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„[…]. Das Rad verschwindet aus dem Straßenbild. Die Verkehrsmittel der Zukunft werden 

keine Räder haben, sondern nur gleiten oder schweben. Der Straßenverkehr wird in einiger 

Zeit seinen Höhepunkt erreicht haben und dann abflauen. […]. Wenn man nicht fliegt oder 

fährt, dann rollt man. Aber das Fliegen wird der neue Mensch vorziehen. Jeder wird sein 

leicht zu bedienendes Flugzeug haben, das Flugzeug des kleinen Mannes wird der 

Massenartikel der Industrie sein. 

So wird die Technik Triumphe feiern, und über Raum und Zeit fliegen. Zwei Ausklänge kann 

diese Entwicklung haben: entweder einen weltverheerenden Krieg oder die 

Weltgemeinschaft: keine Grenzen mehr, da die Sterne erreichbar sind. Die Welt ist eine 

einzige Familie.“ 

 

Zeitungsartikel „Im Jahre 2000“ aus dem Saarlouiser Journal vom 16.November 1928, eines 

unbekannten Autors, der die Zukunft aus der Vorhersage eines Fachmanns beschreibt. 
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Abstract 
 

The entomopathogenic bacteria of the genera Photorhabdus and Xenorhabdus display perfect 

model organisms to gain insights into the sophisticated interplay between symbiosis and 

pathogenicity. Moreover, numerous publications in the last years have demonstrated that these 

bacteria represent a rich source of secondary metabolites, which is exemplified in this work 

with the description of the novel xenofuranone compounds.  

The recently available genome sequence of Photorhabdus luminescens TT01 pointed out that 

many biosynthetic gene clusters remain silent as the corresponding product cannot be 

detected. The heterologous expression of a nonribosomal peptide synthetase, which resulted 

in the successful production of indigoidine, depicts one way to gain access on these cryptic 

gene clusters. In addition the genome sequence also enabled the identification of biosynthesis 

genes of the already known compound families of stilbenes and anthraquinones. Thereby a 

type II polyketide synthase cluster was identified, which is responsible for anthraquinone 

biosynthesis, representing only the second known type II PKS derived compound from a 

Gram-negative bacterium. Furthermore the identification of genes involved in stilbene 

biosynthesis led to the discovery of a unique and novel pathway, strongly differing from plant 

derived stilbenes.  
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Zusammenfassung 
 

Entomopathogene Bakterien der Gattungen Photorhabdus und Xenorhabdus eignen sich 

hervorragend als Modelorganismen um Einblicke in das komplizierte Wechselspiel zwischen 

Symbiose und Pathogenität zu erhalten. Darüber hinaus haben zahlreiche Publikationen der 

letzten Jahre gezeigt, dass diese Bakterien eine reiche Quelle an Sekundärstoffen darstellen. 

In der vorliegenden Arbeit wird dies anhand der neu beschriebenen Xenofuranone 

verdeutlicht. 

Die veröffentlichte Genomsequenz von Photorhabdus luminescens TT01 offenbarte, dass die 

meisten Biosynthese Gencluster „verwaist“ sind, das heißt es ließ sich bisher kein 

dazugehöriges Produkt detektieren. Die erfolgreiche heterologe Expression einer 

nichtribosomalen Peptidsynthetase und der damit verbundenen Produktion von Indigoidin, 

zeigte eine Möglichkeit auf um Zugang zu solchen „verwaisten“ Genclustern zu erhalten. Des 

Weiteren erlaubte die Genomsequenz nach Biosynthesegenen zu suchen, deren Produkte wie 

zum Beispiel die Stilbene oder die Anthrachinone bereits bekannt waren. Auf diese Weise 

konnte ein Typ II Polyketidsynthasecluster der für die Biosynthese der Anthrachinone 

verantwortlich ist identifiziert werden. Die Anthrachinone sind damit erst das zweite bekannte 

Beispiel eines Typ II PKS erzeugten Produktes aus einem Gram-negativen Bakterium. 

Zusätzlich gelang es die Gene, die an der Stilbenbiosynthese beteiligt sind zu identifizieren 

und damit einen neuen und einzigartigen Stoffwechselweg, welcher stark abweichend zur 

pflanzlichen Biosynthese funktioniert zu beschreiben.  
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Natural products and entomopathogenic bacteria 

Today no one can think of a life without drugs, as they have become indispensable agents 

helping to overcome and cure from numerous diseases and pathological dysfunctions. A 

pivotal role hereby refers to natural products as they have evolved in a biological context 

including structural complexity and stereochemistry.13 Although synthetic compounds are 

obtained in greater numbers and less time, they do not reach the relevance of natural products 

in the pharmaceutical area. Namely, 60% of the drugs that have reached the market over the 

past 20 years have their origins in nature.108 Among them are well known drugs of cancer 

treatment like taxol and doxorubicin, but also anti-infectives like tetracycline and 

vancomycin. The significance of natural products is underlined by the fact that 68.3% of anti-

infective and even 79.8% of cancer therapy drugs are natural products or inspired by natural 

products.33 Additionally to their medical relevance they also play an important role in 

agriculture where they are used for treating crop pests.31 

 

The discovery of penicillin by Alexander Fleming was a milestone and the initiation of 

natural product research. Since then more than 50.000 natural products with a molecular 

weight less than 2500 have been characterized from microorganisms.37 More than half of 

them are produced by bacteria of the genus Streptomyces. Many of these bacterial natural 

products also referred to as secondary metabolites play an essential role in pharmaceutical 

applications as antibiotics, cytostatics or immunosuppressive agents.37,38,134 Unfortunately, the 

misuse of antibiotics led to an increase of multidrug-resistant bacteria with the effect that 

former controllable or almost vanished diseases become a menace again.200 But also threats of 

new diseases brought about searching for unexplored sources of new natural products.56,146 

 

A sustainable way to discover new natural products is to look at the known and 

cultivable strains. However, a problem to cultivable microorganisms is that many biosynthetic 

genes remain dormant under standard laboratory conditions. The optimization of culture 

conditions or heterologous expression of these so called silent or cryptic pathways is one 

approach to obtain new metabolites.75 But even the co-cultivation of other bacteria or mimic 

of the ecological environment can help to successfully induce silent pathways.162 Another 

way to novel natural products is delivered by the metagenome technology, in which DNA is 

extracted from environmental samples and cloned into large insert libraries.35 It is estimated 

that only less than 1% of all microorganisms have been cultivated, due to cultivation 

difficulties.180 The metagenome technology opens the access to make the genetic and 
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functional diversity of these uncultured microorganisms available and provides a rich 

resource for novel natural chemistry.71,156 With this technology it is also possible to gain 

access to the potential resource of bacterial symbionts, for example in the microflora of 

insects or marine sponges.51,193 Symbiotic bacteria can be found in many associations with 

eukaryotes and have been proved to be a rich source of secondary metabolites.148 However, 

most of them are unculturable with traditional cultivation methods and only available through 

metagenome approaches. 

One exception represent the auspicious and barely investigated entomopathogenic 

bacteria Photorhabdus and Xenorhabdus in the order of Enterobacteriaceae.198 They unite the 

advantage of being easily cultivable with or without host and display appropriate model 

organisms to study the change of symbiotic and pathogenic relationships.28,55 Together with 

their symbiotic nematode partner they form a deadly and effective alliance against many soil 

living insects. Their ecological niche is adapted to eliminate saprophytic competitors and 

therefore they represent a potential source of antibacterial, antifungal, insecticidal and 

nematicidal compounds, which might become promising pharmaceutical antibiotics or 

biocides. 

Moreover, they have been established as an alternative biological control agent for 

plant protection in place of synthetic insecticides, which is also indicated by the onset of 

commercial mass production.47 The increasing danger of insecticide resistance and 

bioaccumulation of synthetic pesticides in food are growing problems of the human 

society.5,121,136 The application of entomopathogenic nematode/bacteria associations which act 

specific against certain insects and leaving beneficial animals unaffected add further to the 

interest in these organisms. 

 

 

A brief historical reflection on the taxonomy of entomopathogenic nematodes and bacteria 

The genera Photorhabdus and Xenorhabdus are entomopathogenic bacteria living in 

symbiotic mutualism with entomopathogenic nematodes (EPN) and are exclusively 

associated with the genera Heterorhabditis and Steinernema. Taxonomically these bacteria 

are classified into the γ-subclass of Proteobacteria in the family of Enterobacteriaceae.  

Nematode parasites of insects have been known since the 17th century, but in 1929 it 

was Glaser and Fox who first isolated a nematode from a beetle grub of Popillia japonica, 

which was described in the same year by Steiner as Neoaplectana and which should later 

become the genus Steinernema.172 But it took until 1965 before Poinar and Thomas were able 
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to isolate a symbiotic living bacterium from the intestinal lumen of a nematode, which was 

identified as a new species and assigned into the genus Achromobacter named Achromobacter 

nematophilus.186 As the 1926 introduced genus Achromobacter combined a number of 

different species including Gram positive and negative bacteria, the generic name was 

rejected in 1974 as not well defined and a nomen dubium.72  

In the meantime several new bacterial strains were obtained from the nematode genus 

Neoaplectana, but also from a nematode belonging to a different and new entomopathogenic 

genus assigned Heterorhabditis. In 1979 as a causality of the generic rejection and in order to 

accommodate all these entomopathogenic and nematophilic bacteria Thomas and Poinar 

erected the new bacterial genus Xenorhabdus. The name is composed of the Greek noun 

xenos meaning “enemy stranger” and the Greek/Latin noun rhabdos/rhabdus meaning “rod” 

referring to the life habitat and phenotype of these bacteria.185 The new isolated 

heterorhabditidae associated bacterium was named Xenorhabdus luminescens due to its ability 

to produce bioluminescence. But very soon it became obvious that this new strain showed 

many differences compared to the rest of the genus Xenorhabdus, apart from its different 

nematode host and capability of bioluminescence. Therefore, in 1993 Boemare introduced the 

new genus Photorhabdus to cope with the outstanding characteristics of this bacterium.14 This 

fact led to a pleonasm in the species name Photorhabdus luminescens.  

 

The genera Photorhabdus and Xenorhabdus endure to date and encompass all isolated 

bacteria from entomopathogenic nematodes of Heterorhabditis and Steinernema, respectively. 

 

 

The life cycle of Heterorhabditis and Steinernema 

The life cycle of Heterorhabditidae and Steinernematidae is very similar in most features. 

Both form a so called infective juvenile (IJ), also called dauer juvenile (DJ), a nonfeeding 

(mouth and anus are closed), long-term survival, soil-dwelling and developmental arrested 

stage of the nematode, representing the only stage of the nematode outside of the insect. In 

this stage the IJ outlasts in the soil and waits for a suitable insect prey.  

One can distinguish between two different foraging behaviours, namely a cruiser and 

an ambusher strategy.24 The ambusher or sit-and-wait strategy is followed by Steinernema 

carpocapsae, which means the nematode waits passively near the soil surface until a suitable 

insect larva passes and uses the chance to enter the insect through natural openings like 

mouth, anus and spiracles. Heterorhabditis bacteriophora practices a cruiser strategy, 
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meaning the nematode seeks actively for prey in the soil attracted due to volatile signal 

molecules.140,150 Unlike Steinernema species it also possesses a dorsal “tooth”- like structure 

which even enables it to penetrate through the intersegmental sections of the insect 

integument.94  

Before entering into the insect the nematode strips off its outer cuticula to uncover 

mouth and anus. Once inside the prey the bacteria are released into the haemocoel. In case of 

Heterorhabditis it could been shown that after a lag phase of 30 minutes the IJ regurgitates 

the bacteria, which are located in the intestine of the nematode, in a pulsatile and staggered 

manner at an average rate of one cell every two minutes.26 In Steinernematidae the bacteria 

are kept in special vesicles in the intestine and the bacteria are released by defecation through 

the anus when the nematode begins to ingest haemolymph.10,169  

Both nematode and bacteria overcome immune response by a variety of different 

mechanisms which kill the insect due to septicaemia within 48 hours. Many of these 

mechanisms remain to be characterized but some of them are disclosed in the following 

sections. Inside the host the bacteria multiply very fast and help to exploit and decompose the 

organic matrix of the insect, thereby supporting the reproduction of the nematodes. In 

addition, the bacteria themselves are also a nutrient source for the nematodes. Moreover, they 

help to protect the insect carcass from infection with opportunistic competitors by secreting 

metabolites into their environment.  

Within this environment the nematode undergoes a very complex life cycle. After 

entering the host it exits the dauer stage triggered by a food signal which is produced by the 

bacteria.179 This change from nonfeeding to feeding stage is also called “recovery”. When 

recovery takes place the nematode develops into a fourth stage juvenile J4 before becoming a 

male or egg laying female adult. The insect domiciliated nematodes reproduce for 2-4 

generations within the insect running from the egg through different juvenile stages J1, J2, J3, 

J4 and adult (Figure 1). On the other hand, nematodes of the genus Heterorhabditis are able to 

use another additional and extraordinary way to progeny in which IJs turn into self-fertile egg 

laying hermaphrodites. Thereafter the offspring can also develop into hermaphrodites, 

females and males, but the development of IJs is mainly restricted to intrauterine hatching and 

matricide in hermaphrodites, also known as endotokia matricida (Figure 1).24,27,91 

Finally, when the nutrients are depleted the nematodes develop into the IJ form. The 

bacterial symbiont of Heterorhabditis is transmitted maternally, as the IJs consume the 

bacteria enriched cavity of the mother nematode. Only one or two Photorhabdus cells 

colonize per IJ and reproduce within the nematode to a mature population of 50 to 150 cell 
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forming units per IJ.69 The source of IJ colonizing bacteria in Steinernema has not been 

investigated so far, but the colonization process is analogue to the Heterorhabditis-

Photorhabdus event.122 Thus, dependent on the size of the insect larva up to several hundred 

thousand IJs emerge from the disembowelled insect cadaver.187 

 

J3

J4

♀

♂

♂♀

egg

J1

J2

J3
J4

IJ

J2d

IJ

Recoveryendotokia
matricida

 

Figure 1. Life cycle of Steinernema and Heterorhabditis. The entomopathogenic phase is induced by 
the recovery of the IJ. The nematodes undergo different developmental stages before developing into 
IJs again (highlighted by red arrows). Heterorhabditis is able to undergo an alternative way to 
progeny, in which hermaphrodites occur (highlighted by blue arrows). Here IJs are generated by 
intrauterine hatching and matricide, a process called endotokia matricida. 
 

 
The genus Photorhabdus 

The genus Photorhabdus comprises the three species Photorhabdus luminescens, 

Photorhabdus temperata and Photorhabdus asymbiotica, which all include several further 

subspecies and are always, associated with nematodes of the genus Heterorhabditis. 

Photorhabdus forms Gram-negative, asporogenous, rod-shaped (2-6 × 1-1.4 µm) peritrichious 

cells. All strains are mesophilic bacteria with an optimal growth temperature at 28-30 °C, only 

some strains exhibiting an even broader temperature range between 16-38 °C.53,145 The fact 

that Photorhabdus cells cannot reduce nitrate but can produce iso-branched fatty acids is very 

uncommon to Enterobacteriaceae and keeps them detached from other genera in this 

family.89,182  

Another uncommon and remarkable feature is their capability to produce 

bioluminescence. The bioluminescence is obtained by a set of lux genes, which share high 

syntheny to lux genes from the phylogenetically distant genera Vibrio and Photobacterium, 

suggesting a horizontal gene transfer.63 Nevertheless, Photorhabdus is currently the only 
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known non-marine luminous bacterium, but the biological function of the produced 

bioluminescence is still elusive. 

Photorhabdus is also marked by another laboratory relevant trait. One can observe a 

variation in colony forms after prolonged subculturing, a primary and a secondary form which 

are also referred to as phase 1 and phase 2 forms. The primary form is displayed by 

pigmentation, the adsorption of dyes like bromothymol blue or neutral red, the ability to 

constitute inclusion bodies and to bioluminesce, but also to produce lipases, phospholipases 

and proteases. The secondary form has lost these characteristics and can be further 

discriminated by a decreased support of nematode growth and antibiotic production. It has 

been shown that isolates from nematodes are always in primary form and the conversion is 

unidirectional from primary to secondary form.66,192 

In principle all Photorhabdus isolates are obtained from infected insects or their 

associated nematode host and no free living strains have been detected yet. However, some 

isolates of human wounds draw attention as clinical relevant strains causing invasive soft 

tissue and disseminated bacteremic infections. It was the first time that the bacterium was not 

recognized to be associated with a nematode and according to this the strain was given the 

name P. asymbiotica. But the epithet turned out to be a misnomer, as in 2006 Gerrard et al. 

succeeded in identifying the nematode symbiont.64 For all that, the reports of Photorhabdus 

asymbiotica isolates from human wounds revealed that this strain represents an opportunistic 

human pathogen, in which the nematode part during infection is still unclear.50,65  

A very important part in the pathogenicity of Photorhabdus is provided by the 

production of insecticidal toxins, whereof one family are the toxin complex (Tc) proteins, 

which consist of high molecular weight proteins. These toxins mediate an oral activity against 

many insects and represent an alternative to the entomopathogenic Bacillus thuringiensis 

toxins, as one protein was already expressed in transgenic plants conferring insect 

resistance.194,195 Another effective protein is the makes caterpillar floppy (Mcf) toxin, which 

derived its name from the phenotype, which is induced by Mcf treatment that leads to a rapid 

loss of body turgor making the caterpillar floppy. Mcf is a potential toxin inducing apoptosis 

on the insect haemocytes and midgut epithelium. The extraordinary potency of Mcf was 

evinced by the conclusion that non-entomopathogenic E. coli harbouring the mcf gene were 

able to persist within the insect and furthermore were even able to kill the insect.34,42 

However, small molecules play also an important part in pathogenicity and symbiosis. 

Watson et al. succeeded in showing that an exbD homologue, a component of the TonB 

complex, is needed for the uptake of small iron scavenging siderophore molecules in 
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Photorhabdus temperata. A mutation in this gene generated a less virulent phenotype that was 

unable to support nematode development.197 Further evidence of the involvement of small 

molecules in symbiosis was gained from a mutation in the gene ngrA. This gene encodes a 

phosphopantetheinyltransferase that is required to activate polyketide synthases (PKS) and 

nonribosomal peptide synthetases (NRPS), which are responsible for the production of 

secondary metabolites.25 The mutation resulted in a phenotype unable to support IJ recovery 

and let presume that small molecules also act as signalling molecules. A detailed overview on 

secondary metabolites of Photorhabdus is given in the section of secondary metabolites. 

The life cycle of Photorhabdus implicates a switch between mutualism in the 

nematode and pathogenicity in the insect as well. This change is subject to regulatory 

networks and some regulatory proteins have been described. A mutation in the gene pgbE1 

that is part of the seven gene pgbPE operon rendered Photorhabdus to an attenuated 

virulence. It could also be shown that pgbE1 is required for a proper colonisation of the IJ.9 

The already alluded phase variation is also discussed as an adaptation to the respective 

virulent or symbiotic phenotype. A mutation in the hexA gene, a transcriptional regulator, was 

sufficient to restore most of primary-specific characteristics in a secondary form, whereas 

overexpression of hexA in the primary form triggered a conditional phenotypic variation 

towards secondary form.92,93 But phase variation is also influenced by the AstR-AstS two-

component signal transduction system (adaptation to stationary-phase regulator and sensor), 

which positively regulates the universal stress proteins UspA, UspB and UspC. These stress 

proteins help to respond and protect on changes in the environment. Mutants in the astR gene 

were shown to undergo phase variation much earlier than the wildtype.40 

 

 

The genus Xenorhabdus 

The genus Xenorhabdus comprises of twenty highly diverse species X. nematophila 186, X. 

bovienii, X. poinarii, X. beddingii,1 X. japonica 137, X. budapestensis, X. ehlersii, X. innexi, X. 

szentirmaii,111 X. cabanillasii, X. doucetiae, X. griffiniae, X. hominickii, X. koppenhoeferi, X. 

kozodoii, X. mauleonii, X. miraniensis, X. romanii, X. stockiae and X. indica.175,184 All 

Xenorhabdus strains have been found in a mutualistic association with nematodes of the 

genus Steinernema. The cells are rod shaped, mesophilic, Gram-negative, asporogenous and 

peritrichous flagellated. Another striking characteristic is the occurrence of proteinaceous 

crystalline inclusion bodies in the stationary phase. One of these crystal proteins in 

Xenorhabdus nematophila is encoded in the gene pixA, but unlike the crystal proteins of 
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Bacillus thuringiensis they show no insecticidal activity and therefore it is hypothesized that 

they might help to support the growth of the nematode host.74  

The genus Xenorhabdus is highly isolated in the family of Enterobacteriacea. There is 

only a 4% DNA/DNA relatedness to the type species of the type genus of Enterobacteriaceae. 

In addition they are unable to reduce nitrate and lack the enzyme catalase, which both are 

positive characteristics of other genera in this family.49 Nevertheless, the affiliation to the 

family of Enterobacteriaceae is confirmed by phylogenetic analyses based on 16S rDNA and 

the existence of the enterobacterial common antigen.18,149 

In Xenorhabdus as well as in Photorhabdus, insecticidal toxins contribute to the 

pathogenicity against insects. The cytotoxin Xenorhabdus α-xenorhabdolysin was purified 

from X. nematophila and showed an apoptotic and haemolytic activity. This cytotoxin is 

encoded by two genes xaxA and xaxB and homologues thereof can also be found in other 

entomopathogenic bacteria like Photorhabdus and Pseudomonas entomophila.189 

The life cycle of Xenorhabdus comprises a switch between mutualism and 

pathogenesis. Some of the responsible elicitors could be described in the last years. For 

example, the CpxRA two-component system, representing a histidine kinase dependent signal 

transduction system was revealed to be a regulator between mutualism and pathogenicity in 

Xenorhabdus nematophila. Mutants in the CpxRA system were shown to be less virulent 

towards insects and exhibited a reduced expression level of the gene mrxA, which encodes a 

fimbrial subunit that is needed for the efficient colonization of the nematode host gut.23,73 

Another global regulator is Lrp, the leucine-responsive regulatory protein. This regulator was 

shown to have a great impact on the expression of more than one hundred proteins, leading to 

an attenuated virulence against insects and the inability to colonize and grow within the 

nematode host. Moreover, Lrp seems to affect the phase shift of Xenorhabdus nematophila.32 

The phenotypic variation of Xenorhabdus is a congruent trait to Photorhabdus, but unlike in 

Photorhabdus the phase switch is to some extent reversible in Xenorhabdus.67 

Recent findings denoted that motility and regulation of motility are connected with the 

virulence of Xenorhabdus nematophila towards insects. For this it could be shown that 

mutants of lrhA encoding a transcriptional regulator exhibited a less virulent phenotype and a 

reduced swimming motility.154 This connection is also confirmed by the identification of FliZ 

as an indirect activator of flagellin production and consequently responsible for motility, but 

moreover as direct regulator of the cytotoxin encoding xaxAB operon.106 

Insight into the mechanism how the bacteria overcome the insect immune response 

was delivered by the observation that a bacterial compound, presumably benzylideneacetone 
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(see also next section) inhibits the insect phospholipase A2.
103 This phospholipase plays an 

important role in the insect immune system as it turns on the eicosanoid biosynthesis pathway 

by hydrolyzing arachidonic acids from cellular phospholipids, which then mediate 

phagocytosis and nodulation.142,143 This points out those secondary metabolites are conducive 

in the interchange between symbiosis and pathogenicity. 

 

 

Secondary metabolites of Photorhabdus and Xenorhabdus 

More than fifteen compound classes have been isolated from Photorhabdus and Xenorhabdus 

in the last three decades denoting a high structural biodiversity and specificity among these 

compounds.17 

Four classes of compounds are specifically described in the genera Photorhabdus. 

Derzelle et al. were able to identify a gene cluster in Photorhabdus responsible for the 

biosynthesis of carbapenems, a class of β-lactam antibiotics that have a carbon in place of 

sulphur in the 5-membered ring system. This antibiotic class showed activity against a few 

Gram-negative bacteria.39 The first isolated secondary metabolites from Photorhabdus were 

stilbenes namely 2-isopropyl-5-[(E)-2-phenylethenyl]benzene-1,3-diol (IPS) and 2-ethyl-5-

[(E)-2-phenylethenyl]benzene-1,3-diol (ES),144 a class of multipotent compounds which are 

part of this work and which will be described in detail in chapter 1 and the discussion. An 

epoxidized form of IPS 2-isopropyl-5-(3-phenyl-oxiranyl)benzene-1,3-diol (eIPS) was 

isolated recently from infected insect larvae and showed activity against many bacteria and 

even against a drug-resistant clinical strain of Staphylococcus aureus. Additionally, 

cytotoxicity against some human cancer cell lines was also observed.84 

Yellowish to reddish pigments conferring the characteristic colour to most 

Photorhabdus strains are originated from a type II derived polyketide synthase (PKS), which 

forms polyaromatic anthraquinones.16,155 These pigments show a weak antibacterial 

activity,117,183 but the main mode of function is not yet unravelled. The biosynthesis of 

anthraquinones is described in chapter 2 and is also part of the discussion. 

As mentioned before Photorhabdus also produces a catecholate siderophore named 

photobactin which contributes to the antibiosis in the insect cadaver.25 
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Figure 2. Secondary metabolites of Photorhabdus. 2-isopropyl-5-[(E)-2-phenylethenyl]benzene-1,3-
diol (IPS), 2-ethyl-5-[(E)-2-phenylethenyl]benzene-1,3-diol (ES) and 2-isopropyl-5-(3-phenyl-
oxiranyl)benzene-1,3-diol (eIPS). As the carbapeneme derivative has not been isolated yet, only the 
basic structure is displayed. 
 

Most of the isolated and elucidated secondary metabolites are originated from the 

genus Xenorhabdus in particular from X. nematophila and X. bovenii. Benzylideneacetone a 

small and heat stable molecule was identified from X. nematophila. Although this compound 

has been known for a long time before and even is used as food and cosmetic flavouring 

additive, it was never related to antibacterial activity. In this context it was the first report as 

an antibiotic with activity against several Gram-negative plant-pathogenic bacteria.90 More 

pregnant was the evidence that benzylideneacetone acts as phospholipase A2 inhibitor which 

mediates immunosuppression in the insect and consequentially might enhance the virulence 

of the bacteria and nematode complex.103 

The xenocoumacins 1 and 2 are the major antibiotics in X. nematophila. They exhibit a 

broad biological spectrum as they show antibacterial activity against many Gram positive 

bacteria and bear a strong antiulcer activity. In addition xenocoumacin 1 also mediates an 

antifungal activity.126 Very recently the biosynthesis gene cluster of xenocoumacins was 
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identified and revealed several independent transcriptional units. This seems consistent with 

the detection that xenocoumacin 2 is derived biosynthetically from xenocoumacin 1 in a much 

later phase of growth.12,151,152 

The xenorhabdins are a class of natural products which belong to the class of 

pyrrothines that endow an unusual dithiol moiety. Pyrrothines with different moieties are also 

known from other bacteria, like thiomarinol from the marine Alteromonas rava.81 

Xenorhabdins were isolated from X. nematophila and X. bovienii, whereas the oxidized 

xenorxide derivatives are only known from the latter one. Several xenorhabdin derivatives 

have been described to confer antibacterial, antifungal and insecticidal activity.114,125  

Other secondary metabolites that have been isolated are the indol derived compounds 

from X. bovienii and nematophin from X. nematophila.112,113,115,144 All of them display good 

antibacterial activity particularly against the clinical relevant strain Staphylococcus aureus. 

Moreover, some of them are active against fungi of medical and agricultural importance.113,116 

The phenylacetamides are also another class of compounds which were isolated from X. 

nematophila.141 These compounds own a significant cytotoxicity against several human 

cancer cell lines, which is mediated by apoptosis through activation of caspase, a cysteine 

protease.88  

Most of the discussed compounds are small molecules and have a low molecular weight but 

recently the first peptides xenortides and xenematide could be isolated from X. nematophila 

showing a moderate insecticidal activity.105 At the same time Reimer et al. succeeded in 

identifying the corresponding biosynthetic gene cluster, which consists of nonribosomal 

peptide synthetase (NRPS) enzymes (Reimer et al., unpublished). In the same way a family of 

new linear peptides named rhabdopeptides were identified (Reimer et al., unpublished).  

Two other natural products from the genus Xenorhabdus were made accessible from 

the recently described X. szentirmaii. Colonies of X. szentirmaii have a striking phenotype by 

their purple metallic colour. This colour is originated from the already known phenazine 

pigment iodinin which was first isolated from Chromobacterium strains.29,30 However, the 

most abundant compounds in X. szentirmaii are represented by the xenofuranones whose 

biological function is completely unknown.15 
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Figure 3. Secondary metabolites of Xenorhabdus 
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Polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) 

Many secondary metabolites are synthesized by special enzymes for example anthraquinones 

through a polyketide synthase (PKS), xenematides through a nonribosomal peptide 

synthetase (NRPS) and xenocoumacins through a NRPS/PKS hybrid. Both, PKS and NRPS 

have in common that they work like an assembly line in which extender units are modified 

and connected through the action of special enzyme activities.20 

 

The biosynthesis of polyketides is similar to the biosynthesis of fatty acids through the 

fatty acid synthase (FAS). In contrast to FAS, PKS show a variable reduction of the resulting 

β-ketoacyl derivative and have access to a larger pool of extension and starter units.173  

Today PKSs are separated into three types based on their functional organization. 

Type I PKS are large proteins which carry different enzymatic activities, also referred to as 

domains. A set of domains which is needed for the incorporation of one extender unit is 

termed module. A polypeptide can consist of several modules; thereby the nascent polyketide 

product stays in colinearity to the protein assembly line.82 Type II PKS are discrete 

dissociable proteins which only own one enzymatic activity or domain, respectively. This 

type of PKS resembles the bacterial type II FAS. The discrete proteins work synergistically 

and can be used iteratively, thus the final product cannot be predicted.77 Type III PKS also 

known as chalcone synthase (CHS) and stilbene synthase (STS), represent an enzyme family 

which produces many plant pigments and other common plant metabolites. Originally, their 

occurrence was only restricted to the plant kingdom, but since then a growing number of type 

III PKS have also been found in bacteria. Substantial differences to the PKS types explained 

before consist in the utilization of coenzyme A (CoA) esters instead of acyl-carrier protein 

(ACP) bound derivatives. Secondary, the catalytic activity of a single active site takes control 

of the complete biosynthesis including decarboxylation, condensation, cyclisation and 

aromatisation reactions.4,165 

 

The following section will focus on the machinery of a type II PKS, as this type is 

most relevant for this work. Polyphenolic ring systems are typical type II PKS products, such 

as in actinorhodin or tetracycline. This type of PKS consists of several invidiual enzymes. A 

set of three enzymes, a ketosynthase α (KSα), a ketosynthase β (KSβ) and an acyl carrier 

protein (ACP) were shown to be sufficient to produce the polyketide backbone when used 

iteratively. An instance which termed these set of enzymes minimal PKS.77 Thereby the ACP 

has to be transformed from an inactive apo-form into an enzymatically active holo-form. This 
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activation step is catalyzed by a phosphopantetheinyltransferase (PPTase) which transfers a 

4´-phosphopantetheinyl moiety of coenzyme A onto the β-hydroxygroup of a highly 

conserved serine residue of the ACP.104,131 It is generally accepted that both ketosynthases 

form a heterodimer that moulds an interior pocket to protect the nascent polyketide from 

spontaneous condensations. With only few exceptions the chain extension initiates with 

acetate.132 The origin of the starter unit is still a matter of debate as type II PKS lacks a starter 

unit loading acyltransferase (AT) like in type I PKS assembly lines. One possible mechanism 

is the decarboxylation of malonyl-ACP to acetyl-ACP by the KSβ domain which lacks the 

active cysteine site of the KSα.
11 The acetyl group is then passed to prime the active KSα 

(Figure 4). Afterwards the ACP is reloaded with a malonate extender unit again which 

subsequently acts as an electrophile that is transiently docked to the ACP until the KSα driven 

carbon-carbon condensation is catalyzed. The β-ketoester is then transferred back to the KSα 

and another cycle can begin (Figure 4).77,178 

 

Figure 4. Polyketide synthesis by the type II minimal PKS. Priming of KSα is presumably achieved by 
decarboxylation of malonyl-ACP to Acetyl-ACP by the KSβ domain. The acetyl group is then passed 
to the active site of the KSα domain and the ACP is loaded with a malonate extender unit. The 
formation of an ACP bound β-ketoester takes place in a KSα catalysed condensation reaction. The β-
ketoester is then transferred to the KSα domain again and with the reloading of malonate onto the ACP 
another extension cycle can begin. 
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The chain release factor for the final polyketide is still unknown as a thioesterase (TE) 

found in type I PKS is lacking.77 Here, the TE facilitates hydrolysis of the final polyketide to 

the free acid or catalyses the intramolecular cyclisation to a macrolacton or macrolactam 

ring.101 In type II PKS at least, it was shown that KSβ plays a role in determining the 

polyketide chain length and is therefore also called chain length factor (CLF) in literature.19 

Type II PKS gene clusters often comprise additional genes encoding for ketoreductases, 

cyclases or aromatases, which are crucial to define the polyketide folding pattern.76 

Furthermore the gene cluster can contain so called tailoring enzymes like oxygenases, 

glycosylases or methyltransferases, which are involved in post-PKS modifications. These 

modifications not only originate in a greater structural diversity, they also contribute to a 

proper bioactivity of the natural product.127 

 

Nonribosomal peptides are synthesized by NRPS enzymes which are organized into 

domains and modules similar to PKS type I systems.101 The loading of the starter and 

extender amino acid is adopted by the ATP dependent adenylation domain (A), which shows 

specificity for the activation of a certain amino acid.177 The activated aminoacyl-AMP is then 

translocated to an ACP-analogue peptidyl-carrier protein (PCP), which also requires 

activation through a PPTase as described before. The peptide-bond formation is mediated by a 

condensation domain (C), which catalyses the nucleophilic attack of the amino group of the 

downstream activated amino acid onto the upstream activated aminoacylthioester. Successive 

amino acid incorporation into the growing peptide chain is accomplished by running through 

the remaining downstream located modules. The release of the final peptide chain is obtained 

by a TE leading to linear or cyclic peptides.22,52,167  

Additional optional NRPS domains, which are located within single modules, increase 

the structural diversity of nonribosomal peptides. Examples for such additional domains are 

epimerization domains (E) which convert L- to D-amino acids, cyclisation domains (Cy) 

which facilitate the formation of heterocyclic elements like oxazoline and thiazoline rings 

from serine, threonine and cysteine and oxidation domains (Ox).95,128,153,190 The utilization of 

more than 100 nonproteingenous amino acids through NRPS enzymes and post NRPS 

modifications allow the synthesis of an unimaginable number of different natural 

products.87,158,170 

This structural diversity is expanded by the occurrence of NRPS/PKS hybrids, 

biosynthetic pathways in which NRPS and PKS modules directly interact with each other.43,44 
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Outline 

The aim of this work was to obtain new insights into the secondary metabolism of 

Photorhabdus and Xenorhabdus. Therefore one part of this work was dedicated on the 

screening for new natural products of different Photorhabdus and Xenorhabdus strains. The 

other part was uniquely dedicated to the strain Photorhabdus luminescens and the 

identification of its major secondary biosynthetic pathways.  

 

   Since the pioneer work in the 1980s and early 1990s on natural products of 

Photorhabdus and Xenorhabdus, secondary metabolism became a stagnant research field in 

the last few years. Although both bacterial species are used as biological control agents in 

agriculture and thereby represent a potential source of bioactive molecules, no effort was put 

in the isolation of new metabolites and the elucidation of biosynthetic pathways of already 

known natural products.  

   The published genome of P. luminescens laumondii TT01 in 2003 confirmed once 

again the potential of Photorhabdus as a multiproducer of secondary metabolites. Thus, the 

genome annotation revealed that 7.5 % of the genome encode 22 different secondary 

metabolites associated gene clusters.17,45 

   The now available genome data of TT01 offers different approaches to gain more and 

new information of biosynthetic pathways and their secondary metabolites. Exploiting this 

fact, one major scope of this work was to identify the biosynthetic pathway of the bacterial 

stilbenes and anthraquinone pigments. Special interest was drawn on stilbene synthesis as 

Photorhabdus represents the only currently known non plant stilbene producer. However, 

stilbenes are very common plant metabolites which are originated through a type III PKS 

stilbene synthase, but a corresponding enzyme is absent in Photorhabdus. Therefore it was 

challenging to identify the required enzymes. First evidence of enzymes required for the 

production of stilbenes was given by a phenylalanine ammonium lyase (PAL) mutant 

generated by the group of David Clarke, which was also the starting point for the supplied 

work.199 

   Another focus was weighed on the red anthraquinone pigments of Photorhabdus. 

These polyaromatic polyketides are typical type II PKS derived compounds. The genome data 

revealed a single type II cluster, which is very rare in Gram-negative bacteria and so far only 

the second example known.16,159 Accordingly, the main interest was to verify the biosynthetic 

origin of the anthraquinones, but also to gain a deeper insight into the mechanisms of this still 

not well understood type of PKS. 
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   Attention was also paid to biosynthetic gene clusters for which no product could be 

assigned. As already pinpointed the genome analysis revealed 22 biosynthetic gene clusters, 

but only four compound classes were known at the beginning of this work. This instance 

indicates that many secondary products are still unidentified, because either they are produced 

in minor amounts and are difficult to isolate and detect by conventional analytic methods or 

they are not produced at all. Therefore it was also an effort to express one of these so called 

silent or cryptic gene clusters with the help of a heterologous host and to identify the 

corresponding product. 
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Summary 

The entomopathogenic bacterium Photorhabdus luminescens TT01 is a potential producer of 

secondary metabolites exemplified by stilbenes and anthraquinones. Nevertheless, no 

indigoidine production was ever reported in Photorhabdus although genes similar to the 

Erwinia chrysanthemi indigoidine pathway can be also found in the genome of P. 

luminescens TT01. Heterologous expression of indC (plu2185) in E. coli led to the production 

of indigoidine and confirmed its function. Moreover, it could be demonstrated that the genes 

indA (plu2187) and indB (plu2182), which are thought to be involved in indigoidine 

biosynthesis in E. chrysanthemi, are not essential for indigoidine production in Photorhabdus. 

By contrast, the coexpression of several upstream of indC located genes revealed two putative 

genes plu2183 and plu2185 that might play a role in the regulation of indigoidine production. 

 

Introduction 

The blue diazadiphenoquinone pigment indigoidine is produced by a large group of different 

bacteria like Corynebacterium insidiosum, Pseudomonas indigofera, Arthrobacter 

polychromogenes and the phytopathogenic Erwinia chrysanthemi.6,12 Blue pigmented cultures 

have been described as early as 1890, but the slow partial loss of the exocyclic nitrogen 

hindered the elucidation of the indigoidine structure.4 Finally, synthetically produced 

indigoidine and its hydrolysis products provided evidence for its 5,5´-diamino-4,4´-

dihydroxy-3,3´-diazadiphenoquinone-(2,2´) structure.4,5 The characterization and 

identification of a nonribosomal peptide synthetase (NRPS) of Erwinia chrysanthemi 

involved in indigoidine production shed light on the biosynthetic origin.9 NRPSs are widely 

distributed among bacteria and are associated with the biosynthesis of many peptide 

antibiotics. These enzymes are large proteins which consist of multiple catalytical domains for 

the incorporation and processing of amino acids. The indigoidine (ind) synthetase contains an 

adenylation domain (A), an oxidation domain (Ox), a peptidyl-carrier domain (PCP) and a 

thioesterase domain (TE). Recent in vitro experiments demonstrated that the adenylation 

domain of the indigoidine synthetase preferentially uses L-glutamine as substrate and only 

precursor for indigoidine production.13 Based on this fact, the final indigoidine formation is 

presumably achieved through condensation of two intramolecular cyclised glutamines which 

are further oxidised (Figure 1).  
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Figure 1. The proposed biosynthesis of indigoidine. Glutamine is activated by the indigoidine 
synthetase IndC, cyclised by an intramolecular amide bond formation and then oxidized to give 4-
aminocyclohex-4-ene-1,3-dione. A condensation of two molecules forms the final indigoidine. The 
indigoidine synthetase is a single module nonribosomal peptide synthetase consisting of an 
adenylation domain (A); an oxidation domain (Ox), which is embedded between the conserved motifs 
1-8 and 9-10 of (A); a peptide carrier protein (T) and a thioesterase (TE). 
 
 

Genome analysis of Photorhabdus luminescens TT01 showed that homologues of 

Erwinia chrysanthemi indigoidine synthetase IndC and two other proteins IndA and IndB, 

both dedicated to the indigoidine biosynthetic pathway, are also existent in Photorhabdus 

(Figure 2). In Erwinia the genes indA and indB probably constitute an operon, but no specific 

function could be assigned to IndA whereas IndB shows similarity to phosphatases that are 

involved in the antibiotic synthesis of naphthomycin, ansatrienin and mitomycin C of some 

Streptomyces strains.9 However, the absence of indigoidine in extracts of Photorhabdus 

implied that indigoidine production could be subject to a strong regulation mechanism or that 

indC is not functional at all. In order to elucidate these possibilities the corresponding genes 

indC and indA were heterologously expressed in E. coli. Furthermore a set of six genes 

including indB, which is located upstream of indC was also heterologously coexpressed. 
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Figure 2. Organisation of the indigoidine biosynthesis gene cluster in Photorhabdus luminescens TT01 
and Erwinia chrysanthemi, furthermore an indigoidine enriched extract from E. coli. 
 
 
Results 
 
Heterologous expression of indC and indA in E. coli EC100D pir-116. A 5150 bp fragment 

containing indC and indA was amplified from genomic DNA of Photorhabdus luminescens 

TT01 and cloned via restriction sites SphI and SacI into pUC18 plasmid. The amplification 

product also contained the original indC promotor. The obtained construct pUC18indCA was 

transformed by electroporation into E. coli EC100D pir-116 cells. For the activation of the 

PCP domain of IndC, the gene mtaA encoding a phosphopantetheinyltransferase was 

coexpressed on plasmid pSUmtaA containing a compatible selection marker and origin of 

replication.2 Liquid cultures expressing both plasmids changed their colour into dark blue in 

less than 24 hours. Liquid cultures only expressing the pUC18indCA construct without 

coexpression of mtaA stayed unchanged (Figure 3). In order to prove if indA is essential for 

the biosynthesis the complete gene was deleted from plasmid pUC18indCA resulting in the 

new plasmid pUC18indC. Liquid cultures expressing pUC18indC and pSUmtaA were also 

able to produce the blue pigment without significant difference to the expression of 

pUC18indCA with pSUmtaA. 

Figure 3. Heterologous expression of pUC18indCA in E. coli EC100D pir-116 coexpressed with 
pSUmtaA (left tube) and without pSUmtaA (right tube). 
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Identifiaction of indigoidine. After 24 h a 250 ml liquid culture of blue pigment producing 

E. coli EC100D pir-116 expressing pUC18ind and pSUmtaA was lyophilized. The dried 

extract was washed once with water and lyophilized again. For HRESIMS measurement the 

dried extract was dissolved in DMSO/Methanol (50:50) containing 1% formic acid and 

analysed via direct injection. Mass spectrum analysis yielded a peak at 248.05412 m/z 

corresponding to the molecular formula of indigoidine (C10H8N4O4) which was also consistent 

with the results of Takahashi et al.13 

 

Heterologous coexpression of a set of six genes including indB. A cluster of six genes 

including indB is located upstream of indC. In order to test if indB or another gene of this 

cluster is involved in the production or regulation of the blue pigment those were coexpressed 

with pUC18indCA. For this, a fragment of 3898 bp containing the open reading frames 

(ORFs) plu2180, plu2181, plu2182 (indB), plu2183, plu2184 and plu2185 was amplified and 

cloned via XbaI and SphI into the mtaA free backbone of pSUmtaA resulting in plasmid 

pABcind. The coexpression of all three plasmids necessitated the modification of pSUmtaA to 

have three different selection markers and compatible origins of replication in hand. This was 

achieved through the exchange of the chloramphenicol resistance against a kanamycin 

cassette and exchange of the p15A ori against a pir dependent R6K ori resulting in plasmid 

pABmtaA02. A significant difference was observed in the production of the blue pigment by 

coexpression of pUC18indCA, pABcind and pABmtaA02 in comparison to pUC18indCA and 

pABmtaA02 without pABcind. The coexpression of pABcind led to a faint greenish colour of 

the liquid culture (Figure 4 and Table1). To exclude that this effect was only limited through 

the additional selection marker chloramphenicol of plasmid pABcind, the plasmid was 

replaced in a control experiment by the empty chloramphenicol conferring vector pSU19. 

However, coexpression of pSU19 displayed the similar phenotype to pUC18indCA and 

pABmta02, proving that the effect is linked to the genes of pABcind and not to the selection 

marker. Subsequently, single in frame deletions of each gene were generated in pABcind to 

determine which gene or genes were responsible for the observable change of indigoidine 

production. Each deletion construct was then coexpressed in triplicates with pUC18indCA 

and pABmtaA02. For deletion constructs pABcindΔ2180, pABcindΔ2181, pABcindΔindB 

and pABcindΔ2184 no significant differences were detected in comparison to pABcind 

cultures. Instead, pABcindΔ2183 and pABcindΔ2185 constructs exhibited similar phenotypes 

to the dark blue pUC18indCA and pABmtaA02 liquid cultures. The use of pUC18indC 

instead of pUC18indCA provided the same results in all experiments (Table 1). 
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Table 2: Plasmids used in this work 

Plasmid Genotype Phenotype Source / Reference 

pUC18indCA pUC ori, Apr, plu2186, plu2187 deep blue* This work 

pUC18indC pUC ori, Apr, plu2186 deep blue* This work 

pABcind p15A ori, Cmr, plu2180-2185 greenish** This work 

pABcindΔ2185 pABcind Δ2185 blue** This work 

pABcindΔ2184 pABcind Δ2184 greenish** This work 

pABcindΔ2183 pABcind Δ2183 deep blue** This work 

pABcindΔindB pABcind Δ2182 greenish** This work 

pABcind Δ2181 pABcind Δ2181 greenish** This work 

pABcind Δ2180 pABcind Δ2180 greenish** This work 

pUC18indC::kan pUC ori, Apr, Kmr, plu2186::kan no colour* This work 

pSUmtaA p15A ori, Cmr, mtaA -- Gaitatzis et al. (2001) 

pABmtaA01 R6Kγ ori, Cmr, mtaA -- This work 

pABmtaA02 R6Kγ ori, Kmr, mtaA -- This work 

pMR06kan pUC ori, Kmr -- M. Ring 

pSU19 p15A ori, Cmr -- Bartolomé et al. (1991) 

pDS132 R6Kγ ori, Cmr -- Nadège et al. (2004) 

*   coexpressed with a compatible mtaA containing plasmid 
**  coexpressed with a compatible mtaA containing plasmid and pUC18indCA or pUC18indC 
 
 
 

Figure 4. Heterologous coexpression of pABcind with pUC18indCA and pABmta02 (3). Expression 
of pUC18indCA with pABmta02 (2) and without pABmta02 (1). Cultures marked with an asterisk (*) 
carry pUC18indC instead of pUC18indCA. 
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Indigoidine production as new blue-white screening system. To ascertain if plasmid 

pUC18indC could represent an alternative blue/white screening system, a kanamycin cassette 

was inserted into indC. For this pUC18indC was digested with BcuI and HindIII cutting out a 

221 bp fragment within the adenylation domain of indC. Hereafter the kanamycin cassette 

was inserted via BcuI and HindIII restriction sites and ligated into the digested pUC18indC 

vector. The resulting plasmid pUC18indC::kan was then coexpressed with pSUmtaA. Neither 

agar colonies nor liquid cultures exhibited a blue phenoytpe in comparison to the control 

strain expressing the intact pUC18indC and pSUmtaA plasmids (Figure 5). Strikingly, 

indigoidine producing strains exhibited smaller colonies and slower growth in comparison to 

the non producing control strain.  

 

Figure 5. Blue/white screening with E. coli EC100D pir-116 expressing pABmta02 with pUC18indC 
(a) and pUC18indC::kan (b). 
 

Discussion 

The production of the blue pigment indigoidine was reported from many bacteria, but the 

identification was restricted to the analysis of their phenotype. The recent identification of the 

responsible biosynthesis enzymes also allowed analysing different bacterial genomes for the 

presence of indigoidine biosynthesis genes.9 Surprisingly, indigoidine synthetases were also 

found in bacteria which are not known to produce indigoidine or to exhibit a blue phenotype. 

Photorhabdus luminescens TT01 belongs to the latter one. Several reasons can be accountable 

for the absence of indigoidine in Photorhabdus. Firstly, the responsible enzymes are not 

functional. Secondly, indigoidine is produced in very low amounts and analytically 

unverifiable. Thirdly, the expression of the responsible enzymes is strictly controlled by 
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regulation elements (silent genes) and fourthly indigoidine is only produced under certain 

physiological conditions which are not known. 

In this work it could at least be shown that the indigoidine synthetase IndC of 

Photorhabdus is functional and that two candidate genes plu2183 and plu2185 might 

influence the regulation of indigoidine production. Furthermore it could be shown that indA 

and indB, both clustered with indC and dedicated to indigoidine biosynthsis in Erwinia 

chrysanthemi are present in Photorhabdus, but are not essential for the formation of 

indigoidine. Indeed, crystal structure elucidation of an IndA like protein revealed a new 

protein fold and a possible ligand analog,7 but its function in indigoidine biosynthesis is still 

elusive. In case of IndB similarities with two phosphatases, which are involved in the 

production of antibiotics are found, but it does not seemed to be required for indigoidine 

production in Photorhabdus.9 For example in Vogesella indigofera another indigoidine 

producing bacterium harboring the indC indigoidine synthetase non homologues of indA and 

indB are present,9 which corroborates the hypothesis that exclusivley IndC is sufficient to 

produce indigoidine and that IndA and IndB might only have regulatory functions at most.  

The obvious fact that a single NRPS gene indC is responsible for the blue pigment 

indigoidine offers the possibility to use indigoidine production as an alternative blue/white 

screening system. The insertion of a kanamycin casette into the adenylation domain of indC 

led clearly to an indigoidine deficient phenotype and therefore displays a well defined 

selection system. For a more convenient application the necessary PPTase can also be 

integrated into the genome of the host strain. In comparison to the conventional blue/white 

screening such a system would be independent from the addition of X-Gal. Moreover, the 

decreased growth rate of indigoidine producing colonies in comparison to non producing 

colonies (which have an insert) contribute to the promotion and better selection of the desired 

positive clones. Therefore indigoidine blue/white screening is a promising alternative cloning 

system to already established systems. 

 

   The blue pigment indigoidine is produced by a vast number of taxonomically different 

bacteria. The wide distribution leads to the assumption that the biosynthetic genes for 

indigoidine production originate from an evolutionary old ancestor and have been conserved 

in many different bacteria since then. Furthermore it suggests that indigoidine confers an 

important physiological advantage to bacteria as it is produced by bacteria from diverse 

ecological niches. Nevertheless, to date there is only little information about the biological 

role of indigoidine available. Only one possible function is described by Reverchon et al. who 
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found indications that indigoidine of Erwinia chrysanthemi, a plant pathogenic bacterium, 

might protect the bacteria against the reactive oxygen species generated during the plant 

defence response.9 A similar function in the ecological niche of Photorhabdus is conceivable 

as one immune response of arthropods is the oxidative burst, an enzyme induced generation of 

reactive oxygen intermediates (ROIs).8 Therefore indigoidine might operate as an oxide or 

radical scavenger to overcome an insecticidal oxidative burst and therefore also benefit the 

symbiotic nematode partner. Dietrich et al. described another interesting role for redox-active 

phenazine molecules, in which pyocyanin for example acts as an intercellular signal molecule 

dependent on the stress response regulator SoxR, which is widely distributed in enteric 

bacteria. Hence, they were able to show that pyocyanin mediates bacterial colony size and 

structure of a bacterial population.1 A process which might be helpful to adapt and endure 

different environmental changes. Astonishingly indigoidine was never detected in the wild 

type strain Photorhabdus luminescens TT01, neither in solely Photorhabdus cultures nor 

under tripartite conditions together with nematode and insect. 

   Hence it seems obvious that indigoidine production in P. luminescens TT01 is 

dependent on a strong and so far unknown regulation, as functionality of indigoidine 

synthetase indC could be shown in this work. A known indigoidine regulator is protein PecS, 

a regulatory protein which negatively modulates the expression of many virulence genes in 

Erwinia chrysanthemi and which represses indA and indC expression by binding to the 

promoter regions.9,10 However, neither homologues of PecS nor PecM, which moderates the 

efflux of indigoidine were identified in the genome of strain TT01.10 Instead, two possible 

candidates plu2183 and plu2185 were identified in this work, which might play a major role 

in the regulation of indigoidine production in Photorhabdus. Both proteins can be also found 

in other bacteria, but until now no possible function was disclosed as no conserved domains 

within the proteins have been detected. However, an assumable function as DNA binding 

proteins seems inconsistent when even typical helix-turn-helix motifs are absent. Therefore 

both proteins might rather interact directly with the indigoidine synthetase. Deletions mutants 

of plu2183 and plu2185 in Photorhabdus will give more information on their involvement in 

indigoidine biosynthesis. 

   Definitely remarkable is the existence of plu2180-plu2185 homologues which are also 

clustered together with indC in Serratia proteamaculans (Figure 6) (http://genome.jgi-

psf.org/finished_microbes/serpr/serpr.info.html). In comparison, all proteins show a high 

similarity to P. luminescens proteins and only a little disarrangement of the genes upstream of 

indC is present (Figure 6 and Table 2). The successful isolation of Serratia proteamaculans 
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from entomopathogenic nematodes (personal communication N.Waterfield) supports the 

hypothesis of a horizontal gene transfer between both genera. 

 

Figure 6. Comparison of the indigoidine biosynthesis gene clusters from P. luminescens and S. 
proteamaculans. The different colours serve to recognize the homologues easier. 
 
 
Table 1. Comparison of homologous proteins in P. luminescens and S. proteamaculans 568. S. 
proteamaculans 568 display the closest homologues to P. luminescens, except for Plu2181 
(Agrobacterium radiobacter K84, 47/70 % identities/positives) and for Plu2182 (Streptomyces albus 
J1074, 51/62 % identities/positives). 

 

   In view of Plu2185 Streptomyces clavuligerus, another indigoidine synthetase 

harbouring organism possesses a homologue which shows 44% identities and 61% positives 

on the amino acid level. This finding is interesting in several points because S. clavuligerus 

belongs to the group of Gram-positive bacteria and it lacks the aforementioned genes 

plu2180-plu2184. On the other hand, gene plu2185 is not far away located from indC and 

indicates that even in this distantly related organism plu2185 might contribute to indigoidine 

regulation. However, one has to pinpoint that neither plu2185 nor plu2183 homologues have 

been identified from the numerous other indigoidine producing bacteria. Hence even if the 

Photorhabdus luminescens TT01    Serratia proteamaculans 568 

Protein  Size (aa)  Deduced function  Identities/Positives (%)  Protein  Size (aa) 

Plu2180  218  phosphoribosyl transferase  60/76  Spro_1695  216 

Plu2181  74  4‐Oxalocrotonate tautomerase  42/63  Spro_1696  71 

IndA (Plu2182)  222  phosphatase  51/65  Spro_1697  231 

Plu2183  158  unknown function   50/66  Spro_1691  152 

Plu2184  145  unknown function  50/70  Spro_1692  147 

Plu2185  392  unknown function  56/73  Spro_1693  393 

IndC (Plu2186)  1284  indigoidine synthetase  50/66  Spro_1698  1278 

IndB (Plu2187)  318  unknown function  62/76  Spro_1699  308 

Photorhabdus luminescens TT01

Serratia proteamaculans 568

indAindCindB

indB indAindC

83 84 85plu21.. 80 81

Spro_16.. 91 92 93 95 96

1 kb

Photorhabdus luminescens TT01

Serratia proteamaculans 568

indAindCindB

indB indAindC

83 84 85plu21.. 80 81

Spro_16.. 91 92 93 95 96

1 kb
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regulatory function of both proteins can be proven, a generalized mechanism for indigoidne 

production cannot be concluded. 

 

 

Materials and Methods 

Fermentation. All expression experiments were carried out in E. coli EC100D pir-116 cells 

(F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, 

leu)7697 galU galK λ- rpsL nupG pir-116(DHFR)) from Epicentre Biotechnologies. EC100D 

strains were cultivated at 30°C and 180 rpm on rotary shaker in 50 ml Erlenmeyer flasks 

containing 20 ml Luria-Bertani (LB) broth (pH 7.0) or in test tubes containing 5 ml LB. 

Appropriate antibiotics were added to LB liquid and agar cultures when necessary at 

following concentrations: ampicillin 100 µg/ml, kanamycin 50 µg/ml and chloramphenicol 34 

µg/ml. An indigoidine production culture was cultivated in a 1 l Erlenmeyer flask containing 

250 ml LB and inoculated with a 24h preculture of the same medium (0.1 % v/v). 

 

Recombinant DNA techniques. Restriction digestions, ligations, DNA electrophoresis, 

transformation and electroporation of DNA were performed using standard molecular biology 

techniques.11 Plasmid and DNA isolation were performed with GeneJet™ plasmid miniprep 

and genomic DNA purification kits (Fermentas). Subcloning was performed with CloneJET™ 

PCR cloning kit (Fermentas) when necessary. Information on genes and sequence comparison 

was extracted from the NCBI blast databank. All primers that were used in this work are listed 

in Table 3. 

 

High resolution MS analysis. The extract was dissolved in DMSO/Methanol (50:50) 

containing 1% formic acid and analysed via direct injection on a Thermo LTQ Orbitrap 

Hybrid FT mass spectrometer. 
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Table 3. Oligonucleotides used in this work 

Oligonucleotide (5´-3´) Sequence 
indBpUCSacI ACCTACGAGCTCAAAAATACTCCAGTATTACCGTGG 
indBpUCPaeI GCCTGAGCATGCCCCTTTTCATTGGCTCTTAAT 
indCfw ACCTTGCAGATTATATTTCTAT 
indCrv GTTAATGTCATGATAATAATGG 
CindfwXbaI ATCTTTTCTAGAATCGATATGTGATGATCTAAA 
CindrvPaeI TTATTCGCATGCTAAATATTCCAATATTATTCAAT 
pABCindFw CCAGAGCGATGAAAACGTT 
pABCindRv AGTGAATACCACGACGATTT 
Fw2185 CCCTACCCTTATTTTAACTCAG 
Rv2185 ACTCCTTTGCTTCCTCCTTCT 
Fw2184 AAGCTCAGCATTAGTTACTTCCCC 
Rv2184 TGGAGTACTGTTTGTGTTAATTGG 
Fw2183 TCATTTAAGTATATTTTCCTCAATA 
Rv2183 TTTTCTTTGTTCTATTTGGCAGTA 
Fw2182 ATCAAACAATGTACCATCTAAATCG 
Rv2182 TGTTTTGATGACGTACTTCGTATT 
Fw2181 CATCTTTCAAGTTGCCATAGGG 
Rv2181 ATGATTTTTTAAAGGTATTTT 
Fw2180 CAGCCGTACTTGGTCTCAAATA 
Rv2180 ATCTATACCCTATGGCAACTTGAA 
KanHindIIIfw TAAAGCTTGATAGCTAGACTGGGCGGTT 
KanBcuIrv TAAAGCTTATGTGTGCGCGTCTCAGA 
pSUmtaAfw ACTGCCTTAAAAAAATTACG 
pSUmtaArv CAGTGAGCGCAACGCAATT 
R6KoriFw CCATGTCAGCCGTTAAGT 
R6KoriRv GAGGATCTGAAGATCAGCAG 
mtaR6Kfw AGTCACGACGTTGTAAAACGAC 
mtaR6Krv CTCGAGAAGGCAGTGAGGATCTGAAGATCA 
Kanfw GTGAAAACCTCTGACACATG 
Kanrv ATGCCGATATCCTATTGG 
 

 

Construction of pUC18indCA, pUC18indC and pABCind. A 5150 bp fragment containing 

indC and indB was amplified from genomic DNA of Photorhabdus luminescens TT01 with 

primers indBpUCSacI and indBpUCPaeI and cloned via restriction sites SphI and SacI into 

the pUC18 plasmid giving pUC18indCA. To yield pUC18indC a 6350 bp fragment excluding 

indB was amplified from pUC18indCA with primers indCfw and indCrv. PCR products were 

5´-phosphorylated, ligated and transformed into E. coli EC100D pir-116. Plasmid accuracy 

was verified by digestion with SphI and SacI resulting in a single fragment of 6350 bp. For 

pABCind a 3898 bp fragment containing plu2180, plu2181, plu2182 (indB), plu2183, 

plu2184 and plu2185 was amplified from genomic DNA of P. luminescens TT01 with 

primers CindfwXbaI and CindrvPaeI and cloned via SphI and XbaI into pSU19. 

 

Construction of in frame deletions of pABcind. In frame deletions were constructed 

referring to a modified method described previously.3 For each deletion two primer pairs were 
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designed. One primer pair consisted of a forward primer (pABCindFw) covering one half of 

the p15A ori sequence and the second primer (Rv2180-2185) was designed to cover upstream 

of the designated DNA sequence to be excluded. The second primer pair consisted of a 

reverse primer (pABCindRv) covering the other part of the p15A ori sequence and a primer 

(Fw2180-2185) which covered the end of the designated DNA sequence to be excluded. The 

different fragments were amplified from pABcind by PCR with use of Phusion Polymerase 

(Finnzymes). Purified PCR products were 5´-phosphorylated with use of T4 polynucleotide 

kinase (Fermentas) applying the manufacturers protocol and purified again. Ligation of the 

corresponding PCR fragments in a ratio of 1:1 resulted in the plasmid deletion constructs 

pABcindΔ2180, pABcindΔ2181, pABcindΔindB, pABcindΔ2184, pABcindΔ2183 and 

pABcindΔ2185. Then the plasmids were transformed into E. coli EC100D pir-116 cells via 

electroporation. Only cells with complemented and intact p15A ori were able to grow on 

chloramphenicol agar plates. In frame deletion integrity was verified by DNA sequencing. 

 

Construction of pABmtaA02. For construction of a compatible mtaA containing plasmid 

pSUmtaA was used as a template. In a first step a fragment of 3260 bp excluding the p15A ori 

was amplified from pSUmtaA with primers pSUmtaAfw and pSUmtaArv. The PCR product 

was fused with a fragment of 396 bp amplified from pDS132 with primers R6KoriFw and 

R6KoriRv containing the pir dependent R6Kγ ori. Both PCR products were 5´-

phosphorylated and then ligated. The resulting plasmid pABmtaA01 was transformed by 

electroporation into E. coli EC100D pir-116. Only cells with intact plasmid containing R6Kγ 

ori and chloramphenicol resistance were able to grow on selection agar plates. In a second 

step a fragment of 1595 bp excluding cat was amplified from pABmtaA01 with primers 

mtaR6Kfw and mtaR6Krv. The PCR product was fused with a fragment of 877 bp amplified 

from pMR06 with primers Kanfw and Kanrv containing the kanamycin resistance cassette 

and afterwards treated similar to the first step. The resulting plasmid pABmtaA02 was 

transformed by electroporation into E. coli EC100D pir-116 and only cells with pABmtaA02 

containing R6Kγ ori and kanamycin resistance were able to grow on selection agar plates. 

 

Construction of blue/white screening reference plasmid pUC18indC::kan. For 

pUC18indC::kan plasmid pUC18indC was digested with BcuI and HindIII. A kanamycin 

resistance cassette was amplified with primers KanHindIIIfw and KanBcuIrv from plasmid 

pMR06 and digested in the same way. Both products were purified and ligated to give 

plasmid pUC18indC::kan and then transformed by electroporation into E. coli EC100D pir-
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116. Only cells with a kanamycin cassette insertion in pUC18indC confered kanamycin and 

ampicllin resistance. 
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Statement about the author´s efforts in Chapters 1-4 
 

Chapter 1: The author performed all feeding experiments and chemical analyses including 

fatty acid profiles. The isolation of the 13C enriched stilbenes was also performed by the 

author. The generation of mutants were carried out in cooperation with the group of David 

Clarke. Nematode assays were performed by I. Glazer and L. Lango. 

 

Chapter 2: The author performed all feeding experiments and chemical analyses. The isolation 

of the 13C enriched anthraquinone and mutactin was also performed by the author. The 

deletion mutant was generated by the group of David Clarke, other mutants were generated in 

collaboration with G. Schwär. Structure elucidation of mutactin was perfomed by Helge B. 

Bode. The erection of a phylogenetic tree was performed by H. Jenke-Kodama. 

 

Chapter 3: The work in whole was performed by the author, except structure elucidation 

which was performed together with Helge B. Bode. 

 

Chapter 4: The work in whole was performed by the author. 
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Discussion 

During this work it came apparent that bacteria of the genera Photorhabdus and Xenorhabdus 

represent rich sources of secondary metabolites as we succeeded in identifying and isolating 

new derivatives of known compound classes like 5-[(E)-2-phenylethenyl]-2-(propan-2-

yl)benzene-1,3-diol (cis-isopropylstilbene, cisIPS, see chapter 5.1) and 5-(2-phenylethyl)-2-

(propan-2-yl)benzene-1,3-diol (IPB, see chapter 5.1), but also of novel secondary metabolites 

like xenofuranones and 4-hydroxy-6-isobutyl-3-(5-methylhexyl)-2H-pyran-2-one 

(unpublished data). This richness of putative natural compounds is also underlined by the 

identification of 22 biosynthetic gene clusters in the genome of only a single species 

Photorhabdus luminescens TT01, representing notable 7.5% of the overall genome sequence 

(Figure 1).12 However, many of the respective products are still unknown as they are not 

produced at all under laboratory conditions. The heterologous expression of such a “silent 

gene” cluster in this work and identification of indigoidine demonstrated a prosperous way to 

gain access to so far unknown secondary metabolites (see chapter 4 for discussion). 

In the following the natural compound families of stilbenes, anthraquinones and 

xenofuranones, which were the main focus of this work are discussed in detail in their 

possible biological function and their biosynthetic origin. 

 

Figure 1. Genome map of Photorhabdus luminescens TT01. The red bars in the inner circle represent 
the gene clusters involved in secondary metabolism (Genome map provided by H.B. Bode) 
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Stilbenes 

 

Stilbenes have been exclusively known as a class of natural compounds from many 

plants. Over 30 differently substituted stilbenes and stilbene glycosides are described, among 

them the extensively investigated polyphenol resveratrol (more than 2700 www.pubmed.gov 

citations). In general, they act as phytoalexins which are produced in response to an injury of 

the plant. Their purpose is to protect the plant against bacterial and fungal infections, but also 

from ozone and harmful ultraviolet radiation.97,174 Moreover, stilbenes and in particular 

resveratrol displayed interesting and useful pharmacological properties. It is known that 

resveratrol is an activator of the protein sirtuin1 (SIRT1), a longevity gene that modulates the 

response of an organism to aging and nutritional status.129 SIRT1 mimics a calorie restriction 

thus helps to delay the onset and reduces the incidence of age-related diseases.130 Beside this 

anti-ageing effect, resveratrol exhibits properties as an antioxidant, anti-inflammatory and 

anti-proliferative molecule.57 In the meantime it was shown that not only plants can produce 

stilbenes, but also the bacterium Photorhabdus luminescens. The broad spectrum of stilbene 

activities makes Photorhabdus luminescens an interesting bacterial stilbene producer which 

can genetically be exploited to increase and produce different stilbene derivatives. The 

abundant stilbenes in P. luminescens isopropylstilbene (IPS, Figure 1B) and ethylstilbene (ES, 

Figure 1B) can be regarded as 2-alkylated derivatives of pinosylvin (Figure 1A), which was 

shown to exhibit an antibacterial and antifungal activity as well.107 However, up to date there 

is no data available on the pharmacological properties of the bacterial stilbenes, only for ES it 

was shown that RNA synthesis was inhibited by accumulating the intracellular regulatory 

compound guanosin-3´,5´-bis-pyrophosphate (ppGpp) leading to an inhibition of bacterial 

growth.181 The multifunctional properties of this class of compounds point out that beside the 

known biological functions of bacterial stilbenes and the functions found in this work, further 

effects might still wait to be discovered in appropriate bioassays. 
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Figure 1. (A) Type III PKS derived plant stilbenes resveratrol and pinosylvin. (B) Isolated stilbenes 
from Photorhabdus luminescens 2-isopropyl-5-[(E)-2-phenylethenyl]benzene-1,3-diol (IPS), 2-ethyl-
5-[(E)-2-phenylethenyl]benzene-1,3-diol (ES) and 2-isopropyl-5-(3-phenyl-oxiranyl)benzene-1,3-diol 
(eIPS). (C) A new and minor stilbene identified in Photorhabdus luminescens 2-isopropyl-5-[(Z)-2-
phenylethenyl]benzene-1,3-diol (cis-IPS) and two new derivatives which were derived by feeding of 
phenylpropionic acid and coumaric acid to a PAL (StlA) deficient strain yielding 2-isopropyl-5-[2-
phenylethyl]benzene-1,3-diol (IPB) and 2-isopropyl-5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-
diol (IPR). (D) Heterologous expression of the stlC, stlD and stlE homologues of Pseudomonas 
aurantiaca led to the production of the dialkylresorcinol 2-hexyl-5-propylbenzene-1,3-diol (HPR). 
The heterologous expression of the Photorhabdus derived genes led to the production of different 
dialkylcyclohexenones instead of the expected dialkylresorcinols. (E) Novel compounds isolated from 
the strain Photorhabdus luminescens ssp. thracensis DSM 15199, 2-isopropyl-3-hydroxy-5-[(E)-2-
phenylethenyl]cyclohex-2-en-1-one (oxIPS) and the dialkylpyrone 4-hydroxy-3-(5-methylhexyl)-6-(2-
methylpropyl)-2H-pyran-2-one. 
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Prior to this work it was considered that stilbene biosynthesis is only achieved through 

the action of a stilbene synthase. This enzyme is a representative of the type III PKS family 

that yields stilbenes from the incorporation of a cinnamoyl-CoA derivative and sequential 

elongation with three malonyl-CoA units. Due to the fact that bacterial stilbenes are 

substituted at the 2-carbon either with an isopropyl or ethyl moiety it would necessitate the 

incorporation of different extender units for a stilbene synthase. Indeed, it was recently shown 

that type III PKS are also able to utilize ethyl- and methylmalonyl-CoA and not only malonyl-

CoA extender units.176 Furthermore, a type III PKS was reported that used different CoA 

extender units in a strictly controlled order.60 For this reason a bacterial type III PKS utilizing 

malonyl-CoA and isopropylmalonyl-CoA or ethylmalonyl-CoA extender units could not be 

ruled out. However, genome analysis revealed that no similar genes of bacterial or plant type 

III PKS were existent in P. luminescens TT01. Only the identification of a stilbene 

biosynthesis involved gene operon harbouring the genes stlC, stlD and stlE established an 

unprecedented way of biosynthesising stilbenes. Nevertheless, homologues of these genes 

were also found in Pseudomonas aurantiaca were those encode proteins responsible for the 

production of 2-hexyl-5-propylbenzene-1,3-diol (HPR) a 2,5-dialkylresorcinol (Figure 1D).138 

Additionally, Nowak-Thompson et al. provided evidence that dialkylresorcinol is formed by a 

head-to-head condensation of two β-keto acyl precursors. A similar mechanism can be also 

assumed for the formation of stilbenes (Figure 2). 
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Figure 2. Genes involved in IPS biosynthesis and proposed IPS biosynthesis. Brackets display the 
genomic gaps between the pictured genes. Gene ngrA encodes for a phosphopantetheinyltransferase 
(PPtase) required for activation of acyl carrier proteins (ACPs); bkdA, bkdB, bkdC encode for the 
branched chain keto acid dehydrogenase complex (Bkd) involved in the formation of iso-branched 
precursors in iso-fatty acid and IPS biosynthesis; stlB encodes for the cinnamoyl-CoA ligase; stlC 
encodes for a “condensing enzyme”; stlD encodes for a ketosynthase; stlE encodes for an acyl carrier 
protein (ACP); stlA encodes for a phenylalanine ammonium lyase (PAL). The proposed biosynthetic 
IPS pathway shows the chemical structures of all intermediates and probably involved enzymes 
leading to two β-keto-acyl precursors which undergo a head-to-head condensation to form the final 
IPS product. 
 

To verify if the three gene operon found in Photorhabdus has the same function as the 

homologue in Pseudomonas aurantiaca, the operon was expressed heterologously in E. coli. 

Unexpectedly the heterologous expression in E. coli of the Photorhabdus derived three gene 

operon (unpublished data) resulted in the production of dialkylcyclohexenones (Figure 1D) 

instead of dialkylresorcinols (Figure 1D), indicating that a subsequent aromatisation of the six 

membered carbon ring does not take place. This observation implicated that another enzyme 

catalyzed step is necessary to oxidize the cyclohexenone to an aromatic ring. But more 

astonishingly neither dialkylcyclohexenones nor dialkylresorcinols were detected in a 

phenylalanine ammonium lyase inactivation mutant stlA. Although one would expect at least 

the formation of non- or iso-branched dialkylresorcinols. One possible explanation was 

delivered from Photorhabdus luminescens ssp. thracensis who produces the new compounds 

4-hydroxy-3-(5-methylhexyl)-6-(2-metyhlpropyl)-2H-pyran-2-one, a dialkylpyrone (Figure 

1E) and 2-isopropyl-3-hydroxy-5-[(E)-2-phenylethenyl]cyclohex-2-en-1-one (oxIPS), a 
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second ring oxidized IPS derivative beside the known stilbenes (unpublished data, Figure 1E). 

This new oxIPS displays a cyclohexenone ring as found in the dialkylcyclohexenones. Thus it 

appears that oxIPS might represent an intermediate product of stilbene biosynthesis, which is 

further processed by a so far unknown aromatase-like enzyme. In Photorhabdus luminescens 

ssp. thracensis the enzyme appears to be ineffective in the total conversion of oxIPS into IPS. 

A reasonable explanation might be originated from an altered enzyme recognition site leading 

to a hampered conversion of oxIPS or in case of the dialkylcyclohexenones to a total substrate 

refusal. But as long as a putative enzyme is not identified the question of aromatisation keeps 

unsolved. Further experiments in E. coli showed that stlD encoding a ketosynthase is essential 

for the biosynthesis of dialkylcyclohexenones. On the contrary, the loss of the stlE encoding 

acyl carrier protein (ACP) seems to be complemented at least in parts by the acpP encoded 

fatty acid synthase ACP of E. coli. However, the production of dialkylcyclohexenones is 

reduced especially for long chain derivatives (Figure 3, unpublished data). 
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Figure 3. Quantification (triplicates) of arabinose inducible plasmids in E. coli DH10B. Black 
highlighted bars display the construct containing stlC, stlD and stlE (a gift from N.Waterfield). Grey 
highlighted bars display the construct containing stlC and stlD. A construct only containing stlC was 
not capable of dialkylcyclohexenone production (the deletion constructs were generated similar to 
pABcind plasmid deletions constructs of chapter 4). Numbers 1-4 represent the major 
dialklycyclohexenones identified in the extracts. The data indicates that the loss of ACP encoding stlE 
is compensable with the E. coli own ACP, but reduced in the total production of 
dialkylcyclohexenones and the tendency to use long acyl chain precursors. The relative abundance of 
each dialkylcyclohexenone was denoted with =1 and standard deviations are displayed. 
 

In this work it was proven that the branched chain keto acid dehydrogenase (bkd) 

complex is needed for the formation of the iso-branched precursor of stilbene synthesis. 
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Deletion mutants of each bkd gene were shown to be deficient in iso-branched fatty acid and 

IPS production. In chapter 1 IPS was identified as a factor required for nematode recovery, 

but not sufficient for full recovery. In this context it is worth mentioning that iso-branched 

fatty acids, especially iso15:0 and iso17:0 were shown to be essential for growth and 

development in the closely related nematode Caenorhabditis elegans.99,100 Iso15:0 and 

iso17:0 belong to the dominantly produced fatty acids of all investigated Photorhabdus strains 

so far and might play a similar role. Therefore, the Bkd complex is a special gateway for the 

production of primary and secondary metabolites (Figure 4), with both probably contributing 

to the sophisticated interaction of bacteria and nematodes. The heterologous expression of the 

bkd locus in E. coli, which normally exhibits no iso-fatty acids at all, succeeded in the 

production of iso-fatty acids like iso15:0, iso16:0 and iso17:0 (Figure 5). 

  

 

Figure 4. The (bkd) branched chain keto acid dehydrogenase (Bkd) complex of Photorhabdus 
luminescens consisting of bkdA, bkdB and bkdC takes a key role in the production of different 
metabolites in the way of providing precursors for primary and secondary metabolism. It was shown 
that incorporation of Bkd derived precursors are not only found in iso-fatty acids of the primary 
metabolism but also in secondary metabolites as IPS and the novel isolated dialkylpyrone 4-hydroxy-
3-(5-methylhexyl)-6-(2-metyhlpropyl)-2H-pyran-2-one (unpublished data). 
 
 
 
 
 
 
  

bkdA bkdB bkdC

O

ACP S

O

OH

OH

OH

O

IPS dialkylpyrone

iso-fatty acids

O

OH

O



D i s c u s s i o n • S t i l b e n e s  | 97 
 

Figure 5. (A) Fatty acid profile of E. coli. (B) Fatty acid profile of E. coli with heterologous expression 
of the bkd complex and the phosphopantetheinyltranserase encoding gene mtaA. 
 

Feeding experiments of different phenylpropanoids and cinnamic acid derivatives to 

an anthraquinone and stilbene deficient (ASD) mutant provided information on the CoA 

ligase encoded by stlB (Figure 6). Here it was shown that StlB only exhibits restricted 

substrate flexibility, as only cinnamic acid and coumaric acid were accepted for the 

biosynthesis of stilbenes (unpublished data). The incorporation of coumaric acid resulted in 

very small traces of two isomers, probably cis- and trans- forms of 5-[(E)-2-(4-

hydroxyphenyl)ethenyl]-2-(propan-2-yl)benzene-1,3-diol (isopropylresveratrol, IPR; Figure 

1C and 6). Even more surprising was the incorporation of phenylpropionic acid to yield IPS 

and 5-(2-phenylethyl)-2-(propan-2-yl)benzene-1,3-diol (IPB; Figure 1C and 6). The 

production of IPS implicates that phenylpropionate is to some extent oxidized. However, in E. 

coli biodegradation of phenylpropionic and cinnamic acid is initiated by HcaECFD, a 

dioxygenase introducing molecular oxygen into the phenyl ring, which was recently also 

reported for P. luminescens.21,41 Hence, it seems obvious that a second oxidation mechanism 

is available. Therefore Photorhabdus might posses a dehydrogenase which can accept 

phenylpropionate as an incidental substrate. Another possibility is the direct involvement of 

the CoA ligase StlB in the oxidation of phenylpropionate to cinnamic acid. But also a later 
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enzyme catalysed oxidation of IPB is conceivable. Within these analyses it was also possible 

to identify a cis-IPS (Figure 1C) as a new and minor stilbene derivative of the wildtype strain 

P. luminescens TT01. 

 

 

Figure 6. GC-MS analysis of differently fed anthraquinone stilbene deficient (ASD) cultures. The 
ASD mutant is anthraquinone and stilbene deficient and was generated by gene disruption of the 
phosphopantetheinyltransferase encoding antB in the phenylalanine ammonium lyase stlA disrupted 
mutant BMM901 (Williams et al. 2005). Analysis of the wildtype strain Photorhabdus luminescens 
TT01 established the identification of a cis-IPS as minor compound in the extract. Feeding of 
cinnamic acid to an ASD mutant led to the expected complementation of the wildtype stilbene profile. 
Feeding of phenylpropionic acid led to the unexpected production of IPS and IPB. Feeding of 
coumaric acid led to production of two IPR isomers. None new stilbene derivatives were detected after 
the feeding of ferulic, coffeic and other cinnamic acid derivatives. The pictured frames display GC 
chromatogram cutouts which are enlarged four and ten times respectively.  
 

Epoxy-IPS (eIPS, Figure 1B) is another stilbene derivative isolated from P. 

luminescens which showed pronounced antimicrobial activity.84 The production of eIPS can 

be very often observed after the formation of IPS and might be the first step in stilbene 

degradation. The possible involvement of a cytochrome P450 monooxygenase in introducing 

oxygen was investigated by adding ancymidol to liquid cultures of the good eIPS producer P. 

luminescens strain IthC13. Ancymidol is an inhibitor of some P450 monooxygenases,163 but 
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no decrease or elimination of eIPS production was detected in strain IthC13 (unpublished 

data). Therefore, there is no data available to give further information on the formation of 

eIPS. 

 

Further experiments indicated that bacterial stilbenes might play an important role as 

quorum sensing molecules. Swarming assays with a stilbene deficient P. luminescens TT01 

mutant on LB agar plates supplied with resveratrol showed a significant inhibition of cell 

swarming. Similar phenotypes were reported from resveratrol treated Proteus mirabilis 

bacteria. Moreover, Wang et al. succeeded in identifying RsbA (regulator of swarming 

behaviour) a histidine phosphotransmitter of a bacterial two component signalling system as 

the mediating factor of resveratrol activity in P. mirabilis.191 Two component pathways 

represent signalling systems to monitor and respond on environmental changes, thus allow 

bacteria to act simultaneously in order to enhance phenotypes.86,196 In P. mirabilis resveratrol 

could inhibit swarming and virulence factor expression through an RsbA dependent 

pathway,191 while RsbA might function as a sensor of environmental conditions required to 

initiate swarming migration.8 A homologue of RsbA (48% identities and 69% positives on 

amino acid sequence level) can be also found in the genome of P. luminescens TT01. Indeed, 

Easom and Clarke could show that swarming of Photorhabdus is not required for either 

pathogenicity or mutualism, but they also observed that swarming contributes to the 

competitive fitness of Photorhabdus during infection of the insect.46 Based on the mentioned 

similarities to P. mirabilis and the effect of resveratrol on Photorhabdus swarming behaviour, 

it might be possible that IPS or ES might also function as signalling molecules in interaction 

with RsbA homologue Plu3047.  
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Figure 6. Swarm Assay triplicates of Photorhabdus luminescens TT01 on differently concentrated 
(µg/ml) resveratrol supplied swarming-Agar plates after 66 hours. The control (C) was plated on 
resveratrol free swarming-Agar. The minimal inhibition concentration (MIC) of resveratrol is > 100 
µg/ml. 
 
In summary, the data of this work revealed a new alternative way of stilbene biosynthesis via 

a head-to-head condensation of two β-keto acyl precursors. The crucial condensation step is 

thereby catalysed by the condensing enzyme StlC which is in combination with StlD also 

capable of dialkylcyclohexenone formation. The involved Bkd complex was not only shown 

to be required for iso-fatty acid but also for IPS and dialkylpyrone production, depicting an 

essential junction for primary and secondary metabolite pathways. The unexpected formation 

of a cyclohexenone ring instead of an aromatic ring and the resulting dialkylcyclohexenones 

suggest an involvement of a yet unknown enzyme, which is required for the aromatisation of 

the second ring in stilbene biosynthesis, but to date no potential candidate could be identified. 
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Anthraquinones 
 

Anthraquinones are very widespread natural pigments which are produced by many 

different organisms. Among these organisms plants are the dominant sources. The most 

prominent plant produced anthraquinone, alizarin, was used as a red staining dye since the 

medieval times.161 Another glycosylated anthraquinone dye of historical relevance was 

carminic acid, which occurs naturally in some scale insects.161 But natural anthraquinones 

have been also found from fungal and bacterial sources, from the latter one especially in 

actinomycetes for example R1128 from Streptomyces.83 

Figure 1. Natural anthraquinones. Alizarin is available as a glycosylated derivative from the plant 
Rubia tinctorum and was used as a staining dye since the Middle Ages. Another known staining dye is 
the gylcosylated carminic acid which can be isolated from scale insects where it is used as a deterring 
agent against predators. A bacterial type II PKS derived anthraquinone is R1128 from Streptomyces 
sp. No. 1128. 
 

Photorhabdus represents the first Gram negative anthraquinone producer. Seven 

anthraquinone (AQ) derivatives have been described from Photorhabdus in the past and only 

a few of them were reported to exhibit a weak antibacterial activity. Although almost all 

Photorhabdus strains produce anthraquinones and hereby confer the characteristic red colour 

to colonies and liquid cultures, their real biological mode of function however is still elusive. 

Nevertheless, some possible biological roles can be deduced from other anthraquinones. For 

instance, it was shown that carminic acid as mentioned before displays an effective ant 

deterring agent.48 In addition Bauer et al. could demonstrate with their experiments that 

foraging ants significantly avoid Photorhabdus/Heterorhabditis killed insect larvae as a prey, 

and were therefore suggesting the production of an unidentified deterring factor.7 The 
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obtained findings strongly imply that Photorhabdus produced anthraquinones might be 

responsible for the observed behaviour. This conclusion is also underlined by bioassays 

showing that anthraquinone containing eggs of the beetle Galeruca tanaceti moderate a 

feeding deterrence against ants.79 In this concern it is also worth mentioning that 

anthraquinones of the heartwood of teak plants contribute to the protection against termites.157 

Regarding these examples, one biological role of Photorhabdus produced anthraquinones 

might be the protection of the insect cadaver against scavengers in order to assure the 

complementation of the nematode life cycle. Moreover, anthraquinones might also function as 

bird repellents. Anthraquinones are commercially used to repel birds, for example at airports. 

The extremely bitter taste of anthraquinones urge them to suffocate and to prescind from the 

object.31 Heterorhabditis/Photorhabdus associations can be very often found in bareley tree 

covered littoral zones,135 which are easily observable and approachable for avian predators. 

Therefore an effective bird or animal repellent on infected insect larvae would benefit the 

protection against such scavengers. In this context it is also noteworthy that some 

anthraquinones have also been reported to bear antifungal activity and molluscicidal activity 

against some snails, which are further potential food competitors.118,171 To gain more 

information of the biological role of Photorhabdus derived anthraquinones it would be 

necessary to setup suitable bioassays to examine if some of the discussed functions are also 

adapted by these compounds.  

 

The biochemistry to anthraquinones can be distinguished according to two different 

biosynthetic pathways. One pathway follows the shikimate (chorismate)/o-succinylbenzoic 

acid pathway, whereas the other is a type II polyketide pathway.98,110,188 In general, both 

pathways can be discriminated as chorismate/o-succinylbenzoic acid derived anthraquinones 

which are hydroxylated in only one ring and as polyketide derived products which are 

hydroxylated in both rings.109 Anthraquinones from Photorhabdus represent typical 

polyketide derived compounds and the corresponding biosynthesis gene cluster is typical for 

type II PKS biosynthesis gene clusters with the classical minimal PKS consisting of an ACP 

and two ketosynthases, the catalytical active KSα and the KSβ also referred as chain length 

factor CLF in literature. KSα and KSβ form a heterodimer and are normally together with the 

ACP sufficient for the synthesis of the polyketide backbone.76,77,178 

Some noticeable properties of the anthraquinone ketosythases have been already 

addressed in chapter two. Here it has to be highlighted that KSβ adopts a special rank in the 

row of other known type II KSβ, due to its additional C-terminal 120 amino acid end, which 
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shows no homology to other proteins or catalytic domains. In the same way, it is the first 

example of a KSβ harbouring aspartate instead of the widely conserved glutamine in the 

“active site”. Bisang et al. succeeded in showing that KSβ with its conserved glutamine might 

be important for the initiation of polyketide synthesis by generating acetyl-KS through 

decarboxylase activity towards malonyl-ACP.11 Indeed, anthraquinone biosynthesis also 

requires an acetate starter unit but the role of an aspartate mediated catalytic reaction has to be 

analyzed in future in vitro experiments. But even if KSβ does not fulfil a catalytic function it 

might have a structural function. This was recently confirmed by crystallographic and mass-

spectroscopic analyses of the KSα-KSβ heterodimer of actinorhodin. Here, both ketosynthases 

form an amphiphatic tunnel with polyketide synthesis taking place at the heterodimer 

interface and thereby influencing the polyketide chain length.19,96 The “unnecessary” C-

terminal end of KSβ AntE might contribute to a proper heterodimer interaction and polyketide 

chain length formation. Shortening of the C-terminal end will shed light on the biosynthetic 

function of the additional C-terminal end and KSβ at whole in anthraquinone biosynthesis. 

Moreover it will be interesting to see if the ant minimal PKS cluster is able to form 

polyketides at all or even polyketides of different chain length. As mentioned before, 

normally it is assumed that the KS heterodimer and the ACP are sufficient to produce the 

polyketide product, but there is no general rule for this. It is becoming clear that it takes more 

than just the minimal PKS enzyme set to form the original polyketide chain for most type II 

PKS systems. Ectopic expression of the minimal spore pigment whiE from Streptomyces 

coelicolor for example generated a large array of more than 30 polyketides and pointed out 

that it does not independently control polyketide chain length.168 For enterocin, it was the first 

report of a ketoreductase EncD that adopts a catalytical function in generating the polyketide 

chain hence representing the first example of an essential KR for polyketide production.78 

Additionally, disruption of an aromatase/cyclase from the oxytetracycline gene cluster 

resulted in the production of novel polyketides with shorter chain lengths.147 From these 

examples it becomes more and more apparent that type II polyketide synthases are not just 

discrete alternate acting domains but are more complex interchanging enzymes with a well 

organized quaternary structure. 

A hallmark of nearly all polyaromatic polyketides is the presence of cyclases and 

aromatases, proteins that channel in a chaperone like manner the correct folding, cyclisation 

and aromatisation of the nascent polyketide chain. Two cyclases antC and antH can be found 

in the anthraquinone cluster, which can be further divided into two groups. AntH belongs to 

the didomain group in which two repeats of the ARO/CYC domain are present, whereas 
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deletion of only one domain leads to a loss of catalytic activity.77 These types of ARO/CYC 

enzymes are often associated with ketoreductase containing PKSs and catalyze the first ring 

cyclisation between C7-C12. This is presumably consistent with the first aromatic ring 

cyclisation of anthraquinones.2 The deletion of antH in Photorhabdus led to the octaketide 

derived shunt products mutactin and dehydromutactin (Figure 3). Mutactin and 

dehydromutactin are well known shunt products of the Streptomyces coelicolor actinorhodin 

biosynthesis which accumulate when only minimal PKS and ketroreductase are expressed 

(Figure 3).124,201 It is assumed that folding and cyclisation arise mainly by spontaneous aldol 

condensations, whereas it cannot be eliminated that the minimal PKS favours first ring 

cyclisation. However, in actinorhodin biosynthesis it was shown that ketoreduction is 

necessary to yield mutactin, while in the absence of KR two new shunt products SEK4 and 

SEK4b are formed (Figure 3).58 Anthraquinone biosynthesis runs congruent in many parts to 

actinorhodin biosynthesis and one might anticipate that additional deletion of ketoreductase 

antA would lead to the same shunt products. Interestingly, the second cyclase antC, which 

belongs to the group having a single domain, seems to be unable to recognize the intermediate 

products of the antH mutant as a substrate. This can be assumed as in actinorhodin 

biosynthesis, in which a second cyclase is missing the same shunt product is produced, 

namely mutactin. One explanation might be that the produced polyketide intermediates are 

not recognized as the correct precursors. Crystal structure analysis of the monodomain 

tetracenomycin aromatase/cyclase gave an idea on the functional mode of these enzymes 

which contain a highly conserved interior pocket of size and shape that is important to orient 

and regiospecifically fold the polyketide.3 However an antC generated insertion mutant 

exhibited two novel peaks in the UV chromatogram and the absence of anthraquinones 

(Figure 2). Unfortunately, to date it was not possible to assign a mass to one of these peaks; 

therefore it is still elusive if these new shunt products possess an 18 carbon or 16 carbon 

backbone like the final anthraquinone product. The elucidation of the unknown shunt products 

will give information on the cyclisation steps that cyclase AntC is involved in. 
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Figure 2. UV chromatograms of Photorhabdus luminescens TT01 and a cyclase antC insertion mutant. 
The antC mutant is still able to produce stilbenes (1=IPS, 2=eIPS and 3=ES; see chapter 5.1), but not 
anthraquinones (AQ). Instead, two additional new peaks (marked with an asterisk) are detectable 
which probably represent anthraquinone biosynthesis shunt products.  
 

Like many other type II PKS clusters the ant cluster endows a ketoreductase (AntA). 

These enzymes with only few exceptions reduce regiospecifically the C9 carbonyl group.77 In 

this work it was possible to assign the same specificity to AntA, as the octaketide mutactin is 

formed instead of the anthraquinone deduced heptaketide (Chapter 2). This finding gave 

evidence that C9 instead of C7 is reduced. Inhibition kinetics and emodin cocrystal structure 

of the actinrhodin ketoreductase act KR gained insight into structural and functional 

characteristics.102 The preference of act KR for bicyclic substrates made it obvious that C7-

C12 cyclized intermediates are the most likely substrates. Therefore C9 regiospecificity 

results from the dual constraints of a three point docking in the active site and the C7-C12 

ring geometry of the substrate.102 All this can properly also be assigned to AntA if the first 

C7-C12 cyclisation in anthraquinone biosynthesis takes place independently of the first acting 

cyclase AntH. This suggests that the minimal PKS also influences the first ring cyclisation, 

like it presumably does in the act minimal PKS products of SEK4 and SEK4b (Figure 3). 
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Figure 3. Similarities of anthraquinone and actinorhodin biosynthesis. Both minimal PKS form an 
octaketide, which is derived from acetyl-CoA and the elongation of seven malonyl-CoA extender 
units. The minimal PKS might also channel the first ring cyclisation between C7 and C12. SEK4 and 
SEK4b are shunt products of actinorhodin biosynthesis which occur when no further enzyme activities 
follow on the minimal PKS polyketide intermediate.58,59 These products will probably also occur in an 
only minimal PKS expressing Photorhabdus mutant, although this still have to be demonstrated. The 
ketoreductase (KR) is regiospecifically reducing the polyketide intermediate at C9. An interruption 
after this point leads to the shunt product mutactin in anthraquinone and actinorhodin biosynthesis.16 
Dehydromutactin is a product which arises after the aromatisation and elimination of water in 
mutactin. In the presence of the aromatase (ARO) and cyclase (CYC) anthraquinone products are 
formed in both pathways, AQ-256, 3,8-dihydroxymethylanthraquinonecaboxylic acid (DMAC) and its 
decarboxylated derivative aloesaponarin II.6,178 The apparent difference in the number of carbons of 
the final anthraquinone products may be ascribed to AntI which might be responsible for the 
shortening and release of the Photorhabdus derived polyketide intermediate. 
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Furthermore, the ant cluster of Photorhabdus harbours additional biosynthetic genes. 

Uncommonly, the cluster carries its own phosphopantetheinyltransferase (PPTase) encoded 

by gene antB. Its affiliation was proven by plasmid insertion that showed abolishment of 

anthraquinone production. Complementation by the second PPTase ngrA encoded in the 

genome, which is required for the activation of enzymes involved in stilbene biosynthesis, 

could not be detected. These observations suggest that antB shows a high specificity to the 

ACP AntF and which therefore might be the only substrate that is activated by AntB. 

Unusual for anthraquinone biosynthesis is the existence of a CoA ligase encoding gene 

within the ant cluster. Normally these proteins are only found in type II PKS when a starter 

unit other than acetyl-Co or malonyl-CoA is used. For example, CoA ligases involved in 

frenolicin and enterocin biosyntheses are primed with butyryl-CoA and benzoate-CoA, 

respectivley.77 Whether the CoA ligase AntG is involved in priming the anthraquinone PKS 

with acetyl-CoA or malonyl-CoA has to be verified. Furthermore a gene encoding an 

acyltransferase (AT) which loads the acyl-CoA onto the ACP AntF is missing within the ant 

cluster. Currently the best hypothesis is that PKSs for elongation with malonyl-CoA recruit 

the malonyl-CoA:ACP acyltransferase (MAT) of the related FAS. However, there are reports 

that the MAT is not necessarily needed as at least the act ACP is capable of self-malonylation 

in dependency on the ratio of ACP: KSα: KSβ.
80,123 Further deletion mutants and in vitro 

experiments of the relevant anthraquinone biosynthesis enzymes will help to prove the 

described functions. 

A gene encoding for a putative hydrolase/peptidase arouse interest, because it might be 

responsible for C-C bond cleavage and polyketide chain release. The closest homologue of 

the respective protein AntI shows similarity to a hydrolase from Arthrobacter nicotinovorans, 

which cleaves an 1,3-diketone hetero aromatic intermediate into its hetero aromatic ring and 

acyl-rest.164 A related mechanism on the octaketide intermediate which releases the final 14 

carbon anthraquinone and cleaves the redundant two carbons is therefore conceivable. 

Questionable is the time point of action, either before or after the last ring is cyclised. 

However, if this hypothesis can be confirmed it would be the first example of a release factor 

of a type II PKS.77 

The ant cluster is imbedded by two genes for putative transcriptional regulators 

plu4195 and plu4185. Both proteins depict a typical helix-turn-helix motif of DNA binding 

proteins and are most likely involved in regulation of anthraquinone production. Strikingly, 

the cluster includes neither methyltransferases, hydroxylases nor oxygenases although one 

could expect those based on the modified anthraquinone derivatives. Nevertheless several 
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methyltranseferase candidates with unknown substrate targets are located within the genome. 

Hydroxylases might not be required for anthraquinone biosynthesis, as the respective 

hydroxylated derivatives could only be isolated from extracts together with nematodes or 

insects.85 So it is more likely that hydroxylation is not catalysed by the bacteria, but by insect 

or nematode derived enzymes. In addition it is also not clear yet, if an enzyme is involved in 

the quinone forming step. A homologue to the actinorhodin ActVA-ORF5 that is supposed to 

be responsible for C-6 oxygenation in the benzoisochromanequinone polyketides 

actinorhodin, granaticin and medermycin could not be found in the genome of 

Photorhabdus.139 However, Plu0947 which shows similarities to tetracenomycin TcmH and 

actinorhodin ActVA-ORF6 monooxygenases represents a possible candidate for quinone 

formation.77 Apart from that, spontaneous oxygenation cannot be excluded. 
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Xenofuranones 

 

   The xenofuranones were the first natural products isolated from the entomopathogenic 

bacterium Xenorhabdus szentirmaii, which displays itself a strong antimicrobial activity.62 

However, the observed bioactivity could not be ascribed to xenofuranones. The later isolated 

and already known phenazine iodinin is rather supposed to mediate the antibiotic activity 

against Gram positive bacteria and several fungi.54 However, for the structural related and 

recently described allantofuranone from the imperfect ascomycete Allantophomopsis 

lycopodina an activity against filamentous fungi was demonstrated.166 A similar function of 

xenofuranones in order to protect the infested insect larvae from saprophytic moulds might be 

possible and reasonable. Another so far untried investigation is the role of xenofuranones as 

quorum sensing molecules. These are cell-to-cell signalling molecules which enable bacteria 

to sense their population density and to respond thereon.61,68 Some of these compounds have a 

furanone core structure and are known to be effective inhibitors of important bacterial 

pathogenesis factors.119,133 A well known example are the halogenated furanones from the red 

algae Delisea pulchra which display inhibition of virulence factor production in the 

phytopathogen Erwinia carotovora and inhibition on swarming motility in Proteus 

mirabilis.36,70,120 X. szentirmaii has to switch between a symbiotic and pathogenic mode in its 

life cycle and thereby has to respond on current conditions in the haemolymph of the infected 

host. Therefore communications signals which help to adapt the appropriate behaviour are 

conceivable. Xenofuranones might mediate such functions, but also inhibitory effects on 

bacterial competitors are imaginable. Recently xenofuranones were also identified in 

Xenorhabdus stockiae DSM17904 and Xenorhabuds mauleonii DSM17908 indicating that 

these compounds display an important function in different Xenorhabdus species as well 

(Figure 1).17 The recently successful generation of a xenofuranone deficient X. szentirmaii 

mutant by an established transposon mutagenesis method,160 will deliver answers on the 

biosynthetic origin and the biological function of xenofuranones (unpublished). 
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Figure 1. Production of xenofuranones (Xf) and so far unknown compounds (*) by different Xenorhabdus 
species.17 
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