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Abstract

Protein-protein interactions play a pivotal role in most biological processes. Especially their func-
tion in controlling apoptosis makes them to important drug targets. But in contrast to enzymes,
the applicability of existingin silico methods assisting the design of small-molecule inhibitorsis
abated by the intrinsic properties of protein-protein interaction interfaces. The central problem is
that in the absence of inhibitors, accessible binding pockets are lacking in this region. In this the-
sis, we present computational approaches for designing andanalyzing binding pockets located at
protein-protein interaction interfaces. We observed thattransient pockets not accessible in the un-
bound crystal structures of proteins involved in protein-protein interactions are frequently open in
alternative protein conformations. At the native binding site, pockets suitable for accommodating
known inhibitors were observed. Based on these findings, we studied how these pocket openings
occur and developed different protocols for detecting and designing such ligand binding pockets.
If no information about the binding site is available, the surface of the entire protein is sampled
and all transient pockets opening on the protein surface areidentified. If the binding site is ap-
proximately known, pockets of predefined properties are algorithmically designed at the desired
location. After validating the protocols using three modelsystems, we show their application to
two test systems.

5



6



Kurzfassung

Protein-Protein-Interaktionen sind wichtige Angriffspunkte für Wirkstoffe, da sie bei den meis-
ten biologischen Prozessen eine entscheidende Rolle spielen. Im Gegensatz zu Enzymen ist
jedoch die Anwendbarkeit existierenderin silico Methoden zur Unterstützung der Entwicklung
niedermolekularer Inhibitoren an Protein-Protein-Schnittstellen eingeschränkt. Das Kernproblem
besteht hierbei darin, dass den Kristallstrukturen der ungebundenen Proteine häufig potentielle
Bindungstaschen fehlen. In der vorliegenden Arbeit stellen wir computergestützte Ansätze zum
Entwurf und zur Analyse von Bindungstaschen an Protein-Protein-Schnittstellen vor. Wir haben
entsprechende Proteine untersucht und beobachtet, dass transiente Taschen, die in den ungebun-
denen Strukturen nicht zugänglich waren, häufig in alternativen Konformationen geöffnet sind
und sich zudem als Bindungstaschen für bekannte Inhibitoren eignen. Des Weiteren haben wir
untersucht, wie diese Taschenöffnungen zustande kommen und dieses Wissen in der Entwicklung
neuer Vorgehensweisen zur Ermittlung solcher Ligandenbindungstaschen berücksichtigt. Ist keine
Information über die Bindungsstelle verfügbar, wird die gesamte Proteinoberfläche nach transien-
ten Taschen abgesucht. Ist die Bindungsstelle aber annähernd bekannt, können Bindungstaschen
mit den gewünschten Eigenschaften algorithmisch entworfen werden. Nachdem diese Vorge-
hensweisen anhand dreier Modellsysteme validiert wurden,stellen wir deren Anwendung auf zwei
Testsysteme vor.
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Zusammenfassung

In der pharmazeutischen Forschung gewinnen computergestützte Methoden, die die Entwicklung
neuer Wirkstoffe unterstützen, zunehmend an Bedeutung. Solässt sich die stetig steigende An-
zahl neu entdeckter Enzym-Inhibitoren nicht nur auf die verbesserten experimentellen Screening-
Techniken zurückführen, sondern auch auf den kontinuierlichen Fortschritt im strukturbasierten
Wirkstoffdesign und die Tatsache, dass immer mehr hochauflösende Proteinstrukturen verfügbar
werden. Ist die dreidimensionale Struktur des Zielproteins bekannt, kann man mittels comput-
ergestützter Methoden die zu blockierende Bindungsstelleermitteln und deren chemische und ge-
ometrische Eigenschaften mit denen potentieller Ligandenvergleichen. Obwohl strukturbasiertes
Wirkstoffdesign sehr erfolgreich bei der Identifizierung von Inhibitoren eingesetzt wird, die auf die
Wechselwirkung zwischen Proteinen (zumeist Enzyme) und kleinen Molekülen einwirken, lässt
der Erfolg bei der Entdeckung von Liganden, die die Bildung von Protein-Protein-Komplexen
modellieren, noch auf sich warten. Dabei liegt ein enormes therapeutisches Potential in der Hem-
mung von Protein-Protein Interaktionen, da diese eine entscheidende Rolle in fast allen wichtigen
biologischen Prozessen spielen, wie zum Beispiel im Tumorwachstum oder der Immunantwort.
Daher hat sich die Suche nach kleinen Molekülen, die eine entsprechende inhibierende Wirkung
zeigen (auch SMPPIIs, “small-molecule protein-protein interaction inhibitors”, genannt), in den
letzten Jahren zu einem sehr aktiven Forschungsfeld entwickelt. Jedoch sind bisher fast alle
bekannten SMPPIIs mittels experimenteller Screening-Methoden entdeckt worden. Das struktur-
basierte Wirkstoffdesign hat sich für diese Klasse von Proteinen als eine große Herausforderung
erwiesen. Bei Enzymen befindet sich das aktive Zentrum für gewöhnlich in wohldefinierten, tiefen
Bindungstaschen, in die potentielle Inhibitoren binden können. Im Gegensatz dazu befinden sich
jedoch an den Schnittstellen der meisten ungebundenen Proteinstrukturen keine für die Ligan-
denbindung geeignete Vertiefungen. Daher ist es nahezu unmöglich Inhibitorbindungsstellen zu
identifizieren, wenn diese nicht aus Ligand-gebundenen Kristallstrukturen bekannt sind. Selbst
wenn der Bereich, in dem der Inhibitor bindet oder binden sollte, bekannt ist, verläuft die An-
wendung computergestützter Methoden zur Suche nach vermeintlichen Treffern aus virtuellen
Ligandenbibliotheken meist ohne Ergebnis, wenn keine potentielle Bindungstasche vorhanden
ist, in die die Liganden platziert werden können. Das Ziel dieser Arbeit ist es daher, je nach
verfügbarer Information über die Bindungsstelle geeignete Bindungstaschen zu ermitteln und zu
analysieren oder so zu entwerfen, dass diese bestimmte Anforderungen erfüllen. Dass diese Vorge-
hensweise gerechtfertigt ist, zeigt unsere Eingangsstudie, in der wir drei Modellsysteme mittels
Moleküldynamik-Simulationen in Wasser untersucht haben.Hierbei wurde in allen Fällen ein
häufiges Auftreten von transienten Bindungstaschen, die nicht in der ungebundenen Startstruktur
vorhanden waren, auf der Proteinoberfläche beobachtet. Da diese Modellsysteme so ausgewählt
wurden, dass die Bindungsmoden eines Inhibitors aus einer Kristallstruktur bekannt ist, konnte
dieses Wissen zur Validierung der Ansätze genutzt werden. Dadurch konnten wir zeigen, dass
sich unter den beobachteten transienten Taschen auch die native Bindungstasche befindet und
diese selbst in Abwesenheit ihres Liganden eine Form annimmt, in die der Inhibitor in einer der
Kristallstruktur sehr ähnlichen Weise binden kann. DiesesErgebnis weist darauf hin, dass die
Benutzung transienter Bindungstaschen das strukturbasierte Wirkstoffdesign von Protein-Protein-
Interaktionsinhibitoren erheblich erleichtern könnte.
In einer Folgestudie haben wir den Einfluss des Proteinrückgrates und des in Moleküldynamik-
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Simulationen benutzten Lösungsmittels auf die Bildung vontransienten Bindungstaschen unter-
sucht und deren essentielle Bedeutung festgestellt. So wurden während einer Moleküldynamik-
Simulation in Methanol mehr Taschenöffnungen als in der Vergleichssimulation in Wasser be-
obachtet. Des Weiteren waren diese Taschen größer und unpolarer, was darauf schließen lässt,
dass das Öffnen solcher Taschen in Methanol energetisch günstiger ist als in Wasser. Darüber hin-
aus wurde der Einsatz von effizienteren Methoden zur Generierung von Proteinkonformationen
geprüft, deren Ergebnisse jedoch denen der Moleküldynamik-Simulationen qualitativ unterlegen
waren.
Aufgrund des hohen Zeitaufwandes dieser Simulationen haben wir eine weitere Vorgehensweise
entwickelt, die angewendet werden sollte, wenn die Bindungsstelle der potentiellen Liganden an-
nähernd bekannt ist. In solch einem Fall bietet es sich an, eine Bindungstasche mit den gewünsch-
ten Eigenschaften an einer bestimmten Stelle algorithmisch zu erzeugen. Im ersten Versuch der
Umsetzung dieser Idee wird die Proteinoberfläche der potentiellen Bindungsregion nach ener-
getisch günstigen Taschenpositionen abgesucht. Hierzu wird eine Kugel, die die Tasche repräsen-
tiert, in die Proteinoberfläche gesetzt und das Protein energetisch minimiert, damit sich seine Kon-
formation der Kugel anpasst und so eine Taschenvorstufe entsteht. Die so erzeugten Proteinkon-
formationen werden anschließend verfeinert, so dass die endgültigen Konformationen einen Kom-
promiss zwischen einer möglichst großen Tasche und einer möglichst geringen internen Proteinen-
ergie darstellen. Da dieser Ansatz jedoch nur für zwei der drei Modellsysteme zufriedenstellende
Ergebnisse lieferte, wurde eine verbesserte Vorgehensweise entwickelt, bei der die zu induzierende
Tasche durch eine Anzahl kleiner Kugeln repräsentiert wird, deren Positionen in Abhängigkeit der
Proteinkonformation gewählt werden. Die Grundidee ist hierbei, dass diese Kugeln anfangs stark
mit den Proteinatomen überlappen, diese Überlappung jedoch mit zunehmender Anpassung der
Proteinkonformation an die gewünschte Tasche reduziert wird. Diese Methode erlaubt es, neben
der Position der zu erzeugenden Bindungstasche auch deren Volumen zu definieren. Die Anwen-
dung dieses Ansatzes auf die drei Modellsysteme lieferte sehr vielversprechende Ergebnisse.
Die Erkenntnisse, die wir aus den hier beschriebenen Studien gewonnen haben, wurden abschlies-
send verwendet, um die Bindungsstellen und -moden experimentell bestimmter Liganden zweier
Systeme vorherzusagen. Bei einem der Systeme war weder die Bindungsstelle der Liganden
bekannt, noch auf welchem der an der Reaktion beteiligten Proteine sich diese befindet. Daher
wurde in diesem Fall die gesamte Oberfläche aller in Frage kommender Proteine mit bekannter
Kristallstruktur nach potentiellen Bindungstaschen abgesucht und getestet, ob die Liganden mit
ausreichender Affinität darin binden können. Zusätzlich wurden alle mittels einer Moleküldynamik-
Simulation des mutmaßlichen Zielproteins erzeugten transienten Taschen auf deren Eignung als
Ligandenbindungstasche hin untersucht. Im zweiten Testsystem war die Bindungsregion der Lig-
anden bekannt. Da das Protein an dieser Stelle jedoch eine außergewöhnlich hohe Flexibilität
aufwies, haben wir uns auch hier für die Suche nach transienten Taschen mittels Moleküldynamik-
Simulationen entschieden, in die die Liganden anschließend platziert wurden, um deren Eignung
als Ligandenbindungstasche zu bewerten. In beiden Fällen konnten wir mittels der hier vorgestell-
ten Methoden potentielle Bindungsstellen identifizieren und mögliche Bindungsmoden der Ligan-
den vorschlagen.
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Chapter 1

Introduction

About 2,300 years ago, Aristotle stated: “The whole is more than the sum of its parts.” Along
the same lines, a simple conglomeration of different molecules in a specified ratio in a biological
cell does not result in a living organism. It is the strictly coordinated and regulated interaction
of these parts that constitutes life. The first chapter provides an introduction into protein-protein
interactions that are the drug design targets tackled in this thesis, and into the objective of this
work.

1.1 Molecular Interactions and their Modulation

Strictly speaking, all physiological processes, or biological processes in general (like reproduction,
cell growth, signal transduction, cell recognition, and metabolism), involve interactions between
molecules [1]. For example, the transfer of information from DNA to proteins as described by
the central dogma of molecular biology is mediated by interactions between different kinds of
molecules that interact with each other by formingcomplexesof variable stability. Complexes
may contain two up to several thousands of molecules that bind to each other either covalently or
non-covalently. In this context proteins are of particularinterest. Besides representing the most
abundant class of molecules by accounting for more than 50 % of the dry weight of cells [2], their

Figure 1.1: A part of the “whole” : Overview of signal transduction pathways (Figure taken from [3]).
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Figure 1.2: A typical drug discovery pipeline.

molecular structures determine their biochemical functions and are, therefore, crucial for biolog-
ical processes. The connection between the biochemical function of a protein and the output of
a biological process is illustrated using the example of signal transduction. Such a process typi-
cally comprises a sequence of molecular interactions that are mediated by binding events. Upon
binding, an effect is triggered (usually a chemical reaction or a structural change depending on the
biochemical function of the involved protein) that is required for the activation of the next molec-
ular interaction. This process is continued until the end ofthis interaction pathwayis reached and
the final result is obtained [4, 5]. Figure 1.1 provides an overview of signal transduction pathways
in the cell and illustrates the complexity and variety of biomolecular interactions. Note that some
of the proteins shown here are discussed later in this thesis. Although we focus on isolated inter-
actions, one should always keep in mind that they are part of alarge cellular network as depicted
by this figure. Therefore, it is essential for the appropriate functioning of a biological process that
all components interact in a proper way. Even a single aberrant molecular interaction may perturb
the process and lead to an alleviated, abnormal, or even missing physiological effect and may be
related to a disease [2].
In the ideal case, the medical treatment would consist of modulating these molecular interactions

such that the appropriate physiological effect is recovered. Chemical substances (mostly small
molecules) that exhibit such an impact on a living organism are calleddrugs. In contrast to the
historical procedure that was mostly based on serendipity,the modern approach tackles the prob-
lem of discovering new drugs rationally [6]. An example for adrug discovery pipeline is shown
in Figure 1.2. The first step in such a drug discovery project consists of identifying an eligible
targetthat is involved in the aberrant interaction pathway, usually a protein, on which the potential
drug should act. (Typical drug targets and their portion among the targets of all approved drugs
are shown in Figure 1.3.) Subsequently, High Throughput Screening (HTS) libraries consisting of
several thousand compounds are searched for so-calledhits that modulate the activity of the target
protein to the desired extent. Based on these hits, new analogs with improved pharmacological
and biochemical properties (like improved potency and selectivity, reduced side-effects and toxi-
city) are then synthesized. Theselead compounds serve as starting points for further refinement

Figure 1.3: Marketed small-molecule drug targets by biochemical class(data taken from [9]). Most drug
targets are proteins. Note that the large fraction of enzymes does not only indicate their importance, but
also that the modulation of their activity is nowadays a quite successful enterprise.
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(a) competitive drug binding (b) allosteric drug binding

Figure 1.4: The drug may either bind to the same site as the agonist ((a) into the quadratic pocket) and block
this binding pocket, or to another site ((b) into the spherical pocket) and so induce conformational changes
that encompass the binding site of the agonist. In the formercase, the drug binding is calledcompetitive
and in the latter case it is calledallosteric.

and testing. Afterwards, the most promising compounds, thedrug candidatesenter the preclinical
and clinical test phases that are required for the final approval of the new drug. Nowadays most
of these steps are assisted by computational methods [7, 8].In this way, for example, the costs for
the hit identification can be significantly reduced if only those compounds are testedin vivo that
were predicted to be hits in avirtual screeningcampaign. Here, databases consisting of thousands
of compounds are screenedin silico to identify ligands that bind to the target protein with an ap-
propriate computed affinity. In this work, we only focus on approaches that foster thein silico
discovery of new hits. Further information about how computational methods assist the discovery
and design of new drugs can be found in [7, 10–13].
Drugs, or ligands in general, commonly affect the behavior of their target proteins by non-covalently
binding to them. The involved surface region of the protein where this interaction takes place is
calledbinding site. A typical binding site for a small-molecule ligand is characterized by a cavity
or depression on the protein surface, the so-calledbinding pocket, that accommodates the ligand
in a protein-ligand complex. Depending on the ability of this complex to produce a functional
response, one distinguishes betweenagonistsandantagonists. An agonist alters the protein’s ac-
tivity (either positively or negatively) upon binding, whereas an antagonist (also calledinhibitor)
does not provoke a biological response itself. It solely functions by damping or blocking the bind-
ing of agonists. In the following, we focus on drugs that act as inhibitors because inhibition is the
most commonly used strategy in modulating molecular interactions. The binding of the drug to
the target protein may either becompetitiveor allosteric. In the former case, the drug binds to the
same site on the protein as its natural ligand(s) but usuallywith higher affinity (Figure 1.4 (a)). In
the latter case, the drug binds to a distinct site and triggers a conformational change that encom-
passes the binding site for the natural ligand(s) (Figure 1.4 (b)). In both cases, the physiological
complex cannot be formed because the binding site is either occupied or distorted [6].

1.2 Structure-Based Drug Design

Structure-based drug designis an example of rational drug design where information about the
three-dimensional structure of the studied molecules is used to assist the drug design process.
Here, advantage is taken of the fact that in a complex, the protein and the ligand possess comple-
mentary geometric shapes and physicochemical properties.However, this observation only holds
for proteins and ligands in their bound (holo) states. When it comes to proteins and ligands in
their unbound (apo) states, the “lock-and-key” model (see Figure 1.5 (a)) as suggested by Emil
Fischer in 1894 [14] that describes the binding site as rigidhas been proven to be inaccurate. The
currently most accepted model was published in 1958 by Daniel Koshland and is a modification
to Fischer’s “lock-and-key” model [15]. This so-called “induced-fit” model (see Figure 1.5 (b))
considers proteins and ligands as rather flexible structures that are able to reshape upon binding
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(a) “lock-and-key” (b) “induced-fit”

(c) “conformational selection”

Figure 1.5: Different models for describing ligand binding: (a) “lock-and-key” [14], (b) “induced-fit” [15],
and (c) “conformational selection” [16].

for maximizing their geometric and physicochemical complementarity. As the unbound receptor
exists, like all molecules, in an ensemble of accessible conformations a further concept termed
“conformational selection” [16] has been suggested to explain ligand binding. This model can
be considered as an extension to the “induced-fit” model as itassumes that the ligand will “pick”
the protein conformation into which it fits bestbeforeany conformational changes are induced to
optimize the fit (see Figure 1.5 (c)).
In any case, structural information on the biomolecules involved in the targeted interactions fa-
cilitates the discovery and design of new drugs. If the three-dimensional structure of the target
protein (or a homologous protein) is known, adirect drug designapproach can be applied. Oth-
erwise, available information about molecules binding to the same protein site can be employed
in an indirect drug designapproach. Note that both strategies do not exclude each other. Modern
drug design projects commonly use a combination of both approaches (see [7] for examples).

1.2.1 Direct Drug Design

In an ideal case a high-quality three-dimensional atomic structure of the target protein has been
determined by X-ray crystallography or NMR spectroscopy. Alternatively, the experimental struc-
ture can be substituted by a homology model derived from a (set of) protein(s) with similar se-
quence, and hence, structure (see [17] for a review). Havingstructural information at hand about
the target protein then allows for the calculation of its physicochemical and geometrical properties

(a) deep binding pocket (b) flat surface pocket

Figure 1.6: The morphology of the binding site has a crucial influence on the degree of complementarity
between the protein and its ligand: The deeper binding pocket in (a) tends to have a larger surface area and
so more interactions between the protein and the ligand are possible than in (b). Therefore, the maximal
degree of complementarity (illustrated here by the number of complementary charges) is also much higher.
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Figure 1.7: An example strategy using direct drug design for hit identification. Note that the existence of a
(druggable) binding pocket is crucial for successful virtual screening.

as mentioned above. But equally important to having access to the protein structure is knowing the
binding site of the potential drug as it represents the starting point for structure-based drug design
[13]. Proteins often possess multiple pockets on their surface but not all of them aredruggable, i.e.
appropriate for ligand (or drug) binding. As designing competitive inhibitors is usually the most
straightforward approach, one usually focusses on the pocket that accommodates the interaction
to be prevented. An enzymatic reaction, for example, takes place in the active site that is usually
located in the largest pocket on the protein surface [18].
A high-quality three-dimensional atomic structure of the apo protein may be more appropriate for
drug design than a low-quality structure of the protein-ligand complex because detailed descrip-
tions of putative ligand binding sites can be extracted fromthe apo structure when focussing on
accessible pockets on the protein surface. An advantage of ligands binding into pockets is that
the contact area between the protein and the ligand is much larger than when binding to a flat
protein surface. The degree of complementarity and, thus, the specificity is much higher as well
(compare Figure 1.6) [19]. Therefore, knowing the binding site is crucial for identifying potential
drugsin silico. In addition, this site should be druggable. If these preconditions are fulfilled, huge
compound libraries can be virtually screened for putative hits that fit into this binding site, e.g. by
molecular docking. An example for a direct drug design strategy is illustrated in Figure 1.7. The
steps covered in this thesis are explained in detail in Chapter 2.

1.2.2 Indirect Drug Design

If the structure of the protein target is unknown, new compounds will be designed on the basis of a
hypothetical binding site that is derived from an analysis of the physicochemical and geometrical
properties of known binders and non-binders. This approachis based on the principle of similarity
that assumes that similar compounds produce similar effects [7]. This is again related to the
complementarity between the protein and the ligand in theircomplexed state.
Examples for indirect drug design approaches are:

• Quantitative structure-activity relationship (QSAR) analysis
• Molecular shape analysis
• Pharmacophore generation and mapping

As indirect drug design is beyond the scope of this work, we refer to two reviews [7, 12] for further
information.
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1.3 Protein-Protein Complexes and their Modulation

The interactions between proteins play a central role in most physiological processes. Interest-
ingly, the protein-protein complexes that are formed during such interactions have different de-
grees of stability and duration [20]. Several possible classifications of these protein-protein com-
plexes have been suggested (see [21] for a review). Here, we use the classification intotransient
andpermanentcomplexes. In permanent complexes, proteins are only stable in oligomeric struc-
tures. Therefore this kind of interaction can be seen as a continuation of protein folding. Transient
interactions, on the other hand, represent short-living complexes formed by proteins that are also
stable in the apo form [20].
This work focuses on transient protein-protein interactions (PPIs) because they are involved in
important biological processes like immune response and signal transduction (e.g. apoptosis or
proliferation) and, thus, involve important drug targets [2, 8, 19, 20, 22–30].

1.3.1 Inhibiting Protein-Protein Interactions by Small Molecules

Designing small-molecule inhibitors that occupy enzyme active sites is nowadays a common and
successful enterprise [29] as reflected by the small-molecule drug targets shown in Figure 1.3.
But when it comes to small-molecule protein-protein interaction inhibitors (SMPPIIs), their de-
sign is widely regarded as a formidable challenge and so far,only a few SMPPIIs have been
approved as drugs. The inherent difficulties mainly arise from the nature of protein-protein inter-
action interfaces [2, 23, 25–27, 29]. Table 1.1 compiles thedifferences to the design of inhibitors
targeting interactions between enzymes and their small-molecule substrates. Figure 1.8 shows
a particular example pointing out the contrast between binding sites in the apo and holo state for
protein-protein interaction interfaces and small molecule - enzyme interactions. As protein-protein
interaction interfaces mainly consist of hydrophobic residues they are quite featureless making it
difficult to ensure that the small molecules bind with sufficient specificity. However, in many
cases only a few residues contribute to high-affinity binding (so-calledhot spots[31]) and, thus,
a small-molecule inhibitor does not necessarily need to cover the entire protein-binding interface.
The subset of the surface consisting of the hot spot residuesis much smaller and, hence, suited to
be masked by a small molecule [29]. This is underpinned by thefact that to date several SMPPIIs
have been identified [2, 8, 19, 22, 23, 25, 27–29].

PPI interface enzyme-substrate binding site
morphology of binding site relatively flat; often no deep

binding pockets; often many
small subpockets

well-defined deep binding
pocket

similarity of binding site in the
apo and holo state

major conformational changes
upon ligand binding; binding
pocket often not accessible in
the apo state (Fig. 1.8 (c) + (d))

in most cases only minor con-
formational changes upon lig-
and binding (Fig. 1.8 (a) + (b))

surface area of binding site 1,500 - 3,000 Å2 [25] 300 - 1,000 Å2 [25]
spatial distribution of binding
site

distributed contiguous

natural ligands proteins small molecules
dominant interactions with
binding partners

hydrophobic interactions hydrogen bonds, salt bridges,
and electrostatic forces

Table 1.1: Comparison between protein-protein interaction interfaces and deep enzyme pockets as drug
binding sites. It should be mentioned here that enzymes may also contain binding sites for other proteins.
But within this context, we focus on the active site or other binding pockets for small-molecule ligands.
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(a) apo state (b) holo state (c) apo state (d) holo state

Figure 1.8: Ligand-induced conformational changes in enzyme active sites and protein-protein interaction
interfaces: the binding sites of Biotin on the enzyme Streptavidin (a, b) and of the SMPPII DIZ on the
protein MDM2 (c, d). (a) and (b) possess an almost identical binding site, whereas the pockets in (c) and
(d) show noticeable differences.

Examples for targeted protein-protein interactions are:

• BCL-XL - Bak
• MDM2 - p53
• IL-2 - IL-2Rα
• XIAP-BIR3 - Caspase-9

This emphasizes the fact that although finding SMPPIIs is indeed a great challenge, but it is not
an impossible one.

1.3.2 Experimental Approaches for Targeting Protein-Protein Interactions by Small
Molecules

Protein-protein interactions may be modulated by different classes of molecules. For example, if
the interface of at least one protein consists of a short continuous amino acid sequence that con-
tributes significantly to the overall binding affinity this binding patch can be mimicked by a pep-
tide. Although peptides are generally inappropriate as oral drugs because of their poor metabolic
stability and low bioavailability, they may serve as a lead compound that is subsequently optimized
by chemical modifications like the inclusion of non-naturalamino acids [27]. Another strategy is
the identification of small-molecule binders by HTS of chemical libraries. The advantages of this
approach are that it is also applicable if the binding site cannot be mimicked by a peptide and
that the hit or lead compounds are already small molecules, so that there is no need to mimick a
peptide by a small molecule as in the first case. A further advantage is that no prior knowledge
about the location or the constitution of the interaction interface is required. However, the hits
identified in an initial functional screening have to be further tested to rule out assay-specific ar-
tifacts. Moreover, as the assays usually contain both (or even several different) proteins that form
the targeted complex, it has to be clarified to which protein the compound binds. The success of
a HTS crucially depends on the size and diversity of the compound library. In fact, it may happen
that the conversion of hits identified by HTS to lead compounds is unsuccessful. A possible expla-
nation is that most screening libraries are designed for “traditional” drug targets like enzymes or
G-protein-coupled receptors (compare Figure 1.3) and are,due to the different physicochemical
properties of protein-protein interaction interfaces, unsuitable for binding to them [25].
An alternative approach that overcomes this problem isfragment-based screening[23]. The idea
behind this strategy is that initially a library of small organic fragments (with masses typically
less than 200 Da) are screened for active representatives. These are linked or otherwise optimized
to generate a small set of drug-sized molecules that are tested for an improved binding affinity.
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The advantage of this approach is that a huge chemical space can be probed while only a minimal
number of compounds has to be synthesized. The most commonlyused methods for fragment-
based screening areSAR by NMRandTethering. SAR (Structure-activity relationship) by NMR
is an NMR-based method that identifies fragments that bind toproximal subsites of the protein.
These fragments are then linked or merged by using a combination of structure-based design and
SAR [32]. In Tethering, a protein residue located near the binding site is mutated to cysteine and
the protein reacts with a library of disulfide-containing fragments. At equilibrium, the protein-
fragment complexes with highest affinity will predominate [33]. The drawback of this technique
is that the location of the binding site of the fragments has to be known in advance and that the
mutation may influence the affinity towards the screened fragments.

1.3.3 Computational Approaches for Targeting Protein-Protein Interactions by Small
Molecules

Although it is nowadays possible to test up to 100,000 compounds a day in HTS, potential hits
could be identified even more efficiently if the size of the compound library is decreased. To this
endin silico approaches exist that design compound libraries either structure- or diversity-based.
Diversity-based library design, for example, generates focussed libraries by similarity clustering
while maintaining the diversity of the complete library. Ifstructural information about the target
protein is available, it can be used to select or design compounds that are to be tested experimen-
tally. Several published studies reported the identification of SMPPIIs by using a combination of
in silico andin vitro screening. As for most studied protein-protein complexes no small-molecule
binders had been identified before, direct drug design approaches were applied. In all examples
reported so far, the location of the binding site was alreadyknown from experimental studies
revealing hot spot residues or predicted from high-quality(complex) crystal structures that con-
tained accessible binding pockets. (Case studies are described, for example, in [8, 22, 27, 29].)
Analogously to the standard direct drug design approach applied to “traditional” drug targets, the
procedure for protein-protein interactions illustrated in Figure 1.9 comprises two key levels: the
prediction of potential binding sites from hot spot analysis, pocket detection, and/or detection of

Figure 1.9: Flowchart as suggested in [26] describing anin silico approach for the discovery of SMPPIIs.
This procedure comprises two key levels: identification of an appropriate binding site and virtual screening
by docking ligands into the selected receptor region. Note that this approach relies on the identification of
a druggable binding site from the target structure.
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allosteric sites and the actual virtual screening step in which ligands are docked into the receptor
site [26]. So far, only a few studies [34–37] considered the flexibility of the binding region. In
fact, docking into flat cavities located at protein-proteininteraction interfaces is more challenging
than docking into deep enzyme pockets. Najmanovichet al. analyzed the conformational changes
of side-chains upon ligand binding [38]. By comparing theirfindings to a similar study about the
side-chain rearrangements upon protein-protein association [39], they concluded that side-chains
in ligand binding pockets are more rigid than those in protein-protein interaction interfaces. Thus,
it appears that other studies that did not incorporate receptor flexibility were only successful be-
cause their target structure already contained a well-defined pocket that was appropriate for ligand
binding. Note that this is not always the case, especially ifonly a crystal structure of the apo
protein is available. In such a case the procedure describedbefore is not applicable and the iden-
tification of potential hit compounds is completely relianton the success ofin vivo or in vitro
screening approaches.

1.4 Goal of this Work

The present work introduces computational approaches thatassist in the design of small-molecule
inhibitors at protein-protein interaction interfaces. A particular focus is placed on the identification
of binding sites for potential hits. This step is crucial forthe design and discovery of SMPPIIs. As
outlined above, detecting binding sites in enzymes is not very challenging, even if solely structural
information about the apo conformation is available. In contrast to this, for proteins involved in
protein-protein interactions, missing knowledge about the binding site may impede the whole drug
discovery pipeline. If only the apo structure of the target protein is on-hand, the whole protein sur-
face has to be considered when searching for ligand binding sites. Moreover, as illustrated in Fig-
ure 1.8, detecting binding sites in apo proteins may fail because putative conformational changes
that result from ligand binding are not represented by a single conformation. To this end, we devel-
oped different approaches for identifying or designing putative ligand binding pockets using apo
protein structures as outlined in Figure 1.10. After givingan overview of the underlying theory

Figure 1.10: Flowchart illustrating the goal of this work. Every rectangular box is covered by a chapter
(Chapters 3 - 7).
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and (alternative) methods in Chapter 2, our initial pocket detection protocol based on molecular
dynamics simulations will be introduced in Chapter 3. As this approach led to the surprising re-
sult that many pockets not accessible in the starting structure are open in other conformations, the
underlying mechanisms of these pocket openings were studied using modified versions of this pro-
tocol and the findings will be presented in Chapter 4. If the protein-protein interaction interface is
known (e.g. from the complex structure), the search for accessible binding pockets can be limited
to this area. Besides, the reduction of the search space makes the goal-oriented design of binding
pockets computationally feasible as will be shown in Chapter 5. However, binding pockets for
SMPPIIs often consist of several subpockets. Considering this fact, an extension was developed
that will be described in Chapter 6. Finally, in Chapter 7, the methodology will be applied to two
test systems: Adrenodoxin and the BIR-2 domain of XIAP.



Chapter 2

Background

Since the 1980s,in silico methods have become more and more important in drug design projects
[12]. The underlying concepts and algorithms most relevantfor the present work will be intro-
duced in this chapter.

2.1 Statistical Thermodynamics of Binding Reactions

Molecules exist in a crowded world. Besides many other species of molecules that are present in
large numbers in (or outside) the cell, they are also surrounded by many molecules of their kind.
But not all of them are exactly in the same state. Some molecules, for example, may be part of
a complex while others are in the unbound state. As a consequence, experiments rather study
the behavior of an ensemble of molecules than that of a singlemolecule. The behavior of such
a macroscopic system is characterized by its volume, temperature, pressure, number of particles,
total energy, and a variety of other macroscopic parametersand is described bythermodynamics.
Energy, for example, is one of the most important concepts in chemistry. It determines which
molecules exist (and how they look like), which reactions occur (and in which direction they are
executed), and how a system behaves. Thus, the calculation of energy is essential in computational
structural biology. The term energy is commonly defined as a quantity describing the amount of
work that can be performed by a force. It exists in different forms (e.g. potential and kinetic
energy) that can be transformed into each other while the total energy of a closed system (its
internal energyU ) is always conserved (first law of thermodynamics). The heattransfer during a
reaction taking place in a closed system is calculated by theenthalpyH

H = U + pV (2.1)

wherepV is the work required to allocate space of volumeV against a constant pressurep. To-
gether with theentropyS, interpreted as a measure how close the system is to equilibrium, and
the absolute temperatureT , the enthalpy is used to calculateGibb’s free energythat defines how
much process-initiating work can be obtained from an isothermal and isobaric closed system:

G = H − T · S (2.2)

The change in free energy,
∆G = ∆H − T · ∆S (2.3)

indicates which reactions take place under the given conditions:

• ∆G < 0: reaction occurs spontaneously

• ∆G = 0: no reaction occurs (system is in equilibrium)

• ∆G > 0: reaction occurs non-spontaneously

33
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In Chapter 1, the termaffinity was used to describe the binding stability. As the ligandL, the
target proteinP , and the complexPL occur more than once and in more than one state, their
concentrations are measured after the equilibrium state

P + L ⇀↽ PL (2.4)

is reached. The ratio of their concentrations is calleddissociation constantand is defined as

Kd =
[P ] · [L]

[PL]
(2.5)

Note that this relationship describes the binding affinity of a ligand towards its target protein. For
example, in virtual screening one tries to identify hits that are predicted to bind withKd rates in the
micromolar range [22]. This affinity is influenced by non-covalent interactions between the two
binding partners like electrostatic interactions, hydrogen bonds, and van der Waals interactions and
is, thus, also represented by the ratio between the speed of the dissociationkoff and the association
kon of the complexes. Under standard conditions, the directionof this binding reaction at steady
state depends on the energy free difference of the two states

∆G = RT · lnKd (2.6)

whereR is the gas constant [40].
In contrast to experiments that measure the behavior of ensembles of molecules, computational
approaches usually calculate the behavior of an individualmolecule. How can these microscopic
results be used to explain the macroscopic results of the experiments? This link is provided by
the partition functionq, the key quantity of statistical mechanics. It can be used tocalculate all
macroscopic functions [41]. For a single molecule in the canonical NVT ensemble (see Section
2.3.1), it is defined as the sum over all possible energy statesEi accessible at temperatureT

q =
∞
∑

i=states

e
−Ei
kBT (2.7)

wherekB is the Boltzmann constant. When considering macroscopic systems in thermal equilib-
rium, one is usually interested in the average microstate with energyEi, i.e. the statei for which
the probabilityPi is maximal. In the canonical ensemble, the probabilities follow the well-known
Boltzmann distribution,

Pi =
1

q
· e

−Ei
kBT (2.8)

The partition function is used as a normalization factor to ensure that the probabilities sum up to
1.

2.2 Energy Evaluation by Force Fields

Force fieldmethods are an efficient way to calculate the potential energy for a given conformation
of even very large atomic systems. In contrast to the very time-consuming and computationally
intensive quantum mechanical methods, they do not considerelectrons as individual particles but
approximate the electronic energy by a parametric functionof the nuclear coordinates. This means
that the atomic movements are treated by Newtonian mechanics, the so-calledmolecular mechan-
ics [42]. In molecular mechanics, atomic nuclei and electrons are merged into point-like force
centers and covalent bonds are represented by springs of different stiffness. Thus, the bonded in-
teractions, i.e. the stretching, bending, and improper torsion of the bonds (shown in Fig. 2.1) can
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Figure 2.1: In molecular mechanics, atoms are represented by balls and bonds by springs. This allows
describing the bonded interactions (except for proper torsions) by Hooke’s law.

be described by Hooke’s law. It is assumed that the values of these interactions fluctuate around
equilibrium values and the magnitude of these fluctuations is characterized by the corresponding
spring force constants. As an exception, proper torsions are modeled as sums of suitable cosine
functions. Interactions between pairs of non-bonded atomsi andj with a distance ofrij are de-
scribed by a Lennard-Jones potential and an electrostatic potential following Coulomb’s law. The
Lennard-Jones potential defining the van der Waals interaction is defined as

UvdW (ij) = 4ǫij ·




(

σij

rij

)12

−
(

σij

rij

)6


 (2.9)

whereσij denotes the separation of the two atoms for which the potential is zero andǫij denotes
the energy minimum (well depth) of this potential. The electrostatic interaction between two atoms
with chargesqi andqj is given by

UES(ij) =
qiqj

4πǫ0ǫr
(2.10)

with ǫ0 being the electric constant andǫr being the relative dielectric constant. In this context, a
force fieldis a set of parameters and functions derived from quantum mechanical calculations and
experimental data that is used to describe the potential energy of a molecular system. All atoms are
assigned a type that defines their partial charge and van der Waals radius, as well as the equilibrium
values (b0 for bond lengths,φ0 for angles, andξ0 for improper dihedrals) and force constantsk
for bonded interactions with other atom types. The potential energy is then approximated by an
empirical functionU of the three-dimensional coordinates of the systems [42]:

U(s) =
∑

bonds(ij)

k(ij)

2

(

rij − b
(ij)
0

)2
+

∑

angles(ijk)

k(ijk)

2

(

φijk − φ
(ijk)
0

)2

+
∑

improper torsions(ijkl)

k(ijkl)
(

ξijkl − ξ
(ijkl)
0

)2

+
∑

proper torsions(ijkl)

N
∑

n=0

k(ijkl)

2

(

1 + cos(n(ijkl)τijkl − τ
(ijkl)
0 )

)2

+
∑

pairs(ij)

(UvdW (ij) + UES(ij)) (2.11)

As above,rij denotes the distance between two atomsi andj, φijk denotes the angle between
three atomsi, j, andk, ξijkl the improper, andτijkl the proper dihedral angle between four atoms
i, j, k, andl. In the term defining the proper torsions,n is the multiplicity, a value that that gives
the number of minima in the function, andτ (ijkl)

0 is the phase factor which determines the equi-
librium values of the dihedral angles.
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Many different force fields have been developed for different purposes like the application to pro-
teins, DNA or RNA, and small organic molecules. The most commonly used force fields for
proteins are AMBER [43], CHARMM [44], GROMOS [45], and OPLS-AA [46]. However, one
should keep in mind that the potential energy calculated by aforce field is just an approximation
and has no physical meaning. Its correctness highly dependson the parameterization and the as-
signment of the correct atom types. Furthermore, as the electrons are not considered explicitly, the
effects of delocalizedπ-electron systems and of polarizability are neglected and the application is
limited to systems in the electronic ground state. A long-range interactions cutoff is usually used to
speed-up the calculations of the non-bonded interactions.In the molecular dynamics simulations
of this work, long-range electrostatic interactions were considered by the Particle-Mesh-Ewald
method [47].
Force field energies can be considered as steric energies because they measure the excess energy
relative to a hypothetical molecule (where all bond lengths, angles, and torsions are at their equi-
librium values) without non-bonded interactions. The potential energies calculated for chemically
different molecules use different terms (due to different atom types, bonds, etc.) and, thus, their
zero points differ from each other. In other words, their energies cannot be compared [41]. How-
ever, when considering conformers of the same biomolecularsystem, the use of force fields is
highly recommended. They can even be used to approximate thepotential energy surfaceof the
system, a3N − 6 dimensional hypersurface that is defined by the potential energy of all possible
conformers of a system withN atoms [42]. Therefore, force fields are widely used to minimize
the energy of a protein, to search for multiple energetically favorable conformations, the so-called
conformational sampling, and to score docking complexes.

2.3 Conformational Sampling

When dealing with experimental protein structures, one should always keep in mind that proteins
are flexible molecules and that their dynamics cannot be described by a single conformation.
Especially proteins in solution exist as an ensemble of energetically accessible conformations
and so their flexible structure is best described when capturing as many different representative
conformations as possible. Besides, X-ray or NMR structures represent time-averaged coordinates

Figure 2.2: Proteins exist in many different conformations arising from e.g. displacements of secondary
structure elements. According to the Boltzmann distribution, their population is dependent on the free
energy of the various conformations. Here, (a) and (d) represent the most favorable conformations and (c)
the least favorable one.
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and are often derived under non-physiological conditions (e.g. in crystals instead of solution, at
low temperature, at too low or too high pH values) [48]. They represent only one out of many
different possible conformations the protein may adopt. However, not all conformations have
the same energy as depicted in Figure 2.2 and, thus, not the same probability of occurring as
defined in equation 2.8. Therefore, conformations that correspond to low-energy states of the
protein are more frequently observed than conformations ofhigh energy. This finding reduces the
search space when looking for dominant protein conformations. Conformational sampling can
thus be interpreted as searching for low-energy protein conformations [49]. A large number of
conformational sampling methods for proteins have been developed. Systematic search methods
scanning the complete or a significant fraction of the conformational space can only be applied
to small molecules having a few degrees of freedom. When sampling the conformational space
of proteins, heuristic search methods have to be applied that consider only a tiny fraction of the
conformational space but aim at generating a conformational ensemble that is as representative (in
the Boltzmann weighted sense) as possible [49, 50]. Such methods can be roughly divided into
the following types:

• Non-step methods generating conformations that are independent from each other (e.g.
(t)CONCOORD, NMA, methods that sample side-chain rotamers)

• Step methods generating a new conformation from the previous one (e.g. Monte Carlo
methods, molecular dynamics simulations)

In the following, the conformational sampling methods thatare of importance for this thesis are
shortly introduced.

2.3.1 Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations calculate the time-dependent behavior of a molec-
ular system, so-calledtrajectories[42]. It is a very powerful and complex technique and confor-
mational sampling is only one possible application. The system may be simulated in different
thermodynamic ensembles:

• themicro-canonical (NVE) ensemble(constant number of atomsN , volumeV , and energy
E)

• the canonical (NVT) ensemble(constant number of atomsN , volumeV , and temperature
T )

• the isothermal-isobaric (NpT) ensemble(constant number of atomsN , pressurep, and tem-
peratureT )

The new configuration of the system consisting ofN interacting atomsi with coordinatessi and
massmi at time stept is calculated from the previous configuration by integrating Newton’s law
of motion

mi
δ2si

δt2
= Fi (2.12)

where the forcesFi are the negative derivatives of the potential functionU(s1, . . . , sN ):

Fi = −δU
δsi

(2.13)

These equations have to be solved for each atom in small time steps (usually 1-2 fs). This is
normally done usingVerlet methodslike the leap-frog algorithm. The forcesF (t) computed from
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the coordinatess at timet are used to update the velocities of the atomsv at timet+ ∆t. In order
to obtain more accurate values, mid-step velocities at timet+ ∆t

2 are calculated by

v(t+
∆t

2
) = v(t− ∆t

2
) +

F (t)

m
∆t (2.14)

The new velocities are then used to update the coordinatess:

s(t+ ∆t) = s(t) + v(t+
∆t

2
)∆t (2.15)

In the classical setup the molecule(s) are placed in a solvent box. As the number of atoms may be
very large, especially when using explicit solvent molecules, several approximations in addition
to those related to the use of force fields are needed. Treating bonds as constraints instead of
oscillators in the equation of motion allows the use of larger time steps [51]. Furthermore, the
behavior of the system at the boundary of the simulation box may be unnatural. Thus, periodic
boundary conditions are used to simulate a bulk system without real phase boundaries.
Although MD simulations of biomolecular systems are computationally very expensive, they may
nowadays be extended to multiple microseconds of simulation time, depending on the system size
[52]. Note that only those states may be sampled that occur ontime scales comparable to the
simulation length.

2.3.2 Normal Mode Analysis

Another very-well established method for studying conformational changes in biomolecules is
normal mode analysis(NMA) [53, 54]. Like in MD simulations, a force field is used tocalculate
the potential energy of particular conformations. The virtue of this technique is that it can identify
the inherent collective modes along which overall protein dynamics takes place, whereas other
methods like MD simulations sample the protein dynamics only along coupled modes. These
so-callednormal modesare linear independent concerted motions of atoms that oscillate with the
same frequency around a local energy minimum (see Fig. 2.3 for an example). For calculating

(a) (b) (c)

Figure 2.3: Normal mode analysis of the bovine pancreatic trypsin inhibitor protein (a) identified displace-
ment vectors of atoms (shown as arrows) oscillating with thesame frequency. Here, the normal modes with
a frequency of 118.8 cm−1 (b) and 6.9 cm−1 (c) are illustrated (Figure taken from [53]).
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the normal modes, it is assumed that the potential energy function around a local minimum is har-
monic and that the normal modes represent harmonic vibrations around these energy valleys. This
strong assumption about the molecule’s harmonic behavior requires a preceding exhaustive en-
ergy minimization. Given an energy minimized system ofN atoms, the3N x 3N mass-weighted
Hessian matrixH is calculated by

Hij =
δ2U

δsiδsj
√
mimj

(2.16)

wherem denotes the mass,U the potential energy function, andsi andsj the atomicx, y, or z
coordinates. The calculation of the normal modes can then bereduced to an eigenvalue problem

HΨ = ΨΩ (2.17)

whereΨ is a matrix containing the eigenvectors ofH as columns andΩ is the diagonal eigenvalue
matrix. The eigenvectors are the normal modesσi that contain the amplitude and direction of
motion for each atom and the eigenvalues are the corresponding squared frequencies of oscillation
ω2

i . The root mean-square fluctuation (RMSF) of a normal mode is then given by

σi =

√

kBT

ω2
i

(2.18)

Normal modes with lowest frequencies result in delocalizedmotions involving more distant parts
of a protein, i.e. oscillations of larger amplitude where a large number of atoms is involved. In
contrast, localized motions like bond stretching result from normal modes with higher frequencies
[53–55]. Hence, conformational changes (e.g. induced-fit effects) can be described by a linear
combination of displacements along the eigenvectors. Likewise, new conformations can be sam-
pled by random displacements along the eigenvectors.
However, one should always keep in mind that NMA is based on the strong assumption that all
vibrations are harmonic. If this was to be true, any molecular motion could be exactly expressed as
a linear combination of normal modes. But at 300 K, many vibrations are anharmonic and, thus,
not all protein dynamics observable during MD simulations or in experiments can be described
by a superposition of normal modes. Yet, it has been shown forseveral proteins that functionally
important conformational variations, like conformational changes upon ligand binding, can be de-
scribed by a single or multiple low-frequency normal modes [56, 57]. But note that as NMA is
very memory-intensive, the energy calculations are performed in vacuum and, thus, solvent effects
are neglected in the analysis of the protein dynamics.

2.3.3 CONCOORD and tCONCOORD

MD simulations and NMA suffer from the fact that high-energybarriers are hard to overcome and
the sampling is restricted to a local energy basin of the potential energy surface. CONCOORD
(CONstraints to COORDinates) [58] and its extension named tCONCOORD [59] are efficient
methods avoiding this problem by generating random proteinconformations that fulfill previously
determined distance bounds. The method consists of two steps illustrated in Figure 2.4. At first, all
pairwise interatomic distances in the starting structure (usually an energy minimized experimental
structure) are measured and classified by the programdist. For each atom pair the distance range
is then set to the measured value plus or minus a tolerance value that reflects the strength of
this interaction. For example, the allowed distance rangesfor covalently bonded pairs are quite
small, whereas for atom pairs with hydrophobic interactions larger deviations from the distance
observed in the starting structures are accepted. In the second step, the programdisco tries to
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Figure 2.4: The (t)CONCOORD algorithm (Figure taken fromhttp://www.mpibpc.mpg.de/
groups/de_groot/dseelig/tconcoord.html).

find conformations that fulfill all these distance constraints. The procedure starts from random
coordinates and iteratively applies corrections to the positions of all atoms that violate the distance
constraints until all violations are removed. The authors showed that the generated conformations
are similar to those obtained from MD simulations [58].
Whereas the goal of CONCOORD is the generation of a conformational ensemble around a given
starting structure, the extension tCONCOORD tries to predict conformational transitions and, thus,
is able to sample the conformational space more exhaustively. The main difference to the original
implementation is the estimation of the stability of hydrogen bonds by analyzing the environment
with respect to hydrophobic protection. Only stable hydrogen bonds that are not likely to be broken
by water molecules are translated into distance constraints. Interestingly, when starting from the
apo protein structure, this extension is able to generate conformations that are very similar to
experimentally determined ligand-bound structures [59].

2.3.4 Sampling Side-Chain Rotamers

When considering the conformational space of the protein side-chains only (e.g. homology mod-
eling with fixed backbone conformation) one can discretize the search space into so-called side-
chainrotamers. Analyzing available protein structures revealed that thedihedral anglesχ1, . . . , χ4

of the side-chains tend to cluster around particular valuesrepresenting low-energy side-chain con-
formations (see Figure 2.5) [60]. This observation led to the compilation ofrotamer libraries
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Figure 2.5: Phenylalanine has twoχ angles:χ1 is the torsion N - Cα - Cβ - Cγ andχ2 is the torsion Cα -
Cβ - Cγ - Cδ. The rotamers, the energetically favorable side-chain conformations, can be represented by a
combination of differentχ1 andχ2 angles.

listing the observed rotamers (defined by theχ-angles) for each amino acid together with the
probabilities of their occurrence [61, 62]. As thesebackbone-independentrotamer libraries do not
take the possible relation between aχ-angle and the local backbone conformation (i.e. the sec-
ondary structure) into account, a second type of rotamer libraries was introduced, thebackbone-
dependentrotamer libraries. Here, rotamers are defined as a function of the backbone dihedral
anglesψ andφ [63]. An example for the usage of rotamer sets is the side-chain prediction prob-
lem where the protein backbone is fixed and the correct rotamer has to be assigned to each residue
such that the total energy of the resulting protein conformation is minimal. This is an important
task in homology modeling, ab initio protein structure prediction, and structure-based drug design
[64]. The sampling of side-chain rotamers is a combinatorial problem and even for small proteins
with 100 residues having an average number of 5 rotamers per residue,5100 different conforma-
tions are possible. However, many combinations of rotamerscannot exist in the same low-energy
conformation. When calculating the global minimum-energyconformation (GMEC), the Dead-
End Elimination (DEE) theorem [65] can be used to reduce the search space by removing all
rotamers that cannot occur in the GMEC. The programSCWRLuses DEE to restrict the confor-
mational space given by a backbone-dependent rotamer library such that the remaining space can
be searched exhaustively for low-energy side-chain combinations [66]. The drawback ofSCWRL
and other methods using DEE is that the GMEC highly depends onthe rotamer library and the po-
tential energy function used. By keeping the best rotamer per residue only, many other low-energy
conformations are ignored. However, in many applications it is beneficial to consider an ensem-
ble of low-energy conformations instead of just a single one. The programIRECS, for example,
handles side-chain flexibility by calculating several energetically favorable rotamer combinations
[67].

2.4 Detection of Binding Sites on Protein Surfaces

Characterizing the surface of the studied protein is crucial for understanding and predicting its
function. As the function of most proteins is closely related to binding specific partners, this is
also reflected in the properties of their molecular surfaces. Only if the interface possesses the
requisite complementarity, binding will occur with the required affinity [68]. This complemen-
tarity is provided by physicochemical and sterical features. Therefore, the ubiquitous question in
structure-based drug design, “Does proteinA bind moleculeB with sufficient affinity?” can be
broken down into two smaller questions: “Which surface region of proteinA is complementary to
moleculeB?” and “How does the complexAB look like?” This section introduces computational
techniques for answering the first question, the second question is addressed in the next section.
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If B is a small molecule, its binding site on proteinA will most likely contain a binding pocket.
Many algorithms have been presented that aim at identifyingpockets on protein surfaces [18, 69–
73]. Due to their focus on concave regions, these methods areusually geometry-based. More
general methods useenergy-basedapproaches for predicting surface regions that are endowed
with physicochemical features that may account for high affinity ligand binding [74–76]. Here,
only a digest of the established methods is presented.

2.4.1 Geometry-based Detection of Binding Sites

Algorithms of this category detect cavities on protein surfaces. The advantage of this purely
geometrical definition of a binding site is the independencefrom the ligand’s physicochemical
properties. One typically assumes that the ligand binds into one of the largest pockets available on
the protein surface. However, several studies showed that the ligand indeed binds into the largest
pocket in 72 % to 84 % of the complexes in the used data sets [18,77] suggesting that not only the
largest cavity, but also the smaller ones are of interest. Pocket detection methods using geometric
criteria can be further subdivided intogrid-basedapproaches where the protein is mapped onto aa . P O C K E T , L I G S I T E , L I G S I T E c s c b . S U R F N E T
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Figure 2.6: Geometry-based algorithms for the detection of pockets (Figure taken from [69]).
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3D grid (Fig. 2.6 (a)) andnon grid-basedapproaches (Fig. 2.6 (b) - (d)).
Prominent examples for grid-based approaches are:

• POCKET [72] scans thex, y, andz axes for a sequence of grid points that starts and ends
with a point inside the protein and has a period of solvent grid points in between.

• LIGSITE [73] extends the POCKET algorithm by additionally scanning the four cubic di-
agonals.

• LIGSITECSC [69] refines LIGSITE by scanning for surface-solvent-surface instead of protein-
solvent-protein events and re-ranks the pockets by the degree of conservation of the involved
surface residues.

• Pocket-Finder [74] extends the LIGSITE algorithm by setting a threshold for the minimal
number of protein-solvent-protein events.

While these method are all based on the same idea, the methodologies of the non grid-based
approaches differ significantly from each other. The most important ones are:

• PASS [70] uses probe spheres to incrementally fill pockets.

• SURFNET [71] generates a set of interpenetrating spheres that are placed between two
atoms and do not contain any other atoms.

• CAST [18] uses alpha shapes and discrete flow theory to compute pockets.

In this thesis the PASS algorithm is used. In the following, it is introduced in more detail.

PASS

PASS (Putative Active Sites with Spheres) [70] uses probe spheres for characterizing regions of
buried volume on protein surfaces. Based on the size and burial extent (i.e. number of protein
atoms within a given radius) of these volumes, the approach identifies positions likely to represent

Figure 2.7: The PASS algorithm (Figure taken from [70]).
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binding sites. An outline of the algorithm is shown in Figure2.7. Given a protein in PDB format,
PASS assigns the elemental atomic radii. The actual pocket screening process starts with coating
the protein surface with an initial layer of spherical probes (radius: 1.8 Å) according to a three-
point geometry (a). Subsequently these probes are filtered (b) to remove all probes that

• clash with protein atoms,
• are not sufficiently buried (burial count below a given threshold), or
• lie within 1 Å of a more buried probe

Afterwards accretion layers of smaller probes (radius: 0.7Å) are added onto the previously iden-
tified probes (c) and are filtered (d) as described in step (b).These two steps are repeated (e) until
a layer is encountered in which no newly-found probes survive the filters (f). For each probe in
this final set of probes a weight is calculated that reflects the number of probes in the vicinity and
their burial extent. The active site points (ASPs) are determined by cycling through all probes
in descending order of their probe weight, considering onlythose probes with a weight above a
given threshold that are separated by a minimum distance of 8.0 Å from the previously identified
ASPs (g). The output of the algorithm is the placed probes andthe identified ASPs representing
the potential binding sites (h).
Initially, we have used the binary executable file made available by the developers of PASS
athttp://www.ccl.net/cca/software/UNIX/pass/overview.shtml. At a later
stage, we shifted to the BALLPass implementation by Jan Fuhrmann and Dirk Neumann (CBI,
Saarbrücken).

2.4.2 Energy-based Detection of Binding Sites

Alternatively to the geometry-based algorithms, binding sites can also be detected by energetic
criteria. Here, it is assumed that the ligand binds to the energetically most favorable site on the
protein surface [78]. In principle, the common idea of theseapproaches is to calculate the interac-
tion energy between small probes and the protein. The variety of used probes ranges from single
methyl probes to sets of many different organic probes and ions. Note that the more different
probe types are used the more detailed is the characterization of the putative binding sites (e.g.
information about potential hydrogen bond donors and acceptors, electrostatic, hydrophobic, or
aromatic interactions).
In this class of algorithms, binding sites are not (solely) predicted by cavity detection, the physico-
chemical properties of these surface regions that may account for high-affinity ligand binding (i.e.
ligand complementarity) are also considered. Many algorithms are grid-based, so that the interac-
tion energy between the molecular probe and the protein is calculated for each grid point. Other
approaches use the grid just for the initial placement of theprobes and optimize their positions by
energy minimizations. Examples are:

• GRID [79] calculates the interaction energy between a chosen probe and the protein at each
grid point of a cubic grid placed onto a region of the protein or onto the entire protein.

• Q-SiteFinder [74] determines the van der Waals energy between a methyl probe and the
protein for each grid point and detects pockets by clustering the most favorable ones.

• CS-Map [75] uses a grid for the initial placement of small organic functional groups, moves
them around to minimize the interaction energy with the protein atoms, and finally clusters
and ranks the positions to predict hot spots for binding of drug-like molecules.

• MCSS [76] requires a prior definition of the binding site. Thestrength of this algorithm is
that protein flexibility is taken into account while favorable positions and orientations for
small organic functional groups are predicted.
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2.5 Molecular Docking

Knowing the potential site of interaction between protein and ligand does not directly allow for
inferring the binding affinity and the conformation of the complex. The binding affinity depends
on thebinding modeof the ligand, i.e. its bound conformation and its orientation relative to the
protein. The problem of predicting a protein-ligand complex is tackled bymolecular docking.
Docking can be described as a combination of two components:searching for favorable configu-
rations and scoring them. The output is a list of predicted protein-ligand complexes, thedocking
poses, ranked by theirdocking scorethat evaluates the affinity of the complexes. Both components
are crucial, though error-prone. The configuration space that has to be sampled is huge. Even if
the ligand as well as the protein (orreceptoras they are often called within this context) are rigid,
six degrees of freedom have to be considered. But ligands tend to possess several rotatable bonds
and so not only the ligand’s orientation relative to the protein has to be sampled, but also the
internal degrees of freedom of the ligand. Moreover, when treating the protein as a rigid body,
induced-fit effects are neglected. Yet the size of the searchspace impedes a complete sampling
and so the native binding mode may be missed. But even with a complete list of possible config-
urations, finding the native complex is not guaranteed. Scoring functions predict which docking
poses occur in nature. They may be, for example, force-field based, knowledge based, or empir-
ical and usually include weights for individual terms that have been fitted using a training set of
protein-ligand complexes. However, one cannot expect themto work perfectly for each kind of
protein-ligand interaction [80, 81].
Molecular docking is nowadays a crucial component of many drug discovery projects. Note that
docking approaches always represent a compromise between exactness and computational feasi-
bility. Especially when applied early in a drug discovery project, i.e. when docking is used in
virtual screening to identify potential hits among severalthousands of compounds, speed is an
important issue although the predicted affinities should still be reliable. On the other hand, when
applied in the lead optimization phase, where the number of putative ligands has significantly de-
creased and the objective is a reliable differentiation of their predicted binding affinities, exactness
is more important. One possibility to evaluate the reliability of a docking program isre-docking,
where a ligand is docked back into the protein conformation taken from its experimentally known
complex structure. In a perfect scenario, a docking pose that corresponds to the native complex
would be scored best and, thus, ranked number 1. The similarity of a docking pose to the native
complex is measured by the root mean square deviation (RMSD)of the involved atoms (usually
the atoms of the ligand). A docking pose with an RMSD≤ 2 Å is considered native-like. Note that
if only docking poses with high RMSD values were calculated,this may indicate an insufficient
sampling. If docking poses with low RMSD values are exclusively predicted to be unfavorable,
this may hint at an unsuitable scoring function [10, 11, 80, 81].
While early docking algorithms like DOCK [82] considered the protein and the ligand as rigid,
more and more flexibility has been incorporated in recent years. Nowadays, treating all rotatable
bonds of ligands as flexible is standard in modern docking algorithms and even receptor flexibility
is handled more and more successfully [48]. In the following, a few popular docking software
packages are introduced.

2.5.1 Docking Flexible Ligands into Rigid Receptors

In general, ligands change their conformations upon binding to a receptor. Although this results
in a loss of degrees of freedom and so in a free energy penalty in the order of 0.4 kcal/mol per
torsion [83], this energy increase is compensated by interactions between protein and ligand and
solvent reordering so that the total free energy of binding is favorable. The magnitude of the con-
formational changes varies between complexes. As about 70%of all drug-like molecules possess
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2-8 rotatable, non-terminal bonds [84], handling at least ligand flexibility is pivotal for a success-
ful prediction of their binding modes. Two common approaches exist for sampling binding poses
that incorporate flexible ligands: fragmentation of the ligand molecule followed by an incremental
reconstruction and global optimization of the ligand coordinates. The best known docking tools
are:

• The package DOCK [85] considers ligand flexibility since version 4.0. The algorithm starts
with filling the binding site with overlapping spheres that represent clusters of pseudo-
atoms. The ligand is divided into fragments and a rigid portion, the “anchor” is superposed
onto these pseudo-atoms by geometric matching. The anchor positions are then evaluated
and energetically minimized using a force-field based scoring function which incorporates
intermolecular energy terms that were precomputed on a grid. The best initial docking re-
sults are selected and the remaining ligand fragments are incrementally added in different
orientations, optimized by a short energy minimization, and pruned such that only a prede-
fined number of partial binding configurations has to be considered in the next step.

• FlexX [86] divides the ligand into fragments and chooses a base fragment that is then placed
at several promising positions in the binding pocket, independently of the rest of the ligand.
Subsequently, the ligand is incrementally reconstructed using a greedy strategy. Interactions
are classified by the strength of their geometric constraints and described by spherical sur-
faces whose parameters depend on the type of interaction. The empirical scoring function
estimates the free binding energy of the protein-ligand complexes by penalizing deviations
from the ideal geometry for hydrogen bonds, ionic, aromatic, and lipophilic interactions.

• Glide [87] makes use of a “docking funnel” for progressivelynarrowing down the search
space and so allowing for more accurate scoring functions. In a preprocessing step, sets
of fields that represent the shape and properties of the receptor on a grid are computed.
After an initial sampling of ligand conformations, promising poses are selected and the
ligand is energetically minimized in the field of the receptor using a force-field based energy
function. The conformations of the very best candidate poses are refined using a Monte
Carlo sampling. Finally, the docking poses are re-scored and ranked using a more accurate
scoring function combining force-field and empirical basedterms.

• AutoDock [88] uses a genetic algorithm (GA) to optimize the ligand coordinates with re-
spect to the protein and evaluates the docking poses by an empirical scoring function. As
this is the docking method used in this thesis, it is introduced in detail in the following
paragraph.

AutoDock3

Before the actual docking step of AutoDock3 [88] is launched, a grid of user-defined size and
spacing is placed at the binding site. At each grid point, theelectrostatic potential, as well as
the interaction energy between the protein and the different atom types available in the ligand are
precomputed. The docking step itself then tries to optimizethe interaction energy between the
protein and the ligand. To this end, several search procedures are provided. The most prevalent
is the Lamarckian genetic algorithm (LGA) in which the translation, rotation, and conformation
of the ligand with respect to the protein are coded bystate variables. In the context of genetic
algorithms, these state variables correspond to genes thatdefine the ligand coordinates. Thefitness
of a ligand is calculated by the AutoDock3 scoring function that is based on force field energies
and tries to estimate the free binding energy of the complex in solution by implementing the
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Figure 2.8: The AutoDock3 scoring function estimates the change of freeenergy upon binding in solvent.
As the change in free energy is independent from the path, thethermodynamic cycle can be used to derive
∆Gbinding,solution (Figure taken from the AutoDock3 manual).

thermodynamic cycle shown in Figure 2.8:

∆Gbinding,solution = ∆Gbinding,vacuo + ∆Gsolvation(EI) − ∆Gsolvation(E+I) (2.19)

The scoring function is given by
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The∆G terms are coefficients fitted by a linear regression analysisof a set of 30 protein-ligand
complexes of known binding affinities. The summations run over all pairs of ligand atomsi and
protein atomsj, as well as over all ligand atom pairs that are separated by atleast three bonds.
E(t) denotes a directional weight that is based on the angle,t, between the probe and the target
atom and a Coulombic electrostatic potential. Upon binding, the ligand looses several confor-
mational degrees of freedom resulting in a loss of entropy. In this scoring function, the entropy
cost is assumed to be proportional to its number ofsp3 bonds,Ntor. The last term estimates the
desolvation energy, the energy gain or loss arising from the removal of solvent molecules from
the binding interface of the protein and the ligand. Here, the desolvation energy is estimated by
a variant of the method of Stouten [89] that evaluates the percentage of volume around the ligand
occupied by protein atoms, whereVi denotes the atomic fragmental volume andSi the solvation
term for atomi, andσ a gaussian distance constant.
After assessing the fitness of eachindividual, the best ones pass their genes on to the next gener-

ation, where they are recombined, randomly mutated, or leftunchanged. In the LGA, this global
search implemented in the genetic algorithm is combined with a local search that performs an en-
ergy minimization on the atomic coordinates and is applied to a user-defined fraction of individuals
of each generation. After a predefined maximum number of energy evaluations or generations, the



48 CHAPTER 2. BACKGROUND

best individuals corresponding to docking solutions are reported. Usually several independent
docking runs are performed and the different solutions are clustered by their RMSD.

2.5.2 Docking Flexible Ligands into Flexible Receptors

Not only ligands, but also proteins undergo conformationalchanges upon binding. Here, the trade-
off between efficiency and accuracy is even more an issue as considering conformational changes
of the receptor in addition to the ligand significantly increases the number of degrees of freedom
that have to be sampled. These induced-fit effects may comprise subtle rearrangements of a few
side-chains located at the binding site, local adaptions ofthe backbone, or even movements of
whole protein domains [90]. Not surprisingly, docking programs handling only ligand flexibility
are quite successful for many molecular systems, while for others, they completely fail in predict-
ing the protein-ligand complex. For example when re-docking ligands into their receptors in the
bound conformation, the docking program GOLD that handles ligand and receptor flexibility was
able to find a docking pose within 2 Å of the native conformation for 91% of the test set. But when
another conformation of these receptors is used, the docking performance significantly dropped
to 72% [91]. This observation highlights the need for docking protocols that incorporate receptor
flexibility. Actually, there are two possibilities to fulfill this requirement. The receptor flexibility
may either be represented by a conformational ensemble generated by an external program or by
considering different crystal structures, or by sampling conformational changes directly during the
search step in the docking program itself. For completeness, we also mention a third possibility for
handling receptor flexibility implicitly, the so-calledsoft dockingapproaches. They represent the
simplest way for tackling sterical clashes arising from missing induced-fit effects when a ligand
is docked into a rigid receptor. Instead of changing the receptor conformation, the docking pose
is scored optimistically by tolerating an overlap of the ligand with the receptor surface. To this
end, the repulsive contributions to the energy function arereduced or the van der Waals radii of
the receptor atoms are scaled down. Yet, this approach will only yield accurate docking results if
subtle side-chain rearrangements in the binding site are sufficient for accommodating the ligand
[50].
Most docking approaches introduced previously have actually been extended to model receptor
flexibility. The underlying changes will be discussed in thefollowing overview of docking proto-
cols that incorporate receptor flexibility.

Representing Receptor Flexibility by Conformational Ensembles

The maybe most trivial solution is to dock the ligands against every receptor conformation taken
from a conformational ensemble. In this case, each individual conformation can be treated as rigid
during the actual docking step. The conformations may be derived from different experimental
structures of the protein, extracted from MD simulations, or from any other method for conforma-
tional sampling. The advantage of this kind of protocol is its modularity, i.e. sampling receptor
flexibility and docking poses are independent from each other. Any conformational sampling ap-
proach can be combined with any docking program and the conformations to be considered can be
selected beforehand. Moreover, the degree of receptor flexibility is unlimited. It is noteworthy that
these protocols are rather based on the theory of conformational selection than on the theory of
pure induced-fit effects [48]. The drawback of this kind of handling receptor flexibility is that the
quality of the docking results crucially depends on the usedconformations. If relevant conforma-
tions are lacking, e.g. if no appropriate binding pocket is available, then the best docking program
will not be able to predict a reasonable binding pose. Moreover, the computational demand may
be quite high when using a large conformational ensemble. Onthe other hand, it was shown that
the ligand may bind to receptor conformations which are not highly populated [93, 94], suggesting
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Figure 2.9: An overview of the improved relaxed complex scheme. The improvements to the original RCS
are shown in gray background. The receptor ensembles can be generated by classical MD simulations or
by simulation techniques that enhance the conformational sampling like Generalized-Born MD (GB-MD),
steered MD (SMD), high temperature MD (High T MD), targeted MD (TMD), or accelerated MD (Accl.
MD). The ligands are taken from existing or newly assembled databases and docked with AutoDock into
the receptor ensemble. The docking poses are then re-scoredor re-evaluated in the Post-Processing stage
using the AutoDock version 4.0 scoring function (AD4), molecular-mechanics Poisson-Boltzmann surface
area (MM-PBSA), single step perturbation, LIE, FEP or TI technique (Figure taken from [92]).

the importance of preselecting conformations that may contain eligible binding sites. For example,
the originalrelaxed complex schemecombines MD simulations of the receptor in explicit water
with a subsequent rapid docking of the ligands into the extracted MD snapshots, and an accurate
re-scoring of the docking poses [93, 94]. In theimproved relaxed complex schemeshown in Fig-
ure 2.9, docking is performed on a reduced set of MD snapshotscontaining only non-redundant
receptor conformations [92].
Alternatively, the complete conformational ensemble is supplied to the docking program and sev-
eral conformations are combined into one receptor representation during the search step [48]. An
example for such a docking approach is FlexE where varying parts are considered as discrete al-
ternative conformations and are combinatorially joined for yielding new receptor representations
for docking [95]. The virtue of this more advanced approach is that local receptor conformations
providing a favorable contribution to binding can be combined into a single structure suitable for
accommodating the ligand. Nevertheless, the tolerated structural differences among the conforma-
tional ensemble are limited. Very diverse conformations are difficult to combine and too similar
ones are inappropriate for modeling receptor flexibility. In addition, this composite structure may
not be a physiological accessible conformation and so the predicted binding modes and energies
are artificial [48].
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Intrinsic Receptor Flexibility

Including receptor flexibility in sampling putative docking poses can be regarded as a direct imple-
mentation of the induced-fit theory. Many docking programs take advantage of the finding that for
many proteins only subtle changes in amino acid side-chainsare sufficient to achieve a collision-
free ligand binding, also known as the “minimal rotation hypothesis” [96]. Hence, a common
and time-efficient approach is considering multiple side-chain conformations of a few selected
residues located at the binding site by sampling torsion angles or using predefined rotamers taken
from a rotamer library [48, 50]. In 1994, Leach presented oneof the first docking approaches that
handled side-chain flexibility [97]. The residue conformations were taken from a rotamer library
and the docking poses were incrementally built up using the A* algorithm (a graph-based method
for finding optimal paths from a given initial state to a goal state) in combination with DEE. An-
other pioneering docking program taking into account receptor flexibility at least partially was
GOLD [98, 99] that defines “fitting points” on hydrogen bonding and hydrophobic groups of the
ligand and the receptor to place the ligand into the binding site. Similar to AutoDock, GOLD
uses a GA for calculating the docking pose. Besides the dihedrals of the rotatable bonds of the
ligand, its ring geometries, and the mapping of the fitting points, the conformations of hydrogen
bonding terminal bonds of some side-chains are optimized aswell. As stated on the GOLD web-
page1, the latest version also features side-chain and backbone flexibility for a few user-defined
residues. Likewise, in AutoDock4 [100], the user can define rotatable bonds for a few residues and
the side-chain conformations are encoded as genes analogously to the flexible ligand. In contrast,
ROSETTALIGAND [101] allows for full side-chain flexibilityby optimizing the side-chains and
the ligand position simultaneously. In some cases incorporating side-chain flexibility only is not
sufficient to model ligand-induced conformational changes. Although backbone movements are
often limited to single loops, these local adaptions are notaccounted for by side-chain mobility.
But even if only theψ andφ angles are varied, considering backbone flexibility will result in a
huge search space and an adequate sampling is impossible. Therefore, docking approaches that
handle backbone flexibility explicitly have to narrow down the search space further [50]. This
can be done efficiently by using harmonic modes (e.g. derivedfrom NMA or MD simulations) to
model deformations of the binding pockets [102, 103]. The use of “flexibility trees” [104] is an
alternative way for focussing on molecular motions that modify the binding site by encoding the
conformational subspace using a small number of variables.They are used by the docking program
FLIPDock [105] where a flexible ligand is docked into fully flexible receptors. When sampling
the docking poses, the variables representing the receptorflexibility are searched concurrently
with the conformation and placement of the ligand. Further approaches comprise several steps,
starting with a rough placement of the ligand into the binding site and a subsequent optimization
of the docking pose by MD simulations [106] or energy minimizations followed by Monte Carlo
minimizations [107]. Other docking protocols combine well-established approaches for sampling,
docking, minimization, and scoring. For example, Fleksy [108] is a combination of rotamer sam-
pling, soft-docking using FlexE, refinement of the docking poses using energy minimization, and
re-scoring.

1http://www.ccdc.cam.ac.uk/products/life_sciences/gold/



Chapter 3

Transient Pockets on Protein Surfaces
Involved in Protein-Protein Interaction

In this chapter our protocol for identifying and analyzing transient pockets will be described.
Using this protocol, we could show that the native binding pockets of three protein systems open
spontaneously during MD simulations of the apo protein structures in water. This study was
published in theJournal of Medicinal Chemistryin 2007 [109]. Besides, the three model systems
utilized to validate all approaches presented in this thesis will be introduced.

3.1 Introduction

Targeting protein-protein interactions by small molecules is full of challenges (see Table 1.1). The
first hurdle is the identification of a favorable binding site. A solution to this problem is straightfor-
ward if small-molecule binders have been discovered experimentally and/or the (protein-protein
or protein-ligand) complex structure is available. In sucha case, the holo protein conformation
possessing a binding pocket can be used for virtual screening of ligand libraries. Bowman et al,
for example, identified new inhibitors for the MDM2-p53 interaction by docking ligands into a
dynamic receptor-based pharmacophore model [36]. However, they used the p53-bound X-ray
structure of MDM2 that already possessed a well defined binding pocket at the interface. But how
shall we handle proteins for which only apo crystal structures are available? Such structures often
lack deep cavities or clearly shaped binding pockets that could be used for identifying binding
sites for putative ligands, e.g. by docking. Although docking methods that account for (partial)
receptor flexibility have proven to be quite promising even if rigid docking to the apo protein
structure failed, they depend on a definition of the binding site [92, 101–103, 105–108] because
sampling the entire protein surface would be computationally very costly. Furthermore, the ex-
tent of receptor flexibility that can be modeled by these docking protocols may not be sufficient
to handle conformational changes at protein-protein interfaces. For example, the side-chains lo-
cated at these interfaces are on average more flexible than those located in binding pockets. Thus,
the structure-based design of small molecules inhibiting protein-protein interactions is generally
considered to be challenging. Nonetheless, once a putativebinding pocket is available, it can be
targeted like those pockets found in enzymes [26].
When dealing with crystal structures, it is important to keep in mind that they typically represent
only one out of many possible protein conformations. With respect to pockets, this means that it
is impossible to deduce from a single structure whether and where cavities are available. In other
words, a protein may possess pockets that are only accessible in conformations different from the
crystal structure and may serve as more favorable binding sites that would be missed when its
conformational dynamics is not properly considered. For example, Frembgen-Kesner and Elcock
successfully identified in MD simulations an alternative binding site of the p38 MAP kinase which
was not accessible in the crystal structure [110]. This observation can be explained with the high
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mobility of residues on protein surfaces [111] and led us to the assumption that transient pockets
that are large and deep enough to bind small-molecule inhibitors may open from time to time on
the protein surface.
In this chapter, we will show that transient pockets may provide a starting point for thein sil-
ico drug design for cases in which standard screening methods would fail, for example, when no
potential binding pocket could be identified. For three model systems (MDM2-p53, Interleukin-2-
Interleukin-2α-receptor, and BCL-XL-Bak) the PASS program clearly identified the native ligand
binding pocket in the inhibitor-bound structures of each system, whereas the binding pockets were
not or only partly accessible in the apo structures. Thus, these systems are perfectly suited for
validating our pocket detection protocol.

3.2 Model Systems

Although SMPPIIs are known for several protein-protein interactions, we required that for ideal
model systems the crystal structures of

• the protein-protein complex (thecomplex structure),
• the apo protein (theapo structure),
• and of the protein with a small-molecule inhibitor bound in the interface region (theholo

structure)

should be available in the Protein Data Bank (PDB) [112]. Thethree selected model systems
fulfilling these criteria will be introduced in the following.

3.2.1 BCL-XL - Bak

The basal cell lymphoma-extra large (BCL-XL) protein belongs to the BCL-2 family which medi-
ates apoptosis and functions primarily by forming protein-protein complexes with other members
of the BCL-2 family (see Figure 1.1). It is an anti-apoptoticprotein that acts by binding the pro-
apoptotic Bak protein and so inhibits its function [113]. Like other anti-apoptotic proteins, it is
overexpressed in some forms of cancer, resulting in an increased cell proliferation [114]. Hence,
the interaction between BCL-XL and Bak is a promising drug target [115].
The structure of BCL-XL consists of two central hydrophobicα-helices surrounded by five am-
phipathic helices [116] as shown in Figure 3.1. Bak is also anα-helical protein that is mainly
defined by a singleα-helix, the BH3 region (see Fig. 3.2 (a)) [117]. It was shown that the BH3
region of Bak is sufficient to bind to BCL-XL and, thus, to promote cell death, suggesting that a

Figure 3.1: Cartoon representation of BCL-XL in its apo (shown in red) and holo (shown in green) con-
formations. The backbone RMSD between the two structures is1.7 Å. Note that the C-terminal region is
missing in the apo structure.
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(a) (b) (c)

Figure 3.2: Surface representation of the binding interface of BCL-XL complexed with Bak (a), the SMPPII
N3B (b), or in the apo state (c). All complexes are shown in thesame orientation. Note that (a) and (b)
show extra portions of the protein that could not be resolvedin the apo structure shown in (c).

small molecule mimicking the BH3 region of Bak may reestablish pro-apoptotic activity [117].
The following crystal structures were selected:

• apo BCL-XL (PDB code 1R2D, X-ray structure with a resolution of 1.95 Å) [116]
• complex between a Bak derived peptide and BCL-XL (PDB code 1BXL, minimized average

NMR structure) [118]
• complex between the SMPPII N3B (4-(4-fluorophenyl)-N- [3-nitro-4-(2-phenylsulfanyl-

ethylamino) phenyl] sulfonylbenzamide) and BCL-XL (PDB code 1YSI, NMR structure)
[115]

The crystal structures of the complexes reveal that the BH3 region of Bak binds to a hydrophobic
cleft formed by the BH1, BH2, and BH3 regions of BCL-XL as shown in Figure 3.2 (a). The com-
plex between BCL-XL and Bak is mainly stabilized by intermolecular electrostatic interactions
(Arg76, Asp83, Asp84 from the Bak peptide and Glu129, Arg139, Arg100 from BCL-XL) and by hy-
drophobic interactions between the NH2-terminal residues of the Bak peptide and the BH1 region
of BCL-XL (Val126, Leu130, Phe146). Mutant studies identified Tyr101, Leu130, Gly138, and Arg139

as key interacting residues of BCL-XL [118]. The NMR structure of the inhibitor bound complex
revealed that the inhibitor binds into two distinct but proximal subsites in the BH3-binding groove
(see Figures 3.2 (b) and A.2 (a), Appendix). One moiety of N3Bbinds near Arg139, whereas
the other one occupies a hydrophobic subpocket formed by Tyr101, Leu108, Val126, and Phe146.
Hence, some of the most relevant interactions between BCL-XL and Bak are mimicked [115].
The binding site is also present in the apo form of BCL-XL but the groove is more narrow as
Figure 3.2 (c) reveals.
BCL-XL is a widely studied system. For example, Brown and Hajduk used their method for calcu-
lating the druggability of a binding site [119] to show that the BH3 binding groove of apo BCL-XL
becomes more druggable during MD simulations [120]. Novak et al. used MD simulations and
free energy calculations to study the influence of ligand-induced conformational changes on the
activity of known inhibitors [121]. They showed that the improvement of the binding affinity is
directly related to a reduced local flexibility of specific regions in the binding groove.

3.2.2 Interleukin-2 - Interleukin-2 α-receptor

Interleukin-2 (IL-2) is an immunoregulatory cytokine and amember of the four-helix bundle cy-
tokine superfamily that is a central part of the immune response [122]. IL-2 binds sequentially
to theα- (IL-2Rα), β- (IL-2Rβ), and commonγ- chain (γc) receptor subunits. This leads to the
stimulation of signal transduction pathways resulting in Tcell, B cell, and natural killer cell pro-
liferation and clonal expansion. Biochemical studies haveshown that the assembly of the IL-2
receptor complex is initiated by the interaction of IL-2 with IL-2Rα [123, 124]. Since IL-2Rα
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Figure 3.3: Cartoon representation of IL-2 in its apo (shown in red) and holo (shown in green) conforma-
tions. The backbone RMSD between the two structures is 0.5 Å.

is not expressed on resting T and B cells but continuously expressed by the abnormal T cells of
patients with forms of leukemia, autoimmunity, and organ transplant rejection [125, 126], its in-
teraction with IL-2 is a widely studied drug target.
For this system, the following crystal structures were selected from the PDB:

• apo IL-2 (PDB code 1M47, X-ray structure with a resolution of1.99 Å) [127]
• complex between IL-2Rα and IL-2 (PDB code 1Z92, X-ray structure with a resolution of

2.8 Å) [123]
• complex between the SMPPII FRH (5-[[2,3-dichloro-4- [5- [1- [2- [[(2R)-2- (diamino-

methylideneamino)-4-methylpentanoyl] amino] acetyl] piperidin-4-yl] -1-methylpyrazol-3-
yl] phenoxy] methyl] furan-2-carboxylic acid) and IL-2 (PDB code 1PY2, X-ray structure
with a resolution of 2.8 Å) [128]

Upon binding, IL-2 undergoes only minor structural adaptions in the backbone (see Fig. 3.3).
When binding to IL-2Rα, the interface buries a total surface area of 1,868 Å2 comprising two
prominent hydrophobic patches on IL-2. The first one is composed of Tyr45 that packs into a
pocket on IL-2Rα formed by Arg35 and Arg36. This patch is surrounded by hydrogen bonds
between the backbone of Glu106 (IL-2) and the side-chain of Arg35 (IL-2Rα) and between the
side-chains of Glu62 (IL-2) and Arg36 (IL-2Rα). The second patch is composed of Phe42 and
Leu72 of IL-2 that pack into a recessed pocket on IL-2Rα formed by Leu42, Tyr43, and Met25. Just
like the first patch, this patch is surrounded by hydrogen bonds between Lys35, Arg38, and Glu68 of
IL-2 and Asp4, Asp6, Tyr43, and Asn57 of IL-2Rα (Fig. 3.4 (a)). Thermodynamic measurements
indicated that the desolvation of the nonpolar surface is the primary energetic driving force of this
interaction [123]. Small-molecule inhibitors have been identified that bind to the hot spots on IL-2

(a) (b) (c)

Figure 3.4: Surface representation of the binding interface of IL-2 complexed with itsα-receptor (a), the
SMPPII FRH (b), or in the apo state (c). All complexes are shown in the same orientation.
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[127]. The crystal structures of these inhibitor bound complexes revealed that the inhibitors bind
buried into a groove composed of two subsites, a rigid hydrophilic subpocket where hydrogen
bonds are possible to Lys43 and Glu62 and a highly adaptive and hydrophobic narrow channel
created by Arg38, Met39, Phe42, Leu72, and Lys76. We focus on the inhibitor FRH whose native
binding mode is shown in Figures 3.4 (b) and A.2 (b), Appendix. Phe42 acts as a gatekeeper that
exposes a hydrophobic channel which is blocked in the apo structure (Fig. 3.4 (c)).
So far, this system has not been extensively studied usingin silico methods. In their review on
targeting protein-protein interactions [26], Gonzalez-Ruiz and Gohlke showed that starting from
apo IL-2, conformations can be generated that resemble the holo protein structure suggesting the
existence of transient pockets at the binding interface.

3.2.3 MDM2 - p53

The oncoprotein mouse double minute 2 (MDM2) regulates cellgrowth processes like cell cycling,
DNA repair, and apoptosis [129]. It acts by binding to the transcription domain of the tumor
suppressor protein p53. This protein is thereby blocked andthe transcription of the p53 target
genes is prevented. Furthermore, MDM2 serves as specific E3 ligase and promotes the degradation
of p53 [130]. p53 is the most frequently inactivated proteinin cancer cells because MDM2 is
overexpressed in many human tumors. Thus, restoring p53 function by inhibiting its binding
to MDM2 is a promising anticancer strategy and MDM2 is, therefore, an important drug target
[131, 132].
For our study, we selected the following crystal structures:

• apo MDM2 (PDB code 1Z1M: 24 NMR models) [133]
• complex between a peptide derived from the transactivationdomain of p53 and MDM2

(PDB code 1YCR, X-ray structure with a resolution of 2.6 Å) [134]
• complex between the SMPPII DIZ ((2S)-2- (4-chlorophenyl) -2- [(3S)-3- (4-chlorophenyl) -

7-iodo-2,5-dioxo-1,3- dihydro-1,4- benzodiazepin-4-yl] acetic acid) and MDM2 (PDB code
1T4E, X-ray structure with a resolution of 2.6 Å) [135]

MDM2 contains two globular repeats that bind to each other via their hydrophobic faces and
so form a cleft as shown in Figure 3.5. About one-quarter of this cleft is narrow and shallow,
while the remaining portion is wide and deep. The p53-derived peptide adapts an amphipathic
α-helical conformation and binds into the deeper and wider portion of this cleft (compare Fig. 3.6
(a)). It buries a total surface area of 1,493 Å2. The peptide side-chains Phe19, Trp23, and Leu26

of p53 fit tightly in pockets within this cleft formed by the MDM2 residues Met62, Tyr67, and

Figure 3.5: Cartoon representation of MDM2 in its apo (shown in red) and holo (shown in green) confor-
mations. The backbone RMSD between the two structures is 1.6Å. Note that the N- and the C-terminal
regions are missing in the holo structure.
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(a) (b) (c)

Figure 3.6: Surface representation of the binding interface of MDM2 complexed with p53 (a), the SMPPII
DIZ (b), or in the apo state (c). All complexes are shown in thesame orientation. Note that (c) shows extra
portions of the protein that could not be resolved in the other two structures.

Ile61, Phe91, and Leu54, Ile99, respectively [133]. The crystal structure of the SMPPII DIZ bound
to MDM2 demonstrates that the inhibitor binds to the same hydrophobic cleft and mimics the
α-helical structure of the p53-derived peptide. It occupiesthe same pockets as the peptide side-
chains Phe19, Trp23 and Leu26 as shown in Figure 3.6 (b). The interactions are mainly nonspecific
van der Waals contacts, just like the interactions with p53 (see also Fig. A.2 (c), Appendix) [135].
The MDM2 structure is quite unstable, but gets more stable (with respect to unfolding) upon lig-
and binding. The 24 NMR models representing this conformations differ mainly in the terminal
loop regions. These models show that large conformational changes accompany ligand binding.
In these conformations the shallow end of the binding cleft is partially occupied by an N-terminal
segment (residues 19-25) and the cleft is generally less ordered and less wide (see Fig. 3.5 and 3.6
(c)) [133].
Besides the virtual screening study of Bowman et al. [36] already cited in Section 3.1, this system
has been investigated by several otherin silico approaches. For example, Barrett et al. used the
peptide-bound MDM2 protein to show that principal component analysis of a conformational en-
semble generated using CONCOORD predicted quite similar concerted motions as an MD simu-
lation [136]. More interestingly, they observed that the first eigenvector was coupled to an opening
and closing motion of the native binding pocket that was evenmore pronounced when the peptide
was removed. A later study by Espinoza-Fonseca and Trujillo-Ferrara who conducted MD simu-
lations of the same crystal structure of MDM2 with and without the bound peptide underpinned
this finding [137]. They found that most motions of this binding site were accounted for by the
first eigenvector for the holo protein and by the first two eigenvectors for the apo protein. Fur-
thermore, they observed that the binding cleft was wider andmore stable with the peptide bound.
Dastidar et al. studied the complex between MDM2 and different p53-derived peptides (wildtype
and mutants) by MD simulations as well and reported, for example, that the surface of MDM2
adapted optimally to the various peptides [138]. These findings suggest that the binding pocket is
also accessible in apo MDM2, but less stable than with a ligand bound.

3.3 Methods and Materials

As this chapter describes our initial pocket detection protocol, this will now be introduced in detail.
The subsequent chapters use the same structures and the docking procedure as presented here.

3.3.1 Preparation of the Experimental Structures

The apo and holo protein structures of BCL-XL, IL-2, and MDM2 mentioned above were taken
from the PDB. If multiple chains were available in the PDB file, either the one with the least
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number of missing residues or atoms was chosen or chain A. Allhetero atoms (including the
ligands) were manually removed and the apo structures were superimposed on the holo structures
based on the Cα atoms using the VMD program [139]. As residues 28-81 of BCL-XL are missing
in the apo crystal structure, the two parts of the protein were modeled as two distinct chains. In the
apo structure of IL-2, the missing residues 75, 76, and 99-102 were modeled as loops of the lowest
AMBER/GBSA potential energy generated by the program RAPPER [140]. We note that for both
systems the missing residues are far away from the native binding pocket. The apo structure of
MDM2 is represented by 24 NMR models that differ mainly in theloop regions. Since no model
is defined as most representative, the first model was chosen.

3.3.2 Molecular Dynamics Simulations

For the MD simulations of the proteins, the GROMACS 3.3.1 package [141] was used along with
the OPLS-AA force field [46]. The prepared apo structures of the proteins were placed in cubic
boxes of 6.2-8.3 nm box dimensions with periodic boundary conditions and explicit TIP4P sol-
vent molecules [142] were added. The system was then pre-equilibrated by 500 steps of steepest-
descent energy minimization keeping the heavy proteins atoms harmonically restrained using a
force constant of 1,000 kJ mol−1 nm−2. Na+ or Cl− counter-ions were added to ensure a net neu-
tral charge of the simulation system and the energy minimization was repeated. The system was
treated as a NPT ensemble and further equilibrated during a 100 ps MD simulation. The Berendsen
method [143] was used to ensure a constant temperature of 300K and pressure of 105 Pa. Protein,
solvent, and counter-ions were coupled to separate baths with coupling constants of 0.1 ps for
the temperature and 1 ps for the pressure coupling. A cutoff of 0.9 nm was used to compute van
der Waals interactions and electrostatic interactions beyond the short-range cutoff of 0.9 nm were
treated by the Particle-Mesh-Ewald method [47]. The covalent bonds were constrained by the
LINCS procedure [144]. Simulation snapshots were collected every 2.5 ps during the subsequent
10 ns production run, yielding a total of 4,001 MD snapshots.Before they were further processed,
they were superimposed on the apo structure based on the Cα atoms as described above. The MD
simulations were repeated once for every system to check theresults for reproducibility.

3.3.3 Pocket Detection Using the PASS Algorithm

The PASS program was applied to every apo and holo structure and to each MD snapshot after
removal of all hetero and hydrogen atoms. As surface pocketstend to be quite flat, the default
burial count threshold of 55 protein atoms within 8 Å was too high. Therefore, the “-more” option
was used to reduce this threshold to 45 protein atoms to obtain more probes and ASPs. Note
that the output of PASS is a file containing the ASPs and a file containing all probes. There is no
assignment which probe belongs to which ASP and, thus, no information about the pocket volume.
We developed a C++ program calledPocketIdthat solves this problem: It associates probes to
ASPs to obtain contiguouspatches. Within this context, a patch is a set of PASS probes used to
represent the pocket as a contiguous volume. This volume canbe considered as the negative image
of the binding pocket as identified by the PASS algorithm. Then the number of patches in a given
protein structure is given by the number of ASPs. By assigning each probe to the nearest ASP if
it overlaps with any probe already assigned to this patch so far, it is guaranteed that each patch
is contiguous. This procedure is listed in Algorithm 1 and has a run time that is quadratic in the
number of probes per structure (O(n2

probes · nasps)). Note that defining each ASP to represent one
pocket leads to the subdivision of very large cavities into two or even more pockets, when they
consist of more than one ASP.
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Algorithm 1 Algorithm for the assignment of PASS probes and ASPs to patches
Input: asp← ASPs given in ASPs file from PASS run for this structure
Input: probes← probes given in probe file from PASS run for this structure
for i = 0 to |asp| do

patch[i]← asp[i] {initialize each patch with an ASP}
end for
last_probes_size← |probes|+ 1
{repeat until no new probes can be added to patches}
while |probes| < last_probes_size do

last_probes_size← |probes|
{search for an appropriate patch for each not yet assigned probe}
for each probe ∈ probes do

min_dist←∞
asp_index← −1
for i = 0 to |asp| do

if distance(asp[i], probe) < min_dist AND connected(patch[i], probe) then
min_dist← distance(asp[i], probe)
asp_index← i

end if
end for
if asp_index ≥ 0 then

{probe can now be assigned to a patch and removed from set of not yet assigned probes}
patch[asp_index]← patch[asp_index] ∪ probe
probes← probes \ probe

end if
end for

end while

return patch[0] , ... ,patch[|asp|]

3.3.4 Calculation of Pocket Properties and Dynamics

For each patch, itspocket lining atoms(PLAs) were determined, which are all protein atoms found
within a distance of 5 Å. Based on the chemical properties of the PLAs, the polarity of the pocket
was approximated by

polarity =
|PLA \ Catoms|

|PLA| (3.1)

The probes used by the PASS algorithm have two different radii: the probes in the first layer are
of 1.8 Å radius and the ones from the subsequent layer have a radius of 0.7 Å. Hence, the pocket
volume was estimated by the following formula:

volume = |probeslayer=1| ·
4π

3
· (1.8)3 + |probeslayer>1| ·

4π

3
· (0.7)3 (3.2)

Having detected all pockets occurring in the 4,001 snapshots (about 11,000-20,000), it is of interest
to investigate which pockets identified in different conformations correspond to each other. To this
end, all pockets were clustered using an agglomerative complete linkage approach. The similarity
between two pockets was defined by the similarity of their PLAs:

similarity(PLAsi, PLAsj) =
|PLAsi ∩ PLAsj |

min(|PLAsi|, |PLAsj |)
(3.3)

During the clustering, it was taken care that the similarityof two pockets was at least 85% and no
cluster contained more than one pocket taken from the same MDsnapshot. The clustering step is
illustrated in Algorithm 2. After clustering, all pockets within the same cluster were labeled by
the same unique pocket identifier (PID). We use the termPID to refer to a transient pocket. Thus,
the dynamics of a transient pocket can be observed via the pockets belonging to this cluster that
represent the different states taken from subsequent MD snapshots. Furthermore, for comparing
two PIDs, asubpocketwas determined for each transient pocket. These subpocketsare charac-
terized by those PLAs that line the pocket in at least 33% of all its occurrences. Moreover, two
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Algorithm 2 Algorithm for the identification of analogous patches within different conformations
clusterSet← ∅
while (similarities 6= ∅) AND (max(similarities) ≥ 85%) do

entry ← max(similarities)
if isNew[entry.patch1] AND isNew[entry.patch2] then

{both patches are new}
clusterSet[entry.patch1]← entry.patch1, entry.patch2

cluster[entry.patch2]← entry.patch1

isNew[entry.patch1]← false
isNew[entry.patch2]← false

else if isNew[entry.patch1] then
{only entry.patch1 is new, if there is no patch withinclusterSet[cluster[entry.patch2]] with the same structure ID, add
entry.patch1 to this cluster}
if NOThasCommonStrID(clusterSet[cluster[entry.patch2]], entry.patch1) then

clusterSet[cluster[entry.patch2]]← clusterSet[cluster[entry.patch2]] ∪ entry.patch1

cluster[entry.patch1]← cluster[entry.patch2]
isNew[entry.patch1]← false

end if
else if isNew[entry.patch2] then

{only entry.patch2 is new, if there is no patch withinclusterSet[cluster[entry.patch1]] with the same structure ID, add
entry.patch2 to this cluster}
if NOT hasCommonStrID(clusterSet[cluster[entry.patch1]], entry.patch2) then

clusterSet[cluster[entry.patch1]]← clusterSet[cluster[entry.patch1]] ∪ entry.patch2

cluster[entry.patch2]← cluster[entry.patch1]
isNew[entry.patch2]← false

end if
else

{both have already assigned to a cluster. If there is no patchwithin clusterSet[cluster[entry.patch1]] with the same
structure ID asentry.patch2 or the other way around, merge the clusters}
if NOT hasCommonStrID(clusterSet[cluster[entry.patch1]], clusterSet[cluster[entry.patch2]]) then

clusterSet[cluster[entry.patch1]]← clusterSet[cluster[entry.patch1]] ∪ clusterSet[cluster[entry.patch2]]
clusterSet[cluster[entry.patch2]]← ∅
cluster[entry.patch2]← cluster[entry.patch1]

end if
end if
similarities← similarities \ entry

end while

return clusterSet

sets of transient pockets (e.g. resulting from two different MD runs) can then be compared to each
other by determining the fraction of PIDs of one set that havea similarity of at least 50% to any
PID from the other set. The complete analysis of the transient pockets including application of
the PASS algorithm, clustering, and calculation of the properties took 16-20 h for each set of MD
snapshots on one 2.8 GHz Xeon CPU.

3.3.5 Docking Setup

All docking experiments were performed with AutoDock 3.0.5. The inhibitors were taken from
the holo structures. The AutoDockTools (version 1.4.3) modules of the Python Molecular Viewer
software [145] was used to add hydrogens and to compute the Gasteiger atomic charges [146].
The rotatable bonds (10 for N3B, 17 for FRH, and 5 for DIZ) wereassigned with AutoTors.
Four different docking experiments were performed: (1) re-docking into the holo structure, (2)
docking into the apo structure, (3) docking into all MD snapshots, and (4) docking into all tran-
sient pockets located at the interface. As polar hydrogen atoms are needed for a successful dock-
ing, they were added to the crystal structures and the nonpolar hydrogens were removed in the
MD snapshots. Kollman united-atom partial charges and solvation parameter were assigned by
the AutoDockTools utility. All grid maps were calculated with AutoGrid3 using the default spac-
ing of 0.375 Å between the grid points. In the docking experiments (1) - (3), the grid center was
chosen to coincide with the center of mass of the ligand in itsbound conformation and the default
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grid dimensions of 21 Å x 21 Å x 21 Å were used. In the docking experiment (4), no prior in-
formation about the bound ligand conformation was used and,thus, the grid center was set to the
center of mass of the transient pocket. The holo structures of IL-2 and BCL-XL reveal that only
a terminal moiety of the ligands may be placed into a pocket. Hence, the grid dimensions were
expanded to 30 Å x 30 Å x 30 Å. Whereas for MDM2, the grid dimensions were reduced to 16.125
Å x 16.125 Å x 16.125 Å to confine the position of the smaller ligand to the transient pocket.
Docking was performed using the standard LGA protocol with default parameters, i.e. an initial
population of 50 randomly placed individuals, a maximum number of 2,500,000 energy evalua-
tions, a mutation rate of 0.02, a crossover rate of 0.80, and an elitism value of 1. The probability
of performing a local search using the Solis and Wets algorithm with a maximum of 300 iterations
was set to 0.06, and the maximum number of consecutive successes or failures before doubling
or halving the local search step size was 4. The complete docking step consisting of calculating
the grid maps and 10 independent docking runs took 1-3 min perprotein conformation on one 2.8
GHz Xeon CPU depending on the flexibility of the ligand and thesize of the grid box.

3.4 Results

Before running the pocket detection protocol, the PASS algorithm was applied to the selected holo
structures in order to validate its ability of detecting thenative binding pockets. In addition, a
reference value for the volume of these pockets in the inhibitor-bound state was obtained. For all
tested structures, the native binding pocket could be identified. But for the holo structure of IL-2,
only one of the two subsites of the binding pocket was detected. Applying the PASS algorithm
to the apo structures revealed that in the absence of a ligandthe native binding pocket is partly
open in BCL-XL (36% of the calculated pocket volume of the holo structure) as well as in MDM2
(42%). In the structure of apo IL-2 the binding pocket could not be detected at all.

3.4.1 Transient Pockets Detected in the MD Snapshots

The proteins were stable over the simulation time. As an example, the stability of the secondary
structure of the first MD simulation runs is discussed in Section B.1 - B.3 (Appendix). The detec-
tion of pockets in the MD snapshots and the subsequent clustering revealed surprising results. For
BCL-XL, 23 distinct transient pockets were detected in the first runand 20 in the second run. For
IL-2, 23 (respectively, 31), and for MDM2, 33 (respectively, 36) transient pockets were detected.
In comparison, the total numbers of pockets detected for theapo structures were four for BCL-XL,
two for IL-2, and five for MDM2.

(a) 100 ps (b) 200 ps (c) 300 ps (d) 400 ps

Figure 3.7: Protein surfaces are fluid-like as illustrated at the example of MDM2. The molecular surface
of the protein after (a) 100 ps, (b) 200 ps, (c) 300 ps, and (d) 400 ps of simulation time is shown. The PASS
probes used to detect pockets in these MD snapshots are represented by red spheres. Note that due to the
mobile surface the number of probes and the shape of the pocket changes significantly from snapshot to
snapshot.
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Figure 3.8: The fast opening and closing behavior of a transient pocket shown at the example of PID 5 of
MDM2 (run 1).

Properties of Transient Pockets Analyzing the frequency of occurrences and the average pocket
volumes gave similar results for all three systems (see Tables 3.1 and 3.2). The largest fraction
(35.0-52.2%) of the transient pockets were rare events thatwere only present in less than 1% of all
MD snapshots with mean volumes between 335.5 and 365.3 Å3. Thus, in general, they represent
the smallest cavities for each system, whereas the highest populated pockets (detectable in more
than 50% of all MD snapshots) tended to belong to the largest ones of the respective system. How-
ever, there are just a small number of such favorable pockets(3.2-13.0% of all transient pockets) in
each system. Especially the dynamics of the transient pockets was surprising. Instead of opening
slowly, the pockets suddenly opened to volumes up to 500 Å3 within 2.5 ps, stayed open for some
time, vanished, and reappeared again several times. The mobility of molecular surfaces is due
to its fluid-like properties that can be observed during MD simulations. An example of how the
flexible surface effects the formation of pockets is shown inFigure 3.7 and an example illustrating
the fast opening and closing behavior characteristic for the transient pockets is shown in Figure
3.8.

mean volume [Å3]
system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50%

run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2
BCL-XL 361.4 340.2 405.1 384.4 451.5 469.9 527.7 423.8
IL-2 346.2 365.3 338.2 399.7 355.1 401.0 452.7 398.9
MDM2 335.5 354.3 400.7 365.3 422.3 405.9 468.7 639.1

Table 3.1: Mean volumes of the transient pockets according to their frequency per system for the two
independent MD runs.

relative number [%]
system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50%

run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2
BCL-XL 52.2 35.0 13.0 25.0 21.8 30.0 13.0 10.0
IL-2 47.8 51.6 26.1 19.4 17.4 25.8 8.7 3.2
MDM2 45.5 47.2 24.2 19.4 21.2 27.8 9.1 5.6

Table 3.2: Relative number of transient pockets with different frequencies per system for the two indepen-
dent MD runs.
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reproducibility [%]
system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50% total

run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2
BCL-XL 66.7 71.4 100.0 100.0 100.0 100.0 100.0 100.0 82.6 90.0
IL-2 81.8 62.5 100.0 83.3 100.0 100.0 100.0 100.0 91.3 77.4
MDM2 80.0 100.0 100.0 71.4 85.7 90.0 100.0 100.0 87.9 91.7

Table 3.3: Reproducibility of the PIDs according to their frequency for the two independent MD runs.

Reproducibility of Transient Pockets Figure 3.9 (a)-(c) shows that most transient pockets de-
tected in a MD run are also found in an other MD run. This indicated that most transient pockets
are reproducible. Note that a PID may correspond to more thanone PID and that many PIDs found
in the same run overlap as well as depicted in Figure 3.9 (d). Table 3.3 lists the reproducibility of
the transient pockets by their frequency. In general, the more frequent a pocket occurs in one MD
simulation, the more probable is its appearance in another MD simulations. Consequently, rare
event pockets are often non-reproducible.
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(a) BCL-XL (run 1 vs. run 2)
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(b) IL-2 (run 1 vs. run 2)
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(c) MDM2 (run 1 vs. run 2)
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(d) MDM2 (run 1 vs. run 1)

Figure 3.9: Pairwise similarities of the transient pockets. (a) - (c) show that most PIDs are reproducible
by another MD run, (d) shows the similarity of PIDs obtained within the same run (run 1) for MDM2. The
shading scheme indicates the level of similarity.
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system apo overlap
vol. [%]

MD mean
overlap vol.

[%]

MD max
overlap vol.

[%]

no. MD
snapshots

with overlap

overlapping
PIDsa

run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2
BCL-XL 35.6 33.2 22.7 84.2 73.6 2,716 1,924 15 8, 11
IL-2 0 45.3 31.5 115.1b 130.7b 1,440 1,992 8 2, 4
MDM2 2.2 53.7 39.4 136.2b 99.2 2,716 3,883 2, 5 0, 22

aShown are only the PIDs involved in the maximum overlap

bOverlap volume is larger than in the holo structure

Table 3.4: Volume of the PASS probes overlapping with the atoms of the superimposed ligand relative to
the overlap volume for the ligand bound structure per systemfor the two independent MD runs.

Did the native binding pocket open during the MD simulations? To test whether the native
binding pocket is among these transient pockets, we superimposed the holo structures onto the
MD snapshots and onto the apo structures and then determinedfor each conformation the PASS
probes overlapping the inhibitor atoms. New pocket volumeswere calculated by considering only
the overlapping PASS probes and comparing their volumes to those obtained for the inhibitor
bound structures. Furthermore, the PIDs possessing the largest overlap with the native inhibitor
were identified and defined to correspond to (subpocket of) the native binding pocket. (As the PIDs
within the same run may overlap as well resulting from the definition of the ASPs by the PASS
algorithm, more than one PID may correspond to the native binding pocket.) The results shown
in Table 3.4 indicate that for all three systems the native binding pocket opened up during MD
simulations. For BCL-XL and MDM2, where the native binding pocket was already detectable
in the apo structure, the mean overlap volume determined forthe MD snapshots was more or less
comparable to the overlap volume of the apo form of the protein (35.6% for BCL-XL and 42.2%
for MDM2). However, in some MD snapshots of BCL-XL the native binding pocket was more
than twice as large as in the apo form, although not quite as large as in the holo structure. In some
MD snapshots of MDM2, the PASS volumes overlapping with the superimposed inhibitor were
even of equal or larger size than in the holo structure, indicating that the native binding pocket was
sometimes large enough to fully accommodate the native inhibitor. Notably, for IL-2, the native
binding pocket, which was not detectable in the apo form, wasalso found to fully open during the
10 ns MD simulations. Similar to MDM2, the overlapping volume was larger than in the inhibitor
bound complex. Considering that the native binding pocket consists of two subsites, this result
shows that the other subsite which was not detected in the inhibitor bound complex was detectable
in some MD snapshots. This means that both subsites of the native binding pocket opened and the
binding pocket may be fully accessible in some of the MD snapshots.

Polarity of Transient Pockets In addition to the volume, the polarities of transient pockets were
studied. While the polarity of the entire protein surface ofthe apo structure is 0.37 for BCL-XL
and MDM2 and 0.38 for IL-2, the polarity of the transient pockets ranged from 0.25 to 0.45.
The pocket volumes and the corresponding polarity for all PIDs with frequency greater than 20%
are plotted in Figure 3.10. This analysis reveals that, in general, the largest pockets (volumes of
≥ 800 Å3) have a smaller polarity than the overall protein surface, suggesting that the protein
interior partly opens up and, thus, these pockets may be “sticky” enough to bind ligands. But
except for IL-2, all detected transient pockets are more polar than the native binding pocket in the
holo structure. This result suggests that only quite polar pockets open up during MD simulations
in a polar solvent. Less polar pockets may require a less polar environment or the presence of a
ligand to open, suggesting an induced-fit mechanism. A comparison of the polarity ratios of those
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PIDs corresponding to the native binding pockets to all others indicates that for BCL-XL and IL-2,
these PIDs represent the most nonpolar pockets. Note that inthe polarity plots for IL-2, the PIDs
representing the native binding pocket (PID 8 in run 1 and PID4 in run 2) correspond to different
subpockets. In the first run of IL-2, PID 8 corresponds to the subpocket identified in the holo
structure. Hence, it almost possesses the same polarity ratio as the native binding pocket at the
reference volume. In the second run, PID 4 corresponds to theless developed subpocket missed
by the PASS algorithm in the holo structure.
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(a) BCL-XL (run 1)
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(b) BCL-XL (run 2)
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(c) IL-2 (run 1)

Pocket Volume

0 200 400 600 800 1000 1200 1400 1600 1800

P
ol

ar
ity

 

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
PID 4 
PID 5 
PID 7 
PID 12 
PID 17 
PID 18 
PID 19 
native BP

(d) IL-2 (run 2)
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(e) MDM2 (run 1)
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(f) MDM2 (run 2)

Figure 3.10: Changes in the mean pocket polarity depending on the pocket volume. For each PID, the
polarity of pocket states having the same volume were averaged to smooth the curve. In order to obtain
reliable values, only PIDs with a frequency greater than 20%were used, resulting in a different number of
PIDs for the different runs of the same system. The dashed lines indicate the polarity and volume of the
native binding pocket (BP). PIDs from different runs corresponding to each other are shown in the same
color. The PIDs representing the native binding pocket are shown as thick lines.
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re-docking apo-docking
system RMSD

[Å]
score

[kcal/mol]
ranka RMSD

[Å]
score

[kcal/mol]
ranka

BCL-XL - N3B 0.9 -10.5 2 3.3 -6.2 5
IL-2 - FRH 1.1 -10.8 1 2.9 -6.2 1
MDM2 - DIZ 1.1 -13.1 2 3.4 -6.7 5

aRank of docking solution among 10 docking runs.

Table 3.5: Best docking results for (re-) docking into the holo and intothe apo structures.

3.4.2 Docking into MD Snapshots

Extensive docking studies were performed to validate whether the transient pockets detected by
this method are suitable to bind the known inhibitors and, hence, may be used for structure-based
drug design. To validate whether AutoDock3 is capable of handling these kinds of ligands that
are very flexible and do not bind into deep pockets, we re-docked the known inhibitors into the
holo structures of the proteins. Furthermore, the apo structures were used for docking to estimate
the extent of conformational changes necessary to accommodate the inhibitors. The results of
these two docking experiments shown in Table 3.5 emphasize that the apo structure would not be
suitable at all for anin silico drug design project. However, when using the MD snapshots much
better results are obtained as listed in Table 3.6. We are aware that these results are somehow
biased toward the native bound ligand conformation becausethese ligand conformations were
used to define the center of the search grid. Without prior knowledge, it would not be possible to
identify the correct docking solutions as the ranks of theseresults may be quite high. Let us, for
example, consider the case of N3B binding to BCL-XL. When using the known center of mass
of the ligand in the docked complex as the grid center of the docking run (see column termed
“snapshot docking”), 4.7% of all docking poses have a betterscore than the docking pose with the
smallest RMSD of 1.4 Å. In anin silico drug design project, this center of mass would of course
not be known and the center of mass of the transient pocket would be used to define the binding
site (termed “PID-docking”). In this case, the best solution would only belong to the upper half
of all docking poses. However, one should not exclusively focus on the docking pose with the
smallest RMSD. The highest ranked docking solutions that can be classified as “correct” (RMSD
≤ 2.0) are listed in Table 3.7 and the corresponding docking posesare shown in Figure 3.11. Here,
at least one correct docking solution is always ranked amongthe best 5% of all docking results.
When taking the fraction of buried nonpolar ligand atoms into account, the ranks can be reduced
to less than 1% for IL-2 and MDM2 and to less than 3% for BCL-XL. Thus, even without prior
knowledge this docking result would be selected for furtherinvestigation.

snapshot-dockinga PID-dockingb

system RMSD
[Å]

score
[kcal/mol]

rank c

[%]
RMSD

[Å]
score

[kcal/mol]
rank c

[%]
BCL-XL - N3B 1.4 -8.7 4.7 1.5 -7.3 48.3
IL-2 - FRH 1.5 -6.6 20.6 1.9 -6.5 14.1
MDM2 - DIZ 1.9 -11.5 1.1 1.9 -11.5 0.7

aDocking into all MD snapshots (grid center coincident with center of mass of superimposed ligand).

bDocking into transient pockets (grid center coincident with center of mass of transient pocket).

cNumber of docking results with better docking score in relation to the total number of docking results.

Table 3.6: Docking results with lowest RMSD for docking into the MD snapshots and transient pockets.
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PID-dockinga

system RMSD [Å] score [kcal/mol] score rankb [%] final rank c [%]
BCL-XL - N3B 1.8 -9.2 4.8 2.7
IL-2 - FRH 2.0 -7.6 2.8 0.9
MDM2 - DIZ 1.9 -11.5 0.7 0.7

aDocking into transient pockets (grid center coincident with center of mass of transient pocket).

bNumber of docking results with better docking score in relation to the total number of docking results.

cNumber of docking results with better docking score and higher fraction of buried nonpolar ligand atoms (i.e. relative
number of nonpolar ligand atoms overlapping with PASS probes) in relation to the total number of docking results.

Table 3.7: Highest ranked correct (RMSD≤ 2.0) docking results for docking into transient pockets.

3.5 Discussion

Docking into the apo structures of the proteins revealed that these conformations cannot accom-
modate the known inhibitors. So far, it is not known whether the native binding pockets only open
in the presence of a nearby ligand or whether they also exist in conformations of the apo form
of the protein. Even in the latter case, these openings couldbe rare events that do not occur on
the typical nanosecond time scales of molecular dynamics simulations performed at room tem-
perature. But to our surprise, even at a temperature of 300 K,large pockets opened frequently
on the protein surface and when docking into these transientpockets, we obtained conformations
that were quite close to the native binding modes. However, the shapes of the protein surfaces are
somehow different such that some deviations are to be expected. The docking scores in Table 3.6
and 3.7 indicate that pockets of appropriate shapes form spontaneously during MD simulations of
the apo BCL-XL and MDM2 proteins suggesting that for these systems the inhibitor selects an
appropriate protein conformation (conformational selection). Whereas for IL-2, the docking score
decreased significantly compared to the re-docking score. This may be a sign that the formation of
the native binding pocket requires the presence of the ligand with subsequent induced-fit effects.

3.5.1 Comparison to the “(Improved) Relaxed Complex Scheme”

Our approach is very similar to the (improved) RCS approach of Amaro and co-workers [92]. We
also generate a conformational ensemble of the protein by MDsimulations in explicit water, select
eligible snapshots, and use them to dock the inhibitors. In fact, it can be considered as an applica-
tion of this method to study the problem of detecting transient pockets opening at protein-protein
interaction interfaces. Our approach has the advantage that no a priori knowledge is required
about the location of the binding site. Instead of clustering the MD snapshots by RMSD of the
binding site and selecting non-redundant receptor conformations, we cluster the detected pockets
and select those located at promising positions (i.e. at theinteraction interface). In contrast, the
(improved) RCS protocol does not consider pockets explicitly. Although the authors mention that
their technique successfully produced true positive docking poses when the binding site was un-
defined and the docking grid encompassed the entire protein [92], they tested only one enzyme
that was in the holo state (and thus already contained a deep cavity) and gave no details about the
docking results. Therefore, it is not sure whether the (improved) RCS method would be capable
of identifying the native binding site when it corresponds to a transient pocket.

3.5.2 Critical Assessment of the Approach

Although this protocol is quite time-consuming due to the underlying MD simulations, the results
are very promising. As an initial criterion for the suitability of this approach for detecting tran-
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(a) BCL-XL (native binding mode) (b) BCL-XL (docking pose)

(c) IL-2 (native binding mode) (d) IL-2 (docking pose)

(e) MDM2 (native binding mode) (f) MDM2 (docking pose)

Figure 3.11: The best scored near-native docking poses (listed in Table 3.7, PID docking) when docking
into the transient pockets (PID-docking) along with the native complexes. In (f), residues 1 to 16 were
removed for better visibility.

sient binding pockets, we suggest considering the loweringof docking scores for MD snapshots
versus apo structures. But this needs to be tested of course for a larger number of model systems.
When considering the rank of the docking scores, one has to keep in mind that we only docked
into pockets opening at the protein-protein interaction interface. In a real application scenario, the
interface may be unknown and the docking score of a native binding pose may be ranked worse.
Nevertheless, we recommend this pocket detection protocolas a starting point for structure-based
drug design especially in cases when no appropriate bindingpocket can be identified on the surface
of the target protein. Then the regions in which transient pockets open may be used as potential
binding sites for virtual screening with flexible docking methods. Besides sampling accessible
pockets opening at the targeted interface, this approach also has the advantage that it detects pock-
ets anywhere on the protein surface, e.g. one may identify new allosteric pockets. Moreover, these
transient pockets and their properties may serve as a prefiltering tool to reduce the number of lig-
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ands to be docked in virtual screening. But note that not all detected pockets are druggable. In
order to study the properties that characterize a druggabletransient pocket or to select MD snap-
shots that represent promising docking receptors, this protocol has to be tested on a larger number
of model systems. Although quite similar results were obtained for all studied systems, one has to
be cautious in generalizing these findings. Some ligand binding pockets may require the presence
of the ligands, whereas our protocol is only capable of detecting cavities that open spontaneously.
A transient pocket with a high frequency may indicate that the opening is energetically favorable
and, thus, protein conformations containing such a pocket are sufficiently high populatedin vivo
to be recognized by a ligand. But on the other hand, a transient pocket with a low frequency is not
necessarily “not-ligand binding” because the opening of a binding pocket may only be energeti-
cally unfavorable in the absence of the stabilizing ligand.Note that the calculated frequency has
to be handled with care as the definition of a pocket is vague and crucially depends on the used
pocket detection method. Especially defining pocket boundaries and the subdivision in distinct
subpockets is subjective and, thus, the clustering is subjective, too.

3.6 Summary and Conclusion

We applied standard MD simulations to three protein systemsto show that a surprisingly large
number of transient pockets open up on protein surfaces on a 10 ns time scale. These pockets
open and close very quickly due to the fluid-like properties of protein surfaces. For each system
many transient pockets were detected that differed in volume, frequency, and polarity. On average,
more frequently open pockets tend to have larger volumes. Furthermore, we observed that large
pockets have a reduced polarity compared to the overall protein surface, suggesting that they may
be suitable for ligand binding. Yet, these pockets are usually still more hydrophilic than the native
binding pocket indicating that induced-fit effects are important during ligand binding, even if the
receptor conformation contains a preexisting pocket. The opening of most transient pockets seems
to be energetically favorable and, thus, the pockets are reproducible as evidenced by a second set
of control simulations.
The identified transient pockets represent potential binding sites of new inhibitors. When fo-
cussing attention on the location of the native binding pocket, pockets of similar size compared
with the known inhibitor bound could be observed in all threetest systems. Flexible ligand dock-
ing into these pockets resulted in binding modes that differed only by 2 Å RMSD from the crystal
structure conformation.
To our knowledge, this is the first protocol that accounts forconformational changes occurring on
protein-protein interaction interfaces upon ligand binding. It clearly underlines the importance of
incorporating protein flexibility in ligand design studies, particularly on the protein surface. This
pocket detection protocol may therefore be an interesting starting point for structure-based drug
design, especially on protein-protein interaction interfaces, when the crystal structure of the target
protein lacks appropriate binding pockets.



Chapter 4

What Induces the Pocket Openings on
Protein Surface Patches Involved in
Protein-Protein Interactions?

With the pocket detection protocol introduced in Chapter 3,we were able to show that a surpris-
ingly large number of pockets open during MD simulations of the apo structures. In this chapter,
the underlying mechanisms of these pocket openings will be studied using modified versions of
the initial protocol. In addition, MD simulations are replaced by three more efficient methods for
generating conformational ensembles and their appropriateness for the sampling of transient pock-
ets will be discussed. The findings were published in theJournal of Computer-Aided Molecular
Designin 2009 [147].

4.1 Introduction

In Chapter 3, we have presented a pocket detection protocol that provides a starting point for
in silico drug design in cases when no potential binding pocket could be identified so that stan-
dard screening methods would fail. This protocol is based onthe finding that large pockets not
detectable in the apo crystal structures of BCL-XL, IL-2, and MDM2 opened frequently on the
protein surfaces during standard MD simulations of 10 nanoseconds length at room temperature.
These identified transient pockets represent potential binding sites of new inhibitors. Most of
these pockets, especially the most frequent ones, were reproducible as evidenced by a second MD
simulation run for each system. Furthermore, for all three systems, we observed that pockets of
similar size as with a known inhibitor bound opened at the native binding site. When docking the
inhibitors into these transient pockets with AutoDock3, docking poses with less than 2 Å RMSD
from the native binding mode were predicted. However, the differences in these docking scores to
the re-docking scores suggested that the physicochemical properties of the transient pockets were
not as suitable for inhibitor binding as those of the native binding pocket. For example, most tran-
sient pockets were less polar than the overall protein surface but not as hydrophobic as the native
binding pocket. Thus, we assumed that hydrophobic pockets are more appropriate as putative lig-
and binding sites. However, it is currently unclear whetherthe opening of such nonpolar pockets
is energetically “forbidden” in water and requires the presence of a ligand. We speculated that
this could be circumvented by simulating the protein in a nonpolar solvent that may allow for the
opening of more and larger hydrophobic pockets, even in the absence of a ligand. Methanol ap-
peared as a good candidate solvent as it may act as a hydrogen bond donor and acceptor and is less
polar than water (its relative dielectric constant is 33 [148]). It has been used before as solvent for
MD simulations of peptides and proteins. For example, Alonso and Daggett studied the unfolding
and folding of ubiquitin by MD simulations in a mixture of methanol and water to mimic the cy-
tosolic environment of biological cells [149]. Interestingly, they observed that partially unfolded
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conformations with increased exposure of hydrophobic residues were only stable in the presence
of methanol whereas the protein collapsed in water. So far, MD simulations in pure methanol have
mostly been applied to membrane-bound peptides. Kovacs et al. compared simulations of an in-
tegral membrane helix of the surfactant protein C in chloroform, water, and methanol [150]. They
observed a burial of aliphatic side-chains in water resulting in a decreased total accessible surface
area of the peptide, whereas in chloroform more nonpolar side-chains became exposed and the to-
tal accessible surface area increased. In methanol, the total accessible surface area also increased
because polar as well as nonpolar side-chains became exposed. In addition, they observed that the
helical conformation was more stable in water and methanol than in chloroform.
In this chapter, we will try to understand the underlying dynamics of the opening of transient
pockets on protein surfaces. To this end, we investigated the following points:

• How stable is the native binding pocket without bound ligand?

• Can pockets on the protein surface fully open in water and what is the additional benefit of
simulating the proteins in a less polar solvent?

• Are backbone movements necessary for the opening of pocketsor are side-chain rotations
sufficient?

To answer these questions, we generated different conformational ensembles, applied the pocket
detection protocol, and compared the properties of all detected transient pockets. As model sys-
tems, we used the three proteins (MDM2, BCL-XL, and IL-2) introduced in Chapter 3. The MD
simulations of the apo proteins discussed in Chapter 3 serveas a reference point. To answer the
first question, MD simulations of the holo structures after removal of the inhibitor were conducted.
For the second question, additional MD simulations in methanol were performed and the pockets
found in these snapshots were compared to those detected from the simulations in water. The
third question was addressed by comparing MD simulations with harmonic restraints on all heavy
backbone atoms to the unrestrained simulation at the example of MDM2.
The main drawback of our previously introduced pocket detection protocol is the high computa-
tional demand of the underlying MD simulations. Thus, it would be desirable to replace them
by a more efficient protocol. For this purpose we have also tested three established methods that
generate conformational ensembles in a more efficient way: normal mode analysis, CONCOORD,
and tCONCOORD.
In addition to investigating which aspects of the natural conformational dynamics of proteins
(e.g. backbone movements, side-chain movements, or deformations along low-frequency nor-
mal modes) induce the formation of surface pockets, we triedto characterize for each method its
appropriateness for detecting potential binding pockets.As before, this was realized by focusing
on the binding pockets of known SMPPIIs because these are theonly cavities with experimen-
tally validated small-molecule ligand binding capabilities. By docking the known inhibitors with
AutoDock3 into transient pockets that opened at the bindinginterface and by comparing the dock-
ing pose to the native binding mode, we could identify which methods are best suited for sampling
putative ligand binding pockets.

4.2 Methods and Materials

The structure selection, preparation, equilibration, MD simulations, superposition of all confor-
mations, and docking runs (using the “PID-docking” setup) were done as described in Chapter 3.
All energy minimizations, MD simulations, and normal mode analysis were performed with the
GROMACS 3.3.1 package using the OPLS-AA force field.
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4.2.1 Molecular Dynamics Simulations

In addition to the MD simulation protocol described in Chapter 3, four variants were applied in
this study. In the first variant, the simulation started fromthe holo (after removal of the bound
inhibitor) instead of the apo structure. In the second variant, all heavy backbone atoms of the apo
structures remained harmonically restrained (force constant of 1,000 kJ mol−1 nm−2) during the
production runs. The third and fourth variant of the MD simulation protocol are the simulations
in methanol. Here, the apo structures were placed in cubic boxes filled with methanol molecules
(using parameters from the OPLS-AA force field) and the equilibration was extended to 500 ps.
The harmonic restraints were either removed in the 10 ns production run (third variant) or the
harmonic restraints on the heavy backbone atoms were kept (fourth variant). Note that the second
and fourth variants of the MD protocol were only applied to MDM2.

4.2.2 Generation of a Conformational Ensemble Using NormalMode Analysis

The apo structures were minimized in vacuo without constraints using the L-BFGS algorithm
until the maximum force on any atom was smaller than 0.001 kJ mol−1 nm−1. Van der Waals
interactions were calculated without cut-off and for calculating the electrostatic interactions, the
relative dielectric constantǫ was set to4r. The hessian matrix of the minimized structure was
calculated in vacuo using the same parameters. 50 eigenvectors representing the normal modes
with lowest frequencies were derived from the diagonalizedmass weighted hessian matrix. As
eigenvectors 1 to 6 correspond to the translational and rotational degrees of freedom of the system
they were set to 0. Using the remaining 44 normal modes, 4,001protein conformations were
generated by random displacements along the eigenvectors at 300 K, where the position along
each eigenvector was randomly taken from a Gaussian distribution with variance kT/eigenvalue.

4.2.3 Generation of a Conformational Ensemble Using (t)CONCOORD

The distance bounds for CONCOORD and tCONCOORD were determined from the energeti-
cally minimized structures generated for the normal mode analysis using Engh-Huber bonded
parameters [151] and OPLS-AA van der Waals parameters. Based on these distance bounds 4,001
protein conformations were generated by CONCOORD and tCONCOORD. Note that the confor-
mational ensembles generated by CONCOORD, tCONCOORD, and NMA used the same energy-
minimized starting configuration as input but are otherwiseunrelated.

4.2.4 Pocket Detection and Characterization Using EPOSBP

In contrast to Chapter 3, we usedEPOSBP , a program that is based on BALLPass, which is the
re-implemented version of the PASS algorithm that uses the BALL C++ library [152]. Note that
although the PASS algorithm was implemented exactly as described in the publication [70], the
number and positions of the ASPs and the PASS probes may differ from the original PASS pro-
gram. The patches are calculated and clustered as describedin Algorithms 1 and 2. The advantage
of using EPOSBP is that many procedures adjuvant when dealing with molecular structures are
already implemented in the BALL library. For example, the volume of the pockets can now be
determined more accurately by calculating the solvent excluded surface volume of the patches.
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4.3 Results

Six conformational ensembles (each one consisting of 4,001structures) were generated for each
system and two additional ones for MDM2:

• apo MD snapshots (water): snapshots extracted from MD simulations of the apo structure
in water

• apo MD snapshots (methanol): snapshots extracted from MD simulations of the apo struc-
ture in methanol

• holo MD snapshots (water): snapshots extracted from MD simulations of the holo structure
in water

• restrained apo MD snapshots (water): snapshots extracted from MD simulations of the apo
structure in water with harmonic restraints on all heavy backbone atoms (only for MDM2)

• restrained apo MD snapshots (methanol): snapshots extracted from MD simulations of the
apo structure in methanol with harmonic restraints on all heavy backbone atoms (only for
MDM2)

• CONCOORDconformations: conformations generated by CONCOORD

• tCONCOORDconformations: conformations generated by tCONCOORD

• NMAconformations: conformations generated by deformations along normal modes

Whereas all MD simulations started from the apo or holo protein conformation taken from the
crystal structures, the calculations of the CONCOORD, tCONCOORD, and NMA conformations
were based on the energy-minimized conformation of the apo structure.
At first, we will present the findings for the ensembles from the various MD simulations, and then
compare the results to those obtained for the CONCOORD, tCONCOORD, and NMA ensembles.
However, when comparing the properties of the conformational ensembles, one should keep in
mind that the apo and holo structures of BCL-XL and MDM2 did not contain the same number of
residues.

4.3.1 Pockets Detected in the Starting Structures

As we now used EPOSBP instead of the original PASS program, we had to recalculate the pocket
volumes and polarities of the native binding pockets in the holo and the apo structures to get new
reference values. For the holo structures, we determined pocket volumes and polarities of 493.1
Å3 and 0.26 for BCL-XL, 400.3 Å3 and 0.27 for IL-2, and 445.9 Å3 and 0.25 for MDM2. In the
apo structures of BCL-XL and IL-2, the native binding pocket was only partly detectable (23.1%
and 25.9% of the pocket volume relative to that of the holo structure). For apo MDM2, the native
binding pocket was too compact to be detected in any NMR model.
As the CONCOORD, tCONCOORD, and NMA conformational ensembles were generated from
the minimized structures of the apo proteins, it is of interest to know whether and to which extent
the native binding pocket was already open in these structures. After the minimization in vacuo,
the native binding pocket of BCL-XL was closed, whereas a further opening to 74.8% was detected
for IL-2. In the minimized structure of full-length MDM2, the N-terminal loop buries the native
binding site. In the minimized structure of truncated MDM2,the native binding pocket opened to
50.8%.
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4.3.2 Properties of the Conformational Ensembles

Before the CONCOORD, tCONCOORD, and NMA conformational ensembles were generated,
the apo structures were energetically minimized. This resulted in conformations with backbone
RMSDs from the apo structure of 1.0 Å for BCL-XL, 1.4 Å for IL-2, and 6.6 Å for MDM2. For
MDM2, this high value was caused by the floppy terminal loops of the NMR structure (com-
pare Fig. 3.5) that folded back on the protein surface duringthe minimization in vacuo and so
obstructed the p53 binding groove. This conformation appeared too compact as a starting struc-
ture. Note that such a conformation was suggested earlier [153], but in the publication describing
the NMR models we used for this study, Uhrinova et al. stated that no long-range NOEs were
observed for residues 2-17 [133]. This rules out the possibility that this loop occupies the p53
binding groove in a stable fashion and suggests that truncating these residues is valid. We re-
peated the minimization and the subsequent generation of the conformational ensembles with the
stable part of the MDM2 protein (residues 17-111), to which we will refer as “truncated MDM2”.
This resulted in an RMSD of 1.6 Å from the apo structure.
The proteins remained stable in all MD simulations. The RMSDprofiles of the different con-

formational ensembles of the test systems are shown in Figure 4.1. The stability of the secondary
structures is discussed in Section B.1 to B.3, Appendix. Theholo structure of BCL-XL includes
more loops than the apo structure (see Fig. 3.1), and, hence,the MD simulation of the holo
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Figure 4.1: All-atom RMSD of the six (eight, respectively) conformational ensembles from the apo struc-
tures. For MDM2, the RMSD was only calculated for residues 17to 111.
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Figure 4.2: Surface polarity of MDM2 during the MD simulation in water and methanol.

structure displayed a slightly different dynamics resulting in larger RMSDs (up to 5.2 Å) than
the other conformational ensembles which are based on the apo structure. The RMSD of the apo
MD snapshots taken from the simulation in water stayed constantly below 2.0 Å and those taken
from the simulation in methanol did not exceed 2.8 Å. Similarly, the unstable terminal loops of the
apo structure are missing in the holo structure of MDM2. In the apo MD snapshots, they caused
RMSDs of up to 8.0 Å for the simulation in water and up to 9.5 Å for the simulation in methanol,
whereas the RMSD of residues 17 - 111 was 3.6 Å for the simulation in water and 4.6 Å for the
simulation in methanol. When using harmonic restraints on the backbone atoms, the sampling
was restricted to a small range around the conformation of the starting structure. Furthermore,
for BCL-XL and MDM2, the larger RMSDs observed for the snapshots extracted from the sim-
ulations in methanol suggest that the less polar solvent allowed for transitions to regions of the
conformational space that were not sampled when using an aqueous solution at room temperature.
In contrast, for IL-2, all MD simulations gave similar RMSD profiles.
As expected, the simulation in methanol leads to a more pronounced exposure of hydrophobic
side-chains and, thus, a lowering of the overall surface polarity compared to the simulation in
water (see Figure 4.2 for an example). For all three systems,CONCOORD and NMA generated
conformational ensembles with much smaller RMSDs from the apo structure than the MD snap-
shots. The RMSD values for the NMA conformations were nearlyconstant (RMSD variation 0.1-
0.2 Å) and only slightly larger than the RMSD of the minimizedstructure, whereas the RMSDs of
the CONCOORD conformations varied up to 2.0 Å. In contrast, due to the enhanced conforma-
tional sampling of tCONCOORD, it generated conformations that differed up to 4.2 Å from the
apo structures and, thus, are of comparable magnitude as most MD snapshots.

4.3.3 Transient Pockets Detected in the MD Snapshots

The pocket detection protocol was applied to all conformational ensembles and the properties of
the identified transient pockets were analyzed. Their main properties are listed in Table 4.1. Note
that it is not possible to draw any conclusions when comparing the total number of pockets (the
number of pockets before clustering) and the number of distinct transient pockets (the number of
pockets after clustering) detected for apo and holo MDM2 andBCL-XL because the simulated
proteins were not of equal size.
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system no.
pockets
before

clustering

no.
pockets

after
clustering

mean
pocket
volume

[Å3]

max.
pocket
volume

[Å3]

mean
overlap
volume

[%]

max.
overlap
volume

[%]
BCL-XL

apo MD snapshots (water) 17,079 24 375.1 1,363.9 43.5 91.3
apo MD snapshots (methanol) 22,818 23 380.7 1,357.9 48.3 95.0
holo MD snapshots (water) 39,596 46 395.2 1,606.9 38.7 94.6
CONCOORD 8,226 11 348.1 1,013.1 34.3 67.1
tCONCOORD 17,135 23 378.7 1,761.3 42.5 99.9
NMA 7,774 6 342.7 889.8 32.0 50.8

IL-2
apo MD snapshots (water) 14,721 29 335.2 1,013.0 35.3 89.2
apo MD snapshots (methanol) 24,513 24 352.7 1,633.9 35.0 94.3
holo MD snapshots (water) 18,412 33 394.4 1,340.7 32.6 128.1a

CONCOORD 14,096 18 320.1 965.2 34.8 88.5
tCONCOORD 17,356 28 365.4 1,422.9 33.3 92.3
NMA 15,345 11 261.1 722.4 50.1 87.9

MDM2
apo MD snapshots (water) 26,419 35 372.7 1,641.3 60.1 106.8a

apo MD snapshots (methanol) 34,022 42 407.6 2,204.5 47.6 108.0a

holo MD snapshots (water) 11,737 14 384.6 1,213.8 57.5 114.3a

restrained apo MD snapshots (w.) 21,568 17 330.5 839.9 52.9 81.2
restrained apo MD snapshots (m.) 25,204 22 351.8 1,024.3 52.2 82.0
CONCOORDb 13,519 10 348.6 828.2 48.0 70.1
tCONCOORDb 16,090 14 388.6 1,237.7 2.4 8.4
NMAb 14,776 7 322.2 670.2 45.4 61.4

aOverlap volume is larger than in the holo structure

bminimized structure of truncated MDM2 (residues 17-111) used as starting structure

Table 4.1: Properties of the pockets detected in the conformational ensembles for each system.

Influence of the Simulation Solvent and the Backbone Flexibility on the Pocket Properties
Another question we wanted to address is the influence of a less polar solvent on the pocket open-
ings. Comparing the properties of the pockets detected in the apo MD snapshots in water and
methanol reveals that for all three systems the opening of the native binding pocket seems to be
eased in methanol. Besides, more (in terms of total number) and on average larger pockets opened,
suggesting that the less hydrophilic methanol solvent facilitates the formation of cavities in gen-
eral.
Further, we asked whether side-chain movements are sufficient for pocket openings. In all MD
simulations presented so far, the whole protein was flexibleso this question was hard to an-
swer. Hence, we analyzed the pockets detected in the restrained apo MD snapshots in water and
methanol of MDM2. As expected, the number of pockets (beforeand after clustering) and their
volumes were reduced when their formation depends exclusively on side-chain movements. Inter-
estingly, even in the restrained MD simulations the methanol solvent had the same effect on the
pocket openings as in the unrestrained MD simulations. An opening of the native binding pocket
was observed in all MD simulations, but its native volume wasonly reached when simulating
without restraints in water or methanol.

Stability of the Native Binding Pocket The main reason for the simulations of the holo struc-
tures was studying the stability of the native binding pocket in the absence of a ligand. The overlap
volumes indicate that in all three systems the native binding pocket fluctuated a lot during the sim-
ulation (see Figure 4.3). While the mean overlap volumes were in the same order of magnitude
as those of the apo MD snapshots in water, for IL-2 and MDM2 thevolume of the native binding
pocket exceeded at least once its volume with the inhibitor bound. These findings indicate that the
presence of a ligand is required to keep the native binding pocket fully open.
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(a) BCL-XL
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(b) IL-2
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(c) MDM2

Figure 4.3: The stability of the native binding pockets during the MD simulations as represented by the
relative overlap volume.

Do the transient pockets opening at the native binding site differ from the others? Except
for the overlap volumes, all properties listed in Table 4.1 refer to pockets opening anywhere on the
protein surface. A further analysis shown in Figure 4.4 addresses the differences in the properties
between the pockets opening at the native binding site and those opening somewhere else on the
protein surface. Note that several distinct transient pockets are opening at the protein-protein inter-
action interface. As already mentioned, they represent different subpockets of the native binding
pocket and thus may possess different polarities. In most cases, they are on average larger than
the pockets opening anywhere else and have a slightly reduced polarity. For BCL-XL and MDM2,
all transient pockets opening at the native binding site areon average more polar than the native
binding pocket, except for those opening during the MD simulation in methanol. While for IL-2,
transient pockets with an average volume and polarity comparable to the native binding pocket can
be identified in both MD simulations of the apo structure. Moreover, this analysis demonstrates
that, in general, the cavities identified in the apo MD snapshots of the simulation in methanol
belong to the least polar pockets, especially when focusingon the largest pockets. Very small
pockets (mean volume≤ 200 Å3) tend to be either very polar or very nonpolar.
When focussing on the differences between the restrained and unrestrained MD simulations of

apo MDM2 shown in Figure 4.4 (c), the influence of the backbonemovements on the pocket
openings is evident. As already shown in Table 4.1, the transient pockets observed during the re-
strained MD simulations are relatively small. Pockets withmean volumes that exceed the volume
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Figure 4.4: Mean volume of transient pockets plotted against their meanpolarity. Only transient pockets
with frequency≥ 5% are shown. Triangles represent pockets opening at the native binding site, stars
represent pockets opening anywhere else on the protein surface. The dotted line represents the volume and
the polarity of the native binding pocket, the broken line the overall surface polarity of the apo structure.

of the native binding pocket were only found in the MD snapshots of the restrained simulation
in methanol. Although in all MD simulations the transient pockets with the largest mean volume
opened at the native binding site, it is not clear whether these pockets are appropriate for ligand
binding as they are more polar than the native binding pocketexcept for those found in the unre-
strained MD simulation in methanol.

Similarity of the Transient Pockets Detected in the Different Conformational Ensembles
Especially when studying the influence of the backbone movements an important question arises:
Are the transient pockets detected in conformational ensemble i also detected in conformational
ensemblej? To investigate this question, we calculated the reproducibility of the transient pockets
from different conformational ensembles as described in section 3.3.4. The results per system are
shown in Figure 4.5. This analysis approves the assumption that during the simulation in methanol
additional pockets open that are not observable during the simulation in water. Further, it reveals
that some pockets can only open when backbone movements are allowed. This emphasizes the
intrinsic influence of backbone movements on pocket openings.
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Figure 4.5: Reproducibility of the detected transient pockets in one conformational ensemble by the tran-
sient pockets detected in another conformational ensemble(calculated as described in section 3.3.4). In
each column, the percentage of reproduced transient pockets of one method by the other methods (rows) is
shown. These plots show that, for example, the tCONCOORD ensemble contains more pockets also open-
ing during MD simulations than the CONCOORD ensemble. This observation supports the importance of
solvent effects because tCONCOORD is not considering hydrogen bonds that may be attacked by solvent
molecules in the definition of the distance constraints.

4.3.4 Which transient pockets are suitable for accommodating known inhibitors?

So far, we used the overlap volume to estimate how far the native binding pocket opened. However,
this measure is only a rough estimate and it is unclear whether an overlap value of 50-90% is
sufficient to accommodate a ligand. Therefore, the docking experiments described in Chapter
3 in which the definition grid center was based on the center ofmass of the transient pocket
were repeated. All transient pockets that opened at the interface in all snapshots extracted from
MD simulation of the apo structure in water or methanol were used as starting points. The best
docking results listed in Table 4.2 emphasize that the bahavior of the native binding pocket of IL-2
differs from that of BCL-XL and MDM2. While for the latter two systems much better docking
results were obtained when docking into MD snapshots taken from the simulation in methanol (as
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system RMSD [Å] score [kcal/mol] score ranka [%]
BCL-XL

apo MD snapshots (water) 1.9 -10.2 1.5
apo MD snapshots (methanol) 1.7 -11.8 0.5
CONCOORD 1.8 -7.6 29.0
tCONCOORD 2.0 -11.1 1.5
NMA 2.3 -8.1 16.3

IL-2
apo MD snapshots (water) 1.9 -8.5 0.7
apo MD snapshots (methanol) 2.0 -6.9 8.4
CONCOORD 2.0 -6.6 7.9
tCONCOORD 2.4 -5.4 25.8
NMA 1.8 -7.0 7.1

MDM2
apo MD snapshots (water) 1.5 -11.8 8.0
apo MD snapshots (methanol) 1.7 -13.5 0.2
restrained apo MD snapshots (water) 2.0 -8.8 82.6
restrained apo MD snapshots (methanol) 2.0 -9.5 68.5
CONCOORDb 2.1 -8.7 61.6
tCONCOORDb 1.6 -11.2 0.1
NMAb 3.3 -9.7 13.0

arelative rank defined as the rank of this solution after sorting all results by increasing docking score in relation to the
total number of docking results

bminimized structure of truncated MDM2 (residues 17-111) used as starting structure

Table 4.2: Best ranked correct (RMSD≤ 2 Å) docking results or docking results with lowest RMSD per
conformational ensemble and system.

reflected by the better docking scores and the reduced score rank), docking into water snapshots
gave better results for IL-2 (although the maximal overlap in Table 4.1 gives another impression).
A possible explanation for this may be that the pockets opening in methanol at the native binding
site are too small for the native ligand (see Fig. 4.4 (b)), even though the pockets are on average
larger than those opening in water. The best scored docking poses for the MD simulations of the
apo structures are shown in Figure 4.6.
Surprisingly, when docking the inhibitor into snapshots extracted from restrained MD simulations
of MDM2 the native binding mode was correctly predicted. However, the docking scores and
their ranks are worse compared to the unrestrained simulations indicating that although side-chain
movements are sufficient to open new cavities, suitable backbone movements are also needed
to achieve enough depth and plasticity. Again, the results got slightly better when docking into
snapshots from the simulation in methanol. The impact of methanol as solvent is most striking
for the snapshots taken from the unrestrained MD simulations of MDM2. Here, the relative score
rank of a correct docking result improved from 8.0% to 0.2% when simulating in methanol instead
of water. Moreover, the score improved by 1.7 kcal/mol suggesting that, in addition to backbone
movements, the effect of a less polar solvent promotes the opening of pockets even further.

4.3.5 Are CONCOORD, tCONCOORD, or NMA conformations an alternative to
MD snapshots?

Molecular dynamics simulations are quite time consuming. For this reason, it would be desirable
to replace them by a more efficient method. Potential alternatives to MD snapshots are conforma-
tions generated by CONCOORD, tCONCOORD, or NMA.

Properties of Transient Pockets Detected in the Alternative Conformational Ensembles The
properties of the transient pockets detected in these conformational ensembles are listed in Table
4.1. For IL-2, the total number of cavities found in the CONCOORD and the NMA conformational
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(a) BCL-XL in water (b) BCL-XL in methanol

(c) IL-2 in water (d) IL-2 in methanol

(e) MDM2 in water (f) MDM2 in methanol

Figure 4.6: The best scored docking poses when docking into MD snapshotsextracted from the simulation
of the apo structure in water and in methanol (correspondingto those listed in Table 4.2). In (e) and (f),
residues 1 to 16 were removed for better visibility.

ensemble are comparable to the total number of cavities found in the apo MD snapshots from the
simulation in water. In contrast, for BCL-XL and MDM2 the number of detected pocket open-
ings is significantly reduced. Anyhow, the pockets found in these ensembles are not as diverse
(indicated by the number of pockets after clustering) as those opening during MD simulations.
Particularly when using NMA for generating a conformational ensemble one ends up with only
a few distinct transient pockets. In addition, these pockets are smaller than those opening during
the MD simulations. More importantly, they are also smallerthan the native binding pockets and
too polar, except for the pockets detected for IL-2. In summary, for all three systems, varying
interatomic distances in the CONCOORD approach or random deformations along normal modes
approach sometimes resulted in a certain opening or enlargement of the native binding pocket,
but not to the same extent as observed in MD simulations. Onlyfor IL-2, the maximum overlap
volumes of the NMA and CONCOORD conformations are of the samemagnitude as those of the
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apo MD snapshots in water.
The sampling of transient pockets can be significantly improved when using the tCONCOORD
method. This method gives a larger total number of detected cavities and more diverse transient
pockets as indicated by the number of pockets after clustering. Besides, these pockets are con-
siderably larger than those detected in the CONCOORD and NMAconformational ensembles.
Their volumes are even of the same order of magnitude as the pockets opening during the MD
simulations, but except for IL-2, they are too polar (see Fig. 4.4).

Are these conformations approriate to accommodate the known inhibitors? Here again, it
is interesting to know whether the transient pockets identified for these conformational ensembles
are the same as those observed during MD simulations. Figure4.5 shows that although NMA,
CONCOORD, and tCONCOORD conformations are based on the samestarting structure, the
tCONCOORD conformational ensemble performs best in reproducing pockets detected during
MD simulations. Most pockets found in NMA structures were also found in all other conforma-
tional ensembles, because, as stated above, the NMA conformations tend to be quite similar and so
possess only a small number of distinct pockets. This findingemphasizes that slow normal modes
are only involved in the dynamics of a few pocket opening regions. Whether the native binding site
belongs to these regions can be addressed by docking into theNMA conformations. Besides the
transient pockets that opened at the interface in this conformational ensemble, those detected in
the CONCOORD and tCONCOORD conformations were also used as starting points for docking
experiments. When analyzing these docking results (see Table 4.2) it is obvious that the opening
of the native binding pocket of IL-2 seems to be driven by other dynamics than that of BCL-XL
and MDM2. Namely, for IL-2, RMSD values below 2 Å could be achieved when docking into
NMA conformations but not for the other two systems. In contrast, when using the CONCOORD
conformations, the native binding mode of the known inhibitors could be more or less reproduced
for each system. However, the scores of these results demonstrate that the structural and/or the
biochemical environment is not as appropriate as it may get when using MD simulations with-
out restraints. The docking results for the tCONCOORD conformational ensembles were quite
surprising. While for IL-2, the docking results were significantly worse than those for docking
into the CONCOORD conformations, the results for BCL-XL and MDM2 were comparable to
those obtained when docking into the apo MD snapshots extracted from the simulations in wa-
ter. This emphasizes the ability of tCONCOORD of sampling ligand-bound conformations even
if the unbound structure was used as input and suggests that at least for BCL-XL and MDM2,
tCONCOORD seems to be an efficient alternative to MD simulations.

4.4 Discussion

As we have shown in Chapter 3, transient pockets of similar size as when bound to an known
inhibitor open during MD simulations of apo proteins at the native binding sites. These pockets
are not only observed by chance, but they were reproducible in a second MD simulation under
the same conditions. The results of this chapter indicate that most pockets are also reproducible
in MD simulations under different conditions. Here again, some of these pockets opened at the
native binding site and were appropriate for ligand binding. However, the properties of the detected
cavities depended crucially on the complexation status of the starting structure (apo vs. holo) and
the solvent. We calculated the pocket properties for three test systems and the general impressions
were quite similar. When the holo structure was used in the MDsimulations, the volume of the
native binding pocket showed the largest fluctuations. Although the same starting structure was
used, more and larger pockets opened on the protein surface during the simulation in methanol
than during the simulation in water. Furthermore, the restrained simulation of MDM2 showed that
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side-chain movements alone indeed lead to the formation of pockets, but their number and volume
is reduced. In summary, these findings suggest that pocket openings are induced by movements of
the protein backbone and side-chains that are coupled to thesolvent.

4.4.1 Can MD simulations be replaced by a more efficient method?

Besides the transient pockets opening during MD simulations conducted under different condi-
tions, we also analyzed pockets detected in conformationalensembles generated by CONCO-
ORD, tCONCOORD, and NMA. Almost all of these transient pockets were also found during MD
simulations. However, the number of distinct cavities is limited in the CONCOORD and NMA
conformations, and additionally they are relatively small. In most cases they are not appropriate
for ligand binding as the quality of the docking results compared to those of the MD snapshots
demonstrates. Hence, due to their neglect of solvent effects the applicability of CONCOORD or
NMA for the purpose of inducing pocket openings appears to belimited. This problem seems to
be overcome in tCONCOORD by not considering hydrogen bonds that may be attacked by solvent
molecules in the definition of the distance constraints. As intended by the authors, this enables an
enhanced conformational sampling compared to CONCOORD [59]. For our purpose, this means
the detection of transient pockets of an increased variety and volumes that are even comparable to
that of pockets opening during MD simulations.

4.4.2 Are pocket openings related to normal modes?

Although the overlap volumes in NMA conformations suggest that the opening of the native bind-
ing pocket is somehow related to deformations along slow normal modes, they are not sufficient
to induce full pocket openings. However, compared to the docking results obtained when docking
into the apo structures (see Table 3.5), using NMA conformations led to significant improvements.
For MDM2, the docking score even improves by 3 kcal/mol. Thisfinding indicates that the open-
ing of the native binding pocket of MDM2 is weakly related to normal modes is in agreement with
the results reported by Barrett et al. [136] and Espinoza-Fonseca and Trujillo-Ferrara [137]. Note
that these authors only observed the opening and closing movement and did not measure whether
the increase of the pocket volume is sufficient for ligand binding.
IL-2 was the only system for which deformations along the normal modes were sufficient to repro-
duce approximately the native binding pocket (see Table 4.2). One should keep in mind, however,
that here the native binding pocket was already open to almost 75% in the starting structure used
for generating the NMA conformations. Therefore, it is an educated guess that the opening of the
native binding pocket appears energetically quite favorable and may be observed by a variety of
methods that sample low-energy conformations. Indeed, this was also true for CONCOORD, but
not for tCONCOORD. We assume that this is due to tCONCOORD’s ability of sampling struc-
tural transitions. As the input structure was already quitesimilar to the holo structure, only regions
of the conformational space that are further away from thesestructures were sampled. Thus, no
native-like binding pose could be found when docking into the tCONCOORD conformational en-
semble. On the other hand, in the case of BCL-XL, minimization resulted in the closure of the
previously partly open native binding pocket and here CONCOORD and tCONCOORD success-
fully produced conformations that were able to accommodatethe known inhibitor.

4.4.3 Critical Assessment of the Approach

Besides studying what induces the opening of transient pockets, the aim of this chapter was to test
whether the time-consuming MD simulations may be replaced by a more efficient method. Note
that as already discussed in the previous chapter, only a fewsuitable model systems were available
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for this investigation making it difficult to extract generic conclusions. The results were quite
promising for tCONCOORD, but the MD simulation in water was the only method that performed
equally well for all three systems. Although more, larger, and less polar pockets were detected
when simulating in methanol, the results improved for only two of the three systems. These
observations suggest that the openings of the native binding pockets of the three studied systems
are driven by different mechanisms and none of the studied methods was capable of generating
conformational ensembles of all systems that contain the native binding pocket in a druggable
state.
Note that the score ranks listed in Table 4.2 are quite low because we only docked in those pockets
opening at the interface. However, this study indicated that in general the native binding pocket
differs from other pockets by its volume and polarity (see Figure 4.4) and, thus, may be identified
by docking without prior knowledge about the location of thebinding site when focussing on
large, nonpolar pockets. But, of course, this also has to be validated using a larger number of
model systems.

4.5 Summary and Conclusion

In this chapter we extended our investigation of transient pockets opening on protein surfaces and
analyzed what induces these openings. A significant impact of backbone movements and of the
solvent was identified. This was evident from the simulationin methanol were the total number
of pocket openings and their volumes increased compared to the simulation in water. For two
out of the three systems, this also led to the formation of nonpolar pockets at the interface what
significantly improved the docking results. This suggests that a more hydrophobic solvent facili-
tates the opening of the native binding pocket. Comparing MDsimulations with full flexibility or
with harmonically restrained backbone atoms revealed thatalthough side-chain movements alone
lead to the formation of surface cavities, the required depth and plasticity for ligand binding can
only be achieved by including the backbone movements. Additionally, we could show that the
volume of native binding pockets fluctuates significantly, suggesting a decreased stability in the
absence of a ligand. By calculating the reproducibility of the transient pockets detected in the
different MD simulations, we could show that the opening of most pockets is independent from
the starting structure and the solvent. Moreover, we testedmore efficient methods for generat-
ing conformational ensembles, but although CONCOORD and NMA were capable of producing
conformations with pockets not observable in the starting structure, their diversity and volume
was limited. Though the formation of some pockets is coupledto low frequency normal modes,
deformations along these modes were not sufficient to achieve full pocket openings. On the other
hand, conformations generated by tCONCOORD possessed pockets with volumes and diversity
that were comparable to those of pockets opening during MD simulations. For two out of the three
test systems, this method was even able to generate conformations suitable to accommodate the
native ligand. These findings open promising avenues for structure-based drug design on protein
surfaces.
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Chapter 5

Designing Binding Pockets on Protein
Surfaces using the A* Algorithm

While the protocols discussed in Chapter 3 and 4 sampled the entire protein surface for pockets,
we will now present a rigorous algorithmic approach that induces the opening of putative binding
pockets at predefined surface regions. This initial study was published as a full paper in the
Proceedings of theGerman Conference on Bioinformaticsin 2008 [154].

5.1 Introduction

In the previous two chapters, we presented a protocol that detected pockets that opened on the
protein surface. The advantage of this protocol is that no prior knowledge about the location of
the binding site is required because the entire protein surface is sampled for transient pockets.
However, only those pockets that open spontaneously will beidentified by this protocol. Pockets
whose openings are induced by a nearby ligand will remain undetected. Furthermore, the pockets
are often too small and/or too polar for ligand binding. Fortunately, in many drug design projects,
the approximate location of the binding site is already known. Hence, it is sufficient to sample
only a part of the protein surface. This local instead of global search allows for a more accurate
and directed sampling of accessible protein pockets and so also allows to “force” the opening of
a pocket at a known location. The resulting protein conformations and their ligand binding pock-
ets can then be used to optimize the interaction between the protein and the ligand or for virtual
screening.
The problem of finding appropriate protein conformations can be solved efficiently using an in-
formed search. For this purpose, several algorithms have been developed in artificial intelligence.
A popular example implementing an informed graph search is the A* algorithm [155] that uses
knowledge about the structure of the search space incorporated in heuristic functions to guide the
search towards optimal solutions. The nodes of the graph represent states of the system. Given
the initial state represented by the start node, the algorithm searches an optimal (i.e. minimal cost)
path to a given goal node, representing the goal state. During this search, a graph is built up in
which each node represents a partial solution. The generated nodes are maintained in a priority
queue. The priority of a partial solutionx is given by

f(x) = g(x) + h(x) (5.1)

whereg(x) is the cost of this partial solution so far, i.e. from the start node tox andh(x) is the
heuristic estimate of the minimal cost to reach the goal nodefrom x. If the heuristic function is
admissible (i.e. it never overestimates the cost of reaching the goal node) and consistent (i.e. it
fulfills the triangle inequality), it will always find a path with minimal cost from a given start node
to a given goal node if such a goal node exists. As already mentioned in Chapter 2, Leach applied
the A* search to the flexible docking and the side-chain placement problems [97]. After placing an
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anchor region of the ligand into the binding site, all possible ligand conformations were generated.
For each conformation that made no unfavorable interactions with the protein backbone and all
rotameric states of a residue, the optimal combination of side-chain rotamers was determined by
an A* search. In this approach, the initial node representedthe structure without assigned rotamers
for the residues at the binding site, while the goal nodes represented the optimal docking solutions
where all residues had assigned rotamers.
We incorporated ideas from PASS, MCSS, and Leach’s application of the A*-search into a new
approach that algorithmically generates energetically favorable protein conformations with acces-
sible binding pockets at defined locations on protein surfaces. Since conformations of minimal
energy and conformations with large cavities may be incompatible, the user can control this com-
promise. Based on our findings about the importance of backbone movements presented in the
previous chapter, this method considers full protein flexibility during the design of protein confor-
mations. As before, the applicability of the approach was validated using the proteins BCL-XL,
IL-2, and MDM2.
During the implementation of this method, two approaches were published that modify the lig-
and binding sites. Bottegoni et al. developed SCARE, an induced-fit docking protocol that starts
from a single (apo) input structure [156]. By mutating different pocket residues to alanine, mul-
tiple variants of the binding pocket are generated into which the flexible ligand is docked. The
best scored poses are kept, the residues are mutated back, and the receptor pocket is optimized
globally (thus allowing for backbone and side-chain flexibility) while the positions of the ligand
atoms are restrained. After re-scoring the optimized docking complexes, the ligand binding pose
was correctly predicted (RMSD≤ 2 Å) in 80% of the best scored conformations. The authors
emphasize that no prior knowledge about the binding site location is required because they run
a pocket detection program and pick the largest pocket. Thismethod would most probably fail
for protein-protein interaction interfaces as it is limited to conformations that already contain ac-
cessible pockets. In another publication, Withers et al. presented “active site pressurization”, an
approach for predicting the deformability of protein pockets [157]. During a MD simulation a
rectangular block of Lennard-Jones particles is injected into the ligand binding site and the num-
ber of particles interacting with the protein is gradually increased. Thereby new energetically
reasonable protein conformations are generated that may bemore appropriate for ligand binding
than the starting structure. But rather than inducing the opening of new cavities, this method is
designed to enlarge existing pockets.

5.2 Methods and Materials

Here, we introduce two programs for the generation of protein conformations that possess puta-
tive binding pockets:PocketScannerandPocketBuilder. An overview of this approach is depicted
in Figure 5.1. PocketScanner scans a user-defined region of the protein surface for energetically
favorable pocket positions by generating conformations with preformed pockets at these sites.
Subsequently, PocketBuilder refines these intermediate conformations and designs a final set of
conformations that best fulfill the search criteria, namelythe desired trade-off between a protein
conformation with low-energy side-chain rotamers and a pocket of defined volume. Both pro-
grams were implemented in C++ using the BALL library. All energies are computed using the
CHARMM EEF1 force field [158] that treats the solvent as an implicit continuum because includ-
ing such effects is crucial for designing binding pockets onprotein surfaces. We added so-called
generic pocket spheres(GPS) to the force field. Each pocket was represented by a GPS that only
interacts with the protein atoms via van der Waals interactions (with a radius of 1, 2, or 3 Å and
a well depth of 0.05 kcal/mol). Note that the volume of a designed pocket is controlled by the
radius of the GPS while it is represented by the van der Waals interaction energy between the pro-
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Figure 5.1: The PocketScanner / PocketBuilder approach. PocketScanner requires as input a starting struc-
ture, a region that should be scanned for pockets, and a radius of the GPS controlling the volume of the
pocket. For each putative pocket position, the input structure is then energetically minimized in the pres-
ence of a GPS in order to adopt the protein conformation (including the backbone) to a pocket at this
position. The generated conformations and the corresponding pocket positions are then used by Pocket-
Builder, along with a rotamer library and weights controlling the properties of the final conformations. The
A* algorithm then searches for the best combination of side-chain rotamers such that the resulting final
conformations possess the user-defined trade-off between low energy and large accessible pocket.

tein atoms and the GPS. For the analysis of the pockets, the pocket volumes and polarities were
calculated by EPOSBP as described on page 71.
We used exactly the same prepared apo, holo, and inhibitor structures as in Chapters 3 and 4.

Docking experiments were performed as described in Chapter3, but here, the positions of the
GPSs were used as grid centers.

5.2.1 The PocketScanner Algorithm

In order to scan the protein surface for potential pocket positions, a grid with a user-defined center,
dimensions, and edge length is placed on the protein surface. The z-axis of this grid is the solvent
vector defined by the grid center and the center of gravity of the 10 nearest solvent exposed atoms.
A GPS of given radius representing the pocket center is then successively placed on each grid
point having a burial count (number of protein atoms within 8Å) above a given threshold (here:
65). Thereby, we ensure that pockets are only induced at positions of high protein atom density.
To exclude pocket positions that are deeply buried inside the protein, we additionally require that
the minimal distance to any solvent exposed atom must be smaller than 2 Å. The protein is then
energically minimized in the presence of the GPS using 500 steps of L-BFGS or until the RMS
gradient is smaller than 0.01 kcal mol−1Å−1. During this energy minimization, the position of the
GPS is fixed, so that the protein has to adopt its conformation. This relaxation may either result in
the formation of a cavity or in a flattening of the protein surface. Thus, only if the burial count is
still high enough after the energy minimization, this protein conformation in combination with this
pocket position is written to an output file for using it as a starting conformation in PocketBuilder.
The complete procedure is listed in Algorithm 3.
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Algorithm 3 The PocketScanner algorithm
Input: start_conf ← apo protein structure
Input: grid_parameter ← center, x-, y-, and z-dimension, edge length
Input: radius← radius of the GPS
generated_confs← ∅
grid← makeGrid(grid_parameter) {creates a grid such that the z-vector is approx. perpendicular to the protein surface}
for each grid_point ∈ grid do

BC ← getBurialCount(grid_point, start_conf) {calculate the burial count of this position}
dist_to_surface ← getMinimalDistanceToSEAtom(grid_point, start_conf) {calculate the distance to the nearest
solvent exposed atom}
if (BC ≥ 65) AND (dist_to_surface ≤ 2) then

GPS ← generateGPS(grid_point, radius)
conf_with_GPS ← start_conf ∪GPS
conf_with_GPS ← runEM(start_conf, GPS) {fix the position of the GPS and energy minimize the protein}
BCminimized ← getBurialCount(grid_point, conf_with_GPS \GPS) {recalculate the burial count}
if BCminimized ≥ 65 then

generated_confs← generated_confs ∪ conf_with_GPS {save this conformation with the corresponding GPS}
end if

end if
end for

return generated_confs

5.2.2 The PocketBuilder Algorithm

Starting from the protein conformations with preformed pockets generated by PocketScanner,
PocketBuilder calculates a user-defined number of conformations that best represent the selected
trade-off between a pocket of a given volume and a protein conformation of low energy. The
algorithm consists of two stages: the initialization stageand the A*-search. The pseudocode of
the program can be found in Algorithm 4. The initialization is performed separately for each
starting conformation. It starts with defining all side-chains within 8 Å of the GPS as flexible.
The remaining part of the protein is treated as rigid. For this part, the energyErigid and the van
der Waals interaction energy with the GPSErigid,pocket are calculated. For each of the flexible
residuesi, all rotamersj taken from Dunbrack’s backbone independent rotamer library from 2002
[64] (including the original side-chain conformation), the van der Waals interaction energy with
the pocketEij ,pocket, and the energy change∆Eij resulting from including this side-chain rotamer
in the calculation ofErigid are determined. Unfavorable rotamers are deleted if

Eweighted
ij

= wenergy · ∆Eij +wpocket ·Eij ,pocket ≥ 100kcal/mol (5.2)

Finally, the pairwise non-bonded interaction energiesEij ,kl
between the remaining rotamersj and

l of each pair of residuesi andk are calculated and stored in a hash table.
Afterwards, the algorithm builds up a search tree where the nodes represent partial conforma-

tions, i.e. conformations in which rotameric states have only been assigned to some of the flexible
residues. The nodes of the first level in the tree correspond to the rigid part of the different input
conformations (0 assigned side-chains), then in each subsequent leveli+ 1, rotamers are assigned
to each flexible residuei until the protein conformation is complete (see also Figure5.2). The
different input conformations represent different subtrees in which the rigid part of the protein as
well as the pocket position is identical. The order in which side-chain rotamers are assigned is
fixed, so that in all partial solutions represented by nodes of level i+1 in subtrees, the side-chains
of the same residues0, ..., i are already defined. (The order in which side-chains are added has no
effect on the final result.) Note that the level of the leave nodes are identical within the same sub-
tree, but may differ within different subtrees depending onthe number of flexible residues defined
for this input conformation. The buildup of the tree is controlled by the A* algorithm. A priority
f(x) is assigned to each nodex that evaluates the true costg(x) of this partial conformation so far
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Figure 5.2: A part of the rotamer search tree generated during the A* search of PocketBuilder, shown here
for a single starting conformation. The 1st level contains the starting conformation with all residues within 8
Å of the GPS (shown in black) mutated to glycine. If this node is chosen for expansion,r1 nodes are added
in the 2nd level, and each node represents a partial solutionin which the first flexible residue is locked into
the different rotameric states1, ..., r1 (shown in orange). If a node in the 2nd level is expanded,r2 nodes are
added in the 3rd level per node and here, the second flexible residue gets locked into the different rotameric
states1, ..., r2 (shown in green). In the 4th level, the third flexible residuegets locked into the different
rotameric states1, ..., r3 (shown in blue), and so on until a leaf node is reached where rotamers are assigned
to each flexible residue. For better visibility, the backbone of the partial solutions starting from the 2nd
level is shown in white cartoon representation and only the flexible residues are shown in colors.

and estimates the minimal costh(x) for reaching a leaf node, where

g(x) = wpocket · Erigid,pocket + wenergy · Erigid +
x
∑

i=1

(

wpocket ·Eir ,pocket + wenergy ·
(

∆Eir +
i−1
∑

k=1

Eir,kr

))

(5.3)

h(x) =
N
∑

k=x+1

min
l

(wenergy · ∆Ekl
+ wpocket · Ekl,pocket) +

N
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k=x+1
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(

x
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)

+
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∑
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Algorithm 4 The PocketBuilder algorithm
Input: start_confs← PocketScanner conformations with GPS
Input: flexibility_radius← radius defining which side-chains around the GPS are to be optimized
Input: wenergy ← weighting factor for scoring the internal protein energy
Input: wpocket ← weighting factor for scoring the pocket volume
Input: N ← number of protein conformations to be generated
{initialization}
for each conf ∈ start_confs do

flexible_residues ← getF lexibleResidues(conf, conf.GPS, flexibility_radius) {get all residues within a certain
distance of the GPS}
rigid_part← conf \ (flexible_residues ∪ conf.GPS) {get the rigid part of the protein}
Erigid ← getEnergy(rigid_part) {get the internal protein energy of the rigid part}
Erigid,pocket ← getEnergy(rigid_part, conf.GPS) {get the vdW interaction energy between the GPS and the rigidpart}
for each i ∈ flexible_residues do

rotamersi ← getRotamers(i) ∪ i {get all rotamers of i and also add the original side-chain conformation}
for each j ∈ rotamersi do

Eij ,pocket ← getEnergy(ij , conf.GPS) {get the vdW interaction energy between the GPS and the rotamer}
∆Eij

← getEnergy(rigid_part∪ ij)−Erigid{get the change in internal protein energy resulting from including this
rotamer}
if wenergy ·∆Eij

+ wpocket ·Eij ,pocket ≥ 100kcal/mol then
rotamersi ← rotamersi \ j {remove unfavorable rotamers to speed up the calculations}

end if
end for

end for
for each i ∈ flexible_residues do

for each j ∈ rotamersi do
for each k 6= i ∈ flexible_residues do

for each l ∈ rotamersk do
Eij,kl

← getEnergy(ij , kl) {get the non-bonded interaction energy between the the two rotamers}
end for

end for
end for

end for
end for
{A* search}
generated_confs← ∅
priority_queue← ∅
root← Node(NULL, 0) {the root node is a dummy node}
for each conf ∈ start_confs do

x← Node(rigid_part, root) {1. level is the rigid part of each input conformation}
priority_queue.push(f(x), x) {add x to the priority queue}

end for
while (priority_queue 6= ∅) AND (|generated_confs| < N) do

x← priority_queue.pop {get nodex with lowest f(x)}
if isLeafNode(x) then

generated_confs← generated_confs ∪ x.conformation {add complete conformation ofx to results}
else

{add a new node for each rotamersr of the next flexible residuei + 1}
for each r ∈ rotamersi+1 do

y ← Node(x.conformation ∪ (i + 1)r , x) {add rotamerr to the partial conformation ofx}
priority_queue.push(f(y), y) {add y to the priority queue}

end for
end if

end while

return generated_confs

In the summations,i runs over all flexible residues with already assigned rotamers r, while k and
n run over the remaining ones, andl andm denote different rotamers of a side-chain. In each step,
the nodex with lowestf(x) (representing the partial conformation that seems most promising) is
taken from the priority queue. Ifx is a leaf node, the corresponding conformation is written to
an output file. Otherwise,x is expanded, i.e. a new nodey is added for each possible rotamer
of the succeeding flexible residuei + 1 and the priorities of these new partial conformations are
determined. The algorithm terminates as soon as the predefined number of output conformations
is reached.
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5.3 Results

PocketScanner and PocketBuilder were tested using different parameters controlling the volume
of the induced pockets. PocketScanner was run twice, using aGPS radius of either 2 or 3 Å. Pock-
etBuilder was tested with three different weighting schemes per PocketScanner setup, resulting in
a total of six runs.

5.3.1 Properties of the Pockets Induced by PocketScanner

PocketScanner was used to scan the apo protein structures for positions of inducible pockets. For
each system, the grid center was placed at the ligand center of mass, the dimension was 11 x 11
x 5, and the edge length 2 Å. That way, the grid covered the entire protein-protein interaction
interface. Running PocketScanner took about 1 hour on a single CPU of an Intel Core 2 Duo
processor which mainly resulted from the large number of energy minimizations. PocketScanner
was run twice using the same settings for the grid but different radii for the GPS. The use of the
larger GPS had a significant impact on the number of accepted pocket positions. Out of the 605
possible positions, 67 (66) were accepted for BCL-XL, 25 (18) for IL-2, and 29 (20) for MDM2
when using a GPS radius of 2 Å (3 Å respectively). Note that these pocket positions may be
located anywhere in the protein-protein interaction interface and are not limited to the inhibitor
binding site. As an example, the grid and the accepted pocketpositions of BCL-XL are shown in
Figure 5.3.
EPOSBP was applied to the resulting PocketScanner conformations for detecting those pockets

that were induced at the position of a GPS. An overview of the properties of these pockets is
shown in Table 5.1. This analysis revealed that pockets weredetected in more PocketScanner
conformations when the larger GPS radius was used indicating that a radius of 2 Å may be not
sufficient to induce the opening of accessible pockets. Furthermore, the polarity of the pockets
resulting from larger GPSs was slightly reduced. One could expect that the mean pocket volume
would significantly increase when using a larger GPS, but this is not the case. For MDM2, the
mean pocket volume even decreased. However, using a larger GPS radius may also cause a cavity
that is more flat and, thus, of reduced volume.

Figure 5.3: The interaction interface of apo BCL-XL covered by the grid generated by PocketScanner.
Accepted pocket positions are shown as red spheres.
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system GPS radius
[Å]

detected
pockets [%]

mean pocket
volume [Å3]

mean pocket
polarity

BCL-XL 2 43 381.3± 82.3 0.33± 0.03
3 86 394.9± 109.7 0.29± 0.04

IL-2 2 52 311.8± 59.1 0.31± 0.04
3 78 328.8± 58.9 0.29± 0.03

MDM2 2 31 376.8± 91.7 0.33± 0.02
3 75 315.7± 98.6 0.31± 0.03

Table 5.1: Properties of the pockets induced by PocketScanner.

5.3.2 Properties of the Pockets Designed by PocketBuilder

The conformations and the corresponding pocket positions generated by the two runs of Pock-
etScanner were used as starting conformations for PocketBuilder. As the weighting factors for the
internal protein energy and the protein-pocket interaction energy crucially influence the scores and,
thus, the A* search, we calculated 500 conformations using three different weightings schemes for
each GPS radius (resulting in six runs of PocketBuilder):

• internal protein energy and protein-pocket interaction energy weighted equally (0.5 and 0.5)

• a strong emphasis on the protein-pocket interaction energy(0.1 and 0.9)

• a dominance of the protein-pocket interaction energy (0.01and 0.99)

In an initial test, we found that the initialization stage isthe bottleneck for the run time of Pocket-
Builder with 6-10 minutes per starting conformation depending on the number of flexible residues
(here, 8-18 flexible residues) and accepted rotamers. To speed-up the calculations, a greedy pre-
selection of the starting conformations was added: For eachconformation, the weighted sum of
the internal protein energy and protein-pocket interaction energy was calculated and only the 20

system GPS
radius [Å]

wpocket total no.
leaf nodes

efficiency mean pocket
volume [Å3]

mean pocket
polarity

BCL-XL 2 0.50 1.0 · 1012 8.3 · 106 715.3± 21.9 0.36± 0.01
2 0.90 1.9 · 1012 1.7 · 107 343.6± 31.7 0.27± 0.01
2 0.99 3.4 · 1012 1.6 · 109 337.4± 37.2 0.27± 0.01
3 0.50 1.7 · 1011 2.4 · 106 282.6± 34.2 0.30± 0.01
3 0.90 5.6 · 1011 7.1 · 106 276.1± 55.0 0.31± 0.01
3 0.99 4.5 · 1014 1.2 · 109 485.2± 92.7 0.37± 0.01

IL-2 2 0.50 2.0 · 1015 1.0 · 1011 291.7± 3.8 0.27± 0.01
2 0.90 2.7 · 1016 9.3 · 1011 290.3± 4.8 0.27± 0.01
2 0.99 1.9 · 1018 4.1 · 1013 359.6± 36.3 0.33± 0.01
3 0.50 1.2 · 1014 5.9 · 109 450.9± 80.2 0.31± 0.01
3 0.90 2.2 · 1015 6.9 · 1010 507.4± 90.7 0.30± 0.01
3 0.99 4.6 · 1016 1.2 · 1012 344.4± 23.3 0.33± 0.01

MDM2 2 0.50 1.5 · 1014 1.4 · 1010 314.0± 56.8 0.31± 0.02
2 0.90 1.4 · 1015 1.4 · 1010 420.0± 50.2 0.33± 0.02
2 0.99 2.1 · 1016 2.4 · 107 277.9± 19.6 0.32± 0.01
3 0.50 2.6 · 1012 7.0 · 108 233.8± 26.3 0.32± 0.01
3 0.90 8.8 · 1013 7.6 · 109 235.3± 27.1 0.32± 0.01
3 0.99 2.0 · 1015 1.4 · 1010 339.1± 89.1 0.31± 0.02

Table 5.2: Influence of the GPS radius and the weighting on the performance of PocketBuilder and the
properties of the induced pockets.
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(a) apo structure (b) after PocketScanner (c) after PocketBuilder

Figure 5.4: Conformational changes of the backbone (shown in cartoon representation) and the residues
defined as flexible in PocketBuilder (shown in licorized representation) in a subpocket of BCL-XL. The
GPS (radius = 3 Å) is shown as transparent red sphere. The initial overlap of the protein atoms with the GPS
(a) was reduced during the energy minimization in PocketScanner (b). Running PocketBuilder with wpocket

= 0.99 optimized the interaction with the GPS by changing therotamers of some flexible side-chains (c).

starting conformations with lowest score were retained. Onthe one hand this preselection may
delete conformations that would later on score better with altered side-chain rotamers, but on the
other hand running the algorithm with too many starting conformations is nearly infeasible. The
run time of the A* search took between 40 minutes and 4 hours depending on the number of
possible nodes in the search tree and on how similar the scores of these nodes are. Here, we use
the ratio between the number of possible nodes and the numberof generated nodes as a measure
for the efficiency of the algorithm. Analogously to the pockets induced by PocketScanner, the
properties of the pockets designed by PocketBuilder were calculated. The results of this analysis,
the number of different conformations (leaf nodes) that could be generated using this setup, as
well as the measure for the efficiency of this PocketBuilder run are listed in Table 5.2. Although
the total number of leaf nodes increased with augmentingwpocket, the algorithm generally found
the 500 best conformations more efficiently, suggesting that the interaction energy between the
protein and the GPS was more diverse than the internal protein energy. No trend was apparent for
the influence of the weighting and the GPS radius on the mean pocket volume and polarity. These
mean volumes even seem to suggest that PocketBuilder reduced the volume of most pockets to
snugly fit around the GPSs. An example of how PocketScanner and PocketBuilder changed the
apo structure of BCL-XL is shown in Figure 5.4.

5.3.3 Docking into Pockets Designed by PocketBuilder

The aim of this approach is the efficient design of ligand binding pockets on the protein surface.
As before, the appropriateness of this protocol for drug design is validated by docking the known
inhibitors into the designed binding pockets. The main questions are:

• Can docking into the designed pockets reproduce the native ligand binding mode?

• Which weighting and GPS radius requires the lowest number ofgenerated conformations?

Table 5.3 lists the best scored docking results with RMSD≤ 2 Å (or the docking result with
lowest RMSD) for each PocketBuilder run. The correspondingdocking complexes are shown
in Figure 5.5. With each setup, PocketBuilder successfullyinduced the opening of native-like
binding pockets on the surface of the BCL-XL and the IL-2 protein as the RMSDs indicate. For
BCL-XL, the docking scores were even in the same order of magnitude than the re-docking scores
(see Table 3.5) and the scores obtained when docking into snapshots taken from the MD simulation
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system GPS radius
[Å]

wpocket RMSD
[Å]

score
[kcal/mol]

score rank
[%]

solution
no.

BCL-XL - N3B 2 0.50 1.9 -10.0 42.0 213
2 0.90 2.0 -10.1 34.4 169
2 0.99 2.0 -10.2 33.6 241
3 0.50 1.7 -10.2 55.4 82
3 0.90 1.5 -10.4 58.2 376
3 0.99 2.0 -11.3 6.2 29

IL-2 - FRH 2 0.50 1.8 -6.5 6.4 75
2 0.90 1.8 -7.3 1.7 226
2 0.99 2.0 -4.3 54.4 428
3 0.50 2.0 -5.6 44.1 167
3 0.90 2.0 -6.6 29.6 285
3 0.99 2.0 -4.4 60.6 430

MDM2 - DIZ 2 0.50 2.6 -7.9 83.1 193
2 0.90 2.6 -7.8 90.5 225
2 0.99 2.9 -9.1 4.9 113
3 0.50 3.2 -9.7 5.9 436
3 0.90 3.1 -8.8 27.4 345
3 0.99 2.2 -9.1 88.3 41

Table 5.3: Influence of the GPS radius and the weighting on the docking results. Shown are the best scored
docking results with RMSD≤ 2 Å or the docking result with lowest RMSD.

in water (see Table 4.2). Interestingly, when using the larger GPS and settingwpocket to 0.99, the
docking score is even lower than in the re-docking experiment. For IL-2, the docking scores were
less satisfying. However, one should keep in mind that this binding site consists of two subpockets
that lie about 15 Å apart and with this approach one can only induce the opening of one of these
subpockets. Here, using more than one GPS would most probably improve the docking score.
For MDM2, PocketBuilder was not able to generate binding pockets into which the ligand could
bind in its native binding mode. But comparing these dockingresults to those of the apo-docking
(listed in Table 3.5) indicates that an opening of the nativebinding was at least partly induced.
In this example, the truncated structure used in Chapter 4 may be more appropriate for inducing
pocket openings by energy minimizations. However, the large relative rank of most docking results
indicates that all setups do not only lead to openings of pockets similar to those seen in the holo
structures, but also to alternative pocket conformations.In fact, most setups seem to prefer these
alternative pockets because the protein conformation in which the native binding mode is best
reproduced was often generated quite late during the A* search.

(a) BCL-XL (b) IL-2 (c) MDM2

Figure 5.5: The best scored docking poses obtained when docking into PocketBuilder conformations cor-
responding to those listed in Table 5.3. In (c), residues 1 to16 were removed for better visibility.
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5.4 Discussion

The docking experiments indicate that many conformations with cavities at locations different
from that of the native binding pocket were computed. The putative pocket positions are sug-
gested by PocketScanner and each generated protein conformation contains a pocket at a different
position. However, not all of these pocket positions are retained in the 500 final conformations as
the selection depends on the scoring function incorporatedin PocketBuilder. Note that although
the nodes of the first level of the A* search tree represent different PocketScanner conformations
and pocket positions, it is not guaranteed that these nodes are all expanded or lie on a path to a leaf
node (i.e. they represent the basis of a final conformation).So it may happen that PocketScanner
induces an initial opening of the native binding pocket but this conformation is not further consid-
ered by PocketBuilder because at least one other conformation achieved a better score. Similarly,
although PocketBuilder may compute conformations that arebased on PocketScanner conforma-
tions with the pocket at the native binding site, they are notnecessarily more favorable than others.
Therefore, one should rather consider a number of solutionsinstead of just the optimal one (only
the first conformation generated during the A* search).

5.4.1 Is the representation of a pocket by a single GPS reasonable?

The representation of a binding pocket by a single GPS is justa rough approximation and bears
several disadvantages. As the protein is relaxed around a spherical obstacle, the resulting pocket
tends to be of an artificial globular shape and the protein surface may be too smooth as all protrud-
ing side-chains elude unfavorable interactions with the GPS and huddle against the protein surface.
Moreover, as the example of IL-2 demonstrated, binding pockets may consist of several subpock-
ets. In such a case, inducing the opening of just one of them isnot enough. However, when using
PocketScanner as described above, scanning the interface with two or even more GPS at the same
time would result in a combinatorial explosion. Here, a moreaccurate description of the binding
site would be required. For example, when the exact locationof the binding (sub-) pockets are
known, one could place several GPS manually. We tested this alternative setup of PocketScanner
for BCL-XL, IL-2, and MDM2 and placed several GPS manually (based on thestructure of the
superimposed inhibitors) in the apo structures. Here, onlyone PocketScanner conformation was
generated and used as input structure for PocketBuilder. When docking the inhibitors into the
pockets of the 100 conformations refined by PocketBuilder, the native ligand binding pose could
be reproduced for all three systems with docking scores of -9.6 kcal/mol for BCL-XL and MDM2,
and -6.5 kcal/mol for IL-2. Thus, even when incorporating detailed information about the native
binding pose in the design process of the binding pocket, thedocking results do not improve sig-
nificantly. Although the unbiased approach that depends only on an approximate definition of the
binding site location is not yet mature, it shows that scanning a protein-protein interaction inter-
face computationally for inducible pockets is feasible andthat the results are of comparable quality
than those obtained when detaileda priori knowledge about the binding site was considered.

5.4.2 Critical Assessment of the Approach

The approach presented in this chapter shows that, in principle, it is a promising idea to induce
pockets algorithmically by representing them by their negative image that interacts with the pro-
tein. But as discussed above, a single GPS is in many cases notsufficient to induce native-like
binding pockets. This representation requires keeping theposition of the GPS fixed during the
energy minimization because otherwise it could be easily “pushed away” by the protein. But this
procedure of “drilling holes” in the protein surface may be too hard and artificial. When looking
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back, it appears more reasonable to harmonically restrain the position of the GPS and this may be
tested in future work. By fixing the GPS, the protein may get distorted and, thus, be in a high-
energy conformation that is useless for PocketBuilder. In many cases it may be sufficient to move
the GPS just by less than 1 Å to resolve this strain. Alternatively, clashes between the GPS and
the protein atoms would be less severely punished when usinga soft-core potential for calculating
the van der Waals interaction energy. A further alternativeis sampling the pocket positions using
a finer resolution (i.e. smaller edge length of the grid) but this would be computationally very
demanding. Likewise, the quality of the PocketScanner conformations depends on the orientation
and resolution of the grid as it defines the positions of the GPSs. As a result, PocketBuilder of-
ten considers only a few PocketScanner conformations as theothers have an unfavorable internal
protein energy. But when generating 500 final conformationswith only up to 18 flexible residues,
it is not surprising that the resulting conformational ensemble is very redundant with solutions
differing often by only one side-chain.
Besides the orientation and resolution of the grid, the choice of the rotamer library and the force
field may also have an impact on the performance of this approach. While Dunbrack’s backbone
independent rotamer library from 2002 was chosen as it is thenewest one distributed with the
BALL library, we decided to use the CHARMM EEF1 force field as it incorporates an implicit
solvent term. Based on our findings discussed in Chapter 4, accounting for solvent effects seemed
to be important when focussing on solvent exposed pockets. But this force field has the drawback
that all amino acid side-chains have a neutral charge, even those which are charged at physio-
logical conditions. So it is unclear whether this force fieldis really suited to determine the best
combinations of rotamers in terms of internal protein energy and pocket volume.

5.5 Summary and Conclusion

The pocket detection protocols that were introduced beforescanned the entire protein surface for
transient pockets and so suggested putative binding sites.Here, we presented a new approach that
assumes that the location of the binding site is approximately known. Thus, this surface region
can be exhaustively scanned and tailored ligand binding pockets can be induced algorithmically
by considering protein backbone and side-chain flexibility. While PocketScanner relaxes protein
conformations in the presence of generic pocket spheres, PocketBuilder induces pockets of desired
properties by searching for the best combinations of side-chain rotamers using the A* algorithm.
We suggest to use the two programs together, but in principlethey could be used individually.
The drawbacks of this method are that the designed pocket areof an artificial globular shape and
that the binding sites are too smooth. Furthermore, by usingonly one GPS at a time the ap-
plicability of this approach is limited to binding sites consisting of only one pocket and not of
several subpockets. However, for two out of the three systems, the PocketBuilder algorithm was
able to induce pockets of suitable volumes and shapes so thatthe small-molecule inhibitors could
bind in a native-like orientation. For the third system, thedocking results improved significantly
compared to docking into the apo structure. Thus, this chapter presented a pioneering work for ap-
proaches representing efficient alternatives to our MD-based pocket detection protocol introduced
in Chapters 3 and 4 for cases when the location of the binding site is approximately known.



Chapter 6

Designing Binding Pockets on Protein
Surfaces using an incremental Inflation
Procedure

As binding pockets for SMPPIIs often consist of several subpockets, we suspected that taking this
fact into account may significantly improve the performanceof PocketScanner and PocketBuilder.
We will now introduce an approach which implements the improvements suggested in the previous
chapter. The method is still under development and the testing of various parameters is ongoing.
Hence, the results should be considered as preliminary, butpromising.

6.1 Introduction

In the previous chapter, a pioneering method was presented for the algorithmic design of ligand
binding pockets on protein surfaces. We could show that scanning protein-protein interaction
interfaces for inducible pockets is computationally feasible, but found that the scheme “one pocket
- one GPS” is often inappropriate for designing native-likebinding pockets. Notably, the examples
of IL-2 and BCL-XL illustrate that SMPPIIs often bind to several subpockets atthe same time.
Thus, docking these ligands into generated conformations with just a single cavity won’t give a
realistic estimate of the free binding energy. Furthermore, the native subpockets accommodating
parts of the inhibitors are rather of irregular shape with a rough surface than globular with a smooth
surface like the pockets whose openings are induced by relaxing the protein around a single GPS.
In addition, the positions of the induced pockets depend on the orientation of the grid generated
by PocketScanner. Although the protein is minimized, the presence of the GPS at this position
may induce so much strain on the protein that this conformation won’t be accessiblein vitro. In
such a case, only a minor adjustment of the pocket position may result in an energetically more
favorable protein conformation. Moreover, although usingthe CHARMM EEF1 force field [158]
seemed promising due to its implicit solvent term, we becameskeptical about its appropriateness
for the design of pockets on protein surfaces during the course of this work because all side-
chains are modeled as non-charged. Thus, we later decided toswitch to using the Amber 96 force
field [159] to ensure that electrostatic contributions are adequately accounted for when optimizing
side-chain orientations, especially as hot spots in protein-protein interaction interfaces are often
represented by charged residues. We incorporated all theseconsiderations into a new approach,
termedPocketInflator, that can be considered as a combination of EPOSBP , PocketScanner, and
PocketBuilder.
In PocketInflator, the protein surface is scanned for initial pockets that are located next to user-
defined protein residues using a modified version of EPOSBP . Instead of placing the PASS probes
at positions where they do not clash with protein atoms as before, we now introduce aclash
factor that scales down the sum of the radii of the probe and the protein atoms during the filtering
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step of the PASS algorithm and so allows for overlaps betweenprobe patches and the protein.
As in the original implementation of EPOSBP , coherent PASS probes constitute a patch, and a
patch represents the negative image of a pocket. Here, each probe is substituted by a GPS of
the corresponding radius, and, thus, a (sub-) pocket is represented by a set of GPSs. This setup
addresses the main problems of the previous pocket design approach: The position as well as the
shape of the pockets are dictated by the protein structure and several (sub-) pockets may be induced
at the same time. Analogously to PocketScanner, the proteinis then relaxed in the presence of these
patches of GPSs. After each energy minimization, the detection of the pockets is repeated with
an increasing clash factor, resulting in an incremental reduction of the overlap between the PASS
probes and the protein atoms. By doing so, similar to PocketBuilder, a set of partial solutions is
generated that are scored by their potential energy, the ratio of the user-defined protein residues
that line the current version of the pocket, and the deviation from the user-defined goal volume.

6.2 Methods and Materials

In this new approach, the algorithms of EPOSBP , PocketScanner, and PockerBuilder were fused
into one program, called PocketInflator. Like its precursors, it is implemented in C++ and uses
the BALL library. All energies were calculated by the Amber 96 force field instead of CHARMM
EEF1 and four different sizes of GPS (radii of 0.7, 1.8, 2.1, and 5.4 Å, all with a well depth of 0.2
kcal/mol) were considered.
The model systems and the used structures were the same as in the previous chapters. As already
discussed in Chapter 4, the apo structure of MDM2 is inappropriate for energy minimizations in
vacuo. Therefore, we used the same truncated structure as inChapter 4.

6.2.1 The PocketInflator Algorithm

The flowchart of this approach aiming at inducing pockets of apredefined volume at defined po-
sitions is illustrated in Figure 6.1. In contrast to the PocketScanner/PocketBuilder method, an
arbitrary number of (sub-) pockets can be induced at the sametime. For this purpose the approx-
imate location of each individual (sub-) pocket has to be defined by a set of residues that should
line it. The definition of the (sub-) pocket’s goal volume is optional. In addition, a set of starting
structures and the number of solutions to be generated have to be defined. In order to generate en-
ergetically favorable conformations that possess accessible pockets at defined sites, intermediate
solutions are calculated and stored in a priority queue. Thescore of such an intermediate solution
is composed of three to four terms with values between 0 and 1:

• scoreenergy: the ratio of the energy of this conformation (Econf ) to the lowest energy
(Emin < 0) of all starting structures after 1000 steps of L-BFGS energy minimization (if
Econf

Emin
< 0, thenscoreenergy = 0; if Econf

Emin
> 1, thenscoreenergy = 1)

• scorehits: the ratio of the number of predefined residues that are foundwithin 8 Å of the
ASP of the induced pocket versus the total number of predefined residues

• scorecf is set to the clash factorcf that allows for overlaps between the PASS probes of the
patch and the protein atoms in the BALLPass algorithm by defining clashes as

distance(probe, atom) < cf · (radiusprobe + radiusatom) (6.1)

The maximum value ofcf is 0.95 as this is the default value in EPOSBP that best reproduced
the results of the original PASS program.
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• scorevolume (optional): the deviation of the pocket volumevol from the goal volumevolgoal

calculated by

scorevolume = e
−

(

vol−volgoal
0.3·volgoal

)2

(6.2)

Note that this value is incorporated in the total score only if the correspondingcf is already
at its maximum value of 0.95.

The total score is then calculated by

score = scoreenergy · scorecf · 1

n

n
∑

i=1

(scorehits(i)[·scorevolume(i)]) (6.3)

wherei runs over the individual subpockets. The pseudocode of the PocketInflator program is
listed in Algorithm 5.
The program starts with energetically minimizing all inputstructures using 500 steps of L-BFGS
(if afterwards,Econf > 0, the minimization is repeated) and detecting the initial pocket patches in
this conformation. The subsequent conformation is furtherminimized in order to determineEmin.
All conformations are then scored and added to the priority queue ifscore > 0. (Note that if no
pocket was detectable in the starting structure, the program terminates without a solution.) Af-
ter this initialization stage, the algorithm iteratively extracts the best scored intermediate solution
from the priority queue and further inflates the existing pocket until a predefined number (default:
50) of final solutions (withcf = 0.95 andscore ≥ 0.3) is generated. The minimum score was
used to ensure that the resulting conformations are of low-energy, contain (sub-) pockets at the
predefined locations, and, if defined, are of the desired volume.

Figure 6.1: Flowchart of the PocketInflator approach. PocketInflator consists of an initialization and an
“inflating” procedure. For inflating pockets, the algorithm(1) selects the best scored intermediate solution,
(2) enlarges the existing patch(es), converts the probes toGPSs and (3) minimizes the protein in their
presence, (4) determines new patch(es) that overlap less with the protein atoms, and (5) scores and (6)
stores this (intermediate) solution. This procedure comprising steps 1 - 6 is repeated until a predefined
number of solutions is generated or until no intermediate solutions are left.
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(a) (b)

Figure 6.2: The distribution of the probe weights within a patch shown atthe example of the native binding
pocket of MDM2. All probes are represented by spheres and colored by their weight (normalized by the
weight of the ASP) ranging from red (high probe weight) to blue (low probe weight). The top-view of
the patch (a) including the protein surface (shown in grey) indicates that probes in the center of the patch
have a higher weight than those located at the border. Subfigure (b) shows the same patch rotated by 180◦

displaying the moderate weights of the probes at the bottom of the patch.

The inflating procedure consists of three main steps that aredescribed in the following: mod-
ification of the existing patch (step 2 in Figure 6.1), energyminimization to adopt the protein
conformation to it (step 3), and determination of (a) new patch(es) (step 4).

Modification of the existing patch The PASS algorithm calculates a real-valued probe weight
pw for each probe (see page 43) that reflects its burial count andthe number of surrounding probes.
As Figure 6.2 demonstrates, probes at the border of the patchhave lower weights, probes located
at the bottom have moderate weights, and those found in the center of the patch (like the ASP)
have the highest weights. In order to inflate the pocket, it isreasonable to enlarge those probes
having a high weight. Thus, for a given thresholdth, the radius of each probei with is tripled, if

pwi ≥ th · pwASP (6.4)

All three steps described here are repeated for different thresholds. In this setup, we use four
different thresholds (0, 0.3, 0.6, 0.9). Initial tests using a smaller step size showed that two similar
threshold often resulted in the same modified patch and this unnecessarily increased the run time
of PocketInflator. The threefold enlargement of the GPS radius may sound quite drastic but was
necessary in order to achieve a sufficiently large (further)opening of the pockets. The reason for
this is that we used a soft-core potential that will be discussed in the next paragraph. Doubling the
radius had only minor effects on the protein conformations as initial tests indicated.

Energy minimization in presence of the patch All probes are translated to GPSs of the same
radius. The protein conformation and the patch containing the enlarged probes are then subjected
to 500 steps of L-BFGS energy minimization. The implementation of the force field was modified
such that a GPS can only interact with protein atoms, i.e. different GPS spheres do not interact
with each other. In contrast to PocketScanner, the van der Waals interaction energy between a
protein atomi and a GPSj of radiusr separated by a distance ofdij is calculated by a soft-core
potential

UvdW = 4ǫij ·
(

σ12
ij

(d2
ij + r)6

−
σ6

ij

(d2
ij + r)3

)

(6.5)

according to [160] and the positions of the GPSs are not fixed.This modification was necessary
in order to avoid strained protein conformations and articifially smooth binding pockets. The
conformations are stored every 100 steps, their internal protein energy is calculated, and new
patches are determined.
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(a) clash factor: 0.75,
volume: 1,257 Å3

(b) clash factor: 0.80,
volume: 505 Å3

(c) clash factor: 0.85,
volume: 318 Å3

(d) clash factor: 0.90,
volume: 194 Å3

Figure 6.3: The influence of the clash factor on the placement of the probes in the PASS algorithm. The
protein is shown in grey surface representation and the probes are displayed as red spheres. In the lower
figures the protein is rotated by 90◦ and the surface is made transparent to illustrate the depth of the patch.
Note that the smaller the clash factor, the more overlap is allowed between the probes and the protein atoms
and, thus, the more probes are kept and the larger the patch.

Determination of new patches The selection of a new patch is the trickiest part, especially
when inducing multiple subpockets at once. The clash factormust be larger than the previous one
and

score′ = scorecf · 1

n

n
∑

i=1

scorehits(i) (6.6)

should be maximal. Thus, a set of different patches is calculated by running EPOSBP with itera-
tively increasing clash factors. As illustrated in Figure 6.3, this clash factor affects the placement
of the probes, i.e. more probes are kept when a smaller value is used that allows the probes to pen-
etrate the protein atoms more deeply. After the placement ofthe probes, the ASPs are determined
and the probes are assigned to them in order to form contiguous patches as described on page 57.
Note that each subpocket should be represented by one patch.If they are vicinal, it may happen
that a large patch is detected that covers multiple subpockets. In this case their individual proper-
ties cannot be controlled anymore and thus, the algorithm tries to avoid this situation. The number
of ASPs and so of the patches can be controlled by modifying the minimum probe weight of an
ASP,pwmin, and the minimal distance to an already existing one (see page 43). Therefore, the de-
termination of the ASPs was modified. We reduced the minimal distance between two ASPs from
8 Å to 5 Å and for the purpose of obtaining varying numbers of patches for the same set of probes,
pwmin was increased until no ASPs could be detected anymore. (Notethat using a smallpwmin,
the set of probes is divided into multiple small patches, while the usage of a largepwmin results
in a single large patch.) From all sets of patches resulting from the different runs of EPOSBP

with increasing clash factor andpwmin, the run for whichscore′ is maximal is determined. The
definition ofscore′ ensures that all patches used to inflate the subpockets were derived from the
same EPOSBP run. The corresponding patch(es) are included in the protein conformation, the
total score is calculated, and this intermediate solution is added to the priority queue.

6.2.2 Derivation of the Input Parameters

The input parameters that define where the (sub-) pockets should be induced and their volumes
were derived from the holo structures. As the pockets induced by PocketInflator are based on
EPOSBP , we applied this program to the holo structures and identified those patches that over-
lapped with the bound inhibitors. These patches were then reduced by only keeping those probes
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Algorithm 5 The PocketInflator algorithm
Input: start_confs← input structures
Input: subpockets_regions← set of residue IDs defining the approximate site where the pockets should be located
Input: subpockets_volumes← the goal volume per subpocket that should be generated
{initialization}
Emin =∞
tmp = ∅
for each conf ∈ start_confs do

conf ← runEM(conf) {minimize input structure by 500 steps of L-BFGS}
if Econf ≥ 0kcal/mol then

conf ← runEM(conf) {repeat the energy minimization once}
end if
if Econf < 0 kcal/mol then

conf ′ ← runEM(conf) {minimize it again to defineEmin}
if Econf ′ < Emin then

Emin ← Econf ′

end if
patches, score′ ← getBestPatches(conf, subpockets_regions, subpockets_volumes, 0.75) {run EPOSBP with
differentpwmin andcf to get a patch per subpocket with a maximalscore′}
tmp_sol← conf, patches, Econf , score′

tmp← tmp ∪ tmp_sol {add this intermediate solutiontmp_sol to tmp}
end if

end for
priority_queue = ∅
solutions = ∅
for each entry ∈ tmp do

tmp_sol← entry.tmp_sol
tmp_sol.scoreenergy ← tmp_sol.scoreenergy/Emin {normalize the energy byEmin}
score← tmp_sol.score′ · tmp_sol.scoreenergy {update the score of this intermediate solution}
if (tmp_sol.patches.cf = 0.95) AND (score ≥ 0.3) then

solutions.push(score, tmp_sol) {add this result to solutions}
else iftmp_sol.patches.cf < 0.95 then

priority_queue.push(score, tmp_sol) {add this intermediate solution to the priority queue}
end if

end for
{inflate existing patches}
while priority_queue 6= ∅ AND |solutions| < N do

tmp_sol← priority_queue.pop {get intermediate solution with highest score} {modify theexisting patches by iterating over
different thresholdsth}
for th = 0; th < 1; th = th + 0.3 do

mod_patches← enlarge(tmp_sol.patches, th {enlarge each probei with pwi ≥ th · pwASP }
conf_with_patches← tmp_sol.conf∪mod_patches {modify the existing patches by iterating over different thresholds
th}
for step = 0; step < 5; step = step + 1 do

conf_with_patches← runEM(conf_with_patches) {minimize input structure using 100 steps of L-BFGS}
conf ← conf_with_patches \ conf_with_patches.patches
patches, score′ ← getBestPatches(conf, subpockets_regions, subpockets_volumes, tmp_sol.patches.cf +
0.05) {run EPOSBP with acf greater than in the previous run}

scoreenergy ←
Econf

Emin

score← scoreenergy · score′

tmp_sol′ ← conf, patches, scoreenergy, score′ {create a new intermediate solutiontmp_sol′}
if (tmp_sol′.patches.cf = 0.95) AND (score ≥ 0.3) then

solutions.push(score, tmp_sol′) {add this result to solutions}
else iftmp_sol′.patches.cf < 0.95 then

priority_queue.push(score, tmp_sol′) {add this intermediate solution to the priority queue}
end if

end for
end for

end while

return solutions

that overlapped with inhibitor atoms. Thereby, the native (sub-) pockets that may be larger in vol-
ume than the ligand itself are restricted to the relevant regions and so putative noise is excluded.
For each refined patch, its volume and the residues lining the(sub-) pockets were extracted. (Note
that in contrast to Chapter 3 and 4 where the overlap volumes were calculated using all patches of
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the given conformation, we refined here each patch individually to obtain information about the
different subpockets involved in inhibitor binding.)

6.2.3 Docking into Designed Pockets

Docking experiments were performed as described in Chapter3. As the pockets consisted in most
cases of two nearby subpockets, the center of the first one wasused to define the grid center as the
used grid dimensions were large enough for completely covering the second subpocket as well.

6.3 Results

While for MDM2 the inhibitor binds into a single pocket, the analysis of the patches in the holo
structures overlapping with inhibitor atoms correctly predicted that the inhibitors of BCL-XL and
IL-2 bind into two vicinal subpockets. The volumes of these pockets and the residues lining them
are compiled in Table 6.1. These data were employed for defining the positions and the volumes
of the pockets that should be induced. For all systems, the apo structure was used as starting con-
formation. An example on how pockets are inflated on the native binding site of apo MDM2 is
shown in Figure 6.4.
In order to test the impact of the goal volume, we repeated allruns of PocketInflator without these
values. (We will refer to these two different runs asVol-run andnoVol-run.) The resulting confor-
mations are only scored by the relative deviation of the internal protein energy from its minimum
value, the clash factor, and the percentage of predefined residues that effectively neighbor the in-
duced (sub-) pockets. The run time of the Vol-runs ranged between 42 minutes and 37 hours,
while the noVol-runs took between 16 and 160 minutes on one 2.8 GHz Xeon CPU. Although we
tried to generate 50 protein conformations per run, PocketInflator terminated for both runs of IL-2
and MDM2 before this number was reached, indicating that an insufficient number of intermediate
solutions with a score greater than0.3 could be found. For MDM2, both PocketInflator runs even
terminated without any solution. In this case, we released the strict condition for the minimum
score of an intermediate solutions and set this threshold to0. But even with this change the pro-
gram was only capable of generating 9 solutions in both runs.For IL-2, we kept the threshold of
0.3. But here, only 5 solutions were returned in the Vol-run and 14 in the noVol-run.

system subpocket 1 subpocket 2
vol. [Å3] residues vol. [Å3] residues

BCL-XL 445 Ala89, Leu90, Ala93, Glu96,
Phe97, Arg100, Tyr101, Asn136,
Trp137, Gly138, Arg139, Val141,
Ala142, Phe191, Tyr195

265 Phe97, Tyr101, Arg103, Ala104,
Phe105, Leu108, Leu130,
Gly138, Arg139, Ala142

IL-2 225 Lys43, Phe44, Tyr45, Glu62,
Pro65, Thr111

450 Lys35, Arg38, Met39, Thr41,
Phe42, Val69, Leu72, Ala73

MDM2 520 Ser17, Leu54, Phe55, Leu57,
Gly58, Gln59, Ile61, Met62,
Tyr67, Gln72, His73, Val75,
Val93, His96, Ile99

- -

Table 6.1: The input parameters used to test PocketInflator as derived from the EPOSBP analysis of the
holo structures.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.4: The pocket inflating procedure shown at the example of MDM2. The probes representing the
pocket are shown as red spheres and the protein surface is colored grey. After minimizing the apo structure
(a), an initial pocket is detected (b) and several probes areenlarged (c). The protein structure is then
energetically minimized in the presence of these probes resulting in an intermediate solution (d) for which
the calculation of new pockets (e), the probe enlargement (f), and the subsequent energy minimization (g)
is repeated.

6.3.1 Properties of the Pockets Designed by PocketInflator

The magnitude to which the predefined properties were met in the resulting conformations are
depicted in Figure 6.5. In most cases, the program was able toinduce the subpockets at the
desired locations. Only for IL-2, the first subpocket gets lost in the noVol-run. However, the
volume of this pocket in the previous conformations points out that PocketInflator failed to make
it fully accessible. In the Vol-run, a subpocket of this volume could be found, but here, the second
subpocket is too small in most conformations. Interestingly, the second subpocket is always larger
than the first one, even if no goal volume was defined. This finding suggests that an opening of a
larger pocket is energetically more favorable at this second site. When focussing on the volume
of the pocket induced on the surface of MDM2, it is not surprising that PocketInflator terminated
without any solutions using the default value for the minimal score of an intermediate solution.
The small size of the pockets induced in the noVol-run reveals that the enlargement of the pocket
was energetically unfavorable. (Note that thescorehits was sufficiently large as Figure 6.5 (f)
demonstrates.) BCL-XL was the only system for which the predefined number of conformations
was generated. In the Vol-run, the volumes of the subpocketsremained quite close to the goal
values, but the low hit rates for the first subpocket shown in Figure 6.5 (a) suggest that this volume
could be only obtained by moving the pocket a bit away from thedesired location. When the
subpocket volumes are not restricted to certain values, theresulting pockets are on the one hand
smaller, but on the other hand they are really located at the desired location.
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(a) BCL-XL
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(b) BCL-XL
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(c) IL-2
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(d) IL-2
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(e) MDM2
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(f) MDM2

Figure 6.5: The compliance of the pockets designed by PocketInflator with the predefined properties plotted
per generated conformation. Subfigures (a), (c), and (e) show the percentage of predefined residues effec-
tively neighboring the induced (sub-) pockets and subfigures (b), (d), and (f) show the effective volume of
the induced (sub-) pockets.

6.3.2 Docking into Pockets Designed by PocketInflator

As before, we docked the known inhibitors into the designed pockets to validate their appropri-
ateness for virtual screening experiments. The results listed in Table 6.2 are very promising. For
BCL-XL and IL-2, the docking scores are even better than those obtained when re-docking into
the holo structures listed in Table 3.5 on page 65. While for IL-2 the results were very similar for
the conformations generated in the two PocketInflator runs,the quality of the docking results im-
proved for BCL-XL when the goal volume was not considered. Here, the slightly higher RMSD of
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system with goal volume without goal volume
score

[kcal/mol]
RMSD

[Å]
rank
[%]

solution
no.

score
[kcal/mol]

RMSD
[Å]

rank
[%]

solution
no.

BCL-XL - N3B -11.4 1.3 2.4 24 -11.4 1.4 1.9 2
IL-2 - FRH -12.4 2.2 20.0 5 -13.0 2.0 4.8 14
MDM2 - DIZ -8.9 3.2 82.2 9 -8.6 2.0 61.2 7

Table 6.2: Docking results for conformations generated by PocketInflator. Shown are the best scored
docking results with RMSD≤ 2 Å or the docking result with lowest RMSD.

2.2 Å may be explained by the already mentioned observation that this subpocket was not exactly
located at its native site. The native binding pocket of MDM2was only designed successfully
in the noVol-run. But here the score is significantly higher (by about 4.5 kcal/mol) than in the
re-docking experiments. Furthermore, the high ranking of this docking result demonstrates that
other docking poses not resembling the native binding mode were predicted to be more favorable.
This suggests that the physicochemical properties of the designed pocket, especially the pocket
volume, are not similar enough to those of the native bindingpocket. One may speculate that the
residues defining the desired pocket location are not reallyappropriate to represent the location of
the native binding pocket. In contrast, the near-native docking solutions are very low ranked for
the noVol-runs of the other two systems suggesting that in these cases, PocketInflator designed a
pocket that is suitable for accommodating the known inhibitors. The PocketInflator conformations
for which the best docking poses could be predicted are shownin Figure 6.6.

6.4 Discussion

We were quite surprised to learn from the docking results that the solutions generated in the noVol-
runs were more appropriate for structure-based drug designthan the solutions that contained pock-
ets of the same magnitude than the native binding pocket. In fact, those conformations for which
the best docking results were obtained possessed only smallpockets. In the example of IL-2, the
first subpocket was even missing. But when focussing on the residues lining the designed pockets
it becomes evident that the best solutions with respect to the docking results correspond to those
in which the pocket is lined by most protein residues used to define the pocket location. This ob-
servation suggests that the location of the pocket induced by PocketInflator is more important than
its volume. Furthermore, AutoDock3 predicted binding to a pocket which was not detected by
EPOSBP . This raises the question whether only those pockets are druggable that were calculated
using a clash factor of 0.95, or whether pockets whose detection required a reduction of the clash

(a) BCL-XL (b) IL-2 (c) MDM2

Figure 6.6: The best scored docking poses with RMSD≤ 2 Å obtained when docking into conformations
generated by the noVol-run of PocketInflator correspondingto those listed in Table 6.2.
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factor should also be taken into account. But here one shouldkeep in mind that lowering the clash
factor results in the detection of more pockets and, thus, ina longer run times.

6.4.1 Comparison to the PocketScanner/PocketBuilder Approach

The main idea - representing pockets by GPSs that interact with protein atoms and inducing pocket
openings by energetically minimizing the protein structure in their presence - is identical to that of
the PocketScanner/PocketBuilder approach. However, based on our previous experiences several
important modifications were made in the implementation of PocketInflator: a pocket is no longer
represented by a single GPS and the van der Waals interactions with the protein atoms are now
calculated by a soft-core potential. Moreover, the pocket positions are not static anymore, they
are chosen in dependence of the protein conformation. Theseimprovements led to the generation
of rather native-like, irregular shaped pockets. In addition, the conformations containing these
pockets are less strained because the GPSs were treated flexible during the energy minimization
and the energy penalty for clashes was damped by the soft-core potential. For the moment, we
abdicated the local refinement using the A* algorithm. As theinitial results were very promising,
we presumed that the longer run times caused by additional A*searches (As multiple subpockets
are considered in the PocketInflator approach, the number offlexible residues would be consider-
ably higher than before.) would not compensate the expectedslight improvement of the docking
results. But this, of course, remains to be validated.
These algorithmic improvements implemented in PocketInflator have an impact on the docking
results as well. When comparing those listed in Table 6.2 to the best docking results per sys-
tem obtained using any settings of PocketBuilder (shown in Table 5.3 on page 94), it becomes
evident that PocketInflator is better suited to design a druggable binding pocket than the Pock-
etScanner/PocketBuilder approach. While the docking score for BCL-XL is of the same order
of magnitude, the RMSD is lower when using PocketInflator. For IL-2, although the RMSD is
a bit higher, the docking score is almost by 6 kcal/mol more favorable than in the PocketScan-
ner/PocketBuilder approach. Only for MDM2, the previous method achieved a slightly better
docking score (by about 0.5 kcal/mol) although the RMSD was slightly worse. However, for all
systems the rank of the best scored near-native docking posewas much lower when using Pock-
etInflator and, in addition, fewer conformations were needed. But this may also be due to the fact
that the location of the native binding sites was defined moreprecisely in PocketInflator.
Finally, it should be mentioned here that the two approacheswere tested with different force fields.
In order to exclude that the better performance of PocketInflator arises solely from this difference,
the PocketScanner/PocketBuilder method has to be tested again using the Amber 96 force field.

6.4.2 Critical Assessment of the Approach

This approach requires a lot ofa priori knowledge about the native binding site. Although we
could show that the volumes of the (sub-) pockets that are to be designed are not essential, the
definition of the residues that should line the (sub-) pocketis definitely crucial. So the more in-
teracting residues are known, the more exactly is the position of the (sub-) pockets determined.
However, if only a few hot spot residues are known, e.g. from mutagenesis studies, this may im-
pose a problem. A further drawback of this approach is that (sub-) pockets are only defined to exist
if they are detected by EPOSBP . The example of IL-2 discussed before indicates that the existence
of a pocket identified by our program may be not necessary for successful ligand docking. This
raises the question how important the calculated pocket volume is. Obviously, the formula we use
to calculate the score for the deviation of the goal volume istoo strict, especially when taking into
account that it is hard to define this value when no small-molecule binders are known. Moreover,
scorevolume is only used to calculate the total score if the clash factor is 0.95 because the effective
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volume of the pocket is hard to estimate using a smaller clashfactor. When more overlaps with
protein atoms are allowed, the pocket is larger. The selection of the intermediate solutions may be
improved if the calculated volume would be considered even if the clash factor is small. In this
case it would be recommendable to scale this volume down.
The advantage of this approach is that the minimum score ensures that only energetically favorable
protein conformations with pockets fulfilling the predefined criteria are returned. When using a
reasonable value, the formation of a pocket at a certain position or with a certain volume will not
be enforced if it is energetically unfavorable. In such a case lowering this threshold loosens the
strict criteria and allows for the opening of pockets which may deviate from the predefined prop-
erties, but are more native-like. This was shown at the example of MDM2, for which no solutions
were found using the default minimal score of0.3.
By using multiple GPSs that are flexible during the energy minimization and a soft-core potential
for calculating their van der Waals interactions with the protein atoms, the shapes of the resulting
(sub-) pockets are more native-like. However, the protein conformation still differs from the holo
structure. As the apo and holo structures were resolved in different labs, often under different
conditions, and using different methods, one cannot expectto obtain identical structures.

6.5 Summary and Conclusion

We presented a new method that combines pocket detection with EPOSBP with the idea of Pock-
etScanner and PocketBuilder of representing pockets by GPSs that interact with protein atoms via
van der Waals interactions. This representation allows forinducing pocket openings by an energy
minimization of the protein structure in the presence of these GPSs. But in contrast to the previ-
ous approach, multiple subpockets can now be induced at the same time. Each (sub-) pocket is
modeled by multiple GPSs of varying size and their positionswere calculated by the PASS algo-
rithm as implemented in EPOSBP . In order to form pockets at positions where no cavities were
detectable in the starting structure, the approach starts by placing probes that overlap with protein
atoms. Some of these probes are enlarged so that even more overlaps occur. These clashes are
subsequently reduced by energy minimizations of the protein structure. Afterwards, new pock-
ets are determined for the adopted structure, but now fewer clashes are tolerated. This procedure
is repeated until protein conformations of low energy are generated that possess (sub-) pockets
at predefined positions and are detectable even if no overlaps are tolerated. The resulting (sub-)
pockets are more native-like than those designed by the PocketScanner/PocketBuilder method. By
testing the approach with and without defining the goal volume, we observed that the pocket vol-
ume is not essentiel. In contrary, the definition of the residues that should line the designed (sub-)
pockets is crucial. By docking the known inhibitors into these pockets we could show that they
are indeed appropriate for accommodating ligands and may, thus, represent an efficient alternative
method for the structure-based design of inhibitors binding to known sites for which no putative
pockets could be detected in available crystal structures.At the moment, we are testing different
parameters to further enhance the performance of this approach.



Chapter 7

Application of the Pocket Detection
Protocol

After introducing the newly developed approaches for the detection, design, and analysis of tran-
sient pockets, we will now show the application of the MD-based protocol to two test systems for
which the binding modes of small-molecule inhibitors are unknown. The first case study using the
mitochondrial CYP11A1 electron transfer system is submitted for publication. The second case
study addresses the XIAP protein that is involved in apoptosis.

7.1 Introduction

How in silico methods may assist the discovery of new hits and the design ofnew leads or drugs
was discussed in Chapter 2. As most existing approaches relyon ana priori known binding
region, structure-based design cannot be applied to those proteins for which the location of the
binding site is unknown. Unfortunately, this is usually thecase when the target protein is involved
in protein-protein interactions. In Chapters 3 and 4, we presented a pocket detection protocol that
is not only able to predict putative binding sites at which transient pockets open but also may
suggest different protein conformations that may be appropriate for docking experiments. This
protocol was validated using three model systems with knownsmall-molecule inhibitors and for
which crystal structures revealing their binding modes were resolved. In this Chapter, we present
the application of the MD-based protocol to two proteins, Adrenodoxin (Adx) and the BIR2-
domain of the X chromosome-linked inhibitor of apoptosis protein (XIAP), whose interactions
with another protein are promising drug targets. For both proteins, hit compounds have been
identified experimentally. Therefore, instead of asking “What binds and where?”, we are capable
of using the “what” to answer the “where”. Note that knowing the approximate location of the
binding site, e.g. the protein-protein interaction interface, may be not sufficient for assisting drug
design as these surface regions may be huge compared to the size of the inhibitor (up to 1,500-
3,000 Å2 [25]) and non-contiguous. Furthermore, if this region doesnot contain accessible pockets
in the known protein structure, structure-based drug design attempts will be limited.
In contrast to Adx, where the location of the inhibitor binding site is completely unknown and it
could not be excluded that the compounds bind to a partner protein, the protein region to which the
inhibitors identified for XIAP-BIR2 bind is surmised. Hence, the procedure for the two proteins
differs. For Adx, all detected pockets, not only on the surface of Adx itself but also on its partner
protein Adrenodoxin reductase, were considered in the docking experiments. Whereas for XIAP-
BIR2, the pocket detection protocol was used to identify allpockets opening on the protein surface,
but only those located at the presumed binding site were usedfor docking.

109
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7.2 The Test Systems

Our computational study of the two test systems occurred in the framework of collaborations with
the Biochemistry group of Prof. Dr. Rita Bernhardt at the Saarland University (Adx) and with
Dr. Jose Luis Medina-Franco from the Computer Aided Drug Design devision of the Torrey Pines
Institute for Molecular Studies in Florida (XIAP-BIR2). Inthe following, the two test systems are
briefly introduced and characterized in terms of their physiological importance, structural details
of the targeted interaction, and state of knowledge concerning the inhibitory mechanisms of the
experimentally identified modulators.

7.2.1 Test System 1: Adrenodoxin

Adx is an important component of the mitochondrial CYP11A1 electron transfer system that catal-
yses the key step of steroid hormone biosynthesis, namely the oxidative side-chain cleavage of
cholesterol to pregnenolone. Adrenodoxin reductase (AdR), a NADPH-dependent FAD contain-
ing reductase, transfers the electrons derived from NADPH to the iron-sulfur cluster of Adx that,
in turn, reduces and so activates the molecular oxygen boundto the cytochrome P450, CYP11A1
[161]. In numerous subsequent hydroxylation steps pregnenolone is then converted to aldosterone.
As increased concentrations of this steroid hormone cause hypertension and heart diseases, this
step of the steroid hormone biosynthesis represents an interesting drug target [162]. The system
has been studied in detail. Particularly, the three-dimensional atomic structures of bovine Adx,
AdR, and the cross-linked Adx-AdR complex (shown in Figure 7.1) have been solved [163–166]
and homology 3D-models of CYP11A1 and the CYP11A1 - Adx complex [167] are available.
These structures in conjunction with site-directed mutagenesis studies [168] reveal that the bind-
ing sites on Adx for AdR and CYP11A1 overlap. While residues Asp72, Glu73, Asp76, and Asp79

are most important in binding CYP11A1, the binding interface for AdR consists of two regions.
In the primary region, Arg211, Arg240, and Arg244 of the NADPH-domain of AdR form numer-
ous salt bridges to Asp72, Asp76, and Asp79 of Adx (Figure 7.1 (b)). The secondary interaction
region is located on Adx around Asp39 and Asp41 that are in contact with Lys27 and His28 of
AdR (Figure 7.1 (c)) [166]. All these studies indicate that the complex formations occurring be-
tween components of the CYP11A1 electron transport chain are mainly driven by electrostatic

(a) Adx - AdR complex (b) primary interaction site (c) secondary interaction site

Figure 7.1: The Adx - AdR complex structure (PDB entry 1e6e). (a) Cartoonrepresentation of Adx (red)
and AdR (blue). The co-factors FAD and the Fe2S2 cluster are shown in licorized representation and are
colored by element. (b) + (c) The molecular surface of Adx in the primary (b) and secondary (c) interaction
region. The main interacting residues are colored by element and shown in licorized representation for AdR
(italic residue labels) and in surface representation for Adx.
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interactions. Especially the negatively charged residueson Adx seem to play a crucial role in the
recognition of positively charged residues on AdR and CYP11A1 [169]. This suggests that these
interactions may be modulated by positively charged molecules. Indeed, Berwanger et al. used
a broad set of experimental techniques to show that the small, polycationic, and highly abundant
natural polyamines putrescine (Put), spermidine (Spd), and spermine (Spn) modulate the inter-
actions between Adx, AdR, and CYP11A1 (unpublished data). Interestingly, optical biosensor
analysis of the binding affinities revealed that while the polyamines enhance the assembly of the
Adx - AdR complex, the interaction between Adx and CYP11A1 isweakened. Although it was
assumed that the polyamines bind to the negatively charged interface regions on Adx, their accu-
rate binding site was unknown. As previous MD simulations revealed an increased flexibility in
the binding regions of Adx [170], we applied our pocket detection protocol and docked the three
polyamines into transient pockets that were observed during MD simulations of oxidized Adx in
water. As it could not be ruled out that they bind to the surface of the other two proteins as well,
we additionally docked the ligands into cavities found in the crystal structure of AdR and the Adx
- AdR complex.

7.2.2 Test System 2: XIAP-BIR2

XIAP is the best characterized member of the Inhibitor of Apoptosis Proteins (IAPs) family. IAPs
are endogenous caspase inhibitors [171, 172] that share a conserved structure, the BIR domain
[173]. As caspases are responsible for apoptosis, their inhibition leads to the survival of damaged
cells and, thus, to tumor proliferation [174, 175]. Not surprisingly, some IAP family proteins are
commonly overexpressed in human cancers [176] and therefore important drug targets. The activ-
ity of XIAP is regulated by inhibitory proteins like Smac that disrupts XIAP-caspase complexes
[177]. XIAP is composed of three BIR domains (called BIR1 to BIR3) and a RING zinc-finger
motif. BIR2 and the linker region connecting BIR2 to BIR1 bind and inhibit caspase-3 and -7,
while BIR3 suppresses caspase-9 [178, 179]. While the molecular details of the interactions with
caspase-3 [180], -7 [181], and -9 [182], as well as the interaction of the BIR3 domain with Smac
have been resolved [183, 184], it is still unclear whether Smac also binds to the BIR2 domain.
The X-ray structure of the BIR2 - caspase-3 complex [180] shown in Figure 7.2 and site-directed
mutagenesis studies [185] reveal that the interaction interface involves mainly the linker region

(a) XIAP-BIR2 - caspase-3 complex (b) linker region

Figure 7.2: The XIAP-BIR2 - caspase-3 complex structure (PDB entry 1i3o). (a) Cartoon representation of
the homodimer complex between XIAP-BIR2 (green; zinc ions shown in red) and caspase-3 (P12 subunit:
light blue; P17 subunit: dark blue). (b) The molecular surface of the linker region of XIAP-BIR2. The
main interacting residues are colored by element and shown in licorized representation for caspase-3 (italic
residue labels) and in surface representation for XIAP-BIR2.
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(residues 124-168) of BIR2. Residues Leu140, Leu141, and Val146 and the caspase-3 residues
Leu290, Tyr338, Trp340, and Phe381 form a first hydrophobic cluster and Ile149 and Ile153 and the
caspase-3 residue Phe381 a second one. Asp148 forms a salt bridge to Arg233 at the C-terminus of
the BIR domain and hydrogen bonds to the caspase residues Arg341, Ser343, Trp348, and Phe381.
Furthermore, a network of hydrogen bonds from the XIAP residues Thr143, Gly144, and Val146

contributes to the interaction (Figure 7.2 (b)). A second suggested interaction site is located on the
BIR2 domain and contains a pocket that is topologically and chemically very similar to the Smac
binding pocket of the BIR3 domain. But the site-directed mutagenesis studies suggest that this
second site may be more important for the binding of caspase-7 than for caspase-3.
Researchers at the Torrey-Pines Institute identified a series of polyphenylurea-based compounds
that selectively target the BIR2 domain of XIAP and stimulate an increased caspase-3 activity
[186–188]. The mechanism of action of these compounds has been studied using biochemical,
molecular biological, and genetic methods. Since the inhibitors did not compete with SMAC, it
was assumed that they bind to the flexible linker region. However, the exact binding site and mode
was unknown. This also impeded structure-based drug designattempts using the X-ray structure
of the XIAP-BIR2 - caspase-3 complex. Within a collaboration with the Torrey-Pines Institute in
Florida, we identified and analyzed transient pockets that open in this region during MD simula-
tions in water or methanol and predicted potential binding modes by docking the three most potent
inhibitors 1540-14, 1396-34, and 1396-11 into these pockets.

7.3 Methods

Transient pockets for both systems were identified with the MD-based pocket detection protocol.
As the details of the MD simulations, pocket detection, and docking procedure differed slightly
they will be separately described in the following.

7.3.1 Preparation of the Experimental Structures

The following X-ray structures of the CYP11A1 electron transfer system were used: oxidized Adx
with a resolution of 1.85 Å (PDB entry 1ayf [164], chain A), AdR with a resolution of 1.7 Å (PDB
entry 1cjc [165]), and the Adx-AdR complex with a resolutionof 2.3 Å (1e6e [166], chains A and
C). The partial charges, bond lengths, angles, and dihedrals for the oxidized Fe2S2 cluster of Adx
were taken from [170]. The oxidized FAD was parametrized using the partial charges listed in
[189].
The computational study of XIAP-BIR2 was based on two different experimental structures, the
average NMR solution structure of the apo protein (PDB entry1c9q [190]) and the X-ray structure
of the complex between XIAP-BIR2 and caspase-3 (PDB entry 1i3o [180], chain E). As no param-
eterization of the Cys3His-Zinc finger for the OPLS-AA force field was available, theparameters
were derived computationally as described in the Appendix,Chapter D.

7.3.2 Molecular Dynamics Simulations

The dynamics of both proteins in water were simulated for 10 ns as described in Chapter 3. For
Adx, the apo structure (including the co-factor) was used asstarting structure. XIAP-BIR2 was
simulated twice: one simulation started from the complex X-ray structure (after caspase-3 was
manually removed) and one from the apo NMR structure. In addition, XIAP-BIR2 was simulated
in methanol following the setup listed in Chapter 4. Here again, we conducted two simulations
starting from the two different structures.
During all simulations, the proteins were fully flexible and4,001 equally spaced snapshots were
stored.
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7.3.3 Pocket Detection

The MD simulations yielded one conformational ensemble forAdx and four for XIAP-BIR2. The
pockets were identified, clustered, and analyzed using EPOSBP as described in Chapter 4. For the
CYP11A1 electron transfer system, the crystal structures of Adx, AdR, and the Adx-AdR complex
were additionally scanned for pockets.

7.3.4 Docking Setup

For the CYP11A1 electron transfer system, all docking experiments were performed with AutoDock4.
In this newer version, the scoring of the putative protein-ligand complexes is based on a semi-
empirical free energy force field that incorporates intramolecular energies as well as a charge-
based method for evaluating desolvation energies [100] andseemed therefore more suitable for
predicting binding poses that are expected to be dominated by electrostatic interactions. The
polyamines were prepared manually in their fully protonated forms (total charge of +2e for pu-
trescine, +3e for spermidine, and +4e for spermine) and optimized with the MM+ force field as
implemented in HyperChem [191]. AutoDockTools 1.4.6 was used for adding hydrogen atoms
to the crystal structures (the MD snapshots already contained hydrogens), calculating Gasteiger
atomic charges for the ligands and the receptors, and for assigning AutoDock4 atom types. For
putrescine, 5 rotatable bonds were assigned with AutoTors,9 for spermidine, and 13 for spermine.
As before, the centers of the grid maps generated by AutoGrid4 were defined by the centers of
mass of the pocket patches. The grid dimensions were chosen to be 26.25 Å x 26.25 Å x 26.25 Å
to obtain an adequate coverage of the protein surface and thegrid spacing was set to the default
value of 0.375 Å. The docking procedure followed the standard LGA protocol with default param-
eters. 50 independent docking runs were carried out for eachpocket detected in a crystal structure
and 25 for each pocket detected in a MD snapshot.
For XIAP-BIR2, the docking experiments were performed withAutoDock3 because this version
is much faster than the AutoDock4 version and the ligands arequite flexible with 12 rotatable
bonds for 1540-14, 13 for 1396-34, and 16 for 1396-11. The ligands were set as neutral, Gasteiger
atom charges were assigned, and AutoTors was used for defining the flexible torsions. The MD
snapshots were prepared and the grid maps with a dimension of26.25 Å x 26.25 Å x 26.25 Å
were calculated as described in Chapter 3 for the PID-docking. The docking procedure also fol-
lowed the standard LGA protocol, but with one exception: theinitial population was increased
to 150 randomly placed individuals to obtain a broader sampling of the docking poses. Here, 20
independent docking runs were carried out for each pocket.

7.3.5 Post-Processing of the Docking Poses

As the number of calculated docking poses was too high for visual inspection, only those that ob-
tained a docking score better than a given threshold were retained and clustered using an agglom-
erative single-linkage approach based on the match of the protein atoms within 5 Å. For docking
into the MD snapshots of Adx, the thresholds were -5 kcal/molfor putrescine, -8 kcal/mol for
spermidine, and -9 kcal/mol for spermine. For XIAP-BIR2, only docking scores lower than -12
kcal/mol for 1540-14, -14 kcal/mol for 1396-34, and -16 kcal/mol for 1396-11 were considered.
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7.4 Results

In this section, we report the application of the MD-based pocket detection protocols to the two
test systems. By docking into the identified pockets we were able to suggest several energetically
favorable binding sites that will be discussed in the following.

7.4.1 Putative Binding Sites Detected on the Surface of Adx and AdR

The particular challenge in the computational study of the CYP11A1 electron transfer system was
that although it was assumed that the polyamines bind to the Adx protein, binding to CYP11A1 or
AdR could not be excluded. We confined our search for putativebinding sites to Adx and AdR as
no crystal structures for CYP11A1 are available and using homology models for docking is quite
error-prone due to the intrinsic uncertainties of the modeled structures.

Pockets Detected in the MD Snapshots and the Crystal Structures The crystal structures
of oxidized Adx, AdR, and the Adx-AdR complex were subjectedto a pocket detection run. 9
cavities were found on the surface of apo Adx (with volumes inthe range of 306 to 826 Å3) and
50 on apo AdR (with volumes in the range of 247 to 1,050 Å3). From the 42 detected cavities
on the complex structure, only 2 were located on the surface of Adx, 28 on AdR, and 12 were
identified at the binding interface with volumes ranging from 282 to 954 Å3. As it was assumed
that the binding site is located on Adx, this protein was submitted to a careful examination with
our MD-based pocket detection protocol. As Adx was stable during the MD simulation in water
(see section B.4), the extracted snapshots were scanned forpockets. In total, 23 different transient
pockets were identified with volumes up to 1,513 Å3.

Detecting Favorable Binding Sites by Docking The polyamines were docked into the transient
pockets of the MD snapshots of Adx, as well as into the pocketsdetected in the three crystal
structures. Clustering the best scored docking poses suggested five putatively favorable binding
sites that are illustrated in Figure 7.3. Hereof two bindingsites are located on Adx, two on AdR,
and one at the binding interface (corresponding to neither the first nor the second interaction site).
Note that docking suggested favorable binding sites at positions where no pockets were detected
by EPOSBP .

The corresponding docking scores listed in Table 7.1 suggest that the three polyamines prefer
binding to Adx although binding to negatively charged patches on AdR and the Adx-AdR complex
is also possible (compare to Table 7.2). Interestingly, thetwo binding sites located on Adx are the
most favorable ones and correspond to the primary (binding site 5) and secondary AdR interaction

binding
site

max. score in Adx
[kcal/mol]

max. score in AdR
[kcal/mol]

max. score in
Adx - AdR
[kcal/mol]

max. score in Adx
MD snapshots

[kcal/mol]
Put Spd Spn Put Spd Spn Put Spd Spn Put Spd Spn

1 -7.6 -8.9 -9.4 - - - -4.7 -5.4 -5.4 -7.1 -8.8 -10.4
2 - - - - -3.1 -3.3 -5.7 -7.0 -7.9 - - -
3 - - - -5.5 -6.7 -5.9 -5.7 -7.7 -8.5 - - -
4 - - - -4.6 -5.1 -5.1 -5.9 -7.1 -7.6 - - -
5 -6.5 -7.4 -7.6 - - - -4.8 -6.6 -6.5 -9.0 -10.4 -11.6

Table 7.1: Overview of the binding sites on Adx and AdR that are predicted to be most favorable for
polyamine binding by flexible ligand docking. For each binding site, the best docking scores per polyamine
and protein are reported. The numbering of binding sites corresponds to that used in Figure 7.3.
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Figure 7.3: Location of the identified binding sites (BS) mapped on the Adx-AdR complex. Adx is shown
in orange, AdR in light blue. For both proteins, a ribbon representation is used except for the residues lining
the binding sites (blue: AdR residues, red: Adx residues) that are shown as ball-and-stick models and FAD
that is shown in licorized representation (colorized by element).

sites (binding site 1). The docking scores suggest that although the affinity is reduced at these
sites upon Adx-AdR assembly, binding of the polyamines is still possible. Furthermore, docking
scores for binding site 5 improve when the results for the Adxcrystal structure are compared to the
results for the Adx MD snapshots, whereas docking scores forbinding site 1 are similar for MD
snapshots and X-ray structure. For these two binding sites,the best scored docking complexes per
polyamine among the MD snapshots of Adx are shown in Figure 7.4. This finding suggests that
the intrinsic dynamics of apo Adx favors the binding of the polyamines to binding site 5. (Note
that the best results for the MD snapshots were selected fromdockings to 4,001 different Adx
conformers, whereas the best results for the crystal structures were only selected from dockings
to different sites of the same conformer.) The affinities of the two putative binding sites located
on AdR are markedly increased in the AdR-Adx complex. As binding site 3 is located distant
from the binding interface, it may appear surprising that the affinity of this binding sites changes
upon complex formation. However, the two X-ray structures show AdR in two different conforma-
tional states [164]. These differences may well reflect the spread among different conformational
substates that are assigned in the two classes. Especially the docking scores for binding site 2
(complex interface) are significantly reduced with apo AdR as docking receptor and no appropri-
ate binding sites were predicted for apo Adx.
To evaluate the docking approach and to test how favorable the docking scores are, we re-docked

the polyamines into six selected co-crystal structures of polyamine binding proteins taken from
the PDB. The re-docking scores listed in Table 7.3 are of comparable magnitude as the scores
for docking into binding site 1 (when using either the crystal structure or the MD snapshots of

binding site residues on Adx residues on AdR
1 Asp15, Asp39, Asp41 -
2 Asp113, Glu116, Ser117 Glu353, Arg370, Thr373

3 - Ala109, Asp111, Glu115, Glu116

4 - Asp54, His55, Glu57, Glu212

5 Asp72, Glu73, Asp76, Asp79 -

Table 7.2: Protein residues of Adx and AdR interacting with the polyamines in the most favorable binding
sites listed in Table 7.1 and illustrated in Figure 7.3.
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PDB
entry

description re-docking
score

[kcal/mol]

RMSD
[Å]

1a99 Putrescine bound to E. coli Putrescine Binding Protein [192] -7.9 0.6
2o06 Putrescine bound to Human Spermidine Synthase [193] -8.0 1.5
1pot Spermidine bound to E. coli Spermidine Binding Protein [194] -11.7 1.1
3c6k Spermidine bound to Human Spermidine Synthase [195] -10.3 0.9
3b7p Spermine bound to Plasmodium Falciparum Spermidine Synthase -13.5 1.1
3c6m Spermine bound to Human Spermine Synthase [195] -14.0 1.8

Table 7.3: The selected co-crystal structures of the polyamines and their binding proteins and the corre-
sponding re-docking results with AutoDock4. (The docking was performed as described in section 7.3.4.)

Adx) and the scores for docking into binding site 5 (when using MD snapshots). This suggests
that induced-fit effects provide an additional stabilization of 2-4 kcal/mol, but also that the confor-
mational flexibility sampled in molecular dynamics simulations at room temperature is sufficient
to generate binding pockets of comparable binding affinities as those of proteins known to bind
polyamines. In contrast, the scores for docking into the crystal structures of AdR and the Adx-AdR
complex are less favorable than the re-docking results suggesting that there is a clear preference
for polyamine binding to apo Adx.

Experimental Validation of the Binding Sites by Site-Directed Mutagenesis To verify these
docking results experimentally, two Adx mutants (D15K and D15N) were created by Anja Berwanger
in the Biochemistry department. As Asp15 is located in the secondary interaction domain that is
of crucial importance for polyamine binding to Adx as suggested by the docking experiments, the
exchange of the negative charge with a neutral (D15N) and a positive one (D15K) should lead to
remarkable differences in the affinity of Adx to its redox partner AdR and CYP11A1. As shown
in Table 7.4, the introduction of the neutral and even more ofthe positive charge resulted in a sig-
nificantly increased affinity of Adx to AdR (decreased Kd). In contrast, the polyamines weakened

(a) Put, score: -7.07 kcal/mol. (b) Spd, score: -8.82 kcal/mol. (c) Spn, score: -10.39 kcal/mol.

(d) Put, score: -8.99 kcal/mol. (e) Spd, score: -10.39 kcal/mol. (f) Spn, score: -11.58 kcal/mol.

Figure 7.4: The most favorable docking poses per ligand in binding site 1((a) - (c)) and 5 ((d) - (f)) on
MD snapshots of Adx. The protein is shown in grey surface representation and the atoms within 5 Å of the
ligand as well as the ligand itself (shown as sticks) are colored by element. The corresponding schematic
representations of the binding modes are shown in the Appendix, Fig. A.3.
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system Adx - AdR assembly Adx - CYP11A1 assembly
kon

[M−1s−1]
koff [s−1] Kd [M] kon

[M−1s−1]
koff [s−1] Kd [M]

WT (control) 3.81· 103 2.86· 10−3 7.50· 10−7 1.83· 105 6.76· 10−3 3.69· 10−8

WT + Put 3.12· 104 5.03· 10−3 1.61· 10−7 8.64· 103 3.11· 10−3 3.60· 10−7

WT + Spd 2.74· 104 4.71· 10−3 1.71· 10−7 1.86· 104 3.53· 10−3 1.90· 10−7

WT + Spn 1.76· 104 5.77· 10−3 3.28· 10−7 2.71· 104 2.79· 10−3 1.03· 10−7

D15N 1.97· 104 1.83· 10−3 9.29· 10−8 3.76· 103 4.14· 10−3 1.01· 10−6

D15K 1.10· 104 3.46· 10−3 3.15· 10−7 2.08· 103 4.41· 10−3 2.12· 10−6

Table 7.4: Experimental data obtained by Anja Berwanger: Optical biosensor analysis of the interactions
of oxidized AdxWT, and the mutants AdxD15K and AdxD15N with AdRox and CYP11A1ox in presence
and absence of polyamines (all at ionic strength I = 1 mM). Binding of AdR or CYP11A1 (both analytes
100 - 500 nM) to Adx immobilized on a CM5 chip (∼300 RU) was studied in Biacore HBS-EP buffer at
25◦C. Binding curves of the interaction partners were analyzedusing the Biacore evaluation software 4.1
with a 1:1 binding model. Standard deviations (n≥4) were within± 10% of the displayed values. The Kd

values were calculated by koff /kon.

the stronger Adx-CYP11A1 binding.
The polyamine binding sites on the Adx protein that we suggested are well suited to explain the
experimental Adx - AdR binding data. As all three polyaminesseem to preferably bind to the
primary (Asp72, Glu73, Asp76, binding site 5) and secondary (Asp15, Asp39, Asp41, binding site
1) AdR binding regions of apo Adx, they may also promote the complex formation by overcoming
repulsive charges between the two proteins, resulting in a faster reduction of Adx [166, 196, 197].
This is also consistent with the kinetic constants measuredfor the assembly of the oxidized Adx
with AdR and CYP11A1 (Table 7.4) that indicate that the molecular recognition and thus the
association of Adx and AdR is enhanced in the presence of polyamines, while it is decreased
for CYP11A1. As a result, the Adx - AdR complex tightens and the Adx - CYP11A1 complex
weakens. In both complexes, modulation took place either inthe order putrescine < spermidine
< spermine, or in the order neutral charge < positive charge.This data supports our hypothe-
sis that the secondary binding region around Asp15 is not only important for the protein-protein
recognition but it is also a specific interaction site of the polyamines with the Adx.

7.4.2 Putative Binding Sites Detected in the Linker Region of XIAP-BIR2

For this system, the region of the binding site was only tentatively known. In this case, confor-
mational sampling by MD and detection of transient pockets on the entire protein surface seemed
the most reliable protocol. Additionally to the simulationin water, this protein was also simulated
in methanol and both simulations were run twice, either starting from the apo NMR structure or
from the holo X-ray structure (after removal of caspase-3).XIAP-BIR2 was stable in all simula-
tions. The secondary structure remained most conserved during the MD simulation of the X-ray
structure in methanol (see Section B.5, Appendix).

Pockets Detected in the MD Snapshots of XIAP-BIR2 EPOSBP was applied to the snapshots
extracted from all MD simulations to identify transient pockets. After removal of all pockets ap-
pearing only once, a set of 41 different transient pockets was obtained that are spread all over the
protein surface. Surprisingly, of these 41 pockets, 9 were located in the linker region. The proper-
ties of these pockets are reported in Table 7.5. They are all overlapping but were not assigned to
the same cluster because their lining protein residues varytoo much depending on the MD simu-
lation setup. The properties of these distinct transient pockets also strongly differ, suggesting that
these pockets are highly mobile and adaptable.
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PID MD setup residues freq.
[%]

mean vol.
[Å3]

polarity

18 NMR in methanol 124-126, 129-131, 133-135, 137, 140,
141, 144-148, 235-237

42.5 360.9 0.36

19 NMR in methanol 145-149, 151-153, 228, 231- 239 10.0 476.8 0.36
25 NMR in water 145-149, 151-157 7.7 143.5 0.36
28 NMR in water 140-148 7.0 175.1 0.36
29 X-ray in methanol 137, 141, 146, 148, 150, 225-228, 231-

235, 237
62.8 342.8 0.35

31 X-ray in methanol 141, 146, 148, 150, 154, 203, 204, 224-
228, 233, 234

46.7 282.3 0.34

36 X-ray in methanol 141, 142, 144, 146- 149, 151, 152, 233 22.7 290.0 0.36
38 X-ray in water 141, 146-151, 154, 228, 233-236 13.9 183.2 0.38
41 X-ray in water 148, 150, 154, 202, 203, 224, 226-228,

231, 233
13.3 189.8 0.32

Table 7.5: The transient pockets detected in the linker region and their most frequently occurring pocket
lining residues, frequency, mean volume, and polarity. Note that although all pockets overlap, they were
assigned to different clusters (PIDs) and so each transientpocket shown here was only observed in one MD
simulation.

Detecting Favorable Binding Sites by Docking into Promising Transient Pockets From our
previous experience on the BCL-XL, IL-2, and MDM2 systems, individual snapshots with pocket
volumes larger than 200 Å3 appear to be promising candidates for docking studies. Examples
of promising transient pockets are illustrated in Figure 7.5. Thus, all transient pockets located in
the linker region having a pocket volume≥ 200 Å3 were selected as putative binding sites for
the ligands 1540-14, 1396-34, and 1396-11. This resulted inthe selection of 6,662 pockets from
the four different MD simulations (1,624 from the NMR structure in water, 137 from the NMR
structure in methanol, 418 from the X-ray structure in water, and 4,483 from the X-ray structure
in methanol).

As expected, ligand 1396-11 is the most potent inhibitor, followed by ligand 1396-34. The
clustering of the docking poses revealed 61 different favorable binding sites. When considering
only those clusters having at least 100 members for at least one ligand, the selection can be reduced
to the 14 most favorable binding sites compiled in Table 7.6.For all ligands, the best docking score
is predicted for binding site 2. The best docking poses of each inhibitor are shown in Figure 7.6.
Interestingly, for binding sites 11 to 14, only ligand 1540-14 achieved a docking score smaller

(a) PID 18 (b) PID 28 (c) PID 29 (d) PID 38

Figure 7.5: Examples for transient pockets opening in the flexible linker region of XIAP-BIR2. The pocket
patch representing the negative image of the pockets is shown as mesh, the pocket lining atoms are colored
by element and the residues lining the pocket are labeled.
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than the used cut-off, suggesting that the local conformations of these sites favor binding of the
smallest and most rigid ligand. Note that a transient pocketID does not correspond to a binding
site cluster, because the transient pockets as well as the binding sites are overlapping as shown in
Table 7.7 and the size of the grid maps allow the ligands to bind to vicinal cavities.
Structural studies suggested that the inhibition of caspase-3 and by XIAP-BIR2 is achieved by a
two-site interaction. Besides the N-terminal linker of BIR2 (residues 124-168), it was hypothe-
sized that the putative Smac binding pocket is also involvedin caspase binding [180]. The hot
spots identified in this study are Asp148, Glu219, and His223. However, as binding assays sug-
gested that the inhibitors do not compete with Smac for a common binding site, this region was

binding
site

ligand 1396-11 ligand 1396-34 ligand 1540-14

best
score

[kcal/mol]

mean
score

[kcal/mol]

no.
poses

best
score

[kcal/mol]

mean
score

[kcal/mol]

no.
poses

best
score

[kcal/mol]

mean
score

[kcal/mol]

no.
poses

1 -19.4 -16.7 327 -17.2 -14.7 254 -15.1 -12.9 522
2 -19.6 -16.9 265 -17.9 -14.8 253 -16.3 -12.8 1542
3 -19.5 -16.7 348 -17.1 -14.5 803 -15.2 -12.6 522
4 -19.2 -16.7 267 -17.6 -14.7 199 -15.1 -12.6 839
5 -19.0 -16.6 254 -16.5 -14.5 514 -15.6 -12.5 651
6 -18.0 -16.6 67 -16.1 -14.6 153 -14.5 -12.6 434
7 -19.2 -16.8 164 -16.7 -14.7 263 -14.9 -12.7 216
8 -18.7 -16.6 306 -16.0 -14.5 135 -14.1 -12.5 167
9 -17.6 -16.4 70 -16.4 -14.5 53 -14.7 -12.6 251
10 -17.3 -16.5 33 -15.7 -14.4 172 -13.4 -12.4 75
11 - - - - - - -15.6 -12.6 2331
12 - - - - - - -14.4 -12.5 240
13 - - - - - - -14.2 -12.5 237
14 - - - - - - -14.5 -12.5 104

Table 7.6: The most favorable binding sites on XIAP-BIR2 as identified by docking with AutoDock3.
Here, only those binding sites are shown that have at least 100 members (no. of poses) for at least one of
the three ligands.

binding site residues PIDs
1 124-126, 128-131, 134, 137, 140, 141, 145, 146, 235, 23618, 19, 28
2 146-153, 226-228, 231, 232, 234-238 18, 19, 25, 29, 31, 36, 38
3 137, 141, 146-148, 150, 151, 226-228, 231-237 18, 19, 29, 31, 36, 38, 41
4 146-153, 228, 231, 234-238 18, 19
5 137, 141, 146-148, 150, 226-228, 231-237 18, 19, 28, 29, 31, 36
6 125, 126, 128-131, 134, 140, 141, 145-148, 236, 237 18, 19, 28
7 124, 146, 148-153, 161, 228, 231, 234-237 18, 19, 25, 29
8 141, 147, 148, 150, 226-228, 231-235 18, 29, 31, 36, 38
9 125, 126, 128-131, 140, 141, 145-147, 236 18, 19, 28
10 146-149, 151-153, 228, 231, 234-238 18, 19
11 141, 147, 148, 150, 226-228, 231-234 29, 31
12 141, 148, 150, 226-228, 231-236 29, 31, 36, 38
13 125, 126, 128, 129, 131, 140, 141, 145, 146, 148, 236 18, 19, 28
14 124-131, 134-138 18, 19, 28

Table 7.7: The protein residues lining the most favorable binding sites and the IDs of the transient pockets
that led to the calculation of these binding poses. Note thatthe same binding site was predicted although the
ligands were docked into different transient pockets and also into snapshots extracted from different MD
simulations.
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(a) 1396-11, score: -19.6 kcal/mol. (b) 1396-34, score: -17.9 kcal/mol. (c) 1540-14, score: -16.3 kcal/mol.

Figure 7.6: The most favorable docking poses per ligand. The protein is shown in grey surface representa-
tion and the ligand is shown as sticks colored by element. Thecorresponding schematic representation of
the binding modes are shown in the Appendix, Figure A.4. Notethat all plots show the ligands bound to
binding site 2 on a MD snapshot of the NMR structure in water.

not considered in our docking experiments. Interestingly,almost all favorable docking complexes
involve interactions between the inhibitors and Asp148 (see Table 7.7 and Fig. A.4). These results
support the hypothesis that the polyphenylurea-based inhibitors bind to the flexible linker region
of XIAP-BIR2 and so impede the assembly of the XIAP - caspase-3 complex.

7.5 Discussion

In this chapter, we presented the application of our pocket detection protocol to two test systems,
for which binders have been identified experimentally. Structure-based design approaches aiming
at optimizing these hits to lead compounds were hampered as their binding mode was unknown.
However, in contrast to Adx, where the entire protein surface (as well as the surface of its partner
proteins) had to be considered in the docking experiments, the approximate binding site of the in-
hibitors identified for XIAP-BIR2 was known and the docking experiments could be limited to the
transient pockets located within this region. A further difference between the two applications is
that Adx was only simulated in water using only one starting structure while XIAP-BIR2 was addi-
tionally simulated in methanol and each simulation was repeated with a different starting structure
showing the protein in another conformation (either in its apo state or complexed to caspase-3).
The challenge with the XIAP protein was that no OPLS-AA forcefield parameters were available
for the Cys3His-Zinc finger. These values were derived by density functional theory-based quan-
tum mechanical calculations and had to be tested thoroughlyin MD simulations. Moreover, unlike
Adx, for which we expected the polyamines to bind into charged pockets that are more favorable
to open in water, the pockets accommodating the inhibitors of XIAP-BIR2 were expected to be
rather nonpolar and, thus, better sampled during a simulation in methanol.
We decided to confine the conformational sampling to MD simulations because as demonstrated
in Chapter 3 and 4, MD was the only method that yielded reliable results for all three model
systems. As the binding region was approximately known for XIAP-BIR2, the PocketScan-
ner/PocketBuilder or the PocketInflator approach could have also been applied. However, as the
linker region is extremely flexible as indicated by the MD simulations, it is questionable whether
the energy minimization and side-chain rearrangement would have been effective enough to in-
duce the openings of pockets comparable to those that were observed using MD.
Moreover, the application of this protocol to XIAP-BIR2 stressed an interesting characteristic of
protein-protein interaction interfaces. The fact that thesame binding site was predicted although
the ligands were docked into different transient pockets indicates that these binding sites are strewn
with small pockets and that small molecules binding to protein-protein interaction interfaces often
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occupy several (sub-) pockets at the same time. This observation suggests that when trying to
identify binding sites for SMPPIIs on protein surfaces, oneshould rather focus on regions where
(small) transient pockets accumulate than on isolated pockets.

7.6 Summary and Conclusion

Structure-based drug design does not only assist the identification of hits, but also the selection
or refinement of hit compounds to lead structures, or of lead structures to drug candidates. Espe-
cially when binders were identified by experimental methods, the elucidation of their binding site
and mode is a precondition for the successful application ofcomputational methods assisting the
identification of lead compounds or drug candidates. As casestudy, we discussed two proteins
involved in protein-protein interactions for which small-molecule binders were identified byin
vitro experiments but their binding site and, thus, the moleculardetails of their interaction were
unknown. For one protein, the BIR2 domain of XIAP, the binding site was assumed to be located
in a very flexible region. For the other protein, Adx, the location of the binding site was totally
unknown and it could even not be excluded that the modulators(also) bind to its partner proteins.
We applied our pocket detection protocol to both proteins toidentify transient pockets that open on
the protein surface. The experimentally identified ligandswere then docked into all pockets that
were accessible in the MD snapshots or in the crystal structures and the most favorable docking
poses could be clustered into five putative binding sites. Ofthese sites, the most favorable ones
were located on the Adx protein and corresponded to known sites of interaction with AdR. The
plausibility of these binding sites was supported by site-directed mutagenesis studies.
As the binding site of the molecules targeting XIAP-BIR2 wasapproximately known, the dock-
ing experiment could be restricted to those pockets that opened within this region. The differing
properties of the detected transient pocket emphasized theflexibility of this region. By clustering
the most favorable docking poses, 14 putative binding siteswere identified. Interestingly, Asp148,
a hot spot for the interaction of XIAP with caspase-3 that is targeted by the studied ligands, is
involved in almost all favorable docking poses suggesting that the predicted binding modes are
reasonable.
In summary, the application of our pocket detection protocol to two test proteins indicated that it is
capable of suggesting plausible binding sites and ligand binding modes regardless of thea priori
knowledge about the location of the binding region. However, whether this protocol can also be
used to predict binders and non-binders remains to be evaluated in the future.
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Chapter 8

Conclusion and Outlook

Protein-protein interaction interfaces are a real challenge for structure-based drug design. Due to
their intrinsic properties they often contain no deep, accessible pockets that may be targeted by
small-molecule ligands. As a consequence,in silico drug design approaches were so far limited to
those systems for which the interface either contained a druggable pocket in the unbound structure
or for which a crystal structure with a small molecule bound was available.

8.1 Summary and Conclusion

The goal of this work was the development of protocols that assist the structure-based design of
small-molecule protein-protein interaction inhibitors (SMPPIIs) by providing protein conforma-
tions that contain transient pockets which may be targeted in virtual screening experiments. We
tested all developed methods using three model systems, BCL-XL, IL-2, and MDM2. All these
proteins are involved in protein-protein interactions, and the native binding pockets of SMPPIIs
(known from the crystal structures of the protein-inhibitor complex) are not, or not fully, accessi-
ble in the apo structures.
In our initial study presented in Chapter 3, we showed that the binding pockets of these SMP-
PIIs are, like many other pockets on the protein surface, only accessible in some conformations:
They are transient binding pockets. When no druggable pockets are detectable in any available
structure of the protein, this initial pocket detection protocol may thus be an interesting starting
point. Molecular dynamics simulations of the apo structurein water were conducted and all tra-
jectory snapshots were scanned for cavities using the PASS algorithm. All detected pockets were
subsequently clustered to determine the distinct transient pockets. We found that they all opened
within 2.5 ps, and most of them appeared multiple times. Theywere even reproducible by a
second MD simulation. The general impression was quite similar for all three systems. At the
native binding site, transient pockets could be identified that were of similar size than the native
binding pocket. To validate the appropriateness of this protocol for virtual screening, we docked
the known inhibitors with AutoDock3 into these identified transient pockets. For all systems we
obtained docking poses that were within 2 Å RMSD of the nativebinding mode.
In the follow-up study described in Chapter 4, we investigated which aspects of the natural confor-
mational dynamics of proteins induce the formation of thesetransient pockets. The same pocket
detection protocol was applied to three different conformational ensembles that were extracted
from three different MD simulations; (a) of the inhibitor bound structure (after removal of this
ligand) in water, (b) of the apo structure in water (that was used in Chapter 3), and (c) of the apo
structure in methanol. For MDM2, we additionally studied the impact of backbone mobility by
MD simulations in which all backbone atoms were harmonically restrained. The results empha-
sized the influence of solvent polarity and backbone rearrangements on the formation of transient
pockets. Furthermore this study revealed that the native binding pocket is unstable in the absence
of the ligand explaining why it is only partly accessible or even absent in the apo structure. More-
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over, we tested whether the more efficient CONCOORD, tCONCOORD or normal mode analysis
(NMA) techniques may substitute the time-consuming MD simulations. While the conformations
generated by CONCOORD and NMA possessed significantly smaller pockets, only the tCONCO-
ORD conformations contained pockets that were comparable to those observed in MD simulations
for two of the three systems. This finding indicates that MD simulations are to date the most robust
method to sample transient pockets if the binding site is unknown and the entire protein surface
has to be taken into account.
In many structure-based approaches the binding site of the ligand is approximately known. In
such cases, running the MD-based pocket detecion protocol appears quite time consuming as the
sampling can be limited to this region of the surface. It is not clear whether this protocol is suc-
cessful for all kinds of binding pockets. For example, at some binding sites the presence of the
ligand may be required to induce the pocket opening, whereasthe MD-based protocol is only ca-
pable of finding cavities that open spontaneously. For thesereasons we developed two algorithmic
approaches that design pockets of desired properties in a predefined region of the protein surface.
Based on our findings presented in Chapter 4, these methods account for protein backbone and side
chain flexibility. The main idea of both approaches is to represent the pocket by a “generic pocket
sphere” (GPS) that interacts with the protein atoms. The first approach is discussed in Chapter 5.
It starts by scanning the protein surface for potential pocket positions using a grid of predefined
size. At each grid point, a GPS is placed and the protein is minimized energetically while the
position of the GPS remains fixed. Subsequently the residueslining this pocket are then further
refined by searching for the best combinations of side-chainrotamers using the A* algorithm. For
two out of the three test systems, conformations could be generated with pockets into which the
known inhibitor could be docked in a native-like orientation. However, due to their representation
by a single GPS the designed pockets were of an artifical shape. Moreover, many SMPPIIs con-
sist of multiple subpockets that cannot be induced at the same time using this method. All these
considerations indicate that the applicability of this approach is limited.
In the second algorithmic approach presented in Chapter 6, we tried to solve these problems that
emerged in Chapter 5. Here, multiple subpockets of predefined volume and location are designed
simultaneously. Rather than representing them by a single GPS, they are now represented by
patches of coherent probes that were placed by the PASS algorithm. As the initial structure usu-
ally contains no detectable pockets, we modified the PASS algorithm in such a way that probes
that overlap with protein atoms up to a certain degree are kept. This degree can be controlled by
our program. After selecting such a precursor-pocket, someprobes are enlarged, and the protein
conformation is energetically minimized. By doing so, the protein adopts its conformation to this
pocket and the number of clashes is reduced. Subsequently, new precursor-pockets are calculated
for this relaxed protein conformation. Thereby it is taken care that the degree of allowed overlap
is always smaller or equal to that in the previous cavity detection. These steps are repeated until
a predefined number of low-energy protein conformations aredesigned that contain pockets de-
tectable without tolerating overlaps larger than the default value. One can pictorially describe this
procedure as inflating pockets in the protein surface. Surprisingly, the results indicated that the
target volumes of the designed pockets are not crucial. We found that when considering only the
locations in the design process, the resulting pockets are more native-like than those designed by
the first approach. This became also evident from the scores obtained in the docking experiment.
For all systems, docking poses within 2 Å from the native binding mode were suggested. For
two systems, these poses even obtained better docking scores than those observed in the inhibitor-
bound crystal structure. Therefore, we suggest using this protocol for cases, in which the binding
site is known, but contains no druggable pockets in the available crystal structures.
After validating the developed approaches, we show in Chapter 7 their application to two systems.
Although small-molecule modulators were identified experimentally for both systems, their bind-
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ing mode was unknown. In case of the first system, it was even unclear whether the molecules
bind to the targeted protein, Adrenodoxin, or its interacting protein, Adrenodoxin Reductase. We
used the MD-based pocket detection protocol for identifying transient pockets opening anywhere
on the surface of Adrenodoxin and additionally considered all other pockets found in the crystal
structures of Adrenodoxin Reductase and the protein-protein complex. In the second system, the
BIR2 domain of XIAP, the region in which the binding site is located could be delineated. Even
though this would enable the application of the pocket inflating protocol presented in Chapter 6,
we decided to conduct MD simulations in water and in methanolbecause this protein region was
highly flexible and it was not clear whether the algorithmic approach could handle this extreme
mobility correctly in vacuo. For both test systems, we were capable to suggest favorable binding
sites by docking the ligands into transient pockets that were identified by our pocket detection
protocol. These real-world examples emphasize the applicability and usefulness of our presented
protocols.
In summary, we think that our findings will be helpful in future generation of transient pockets
as putative ligand binding sites at protein-protein interfaces or even for the identification of new
allosteric pockets for any kind of proteins.

8.2 Outlook

The design of small-molecule protein-protein interactioninhibitors is a relatively new and very
interesting research field. However, our studies suffered from the low number of model systems
currently available. We hope that owing to the continuous progress made in this field more and
more high quality crystal structures of proteins in complexwith their SMPPIIs will become avail-
able. This would enable us to verify our protocols on a largernumber of test systems. An important
question is, for example, whether the native binding pocketmay be identified from a set of tran-
sient pockets. More generally, it would be of advantage if one could narrow down the number
of conformations in which the transient pocket under consideration is available and extract those
pocket states that are most druggable. By doing so, the time needed to dock the putative ligands
may be significantly reduced. Furthermore, it would be interesting to investigate whether one can
predict those regions on the protein surface where transient pockets will open. If this was possible,
one could systematically induce pockets using the algorithmic approach at these sites. In addition,
one could use GPS of different properties (e.g. with charges) to influence the chemical proper-
ties of the designed pockets. Finally, it is worth testing whether our approach is only applicable
to detect pockets for competitive inhibitors, i.e. pocketsopening at protein-protein interaction
interfaces, or whether it can be generally applied to identify new allosteric pockets that are not
accessible in the absence of a ligand.
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Appendix A

Ligand Binding Modes

All plots were generated by LigPlot [198]. The legend is shown in Figure A.1.

Ligand bond

Non-ligand bond

3.0 Hydrogen bond and its length

His 53 Non-ligand residues involved in hydrophobic
contact(s)

Corresponding atoms involved in hydrophobic contact(s)

Solvent accessibility shading: Buried Highly accessible

Figure A.1: Legend for the plots showing the ligand binding modes.
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Figure A.3: The best scored docking complex between MD snapshots of Adx and the three polyamines for
binding site 1 ((a) - (c)) and 5 ((d) - (f)).
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Appendix B

Stability of the Proteins During the
Molecular Dynamics Simulations

All secondary structure plots were generated by the programdo_dsspof the GROMACS 3.3.1
package [141] that reads a MD trajectory and computes the secondary structure for each time
frame by calling the DSSP program [199]. The description of the secondary structure elements
is taken from the corresponding PBD files. Note that the length of the individual elements may
vary in different crystal structures of the same protein. Here, the residues that form that secondary
structure element in the apo structure are listed.

Coil B-Sheet B-Bridge Bend Turn A-Helix 5-Helix 3-Helix

Figure B.1: Legend for the DSSP plots showing the stability of the secondary structures.

B.1 Stability of the Secondary Structure of BCL-XL

The apo X-ray structure of BCL-XL consists of eightα-helices (helix 1: residues 1-20, helix 2:
residues 82-101, helix 3: residues 105-113, helix 4: residues 119-128, helix 5: residues 136-157,

0 2 4 6 8 10

20

94

114

134

154

174

194

R
es

id
ue

Time [ns]
Coil Bend Turn A-Helix 5-Helix 3-Helix

(a) apo structure in water

0 2 4 6 8 10

20

94

114

134

154

174

194

R
es

id
ue

Time [ns]
Coil Bend Turn A-Helix 5-Helix 3-Helix

(b) apo structure in methanol

0 2 4 6 8 10

16

35

96

116

136

156

176

196

216

R
es

id
ue

Time [ns]

Secondary structure

Coil B-Bridge Bend Turn A-Helix 5-Helix 3-Helix
(c) holo structure in water

Figure B.2: The stability of the secondary structure during the MD simulations of (a) apo BCL-XL in water
(run 1) and (b) methanol, and for the simulation of the (c) holo structure in water.
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helix 6: residues 161-178, helix 7: residues 178-185, helix8: residues 187-196) and a 310-helix
(residues 129-132). Figures B.2 (a) and (b) reveal that except for the terminal helix 8 and the
310-helix that partly unfolded, the secondary structure remained stable during the MD simulations
in water and in methanol. The 310-helix is missing in the holo structure, here residues 129-131
are part ofα-helix 4. The secondary structure of this conformation appeared less stable during the
simulation in water (see Fig. B.2 (c)). Helix 3, for example,was converted to aπ-helix and helix 1
comprised only residues 10-20. However, one should keep in mind that the holo structure contains
loop regions (residues 28-44 and 197-217) that were not resolved in the apo X-ray structure and,
thus, more structural transitions were observable during the simulation of this structure.

B.2 Stability of the Secondary Structure of IL-2

The apo and holo crystal structures of IL-2 contain both sixα-helices (helix 1: residues 6-30, helix
2: residues 32-40, helix 3: residues 56-61, helix 4: residues 62-74, helix 5: residues 81-98, helix 6:
residues 113-130) and one 310-helix (residues 52-55) that remained stable during all simulations
as Figures B.3 (a) - (c) indicate. Furthermore, in all simulations twoβ-sheets comprising residues
44-49 and 107-114 were formed that were not observed in the crystal structures. These sheets
were most stable during the simulation of the apo structure in water.
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Figure B.3: The stability of the secondary structure during the MD simulations of (a) apo IL-2 in water
(run 1) and (b) methanol, and for the simulation of the (c) holo structure in water.

B.3 Stability of the Secondary Structure of MDM2

MDM2 was the protein for which most changes in the secondary structure took place during the
MD simulations. As already indicated by the crystal structures, MDM2 was more stable in the
holo form than in the apo form (see also Fig.B.4 (c)). In this conformation, residues 20-25 that are
disordered in the NMR models of apo MDM2 form anα-helix. Interestingly, when simulating the
apo structure in methanol, this helix is also formed after about 1 ns simulation time (see Fig.B.4
(b)). The protein contains four otherα-helices (helix 2: residues 34-42, helix 3: residues 51-
63, helix 4: residues 80-86, helix 5: residues 95-104) that were observed in both conformations.
However, as Figure B.4 (a) demonstrates, helix 5 formed aπ- instead of aα-helix during the
simulation of the apo structure in water, and helix 4 was alsoless stable than during the simulation
in methanol. Moreover, the apo structure contains two shortβ-sheets (sheet 1a: residues 74-75,
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sheet 2a: residues 91-92) not contained in the holo structure, where three shortβ-sheets are formed
(sheet 1h: residues 27-30, sheet 2h: residues 48-49, sheet 3h: residues 107-109).β-sheet 3h was
only stable in the MD simulation of the holo structure. This sheet fell apart during the simulation
of the apo structure in water, while it unfolded completely during the simulation in methanol. In
contrast, the DSSP analysis identified the other fourβ-sheets in all three MD simulations.
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Figure B.4: The stability of the secondary structure during the MD simulations of (a) apo MDM2 in water
(run 1) and (b) methanol, and for the simulation of the (c) holo structure in water.

B.4 Stability of Adx

In the X-ray structure of oxidized Adx, the protein consistsof five β-sheets (sheet 1: residues
7-12, sheet 2: residues 18-23, sheet 3: residues 56-58, sheet 4: residues 88-90, sheet 5: residues
103-106), threeα-helices (helix 1: residues 29-35, helix 2: residues 61-64,helix 3: residues 72-
78), and two 310-helices (helix 4: residues 91-93, helix 5: residues 98-100). Most secondary
structure remained conserved during the MD simulation in water, onlyβ-sheets 3 and 4, and the
310-helix 4 temporarily unfolded. However, the RMS deviation from the crystal structure remained
continuously below 2 Å suggesting that the overall protein structure was not distorted.
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Figure B.5: The stability of the secondary structure during the MD simulation of oxidized Adx in water.

B.5 Stability of the BIR2 Domain of XIAP

The BIR2 domain of XIAP contains in its apo NMR as well as in itscomplexed X-ray structure
threeβ-sheets (sheet 1: residues 189-194, sheet 2: residues 197-200, sheet 3: residues 205-207),
five α-helices (helix 1: residues 136-141, helix 2: residues 162-170, helix 3: residues 180-187,
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helix 4: residues 217-224, helix 5: residues 227-233), and a310-helix (helix 6: residues 157-
161). In the apo structure, residues 125-129 form an additional 310-helix that is not available in
the complex structure because residues 124 to 126 are missing there. Instead, in this structure a
310-helix is built up by residues 149-153.
The analysis of the MD simulations of XIAP-BIR2 reveals thatthe zinc finger motif remained
very close to its optimized geometry (see section D) and, thus, did not distort the overall protein
structure. The RMSD of the backbone atoms and the zinc finger motif is depicted in Figure
B.6 (a). Figure B.6 (b) illustrates that, as expected, the N-terminal linker region as well as the
C-terminus are highly flexible. The DSSP plots shown in Figure B.7 reveal that, overall, the
secondary structure remained stable throughout the simulation. In general, the secondary structure
elements were more conserved in the simulations that started from the X-ray structure of the
complexed XIAP BIR2 domain. For example, the thirdβ-sheet was only stable in the simulation
of this structure in methanol. The fiveα-helices of this starting structure remained more stable in
water. The first and the fifthα-helix was quite unstable in the simulations that started from the apo
NMR structure, indicating the high mobility of the flexible linker region and the C-terminus.

0 1 2 3 4 5 6 7 8 9 10
Time [ns]

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
M

S
D

 [Å
]

backbone (residues 157 - 224)
zinc finger - starting structure (only side chains)
zinc finger - optimized structure (only side chains)

130 140 150 160 170 180 190 200 210 220 230 240
Residue Number

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0
R

M
S

F
 [Å

]
NMR structure in MeOH
NMR structure in Water
X-Ray structure in MeOH
X-Ray structure in Water

Figure B.6: The stability and the mobility of the protein during the MD simulations. Shown is (a) the RMS
deviation of the backbone atoms from the crystal structure and of the zinc finger motif from the crystal
structure and the optimized geometry and (b) the mean RMS fluctuations of the Cα-atoms from the crystal
structure during the four MD simulations.
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Figure B.7: The stability of the secondary structure during the MD simulations of XIAP-BIR2.



Appendix C

User Manuals for the Developed
Programs

C.1 EPOSBP : Detecting Ensembles of Pockets on Protein Surfaces

Preparation of the Input Files

All ligands, solvent molecules, and other hetero atoms haveto be removed before running EPOSBP .
The protein file must be supplied in PDB or HIN format. If a PDB file contains several models,
the PASS algorithm is applied to each of them. Ligand coordinate files can be given in MOL2,
PDB, or HIN format.

Command Line Options

The following command line options are available:

option description required option
-file <PDB/HIN file> apply the PASS algorithm to a single PDB orHIN file
-list <file> apply the PASS algorithm to the PDB or HIN files listed in

<file>
-read <file> apply the clustering, analysis, or subpocket calculation to

previously determined pockets listed in <file>
-cluster <cutoff> <use
index> <cluster file>

cluster pockets with similarities less than <cutoff> percent,
write the clustering results and rename the patch and PLA
files; only set <use index> to 1 if the atoms have the same
index in all files

”-file”, ”-list”, or ”-
read”

-readclust <cluster file> read in a previously calculated cluster file and apply the
clustering to the read-in patches

”-read”

-analyze <analysis file> analyze the pocket properties of the different pocket clusters
and write the results to an output file

”-cluster” or ”-
readclust”

-subpocket <prefix>
<sim cutoff>

write the subpocket (PLAs that are present in at least <sim
cutoff> percent of all PLAs) of each pocket cluster to files
with the given prefix

”-analyze”

-overlap <ligand file>
<overlap file>

calculate the overlap volume between a given ligand (in
pdb, hin, or mol2 format) and the patches

”-file”, ”-list”, or ”-
read”

-compare <file1>
<file2> <sim table>

write the pairwise similarities of the PLAs or subpocket files
listed in file1 and file2 to the given output file (format: one
file with path per line)

-v run program in verbose mode
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PASS Parameter File

If you want to use your own parameters instead of the default values make sure that a parameter file
called “BALLPass.ini” is available in your current directory and that the path of the file containing
the atom radii is correct.

entry description default
value

HEAVY_ONLY ignore hydrogens 1
PARSE_INI_FILE use parameters defined in local parameter file instead of de-

fault values
1

RADIUS_HYDROGEN radius of a hydrogen atom [Å] 1.2
RADIUS_OXYGEN radius of an oxygen atom [Å] 1.52
RADIUS_NITROGEN radius of a nitrogen atom [Å] 1.55
RADIUS_CARBON radius of a carbon atom [Å] 1.7
RADIUS_SULFUR radius of a sulfur atom [Å] 1.8
PROBE_SPHERE_RADIUS radius of a probe in the 1. layer when hydrogens are consid-

ered [Å]
1.5

PROBE_SPHERE_RADIUS
_HYDROGEN_FREE

radius of a probe in the 1. layer when hydrogens are ignored
[Å]

1.8

PROBE_LAYER_RADIUS radius of a probe in the accretion layers [Å] 0.7
MINIMUM_PROBE_SEPARATION minimal distance between two probes [Å] 1.0
BURIAL_COUNT_THRESHOLD minimal number of surrounding protein atoms for defining a

probe as buried probe when hydrogens are considered
75

BURIAL_COUNT_THRESHOLD
_HYDROGEN_FREE

minimal number of surrounding protein atoms for defining a
probe as buried probe when hydrogens are ignored

45

BURIAL_COUNT_RADIUS radius used for computing the burial counts of a probe [Å] 8.0
PW_SQUARE_WELL parameter for defining the probe weight envelope function

(see [70])
2.0

PW_GAUSSIAN_WIDTH parameter for defining the probe weight envelope function
(see [70])

1.0

ASP_SEPARATION minimal distance between two ASPs [Å] 8.0
MINIMUM_PROBE_WEIGHT minimal probe weight for an ASP 1150
CLASH_FACTOR factor for reducing clashes between probes and protein atoms 0.95
RADII_FILE file containing the radii of the protein atoms PARSE.siz

File Formats

The input files have to be of the following format:

”-list <file>”: (path of) one PDB/ HIN file with path per line
”-read <file>”: (path of) one patch file with path per line
”-compare <file> ...”: (path of) one PLAs/ subpocket file withpath per line
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The generated output files are of the format:

PLAs/ subpocket file: atoms of the input protein that line thepocket in PDB format
patch file: Probes are represented by a carbon (initial layer) or hydrogen atoms (accretion layer)

in PDB format. The atom name is the atom symbol followed by thelayer, the residue
name is “PKT”, and the residue number corresponds to the pocket ID. The ASP always
corresponds to the atom with index 1.

cluster file: one conversion per line in the format<file prefix>: <old PID> -> <new PID>

analysis file: a header line, followed by one line per PID n theformat<PID> <freq.[%]> <mean vol.[Å3]>
<min. vol.[Å3]> <max. vol.[Å3]> <mean pol.> <min. pol.> <max. pol.> <mean depth[Å]> <min.
depth[Å]> <max. depth[Å]>

overlap file: one line per structure in the format<file prefix> <overlap vol. [Å3]> <overlapped ligand atoms
[%]> PIDs: <PID 1>...<PID n> <pol.> . (Note that the overlap volumes and polarities are
calculated per structure and not per patch.)

similarity table: one line per entry in <file 1> of the format<sim(f1:i,f2:1)> <sim(f1:i,f2:2)> ...
<sim(f1:i,f2:m)> where <sim(f1:i,f2:j)> is the percentage of common PLAs between the
ith entry in <file 1> and thejth entry in <file 2>

C.2 PocketScanner and PocketBuilder

File Format

The starting structures have to be in PDB format. Hetero atoms should be removed unless they are
correctly parametrized in the CHARMM EEF1 force field. Both programs write the different pro-
tein conformations together with the used GPS to files in PDB format. The GPSs are represented
by atoms of the residue name “UNK” and their atom name is “Pr”, wherer is the radius (either 2,
3, or 4 Å). The residue number is arbitrary. As PocketBuilderextracts the GPS directly from the
input PDB file, the GPSs can be added manually using this format.

PocketScanner Parameter File

PocketScanner is called byPocketScanner <parameter file>. All options are set in the parameter
file in the following way:

entry description default
value

Structure: <PDB file> path and filename of the starting structure
Grid: <x> <y> <z> <no. points> <spacing > center, dimension,and edge length in Å of the grid

placed on the protein surface
GPS: <GPS radius> radius of the GPS in Å 2
Minimal BC: <value> minimal burial count (number of proteinatoms with 8

Å) of a GPS before and after energy minimization of
the protein

65

SE: <value> maximal distance of a GPS from a surface exposed
atom in Å

2

Outfile: <prefix> prefix of the generated PDB files
Force Field: <file> path and filename of the CHARMM EEF1 force field

containing the parameters for the GPSs



148 APPENDIX C. USER MANUALS FOR THE DEVELOPED PROGRAMS

PocketBuilder Parameter File

PocketBuilder is called byPocketBuilder <parameter file>. Like in PocketScanner, the parameter
file is used to define all options of PocketBuilder. The tuneable parameters are:

entry description default
value

Structures: path and filename of the input structures
<PDB file with GPS 1>
...
<PDB file with GPS n>
Radius: <value> radius for defining the flexible residues in Å 8
Number: <value> number of solutions that should be calculated 50
Pocket Weight: <value> weighting factor for the interaction energy between protein atoms and

the GPS
0.5

Energy Weight: <value> weighting factor for the internal protein energy 0.5
Outfile: <prefix> prefix of the generated PDB files
Dir: <directory> directory for writing temporary files (needed to save memory)
Library: <rotamer library> patch and filename of a rotamer library
Force Field: <file> path and filename of the CHARMM EEF1 force field containing the

parameters for the GPSs

C.3 PocketInflator

File Format

The starting structures have to be in PDB format. Hetero atoms should be removed unless they are
correctly parametrized in the Amber96 force field. The program is called byPocketInflator <pa-
rameter file>. The different generated protein conformations are written to files in PDB format.
The corresponding patches and plas files are written to files with the same prefix. As PocketInfla-
tor uses EPOSBP , a BALLPASS parameter file called “BALLPass.ini” should be available in your
current directory. It is recommended to set “ASP_SEPARATION” to 5 Å.

PocketInflator Parameter File

For defining multiple subpockets, one entry of “Resids: <resid 1> ... <resid n>” and “Goal
Volume: <value>” has to be provided per subpocket. Note thattheith entry of “Goal Volume” is
assigned to theith entry of “Resids”.

entry description default
value

Structures: path and filename of the input structures
<PDB file 1>
...
<PDB file n>
Number: <value> number of solutions that should be calculated 50
Outfile: <prefix> prefix of the generated PDB files
Force Field: <file> path and filename of the Amber96 force fieldcontaining the pa-

rameters for the GPSs
Stepsize: <value> step size for increasing the clash factor 0.01
Resids: <res id 1> ... <resid n> IDs of the residues that should have any atoms within 8 Å of the

ASP
Goal Volume: <value> goal volume of the induced pocket whoselocation is defined by

the “Resids” entry; use 0 to ignore the volume
0



Appendix D

Parameterization of the Cys3His-Zinc
finger

The parameterization of the Cys3His-Zinc finger was based either on the energy minimized aver-
age NMR structure of the unbound XIAP-BIR2 or on the X-ray structure of XIAP-BIR2 bound
to caspase-3. Geometry optimizations were performed usingNWChem 4.7 [200]. The ligating
cysteines were modeled as CH3S- and the histidine as imidazole, thus the resulting systemhad a
total charge of -1. The geometries were optimized without constraints by the density function the-
ory (DFT) [201] module using the B3LYP exchange-correlation functional and the 6-31G* basis
set. The number of iterations was set to 500 and the default convergence criteria were used for the
optimization. The optimized geometry was then used for calculating the electrostatic potential fit
(ESP) using the Hartree Fock method with the same basis set. Both input geometries converged
to the same minimum energy with an RMSD of 0.8 Å on the heavy atoms and the calculated ESP
charges were approximately the same (maximum deviation: 0.018 e). As the optimized geometry
based on the X-ray structure was closer to the conformation in either experimental structures than
the one based on the NMR structure (0.7 and 0.6 Å instead of 0.8and 0.9 Å), the former was used
for the parameterization of the Cys3His-Zinc finger in the OPLS-AA force field. The ESP charges
obtained from the HF calculation shown in Table D.1 were usedfor Coulombic interactions. The
van der Waals parameters for the zinc ion were taken from [202]. The interactions between the
Cys:Sγ or the His:Nǫ2 and the Zn2+ were modeled as bonded interactions and the equilibrium
values for bond lengths (Table D.2), angles (Table D.3), anddihedrals (Table D.4) were taken

atom charge [e]
Zn2+ 1.0497
Cys:Cβ 0.2430
Cys:Hβ1 -0.0591
Cys:Hβ2 -0.0709
Cys:Sγ -0.8289
His:Cβ 0.0804
His:Hβ1 -0.0085
His:Hβ2 -0.0074
His:Cγ -0.0339
His:Nδ1 -0.2319
His:Hδ1 0.2919
His:Cδ2 -0.0051
His:Hδ2 0.1083
His:Cǫ1 0.0227
His:Hǫ1 0.1467
His:Nǫ2 -0.2653

Table D.1: ESP charges calculated for the atoms of the Cys3His-Zinc finger
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from the optimized geometry. The force constants were set inanalogy to similar groups in the
OPLS-AA force field.

atom 1 atom 2 bond length [Å]
Zn2+ Cys200:Sγ 2.35
Zn2+ Cys203:Sγ 2.34
Zn2+ Cys227:Sγ 2.32
Zn2+ His220:Nǫ2 2.13

Table D.2: Optimal bond length determined for the Cys3His-Zinc finger

atom 1 atom 2 atom 3 angle [◦]
Cys200:Sγ Zn2+ Cys203:Sγ 121.4
Cys200:Sγ Zn2+ Cys227:Sγ 113.1
Cys203:Sγ Zn2+ Cys227:Sγ 114.8
Cys200:Sγ Zn2+ His220:Nǫ2 98.0
Cys203:Sγ Zn2+ His220:Nǫ2 96.5
Cys227:Sγ Zn2+ His220:Nǫ2 109.2
Zn2+ Cys200:Sγ Cys200:Cβ 100.8
Zn2+ Cys203:Sγ Cys203:Cβ 101.7
Zn2+ Cys227:Sγ Cys227:Cβ 101.4
Zn2+ His220:Nǫ2 His220:Cǫ1 122.3
Zn2+ His220:Nǫ2 His220:Cδ2 131.0

Table D.3: Optimal angles determined for the Cys3His-Zinc finger

atom 1 atom 2 atom 3 atom 4 dihedral angle [◦]
Zn2+ His220:Nǫ2 His220:Cδ2 His220:Cγ 177.6
Zn2+ His220:Nǫ2 His220:Cǫ1 His220:Nδ1 -177.8
Cys200:Cβ Cys200:Sγ Zn2+ Cys203:Sγ 28.1
Cys200:Cβ Cys200:Sγ Zn2+ Cys227:Sγ 170.6
Cys200:Cβ Cys200:Sγ Zn2+ His220:Nǫ2 -74.6
Cys200:Sγ Zn2+ Cys203:Sγ Cys203:Cβ 91.0
Cys200:Sγ Zn2+ Cys227:Sγ Cys227:Cβ 166.6
Cys200:Sγ Zn2+ His220:Nǫ2 His220:Cǫ1 -21.2
Cys200:Sγ Zn2+ His220:Nǫ2 His220:Cδ2 161.5
Cys203:Sγ Zn2+ His220:Nǫ2 His220:Cǫ1 -144.2
Cys203:Sγ Zn2+ His220:Nǫ2 His220:Cδ2 38.4
Cys203:Sγ Zn2+ Cys227:Sγ Cys227:Cβ -48.3
Cys203:Cβ Cys203:Sγ Zn2+ Cys227:Sγ -42.5
Cys203:Cβ Cys203:Sγ Zn2+ His220:Nǫ2 -157.1
His220:Cδ2 His220:Nǫ2 Zn2+ Cys227:Sγ -80.7
His220:Cǫ1 His220:Nǫ2 Zn2+ Cys227:Sγ 96.7
His220:Nǫ2 Zn2+ Cys227:Sγ Cys227:Cβ 58.7

Table D.4: Optimal dihedral angles determined for the Cys3His-Zinc finger


