1)-(4), the behavior of the shock can be used to
distinguish the phases of the system. Like in the TASEP a L-phase establishes
if shocks are driven to the right boundary, while the system is in a H-phase
if shocks are at the right end, manifesting as boundary layers. Since the non-
constance of the solutions to (2.27) allows stationary shocks in the bulk for
Langmuir kinetics, this marks another phase, the shock phase (S), exhibiting
phase coexistence. If boundary rates are large enough to suppress propagation
of the solutions into the bulk, the system settles in a M-phase13.

The criteria can also be applied for systems where particles may exhibit
more than one internal state. One example is the NOSC model [71, 36]) where
particles can be in two possible states. Here pure analytical methods cannot be
applied since an exact form of the current-density relation is not known, but
insertion of numerical results of the CDR in (2.26) together with shock dynamics
allows the determination of the phase diagram [35] in a semi-analytical way.
Since the generic properties of the shock dynamics are the same for all systems
fullfilling the criteria above, the topological structure of the phase diagrams is
the same for all systems of this class, irrespective on the details of the dynamics.
Therefore these properties should be present also in more complex real transport
systems.

In section 3.3 the hydrodynamic approach introduced here is generalized to
driven lattice gases including defects with lowered hopping rate.

2.3.4 The effect of defects in the TASEP

Real transport systems usually are not homogeneous. Different species of carri-
ers can be present that travel by different velocities. The structure of the track
itself might also be inhomogeneous, for example spatially varying lane number
on highways or different codons in gene translation. For modeling these systems,
inhomogeneous driven lattice gases exhibiting transition rates that spatially vary
can be used. Usually inhomogeneity is realized by introducing defects. These
are sites/objects whose transition rates vary (usually lower) from usual ones14.
In this subsection we summarize results of studies on inhomogeneous derivatives
of the TASEP. In general two kinds of inhomogeneities can be considered:

particle-associated defects Hopping rates may vary between different parti-
cles.

site-associated defects Hopping rates pj are fixed on given sites j, but are
spatially varying.

Special interest is given to systems where defects are randomly distributed
and the probability that a site/particle has a given transition rate is a fixed
system parameter. These systems are denoted particle-/site-wise disordered.

While the TASEP with particle-wise disorder can be solved exactly [62], the
sitewise disordered TASEP is not fully understood, not to mention disordered

13Since the current is not constant in the presence of LK, it is not called maximum current
phase. However, like in the TASEP without LK, the current profile is independent of the
boundary conditions and the corresponding phase is called Meissner phase [75].

14Of course what are the “usual” transition rates has to be defined. In some cases defects
can even make up the main part of the system.
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driven lattice gases in general. However, in recent years, a number of works
have approached the TASEP with site-wise defects by numerical methods and
analytical approximations.

Computer simulations have shown that even a single defect, i.e. a site with
lowered hopping probability q < p, can have a global effect on the stationary
state of the TASEP with periodic boundary conditions [46, 47]. For low densities
the system behaves similar to the homogeneous system and only a small density
peak indicates the presence of a defect. The current is not affected by the defect
in this regime. However, if a critical density ρ∗ is exceeded, a high density
domain left of the defect emerges. This transition can also be observed in the
open TASEP: Kolomeisky [56] investigated the TASEP with open boundary
conditions in the presence of a single defect site deep in the bulk. Like in the
periodic case, phase separation is observed if boundary rates (corresponding to
the bulk density in respective phases) exceed a critical value (cf. Fig. 2.22).
Providing α < β, for α less than the critical value α∗, the dependence of the
current on α is the same as in the homogeneous system, while above α∗ there
is a plateau which is not observed in the homogeneous system (Fig. 2.23).
The plateau value which we will call transport capacity J∗, analogue to traffic
engineering, is uniquely connected with the critical entry rate α∗ by the ordinary
CDR of the TASEP: J∗ = α∗(1 − α∗) (since ρ = α in the L-phase). Due to
particle-hole symmetry15, this is analogue in the high density phase with β < α
if β is tuned. Hence J∗ marks the maximum current that can be achieved by
tuning the boundary rates:

J∗ = max
α,β

J(α, β) . (2.32)

In generic transport systems the transport capacity is the maximum current
that can be achieved by tuning external (controlable) parameters, for a given
fixed structure of the track. The transport capacity is a crucial quantity since it
marks the optimal performance of a single-track transport system. Our analyt-
ical considerations on single-track disordered systems in the next chapter will
therefore be mainly focused on this quantity to extract relevant results.

In [56] analytical results for transport capacity and phase transitions in the
single-defect TASEP were obtained by a mean-field approach. It neglects cor-
relations on the slow bond (hopping rate q < p) by dividing the system into
two homogeneous ones, coupled at the defect site. This approach yields an
approximation of the transport capacity J∗MF = q/(1 + q)2.

The investigations have been generalized to systems with a single stretch
of many consecutive defects, called bottleneck, or two spatially separated de-
fect sites [12, 19]. It has been shown that the problem of finding the transport
capacity in such a system can be approximately transferred to an eigenvalue
problem by exactly solving the Master equation of a finite segment around the
bottleneck (finite segment mean-field theory (FSMFT) [12] . This way analyt-
ical approximations can be obtained that systematically increase in accuracy
by increasing the segment size. However, solving that eigenvalue problem can
result in enormous computational effort for larger segments, which limits the
applicability of the method. Therefore the development of an approach that

15In fact if the defect is not in the middle of the system, the systems does not strictly obey
particle-hole symmetry. However the symmetry operation only changes the position of the
defect which does not affect the current.
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Figure 2.22: Density profiles for different entry rates in the open TASEP with a single defect.
For entry rates below a critical value only a narrow peak appears, while for entry rates above
that value, a high density domain left of the defect emerges [47].

Figure 2.23: Current in dependence on the entry rate α for high exit rate in the disordered
TASEP. One observes that the current is almost the same as in the homogeneous system
below a critical rate α∗. If α∗ is exceeded there is a plateau, in contrast to the homogeneous
system. At this point also phase separation occurs (see Fig. 2.22). Since ρ = α in the low
density phase and due to particle-hole symmetry, the left branch of the CDR is analogous.
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can treat larger bottlenecks within reasonable computation time appears to be
a favorable task. In Sec. 3.1 a technique solving that problem will be developed.

As argued in the last subsection, no stationary shocks can emerge in open
particle conserving systems. Thus the individual high-/low density domains
always extend from the defect to the boundary, while they are separated by a
strict discontinuity at the defect. Note that this discontinuity at the defect is no
shock, since it is also present in small systems. In contrast a shock always has a
finite width in finite systems and only becomes a discontinuity in the continuum
limit.

In many systems, defects are distributed in a random manner. For example
in intracellular transport, macromolecules that bind randomly to filaments can
disturb motor protein movement; on the other hand vesicles/motor proteins
that encounter at intersections of filament networks can hinder each other. In
these cases, the distinct distribution of defects is not known, while the density
of defects might be controlable, e.g. by fixing the concentration of transport
inhibiting macromolecules. In general, site-wise disorder can be implemented
by allowing a wide range of hopping rates. The spectrum of hopping rates
might be discrete [97] or continuous [42]. In this work we are mainly interested
in binary disorder allowing two values for hopping rates. Hence we only consider
this case in the following. Sites with fast hopping rate p are called non-defect
sites while sites with slow hopping rates q < p are referred to as defect sites. In
this case the distribution of defects is determined by the defect density φ that
denotes the probability that a given site j is a defect site, i.e.

pj =
{
q with prob. φ
p with prob. 1− φ . (2.33)

The effects of finite defect density in a periodic system have been studied in
[97, 96, 61, 29], mainly numerically. Like in the single defect system there is
a density regime below a critical value ρ∗ and above 1 − ρ∗ where the density
profile is globally homogeneous [97, 96] and a regime for ρ∗ < ρ < 1− ρ∗ where
the system is separated in a macroscopic high- and low density domain (Fig.
2.24 for open TASEP), while the current at ρ∗ cannot be exceeded. While
high and low density domains are rather flat on a coarse grained view, they
exhibit narrow (microscopic) peaks and dents at defect sites, but these become
infinitesimal small in the continuum limit. Considering the partially ASEP
where disorder is realized by inhomogeneous hopping bias, a vanishing-current
regime was found which shows two distinct densities, but with a current that
vanishes asymptotically for (L→∞) [96]. It was found that the largest stretch
of slow bonds acts as current limiting segment. For the same system, Juhász
et al. [50] introduced an effective potential and determined trapping times in
potential wells to investigate the vanishing of the current in a finite-size scaling.

The focus of most previous investigations on the site-wise disordered TASEP
was on individual realizations of defect distributions while statistical properties
of defect ensembles were rarely considered. Numerical investigations on ensem-
bles have been made in [24], where the influence of defects on the phase tran-
sition between low- and high-density phase of the randomly disordered TASEP
with open boundary conditions was studied. It was shown that the position of
this phase transition is sensitively sample-dependent, even for large systems. In
this thesis defect statistics are taken into account and an analytical approach
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Figure 2.24: Density profile of the disordered (open) TASEP in the phase separated regime.
One observes a high density domain left and a low density domain right of some defect. The
domains itself are interspersed by peaks and dents at defect sites.

is developed to determine expectation values for transport capacities and crit-
ical rates (e.g. phase transitions) in disordered driven lattice gases. Krug [61]
conjectured that also the maximum current is sample-dependent and is mainly
determined by the longest stretch of consecutive defect sites. In particular he
stated that J∗ = J∗(l)+O(1/l), where l is the length of the longest stretch. This
observation will be the starting point for our analytical studies on disordered
driven lattice gases.

2.4 Networks

Many complex systems exhibit a network structure. If there is no spatial struc-
ture and only the topological properties are important, network systems are
expressed as graphs, i.e. nodes connected by edges/links. A link denotes a (di-
rected) relation between two nodes i and j. In this case the network structure
can be represented by an adjacency matrix A whose entries Aij denote the num-
ber of links going from node i to node j. One can assign a weight to node i by e.g.
counting the number of out-going links Kout

i =
∑
j Aij (out-degree) or in-going

links Kin
i =

∑
j Aji (in-degree). In undirected networks, characterized by a sym-

metric adjacency matrix AT = A, both degrees are equal: Ki = Kin
i = Kout

i

[1].
Graphs can also be implemented dynamically. Links and nodes can be in-

cluded, removed or rewired in time evolution. This can also be implemented as
a stochastic (Markov-) process (random graphs, e.g. [25]) producing different
degree distributions. On the other hand, nodes and links can possess internal
states that evolve with time (automata). The time evolution of a node is deter-
mined by the states on adjacent nodes. The dynamics can be deterministic or
stochastic16. Examples for deterministic automata are neuronal networks: the
state of a node i, representing a neuron (active/inactive) depends on the nodes

16In a mathematical strict meaning only deterministic dynamics are denoted as automata,
while in many physics works (and here) this term is also applied for stochastically evolving
systems.
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pointing on it; i.e. if the number of active nodes connected to node i exceeds a
threshold value, the node becomes active itself.

Particle transport systems can also exhibit network structure. An example
for stochastic dynamics is random walk of particles on a network17. In this case
the states of the nodes correspond to the number of particles on a node. At
each time step a particle randomly chooses an adjacent node hopping on it with
a given probability. In undirected regular networks (e.g. regular square- or tri-
angular lattices), particles perform diffusive dynamics ending in a homogeneous
stationary state.

The homogeneous distribution, however, changes, if the structure of the
network is not regular. Noh and Rieger have shown [73] that in the case of an
undirected inhomogeneous network, i.e. with a non-uniform distribution of node
degrees, the particle distribution for random walk dynamics is inhomogeneous.
If all links are undirected and there may be only single connections between
nodes, the particle density on any node is proportional to its degree i.e.

ρi = Ki/N (2.34)

where the normalization factor N =
∑
iKi is the total number of links. It is

easy to show that this is also valid for directed networks (also allowing nodes
connected by several links) as long as Kin

i = Kout
i for all i. If any particle can

move within one time interval τ from one node to an adjacent node via a link,
the master equation yields

ρi(t+ τ) =
∑
j

Aji
Kout
j

ρj(t) 18 (2.35)

Inserting (2.34) and applying Ki = Kin
i = Kout

i , one obtains

ρi(t+ τ) =
∑
j

Aji
Kout
j

Kout
j

N
=

=Ki︷ ︸︸ ︷∑
jAji

N
= ρi(t) (2.36)

therefore (2.34) is a stationary state also for this network structure.
Obviously the network structure has high influence on particle dynamics.

This becomes even more striking if particle-particle interaction is included. In
[72] it was shown that inclusion of a zero-range interaction (i.e. only particles
that are on the same node interact) is present, a condensation transition can
occur if the network structure is inhomogeneous.

For transport networks in real space not only the topological properties that
are fully described by the adjacency matrix, are important, but also spatial
(metric) properties like spatial distances of adjacent nodes. If particles do not
interact, distances between nodes determine travel times of particles. For inter-
acting particles the spatial properties of networks become even more relevant,
since interactions usually depend on particle distances. Active transport of
particles on a spatial square network embedded in a diffusive environment was
investigated in [53]. In this model, particles are allowed to diffuse freely between

17In fact driven lattice gases also represent networks where nodes, i.e. sites have exactly
one out- and in-going link to one site respectively.

18The outflow term cancels since it is exactly ρi(t).
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meshes, but can also attach to the active transport tracks that constitute the
network and perform directed movement along them. Investigation of dynami-
cal properties revealed that movement is directed on short time scales, while it is
diffusive on larger time scales though with enhanced diffusion constant compared
to pure diffusion. A corresponding network with steric interactions, but parti-
cles restricted to tracks, was studied in [15] (CS-model), modeling city traffic.
In contrast to another model for street networks [6], there the spatio-temporal
distances are taken into account, while street intersections act as nodes and the
streets itself connect these nodes. The authors applied single track dynamics for
parts between intersections basing on the NaSch-model [69]. At intersections,
particles/cars interact, since two cars from different streets may not be on an
intersection at the same time. In that work the interaction was mediated by
traffic lights. For critical frequencies of traffic light switching the interaction at
crossing can induce jamming queues that may lead to a large frozen particle/car
cluster (gridlock).

We have seen in the last sections that intracellular transport on single fila-
ments can be modelled by driven lattice gases. However usually the filaments,
especially actin, form a rather irregular network structure. Since vesicles exhibit
mutual steric interaction, we can expect effects like in the CS model. There-
fore the phenomenology of transport on spatial inhomogeneous networks with
steric interactions appears to be biologically relevant. Such systems will be
investigated in chapter 4.
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Chapter 3

Modeling of transport on
inhomogeneous single
filaments

Before complex transport networks are considered, we focus on active transport
by molecular motors on single tracks. As argued in the last chapter, driven
lattice gases can serve as simple models for active transport, yielding a num-
ber of collective phenomena known from empirical observations. The models
considered here are in particular the TASEP (with and without LK) and the
NOSC model, which is suited for distinct species of molecular motors. How-
ever, it will be shown that the main results are generic for a large class of
driven lattice gases, hence yielding robust features that are believed to be en-
countered also in real systems. While the corresponding homogeneous systems
(also called pure) are extensively studied and analytical results are abundant
(at least for the TASEP/-LK), there are many open questions for their inho-
mogeneous counterparts. One example of inhomogeneity are varying codons
on mRNA whose corresponding tRNA concentrations hence vary, resulting in
different dwell times of ribosomes. A special feature arises in intracellular trans-
port of motor proteins, where the presence of macromolecules on filaments can
impede the movement of motor proteins (see Sec. 2.1.4 and [93, 22, 88]): As-
suming that there is no binding preference of these molecules, one can suppose
that these defects are randomly distributed along filaments. Hence statistical
properties of defect ensembles appear to be relevant.

In this chapter a framework is developed that helps to find approximations
for the transport capacity and phase diagrams in driven lattice gases with binary
site-wise disorder, i.e. systems that contain fast (non-defect) and slow (defect)
sites with the two transition rates p and q < p respectively. The slow sites cor-
respond to binding sites on filaments that are e.g. covered by a single species of
MAP or they can be crosslinks with other filaments where other motors/vesicles
can cross. In gene translation a codon species with significantly lowered tRNA
abundance, can also act as a defect 1. The central motif of this chapter is the

1In gene translation, there are usually more than one species of defects due to the high
number of different codons. However, if one species of codons is much slower than others, the
assumption of binary disorder also applies.
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observation that the transport capacity in the disordered TASEP appears to be
mainly determined by the longest bottleneck. A bottleneck is meant as a stretch
of consecutive defects. This idea leads to the single bottleneck approximation
(SBA) which will be developed in Sec. 3.2. In order to get access to analytical
quantitative results in Sec. 3.1 an analytical approach for a computation of the
transport capacity in the TASEP with a single bottleneck is elaborated. As a
first step towards many-defect systems the influence of a second bottleneck in
the system is analyzed numerically. Finally, in Sec. 3.3 a local minimum prin-
ciple is derived which, together with a local generalization of the SBA, yields
transport capacities and phase diagram structures of disordered driven lattice
gases with Langmuir kinetics that mimic the behavior of vesicle transport on
single inhomogeneous filaments.

The results of this chapter are published in [38] (Sec. 3.1), [39] (Sec. 3.2)
and [40] (Sec. 3.3).

3.1 Phase diagram and edge effects of the
TASEP with a single bottleneck

As was shown in some previous works [96, 61], the longest stretch of consecutive
defect sites plays a crucial role for critical dynamics of the disordered TASEP.
Since these stretches of defects appear to be the most relevant units for our con-
siderations, they are treated individually, denoting them as bottlenecks. Hence
a bottleneck of length l is a consecutive stretch of l defects. In this section an
(semi-) analytical approach to determine properties of the TASEP with a single
bottleneck will be derived. The main quantity of interest will be the trans-
port capacity which is defined as the maximum current that can be achieved by
tuning boundary rates. The model not only serves as a building block of the
subsequent disorder theory, but has biological relevance itself: It was observed
that clusters of slow codons, that correspond to bottlenecks, are quite abundant
on mRNA [77, 52].

The present investigation generalizes previous works on the TASEP with
defects in several aspects. Especially the dependence of the current on the
length l of the bottleneck and its position is systematically studied. Previous
works already have studied defect distributions of finite length. Chou et al.
[12] have developed a method to find the current in the TASEP with a single
bottleneck of length l, by an exact solution of a finite segment of length l′ > l
that contains the bottleneck. The method corresponds to the search of an
eigenvector of a 2l

′×2l
′
-matrix. For larger bottlenecks the computational effort

may be extremely high. In order to treat larger bottlenecks, a method that
is faster in computation is needed. For this purpose an analytical approach
to calculate the current and critical boundary rates is developed, called the
interacting subsystem approximation (ISA). This approach leads to the problem
of finding a specific root, constrained by physical requirements, of a polynomial
which has a degree of order l+1 and can be computed analytically (up to l = 3)
or numerically quickly for higher degrees. ISA also allows us to treat the effect
of bottlenecks near the boundaries (edge effect, observed by Dong et al. [19]) for
defects near the boundaries analytically and generalize it to longer bottlenecks.
This has its biological counterpart in the observation that slow codons are often
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found at or near the initiation site of translation on mRNA [95, 28].
Providing a first step towards systems with many bottlenecks/defects, a sys-

tem exhibiting two bottlenecks of varying lengths and separation, generalizing
the corresponding results of [19] for two single defects, is studied numerically.
Therefore also the case that one of the bottlenecks is near the boundaries is
investigated. The results will motivate a concept of effective boundary rates
that encompasses the effect of boundary-near bottlenecks. The results for sin-
gle bottlenecks and bottleneck-bottleneck interactions will provide the basis for
an extensive study of finite defect densities, i.e. a macroscopic number of slow
bonds which will be developed in the subsequent section. Here previous inves-
tigations for periodic [97, 96, 61] and open systems [42, 57, 24, 63, 50, 29] have
revealed surprising results. For the open system, for example, it has been found
that the position of the phase transitions is sensitively sample-dependent even
for large systems [24].

3.1.1 The interacting subsystem approximation

We consider a TASEP consisting of L sites which can either be empty or oc-
cupied by one particle (see Sec. 2.3.1). Throughout this section we are mainly
interested in the stationary state in the limit L → ∞. The hopping rates at
given sites j can take two values pj = 1 on non-defect sites and pj = q < 1 on
defect sites. One also refers to defect bonds (j, j + 1) associated with hopping
rates pj,j+1 := pj which is sometimes more appropriate, since hopping events
consider both neighboring sites. Open boundary conditions are applied, so at
the boundary sites j = 1 and j = L particles can be inserted and removed, with
entry rate α and exit rate β respectively. We use random-sequential update
corresponding to continuous-time dynamics.

Figure 3.1: Illustration of the TASEP with a bottleneck of length l. The defect bonds/sites
are characterized by a hopping rate q < 1, whereas at non-defect bonds/sites, the hopping
rate is p = 1. The system is virtually divided into three subsystems with virtual entry/exit
rates corresponding to the mean occupation/vacancy on the adjacent sites.

In this section the effect of a single bottleneck of length l with hopping rate
pj = q (Fig. 3.1) is studied. All other sites are fast sites with hopping rate
pj = 1.
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In order to determine relevant quantities like the current and critical bound-
ary rates, the problem is approached by virtually dividing the system into three
interacting subsystems (Fig. 3.1): A system of L1 sites with hopping rate pj = 1
at the left end of the chain, a section of length L2 = l + 1 containing the bot-
tleneck with l slow sites (hopping rate q) extending from site s = L1 + 1 to site
L1 + l = L1 + L2 − 1 plus an extra fast site f = L1 + L2 at the right end, and
finally another homogeneous system of length L3 with hopping rates pj = 1.
Note that subsystem 2, which contains the bottleneck, starts and ends with a
fast bond. This symmetry of the subsystem will be more convenient for our
investigations.

The main idea of the approach is to use the exact solution for the stationary
state of the homogeneous TASEP with random-sequential dynamics [17, 86].
This solution applies to all three pure subsystems as defined above. The inter-
actions between these subsystems are described by suitably chosen boundary
rates. We neglect correlations at the sites connecting the subsystems. Denoting
the occupation number τj = 0, 1 of site j, this explicitly means that we assume

〈τj(1− τj+1)〉 ≈ ρj(1− ρj+1) for j = s− 1, f (3.1)

where ρj := 〈τj〉 is the average local density at site j. This approach is similar
in spirit to that of Kolomeisky [56] for the case of a single defect (l = 1). In
that work the two parts of the system left and right of the defect were treated
individually in the continuum limit; both subsystems can adopt the phases of
the homogeneous TASEP. Here the phases of the subsystem are denoted by
lower case letters: low density (l), high density (h), and maximum current (m).
In contrast to [56] where correlations on the slow bond are neglected, here the
bottleneck will also be treated as a pure system (of reduced hopping rate) so
that the most relevant correlations induced by it are taken into account. The
three subsystems Li are coupled by virtual boundary rates αi, βi. Note that all
these rates are associated with fast bonds. In the following this approach will
be called interacting subsystem approximation (ISA) to distinguish it from the
usual mean-field approach which neglects all correlations.

The rate equations at the sites connecting the subsystems are then given by

d

dt
〈τs−1〉 = 〈τs−2(1− τs−1)〉 − β1〈τs−1〉 , (3.2)

d

dt
〈τs〉 = α2(1− 〈τs〉)− q〈τs(1− τs+1)〉 , (3.3)

and

d

dt
〈τf 〉 = q〈τf−1(1− τf )〉 − β2〈τf 〉 , (3.4)

d

dt
〈τf+1〉 = α3(1− 〈τf+1〉)− 〈τf+1(1− τf+2)〉 , (3.5)

with the virtual boundary rates

α2 = ρs−1 , α3 = ρf , β1 = 1− ρs , β2 = 1− ρf+1 , (3.6)

in terms of the average local density ρj . For completeness, we also define α1 := α
and β3 := β. Note that the mean-field factorization of expectation values only
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applies to the sites at the boundaries of the subsystems. All correlations within
the subsystems are taken into account.

By analytical continuation of the exact “partition function” of the TASEP
(2.9), the singularity at α = β can be removed by taking the limit α→ β which
yields

Z(α,L) := lim
β→α
Z(α, β, L) =

L∑
j=1

j(2L− 1− j)!
L!(L− j)!

(j + 1)
(

1
α

)j
. (3.7)

The corresponding results for the TASEP with hopping rate p 6= 1 can
be obtained by rescaling the time step ∆t → ∆t/p corresponding to rescaled
boundary rates α → α/p, β → β/p (see also sec. 2.3.1). Thus the partition
function in a homogeneous TASEP with hopping rate p is

Zp(α, β, L) = Z
(
α

p
,
β

p
, L

)
. (3.8)

This result will be used in the following for different values of L, depending on
the length of the subsystems.

For hopping rates p 6= 1 the exact form of the current can be extracted
from (2.10) by inserting (3.8). However, the rescaling of the time step must be
compensated if the original time interval ∆t is used. Hence

Jp(α, β, L) = p
Z(α/p, β/p, L− 1)
Z(α/p, β/p, L)

(3.9)

Conservation of current then yields the central equations of the ISA for
p = 1, q < 1

J0(α1, β1, L1) = Jq (α2, β2, L2) = J0(α3, β3, L3) (3.10)

which express the fact that the current in the stationary state is the same in all
three interacting subsystems. Note that (3.8) and (2.10) were used to express
the current in the bottleneck (subsystem 2) by the result J0 for a homogeneous
system.

Inserting (2.9),(2.10) and (3.9) in (3.10) one obtains a set of two algebraic
equations with six variables. In principle one can solve these equations, if four
of the variables are known or more equations are given that determine variables.

3.1.2 One bottleneck far from the boundaries

First the case where the bottleneck is far from the boundaries is studied. So
we assume that L1 and L3 are large. From the latter condition it is expected
that the topology of the phase diagram is the same as that of a system with a
single defect (l = 1). We can therefore follow [56] and classify the phases by
the phases of the pure subsystems 1 and 3 whose lengths are O(L). We denote
the phases of the subsystems in analogy to the homogeneous TASEP but using
lower case letters, i.e. low density phase l, high density phase h and maximum
current phase m.

Though at first glance one could expect nine possible phases corresponding
to all possible combinations of three phases l,h,m that can be realized in the
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pure subsystems 1 and 3, it was argued in [56] that only the combinations l-l, h-
h and h-l can exist. The l-l-phase corresponds to a global low density phase (L),
while h-h corresponds to a high density phase (H). In both cases, only around the
bottleneck there are local deviations from the density profile of the homogeneous
system. In the h-l-phase, phase separation emerges which cannot be observed
in the pure system. The current in the h-phase is independent of the entry rate,
while in the l-phase it is independent of the exit rate. Thus in a phase separated
h-l-phase, the current is independent of both boundary conditions and takes a
maximum value (see below). Although it is sometimes called a maximum current
phase (M) as in the homogeneous system, its properties differ from the maximum
current phase in the homogeneous system not only by the occurrence of phase
separation, but also by the absence of algebraic boundary layers. Therefore
we prefer the terminology bottleneck phase (B) to emphasize that the current is
limited by the bottleneck and not by bulk exclusion. Furthermore, the transition
to this phase corresponds to a transition of subsystem 1 from l to h and vice
versa respectively, which is accompanied by a discontinuity of the mean density
〈ρ〉 = L−1

∑
j ρj . According to this, it can be classified as a first order transition

in contrast to the pure system where the transition to the maximum current
phase is of second order.

Although the system with a bottleneck is not exactly invariant under the
particle-hole symmetry operation (2.8), this transformation only changes the
position of the bottleneck, but still leaves it far from the boundary. Thus the
particle-hole transformation leaves the phases of the subsystems unchanged,
since it only changes their sizes, but they stay O(L). Therefore, we can conclude
that the phase diagram must be symmetric with respect to the line α = β. This
symmetry constraint yields that the transition line between high and low density
phase must be at α = β.

We now want to determine the critical entry rate α∗ at the transition from
the L-phase to the B-phase for fixed β in terms of the analytical ISA approach
introduced in the last subsection. It corresponds to the transition of (the pure)
subsystem 1 from low to high density phase which occurs at α1 = β1 =: α∗.
Furthermore we know that at this point J = α1(1 − α1). Subsystem 3 still
remains in the low density phase. Therefore we also have J = α3(1−α3). Since
the current must be the same as in subsystem 1 and α3 must be smaller than
1/2, we conclude α3 = α∗. From the definition of the virtual boundary rates
(3.2), (3.6) one obtains by a simple transformation

β2 = J/ρf = J/α∗ = 1− α∗ , (3.11)
α2 = J/(1− ρs) = J/β1 = J/α∗ = 1− α∗ , (3.12)

where the first equality in each equation can be found e.g. in [17]. From the
exact solution of the pure TASEP (2.10), (2.9) and the conservation of current
(3.10), it follows

Jq (1− α∗, 1− α∗, l + 1) = α∗(1− α∗)
⇐⇒ α∗(1− α∗)Z((1− α∗)/q, l + 1) = qZ((1− α∗)/q, l) , (3.13)

where Z(1 − α, l + 1) is the limit defined in (3.7) and Z(1 − α, l + 1) 6= 0 for
0 ≤ α ≤ 1.

Eq. (3.13) is essentially a polynomial in 1/α∗ (or α∗, respectively) and can
be solved numerically (or analytically for small values of l). The requirement
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Figure 3.2: Maximum current (transport capacity) in a system with a bottleneck far from
the boundaries in dependence on the slow hopping rate q. It is determined by Monte Carlo
simulations for α = β = 0.5 and by solving the ISA equation (3.13) for a bottleneck of length
l = 1 (top) and l = 6 (bottom). For comparison the mean-field approximation J∗MF = q

(1+q)2

[56] for l = 1 is included.

that a physical relevant solution for α∗ has to be in the interval [0, 1
2 ] gives a

unique solution α∗(q, l) for the transition point to the B-phase. In general, the
solution depends on the length l of the bottleneck and the slow hopping rate q.
For l = 1, for example, equation (3.7) can be inserted in (3.13) and transformed
into

2α∗2 − (2 + 3q)α∗ + 2q = 0 . (3.14)

Hence, the relevant solution is

α∗(l∗ = 1) =
2 + 3q

4
−
√

(2 + 3q)2

16
− q . (3.15)

Explicitly, for the value q = 0.6 used in most simulations, one obtains a∗ = 2
5

by evaluating (3.15).
The current at the transition point corresponds to the maximum current J∗

in the B-phase which can be interpreted as the transport capacity of the system.
From (3.13) we can see that

J∗(q, l) = α∗(q, l)(1− α∗(q, l)) , (3.16)

which yields J∗(0.6, 1) = 6
25 = 0.24 for q = 0.6 taking the solution (3.15).

In Fig. 3.2 the dependence of J∗(q, l) on the slow hopping rate q (for fixed
l) was plotted, obtained by (3.16) and these analytical ISA-results were com-
pared with results from Monte Carlo (MC) simulations for different bottleneck

55



0 5 10
length of bottleneck

0.1

0.15

0.2

0.25

m
ax

im
um

 c
ur

re
nt

MC-Simulations
ISA
Pure TASEP: length=l

Figure 3.3: Maximum current in dependence on the bottleneck size for q = 0.6. Monte Carlo
simulations are compared with ISA results. The solid line is the current in a homogeneous
TASEP with L = l + 1, α = β = 1 and hopping rate q = 0.6.

lengths. For a single defect site (l = 1) the analytical results obtained by (3.15)
and (3.16) were compared with the results obtained by pure mean-field approx-
imation J∗MF = q

(1+q)2 [56]. Obviously also for l = 1 the results obtained by
(3.16) are more accurate than mean-field results, while for longer bottlenecks,
to our knowledge, no proper mean-field approximations are known. Note that
our approximation takes into account correlations on the slow bonds, only cor-
relations on sites adjacent to the bottleneck are neglected.

Fig. 3.3 shows the maximum current in dependence on the bottleneck length
l. Here MC-simulations are compared with the results obtained by (3.16). The
ISA results systematically underestimate the real current. The deviation is
maximal for small l, but it does not exceed 3%. For larger bottlenecks, the
agreement improves. We also note that q = 0.6 was chosen, since for this
value the observed deviations have been found to be largest. In addition the
exact current of a small homogeneous TASEP with system size L = l + 1 and
α = β = 1 was plotted. It seems that the asymptotics of the current in a finite
pure system for large l are the same as for the bottleneck.

In Fig. 3.4, top, the dependence of the mean density 〈ρ〉 = 1
L

∑L
i=1 ρi and

the current J on the entry rate α is plotted for fixed β. In order to compute
these quantities, the method introduced in [24] was used that allows to calculate
the current and densities for an arbitrary set of values of α in one simulation.
One observes a steep increase of the mean density for the same value of α where
the maximum current plateau begins. This seems to coincide with the value of
α∗ obtained by ISA quite well. The slope increases with system size indicating
a discontinuity in the thermodynamic limit corresponding to a first order phase
transition, in contrast to the transition to the M-phase in the pure TASEP.
The plots also show that at the transition point and in the whole B-phase, the
current is maximal.

As was argued above, the phase diagram must be symmetric with respect
to the diagonal α = β which yields β∗ = α∗. With this information the phase
diagram of the TASEP with one bottleneck far from the boundaries can be
sketched as displayed in Fig. 3.4, right. Its topology is the same as the one
for a single defect far from the boundaries [56], while longer bottlenecks have a
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Figure 3.4: Top: Mean density 〈ρ〉 and current J as function of α. The slope of 〈ρ〉(α)
becomes steeper for larger systems indicating a discontinuity in the thermodynamic limit. The
vertical lines show the steepest point of 〈ρ〉(α) identified as the phase transition α∗ compared
with the ISA results from (3.13).
Bottom: Schematic phase diagram of the TASEP with one bottleneck far from the boundaries.
It looks similar to the phase diagram of the pure TASEP while the transition lines to the
maximum current (bottleneck-) phase is shifted to be at α∗ and β∗. The mean density is
discontinuous at these points.

larger B-phase than single defects. It looks similar to the phase diagram of the
pure TASEP but here all phase transitions are of first order in contrast to the
TASEP, and the characteristics of the M-phase and B-phase are different.

Another procedure to compute the transport capacity for a finite bottleneck
is the finite segment mean-field theory (FSMFT) introduced in [12]. In this
approach, a segment of l′ sites including the bottleneck of length l < l′ is
considered. Currents can then be obtained from the eigenvector of the zero-
eigenvalue of the 2l

′ × 2l
′
-transition matrix of this segment [12]. The advantage

of this method is that the accuracy can be systematically increased by expanding
the size l′ of the segment. It can also treat arbitrary combinations of hopping
rates inside the segment. However, due to the exponentially increasing size of
the transition matrix one is currently restricted to small segment lengths. In
contrast, the ISA-method, though not asymptotically exact, relies on finding one
specific root of a polynomial equation of a maximal degree l+ 2. This makes it
possible to compute the transport capacity for systems with large bottlenecks
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of several hundred sites rather easily. This advantage becomes relevant for
disordered systems with finite defect site density where bottlenecks of arbitrary
length can occur. For example the computation of the maximum current of a
system with 500 consecutive defect sites can be made in less than one second on
a standard2 PC to obtain J∗ISA(l = 500) = 0.15045 for q = 0.6. Although this
agrees nicely with the value from MC simulations, J∗MC = 0.15049, it is clearly
different from the asymptotic value J∗∞ = q/4 = 0.15 for l→∞ [61, 97, 12].

3.1.3 Edge effects: One bottleneck near a boundary

Next we consider a system with a bottleneck near the left boundary, i.e. now
both L1 = s − 1 and L2 = l + 1 are of order O(1) for L → ∞. The case of a
bottleneck at distance d from the right boundary, i.e. the last slow site is at site
L− d− 1, has not to be considered separately since the results can be deduced
using the particle hole-symmetry operation that also exchanges subsystem 1
and 3. Since there is only one macroscopic subsystem, namely subsystem 3, the
classification of phases is slightly different than in Sec. 3.1.2. Now the phase of
the system with bottleneck is basically identically to that of subsystem 3. Phase
separation can no longer occur since the size of subsystem 1 is microscopic. The
entry rate α3 of subsystem 3, defined in ISA (see (3.2)-(3.5)), can thus be treated
as an effective entry rate αeff := α3 6= α for the bulk of the system which is a
homogeneous TASEP. The phase of the full system corresponds to the phase of
subsystem 3 which are denoted by L’, H’ or M.

For L1 ≥ 2, the system can be divided into three subsystems in the same
manner as in Fig. 3.1 . First we consider a system in the low-density phase L’.
Hence the current is given by

J = αeff(1− αeff) . (3.17)

In the steady state the entry and exit rates of a pure TASEP with L sites are
α = J

1−ρ1 and β = J
ρL

[17]. The currents in subsystems 1 and 2 have to be
identical and thus, as in (3.10),

J0(α, 1− ρs, L1) = Jq

(
J

(1− ρs)
,
J

ρf
, L2

)
, (3.18)

where J0 and Jp are the exact currents in a pure system given by (2.10) and
(3.9), while ρs and ρf are defined in the same manner as in Sec. 3.1.2. Since
subsystem 3 is assumed to be in the low density phase, the density profile is flat
at its left end, i.e. the density is independent of the position if ISA is applied.
Hence we have αeff = ρf = ρf+1 and can take J = ρf (1 − ρf ) in Eq. (3.18).
Furthermore the currents in subsystem 1 and subsystem 3 have to be the same
which leads to

J0(α, 1− ρs, L1) = ρf (1− ρf ) . (3.19)

Now we have two ISA-equations, (3.18) and (3.19), as well as the two variables
ρs and ρf = αeff . For given α, L1 and bottleneck length l these equations can
be solved to obtain the effective entry rate αeff , while the resulting current can
be obtained from (3.17).

2AMD Athlon 3000 MHz (2007)
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For s = 2, i.e. L1 = 1 that procedure does not work in the same way because
the current in a system of size L = 1 is not defined as one can see in (2.10).
But even in this case, we still have α = J/(1 − ρ1) which is valid by definition
of the boundary rates. After inserting J = ρf (1 − ρf ), this equation together
with (3.19) again gives a solvable set of two equations with the two variables ρs
and ρf .

For s = 1 (L1 = 0) subsystem 1 does not exist and we have only the two
subsystems 2 and 3. Subsystem 2 comprises the sites {1, . . . , L2} and subsystem
3 {L2 + 1, . . . , L} which includes the bulk of the system. This problem can
however be solved, by inserting

α2 = α , β2 =
J

1− ρf
, α3 = ρf . (3.20)

Analogous to (3.10) we hence obtain the equation

Jq

(
α,

J

(1− ρf )
, L2

)
= ρf (1− ρf ) , (3.21)

with J = ρf (1 − ρf ). This equation can be solved for the variable ρf = αeff

thus we obtain the effective entry rate and by (3.17) the corresponding current.
Because of the particle-hole symmetry (2.8) these results can be transferred

for βeff in the high-density phase. The effective exit rate for the bulk βeff can
then be determined using (3.17)-(3.21). Note that in the low-density phase,
β has no influence on the bulk of the system, only in a small region near the
boundaries. The same is valid in a high-density phase for α.
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Figure 3.5: Current in a system with a single defect site (left) and a bottleneck of length
l = 4 (right) near the left boundary in dependence on its position, for high entry rates. The
exit rate is β = 1.0. The system size is L = 500 while the number of iterations is 40000000,
q = 0.6. The entry rates have been chosen in order to optimally display the mixed and the
positive edge effect. In the system with the longer bottleneck (right), the mixed edge effect is
almost not visible even for optimized parameters. Note that the magnitude is much smaller
than in Fig. 3.6.

Edge effect: discussion

In Fig. 3.5 and 3.6 the current is plotted in dependence on the position of
the first defect site for different values of α while β = 1. One observes that
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Figure 3.6: Current in a system with a bottleneck near the boundaries in dependence on the
position of the first defect site, for low entry rates. The exit rate is β = 1 − α, system size
L = 500 and number of time steps = 2000000 for bottleneck length l = 1, q = 0.6, and α = 0.2
(left), bottleneck length l = 4, q = 0.6 and α = 0.2 (right). The scale for the current has been
chosen in order to emphasize the form of the deviations.

the position of the bottleneck has a significant influence on the current. This
is called the edge effect, first observed in [19]. In that work only an increase
of the current was observed if defects approach the boundary (positive edge
effect) which can be seen in Fig. 3.5. In addition, ISA predicts a decrease
of the current for low entry rates. This negative edge effect is confirmed by
computer simulations (Fig. 3.6). There is also a region of entry rates, where the
dependence of the current on the bottleneck position is non-monotonic (mixed
edge effect, see Fig. 3.5)! Simulations for different system sizes indicate that this
non-monotonic behavior is not a finite-size effect. Nonetheless, as we can also see
in the figures, the magnitude of the positive and the mixed edge effect is much
smaller than the one of the negative edge effect. The ISA results obtained from
the equations in the last subsection confirm the existence of negative and positive
edge effect, while the mixed one is not. This indicates that the mixed edge effect
is caused by correlations at the edge of the bottleneck. In Fig. 3.6 the analytical
results are plotted for comparison. They are not displayed in Fig. 3.5 since
the deviations due to correlations are larger than the positive/mixed edge effect
itself. In appendix A it is shown that the negative edge effect is predominant
in regimes where the current depends significantly on the boundary rates.

Moreover, we see that the current does not attain a plateau value. Instead
it seems to approach asymptotically the value J = 0.25 (Fig. 3.7). This is
confirmed by simulations, where the current is calculated for the very high value
α = 100 that yields an effective entry rate of αeff ≈ 0.5. As was argued above,
there is no macroscopic phase separation, either, if the distance of the bottleneck
from the boundary is microscopic, so we can state that for a bottleneck near
the boundary only the high and low density phase can occur.

Though strictly speaking there is no B-phase if the bottleneck is near a
boundary, the system still exhibits a kind of crossover. While there is neither a
plateau region nor a sharp kink in the dependence of the current on the entry
rate (see Fig. 3.7), for higher entry rates this dependence is rather weak. For
a bottleneck far from the boundaries we actually have sharp phase transitions,
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so we can say that by approaching the bottleneck to the boundary, the phase
transition to the B-phase is “softened” into a crossover.
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Figure 3.7: Current in dependence on the entry rate α for β = 1 and a defect at site j = 3.
Results are obtained by MC simulations. There is no plateau.
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Figure 3.8: Average density in dependence on the entry rate for β = 0.2 and a defect at site
3. The transition to the high density phase is shifted to larger α compared to the pure system.

The transition from low density phase to the high density phase occurs for
β = αeff . This is confirmed in Fig. 3.8 where the average density is plotted in
dependence on α. The jump in the average density marks the transition point,
which matches quite good the value of αeff . One observes that the transition
point is shifted to higher values of α compared to the transition in the pure
system α = β. In this diagram, αeff was obtained by the formula αeff = J

1−ρf+1
.

The value calculated by solving the ISA equations (3.18) and (3.19) is a little
less, but it still yields the correct sign of the shift of the transition point.

Fig. 3.9 shows the dependence of αeff on α. Since β = αeff is the transition
line between high and low density phase, the diagram simultaneously displays
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Figure 3.9: Effective entry rate in dependence on α. Interpreting the y-axis as the beta range,
this corresponds to the phase diagram with the graph being the transition line between H-phase
(below) and L-phase (above).

the phase diagram, interpreting the y-axis as the β-range. As we see, the phase
transition line calculated in ISA is in good agreement with numerical results.

3.1.4 Two bottlenecks

The next step towards disordered systems is the investigation of a system with
two bottlenecks. This will tell us something about the importance of ”inter-
actions” between the bottlenecks. We distinguish two cases: First we consider
situations where both bottlenecks are in the bulk of the system, i.e. far away
from the boundaries. Then edge effects are studied in more detail by allowing
one bottleneck to be close to one of the boundaries. Unfortunately, the analytic
ISA approach cannot be used for generic bottleneck lengths since the equations
would be underdetermined. In fact, Foulaadvand et al. have applied ISA for two
single defects with a spacing in between [30]. However, for longer bottlenecks,
we have to rely on simulation results.

Two bottlenecks far from the boundaries

Systems with two bottlenecks of length l1 and l2 were simulated, with d fast
sites in between. We focus on the maximum current phase and determine the
current J∗(l1, l2). In Fig. 3.10, J∗(l1, l2) is plotted as function of the distance d
between the bottlenecks for different values of l1 and l2. One observes that if the
lengths of the two bottlenecks differ with l1 > l2, J∗(l1, l2) tends to converge to
J∗(l1), which is the value obtained in a system with only the longer bottleneck.
The convergence is faster for a larger difference l1− l2 of the bottleneck lengths.
In this case for a distance of about 5-10 lattice sites, the maximum current is
almost the same as for a system with only the longer of the two bottlenecks. Of
course for d → 0 the bottlenecks merge, thus we have only one bottleneck and
J∗2 (l1, l2, 0) = J∗(l1 + l2). If both bottlenecks have equal size, d→∞ converges
to the maximum current of a single bottleneck which generalizes results of [19]
to the case l1 = l2 > 1. In general, one can say that J∗ ≈ J∗(max[l1, l2]), if the
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Figure 3.10: Maximum current (transport capacity) in a system with two bottlenecks of
length l1 (the first one) and l2 (the second one) far from the boundaries in dependence on the
distance of the two bottlenecks. The current is determined by MC simulations for α = β = 0.5.
In each graph an algebraic fit of the form f(d) = J∗(l1)−(d+C)−γ with fit parameters C and
γ is included. J∗(l1) is obtained from the MC simulations in Sec. 3.1.2. One observes that
the maximum current converges to the maximum current of a system with a single bottleneck,
i.e. the longer one. The parameters are l1 = 5, l2 = 1, q = 0.6 (top left), l1 = 5, l2 = 1,
q = 0.3 (top right) l1 = 4, l2 = 3, q = 0.6 (bottom left), and l1 = 4, l2 = 3, q = 0.3 (bottom
right).

bottlenecks are far from each other.

Two bottlenecks: Edge effects

Next a system with two bottlenecks was simulated where one is near the bound-
ary and one is far away. We concentrate on the case, where the bulk bottleneck
is larger than the one close to the boundary.

In Fig. 3.11, the dependence of the current on the distance of the first bot-
tleneck is plotted. For comparison the results for a single bottleneck near the
boundary from section 3.1.3 are included. One observes no significant difference
between the two datasets. This observation indicates that bottlenecks far from
the boundary do not have any influence on the current, as long as the current is
below the maximum current allowed by that bottleneck.

In Fig. 3.12, however, we see the maximum current in a system with a
bottleneck of length l far from the boundaries and a defect at site 3. Again, one
does not see a significant difference: a small bottleneck near the boundary has
no influence on the transport capacity.

In agreement with observations already made in [12], our results motivate the
view of a local influence of bottlenecks that yields the possibility to generalize
concepts of the TASEP with a single bottleneck to systems with many bottle-
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Figure 3.11: Dependence of the current on the position of the first defect for α = 0.2 and
β = 1.0. Comparison of a system with only one defect and a system with an additional
bottleneck (l = 5) far from the boundaries.
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Figure 3.12: Maximum current in dependence on the bottleneck length for q = 0.6. The
addition of a defect near the boundaries at site d = 3 does not alter the maximum current.
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necks. Only bottlenecks near the boundaries have influence on the current if it
is below the transport capacity. One can therefore propose that the influence of
boundary defects can be taken into account by effective boundary rates in the
same manner as for a single bottleneck near the boundaries. That means that
below the maximum current the system can be described as a pure TASEP,
but with effective boundary rates αeff , βeff depending on the configuration of
bottlenecks near the boundaries instead of the pure ones.

We have seen that, except for small edge effects, the transport capacity is
mainly determined by one bottleneck i.e. the longer one of the two, as long as
bottlenecks are far from each other. In the following section this observation
will be generalized to disordered driven lattice gases with many bottlenecks, in
particular systems exhibiting random disorder. Therefore the analytical results
of single bottleneck systems considered in this section can be used for the calcu-
lation of transport capacities in many-defect systems. In addition the concept
of effective boundary rates will be generalized to disordered systems and refined
by statistical methods.

3.2 Single bottleneck approximation for disor-
dered driven lattice gases

In [61] it was conjectured that in randomly disordered systems (see Sec. 2.3.4)
the maximum current depends on the individual configuration of defects and
is mainly determined by the longest bottleneck. In the last section this was
shown to be correct, at least for two bottlenecks which are not too close to each
other. These observations lead to the Single Bottleneck Approximation (SBA)
assuming that all but the longest bottleneck can be approximately neglected for
determination of the transport capacity. This approximation will be supported
in this section by numerical and analytical arguments.

For applications to real systems, macroscopic parameters and quantities are
most relevant. Macroscopic quantities like the transport capacity can depend
on the microscopic structure of the system which can differ for different defect
samples. We are mainly interested in determining statistical properties, e.g.
probability distributions and expectation values, of relevant quantities taking
an ensemble of systems rather than looking at single samples. We therefor
consider in this section a large ensemble of individual finite but large systems,
while the individual values of these quantities might vary for different samples.

The objective of this section is to understand the phase diagrams of driven
lattice gases and give quantitative approximations for the expectation values of
critical parameter values and the transport capacity. We therefore check the
validity of the conjectured SBA and the concept of effective boundary rates
on individual samples not only in the disordered TASEP, but also in a more
complex model with internal states (NOSC model without Langmuir kinetics
[71, 36], see Sec. 2.3.2), which is a model for intracellular transport with KIF1A
motor proteins. In the NOSC model there is no explicit hopping rate, but we
allow inhomogeneity of the forward-rebinding rate ωf , which marks a parameter
controlling the average velocity of single particles. Like for the TASEP we allow
fast rates ωfastf and slow rates ωslowf associated with the bonds/sites referring
to sites with slow rates as defect sites. The transport capacity can be defined in
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the same way as for the TASEP by J∗ = maxα,β J(α, β), with the corresponding
boundary rates (see 2.3.2).

With the help of extreme value statistics these principles will be used to
derive approximations for expectation values of the transport capacity and crit-
ical values for phase transitions (Sec. 3.2.2). After checking the accuracy of the
SBA, in Sec. 3.2.3 the relevance of various possible corrections is discussed, e.g.
by edge effects or effective interactions between the bottlenecks. A perturbative
expansion of the transport capacity is shown to yield a criterion for applicability
of the SBA to various driven lattice gases, and simultaneously gives an approx-
imation for effective boundary rates. Using the relation between effective and
real boundary rates together with SBA helps to quantify the effect of disorder
on the phase diagram, which is investigated in Sec. 3.2.4 in detail.

We consider binary disorder as introduced in Sec. 2.3.4. One system param-
eter determining the average speed of particles is assumed to be inhomogeneous
with the two possible values p and q < p that are randomly distributed with
defect density φ by

pj =
{
q with prob. φ
p with prob. 1− φ . (3.22)

In the case of the TASEP, p is the hopping rate, while a distribution of this kind
can also be exhibited by generic parameters controlling the speed of particles
(e.g. the forward rebinding rate ωf in the NOSC model). In the TASEP, the
time scale ∆t is chosen such that the hopping probability p∆t = 1.

For large system size, the investigation is usually simplified by performing
a continuum limit. Since crucial properties, like the bottleneck lengths in a
disordered system, might depend on the system size we have to specify this
limit more carefully. We define a weak continuum limit where terms of O(1/L)
are neglected while terms of O(1/ lnL) are kept, and a strong continuum limit
where even terms of O(1/ lnL) are neglected. Here we are rather interested in
“finite but large” systems by considering the weak continuum limit that retains
some dependence on the system size. This is motivated by the facts that (a)
the maximum current decreases with increasing bottleneck length and (b) the
length of the longest bottleneck grows logarithmically in L [61]. Besides the
macroscopic structure of the stationary state, like in the last section, we will
mainly focus on the determination of transport capacity and phase transitions.

3.2.1 Single Bottleneck Approximation

The claim that the longest stretch of consecutive defects determines the trans-
port capacity is plausible if one assumes a local character of the bottlenecks by
characterizing them by an individual transport capacity J∗j (l) depending on the
length l and (possibly) position j. In the stationary state the total current is con-
stant in space and is restricted by all bottleneck capacities, i.e. it cannot exceed
the minimum of all J∗j (l). Since the transport capacity is decreasing mono-
tonically with bottleneck size as was shown in the last section, the minimum
of J∗i (l) corresponds to the transport capacity J∗(l∗) of the longest bottleneck
which consists of l∗ consecutive defects. Smaller bottlenecks do not contribute
much as long as they are not too close to the longest one. This motivates the
Single Bottleneck Approximation (SBA):
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The transport capacity J∗ of a disordered system is approximated
by the one in a single bottleneck system, J∗SBA(l∗) with a bottleneck
length l∗ corresponding to the maximum length of bottlenecks in the
disordered system, i.e. J∗ ≈ J∗SBA(maxi[li]).

Indeed experimental results on protein production rates in translation with slow
codons support this assumption. It was shown that the protein production rate
is significantly lower if slow codons are clustered, forming long bottlenecks, than
in the case that they are distributed separately [99].

The SBA reduces the problem of a many-defect system to the much simpler
one of a single bottleneck in a system. In particular for the TASEP, we can
rely on the analytical results obtained in the last section for single bottleneck
systems.

One could conjecture that the SBA also works for generic driven lattice
gases, especially for low defect density φ, where the average distance between
defects is large and their interactions can be neglected. As an example it will
be tested not only for the TASEP, but also for the disordered NOSC model in
the limit of vanishing Langmuir kinetics. In both systems the average velocity
of the particles is dependent on one or more transition rates. In the TASEP
the hopping rate p is such a parameter, while in the NOSC model the forward-
rebinding rate ωf is a parameter controlling the average velocity.

First we consider a fixed realization of disorder with small defect density φ.
In this case we have a system with dilute distributed bottlenecks of different
lengths. The SBA will be tested for the disordered TASEP and the NOSC
model. For this purpose, systems with different disorder samples were simulated
and the results for the transport capacity J∗ were compared with numerical
and analytical results of systems with single bottlenecks in Tables 3.1 and 3.2.
For each sample the longest bottleneck l∗ was identified and the SBA transport
capacity J∗SBA(l∗) in a single-bottleneck system with just one bottleneck of size l∗

was calculated. One observes a quite good agreement, although the SBA seems
to overestimate the transport capacity systematically. This is not surprising
since effective interactions of the bottlenecks lead to an additional decrease of
the current. According to the results in the last section we expect that the
main effect comes from bottlenecks near the longest one, leading to a reduction
of the transport capacity compared to bottlenecks far from the longest one.
To illustrate this effect, the distance of the nearest bottleneck was included in
Table 3.1. Since it is more probable to find a bottleneck close to the longest one
for larger defect density φ, the results tend to be less accurate with increasing
φ.

Surprisingly it seems that the values J∗ISA
SBA obtained by the semi-analytical

ISA method are more accurate than the numerical ones (J∗MC
SBA ) of the single-

bottleneck system. This is because ISA usually underestimates the value of
J∗(l) in the TASEP with one bottleneck, while SBA overestimates the current.
Hence errors cancel at least partially.

3.2.2 Probability distributions and expectation values in
SBA

As we have seen, the transport capacity depends quite strongly on the particular
sample of the defect distribution, i.e. the size of the longest bottleneck. Usually
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L φ l∗ distance length J∗MC J∗MC
SBA J∗ISA

SBA

1000 0.05 2 2 1 0.2174 0.2294 0.2229
1000 0.1 3 12 1 0.2080 0.2131 0.2080
1000 0.2 3 2 2 0.1963 0.2131 0.2080
3000 0.1 3 4 1 0.2048 0.2131 0.2084
3000 0.2 5 5 1 0.1866 0.1925 0.1901

Table 3.1: Comparison of Monte Carlo simulation results (MC) and SBA results for the
transport capacity J∗ in the disordered TASEP with different system sizes L and defect densi-
ties φ. The transport capacity J∗MC was obtained by Monte Carlo simulations for α = β = 0.5

(column 6) for fixed slow hopping rate q = 0.6. This is compared with MC results (J∗MC
SBA ,

column 7) and the results obtained by ISA, by applying SBA (J∗ISA
SBA , column 8) for a single-

bottleneck system with one bottleneck in the bulk whose length is the same as the longest
bottleneck in the simulated disordered TASEP (column 3). Columns 4 and 5 give the dis-
tance and length of the bottleneck next to the longest one.

L φ l∗ distance length J∗MC J∗MC
SBA

1000 0.05 2 4 1 0.07923 0.08179
1000 0.1 3 2 1 0.07451 0.07643
1000 0.2 6 3 1 0.06659 0.06717
3000 0.1 4 6 1 0.07205 0.07213
3000 0.2 6 3 1 0.06677 0.06717

Table 3.2: Same as in Table 3.1, but for the NOSC model without Langmuir kinetics (see Sec.
2.3.2). The forward hopping rate is inhomogeneous with ωfast

f ∆t = 0.58 and ωslow
f ∆t = 0.32.

The other parameters are fixed: ωh∆t = 0.8, ωs∆t = 0.22, ωb = 0.

in real systems the exact distribution of defect sites is not known, particularly
the size and position of the longest defect cannot be identified. Then a statisti-
cal treatment, i.e. considering an ensemble of systems with fixed defect density,
but varying distributions of defects, is more appropriate. It allows to determine
expectation values for quantities like currents and effective boundary rates (see
Sec. 3.2.4). This is especially relevant for applications e.g. to intracellular trans-
port. Each cell consists of a large number of filaments that serve as tracks for
motor proteins, and often randomly distributed defects play an important role
[51]. Therefore of interest are ensembles rather than the properties of individual
filaments in this context.

In this section the expectation value of the transport capacity J∗(q, φ, L)
will be approximated for fixed defect density φ and finite but large system size
L. In the last subsection it was shown that for small φ the capacity depends
approximately on the size of the longest defect. Therefore first the expectation
value for the size of the longest bottleneck is determined in such a system.

We now consider a given sample with defect density φ and system size L.
The k-th bottleneck has length lk and in the following two consecutive fast sites
j, j+ 1 will be interpreted as a bottleneck of length l = 0 located at site j. This
implies that the number Nb of bottlenecks is equal to the number Nf of fast
sites, since each bottleneck is followed by exactly one fast site 3. The bottleneck
length l is a random variable with distribution

Pφ(l) = φl(1− φ) . (3.23)
3We neglect the possible exception at the right boundary.
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Since on average the fraction of fast sites is (1 − φ), the mean number of
fast sites is 〈Nf 〉 = (1 − φ)L. The length of the longest bottleneck is
l∗ = max{lk|k = 1, ..., Nf}. The statistics of the maximum of identically in-
dependently distributed random values is governed by extreme value statistics
(see e.g. [91]). It says that for a continuous probability distribution P (l) that
decays exponentially or faster for l→∞, the probability density of l∗ being the
maximum value of N independently distributed random values is for large N
asymptotically described by the Gumbel distribution [91]

G(u) = e−ue−e
−u

(3.24)

where u = u(l∗) is a rescaled and shifted function of l∗ depending on the details
of the probability distribution P (l).

However, since in our case the probability distribution is discrete we need to
be careful. Therefore here, following the derivation used in [91] for continuous
distributions, the probability distribution of the maximal bottleneck length is
explicitly derived in order to control errors made by approximations. This will
also provide an explicit expression for u(l∗).

The probability of a bottleneck being shorter than l′ is

P<(l′) =
l′−1∑
l=0

Pφ(l) = 1− φl
′
. (3.25)

Since the lk are independently distributed, we have the probability that all lk
are smaller than l′:

H<(l′) := P<(l′)Nf = exp
(
Nf ln(1− φl

′
)
)

= exp
(

(1− φ)L ln(1− φl
′
))
)
. (3.26)

For large L this probability is significantly larger than zero only for φ� 1 and
we can use the approximation ln(1− φl′) ≈ −φl′ , thus

H<(l′) ≈ exp(−φl
′
(1− φ)L) . (3.27)

As was shown in [91], the error of this correction is O(1/L2) for exponential
P (l). Thus finite-size corrections can be neglected in the weak continuum limit.

The probability that all values are smaller than l′ is equal to the probability
that the maximum l∗ is smaller than l′,

H<(l′) =
l′−1∑
l∗=0

P(l∗) . (3.28)

P(l∗) is the probability that the longest bottleneck has length l∗ which is ex-
plicitly given by

P(l∗) = H<(l∗ + 1)−H<(l∗) (3.29)

= H ′<(l∗ +
1
2

) +O
(
(∆l∗)3

)
≈ −L(1− φ)φl

∗+ 1
2 lnφ exp

(
−φl

∗+ 1
2 (1− φ)L

)
= − lnφ e−ue−e

−u
= − lnφG(u) (3.30)
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Figure 3.13: Comparison of analytical results (3.33) and MC simulations for the average
longest bottleneck in dependence on φ (1000 samples).

where G(u) is the Gumbel distribution (3.24) and we have introduced the func-
tion

u(l∗) = −
(
l∗ +

1
2

)
lnφ− ln(1− φ)− lnL . (3.31)

The expectation value of the Gumbel distribution is known to be 〈u〉 = γe
[34], where γe = 0.5772 is the Euler-Mascheroni constant. Using (3.31) we have

γe = 〈u〉 = − lnφ 〈l∗〉 − 1
2

lnφ− ln(1− φ)− lnL , (3.32)

which can be solved for 〈l∗〉 to obtain

〈l∗〉 =
lnL+ ln(1− φ) + γe

ln(1/φ)
− 1

2
. (3.33)

The dependence of the average longest bottleneck on φ is plotted in Fig. 3.13
which shows a good agreement between simulation results and Eq. (3.33). 〈l∗〉
diverges for infinite systems, as expected. However, it grows only of order
O(lnL), so that we have to keep this term in finite but large systems.

The variance of the Gumbel distribution G(u) is σ2(u) = π2

6 [34]. Since
σ2(l∗) = ( dudl∗ )−2σ2(u) (linear transformation) this yields the variance

σ2(l∗) =
π2

6 ln2(1/φ)
(3.34)

of the longest bottleneck distribution P(l∗) so that σ2(l∗) does not depend on
the system size, as can also be seen in Fig. 3.14.

If one approximates the transport capacity J∗(φ) for small φ by the corre-
sponding current J∗SBA of a system with one bottleneck, the expectation value
is given by 〈J∗(φ)〉 =

∑∞
l∗=0 J

∗
SBA(l∗)P(l∗). Due to the approximation by a

continuous function, the norm
∑∞
l∗=0 P(l∗) 6= 1 can significantly deviate from
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Figure 3.14: Comparison of analytical results (3.34) and MC simulations for the variance
of the longest bottleneck in dependence on φ.

one. In order to reduce this error the result is divided by
∑∞
l∗=0 P(l∗)

〈J∗SBA〉(φ) =
∑∞
l∗=0 J

∗
SBA(l∗)P(l∗)∑∞
l∗=0 P(l∗)

. (3.35)

One can now either take numerical values for J∗(l∗) or (semi-) analytical ones
from ISA. Since P(l∗) decays fast around 〈l∗〉 it is sufficient to take into account
only few terms in (3.35) in the vicinity of 〈l∗〉.

Since the asymptotic behavior of the transport capacity in the TASEP is
J∗(l∗) = q/4 + O(1/l∗), [61], we can state by using (3.35) that J∗(φ,L) =
q
4 + O

(
ln(1/φ)

lnL

)
in the disordered TASEP. The variance σ2(l∗) is indepen-

dent of the system size, thus the variance of the transport capacity σ2(J∗) =

O
((

dJ∗

dl∗

)2

σ2(l∗)
)

= O
(

1
(lnL)2

)
vanishes logarithmically in the thermody-

namic limit L→∞.
In order to display the generic character of the SBA, results for the transport

capacity are not only shown for the TASEP but also for the disordered NOSC
model without Langmuir kinetics (Tables 3.3 and 3.4). One observes a good
agreement in both systems while the errors are of the same magnitude as for
individual samples. This indicates that the probability distribution function for
the longest bottlenecks is an appropriate approximation.

3.2.3 Corrections to SBA

In the following, corrections to the SBA are considered and the quality of this
approximation as well as the range of its validity is checked by statistical con-
siderations.

In principle, corrections to the transport capacity could come from the fol-
lowing effects:

• The longest bottleneck (length l∗ = max{l1, l2, · · · }) is located near the
boundary, not in the bulk as assumed in SBA. Since the probability that a
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L φ no. of samples 〈J∗〉MC 〈J∗SBA〉MC σ2

500 0.1 200 0.2099 0.2244 3.2× 10−5

1000 0.2 100 0.1918 0.2024 1.7× 10−5

3000 0.1 100 0.2018 0.2110 2.5× 10−5

3000 0.2 50 0.1866 0.1960 1.1× 10−5

Table 3.3: Comparison of disorder averages in MC results and SBA results for the expectation
value of the transport capacity. The defect hopping rate is q = 0.6. Column 4 shows the
numerical results from MC simulations of the disordered TASEP. Column 5 displays results
by SBA using the probability distribution (3.30) and column 6 shows the variance of the
current obtained in the simulations.

L φ no. of samples 〈J∗〉MC 〈J∗SBA〉MC σ2

500 0.1 200 0.07495 0.08010 5.9× 10−5

1000 0.2 100 0.06852 0.07258 5.8× 10−5

3000 0.1 100 0.07438 0.075553 1.0× 10−4

3000 0.2 50 0.06852 0.07258 9.1× 10−5

Table 3.4: Same as in Table 3.3 but for the NOSC model without Langmuir kinetics. The
forward hopping rate is inhomogeneous with ωfast

f ∆t = 0.58 and ωslow
f ∆t = 0.32. The other

parameters are fixed: ωh∆t = 0.8, ωs∆t = 0.22, ωb = 0.

bottleneck at a given site is smaller than l is P<(l) = 1−φl (see (3.25)), the
probability of finding the first longest bottleneck4 of length l at distance
x from a boundary is P (x) = (1− φl)xφl. Therefore the average distance
of the longest bottleneck can be approximated as

〈x〉 ≈
∫ ∞

0

x(1− φ〈l
∗〉)xφ〈l

∗〉 dx =
φ〈l
∗〉

(ln(1− φ〈l∗〉))2

≈ φ−〈l
∗〉 = φ1/2L(1− φ)eγe = O(L) (3.36)

where the longest bottleneck was approximated by its expectation value
(3.33). That means for large systems the longest bottleneck is, on average,
far from the boundaries. However, we see that for finite systems and small
defect densities φ � 1, 〈x〉 is becoming small, such that the boundaries
might affect the transport capacity.

• Other smaller bottlenecks near the boundary can be treated by introducing
effective boundary rates (see Sec. 3.2.4).

• Corrections from other bulk defects, i.e. “defect-defect interactions”. Can-
didates for the leading contribution from this type of correction would be
a) other bottlenecks of length li ≤ l∗, which are near each other and
sum up to induce a lower transport capacity. b) bottlenecks (of arbitrary
length) located in the neighborhood of the longest one. The effect in a)
would be maximal if two bottlenecks are separated only by a single non-
defect site and their lengths adds up to be larger than l∗, l1 + l2 > l∗.
In fig 3.15 the transport capacity of such a configuration with l1 + l2 = 6
is plotted and compared with a single bottleneck of length l∗ = 5. The
x-axis gives the position of the separating non-defect size, i.e. l1. One

4There can be more than just one longest bottleneck.
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observes that indeed configurations with l1, l2 < l∗ can add up to induce a
transport capacity lower than J(l∗). However the configurations with the
most significant effect are those with l1 = 5 or l2 = 5, i.e. a bottleneck of
length l∗ with a single defect next to it. However latter configurations be-
long to the class in (b), which are therefore assumed to be more relevant.
In the following paragraphs the influence of these corrections is quantified.
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Figure 3.15: Configurations of two bottlenecks,lengths l1 and l2 separated only by a single
non-defect site compared to a single one with length l∗ = 5. l1 + l2 = l∗ + 1 = 6.

In order to estimate the corrections due to defects near the longest one,
we consider sub-ensembles of systems whose defect configurations are restricted
to have a longest bottleneck of length l∗, while the defect distribution is not
restricted by other constraints. Defect density φ and slow hopping rate q are
considered to be fixed. For this ensemble the average transport capacity is given
by

〈J∗〉(φ,L, l∗) =
∑
x

′
J∗l∗(x)Pφ(x) (3.37)

where x = (x1, . . . , xN ) denotes a defect configuration with defects at sites xj .∑′ means that the sum is restricted to such configurations for which the longest
bottleneck has length l∗ (and therefore N ≥ l∗). Pφ(x) is the probability to find
the configuration x.

Denoting the transport capacity in SBA by JSBA we have

〈J∗〉(φ,L, l∗) = J∗SBA(l∗) +
∑
x

′
∆J∗l∗(x)Pφ(x) (3.38)

with ∆J∗l∗(x) = J∗l∗(x)−J∗SBA(l∗). The expectation value for the corrections to
SBA is then

〈∆J∗〉(φ,L, l∗) =
∑
x

′
∆J∗l∗(x)Pφ(x) =

∑
N∗

∑
xN∗

′
∆J∗l∗(xN∗)Pφ(xN∗), (3.39)

where N∗ = N − l∗ is the number of defects besides at least one bottleneck of
length l∗, and xN∗ denotes the positions of these defects.

73



We now want to treat corrections of other defects in terms of perturbations
in small defect density φ. Since Pφ(xN ) = φN (1−φ)L−N = O(φN ), the leading
correction in O(φ) comes from configurations with one additional defect besides
the longest bottleneck:

〈∆J∗〉(φ,L, l∗) ≈
∑
x1

′
∆J∗l∗(x1)Pφ(x1) =

(∑
x1

′
∆J∗l∗(x1)

)
Pφ(x1) , (3.40)

where we have used that Pφ(x1) does not explicitly depend on x1 (all allowed
defect positions are equally probable).

As long as the longest bottleneck is far from the boundaries, which can be
assumed for large systems, the transport capacity does not depend explicitly
on its position. Hence, instead of x1 we can also use the relative position d of
the additional defect to the longest bottleneck to characterize the configuration.
If the defect is right of the longest bottleneck, we have d > 0, else d < 0. A
necessary condition that SBA works is that the leading order correction yields
a finite value for L→∞:

∞∑
d=−∞

′

∆J∗l∗(d) <∞ (3.41)

This condition is fullfilled if the “bottleneck-bottleneck interaction” ∆J∗l∗(d)
decays faster than |d|−1 for large |d|, which is a restriction on the interaction
strength of defects. The function ∆J∗ is a property of a system with two bottle-
necks and can be obtained numerically by varying the distance of bottlenecks.
That is exactly what was checked in Sec. 3.1 where the algebraic fits in Fig.
3.10 show numerically that in the TASEP this function indeed decays faster
than |d|−γ with an exponent γ > 2, such that (3.41) is fullfilled for the TASEP.

We can further quantify the contribution of the first defect near the longest
bottleneck as Pφ(x1) = φ(1 − φ)L−1 = φ + O(φ2). Since we have to take into
account defects to the right and the left of the longest bottleneck, we obtain in
leading order

〈J∗〉(φ, l∗) = J∗SBA(l∗) +

[∑
d

′
∆J∗l∗(d)

]
φ+O(φ2) , (3.42)

where contributions with a defect on an adjacent site of the bottleneck (i.e. d = 1
and d = −1) do not appear in the sum, since they belong to longer bottlenecks.
Note that this approximation does not explicitly depend on L.

This first order expansion for fixed l∗ should work for small φ if (3.41) is full-
filled and the longest bottleneck is unique. However, in general the sum over all
configurations x in (3.37) does not exclude other bottlenecks of length l∗. If there
is more than one longest bottleneck (degeneracy), one has to be sure that other
equivalent bottlenecks do not contribute stronger to the transport capacity, since
in this case one would expand around the wrong reference configuration. As-
suming that ∆J(d) is decreasing with d, in first order, this would be the case if
another longest bottleneck has a neighboring defect with distance d′ < d. Hence
configurations containing such a bottleneck have to be skipped, which can lead
to deviations in (3.42). The probability for a configuration exhibiting a bottle-
neck with d′ < d is given by Pn[d′ < d] = 1−Pn[all d′ ≥ d] = 1− ((1−φ)d)n−1,
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Figure 3.16: Expected degeneracy 〈n〉 of the longest bottleneck, approximating its length l∗

by the mean value 〈l∗〉. Degeneracy becomes relevant below φ ≈ 0.1.

where n denotes the degeneracy, i.e. the number of bottlenecks with l = l∗.
For small d(n − 1)φ one can approximate Pn[all d′ ≥ d] ≈ 1 − d(n − 1)φ,
hence Pn[d′ < d] ≈ d(n − 1)φ and deviations of this kind can be neglected if
d(n − 1)φ � 1. For large d the probability of corrections is higher, however in
this regime the contributions ∆J(d) are neglectable. Hence the size of devia-
tions is determined by the degeneracy n and defect density φ. The degree of
degeneracy for a given bottleneck of length l∗ is given by the number of bot-
tlenecks with length l∗, following a Poisson distribution with expectation value
〈n(l∗)〉 = φl

∗
(1−φ)L(1−φ) ≈ φl∗L. Approximating l∗ by its mean value (3.33),

we have n ∼ 1/(
√
φ(1− φ)eγe). For φ > 0.1, n ∼ 1, as can be seen in Fig. 3.16,

and deviations to our expansion can be neglected. For smaller φ the degeneracy
increases significantly, since configurations with small l∗ mix into the ensemble.
For l∗ = 1, for example, n = φL. While this degeneracy indeed also vanishes
for φ→ 0, for finite but small φ and large L, n can become a high number such
that deviations characterized by Pn[d′ < d] become considerable.

Unfortunately currently no generic analytical results for ∆J∗l∗(d) are avail-
able. For l∗ = 1, i.e. a single defect, Foulaadvand et al. [30] applied ISA to
obtain analytical results, while this approach does not apply for longer bot-
tlenecks. Therefore one has to rely on the results of MC simulations to test
the considerations made in this section. Systems with one bottleneck at a po-
sition far from the boundaries (> 200 sites) together with one single defect
were simulated for several bottleneck lengths l∗ and defect position d relative
to the bottleneck to obtain J∗l∗(d). The interaction function is then obtained as
∆J∗l∗(d) = J∗l∗(d) − J∗l∗ , where J∗l∗ is the transport capacity of a single bottle-
neck. Since ∆J∗l∗(d) should decay fast with increasing |d| (see also last section),
it is sufficient to take into account only defects within a finite distance to the
bottleneck5. In order to obtain the expectation value 〈J∗〉(φ) for arbitrary con-
figurations, one has to average over l∗ in the same manner as in eq. (3.35).

In Fig. 3.17 average values of the transport capacity obtained by MC simu-
lations are shown in dependence on the defect density as well for the disordered
TASEP and the NOSC model. Each data point has been obtained by simu-
lating 100 samples. For comparison the results in SBA and the leading order
corrections obtained by (3.42) are included. We see that while already the SBA
appears to be a good approximation, the accuracy of the corrections over a

5In our computations systems from d = −dmax, ...,+dmax with dmax = 20 were simulated.
The relative error due to this cut-off is ∆ < d−γ+1

max , while for the TASEP usually γ < 3.
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Figure 3.17: First order corrections to SBA as function of the defect density φ for the dis-
ordered TASEP (top) and the disordered NOSC model (bottom) using the probability distri-
bution (3.29) for averaging over l∗. The slow hopping rates are q = 0.6 in the TASEP and
ωslow
f ∆t = 0.32 in the NOSC model. The system size is L = 1000 in each case.

wide range of defect densities is striking. It comes as a surprise that in the
TASEP for larger defect densities the leading order correction, which takes into
account only one additional defect, is extremely accurate. This is not expected
since for larger φ there is a higher probability of having more than one defect
in the vicinity of the longest bottleneck. However, these results indicate that
the position of other defects beyond the first one do not significantly contribute
to the transport capacity. Furthermore we see that the deviation of the SBA
approaches a rather constant value for larger φ, despite the factor φ in (3.42).
This indicates that for larger bottlenecks, the influence of single defects on the
transport capacity is weaker than for small bottlenecks, which is consistent with
results from the last section.

However one observes deviations from the first order corrections for small
defect densities. In this regime defect configurations with many bottlenecks of
length l∗ mix into the ensemble leading to degeneracy effects that contribute
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significant deviations to the first order expansion as was argued above.
For periodic boundary conditions the results are almost the same exhibiting

no significant discrepancies compared to Fig. 3.17, therefore the boundary effects
stated at the beginning of this subsection can be assumed to be neglectable6.

3.2.4 The phase diagram of disordered driven lattice gases

The phase diagrams of driven lattice gases that have exactly one maximum
all have the same topology. This is based on a maximum current principle
and shock dynamics [87, 81, 35]. The class of DLGs meeting this condition
includes many weakly interacting lattice gases, e.g. the TASEP and the NOSC
model [71, 36]. If disorder is included, some conceptual problems with the
expression phase diagram arise. Usually a phase transition is identified by a non-
analytic behavior of a macroscopic quantity. In driven lattice gases these can be
discontinuities in the density (first order transitions) or kinks in the dependence
of the current on the system parameters (second order transition). Strictly
speaking these transitions only occur in infinite systems, since non-analyticities
are only present in the thermodynamic limit. In disordered systems, however,
there is no unique way of taking the limit L → ∞ since this cannot be done
with a fixed defect sample and, as we have seen, macroscopic quantities like the
transport capacity may be sample-dependent. Indeed, the process of taking the
thermodynamic limit has to be specified, since it is ambiguous how the “new”
defect sites by increasing L are included. Enaud et al. [24], e.g. discussed two
possibilities of defining a limit L→∞ and showed that if this limit is taken by
including sites at the boundaries there actually is no unique phase transition
point if exit rate β is fixed and α is varied.

For infinite systems, according to equation (3.33), the length of the maxi-
mum bottleneck is infinite and thus the transport capacity would be the same
as the one of a pure system with hopping rate q, J∗ = q/4. In this work, how-
ever, the focus is on “finite but large systems” and we are considering ensem-
bles, not individual samples. Since the longest bottleneck increases as O(lnL),
the transport capacity approaches its asymptotic value only logarithmically:
J∗(L) = q/4 + O(1/ lnL) (see also [61]). For finite but large systems we have
to take into account terms of the order O(1/ lnL). Hence in this view, we
want to consider an explicit dependence on the system size and cannot take the
thermodynamic limit to obtain phase transitions.

In Sec. 3.1 it was shown that if a single bottleneck is near a boundary, phase
separation cannot occur. Then the character of phase transitions is different,
since the current is not limited by the bottleneck anymore but by the bulk exclu-
sion like in the pure system. In this case the phase transition is of second order.
On the other hand, if the bottleneck is far from the boundaries at a distance
d = O(L) there is not only a sharp kink, but also macroscopic phase separation
occurs accompanied by a steep increase of the average density, indicating a first
order transition. This corresponds to the phase separating transition that can
already be observed for single defects [46].

In Sec. 3.2.3 we have seen that the average distance of the longest bottleneck
from the boundaries is O(L). Hence on average we have a sharp transition for
large L. Therefore we call this a phase transition for finite but large systems at

6They are not explicitly plotted since no deviations are visible
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the critical point α∗ where the current reaches J∗, although this point depends
on the system size.

Effective boundary rates

The investigations of the last section in a TASEP with one and two bottlenecks
far from the boundaries (distance O(L)) showed that the transport capacity
only depends on the longer bottleneck, while outside of the bottleneck phase
(B) the current only depends on the position of a bottleneck that is near a
boundary. The negative edge effect, predominant in that regime (see Appendix
A), is considerable for bottlenecks not more than ∼ 20 sites away from the
boundaries and leads to a lowered current in the non-bottleneck phases. The
concept of effective boundary rates that was introduced to take into account this
effect, rescales boundary rates virtually while the bulk of the system is treated
like a pure one. Enaud et al. [24] considered defect ensembles in the disordered
TASEP numerically and showed that the phase transition between L and H can
be described by retuning boundary rates. This indicates that the concept of
effective boundary rates can also be applied for the disordered TASEP, i.e. for
many defects.

Taking into account defects near the boundary, we can write the current in
the generic form J(α) = α(1 − α) + ∆Jα(x). Here α is the entry rate in the
low density phase. However due to particle-hole symmetry7 we can transfer
this result to β and the high density phase. The defect configuration x =
(x1, x2, ...) is defined in the same manner as in Sec. 3.2.3. Indeed, taking the
expectation value we can proceed analog as in the last section to obtain the
average corrections in leading order

〈∆Jα〉(φ) ≈ φ

[∑
d1

∆Jα(d1)

]
(3.43)

where d1 is the position of the first defect and ∆Jα(d1) = Jα(d1) − α(1 − α).
Thus the corrections by defects near the boundaries are of the same magnitude
as the corrections to SBA, while the “defect-boundary interaction” ∆Jα(d1) is
in general not the same as the “defect-defect interaction” ∆Jl∗(d1).

Fig. 3.18 shows that results obtained by (3.43) yield an accurate approxi-
mation for the expectation value of the current for low entry rates, though for
larger φ they appear to slightly overestimate the pure numerical values.

The expectation value of the effective entry rate can then be obtained if the
current-density relation of the pure system J(ρ) is known.

If the relations αeff(α), βeff(β) and their inverses α−1(αeff) and β−1(βeff)
are known as well as the transport capacity J∗, we are in principle able to map
the problem of determining the phase diagram of a disordered system on a pure
system with a known dependence of the current on the boundary rates J(α, β):

1. If the system current J(αeff , βeff) < J∗ the system globally has the same
properties as the pure one if one replaces the real boundary rates by the
effective ones.

7Note that for individual defect samples, particle-hole symmetry is broken, but for large
ensembles it is restored.
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Figure 3.18: Disorder average of the current in dependence on the defect density in the disor-
dered TASEP with q = 0.6, α = 0.2 (top) and the disordered particle-conserving NOSC model
with ωslow

f ∆t = 0.32 (bottom). MC simulations are compared with leading order corrections

to the pure current obtained by (3.43). Entry rates are chosen to be small enough so that
J < J∗.

2. At the points in the α−β-space where J(αeff , βeff) = J∗, a phase transition
to a bottleneck phase occurs in which the current is independent of the
boundary rates and maximal.

In particular in the TASEP the expectation value of the effective boundary rates
can be determined

〈αeff〉 =

〈
1
2
−
√

1
4
− Jα

〉
=

1
2
−
√

1
4
− 〈Jα〉+O(σ2) 8 . (3.44)

There is a phase transition from low density to high density phase for
αeff(α′) = βeff(β′) ⇔ α′ = α−1

eff (βeff(β)) which in general is not on the diag-
onal α = β. Nonetheless , due to particle-hole symmetry we have on average

8Though σ merely decays logarithmically, considering only boundary effects that are not
dependent on system size, we can take the strong continuum limit where O(1/ lnL) vanishes.
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〈Jα〉 = 〈Jβ〉 that leads to α′ = β′ on average. The transition to the phase sep-
arated bottleneck phase is determined by α∗(1− α∗) = J∗ or β∗(1− β∗) = J∗.
Unfortunately, we are not able to determine the functions αeff(α), βeff explic-
itly, since for each α, β we need to obtain a set of functions ∆Jα,β which re-
quires much computational effort, as long as no analytical results are available.
Nonetheless, the concept of effective boundary rates can be used to extract some
qualitative properties of the phase diagram, though obtaining quantitative re-
sults is difficult.

However, since corrections of the SBA are of the same order as corrections to
the boundary rates, we can approximate αeff ≈ α and βeff ≈ β in order to find α∗

and β∗. In Fig. 3.19 the current and the average density is plotted in dependence
on the entry rate α. One observes a steep increase in the average density at the
point where the plateau begins. Thus this transition can be characterized as a
first order phase transition, like in the single bottleneck system.
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α

0.3

0.4

0.5
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 / 
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J

J(α)
<ρ>(α)

α*
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Figure 3.19: Mean density 〈ρ〉 and current J in dependence of α for fixed β = 0.9, q = 0.6
and φ = 0.05 obtained by MC simulation of a system with L = 2000 and fixed defect sample.
One observes a steep increase at the same point where the current reaches the plateau.

Fig. 3.20 displays a sketch of the phase diagram of an individual defect sam-
ple in the disordered TASEP. The transition line between H and L is distorted
compared to the homogeneous case and single bottleneck systems, since for indi-
vidual defect samples the effect of boundary near defects on effective boundary
rates can be different at the left or right boundary. Taking the disorder average,
the transitions are again on the diagonal line α = β. Similar to the TASEP
with a single bottleneck, phase separation, induced by the longest bottleneck is
observed (see e.g. [96]).

While for more complex systems the exact form of the current-density re-
lation is in general not known, we can assume that the concept of effective
boundary rates should in principle also work for other disordered driven lattice
gases as long as the edge effect is not too large, i.e. the term on the right hand
side of (3.43) converges. Hence the single bottleneck approximation together
with the concept of effective boundary rates provides an approach to obtain
crucial features like transport capacity and structure of the phase diagram of a
generic class of disordered driven lattice gases.

Until now it was assumed that no particles can enter or exit the system
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Figure 3.20: Schematic phase diagram of the disordered TASEP for a single defect sample. It
is obtained by taking the phase diagram of the TASEP in dependence on αeff and βeff with one
bottleneck that corresponds to the longest one and rescaling the axis by αeff → α, βeff → β.
For comparison the phase transitions of the homogeneous TASEP with p = 1 were included
(dashed lines).

in the bulk. This view is valid for gene transcription/translation where RNA-
polymerase/ribosomes can only attach and detach to the nucleic acid strands at
distinct sites which can be interpreted as the boundaries of the system. However,
for modeling intracellular transport on cytoskeletal filaments, the mechanism of
attachment and detachment of motor proteins must be explicitly taken into
account if no crucial features of the system are supposed to be dropped. If
entering and exiting of particles like in the TASEP with Langmuir kinetics is
allowed, the concept of a globally constant transport capacity is not supposed
to hold since the current is spatially varying. In the following section, driven
lattice gases without particle conservation in the bulk are considered and a local
extremal principle is introduced that will help us to understand these systems.

3.3 Disordered driven lattice gases with Lang-
muir kinetics

The single bottleneck approximation turns out to yield good results for driven
lattice gases with particle conservation in the bulk. In this section driven lattice
gases in presence of Langmuir kinetics, i.e. particles entering and exiting the
system at any point in the bulk, are investigated. We have seen that Langmuir
kinetics are crucial to capture the phenomenology of intracellular transport by
motor proteins on single tracks. In comparison to the TASEP, the current profile
in the presence of Langmuir kinetics is no longer constant (see Sec. 2.3.3). This
requires a slightly different approach since now a ”local” point of view becomes
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necessary. Indeed, as was argued in Sec. 3.2.1, the SBA, though a global
quantity, arises from the assumption that bottlenecks restrict the current locally.
This suggests that the transport capacity which is a global feature of particle
conserving driven lattice gases can be generalized by a spatially varying quantity
that yields the SBA in the limit of vanishing attachment and detachment rates.
Hence we introduce a local transport capacity, defined in Sec. 3.3.1 that depends
on the position in the system. This important observable is of direct relevance
for biological applications.

In this section the disordered TASEP with Langmuir kinetics is studied as
a paradigmatic system for driven lattice gases that can be applied to model
intracellular transport on inhomogeneous tracks. First current and density pro-
files are investigated by computer simulations to discover new phenomena. In
the subsequent subsections a theoretical framework, based on a local extremal
principle and a generalization of the SBA, is developed. These results are used
to obtain the structure of the phase diagram. The validity of this approach
is checked by computing the probability for phase transitions in large ensem-
bles with different individual defect configurations. The procedure turns out
to be generic for driven lattice gases that exhibit a single maximum in their
current-density relation and have short-ranged interactions (see conditions in
Sec. 2.3.3) indicating that the topological structure of the phase diagram of
this system class is the same. Therefore the qualitative features are assumed to
be valid in real systems like intracellular transport on cytoskeletal filaments.

3.3.1 Model and Definitions

We consider driven lattice gases with open boundary conditions and Langmuir
kinetics (LK). To be more specific we focus on the TASEP-LK (see Sec. 2.3.2).

For convenience fixed boundary densities ρ0 and ρL rather than the corre-
sponding rates α an β are used as boundary conditions. Densities and rates
are related by ρ0 = α, ρL = 1 − β. Nonetheless this relation is not generic for
other driven lattice gases. In order to be transferable to other systems, here
boundary conditions are implemented by fixed boundary densities. However, if
the TASEP-LK is considered, the terminology of boundary rates can be used.

Langmuir kinetics are realized by creation and annihilation of particles in
the bulk. This can be interpreted as particle exchange with a bulk reservoir and
corresponds to attachment and detachment processes in the biological context.
The corresponding rates will be considered to be homogeneous, i.e. independent
of the position, throughout this section 9.

Usually we are interested in the weak continuum limit as defined in the last
section, while in special cases we also consider the strong continuum limit where
O(1/ lnL) vanishes. In the following we restrict ourselves to systems where the
local creation and annihilation rates ωa and ωd are rescaled with the system
size, while the global rates Ωa := ωa L and Ωd := ωd L are kept constant. Hence
Ωa and Ωd are system parameters while ωa and ωd are adjusted to the system
size. In particular in the (weak and strong) continuum limit, the local rates
vanish: ωa, ωd → 0 for L → ∞. In these limits analytical tools introduced in
Sec. 2.3.3 can be applied.

9The effects of inhomogeneities in the attachment and detachment rates have recently been
studied in [41].
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The current-density relation of the systems considered here are assumed to
exhibit a single maximum (which is the case for the TASEP-LK). The maximum
is at a point ρM and takes the value JM = J(ρM ). In this case for a given current
J , two possible values for the density, the high density value ρH(J) > ρM and
the low density value ρL(J) < ρM exist.

The non-conservation of particles can be expressed by a source term in the
equation of continuity of the stationary state (see also Sec. 2.3.3) :

Jj − Jj−1 = s(ρ) 10 (3.45)

where Jj is the current through the bond between sites j and j + 1. The
attachment of particles is assumed to be inhibited by particles occupying sites,
so we assume s(ρ) to be a globally decreasing function. Since ωa, ωd → 0 in
the continuum limit, we also have s(ρ) → 0 in this limit. Hence for large
systems the current is locally constant in a microscopic environment and the
CDR is the same as in the corresponding system without LK [81, 35]. The
transition rules of the TASEP-LK are explicitly described in Sec. 2.3.2, while
here hopping rates pj can also depend on the position j. The source term is given
by s(ρ) = ωa(1−ρ)−ωdρ. We call the hopping rates pj , which are site-dependent
properties, intrinsic parameters and in the following will be considered as fixed,
p = 1 and q = 0.6, if not stated otherwise. In contrast to this we consider the
explicit dependence of the system properties on the external parameters α, β, Ωa
and Ωd. Other driven lattice gases of the class characterized above can be
written in the same way, while the local parameters might depend on the states
in the vicinity of the sites and additional correlations might occur. Nonetheless
one can assume that the TASEP-LK is quite universal as a paradigmatic model
[35].

In this section we consider on the one hand defects that have distinct posi-
tions in the system and on the other hand random disorder with finite defect
density φ, like for the TASEP without LK.

The particle-hole symmetry of the TASEP also holds if Langmuir kinetics are
included, while we have to add the operation Ωa ↔ Ωd to (2.8) in order to leave
properties unchanged. However, the particle-hole-symmetry is not essential for
the generic behavior, but it allows to reduce the parameter space that needs to
be investigated.

The TASEP-LK with one defect site was already investigated numerically
and analytically in [79]. Now we want to generalize these results to arbitrary de-
fect samples. For this purpose we generalize the principle of the transport capac-
ity to introduce a local transport capacity J∗j , which is the site-dependent max-
imum current that can be achieved by tuning the external parameters α, β, Ωa
and Ωd in the continuum limit 11. This quantity will be discussed in detail in
section 3.3.3.

3.3.2 Observations by Computer Simulations

In this section some properties of the system are summarized that can be ob-
served with computer simulations. For this purpose quantities of the inhomo-
geneous TASEP-LK are compared with the homogeneous TASEP-LK and the

10Actually s(ρ) can be defined this way.
11Note that it is important that first the external rates are tuned and then the continuum

limit is taken, since the vanishing of the local bulk influx s(ρ) is necessary.

83



0 500 1000 1500 2000
site

0

0.05

0.1

0.15

0.2

0.25

de
ns

ity

TASEP with defects
pure TASEP/LK
TASEP/LK with defects

0 500 1000 1500 2000
site

0

0.05

0.1

0.15

cu
rr

en
t

TASEP with defects
pure TASEP/LK
TASEP/LK with defects

Figure 3.21: Comparison of current and density profiles for α = 0.1 and β = 0.9 (low
density phase) in the TASEP with defects, homogeneous TASEP-LK and TASEP-LK with
defects and Ωa = Ωd = 0.1.

TASEP with defects. For simulations, random-sequential update with fast hop-
ping probability p = 1 is used. If not specified else, q = 0.6 is fixed as slow
hopping probability. The unit of time is ∆t = 1 so that probabilities and rates
have the same numerical value.

Few defects/vanishing fraction of defects

Before finite defect densities φ > 0 are considered, systems with a fixed number
of defects in the continuum limit (φ = 0) are discussed. Figs. 3.21–3.25 display
the dependence of the densities and the current on the position in the system.

Fig. 3.21 shows the density and current profiles of a TASEP-LK-system with
five defects, a homogeneous TASEP-LK-system and a TASEP with five defects
in the low density phase. The density profiles of inhomogeneous and homoge-
neous TASEP-LK-systems differ only in the occurrence of narrow density peaks
at the defects, while globally the density profile is the same. The current profiles
of the homogeneous and inhomogeneous system are identical. In contrast, the
density profile of the TASEP with defects at the same sites shows density peaks
as well, but the current profile (and the density profile far from the boundaries)
is flat. This is due to particle conservation while the lateral influx of particles
allows a spatial variation of the current profile in the TASEP-LK where particles
are not conserved in the bulk.

Fig. 3.22 shows the corresponding situation for low exit rate and high entry
rate. Due to particle-hole-symmetry, the results are analogous to the previous
case. Adopting the terminology of the homogeneous system, the inhomogeneous
TASEP-LK-system can be considered to be in a high and low density phase,
respectively.

Fig. 3.23 displays density profiles for α ≈ β. As in the case above, homoge-
neous and inhomogeneous TASEP-LK-systems exhibit the same density profiles,
apart from the peaks. In this case we see a shock which cannot be observed in
the TASEP with defects (except at αeff = βeff).

Increasing the entry rate α for fixed and large β one observes a queuing tran-
sition in Fig. 3.24: At a critical entry rate α∗ the peak at the leftmost defect
broadens, forming a high density region. This corresponds to phase separation
in the bottleneck phase (B) of the inhomogeneous TASEP. There, however, the
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Figure 3.22: Comparison of current and density profiles for α = 0.9 and β = 0.1 (high
density phase) in the TASEP with defects, homogeneous TASEP-LK and TASEP-LK with
defects.
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Figure 3.23: Comparison of current and density profiles for α = 0.1 and β = 0.15 (high
density phase) in the homogeneous TASEP-LK and TASEP-LK with defects.
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Figure 3.24: Density profiles for increasing values of α and fixed β = 0.9. At a critical value
α′ a high density region at the most right defect occurs (phase separation). For higher α
multiple high density regions appear.
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Figure 3.25: Density profiles for identical macroscopic parameters Ωa = 0.1, Ωd = 0.1, α =
0.35, β = 0.9 but different system sizes L. The left boundary of the high density region
(shock) becomes steeper with increasing system size, indicating a macroscopic regime.

high density regime always extends to the left boundary. In contrast, the inho-
mogeneous TASEP-LK-system exhibits a stationary shock separating the low
and high density region. Numerical scaling of the system size in Fig. 3.25 shows
that the shock indeed is getting sharper with increasing system size. Thus the
high density region extends over a finite fraction of the system, corresponding to
phase separation. In contrast, the peaks diminish for larger systems indicating
that they are just local phenomena. We can associate this phase separation
with a phase transition at the critical parameter value α′ and call this phase
defect induced phase separated (DPS).

Increase in α further moves the shock position to the left. The density profile
right of the defect where phase separation occurred does not change anymore
by varying the entry rate. The same is true for the output current at the right
boundary Jout = J(L). At some value of α a second high density region starts to
form. Thus in a system with many defects multiple shocks can occur associated
with alternating domains of high and low density.

Above a critical value α∗, where a high density domain extends to the left
boundary, the density profile and the current in the system are independent of
the entry rate. Since this independence also holds for large β, we call this a
Meissner phase in analogy to superconductors, where the magnetic field in the
interior bulk is independent of exterior fields. This terminology was also used for
the boundary independent phase in the homogeneous TASEP-LK [76] (see also
Sec. 2.3.3). However, one has to note that while in the homogeneous system
there are long-range boundary layers in the density profile which do depend
on boundary rates, the Meissner phase in the disordered system only exhibits
short-range boundary layers, so the corresponding phases in the two models
have different characteristics. The current profile in fact does not depend on
the boundary rates, both in the homogeneous and the inhomogeneous system.

Due to particle-hole-symmetry all considerations made in this section can
be transferred to the high density phase by replacing α with β.
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Figure 3.26: Comparison of current and density profiles for α = 0.1 and β = 0.9 (low
density phase) in the disordered TASEP-LK with defect density φ = 0.1 and homogeneous
TASEP-LK.

Finite fraction of defects and disordered systems

If the density of defects φ is finite and the number of defects is of the order
of the system size, even a local increase of the density in the vicinity of the
defects has considerable impact on the average density due to the large number
of defects. The effect can be observed in Fig. 3.26 where disordered systems
with small but finite defect density φ have been simulated for small α and large
β. In contrast to systems with few defects, the current profile of the disordered
system differs from that of the homogeneous system. This is due to the change
of the density by defects, which leads to an altered influx of particles in the
bulk by attachment/detachment. So the gradient of the current profile in the
disordered system is different from the one in the homogeneous system and also
from the system with few defects because in the latter the effect on the average
density is negligible.

As in the TASEP-LK with few defects one observes multiple high and low
density domains for large boundary rates, which is displayed in Fig. 3.27. In
fact it is harder to distinguish macroscopic high and low density regimes in the
disordered case because of the rapid changes of density on a microscopic scale.
One has to simulate rather large systems in order to identify a macroscopic
high(low) density domain by inspection. In Sec. 3.3.4, a numerical method is
introduced that can detect high and low density domains automatically.

3.3.3 Theoretical treatment

In this subsection a theoretical framework for the observations made by Monte
Carlo simulations is developed. Concepts developed in this section are expected
to be generic for a larger class of disordered driven lattice gases that have a single
maximum in the current-density relation and weak induced effective interactions
between defects, i.e. satisfying the condition (3.41). In addition, we assume
that the bulk influx term S(ρ) is decreasing with increasing density, as in the
TASEP-LK.

First we summarize the properties that distinguish the inhomogeneous (dis-
ordered) TASEP-LK from the TASEP and homogeneous TASEP-LK, respec-
tively.
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Figure 3.27: Density profile for α = 0.9 and β = 0.9 in the disordered TASEP-LK with
defect density φ = 0.2. One observes phase separation with alternating high and low density
domains. The black line displays the density, averaged over 50 adjacent sites.

1. In the TASEP-LK the particle number is not conserved in the bulk. There-
fore generically the current profile is not flat and stationary shocks can
occur in the bulk. For particle conserving systems these are not possible
[81, 27].

2. In the homogeneous TASEP, the current is restricted by the upper bound
Jmax

hom = ρmax(1 − ρmax) = 0.25 (for hopping rate p = 1) due to the bulk
exclusion. In [79] it was shown that also in the TASEP-LK, a single defect
site d restricts the current by a value J∗d := Jmax

d < Jmax
hom at this site, that

cannot be exceeded by tuning external parameters. The quantity J∗d is
exactly the local transport capacity defined in Sec. 3.3.1. In the TASEP
without LK this restriction was valid for the whole system since the current
is spatially constant. Hence J∗ ≡ J∗d there. However, due to the spatially
varying current in the presence of Langmuir kinetics, this effect is only
local and the maximum value of the current Jmax

i on sites i far away from
the defect can vary from J∗d . For completeness, we define J∗i = Jmax

hom

on non-defect sites i, such that the transport capacity is peaked on a
single site. If the current imposed by the boundary rates is larger than
the transport capacity of a defect, phase separation occurs, exhibiting
stationary shocks. In the inhomogeneous TASEP no stationary shocks
can occur in the bulk, thus the high density regime always fills the whole
system left of the current limiting defect, as we saw in the last section.

3. In systems with only few defects the relation between the average density
and the current at a given site is the same as in the homogeneous sys-
tem. Thus current profiles are almost the same (as long as the transport
capacity is not exceeded). In disordered systems with a finite fraction of
defects, however, the current-density relation is not the same as in the
homogeneous system and depends on q and the distribution of defects,
since the large number of density peaks have influence on the source term
s(ρ) in (3.45) on a macroscopic scale. Therefore the current profiles differ
from the homogeneous case.
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In order to capture these properties, we follow the concept of [79] by focusing
on the current profiles J(x) and apply the analytical tools presented in sec 2.3.3.

The influence of defects: additional initial conditions

Locally the current profiles are determined by the continuity equation (3.45).
Following Sec. 2.3.3, the current obeys the ODE

dJ

dx
= S(ρ) +O(1/L) (3.46)

with x = i−1
L−1 and the global source term S(x) = Ls(x) (see Sec. 2.3.3). In

the TASEP-LK, for example, we have S(x) = S(ρ(x)) = Ωa(1−ρ(x))−Ωdρ(x).
In the weak and strong continuum limit terms of O(1/L) are neglected, hence
(3.46) becomes an ordinary first order differential equation in x. The ODE is
overdetermined and each initial condition at a point x0 is associated with one
solution of (3.46) Jx0(x) for the current and ρx0(x) for density, respectively,
provided that a unique CDR J(ρ) exists. We call the mathematical solutions
to single initial conditions Jx0(x) and ρx0(x) local current/density profiles.

For the TASEP-LK with a single defect it was shown by Pierobon et al.
[79] that the finite transport capacity at the defect site, corresponding to a
local upper bound of the current, can be regarded as an additional condition
on the current profile. They argued that the local solution of (3.46) with the
initial condition J(xd) = J∗(xd) becomes relevant if the local current profiles of
the boundary conditions exceed J∗ at the defect site. Here this approach will
be justified and generalized to a larger class of driven lattice gases with many
defects, including randomly disordered systems, that meet the restrictions noted
in Sec. 3.3.1.

The observations made in [79] motivate the generalization of the global trans-
port capacity to driven lattice gases (including TASEP-LK) with many defects
but low defect density, introducing an approximation similar to SBA. We call
it the locally independent bottleneck approximation (LIBA): The local transport
capacity at a site x, J∗(x), is approximately equal to the maximum current
that can be achieved by tuning the boundary rates in the corresponding sys-
tem containing only one bottleneck at this site 12. Thus J∗(x) can be obtained
by referring to a single-bottleneck system where all other defects (except the
bottleneck at site x) have been removed, similar to SBA.

In systems without LK the current is spatially constant and cannot exceed
the minimum of J∗(x). This corresponds to the transport capacity of the longest
bottleneck, since in single bottleneck systems the maximum current is equal to
the local transport capacity J∗(x) and decreases with l. In this case the LIBA
reproduces the SBA.

The LIBA neglects the influence of other defects on the transport capacity
at site x. Nonetheless, we claim that the influence of other defects on the
transport capacity can be considered as a perturbation in the same way as it is
the case for the SBA in particle conserving systems. Since the local attachment
and detachment rates vanish in the continuum limit, the transport capacity of a
bottleneck should be the same as in the corresponding particle conserving system
and is independent of Ωa and Ωd. For the TASEP without LK the analytical

12In this terminology a non-defect site is also called a bottleneck of size 0.
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results obtained in 3.1 are available that can be used to obtain approximations
for the transport capacity. Since the maximal current in these systems depends
only on the bottleneck length l(x) this holds also for the transport capacity.
The concept of a local transport capacity is applicable if interactions of defects
near a bottleneck are not to large (satisfying (3.41)) and distances of defects are
not too small (i.e. low defect density 13) such that they can be treated as small
perturbations.

Hence, the local transport capacity J∗(x) yields an upper bound for the
current profile,

J(x) ≤ J∗(x) for all x, (3.47)

while the function J∗(x) of course is not continuous. Since on non-defect sites
(which correspond to bottlenecks of size l = 0) the transport capacity is J∗ =
Jmax

hom , it is sufficient to check condition (3.47) for defect sites. Their number
is finite in finite systems but can be infinite in the continuum limit (e.g. for
disordered systems with finite defect density).

The problem of condition (3.47) is that it is given as an inequality and does
not provide properly defined initial conditions for (3.46) on the defect sites. Now
we want to show that (3.47) is identically fullfilled by a set of initial conditions

J(x) = J∗(x) at defect sites x , (3.48)

if one assumes additionally that the physical local solution at x is selected by
shock dynamics.

First of all, if we assume the conditions (3.48) we see that, in contrast to the
boundary conditions of the system which are usually given by a fixed density, the
initial condition imposed by a defect provides the possibility of two realizations
of the local density profile. Given the initial condition J(x0) = J∗(x0) at a point
x0, only the current is a fixed initial condition while, due to the non-unique
inversion of the current-density relation (one maximum!), there are two possible
values for the density, ρH and ρL (with ρH > ρL), leading to two possible local
solutions of (3.46), a high density solution JH(x) and a low density solution
JL(x):

J∗
↗
↘

ρH −→ JH(x− x0, J
∗)

ρL −→ JL(x− x0, J
∗)

(3.49)

A constraint on the selection of a physical solution is given by the collective
velocity

vc(x) = J ′(ρ(x)) (3.50)

where J(ρ) is the current-density relation and the prime denotes the derivative
with respect to ρ (see Sec. 2.3.3). A solution can only propagate away from the
initial point if the direction of vc is pointing away from it, i.e. left of it only
solutions with vc < 0 can exist, while right of it solutions must have vc > 0
[87]. In a system with a single maximum at density ρm in the CDR, dJdρ > 0 for
ρ < ρm and dJ

dρ < 0 for ρ > ρm, thus left of an initial point, only the high density
solution JH can be realized, while right of it only JL can physically exist. This

13This is expected to hold even for larger densities, since in the disordered TASEP correc-
tions are also small for large φ.
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principle is displayed in Fig. 3.28, top. Hence, each initial condition at a point
x0 can have its own solutions. We denote these local solutions by

J(x− x0, J
∗) =

{
JH(x− x0, J

∗) for x ≤ x0

JL(x− x0, J
∗) for x > x0

. (3.51)

Obviously at the point x0 there can be a downward discontinuity in the density
if the profile is physically realized. This indeed is the discontinuity that also is
present in the TASEP with a defect. However these kind of discontinuities are
no “shocks” as was argued in Sec. 2.3.4. Actually the dependence on J∗ can
easily be obtained by a shift operation of two functions J̃L(x) and J̃H(x) with
initial conditions J̃L(0) = J0

L and J̃H(0) = J0
H , where J0

L and J0
H are arbitrary

chosen values in the high- and low density branch of the CDR. If the range in
both branches of the CDR includes J = 0, one can simply choose J0

L = J0
H = 0

14. Since the ODE (3.46) is of first order and does not explicitly depend on x, the
high and low density solutions unambiguously depend on ρ and are monotonic.
Thus different local solutions JL,H can only differ by a shift in the variable
x. An arbitrary solution JL,H(x− x0, J

∗) can be obtained by shifting J̃L,H(x)
by an amount x̃L,H(J∗) so that the value of the shifted function at x = 0 is
equal to J∗. The functions x̃L,H(J∗) are just the inverse functions of the unique
functions J̃L,H(x). Then the local solutions at a point with initial condition J∗

are given as
J(x− x0, J

∗) = J̃(x− x0 − x̃(J∗)) . (3.52)

The functions J̃L,H(x) and x̃L,H(J) can for example be obtained by numerical
solution of (3.46) with initial conditions J0

L,H .

Selection of the global current profile

The physically realized global current profile in the steady state is also deter-
mined by shock dynamics [81, 87, 27]. If they are stationary they connect
different local steady state solutions of (3.46) to form a global solution. The
shock velocity

vs =
J+ − J−
ρ+ − ρ−

(3.53)

determines the propagation of a discontinuity in a (not necessarily stationary)
density profile. Here J+ (ρ+) is the current (density) right of the shock and J−
(ρ−) is the current (density) left of the shock. In homogeneous driven lattice
gases with a single maximum in the CDR (and no minimum) only upward shocks
with ρ+ > ρ− can exist ([87, 81]). For local bulk rates ωa, ωd vanishing in the
continuum limit, the CDR that relates the local density and current is the same
as in the corresponding particle conserving system.

Since the source term s(ρ) of (3.45) vanishes in the continuum limit, shocks
can only be stationary at intersection points of a high and a low density solution
JH(x) and JL(x). These points hence can connect two local solutions. So only
at these intersection points a switch of the physical realized local solution can
occur. Note that local solutions of the same kind JL or JH cannot intersect since
the differential equation (3.46) is of first order. Since S(ρ), which determines the

14Note that this is the case for systems with strict exclusion interaction like TASEP and
TASEP-LK. If double occupancy is possible, the CDR not necessarily vanishes for ρ = 1.

91



Figure 3.28: (a) Local solutions in the vicinity of a point with an initial condition J∗. Due
to the non-unique inversion of the current-density relation, there are two possible solutions.
Since for a physical solution the direction of the collective velocity must point away from
this position, only solutions with maximal current are realized. (b) Intersection point of local
solutions of the density profile. The constraint that only upward shocks can exist implies that
only solutions with minimal current are physically realized.
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slope of the current profile, is assumed to be a monotonically decreasing function
in ρ, we have S(ρH) < S(ρL), hence the gradient of the high density solution
JH(x) is smaller than the one of the low density solution JL(x). Therefore left of
an intersection point, we have JL(x) < JH(x), while right of it JH(x) < JL(x).
Since JL is the physical solution left of a shock and JH right of it, at each point
the minimal local solution is the physical one (see Fig. 3.28, bottom). We define
the minimal envelope of all the local current profiles as the capacity field of the
system,

C(x) := min
x′
{J(x− x′, J∗(x′))} (3.54)

with defects at the points x′. This function does not depend on the boundary
rates. The capacity field is a generalization of the capacity introduced in [79].
Note that the capacity field is not identical with the local transport capacity
J∗(x) 15. For Ωa,d → 0 the capacity field becomes flat and its value is identical
to the global transport capacity of the corresponding particle conserving system.
In this case, (3.54) together with the fact that J∗ decreases monotonically with
bottleneck length yields the SBA for systems without LK with C(x) ≡ J∗SBA.
The local transport capacity can be viewed as the source or “charge” of the
capacity field. In this view, the function J̃L,H(x−x0), which generates all local
current profiles via (3.52), can be called the “Green’s function” of the capacity
field16.

Additional conditions on the current profile are given by the boundary rates
so that ρ(0) = α and ρ(1) = 1 − β. Of course the maximum current of the
homogeneous system Jmax

hom remains an upper bound also in the inhomogeneous
system. The capacity field together with the boundary conditions can be used
to express the physically realized current profile as

J(x) = min [Jα(x), Jβ(x), C(x)] (3.55)

This principle is the generalization of the extremal current principle for the
homogeneous TASEP [60]. It provides a tool to obtain the global current profile
if it is possible to obtain the local solutions of (3.46) and the local maximum
current J∗(x). Indeed the global current profile given by (3.55) identically fulfills
the condition (3.47) that the current must always be lower than the transport
capacity.

In Fig. 3.29 computer simulations of a system with a few defects are com-
pared with results obtained by the minimal principle. Results from the single-
bottleneck TASEP and the homogeneous TASEP-LK are used to check the prin-
ciple (3.55) and illustrate some features of the TASEP-LK with defects. High
boundary rates are chosen, such that the resulting current profile is exactly the
capacity field C(x). For the values Ω = Ωa = Ωd = 0.2 analytical results for
the local current profiles in the continuum limit are available. The analytical
results from [27] were used for the reference functions J̃L(x) = Ωx− Ω2x2 and
J̃H = −Ωx + Ω2x2 that obey the initial condition J̃L,H(0) = 0 to reproduce
the local solutions of (3.46). The transport capacity was obtained in LIBA by
results of a TASEP with a single bottleneck. The first three bottlenecks are well
separated by a large distance. Here we see that LIBA works very well and the

15For example a single defect at site xd and maximum current J∗1def has a peaked local
transport capacity J∗(x) = J∗1defδ(x− xd), while the capacity C(x) is an extended function.

16Though in contrast to a Green’s functional the functional relating transport capacity and
capacity field is non-linear.
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Figure 3.29: Comparison of simulation results and semi-analytical results for the capacity
field (= current profile for high boundary rates; here α = β = 0.9) by LIBA and (3.55).
Bottlenecks are at sites xi (first defect site) with size li:
x1 = 1000, l1 = 4
x2 = 1500, l2 = 2
x3 = 2800, l3 = 2
x4 = 4000, l4 = 3
x5 = 4008, l5 = 1.
Further details are given in the text.
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current profile is accurately reproduced by the minimal principle (3.55). One
observes that at the position of bottleneck 2, the actual current is less than the
transport capacity since the local solution of defect 1 is less than J∗(x2) 17. For
bottleneck 4 there are deviations to LIBA since bottleneck 5 which is quite close
to bottleneck 4 (distance = 6 sites) perturbs the transport capacity by further
decreasing it. Nonetheless also in this region the minimal principle works if one
takes the real transport capacity 18 instead of LIBA.

Local current profiles in the disordered TASEP-LK

We now want to quantify our results by finding the local solutions of the dif-
ferential equation (3.46) and the continuity equation (3.45), respectively. For a
numerical evaluation of these equations the CDR J(ρ) and its inverse ρL,H(J)
are needed.

If there are only few defects in the system we have seen that the CDR is the
same as in the homogeneous system, as long as the current is below the maxi-
mum current J∗, since the increase of the average density is negligible. Thus in
the TASEP-LK with defects we can use the same CDR as in the homogeneous
system: J(ρ) = ρ(1− ρ). Therefore the local solutions are the same as the ones
of the homogeneous systems.

The situation is different for a finite fraction of defects in the system φ > 0.
Then the average density is strongly influenced by the dense distribution of
defect peaks which leads to an altered current-density relation even in the non-
plateau region [5]. Here we want to find an approximation to calculate the
current-density relation for small, but finite, defect density φ� 1 if it is not too
close to the transport capacity. For that purpose we virtually divide the system
into homogeneous subsystems with fast hopping rate p, while the slow hopping
bonds connect these subsystems 19. In first instance we neglect correlations on
the defect bonds. The subsystems have an average size ≈ 1/φ. In this point
of view, the peaks at the defects are the boundary layers of the homogeneous
subsystems. Without losing generality, we can assume the system to be in
the low density phase and observe the local solution of the right boundary
where peaks are concave. This can be transferred to high density solutions by
particle-hole symmetry operation. Since ωa, ωd ∼ 1/L, we can neglect them
for large systems when looking at a single subsystem, thus we can treat them
as homogeneous TASEPs. In a large homogeneous TASEP in the low density
phase, the density is given by ρ0 = 1/2 −

√
1/4− J in the bulk far from the

boundary. We can write the mass m :=
∑L
i=1 ρi of the system as m = Lρ0 +mp

with mp being the mass of the boundary layer. mp thus corresponds to the
mass of a peak in the inhomogeneous system.

We approximate that the mass of the peaks does not depend on distance of
adjacent defects. Then we can write the average density as

ρ(x) = ρ0(J(x)) + φmp(J(x)), (3.56)

17One observes a tiny spike at the position of bottleneck 2, which is due to the influence
of the density peak on the slope of the current profile at this point, though this effect should
vanish in the continuum limit.

18The value of the perturbed transport capacity at x4 can actually be obtained by simulating
a TASEP with a bottleneck of length 3 and a single defect at a distance of 6 sites.

19This division into subdivision is motivated by the (ISA), though in contrast to ISA each
defect separates two homogeneous systems with fast rates.
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Figure 3.30: Mass m =
PL
i=1(ρi − α) of two density-peaks in the low density phase of the

TASEP with two defects in dependence on the distance of the defects. One observes that the
dependence is rather weak.

since φ is the fraction of defect sites. Surprisingly this rather uncontrolled
approximation is supported by Fig. 3.30 where the mass in a system with two
defects is plotted in dependence on the distance of latter ones.

In this approximation, the mass of the peaks can be calculated analytically,
since due to the independence of distance we can take it as the mass of the
boundary layer in a large homogeneous TASEP, where exact results are available
for given current J . Following [17], the density at a site L− n is given by

ρL−n = JSn (J) + Jn+1Rn (1/(1− ρ)) (3.57)

with

Sn(x) =
1−
√

1− 4x
2x

−
∞∑
j=n

(2j)!
(j + 1)!j!

, (3.58)

Rn(x) =
n+1∑
j=2

(j − 1)(2n− j)!
n!(n+ 1− j)!

xj . (3.59)

Thus the peak mass is

mp =
∑
n

[〈τL−n〉 − α(1− α)] , (3.60)

while the sum is truncated once the terms are small enough.
Equations. (3.56)-(3.60) can be used to calculate the current J for a given

density ρ in the low density phase (and in the high density phase by particle-hole
symmetry) and vice versa:

J(ρ) = (ρ− φmp)(1− ρ+ φmp) . (3.61)

This relation can be used to obtain a local solution of the differential equation
(3.46) for a given initial condition Ji by iteration. In Fig. 3.31 profiles ob-
tained by this procedure are compared with results from computer simulations.
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Figure 3.31: Comparison between simulation and analytical results for the current profile
in a disordered system with φ = 0.2, ωa = 0.2, ωd = 0.1 for entry rate α = 0.1 and exit
rate β = 0.9. Since the current is less than the transport capacity throughout the system
the profile corresponds to the local current profile of the boundary condition ρ(0) = α. One
observes excellent agreement between numerical and analytical results. This agreement holds
for low current. Deviations occur only if the current comes close to the transport capacity.

One observes an excellent agreement which holds if the current is not close to
the transport capacity. Together with the minimal current principle (3.55) the
global current profile can be obtained.

The corresponding density profile can be obtained by inverting the CDR
with respect to its two branches. Regions with a high density solution of the
current profile correspond to a high density domain with the density ρH(J(x))
obtained by the inverted current-density relation. Analogous to that low density
domains exist in regions of low density solutions.

Phase diagram of disordered systems

We now want to investigate the phase diagram of inhomogeneous driven lattice
gases. This can be done by identifying intersection points (if present) between
boundary solutions and the capacity field. This is illustrated in Fig. 3.32.

If one of the local boundary solutions Jα(x) or Jβ(x) is the minimum of all
local solutions in the whole system (no intersection with other solutions), we
have a low density phase (L) in the former case and a high density phase (H) in
latter one and there are no shocks in the system. These phases have the same
macroscopic properties like in the corresponding homogeneous system.

If there are intersecting points of local solutions they manifest themselves
as shocks in the density profile, separating high and low density regions (phase
separation) corresponding to the realized high and low density solutions of the
current profile. Phase separation can also be observed in homogeneous systems
with Langmuir kinetics like the TASEP-LK [75, 27] and the NOSC model con-
sidered in [71, 36]. There the local solutions of the boundaries Jα and Jβ can
intersect leading to a single stationary shock in the density profiles, separating a
low density domain left of it and a high density region right of it. This is called
the shock phase (S) [27] which is preserved as long as the minimum local profiles
are the boundary current profiles. However, this kind of phase separation dif-
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Figure 3.32: Illustration of some current profiles, including critical profiles. We see that the
critical rates are related by the critical current profiles: α∗ = ρL(Jβ′ (1)), while ρL(J) is the
inverted (low density) CDR and Jβ′ (1) is the local right boundary solution for β = β′. An
analog relation is valid for β∗. The bold lines are the local current profiles consistent with the
initial conditions imposed by the defects, whose minimal envelope is the capacity field. The
thin lines are the critical boundary profiles and the dashed line corresponds to phase separated
boundary current profiles.

fers from the phase separation induced by defects which occurs if the boundary
profiles Jα,β intersect C(x). While in the S-phase the bulk behavior is still deter-
mined by the boundary conditions, phase separation due to the finite transport
capacity of defects is accompanied by a region where the current is “screened”
by the defect(s) and is independent of the boundary condition, i.e. ∂J(x)

∂α = 0
for all x inside this region. If the phase separation is due to the screening by
defects we rather refer to a defect-induced phase separated phase (DPS). If both
boundary profiles Jα(x) and Jβ(x) are larger than C(x) in the whole system,
the complete system is screened. The current profile is completely determined
by the defect distribution and identical to the capacity field C(x). As argued in
Sec. 3.3.1 we call this fully screened phase Meissner phase (M).

Another possible scenario is that the current near the boundaries is only
limited by the maximum current of the bulk, i.e. C = Jmax

hom and we have a max-
imum current phase with long ranging boundary layers like in the homogeneous
TASEP. However in disordered systems with randomly disordered defects, dis-
tances of defects are microscopic and the probability that C = Jmaxhom vanishes in
the continuum limit.

The phases can be characterized by two quantities:

1. The total length λH of high density regions. This is the sum of individual
high density regions and corresponds to the total jam length in traffic
models [14].

2. The screening length ξ 20, which is the size of the area where the current
profile does not depend on the boundary conditions. This is exactly the

20This terminology is inspired by the screening length in [79]. Nonetheless, the reader
should be alert that in that work the meaning of ξ is different, corresponding to a maximum
screening length in our terminology
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L H S DPS M

λ 0 1
0 < λ < 1
continuous

0 < λ < 1
continuous λM

ξ 0 0 0
0 < ξ < 1

discontinuous 1

Table 3.5: Values and properties of the characteristic order parameters ξ and λ in the dif-
ferent phases. These properties can be used to define phases.

region where the boundary independent capacity field C(x) < Jα,β(x) and
the local boundary profiles are not the physically realized ones.

In Table 3.5 the behavior of these quantities in the different phases is displayed.
Indeed this can be used to define the phases. For ξ = 0 defects do not influence
the current profile and the system is in one of the “pure” phases, L,H or S,
determined by the boundary conditions. If 0 < ξ < 1 there is phase separation
and a part of the system does not depend on the boundary conditions, the
system is in the DPS-phase. For ξ = 1 the complete system is screened and the
current profile is solely determined by the defect distribution and the system is
in the M-phase. The “pure” phases L,H,S can be characterized by ξ = 0 and
the vanishing of high density regions (L, λ = 0), coexistence of high and low
density regions (S, 0 < λ < 1), and a global high density region (H, λ = 1).

The transition from L or H to DPS is marked by a discontinuity in ξ, but it
is continuous in λ. Indeed due to the discrete distribution of defects, ξ itself is
discontinuous throughout the DPS-phase while λ is not. In the M-phase both ξ
and λ are constant, while ξ = 1 and λ takes a finite value λM that is determined
by the fraction of high density regions in the capacity field C(x) which depends
on the individual defect distribution.

We see that at most phase boundaries both quantities ξ and λ are non-
analytic. At the transition from S to DPS though λ is analytic; thus it cannot
be characterized by λ. Hence for theoretical investigations it appears to be
more convenient to use ξ to discriminate defect- and non-defect phases. In
simulations it is easier to detect phase separation (see next section) and use
the non-analytic behavior of λ to obtain critical points. Due to the analytic
behavior between S- and DPS-phase, however, this approach is only applicable
at L-DPS and H-DPS-transitions. The S-DPS transition has to be obtained by
theoretical considerations.

In particle-conserving systems with defects, i.e. for Ωa,d → 0, the DPS- and
S-phases vanish since no stationary shocks are possible. Here both ξ and λ are
discontinuous at the transition to the M-phase. In this case the Meissner phase
is equivalent to the bottleneck phase (B).

A sketch of the α−β-phase diagram of a disordered driven lattice gas with LK
is displayed in Fig. 3.33. Attachment and detachment rates are fixed, while here
ωd > ωa. L-,H- and even S-phase might vanish for large Ωa,d if Jα=0(L) > J∗(xb)
at some point xd for any boundary rate α or β, thus phase separation with
screening already occurs for vanishing boundary density. The dashed lines mark
the phases of the homogeneous system. These pure phases are overlaid by the
DPS- and M- phase which are characterized by the critical boundary rates α′, β′

and α∗, β∗. α′ and β′ mark the minimal boundary rates at which the respective
local boundary profile intersects the capacity field, i.e Jα,β > C(x) for at least
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Figure 3.33: Phase diagram of the disordered TASEP-LK for Ωa > Ωd. The critical rates
depend on each other as α∗ = ρL(J ′β(1)), which is argued in the text. The transition line

between S- and DPS-phase is not smooth in the weak continuum limit due to the non-smooth
structure of the capacity field (bold line in Fig. 3.32). In the strong continuum limit the DPS
phase is concave (bold dashed line). The topology of other disordered driven lattice gases is
expected to be the same.

Figure 3.34: Phase diagram of the disordered TASEP-LK with Ωa = Ωd =: Ω in the strong
continuum limit (see Appendix B). The bold line at the S-DPS-boundary is valid for φ scaling
as 1/ lnL and dashed line (sketched) is valid for finite defect density. The critical rates are
given by α∗ = β∗ = (1−

√
1− q)/2, α′ = α∗ −Ω, same for β, with Ω = 0.1, q = 15/16. The

phase boundaries of the S-phase are of second order. For Ω > 1/2, L- and H-phase vanish.
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one point x, while at the rates α∗, β∗, Jα,β > C for all x, so that local boundary
profiles cannot propagate into the bulk. In Fig. 3.32 some critical current profiles
are sketched to illustrate the critical parameters. In parameter regions where
Jα and Jβ do not intersect, α′ and β′ do not depend on each other as well as α∗

and β∗, hence the phase diagram has a simple structure with phase boundaries
parallel to the parameter axes. However, as we can see in Fig. 3.32, α′ and β∗ do
depend on each other since J(β∗) = Jα′(1). The same relation is valid for β′ and
α∗. Inside the S-phase, the structure is nontrivial. The phase transition between
S- and DPS-phase depends explicitly on the variation of the intersection points
of boundary profiles and minimal defect profiles. Explicitly it is given by the
condition that a triple points xt with Jα(xt) = Jβ(xt) = C(x) exist. One special
case for which this condition can be solved exactly is the disordered TASEP-LK
for Ωa = Ωd in the strong continuum limit, if φ scales to zero as φ ∼ 1/ lnL. In
this case the capacity field C is constant and the transition line is just a diagonal
straight line. The phase diagram in the strong continuum limit is derived in
Appendix B and displayed in Fig. 3.34. Although this limit is not quite physical
it can be used as a reference point to argue that for finite defect densities the
S-phase is convex (see also Appendix B).

If we go away from the strong continuum limit, C(x) is not a constant.
The structure of C is not smooth as was argued in Sec. 3.3.3, so neither is
the transition line. In Fig. 3.33 a rather generic sketch of a phase diagram is
displayed that incorporates these arguments. Phase diagrams of other driven
lattice gases with the properties noted in the Introduction will have the same
topology.

3.3.4 Expectation values for phase transitions

As in particle conserving systems, the properties of disordered driven lattice
gases with Langmuir kinetics depend strongly on microscopic details of the de-
fect sample. Since we are interested in macroscopic properties that do not de-
pend on microscopic defect distributions, we concentrate on probabilistic quan-
tities of ensembles of systems. One quantity of interest is the expected fraction
of systems that exhibit phase separation in an ensemble of systems with identical
system parameters and defect density. Here we derive a procedure to calculate
this quantity based on analytical results obtained by the principles from the last
section.

In order to compare these results with Monte Carlo simulations, virtual
probe particles similar to second class particles [7] are introduced that indicate if
phase separation occurs in the simulated system. These particles do not change
the dynamics of the system. The predicted probability for phase separation
is then compared with the relative frequency of phase separation in a set of
simulations.

Automated detection of phase separation

We introduce virtual particles (V-particles) as probes to identify and distin-
guish high and low density regions. These particles do not follow the exclusion
constraint, instead they can occupy all sites even if these are occupied by par-
ticles. The dynamics of the V-particles are the following: At the beginning, a
V-particles is put on each defect site. After each lattice update the V-particles
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are updated sequentially beginning at the left. Each V-particle hops to the
right if there is a particle on its site, while it hops to its left adjacent site if it
is residing on an empty site. The V-particle cannot hop over slow bonds, thus
if it is on a defect site, it cannot hop to the right, while if it is on a site right of
a defect site, it cannot hop to the left. Hence, at any time, there is exactly one
V-particle between each pair of contiguous defect sites. If the average density
between two defects is larger than 1/2, the V-particle tends to move to the right,
while for ρ < 1/2 it tends to move to the left. Thus, a high density region can
be identified by a V-particle that is, on average, closer to the right defect. By
computing the average distance of a V-particle to the defect right of it, we can
identify if there is a high density region in its vicinity.

Using this procedure a large number of simulations can be performed and
one can automatically identify whether high and low density regions coexist.
This way the relative frequency of phase separated systems and an estimate for
the probability of phase separation can be determined.

Analytical approach for phase separation probability

The results from the last subsections can be used in order to derive an analytical
approach that allows the determination of the probability that for a given defect
density φ phase separation occurs. Again we consider ensembles of systems
instead of a fixed configuration of defects.

The condition that no phase separation occurs is

Jα(x) < J∗(xb) and Jβ(x) < J∗(xb) for all xb. (3.62)

The fact that only low density solutions can intersect high density solutions
also implies that an increases of α leads to a shift of phase boundaries (in
the phase separated phase) to the left while an increase of β moves the phase
boundaries to the right. This can be seen in Fig. 3.24.

Following the LIBA we assume that the transport capacity at a position
x approximately depends only on the length of the bottleneck at this point;
thus J∗(x) ≈ J∗(l(x)). In a system with binary disorder there are on average
L(1−φ) bottlenecks and the probability that one specific bottleneck has length
l is P (l) = (1− φ)φl.

The relation between bottleneck length and transport capacity J∗(l) as well
as its inverse relation l(J∗) can be obtained by analytical considerations or
numerical computations in single bottleneck systems. The probability that the
current is below the transport capacity at a given position x is then

P [J < J∗] = P [l < l(J)] =
bl(J)c∑
l′=0

P (l) = 1− φbl(J(x))c , (3.63)

where b...c denotes the floor function.
The probability P that no phase separation occurs is equal to the probability

that the current is below the transport capacity everywhere in the system:

P =
〈Nbn〉∏
i=1

P [J(i) < J∗(l(i))] =
L∏
i=1

(1− φbl(J(i))c) . (3.64)
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Figure 3.35: Fraction of samples that exhibit phase separation in dependence on the attach-
ment rate ωa for fixed α = 0.1, β = 0.9, ωd = 0.3. The system size is L = 1000 and each
data point is obtained by simulating 200 random defect samples with same system parameters.
This is compared with analytical results obtained by (3.64).

Here Nbn is the number of bottlenecks from left to right, so J(i) is the current at
bottleneck i counted from the left. Since on average there are 〈Nbn〉 = L(1−φ)
bottlenecks, J(i) can be determined recursively by rescaling eq. (3.45) by the
factor 1/(1− φ) to obtain

J(i+ 1) = J(i) + ωa(1− φ)(1− ρ(i))− ωd(1− φ)ρ(i) ,
ρ(i) = ρ0(J(i)) + φmp . (3.65)

This way the probability for phase separation, which explicitly depends on the
system size can be computed iteratively by (3.64), while analytical results for
J(l) in the TASEP with a single bottleneck are available by ISA. In comparison
to Monte Carlo simulations, this computation can be made with little effort.
In Fig. 3.35 ensembles of random defect samples were simulated for different
parameter values. The fraction of samples exhibiting phase separation is deter-
mined by the method of virtual particles and compared with results obtained
by (3.64). One observes a region with a quite steep increase of the probability.
The analytical results fit the simulation results quite nicely, although there is a
small shift to larger values of ωa.

3.4 Discussion

In this chapter, inhomogeneous driven lattice gases were investigated. In par-
ticular a theoretical framework was developed that allows approximate deter-
mination of the maximum current that can be achieved by tuning external
parameters (the transport capacity) and effective boundary rates that treat the
impact of boundary-near defects by a virtual retuning of boundary rates. The
methods are also applicable to determine the structure of the phase diagram of
driven lattice gases. Checking the validity of the analytical results, the TASEP
(with and without Langmuir kinetics) and the NOSC model (without Langmuir
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kinetics) were explicitly considered. However, most results are believed to be
generic for a class of ergodic driven lattice gases that obey following conditions:

1. Particle-particle interactions have a finite distance

2. The current-density-relation J(ρ) has a single maximum

3. S(ρ) is a monotonically decreasing function

4. defects correspond to a local decrease of the average velocity

For this approach it was postulated that the transport capacity imposes an
upper bound to the current. In systems with Langmuir kinetics this quantity
is a local upper bound for the current and provides initial conditions for the
current and density profiles in the continuum limit which obey the differential
equation (2.26). Each initial condition provides an individual solution to (2.26).
The physically realized global profiles hence follow a minimal principle select-
ing the minimal envelope out of all local solutions. The structure of the phase
diagram can be determined by identifying the dominant, i.e minimal local solu-
tions. Phases are distinguished by the dependence on the boundary conditions,
which vanishes for high values due to screening by defects. Observations in the
TASEP and effects described below indicate for low defect densities that the lo-
cal transport capacity is predominantly determined by the length of consecutive
stretches of defects (bottlenecks) present at a given point in the system, while
interactions with other defects in its vicinity act as small perturbations.

For vanishing Langmuir kinetics the minimal principle reproduces the single
bottleneck approximation (SBA) that was investigated in Sec. 3.2. It states
that the (global) transport capacity can be approximated by neglecting all de-
fects except the longest bottleneck. This way one can rely on analytical results
obtained in Sec. 3.1. The performance of the SBA method was checked not
only by numerical simulations, but also a criterion for the validity of the SBA
was found that distinguishes if the influence of other defects to SBA can be
treated perturbatively. It was shown that at least a first order perturbative
expansion can be applied if the bottleneck-bottleneck interactions (in terms of
their influence on the transport capacity) are small enough (equation (3.41)).
This property can be tested by numerical simulations of a system with two
bottlenecks at different distances. In case of the disordered TASEP the first
order expansion yields accurate results. Since systems with Langmuir kinetics
locally behave like the corresponding particle conserving systems, it can be as-
sumed that this criterion can be generalized to check the validity of the LIBA
in non-conserving systems like the TASEP-LK.

While defects far from the boundaries do not have significant impact on the
current as long as it is below the transport capacity, an effect on the current is
observed if defects are near the boundaries (edge effect). In the non-bottleneck
regime, one observes a negative edge effect with lower current due to these
defects. Since the effect is short ranged in the continuum limit, boundary-near
defects do not have to be treated explicitly, but their effect can be taken into
account by virtually replacing the boundary rates by effective ones. This does
not affect the qualitative phenomenology of the system. An expectation value
for the edge effect can be obtained by a perturbative expansion similar to the
one used to determine the transport capacity. Knowledge of both the functional
behavior of the transport capacity and effective boundary rates can in principle

104



reproduce the full phase diagram and large scale phenomenology of disordered
driven lattice gases.

Both the SBA and the concept of effective boundary rates relate average
quantities of disordered systems with the corresponding ones in systems with
one or two bottlenecks, i.e. bottleneck-bottleneck interaction. While generic
analytical results of bottleneck-bottleneck interactions in most driven lattice
gases are pending, numerical results of single- and two bottleneck systems in
these cases can be the basis to obtain the corresponding values of disordered
systems. By a virtual segmentation of the system, however, for the TASEP
it was successful to developed a (semi-) analytical approximation scheme 21

to determine transport capacity and effective edge effect of single bottleneck
systems (interacting subsystem approximation (ISA)). Foulaadvand et al. [30]
could extend this method to systems with two single defects.

The models investigated in this chapter are relevant for modeling gene trans-
lation on single mRNA strands (Sec. 3.1) and active intracellular transport by
motor proteins on single cytoskeletal filaments in presence of impurities that im-
pede movement of motor proteins. Both the protein production rate as well as
the delivery rate of vesicles are determined by the current of molecular motors,
ribosomes and cytoskeletal motor proteins respectively. Therefore the transport
capacity marks the optimal performance of these systems. Knowledge of the de-
pendence of the transport capacity on external parameters hence appears to be
a biologically relevant issue.

As remarked in Sec. 2.1, microtubules constitute a rather radially ordered
network and are usually not crosslinked. In this case a single filament descrip-
tion can be appropriate to extract transport properties of the cell (e.g. for rates
of secretion of proteins transported on microtubules) since vesicles on different
filaments only rarely interact mutually. Actin filaments in contrast constitute
highly connected disordered networks [2], where vesicles on different filaments
might interact at crossing points. Transport networks of this kind will be con-
sidered in the following chapter.

21The ISA method maps the problems analytically on finding a root of a polynomial. How-
ever for higher order polynomials (corresponding to longer bottlenecks), this task has to be
performed numerically.
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Chapter 4

Active transport on
inhomogeneous filament
networks

The model presented in Sec. 3.3 only accounted for interactions of particles
travelling on the same track while particles in its environment were treated by
an effective particle reservoir controlling attachment and detachment of vesicles
by a fixed density. In the context of active intracellular transport, this view
seems to be appropriate if one only accounts for freely diffusing vesicles in the
environment of a filament. Actin filaments though constitute highly connected
networks exhibiting crossing filaments. Considering vesicles travelling on dif-
ferent filaments, interactions between them might lead to non-trivial behavior
that cannot be taken into account by the (non-interacting) particle reservoir.
Interactions can arise e.g. when vesicles travelling on two different filaments
encounter at an intersection at the same time. Since both particles are bound,
treating one of them by an effective reservoir is insufficient.

Even if filaments itself are homogeneous, the structure of the network might
be disordered leading to different behavior compared to networks exhibiting a
regular structure. Actually intersections in networks can also be seen as defects
where crossing particles inhibit each others movement. Nonetheless, this kind of
hindering mechanism does not appear to be accounted for by merely introducing
decreased hopping rates in models.

This chapter will introduce a model for vesicular transport on 2D actin
networks. The model is motivated by transport of vesicles by myosin on the
quasi-two-dimensional cortical actin networks backing the cell membrane. It
is implemented in continuous space. Following basic principles of actin growth
dynamics, a network of filaments with discrete binding sites for particles is
generated and the dynamics of particles travelling on this network is studied.
In the first section, the model is introduced and phenomena arising due to hard
core interaction between actively driven particles are investigated, while periodic
boundary conditions are applied. The main interest will be on the distribution
of particle clusters that correspond to high density domains observed in front of
defects in single track systems as were considered in the last chapter. The results
are compared with transport on a regular network to identify the influence of
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random disorder in the network structure on clustering features. In the second
section confining boundary conditions are introduced, mimicking the topology
of a cell, that break the translation symmetry. This yields non-trivial effects
on the network structure and hence particle dynamics. In particular a bias
of particle dynamics due to boundaries is observed that significantly reduces
travelling times of vesicles on the endocytic pathway. Though the model is in
2D, an analytical treatment suggests that this effect is also present for transport
in 3D confined geometries, e.g. on actin networks in the cell lumen.

4.1 Cluster formation in 2D transport networks

In this section a model of filament networks in continuous space is proposed.
Particles perform diffusive movement in space but can also attach to filaments
to perform directed movement along them. The network itself is generated by
stochastic dynamics motivated by growth dynamics of actin filaments following
the processes described in Sec. 2.1.3, yielding a disordered structure. Being
effectively two-dimensional, the cortical actin network of eukaryotic cells [84]
can be modeled by these dynamics.

In Sec. 2.4 previous results for transport networks were presented. These
show that the active components of the system enhance diffusive dynamics [53],
while inhomogeneous network structures were shown to result in inhomogeneous
particle distributions [73]. Additional attractive interactions in these networks
can induce condensation phenomena [72]. These results show that the structure
of a transport network strongly influences transport properties. In order to
model active transport on actin filament networks, it is therefore necessary to
consider realistic network structures.

As we have seen in the last sections transport systems like the TASEP can
exhibit high density domains at defects if the particle current is larger than
the transport capacity. Since particles on crossing filaments can hinder each
others movement, intersection points show some characteristics of defects in
single filament systems. This situation is similar to car traffic in cities. There
cars cannot move freely over intersections but other cars trying to cross the same
intersection hinder movement. This effect can cause traffic jams at intersections
that correspond to clusters of cars [15]. We therefore expect the possibility of
queuing of particles at intersections leading to an aggregation of particles in
form of clusters.

For many biological processes, concentration gradients are crucial. One ex-
ample is the aggregation of proteins inside the cell or in the cell membrane.
Clusters of aggregated proteins can be observed and characterized experimen-
tally for example by high resolution fluorescence microscopy [90]. In some cases
these clusters are essential for cell functionality but they can also lead to dys-
functions or even apoptosis. In yeast cell membranes for example one observes
the aggregation of Erd2p-receptors which can promote the internalization of
toxins [11]. Most recent works on membrane protein aggregation considered
an attractive interaction between proteins as source for (reversible) aggrega-
tion [18, 90, 31]. For this kind of particle dynamics, the resulting clusters are
governed by a well defined size scale.

Jamming in vesicular transport may yield an alternative aggregation mech-
anism of proteins. Vesicles, transported on different filaments can block each
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other at filament crossing points, inducing queuing of vesicles. The existence
of a quasi two-dimensional irregular actin filament network beneath the mem-
brane [2, 9] suggests jamming of vesicles prior exocytosis, resulting in receptor
clusters on the membrane surface. In this case large scale features of cluster
distributions can vary from diffusion limited aggregation. The limits of resolu-
tion in optical microscopy [89] make it difficult to distinguish clustered single
receptors in-vivo. By contrast, the size of larger particle aggregates can in prin-
ciple be given with relatively high precision [90]. Therefore it is useful to relate
the cluster size distribution with microscopic transport mechanisms by means
of theoretical modeling.

The focus of this section will be on particle configurations in order to identify
the formation of clusters and the investigation of cluster size distributions. The
results1 are compared with a regular network in diffusive environment and a
diffusion limited model where attractive particle-particle interactions promote
cluster formation. The main focus will be on robust properties of clusters that
serve as criteria to discriminate between different microscopic dynamics.

4.1.1 Network models

In the following, stochastic models for active transport on 2D networks embed-
ded in a diffusive environment are introduced. At each time step N particles
within the system area L2 are randomly chosen and updated (random sequen-
tial update) according to the rules given in Tables 4.1-4.3 applying periodic
boundary conditions. Time steps are normalized such that on average each free
particle performs one diffusive step per time step ∆t. Results are discussed for
different particle densities ρ0

p := N/L2 which, by biological reasons, is chosen
as ρ0

p = 0.04 if not stated differently (see Table 4.4) .

Regular networks

As a the first example for active transport on networks, a discrete lattice gas
model with a square network of active stripes, similar to the model investigated
in [53], is considered. N×N sites are arranged in a square lattice of edge length
L = N∆x where ∆x is the lattice spacing. We distinguish the particle states
attached(A) and detached(D). Detached particles always move diffusively. The
system contains stripes of active sites that constitute a regular square transport
network. If particles are located at an active stripe, they can attach (if not
yet attached) or detach (if attached). Attached particles perform a directed
motion along stripes. The orientation of stripes was chosen randomly with
equal probability. As in the last chapter, the exclusion principle is applied,
hence steps that would result in double occupation of a site are prohibited due
to exclusion.

Compared to the dynamics of non-interacting self-driven particles qualita-
tively new features arise due to the steric particle-particle interactions at inter-
sections of the network. Here an additional parameter is introduced, the blocking
probability : If at least two particles are at sites adjacent to an intersection site,
each particle may only access the intersection site with the probability 1− b (cf.
figure 4.1). Particles on intersection sites retain their moving direction.

1Results of this section are available on [37].
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Process Particle state(s) Description Probability

Diffusion D Detached particles move to
sites randomly chosen from
the four neighbors

ωD = 1

Forward Step A Attached particles move to
the next site in forward direc-
tion of filament

p = 0.5

Attachment D→A Detached particles on fila-
ment sites becomes bound

ωa = 0.25

Detachment A→D Attached particles become
detached

ωd = 0.02

Blocking D Forward movement of parti-
cles adjacent to intersection
sites is inhibited if other par-
ticles occupy sites adjacent to
intersection

b = 1

Table 4.1: Brief prescription of the dynamic processes in the square lattice model. Column 2
displays the particle states “attached”(A) and “detached”(D). The right column displays the
probability that the respective process occurs within one time step. Numerical values given in
the right column are default values which are used if not stated else and are chosen to fit the
ones in [53]. System size N = 200, mesh size a = 10 sites.

Figure 4.1: Illustration of the dynamics in a regular network. Dark gray discs are particles
diffusing freely with rate ωD. Black discs represent attached particles that can only step in
the preferred direction of the active stripe they occupy (bold arrows) with rate p. On filament
sites (light gray), particles can interchange between attached and detached state with rates
ωa and ωd, respectively. Crossed arrows denote steps that are inhibited due to the exclusion
principle.
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The explicit rules for the particle dynamics are displayed in Table 4.1 and
illustrated in figure 4.1. The default parameter values have been chosen analo-
gously to [53] ωD = 1, p = 0.5, ωd = 0.02 and system size N = 200. In [53] the
attachment rate is equal to one, which corresponds to an effective attachment
rate ωa = 0.25 if a particle is on an adjacent non-active site2. To be consistent
with the subsequent continuous space model, we choose b = 1.

Inhomogeneous networks

Generalizing to continuous space and allowing for arbitrary directions and
lengths of active stripes, a continuous model with randomly generated linear fil-
aments is presented where hard-core particles can perform directed paths along
these filaments. The model is motivated by actin filament dynamics introduced
in chapter 2, though only basic mechanisms that are essential for a random
network structure are considered.

General properties of the model The main components of our model are
filaments and particles interacting via a spherical hard-core potential repre-
sented by a disc of radius rp. This hard core potential is implemented by
cancelling any steps that would result in an overlap of discs and corresponds
to exclusion in discrete models. Filaments are represented by linear sequences
of subunits with length ds. They are directed with a minus-end at which they
can shrink and a plus-end at which new subunits can be generated to elongate
the filament. Particles can attach to binding sites at each subunit that are
within a distance less than db

3 and perform steps to adjacent subunits in the
plus-direction of the filament.

Dynamics of filaments and particles The filament network is generated
by stochastic dynamics, updating network configurations by the processes com-
mented in Table 4.2 and illustrated in Fig. 4.2. Since the model is motivated by
the dynamics of actin filaments, some additional parameters originating from
the biological processes presented in Sec. 2.1.3 are included.

The quantity ρARP introduced in Table 4.2 represents the density of free
ARP2/3-complexes that serve as nucleation and branching seeds for filaments,
while the actin density ρact corresponds to the density of free (actin-) filament
subunits constituting the filaments. Their initial values are ρ0

ARP and ρ0
act which

corresponds to the case if all monomers are dissociated. The densities decrease
with the growing filament network as shown in Fig. 4.3. After 5000 steps a
stationary actin density is reached. We assume that also the structure of the
network is stationary and in qualitative agreement with a real actin network.
Network dynamics are therefore stopped at this point. Since in the stationary
state association and dissociation of subunits must balance, ωgρact ≈ ωs ⇒
ρact ≈ ωs/ωg 4 (cf. [2] for actin networks).

After construction of the network, particles obeying the exclusion principle
are fed into the system at random positions. As mentioned above, the particle
positions are updated following a random sequential update scheme, whereby the

2In contrast to [53], crossing of active stripes by diffusion is allowed.
3The binding involves a hopping of the particle such that the center of the particle is

exactly on the binding site of the subunit.
4The contribution of filament nucleation can be neglected for average filament lengths� 1
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Figure 4.2: Illustration of the filament dynamics. Filaments are implemented as sequences
of subunits (small dots, corresponding to actin monomers) separated by a distance ds (short
bars). Filament subunits are polarized, with a plus-end where subunits are created to elongate,
and a minus-end where subunits dissociate causing shrinking.

Process Description Probability

Nucleation Initialization of filaments with arbitrary direc-
tion at an arbitrary point in the system. The
minus-end receives a cap inhibiting shrinking.

ωn ρact ρARP

Branching New filaments are initialized at an existing one
(not necessarily the plus-end; angle between
parent filament and branch=70o[68].

ωb ρ
2
act ρARP

Growth New subunits are generated at the plus-ends
of filaments

. ωgρact

Shrinking Subunits are removed at the minus-end of fil-
aments if the end is not capped.

ωs

Uncapping Caps are removed. ωu
Table 4.2: Dynamics of the filament network.
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Figure 4.3: Density of free actin ρact in dependence on time. After 5000 time steps a
stationary state is reached.
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Figure 4.4: Illustration of the particle dynamics in an inhomogeneous network. Dark gray
discs are free particles, black discs represent particles attached to filaments stepping to adja-
cent subunits (distance ds) with rate p. Particles can attach to filaments with rate ωa if they
are within the binding distance db and detach with rate ωd. Overlapping is inhibited due to
exclusion.

Process Particle state(s) Description Probability

Diffusion D Detached particles move in
a random direction. Step
widths are uniformly dis-
tributed between 0 and 2lD

ωD = 1

Step A Attached particles move to
adjacent subunit in plus-
direction.

p

Attachment D→A Particles bind to subunits if
their distance is less than db,
becoming ’attached’

ωa

Detachment A→D Particles detach ωd
Table 4.3: Particle dynamics. A=’attached’; D=’detached’

particle-particle as well as the interactions between particles and the generated
static network are considered. Like in the regular network model, particles
can freely diffuse in the ’detached’ state and perform directed movement in the
’attached’ state. The rules of the particle dynamics are described in Table 4.3
and illustrated in Fig. 4.4. On single filaments away from intersections, the
dynamics is similar to that of driven lattice gases described in the last chapters.

Although no particular biological system is considered, parameters are cho-
sen to fit the typical order of magnitude in real vesicular transport. If not stated
differently, default parameters as displayed in Table 4.4 are used for our sim-
ulations. The referenced works used experimental and modeling techniques to
obtain the data given in the third column. For particle dynamics, the parame-
ters are chosen to be consistent with the discrete model introduced in the last
section relying on the model in [53].
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Parameter name Reference Reference Value model parameters

Filament dynamics:
nucleation rate ωn [10] 8.7 × 10−5 µM−2s−1 1.0× 10−5 lu−6tu−1

growth rate ωg [10] 8.7µM−1s−1 0.5 lu3 tu−1

shrink rate ωs [8] 4.2 s−1 0.075 tu−1

branch rate ωb [10] 5.4 × 10−4 µM−3 s−1 0.0001 lu9 tu−1

uncap rate ωuc [10] 0.0018 s−1 0.0001 tu−1

actin density ρ0
act [84] meshsize: 0.1− 1µm 2 lu−3 1

ARP2/3 density ρ0
ARP [32] 0.1µM 0.1 lu−3

Particle dynamics:
particle radius rp [59] 42.5 nm (average) 0.5 lu

binding distance db [53] 1 site (50 nm) 0.5 lu
subunit distance ds [2] 36 nm 0.36 lu

attachment ωa [53] 1/4 of diffusive steps 0.25 tu−1

detachment ωd [53] 0.8 s−1 0.02 tu−1

diffusive step length lD [53] 1 per time step 0.5 lu
step rate p [53] 20 s−1 ⇒ v = 1µm/s 0.75 tu−1

particle density ρ0
p [33]

10-60 vesicles in bud
(∼0.75 µm radius) 0.04 lu−3

Table 4.4: Default parameters of the model which are biologically motivated by transport of vesicles
by myosin on actin filaments. The referenced values are either based on experimental data or existing
models for intracellular transport [53] and filament dynamics [32]. Model parameters are chosen to
be in the order of magnitude of referenced values, fitted to time and space scale of the simulations.
Length scale: 1 lu = 100nm = 2rp ⇒ 1µM = 0.6 lu−3. Time scale: 1 tu = ∆t = 0.025 s. By default
square systems of system length L = 200 lu and a layer thickness of 1 lu are considered. In theoretical
considerations the layer thickness however is neglected and the system is treated two-dimensional.

1 The parameter ρ0
act was adjusted such that the mesh size is in the order of magnitude

as in the referenced work.
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Figure 4.5: Illustration of particle clusters. Black discs represent particles, while gray discs
are the λ-neighborhoods of each particle. Connected gray areas are clusters; the size of a
given cluster is the number of particles on it.

4.1.2 Numerical results

Characterization of Clusters

As already mentioned in the introduction we aim to relate the microscopic
particle dynamics to the size distribution of their aggregates. In this subsection
the definition of clusters is discussed for the different model systems.

Clusters are groups of particles that are connected by overlapping neighbor-
hoods. We therefore introduce the λ−neighborhood of a particle representing a
disc of radius λ around the center of the particle. A cluster is defined as a set
of particles included in a connected area of λ−neighborhoods (cf. Fig. 4.5). If
continuous space variables are used, there exists no natural scale which identifies
two particles as neighbors. We therefore have to specify the value of λ. In order
to extract relevant results, λ is chosen such that qualitative results are robust
on variation of λ. If not stated differently we choose λ = 2rp, which turns out
to meet this condition (cf. fig 4.20).

In lattice models, static particle clusters are usually considered as connected
sets of adjacent particles. However, this definition is not appropriate in this
context since clusters move by propagation of vacancies. Therefore particles
separated by a single vacancy are considered as belonging to the same cluster.

Our main interest is in ensemble and time averages of cluster size distribu-
tions (CD) and their asymptotic behavior. CDs display the relative frequency
of cluster sizes emerging in the system. If not stated differently it was averaged
over 50000 time steps within individual runs, evaluating cluster distributions in
distances of 500 time steps, taking an ensemble of 100 samples.

Clustering also occurs for random particle configurations. In Fig. 4.6 and
4.7 cluster size distributions of random configurations in discrete and continuous
space are displayed for different particle densities. Here the density ρ0

p is the
particle number per area unit which corresponds to (2rp)2 in continuous space
and one site in the lattice model. If densities are not too large, the formation
of large clusters is impeded resulting in an exponentially decaying cluster size
distribution. For high densities one observes a narrow peak at the right end. At
these densities clusters spanning the whole system emerge. In order to rule out
these kinds of random clustering we only consider densities below the regime of
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Figure 4.6: Cluster size distributions of random particle configurations in dependence on
the particle density. For low densities the CD decays fast with a short size-scale. For large
densities clusters on large size-scales and even such that span the whole system emerge (not
visible in figure since on too large size-scale).
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(b) discrete space
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Figure 4.7: Cluster size distributions of random particle configurations for different coarse
graining scales. λ is the radius of the environment as defined in section 4.1.2, while d repre-
sents the maximum distance (number of vacancies) allowed between two particles connecting a
cluster. One observes that for large coarse graining scales clusters spanning the whole system
emerge.
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Figure 4.8: Configurations of particles (black discs = particle neighborhoods with radius
λ = 2 rp), exhibiting a mutual attractive interaction. Snapshots at different times for V0 =
2, dV = 3.5, ρ0

p = 0.04, L = 200, ∆t=̂ 0.025 sec. One observes that already at small times
clusters form and for long run times the number of clusters decreases, while the average size
of cluster increases.

spanning clusters at relevant scales λ. Here we are interested in cluster formation
mechanisms beyond random clustering.

In the following, we will focus on particle configurations and cluster size
distributions in several transport models.

Aggregation without network

As a first reference a diffusion limited aggregation model similar to the one
introduced in [18] is investigated5. Omitting filaments, we can use a variant
of our model to mimic freely diffusing particles with an attractive interaction.
The corresponding process can be formulated as an equilibrium model consist-
ing of diffusing hard-core particles (radius rp =̂ 10nm; within the size-scale of
membrane proteins [90]) interacting via an attractive potential. We apply the
particle dynamics discussed in Sec. 4.1.1 but do not consider filaments. In
addition a particle-particle interaction is introduced realized by a square well

5Here however, no additional long range repulsive force is assumed.
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Figure 4.9: Cluster distributions in dependence on the runtime in a system without network
but attractive square well interaction potential. Parameters are V0 = 3, dV = 3.5, ρ0

p =
0.04, L = 200 rp, average over 200 runs. A maximum establishes, that moves slowly towards
larger scales.

potential of the form

V (x− x′) =
{
−V0 for |x− x′| ≤ dV
0 for |x− x′| > dV

(4.1)

where x,x′ are particle positions. This potential can be implemented using
a acceptance probability p = min(e−β(V (xn+1)−V (xn)), 1) (β =inverse temper-
ature) for a step from xn to xn+1 (n denotes the time index). In the follow-
ing we use dimensionless quantities and put β = 1. The default parameters
are V0 = 2, dV = 3.5rp and particle density ρ0

p = 0.04. Assuming a diffu-
sion constant for membrane proteins D ≈ 0.0025µm2/s [98] we choose a time
step corresponding to ∆t = 0.02 seconds such that one diffusive step of length
lD = rp = 10nm is performed per time step ∆t.

In Fig. 4.8 typical particle configurations at several runtimes are displayed,
while in Fig. 4.9 ensemble averages of cluster size distributions are shown.
Initial clustering already occurs on a rather small time-scale. Regarding the
particle configurations we see that the number of clusters decreases with in-
creasing runtime while the average size of remaining clusters increases. This is
due to diffusion and merging of existing clusters after long times. Movement of
large clusters is strongly suppressed, so that merging occurs quite slowly. The
coarsening process can also be observed in the cluster size distribution: One
observes a characteristic scale for larger clusters, manifesting in the emergence
of a maximum, indicating a characteristic scale for cluster sizes. The dominant
clusters are always within the same size-scale which increases with time.

Since the cell membrane changes its structure steadily, patterns arising at
time-scales corresponding to a finite fraction of a cell cycle cannot be assumed
to be in a stationary state. Computing time averages we therefore focus on
intermediate times and fix the averaging interval starting at 20000 time steps
(corresponding to ∼7 minutes in real time) after random initialization of par-
ticles and ending at 30000 time steps. The time interval lies in the transient
regime for default parameters. Within this interval cluster size distributions
were computed (time and ensemble averages, 200 samples) for different param-
eter regimes and displayed them in figure 4.10. One observes that for weak
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Figure 4.10: Plots of cluster distributions in the attractive particles model at intermediate
times (t = 20000−30000 time steps) in dependence on the potential depth V0 (a), the potential
width dV (b) and particle density ρ0

p (c). One observes the transition from an exponential
decay (non-clustering phase) to the formation of a maximum, corresponding to clusters at
this size-scale (condensation). Default parameters are given in the text.
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interaction no significant clustering occurs, manifesting in an exponentially de-
caying CD, while for strong interaction V0, including the default parameters, a
maximum emerges, hallmarking the formation of clusters.

One has to emphasize that for this kind of dynamics, clustering is reversible,
i.e. in general particles can detach from a cluster due to thermal fluctuations
and move to another one, such that non-vanishing particle currents between
clusters may be present. This is in contrast to the irreversible clustering pro-
cess discussed by Meakin and Family [67] where a power law distribution of
clusters was found at transient times6. The interaction mechanism proposed
in [31] however indicates a finite strength of protein-protein attraction so that
thermal fluctuations allow detachment of particles. Destainville introduced an
aggregation model claiming an additional long range repulsive force that stabi-
lizes clusters such that a stationary state with a characteristic cluster size scale
is reached [18]. Here we see that at transient times, that might be more relevant
for cell membrane dynamics, this intrinsic size scale is present even without a
long range repulsive force

Directed transport on regular networks

Features of particle configurations and cluster distributions are examined in the
model introduced in the first paragraph of section 4.1.1, i.e. a regular network of
active stripes. As in the last section, time averaging was started after ts = 20000
time steps. It was carefully checked that a stationary state has been reached at
this point. (cf. Fig. 4.12). As time averaging interval 50000 time steps were
chosen. In Fig. 4.11 particle configurations for moderate and high densities are
displayed. For particle density ρ0

p = 0.04 one observes small L-shaped clusters
centering at intersections. For higher densities it appears that clusters are be-
coming larger and merge with each other to form large mesh-shaped clusters
(cf. fig 4.11(b)). However, in this case clusters are hardly distinguishable and
not well separated, which results in sensitive dependence on the coarse graining
scale (cf. Fig. 4.14). In Fig. 4.13 the cluster size distributions averaged over
time and 100 individual runs are plotted. Examining the cluster size distribu-
tions in Fig. 4.13, one observes similar to random clustering an exponential
decay for densities which are biologically relevant (see also the configuration in
figure 4.11(a)). However, here they are overlapped by one or more bulges which
appear to be in the size scale of the L-shaped clusters at intersections. A more
detailed discussion of these profiles will be explicated in Sec. 4.1.3.

For large densities (& 0.1) the decay of the cluster size distribution becomes
algebraic, indicating that clusters on all size-scales exist. These large clusters
correspond to the ones generated by merged small clusters as displayed in Fig.
4.11(b).

Inhomogeneous networks

The filament growth dynamics described in the second paragraph of section 4.1.1
generate a network where single filaments have random length and direction.
In order to keep dynamics simple but retaining the crucial features of disor-
dered networks, we neglect branching and the dynamics of ARP2/3 in the first

6The stationary state of irreversible clustering is a single cluster if phase space is not
separated.
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(a) ρ0
p = 0.04 (b) ρ0

p = 0.15

Figure 4.11: Particle configurations in a regular square network with system length N = 100
sites. The black discs represent particle neighborhoods with radius 1.1 sites so that discs of
particles with one vacancy or less in between overlap. One observes the formation of small L-
shaped clusters at intersection points for moderate densities (a). For large densities clusters
merge, forming cluster meshes on all size-scales (b).

10 20 30
cluster size

1e-05

0.0001

0.001

0.01

0.1

1

re
la

tiv
e 

fr
eq

ue
nc

y

number of time steps=100
number of time steps=1000
number of time steps=10000

Figure 4.12: Cluster size distributions in a regular network for different runtimes (given in
time steps). For a given runtime, the last 100 steps were chosen to perform the measurement,
taking 100 samples. The CD does not change after 1000 time steps, indicating that the system
is in a stationary state.
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Figure 4.13: Cluster size distributions in a lattice gas model with exclusion interaction and
a regular square network of active stripes in dependence on particle density ρ0

p, logarithmic
plot (a), double logarithmic plot (b), blocking rate b (c) and mesh size a (d). One observes
that cluster size distributions decay exponentially for moderate densities resulting in a finite
size-scale of clusters, while at small scales, bulges emerge. For very large densities decay is
algebraic indicating the emergence of clusters on all size-scales (see also Fig. 4.11). Default
parameters: see Table 4.2.
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Figure 4.14: Cluster size distributions in the regular network obtained by using different
definitions of the coarse graining scales. d is the distance allowed between two particles to
connect a cluster. One observes that while variations are small for moderate density, there is
a significant influence on the scale for larger densities, indicating that clusters are not well
separated.

paragraph to obtain a network of uncorrelated filament orientations. The other
processes are required to obtain a disordered stationary network configuration.

Networks without branching filaments Particle configurations and clus-
ter size distributions were obtained, applying steric interactions, which are
shown in figures 4.15-4.20. The time evolution of the cluster size distribution
(Fig. 4.16) shows that a stationary state is reached after 10000 time steps.
Starting time averaging after 20000 time steps (averaging interval=50000 time
steps) therefore captures the steady state dynamics. For low ωd however, the
transient time might be significantly prolonged. Therefore a much larger time
of 400000∆t was used for starting cluster evaluation. After that time no time
dependence of CDs is observed even for the smallest considered value of ωd.

The configuration for default density ρ0
p = 0.04 (Fig. 4.15) shows that well

separated compact clusters exhibiting different sizes emerge (see also scaling
in Fig. 4.20). In a large parameter regime including the biological relevant
default parameters (Table 4.4), the asymptotic decay of the CD is algebraic in
contrast to the predominant exponential behavior on a regular network. For
intermediate cluster sizes m, the CD follows a power law, P (m) ∼ m−γ , while
at larger scales, there appears to be a crossover to a decreased exponent γ̃ < γ.
The exponent γ depends explicitly on system parameters. It decreases with
particle density ρ0

p and increases with the network density, which is determined
by ρact. The dependence on ρ0

p indicates a behavior in form of (γ − 2) ∝ 1/ρ0
p,

which is consistent with analytical results in Sec. 4.1.3 (see Fig. 4.19). The
dependence on other parameters like ωa and ωd appears to be weak for default
parameters. However, for lower ρ0

p, or a larger value of ωd/ωa, the dependence on
these parameters becomes more relevant, while varying other parameters does
not lead to qualitative changes except in extreme regimes. In Fig. 4.21 cluster
size distributions of a regular and inhomogeneous network are compared7. One
observes that clustering is significantly enhanced in the inhomogeneous network.

7Differences in effective rates due to the different spatial character of the system (discrete
and continuous) are not significant since dependence on these parameters is weak.
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Figure 4.15: Particle configurations (black discs = neighborhoods with λ = 2 rp) for default
parameters and ρ0

p = 0.04 and system size L = 200 rp. One observes big and small clusters.
This general picture is predominant for a large parameter regime and moderate densities.
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Figure 4.16: Cluster size distributions for different runtimes. For 10000 time steps a sta-
tionary state is reached.
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Figure 4.17: Cluster size distributions in dependence on the systems size. The CD decays
algebraically in a large regime indicating the absence of a intrinsic size-scale. Fitting the
curves, one observes a crossover from exponent γ to a smaller exponent γ′ for large cluster
sizes. This crossover is well approximated by the formula γ′ = γ/2 + 0.5 (4.16) . Default
parameters: see Table 4.4
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Figure 4.18: Cluster size distributions in a diffusive system with an inhomogeneous active
transport network, single parameters varied: (a) particle density ρ0

p for small detachment

rate ωd = 0.002, (b) detachment rate ωd, (c) actin density (∼ network density) ρ0
act, (d)

attachment rate ωa. The exponent of the algebraic fit mainly depends only on ρ0
p and ρ0

act.
The dependence on ωd and ωa is weak, as long as ωd � ωa. Default parameters: see Table
4.4
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Figure 4.19: Dependence of the exponent γ of the cluster size distribution p(m) on the
particle density ρ0

p for ωd = 0.002. One observes a linear dependence on the value 1/(γ − 2)

up to ρ ≈ 0.045 which yields δ := γ − 2 ∝ 1/ρ0
p as predicted by the phenomenological analysis

in Sec. 4.1.3. The exponents were obtained by power law regressions in the range m ∈ [30, 80]
for ρ < 0.04 and m ∈ [30, 100] for ρ > 0.04. Error bars (obtained by varying fitting range)
increase for γ approaching the singular value 2.
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Figure 4.20: Cluster size distributions in the inhomogeneous network for different coarse
graining scales. λ is the radius of the neighborhood as defined in section 4.1.2. As well in
the regime where large clusters emerge and in the non-clustering regime, the dependence on
the coarse graining scale is weak indicating well separated clusters.

125



1 10 100 1000
cluster size

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

re
la

tiv
e 

fr
eq

ue
nc

y

reg. network, d=1
reg. network, d=2
dis. network, λ=2 r

p

dis. network, λ=4 r
p

Figure 4.21: Comparison of regular and inhomogeneous network displaying cluster size dis-
tributions for particle density ρ0

p = 0.04. While the CD decays exponentially in the regular
network, its slope is algebraic in the inhomogeneous one, demonstrating significant enhance-
ment of clustering by the inhomogeneous network structure (see Fig. 4.14 for definition of
d).

Due to the finite number of particles there is a cut-off at the upper end
(e.g. in Fig. 4.20). Fig. 4.17 shows that for increasing system size L the cut off
regime tends to larger values, indicating that this indeed is a finite size effect and
asymptotically algebraic behavior prevails in the thermodynamic limit. Though
the exponent γ of the algebraic decay varies for different particle densities, the
algebraic form is a robust feature. This indicates that in the thermodynamic
limit clusters on all size-scales exist. In contrast to regular networks, scale free
clustering occurs even for moderate densities (ρ0

p ≈ 0.01) exhibiting a pattern
of well separated clusters.

Networks with branching filaments In real actin networks, branching of
filaments takes place quite frequently, resulting in a dendritic network structure.
If one is interested in the dynamics of vesicle transport on submembranal actin
networks, one has to consider this process as well. CDs in a system with finite
branching rate ωb were checked (here: branching probability ωb∆t = 0.0035)
including the dependence of growth dynamics on the ARP2/3-density ρARP
(cf. section 4.1.1, second paragraph). In this system, filament orientations are
highly correlated.

In Fig. 4.22 cluster size distributions for different particle densities ρ0
p are

displayed. Like in the more basic case of uncorrelated filaments, ωb = 0, one
observes an algebraic decay as well. This indicates that the scale free behavior
of the clusters is a robust feature of inhomogeneous transport networks with
active hard-core particles.

4.1.3 Phenomenological description of Cluster Formation

In order to understand the distribution of cluster sizes m in the inhomogeneous
network theoretically, we analyze the capacity of intersections. Thereby we
consider dynamics of cluster initialization and stability of the cluster distribution
in the stationary state.
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Figure 4.22: Cluster size distribution for branch rate ωb > 0. Like in the system with
non-correlated filaments, the CD exhibits algebraic decay for large clusters.

Single queues

A necessary condition for cluster formation is that two particles moving along
a filament encounter each other at an intersection. Then the two particles may
block each other due to steric interactions and form a cluster seed. Therafter
other particles can attach to the filament moving towards the initial two-particle
cluster and form a queue.

Studying the queuing mechanism, we regard a single filament with an in-
tersection occupied by a cluster seed. The filament can be considered as a
one-dimensional discrete system coupled to a reservoir of particles with density
ρp−ρb, i.e. the density of unbound particles (where ρp denotes the local particle
density and ρb the density of bound particles).

The effective attachment rate of a particle is the attachment rate ωa times
the fraction of area that allows binding and the probability that there is space
on the filament, i.e. 8

ω̃a ≈ ωa2dbdsρs

(
1− ρp

ρs
ns

)
. (4.2)

Here ns is the number of binding sites that are not accessible if a particle
occupies a filament and ρs is the total density of filament subunits of length
ds in the system, i.e. ρs = ρ0

act − ρact. We assume ρp � ρs which is the
case for default parameters. In a regular discrete network ns = 1, while in the
inhomogeneous one ns = 5 for ds = 0.36 lu, rp = 0.5 lu, since the distance of
two particles must be at least 2rp9.

Complete detachment occurs with an effective rate ω̃d, comprising detach-
ment and diffusing away, such that there is free space for particles behind to
move on the filament. Therefore a detached particle may not reattach immedi-
ately and a subsequent diffusive step must be lateral to the filament. Diffusing
can also be inhibited by a high density of free particles. We therefore write
ω̃d = ωd(1 − ωa∆t)(1 − ρpπr

2
p∆t)C1(D) where the phenomenological factor

C1 < 1 reflects the inhibition of a diffusing step by other attached particles
8The binding area of a filament in continuous space is approximated by a rectangular shape

since ds < db. In the regular network ds = 1, db = 1/2 and binding area = active tracks.
9For default parameters, ω̃a takes the value ω̃a ≈ 2/3ωa

127



on the filament. This factor represents the angle sector that allows free dif-
fusion and is assumed only to depend increasingly on the diffusion constant
D = l2D/2∆t. In this single queue view, particle dynamics correspond to the
TASEP-LK. Queues correspond to high density domains in the TASEP-LK, i.e.
one-dimensional clusters, hence the queue ends correspond to shocks. On long
filaments the density of attached particles quickly approaches the stationary
density ρb = ρpω̃a/(ω̃a+ωd) (cf. [53]). Therefore the inflow on a single filament
queue can be approximated by J1

in = p ρb/ρs(1−ρb/ρs) ≈ p ω̃a/(ωd+ ω̃a) ρp/ρs,
neglecting (ρb/ρs)2. Outflow by detaching particles is J1

out = ω̃dl where l is
the number of particles in the queue. The condition that a stationary queue of
length l establishes is J1

in = J1
out if a two particle cluster has established. Hence

we have ρpp/(ρs(ω̃a + ωd)) = ω̃dl and

ρp(l) ≈
ω̃dlρs
p

(
1 +

ωd
ω̃a

)
(4.3)

If the queue does not cross other filaments, a finite queue of length l0 establishes,
while the shock, i.e. the end of the queue performs fluctuations around the mean
value l0 [27, 49].

Cluster branching

If a queue spans over intersections connecting the filament with other ones, it
acts as an obstacle for particles moving along crossing filaments. This obstacle
serves as a nucleation seed for other queues on respective filaments in a same
manner like at the initial two-particle cluster seed. It leads to a branching of the
queue and can initialize a cascade of queues that constitute a large connected
cluster (see Fig. 4.23). At first glance, we neglect freely diffusing particles in the
neighborhood of the queues which can also be part of clusters by the definition
in Sec. 4.1.2, since their effect on cluster in- and out flow can be treated by the
local particle density ρp and effective detachment rate ω̃d. Then the full cluster
is constituted by the connected set of these individual queues, m =

∑
i li where

the index i runs over all filaments covered by the cluster.
The intersections not only initialize new cluster branches, but also serve as

defects for particle hopping, since at these points the hopping rate p is effectively
lowered. In principle this corresponds to the TASEP-LK with defects which was
treated in the last chapter. If inflow is larger than the transport capacity of a
defect, a macroscopic high density domain emerges corresponding to a queue.
Though at defects, small diluted regions after defect sites occur, we can assume
the queues to be connected on a coarse graining scale λ > rp and by particles
diffusing in the neighborhood of the filament10. If ρp < ρp(l = a) =: ρ∗(a) such
that queues do not span other intersections, clusters consist of two queues each
on one of the filaments at the cluster seed’s intersection. Since the length of
the queues in the TASEP-LK is always finite, there is a finite mean value l̄.
Therefore the total cluster size can be estimated by

m ≈ nF l̄ , (4.4)

where nF is the number of filaments it covers.
10Though the considerations of the last chapter were for large systems where attachment

and detachment rates scale like ωa,d ∼ 1/L, qualitative results do not change while relative
fluctuations of shockpositions and boundary layers increase for small systems.

128



Figure 4.23: Illustration of the mechanism that leads to the formation of clusters in a inho-
mogeneous network. If the density of intersections is high, existing clusters serve as additional
obstacles for particles on other filaments, enhancing cluster formation.

The considerations of this and the last paragraph apply in an analogue way
to a regular network if db is replaced by 1/2 lu and ds = 1 lu. In the following
paragraphs, however, the explicit statistics of the inhomogeneous network are
considered.

Graph approximation

The above considerations show that the statistics of filament crossings appear
to be crucial for cluster dynamics if the network is disordered. In the following
a coarse graining (length-)scale ξ is introduced and the distribution of filaments
on this scale is studied. This provides the basis for a coarse graining procedure
where the filament network is approximated by a graph and dynamics of particles
are approximated by effective transition rates between nodes of a topological
network (see Sec. 2.4).

In the following considerations on inhomogeneous networks we assume that
filament lengths LF are large compared to the scale ξ of the target area we
consider.

The probability that a given filament with arbitrary orientation, position
and length LF � ξ intersects an area of diameter ξ is

p ≈ ξ

L

LF
L

(4.5)

The average length of filaments is 〈LF 〉 = ρsL
2ds/NF and NF is the number of

filaments. Averaging over filament lengths, one obtains

p =
ξρsds
NF

. (4.6)

Obviously the probability that nF filaments cross an area of diameter ξ is equiv-
alent to the probability distribution of a Poisson process with individual hit
probability p.

P (nF ) =
σnF

nF !
e−σ (4.7)
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with expectation value and standard deviation σ = pNF = ξρsds. Therefore the
average number of intersecting filaments grows linearly with the diameter of the
considered area and one can define a linear filament density ρF = 〈nF 〉/ξ = ρsds.
The average subunit density is related to the actin density by ρs = ρ0

act−ρact ≈
ρ0
act (for ωs/ωg � ρ0

act, cf. Sec. 4.1.1). In uncorrelated filament networks,
the average distance between nodes, i.e. the mesh size a = π/(2ρsds) [43],
therefore the dependence on the actin density is a ∼ 1/(ρsds) ∼ 1/ρactds. Since
the structure of the clusters is one-dimensional, its linear scale is ξ ∝ mrp.
Therefore the number of filaments a cluster covers is nF ∼ mrp/a. On the
other hand we have nF ≈ m/l̄. Hence the average queue length scales like the
mesh size, i.e. l̄ ∼ a/rp.

In order to describe particle dynamics on a coarse grained level, we ap-
proximate the filament network by a topological network (graph) consisting of
nodes connected by links, representing the filaments. On the topological net-
work the particle dynamics is described by hopping from node to node with
given rates, assuming that particle transport is dominated by active transport.
In this approximation we assume that most particles are bound to filaments,
i.e. ρb = ρp 1/(1 + ωd/ω̃a) ≈ ρp, which is justified for ωd � 2ωaρsdsdb 11. This
marks the limit of the graph approximation. Diffusive phases are assumed to be
short but can lead to a change of the filament, i.e. changing travel direction.

Similar to the considerations above, the network structure is coarse grained
by virtually subdividing filaments into segments of length ξ representing the
nodes of the network. Segments from different filaments that overlap at inter-
sections are treated as one node. A filament hosting segments of two nodes i
and j directed from i to j corresponds to a link from i to j. It mediates a
net particle drift from i to j. The full network can then be represented by the
adjacency matrix A whose components Aij denote the number of links between
i and j. Note that in this view two nodes can be connected by more than one
link. Corresponding to Sec. 2.4, we denote the number of out-going links from
a node i by Kout

i =
∑
j Aij and the number of in-going links by Kin

i =
∑
j Aji.

Each filament crossing a node without ending inside provides exactly one link
in and one out of the node. If filament lengths are large compared to the length
scale ξ as assumed above, we can neglect filament ends inside a node. Therefore
the number of incoming links is approximately equal to the number of out-going
links. Their number is given by the number of filaments, i.e. Kin

i ≈ Kout
i = nF .

In Sec. 2.4 it has been shown that for noninteracting particles performing a
random walk on a topological network with Kin

i = Kout
i =: Ki for all nodes i,

the density of particles in the stationary state is proportional to the number of
links

ρi = Ki/N (4.8)

We can transfer the results from topological networks to the graph approxima-
tion and state that the density of free particles ρfp inside a node, i.e. particles
that are not associated to a cluster, is proportional to the number of links which
is given by the number of filaments nF crossing it. The spatial distribution of
(local) free particle density therefore is proportional to the distribution of fila-
ments ρfp = ρ̄fpnF /〈nF 〉, where nF is the number of filaments in a node and ρ̄fp
is the average free particle density. This distribution however is scale dependent
and the selection of the appropriate scale must be justified by other means.

11For default parameters ωd/2ωaρsdsds ≈ 0.12
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In the graph approximation the system is modelled by a hopping of particles
from one node to another. This introduces a time scale τ which is the time, a
particle needs to travel from one node to another. If we use the average distance
between intersections (mesh size of the network) a as length scale ξ, the effective
hopping time can be related to the node distance by a = pdsτb, where τb denotes
the time a particle is bound to a filament, i.e. τb = τ/(1 + ωd/ω̃d) (see first
paragraph). Hence τ = a/pds(1 + ωd/ω̃d). For this coarse graining scale each
node contains one intersection on average and in the corresponding graph they
are connected on average by two filaments with adjacent nodes, i.e. 〈nF 〉 = 2
and the distribution of links (and therefore local densities) is governed by a
Poisson distribution with mean value σ = 2. If queues branch, queue cascades
constitute a large cluster that covers a number of filaments nF proportional
to its size m. The structure of the graph must hence be adjusted, since large
clusters are able to span over more than one node as defined above. In order to
treat clusters as single objects we consider all nodes a cluster covers as a single
one. Then the network consists of cluster nodes made up by large clusters and
free nodes where there are no stable clusters. We denote the number of cluster
nodes by Ncl and the cluster density ρcl = Ncl/(L/a)2.

The free particle density ρi corresponds to the probability that after long
times a particle inserted anywhere will be at node i. Since the size mi of a cluster
i is proportional to the number of filaments nF it covers, it is proportional to
its connectivity Ki and therefore ρi. The probability of new inserted particles
to end up in cluster i is hence proportional to its size, i.e. the growth rate of a
cluster is proportional to its size m.

Cluster size distributions

Due to particle conservation, the total inflow of particles in clusters Jin must
balance outflow Jout in the stationary state. In the following we denote the total
portion of particles associated to clusters by Ñ and free particles byNf = N−Ñ .
The outflow can be expressed by Jout = ωeffd Ñ , where the effective rate ωeffd

comprises the rate of particle detachment from a filament and attachment to
another one in order to be moved to a free node. We can write ωeffd = ω̃dC.
The phenomenological factor C < 1 denotes the inference by interactions with
particles on other queues of the cluster and other filaments directed into the
cluster that allow reattachment to the cluster. The factor C is a mean value
and depends explicitly on the structure of the clusters, but not explicitly on
system parameters12. It becomes small if very large clusters are present that
can confine particles within their structure (see paragraph on large clusters
below). The flow of particles into clusters is given by Jin ≈ Nf ρcl 〈nF 〉/τ . The
stationarity condition is Jout = Jin and with Ñ = Ncl〈m〉, 〈nF 〉 = 〈m〉/l̄ we
obtain

ω̃dCNcl〈m〉 ≈ Nf
Ncl

(L/a)2

〈m〉
l̄
/τ (4.9)

⇔ ρ̄fp = Nf/L
2 =

ω̃dC l̄

apds

(
1 +

ωd
ω̃a

)
12At least in the network approximation where particles are assumed to be attached to

filaments most of the time. For higher values of ωd/ωa an explicit dependence on ωa is
assumed.
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The corresponding number of particles associated to a cluster is Ñ = N −
Nf . For large ωeffd this quantity could reach zero so that there are no clusters
left. This suggests a condensation transition between a free phase and a phase
exhibiting clusters. However, we have to be careful since on the one hand the
graph approximation does not work for large ωd and on the other hand aster-
like configurations of nodes, where filament ends are arranged to point only
into a node, have been neglected. These configurations can become relevant in
this situation and allow clusters even for lower particle densities. We therefore
assume that for L → ∞ large clusters can be present even for small densities.
However since we have seen in the last sections that most particles are in clusters
for default parameters, we can assume that ωeffd � a2ρ0

p/(τ l̄) which suggests
C1C � 1.

In order to determine the probability distribution of cluster sizes P (m),
we virtually expand the system. Assume the system to be in the stationary
state. Increasing the system size by a small area ∆A, while always remaining
in the stationary state, ∆N = ρ0

p∆A new particles are inserted. The portion of
cluster-associated particles hence is

∆Ñ = ∆N −∆Nf ≈ ∆A(ρ0
p − ω̃dCτ l̄/a2) (4.10)

which is the number of particles that are effectively added to the clusters. How-
ever, not only particles are added to the clusters but also ∆Ncl = ρcl∆A/a2

new clusters emerge within the new area ∆A. Thus for each new cluster that
emerges ∆Ñ/∆Ncl = 〈m〉 = a2(ρ0

p − ω̃dCτ l̄)/ρcl new particles are distributed
among the clusters, while the probability that a particle is associated to a given
cluster is proportional to its size m as argued above. This process corresponds
to a generalized Yule process, where between two cluster initialization events,
〈m〉 objects are distributed among the clusters (see e.g. the review [70]). The
stationary state of the Yule process exhibits a distribution which approaches for
large m asymptotically a power law distribution P (m) ∼ m−γ with an expo-
nent γ = 2 + m0

〈m〉 where m0 is the initialization value of the clusters. Hence the
exponent yields

γ = 2 + δ (4.11)

δ ≈ m0ρcl
ρ0
p − ω̃dCτ l̄/a2

If distances between clusters are large, the cluster density ρcl, i.e the number of
clusters per area unit ξ2 ≈ a2, corresponds to the probability Pcl that a cluster
seed nucleates at an intersection. In order to maintain a stable queue with at
least one particle on a filament (i.e. a initial two-particle cluster), according
to (4.3), the density of particles on the filament must be ρ1

p = ρ̄fpnF /〈nF 〉 >
ω̃dρs/p(1 + ωd/ω̃a). Inserting (4.9) and ρs = π/(2 ads), this yields a condition
on the local filament density

nF
〈nF 〉

=
2
πl̄C

∼ 1
aC
∼ ρactrpds (4.12)

where the fact that l̄ scales like a/rp was used. Since we are only interested in
the dependence on system parameters, we neglect any prefactors that do not
depend explicitly on them, like C. Since the filaments are Poisson-distributed
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Figure 4.24: Sketch of the probability that a cluster nucleates at a intersection in dependence
on the network density.

with mean value 2, this probability can be given by the cumulative Poisson
distribution with mean σ = 2:

Pcl = P

(
nF >

2
Cl̄

)
∼ Γ(2/Cl̄ + 1, 2)

Γ(2/Cl̄)
(4.13)

and the dependence of γ = 2 + δ is given by

δ ∼ Pcl(ρact)ρ2
act

ρ0
p

(
1− πω̃d l̄Cρs

2pρ0p

) (4.14)

by inserting a = 2/(πρsds) ∼ 1/ρact, considering rp and ds to be fixed by
biological reasons. As argued above, we assume C1C � 1, hence the term
πω̃d l̄Cρs/2pρ0

p can be neglected for small ωd, and δ can be further simplified to

δ ∼ Pcl(ρact)ρ2
act/ρ

0
p . (4.15)

The dependence of δ = 2 − γ on ρ0
p appears to be a quite good approxi-

mation as can be seen in Fig. 4.19. In Fig. 4.18, one observes only a weak
monotonic dependence on ωd as long as ωd is small, though this dependence
becomes stronger for large ωd, as expected. The numerator depends only on
ρact and has the form as displayed in Fig. 4.24 (the scale is not defined, since
the prefactor is not given). However, only for small values of ρact the cluster
density can be approximated by the probability Pcl. For large network densities
if clusters on average cover many intersections the effective cluster number is
smaller since clusters nucleating on different intersections can merge. Therefore
we assume that the relevant values are restricted to the lower branch which
attains a monotonic growth. This appears to be valid as is shown in Fig. 4.18.

Summarizing, we can say that for small ωd relative to ω̃a and mean particle
density ρ0

p, δ is proportional to 1/ρ0
p and depends increasingly on ρact (though

not linear in general). In these limits there is no dependence on other system
parameters (see Fig. 4.18). For larger ωd, the influence of ωd, ωa, lD and p
becomes relevant.

So far, free particles that also contribute to clusters have been neglected.
This approximation yields good results for low particle densities and if clusters
are not too large. Then the cluster structure is mainly one-dimensional, made
up by queues and only some free particles in their neighborhood whose influence
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on detachment can be comprised in ωeffd . Large clusters however rather have a
two- than a one-dimensional structure since detaching particles can completely
fill the cavities engulfed by queues. Then the full cluster size is m̃ ∼ m2. Cluster
attachment and detachment are still determined by the one-dimensional fraction
m constituted by the queues, thus arguments from above remain valid. Hence
the distribution of 2D-clusters yields

P (m̃) = P (m)|m=m̃1/2

∂m

∂m̃
∼ m̃−γ

′
(4.16)

with γ′ = γ/2 + 1/2. The distribution is also described by a power law but
with a decreased exponent γ′. This result is consistent with simulation results
in Fig. 4.17. Note that high filament densities suppress this effect since no big
cavities between filaments are present (cf. 4.18(c)). High ωd / low ωa enhance
the effect, since due to a large number of unbound particles their contribution
to clusters is enhanced.

In principle the above considerations are also valid for a regular network,
while in those systems the particle density is homogeneously distributed and
a = const. . If the density for cluster initialization (l = 1) is exceeded,
clusters can emerge anywhere in the system. As long as the density is lower
than the critical density ρ∗(a) to form queues of length a, only small L-shaped
clusters consisting of two queues emerge (see configuration in Fig. 4.11(a)).
These are characterized by a centered distribution Pm0 exhibiting fluctuations
around a mean value m0, while no cluster branching occurs. Since the scale
of queue lengths is in the same order of magnitude as random clustering (cf.
Fig. 4.6), the exponential background of free particles must be added, hence
P (m) ≈ Pm0(m) + 1/mr exp(−m/mr) where mr is the scale of random clus-
ters13. This behavior corresponds to Fig. 4.13 where a bulge over an exponential
is exhibited. However, if ρ∗(a) is exceeded, cluster cascades can develop. Due
to the homogeneous density, clusters can branch at any intersection and due
to the high cluster density, they merge forming a mesh shaped structure. This
leads to a percolative behavior yielding a scale free distribution, while clusters
are not well separated (cf. Fig. 4.11(b)). Hence cluster distributions do not
follow the same scheme as disordered networks.

While scale free clustering in regular networks only emerges for ρ0
p > ρ∗, in

inhomogeneous networks this can occur also for small densities ρ0
p � ρ∗ since

the distribution of the particle density and filament distances determining the
critical density is wide. Only few regions where the critical density is exceeded
are needed for scale free clustering. This corresponds to a Griffith phase where
only locally critical values are exceeded exhibiting an ordered structure, in con-
trast to the case when the full system is clustered14. Therefore clusters are well
separated and do not depend significantly on the coarse graining scale.

The formation of clusters in active transport networks yields the possibility of
an aggregation mechanism even without attractive interactions. The function of
vesicle transport on actin therefore might not be restricted to merely enhanced
diffusive dynamics. However, due to translational symmetry, single particle

13Note that due to the attractive interaction of filaments a lateral aggregation of particles
is induce that locally increases the density compared to the average density ρ0

p. This leads to
an increased size scale of random clusters

14Note that this does not imply percolation. There are dilute regions behind intersections
emerging that can tear clusters apart, if there are only few free particles.
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dynamics are completely undirected if periodic boundary conditions are applied.
This symmetry is broken if boundary conditions are applied that confine particle
and filament dynamics to a finite area/volume. In the following section, effects
on single particles due to boundary conditions will be studied.

4.2 Transport on inhomogeneous networks in
confined geometries

Since the growth dynamics introduced in the last section is undirected and pe-
riodic boundary conditions obey translational invariance, the network structure
is unbiased, besides finite size effects that can lead to a weak bias. In most
works due to these undirected growth dynamics, the transport on actin net-
works therefore is considered to merely enhance diffusive properties of vesicle
transport, while no bias on large scales is present. Directed long range transport
is thought to be associated with microtubules (see e.g. [44]). In mammalian
cells, directed transport from the cell center (ER or Golgi) towards the cell
membrane in order to liberate proteins to the exterior (secretory pathway) or
transport of internalized proteins to the center (endocytic pathway) is mediated
by the radially structured microtubule network. In smaller cells (e.g. budding
yeast) usually the microtubules do not play an essential role in transport [45]
that provide a radial structure, such that it is assumed that targets are reached
purely by diffusive dynamics.

However, in real systems there are boundaries imposed by cell organelles
and the cell membrane that confine filament and particles dynamics and break
translational symmetry. In this section we will see that the inclusion of boundary
conditions in our model can lead to a bias in particle dynamics despite non-
directed filament growth dynamics. The application of boundary conditions can
significantly decrease the times, particles need to find a given destination (Mean
First Passage Time). E.g. it is shown that the time, particles need to travel
from the boundary of a sphere to a target sphere in the center is significantly
reduced due to this bias. We will see that an analogy to electrostatics can
elucidate this unexpected bias induced by boundary conditions and suggests
that the mechanism is also valid in three dimensions.

4.2.1 Results

Reflecting boundary conditions

In contrast to the model of disordered networks in the last section, here the
movement of particles is restricted on a sphere/disc of radius R around the
origin. In addition filaments are not allowed to be initialized or to grow out
of this sphere. The microscopic growth dynamics remain unbiased, i.e. newly
initialized filaments have random direction. In addition to particles that move
to plus-ends of filaments (plus-particles), which represent transport by myosin
V, we introduce particles that move in minus-direction of filaments (minus-
particles). These are motivated by vesicles that are transported by myosin VI
[2].

Boundary conditions break the translational symmetry that is present in pe-
riodic systems. Here boundary conditions are introduced that restrict filament
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(a) (b)

Figure 4.25: Configuration of plus- (black) and minus-particles (gray).(a) dynamics of fil-
aments not restricted (periodic boundary conditions). Both kinds of particles appear to be
concentrated at boundaries. (b) Dynamics of both particles and filaments restricted to the
sphere. One observes separation of particles with plus-particles at the boundaries and minus-
particles in the interior. The inhomogeneity of the distribution of the minus-particles however
is not that significant as for plus-particles, which can also be seen in Fig. 4.26.

dynamics and the region, that particles can explore to a finite area/volume.
In order to distinguish effects on filament and particle dynamics, also artificial
mixed boundary conditions are applied, i.e. periodic boundary conditions for fil-
aments and confining ones for particles. Here we are interested in single particle
dynamics. Hence in simulations, interactions between particles are neglected.

In Fig. 4.25 configurations for periodic and confining boundary conditions
for filaments are shown. Particle movement is restricted to a sphere in both
cases. Fig. 4.26 shows the ensemble averaged particle density distributions.
If both particle and filament dynamics are restricted to the confined area, one
observes a segregation of the two particle species. While plus-particles are con-
centrated at the boundaries, minus-particles are diluted at the boundary and
get a tendency towards the center of the sphere. If filament dynamics are not re-
stricted there is no radial separation of particles. However both particle species
appear to be driven to the boundaries at opposite sides of the system. This ef-
fect can be easily understood. In a finite size configuration of filaments a weak
random bias remains that drives plus-particles in a given direction towards the
boundary at one side of the system, while minus-particles are driven to the
other side. Both particle species aggregate at the boundaries at opposite sides
of the system. While this indeed leads to separation of both species in space,
the radial distribution appears to be the same for both species since left and
right are not distinguished in radial distributions.

The observation that restricting filament dynamics leads to a radial sep-
aration of particle species indicates that breaking the translational symmetry
induces a self-organized global bias in filament orientations. In order to under-
stand this effect, the radial bias of the network is studied, which is defined as
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Figure 4.26: Density distribution of non-interacting particles in dependence on the distance
from the center. Even for a non biased network the density distribution is inhomogeneous:
both particle species are concentrated at the boundary. For restricted filament dynamics, one
observes a separation between plus- and minus-particles.

the correlation of filament subunit orientations d with the radial unit vector15:

η(r) := 〈d · er〉 =
1

n(r)

∑
|x|∈[r,r+dr]

d · er , (4.17)

where n(r) is the number of filament subunits in an distance interval [r, r +
dr] from the center. This quantity is positive if filaments are predominantly
orientated radially, i.e. pointing away from the center, and negative if orientated
towards the center.

In order to quantify the impact of the boundaries on the network structure,
results are compared with a system where filament dynamics are not restricted,
while vesicles may not leave the sphere. In Fig. 4.27 the radial bias for a net-
work with confining boundaries and without is plotted. In the case without
boundaries, periodic boundary conditions are applied. One observes that there
is no radial bias for periodic boundary conditions. However if filament dynamics
are restricted, filaments are indeed biased and plus-ends are predominantly ori-
ented away from the center, resulting in a positive radial bias. The bias becomes
stronger approaching the boundary.

The emergence of a biased network structure can be understood by an anal-
ogy to electrostatics. In order to illustrate this analogy, we define the filament
field

F(x) =

〈
lim
V→0

1
V

∑
V

d

〉
(4.18)

where V is any volume (or area in 2D) including the point x and 〈· · · 〉 denotes
the ensemble average. Thus F(x) results from a superposition of filament orien-
tations at the point x. Due to radial symmetry of the boundaries, the ensembe
average must exhibit radial symmetry, and we can also write

F(x) = F(r)er (4.19)

15By convention the minus-end of a filament subunit is used as refererence position.
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Figure 4.27: Ensemble averages for the network radial bias η in dependence on distance of
filament segments from the center. If growth dynamics is not restricted to boundary condi-
tions, there is no overall radial bias, while if growth dynamics is restricted, filament plus-ends
appear to be directed towards the boundary of the system.

Note that the radial component of F and the network bias η are related by

F (r) = η(r) ρrs(r) (4.20)

where ρrs(r) = 2πrρs(r) is the radial density of filament segments at distance r
from the center.

At any point inside the allowed volume, filaments can be initialized with
random direction while any direction has equal probability. First we assume
that filaments are restricted to be nucleated only at a single point, i.e. the origin,
but can grow anywhere. Since the orientation of filaments always points away
from the nucleation point, the filament field must have a radial structure F(x) =
F (r)er. Since the field obeys a linear superposition principle, the strength of the
field at a point x can be expressed by the probability that a created filament
crosses x, P (x), times the average fraction of time τfil a segment is present
there, i.e. F (x) = P (x)τfil . In order to quantify these values, we approximate
the dwell times by the inverse rates for leaving a state.

After nucleation, a filament remains capped, i.e. it does not dissociate for
a time 1/ωuc. When it uncaps, the filament dissociates and it requires an
average time 1/ωnρact until a new filament is nucleated. The overall time of a
nucleation cycle therefore is ttot = 1/ωuc+1/ωnρact. The average velocity of the
growing end is dn ωgρact while the velocity of the shrinking end is dn ωs. After
nucleation the distance r is reached by the growing end after a time r/(dnωg).
After uncapping an average time of r/(dnωs) passes until the shrinking end
passes the distance r removing nodes there. The overall fraction of time that
filament nodes are present at distance r during one nucleation cycle therefore is

τfil =
tfil
ttot

=

(
1
ωuc
− r

dnωgρact

)
+ r

dnωs

1
ωnρact

=
ωnρact
ωuc

+
rωnρact
dn

(
1
ωs
− 1
ωgρact

)
(4.21)

Since the surface of a sphere is ∼ r2 in 3D and r in 2D, the probability that a nu-
cleated filament crosses a given point scales as P (x) ∼ 1/rD−1 (D=dimension).
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Figure 4.28: Filament field F (r) for default parameters. One observes approximately a linear
behavior as predicted by the analytical treatment.

In the stationary state there is no net change of the number of filament sub-
units, hence ωs = ωgρact + ωnρact ≈ ωgρact ( for ωg � ωn). In this case the
dependence of τfil on the distance r vanishes and the filament field takes the
form

F (r) =
C

rD−1
, C independent of r⇒ F(x) =

(x− x′)
|x− x′|D

(4.22)

which is equivalent to the electrostatic field of a point charge. In particular the
first Maxwell equation divF = 4πCδ(x) and the corresponding Gaussian law
are valid. In the transient state, ωgρact 6= ωs and the divergence varies from the
delta-function structure.

If there is a larger volume where filaments can nucleate, due to superpo-
sition the filament field behaves like a electrostatic field of a homogeneously
charged volume: F(x) =

∫
V
C (x−x′)
|x−x′|D d

Dx. For periodic boundary conditions,
no net field remains because of the translational symmetry, and therefore the
overall bias η ≡ 0. However if the filament-generating volume is restricted to a
sphere, the filament field has the same form like the electrostatic field inside a
homogeneously charged sphere, thus

F(x) ∼ rer (4.23)

This linear behavior of F is reproduced by simulations of filament ensembles as
can be seen in Fig. 4.28. Since F (r) ∼ η and ρrs > 0, the bias η must be positive
and filament orientations tend to point away from the center, although locally
filament dynamics are undirected. The emerging radial bias of the network
explains why for confined filament dynamics plus-particles are driven towards
the boundaries and minus-particles are driven to the center of the sphere.

Creation and annihilation of particles at boundary and center

In secretory cells proteins produced in the interior of a cell (usually near the
nucleus), have to be transported to the cell membrane in order to be liberated to
the exterior (secretory pathway). On the other hand macromolecules that have
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Figure 4.29: Mean first passage times of minus-particles in a purely diffusive syste. Com-
parison of confined network dynamics and non-confined. The plots in the subfigures show
the dependence on different parameters: (a) radius of target area r0 (fixed R), (b) system
radius R (fixed ratio r0/R), (c) actin density (determining mesh density) ρact. In all figures
one observes a significant reduction of MFPT if an active network is present, and a further
reduction of about the same amount due to confined filament dynamics.
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Figure 4.30: Mean first passage times in dependence on the system size for plus-particles.
The MFPT are significantly reduced by the presence of a network. A further decrease of
the MFPT by restricted network dynamics is observable, but the difference to a non-directed
network is not as significant as for minus-particles.

been internalized by endocytosis might be needed by organelles near the center
of the cell, e.g. the nucleus or ER (endocytic pathway). In both cases effective
mechanisms to transport vesicles to their target destinations are necessary. A
quantity of interest therefore is the time a vesicle needs to reach its target.

In our model the secretory pathway can be simulated by creating particles
near the center of the sphere, while particles are annihilated if they reach the
boundary. The endocytic pathway corresponds to particles that are created at
the boundary and disappear if they reach their target area, which is implemented
as a sphere of radius r0. The time particles need on their pathways corresponds
to the first passage time (FPT). Here, the distribution of first passage times in
particle ensembles and their average value, the mean first passage time (MFPT),
is investigated.

In Fig. 4.29 and 4.30, the mean first passage times in dependence on sys-
tem size L, radius of target area r0 and actin density ρact are plotted. Here
pure diffusive particles dynamics are compared with a network generated by
unrestricted filament dynamics and restricted filament dynamics. One observes
that the presence of a active transport network significantly reduces the times,
particles need to reach their target. In case of the unbiased network, this is
consistent with results in [65], where a mixture of random walk and ballistic
fast directed movement was considered16. However, the restriction of filament
dynamics to a finite volume leads to a further reduction of mean first passage
time on the endocytic pathway. The MFPT for minus-particles is significantly
reduced. The factor of this reduction is rather independent of the fraction of
the target area.

The acceleration of pathways may be a beneficial property for some cell
types. For particles on the secretory pathway, however, this effect does not
seem to be strong.

16There however the network dynamics were not explicitly modelled.
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4.3 Discussion

The transport on filament networks rather than single tracks appears to intro-
duce new phenomena both on single particle dynamics and collective properties.
Besides the enhancement of diffusive properties compared to a purely diffusive
system [53], the presence of filament crossings allow steric interactions of par-
ticles on different filaments. This interaction causes jamming of particles at
intersections, leading to the formation of particle queues.

In a regular network, these queues remain usually small exhibiting a finite
size scale. Only if densities are high enough, such that clusters on different inter-
sections merge, there are large non-separated clusters. In a disordered network
where filaments are randomly distributed (in orientation, position, and length),
distances between intersections are spatially varying. In this kind of network,
large, well-separated clusters can emerge. The corresponding distribution of
cluster sizes appears to be algebraic in a wide range of the parameter space
indicating that clusters on all size scales exist.

In contrast to regular networks, inhomogeneous networks exhibit regions of
small mesh sizes where queues can span over several intersections, hence even
small queues can span over several intersections. The interaction with other
particles on these intersections can induce new queues on latter ones leading
to branched large clusters. Since each branch contributes to cluster inflow, the
growth rate of a cluster is proportional to its size. Dynamics of this kind can
be described by a Yule process (see e.g. [70]) which yields a power law distribu-
tion P (m) ∼ m−γ with an exponent depending on the microscopic parameters
(see also preferential attachment in scale-free networks [4]). A thorough inves-
tigation shows that for small detachment rate and moderate network densities,
the exponent merely depends on the average particle density and the average
network density, while dependence on other parameters is weak. Since only dis-
tinct parts of the system exhibit a network density high enough to induce cluster
branching, the resulting large clusters are usually well separated, in contrast to
the regular network.

Periodic boundary conditions that exhibit translational symmetry demand a
globally unbiased network structure, as long as filament dynamics are not explic-
itly biased and the system is large. This constraint does not hold if boundary
conditions are applied that break this symmetry. In our case, motivated by
actin dynamics, filaments nucleate and grow in an arbitrary direction, i.e. lo-
cally non-biased. However, if these dynamics are restricted to a finite volume (as
it is the case in cells), the breaking of translational symmetry introduces a bias
in the network structure. Applying the same growth dynamics as before, but
confining filament dynamics to a sphere/disc of finite volume/area, now plus-
ends of filaments are predominantly orientated towards the boundaries, while
minus-ends tend to point towards the center. This can be understood by an
analogy to electrostatics: since the Greens function of an electrostatic field does
not prefer any direction, the field of a homogeneous charge density distribution
vanishes if there are no boundaries. However a homogeneously charged sphere of
finite volume exhibits a radial electric field inside the sphere, increasing linearly
with distance from the center. This linear behavior can also be observed in the
filament network if the spatial dependence of the orientation, weighted by the
filament density, is considered.
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Chapter 5

Conclusions and outlook

In this thesis inhomogeneous driven stochastic systems used for modeling active
transport processes of sterically interacting particles were investigated. The
focus is on intracellular processes. The considered inhomogeneities are of two
types:

(a) Spatially varying velocity of driven particles. These are for example vary-
ing codons on mRNA that need different times to be processed by ribosomes,
or macromolecules that cover intracellular filaments and inhibit movement of
motor proteins. These are observed in neurons affected by Alzheimer’s disease
(degenerated tau proteins) and it was shown that vital transport properties in
axons are significantly reduced in this case [93].

(b) Networks with a disordered irregular structure. One example is the
cortical actin network at the inner side of the cell membrane of most eukaryotic
organisms which exhibits a irregular structure [84].

Both species of disorder significantly change large scale dynamics of particle
transport compared to homogeneous systems. Common to both kinds of systems
is the emergence of queuing transitions due to inhibited movement of particles
at defects (corresponding to intersections in network systems). These queues
result in alternating high- and low density regions, observed in one-dimensional
single filament models, and particle clusters that can arise in two-dimensional
transport network models. The results of the thesis are separated in two parts,
each of them covering one species of disorder.

In chapter 3 disordered driven lattice gases are considered, which are used
to model active transport on single tracks. The disorder is implemented by
randomly including slow sites with a lower hopping rate q (defects) within pre-
dominant fast sites of hopping rate p > q. The motif of investigations is the
observation that the transport capacity, i.e. the maximum current that can
be achieved by tuning external parameters, is predominantly determined by
the longest bottleneck, i.e. consecutive stretch of defects [96, 61]. This moti-
vates the Single Bottleneck Approximation (SBA) stating that the transport
capacity of a driven lattice gas is approximately the same as in a system con-
taining only one, i.e. the longest bottleneck. Therefore results for systems with
single bottlenecks of arbitrary length appear to be relevant to understand ran-
domly disordered systems. In this work in particular the paradigmatic totally
asymmetric simple exclusion process (TASEP) was considered. In fact a good
approximation for the TASEP with a single bottleneck is obtained in chapter
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3 by the interacting subsystems approximation (ISA) that treats the system as
separate but connected homogeneous subsystems. Using the exact solution of
the homogeneous TASEP and connecting subsystems, a good approximation
for the transport capacity of a single bottleneck system can be obtained. The
ISA not only yields the transport capacity, but also the phase diagram can be
obtained and the influence of defects near the boundaries (edge effect) can be
explained. It was shown that the edge effect can be treated by introducing
effective boundary rates.

Applying extreme value statistics, the SBA can be used to relate the en-
semble averaged transport capacity of the disordered, many-defect TASEP to
a single bottleneck system. Hence the single bottleneck results can be used to
determine the transport capacity of disordered systems. Deviations from SBA
are mainly due to other defects in the vicinity of the longest one. The limits of
the validity of SBA for generic driven lattice gases were checked and formulated,
giving a criterion that other defects can be treated perturbatively for small de-
fect densities (3.41). For the TASEP, a perturbative expansion of the transport
capacity in terms of the defect density φ yields accurate results already in first
order. In general, SBA can also be applied for other driven lattice gases full-
filling a set of conditions (see discussion in 3.4) and conserving particles in the
bulk, which was exemplified for the disordered NOSC model. In intracellular
transport, however, attachment and detachment of motor proteins from a bulk
reservoir occurs which violates particle conservation in the bulk. An inclusion
of these processes in driven lattice gases breaks the spatial invariance of the cur-
rent. In Sec. 3.3 a generalization of the SBA considering the transport capacity
as a local quantity is introduced (local independent bottleneck approximation
(LIBA)). A local minimal principle for the current is derived, which is shown
to reproduce current profiles and phase diagrams of driven lattice gases with
defects. Applied on disorder ensembles, the approach yields the approximate
parameter region for phase separation.

The results provide insight into generic features of disordered driven systems.
While in their presented form they are restricted to binary quenched (time-
independent) disorder, it might be a favorable future task to extend the methods
to time-dependent defect distributions or allowing more than one defect value.
From a biological point of view, the results of this part might help to understand
and quantify the transport slowing effect by tau proteins in neuronal axons of
Alzheimer patients. Since neuronal activity depends vitally on transport of
e.g. neuro transmitters to synapses, it is assumed that this effect marks a
main contribution to the pathology of Alzheimer’s disease. On the other hand
inhibiting molecules can also be intentionally inserted in the system, as was
done in in-vitro experiments [22, 88], with the perspective to develop drugs that
can control or reduce intracellular transport by blocking molecular motors (e.g.
in cancer cells). Since on mRNA, clusters of slow codons have been observed
[77], results on the transport capacity of single bottlenecks can help to quantify
protein production rates in presence of high ribosome concentration. This might
improve understanding of gene regulation and synthetic protein production.

The second part of this thesis considers model networks, in particular dis-
ordered ones that correspond to the second type of inhomogeneities, (b). The
models introduced in this part combine free diffusion of particles with stages
of active transport on the network. The disordered model is motivated by
transport of vesicles on actin filaments by myosin V/VI. The model network is
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generated by growth dynamics motivated by real actin filament growth which
do not exhibit a preferred direction. For a periodic system this dynamics con-
stitutes a globally undirected network for large systems. However, not only
diffusive properties of particles are enhanced, but the presence of intersections
introduces the possibility of steric interactions between particles on different fil-
aments, inhibiting each others movement. Hence intersections act as defects in a
similar manner like in single track systems, inducing queues. It was shown that
in a regular square network, these clusters usually remain restricted to small size
scales, constituted by two individual queues. In contrast disordered networks
exhibit large well separated clusters, whose sizes are distributed by a power law
distribution while its exponent significantly depends on parameters of particle
dynamics and mesh size. It was shown that this scale free behavior can occur in
general if queues span over intersections inducing a cascade of cluster branching.
A mechanism that enhances growth of larger clusters (preferential attachment)
can explain the observed power law distribution. In contrast a comparison with
a clustering mechanism driven by attractive interaction of particles reveals that
there only clusters on intrinsic size scales exist.

The significant differences in qualitative aspects of the cluster distributions,
emerging from the different microscopic mechanisms, suggest that an exper-
imental analysis of cluster size distributions can help to identify microscopic
mechanisms. A possible application lies in the investigation of receptor clusters
on cell membranes (e.g. clusters of receptors that promote the internalization
of deleterious toxins in budding yeast [11]). While the optical resolution of sin-
gle receptors is a difficult task in-vivo, protein clusters can be observed ([90])
and conclusions on microscopic particle dynamics can be made, which might
improve the understanding of toxin uptake of cells.

If confining boundaries are included that restrict particle dynamics and fil-
ament growth on a finite volume/area, the translational symmetry is broken.
Investigating the mean orientation of filaments numerically, one observes a self-
organization of the network, in a way that plus-ends of filaments are predom-
inantly orientated away from the center, if growth dynamics are confined to a
sphere/disc. The bias of the network structure can be understood by an ar-
gument well known from electrostatics. This effect significantly reduces the
time which minus-particles (those moving to the minus-end of filaments) need
to travel from the boundary to the center compared to periodic boundary con-
ditions.

These observations suggest that the contribution of the actin network in the
dynamics of intracellular transport might not be restricted to enhancement of
diffusion but can also significantly drive directed radial transport between the
cell center, especially on the endocytic pathway. The results might be extendable
to study the effect of generic boundary conditions that are given e.g. by the
presence of cell organelles.
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Appendix A

Negative vs. positive edge
effect

We now want to determine a condition that the current decreases for a bottle-
neck approaching a boundary (negative edge effect). Again, due to the particle-
hole symmetry (2.8) it is sufficient to consider a bottleneck near the left bound-
ary. We have to distinguish if the current for a defect at a small distance
L1 = O(1) from the boundary is larger or less than the current for a defect far
from the boundary, L1 → ∞. Though the dependence of the current on the
position of the first defect is not always monotonic, for an approximation it is
sufficient to compare the current J(L1) for one position of the defect near the
boundary with the current J(∞) for a defect far from the boundary, since the
mixed edge effect (see Sec. 3.1.3) is quite weak and only in a small parameter
region. For simplicity we take L1 = 2.

Using (2.9) and (3.8) yields

J(α, β1, 2) =
αβ2

1 + α2β1

β2
1 + αβ1 + α2 + αβ2

1 + α2β1
, (A.1)

where β1 is the virtual exit rate of subsystem 1. The edge effect is negative if

J(α, β1, 2) < J(α, β1,∞) . (A.2)

In the L-phase1 we have J(α, β1,∞) = α(1− α) and (A.2) is fullfilled if

β1 < 1− α . (A.3)

Though we cannot determine β1 exactly, we can state that β1 is less than in
a homogeneous system with q = 1, β1 < βhom

1 . However, in a pure system there
is a flat density profile without correlations, and we have exactly βhom

1 = 1−α,
so (A.3) is always fulfilled. Therefore in the L-phase and, due to particle-hole-
symmetry, in the H-phase, the edge effect is always negative.

In systems with many randomly distributed bottlenecks it is very unlikely
that longest one is near the boundary. Thus the transition to the B-phase, where
the current is independent of the boundary rates, will occur for lower rates of
α(β), where the negative edge effect is predominant.

1The term “phase” here refers to the phases of the system with a defect far from the
boundaries where it is well defined.
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Appendix B

Phase diagram of the
disordered TASEP-LK

Usually it is quite difficult to determine the transition line between S- and DPS-
phase. One special case where it is possible to solve that problem exactly is in
the strong continuum limit in the disordered TASEP-LK for Ωa = Ωd =: Ω. In
addition the number of defects is infinite, while the defect density is scaled to
zero as φ = O(1/ lnL). The average length of the longest bottleneck in a system
of size L scales as lnL/ lnφ [61], so in the strong continuum limit there has to
be an infinitely large bottleneck with a local transport capacity J∗M = q/4.
Moreover, we can say that this is the case for any small interval of length ε if ε
is scaling slower than

√
1/L, corresponding to L

√
1/L =

√
L sites. The global

capacity field therefore simply is the constant function C(x) = q/4. Since the
defect density vanishes, the CDR is the same as in the homogeneous system as
was shown in the last sections numerically and analytically. The local boundary
current and density profiles will therefore be the same as in the homogeneous
system. Now the problem to solve is equivalent to finding the transition from S-
to LMH-phase1 in the homogeneous TASEP-LK if the homogeneous maximum
current J∗ = 1/4 is exchanged by q/4 [27]. In these works, the transition line
was determined to be β̃∗(α̃) = ρL(J∗) − Ω − α̃. Inserting J∗ = q/4, we obtain
for the transition line

β̃∗(α̃) = 1/2−
√

1− q
4
− Ω− α̃ (B.1)

which is just a shift of the phase transition line to the right by the term√
(1− q)/4. The properties of the phases of course are different to the ones

in the homogeneous system as was argued before (especially the absence of long
ranged boundary layers). The phase diagram is displayed in Fig. 3.34. We
have to point out that in this limit, the transition is of second order, since ξ is
continuous.

Nonetheless the vanishing of φ in the continuum limit is not quite physical,
so we try to obtain at least qualitative results for the S-DPS transition line for
finite φ. In Sec. 3.3.2 and 3.3.3 we have seen that a small but finite defect density
φ > 0 leads to a flattening of the local density profiles due to a broadening of the

1For definition of the LMH-phase, see [27].
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density peaks, so that their slopes ∂ρL,H
∂x , which are positive for Ωa = Ωd, α <

1/2, β < 1/2, are decreasing for higher current J .
Assume the system is on the transition line between S and DPS, i.e. a

triple point xt with Jα(xt) = Jβ(xt) = q/4 exists. A shift of both ρα and ρβ
by an infinitesimal amount dx also shifts the triple point though it persists.
In parameter space, this corresponds to a movement along the transition line,
while the boundary values are changed by

dα =
∂ρα
∂x

∣∣∣∣
x=0

dx and dβ = − ∂ρβ
∂x

∣∣∣∣
x=1

dx (B.2)

⇒ dβ

dα
= −

∂ρβ
∂x

∣∣∣
x=1

∂ρα
∂x

∣∣∣
x=0

(B.3)

using the relations α = ρα(0) and β = 1 − ρβ(1). Since the boundary current
Jα,β is monotonously increasing with α and β for α, β < 1/2, the flattening of
the density profiles leads to:

For β > α :
∂ρβ
∂x

∣∣∣∣
x=1

<
∂ρα
∂x

∣∣∣∣
x=0

⇒ dβ

dα
> −1 (B.4)

For α > β :
∂ρβ
∂x

∣∣∣∣
x=1

>
∂ρα
∂x

∣∣∣∣
x=0

⇒ dβ

dα
< −1 (B.5)

along the transition line. This corresponds to a concave distortion of the DPS-
phase as displayed in Fig. 3.34.
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