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1 GENERAL PART 

1.1 INTRODUCTION 

1.1.1 Designer Drugs  

Chirality and differences in pharmacodynamic and pharmacokinetic properties of the 

enantiomers is not restricted to legal drugs such as ketamine, omeprazole, or 

citalopram. Drugs of abuse can also contain chiral centers and the respective 

enantiomers might also differ in their properties. As consumption of drugs of abuse is 

a widespread problem in societies all over the world and the abused compounds are 

not investigated before appearance on the illicit drug market, knowledge about 

possible differences of their enantiomers is very limited. Especially, so-called 

designer drugs are more and more popular among young people. The most 

frequently abused drugs are amphetamine-derived designer drugs which are chiral 

compounds containing an asymmetric carbon atom in the side chain. One class of 

amphetamine-derived designer drugs are the methylenedioxy derivatives 3,4-

methylene¬dioxymethamphetamine (MDMA, Ecstasy, Adam), 3,4-methylene-

dioxy¬ethylamphetamine (MDEA, Eve), N-methyl-benzodioxolyl-butanamine (MBDB, 

Eden), 4-methylenedioxy-amphetamine (MDA), and benzodioxolyl-butanamine 

(BDB). Their chemical structures are shown in Fig. 1.  

 

1.1.2 Metabolism 

As shown in Fig. 1, in vivo studies of MDMA, MDEA, and MBDB revealed two main 

metabolic steps: N-demethylation and demethylenation. The first pathway, 

predominant in humans, involves cytochrome p450 (CYP)-catalyzed O-

demethylenation to the corresponding 3,4-dihydroxy compounds followed by 

catechol-O-methyltransferase (COMT)-catalyzed O-methylation to the 4-hydroxy-3-

methoxy metabolites and O-conjugation with sulfate or glucuronic acid. The second 

entails initial N-dealkylation to MDA or BDB followed by deamination and oxidation to 

the corresponding benzoic acid derivatives conjugated with glycine.1-3 Urinary 

recovery of MDMA represents about 15% which indicates that the drug is mainly 



 

eliminated by metabolism.3 MDA and BDB can also undergo O-demethylenation to 

the 3,4-dihydroxy compounds following O-methylation and O-conjugation with 

glucuronic acid or sulfate. The catechols, formed via metabolic demethylenation of 

the aforementioned drugs, can easily be oxidized to their corresponding ortho-

quinones which in turn can form adducts with glutathione and other thiol-containing 

compounds.4,5 

 

 

 

Fig. 1: Chemical structures and main metabolic steps of the studied amphetamine-

derived designer drugs 

1.1.3 Pharmacology and Toxicology 

MDMA, MDEA, and MBDB have effects on the central nervous system described as 

altered state of consciousness, well being, increased tactile sensations, and a strong 

desire to socialize.6,7 Additionally, they can increase the concentration of dopamine, 

serotonin, and noradrenaline in the central nervous system. MDA itself is reported to 

be twice as potent as MDMA and MDEA.7 However, BDB should have similar 



 

pharmacological properties as the related aforementioned compounds. Therefore, 

they are all members of the same drug class called “entactogens”.8  

Different pharmacokinetic properties were described for MDMA, MDEA, and MDA 

enantiomers.9-14 Johnson et al. reported about differences in the dose response 

curve and for changes in serotonergic function and neurotoxicity between S-(+)-MDA 

and R-(-)-MDA.15 Several studies have shown that there is a metabolic preference for 

the S-enantiomer of MDMA.9-14 MDEA was investigated concerning enantioselective 

pharmacokinetics in vivo16,17 and the plasma half life of R-MDEA was found to be 

longer than that of S-MDEA. Accordingly, the plasma concentrations of the S-

enantiomers of the main metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine 

(HMEA) and MDA were much higher than those of the R-enantiomers. 

Enantioselective pharmacokinetics of MDEA resulting in higher plasma 

concentrations of R-MDEA were also confirmed by other authors.12,18,19 

Concerning chronic toxicity, data strongly suggest that adducts of the catecholic 

metabolites of MDMA, MDEA, MBDB, and MDA can cause irreversible damage to 

serotonergic nerve terminals in the central nervous system and systemic metabolism 

may play a role in their neurotoxicity.3,9,20-27 This was concluded from the observation 

that direct injection of ecstasy into the brain fails to reproduce the neurotoxic effects 

seen after systemic administration,28 and from the report that alteration of CYP-

mediated MDMA metabolism influences MDMA induced neurotoxicity.28,29 

Metabolites such as DHMA are easily be oxidized to their corresponding quinones 

which can form adducts with glutathione and other thiol-containing compounds.4,30,31 

Recently, such adducts have been implicated in MDMA neurotoxicity.32,33 Only few 

publications are available on the neurotoxicity in living humans. In these studies, 

recreational MDMA users were found to have decreased levels of 5-

hydroxyindoleacetic acid, the main metabolite of serotonin, in the cerebrospinal 

fluid34 and a reduced density of serotonin transporters in the brain as determined by 

positron emission computed tomography with a ligand selective for these 

transporters.35 Both findings are indicative of serotonin neurotoxicity in humans. 

Unfortunately, these studies were performed with recreational users, so it cannot be 

excluded whether the reported findings might also be due to use of other recreational 

drugs especially since polydrug use is not uncommon.  



 

1.1.4 Metabolizing Enzymes 

1.1.4.1 Cytochrome P450 

In general, drugs are metabolized by a variety of enzymes, producing metabolites 

that are usually less toxic than their parent compounds. The formed metabolites may 

also be more reactive, producing toxic effects. CYP enzymes are responsible for 

oxidative and, to a minor extent, reductive metabolic transformations of drugs, 

environmental chemicals and natural compounds. Over its long history of more than 

3.5 billion years, the CYP superfamily of enzymes has developed remarkable 

versatility. As shown in figure 2, the primary catalytic function of CYPs was identified 

as transfer of one oxygen atom from molecular oxygen into various substrates. A 

coenzyme, cytochrome P450 oxidoreductase (OR), is essential for CYP catalytic 

function, and cytochrome b5 can stimulate catalytic activities of some enzymes.36  

 

 

Fig. 2: The cytochrome P450 redox cycle. 

Single electron shifts are frequently responsible for the formation of reactive 

intermediates or allow the leakage of free radicals capable of causing toxicity. When 



 

a CYP enzyme activity is modified by induction or inhibition, the biological activity of 

the xenobiotic substrate can be altered considerably. Such effects are called drug-

drug, drug-chemical or chemical-chemical-interactions. Such interactions can modify 

the disposition of xenobiotics.37-39 In mammals, the enzymes can be identified in 

nearly every tissue, being most abundantly present in the liver. The CYP superfamily 

has been classified in different families in accordance to the degree of homology of 

amino acid sequence in their protein structures. CYP enzymes having ≤ 40% 

homology in their amino acid sequence are classified in different families which are 

designated by Arabic numbers, for example, CYP1. Each family is further divided into 

subfamilies of enzymes. The enzymes within a mammalian subfamily have ≥ 55% 

sequence homology and are designated by capital letters, for example, CYP1A. An 

Arabic number is used for designating individual enzymes within a subfamily, for 

example, CYP1A2.37 In humans, 18 CYP families with 43 subfamilies and 57 CYP 

isoenzymes are known so far, of which only 3 families with 7 subfamilies and 12 CYP 

isoenzymes are relevant for drug metabolism,40 namely CYP1A1, CYP1A2, CYP2A6, 

CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, 

and CYP3A5.41  

Human liver-derived enzyme preparations, e.g. human liver microsomes (HLM) 

contain a natural mixture of CYPs. Chemical inhibitors, immunochemical inhibitors, 

and/or correlation analyses with marker activities must be used to obtain information 

on which enzymes are performing specific biotransformations. In contrast, only a 

single active CYP is present in preparations of cDNA-expressed enzymes. Inhibitors 

and correlation analyses are not needed, because the mentioned assignments can 

be performed by direct incubation of the drug with a panel of individual CYPs. 

However, the balance of enzymes, present in vivo, is lost.36 Bacteria, yeast, 

baculovirus and several mammalian cells have been used to produce a wide range of 

catalytically active CYPs. The baculovirus system offers high-level expression of both 

the CYP and OR, and are therefore advantageous for metabolism studies of all 

kinds, especially for low turnover substrates. The development of the cDNA-bearing 

virus is relatively time-consuming and labor-intensive, but baculovirus infected insect 

cell microsomes are commercially available. However, because the enzymes are 

produced transiently in the insect host cells, exact harvest time can have a 

pronounced effect on the activity of the final preparation.42  

 



 

1.1.4.2 Catechol-O-methyltransferase 

Julius Axelrod, an American biochemist (1912-2004), whose Nobel Prize-winning 

research grew out of work done by Euler, specifically Euler’s discovery of 

noradrenaline (norepinephrine). Axelrod, in turn, discovered that noradrenaline could 

be neutralized by an enzyme, catechol-O-methyltransferase (COMT, EC 2.1.1.6), 

which he isolated and named.  

In either rats or humans, there is only one single gene for COMT, encoding the 

soluble COMT (S-COMT) and the membrane-bound COMT (MB-COMT) by using 

two separate promoters.43,44 In most human tissues, the majority of COMT is present 

in the soluble form (S-COMT). However, in human brain, 70% of the total COMT 

proteins was found to be MB-COMT and 30% of them S-COMT. Analyses with 

overexpressed MB-COMT showed that it is mainly located in the rough endoplasmic 

reticulum, facing the cytoplasm, and no MB-COMT is present in the cytoplasmic 

membrane. The overexpressed S-COMT in cultured cells was found to be localized 

in cytosol and nucleus.45,46  

These enzymes proved critical to an understanding of the entire nervous system 

because they catalyze the enzymatic O-methylation of endogenous catecholamines 

and other catechols.47 The physiological substrates of COMT include catecholamines 

(dopamine, norepinephrine, and epinephrine), catechol estrogens, and many others. 

In addition, many drugs, such as dobutamine, isoprenaline, levodopa, and 

benserazide are also substrates of COMT.48-51 A few recent studies demonstrated 

that several dietary phytochemicals such as bioflavonoids and tea catechins are 

exceptionally good substrates for the COMT-mediated O-methylation with metabolic 

rates much higher than endogenous catecholamines and catechol estrogens.52-55 

COMT has also been suggested to have additional important physiological functions 

in organs like the kidney and intestine through modulating the rate of dopamine 

metabolism which should also be true in the brain. COMT may modulate the 

neurotransmitter functions of dopamine and norepinephrine altering the rate of their 

metabolic inactivation.56 

 

As depicted in Fig. (3), COMT catalyzes the transfer of the methyl group from S-

adenosylmethionine (SAM) to one of the two hydroxyl groups of the catechol 

substrates in the presence of Mg2+ as a cofactor.49 



 

 
 

Fig. 3: Schematic illustration of the catalytic mechanism of S-COMT-mediated O-methylation. 

The dotted lines indicate the possible non covalent interactions between the molecules or atoms. 

 

The binding of Mg2+ to the COMT protein improves the ionization of the two hydroxyl 

groups of the catechol substrate. The lysine residue (Lys144) accepts the proton of 

one of the two hydroxyl groups, acting as a catalytic base for the nucleophilic methyl 

transfer reaction. An earlier study suggested that the methyl transfer proceeds 

through a direct nucleophilic attack by one of the hydroxyl groups of the catechol 

substrate at the methyl carbon of SAM in a tight SN2-like transition state.57,58 

Nevertheless, there are also a number of S-COMT and MB-COMT characteristics for 

the O-methylation of different catechols in vitro. First, S-COMT generally has much 

higher apparent KM values (lower affinity) for various substrates than MB-COMT 

(higher affinity).59,60 Second, despite the generally low affinities of S-COMT for 

various substrates, its overall catalytic capacity (Vmax) is ten to one hundred folds 

higher than values for the MB-COMT. Third, for the O-methylation of catecholamines, 

both S-COMT and MB-COMT favor 3-O-methylation (meta-position) over 4-O-

methylation (para-position). It appears that MB-COMT is even more regioselective 

than S-COMT in favor of 3-O-methylation.61 The reason for the favorable 3-O-

methylation over 4-O-methylation may be as follows. While the 4-O-hydroxyl group of 

the substrate approaches SAM, its side chain is forced to be orientated in an 

unfavorable position towards a cluster of hydrophobic amino acid residues located at 

or near the catalytic site (see Fig. 3). Molecular dynamic simulation studies appeared 

to be in agreement with this explanation.62,63 



 

Val158Met is one single nucleotide polymorphism in the gene that codes COMT. This 

single nucleotide substitution between G and A results in an amino acid change from 

valine to methionine at codon 158 and provides a higher activity of the enzyme. It 

was recently associated with modulation of cognition and diseases like 

schizophrenia.64 

Characterization of the human enzymes involved in the metabolism of specific drugs 

is becoming increasingly important. Such characterization should consider two 

processes involving the new drug: metabolism and inhibition. The characterization of 

enzymes involved in metabolism of a new drug allows prediction, based on 

knowledge of the ability of co-administered drugs to inhibit the same enzymes, of 

which co-administered drugs may inhibit the metabolism of the new drug. This 

information can also be used to predict individual variability based on known 

metabolic polymorphisms.36 However, also the new drug can act as an inhibitor what 

may lead to interactions with co-administered drugs. 

 

1.1.5 Preparation of Single Enantiomers  

1.1.5.1  Separation of racemic MDMA, MDEA, and MBDB 

MDMA, MDEA, and MBDB were separated using a Hewlett Packard Series 1050 

semi-preparative HPLC system consisting of a pump and a variable wavelength 

detector (λ = 263 nm for MDMA and MDEA and λ = 285 nm for MBDB) which was 

coupled to an Advantec SF 2120 Super Fraction collector. The stationary phase was 

a Merck Hibar HPLC ChiraDex column (250 x 10 mm, 5 µm). The mobile phase 

varied in dependence of the separated racemic mixture to obtain best separation. 

The respective conditions are given in Table 1. Analytes were separated in aliquots 

(100 µl, MDMA and MDEA; 250 µl, MBDB) of an aqueous stock solution (5 mg/ml 

MDMA and MDEA; 1 mg/ml, MBDB). In total, 40 mg MDMA, 30 mg MDEA, and 50 

mg MBDB were separated. Fractions were collected and checked for optical purity. 

Therefore, 10 µl of the respective fraction was transferred to 1.5 ml reaction caps and 

diluted with 200 µl aqueous carbonate buffer (35 g/l sodium bicarbonate and 15 g/l 

sodium carbonate, pH 9). Purity was checked by gas chromatography-mass 

spectrometry (GC-MS) as described in detail under sample preparation for purity 

check. 



 

 

 mobile phase A mobile phase B flow rate pH and temperature 

R,S-MDMA 0.1 M ammonium 

acetate buffer 85% 

acetonitrile 15% 3 ml/min pH 6.5 at 8°C 

R,S-MDEA 0.1 M ammonium 

acetate buffer 85% 

acetonitrile 15% 3 ml/min pH 6.5 at 8°C 

R,S-MBDB 0.1 M ammonium 

acetate buffer 85% 

15% mobile phase B 

(acetonitrile 49.5%, 

methanol 49.5%, and 

triethylamine 1%), 

2 ml/min pH 7.0 at 15°C 

 

Tab. 1: HPLC conditions for separation of the racemic mixtures. 

 

For isolation of MDMA enantiomers from the collected fractions, the acetonitrile part 

of the HPLC solvent was evaporated. The remaining part was acidified with 1 ml 

0.01 mol/L HCl and the enantiomers were isolated from the aqueous part by solid 

phase extraction (SPE) using Varian Bond Elut SCX HF cartridges (5 g, 20 ml), 

previously conditioned with 10 ml of methanol and 10 ml of water. After passage of 

the fractions, the cartridges were washed with 10 ml of 0.01 mol/L hydrochloric acid 

and 10 ml of methanol. The compounds were eluted twice with 10 ml freshly 

prepared mixture of methanol/aqueous ammonia (96:4 v/v). The eluates were 

evaporated to dryness under reduced pressure and reconstituted in 1.0 ml 0.01 mol/L 

HCl and quantified according to ref.13 Forty mg of racemic MDMA-HCl were 

separated under the described conditions.  

For MDEA, the fractions containing the separated enantiomers were collected and 

the enantiomers were isolated from the aqueous part by liquid/liquid extraction at pH 

9 using ethyl acetate (three times using 150 ml each). The extracts were evaporated 

to dryness using a Rotavapor under reduced pressure and reconstituted in 1.0 ml of 

0.01 M HCl. Thereafter, the concentrations of the MDEA enantiomers in the resulting 

solution were determined according to the sample preparation and purity check 

section. 

For MBDB, the respective enantiomer fractions were adjusted to pH 12 with sodium 

hydroxide and extracted three times with ethyl acetate (150 mL). The combined 

extracts were dried using magnesium sulfate. Afterwards they were concentrated to a 

volume of approximately 1 mL under reduced pressure. Finally, the amount and 



 

purity of the MBDB enantiomers were checked as described in detail under sample 

preparation. Fifty mg of racemic MBDB were separated under the described 

conditions. As the chiral HPLC method did not provide a satisfying purity and 

separation of the enantiomers, the above described separation and extraction 

procedure was performed twice. 

Various buffers and buffer concentrations as well as organic modifiers were tested for 

semi-preparative isolation of the single enantiomers for these experiments. The best 

result in enantiomer separation was achieved with KH2PO4 0.1 mol/L/acetonitrile 95/5 

with triethylamine (TEA) 0.1% but the TEA content as well as the phosphate buffer 

turned out to be problematic in the following isolation of the enantiomers by SPE. The 

conditions described above were finally preferred because they yielded sufficient 

separation combined with favorable properties for further workup. The final products 

were obtained as yellowish powders or aqueous solution of high optical purities. 

Despite rather low recoveries (MDMA ~ 60%, MDEA ~ 75%, MBDB ~ 40% per 

enantiomer), the isolated amounts were sufficient for further kinetic studies. 

 

1.1.5.2 Sample preparation and purity check using GC-MS 

Derivatization was performed according to Peters et al.,13 with slight modifications: 

after adding 20 µl derivatization reagent (0.1 mol/l S-HFBPCl in dichloromethane), 

the reaction vials were sealed and left on a rotary shaker at ambient temperature for 

30 min. After addition of 100 µl cyclohexane to the reaction vials, they were resealed, 

and placed on a rotary shaker for 5 min. After phase separation by centrifugation 

(10000 g for 1 min), the cyclohexane phase was transferred to autosampler vials. 

Aliquots of 3 µl were injected into the GC-MS.  

The samples were analyzed by an Agilent Technologies (AT) 6890 Series GC 

system combined with an AT 5973 network mass selective detector, an AT 7683 

series injector, and an AT enhanced Chem Station G1701CA, version C.00.00 21-

Dec-1999. For detection of MDMA, MDEA, MBDB enantiomers and the internal 

standard MDA-d5, the GC conditions were as follows: splitless injection mode; 

column, 5% phenyl methyl siloxane (HP-5MS; 30 m x 0.25 mm (i.d.); 250 nm film 

thickness); injection port temperature, 280°C; carrier gas, helium; flow rate, 1 ml/min; 

column temperature. 

For separation and detection of MDMA, MDEA, and MBDB the oven and MS 

conditions were as follows: 



 

100°C increased to 200°C at 30°C/min, to 260°C at 5°C/min, and to 310°C at 

30°C/min. The negative-ion chemical ionization (NICI)-MS conditions were as 

follows: transfer line heater, 280°C; NICI, methane (2 ml/min); source temperature, 

150°C; solvent delay, 11 min; selected-ion monitoring (SIM) mode with the following 

ions: m/z 432 for MDA-d5 m/z 446 for MDMA and 460 for MDEA and MBDB. For 

separation of MBDB, the GC conditions were modified as follows: 100°C increased to 

221°C at 50°C/min, to 240°C at 4°C/min, and to 310°C at 50°C/min. Solvent delay, 2 

min; Enantiomers were quantified by comparison of their peak-area ratios 

(enantiomers of analyte vs corresponding enantiomer of the IS) to calibration curves 

in which the peak-area ratios of enriched calibrators had been plotted vs their 

concentrations using a weighted (1/x) least-squares linear regression model. 



 

1.2 AIMS AND SCOPES 

Some ring substituted amphetamines (RSA) were shown to be metabolized (in vitro 

and in vivo) more or less enantioselectively.9-14 Therefore, elucidating this 

phenomenon is important from the toxicological and pharmacological point of view. 

Concerning the most popular RSA MDMA, several studies have shown that there is a 

metabolic preference for the S-enantiomer9-14 and that this difference might be 

attributable to cytochrome P450 CYP2D6.65-67 MDEA was also investigated 

concerning enantioselective pharmacokinetics in vivo16,17 and the plasma half life of 

R-MDEA was found to be longer than that of S-MDEA. In the case of MBDB, the data 

currently available give no idea whether the S-form of this RSA is also metabolized 

preferably by CYP isoforms. Neither systematic in vivo nor in vitro studies are 

available concerning the CYP-dependent metabolism of MDMA, MDEA, and MBDB 

enantiomers with respect to all relevant isoforms. Only studies using racemic 

mixtures and CYP inhibition in pooled human liver microsomes are available.2 In the 

case of MDA and BDB, the data currently available provide no information on 

whether the S-forms of these RSA are also metabolized preferably by CYP isoforms. 

Neither in vivo nor in vitro studies are available concerning the CYP-dependent 

metabolism of their enantiomers. In addition, it should be of interest to see whether 

theses compounds, considered as MDMA, MDEA, or MBDB metabolites, are 

eliminated enantioselectively.  

Additionally, the question arose whether the primary catecholic metabolites of 

MDMA, MDEA, and MBDB are further methylated with a preference for the S-form. 

This might help to further explain the pharmacokinetic difference between the 

respective enantiomers and whether there are differences in the catalytic behavior 

between S-COMT and MB-COMT. Besides this, an inhibition potential of the 

catechols towards the COMT should be checked as it is known, that MDMA is a 

mechanism based inhibitor of CYP2D6.68 



 

Therefore, the aims of the presented studies were: 

 

- To obtain enantioselective enzyme kinetic data of MDMA, MBDB, and MDEA 

demethylenation and dealkylation by the ten CYPs most relevant in human drug 

metabolism  

 

- To obtain enantioselective enzyme kinetic data of the demethylenation of their 

metabolites MDA and BDB  

 

- To obtain enantioselective enzyme kinetic data of the methylation of their 

metabolites DHMA, DHEA, and DHMBB  

 

- Determination of the inhibition potential of DHMA, DHEA, and DHMBB on COMT 



2 PUBLICATIONS OF THE RESULTS 

The results of the studies were published in the following papers: 
 

2.1 THE ROLE OF HUMAN HEPATIC CYTOCHROME P450 ISOZYMES IN THE 

METABOLISM OF RACEMIC 3,4-METHYLENEDIOXY-METHAMPHETAMINE AND 

ITS ENANTIOMERS69 
(DOI: 10.1124/DMD.108.021543 ) 



 

 

2.2 THE ROLE OF HUMAN HEPATIC CYTOCHROME P450 ISOZYMES IN THE 

METABOLISM OF RACEMIC MDEA AND ITS SINGLE ENANTIOMERS70 
(DOI: 10.1124/DMD.108.026203) 



 

 

2.3 STEREOSELECTIVE DIFFERENCES IN THE CYTOCHROME P450-DEPENDENT 

DEALKYLATION AND DEMETHYLENATION OF N-METHYL-BENZODIOXOLYL-
BUTANAMINE (MBDB, EDEN) ENANTIOMERS71 
(DOI: 10.1016/J.BCP.2009.03.001) 



 

 

2.4 INVESTIGATIONS ON THE HUMAN HEPATIC CYTOCHROME P450 ISOZYMES 

INVOLVED IN THE METABOLISM OF 3,4-METHYLENEDIOXY-AMPHETAMINE 

(MDA) AND BENZODIOXOLYL-BUTANAMINE (BDB) ENANTIOMERS72 
(DOI: 10.1016/J.TOXLET.2009.06.866) 



 

 

2.5 ENANTIOSELECTIVITY IN THE METHYLATION OF THE CATECHOLIC PHASE-I 
METABOLITES OF METHYLENEDIOXY DESIGNER DRUGS AND THEIR 

CAPABILITY TO INHIBIT COMT CATALYZED DOPAMINE 3-METHYLATION73 
(DOI: 10.1021/TX900134E) 

 



3 CONCLUSIONS 

The studies presented here provided systematic data on the involvement of 

cytochrome P450 isozymes in the metabolism of methylenedioxy designer drugs 

MDMA (Ecstasy), MBDB (Eden), and MDEA (Eve) with respect to their chirality. 

Additionally, it was shown that these drugs are N-dealkylated and demethylenated 

enantioselectively with a preference for the S-enantiomer.69-71 Differences in the 

enantioselectivity of the involved isoforms where observed, indicating CYP2C19 to 

be the most selective in all cases. Furthermore, their N-dealkyl metabolites MDA, 

BDB are also demethylenated with a preference for their S-enantiomers, but these 

primary amines are not metabolized as enantioselectively as the secondary 

amines.72 The catecholic phase-I metabolites of the aforementioned designer drugs 

were investigated for enantioselective methylation and their S-enantiomer were also 

shown to be preferablely formed.73 Inhibition studies performed with DHMA, DHEA, 

and DHMBB clearly indicated an uncompetitive inhibition of the COMT catalyzed O-

methylation of dopamine.73 

These findings must be considered when trying to estimate the time of ingestion from 

drug enantiomer ratios in plasma10,12 because the time course of such ratios might be 

considerably different in CYP2D6 poor metabolizers or in case of inhibition of 

CYP2D6 by co-ingested drugs. In addition, it must be considered that correlation of 

the presented in vitro data with the in vivo situation is not straightforward, because in 

vivo the formed metabolites are further metabolized by O-methylation and/or 

glucuronidation/sulfation. Enantioselectivity of these phase II reactions might of 

course also influence the enantiomer ratios in plasma samples. Considering these 

findings along with the fact that demethylenation is the major metabolic step in vivo, 

the different pharmacokinetic properties of the enantiomers are therefore most likely 

attributable to enantioselective demethylenation by CYP2C19, CYP2D6, and 

CYP3A4. CYP2D6 should be most important in this context, because it is the most 

abundant concerning net clearance at plasma concentrations observed in 

recreational users. 

Concerning the catecholic metabolites, in the author’s opinion, a part of the described 

neurotoxicity of the methylenedioxy designer drugs3,9,20,26,27 could be explained by 

inhibition of the dopamine methylation in the central nervous system (CNS). As 



 

MDMA and related drugs are able to increase the concentration of dopamine and 

other neurotransmitters in the CNS8 and as they additionally could inhibit the 

inactivation of these compounds, the described dopamine induced neurotoxicity 

might be enhanced.74 This might be one reason for the drug-induced irreversible 

damage to central nerve terminals. 

 



4 SUMMARY 

In the presented studies, the CYP dependent, enantioselective N-dealkylation and 

demethylenation of the designer drugs MDMA (Ecstasy), MBDB (Eden), and MDEA 

(Eve) was investigated. Furthermore, the COMT-catalyzed O-methylation of the 

supposed neurotoxic catecholic metabolites of the aforementioned drugs and the 

demethylenation of the dealkyl metabolites MDA and BDB was studied. The data 

clearly indicated a metabolic preference for the S-enantiomer of all investigated 

compounds, indicating CYP2C19 to be the most selective in all cases. Furthermore, 

their N-dealkyl-metabolites MDA, BDB are also demethylenated with a preference for 

their S-enantiomers. Data also suggest that the primary amines are not metabolized 

as enantioselectively as the secondary amines. The catecholic phase-I metabolites 

are also enantioselectively methylated with a preference for their S-enantiomer. 

These findings explain in part the observed different in vivo kinetic of these 

methylenedioxy designer drugs. Inhibition studies with the catecholic phase-I 

metabolites DHMA, DHEA, and DHMBB indicated an uncompetitive inhibition of the 

sCOMT catalyzed dopamine 3-methylation. This inhibition of the dopamine 

methylation in the central nervous system could be another reason for the drug-

induced irreversible damage to central nerve terminals. 
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6 ABBREVIATIONS 

MDMA 3,4-methylenedioxymethamphetamine 

MDEA 3,4-methylenedioxyethylamphetamine 

MBDB N-methyl-benzodioxolyl-butanamine 

MDA 3,4-methylenedioxyamphetamine 

BDB benzodioxolyl-butanamine 

CYP cytochrome p450 

COMT catechol-O-methyltransferase 

sCOMT soluble form of catechol-O-methyltransferase 

mbCOMT membrane bound form of catechol-O-methyltransferase 

HMEA  N-ethyl-4-hydroxy-3-methoxyamphetamine 

DHMA 3,4-dihydroxymethamphetamine 

DHEA 3,4-dihydroxyethylamphetamine 

DHMBB 1,2-dihydroxy-4-[2-(methylamino)butyl]benzene 

OR oxidoreductase 

cDNA copy deoxyribonucleic acid 

SAM S-adenosylmethionine 

HPLC high pressure (performance) liquid chromatography 

TEA triethylamine 

S-HFBPCl S-heptafluoroproline chloride 

MS mass spectrometry 

NICI negative ion chemical ionization 

SIM selective ion monitoring 

CNS central nervous system 

RSA ring substituted amphetamines 



 

GC gas chromatography 

SPE solid phase extraction 

 



7 ZUSAMMENFASSUNG 

Im Rahmen dieser Dissertation wurde die Cytochrom P450 abhängige, 

enantioselektive N-Desalkylierung und Demethylenierung der Missbrauchsdrogen 

MDMA, MBDB und MDEA untersucht. Des Weiteren wurden Studien zur COMT-

katalysierten O-Methylierung der catecholartigen Phase I Metabolite DHMA, DHEA 

und DHMBB sowie der Demethylenierung der N-Desalkyl-Metaboliten MDA und BDB 

angeschlossen. Die erhaltenen Daten dokumentieren eindeutig eine Präferenz für 

das S-Enantiomer der jeweiligen Stammverbindungen. Das Isoenzym CYP2C19 

scheint in diesem Zusammenhang dasjenige Isoenzym mit der größten 

Enantioselektiviät zu sein. Die N-Desalkyl-Metaboliten der Ausgangsverbindungen 

wurden ebenfalls enantioselektiv, mit einer S-Präferenz, demethyleniert. Es war 

jedoch augenfällig, dass die Enantioselektivität bei diesen primären Aminen niedriger 

zu sein scheint als bei den sekundären Aminen. Auch die catecholartigen Phase I 

Metabolite der zuvor erwähnten Drogen unterliegen einer die S-Enantiomere 

bevorzugenden O-Methylierung. Diese Befunde können auch dazu beitragen, die in 

vivo beobachteten pharmakokinetischen Unterschiede der jeweiligen Enantiomere zu 

erklären. Abschließend wurden Hemmstudien mit den Metaboliten DHMA, DHEA und 

DHMBB durchgeführt. Diese zeigten eine nichtkompetetive Hemmung bezüglich der 

sCOMT-katalysierten 3-O-Methylierung von Dopamin. Diese Hemmung der 

physiologischen Methylierung könnte mit ein Grund für die beschriebene 

drogeninduzierte, irreversible Schädigung der Nervenzellendigungen sein. 

 




