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Abstract

Protein-protein interactions play a pivotal role in mogtibgical processes. Especially their func-
tion in controlling apoptosis makes them to important draigéts. But in contrast to enzymes,
the applicability of existingn silico methods assisting the design of small-molecule inhibii®rs
abated by the intrinsic properties of protein-proteinriatgion interfaces. The central problem is
that in the absence of inhibitors, accessible binding pisckee lacking in this region. In this the-
sis, we present computational approaches for designingaalgzing binding pockets located at
protein-protein interaction interfaces. We observed titzatsient pockets not accessible in the un-
bound crystal structures of proteins involved in proteiatin interactions are frequently open in
alternative protein conformations. At the native bindiitg,gpockets suitable for accommodating
known inhibitors were observed. Based on these findings tuekesl how these pocket openings
occur and developed different protocols for detecting asighing such ligand binding pockets.
If no information about the binding site is available, theface of the entire protein is sampled
and all transient pockets opening on the protein surfacédardified. If the binding site is ap-
proximately known, pockets of predefined properties areralgmically designed at the desired
location. After validating the protocols using three mosigdtems, we show their application to
two test systems.






Kurzfassung

Protein-Protein-Interaktionen sind wichtige Angriffsiie fir Wirkstoffe, da sie bei den meis-
ten biologischen Prozessen eine entscheidende Rolleespidim Gegensatz zu Enzymen ist
jedoch die Anwendbarkeit existierender silico Methoden zur Unterstiitzung der Entwicklung
niedermolekularer Inhibitoren an Protein-Protein-Stiktallen eingeschrankt. Das Kernproblem
besteht hierbei darin, dass den Kristallstrukturen derebungdenen Proteine haufig potentielle
Bindungstaschen fehlen. In der vorliegenden Arbeit stellir computergestitzte Ansatze zum
Entwurf und zur Analyse von Bindungstaschen an Proteirteifr¢Schnittstellen vor. Wir haben
entsprechende Proteine untersucht und beobachtet, dasgetite Taschen, die in den ungebun-
denen Strukturen nicht zuganglich waren, haufig in altereatKonformationen geoéffnet sind
und sich zudem als Bindungstaschen fiir bekannte Inhilbitergnen. Des Weiteren haben wir
untersucht, wie diese Taschendéffnungen zustande komntedieses Wissen in der Entwicklung
neuer Vorgehensweisen zur Ermittlung solcher Ligandehlrigstaschen bericksichtigt. Ist keine
Information Uber die Bindungsstelle verfugbar, wird dis@@te Proteinoberflache nach transien-
ten Taschen abgesucht. Ist die Bindungsstelle aber anmibekannt, konnen Bindungstaschen
mit den gewtinschten Eigenschaften algorithmisch entwowerden. Nachdem diese Vorge-
hensweisen anhand dreier Modellsysteme validiert wursteiten wir deren Anwendung auf zwei
Testsysteme vor.






Zusammenfassung

In der pharmazeutischen Forschung gewinnen computetgeesiiethoden, die die Entwicklung
neuer Wirkstoffe unterstitzen, zunehmend an BedeutundasSosich die stetig steigende An-
zahl neu entdeckter Enzym-Inhibitoren nicht nur auf didesserten experimentellen Screening-
Techniken zurlickfiihren, sondern auch auf den kontinalegh Fortschritt im strukturbasierten
Wirkstoffdesign und die Tatsache, dass immer mehr hochsaritte Proteinstrukturen verfligbar
werden. Ist die dreidimensionale Struktur des Zielpratdiekannt, kann man mittels comput-
ergestutzter Methoden die zu blockierende Bindungsstefiatteln und deren chemische und ge-
ometrische Eigenschaften mit denen potentieller Liganeegleichen. Obwohl strukturbasiertes
Wirkstoffdesign sehr erfolgreich bei der Identifizieruranvnhibitoren eingesetzt wird, die auf die
Wechselwirkung zwischen Proteinen (zumeist Enzyme) uath&h Molekilen einwirken, lasst
der Erfolg bei der Entdeckung von Liganden, die die Bildumg WProtein-Protein-Komplexen
modellieren, noch auf sich warten. Dabei liegt ein enorrhesapeutisches Potential in der Hem-
mung von Protein-Protein Interaktionen, da diese einechatdende Rolle in fast allen wichtigen
biologischen Prozessen spielen, wie zum Beispiel im Turaohstum oder der Immunantwort.
Daher hat sich die Suche nach kleinen Molekilen, die eingpesthende inhibierende Wirkung
zeigen (auch SMPPIIs, “small-molecule protein-proteitetiaction inhibitors”, genannt), in den
letzten Jahren zu einem sehr aktiven Forschungsfeld ewliiic Jedoch sind bisher fast alle
bekannten SMPPIIs mittels experimenteller Screeningablggn entdeckt worden. Das struktur-
basierte Wirkstoffdesign hat sich fur diese Klasse vondtnen als eine groRe Herausforderung
erwiesen. Bei Enzymen befindet sich das aktive Zentrum fitbgalich in wohldefinierten, tiefen
Bindungstaschen, in die potentielle Inhibitoren bindenrén. Im Gegensatz dazu befinden sich
jedoch an den Schnittstellen der meisten ungebundenepifsitikturen keine fur die Ligan-
denbindung geeignete Vertiefungen. Daher ist es nahez@giioh Inhibitorbindungsstellen zu
identifizieren, wenn diese nicht aus Ligand-gebundenestd&istrukturen bekannt sind. Selbst
wenn der Bereich, in dem der Inhibitor bindet oder bindertesobekannt ist, verlauft die An-
wendung computergestitzter Methoden zur Suche nach vafitleen Treffern aus virtuellen
Ligandenbibliotheken meist ohne Ergebnis, wenn keinenieiée Bindungstasche vorhanden
ist, in die die Liganden platziert werden kdnnen. Das Zielsdr Arbeit ist es daher, je nach
verflugbarer Information tber die Bindungsstelle geeigrigindungstaschen zu ermitteln und zu
analysieren oder so zu entwerfen, dass diese bestimmtedenfmgen erfullen. Dass diese Vorge-
hensweise gerechtfertigt ist, zeigt unsere Eingangsstirlider wir drei Modellsysteme mittels
Molekuldynamik-Simulationen in Wasser untersucht habkierbei wurde in allen Fallen ein
haufiges Auftreten von transienten Bindungstaschen, dhg im der ungebundenen Startstruktur
vorhanden waren, auf der Proteinoberflache beobachtet.ied3a Modellsysteme so ausgewahlt
wurden, dass die Bindungsmoden eines Inhibitors aus eiristakstruktur bekannt ist, konnte
dieses Wissen zur Validierung der Ansatze genutzt werdesduizh konnten wir zeigen, dass
sich unter den beobachteten transienten Taschen auch tilie Bindungstasche befindet und
diese selbst in Abwesenheit ihres Liganden eine Form antimndie der Inhibitor in einer der
Kristallstruktur sehr ahnlichen Weise binden kann. Didsesebnis weist darauf hin, dass die
Benutzung transienter Bindungstaschen das strukturta$érkstoffdesign von Protein-Protein-
Interaktionsinhibitoren erheblich erleichtern kdnnte.

In einer Folgestudie haben wir den Einfluss des Proteinrat&g und des in Molekuldynamik-
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10 Zusammenfassung

Simulationen benutzten Losungsmittels auf die Bildung transienten Bindungstaschen unter-
sucht und deren essentielle Bedeutung festgestellt. Sdemuwahrend einer Molekildynamik-
Simulation in Methanol mehr Taschenéffnungen als in deighgchssimulation in Wasser be-
obachtet. Des Weiteren waren diese Taschen groRer undawmepaolias darauf schlie3en lasst,
dass das Offnen solcher Taschen in Methanol energetisahtigénist als in Wasser. Dariiber hin-
aus wurde der Einsatz von effizienteren Methoden zur Genegevon Proteinkonformationen
geprift, deren Ergebnisse jedoch denen der Molekuldyn&imiulationen qualitativ unterlegen
waren.

Aufgrund des hohen Zeitaufwandes dieser Simulationenrhalieeine weitere Vorgehensweise
entwickelt, die angewendet werden sollte, wenn die Bindatadle der potentiellen Liganden an-
nahernd bekannt ist. In solch einem Fall bietet es sich ae,Bindungstasche mit den gewtinsch-
ten Eigenschaften an einer bestimmten Stelle algorithmiscerzeugen. Im ersten Versuch der
Umsetzung dieser Idee wird die Proteinoberflache der petlemt Bindungsregion nach ener-
getisch gunstigen Taschenpositionen abgesucht. Hiermzlevie Kugel, die die Tasche reprasen-
tiert, in die Proteinoberflache gesetzt und das Proteirgetisch minimiert, damit sich seine Kon-
formation der Kugel anpasst und so eine Taschenvorstugtedint Die so erzeugten Proteinkon-
formationen werden anschliel3end verfeinert, so dass dgidtigen Konformationen einen Kom-
promiss zwischen einer moglichst grol3en Tasche und einglichét geringen internen Proteinen-
ergie darstellen. Da dieser Ansatz jedoch nur fur zwei deiriodellsysteme zufriedenstellende
Ergebnisse lieferte, wurde eine verbesserte Vorgehessweiwickelt, bei der die zu induzierende
Tasche durch eine Anzahl kleiner Kugeln représentiert wieden Positionen in Abhangigkeit der
Proteinkonformation gewahlt werden. Die Grundidee istlige dass diese Kugeln anfangs stark
mit den Proteinatomen uberlappen, diese Uberlappung eddczunehmender Anpassung der
Proteinkonformation an die gewiinschte Tasche reduzied. vidiese Methode erlaubt es, neben
der Position der zu erzeugenden Bindungstasche auch delem&h zu definieren. Die Anwen-
dung dieses Ansatzes auf die drei Modellsysteme liefelte\selversprechende Ergebnisse.

Die Erkenntnisse, die wir aus den hier beschriebenen Stgdi@onnen haben, wurden abschlies-
send verwendet, um die Bindungsstellen und -moden expetathdestimmter Liganden zweier
Systeme vorherzusagen. Bei einem der Systeme war wederimieirigsstelle der Liganden
bekannt, noch auf welchem der an der Reaktion beteiligtetePie sich diese befindet. Daher
wurde in diesem Fall die gesamte Oberflache aller in Fragenkemder Proteine mit bekannter
Kristallstruktur nach potentiellen Bindungstaschen abight und getestet, ob die Liganden mit
ausreichender Affinitat darin binden kénnen. Zusatzlicindea alle mittels einer Molekuldynamik-
Simulation des mutmalfilichen Zielproteins erzeugten igatesn Taschen auf deren Eignung als
Ligandenbindungstasche hin untersucht. Im zweiten Tst&sywar die Bindungsregion der Lig-
anden bekannt. Da das Protein an dieser Stelle jedoch ef$exgmwohnlich hohe Flexibilitat
aufwies, haben wir uns auch hier firr die Suche nach tramsiergschen mittels Molekuldynamik-
Simulationen entschieden, in die die Liganden anschliglpdatziert wurden, um deren Eignung
als Ligandenbindungstasche zu bewerten. In beiden Fédlent&n wir mittels der hier vorgestell-
ten Methoden potentielle Bindungsstellen identifizierad moégliche Bindungsmoden der Ligan-
den vorschlagen.
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Chapter 1

Introduction

About 2,300 years ago, Aristotle stated: “The whole is mbantthe sum of its parts.” Along

the same lines, a simple conglomeration of different maéecin a specified ratio in a biological

cell does not result in a living organism. It is the strictigocdinated and regulated interaction
of these parts that constitutes life. The first chapter pl@vian introduction into protein-protein
interactions that are the drug design targets tackled sttiésis, and into the objective of this
work.

1.1 Molecular Interactions and their Modulation

Strictly speaking, all physiological processes, or biagagprocesses in general (like reproduction,
cell growth, signal transduction, cell recognition, andtabelism), involve interactions between
molecules [1]. For example, the transfer of informatiomir®NA to proteins as described by
the central dogma of molecular biology is mediated by irtéoas between different kinds of
molecules that interact with each other by formic@mplexef variable stability. Complexes
may contain two up to several thousands of molecules thdttoieach other either covalently or
non-covalently. In this context proteins are of particufgerest. Besides representing the most
abundant class of molecules by accounting for more than 50tbealry weight of cells [2], their
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Figure 1.1: A part of the “whole” : Overview of signal transduction pathye (Figure taken from [3]).
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Figure 1.2: A typical drug discovery pipeline.

molecular structures determine their biochemical fumsiand are, therefore, crucial for biolog-
ical processes. The connection between the biochemicatifumof a protein and the output of
a biological process is illustrated using the example afiaigransduction. Such a process typi-
cally comprises a sequence of molecular interactions tteateediated by binding events. Upon
binding, an effect is triggered (usually a chemical reactioa structural change depending on the
biochemical function of the involved protein) that is remui for the activation of the next molec-
ular interaction. This process is continued until the enthigfinteraction pathways reached and
the final result is obtained [4, 5]. Figure 1.1 provides ammaesv of signal transduction pathways
in the cell and illustrates the complexity and variety ofrbaecular interactions. Note that some
of the proteins shown here are discussed later in this tha#isough we focus on isolated inter-
actions, one should always keep in mind that they are parlafya cellular network as depicted
by this figure. Therefore, it is essential for the approprianctioning of a biological process that
all components interact in a proper way. Even a single abemalecular interaction may perturb
the process and lead to an alleviated, abnormal, or evenngighysiological effect and may be
related to a disease [2].

In the ideal case, the medical treatment would consist ofulatithg these molecular interactions
such that the appropriate physiological effect is recaler€hemical substances (mostly small
molecules) that exhibit such an impact on a living organisencalleddrugs In contrast to the
historical procedure that was mostly based on serendipigymodern approach tackles the prob-
lem of discovering new drugs rationally [6]. An example fodraig discovery pipeline is shown
in Figure 1.2. The first step in such a drug discovery projecisists of identifying an eligible
targetthat is involved in the aberrant interaction pathway, uguaprotein, on which the potential
drug should act. (Typical drug targets and their portion agnthe targets of all approved drugs
are shown in Figure 1.3.) Subsequently, High Throughput&tng (HTS) libraries consisting of
several thousand compounds are searched for so-¢aiettiat modulate the activity of the target
protein to the desired extent. Based on these hits, newgnaldh improved pharmacological
and biochemical properties (like improved potency andcsigiey, reduced side-effects and toxi-
city) are then synthesized. Thelead compounds serve as starting points for further refinement

Miscellaneous: 2 %
Nuclear hormone receptors: 4 %

DNA: | %
-I I_r Integrins: | %

Other receptors: 4 %

Transporters: 4 % —

lon channels: 7 %—|

A
\\ GPCRs: 30 %
A

A

Figure 1.3: Marketed small-molecule drug targets by biochemical c{dasa taken from [9]). Most drug
targets are proteins. Note that the large fraction of enaydwes not only indicate their importance, but
also that the modulation of their activity is nowadays aegiiccessful enterprise.
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(a) competitive drug binding (b) allosteric drug binding

Figure 1.4: The drug may either bind to the same site as the agonist ((affia quadratic pocket) and block
this binding pocket, or to another site ((b) into the spraimcket) and so induce conformational changes
that encompass the binding site of the agonist. In the fogase, the drug binding is calledmpetitive
and in the latter case it is calledlosteric

and testing. Afterwards, the most promising compoundsgithg candidategnter the preclinical
and clinical test phases that are required for the final ajamaf the new drug. Nowadays most
of these steps are assisted by computational methods [In, Bis way, for example, the costs for
the hit identification can be significantly reduced if onlpsle compounds are testedvivo that
were predicted to be hits inv@rtual screeningcampaign. Here, databases consisting of thousands
of compounds are screengusilico to identify ligands that bind to the target protein with an ap
propriate computed affinity. In this work, we only focus orpegaches that foster tha silico
discovery of new hits. Further information about how conagiohal methods assist the discovery
and design of new drugs can be found in [7, 10-13].

Drugs, or ligands in general, commonly affect the behavidhair target proteins by non-covalently
binding to them. The involved surface region of the protelrere this interaction takes place is
calledbinding site A typical binding site for a small-molecule ligand is chatexized by a cavity
or depression on the protein surface, the so-cdlieding pocketthat accommodates the ligand
in a protein-ligand complex. Depending on the ability ofstcbmplex to produce a functional
response, one distinguishes betwagponistsandantagonists An agonist alters the protein’s ac-
tivity (either positively or negatively) upon binding, wieas an antagonist (also calledhibitor)
does not provoke a biological response itself. It solelyctioms by damping or blocking the bind-
ing of agonists. In the following, we focus on drugs that acirdnibitors because inhibition is the
most commonly used strategy in modulating molecular ictesas. The binding of the drug to
the target protein may either lsempetitiveor allosteric In the former case, the drug binds to the
same site on the protein as its natural ligand(s) but usuatly higher affinity (Figure 1.4 (a)). In
the latter case, the drug binds to a distinct site and trigygezronformational change that encom-
passes the binding site for the natural ligand(s) (Figudg(d)). In both cases, the physiological
complex cannot be formed because the binding site is eittwmpded or distorted [6].

1.2 Structure-Based Drug Design

Structure-based drug desigs an example of rational drug design where information &lboe
three-dimensional structure of the studied molecules &l ue assist the drug design process.
Here, advantage is taken of the fact that in a complex, thiejprand the ligand possess comple-
mentary geometric shapes and physicochemical propeHi@sever, this observation only holds
for proteins and ligands in their bountqlo) states. When it comes to proteins and ligands in
their unbound &po) states, the “lock-and-key” model (see Figure 1.5 (a)) agested by Emil
Fischer in 1894 [14] that describes the binding site as tigisl been proven to be inaccurate. The
currently most accepted model was published in 1958 by D&isighland and is a modification
to Fischer’s “lock-and-key” model [15]. This so-called tinced-fit” model (see Figure 1.5 (b))
considers proteins and ligands as rather flexible strugtivat are able to reshape upon binding
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Figure 1.5: Different models for describing ligand binding: (a) “loekd-key” [14], (b) “induced-fit" [15],
and (c) “conformational selection” [16].

for maximizing their geometric and physicochemical compatarity. As the unbound receptor
exists, like all molecules, in an ensemble of accessibldocorations a further concept termed
“conformational selection” [16] has been suggested toarpigand binding. This model can
be considered as an extension to the “induced-fit” model assiimes that the ligand will “pick”
the protein conformation into which it fits bdséforeany conformational changes are induced to
optimize the fit (see Figure 1.5 (c)).

In any case, structural information on the biomolecule®slved in the targeted interactions fa-
cilitates the discovery and design of new drugs. If the titiegensional structure of the target
protein (or a homologous protein) is knowndisect drug desigrapproach can be applied. Oth-
erwise, available information about molecules bindingh® $ame protein site can be employed
in anindirect drug desigrapproach. Note that both strategies do not exclude each dfloglern
drug design projects commonly use a combination of bothcgmbres (see [7] for examples).

1.2.1 Direct Drug Design

In an ideal case a high-quality three-dimensional atonriactire of the target protein has been
determined by X-ray crystallography or NMR spectroscopiferhatively, the experimental struc-
ture can be substituted by a homology model derived from taof$rotein(s) with similar se-
quence, and hence, structure (see [17] for a review). Hastimgtural information at hand about
the target protein then allows for the calculation of its ibgchemical and geometrical properties

m 5
+ = -

+
2

(a) deep binding pocket (b) flat surface pocket

Figure 1.6: The morphology of the binding site has a crucial influencetmndegree of complementarity
between the protein and its ligand: The deeper binding packe) tends to have a larger surface area and
S0 more interactions between the protein and the ligand @ssilde than in (b). Therefore, the maximal
degree of complementarity (illustrated here by the numbeomplementary charges) is also much higher.
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Figure 1.7: An example strategy using direct drug design for hit idecdifon. Note that the existence of a
(druggable) binding pocket is crucial for successful \attscreening.

as mentioned above. But equally important to having acoetbetprotein structure is knowing the
binding site of the potential drug as it represents theistpfoint for structure-based drug design
[13]. Proteins often possess multiple pockets on theiaserbut not all of them amruggable i.e.
appropriate for ligand (or drug) binding. As designing ceatilye inhibitors is usually the most
straightforward approach, one usually focusses on thegbdbkt accommodates the interaction
to be prevented. An enzymatic reaction, for example, takesegdn the active site that is usually
located in the largest pocket on the protein surface [18].

A high-quality three-dimensional atomic structure of tipe @rotein may be more appropriate for
drug design than a low-quality structure of the proteirtig complex because detailed descrip-
tions of putative ligand binding sites can be extracted ftmapo structure when focussing on
accessible pockets on the protein surface. An advantaggaofds binding into pockets is that
the contact area between the protein and the ligand is mugérlghan when binding to a flat
protein surface. The degree of complementarity and, thesspecificity is much higher as well
(compare Figure 1.6) [19]. Therefore, knowing the bindiitg s crucial for identifying potential
drugsin silico. In addition, this site should be druggable. If these prdadamns are fulfilled, huge
compound libraries can be virtually screened for putatitethat fit into this binding site, e.g. by
molecular docking. An example for a direct drug design strats illustrated in Figure 1.7. The
steps covered in this thesis are explained in detail in Gnaht

1.2.2 Indirect Drug Design

If the structure of the protein target is unknown, new commaisuwill be designed on the basis of a
hypothetical binding site that is derived from an analysithe physicochemical and geometrical
properties of known binders and non-binders. This apprisiohsed on the principle of similarity
that assumes that similar compounds produce similar sff@jt This is again related to the
complementarity between the protein and the ligand in ttminplexed state.

Examples for indirect drug design approaches are:

e Quantitative structure-activity relationship (QSAR) s
e Molecular shape analysis
e Pharmacophore generation and mapping

As indirect drug design is beyond the scope of this work, iertte two reviews [7, 12] for further
information.
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1.3 Protein-Protein Complexes and their Modulation

The interactions between proteins play a central role intrpbgsiological processes. Interest-
ingly, the protein-protein complexes that are formed dysnch interactions have different de-
grees of stability and duration [20]. Several possiblegifacmtions of these protein-protein com-
plexes have been suggested (see [21] for a review). Heresgvéha classification inttvansient
andpermanentomplexes. In permanent complexes, proteins are onlyestaldligomeric struc-
tures. Therefore this kind of interaction can be seen as@nt@tion of protein folding. Transient
interactions, on the other hand, represent short-livingmexes formed by proteins that are also
stable in the apo form [20].

This work focuses on transient protein-protein interawti¢PPls) because they are involved in
important biological processes like immune response agmbkiransduction (e.g. apoptosis or
proliferation) and, thus, involve important drug targets§, 19, 20, 22—-30].

1.3.1 Inhibiting Protein-Protein Interactions by Small Molecules

Designing small-molecule inhibitors that occupy enzymiivacsites is nowadays a common and
successful enterprise [29] as reflected by the small-mtdedug targets shown in Figure 1.3.
But when it comes to small-molecule protein-protein intdom inhibitors (SMPPIIs), their de-
sign is widely regarded as a formidable challenge and soofdy, a few SMPPIIs have been
approved as drugs. The inherent difficulties mainly arisenfthe nature of protein-protein inter-
action interfaces [2, 23, 25-27, 29]. Table 1.1 compiledifferences to the design of inhibitors
targeting interactions between enzymes and their smdkgute substrates. Figure 1.8 shows
a particular example pointing out the contrast betweenibgndites in the apo and holo state for
protein-protein interaction interfaces and small molec@dnzyme interactions. As protein-protein
interaction interfaces mainly consist of hydrophobic desis they are quite featureless making it
difficult to ensure that the small molecules bind with suéfiti specificity. However, in many
cases only a few residues contribute to high-affinity bigdiso-calledhot spotg31]) and, thus,

a small-molecule inhibitor does not necessarily need teicthe entire protein-binding interface.
The subset of the surface consisting of the hot spot residuasch smaller and, hence, suited to
be masked by a small molecule [29]. This is underpinned byattthat to date several SMPPIIs
have been identified [2, 8, 19, 22, 23, 25, 27-29].

PPl interface enzyme-substrate binding site

morphology of binding site

relatively flat; often no deef
binding pockets; often man
small subpockets

well-defined deep binding
y pocket

similarity of binding site in the
apo and holo state

major conformational change
upon ligand binding; binding
pocket often not accessible i
the apo state (Fig. 1.8 (c) + (d)

sin most cases only minor con-
formational changes upon lig-
nand binding (Fig. 1.8 (a) + (b))

surface area of binding site

1,500 - 3,000 A [25]

300 - 1,000 & [25]

spatial distribution of binding | distributed contiguous
site
natural ligands proteins small molecules

dominant interactions with

binding partners

hydrophobic interactions hydrogen bonds, salt bridges,

and electrostatic forces

Table 1.1: Comparison between protein-protein interaction integfaand deep enzyme pockets as drug
binding sites. It should be mentioned here that enzymes itlsaycantain binding sites for other proteins.
But within this context, we focus on the active site or othiading pockets for small-molecule ligands.
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a) apo state b) holo state ' (c) apo state d) holo state

Figure 1.8: Ligand-induced conformational changes in enzyme acties sind protein-protein interaction
interfaces: the binding sites of Biotin on the enzyme Stein (a, b) and of the SMPPII DIZ on the
protein MDM2 (c, d). (a) and (b) possess an almost identitalibg site, whereas the pockets in (¢) and
(d) show noticeable differences.

Examples for targeted protein-protein interactions are:

BCL-Xy, - Bak

MDM2 - p53

IL-2 - IL-2R«
XIAP-BIR3 - Caspase-9

This emphasizes the fact that although finding SMPPIIs ieadda great challenge, but it is not
an impossible one.

1.3.2 Experimental Approaches for Targeting Protein-Progin Interactions by Small
Molecules

Protein-protein interactions may be modulated by diffeasses of molecules. For example, if
the interface of at least one protein consists of a shortirmomiis amino acid sequence that con-
tributes significantly to the overall binding affinity thignbling patch can be mimicked by a pep-
tide. Although peptides are generally inappropriate asdnays because of their poor metabolic
stability and low bioavailability, they may serve as a leathpound that is subsequently optimized
by chemical modifications like the inclusion of non-natusedino acids [27]. Another strategy is
the identification of small-molecule binders by HTS of cheahiibraries. The advantages of this
approach are that it is also applicable if the binding sitencé be mimicked by a peptide and
that the hit or lead compounds are already small molecutet)a there is no need to mimick a
peptide by a small molecule as in the first case. A further atdgge is that no prior knowledge
about the location or the constitution of the interactioteliface is required. However, the hits
identified in an initial functional screening have to be ffiert tested to rule out assay-specific ar-
tifacts. Moreover, as the assays usually contain both (@n eeveral different) proteins that form
the targeted complex, it has to be clarified to which proteegxdompound binds. The success of
a HTS crucially depends on the size and diversity of the camgdibrary. In fact, it may happen
that the conversion of hits identified by HTS to lead compausdinsuccessful. A possible expla-
nation is that most screening libraries are designed faditional” drug targets like enzymes or
G-protein-coupled receptors (compare Figure 1.3) anddare to the different physicochemical
properties of protein-protein interaction interfacessuitable for binding to them [25].

An alternative approach that overcomes this problefreigment-based screenifig3]. The idea
behind this strategy is that initially a library of small argc fragments (with masses typically
less than 200 Da) are screened for active representatieseTare linked or otherwise optimized
to generate a small set of drug-sized molecules that aredtést an improved binding affinity.
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The advantage of this approach is that a huge chemical spadsegprobed while only a minimal

number of compounds has to be synthesized. The most commsety methods for fragment-

based screening aAR by NMRand Tethering SAR (Structure-activity relationship) by NMR

is an NMR-based method that identifies fragments that bingtd@imal subsites of the protein.

These fragments are then linked or merged by using a conntninaft structure-based design and
SAR [32]. In Tethering, a protein residue located near tinelibg site is mutated to cysteine and
the protein reacts with a library of disulfide-containinggments. At equilibrium, the protein-

fragment complexes with highest affinity will predomina83]. The drawback of this technique
is that the location of the binding site of the fragments lwabe known in advance and that the
mutation may influence the affinity towards the screenedfiexgs.

1.3.3 Computational Approaches for Targeting Protein-Pradein Interactions by Small
Molecules

Although it is nowadays possible to test up to 100,000 comgswa day in HTS, potential hits
could be identified even more efficiently if the size of the pawnd library is decreased. To this
endin silico approaches exist that design compound libraries eithectstie- or diversity-based.
Diversity-based library design, for example, generatesi$eed libraries by similarity clustering
while maintaining the diversity of the complete library.skfuctural information about the target
protein is available, it can be used to select or design comgi®that are to be tested experimen-
tally. Several published studies reported the identifocatf SMPPIIs by using a combination of
in silico andin vitro screening. As for most studied protein-protein complexesmall-molecule
binders had been identified before, direct drug design agpes were applied. In all examples
reported so far, the location of the binding site was alreladigwn from experimental studies
revealing hot spot residues or predicted from high-qudtiymplex) crystal structures that con-
tained accessible binding pockets. (Case studies areilescfor example, in [8, 22, 27, 29].)
Analogously to the standard direct drug design approacheabip “traditional” drug targets, the
procedure for protein-protein interactions illustratadrigure 1.9 comprises two key levels: the
prediction of potential binding sites from hot spot anadygiocket detection, and/or detection of

)
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Figure 1.9: Flowchart as suggested in [26] describingimusilico approach for the discovery of SMPPIIs.
This procedure comprises two key levels: identificationroéppropriate binding site and virtual screening
by docking ligands into the selected receptor region. Nud this approach relies on the identification of
a druggable binding site from the target structure.
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allosteric sites and the actual virtual screening step iithvligands are docked into the receptor
site [26]. So far, only a few studies [34—37] considered tbeilfiility of the binding region. In
fact, docking into flat cavities located at protein-proteiteraction interfaces is more challenging
than docking into deep enzyme pockets. Najmanoeichl. analyzed the conformational changes
of side-chains upon ligand binding [38]. By comparing tHeidings to a similar study about the
side-chain rearrangements upon protein-protein assmtigd9], they concluded that side-chains
in ligand binding pockets are more rigid than those in prefeiotein interaction interfaces. Thus,
it appears that other studies that did not incorporate tecdexibility were only successful be-
cause their target structure already contained a well-eéfiocket that was appropriate for ligand
binding. Note that this is not always the case, especiallynlfy a crystal structure of the apo
protein is available. In such a case the procedure deschbiéfede is not applicable and the iden-
tification of potential hit compounds is completely reliant the success ah vivo or in vitro
screening approaches.

1.4 Goal of this Work

The present work introduces computational approaches#sidt in the design of small-molecule
inhibitors at protein-protein interaction interfaces. @ficular focus is placed on the identification
of binding sites for potential hits. This step is crucial floe design and discovery of SMPPIIs. As
outlined above, detecting binding sites in enzymes is not eleallenging, even if solely structural
information about the apo conformation is available. Intcast to this, for proteins involved in
protein-protein interactions, missing knowledge aboetdimding site may impede the whole drug
discovery pipeline. If only the apo structure of the target@in is on-hand, the whole protein sur-
face has to be considered when searching for ligand bindlieg,. $/ioreover, as illustrated in Fig-
ure 1.8, detecting binding sites in apo proteins may faiblose putative conformational changes
that result from ligand binding are not represented by dsiognformation. To this end, we devel-
oped different approaches for identifying or designingagivé ligand binding pockets using apo
protein structures as outlined in Figure 1.10. After givangoverview of the underlying theory

binding

apo 3
P _— site / PPII
structure
known?

no yes

. Pocket detection Goal-oriented |_ _ _ _ _ _ ,
. protocol design of pockets .
Why do pockets Consideration of
open! subpockets
protein

conformations with
accessible pockets

Application

Figure 1.10: Flowchart illustrating the goal of this work. Every rectamay box is covered by a chapter
(Chapters 3 - 7).
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and (alternative) methods in Chapter 2, our initial pockatedtion protocol based on molecular
dynamics simulations will be introduced in Chapter 3. As tpproach led to the surprising re-
sult that many pockets not accessible in the starting stre@re open in other conformations, the
underlying mechanisms of these pocket openings were studiag modified versions of this pro-
tocol and the findings will be presented in Chapter 4. If thegin-protein interaction interface is
known (e.g. from the complex structure), the search forssibée binding pockets can be limited
to this area. Besides, the reduction of the search spacesrtakgoal-oriented design of binding
pockets computationally feasible as will be shown in ChapteHowever, binding pockets for
SMPPIIs often consist of several subpockets. Considehigfact, an extension was developed
that will be described in Chapter 6. Finally, in Chapter &, thethodology will be applied to two
test systems: Adrenodoxin and the BIR-2 domain of XIAP.



Chapter 2

Background

Since the 1980sn silico methods have become more and more important in drug desiggcts
[12]. The underlying concepts and algorithms most relefanthe present work will be intro-
duced in this chapter.

2.1 Statistical Thermodynamics of Binding Reactions

Molecules exist in a crowded world. Besides many other ggeni molecules that are present in
large numbers in (or outside) the cell, they are also sudedrby many molecules of their kind.
But not all of them are exactly in the same state. Some maschibr example, may be part of
a complex while others are in the unbound state. As a coneegue&xperiments rather study
the behavior of an ensemble of molecules than that of a smglecule. The behavior of such
a macroscopic system is characterized by its volume, teatyrer, pressure, number of particles,
total energy, and a variety of other macroscopic parametaiss described bghermodynamics
Energy for example, is one of the most important concepts in chigynidt determines which
molecules exist (and how they look like), which reactionsusqand in which direction they are
executed), and how a system behaves. Thus, the calculd@oey is essential in computational
structural biology. The term energy is commonly defined asantity describing the amount of
work that can be performed by a force. It exists in differemis (e.g. potential and kinetic
energy) that can be transformed into each other while thed estergy of a closed system (its
internal energyl) is always conserved (first law of thermodynamics). The treaisfer during a
reaction taking place in a closed system is calculated bgnitfealpy H

H=U-+pV 2.1)

wherepV is the work required to allocate space of voluieagainst a constant pressyreTo-
gether with theentropy.S, interpreted as a measure how close the system is to edquiiband
the absolute temperatufe the enthalpy is used to calculdBibb’s free energyhat defines how
much process-initiating work can be obtained from an igotla¢ and isobaric closed system:

G=H-T-S (2.2)

The change in free energy,
AG=AH-T-AS (2.3)

indicates which reactions take place under the given ciomgit
e AG < 0: reaction occurs spontaneously
e AG = 0: no reaction occurs (system is in equilibrium)

e AG > 0: reaction occurs non-spontaneously

33
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In Chapter 1, the termaffinity was used to describe the binding stability. As the ligdndhe
target proteinP, and the complexP L occur more than once and in more than one state, their
concentrations are measured after the equilibrium state

P+ L= PL (2.4)

is reached. The ratio of their concentrations is catlexdociation constardand is defined as

[P] - [L]

Ka="1pp

(2.5)

Note that this relationship describes the binding affinity tigand towards its target protein. For
example, in virtual screening one tries to identify hits @ predicted to bind witk; rates in the
micromolar range [22]. This affinity is influenced by non-at@nt interactions between the two
binding partners like electrostatic interactions, hy@mgonds, and van der Waals interactions and
is, thus, also represented by the ratio between the speke digsociatiort, s ; and the association
kon Of the complexes. Under standard conditions, the direaifcthis binding reaction at steady
state depends on the energy free difference of the two states

AG = RT - K, (2.6)

whereR is the gas constant [40].

In contrast to experiments that measure the behavior oin@nise of molecules, computational
approaches usually calculate the behavior of an individuglecule. How can these microscopic
results be used to explain the macroscopic results of therempnts? This link is provided by
the partition functiong, the key quantity of statistical mechanics. It can be usechtoulate all
macroscopic functions [41]. For a single molecule in theocgral NVT ensemble (see Section
2.3.1), itis defined as the sum over all possible energysstataccessible at temperatufe

o0 —E;

q= Z ekBT (2.7)

i=states

wherek g is the Boltzmann constant. When considering macroscopiesys in thermal equilib-
rium, one is usually interested in the average microstate @nergyl;, i.e. the staté for which
the probability P; is maximal. In the canonical ensemble, the probabilitidiefiothe well-known
Boltzmann distribution,

1 =5
Pi= et (2.8)

The partition function is used as a normalization factornsuge that the probabilities sum up to
1.

2.2 Energy Evaluation by Force Fields

Force fieldmethods are an efficient way to calculate the potential grferga given conformation
of even very large atomic systems. In contrast to the verg4timnsuming and computationally
intensive quantum mechanical methods, they do not consldetrons as individual particles but
approximate the electronic energy by a parametric funaifdhe nuclear coordinates. This means
that the atomic movements are treated by Newtonian meahahi so-callednolecular mechan-
ics [42]. In molecular mechanics, atomic nuclei and electramsraerged into point-like force
centers and covalent bonds are represented by springdexedif stiffness. Thus, the bonded in-
teractions, i.e. the stretching, bending, and impropesidgarof the bonds (shown in Fig. 2.1) can
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Co B 2R A

bond stretching angle bending proper torsion improper torsion

Figure 2.1: In molecular mechanics, atoms are represented by balls amdstby springs. This allows
describing the bonded interactions (except for propeidnsy by Hooke’s law.

be described by Hooke’s law. It is assumed that the valuelseskt interactions fluctuate around
equilibrium values and the magnitude of these fluctuatisrcharacterized by the corresponding
spring force constants. As an exception, proper torsioesrardeled as sums of suitable cosine
functions. Interactions between pairs of non-bonded atoamsl j with a distance of;; are de-
scribed by a Lennard-Jones potential and an electrostaignfal following Coulomb’s law. The
Lennard-Jones potential defining the van der Waals inferact defined as

0'4. 12 O‘.. 6
Upaw (ij) = 4e;j - ((r”) - (T—”> ) (2.9)
ij ij

whereo;; denotes the separation of the two atoms for which the pefestzero and;; denotes
the energy minimum (well depth) of this potential. The alestatic interaction between two atoms
with chargesy; andg; is given by

Ups(if) = J1o— (2.10)

TEYEy

with ¢y being the electric constant alag being the relative dielectric constant. In this context, a
force fieldis a set of parameters and functions derived from quantunmamecal calculations and
experimental data that is used to describe the potentiajgioéa molecular system. All atoms are
assigned a type that defines their partial charge and van a@als\\adius, as well as the equilibrium
values {y for bond lengthsgp, for angles, and, for improper dihedrals) and force consta#ts
for bonded interactions with other atom types. The potéeti@rgy is then approximated by an
empirical functionU of the three-dimensional coordinates of the systqd?]:

JAG)) S\ 2 JAGLY SN 2
Uis) = N (Tij - b(()J)) + > 2 ((bijk - ¢(()] ))
bonds(ij) angles(ijk)
L. ii 2
+ > k(iakD) (&jkz - (()]kl))
improper torsions(ijkl)
N k(z]kl) B (kD) 9
+ Z Z 5 (1 + cos(n(”kl)njkl — 757 ))
proper torsions(ijkl) n=0
+ Y (Uaw(ij) + Ugs(ij)) (2.11)

pairs(ij)

As above,r;; denotes the distance between two atanasd j, ¢;;;, denotes the angle between
three atoms, j, andk, &;;;; the improper, and;;; the proper dihedral angle between four atoms
i, 7, k, andl. In the term defining the proper torsionsjs the multiplicity, a value that that gives
the number of minima in the function, anél’jkl) is the phase factor which determines the equi-
librium values of the dihedral angles.
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Many different force fields have been developed for diffepamrposes like the application to pro-
teins, DNA or RNA, and small organic molecules. The most camiy used force fields for
proteins are AMBER [43], CHARMM [44], GROMOS [45], and OPL&A [46]. However, one
should keep in mind that the potential energy calculated foyce field is just an approximation
and has no physical meaning. Its correctness highly depemtise parameterization and the as-
signment of the correct atom types. Furthermore, as thé&retecare not considered explicitly, the
effects of delocalized-electron systems and of polarizability are neglected hadgpplication is
limited to systems in the electronic ground state. A longgeainteractions cutoff is usually used to
speed-up the calculations of the non-bonded interactiomhe molecular dynamics simulations
of this work, long-range electrostatic interactions weoasidered by the Particle-Mesh-Ewald
method [47].

Force field energies can be considered as steric energiaadeethey measure the excess energy
relative to a hypothetical molecule (where all bond lengémgles, and torsions are at their equi-
librium values) without non-bonded interactions. The pttd energies calculated for chemically
different molecules use different terms (due to differelotatypes, bonds, etc.) and, thus, their
zero points differ from each other. In other words, theirrgies cannot be compared [41]. How-
ever, when considering conformers of the same biomoleaylsitem, the use of force fields is
highly recommended. They can even be used to approximaigotkatial energy surfacef the
system, @8N — 6 dimensional hypersurface that is defined by the potentiatggnof all possible
conformers of a system witlv atoms [42]. Therefore, force fields are widely used to miméni
the energy of a protein, to search for multiple energetidalorable conformations, the so-called
conformational samplingand to score docking complexes.

2.3 Conformational Sampling

When dealing with experimental protein structures, onailshalways keep in mind that proteins
are flexible molecules and that their dynamics cannot beritbest by a single conformation.
Especially proteins in solution exist as an ensemble ofgatially accessible conformations
and so their flexible structure is best described when cagtwas many different representative
conformations as possible. Besides, X-ray or NMR strustuepresent time-averaged coordinates

energy

conformational space

Figure 2.2: Proteins exist in many different conformations arisingnire.g. displacements of secondary
structure elements. According to the Boltzmann distriinutitheir population is dependent on the free
energy of the various conformations. Here, (a) and (d) ssprethe most favorable conformations and (c)
the least favorable one.
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and are often derived under non-physiological conditiang.(in crystals instead of solution, at
low temperature, at too low or too high pH values) [48]. Thegresent only one out of many
different possible conformations the protein may adopt.weler, not all conformations have
the same energy as depicted in Figure 2.2 and, thus, not the peobability of occurring as
defined in equation 2.8. Therefore, conformations thatespond to low-energy states of the
protein are more frequently observed than conformatiorgghf energy. This finding reduces the
search space when looking for dominant protein conformatioConformational sampling can
thus be interpreted as searching for low-energy proteirfiocorations [49]. A large number of
conformational sampling methods for proteins have beeeldped. Systematic search methods
scanning the complete or a significant fraction of the canfiional space can only be applied
to small molecules having a few degrees of freedom. When lagnime conformational space
of proteins, heuristic search methods have to be appligdctiresider only a tiny fraction of the
conformational space but aim at generating a conformdteEmsemble that is as representative (in
the Boltzmann weighted sense) as possible [49, 50]. Suchadgtcan be roughly divided into
the following types:

e Non-step methods generating conformations that are imdigme from each other (e.g.
()CONCOORD, NMA, methods that sample side-chain rotajners

e Step methods generating a new conformation from the previme (e.g. Monte Carlo
methods, molecular dynamics simulations)

In the following, the conformational sampling methods taeg of importance for this thesis are
shortly introduced.

2.3.1 Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations calculatettime-dependent behavior of a molec-
ular system, so-calletfajectories[42]. It is a very powerful and complex technique and confor-
mational sampling is only one possible application. Thdeysmay be simulated in different
thermodynamic ensembles:

e themicro-canonical (NVE) ensemb{eonstant number of atoms, volumeV, and energy
E)

¢ the canonical (NVT) ensemblgonstant number of atom§, volumeV', and temperature
T)

e theisothermal-isobaric (NpT) ensembleonstant number of atomi€, pressure, and tem-
peraturel’)

The new configuration of the system consisting\ofnteracting atoms with coordinatess; and
massm; at time step is calculated from the previous configuration by integ@thNewton’s law

of motion
52&'

where the forced’; are the negative derivatives of the potential funcfidofs,, ..., sy):
F;, = U (2.13)
582'

These equations have to be solved for each atom in small tieps gusually 1-2 fs). This is
normally done usinyerlet methodike theleap-frog algorithm The forcest'(¢) computed from
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the coordinates at timet are used to update the velocities of the ateras timet + At. In order
to obtain more accurate values, mid-step velocities at timé% are calculated by

’U(t—l—%) =u(t — %)—I—%At (2.14)

The new velocities are then used to update the coordisates

s(t+ At) = s(t) + v(t + %)At (2.15)

In the classical setup the molecule(s) are placed in a sobaa As the number of atoms may be
very large, especially when using explicit solvent molesulseveral approximations in addition
to those related to the use of force fields are needed. Tgehtinds as constraints instead of
oscillators in the equation of motion allows the use of lary@e steps [51]. Furthermore, the
behavior of the system at the boundary of the simulation bay be unnatural. Thus, periodic
boundary conditions are used to simulate a bulk system wiitteal phase boundaries.

Although MD simulations of biomolecular systems are corapiahally very expensive, they may
nowadays be extended to multiple microseconds of simulditioe, depending on the system size
[52]. Note that only those states may be sampled that occdinm scales comparable to the
simulation length.

2.3.2 Normal Mode Analysis

Another very-well established method for studying confational changes in biomolecules is
normal mode analysilNMA) [53, 54]. Like in MD simulations, a force field is used talculate
the potential energy of particular conformations. Theudrbf this technique is that it can identify
the inherent collective modes along which overall protginainics takes place, whereas other
methods like MD simulations sample the protein dynamicy @ibng coupled modes. These
so-callednormal modesre linear independent concerted motions of atoms thataiscivith the
same frequency around a local energy minimum (see Fig. 2.8f@xample). For calculating

@ (b) (c)

Figure 2.3: Normal mode analysis of the bovine pancreatic trypsin ibitprotein (a) identified displace-
ment vectors of atoms (shown as arrows) oscillating witrstimae frequency. Here, the normal modes with
afrequency of 118.8 cmt (b) and 6.9 cm! (c) are illustrated (Figure taken from [53]).
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the normal modes, it is assumed that the potential energytifumaround a local minimum is har-
monic and that the normal modes represent harmonic vimsaoound these energy valleys. This
strong assumption about the molecule’s harmonic behaeiguires a preceding exhaustive en-
ergy minimization. Given an energy minimized system\oatoms, the8 NV x 3N mass-weighted
Hessian matrix{ is calculated by

82U
(581'58]'1 /TIN5

wherem denotes the mass§] the potential energy function, angd ands; the atomicz, y, or z
coordinates. The calculation of the normal modes can theadeced to an eigenvalue problem

Hyj = (2.16)

HU = 00 (2.17)

whereW is a matrix containing the eigenvectorsidfas columns an is the diagonal eigenvalue

matrix. The eigenvectors are the normal modegshat contain the amplitude and direction of
motion for each atom and the eigenvalues are the correspgpsduared frequencies of oscillation
w?. The root mean-square fluctuation (RMSF) of a normal modesis given by

T
i =\ /ki2 (2.18)
w;

Normal modes with lowest frequencies result in delocalizedions involving more distant parts
of a protein, i.e. oscillations of larger amplitude wheremé number of atoms is involved. In
contrast, localized motions like bond stretching reswlirfmormal modes with higher frequencies
[53-55]. Hence, conformational changes (e.g. inducedfétes) can be described by a linear
combination of displacements along the eigenvectors.wiges new conformations can be sam-
pled by random displacements along the eigenvectors.

However, one should always keep in mind that NMA is based ersttong assumption that alll
vibrations are harmonic. If this was to be true, any molaculation could be exactly expressed as
a linear combination of normal modes. But at 300 K, many Vibres are anharmonic and, thus,
not all protein dynamics observable during MD simulationsnoexperiments can be described
by a superposition of normal modes. Yet, it has been showsédagral proteins that functionally
important conformational variations, like conformatibnhanges upon ligand binding, can be de-
scribed by a single or multiple low-frequency normal mode®, [67]. But note that as NMA is
very memory-intensive, the energy calculations are peréal in vacuum and, thus, solvent effects
are neglected in the analysis of the protein dynamics.

2.3.3 CONCOORD and tCONCOORD

MD simulations and NMA suffer from the fact that high-enetmprriers are hard to overcome and
the sampling is restricted to a local energy basin of thergiateenergy surface. CONCOORD
(CONstraints to COORDinates) [58] and its extension nan@®XdNCOORD [59] are efficient
methods avoiding this problem by generating random prateiriormations that fulfill previously
determined distance bounds. The method consists of twe #liegirated in Figure 2.4. Atfirst, all
pairwise interatomic distances in the starting structusai@lly an energy minimized experimental
structure) are measured and classified by the progliatnFor each atom pair the distance range
is then set to the measured value plus or minus a tolerance vaht reflects the strength of
this interaction. For example, the allowed distance rarigesovalently bonded pairs are quite
small, whereas for atom pairs with hydrophobic interactitarger deviations from the distance
observed in the starting structures are accepted. In ttendestep, the progrardisco tries to
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Figure 2.4: The (t)\CONCOORD algorithm (Figure taken froht t p: / / www. npi bpc. npg. de/
groups/ de_groot/dseelig/tconcoord. htm).

find conformations that fulfill all these distance consttainThe procedure starts from random
coordinates and iteratively applies corrections to thétjpos of all atoms that violate the distance
constraints until all violations are removed. The authbiersed that the generated conformations
are similar to those obtained from MD simulations [58].

Whereas the goal of CONCOORD is the generation of a conféometensemble around a given
starting structure, the extension tCONCOORD tries to ptextinformational transitions and, thus,
is able to sample the conformational space more exhaustiVee main difference to the original
implementation is the estimation of the stability of hydeagoonds by analyzing the environment
with respect to hydrophobic protection. Only stable hy@rogonds that are not likely to be broken
by water molecules are translated into distance constrainterestingly, when starting from the
apo protein structure, this extension is able to generatéoomations that are very similar to
experimentally determined ligand-bound structures [59].

2.3.4 Sampling Side-Chain Rotamers

When considering the conformational space of the proteie-shains only (e.g. homology mod-
eling with fixed backbone conformation) one can discretimdearch space into so-called side-
chainrotamers Analyzing available protein structures revealed thatlihedral angleg, . . ., x4

of the side-chains tend to cluster around particular valepsesenting low-energy side-chain con-
formations (see Figure 2.5) [60]. This observation led &® tbmpilation ofrotamer libraries
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Cs
Cy
X2

X1

Figure 2.5: Phenylalanine has twg angles:y is the torsion N - G - C3 - C, and- is the torsion G -
Cs - C, - Cs5. The rotamers, the energetically favorable side-chairiaramations, can be represented by a
combination of differenk; andyz angles.

listing the observed rotamers (defined by thangles) for each amino acid together with the
probabilities of their occurrence [61, 62]. As thdmekbone-independemtamer libraries do not
take the possible relation betweernyangle and the local backbone conformation (i.e. the sec-
ondary structure) into account, a second type of rotamearigss was introduced, theackbone-
dependentotamer libraries. Here, rotamers are defined as a functidheobackbone dihedral
anglesy and¢ [63]. An example for the usage of rotamer sets is the sid@gh@diction prob-
lem where the protein backbone is fixed and the correct rathaseto be assigned to each residue
such that the total energy of the resulting protein confaionais minimal. This is an important
task in homology modeling, ab initio protein structure pcédn, and structure-based drug design
[64]. The sampling of side-chain rotamers is a combinat@rablem and even for small proteins
with 100 residues having an average number of 5 rotamersepieiue,5'%° different conforma-
tions are possible. However, many combinations of rotarmansot exist in the same low-energy
conformation. When calculating the global minimum-enecgyformation (GMEC), the Dead-
End Elimination (DEE) theorem [65] can be used to reduce dsch space by removing all
rotamers that cannot occur in the GMEC. The prog@@WRLuses DEE to restrict the confor-
mational space given by a backbone-dependent rotamenfibugh that the remaining space can
be searched exhaustively for low-energy side-chain coatioins [66]. The drawback SCWRL
and other methods using DEE is that the GMEC highly dependiseorotamer library and the po-
tential energy function used. By keeping the best rotamergsedue only, many other low-energy
conformations are ignored. However, in many applicatians beneficial to consider an ensem-
ble of low-energy conformations instead of just a single.ohlee programRECS for example,
handles side-chain flexibility by calculating several getically favorable rotamer combinations
[67].

2.4 Detection of Binding Sites on Protein Surfaces

Characterizing the surface of the studied protein is chdoraunderstanding and predicting its
function. As the function of most proteins is closely rethte binding specific partners, this is
also reflected in the properties of their molecular surfad@sly if the interface possesses the
requisite complementarity, binding will occur with the veed affinity [68]. This complemen-
tarity is provided by physicochemical and sterical feadurEherefore, the ubiquitous question in
structure-based drug design, “Does protdibind moleculeB with sufficient affinity?” can be
broken down into two smaller questions: “Which surface oagif proteinA is complementary to
moleculeB?” and “How does the complet B look like?” This section introduces computational
techniques for answering the first question, the secondiqnéds addressed in the next section.
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If B is a small molecule, its binding site on protednwill most likely contain a binding pocket.
Many algorithms have been presented that aim at identifgoukets on protein surfaces [18, 69—
73]. Due to their focus on concave regions, these methodssarally geometry-based More
general methods usenergy-basedpproaches for predicting surface regions that are endowed
with physicochemical features that may account for higmayfiligand binding [74—76]. Here,
only a digest of the established methods is presented.

2.4.1 Geometry-based Detection of Binding Sites

Algorithms of this category detect cavities on protein goels. The advantage of this purely
geometrical definition of a binding site is the independefioen the ligand’s physicochemical
properties. One typically assumes that the ligand binadsane of the largest pockets available on
the protein surface. However, several studies showedhbdigand indeed binds into the largest
pocket in 72 % to 84 % of the complexes in the used data set§F18uggesting that not only the
largest cavity, but also the smaller ones are of interestk@&aetection methods using geometric
criteria can be further subdivided ingpid-basedapproaches where the protein is mapped onto a
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Figure 2.6: Geometry-based algorithms for the detection of pocketpuffei taken from [69]).



2.4. DETECTION OF BINDING SITES ON PROTEIN SURFACES 43

3D grid (Fig. 2.6 (a)) andion grid-basedapproaches (Fig. 2.6 (b) - (d)).
Prominent examples for grid-based approaches are:

e POCKET [72] scans the, y, andz axes for a sequence of grid points that starts and ends
with a point inside the protein and has a period of solverdt gaints in between.

e LIGSITE [73] extends the POCKET algorithm by additionallsasning the four cubic di-
agonals.

e LIGSITE®SC [69] refines LIGSITE by scanning for surface-solvent-scefinstead of protein-
solvent-protein events and re-ranks the pockets by theedexjrconservation of the involved
surface residues.

e Pocket-Finder [74] extends the LIGSITE algorithm by settanthreshold for the minimal
number of protein-solvent-protein events.

While these method are all based on the same idea, the méhaso of the non grid-based
approaches differ significantly from each other. The mogtartant ones are:

e PASS [70] uses probe spheres to incrementally fill pockets.

e SURFNET [71] generates a set of interpenetrating spheidsatie placed between two
atoms and do not contain any other atoms.

e CAST [18] uses alpha shapes and discrete flow theory to capgmakets.

In this thesis the PASS algorithm is used. In the followings introduced in more detail.

PASS

PASS (Putative Active Sites with Spheres) [70] uses prolergs for characterizing regions of
buried volume on protein surfaces. Based on the size andllaxient (i.e. number of protein
atoms within a given radius) of these volumes, the approdetitifies positions likely to represent

b C
Filter

Protein

slake uonalaoy

' &
o ey o F -
1 Identify ASPs™ . :
R "@8 % ;
Active Site Points (ASPs) Final Probes

Figure 2.7: The PASS algorithm (Figure taken from [70]).
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binding sites. An outline of the algorithm is shown in Figar&. Given a protein in PDB format,
PASS assigns the elemental atomic radii. The actual pockeesing process starts with coating
the protein surface with an initial layer of spherical prstfeadius: 1.8 A) according to a three-
point geometry (a). Subsequently these probes are filté)ad (emove all probes that

e clash with protein atoms,
e are not sufficiently buried (burial count below a given tined), or
e lie within 1 A of a more buried probe

Afterwards accretion layers of smaller probes (radius:X).@re added onto the previously iden-
tified probes (c) and are filtered (d) as described in steplse two steps are repeated (e) until
a layer is encountered in which no newly-found probes serthe filters (f). For each probe in
this final set of probes a weight is calculated that reflecstimber of probes in the vicinity and
their burial extent. The active site points (ASPs) are aeiteed by cycling through all probes
in descending order of their probe weight, considering dhtse probes with a weight above a
given threshold that are separated by a minimum distancedok &om the previously identified
ASPs (g). The output of the algorithm is the placed probesthaddentified ASPs representing
the potential binding sites (h).

Initially, we have used the binary executable file made aléél by the developers of PASS
athttp://ww. ccl.net/ccal/ soft ware/ UNI X/ pass/ over vi ew. sht m . At a later
stage, we shifted to the BALLPass implementation by Janahn and Dirk Neumann (CBI,
Saarbricken).

2.4.2 Energy-based Detection of Binding Sites

Alternatively to the geometry-based algorithms, bindiitgsscan also be detected by energetic
criteria. Here, it is assumed that the ligand binds to thegatieally most favorable site on the
protein surface [78]. In principle, the common idea of thagproaches is to calculate the interac-
tion energy between small probes and the protein. The yasfaised probes ranges from single
methyl probes to sets of many different organic probes and.idNote that the more different
probe types are used the more detailed is the characterizatithe putative binding sites (e.g.
information about potential hydrogen bond donors and docgpelectrostatic, hydrophobic, or
aromatic interactions).

In this class of algorithms, binding sites are not (soleh@dicted by cavity detection, the physico-
chemical properties of these surface regions that may atéouhigh-affinity ligand binding (i.e.
ligand complementarity) are also considered. Many allgord are grid-based, so that the interac-
tion energy between the molecular probe and the proteinidgsileded for each grid point. Other
approaches use the grid just for the initial placement optiobes and optimize their positions by
energy minimizations. Examples are:

e GRID [79] calculates the interaction energy between a ahpsebe and the protein at each
grid point of a cubic grid placed onto a region of the proteimato the entire protein.

e Q-SiteFinder [74] determines the van der Waals energy letveemethyl probe and the
protein for each grid point and detects pockets by clugjettie most favorable ones.

e CS-Map [75] uses a grid for the initial placement of smallaovig functional groups, moves
them around to minimize the interaction energy with the giroatoms, and finally clusters
and ranks the positions to predict hot spots for binding afdike molecules.

e MCSS [76] requires a prior definition of the binding site. T™teength of this algorithm is
that protein flexibility is taken into account while favotalpositions and orientations for
small organic functional groups are predicted.
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2.5 Molecular Docking

Knowing the potential site of interaction between protaidl éigand does not directly allow for
inferring the binding affinity and the conformation of thengolex. The binding affinity depends
on thebinding modeof the ligand, i.e. its bound conformation and its oriemtatrelative to the
protein. The problem of predicting a protein-ligand compike tackled bymolecular docking
Docking can be described as a combination of two componeetaching for favorable configu-
rations and scoring them. The output is a list of predictexgin-ligand complexes, thaocking
posesranked by theidocking scorghat evaluates the affinity of the complexes. Both companent
are crucial, though error-prone. The configuration spaathhs to be sampled is huge. Even if
the ligand as well as the protein (@ceptoras they are often called within this context) are rigid,
six degrees of freedom have to be considered. But ligandkttepossess several rotatable bonds
and so not only the ligand’s orientation relative to the @rmothas to be sampled, but also the
internal degrees of freedom of the ligand. Moreover, wheating the protein as a rigid body,
induced-fit effects are neglected. Yet the size of the sespelce impedes a complete sampling
and so the native binding mode may be missed. But even withmgplete list of possible config-
urations, finding the native complex is not guaranteed. iBgdunctions predict which docking
poses occur in nature. They may be, for example, force-fiateth, knowledge based, or empir-
ical and usually include weights for individual terms thaié been fitted using a training set of
protein-ligand complexes. However, one cannot expect tteework perfectly for each kind of
protein-ligand interaction [80, 81].

Molecular docking is nowadays a crucial component of maingdliscovery projects. Note that
docking approaches always represent a compromise betweaetness and computational feasi-
bility. Especially when applied early in a drug discoverpjpct, i.e. when docking is used in
virtual screening to identify potential hits among severmusands of compounds, speed is an
important issue although the predicted affinities shoulblst reliable. On the other hand, when
applied in the lead optimization phase, where the numbeutatpe ligands has significantly de-
creased and the objective is a reliable differentiatiorneirtpredicted binding affinities, exactness
is more important. One possibility to evaluate the religbidf a docking program ise-docking
where a ligand is docked back into the protein conformataien from its experimentally known
complex structure. In a perfect scenario, a docking podectiraesponds to the native complex
would be scored best and, thus, ranked number 1. The sityit#ra docking pose to the native
complex is measured by the root mean square deviation (RM&E involved atoms (usually
the atoms of the ligand). A docking pose with an RMS2 A is considered native-like. Note that
if only docking poses with high RMSD values were calculatiéis may indicate an insufficient
sampling. If docking poses with low RMSD values are exclelsivpredicted to be unfavorable,
this may hint at an unsuitable scoring function [10, 11, 8], 8

While early docking algorithms like DOCK [82] considerecetprotein and the ligand as rigid,
more and more flexibility has been incorporated in recentsyddowadays, treating all rotatable
bonds of ligands as flexible is standard in modern dockingrétgns and even receptor flexibility
is handled more and more successfully [48]. In the followiagew popular docking software
packages are introduced.

2.5.1 Docking Flexible Ligands into Rigid Receptors

In general, ligands change their conformations upon bgnttina receptor. Although this results
in a loss of degrees of freedom and so in a free energy pematteiorder of 0.4 kcal/mol per

torsion [83], this energy increase is compensated by ictierss between protein and ligand and
solvent reordering so that the total free energy of bindifavorable. The magnitude of the con-
formational changes varies between complexes. As aboutof@dbdrug-like molecules possess
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2-8 rotatable, non-terminal bonds [84], handling at leigstrid flexibility is pivotal for a success-
ful prediction of their binding modes. Two common approachgist for sampling binding poses
that incorporate flexible ligands: fragmentation of theitig molecule followed by an incremental
reconstruction and global optimization of the ligand caoates. The best known docking tools
are:

e The package DOCK [85] considers ligand flexibility sincesien 4.0. The algorithm starts
with filling the binding site with overlapping spheres thapresent clusters of pseudo-
atoms. The ligand is divided into fragments and a rigid poitthe “anchor” is superposed
onto these pseudo-atoms by geometric matching. The andsitigms are then evaluated
and energetically minimized using a force-field based sgofunction which incorporates
intermolecular energy terms that were precomputed on a ghe best initial docking re-
sults are selected and the remaining ligand fragments arenrentally added in different
orientations, optimized by a short energy minimizatiorg pruned such that only a prede-
fined number of partial binding configurations has to be a®rsid in the next step.

e FlexX [86] divides the ligand into fragments and choosesselilagment that is then placed
at several promising positions in the binding pocket, irtefently of the rest of the ligand.
Subsequently, the ligand is incrementally reconstructioigua greedy strategy. Interactions
are classified by the strength of their geometric conssantd described by spherical sur-
faces whose parameters depend on the type of interactiom efipirical scoring function
estimates the free binding energy of the protein-ligandperes by penalizing deviations
from the ideal geometry for hydrogen bonds, ionic, aromaina lipophilic interactions.

e Glide [87] makes use of a “docking funnel” for progressivalgrrowing down the search
space and so allowing for more accurate scoring functionsa preprocessing step, sets
of fields that represent the shape and properties of the tagcep a grid are computed.
After an initial sampling of ligand conformations, pronmgi poses are selected and the
ligand is energetically minimized in the field of the recepising a force-field based energy
function. The conformations of the very best candidate p@se refined using a Monte
Carlo sampling. Finally, the docking poses are re-scoredranked using a more accurate
scoring function combining force-field and empirical batemuns.

e AutoDock [88] uses a genetic algorithm (GA) to optimize tlgahd coordinates with re-
spect to the protein and evaluates the docking poses by amiemhpcoring function. As
this is the docking method used in this thesis, it is intratua detail in the following
paragraph.

AutoDock3

Before the actual docking step of AutoDock3 [88] is launchedyrid of user-defined size and
spacing is placed at the binding site. At each grid point, dleetrostatic potential, as well as
the interaction energy between the protein and the diffeaym types available in the ligand are
precomputed. The docking step itself then tries to optintlieinteraction energy between the
protein and the ligand. To this end, several search proesdane provided. The most prevalent
is the Lamarckian genetic algorithm (LGA) in which the trati®n, rotation, and conformation
of the ligand with respect to the protein are codedstate variables In the context of genetic
algorithms, these state variables correspond to genegdfiae the ligand coordinates. Tfigess

of a ligand is calculated by the AutoDock3 scoring functibattis based on force field energies
and tries to estimate the free binding energy of the compiegolution by implementing the
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Figure 2.8: The AutoDock3 scoring function estimates the change ofdressgy upon binding in solvent.
As the change in free energy is independent from the pathh#renodynamic cycle can be used to derive
AGpinding,solution (Figure taken from the AutoDock3 manual).

thermodynamic cycle shown in Figure 2.8:
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The AG terms are coefficients fitted by a linear regression anabfsésset of 30 protein-ligand
complexes of known binding affinities. The summations ruerall pairs of ligand atomsand
protein atomsj, as well as over all ligand atom pairs that are separated Bast three bonds.
E(t) denotes a directional weight that is based on the amglegtween the probe and the target
atom and a Coulombic electrostatic potential. Upon bindithg ligand looses several confor-
mational degrees of freedom resulting in a loss of entropythis scoring function, the entropy
cost is assumed to be proportional to its numbes;gfbonds,N;,,. The last term estimates the
desolvation energythe energy gain or loss arising from the removal of solveatecules from
the binding interface of the protein and the ligand. Here,dhsolvation energy is estimated by
a variant of the method of Stouten [89] that evaluates thegmage of volume around the ligand
occupied by protein atoms, whevé denotes the atomic fragmental volume &f)dhe solvation
term for atomi, ando a gaussian distance constant.

After assessing the fitness of edndividual, the best ones pass their genes on to the next gener-
ation, where they are recombined, randomly mutated, ouleghanged. In the LGA, this global
search implemented in the genetic algorithm is combinel aibcal search that performs an en-
ergy minimization on the atomic coordinates and is apphealuser-defined fraction of individuals
of each generation. After a predefined maximum number obgreraluations or generations, the
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best individuals corresponding to docking solutions apored. Usually several independent
docking runs are performed and the different solutions lrgtered by their RMSD.

2.5.2 Docking Flexible Ligands into Flexible Receptors

Not only ligands, but also proteins undergo conformatiah@nges upon binding. Here, the trade-
off between efficiency and accuracy is even more an issuerasdaming conformational changes
of the receptor in addition to the ligand significantly ineses the number of degrees of freedom
that have to be sampled. These induced-fit effects may cemptibtle rearrangements of a few
side-chains located at the binding site, local adaptionthe@fbackbone, or even movements of
whole protein domains [90]. Not surprisingly, docking prags handling only ligand flexibility
are quite successful for many molecular systems, whiletfeers, they completely fail in predict-
ing the protein-ligand complex. For example when re-doghigands into their receptors in the
bound conformation, the docking program GOLD that handtgnb and receptor flexibility was
able to find a docking pose within 2 A of the native conformafior 91% of the test set. But when
another conformation of these receptors is used, the dgpgeénformance significantly dropped
to 72% [91]. This observation highlights the need for dogkmotocols that incorporate receptor
flexibility. Actually, there are two possibilities to fulfithis requirement. The receptor flexibility
may either be represented by a conformational ensembleajedeoy an external program or by
considering different crystal structures, or by sampliogformational changes directly during the
search step in the docking program itself. For completenesalso mention a third possibility for
handling receptor flexibility implicitly, the so-callezbft dockingapproaches. They represent the
simplest way for tackling sterical clashes arising fromsimg induced-fit effects when a ligand
is docked into a rigid receptor. Instead of changing theptreconformation, the docking pose
is scored optimistically by tolerating an overlap of thealg with the receptor surface. To this
end, the repulsive contributions to the energy functionradeiced or the van der Waals radii of
the receptor atoms are scaled down. Yet, this approach millydeld accurate docking results if
subtle side-chain rearrangements in the binding site dfieisat for accommodating the ligand
[50].

Most docking approaches introduced previously have dgtbalen extended to model receptor
flexibility. The underlying changes will be discussed in thkkowing overview of docking proto-
cols that incorporate receptor flexibility.

Representing Receptor Flexibility by Conformational Ensenbles

The maybe most trivial solution is to dock the ligands agaéwery receptor conformation taken
from a conformational ensemble. In this case, each indalidanformation can be treated as rigid
during the actual docking step. The conformations may baetkfrom different experimental
structures of the protein, extracted from MD simulationrsyom any other method for conforma-
tional sampling. The advantage of this kind of protocol $sritodularity, i.e. sampling receptor
flexibility and docking poses are independent from eachrothiey conformational sampling ap-
proach can be combined with any docking program and the omiafiions to be considered can be
selected beforehand. Moreover, the degree of receptobifigkis unlimited. It is noteworthy that
these protocols are rather based on the theory of confarnatselection than on the theory of
pure induced-fit effects [48]. The drawback of this kind ohtling receptor flexibility is that the
quality of the docking results crucially depends on the usmdormations. If relevant conforma-
tions are lacking, e.g. if no appropriate binding pockewalable, then the best docking program
will not be able to predict a reasonable binding pose. Maeahe computational demand may
be quite high when using a large conformational ensembleth®wther hand, it was shown that
the ligand may bind to receptor conformations which are igiilit populated [93, 94], suggesting
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Figure 2.9: An overview of the improved relaxed complex scheme. The angments to the original RCS
are shown in gray background. The receptor ensembles caaenezaged by classical MD simulations or
by simulation techniques that enhance the conformati@rapéing like Generalized-Born MD (GB-MD),
steered MD (SMD), high temperature MD (High T MD), targete® NTMD), or accelerated MD (Accl.
MD). The ligands are taken from existing or newly assembladloases and docked with AutoDock into
the receptor ensemble. The docking poses are then re-sooreebvaluated in the Post-Processing stage
using the AutoDock version 4.0 scoring function (AD4), nalkar-mechanics Poisson-Boltzmann surface
area (MM-PBSA), single step perturbation, LIE, FEP or Thteique (Figure taken from [92]).

the importance of preselecting conformations that mayaiomligible binding sites. For example,
the originalrelaxed complex schentembines MD simulations of the receptor in explicit water
with a subsequent rapid docking of the ligands into the el@MD snapshots, and an accurate
re-scoring of the docking poses [93, 94]. In ihgroved relaxed complex schestewn in Fig-
ure 2.9, docking is performed on a reduced set of MD snapsiuotgining only non-redundant
receptor conformations [92].

Alternatively, the complete conformational ensemble @pdied to the docking program and sev-
eral conformations are combined into one receptor reptasen during the search step [48]. An
example for such a docking approach is FlexE where varyimts e considered as discrete al-
ternative conformations and are combinatorially joinedyfelding new receptor representations
for docking [95]. The virtue of this more advanced approacthat local receptor conformations
providing a favorable contribution to binding can be conelinto a single structure suitable for
accommodating the ligand. Nevertheless, the toleratedtstal differences among the conforma-
tional ensemble are limited. Very diverse conformatiores difficult to combine and too similar
ones are inappropriate for modeling receptor flexibilityatddition, this composite structure may
not be a physiological accessible conformation and so tedigted binding modes and energies
are artificial [48].
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Intrinsic Receptor Flexibility

Including receptor flexibility in sampling putative dockjiposes can be regarded as a direct imple-
mentation of the induced-fit theory. Many docking prograaietadvantage of the finding that for
many proteins only subtle changes in amino acid side-ctamsufficient to achieve a collision-
free ligand binding, also known as the “minimal rotation bggesis” [96]. Hence, a common
and time-efficient approach is considering multiple sitlais conformations of a few selected
residues located at the binding site by sampling torsioteary using predefined rotamers taken
from a rotamer library [48, 50]. In 1994, Leach presentedairtbe first docking approaches that
handled side-chain flexibility [97]. The residue conforibas were taken from a rotamer library
and the docking poses were incrementally built up using thaldgorithm (a graph-based method
for finding optimal paths from a given initial state to a go@ts) in combination with DEE. An-
other pioneering docking program taking into account resrefexibility at least partially was
GOLD [98, 99] that defines “fitting points” on hydrogen bongliand hydrophobic groups of the
ligand and the receptor to place the ligand into the binditey sSimilar to AutoDock, GOLD
uses a GA for calculating the docking pose. Besides the thledf the rotatable bonds of the
ligand, its ring geometries, and the mapping of the fittingfo the conformations of hydrogen
bonding terminal bonds of some side-chains are optimizeteis As stated on the GOLD web-
page!, the latest version also features side-chain and backbexigifity for a few user-defined
residues. Likewise, in AutoDock4 [100], the user can defatatable bonds for a few residues and
the side-chain conformations are encoded as genes analpgouhe flexible ligand. In contrast,
ROSETTALIGAND [101] allows for full side-chain flexibilitypy optimizing the side-chains and
the ligand position simultaneously. In some cases incatpw side-chain flexibility only is not
sufficient to model ligand-induced conformational chang&khough backbone movements are
often limited to single loops, these local adaptions areawobunted for by side-chain mobility.
But even if only they) and ¢ angles are varied, considering backbone flexibility wisuk in a
huge search space and an adequate sampling is impossitdeefdrie, docking approaches that
handle backbone flexibility explicitly have to narrow dowretsearch space further [50]. This
can be done efficiently by using harmonic modes (e.g. deffieed NMA or MD simulations) to
model deformations of the binding pockets [102, 103]. The afs*flexibility trees” [104] is an
alternative way for focussing on molecular motions that ifyotthe binding site by encoding the
conformational subspace using a small number of varialesy are used by the docking program
FLIPDock [105] where a flexible ligand is docked into fullyXible receptors. When sampling
the docking poses, the variables representing the recéptability are searched concurrently
with the conformation and placement of the ligand. Furttmpreaches comprise several steps,
starting with a rough placement of the ligand into the bigdsite and a subsequent optimization
of the docking pose by MD simulations [106] or energy miniatians followed by Monte Carlo
minimizations [107]. Other docking protocols combine wedtablished approaches for sampling,
docking, minimization, and scoring. For example, Fleks§g[lis a combination of rotamer sam-
pling, soft-docking using FlexE, refinement of the dockirugg@s using energy minimization, and
re-scoring.

*htt p: // www. ccdc. cam ac. uk/ products/|ife_sciences/ gol d/



Chapter 3

Transient Pockets on Protein Surfaces
Involved Iin Protein-Protein Interaction

In this chapter our protocol for identifying and analyzingrsient pockets will be described.
Using this protocol, we could show that the native bindingkmts of three protein systems open
spontaneously during MD simulations of the apo proteincstmes in water. This study was
published in theJournal of Medicinal Chemistrin 2007 [109]. Besides, the three model systems
utilized to validate all approaches presented in this thedl be introduced.

3.1 Introduction

Targeting protein-protein interactions by small molesugefull of challenges (see Table 1.1). The
first hurdle is the identification of a favorable binding sifesolution to this problem is straightfor-
ward if small-molecule binders have been discovered expsrially and/or the (protein-protein
or protein-ligand) complex structure is available. In siacbase, the holo protein conformation
possessing a binding pocket can be used for virtual scrgexifigand libraries. Bowman et al,
for example, identified new inhibitors for the MDM2-p53 irdetion by docking ligands into a
dynamic receptor-based pharmacophore model [36]. Howéwvey used the p53-bound X-ray
structure of MDMZ2 that already possessed a well defined hipdocket at the interface. But how
shall we handle proteins for which only apo crystal struesuare available? Such structures often
lack deep cavities or clearly shaped binding pockets thaldcbe used for identifying binding
sites for putative ligands, e.g. by docking. Although dogkmethods that account for (partial)
receptor flexibility have proven to be quite promising evengid docking to the apo protein
structure failed, they depend on a definition of the bindig [€2, 101-103, 105-108] because
sampling the entire protein surface would be computatipnadry costly. Furthermore, the ex-
tent of receptor flexibility that can be modeled by these d@uglrotocols may not be sufficient
to handle conformational changes at protein-protein fateis. For example, the side-chains lo-
cated at these interfaces are on average more flexible tbhae kbcated in binding pockets. Thus,
the structure-based design of small molecules inhibitirmigin-protein interactions is generally
considered to be challenging. Nonetheless, once a putgitiding pocket is available, it can be
targeted like those pockets found in enzymes [26].

When dealing with crystal structures, it is important togkée mind that they typically represent
only one out of many possible protein conformations. Wittpext to pockets, this means that it
is impossible to deduce from a single structure whether amefevcavities are available. In other
words, a protein may possess pockets that are only acaegsitbnformations different from the
crystal structure and may serve as more favorable bindieg #hat would be missed when its
conformational dynamics is not properly considered. Fangxe, Frembgen-Kesner and Elcock
successfully identified in MD simulations an alternativeding site of the p38 MAP kinase which
was not accessible in the crystal structure [110]. This agien can be explained with the high

51
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mobility of residues on protein surfaces [111] and led uh®assumption that transient pockets
that are large and deep enough to bind small-molecule taingbimay open from time to time on
the protein surface.

In this chapter, we will show that transient pockets may @®\w starting point for thén sil-

ico drug design for cases in which standard screening methodkiviail, for example, when no
potential binding pocket could be identified. For three mggistems (MDM2-p53, Interleukin-2-
Interleukin-2a-receptor, and BCL-X-Bak) the PASS program clearly identified the native ligand
binding pocket in the inhibitor-bound structures of eacktsmn, whereas the binding pockets were
not or only partly accessible in the apo structures. Thussdlsystems are perfectly suited for
validating our pocket detection protocol.

3.2 Model Systems

Although SMPPIIs are known for several protein-proteirerattions, we required that for ideal
model systems the crystal structures of

e the protein-protein complex (thmmplex structurg

e the apo protein (thapo structure,

e and of the protein with a small-molecule inhibitor bound le interface region (thkolo
structureg

should be available in the Protein Data Bank (PDB) [112]. Three selected model systems
fulfilling these criteria will be introduced in the followin

3.2.1 BCL-X - Bak

The basal cell ymphoma-extra large (BCL-Xprotein belongs to the BCL-2 family which medi-
ates apoptosis and functions primarily by forming proteiatein complexes with other members
of the BCL-2 family (see Figure 1.1). It is an anti-apoptqtiotein that acts by binding the pro-
apoptotic Bak protein and so inhibits its function [113].k&iother anti-apoptotic proteins, it is
overexpressed in some forms of cancer, resulting in anasei cell proliferation [114]. Hence,
the interaction between BCLyXand Bak is a promising drug target [115].

The structure of BCL-X consists of two central hydrophobi¢helices surrounded by five am-
phipathic helices [116] as shown in Figure 3.1. Bak is alsaxdrelical protein that is mainly
defined by a singlev-helix, the BH3 region (see Fig. 3.2 (a)) [117]. It was showattthe BH3
region of Bak is sufficient to bind to BCL-Xand, thus, to promote cell death, suggesting that a

Figure 3.1: Cartoon representation of BCLXin its apo (shown in red) and holo (shown in green) con-

formations. The backbone RMSD between the two structurés7id. Note that the C-terminal region is
missing in the apo structure.
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(b)

Figure 3.2: Surface representation of the binding interface of BCL €émplexed with Bak (a), the SMPPII
N3B (b), or in the apo state (c). All complexes are shown indame orientation. Note that (a) and (b)
show extra portions of the protein that could not be resoindde apo structure shown in (c).

small molecule mimicking the BH3 region of Bak may reeststblpro-apoptotic activity [117].
The following crystal structures were selected:

e apo BCL-X;, (PDB code 1R2D, X-ray structure with a resolution of 1.95 A)§]

e complex between a Bak derived peptide and BCL{RDB code 1BXL, minimized average
NMR structure) [118]

e complex between the SMPPIlI N3B (4-(4-fluorophenyl)-N- [8a¥4-(2-phenylsulfanyl-
ethylamino) phenyl] sulfonylbenzamide) and BCL-XPDB code 1YSI, NMR structure)
[115]

The crystal structures of the complexes reveal that the Big®n of Bak binds to a hydrophobic
cleft formed by the BH1, BH2, and BH3 regions of BCL:&s shown in Figure 3.2 (a). The com-
plex between BCL-X and Bak is mainly stabilized by intermolecular electrastatteractions
(Arg™®, Asp*3, Asp® from the Bak peptide and GItP, Arg'??, Arg!°? from BCL-X) and by hy-
drophobic interactions between the hkerminal residues of the Bak peptide and the BH1 region
of BCL-X, (Val'?5, Leu'3?, Phé“%). Mutant studies identified T##', Leu'®, Gly'3%, and Arg>?

as key interacting residues of BCLy{118]. The NMR structure of the inhibitor bound complex
revealed that the inhibitor binds into two distinct but groal subsites in the BH3-binding groove
(see Figures 3.2 (b) and A.2 (a), Appendix). One moiety of Nidls near Arg*®, whereas
the other one occupies a hydrophobic subpocket formed by Tyreu'?®, Val'?S, and Phé&'S,
Hence, some of the most relevant interactions between Bglaixd Bak are mimicked [115].
The binding site is also present in the apo form of BCL-But the groove is more narrow as
Figure 3.2 (c) reveals.

BCL-X, is a widely studied system. For example, Brown and Hajduk tiseir method for calcu-
lating the druggability of a binding site [119] to show thia¢ BH3 binding groove of apo BCL-X
becomes more druggable during MD simulations [120]. Nowadd.eused MD simulations and
free energy calculations to study the influence of ligaraitoed conformational changes on the
activity of known inhibitors [121]. They showed that the immpement of the binding affinity is
directly related to a reduced local flexibility of specifigiens in the binding groove.

3.2.2 Interleukin-2 - Interleukin-2 «-receptor

Interleukin-2 (IL-2) is an immunoregulatory cytokine andn@mber of the four-helix bundle cy-
tokine superfamily that is a central part of the immune respg122]. IL-2 binds sequentially
to thea- (IL-2Ra), #- (IL-2R3), and commony- chain ¢.) receptor subunits. This leads to the
stimulation of signal transduction pathways resulting ioell, B cell, and natural killer cell pro-
liferation and clonal expansion. Biochemical studies hstvewn that the assembly of the IL-2
receptor complex is initiated by the interaction of IL-2 lwil_-2Ra [123, 124]. Since IL-2R
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Figure 3.3: Cartoon representation of IL-2 in its apo (shown in red) aalb lishown in green) conforma-
tions. The backbone RMSD between the two structures is 0.5 A.

is not expressed on resting T and B cells but continuouslyesged by the abnormal T cells of
patients with forms of leukemia, autoimmunity, and orgamsplant rejection [125, 126], its in-
teraction with IL-2 is a widely studied drug target.

For this system, the following crystal structures weredeld from the PDB:

e apo IL-2 (PDB code 1M47, X-ray structure with a resolutionldd9 A) [127]

e complex between IL-2R and IL-2 (PDB code 1792, X-ray structure with a resolution of
2.8 A) [123]

e complex between the SMPPII FRH (5-[[2,3-dichloro-4- [5- [2- [[(2R)-2- (diamino-
methylideneamino)-4-methylpentanoyl] amino] acetyfjenidin-4-yl] -1-methylpyrazol-3-
yl] phenoxy] methyl] furan-2-carboxylic acid) and IL-2 (BDcode 1PY2, X-ray structure
with a resolution of 2.8 A) [128]

Upon binding, IL-2 undergoes only minor structural adapgion the backbone (see Fig. 3.3).
When binding to IL-2Ry, the interface buries a total surface area of 1,8688mprising two
prominent hydrophobic patches on IL-2. The first one is casedoof Tyf> that packs into a
pocket on IL-2Ry formed by Arg® and Arg®. This patch is surrounded by hydrogen bonds
between the backbone of G\ (IL-2) and the side-chain of Af§ (IL-2R«) and between the
side-chains of GI¢? (IL-2) and Arg*® (IL-2Ra). The second patch is composed of £hand
Leu™ of IL-2 that pack into a recessed pocket on ILe2Rrmed by Led?, Tyr*3, and Met®. Just
like the first patch, this patch is surrounded by hydrogerdbdietween Ly®, Arg3®, and GI® of
IL-2 and Asg, AspP, Tyr*3, and Asi” of IL-2Ra (Fig. 3.4 (a)). Thermodynamic measurements
indicated that the desolvation of the nonpolar surfacedgtimary energetic driving force of this
interaction [123]. Small-molecule inhibitors have beeentified that bind to the hot spots on IL-2

(b)

Figure 3.4: Surface representation of the binding interface of IL-2 ptared with itsa-receptor (a), the
SMPPII FRH (b), or in the apo state (c). All complexes are ghawthe same orientation.
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[127]. The crystal structures of these inhibitor bound ctaxgs revealed that the inhibitors bind
buried into a groove composed of two subsites, a rigid hytitigpsubpocket where hydrogen
bonds are possible to L{sand GIi§? and a highly adaptive and hydrophobic narrow channel
created by Arg®, Met*®, Phé?, Leu’?, and Lyg%. We focus on the inhibitor FRH whose native
binding mode is shown in Figures 3.4 (b) and A.2 (b), Appen#fike? acts as a gatekeeper that
exposes a hydrophobic channel which is blocked in the apotste (Fig. 3.4 (c)).

So far, this system has not been extensively studied usisgico methods. In their review on
targeting protein-protein interactions [26], GonzalazzRand Gohlke showed that starting from
apo IL-2, conformations can be generated that resembledlioepinotein structure suggesting the
existence of transient pockets at the binding interface.

3.2.3 MDM2 -p53

The oncoprotein mouse double minute 2 (MDM2) regulatesgreilvth processes like cell cycling,
DNA repair, and apoptosis [129]. It acts by binding to thens@iption domain of the tumor
suppressor protein p53. This protein is thereby blockedthadranscription of the p53 target
genes is prevented. Furthermore, MDM2 serves as specifig&land promotes the degradation
of p53 [130]. p53 is the most frequently inactivated protigircancer cells because MDM?2 is
overexpressed in many human tumors. Thus, restoring p5&idmnby inhibiting its binding
to MDM2 is a promising anticancer strategy and MDM?2 is, thame, an important drug target
[131, 132].

For our study, we selected the following crystal structures

e apo MDM2 (PDB code 1Z1M: 24 NMR models) [133]

e complex between a peptide derived from the transactivadimmain of p53 and MDM2
(PDB code 1YCR, X-ray structure with a resolution of 2.6 A34]

e complex between the SMPPII DIZ ((2S)-2- (4-chlorophengh[{3S)-3- (4-chlorophenyl) -
7-iodo-2,5-dioxo-1,3- dihydro-1,4- benzodiazepin-}adetic acid) and MDM2 (PDB code
1T4E, X-ray structure with a resolution of 2.6 A) [135]

MDM2 contains two globular repeats that bind to each othertieir hydrophobic faces and
so form a cleft as shown in Figure 3.5. About one-quarter ©f t¢eft is narrow and shallow,
while the remaining portion is wide and deep. The p53-dérigeptide adapts an amphipathic
a-helical conformation and binds into the deeper and widetigro of this cleft (compare Fig. 3.6
(a)). It buries a total surface area of 1,493. Arhe peptide side-chains PAeTrp??, and Led®

of p53 fit tightly in pockets within this cleft formed by the M2 residues Mé2, Tyr57, and

Figure 3.5: Cartoon representation of MDM2 in its apo (shown in red) aalb lfshown in green) confor-
mations. The backbone RMSD between the two structures id.INbte that the N- and the C-terminal
regions are missing in the holo structure.
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Figure 3.6: Surface representation of the binding interface of MDM2 ptared with p53 (a), the SMPPII
DIZ (b), or in the apo state (c). All complexes are shown ingame orientation. Note that (c) shows extra
portions of the protein that could not be resolved in the otWve structures.

lleb!, Phé, and Led?, 1le”?, respectively [133]. The crystal structure of the SMPPIZDbund

to MDM2 demonstrates that the inhibitor binds to the samerdpidobic cleft and mimics the
a-helical structure of the p53-derived peptide. It occupiessame pockets as the peptide side-
chains Ph¥&, Trp?? and Led® as shown in Figure 3.6 (b). The interactions are mainly neci§ip
van der Waals contacts, just like the interactions with g&# @lso Fig. A.2 (c), Appendix) [135].
The MDM2 structure is quite unstable, but gets more stabith (@spect to unfolding) upon lig-
and binding. The 24 NMR models representing this conforonatidiffer mainly in the terminal
loop regions. These models show that large conformatidmahges accompany ligand binding.
In these conformations the shallow end of the binding ckeftartially occupied by an N-terminal
segment (residues 19-25) and the cleft is generally lesseddand less wide (see Fig. 3.5 and 3.6
(c)) [133].

Besides the virtual screening study of Bowman et al. [3&aly cited in Section 3.1, this system
has been investigated by several otimesilico approaches. For example, Barrett et al. used the
peptide-bound MDM2 protein to show that principal compdremalysis of a conformational en-
semble generated using CONCOORD predicted quite similacerted motions as an MD simu-
lation [136]. More interestingly, they observed that thetfegigenvector was coupled to an opening
and closing motion of the native binding pocket that was ewere pronounced when the peptide
was removed. A later study by Espinoza-Fonseca and TrE#@ioara who conducted MD simu-
lations of the same crystal structure of MDM2 with and withthe bound peptide underpinned
this finding [137]. They found that most motions of this bimglisite were accounted for by the
first eigenvector for the holo protein and by the first two aeigetors for the apo protein. Fur-
thermore, they observed that the binding cleft was widerrante stable with the peptide bound.
Dastidar et al. studied the complex between MDM2 and diffep&3-derived peptides (wildtype
and mutants) by MD simulations as well and reported, for edapthat the surface of MDM2
adapted optimally to the various peptides [138]. Theseligslisuggest that the binding pocket is
also accessible in apo MDM2, but less stable than with a ¢idaound.

3.3 Methods and Materials

As this chapter describes our initial pocket detectiongmol, this will now be introduced in detail.
The subsequent chapters use the same structures and tlegdoccedure as presented here.

3.3.1 Preparation of the Experimental Structures

The apo and holo protein structures of BCL-XL-2, and MDM2 mentioned above were taken
from the PDB. If multiple chains were available in the PDB (figther the one with the least
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number of missing residues or atoms was chosen or chain Ahetéiro atoms (including the
ligands) were manually removed and the apo structures weezisnposed on the holo structures
based on the Catoms using the VMD program [139]. As residues 28-81 of BCl.aXe missing

in the apo crystal structure, the two parts of the proteirameodeled as two distinct chains. In the
apo structure of IL-2, the missing residues 75, 76, and Pvi€re modeled as loops of the lowest
AMBER/GBSA potential energy generated by the program RARPIE0]. We note that for both
systems the missing residues are far away from the nativaingmpocket. The apo structure of
MDM2 is represented by 24 NMR models that differ mainly in thep regions. Since no model
is defined as most representative, the first model was chosen.

3.3.2 Molecular Dynamics Simulations

For the MD simulations of the proteins, the GROMACS 3.3.1kpge [141] was used along with
the OPLS-AA force field [46]. The prepared apo structuresheffiroteins were placed in cubic
boxes of 6.2-8.3 nm box dimensions with periodic boundanyddmns and explicit TIP4P sol-
vent molecules [142] were added. The system was then piigbegted by 500 steps of steepest-
descent energy minimization keeping the heavy proteinsigtosarmonically restrained using a
force constant of 1,000 kJ ol nm~2. Na* or CI~ counter-ions were added to ensure a net neu-
tral charge of the simulation system and the energy minitioizavas repeated. The system was
treated as a NPT ensemble and further equilibrated durifg @4 MD simulation. The Berendsen
method [143] was used to ensure a constant temperature & 800 pressure of P0Pa. Protein,
solvent, and counter-ions were coupled to separate bathsceiipling constants of 0.1 ps for
the temperature and 1 ps for the pressure coupling. A cutdff®nm was used to compute van
der Waals interactions and electrostatic interaction®ieyhe short-range cutoff of 0.9 nm were
treated by the Particle-Mesh-Ewald method [47]. The coua®nds were constrained by the
LINCS procedure [144]. Simulation snapshots were coltteteery 2.5 ps during the subsequent
10 ns production run, yielding a total of 4,001 MD snapshBisfore they were further processed,
they were superimposed on the apo structure based on,thato@s as described above. The MD
simulations were repeated once for every system to chedletiudts for reproducibility.

3.3.3 Pocket Detection Using the PASS Algorithm

The PASS program was applied to every apo and holo struchddoaeach MD snapshot after
removal of all hetero and hydrogen atoms. As surface podkets to be quite flat, the default
burial count threshold of 55 protein atoms within 8 A was taghh Therefore, the “-more” option
was used to reduce this threshold to 45 protein atoms torobtare probes and ASPs. Note
that the output of PASS is a file containing the ASPs and a fileaioing all probes. There is no
assignment which probe belongs to which ASP and, thus, nonrgtion about the pocket volume.
We developed a C++ program call@bcketldthat solves this problem: It associates probes to
ASPs to obtain contiguoysatches Within this context, a patch is a set of PASS probes used to
represent the pocket as a contiguous volume. This volumbeaonsidered as the negative image
of the binding pocket as identified by the PASS algorithm. nTtee number of patches in a given
protein structure is given by the number of ASPs. By assigeiaich probe to the nearest ASP if
it overlaps with any probe already assigned to this patctagatfis guaranteed that each patch
is contiguous. This procedure is listed in Algorithm 1 and haun time that is quadratic in the
number of probes per structur® (2 ;.. - asps))- Note that defining each ASP to represent one
pocket leads to the subdivision of very large cavities imto br even more pockets, when they
consist of more than one ASP.



58 CHAPTER 3. TRANSIENT POCKETS ON PROTEIN SURFACES

Algorithm 1 Algorithm for the assignment of PASS probes and ASPs to patch

Input: asp < ASPs given in ASPs file from PASS run for this structure
Input: probes < probes given in probe file from PASS run for this structure
for ¢ =0to |asp| do
patchl[i] < aspli] {initialize each patch with an ASP}
end for
last_probes_size «— |probes| + 1
{repeat until no new probes can be added to patches}
while |probes| <last_probes_size do
last_probes_size « |probes|
{search for an appropriate patch for each not yet assignelokepr
for each probe € probes do
min_dist < oo
asp_index «— —1
for i = 0to |asp| do
if distance(aspli], probe) <min_dist AN D connected(patch[i], probe) then
min_dist < distance(asp[i], probe)
asp_index «— i
end if
end for
if asp_index > 0then
{probe can now be assigned to a patch and removed from set géhassigned probes}
patchlasp_index] <« patchlasp_index] U probe
probes «— probes \ probe
end if
end for
end while

return patch|0] , ... ,patch||aspl]

3.3.4 Calculation of Pocket Properties and Dynamics

For each patch, itgocket lining atom$PLAs) were determined, which are all protein atoms found
within a distance of 5 A. Based on the chemical propertieh®RLAs, the polarity of the pocket

was approximated by
|PLA \ Catoms|

|PLA|

The probes used by the PASS algorithm have two different: ridd probes in the first layer are
of 1.8 A radius and the ones from the subsequent layer hawdiwsraf 0.7 A. Hence, the pocket
volume was estimated by the following formula:

47 47

volume = |probesjgyer—1| - 3 (1.8)% + |probesiayer>1] - 3 (0.7)3 (3.2)

Having detected all pockets occurring in the 4,001 snaggfadibut 11,000-20,000), it is of interest
to investigate which pockets identified in different comi@tions correspond to each other. To this
end, all pockets were clustered using an agglomerative lsteniinkage approach. The similarity
between two pockets was defined by the similarity of their BLA

|PLASZ N PLA8]|

(3.1)

polarity =

similarity(PLAs;, PLAs;) = (3.3)
During the clustering, it was taken care that the similaoitywo pockets was at least 85% and no
cluster contained more than one pocket taken from the samemdpshot. The clustering step is
illustrated in Algorithm 2. After clustering, all pocketsithin the same cluster were labeled by
the same unique pocket identifier (PID). We use the teibnto refer to a transient pocket. Thus,
the dynamics of a transient pocket can be observed via theeobelonging to this cluster that
represent the different states taken from subsequent Mpskoés. Furthermore, for comparing
two PIDs, asubpockewas determined for each transient pocket. These subpoaketsharac-
terized by those PLAs that line the pocket in at least 33% laftsabccurrences. Moreover, two
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Algorithm 2 Algorithm for the identification of analogous patches witdifferent conformations

clusterSet — ()
while (similarities # 0) AND (max(similarities) > 85%) do
entry < maz(similarities)
if isNew[entry.patchi] AND isNew[entry.patcha] then
{both patches are new}
clusterSet[entry.patchi] < entry.patchi, entry.patcho
cluster|entry.patchs] «— entry.patchi
isNewlentry.patchi] < false
isNew|entry.patcha] < false
else if isNew|[entry.patchi] then
{only entry.patchi is new, if there is no patch withidluster Set|[cluster|[entry.patcha]] with the same structure ID, add
entry.patch to this cluster}
if NOThasCommonStrlD(clusterSet|cluster[entry.patchs]], entry.patchy) then
clusterSet[cluster|entry.patcha]] < clusterSet[cluster|entry.patchs]| U entry.patchi
cluster[entry.patchi] < cluster[entry.patchs]
isNew|entry.patchi] «— false
end if
else if isNew|entry.patchs] then
{only entry.patchs is new, if there is no patch withicluster Set[cluster[entry.patch1]] with the same structure 1D, add
entry.patchs to this cluster}
if NOT hasCommonStrID(clusterSet|cluster|entry.patchi]], entry.patchs) then
clusterSet[cluster|[entry.patch1]] < clusterSet|cluster[entry.patchi]] U entry.patcha
cluster|entry.patchs] < cluster|entry.patchi]
isNewlentry.patcha] < false
end if
else
{both have already assigned to a cluster. If there is no pafithin clusterSet|cluster|[entry.patchi]] with the same
structure ID agntry.patchs or the other way around, merge the clusters}
if NOT hasCommonStrID(clusterSet|cluster|[entry.patchi]], clusterSet[cluster|entry.patchs]]) then
clusterSet|cluster|[entry.patchi]] < clusterSet[cluster[entry.patchi]] U cluster Set[cluster[entry.patcha]]
cluster Set|cluster[entry.patchs]] — 0
cluster[entry.patcha] < cluster[entry.patchi]
end if
end if
similarities <« similarities \ entry
end while

return clusterSet

sets of transient pockets (e.g. resulting from two diffeMdD runs) can then be compared to each
other by determining the fraction of PIDs of one set that reggmilarity of at least 50% to any
PID from the other set. The complete analysis of the tramgienkets including application of
the PASS algorithm, clustering, and calculation of the prtps took 16-20 h for each set of MD
snapshots on one 2.8 GHz Xeon CPU.

3.3.5 Docking Setup

All docking experiments were performed with AutoDock 3.0Fhe inhibitors were taken from
the holo structures. The AutoDockTools (version 1.4.3) ulesl of the Python Molecular Viewer
software [145] was used to add hydrogens and to compute theiGer atomic charges [146].
The rotatable bonds (10 for N3B, 17 for FRH, and 5 for DI1Z) wassigned with AutoTors.

Four different docking experiments were performed: (13loeking into the holo structure, (2)
docking into the apo structure, (3) docking into all MD sragts, and (4) docking into all tran-
sient pockets located at the interface. As polar hydrogemsiare needed for a successful dock-
ing, they were added to the crystal structures and the nanpgidrogens were removed in the
MD snapshots. Kollman united-atom partial charges andasiolv parameter were assigned by
the AutoDockTools utility. All grid maps were calculatedtiviAutoGrid3 using the default spac-
ing of 0.375 A between the grid points. In the docking experits (1) - (3), the grid center was
chosen to coincide with the center of mass of the ligand ibatsnd conformation and the default
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grid dimensions of 21 A x 21 A x 21 A were used. In the dockingeskpent (4), no prior in-
formation about the bound ligand conformation was used @, the grid center was set to the
center of mass of the transient pocket. The holo structurds-® and BCL-X;, reveal that only
a terminal moiety of the ligands may be placed into a pockeindd, the grid dimensions were
expanded to 30 A x 30 A x 30 A. Whereas for MDM2, the grid dimensiwere reduced to 16.125
Ax16.125 A x 16.125 A to confine the position of the smallealid to the transient pocket.
Docking was performed using the standard LGA protocol wifadlt parameters, i.e. an initial
population of 50 randomly placed individuals, a maximum bemof 2,500,000 energy evalua-
tions, a mutation rate of 0.02, a crossover rate of 0.80, angliism value of 1. The probability
of performing a local search using the Solis and Wets algorivith a maximum of 300 iterations
was set to 0.06, and the maximum number of consecutive sseses failures before doubling
or halving the local search step size was 4. The completeimpaitep consisting of calculating
the grid maps and 10 independent docking runs took 1-3 mipnaéein conformation on one 2.8
GHz Xeon CPU depending on the flexibility of the ligand andgtze of the grid box.

3.4 Results

Before running the pocket detection protocol, the PASSrilgn was applied to the selected holo
structures in order to validate its ability of detecting thegive binding pockets. In addition, a
reference value for the volume of these pockets in the itdrifiound state was obtained. For all
tested structures, the native binding pocket could be ittt But for the holo structure of IL-2,
only one of the two subsites of the binding pocket was detecégplying the PASS algorithm
to the apo structures revealed that in the absence of a liendative binding pocket is partly
open in BCL-X;, (36% of the calculated pocket volume of the holo structusayall as in MDM2
(42%). In the structure of apo IL-2 the binding pocket coutd Ipe detected at all.

3.4.1 Transient Pockets Detected in the MD Snapshots

The proteins were stable over the simulation time. As an @k@nthe stability of the secondary
structure of the first MD simulation runs is discussed in ®edB.1 - B.3 (Appendix). The detec-
tion of pockets in the MD snhapshots and the subsequent dhgtevealed surprising results. For
BCL-Xp, 23 distinct transient pockets were detected in the firsenah20 in the second run. For
IL-2, 23 (respectively, 31), and for MDM2, 33 (respectivedp) transient pockets were detected.
In comparison, the total numbers of pockets detected faaploestructures were four for BCL1X
two for IL-2, and five for MDM2.

(a) 100 ps (b) 200 ps (c) 300 ps (d) 400 ps

Figure 3.7: Protein surfaces are fluid-like as illustrated at the exanopIMDM2. The molecular surface
of the protein after (a) 100 ps, (b) 200 ps, (c) 300 ps, and@8)ps of simulation time is shown. The PASS
probes used to detect pockets in these MD snapshots areseapzd by red spheres. Note that due to the
mobile surface the number of probes and the shape of the poclages significantly from snapshot to
shapshot.
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Figure 3.8: The fast opening and closing behavior of a transient podi@ts at the example of PID 5 of
MDM2 (run 1).

Properties of Transient Pockets Analyzing the frequency of occurrences and the averagegpock
volumes gave similar results for all three systems (seee%aBll and 3.2). The largest fraction
(35.0-52.2%) of the transient pockets were rare eventseed only present in less than 1% of all
MD snapshots with mean volumes between 335.5 and 36%5.3us, in general, they represent
the smallest cavities for each system, whereas the higloesiaied pockets (detectable in more
than 50% of all MD snapshots) tended to belong to the largess of the respective system. How-
ever, there are just a small number of such favorable po¢Betsl 3.0% of all transient pockets) in
each system. Especially the dynamics of the transient poekes surprising. Instead of opening
slowly, the pockets suddenly opened to volumes up to 50®inin 2.5 ps, stayed open for some
time, vanished, and reappeared again several times. Thaitgnob molecular surfaces is due
to its fluid-like properties that can be observed during Midudations. An example of how the
flexible surface effects the formation of pockets is showhigure 3.7 and an example illustrating
the fast opening and closing behavior characteristic ferttansient pockets is shown in Figure
3.8.

mean volume [A’]
system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50%
run 1 run2|  runil run2|  runil run2|  runil run 2
BCL-X, 361.4 340.2 405.1 384.4 451.5 469.9 527.7 423.8
IL-2 346.2 365.3 338.2 399.7 355.1 401.0 452.7 398.9
MDM2 335.5 354.3 400.7 365.3 422.3 405.9 468.7 639.1

Table 3.1: Mean volumes of the transient pockets according to thegueacy per system for the two
independent MD runs.

relative number [%]
system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50%
run 1 run2|  runil run2|  runil run2|  runil run 2
BCL-X,, 52.2 35.0 13.0 25.0 21.8 30.0 13.0 10.0
IL-2 47.8 51.6 26.1 19.4 17.4 25.8 8.7 3.2
MDM2 45.5 47.2 24.2 19.4 21.2 27.8 9.1 5.6

Table 3.2: Relative number of transient pockets with different frengies per system for the two indepen-

dent MD runs.
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reproducibility [%]

system freq.: <1% freq.: 1-10% freq.: 10-50% freq.: >50% total
runl  run2| runl  run2| runl  run2| runl  run2|runl  run2
BCL-X[, 66.7 71.4| 100.0 100.0/ 100.0 100.0] 100.0 100.0| 82.6 90.0
IL-2 81.8 62.5| 100.0 83.3| 100.0 100.0f 100.0 100.0| 91.3 77.4
MDM?2 80.0 100.0| 100.0 71.4| 85.7 90.0| 100.0 100.0| 87.9 91.7

Table 3.3: Reproducibility of the PIDs according to their frequencytiee two independent MD runs.

Reproducibility of Transient Pockets Figure 3.9 (a)-(c) shows that most transient pockets de-
tected in a MD run are also found in an other MD run. This inidethat most transient pockets
are reproducible. Note that a PID may correspond to moredharPID and that many PI1Ds found
in the same run overlap as well as depicted in Figure 3.9 @)ler3.3 lists the reproducibility of
the transient pockets by their frequency. In general, theerfrequent a pocket occurs in one MD
simulation, the more probable is its appearance in anotHersivhulations. Consequently, rare

event pockets are often non-reproducible.

PID in Run 2
L
PID in Run 2
N N w
[6:] (=]

=
10 15 20 10 15 20
PID in Run 1 PID in Run 1

(a) BCL-Xg, (run 1 vs. run 2) (b) IL-2 (run 1 vs. run 2)

N N w
o [41] O

PID in Run 2
&5

PIDinRun1

15 20 15 200 25 30
PIDinRun 1 PIDin Run 1
(c) MDM2 (run 1 vs. run 2) (d) MDM2 (run 1 vs. run 1)

Figure 3.9: Pairwise similarities of the transient pockets. (a) - (@wlthat most PIDs are reproducible
by another MD run, (d) shows the similarity of PIDs obtaindthim the same run (run 1) for MDM2. The

shading scheme indicates the level of similarity.
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system apooverlap| MD mean MD max no. MD overlapping
vol. [%] overlap vol. overlap vol. snapshots PIDs?
[%] [%] with overlap

runl run2| runl run 2 run 1 run2| runl run 2
BCL-X, 35.6 33.2 22.7| 84.2 73.6| 2,716 1,924| 15 8,11
IL-2 0 45.3 31.5| 115.2 130.7| 1,440 1,992| 8 2,4
MDM2 2.2 53.7 39.4| 136.2 99.2| 2,716 3,883 2,5 0, 22

&Shown are only the PIDs involved in the maximum overlap

Overlap volume is larger than in the holo structure

Table 3.4: Volume of the PASS probes overlapping with the atoms of tipesmposed ligand relative to
the overlap volume for the ligand bound structure per systerthe two independent MD runs.

Did the native binding pocket open during the MD simulations? To test whether the native
binding pocket is among these transient pockets, we supesed the holo structures onto the
MD snapshots and onto the apo structures and then deterii@inedch conformation the PASS
probes overlapping the inhibitor atoms. New pocket volumerse calculated by considering only
the overlapping PASS probes and comparing their volumetdset obtained for the inhibitor
bound structures. Furthermore, the PIDs possessing tipeskaoverlap with the native inhibitor
were identified and defined to correspond to (subpocket efy#tive binding pocket. (As the PIDs
within the same run may overlap as well resulting from therddn of the ASPs by the PASS
algorithm, more than one PID may correspond to the nativdibinpocket.) The results shown
in Table 3.4 indicate that for all three systems the nativelibig pocket opened up during MD
simulations. For BCL-X and MDM2, where the native binding pocket was already detdet
in the apo structure, the mean overlap volume determinethéoMD snapshots was more or less
comparable to the overlap volume of the apo form of the pncf&5.6% for BCL-X, and 42.2%
for MDM2). However, in some MD snhapshots of BCLrXhe native binding pocket was more
than twice as large as in the apo form, although not quitergs ks in the holo structure. In some
MD snapshots of MDM2, the PASS volumes overlapping with tingesimposed inhibitor were
even of equal or larger size than in the holo structure, atitig that the native binding pocket was
sometimes large enough to fully accommodate the nativditaini Notably, for IL-2, the native
binding pocket, which was not detectable in the apo form, alss found to fully open during the
10 ns MD simulations. Similar to MDM2, the overlapping volewas larger than in the inhibitor
bound complex. Considering that the native binding pockeisists of two subsites, this result
shows that the other subsite which was not detected in thigitahbound complex was detectable
in some MD snapshots. This means that both subsites of tive téding pocket opened and the
binding pocket may be fully accessible in some of the MD shafss

Polarity of Transient Pockets In addition to the volume, the polarities of transient pdaskeere
studied. While the polarity of the entire protein surfacehaf apo structure is 0.37 for BCL1X
and MDM2 and 0.38 for IL-2, the polarity of the transient petkranged from 0.25 to 0.45.
The pocket volumes and the corresponding polarity for dlldRith frequency greater than 20%
are plotted in Figure 3.10. This analysis reveals that, imega, the largest pockets (volumes of
> 800 A%) have a smaller polarity than the overall protein surfacggsesting that the protein
interior partly opens up and, thus, these pockets may bek{stienough to bind ligands. But
except for IL-2, all detected transient pockets are moramblan the native binding pocket in the
holo structure. This result suggests that only quite potekpts open up during MD simulations
in a polar solvent. Less polar pockets may require a less poldronment or the presence of a
ligand to open, suggesting an induced-fit mechanism. A casgaof the polarity ratios of those
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PI1Ds corresponding to the native binding pockets to all etiedicates that for BCL-X and IL-2,
these PIDs represent the most nonpolar pockets. Note thia jpolarity plots for IL-2, the PIDs
representing the native binding pocket (PID 8 in run 1 and #IBrun 2) correspond to different
subpockets. In the first run of IL-2, PID 8 corresponds to thiepscket identified in the holo
structure. Hence, it almost possesses the same polaiibyasthe native binding pocket at the
reference volume. In the second run, PID 4 corresponds ttesisedeveloped subpocket missed
by the PASS algorithm in the holo structure.
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Figure 3.10: Changes in the mean pocket polarity depending on the pocketne. For each PID, the
polarity of pocket states having the same volume were aeerémg smooth the curve. In order to obtain
reliable values, only PIDs with a frequency greater than 208e used, resulting in a different number of
PIDs for the different runs of the same system. The dashed limdicate the polarity and volume of the
native binding pocket (BP). PIDs from different runs copasding to each other are shown in the same
color. The PIDs representing the native binding pocket hosva as thick lines.
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re-docking apo-docking
system RMSD score rank? RMSD score rank?
[A] [kcal/mol] [A] [kcal/mol]
BCL-X, -N3B 0.9 -10.5 2 3.3 -6.2 5
IL-2 - FRH 11 -10.8 1 2.9 -6.2 1
MDM2 - DIZ 11 -13.1 2 3.4 -6.7 5

#Rank of docking solution among 10 docking runs.

Table 3.5: Best docking results for (re-) docking into the holo and ithi® apo structures.

3.4.2 Docking into MD Snapshots

Extensive docking studies were performed to validate wdretine transient pockets detected by
this method are suitable to bind the known inhibitors andicke may be used for structure-based
drug design. To validate whether AutoDock3 is capable ofdhag these kinds of ligands that
are very flexible and do not bind into deep pockets, we re-eld¢ke known inhibitors into the
holo structures of the proteins. Furthermore, the apo ttres were used for docking to estimate
the extent of conformational changes necessary to accoatmaie inhibitors. The results of
these two docking experiments shown in Table 3.5 emphasaedhie apo structure would not be
suitable at all for ann silico drug design project. However, when using the MD snapshotshmu
better results are obtained as listed in Table 3.6. We areeathat these results are somehow
biased toward the native bound ligand conformation bec#usse ligand conformations were
used to define the center of the search grid. Without priomkedge, it would not be possible to
identify the correct docking solutions as the ranks of thesellts may be quite high. Let us, for
example, consider the case of N3B binding to BCL-XVhen using the known center of mass
of the ligand in the docked complex as the grid center of thekithg run (see column termed
“snapshot docking”), 4.7% of all docking poses have a bsttere than the docking pose with the
smallest RMSD of 1.4 A. In ain silico drug design project, this center of mass would of course
not be known and the center of mass of the transient pockelovizeuused to define the binding
site (termed “PID-docking”). In this case, the best solutiwould only belong to the upper half
of all docking poses. However, one should not exclusivetyufoon the docking pose with the
smallest RMSD. The highest ranked docking solutions thateaclassified as “correct” (RMSD
< 2.0) are listed in Table 3.7 and the corresponding docking paseeshown in Figure 3.11. Here,
at least one correct docking solution is always ranked antioadpest 5% of all docking results.
When taking the fraction of buried nonpolar ligand atoms ia¢count, the ranks can be reduced
to less than 1% for IL-2 and MDM2 and to less than 3% for BCL-Xhus, even without prior
knowledge this docking result would be selected for furineestigation.

snapshot-docking PID-docking®
system RMSD score  rank® RMSD score  rank®
[A] [kcal/mol] [%] [A] [kcal/mol] [%]
BCL-X, - N3B 14 -8.7 4.7 1.5 -7.3 48.3
IL-2 - FRH 1.5 -6.6 20.6 1.9 -6.5 14.1
MDM2 - DIZ 1.9 -11.5 1.1 1.9 -11.5 0.7

#Docking into all MD snapshots (grid center coincident wigmter of mass of superimposed ligand).
bDocking into transient pockets (grid center coincidentwaiénter of mass of transient pocket).

“Number of docking results with better docking score in iefato the total number of docking results.

Table 3.6: Docking results with lowest RMSD for docking into the MD sihpts and transient pockets.
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PID-docking?
system ‘ RMSD [A] score [kcal/mol] score rank® [%)] final rank € [%]
BCL-X1 - N3B 1.8 -9.2 4.8 2.7
IL-2 - FRH 2.0 -7.6 2.8 0.9
MDM2 - DIZ 1.9 -11.5 0.7 0.7

2Docking into transient pockets (grid center coincidentwaiénter of mass of transient pocket).
PNumber of docking results with better docking score in ietato the total number of docking results.

°Number of docking results with better docking score and éidraction of buried nonpolar ligand atoms (i.e. relative
number of nonpolar ligand atoms overlapping with PASS pspberelation to the total number of docking results.

Table 3.7: Highest ranked correct (RMSE 2.0) docking results for docking into transient pockets.

3.5 Discussion

Docking into the apo structures of the proteins revealetlttiese conformations cannot accom-
modate the known inhibitors. So far, it is not known whetlner hative binding pockets only open
in the presence of a nearby ligand or whether they also exisbmformations of the apo form
of the protein. Even in the latter case, these openings dmelldire events that do not occur on
the typical nanosecond time scales of molecular dynamiosilations performed at room tem-
perature. But to our surprise, even at a temperature of 3darge pockets opened frequently
on the protein surface and when docking into these tranpieekets, we obtained conformations
that were quite close to the native binding modes. Howekershapes of the protein surfaces are
somehow different such that some deviations are to be eegheThe docking scores in Table 3.6
and 3.7 indicate that pockets of appropriate shapes formtapeously during MD simulations of
the apo BCL-X, and MDM2 proteins suggesting that for these systems théitohiselects an
appropriate protein conformation (conformational sétegt Whereas for IL-2, the docking score
decreased significantly compared to the re-docking scdris.riiay be a sign that the formation of
the native binding pocket requires the presence of thedigéth subsequent induced-fit effects.

3.5.1 Comparison to the “(Improved) Relaxed Complex Schenie

Our approach is very similar to the (improved) RCS approdaknearo and co-workers [92]. We
also generate a conformational ensemble of the protein byidiDIations in explicit water, select
eligible snapshots, and use them to dock the inhibitorsadh ft can be considered as an applica-
tion of this method to study the problem of detecting tramispockets opening at protein-protein
interaction interfaces. Our approach has the advantagentha priori knowledge is required
about the location of the binding site. Instead of clustetime MD snapshots by RMSD of the
binding site and selecting non-redundant receptor cordtiams, we cluster the detected pockets
and select those located at promising positions (i.e. aintieeaction interface). In contrast, the
(improved) RCS protocol does not consider pockets exjylichithough the authors mention that
their technique successfully produced true positive dagkioses when the binding site was un-
defined and the docking grid encompassed the entire prdgin they tested only one enzyme
that was in the holo state (and thus already contained a deféfy)cand gave no details about the
docking results. Therefore, it is not sure whether the (oupd) RCS method would be capable
of identifying the native binding site when it correspondsittransient pocket.

3.5.2 Critical Assessment of the Approach

Although this protocol is quite time-consuming due to theenying MD simulations, the results
are very promising. As an initial criterion for the suitatyilof this approach for detecting tran-
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(e) MDM2 (native binding mode) (f) MDM2 (docking pose)

Figure 3.11: The best scored near-native docking poses (listed in TalBleP3D docking) when docking
into the transient pockets (PID-docking) along with theiveatomplexes. In (f), residues 1 to 16 were
removed for better visibility.

sient binding pockets, we suggest considering the lowesfradpcking scores for MD snapshots
versus apo structures. But this needs to be tested of cauraddrger number of model systems.
When considering the rank of the docking scores, one hasdp kemind that we only docked
into pockets opening at the protein-protein interactidariiace. In a real application scenario, the
interface may be unknown and the docking score of a nativéifgnpose may be ranked worse.
Nevertheless, we recommend this pocket detection protxalstarting point for structure-based
drug design especially in cases when no appropriate binmtinget can be identified on the surface
of the target protein. Then the regions in which transiertkpts open may be used as potential
binding sites for virtual screening with flexible docking timeds. Besides sampling accessible
pockets opening at the targeted interface, this approachhals the advantage that it detects pock-
ets anywhere on the protein surface, e.g. one may identifyafiesteric pockets. Moreover, these
transient pockets and their properties may serve as a prefgttool to reduce the number of lig-
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ands to be docked in virtual screening. But note that notetkcted pockets are druggable. In
order to study the properties that characterize a drugdedodsient pocket or to select MD shap-
shots that represent promising docking receptors, thimpobhas to be tested on a larger number
of model systems. Although quite similar results were otgdifor all studied systems, one has to
be cautious in generalizing these findings. Some liganditgnoockets may require the presence
of the ligands, whereas our protocol is only capable of dietgcavities that open spontaneously.
A transient pocket with a high frequency may indicate thatdpening is energetically favorable
and, thus, protein conformations containing such a poakesatficiently high populatedh vivo

to be recognized by a ligand. But on the other hand, a trang@ket with a low frequency is not
necessarily “not-ligand binding” because the opening oinalihg pocket may only be energeti-
cally unfavorable in the absence of the stabilizing ligaNdte that the calculated frequency has
to be handled with care as the definition of a pocket is vaguaecaucially depends on the used
pocket detection method. Especially defining pocket botieslaand the subdivision in distinct
subpockets is subjective and, thus, the clustering is stitge too.

3.6 Summary and Conclusion

We applied standard MD simulations to three protein systenshow that a surprisingly large
number of transient pockets open up on protein surfaces dhres lime scale. These pockets
open and close very quickly due to the fluid-like propertieprotein surfaces. For each system
many transient pockets were detected that differed in veldrequency, and polarity. On average,
more frequently open pockets tend to have larger volumeghé&unmore, we observed that large
pockets have a reduced polarity compared to the overakiorstirface, suggesting that they may
be suitable for ligand binding. Yet, these pockets are hsstll more hydrophilic than the native
binding pocket indicating that induced-fit effects are imgnt during ligand binding, even if the
receptor conformation contains a preexisting pocket. emimng of most transient pockets seems
to be energetically favorable and, thus, the pockets aredepible as evidenced by a second set
of control simulations.

The identified transient pockets represent potential hopdiites of new inhibitors. When fo-
cussing attention on the location of the native binding pdckockets of similar size compared
with the known inhibitor bound could be observed in all threst systems. Flexible ligand dock-
ing into these pockets resulted in binding modes that diffemly by 2 A RMSD from the crystal
structure conformation.

To our knowledge, this is the first protocol that accountsctorformational changes occurring on
protein-protein interaction interfaces upon ligand bivgdilt clearly underlines the importance of
incorporating protein flexibility in ligand design studiggrticularly on the protein surface. This
pocket detection protocol may therefore be an interestiagiisg point for structure-based drug
design, especially on protein-protein interaction irdeefs, when the crystal structure of the target
protein lacks appropriate binding pockets.



Chapter 4

What Induces the Pocket Openings on
Protein Surface Patches Involved in
Protein-Protein Interactions?

With the pocket detection protocol introduced in Chapten8,were able to show that a surpris-
ingly large number of pockets open during MD simulationshaf &po structures. In this chapter,
the underlying mechanisms of these pocket openings willtbdiesd using modified versions of
the initial protocol. In addition, MD simulations are repéal by three more efficient methods for
generating conformational ensembles and their apprepmest for the sampling of transient pock-
ets will be discussed. The findings were published inJinernal of Computer-Aided Molecular
Designin 2009 [147].

4.1 Introduction

In Chapter 3, we have presented a pocket detection protheablprovides a starting point for
in silico drug design in cases when no potential binding pocket coelaiéntified so that stan-
dard screening methods would fail. This protocol is basetherfinding that large pockets not
detectable in the apo crystal structures of BCL;XL-2, and MDM2 opened frequently on the
protein surfaces during standard MD simulations of 10 neocmsds length at room temperature.
These identified transient pockets represent potentiaifignsites of new inhibitors. Most of
these pockets, especially the most frequent ones, weredgble as evidenced by a second MD
simulation run for each system. Furthermore, for all thrgstesns, we observed that pockets of
similar size as with a known inhibitor bound opened at thévadiinding site. When docking the
inhibitors into these transient pockets with AutoDock3¢klng poses with less than 2 A RMSD
from the native binding mode were predicted. However, tfferdinces in these docking scores to
the re-docking scores suggested that the physicochenrimaéties of the transient pockets were
not as suitable for inhibitor binding as those of the nativeling pocket. For example, most tran-
sient pockets were less polar than the overall protein sei@t not as hydrophobic as the native
binding pocket. Thus, we assumed that hydrophobic pocketsare appropriate as putative lig-
and binding sites. However, it is currently unclear whetheropening of such nonpolar pockets
is energetically “forbidden” in water and requires the pree of a ligand. We speculated that
this could be circumvented by simulating the protein in apadar solvent that may allow for the
opening of more and larger hydrophobic pockets, even in iserece of a ligand. Methanol ap-
peared as a good candidate solvent as it may act as a hydrogémbnor and acceptor and is less
polar than water (its relative dielectric constant is 333[}4It has been used before as solvent for
MD simulations of peptides and proteins. For example, Abcgasd Daggett studied the unfolding
and folding of ubiquitin by MD simulations in a mixture of nietnol and water to mimic the cy-
tosolic environment of biological cells [149]. Intereglin they observed that partially unfolded
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conformations with increased exposure of hydrophobiatess were only stable in the presence
of methanol whereas the protein collapsed in water. So frsihulations in pure methanol have
mostly been applied to membrane-bound peptides. Kovads evmpared simulations of an in-
tegral membrane helix of the surfactant protein C in chiomof, water, and methanol [150]. They
observed a burial of aliphatic side-chains in water resglin a decreased total accessible surface
area of the peptide, whereas in chloroform more nonpol&-slidins became exposed and the to-
tal accessible surface area increased. In methanol, thieatmtessible surface area also increased
because polar as well as nonpolar side-chains became exposealdition, they observed that the
helical conformation was more stable in water and methdrasi in chloroform.

In this chapter, we will try to understand the underlying ayrics of the opening of transient
pockets on protein surfaces. To this end, we investigatedoifowing points:

e How stable is the native binding pocket without bound ligand

e Can pockets on the protein surface fully open in water and vgithe additional benefit of
simulating the proteins in a less polar solvent?

e Are backbone movements necessary for the opening of pocket® side-chain rotations
sufficient?

To answer these questions, we generated different confiamaa ensembles, applied the pocket
detection protocol, and compared the properties of allatetetransient pockets. As model sys-
tems, we used the three proteins (MDM2, BClz;>and IL-2) introduced in Chapter 3. The MD
simulations of the apo proteins discussed in Chapter 3 se&ereference point. To answer the
first question, MD simulations of the holo structures afeanoval of the inhibitor were conducted.
For the second question, additional MD simulations in mebhavere performed and the pockets
found in these snapshots were compared to those detectadttieo simulations in water. The
third question was addressed by comparing MD simulatiotis Rarmonic restraints on all heavy
backbone atoms to the unrestrained simulation at the exaofpiDM2.

The main drawback of our previously introduced pocket data@rotocol is the high computa-
tional demand of the underlying MD simulations. Thus, it Wabbe desirable to replace them
by a more efficient protocol. For this purpose we have aldedethree established methods that
generate conformational ensembles in a more efficient watynal mode analysis, CONCOORD,
and tCONCOORD.

In addition to investigating which aspects of the naturahfoomational dynamics of proteins
(e.g. backbone movements, side-chain movements, or defiams along low-frequency nor-
mal modes) induce the formation of surface pockets, we tdetharacterize for each method its
appropriateness for detecting potential binding pock&tsbefore, this was realized by focusing
on the binding pockets of known SMPPIIs because these arenlgecavities with experimen-
tally validated small-molecule ligand binding capabdé#i By docking the known inhibitors with
AutoDock3 into transient pockets that opened at the bintlitegface and by comparing the dock-
ing pose to the native binding mode, we could identify whiatimods are best suited for sampling
putative ligand binding pockets.

4.2 Methods and Materials

The structure selection, preparation, equilibration, MRwations, superposition of all confor-
mations, and docking runs (using the “PID-docking” setugyevdone as described in Chapter 3.
All energy minimizations, MD simulations, and normal mod®lysis were performed with the
GROMACS 3.3.1 package using the OPLS-AA force field.
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4.2.1 Molecular Dynamics Simulations

In addition to the MD simulation protocol described in Clead, four variants were applied in
this study. In the first variant, the simulation started frtma holo (after removal of the bound
inhibitor) instead of the apo structure. In the second vayiall heavy backbone atoms of the apo
structures remained harmonically restrained (force emnsif 1,000 kJ mol! nm=2) during the
production runs. The third and fourth variant of the MD siatidn protocol are the simulations
in methanol. Here, the apo structures were placed in cubiedfilled with methanol molecules
(using parameters from the OPLS-AA force field) and the dapation was extended to 500 ps.
The harmonic restraints were either removed in the 10 nsugtamh run (third variant) or the
harmonic restraints on the heavy backbone atoms were laptfi{fvariant). Note that the second
and fourth variants of the MD protocol were only applied to MP.

4.2.2 Generation of a Conformational Ensemble Using Normallode Analysis

The apo structures were minimized in vacuo without conssailsing the L-BFGS algorithm
until the maximum force on any atom was smaller than 0.001 &J-hnm~!. Van der Waals
interactions were calculated without cut-off and for cédting the electrostatic interactions, the
relative dielectric constant was set todr. The hessian matrix of the minimized structure was
calculated in vacuo using the same parameters. 50 eigensaeipresenting the normal modes
with lowest frequencies were derived from the diagonalimeakss weighted hessian matrix. As
eigenvectors 1 to 6 correspond to the translational antiootd degrees of freedom of the system
they were set to 0. Using the remaining 44 normal modes, 4p00tein conformations were
generated by random displacements along the eigenvedt@@0aK, where the position along
each eigenvector was randomly taken from a Gaussian distnibwith variance kT/eigenvalue.

4.2.3 Generation of a Conformational Ensemble Using (t)COROORD

The distance bounds for CONCOORD and tCONCOORD were detedrirom the energeti-
cally minimized structures generated for the normal modayais using Engh-Huber bonded
parameters [151] and OPLS-AA van der Waals parameters.dBRasthese distance bounds 4,001
protein conformations were generated by CONCOORD and tCOGRD. Note that the confor-
mational ensembles generated by CONCOORD, tCONCOORD, M déed the same energy-
minimized starting configuration as input but are otherwiseelated.

4.2.4 Pocket Detection and Characterization Using EPOY’

In contrast to Chapter 3, we us&POP?’, a program that is based on BALLPass, which is the
re-implemented version of the PASS algorithm that uses thielBC++ library [152]. Note that
although the PASS algorithm was implemented exactly asritbestin the publication [70], the
number and positions of the ASPs and the PASS probes may filidfa the original PASS pro-
gram. The patches are calculated and clustered as desuriBégbrithms 1 and 2. The advantage
of using EPOS? is that many procedures adjuvant when dealing with moleaitactures are
already implemented in the BALL library. For example, théuwoe of the pockets can now be
determined more accurately by calculating the solventugbesl surface volume of the patches.
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4.3 Results

Six conformational ensembles (each one consisting of 4s@Qittures) were generated for each
system and two additional ones for MDM2:

e apo MD snapshots (watersnapshots extracted from MD simulations of the apo stractu
in water

e apo MD snapshots (methanoBnapshots extracted from MD simulations of the apo struc-
ture in methanol

¢ holo MD snapshots (watersnapshots extracted from MD simulations of the holo stmect
in water

e restrained apo MD snapshots (watesnapshots extracted from MD simulations of the apo
structure in water with harmonic restraints on all heavykbaoe atoms (only for MDM2)

e restrained apo MD snapshots (methanahapshots extracted from MD simulations of the
apo structure in methanol with harmonic restraints on advigebackbone atoms (only for
MDM2)

e CONCOORDconformations: conformations generated by CONCOORD
e tCONCOORDonformations: conformations generated by tCONCOORD
¢ NMA conformations: conformations generated by deformatidmrsganormal modes

Whereas all MD simulations started from the apo or holo pnotenformation taken from the
crystal structures, the calculations of the CONCOORD, t@QXORD, and NMA conformations
were based on the energy-minimized conformation of the &potsre.

At first, we will present the findings for the ensembles from ¥arious MD simulations, and then
compare the results to those obtained for the CONCOORD, tCO®RD, and NMA ensembles.
However, when comparing the properties of the conformati@msembles, one should keep in
mind that the apo and holo structures of BCl.-Xnd MDM2 did not contain the same number of
residues.

4.3.1 Pockets Detected in the Starting Structures

As we now used EPO¥’ instead of the original PASS program, we had to recalculsgbcket
volumes and polarities of the native binding pockets in thie land the apo structures to get new
reference values. For the holo structures, we determinekigpb@olumes and polarities of 493.1
A3 and 0.26 for BCL-X%,, 400.3 & and 0.27 for IL-2, and 445.9 Aand 0.25 for MDM2. In the
apo structures of BCL-X and IL-2, the native binding pocket was only partly detelegtdB3.1%
and 25.9% of the pocket volume relative to that of the holaocstire). For apo MDM2, the native
binding pocket was too compact to be detected in any NMR model

As the CONCOORD, tCONCOORD, and NMA conformational ensesblere generated from
the minimized structures of the apo proteins, it is of indete know whether and to which extent
the native binding pocket was already open in these strestukfter the minimization in vacuo,
the native binding pocket of BCL-Xwas closed, whereas a further opening to 74.8% was detected
for IL-2. In the minimized structure of full-length MDM2, ¢hN-terminal loop buries the native
binding site. In the minimized structure of truncated MDM& native binding pocket opened to
50.8%.
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4.3.2 Properties of the Conformational Ensembles

Before the CONCOORD, tCONCOORD, and NMA conformationaleznkles were generated,
the apo structures were energetically minimized. Thisltedun conformations with backbone
RMSDs from the apo structure of 1.0 A for BCL;X1.4 A for IL-2, and 6.6 A for MDM2. For
MDM2, this high value was caused by the floppy terminal loopshe NMR structure (com-
pare Fig. 3.5) that folded back on the protein surface dutti@gminimization in vacuo and so
obstructed the p53 binding groove. This conformation amgzboo compact as a starting struc-
ture. Note that such a conformation was suggested earb&,[but in the publication describing
the NMR models we used for this study, Uhrinova et al. stalted mo long-range NOEs were
observed for residues 2-17 [133]. This rules out the pdggilthat this loop occupies the p53
binding groove in a stable fashion and suggests that trimgc#tese residues is valid. We re-
peated the minimization and the subsequent generatioreaathformational ensembles with the
stable part of the MDM2 protein (residues 17-111), to whigwill refer as “truncated MDM2".
This resulted in an RMSD of 1.6 A from the apo structure.

The proteins remained stable in all MD simulations. The RM®0files of the different con-
formational ensembles of the test systems are shown ind-igydr The stability of the secondary
structures is discussed in Section B.1 to B.3, Appendix. Adie structure of BCL-X includes
more loops than the apo structure (see Fig. 3.1), and, hémeeyiD simulation of the holo
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Figure 4.1: All-atom RMSD of the six (eight, respectively) conformatal ensembles from the apo struc-
tures. For MDM2, the RMSD was only calculated for residue$al¥11.
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Figure 4.2: Surface polarity of MDM2 during the MD simulation in watercamethanol.

structure displayed a slightly different dynamics resigitin larger RMSDs (up to 5.2 A) than
the other conformational ensembles which are based on thetapcture. The RMSD of the apo
MD snapshots taken from the simulation in water stayed emtigtbelow 2.0 A and those taken
from the simulation in methanol did not exceed 2.8 A. Sinhjiahe unstable terminal loops of the
apo structure are missing in the holo structure of MDM2. k& éipo MD shapshots, they caused
RMSDs of up to 8.0 A for the simulation in water and up to 9.5 Atfee simulation in methanol,
whereas the RMSD of residues 17 - 111 was 3.6 A for the sinamati water and 4.6 A for the
simulation in methanol. When using harmonic restraintshenldackbone atoms, the sampling
was restricted to a small range around the conformation efthrting structure. Furthermore,
for BCL-X;, and MDM2, the larger RMSDs observed for the snapshots dgtiigficom the sim-
ulations in methanol suggest that the less polar solveowvell for transitions to regions of the
conformational space that were not sampled when using avoagtsolution at room temperature.
In contrast, for IL-2, all MD simulations gave similar RMSqfiles.

As expected, the simulation in methanol leads to a more proeed exposure of hydrophobic
side-chains and, thus, a lowering of the overall surfacarniglcompared to the simulation in
water (see Figure 4.2 for an example). For all three syst@@COORD and NMA generated
conformational ensembles with much smaller RMSDs from fhee structure than the MD snap-
shots. The RMSD values for the NMA conformations were neestystant (RMSD variation 0.1-
0.2 A) and only slightly larger than the RMSD of the minimizgcucture, whereas the RMSDs of
the CONCOORD conformations varied up to 2.0 A. In contragg tb the enhanced conforma-
tional sampling of tCONCOORD, it generated conformatidmat differed up to 4.2 A from the
apo structures and, thus, are of comparable magnitude @svilosnapshots.

4.3.3 Transient Pockets Detected in the MD Snapshots

The pocket detection protocol was applied to all confororati ensembles and the properties of
the identified transient pockets were analyzed. Their mapgaties are listed in Table 4.1. Note
that it is not possible to draw any conclusions when compattire total number of pockets (the
number of pockets before clustering) and the number ofrdistransient pockets (the number of
pockets after clustering) detected for apo and holo MDM2 B@il-X ;, because the simulated
proteins were not of equal size.
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system no. no. mean max. mean max.
pockets pockets pocket pocket overlap overlap
before after volume volume volume volume
clustering | clustering [A3] [A3] [%] [%]
BCL-X,
apo MD snapshots (water) 17,079 24 375.1 1,363.9 43.5 91.3
apo MD snapshots (methanol) 22,818 23 380.7 1,357.9 48.3 95.0
holo MD snapshots (water) 39,596 46 395.2 1,606.9 38.7 94.6
CONCOORD 8,226 11 348.1 1,013.1 34.3 67.1
tCONCOORD 17,135 23 378.7 1,761.3 425 99.9
NMA 7,774 6 342.7 889.8 32.0 50.8
IL-2
apo MD snapshots (water) 14,721 29 335.2 1,013.0 35.3 89.2
apo MD snapshots (methanol) 24,513 24 352.7 1,633.9 35.0 94.3
holo MD snapshots (water) 18,412 33 394.4 1,340.7 32.6 128.2
CONCOORD 14,096 18 320.1 965.2 34.8 88.5
tCONCOORD 17,356 28 365.4 1,422.9 333 92.3
NMA 15,345 11 261.1 722.4 50.1 87.9
MDM2
apo MD snapshots (water) 26,419 35 372.7 1,641.3 60.1 106.8
apo MD snapshots (methanol) 34,022 42 407.6 2,204.5 47.6 108.¢
holo MD snapshots (water) 11,737 14 384.6 1,213.8 57.5 114.3
restrained apo MD snapshots (w}) 21,568 17 330.5 839.9 52.9 81.2
restrained apo MD snapshots (m.) 25,204 22 351.8 1,024.3 52.2 82.0
CONCOORILY 13,519 10 348.6 828.2 48.0 70.1
tCONCOORD 16,090 14 388.6 1,237.7 2.4 8.4
NMAP 14,776 7 322.2 670.2 45.4 61.4

20verlap volume is larger than in the holo structure

Pminimized structure of truncated MDM2 (residues 17-11Bdias starting structure

Table 4.1: Properties of the pockets detected in the conformatiorsdmbles for each system.

Influence of the Simulation Solvent and the Backbone Flexility on the Pocket Properties
Another question we wanted to address is the influence okglasr solvent on the pocket open-
ings. Comparing the properties of the pockets detectederagfo MD snapshots in water and
methanol reveals that for all three systems the openingeohdtive binding pocket seems to be
eased in methanol. Besides, more (in terms of total numbeérpa average larger pockets opened,
suggesting that the less hydrophilic methanol solventifatgs the formation of cavities in gen-
eral.

Further, we asked whether side-chain movements are suffiie pocket openings. In all MD
simulations presented so far, the whole protein was flexdblghis question was hard to an-
swer. Hence, we analyzed the pockets detected in the resirapo MD snapshots in water and
methanol of MDM2. As expected, the number of pockets (befor@ after clustering) and their
volumes were reduced when their formation depends exellyson side-chain movements. Inter-
estingly, even in the restrained MD simulations the methaotvent had the same effect on the
pocket openings as in the unrestrained MD simulations. Aenop of the native binding pocket
was observed in all MD simulations, but its native volume wa$y reached when simulating
without restraints in water or methanol.

Stability of the Native Binding Pocket The main reason for the simulations of the holo struc-
tures was studying the stability of the native binding padkéhe absence of a ligand. The overlap
volumes indicate that in all three systems the native bap@iocket fluctuated a lot during the sim-
ulation (see Figure 4.3). While the mean overlap volumesvreithe same order of magnitude
as those of the apo MD snapshots in water, for IL-2 and MDM2/tileme of the native binding
pocket exceeded at least once its volume with the inhibibomid. These findings indicate that the
presence of a ligand is required to keep the native bindimizgidully open.
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Figure 4.3: The stability of the native binding pockets during the MD slations as represented by the
relative overlap volume.

Do the transient pockets opening at the native binding site iffer from the others? Except
for the overlap volumes, all properties listed in Table £fer to pockets opening anywhere on the
protein surface. A further analysis shown in Figure 4.4 adgsies the differences in the properties
between the pockets opening at the native binding site avgktbpening somewhere else on the
protein surface. Note that several distinct transient ptsclire opening at the protein-protein inter-
action interface. As already mentioned, they represefdrdiiit subpockets of the native binding
pocket and thus may possess different polarities. In mags;dhey are on average larger than
the pockets opening anywhere else and have a slightly rdcatarity. For BCL-X, and MDM2,

all transient pockets opening at the native binding siteoaraverage more polar than the native
binding pocket, except for those opening during the MD satiah in methanol. While for IL-2,
transient pockets with an average volume and polarity coafgpato the native binding pocket can
be identified in both MD simulations of the apo structure. Bter, this analysis demonstrates
that, in general, the cavities identified in the apo MD snapslof the simulation in methanol
belong to the least polar pockets, especially when focusimghe largest pockets. Very small
pockets (mean volume 200 A%) tend to be either very polar or very nonpolar.

When focussing on the differences between the restrainédiarestrained MD simulations of
apo MDM2 shown in Figure 4.4 (c), the influence of the backbom@ements on the pocket
openings is evident. As already shown in Table 4.1, the irahpockets observed during the re-
strained MD simulations are relatively small. Pockets withan volumes that exceed the volume
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Figure 4.4: Mean volume of transient pockets plotted against their npedarity. Only transient pockets
with frequency> 5% are shown. Triangles represent pockets opening at theerzhding site, stars
represent pockets opening anywhere else on the proteecsurfhe dotted line represents the volume and
the polarity of the native binding pocket, the broken line ttverall surface polarity of the apo structure.

of the native binding pocket were only found in the MD snapstad the restrained simulation

in methanol. Although in all MD simulations the transientkets with the largest mean volume
opened at the native binding site, it is not clear whethesdh@ockets are appropriate for ligand
binding as they are more polar than the native binding poeke¢pt for those found in the unre-
strained MD simulation in methanol.

Similarity of the Transient Pockets Detected in the Differeit Conformational Ensembles
Especially when studying the influence of the backbone mevesnan important question arises:
Are the transient pockets detected in conformational ebteiralso detected in conformational
ensemblg? To investigate this question, we calculated the reprdilitgiof the transient pockets
from different conformational ensembles as describeddtiee 3.3.4. The results per system are
shown in Figure 4.5. This analysis approves the assumgiatrduring the simulation in methanol
additional pockets open that are not observable duringithelation in water. Further, it reveals
that some pockets can only open when backbone movementiavedh This emphasizes the
intrinsic influence of backbone movements on pocket opening
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Figure 4.5: Reproducibility of the detected transient pockets in ongf@onational ensemble by the tran-
sient pockets detected in another conformational ense(obleulated as described in section 3.3.4). In
each column, the percentage of reproduced transient pookehe method by the other methods (rows) is
shown. These plots show that, for example, the tCONCOORBrehke contains more pockets also open-
ing during MD simulations than the CONCOORD ensemble. Thiseovation supports the importance of
solvent effects because tCONCOORD is not considering ggirdonds that may be attacked by solvent
molecules in the definition of the distance constraints.

4.3.4 Which transient pockets are suitable for accommodatg known inhibitors?

So far, we used the overlap volume to estimate how far theenbinding pocket opened. However,
this measure is only a rough estimate and it is unclear whetheverlap value of 50-90% is

sufficient to accommodate a ligand. Therefore, the dockimgeements described in Chapter
3 in which the definition grid center was based on the centanas$s of the transient pocket
were repeated. All transient pockets that opened at thefaotein all snapshots extracted from
MD simulation of the apo structure in water or methanol weseduas starting points. The best
docking results listed in Table 4.2 emphasize that the baha¥the native binding pocket of IL-2

differs from that of BCL-X, and MDM2. While for the latter two systems much better dogkin
results were obtained when docking into MD snapshots taian the simulation in methanol (as
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system RMSD [A] score [kcal/mol] score ranké [%)]
BCL-Xp,
apo MD snapshots (water) 1.9 -10.2 15
apo MD snapshots (methanol) 1.7 -11.8 0.5
CONCOORD 1.8 -7.6 29.0
tCONCOORD 2.0 -11.1 15
NMA 2.3 -8.1 16.3
IL-2
apo MD snapshots (water) 1.9 -8.5 0.7
apo MD snapshots (methanol) 2.0 -6.9 8.4
CONCOORD 2.0 -6.6 7.9
tCONCOORD 24 5.4 25.8
NMA 1.8 -7.0 7.1
MDM2
apo MD snapshots (water) 15 -11.8 8.0
apo MD snapshots (methanol) 1.7 -13.5 0.2
restrained apo MD snapshots (water) 2.0 -8.8 82.6
restrained apo MD snapshots (methanol) 2.0 -9.5 68.5
CONCOORDY 2.1 -8.7 61.6
tCONCOORD? 1.6 -11.2 0.1
NMAP 33 9.7 13.0

drelative rank defined as the rank of this solution after agrll results by increasing docking score in relation to the
total number of docking results

Pminimized structure of truncated MDM2 (residues 17-11Bdias starting structure

Table 4.2: Best ranked correct (RMSE: 2 A) docking results or docking results with lowest RMSD per
conformational ensemble and system.

reflected by the better docking scores and the reduced saok® docking into water snapshots
gave better results for IL-2 (although the maximal overlapable 4.1 gives another impression).
A possible explanation for this may be that the pockets opgini methanol at the native binding
site are too small for the native ligand (see Fig. 4.4 (b)grethough the pockets are on average
larger than those opening in water. The best scored dockiagspfor the MD simulations of the
apo structures are shown in Figure 4.6.

Surprisingly, when docking the inhibitor into snapshotg&sted from restrained MD simulations
of MDMZ2 the native binding mode was correctly predicted. Hwer, the docking scores and
their ranks are worse compared to the unrestrained sirantaindicating that although side-chain
movements are sufficient to open new cavities, suitable bzaek movements are also needed
to achieve enough depth and plasticity. Again, the resutsstightly better when docking into
snapshots from the simulation in methanol. The impact ohar&tl as solvent is most striking
for the snapshots taken from the unrestrained MD simulatcdiMDM?2. Here, the relative score
rank of a correct docking result improved from 8.0% to 0.2%wkimulating in methanol instead
of water. Moreover, the score improved by 1.7 kcal/mol sgtjgg that, in addition to backbone
movements, the effect of a less polar solvent promotes taring of pockets even further.

435 Are CONCOORD, tCONCOORD, or NMA conformations an alternative to
MD snapshots?

Molecular dynamics simulations are quite time consumir. this reason, it would be desirable
to replace them by a more efficient method. Potential alteesto MD snapshots are conforma-
tions generated by CONCOORD, tCONCOORD, or NMA.

Properties of Transient Pockets Detected in the Alternatie Conformational Ensembles The
properties of the transient pockets detected in these ooatoonal ensembles are listed in Table
4.1. For IL-2, the total number of cavities found in the CONGQRD and the NMA conformational
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(e) MDM2 in water (f) MDM2 in methanol

Figure 4.6: The best scored docking poses when docking into MD snapsktrtected from the simulation
of the apo structure in water and in methanol (corresponttirtjose listed in Table 4.2). In (e) and (f),
residues 1 to 16 were removed for better visibility.

ensemble are comparable to the total number of cavitiedfouthe apo MD snhapshots from the
simulation in water. In contrast, for BCLXand MDM2 the number of detected pocket open-
ings is significantly reduced. Anyhow, the pockets foundhiese ensembles are not as diverse
(indicated by the number of pockets after clustering) asehapening during MD simulations.
Particularly when using NMA for generating a conformatioeasemble one ends up with only
a few distinct transient pockets. In addition, these pachket smaller than those opening during
the MD simulations. More importantly, they are also smattamn the native binding pockets and
too polar, except for the pockets detected for IL-2. In sumymiar all three systems, varying
interatomic distances in the CONCOORD approach or randdormdations along normal modes
approach sometimes resulted in a certain opening or entangieof the native binding pocket,
but not to the same extent as observed in MD simulations. €@nliL-2, the maximum overlap
volumes of the NMA and CONCOORD conformations are of the saragnitude as those of the
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apo MD snapshots in water.

The sampling of transient pockets can be significantly imgdowhen using the tCONCOORD
method. This method gives a larger total number of detecgdies and more diverse transient
pockets as indicated by the number of pockets after clugterBesides, these pockets are con-
siderably larger than those detected in the CONCOORD and Nii#formational ensembles.
Their volumes are even of the same order of magnitude as ttleefoopening during the MD
simulations, but except for IL-2, they are too polar (see Big).

Are these conformations approriate to accommodate the knowinhibitors? Here again, it

is interesting to know whether the transient pockets ifiedtfor these conformational ensembles
are the same as those observed during MD simulations. F#gGrshows that although NMA,
CONCOORD, and tCONCOORD conformations are based on the s&méng structure, the
tCONCOORD conformational ensemble performs best in remiod pockets detected during
MD simulations. Most pockets found in NMA structures wersoalound in all other conforma-
tional ensembles, because, as stated above, the NMA coatiorma tend to be quite similar and so
possess only a small number of distinct pockets. This findmghasizes that slow normal modes
are only involved in the dynamics of a few pocket openingaegi Whether the native binding site
belongs to these regions can be addressed by docking intéMi#econformations. Besides the
transient pockets that opened at the interface in this ecovetional ensemble, those detected in
the CONCOORD and tCONCOORD conformations were also usethdmg points for docking
experiments. When analyzing these docking results (sele #ad) it is obvious that the opening
of the native binding pocket of IL-2 seems to be driven by pthgamics than that of BCL-X
and MDM2. Namely, for IL-2, RMSD values below 2 A could be ashéd when docking into
NMA conformations but not for the other two systems. In casity when using the CONCOORD
conformations, the native binding mode of the known inlitstcould be more or less reproduced
for each system. However, the scores of these results dématnthat the structural and/or the
biochemical environment is not as appropriate as it may detrwusing MD simulations with-
out restraints. The docking results for the tCONCOORD confdional ensembles were quite
surprising. While for IL-2, the docking results were sigesfintly worse than those for docking
into the CONCOORD conformations, the results for BCL-Znd MDM2 were comparable to
those obtained when docking into the apo MD snapshots éettdoom the simulations in wa-
ter. This emphasizes the ability of tCONCOORD of samplimgutid-bound conformations even
if the unbound structure was used as input and suggeststthedish for BCL-X, and MDM2,
tCONCOORD seems to be an efficient alternative to MD simonhesti

4.4 Discussion

As we have shown in Chapter 3, transient pockets of similee as when bound to an known
inhibitor open during MD simulations of apo proteins at tlaive binding sites. These pockets
are not only observed by chance, but they were reproduaibéesecond MD simulation under
the same conditions. The results of this chapter indicaerttost pockets are also reproducible
in MD simulations under different conditions. Here agaiome of these pockets opened at the
native binding site and were appropriate for ligand bindidgwever, the properties of the detected
cavities depended crucially on the complexation statub@ftarting structure (apo vs. holo) and
the solvent. We calculated the pocket properties for theskesystems and the general impressions
were quite similar. When the holo structure was used in the difibulations, the volume of the
native binding pocket showed the largest fluctuations. Alth the same starting structure was
used, more and larger pockets opened on the protein surtaoegdhe simulation in methanol
than during the simulation in water. Furthermore, the a@séd simulation of MDM2 showed that
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side-chain movements alone indeed lead to the formationakgis, but their number and volume
is reduced. In summary, these findings suggest that pockeimgs are induced by movements of
the protein backbone and side-chains that are coupled sotient.

4.4.1 Can MD simulations be replaced by a more efficient mettus

Besides the transient pockets opening during MD simulaticonducted under different condi-
tions, we also analyzed pockets detected in conformatienaémbles generated by CONCO-
ORD, tCONCOORD, and NMA. Almost all of these transient pdskeere also found during MD
simulations. However, the number of distinct cavities msiled in the CONCOORD and NMA
conformations, and additionally they are relatively sméll most cases they are not appropriate
for ligand binding as the quality of the docking results camgal to those of the MD snapshots
demonstrates. Hence, due to their neglect of solvent effeet applicability of CONCOORD or
NMA for the purpose of inducing pocket openings appears tlinbiged. This problem seems to
be overcome in tCONCOORD by not considering hydrogen bdmatshay be attacked by solvent
molecules in the definition of the distance constraints. marided by the authors, this enables an
enhanced conformational sampling compared to CONCOORD 8 our purpose, this means
the detection of transient pockets of an increased varidyalumes that are even comparable to
that of pockets opening during MD simulations.

4.4.2 Are pocket openings related to normal modes?

Although the overlap volumes in NMA conformations sugghat the opening of the native bind-
ing pocket is somehow related to deformations along slownabmodes, they are not sufficient
to induce full pocket openings. However, compared to theidgcresults obtained when docking
into the apo structures (see Table 3.5), using NMA confoignatled to significant improvements.
For MDM2, the docking score even improves by 3 kcal/mol. Timding indicates that the open-
ing of the native binding pocket of MDM2 is weakly related tmrmal modes is in agreement with
the results reported by Barrett et al. [136] and Espinozas€ca and Trujillo-Ferrara [137]. Note
that these authors only observed the opening and closingment and did not measure whether
the increase of the pocket volume is sufficient for ligandilig.

IL-2 was the only system for which deformations along thenmairmodes were sufficient to repro-
duce approximately the native binding pocket (see Table @8e should keep in mind, however,
that here the native binding pocket was already open to &l@8 in the starting structure used
for generating the NMA conformations. Therefore, it is an@ated guess that the opening of the
native binding pocket appears energetically quite faverand may be observed by a variety of
methods that sample low-energy conformations. Indeeslwhs also true for CONCOORD, but
not for tCONCOORD. We assume that this is due to tCONCOORDit#ya of sampling struc-
tural transitions. As the input structure was already ggiitglar to the holo structure, only regions
of the conformational space that are further away from tlsésestures were sampled. Thus, no
native-like binding pose could be found when docking in®tGONCOORD conformational en-
semble. On the other hand, in the case of BCL.-¥hinimization resulted in the closure of the
previously partly open native binding pocket and here CORERD and tCONCOORD success-
fully produced conformations that were able to accommotteenown inhibitor.

4.4.3 Critical Assessment of the Approach

Besides studying what induces the opening of transientgiscthe aim of this chapter was to test
whether the time-consuming MD simulations may be replaged imore efficient method. Note
that as already discussed in the previous chapter, only adéable model systems were available



4.5. SUMMARY AND CONCLUSION 83

for this investigation making it difficult to extract generconclusions. The results were quite
promising for tCONCOORD, but the MD simulation in water whs bnly method that performed
equally well for all three systems. Although more, largewl éess polar pockets were detected
when simulating in methanol, the results improved for ol tof the three systems. These
observations suggest that the openings of the native lgjnutickets of the three studied systems
are driven by different mechanisms and none of the studigtiode was capable of generating
conformational ensembles of all systems that contain thigenhinding pocket in a druggable
state.

Note that the score ranks listed in Table 4.2 are quite lovabse we only docked in those pockets
opening at the interface. However, this study indicated ithgeneral the native binding pocket
differs from other pockets by its volume and polarity (segufé 4.4) and, thus, may be identified
by docking without prior knowledge about the location of thiading site when focussing on
large, nonpolar pockets. But, of course, this also has toalidated using a larger number of
model systems.

4.5 Summary and Conclusion

In this chapter we extended our investigation of transiexkpts opening on protein surfaces and
analyzed what induces these openings. A significant imgaoackbone movements and of the
solvent was identified. This was evident from the simulaiiomethanol were the total number
of pocket openings and their volumes increased comparedetsimulation in water. For two
out of the three systems, this also led to the formation opotar pockets at the interface what
significantly improved the docking results. This suggels&s & more hydrophobic solvent facili-
tates the opening of the native binding pocket. Comparingdifibulations with full flexibility or
with harmonically restrained backbone atoms revealeddltiaugh side-chain movements alone
lead to the formation of surface cavities, the required liepid plasticity for ligand binding can
only be achieved by including the backbone movements. Autditly, we could show that the
volume of native binding pockets fluctuates significantlyggesting a decreased stability in the
absence of a ligand. By calculating the reproducibility fué transient pockets detected in the
different MD simulations, we could show that the opening afstnpockets is independent from
the starting structure and the solvent. Moreover, we testerk efficient methods for generat-
ing conformational ensembles, but although CONCOORD andANWre capable of producing
conformations with pockets not observable in the startingcture, their diversity and volume
was limited. Though the formation of some pockets is coupdeldw frequency normal modes,
deformations along these modes were not sufficient to aelitdvpocket openings. On the other
hand, conformations generated by tCONCOORD possesseetgosith volumes and diversity
that were comparable to those of pockets opening during Midisitions. For two out of the three
test systems, this method was even able to generate cornionsguitable to accommodate the
native ligand. These findings open promising avenues facttre-based drug design on protein
surfaces.
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Chapter 5

Designing Binding Pockets on Protein
Surfaces using the A* Algorithm

While the protocols discussed in Chapter 3 and 4 sampledntire g@rotein surface for pockets,
we will now present a rigorous algorithmic approach thatizes the opening of putative binding
pockets at predefined surface regions. This initial studg pablished as a full paper in the
Proceedings of th&erman Conference on Bioinformatics2008 [154].

5.1 Introduction

In the previous two chapters, we presented a protocol thatt pockets that opened on the
protein surface. The advantage of this protocol is that mar panowledge about the location of
the binding site is required because the entire proteirasarfs sampled for transient pockets.
However, only those pockets that open spontaneously willibetified by this protocol. Pockets
whose openings are induced by a nearby ligand will remairt@uted. Furthermore, the pockets
are often too small and/or too polar for ligand binding. Enettely, in many drug design projects,
the approximate location of the binding site is already kmowlence, it is sufficient to sample
only a part of the protein surface. This local instead of glatearch allows for a more accurate
and directed sampling of accessible protein pockets antsecaiows to “force” the opening of
a pocket at a known location. The resulting protein confdiona and their ligand binding pock-
ets can then be used to optimize the interaction betweenrtteip and the ligand or for virtual
screening.

The problem of finding appropriate protein conformations ba solved efficiently using an in-
formed search. For this purpose, several algorithms hame theveloped in artificial intelligence.
A popular example implementing an informed graph searchasA* algorithm [155] that uses
knowledge about the structure of the search space incagubia heuristic functions to guide the
search towards optimal solutions. The nodes of the graplesept states of the system. Given
the initial state represented by the start node, the algoritearches an optimal (i.e. minimal cost)
path to a given goal node, representing the goal state. @tinis search, a graph is built up in
which each node represents a partial solution. The gemenatges are maintained in a priority
queue. The priority of a partial solutionis given by

f(z) = g(x) + h(x) (5.1)

whereg(x) is the cost of this partial solution so far, i.e. from the stavde tox andh(x) is the
heuristic estimate of the minimal cost to reach the goal rfagla x. If the heuristic function is
admissible (i.e. it never overestimates the cost of regctiie goal node) and consistent (i.e. it
fulfills the triangle inequality), it will always find a pathitlh minimal cost from a given start node
to a given goal node if such a goal node exists. As alreadyiorerd in Chapter 2, Leach applied
the A* search to the flexible docking and the side-chain ptsa@ problems [97]. After placing an
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anchor region of the ligand into the binding site, all pokesliyand conformations were generated.
For each conformation that made no unfavorable interastigith the protein backbone and all
rotameric states of a residue, the optimal combinationd#-shain rotamers was determined by
an A* search. In this approach, the initial node represetitedtructure without assigned rotamers
for the residues at the binding site, while the goal nodeesgmted the optimal docking solutions
where all residues had assigned rotamers.

We incorporated ideas from PASS, MCSS, and Leach’s apgicalf the A*-search into a new
approach that algorithmically generates energeticallgrigble protein conformations with acces-
sible binding pockets at defined locations on protein sedacSince conformations of minimal
energy and conformations with large cavities may be incdilga the user can control this com-
promise. Based on our findings about the importance of backipoovements presented in the
previous chapter, this method considers full protein fléikytduring the design of protein confor-
mations. As before, the applicability of the approach wdilsted using the proteins BCLX
IL-2, and MDMZ2.

During the implementation of this method, two approacheeevpeiblished that modify the lig-
and binding sites. Bottegoni et al. developed SCARE, andedtit docking protocol that starts
from a single (apo) input structure [156]. By mutating diéfiet pocket residues to alanine, mul-
tiple variants of the binding pocket are generated into Whie flexible ligand is docked. The
best scored poses are kept, the residues are mutated bdctheareceptor pocket is optimized
globally (thus allowing for backbone and side-chain fldiii while the positions of the ligand
atoms are restrained. After re-scoring the optimized darkiomplexes, the ligand binding pose
was correctly predicted (RMSE 2 A) in 80% of the best scored conformations. The authors
emphasize that no prior knowledge about the binding sitatiok is required because they run
a pocket detection program and pick the largest pocket. mieihod would most probably fail
for protein-protein interaction interfaces as it is lingiteo conformations that already contain ac-
cessible pockets. In another publication, Withers et aés@nted “active site pressurization”, an
approach for predicting the deformability of protein paskfl57]. During a MD simulation a
rectangular block of Lennard-Jones particles is injeatéd the ligand binding site and the num-
ber of particles interacting with the protein is gradualigreased. Thereby new energetically
reasonable protein conformations are generated that mayobe appropriate for ligand binding
than the starting structure. But rather than inducing thenopg of new cavities, this method is
designed to enlarge existing pockets.

5.2 Methods and Materials

Here, we introduce two programs for the generation of pnoteinformations that possess puta-
tive binding pocketsPocketScanneandPocketBuilder An overview of this approach is depicted
in Figure 5.1. PocketScanner scans a user-defined regidre qirotein surface for energetically
favorable pocket positions by generating conformationth ywreformed pockets at these sites.
Subsequently, PocketBuilder refines these intermediatéocnations and designs a final set of
conformations that best fulfill the search criteria, nantbly desired trade-off between a protein
conformation with low-energy side-chain rotamers and sebof defined volume. Both pro-
grams were implemented in C++ using the BALL library. All egies are computed using the
CHARMM EEF1 force field [158] that treats the solvent as anliaifpcontinuum because includ-
ing such effects is crucial for designing binding pocketgartein surfaces. We added so-called
generic pocket spherd&PS) to the force field. Each pocket was represented by a k&R 8rily
interacts with the protein atoms via van der Waals intevasti(with a radius of 1, 2, or 3 A and
a well depth of 0.05 kcal/mol). Note that the volume of a desipocket is controlled by the
radius of the GPS while it is represented by the van der Watdsdction energy between the pro-
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Figure 5.1: The PocketScanner / PocketBuilder approach. PocketScesmeres as input a starting struc-
ture, a region that should be scanned for pockets, and asradlithe GPS controlling the volume of the
pocket. For each putative pocket position, the input stmecis then energetically minimized in the pres-
ence of a GPS in order to adopt the protein conformation (afinly the backbone) to a pocket at this
position. The generated conformations and the correspgrmbcket positions are then used by Pocket-
Builder, along with a rotamer library and weights contradlithe properties of the final conformations. The
A* algorithm then searches for the best combination of sildain rotamers such that the resulting final
conformations possess the user-defined trade-off betweeeriergy and large accessible pocket.

tein atoms and the GPS. For the analysis of the pockets, ttiepuolumes and polarities were
calculated by EPO3” as described on page 71.

We used exactly the same prepared apo, holo, and inhibitactgtes as in Chapters 3 and 4.
Docking experiments were performed as described in Ch&ptbut here, the positions of the
GPSs were used as grid centers.

5.2.1 The PocketScanner Algorithm

In order to scan the protein surface for potential pockeitipoos, a grid with a user-defined center,
dimensions, and edge length is placed on the protein surfdmez-axis of this grid is the solvent
vector defined by the grid center and the center of gravithefli0 nearest solvent exposed atoms.
A GPS of given radius representing the pocket center is thenessively placed on each grid
point having a burial count (number of protein atoms withiA)8above a given threshold (here:
65). Thereby, we ensure that pockets are only induced digrussiof high protein atom density.
To exclude pocket positions that are deeply buried insideptitein, we additionally require that
the minimal distance to any solvent exposed atom must belemtian 2 A. The protein is then
energically minimized in the presence of the GPS using 580sstf L-BFGS or until the RMS
gradient is smaller than 0.01 kcal méA 1. During this energy minimization, the position of the
GPS is fixed, so that the protein has to adopt its conformalfiais relaxation may either result in
the formation of a cavity or in a flattening of the protein swd. Thus, only if the burial count is
still high enough after the energy minimization, this piotsonformation in combination with this
pocket position is written to an output file for using it asasihg conformation in PocketBuilder.
The complete procedure is listed in Algorithm 3.
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Algorithm 3 The PocketScanner algorithm

Input: start_conf < apo protein structure
Input: grid_parameter < center, x-, y-, and z-dimension, edge length
Input: radius < radius of the GPS
generated_confs « ()
grid «— makeGrid(grid_parameter) {creates a grid such that the z-vector is approx. perperatita the protein surface}
for each grid_point € grid do
BC « getBurialCount(grid_point, start_con f) {calculate the burial count of this position}
dist_to_sur face «— getMinimal DistanceT oS E Atom(grid_point, start_con f) {calculate the distance to the nearest
solvent exposed atom}
if (BC > 65) AND (dist_to_sur face < 2) then
GPS — generateGPS(grid_point, radius)
conf_with_GPS «— start_conf UGPS
conf_with_GPS «— runEM (start_conf, GPS) {fix the position of the GPS and energy minimize the protein}
BCinimized — getBurial Count(grid_point, conf_with_GPS \ GPS) {recalculate the burial count}
if BCrinimized = 65 then
generated_confs < generated_confs U conf_with_GPS {save this conformation with the corresponding GPS}
end if
end if
end for

return generated_confs

5.2.2 The PocketBuilder Algorithm

Starting from the protein conformations with preformed kmis generated by PocketScanner,
PocketBuilder calculates a user-defined number of confoomsathat best represent the selected
trade-off between a pocket of a given volume and a proteirfocoration of low energy. The
algorithm consists of two stages: the initialization stage the A*-search. The pseudocode of
the program can be found in Algorithm 4. The initializatia gerformed separately for each
starting conformation. It starts with defining all side-ttsawithin 8 A of the GPS as flexible.
The remaining part of the protein is treated as rigid. Fos fart, the energy,.;,;¢ and the van
der Waals interaction energy with the GBS, ;4 pocke: are calculated. For each of the flexible
residueg, all rotamergj taken from Dunbrack’s backbone independent rotamer jfidram 2002
[64] (including the original side-chain conformation)getkian der Waals interaction energy with
the pocketty; ;. ,ocket, @and the energy changel; ; resulting from including this side-chain rotamer
in the calculation off,.;,;4 are determined. Unfavorable rotamers are deleted if

B = wenergy - ABy; + Wpocket * Bij pocker > 100kcal /mol (5.2)
Finally, the pairwise non-bonded interaction enerdigs;, between the remaining rotamgrand
| of each pair of residueisandk are calculated and stored in a hash table.

Afterwards, the algorithm builds up a search tree where tues represent partial conforma-
tions, i.e. conformations in which rotameric states havg baen assigned to some of the flexible
residues. The nodes of the first level in the tree correspoigetrigid part of the different input
conformations (0 assigned side-chains), then in each qubstlevel + 1, rotamers are assigned
to each flexible residué until the protein conformation is complete (see also Figug®. The
different input conformations represent different suésrén which the rigid part of the protein as
well as the pocket position is identical. The order in whiateschain rotamers are assigned is
fixed, so that in all partial solutions represented by nodésvel i + 1 in subtrees, the side-chains
of the same residuds ..., i are already defined. (The order in which side-chains aredalddg no
effect on the final result.) Note that the level of the leavdes®oare identical within the same sub-
tree, but may differ within different subtrees dependingf@number of flexible residues defined
for this input conformation. The buildup of the tree is cofied by the A* algorithm. A priority
f(x) is assigned to each nodehat evaluates the true cagtr) of this partial conformation so far
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flexible residue 1 locked to
rotamers 1,...,r1

flexible residue 2 locked to
rotamers 1,...,r

flexible residue 3 locked to
rotamers 1,...,r3

Figure 5.2: A part of the rotamer search tree generated during the A'tbeafrPocketBuilder, shown here
for a single starting conformation. The 1st level contairesdtarting conformation with all residues within 8
A of the GPS (shown in black) mutated to glycine. If this ncsleliosen for expansion, nodes are added
in the 2nd level, and each node represents a partial solutiwhich the first flexible residue is locked into
the different rotameric statds..., 7, (shown in orange). If a node in the 2nd level is expandedpdes are
added in the 3rd level per node and here, the second flexsitbueegets locked into the different rotameric
statesl, ..., 7o (shown in green). In the 4th level, the third flexible residigts locked into the different
rotameric states, ..., 3 (shown in blue), and so on until a leaf node is reached wheaerers are assigned
to each flexible residue. For better visibility, the backbaf the partial solutions starting from the 2nd
level is shown in white cartoon representation and only #aglile residues are shown in colors.

and estimates the minimal cdstz) for reaching a leaf node, where

g(l‘) =  Wpocket * Erigid,pocket + Wenergy Erigid +
T i—1
Z (wpocket : Eir,pocket + Wenergy - <AE2T + Z Ei,«,k;T)) (53)
i=1 k=1

HlliIl (wenergy : AEkl + Wpocket * Ekl ,pocket) +
1

x N
((Z min Ekl> + ( > %1 Ekl,nm> ) (5.4)
k=z+1 i=1 n=x+2

M= 1=
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Algorithm 4 The PocketBuilder algorithm

Input: start_confs < PocketScanner conformations with GPS
Input: flexibility_radius < radius defining which side-chains around the GPS are to bheiapd
Input: wenergy < Weighting factor for scoring the internal protein energy
INput: wpecrer < Weighting factor for scoring the pocket volume
Input: N < number of protein conformations to be generated
{initialization}
for each conf € start_confs do
flexible_residues «— getFlexibleResidues(conf,conf.GPS, flexibility_radius) {get all residues within a certain
distance of the GPS}
rigid_part «— conf \ (flexible_residues U conf.GPS) {get the rigid part of the protein}
E,igiq < getEnergy(rigid_part) {get the internal protein energy of the rigid part}
Erigid,pocket < getEnergy(rigid_part, conf.GPS) {get the vdW interaction energy between the GPS and the pgit
for each ¢ € flexible_residues do
rotamers; «— getRotamers(i) U i {get all rotamers of i and also add the original side-chainfoomation}
for each j € rotamers; do
Ei; pocket < getEnergy(i;, conf.GPS) {get the vdW interaction energy between the GPS and the mfam
AE;; — getEnergy(rigid_part Ui;) — E,.,4;q{get the change in internal protein energy resulting froeiiding this
rotamer}
if Wenergy - AE;; + Wpocket * Ei; pocket 2 100kcal /mol then
rotamers; < rotamers; \ j {remove unfavorable rotamers to speed up the calculations}
end if
end for
end for
for each i € flexible_residues do
for each j € rotamers; do
for each k # i € flexible_residues do
for each | € rotamersy do
Eii»kl — getEnergy(i;, ki) {get the non-bonded interaction energy between the the ttamers}
end for
end for
end for
end for
end for
{A* search}
generated_confs « ()
priority_queue «— ()
root < Node(NULL,0) {the root node is a dummy node}
for each conf € start_confs do
x < Node(rigid_part, root) {1. level is the rigid part of each input conformation}
priority_queue.push(f(z),z) {add z to the priority queue}
end for
while (priority_queue # () AND (|generated_confs| < N) do
x «— priority_queue.pop {get nodex with lowest f(x)}
if isLeafNode(x) then
generated_confs <« generated_confs U x.conformation {add complete conformation af to results}
else
{add a new node for each rotamersf the next flexible residué+ 1}
for each r € rotamers; 1 do
y < Node(z.con formation U (i + 1),, z) {add rotamen- to the partial conformation of}
priority_queue.push(f(y),y) {add y to the priority queue}
end for
end if
end while

return generated_confs

In the summations, runs over all flexible residues with already assigned rotamewvhile £ and

n run over the remaining ones, ahdndm denote different rotamers of a side-chain. In each step,
the noder with lowest f () (representing the partial conformation that seems moshising) is
taken from the priority queue. If is a leaf node, the corresponding conformation is written to
an output file. Otherwisey is expanded, i.e. a new nogeis added for each possible rotamer
of the succeeding flexible residuet+ 1 and the priorities of these new partial conformations are
determined. The algorithm terminates as soon as the predefimber of output conformations
is reached.
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5.3 Results

PocketScanner and PocketBuilder were tested using diff@arameters controlling the volume
of the induced pockets. PocketScanner was run twice, usB®Sradius of either 2 or 3 A. Pock-
etBuilder was tested with three different weighting scheiper PocketScanner setup, resulting in
a total of six runs.

5.3.1 Properties of the Pockets Induced by PocketScanner

PocketScanner was used to scan the apo protein structunessitions of inducible pockets. For
each system, the grid center was placed at the ligand centeass, the dimension was 11 x 11
x 5, and the edge length 2 A. That way, the grid covered thaeeptiotein-protein interaction
interface. Running PocketScanner took about 1 hour on desfdbBU of an Intel Core 2 Duo
processor which mainly resulted from the large number ofg@nminimizations. PocketScanner
was run twice using the same settings for the grid but differadii for the GPS. The use of the
larger GPS had a significant impact on the number of accepiekip positions. Out of the 605
possible positions, 67 (66) were accepted for BCt,-X5 (18) for IL-2, and 29 (20) for MDM2
when using a GPS radius of 2 A (3 A respectively). Note thaseéhgocket positions may be
located anywhere in the protein-protein interaction iiaieg and are not limited to the inhibitor
binding site. As an example, the grid and the accepted p@dstions of BCL-X, are shown in
Figure 5.3.

EPOS” was applied to the resulting PocketScanner conformationddtecting those pockets
that were induced at the position of a GPS. An overview of ttaperties of these pockets is
shown in Table 5.1. This analysis revealed that pockets wetected in more PocketScanner
conformations when the larger GPS radius was used indig#tiat a radius of 2 A may be not
sufficient to induce the opening of accessible pockets. heurtore, the polarity of the pockets
resulting from larger GPSs was slightly reduced. One coxjubet that the mean pocket volume
would significantly increase when using a larger GPS, bt ithinot the case. For MDM2, the
mean pocket volume even decreased. However, using a laRf@r&lius may also cause a cavity
that is more flat and, thus, of reduced volume.

Figure 5.3: The interaction interface of apo BCLzXcovered by the grid generated by PocketScanner.
Accepted pocket positions are shown as red spheres.



92 CHAPTER 5. DESIGNING BINDING POCKETS ON PROTEIN SURFACES
system GPS radius detected mean pocket | mean pocket
[A] pockets [%] volume [A?] polarity
BCL-X[ 2 43 381.3+ 82.3 0.33+0.03
3 86 394.9+ 109.7 0.29+ 0.04
IL-2 2 52 311.8+ 59.1 0.31+0.04
3 78 328.8+ 58.9 0.29+ 0.03
MDM2 2 31 376.8+ 91.7 0.33+0.02
3 75 315.7+ 98.6 0.31+0.03

Table 5.1: Properties of the pockets induced by PocketScanner.

5.3.2 Properties of the Pockets Designed by PocketBuilder

The conformations and the corresponding pocket positi@meited by the two runs of Pock-
etScanner were used as starting conformations for Pocke#&BuAs the weighting factors for the
internal protein energy and the protein-pocket interactinergy crucially influence the scores and,
thus, the A* search, we calculated 500 conformations usiregtdifferent weightings schemes for
each GPS radius (resulting in six runs of PocketBuilder):

e internal protein energy and protein-pocket interactioargy weighted equally (0.5 and 0.5)
e a strong emphasis on the protein-pocket interaction er@dyand 0.9)
e a dominance of the protein-pocket interaction energy (artxd 0.99)

In an initial test, we found that the initialization stagehs bottleneck for the run time of Pocket-
Builder with 6-10 minutes per starting conformation depegan the number of flexible residues
(here, 8-18 flexible residues) and accepted rotamers. Texsye the calculations, a greedy pre-
selection of the starting conformations was added: For eaoformation, the weighted sum of
the internal protein energy and protein-pocket interacgoergy was calculated and only the 20

system GPS Wpocket |  total no. efficiency | mean pocket| mean pocket
radius [A] leaf nodes volume [A%] polarity
BCL-Xp, 2 0.50 1.0-10™ 8.3 10° 715.3+21.9 0.36+ 0.01
2 0.90 1.9-10" 1.7-10° 343.6+ 31.7 0.27+0.01
2 0.99 3.4-10' 1.6-10° 337.44+37.2 0.27+0.01
3 0.50 1.7-10" 2.4-10° 282.6+ 34.2 0.30+ 0.01
3 0.90 5.6- 10! 7.1-10° 276.14+55.0 0.31+0.01
3 0.99 4.5.10" 1.2-10° 485.24+ 92.7 0.37+0.01
IL-2 2 0.50 2.0- 10" 1.0- 10" 291.7+ 3.8 0.27+0.01
2 0.90 2.7-10'6 9.3- 10" 290.3+ 4.8 0.27+0.01
2 0.99 1.9-10'%® | 4.1-10" 359.6+ 36.3 0.33+0.01
3 0.50 1.2-10" 5.9- 10 450.94 80.2 0.31+0.01
3 0.90 2.2-10Y 6.9- 10" 507.44+ 90.7 0.30+ 0.01
3 0.99 4.6- 106 1.2-10'? 344.4+ 23.3 0.33+£0.01
MDM2 2 0.50 1.5.10" 1.4-10' 314.0+ 56.8 0.31+ 0.02
2 0.90 1.4.10'% 1.4-10' 420.0+ 50.2 0.33+0.02
2 0.99 2.1.10'6 2.4. 107 277.94+19.6 0.32+ 0.01
3 0.50 2.6-10'? 7.0-10° 233.8+ 26.3 0.32+ 0.01
3 0.90 8.8- 10 7.6-10° 235.3+27.1 0.32+ 0.01
3 0.99 2.0-10% 1.4- 10 339.1+ 89.1 0.31+0.02

Table 5.2: Influence of the GPS radius and the weighting on the perfocaaih PocketBuilder and the

properties of the induced pockets.
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(a) apo structure (b) after PocketScanner (c) after PocketBuilder

Figure 5.4: Conformational changes of the backbone (shown in cartopresentation) and the residues
defined as flexible in PocketBuilder (shown in licorized es@ntation) in a subpocket of BCLyX The
GPS (radius = 3 A) is shown as transparent red sphere. Tie wierlap of the protein atoms with the GPS
(a) was reduced during the energy minimization in PocketBea(b). Running PocketBuilder withypts.:
=0.99 optimized the interaction with the GPS by changingth@mers of some flexible side-chains (c).

starting conformations with lowest score were retained. ti@none hand this preselection may
delete conformations that would later on score better widred side-chain rotamers, but on the
other hand running the algorithm with too many starting comiations is nearly infeasible. The
run time of the A* search took between 40 minutes and 4 houperiding on the number of
possible nodes in the search tree and on how similar thessobtbese nodes are. Here, we use
the ratio between the number of possible nodes and the nushigenerated nodes as a measure
for the efficiency of the algorithm. Analogously to the poskenduced by PocketScanner, the
properties of the pockets designed by PocketBuilder wdreikeded. The results of this analysis,
the number of different conformations (leaf nodes) thatidde generated using this setup, as
well as the measure for the efficiency of this PocketBuilder are listed in Table 5.2. Although
the total number of leaf nodes increased with augmentipg.;, the algorithm generally found
the 500 best conformations more efficiently, suggesting ttha interaction energy between the
protein and the GPS was more diverse than the internal preteirgy. No trend was apparent for
the influence of the weighting and the GPS radius on the megkepgolume and polarity. These
mean volumes even seem to suggest that PocketBuilder kdueesolume of most pockets to
snugly fit around the GPSs. An example of how PocketScanriePanketBuilder changed the
apo structure of BCL-X is shown in Figure 5.4.

5.3.3 Docking into Pockets Designed by PocketBuilder

The aim of this approach is the efficient design of ligand liggpockets on the protein surface.
As before, the appropriateness of this protocol for druggsheis validated by docking the known
inhibitors into the designed binding pockets. The main tjoes are:

e Can docking into the designed pockets reproduce the nagi@ed binding mode?
e Which weighting and GPS radius requires the lowest numbgepérated conformations?

Table 5.3 lists the best scored docking results with RMSI2 A (or the docking result with
lowest RMSD) for each PocketBuilder run. The correspondingking complexes are shown
in Figure 5.5. With each setup, PocketBuilder successiualiiuiced the opening of native-like
binding pockets on the surface of the BCLdnd the IL-2 protein as the RMSDs indicate. For
BCL-X, the docking scores were even in the same order of magnitaaetihe re-docking scores
(see Table 3.5) and the scores obtained when docking inpskaots taken from the MD simulation
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system GPSradius | wpocket RMSD score | score rank solution
[A] [A] [kcal/mol] [%] no.

BCL-X, - N3B 2 0.50 1.9 -10.0 42.0 213
2 0.90 2.0 -10.1 34.4 169

2 0.99 2.0 -10.2 33.6 241

3 0.50 1.7 -10.2 55.4 82

3 0.90 1.5 -10.4 58.2 376

3 0.99 2.0 -11.3 6.2 29

IL-2 - FRH 2 0.50 1.8 -6.5 6.4 75
2 0.90 1.8 -7.3 1.7 226

2 0.99 2.0 -4.3 54.4 428

3 0.50 2.0 -5.6 44.1 167

3 0.90 2.0 -6.6 29.6 285

3 0.99 2.0 -4.4 60.6 430

MDM2 - DIZ 2 0.50 2.6 -7.9 83.1 193
2 0.90 2.6 -7.8 90.5 225

2 0.99 2.9 -9.1 4.9 113

3 0.50 3.2 -9.7 5.9 436

3 0.90 3.1 -8.8 27.4 345

3 0.99 2.2 -9.1 88.3 41

Table 5.3: Influence of the GPS radius and the weighting on the dockisigit® Shown are the best scored
docking results with RMSEX 2 A or the docking result with lowest RMSD.

in water (see Table 4.2). Interestingly, when using thegla@PS and setting,,,.1.; to 0.99, the
docking score is even lower than in the re-docking expertiieor IL-2, the docking scores were
less satisfying. However, one should keep in mind that timdibg site consists of two subpockets
that lie about 15 A apart and with this approach one can omlyde the opening of one of these
subpockets. Here, using more than one GPS would most psobaplove the docking score.
For MDM2, PocketBuilder was not able to generate bindingkptxinto which the ligand could
bind in its native binding mode. But comparing these dockesylts to those of the apo-docking
(listed in Table 3.5) indicates that an opening of the naliveling was at least partly induced.
In this example, the truncated structure used in Chapteryllieanore appropriate for inducing
pocket openings by energy minimizations. However, theslagdptive rank of most docking results
indicates that all setups do not only lead to openings of gisckimilar to those seen in the holo
structures, but also to alternative pocket conformationgact, most setups seem to prefer these
alternative pockets because the protein conformation iictwtihe native binding mode is best
reproduced was often generated quite late during the Atkear

(a) BCL-X,, (b) IL-2 (c) MDM2

Figure 5.5: The best scored docking poses obtained when docking intkeffi®gilder conformations cor-
responding to those listed in Table 5.3. In (c), residuesIibtavere removed for better visibility.
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5.4 Discussion

The docking experiments indicate that many conformatioith wavities at locations different
from that of the native binding pocket were computed. Theeg pocket positions are sug-
gested by PocketScanner and each generated protein catifimmoontains a pocket at a different
position. However, not all of these pocket positions araine in the 500 final conformations as
the selection depends on the scoring function incorporat€tbcketBuilder. Note that although
the nodes of the first level of the A* search tree represeffergifit PocketScanner conformations
and pocket positions, it is not guaranteed that these nodedl@&xpanded or lie on a path to a leaf
node (i.e. they represent the basis of a final conformatiSo)it may happen that PocketScanner
induces an initial opening of the native binding pocket big tonformation is not further consid-
ered by PocketBuilder because at least one other confa@mathieved a better score. Similarly,
although PocketBuilder may compute conformations thabased on PocketScanner conforma-
tions with the pocket at the native binding site, they arensaiessarily more favorable than others.
Therefore, one should rather consider a number of solutiwiead of just the optimal one (only
the first conformation generated during the A* search).

5.4.1 Isthe representation of a pocket by a single GPS reasaile?

The representation of a binding pocket by a single GPS isgustigh approximation and bears
several disadvantages. As the protein is relaxed arountdexispl obstacle, the resulting pocket
tends to be of an artificial globular shape and the proteifasarmay be too smooth as all protrud-
ing side-chains elude unfavorable interactions with th&@#md huddle against the protein surface.
Moreover, as the example of IL-2 demonstrated, binding pcikay consist of several subpock-
ets. In such a case, inducing the opening of just one of thematisnough. However, when using
PocketScanner as described above, scanning the interfdcewe or even more GPS at the same
time would result in a combinatorial explosion. Here, a maceurate description of the binding
site would be required. For example, when the exact locaifaihe binding (sub-) pockets are
known, one could place several GPS manually. We testedlteimative setup of PocketScanner
for BCL-X, IL-2, and MDM2 and placed several GPS manually (based ostiiueture of the
superimposed inhibitors) in the apo structures. Here, only PocketScanner conformation was
generated and used as input structure for PocketBuildererdocking the inhibitors into the
pockets of the 100 conformations refined by PocketBuilder,native ligand binding pose could
be reproduced for all three systems with docking scores.6fk&al/mol for BCL-X;, and MDM2,
and -6.5 kcal/mol for IL-2. Thus, even when incorporatingadled information about the native
binding pose in the design process of the binding pocketddio&ing results do not improve sig-
nificantly. Although the unbiased approach that dependg @mian approximate definition of the
binding site location is not yet mature, it shows that scagrd protein-protein interaction inter-
face computationally for inducible pockets is feasible trad the results are of comparable quality
than those obtained when detailegriori knowledge about the binding site was considered.

5.4.2 Critical Assessment of the Approach

The approach presented in this chapter shows that, in phindt is a promising idea to induce
pockets algorithmically by representing them by their tiggamage that interacts with the pro-
tein. But as discussed above, a single GPS is in many caseslfficient to induce native-like
binding pockets. This representation requires keepingtsition of the GPS fixed during the
energy minimization because otherwise it could be easiyshed away” by the protein. But this
procedure of “drilling holes” in the protein surface may be hard and artificial. When looking
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back, it appears more reasonable to harmonically restnaipasition of the GPS and this may be
tested in future work. By fixing the GPS, the protein may gstatted and, thus, be in a high-
energy conformation that is useless for PocketBuilder. &imyrcases it may be sufficient to move
the GPS just by less than 1 A to resolve this strain. Altevesitj clashes between the GPS and
the protein atoms would be less severely punished when assof-core potential for calculating
the van der Waals interaction energy. A further alternasv&mpling the pocket positions using
a finer resolution (i.e. smaller edge length of the grid) Imig tvould be computationally very
demanding. Likewise, the quality of the PocketScanneraromhtions depends on the orientation
and resolution of the grid as it defines the positions of th&&PAs a result, PocketBuilder of-
ten considers only a few PocketScanner conformations astllees have an unfavorable internal
protein energy. But when generating 500 final conformatieitis only up to 18 flexible residues,
it is not surprising that the resulting conformational enb& is very redundant with solutions
differing often by only one side-chain.

Besides the orientation and resolution of the grid, the eahoif the rotamer library and the force
field may also have an impact on the performance of this appro&/hile Dunbrack’s backbone
independent rotamer library from 2002 was chosen as it iséveest one distributed with the
BALL library, we decided to use the CHARMM EEF1 force field &snicorporates an implicit
solvent term. Based on our findings discussed in Chaptercéuating for solvent effects seemed
to be important when focussing on solvent exposed pockeiisthizs force field has the drawback
that all amino acid side-chains have a neutral charge, dwasetwhich are charged at physio-
logical conditions. So it is unclear whether this force fimddeally suited to determine the best
combinations of rotamers in terms of internal protein epengd pocket volume.

5.5 Summary and Conclusion

The pocket detection protocols that were introduced befoamned the entire protein surface for
transient pockets and so suggested putative binding i, we presented a new approach that
assumes that the location of the binding site is approxim&teown. Thus, this surface region
can be exhaustively scanned and tailored ligand bindinggisaan be induced algorithmically
by considering protein backbone and side-chain flexibiMghile PocketScanner relaxes protein
conformations in the presence of generic pocket spheregeBRuilder induces pockets of desired
properties by searching for the best combinations of siggrcrotamers using the A* algorithm.
We suggest to use the two programs together, but in printifge could be used individually.
The drawbacks of this method are that the designed pockelf are artificial globular shape and
that the binding sites are too smooth. Furthermore, by usitlg one GPS at a time the ap-
plicability of this approach is limited to binding sites ®sting of only one pocket and not of
several subpockets. However, for two out of the three systéine PocketBuilder algorithm was
able to induce pockets of suitable volumes and shapes sththaimall-molecule inhibitors could
bind in a native-like orientation. For the third system, tleeking results improved significantly
compared to docking into the apo structure. Thus, this enggresented a pioneering work for ap-
proaches representing efficient alternatives to our Metdg®cket detection protocol introduced
in Chapters 3 and 4 for cases when the location of the bindiagssapproximately known.



Chapter 6

Designing Binding Pockets on Protein
Surfaces using an incremental Inflation
Procedure

As binding pockets for SMPPIIs often consist of several sulpts, we suspected that taking this
fact into account may significantly improve the performaatBocketScanner and PocketBuilder.
We will now introduce an approach which implements the improents suggested in the previous
chapter. The method is still under development and thentgsti various parameters is ongoing.
Hence, the results should be considered as preliminaryrbutising.

6.1 Introduction

In the previous chapter, a pioneering method was presentetid algorithmic design of ligand
binding pockets on protein surfaces. We could show thatrsegnprotein-protein interaction
interfaces for inducible pockets is computationally fesesibut found that the scheme “one pocket
- one GPS"is often inappropriate for designing native-bkading pockets. Notably, the examples
of IL-2 and BCL-X;, illustrate that SMPPIIs often bind to several subpocketthatsame time.
Thus, docking these ligands into generated conformatidtisjust a single cavity won't give a
realistic estimate of the free binding energy. Furthermtite native subpockets accommodating
parts of the inhibitors are rather of irregular shape witbuggh surface than globular with a smooth
surface like the pockets whose openings are induced byimgléixe protein around a single GPS.
In addition, the positions of the induced pockets depencherotientation of the grid generated
by PocketScanner. Although the protein is minimized, thresence of the GPS at this position
may induce so much strain on the protein that this confomation’t be accessibla vitro. In
such a case, only a minor adjustment of the pocket positionnesult in an energetically more
favorable protein conformation. Moreover, although usimg CHARMM EEF1 force field [158]
seemed promising due to its implicit solvent term, we becakeptical about its appropriateness
for the design of pockets on protein surfaces during thesmowof this work because all side-
chains are modeled as non-charged. Thus, we later decid®dtth to using the Amber 96 force
field [159] to ensure that electrostatic contributions atecmately accounted for when optimizing
side-chain orientations, especially as hot spots in prgiedtein interaction interfaces are often
represented by charged residues. We incorporated all duesgderations into a new approach,
termedPocketInflatoy that can be considered as a combination of ERPQ®ocketScanner, and
PocketBuilder.

In Pocketlnflator, the protein surface is scanned for infitackets that are located next to user-
defined protein residues using a modified version of EPQ%nstead of placing the PASS probes
at positions where they do not clash with protein atoms aerbgefwe now introduce alash
factor that scales down the sum of the radii of the probe and theipratems during the filtering

97
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step of the PASS algorithm and so allows for overlaps betwmebe patches and the protein.
As in the original implementation of EP@$, coherent PASS probes constitute a patch, and a
patch represents the negative image of a pocket. Here, eabk s substituted by a GPS of
the corresponding radius, and, thus, a (sub-) pocket isepted by a set of GPSs. This setup
addresses the main problems of the previous pocket despgyoagh: The position as well as the
shape of the pockets are dictated by the protein structursareral (sub-) pockets may be induced
at the same time. Analogously to PocketScanner, the prigtiien relaxed in the presence of these
patches of GPSs. After each energy minimization, the detect the pockets is repeated with
an increasing clash factor, resulting in an incrementalegdn of the overlap between the PASS
probes and the protein atoms. By doing so, similar to Poaki&t8r, a set of partial solutions is
generated that are scored by their potential energy, tie abthe user-defined protein residues
that line the current version of the pocket, and the devidtiom the user-defined goal volume.

6.2 Methods and Materials

In this new approach, the algorithms of EP®S PocketScanner, and PockerBuilder were fused
into one program, called Pocketinflator. Like its precussdrris implemented in C++ and uses
the BALL library. All energies were calculated by the Ambérfarce field instead of CHARMM
EEF1 and four different sizes of GPS (radii of 0.7, 1.8, 21 8.4 A, all with a well depth of 0.2
kcal/mol) were considered.

The model systems and the used structures were the samehasoirevious chapters. As already
discussed in Chapter 4, the apo structure of MDM2 is inapiatgfor energy minimizations in
vacuo. Therefore, we used the same truncated structureCisajoter 4.

6.2.1 The Pocketinflator Algorithm

The flowchart of this approach aiming at inducing pockets pfealefined volume at defined po-
sitions is illustrated in Figure 6.1. In contrast to the Rei@canner/PocketBuilder method, an
arbitrary number of (sub-) pockets can be induced at the $mnee For this purpose the approx-
imate location of each individual (sub-) pocket has to bengefiby a set of residues that should
line it. The definition of the (sub-) pocket’s goal volume gional. In addition, a set of starting
structures and the number of solutions to be generated bdedefined. In order to generate en-
ergetically favorable conformations that possess addesgockets at defined sites, intermediate
solutions are calculated and stored in a priority queue.sthee of such an intermediate solution
is composed of three to four terms with values between 0 and 1:

® s5coTecnergy. the ratio of the energy of this conformatio(,, ) to the lowest energy
(Fmin < 0) of all starting structures after 1000 steps of L-BFGS eyenjnimization (if
% < 0, thenscoreenergy = 0; if % > 1, thenscoreenergy = 1)

e scorep;s: the ratio of the number of predefined residues that are fovittdn 8 A of the
ASP of the induced pocket versus the total number of predéfiesdues

e score.y is set to the clash factetf that allows for overlaps between the PASS probes of the
patch and the protein atoms in the BALLPass algorithm by @efinlashes as

distance(probe,atom) < cf - (radiusyyope + raditSatom) (6.1)

The maximum value off is 0.95 as this is the default value in EP®&&hat best reproduced
the results of the original PASS program.
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o score,oume (Optional): the deviation of the pocket volume! from the goal volumeol .
calculated by

_ (vol—volgoal)
SCOT€yoiume = €\ V2 Vgoal (6.2)
Note that this value is incorporated in the total score ofilgg correspondingf is already

at its maximum value of 0.95.

The total score is then calculated by

n

5COTE = SCOT€enerqgy * SCOTEf = — Z (scorepits(1)[-scoreyorume (1)]) (6.3)
=1

wherei runs over the individual subpockets. The pseudocode of tlod®inflator program is
listed in Algorithm 5.
The program starts with energetically minimizing all ingtituctures using 500 steps of L-BFGS
(if afterwards,E,., s > 0, the minimization is repeated) and detecting the initialked patches in
this conformation. The subsequent conformation is funthieimized in order to determing,,,;,, .
All conformations are then scored and added to the priotigue ifscore > 0. (Note that if no
pocket was detectable in the starting structure, the pnodesiminates without a solution.) Af-
ter this initialization stage, the algorithm iterativebyteacts the best scored intermediate solution
from the priority queue and further inflates the existingkmiaintil a predefined number (default:
50) of final solutions (withcf = 0.95 andscore > 0.3) is generated. The minimum score was
used to ensure that the resulting conformations are of loevegy, contain (sub-) pockets at the
predefined locations, and, if defined, are of the desiredwelu
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Figure 6.1: Flowchart of the PocketInflator approach. PocketInflatarsists of an initialization and an
“inflating” procedure. For inflating pockets, the algoritlii) selects the best scored intermediate solution,
(2) enlarges the existing patch(es), converts the prob&P8s and (3) minimizes the protein in their
presence, (4) determines new patch(es) that overlap lebsthve protein atoms, and (5) scores and (6)
stores this (intermediate) solution. This procedure casimgy steps 1 - 6 is repeated until a predefined
number of solutions is generated or until no intermedialiatEms are left.
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(b)

Figure 6.2: The distribution of the probe weights within a patch showthatexample of the native binding
pocket of MDM2. All probes are represented by spheres anaredlby their weight (normalized by the
weight of the ASP) ranging from red (high probe weight) toeb(low probe weight). The top-view of
the patch (a) including the protein surface (shown in greg)dates that probes in the center of the patch
have a higher weight than those located at the border. Subf{glishows the same patch rotated by°180
displaying the moderate weights of the probes at the bottiaimegpatch.

The inflating procedure consists of three main steps thatleseribed in the following: mod-
ification of the existing patch (step 2 in Figure 6.1), enengiyimization to adopt the protein
conformation to it (step 3), and determination of (a) newcpés) (step 4).

Modification of the existing patch The PASS algorithm calculates a real-valued probe weight
pw for each probe (see page 43) that reflects its burial countrengumber of surrounding probes.
As Figure 6.2 demonstrates, probes at the border of the patahlower weights, probes located
at the bottom have moderate weights, and those found in titercef the patch (like the ASP)
have the highest weights. In order to inflate the pocket, ie@ésonable to enlarge those probes
having a high weight. Thus, for a given threshold the radius of each prokewith is tripled, if

pw; > th - pwasp (6.4)

All three steps described here are repeated for differeeshiolds. In this setup, we use four
different thresholds (0, 0.3, 0.6, 0.9). Initial tests gsinsmaller step size showed that two similar
threshold often resulted in the same modified patch and tinieeessarily increased the run time
of PocketInflator. The threefold enlargement of the GPSusadiay sound quite drastic but was
necessary in order to achieve a sufficiently large (furtbpgning of the pockets. The reason for
this is that we used a soft-core potential that will be disedsin the next paragraph. Doubling the
radius had only minor effects on the protein conformationgaial tests indicated.

Energy minimization in presence of the patch All probes are translated to GPSs of the same
radius. The protein conformation and the patch contairtiegeinlarged probes are then subjected
to 500 steps of L-BFGS energy minimization. The implemeéotadf the force field was modified
such that a GPS can only interact with protein atoms, i.dermifit GPS spheres do not interact
with each other. In contrast to PocketScanner, the van deds/ifateraction energy between a
protein atom: and a GPS of radiusr separated by a distance @f is calculated by a soft-core

potential
0;? ol
Upaw = 4€;j - : - . 6.5
W ((d§j+7~)6 (dgj+r)3> (65

according to [160] and the positions of the GPSs are not fiXdis modification was necessary
in order to avoid strained protein conformations and didiity smooth binding pockets. The

conformations are stored every 100 steps, their internatiejpr energy is calculated, and new
patches are determined.
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(a) clash factor: 0.75, (b) clash factor: 0.80, (c) clash factor: 0.85, (d) clash factor: 0.90,
volume: 1,257 & volume: 505 & volume: 318 & volume: 194 R

Figure 6.3: The influence of the clash factor on the placement of the abéhe PASS algorithm. The
protein is shown in grey surface representation and thegsrabe displayed as red spheres. In the lower
figures the protein is rotated by 9a@nd the surface is made transparent to illustrate the dépiie patch.
Note that the smaller the clash factor, the more overlapagvald between the probes and the protein atoms
and, thus, the more probes are kept and the larger the patch.

Determination of new patches The selection of a new patch is the trickiest part, espgciall
when inducing multiple subpockets at once. The clash faotest be larger than the previous one
and

1 n
score’ = scoreqf+ — Z scorepts (1) (6.6)
n
=1

should be maximal. Thus, a set of different patches is called|by running EPO%” with itera-
tively increasing clash factors. As illustrated in Figur8,6his clash factor affects the placement
of the probes, i.e. more probes are kept when a smaller valused that allows the probes to pen-
etrate the protein atoms more deeply. After the placemethteoprobes, the ASPs are determined
and the probes are assigned to them in order to form contigpatches as described on page 57.
Note that each subpocket should be represented by one patbby are vicinal, it may happen
that a large patch is detected that covers multiple subpeckethis case their individual proper-
ties cannot be controlled anymore and thus, the algorities to avoid this situation. The number
of ASPs and so of the patches can be controlled by modifyiagrimimum probe weight of an
ASP,pw.,;n, and the minimal distance to an already existing one (see $3Q Therefore, the de-
termination of the ASPs was modified. We reduced the mininséhdce between two ASPs from
8 Ato 5 A and for the purpose of obtaining varying numbers atpes for the same set of probes,
pwmin Was increased until no ASPs could be detected anymore. (Nat@ising a smalbw,,;,,

the set of probes is divided into multiple small patches,levtiie usage of a largew,,;, results

in a single large patch.) From all sets of patches resulting fthe different runs of EPGY’
with increasing clash factor ando,,;,, the run for whichscore’ is maximal is determined. The
definition of score’ ensures that all patches used to inflate the subpockets weved from the
same EPOB” run. The corresponding patch(es) are included in the pratenformation, the
total score is calculated, and this intermediate solutscadided to the priority queue.

6.2.2 Derivation of the Input Parameters

The input parameters that define where the (sub-) pocketddsbe induced and their volumes
were derived from the holo structures. As the pockets indiune Pocketinflator are based on
EPOS”, we applied this program to the holo structures and idedtifi@se patches that over-
lapped with the bound inhibitors. These patches were thducesl by only keeping those probes
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Algorithm 5 The Pocketinflator algorithm

Input: start_confs < input structures
Input: subpockets_regions < set of residue 1Ds defining the approximate site where th&gisshould be located
Input: subpockets_volumes < the goal volume per subpocket that should be generated
{initialization}
Emin = 00
tmp =0
for each conf € start_confs do
conf — runEM (conf) {minimize input structure by 500 steps of L-BFGS}
if Econs > Okcal/mol then
conf «— runEM (conf) {repeat the energy minimization once}
end if
if Econy < 0 kcal/mol then
conf’ «— runEM (conf) {minimize it again to define,,,;,,}
if Econf’ < Enin then
Emin «— Econf/
end if
patches, score’ « getBestPatches(con f, subpockets_regions, subpockets_volumes, 0.75) {run EPOS?? with
different pw.,;», andcf to get a patch per subpocket with a maxinsebre’}
tmp_sol < con f, patches, Eqop 5, score’
tmp «— tmp U tmp_sol {add this intermediate solutiotmp_sol to tmp}
end if
end for
priority_queue = ()
solutions = ()
for each entry € tmp do
tmp_sol «— entry.tmp_sol
tmp_sol.scorecnergy < tmp_sol.scorecnergy/Emin {normalize the energy by, .}
score < tmp_sol.score’ - tmp_sol.scoreenergy {Update the score of this intermediate solution}
if (tmp_sol.patches.cf = 0.95) AND (score > 0.3) then
solutions.push(score,tmp_sol) {add this result to solutions}
else iftmp_sol.patches.cf < 0.95 then
priority_queue.push(score,tmp_sol) {add this intermediate solution to the priority queue}
end if
end for
{inflate existing patches}
while priority_queue # 0 AND |solutions| < N do
tmp_sol « priority_queue.pop {get intermediate solution with highest score} {modify theisting patches by iterating over
different thresholdsh}
for th = 0;th < 1;th = th 4+ 0.3 do
mod_patches «— enlarge(tmp_sol.patches, th {enlarge each probewith pw; > th - pwasp}
conf_with_patches < tmp_sol.con fUmod_patches {modify the existing patches by iterating over differentasholds
th}
for step = 0; step < 5; step = step + 1 do
conf_with_patches < runEM (conf_with_patches) {minimize input structure using 100 steps of L-BFGS}
conf «— conf_with_patches \ conf_with_patches.patches
patches, score’ «— getBestPatches(conf, subpockets_regions, subpockets_volumes, tmp_sol.patches.cf +
0.05) {run EPOS?” with acf greater than in the previous run}

conf

SCOT€energy

Epin

SCOTe < SCOT€energy score’
tmp_sol’ « conf,patches, scorecnergy, score’ {create a new intermediate solutiémp_sol’}
if (tmp_sol’.patches.cf = 0.95) AND (score > 0.3) then
solutions.push(score,tmp_sol’) {add this result to solutions}
else iftmp_sol’ .patches.cf < 0.95 then
priority_queue.push(score,tmp_sol’) {add this intermediate solution to the priority queue}
end if
end for
end for
end while

return solutions

that overlapped with inhibitor atoms. Thereby, the nataugh() pockets that may be larger in vol-
ume than the ligand itself are restricted to the relevanbregand so putative noise is excluded.
For each refined patch, its volume and the residues lininéstie) pockets were extracted. (Note
that in contrast to Chapter 3 and 4 where the overlap volunsse walculated using all patches of
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the given conformation, we refined here each patch indiViglti@ obtain information about the
different subpockets involved in inhibitor binding.)

6.2.3 Docking into Designed Pockets

Docking experiments were performed as described in Ch&pi&s the pockets consisted in most
cases of two nearby subpockets, the center of the first oneseakto define the grid center as the
used grid dimensions were large enough for completely aoyé¢ihe second subpocket as well.

6.3 Results

While for MDMZ2 the inhibitor binds into a single pocket, theadysis of the patches in the holo
structures overlapping with inhibitor atoms correctlygioted that the inhibitors of BCL-X and
IL-2 bind into two vicinal subpockets. The volumes of theselets and the residues lining them
are compiled in Table 6.1. These data were employed for defithie positions and the volumes
of the pockets that should be induced. For all systems, thestmpcture was used as starting con-
formation. An example on how pockets are inflated on the ediinding site of apo MDM2 is
shown in Figure 6.4.

In order to test the impact of the goal volume, we repeatedia$ of Pocketinflator without these
values. (We will refer to these two different runs\as-run andnoVol-run) The resulting confor-
mations are only scored by the relative deviation of theriv@tkeprotein energy from its minimum
value, the clash factor, and the percentage of predefinetlessthat effectively neighbor the in-
duced (sub-) pockets. The run time of the Vol-runs rangedidet 42 minutes and 37 hours,
while the noVol-runs took between 16 and 160 minutes on 08&2z Xeon CPU. Although we
tried to generate 50 protein conformations per run, Poofetbr terminated for both runs of IL-2
and MDM2 before this number was reached, indicating thahamfficient number of intermediate
solutions with a score greater thé3 could be found. For MDMZ2, both Pocketinflator runs even
terminated without any solution. In this case, we releabedstrict condition for the minimum
score of an intermediate solutions and set this threshald But even with this change the pro-
gram was only capable of generating 9 solutions in both r&os.IL-2, we kept the threshold of
0.3. But here, only 5 solutions were returned in the Vol-run a#dnlthe noVol-run.

system subpocket 1 subpocket 2
vol. [A?] residues vol. [A%] residues

BCL-X,, 445 AlEY, Leu™, Ala”, GIu’, 265 Phé, Tyr'®T Arg'03, Ala'®?,
Phé7, Argl®, Tyrl0l Asn'36, Phe®,  Leu'®s, Leu's,
Trp'37, Gly'38, Arg!3?, val'4!, Gly'38, Arg!39, Alal42
Alal42, Phd9!, Tyr!9

IL-2 225  LyS3, Phét, Tyr®, GIU%%, | 450  LySP, Arg™, Met?, Thr'l,
Prd?®, Thrit! Phe'?, val®, Leu™, Ala™

MDM2 520 Set”, Lew?, Phe®, Leu”, - -
Gly®®, GIn®?, llef!, Met2,
Tyr7, GIn™2, His™, val™®,
Val3, His%, |19

Table 6.1: The input parameters used to test Pocketlnflator as denead the EPOS” analysis of the
holo structures.
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(e) ® (9)

Figure 6.4: The pocket inflating procedure shown at the example of MDMg2e probes representing the
pocket are shown as red spheres and the protein surfaceiedagrey. After minimizing the apo structure
(a), an initial pocket is detected (b) and several probesatarged (c). The protein structure is then
energetically minimized in the presence of these probestieg in an intermediate solution (d) for which
the calculation of new pockets (e), the probe enlargemgrau(fl the subsequent energy minimization (g)
is repeated.

6.3.1 Properties of the Pockets Designed by PocketInflator

The magnitude to which the predefined properties were mdidrrésulting conformations are
depicted in Figure 6.5. In most cases, the program was abiedt@e the subpockets at the
desired locations. Only for IL-2, the first subpocket getst lim the noVol-run. However, the
volume of this pocket in the previous conformations poinisthat Pocketinflator failed to make
it fully accessible. In the Vol-run, a subpocket of this vole could be found, but here, the second
subpocket is too small in most conformations. Interesyinile second subpocket is always larger
than the first one, even if no goal volume was defined. Thisrimduggests that an opening of a
larger pocket is energetically more favorable at this sdcite. When focussing on the volume
of the pocket induced on the surface of MDM2, it is not suipgghat PocketInflator terminated
without any solutions using the default value for the mirlis@ore of an intermediate solution.
The small size of the pockets induced in the noVol-run res/dadt the enlargement of the pocket
was energetically unfavorable. (Note that there,;;s was sufficiently large as Figure 6.5 (f)
demonstrates.) BCL-Xwas the only system for which the predefined number of corditions
was generated. In the Vol-run, the volumes of the subpodestained quite close to the goal
values, but the low hit rates for the first subpocket shownguie 6.5 (a) suggest that this volume
could be only obtained by moving the pocket a bit away fromdhbsired location. When the
subpocket volumes are not restricted to certain valuesiethdting pockets are on the one hand
smaller, but on the other hand they are really located atdés&etl location.
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Figure 6.5: The compliance of the pockets designed by PocketInflatbrilvé predefined properties plotted
per generated conformation. Subfigures (a), (c), and (ey she percentage of predefined residues effec-
tively neighboring the induced (sub-) pockets and subfig(og, (d), and (f) show the effective volume of
the induced (sub-) pockets.

6.3.2 Docking into Pockets Designed by Pocketinflator

As before, we docked the known inhibitors into the designeckpts to validate their appropri-
ateness for virtual screening experiments. The resutedli; Table 6.2 are very promising. For
BCL-X, and IL-2, the docking scores are even better than thosenglotavhen re-docking into

the holo structures listed in Table 3.5 on page 65. Whilelfe? the results were very similar for

the conformations generated in the two Pocketinflator rilmesquality of the docking results im-
proved for BCL-X, when the goal volume was not considered. Here, the slighglyen RMSD of
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system with goal volume without goal volume
score  RMSD rank solution score  RMSD rank solution
[kcal/mol] [A] [%] no. [kcal/mol] [A] [%] no.
BCL-X, - N3B -11.4 1.3 2.4 24 -11.4 14 1.9 2
IL-2 - FRH -12.4 2.2 20.0 5 -13.0 2.0 4.8 14
MDM2 - DIZ -8.9 3.2 82.2 9 -8.6 2.0 61.2 7

Table 6.2: Docking results for conformations generated by PocketimflaShown are the best scored
docking results with RMSEX 2 A or the docking result with lowest RMSD.

2.2 A may be explained by the already mentioned observaltiaithis subpocket was not exactly
located at its native site. The native binding pocket of MD&s only designed successfully
in the noVol-run. But here the score is significantly highey @bout 4.5 kcal/mol) than in the
re-docking experiments. Furthermore, the high rankingha tlocking result demonstrates that
other docking poses not resembling the native binding moete wredicted to be more favorable.
This suggests that the physicochemical properties of thgyded pocket, especially the pocket
volume, are not similar enough to those of the native bingiogket. One may speculate that the
residues defining the desired pocket location are not raalyopriate to represent the location of
the native binding pocket. In contrast, the near-nativekihgcsolutions are very low ranked for
the noVol-runs of the other two systems suggesting thatdéedltases, Pocketlnflator designed a
pocket that is suitable for accommodating the known inbiisit The Pocketinflator conformations
for which the best docking poses could be predicted are showigure 6.6.

6.4 Discussion

We were quite surprised to learn from the docking resultsthi@solutions generated in the noVol-
runs were more appropriate for structure-based drug désamthe solutions that contained pock-
ets of the same magnitude than the native binding pocketidn those conformations for which
the best docking results were obtained possessed only powiéts. In the example of IL-2, the
first subpocket was even missing. But when focussing on #idues lining the designed pockets
it becomes evident that the best solutions with respectaatitking results correspond to those
in which the pocket is lined by most protein residues useckfind the pocket location. This ob-
servation suggests that the location of the pocket indugdebloketinflator is more important than
its volume. Furthermore, AutoDock3 predicted binding tocgket which was not detected by
EPOS”. This raises the question whether only those pockets aggdhle that were calculated
using a clash factor of 0.95, or whether pockets whose detetquired a reduction of the clash

(a) BCL-Xy. (b) IL-2 (c) MDM2

Figure 6.6: The best scored docking poses with RMSI®2 A obtained when docking into conformations
generated by the noVol-run of Pocketinflator correspontbirtose listed in Table 6.2.
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factor should also be taken into account. But here one shaap in mind that lowering the clash
factor results in the detection of more pockets and, thua,Jamger run times.

6.4.1 Comparison to the PocketScanner/PocketBuilder Apmrach

The main idea - representing pockets by GPSs that interditipnotein atoms and inducing pocket
openings by energetically minimizing the protein strueturtheir presence - is identical to that of
the PocketScanner/PocketBuilder approach. Howeverdh@seur previous experiences several
important modifications were made in the implementationafid@tinflator: a pocket is no longer
represented by a single GPS and the van der Waals interaatiin the protein atoms are now
calculated by a soft-core potential. Moreover, the pocksitipns are not static anymore, they
are chosen in dependence of the protein conformation. Tilmgsevements led to the generation
of rather native-like, irregular shaped pockets. In additithe conformations containing these
pockets are less strained because the GPSs were treatéieflduiing the energy minimization
and the energy penalty for clashes was damped by the se&ftpmiential. For the moment, we
abdicated the local refinement using the A* algorithm. Asitiigal results were very promising,
we presumed that the longer run times caused by additionaleArches (As multiple subpockets
are considered in the PocketInflator approach, the numbfigexible residues would be consider-
ably higher than before.) would not compensate the expedtigit improvement of the docking
results. But this, of course, remains to be validated.

These algorithmic improvements implemented in Pocketimflaave an impact on the docking
results as well. When comparing those listed in Table 6.héokest docking results per sys-
tem obtained using any settings of PocketBuilder (shownabld 5.3 on page 94), it becomes
evident that PocketInflator is better suited to design aghbte binding pocket than the Pock-
etScanner/PocketBuilder approach. While the dockingestmr BCL-X;, is of the same order
of magnitude, the RMSD is lower when using PocketInflatorr IEe2, although the RMSD is
a bit higher, the docking score is almost by 6 kcal/mol mox@rable than in the PocketScan-
ner/PocketBuilder approach. Only for MDM2, the previoustmoed achieved a slightly better
docking score (by about 0.5 kcal/mol) although the RMSD wightty worse. However, for all
systems the rank of the best scored near-native dockingvpasenuch lower when using Pock-
etinflator and, in addition, fewer conformations were neledut this may also be due to the fact
that the location of the native binding sites was defined rpogeisely in Pocketinflator.

Finally, it should be mentioned here that the two approaares tested with different force fields.
In order to exclude that the better performance of Pocketimflarises solely from this difference,
the PocketScanner/PocketBuilder method has to be testéd aging the Amber 96 force field.

6.4.2 Critical Assessment of the Approach

This approach requires a lot afpriori knowledge about the native binding site. Although we
could show that the volumes of the (sub-) pockets that areetddsigned are not essential, the
definition of the residues that should line the (sub-) podketefinitely crucial. So the more in-
teracting residues are known, the more exactly is the posif the (sub-) pockets determined.
However, if only a few hot spot residues are known, e.g. fromagenesis studies, this may im-
pose a problem. A further drawback of this approach is thai-jgpockets are only defined to exist
if they are detected by EP@'S. The example of IL-2 discussed before indicates that thetexce

of a pocket identified by our program may be not necessaryuocessful ligand docking. This
raises the question how important the calculated pockenwelis. Obviously, the formula we use
to calculate the score for the deviation of the goal volunteasstrict, especially when taking into
account that it is hard to define this value when no small-muéebinders are known. Moreover,
scoregorume 1S ONly Used to calculate the total score if the clash fagt@r 95 because the effective
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volume of the pocket is hard to estimate using a smaller diastor. When more overlaps with
protein atoms are allowed, the pocket is larger. The seledi the intermediate solutions may be
improved if the calculated volume would be considered e¥¢e clash factor is small. In this
case it would be recommendable to scale this volume down.

The advantage of this approach is that the minimum scoreenthat only energetically favorable
protein conformations with pockets fulfilling the predefineriteria are returned. When using a
reasonable value, the formation of a pocket at a certairtippsir with a certain volume will not
be enforced if it is energetically unfavorable. In such aedasvering this threshold loosens the
strict criteria and allows for the opening of pockets whicayndeviate from the predefined prop-
erties, but are more native-like. This was shown at the el@ofdMDM2, for which no solutions
were found using the default minimal score0os.

By using multiple GPSs that are flexible during the energyimization and a soft-core potential
for calculating their van der Waals interactions with thetpin atoms, the shapes of the resulting
(sub-) pockets are more native-like. However, the protemfarmation still differs from the holo
structure. As the apo and holo structures were resolvedffiereint labs, often under different
conditions, and using different methods, one cannot expeabtain identical structures.

6.5 Summary and Conclusion

We presented a new method that combines pocket detectiorERI®F " with the idea of Pock-
etScanner and PocketBuilder of representing pockets bys@RSinteract with protein atoms via
van der Waals interactions. This representation allowgnfituicing pocket openings by an energy
minimization of the protein structure in the presence o6¢h&PSs. But in contrast to the previ-
ous approach, multiple subpockets can now be induced atthe §ime. Each (sub-) pocket is
modeled by multiple GPSs of varying size and their positese calculated by the PASS algo-
rithm as implemented in EPGS. In order to form pockets at positions where no cavities were
detectable in the starting structure, the approach stanpéalcing probes that overlap with protein
atoms. Some of these probes are enlarged so that even molapsveccur. These clashes are
subsequently reduced by energy minimizations of the pragucture. Afterwards, new pock-
ets are determined for the adopted structure, but now felashes are tolerated. This procedure
is repeated until protein conformations of low energy areegated that possess (sub-) pockets
at predefined positions and are detectable even if no owedeptolerated. The resulting (sub-)
pockets are more native-like than those designed by thedP®cinner/PocketBuilder method. By
testing the approach with and without defining the goal vauwe observed that the pocket vol-
ume is not essentiel. In contrary, the definition of the nes&dthat should line the designed (sub-)
pockets is crucial. By docking the known inhibitors into skepockets we could show that they
are indeed appropriate for accommodating ligands and ag, tepresent an efficient alternative
method for the structure-based design of inhibitors bigdsmknown sites for which no putative
pockets could be detected in available crystal structud¢$he moment, we are testing different
parameters to further enhance the performance of this appro



Chapter 7

Application of the Pocket Detection
Protocol

After introducing the newly developed approaches for thea®n, design, and analysis of tran-
sient pockets, we will now show the application of the MD4dzhprotocol to two test systems for
which the binding modes of small-molecule inhibitors arknown. The first case study using the
mitochondrial CYP11AL1 electron transfer system is suladifior publication. The second case
study addresses the XIAP protein that is involved in apagptos

7.1 Introduction

How in silico methods may assist the discovery of new hits and the desigaveieads or drugs
was discussed in Chapter 2. As most existing approachesorena priori known binding
region, structure-based design cannot be applied to thateiqs for which the location of the
binding site is unknown. Unfortunately, this is usually tdase when the target protein is involved
in protein-protein interactions. In Chapters 3 and 4, we@néd a pocket detection protocol that
is not only able to predict putative binding sites at whiciingient pockets open but also may
suggest different protein conformations that may be appatgpfor docking experiments. This
protocol was validated using three model systems with knsmeall-molecule inhibitors and for
which crystal structures revealing their binding modesewresolved. In this Chapter, we present
the application of the MD-based protocol to two proteins rékmbdoxin (Adx) and the BIR2-
domain of the X chromosome-linked inhibitor of apoptosistpin (XIAP), whose interactions
with another protein are promising drug targets. For bothtgins, hit compounds have been
identified experimentally. Therefore, instead of askingidt/binds and where?”, we are capable
of using the “what” to answer the “where”. Note that knowitg tapproximate location of the
binding site, e.g. the protein-protein interaction irked, may be not sufficient for assisting drug
design as these surface regions may be huge compared ta¢hef she inhibitor (up to 1,500-
3,000 A [25]) and non-contiguous. Furthermore, if this region doetscontain accessible pockets
in the known protein structure, structure-based drug desitgempts will be limited.

In contrast to Adx, where the location of the inhibitor bimglisite is completely unknown and it
could not be excluded that the compounds bind to a partnégiprahe protein region to which the
inhibitors identified for XIAP-BIR2 bind is surmised. Hendbe procedure for the two proteins
differs. For Adx, all detected pockets, not only on the stefaf Adx itself but also on its partner
protein Adrenodoxin reductase, were considered in theidgakxperiments. Whereas for XIAP-
BIR2, the pocket detection protocol was used to identifpatlkets opening on the protein surface,
but only those located at the presumed binding site were fasetbcking.

109
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7.2 The Test Systems

Our computational study of the two test systems occurredarfiramework of collaborations with
the Biochemistry group of Prof. Dr. Rita Bernhardt at the rigeml University (Adx) and with
Dr. Jose Luis Medina-Franco from the Computer Aided Drugi@edevision of the Torrey Pines
Institute for Molecular Studies in Florida (XIAP-BIR2). the following, the two test systems are
briefly introduced and characterized in terms of their pblggjical importance, structural details
of the targeted interaction, and state of knowledge coimgriine inhibitory mechanisms of the
experimentally identified modulators.

7.2.1 Test System 1: Adrenodoxin

Adx is an important component of the mitochondrial CYP11Aekcton transfer system that catal-
yses the key step of steroid hormone biosynthesis, namelypxidative side-chain cleavage of
cholesterol to pregnenolone. Adrenodoxin reductase (AdRJADPH-dependent FAD contain-
ing reductase, transfers the electrons derived from NADdtHe iron-sulfur cluster of Adx that,
in turn, reduces and so activates the molecular oxygen btouthet cytochrome P450, CYP11A1
[161]. In numerous subsequent hydroxylation steps pregora is then converted to aldosterone.
As increased concentrations of this steroid hormone caysertension and heart diseases, this
step of the steroid hormone biosynthesis represents amestiteg drug target [162]. The system
has been studied in detail. Particularly, the three-dinosas atomic structures of bovine Adx,
AdR, and the cross-linked Adx-AdR complex (shown in Figur) have been solved [163-166]
and homology 3D-models of CYP11A1l and the CYP11A1 - Adx caxrplL67] are available.
These structures in conjunction with site-directed mutages studies [168] reveal that the bind-
ing sites on Adx for AdR and CYP11A1 overlap. While residue®, GIu™, Asp’®, and Asp®
are most important in binding CYP11A1, the binding inteefdor AdR consists of two regions.
In the primary region, Argt!, Arg?*?, and Arg** of the NADPH-domain of AdR form numer-
ous salt bridges to ASp, Asp’®, and Asp? of Adx (Figure 7.1 (b)). The secondary interaction
region is located on Adx around A¥pand Asg! that are in contact with Ly$ and Hig® of
AdR (Figure 7.1 (c)) [166]. All these studies indicate thHad tomplex formations occurring be-
tween components of the CYP11A1 electron transport chamainly driven by electrostatic

(a) Adx - AdR complex (b) primary interaction site (c) secondary interaction site

Figure 7.1: The Adx - AdR complex structure (PDB entry 1e6e). (a) Cartmpresentation of Adx (red)
and AdR (blue). The co-factors FAD and the,Bg cluster are shown in licorized representation and are
colored by element. (b) + (c) The molecular surface of Adhmprimary (b) and secondary (c) interaction
region. The main interacting residues are colored by eléarehshown in licorized representation for AdR
(italic residue labels) and in surface representation fix.A
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interactions. Especially the negatively charged resiadure&dx seem to play a crucial role in the
recognition of positively charged residues on AdR and CYRIL[169]. This suggests that these
interactions may be modulated by positively charged mdésculndeed, Berwanger et al. used
a broad set of experimental techniques to show that the spayicationic, and highly abundant
natural polyamines putrescine (Put), spermidine (Spdj, spermine (Spn) modulate the inter-
actions between Adx, AdR, and CYP11A1 (unpublished data)eréstingly, optical biosensor
analysis of the binding affinities revealed that while thé/pamines enhance the assembly of the
Adx - AdR complex, the interaction between Adx and CYP11AWeakened. Although it was
assumed that the polyamines bind to the negatively chargeddce regions on Adx, their accu-
rate binding site was unknown. As previous MD simulationgseded an increased flexibility in
the binding regions of Adx [170], we applied our pocket detecprotocol and docked the three
polyamines into transient pockets that were observed gWibB simulations of oxidized Adx in
water. As it could not be ruled out that they bind to the swgfatthe other two proteins as well,
we additionally docked the ligands into cavities found ie thystal structure of AdR and the Adx
- AdR complex.

7.2.2 Test System 2: XIAP-BIR2

XIAP is the best characterized member of the Inhibitor of pjosis Proteins (IAPs) family. IAPs
are endogenous caspase inhibitors [171, 172] that sharaserwed structure, the BIR domain
[173]. As caspases are responsible for apoptosis, thabiiitm leads to the survival of damaged
cells and, thus, to tumor proliferation [174, 175]. Not sigingly, some IAP family proteins are
commonly overexpressed in human cancers [176] and thergfgoortant drug targets. The activ-
ity of XIAP is regulated by inhibitory proteins like Smac thdisrupts XIAP-caspase complexes
[177]. XIAP is composed of three BIR domains (called BIR1 #&B) and a RING zinc-finger
motif. BIR2 and the linker region connecting BIR2 to BIR1 thiand inhibit caspase-3 and -7,
while BIR3 suppresses caspase-9 [178, 179]. While the ralaledetails of the interactions with
caspase-3 [180], -7 [181], and -9 [182], as well as the icteoa of the BIR3 domain with Smac
have been resolved [183, 184], it is still unclear whethemSm@so binds to the BIR2 domain.
The X-ray structure of the BIR2 - caspase-3 complex [180whim Figure 7.2 and site-directed
mutagenesis studies [185] reveal that the interactionfade involves mainly the linker region

(a) XIAP-BIR2 - caspase-3 complex (b) linker region

Figure 7.2: The XIAP-BIR2 - caspase-3 complex structure (PDB entry Ligm) Cartoon representation of
the homodimer complex between XIAP-BIR2 (green; zinc idman in red) and caspase-3 (P12 subunit:
light blue; P17 subunit: dark blue). (b) The molecular scefaf the linker region of XIAP-BIR2. The
main interacting residues are colored by element and shoVicoirized representation for caspase-3 (italic
residue labels) and in surface representation for XIAPZBIR
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(residues 124-168) of BIR2. Residues L&y Leu'*!, and Val*® and the caspase-3 residues
Lew???, Tyr338 Trp?40, and Phé&®! form a first hydrophobic cluster and 1€ and 1l€®3 and the
caspase-3 residue Pfika second one. Asf® forms a salt bridge to ARJ® at the C-terminus of
the BIR domain and hydrogen bonds to the caspase residué$ Agger*?, Trp*48, and Phé?!,
Furthermore, a network of hydrogen bonds from the XIAP nessdTht*3, Gly'44, and Val46
contributes to the interaction (Figure 7.2 (b)). A secongiy@sted interaction site is located on the
BIR2 domain and contains a pocket that is topologically dmehdically very similar to the Smac
binding pocket of the BIR3 domain. But the site-directed agehesis studies suggest that this
second site may be more important for the binding of caspabkan for caspase-3.

Researchers at the Torrey-Pines Institute identified aseifi polyphenylurea-based compounds
that selectively target the BIR2 domain of XIAP and stimelan increased caspase-3 activity
[186—188]. The mechanism of action of these compounds has &eidied using biochemical,
molecular biological, and genetic methods. Since the it did not compete with SMAC, it
was assumed that they bind to the flexible linker region. Hanehe exact binding site and mode
was unknown. This also impeded structure-based drug desigmpts using the X-ray structure
of the XIAP-BIR2 - caspase-3 complex. Within a collaboratigith the Torrey-Pines Institute in
Florida, we identified and analyzed transient pockets thahan this region during MD simula-
tions in water or methanol and predicted potential bindiragles by docking the three most potent
inhibitors 1540-14, 1396-34, and 1396-11 into these packet

7.3 Methods

Transient pockets for both systems were identified with th2-h&sed pocket detection protocol.
As the details of the MD simulations, pocket detection, aadkehg procedure differed slightly
they will be separately described in the following.

7.3.1 Preparation of the Experimental Structures

The following X-ray structures of the CYP11A1 electron w8 system were used: oxidized Adx
with a resolution of 1.85 A (PDB entry layf [164], chain A), Ravith a resolution of 1.7 A (PDB
entry 1cjc [165]), and the Adx-AdR complex with a resolutmir?.3 A (1e6e [166], chains A and
C). The partial charges, bond lengths, angles, and ditefirathe oxidized F£S, cluster of Adx
were taken from [170]. The oxidized FAD was parametrizechgishe partial charges listed in
[189].

The computational study of XIAP-BIR2 was based on two défgrexperimental structures, the
average NMR solution structure of the apo protein (PDB ebht8q [190]) and the X-ray structure
of the complex between XIAP-BIR2 and caspase-3 (PDB en8y [i80], chain E). As no param-
eterization of the Cygis-Zinc finger for the OPLS-AA force field was available, {h@rameters
were derived computationally as described in the Appertrgpter D.

7.3.2 Molecular Dynamics Simulations

The dynamics of both proteins in water were simulated for 4@s1described in Chapter 3. For
Adx, the apo structure (including the co-factor) was usedtasing structure. XIAP-BIR2 was
simulated twice: one simulation started from the complexa)-structure (after caspase-3 was
manually removed) and one from the apo NMR structure. IntemigiXIAP-BIR2 was simulated

in methanol following the setup listed in Chapter 4. Hereimgae conducted two simulations
starting from the two different structures.

During all simulations, the proteins were fully flexible afh@01 equally spaced snapshots were
stored.
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7.3.3 Pocket Detection

The MD simulations yielded one conformational ensembleidx and four for XIAP-BIR2. The
pockets were identified, clustered, and analyzed using E¥’@S described in Chapter 4. For the
CYP11A1 electron transfer system, the crystal structufégln, AdR, and the Adx-AdR complex
were additionally scanned for pockets.

7.3.4 Docking Setup

Forthe CYP11A1 electron transfer system, all docking eérpents were performed with AutoDock4.
In this newer version, the scoring of the putative protégasid complexes is based on a semi-
empirical free energy force field that incorporates intreoolar energies as well as a charge-
based method for evaluating desolvation energies [100]saredthed therefore more suitable for
predicting binding poses that are expected to be dominageeldertrostatic interactions. The
polyamines were prepared manually in their fully protodaii@ms (total charge of +2e for pu-
trescine, +3e for spermidine, and +4e for spermine) andriptid with the MM+ force field as
implemented in HyperChem [191]. AutoDockTools 1.4.6 wasdutor adding hydrogen atoms
to the crystal structures (the MD snapshots already caedaltydrogens), calculating Gasteiger
atomic charges for the ligands and the receptors, and fagraisg AutoDock4 atom types. For
putrescine, 5 rotatable bonds were assigned with Auto®ds, spermidine, and 13 for spermine.
As before, the centers of the grid maps generated by AutdGriete defined by the centers of
mass of the pocket patches. The grid dimensions were chosen26.25 A x 26.25 A x 26.25 A
to obtain an adequate coverage of the protein surface argrithepacing was set to the default
value of 0.375 A. The docking procedure followed the statd#BA protocol with default param-
eters. 50 independent docking runs were carried out for packet detected in a crystal structure
and 25 for each pocket detected in a MD snapshot.

For XIAP-BIR2, the docking experiments were performed wAiltoDock3 because this version
is much faster than the AutoDock4 version and the ligandsqaite flexible with 12 rotatable
bonds for 1540-14, 13 for 1396-34, and 16 for 1396-11. Thremlity were set as neutral, Gasteiger
atom charges were assigned, and AutoTors was used for defménflexible torsions. The MD
snhapshots were prepared and the grid maps with a dimensia6.26 A x 26.25 A x 26.25 A
were calculated as described in Chapter 3 for the PID-dgcKime docking procedure also fol-
lowed the standard LGA protocol, but with one exception: ithigal population was increased
to 150 randomly placed individuals to obtain a broader samgpf the docking poses. Here, 20
independent docking runs were carried out for each pocket.

7.3.5 Post-Processing of the Docking Poses

As the number of calculated docking poses was too high farabimspection, only those that ob-
tained a docking score better than a given threshold wesinest and clustered using an agglom-
erative single-linkage approach based on the match of thteipratoms within 5 A. For docking
into the MD snapshots of Adx, the thresholds were -5 kcal/faplputrescine, -8 kcal/mol for
spermidine, and -9 kcal/mol for spermine. For XIAP-BIR2|yodocking scores lower than -12
kcal/mol for 1540-14, -14 kcal/mol for 1396-34, and -16 koail for 1396-11 were considered.
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7.4 Results

In this section, we report the application of the MD-basedket detection protocols to the two
test systems. By docking into the identified pockets we wble to suggest several energetically
favorable binding sites that will be discussed in the follugv

7.4.1 Putative Binding Sites Detected on the Surface of Adxd AdR

The particular challenge in the computational study of tNé®C1A1 electron transfer system was
that although it was assumed that the polyamines bind to thephotein, binding to CYP11A1 or
AdR could not be excluded. We confined our search for putdiivding sites to Adx and AdR as
no crystal structures for CYP11A1 are available and usingdiogy models for docking is quite
error-prone due to the intrinsic uncertainties of the medeitructures.

Pockets Detected in the MD Snapshots and the Crystal Structas The crystal structures
of oxidized Adx, AdR, and the Adx-AdR complex were subjectedh pocket detection run. 9
cavities were found on the surface of apo Adx (with volumetharange of 306 to 826 B and
50 on apo AdR (with volumes in the range of 247 to 1,050.AFrom the 42 detected cavities
on the complex structure, only 2 were located on the surfadedr, 28 on AdR, and 12 were
identified at the binding interface with volumes rangingnir@82 to 954 &. As it was assumed
that the binding site is located on Adx, this protein was sitieih to a careful examination with
our MD-based pocket detection protocol. As Adx was stablindguhe MD simulation in water
(see section B.4), the extracted snapshots were scannpddkets. In total, 23 different transient
pockets were identified with volumes up to 1,518 A

Detecting Favorable Binding Sites by Docking The polyamines were docked into the transient
pockets of the MD snapshots of Adx, as well as into the pocHletected in the three crystal
structures. Clustering the best scored docking poses staghéve putatively favorable binding
sites that are illustrated in Figure 7.3. Hereof two bindsitgs are located on Adx, two on AdR,
and one at the binding interface (corresponding to neitiefitst nor the second interaction site).
Note that docking suggested favorable binding sites atipasiwhere no pockets were detected
by EPOS”.

The corresponding docking scores listed in Table 7.1 sugbgesthe three polyamines prefer
binding to Adx although binding to negatively charged patcbn AdR and the Adx-AdR complex
is also possible (compare to Table 7.2). Interestinglytwieebinding sites located on Adx are the
most favorable ones and correspond to the primary (bindiadgpyand secondary AdR interaction

binding| max. score in Adx | max. score in AdR max. score in max. score in Adx
site [kcal/mol] [kcal/mol] Adx - AdR MD snapshots
[kcal/mol] [kcal/mol]

Put  Spd Spn Put Spd Spn Put Spd Spn Put Spd Spn
1 -76 -89 -94 - - -| 47 -54 54 -7.1 -8.8 -104
2 - - - - 31 -33|] 57 -70 -79 - - -
3 - - -| 55 -67 59| -57 -7.7 -85 - - -
4 - - - -46 -51 51| 59 -71 -76 - - -
5 -65 -74 -76 - - - -48 -66 -6.5/ -90 -104 -11.6

Table 7.1: Overview of the binding sites on Adx and AdR that are predidte be most favorable for
polyamine binding by flexible ligand docking. For each birglsite, the best docking scores per polyamine
and protein are reported. The numbering of binding sitesesponds to that used in Figure 7.3.
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Figure 7.3: Location of the identified binding sites (BS) mapped on the-AdlR complex. Adx is shown

in orange, AdR in light blue. For both proteins, a ribbon esgmtation is used except for the residues lining
the binding sites (blue: AdR residues, red: Adx residues)dine shown as ball-and-stick models and FAD
that is shown in licorized representation (colorized byredat).

sites (binding site 1). The docking scores suggest thabadh the affinity is reduced at these
sites upon Adx-AdR assembly, binding of the polyaminesiisggissible. Furthermore, docking
scores for binding site 5 improve when the results for the énystal structure are compared to the
results for the Adx MD snapshots, whereas docking scoreBifoling site 1 are similar for MD
shapshots and X-ray structure. For these two binding $iiedyest scored docking complexes per
polyamine among the MD snapshots of Adx are shown in Figute This finding suggests that
the intrinsic dynamics of apo Adx favors the binding of théypmines to binding site 5. (Note
that the best results for the MD snapshots were selected dimskings to 4,001 different Adx
conformers, whereas the best results for the crystal sirestwere only selected from dockings
to different sites of the same conformer.) The affinitieshaf two putative binding sites located
on AdR are markedly increased in the AdR-Adx complex. As inigdsite 3 is located distant
from the binding interface, it may appear surprising thatailfinity of this binding sites changes
upon complex formation. However, the two X-ray structutesvws AdR in two different conforma-
tional states [164]. These differences may well reflect tiread among different conformational
substates that are assigned in the two classes. Espetiallyocking scores for binding site 2
(complex interface) are significantly reduced with apo AdRlacking receptor and no appropri-
ate binding sites were predicted for apo Adx.

To evaluate the docking approach and to test how favorablddbking scores are, we re-docked
the polyamines into six selected co-crystal structuresobfgmine binding proteins taken from
the PDB. The re-docking scores listed in Table 7.3 are of @yaige magnitude as the scores
for docking into binding site 1 (when using either the crystaucture or the MD snapshots of

binding site residues on Adx residues on AdR
1 Asp'®, Asp®?, Asp™! -
2 Asp''3, Glu''6, Sef!? Glu3™, Arg3™, Thr3™
3 - Alal® Asptll) Gluls, Glu!t®
4 - Asp’, His*®, GIu7, Glu?!?
5 Asp™, GIu™, Asp’S, Asp™ | -

Table 7.2: Protein residues of Adx and AdR interacting with the polyaesiin the most favorable binding
sites listed in Table 7.1 and illustrated in Figure 7.3.



116 CHAPTER 7. APPLICATION OF THE POCKET DETECTION PROTOCOL

PDB description re-docking | RMSD
entry score | [A]
[kcal/mol]
1a99 | Putrescine bound to E. coli Putrescine Binding Protein 192 -7.9 0.6
2006 | Putrescine bound to Human Spermidine Synthase [193] -8.0 1.5
1lpot | Spermidine bound to E. coli Spermidine Binding Protein [194 -11.7 1.1
3c6k | Spermidine bound to Human Spermidine Synthase [195] -10.3 0.9
3b7p | Spermine bound to Plasmodium Falciparum Spermidine Sgatha -13.5 1.1
3cém | Spermine bound to Human Spermine Synthase [195] -14.0 1.8

Table 7.3: The selected co-crystal structures of the polyamines agid imding proteins and the corre-
sponding re-docking results with AutoDock4. (The dockirgswperformed as described in section 7.3.4.)

Adx) and the scores for docking into binding site 5 (when ggitD snapshots). This suggests
that induced-fit effects provide an additional stabiliaatof 2-4 kcal/mol, but also that the confor-

mational flexibility sampled in molecular dynamics simigdas at room temperature is sufficient
to generate binding pockets of comparable binding affmiéis those of proteins known to bind
polyamines. In contrast, the scores for docking into thstatystructures of AdR and the Adx-AdR

complex are less favorable than the re-docking resultsesiimgy that there is a clear preference
for polyamine binding to apo Adx.

Experimental Validation of the Binding Sites by Site-Direded Mutagenesis To verify these
docking results experimentally, two Adx mutants (D15K aritbN) were created by Anja Berwanger
in the Biochemistry department. As AlSpis located in the secondary interaction domain that is
of crucial importance for polyamine binding to Adx as sudgddy the docking experiments, the
exchange of the negative charge with a neutral (D15N) ands#iy@mone (D15K) should lead to
remarkable differences in the affinity of Adx to its redoxtpar AdR and CYP11A1. As shown

in Table 7.4, the introduction of the neutral and even mortaefpositive charge resulted in a sig-
nificantly increased affinity of Adx to AdR (decreased)KIn contrast, the polyamines weakened

Figure 7.4: The most favorable docking poses per ligand in binding si(éa)- (c)) and 5 ((d) - (f)) on

MD snapshots of Adx. The protein is shown in grey surfaceasgntation and the atoms within 5 A of the
ligand as well as the ligand itself (shown as sticks) arerealdy element. The corresponding schematic
representations of the binding modes are shown in the Appgrid. A.3.
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system Adx - AdR assembly Adx - CYP11A1 assembly
Kon Kopr [s71] Kq [M] Kon Kopy [s7'] Kq [M]
[Mflsfl] [Mflsfl]

WT (control) | 3.81-10° 2.86-103 7.50-107 | 1.83-10° 6.76-10° 3.69-10°8
WT + Put 3.12-10* 5.03-10% 1.61-107 | 8.64-10° 3.11-103 3.60-107"
WT + Spd 2.74-10* 4.71.-10% 1.71-10°7 | 1.86-10* 3.53-10% 1.90-1077
WT + Spn 1.76-10* 5.77-107% 3.28-10°7 | 2.71-10* 2.79-10% 1.03-10°7
D15N 1.97-10* 1.83-107% 9.29-10% | 3.76-10° 4.14-10% 1.01-10°°
D15K 1.10-10* 3.46-107% 3.15-10°7 | 2.08-10° 4.41-10% 2.12-10°°

Table 7.4: Experimental data obtained by Anja Berwanger: Optical é&g®r analysis of the interactions
of oxidized AdxWT, and the mutants AdxD15K and AdxD15N witldR,,, and CYP11Al, in presence
and absence of polyamines (all at ionic strength | = 1 mM)dBig of AdR or CYP11A1 (both analytes
100 - 500 nM) to Adx immobilized on a CM5 chipB00 RU) was studied in Biacore HBS-EP buffer at
25°C. Binding curves of the interaction partners were analyrdg the Biacore evaluation software 4.1
with a 1:1 binding model. Standard deviations-@) were within+ 10% of the displayed values. The K
values were calculated by, ki/Ko», .

the stronger Adx-CYP11A1 binding.

The polyamine binding sites on the Adx protein that we sutggeare well suited to explain the
experimental Adx - AdR binding data. As all three polyamisegm to preferably bind to the
primary (Aspg?, Glu™, Asp’®, binding site 5) and secondary (ASpAsp*, Asp*!, binding site
1) AdR binding regions of apo Adx, they may also promote theex formation by overcoming
repulsive charges between the two proteins, resulting &sif reduction of Adx [166, 196, 197].
This is also consistent with the kinetic constants measimethe assembly of the oxidized Adx
with AdR and CYP11A1 (Table 7.4) that indicate that the molac recognition and thus the
association of Adx and AdR is enhanced in the presence ofapuohes, while it is decreased
for CYP11A1. As aresult, the Adx - AdR complex tightens ane &dx - CYP11A1 complex
weakens. In both complexes, modulation took place eithénénorder putrescine < spermidine
< spermine, or in the order neutral charge < positive chaffjeis data supports our hypothe-
sis that the secondary binding region around ‘Asp not only important for the protein-protein
recognition but it is also a specific interaction site of tldypmines with the Adx.

7.4.2 Putative Binding Sites Detected in the Linker RegionfoXIAP-BIR2

For this system, the region of the binding site was only tamly known. In this case, confor-
mational sampling by MD and detection of transient pocketthe entire protein surface seemed
the most reliable protocol. Additionally to the simulatimrwater, this protein was also simulated
in methanol and both simulations were run twice, eithettisgufrom the apo NMR structure or
from the holo X-ray structure (after removal of caspasexX3pP-BIR2 was stable in all simula-
tions. The secondary structure remained most conservaagdine MD simulation of the X-ray
structure in methanol (see Section B.5, Appendix).

Pockets Detected in the MD Snapshots of XIAP-BIR2 EPOS*” was applied to the snapshots
extracted from all MD simulations to identify transient pets. After removal of all pockets ap-
pearing only once, a set of 41 different transient pockets adained that are spread all over the
protein surface. Surprisingly, of these 41 pockets, 9 waratked in the linker region. The proper-
ties of these pockets are reported in Table 7.5. They arevatlapping but were not assigned to
the same cluster because their lining protein residuestearynuch depending on the MD simu-
lation setup. The properties of these distinct transienkets also strongly differ, suggesting that
these pockets are highly mobile and adaptable.
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PID | MD setup residues freq. | mean vol. | polarity
[%] [A%]

18 | NMR in methanol| 124-126, 129-131, 133-135, 137, 140, 42.5 360.9 0.36
141, 144-148, 235-237

19 | NMR in methanol| 145-149, 151-153, 228, 231- 239 10.0 476.8 0.36

25 | NMR in water 145-149, 151-157 7.7 143.5 0.36

28 | NMR in water 140-148 7.0 175.1 0.36

29 | X-ray in methanol| 137, 141, 146, 148, 150, 225-228, 231- 62.8 342.8 0.35
235, 237

31 | X-rayin methanol| 141,146, 148, 150, 154, 203, 204, 224- 46.7 282.3 0.34
228,233,234

36 | X-rayin methanol| 141, 142, 144, 146- 149, 151, 152, 233 22.7 290.0 0.36

38 | X-ray in water 141, 146-151, 154, 228, 233-236 13.9 183.2 0.38

41 | X-ray in water 148, 150, 154, 202, 203, 224, 226-228, 13.3 189.8 0.32
231,233

Table 7.5: The transient pockets detected in the linker region and thest frequently occurring pocket
lining residues, frequency, mean volume, and polarity.eNbat although all pockets overlap, they were
assigned to different clusters (PIDs) and so each trang@ket shown here was only observed in one MD
simulation.

Detecting Favorable Binding Sites by Docking into Promisiig Transient Pockets From our
previous experience on the BCL XIL-2, and MDM2 systems, individual snapshots with pocket
volumes larger than 200 *appear to be promising candidates for docking studies. [Bhesm
of promising transient pockets are illustrated in Figuf® 7T.hus, all transient pockets located in
the linker region having a pocket volune 200 A® were selected as putative binding sites for
the ligands 1540-14, 1396-34, and 1396-11. This resultederselection of 6,662 pockets from
the four different MD simulations (1,624 from the NMR struiet in water, 137 from the NMR
structure in methanol, 418 from the X-ray structure in weaaed 4,483 from the X-ray structure
in methanol).

As expected, ligand 1396-11 is the most potent inhibitdipfeed by ligand 1396-34. The
clustering of the docking poses revealed 61 different fablar binding sites. When considering
only those clusters having at least 100 members for at Ie@sigand, the selection can be reduced
to the 14 most favorable binding sites compiled in Table Fdg.all ligands, the best docking score
is predicted for binding site 2. The best docking poses ofi éaaibitor are shown in Figure 7.6.
Interestingly, for binding sites 11 to 14, only ligand 15%0-achieved a docking score smaller

(a) PID 18 (b) PID 28 (c) PID 29 (d) PID 38

Figure 7.5: Examples for transient pockets opening in the flexible lirrkegion of XIAP-BIR2. The pocket
patch representing the negative image of the pockets isrsaewnesh, the pocket lining atoms are colored
by element and the residues lining the pocket are labeled.
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than the used cut-off, suggesting that the local confomatiof these sites favor binding of the
smallest and most rigid ligand. Note that a transient potiBetoes not correspond to a binding
site cluster, because the transient pockets as well asridenbisites are overlapping as shown in
Table 7.7 and the size of the grid maps allow the ligands td torvicinal cavities.

Structural studies suggested that the inhibition of cas8aand by XIAP-BIR2 is achieved by a

two-site interaction. Besides the N-terminal linker of BIResidues 124-168), it was hypothe-
sized that the putative Smac binding pocket is also invoivecaspase binding [180]. The hot
spots identified in this study are ASp, GIu?'?, and Hig?3. However, as binding assays sug-
gested that the inhibitors do not compete with Smac for a combinding site, this region was

binding ligand 1396-11 ligand 1396-34 ligand 1540-14
site
best mean no. best mean no. best mean no.
score score  poses| score score  poses| score score  poses
[kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol]
1 -19.4 -16.7 327 -17.2 -14.7 254 -15.1 -12.9 522
2 -19.6 -16.9 265 -17.9 -14.8 253 -16.3 -12.8 1542
3 -19.5 -16.7 348 -17.1 -14.5 803 -15.2 -12.6 522
4 -19.2 -16.7 267, -17.6 -14.7 199 -15.1 -12.6 839
5 -19.0 -16.6 254 -16.5 -14.5 514 -15.6 -12.5 651
6 -18.0 -16.6 67 -16.1 -14.6 153 -145 -12.6 434
7 -19.2 -16.8 164 -16.7 -14.7 263 -14.9 -12.7 216
8 -18.7 -16.6 306/ -16.0 -14.5 135 -14.1 -12.5 167
9 -17.6 -16.4 70| -16.4 -14.5 53| -14.7 -12.6 251
10 -17.3 -16.5 33| -15.7 -14.4 172 -13.4 -12.4 75
11 - - - - - - -15.6 -12.6 2331
12 - - - - - - -14.4 -12.5 240
13 - - - - - - -14.2 -12.5 237
14 - - - - - - -14.5 -12.5 104

Table 7.6: The most favorable binding sites on XIAP-BIR2 as identifigddmcking with AutoDock3.
Here, only those binding sites are shown that have at le@shfEnbers (no. of poses) for at least one of
the three ligands.

binding site residues PIDs
1 124-126,128-131, 134, 137, 140, 141, 145, 146, 235, 23618, 19, 28
2 146-153, 226-228, 231, 232, 234-238 18, 19, 25, 29, 31, 36, 38
3 137, 141, 146-148, 150, 151, 226-228, 231-237 18, 19, 29, 31, 36, 38, 41
4 146-153, 228, 231, 234-238 18, 19
5 137, 141, 146-148, 150, 226-228, 231-237 18, 19, 28, 29, 31, 36
6 125,126, 128-131, 134, 140, 141, 145-148, 236, 237 18,19, 28
7 124,146, 148-153, 161, 228, 231, 234-237 18, 19, 25, 29
8 141,147, 148, 150, 226-228, 231-235 18, 29, 31, 36, 38
9 125, 126, 128-131, 140, 141, 145-147, 236 18, 19, 28
10 146-149, 151-153, 228, 231, 234-238 18, 19
11 141,147, 148, 150, 226-228, 231-234 29,31
12 141, 148, 150, 226-228, 231-236 29, 31, 36, 38
13 125,126, 128, 129, 131, 140, 141, 145, 146, 148,236 | 18, 19, 28
14 124-131, 134-138 18, 19, 28

Table 7.7: The protein residues lining the most favorable bindingssited the IDs of the transient pockets
that led to the calculation of these binding poses. Notethiegasame binding site was predicted although the
ligands were docked into different transient pockets asd aito snapshots extracted from different MD
simulations.
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(a) 1396-11, score: -19.6 kcal/mol. (b) 1396-34, score: -17.9 kcal/mol. (c) 1540-14, score: -16.3 kcal/mol.

Figure 7.6: The most favorable docking poses per ligand. The proteihass in grey surface representa-
tion and the ligand is shown as sticks colored by element. cbineesponding schematic representation of
the binding modes are shown in the Appendix, Figure A.4. Mo all plots show the ligands bound to
binding site 2 on a MD snapshot of the NMR structure in water.

not considered in our docking experiments. Interestirgiyiost all favorable docking complexes
involve interactions between the inhibitors and XSgsee Table 7.7 and Fig. A.4). These results
support the hypothesis that the polyphenylurea-basetitols bind to the flexible linker region
of XIAP-BIR2 and so impede the assembly of the XIAP - casgasemplex.

7.5 Discussion

In this chapter, we presented the application of our poc&eation protocol to two test systems,
for which binders have been identified experimentally. Stre-based design approaches aiming
at optimizing these hits to lead compounds were hamperédesrshinding mode was unknown.
However, in contrast to Adx, where the entire protein suafés well as the surface of its partner
proteins) had to be considered in the docking experimemtsapproximate binding site of the in-
hibitors identified for XIAP-BIR2 was known and the dockingperiments could be limited to the
transient pockets located within this region. A furtherffeliénce between the two applications is
that Adx was only simulated in water using only one startiingcture while XIAP-BIR2 was addi-
tionally simulated in methanol and each simulation wasagabwith a different starting structure
showing the protein in another conformation (either in ji® atate or complexed to caspase-3).
The challenge with the XIAP protein was that no OPLS-AA fofiedd parameters were available
for the CygHis-Zinc finger. These values were derived by density fumeti theory-based quan-
tum mechanical calculations and had to be tested thoroughl\D simulations. Moreover, unlike
Adx, for which we expected the polyamines to bind into chdrgeckets that are more favorable
to open in water, the pockets accommodating the inhibitbeslAP-BIR2 were expected to be
rather nonpolar and, thus, better sampled during a sinsal&ti methanol.

We decided to confine the conformational sampling to MD satiohs because as demonstrated
in Chapter 3 and 4, MD was the only method that yielded rediaibkults for all three model
systems. As the binding region was approximately known foAPXBIR2, the PocketScan-
ner/PocketBuilder or the PocketInflator approach coulcehedso been applied. However, as the
linker region is extremely flexible as indicated by the MD slations, it is questionable whether
the energy minimization and side-chain rearrangement dvbale been effective enough to in-
duce the openings of pockets comparable to those that weeswaa using MD.

Moreover, the application of this protocol to XIAP-BIR2estsed an interesting characteristic of
protein-protein interaction interfaces. The fact thatdhene binding site was predicted although
the ligands were docked into different transient pockedgetes that these binding sites are strewn
with small pockets and that small molecules binding to pnepeotein interaction interfaces often
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occupy several (sub-) pockets at the same time. This olig@rvsuggests that when trying to
identify binding sites for SMPPIIs on protein surfaces, sheuld rather focus on regions where
(small) transient pockets accumulate than on isolatedgisck

7.6 Summary and Conclusion

Structure-based drug design does not only assist the fidatitn of hits, but also the selection
or refinement of hit compounds to lead structures, or of Iéagtsires to drug candidates. Espe-
cially when binders were identified by experimental methalls elucidation of their binding site
and mode is a precondition for the successful applicatiocooiputational methods assisting the
identification of lead compounds or drug candidates. As sas#y, we discussed two proteins
involved in protein-protein interactions for which smaiblecule binders were identified by
vitro experiments but their binding site and, thus, the molecdédails of their interaction were
unknown. For one protein, the BIR2 domain of XIAP, the birgdgite was assumed to be located
in a very flexible region. For the other protein, Adx, the lib@a of the binding site was totally
unknown and it could even not be excluded that the moduld#tss) bind to its partner proteins.
We applied our pocket detection protocol to both proteirideatify transient pockets that open on
the protein surface. The experimentally identified ligangse then docked into all pockets that
were accessible in the MD snapshots or in the crystal strestand the most favorable docking
poses could be clustered into five putative binding sitesth@$e sites, the most favorable ones
were located on the Adx protein and corresponded to knoves sit interaction with AdR. The
plausibility of these binding sites was supported by sitealed mutagenesis studies.

As the binding site of the molecules targeting XIAP-BIR2 vegproximately known, the dock-
ing experiment could be restricted to those pockets thategbevithin this region. The differing
properties of the detected transient pocket emphasizeftettibility of this region. By clustering
the most favorable docking poses, 14 putative binding sitse identified. Interestingly, Asf,

a hot spot for the interaction of XIAP with caspase-3 thataigéted by the studied ligands, is
involved in almost all favorable docking poses suggestiraj the predicted binding modes are
reasonable.

In summary, the application of our pocket detection proté@éwo test proteins indicated that it is
capable of suggesting plausible binding sites and ligandibg§ modes regardless of thepriori
knowledge about the location of the binding region. Howewdrether this protocol can also be
used to predict binders and non-binders remains to be d@edlirathe future.
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Chapter 8

Conclusion and Outlook

Protein-protein interaction interfaces are a real chghefor structure-based drug design. Due to
their intrinsic properties they often contain no deep, ssitde pockets that may be targeted by
small-molecule ligands. As a consequerinssilico drug design approaches were so far limited to
those systems for which the interface either contained ggdtie pocket in the unbound structure
or for which a crystal structure with a small molecule bouraswavailable.

8.1 Summary and Conclusion

The goal of this work was the development of protocols thaisashe structure-based design of
small-molecule protein-protein interaction inhibitoSMPPIIs) by providing protein conforma-
tions that contain transient pockets which may be targetadriual screening experiments. We
tested all developed methods using three model systems;>8CIL-2, and MDM2. All these
proteins are involved in protein-protein interactionsd @ne native binding pockets of SMPPIIs
(known from the crystal structures of the protein-inhibitomplex) are not, or not fully, accessi-
ble in the apo structures.

In our initial study presented in Chapter 3, we showed thathimding pockets of these SMP-
Plls are, like many other pockets on the protein surface; aotessible in some conformations:
They are transient binding pockets. When no druggable pecke detectable in any available
structure of the protein, this initial pocket detection tpaml may thus be an interesting starting
point. Molecular dynamics simulations of the apo struciarevater were conducted and all tra-
jectory snapshots were scanned for cavities using the PA®8tam. All detected pockets were
subsequently clustered to determine the distinct trahpieckets. We found that they all opened
within 2.5 ps, and most of them appeared multiple times. Theye even reproducible by a
second MD simulation. The general impression was quitelainor all three systems. At the
native binding site, transient pockets could be identiflest tvere of similar size than the native
binding pocket. To validate the appropriateness of thisgmal for virtual screening, we docked
the known inhibitors with AutoDock3 into these identifiedrisient pockets. For all systems we
obtained docking poses that were within 2 A RMSD of the nativeling mode.

In the follow-up study described in Chapter 4, we investidaihich aspects of the natural confor-
mational dynamics of proteins induce the formation of thiegesient pockets. The same pocket
detection protocol was applied to three different confdiomal ensembles that were extracted
from three different MD simulations; (a) of the inhibitor doad structure (after removal of this
ligand) in water, (b) of the apo structure in water (that wasduin Chapter 3), and (c) of the apo
structure in methanol. For MDM2, we additionally studiee impact of backbone mobility by
MD simulations in which all backbone atoms were harmonjcedstrained. The results empha-
sized the influence of solvent polarity and backbone regeaments on the formation of transient
pockets. Furthermore this study revealed that the nativéithg pocket is unstable in the absence
of the ligand explaining why it is only partly accessible ger absent in the apo structure. More-

123
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over, we tested whether the more efficient CONCOORD, tCONRD®©r normal mode analysis
(NMA) techniques may substitute the time-consuming MD sations. While the conformations
generated by CONCOORD and NMA possessed significantly smadickets, only the tCONCO-
ORD conformations contained pockets that were comparaltfeose observed in MD simulations
for two of the three systems. This finding indicates that MiDudations are to date the most robust
method to sample transient pockets if the binding site imonk and the entire protein surface
has to be taken into account.

In many structure-based approaches the binding site ofighed is approximately known. In
such cases, running the MD-based pocket detecion protppalaas quite time consuming as the
sampling can be limited to this region of the surface. It iselear whether this protocol is suc-
cessful for all kinds of binding pockets. For example, at sdsinding sites the presence of the
ligand may be required to induce the pocket opening, wheaheasD-based protocol is only ca-
pable of finding cavities that open spontaneously. For thessons we developed two algorithmic
approaches that design pockets of desired properties iedefined region of the protein surface.
Based on our findings presented in Chapter 4, these methodsrador protein backbone and side
chain flexibility. The main idea of both approaches is to espnt the pocket by a “generic pocket
sphere” (GPS) that interacts with the protein atoms. Thedpproach is discussed in Chapter 5.
It starts by scanning the protein surface for potential pbglositions using a grid of predefined
size. At each grid point, a GPS is placed and the protein isnmzed energetically while the
position of the GPS remains fixed. Subsequently the resiliniag this pocket are then further
refined by searching for the best combinations of side-ctamers using the A* algorithm. For
two out of the three test systems, conformations could bergéed with pockets into which the
known inhibitor could be docked in a native-like orientatiddowever, due to their representation
by a single GPS the designed pockets were of an artifical sihdpeeover, many SMPPIIs con-
sist of multiple subpockets that cannot be induced at theegame using this method. All these
considerations indicate that the applicability of this maeh is limited.

In the second algorithmic approach presented in Chaptee@ried to solve these problems that
emerged in Chapter 5. Here, multiple subpockets of predifinkime and location are designed
simultaneously. Rather than representing them by a sin§l&,@hey are now represented by
patches of coherent probes that were placed by the PASSthigorAs the initial structure usu-
ally contains no detectable pockets, we modified the PAS&ittign in such a way that probes
that overlap with protein atoms up to a certain degree are Képs degree can be controlled by
our program. After selecting such a precursor-pocket, sorokes are enlarged, and the protein
conformation is energetically minimized. By doing so, thietpin adopts its conformation to this
pocket and the number of clashes is reduced. Subsequenthprecursor-pockets are calculated
for this relaxed protein conformation. Thereby it is takemecthat the degree of allowed overlap
is always smaller or equal to that in the previous cavity céia. These steps are repeated until
a predefined number of low-energy protein conformationsdasegned that contain pockets de-
tectable without tolerating overlaps larger than the defalue. One can pictorially describe this
procedure as inflating pockets in the protein surface. ingty, the results indicated that the
target volumes of the designed pockets are not crucial. Wedidhat when considering only the
locations in the design process, the resulting pockets are mative-like than those designed by
the first approach. This became also evident from the scdrtagned in the docking experiment.
For all systems, docking poses within 2 A from the native ligdnode were suggested. For
two systems, these poses even obtained better dockingssbarethose observed in the inhibitor-
bound crystal structure. Therefore, we suggest using thi®gol for cases, in which the binding
site is known, but contains no druggable pockets in the @vigilcrystal structures.

After validating the developed approaches, we show in Gaptheir application to two systems.
Although small-molecule modulators were identified expemtally for both systems, their bind-
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ing mode was unknown. In case of the first system, it was eveteanwhether the molecules
bind to the targeted protein, Adrenodoxin, or its interagprotein, Adrenodoxin Reductase. We
used the MD-based pocket detection protocol for identifytiansient pockets opening anywhere
on the surface of Adrenodoxin and additionally considerdédther pockets found in the crystal
structures of Adrenodoxin Reductase and the protein-pratamplex. In the second system, the
BIR2 domain of XIAP, the region in which the binding site i€éted could be delineated. Even
though this would enable the application of the pocket imftaprotocol presented in Chapter 6,
we decided to conduct MD simulations in water and in methéeckuse this protein region was
highly flexible and it was not clear whether the algorithmgpeoach could handle this extreme
mobility correctly in vacuo. For both test systems, we wexpable to suggest favorable binding
sites by docking the ligands into transient pockets thaeweentified by our pocket detection
protocol. These real-world examples emphasize the apyiiiysand usefulness of our presented
protocols.

In summary, we think that our findings will be helpful in futugeneration of transient pockets
as putative ligand binding sites at protein-protein irgtegls or even for the identification of new
allosteric pockets for any kind of proteins.

8.2 Outlook

The design of small-molecule protein-protein interactiohibitors is a relatively new and very
interesting research field. However, our studies suffereah fthe low number of model systems
currently available. We hope that owing to the continuousgpess made in this field more and
more high quality crystal structures of proteins in complath their SMPPIIs will become avail-
able. This would enable us to verify our protocols on a largenber of test systems. An important
question is, for example, whether the native binding pookay be identified from a set of tran-
sient pockets. More generally, it would be of advantage & oould narrow down the number
of conformations in which the transient pocket under cagrsition is available and extract those
pocket states that are most druggable. By doing so, the tgedad to dock the putative ligands
may be significantly reduced. Furthermore, it would be gdg#ng to investigate whether one can
predict those regions on the protein surface where trangeakets will open. If this was possible,
one could systematically induce pockets using the algoiittapproach at these sites. In addition,
one could use GPS of different properties (e.g. with chargesmfluence the chemical proper-
ties of the designed pockets. Finally, it is worth testingetiler our approach is only applicable
to detect pockets for competitive inhibitors, i.e. pockepening at protein-protein interaction
interfaces, or whether it can be generally applied to idemtew allosteric pockets that are not
accessible in the absence of a ligand.
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Appendix A

Ligand Binding Modes

All plots were generated by LigPlot [198]. The legend is shawFigure A.1.

@=—=@ Ligand bond His 53 Non-ligand residues involved in hydrophobic
@—@ Non-ligand bond e contact(s)
@-:~-@ Hydrogen bond and its length H./ Corresponding atoms involved in hydrophobic contact(:

Solventaccessibilityshading:@ Buried @  Highly accessible

Figure A.1: Legend for the plots showing the ligand binding modes.
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Figure A.2: The native ligand binding modes of the BCL-XIL-2, and MDM2 proteins as resolved in the
inhibitor-bound complex structures (a) 1YSl.pdb, (b) 18X, and 1T4E.pdb.
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Figure A.3: The best scored docking complex between MD snapshots of Adxtee three polyamines for
binding site 1 ((a) - (c)) and 5 ((d) - (f)).
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Appendix B

Stability of the Proteins During the
Molecular Dynamics Simulations

All secondary structure plots were generated by the progtandsspof the GROMACS 3.3.1
package [141] that reads a MD trajectory and computes thendacy structure for each time
frame by calling the DSSP program [199]. The descriptionhef $econdary structure elements
is taken from the corresponding PBD files. Note that the lerdtthe individual elements may
vary in different crystal structures of the same proteinteiithe residues that form that secondary
structure element in the apo structure are listed.

[] Coil Jll B-Sheet |l B-Bridge [l Bend [] Turn [l A-Helix [l 5-Helix [l 3-Helix

Figure B.1: Legend for the DSSP plots showing the stability of the seaonstructures.

B.1 Stability of the Secondary Structure of BCL-X;,

The apo X-ray structure of BCL-Xconsists of eightv-helices (helix 1: residues 1-20, helix 2:
residues 82-101, helix 3: residues 105-113, helix 4: resdil9-128, helix 5: residues 136-157,

10— 08040 1 A1 DA SN A LA L ek
174 it

g e o e e e

[} [}
=] >
° T 134
e x 94 i

20

0 2 4 6 8 10
Time [ns] Time [ns]
(a) apo structure in water (b) apo structure in methanol

Residue

; .
Time [ns]

(c) holo structure in water

Figure B.2: The stability of the secondary structure during the MD satiohs of (a) apo BCL-X in water
(run 1) and (b) methanol, and for the simulation of the (cptsitucture in water.

141
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helix 6: residues 161-178, helix 7: residues 178-185, Hiliresidues 187-196) and gy3helix
(residues 129-132). Figures B.2 (a) and (b) reveal thatmxoe the terminal helix 8 and the
310-helix that partly unfolded, the secondary structure remeistable during the MD simulations
in water and in methanol. Theghelix is missing in the holo structure, here residues 129-1
are part ofa-helix 4. The secondary structure of this conformation apge less stable during the
simulation in water (see Fig. B.2 (c)). Helix 3, for exampleas converted to a-helix and helix 1
comprised only residues 10-20. However, one should keejirid that the holo structure contains
loop regions (residues 28-44 and 197-217) that were nolvex$in the apo X-ray structure and,
thus, more structural transitions were observable dutiegsimulation of this structure.

B.2 Stability of the Secondary Structure of IL-2

The apo and holo crystal structures of IL-2 contain bothushelices (helix 1: residues 6-30, helix
2: residues 32-40, helix 3: residues 56-61, helix 4: residiZe74, helix 5: residues 81-98, helix 6:
residues 113-130) and ongyahelix (residues 52-55) that remained stable during alugitions
as Figures B.3 (@) - (¢) indicate. Furthermore, in all sirtiafes two3-sheets comprising residues
44-49 and 107-114 were formed that were not observed in §statrstructures. These sheets
were most stable during the simulation of the apo structukeaiter.

Residue
Residue

Time [ns] Time [ns]
(a) apo structure in water (b) apo structure in methanol

Residue

Time [ns]
(c) holo structure in water

Figure B.3: The stability of the secondary structure during the MD sitiohs of (a) apo IL-2 in water
(run 1) and (b) methanol, and for the simulation of the (cptsitucture in water.

B.3 Stability of the Secondary Structure of MDM2

MDM2 was the protein for which most changes in the secondaugtsire took place during the
MD simulations. As already indicated by the crystal struesy MDM2 was more stable in the
holo form than in the apo form (see also Fig.B.4 (c)). In tliaformation, residues 20-25 that are
disordered in the NMR models of apo MDM2 form arhelix. Interestingly, when simulating the
apo structure in methanol, this helix is also formed afteyuald ns simulation time (see Fig.B.4
(b)). The protein contains four other-helices (helix 2: residues 34-42, helix 3: residues 51-
63, helix 4: residues 80-86, helix 5: residues 95-104) therevobserved in both conformations.
However, as Figure B.4 (a) demonstrates, helix 5 formed astead of an-helix during the
simulation of the apo structure in water, and helix 4 was lss stable than during the simulation
in methanol. Moreover, the apo structure contains two stistheets (sheet 1la: residues 74-75,
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sheet 2a: residues 91-92) not contained in the holo steyotrere three shofi-sheets are formed
(sheet 1h: residues 27-30, sheet 2h: residues 48-49, dinertstdues 107-109)3-sheet 3h was
only stable in the MD simulation of the holo structure. THigst fell apart during the simulation
of the apo structure in water, while it unfolded completelyidg the simulation in methanol. In
contrast, the DSSP analysis identified the other féxsheets in all three MD simulations.

Residue
Residue

Time [ns]
(a) apo structure in water (b) apo structure in methanol

Time [ns]

Time [ns]
(c) holo structure in water

Figure B.4: The stability of the secondary structure during the MD satiohs of (a) apo MDM2 in water
(run 1) and (b) methanol, and for the simulation of the (cprsitucture in water.

B.4 Stability of Adx

In the X-ray structure of oxidized Adx, the protein consisisfive 3-sheets (sheet 1: residues
7-12, sheet 2: residues 18-23, sheet 3: residues 56-58, &hexsidues 88-90, sheet 5: residues
103-106), threev-helices (helix 1: residues 29-35, helix 2: residues 61k&ix 3: residues 72-
78), and two 3y-helices (helix 4: residues 91-93, helix 5: residues 98)10d@ost secondary
structure remained conserved during the MD simulation itewanly 5-sheets 3 and 4, and the
310-helix 4 temporarily unfolded. However, the RMS deviatioom the crystal structure remained
continuously below 2 A suggesting that the overall protéinciure was not distorted.

Time [ns]

Figure B.5: The stability of the secondary structure during the MD sitioh of oxidized Adx in water.

B.5 Stability of the BIR2 Domain of XIAP

The BIR2 domain of XIAP contains in its apo NMR as well as indtsnplexed X-ray structure
three3-sheets (sheet 1: residues 189-194, sheet 2: residue0D98teet 3: residues 205-207),
five a-helices (helix 1: residues 136-141, helix 2: residues 1B2; helix 3: residues 180-187,
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helix 4: residues 217-224, helix 5: residues 227-233), aBgydelix (helix 6: residues 157-
161). In the apo structure, residues 125-129 form an additi8 o-helix that is not available in
the complex structure because residues 124 to 126 are qitbsre. Instead, in this structure a
310-helix is built up by residues 149-153.
The analysis of the MD simulations of XIAP-BIR2 reveals tlia zinc finger motif remained
very close to its optimized geometry (see section D) ands, tdid not distort the overall protein
structure. The RMSD of the backbone atoms and the zinc fingsif is depicted in Figure
B.6 (a). Figure B.6 (b) illustrates that, as expected, theeltinal linker region as well as the
C-terminus are highly flexible. The DSSP plots shown in FégBt7 reveal that, overall, the
secondary structure remained stable throughout the diimildn general, the secondary structure
elements were more conserved in the simulations that dtémen the X-ray structure of the
complexed XIAP BIR2 domain. For example, the thitesheet was only stable in the simulation
of this structure in methanol. The fivehelices of this starting structure remained more stable in
water. The first and the fifth-helix was quite unstable in the simulations that startechfthe apo
NMR structure, indicating the high mobility of the flexiblaker region and the C-terminus.

— backbone (residues 157 - 224)

— zinc finger - starting structure (only side chains)
—— zinc finger - optimized structure (only side chains)
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Figure B.6: The stability and the mobility of the protein during the MDnsilations. Shown is (a) the RMS
deviation of the backbone atoms from the crystal structmc @ the zinc finger motif from the crystal
structure and the optimized geometry and (b) the mean RM&ifitions of the G-atoms from the crystal

structure during the four MD simulations.
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Figure B.7: The stability of the secondary structure during the MD sattiohs of XIAP-BIR2.
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User Manuals for the Developed
Programs

C.1 EPOS’’: Detecting Ensembles of Pockets on Protein Surfaces

Preparation of the Input Files

Allligands, solvent molecules, and other hetero atoms t@le removed before running EPHS
The protein file must be supplied in PDB or HIN format. If a PDIB ftontains several models,
the PASS algorithm is applied to each of them. Ligand coatéiriiles can be given in MOL2,

PDB, or HIN format.

Command Line Options

The following command line options are available:

option

description required option

-file <PDB/HIN file>
-list <file>

-read <file>

-cluster <cutoff> <use
index> <cluster file>
-readclust <cluster file>
-analyze <analysis file>

-subpocket  <prefix>

<sim cutoff>

-overlap <ligand file>
<overlap file>
-compare <filel>
<file2> <sim table>

-V

apply the PASS algorithm to a single PDBHIN file
apply the PASS algorithm to the PDB or HIN filestéd in
<file>
apply the clustering, analysis, or subpocké&tutation to
previously determined pockets listed in <file>
cluster pockets with similarities less than <cutoff> petce "-file”,
write the clustering results and rename the patch and PlLrdad”
files; only set <use index> to 1 if the atoms have the same
index in all files

read in a previously calculatedstr file and apply the "-read”
clustering to the read-in patches

analyze the pocket propertiesaflifierent pocket clusters "-cluster”
and write the results to an output file readclust”
write the subpocket (PLAs that are present in at least <sitranalyze”
cutoff> percent of all PLAs) of each pocket cluster to files
with the given prefix
calculate the overlap volume between a given ligand (iffile”,
pdb, hin, or mol2 format) and the patches read”
write the pairwise similarities of the PLAs or subpocketdile
listed in filel and file2 to the given output file (format: one
file with path per line)
run program in verbose mode

"list”, or

or

"list”, or -
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PASS Parameter File

If you want to use your own parameters instead of the defalltes make sure that a parameter file
called “BALLPass.ini” is available in your current direcyoand that the path of the file containing

the atom radii is correct.

entry description default
value
HEAVY_ONLY ignore hydrogens 1

PARSE_INI_FILE

RADIUS_HYDROGEN
RADIUS_OXYGEN
RADIUS_NITROGEN
RADIUS_CARBON
RADIUS_SULFUR
PROBE_SPHERE_RADIUS

PROBE_SPHERE_RADIUS
_HYDROGEN_FREE
PROBE_LAYER_RADIUS

use parameters defined in local parameteiirfdtead of de- 1
fault values

radius of a hydrogen atom [A] 1.2
radius of an oxygen atom [A] 1.52
radius of a nitrogen atom [A] 1.55
radius of a carbon atom [A] 1.7
radius of a sulfur atom [A] 1.8

radius of a probe in the 1. layer wheirdgens are consid- 1.5
ered [A]

radius of a probe in the 1. layer when hydrogens are ignordd3
(Al
radius of a probe in the accretion layjé] 0.7

MINIMUM_PROBE_SEPARATION minimal distance between twapes [A] 1.0

BURIAL_COUNT_THRESHOLD

BURIAL_COUNT_THRESHOLD

_HYDROGEN_FREE
BURIAL_COUNT_RADIUS
PW_SQUARE_WELL
PW_GAUSSIAN_WIDTH

ASP_SEPARATION

MINIMUM_PROBE_WEIGHT

CLASH_FACTOR
RADII_FILE

File Formats

minimal number of surrounding peo atoms for defining a 75
probe as buried probe when hydrogens are considered
minimal number of surrounding protein atoms for defining 45
probe as buried probe when hydrogens are ignored
radius used for computing the buriaumts of a probe [A] 8.0

parameter for defining the probe weight Bpe function 2.0
(see [70])
parameter for defining the probe weightedope function 1.0
(see [70])

minimal distance between two ASPs [A] 8.0
minimal probe weight for an ASP 1150
factor for reducing clashes between probelspaatein atoms  0.95
file containing the radii of the protein atoms

The input files have to be of the following format:

"-list <file>":
"-read <file>":
"-compare <file> ...":

(path of) one PDB/ HIN file with path per line
(path of) one patch file with path per line
(path of) one PLASs/ subpocket file wtath per line

PSE.siz
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The generated output files are of the format:

PLAs/ subpocket file: atoms of the input protein that linepbeket in PDB format

patch file: Probes are represented by a carbon (initial Jay)ehydrogen atoms (accretion layer)
in PDB format. The atom name is the atom symbol followed byl&yer, the residue
name is “PKT”, and the residue number corresponds to thegtdEk The ASP always
corresponds to the atom with index 1.

cluster file: one conversion per line in the formadélte prefix>: <old PID> -> <new PID>

analysis file: a header line, followed by one line per PID rftmmat<PID> <freq.[%]> <mean vol.[A3]>
<min. vol.[A3]> <max. vol.[A3]> <mean pol.> <min. pol.> <max. pol.> <mean depth[A]> <min.
depth[A]> <max. depth[A]>

overlap file: one line per structure in the formdite prefix> <overlap vol. [&]> <overlapped ligand atoms
[%]> PIDs: <PID 1>...<PID n> <pol.> . (Note that the overlap volumes and polarities are
calculated per structure and not per patch.)

similarity table: one line per entry in <file 1> of the formatsim(fl:if2:1)> <sim(fL:i,f2:2)> ...
<sim(fL:i,f2:m)> where <sim(fl1:i,f2:j)> is the percentage of common PLAsnz=nN the
ith entry in <file 1> and thgth entry in <file 2>

C.2 PocketScanner and PocketBuilder

File Format

The starting structures have to be in PDB format. Hetero atimuld be removed unless they are
correctly parametrized in the CHARMM EEF1 force field. Bothgrams write the different pro-
tein conformations together with the used GPS to files in P@rBat. The GPSs are represented
by atoms of the residue name “UNK” and their atom name is,'®herer is the radius (either 2,
3, or 4 A). The residue number is arbitrary. As PocketBuileracts the GPS directly from the
input PDB file, the GPSs can be added manually using this forma

PocketScanner Parameter File

PocketScanner is called BpcketScanner <parameter file’All options are set in the parameter
file in the following way:

entry description default
value

Structure: <PDB file> path and filename of the starting stnect

Grid: <x> <y> <z> <no. points> <spacing > center, dimensiang edge length in A of the grid
placed on the protein surface

GPS: <GPS radius> radius of the GPS in A 2

Minimal BC: <value> minimal burial count (number of proteitoms with 8 65
A) of a GPS before and after energy minimization of
the protein

SE: <value> maximal distance of a GPS from a surface expos2d
atom in A

Outfile: <prefix> prefix of the generated PDB files

Force Field: <file> path and filename of the CHARMM EEF1 foreddi

containing the parameters for the GPSs
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PocketBuilder Parameter File

PocketBuilder is called biocketBuilder <parameter file>Like in PocketScanner, the parameter
file is used to define all options of PocketBuilder. The tuteg@arameters are:

entry description default
value

Structures: path and filename of the input structures
<PDB file with GPS 1>

<PDB file with GPS n>

Radius: <value> radius for defining the flexible residues in A 8

Number: <value> number of solutions that should be caledlat 50

Pocket Weight: <value> weighting factor for the interaoteEnergy between protein atoms and.5
the GPS

Energy Weight: <value> weighting factor for the internabigin energy 0.5

Outfile: <prefix> prefix of the generated PDB files

Dir: <directory> directory for writing temporary files (néed to save memory)

Library: <rotamer library> patch and filename of a rotamlerdry

Force Field: <file> path and filename of the CHARMM EEF1 foraddicontaining the

parameters for the GPSs

C.3 Pocketinflator

File Format

The starting structures have to be in PDB format. Hetero atsimould be removed unless they are
correctly parametrized in the Amber96 force field. The paogiis called byPocketInflator <pa-
rameter file> The different generated protein conformations are writtefiles in PDB format.
The corresponding patches and plas files are written to filgstive same prefix. As PocketInfla-
tor uses EPO%”, a BALLPASS parameter file called “BALLPass.ini” should ha#able in your
current directory. It is recommended to set “ASP_SEPARAYI@® 5 A.

Pocketinflator Parameter File

For defining multiple subpockets, one entry of “Resids: <te4> ... <resid n>" and “Goal
Volume: <value>" has to be provided per subpocket. Note tthetth entry of “Goal Volume” is
assigned to thé&h entry of “Resids”.

entry description default
value
Structures: path and filename of the input structures
<PDB file 1>
<PDB file n>
Number: <value> number of solutions that should be caledlat 50
Outfile: <prefix> prefix of the generated PDB files
Force Field: <file> path and filename of the Amber96 force fedtaining the pa-
rameters for the GPSs
Stepsize: <value> step size for increasing the clash factor 0.01
Resids: <resid 1> ... <resid n> IDs of the residues that shbave any atoms within 8 A of the
ASP
Goal Volume: <value> goal volume of the induced pocket wHosation is defined by 0

the “Resids” entry; use 0 to ignore the volume



Appendix D

Parameterization of the CygHis-Zinc
finger

The parameterization of the Gydis-Zinc finger was based either on the energy minimized-aver
age NMR structure of the unbound XIAP-BIR2 or on the X-raysture of XIAP-BIR2 bound

to caspase-3. Geometry optimizations were performed USiWghem 4.7 [200]. The ligating
cysteines were modeled as ¢&4 and the histidine as imidazole, thus the resulting sys$tada
total charge of -1. The geometries were optimized withoust@ints by the density function the-
ory (DFT) [201] module using the B3LYP exchange-correlatianctional and the 6-31G* basis
set. The number of iterations was set to 500 and the defamNecgence criteria were used for the
optimization. The optimized geometry was then used forwatimg the electrostatic potential fit
(ESP) using the Hartree Fock method with the same basis s#f. iBput geometries converged
to the same minimum energy with an RMSD of 0.8 A on the heavgnatand the calculated ESP
charges were approximately the same (maximum deviati@1:80). As the optimized geometry
based on the X-ray structure was closer to the conformati@itiher experimental structures than
the one based on the NMR structure (0.7 and 0.6 A instead @fr@®.9 A), the former was used
for the parameterization of the Gyis-Zinc finger in the OPLS-AA force field. The ESP charges
obtained from the HF calculation shown in Table D.1 were dse€oulombic interactions. The
van der Waals parameters for the zinc ion were taken from][20Be interactions between the
Cys:Sy or the His:N; and the ZA+ were modeled as bonded interactions and the equilibrium
values for bond lengths (Table D.2), angles (Table D.3), dihddrals (Table D.4) were taken

atom charge [e]
Zn*t 1.0497
Cys:C3 0.2430
Cys:H3, -0.0591
Cys:H3, -0.0709
Cys:Sy -0.8289
His:Co 0.0804
His:Hp, -0.0085
His:Hf3, -0.0074
His:Cy -0.0339
His:No; -0.2319
His:Hdj; 0.2919
His:Cos -0.0051
His:Hd, 0.1083
His:Ceq 0.0227
His:He, 0.1467
His:Nes -0.2653

Table D.1: ESP charges calculated for the atoms of the;Eys-Zinc finger
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from the optimized geometry. The force constants were sahaiogy to similar groups in the

APPENDIX D. PARAMETERIZATION OF THE CY$HIS-ZINC FINGER

OPLS-AA force field.

atom1l atom2 | bond length [A]
Zn*t  Cysl:Sy 2.35
Zn*t  Cys03:Sy 2.34
Zn2t  Cyg2Tisy 2.32
Zn?t His?20:Ne,y 2.13

Table D.2: Optimal bond length determined for the G¥s-Zinc finger

atom 1 atom 2 atom 3 angle P]
Cys:Sy ZzZn?* Cys’¥3:Sy 121.4
Cys90:Sy  zn?t Cys?":Sy 113.1
Cys93:Sy  zn*t Cys?":Sy 114.8
Cyg00:Sy  Zn2t His?20:Ne, 98.0
Cys¥3:Sy Zn?* His?20:Ney 96.5
Cys®?":Sy Zn?* His?20:Ne, 109.2
n*t Cys0:sy  Cyg%:Cp 100.8
Zn>t Cys93:Sy  Cysg03:Cp 101.7
Zn>t Cys?":Sy  Cys2":.Cp 101.4
zZn*t His??9:Ney  His??0:Ce; 122.3
Zn>* His??9:Ne,  His?20:Cs, 131.0

Table D.3: Optimal angles determined for the Gyfis-Zinc finger

atom 1 atom 2 atom 3 atom 4 dihedral angleq]
Zn’t His??%:Ne, His?20:Cs, His??:Cy 177.6
Zn>* His??%:Ne, His?2?:Ce;  His??":Nd; -177.8
Cys%%:C3 Cyg0:5y  Zn?* Cys93:Sy 28.1
Cys%%:C3 Cyg0:5y  Zn?* Cys?":Sy 170.6
Cys%%:C3  Cys0:sy  zZn?t His?29:Ne, -74.6
Cys%0:Sy  zZn?t Cys93:Sy  Cys03:Cp 91.0
Cys%0:Sy  zZn?t Cys?":Sy Cys?":.Cp 166.6
Cys0:Sy  Zn?t His??9:Ney  His?20:Ce; -21.2
Cys0:Sy  zZn?* His?20:Ne;  His?20:Cd, 161.5
Cys":sy  zn*t His??%:Ne,  His?20:Cey -144.2
Cys93:Sy  zZn?t His?20:Nes,  His?20:Cs, 38.4
Cys93:Sy  zZn?t Cys?":Sy  Cys?":Cp -48.3
Cys3:.C3 Cysg":Sy zZn?*t Cys?":Sy -42.5
Cys3:.Cs Cysg":Sy zZn?*t His?20:Ney -157.1
His??%:Cé, His?20:Ne, Zn?t Cys?":Sy -80.7
His?20:Ce;  His?20:Ne,  Zn%t Cys?":Sy 96.7
His??%:Ne,  Zn?t Cys?":Sy Cys?":.Cp 58.7

Table D.4: Optimal dihedral angles determined for the giis-Zinc finger



