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Abstract

The number of hip operations performed by inserting implants has continu-
ously increased in recent years. In Germany 110673 femoral head fractures
of female persons were diagnosed in the year 2004. To minimize the surgi-
cal intervention, the femoral head is saved whenever possible and fixated by
screws or nails. Thereby, the induced stiffness change leads to an adaptation
of the material with respect to the new loading situation. The very same
adaptation can cause a repeated failure of the femoral head.

The present work introduces a numerical model, which is able to anticipate
the adaptation process so that it is possible to make a statement about the
failure probability in advance. The model considers the anisotropy of the
bone material as well as the influence of its microstructure.

The model will be implemented into two different Finite Element codes.
Finally, the capability of the model is demonstrated on some numerical ex-
amples.



Zusammenfassung

Die Zahl der Hiiftoperationen, bei denen Implantate eingesetzt werden, ist
in den letzten Jahren kontinuierlich gestiegen. Allein in Deutschland wurde
im Jahr 2004 bei 110673 weiblichen Personen eine Oberschenkelhalsfraktur
festgestellt. Um den chirurgischen Eingriff so gering wie moglich zu hal-
ten, wird — wenn méglich — der Femurkopf erhalten und mittels Schrauben
oder Nageln fixiert. Die dadurch implizierte Steifigkeitsanderung geht einher
mit einer Anpassung des Materials beziiglich der neuen Belastungssituation.
Eben diese Anpassung kann jedoch zu einem abermaligen Versagen fiihren.

Die vorliegende Arbeit stellt ein numerisches Modell vor, das in der Lage ist,
die Anpassung zu antizipieren, so dass sich bereits im Vorfeld Aussagen tiber
die Versagenswahrscheinlichkeit machen lassen. Das Modell beriicksichtigt
dabei sowohl die Anisotropie als auch die Mikrostruktur des Knochenmate-
rials.

Dieses Modell wird in zwei unterschiedlichen Finite Elemente Codes umge-
setzt. Abschlielend demonstrieren einige Beispiele die Leistungsfahigkeit des
Modells.
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Chapter 1

Introduction

The macroscopic behavior of porous materials, e. g. foams, geomaterials as
well as biological tissues like cancellous bone, is strongly influenced by the
microstructure related to the pore space [38, 39]. It is well known that these
materials cannot be described by a standard continuum mechanical setting
on the macroscale neglecting the internal architecture of the microstructure.
Such materials with inherent length scale show boundary-layer effects leading
to size effects, i. e. increasing stiffness of specimens for shrinking size, cf.
[19, 53], or vice versa decreasing stiffness for shrinking size, cf. [65, 64, 78].

In the 1960s the relation of lattice materials to macroscopic Cosserat formu-
lations was already shown [1, 2, 28] and was e. g. a point of discussion at
the IUTAM symposium at Freudenstadt (Germany) in 1967. In this frame-
work homogenization procedures were proposed in order to link the discrete
microstructure of the porous solid material to the extended continuum for-
mulation, cf. [19, 31, 32, 79] and for granular material [6, 18, 24].

On the one hand open-cell foams, including cancellous bone, may be de-
scribed by beam models on the microscale which give insight into the gov-
erning deformation mechanisms, e. g. [65, 66, but on the other hand these
microscopic models become numerically inefficient for large structures due
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to the large number of degrees of freedom (DOF). Models directly based on
the voxel mesh derived by pCT [4, 47, 61, 69, 74] are numerically even more
expensive and therefore usually limited to dimensions much smaller than the
dimensions of clinical interest, e. g. in case of a complete femur. Effective
properties corresponding to the microscopic beam model can be obtained
by homogenization procedures. In this case averages of the forces and mo-
ments in the beams are computed either analytically [36, 65] or numerically
[44] leading to macroscopic expressions for stress- and strain-like quantities.
E. g. considering the standard Cauchy continuum theory, the stress- and
strain-like quantities are the stress tensor and the strain tensor while for the
Cosserat continuum theory there are in addition the couple stress tensor and
the curvature tensor. Usually symmetry assumptions are incorporated which
correspond to a specimen of infinite extension and, therefore, do not allow
to take the boundary layers and size effects into account [45]. These effects
are only included if the homogenization is carried out on a volume element
which is of small size and not representative for the whole specimen. That
means that the volume element is either representative in a weak sense only
requiring local periodicity [75] or the volume element is a so-called Testing
Volume Element (TVE) [46] completely without any requirements with re-
gard to periodicity. For both types of volume elements stresses of higher
order, the so-called couple stresses, have to be taken into account [20], which
again require an extended continuum mechanical setting on the macroscale,
e. g. a Cosserat or couple stress model.

An application of the couple stress model to the remodeling simulation of can-
cellous bone can be found in [3]. The extended macroscopic continuum theory
depends on the implementation of the microscopic beam formulation: within
the couple stress theory it is the implementation of the Fuler-Bernoulli beam
formulation, which is from a kinematical point of view the one-dimensional
reduction of the general three-dimensional case (rotations are calculated as
the derivative of the displacement field). Within the Cosserat theory it is the
implementation of the Timoshenko beam formulation, which can be derived
by one-dimensional reduction of the three-dimensional Cosserat element (ro-
tations cannot be calculated as the derivative of the displacement field only
due to extra rotations). Mixing up of both theories yields unreasonable re-
sults due to different interpretation of the rotational field [20]. Thus, the cou-
ple stress theory may only be applied in case of slender beams corresponding
to slender trabeculae while the Cosserat theory also works for more compact



beams.

On the one hand, macroscopic models allow for computations on a large en-
gineering scale, see e. g. [10, 14, 50, 51, 62, 68], but on the other hand, the
formulation of the constitutive equations and especially the determination
of the material parameters is still problematic. Therefore, the homogeniza-
tion approach in combination with a macroscopic finite element computation
delivers a promising alternative. As mentioned before, the homogenization
can be carried out either numerically or analytically. However, the more
complex the microstructure is the more difficult it is to find an analytical
solution without any restrictions and simplifications for the microstructure
as outlined by Adachi et al. [3]. Thus, in the present study the macroscopic
finite element computation is combined with the numerical homogenization.
This approach is known as FE* [29, 35, 49]. Ebinger et al. [21, 22] applied
this approach in the framework of a Cosserat continuum. They showed that
the boundary-layers and size effects described by the standard linear elas-
tic constitutive equations of the Cosserat model are captured by the FE?
approach.

In the present contribution the FE* approach is applied to hard biological
tissues like cancellous bone. In order to include phenomena like growth and
remodeling of bones, a simple growth model is applied on the microscale.
Therefore, the beams of the underlying microstructure may increase their
thickness according to a mechanical stimulus. This model draws from the
macroscopic models of growth developed in the framework of thermodynam-
ics of open systems, cf. [14, 50, 51, 62]. Typically these models allow for
a mass production term which is responsible for the growth process. In the
present model, anisotropic information is automatically included in a natural
way due to the anisotropic arrangement of the beams in the microstructure.
That means that the anisotropic information is not included in the form of
a structural tensor or fabric tensor as done by other authors [58, 59, 81].
Furthermore, remodeling phenomena are included by evolving principal di-
rections of the anisotropic microstructure, i. e. by the reorientation of the mi-
crostructural elements. The present model is a phenomenological one which
does not distinguish between different types of microstructures like open cell
structures, plated structures and prismatic structures [36, 68]. However, the
microstructure is able to represent all types mentioned, whereby large unre-
alistic beam diameters indicate that the open cell structure will transform
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into a plated or even a prismatic one.

The goal of the present contribution is to discuss the influence of higher or-
der effects on the remodeling and adaptation of cancellous bone. Remodeling
in bones occurs for instance after prosthetic operations. A negative conse-
quence of an implanted prosthesis is a disturbance of the bio-mechanical
equilibrium state. Thus, the system of the bone-microstructure and the ar-
tificial prosthesis are remodeled and adapted to the loading conditions. It is
obvious, that the overall remodeling process strongly depends on the type of
the disturbance or, to be more precise, on the change of stiffness of the bone-
implant system. Clearly, a new equilibrium state will be obtained after the
rebuilding time and this state depends on the prosthetics and the inherent
loading transfer. From a general point of view, the basic concept of me-
chanically stimulated bone adaptation has been understood for a long time
and traces back to the famous work of Wolff [80] and Roux [73] in the 19th
century. Nevertheless, the underlying mechanisms, i. e. the interaction of
the osteocyte network, the bone-forming osteoblasts and the bone-resorbing
osteoclasts, and furthermore, the biochemical processes which ”drive” the
cells were unknown at that time and up to now have not completely been
understood, cf. Frost [34].

With respect to the large amount of implants (750 000 hip implant operations
have been necessary worldwide in 1993, cf. [5]) it becomes more and more
important to understand and predict the remodeling process in bones. In
this context, we also have to mention fracture-like accidents of ostheoporethic
patients (e. g. fractures of the neck of the femur, fractures of the body of
vertebra etc.).

The thesis is organized as follows: after an introduction and an overview
over different approaches for the numerical simulation of bone remodeling in
chapter 1, chapter 2 gives an introduction into basic bone biology presenting
the essential terms with respect to bone remodeling. The description of bone
morphology is followed by a description of bone morphogenesis. Due to the
special application in mind, i. e. the remodeling induced after prosthetic
operations, it is followed by some general remarks on bone remodeling in
adulthood. The chapter closes with a short historical review of adaptive
bone remodeling from the first systematic observations up to the present.



The FE? approach, presented in chapter 5, can be understood as an extension
of classical continuum theories. Therefore a short survey of the continuum
theories used in the following is given in the third chapter, namely the Cauchy
continuum theory and the Cosserat continuum theory.

Due to the difficulty in the formulation of macroscopic constitutive equa-
tions when considering the spongious bone as a homogogeneous material,
the trabecular microstructure of bone can be approximated by beam struc-
tures. Thus, chapter 4 gives a short survey of classical beam theories, the
Euler-Bernoulli beam theory and the Timoshenko beam theory.

Combining the advantages of a macroscopic formulation, which considers the
material as homogeneous, with the advantages of a microscopic formulation
using beam elements, in which case it is much easier to formulate constitu-
tive equations, chapter 5 presents the FE? approach. This approach is an
extension of the classical continuum theories. Within the approach the con-
stitutive equations are replaced by a projection of information from macro- to
microscale, microscopic constitutive equations and a homogenization proce-
dure transferring the microscopic information back to the macroscale. Due to
the strong influence of the macroscopic continuum theory in mind on the FE?
approach, the approach is presented based on a Cauchy continuum theory
as well as based on a Cosserat continuum theory.

Chapter 6 deals with the application of the FE? approach to bone remodeling.
Chapter 7 is concerned with the numerical implementation of the adaptation
processes. Again the implementation is presented separately for the two

continuum theories under investigation.

Chapter 8 presents some numerical examples demonstrating the capability
of the model with respect to bone remodeling.

Finally, the thesis closes with a summary and an outlook towards further
steps needed to make the model suitable for the clinical daily routine.



CHAPTER 1. INTRODUCTION



Chapter 2

Biomechanical background

In this chapter an introduction of basic bone biology is presented introducing
the essential terms with respect to bone remodeling. First a description of
bone morphology (form and structure) will be given, to be continued by a
description of bone morphogenesis (embryologic development of structure).
Due to the special application in mind, i. e. the remodeling induced after
prosthetic operations, it is followed by some general remarks on bone re-
modeling in adulthood. The chapter closes with a short historical review of
adaptive bone remodeling from the first systematic observations up to the
present.

2.1 Bone morphology

In general, the anatomy of a long bone like the human femur is described
in terms relative to the physis, which is a bony scar remaining after skeletal
maturity is reached and the growth plate has closed. The region between the
physis and the end of the bone is referred to as the epiphysis. The other side of
the physis, the distal side of the proximal physis and the proximal side of the



8 CHAPTER 2. BIOMECHANICAL BACKGROUND

_ }Epiphysis
Sponglosa Metaphysis
medullary cavity —
Diaphysis
spongiosa tMetaphysis
}Epiphysis

Figure 2.1: Physis of bone

distal physis, is called the metaphysis. The remaining region of bone between
the proximal and distal metaphysis of a long bone is called the diaphysis.
The boundary between the metaphysis and diaphysis is demarcated by a
morphological transition from primarily cancellous bone in the metaphysis
to primarily cortical bone in the diaphysis. The regions are shown in Fig. 2.1.

Bone as a material can be classified based on observations on different length
scales.

On the highest level bone can be classified according to the architecture into
cortical bone (compacta) and cancellous bone (spongiosa). Cortical bone is
distinguished by a porosity lower than 15 % while the porosity of cancellous
bone is in the range of 50% up to 90%. Cancellous bone has an open-
celled porous structure and is found in long bones primarily in the epiphyseal
and metaphyseal regions. The empty space between the individual spiculae,
referred to as trabeculae, is filled with red bone marrow generating red blood
cells (erythrocytes).

On a smaller level bone exhibits two different forms of ultrastructure: the
lamellar bone and the osteonal bone.

On the cellular scale three different kind of cells can be observed being im-
portant with respect to bone remodeling. The basic cellular component of
mature adult bone is the osteocyte. The osteocyte is responsible for the
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exchange of constituents between bone matrix and surrounding fluid. The
osteoblasts provide for the apposition of bone. The apposition is accom-
plished by the osteoblast forming the various organic components of bone
matrix, mostly collagen, and secreting them through the cell wall. The third
group of cells are the osteoclasts being responsible for bone resorption. By
fixation to the bone to be resorbed, the bone matrix becomes convoluted
so that the extra cell surface area enables the required secretion of enzymes
breaking down the extracellular matrix.

Bone is composed of many different substances falling into the two categories
of organic and inorganic materials. The two primary organic components are
collagen fibers and an amorphous ground substance which holds the colla-
gen in place as it mineralizes. In the case of bone, the collagen fibers are
embedded in an inorganic crystalline material made up of primarily calcium
and phosphate. Although the exact chemical composition may exhibit a
degree of variation, it is widely accepted to be similar in form to hydroxy-
apatite (Ca10(PO4)s(OH)2). The information about the composition of bone
is used in quantitative computer tomography (qCT) to relate the Hounsfield
unit (HU) distribution towards the bone mineral density (BMD). Thereby,
the HU is a measure for the X-ray absorption in computer tomography.

2.2 Remarks on bone remodeling

in adulthood

Even after the pubertal growth spurt has been completed, osteoblasts and
osteoclasts are still active and continue to form new bone while old bone is
resorbed. The purpose of this metabolically expensive activity is subject of
research. However, one suggestion is that old bone gradually becomes dehy-
drated and needs to be replaced, another suggestion is that the accumulation
of damage in form of micro cracks diminishes the bone material properties
until replacement with new bone is required. Independent of the real under-
lying purpose one can say that from a mechanical point of view the material
properties are improved with respect to the individual loading conditions by
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bone resorption followed by new bone formation.

On a macroscopical phenomenological level the apposition and resorption
processes are regulated by mechanical loading, allowing bone to adapt its
structure in response to the mechanical demands it experiences. In principle
there are two possibilities for adaptation. The first one is by altering the
external shape of the bone to suit the loading environment, the other one
by altering the internal structure taking place on the trabecular surface of
cancellous bone or on the harvesian canals of cortical bone. Corresponding to
the terminology of Frost [33] the former is called surface remodeling, external
remodeling or modeling while the latter one is called internal remodeling or
simply remodeling. Although both types of adaptation are active at the same
time, the current work is restricted to considerations of internal remodeling.

2.3 Historical review of

adaptive bone remodeling

The following section presents a literature review of the state of the art con-
tinuum models describing the remodeling behavior of bone. For a better
understanding historical fundamental papers directly influencing the contin-
uum formulations are presented in addition. Increasing power of computers
allows for the simulation of bone remodeling based on the voxel geometry
resolving the microstructure. However, such models being continuous only
on a smaller scale than the macroscopic scale remain out of consideration.

The first systematical investigation of the mechanical influence on trabecular
structure traces back to the Swiss anatomist von Meyer [60]. His drawings
of the internal trabecular structure were studied by the German civil engi-
neer Culman, who has got similar patterns by analyzing the principal stress
trajectories of a Fairbairn crane, also called Culman’s crane [16]. Wolff for-
mulated the idea of trabecular alignment regulated by stress trajectories in
what he termed the trajectorial theory [80]. As a consequence of the theory
the trabeculae cross each other perpendicular, which was in contradiction
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to the drawings of von Meyer. Incorporating the ideas of Wolff into his
theory Roux generalized the observation towards what he called 'functional
adaptation’ of biologic structures and organs by ’adaptation of an organ to
its function by practicing the latter’ [73]. Starting from the ideas of Roux,
Pauwels tried to quantify the functional demands leading to bone hypertro-
phy or atrophy in terms of the stress level [67]. He assumed the existence of
an optimal stress level, which has to be present in the bone tissue to ensure a
balanced state of bone resorption and deposition. A stimulus exceeding this
optimal value will lead to increasing osteoblastic activity, which will then
giving rise to bone hypertrophy. Vice versa values below the optimal value
will lead to bone atrophy. Kummer contributed to the investigation of bone
remodeling by a photoelastic model of the proximal femur yielding a better
understanding of the trajectorial nature of bone [52]. Frost presented a dif-
ferent bone remodeling theory being able to explain clinical results [34] which
show the tendency that fractured long bones healing in a bent configuration
straighten out during long-term usage. This model was later on reformulated
in terms of strain gradients by Martin and Burr [57].

The first continuum model for bone adaptation to mechanical loading was
the (phenomenological) theory of adaptive elasticity due to Cowin and Hege-
dus [14], Hegedus and Cowin [42] and Cowin and Nachlinger [15]. From
Cowin’s point of view [13], the greatest success was the development of a
thermodynamic open-system model of tissue adaptation. This model has
been followed, or assumed as a starting point, by most subsequent models of
tissue adaptation. A survey of these models can be found in [41].
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Chapter 3

Continuum theories

The FE? approach, presented in chapter 5, can be understood as an extension
of classical continuum theories. Therefore a short survey of the continuum
theories used in the following is given in this chapter. Thereby, apart from
the constitutive equations (CE), all further equations — namely the balance
equations (BE), kinematical equations (KE) and boundary conditions (BC)
— will be used later in the framework of the FE? concept.

Due to the special application of the model in mind — the application with
respect to bone remodeling, where the processes are relatively slow so that
they may be considered as quasi-static — dynamic effects are eliminated from
the equations by restricting the equations to the quasi-static case. Further-
more, the present work concentrates on the deformation up to failure. In this
range the deformations are relatively small so that the following equations
are restricted to small deformations.

13
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reference F actual
configuration = _—" ——a_  configuration

Figure 3.1: Kinematics of Cauchy continuum theory

3.1 Cauchy continuum theory

Within the Cauchy continuum theory (also called standard continuum the-
ory) the smallest observed entity is the material point X. The material point
is able to reflect the physical properties and it is represented by a mathemat-
ical point.

The spatial deformation map x assigns a one-to-one position x in the actual
configuration at time ¢ > ¢y to each point X of the reference configuration
with position X at time t = ¢y, see Fig. 3.1,

x =x (X, 1), X = x (X, to). (3.1)

The deformation gradient F maps a line element dX of the reference config-
uration into a line element dx of the actual configuration

dx =F - -dX (3.2)
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resulting in the definition of the deformation gradient

_ ox (X, t)

F
0X

. (3.3)

The kinematics of the Cauchy continuum theory is presented in Fig. 3.1.

Introducing the displacement field u as the difference between the position
vectors of actual and reference configuration,

u=x— X, (3.4)

the deformation gradient F can be stated in dependency of the displacement
field u by

F=1+Gradu (3.5)
using the abbreviation
Grad () = a(;;()‘ (3.6)

Strain tensors are defined by the difference of scalar products of line elements
with respect to actual and reference configuration. The Green-Lagrangean
strain tensor E is defined by

dx -dx —dX -dX =dX -2E-dX (3.7)

leading to the expression
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E = % (FT'F —1). (3.8)

Linearization of the equation yields the linearized strain tensor e

e = sym (Grad u) = = (Grad u + Grad” u). (3.9)

|

The balance of momentum in the quasi-static case neglecting body forces
reads

div T = 0, (3.10)

while the balance of moment of momentum yields the symmetry of the
Cauchy stress tensor, T = T7.

Furthermore, the Dirichlet and Neumann boundary conditions have to be
fulfilled on the according boundaries

ulp, =t on Iy, tlr, =t on Ty, r,ul, =T, r.Nnr, =g,
(3.11)

whereby t is the force vector, which is related to the stress tensor T by the
Cauchy theorem

t=T n (3.12)

n is the outward directed normal vector.

Closing the set of equations, constitutive equations are required relating the
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Neumann BC CE
~ 4
t|Ft = t' T == C €
BE KE
divT=0 e = sym(Grad u)
Dirichlet BC
u A~
ulr, =u
= strong connection —— weak connection

Figure 3.2: Tonti diagram of Cauchy continuum theory

stress tensor T towards the strain tensor €, which in a linear framework can
be written in the form

T=0C :e&. (3.13)

The set of equations is presented within the Tonti diagram pointing out
the relations between the different fields, see Fig. 3.2. Therein the body
forces b are set to zero, see Eq. 3.11. Furthermore, strong connections mean
that the relation is fulfilled in a strong sense within the standard Finite
Element Method (displacement driven) and weak connection that the relation
is fulfilled in a weak sense accordingly.
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reference o) actual
) F, R .
configuration ——a configuration

Figure 3.3: Kinematics of Cosserat continuum theory

3.2 Cosserat continuum theory

Within the Cosserat continuum theory (also called micropolar continuum
theory [28]) the material point is assumed to be a rigid body with small but
finite extension. That means that the rotation of the material point is not
fully described by the skew symmetric part of the deformation gradient and,
therefore, an extra independent variable ¢ is defined, which describes the
rigid body rotation of the material point. The rigid body rotation may be
visualized by directors attached to the center of the observed entity, whereby
the directors are normalized and perpendicular to each other. The trans-
lational motion of the directors is fixed to the translation of the material
point. Furthermore, the directors are not able to change their length and re-
main perpendicular to each other. The kinematics of the Cosserat continuum
theory is presented in Fig. 3.3.

The deformation gradient F still describes the mapping of a material line
element dX with respect to the reference configuration into a line element
dx with respect to the actual configuration (Egs. 3.3 and 3.5).
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The so-called micromotion describes the relation between the director £ with

respect to the actual configuration and the director E with respect to the
reference configuration

¢E=R(X,t)-E. (3.14)

R is a proper orthogonal tensor reflecting the rigid body rotation with the
following properties

R-R =I and det R = +1. (3.15)

The Cosserat strain tensor E with respect to the reference configuration is
motivated by comparison of scalar products of line elements with directors
with respect to the actual and the reference configuration

£ dx-2.dX = (R-B)-(F-dX)-E.dX
=. (R -F-1)-dX (3.16)
= E.E-dX

leading to the definition of the Cosserat strain tensor with respect to the
reference configuration

E=R F-1 (3.17)

Equation 3.17 can be linearized by restricting the rotation tensor towards
small rotations. Starting point is the Euler-Rodrigues form of the spatial
rotation
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R=a®a+tcosp(I—a®a)+sin¢(axI). (3.18)

Therein a is the rotation axis and ¢ the rotation angle. In the case of small
rotations it holds

sin ¢ =~ @ and cos p ~ 1. (3.19)
Thus, the linearized rotation tensor Ry;, has the form

_ 3 3
Ri,=1+(axD)p=I+E:(a@l)p=I1—-E-p, (3.20)

3
whereby E is the so-called Ricci tensor also called permutation tensor. Then
the linearized Cosserat strain tensor € reads

3
e=Gradu+E- o (3.21)

Due to the unsymmetry of the Cosserat strain tensor €, the tensor can be
split into a symmetric part sym (£) and a skew symmetric part skw (€)

€ = sym (&) + skw (€). (3.22)

The symmetric part sym (€) is identical to the linearized strain tensor of the
Cauchy continuum theory (Eq. 3.9)

sym (g) = % (Grad u + Grad” u) (3.23)

while the skew symmetric part skw (€) implies the difference between con-
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3
tinuum rotation —31 (Grad u — Grad” u) and free rotation —E - @

1 3
skw (g) = 5 (Grad u — Grad”" u) + E - %. (3.24)

In addition to the Cosserat strain tensor another deformation measure is
needed describing the spatial change of the micromotion R. The so-called
third order curvature tensor defined with respect to the reference configura-
tion is introduced by

3

K= (R - Grad R). (3.25)

Using the following identity

R __ 3
Grad I=Grad (R’ -R) =0 (3.26)

the skew symmetry of the curvature tensor with respect to the both first

basis systems can be shown. Thus, one can build the rejuvenation of the
3 3

third order tensor K by the Ricci tensor E without loss of information

K- L@ ®e (3.27)

DO | —

The linearized second order curvature tensor K is derived by linearization of
the third order curvature tensor

3

3 3 3
K, = Grad (-E - p) = — {E - Grad 6} (3.28)
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and applying the rejuvenation afterwards

3 2

1 3 3 3
E : (E-Grad )3| = Grad . (3.29)

rR=—— (E . Klm)z ==

1
2 2

The balance of momentum in the quasi-static case neglecting body forces
reads

div T =0, (3.30)

which is identical to the balance equation derived for the Cauchy continuum.
However, the balance of moment of momentum reads

Ix T +div M =0. (3.31)

M is the so-called couple stress tensor, which is the dual quantity with respect
to the linearized curvature tensor k. I x T is the axial vector, which is
assigned to the skew symmetric part of the stress tensor T.

Furthermore, the Dirichlet and Neumann boundary conditions have to be
fulfilled on the boundaries

ulp, = don [y, tlr, =tonT,, r,ur, =r, TIr,nl, =g,
@‘1"$: ¢ on FE’ m‘r‘m = I/I\l on me F@U Fm: F, Faﬂ Fm: .
(3.32)

Again, closing the set of equations, constitutive equations are required re-
lating the stress tensor T towards the strain tensor € and the couple stress
tensor M towards the curvature tensor K, which can be written in the form
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Neumann BC CE
~ 4
t’rt =t T = Cl 1€
. 4
m[r, = m M=C, Rk
BE KE

3
divT=0 e=Gradu+E-¢p
div M+IxT=0 r = Grad @
Dirichlet BC
U_’Fu = ﬁ
Plr, =%
= strong connection — weak connection

Figure 3.4: Tonti diagram of Cosserat continuum theory

T=C, :e and M=0C, : k. (3.33)

The Tonti diagram representing the Cosserat continuum theory is shown in
Fig. 3.4.

Apart from the first publication concerning the Cosserat continuum theory,
the work presented by the brothers Cosserat [11], a more detailed descripition
of the theory can be found e. g. in [25, 26, 27, 28].
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Chapter 4

Beam theories

Two major difficulties arise in the formulation of the constitutive equations
describing the growth and remodeling processes. The first difficulty results
from the complex anisotropic deformation behavior of the microstructure
represented by the constitutive equation: they are a function of the trabecular
geometry consisting of trabecular length, thickness and orientation. The
second difficulty is the formulation of evolution equations. On a microscopic
level, e. g. for a single trabecula, the processes are studied in detail, so that
evolution equations can be motivated by observations from experiments. In
contrast to that, on a macroscopic level the evolution equations have to
be formulated purely phenomenologically, usualy without the possibility to
evaluate the equations by comparison to experimental data.

Thus, many models describing the remodeling of bone work on the micro-
scopic geometry, e. g. they are derived by micro computer tomography
(uCT). However, due to the large amount of degrees of freedom (DOF), this
method is very time consuming at the present moment, so that computations
for a complete femur can rarely be found in literature.

Reducing the number of DOF the microscopic model of open-cell foam-like
structures can be approximated by beam structures.

25
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Figure 4.1: Kinematics of Euler-Bernoulli beam theory

In the following two beam theories, namely the well-known FEuler-Bernoulli
beam theory and the Timoshenko beam theory [9], are shortly repeated.

4.1 FEuler-Bernoulli beam theory

The basic kinematic hypothesis of the FEuler-Bernoulli beam theory states
that the normal to the beam axis remains plane and normal during deforma-
tion and the normal is inextensible. Thus, the rotation ¢ of the cross-section
becomes a dependent variable and is equal to the continuum rotation, see
Fig. 4.1,

dus

_ _ du,
Py = day

fg_d_xl'

and (4.1)

Thereby, the quantities belonging to the beam theory are marked with an un-
derscore to avoid mixing up with quantities belonging to continuum theories
as described in chapter 3.

The Fuler-Bernoulli beam theory can be derived by one-dimensional reduc-
tion of the Cauchy continuum theory. Owing to this relation the kinematical
equations (KE), constitutive equations (CE) and balance equations (BE) are
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Neumann BC
tl|Ft =1 CE
d ~
5 = Ly ty =FEAegy,
dl’l
dM2_¥ my = B 1 Ky
My, = My
mylr, = My
BE KE
U
o 0 En = d__l
d&?l v
d*m, 0 d*u,
fr—y K —
() e (day)?
d my = 0 K _ dqu
(dy)? - (dzy)?
Dirichlet BC
u, = 1
du, _
T 1Ty,
day v, 23
= strong connection — weak connection 11w

Figure 4.2: Tonti diagram of Euler-Bernoulli beam theory

the same as given in section 3.1. However, beam theories are formulated
rather using stress resultants than stress quantities. This is taken into ac-
count in the Tonti diagram of the Fuler-Bernoulli beam theory, see Fig. 4.2.
The results are presented in matrix notation eliminating unnecessary quan-
tities. Effects of skew bending are not considered because of the round cross
sectional area (deviation moment of the geometrical moment of inertia equals
Z€r0).
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Figure 4.3: Kinematics of Timoshenko beam theory

4.2 Timoshenko beam theory

The basic kinematic hypothesis of the Timoshenko beam theory states that
the normal to the beam axis remains plane during deformation and the nor-
mal is inextensible. However, in contrast to the Fuler-Bernoulli beam theory,
the normal is not required to remain normal during deformation. Thus, the
overall rotation ¢ is composed of the continuum rotation and an extra rota-
tion caused by shear deformation, see Fig. 4.3,

The Timoshenko beam theory can be derived by one-dimensional reduction
of the Cosserat continuum theory. Owing to this relation the kinematical
equations (KE), constitutive equations (CE) and balance equations (BE) are
the same as given in section 3.2. Again the resulting equations using stress
resultants are presented in the Tonti diagram (Fig. 4.4).
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Neumann BC CE
tir, =t L,=FEAg,
Lylr, = Zz §2:GAQ12
£3|Ft = /E\s ZBZGAQI;;
My|r, = My my=FE I Ky
mglr, = My ms=FE1I kg
BE KE
du
a, =0 € = d__l
dl’l dxl
dt, _ dug
J—— — — [— _l’_
dey 0 1y day 2
dt, o du
[ S = —_—— +
dl‘l - O 13 dxl Eg
fo— dmg P de
2 dl'l —2 dxl
dm dep
ty = ———= Ksp = =
dQTl dxl
Dirichlet BC
u|F =u
Solr, = &,
¢.lr, = 2
= strong connection —— weak connection

Figure 4.4: Tonti diagram of Timoshenko beam theory
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Chapter 5

FE? approach

Compared to microscopic models (models resolving the exact beam-like mi-
crostructure either by voxel elements [4, 47, 61, 69, 74] or by beam elements
[55, 70, 76]) macroscopic models based on continuum theories are numeri-
cally very efficient due to the reduced number of degrees of freedom (DOF).
However, due to the difficulties mentioned in the previous chapter, namely
the formulation of the constitutive equations, one aims to replace the com-
plex constitutive equations by much simpler constitutive equations, e. g. in
the context of trabecular bone to replace the constitutive equations describ-
ing the behaviour of an assembly of trabeculae by constitutive equations for
a single trabecula. Thereby two advantages are important: the first is the
split of information, the second the larger amount of available studies con-
cerning the constitutive behaviour of a single trabecula or even smaller parts
compared to assemblies of trabeculae. In this context split of information
means separating effects into a part depending on the geometry and a part
depending on the constitutive relations.

Using a continuum theory with constitutive equations on a smaller scale re-
quires a homogenization procedure to transform quantities from the smaller
scale to the larger scale and an inverse homogenization procedure, in the fol-
lowing called projection, to transform quantities from the larger scale to the

31
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smaller scale. This idea of including constitutive equations of a smaller scale
into a macroscopic continuum model is known from literature as FE? ap-
proach. In the FE? approach a microstructure with a certain size is attached
to the integration point of a macroscopic FE discretization of the continuum
model. Kinematical quantities at the integration point, e. g. strains, are
projected to the boundary of the attached microstructure. Then, a Dirichlet
boundary value problem is solved for the attached microstructue yielding the
stress response. By homogenization of the stress-like quantities one gets the
stress answer on the macroscopic level.

The FE? is restricted by the consideration that kinematical and stress-like
quantities are known to the observer only on the surface of the attached
microstructure. That means that the displacements resulting from projection
of macroscopic strains are applied to points on the surface of the attached
microstructure only.

Each homogenization process is connected with a loss of information. In first
order homogenization (FOH) the homogenized quantity is just the average
of the quantity. In second order homogenization (SOH) higher order infor-
mation is included usually by taking the average gradient of the quantity
into account in addition to the average quantity. Within the FE? approach
it has to be guaranteed that the information provided by the continuum
theory can be handled by the attached microstructure. Thus, in the follow-
ing the FE? approach based on first order homogenization and second order
homogenization are presented separately.

The basic idea of the FE? approach is sketched in Fig. 5.1.
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5.1 FE? approach using
first order homogenization (FOH)

In the first order homogenization only the average of a certain quantitiy
is calculated. All higher order effects, e. g. the curvature as the gradient
of the strain tensor, are considered as fluctuations and cancel out during
the homogenization procedure. Thus, on the macroscopic level a continuum
theory has to be chosen which does not require information on higher order
effects. This condition is fulfilled by the Cauchy continuum theory, which
includes neither higher order information of the strain tensor nor of the stress
tensor. This still enables to choose an arbitrary beam formulation for the
beams of the attached microstructure. In the following the Euler-Bernoulli
beam theory is chosen to model the beams of the attached microstructure.
This is motivated by the kinematical relationship between Cauchy continuum
theory and Fuler-Bernoulli beam theory. However, the Timoshenko beam
theory could also be used instead of it.

The next problem is to find an adequate microstructure, which can be at-
tached to the macroscopic integration point. Many studies have been per-
formed and discussed in the literature about the size of such a microstructure
often called representative volume element (RVE). However, they all make
use of the condition that the microstructure has to be representative in a
statistical sense. In the present work a weaker requirement on the attached
microstructure is used: the microstructure is only required to reflect the prin-
cipal deformation behaviour. This allows for a much smaller microstructure
compared to the strong requirement for representative microstructures. Ac-
cording to Huet this microstructure is referred to as testing volume element
(TVE) [46].

The chosen microstructure is shown in Fig. 5.2. The microstructure is moti-
vated by the observation that the trabeculae cross each other by an angle of
about 90°. As will be shown later, moments on the boundary of the attached
microstructure cannot be taken into account in first order homogenization.
Thus, at all beam ends on the boundary are assumed to be hinges indicated
by circles.
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Figure 5.2: Attached microstructure in first order homogenization

5.1.1 Projection

The strain-like quantities are considered to be known at the integration point
of the macroscopic FE discretization. In the context of the Cauchy contin-
uum theory, this is the strain tensor only. Keeping in mind that only small
deformations are assumed the distinction between different strain measures
is not necessary. After attaching the microstructure to the integration point,
the strain information is projected to the boundary of it. Thereby the projec-
tion can be understood as the inverse of homogenization. In homogenization
an average value is calculated for a certain quantity over a certain volume.
Information of higher order is assumed to be fluctuation and therefore can-
cels out during homogenization. Thus, in the inverse procedure (projection)
information about the fluctuation is not available and therefore only the
average quantity is projected to the boundary. Based on equation 3.9 the
projection is calculated by

=
I

™

o

(5.1)

whereby X is the vector from the center of the microstructure to the boundary
often called branch vector. Eq. 5.1 yields the Dirichlet boundary conditions
for the microstructural boundary value problem prescribing the microscopic
displacement field T on the boundary of the TVE. Due to the chosen beam-
like microstructure the equation has to be solved only for the six nodes on
the boundary of the microstructure
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For a better understanding of the projection in the following the homogeniza-
tion of the strain tensor is presented, although the relation between strain
field and homogenized strain tensor is never really needed within the FE?
approach.

The homogenization is performed by volumetrical averaging over the domain
) in the form

1
(o) = v /(0) dv. (5.3)
Q
Using the divergence theorem for a continuously distributed quantity

/ grad(e) dv = / (o) ® nda, (5.4)

Q o0

whereby 0f) is the surface of the domain and n the outward directed normal
vector on the surface of the domain, the homogenized strain tensor can be
calculated from the displacement field u at the surface of the domain

1 1 1
<€>:V/ dv:v/gradudv:V/u@)nda (5.5)
0 Q B!

using the symmetry of the gradient of the displacement field (grad u =
grad” u) due to the projection of a symmetric strain tensor, see Eq. 5.1, in-
stead of using the general equation (Eq. 3.9) for the calculation of the strain
tensor. However, this relation is restricted to the case of a continuously dis-
tributed quantity in the inner of the domain. For the chosen microstructure
consisting of six beam elements it is not the case. Thus, in analogy to the
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. external boundary (0Qpg,_,)

D internal boundary (09p,,,)

Figure 5.3: Internal and external boundaries of beam elements

case of continuously distributed matter, this equation is used as a definition
for the discontinuous case

(g):=— / u®ndag,,,. (5.6)

00

ext

Thereby Vp is the volume content of the beams, 0Q2p_,, the external boundary
defined by the beam ends, which coincides with the hull of the microstructure
(hence the six beam ends), and dap_,, an incremental surface element of that
boundary, see Fig. 5.3.

In the following the envolved kinematical error will be shown using the diver-
gence theorem in the case of discontinuously distributed matter. The basic
idea is to split the homogenization into two separate parts. The first is the
homogenization of the strain in the inner of the beam elements

1
(e)p = — /u®ndaB. (5.7)
Ve
00
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The second part is the homogenization of the strain in the surrounding do-
main (€)g. By definition it is assumed that both homogenized strain tensors
are identical

(e)s:=(e)p. (5.8)

Thus, the homogenized strain tensor (€ ) considering the complete TVE is
equal to the homogenized strain tensor calculated for the domain of the beam
elements (€ )p

<s>:ViB /u@ndag. (5.9)

005

Taking into account the symmetry of the microstructure and the kinematics
of the beam formulation, which means in that case expressing the displace-
ments in a beam cross section by displacement and rotation of the center
line of each beam element, the integral can be simplified by splitting the
boundary into two parts: the beam surface, which coincides with the exter-
nal boundary of the microstructure (the outer beam ends), and the internal
beam surface (the cylindrical hull of the beam elements)

1
< g > — V_ / u(ﬁ) ® ndaBem + / u(@) ® ndaBext+
B
o, OB (5.10)
/ u(u) ®¥n daBmt + / u(?) ®n daBmt
893 aQB’

Fig. 5.4 shows the deformation modes resulting from the projection of the
macroscopic strain tensor: three stretch modes corresponding to the diagonal
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entries of the strain tensor and three shear modes corresponding to the three
independent off-diagonal entries of the symmetric strain tensor.

Due to the symmetry of the microstructure the rotation of the beam’s cross
section at opposite beam ends is always equal and the normals at the beam
ends show into opposite directions. Thus the second term in the integral
vanishes. Furthermore the assumed constant radius of the circular beam
elements implies that the third term vanishes because the center line dis-
placement u is constant within the cross section so that for each point of the
cross section a point with normal into opposite direction can be found by
mirroring on its center. Thus equation 5.10 reduces into the form

(e)=— / u(u) ® ndag,,, + / u(p) ®ndag,,, | - (5.11)

oNp 00p.

ext int

As long as the microstructure is loaded by stretch only, which means a defor-
mation into the directions of the beam axes, there is no difference between
the simplified evaluation (Eq. 5.6) and the exact evaluation (Eq. 5.11). How-
ever, in case of macroscopic shear deformation enforcing bending of the beam
elements so that the beam rotations ¢ are not equal to zero, the difference
becomes obvious. In tabular 5.1 the difference between simplified calculation
and exact calculation for shear modes is shown for the Euler-Bernoulli beam
theory as well as for the Timoshenko beam theory.

The results given in tabular 5.1 show that the simplified calculation of the
homogenized shear strain (e;, ) has nothing to do with the real homogenized
shear strain: the FEuler-Bernoulli beam element is not able to reflect a de-
formation mode with a remaining shear strain after homogenization. The
Timoshenko beam element is able to reflect such a deformation mode, but
the result is completely different from the simplified calculation. Furthermore
it is interesting that for the simplified calculation both beam formulations
yield the same result, which is a strong argument for using the kinematically
simpler Fuler-Bernoulli beam element.

Due to the results one may argue that the simplified homogenization cannot
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stretch mode shear mode

Figure 5.4: Deformation modes in first order homogenization

be used within the FE? approach. However, the microstructure is only re-
quired to be representative in a weak sense as mentioned before. That means
that the microstructure should be able to reflect the different deformation
modes, but it is not required that homogenization of the real microscopic
strain field yields the macroscopic strain field. That means that macroscopic
load carrying by shear may be transferred into microscopic load carrying by
stretch and curvature. Furthermore, this small example demonstrates that
the material parameters used by the model should not directly be taken from
measurements from single trabeculae. Better results may be derived using
parameter identification based on macroscopic experimental data.

5.1.2 Homogenization

Solving the microstructural boundary value problem the distribution of the
stresses is known in the inner of the beam elements. Thus, by homogenization
of the stresses the macroscopic stress answer can be calculated.

Using the following identity



5.1. FE? APPROACH USING FOH 41
simplified simplified exact exact
Fuler-Bernoulli | Timoshenko | Fuler-Bernoulli | Timoshenko
(Eq. 5.6) (Eq. 5.6) (Eq. 5.11) (Eq. 5.11)
(en) 1w 1w 1w 1w
Sk Jeat 37 37 37 37
(en) 1w 1w 1w 1w
Fhi Jeat 37 37 37 37
1w 11-=—
(€ik Yint - - 37 —555
1w 11—
( €ki Yint - - 37 —555
1w 1@ 1 /w @
(ea) 37 37 0 5(7—5)

Table 5.1: Error involved in projection

div(x®T) = x®div T + (grad x) - T* (5.12)

and the balance of momentum (Eq. 3.10) it follows for the transposed stress
tensor

1 1
(TT)ZV/TTdv:v/x@)tda. (5.13)
Q T
Transposition of the terms on the left and right yields
1
<T>:V/t®xda, (5.14)

r
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which means that the homogenized stress tensor can be calculated from quan-
tities known on the surface of the microstructure as desired by the FE? ap-
proach. Taking into account that for the chosen microstructure the surface,
where the stresses take non-zero values, consists of the six beam ends the
surface integral over the surface can be replaced by the sum over these nodes

(T) —%iﬁ@xm (5.15)

Therein t; represents the stress resultant at the beam end with index 7 and
X; is the so-called branch vector pointing from the center of the TVE towards
the beam end with index .

Usually it is proven that the homogenization procedure fulfills the Hill-
Mandel condition, which requires the equivalence of the exact microscopic
and the homogenized macroscopic energy calculated from the homogenized
stress and strain tensor. However, it is not possible to calculate the correct
homogenized strain tensor from quantities on the boundary of the microstruc-
ture. A calculation of the homogenized strain tensor consulting the strain
distribution in the inner of the microstructure is possible (as shown in this
section under topic 5.1.1), but actually this is not desirable, because the basic
idea of the TVE is that access to the quantities of interest is only possible on
the boundary of it (like usually in material testing) even if the FE simulation
provides the possibility to calculate the quantities in the inner of the TVE.
Nevertheless the homogenization procedure is formulatd in that way that the
Hill-Mandel condition is fulfilled.

The calculated homogenized stress tensor is energetically conjugated with
respect to the homogenized strain tensor, which can be completely different
from the macroscopic strain tensor as shown before. As a consequence the
macroscopic energy must not be calculated from the macroscopic strain and
homogenized stress tensor.

The complete set of equations needed in the FE? approach using first order
homognization is presented once again in the form of the Tonti diagram
(Fig. 5.5).
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5.2 FE? approach using

second order homogenization (SOH)

In second order homogenization in addition to the average of a certain quan-
tity also the average gradient of the quantity is calculated. All higher order
effects are still considered as fluctuations and cancel out during the homog-
enization procedure. That means e. g. that not only the strain tensor is
considered in the approach but also the curvature tensor, which reflects the
gradient of the strain tensor. On the macroscopic level a macroscopic con-
tinuum theory has to be chosen, which can handle the gradient of the fields
of interest. In the present approach the fields of interest are the strain and
stress tensor. So in addition to that the macroscopic continuum theory has
to be able to handle the gradient information of the stress tensor, which is
the couple stress tensor, and the gradient of the strain tensor. With respect
to the microscale that means that the average and the linear deviation of the
stresses and strains are taken into account.

Again an appropriate beam theory has to be chosen for the beams of the
attached microstructure. In principle both beam theories seem to be feasible.
However, the attached microstructure must be able to reflect all admissible
deformation modes. In other words the homogenization of the projected
strain-like quantities must not completely vanish. As will be shown later,
the homogenization of the projected strain-like quantities completely vanishes
for a certain macroscopic deformation in case of the FEuler-Bernoulli beam
theory so that it fails as an appropriate beam theory for the microscopic
beam elements.

A similar microstructure is chosen as before in the approach using first order
homogenization. The projection of curvature information to the boundary of
the attached microstructure yields rotational information on the boundary.
Taking this into account the hinges of Fig. 5.2 have to vanish, see Fig. 5.6.
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Figure 5.6: Attached microstructure in second order homogenization

5.2.1 Projection

The strain-like quantities of the macromodel are considered to be known at
the integration point. In the context of the Cosserat continuum theory, this
is the Cosserat strain tensor and the curvature tensor. After the attachement
of the microstructure to the integration point, the information is projected to
the boundary of it. The Cosserat strain tensor (Eq. 3.21) is constant at the
integration point and consists of two parts: a translational part depending
on the displacement vector u and a rotational part depending on the rotation
vector . If the translational part is constant, the displacement field has to
be linear so that the projection is

u;, =er-X;. (5.16)

Thereby €r has to be symmetric (the skew symmetric part is completely
described by the rotational part), because a skew symmetric part in the
translational part would yield a stress-free rigid body rotation of the mi-
crostructure.

The rotational part is also constant so that it can directly be concluded that
the rotation on the boundary resulting from the Cosserat strain is equal to
the rotation
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pi =P (5.17)

The curvature is projected to the boundary by

P, =F-X; (5.18)

with the same argumentation as for the translational part of the strain tensor:
the gradient of the rotation is assumed to be constant, so the distribution of
the microrotation has to be linear.

As a consequence of the projection, the rotational information on the bound-
ary of the microstructure consists of a superposition of a strain dependent
part, resulting from the skew symmetry of the Cosserat strain tensor, and a
curvature dependent part.

Projecting the skew symmetric part of the strain tensor onto the boundary
of the microstructure one now gets the deformed configuration as shown in
figure 5.7, which will be called in the following the Cosserat deformation
mode.

Applying this Cosserat deformation mode to the microstructure consisting
of Euler-Bernoulli beam elements as presented in Fig. 5.6, the components of
the homogenized Cosserat strain tensor and homogenized curvature tensor
are zero due to symmetry as will be shown in the following.

The homogenized Cosserat strain tensor for continuously distributed matter
using the divergence theorem reads

and the homogenized curvature tensor reads
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Cosserat mode

Figure 5.7: Cosserat deformation mode

1 1
(E)zv/ﬁdvzv/¢®nda. (5.20)
0 T

As shown in figure 5.8 the Cosserat deformation mode can be splitted into
a bending dependent part pzp g—zj’ and a shear depedent part @g, (7).
Using Egs. 5.19 and 5.20 and calculating for the bending dependent part the
homogenized Cosserat strain tensor and curvature tensor, all components
are zero due to symmetry. Thus, only the shear dependent part affects the
homogenized quantities and yields a skew symmetric part of the homogenized
Cosserat strain tensor. However, this shear dependent part cancels out in
the Fuler-Bernoulli beam theory due to the requirement that the normal
remains normal during deformation. That means in other words, using Euler-
Bernoulli beam elements, the macroscopic homogenized energy is zero and
therefore the Cosserat deformation mode is not reflected on a macroscopic
scale. Circumventing this problem, the attached microstructure must be
assembled by Timoshenko beam elements.
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N = N | —
% won (12 Ponl7)

Figure 5.8: Split of Cosserat deformation mode

5.2.2 Homogenization

Solving the microstructural boundary value problem, considering now also
in addition rotational boundary conditions, the distribution of the stresses is
known in the inner of the beam elements. Thus, by homogenization of the
stresses the macroscopic stress answer can be calculated.

The balance of momentum (eq. 3.10) remains the same as for the Cauchy
continuum. So the calculation of the homogenized stress tensor is identical
to that one calculated in first order homogenization (eq. 5.15)

(T) :éiﬁ@m. (5.21)

All feasible deformation modes can be divided into modes with axial symme-
try (stretch, shear and bending mode) and into modes with skew symmetry
(Cosserat mode only). After homogenization the balance of moment of mo-
mentum (Eq. 3.31) should still be valid

Ix (T)+div(M)=0. (5.22)

For the deformation modes with axial symmetry the homogenized stress ten-
sor (T') is always symmetric. Thus, the divergence of the couple stress tensor
(M) is zero (div (M) = 0). Consequently in analogy to the homogenized
stress tensor, the homogenized couple stress tensor can be calculated [18, 24]
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which means that it depends on the moments acting on the beam ends but
not on the forces.

Equation 5.23 also holds for the skew symmetric deformation modes, which
can be shown by substitution of the moment produced by stresses. Starting

with the quasistatic form of the balance equation of moment of momentum
neglecting body acceleration the global form of the equation is

/(X X t+m)da = 0. (5.24)

Using the abbreviation

m=xxt+m (5.25)

with the according Cauchy theorem

M- n=m, (5.26)

the balance of moment of momentum can be rewritten in the form

div M = 0. (5.27)

This is analogous to the balance of momentum, see Eq. 3.10. Then the
homogenized total couple stress tensor including the moments produced by
stresses can be computed formally in the same way as the homogenized stress
tensor
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n

R T S [
<M>:V;mi®x’:V :1(xixti)®xi+V;mi®Xi. (5.28)

(<.

J/

~
0

Thereby, the abbreviation introduced in Eq. 5.25 is reversed. m; is the com-
plete discrete moment resulting from the discrete force and moment at beam
end 7 calculated with respect to the center of the TVE. The first summand
in Eq. 5.28 is always zero because the vector x x t is perpendicular to the
vector X

That means that the homogenized couple stress tensor (M> is independent
of the discrete forces t; and therefore identical to the homogenized couple
stress tensor ( M) as calculated in Eq. 5.23. In the case of skew symmetric
deformation modes Eq. 5.23 and Eq. 5.28, respectively, yield a zero couple
stress tensor. This is also in agreement with the consideration that the
couple stress tensor is the dual quantitiy with respect to the curvature tensor.
Looking at the skew symmetric Cosserat deformation mode in Fig. 5.7, the
average curvature is zero due to symmetry and therefore also the couple stress
tensor is zero for this specific mode.

It can be shown that the homogenization procedure fulfills the Hill-Mandel
condition [22, 43, 54] requiring the equivalence of microscopic and homoge-
nized macroscopic energy. However, while the homogenized strain-like quan-
tities are never calculated within the FE? approach, the proof is not given
here.



Chapter 6

Application of FE? approach to

bone remodeling

6.1 Adaptation of bone:

growth, remodeling and morphogenesis

According to the review article on functional adaptation of biomaterials by
Taber [77], the adaptation processes of bone can be classified into three
categories, which are growth, remodeling and morphogenesis. Thereby, the
categories are defined as follows:

e growth
mass change through cell divisions (hyperplasia), cell enlargements (hy-
pertrophy), secretion of extracellular matrix (ECM) or accretion on ex-
ternal or internal surfaces. Negative growth is called atrophy.
~» change in mass
~» change in topology

ol
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e remodeling
change of material properties such as strength, density or internal struc-
ture.
~» change in local material properties

e morphogenesis
shape change of the structure.
~» change in topology
~+ no change in mass

The focus of the present work is on the adaptation process taking place in
bone material due to the insertion of implants. That means that on the
time scale of interest the change in the overall dimension is of secondary
importance compared to the adaptation processes taking place in the inner
of the bone material.

Within the FE? approach the growth changing the macroscopic dimensions
could be considered by increasing the length of the beam elements represent-
ing the several trabeculae. To transport the information to the macroscopic
level, the microstructure can be pre-stressed so that it fits into the TVE
leading to a self-equilibrating stress state in addition to the stress state re-
sulting from the macroscopic loading. The homogenization procedure will
consider then also the additional stress state leading to an increasing size of
the macroscopic Finite Element if there are no boundary conditions applied
which prevent the swelling. This approach matches the idea that growth
within a Finite Element is only possible if the adjacent elements are pushed
aside.

Furthermore, to keep the model as simple as possible it is not necessary to
distinguish between the effects increasing the effective stiffness of the struc-
ture. The effective stiffness is affected by the accretion on the internal sur-
faces (increasing or reducing the size of the cross sectional area of a single
trabecula) as well as by modification of the local material properties. Thus,
these effects affecting the effective stiffness of the bone material are referred
to bone remodeling in the following.

The morphogenesis allows the bone material to adapt to the loading situation
by altering the actual topology of the trabecular microstructure.
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In the following, remodeling and morphogenesis in the sense of reorientation
will be applied to the FE? approach. In the context of remodeling growth
means an increase of the trabecular radii and atrophy dwindling of the radii.

6.2 Remodeling

The adaptive remodeling behavior of bone has been studied systematically
since the end of the 19th century [16, 60, 73, 80]. Thereby it has been ob-
served that the topology of the spongiosa — the several trabeculae — always
adapts with respect to mechancial stimulus. The most obvious observations
are that in regions of larger mechanical stimulus also the thickness of a single
trabecula is larger and that the trabeculae tend to orient into the principal di-
rections of loading. Thus, the bone material achieves a maximum of stiffness
with minimal weight with respect to the average loading situation.

Following the idea of Beaupre, Orr and Carter 7, 8] the range of the me-
chanical stimulus is divided into three parts. The range of the dead zone has
the upper bound 7;, and the lower bound 7}, where apposition and resorption
are in equilibrium. Crossing the upper bound 7T, one reaches the apposition
range, where the amount of apposition is larger than the amount of resorp-
tion. Falling below the lower bound 7; one reaches the resorption range,
where the amount of resorption is larger than the amount of apposition.

This motivates the definition of the stimulus Ta, which is greater than zero
in case of growth, lower than zero in case of atrophy and otherwise zero

Ty — T if T, <1,
Ta=1{ 0 if  T,<T.,<T, (6.1)
T.q — T, if T, >T,

whereby T, is the quantity being responsible for growth and atrophy in a
phenomenological sense as long as there exists a strong correlation between
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this quantity and growth as well as atrophy. In the following 7, is defined
as the maximum equivalent stress at the center points of the free beam ends
of the TVE.

Teq = \/0%1 + 37122 + 37123- (6.2)

Therein o;; are the normal stresses into the direction of the beam axis cal-
culated from the normal force. 73 and 713 are the shear stresses at the beam
end resulting from the shear forces. Due to the evaluation at the center points
of the beam ends the moments do not enter the equation. The moments at
the beam ends are not considered in this formula because in the equilibrium
state of interest the effect of the stresses resulting from the moments at the
beam ends is negligible while for an arbitrary state they can dominate the
equivalent stress T¢,, which will stimulate the growth dramatically until the
principal directions of the TVE are tolerably aligned with the principal di-
rections of the macroscopic loading. The reason for it is the fact that in the
equilibrium state the load is mainly carried by stretching of the microstruc-
tural beam elements while for an arbitrary stress state the load is mainly
carried by bending leading to much higher bending moments at the beam
ends.

Using the definition of the stress stimulus T (Eq. 6.1) growth and atrophy
can then be described by logistic functions for the radius d; of each beam
element depending on the sign of the stimulus

—(dmm di) di if Th <0,
2
d=¢0 if Th =0, (6.3)
—d\)d:T
(dmax dz) dz A if TA >0
\ m

with the viscous material parameters 7; and 7, governing the velocity of
thickness change either for growth or for dwindling while from tests it is
known that the thickness reduction is faster than the increase of thickness
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63]. dmin and dpe, are the lower and upper bounds for the radius d. Fur-
thermore in case of growth T > 0 the logistic function is weighted by the
stimulus itself while in case of atrophy the function is considered to be inde-
pendent of the stimulus.

The circumferential growth and atrophy of a single beam element of the TVE
are visualized in Fig. 6.1.

6.3 Reorientation

The studies of adaptive bone remodeling at the end of the 19th century were
already concerned with the correlation between trabecular orientation and
principal directions of the stress or strain state [16, 60, 73, 80]. It has been
observed that the microstructure tends to orient into the principal direction
of the strain tensor and stress tensor respectively. According to this the tra-
beculae cross each other by an angle of approximately 90° while the principal
axes are exactly perpendicular to each other.

To guarantee the right angle between the trabeculae of the TVE, the complete
microstructure is able to orient into the principal directions of the load case.

In the following the principal directions are calculated from the strain tensor.
The actual orientation of the microstructure is known. Then it is possible
to determine the rotation tensor Ry, s, which describes the rotation from the
actual configuration of the microstructure into the principal direction of the
strain tensor, see Fig. 6.2.

Using the Euler-Rodrigues form of the spatial rotation, see also eq. 3.18,

R=a®a+cosp(I—a®a)+sin p(ax]I) (6.4)

it is possible to extract the rotation axis a and the angle of rotation ¢.
Assuming that the rotation axis remains fixed during the rotational update,
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the update is formulated in the following form

R?VE =R - R’?VE? (6-5)

whereby R4y, describes the actual orientation of the TVE after reorienta-
tion update and RE,, ; the reference orientation before reorientation update
— in each case with respect to the global coodinate system. R is the rota-
tion tensor calculated by use of the Euler-Rodrigues form of spatial rotation
(eq. 6.4)

Rr=a®a+cos pao (I—a®a)+sin pa (ax]I) (6.6)

with the fixed rotation axis a but a reduced rotation angle pa. One of the
simplest possibilities for the calculation of the orientational update consists
in postulating the change of orientation per time to be proportional to the
difference of orientation ¢

(,bA = CPA A (67)

The evolution equation is weighted by the sum X of the eigenvalues (absolute
values) of the strain tensor to guarantee that the structure reorients only if
the microstructure is loaded. Furthermore the parameter ¢ drives the rate of
reorientation update.
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global local coordinate local coordinate system of
coordinate system system of TVE principal strain directions

Figure 6.2: Rotational update



Chapter 7

Numerical implementation

The FE? concept has been implemented into different Finite Element codes.
The first implementation was carried out for the code PANDAS, developed
by the Institute of Applied Mechanics (Civil Engineering) at the University
of Stuttgart [23]. Thereby, the second order homogenization (SOH) is used
with the underlying macroscopic Cosserat continuum theory. Discussing the
recent effects of the model on two-dimensional examples, one can motivate a
much simpler model using the first order homogenization (FOH). This sim-
pler model is numerically more efficient and therefore better suited for a
three-dimensional implementation. Having in mind the application to real
bone geometries represented by a large number of Finite Elements, the sim-
pler model is implemented into an explicit code. This has the advantage that
the global stiffness matrix does not have to be reversed but has the draw-
back that the time step size is limited due to the Courant-Friedrichs-Lewy
condition [12]. The simpler model has been embedded into the commercial
code LS-DYNA [40] so that the infrastructure for parallel computing of this
code could be used directly.

29
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7.1 Two-dimensional implementation into

implicit code PANDAS using SOH

The evolution equations for remodeling (eq. 6.3) and reorientation (eq. 6.3)
are solved in an implicit way. However, reducing the numerical effort some
simplifications are introduced to avoid iterative solutions involving the com-
plete FE? procedure.

7.1.1 Remodeling

First the thickness change d; is approximated by the thickness difference
divided by the time interval At

. dntl — qn
di = —+———>", 7.1

A7 (7.1)
whereby superscript n indicates a quantity at the beginning of the time

interval and superscript n + 1 at the end of the time interval. Then it is
possible to solve eq. 6.3 for the actual radius d?“ of each beam element ¢

( — dypin AE)2 + 41 ALY — Apmin AL )
V(12 ) +2?th n— 1+ €75 <0,
d?—H: d? if Th = 0,
FAN —d" ) + A dpos FANE — FAAt+nd?
v (Fa )2 + 7712 A At mdl o
\ m
(7.2)

using the assumption that the stimulus Th depends quadratically on the
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radius, which means that the contribution of bending moments to the stim-
ulus is negligible compared to the contribution of the normal force and shear
forces. Thus the stress-like stimulus 7TA can be replaced by the force-like
stimulus Fa using the relation

Fa =T (dth)2 (7.3)

One further simplification regarding remodeling is included in the model. If
the influence of bending moments on the stimulus T4 is small compared to the
influence of the forces, the stimulus at opposite beam ends is approximately
the same. Reducing the number of internal variables, only two beam radii
for the in-plane beam elements of the TVE are considered. Therefore, at
last the average stimulus of opposite beam ends is used for the update of the
beam radii.

The orientation update is independent of the thickness update. Thus, if the
orientation update is carried out before the calculation of the stimulus, the
thickness update does not further interact with the orientation update.

7.1.2 Reorientation

For the numerical implementation of the orientation update a case differenti-
ation has to be done due to the symmetry of the quadrilateral microstructure
as shown in Fig. 5.6. Because of the restriction on the two-dimensional case
one beam axis has to be aligned with the global out-of-plane direction. The
microstructure should always take the shortest way to rotate the direction
of the microstructure into the direction of the strain tensor. Thus, for the
two-dimensional problem, the maximum difference between both directions
cannot exceed an angle of 45°, see Fig. 7.1. The evolution equation 6.7 is
implemented in an implicit manner. The principal directions of a tensor can
only be computed for symmetric tensors. Thus, only the symmetric part of
the Cosserat strain tensor € is used. That leads to the update
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orientations

—45° S gOTVE S 45°

gDTVE > 45°

—45° S gOTVE S 45°

: orientation of microstructure

©°: principal direction of Cosserat strain tensor €

Figure 7.1: Case differentiation for orientation update
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[ " + C (peovm +90°)

if < —45°
1+C Hea ’

1 " + C pgaym : o
) T rent f < 45 7.4
© 5 C if [|all < 45°, (7.4)

©" + C (pzsvm — 90°)
L 1+C

if o > 45°

with the abbreviation

C = ¢ At g (7.5)

and with the sum of the eigenvalues of in-plane directions Agsvm calculated
again using the symmetric part of the Cosserat strain tensor € only. Thereby
all directions are in the range between —45° and +45°. That means, if the
orientation quits this range, the orientation is updated by an angle of +90°
in attendance with a cyclic permutation of the thickness distribution. The
procedure is demonstrated in figure 7.1 for a exceeding an angle of 45°.

The update of the orientation depends only on the strain-like quantities of the
macroscale and is not influenced by the thickness update. Thus, equation 7.4
is solved first so that the stress-like quantities and thickness update are calcu-
lated with respect to the actual orientation of the TVE. Again the bisection
method for the time interval At is used to guarantee a time-independent
solution.

The complete procedure connecting strain- and stress-like quantities is pre-
sented in table 7.1.
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Numerical solution scheme — FE?
(integration point level)
1. Calculation of €;p and K;p from the macroscopic problem
2. Attachment of microstructure TVE to integration point (IP)
Qrp =Qrve, T'ip =Trve
3. Projection of €;p and K;p to 'ty g
) ) 13
umicro — SYI’H(E[P) - X, ¢mzcr0 — _5 E Skw(glp) +Rr-X
4. Update of orientation of microstructure
4.1.  Analytical calculation of eigenvalues and according directions
4.2. Update of orientation
(,bA = C (,DA /\
D. Calculation of microscopic forces and moments
fint — fe:pt
6. Update of microscopic beam radii
6.1. Calculation of stimulus TA from microscopic forces
6.2. Update of radii
G it Ta <0,
12
i_Jo it Ta=0,
dmaac - dz dz T, .
( )i (Ta) if Th >0
\ M
7. Homogenization of microscopic forces and moments
1 — 1 —
— (i) (i) M) = — (i) (i)
(T)V;f @ x, <M)V;m ® X
8. Mapping of homogenized forces and moments to IP
Tp=(T), M;p = (M)

Table 7.1: Principal strain-driven FE? approach (SOH)
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7.2 Three-dimensional implementation into

explicit code LS-DYNA using FOH

Analogously to the two-dimensional implementation into the implicit code
PANDAS, the evolution equations for remodeling (eq. 6.3) and reorientation
(eq. 6.3) are solved, but now in an explicit way.

7.2.1 Remodeling

Again the thickness change d; is approximated by the thickness difference
divided by the time interval At as done for the previous case (eq. 7.1)

. drtl _ gn
di = ———. 7.6
Equation 6.3 is solved in an explicit way for the actual beam radii d"*" for
each beam element
( dmzn - dn dn .
(min = ) A7 Ny o it Ta<o,
2
d?—H _ dy if Ta =0, (7.7)

(dmaa: - d?) d? (TA>
\ Ui

At +d? if x>0

Using the FOH procedure, the stimulus at opposite beam ends is identical
due to the symmetry of the TVE and the applied projection scheme. Again
reducing the number of internal variables, only three radii have to be stored
for three independent beam directions of the TVE.
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7.2.2 Reorientation

Due to the three-dimensional implementation the complexity of reorientation
increases compared to the two-dimensional case. According to the underlying
macroscopic Cauchy continuum theory, the strain tensor is symmetric. Thus,
the eigenvalues and the associated directions are calculated numerically for
the complete strain tensor. The following problem is to order these directions
so that the rotation angle needed to rotate the TVE into the principal di-
rections of the strain tensor gets minimal, see Fig. 6.2. This is implemented
in two steps. The first one is a diagonal test, which guarantees that the
angle between the diagonal of the local coordinate system of the TVE and
the coordinate system constructed by the principal directions of the strain
tensor gets minimal. Considering right-hand systems only, each of the three
still possible remaining coordinate systems is checked separately by cyclic
switch of the directions. The resulting coordinate system is that one, which
allows to rotate the TVE into the principal directions of the strain tensor
by a minimal angle. As a consequence the maximum angle between both
coordinate system cannot exceed an angle of 4, = arccos(1/y/3) ~ 54.7°.

Then equation 6.7 is solved in an explicit way for the actual orientation of

the TVE in the following form

@ZH = cpR AAL + Y, (7.8)

whereby A ist the sum of all eigenvalues (absolute values) of the strain tensor.

Hence, as done before for the implementation into the code PANDAS, the
complete procedure is presented in table 7.1.
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4.1.
4.2.
4.3.

6.1.
6.2.

Numerical solution scheme — FE?
(integration point level)

Calculation of e7p
Attachment of microstructure TVE
to integration point (IP)

Qp=Qrve, l'rp=TrvE
Projection of €;p to I'ry g

umiere — ¢ b x
Update of orientation of microstructure
Numerical calculation of eigenvalues and according directions
Assembly of optimal coordinate system

Update of orientation

PA = CPaA
Calculation of microscopic forces
fint — fea:t

Update of microscopic beam radii
Calculation of stimulus Tx from microscopic forces
Update of radii

( (dmin — di) d;

if Th <0,
2
(dma:p - dz) dz (TA> if TA >0
\ m

Homogenization of microscopic forces

| X
- (i) (i)
(T) =1 ; fO @ x
Mapping of homogenized forces to IP
T;p=(T)

Table 7.2: Principal strain-driven FE* approach (FOH)
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Chapter 8

Numerical examples

8.1 Numerical examples

calculated by PANDAS

Four numerical examples are discussed, which demonstrate the capability of
the model. All examples fall back on the same set of material parameters
as presented in table 8.1. However, separating the effects included by the
orientation and thickness update, respectively, the update can be switched
off independently. Furthermore the variation of certain material parameters
will be discussed.

With the help of peripheral Quantitative Computer Tomography (pQCT)
it is possible to get a reasonable distribution of the Bone Mineral Density
(BMD), which can be used as a starting point for the initial distribution of
the beam radii. However, the information about anisotropy is normally not
provided by the pQCT, which means that neither the initial orientation of
the microstructure nor the initial distribution of the trabecular beam radii
in the different directions are known. Thus, considering the BMD to be an

69
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N
Young’s modulus E 100000 5
mm
N
shear modulus G | 38461.54 5
mm
length l 1 mm
minimum thickness Amin 0.01 mm
maximum thickness Amaz 0.5 mm
. N
viscous parameter growth m 10000.0 —nh
mm
viscous parameter atrophy o 1.0 mmh
N
lower bound of dead zone T, 240 5
mm
N
upper bound of dead zone T, 260 5
mm
1
velocity parameter reorientation c 0.1 M

Table 8.1: Material parameters (PANDAS)

average value for the region under treatment, all initial beam radii of a TVE
have the same amount. For the initial orientation of the TVEs two different
types of initial configurations are discussed. The first one is a homogeneous
orientation with prescibed angle of rotation, the second one is a stochastic
orientation of the several TVEs.

Compared to a pure macroscopic calculation the present model is numerically
very expensive. Thus, it may seem reasonable to keep the number of degrees
of freedom (DOF) as small as possible using linear ansatz functions for the
primary variables (displacement field u and rotational field ). However,
taking a look at the formulation of the Cosserat strain tensor € (eq. 3.21),
where the gradient of the displacement field Grad u is coupled with the
rotational field @ directly, it may be a better choice to choose quadratic
ansatz functions for the displacement field u and linear ansatz functions for
the roational field . Consequently the contribution of both fields to the
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strain tensor is linear and thereby compatible. This type of formulation with
higher ansatz functions for the displacement field u than for the rotational
field @ is known in literature as Taylor-Hood formulation [9)].

Thus, the first example investigates the difference between the simplest for-
mulation using linear ansatz functions only and the Taylor-Hood formula-
tion using quadratic ansatz function for the displacement field and linear
ansatz functions for the rotational field. Due to the underlying macroscopic
Cosserat continuum theory the model is able to represent boundary layer ef-
fects. Within the classical Cosserat theory the so-called internal length scale
A¢ drives the distribution of the quantity within the boundary layer. By
comparison the second example investigates the influence of the microstruc-
tural topology on the boundary layer effect. The third example discusses
the influence of different initial conditions and the last example studies the
interaction between an inserted screw and the surrounding bone material.

8.1.1 Comparison of ansatz functions

In the following eight different discretizations are compared to each other:
four discretizations using quadrilateral elements (QUAD) and four discretiza-
tions using triangular elements (TRIA), see table 8.2, each with an applica-
tion of a Taylor-Hood (TH) formulation, which means higher ansatz functions
for the displacement field u than for the rotational field i, and with appli-
cation of linear ansatz functions (LL) for both fields, which is the simplest
choice. Furthermore, each formulation is checked on a fine as well as on a
coarse discretization. One expects that for a fine discretization the results
coincide — analogously to the h-adaptivity — while for a coarse discretization
the results may differ due to the lack of certain ansatz functions to repre-
sent the actual distribution of the quantity. To keep the numerical effort
of the quadrilateral and the triangular discretization in the same order, the
fineness of the meshes is chosen in such a way, that the number of DOF is
approximately the same using the Taylor-Hood formulation, while for the
linear ansatz functions the same mesh as for the Taylor-Hood formulation is
used. Table 8.2 contains the number of elements as well as the number of
DOF. The figures have to be comprehended symbolically and do not reflect
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the actual discretization.

No. 1 2 3 4
mesh

type QUAD QUAD QUAD QUAD
ansatz u | quadratic quadratic linear linear
ansatz @ linear linear linear linear
elements 10000 400 10000 400
DOF 71003 3003 30603 1323
No. 5 6 7 8
mesh

type TRIA TRIA TRIA TRIA
ansatz u | quadratic quadratic linear linear
ansatz @ linear linear linear linear
elements 15572 627 15572 627
DOF 71007 3007 23919 1053

Table 8.2: Comparison of ansatz functions

Figure 8.1 shows the shear test boundary value problem with the according
dimensions, which is used to compare the different discretizations. A shear
experiment is chosen, because it is known from the macroscopic Cosserat
continuum theory that a boundary layer arises and the investigated ansatz
functions may especially fail in the approximation of the distribution of the
quantity within the boundary layer. At the bottom the sample is fully con-
strained, at the top the vertical discplacement uy and the rotation @ are
constrained and a constant horizontal displacement ©; = 1 mm is prescribed.
No boundary conditions are applied on the left and right boundary of the
sample.
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u; = 1 mm

U = 0mm, p = 0,
€9 T
—»

100 mm

Uy =us = 0mm, =0

100 mm

Figure 8.1: Boundary value problem of shear test

In Figure 8.2 the numerical results at time ¢ = 1 h are shown for the reference
solution using 40000 quadrilateral elements with Taylor-Hood formulation.
The quantities under consideration are the symmetric part of the shear stress
T = % (T12 + T51) reflecting the main load transfer, the component M 35 of the
couple stress tensor, which is sensitive with respect to the boundary layer
effect, the average growth variable 6 = % (dy + ds) and the actual orientation
of the TVE ¢TVE. Figure 8.3 demonstrates that the results for d; and d, can
not be interpreted separately, because it depends on the orientation of the
microstructure, if the thickness change of a microstructural beam element
contributes to the variable d; or to the variable d,. The calculation of the
equivalent stress 7., does not differ between tensile stresses and compressive
stresses, which means that the distribution of the quantity is symmetric with
respect to the horizontal and vertical symmetry axis. But due to the influence
of the microstructural orientation, the results for the variables d; and d,
respectively, are not symmetric themselves. Thus, except for Figure 8.3, the
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TVE
v

d; 0 =1 (di + ds)

0.09 0.11 mm 0.09

Figure 8.3: Absent axial symmetry of thickness change d; and ds

results for the thickness increase and thickness decrease of the beam elements
(dy and ds) are always presented in the form of the average quantity 4.

The numerical results will be compared at the according cutting line as illus-
trated in Fig. 8.2. The results for the symmetric shear stress 7, the couple
stress tensor component M3, and the average thickness change § are eval-
uated at the vertical symmetry line of the model. By contrast the actual
orientation of the TVE ¢V ¥ is evaluated at a quarter of the width, because
the initial orientation is 45° and due to symmetry and shear loading, the
prinipal direction of the strain tensor at the vertical symmetry line is also
45°, so that the orientation remains constant there if there are no other ef-
fects envolved by thickness change, as will be seen later. The numbers of the
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curves correspond to the numbers given in table 8.2, whereby the reference
solution has the number 0.

Figure 8.4 shows the results of the symmetric part of the shear stress 7. In the
inner of the sample (height H in the range of 10% < H < 90 %) the results
are nearly identical apart from the last solution (No. (8)) using a coarse
discretization by triangular elements and linear ansatz functions. The reason
for it is the bad approximation of the principal direction of the strain tensor
by the triangular element as will be seen later in Fig. 8.10. For the discussion
of the effects in the boundary layer, the range 0 % < H < 10 % is plotted in a
separate diagram (Fig. 8.5). It is clear that a certain mesh fineness is needed
so that the S-shaped boundary layer effect can be represented. Otherwise
the effect will be smoothed out (No. (2), (4), (6), (8)). Using linear ansatz
functions but a fine discretization (No. (3), (7)) still yields different results.
Only if the Taylor-Hood formulation is used (No. (1), (5)) the solutions
coincide with the reference solution.

Figure 8.6 shows the results for the couple stress tensor component Ms,. In
the inner of the sample the curves are in good agreement, but in the range of
the boundary layer the differences are obvious, see Fig. 8.6. The component
M5, does not decay to the value zero outside the boundary layer, but this
effect will be discussed on the basis of the following example investigating
the influence of the microstructural parameter on the boundary layer effect.
Taking a look at Fig. 8.6, one can see the smoothening of the boundary
layer effect using coarse discretizations. For the range 1% < H < 99 % the
differences between the curves for fine discretizations are tolerable. Inversely
that means that the main error results from the top and bottom layers of
elements, where the steep gradient of the boundary layer effect is represented
very poorly.

The boundary layer effect of the average thickness change variable ¢ (Fig. 8.8)
does not result from the boundary layer effect of the couple stress tensor
component M, (in this case one would expect an increase of the variable
at the boundary layer) but it results from the lower equivalent stress T,
at the boundary, which is qualitatively closely related to the distribution of
the symmetric part of the shear stress 7, see Fig. 8.2. The small overshoots
present at the transition from the boundary layer to the inner of the sample
do not result from the numerical model (they are not present plotting the in-
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Figure 8.4: Numerical results of 7 at cutting line
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Figure 8.5: Numerical results of 7 at cutting line (detail)
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Figure 8.6: Numerical results of M3, at cutting line
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Figure 8.7: Numerical results of M3, at cutting line (detail)
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ternal variables at the integration points) but they result from the projection
of the non-steady variable provided at the integration point to the boundary
of the element followed by an averaging of the quantity for adjacent elements
contributing to the quantity.

Again the boundary layer effect is smoothed using a coarse discretization.
Taking a look at the range near the boundary (0% < H < 10 %, see Fig. 8.9)
one observes that even the reference solution is not able to represent the direct
decline from the inital thickness to the reduced thickness, which should be
constant within the boundary layer. The reason for it is that if the stimulus is
smaller than zero, the decrease is independent of the amount of the stimulus.
The results show that approximately four layers of elements are needed to
represent the steep gradient. The four layers correspond for the reference
solution with 200 elements in direction of height to a thickness of 2% and
for the fine solution with 100 elements in direction of height to a thickness

of 4%.

At last the results for the actual orientation ¢’V® of the TVE are pre-
sented (Fig. 8.10). Only the solutions using coarse discretizations and linear
ansatz functions deviate from the reference solution. The actual orientation
is mainly influenced by the principal direction of the strain tensor. That
suggests the assumption that the differences result from the lacking ability
of the elements using linear ansatz functions to represent the principal di-
rection of the strain tensor correctly. That also explains why the results for
the quadrilateral element are much better than the results for the triangular
element. For the triangular element the principal directions are calculated
from the information of three nodes. In contrast for the quadrilateral el-
ement the information at four nodes is available to calculate the principal
strain directions.

This first example shows that the Taylor-Hood formulation is always prefer-
able compared to a formulation using linear ansatz functions only. That
holds for the quadrilateral elements as well as for the triangular elements.
Furthermore a certain mesh fineness is required to capture the steep gradi-
ents envolved in the model by the boundary layer effect resulting from the
underlying macroscopic Cosserat continuum theory and by the steep gra-
dient resulting from the evolution equation for decreasing thickness being
independent of the stimulus’ amount.
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Figure 8.8: Numerical results of § at cutting line
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Figure 8.9: Numerical results of § at cutting line (detail)
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Figure 8.10: Numerical results of ¢ at cutting line

8.1.2 Influence of parameters on boundary layer effect

The second example investigates the influence of the microstructural param-
eters on the boundary layer effect, namely the beam thicknesses d; and d»
and the beam length [ even the beam length [ is kept constant within the FE?
model. The boundary layer effect results from the underlying macroscopic
Cosserat continuum theory but not from the modeling of the adapatation
process. Thus, for this example adaptation processes are neglected (¢ — 0;
m — 00; 2 — o0). The same boundary conditions are used as for the
previous example, see Fig. 8.1.

The results will be discussed for the orientations ¢7VE = 0° and TVF = 45°.
The variation of the microstructural parameters affects the boundary layer,
as e. g. present for the couple stress tensor component Mgy, but hardly
influences the distribution of other quantities like the symmetric part of the
shear stresses 7. This is demonstrated exactly for those quantities, the couple
stress tensor component M3, and the symmetric part of the shear stresses 7.
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The first figure (Fig. 8.12) shows the effect of scaling the TVE by a factor of
0.25 up to a factor of 4. The upper part shows the results for the orientation of
©TVE = (°, the lower part gives the results for the orientation of V¥ = 45°,
For both orientations the thickness of the boundary layer as well as the
absolute value of the quantity itself at the boundary increases for the couple
stress tensor component while the influence on the symmetric shear stress is
very small. The main difference between both orientations is the fact that
for the orientation of V¥ = 0° the quantity decays to the value zero while
for the orientation of @7V = 45° the quantity takes the value zero only in
the midth due to skew symmetry. The reason for it is shown in figure 8.11.
Thereby black color indicates the inital configuration and red color the actual
configuration. The figures have to be understood schematically and do not
result from a FE calculation because even for small deformations in case of
the X-like microstructure (V¥ = 45°) buckling occurs. The figures show
only the main topic of interest, which is the difference in the load carrying
behavior between boundary layer and the inner of the sample (the boundary
layer effects on the left and right boundary for the X-like microstructure are
not represented correctly). For the cross-like microstructure ("% = 0°) the
load is carried by bending of the beam rows on top and bottom and only in
the inner the load is carried in addition by stretching of the beam elements.
Thus, the curvature at the boundary is much higher than the curvature in
the inner of the sample. The couple stress tensor component Mg, is the
dual quantity with respect to the curvature k3s. Thus, this effect is also
represented by the couple stress tensor component. By contrast for the X-
like microstructure also the beam elements on top and bottom are mainly
loaded by stretch due to the nearly optimal orientation of the microstructure
so that the curvature at the boundary is of the same order as in the inner of
the sample.

The second figure (Fig. 8.13) shows the effect of scaling the beam length [
but keeping the beam thicknesses d; and dy constant. Scaling of the beam
lenght but not of the beam thicknesses is accompanied by a variation of the
density. This effect is eliminated by multiplication of all results with the
factor (é)Q. One can see that increasing the beam length [ also increases the
thickness of the boundary layer of the couple stress tensor component M ss.
That holds for both orientations. Thereby the absolute value at the boundary
is more or less independent of the beam length /. Again the distribution of
the symmetric stresses 7 is hardly influenced by increasing the size of the
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Figure 8.11: Different load carrying behavior of microstructures

beam length [.

The third figure (Fig. 8.14) shows the influence of scaling the beam thick-
nesses d; and dy but keeping the beam length [ constant. Again the effect of
changing the density is eliminated by multiplication of the results with the
factor (%)2. Scaling the beam thicknesses mainly influences the gradient of
the quantity, here the couple stress tensor component Ms,. It seems that
the integral of the quantity within the boundary layer is nearly the same and
that a fixpoint exists in the inner of the boundary layer, which is crossed
by each curve. Accordingly the absolut value at the boundary increases for
increasing beam thicknesses. And again the influence on the symmetric shear

stress T is marginal.

This example shows how to control the boundary layer effect of the model
by the microstructural beam parameters [, d; and d. The classical Cosserat
continuum theory only knows one parameter, which drives the distribution
of the quantity within the boundary layer. This parameter is the so-called
internal length scale, often abbreviated as A¢. By contrast, the present FE?
model includes two parameters (assuming d; = dy because anisotropy is not
included in the classical Cosserat model).
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8.1.3 The influence of the initial conditions

The third example investigates the influence of the initial conditions on the
converged solution, namely the initial conditions of the thickness distribution
and the orientation of the TVE. Considering the application of the model to
real patient specific data derived by computer tomography, the Hounsfield
unit distribution provides an informative basis for the initial conditions of
the thickness distribution. However, it is difficult to extract information
concerning the initial orientation from the CT data. Therefore the following
example studies the influence of varying the initial conditions. The same
boundary conditions are used as presented in Fig. 8.1.

Figure 8.15 shows the numerical results for different initial orientations: an
orientation of 45°, which is the optimal orientation with respect to the applied
shear test, an orientation of 0°, which is the worst orientation with respect
to the applied shear test, and a stochastic orientation. While in the outer
regions of the sample the results are more or less the same, especially in
the inner of the sample considerable differences appear, which affect all of
the presented quantities. The reason for it is the formation of bands with
larger beam thicknesses and lower beam thicknesses, respectively. These
bands propagate in the direction of the principal loading (+45°). The initial
conditions now have a strong influence, where the bands start to develop
determining the number of bands and in which direction the bands expand.
For the orientation of 45° this results in a formation of 6 bands in direction
of -45°, for the orientation of 0° in a formation of 12 bands in direction of 45°
and for the stochastic orientation in a formation of 8 bands again in direction
of -45°. The number of bands depends on the initial conditions but not on the
discretization. The reason for it is that local stress peaks appear at different
locations serving as starting points for the formation of bands. However,
the locations of the stress peaks are independent of the discretization due
to the underlying regularizing Cosserat continuum theory. This is confirmed
by the observation that the bands have a certain thickness, which is also
independent of the discretization. The couple stress tensor component Mg,
interacts with these bands. Similarly to the boundary layer effects, where the
sample behaves stronger or softer due to the applied boundary conditions,
couple stresses arise where the beam thicknesses change significantly. This
then also effects the orientation of the microstructure o?V¥, which is in the
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equilibrium state identical with the principal strain direction ..

The same effect can be observed varying the initial beam thicknesses instead
of the initial orientation (Fig. 8.16). Again the initial conditions have a
strong influence on the number and orientation of bands in the inner.

Figure 8.17 shows exemplarily the principal stress and strain directions using
an initial orientation of 45° and an initial beam thickness ¢ of 0.1 mm. One
can see that in contrast to the principal strain direction . the principal stress
direction in the inner follows the continuum solution and is not affected by
the formation of bands.

In summary one can say that the initial conditions have a strong influence
on the local behavior but not on the overall global behavior as the effect on
the symmetric part of the shear stress 7 is not enormous.

One may argue that the applied boundary value problem is not well-suited
to investigate the effect of different initial thicknesses. Considering a single
beam element loaded by constant Dirichlet boundary conditions leading to
growth due to a positive stimulus, the beam element will try to achieve
the maximum thickness. The reason for it is that the cross sectional area
increases in the same way as the resultant forces at the boundary so that
the stimulus is in this case independent of growth. Thus, a second more
realistic boundary value problem is shown in addition to the previous example
applying Neumann boundary conditions as shown in Fig. 8.18, whereby the
model is fixated against free horizontal displacement. The numerical results
are presented in Figure 8.19. However, the results show that even in this
case the selection of the initial thickness does not play an important role.
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Figure 8.15: Converged solutions for different initial orientations
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Figure 8.18: Boundary value problem of shear test (Neumann BC)
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8.1.4 Interaction of model with inserted screw

The last example calculated by PANDAS studies the effect of inserting a
screw into the material. The main difference with respect to the previous
examples is the fact that now due to the geometry stress peaks appear at the
tip of the thread, which will serve as nuclei for the formation of growth bands.
Figure 8.20 shows the dimenison of the boundary value problem as well as the
applied boundary conditions. A screw is pulled out from the sample which is
completely fixated at top and bottom. Three different screw geometries are
investigated: while the inner diameter and the pitch are constant, the thread
depth is varied from 0 mm (no thread present) to 4 mm. Ideal contact
is assumed. The screw has the same stiffness as the bulk material of the
trabecular beam elements so that the screw is comparatively stiff with respect
to the bone-like material. The main interest is on the neighborhood of the
screw. Thus, a finer discretization than the discretization at top and bottom
is used there.

“]

Uy = ug = 0mm, ¢ =0
/

_ SCrew:
inner diameter: 8 mm
50 mm pitch: S5mm
thread depth: 0 / 2 / 4 mm
Ea 1 |:m1r\1n2}
50 mm
€

u1:u2:0mm,g0:6
T
100 mm

Figure 8.20: Boundary value problem of pull out test

Figure 8.21 shows the respective numerical results. While for the screw
without thread (left column) two bands of higher density appear, for the
screws with thread (column in the middle and right column) the tips serve
as expected as starting points for the formation of bands distributing the
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load over a larger width and caring thereby for a more homogeneous load
carrying as in the case without thread.

This last example shows the importance of an accurate modeling of the ge-
ometry. It is important to include the effects which are responsible for stress
peaks but in the same way it is necessary to avoid stress peaks in the model,
which are not present in reality, e. g. which result from an insufficient dis-
cretization.
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Figure 8.21: Converged solutions for different thread depths
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8.2 Numerical examples

calculated by LS-DYNA

Four numerical examples are presented demonstrating the reduced capability
of the model based on first order homogenization considering the Cauchy
continuum theory on the macroscopic level. The first example focuses on
the reasonability of the adaptation process. The second example checks the
presence of a boundary layer and the presence of size effects, respectively.
The third example discusses the mesh independency. In the fourth example
the model is applied to a simplified model geometry of the femoral head with
inserted screw. The numerical examples are followed by a sketch of how to
include the CT data into the model.

In principle all examples base on the same set of material parameters. How-
ever, the adaptation processes can be switched off independently to discuss
effects involved by the FE? approach and effects involved by the formula-
tion of the adaptation process separately. The set of material parameters is
presented in table 8.3.

The Courant-Friedrichs-Lewy condition [12] postulates that the time step
size of the explicit calculation is smaller than a critical time step At.,.;

lmin
Atcrit _ (81)
S

whereby [,,,;, is the smallest distance between neighboured points of the dis-
cretization and s is the wave propogation velocity, which is given for the
three-dimensional continuum by

E(1-v)
°T \/(l—l-l/)(l—Ql/)p (82)
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N
Young’s modulus E 100000 5
mm
length l 1 mm
minimum radius Amin 0.001 mm
maximum radius Armax 0.5 mm
. N
viscous parameter growth m | 10000.0 —h
mm
viscous parameter atrophy 2 1.0 mmh
N
lower bound of dead zone T 400 5
mm
N
upper bound of dead zone T, 500 5
mm
1
velocity parameter reorientation c 0.001 o

Table 8.3: Material parameters (LS-DYNA)

with Young’s modulus F, Poisson’s ratio v and specific mass density p. How-
ever, these effective quantities are never calculated for the TVE. Therefore,
the critical time step size is computed using some simplifications. A wave
cannot propagate through the TVE faster than through a homogeneous TVE
consisting completely of the bulk material. That means that the microscopic
Young’s modulus F as given in table 8.3 is used for the calculation of the time
step size. The effect of the Poisson’s ratio is considered by a safety factor f.
The effective density can be approximated based on the microscopic density
and topology. However, the microscopic density is not used within the FE?
approach, and due to the interest in quasi-static solutions the effective den-
sity p can be chosen in a range, which guarantees that kinematical effects are
negligible compared to the quasi-static solution. In other words: increasing
the effective density p also increases the critical time step size At..;;, but
that also increases the mass inertia so that the converged solution without
kinematical effects is reached after the same CPU time.
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8.2.1 Check of adaptation process

The first example calculated by LS-DYNA checks the reasonability of the
adaptation process, whereby the geometry of the bone-like material is dis-
cretized by one single hexahedral element and six tetrahedral elements, re-
spectively. The geometry and the applied boundary conditions are shown in
Fig. 8.22. Minimizing dynamical effects, viscoelastic layers are placed on top
and bottom of the sample damping out the kinetic energy. These layers are
extremely stiff compared to the bone-like material so that the deformation
of the layers has no influence on the numerical results of the material under
investigation. Furthermore, applying the load a S-shaped scaling function
f(t) is used also reducing the amount of kinetic energy. To get a unique
solution a triaxial load case is applied to the structure. Applying a uniaxial
load case would cause an ambiguous solution, because only one principal di-
rection of the strain tensor can be determined and the other two directions
would depend on the numerical errors of the strain tensor components. The
circle with included microstructure within Fig. 8.22 shows the used TVE,
which is initially rotated around the e;-axis by an angle of 30°.

Fig. 8.24 presents the numerical results of the reorientation. As expected the
TVE turns back into the reference position, which is the position where the
axes of the TVE are aligned with the coordinate system of the macroscale.
All the hexahedral elements under investigation (element formulation 1: con-
stant stress solid element; element formulation 2: fully integrated solid with
selective reduced integration; element formulation 18: enhanced strain solid)
yield the same result. By contrast the tetrahedral elements (element for-
mulation 10: constant stress tetrahedron) although initially turn back into
the required vertically aligned position, but at time ¢ > 6000h the angle
increases. At this moment also the rotation axis starts to deviate from the
expected rotation axis, which is the es-direction, the TVE was initially ro-
tated around. Taking a look at Fig. 8.24, which presents the beam radii d;
of the beam elements as well as the according stimuli T¢, ;, one can see, that
the problem occurs when the beam radius ds starts to deviate from the other
beam radii. Thereby, the initially orthotropic TVE with same stiffness in
each principal direction becomes now orthotropic but with different stiffness
in the several principal directions. This additional anisotropy in combina-
tion with the anisotropy involved by the discretization with six tetrahedral



98 CHAPTER 8. NUMERICAL EXAMPLES

2mm 5 30°
- [ >

- d
e p—.pﬁ:
2mm
geometry boundary conditions
A
1.0 [~
0.8 -
'T' 0.6
—~
+~
S~
0.2
0.0 L L ! I -
0 4000 8000 12000 16000
t [h]
loadcurve

Figure 8.22: Boundary value problem for testing of the adaptation process
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Figure 8.23: Adaptation: reorientation

elements only leads to the undesirable effect for the reorientation. LS-DYNA
also provides other tetrahedral elements than the constant stress tetrahe-
dron. However, these elements fail completely due to the bad approximation
of the principal strain directions, which depends considerably more on the
discretization of the geometry.

The diagrams of Fig. 8.24, showing the beam radii d; and the according stim-
uli 7., ;, are plotted consciously on top of each other. Thus, it is possible
to directly see the influence of the stimulus on the change of the radius. All
beam directions have the same initial beam radius of 0.01 mm. At the begin-
ning all stimuli are lower than the lower bound of the dead zone leading to
decreasing beam radii, which converge towards the minimum beam radius.
Then the stimulus of the third beam axis crosses the dead zone and exceeds
the upper bound of the dead zone leading to an increasing beam radius of the
third beam direction. Inversely the increasing beam radius leads to a reduc-
tion of the according stimulus. The stimulus consists of two parts: a normal
stress dependent part and a shear stress dependent part. Applying Dirichlet
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boundary conditions, the normal stresses due to stretch and compression do
not change varying the beam radius. That means that the reduction of the
stimulus results from the reduction of the shear stresses at the beam ends,
which are reduced by the increased bending stiffness of the according beam
elements.

Having in mind the application to real patient specific data, the geometry
will normally be approximated by tetrahedral elements provided by a mesh
generator. Only one tetrahedral element formulation, the constant stress
element formulation, is available. Thus, also for the hexahedral elements
only the constant stress formulation is investigated in the following, even it
is clear that this will influence the numerical results significantly, especially
under shear deformation.

8.2.2 Check of boundary layer effect and size effect

The second example calculated by LS-DYNA investigates the boundary layer
effect and the size effect. From a theoretical point of view, the FE? model
using FOH should not be able to reflect boundary layer effects due to the un-
derlying Cauchy continuum theory, which does not regard an internal length
scale. However, that does not mean that size effects are completely excluded.
Scaling of the beam length [ or of the beam thicknesses d; can change the
relation between tensile stiffness and bending stiffness. When eliminating the
change of density involved by scaling of the microscopic geometry parameters
an influence on the macroscopic scale can still be observed.

While a boundary layer effect has been observed in the shear experiment
using the FE? approach with SOH (Fig. 8.2) a shear experiment is also
carried out for the model based on FOH. Taking a look at the cross-like
microstructure presented in Fig. 8.11 one can imagine that even for a very
small shear deformation the normal stresses in the vertical direction are com-
parably high due to the strong difference in bending and tensile stiffness of
the beam elements. Thus, extremely small deformations are applied in this
case. As before in the case of the model using SOH, the adaptation pro-
cesses are switched off investigating the size effect. Two different orienta-
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Figure 8.25: Boundary value problem for investigation of size effects

tions of the TVE are investigated, namely an orientation of ¢*"* = 0° and

of oTVE = 45°. The rotation axis is aligned with the global e,-direction. The
boundary value problem is shown in Fig. 8.25. As before for the previous
example comparably stiff viscoelastic layers are placed on top and bottom
of the sample damping out the kinetic energy. Furthermore, the same load
scale function f(t) is used as for the previous example, see Fig. 8.22.

In a first step the convergence behavior of the shear stresses Ti3 = T3; with
respect to mesh refinement is investigated for both orientations (table 8.4).
For each orientation the actual value of the quasi-static solution is given for
the maximum applied load. Furthermore the absolute deviation with respect
to the finest discretization under investigation (25x25x25) is shown. It is
obvious that the microstructural orientation of V¥ = 45° behaves much
stiffer regarding the applied load compared to the orientation of pTVE =
0°, because the former is the optimal orientation and the latter the worst
orientation. When all kinematical effects are damped out, the solution for
the shear stresses Ti3 = T3; is homogeneous, which means that the effects
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of higher order already present for the normal stresses do not influence the
results. Using ten elements in each direction for the discretization of the cube,
the involved error achieves a tolerable value. This investigation shows the
disadvantage of the selected element formulation with only one integration
point with respect to shear loading.

gDTVE' = (° SOTVE — 45°

discretization || 113 = T3 | deviation || Ti3 = T3; | deviation
2X2x2 7.419e-7 25.70 % 9.578¢-3 23.17%
4x4x4 || 6.302e-7 6.78 % 8.309e-3 6.85%
5xHxbH 6.156e-7 4.30 % 8.145e-3 4.74 %
8x8x8 5.996e-7 1.59% 7.959e-3 2.35%
10x10x10 5.958e-7 0.95% 7.915e-3 1.79%
16x16x16 5.870e-7 0.54 % 7.847e-3 0.91%
20x20x20 5.909e-7 0.12% 7.816e-3 0.51%
25x25x25 5.902e-7 — 7.776e-3 —

Table 8.4: Convergence study

In a second step the effect of scaling the microscopical beam length [ and
the beam radii d; is analyzed (Fig. 8.26). Thereby, A is the scaling factor of
the beam length [ and A the scaling factor of the beam radii d;. As before
for the two-dimensional model using SOH, three different investigations are
carried out for both orientations: scaling of the TVE (A = A), scaling of the
beam length by factor A (A = const.) and scaling of the beam radii by factor
A (T' = const.).

As expected, scaling of the TVE has no influence on the homogeneous results
of the shear stress component Tj3 for the V¥ = 0° orientation as well as
for the TV = 45° orientation of the microstructure. As a consequence it
follows for the parameter identification that it is not possible to determine
the size of the TVE.

Scaling the beam length [ by a factor A the results decrease by order of
four for the ¢*V® = (0° orientation and by order of two for the ¢TV¥ = 45°
orientation, which can be seen on the diagram in the middle of Fig. 8.26 using
double-logarithmic scale. Eliminating the influence of the involved density
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change, the density decreases by order two for increasing beam length, it
follows, that for the ”VF = (° orientation the results finally decrease by
order two while the results for the V¥ = 45° orientation are independent
of the scaling of the beam length.

The same effect can be observed for the scaling of the beam radii d; by a
factor A, see the diagram on bottom of Fig. 8.26. Again if one eliminates the
effect of density change involved by increasing the beam radii, the results for
the pTV¥ = (0° now increase by order two while the results for the V¥ = 45°
orientation are again independent of the scaling of the beam length.

The effect can be explained by taking a look at Eq. 5.15. If the load is
carried only by stretch, as it is the case for the V¥ = 45° orientation, the
analytical solution of Eq. 5.15 has the form

7rd2
Tkl Z’yz EA 5l~cll = Z’VZEEM l2 s (83)

whereby ~; is a dimensionless factor independent of the beam length and
beam radii. A; is the cross sectional area of the several beam elements. The
analytical solution shows that scaling of the size of the TVE has no influence
on the results because the beam length [ and the beam radii d; enter the
equation quadratically. Futhermore, scaling of the beam length or beam
radii has no influence considering the elimination of the density change.

If the load is carried by bending only, as it is the case for the V¥ = (°
orientation, the analytical solution of Eq. 5.15 has the form

- EI - 7 d
(T i =) Wk : 4
k) Z Vi —55 €kl Z Wik en 5o (8.4)

whereby [; is the moment of inertia of the corresponding beam element. That
means that in comparison to Eq. 8.3 the length [ and the beam radii d; enter
the equation by fourth order. Thus it follows, that the scaling of the size of
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the TVE has no influence on the results. If one increases the radii d; but
keeps the length [ constant, the values increase by fourth order. Eliminating
again the involved density change, the values still increase quadratically.
And vice versa in the case of scaling the beam length [ but keeping the radii
d; constant it holds that increasing the beam length, while considering the
density change, will lead to quadratically decreasing results.

8.2.3 Check of mesh independency

The second example calculated by LS-DYNA has shown that the results
are mesh dependent even if the adaptation process has been switched off.
The following example demonstrates that the model is not regularized but
mesh dependent also in the formulation of the adaptation processes. That
means that e. g. the apparent density of a certain region also depends on
the discretization, whereby the differences cannot be explained only by the
effect observed in the previous example with homogeneous deformation. The
differences rather result from stress peaks at locations where discontinuities
are present e. g. due to the applied boundary conditions or due to the change
of material. If the stress peaks are smeared over a certain range the resulting
effective stimulus does not have the same effect on growth and atrophy as the
non-smeared solution. The effect is shown in the boundary value problem
presented in Fig. 8.27. Therein the loadcurve f(t) is again an S-shaped
function as shown in Fig. 8.22, but it is scaled so that the maximum value
(1.0) is already reached at time ¢ = 90h. Considering the symmetry of the
boundary value problem, the FE calculation is carried out for a quarter of
the structure.

Fig. 8.28 shows the average beam thickness (d;) for three different discretiza-
tions at time ¢ = 40 h. Relating to the boundary value problem presented in
Fig. 8.27 the left rear quarter of the sample is presented.

It is clear that the stress distribution beneath the loading on top can be bet-
ter approximated by a finer discretization than by a coarser discretization.
This also results in a better approximation of the influence on growth and
atrophy. Intentionally the results on Fig. 8.28 are plotted as the element val-
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Figure 8.27: Boundary value problem for investigation of size effects

ues without any smoothing. Otherwise the results would seem more similar.
While Fig. 8.28 can be interpreted only qualitatively, because a direct com-
parison of a certain domain is not possible, the average value of the average
thickness is calculated for all discretizations. This is done for the cubic do-
main beneath the loading on top of the sample already marked in Fig. 8.28.
The results are presented in Fig. 8.29 plotting the average beam thickness of
the domain ( d; ) over time. At the beginning the stimuli are small so that
the beam radii decrease. This is independent of the stimuli so that the beam
radii decrease homogenously for all discretizations under investigation. The
differences appear when the stimulus exceeds the upper bound of the dead
zone. For a finer discretization this moment is reached earlier due to the
better capturing of stress peaks. This effect propagates onward with time so
that, in spite of smoothing the effect by division through a larger number
of elements for a finer discretization, the average beam thickness for a finer
discretization is higher than for a coarser discretization.
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Figure 8.28: Average beam thickness plotted for different discretizations
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8.2.4 Application to model geometry

According to the real three-dimensional geometry of the femoral head, the
fourth example calculated by LS-DYNA is based upon a simplified geomet-
rical model of the femoral head. Thereby the geometry is approximated by a
cylinder representing the spongiosa. The spongiosa is covered by a thin layer
of compacta. Furthermore a screw is inserted into the model. The geometry
of the rotational symmetric model is shown in Fig. 8.30. The left surface of
the compacta is completely fixed and on the right surface of the compacta
a constant stress load of o = 2.387N/ mm? is applied corresponding to a
resultant force of 3000 N. The femoral head is split into two parts by a cut
with the mutable cutting angle ap. Thus, the model is able to study the
differences resulting from different cutting angles as investigated by Pauwels
[67]. Pauwels categorized the fracture of the femoral head into three classes
depending on the fracture angle. In case of type 1 fracture only compressive
stresses act on the fracture surface. In case of type 3 fracture the surface
is loaded mainly by shear stresses. Finally, in case of type 2 fracture the
surface is loaded by compressive and shear stresses. The type 1 fracture is
good-natured, because the applied load does not lead to a mismatch of the
broken femoral head with respect to the rest of the femur. For the other
cases the mismatch has to be prevented by nails or screws.

The head of the screw, see e. g. Fig. 8.31, is fixed to the broken femoral head
by tied contact. For the other contact areas, the contact between the left
femoral part and the screw as well as the contact between the left femoral part
and the right femoral part, a penalty-based sliding contact is used (coefficient
of static friction g = 0.5). To get a more realistic loading situation the screw
is inserted in a pre-stressed load state (Tps = T33 = —0.1 N/mm2). Thus,
compressive stresses act on the contact surface between the screw and the
left femoral part, which means that shear stresses too can be transferred at
the contact area.

Minimizing the numerical effort for a comparable quality of the results, hex-
ahedral and pentahedral elements are used for the discretization of the ge-
ometry. While the spongiosa is loaded mainly by compressive stresses in the
horizontal direction (e;-direction), the TVEs are initially aligned with the
global coordinate system. That means that the beam radius d; corresponds
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compacta spongiosa

116 mm

Figure 8.30: Boundary value problem of model geometry

to the beam element initially aligned with the global e;-direction. At the
beginning all beam elements of the several TVEs have the same radius of
d; = 0.0l mm. The kinetic energy is damped out by numerical damping.

Fig. 8.32 shows exemplarily the results for a fracture angle of ap = 30°. The
results are presented at time ¢ = 2000 h, when the kinetic energy is nearly
completely damped out and the adaptation processes came to rest. The sev-
eral pictures presented therein show the spongiosa only. Taking a look at the
normal stresses in horiztonal direction 77, it is obvious that the compressive
stresses are relatively high close to the applied load. Then the load is lead
over mainly to the compacta and slightly also to the inserted screw due to
their considerably higher stiffnesses. Thus, the rest of the spongiosa is nearly
unloaded. This is the well-known effect of stress shielding. Taking a look at
the normal stresses in vertical direction T, one can see the influence of stress
peaks. Stress peaks appear at edges of the geometry, e. g. at the right end of
the screw or at the fracture plane. The higher stresses along the tied contact
surface between screw and the right part of spongiosa mainly result from
the pre-stressed insertion of the screw. However, it is even pronounced by
the external loading. One may argue that the spongiosa participates in load
carrying by shear loading. But looking at the von Mises equivalent stress



8.2. NUMERICAL EXAMPLES CALCULATED BY LS-DYNA 111

€1

€3

Figure 8.31: Three-dimensional model

T., demonstrates that the spongiosa located between screw and compacta
in radial direction is nearly unloaded except of the effect at the tied contact
interface. It is difficult to represent the vector-valued information about the
reorientation of the microstructural TVE. Thus, the final orientation of the
microstructure is shown in the bottom picture of Fig. 8.32 for five selected
elements. Even the loading of the spongiosa is very small between the screw
and the compacta in radial direction, the spongiosa is still loaded mainly by
normal stresses in horizontal direction. Thus, the change of the orientation
relatively small. For very small angles of reorientation V¥ < 1° the rota-
tional axes point in arbitrary directions, but for larger angles the rotational
axes point at the symmetry plane as expected in the ez-direction. From the
relatively small rotations it follows that the beam radius d; directly corre-
sponds to the normal stress component 77; as well as the radius dy to the
component Tyy. Furthermore the average of the beam radii 06 = ( d; ) is
presented. The results for the beam radii demonstrate the consequence of
stress shielding with respect to the adaptation process. The stress shielding
leads to a strong reduction of the density so that the screw loses its footing,
which then will lead to failure of the connection between the broken parts.
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Figure 8.32: Numerical results of model geometry
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Tabular 8.5 shows a comparison of the displacements of certain points varying
the fracture angle ap again at time ¢ = 2000 h. The location of the points
is shown in Fig. 8.30 and Fig. 8.31. Point (3 is the centerpoint of the left
screw end, point (8) the centerpoint of the applied load and the points (©) and
(® are located at the bottom of the fracture plane. Between the points ()
and () there is an initial gap of 1 gm in horizontal direction. The horizontal
displacements of point (4) and point (8) are barely influenced by the variation
of the fracture angle. However, for the vertical mismatch at the fracture
plane the fracture angle has a strong influence. For small fracture angles
(ap = 0° and ap = 15°) the mismatch after the first contact between both
parts remains constant, because the shear stresses within the fracture plane
are to small for a sliding of the right part. In case of ap = 0° the value
should be zero due to symmetry, but numerical errors result in the value of
-0.3 um. The smaller value of -0.8 yum for ap = 15° results from the pre-
stressed initial state of the screw, which leads to effects in vertical direction
due to the non-symmetric tied contact surface between screw and right part
of spongiosa. Only in case of ap = 30° the shear stresses exceed the range
of the static friction so that the right part is sliding along the fracture plane
in positive es-direction.

ap U1@ u u2@ — u2©
0° | -12.8 pm | -40.0 pm -0.3 pm
15° | -12.1 pm | -39.5 pm -0.8 pm
30° | -12.3 pm | -40.2 pm 3.4 pm

Table 8.5: Displacements in dependency of fracture angle ap

8.2.5 Sketch of including CT data

In principle the hexahedral mesh derived by interpretation of each voxel
as a Finite Element could be used for the numerical simulation. However,
the step-like surface of the model would inevitably lead to stress peaks not
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present in reality. And while the evolution equation for growth and atrophy
is sensitive with respect to such stress peaks, the unnatural stress peaks have
to be avoided by an accurate modeling of the surface of the material under
consideration. This means that the surface has to be smoothed.

In the present work the hull of the voxel mesh consisting of quadrilateral
elements is imported into CATIA. As a start the information about the
HU distribution gets lost thereby. Then the surface is smoothed by the
algorithms provided by CATIA. After that the domain surrounded by the
smoothed hull is meshed by tetrahedral elements. Finally, the distribution of
the HU is mapped from the voxel-based hexahedral mesh to the tetrahedral
mesh.

For the mapping a very simple algorithm was used. For each tetrahedral
element the center of mass is determined. Then it is checked, in which voxel
element the center of mass is located. The HU of this element is finally
mapped to the tetrahedral element. Of course there exist more advanced
mapping algorithms using interpolation functions. But already the initial HU
distribution of the voxel mesh is liable to some variation. Thus, improving
the mapping algorithm is only reasonable if the tetrahedral discretization is
much finer than the hexahedral discretization.

The basic steps of the mapping are shown qualitatively in Fig. 8.33. They
are presented for a cut through the femoral head, where the bone material
mainly consists of spongiosa and a thin layer of compacta at the boundary,
and through the shaft of the femur, where only a thick layer of compacta
is present, which surrounds the bone marrow in the inner. The comparison
of the HU distribution shows that the information mapped to the tetrahe-
dral mesh can be used as a starting point for the calculation of microscopic
material parameters involved in the FE? approach.

According to the quantitative yCT the osteo calibration and correction fac-
tors for the calculation of the bone mineral density (BMD), which depend
on the HU distribution, are provided by the manufacturer of the CT device.
For the conversion of the BMD into an effective stiffness some relations can
be found in literature, see e. g. [17, 71, 72]. A microscopic set of material
parameters has to be derived, which is consistent in the sense of having the
same effective stiffness. Another possibility is to determine the microscopic
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femoral head

shaft of femur

CT data voxel-based mesh tetrahedral mesh

Figure 8.33: Distribution of Hounsfield Unit (HU)

elasticity modulus directly as the elasticity modulus of the hydroxyapatite
(see e. g. [37, 48]) so that the BMD is used to determine the microscopic
beam radii. However, both approaches assume that the TVE is a reproduc-
tion of the real geometry, which is not the case, because it has only to reflect
the principal deformation behavior. The relation between microscopic and
macroscopic parameters depending on the size and shape of the TVE is still
an unsolved question. Thus, the microscopic material parameters may not
coincide with the material parameters measured directly on the microscale
as mentioned in chapter 6. At last the material parameters have to be de-
termined by parameter identification guaranteeing that the numerical model
reflects the actual deformation behavior.

As shown in Fig. 8.34 the present procedure of including CT data is suited for
the insertion of implants, screws and nails. When the model is imported into
CATTA, they can be inserted by Boolean operations. The HU distribution is
then mapped to the remaining bone material only.

Numerical simulations for the human femur including CT data are not pre-
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detail of inserted screws

femoral head complete femur  cut through femoral head

without screws with screws with inserted screws

Figure 8.34: FE model of human femur

sented due to the missing parameter identification and the missing accurate
loading situations. References to the derivation of accurate loading situations
can be found in [30, 56.



Chapter 9

Conclusion

9.1 Summary

This work has focused on the numerical simulation of bone remodeling in-
duced by mechanical loading. The numerical model is based on the FE? ap-
proach, which combines the advantages of a purely macroscopic continuum
model with the advantages of a discrete microscopic model. Macroscopic
models are numerically very efficient. However, it is difficult to formulate
adequate macroscopic constitutive equations, because the macroscopic effec-
tive constitutive relations for remodeling depend not only on the microscopic
constitutive equations of the several trabeculae but also on the topology of
the trabeculae. Microscopic models are numerically comparatively expen-
sive, but they have the advantage that it is much easier to formulate ap-
propriate constitutive equations. E. g. it is easier to formulate constitutive
equations for the several trabeculae instead for a complex arrangement of
trabeculae. Thus, combining the advantage of a macroscopic model with the
advantage of a microscopic model leads to the FE? approach. Within the
FE? approach the FE calculation is still carried out on a macroscopic level
considering the material to be continuous. However, the macroscopic consti-
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tutive equations are replaced. This is realized by attaching a microstructure
to each macroscopic integration point, the so-called TVE. Then macroscopic
strain-like quantities are projected to the boundary of the TVE leading to
Dirichlet boundary conditions for the TVE. Based on the microscopic topol-
ogy, material parameters and constitutive equations, the resulting stress-like
quantities on the boundary of the TVE can be calculated. Homogenization of
these microscopic stress-like quantities yields macroscopic stress-like quanti-
ties, which are returned to the integration point. Of course the FE? approach
reduces the numerical efficency compared to a purely macroscopic model, but
is still more efficient than a microscopic model. Besides the FE? approach is
well suited for parallelization, because the time-consuming circumvention of
macroscopic constitutive equations can be executed in parallel.

Depending on the macroscopic continuum theory forming the basis of the FE?
approach, a greater or lesser extent of strain-like quantities can be projected
on the boundary of the TVE. And also vice versa a greater or lesser extent
of homogenized stress-like quantities can be considered on the macroscopic
level. This has been demonstrated on the basis of the Cauchy continuum and
the Cosserat continuum. While the Cauchy continuum theory only regards
the classical strain tensor as strain-like quantity, the Cosserat continuum
theory in addition regards a strain tensor of higher order, the so-called cur-
vature tensor. The FE? approach has been presented for both continuum
theories, namely for the Cauchy continuum theory using first order homog-
enization (FOH) and for the Cosserat continuum theory using second order
homogenization (SOH).

Then the FE? model has been extended towards bone remodeling. This has
been performed by the formulation of constitutive equations for trabeculae
in the inner of the TVE. The constitutive equations describe the adaptation
of the TVE with respect to mechanical loading, namely growth and atro-
phy, considered by increasing or decreasing thickness of the corresponding
trabecula, and reorientation, considered by an appropriate rotation of the
TVE.

The capability of the model has been demonstrated by numerical examples
focusing on the different aspects of interest, e. g. involved size effects and
regularization. One set of examples has been computed using the implicit FE
code PANDAS. In that case the FE? approach has been implemented on the
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basis of the Cosserat continuum theory applying the second order homoge-
nization. The other set of examples has been computed using the explicit
FE code LS-DYNA. Thereby the FE? approach has been implemented based
on the Cauchy continuum theory using first order homogenization.

The numerical results have shown that the FE? model based on the Cosserat
continuum theory has several advantages compared to the model based on
the Cauchy continuum theory. The former is regularized by the Cosserat
continuum theory leading to mesh-independent results even in the case of
remodeling. That does not hold for the latter, which is mesh-dependent.
The attached TVE does not have to be representative in a statistical sense,
but it has to reflect the principal deformation behavior. Due to the enrich-
ment of the degrees of freedom in case of the Cosserat continuum theory
by an independent rotational field, the TVE can reflect more deformation
modes than in the case of the Cauchy continuum theory. Thus, the former
can approximate much better the deformation of the TVE and is therefore
also able to reflect boundary layer effects and size effects, which is not pos-
sible for the latter. From this it follows that the FE? model based on the
Cosserat continuum theory offers interesting possibilities to extend the con-
stitutive equations depending on quantities being present at the boundary
layers. E. g. this enables the consideration of effects at the intersection be-
tween screw and bone material. Finally, compared to the classical Cosserat
model, this model has the advantage that the thickness of the boundary layer
and the absolute value at the boundary of the according quantity is driven by
two independent material parameters. Thus, when performing a parameter
identification it should be easier to approximate the boundary layer effect
accurately by adjusting these two parameters, which may be interpreted as
internal length scales, than by the single internal length scale provided by the
classical Cosserat continuum theory. However, also the much simpler FE?
approach based on the Cauchy continuum theory has its respective merits.
Assuming the same discretization for both models, the simpler model is nu-
merically more efficient due to the lower number of degrees of freedom. As
long as one is not interested in any boundary layer effects or size effects
it yields reasonable results, which may be sufficient for a large number of
applications. Furthermore the simpler model has the advantage of being im-
plementable into each FE code providing an user material interface. The
more complex model based on the Cosserat continuum theory requires the
access to the balance of moment of momentum, which is not provided by all
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FE codes.

As shown by the analytical investigations the model has to be understood as
a phenomenological one due to the involved simplifications. That means that
the microstructural parameters, which describe the topology of the TVE and
which are determined by parameter identification, do not have to represent
the actual topology of the trabecular microstructure.

9.2 Future work

Having in mind the application of the model to the workaday surgery of the
femoral neck fracture, a parameter identification has to be carried out. This
has to be followed by a validation of the model comparing the numerical
results to experimental data. For this purpose it is possible to identify the
parameters step by step. In a first step the microstructural parameters can
be identified by ignoring the adaptation processes. In a second step the
bounds of the dead zone can be identified by ignoring the timescale. Finally
the time-dependent parameters can be adjusted.

If the model is adjusted to a realistic time scale, the constitutive equations
for growth and atrophy can be enhanced including dynamical effects. This is
necessary because experimental data show that applying a quasi-static load,
representing the average loading of the material, has not the same influence
on growth and atrophy as applying the real dynamical loading situation.

Utilizing the model in clinical application it should be numerically as ef-
ficient as possible but it should still fulfill certain requirements like mesh-
independency. The FE? model based on the Cosserat continuum theory
fulfills these conditions. However, compared to the FE? model based on the
Cauchy continuum theory it already introduces a vector-valued independent
variable, which is the rotational field. Thus, one should investigate FE?
models getting by with only one additional scalar-valued degree of freedom,
e. g. the order parameter model or the pure microstretch model. The pure
microstrectch model can be derived in analogy to the Cosserat continuum
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theory by the assumption that the attached directors may uniformly change
their length but not their orientation.
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