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SHORT SUMMARY 

A physiology-based diffusion model is developed to predict drug transport across 

human skin. It features the “brick-and-mortar”-geometry with homogeneous lipid and 

corneocyte phases, accessible corneocytes and a homogeneous viable skin layer 

compartment. Methods are developed to determine all relevant input parameters. 

Partition and diffusion coefficients are measured using human abdominal skin or are 

estimated from experimental data, if not directly accessible. Caffeine (CAF) and 

flufenamic acid (FFA) serve as model drugs. The quality of the model is evaluated by 

comparing experimental and predicted concentration-depth-profiles. For both CAF 

and FFA it is found that the corneocytes have a decisive influence on stratum 

corneum affinity and transport. 

Therefore, mechanisms of corneocyte-interactions are investigated experimentally 

and theoretically for the model drugs CAF, FFA, and testosterone (TST). For the non-

protein binding CAF the impact of the aqueous compartment on stratum corneum 

partitioning is successfully modelled after introducing a bound water fraction that is 

non-accessible for compound dissolution. For the lipophilic, keratin binding 

compounds (FFA, TST) interactions are probably confined to the corneocyte surface. 

Binding to intracellular keratin is limited by their low aqueous solubility. 
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KURZZUSAMMENFASSUNG 

Ein Physiologie-basiertes Diffusionsmodell zur Vorhersage des Hauttransports wird 

entwickelt. Die Geometrie basiert auf dem Ziegelstein-Mörtel-Modell, wobei Lipide 

und Corneocyten sowie die lebenden Hautschichten als homogen und zugänglich für 

Substanzen angenommen werden. Es werden Methoden entwickelt, um alle 

relevanten Eingangsparameter für das Modell experimentell zu bestimmen. 

Verteilungs- und Diffusionskoeffizienten werden an humaner Abdominalhaut 

gemessen oder, sofern nicht direkt zugänglich, aus experimentellen Daten 

abgeschätzt. Als Modellsubstanzen dienen Koffein (CAF) und Flufenaminsäure 

(FFA). Die Modellqualität wird im Vergleich von experimentellen und errechneten 

Schichttiefenprofilen überprüft. Dies ergab, dass die Corneocyten für sowohl CAF als 

auch FFA eine entscheidende Rolle bei der Affinität der Substanzen zum stratum 

corneum sowie bei dem Transport über das stratum corneum spielen. 

Daher werden die Mechanismen der Wechselwirkung mit den Corneocyten für die 

Modellsubstanzen CAF, FFA und Testosteron (TST) experimentell und theoretisch 

untersucht. Um die Verteilung von CAF, das nicht an Proteine bindet, in das stratum 

corneum erfolgreich zu modellieren, muss eine gebundene, unzugängliche 

Wasserphase berücksichtigt werden. Für lipophile, keratinbindende Substanzen 

(FFA, TST) sind Interaktionen mit den Corneocyten wahrscheinlich begrenzt auf 

deren Oberfläche. Die Bindung an intrazelluläres Keratin ist aufgrund ihrer geringen 

Wasserlöslichkeit limitiert. 
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1 INTRODUCTION 

1.1 Motivation for modelling dermal absorption  

The skin constitutes one of the largest interfaces between body and environment 

covering a surface area of approximately 2 m2 with adults. On the one hand, the 

human skin guarantees water homeostasis and shields the body from invasion of 

pathogens and noxious environmental influences. On the other hand, it is involved in 

the thermoregulation of the body and serves as an excretory organ. This bifunctional 

nature of the skin depends on its highly differentiated structure, with the main barrier 

function being located in the outermost skin layer, the stratum corneum (SC).  

Whether contact occurs unintended at work, through use of household chemicals, or 

via application of cosmetics or pharmaceutical products; a variety of different 

compounds gets into contact with our skin every day. Some may be absorbed or 

facilitate the absorption of other potentially harmful compounds. Therefore, 

understanding of skin absorption processes is needed for several reasons.  

Safety aspects of chemicals are particularly addressed in the EU REACH program 

(“Registration, Evaluation, Authorisation, and Restriction of Chemicals”) requesting 

skin absorption data for toxicological examination. In addition to skin absorption data, 

substance classification for regulatory purposes also requires skin sensitization, 

corrosiveness, and photo-toxicity data. The latter ones are also requirements for 

cosmetical formulations, additional to the knowledge of the invasive behaviour of 

“active” ingredients in these preparations.  

In the field of pharmaceutical sciences, the skin as a delivery route enjoys a high 

acceptance by patients. In this regard, two different cases have to be distinguished: 

local delivery to selected skin layers (e.g., antimycotics) and systemic delivery (e.g., 

hormones). In the context of bioavailability assessment, knowledge on the absorption 

behaviour of the active compound is essential. For ethical reasons, fundamental skin 

absorption data can normally not be obtained by conducting in vivo studies although 

in vivo studies with human skin must always be considered the “gold-standard”. 

Therefore, other techniques have been used to obtain the desired information. One 

option is the use of in vitro models and to establish an in vitro-in vivo correlation. 

Some basic information on in vitro techniques is provided in a number of documents, 

such as the Organization for Economic Cooperation and Development (OECD) 



 

1 Introduction 

2 

 

guideline 428 (5) in combination with OECD guidance 28 (6), the Scientific 

Committee on Cosmetic and Non-Food Products Intended for Consumers (SCCNFP) 

guideline (7), an European Commission (EC) guide (8), and an United States Food 

and Drug Administration (FDA) guidance (9). However, application of guidance 

documents to experimental protocols remains challenging and leads to a vast variety 

of protocols in use which make inter-laboratory comparison still difficult.  

The available resources for human skin for in vitro studies are limited. This has 

promoted the search for alternative models. A switch to animal skin, therefore, seems 

obvious. Species currently in use are mouse, hairless rat, hamster (cheek pouch), 

snake (shed skin), pig (ear, flank, abdomen or back) and cow (udder). However, 

differences in SC thickness, number of corneocyte layers, hair density, water content, 

lipid profile and morphology cause especially rodent skin to be more permeable than 

human skin, leading to an overemphasis of compound permeability (10). Comparing 

results different species, human skin finds its closest match in porcine tissue (10-12). 

While animal skin is still mentioned in the OECD guidance document 28, the explicit 

use of human skin has later been demanded as the only acceptable surrogate in 

human risk assessment (5, 11). In addition, a general testing, as well as marketing 

ban concerning the use of animals for testing cosmetics or their ingredients will come 

into action in the European Union in September 2009 (13).  

To circumvent species differences and testing bans, biotechnologically reconstructed 

human epidermis equivalents are investigated to serve as membranes in permeation 

experiments as recently reviewed by Netzlaff et al. (14). Results of this so-called 

“German Validation Study” conducted in the years 2003 to 2005 and funded by the 

“Bundesministerium für Bildung und Forschung” (Federal Ministry for Education and 

Research) have shown the suitability of such bioengineered human epidermis 

equivalents in permeation studies (15). However, similar to some animal skin models 

the permeability of these reconstructed human epidermis models is much higher than 

in human skin due to a limited barrier function. Shortcomings of animal and 

reconstructed epidermis models promoted the interest in mathematical prediction of 

skin absorption. Through the years a large variety of models were developed and 

greatly improved our understanding of the principles governing skin absorption. The 

next paragraphs will give an introduction to the skin morphology followed by an 

overview of the main modelling strategies. 
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1.2 Morphology of the skin and skin transport pathways 

The skin is a multilayer laminate consisting of three histological layers (Figure  1-1):  

The subcutis or subcutaneous fatty tissue (hypodermis) 

The dermis 

The epidermis, that is itself subdivided into 

 Basal membrane 

 Stratum germinativum 

 Stratum spinosum 

 Stratum granulosum 

 Stratum lucidum (only present in plantar and palmar epidermis) 

 Stratum corneum 

 
Figure  1-1 Morphology of the skin. Adapted from (16). 
 

The subcutis is composed of loose fat lobules surrounded by connective tissue that is 

interspersed with blood vessels and nerves and also contains macrophages (17). It 
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serves as mechanic cushion, isolation, and energy reserve and anchors the skin in 

the underlying muscle.  

The dermis is the largest layer of the skin with a thickness of 0.1-0.5 cm depending 

on body site. The major cells are fibroblasts that produce the compounds of the 

dermal matrix. This is a gel like mixture of mucopolysaccharides containing collagen 

and elastin fibres (18). The fibrous structure provides tensile strength and elasticity to 

the whole skin. Two horizontal capillary plexuses provide the nutrition of the 

avascular epidermis. These are situated at the papillary-reticular junction and at the 

dermal-hypodermal junction. A more randomly oriented microvasculature supplies 

skin appendages originating from the dermis such as hair follicles and sweat glands 

(19). Blood and lymphatic vessels fulfil major tasks in removal of waste and metabolic 

products, immune functions, regulation of body temperature and blood pressure (17). 

Furthermore, the dermis contains sensoric nerves that report pressure, pain and 

temperature changes. 

The basal membrane is situated between dermis and epidermis. Here keratinic stem 

cells are situated that are responsible for the skin proliferation. The basal layer 

further contains several classes of specialised cells. Melanocytes are responsible for 

the pigmentation not only of skin but also of eyes and hairs. They produce different 

melanins, high molecular weight polymers of indole quinone, which absorb UV 

radiation (17). This in turn promotes the melanogenesis and hence leads to skin 

tanning. Due to the high energy of UV radiation and generation of free radicals 

excessive sun bathing can lead to melanomas which are one of the most frequent 

forms of skin cancer. Langerhans cells are also situated in the basal cell layer and 

accumulate around the hair bulbs (20). These are dendritic cells responsible for 

presenting antigens, such as contact allergens, to T-lymphocytes in the skin draining 

lymph nodes. As such they play an important role in contact sensitisation. A final cell 

population of the basal membrane are Merkel cells. They play a role as sensory 

receptors of the nervous system as nerve endings are lying closely on the dermal 

side of the basal membrane (17). 

Keratinocytes generated in the basal membrane differentiate during their progress 

through the different layers of the viable epidermis until they are finally desquamated. 

In the SC desmosomes, that are present in the epidermal layers, are cleaved by 

proteases leading to desquamation (21, 22). The turnover time of the epidermis is 

approximately 28 days but can be influenced by diseases and environmental effects. 
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During differentiation the appearance of the cells changes drastically. Directly above 

the basal layer lies the stratum spinosum. Its characteristic spiny appearance is 

caused by prominent tonofilaments (17). In the outer cell layers keratohyalin and 

membrane-coating granules appear within the cytosol, marking the transition to the 

stratum granulosum. These contain precursors of the SC intercellular lipid bilayers: 

glycosylceramides, glycerophospholipids, cholesterol, and sphingosine (23). At the 

junction between stratum granulosum and SC the lamellar granules move to the cell 

membrane, fuse together and extrude their content into the intercellular space (24). 

At this step of differentiation the keratinocytes undergo several significant changes 

that in the end lead to the formation of the highly effective SC barrier.  

The SC is the outermost layer of the epidermis. It is approximately 10-20 µm thick 

varying with body site. As most cell organelles including nuclei are degraded during 

final keratinocyte differentiation it is nonviable epidermis. The SC is composed of 15 

to 25 layers of tightly packed, flattened cornified cells, embedded into a continuous 

lipid matrix. The interior of the corneocytes is composed of keratin intermediate 

filaments. These are cross-linked among each other and to the cornified cell 

envelope via disulfide bonds by the action of filaggrin (filament aggregating protein). 

Filaggrin is then disintegrated to amino acids (25). Together with keratin and glycerol 

(a by-product of the generation of free fatty acids) these amino acids are the natural 

moisturizing factors providing the water holding capacity of the SC. Compared to the 

usual water content of tissues of around 70% the typical SC hydration in vivo is only 

about 30% (26, 27). The corneocytes are surrounded by a 10 nm thick cornified cell 

envelope made of highly crosslinked insoluble proteins, mainly loricrin and small 

proline-rich protein (1, 28). These proteins are covalently attached to an outer lipid 

envelope of ω-hydroxyacyl-sphingosines (29) acting as a scaffold for ordering the 

intercellular lipid bilayers. The composition of the intercellular lipids is unique among 

epithelia as they contain practically no phospholipids (23). Instead they are made up 

of ceramides (40 wt%), free fatty acids (12 wt%), cholesterol (25 wt%), and a smaller 

percentage of cholesterol esters and cholesterol sulphate (30). The relative ratio of 

the lipid components depends on body site (31). From transmission electron 

micrographs and small angle x-ray diffraction the lipid lamellae were shown to be 

oriented parallel to the surface of the corneocytes with repeat distances of 6.4 and 

13.4 nm (32-34). These result from a partly or fully interdigitation of ceramides of 

adjacent bilayers. From wide angle x-ray diffraction and electron refraction studies 
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large parts of the lipids are known to be present in a crystalline organization of 

orthorhombic but also slightly looser hexagonal packing (35).  

Although it accounts for only a fraction of the overall skin thickness the SC is the 

most effective barrier of the skin. This can be shown by inflicting a mechanical 

damage to the SC, e.g. via tape-stripping, sand-paper abrasion or suction blisters 

which results in a strong increase in permeability (36, 37). Likewise, pathological 

changes to the SC may affect the permeability: psoriatic plaques are known to be 

more permeable than healthy skin (38, 39). Nonetheless, favourable physicochemical 

properties provided, the permeability of intact skin is sufficiently high to be used as 

an application route in dermatology. Pathways across the membrane are still a 

matter of debate. As active transporters are absent in the SC there absorption is a 

passive process. According to the morphology of the SC an inter-cellular, trans-

cellular and trans-appendageal (trans-glandular and trans-follicular) route is 

discussed (Figure  1-2).  

 
Figure  1-2 Skin permeation pathways. Not drawn to scale. Stratum corneum abridged after 4 
corneocytes layers. 
 

A huge body of evidence shows that the intercellular lipid pathway plays a dominant 

role. Thus permeability is strongly enhanced after lipid extraction with organic 

solvents (40-43). Differential scanning calorimetry, and small and wide angle x-ray 

diffraction measurements have shown that excipients as well as drugs that act as 

permeation enhancers modify the crystallinity and organization of the lipid bilayers 

(44, 45). Several authors noted that inter-individual differences in lipid composition 
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and organization may be responsible for the high variability reported for drug 

permeability studies (46-48). Using artificial lipid mixtures de Jager et al. could show 

that the ceramides are critical for the formation of a long periodicity phase in the 

artificial lipid bilayers which in turn are essential for achieving barrier properties 

comparable to natural SC (49). 

In contrast the existence of a trans-cellular path was long neglected and is still 

discussed controversially. The discussion is intimately connected with the discussion 

of the nature of the hydrophilic passage across the SC. It was argued that at 

physiological hydration corneocytes do not contain any free water which could enable 

trans-cellular diffusion. However, it is known that upon exposure to wet air as well as 

direct contact to water or under occlusive conditions SC takes up water several times 

its own weight (50, 51). This soon leads to the formation of free water featuring 

dissolution properties similar to bulk water (26, 52). Boddé et al. showed that 

aqueous solutions of mercuric chloride applied to dermatomized human breast skin 

preferably diffuse along the lipid channel, however, with a slight delay, also enter the 

corneocytes (53). Meanwhile, using microscopical techniques a number of other 

compounds were witnessed inside the corneocytes (54-56).  

The role of appendages was long considered inferior due to their low surface 

coverage. Recently this value for hair follicles was corrected to be higher than 

previously assumed (57). Varying with body site a maximum was found at the 

forehead (1.28%) and a minimum on the forearm (0.09%). The trans-follicular 

pathway seems to be especially important for the invasion of nanoparticles (58). 

Small size as well as the natural movement of the hair were reported to be beneficial 

for the accumulation of the nanoparticles in the follicular opening (58-60). In general, 

for small molecules the trans-follicular pathway seems to be of less importance 

although the matter is little understood. Nonetheless, for several compounds the 

follicular route seems to promote permeability at the beginning of skin absorption 

while it is overruled by the other higher capacity pathways at later times in the 

transport process (61-63). Several methods were proposed to investigate the 

follicular contribution to permeation such as the “SC sandwich” (64); closing hair 

follicle openings with varnish wax under microscopical control (61); or differential 

stripping with tape and cyan-acrylate glue (65). 
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1.3 Experimental investigation of dermal absorption  

1.3.1 Measuring dermal absorption in vitro 

Two different intentions may be pursued with in vitro dermal absorption experiments. 

“Skin permeation” measurements focus on the rate of transport across the skin 

without looking at processes inside the skin barrier. This is important if a systemic 

delivery is desired as with transdermal patches delivering drugs such as nicotine, 

opioid analgesics or sexual hormones across the skin to the circulation. It is equally 

important for evaluating potential side effects that may result from systemic 

absorption of topically applied drugs.  

In contrast, in “skin penetration” experiments the concentration of an absorbed 

compound in a certain skin layer or at a specific depth within a single skin layer is 

measured over time. Therefore, penetration experiments are adequate to investigate 

local delivery to the skin. This concerns by far the most topical applications for 

example the treatment of allergic or irritant dermatitis, psoriasis, fungal or bacterial 

skin infections as well as cosmetic applications of skin care products, repellents or 

sun-protection.  

The difference between permeation and penetration is illustrated in Figure  1-3. 

 

 
Figure  1-3 Comparison of skin permeation versus penetration. Cross section through human 
dermatomized skin, x100. Samples are stained with haematoxylin/eosin. Cross sections with a 
thickness of 4 µm were prepared using a microtome. Pictures courtesy of Leon Muijs. 
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A very common model for evaluating the in vitro skin permeability is the static Franz-

type diffusion cell (Figure  1-4). The drug permeability from a donor chamber 

containing the drug formulation across excised skin or separated skin layers into an 

acceptor chamber is evaluated. Dosing is possible in infinite (typically >10 μl/cm2 or 

10 mg/cm2) or finite manner (<10 μl/cm2 or 10 mg/cm2). Continuous stirring of the 

acceptor phase minimizes the build-up of non-stirred water layers below the skin 

membrane. The temperature of the skin surface is held constant at 32 °C to mimic 

the surface temperature of skin in vivo. At pre-defined time intervals samples are 

removed from the acceptor via the sampling port and are analyzed for drug content. 

Other setups, namely flow-through cells, allow continuous sampling from the 

acceptor side.  

 

 
Figure  1-4 Static Franz diffusion cell. 
 

The cumulative drug amount permeated into the acceptor per area is plotted against 

time. Under infinite dosing the cumulative drug amount in the acceptor increases 

exponentially during an initial “lag-phase” until the amount permeated per time and 

area becomes constant at “steady state” (Figure  1-5). In contrast, with finite dosing a 

“steady state” is usually precluded as the donor concentration decreases continually 

during permeation. Therefore the acceptor concentration reaches a plateau before 

falling off again by dilution through sampling (Figure  1-5). 
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Figure  1-5 Evaluation of skin permeation experiment. The cumulative weight absorbed is plotted 
against time and approaches a straight line. Infinite dosing (bold black line), linear regression of 
steady-state part of the curve (red line), finite dosing (bold black dashed line). 
 

“Skin penetration” experiments require a processing of the skin following an 

incubation period. This processing involves destructive methods so that a time-

course cannot be evaluated as straight-forward as in permeation experiments. 

Drug levels within the SC can be assessed by sampling single corneocyte layers with 

adhesive tape (Figure  1-6).  

 

 
Figure  1-6 Tape-stripping of stratum corneum. Full thickness skin abridged after stratum 
corneum. Not drawn to scale. Adapted from (66). 
 

Within the deeper skin layers, that is, the epidermis and dermis, analogous 

information can be obtained using biopsy punches. After freezing, the punch biopsies 
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may be segmented parallel to the surface, by means of a cryo-microtome. The drug 

is then extracted from the tape-strips or cryo-cuts and quantified by a suitable 

analytical method, usually scintillation counting (for radioactive compounds) or high 

performance liquid chromatography. Provided the test substance yields a unique 

infrared signal, distinguishable from surrounding tissue and formulation components, 

attenuated total reflectance Fourier-transformation infrared (ATR-FTIR) spectroscopy 

is a fast, although technically sophisticated alternative method of quantification (67). 

It has been used to monitor dermal absorption of model substances like 4-

cyanophenol, to investigate depth-dependent changes in barrier properties or SC 

hydration, and investigate the effects of formulation excipients and penetration 

enhancers, such as oleic acid, on the SC barrier function (68-71). 

Results are reported as the drug amount absorbed per square centimetre of SC. In 

addition, correlating the local drug concentration with the skin depth will result in a 

detailed insight into the concentration gradient across the membrane, that is, the 

actual driving force for drug diffusion (Figure  1-7). 

 

 
Figure  1-7 Evaluation of skin penetration experiment. Normalized concentration-depth profiles of 
a drug as a function of time within the membrane of thickness l. Km/don is the membrane partition 
coefficient, cdon is the donor concentration. 
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Integrating skin concentration-depth profiles over the SC thickness is a measure of 

the cutaneous bioavailability (72). For comparison conventional in vivo methods 

make use of a pharmacodynamic response in the vasoconstrictor assay or sample 

from blood and urine. These methods suffer from subjectivity, low sensitivity, and a 

sophisticated analysis of biological samples among others. In addition, the majority of 

cutaneously applied drugs are aiming at a local response so that the systemic 

concentration may not necessarily be representative of the concentration at the 

target site. The vasoconstrictor or “skin blanching”-assay is an example where a local 

pharmacodynamic response is evaluated, namely the skin whitening due to a 

constriction of dermal capillaries. It must be stressed that this response is specific to 

the local administration of corticosteroids so that the assay cannot be transferred to 

other drugs. Unfortunately, an FDA guideline proposing tape-stripping as an 

alternative method to assess the bioequivalence of generics was later drawn back as 

a consequence of contradictory results of several studies testing the bioequivalence 

of tretinoin gel products (73, 74). 

Lately also optical segmentation methods have been adopted for purposes of skin 

penetration testing. Confocal laser scanning microscopy (CLSM) localizes a 

permeating molecule via its fluorescence. Fluorophores in the tissue are excited by a 

laser and fluorescence is collected particularly from the focal volume of the 

microscope using a pinhole. To obtain three-dimensional information a sequence of 

optical sections is collected in axial direction and later re-assembled in the computer. 

The axial resolution that can be achieved is ~1 µm with a maximum depth into the 

tissue of ~200 µm depending on transparency to the exciting laser light and 

scattering of the tissue. CLSM has been used to investigate the penetration of nano- 

and micro-sized carriers as well as fluorescent molecules qualitatively (58, 75-78). 

However, achieving quantitative information on concentration and depth is not 

straightforward as the fluorescence intensity is sensitive to the microscopic 

environment and subject to photobleaching.  

Disadvantages of CLSM such as a low light penetration depth, out-of-focus 

photodamage, out-of-focus photobleaching and low photon collection efficiency 

owing to spatial filtering by the pinhole can be overcome by multiphoton fluorophore 

excitation using near-infrared femtosecond laser pulses and high numerical aperture 

objectives (79). Multi-photon microscopy has for example been used to investigate 
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the penetration of PLGA-nanoparticles containing flufenamic acid into human 

abdominal skin (80). 

As with CLSM multi-photon microscopy is restricted to detecting fluorophores. In 

contrast confocal Raman microscopy opens up possibilities to detect a much greater 

variety of molecules. The Raman effect is based on inelastic scattering of light by 

chemical bonds and is shown by nearly all molecules and crystals. At a specific 

resonance frequency molecular vibrations are triggered that reduce the frequency of 

the scattered photon. Hence the vibrational spectrum offers chemical information on 

the illuminated molecule. Confocal Raman microscopy offers a non-invasive 

possibility to combine highly specific chemical information with three dimensional 

imaging. Momentarily the lower limit of quantification (LOQ) of around 0.1-1% [w/V] 

within the focal volume restricts its application. The technique has been used to 

investigate major compounds of the skin such as water, natural moisturizing factors, 

skin lipids (81, 82). Also first studies on the penetration of molecules, namely the 

penetration of metronidazol for the treatment of rosacea, were reported (83). 

1.3.2 Evaluation of experimental data 

Transport across the main skin barrier, i.e. the SC, is a passive process. Therefore 

Fick’s law of diffusion has been successfully applied to describe skin absorption. 

Fick’s first law assumes the rate of transport per unit area to be proportional to a 

concentration gradient. 

Equation  1-1 
x
cD

A
wJ

∂
∂

−==  

Where J is the flux, which is the rate of transfer per unit area (w/A), D is the diffusion 

coefficient, c is the concentration of diffusing species (the “diffusant” or “permeant”), 

and x is the space coordinate. 

Fick’s second law is a mass balance equation derived from Equation  1-1 (84). 

Treating skin simplistically as a homogeneous barrier with a constant diffusion 

coefficient D the diffusion equation is 

Equation  1-2 2
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An approximate solution for the steady state (i.e. the tangent to the linear part of the 

curve in Figure  1-5) is expressed via the linear equation 
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Equation  1-3 ⎟⎟
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Here c is the concentration in the membrane which is related to the measurable 

concentration in the donor via the membrane-donor partition coefficient according to  

donm/don cKc ⋅= , t is the time, and l is the membrane thickness. The boundary 

conditions for infinite donor and perfect sink acceptor are ∞=c  at x = 0 and 0=c  at 

x = l. Slope and intercept with the x-axis, i.e. steady state flux J and lag-time tlag are 

used as characteristic descriptors of permeation.  

Equation  1-4 don
m/don c
l

DK
J =  

Equation  1-5 
D
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6

2

lag =  

Normalizing steady state flux for cdon gives the apparent permeability coefficient kP, a 

parameter only determined by D, Km/don, and l, reflecting the interplay of membrane, 

substance, and formulation:  

Equation  1-6 
l

DK
c
Jk m/don

don
P ==  

Prerequisite for the outlined procedure are sufficient data points in the steady state 

part of the curve. This can be especially difficult for slow permeating substances as 

the analysis time in vitro is limited due to microbial contamination of the skin. Thus, 

for t < 2.4 tlag Equation  1-3 is an insufficient approximation of the diffusion equation. 

In this case an exact solution of Equation  1-2 (84) describing the whole curve is 

Equation  1-7 ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−−= ∑

∞

=
2

22

1
222

12
6
1

l
tπDnexp

nπ
t

l
DlcKJ

n

n

donm/don  

A transient solution describing concentration depth profiles within the membrane 

under infinite dose conditions as measured in penetration experiments is given by 

(84) 
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Here c(x,t) is the drug concentration at a defined position x within the membrane after 

a defined incubation time t, cdon is the donor concentration, Km/don, D, and l are the 

membrane-donor partition coefficient, the membrane diffusion coefficient and the 

membrane thickness respectively. 
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1.4 Strategies to model dermal absorption – state of the art 

1.4.1 Quantitative structure activity relationships (QSAR)  

Quantitative structure activity relationship models (QSAR) try to correlate a biological 

effect, in this case the skin absorption, to physicochemical and/or molecular 

properties, so-called descriptors, that are likely to affect it. This can be achieved 

based on mechanistic or empirical considerations. Descriptors can either be derived 

from experiments or calculated from molecular features. Due to the nature of QSARs 

the outcome of the predictions is always a number value. Therefore QSARs will not 

allow predicting the development of a process with time. Focussing on the problem of 

skin absorption this means that predictions are limited to steady state parameters. 

The majority of QSARs predicting skin absorption are mechanistically based. The 

QSAR-equation is basically a linear cause-effect relationship that is evaluated by 

multiple linear regression analysis of a database. From the model equation general 

information on influences on dermal absorption can be derived, e.g. from positive or 

negative, linear or exponential coefficients attributed to a certain descriptor. Still, the 

skin barrier itself is treated as a “black-box” and no primary assumptions on 

absorption processes are made.  

The majority of QSARs is developed for in vitro databases reporting logarithmical 

steady state permeability coefficient log kP. Following the rational of Equation  1-6 

molecular descriptors used in QSARs to estimate log kP are substitutes for Km/don and 

D a widely cited example being the Potts and Guy equation (85) 

Equation  1-9 MW'-logloglog Oct/w
0

P ⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛= cKb

l
D

k  

Log (D0/l) can be assumed to be a constant, a. Multiple linear regression of log kP 

upon log KOct/w and MW provided the following results for a, b, and c’ for a database 

of 93 permeabilities:  

Equation  1-10 MW.00610-log71.03.6log Oct/wP ⋅⋅+−= Kk  

Thus Potts and Guy could explain as good as 70% of the variability of the data, the 

remaining 30% variability being similar to what were to be expected for experimental 

log kP values (85). A variety of usually very similar models has been proposed for 

different datasets that are for example reviewed in (18). Similar equations have been 

proposed by numerous authors. 
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Part of the remaining variability can be explained if additionally descriptors for protein 

binding are included (86). For a subset of 37 non-electrolytes Potts and Guy 

developed a QSAR including only a molecular volume term but no descriptor of 

compound lipophilicity and added descriptors of solute hydrogen bond acidity (∑ H
2α ) 

and basicity (∑ H
2β ) achieving r2 = 0.94. 

Equation  1-11 4.85β3.93α1.720.0256MVlog H
2

H
2P −−−= ∑∑k  

Other researchers confirmed the importance of hydrogen bonding as a predictor in 

QSARs (87, 88). Magee et al. noticed that the impact of hydrogen bonding is 

increased for highly lipophilic compounds (89).  

 

For comparison in empirical models the cause-effect relationships are intrinsically 

non-linear and therefore free of primary mechanistic considerations. Still many of the 

descriptors used in empirical models are the same as applied in mechanistic QSARs 

so that they are meaningful in the context of skin absorption. Empirical models are 

justified for multi-factorial biological process such as skin absorption is e.g. 

influenced by the interplay of permeant, skin and formulation. A prominent method 

that has repeatedly been used to predict skin permeability are artificial neural 

networks (ANN) as reviewed recently by Yamashita et al. (90). These are inspired by 

information processing in the nervous system. The topology of an ANN consists of an 

input layer, an output layer, and a number of intermediate layers called hidden layers 

(Figure  1-8).  

Each layer has a certain number of units that are cross-linked with the units of the 

previous and the subsequent layer. These connections are basically the information 

pathways. Statistical learning methods are used to attach a certain weight to each 

connection. The units of the input layer can be identical to the descriptors used in 

mechanistic models. Accordingly, the output layer would be the logarithmical skin 

permeability coefficient log kP.  
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Figure  1-8 Schematic representation of a three-layer artificial neural network. Reproduced from 
(91). 
 

The quality of QSARs is influenced by homogeneity and size of the database. 

Especially older databases contain homologous or very closely related series of 

molecules with only a small number of compounds included, often collected in a 

single laboratory. This often leads to model equations that rely on a single molecular 

descriptor due to co-linearity of descriptors such as lipophilicity and molecular weight. 

This makes it impossible to distinguish between the effects of these two factors on 

the permeability of large hydrophobic molecules (18). Recent larger databases aimed 

to avoid this problem by allowing a higher heterogeneity by including data from 

different sources risking at the same time a higher variability and the inclusion of 

unreliable data (92, 93). The largest data collections that are the basis for most 

recent QSARs report log kP evaluated across human skin from aqueous vehicles. 

These are the Flynn database (97 log kP values of 94 compounds from 15 different 

literature sources (94)); the databases collected by Wilschut et al. (123 permeability 

coefficients of 99 compounds, (95)); and Vecchia and Bunge (170 permeabilities of 

127 compounds (96)). 

An inherent problem of QSARs is that their applicability is limited by the scope of the 

database. This concerns the range covered by the descriptors, e.g. penetrant size 

(MW < 700) and polarity (-1 < log KOct/w < 3) (97) as well as experimental conditions, 

such as donor vehicle and dosing regime.  

QSARs relying on databases of non-aqueous donor vehicle are scarce. In addition, 

the few that are available report very simple vehicles compared to the complex 
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semisolid formulations that are used in dermatology and especially in cosmetics. 

These usually predict maximum flux Jmax, i.e. flux achieved from a saturated vehicle, 

instead of log kP. In that case cdon in Equation  1-4 is substituted for the saturation 

solubility in the vehicle sdon.  

Equation  1-12 don
m/don s
l

DK
Jmax =  

Jmax and kP can be transformed into each other via sdon. 

Equation  1-13 donPmax skJ =  

Early databases report very homogeneous compounds such as alcohols and phenols 

(98, 99). A maximum flux database for 278 compounds has recently been published 

online with the inclusion criteria published in an accompanying paper (100).  

Km/don can be expanded to sm/sdon, where sm is the saturation solubility in the 

membrane, Equation  1-12 can be simplified as 

Equation  1-14 mmax s
l
DJ =  

Equation  1-14 implicates that maximum flux is independent of the donor vehicle and 

only depends on the solubility of the permeant in the membrane. Therefore, 

maximum flux QSARs are of particular value as they apply to all vehicles that do not 

interact with the skin. Especially for risk assessment Jmax is more suitable than kP as 

it can be used to estimate the performance of a vehicle.  

Kasting et al. (101) suggested that ( )bss Octm =  so that 

Equation  1-15 MVloglog Oct ⋅−⋅+= csbaJmax  

whereas Sloan and coworkers (102) emphasised the importance of aqueous zones 

of the SC membrane for transport and suggested 

Equation  1-16 ( ) MVlog1loglog wOct ⋅−⋅−+⋅+= csbsbaJmax  

They successfully applied Equation  1-16 (or derivatives of it employing logsIPM or 

logsMO instead of logsOct where IPM denotes isopropylmyristate and MO mineral oil) 

to fit a large diverse database of flux from aqueous vehicles (103, 104) as well as 

several datasets with non-aqueous vehicles such as IPM, propylene glycol and MO 

(102, 105-108). This could not be expected as both Equation  1-15 and Equation  1-16 

rely on the assumption that vehicle and membrane do not interact whereas effects on 

all parameters of Equation  1-12, i.e. D, Km/don and l, were reported for the 

investigated vehicles (109). 
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A major draw-back of QSARs developed for in vitro databases is that they are not 

immediately applicable to predict in vivo skin absorption. There additional 

mechanisms such as elimination from the site of action, dermal metabolism, and a 

different membrane hydration state play a role (110). In addition to making 

adjustments for non-aqueous vehicles predictions of in vivo skin absorption have to 

consider finite dosing. A finite dose depletes during the course of the experiment and 

the flux increases until it reaches a maximum before falling off again. Calculation of a 

true steady state flux Jss and a steady state permeability coefficient kP is precluded 

due to the non-existence of a steady state as well as continually changing donor 

concentrations. Therefore the significance of a predicted log kP according to the lines 

above is of limited value for the in vivo situation (111). 

Hostynek and Magee (97) proposed an alternative method to evaluate finite dose 

experiments. They defined a finite dose maximum flux Jmax’ as the maximum % dose 

absorbed per time and area which is not to be confused with in vitro maximum flux 

achieved at saturation of the vehicle and which is basically a steady state entity 

(Equation  1-17). Here “% dose” is defined in terms of “fraction absorbed of dose 

applied”. It can be used to calculate an equivalent to a steady state permeability 

coefficient: the maximum permeability coefficient kPmax’ was derived by dividing Jmax’ 

by the applied dose (Equation  1-18).  

Equation  1-17 [h]/%dosemaxmax' tJ =  

Equation  1-18 dose /appliedmax'Pmax' Jk =  

They proposed a QSAR to predict logkPmax’ that apart from molecular descriptors for 

lipophilicity, size and hydrogen bonding also included descriptors for vehicle and 

occlusion state to better account for in vivo exposure scenarios (r2 = 0.69). The 

database comprised of 51 values of logkPmax’ estimated from urinary excretion levels 

for a total of 28 compounds (13 phenols, 4 steroids and 11 structural unrelated 

compounds) applied as ethanol or acetone solution; non-, semi-, or fully occluded 

(97). A correlation of logkPmax’ with steady state permeability coefficients logkP 

predicted according to a modified Potts and Guy equation using only descriptors for 

lipophilicity and molecular size performed surprisingly well (r2 = 0.62) (97). Still, the 

application to a larger more diverse database of in vivo measured permeabilities 

especially for therapeutically relevant vehicles remains to be shown.  
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1.4.2 Pharmacokinetic models 

In pharmacokinetic models the skin layers are described as one or two well stirred 

compartments. Additional compartments symbolize the vehicle and the systemic 

circulation (or the receptor solution if the model shall be applied to diffusion cell 

experiments). Exchange between compartments is modeled via first order rate 

constants. Using ordinary differential equations provides average concentration 

inside a respective compartment at a specific time. Pharmacokinetic models of the 

skin can be combined with compartmental models of the body to account for 

systemic distribution and elimination. 

Pharmacokinetic models are often used for parameter studies where the influence of 

systematic changes in critical parameters (e.g. changes in cutaneous blood flow due 

to vasoconstriction or changes in skin hydration due to application of an occlusive 

dressing) on absorption and elimination is simulated (112-115). This allows 

visualizing effects that could be difficult to investigate experimentally.  

Alternatively the model equations can be fit to experimental data in order to 

determine rate constants of specific compounds (116, 117). It has been attempted to 

relate these rate constants to physiological (cutaneous blood flow, skin thickness) 

and physico-chemical parameters (apparent permeability-, diffusion-, and partition 

coefficients, flux, or lag time). As described in the previous section several of these 

parameters can be related to physico-chemical properties of permeants such as 

molecular weight and size so that the model can later be used in a predictive way. 

A major drawback of pharmacokinetic models is that the membrane is treated as a 

“black box” so that no information on absorption mechanisms and transport pathways 

is available. Nonetheless, pharmacokinetic dermal clearance models can be useful in 

combination with diffusion models of the upper skin layers for in vivo simulations 

(118).  

1.4.3 Diffusion models 

In comparison to QSAR and pharmacokinetic models that were presented before, 

diffusion models go beyond reproducing the skin membrane as a “black box”. The 

skin morphology and skin transport mechanisms are mirrored in the geometry of the 

model membrane and the descriptors used by the diffusion model. Similarly to 

mechanistic QSARs, Fick’s law is used to describe skin transport. Steady state 

solutions allow the prediction of lag-time, steady state flux and permeability 
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coefficient. In order to achieve a local and temporal resolution of the diffusion 

process Fick’s law is solved in space and time dimensions. The resulting partial 

differential equations are using finite difference, finite element or other numerical 

techniques if analytical solutions of the diffusion equation become too complicated. In 

addition to steady state parameters non-steady state diffusion models also allow the 

prediction of transient processes such as the concentration at a specific time and 

position inside membrane, donor, or acceptor (of an in vitro diffusion cell apparatus 

or the systemic circulation). Therefore among the modelling strategies introduced so 

far, non-steady state diffusion models are best suited to provide information on skin 

absorption mechanisms.  

The descriptors used in the predictions can be related to experimentally determined 

values. These include the membrane geometry which is derived from microscopical 

investigations and diffusion and partition coefficients in most cases. The 

microscopical resolution of the skin in the in silico model will be determined by the 

available computational power and by the degree to which reliable estimates of 

model input parameters can be generated. An evaluation of the predictive capability 

can effectively be achieved by comparing results of the predictions with 

experimentally generated validation data. 

In the following, published diffusion models will be analyzed and evaluated under 

these aspects. Requirements will be unearthed that will be the basis for the 

development of the experimentally based and validated diffusion model presented in 

this thesis. 



 

 

 

Table  1-1 Features of 1D-diffusion models. (non-ss: non-steady state; cdp: concentration-depth-profiles; sim: simulation; phys.-chem.: physico-chemical; 
exp.: experimental; cum.: cumulative; ---: not performed; ) 
Source Model complexity Input data  
 Skin 

layers 
Non-
ss 

cdp sim Special Fit to 
1D 

Phys.-
chem.

exp. 
Validation of predictions 

Chandrasekaran et al. 
1980; (119) 

1    Binding   x Compare Dss/Dtlag vs. cdon to exp. data  

Anissimov et al. 1999; 
(120) 

1 x  x Acceptor sampling rate, 
acceptor volume, 
clearance 

   Shape of cum. amount absorbed vs. time  
compared qualitatively to exp. data 

Kasting et al. 2006; (121) 1 x  x Finite dose,  
Volatile permeants 

   --- 

Kubota et al. 1993; (122) 1 x   Binding x   compare cum. amount absorbed vs. time to exp. 
data 

Kasting 2001; (111) 1 x  x Finite dose x   Fit model to exp. cum. amount absorbed vs. time; 
compare Jmax and % of dose absorbed vs. dose to 
exp. data 

Tang et al. 2002; (123) 1 x   Hydration effects x   compare cum. amount absorbed vs. time to exp. 
data 

Watkinson et al. 1992; 
(124) 

1 x x x Variable diffusion 
coefficient 

   Shape of cdp at ss  compared qualitatively to exp. 
cdp 

Gumel et al. 1998; (125) 1 x x x Binding   x; (119) compare graphical and analytical estimates of tlag 
Kalia et al. 2001; (72) 1 x x x Drug release from 

vehicle 
   --- 

Anissimov et al. 2001; 
(126) 

1 x x x Finite dose,  
Clearance 

   model fitted to exp. flux vs. time data and cum. 
amount absorbed vs. time data; fit and exp. 
compared qualitatively 

Anissimov et al. 2004; 
(124, 127) 

1 x x x Variable diffusion and/or 
partition coefficient 

   model fitted to exp. cdp; fit and exp. compared 
qualitatively 

Pirot et al. 1997; (128) 1 x x   x   compare Jss and kP to values derived from fitting to 
cdp at ss 

Rim et al. 2005; (129) 1 x x x Penetration enhancer 
Binding 

x  x; (119) compare Jss vs. cdon to exp. data from (119); 
compare Jss vs. time to exp. data 

Tojo et al. 1987; (130) 2       x compare solubility in SC to exp. data 
Krüse et al. 2007; (131) 2 x  x Exposure scenarios,  

Finite dose 
x   compare cum. amount absorbed vs. time to exp. 

data 
Manitz et al. 1998; (132) 3 x x  Penetration enhancers 

and reducers 
  x; (130) --- 



 

 

 

Table  1-2 Features of 2D- and 3D- single layer diffusion models. (cor.: corneocytes; non-ss: non-steady state; cdp: concentration-depth-profiles; sim: 
simulation; phys.-chem.: physico-chemical; exp.: experimental; coeff.: coefficient; MO: mineral oil; DPPC: dipalmitoyl phosphatidy choline; ---: not performed)  
Source Model complexity Input data 

 2D 
 

3D 
 

Lipid diffusion 
heterogeneous 

Cor. 
accessible

Non
-ss 

Cdp
 

Sim 
 

Special 
 

Fit 
to 
1D 

Phys.-
chem. exp. 

Validation of predictions 

Frasch et al. 2003; 
(133) x      x     --- 

Johnson et al 1997; 
(134) x  x       x  compare graph of lateral diffusion coeff. 

vs. MW (n=120) to exp. data (n=6)  
Mitragotri 2003; 
(135) x  x       x  compare logkP to literature data, n=83 

Barbero et al. 2006; 
(136) x   x   x     --- 

Michaels et al 1975; 
(137)  x   x   x   x  fit model to exp. KP vs. KMO/w data 

Poulin et al. 2001; 
(138) x   x      x  compare logkP to literature data, n=47 

Wang et al. 2006; 
(110) x  x x   x Hydration  x  

compare to a 2D model with isotropic 
lipid phase (139); compare mass transfer 
coeff. to exp. data for DPPC (140)  

Wang et al. 2007; 
(141) x  x x    Hydration  x  compare logkP to literature data, n=95 

Heisig et al. 1996 ; 
(142) x   x x x x     

compare shape of cdp to microscopical 
results for HgCl2 (53); compare estimates 
of tlag for different geometries to 
homogeneous model and literature 

Barbero et al. 2005; 
(143) x   x x x x     --- 

George et al. 2004; 
(144) x   isotropic 

SC x x x Binding    --- 

George et al. 2005; 
(145) x   isotropic 

SC x x x Binding   x; 
(119) compare tlag to a 1D model; (125) 

Chen et al. 2008; 
(146) x   x x x    x  compare cdp to exp. tape-stripping; (147) 

Rim et al. 2007; 
(148)  x   x  x     --- 

Feuchter et al. (149)  x  x x x x     --- 
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Table  1-1 and Table  1-2 give an overview over published diffusion models. Although 

these lists are far from being exhaustive, they provide a representative cross-section 

of published models. Three aspects are analyzed: (i) model complexity, (ii) source of 

input data, and (iii) validation of the predictions.  

The models are ordered by the complexity of the underlying membrane geometry, 

into one-dimensional (Table  1-1) and multi-dimensional models (Table  1-2) and by 

the number of skin layers that are included. The extent of the predictions is outlined 

shortly. In this context “ss” stands for models predicting steady state parameters. For 

geometrically simple models non-steady state expressions are very common while 

the majority of two-dimensional models are limited to steady state predictions.  

It is pointed out if non-steady state skin concentration-depth-profiles are included in 

the predictions. These provide time and space resolved concentrations inside the 

skin which contain information on skin absorption mechanisms. The prediction of SC 

concentration-depth profiles is particularly relevant to interpretation of studies using 

tape-stripping.  

A number of published approaches aim to improve the predictability of realistic 

exposure scenarios with the final goal to create a model for flexible in vivo 

applications. Especially 1D-diffusion models have been used to investigate specific 

questions of skin absorption. These include effects within the tissue such as 

hydration (123, 150), adsorption of permeants to a limited number of binding sites 

(119, 122, 125, 145), and the influence of permeation enhancers or reducers (129, 

132); as well as effects within donor and acceptor such as finite dosing (111, 121, 

131, 151), the permeation of volatile compounds (121), and clearance (120, 126).  

It is further indicated if simulation studies have been performed (120, 142, 152). By 

systematically varying input parameters of interest influences on permeation and 

penetration are investigated. Despite not using any experimental data these studies 

can be extremely valuable. Especially for complex, multi-dimensional models it is 

often difficult or impossible to perform the same studies experimentally to the degree 

required by the model as will be discussed later. 

 

Hardly surprisingly the discussion about the nature of the lipophilic and hydrophilic 

pathways across the SC is carried on in the published diffusion models leading to a 

vast variety of modelling strategies.  
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One-dimensional models assume a homogeneous membrane. This implies that 

transport characteristics are independent of the position in the membrane resulting in 

a single pathway that is taken by all molecules. Although oversimplifying the highly 

complex skin absorption process such models were successfully used e.g. to explain 

trans-epidermal water loss (TEWL) (153). One-dimensional models with variable 

diffusion- and/or partition coefficient were proposed to account for the vertical 

heterogeneity of the SC (124, 127). Morphological evidence for depth dependent 

changes in diffusivity and membrane affinity can be found in changes in intercellular 

lipid conformational ordering (124) and in the progressive degradation of 

corneodesmosomes towards the skin surface. This was proposed to lead to a 

different cellular cohesion within stratum disjunctum and stratum conjunctum (22) 

and differences in hydration capacity of the corneocytes situated at different depths 

in the horny layer (51).  

A steady state expression that integrates parallel diffusion pathways is achieved by 

adapting Ohm’s law to the diffusion problem (Figure  1-9). Parallel diffusion pathways 

are described as resistors connected in parallel so that the conductivity (or 

permeability) of the membrane equals the sum of the conductivity of the individual 

pathways.  

Equation  1-19 ∑
=

=
N

n
kk

1
n P,P,tot  

Accordingly, consecutive diffusion barriers can be modelled as serial resistors. 

Resistance R and permeability are related via kP = 1/R. This is used in multi-layer 

models that include the viable epidermis and/or the dermis to account for a diffusion 

hindrance of highly lipophilic compounds by the more hydrophilic skin layers (130, 

154, 155).  

Equation  1-20 ∑
=

=
N

n
RR

1
ntot  

This requires at least one vertical partition step that accounts for the change in 

lipophilicity between SC and epidermis. Each layer is characterized by a specific 

apparent diffusivity. For comparison, in single layer models the model membrane 

represents the SC or the epidermis with an adjacent acceptor compartment that 

provides a perfect sink or a defined clearance rate. 
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Figure  1-9 Permeation pathways and resistances in a two-dimensional skin model. 
 

Probably the majority of heterogeneous diffusion models are based on the “brick-

and-mortar” geometry. These mimic the biphasic SC structure as a brick wall with the 

corneocytes being the “bricks” completely embedded by the lipid bilayers being the 

“mortar”. As recently reviewed, shape and structuring of cellular and lipid phase may 

differ widely between individual models as does the representation of lipophilic and 

hydrophilic pathways across the membrane (110).  

 

The source of the input data for the various models can be categorized into three 

groups, namely those derived from (i) fitting to a one-dimensional solution of Fick’s 

law, (ii) physico-chemical properties and (iii) those measured experimentally.  

The input parameters for a single layer homogeneous model membrane in contact 

with a donor and acceptor solution are membrane thickness, membrane-donor and 

membrane-acceptor partition coefficients and membrane diffusion coefficient. 

Equation  1-4 to Equation  1-7 provide the adequate solutions to model concentrations 

in the acceptor compartment. Fitting Equation  1-8 to tape-stripping data the SC-

donor partition coefficient KSC/don and the characteristic SC diffusion parameter DSC/l2 

are derived. Assuming the tortuosity of the pathway to be negligible l equals the 

nominal membrane thickness so that DSC can be calculated. In vivo l can be derived 

from the TEWL (153). Fitted parameters can re-enter the model e.g. to perform 

predictions of special exposure scenarios.  

Pirot et al. used estimates of KSC/don and DSC from Equation  1-8 for a short term 

exposure to extrapolate on steady state concentration depth profiles (128). This is 

useful for example when evaluating potentially harmful compounds to minimize the 

exposure time.  
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Krüse et al. investigated possibilities of predicting in vitro finite dose exposure 

scenarios using KSC/don and DSC determined by fitting a one dimensional multi-layer 

diffusion model to in vitro, infinite dose data (131). The benefit of the approach is that 

infinite dose experiments are easier to perform as defined constant conditions are 

applied during the experiment. Also, they are less challenging concerning sensitivity 

of the analytical method involved.  

However, due to the morphological heterogeneity of the skin KSC/don and DSC are 

apparent parameters. This means that the affinity or diffusivity of a permeant is 

averaged over the whole SC. Therefore a fitting strategy is useless for deriving input 

parameters for multi-dimensional models with a microscopical resolution of the skin 

absorption process. These rely primarily on input parameters that are derived from 

physico-chemical properties, mainly lipophilicity and molecular size (Table  1-2). 

Which input parameters are required in detail will of course depend on the complexity 

of the model. A typical single-layer brick-and-mortar based model is depicted in 

Figure  1-10 with partition and diffusion schemes. In the model in Figure  1-10  the 

corneocytes are assumed to be accessible, partition and diffusion properties of lipids 

and corneocytes are homogeneous. The membrane is in contact with a well stirred 

infinite donor and a perfect sink acceptor that both do not contribute to the barrier 

resistance. Thus input on lipid-donor (Klip/don) and corneocyte-lipid partition 

coefficients (Kcor/lip) and lipid (Dlip) and corneocyte diffusion coefficients (Dcor) is 

required together with the donor concentration and geometrical information on the 

membrane dimensions. 

 

 
Figure  1-10 Partition and diffusion coefficients required in a brick-and-mortar model. Not drawn to 
scale, stratum corneum abridged after four layers of corneocytes. 
 

Membrane-donor partition coefficients are often replaced by solvent-solvent partition 

coefficients with simple organic lipophilic solvents aiming to mimic the solvent 
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properties of the rate limiting membrane, the SC. Mostly this is the octanol-water 

partition coefficient (KOct/w) but also mineral oil, olive oil or isopropyl myristate were 

proposed as model lipid phase (85, 107, 137). Exponential relationships of the form 

Equation  1-21 b
Oct/wm/don aKK =  

aim to account for a change in transport pathway with permeant lipophilicity. An 

exponent below one signals the SC lipophilicity to be lower than octanol. Accordingly, 

lipid- and corneocyte-aqueous donor partition coefficients Klip/don and Kcor/don have 

been calculated using varying sets for the regression parameters a and b (110, 135, 

141, 156).  

Equation  1-22 81.035.0 Oct/wlip/don KK ⋅=  

Equation  1-23 27.06.5 Oct/wcor/don KK ⋅=  

Dividing Kcor/don by Klip/don we obtain Kcor/lip. Basically, all such relationships available 

in the literature were developed for the same very small datasets consisting of a 

homologous series of hydrocortisone esters and a series of methyl substituted p-

cresols (157, 158). Anderson et al. determined Klip/don and Kcor/don in equilibration 

experiments with SC lipids extracted from human skin or delipidized SC sheets (157, 

158). The original set of estimates on Klip/don was later supplemented by 9 other 

substances (5 steroids, octanol, decanol, naphthol and lidocaine) by Mitragotri (159). 

However, Mitragotri measured the drug release from a piece of SC that had 

previously been saturated with the drug and fitted the release profile to a one-

dimensional solution of Fick’s law to receive Klip/don. This assumes partitioning and 

diffusion to be confined to the intercellular region of the SC lipid bilayers. Taking into 

account recent insights in the location of SC transport pathways it must be expected 

that the derived value for Klip/don represents not only the affinity to the SC lipids but 

also to the corneocytes. Later analyses often use combinations of the directly 

measured and fitted data decreasing the significance of the work (146, 160).  

Estimates according to Equation  1-22 and Equation  1-23 will provide apparent 

partition coefficients again averaged over the lipids or corneocytes respectively. For 

example Kcor/don will not differentiate between uptake into the corneocyte interior or 

adsorption to the corneocyte surface. Furthermore estimates according to Equation 

 1-23 will always apply to fully hydrated membranes. This is representative of the 

situation in the in vitro diffusion cell experiments but not of the in vivo situation. 

For the diffusion in solvents D can be assessed from the Stokes-Einstein equation 
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Equation  1-24 
r

TkD
πη6
B

⋅
=  

Here kB is the Boltzman constant, T is the temperature, η is the dynamic solvent 

viscosity and r is the radius of the diffusant assuming a spherical shape of the 

molecule. Poulin et al. used Equation  1-24 to receive Dlip supplementing η by the 

viscosity of olive oil (138).  

From other lipid bilayer systems, notably liposomes, it is known that solute transport 

is highly anisotropic and size dependent. Thus the structural heterogeneity of the lipid 

bilayers should translate into spatial variations in partition and diffusion coefficients. 

For a relatively small set of fluorescent labels and molecular oxygen lateral diffusion 

coefficients in human SC lipids were determined by FRAP (fluorescence recovery 

after photobleaching) or EPR (electron paramagnetic resonance spectroscopy) (156). 

Johnson et al. proposed that lateral diffusion coefficients sufficiently explain the SC 

permeability. This advocates for a continuous path across the SC that can be 

travelled by lateral diffusion. However, Johnson et al. used a single-layer brick-and-

mortar model with impenetrable corneocytes which casts doubt on their conclusion 

as the observed result could also result from ignoring trans-corneocyte diffusion 

(Table  1-2). Thereupon, several models were published assuming anisotropic lipid 

diffusion treating the problem in different ways. 

Mitragotri expressed the steady state SC permeability as the sum of the permeability 

via lateral diffusion of lipid components, free volume diffusion, and diffusion via 

shunts such as skin appendages, and aqueous pores, i.e. imperfections of the lipid 

bilayers (135).  

Equation  1-25 pores P,shunt P,volume free P,lateral P,SC P, kkkkk +++=  

Equation  1-25 assumes transport to be confined to the lipid region or the skin 

appendages while the corneocytes are impermeable. Thus the corneocytes simply 

serve as obstacles reducing diffusive area and increasing path length (133, 156). 

Preferences for one or more of the pathways will be determined by size and 

lipophilicity of the permeants (135). Lateral and free volume diffusion coefficients 

were estimated from scaled particle theory. This theory relates diffusion coefficients 

to the work required to create a cavity in a lipid bilayer to allow solute motion (135). 

Diffusion is described as a statistical process assuming that a molecule of a defined 

size requires the formation of a sufficiently large hole right next to it:  
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Equation  1-26 ( )MV-exp0 ⋅= cDD  

Here c is a constant inversely proportional to the average free-volume available for 

diffusion, MV is the molecular volume of the diffusant, and D0 is the diffusivity of a 

hypothetical molecule with vanishingly small MV (85). This requires information on 

the size of the permeant and on structural information of the lipid bilayers. The latter 

were adopted from bilayers of the model lipid dipalmitoyl phosphatidycholine. These 

are probably not fully representative of the SC lipid bilayer composition and 

organisation (see section  1.2).  

Heterogeneous lipid diffusion was also realized in the model of Wang et al. (110), 

however fully relying on input parameters derived from relationships that had been 

developed for human skin (110, 134, 135). In addition, they assumed the 

corneocytes to be accessible for all solutes and therefore consider a different nature 

of lipophilic and hydrophilic pathways  

Equation  1-27 polar P,comp P,SC P, kkk +=  

Here kP, comp is the permeability across defect-free SC due to lateral diffusion in the 

plane of the lipid bilayers, trans-bilayer crossing, and hindered diffusion across the 

keratin network within the corneocytes. By differentiation between lateral bilayer 

diffusion and trans-bilayer crossing lipid diffusion is considered to be anisotropic. 

kP, polar is the contribution of defects and finds its closest comparison in Mitragotri’s 

analysis in kP, shunt and kP, pores (110, 141).  

In contrast to the intercellular lipid bilayers, corneocyte diffusion is usually considered 

to be isotropic. It is described as a fraction of the diffusivity in water Daqu in order to 

account for the presence of intra-cellular keratin fibres. Early analyses compare the 

corneocyte interior to an aqueous gel taking Dcor to be roughly one-tenth of Daqu. For 

compounds with a molecular weight between 300 and 500 Da a value of  

2 x 10-7 cm2/s was considered appropriate (137, 161). Other authors used hindered 

diffusion theory in media with fibrous obstacles to find a factor to relate Dcor to Daqu. 

This theory acknowledges steric as well as hydrodynamic hindrance due to the 

keratin microfibrils (110). For the diffusion of small compounds in polymers as well as 

in different cell membranes it could be shown that the relationship between molecular 

size and diffusion coefficient is exponential rather than linear (162). 

Equation  1-28 c
relMW −= 0DD  
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D0 and c are constants characteristic of the polymer or membrane at a defined 

temperature and MWrel is the molecular weight of the diffusing compound relative to a 

reference molecule. This relationship was used to describe corneocyte diffusion 

where the keratin polymeric network slows down transport compared to diffusion in 

bulk water.  

Whether the underlying assumptions of the above approximations are appropriate is 

often questionable, even more so if the predictions are not validated adequately. This 

is mostly a consequence of non-availability of alternative experimental methods to 

determine the input data in the resolution required by multi-dimensional models. As 

can be seen in Table  1-1 and Table  1-2 only a minority of models rely on 

experimentally determined input data. These are foremost one-dimensional models 

as descriptors such as membrane-donor partition coefficient Km/don or apparent 

membrane diffusivity Dm can be measured relatively easily in equilibration and/or 

diffusion experiments. Experimental techniques for measuring partition coefficients in 

the resolution of a multi-dimensional model have been published (52). However, the 

set of hydrocortisone esters and methyl substituted p-cresols by Raykar et al. is 

currently the only one reporting experimental data on Klip/don and Kcor/don (157, 158). 

To our knowledge these were never used in a diffusion model for predicting skin 

absorption. Suitable experimental methods for estimating the remaining input 

parameters for a two-dimensional model are still missing and have to be developed. 

 

The last column in Table  1-1 and Table  1-2 deals with the validation of the 

predictions. The focus is here on the validation of the outcome and not of the 

descriptors used as input. Also we refrain from discussing the validation of the 

computation (e.g. numerical calculations that are validated via analytical solutions). In 

case of steady state models these are the same parameters as used in QSARs i.e. 

(log) kP, Jss, and in addition the lag-time tlag. The main benefit is that steady state 

parameters are available in reasonably large databases for at least a number of 

vehicles and with satisfactory accuracy as described in section  1.3.1. Several models 

have been applied to predict permeability coefficients for a large number of 

compounds (e.g. Mitragotri (135), Johnson et al. (134), Wang et al. (141)). Requiring 

detailed input data for all compounds these models are invariably based on input 

data derived from physico-chemical properties of the permeants. The disadvantages 

of steady state predictions have been discussed at great length in section  1.3.1. In 
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addition it shall be noted that kP, Jss and tlag are condensed parameters which can 

mask experimental errors, even more so if logarithmical values are used. A more 

rigorous model validation is achieved for non-steady state predictions. These usually 

imply cumulative amount permeated into the acceptor compartment, or flux versus 

time profiles. These can easily be acquired in a simple diffusion experiment so that 

their use as validation tools is relatively common among the modeling strategies.  

In contrast, models predicting concentration-skin depth profiles necessarily imply 

tape-stripping to generate the validation data. These are much rarer cited in literature 

due to the extensively higher work load involved as this is a destructive technique. 

The only analyses validating their model with concentration depth profiles by 

comparing with experimental data are the 1D-model of Pirot et al. for the diffusion of 

4-cyanophenol (128). Chen et al. are actually using the same dataset for the 

validation while working with a two-dimensional model (146). Unfortunately their 

brick-and-model suffers from corneocyte-offset ratio that is not representative of 

human skin. 

 

In summary, with increasing model complexity three major problems occur that up to 

now could not be solved satisfactorily. Despite years of research our insight into the 

mechanisms of skin penetration is still incomplete. While individual points have been 

focussed repeatedly from different angles, others remain “uncharted territory”. This is 

especially true for the heavily discussed question of the localisation of the hydrophilic 

pathway(s) and the treatment of the corneocytes. As a consequence the first and 

most important question is which properties of the skin membrane and mechanisms 

of permeation are relevant and thus need to be included.  

Second, reliable input data for models displaying skin absorption at micrometer-scale 

is missing. In many cases approximations are used to unknown expense of the 

model accuracy. So far the degree of resolution achievable in the computation is not 

available in the experiment.  

And third, although a number of very detailed models are available these are often 

not validated adequately. This hampers the value of the predictions as the accuracy 

of the model cannot be evaluated objectively.  
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2 AIM OF THE THESIS 

Diffusion models are the most promising among the modelling strategies for 

predicting skin absorption. Especially since latest developments in computer 

technology allow to develop diffusion models with an increasing complexity that 

achieve a more and more realistic representation of the complex diffusion 

environment of human skin. Accurately predicting skin absorption is relevant in a 

variety of fields such as pharmaceutics, cosmetics and risk assessment. 

In order to build a reliable model the quality of input and validation data set are 

decisive. They are preferably collected in experiments with human skin. However, 

complex diffusion models relying on a reliable experimentally derived dataset and 

validated on an experimental basis are currently not available. Therefore, the aim of 

the thesis was to develop such an experimentally founded diffusion model with 

geometry and transport characteristics mimicking the situation in human skin.  

The following strategy has been used. First a model was proposed that according to 

current knowledge will likely provide a realistic representation of skin absorption 

(Chapter  0 3). Then methods were developed to measure all input parameters 

experimentally with human skin (Chapter  4). These data were generated for two 

model compounds. As model compounds FFA and CAF were selected that feature 

different physicochemical properties and therefore different skin absorption 

characteristics. The model predictions was validated by comparing concentration-

depth profiles produced in the simulation with experimentally generated tape-

stripping profiles (Chapter  4 and 5). Discrepancies between model and experiment 

hint at previously unconsidered influences that should then be investigated 

experimentally (Chapter  6) in order to be implemented in the model.  

The computational work was performed in the group “Simulation in Technology” at 

Heidelberg University directed by Prof. Dr. Gabriel Wittum. Numerical techniques to 

solve the diffusion equation for the non-steady state problem of drug diffusion are 

well established in this group. These had already been applied to the problem of skin 

absorption in a two-dimensional diffusion model of the human SC earlier by Heisig et 

al. (142). The original model had a “brick-and-mortar” geometry assuming 

homogeneous corneocyte and lipid phases with permeable corneocytes and constant 

partition and diffusion coefficients.  
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However, the original model had only been applied for theoretical simulation studies 

while the predictive capability had never been evaluated on an experimental level. 

Now this model will be developed further and put on an experimental basis.  

 

The thesis will be divided into 4 chapters entitled: 

 

Chapter  3 “Model development”  

Chapter  4 “In silico model of skin penetration based on experimentally determined 

input parameters. Part I: Experimental determination of partition and diffusion 

coefficients”  

Chapter  5 “In silico model of skin penetration based on experimentally determined 

input parameters. Part II: Mathematical modelling of in vitro diffusion experiments”  

Chapter  6 “The role of corneocytes in skin transport revised – a combined 

computational and experimental approach” 
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3 MODEL DEVELOPMENT 

In this section a model will be proposed that according to current knowledge provides 

a realistic representation of absorption through human skin. At first the relevant 

morphological and geometrical features of human skin need to be rebuilt in the model 

membrane. The model should be general, i.e. it should apply to a maximum variety of 

molecular penetrants. Note that this excludes transport of particulate formulations 

which allows us to ignore the contribution of appendageal transport. As outlined in 

section  1.2 the trans-appendageal route is especially important for the absorption of 

nano-particulate carriers whereas it plays a negligible role for the absorption of 

molecular penetrants save but during the very initial phase. For the majority of 

molecules the SC is the main barrier. For highly lipophilic compounds an additional 

hindrance by an unfavourable partitioning into the hydrophilic viable deeper skin 

layers (DSL) will have to be considered (154). Therefore in order to integrate this 

particular group of compounds a two-layer model is required. A first layer represents 

the SC. Below, a second layer represents the DSL. This will be a homogeneous 

compartment representing both the viable epidermal layers as well as the dermis. 

Despite that both strata contain different physiologically specialized cell populations 

the main properties determining permeability will be very comparable for both. These 

are notably their elevated hydrophilicity compared to the highly lipophilic SC and the 

presence of fibres which will influence the diffusion coefficient. For comparison it is 

common practice in skin permeation studies to work with heat separated epidermis 

as well as split skin or dermatomized skin which contains parts of the dermis in 

addition to the epidermis.  

As repeatedly shown the SC geometry (such as form, dimensions and offset ratio of 

the corneocytes, dimensions of the lipid channel) is essential for the exceptional 

barrier properties of the skin (136, 142, 143). Therefore, multi-dimensional models 

must be considered superior to a homogeneous representation of the skin 

membrane. As outlined in section  1.2 there is increasing evidence that a trans-

cellular pathway needs to be considered for at least some permeants. Therefore, 

models considering accessible corneocytes will be applicable to a wider range of 

compounds. In conclusion the model SC will feature the classic “brick-and-mortar” 

geometry with the dimensions derived from microscopical investigations with human 

skin. An unsolved question is which degree of structuring of the individual SC phases 
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is relevant for permeation. From the previous chapter it is clear that a consultation of 

literature cannot help at this task. There is no conclusive decision on how the internal 

heterogeneity of the SC should be treated. In contrast among the wide variety of two-

dimensional models this problem is treated very differently. Keep in mind for example 

the elaborate treatment of anisotropic transport in the lipid phase by Mitragotri or 

hindered transport across corneocytes by Wang et al. (110, 135, 141). The approach 

pursued in the course of this work will be to start with the simplest possible option, 

i.e. by assuming homogeneous lipid and corneocyte phases. Therefore the 

descriptors used in the model will be: (i) the lipid-donor partition coefficient Klip/don; (ii) 

the corneocyte-lipid partition coefficient Kcor/lip; (iii) the DSL-lipid partition coefficient 

KDSL/lip; (iv) the lipid diffusion coefficient Dlip; (v) the corneocyte diffusion coefficient 

Dcor; (vi) and the DSL diffusion coefficient DDSL. All input parameters used in the 

predictions will be of experimental origin (either measured directly or if this is not 

possible derived form experimental data). The accuracy of the predictions will be 

evaluated by comparing experimental and predicted time resolved skin 

concentration-depth profiles. Therefore, approximations such as used by model 

descriptors that are derived from physico-chemical properties of the permeants will 

be avoided. This approach will allow detecting shortcomings of the model such as 

would be provoked by an insufficient representation of model membrane 

heterogeneity. These will then have to be investigated in order to be integrated in the 

model and improve the predictions. 
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4 IN SILICO MODEL OF SKIN PENETRATION BASED ON EXPERIMENTALLY 
DETERMINED INPUT PARAMETERS. PART I: EXPERIMENTAL 
DETERMINATION OF PARTITION AND DIFFUSION COEFFICIENTS 
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4.1 INTRODUCTION 

Pharmaceutical and cosmetic industries as well as governmental institutions share a 

common interest in skin investigation such as bioavailability studies, risk assessment 

of products and consumer protection among others. In vivo studies with humans are 

considered the “gold-standard”. As these are tied to ethical, analytical and economic 

concerns much effort has been put into developing reliable in vitro methods 

preferentially using human skin. Still the high demand for human skin conflicts with 

an insufficient availability. Thus, animal or bioengineered skin is often used 

alternatively. However, large interspecies variabilities and insufficient barrier 

formation limit their significance for the situation in man.  

Therefore mathematical modeling may be a potential alternative. In silico approaches 

include predicting the apparent permeability coefficient kP of various substances from 

easily accessible physical constants like descriptors for molecular weight, lipophilicity 

and solvation parameters (85, 163-165). Furthermore one- or two-compartmental 

pharmacokinetic models determine rate constants from physicochemical and 

physiological skin properties such as partition and diffusion coefficients, blood flow 

and skin thickness (114). These allow for estimating the absolute amount present 

within a certain compartment after a defined time. Apart from that diffusion models 

additionally predict drug concentrations locally and temporally by solving the partial 

differential equations of Fick’s 2nd law of diffusion (166). These models describe skin 

penetration as a series of partition and diffusion steps which may be quantified in 

terms of partition coefficients K and diffusion coefficients D.  

Several diffusion models with a varying degree of complexity are currently in use. 

Accordingly the estimation of model parameters becomes more and more 

challenging. The simplest cases consider a homogeneous SC such as the two 

dimensional multi-layer diffusion model of Manitz et al. (132). Here input data on 

KSC/don, KSC/Epi, KEpi/Der, Ddon, DSC and DDSL are sufficient. These are readily available 

for several compounds from literature (130, 154). Subscripts indicate the respective 

skin layers involved in the partition or diffusion process (don, SC, lip, cor, Epi, Der 

and, DSL for donor, SC, intercellular SC lipids, corneocytes, epidermis, dermis and, 

DSL, i.e. viable epidermis plus dermis). More sophisticated models describe the SC 

geometry as “brick-and-mortar”, the corneocytes being bricks and the lipids acting as 

intercellular mortar (137). If only the lipoidal pathway is considered this requires input 
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data on Klip/don, and Dlip (134). As so far partition coefficients with extracted SC lipids 

have only been measured for a single set of compounds several usually very similar 

correlations of Klip/don with KOct/w according to a power law (linear free energy 

relationship) have been suggested (150, 157, 160). Direct measurements of lateral 

diffusion coefficients of a small set of larger compounds (223-787 Da) and molecular 

oxygen in extracted SC lipids have been attempted by fluorescence recovery after 

photobleaching (FRAP) (156, 167). From this work also a general relationship of Dlip 

on molecular weight could be discerned. If apart from that the model allows 

corneocyte access it becomes crucial to break down the consecutive partition and 

diffusion steps experimentally according to the anatomical heterogeneity of skin. 

Similarly to Klip/don Nitsche et al. related Kcor/don to KOct/w via a power law (150). 

Estimates of Dcor have been proposed on the basis of Phillips et al.’s analysis of 

hindered diffusion in media with fibrous obstacles and for the special case of water 

by spin-echo NMR measurements of mobile protons in guinea pig footpad SC (168, 

169). Using a two-dimensional brick and mortar diffusion model with homogeneous 

lipid and corneocytes phases Heisig et al. were able to simulate non-steady state 

drug permeation through the SC (142). Based on realistic dimensions the time 

resolved location of a drug within the SC was examined by systematically varying 

Kcor/lip, Dlip, and Dcor. An accurate resolution of the lipid channel has been attempted 

in (110). The authors introduced the dimensionless parameter R to quantify the 

relative extents of lateral lipid diffusion and trans-bilayer hopping.  

However, up to now an adequate conjunction of all these elements is missing, i.e. a 

brick-and-mortar diffusion model that is based on experimental input data on all 

relevant partition and diffusion coefficients and that is validated on the basis of 

experimental concentration-skin depth profiles. 

Therefore, we further elaborate the model of Heisig et al. (142). By now the model 

has been extended by increasing the number of corneocyte layers to 16 and adding 

a homogeneous epidermal/dermal compartment (cf. section  5). Thus the model 

membrane is composed of three different phases: corneocytes, surrounding lipids 

and the DSL. A graphical representation of the relevant parameters is depicted in 

Figure  4-1. 
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Figure  4-1 Schematic picture of skin anatomy and the main partition and diffusion coefficients 
involved in skin transport. 
 

It is assumed that transport within a phase is due to Fick’s second law. On the 

interfaces between two phases partition coefficients Kcor/lip and KDSL/lip allow for an 

abrupt change in concentration. The flux across an interface is continuous due to 

mass conservation. For detailed information on model geometry, relation to 

measured physical quantities and applied numerical methods refer to chapter  5. This 

study presents experimental methods and calculation techniques to determine 

partition and diffusion coefficients in detail as needed for the in silico diffusion model 

presented in chapter  5.  

 
Table  4-1 Overview over partition and diffusion coefficients needed for conclusive in silico 
diffusion modeling of skin transport and their acquisition method. Direct parameters may be 
determined in experiments. Derived parameters are not directly accessible experimentally but may be 
determined from experimentally available data. These together with a reference of the calculation 
method are presented under “source”. 
 
coefficients direct derived source 
Klip/don x   
Kcor/lip  x (KSC/don ; Klip/don ; Equation  4-9) 
KDSL/lip  x (Kcor/lip ; KSC/DSL ; Equation  4-10) 
Dlip x   
Dcor  x (DSC ; Dlip ; Kcor/lip ; (170)) 
DDSL x   
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Several input parameters such as Klip/don, Dlip and DDSL are determined 

experimentally. Other parameters needed for conclusive description of skin 

absorption, i.e. Kcor/lip and KDSL/lip, cannot be measured directly and therefore are 

estimated from accessible experimental data (Table  4-1). Furthermore time 

dependent concentration-depth profiles through the SC and the DSL are measured. 

These are employed to validate the calculated drug penetration profiles in chapter  5. 

4.2 MATERIAL AND METHODS 

4.2.1 Material 

The following materials and equipment were used: static Franz diffusion cells type 

6G-01-00-15-12 (Perme Gear, Riegelsville, PA); BCA-assay kit (Sigma Aldrich 

GmbH, Steinheim, Germany); dialysis membrane MW-cut-off 12-14 kDa (Medicell 

International Ltd, London, Great Britain, VWR Darmstadt, Germany); Centrisart I cut-

off 20 kDa (Sartorius AG, Goettingen, Germany), Durapore® membrane filters, 

polyvinylidene fluoride, 0.22 µm, 5 cm (Millipore, Schwalbach, Germany); Multifilm 

Kristallklar (Beiersdorf AG, Hamburg, Germany); cryomicrotome (HR Mark II, model 

1978. SLEE, Mainz, Germany); centrifuge (Universal 30RF Hettich Zentrifugen, 

Tuttlingen, Germany); freeze dryer (Alpha 2-4 LSC, Christ, Osterode, Germany); 

thickness meter (model 5041, type (VRZ) with tactile probe (MT) 10B; accuracy 

±1 µm; Heidenhain Company, Taunreut, Germany). 

4.2.2 Chemicals 

The following chemicals were used: FFA (MW 281.24 g/mol; logKOct/w 4.8; pKa 3.9 

(171)) CAF (MW 194.2 g/mol; logKOct/w -0.083; pKa 1.39 (172)), sodium chloride, 

potassium chloride, methanol, chloroform, trypsin type I from bovine pancreas, 

standard and reference lipids for HPTLC analysis: ceramide III and IV, triolein, oleic 

acid, cholesterol and cholesteryl oleate were provided by Sigma Aldrich GmbH, 

Steinheim, Germany. Sodium azide, acetonitrile and sodium monohydrogen 

phosphate dihydrate were provided by Fluka Chemie AG, Buchs, Germany. Citric 

acid monohydrate, potassium dihydrogen phosphate, orthophosphoric acid, diethyl 

ether, n-hexane, glacial acetic acid 100%, petrolether, isopropanol, HPTLC plates, 

silicagel 60 non-fluorescent, copper sulphate pentahydrate were provided by Merck, 

Darmstadt, Germany. Keratin from bovine hoof and horn was provided by ICN 

biomedicals, Aurora, Ohio.  
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4.2.3 Composition of buffers 

All buffer substances were of analytical grade and were prepared with purified water.  

Phosphate buffered saline (PBS) pH 7.4: 1 l contains Na2HPO4 2H2O 1.44 g, KH2PO4 

0.2 g, NaCl 8 g, KCl 0.2 g. 

Soerensen phosphate buffer pH 7.4: 1 l contains Na2HPO4 2H2O 9.2 g, KH2PO4 2 g. 

Buffer pH 2.2: 1 l contains citric acid monohydrate 20.8 g, Na2HPO4 2H2O 0.4 g. 

Buffer pH 2.6: 1 l contains orthophosphoric acid 1.16 ml, KH2PO4 2.04 g. 

4.2.4 Skin samples and skin preparation techniques 

Skin samples were taken from Caucasian female donors undergoing abdominal 

surgery with the approval of the ethic committee of the Caritas-Hospital Lebach, 

Germany. After removal of subcutaneous fatty tissue full thickness skin was stored at 

-26 °C for a maximum of 6 months after surgery. For details see Wagner et al. (173).  

4.2.4.1 Preparation of stratum corneum sheets 

SC sheets were prepared according to the method of Kligman (174) by two times 

24 h immersion of cleaned full thickness skin pieces of approximately 12 cm2 in 

0.15% (w/v) trypsine in PBS. In between as well as afterwards the pieces were 

washed three times with PBS and finally freeze dried. Freeze dried membranes were 

kept in a freezer at -18 °C for a maximum of 6 months after surgery.  

4.2.4.2 Preparation of corneocyte sheets 

Isolated freeze dried SC sheets were delipidized with 5 ml chloroform/methanol (2:1 

v/v) under occasional agitation. After 24 h delipidized membranes were removed 

from the extraction solution, washed three times in chloroform/methanol (2:1 v/v) and 

allowed to dry on air under ambient conditions. 

4.2.4.3 Preparation of dermis sheets 

Heat separation of full thickness skin was done according to Kligman (174) by 90 s 

immersion in water of 60 °C. The epidermis was peeled off with forceps. Leftovers 

only comprised of dermis. 

4.2.5 Lipid coated membranes 

SC lipids were extracted by 24 h immersion of SC in 5 ml chloroform/methanol (2:1 

v/v). Organic solvents were removed in a nitrogen stream. Lipids of three donor skins 
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(each of a surface area of roughly 60-80 cm2) were combined, re-dissolved in 

chloroform/methanol (2:1 v/v) and adjusted to a final concentration of 2.5% (w/v). 

Durapore® membrane filters were cut into 8 approximately equal pieces (surface 

area per piece about 4.9 cm2) with a scalpel and were coated by 30 times dipping 

into this solution. After each dip organic solvents were allowed to evaporate. Coated 

membranes were equilibrated at 70 °C for 10 min (175). Filters were stored in a 

drying cabinet at 32 °C for 2-5 d before use as such treatment results in the lowest 

variability of permeability and partition data (3). 

The reproducibility of the coating was ascertained by measuring the increase of 

thickness and mass. Membrane thickness was determined with a thickness meter 

equipped with a tactile probe to an accuracy of ±1 µm averaging values measured at 

5 different sites (before: 114 ± 6 µm; after coating: 203 ± 23 µm). Membrane weight 

was determined with an analytical balance to an accuracy of ±0.01 mg (before: 

15.82 ± 0.25 mg; after coating: 38.35 ± 2.77 mg). 

4.2.6 Characterization of extracted stratum corneum lipids by WAXD 

Wide angle X-ray powder diffraction data were collected at room temperature with an 

X’Pert PRO PRO θ-θ powder diffractometer (PANalytical, The Netherlands) with 

parafocusing Bragg-Brentano geometry using CuKα radiation (λ = 1.5418 Å, 

U = 40 kV, I = 30 mA). Data were scanned over the angular range of 15-30° (2θ) with 

a Xe gas proportional detector equipped with a secondary curved monochromator. 

Data evaluation was performed in the software package HighScore Plus.  

Lamellar spacings, d, were calculated according to d = nλ/2sinθ, where n is the 

diffraction order, λ the wavelength of the X-ray beam and θ the scattering angle. 

4.2.7 Characterization of extracted stratum corneum lipids by DSC 

Differential scanning calorimetry was performed using a thermal analysis data system 

(DSC Q100, TA Instruments, Alzenau, Germany). The instrument was calibrated 

using indium as standard. Samples of 3 - 6 mg were heated in sealed aluminium 

pans from 0 to 120 °C at a scanning rate of 5 °C/min under nitrogen purge, with an 

empty aluminium pan as reference. 
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4.2.8 Characterization of extracted stratum corneum lipids by HPTLC 

Separation and quantification of extracted SC lipids has been performed exactly as 

described elsewhere (176). In short, dried and weighed extracted SC lipids were 

diluted with chloroform/methanol 2:1 to an appropriate degree and 1 - 5 µl were 

applied to HPTLC silica gel plates together with standard solutions (Triolein and oleic 

acid 0.7 - 15 µg; sterols and ceramides 0.7 - 7 µg). Solvent systems and 

quantification methods were the same as described by Netzlaff et al. (176). 

4.2.9 Determination of drug concentration-skin depth profiles 

SC- and DSL- concentration-depth profiles were analyzed by tape-stripping of the SC 

and cryo-sectioning of the DSL (173). Briefly, full thickness skin was incubated in 

static Franz diffusion cells with a diffusion area of 1.76 cm2 and an acceptor volume 

of 12 ml at 32 ± 1 °C. Soerensen phosphate buffer pH 7.4 containing 0.05% w/v 

sodium azide was employed for both donor and acceptor solutions. In preliminary 

experiments it was ascertained that preservation with 0.05% w/v sodium azide did 

neither influence analytics nor penetration. Infinite dose conditions were ascertained 

using a donor volume of 500 µl containing 1 mg/ml of FFA or 12.5 mg/ml of CAF. A 

higher donor concentration was chosen for CAF due to analytical reasons. For both 

chemicals this corresponds to ≈50% of saturation concentration. In no experiment the 

donor concentration decreased more than 10% of the initial value. The acceptor 

concentration reached a maximum of 0.99% for FFA and 0.22% for CAF of the 

saturation concentration (i.e. 1.97% and 0.43% of the donor concentration, 

respectively) after the maximum incubation time of 24 h. Thus at all times acceptor 

concentrations were smaller than 10% of the saturation concentration, so that perfect 

sink conditions were assured. After 1, 2, 6, 14 or 24 h remaining donor was removed 

and the surface was cleaned with dry cotton-swabs. Afterwards the skin was 

horizontally segmented first by tape-stripping followed by cryo-cutting according to 

Wagner et al. (173). As a slight modification the first two instead of only one strip 

were discarded to prevent potential contamination by residual drug on the skin 

surface. Due to analytical reasons tape-strips were combined in pools according to 

the following scheme: #1+2 = discarded, #3-5 = pool 1, #6-10 = pool 2, #11-

15 pool 3, #16-20 = pool 4. Surface parallel cuts of the DSL were collected according 

to the following scheme: #1 = incomplete cuts, #2-5 = 4 x 25 µm sections, #6-
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9 = 4 x 25 µm sections, #10-11 = 2 x 25 µm sections and #12 = rest of the residual 

tissue.  

FFA was extracted by 2 h shaking at room temperature with HPLC mobile phase. 

CAF was extracted in a shaking water bath for 2 h at 60 °C with phosphate buffer 

pH 2.6 (identical to buffer used in HPLC mobile phase). Strips were extracted with 

3 ml of solvent whereas 1.5 ml was used for cuts for both substances. The recovery 

of the extraction method is 95.35 ± 4.8.1% for FFA (173) and 87.37 ± 5.07% for CAF. 

Concentration-skin depth profiles for the SC were determined for an incubation time 

of 1, 2 and 6 h and for the DSL for 1, 2, 6, 14 and 24 h. For each time point and each 

drug three to four replicates were performed. For the SC the extract concentration is 

related to the SC concentration via the volume of SC removed. The SC volume per 

tape strip is calculated from the stripping area (1.767 cm2) and the SC thickness per 

tape strip. The latter is determined microscopically via a highly standardized method 

(173, 177). For the DSL the extract concentration is related to the DSL concentration 

via weighing assuming a density of hydrated tissue of 1 g/cm3. 

The concentration of substance extracted from a pool of strips or cuts is plotted in the 

middle of the respective depth segment. Skin depths were calculated as given by 

Wagner et al. (173).  

4.2.10 Permeation studies 

Steady state flux JSS of FFA and CAF through SC, dermis or SC-lipids were 

measured in a separate Franz diffusion cell experiments using the respective 

membrane by taking samples from the acceptor compartment at time intervals of 1-

36 h. Experimental conditions were as described under “Determination of drug 

concentration-skin depth profiles”. For both compounds the donor concentration was 

1 mg/ml. JSS was calculated from the linear proportion of plotting the cumulative 

amount of substance transported per area versus time using a minimum of 5 data 

points according to a validated method as described in (178). For experiments with 

lipid coated membrane filters it was assumed that transport is only possible via the 

pores of the filter (porosity = 70% of the total filter volume according to the 

manufacturer). Only the area of the pores (i.e. 70% of the total area) was considered 

for calculation of Jss. Permeation experiments with uncoated filters that had been 

treated analogous to the coated membranes (30 times dipping in 

methanol/chloroform 2:1; equilibration at 70 °C for 10 min; storage at 32 °C for 2-5 d) 
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showed no significant resistance of the filter material. This proved that the barrier is 

formed by the lipids.  

4.2.11 Keratin binding 

Prior to the experiment water soluble low molecular weight keratin fractions resulting 

from the manufacturing process were removed by classical dialysis using dialysis 

tubing with a molecular weight cut-off of 12-14 kDa. Removal of soluble keratin 

fraction was considered to be complete if a BCA-assay in the supernatant performed 

according to the standard protocol provided by the manufacturer was negative (linear 

concentration range 0.2-1 mg/ml or 5-25 µg of total protein, detection limit 

0.01 µg/ml). Insoluble keratin fractions were retrieved by freeze-drying. 

Increasing ratios of the respective substance to keratin (0.6, 1, 10, 50, 100, 200, 300, 

400, 500, 1000 µg/mg) were incubated on a magnetic stirrer (500 rpm) at 32 °C, over 

24 h, i.e. until equilibration. 1.5 ml of the suspension was transferred to centrisart 

tubes (MW-cut-off 20 kDa) and centrifuged for 25 min at 2795 g. The supernatant 

was diluted with Soerensen buffer pH 7.4 to an appropriate concentration and 

transferred into HPLC vials and the concentration of unbound substance was 

determined by HPLC. Samples containing only substance solution without keratin 

were subjected to the identical procedure and represented 100% free concentration.  

4.2.12 Quantification of flufenamic acid and caffeine 

Samples were analysed by RP-HPLC using an isocratic Dionex HPLC system 

(Lichrospher® RP-18 column/ 125 x 4 mm/ 5µm with a LiChroCART® 4-4 guard 

column (Merck-Hitachi, Darmstadt); Software: chromeleon 6.50 SP2 build 9.68. 

FFA: mobile phase: 80:20 (v/v), methanol/ buffer pH 2.2; retention time: 

3.5 ± 0.2 min; flow rate: 1.2 ml/min; injection volume: 50 µl; detection wavelength: 

284 nm; detection limit: 15 ng/ml; quantification limit: 50 ng/ml. 

CAF: mobile phase: 90:10 (v/v) buffer pH 2.6/acetonitrile; retention time: 

5.1 ± 0.2 min; flow rate: 1.2 ml/min; injection volume: 50 µl; detection wavelength: 

270 nm; detection limit: 15 ng/ml; quantification limit: 50 ng/ml. 

For both compounds a calibration was performed using external standards with 0.05-

25 µg/ml dissolved in Soerensen buffer pH 7.4. For extraction experiments standards 

were dissolved in the respective extraction fluid. If necessary, unknown samples 
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were diluted to an appropriate concentration with the same medium as the samples 

prior to analysis. 

4.2.13 Determination of partition coefficients by equilibration experiments 

4.2.13.1 Decrease of donor concentration (Method 1a) 

The partition coefficient Ki/j between two phases i and j is the proportion of substance 

concentration [w/V] between a receiving phase i and a donating phase j: 

Equation  4-1 
j

i
i/j c

cK =   

Relating Equation  4-1 to skin partition coefficients ci and cj are the concentrations in 

the respective skin compartment or the donor, respectively. Assuming a density of 

1 g/cm3 for aqueous donor, SC, cor, lip and DSL (179) the volume of the skin 

compartment and the donor directly translates into the mass. Method 1a determines 

the concentration in the receiving skin compartment from the concentration decrease 

in the incubation solution where w0 and wEnd are weight of substance within the 

incubation solution before and after equilibration; wi is the dry mass of the respective 

skin compartment i.e. SC, cor, lip (i.e. the mass of lipid on the membrane filter disc) 

or DSL and wj is the mass of the incubation solution.  

Equation  4-2 
iEnd

jEnd0
i/j

)(
ww

www
K

−
=  

KSC/don, Kcor/don, Klip/don and KDSL/don were measured based on the method introduced 

by Raykar et al. by equilibration experiments (52). In contrast to Raykar et al. the 

original method for determining Klip/don was modified by coating Durapore® 

membrane filters with SC lipids rather than using test tube walls where they were 

deposited during removal of the organic solvent. The filters were prepared identically 

to the ones used in permeation experiments for determining Dlip (q.v.). This ensured 

setup properties like lipid organisation to be most comparable between these 

complementary sets of experiments. Briefly SC, delipidized SC, lipid coated filters, or 

prepared dermis sheets were immersed in 10 ml Soerensen buffer pH 7.4 with 0.05% 

w/v sodium azide containing either 10, 50, 100 or 1000 µg/ml CAF or 10, 50 or 

1000 µg/ml FFA and allowed to equilibrate at 32 °C for 24 h. Afterwards samples 

were drawn and analyzed for drug contents. 
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To exclude unspecific adsorption the test tubes and in case of Klip/don non-coated 

membrane filters were incubated with the drug solution alone. Furthermore to 

exclude that substances interfering with analytics are extracted by the solvent 

system, the membranes were soaked with the pure buffer solution for 24 h and 

underwent the same procedure as the drug containing solutions. All control tests 

proved negative. 

4.2.13.2 Extraction of specimen (Method 1b) 

The amount of substance partitioned into the respective skin compartment may 

further be determined directly by extraction (180, 181). The corresponding partition 

coefficient KSC/don, Kcor/don, Klip/don, and KDSL/don may then be calculated substituting 

(w0-wEnd) in Equation  4-2 by the extracted mass of substance (wEx) Equation  4-3.  

Equation  4-3 
iEnd

jEx
ji ww

ww
K =  

Briefly, samples were taken out of the incubation solution, washed three times in 

Soerensen-buffer pH 7.4 and blotted dry between filter papers. The samples were 

put into screw-top scintillation vials. The lids were secured with a Teflon septum. 

Extraction agents and conditions were the same as described for skin penetration 

studies. For both compounds the extraction steps were repeated until the extract 

concentration was below the detection limit of the HPLC.  

Control samples composed either of the analyte dissolved in buffer without any skin 

or lipid coated filter or of the respective skin sample, or lipid coated filter immersed in 

pure buffer solution were subjected to an analogous procedure. 

To check for completeness of extraction dried untreated or delipidized SC sheets of 2 

x 3 cm were spiked with ethanolic solutions of FFA or CAF (20 µl containing 5-100 µg 

FFA or 1-50 µg CAF). The solvent was allowed to evaporate at ambient conditions. 

Samples were extracted as described above. 92-107% (w/w) FFA from untreated SC, 

99-105% (w/w) FFA from corneocytes, 91-108% (w/w) CAF from untreated SC and 

93-110% (w/w) CAF from corneocytes were recovered. 



 

In silico Models of Skin Penetration: Part I 

49 

 

4.2.14 Calculation of partition coefficients 

4.2.14.1 Estimation of the stratum corneum-donor partition coefficient KSC/don 

from penetration experiments (Method 2) 

The concentration-SC depth profile of a substance (i.e. c(x,t) as a function of position 

x and time t) can be computed by using an appropriate solution to Fick’s 2nd law of 

diffusion. Such a solution which was repeatedly applied for estimating diffusion 

coefficients in SC is given by Equation  4-4 “long times” (128, 182, 183). Equation  4-4 

converges rapidly for 1/ 2
SC >ltD . 

Equation  4-4 
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Here, l is the SC thickness (FFA: 14 µm, CAF: 15 µm), KSC/don is the partition 

coefficient between SC and donor vehicle and DSC is the diffusion coefficient in the 

SC. 

At “short times” an appropriate solution is given by Equation  4-5. For 1/ 2
SC ≤ltD , 

Equation  4-5 converges quickly and therefore is a suitable solution for Fick’s 2nd law 

of diffusion “at short times” (184). 
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Both Equation  4-4 and Equation  4-5 assume a homogeneous membrane with an 

infinite donor and a perfect sink below the membrane, that is the concentrations at 

the top and the bottom of the SC are don/donSC) (0, cKtc =  and c(l, t) = 0 µg/cm3, 

respectively. (Equation  4-4 is basically identical to Equation  1-8.) 

The values of KSC/don and DSC for the 1, 2 and 6 h concentration profiles of FFA and 

CAF were determined in a two-step process. First, a simple grid-search was made 

where the diffusion coefficient DSC was varied from 10-5 cm2/s to 10-16 cm2/s and the 

partition coefficient KSC/don from 1.0 to 300.0. For each pair of DSC/KSC/don values the 

root-mean square deviation between the experimental and calculated values was 

computed to assess the quality of this potential solution. The best 100 results for 

each substance and incubation time were then subjected to a non-linear optimization 

routine to find the optimal values for DSC and KSC/don. This procedure assumes that 

DSC is not a function of depth, but rather may vary with time. Thus, potential time-
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dependent influences of changes in the SC properties on the diffusion may be 

discovered and taken into account. This especially relates to swelling which is 

typically observed within the first hours of a Franz diffusion cell experiment when 

using aqueous acceptor media (173). 

Due to the restrictions concerning the extraction procedure of the tape-stripping 

method explained in section  4.2.9 only four data points along the x-axis were 

available for fitting. The infinite series was truncated after when the machine 

accuracy was reached. For example, in the case of Equation  4-5, the series was 

truncated when the next summand would have been less than the product of the 

current sum and the machine epsilon ε (185). 

4.2.14.2 Estimation of the stratum corneum viable deeper skin layers partition 

coefficient KSC/DSL from penetration experiments 

The ratio of the concentration at the bottom layer of the SC cexSC, (i.e. within the last 

pool of tape-strips) and the topmost layer of the viable epidermis cinDSL, (i.e. the first 

pool of cuts) gives KSC/DSL Equation  4-6.  

Equation  4-6 
inDSL

exSC
SC/DSL c

c
K =  

Using aqueous donor media the SC becomes increasingly fragile with prolonged 

incubation time until it finally comes off in large flaps rather than in distinct corneocyte 

layers. Therefore tape-stripping is only possible for incubation times up to 6 h while 

cryo-cutting of DSL is still possible after 24 h. Thus experimental data on cexSC is 

available only up to 6 h whereas data on cinDSL is also available for longer times. As 

cexSC proved to be constant after 1 h for FFA and 2 h for CAF no further changes of 

cexSC are to be expected after longer incubation. For this reason the mean cexSC of 1-

6 h or 2-6 h was applied for calculating KSC/DSL for 14 and 24 h, respectively. 

4.2.14.3 Estimation of corneocyte-lipid-and lipid-deeper skin layers partition 

coefficient Kcor/lip and KDSL/lip 

By definition the (volume) concentration in the SC can be expressed using the 

relative volume fractions of the lipid and corneocyte phase ϕlip and ϕcor  

Equation  4-7 ( ) lipcor/lipcorlipSC cKc ϕϕ +=  

Consequently, 

Equation  4-8 ( ) lip/doncor/lipcorlipSC/don KKK ϕϕ +=  
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holds. Kcor/lip is estimated from KSC/don and Klip/don using Equation  4-9.  

Equation  4-9 ⎟
⎟
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K
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Realistic values for the volume fractions of the lipid and corneocyte phase are 

ϕlip = 0.1 and ϕcor = 0.9 respectively. These values result from the model geometry 

used for in silico simulations and are founded empirically (170). 

Analogously, KDSL/lip is estimated from KSC/DSL and Kcor/lip: 

Equation  4-10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

SC/DSL

cor/lipcorlip
DSL/lip K

K
K

ϕϕ
 

As KSC/DSL proved to be time dependent, only values at 24 h of incubation were 

considered. After 24 h KSC/DSL was constant for both FFA and CAF. 

4.2.15 Calculation of apparent diffusion coefficients  

According to the steady state diffusion equation the steady state flux Jss is defined as 

the product of the negative of the apparent diffusion coefficient D and the 

concentration gradient dc/dx (Equation  4-11). Rewriting dc/dx in Equation  4-11 as the 

product of the initial donor concentration c0 and the membrane-donor partition 

coefficient Ki/j divided by the membrane thickness h and rearranging Equation  4-11, 

D is calculated (Equation  4-12) (154, 186).  

Equation  4-11 
dx
d

ss
cDJ −=  

Equation  4-12 
0ji

ss

cK
hJD −=  

Substituting the variables in Equation  4-12 with experimental data on JSS, the values 

of Ki/j, c0, and h for the respective apparent diffusion compartment (i.e. lip, DSL, SC) 

Dlip, DDSL and DSC were assessed. In particular Dlip was determined using Klip/don 

(method 1a), c0 the donor concentration of the transport experiment, and h the 

thickness of the lipid coated filter (q.v.). 

DDSL was calculated using KSC/DSL after equilibration (24 h), and the concentration in 

the lowest SC segment cExSC. The thickness h represents the thickness of fully 

swollen dermis (FFA: 3.78 ± 0.27 mm, CAF: 3.83 ± 0.47 mm; mean ± sd of 5 different 

sites per piece).  

DSC was calculated using Klip/don (method 1a), the initial concentration used in the 

transport experiment c0, and a SC thickness h of 15 µm.  



 

In silico Models of Skin Penetration: Part I 

52 

 

4.3 RESULTS 

4.3.1 Characterization of extracted stratum corneum lipids 

4.3.1.1 Characterization of extracted stratum corneum lipids by WAXD 

Strong reflections at spacing of 0.41 nm and 0.37 nm confirmed an orthorhombic 

lateral packing of extracted SC-lipids (187). Concomitantly, a broad peak at about 

0.4 nm spacing indicated parts of the lipids to be present in an amorphous or liquid 

crystalline state. 

4.3.1.2 Characterization of extracted stratum corneum lipids by DSC 

Mixtures of extracted SC lipids produced endothermic transitions at 35 ± 4 °C and 

68 ± 3 °C. The blank Durapore® membrane filter showed no transitions in the 

inspected temperature range. Durapore® membrane filters coated with mixtures of 

extracted SC lipids showed an endothermic transition at 71 ± 4 °C. Due to the low 

mass of lipids relative to the mass of the filter the weaker transition at around 35 °C 

was only present in 1 of 5 samples. 

4.3.1.3 Characterization of extracted stratum corneum lipids by HPTLC 

The extracted lipid mixture was composed of 4.1 ± 1.6% cholesterol, 3.3 ± 1.1% 

cholesterol esters, 32.6 ± 2.1% triglycerides, 4.3 ± 1.4% free fatty acids and 

4.3 ± 1.5% ceramides (total mass of lipid extracted = 100%, n = 6).  

4.3.2 Keratin binding 

FFA exhibits a concentration dependent keratin binding (Fig. 8). Within the observed 

concentration range the dependence of the bound (µg/mg keratin) versus free 

concentration (µg/ml) at equilibrium at 32 °C may be expressed by a Langmuir 

adsorption isotherm (r2 = 0.983, χ2 = 2.5). The maximum weight of FFA that may be 

bound by 1 mg of keratin is 77.03 ± 7.81 µg. For CAF keratin binding is negligible 

(Figure  4-2).  
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Figure  4-2 The weight of substance bound per mg keratin is plotted against the equilibrium 
concentration of free substance within the incubation solution. Keratin binding data of flufenamic acid 
(filled squares) is fitted to a Langmuir-adsorption isotherm (solid line) and confidence bands (dashed 
lines). Caffeine binding to keratin is negligible (filled triangle). (mean±sd) 
 

4.3.3 Partition coefficients – directly determined values 

4.3.3.1 KSC/don 

Equilibration experiments showed a preferred partitioning of FFA from Soerensen 

phosphate buffer into the SC (Table  4-2). Extraction (method 1b) proved the 

decrease of incubation solution (method 1a) to be due to a substance transfer into 

the SC.  

 

Table  4-2 Partition coefficients of flufenamic acid and caffeine between different skin 
membranes (i) and phosphate buffer pH 7.4 (don) were measured by equilibration experiments and 
calculated from the decrease of donor concentration (method 1a, denoted as *Ki/don) or from extraction 
(method 1b, denoted as #Ki/don). (mean±sd, n = number of repetitions, n.a. not analyzed) 
 
 flufenamic acid flufenamic acid caffeine caffeine 
i *Ki/don #Ki/don *Ki/don #Ki/don 
SC 16.20±4.89 (n=9) 16.36±3.58 (n=12) 4.51±2.73 (n=22) 5.62±0.61 (n=22) 
cor n.a. 19.67±7.11 (n=3) 2.74±1.94 (n=9) 3.76±0.97 (n=9) 
lip 20.32±0.54 (n=4) 23.15±0.51 (n=4) 2.15±0.42 (n=4) n.a. 
DSL 5.58±0.94 (n=6) 10.38±2.51 (n=6) -2.22±2.59 (n=14) 5.10±2.04 (n=14) 
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KSC/don of FFA could further be retrieved from fitting tape-stripping profiles to Equation 

 4-4 (method 2, Figure  4-3 and Table  4-3). This fit seems appropriate for the 6 h 

profile whereas the elevated FFA concentrations found in the lower SC layers after 1 

and 2 h are represented less efficiently. Estimates of KSC/don are somewhat lower 

than values measured by equilibration experiments however, considering the well 

known inter- and intra-individual variability of skin the results are still within a 

comparable range.  

 

Table  4-3 Stratum corneum-donor partition coefficient and stratum corneum diffusion coefficient 
for flufenamic acid and caffeine were estimated from fitting the 1, 2 and 6 h concentration-stratum 
corneum depth profiles to Equation  4-4 (denoted as **KSC/don

.and **DSC). (mean±sd) 
 
t [h] flufenamic acid flufenamic acid caffeine caffeine 
 **KSC/don **DSC [cm2/h] **KSC/don **DSC [cm2/h] 
1 9.46±2.34 7.89±3.60*10-8 2.92±0.58 3.97±1.06*10-8 
2 8.12±1.27 4.75±1.44*10-8 4.62±0.70 2.98±0.73*10-8 
6 5.88±0.40 3.95±0.64*10-8 4.70±0.23 1.82±0.17*10-8 
 

 
Figure  4-3 Tape stripping of the stratum corneum after 1 (filled square), 2 (open circle) and 6 h 
(filled triangle) incubation with flufenamic acid. The concentration-stratum corneum depth profiles are 
fitted to Equation  4-4. (mean±sd) 
 

Like FFA, CAF showed a preferred partitioning from aqueous medium into the SC 

however, to a lesser extent (Table  4-2). Values measured with method 1b slightly 

exceed method 1a. Again KSC/don was also estimated from concentration-SC depth 
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profiles (method 2) (Figure  4-4 and Table  4-3). Estimates of method 2 excellently 

match results of method 1a and 1b. 

 
Figure  4-4 Tape stripping of the stratum corneum after 1 (filled square), 2 (open circle) and 6 h 
(filled triangle) incubation with caffeine. The concentration-stratum corneum depth profiles are fitted to 
Equation  4-4. (mean±sd) 
 

4.3.3.2 Kcor/don 

Both FFA and CAF preferably partition from Soerensen phosphate buffer pH 7.4 to 

delipidized SC sheets (Table  4-2). Kcor/don of FFA exceeds CAF 5 - 7 times. For CAF 

values measured with method 1b slightly, though not significantly, exceed 

method 1a. 

4.3.3.3 Klip/don 

For FFA both methods 1a and 1b are in a comparable range and suggest a preferred 

partitioning of FFA from Soerensen phosphate buffer pH 7.4 to SC-lipids (Table  4-2). 

CAF also favours the lipophilic environment although Klip/don is only about one tenth of 

FFA.  

4.3.3.4 KDSL/don 

KDSL/don suggests a preferred partitioning between aqueous donor and viable skin 

layers for both compounds (Table  4-2). Incubating dermis sheets with CAF solutions 

caused only non-descript concentration changes fluctuating around zero resulting in 
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an exceptionally large standard deviation. For both compounds significantly higher 

amounts could be extracted from the viable skin layers than would have been 

estimated from the decrease of donor solution.  

4.3.3.5 KSC/DSL 

Figure  4-5 and Figure  4-6 show from bottom to top the time dependency of cExSC, 

cinDSL and KSC/DSL for FFA and CAF. This allows determining KSC/DSL when equilibrium 

of partition between SC and deeper skin layers has been established. The 

equilibrium value of KSC/DSL will later be used to calculate Klip/DSL (q.v.). For FFA, due 

to constant concentrations within the bottom layer of the SC and rising 

concentrations at the onset of the DSL, KSC/DSL decreases steadily until it converges 

to a constant value after about 14 - 24 h (Figure  4-5). The ratio of substance 

concentration of cExSC to cinDSL is approximately 3:1 after 24 h. For CAF after initial 

changes of cExSC and cinDSL KSC/DSL of CAF levels off to a ratio of 27:1 (Figure  4-6). 

 

 
Figure  4-5 Flufenamic acid: Time-dependency of the stratum corneum-viable deeper skin layers 
partition coefficient (top), the concentration in the bottom stratum corneum layer as analyzed by tape-
stripping (down) and concentration in the top layer of the viable deeper skin layers as analyzed by 
cryo-sectioning (middle). (mean±sd) 
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Figure  4-6 Caffeine: Time-dependency of the stratum corneum-viable deeper skin layers partition 
coefficient (top), the concentration in the bottom stratum corneum layer as analyzed by tape-stripping 
(down) and concentration in the top layer of the viable deeper skin layers as analyzed by cryo-
sectioning (middle). (mean±sd) 
 

4.3.4 Partition coefficients – calculated values 

4.3.4.1 Kcor/lip 

Calculations of Kcor/lip based on experimental values for KSC/don and Klip/don (Table  4-4). 

KSC/don was acquired in 3 different ways. Since the results from equilibration 

measurements (method 1a and b, Table  4-2) were very similar *KSC/don determined by 

method 1a was chosen for the calculation. In addition Kcor/lip was calculated based on 

6 h values of **KSC/don as these were best represented by Equation  4-4 (Figure  4-3, 

Figure  4-4 and Table  4-3). Independent of the input data Kcor/lip shows FFA to 

partition reluctantly from a lipophilic into a hydrophilic environment. In contrast to FFA 

corneocyte uptake of CAF dominates over lipids.  
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Table  4-4 The corneocyte-lipid partition coefficient was calculated from the stratum corneum-
donor- and the lipid-donor partition coefficient (Equation  4-9). The viable deeper skin layers-lipid 
partition coefficient was calculated from stratum corneum-viable deeper skin layers partition coefficient 
and the corneocyte-lipid partition coefficient (Equation  4-10). The second column indicates which 
values were considered for calculation.  
 
coefficients source flufenamic acid caffeine 

*KSC/don 1a; *Klip/don 1a 0.77±0.08 2.22±1.78 Kcor/lip 
**KSC/don 2; *Klip/don 1a 0.21±0.02 2.32±0.57 
KSC/DSL; Kcor/lip 1a/1a 0.26±0.10 0.08±0.14 KDSL/lip 
KSC/DSL; Kcor/lip 2/1a 0.10±0.04 0.08±0.10 

 

4.3.4.2 KDSL/lip 

KDSL/lip suggests partitioning from SC-lipids to DSL of both FFA and CAF to be in the 

same range. Both compounds prefer the lipophilic environment of the SC lipids to the 

more hydrophilic viable skin layers (Table  4-4). 

4.3.5 Diffusion coefficients  

Figure  4-7 shows typical weight permeated per area versus time plots for FFA and 

CAF. Steady state flux of FFA through mainly lipophilic compartments, i.e. SC and 

lipids is ten or five times higher than that of CAF, whereas its steady state flux 

through the more hydrophilic DSL is only one-tenth of CAF (Table  4-5). As expected 

from their similar molecular weight (see material section) usually apparent diffusion 

coefficients of both compounds are of the same order of magnitude within a distinct 

compartment and increase from SC to lipids to viable skin layers. 

 

Table  4-5 The steady state flux and diffusion coefficient for flufenamic acid and caffeine for 
stratum corneum, viable deeper sin layers and stratum corneum-lipids. The diffusion coefficient is 
calculated from the steady state diffusion equation using steady state flux and the product of the 
concentration in the respective donating compartment (i.e. 1 mg/ml for all experiments), the partition 
coefficient into the membrane and the membrane thickness. (mean ± sd; n = number of repetitions) 
 
 flufenamic acid flufenamic acid caffeine caffeine 
 Jss [µg/cm2/h] D [cm2/h] Jss [µg/cm2/h] D [cm2/h] 
lip 108.66±6.51 (n=4) 1.1±0.2*10-4 21.89±2.0 (n=4) 2.1±0.7*10-4 
DSL 2.50±0.70 (n=8) 4.9±4.3*10-3 25.65±4.8 (n=3) 2.3±4.0*10-3 
SC 2.31±0.96 (n=8) 1.7±0.8*10-7 0.21±0.1 (n=7) 1.4±0.4*10-7 
 

DSC was further estimated from the decrease of c(x,t) as a function of depth by fitting 

SC concentration-depth profiles to Equation  4-4 (Table  4-3). For both compounds 

DSC decreases with time. These results range about one order of magnitude lower 

than values calculated on the basis of steady state flux (Table  4-5).  
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Figure  4-7 Typical weight permeated per area versus time plots of flufenamic acid (closed 
square) and caffeine (open square) across (A) lipid coated membrane filters, (B) viable deeper skin 
layers and (C) stratum corneum. (A) further includes weight permeated per area versus time plots of 
flufenamic acid (closed triangle) and caffeine (open triangle) across non-coated membrane filters. 
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4.4 DISCUSSION 

Experimental data on relevant skin transport parameters of two test substances, FFA 

and CAF, were collected for the validation of an advanced two-dimensional skin 

penetration model (170). This included the SC- and DSL-concentration-depth-

profiles, partition coefficients and diffusion coefficients. It was further sought to 

experimentally break down the consecutive partition and diffusion steps according to 

the anatomical and functional heterogeneity of the SC.  

4.4.1 Characterization of extracted stratum corneum lipids 

4.4.1.1 Characterization of extracted stratum corneum lipids by WAXD 

The presence of orthorhombic crystalline structures showed that the lateral packing 

of the extracted SC lipids is representative of intact SC (187). Together with a 

lamellar organization of the SC lipid bilayers an orthorhombic lateral packing has 

been proposed to be crucial for the exceptional barrier properties of skin (188). 

Concomitantly significant amounts of amorphous lipids were detected that might 

result from the fairly large amounts of triglycerides within the samples (see  4.4.1.3). 

4.4.1.2 Characterization of extracted stratum corneum lipids by DSC  

Two of the four endothermic transitions described for human SC were found. The first 

at around 35 °C has previously been implicated with a disordering of the lateral 

packing from orthorhombic to hexagonal and hexagonal to liquid crystalline phase. 

The second one at approximately 70 °C results from a disordering of the lamellar 

structure (189). For intact SC two more transitions were reported by other authors 

(190). As these result from lipids covalently attached to proteins and protein 

denaturation they are not to be expected in isolated skin lipids.  

4.4.1.3 Characterization of extracted stratum corneum lipids by HPTLC 

The composition of SC lipid mixtures was found to be comparable to findings of other 

authors. For female abdominal skin de Paepe et al. report very similar ratios of 

triglycerides, cholesterolesters and ceramides III and IV, as well as free fatty acids 

contents within the same order of magnitude (191). The relatively larger cholesterol 

fraction reported by this group might be explained by age related variations. The high 

amounts of triglycerides are not surprising since skin originated from plastic surgery 

is always contaminated with triglycerides as shown by Wertz et al. (192). 
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4.4.2 Partition coefficients – directly determined values 

4.4.2.1 KSC/don 

The uptake of substances from a topical formulation is governed by a partition 

process between topical formulation and uppermost skin layer, i.e. the SC. This may 

be quantified in terms of a partition coefficient KSC/don. Conventionally KSC/don is 

measured by equilibration experiments where isolated SC is incubated with the 

respective donor formulation. In skin penetration or permeation experiments as well 

as in in vivo application of drug formulations a concentration ratio identical to this 

partition coefficient attunes rapidly at the onset of the SC. Within the SC directly 

below the zone of equilibrium the substance concentration will decrease rapidly due 

to a concentration gradient over the membrane.  

It could be shown that KSC/don determined by equilibration measurements may be 

retrieved directly from tape-stripping experiments by fitting concentration-SC depth 

profiles to Equation  4-4 (Table  4-3). For FFA this method gives slightly lower values 

than results from equilibration experiments (Table  4-2 and Table  4-3). Customary the 

first one or two tape-strips are discarded due to contamination with the donor 

solution. Bommannan et al. identified this region to be critical for diffusion processes 

within the SC (193). They investigated the SC barrier function by infrared 

spectroscopy and found a disorder of the SC intercellular lipids that decreases 

throughout the first three tape-strips and then becomes constant. Recently these 

findings could be transferred to in vitro tape-stripping of skin. Mueller et al. found 

biphasic SC concentration-depth profiles at steady state for the diffusion of clobetasol 

propionate from saturated solutions containing 20% v/v propylene glycol over heat 

separated epidermis (194). They attributed this behaviour to an increased corneocyte 

uptake or an increased intercellular solubility within the SC disjunctum (194). This 

may involve a decrease of the SC diffusion coefficient in the same region causing the 

curvature of concentration-depth profiles to be steeper over the first three tapes than 

from tape four onwards. In contrast Equation  4-4 tacitly assumes constant diffusion 

and partition properties throughout the whole SC.  

Additionally the significance of fitting the penetration data to Equation  4-4 is limited 

for FFA for short incubation times. Assuming perfect sink conditions at the outflow of 

the SC it does not represent the elevated concentration found in the lower SC after 1 

and 2 h of incubation (Figure  4-3). Oppositely, a fit to Equation  4-4 nicely represents 
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the 6 h profile of FFA. It seems that a so far non-specified mechanism promotes the 

penetration of FFA at the beginning of the diffusion process and is later compensated 

for by Fick’ian diffusion. It may be speculated that the special properties of FFA such 

as binding to keratin or its pH sensitive lipophilicity and solubility may be held 

responsible for this behaviour.  

For CAF estimates on KSC/don from SC concentration-depth profiles excellently match 

results of equilibration measurements (Table  4-2 and Table  4-3). CAF does not seem 

to be as sensitive to depth dependent alterations in lipid fluidity within the upper SC 

as FFA. As the alterations of the SC ordering reported by Bommannan et al. 

predominantly concern the intercellular lipid channel substances using the lipid 

pathway should be affected more than others. This might explain why estimates of 

method 2 for FFA deviate from equilibration experiments while estimates for CAF do 

not.  

4.4.2.2 Klip/don 

For the in silico model an accurate anatomical break down of partition processes was 

sought. As all corneocyte layers are embedded in a continuous lipid layer the 

boundary layer towards the donor solution is in fact lipoidal rather than cellular. 

Therefore Klip/don instead of KSC/don is needed to correctly describe the partitioning at 

the top of the SC. So far, measurements of lipid partition coefficients are only known 

from the original works of Raykar et al. (52). Klip/don was determined in equilibration 

experiments employing extracted human SC-lipids brought up onto Durapore® 

membrane filter supports. Lipid coated membranes have previously been used by 

other authors in permeation studies (175, 195, 196). Usually artificial lipid mixtures or 

lipids of animal origin were used. To our knowledge this is the first occasion that 

these were prepared completely from extracted human SC-lipids and were employed 

to measure partition coefficients.  

4.4.2.3 KSC/DSL 

Especially for lipophilic substances the partition step at the interface between 

lipophilic SC and more hydrophilic viable epidermis/dermis may represent an 

additional hindrance against drug permeation. For FFA the increase in cinDSL (Figure 

 4-5, middle) may partly be explained by a water uptake into the viable skin layers 

during incubation in the Franz diffusion cell. This leads to a visible swelling. The 
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increased volume of water contains additional substance. A concomitant decrease in 

pH from 8 to 7.4 should not impair FFA solubility (pKa 3.9 (171)) (197). In addition the 

partitioning process is superimposed by binding of FFA to viable skin layer proteins. 

Up to saturation of binding sites this leads to an over-proportional increase of cinDSL 

and a concomitant decrease of KSC/DSL (Figure  4-5, middle and top). After 24 h 

KSC/DSL then becomes constant. This value is used for calculating KDSL/lip.  

In contrast, CAF does not bind to proteinaceous structures (Figure  4-2) and 

consequently shows no time dependency of cExSc , cinDSL or KSC/DSL (Figure  4-6). For 

the sake of consistency again the 24 h values were used to calculate KDSL/lip. 

4.4.3 Partition coefficients – calculated values 

4.4.3.1 Kcor/lip 

According to Equation  4-9 Kcor/lip was calculated as a secondary derived parameter 

employing experimental data on KSC/don and Klip/don and considering realistic relative 

volume fractions of the lipid and corneocyte phase, φlip and φcor .  

By systematically varying φlip and φcor it can be shown that naturally occurring 

variations in lipid channel dimensions have only a limited impact on Kcor/lip. For 

example variation of φlip of ±20% reflects in a change of *Kcor/lip ± 0.7% and **Kcor/lip ± 

9.5% for FFA and *Kcor/lip ± 1.4% and **Kcor/lip ±1.3% for CAF.  

As recently reported by Nitsche et al. for highly lipophilic compounds, i.e. with a 

logKOct/w > 5 experimental results of KSC/don are largely sensitive to the lipid content 

and composition of the used skin samples hampering the significance of estimates of 

corneocyte hold-up based on KSC/don (150). This problem was circumvented by 

determining both KSC/don and Klip/don experimentally in analogous setups using 

identical sets of donor skins and validated preparation techniques. One of the 

prerequisites of Equation  4-9 is  

Equation  4-13 cor/doncorlip/donlipSC/don KKK ϕϕ +=  

Substituting Klip/don and Kcor/don with experimental results from equilibration 

measurements (method 1) a theoretical KSC/don may be calculated. Thus the 

theoretical KSC/don of FFA is 20.02 ± 7.68 (based on Klip/don and Kcor/don determined by 

method 1b, i.e. extraction of skin specimen) and 2.68 ± 2.42 for CAF (based on 

Klip/don and Kcor/don determined by method 1a). These theoretical values of KSC/don are 
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both in very good agreement with experimental results which indicates that a 

calculation of Kcor/lip on this basis is valid. 

Our analyses show that some degree of corneocyte uptake may be claimed for both 

FFA and CAF (Table  4-4). In accordance with their octanol-water partition coefficients 

Kcor/lip of CAF is higher than that of FFA. It must be kept in mind that alternatively to 

partitioning into the corneocytes part or all of the substance could bind to proteins of 

the cornified envelope or to keratin. Especially FFA proved a likely candidate for 

protein binding whereas no binding was detected for CAF (Figure  4-2).  

4.4.3.2 KDSL/lip 

Again an accurate anatomical break down of partition steps was sought. Therefore 

our method for calculating Kcor/lip was expanded to the partition step at the interface 

DSL-lipid (Equation  4-10). According to the compound lipophilicity partitioning from 

SC-lipids to viable epidermis of FFA should be hampered whereas CAF should prefer 

the DSL. Thus KDSL/lip of FFA is to be expected lower than that of CAF. Our results 

suggest otherwise (Table  4-4). First, this mirrors the improved solubility of weak acids 

like FFA under moderate alkaline conditions within the DSL. Second, a high binding 

of FFA to proteins of the viable skin layers, such as collagen, elastin or melanin, will 

further raise the concentration within the DSL of this particular substance and hence 

will increase KDSL/lip. This behavior may be investigated by measuring KDSL/don
 . 

Incubating dermis sheets with FFA led to a measurable decrease in the 

concentration of the incubation solution (method 1a, Table  4-2). Still, extracted 

amounts were up to two times higher than would have been estimated from 

analyzing the decrease of the donor concentration (method 1b, Table  4-2). In 

contrast, for CAF no relevant decrease in concentration of the incubation solution 

could be detected. Still, significant amounts of CAF were extracted from the DSL. 

Consequently FFA enters the DSL by partitioning or binding to proteins and also by 

water of hydration while CAF will only be dissolved in water of hydration and will not 

bind to epidermal or dermal proteins. Third, this hints that the solubility of hydrophilic 

substances like CAF in SC lipids may be much better than usually assumed. 
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4.4.4 Diffusion coefficients  

4.4.4.1 Dlip 

Lipid coated membranes have widely been used for diffusion measurements. In 

contrast to our study most of the cited experiments were performed with lipid 

mixtures of artificial or animal origin (175, 198). De Jager et al. could demonstrate 

that especially lamellar organisation and lateral packing are highly sensitive to lipid 

composition and manufacturing conditions (199). This problem was circumvented by 

using lipids extracted from human SC. By DSC measurements it could be shown that 

the thermal behaviour and thus the crystallinity of the extracted SC lipids on the 

membrane support is very similar to the in vivo situation. What is more WAXD 

measurements revealed that a significant portion of the lipids is present in an 

orthorhombical crystalline state. However, due to the presence of amorphous lipids 

and the absence of corneocytes the 3D structure of the lipids on the filters will 

probably be different from the in vivo situation. Thus Dlip can only be an 

approximation. Furthermore co-extracted triglycerides might act as a possible 

penetration enhancer in permeation experiments (177) and thus may lead to an 

overemphasis of DSC and Dlip. However, our measured values for Dlip queue nicely 

with literature data on lipid diffusion coefficients. Lange-Lieckfeldt and Lee reported 

that ratios ranging from 102 - 104 with lipid diffusion rates of 10-8 - 10-9 cm2/s result 

from SC geometry reflecting the tortuous diffusion pathway and the low diffusion area 

(198). The ratio of Dlip/DSC was 6.4 * 102 (DSC determined according to Equation  4-12 

or 1.4 * 104, 2.3 * 104, 2.8 * 104 (DSC for 1, 2 and 6 h determined according to 

Equation  4-4 for FFA and 1.5 * 103 (DSC determined according to Equation  4-12 or 

5.3 * 103, 0.7 * 103, 1.2 * 104 (DSC for 1, 2 and 6 h determined according to Equation 

 4-4 for CAF (Table  4-3 and Table  4-5). This does not necessarily imply impenetrable 

corneocytes. They still may act as a reservoir if the rate of transport is lowest within 

intercellular lipids and hence determines the overall diffusion velocity through the SC. 

Further, our measured values for Dlip are in good agreement with lateral diffusion 

coefficients measured with a fluorescence recovery technique in extracted SC lipids 

(156). Diffusion within the plane of the lipid bilayers is believed to be considerably 

slower than perpendicular to it. However, Johnson et al. found lateral- but not trans-

bilayer diffusion coefficients are sufficient to explain the overall resistance of solute 

permeation through the SC (134). In addition it has been suggested that lipid bilayers 
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might be oriented not strictly parallel to the corneocytes possibly allowing a 

continuous pathway for lateral diffusion (110).  

In view of these facts it is justified to employ our measured apparent lipid diffusion 

coefficients as direct input data for the in silico model presented in the accompanying 

paper (170). This assumes constant diffusion properties within all lipid bilayers 

irrespective of the SC depth.  

4.4.4.2 DDSL 

Cross et al. reported for a series of aliphatic alcohols an additional partition step 

between epidermis and dermis significantly influencing maximum flux and apparent 

permeability coefficient if compound logKOct/w was 2 and higher (154). Consequently 

for CAF no additional hindrance is to be expected (logKOct/w = 0.083 (172)). Likewise 

may be assumed for FFA, as this is completely ionized within the fully swollen 

epidermis and dermis (197). If transport is indeed homogeneous throughout the 

whole viable skin layers the steady state concentration gradient should be linear. 

Experimental data on the steady state DSL-concentration gradient is available from 

surface parallel segmentation of the DSL (Figure  4-8). Substituting dc/dx and Jss,DSL 

in Equation  4-12 directly by experimental data it is possible to calculate DDSL. For 

FFA linear regression of 24 h DSL-cryo-cutting data revealed a slope of the 

6.34 * 102 µg/cm4 with the intercept with the y-axis at 1.80 * 102 µg/cm3 and a 

reasonable r2 of 0.823. Thus DDSL calculates to 3.9 * 10-3 ± 1.7 * 10-3 which is very 

similar to estimates on the basis of JssDSL, KSC/DSL, cExSC and hDSL (Table  4-5). 

Therefore diffusion properties are indeed homogeneous through the viable skin 

layers for FFA. Consequently our calculated values for DDSL for both FFA and CAF 

may be used as direct input data for mathematical modeling of skin penetration 

(170). 
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Figure  4-8 Cryo-sectioning of viable deeper skin layers after 1 (filled square), 2 (open circle), 6 
(filled triangle), 14 (open square) and 24 h (filled circle) for flufenamic acid with linear regression of the 
24 h graph (bold line) assuming constant membrane properties at steady state. (mean ± sd) 
 

4.4.4.3 DSC 

Estimates of DSC from fitting the 1, 2 and 6 h concentration-SC depth profiles to 

Equation  4-4 suggest a decreasing diffusion velocity with time for both FFA and CAF. 

As already mentioned water uptake may impact on the SC diffusion properties. On 

first sight our results seem contradictory to the well known permeation enhancing 

effect of water which is probably due to a disruption of intercellular SC lipids (200). 

However, this effect may probably be antagonized by a concomitant increase in path 

length due to swelling of corneocytes. As a significant proportion of both compounds 

was found to partition into the corneocytes a decrease in DSC seems a possible 

logical consequence. In contrast to Dlip and DDSL, DSC cannot be used as direct input 

for in silico modeling due to the inhomogeneous character of the SC. However, the 

accompanying study shows that DSC together with Dlip and Kcor/lip is a powerful tool to 

estimate Dcor (170).  

4.5 CONCLUSION 

Skin transport of drug substances from a topical formulation may be described in 

terms of partition and diffusion coefficients that account for abrupt changes in the 

environmental lipophilicity and diffusion characteristics of the medium. This study 
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describes methods and data to measure the relevant partition and diffusion steps 

involved in skin transport taking into account its anatomical heterogeneity. While 

several coefficients such as Klip/don , Dlip and DDSL may be measured experimentally, 

others such as Kcor/lip , KDSL/lip and Dcor can only be determined indirectly. Equations 

are presented to calculate Kcor/lip and KDSL/lip from experimentally available data. For 

two compounds with different physicochemical properties, i.e. FFA and CAF the 

complete data set has been collected for the case of diffusion from an aqueous donor 

buffered at pH 7.4 across human skin. Where available, experimental and calculated 

coefficients were compared to literature data and were found to be consistent. 
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5 IN SILICO MODEL OF SKIN PENETRATION BASED ON EXPERIMENTALLY 
DETERMINED INPUT PARAMETERS. PART II: MATHEMATICAL 
MODELLING OF IN VITRO DIFFUSION EXPERIMENTS 
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5.1 Introduction 

Recently, there has been much interest in mathematical models and numerical 

methods available to predict dermal absorption in-silico in order to avoid unnecessary 

and costly in-vitro and in-vivo testing (201, 202). To a great extent, this is due to 

ethical difficulties resulting in a lack of sufficient amounts of human skin. The use of 

animal skin is limited by animal healthcare regulations and anatomical difference. 

Economic and time constraints must be considered as well, especially with respect to 

increasing legislation in the risk assessment of industrial chemicals (203). Therefore, 

mathematical modelling and numerical simulation of drug transport through human 

skin gain key roles in the investigation of dermal and transdermal drug delivery as 

well as risk assessment of chemical exposure. 

Today, most of the pharmacokinetic models are based on one or more compartments 

describing the skin layers and the vehicle (112-115, 117, 204). The drug 

concentration in each of these layers is modelled by an ordinary differential equation, 

which does not provide information about the drug concentrations in the layers of the 

SC and the deeper skin layers (DSL). Furthermore, the parameters like diffusion 

coefficients and partition coefficients for these equations are model- and system-

dependent allowing no direct input for computational simulation of skin transport. 

A further mathematical approach for modelling are diffusion models which consist of 

partial differential equations describing drug delivery in space and time according to 

Fick’s laws of diffusion (110, 132, 133, 136, 139, 142-145, 205-212). These models 

are based on first principles, such as balance of mass. Resolving the structure, they 

have the great advantage that the parameters, e.g., diffusion and partition 

coefficients, are system-independent, allowing a system-independent parameter 

identification. Therefore, the effects of different parameters like corneocyte 

permeability, corneocyte alignment, diffusion and partition coefficients on skin 

transport can be studied in-silico on arbitrary skin geometries. 

Recently, due to advances in simulation techniques, diffusion models running on fully 

resolved two-dimensional or even three-dimensional geometries have become 

feasible. A great part of these models are so-called ‘‘brick-and-mortar’’ models (110, 

130, 133, 134, 137, 139, 142, 143, 166, 198, 212-214). The bricks and mortar 

correspond to the corneocytes and the surrounding intercellular lipid bilayers, 



 

In silico Models of Skin Penetration: Part II 

71 

 

respectively. A very good survey of existing ‘‘brick-and-mortar’’ models is given by 

Wang et al. (110). 

It was shown several years ago (142) that including the heterogeneous structure of 

the SC in the geometry is crucial for the barrier function of the membrane. This two-

dimensional diffusion model allows to calculate the time-dependent spatial 

distribution of drugs in the different skin layers and to illustrate the diffusional 

pathway in the SC. These illustrations are very similar to photographs of SC 

visualised using two-photon fluorescence microscopy (54, 55, 215). 

This section presents an extension of the two-dimensional diffusion model presented 

by Heisig et al. (142) by increasing the number of corneocyte layers to 16 and adding 

a homogeneous epidermal/dermal compartment. The experimental data on partition 

coefficient Klip/don as well as diffusion coefficients Dlip and DDSL that have been 

introduced in the previous chapter ( 4) are used as input parameters in the 2D-model 

to evaluate drug concentration-SC/DSL-depth profiles in silico. Experimentally not 

accessible partition coefficients Kcor/lip and KDSL/lip are derived from experimental data 

on KSC/don, Klip/don, and KSC/DSL as described in section  4.2.14. A method is presented 

to derive diffusion coefficient Dcor from experimental data on Klip/don, Dlip, and DSC by 

assuming constant partition and diffusion coefficients. As model drugs one lipophilic, 

however ionisable substance (FFA) and one hydrophilic non-ionisable compound 

(CAF) are used. A comparison of the concentration-SC/DSL-depth profiles obtained 

by in vitro and in silico experiments is presented and discussed. 

5.2 Model description 

This section formulates a mathematical description of a Franz diffusion cell 

experiment for one substance under infinite dose conditions. In particular, it 

introduces notation used in the remainder of the work. At first, a description of the 

model geometry is given. The next subsection formulates the distribution of the 

substance, or more precisely its concentration, in terms of a partial differential 

equation. How this model is related to physical quantities measured in the 

experiment is derived afterwards. The section concludes with a brief description of 

the numerical methods which were applied in the solution process. 
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5.2.1 Model geometry 

The model is based on the two-dimensional brick-and-mortar model which was used 

for the SC in (142). A full-thickness or extended skin model is derived from this model 

by adding a homogeneous compartment of constant size for the deeper skin layers 

(DSL). This compartment guarantees proper outflow conditions at the interface 

between SC and epidermis. It does not focus on a precise resolution of the 

processes in epidermis and dermis. This simplification is admissible as far as only a 

structural resolution of the SC and the barrier property of full thickness skin are 

concerned. The resulting geometry of the extended skin model is depicted in Figure 

 5-1. 

 

 
Figure  5-1 The extended brick-and-mortar model for human stratum corneum and viable 
epidermis and dermis. Diffusion occurs through lipid layers, corneocytes and viable deeper skin 
layers. Interfaces, domains and parameters are given in Table  5-1. 
 

Formally, the domain consists of three different phases corΩ , lipΩ , and DSLΩ , 

representing either the corneocytes, the surrounding lipid matrix or the DSL. The 

corneocytes are fully staggered in 16=n  layers. The remaining geometric 

parameters are the diameter of lipid channel =δ 0.1 µm, the corneocyte height 

hcor = 1 µm, the corneocyte width Lcor = 30 µm, and the height of the DSL 

compartment hDSL = 1.5 mm. These parameters are summarised in Table  5-1. 
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Table  5-1 Description of the model geometry 
 
Description of the model geometry 
� Lipid layers thickness 
Lcor Corneocyte length 
hcor Corneocyte height  
hDSL Height of DSL compartment 
L k kth SC layer 
dk Average depth of L  k; distance of the centre mass of L  k to the top surface inΓ  

 

The neighbouring phases are separated by two interfaces cor/lipΓ  and DSL/lipΓ  

respectively. The corneocytes and the deeper skin layers do not share a common 

interface. The domain is confined by boundaries inΓ , outΓ , and sideΓ . For the 

remainder of this work an index set { }DSLlip,cor,=I  will be used in order to avoid an 

unnecessarily abundant notation. Subdomains and interfaces are then, for instance, 

referred to by the symbols iΩ , and i/jΓ  for i ≠ j and Iji, ∈  (Table  5-2). 

 

Table  5-2 Domains and interfaces of the model membrane 
 
Domains and interfaces Symbol Diffusion 

coefficient 
Partition 
coefficient 

Concentration 

(Donor compartment)  n.a.  cdon 

Interface 
inΓ   Klip/don  

Lipid layers 
lipΩ  Dlip  clip 

Interface 
cor/lipΓ   Kcor/lip  

Corneocytes 
corΩ  Dcor  ccor 

M      

Interface 
DSL/lipΓ   KDSL/lip  

Deeper skin layers  
DSLΩ  DDSL  cDSL 

Interface 
outΓ   KDSL/acc  

(Receptor compartment)  n.a.  cacc 

 

5.2.2 Model equations 

It is assumed that transport in each phase is due to Fick’s second law of diffusion, 

Equation  5-1 0t))(x,c(Dt)(x,cδ iiit =∇− div  
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for t > 0, iΩx ∈ , Ii ∈ . On the interfaces between the phases two different types of 

transmission conditions apply. Partitioning between the different phases is modelled 

using a partition coefficient Ki/j, 

Equation  5-2 t)(x,cKt)(x,c iji,i =  

for t > 0, ji,Γx ∈ , i ≠ j. As for several hydrophilic and also some lipophilic compounds 

their intra-corneocyte presences has been visualized, Kcor/lip ≠ 0 needs to be 

considered at the lipid-corneocyte interface (53, 54, 56, 216). Additionally, the flux 

across an interface must be continuous due to mass conservation, which means that 

Equation  5-3 0n(x)t))(x,cDt)(x,c(D jjii =⋅∇+∇  

holds for t > 0, ji,Γx ∈ , i ≠ j and any normal n to i/jΓ The initial values used are given 

by  

Equation  5-4 0(x,0)ci =  

For iΩx ∈ , Ii ∈ . The boundary conditions are given by  

Equation  5-5 in
(in)
liplip , Γxct)(x,c ∈=  

Equation  5-6 out
(out)
DSLDSL , Γxct)(x,c ∈=  

Equation  5-7 { }corlip,,0 side i, ∈∈= i,Γxt)(x,
δn
δci  

and  

Equation  5-8 side DSL,
DSL ,0 Γxt)(x,
δn

δc
∈= , 

for t > 0. The concentrations on the outer boundaries are usually induced by 

concentrations in the donor and the acceptor compartments, cdon and cacc. On this 

model they are assumed to be constant and have constant partition coefficients as 

well: 

Equation  5-9 donlip/don
(in)
lip cKc = , 

Equation  5-10 accDSL/acc
(out)
DSL cKc = . 

The original brick-and-mortar model is obtained by removing the subdomain DSLΩ  

and by an identification of the interfaces DSL/lipΓ  and outΓ . In this case, the condition in 

Equation  5-8 becomes empty and Equation  5-6 and Equation  5-10 must be 

substituted by  

Equation  5-11 out
(out)
liplip , Γct)(x,c ∈= x  
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Equation  5-12 acclip/acc
(out)
lip cKc = . 

Note that protein binding effects of the keratin-filled corneocytes, as reported, e.g. by 

(217), are not included in the model. This can be done, e.g., by adding a factor 

before the time derivative in Equation  5-1 for i = cor. 

5.2.3 Aggregation of quantities 

For each time t > 0 the amount of substance passing through the interface lipδΩΓ ⊂  

is given by 

Equation  5-13 ( ) ( )∫ ⋅∇−= μntx,cDtΓ,j Γ d)(liplip  

When Γ  is a part of Ωδ , n should be chosen as an outward normal to obtain a 

proper direction of the flow. As it is often desirable to normalise this quantity with 

respect to an area of unit size, the flux us defined by  

Equation  5-14 ( ) ( )
( )ΓA

tΓ,jtΓ,J = . 

Here A( ) refers to the area operator. In Franz-cell diffusion experiments, membranes 

are often characterised by the steady state flux ),(lim in tΓJJ
t ∞→∞ = . In the experiment, 

concentrations are always aggregated by inspecting pools of strips, each assigned to 

a certain depth of the SC (as described in section  4.2.9).To compare the results, the 

same must be done in the simulation. For k = 1, ..., 16, we define the kth SC layer by 

L k ( )( ) ( ) ( ){ }δhkΓxdistδhkΩx +≤≤+−∈ corincor ,1: . This definition involves the 

distance between Ωx ∈  and inΓ , which is given by yx  )Γ (x, Γ −= ∈ in
mindist in γ . The 

(average) depth of L k within the SC is  

Equation  5-15 ( )δhkdk +⎟
⎠
⎞

⎜
⎝
⎛ −= cor2

1  

which is the average distance between L k and inΓ . The average concentration kc  in 

L k is defined by 

Equation  5-16 ( )∫
∫

=
k 

k 

xxc
x

ck L

L

d
d1

1 , 

where ( ) ( )xcxc i≡  for { }lipcor,, ∈∈ iΩx i . Plotting the pairs ( )kk cd ,  for k = 1, …, 16 

results in discrete concentration-depth-profile. 
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5.2.4 Numerical techniques 

Before computations can be performed, the system has to be transformed to a 

dimensionless form. The dimensionless partial differential equation is then solved 

numerically. Computations were performed by Arne Naegel et al. as described in 

(170) using the Rothe method: first the time is discretised using a fractional-step-

θ−scheme. The resulting two-dimensional problem is solved using a finite-volume-

scheme. The whole process leads to a large system of equations which are solved 

using an algebraic-multigrid method. By transforming the variable back into the 

original dimensions, the desired quantities can be computed. 

5.3 Model and experiment 

This section gives a summary of facts to be kept in mind, when comparing 

experiment and simulation. Though the model discussed so far neither includes a 

donor nor an acceptor compartment. Equation  5-9 and Equation  5-10 already 

describe a Franz diffusion cell with infinite dose conditions. For reasons of 

simplification, perfect sink conditions will be assumed in the deeper skin regions, i.e. 

0acc
out
DSL == cc , for the remainder of this work. 

5.3.1 Input parameters 

The computational model relies on seven input parameters. The membrane is 

characterised by the diffusion coefficients Dlip, Dcor, and DDSL and the partition 

coefficients Kcor/lip, and KDSL/lip. An additional partition coefficient Klip/don and a constant 

concentration cdon describe the donor compartment (Equation  5-9). 

Section  4 described how DDSL, Dlip, and Klip/don can directly be determined in an 

experiment. The quantity cdon is a free input parameter. In the case of the tape 

stripping experiment it is given by the concentration used in the donor compartment. 

The remaining three parameters Dcor, Kcor/lip, and KDSL/lip are hidden from direct 

access due to the heterogeneous structure and the small length scales of the SC 

membrane. In general, only average concentrations are available for the SC. Using a 

definition in analogy to Equation  5-16, this yields an apparent partition coefficient 

KSC/don between donor and the first layer of the SC membrane. Nevertheless, this 

yields access to the partition coefficients Kcor/lip and KDSL/lip by using the relative 

volume fractions of lipids and corneocytes in the SC as described in section  4.2.14.3.  
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A similar approach must be taken to determine the diffusion coefficient in the 

corneocytes Dcor. While Dlip and DDSL are determined, e.g., by flux experiments 

(section  4.2.15), this does not carry over to Dcor. Yet this quantity can be derived from 

steady state flux through the SC membrane. Until the end of the following subsection, 

the model is restricted to an SC-only geometry. On this membrane it is possible to 

define an apparent diffusion coefficient DSC: for a homogeneous medium 

DSC = Dlip = Dcor and Kcor/lip = 1 hold, and the steady state flux is given by Fick’s first 

law of diffusion: 

Equation  5-17 ( )
( ) ( )

SC

in
lip

out
lip

lipliplip
hom

h
cc

DncDJ
−

−=⋅∇−=∞  

For a heterogeneous membrane the apparent diffusion coefficient DSC can be defined 

analogously, of course. It is implicitly given by the steady state flux: 

Equation  5-18 
( ) ( )

SC

in
lip

out
lip

SC h
cc

DJ
−

−=∞  

Solving for DSC finally yields 

Equation  5-19 ( ) ( )in
lip

out
lip

SC
SC cc

hJD
−
⋅

= ∞ , 

where the right hand side of this equation is accessible in both simulation and 

experiment. An immediate consequence of Equation  5-17 and Equation  5-18 is the 

identity 

Equation  5-20 ( )hom

lip

SC
∞∞ = J

D
DJ , 

which explains the (artificial) definition of DSC. The quotient DSC/Dlip is the constant 

indicating, how the flux through the heterogeneous SC membrane differs from a 

homogeneous membrane with the same thickness. This interpretation will be used in 

the subsequent subsections to derive a value for Dcor. 

5.3.2 Corneocyte diffusion 

For a fixed geometry the flux ∞J  is described by a function which is linear in Dlip and 

additionally depends on the variable 

Equation  5-21 cor/lip
lip

sc K
D
Dξ =  
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only. By definition, (see Equation  5-19), the same must be true for the apparent 

diffusion coefficient. This behaviour is mentioned earlier in the literature (110, 137, 

139) using a variable ξσ /1= . A short and rigorous proof of this fact is presented by 

Arne Nägel in (170). The argumentation is valid for all models based on diffusion 

equations, and is in particular independent of geometric assumptions, e.g., the shape 

of the corneocytes. 

The role of the dimensionless variable ξ  should be elucidated: It is defined by the 

product of the speed of diffusion within the corneocytes, which is evaluated relatively 

to the lipids, and the partition coefficient between those two phases. When it comes 

to membrane permeability, both quantities can be traded into each other. Slow 

corneocyte diffusion can be compensated by an increase in the partitioning into the 

corneocytes and vice versa, little partitioning can be compensated by faster diffusion. 

In particular two limit cases are of interest. For 0→ξ  an impermeable corneocyte 

membrane is obtained; there is neither a partitioning of substance into the 

corneocytes nor diffusion within. Analogously ∞→ξ  characterises a highly 

permeable corneocyte membrane; an infinite amount partitions into the corneocytes 

and shows an instantaneous diffusion behaviour. 

These two cases lead to the minimal and maximal apparent SC-diffusion coefficient 

which are denote by DSC, 0 and ∞,SCD , respectively. Both coefficients depend on the 

geometry. As diffusion in the homogeneous membrane is typically in between those 

cases, the constants should satisfy the inequality DSC, 0 < Dlip < ∞,SCD . For the brick-

and mortar geometries in this work the relation between DSC and ξ  is given in terms 

of the very efficient approximation 

Equation  5-22 ( )
ξ

DD
DD

DD
DξD

SCSC

lipSC

SCSC
SCSC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
+

−
+≈

∞

∞

∞

0,,

,

0,,
0,

1
. 

The derivation is again found in (170). The right hand side of the equation 

characterises a function of ξ  of sigmoid shape on a logarithmical scale, with a range 

in the interval [DSC, 0, ∞,SCD ]. Solving Equation  5-22 for a given DSC yields 

Equation  5-23 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≈ ∞∞

0,

,

0,

,

SCSC

SCSC

SClip

lipSC
SC DD

DD
DD

DD
ξD . 
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Based in this approximation and Equation  5-21, estimates for Dcor are available given 

Dlip, DSC and Kcor/lip. 

5.3.3 Concentration-depth-profiles 

The simulation, as described by Equation  5-13 in this work and the experiment, as 

described in section  4, allow deriving concentration-depth-profiles. Input data for both 

test compounds are derived from two different experimental setups which are also 

discussed in section 2 extensively. Both methods use the same techniques to 

determine Dlip, DDSL, and Klip/don. They differ in the way to determine KSC/don, which 

affects Kcor/lip, KDSL/lip, and Dcor. The first method, denoted by (M1), derives the 

partition coefficients from an equilibrium experiment, in which concentrations are 

determined by measuring the loss of substance in the donor compartment. 

Alternatively, on can measure the substance extracted from the skin, yielding similar 

results (see also section  4.2.11). In a second method, denoted by (M2), the partition 

coefficient between donor and SC is obtained from a fit to the well-known solution of 

the one-dimensional heat equation (see section  4.2.14.1). The latter approach in 

particular also yields values for DSC (see section  4.2.15). As these turn out to be 

below the minimal membrane specific quantity DSC, 0, they were not considered in 

determining Dcor according to Equation  5-23. 

5.4 Results 

5.4.1 Apparent SC-diffusion coefficient 

The illustration in Figure  5-2 shows a plot of DSC/Dlip as a function of ξ for the model 

membrane which is denoted by membrane A. The discrete data points are obtained 

from numerical simulation directly, while the continuous approximation corresponds 

to the right-hand side of Equation  5-22. The geometry-dependent constants are 

DSC,0/Dlip = 0.0004675 and DSC,∞/Dlip = 11.0000000.  

To visualise the influence of changes in the geometry, membranes with different 

geometric parameters are considered as well. In a first step the lipid layer thickness 

of the model membrane is reduced by a factor of two, i.e., δ = 0.05 µm (membrane 

B). In a second step, the relative cell overlap is gradually changed down to an 

overlap of zero. The minimal horizontal length of overlap of two neighbouring 

corneocyte blocks is ( )δLv += cor2
1  (model membrane A, fully staggered), 
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( )δLv += cor4
1  (membrane C), ( )δLv += cor8

1  (membrane D) and v = 0.0 µm 

(membrane E, zero overlap), respectively. In all cases the continuous functions show 

an excellent agreement to the discrete data. Hence, the latter ones are omitted in the 

illustration for the sake of clarity.  

 
Figure  5-2 The apparent diffusion coefficient DSC/Dlip for the model SC geometry is described as 
a function of ξ = Dcor/Dlip Kcor/lip. Simulated discrete data and corresponding approximation (model 
membrane, shown as membrane A, δ = 100 nm, v = ½ (Lcor + δ). Additionally: approximation for 
membrane B using a thinner lipid layer (δ = 50 nm, v = ½ (Lcor + δ)) and approximations for 
membranes C–E with a decreased horizontal overlap (δ = 100 nm and v = ½ (Lcor + δ), 
v = ¼ (Lcor + δ), v = 1/8 (Lcor + δ). In all cases Lcor = 30 µm was used.). 
 

5.4.2 Parameter studies 

To visualise the influence of changes in the values of Dcor/Dlip and Kcor/lip, parameter 

studies have been conducted. A representative test set of parameters consisted of 

values of  

{ }0.1,1.0,01.0/ ∈lipcorK  

and  

{ }135 10,10,10 −−−∈
lip

cor

D
D  

This results in nine concentration–SC-depth profiles which are shown in Figure  5-3. 

Due to the influence on the concentration, they are grouped in three triples according 

to the Kcor/lip value in ascending order. The remaining parameters in this study are 

given by Klip/doncdon = 1 µg/ml, Klip/DSL = 1.0, and 0100
lip

.
D

DDSL = . 
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Figure  5-3 Time dependence of concentration–SC-depth profiles for Kcor/lip = 0.01, 0.1, 1.0 (from 
top to bottom) and various values for Dcor/Dlip = 10-1, 10-3, 10-5. Concentrations are shown relative to 
Klip/don cdon = 1 µg/ml. Parameters in DSL compartment: Klip/DSL = 1, DDSL/Dlip = 100. Times are 
normalised to Dlip = 1.0 µm2/s = 3.6 10-5 cm2/h. 
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5.4.3 Concentration-depth-profiles 

A summary of the input data is given in Table  5-3. The table is extended by two rows 

for the speed of diffusion in the corneocytes. The value Dcor is determined according 

to Equation  5-23. As this derivation is sensitive with respect to errors in the input 

data, an alternative estimate is introduced. This is denoted by Dcor* and its value is 

obtained from Dcor by a reduction of one (CAF) and two (FFA) orders of magnitude, 

respectively. This latter mentioned quantity is used to generate the concentration-

depth-profiles which are shown in Figure  5-4. For each model substance results are 

plotted separately for incubation times of 1 h, 2 h and 6 h (from top to bottom) with 

FFA on the left hand side and CAF on the right hand side. As the input data for FFA 

contain a comparatively large value of KSC/don for (M1), an overestimation for Kcor/lip is 

obtained. Hence, these results are excluded from the illustrations. 

 

Table  5-3 Experimental input parameters for simulation. Mean values according to section  4. Dcor 
and Dcor* determined according to section  5.3.2. 
 
Parameter  Substance 
  Flufenamic acid  Caffeine 
Dlip [cm2/h]  1.1 x 10-4  2.1 x 10-4 
DSC [cm2/h]  1.7 x 10-7  1.4 x 10-7 
DDSL [cm2/h] 4.9 x 10-3  2.3 x 10-3  
Klip/don  20.32  2.15 
cdon [mg/ml]  1.0  12.5 
 Experimental method 
 (M1) (M2) (M1) (M2) 
KSC/don 16.20 5.88 4.51 4.70 
Kcor/lip 0.77 0.21 2.22 2.32 
KDSL/lip 0.26 0.10 0.08 0.08 
Dcor [cm2/h] 1.4 x 10-7 5.1 x 10-7 1.8 x 10-8 1.7 x 10-8 
Dcor* [cm2/h] 1.4 x 10-9 5.1 x 10-9 1.8 x 10-9 1.7 x 10-9 
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Figure  5-4 Comparison of experimental and computational results on concentration-depth-profiles 
of (left hand side, top to bottom) flufenamic acid at 1, 2, and 6 h incubation time and (right hand side, 
top to bottom) caffeine at 1, 2, and 6 h incubation time. 
 

5.5 Discussion 

While neglecting geometric information, the model presented in this work is based on 

first principles only. This is independent of the substance and yields excellent 

predictive qualities as long as the relevant parameters are determined accurately 

enough. Of course, this can be achieved mathematically by using parameter 

estimation and inverse modelling. However, this limits the predictive power of the 

model, as it relies on an a-posteriori analysis. In order to avoid this, an experimental 

access to the relevant model coefficients is preferred in the study at hand.  

The rationale for the choice of the test compounds is to show that the model is 

applicable independently of a substance’s hydrophilic and lipophilic character, 
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respectively. The main restriction is that the substances must show Fickian type 

diffusion behaviour. Therefore, a key assumption in this work is that both substances 

diffuse freely through the whole membrane. Note that although the molecular weight 

is not incorporated in the model directly, it naturally influences the diffusion 

properties. This may impair the applicability of the model for molecules with a 

particularly large molecular weight. Finally, keratin binding of FFA is not included in 

the model.  

5.5.1 Apparent SC-diffusion coefficient 

A comparison of membranes A and B in Figure  5-2 yields that a change in the 

relative lipid layer thickness affects the scaling of the approximating function. A 

reduction of d increases the maximal values for DSC,∞/Dlip and decreases the minimal 

values for DSC,0/Dlip. On the contrary, variations in the overlap of the corneocyte cells, 

as described by the graphs for membranes A, and C–E, affects the lower bound 

DSC,0/Dlip only. The latter observation explains, for instance, the differences in the 

barrier function between species (e.g., human vs. rat), between human skin and 

human skin equivalents as well as between normal and diseased skin.  

For large values ξ > 0.1, the graphs for membranes A and C–E almost coincide. In 

the lower regimes, ξ < 0.1, especially membrane E, the case of overlap zero, is 

significantly different from the other cases. With respect to the data presented in 

Table  5-3, it must be mentioned that the experimental results are gathered in the 

lower regimes (DSC/Dlip = 1.5 x 10-3 for FFA, and DSC/Dlip = 6.7 x 10_4 for CAF). This 

observation has two drawbacks: Firstly, the variation of geometric parameters in 

section  5.4.1 shows that changes in the geometry affect the dependence of DSC/Dlip 

on ξ. The smaller the horizontal overlap is, the larger becomes the minimal effective 

membrane permeability. In this case, the resulting n (and consequently also Dcor) is 

reduced. Secondly, the computation of ξ is ill conditioned for sc,0sc DD → . In Figure 

 5-2 this is seen easily for small values of ξ, which correspond to almost identical 

values of DSC/Dlip.  

Despite these shortcomings it should be stressed that the concept and the results 

presented in sections  5.3.2 and  5.4.1 extend to a multitude of membranes in cell 

biology and are applicable for all membranes of biphasic character. 
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5.5.2 Concentration-depth-profiles 

The results for FFA are shown on the left hand side of Figure  5-4 from top to bottom 

with increasing incubation times. The development of the profiles in time is similar for 

both simulation and experiment; the only exception is the linear profile for the 

simulation after 6 h. This is an indicator that steady state is reached after 6 h, which 

is not observed in the experiment. The quantitative precision is quite accurate, 

though not perfectly within the range of the experimental error. For CAF, shown on 

the right hand side of Figure  5-4, the concentrations of the simulations show 

significantly better agreements with the experiment and are close to the range of 

experimental accuracy. Due to the similarity of input data for (M1) and (M2) for 

KSC/don, the result of the simulations can hardly be distinguished.  

Compared to the small incubation times of 1 and 2 h, experiment and simulation 

show comparatively large differences for an incubation time of 6 h. This is firstly 

caused by technical problems of the tape stripping technique. With increasing 

incubation times water enters into the SC and leads to a degradation of the structure. 

As a consequence, the spatial resolution of the tape stripping profiles is losing 

accuracy. Secondly, the mathematical model is lacking precision as it does not 

include swelling effects. As reported by Richter et al. (51), especially the thickness of 

the lowermost SC layers can be affected by water content. As such behaviour is not 

included in the simulation, this may lead to an underestimation of the layer volume, 

and hence to an overestimation of the concentration. This is in particular true for the 

lowermost SC layers. Especially for FFA the results of simulation and experiment 

differ in this region. One reason can be the comparatively large depth of the DSL 

compartment. The smaller this compartment, the tighter is the coupling between the 

end of the membrane and the lowest SC layers.  

Last it must be mentioned that one basic assumption of this work are equally sized 

and fully staggered SC layers. The effect of layers differing in their thicknesses will 

be subject to future research. The model also does not cover that the uppermost skin 

layer in the SC disjunctum is packed less tighten than in the lower SC layers. 

5.5.3 Parameters 

One input parameter of particular importance is the diffusion coefficient in the lipids: 

due to the introduced normalisation, all times in the simulation depend on Dlip. This is 

critical, as this is an apparent quantity itself. It is known, cf. (92), that lateral diffusion 
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along the lipid bilayers is much faster than vertical diffusion through the lipid bilayers. 

Therefore, the experimental value for Dlip must be regarded to be an averaged value 

already, which represents all micro scale effects of diffusion in the SC. This is 

implicitly taken into account in the analysis at hand. It is the major advantage of this 

approach that this average quantity is feasible experimentally, while it is uncertain, if 

diffusion is Fickian at all on much smaller scales. 

The second important unknown is the diffusion coefficient Dcor. Although it is difficult 

to access this quantity experimentally, the method presented in section  5.3.2 yields 

reasonable estimates. Yet, as shown by Naegel et al. (170), the method is sensitive 

against geometric information, such as the relative corneocyte overlap and the lipid 

layer thickness. The necessity to reduce Dcor can be due to differences in the cell 

alignment. Although the cells are fully staggered in the model membrane used for the 

simulation, it is unlikely that this is exactly the case in natural geometries (218). 

Instead, already a slight perturbance of the optimal overlap leads to an increase of 

DSC,0 as could be shown by Naegel et al. (170). For a constant observed value for 

DSC, this corresponds to lower values for Dcor. 

One of the first computer simulation studies to consider penetrant concentration-

depth-profiles in the SC was the one from Watkinson et al. (124). These authors 

modelled concentration-distance-profiles for the case of heterogeneous SC, however 

their analysis is only applicable to the steady state transport. They argued that the 

diffusion coefficient decreases from outer to inner layers of the SC. Using variable 

diffusion and partition coefficient models Anissimov and Roberts (127) showed in a 

previous study that partition coefficient heterogeneity had a more profound effect on 

predicted fluxes than diffusion coefficient heterogeneity. In a further paper, cf. (194), 

they argued that the clobetasol propionate tape stripping data were most consistent 

with the partition coefficient decreasing exponentially for half the SC and then 

becoming a constant for the remaining SC. The analysis of Naegel et al. (170) 

shows, how diffusion in the corneocytes and partitioning are interrelated and can be 

compensated by one another. Although constant coefficients were used, good 

agreements of simulation and experiment are obtained. 

The different values of KSC/don and thus Kcor/lip for (M1) and (M2) for FFA in Table  5-3 

require further investigations. One reason may be effects of protein binding, which is 

caused by compounds attaching to keratin fragments inside the corneocytes. This 

behaviour is not included in the model. However, it is known, e.g., from (219), that in 
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the steady state this is equivalent to a reduction of Dcor. This is the reason, why the 

correction of Dcor was chosen to be stronger for FFA than for CAF. 

The time dependent interplay between Dcor and Kcor/lip or (M1) and (M2) for FFA is 

visualised in Figure  5-3. It can be observed that the larger the value of Kcor/lip the 

more extreme the reaction to changes in Dcor/Dlip. This is what must be expected: 

with increasing Kcor/lip, the corneocytes become more and more important for the 

storage capacity of the SC. When the diffusion in the corneocytes is slow, the 

reservoirs fill up slowly. With respect to the SC-depth the influence in the uppermost 

layers is the strongest in this case. 

5.6 Conclusion 

This study presented an in silico simulation of drug diffusion in an in vitro diffusion 

experiment under infinite dose conditions. It is based on experimental input data as 

determined in section  4. The substances considered in this work are FFA and CAF, 

which serve as representatives for lipophilic and hydrophilic compounds, 

respectively. 

By a comparison of experiment and simulation it was shown, which parameters are 

critical when performing simulations. The analysis of the underlying model leads to 

improved insights how the steady state flux through the SC membrane on the one 

hand and the interaction of diffusion in and partitioning between lipid and corneocyte 

on the other hand are coupled. It is shown, how a corrected interpretation of the input 

parameters leads to very good agreements of the concentration–depth-profiles of 

experiment and simulation. 

The future work will include enlarging the set of substances as well as studying the 

effect of protein binding on the permeability properties of the human skin. 

Additionally, it must be shown whether the achieved tools are also valid in three-

dimensional models. 

5.7 Appendix A 

For the sake of a better understanding, the following passage tries to give a brief 

overview over the numerical and mathematical methods. For a vector field 
22 RRΩ: →⊂F  in two-dimensional space with components F = (F1,F2), the 

divergence is given by 
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( ) ( ) ( )
2

2

1

1div
xδ

xFδ
xδ

xFδx +=F . 

This corresponds to the limit case of the surface integral which is normalised by the 

volume for infinitely small volumes. Regarding the derivation of the formulas of the 

diffusion equations of the form ( ) fuα =∇− div  in Ω the reader may want to refer to 

standard literature from physics, cf. (220). A comprehensible mathematical overview 

on this topic, which also considers the effect of the transmission conditions, can be 

found, e.g., in (84). 

5.7.1 Dimensionless form 

By dividing the concentrations ci by a density ρ, we obtain a dimensionless variable 

ui = ci/ρ. At the same time a characteristic length scale λ and a characteristic time 

scale τ are introduced. The diffusion coefficients can then be written as  

Equation  5-24 
τ
λαD

2

ii =  

with a dimensionless scalar value λi > 0. For the time being it is assumed that 

λ = 1 µm. The characteristic time scale τ is chosen, such that αlip = 1 and 

consequently 

Equation  5-25 ( ) 0iyilipi =∇= uαDD  

for { }SCDSL,lip,cor,∈i . The variables are then coupled by 

( ) ( )s,yuρt,xc ii =  

where 

Equation  5-26 τst ⋅=  and λyx ⋅= kk  

for each component k of the vector. As it becomes obvious in Equation  5-26 all 

domains and interfaces also undergo a transformation. Therefore, Ωi, Γi,j are 

substituted by their dimensionless counterparts iΩ̂ ; ji,Γ̂ . The dimensionless form of 

Equation  5-1 is then, for instance, given by 

( ) 0iyiyis =∇− uαdivuδ  

for s > 0, iΩ̂y ∈ , and Ii ∈ . Analogous results hold for the other equations, as can be 

verified in a straightforward manner. The equations of the dimensionless formulation 

are formally identical, but the diffusion coefficients αi, Ii ∈  are given relative to Dlip. 

As an obvious implication, the time scale is inversely proportional to Dlip, e.g., a 
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reduplication of all diffusion coefficients is equivalent to accelerating the time scale by 

a factor of two. Yet, due to Equation  5-25 a transformation to physical quantities 

remains easy, see Section  5.7.2 for further examples. A list of the parameters used in 

the dimensionless formulation is found in Table  5-4. 

 

Table  5-4 Parameters of the dimensionless formulation 
 
ulip, ucor, uDSL Dimensionless drug concentration in lipid, corneocyte and deeper skin layers 

αcor, αSC, αDSL Dimensionless diffusion coefficients relative to Dlip, e.g., αcor = Dcor/Dlip 

lipΩ̂ , corΩ̂ , DSLΩ̂  Domains after transformation 

corlipΓ ,
ˆ , DSLlipΓ ,

ˆ  Interior interfaces after transformation 

linΓ̂ , sideΓ̂ , outΓ̂  Exterior interfaces after transformation 

λ, τ Characteristic length and time scale 

5.7.2 Flux as a function 

Within this subsection the computational domain is restricted to the SC again. The 

flux and the permeability for this membrane are functions of αcor and Kcor/lip. Within the 

model both variables are positive constants, αcor, Kcor/lip > 0. Using the transformation 

ucor = Kcor/lipūcor a substitution of ucor by ūcor results in  

( ) 0lipylipylips =∇− uαdivuδ  in lipΩ̂ , 

( ) ( ) 0coryycorscor/lip =∇− uξdivuδK  in lipΩ̂  

and 

( ) 0corylipylip =⋅∇+∇ nuξuα , 

ucor = ūcor on cor,lipΓ̂  

with ξ = αcorKcor/lip. Note that the piecewise defined function 

 
is continuous. As the solution ulip in the lipid channel is not affected by this 

transformation, the flux 

( ) ( )∫ ⋅∇=
∞→∞

out

dlipy
out

lip

Γ̂s
μns,yulim

Γ̂A
ρD

J  

is also an invariant of the transformation. Consequently all membranes with identical 

values of n yield the same fluxes. By definition, this carries over to the permeability 
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and the effective diffusion coefficient of the SC. The latter one is from now on 

denoted by αSC = DSC/Dlip. It should be stressed that the whole argumentation is 

independent of the dimension and the shape of the geometry. 

5.7.3 Effective diffusivity 

Plotting the discrete data of αSC as a function of ξ results in a graph of sigmoid shape 

which is bounded between αSC,0 and αSC,∞, cf. Figure  5-2 (Simulation A). If αSC can be 

represented by a continuous function, this representation must be of the type  

Equation  5-27 ( ) ( )( )ξΦ
αα

αξα
exp1

SC,0SC,
SC,0SC +

−
+= ∞ , 

where RR: →Φ is continuous, and satisfies 

( ) ∞=
→

ξΦlim
ξ 0

 and ( ) −∞=
→

ξΦlim
ξ 0

 

One approach is to use an affine linear transformation of the form 

( )
y

ξβξΦ ln−
=  

with R∈y,β  and y > 0. A homogeneous membrane leads to the constraint 

αSC(1) = 1, which is equivalent to the identity 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

= ∞

SC,0

SC,

1
1

ln
α

α
/βy  

Inserting this into Equation  5-27 yields 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∞

∞
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⎠
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−
−

+

−
+=
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The positive constant β depends on the geometry and characterises the inflection 

point of the graph. For the geometry considered in this work, a non-linear regression 

analysis yields that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

≈ ∞

01
1

,SC

,SC

α
α

lnβ  is a good approximation and consequently 

( )
ξ/

α
α

αα
αξα

⎟⎟
⎠

⎞
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⎝

⎛

−
−

+

−
+=

∞
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The latter is equivalent to Equation  5-22, since αSC = DSC/Dlip holds, due to Equation 

 5-25. 
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6 THE ROLE OF CORNEOCYTES IN SKIN TRANSPORT REVISED – A 
COMBINED COMPUTATIONAL AND EXPERIMENTAL APPROACH  
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6.1 INTRODUCTION  

In the pharmaceutical field of drug application it is well established that occlusion 

effectively enhances skin permeation of hydrophilic compounds by increasing the 

partitioning into the SC (221). This principle is used in occlusive semisolid 

formulations and transdermal patches. SC hydration may further vary due to patient 

skin type (seborhoic/sebostatic), exposure to sun, wind, cold, air-conditioning, 

chemicals or cosmetics among many others. However, there is an ongoing debate on 

the mechanisms involved in these effects. Especially the potential influence of 

compound-corneocyte interaction on permeation through human SC (SC) is under 

discussion. For small lipophilic molecules, interactions with keratin or other proteins 

are usually neglected as there is a common consent that transport occurs mainly via 

the intercellular lipids. For hydrophilic molecules, corneocytes may offer an additional 

pathway across the SC, such as through the controversially discussed continuous 

desmosome-corneocyte route (58, 61, 64, 222-225). Meanwhile, there is significant 

evidence that the corneocytes are accessible for - at least a few - permeants. It is 

unquestionable that water enters the corneocytes very effectively (26, 50). In 

addition, several larger hydrophilic and even lipophilic molecules (usually dyes) were 

visualized inside the corneocytes either by conventional or high speed two-photon 

microscopy (56, 226). Boddé et al. found hints that disintegrating desmosomes serve 

as an entrance through the cornified envelope into the corneocytes in the apical SC 

(53). In the light of these results, the neglect of compound-corneocyte interaction is 

challenged. This is even more substantial for predictive models of SC permeability or 

SC flux. 

The gain in knowledge about the SC structure and the permeant-barrier interaction is 

reflected in the development of increasingly sophisticated morphology based 

mathematical models for skin transport. In the simplest case, the SC morphology is 

approximated by a brick-and-mortar model with an inaccessible intra-cellular phase. 

Here, the corneocytes (bricks) simply serve as obstacles reducing diffusive area and 

increasing path length (133, 156). Some of these models mimic the anisotropic 

structure of the SC lipid bilayers (31, 34, 196, 227) by using anisotropic transport in 

lateral and trans-bilayer direction (110, 133, 135, 156). Other elaborate models 

implement a trans-corneocyte pathway assuming a homogeneous interior and 

isotropic intra-cellular transport (110, 137, 139, 142, 166, 170). Finally, Wang et al. 
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used hindered diffusion theory to estimate the corneocyte diffusion coefficient Dcor in 

order to account for intra-corneocyte keratin forming fibrous obstacles (141, 168, 

169). 

Despite these obvious advances the available experimental data on compound-

corneocyte interactions are still scarce and too inaccurate to validate morphologically 

exact diffusion models. For which substances do corneocyte interactions take place? 

Which structures are responsible for the interactions? Which compound properties 

are relevant for interactions with specific structural elements of the corneocytes? And 

finally, how could these be evaluated quantitatively? 

Corneocytes are filled with a protein network of keratin intermediate filaments and 

are surrounded by a cornified protein envelope (cpe) (1). Together with small 

hydrophilic hygroscopic molecules - the natural moisturizing factors (e.g. urea, amino 

acids, and lactic acid) - keratin provides the major water holding capacity of the SC 

thus regulating skin flexibility, firmness, and smoothness. Hence, water present in 

healthy skin in vivo, i.e. about 15-30% per weight of dry SC (27) is tightly bound (228-

230). Through occlusion or in a very humid environment additional water (up to 

several times the weight of the dry tissue) may be taken up by the corneocytes. 

Finally, water intercalates between intercellular lipids to occasionally form water pools 

of vesicle-like structure but without causing any major disruption of the lipid bilayers 

(231, 232). Corneodesmosomes mediate cellular contact between adjacent 

corneocytes and provide SC cohesion until they are gradually degraded during 

desquamation within the stratum disjunctum. In summary, interactions of a 

penetrating molecule with the SC are possible with (i) intercellular lipids; (ii) keratin 

and proteins of the corneodesmosomes or the cornified protein envelope; (iii) water.  

The primary interaction of a compound with intercellular lipids or water is dissolution 

of the substance in the liquid phase. At equilibrium, the ratio of concentrations 

between two adjacent non-miscible media, is determined by the partition coefficient, 

i.e. the ratio of solubility in both phases. In contrast, small molecules interact with 

proteins by forming complexes. In simple cases, the number of protein-bound 

molecules may be calculated from a Langmuir isotherm. For concentrations far away 

from saturation of binding sites the relationship between free and bound 

concentration is sufficiently described by a linear relationship, i.e. in terms of a 

partition coefficient. Approaching saturation the concentration of bound substance 

becomes independent of free concentration visible as a plateau. 
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Previous models that take into account the anatomical heterogeneity of SC in detail 

assume that interactions with the protein phase are regulated by a partition 

coefficient (52, 150). These apply in the limit that compound concentrations are low 

and far away from saturation. However, non-linear concentration influences indicating 

saturable processes are being repeatedly reported in literature. These include 

binding studies using isolated keratin protein (233, 234) as well as SC-donor partition 

coefficients (KSC/don) of a number of compounds (such as doxycyclin (233), 

primaquine (234), timolol (122), testosterone, hydrocortisone, estradiol, progesterone 

(180), cyanophenol, iodophenol, and pentyloxyphenol (180)). Even for studies where 

no non-linear concentration dependence is reported (235-237) this may be an effect 

of a low protein binding constant or that potential protein binding compounds are 

denied access to the binding sites, as for example keratin is mainly found intra-

cellular. The same effect would be caused by an insufficient compound solubility in 

the surrounding tissue as then the maximum binding capacity cannot be achieved. 

The non-linear development of the binding isotherm may further be 

overcompensated by non-saturable partitioning. This concept has first been 

introduced for the adsorption of gases to glassy polymers as the “dual sorption”-

theory but may be ubiquitously applied to processes with concurrent mobile and fixed 

species of the same compound irrespective of the mechanism of immobilization 

(238). Chandrasekaran et al. transferred the concept to the interaction with human 

epidermal membranes and SC using the example of scopolamine (119). They 

described the process as a combination of dissolution creating mobile, freely 

diffusible molecules and adsorption producing non-mobile molecules that cannot 

contribute to the diffusion process (119). Between mobile and non-mobile species a 

rapid exchange compared to the diffusion time-scale and a local equilibrium is 

assumed. The authors however assumed the whole membrane to participate in 

dissolution and binding of drug molecules. The aim is now to relate mobile and fixed 

drug species to specific SC substructures.  

Lately we established experimental methods to quantify the tendency of compounds 

to interact with the corneocytes in terms of a corneocyte-intercellular lipids partition 

coefficient (Kcor/lip) (239). Although this method provides a general idea of the overall 

extent of corneocyte uptake, it does not allow insight into the mechanism of 

interaction. The question is how to analyze the contributions of the individual 

structural elements of the SC experimentally. Techniques have been reported how to 
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adopt equilibration experiments so as to determine a compound’s affinity to SC lipids. 

However, to our knowledge only two data-sets of experimentally measured partition 

coefficients into extracted SC lipids are reported for a very limited set of compounds. 

These are a series of 11 hydrocortisone esters from Raykar et al. and CAF and FFA 

from our own works (52, 239). Usually this problem is circumvented by employing a 

correlation between the lipid-donor partition coefficient (Klip/don) and the octanol-water 

partition coefficient (KOct/w) according to a power law (linear free energy relationship) 

(150, 156, 160).  

Similar correlations have also been proposed to exist between the corneocytes-water 

partition coefficient (Kcor/w) and KOct/w (52, 150, 157, 240). Furthermore, partition 

coefficients into delipidized SC and callus shavings have been proposed as a model 

to investigate compound binding to corneocyte proteins (52, 180, 217). There are 

several shortcomings of these methods. Lipid extraction with methanol/chloroform 

cannot remove the ω-OH-acylceramides covalently attached to the cpe (29). This 

may lead to an overestimation of protein binding of lipophilic compounds. Treatment 

with organic solvents will denature the corneocyte proteins so that binding properties 

will most probably be very different from intact SC. Finally, like intact SC delipidized 

SC and callus will hydrate significantly during incubation with aqueous media so that 

again it is not obvious whether substance uptake is due to protein binding or 

dissolution in the corneocyte water phase. These shortcomings may be overcome by 

using isolated pulverized animal keratin instead. Binding studies using keratin from 

bovine hoof and horn have been done in the past with a focus on fungicides and anti-

malaria drugs (233, 234, 241, 242). The pattern of keratin proteins depends on 

species, tissues, as well as states of terminal differentiation (243, 244). The amino 

acid composition of human and bovine epidermal keratins is relatively comparable 

which most probably reflects identical function (245).  

Uptake into aqueous SC domains has so far only been investigated indirectly by 

comparing SC-water partition coefficients estimated form the decrease of the donor 

concentration (method 1) and from the extraction of the SC after equilibrium (method 

2) (52). This method is based on the assumption that the dissolution properties of 

water inside the SC are identical to bulk water. Recently, it was shown that significant 

portions of water are tightly bound to SC structures and are therefore unavailable for 

compound dissolution (228-230). Ignoring bound water leads to wrong estimates of 

KSC/don according to method 1 and therefore of the uptake into aqueous domains of 
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the SC (246, 247). The aim is now to investigate partitioning into aqueous SC 

domains directly by measuring KSC/don at clearly defined hydration levels. This will be 

possible by switching to a non-aqueous donor such as low viscous paraffin (LVP) to 

avoid the uncontrolled excessive hydration that happens with an aqueous donor. SC 

may now be used dry or gradually hydrated and a series of equilibration experiments 

may be performed with SC of known water content as displayed in Figure 4.1. At 

zero hydration the SC-LVP partition coefficient (KSC/LVP) will exclusively be 

determined by the intercellular lipids and accessible proteins (Figure 4.1B). With 

increasing hydration KSC/LVP should be influenced depending on the affinity of the 

molecule to water if the aqueous domain is accessible for drug molecules (Figure 

4.1C). By measuring KSC/LVP at different hydration levels it can be tested whether 

water uptake has a linear influence on KSC/LVP indicative of a partitioning process.  

We could recently show that corneocyte interactions need to be taken into account 

for both the hydrophilic CAF (logKOct/w -0.08) and the lipophilic FFA (logKOct/w 4.8) 

(239). In the case of FFA, keratin binding had been suspected to be responsible for 

the observed corneocyte interaction while this could be ruled out for CAF (239). Apart 

from that dissolution within the aqueous corneocyte domain is imaginable for both 

compounds CAF being highly soluble in water and FFA being a weak acid exhibiting 

a pH dependent aqueous solubility (pKa 3.8; (171)). Naegel and coworkers 

demonstrated the significance of the corneocyte involvement for the shape of the SC 

concentration-depth profiles of both FFA and CAF through numerical modeling on the 

basis of experimental input values on all relevant partition and diffusion coefficients 

(170). For both compounds their mechanism of corneocyte interaction shall now be 

clarified. The original set of compounds has been extended by TST (logKOct/w 3.32) 

as it is practically insoluble in water but stands a good chance to bind to keratin due 

to its high lipophilicity. TST is in contrast to FFA non-ionizable and therefore its 

aqueous solubility is independent of pH. In addition, CAF and TST are typical 

examples of reference compounds recommend by the internationally accepted 

guidelines 427 and 428 of the Organization for Economic Cooperation and 

Development (OECD) for performing system suitability tests for skin permeation 

experiments (5, 6). For all three compounds KSC/LVP was measured as a function of 

SC hydration and donor concentration.  

In order to interpret the experimental results quantitatively two constitutive 

compartmental models of SC are formulated. These allow an easy prediction of 
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KSC/don as a function of membrane composition, in detail SC hydration, and donor 

concentration. The spatial resolution is given by the compartments that are defined 

and is limited by the degree to which reliable estimates of input parameters are 

available. To quantify compound interactions with individual compartments the two 

elements of the “dual-sorption”-theory (119), i.e. non-saturable dissolution and 

saturable binding were applied to individual compartments in terms of partition 

coefficients and Langmuir binding isotherms. Input data was either experimentally 

derived or found in theoretical parameter studies. Calculations are evaluated by 

comparing results with independently determined experimental KSC/LVP. 

Discrepancies between measurements and predictions are investigated by 

systematically varying critical input parameters. 

6.2 THEORY 

6.2.1 Definition of compartments and interfaces 

We assume a compartmental composition of the SC of lipids and corneocytes, Ωlip 

and Ωcor. Two main states of the SC will be discussed. These are “hydrated SC” 

(SC,hyd) and “dry SC” (SC,dry). The latter is an artificial state obtained by freeze-

drying of excised SC which is only relevant for the in vitro situation. Nonetheless, it 

will be useful for illustrating the effect of SC water content and protein binding. 

“SC,dry” is composed of a lipid and a protein compartment  

Equation  6-1 prolipdrySC, ΩΩΩ +=   

“SC,hyd” additionally contains an aqueous compartment  

Equation  6-2 aqudrySC,hydSC, ΩΩΩ +=  

Such a compartmental composition in dry and hydrated state will be discussed as 

“Model 1” (M1). As an extension of M1 Ωpro will be further subdivided into a keratin 

and a cornified envelope sub-compartment in “Model 2” (M2) 

Equation  6-3 cpekerpro ΩΩΩ +=  

The composition of the M1 and M2 model membrane at dry and hydrated state is 

depicted in Figure  6-1.  
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Figure  6-1 A: Upon contact with an aqueous donor water invades into the corneocytes. B and C: 
Incubating excised stratum corneum with a non-aqueous donor such as low viscous paraffin allows 
working at a defined hydration state. Compartments and interfaces used in the compartmental models 
of “dry stratum corneum” (B) and “hydrated stratum corneum” (C). Not drawn to scale. 
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The membrane is in contact with an inert donor medium Ωdon. Adjacent 

compartments are separated by interfaces Гlip,don, Гaqu,lip, Гpro,lip and Гpro,aqu in M1 and 

Гlip,don, Гaqu,lip, Гker,aqu and Гcpe,lip in M2. By definition Ωaqu and Ωcpe do not share a 

common interface. The theoretical interface Гcpe,ker is ignored as direct substance 

exchange between two solids is considered impossible. An index set 

{ }cpeker,pro,aqu,lip,don,=I  will be used to avoid unnecessary abundant notation. 

Compartments and interfaces are then referred to by the symbol Ωi and Гi,j for i ≠ j 

and Iji, ∈  (Table  6-1). The composition of the model membrane with the described 

compartments and interfaces at dry and hydrated state is depicted in Fig. 1. 

 

Table  6-1 Compartments and interfaces of the model membrane in M1 and M2 

 
Compartments and 
interfaces 

symbols partition coefficients 
and binding constants

concentrations model 

Donor compartment Ωdon  cdon M1 
Interface Гlip,don Klip/don  SC,dry 
Lipid layers Ωlip  clip  
Interfaces Гpro,lip no interaction   
 Гaqu,lip Kaqu/lip  M1 
Aqueous compartment Ωaqu  caqu SC,hyd 
Interface Гpro,aqu kpro and cmax,pro   
Protein compartment Ωpro  cpro  
Donor compartment Ωdon  cdon M2 
Interface Гlip,don Klip/don  SC,dry 
Lipid layers Ωlip  clip  
Interfaces Гaqu,lip and Гcpe,lip Kaqu/lip, kcpe and cmax,cpe   
Cornified envelope 
compartment 

Ωcpe  ccpe  

Aqueous compartment Ωaqu  caqu M2 
SC,hyd 

Interface Гker,aqu kker and cmax,ker   
Keratin compartment Ωker  cker  
 

6.2.2 Description of compound membrane interaction 

M1 and M2 apply to equilibrium conditions. We consider the whole SC volume 

accessible for compounds which is expressed in the following set of equations for M1 

(Equation  6-4 and Equation  6-5) and M2 (Equation  6-6 and Equation  6-7) at dry and 

hydrated state 

Equation  6-4 pro
pro

drySC,lip
lip

drySC,drySC, ccc ϕϕ +=  

Equation  6-5 aqu
aqu

hydSC,pro
pro

hydSC,lip
lip

hydSC,hydSC, c ccc ϕϕϕ ++=  

Equation  6-6 cpe
cpe

drySC,ker
ker

drySC,lip
lip

drySC,drySC, cccc ϕϕϕ ++=  
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Equation  6-7 aqu
aqu

hydSC,cpe
cpe

hydSC,ker
ker

hydSC,lip
lip

hydSC,hydSC, ccccc ϕϕϕϕ +++=  

with the concentration of a substance within a compartment being defined as 

ii /Vwc = , i.e. as the weight of the substance in the compartment relative to its 

volume. The volume fractions of the compartments relatively to the volume of the SC 

are defined as SCi
i
SC /VV=ϕ . Although substantial portions of water are known to be 

tightly bound to proteins as a starting point we assume all water to be available for 

compound dissolution. This is in agreement with SC partitioning experiments 

performed with sucrose by Raykar et al. who could not find proof of an inaccessible 

water fraction within human SC (52).  

Substance-compartment interactions are modelled depending on the nature of the 

compartment. At Гlip,don and Гaqu,lip partition coefficients Ki/j are applied. That is: 

Equation  6-8 (x)(x) ji/ji cKc =   

holds for ji,Γx ∈ , with ( ) ( ) ( ){ }lipaqu,,donlip,ji, ∈ . 

In contrast, for all protein compartments Ωpro, Ωker and Ωcpe we follow the rationale by 

Chandrasekaran et al. who suggested a non-linear dependence assuming a limited 

number of available binding sites and described the relationship between protein-

bound and free concentration by a Langmuir-isotherm (119) 

Equation  6-9 
(x)1
(x)

(x)
ji

jmax,ii
i ck

cck
c

+
=  

for ji,Γx ∈ , with aqu)(pro,j)(i, =  for M1 and ( ) ( ) ( ){ }lipcpe,,aquker,ji, ∈  for M2. In this 

sense for M1 we assume Гpro,lip to be an “inert” interface and protein binding only via 

Гpro,aqu. Due to the coupling of Ωaqu, Ωlip, and Ωdon via Kaqu/lip and Klip/don at Гaqu,lip and 

Гlip,don the free (and thus also the bound) concentrations will be a function of cdon:  

Equation  6-10 donaqu/dondonlip/donlipaqu,lipaqu/lipaqu cKcKKcKc ===   

Equation  6-11 donlip/donlip cKc =   

From an anatomical standpoint direct lipid-protein contact can only reasonably be 

assumed between SC lipids and the cpe or corneodesmosomes. As a first approach 

in M2 we are concentrating on the cpe for the simple reason that information on its 

dimensions are available from literature (1).  

This has severe consequences for the description of cSC. For M1 the concentration 

within “SC,dry” and “SC,hyd” are given by 
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Equation  6-12 donlip/don
lip

hydSC,drySC, cKc ϕ=  

as Ωaqu = Ø, and consequently caqu = cpro = 0, and by 

Equation  6-13 

donaqu/don
aqu

hydSC,
donaqu/donpro

donaqu/donpromax,propro
hydSC,donlip/don

lip
hydSC,hydSC, 1

cK
cKk

cKck
cKc ϕϕϕ +

+
+=   

For M2 cSC,dry and cSC,hyd are described as 

Equation  6-14 
donlip/doncpe

donlip/doncpemax,cpecpe
drySC,donlip/don

lip
drySC,drySC, 1 cKk

cKck
cKc

+
+=   

as Ωaqu = Ø, caqu = cker = 0 and by 

Equation  6-15 

dondonaqu,
aqu

hydSC,

dondonlip,cpe

dondonlip,cpemax,cpecpe
hydSC,

dondonaqu,ker

dondonaqu,kermax,kerker
hydSC,dondonlip,

lip
hydSC,hydSC, 11

cK

cKk
cKck

cKk
cKck

cKc

ϕ

ϕϕϕ

+

+
+

+
+=

  

Note that in Equation  6-9 ci(x) depends only on the concentration cj(x) but not on the 

volume fraction j
SCϕ . In other words at high SC hydration when water intercalates 

between lipids the bound concentration will still be correctly described by Equation 

 6-9 despite that parts of Ωaqu share no interface with Ωpro or Ωcpe. This of course only 

true if the number of binding sites is independent of aqu
SCϕ . 

6.2.3 The special case of non-protein binding substances 

In the special case of non-protein binding substances, the maximum concentrations 

cmax,i are identically zero. Therefore, the terms corresponding to the Langmuir 

isotherms vanish and, for both M1 and M2, the same result is obtained for cSC,dry 

(Equation  6-12) and cSC,hyd  

Equation  6-16 dondonaqu,
aqu

hydSC,dondonlip,
lip

hydSC,hydSC, cKcKc ϕϕ +=   

respectively. 

6.2.4 Calculation of a theoretical stratum corneum-donor partition coefficient 

The theoretical SC-donor partition coefficient is calculated by applying Equation  6-8 

to the whole SC membrane and rearranging for KSC/don 

Equation  6-17 
don

SC
SC/don c

c
K =   
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Accordingly, in Equations 4-5 to 4-9 cSC is divided by cdon to calculate KSC,hyd and 

KSC,dry for M1 (Equation  6-18 and Equation  6-19), M2 (Equation  6-20 and Equation 

 6-21) and non-keratin binding substances (Equation  6-22).  

Equation  6-18 lip/don
lip

drySC,dry/donSC, KK ϕ=  

Equation  6-19 aqu/don
aqu

hydSC,
donaqu/donpro

aqu/donpromax,propro
hydSC,lip/don

lip
hydSC,hyd/donSC, 1

K
cKk

Kck
KK ϕϕϕ +

+
+=  

Equation  6-20 
donlip/doncpe

lip/doncpermax,cpecpe
drySC,lip/don

lip
drySC,dry/donSC, 1 cKk

Kck
KK

+
+= ϕϕ   

Equation  6-21 

aqu/don
aqu

hydSC,

donlip/doncpe

lip/doncpemax,cpecpe
hydSC,

donaqu/donker

aqu/donkermax,kerker
hydSC,lip/don

lip
hydSC,hyd/donSC, 11

K

cKk
Kck

cKk
Kck

KK

ϕ

ϕϕϕ

+

+
+

+
+=

  

Equation  6-22 donaqu,
aqu

hydSC,donlip,
lip

hydSC,hyd/donSC, KKK ϕϕ +=   

In order to compare calculated with experimental results values of KSC,hyd/don need to 

be transformed to KSC,dry/don via (for the derivation see insert I): 

Equation  6-23 drySC,
hydSC,

hyd/donSC,
dry/donSC, ϕ

K
K =  

 

 
 

6.2.5 Input parameters 

The following paragraph relates the terms in Equations 4-18 to 4-22 to experimentally 

measured parameters for the special case of LVP as donor medium and for CAF, 

FFA, and TST as model compounds.  

Insert I - Transformation of partition coefficients 
 
According to Equation  6-17 the partition coefficients KSC,dry/don and KSC,hyd/don can be written as  

don

SC,dry

don

SC,dry
SC,dry/don /

/

Vw

Vw

c

c
K ==  

don

hydSC,

don

hydSC,
hyd/donSC, /

/

Vw

Vw

c

c
K ==  

So that KSC,dry/don and KSC,hyd/don are related via  

SC,dry
hydSC,

hyd/donSC,
SC,dry

hydSC,
hyd/donSC,SC,dry/don

1

φ
K

V

V
KK ==  
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6.2.5.1 The stratum corneum lipid-low viscous paraffin partition coefficient Klip/LVP 

According to the definition of the partition coefficient in Equation  6-8 the upper limit is 

determined by the ratio of the saturation concentrations within the two phases (si and 

sj). In this sense Klip/LVP can be expressed as in Equation  6-24. In an earlier 

publication for CAF and FFA we measured Klip/don for don being Soerensen 

phosphate buffer pH 7.4 (Soer,7.4) (Equation  6-25) (239). Rearranging Equation 

 6-25 for slip and substituting it into Equation  6-24 Klip/LVP is calculated from the 

measured quantities Klip/Soer,7.4, sSoer,7.4, and sLVP (Equation  6-26).  

Equation  6-24 LVP

lip
lip/LVP s

s
K =

 

Equation  6-25 Soer,7.4

lip
.4lip/Soer,7 s

s
K =

 

Equation  6-26 LVP

Soer,7.4.4lip/Soer,7
lip/LVP s

sK
K =

 
For TST no experimental data on Klip/Soer,7.4 were available so that first the lipid-water 

partition coefficient Klip/w was inferred from the octanol-water partition coefficient 

KOct/w as proposed in (150) (Equation  6-27). The aqueous solubility of TST being pH 

independent Klip/w was taken to be identical to Klip/Soer,7.4 so that Klip/LVP could then be 

calculated according to Equation  6-26.  

Equation  6-27 ( )0.78
Oct/wlip/w KK =  

Equation  6-27 is subject to uncertainty as it relies on a fitting procedure and depends 

on the diversity and accuracy of the underlying database. A number of similar 

correlations of the general form 

Equation  6-28 ( )b
Oct/wlip/w KK a=  

have been proposed. Taking a = 1 values for b were suggested in the range of 0.70 

to 0.78 (85, 134, 150, 160, 248). Considering both a and b as being variable, values 

as high as 0.91 have been suggested for b (52). The exponent of 0.78 was chosen 

because it was derived for a database of experimentally determined SC lipid-water 

partition coefficients. A comparison of calculated values of Klip/w for CAF and FFA 

with experimentally determined values shall serve as a test of consistency of 

estimates of Equation  6-27. For CAF and FFA Equation  6-27 predicts Klip/w to be 0.87 

and 38.37 while experimental values were 2.15 ± 0.42 and 20.32 ± 0.54 respectively 
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(note that for FFA the prediction was corrected for pH 7.4 as this was used in the 

experiment (239)). Despite the experimental and theoretical uncertainty Equation 

 6-27 seems to be a valuable instrument to estimate Klip/w for TST where no 

experimental results are available.  

6.2.5.2 The aqueous compartment-low viscous paraffin partition coefficient Kaqu/LVP 

Kaqu/LVP was calculated for CAF, FFA, and TST as proposed for Klip/LVP from the 

saturation concentrations in aqu and LVP. The solvent properties of aqu were 

supposed to be essentially like bulk water. For CAF and TST the aqueous solubility is 

independent of pH so that sSoer,7.4 seems a reasonable experimental approximation 

for saqu. In contrast for FFA a pH correction was necessary. Depending on the 

analytical method opinions on corneocyte pH vary ranging from moderately acidic 

(pH 5.5-6.5; employing surface parallel pH electrodes combined with tape-stripping 

(197)) to practically neutral (measuring the fluorescence lifetime of pH-sensitive dyes, 

e.g. 2’,7’-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (216)). Due to the 

lipophilicity of the fluorescent dye the latter method exclusively probes the 

intercellular lipid channel while information on the corneocyte pH is most probably not 

available. Therefore 5.5 and 6.5 seem a reasonable estimate for the lower and upper 

margin of the corneocyte pH. Accordingly the lower margin of Kaqu/LVP was calculated 

for FFA using sSoer,5.5 and the upper margin of Kaqu/LVP was calculated using sSoer,6.5. 

All analyses for FFA were performed for both pH-values. 

6.2.5.3 The Langmuir isotherm describing keratin binding 

In M1 the binding properties of the protein compartment will simplistically be 

described as keratin. Experimental data on qmax,ker and kker measured with keratin 

from bovine hoof and horn is available from literature for CAF and FFA (239) or 

presented here for TST. The maximum binding capacity of a protein is usually 

reported in terms of its loading qmax,i, i.e. as a weight fraction relatively to the weight 

of the protein [w/w] rather than as a concentration cmax,i relatively to the volume of the 

protein [w/V]. qmax,i is related to cmax,i via the protein density: 

Equation  6-29 kerkermax,ker
kerker

kermax, ρqρ
w
w

V
wc ===  

It has been argued that with swelling keratin uncoils and exposes additional binding 

sites (249). Reported values for qmax,ker and kker correspond to maximally expanded 
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keratin as experiments were performed in “Soer,7.4”. This might be a source for 

errors in the case of “dry SC”. This is avoided by restricting keratin binding to be only 

possible in hydrated SC. 

6.2.5.4 The Langmuir isotherm describing binding to the cornified protein envelope 

In M2 binding to SC proteins is subdivided into binding to intra-cellular keratin 

accessible (as in M1) only from the aqueous compartment and binding to the cpe 

accessible only from the lipid compartment. For qmax,ker and kker experimental data is 

readily available. In contrast, there are no studies reporting the maximum binding 

capacity qmax,cpe or the binding constant to the cpe kcpe. Therefore we performed a 

theoretical parameter study where different combinations of qmax,cpe (1, 10, 50, and 

100 µg/mg) and kcpe (10-3 ml/µg and 103 ml/µg) were tested. Although these values 

are arbitrarily founded however, they may serve to illustrate the potential of protein 

binding via the SC lipids in a range of possible protein binding constants and binding 

capacities. 

6.3 MATERIAL AND METHODS 

6.3.1 Material 

The following materials and equipment were used: dialysis membrane MW-cut-off 

25 kDa (Medicell International Ltd, London, Great Britain, VWR Darmstadt, 

Germany); Centrisart I cut-off 20 kDa (Sartorius AG, Goettingen, Germany); 

scintillation vials borosilicate glass with screw cap (VWR, Darmstadt, Germany); 

freeze-dryer (Alpha 2-4 LSC, Christ, Osterode, Germany); UV/VIS spectrophotometer 

(Lambda 35, Perkin Elmer, Rodgau-Jürgesheim, Germany); Hellma® precision cells 

made of Quartz SUPRASIL®, type 100-QS-10 (Hellma®, Muehlheim, Germany). 

6.3.2 Chemicals 

4-Androsten-17ß-ol-3-on (i.e. TST), FFA, CAF, sodium chloride, potassium chloride, 

methanol, a bicinchoninic acid kit for protein determination and Trypsin type I from 

bovine pancreas were supplied by Sigma Aldrich GmbH, Steinheim, Germany. 

Acetonitrile and sodium monohydrogen phosphate dihydrate were supplied by Fluka 

Chemie AG, Buchs, Germany. Low viscous paraffin (density at 20 °C 0.818-

0.875 g/cm3; dynamic viscosity 25-80 mPas), citric acid monohydrate, potassium 

dihydrogen phosphate, orthophosphoric acid were supplied by Merck, Darmstadt, 
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Germany. Keratin from bovine hoof and horn was supplied by ICN biomedicals, 

Aurora, Ohio.  

6.3.3 Composition of buffers 

All buffer substances were of analytical grade and were prepared with purified water.  

Phosphate buffered saline (PBS) pH 7.4: 1 l contains Na2HPO4*2H2O 1.44 g, 

KH2PO4 0.2 g, NaCl 8 g, KCl 0.2 g. 

Soerensen phosphate buffer: is composed of x parts 0.15 M Na2HPO4, and 100-x 

parts 0.15 M KH2PO4 (pH 5.5: x = 3.5; pH 6.5: x = 30; pH 7.4: x = 80.3). 

Buffer pH 2.2: 1 l contains citric acid monohydrate 20.8 g, Na2HPO4*2H2O 0.4 g. 

Buffer pH 2.6: 1 l contains orthophosphoric acid 1.16 ml, KH2PO4 2.04 g. 

6.3.4 Skin samples and skin preparation techniques 

Skin samples were taken from Caucasian female donors undergoing abdominal 

surgery with the approval of the ethic committee of the Caritas-Hospital Lebach, 

Germany. After removal of subcutaneous fatty tissue full thickness skin was stored at 

-26 °C for a maximum of 6 months after surgery. For details see Wagner et al. (173).  

6.3.4.1 Preparation of stratum corneum sheets 

SC sheets were prepared according to the method of Kligman (174) by two times 

24 h immersion of cleaned full thickness skin pieces of approximately 12 cm2 in 

0.15% (w/V) trypsine in PBS. In between as well as afterwards the pieces were 

washed 3 times with PBS and finally freeze-dried. Samples were kept at -26 °C 

overnight to guarantee complete freezing and then equilibrated inside the single 

chamber system at -40 °C. Main drying was performed overnight at 0.050 mbar, with 

a shelf temperature of 20 °C and a condenser temperature of -80°C. For the final 

drying for two hours the vacuum was elevated to 0.001 mbar keeping shelf and 

condenser temperature as during main drying. During the entire procedure the 

temperature of condenser and shelf was permanently monitored. Dried SC samples 

had a parchment like, crumply and brittle appearance. Freeze-dried membranes 

were kept in a freezer at -18 °C for a maximum of 6 months after surgery.  

6.3.4.2 Preparation of hydrated stratum corneum 

A gradual hydration of SC sheets was achieved by equilibrating freeze-dried SC 

sheets of known weight over a 15.32% w/w sodium chloride solution or pure water or 
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immersion in water for 24 h at 32 °C in desiccators. The hydrated SC sheets were 

weighed again (in the case of SC sheets immersed in water these were blotted dry 

between paper filters before weighing). The level of hydration was calculated as 

follows: % w/w = 100 x (weight hydrated SC – weight dried SC) / weight dried SC. 

6.3.5 Determination of saturation concentration 

An excess of CAF, FFA or TST was suspended in 5 ml Soerensen buffer pH 5.5; 6.5; 

7.4 or LVP in a screw top scintillation vial. The lid was secured with a Teflon disk. 

The mixture was stirred at 500 rpm, at 32 °C for at least 24 h. Stirring was stopped 

and the samples were further kept at 32 °C until non-dissolved substance had settled 

down completely. Samples were drawn from the supernatant without disturbing the 

sediment and centrifuged for 5 min at 2795 g. During centrifugation the temperature 

of the samples did not change. The samples were diluted to an appropriate 

concentration, and analyzed via HPLC or UV spectroscopy. Preliminary experiments 

had shown that saturation was complete within 24 h and no filtration was needed. 

6.3.6 Keratin binding 

Prior to the experiment water soluble low molecular weight keratin fractions resulting 

from the manufacturing process were removed by classical dialysis using dialysis 

tubing with a molecular weight cut-off of 25 kDa. Removal of soluble keratin fraction 

was considered to be complete if a BCA-assay in the supernatant performed 

according to the standard protocol provided by the manufacturer was negative (linear 

concentration range 0.2-1 mg/ml or 5-25 µg of total protein, detection limit 

0.01 µg/ml). Insoluble keratin fractions were retrieved by freeze-drying. 

Increasing ratios of TST to keratin (eleven steps in the range of 0.025 – 4.68 µg/mg 

keratin) were incubated on a magnetic stirrer (500 rpm) at 32 °C, over 24 h, i.e. until 

equilibration. 1.0 ml of the suspension were transferred to centrisart tubes (MW-cut-

off 20 kDa) and centrifuged for 20 min at 2795 gat 25 °C. The supernatant was 

diluted with Soerensen buffer pH 7.4 to an appropriate concentration and transferred 

into HPLC vials and the concentration of unbound substance was determined by 

HPLC. Samples containing only substance solution without keratin were subjected to 

the identical procedure and represented 100% free concentration. 
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6.3.7 Determination of partition coefficients by equilibration experiments 

The substance concentration within the SC was determined from the decrease of the 

substance weight within the donor volume during incubation and normalized to the 

dry volume of SC where w0 and wEnd are the substance weight within LVP before and 

after equilibration 

Equation  6-30 
LVPEnd

drySC,End0
dry/donSC,

)(
Vw

Vww
K

−
=  

VSC,dry was determined from weighing freeze-dried SC by normalizing to the density 

of dry SC: 1.3 g/cm3 (2).  

6.3.7.1 Influence of concentration of incubation solution 

KSC/don was measured based on the equilibration method introduced by Raykar et al. 

(52). The concentration dependence of KSC/don was evaluated in a broad 

concentration range with dry(d) SC and for the “hydrated state” with SC hydrated over 

pure water(h) and additionally for exemplary concentrations for SC hydrated above 

sodium chloride(NaCl) and by bathing in water(H) as described in  6.3.4.2 (dry weight 

6.95-25.45 mg per piece). An SC sheet was immersed in 2 ml LVP containing 32.20-

92.15 µg/ml(d,h), 57.93-75.49 µg/ml(NaCl), and 57.93 µg/ml(H) CAF; 12.12-403.37 

µg/ml(d), 39.17-403.37 µg/ml(h), 12.12 µg/ml(NaCl) and 12.12-48.92 µg/ml(H) FFA; 9.60-

414.45 µg/ml(d,h), and 9.60-188.87 µg/ml(NaCl,H) TST and allowed to equilibrate at 

32 °C for 24 h.  

To exclude unspecific adsorption to the test tubes these were incubated with the drug 

solution alone. Furthermore, to exclude that substances interfering with analytics are 

extracted by the solvent, a piece of SC was soaked with the vehicle for 24 h and 

underwent the same procedure as the drug containing solutions. 

All partition coefficients are reported relative to the volume of dry SC independent of 

the hydration state of the SC. 

6.3.7.2 Influence of hydration 

SC either freeze-dried or gradually hydrated as described in 3.4.3 were subjected to 

the procedure as described in 4.7.1. A minimum of four repetitions was performed for 

each hydration state. Afterwards samples were drawn from the LVP and analyzed for 

drug contents via UV spectroscopy.  
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6.3.8 Quantification of caffeine, flufenamic acid, and testosterone 

6.3.8.1 Extraction of testosterone from low viscous paraffin 

The extraction method substitutes the UV quantification below the lower limit of 

quantification. The equilibration experiment was performed as described above. After 

establishing equilibrium 1 ml of the donor were transferred into a glass test tube and 

2 ml of methanol were added. The mixture was vortexed intensely and the non-

miscible phases were allowed to separate at room temperature. A sample was drawn 

from the upper phase (methanol) and analyzed by HPLC/UV-Vis. If necessary, 

samples were diluted prior to the analysis. In preliminary experiments the extraction 

efficiency in the concentration range of 10-200 µg/ml had been found to be 95 ± 5%. 

The extraction was performed at cdon 9.6, 24.1, and 188.87 µg/ml using n = 5 for each 

concentration and each hydration method as well as “dry” SC resulting in overall 60 

samples. The samples at 188.87 µg/ml serve as a control that the results of the 

extraction method are not different from the UV measurement and therefore can be 

combined. A t-test comparing results from extraction experiments at 188.87 µg/ml 

with all results from UV measurements above 50 µg/ml found no statistical 

differences on the 95% confidence level. 

6.3.8.2 UV-spectroscopy 

Samples dissolved in LVP were analyzed by UV-spectroscopy at 270 nm, 284 nm, 

and 250 nm (CAF, FFA, and TST, respectively) after adding dichloromethane (DCM) 

up to a final ratio of LVP : DCM of 1 : 10. For all compounds a calibration was 

performed using external standards containing 3.75 - 20 µg/ml CAF (limit of 

quantification LOQ: 3 µg/ml), 3.125 - 15 µg/ml FFA (LOQ: 1 µg/ml), or 5 - 15 µg/ml 

TST (LOQ: 5 µg/ml) dissolved in the same medium as the unknown samples, i.e. 

10% V/V LVP/DCM. If necessary, unknown samples were diluted to an appropriate 

concentration with 10% V/V LVP/DCM. UV cuvettes were sealed with parafilm and 

aluminium foil to prevent evaporation of the volatile DCM. 

6.3.8.3 HPLC 

Samples dissolved in (Soer,7.4) or methanol were analysed by RP-HPLC using an 

isocratic Dionex HPLC system (Lichrospher® RP-18 column/ 125 x 4 mm/ 5µm with 
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a LiChroCART® 4-4 guard column (Merck-Hitachi, Darmstadt); Software: 

chromeleon 6.50 SP2 build 9.68. 

 CAF: mobile phase: 90:10 (V/V) buffer pH 2.6/acetonitrile; retention time: 5.1 ± 

0.2 min; flow rate: 1.2 ml/min; injection volume: 50 µl; detection wavelength: 270 nm; 

detection limit: 10 ng/ml; quantification limit: 50 ng/ml 

 FFA: mobile phase: 80:20 (V/V), methanol/ buffer pH 2.2; retention time: 3.5 ± 

0.2 min; flow rate: 1.2 ml/min; injection volume: 50 µl; detection wavelength: 284 nm; 

detection limit: 15 ng/ml; quantification limit: 50 ng/ml 

 TST: mobile phase: 70:30 methanol/ water (V/V); retention time: 4.8 min +/- 

0.2 min; flow rate: 1.2 ml/min; injection volume: 50 µl; detection wavelength: 250 nm; 

detection limit: 15 ng/ml; quantification limit: 50 ng/ml  

For all compounds a calibration was performed using external standards with 0.05-25 

µg/ml dissolved in the same medium as the unknown samples, i.e. Soerensen buffer 

pH 7.4 or methanol. If necessary, unknown samples were diluted to an appropriate 

concentration with the same medium prior to analysis. 

6.3.9 Software 

All calculations were performed with Origin 7.5G SR3, OriginLab Corporation, 

Northampton, MA, USA. 

6.4 RESULTS 

6.4.1 Hydration 

The aim was to span a wide range of hydration states. This could be realised by 

hydrating SC sheets above or within salt solutions or pure water. Different salt 

solutions or a saturated atmosphere have repeatedly been used for hydrating skin. 

Commonly, sodium bromide 27% wt/wt (50), saturated sodium carbonate (50), 

potassium carbonate 5.7-1.4 M (250, 251), and saturated barium chloride (252) are 

used to generate specific relative humidities in a vapor sealed environment. The 

mole fraction of a sodium bromide 27% wt/wt solution is equivalent to a sodium 

chloride 15.32% wt/wt solution, i.e. 2.62 M. Due to thermodynamic equilibrium SC 

hydration should basically be the same after equilibration above water in a saturated 

atmosphere and after immersion. However, there is microscopical evidence that 

swelling is profoundly different in humid air and after immersion, the latter resulting in 

significant water uptake into selective zones of the SC (51). The immersion 
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procedure is relevant for the measurement of partition coefficient experiments with 

aqueous vehicles and for in vitro Franz-diffusion cell experiments with aqueous donor 

and acceptor media. In order to investigate possible influences on KSC/don we 

additionally investigated SC that had been hydrated in a saturated atmosphere. Here, 

no influence on the SC structure had been reported (51). 

Equilibration of SC sheets over 15.32% w/w sodium chloride solution, pure water or 

immersion in water resulted in hydration of 31 - 79% w/w (n = 16), 46 - 212% w/w (n 

= 83), and 445-780% w/w (n = 25). The SC hydration is highly sensitive to small 

changes in the relative humidity of the environment especially during weighting. 

Therefore the SC water content that was reached with one hydration method varied 

rather largely. Furthermore these variations may be due to varying quantities of 

natural moisturizing factors between skins of different patients. For the evaluation of 

partition coefficients the accurate level of hydration of each individual SC sheet was 

taken into account instead of using a mean hydration level for all SC sheets hydrated 

with the same method. 

6.4.2 Input parameters 

Table  6-2 gives an overview over the sources and results of the input parameters 

needed for the compartmental models M1 and M2 as introduced in section  6.2. Data 

gathered from the literature are marked as such. Further data that have been 

determined in the course of this work are presented in detail below. 

 

Table  6-2 Sources and results of input parameters used in M1 and M2 for caffeine, flufenamic 
acid, and tesosterone.  
 
 CAF FFA TST 
Klip/Soer 

a 2.15 ± 0.42 a 20.32 ± 0.54 n.a. 

saqu [mg/ml] 24.87 ± 0.90 pH 6.5: 0.43 ± 0.014 
pH 5.5: 0.041 ± 0.002 

0.02 ± 0.001 

sLVP [mg/ml] 0.134 ± 3.31*10-3 1.18 ± 0.05 0.50 ± 0.06 

Klip/LVP 399.03 35.40 15.67 

Kaqu/LVP 185.6 pH 6.5: 0.36 
pH 5.5: 0.035 

0.047 

qmax,ker [µg/mg] n.a. a 77.03 ± 7.08 2.16 ± 1.36 
kker [ml/µg] n.a. a 1.28*10-3 ± 2.4*10-4 0.0517 ± 0.045 

(a (239); n.a. not available) 
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6.4.2.1 Determination of saturation concentration 

The solubility in Soer,7.4 and LVP is as expected from the compound lipophilicity i.e. 

Soer,7.4: CAF > TST; LVP: FFA > TST > CAF (Table  6-2). As a weak acid the 

aqueous solubility of FFA is pH dependent and higher at pH 6.5 than at pH 5.5.  

6.4.2.2 Keratin binding of testosterone 

TST exhibits a concentration dependent keratin binding (Figure  6-2). The 

dependence of the bound (µg/mg keratin) versus free concentration (µg/ml) at 

equilibrium at 32 °C may be expressed by a Langmuir adsorption isotherm (Equation 

 6-9). The Langmuir adsorption constant kker and the maximum loading capacity 

qmax,ker could be determined by non-linear regression (Table  6-2; χ2 = 0.00879; r2 = 

0.888). However, due to the low aqueous solubility of TST the predicted qmax,ker 

cannot be confirmed experimentally. The uncertainty of qmax,ker is irrelevant in the 

models as by definition of the maximum free concentration available for keratin 

binding equals the aqueous solubility of TST (compare section  6.2.1). At low ratios of 

compound to protein the linear part of the isotherm applies. 

 

 
Figure  6-2 The Langmuir isotherm accurately represents the concentration dependence of 
testosterone binding to keratin. (n = 3 for each level of cSoer,7.4; standard deviation displayed as error 
bars; for most points the size of the error bars falls within the size of the symbols) 
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6.4.3 Mechanism of corneocyte interaction – experimental results 

Experimentally, two ways of substance-corneocyte interactions can be identified at 

least qualitatively. These are an involvement of SC water and binding to proteins. As 

described a non-aqueous donor allows working with SC at defined water content so 

that the role of hydration on the SC-donor partition coefficient can be investigated. 

Figure  6-3A shows that only KSC,dry/don of the highly water soluble CAF depends on 
aqu

drySC,ω . For the lipophilic poorly water soluble compounds FFA and TST the degree 

of membrane hydration does not influence the SC partition coefficient (Figure  6-3B 

and C). Therefore, for the lipophilic compounds we will not distinguish between the 

hydration methods in the further course of this article. It is further evident that with 

increasing hydration KSC,dry/don of CAF is significantly higher than KSC,dry/don of FFA 

and TST indicating a higher affinity to hydrated SC of CAF compared to FFA and 

TST.  

Furthermore a dependence of KSC,dry/don on cdon indicates an underlying saturable 

process such as binding to a limited number of available protein binding sites. Figure 

 6-4 shows the results for FFA and TST which were already known to bind to isolated 

bovine keratin in a saturable fashion. Only for FFA a concentration dependence of 

KSC,dry/don is present. For TST this was not the case within the analytically accessible 

concentration range. For both compounds a concentration dependence of KSC,dry/don 

is present in the concentration range below 50-100 µg/ml. This is more pronounced 

for FFA than for TST. As expected KSC,dry/don of the non-keratin binding CAF does not 

depend on concentration at a defined aqu
drySC,ω  (results not shown). 
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Figure  6-3 Experimentally measured KSC,dry/don of the hydrophilic caffeine (A) increases with 
progressive stratum corneum hydration. For the lipophilic compounds flufenamic acid (B) and 
tesosterone (C) stratum corneum hydration has no influence on KSC,dry/don. (open square: dry stratum 
corneum, filled circle: hydrated above sodium chloride, open triangle: hydrated above water, filled star: 
hydrated in water) 
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Figure  6-4 KSC,dry/don of keratin binding substances flufenamic acid (A) and tesosterone (B) were 
measured as a function of donor concentration. KSC,dry/don increases in the lower concentration range 
whereas it is relatively constant at high concentrations. The different symbols indicate the applied 
hydration method (filled square: dry stratum corneum, open triangle: hydrated stratum corneum; n = 2-
15; standard deviation displayed as error bars). 
 

6.4.4 Mechanism of corneocyte interaction – comparison of theoretical and 

experimental results 

6.4.4.1 Non-keratin binding compounds: caffeine 

Figure  6-5A compares experimentally determined KSC,dry/don measured at different SC 

hydration levels (open squares) with the values predicted (bold solid line) according 

to Equation  6-18 (dry SC) and Equation  6-22 and Equation  6-23 (hydrated SC). 

Remember that for non-keratin binding substance there is no difference between M1 
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and M2. For the predictions the same range of aqu
drySC,ω  was chosen as in the 

experiment. In both experiment and prediction KSC,dry/don depends linearly on aqu
drySC,ω . 

A linear regression provides for the experimental results a slope of 137.11 ± 9.11 and 

an offset of 31.45 ± 25.99 (expressed as mean ± se; r2 = 0.869). The slope signifies 

the increase of KSC,dry/don due to an uptake of 1 g water per 100 g dry SC. The offset 

is determined by KSC,dry/don at zero hydration which indicates the affinity of CAF to the 

lipid compartment. Due to the substantial scatter of the experimental data the 

estimated offset is subject to a high variation. The compartmental model 

overestimates the impact of aqu
drySC,ω  on KSC,dry/don and suggests a steeper slope than 

seen in vitro as well as a higher offset. Predicted values for slope and offset are 

241.28 and 159.94 (compare to section  6.4.3). 

For CAF it could be shown earlier that it does not bind to keratin. Therefore no 

concentration dependence of KSC,dry/don was expected. Nonetheless, to confirm the 

theory a range of concentrations was tested. Any influence of concentration on 

partitioning should have produced a deviance from the theory. This was not the case 

as shown e.g. in Figure  6-5. 
Two possible influencing factors were investigated on a theoretical level in order to 

evaluate their potential to influence the affinity of CAF to the aqueous compartment. 

This is first saqu that directly enters Kaqu/don (see  6.2.5.2). The influence of a 

systematic decrease of saqu on KSC,dry/don at increasing aqu
drySC,ω  in steps of 5 mg/ml 

starting with sSoer 7.4 is shown in Figure  6-5B. As saqu is reduced a progressive 

hydration leads to a more shallow increase of KSC,dry/don with aqu
drySC,ω  with saqu best 

mimicking the experimental slope.  

As a second influencing factor the volume fraction of the aqueous phase available for 

compound uptake was investigated. So far we considered the whole aqueous phase 

accessible for compound dissolution although it is well known that substantial 

portions of water are bound to SC proteins and natural moisturizing factors. It has 

long been recognized for liposomes that water that is bound strongly to lecithin is 

non-accessible for compound partitioning (247). This concept has also been adopted 

for hydration of SC keratin (26). Hadgraft et al. as well as others determined a portion 

of boundaqu,
drySC,ω  as bound water ( boundaqu,

drySC,ω  being the weight of bound water per weight of 

dry SC) which would consequently be unavailable for partitioning. Any additional 
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water is considered free water with dissolution properties exactly as bulk water. A 

bound water fraction can easily be implemented into the model. boundaqu,
drySC,ω  is 

transferred to boundaqu,
hydSC,ϕ  as described in insert II which is than subtracted from aqu

hydSC,ϕ : 

Equation  6-31 
( )

drySC,
hydSC,

aqu/don
boundaqu,

hydSC,
aqu

hydSC,lip/don
lip

hydSC,
dry/donSC, ϕ

ϕϕϕ KK
K

−+
=  

To illustrate the dependence of KSC,dry/don on boundaqu,
drySC,ω  the level of boundaqu,

hydSC,ϕ  was varied 

(Figure  6-5C). For boundaqu,
drySC,

aqu
drySC, ϕϕ ≤  the modulus in Equation  6-31 is zero so that the 

term describing the affinity to the aqueous compartment is deleted. In other words if 

the number of water molecules within the SC is smaller than the number of water 

binding sites then all water will be bound and none will be available for compound 

dissolution. KSC,dry/don will now exclusively be determined by uptake into the SC lipids 

and KSC,dry/don against aqu
drySC,ω  gives a straight line parallel to the x-axis (Figure  6-5C). 

For boundaqu,
drySC,

aqu
drySC, ϕϕ >  any additional water will again be available for compound 

dissolution and KSC,dry/don increases linearly with aqu
drySC,ω  (Figure  6-5C). However, the 

slope will depend on the height of boundaqu,
drySC,ω . 0.34boundaqu,

drySC, =ω  is indicated by a bold 

dotted line. Figure  6-5D compares the estimate for 0.34boundaqu,
drySC, =ω  (bold dotted line) 

and saqu = 15 mg/ml with the experimental data (open squares). Both correction 

strategies offer an equally good representation of the slope of the experimental data. 

The problem of overemphasising the offset of the experimental curve is not solved by 

either correction strategy. 
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Insert II - The volume fractions of the SC compartments 
 
Conventionally water, lipid or protein content within SC is expressed as weight fractions relative to 
the weight of dry SC, for example 

drySC,lip

lip
SC,dry wwω = . For convenience and easy comparison 

with other authors we also use weight fractions for representation of data. However, for 
calculations we need volume fractions relative to the volume of dry as well as hydrated SC. This 
section will explain how weight and volume fractions are related. The derivation of i

hydSC,φ  from 
i
SC,dryω  will be shown here exemplarily for lip

hydSC,φ  for M1 but can be done analogously for all other 
compartments as well as for M2. We assume dry SC to be composed of 30% w/w lipids, i.e. 

0.3lip
SC,dry =ω  and 70% w/w proteins: 0.71 lip

SC,dry
lip
SC,dry

SC,dry
SC,dry

pro
SC,dry =−=−= ωωωω . These are 

empirical values recorded in our lab in vitro for female abdominal skin of 14 different patients in 
136 samples by lipid extraction of freeze-dried SC and weighing. cpe

SC,dryω  was previously 

determined to be 0.07 (1) so that 0.63cpe
SC,dry

pro
SC,dry

ker
SC,dry =−= ωωω . Due to the definition in 

Equation  6-2 we obtain ( )
aqudrySC,lip

lip
hydSC, wwwω += where the last identity results from dividing 

both numerator and denominator by wSC,dry: 

( )( ) ( )aqu

drySC,

lip

drySC,drySC,aqudrySC,drySC,drySC,lip

lip
hydSC, 1 ωωwwwwwwω +=+= .  

Therefore, i
hydSC,ω  varies depending on the extent of SC hydration aqu

hydSC,ω  in contrast to i
SC,dryω  

which is always constant. Relating this relationship to the specific densities the volume fractions 

of the respective compartments are calculated: liphydSC,

lip

hydSC,

lip
hydSC, ρρωφ =  with the density of 

hydrated SC defined as ( )
aqu

aqu

drySC,pro

pro

drySC,lip

lip

drySC,hydSC, ///1 ρωρωρωρ ++= . For dry SC and SC 

lipids the following densities are reported in literature: ρSC,dry = 1.3 g/cm3, and ρlip = 0.973 g/cm3 
(2, 3). The density of SC proteins can be calculated from ρSC,dry as shown here for M1: ( )

corcorliplipdrySC,drySC,drySC,SC,dry ρwρwwVwρ +== . Dividing both numerator and 

denominator by wSC,dry this relationship may be expressed in terms of weight fractions: 

( ) ( )( )( ) ⎟
⎠
⎞⎜

⎝
⎛ +=+= pro1/// pro

drySC,lip

lip

drySC,prodrySC,prolipdrySC,lipdrySC,SC,drySC,dry ρωρωρwwρwwwwρ  

After reorganisation for ρpro the protein density was calculated as 1.52 g/cm3. This value is well 
within the experimentally determined range (4). We assumed ρker and ρcpe to be equal to ρpro. 

( )
lip

lip

drySC,drySC,

pro

drySC,pro 1 ρωρωρ −=  
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Figure  6-5 Comparison of experimental and calculated KSC,dry/don as a function of aqu

SC,dryω  for 
caffeine. (A): The model overestimates the impact of hydration on KSC,dry/don (open squares: 
experiment; dashed line: linear fit of experimentally determined KSC,dry/don against aqu

SC,dryω ; straight line: 

calculated KSC,dry/don for 0 ≤ aqu
SC,dryω  ≤ 8. (B and C) results of the optimization strategies: (B: effect of a 

reduction of saqu; C: effect of an increasing bound water fraction). (D): The experimental data is 
compared to optimized predictions. (open squares: experiment; bold dashed line: saqu reduced to 
15 mg/ml; bold straight line: bound water fraction of aqu

SC,dryω  = 0.34.)  

 

6.4.4.2 Keratin binding compounds: flufenamic acid and testosterone 

Figure  6-6A compares predictions of M1 (Equation  6-18 and Equation  6-19) with 

experimental results on the dependency of KSC,dry/don on cdon for varying degrees of 

SC hydration in the range of 80 −=aqu
drySC,ω . Experimental data are shown as means 

and standard deviation for dry (open squares) and hydrated SC (open triangles: 

hydrated above water; filled circle: SC hydrated above NaCl solution; filled star: SC 

hydrated within water). Results predicted with M1 are shown as lines (bold dashed 

line: 0aqu
drySC, =ω ). 
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Figure  6-6 M1: Comparison of experimental and calculated KSC,dry/don as a function of cdon for 
varying aqu

drySC,ω  for A: flufenamic acid and B: tesosterone. (Experimental results: dry stratum 
corneum (filled square); stratum corneum hydrated (open triangle)). Calculated results, Fig. 5A: (1) 

aqu
drySC,ω  = 0; (2) pHaqu = 5.5; 0 < aqu

drySC,ω  ≤ 8; (3) pHaqu = 6.5; 0 < aqu
drySC,ω  ≤ 8; Fig. 5B: (1) aqu

drySC,ω  = 0; (2) 

0 < aqu
drySC,ω  ≤ 8.) For flufenamic acid the influence of the pHaqu was investigated using the upper and 

lower margin determined by a tape-stripping method with surface parallel pH electrodes (197). 
 

Figure  6-6A gives the results for FFA. Here additionally two different values for pHaqu 

were considered. In M1 according to Equation  6-18 KSC,dry/don for dry SC is 

exclusively influenced by the compound affinity to the lipid compartment. As the lipid 

concentration clip is described via a simple proportionality (Equation  6-8) M1 predicts 

KSC,dry/don of dry SC to be independent of cdon. M1 implicates a donor concentration 

dependence only for hydrated SC which is accounted for by a Langmuir isotherm 

(Equation  6-9). Considering a pHaqu of 5.5 (which was approximately the lower 

margin of pH-values investigated in SC (197)) the solubility of FFA in the aqueous 
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compartment is very low (Table  6-2). This leads to a very low Kaqu/don which enters 

Equation  6-19 in the term describing the compound affinity to the aqueous phase and 

the Langmuir isotherm quantifying protein binding. Therefore at pHaqu 5.5 M1 predicts 

KSC,dry/don to be practically independent of SC hydration and independent of donor 

concentration. At pHaqu 6.5, which would be approximately the upper margin of pH 

values investigated in human SC (197), Kaqu/don is an order of magnitude higher than 

at pHaqu 5.5. The effect on KSC,dry/don is however still limited. Compared to dry SC M1 

predicts that hydration of the SC provokes a four to five times elevated KSC,dry/don. 

Finally, the absolute level of hydration is rather unimportant such as in the range of 

80 aqu
drySC, ≤< ω  an increasing aqu

drySC,ω  influences KSC,dry/don negligibly (Figure  6-6). The 

range of KSC,dry/don predicted by M1 within the pHaqu range of 5.5 and 6.5 includes the 

major portion of the experimental values. At pHaqu 5.5 M1 further correctly predicts 

the independency of hydration. However, obviously in both cases M1 is not able to 

correctly express the concentration dependence of KSC,dry/don at low cdon that was 

seen in the experiment. 

Figure  6-6B shows the results for TST. Here experimental partition coefficients were 

in the range of 2 to 32. M1 predicts KSC,dry/don of 6.28 for dry SC and 8.47 to 11.42 for 

hydrated SC. Both are independent of aqu
drySC,ω  as well as cdon. Due to the similar 

Kaqu/don of FFA at pHaqu 5.5 and TST the influence of hydration on KSC,dry/don is 

similarly negligible as for FFA. 

Figure  6-6B shows the results for TST. Experimental partition coefficients were in the 

range of 1.81 ± 0.24 to 50.13 ± 22.53. In the concentration range below 50 µg/ml 

KSC,dry/don increases with decreasing cdon. In contrast M1 predicts KSC,dry/don of 6.28 for 

dry SC and 8.47 to 11.42 for hydrated SC, both being independent of aqu
drySC,ω  as well 

as cdon. Due to the similar Kaqu/don of FFA at pHaqu 5.5 and TST the influence of 

hydration on KSC,dry/don is similarly negligible as for FFA. 
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Figure  6-7 M2; systematic variation of the cornified envelope maximum binding capacity qmax,cpe 
(1, 10, 50, and 100 µg/mg) and the cornified envelope binding constant kcpe A: FFA; B: TST. A1 + B1 
kcpe = 10-3 ml/µg. A2 + B2 kcpe = 103 ml/µg. (bold lines: aqu

SC,dryω  = 0; thin lines: aqu
SC,dryω  = 8) 

 

The predictions of M2 (Equation  6-20 and Equation  6-21) are shown in Figure  6-7 

(left hand-side FFA, right hand-side TST). Figure  6-7A1 and B1 were calculated 

assuming kcpe = 10-3 ml/µg which would be considered as a kind of lower margin 

where the compound affinity to the cpe is very limited. This is combined with different 

levels of maximum binding capacity qmax,cpe of 1, 10, 50, and 100 µg/mg, i.e. from a 

rather moderate to a substantial maximum binding capacity. Furthermore the 

influence of the aqueous compartment was considered by predicting KSC,dry/don for the 

lower and upper limit of SC hydration i.e. 0aqu
drySC, =ω  (bold lines) and 8aqu

drySC, =ω  (thin 

lines). (A1 and B1) At kcpe = 10-3 ml/µg a qmax,cpe = 1 µg/mg is not sufficient to provoke 

a concentration dependence of KSC,dry/don. With increasing qmax,cpe two effects are 

obvious: (i) the concentration dependence at low cdon becomes more pronounced, i.e. 

the slope of KSC,dry/don against cdon becomes steeper, (ii) KSC,dry/don in the whole 

concentration range is increased, with the increase being more pronounced at lower 
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cdon. An increase in qmax,cpe however does not lead to an increased influence of 
aqu

drySC,ω  on KSC,dry/don. These trends are evident both in the predictions for FFA and 

TST. For TST at identical combinations of kcpe and qmax,cpe the slope of the curve at 

low cdon, i.e. in the range where the cpe shows its influence is slightly less steep than 

with FFA. 

Figure  6-7A2 and B2 were calculated assuming kcpe = 103 ml/µg i.e. an upper margin 

marking a high compound affinity to the cpe. This is again combined with different 

levels of qmax,cpe of 1, 10, 50, and 100 µg/mg. Again the influence of the aqueous 

compartment was considered by calculating the results for the lower and upper limit 

of SC hydration 0aqu
drySC, =ω  (bold lines) and 8aqu

drySC, =ω  (thin lines). Now, already even 

for qmax,cpe = 1 mg/mg there is a (however limited) non-linear concentration influence 

on KSC,dry/don. In general compared to the estimates with kcpe = 10-3 ml/µg (i) the 

absolute height of the predicted KSC,dry/don is higher, especially in the lower range of 

cdon, (ii) the slope of KSC,dry/don against cdon is steeper (the first partially being a 

consequence of the second). 

In Figure  6-8A1 and B1 the experimental results are shown together with that 

combination of qmax,cpe and kcpe that achieves the best prediction according to M2 

(again A marks the results for FFA while B will be TST). These are for both FFA at 

pHaqu 5.5 and TST: qmax,cpe = 10 µg/mg and kcpe = 103 ml/µg. There will probably be 

further suitable combinations of qmax,cpe and kcpe being able to correctly express the 

experimental results. Therefore it was tested whether the binding parameters 

measured with bovine keratin could serve to give a first estimate of the binding 

properties of the cpe (Figure  6-8A2 and B2). For FFA these estimates express the 

experimental results at low cdon less correctly than the “optimized” set of qmax,cpe and 

kcpe. However, the overall range of the experimental values is expressed in the 

simulation.  

It shall be noted that in case of TST all results of M2 predict a concentration 

dependence of KSC,dry/don at cdon lower than the concentration range investigated in 

the experiment. Further investigations will require methods with a higher analytical 

sensitivity to confirm this prediction. For TST the estimate using qmax,ker and kker for 

describing the binding properties of the cpe expresses the experimental data better 

than the “optimized” set of qmax,cpe and kcpe.  
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In summary, M2 however, not M1 is able to predict the concentration dependence of 

KSC,dry/don that is seen in the experiment. It shall be noted that the predicted influence 

of hydration on KSC,dry/don for protein binding permeants with limited water solubility is 

profoundly different from hydrophilic compounds. For protein binding compounds 

hydration acts in a two-state fashion: there is a visible difference in KSC,dry/don at zero 

hydration (
aqu

drySC,ω  = 0) compared to any other hydration state (
aqu

drySC,ω  > 0). However, 

there is practically no differentiation according to the actual water weight fraction at 
aqu

drySC,ω  > 0. This is equally predicted by model M1 and M2 for both FFA and TST and 

is depicted e.g. in Figs. 6-8. This is also in line with Figure  6-3B and C which shows 

that the hydration method does not influence KSC,dry/don of FFA and TST. 

 
Figure  6-8 M2; comparison of experimental results of flufenamic acid and testosterone with 
optimized binding parameters for cpe (A1: flufenamic acid: qmax,cpe = 10 µg/mg, kcpe = 103 ml/µg, 
pHaqu = 5.5; B1: testosterone: qmax,cpe = 10 µg/mg, kcpe = 103 ml/µg). Assuming the binding properties 
of the cornified envelope proteins to be identical to keratin, i.e. qmax,cpe = qmax,ker and kcpe = kker was a 
good first estimate of KSC,dry/don (A2: flufenamic acid, B2: testosterone). (Experimental results: dry 
stratum corneum (filled square); hydrated stratum corneum (open triangle)). Calculated results: (1) 

aqu
drySC,ω  = 0; (2) aqu

drySC,ω  = 8). 



 

The role of corneocytes in skin transport revised 

125 

 

6.5 DISCUSSION 

After the present experimental findings there can be no doubt that hydration plays a 

central role in SC partitioning of water soluble molecules. Obviously CAF has a 

higher SC affinity than FFA and TST. At first sight this is contradictory to predictions 

that foot on a positive correlation between logKOct/w and the apparent permeability 

coefficient (85, 89, 253). This means that a hydrophilic compound such as CAF 

permeates the skin poorly due to a low affinity to the highly lipophilic character of the 

SC. This is evidently true for aqueous donor media. In addition the cited QSARs 

(quantitative structure permeability relationships) rely on a lipid permeation pathway 

that excludes the trans-cellular route.  

It is well established that occlusion effectively enhances skin permeation of 

hydrophilic compounds by increasing the partitioning into the SC (202). The 

theoretical analysis offers a very simple method to predict the influence of the SC 

water content on SC partitioning. In addition, the presented experimental setup 

allows an easy investigation of the effect of hydration on KSC,dry/LVP. In contrast, the 

Franz cell, an experimental setup that is often used in in vitro skin permeability 

measurements, is not suited for addressing this kind of question as the skin 

membrane will always be fully hydrated through the aqueous acceptor medium. 

As a first approach to describe the interactions of CAF with the aqueous domain 

quantitatively the dissolution properties were assumed to be comparable to 

physiological buffer. However, this led to an overestimation of the impact of hydration 

on KSC,dry/don. Two strategies were followed in order to reduce the affinity of CAF to 

the aqueous compartment. Both the reduction of the aqueous solubility and the 

introduction of a non-accessible water fraction could successfully reduce the slope of 

KSC,dry/don with aqu
drySC,ω . The aqueous solubility of CAF depends on temperature, and 

may be increased by the presence of organic acids or their alkali salts, e.g., 

benzoates, salicylates or citrates while no such effect is reported for phosphate ions 

contained in the Soerensen buffer (172). Although Kasting et al. advocated for a 

shallow transition from bound to free water state which could result in a likewise 

shallow transition of dissolution properties a two-state analysis was sufficient to 

reduce the dependence of KSC,dry/don on aqu
drySC,ω  to values as found in vitro (26, 249). 

The picture may be significantly complicated if the binding sites of water and drug 

compounds are identical. Then the magnitude of the binding constant would 
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determine whether the drug is possibly able to displace water from its binding site. 

However both strategies fail to reduce the overestimated offset of the predicted 

KSC,dry/don at 0aqu
drySC, =ω  as this is only influenced by the compound affinity to the lipid 

compartment (Equation  6-18). According to section  6.2.5.1 this was calculated from 

Klip/Soer,7.4, sSoer,7.4, and sLVP. Prerequisite for Equation  6-26 is that all interacting 

phases are non-miscible. It is known that at high hydration water intercalates into SC 

lipids. The improved hydrophilicity of the lipid bilayer could promote the lipid affinity of 

hydrophilic compounds such as CAF such that the experimental value for Klip/Soer,7.4 is 

slightly overestimated. Equally, a penetration of LVP into SC lipids should lower the 

affinity of CAF to the SC lipids as the solubility of CAF in LVP is significantly lower 

than in SC lipids (Klip/LVP of CAF is highly positive). Both mechanisms could account 

for an overestimation of Klip/LVP of CAF and thus of KSC,dry/don at 0aqu
drySC, =ω . 

For a number of compounds adsorption to isolated keratin powder was reported 

(233, 234, 241, 242). The question is whether keratin binding is possible in the 

morphological context of the membrane. Due to the unique morphology of the human 

SC a direct contact between keratin and intercellular lipids is highly unlikely (29). 

Therefore in M1 the possibility of lipid-protein interactions was ruled out completely. 

Instead it was assumed that compound keratin interactions will be mediated via intra-

corneocyte water which in turn communicates with intercellular lipids. However, 

potentially protein binding compounds usually are lipophilic and therefore poorly 

water soluble. This was tested with the two keratin binding compounds FFA and TST 

that differ in their maximum binding capacity and keratin affinity constant. Varying 

pHaqu predictions of M1 effectively showed that if there are substantial FFA 

concentrations within the corneocyte water KSC,dry/don will not so much be 

concentration dependent but sensitive to SC hydration. It is therefore highly unlikely 

that FFA enters intra-corneocyte water to a significant extent. It remains to be 

analysed whether the weakly acidic corneocyte pH could facilitate the corneocyte 

solubility of bases and thus mediate keratin access of lipophilic bases. This could 

provide the explanation for the significant concentration dependence of KSC,dry/don of 

scopolamine (119) although this may also have been a consequence of binding to 

the cpe. 

Summing up these findings the concentration dependence of KSC,dry/don seen in the 

experiment is much more likely to be a consequence of protein access directly via 
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the lipids and not via the detour of the aqueous corneocyte phase. This can only 

reasonably be assumed for structures as the cpe and corneodesmosomes although 

we did not consider the corneodesmosomes explicitly in our analysis. Compared to 

the major SC component keratin such structures encompass only a very small 

fraction of the whole SC (1). Therefore the main question addressed with M2 was 

whether this might be enough to account for the measured effects. Our theoretical 

parameter study systematically varying the binding parameters to the cpe could show 

that this is indeed possible if not likely. As this approach is not feasible for applying 

the model to a larger database qmax,ker and kker could be used as estimates for qmax,cpe 

and kcpe. This relies of course on the assumption that the binding properties of the 

cpe can be expressed by keratin ar all, as keratin is only one of several proteins 

forming the cpe. In case of TST the uncertainty of qmax,ker (compare section 4.4.4.2) 

becomes relevant. By sefintion the maximum free concentration available for binding 

to the cpe equals clip. The lipid solubility of TST is sufficiently high that the non-linear 

part of the isotherm is reached. For FFA qmax,ker was estimated with higher certainty 

as due to a higher aqueous solubility roughly 70% saturation of binding sites were 

achieved (239). 

The great importance of considering a corneocyte interactions of not only water 

soluble but also lipophilic, protein binding molecules shall be explained consulting 

Vieth and Sladek (219) who provided a kinetic interpretation of the dual sorption 

theory. They assumed that the kinetics of immobilization are very rapid compared to 

the diffusion rate of the mobile component so that the diffusion is rate controlling and 

a local equilibrium between mobile and immobilized species is always maintained 

throughout the medium. Only the mobile species will be able to participate in the 

concentration gradient and thus in the diffusion process while the adsorbed species 

is completely immobilized and does not participate in the diffusive flux. This leads to 

significant differences in the effective and true diffusion coefficient and a retardation 

of adsorption equilibrium as some compound is removed from the pool of diffusing 

species. The magnitude of the affinity constant k, representing the ratio of the rate 

constant of adsorption and desorption and thus being an indicator of the binding 

strength, will influence the extent to which the effective diffusion coefficient will be 

reduced compared to a pure partitioning process. Naegel et al. recently noticed that 

the corneocyte diffusivity Dcor of FFA is overestimated when the interaction with the 

corneocyte phase is described solely via a partition coefficient (170). Furthermore a 
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large German multicentre-study aiming at a validation of reconstructed human 

epidermis models failed irrespective of the skin model investigated to predict 

experimental apparent permeability coefficient of a set of test compounds by 

established QSAR-analyses (quantitative structure permeability relationship) that 

base only on molecular weight and lipophilicity parameters such as those mentioned 

above, or open-source software such as DermWin and Skinperm (254). It may be 

speculated that predictions may be improved when taking into account protein 

binding and hydration effects with the help of the theoretical analysis or the proposed 

experimental procedure.  

After the present experimental findings there can be no doubt that hydration plays a 

central role in SC partitioning of water soluble molecules. Obviously CAF has a 

higher SC affinity than FFA and TST. At first sight this is contradictory to predictions 

that foot on a positive correlation between logKOct/w and the apparent permeability 

coefficient (85, 89, 253). This means that a hydrophilic compound such as CAF 

permeates the skin poorly due to a low affinity to the highly lipophilic character of the 

SC. This is evidently true for aqueous donor media. In addition the cited QSARs rely 

on a lipid permeation pathway that excludes the trans-cellular route. 

6.6 CONCLUSION 

Equilibration experiments with gradually hydrated SC using a non-aqueous donor 

medium are an efficient method to investigate the impact of water uptake into the SC 

on SC partitioning of compounds. Together with keratin binding studies they offer 

experimental tools to investigate the mechanism of corneocyte interactions of 

compounds partitioning into the SC. The corneocytes are a distribution compartment 

for both lipophilic and hydrophilic compounds. Hydrophilic water soluble molecules 

will predominantly interact with water that is present within healthy SC in vivo or 

additional water that has entered the corneocytes through hydration in the course of 

occlusive conditions. For lipophilic compounds the aqueous compartment does not 

play a role in SC partitioning. Although these compounds could be shown to bind to 

isolated keratin this is probably meaningless for the SC-donor partition coefficient. 

Due to their low aqueous solubility only a very limited number of molecules will find 

access to intra-corneocyte proteins. Thus keratin binding is limited by the aqueous 

solubility of a compound. An involvement of extra-cellular proteins might be of much 

more importance for SC uptake of lipophilic protein binding molecules. 
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SUMMARY 

Mathematical modeling of skin transport is considered a valuable alternative to in 

vitro and in vivo investigations especially considering ethical and economical 

questions. Mechanistic diffusion models describe skin transport by solving Fick’s 

second law of diffusion in time and space; however models relying entirely on a 

consistent experimental data set are missing.  

A non-steady state-in silico model of in vitro diffusion experiments was developed. 

The two- dimensional model membrane consists of a biphasic stratum corneum and 

an additional compartment for the homogeneous viable epidermis/dermis. The 

underlying geometry for the stratum corneum is of brick-and-mortar character, 

meaning that the corneocytes are completely embedded in the lipid phase. All 

phases are modelled with homogeneous partition and diffusion coefficients. 

It was the declared objective of this work to put the model on an experimental basis. 

This avoids any primary assumptions that are necessary if input data for membrane 

affinities and diffusion coefficients are estimated from physico-chemical properties of 

the diffusant such as size and lipophilicity methods, or fitting experimental skin 

permeation or penetration data to a one-dimensional solution of the diffusion 

equation.  

Therefore methods were developed to measure the partition coefficients between 

lipids and donor (Klip/don), corneocytes and lipids (Kcor/lip), and viable deeper skin 

layers and lipids (KDSL/lip) and the diffusion coefficients within lipids and DSL (Dlip and 

DDSL) and approximate the diffusion coefficient within the corneocytes (Dcor). The 

data were generated for two model compounds using human female abdominal skin. 

These are flufenamic acid and caffeine that feature different skin permeation 

characteristics. 

Klip/don was determined in an equilibration experiment with extracted human stratum 

corneum lipids. For the experiment the lipids were put on an inert membrane filter 

support. The coating of the filters was reproducible as ascertained by measuring the 

increase of mass and thickness. High performance thin layer chromatography 

showed that the ratio of cholesterol, cholesterol esters, triglycerides, free fatty acids, 

and ceramides of the extracted lipids was within the range that could be expected for 

excised human abdominal skin. Apart from the characteristic composition of the 

stratum corneum lipids the ordering within the bilayers is tantamount to guaranteeing 
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an efficient barrier structure and transport characteristics. Therefore differential 

scanning calorimetry (DSC) and wide angle X-ray powder diffraction analysis 

(WAXD) were performed to analyze the lipid structure. DSC revealed that after 

extraction the lipids re-crystallized as lamellae with a hexagonal and/or orthorhombic 

lateral packing. The presence of the orthorhombic phase was then also confirmed by 

WAXD. Significant amounts of lipids in a non-physiological amorphous or liquid 

crystalline state were attributed to the high amount of triglycerides that is not seen in 

vivo. This is an artefact due to contamination of the SC lipids with lipids from the 

subcutaneous fat during surgery and transport.  

Kcor/lip and KDSL/lip were derived from experimental data on stratum corneum-donor-, 

lipid-donor- and stratum corneum-viable deeper skin layers partition coefficients 

(KSC/don, Klip/don and KSC/DSL) considering volume ratios of the lipid and corneocyte 

phases that are normally found in human stratum corneum.  

KSC/don was determined in equilibration measurements and by non-linear fitting of 

stratum corneum concentration-depth profiles to a one-dimensional solution of the 

diffusion equation. Both methods returned very similar estimates of KSC/don (and 

hence also Kcor/lip and KSC/DSL) for caffeine while for flufenamic acid the estimates 

varied distinctly. The reason for this behaviour could not finally be identified. It was 

speculated that depth dependent changes in barrier function, or keratin binding might 

be involved. The fitting method further revealed a time dependency of KSC/don hinting 

at changes of the membrane properties or slow equilibration processes.  

Apparent diffusion coefficients in the stratum corneum lipids and viable deeper skin 

layers Dlip and DDSL were calculated based on measurements of steady state flux 

across the membrane filter supports coated with stratum corneum lipids or 

dermatomized viable deeper skin layers, respectively. However, this method could 

not be applied to measure the apparent diffusion coefficient inside the corneocytes. 

Therefore Dcor was estimated based on an approximation, which uses Dlip and Kcor/lip 

(measured as described above) and DSC. DSC was determined from the steady state 

flux across isolated human stratum corneum and by non-linear fitting of stratum 

corneum concentration-depth profiles to a one- dimensional solution of the diffusion 

equation. As with KSC/don the fitting method hinted at time-dependent changes inside 

the membrane, as DSC for both caffeine and flufenamic acid was found to decrease 

within the early hours of skin absorption. This might possibly be due to swelling of the 

membrane which gradually changes the effective pathlength. 
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The quality of the model was evaluated by a comparison of concentration-stratum 

corneum-depth-profiles of the experiment with those of the simulation. The 

calculations were performed at the chair of “Simulation in Technology” at Heidelberg 

University under Prof. Dr. Gabriel Wittum. The outlined approximation of the 

corneocyte diffusion coefficient is highly sensitive to membrane geometry in the 

range of the experimentally determined values for Dlip, DSC, and Kcor/lip for caffeine 

and flufenamic acid. Starting with geometrical information that was derived from 

microscopical data for human skin, the estimate of Dcor was later reduced by one 

order of magnitude for caffeine and two orders of magnitude for flufenamic acid in 

order to receive an agreement between experiment and simulation. 

As a main result of both experiments and simulation the corneocytes were shown to 

play a decisive role in skin transport for both model compounds. As expected form 

the different lipophilicity of both drugs flufenamic acid but not caffeine was shown to 

bind to keratin protein which forms the main body of the corneocytes and makes up 

for the largest weight fraction of dry stratum corneum.  

In order to address this phenomenon further mechanisms of compound-corneocyte 

interactions were investigated in a combined experimental and theoretical approach. 

Experimental methods were developed to investigate compound-corneocyte 

interactions in terms of dissolution within water of hydration and protein binding and 

to quantify the extent of the concurrent mechanisms. The uptake of compounds into 

water of hydration was measured in a series of equilibration experiments using 

stratum corneum that was either dry or contained a known weight of water in the 

range of approximately 30 to 800 % wt/wt of dry stratum corneum. This was possible 

by pre-hydrating freeze-dried stratum corneum sheets at a constant relative humidity 

or by bathing within double distilled water and by using a non-aqueous vehicle for the 

equilibration experiments. Keratin binding was investigated in equilibration studies 

with keratin powder from bovine hoof and horn. 

Results were presented for three compounds: caffeine, flufenamic acid, and 

testosterone. Two compartmental stratum corneum models M1 and M2 were 

formulated based on experimentally determined input parameters describing the 

affinity to lipids, proteins and water. M1 features a homogeneous protein 

compartment and considers protein interactions only via intra-corneocyte water. In 

M2 the protein compartment is sub-divided into a cornified envelope compartment 

interacting with inter-cellular lipids and a keratin compartment interacting with intra-
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cellular water. As a first estimate the dissolution properties of water inside the 

membrane were assumed to be identical to bulk water. Binding constants and 

maximum binding capacities derived from studies with the model protein powdered 

bovine keratin were used for estimating both the interaction with the keratin 

compartment as well as the cornified envelope compartment. 

For the non-protein binding caffeine which however features a high affinity to the 

aqueous phase, the impact of the aqueous compartment on stratum corneum 

partitioning was first overestimated but then could successfully be simulated after 

introducing a bound water fraction that is non-accessible for compound uptake. Only 

M2 correctly predicted stratum corneum partition coefficients of lipophilic, keratin 

binding compounds (flufenamic acid, testosterone) to depend on concentration. 

Consequently, lipophilic and hydrophilic compounds interact with corneocytes. The 

interactions of lipophilic compounds are probably confined to the corneocyte surface. 

Interactions with intracellular keratin may be limited by a low aqueous solubility of a 

molecule. 

 

The simple biphasic two layer model of the human skin with homogenous partition 

and diffusion coefficients that was proposed initially provides a useful first estimate of 

skin absorption in vitro. However, the representation of the corneocyte compartment 

is probably too simple due to the following reasons that were determined in the 

course of this work, namely the binding affinity and the maximum binding capacity to 

corneocyte proteins. Also, for compounds with a high affintiy to water the bound 

water fraction that is not accessible for compound uptake needs to be taken into 

acccount. Furthermore, a model of the partitioning and binding schemes inside the 

stratum corneum was proposed and could successfully be applied to explain stratum 

corneum partition coefficients of three model compounds with different stratum 

corneum affinities.  

In the future the refinements of the corneocyte phase will have to be integrated in the 

diffusion model. It should also be used to precise the estimate of the corneocyte 

diffusion coefficient as now a differentiation between freely mobile and fixed 

substance is possible. 

The model will further have to be validated with additional compounds in order to 

evaluate whether after including the newly identified parameters it can be used in a 

predictive way. The prerequisite for advancing from simulation to prediction will be to 
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find appropriate substitutes for the experimentally measured input parameters. As 

described, correlations between membrane-solvent- and octanol-water partition 

coefficients and between diffusion coefficients and compound size are well 

established. In contrast little is known about adequate estimates of compound 

binding to corneocyte proteins. In contrast, for another ubiquitous protein, namely 

serum albumin, there is a variety of binding data available as this is an important 

pharmacokinetic parameter influencing drug distribution after systemic absorption. 

Also several QSAR-models for the prediction of binding affinities to human serum 

albumin are available. Therefore it seems worthwhile to look for a relationship 

between binding to serum albumin and keratin binding. This could serve as a first 

orientaton whether for the compound under investigation keratin binding needs to be 

considered in the modeling. It remains to be seen whether apart from that a direct 

correlation between both parameters can be established which could be employed in 

a predictive way. 

Eventually, the diffusion model should be applicable to predicting skin absorption in 

vivo. Usually only a limited dose of a compound is available to the skin especially if 

pahrmaceutical or cosmetical applications are concerned. With decreasing the 

volume that is applied to the skin processes inside the formulation such as the 

depletion of the active ingredient, interaction of formulation components with the skin 

and evaporation of formulation ingredients gain importance and therefore need to be 

integrated in the model.  

Furthermore formulations for skin delivery are usually multi-component systems. The 

excipients play a complex role in the constitution of the vehicle and may influence the 

absorption of the active ingredient in terms of a permeation enhancement as well as 

a retardation. This is mainly due to complicated interaction of formulation excipients 

with the skin membrane. These may influence the affinity of the active drug to 

different membrane compartments as well as the diffusivity inside the membrane. 

The first step towards the integration of these influences into the model will be to 

investigate the skin absorption of typical formulation excipients. In this field recent 

advances include measuring the absorption of enhancers such as propylene glycol, 

oleic acid and water. Provided that a relationship between excipient concentration 

and membrane partitioning and diffusion of the active drug can be established the 

“co-permeation” of both components should be predictable. 
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And finally, for active ingredients dedicated for a trans-cutaneous delivery to the 

systemic circulation cutaneous metabolism and systemic distribution will have to be 

integrated in the model. For the latter problem solutions have been proposed in terms 

of combining diffusion models of the upper skin layers with pharmacokinetic models 

of the human body. On the other hand little is known about the consequences of 

metabolism on the absorption of drugs. Ubiquitous enzymes such as esterases and 

deaminases are active inside the viable skin layers and also enzymes of the 

ctyochrome P450 family are present. Cutaneous metabolism has also been used as 

a therapeutic concept for topically applied ester-prodrugs that usually exhibit a higher 

lipophilicity which is beneficial for the permeation for otherwise poorly absorbed 

hydrophilic drugs. 
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ZUSAMMENFASSUNG 

Die mathematische Modellierung des Transports von Substanzen über die Haut stellt 

insbesondere im Hinblick auf ethische und ökonomische Fragen eine wertvolle 

Alternative zu in vitro und in vivo Untersuchungen dar. Mechanistisch basierte 

Modelle beschreiben den Hauttransport mittels orts- und zeitaufgelösten Lösungen 

des Fick’schen Diffusionsgesetzes. Jedoch fehlen derzeit Modelle, die vollständig auf 

experimentellen Datensätzen beruhen.  

Im Rahmen dieser Arbeit wurde ein nicht-steady state-in silico Modell zur Vorhersage 

von in vitro Diffusionsexperimenten über Humanhaut entwickelt. Die 

zweidimensionale Modellmembran besteht aus einem biphasigen stratum corneum 

und zusätzlich einem homogenen Kompartiment, das die lebende Epidermis/Dermis 

darstellt. Die stratum corneum-Geometrie beruht auf dem „Ziegelstein-Mörtel“-Model. 

Das heißt, dass die Corneocyten vollständig in die Lipidphase eingebettet sind. Alle 

Phasen werden mit homogenen Verteilungs- und Diffusionskoeffizienten modelliert. 

Es war das erklärte Ziel dieser Arbeit ein Diffusionsmodell vollständig auf Grundlage 

von experimentellen Daten zu entwickeln. Damit werden primäre Annahmen 

vermieden, die sonst notwendig sind um Eingangsparameter, die die 

Membranaffinität und die Diffusionskoeffizienten beschreiben, abzuschätzen. Dies 

erolgt meist ausgehend von physikochemischen Eigenschaften der diffundieren 

Spezies wie Größe und Lipophilie oder durch Kurvenanpassung gemessener 

Permeations- und Penetrationsdaten an eine eindimensionale Lösung der 

Diffusiongleichung. 

Daher wurden im Laufe der Arbeit Methoden enwickelt, um die 

Verteilungskoeffizienten zwischen Lipiden und Donor (Klip/don), Corneocyten und 

Lipiden (Kcor/lip), und lebenden tieferen Hautschichten und Lipiden (KDSL/lip) sowie die 

Diffusionskoeffizienten in den Lipiden und lebenden tieferen Hautschichten (Dlip und 

DDSL) zu messen und den Diffusionskoeffizienten in den Corneocyten 

näherungsweise zu bestimmen. Diese Daten wurden unter Verwendung von 

humaner weiblicher Bauchhaut für zwei Modellverbindungen generiert. Bei den 

Modellsubstanzen handelt es such um Flufenaminsäure und Koffein, die sich in ihren 

Hautpermeationseigenschaften unterscheiden. 

Klip/don wurde mittels Gleichgewichtsversuchen mit extrahierten humanen stratum 

corneum-Lipiden bestimmt. Für diese Experimente wurden die Lipide auf einen 
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Membranfilter aufgebracht. Dieser Lipidüberzug konnte reproduzierbar hergestellt 

werden, was durch Messung der Gewichts- und Dickenzunahme sichergestellt 

wurde. Mittels Hochleistungs-Dünnschichtchromatographie wurde gezeigt, dass das 

Verhältnis von Cholesterol zu Cholesterolestern, Triglyceriden, freien Fettsäuren und 

Ceramiden in den extrahierten Lipiden in einem Rahmen lag, der allgemein für 

exzidierte Humanhaut anzunehmen ist. Neben der charakteristischen 

Zusammensetzung der stratum corneum-Lipide ist auch ihre Anordnung innerhalb 

der Doppelschichten entscheidend für eine effiziente Barriere sowie die 

Transporteigenschaften. Daher wurde die Lipidstruktur mittels 

Differenzialscanningkalorimetrie- (DSC) und Weitwinkelröntgenuntersuchungen 

(WAXD) näher untersucht. Die DSC-Untersuchungen ergaben, dass die Lipide nach 

Extraktion wieder als Lamellen kristallisieren, wobei ihre hexagonale und/oder 

orthorhombische lateralen Ordnung erhalten bleibt. Die Anwesenheit der 

orthorhombischen Phase bestätigte sich auch bei den WAXD-Untersuchungen. 

Signifikante Anteile der Lipide kristallisierten jedoch in einem nichtphysiologischen 

amorphen oder flüssigkristallinen Zustand, was dem hohen unphysiologischen 

Gehalt an Triglyceriden zugeschrieben wurde. Es handelt sich hierbei um ein Artefakt 

aufgrund von Kontamination der stratum corneum-Lipide mit Lipiden des 

Unterhautfettgewebes während der Entnahme im OP und beim Transport.  

Kcor/lip and KDSL/lip wurden aus experimentell gemessenen Verteilungskoeffizienten 

zwischen stratum corneum und Donor, Lipiden und Donor und stratum corneum und 

den lebenden tieferen Hautschichten (KSC/don, Klip/don and KSC/DSL) abgeleitet unter 

Annahme von Lipid- und Corneocytenvolumenanteilen, wie sie normalerweise in 

Humanhaut zu finden sind.  

KSC/don wurde sowohl in Gleichgewichtsexperimenten bestimmt als auch mittels 

nichtlinearer Kurvenanpassung aus Konzentrations-Schichttiefenprofilen abgeleitet. 

Hierzu wurde eine Lösung der Diffusionsgleichung für eine eindimensionale 

Membran verwendet. Beide Methoden ergaben für Koffein sehr ähnliche 

Abschätzungen für KSC/don (und dementsprechend für Kcor/lip und KSC/DSL), während 

die Abschätzungen für Flufenaminsäure stärker voneinander abwichen. Obwohl der 

Grund für dieses Verhalten nicht abschließend geklärt werden konnte, wurde 

spekuliert, dass tiefenabhängige Veränderungen in der Barrierefunktion oder eine 

Bidnugn an Keratin hieran beteiligt sind. Die Kurvenanpassung ergab weiterhin eine 
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zeitabhägnige Änderung des Parameters KSC/don, was auf Veränderungen in der 

Membran oder eine langsame Gleichgewichtseinstellung hinweisen kann. 

Die apparenten Diffusionskoeffizienten in den Lipiden und tieferen Hautschichten Dlip 

und DDSL wurden auf Grundlage des Gleichgewichtsfluxes über lipidüberzogene 

Membranfilter beziehungsweise dermatomisierte lebende Hautschichten bestimmt. 

Diese Methode konnte jedoch nicht zur Bestimmung des apparenten 

Diffusionskoeffizienten in den Corneocyten genutzt werden. Dcor wurde aufgrund 

einer Näherungsformel bestimmt, die Kcor/lip und Dlip sowie DSC verwendet.  

DSC wurde ebenfalls auf Grundlage des Gleichgewichtfluxes, hier über isoliertes 

stratum corneum, bestimmt sowie aus nichtlinearer Kurvenanpassung von stratum 

corneum Konzentrations-Schichttiefenprofilen an eine eindimensionale Lösung der 

Diffusiongleichung abgeleitet. Wie schon im Fall von KSC/don ergaben sich in der 

Kurvenanpassung Hinweise, dass es zeitabhängig zu Veränderungen in der 

Membran kommt, da DSC von sowohl Koffein als auch Flufenaminsäure während der 

ersten Stunden der Absorption sank. Diese beruhen vermutlich auf Veränderungen 

der Pfadlänge durch Quellung der Membran.  

Die Qualität der Vorhersagen wurde im Vergleich von experimentellen und 

simulierten stratum corneum-Konzentrations-Schichttiefen-profilen überprüft. Diese 

Arbeiten wurden am Lehrstuhl für „Technische Simulation“ der Universität Heidelberg 

unter Prof. Dr. Gabriel Wittum durchgeführt. Die hier skizzierte näherungsweise 

Bestimmung des Diffusionskoeffizienten in den Corneocyten reagiert im Rahmen der 

Messdaten für Dlip, DSC und Kcor/lip für Koffein und Flufenaminsäure hoch sensibel auf 

Veränderungen in der Membrangeometrie. Ausgehend von geometrischen 

Informationen, die mikroskopischen Daten für Humanhaut entnommen wurden, 

musste jedoch der abgeschätzte Wert für Dcor später um eine Zehnerpotenz für 

Koffein und zwei Zehnerpotenzen für Flufenaminsäure herab korrigiert werden, damit 

eine gute Übereinstimmung zwischen Experiment und Simulation erzielt werden 

konnte. 

Als ein wichtiges Ergebnis sowohl der Experimente als auch der Simulation konnte 

gezeigt werden, dass die Corneocyten eine entscheidende Rolle für den 

Hauttransport von beiden Modellsubstanzen spielen. Wie aufgrund der 

unterschiedlichen Lipophilie der beiden Substanzen zu erwarten gewesen war, 

konnte gezeigt werden, dass Flufenaminsäure, jedoch nicht Koffein an Keratin 
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bindet, ein Protein, das den Hauptgewichtsanteil des lebenden stratum corneums 

ausmacht.  

Um diese Fragestellung genauer zu untersuchen, wurden die Mechanismen der 

Wirkstoff-Corneocyten-Interaktion in einem kombinierten experimentellen und 

theoretischen Ansatz näher untersucht. Es wurden experimentelle Methoden 

entwickelt, um die Wirkstoff-Corneocyten-Interaktionen hinsichtlich der 

Wirkstoffverteilung in Hydratationswasser und Bindung an Proteine zu untersuchen 

und das Ausmaß der konkurrierenden Mechanismen zu quantifizieren. Die Verteilung 

in Hydratationswasser wurde in Gleichgewichtsversuchen unter Verwendung von 

getrocknetem stratum corneum, beziehungsweise stratum corneum, das bekannte 

Mengen an Wasser enthielt, quantifiziert. Die enthaltene Wassermenge lag im 

Bereich von etwa 30-800 Gewichtsprozent bezogen auf trockenes stratum corneum. 

Hierzu wurde gefriergetrocknetes stratum corneum bei einer konstanten relativen 

Luftfeuchtigkeit gelagert oder in doppelt destilliertem Wasser gebadet. Die 

Keratinbindung wurde in Gleichgewichtsversuchen mit pulverisiertem Keratin vom 

Rinderhuf und –horn untersucht. 

Die Ergebnisse für drei Substanzen, Koffein, Flufenaminsäure und Testosteron, 

wurden vorgestellt. Zwei Kompartimentmodelle des stratum corneums (M1 und M2) 

wurden formuliert, die, basierend auf experimentell bestimmten Eingangsparametern 

für die Affinität zu den Lipiden, Proteinen und Wasser, den stratum corneum-Donor 

Verteilungskoeffizienten beschreiben. M1 beinhaltet ein homogenes 

Proteinkompartiment und nimmt an, dass Proteininteraktionen nur über intra-

corneocytäres Wasser stattfinden. In M2 wird das Proteinkompartiment unterteilt in 

ein Kompartiment der Corneocytenhülle, das in Wechselwirkung mit den 

interzellulären Lipiden steht und ein Keratinkompartiment, das mit Wasser 

wechselwirkt. Als erste Abschätzung wurden die Lösungseigenschaften des Wassers 

in der Membran als identisch zu Bulkwasser angenommen. Die Bindungskonstanten 

und maximale Bindungskapazitäten wurden aus Studien mit pulverisiertem 

Rinderkeratin abgeleitet und sowohl für die Abschätzung der Wechselwirkung mit 

dem Keratinkompartiment als auch mit den Proteinen der Corneocytenhülle 

verwendet. 

Für Koffein, das nicht an Proteine bindet jedoch eine hohe Affinität zur Wasserphase 

aufweist, wurde der Einfluss des Wasserkompartiments zunächst überschätzt. Die 

Substanz konnte jedoch erfolgreich modelliert werden, nachdem eine gebundene, 
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unzugängliche Wasserphase eingeführt wurde. Für lipophile, keratinbindende 

Verbindungen (Flufenaminsäure und Testosteron) sagte nur M2 die 

Konzentrationsabhängigkeit des stratum corneum-Donor Verteilungskoeffizienten 

korrekt voraus. Demzufolge interagieren sowohl lipophile als auch hydrophile 

Substanzen mit den Corneocyten. Die Interaktionen von lipophilen Substanzen sind 

wahrscheinlich auf die Corneocytenoberfläche begrenzt. Interaktionen mit 

intrazellulärem Keratin werden wahrscheinlich durch ihre geringe Wasserlöslichkeit 

limitiert. 

 

Das zunächst vorgeschlagene einfache biphasige Zweischichtmodell der Humanhaut 

mit homogenen Verteilungs- und Diffusionskoeffizienten erlaubt eine nützliche erste 

Abschätzung der in vitro Hautabsorption. Allerdings ist die Darstellung des 

Corneocytenkompartiments hier wahrscheinlich zu einfach, da im Laufe der Arbeiten 

neue Parameter identifiziert wurden, insbesondere die Bindungsaffinität und die 

maximale Bidnungskapazität an die Proteine der Corneocyten. Außerdem muß für 

Substanzen, die eine hohe Affinität zu Wasser haben eine gebundene, 

unzugängliche Wasserphase berücksichtigt werden. Darüber hinaus wurde ein 

Modell der Verteilungs- und Bindungsschemata innerhalb des stratum corneums 

vorgschlagen und konnte auch erfolgreich angewandt werden um die stratum 

corneum Verteilungskoeffizienten von drei Modellsubstanzen mit unterschiedlichen 

stratum corneum Affinitäten zu erklären.  

In Zukunft müssen diese Verfeinerungen der Corneocytenphase in das 

Diffusionsmodell integriert werden. Sie sollten außerdem verwendet werden die 

Abschätzung des Corneocytendiffusionskoeffizienten zu präzisieren, da nun eine 

Unterscheidung zwischen gebundener und frei beweglicher Substanz möglich ist. 

Das Modell muß darüber hinaus mit weiteren Substanzen validiert werden, um 

einschätzen zu können, ob es nach Einbeziehung der neu identifizierten Parameter 

als prädiktives Modell verwendet werden kann. Voraussetzung für den Übergang 

vom Simulations- zum Vorhersagemodell wird sein, einen geeigneten Ersatz für die 

bisher experimentell bestimmten Eingangsparameter zu finden. Wie bereits 

beschrieben, gelten Korrelationen zwischen Membran-Donor- und Octanol-Wasser 

Verteilungskoeffizienten sowie zwischen Diffusionskoeffizienten und Molekülgröße 

als allgemein etabliert. Im Gegensatz dazu ist wenig bekannt über eine geeignete 

Abschätzung der Bindungsparameter an die Corneocytenproteine. Im Gegensatz 



 

Zusammenfassung 

XX 

 

dazu existieren für eine große Anzahl von Substanzen Bindungsdaten zu einem 

anderen ubiquitär vorkommenden Protein, nämlich Serumalbumin, da dies ein 

wichtiger pharmakokinetischer Parameter für die Wirkstoffverteilung im zentralen 

Kompartiment ist. Ebenso gibt es eine Anzahl von QSAR-Modellen, die die Bindung 

an humanes Serumalbumin vorhersagen. Daher erscheint es sinnvoll nach einem 

Zusammenhang zwischen Serumalbumin- und Keratinbindung zu suchen. Dieser 

könnte zur ersten Orientierung dienen, ob eine Keratinbindung für die jeweils 

untersuchte Substanz überhaupt für die Modellierung berücksichtigt werden muß. Es 

bleibt abzuwarten, ob eine direkte Korrelation zwischen den beiden Parametern 

besteht, die sich in prediktiver Weise für die Modellierung nutzen läßt. 

Letztendlich soll das Diffusionsmodell verwendet werden, um die in vivo Absorption 

über die Haut vorherzusagen. Normalerweise steht nur eine limiteierte Dosis an 

Substanz auf der Hautoberfläche zur Verfügung, insbesondere wenn es sich um 

pharmazeutische oder kosmetische Applikationen handelt. Mit abnehmendem 

applizierten Volumen gewinnen Prozesse innerhalb der Formulierung wie 

beispielsweise das Verschwinden des aktiven Bestandteils, Wechselwirkungen 

zwischen Komponenten des Vehikels mit der Haut und Verdunstung von 

Formulierungsbestandteilen zunehmend an Bedeutung und müssen daher im Modell 

berücksichtigt werden.  

Darüber hinaus handelt es sich bei den meisten Formulierungen, die auf der Haut 

angewendet werden, um Multikomponentensysteme. Hilfstoffe spielen eine komplexe 

Rolle im Aufbau des Vehikels und könen die Absorption des Wirkstoffs sowohl im 

Sinne einer Permeationsverbesserung als auch einer Retardierung beeinflussen. 

Das ist hauptsächlich darin begründet, dass komplexe Wechselwirkungen zwischen 

der Hilfsstoffen der Formulierung und der Haut auftreten. Diese können die Affinität 

des Wirkstoffs zu einzelnen Bereichen der Haut beeinflussen wie auch die 

Diffusionsgeschwindigkeit in der Haut. Der erste Schritt diese Mechansimen in das 

Modell zu integrieren wirde es sein, die Absorption häufig eingesetzter Hilfsstoffe zu 

untersuchen. Fortschritte auf diesem Gebiet wurden erzielt, indem die Absorption 

von Permeationsverbesserern wie Propylenglycol, Ölsäure und Wasser gemessen 

wurde. Vorausgesetzt, dass sich eine Beziehung zwischen der Konzentration der 

Hilfsstoffe in der Haut und dem Verteilungs- und Diffusionskoeffizienten des 

Wirkstoffs etablieren lässt, kann die “Ko-Permeation” beider Komponenten 

vorhergesagt werden. 
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Und schlußendlich müssen zur Modellierung von Wirkstoffen, die zur transkutanen 

Applikation und systemischen Wirkung bestimmt sind, außerdem der kutane 

Metabolismus sowie die systemische Verteilung in das Modell integriert werden. Für 

letzteres Problem existieren bereits Lösungsansätze, im Rahmen derer ein 

Diffusionsmodell der oberen Hautschichten mit einem Pharmakokinetischen Modell 

des menschlichen Körpers kombiniert wird. Auf der anderen Seite ist wenig über die  

Auswirkung einer enzymatischen Metabolisierung in den lebenden Hautschichten auf 

die Hautabsorption bekannt. Ubiquitär vorkommende Enzyme wie Esterasen und 

Deaminasen sind auch in den lebenden Hautschichten aktiv. Daneben gibt es hier 

außerdem auch Enzyme der Ctyochrom P450 Familie. Der kutane Metabolismus 

wird bereits im Rahmen therapeutischer Konzepte genutzt, da topisch applizierte 

Ester-prodrugs normalerweise eine erhöhte Lipophilie gegenüber dem eigentlichen 

Wirkstoff haben und damit einen Vorteil für die Permeation von ansonsten schlecht 

absorbierbaren hydrophilen Wirkstoffen darstellen. 
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ABBREVIATIONS 

Definitions are given for the symbols used in the main text in alphabetical order. 

 

aqu  aqueous corneocyte domain 

ci  concentration 

CAF  caffeine 

cmax,i  Langmuir saturation constant (maximum binding capacity) 

cor  corneocytes 

cpe  cornified protein envelope 

Dcor  diffusion coefficient within corneocytes 

DCM  dichloro methane 

don  Donor 

SC,dry usually freeze-dried SC, ωaqu = 0 

FFA  flufenamic acid 

SC,hyd hydrated SC 

ki  Langmuir binding affinity (adsorption coefficient) 

Ki/j  partition coefficient 

ker  keratin 

lip  intercellular SC lipid bilayers 

KOct/w  logarithmical octanol water partition coefficient 

LVP  low viscous paraffin 

M1  compartmental model 1 

M2  compartmental model 2 

MW  molecular weight 

pKa  acid constant 

pro  SC proteins (= ker + cpe) 

qmax,i  protein maximum loading capacity 

si  saturation concentration  

SC  stratum corneum 

Soer,7.4 Soerensen phosphate buffer pH 7.4 

TST  estosterone 

Vi  volume 

wi  weight 



 

Abbreviations 

XLVIII 

 

w0  weight of substance in incubation solution before equilibration 

wEnd  weight of substance in incubation solution after equilibration 

ρi  density 

Гi,j  interface 

Ωi  compartment 
i
jϕ   volume fraction Vi/Vj 

i
jω   weight fraction wi/wj 

boundaqu,
drySC,ω  weight fraction of bound aqueous phase per weight of dry SC 

c0  initial concentration of substance within the incubation solution 

cexSC  concentration within the bottom layer of the stratum corneum, i.e. the 

  last pool of tape-strips 

cinDSL  concentration within the topmost layer of the viable deeper skin layers, 

  i.e. the first pool of cryo-cuts 

Di  apparent diffusion coefficient, Ii∈  

dc/dx  concentration gradient 

Der  dermis 

DSL  viable deeper skin layers 

Epi  epidermis 

h  membrane thickness 

I  index set { }kerlip,Epi,DSL,don,Der,cpe,cor,aqu,  

Jss  steady state flux 

Ki/j  partition coefficient ji ≠  and Iji, ∈  

kP  apparent permeability coefficient 

w0  weight of substance within the incubation solution before equilibration 

wEnd  weight of substance within the incubation solution after equilibration 

wi  dry weight of skin compartment i 

wEx  weight of substance extracted from a skin compartment 

M1  compartmental model 1 

M2  compartmental model 2 

MW  molecular weight 

pKa  acid constant 
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