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1  GENERAL PART 

1.1 INTRODUCTION 

Drug abuse is a widespread problem in societies all over the world. Especially, so-called 

designer drugs are increasingly popular among young people. The most frequently 

abused drugs are amphetamine (AM), methamphetamine and their derivatives, such as 

3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine 

(MDMA, “Ecstasy”) (1). The AM-derived designer drugs MDMA (“Ecstasy” or “Adam”) 

and its demethylated analogue MDA (“Love Pills” or “Eve”), also a metabolite of MDMA, 

are psychotropic agents chemically and pharmacologically related to AM and 

mescaline. MDMA was first synthesized in 1912 as a chemical intermediate for the 

vasoconstrictor hydrastinine. In contrast to the popular believe that MDMA was 

developed as an appetite suppressant, it was actually patented without any specific 

purpose by Merck in 1914 (2). MDA on the other hand was patented for different uses 

such as cough suppressant or appetite inhibitor, but was never marketed (3). In the late 

seventies MDMA was discovered by the psychedelic therapy community as catalyst to 

psychotherapy. It was described as mind-loosening and to facilitate interpersonal 

communication and intimacy. For that reason Nichols coined the term “entactogen” 

which means “to produce a touching within” (4, 5). In the early eighties the non-medical 

use of MDMA and MDA gained great popularity as so called “rave drug” because of 

their common use at dance clubs or large, organized dance parties (“raves”). In Europe 

and North America designer drugs are sold in a variety of colored and professional-

looking tablets, stamped with different symbols according to the ideas of the producer. 

Some examples are presented in Fig. 1 (3). However, purity and identity of such pills 

sold as MDMA might be doubtful (6, 7). Because of the permanently increasing 

consumption and the suspicion of neurotoxic effects MDMA and MDA were placed in 

Schedule 1 of the restricted drugs list in United States in 1985. Shortly thereafter the 

European countries followed this example (3, 5). Despite the fact that MDMA has 

caused harm and death, its potential to destroy brain serotonin (5-HT) axon terminals 

(8-10), and its lack of recognized therapeutic potential, the Multidisciplinary Association 

for Psychedelic Studies (MAPS) lobbies intensively trying to legalize MDMA for 

research purposes (4, 5). As a result of their efforts currently four clinical trials are 

underway (clinicaltrials.gov identifiers NCT00252174, NCT00090064, NCT00402298, 
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and NCT00353938). At least in part, MDMA use and abuse continues because 

implications of the neurotoxic effects in animals for humans are uncertain. This 

uncertainty stems from discrepancies in dosing, route of administration and 

pharmacokinetic parameters between animal studies and human MDMA use (11, 12).  

 

 
 

Fig. 1: “Ecstasy” tablets sold on the illicit drug market 

 

 

1.1.1 Chemistry 

 

Chemically, MDMA and MDA are designated as N-methyl-1-(3,4-

methylenedioxyphenyl)-2-aminopropane and 1-(3,4-methylenedioxyphenyl)-2-

aminopropane, respectively. According nomenclature of the International Union of Pure 

and Applied Chemistry (IUPAC) MDMA is characterized as 1-benzo[1,3]dioxol-5-yl-N-

methyl-propan-2-amine and MDA as 1-benzo[1,3]dioxol-5-yl-propan-2-amine. 

Structurally they are related to the psychomotor stimulant AM and the hallucinogen 

mescaline. MDMA and MDA are chiral compounds because they each contain an 

asymmetric carbon atom in the side chain. Consequently they exist as pairs of optical 

isomers. According to the Cahn-Ingold-Prelog convention, the levorotatory enantiomers 

carry the R-configuration and the dextrorotatory enantiomers the S-configuration (8). 
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Their chemical structures are shown in Fig. 2. On the illicit market the amphetamine-

derived designer drugs are sold as racemates synthesized from achiral educts by non-

enantioselective procedures, e.g. piperonal or 3,4-methylenedioxyphenylacetone (13, 

14). 

 

 

 
Fig. 2: Chemical structures of the enantiomers of MDMA and MDA. 

 

 

1.1.2 Pharmacodynamics and acute toxicity 

 

The extensively studied mechanism of action of the AM-derived designer drugs is 

mainly based on their effects on the presynaptic terminal of serotonergic, noradrenergic, 

and, to a lesser degree, dopaminergic neurons (3, 8, 15). MDMA and MDA are so called 

indirect agents because they exert their effects primarily through release of 5-HT rather 

than by direct actions on 5-HT receptors. Following, the detailed mechanism of action is 

shown on the example of a 5-HT neuron. MDMA and MDA present high affinity on 

presynaptic 5-HT uptake transporters (SERT) located in the nerve terminals. MDMA 

and MDA are co-transported with sodium ions (Na+) into the terminal via SERT, 

competitively inhibiting 5-HT uptake. Once inside the cell, MDMA and MDA are carried 

into the storage vesicles by the vesicular monoamine transporter (VMAT) and 5-HT is 

released in exchange. By this mechanism cytoplasmatic 5-HT and Na+ levels rise. 

Furthermore, cellular 5-HT increase is caused by inhibition of the monoamine oxidase 

(MAO) which normally mediates 5-HT degradation. 5-HT binds to the now inward-facing 

transporter and, together with Na+, is transported out of the terminal into the synaptic 
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cleft where it activates the postsynaptic receptors (15). Additionally, 5-HT is released 

due to the antagonistic effect of MDMA on α2-adrenoceptors on brain sites (16).  

Apart from these mechanisms, MDMA shows agonistic effects on postsynaptic 5-HT2 

receptors and M1-musarinic receptors and mediates inhibition of 5-HT synthesis by 

decreasing the tryptophan hydroxylase activity (16, 17). 

The amphetamine-derived designer drugs exhibit stimulation of the central nervous 

system mainly due to their enhancement of serotonergic neurotransmission. The 

desired mental effects include euphoria, well-being, sharpened sensory perception, 

greater sociability, heightened sense of closeness to other people, and greater 

tolerance of their views and feelings (3, 8, 14). Increased noradrenalin levels are 

responsible for physical effects such as sense of energy, appetite loss, and sexual 

arousal. 

However, MDMA and MDA abuse is not without risk. Psychological signs of 

intoxications are agitation, hallucinations, panic disorder, paranoid psychosis, 

depression and anxiety. Acute physical side effects include tachycardia, hypertension, 

increased muscle tension, bruxism, sweating, hyperpyrexia, nausea, blurred vision, and 

ataxia (3-5, 8, 13). Many severe or even fatal intoxications have been described (3, 5, 8, 

13). MDMA-related deaths are generally caused by hyperpyrexia followed by 

rhabdomyolysis with disseminated intravascular coagulation and multi organ failure, 5-

HT syndrome along with hyperthermia or dilutional hyponatraemia together with 

cerebral edema (18).  

 

 

1.1.3 Pharmacokinetics 

 

After oral administration MDMA is rapidly absorbed from the intestinal tract with plasma 

concentrations peaking about two hours after ingestion (3, 19). The lipophilic drug 

passes readily into various tissues and accumulates or binds to tissue constituents (3, 

20, 21). MDMA plasma elimination half-life is about eight hours (3, 19, 22). Urinary 

recovery of the parent compound represents about 15% which indicates that the drug is 

mainly eliminated by metabolism (22). MDMA metabolism is mediated by several 

different enzymes [for example enzymes from the cytochrome P450 family (CYP) and 

- 4 -



  

 

catechol-O-methyl transferase (COMT)] and proceeds via two major pathways which 

operate in unison but at different rates (Fig. 3) (22-25). The first pathway, predominant 

in humans, involves O-demethylenation to 3,4-dihydroxymethamphetamine (HHMA) 

followed by O-methylation to 4-hydroxy-3-methoxymethamphetamine (HMMA) and O-

conjugation with sulfate or glucuronic acid. The second entails initial N-demethylation to 

MDA, followed by deamination and oxidation to the corresponding benzoic acid 

derivatives conjugated with glycine (26, 27). Alternatively, MDA also undergoes O-

demethylenation to 3,4-dihydroxyamphetamine (HHA) following O-methylation to 4-

hydroxy-3-methoxyamphetamine (HMA) and O-conjugation with glucuronic acid or 

sulfate (see above). HHMA and HMMA present the main metabolites in plasma, 

whereas MDA appears to be only a minor metabolite, accounting for less than 5% of the 

MDMA concentrations found in plasma (19, 22). The catechols HHMA and HHA can 

easily be oxidized to their corresponding ortho-quinones which in turn can form adducts 

with glutathione and other thiol-containing compounds (28, 29).  
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Fig. 3: MDMA metabolism including the enzymes mainly involved in these conversions. In humans ring-
demethylenation predominates, whereas in rodents N-demethylenation is more prominent.  
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Interestingly, MDMA pharmacokinetics has been postulated to be nonlinear (19, 30). In 

detail, MDMA plasma levels increase disproportionately with dose. This phenomenon 

could have significant impact on public health if adverse effects are related to the parent 

compound, especially since nonlinearity already occurs at plasma levels that are typical 

after human MDMA doses (1 – 2 mg/kg) (19, 22). Mechanism-based inhibition of 

CYP2D6 by MDMA could be an explanation for nonlinear pharmacokinetics. In vitro 

data suggest that a metabolic complex formed by the methylenedioxyphenyl ring is 

responsible for the auto-inhibition of MDMA metabolism (31).  

 

 

1.1.4 MDMA brain neurotoxicity 

 

A large body of preclinical research data demonstrates that MDMA has the potential to 

destroy brain 5-HT axon terminals (8-10). Long-lasting depletion of 5-HT in the central 

nervous system, persistent depression of tryptophan hydroxylase activity, and reduction 

of the density of 5-HT uptake sites and VMAT provide evidence for neurotoxicity. 

Additionally, after MDMA treatment argyrophyllic cells can be found in 5-HT regions. 

Axon swelling and fragmentation in the short term followed by decreased 

immunoreactivity in the long term indicate cell death as result of necrosis (32).  

The brain 5-HT neurotoxicity evokes a number of neuropsychiatric sequelae named in 

the following. Cognitive deficits (e.g. impaired visual and verbal memory) correlating 

with the loss of SERT (33, 34), alteration in circadian activity, changed sleep patterns 

(35), endocrine dysfunctions, impulsivity (36), and mood disorders, such as anxiety and 

depression (37). 

Despite much research, the precise mechanism by which MDMA produces 5-HT 

neurotoxic effects has yet to be identified. Several mechanisms are proposed: 

Generation of a toxic drug metabolite (catecholic or trihydroxy derivatives, namely 

HHMA and 2,4,5-trihydroxymethamphetamine) or an endogenous neurotransmitter 

metabolite (6-hydroxydopamine, 5,6-dihydroxytryptamine, or 5,7-dihydroxytryptamine) 

which in turn causes oxidative stress and radical-mediated cell damage (32). There is 

growing interest in the possible role of neurotoxic thioether conjugates, formed by the 

corresponding quinones of HHMA or HHA and glutathione or acetylcysteine, with 

subsequent protein denaturation and lipid peroxidation of the cell membranes (28, 38-
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41). On the other hand, extensive series of pharmacological and toxicological studies 

have suggested that brain dopamine (DA) mediates MDMA neurotoxicity by formation of 

free radicals after DA uptake into 5-HT presynapses and consequent degradation by 

MAO (42-44). Furthermore, non-enzymatic transformation of tyrosine also has been 

implicated in causing 5-HT neurotoxicity (45, 46). Cell death due to destabilization of 

calcium homeostasis (a result of continued glutamate mediated 5-HT neuron excitation) 

could also be responsible for the neurotoxic effects (32, 47). At last but not least, 

temperature seems to play an important role in MDMA mediated brain neurotoxicity. 

Increasing body temperature has been postulated to lead to blood brain barrier 

disruption, brain edema and cell injury (48). Additionally, glycogen depletion with 

subsequent cell death due to increased brain glucogenolysis as a result of inadequate 

energy supply has been linked to MDMA caused hyperthermia (49, 50).  

Only few publications are available on the neurotoxicity in living humans. In these 

studies, recreational MDMA users were found to have decreased levels of 5-

hydroxyindoleacetic acid, the main metabolite of 5-HT, in the cerebrospinal fluid (51) 

and a reduced density of 5-HT transporters in the brain as determined by positron 

emission computed tomography with a ligand selective for these transporters (52, 53). 

Both findings are indicative of 5-HT neurotoxicity in humans. Unfortunately, these 

studies were performed with recreational users, so it cannot be excluded whether the 

reported findings might also be due to use of other recreational drugs especially since 

polydrug use is not uncommon. As studies involving controlled administration of MDMA 

are problematic for ethical reasons, animal studies are a good possibility for 

systematically studying the neurotoxicity of these drugs. However, results from animal 

studies are not always transferable on humans. The toxic effects and pharmacokinetics 

can differ considerably between humans and different animal species. Moreover, 

despite a large body of preclinical research, demonstrating that MDMA has the potential 

to destroy 5-HT axon terminals, MDMA use and abuse continue (8-10). At least in part, 

MDMA use continues because the relevance of much of the animal MDMA neurotoxicity 

data to humans is uncertain. This uncertainty stems from the fact that the majority of 

animal studies have used multiple high doses, have given these doses systemically 

rather than orally (as mainly taken by humans) and, most often, have used rodents (rats 

and mice), which metabolize MDMA differently than primates (54). Detailed information 

on the pharmacokinetics of MDMA in different animal species and their comparison to 
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the pharmacokinetics in humans is important to estimate the transferability of 

neurotoxicity studies from animal models on humans.  

 

 

 

 

1.2 AIMS AND SCOPES 

Determination of pharmacokinetic profiles of oral MDMA doses in animal models might 

help to bridge the gap between MDMA neurotoxicity studies in animals and human use 

patterns. Furthermore, by characterizing the formation of various MDMA metabolites in 

different species, it might be possible to gain insight into mechanisms of MDMA 

neurotoxicity. 

Therefore, the aims of the presented studies were: 

•  Development of LC-MS procedures for determination of MDMA and its main 

metabolites in samples from different species (rat, squirrel monkey, human) 

•  Determination of the metabolic pattern and the pharmacokinetic profile of MDMA in 

different species 

•  Comparison of the obtained species-specific data. 
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2 PUBLICATIONS TO THE RESULTS 

The results of the studies were published in the following papers: 
 

2.1 VALIDATED LIQUID CHROMATOGRAPHIC-ELECTROSPRAY IONIZATION MASS 

SPECTROMETRIC ASSAY FOR SIMULTANEOUS DETERMINATION OF  
3,4-METHYLENEDIOXYMETHAMPHETAMINE AND ITS METABOLITES  
3,4-METHYLENEDIOXYAMPHETAMINE, 3,4-DIHYDROXYMETHAMPHETAMINE, AND  
4-HYDROXY-3-METHOXYMETHAMPHETAMINE IN SQUIRREL MONKEY PLASMA (55) 

(DOI: 10.1016/J.JCHROMB.2007.06.034) 
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2.2 HYDROLYSIS OF 3,4-METHYLENEDIOXYMETHAMPHETAMINE  
(MDMA) METABOLITE CONJUGATES IN HUMAN, SQUIRREL MONKEY AND RAT 

PLASMA (56) 

(DOI: 10.1007/S00216-009-2607-1) 
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2.3 SIMULTANEOUS LIQUID CHROMATOGRAPHIC-ELECTROSPRAY IONIZATION 

MASS SPECTROMETRIC QUANTIFICATION OF 3,4-METHYLENEDIOXYMETH-
AMPHETAMINE (MDMA, ECSTASY) AND ITS METABOLITES 3,4-DIHYDROXY-
METHAMPHETAMINE, 4-HYDROXY-3-METHOXYMETHAMPHETAMINE AND  
3,4-METHYLENEDIOXYAMPHETAMINE IN SQUIRREL MONKEY AND HUMAN PLASMA 

AFTER ACIDIC CONJUGATE CLEAVAGE (57) 

(DOI: 10.1016/J.FORSCIINT.2008.12.002)  
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http://dx.doi.org/10.1016/j.forsciint.2008.12.002
http://dx.doi.org/10.1016/j.forsciint.2008.12.002


 



  

 

2.4 NON-LINEAR PHARMACOKINETICS OF  
(±) 3,4-METHYLENDIOXYMETHAMPHETAMINE (MDMA, “ECSTASY”) AND ITS 

MAJOR METABOLITES IN SQUIRREL MONKEYS AT PLASMA CONCENTRATIONS OF 

MDMA THAT DEVELOP AFTER TYPICAL PSYCHOACTIVE DOSES (58) 

(DOI: 10.1124/JPET.108.141366) 
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2.5 DIRECT COMPARISON OF (±) 3, 4-METHYLENEDIOXYMETHAMPHETAMINE  
(MDMA, “ECSTASY”) DISPOSITION AND METABOLISM  
IN HUMANS AND SQUIRREL MONKEYS (59) 

(DOI: 10.1097/FTD.0B013E3181A4F6C2) 
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3 CONCLUSIONS 

Studies on MDMA metabolite formation in different species (rat, squirrel monkey and 

human) indicated species differences in hydrolysis of MDMA metabolites, which need to 

be considered in specimen preparation. To maximize recovery of MDMA metabolites in 

human or squirrel monkey plasma acidic hydrolysis should be utilized, while in rat 

enzymatic hydrolysis should be employed. 

The developed analytical procedures allowing the detection of MDMA and its major 

metabolites in biological samples of humans, squirrel monkeys, and rats previously 

treated with MDMA proved useful for acquiring pharmacokinetic data in either species. 

Further studies in human and squirrel monkeys showed similar but not identical 

metabolic pathways. In particular, amounts of HHMA and MDA were comparable, but 

formation of HMMA was more extensive in squirrel monkeys than humans. The squirrel 

monkey also revealed a shorter T1/2 of MDMA. In both species, nonlinear 

pharmacokinetics were firmly established at comparable MDMA plasma levels. 

Altogether, the squirrel monkey seemed to be an appropriate model for predicting 

outcomes of MDMA exposure in humans, although this will depend upon the 

pharmacokinetic parameter of MDMA or its metabolites that mostly influences the 

outcome of interest. Since nonlinear MDMA accumulation occurred at MDMA plasma 

levels that develop in humans after taking typical doses, the already small gap between 

safe and toxic MDMA doses in primates might be more narrow than expected, meaning 

that small increase in dose could have a huge impact on likelihood and severity of 

MDMA toxicities, including brain serotonin neurotoxicity.  
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4 SUMMARY 

In the presented studies, the pharmacokinetic profile and metabolic pattern of MDMA in 

different species were determined. Furthermore species-specific differences on 

conjugate cleavage of the phase II metabolites were investigated in human, squirrel 

monkey, and rat. After optimization of cleavage conditions respectively for each 

species, liquid chromatography-mass spectrometry (LC-MS)-based assay procedures 

were developed and focused on determination of the parent compound and its 

corresponding major metabolites in plasma of different species. After administration of 

different oral MDMA doses pharmacokinetics for MDMA and its metabolites (MDA, 

HHMA, and HMMA) were determined in squirrel monkey and human. In both species 

nonlinear pharmacokinetics were firmly established with nonlinear MDMA accumulation 

occurring at plasma MDMA levels that develop in humans after typical doses. 

Comparison of pharmacokinetics of MDMA and its metabolites between humans and 

squirrel monkeys revealed the squirrel monkey as appropriate model for predicting 

outcomes of MDMA exposure in humans depending upon the pharmacokinetic 

parameter of MDMA or its metabolites that mostly influences the outcome of interest. 
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6 ZUSAMMENFASSUNG 

In dieser Dissertation wurden Metabolismus und Pharmakokinetiken von MDMA in 

verschiedenen Spezies untersucht. Desweiteren wurden Studien bezüglich 

unterschiedlicher Entstehung von Phase II Stoffwecheselprodukten in Mensch, 

Totenkopfäffchen und Ratte durchgefuehrt. Nachdem die Reaktionsbedingungen zur 

Konjugatspaltung für jede Spezies entsprechend optimiert wurden, konnten 

Flüssigchromatographie-Massenspektrometrie (LC-MS)-basierte Verfahren zur 

Quantifizierung von MDMA und seinen Hauptmetaboliten (MDA, HHMA und HMMA) in 

Plasma von Mensch und Totenkopfaffe entwickelt werden. Nach Behandlung mit 

verschiedenen Dosierungen von MDMA zeigten Mensch und Affe eine nicht-lineare 

Pharmakokinetik der Muttersubstanz, und zwar nach Plasmaspiegeln, die beim 

Menschen bereits nach typischer Ecstasy-Einnahme auftreten. Vergleich der 

Pharmakokinetiken zwischen beiden Spezies führte zu der Schlussfolgerung, dass der 

Totenkopfaffe ein geeignetes Tiermodell darstellt, um Aussagen über die Wirkungen 

von MDMA im Menschen zu treffen. Im Einzelnen hängt die Aussagekraft dieses 

Tiermodells jedoch davon ab, welcher pharmakokinetischer Parameter von MDMA oder 

einem seiner Metaboliten die pharmakodynamische Wirkung, die untersucht werden 

soll, am stärksten beeinflusst. 
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