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Zusammenfassung

Heutzutage, ist der Chemie als allgemeines Werkzeug für den Zugang (Synthese),

die Beherrschung (Studie von Eigenschaften) und das Verständnis

(Parametereinfluss) des Materials. Diese ist auf zwei Ansätze begründet für welche

die Anglizismen „Top-down“ und „Bottom-up“ geläufig sind. Das erste Verfahren ist

ein Schlüssel zur Nanotechnologie. Der zweite Ansatz besteht darin, dass

Mikrosysteme mit spezifischen Eigenschaften zu einem Makrosystem

zusammengesetzt werden, welches die gewünschten Eigenschaften in sich vereint.

Der Ausdruck „vom Molekül zum Material“ beschreibt die Vorgehensweise dieses

Konzeptes wobei die supramolekulare Chemie spielt eine bedeutende Rolle.

Die vorliegende Arbeit überprüft die Synthese und die Eigenschaften von Dithiolen-

Systemen, die d10 Metallionen oder Lanthanidionen beinhalten. Das erste Kapitel ist

eine allgemeine Einleitung über Dithiolene und über Lanthaniden. Das zweite Kapitel

beschäftigt sich mit der Synthese und Charakterisierung von supramolekularen

Systemen, die auf neutralen Dithiolen-Liganden basiert sind. In diesem Kapitel, die

Bedeutung von Funktionsgruppen, die die Fähigkeit besitzen, nichtkovalente

Bindungen einzugehen, wird diskutiert. Das dritte Kapitel wird der Reaktivität der

neutralen Dithiolen-Liganden gegenüber den d10 Übergangsmetallen CuI, AuI und

HgII gewidmet. Beschrieben werden Synthesemethoden für supramolekulare

Komplexe sowie die spektroskopische Eigenschaften. Im letzten Kapitel werden

Reaktivität dieser Liganden gegenüber den Lanthaniden Nd, Eu, Gd, Tb und Er und

die spektroskopischen Eigenschaften vorgestellt. Der Schwerpunkt liegt auf dem

Energieübergangsprozess („Antenna Effekt“), welcher stattfindet, sobald diese

Liganden an ein Lanthanoid-Zentrum koordiniert sind.
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Abstract

Nowadays, chemistry represents a general tool for accessing (synthesis), controlling

(parameters influence) and understanding (study of properties) the material. This is

allowed by two possible approaches: the “Top-down” and “Bottom-up”. The first

approach is a key to nanotechnology. The second approach consists in assembling

small systems, with intrinsic properties, to build up macro system with interesting

properties. This concept is generally termed as: “from molecules to material” and in

this context, supramolecular chemistry plays a crucial role.

The present work examines the synthesis and properties of dithiolene systems

bearing metal ions and lanthanides. The first chapter is a general introduction on

dithiolene chemistry and lanthanides. The second chapter deals with the synthesis

and characterisation of supramolecular systems based on neutral dithiolene-like

ligands. In this chapter, importance of non-covalent interactions is discussed. The

third chapter concerns the reactivity of these neutral dithiolene-like ligands towards

d10 transition metals (CuI, HgII, AuI). This chapter will describe the synthesis of

supramolecular complexes and their spectroscopic properties. The fourth chapter

deals with the reactivity of the ligands with lanthanides (Nd, Eu, Gd, Tb, Er) and the

characterisation of Ln3+-dithiolene complexes. The discussion will be oriented on the

energy transfer process taking place in these coordination compounds (“Antenna

Effect”).



Résumé

VIII

Résumé

De nos jours, la chimie est utilisée comme outil général pour accéder (synthèse),

contrôler (influence des paramètres) et comprendre (étude des propriétés) le

matériau. Ceci est rendu possible grâce à deux approches: l´approche «Top-down»

et l´approche « Bottom-up ». La première approche est une des bases de la

nanotechnologie. La deuxième approche consiste en l´assemblage de systèmes

moléculaires possédant des propriétés intrinsèques pour accéder à des matériaux

avec de nouvelles propriétés. Ce concept est généralement appelé: «de la molécule

au matériau »; et dans ce contexte, la chimie supramoléculaire occupe une position

centrale.

Le présent travail porte sur la synthèse et l´étude de propriétés des systèmes de

métal-dithiolene comportant des ions métalliques et des lanthanides. Le premier

chapitre est une introduction générale sur la chimie du dithiolene et des lanthanides.

Le deuxième chapitre décrit la synthèse et la caractérisation de systèmes

supramoléculaires basées sur des ligands dithiolene neutres. Dans ce chapitre,

l'importance des groupes fonctionnels capables de former des interactions non

covalentes sera discutée. Le troisième chapitre est consacré à la réactivité de ces

ligands dithiolene neutres avec les métaux de transition (d10) tels que CuI, HgII, et

AuI. Ce chapitre décrira la synthèse de complexes supramoléculaires ainsi que leurs

propriétés spectroscopiques. Le quatrième chapitre, s´intéresse à la réactivité de ces

ligands vis-à-vis des lanthanides trivalents (Nd, Eu, Gd, Tb, Er), la caractérisation

des complexes formés ainsi que les propriétés de luminescence en résultant. Notre

discussion sera orientée sur le processus de transfert d'énergie («Effet Antenne»),

une fois ces ligands coordonnés à un ion lanthanide.
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A Introduction

A.1 Dithiolene and neutral derivatives

A.1.1 General features and properties

Synthesis and characterization of heterocyclic compounds containing

chalcogen atoms is not a new field in chemistry. Nevertheless, this area of chemistry

has increasingly received much attention during the past decades and is still

attractive for a lot of researchers. Dithiolene compounds represent a special family in

heterocyclic compounds in which the heteroatoms are sulfur atoms. They can be

recognised by depicting the terminology dithiolene (dithiole-ene) and represent

structural motifs in which two sulfur atoms (di-thio-) are linked through an ethylene

bond (-ene-) as displayed below.

They possess chelating properties and tend to be coordinated to a metal

center via ionic or coordinating bonding. In this case, they can be classified as a

Hückel-type 6 -electrons system and possess interesting electrochemical properties

resulting from highly electronic delocalization once coordinated to a metal center

such as nickel (Ni). Around 1960, three research groups (Holm1, Gray2 and

Schrauzer3) independently discovered the unusual electronic properties of dithiolene

complexes. They established the two reversible one-electron electrochemical

relationship between a dithiolene complex in its anionic form [Ni(S2C2R2)2]
2- and its

neutral form [Ni(S2C2R2)2] (see Eq. 1).4

Scheme A-1 : Reversible one electron oxidation of the anionic [Ni(S2C2R2)2]
2-

leading to the

neutral form.

A qualitative description of the bonding in the neutral dithiolene complex involves

resonance structures in which the metal possesses a formal oxidation state of 0, II, or
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IV4 while the ligands can be viewed either in its dithiolate form or neutral form.5

Therefore, these dithiolene complexes should be better described as resonance

hybrid of the limiting structure shown in Scheme A-2.

S

SS

S

Ni

S

SS

S

Ni

S

SS

S

Ni

S

SS

S

Ni
0

2+

2+

4+

Scheme A-2 : Resonance structures of a neutral [Ni(S2C2R2)].
4

In such complexes, the ligand  orbitals interact with the metal d orbitals to give

frontier orbitals of mixed–ligand and metal character. The electrons are, therefore,

not localized at the ligands, but seem to be delocalized within the five-membered ring

which exhibits a certain degree of aromaticity.5

This aromaticity is demonstrated in the case of the cobaltadithiolene compound

(CpCo(S2C2R2))
6. In fact, this metalladithiolene which consists of one metal atom, two

coordinated sulfur atoms, and two unsaturated carbon atoms; can experience an

electrophilic substitution catalyzed by aluminium trichloride (Friedels-Crafts acylation)

(see Scheme A-3).

Scheme A-3 : Electrophilic substitution on the cobaltadithiolene complex (CpCo(S2C2R2)),

illustrating the aromaticity of the five-membered ring.
6

Another example illustrating the delocalization in this kind of five-membered ring

(metallodithiolene) has been given by Rauchfuss et al.7 He showed that the MS2C2-

metallacycle can be coordinated to another metal center in a 5 manner.
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Scheme A-4 : Coordination of a MS2C2 moiety to a M´Cp* fragment illustrating the 
5

coordination mode, and evidence for the electrons delocalisation into the MS2C2 ring.
7

The MS2C2 moiety acts as a -ligand, and coordinates to a MCp* moiety to build up a

heterotrinuclear complex of general formula (Cp*3M2M´(S2C2)X) (M=Rh, M´=Ru,

X=PF6) in which the M´Cp* moiety is bonded to the M(S2C2) moiety in a 5

coordination.mode.7 The crystal structure is shown in Figure A-1.

Figure A-1 : Structure of Cp*3Rh2Ru(S2C2) showing the coordination of the metallacycle

(RhS2C2) to a RuCp* in a 
5

way. The PF6
-
counter ion is omitted for clarity. (50 % probability

ellipsoids).
7

As a result of this extensive delocalization in the MS2C2 moiety, the oxidation state

assignment of the metal and ligands are ambiguous.

These electron-rich sulfur-based heterocyclic compounds are therefore good

candidates for investigating and studying phenomena in which electron exchange

and/or transfer play an important role, i.e. for application in electrochemical, optical

and magnetic domains.5 The presence of sulfur in many biological systems also

allows their implication in biochemistry and bioinorganic chemistry.8-11
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A.1.2 Historical evolution in dithiolene chemistry

Historically, we can divide Dithiolene Chemistry in 2 periods, depending on research

orientation, the starting point being the first synthesis of tetrathiafulvalene (TTF) by

Wudl et al. in 1970.12

A.1.3 Early stage of the research on dithiolene complexes

Metal-dithiolene complexes were investigated in the sixties for their electrochemical

properties and the unique electronic structure of this class of compounds.13, 14 They

were the object of a renewed interest at the end of the 70’s due to their potential

applications as building blocks in conducting materials.

This discovery phase was driven by the distinctive redox and structural

characteristics of these coordination compounds. In this period, research was

emphasized on the metal-dithiolene complexes bearing the MS2C2 five-membered

ring and much theoretical and experimental effort was made to understand their

unique electronic structures relative to their conducting properties.5

A.1.3.1 Sulphur rich dithiolene as parent compounds of TTF derivatives.

TTF chemistry has played a major role in the development of synthetic metals, a

domain which has emerged in the early 70’s after the discovery of the conducting

properties of TTF salts. These electronic properties result mainly from the

combination of two features of the TTF core.

- The presence of sulfur in these molecules endows them considerable electron-

donating properties. TTF, which is a nonaromatic 14 -electron system, can be

reversibly converted to an aromatic 12 -electron system through two successive-

oxidation steps (Scheme A-5).15, 16
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Scheme A-5. Reversible oxidations of TTF showing the formation of a radical cation (TTF
.+

)

and the dication (TTF
2+

) (E
1
1/2 and E

2
1/2 are first and second oxidation potential, respectively).

The relatively low oxidation potentials (E1
1/2= +0.34 V and E2

1/2= +0.73 V vs. Ag/AgCl

in MeCN16) are tuneable by attachment of appropriate substituents (electron-

withdrawing group or electron-donating group).

- The planarity and the presence of sulfur atoms on the periphery give rise to a solid

state organization where both ••• and S•••S intermolecular interactions are

significantly predominant.

It should be outlined that the following criteria are at least required for the formation

of conducting, molecular one-dimensional systems:17, 18

- (i) the stacking of planar molecules along one direction.

- (ii) an electronic content, orbital symmetry, and close packing allowing good

overlap between stacked molecules.

- (iii) and the partial filling of the conduction band through either partial

oxidation or partial electron transfer.

Square planar metal-dithiolene satisfy all the above mentioned conditions and were

consequently implicated in materials science, especially after the synthesis of the

DMIT ligand in a multigram scale reported by Hoyer et al. in 1975. Because of the

presence of the C2S4 moiety, this ligand possesses a structural motif which

approaches nearly that of TTF. The discovery in 1986 by Cassoux et al. of a

superconducting molecular material, namely the [TTF][Ni(DMIT)2]
19, combining TTF

and dithiolene complex, marked a new event in this period. From that time, the

number of publications dedicated to [M(dithiolene)2]
2- (where M is a d8 transition

metal and dithiolene ligand is dmit, dmid, mnt or dddt as represented in Scheme A-6),

has considerably increased.20, 21 The plethora of research in this field is well

illustrated by two reviews from Olk et al. entirely devoted to DMIT systems.18, 22
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Scheme A-6: Some dithiolene ligands used in the preparation of [M(dithiolene)2]
2-

complexes.

A.1.3.2 Recent development: state of the art

A.1.3.2.1 Multifunctional molecular materials

From this point of view, design and preparation of novel materials based on Ni(dmit)2

complexes possessing conducting properties and Fe(III) compounds (Fe(L)2
+

derivatives, where L= saElen23 or qsal24) presenting spin crossover properties have

been recently investigated. Faulmann et al., reporting on Ni(dmit)2 derivatives,

investigated the possibility to synthesise a molecular system

([Ni(dmit)2]5[Fe(salEen)2]2, 6 CH3CN), combining semiconducting behaviour from the

Ni(dmit)2 unit (in a partial oxidation state) and spin crossover properties from the

Fe(salEen)2 moiety.23

Figure A-2. Ni(dmit)2 derivatives with different counter ions (based on Fe
III

compounds) used by

Faulmann et al.
23, 24

Unfortunately, the electrical conductivity neighbouring the value of 0.12 S.cm-1 at

295K is somewhat deceiving with regard to the crystal structure and the fractional

oxidation sate of this compound.23
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Figure A-3. Projection of ([Ni(dmit)2]5[Fe(salEen)2]2), 6CH3CN) along a axis (dotted lines

represent short intermolecular contacts).
23

T. Nakamura and T Akutagawa et al. have reported on the synthesis of

(anilinium)([18-]crown-6)[Ni(dmit)2] salt, in which a 180° flip-flop motion of the phenyl

ring (from the anilinium group) and the rotation of the crown ether group were

simultaneously observed in the solid state.25, 26

Scheme A-7 : The (anilinium)([18]crown-6)[Ni(dmit)2] salt (of course the supramolecular cation

is formed via hydrogen bonding between the ammonium protons and the oxygen of the crown

ether)
25

.

Development of such supramolecular systems of multimode molecular motions could

be useful for dielectric applications, since these motions affect the dielectric response

of the crystal.25 A similar example is the supramolecular rotor based on the same

(A+)([18-]crown-6)[Ni(dmit)2]
- system, but with adamantylammonium as counter ion.26

The last example on this Ni(dmit)2 series, reported by J. P. Savy et al. shows

superconductivity of TTF[Ni(dmit)2]2 films after deposition on silicon wafer

substrates.27
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Figure A-4: SEM image of electrodeposited TTF[Ni(dmit)2]2 thin films deposited from a 3:1 TTF:

NBu4[Ni(dmit)2] ratio in CH3CN : -a) current density of 6.25 µA. cm
-2 27

, -b) current density of

1.5 µA. cm
-2

.
28

These fiber-like films (Figure A-4 a) obtained by improving the deposition conditions

(current density of 6.25 µA. cm-2) 27, during the electrochemical growth were found to

be more resistive than the grain-like films (obtained with a current density of 1.5 µA.

cm-2).28 The latter grain-like film develops cracks due to mechanical stresses at

cryogenic temperature, and this has limited its utility for further studies.27

Recently, Fourmigué et al. reports on a heterobimetallic dithiolene complex

composed of copper-dithiolene unit [Cu(tfadt)2]
2- and a nickel-cyclam unit

[Ni(cyclam)2]
2+ (Scheme A-8).29

S
S

S

S
S

S
Cu

[Cu(tfadt)2]2- unit

CF3

F3C

S C N
SCN

N

N

N

N
Ni

[Ni(cyclam)]2+ unit

SCN

n

Scheme A-8 : A heterobimetallic complex in which the coordination of the [Ni(cyclam)2]
2+

moieties through the nitrile substituents of the dithiolene complexes ([Cu(tfadt)2]
2-

) ensure the

formation of chains.
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In the chain-like structure obtained in this heterobimetallic system, the contacts are

ensured through secondary coordination of the dithiolene ligand to the nickel metal

center through C≡N•••Ni interactions. This material displays ferromagnetic

interactions, resulting from the combination of the two units of different spin (S = 1/2

for [Cu(tfadt)2]
2- unit and S = 1 for the [Ni(cyclam)2]

2+ unit ) (see Scheme A-8).29

A.1.3.2.2 The case of metal-cyclopentadienyl dithiolene complexes

Mixed cyclopentadienyl/dithiolene complexes of general formula [Cp2M
IV(dithiolene)]

(where M= Mo and W) have been introduced by Fourmigué et al. 30 A similar system,

bearing ansa-metallocenes Me2C(η5-C5H4)2M(dmit), has been studied by Guyon et

al. (Scheme A-9).31

Scheme A-9: Cp2(dithiolene) complexes reported by Fourmigué
30

and Guyon
31

et al.

These complexes were not only interesting for a structural point of view but were also

studied for intermolecular interaction. Introducing a non planar, flexible ligand (Cp)

avoids -stacking but, on the other hand, has generated compounds with unique

magnetic properties.30, 31

Note that heteroleptic cyclopentadienyl/dithiolene complexes of metal such as

cobalt32,33 or titanium34 were also studied for their redox properties and, more
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recently, metallocenes of the f elements have expanded this series by the synthesis

of (COT)M(dithiolene) (M = U and COT=η- C8H8
35, 36) and CpM(dithiolene) complexes

(M= Ce and Nd).37

A.1.3.2.3 Sulfur rich neutral ligand and supramolecular chemistry

Dithiolene-like neutral ligands can be obtained via functionalisation of the dithiolene

unit (DMIT in our case) by attaching suitable functional groups. Such a

functionalisation is of great importance with regard to supramolecular chemistry. In

fact the dithiolene-like neutral ligands combine, on the one hand, the coordination

abilities of the DMIT unit and on the other hand, the chemistry of the attached

functional group. For example, attaching an OH functional group will probably

increase the dimensionality of the system via hydrogen bonding.

Scheme A-10 : Dithiolene-like neutral ligands obtained by functionalisation of the DMIT unit.

Dithiolene-like neutral ligands form dative coordination bonds rather than covalent

bonds. Contrary to the ionic dithiolene ligand, dithiolene-like neutral ligands are quite

recent in dithiolene chemistry. They have been introduced because of their various

coordination sites and their delocalised  system. An example of such dithiolene-like

neutral ligands containing a pyridyl moiety is reported by Noh et al. 38 His group

investigated the possibility for such ligands to coordinate to a metal center either

through coordination via the DMIT skeleton, the nitrogen atom of the pyridyl group or

a combination of both.38

These systems are also able to generate  interactions and Van der Waals S•••S

interactions. In addition to  and Van der Waals S•••S interactions, supramolecular

assemblies can be generated by attaching a functional group at the sulfur atoms. In

fact, depending on the functional group, the dimensionality of the system can be

increased. They can be coordinated to a metal in a chelating way, a monodentate

way or a combination of both.38 Their electrochemistry is however not well
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investigated. Referring to the HSAB principle, such ligands (anionic and neutral) are

classified as soft ligands. But their coordination chemistry is not only limited to

complexes containing soft metals.

A.1.4 General pathways for the synthesis of sulfur rich ligands

A.1.4.1 Synthesis of the DMIT skeleton

Numerous pathways to synthesise sulfur-based ligands are known.39 For example,

Scheme A-11 resumes various pathways allowing the synthesis of DMIT.

1.S, CS
2

2.H +

2

-

3

=N -C=S, Me
2NH

2 +

Scheme A-11: Synthetic pathways for dimercaptoisotrithione (DMIT).
39

All these various synthetical pathways are well established and require one or more

steps to isolate the desired product. One of the most efficient method originates from

Hoyer’s group, which found that DMIT can be conveniently isolated in a multigrame

scale as quaternary ammonium salts of [Zn(DMIT)]2-.40 Bryce et al. have further

improved this method allowing the isolation of [Zn(DMIT)2(Et4N)2] in a 90 g scale.41

The route developed by Bryce et al. used the same reagents but with less sodium
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than in the conventional method of Hoyer et al. Note that a 70 g scale was also

obtained by Becher et al. using the same reagents.42

Scheme A-12: Pathway for the synthesis of DMIT isolated as a zinc complex.

DMIT itself as alkali metal salt is not very stable, but in its zinc complex form, it can

be isolated and stored under air for several months.42, 43 This represents the main

advantage of this method. Reduction of CS2 by sodium produces DMIT (C3S5
2-) and

dithiocarbamate (CS3
2-) in equimolar proportions.40 This reduction can be also

achieved electrochemically leading to the same products (C3S5
2- and CS3

2-).39

The separation of DMIT (C3S5
2-) from the dithiocarbamate (CS3

2-) is not easy but

direct alkylation after reduction allows this separation.39 In practice, separation of the

two anions is readily achieved by treating the mixture with an aqueous solution of

ZnCl2, which selectively complexes the DMIT anion, leading to the formation of a zinc

chelate which can precipitate as [Zn(DMIT)2](Et4N)2 by addition of NEt4Br (see

Scheme A-12).

A.1.4.2 Functionalisation of the DMIT moiety: the key to supramolecular

chemistry.

Of course, research on DMIT-containing compounds has not only been revisited in

order to improve their electronic (conducting) properties. The functionalisation of

these sulfur electron-rich compounds has also played a central role in their novel

application as building block in supramolecular chemistry.44 This includes the
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synthesis and characterisation of DMIT derivatives bearing acid 45, 46, alcohol 47-49,

amide50-52 and pyridine38 functional groups etc. (Scheme A-13)

S

S
S

S

S CH2COOH

CH2COOH

N

S

S
S

S

S CH2CH2OH

CH2CH2OH

S

S
O

S

S CONH2

CONH2

S

S
S

S

S

L1H2 :L2H2 :

L3H4 : L4 :

S

S
S

S

S

L5H :
CH2OH S

S
S

S

S

L6 : N

[4,5-bis(carboxymethylthio)-1,3-dithiole-2-thione] [4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione]

[4,5-diamido-1,3-dithiole-2-one] [4,5-bis(pyridil-n-alkylthio)-1,3-dithiole-2-thione]

[4,5-(2-pyridyl-ethylendithio)-1,3-dithiole-2-
thione]

[4,5-(1-Hydroxypropane-2,3-diyldithio)-1,3-
dithiole-2-thione]

N

n

n

Scheme A-13: Different types of DMIT-based ligands bearing functional groups.

Such functional groups are of crucial importance since they could introduce additional

non-covalent interactions (H-bonding interactions for example) and allowing therefore

the assembly of supramolecular systems via increase of dimensionality. This kind of

interaction is a basic key in the field of crystal engineering.53, 54 Hydrogen bonding

for example is known to participate in the supramolecular organization via increase of

dimensionality. When such ligands bearing functional groups react with metal ions, a

self-assembling process often takes place and supramolecular structures are

generated. It should be pointed out that the reactivity of such ligands towards metal

ions should not involve the cleavage (presence of strong base) of such functional

groups since they are a driving force in the supramolecular assembly.

Most of the dithiolene-like neutral ligands can be obtained starting from the DMIT

ligand by nucleophilic substitution. In some case, the reaction is effective from the

zinc complex [Zn(DMIT)2(Et4N)2] as starting material (Route A), while in others cases

regeneration of DMIT ligand from the neutral benzoyl-ligand (DMITCOPh) (Route B)

is a suitable way to access to dithiolene-like neutral ligands (see Scheme A-14).
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Scheme A-14: Example of functionalisation pathway starting from DMIT unit.

Other derivatives can be obtained by means of classical organic chemistry, mainly a

Diels-Alder reaction, starting from the trithione (C3S5) which is a reduced form of

DMIT (C3S5
2-) and a suitable functional olefin (see Scheme A-15).

Scheme A-15: Example of ligand´s functionalisation starting from the trithione (a reductive

form of DMIT).

Some reports deal with attaching electron-withdrawing groups (CN and CF3) to the

dithiolene unit. This investigation has been motivated by studying the influence of

such groups on the stabilization of the radical anion [Ni(S2C2RR´)2]
•- (where R=CN

and R´=CF3), since the parent radical anion [Ni(S2C2R2)2]
•- shows tendency to reduce

to the diamagnetic dianion [Ni(S2C2R2)2]
2- (where R=CN).55

A.1.5 Aim of this work

Since the pioneering research in dithiolene chemistry was essentially orientated in

the use of DMIT-derivatives as potential building blocks for TTF derivatives or for the

elaboration of conducting molecular materials, the DMIT-compounds have been

investigated to a lesser extend for supramolecular purposes.
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For this reason, we will report in chapter B on the supramolecular chemistry of

dithiolene-like neutral ligands such as L0, L1H2 and L2H2 (bearing potential hydrogen

bonding donors or acceptors) while, chapter C will be entirely devoted to the use of

such functionalized ligands to elaborate metallo-supramolecular coordination

systems. Their photophysical properties will be discussed as well.

Since most of this coordination chemistry is dominated by transition metal dithiolene

complexes of the d elements, chapter D will focus on an almost unexplored field

combining lanthanide and dithiolene-like neutral ligands. Therefore, the second part

of this introduction presents an overview on lanthanide chemistry.

A.2 Lanthanides

A.2.1 Generalities

Lanthanides are localised at the 6th period of the periodical table of the elements.

Table A-1. Electronic configuration of the lanthanides and their common ions
56

.

Atomic Ln
3+

Ln
2+

Ln
4+

La [Xe] 5d
1

6s
2

[Xe]

Ce [Xe] 5d
1

6s
2
4f

1
[Xe] 4f

1
[Xe]

Pr [Xe] 6s
2
4f

3
[Xe] 4f

2
[Xe] 4f

1

Nd [Xe] 6s
2
4f

4
[Xe] 4f

3
[Xe] 4f

4
[Xe] 4f

2

Pm [Xe] 6s
2
4f

5
[Xe] 4f

4

Sm [Xe] 6s
2
4f

6
[Xe] 4f

5
[Xe] 4f

6

Eu [Xe] 6s
2
4f

7
[Xe] 4f

6
[Xe] 4f

7

Gd [Xe] 6s
2
4f

7
5d

1
[Xe] 4f

7

Tb [Xe] 6s
2
4f

9
[Xe] 4f

8
[Xe] 4f

7

Dy [Xe] 6s
2
4f

10
[Xe] 4f

9
[Xe] 4f

10
[Xe] 4f

8

Ho [Xe] 6s
2
4f

11
[Xe] 4f

10

Er [Xe] 6s
2
4f

12
[Xe] 4f

11

Tm [Xe] 6s
2
4f

13
[Xe] 4f

12
[Xe] 4f

13

Yb [Xe] 6s
2
4f

14
[Xe] 4f

13
[Xe] 4f

14

Lu [Xe] 6s
2
4f

14
5d

1
[Xe] 4f

14

Y [Xe] 5s
2
4d

1
[Kr]
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In this period of the periodical table, the 4f orbitals are gradually filled corresponding

to the electronic configuration [Xe] 6s25d14fn (n= 1, 2, 3…..14) (Table A-1).

Their most common oxidation state is +3, giving an electronic configuration where

only the f orbitals are filled, the 6s and 5d orbital being empty. However, other

oxidation states like +4 and +2 are observed for some of them (see Table A-1).

A.2.2 Comparison of f block with d and s block

Table A-2 presents a comparison of characteristic features between f, d, and s-block

metals.

Table A-2. Comparison of 4f, 3d and Group I metals.
56

Reactivity and properties of lanthanides are different from those of the d-block

metals.56 Lanthanides present in coordination chemistry general features which are

outlined in the following paragraph:

- A very wide range of coordination numbers (generally 6-12, but also low numbers of

2,3 or 4 are known).

- Coordination geometries are determined by steric factors of the ligand rather than

crystal field effects.
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- They often form labile ‘ionic’ complexes that undergo facile exchange of ligands.

- The 4f orbitals in the Ln3+ ion do not participate directly in bonding, being well

shielded by 5s2 and 5p6 orbitals. Their spectroscopic and magnetic properties are

thus largely uninfluenced by the ligand.

- Small crystal-field splitting and very sharp electronic spectra (in comparison with the

d-block metals) are observed.

- They prefer anionic ligands with donor atoms of rather high electronegativity (O, F).

Lanthanides are classified as hard according to the HSAB principle.

- They readily form hydrated complexes (on account to the high hydration energy of

the small Ln3+ ion) and this can cause uncertainty in assigning coordination numbers.

- Their insoluble hydroxide precipitates at neutral pH unless presence of complexing

agents.

- The chemistry is largely that of one (3+) oxidation state (certainly in aqueous

solution).

- They do not form Ln=O or Ln≡N multiple bonds of the type known for many

transition metals and certain actinides.

- Unlike transitions metals, they do not form stable carbonyls and have (virtually) no

chemistry in the 0 oxidation state.

Figure A-5 is a schematic representation of the f orbitals.

Figure A-5: Schematic representation of the f orbitals
57

.
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Another effect observed in lanthanides is the contraction of their radius, because 4f

electrons are inside the 5s and 5p sub-shell and possess a core-like character (see

Figure A-6).58 The decrease in both atomic and ionic radii is more marked at the

beginning of the serie. As the result of this contraction, f electrons are shielded from

the ligand, thus taking no part in the bonding, and having spectroscopic and

magnetic properties almost independent from the environment.

Figure A-6: The radial part of the hydrogenic wave function for 4f, 5d and 6s orbitals of

cerium
56, 59

.

A.2.3 Coordination chemistry of lanthanides

Lanthanide’s coordination chemistry has only been developed in the 60´s. This is a

result of their later discovery, but also by the fact that their chemistry is not

comparable to that of the d-block metals.

A.2.3.1 Coordination number in lanthanides complexes

For lanthanide ions, it was often assumed that six-coordinated complexes are

generally obtained, but various other coordination numbers (CN: 3, 4, …, 12) have

been encountered.60 The coordination number is generally determined by how many

ligands can be packed around the metal center. For example, the aqua ions in

[Ln(H2O)n]
3+ are stabilised by coordination numbers ranging between 8 and 9.61
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Figure A-7: The structure of the nonaaqualanthanide ion ([Ln(H2O)9]
+
)
56

.

The 8-coordinate species adopt a square antiprismatic coordination while the 9-

coordinate species are tricapped trigonal prismatic.56

A.2.3.2 First and second order effect

Other features, related to this coordination numbers, are the first- and second-order

effects. When small ligands (H2O) are bound to the metal, the coordination number is

controlled by the repulsion between the donor atoms directly bound to the metal (first

order effect). Whereas, for bulky ligands such as [-N(SiMe3)2], steric effects

generating crowding around the metal shields this later from other ligands (second

order effect).56, 60 Examples of Ln[N(SiMe3)2]3 seems to be surprising, since these

three-coordinated environment should be unstable. However, if we have a look on

the solid-state structure, we can notice that a trigonal pyramidal geometry is obtained

instead of the expected trigonal planar one. This low CN can be rationalized by

formation of agostic interactions.

Figure A-8: Solid state structure of Ln[N(SiMe3)2]3 (agostic interactions are shown in dotted

lines).
56

The Ln-N angles are 114° rather than 120° expected for a planar structure56 . This is

due to “agostic interactions“56, 60 between the methyl groups and the lanthanide

center (see Figure A-8), participating on the stabilisation of the lanthanide center by
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contributing on the high coordination number requirements. Ln[N(SiMe3)2]3

compounds are obviously planar in solution.61

A.2.4 Properties of the Ln3+ Ions

Because of their core-like character, the 4f orbitals cannot overlap with ligands

orbitals and therefore do not participate in bonding. As a consequence, lanthanides

possess magnetic and spectroscopic properties independent from the environment

(surrounding ligands). Among the general properties of Lanthanides, we will only

focus on the luminescence as being our field of interest.

A.2.4.1 Spectroscopic properties of the Ln3+ Ions

The spectroscopic properties of the lanthanides can be explained using the Russell-

Saunders coupling scheme. According to this model, the electron spins are coupled

together separately from the coupling of the orbital angular momenta of the electrons,

and the orbital moment is unquenched.56

-The spins of individual electrons labelled as (s) are coupled together to give

the total spin quantum for the ion labelled as (S).

-The orbital angular momenta labelled (l) is similarly coupled to give the total

orbital angular momentum quantum number (L).

-Spin-orbit coupling, between L and S, gives rise to the quantum number (J),

which can have values of (L+S), (L+S)-1, …., IL-SI.

Therefore a full level symbol of an ion can be written as 2S+1LJ. The ground term and

levels for free ions can be obtained using Hund`s rules:

- Term with highest S lies lowest.

- If there are several terms with the same S, the one with the highest L lies

lowest.

-For a shell less than half-filled, J takes the lowest value for the ground state.

-For a shell more than half-filled, J takes the highest value for the ground state.

Table A-3 shows the historical key used for labelling L.
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Table A-3 : State symbols for different values of L.

L= 0 1 2 3 4 5 6 ...

State symbol S P D F G H I ...

An example of determination of spectroscopic terms using this model is illustrated in

the case of Nd3+ ion, which is represented as (Nd3+: [Xe] 4f3).

For f-electrons, l = 3 so ml can take the following values ml = 3, 2, 1, 0,-1,-2,-3.

Electrons have s = 1/2 so ms presents values of +1/2 (up spin) or -1/2 (down spin).

According to Hund´s rules the arrangement displayed in Table A-4 will be obtained

for an f3 configuration system:

Table A-4 : Spin orientation in an f
3

configuration.

ml

3 2 1 0 -1 -2 -3

This arrangement allows the determination of S, L, and J values as well as the term

symbol (2S+1LJ ) describing the ground and excited states.

- For S: s =1/2 S = 1/2+1/2+1/2= 3/2.

- For L: ml take the value 3,2 and 1, so L = 3+2+1= 6; L= 6 correspond to the label I.

- For J: L = 6 and S = 3/2; J = (L+S), (L+S)-1, …., J= 15/2, 13/2, 11/2, 9/2.

The ground state will be defined by the lowest J value as the shell is less than half

filled, i.e. J= 9/2 for Nd3+.

In summary for Nd3+:

S=3/2, L=6 (label= I), J=9/2; then the ground state level corresponds to 4I9/2.

An energy level diagram (Figure A-9) for all the trivalent lanthanide ions (based on

lanthanide halides) has been established, following the above theoretical predictions,

coupled with experimental results.56, 62 Such an energy diagram is a result of

tabulated data from Carnall, Fields and Rajnak.63-66 This energy diagram, usually

called “Dieke diagram” by researchers in this field of spectroscopy, is an important

tool for understanding and interpreting the luminescence spectra of lanthanides. The
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first diagram showing energy levels from 0 to 42000 cm-1 reported by Dieke and

Crosswhite67, became a reference for spectroscopists. This was recently extended to

70000 cm-1 by Wegh et al. using a LiYF4 matrix.68

Figure A-9: Energy diagram of the 4f energy levels responsible for the lanthanide’s

luminescence.
61

This diagram is the equivalent of the “Tanabe-Sugabo” diagram for helping the

prediction of transitions in d-block transition metals. The d-d transitions as well as f-f

transitions are “Laporte forbidden”. However, an important difference must be taken

into consideration: for the lanthanides, the contribution of the spin-orbit coupling (L-S)

is more important than the crystal field contribution, and inversely the contribution of

( represent the highest non-luminescent level; represent the lowest luminescent level).



Chapter A - Introduction to dithiolene and lanthanide chemistry

24

the crystal filed effect is more important than that of spin orbit coupling in d-block

metals. This observation reflects the inner nature of the f orbitals which are

sufficiently shielded from the surrounding ligands, and “feel” therefore, no significant

effect from these ligands.

A.2.4.2 Luminescence properties of the Ln3+ Ions

Luminescence is the response (in form of a radiation or light) of a system which has

primarily absorbed energy from a suitable source. The excitation energy may be

electromagnetic (X-ray, ultraviolet, Vis- or IR photons), a beam of electrons, heat,

electricity, mechanical energy, or energy released by a chemical or biochemical

reaction.69

Some definitions (underlined below) need to be considered before speaking about

luminescence:

-fluorescence: is the emission of light from a singlet excited state to the ground

state; and a fluorescence lifetime is in the range of nanoseconds (around 10 ns:

10*10-9 s).

-phosphorescence: is the emission of light from a triplet excited state to the ground

state; and a fluorescence lifetime range between milliseconds (ms) to seconds (s).

-lifetime (): is the reciprocal of radiative rate constants of the transition generating

fluorescence or phosphorescence; and represents the average time between

excitation and return to the ground state.

-energy transfer (ET): is a process by which an excited sample transfers its

excitation energy to an acceptor molecule (lanthanide for example) during the lifetime

of the excited state.

-quenching: is the partial or total inhibition of luminescence due to the interaction

between the luminescent sample and other molecules or ions; it can be static or

dynamic.

-quantum yield (): is the ratio of the number of emitted luminescence photons to

the number of absorbed photons.
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In the case of lanthanide-containing molecular system it is noteworthy to distinguish

between overall quantum yield and intrinsic quantum yield. Both are actually related

through an equation which will be given in chapter D (Equation D.1).

Regarding IUPAC rules, emission process without spin change will be described as

“fluorescence” while that involving a spin change will be described as

“phosphorescence”.70 Therefore, we will have fluorescence for Pr3+, Nd3+, Ho3+, Er3+

and Yb3+ ions, and phosphorescence for Sm3+, Eu3+, Gd3+, Tb3+, and Dy3+ ions. Pr3+

presents also phosphorescence (3P0
3HJ).

Prior to emission, the emitting system should absorb energy to populate its excited

states. Many lanthanides ions exhibit luminescence characterised by sharp lines due

to the f-f transitions within the Ln3+ ion. However, they possess low absorption

coefficient and consequently a direct excitation is unfavourable. This can be

overcome by three possible ways showed in the following scheme (see Scheme A-

16).71

Scheme A-16: Three Pathways to efficient lanthanide luminescence (ET: energy transfer; Ln

Emission: lanthanide emission; LMCT: ligand-to-metal charge transfer absorption; LC: ligand

centered absorption.
71
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Pathway a) is a matrix excitation followed by energy transfer to the lanthanide ion. It

proceeds by an excitation above the band gap of a metal oxide matrix (TiO2, ZrO2,

Al2O3 etc…) or zeolithe containing lanthanide ion then through energy transfer to the

lanthanide ion leading to emission of this latter.71 The Eu3+ -TiO2 system shows an

intense emission when excited above the band gap while excitation below this band-

gap shows weak luminescence.72

Pathway b) is a ligand-to-metal charge transfer which can lead to population of the

lanthanide excited states followed by luminescence of this lanthanide center.

Pathway c) is a ligand-centered absorption followed by an energy transfer to the

lanthanide ion which finally luminesces. In this process, the luminescence is

enhanced considerably by attaching a suitable organic ligand to the lanthanide.

Scheme A-17 shows the luminescence’s process in lanthanide complexes containing

a suitable organic ligand able to luminesce. This process corresponds to the pathway

c) in the Scheme A-16. Here, it describes the real phenomenon taking place as well

as the possible deactivation process which have not been shown in Scheme A-16

(pathway c)).

Excited
singlet

Excited
triplet

Ln3+

excited states

Ground
state
singlet

Radiative
absorption

Radiative
emission

Nonradiative
emission

Ligand
fluorescence

Lanthanide
luminescence

Ligand
phosphorescence

Scheme A-17. Luminescence in lanthanide complexes.
56
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A.2.5 Application of lanthanide’s chemistry

Compared to usual luminescent organic dyes, rare earth ions exhibit very sharp

emission bands giving rise to a precise color. Lanthanide-containing materials offer

emission colors over the whole spectral range from visible (red for Eu3+, Pr3+, Sm3+;

green for Er3+, Tb3+; and blue for Tm3+, Ce3+) to NIR (Nd3+, Er3+ ). For example,

Figure A-11, shows an emission spectrum of a fluorescent lamp using

BaMgAl10O17:Eu, (Ce, Gd, Tb)MgB5O10 and Y2O3:Eu.73, 74 In most of the novel optical

materials, like full color glass, the three primary light colors (red, green and blue) are

produced only by f–f lanthanide emissions.

Figure A-10: Emission spectrum of a tricolour fluorescent lamp
73

.

Applications of lanthanides cover both the domains of material science and life

science.73 They are used in: (i) lighting industry (lamp phosphors), (ii) the conception

of organic light emitting diodes (OLED), (iii) optical amplification (telecommunication),

(iv) laser technology, (v) biology, (vi) medicine (medical imaging).

Research in lanthanides has gained in interest because of their unique optical

properties which were found as a challenging approach for new optoelectronic

devices. Er3+ and Pr3+ with their emission at ca.1550 nm and 1330 nm respectively,

are suitable for telecommunication. In fact, they match well the ´window of

transparency, in which, silica used in optical-fiber for data transmission, is

transparent. Their emission lines are also called “telecom line”; other lines from Nd3+

(1330 nm) and Sm3+ (1280-1340 nm) are also within this group.75
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Another important application concerns lasers. The most common laser is the Nd:

YAG laser which can be used as light source for spectroscopy purposes. It is based

on the 1064 nm transition of the Nd3+, and is described as a four-level Nd3+ laser.61

A lamp is used to pump the system to ensure that an excess of Nd3+ ions is in an

excited state (4F5/2 or 4F7/2) so that more ions can emit electrons than can absorb;

these excited ions decay rapidly (or cascade), to the long-lifetime 4F3/2 state non

radiatively, so that a high proportion of Nd3+ ions are in this state rather than the

ground state, it result in a population inversion (more details can be found in the ref

61).

4I9/2

4F5/2, 4H9/2

4S3/2,
4F7/2

4F3/2

4I11/2

Laser transition
Excitation

Fast relaxation

Relaxation

Scheme A-18: Scheme of a four-level Nd
3+

laser.
61

Others lines from Er3+ (1700 and 2700 nm) are also used as laser line.75

For application in life sciences, most of the NIR emitting lanthanides have been

investigated because of the transparency of biological tissues above the 1000 nm.

Another example used for medical applications is the 5I7
5I8 transition (2100 nm) of

the Holmium ion which has been used in laser surgery.75
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CHAPTER B. FUNCTIONALISATION
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B Synthesis of Dithiolene Ligands

To evaluate and to understand the supramolecular chemistry of dithiolene ligands,

we have first to design the ligands. Amongst the large group of dithiolene

compounds, those containing the 1,3-dithiole-2-thione unit are of great efficiency

since they are known for generating stacking via  interactions. They can also

introduce S•••S intra- or inter-molecular interactions since the large sulfur atomic

orbitals are able to promote effective intermolecular overlap. And finally, they are

functionalisable and are potentially good precursors for TTF-derivatives.76

B.1 Choice of the ligands

Dithiolene ligands, that we have synthesised here, are typically neutral DMIT

derivatives, which are functionalised without modifying the DMIT core (five-ring

arrangement). Depending on the attached functional group, additional non-covalent

interactions can be generated. Furthermore, by use of hydrogen bonding donor or

acceptor groups such as alcohols, carboxylic acids, amines etc. non-covalent

interactions may be generated. Hydrogen bonding is one of the famous key

interactions for the process of molecular aggregation and recognition in nature.77

Scheme B-1: Different interactions sites (- - -) in dithiolene-like neutral ligands.
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The synthesised ligands will be described as neutral dithiolene-like derivatives (L0,

L1H2 and L2H2) displaying a DMIT skeleton, which provides  interactions and

S•••S interactions, while the side chains provide hydrogen bonding interactions

(Scheme B-1).

The other idea behind this functionalisation is the fact that introducing hard donor

atoms to the soft sulfur moiety (DMIT) will probably be helpful in the synthesis of

lanthanide complexes, since lanthanides (hard) will probably better react with hard

donor than soft sulfur donors.

B.2 The role of non-covalent interactions in supramolecular

chemistry

Supramolecular chemistry represents that part of chemistry that focuses on weak

bonding interactions between molecules. In this chapter, those weak and mostly

assigned as “non-covalent interactions” are restricted to , S•••S Van der Waals

and hydrogen bonding. These features are of potential interest in several fields of

modern material science.77-80 The strength of the hydrogen bond as well as its

selectivity, compared to other non-covalent interactions, placed it at the forefront for

supramolecular studies.

B.2.1 Some definitions and examples illustrating different types of “non-

covalent” interactions.

Non-covalent interactions are classified as weak interactions compared to covalent

interactions.

π-π interactions are generally caused by intermolecular overlapping of p-orbital in

π-conjugated systems.
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Figure B-1: : π-π interactions in [(Me4N)[Ni(dmit)2], the [Ni(dmit)2] anions, which are almost

planar, are stacked along the a axis.
81

This kind of interactions are involved in the elaboration of conducting or

superconducting molecular material.17, 20 They also help in the generation of

supramolecular systems by their non-negligible bonding contribution in keeping the

molecule entities close to each other.

The plane to plane separation of ca. 3.5 Å in [(Me4N)[Ni(dmit)2]
81, is an evidence of

strong  interactions. For comparison, the plane-to-plane separation between

carbon layers in graphite is about 3.35 Å.82

S•••S van der Waals interactions are referred to the S•••S contact distances falling

below the sum of Van der Walls (VDW) radii. They can result in intramolecular

overlapping; from sulfur atoms situated on the same molecule or intermolecular

overlapping, in which case sulfur atoms are situated in adjacent molecules.

Figure B-2: Shortest S•••S contacts in the BEDT-TTF crystal viewed along the

a axis. The square box marks the unit cell in the bc plane.83
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The strength of S•••S interactions has been evaluated to be about - 0.35 kcal mol-1

on the basis of ab initio calculations,83 describing therefore an attractive force. Figure

B-2 shows the packing motif in the molecular structure of BEDT-TTF, which displays

S•••S interactions.

The hydrogen bond can be described as a border-line case, and occurs between an

electronegative (O, N, F) atom and a hydrogen atom bound to another

electronegative atom. Generally, hydrogen bonds occur if a small, highly

electronegative atom with a lone pair of electrons shares its nonbonding electrons

with a positively polarised hydrogen atom.84 They can be intramolecular and/or

intermolecular.

Figure B-3: Intermolecular hydrogen bonding in a TTF-ethyleneglycol derivative.
85

Depending on the electronegative atom, their energies cover a wide range from over

30 kcal mol-1 for the strongest to less than 0.5 kcal mol-1 for the weakest one. The

bond energies in HO-H•••OH2 is around 13.5 kcal mol-1.86 This kind of bonding is, for

example, responsible for the high boiling point of water.

B.2.2 Non-covalent interactions in supramolecular chemistry

Pre-organised supramolecular systems could be predicted by the strategic placement

of appropriate elements in a ligand and the coordination possibilities of a ligand

towards a metal ion.80 The three types of interactions mentioned above are long-
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range interactions, playing therefore an important role in supramolecular

organisation. Such interactions can take place simultaneously within the same

structure motif, in which case they are in competition with the other “non-covalent”

interactions.

This field of chemistry has become an important tool for understanding interaction

and/or processes occurring in biological systems, since protein structures are held

together by hydrogen bonding interactions, electrostatic interactions, Van der Waal’s

packing and hydrophobic interactions.86, 87 Another importance of these non-covalent

interactions in biological molecules is directly related to the phenomenon of molecular

recognition in biological systems, which requires rapid formation and breaking of

bonds at ambient temperatures.

B.3 Synthesis of dithiolene ligands with OH functional groups

(alcohol and acid)

Functionalising the DMIT unit with alcohol or an acidic group should help to organise

supramolecular systems through non-covalent interactions by means of crystal

engineering. The objective of crystal engineering is the non-casual synthesis of

crystal materials having deliberate organisation of molecules in the crystals. For this

purpose hydrogen bonding is a fundamental tool which can be used to generate

supramolecular architectures,79, 80, 88 such as rows, layers, sheets, helix strands and

networks.

Such substituents (alcohol and acidic functional group) can contribute to the

arrangement by helping in the direction of approach of suitable hydrogen bonding

agents to the oxygen, thus adding a potential degree of controlling the way two or

more molecules are associated.80, 88

B.3.1 Synthesis, characterisation and supramolecular description of

L1H2.

B.3.1.1 Synthesis of ligand L1H2
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The synthesis of L1H2, by Bryce48 and Hansen47 , was designed for accessing to

alkylthio-TTF and crown ether-annelated-TTF derivatives, respectively. Hansen et al.

use a one pot reaction using the zinc complex [Zn(DMIT)2](Et4N)2 which is refluxed in

the presence of 2-bromoethanol, while Bryce et al. use a two step reaction. This two-

step reaction starts with a cleavage of the 4,5-bis(benzoylthio)-1,3-dithiole-2-thione

(L0) using 2 equivalents of sodium ethanolate to generate the Na2DMIT,

characterised by the red colour of the solution. The second step is a nucleophilic

reaction between Na2DMIT and the added 2-chloroethanol. This reaction is generally

followed by a colour change from red to orange and later to yellow after one day

under stirring.

Scheme B-2: Reaction pathway for the synthesis of L
1
H2 according to Bryce et al.

48

L1H2 was characterised by elemental analysis, IR, NMR and X-ray diffraction

analysis.

NB: There are various techniques for the detection of hydrogen bonds. The most

important methods are IR spectroscopy, X-ray and neutron diffraction, and 1H NMR

spectroscopy, in this order.89 It is commonly accepted that neutron diffraction finds

hydrogen atoms better than X-ray diffraction. The neutron diffraction experiment, with

an accuracy of ca. ± 0.001 Å, locates the hydrogen atom’s nucleus, while with the X-

ray diffraction the hydrogen atom’s electron cloud is detected with an accuracy of ca.

± 0.02 Å.88 However, the difference between these two diffraction methods exceeds

rarely 0.15 %.78

B.3.1.2 Crystal structure determination of L1H2.

Yellow crystals of L1H2 are obtained from a concentrated THF solution cooled at a

temperature between -5 and -10°C. A single crystal was isolated for X-Ray diffraction
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analysis. As depicted in Table B-1, ligand L1H2 (4,5-bis[(2´-hydroxyethyl)thio]1,3-

dithiole-2-thione) crystallises in the monoclinic system [P21/n]. The molecular

structure with the atom numbering for L1H2 is shown in Figure B-4.

Figure B-4: Molecular structure of L
1
H2. Dotted lines represent hydrogen bonding interactions.

The crystal structure was solved by direct methods and refined by full-matrix least

squares on F2 using the SHELX software package for crystal structure solution and

refinement.90 All non-hydrogen atoms were refined with anisotropic thermal

parameters in the later cycles of refinement. Selected bond lengths and angles are

reported on Table B-2.

Table B-1: Crystal data and structure refinements for L
1
H2.

______________________________________________________
Compound L1H2

Empirical formula C7 H10 O2 S5

Formula weight 286.45

Temperature 103(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P21/n

Unit cell dimensions a = 5.2765(5) Å = 90°

b = 25.853(3) Å = 105.124(6)°

c = 8.6152(10) Å  = 90°
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Volume 1134.5(2) Å3

Z 4

Density (calculated) 1.677 Mg/m3

Absorption coefficient 0.991 mm-1

F(000) 652

Crystal size 0.5 x 0.4 x 0.2 mm3

Theta range for data collection 1.58 to 29.46°

Index ranges -7<=h<=7, -34<=k<=35, -11<=l<=10

Reflections collected 13208

Independent reflections 3138 [R(int) = 0.0406]

Completeness to theta = 24.00° 99.7 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3138 / 0 / 167

Goodness-of-fit on F2 1.008

Final R indices [I>2sigma(I)] R1 = 0.0296, wR2 = 0.0568

R indices (all data) R1 = 0.0475, wR2 = 0.0633

Largest diff. peak and hole 0.445 and -0.312 e.Å-3

Table B-2: Selected bond lengths (Å) and angles (°) for L
1
H2.

________________________________________________
S(1)-C(1) 1.644(2) C(2)-S(4)-C(4) 102.28(9)

S(2)-C(1) 1.734(2) C(3)-S(5)-C(6) 99.41(9)

S(2)-C(3) 1.751(2) S(1)-C(1)-S(3) 122.02(1)

S(3)-C(1) 1.733(2) S(1)-C(1)-S(2) 125.65(1)

S(3)-C(2) 1.753(2) S(3)-C(1)-S(2) 112.29(1)

S(4)-C(2) 1.756(2) C(3)-C(2)-S(3) 115.53(1)

S(4)-C(4) 1.824(2) C(3)-C(2)-S(4) 124.16(1)

S(5)-C(3) 1.757(2) S(3)-C(2)-S(4) 120.19(1)

S(5)-C(6) 1.829(2) C(2)-C(3)-S(2) 116.36(1)

C(2)-C(3) 1.347(3) C(2)-C(3)-S(5) 126.18(1)

C(4)-C(5) 1.512(3) S(2)-C(3)-S(5) 117.43(1)

C(5)-O(1) 1.431(2) C(5)-C(4)-S(4) 114.02(1)

C(6)-C(7) 1.508(3) O(1)-C(5)-C(4) 109.60(2)
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C(7)-O(2) 1.433(2) C(7)-C(6)-S(5) 114.39(1)

C(1)-S(2)-C(3) 97.72(9) O(2)-C(7)-C(6) 111.45(2)

C(1)-S(3)-C(2) 98.08(9)

B.3.1.3 Supramolecular description of L1H2.

Figure B-5 shows a block structure where molecules of L1H2 are held together via

hydrogen bonding interactions. The side chains bound to C2 and C3 are

approximately stretched perpendicular to the DMIT plan (Figure B-4). Oxygen atoms

are both donor and acceptor of hydrogen bonds giving rise to a polymer-like

structure. We could identify two types of hydrogen bonding: intra-molecular

(O2H10•••O1) and inter-molecular (O1H9•••O2) (Figure B-5).

Figure B-5: Crystal structure of L
1
H2: projection on the bc plane showing the intra- and inter-

molecular hydrogen bonding (hydrogen bridges are shown as dashed lines).

Such interactions have not been observed in the TTF analogue (THET-TTF) reported

by Becher et al. 85 where only intermolecular hydrogen bonding between the
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molecules and the solvent (methanol in that case) were observed. It should be noted

that inter-molecular O1H9•••O2 (2.72 Å) distances are slightly shorter than intra-

molecular O2H10•••O1 (2.78 Å) distances (see Table B-3).

Table B-3: Distances and angles data for the hydrogen bonding network in L
1
H2.

Distances in Å O1…O2intra 2.79(3)

O1…O2inter 2.72(2)

O1-H9 0.81(1)

O2-H10 0.76(1)

Angles in ° O1-H9…O2 165.25(8)

O2-H10…O1 178.88(6)

Not only, the OH•••O distances are of crucial importance but the OH•••O angle is also

a helpful parameter. It has been demonstrated that longer and weaker hydrogen

bonds are more likely to deviate from a linear arrangement.88 Furthermore, it is more

common for N-H•••O bonds to deviate from linear arrangements than it is for O-H•••O

bonds, even when their bond distances are similar.88

Discussing hydrogen bonding in terms of weakness or strength is not evident. The

distance range (rA-H•••B) is an important factor but not the only limiting factor. But we

can assume that a combination of the distance (rA-H•••B) and the deviation of the

corresponding angle from linearity (180 °) are good factors which need to be taken

into account when considering the strength of hydrogen bonds in crystal engineering.

Table B-4 summarised some hydrogen bonding parameters found in TTF

functionalised by hydroxyl groups.
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Table B-4: Selected distances (Ǻ) and angles (°) of the hydrogen bonds found in TTF-

hydroxylated derivatives. (For better comparison, only derivatives in which hydrogen bond

linked oxygen atoms are represented. The structures of the compounds are represented in the

annexe; see Scheme H-2, in the Appendix, for more details).

Compounds Nature of the d(O-H) d(H---O#) d(O----O#) (O-H---O#)

O-H---O# bond Ǻ Ǻ Ǻ Angle ° Ref

L
1
H2 O-H---O# inter 0.807(1) 1.916(1) 2.723(2) 178.88(6) this work

L
1
H2 O-H---O# intra 0.764(1) 2.039(2) 2.785(3) 165.25(8) this work

(Me3TTF)2d(OH)Me O-H---O# inter
a

2.44 3.47(2) 174.7(5)
91

HETMT-EDTTTF (A) O-H---O# inter 0.82 2.16 2.943 161
92

HETMT-EDTTTF (B) O-H---O# inter 0.82 2.27 3.015 151

HETMT-EDTTTF (C) O-H---O# inter 0.82 2.51 2.907 111

(SC8H8O4S)-TTF(CH2OH)2 O-H---O# inter 2 2.82 172
49

,
78

2.29 3.04 153

2.02 2.8 156

DHMT-DHTTTF O-H---O# inter 1.85 2.705 165
78

,
93

O-H---O# inter 1.99 2.707 133

THET-TTF O-H---O# inter
b

1.70(1) 2.703(1) 161.2(1)
85

,
78

O-H---O# inter
b

2.05(2) 2.75(1) 165.3(2)

O-H---O# intra 1.92(1) 2.65(1) 152.4(4)

THEGT-TTF O-H---O# inter 1.95(2) 2.673(3) 174.5(1)
85

,
78

O-H---O# intra 1.88(1) 2.652(3) 165.4(2)

NB: the missing standard deviations for bond length and angles have not been found in the original publication.
a

intermolecular interaction between molecules and ethanol (solvent)
b

intermolecular interaction between molecules and methanol (solvent)

(A) and (B) are referred to two different phases found in the electrocrystalisation of HETMT-EDTTTF with ClO4
-

(C) is referred to charge transfer complex of HETMT-EDTTTF with TCNQ

Taylor et al. plotting the mean N-H•••O angle as function of the H•••O distance range

(based on 1357 examples), have found an almost linear decay when the distance

increased.94 However, the donor-acceptor distance (rA-H•••B) do not always fit with the

linearity of the A-H•••O angle as seen in the examples in Table B-4.

Table B-5 gives an overview of some helpful parameters in relationship with the

strength or weakness of hydrogen bonds (the classification follows that of Jeffrey86).
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Table B-5: Strong, moderate, and weak hydrogen bonding (X-H•••A) parameters.( X= O, N,

halogen and A= O, N, S, halide, etc.)
95

Strong Moderate Weak

Interaction type

strongly

covalent

mostly

electrostatic electrostat./dispers.

bond lengths [Å] H•••A 1.2-1.5 1.5-2.2 >2.2

X-H versus H•••A X-H ~ H•••A X-H < H•••A X-H << H•••A

X-H•••A [Å] 2.2-2.5 2.5-3.2 >3.2

bond angles [°] 170-180 >130 >90

bond energy [kcal.mol
-1

] 15-40 4-15 <4
1
H downfield shift 14-22 <14

In the case of L1H2, the OH•••O distances average the 2.70 Å which would suggest

that we are in the case of moderate interaction, but having a look on the O-H•••O

angle which average the 170° would suggest strong interaction.

At this stage we could not conclude in the strength of the hydrogen bonding

interaction. Furthermore, the presence of  interactions can also have an influence

on the hydrogen bonding interaction.

Apart from the hydrogen bonding interaction,  interactions have been also

observed. These  interactions help molecules to stack in the way showed in

Figure B-6.
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Figure B-6: Packing diagram viewed along the a axis showing the stacking of “dmit”

units in L1H2
96. (The hydrogen bonds and other molecules omitted for clarity)

The plane to plane separation amounts to 3.66(1) Å (-stacking). Furthermore, two

S•••S contacts of 3.838(1) Å and 3.762(1) Å, somewhat shorter than the

corresponding Van-der-Waals radii of two S atoms, are also observed.

B.3.1.4 NMR studies

Basically, the chemical shift observed in 1H-NMR investigations of OH headgroups

(engaged in hydrogen bonding or not) depends on several parameters such as

solvent, temperature etc.. The nature of the hydrogen bonding (intra- and inter-

molecular, strength, etc...) can also be deduced from proton-NMR investigations97.

To get more insight into our system (namely L1H2) we have performed the NMR

studies at variable temperature. This NMR experiment of L1H2 reveals only little

change when the temperature is raised up. But addition of a donor solvent (DMSO)

leads to significant changes in the NMR shifts, when the concentration of DMSO is

increased. Figure B-7 represents the evolution of the proton NMR shift of the alcohol

group of L1H2 by successive addition of DMSO-D6.
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For clarity the hydrogen atoms will be indexed with the subscripts a,b,c following the

structure of L1H2, as displayed in the following scheme.

Increasing the DMSO-d6 concentration has not only an effect in chemical shift but

also on the multiplicity (see Figure B-7).

2.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.5
f1 (ppm)

0.00%

1.10%

2.20%

3.23%

4.26%

5.26%

10.00%

100.00 %

Ha

Ha

Ha

Ha

Ha

Ha

Ha

Ha

Hb Hc

Figure B-7: Variation of the NMR shift of the OH of L
1
H2 as a function of the % DMSO (Volume),

(after 10% of DMSO no significant shift was noticed).

Starting from two triplets representing the two -CH2- groups (Hb and Hc) and one

broad singlet for the –OH (Ha) group in CDCl3 we can identify, after addition of

DMSO, appearance of a triplet (Hc) and a pseudo-quadruplet (Hb) representing the

two -CH2- groups and one triplet for the -OH group. By addition of DMSO, the

hydrogen atoms (Ha) of the hydroxyl group become fixed (no more free) and

participate in the coupling.

S
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Figure B-8: Plot of the NMR shift of the OH proton as function of the percentage DMSO (d6).

In Figure B-7, the broad signal at 2.80 ppm (singlet) in pure CDCl3 corresponds to the

OH group. The broadness of this peak is tentatively explained by a rapid exchange

phenomenon between intermolecular and intramolecular OH bonds, since both OH

groups (of the two side chains) can be engaged in intra- or inter-molecular hydrogen

bonding.
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Scheme B-3: Possible schematic representation of the change following the addition of DMSO-

D6 in the CDCl3 solution of L
1
H2.

Increasing the percentage of DMSO-D6 to 1 % causes a shift of this peak to 3.42

ppm. The multiplicity changes to a triplet. DMSO-D6, as a proton acceptor may block

the propensity for these OH arms to be engaged in both intra- or inter-molecular

fashion, by breaking the previous network. Since intra- and inter-molecular

interactions are perturbed by DMSO-D6 as acceptor of hydrogen bonds, we will

probably see only intermolecular interaction between OH groups of the ligand and

DMSO-D6. As a result of this addition, the exchange phenomenon is no more

possible. At increased percentage of DMSO-D6, the OH tends to be shifted downfield

and reaches a value of 4.18 ppm at 5.26 % volume of DMSO-D6, corresponding to

saturation.

The sensitivity of the OH headgroup toward DMSO agrees with a classification of the

hydrogen bonding in the case of L1H2 as weak interactions.

A study on intramolecular O-H•••O in molecules bearing -diketone enol fragment by

Bertolasi et al., has shown a nearly linear relationship between 1H NMR chemical

shift and bond distances.97 The proton chemical shifts, measured in CDCl3, solutions

have been found to be in the range 8.6–10.1ppm for O-H•••O distances between

2.59 Å and 2.64 Å and 14.9–19.0 ppm for distances between 2.41 Å and 2.55 Å.97

Note however that their systems are different to L1H2, in this sense that in this later
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the -system is not conjugated to the hydrogen bond of the thio-alkohol rest and

plays no significant role in the delocalisation influencing the  (OH) shift.

B.3.2 Synthesis, characterisation and supramolecular description of L2H2

and L2H2.THF

B.3.2.1 Hydrogen bonding in carboxylic acids

Hydrogen bonding in carboxylic acids has been widely investigated and the most

frequently observed pattern is the closed dimer (Scheme B-4).

Scheme B-4: Mean geometry of the carboxylic acids dimer in crystals.
95

In a conventional way, such hydrogen bonds arrangement can be defined using

graph sets established by M. C. Etter.98 To assign a graph set to an arrangement, we

have first to identify the different types of hydrogen bonds as well as the nature of the

donors and acceptors engaged in a hydrogen bonding. Generally the graph set is

specified using the pattern designator (G), the degree of this pattern (n), and finally

the number of donors (d) and acceptors (a) involved in this pattern:

Ga
d (n)

For intermolecular hydrogen bonds, the following designators are used: C (for

chain), R (for ring), D (for dimer or other finite set), while S denotes intramolecular

hydrogen bonds. The number of donors and acceptors used in each motif are

assigned as subscripts and superscripts respectively and finally, the number of atoms

in a repeat unit is indicated in parentheses.98 Some examples are given in the

following scheme to illustrate this model.
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Scheme B-5: Graph-Set assignment for representative Hydrogen-Bond Motifs according to

Etter.
98

Surprisingly, the probability of formation (Pm) of a carboxylic acid dimer synthon

(example e in Scheme B-6) in crystals, calculated by Allen et. al.99 is somewhat lower

than in the oxime-heterodimer (example b in Scheme B-6) form.95 This lowered value

was explained by a possible competition from other hydrogen bond donors and

acceptors (water molecules or carboxylate groups), and could rise to a value of 0.86

to 0.95 in the absence of such competing groups.54, 99

N
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N-H
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O
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Scheme B-6: Examples of intermolecular hydrogen bond motifs with their probability

of formation (Pm) in crystals. Notice that Pm of the carboxy-oxime heterodimer (b) is

much higher than that of the carboxylic acid (e) and oxime homodimers (f). 99
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B.3.2.2 Synthesis of ligand L2H2

L2H2 could be synthesised by refluxing a solution of di(tetraethyl-ammonium) bis(1,3-

dithiole-2-thione-4,5-dithiolate)zincate with the suitable -halogenido-carboxylic acid

XCH2COOH (X = Br, Cl). This synthetic route was first described by Hoyer et al 40

using ClCH2COOH. Later, the crystal structure of a L2H2.H2O was resolved by Zhao

et al46 using BrCH2COOH. In our group, we have slightly modified the Hoyer’s

procedure not only for improving the overall yield but also for isolating a water free

ligand since this ligand will be engaged in water-sensitive reactions (see chapter D).

Scheme B-7: Reaction pathways for the synthesis of L
2
H2.

In that respect the recrystallisation process was conducted in diethyl ether instead of

dilute NH3. Slow evaporation of the diethyl ether solution allowed the isolation of air-

stable yellow crystals. No solvated-Et2O molecules were found in the crystal structure

(Figure B-9). In contrast, if THF is used as solvent in the crystallisation process, a

solvated-THF was found in the crystal structure. The oxygen of this THF solvate

builds hydrogen bonding with hydroxyl group of the carboxylic group of the sulfur-rich

ligand giving rise to a structural orientation completely different from that observed in

L2H2 (see B.3.2.5 subhead)

The difference in orientation between these two structures of ligand L2H2 argues the

influence of hydrogen bonding in the arrangement of a system in the solid-state.

Characterisation of L2H2 was completed by standard methods (elemental analysis,

IR, NMR, etc…). In the IR spectra, L2H2 presents a broad band situated between

2000 and 3200 cm-1, in the typical region for OH groups. A strong band,

characteristic of a C=O function was found at 1692 cm-1, and in the fingerprint region,

strong bands representing C=S (1065 cm-1) and C-S (850 cm-1) were identified.
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B.3.2.3 Crystal structure determination of L2H2.

Yellow crystals of L2H2 were obtained from a concentrated diethyl ether solution at

room temperature. A single crystal was isolated and the crystal structure

determination performed at -170°C. As depicted in Table B-6, ligand L2H2 (4,5-

bis[carboxymethylthio]1,3-dithiole-2-thione) crystallises in the triclinic system in the

centrosymmetric space group P1. The molecular structure with the atom numbering

for L2H2 is shown in Figure B-9.

Figure B-9: Molecular structure of L
2
H2.

The crystal structure was solved by direct methods and refined by full-matrix least

squares on F2 using the SHELX software package for crystal structure solution and

refinement.90 Selected bond lengths and angles are listed in Table B-7.

Table B-6: Crystal data and structure refinements for L
2
H2.

_____________________________________________________
Compound: L2H2

Identification code sh2498

Empirical formula C7 H6 O4 S5

Formula weight 314.42

Temperature 200(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1
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Unit cell dimensions A = 5.1049(10) Å, = 108.07(3)°.

B = 10.755(2) Å, = 101.06(3)°.

C = 11.638(2) Å,  = 91.18(3)°.

Volume 594.0(2) Å3

Z 2

Density (calculated) 1.758 Mg/m3

Absorption coefficient 0.968 mm-1

F(000) 320

Crystal size 0.6 x 0.44 x 0.2 mm3

Theta range for data collection 3.15 to 27.93°.

Index ranges 6≤h≤6, -13≤k≤13, -15≤l≤15

Reflections collected 5383

Independent reflections 2612 [R(int) = 0.0476]

Completeness to theta = 27.93° 91.6 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2612 / 0 / 169

Goodness-of-fit on F2 0.784

Final R indices [I>2sigma(I)] R1 = 0.0334, wR2 = 0.0608

R indices (all data) R1 = 0.0720, wR2 = 0.0677

Largest diff. peak and hole 0.361 and -0.322 e.Å-3

Table B-7: Selected bond lengths (Å) and angles (°) for L
2
H2.

S(1)-C(1) 1.749(3) C(1)-S(4)-C(3) 97.94(1)

S(1)-C(2) 1.753(3) S(5)-C(1)-S(4) 123.84(2)

S(2)-C(2) 1.761(3) S(5)-C(1)-S(1) 123.64(2)

S(2)-C(6) 1.800(3) S(4)-C(1)-S(1) 112.51(2)

S(3)-C(3) 1.766(3) C(3)-C(2)-S(1) 115.3(2)

S(3)-C(4) 1.818(3) C(3)-C(2)-S(2) 123.7(2)

S(4)-C(1) 1.732(3) S(1)-C(2)-S(2) 120.70(1)

S(4)-C(3) 1.749(3) C(2)-C(3)-S(4) 116.3(2)

S(5)-C(1) 1.651(3) C(2)-C(3)-S(3) 125.6(2)

O(1)-C(5) 1.234(3) S(4)-C(3)-S(3) 118.06(2)
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O(2)-C(5) 1.305(3) O(1)-C(5)-O(2) 125.2(2)

O(3)-C(7) 1.228(3) O(3)-C(7)-O(4) 124.6(3)

O(4)-C(7) 1.314(3) O(3)-C(7)-C(6) 124.2(2)

C(2)-C(3) 1.371(4) O(4)-C(7)-C(6) 111.3(2)

C(4)-C(5) 1.505(4) C(1)-S(1)-C(2) 97.94(1)

C(6)-C(7) 1.514(4)

B.3.2.4 Supramolecular description of L2H2.

Figure B-9 shows the molecular structure of L2H2 in which the side chains are

stretched almost perpendicularly to the dmit plan. Analysis of L2H2 (Figure B-10)

revealed a one-dimensional chain-like structure which has its origin in intermolecular

hydrogen bond interactions (O-H•••O) in the R2
2 (8) arrangement motif, mostly found

in systems possessing a carboxylic acid functional group.95 The building of this R2
2(8)

arrangement is favoured by the presence of two good proton donors (OH) and

acceptors (C=O) following the general rules given by Etter.98

The O-H•••O distances of 2.66 (3) Å are in the range of the mean values (2.644 Å)

found in crystals of carboxylic acid dimer.95 Assuming that these O•••O distances are

shorter than 3 Å, the supramolecular structure can be described as assembled by

columns of alternating parallel molecules linked together by hydrogen bond networks.

The carboxylic functional groups out of the DMIT plan are engaged in an

intermolecular way following the arrangement found in carboxylic acid dimers.

Figure B-10: One dimensional molecular structure arrangement with an emphasis on the

formation of ribbons built through R
2
2(8) pattern.
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No short intermolecular S•••S contacts have been identified in the solid state. This

situation differs from that observed in the case of L2H2.H2O since in this case the

one-dimensional chain-like structure results from S•••S contacts of 3.56 Å (Figure B-

11).46 The common R2
2(8) arrangement was also observed in the structure of

L2H2.H2O, as well as other intermolecular hydrogen bonding interactions between

carboxylic chains and water molecules.46

Figure B-11: The one dimensional chain-like structure of L
2
H2.H2O, formed by S•••S

interactions (dashed lines) along the b axis.
46

B.3.2.5 Influence of an acceptor in the hydrogen bonding pattern of

L2H2.

As stated previously, a good hydrogen donor should be sensitive to the presence of

different hydrogen bond acceptors, leading to a possible competition in the hydrogen

bonding pattern formed. This idea was investigated by introducing in the

crystallisation process of L2H2 a solvent able of building hydrogen bonding.

The synthesis followed the method performed in Scheme B-7 with the only difference

that re-crystallisation was performed using THF as a solvent.

Since the L2H2 alone crystallised without Et2O molecules, we did not expect to

observe big differences. But surprisingly, the X-ray analysis revealed the formation of

a L2H2.THF adduct (Figure B-12).
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Figure B-12: Molecular structure of L
2
H2.THF

The crystallographic data are shown in Table B-8 and selected bonds and Angles in

Table B-9.

Table B-8: Crystal data and structure refinements for L
2
H2.THF

Identification code sh2594

Empirical formula C11 H14 O5 S5

Formula weight 386.52

Temperature 180(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Pnna

Unit cell dimensions a = 7.9656(4) Å = 90°.

b = 21.0885(11) Å = 90°.

c = 9.5192(5) Å  = 90°.

Volume 1599.06(14) Å3

Z 4

Density (calculated) 1.606 Mg/m3

Absorption coefficient 0.740 mm-1

F(000) 800

Crystal size 0.66 x 0.40 x 0.30 mm3

Theta range for data collection 1.93 to 27.32°.
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Index ranges -10<=h<=10, -27<=k<=27, -12<=l<=12

Reflections collected 28804

Independent reflections 1800 [R(int) = 0.0520]

Completeness to theta = 27.32° 99.9 %

Absorption correction Multiscan

Max. and min. transmission 0.8085 and 0.6409

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1800 / 0 / 125

Goodness-of-fit on F2 1.080

Final R indices [I>2sigma(I)] R1 = 0.0302, wR2 = 0.0585

R indices (all data) R1 = 0.0420, wR2 = 0.0619

Largest diff. peak and hole 0.257 and -0.258 e.Å-3

Table B-9: Selected bond lengths [Å] and angles [°] for L
2
H2.THF

(Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,-z+3/2

#2 -x+1/2,-y+1,z)

S(1)-C(2) 1.762(2) C(1)-S(2)-C(2) 97.74(9)

S(1)-C(5) 1.806(2) C(6)#1-O(2)-C(6) 108.3(2)

S(2)-C(1) 1.730(1) S(3)-C(1)-S(2)#2 123.73(7)

S(2)-C(2) 1.744(2) S(3)-C(1)-S(2) 123.73(7)

S(3)-C(1) 1.653(3) S(2)#2-C(1)-S(2) 112.55(1)

O(1)-C(3) 1.198(2) C(2)#2-C(2)-S(2) 115.98(6)

O(2)-C(6)#1 1.466(2) C(2)#2-C(2)-S(1) 126.40(6)

O(2)-C(6) 1.466(2) S(2)-C(2)-S(1) 117.57(1)

O(3)-C(3) 1.331(2) O(1)-C(3)-O(3) 124.11(2)

C(1)-S(2)#2 1.730(1) O(1)-C(3)-C(5) 126.16(2)

C(2)-C(2)#2 1.350(3) O(3)-C(3)-C(5) 109.70(2)

C(3)-C(5) 1.507(3) C(6)-C(4)-C(4)#1 102.98(1)

C(4)-C(6) 1.493(3) C(3)-C(5)-S(1) 115.12(1)

C(4)-C(4)#1 1.507(4) O(2)-C(6)-C(4) 105.65(2)

C(2)-S(1)-C(5) 101.09(8)
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The arrangement in the crystal structure is totally different to that detected for L2H2

and L2H2.H2O
46, The first point concerns the R2

2(8) arrangement which disappears by

the coordination of a THF molecule and is replaced by a C(5) motif (following the

graph set analogy from Etter98). As a consequence, the side chains adopt an anti-

conformation compared to the DMIT plane (Figure B-12). Tail-to-tail arrangements,

bridged through the oxygen atoms of the THF molecules, ensure the one-

dimensional polymer-like chain (see Figure B-13).

Figure B-13: Molecular structure of the L
2
H2.THF showing a one dimensional polymer-like chain

supported by hydrogen bonding. (The vertically dashed line shows the C2 axis).

The oxygen of the THF molecule hosts two different hydrogen atoms (three-center

bonding) from two different donors (-COOH groups localised on two different

adjacent ligands). This kind of double acceptor ability could be related to the lone-

pair directionality which, according to previous studies, rejects a possible tendency

for hydrogen bonds to be formed along the lone-pair directions.94 The chains are also

linked in up and down fashion through OH•••O•••HO bridges. Having a closed look in

the structure, we can identify a symmetry element. In fact the oxygen atom of the

THF is situated in the C2 axis as represented in the Figure B-13. In our case we could

state without any ambiguity that the hydrogen bonds are formed along the lone pair

directionality. This is further confirmed by the quasi-tetrahedral geometry around the

oxygen of the THF (angles are between 105 and 109°) in Figure B-14. This

observation is in agreement with a sp3-hybridised oxygen atom. The O-H•••O

distances of about 2.665(1) Å are in good agreement with the mean value reported
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for similar systems possessing a carboxyl group as a donor and a -C-O-C- fragment

(only acceptor ability, THF in our case).95

Figure B-14: Zoom on the hydrogen pattern showing the quasi-tetrahedral geometry around the

oxygen of the THF.

The DMIT unit, which is the common part of the molecular skeleton in these

compounds (L2H2, L2H2.H2O and L2H2.THF), remains almost planar. Figure B-15

represents an overview showing the structural changes induced by the presence of

an acceptor molecule on the hydrogen bonding networks in the case of ligand L2H2.
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In L2H2.H2O, the difference in orientation is a result of a hydrogen bonding between

oxygen of the water molecule and the hydrogen from the C-H (C6-H•••O5 in Figure

B-15), this distance O5•••H-C is about 2.44(9) Å.46

Between two DMIT moieties, the shortest S•••S intermolecular contacts have been

identified at 7.57 Å to each other. This distance is far away from the sum of the Van

der Waals radii of sulfur atoms. Therefore, in the structural arrangement, contribution

of intermolecular S•••S interactions are negligible.  interactions are completely

absent in this structural arrangement.

All in all, the driving force leading to the formation of such a structure is

unambiguously the hydrogen bonding.

Figure B-15: Structural changes induced by a hydrogen bond acceptor in the L
2
H2 motif.

L2H2
L2H2.H2O

L2H2.THF
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B.4 Synthesis of dithiolene ligands with C=O functional groups

Carbonyl groups (C=O) can be considered, in a certain extent, as acceptor of

hydrogen bonding, because of their lone pairs residing on the oxygen atom. Here we

will present a ligand bearing carbonyl groups as representative of an exceptional

case of ligands bearing only acceptor moiety, but nevertheless able to undergo

hydrogen bonding, namely a C-H•••O hydrogen bond.

This ligand (L0) has been already structurally characterised and present a disorder

(from the O of the C=O) when measured at 288 K.100 This disorder disappears when

measurement are performed at 120K.101

But, when we performed the crystallographic analysis at a still lower temperature,

namely at 102 K, we discovered a structural organisation which was not observed in

the precedent investigations. The most salient feature of this low-temperature study

was the identification of unexpected hydrogen bonding interactions.

B.4.1 Synthesis and characterisation of L0.

The synthesis of L0 is an acylation of the DMIT moiety. L0 is prepared by reaction

between one equivalent of the zinc complex [Zn(DMIT)2(Et4N)2] with fifteen

equivalents of benzoyl chloride in acetone at room temperature, following literature

methods.42

Scheme B-8: Reaction pathway for the synthesis of L1 according to Becher et.al.
42

The end of the reaction is indicated by a strong color change from deep red (at the

beginning) to yellow–orange. L0 can be re-crystallised in pure CHCl3 solution and

single crystals could be obtained at room temperature within one day.
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B.4.2 Crystal structure determination and description of L0

A single crystal was isolated for X-Ray diffraction analysis and the crystal structure

determination performed at -170°C. As depicted in Table B-10, ligand L0 (4,5-

bis(benzoylthio)-1,3-dithiole-2-thione) crystallises in the monoclinic system [P21/c].

Figure B-16: Molecular structure of L0 (Hydrogen atoms are not numbered for clarity).

The molecular structure with the atom numbering for L0 is shown in Figure B-17 and

selected bond lengths and angles are reported on Table B-11.

Table B-10: Crystal data and structure refinements for L0.

Identification code sh2281

Empirical formula C17 H10 O2 S5

Formula weight 406.595

Temperature 103(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)/c

Unit cell dimensions a = 9.6204(3) Å = 90°.

b = 10.5705(3) Å = 92.783(2)°.

c = 16.9777(5) Å  = 90°.
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Volume 1724.47(9) Å3

Z 3

Density (calculated) 1.566 Mg/m3

Absorption coefficient 0.679 mm-1

F(000) 832

Crystal size 0.65 x 0.43 x 0.25 mm3

Theta range for data collection 2.40 to 40.55°.

Index ranges -16<=h<=17, -19<=k<=18, -29<=l<=30

Reflections collected 39084

Independent reflections 10615 [R(int) = 0.0231]

Completeness to theta = 40.55° 96.1 %

Absorption correction Multiscan

Max. and min. transmission 0.8486 and 0.6667

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 10615 / 0 / 217

Goodness-of-fit on F2 1.067

Final R indices [I>2sigma(I)] R1 = 0.0312, wR2 = 0.0835

R indices (all data) R1 = 0.0376, wR2 = 0.0893

Largest diff. peak and hole 1.366 and -0.752 e.Å-3

Table B-11: Selected bond lengths (Å) and angles (°) for L0.

S(1)-C(1) 1.647(8) S(1)-C(1)-S(3) 125.72(5)

S(2)-C(1) 1.737(8) S(1)-C(1)-S(2) 120.64(4)

S(2)-C(2) 1.750(7) S(3)-C(1)-S(2) 113.65(4)

S(3)-C(1) 1.729(8) C(3)-C(2)-S(2) 115.62(6)

S(3)-C(3) 1.745(8) C(3)-C(2)-S(4) 118.98(6)

S(4)-C(2) 1.756(8) S(2)-C(2)-S(4) 125.30(4)

S(4)-C(4) 1.785(8) C(2)-C(3)-S(3) 116.68(6)

S(5)-C(3) 1.749(8) C(2)-C(3)-S(5) 124.54(6)

S(5)-C(11) 1.814(8) S(3)-C(3)-S(5) 118.52(4)

O(1)-C(11) 1.207(1) O(2)-C(4)-C(5) 123.04(8)

O(2)-C(4) 1.211(1) O(2)-C(4)-S(4) 122.13(7)

C(2)-C(3) 1.360(1) C(5)-C(4)-S(4) 114.83(6)
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C(4)-C(5) 1.479(1) C(10)-C(5)-C(6) 120.33(7)

C(5)-C(10) 1.400(1) C(9)-C(8)-C(7) 120.63(8)

C(5)-C(6) 1.401(1) C(10)-C(9)-C(8) 120.01(8)

C(6)-C(7) 1.390(1) O(1)-C(11)-C(12) 125.08(7)

C(7)-C(8) 1.393(1) C(12)-C(11)-S(5) 112.99(6)

C(8)-C(9) 1.392(1) C(17)-C(12)-C(13) 120.18(7)

C(9)-C(10) 1.392(1) C(13)-C(14)-C(15) 120.07(8)

C(11)-C(12) 1.487(1) C(16)-C(15)-C(14) 120.21(8)

C(12)-C(17) 1.397(1) C(15)-C(16)-C(17) 119.93(8)

C(12)-C(13) 1.400(1) C(16)-C(17)-C(12) 119.81(7)

C(1)-S(2)-C(2) 97.06(4)

C(1)-S(3)-C(3) 96.93(4)

The molecular structure shows the same orientation of the phenyl groups towards the

DMIT plane, as previously observed.100, 101 The phenyl rings (of the benzoyl groups)

are inclined at angle of 83.32(4)° with respect to one another. One phenyl ring (C5.-

C10) is nearly coplanar with the DMIT ring and the second one (C12-C17) is inclined

about 82.7(5)° with respect to the DMIT ring. In the precedent cases, the determined

structure consisted of discrete molecules of L0 kept together by Van der Waals

packing forces.100-102 The sulfur atom of the thione function (C=S) is situated at

0.217(1) Å from the plane of the five-membered ring, compared to a value of 0.178

(5) Å observed by Solans et al., for the same molecule.100

In the present case, hydrogen bonding between the hydrogen in para position of the

phenyl group and oxygen from the adjacent carbonyl group supports the polymer-like

structure as shown in Figure B-17. Molecules of L0 are connected in a tail-to-tail

fashion. No  interaction or short S•••S contacts were detected.

Figure B-17: One dimensional molecular structure arrangement of L0 with an emphasis on the

hydrogen bonding.
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These C(sp2)-H•••O distances of 2.330(1) Å evidence the presence of such

interaction. This distance is clearly shorter than that observed in the EDT-TTF-COOH

and EDO-TTF-COOH with C(sp3)-H•••O distances of 2.63(3) and 2.54(5) Å,

respectively.78 The angle C(sp2)-H•••O of 164.51(2)° is slighted deviated from

linearity. This kind of interaction contributes to keep the molecules in the way they

are arranged. 103

This unusual hydrogen bonding interaction arranges the molecules in a one-

dimensional structure (see Figure B-17) which is different from the 3D structure (due

to packing forces101). Such a one dimensional structure was not expected since the

DMIT ring and the phenyl ring are appropriate candidates for building  interaction

more than hydrogen bonding interaction.

B.5 Conclusion

We have focussed in this chapter on the ease of chemical modification of the DMIT

moiety to access to functionalised dithiolene ligands. By introducing functional groups

such as carboxylic acid or alcohol on the DMIT core, we have demonstrated that the

solid-state organisation of the structure results from several non-covalent

interactions, which in our opinion are important tools for supramolecular assemblies.

In all cases, hydrogen bonding play an dominant role in the stabilisation of the

supramolecular structure, which are more important than other interactions such as

interactions, and intermolecular S•••S van der Waals interactions, which are also

present in some molecular structures.
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Examples of Dithiolene-like neutral ligands:

The structural features of L2H2.THF represent a typical model showing that lone-pair

directionality can be, to a certain extent, related to the propensity of an acceptor

molecule to form hydrogen bonding in the direction of the lone-pairs. Such ligands

could be used to coordinate metal centers by either coordination through sulphur

from the DMIT ring (for soft metals) or through oxygen from the functional groups (for

hard metals). These possibilities will be studied in chapters C and D, respectively.
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C Supramolecular Metallo-dithiolene Frameworks

C.1 Background

As stated by Pyykkö, between closed–shell species of zero charge or same

nominal charge, no strong attractions have to be expected.104 Contrarily, strong

covalent bonds are expected between open-shell species if more bonding molecular

orbitals than antibonding MOs are filled. The detection of metal•••metal contacts

shorter than the sum of van der Waals radii between linear d10 transition metal

complexes in numerous crystal structures has stimulated research in the area of

coordination complexes containing closed-shell (d10) metals.104 Recent developments

in the coordination chemistry have emphasised on synthesis of supramolecular

architectures, as a flourishing domain. These architectures are obtained via self-

assembly processes involving metal ions and in-organic ligands. In our team, we

have investigated the synthesis of metallo-supramolecular systems by using ligands

that present themselves non-covalent bonding.

C.1.1 Generalities

The synthesis and characterization of new metal-organic architectures is a current

research interest in coordination and supramolecular chemistry owing to the

enormous variety of structures and topologies, as well as their potential applications

as functional materials. Remarkable luminescence properties are at the origin of the

increasing interest of scientists with the aim of constructing metal-organic frameworks

(MOF) that could find potential applications in the area of optoelectronic devices,

chemical sensors105, biological imaging, photochemical catalysis, light-driven fuel

production106, gas storage, molecular recognition, etc. 107

The coordination complexes of d10 metals present in some cases significant

advantages over the derivatives made of opened-shell like d6 coordination

compounds complexes. For example, they offer a large variety of coordination

geometries, compared to the almost octahedral geometry of d6 metals, which make

them ideal building blocks for the synthesis of sophisticated molecular

architectures.108
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C.1.2 Closed-shell systems (d10-d10 interactions)

Among the metals used for the elaboration of MOF containing short M•••M distances,

those having a closed-shell (d10) electronic configuration have been successfully

used. Such metal•••metal interaction was observed for copper (CuI) with distances

lying between 2.63 to 3.5 Å,104 gold (AuI) with distances lying between 2.7 to 3.5 Å

109, silver (AgI) with distances lying between 2.97 110 to 3.07 Å.111 In the case of

mercury (HgII), metal•••metal interactions, with distances ranging the 2.84 Å, were

also detected.112 In some mercury (II) acetylides [Hg(CΞCR)2 ; where R= -Ph or -

SiMe3], obtained as aggregates, Hg•••Hg distances between 3.5 Å and 4.25 Å were

also found.113, 114 In the case of gold, this metal•••metal interaction was termed as

aurophilicity by Schmidbaur.115 By extension, the term metallophilicity was commonly

used to denote the metal•••metal interaction.

It is also important to mentioned that this interaction is not only restricted to

homometallic species, di-coordinated complexes or group 11 metals. For instance,

heterometallic species (Cu•••Hg116 and Au•••Hg117), tri-coordinated d10 compounds,

but also group-10-metal complexes have been reported.118

Metal-metal interactions are observed in different structural motifs varying from

unbridged (A), singly bridges (B), doubly bridges (C), chain-like (D), cluster-like (E)

and connected through hydrogen bonding (F) (see Scheme C-1).
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metal coordination complexes.
119

According to EHMO (extended Hückel molecular orbital) calculations, the origin of the

metal-metal interaction in the case of copper is repulsive if only the filled 3d orbitals

are considered. However, the same calculations taking also into account the

contribution of the empty 4s and 4p orbitals, have argued on the attractive nature of

this kind of interaction.120, 121

Such coordination complexes have been targeted because of their potential

application in material science, especially in photoluminescence and /or

electroluminescence.122 The first luminescent study of such metallo-complexes build

up through self-assembly in the presence of a coinage metal can be traced back to

1970.123

C.2 Spectroscopic properties

C.2.1 Spin-orbit coupling (SOC) and crystal field (CF) splitting

Electronic transitions within the same orbital type (d-d, f-f, etc…) are Laporte

forbidden69. However this rule is relaxed by spin–orbit coupling (SOC) and/or ligand
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field (crystal field (CF)) effects. Both (SOC and CF) can split the energy levels, which

are degenerated in the free metal ion configuration. The influence of these two

factors in the splitting of the energy levels depends on the nature of the orbital and

the geometry around the metal center. For instance, SOC has a stronger influence on

f metal group elements than on d elements. In contrast, the CF splits the energy level

in d metal to levels separated approximately about 10000 cm-1 compared to 100 cm-1

for f elements.61

C.2.2 Electronic transitions in d10 transition metal complexes

Because of the completely filled metal d-sub-shell (d10), the electronic ground states

of the coordination compounds containing a d10 metal center can not be subject to the

CF effect, contrarily to other transition metals (d1-9). Furthermore, they do not

experience the Jahn-Teller effect, which is encountered in paramagnetic Cu(II)

compounds with an electronic d9 configuration.

These factors (SOC and CF) are not the only ones governing the spectroscopic

properties giving rise to electronic transitions. Other types of electronic transitions

such as LMCT (Ligand-to-Metal Charge Transfer), MLCT (Metal-to-Ligand Charge

Transfer) and IL (Intra-Ligand) transitions may influence the spectroscopic properties

of metal complexes. Figure C-1 shows a schematic representation of transitions that

can take place in a coordination compound.124
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Figure C-1: Schematic energy level diagram of molecular orbitals and electronic transition in

an octahedral coordination compound. (NB: for simplicity, all orbitals of a given type are

represented by a single energy level. The p orbitals, for example, may be bonding, non-

bonding or anti-bonding in character).
124

Six different transitions may be observed:

- (1) is an intraligand (IL) transition:

- (2) is a LMCT transition:

- (3) is a MLCT transition:

- (4) is an intraconfigurational metal-centered, d-p transition:

- (5) is an intraconfigurational metal-centered, d-s transition:

- (6) is a ligand field transition (absent in d10 complexes).
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C.2.3 Why are dithiolene-d10 transition metal complexes interesting?

Research on metallo-dithiolene based complexes and their photophysical properties

is not new (former use in detection125). Dithiolene-like neutral ligands with their -

system are potential candidates for spectroscopic studies in which electronic

transitions represent the basic key.

On the other hand, closed-shell d10 metal complexes are known to exhibit

luminescent properties that are sensitive to a subtle change in the environment

and/or arrangement around the metal atoms. The modification of the ligand skeleton

is a way for finely tuning the luminescence of ligand-metal based complexes.126, 127

Dithiolene which is a sulfur-rich system fits well to the database of ligands suitable for

building coordination complexes with metals in a d10 electronic configuration. In fact,

these d10 metals in their respective oxidation state Cu+, Ag+, Au+, Hg2+ etc., are

classified as “soft” according to HSAB (Hard and Soft Acid and Base) principle.

Functional groups like alcohol and carboxyl are potential candidates for building

supramolecular structure by increase of the dimensionality through hydrogen

bonding. The combination of electron-rich dithiolene ligand with closed-shell d10

metal appears tempting for the elaboration of coordination complexes exhibiting both

intriguing photoluminescent properties and presenting unique supramolecular

arrangements in the solid-state.

C.2.4 The d10 “Avenue”

The d10 “Avenue” represents the elements of the IB and IIB columns of the periodical

table.108 The term “d10 Avenue” is in relation with their electronic configuration in

certain oxidation states, namely +1 for IB column and +2 for the IIB column.
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IB IIB

Cu Zn

Ag Cd

Au Hg

d10 Avenue

In their coordination complexes, these elements adopt a wide variety of structural

arrangements from linear chains to 3D (three-dimensional) networks. Another

collective property in these d10 metals complexes is that they display M•••M contacts

that are shorter than the sum of the van der Walls radii (3.32 Å for Au(I), 3.44 Å for

Ag(I) and 2.80 Å for Cu(I)).128

Among these elements, copper, silver and gold form also a sub-group known as

“coinage metals129” because of their former usage and their resistance to corrosion.

They are also known for their biochemical activity. Copper and silver have

antibacterial activities whereas gold (AuI) thiol has found increasing use in the

treatment of rheumatoid arthritis.58

C.3 Objectives

In this study, we intend to investigate the possibility of building metallo-

supramolecular systems based on the ligands presented in the chapter B (L0, L1H2

and L2H2) and d10 transition metals like HgII, CuI and AuI. The combination of non-

bonding interactions taking place in these complexes will be discussed in term of

supramolecular assemblies. Structural modification in the ligand arrangement,

(compared to the free ligands) induced by the closed-shell metal center will be also

analysed. And finally, luminescent studies on these complexes will be investigated.
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C.4 Synthesis, characterisation and luminescent properties of

dithiolene complexes containing closed-shell (d10) transition

metals

C.4.1 Synthesis and characterisation of copper (I)-dithiolene complexes

Here we will present complexes of type Li-CuI where Li represents a dithiolene-like

neutral ligand ligated on copper Iodide. This work was motivated by previous results,

in our group, on copper coordination polymers assembled by using dithioether

ligands.130 Various structural topologies have been found in copper halide

coordination polymers and they can vary from square rhomboid to hexagonal grid

chains.131 Apart from their fascinating architectures the interest in assembling copper

iodide coordination compounds results in their remarkable photophysical properties.

The synthetic pathway is outlined in Scheme C-2 and the procedure follows that from

reference 130.

Scheme C-2: Reaction pathways for the synthesis of copper complexes.

The clear solution obtained after stirring a suspension of CuI in acetonitrile at room

temperature, turns immediately red when equimolar amounts of the ligands dissolved

in acetonitrile (for L0 and L2H2) and THF (for L1H2) are added. The mixture is stirred

for additional 1h during which the intensity of the red color is growing. The mixture is

then filtrated and reduction of the volume followed by cooling to a lower temperature
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allowed the isolation of red crystals (for L0-CuI and L2H2-CuI) suitable for X-ray

measurements. In the case of L1H2-CuI, we failed in isolating crystals suitable for X-

ray analysis. The characterisation was completed by NMR, infrared spectroscopy,

elemental analysis and UV-Vis spectroscopy. For a better comparison, characteristic

data in the infrared spectroscopy and UV-Vis of the free ligands are also presented.

C.4.1.1 Synthesis and characterisation of L0-CuI

C.4.1.1.1 IR and UV-Vis results for L0-CuI

The different analytical data are presented in Table C-1. For clarity, only the

characteristic data (of the ligands) able to present changes (or shift) due to the

coordination on the metal are reported.

Table C-1: Analytical data from IR and UV-Vis measurements.

L0 L0-CuI

IR  (C=S) in cm-1 1055 1026

 (C=O) in cm-1 1670 1668

Uv-Vis (CH3CN) 
max

in nm (ε) 366.6 (36333) 366 (27599)
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The first evidence that coordination occurs via the thiocarbonyl function (C=S) is

provided by the shift of the  C=S band from 1055 to 1026 cm-1. Such a coordination

is not new and has been previously observed in the case of 4,5-ethylenedithio-1,3-

dithiole-2-thione132 and 4,5-bis(methylthio)-1,3-dithiole-2-thione133 with copper iodide.

In the later case a shift of 23 cm-1 to lower wavenumbers was recorded for the C=S

stretching frequency133 compared to the free ligand. The position of the carbonyl

(C=O) vibration remains unchanged indicating that no C=O group is involved in a

coordination bond. In the UV-Vis part, the absorption band at 366 nm assigned to

* transition was not affected by this coordination. However, a slightly decrease of

the extinction coefficient was observed.

C.4.1.1.2 Structural description of L0-CuI

Red crystals of L0-CuI were grown within a period of 1 day from a concentrated

acetonitrile solution of the reaction mixture. A crystal was isolated and a single crystal

X-ray diffraction analysis was performed at 170 K. L0-CuI crystallises in the triclinic

system in the centrosymmetric space group P1. The molecular structure with the

atom numbering for L0-CuI is shown in Figure C-2 and selected bond lengths and

angles are reported in Table C-2.
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Figure C-2: The molecular structure for L0-CuI (for clarity the numbering of the phenyl groups

is not included, and the phenyl groups are represented as wires).

Table C-2: Crystal data and structure refinement for L0-CuI.

Identification code sh2465

Empirical formula C74H40Cu2I2O8S20

Formula weight 2079.14

Temperature 170(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1
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Unit cell dimensions a = 12.1861(6) Å = 62.198(2)°.

b = 13.5080(6) Å = 84.796(2)°.

c = 13.5835(6) Å  = 87.493(2)°.

Volume 1969.71(16) Å3

Z 1

Density (calculated) 1.753 Mg/m3

Absorption coefficient 1.909 mm-1

F(000) 1032

Crystal size 0.6 x 0.3 x 0.15 mm3

Theta range for data collection 1.68 to 36.34°.

Index ranges -20<=h<=18, -20<=k<=22, -22<=l<=22

Reflections collected 55470

Independent reflections 18876

Completeness to theta = 36.34° 98.7 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 18876 / 0 / 463

Goodness-of-fit on F2 0.967

Final R indices [I>2sigma(I)] R1 = 0.0347, wR2 = 0.0844

R indices (all data) R1 = 0.0618, wR2 = 0.0969

Largest diff. peak and hole 1.438 and -0.681 e.Å-3

Figure C-3 represents different structural motifs found in copper complexes. The

cubane tetramer (I) is the most frequently observed form,131, 134-138 but in some cases

the rhomboid Cu2(µ2-I)2 dimer form (III) has been encountered. 127, 131, 139, 140
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Figure C-3: Different structural motifs found in copper halide coordination compounds: the

“cubane-like “ form (I) , the “step” form (II) and the “rhombohedral dimer” form (III).

As evidenced by the X-ray analysis (see Figure C-2), the molecule is found in a

rhomboid Cu2(µ2-I)2 dimer form (III).

The orientation of the benzoyl groups towards the DMIT plane is similar in L0 and L0-

CuI. The metal lies in a distorted tetrahedral environment formed by two S atoms of

distinct L0 ligands and two bridging iodine atoms, with I-Cu-I and S-Cu-S angles of

109.29(1)° and 106.63(2)° respectively (Figure C-4).

Figure C-4: Zoom in the Cu2I2 core in L0-CuI showing the rhombohedral dimer form and the

tetrahedral environment around the copper atoms (the rest of the complex is omitted for

clarity).

The average distance of the two Cu-S bonds of 2.314(2) Å is slightly longer than the

value of 2.284(1) Å reported for a dithiolene-like neutral –copper complex [(Cu2(µ
2-I)2

(DMIT-Me2)], exhibiting the similar rhombohedral Cu2I2 core. 133

The average Cu•••Cu separations length of 3.051(1) Å in L0-CuI is somewhat longer

than that of 2.806(1) Å reported for a similar rhomboid dimer form [(Cu2(µ
2-I)2 (µ-PhS

(CH2)2SPh)2] using a dithioether ligand.130 The Cu•••Cu separations in L0-CuI is in
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the upper limit range representing metallophilic interactions139 for homopolynuclear

copper complexes. As stated by Novoa et al.119 such an weak intermolecular Cu•••Cu

contact could not be considered as an attractive interaction since the bridging iodide

can geometrically impose the two Cu centers to come closer. According to Novoa et

al., the best Cu•••Cu interactions are localized in dimer without bridging ligands. A

view of the packing mode presented in Figure C-5 showed the existence of a network

which is probably supported by packing forces, since no close contacts between

adjacent motifs was identified. The C=S bond is 0.013 Å longer than in the

uncoordinated ligand (L0).
100

Table C-3: Bond lengths [Å] and angles [°] for L0-CuI.

C(1)-S(1) 1.660(2) S(6)-C(18)-S(8) 124.52(1)

C(1)-S(3) 1.715(2) S(6)-C(18)-S(7) 120.41(1)

C(1)-S(2) 1.731(2) S(8)-C(18)-S(7) 115.06(1)

C(2)-C(3) 1.359(2) C(20)-C(19)-S(7) 115.44(1)

C(2)-S(4) 1.747(2) C(20)-C(19)-S(9) 118.99(1)

C(2)-S(2) 1.750 (2) S(7)-C(19)-S(9) 125.56(1)

C(3)-S(3) 1.741(2) C(19)-C(20)-S(8) 117.08(1)

C(3)-S(5) 1.749(2) C(19)-C(20)-S(10) 121.98(2)

C(4)-O(1) 1.202(2) S(8)-C(20)-S(10) 120.87(1)

C(4)-C(5) 1.479(3) O(3)-C(21)-C(22) 124.41(2)

C(4)-S(5) 1.825(2) O(3)-C(21)-S(9) 121.88(2)

C(5)-C(10) 1.382(3) O(4)-C(28)-C(29) 125.03(2)

C(5)-C(6) 1.385(3) O(4)-C(28)-S(10) 120.94(2)

C(6)-C(7) 1.390(3) C(33)-C(34)-C(29) 120.0(2)

C(7)-C(8) 1.372(4) S(1)-Cu(2)-S(6) 106.626(2)

C(8)-C(9) 1.364(4) S(1)-Cu-I(1) 111.146(2)

C(9)-C(10) 1.392(3) S(6)-Cu-I(1) 114.295(2)

C(11)-O(2) 1.205(2) S(1)-Cu-I(1)#1 102.493(1)

C(11)-C(12) 1.490(2) S(6)-Cu-I(1)#1 112.335(2)

C(11)-S(4) 1.793(2) I(1)-Cu-I(1)#1 109.292(1)

C(16)-C(17) 1.394(3) S(1)-Cu-Cu#1 119.882(2)

C(18)-S(6) 1.664(2) S(6)-Cu-Cu#1 133.143(2)
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C(18)-S(8) 1.705(2) I(1)-Cu-Cu#1 54.922(9)

C(18)-S(7) 1.725(2) I(1)#1-Cu-Cu#1 54.370(8)

C(19)-C(20) 1.355(2) Cu-I(1)-Cu#1 70.708(1)

C(19)-S(7) 1.743(2) C(1)-S(1)-Cu 108.40(6)

C(19)-S(9) 1.753(2) C(1)-S(2)-C(2) 96.70(8)

C(20)-S(8) 1.734(2) C(1)-S(3)-C(3) 96.33(8)

C(20)-S(10) 1.750(2) C(2)-S(4)-C(11) 103.22(8)

C(21)-O(3) 1.209(2) C(3)-S(5)-C(4) 100.55(9)

C(21)-C(22) 1.474(3) C(18)-S(6)-Cu(2) 106.60(6)

C(21)-S(9) 1.785(2) C(18)-S(7)-C(19) 96.18(9)

C(26)-C(27) 1.378(4) C(18)-S(8)-C(20) 96.15(9)

C(28)-O(4) 1.199(2) C(19)-S(9)-C(21) 103.84(9)

Cu-S(1) 2.304(5) C(20)-S(10)-C(28) 99.58(9)

Cu-S(6) 2.325(6) C(36)-C(35)-C(37) 124.3(8)

Cu-I(1) 2.627(3) C(35)-C(36)-C(37)#2 131.6(9)

Cu-I(1)#1 2.645(3) C(36)#2-C(37)-C(35) 98.6(8)

Cu-Cu#1 3.051(5) C(3)-C(2)-S(4) 119.22(1)

I(1)-Cu#1 2.645(3) C(3)-C(2)-S(2) 115.09(1)

C(35)-C(36) 1.314(9) S(4)-C(2)-S(2) 125.68(1)

C(35)-C(37) 1.483(1) C(2)-C(3)-S(3) 117.23(1)

C(36)-C(37)#2 1.322(1) C(2)-C(3)-S(5) 126.12(1)

C(37)-C(36)#2 1.322(1) S(3)-C(3)-S(5) 116.58(1)

O(1)-C(4)-C(5) 125.73(2)

S(1)-C(1)-S(3) 124.56(1) S(3)-C(1)-S(2) 114.54(9)

S(1)-C(1)-S(2) 120.90(1)

(Symmetry transformations used to generate equivalent atoms; #1 -x+1,-y,-z+1 ; #2 -x+1,-y+1,-

z+1)
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Figure C-5: Block structure showing dimers kept together by packing forces. The network is

formed by a succession of inorganic and organic layers.

Another view shows a network formed by a succession of inorganic (Cu2I2 layers)

and “organic” (organic layers are formed by dithiolene-like neutral ligands) layers.

C.4.1.2 Synthesis and characterisation of L1H2-CuI

L1H2-CuI was obtained as a yellow-orange powder from the concentrated

acetronitrile-THF solution of the reaction mixture. Attempts to grow crystals were

unsuccessful and a rapid formation of agglomerates within a period of minutes was

always observed. But, elemental analysis and IR permits to conclude in a 2:1 ligand-

metal ratio and a coordination mode via the sulfur of the thiocarbonyl bond. Table C-4

shows the analytical data obtained from the IR and UV-Vis analysis.

Table C-4: Analytical data from IR and UV-Vis measurements for L
1
H2-CuI.

L
1
H2 L

1
H2-CuI

IR  (C=S) in cm
-1
 1074 1033

 (O-H) in cm
-1
 3272 3245

Uv-Vis (CH2Cl2) 
max

in nm (ε) 380 (47820) 380 (24840)
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The band at 1074 cm-1 corresponding to the thiocarbonyl function (C=S) is shifted to

lowers values in the complex (1033 cm-1). This means that the complex (L1H2-CuI) is

formed by coordination via the C=S. The O-H vibration bands are situated in the

3200 cm-1 region showing a hydrogen bonding network (non-bonded or free O-H are

generally localised around 3500 cm-1 141). The absorption spectrum of the complex

shows no significant difference compared to that of the free ligand. Both L1H2-CuI

and the free ligand L1H2 present a maximum at 380 nm. The only difference is the

lower extinction coefficient in L1H2-CuI (24840 M-1.cm-1 for L1H2-CuI against 47820

M-1.cm-1 for L1H2).

C.4.1.3 Synthesis and characterisation of L2H2-CuI

C.4.1.3.1 IR and UV-Vis results for L2H2-CuI

The Table C-5 gives some analytical data on L2H2-CuI, and L2H2 for comparison.

Table C-5: Analytical data from IR and UV-Vis measurements.

L
2
H2 L

2
H2-CuI

 (C=S) in cm
-1
 1065 1028

IR  (C=O) in cm
-1
 1692 1685

 (O-H) in cm
-1
 2800-3273 br 2800-3272 br

Uv-Vis (CH3CN) 
max

in nm (ε) 378.6 (40560) 376 (9090)

The shift of the C=S at 37 cm-1 is representative of a coordination involving the C=S

moiety. This shift is intermediate between the value of 29 cm-1 and 43 cm-1 observed

in the cases of L0-CuI and L1H2-CuI, respectively. The absorption relative to the

carboxyl functional group remains unchanged indicating that these groups are not

engaged in the coordination around the copper center, although their chelating ability

is well established. The broad band observed between 2800 and 3300 cm-1 reveals

that the carboxyl groups are engaged in hydrogen bonding networks.
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C.4.1.3.2 Structural description of L2H2-CuI

The crystal structure of the L2H2-CuI will not be presented here because of the poor

quality of the crystals rendering the structure difficult to be resolved. But the analysis

of this latter confirms a similar arrangement than that in L0-CuI fraction.

C.4.2 Synthesis and characterisation of mercury (II)-dithiolene

complexes

In this section, we will present the synthesis and characterisation of dithiolene

complexes bearing the ligand L1H2 and mercury halide (HgI2, HgCl2). This work was

started after we observed that coordination complexes of dithiolene-like neutral

ligands based on neutral DMIT derivatives and mercury halide are ligated through the

thiocarbonyl function when the 4,5-bis(methylthio)-1,3-dithiole-2-thione is reacted

with mercury halide.142 (Scheme C-3)

Scheme C-3: 1-D polymeric molecular structure resulting from reaction of 4,5-bis(methylthio)-

1,3-dithiole-2-thione with HgI2.
142

C.4.2.1 Synthesis and characterisation of L1H2-HgX2 (X= I and Cl)

L1H2-HgX2 (X= I, Cl) were obtained by reaction between L1H2 and HgX2 in a ratio

1:1. Ligand L1H2 is too sensitive to heat (or high temperature) starting to decompose

between 50-60°C (melting point for L1H2 were found at 65-67°C 48 and 58-60°C 96).
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Therefore, after dissolving the HgX2 (in toluene at 110°C), the reaction temperature

should be lowered down to 50-60 °C before adding the THF solution of L1H2. No

complex was isolated when the reactants are mixed at room temperature. A rapid

cooling of the mixture gives rise to the formation of aggregates.

Scheme C-4: Reaction pathways for the synthesis of L
1
H2-HgX2 complexes.

After stirring at 60° C during 1 h, the reaction mixture was slowly cooled down (NB:

the flask was maintained under stirring under the oil bath, to avoid rapid cooling) and

filtered. The filtrate was then reduced under vacuum until the solution gets turbid, and

after cooling, yellow crystals (for L1H2-HgX2) were grown within a period of 2-3 days.

(NB: crystals could be also obtained at room temperature).

In the case of L1H2-HgCl2, we failed in growing crystals suitable for X-ray

measurements. But analysis of the isolated product reveals a similar ratio metal:

ligand as in L1H2-HgI2 but with a THF solvate.

Table C-6: Analytical data from IR and UV-Vis measurements for L
1
H2-HgX2 (X= Cl and I)

96
.

L1H2 L1H2-HgI2 L1H2-HgCl2. 0.25 THF

IR  (C=S) in cm-1 1074 1031 1015
 (O-H) in cm-1 3272 3240 3229

Uv-Vis (CH2Cl2) max in nm 380 (47820) 380 (11820) 380 (7280)

IR analysis of both L1H2-HgI2 and L1H2-HgCl2 illustrates the coordination of ligand

L1H2 via the thiocarbonyl function as observed in the previous copper compounds

(see paragraph C.4.1.1.1.). The shift of the C=S bond is more pronounced for L1H2-

HgCl2 (59 cm-1) than for L1H2-HgI2 (43 cm-1) and both are more significant than in the

copper derivatives described above (shifted between 29 and 43 cm-1). The OH bands

around 3200 cm-1 illustrates that the complexes exhibit hydrogen-bonded networks.

This is confirmed by the crystal structure analysis (see below).
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C.4.2.2 Crystal structure determination of L1H2-HgI2

The single crystal X-ray diffraction analysis was performed on a Stoe imaging plate

diffractometer (IPDS) at -70 °C, using graphite monochromated Mo Kα radiation (λ =

0.71073 Å). The crystal structures were solved by direct methods and refined by full-

matrix least squares on F2 using the SHELX software package for crystal structure

solution and refinement.90 All non-hydrogen atoms were refined with anisotropic

thermal parameters in the later cycles of refinement. The hydrogen atoms were

placed in idealized positions and refined using the riding model with general isotropic

temperature factors.96 Table C-7 shows the crystallographical data and structure

refinement for L1H2-HgI2.

C.4.2.3 Crystal structure description of L1H2-HgI2

Since we have additional hydroxyl groups in L1H2, hydrogen bonding networks could

be formed once the mercury is coordinated via the thiocarbonyl and giving rise to

supramolecular structure with a sustainable di- or tri-dimensional organisation.

Table C-7: Crystal data and structure refinement for L
1
H2-HgI2.

Compound L1H2-HgI2

Identification code sh2303

Empirical formula C7 H10 Hg I2 O2 S5

Formula weight 740.84

Temperature 200(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 4.4760(10) Å = 116.30(3)°

b = 13.973(3) Å = 92.86(3)°

c = 14.900(3) Å  = 93.97(3)°

Volume 830.0(3) Å3

Z 2

Density (calculated) 2.964 Mg/m3
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Absorption coefficient 13.607 mm-1

F(000) 668

Crystal size 0.4 x 0.2 x 0.18 mm3

Theta range for data collection 2.75 to 24.00°

Index ranges -4<=h<=5, -15<=k<=15, -16<=l<=16

Reflections collected 5130

Independent reflections 2394 [R(int) = 0.0464]

Completeness to theta = 24.00° 92.0 %

Absorption correction Numerical

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2394 / 0 / 156

Goodness-of-fit on F2 1.027

Final R indices [I>2sigma(I)] R1 = 0.0248, wR2 = 0.0627

R indices (all data) R1 = 0.0273, wR2 = 0.0637

Largest diff. peak and hole 1.374 and -1.154 e.Å-3

The molecular structure with the atom’s numbering is shown in Figure C-6.

Figure C-6: Molecular structure with the atom’s numbering for L
1
H2-HgI2.

Single crystal X-ray diffraction reveals that L1H2 is complexed on Hg (II) via the sulfur

of the thiocarbonyl function (Figure C-6). This coordination mode has already been

observed with other dithiolene-like neutral derivatives.143, 144 Moreover, a recent study

based on theoretical and experimental data, has shown that in the case of the related
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4,5-bis(methylthio)-1,3-dithiole-2-thione ligand, the formation of the thiocarbonyl

adduct is preferred rather than the dithioether adduct resulting from a chelating

mode.142

Surprisingly, the side chains bounded to C2 and C3 adopt an anti position regarding

to the DMIT plane (compared to a syn position in L1H2). Therefore, no intramolecular

hydrogen bond is observed. Intermolecular hydrogen bonds with O•••O distance of

2.724(1) Å and O•••H•••O angles of 168.03(4)°, in the same order of magnitude to

those observed in the hydrogen bonds network of L1H2, organize the adduct as a

centrosymmetrical dimer in the solid state, thus generating a 22-membered cycle

(Figure C-7).

The Hg-S distance (2.812(2) Å) is longer than that reported for HgI2 ligated with

Me2DMIT (2.583(4) Å)142 or 4,5-ethylenedithio-1,3-dithiole-2-thione (2.567(2) Å).144

Both Hg-I distances are similar (2.633(9) and 2.655(8) Å) and the I-Hg-I angle of

154.08(1)° reflects a distorted trigonal planar environment around the mercury

center.

C.4.2.4 Supramolecular description

Figure C-7 shows the unit cell of L1H2-HgI2 composed of dimers. Every monomer is

connected via hydrogen bonding to its “frontal” neighbour situated more or less in the

same plane and simultaneously to the neighbour situated under or over this plan.

Figure C-8 gives a view on the structure with the bonding mode through the

hydrogen.
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Figure C-7: Unit cell showing the crystal packing in L
1
H2-HgI2.

An additional weaker intermolecular (Hg•••I) contact of 3.333(1) Å with the iodo ligand

of a second motif adds a further lozange like HgI4 coordination to the trigonal SHgI2

coordination in an almost perpendicular orientation (Figure C-8). Overall, the bonding

situation encountered for L1H2-HgI2 is quite different to that reported for

[HgI2(Me2dmit)]n. In this later compound, one iodo ligand in a terminal mode and one

in an almost symmetrically bridging mode between two Hg atoms are clearly

identified and the coordination around the Hg centre is distorted tetrahedral.142

Besides the hydrogen bonding network also intermolecular Hg•••I interactions seem

to contribute to the stabilisation of the network as may be seen from Figure C-8.

In Figure C-8 we can see several details. First, the DMIT moieties are planar and

stacked through  interaction. The plane to plane separation amounts to 3.65 Å,

the shortest S•••S distance being 3.820(1) Å. The Hg•••Hg separation of ca. 4.476(1)



Chapter C - Supramolecular metallo-dithiolene frameworks

88

Å is far too long to take into account any “mercurophilic” interaction.

Figure C-8: Packing diagram viewed along the a axis showing the weak intermolecular

interaction Hg•••I (dashed lines) (for clarity only neighbouring iodine atoms are represented).

Hydrogen bonding, -and S•••S Van-der-Waals interactions are altogether present

both in free ligand L1H2 and L1H2-HgI2 with similar strengths. The major impact of

HgI2 complexation results in the anti orientation of hydroxylethyl side chains and

consequently in the rupture of the intramolecular hydrogen bonds. The propensity of

HgI2 to build-up chains via 2-iodo bridges may be at the origin of the conformational

change. Indeed, a weaker bridging contribution of one iodo ligand was identified in

L1H2-HgI2. The relative orientation of the adjacent dmit planes becomes less

favourable for a syn orientation of the hydroxyethyl substituents. So, they adopt now

an anti conformation minimizing the steric hindrance. In the free ligand, the oxygen

atoms are located at 2.70(2) and 3.02(2) Å from the dmit plane, whereas theses

distances amount to 2.20(2) and 1.62(1) Å in the adduct (Scheme C-5).

The supramolecular organisation can be imagined as resulting from three different

steps as outlined in the following Scheme C-5.
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Scheme C-5: (a) Schematic representation and crystal structure showing the stacking of L
1
H2

((a) and (d)) and L
1
H2-HgI2 ((c) and (e)); the terminal iodo ligands and hydrogen atoms are

omitted for clarity. (b) Stretching of the HgI2-induced solid state rearrangement of the -

stacking interactions of ligated L
1
H2.

Channel formation (Figure C-9) is also promoted by weak inter-dimer hydrogen bond

along the a axis with O•••O distances of 2.727(9) Å and O•••H•••O angles of

100.86(3)°.
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Figure C-9: Channels formation view along the a axis.

C.4.3 Synthesis and characterisation of gold (I)-dithiolene complexes

To follow our idea on the preparation of supramolecular structure incorporating

dithiolene-like neutral ligands and metal centers with d10 electronic configuration, we

have also investigated on gold (I). Apart from its fascinating properties109, 145 this

noble metal has gained an increasing interest illustrated by the “explosive growth” 109

of the literature on gold research. Our study was oriented on ligands L1H2 and L2H2

which possess, on the one hand, hydroxyl functional group for potential hydrogen

bonding interaction, and on the other hand, a DMIT moiety able of coordinating the

gold center via the thiocarbonyl function as already observed by other soft metals

(copper and mercury , see section C.4.1 and C.4.2, respectively). In the case of gold,

we can introduce another type of weak interaction (aurophilic) in addition to the other

weak interactions (, S•••S and hydrogen bonding interactions), in which case

competition can occur.
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C.4.3.1 Background

Gold occupies a central position in the elements of the “d10 Avenue”. It was classified

as a potential “cure-all” for diseases many centuries ago146, and possess antiarthritic

properties. Its central position in chemical science is partly due to the bonding

interactions between gold centers in different coordination modes varying from two-

coordinated to clustering. The metal•••metal interaction in the case of gold has been

attributed to relativistic effects.147, 148 As we can see in Figure C-10, gold occupies the

local minimum in the plot of the ratio rrel/rnon-rel versus atomic number (Z) of the

element (rrel : relativistic radius, rnon-rel : non-relativistic radius of the valence

electrons).

Figure C-10: The relativistic contraction of the 6s shell in the elements Cs (Z=55) to Fm

(Z=100)
147

.

The relativistic effect in gold can be summarised in 3 points: i) s-orbital and (-to a

smaller extent-) p-orbital contraction, ii) spin –orbit coupling and iii) d-orbital

expansion.109
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C.4.3.2 Gold•••Gold interaction energy

This attractive gold•••gold interaction has been termed “Aurophilicity” by Schmidbaur

et al.115 This interaction is energetically in the same order than a hydrogen bonding

interaction. Theoretical calculations combined with structural investigations have

allowed to estimate it at ca. 6-12 kcal/ Au•••Au at gold distances of 3.0±0.2 Å.149-151

Scheme C-6: Phosphino-substituted ylides in syn/anti (P1) and syn/syn (P2) conformation as

well as the resulting gold complex (P3), used for estimation of a gold…gold interaction

energy.
150

Such a determination is based on the fact, that from phosphino-substituted ylide in

syn/anti conformation (P1) to syn/syn conformation (P2), corresponding to a rotation

around the P-C axis, an activation energy of 9 kcal.mol-1 is needed. Since the gold

complex (P3) formed by gold•••gold interaction adopt the same syn/syn conformation,

the Au•••Au energy is estimated to be more or less the energy needed to bring the

ylide from a syn/anti to a syn/syn conformation (Scheme C-6).150 This was, of course,

not the only model used for estimation of the gold•••gold. Other investigations based

on gold-phosphine complexes have determined similar AuI•••AuI interaction strengths

between 29 and 46 kJ.mol-1 for intermolecular gold-gold distances lying between 3.00

and 3.12 Å. 152-154 Gold centers do attract mutually and this attraction has a strength

comparable with hydrogen bonding. It follows that like hydrogen bonding interaction,

the mutual attraction between gold centers could be used, in a certain extent, to

build-up supramolecular complexes via self-assembly. But more interesting, is the

combination of these two weak forces (aurophilicity and hydrogen bonding) within the

same complex, since competition or synergy between these two energetically

equivalent forces can take place.
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C.4.3.3 Synthesis and characterisation of L1H2-AuCl

Gold complexes containing ligands functionalised by alcohol headgroup are not

new,149, 155 but those combining dithiolene-like neutral ligands functionalised by

alcohol headgroup are, to the best of our knowledge, unknown.

L1H2-AuCl was obtained by ligand exchange reaction from L1H2 and AuCl(tht) as

reactants. The commonly used gold precursor [AuCl(tht)] (tht = tetrahydrothiophene)

is known for the lability of the sulphide ligand, facilitating its substitution by other

neutral or anionic ligands.156 The synthetic pathway is outlined in Scheme C-7.

Scheme C-7: Synthetic pathway for ligand displacement reaction between AuCl(tht) and L
1
H2.

Thus, L1H2 reacts with [AuCl(tht)] in a 1:1 metal to ligand ratio at room temperature to

afford yellow crystals of L1H2-AuCl. The nature of the products was established by

elemental analysis and single crystal X-ray diffraction study. Once more, the

coordination occurred exclusively via the thiocarbonyl (C=S) group of the DMIT .

C.4.3.3.1 IR and UV-Vis results for L1H2-AuCl

As in precedent cases (complexes with CuI and HgII) we have reported in Table C-8

analytical data useful to approve the coordination mode and the reactivity of L1H2

towards Au (I).

Table C-8: Analytical data from IR and UV-Vis measurements.

L1H2 L1H2-AuCl

 (C=S) in cm-1 1074 1008
IR 

 (O-H) in cm-1 3272 3252

Uv-Vis (Solvent *) max in nm 380 (47820) 424 (11782)

Solvent *: CH2Cl2 for L1H2 and THF for L1H2-AuCl.
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The first evidence of the coordination through the thiocarbonyl group (C=S) is given

by the considerable shift of this later in the IR spectrum. This shift averages the 66

cm-1 compared to the free ligand and illustrates probably a relatively strong

interaction between the sulfur atom (of the C=S) and the gold center. The presence

of a broad band in the region around 3200 cm-1 indicates that the alcohol groups are

engaged in a hydrogen bonding arrangement.

The absorption spectrum of L1H2-AuCl exhibits a maximum at 424 nm, whereas it

appears at 380 nm for L1H2. This difference indicates that the presence of Au(I) has

an influence in the absorption transition.

C.4.3.3.2 Crystal structure determination of L1H2-AuCl

Yellow crystals of L1H2-AuCl were grown within a period of several days from a

concentrated acetone solution of the reaction mixture. The single crystal X-ray

diffraction analysis was performed on a Stoe imaging plate diffractometer (IPDS) at

293 K, using graphite monochromated Mo K radiation  0.71073 Å). All structures

were solved applying direct and Fourier methods (SHELXL-97).90 The non-hydrogen

atoms were refined anisotropically. All of the H-atoms were placed in geometrically

calculated positions and to each was assigned a fixed isotropic displacement

parameter based on a riding-model. Refinement of the structure was carried out by

full-matrix least-squares methods based on Fo
2 using SHELXL-97.90

C.4.3.3.3 Crystal structure description of L1H2-AuCl

Complex L1H2-AuCl displays a supramolecular architecture, which consists of a

dimeric structural motif build through aurophilic interaction. The dimeric configuration

results from a surprisingly close aurophilic contact of 3.078(6) Å between the two

metal centers as depicted in Figure C-11. This anti-parallel orientation of the ligand

towards the Au•••Au axis remembers that found in the n-alkylisonitrile complexes of

gold (I) chloride, C3H7NCAuCl.157 The Au•••Au contact is about 3.547(1) Å in that

case. 157 This kind of short Au•••Au contact in L1H2-AuCl is rare for non-supported

aurophililic interaction.
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Figure C-11: Molecular structure with atoms numbering for L
1
H2-AuCl (for clarity hydrogen

atoms of the ethyl groups are omitted).

A similar arrangement in anti-parallel pairs was reported for the thione complex

[AuCl(C3H4S3)] (C3H4S3 = ethylenthiocarbonate) with a Au•••Au separation of 3.366

Å.158 More recently, an Au•••Au contact of 3.149(7) Å was established in the dimeric

association of two gold(I) macrocycles.159 The S(1)-Au-Cl angle about 174 ° is slightly

deviated from linearity and could be accounted for a possible repulsion between S(1)

and the chloride (Cl) atom situated in direct neighbourhood. In gold (I) complexes

( (TPA)AuX; where TPA=1,3,5-triaza-7- phosphaadamantanetriylphosphine and X=

Cl, Br, I) the gold-gold interaction has been found to increase proportionally to the

softness of the ligand X.160

C.4.3.3.4 Supramolecular description

The presence of hydroxyl groups in L1H2 suggests that we will probably deal with

supramolecular structure in L1H2-AuCl. The combination of the metal•••metal

interaction with other secondary non-covalent interactions such as hydrogen

bonding, in thiobarbiturate gold(I) complexes155, and  interaction, in gold(I)

thiolate complexes161, has been proven to be an interesting approach for designing

supramolecular networks. It is not always obvious that association of ligands bearing
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hydrogen bonding initiator (OH or COOH) and gold(I) fragments lead to

supramolecular structures built through hydrogen bonding and gold-gold attraction

simultaneously. The thiobarbituric acid is a good example to illustrate this later point

(see Scheme C-8). Using PPh3-Au-(O2CCF3) as a gold fragment, Puddephatt et.al.155

have shown that only hydrogen bonding helps the molecules to self-assemble in the

solid state. In contrast, the use of (O2CCF3)-Au-Ph2P-(CH2)3-PPh2-Au-(O2CCF3) as a

gold (I) fragment gives rise to an organised structure where both hydrogen bonding

and aurophilic interaction are present (Scheme C-8).155

Scheme C-8: Gold(I)-thiobarbituric complexes involving hydrogen bonding interaction and

aurophilic interaction. In A1, the obtained structure is build through hydrogen bonding, while in

A2 both the hydrogen bonding and aurophilic interaction are present (dashed lines indicate the

presence of hydrogen bonded N-H•••O or O-H•••N).
155

In our case the hydroxyl group of the thioethanol group readily assists the self-

assembly through hydrogen bonding interaction. But, we observe an aurophilic

interaction although we have not used a bridging ligand to bring the gold centers in

close proximity. This illustrates once more, the fascinating behaviour of gold and its

intriguing position in the periodical table of the elements.

In terms of crystal engineering, we could propose the following Scheme C-9, as

illustrating the process taking place during the self-assembly and giving rise to the

supramolecular network (Figure C-12).
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Scheme C-9: Proposed scheme based on three steps for explanation of the supramolecular

self-organisation.

Step1: the ligand is coordinated to the gold center via the thiocarbonyl group

as already observed in other thione function. This coordination is activated via

displacement of the labile tht from the AuCl(tht) fragment. Having a look on the
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solid state organisation of ligand L1H2 we can see that the hydrogen bonding

interaction (intra and inter-molecular) are also already present. From this observation,

we have represented L1H2 as displayed in step1 (Scheme C-9). This statement is

also supported by the fact that the hydrogen bonding network is unchanged by the

coordination of the thiocarbonyl bond on the metal center. The arrangement resulting

from this first step (Step1) is a combination of Au-S interaction and hydrogen bonding

(O-H•••O) interaction.

Step2: Gold atoms are known to exercise strong attractions termed as

aurophilic interactions. Therefore we can imagine that such an attraction between two

gold atoms in different L1H2-AuCl fragments will lead to the formation of a network. In

this network we can recognize at least three types of non-covalent interactions

namely the gold•••gold interaction, the Au-S interaction and the hydrogen bonding

interactions. The resulting network is dominated by three kinds of non-bonding

interactions: intramolecular one (blue dashed lines), aurophilic interaction (wavy

bond) and intermolecular one (red dashed lines), see Scheme C-9.

If we have a look on the structure as presented in Figure C-12, we could also imagine

that regular distance between adjacent dimers are resulting from interaction, but

the shortest S-S contact lying between 6.76 Å excludes possible stacking between

molecules. Then, we can conclude that the resulting supramolecular structure is

predominately formed via aurophilic interaction and hydrogen bonding, a contribution

of intramolecular S—S contact in the dmit moiety can be also envisaged.
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Figure C-12: Structure of L
1
H2-AuCl showing the resulting supramolecular networks built

through combination of different non-bonding interactions.

NB: As member of the group of coinage metals, AgI presents also similar behaviour

compared to CuI and AuI. To complete this group of the coinage metals, we have

also desperately attempted to isolate silver complexes of ligands L1H2 and L2H2

without success. Reaction of silver nitrate (AgNO3) or silver p-toluenesulfonate

(AgO3S(C6H4)CH3) with L1H2 or L2H2 gives rise to unstable oily products which are

difficult to crystallise and the elemental analysis results are not convenient enough to

propose a structure.

C.4.3.4 Synthesis and characterisation of L2H2-AuCl

Like in L1H2-AuCl complex, the L2H2-AuCl complex was obtained by ligand

exchange reaction between L2H2 and AuCl(tht). This reaction is performed in
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acetone and the L2H2-AuCl complex is isolated with acetone molecules (CH3COCH3)

as solvates. No crystals could be obtained by performing the reaction into THF. The

synthetic pathway is outlined in Scheme C-10.

Scheme C-10: Synthetic pathway for ligand displacement reaction between AuCl(tht) and L
2
H2.

L2H2 reacts with [AuCl(tht)] in a 1:1 metal to ligand ratio at room temperature to afford

yellow crystals of L2H2-AuCl. CH3COCH3. Similarly to L1H2-AuCl, the coordination

occurred exclusively via the thiocarbonyl (C=S) group of the DMIT moiety and one

carboxylic group is further linked to an acetone molecule solvate by intermolecular

hydrogen bonding interaction.

Table C-9 represents analytical data useful to approve the coordination mode and

the reactivity of L2H2 towards Au (I).

Table C-9: Analytical data from IR and UV-Vis measurements.

L2H2

L2H2-AuCl.
(CH3COCH3)

 (C=S) in cm-1 1065 1013
IR ,(C=O) in cm-1 1692 1694

 (O-H) in cm-1
2800-3273 br

2800-3377 br

Uv-Vis (THF) max in nm 378.6 (40560). 416 (12820)

As seen in the IR spectrum, the thiocarbonyl group (C=S) is shifted about 52 cm-1

compared to the free ligand and illustrates probably a relatively strong interaction

between the sulfur atom (of the C=S) and the gold center. The presence of a broad

band in the region around 2800-3377cm-1 indicates that the acidic group is engaged

in a hydrogen bonding arrangement.

As previously observed in the L1H2-AuCl complex, the absorption peak of the L2H2-

AuCl complex in the UV-Vis spectrum appears at 416 nm, compared to 378 nm for
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L2H2 and indicates that the presence of Au(I) has an influence in the absorption

transition.

C.4.3.4.1 Crystal structure description of L2H2-AuCl

The molecular structure with the atom numbering for L2H2-AuCl is shown in Figure

C-13 and the crystallographic data are reported in Table C-10.

Figure C-13: Molecular structure with atoms numbering for L
2
H2-AuCl.(CH3COCH3)(for clarity

hydrogen atoms of the ethyl groups are omitted).

Table C-10: Crystal data and structure refinement for L
2
H2-AuCl.

Identification code sh2793

Empirical formula C13 H18 Au Cl O6 S5
Formula weight 662.99
Temperature 153(2) K
Wavelength 0.71073 Å
Crystal system Triclinic

Space group P1

Unit cell dimensions a = 5.6607(3) Å = 71.359(2)°.

b = 14.1790(6) Å = 88.234(3)°.

c = 14.3137(6) Å  = 85.486(3)°.
Volume 1085.20(9) Å3

Z 2
Density (calculated) 2.029 Mg/m3
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Absorption coefficient 7.408 mm-1

F(000) 640
Crystal size 1.21 x 0.09 x 0.06 mm3

Theta range for data collection 1.50 to 32.41°.

Index ranges
-8<=h<=8, -17<=k<=21, -
19<=l<=21

Reflections collected 25482
Independent reflections 7708 [R(int) = 0.0552]
Completeness to theta = 32.41° 98.8 %
Absorption correction Multiscan
Max. and min. transmission 0.6818 and 0.0403
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7708 / 0 / 235
Goodness-of-fit on F2 1.054
Final R indices [I>2sigma(I)] R1 = 0.0448, wR2 = 0.0915
R indices (all data) R1 = 0.0691, wR2 = 0.0995

Largest diff. peak and hole 1.801 and -3.112 e.Å-3

The same dimeric structural motif build through aurophilic interaction observed in the

complex L1H2-AuCl is also identified in the case of the complex L2H2-AuCl. Two

remarkable differences are the presence of the acetone solvates and the length of

the Au•••Au contact. This later is about 3.270(4) Å, and is slightly longer than the

Au•••Au contact of 3.078(6) Å found in L1H2-AuCl.

The S(1)-Au-Cl angle about 176.37(5)° is slightly deviated from linearity and is

probably a result of the a possible repulsion between S(1) and the chloride (Cl) atom

situated in direct neighbourhood. Since these two structures are similar (at least in

their dimeric motif) the structural description of the L2H2-AuCl complex will not be

completely specified here. Some selected bond lengths and angles are reported in

Table C-11.

Table C-11: Bond lengths [Å] and angles [°] for L
2
H2-AuCl.

Au-S(1) 2.264(13) Cl-Au-Au#1 91.74(4)
Au-Cl(1) 2.274(1) C(1)-S(1)-Au(1) 103.24(2)
Au-Au#1 3.270(4) C(1)-S(3)-C(3) 96.7(2)
S(1)-C(1) 1.697(5) C(1)-S(2)-C(2) 96.3(2)
S(3)-C(1) 1.688(5) C(2)-S(4)-C(4) 100.7(2)
S(3)-C(3) 1.740(5) C(3)-S(5)-C(6) 99.4(2)
S(2)-C(1) 1.715(5) S(3)-C(1)-S(1) 125.4(3)
S(2)-C(2) 1.739(5) S(3)-C(1)-S(2) 115.0(3)
S(4)-C(2) 1.750(5) S(1)-C(1)-S(2) 119.6(3)
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S(4)-C(4) 1.810(5) C(5)-C(4)-S(4) 114.5(3)
S(5)-C(3) 1.758(5) O(1)-C(5)-O(2) 124.7(5)
S(5)-C(6) 1.800(6) O(1)-C(5)-C(4) 124.7(5)
C(4)-C(5) 1.517(7) O(2)-C(5)-C(4) 110.5(4)
C(5)-O(1) 1.214(6) C(3)-C(2)-S(2) 115.7(4)
C(5)-O(2) 1.309(6) C(3)-C(2)-S(4) 123.9(4)
C(2)-C(3) 1.348(7) S(2)-C(2)-S(4) 120.3(3)
C(6)-C(7) 1.501(8) C(2)-C(3)-S(3) 116.2(4)
C(7)-O(3) 1.196(7) C(2)-C(3)-S(5) 125.9(4)

C(7)-O(4) 1.327(7) S(3)-C(3)-S(5) 117.8(3)
O(5)-C(9) 1.230(7) C(7)-C(6)-S(5) 115.1(4)
C(9)-C(8) 1.487(9) O(3)-C(7)-O(4) 122.6(6)
C(9)-C(10) 1.489(9) O(3)-C(7)-C(6) 126.6(6)
O(6A)-C(12A) 1.457(2) O(4)-C(7)-C(6) 110.7(5)
C(11A)-C(12A) 1.492(2) O(5)-C(9)-C(8) 122.3(6)
C(12A)-C(13A) 1.562(2) O(5)-C(9)-C(10) 119.4(6)
O(6B)-C(12B) 1.649(2) C(8)-C(9)-C(10) 118.3(6)
C(12B)-C(13B)#2 1.51(3) O(6A)-C(12A)-C(11A) 114.8(11)
C(12B)-C(11B) 1.58(2) O(6A)-C(12A)-C(13A) 128.5(11)
C(13B)-C(12B)#3 1.51(3) C(11A)-C(12A)-C(13A) 115.0(11)

C(13B)#2-C(12B)-C(11B) 125.6(16)
S(1)-Au-Cl 176.37(5) C(13B)#2-C(12B)-O(6B) 134.3(16)
S(1)-Au-Au#1 90.30(3) C(11B)-C(12B)-O(6B) 100.1(12)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z

#2 x+1,y,z #3 x-1,y,z

C.4.3.4.2 Supramolecular description of L2H2-AuCl: comparison with

L1H2-AuCl

We have previously seen that the combination of the metal•••metal interaction with

other secondary non-covalent interaction such as hydrogen bonding can be, to a

certain extent, an interesting approach for designing supramolecular networks.

Similarly to the precedent case, the anti-parallel orientation of the ligand towards the

Au•••Au axis is also identified in the crystal structure.

However, the presence of solvent molecules gives rise to an orientation growth

completely different to that we observed in the L1H2-AuCl complex:

a) In the L1H2-AuCl complex, the gold-gold attraction ensures the dimerisation

whereas the two hydroxyl groups (attached to the DMIT) contribute to the

direction of growth through intra- and inter-molecular hydrogen bonding

interactions leading to the formation of a sheet-like network (Scheme C11).
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Scheme C-11: Formation of a sheet like structure in the case of L
1
H2-AuCl.

b) In the case of L2H2-AuCl complex, a similar gold-gold attraction ensures the

dimerisation, but only one carboxyl group contributes to the direction growth

through intermolecular hydrogen bonding , the second carboxyl group is

hampered by the acetone molecule and do not therefore participate in the

growing process. As a result of this blockade, a one dimensional polymer-like

arrangement is obtained instead of the sheet-like network.
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Scheme C-12: Formation of a one dimensional polymer-like structure in L
2
H2-AuCl complex.

Another projection of this structure allows identifying a stair-like structure arranged

through a succession of Au•••Au interactions and hydrogen bonding interactions (with

a R2
2 (8) arrangement) (see Figure C-14).
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Figure C-14: Projection of the molecular structure of L
2
H2-AuCl complex showing a stair-like

structure.

These results show that the combination of ligand bearing functional groups suitable

for non-bonding interactions and aurophilic interaction lead to fascinating

supramolecular structures. Structural orientations have been also induced, by the

presence of a coordinating solvent for example. The aurophilic interaction seems to

be a driving force in the formation of these gold complexes, but the hydrogen

bonding interactions play also a non-negligible role.

C.5 Photophysical properties of the ligand based metal (d10)

complexes: luminescence

Coordination polymers presenting luminescent properties have been widely studied

because of their potential application in optoelectronic area.105, 122, 162-164
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C.5.1 Generalities

Photoluminescent properties are often affected by the metal(d10)-metal(d10)

interaction (the presence of metal-metal interaction is related to the solid state

luminescence in some cases131, 139). However in other cases no metal-metal

interaction is needed for a complex to luminesce (some mononuclear complexes are

luminescent, although no metal-metal interaction has been evidenced123). As

generally observed, emissions are known to involve ligand-centred (IL), metal-ligand

charge transfer (MLCT) or ligand-metal charge transfer (LMCT) and metal-centred

transitions. While the metal centred transition is mostly related to the presence of

metal-metal interaction, the others transitions are not obviously attributed. A

theoretical investigation is generally needed, to get insight into the origin of the

luminescence in such complexes.

C.5.1.1 Luminescence in copper (I) complexes

Copper(I) complexes present potential application in the domains of optoelectronic

and are interesting because of their low cost compared to others luminescent

transition metals based complexes (PtII, PdII, RhII etc…).108 The first observation of

the luminescent in copper (I) complexes dates back to 1981 from Hardt et.al.140, and

earlier in 1970 from Ziolo et al. 123 who have observed luminescence in the family of

CuI • L (L= ligand) adducts. Later on, crystallographic studies combined with DFT

calculations have brought more light to assignment of the excited states responsible

of the luminescence106, 119, 138, 139, 165-168.

For example, in the case of tetranuclear copper (I) complexes (Cu4I4-py4) possessing

a tetrahedral core with significant metal-metal interactions, the strong lower energy

emission was assigned to a triplet cluster-centred excited states, a combination of

iodide to copper charge transfer (XMCT) and d-s transitions, and the weaker higher

energy to a triplet halide-to-ligand charge transfer (3XLCT).139

The case of copper (I) complexes (Cu2I2-Lx, x= 2 or 4) possessing a rhombohedral

core has been investigated to lesser extends. In the case of luminescence arising

from an intraligand transition, a comparison between the ligand emission and the

complex emission is sufficient to conclude in the nature of the luminescence.124
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C.5.1.2 Luminescence in mercury (II) complexes

Compared to copper (I), mercury (II) complexes have been poorly investigated for

their photophysical interest.169 Mercury itself is known to quench luminescence in

ligand by heavy atom effect. The number of mercury (II) complexes displaying metal-

metal interactions is relatively low compared to other d10 elements (CuI, AuI…).114 But

mercury ions (Hg2+) are known to enhance the inter system crossing (ISC) from a

singlet state to a triplet state.169

Scheme C-13: Example of mercury (II) polyyne polymers showing intraligand transitions.
169

Despite the paucity of literature reports on their photophysical properties, intraligand

emissions are identified in metallo-dithiolene complexes.170 Similar results have been

observed in the case of mercury (II) polyyne polymers, where the emissions were

attributed to intraligand transitions.169 The metal-metal contacts in the range of 3.738

and 4.183 Å interactions were in the upper limit corresponding to metallophilic

interaction.

C.5.1.3 Luminescence in gold (I) complexes

Gold is the most investigated system in the metal (d10) based complexes. Because of

its various structural topology in the solid state combined with the highly luminescent

properties, there have been increasing interests notified by the number of report on

gold chemistry through the years. Contrary to the above mentioned examples, gold

(I) complexes have been well investigated theoretically and their photophysics are

more and more investigated. EXAFS (Extended X-ray Absorption Fine Structures),

which is a sophisticated technique for analysing the environment of an atom, has
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been proved to be well suited for investigating gold-gold interaction both in

solution171, 172 and solid state.171, 173 NMR and X-ray have also allowed to understand

the gold systems.

It should be argued that gold-gold interactions do not necessarily lead to

luminescence. Some mononuclear species (in which there is no evidence for a gold-

gold interaction) are luminescent.174-176 Luminescence in polynuclear gold complexes

has been mostly attributed as arising from the excited states involving gold-gold

bonding.177 Taking the direction of aggregation as the z axis, and having in mind that

d orbitals are filled and p orbital are empty, the diagram depicted in Figure C-15 can

be used as representing molecular orbitals in such systems.178

d * p

dz
2

pz

AuI (AuI)2 (AuI)3 (AuI)4 (AuI)5

Figure C-15: Molecular orbital diagrams showing the interactions between the filled dz
2

and the

empty pz orbitals for a chain of 2, 3, 4 and 5 gold(I) ions.
178
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As we can see in this figure, gold-gold association created a filled band of dz
2 orbital

and an empty band of pz orbitals. These two bands resulting from gold attraction or

aggregation tend to be closer to each other as the number of gold centers increases.

The absorption process in polynuclear gold complexes results in a promotion of

electrons from a filled band of dz
2 orbital to an empty band of pz orbitals,

corresponding to the d* p transition.178 This transition is favoured because it

implied a promotion of an electron from anti-bonding (d*) orbital to a bonding one

(p).178 From mononuclear gold (I) to dinuclear gold (I) (i.e. from AuI to (AuI)2 see

Figure C-15), this transition is expected to be shifted to higher wavelength.

Generally, the attribution of luminescence in gold complexes can be achieved by

coupling information given by structure analysis (X-ray) and theoretical

calculations119, 179-181 (DFT for example).

C.5.2 Luminescence in dithiolene-based metal (d10) complexes

C.5.2.1 Luminescence studies of the L0-CuI complex

L0-CuI presents in its absorption spectrum bands situated between 240-390 nm.

These peaks are attributed as intraligand transition arising from n* and *

transition.182 The ligand L0 presented similar transitions with a maximum at about 367

nm. No noticeable shift was observed upon coordination of the thione to the metal

center, contrary to what was observed in the gold (I) thione complexes showing the

same coordination mode (AuClS=CR; where R= -S-CH2-CH2-S-).158 In the same

context we have not detected a transition which could arise from the metal-centred

excited states (as observed in some copper complexes139). Luminescence spectra of

complex L0-CuI and that of the free ligand L0 are shown in Figure C-16.
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Figure C-16: luminescence spectra recorded at room temperature in CH3CN for L0 (solid line)

and L0-CuI (dotted line) (
ex

= 300 nm).

Upon excitation at 300 nm, the neutral ligand L0 shows an emission maximum at

=400 nm in solution. This luminescence could be attributed to the -transition.

Such transitions are known as intraligands transitions.124 The complex L0-CuI shows

in its emission spectrum an intense band at =400 nm under the same excitation at

=300 nm (excitation at 350 nm in the same conditions showed an emission at 418

nm but with a weaker intensity). Compared to the free ligand, the emission observed

in L0-CuI is not shifted, proof of insignificant influence of the metal on the

luminescence properties. Therefore, we conclude that the luminescence observed in

the case of complex L0-CuI is an intraligand process. The lack of transitions involving

excited states centered on the metal can be explained by the absence or weakness

of the metal-metal interactions (Cu•••Cu contacts are about 3.051(1) Å).

C.5.2.2 Luminescence studies of the L1H2-HgI2 complex

Similarly to L0-CuI, the L1H2-HgI2 presents in its absorption spectrum bands in the

region 210- 430 nm. These peaks are attributed as intraligand transitions arising from

n* and * transition as previously discussed. The ligand L1H2 presents similar

transitions with a maximum around 380 nm (Figure C-17).



Chapter C - Supramolecular metallo-dithiolene frameworks

112

Figure C-17: Absorption spectrum of L
1
H2 and L

1
H2-HgI2 at room temperature in CH2Cl2.

As complex L1H2-HgI2 exhibits only weak metal-metal interactions, we are not

expecting to observe luminescent properties stemming from metal-centered excited

states. Figure C-18 displayed emission spectra of L1H2-HgI2 and the free ligand L1H2.

Figure C-18: Solid-state luminescence spectra recorded at room temperature for L
1
H2 (solid

line) and L
1
H2-HgI2 (dotted line) (

ex
= 260 nm).
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Upon excitation at 260 nm, the neutral ligand shows an emission with a maximum at

=400 nm in the solid state, which can be also attributed to intraligands transitions

(- The emission spectrum of L1H2-HgI2 displays an emission band centered at

=404 nm, almost equal to that of the free ligand, but with a drastically decrease in

intensity (Figure C-18). No significant red shift traducing a possible metal effect was

noted. The observed luminescence can again be attributed as originating from an

intraligand process. This result parallels with those observed in the metallo-dithiolene

complexes170 and mercury (II) polyyne polymers169 reported. In both case the

luminescence was dominated by intraligand processes.

C.5.2.3 Luminescence studies of the L1H2-AuCl complex

We have discussed above the supramolecular structure of this gold complex as being

one of the best model showing, how combination of inter- and intra-molecular

hydrogen bonding interactions (weak) and aurophilic interaction could be used to

settle supramolecular structure. The resulting luminescent properties are fascinating

as well. Figure C-19 shows the luminescence spectra of L1H2-AuCl both in the solid

state and in solution (2MeTHF at 77K).
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Figure C-19: Emission (blue), excitation (red), and absorption spectra (black) of L
1
H2-AuCl in

the solid state and in 2-MeTHF solution at 77 and 298 K. No luminescence was observed in

solution at 298 K.

The absorption spectrum of the free ligand L1H2 displays an intense peak centered at

380 nm and the corresponding gold complex L1H2-AuCl present a peak at 412 nm

(lowest energy transition). This is the first observation illustrating the originality of this

gold system compared to the above studied metal-dithiolene complexes. The

assignment of this transition is not easily attributed.

The * transition of a thione ligand is expected to be shifted by 4200 cm-1 when the

thione function binds to a gold center158, if assignment of these transitions are based

upon the model of Spanget-Larsen.182 Compared to the free ligand the shift observed

in the complex average the 2500 cm-1. On the other hand, the electronic transitions in

absorption spectra of gold complexes are mainly dominated by IL (intraligand) and

LMCT (ligand to metal charge transfer)153, 173 transitions rather than metal centered

transitions.
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Figure C-20: Calculated MOs involved in the absorption and emission spectra of two

interacting complexes L
1
H2-AuCl.

To correctly assign this absorption we have used computing methods based on

density functional theory (DFT).183 Figure C-18 represents the molecular orbitals

resulting from these calculations using X-ray data of L1H2-AuCl.

The HOMO (highest occupied molecular orbital) is composed primarily of the chlorine

lone pair, Au dxy and p orbital of the sulfur atom of the C=S bond (Figure C-18).

Some minor contributions of the  system of the dithiolene ligand are also noted. The

LUMO (lowest unoccupied molecular orbital) is now mainly composed of the 

system of the trithiocarbonate part of the dithiolene. Thus, these computations

indicate that the lowest energy transition is X/MLCT (i.e., halide/metal-to-ligand

charge transfer). The computed transition wavelength is 425 nm, which fits

favourably to that observed in the spectra (i.e., about 480 nm in the solid and 420 nm

in solution; Figure C-19).
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The fact that the emission maximum is red-shifted in the solid state with respect to

the solution is due to Au•••Au interactions, generating sets of Au2-centered bonding

and antibonding orbitals mixed with the MLCT manifolds.176, 178 Indeed, the gold dxy

orbital calculated in the HOMO combines in the dimer to form the dδ* contribution to

the overall MO. So, we assign the MLCT transition for L1H2-AuCl in solution to an

isolated complex and for L1H2-AuCl in the solid state to a dimer-like complex.

The emission spectra of L1H2-AuCl are presented in Figure C-19. The spectra are

characterized by an emission band centered at 615 nm at 298 K, which is red-shifted

at 77 K to 670 nm.

The diradical nature of the triplet state consists of one electron of the LUMO on one

complex L1H2-AuCl (-0.156 au) of the Au•••Au interacting dimer and one electron

located on the HOMO (-0.232 au) of the other complex L1H2-AuCl.183 The computed

emission wavelength is 616 nm, which fits nicely with that observed at room

temperature. Evidence for Au•••Au interactions comes from the red-shift of the

emission band which is expected upon contraction of the unit cell (the crystal

structure of L1H2-AuCl exhibits a Au•••Au separation of 3.078(6) Å). L1H2-AuCl is not

luminescent at 298 K. At 77 K, a strong emission band is observed with a maximum

at 610 nm, which is blue-shifted with respect to the solid state emission spectrum

(680 nm) at this temperature and to the one at 298 K (615 nm). On the basis of this

blue shift and the assignment made for the absorption band in solution, a MLCT

assignment for an isolated molecule is also suggested.

C.6 Conclusion

From the light of this study it comes out that, supramolecular architectures are

generated by using suitable functional ligands which can further coordinate to metal

centers. The presence of functional groups such as alcohol or acid group (hydrogen

bonding ability) in a DMIT skeleton (stacking ability and coordination of the

sulfur) plays an important role in the supramolecular organisation. Using d10 metals

which allow unusual metal-metal interaction is also an attractive method for building

supramolecular coordination complexes.

In all the metallo-dithiolene complexes (L0-CuI, L1H2-HgI2, L1H2-AuCl and L2H2-

AuCl) studied in this chapter, we have identified different non-bonding interactions
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(, S•••S, hydrogen bonding, metal•••metal interactions). They can simultaneously

coexist in a complex, and they can also act independently. However, according to

these studies, we can not order these interactions in terms of strength. We can not

summarise this study without pointing out the conformation change of the ligand L1

upon coordination on Au (I) and Hg (II).
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rom a syn-configuration (in the free ligand), L1H2 adopts an anti-configuration upon

oordination by Hg (II) and a syn-configuration upon coordination on gold (I). This is

ntriguing since the coordination occurred in the same thione (C=S) position. But, this

bservation support that the metal-metal interaction is the driving force in complex

1H2-AuCl (the dimer-like nature of the complex). Thus, no change in the ligand

onformation was observed. While in the case of L1H2-HgI2, the bridging nature of

he iodine induces a steric factor which results in conformation change of the ligand

anti-configuration). Therefore in the case L1H2-HgI2, the bridging nature of the iodine

an be accounted for driving forces.

he other point concerns their luminescent properties. Once more the gold (I)

omplex gives the most fascinating results. It emits an intense red emission as

hown in the following picture. In the case of the copper and mercury complex the

uminescent is dominated by an intraligand process.

B: the L2H2-CuI complex have not been described because of the poor quality of

he crystals. But, the emission observed under UV irradiation seems to be promising

or investigating photoluminescent properties.

L1H2 L1H2-HgI2 L1H2-AuCl
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Gold complex evaporated in a round bottom

flask and irradiated under UV lamp (366 nm).
L2-CuI complex in solution ( THF- Acetonitrile)

irradiated under UV lamp at low temperature:

366 nm 254 nm
118
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D Reactivity of dithiolene-like neutral ligands towards

trivalent lanthanide (Ln3+): luminescence studies

The chemistry of lanthanide started in 1794 in Scandinavia when Johan Gadolin

succeeded in obtaining an earth oxide (composed of different elements) from a black

mineral that he named “Yttria”.61 The pronounced similarity of lanthanide rendered

their classification and separation so difficult that more than 100 years were needed

to completely isolate them from each other.61

The challenge behind this area of chemistry is not only due to their later discovery

(compared to others elements of the periodical table) but to the wealth knowledge of

their chemistry (f-block chemistry). The first approach consisted in their treatment as

d-block metals (transition metals). But some observations in their behaviour and

reactivity indicated that their chemistry does not fit well to transition metals chemistry.

Their spectroscopic and magnetic properties are largely uninfluenced by the ligand

etc.61

D.1 Properties of lanthanides

The terminology “rare earths” is referred to the group of lanthanide elements (from

lanthanum (La) to lutetium (Lu)) including yttrium (Y) and scandium (Sc) which

display similar chemical properties to those of lanthanides.59 They are all stable as

trivalent (Ln3+) cations and research on lanthanides is mainly focussed on

spectroscopic and magnetic properties. These properties are dominated by their

electrons localised in the f sub-shell. In the following, we will only deal with the

trivalent lanthanides (Ln3+), although, some of them are also stable in divalent or

tetravalent states.

D.1.1 Magnetic properties

Except for La (f0) and Lu (f14) the lanthanides are all paramagnetic and possess

unpaired electrons. Since their excited states are well separated from the ground

state (see Dieke Diagram in chapter A (Figure A-9)), it results that their magnetic
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properties are largely dominated by their ground state. The f-electrons do not

participate in the formation of the bonding in lanthanide complexes. Thus, the

magnetic moment of the Ln3+ ions is independent of the surrounding ligand (contrarily

to transition metal complexes).61

Magnetic moments are given by the following equation:

eff = gJ√ J (J+1)

where g is the Landé factor and is defined by gJ = 3/2 + [S(S+1)-L(L+1)] / 2J(J+1)

and S is the spin quantum number; L is the total angular momentum quantum

number, and J is defined by values between (L+S), (L+S)-1; (L-S).

Table D-1 gives magnetic moments of Ln3+ ions at room temperature61.

Table D-1: Magnetic Moments of Ln
3+

ions at room temperature
61

.

f
n

Ground term Predicted eff Calculated eff

La 0
1
S0 0,00 0,00

Ce 1
2
F5/2 2,54 2,46

Pr 2
3
H4 3,58 3,48

Nd 3
4
I9/2 3,68 3,44

Pm 4
5
I4 2,83 ??

Sm 5
6
H5/2 0,85 1,64

Eu 6
7
F0 0,00 3,36

Gd 7
8
S7/2 7,94 7,97

Tb 8
7
F6 9,72 9,81

Dy 9
6
H15/2 10,63 10,60

Ho 10
5
I8 10,60 10,70

Er 11
4
I15/2 9,59 9,46

Tm 12
3
H6 7,57 7,51

Yb 13
2
F7/2 4,53 4,47

Lu 14
1
S0 0,00 0,00

The magnetic moment in the second half of the lanthanide’s serie is stronger than

that of the elements in the first half. This is due to the selection rules in the

determination of the ground state, since J= L+S for more than half-filled shells and J=

L-S for less than half filled shells. Irregularities observed in the case of Eu3+ and Sm3+

are caused by contributions of others terms in the ground states accessible by

thermal population.61, 184
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D.1.2 Spectroscopic properties: luminescence

Trivalent lanthanides are interesting for spectroscopic purposes, because of their

unusual transitions within the f sub-shell normally forbidden by Laporte’s selection

rules. They display sharp f-f electronic transitions resulting from rearrangement of

electrons within the f sub-shell and therefore producing narrow bands with absorption

coefficients lower than 10 M-1.cm-1 (compared to 100000 M-1.cm-1 for transition metals

or organic chromophore).75

Scheme D-1: Sharp emission from the Ln
3+

ions due to the small offset of the electronic levels

as shown from the configuration coordinate (right); as comparison, the case of an organic

molecule is depicted on the left (
1
S0 and

1
S* denotes the singlet ground state and singlet

excited states respectively) (adapted from reference 75 ).
75

They do not experience a ligand field because the f electrons are shielded from the

ligand field by the 5s and 5p electrons. Scheme D-1 represents the configurational

coordinate diagrams in the case of Ln3+ compared with organic molecules.
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D.1.2.1 Electronic transitions

The crystal field splitting in lanthanide is about a couple of hundreds cm-1.184 As a

consequence, electronic spectra of lanthanide complexes resemble closely to those

of the free ions. A reduced energy diagram of the elements involved in our studies

(Nd3+, Eu3+, Tb3+and Er3+) is represented in Figure D-1 (the full version can be found

in Figure A-9 in chapter A).

Figure D-1: A reduced energy diagram showing energy level of trivalent lanthanides involved in

our studies.( : lowest luminescent level, : highest non-luminescent level).
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The different terms in the energy level diagram result from a combination of

electronic repulsion, spin-orbit coupling and ligand field as shown in Scheme D-2.

4fN

4fN-15d1

electronic

interaction

(104 cm-1)

spin-orbit

interaction

(103 cm-1)

crystal field

(102 cm-1)

2s+1L

2s+1LJ

Scheme D-2: diagram illustrating the relative strength of the different parameters involved in

the splitting of the 4f
N

configuration in the Ln
3+

.

First of all, interelectronic repulsion (ER) gives terms separated energetically by ca.

104 cm-1. The spin-orbit (SOC) contribution splits the resulting terms in different levels

separated by energy around 103 cm-1 and finally, these degenerated levels are

partially splitted by the crystal field (CF)(in complexes) in such a way that the

resulting sub-levels are separated only by 102 cm-1.184 It should be noted that the

amplitude of the energy difference resulting from levels splitted by spin-orbit

contribution (103 cm-1) and crystal field contribution (102 cm-1) is inversed in the case

of transition metals.
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D.1.2.2 Type of electronic transitions in complexes

Generally, transitions in trivalent lanthanides arise within the f-levels. But, here we

will mention about three possible electronic transitions that have been identified in

lanthanides complexes. Those arising from charge transfer transitions (MLCT and

LMCT) which are Laporte’s allowed, those corresponding to promotion of a 4f

electron into the 5d sub-shell (parity allowed) and finally those from pure f-f

transitions which are Laporte’s forbidden.75

LMCT or MLCT appears normally at higher energy > 40000 cm-1 except for ions

which are easily reduced to their +2 oxidation states (Sm3+, Eu3+, Tm3+, Yb3+) or

oxidised to their +4 states (Ce3+, Pr3+, Tb3+) in which cases they can be observed at

energies as low as 30000 cm-1.

Transitions corresponding to a promotion of electrons from the f level to the d level

are parity allowed and results in absorption coefficients between 10-2 to 103 M-1.cm-1.

They are largely depending upon the environment because the 5d orbitals are

external and feel the crystal field effect. These transitions are quite energetic and are

sometimes observed in the region below 50000 cm-1 for Ce3+, Pr3+ and Tb3+.

Finally, the f-f transitions which represent our matter of interest are Laporte’s

forbidden and present low absorption coefficients. They gain in intensities through

mixing in higher electronic states of opposite parity (d states) or “vibronic coupling”

(destroying any center of symmetry) although this effect is relatively weak in

lanthanides.61

D.1.2.3 Antenna effect

Because of their low absorption coefficient, a direct excitation of lanthanide is

unfavourable, leading to weak emission. A possibility to overcome this problem

consists of using a chromophore to enhance the luminescence properties. This is

known as “antenna effect”. It was first observed in 1942 by Weissman185 and

interpreted as an intramolecular energy transfer. Later on, Lehn87 proposed a

conversion of light via a three step “absorption – energy transfer – emission” mode.

This feature is nowadays termed as antenna effect and a schematic representation of

the process has been proposed by Bunzli et al.186, 187
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Scheme D-3: Simplified diagram showing the energy migration paths in a trivalent lanthanide

complex.(1*, singlet state; 3*, triplet state; A, absorption; F, fluorescence; P,

phosphorescence; L, luminescence (either fluorescence or phosphorescence); isc, intersystem

crossing; nr, nonradiative; ic, internal conversion; et, energy transfer; back, back transfer; T,

temperature-dependent; el, electronic; vibr, vibrational).
186

Once the ligand is excited to its singlet states, it can release its energy by radiative

way (fluorescence) or nonradiative way. It can also populate the triplet states via

intersystem crossing (ISC). At this stage, the deactivation by radiative deactivation

(phosphorescence) or energy transfer to populate the lanthanide’s excited states is

possible. The lanthanide can either luminesce or depopulate the excited levels by

loosing its energy. The “antenna effect” represents the whole process from

absorption of the energy to emission of the lanthanide. It should be argued that all

radiative processes (fluorescence, phosphorescence or luminescence) are in strong

competition with nonradiative ones (electronic, vibration or thermal). Note that the

ISC (intersystem crossing) is facilitated by the heavy atom effect, enhancing

therefore the luminescence properties of a lanthanide ion.70

D.1.3 Luminescence properties: case of europium (Eu3+) and terbium

(Tb3+)

Because of the originality of their transitions, lanthanides are easily recognisable

(through their narrow and sharp bands) and are ideal candidates for optical probes.70

Amongst the lanthanides, Eu3+ and Tb3+ have been well investigated70, 184, 188-190 and

fully characterised, so that they represent nowadays well-known models for
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optoelectronic application. This is partly due to their luminescence in the visible

region but also to their longer lifetimes187 and their high quantum yield.191-193 Another

feature is that their configuration 4f6 and 4f8 are conjugated, which means that their

energy matrices are identical.61

Eu+3

4f
6 ↑ ↑ ↑ ↑ ↑ ↑

Tb+3

4f
8 ↑ ↑ ↑ ↑ ↑ ↑ ↑↓

Since we are interested in optical transitions and since light is an electromagnetic

wave, two operators can performed the transition: the electric dipole (ED) operator

and magnetic dipole (MD) operator (NB: transitions caused by quadrupolar and

octopolar operators could be envisaged but their intensities would be extremely

faint).184

D.1.3.1 The Eu3+ ion

Europium (III) has a 4f6 electronic configuration which gives rise to the following

terms 7FJ with the different J values (J= 0, 1, 2 ,3 ,4 ,5 and 6) in the ground states,

the term symbol for the ground state corresponds to the 7F0 (determined by Hund´s

rule) since the shell is less than half-filled. A partial energy diagram for Eu3+ showing

the magnitude of the different splitting interaction (ER for electronic repulsion, SOC

for spin-orbit coupling and CF for crystal field) is shown in Scheme D-4.
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Scheme D-4: Partial energy diagram for Eu
3+

ion showing the relative strength of the ER, SOC

and CF effects; (ER for electronic repulsion, SOC for spin-orbit coupling and CF for crystal

field) Downward arrows indicate the most luminescent excited levels.
184

In solution, the most observed lines for Eu3+ complexes are associated to transitions

arising from the 5D0 level to the 7FJ levels, while in the solid state strong lines

originating from the 5D1,2,3 levels are sometimes observed.184 Table D-2 gives typical

features of the luminescent transitions for Eu3+ complexes in solutions (the transitions

discussed here are from 5D0,1 levels to the 7FJ levels).
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Table D-2: Principal luminescent transitions for Eu
3+

in solution (the luminescent levels

considered are the
5
D0 and

5
D1)

184
.

7FJ

Principal
Dipole
Character Range (nm) Intensity Comments

From 5D0

0
Electric

Dipole (ED) 577-581 vw

non degenerate forbidden transition;
gains intensity through J-mixing in Cs,
Cn and Cnv symmetries

1
Magnetic

Dipole (MD) 585-600 s

allowed; intensity almost independent
from environment, strong optical
activity

2 ED 610-625 s-vs
hypersensitive (J=2); absent if the
ion lies on an inversion center

3 ED 640-655 vw forbidden, always very weak
4 ED 680-710 m-s sensitive to the Eu-environment
5 ED 740-770 vw forbidden, seldom observed
6 ED 810-840 vw seldom measured

From 5D1

0 MD 524-528 vw
1 ED 530-540 vw sensitive to Eu-environment
2 ED 550-565 vw

As we can see in this table, transitions are magnetic or electric dipole in character

and can in a certain extent give information about the environment or symmetry of

the ion. For example, the number of component of the 5D0 
7F0 transition can be

related to the number of chemically distinct environments occupied by an ion in a

complex. In fact, since both the initial and final states are nondegenerate this

transition is unique for each Eu3+ in a given chemical environment.184

The second point concerns the hypersensitive 5D2
7F0 transition. This transition is

electric dipole in character and is absent if the ion lies in an inversion center. It

possesses very strong intensities and is useful to confirm whether a system

possesses an inversion center or not.
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D.1.3.2 The Tb3+ ion

As for Eu3+, the same data are available for Tb3+ ions in a complex. The terms in the

case of Tb3+ are the same that in Eu3+
(
7FJ levels with J= 0, 1, 2 ,3 ,4 ,5 and 6). This

arises from the fact that their configurations are conjugated. The only difference is in

the determination of the ground state since the shell is more than half-filled giving 7F6

as ground state using Hund´s rule.

4f8

4f75d1

2*104 cm-1

5D

7F

7FJ

5D2

5D3

5D4

0

5

4

3

J=

6

1
2

Configuration Terms Levels Sublevels

6*103 cm-1

2*102 cm-1

5L

5G

5D1

5D0

Scheme D-5: Partial energy diagram for Tb
3+

ion showing the relative strength of the ER, SOC

and CF effects (ER for electronic repulsion, SOC for spin-orbit coupling and CF for crystal

field) (Downward arrows indicate the most luminescent excited levels).
184
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Similarly to the case of Eu3+, the partial energy diagram for Tb3+ showing the

magnitude of the different splitting interaction is displayed in Scheme D-5.

The following Table D-3 presents typical features of the luminescent transitions for

Tb3+ complexes in solution.

Table D-3: Principal
5
D4

7
FJ luminescent transitions for Tb

3+
in solution

184
.

J Range (nm) Intensity Comments
6 480-505 m-s sensitive to the metal environment

5 535-555 s-vs
best probe transition( e.g. for titration; displays
strong optical activity

4 580-600 m-s
sensitive to the metal environment; displays
medium optical activity

3 615-625 m displays strong optical activity
2 640-655 w sensitive to the metal environment
1 660-670 vw always weak
0 675-680 vw always weak

Contrarily to its homolog (Eu3+), the terbium ion (Tb3+) cannot be used to probe the

structure of the complexes because of the degeneracy of the 5D4 level. But, the 5D4

7F3,5 transitions possess strong magnetic dipole character.

D.1.4 Photophysical data: lifetime and quantum yield in lanthanide

complexes

Lifetime and quantum yield are the most significant parameters to assess the

suitability of lanthanides complexes for practical applications.

D.1.4.1 Lifetime

The lifetime determines the average time that a system can spend in the excited

states prior to return to the ground states by deactivation pathways. The higher the

lifetime the best the system can be used for optical application. This parameter is of

course very sensitive. It decreases as function of different process such as presence
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of oscillator in the metal surrounding. The energy gap between the lowest emitting

level of excited states and highest non luminescent level of the ground states of the

lanthanide is a determinant parameter in the quenching by OH oscillators.70 The

smaller this gap, the easier for non-radiative deactivation process to govern the

luminescence.70

Ligand
singlet Ligand

triplet

Eu3+

states

Intersystem crossing

Radiative transition

Nonradiative transition

7F0

7F6

5D0

OH

Figure D-2: Example based on Eu
3+

showing the quenching of luminescence by OH

oscillators.
61

Oscillators such as C-H, N-H and OH are efficient quenchers. They act in the

deactivation process taking place in the excited states as represented in Figure D-2.

It is noteworthy to precise that these quenchers are only effective when they are

localised in the first coordination sphere of the metal ions. In solution, the quenching

by OH oscillators can be reduced using deuterated solvents while solid state

measurements give the highest values. For example, the luminescence lifetime of the

Eu3+ 5D0 level which is about 0.1-1 ms in aqueous solution can reach 4-4.5 ms using

deuterated solvents and may be as long as 5-6 ms in the solid state.184 The

luminescence lifetimes of the Eu3+ 5D1 level are much shorter and are usually < 0.05

ms.

The following table gives lifetimes measured in europium and terbium complexes.
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Table D-4: Lifetimes in ms for
5
D0 (Eu) and

5
D4 (Tb) excited states in diluted solutions of

Ln(NO3)3 (C < 0.1 M).
184

H2O D2O CH3CN DMSO

Eu (NO3)3 0.114 3.71 1.35 1.4

Tb (NO3)3 0.478 3.2 1.85 2.61

It should be noted that the luminescence lifetimes of the Tb3+ 5D4 level are much

longer than those of Eu3+ 5D0 level.

D.1.4.2 Quantum yield

The quantum yield is basically defined by the ratio between the number of photons

emitted and the number of photons absorbed by a sample.73, 194 It is often given in %.

But its determination is somewhat tricky and the data are scarce and less reliable.184

Generally, the quantum yield can be determined by comparison with standard

phosphors, whose quantum yields have been measured.194 While, for determination

in solution, some standards are available, those measured in the solid state remains,

critical and needs careful consideration.

The best method for the determination of the quantum yield in the solid state has

been proposed by Wrighton et al. 195 and consists in using an integration sphere.

This method was improved by de Mello et al. 196

However, one has to distinguish between overall quantum yield (QL
Ln) and intrinsic

quantum yield (QLn
Ln). In the case of ligand sensitization, they are related by a

factor efficiency (sens) through the following equation: 70, 197, 198

(Equation D.1)

represents the efficiency of the energy transfer through ligand excitation. This

value can not be measured directly, but it can be estimated using the overall and

intrinsic quantum yields. The overall quantum yield can be measured by using

standard phosphors in solution or the above mentioned integration sphere device for
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solid samples.196 The intrinsic quantum yield can be calculated by using the following

equation190, 198:

(Equation D.2)

where 0 is the natural luminescence lifetime and  is the observed luminescence

lifetime. Estimated 0 values for some lanthanides in the solid state are available,199

whereas  can be calculated by direct measurement.

The quantum yield determination in solution suffers from the necessity to perform the

measurement in identical conditions (solvent, concentration, and excitation and

emission range) than the standard solution (fluorescein for example) and this is not

always easy to handle. As an illustration the quantum yield for europium is solvent-

dependent (Table D-5).184

Table D-5: Quantum yield (in %) of lanthanide perchlorates (Ln(ClO4)3) in different solvents.

Lanthanides H2O D2O CH3CN DMSO

Eu 0.5 78 20 27

Tb 8,40 . . .

D.2 Motivation for Ln3+-dithiolene systems

To date, most of the reported Ln-S systems are concerning with lanthanide

thiolate200 or chalcogenates201, 202 but also Ln-S clusters. Lanthanide sulfido clusters

are obtained by reacting lanthanide thiolate [Ln(SPh)3) with Pr, Nd, Gd] and

elemental sulphur.203 Lanthanide thiolates can be prepared by metathesis or by

oxidative addition of disulfide RSSR (R= Ph) to metallic lanthanide.202 Most of these

lanthanide thiolates are obtained by using aryl-, isopropyl-, butyl- or benzene-thiolate

ligands.204

Investigation on Ln3+-dithiolene complexes is limited to three literature reports.37, 205,

206 However, none of these works205, 206 describes the luminescent properties of such

Ln3+-dithiolene complexes. Therefore, we have found necessary to investigate on the

luminescence properties of Ln3+-dithiolene complexes. Indeed, the unique electronic

structure of dithiolene makes them potential candidate for the enhancement of the

lanthanide luminescence by “antenna effect”.
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D.3 Synthesis and characterisation of Ln3+-dithiolene complexes

Contrary to the previous chapters where the reactivity of the dithiolene ligand was

exclusively dominated by coordination on metals through the DMIT skeleton (the

thiocarbonyl group), here, we will deal with the reactivity of the dithiolene ligand

involving the use of functional groups (OH and COOH). To achieve the formation of

Ln3+-dithiolene complexes we have used a general method starting from lanthanide

silyl-amide (Ln[N(TMS)2]3; TMS= -SiMe3) as outlined in Scheme D-6.

Scheme D-6: General procedure for the synthesis of lanthanide alkoxide using lanthanide silyl-

amide.

This method has been proven to be appropriate for the synthesis of many

alkoxydes207-209 and is well suited because the hexamethyldisilazane [HN(SiMe3)2] is

a volatile non-coordinating liquid and is readily removed in vacuum.

D.3.1 Synthesis and characterisation of Ln[N(TMS)2]3 (TMS= -SiMe3)

The metalamides Ln[N(TMS)2]3 (TMS= -SiMe3) are prepared using literature

method.210 They are isolated by salt elimination reactions starting from the lanthanide

chloride and lithium hexamethyldisilasane as shown below.

Anhydrous lanthanide chlorides (LnCl3) were dried under vacuum at temperatures

between 100 and 150°C. They are then dissolved in THF (by -196°C) and three

equivalent of LiN(SiMe3)2 dissolved in toluene are successively added. Ln[N(TMS)2]3

compounds are obtained after 48h and purified by sublimation. Traces of air or

humidity destroy the Ln[N(TMS)2]3 complexes which rapidly turn from their respective

color to colorless, therefore, they should be handled under nitrogen atmosphere

using “Stock apparatus”.
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The La[N(TMS)2]3 is obtained as a colorless powder, the Nd[N(TMS)2]3 as a blue-

violet powder, the Eu[N(TMS)2]3 as red-orange, the Tb[N(TMS)2]3 as colorless,

Er[N(TMS)2]3 as pink and the Ce[N(TMS)2]3 as yellow-brown powder.

The Ce[N(TMS)2]3 has not be fully investigated because of its sensitivity. It readily

oxidizes and shows color changes even when kept under argon atmosphere. This is

probably due to its electronic configuration (f1).

The metalamides (Ln[N(TMS)2]3) are soluble in organic solvents and are purified by

sublimation at temperature ranging from 100 to 150°C.

D.3.2 Reactivity of the Ln[N(SiMe3)2]3 towards dithiolene ligands (L1H2

and L2H2)

Ln[N(SiMe3)2]3 is sensitive to the presence of proton sources since the amide

N(SiMe3)2
- reacts strongly via protonolysis to liberate HN(SiMe3)2. Ligands L1H2 and

L2H2 bearing alcohol and acid functional group respectively, are particularly

appropriate for this purpose.

D.3.2.1 Reactivity of the Ln[N(SiMe3)2]3 towards ligand L1H2

We have seen in chapter B and C that such 4,5-bis(hydroxyethyl)thio-1,3-dithiol-2-

thione (L1H2) is a potential building block for supramolecular systems. In this context,

the DMIT skeleton is used as the reactive part while the side chains (alcohols groups)

remain unchanged. However, L1H2 is a versatile ligand and shows reactivity via the

functional group. Thus, L1H2 was reacted with Nd[N(TMS)2]3 and Er[N(TMS)2]3 in a

ratio 2:1 to allow for the formation of complex Nd2(L
1)3 and Er2(L

1)3, respectively,

following the Scheme D-7.

This reaction proceeds by protonolysis and occurs instantaneously. The limpid

solution of Ln[N(TMS)2]3 turns trouble as the ligand solution is added and a rapid

precipitation was observed within a period of few seconds. The resulting mixture is

stirred during 1 h after complete addition of the ligand. No change was observed

even by heating or by stirring more than one hour (one week). A yellow powder was

isolated by filtration and dried under vacuum. The NMR of the reaction solution after

isolation of Ln2(L
1)3 revealed the presence of free HN(SiMe3)2.
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Ln[N(TMS)2]3 +

(TMS= -SiMe3)
Ln= Nd and Er
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Scheme D-7: Synthetic pathways for the synthesis of Nd
3+

and Er
3+

dithiolene-alkoxide

complexes and proposition of the structure.

These powders show no solubility in common solvents. Therefore we presume that

the product may be polymeric in nature as already observed in the case of

[Ln(SBu)3].
204

Elemental analysis of the powder give a metal-to-ligand ratio of 2:3 as presented in

Scheme D-7. The polymeric character of the product limits the characterisation by

NMR and UV-vis method. Nevertheless, we have run an IR analysis using an ATR

Golden gate device. The IR spectrum of the Nd2(L
1)3 together with that of the free

ligand L1H2 are presented in Figure D-3. These spectra deliver important information

that can help to understand the polymeric nature of the complex.
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Figure D-3: IR spectra of the Nd2(L
1
)3 complex (red) compared with the free ligand L

1
H2 (black).

The first important information concerns the disappearance of the OH vibration bands

around 3200-3400 cm-1 illustrating the reactivity through the OH groups. Secondly,

the C=S bands which are normally intense, are shifted in both intensity and

wavenumbers suggesting the coordination of the thiocarbonyl function as observed in

the L1H2-M(d10) (developed in chapter C) and in the thiomaltol-lanthanide

complexes.211 Consequently, we have proposed the following structure where the

thiocarbonyl are coordinated on the neodymium center to explain the polymer-like

nature of Nd2(L
1)3 complex.
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Figure D-4: Proposed polymeric structure for the Nd2(L
1
)3 complex.

This additional coordination of the thiocarbonyl function is an evidence since

lanthanides require high coordination number,60 and explains therefore the polymeric

nature of the complexes. The same observations apply also to the erbium complex

(Er2(L
1)3). Attempts to synthesise these complexes by salt metathesis failed because

of the difficulty to control the formation of the alkolate (from Na and Li) since a ring

opening occurs or the reduction of the ligand in elemental sulfur.

D.3.2.2 Reactivity of the Ln[N(SiMe3)2]3 towards ligand L2H2

Compared to L1H2, ligand L2H2 is more suitable for coordinating a lanthanide center

since the carboxylate group (-COO-) contributes more on stabilising the metal center

by chelating effect than an alkohol group. The synthetic pathway is the same that for

L1H2 as outlined in Scheme D-8.
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Ln[N(TMS)2]3 +

(TMS= -SiMe3)
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Scheme D-8: Synthetic pathways for the synthesis of Nd
3+

, Eu
3+

, Er
3+

dithiolene-carboxylate

complexes.

L2H2 reacts with Ln[N(TMS)2]3 in a ratio 2:1 to allow the formation of Ln(L2H)L2

complexes (Ln= Nd, Eu, Tb and Er). Similarly to the case of L1H2, addition of a

solution of L2H2 to the lanthanide solution gives rise to the formation of a precipitate.

Most probably it possesses a similar polymer-like nature. But in contrast to Nd2(L
1)3 a

band corresponding to an OH group is detected around 3200 cm-1. Figure D-5 shows

the ATR-IR spectrum of the Eu(L2H)L2 complex as well that of the free ligand L2H2 for

comparison.
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Figure D-5: ATR-IR spectra of Eu(L
2
H)L

2
(pink) and the free ligand L

2
H2 (black).

The presence of a broad band in the range 3000-3600 cm-1 displayed by the

europium complex is the evidence that one carboxylate group remains protonated

after the reaction. Compared to the free ligand L2H2 (OH= 2800-3200 cm-1), this

band is shifted to higher wavenumbers proving that the OH groups are not engaged

in hydrogen bonding interaction as observed in L2H2.

The second point concerns the carbonyl function (C=O) which is localised at 1647

cm-1 compared to 1692 cm-1 in the free ligand L2H2. This shift argues with the

coordination of the carbonyl group on the lanthanide center. This coordination of the

C=O groups is expected since it helps to reach a high coordination number at the

lanthanide center. The C=S band in Eu(L2H)L2, shifted about 14 cm-1 compared to

the free ligand, could be also considered as a result of the coordination of the C=S to

the lanthanide center. Similar statements are reliable for the other lanthanide

complexes.
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D.3.3 Attempts to prepare mixed d-f elements (heterometallic

compounds)

Synthesis of molecular heteronuclear systems combining 5d-4f metals have been

documented recently.212-214 Such a combination give rise to the enhancement of NIR

luminescence of lanthanides by attaching a suitable transition metals acting as a

chromophore.212, 215

Our idea was motivated by the propensity of ligand L1H2-HgI2 to act as molecular

system able of hosting molecules. Since the ligand in L1H2-HgI2 is coordinated via its

thiocarbonyl function, it could be involved in further reaction through the alkohol rest.

On the other hand, we have seen that the C=S bond participates to the coordination

of the metal center and leads probably to the formation of a polymer-like material.

Therefore the immobilisation of the C=S by mercury could help to avoid the

polymerisation problem.

Before describing the reaction between L1H2-HgI2 and ErCl3, we will introduce the

existing heterobimetallic Er-Hg systems.

D.3.3.1 Er-Hg systems as rare examples of 4f-5d heterobimetallic

systems

Few literature reports on heterobimetallic systems containing Er and Hg ions are

known. Goodgame et al. reported on a Er-Hg system where the Er3+ and Hg2+ ions

are connected via organic ligands such as propiolactam216 or fused-ring lactams217

(see Scheme D-9). These complexes are isolated from the reaction of mercury (HgII)

acetate with the organic ligand (lactam) and lanthanide nitrate.
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Scheme D-9: Example of Er-Hg complex obtained by Goodgame et al.
216

(NB: the propiolactam

ligand (L
p
) ensures the connection between the Er and Hg metal centers).

As displayed in Scheme D-9, the propiolactam (Lp) acts as a bridging ligand and

coordinates the Er metal center via the oxygen atom (of the carbonyl group) and the

HgII ion through the nitrogen atom of the lactam ring. All metal-metal contacts (Er-Er

or Er-Hg) are greater than 4 Å.

Chen et al. have reported on another Er-Hg system obtained by hydrothermal

synthesis .218 But in this latter, the ErIII ion and the HgII ion are located at 9 Å from

each other and there is no connection between these two ions. 218

D.3.3.2 Ion-pair based Erbium compounds

Erbium compounds have been described as ion-pairs, in which the monocation is

composed of ErCl2 fragment and the monoanion part contains the ErCl4 fragment.

Willey et al. reports on a erbium ion-pair [ErCl2(thf)5][ErCl4(thf)2] in which the anion is

six-coordinated with an octahedral metal geometry comprising four equatorial

chlorine atoms and two axial THF molecules.219

Scheme D-10: Structure of an ion-pair based erbium compound [ErCl2(THF)5][ErCl4(THF)2].
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In the anionic fragment ([ErCl4(THF)2]
-), the Er-Cl distances are about 2.6 Å and the

Er-O (THF) distances are about 2.3 Å.219 A similar system has been obtained by

Anfang et al.,220 by the reaction of erbium powder with trimethylchlorosilane. In both

examples, the erbium center of the cationic fragment ([ErCl2(THF)5]
+) lies on a

pentagonal bipyramid geometry, with axial positions occupied by the chlorine atoms.

D.3.3.3 Reactivity of L1H2-HgI2 towards erbium chloride (ErCl3):

formation of an unexpected ion-pair

This reaction is conducted in THF by using two equivalents of L1H2-HgI2 and one

equivalent of erbium chloride. Unfortunately, the reaction did not work as we

expected. We isolated the heterobimetallic complex (3) as presented in the Scheme

D-11 (the dithiolene ligand is not present in complex).
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Scheme D-11: Attempts to access to heterometallic (5d-4f) complexes using a dithiolene

template and the resulting unexpected complex (3).

It seems that a reaction between the HgI2 and the ErCl3 takes place instead of an

insertion of ErCl3 in the cavity of the L1H2-HgI2 (as expected). One possible
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explanation of such a phenomenon could be related to the weak coordination of the

thiocarbonyl function on mercury (in L1H2-HgI2) which in solution goes through

decomplexation. Another explanation can arise from the fact that compound 3 is

more stable than the expected complex based on coordination bond.

D.3.3.4 Crystal structure description of complex 3

Pink crystals of 3 were grown from a concentrated THF/toluene solution of the

reaction mixture. A crystal was isolated and a single crystal X-ray diffraction analysis

was performed at 170 K. 3 crystallises in the triclinic system in the centrosymmetric

space group P1. The crystal structure of the complex 3 is shown in Figure D-6 and

Table D-6 shows the crystallographical data and structure refinement for complex 3.

Figure D-6: Molecular structure of 3 (the hydrogen atoms of the THF molecules are omitted for

clarity).

Table D-6: Crystal data and structure refinement for 3.

Compound 3

Identification code sh2472
Empirical formula C32H66Cl6Er2HgI2O9

Formula weight 1596.46
Temperature 170(2) K
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Wavelength 0.71073 Å
Crystal system Triclinic

Space group P1

Unit cell dimensions a = 9.1770(3) Å = 87.913(2)°.
b = 15.7741(5) Å = 75.2440(10)°.
c = 17.9528(8) Å  = 87.7110(10)°.

Volume 2510.19(16) Å3

Z 2
Density (calculated) 2.112 Mg/m3

Absorption coefficient 7.954 mm-1

F(000) 1508
Crystal size 0.52 x 0.38 x 0.22 mm3

Theta range for data collection 1.17 to 22.12°.
Index ranges -9<=h<=9, -16<=k<=13, -18<=l<=18
Reflections collected 23683
Independent reflections 6137 [R(int) = 0.0339]

Completeness to theta =
22.12° 98.2 %
Absorption correction Multiscan

Max. and min. transmission 0.2736 and 0.1040
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6137 / 0 / 471
Goodness-of-fit on F2 1.033

Final R indices [I>2sigma(I)] R1 = 0.0314, wR2 = 0.0736
R indices (all data) R1 = 0.0411, wR2 = 0.0782

Largest diff. peak and hole 0.695 and -1.852 e.Å-3

Selected bond length and angles are reported on Table D-7.

Table D-7: Selected bond lengths [Å] and angles [°] for 3.

Er(1)-O(8) 2.289(6) O(3)-Er(1)-Cl(2) 90.55(2)
Er(1)-O(2) 2.373(5) O(8)-Er(1)-Cl(1) 91.55(2)
Er(1)-O(1) 2.379(5) O(2)-Er(1)-Cl(1) 89.08(1)
Er(1)-O(5) 2.385(5) O(6)-Er(2)-O(4) 173.7(2)
Er(1)-O(3) 2.388(5) O(6)-Er(2)-Cl(6) 91.12(2)
Er(1)-Cl(2) 2.565(2) O(4)-Er(2)-Cl(6) 93.43(2)

Er(1)-Cl(1) 2.572(2) O(6)-Er(2)-Cl(3) 92.32(2)

Er(2)-O(6) 2.283(6) O(4)-Er(2)-Cl(3) 91.61(2)

Er(2)-O(4) 2.307(6) Cl(6)-Er(2)-Cl(3) 94.94(8)
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Er(2)-Cl(6) 2.554(2) O(6)-Er(2)-Cl(5) 88.33(2)

Er(2)-Cl(3) 2.556(2) O(4)-Er(2)-Cl(5) 87.28(2)

Er(2)-Cl(5) 2.652(2) Cl(6)-Er(2)-Cl(5) 90.61(7)
Er(2)-Cl(4) 2.653(2) Cl(3)-Er(2)-Cl(5) 174.40(7)
Hg-I(2) 2.615(9) O(6)-Er(2)-Cl(4) 88.81(2)
Hg-I(1) 2.619(8) O(4)-Er(2)-Cl(4) 86.35(2)
Hg-Cl(4) 2.760(2) Cl(6)-Er(2)-Cl(4) 175.97(7)
Hg-Cl(5) 2.761(2) I(2)-Hg-I(1) 141.62(3)

I(2)-Hg-Cl(4) 102.64(5)
O(5)-Er(1)-O(3) 143.81(2) I(1)-Hg-Cl(4) 105.23(5)
O(8)-Er(1)-Cl(2) 92.59(2) I(2)-Hg-Cl(5) 103.91(5)
O(2)-Er(1)-Cl(2) 92.95(1) I(1)-Hg-Cl(5) 105.93(5)
O(1)-Er(1)-Cl(2) 89.26(1) Cl(4)-Hg-Cl(5) 81.31(7)

O(5)-Er(1)-Cl(2) 86.32(2)

The anionic fragment [Er(THF)2Cl2(µ-Cl)2HgI2]- is mainly composed of HgI2 and

Er(THF)2Cl4
- connected via two bridging chlorines (µ-Cl). The cationic fragment

[Er(THF)4Cl2(H2O)(THF)2]
+, with a seven coordinated erbium ion is mainly composed

of THF molecules. This structure remembers that of the ion–pairs reported by Willey

et al.219 and Anfang et al.220. The only difference between those systems and our

complex 3 is the presence of the mercury in the anionic fragment. The two different

erbium centers are separated by 8.016(2) Å.

Figure D-7: Anionic fragment of the molecular structure of 3.

This structure represents the first Er-Hg system, containing HgII and ErIII ions linked

through bridging chlorine atoms. In others reported Er-Hg systems, adjacent Er

centers are linked via the ligand (Lp: propiolactam ligand) coordinated to the mercury

(in the Hg(Lp)2 unit) and leading to polymeric arrays.216, 217, 221 In the Er-Hg system of
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Goodgame et al.216, the ligand (Lp) ensures the connection between the Er centers.

The structure of the anionic part of complex 3 matches closely to that obtained by

Angang et al.220 and Willey et al.219 , therefore the following Scheme D-13 represents

a structural comparison between the different systems.
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In the anionic part of 3 (Scheme D-13: b)), the geometry around the ErIII ion is

distorted square bipyramidal with the equatorial positions occupied by chlorine atoms

and the axial positions by oxygen atoms (from THF molecules). The oxygen atoms

O4A
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Cl3Cl2A

Cl3A

I1

I2

Hg

Cl4

Cl5 Cl6

Cl3

O6

O4

Er
Er

from Ref. 217 from Ref. 216

Distances in [Å]

Er-Cl2 2.586(1) 2.593(3)

Er-Cl2A 2.586(1) 2.593(3)

Er-Cl3 2.598(1) 2.609(3)

Er-Cl3A 2.598(1) 2.609(3)

Er-O4 2.294(4) 2.313(9)

Er-O4A 2.294(4) 2.313(9)

Angle O-Er-O in [°]

O4-Er-O4A 180.0 180.0

Scheme D-12: Comparison between:

a) Literature reports and b) this work.

from this work

Distances in [Å]

Er-Cl3 2.556(6)

Er-Cl5 2.652(2)

Er-Cl6 2.554(2)

Er-Cl4 2.653(2)

Er-O6 2.283(6)

Er-O4 2.30786)

Angle O-Er-O in [°]

O4-Er-O6 173.7(2)

b)a)
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O4 and O6 are situated at almost equivalent distances of 2.307(6) and 2.283(6) Å

respectively, from the ErIII center. The bridging chlorides, Cl4 and Cl5 which are

situated at 2.653(2) and 2.652(2) Å, respectively, from the ErIII ion are slightly longer

than the terminal ones Cl3 and Cl5 found at 2.556(2) and 2.554(2) Å, respectively.

The Er-Cl and Er-O lengths are in the same order than the reported values. But,

contrarily to the reported examples, the D2h symmetry found in example of Anfang et

al. (Er-Cl2=Er-Cl2A, Er-Cl3=Er-Cl3A, and Er-O4=Er-O4A) is lost in 3, since the Er-Cl

bond lengths in equatorial positions and Er-O bond lengths in axial positions are no

more equivalents i.e. Er-Cl3≠Er-Cl5, Er-Cl4≠Er-Cl6, and Er-O4≠Er-O6 (see table in

Scheme D-13).

This distorted geometry around the erbium metal center in the anionic part of 3 is

also a result of the coordination of the mercury which induces a lengthening of the Er-

Cl distances (Cl4 and Cl5). Another proof of this distortion, is given by the O-Er-O

angle of 173.7(2) ° in the anionic fragment of 3, deviated from the linear O-Er-O

angle (180.0°) reported by Anfang et al. 220or willey et al. 219 The Er-Hg distance is

about 4.024(2)Å in complex 3.

Figure D-8: Anionic fragment of the complex 3 showing the deviation of the Hg from the plan

(black line) containing the Er and Cl atoms.

The mercury ion (HgII) is slightly deviated from the plane containing the ErIII and the

four chlorine atoms (Figure D-8). A steric hindrance between the THF molecule and

the iodine (I2) causes a rotation of one THF molecule about 90° around the O-Er-O

axis. This complex is isolated in a 55 percent yield (from HgI2), and the reaction was

reproducible. An attempt to isolate this complex from a direct reaction between HgI2
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and ErCl3 in THF was unsuccessful. However we failed in attempting to extend this

result to others lanthanides (NdIII and LaIII).

D.4 Luminescent properties of the Ln3+-dithiolene complexes

As explained at the beginning of this chapter, we are interested in luminescence

studies. The results presented here are probably the first luminescent investigations

devoted to Ln3+-dithiolene complexes. These have been realised in collaboration with

the group of Prof. C. Wickleder (Siegen, Germany) in the framework of the SPP 1166

project.

D.4.1 Measurement facility

The measurements have been performed on a JOBIN YVON Fluorolog 3

represented here.

This is composed of a Xe lamp as light source, double monochromators, a sample

chamber, detector, entrance slit and exit slit.

The samples were prepared in a quartz glass tube with 2 mm diameter and 2 cm

height. The sample height was about 3 mm in the quartz glass tube.
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D.4.2 Luminescent results and discussion

For commodity, this section will be divided in two parts depending on the emission

region where the typical transitions are observed. The NIR (Near Infra red) emitting

ions (Nd3+and Er3+) will be first described followed by the Vis (Visible) emitting ions

(Eu3+and Tb3+).

D.4.2.1 Luminescent properties of Nd3+-dithiolene complexes

Since the complexes are insoluble in common solvents only luminescence

measurements in the solid state were performed. Excitation spectra of Nd2(L
1)3 and

Nd(L2H)L2 are represented in Figure D-9 and D-10 respectively.

Figure D-9: Excitation spectrum of Nd2(L
1
)3 (

em
monitored 1080 nm).
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Figure D-10: Excitation spectrum of Nd(L
2
H)L

2
(

em
monitored 1064 nm).

The sharp peaks are attributed to f-f transition while the broad peaks are from the

ligands. The f-f transitions are attributed using literature references since these

transitions are not influenced by surrounding ligands. The assignments of the

electronic transitions are listed in Table D-8 and for comparison the values found in

the literature for neodymium doped in a bismuth triborate matrix (BiB3O6:Nd3+)222 are

added.

Table D-8: Peaks depicted from the excitation spectra and their assignment to the

corresponding f-f transitions.

Wavelength (nm)

Transitions Nd(L2H)L2 Nd2(L
1)3 Nd

3+
in matrix

a

4I9/2→ 4F3/2 886 880 872

4I9/2→ 4F5/2 804 800 801

4I9/2→ 4F7/2 747 740 745

4I9/2→ 4F9/2 673 670 679

4I9/2→ 2G7/2 582 580 583

4I11/2→ 4G7/2 495 495 .

a : from (BiB3O6:Nd3+) (see reference 222)
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First of all, the recorded peaks for a given transition are found in similar positions

independently of the composition of the complex or matrix. This observation states

the fact that optical transitions within the f-subshell are not influenced by ligand

environment.

The broadness of the ligand peak compared to f-f transitions arise from the

absorption coefficient. In fact, f-f transitions are forbidden and are more or less forced

while ligands transition are allowed (mostly * transition).

Both complexes Nd(L2H)L2 (Figure D-11) and Nd2(L
1)3 (Figure D-12) exhibit NIR

emission when they are excited at 360 and 495 nm respectively.
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Figure D-11: Emission spectrum of Nd(L
2
H)L

2
(

ex
= 360 nm).

As depicted in Figure D-11, Nd(L2H)L2 exhibits three bands characteristic of f-f

transitions of Nd3+ species75, 223, 224at 880 nm (4F3/2 → 4I9/2), 1060 nm (4F3/2 → 4I11/2),

and 1330 nm (4F3/2 → 4I13/2). The (4F3/2 → 4I11/2) transition (laser transition) dominates

this spectrum. The (4F3/2 → 4I13/2) transition presents a small shoulder probably due to

splitting from crystal field effects.224, 225

This emission feature is obtained by excitation at 360 nm corresponding to the ligand

band (or ligand absorption). The characteristic emission from the Nd3+ by excitation
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on the ligand absorption (ex = 360 nm) clearly demonstrates that the luminescence

of Nd(L2H)L2 is achieved by energy transfer from the ligand excited state to the

neodymium excited state. In other words, we are dealing with a typical case of

“antenna effect”.186 The much more intense excitation band of the ligands compared

to those of the Nd3+ f-f transitions (Figure D-10) shows the efficiency of energy

transfer in this case. The remaining OH group should be located outside of the first

coordination sphere.

This effect is less pronounced in the case of Nd2(L
1)3 where the ligand peaks present

similar strength than those of the Nd3+. However, as in Nd(L2H)L2 , excitation at 495

nm produce the same NIR emission with similar Nd3+ characteristic transitions

(Figure D-12).
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Figure D-12: Emission spectrum of Nd2(L
1
)3 (

ex
= 495 nm).

Another problem, which constrains us to rule out the existence of an energy transfer

in this case, is the overlap between the ligand peak and Nd3+ peak at 495 nm (4I11/2→ 

4G7/2). The observation of two different absorption peaks (360 and 495 nm)
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corresponding to two different ligands (L1H2 and L2H2) suggests that these two

ligands possess different excited states.

Since absorption of such ligands is mainly due to the presence of the DMIT unit (-

system), one could not expect that for the excitation such a large difference has to be

used. A possible explanation of this difference could be in the ligand’s excited states.

L1H2 and L2H2 have probably different triplet excited states. The position of such

ligand triplet states compared to the lowest luminescent states of the Nd3+ (4F3/2) is

important for achieving the energy transfer process. Indeed, it is known that when the

triplet-state energy of the ligand is at least greater than the energy gap between

excited and ground states of the lanthanide ion (Ln3+), an efficient luminescence

could be obtained.

For lanthanides, two types of mechanism for energy transfer have been proposed:

the Förster mechanism226 or multipolar mechanism (mainly dipolar)194 and the Dexter

mechanism227 or exchange mechanism.194 These two mechanisms depend differently

on the parameters of the studied system (spin of the ground and excited states,

donor-acceptor distances etc.). The dipolar mechanism does not require contact

between the donor (Ligand) and acceptor (LnIII ion) while the exchange mechanism

requires orbital overlap between the donor and acceptor. Since there is no physical

contact between the -system (DMIT) and the Nd3+ ion in both Nd2(L
1)3 and

Nd(L2H)L2 , we can conclude that the energy transfer in the case of Nd(L2H)L2 is

predominantly dipolar in character (Förster mechanism).

D.4.2.2 Luminescent properties of Er3+-dithiolene complexes

Similarly to the Nd3+-dithiolene complexes, solid-state luminescence measurements

have been performed for erbium complexes. The excitation and emission spectra for

Er2(L
1)3 are shown in Figure D-13.
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Figure D-13: Excitation (black) and emission (red) spectra for Er2(L
1
)3 (

ex
: 670 nm).

The excitation spectrum shows an intense peak at 670 nm and relative weak peaks

at 270, 490 and 830 nm. The peaks at 670 and 490 nm could be attributed to 4I15/2 → 

4F9/2 and 4I15/2 → 4F7/2 transitions respectively using literature data.222, 224 However,

the emission feature (peak around 900 nm) is not commonly observed in erbium

complexes. The most observed luminescent transition, justifying the use of erbium in

optical amplification, is localised around 1550 nm.75, 224 Unfortunately, we could not

localised this peak corresponding to the 4I13/2 → 4I15/2 even by excitation in the UV

region.

Similar behaviour was observed in the case of Er(L2H)L2 whose spectra are shown in

Figure D-14.



Chapter D – Near infrared and Visible emitting Ln3+-dithiolene complexes

158

200 300 400 500 600 700 800 900 1000 1100 1200 1300

Excitation spectrum of Er(L
2
H)L

2

Emission spectrum of Er(L
2
H)L

2

In
te

n
s
it
y

Wavelength (nm)

Figure D-14: Excitation (black) and emission (red) spectra for Er(L
2
H)L

2
(

ex
: 270 nm).

The excitation spectrum exhibits the same transitions as in Er2(L
1)3. The transition at

270 nm is more intensive than that at 670 nm. The emission spectrum remains

unchanged. Once more, the main erbium transition around 1500 nm is not observed.

These features are accounted for the low lying emissive states of erbium (Er3+)

compared to the ligands. The energy gap between the ligands excited states and a

lanthanide emissive state is an important factor regarding sensitisation process.186, 187

Another possibility, explaining this behaviour can arise from a deactivation process

involving C-H or OH oscillators. This deactivation or quenching from oscillator is more

pronounced in erbium complexes.228

D.4.2.3 Luminescent properties of Tb3+-dithiolene complexes

Terbium is a potential ion for application in the visible domain because of its strong

green emission and its relative longer lifetimes. As exhibited in Figure D-15, complex

Tb(L2H)L2 displays typical emission spectrum with expected luminescent transitions

from the 5D4 level to the 7F6-0 levels. The spectrum is dominated by the 5D4
7F6

transition, with maximum peak at 540 nm. Tb(L2H)L2 shows an intense green
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emission under irradiation with UV lamp, a typical feature for Tb3+ containing

compounds.
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Figure D-15: Emission spectrum of Tb(L
2
H)L
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= 360 nm); peaks correspond to the

5
D4

7
F6,

5, 4, 3,2,1,0 transitions.

Apart from the 5D4
7F3 transition, the relative intensities of the 5D4

7FJ transitions

fall in the same order than expected (7F5 > 7F6 > 7F4 > 7F3 > 7F2 , 7F1,
7F0).

184 Such a

relative intensity for the magnetic dipole transition 5D4
7F3 over the electric dipole

transition 5D4
7F6 has been observed on Tb3+-imidazole compounds.229 However,

the intensity ratio I(5D4
7F6)/I(

5D4
7FJ ) is much weaker than in the Tb3+-imidazole

compounds,229 suggesting a poor color quality looking for application possibilities.

It is noteworthy that there is no apparent residual emission in the 550-700 nm region

which should come from the ligand. This indicates that an efficient energy transfer

from the ligand excited states to the Tb3+ excited states takes place.
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D.4.2.4 Luminescent properties of Eu3+-dithiolene complexes

The europium complex is of crucial importance for our investigations. Due to the

polymer-like nature of the complexes, their characterisation by means of NMR or

crystallography was not possible. But europium is the ion, per excellence, for

probing the environment or symmetry of an ion in a complex (see Table D-2).

The excitation and emission spectra of Eu(L2H)L2 are shown in Figure D-16 and D-

17 respectively.
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Figure D-16: Excitation spectrum of Eu(L
2
H)L

2
(

em
monitored 612 nm).

The excitation spectrum exhibits a broad band centered at 415nm (ligand peak) and

some weak f-f contributions at 464 nm and 534 nm assigned respectively to 5D2 

7Fo and 5D1 
7Fo transitions.230 The relative weak intensity of these Eu3+ peaks

compared to the ligand peak suggests an energy transfer from the ligand to the

europium ion.

Upon excitation at 415 nm, the Eu(L2H)L2 complex shows typical peaks

corresponding to the Eu3+-centered 5D0
7FJ transitions (Figure D-17). The
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transitions 5D0
7F1-6 are strong enough to be detectable, while a magnification of

the 570-585 nm region was necessary to observe the magnetic dipole transition (see

insets in Figure D-17).

No transitions arising from the 5D2 and 5D1 were observed although these states were

populated according to the excitation spectrum. This can be explained by the small

energy gap separating the 5D2,
5D1 and the 5D0 level, leading to a fast relaxation

populating the low lying luminescent state (5D0).
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Figure D-17: Emission spectrum of Eu(L
2
H)L

2
(

ex
= 415 nm).

Here also, the absence of the ligand–based emission in the emission spectrum

suggests that the luminescence of the complex is achieved via an energy transfer

from the ligand to the europium center.

D.4.2.4.1 Analysis of the 5D0
7FJ transitions in Eu(L2H)L2

The first information in our complex is provided by the analysis of the 5D0
7Fo

transition centered around 580 nm. The 5D0
7Fo transition presents a single peak
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centered at 580 nm. Since the 7F0 of the Eu3+ is nondegenerate and can not be split

by crystal field effect, we can assume that there is one europium (III) species in the

complex. However, the broadness of this peak, illustrated by a width at half height

(FWHM) of 36 cm-1, traduces the presence of several closely related, chemical

environments (polymeric nature) of the europium in the complex.

The second information is given by the intensity of the hypersensitive 5D0
7F2

transition which is absent if the ion lies in a inversion center.184 This peak centered at

612 nm, dominates the emission spectrum of the Eu(L2H)L2 complex and indicates

that the europium ion (Eu3+) in the Eu(L2H)L2 complex does not lie in an inversion

center.

The third information, but less reliable in this case because of the lack of crystal

structure, concerns the ratio I(5D0
7F2)/I(

5D0
7F1 ). The 5D0

7F1 transition has a

magnetic dipole character and is thus no sensitive to the metal environment contrary

to the 5D0
7F2 transition. The magnetic dipole transition (5D0

7F1) dominates in a

centrosymmetric environment while an electric dipole transition (such as 5D0
7F2)

gain in intensity by distortion of the symmetry. Richardson et al.231, 232 have

established that this intensity ratio can be used to confirm the symmetry of the Eu3+

ion in a given structure.

The intensity ratio I(5D0
7F2)/I(

5D0
7F1 ) of about 4.9 indicates that the Eu3+ in

Eu(L2H)L2 do not occupy sites with high symmetry.190, 233-238 The information

provided by these observations on the f-f transitions, is in accordance with the

proposed structure for Ln3+-dithiolene carboxylate complexes (see Scheme D-8).

The hypersensitive 5D0
7F2 transition presents peaks that are splitted and could be

due to a crystal field effect. We have carried out time-dependent measurement to see

this phenomenon in more details.

D.4.2.4.2 Temperature-dependent measurement for the Eu(L2H)L2

complex

The measurement have been realised using the same equipment adapted with a

cryostat device (filled with helium). The measurements were performed between 10K

and 313K and the emission spectra were recorded after temperature stabilisation

within the same time interval, for consistency.
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D.4.2.4.2.1 Information from the temperature-dependent measurement

The emission spectra for the RT, 160 K and 10 K are shown in Figure D-18. The first

observation concerns the intensity of the 5D0
7FJ which all increase significantly

upon lowering the temperature.
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Figure D-18: Emission spectrum of Eu(L
2
H)L

2
at RT, 160K and 10K (

ex
= 415 nm).

This is expected since at low temperature, vibrations which are the main source of

quenching are strongly reduced at low temperature and as a result the emission

gains in intensity.
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Figure D-19: Emission spectrum of Eu(L
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H)L
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at 10K (

ex
= 415 nm).

The second observation is related to the splitting of the 5D0
7F1-4 transitions. This

split is more visible at 10K and concerns only the 5D0
7F1-4 transitions (Figure D-

19). Such a splitting of the lanthanide (Ln3+ in general) line has been already

observed and is well documented.225, 239-241

D.4.2.4.2.2 Approximation of the symmetry using the splitting pattern of the sublevels

The study of the intensity and splitting pattern of certain transitions in the

fluorescence spectra of Eu3+ compounds can give information about the environment

of the Eu3+ ion (symmetry). A classical example, illustrated this feature is the

[Eu(terpy)3](ClO4)3. The analysis of the luminescence spectrum of [Eu(terpy)3](ClO4)3

suggested a D3 geometry although no crystal structure was available at that time.242

This symmetry was later confirmed by crystallographic details available some years

after.

At low temperature, each band is splitted to several sublevels (Stark sublevels) due

to crystal field effect. Thus we have 2 and 3 bands for the 5D0
7F1 and the 5D0

7F2

transitions respectively. About five bands for the 5D0
7F4 transitions are also
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detected, while those corresponding to the 5D0
7F3 transitions are not strong

enough to be countable. The different peaks are listed in Table D-9 and compared

with literature data.241

Table D-9: Energy levels of the Eu
3+

complex resulting from splitting due to crystal field and

for the corresponding transitions; (comparison with values of reference 241).

Transitions wavelength (nm) Energy (cm
-1

)
Energy for Eu

3+
in LaCl3

(cm
-1

)
241

5D0
7F0 580 17250 17267

5D0
7F1 591.7 16900 16912

594.6 16818 16862

5D0
7F2 612.2 16334 16245

614.7 16262 16239

620.6 16113 16183

5D0
7F3 650 (v weak) 15384 a)

5D0
7F4 686.79 14560 14516

691.2 14467 14434

699.7 14291 14400

701.9 14247 14364

705.8 14168 14226

a) the reported value in reference
241

are not listed here because the corresponding peak is too weak in
our case

However the intensity ratio I(5D0
7F2)/I(

5D0
7F1 ) remains unchanged with varying

the temperature (4.9 at RT and 4.87 at 10K).

The number of Stark sublevels of a given transition can be correlated to the

symmetry of a system.

Table D-10 gives the maximum of energy levels (Stark sublevels) generated in the

various point groups.184
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Table D-10: Number of J-sublevels in a given point symmetry vs. the quantum number J.
184

Symmetry J: 0 1 2 3 4 5 6

Icosahedral 1 1 1 2 2 3 4

Cubic1
1 1 2 3 4 4 6

Hexagonal2 1 2 3 5 6 7 9

Pentagonal3 1 2 3 4 5 7 8

Tetragonal4 1 2 4 5 7 8 10

Low5
1 3 5 7 9 11 13

1: Oh, O, Td,Th,T

2: D6h, D6, C6v, C6h, C6, D3h, C3h, D3d, D3, C3v, S6, C3

3: D5h, C5h, C5v, C5, D5

4: D4h, D4, C4v, C4h, C4, D2d, S4

5: D2h, D2, C2v, C2h, C2, Cs, S2, C1

From the Eu(L2H)L2 spectrum recorded at 10K, we can identify the number of

sublevels for the different transitions (1 sublevel for J=0, 2 sublevels for J=1, 3

sublevels for J=2 and 6 sublevels for J=4 (Table D-11)).

NB: For J=3, the weakness of the (5D0
7F3) transition do not allow us to identified

the sublevels. The 5D0
7F5 transition and the 5D0

7F6 transition are generally

seldom observed.

Table D-11: Number of Stark sublevels identified in the Eu(L
2
H)L

2
complex

J: 0 1 2 3 4

Eu(L2H)L2 complex 1 2 3 - 6

From this observation and taking into account the information given in Table D-10,

we can conclude that the Eu(L2H)L2 complex possesses approximately a hexagonal

symmetry which means that our system presents one of the following symmetry: D6h,

D6, C6v, C6h, C6, D3h, C3h, D3d, D3, C3v, S6, C3.

And if we combine this information with that provided by the 5D0
7F2 (most intensive

peak) we can see that the D6h, C6h, D3d, and S6 symmetry are not possible (see

character tables for chemically important symmetry groups243). Therefore we can

reduce this group to the D6, C6v, C6, D3h, C3h, D3, C3v and C3 symmetry as the

probable cases.
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D.4.2.4.3 Lifetime measurement

The lifetime measurement of the Eu(L2H)L2 complex was performed on the same

spectrophotometer and was determined for the 5D0 level. The excitation wavelength

was chosen at 415 nm and the emission fixed at 612 nm. Figure D-20 represents the

intensity decay of the Eu(L2H)L2 and exhibits a mono-exponential decay illustrating

the presence of one Eu3+ species.
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Figure D-20: Intensity decay of the
5
D0 level of the emission of Eu(L

2
H)L

2
(

ex
= 415 nm, 

em
=

612nm).

The emission decay profile of the Eu(L2H)L2 complex in the solid state is plotted in

Figure D-21 and corresponds to the logarithm of the exponential decay. The slope of

this curve gives the value of the lifetime () which is measured to be equal to 0.206

ms. This value of 0.206 ms is in the range of lifetimes reported for Eu3+ complexes in

the solid-state but is slightly shorter than the known value which average sometime

the milliseconds and more. It corresponds more to the lifetimes measured for

europium species in H20 solutions. However, this value (0.206 ms) is similar to those

reported for europium (Eu3+) species bearing imidazolecarboxylic acid moieties

(0.178 ms238 , 0.251 ms236 and 0.256 ms237).
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Figure D-21: Emission decay profile of the Eu(L
2
H)L

2
complex in the solid state.

A possible explanation is that the remaining protonated carboxylate group (-COOH)

on Eu(L2H)L2 complex induces a quenching. However, this assumption is not

plausible if we look at the intensity of the emission spectra, which seems to be

correct in intensity. Indeed, we have previously assumed that surprisingly the OH

function does not affect the luminescence in the Nd(L2H)L2 complex and that it

should be located outside of the first coordination sphere.

To get more insight into a possible quenching from the OH remaining group, we also

have tried to prepare a derivative Eu(L2Na)L2 where the remaining OH group is

replaced by ONa.

D.4.2.4.4 Salt metathesis reactions between sodium carboxylate of

L2Na2 and EuCl3

Sodium carboxylate of L2H2 is prepared by adding MeONa to a methanol solution of

L2H2. The resulting salt is then added to the methanol solution of EuCl3. A precipitate

is formed within a period of few minutes and the reaction mixture is stirred for

additional 24h.
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Scheme D-13: Metathesis reaction starting from the Sodium carboxylate of L
2
H2.

We should point out that, although this synthetic route is different from the silyl-amide

route, the product of this reaction present similar behaviour (fast precipitation,

insolubility). A polymeric nature of the product is, once again, the most reasonable

explanation.

The emission spectra of the Eu(L2Na)L2 salt exhibits the same features

corresponding to the Eu3+-centered 5D0
7FJ transitions. Another difference is

observed by examining the intensity ratio: I(5D0
7F2)/I(

5D0
7F1 ) amount 3.42 in the

Eu(L2Na)L2 instead of 4.9 in the Eu(L2H)L2 complex. This difference indicates a little

change in the environment of the Eu3+ ion, but does not alter the fact that the EuIII ion

does not possess an inversion center.236, 237
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Figure D-22: Emission spectrum of Eu(L
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Na)L
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at RT (
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= 360 nm).

The emission decay profile of the Eu(L2Na)L2 complex in the solid state is shown in

Figure D-23 and corresponds to an exponential decay.
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Figure D-23: Intensity decay of the
5
D0 level of the emission of Eu(L
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Na)L

2
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= 360 nm, 

em
=

612nm).

The slope of this curve gives the value of the lifetime (), which is measured to be

equal to 0.225 ms.
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This lifetime value of 0.225 ms is slightly longer than the value measured for

Eu(L2H)L2 (0.206 ms). However, this value is not longer enough to state a quenching

phenomenon but remains within the range of lifetimes recorded for Eu3+ complexes in

the solid state.

According to the results obtained for the Eu(L2Na)L2 complex, we can state that the

OH group does not influence much the quenching process. This corroborated with

our assumption that the OH is situated outside of the first coordination sphere.

D.5 Conclusion

We have synthesised Ln3+-sulfur-rich system complexes using dithiolene-like neutral

ligands functionalised with acid or alcohol groups. The synthetic approach is original

in that way that it combined the versatility of dithiolene-functionalised ligands to

isolate complexes (which were unfortunately insoluble). Their polymeric nature can

be interpreted as resulting from additional coordination of the thiocarbonyl function

(C=S). We have seen in this investigation that Ln3+-dithiolene complexes are

promising case for luminescent studies. The dithiolene ligands because of their -

system represent good chromophores suitable for achieving an energy transfer

process. The efficiency of the transfer process could not be evaluated in this study

because of the polymeric nature of the materials and the lack of device suitable for

solid-state quantum yield measurement.

Nevertheless, we could see in the case of Nd(L2H)L2 that an energy transfer from

the ligand to the NdIII center was at the origin of the luminescence. To get more

information into the whole process, it should be helpful to measure the quantum yield

and maybe deduce the efficiency of the energy transfer.

Investigating the europium compounds by low temperature measurement was a good

idea since it has allowed us to have an idea of the symmetry of our system (without

having the crystal structure).

- For example we could see by analysing the 5D0
7F2 that our systems

possess no inversion center.

- With the analysis of the J-splitting pattern at low temperature we have

approximately identified a hexagonal symmetry group.
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- One single peak for the 5D0
7F0 at low temperature is an evidence for the

presence of one europium site.

- And finally, the lifetime measurements have confirmed that, as predicted in the

case of Nd(L2H)L2, the OH group is located outside of the first coordination

sphere of the lanthanide center and do not contribute to quenching.

Of course, the absence of crystal structures makes the results difficult to be

interpretable but the luminescence properties (especially those of europium

compounds) of these polymer-like material bring the light into the unexplored domain

of Ln3+-dithiolene complexes. To the best of our knowledge, these are the first

luminescence investigation on Ln3+-dithiolene systems and need to be deeply

investigated as future candidates for potential new luminescent materials.
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CHAPTER E. SUMMARY AND

PERSPECTIVES



Chapter E - Summary and perspectives

174

E General Conclusion

Our objective in this study was to investigate on the physico-chemical properties of

metal-dithiolene complexes. The dithiolene-like neutral ligands used are mainly dmit-

derivatives while the metals used are transition metals and lanthanides.

We have used, in the chapter B, the functionalisation abilities of dithiolene

ligands to access to supramolecular arrangement where the presence of non-

covalent interactions was used to govern the solid-state organisation. We have seen

that the presence of OH functional groups is a determinant factor, which can

contribute to help a molecular system to self-organise in the solid state. Such

functional groups are sensitive to the presence of a hydrogen bond donor or acceptor

and tend to dominate the growth orientation by introducing new dimensionality.

In the chapter C we have played with the coordinative ability of such dithiolene

ligands to soft metals center (mostly d10 electronic configuration metal center) to

synthesise metallo-supramolecular systems which were stabilised by additional

metal-metal interaction in addition to the non-covalent interactions observed between

ligands in chapter B. In such metal organic framework (MOF), the combination of

, metal-ligand, metal-metal (in some cases) and hydrogen bonding interactions

were found to be systematically at the origin of the solid state organisation.

Nevertheless, we could not conclude on the relative strength of one interaction over

the others.
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Their luminescent properties were investigated as well, and the results presented

here show that they all present luminescent properties which are centered on ligands

(intraligand transitions) or take their origin in the metal-ligands centered transitions.

The third and last chapter (chapter D) was devoted to an unexplored field

which concerns the Ln3+-dithiolene complexes. Here again, we have used the

versality (different reaction sites) of dithiolene-like neutral ligands to set up a

synthetical approach using the reactivity of the functional groups. The polymeric

nature of the synthesised complexes limited the characterisation possibilities, but the

luminescent measurement showed remarquable ability of the dithiolene moiety

regarding the luminescence of the resulting lanthanide complexes. In fact, these

ligands play a predominant role acting as chromophore to sensitise the lanthanide’s

luminescence (see below).
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For Near Infrared-emitting ions (such as Nd3+) as well as for Visible-emitting ions

(Eu3+ and Tb3+), an energy transfer from the ligand to the lanthanide ions seems to

govern the luminescence observed; a typical “antenna effect”. Photophysical studies

need to be undertaken for a better quantification of these systems and for potential

application.
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CHAPTER F. EXPERIMENTAL

SECTION
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F Experimental Part

F.1 General

All reactions were carried out under N2 atmosphere using a modified “Stock vacuum

apparatus” adapted with a N2 input. The necessary vacuum was obtained with a

rotary vane pump of the Vacuumbrand company (model R75, 5.4 m3/h, 4*10-4mbar).

The solvents (THF, Toluene, Hexane, and Ether) were dried and distilled from

sodium-benzophenone and keep under N2 atmosphere.

F.2 Elemental analysis

Elemental analysis (C and H) were performed on a LECO CHN 900 elemental

analyzer. The lanthanide (Nd, Eu, Tb and Er) content was obtained by

complexometry and titration method using EDTA as complexing agent. Calculation of

the theoretical molar mass was done with relative atomic mass obtained from IUPAC

tables.

F.3 Spectroscopic methods

F.3.1 Nuclear magnetic Resonance

The NMR spectra were recorded on Bruker 200 ACF NMR spectrometer operating at

200.13 MHz and 50.3 MHz for 1H and 13C, respectively. Samples were prepared by

dissolving small amount of compounds in appropriate deuterated solvents (CDCl3,

C6D6 and DMSO-d6). Chemical shifts are given according to -scale in ppm. For the

assignment of the peaks the following abbreviations are used: s=singlet, d=doublet,

t=triplet and br=broad.

F.3.2 Infrared

ATR-IR spectra were performed using a Varian 2000 FT-IR (Scimitar 2000) equipped

with a Golden Gate. Measurements were performed in the solid state and the
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chamber clean by N2 flow before the measurement. The assignment of the bands

was done with subjective appreciation: s (strong) , w (weak) and br (broad).

F.3.3 UV-Vis (Ultraviolet-visible)

UV-Vis spectra were performed on a Lambda 35 UV-Vis spectrometer (Perkin Elmer

Instruments) operating between 200 and 800 nm. Solutions with concentrations

ranging from 10-4 to 10-5 Mol.L-1 were prepared for the measurements.

F.3.4 Photoluminescence measurement

The solid-state emission spectra for the ligands and the transition metal complexes

were recorded at room temperature on a Jobin-Yvon Fluorolog-3 spectrometer using

a cylindrical 0.5 cm diameter quartz capillary with a scan speed of 1 nm/s. Intensity

scales are presented in arbitrary units.

Photoluminescence measurements for lanthanide complexes, at room temperature,

were recorded on a Jobin-Yvon fluorescence spectrometer (Fluorolog 3) equipped

with two 0.22 m double monochromators (SPEX, 1680) and a 450 W xenon lamp.

The emission spectra were corrected for photomultiplier sensitivity, the excitation

spectra for lamp intensity, and both for the transmission of the monochromators.

Temperature-dependent measurements were achieved by using a Helium cryostat

operating from 10 K to RT.

F.4 Crystals structure determination

The single crystal X-ray diffraction analysis was performed on a Stoe imaging plate

diffractometer (IPDS) at -70 C and 25°C for L1H2-Hgl2 and L1H2-AuCl respectively

and a BrukerAxs X8 ApexII diffractometer at -170°C (for L1H2, L2H2 and L2H2.THF),

using graphite monochromated Mo K X-ray radiation ( 0.71073 Å). The crystal

structures were solved by direct methods and refined by full-matrix least squares on

F2 using the SHELX software package for crystal structure solution and refinement90
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All non-hydrogen atoms were refined with anisotropic thermal parameters in the later

cycles of refinement. For L1H2-Hgl2, the hydrogen atoms were placed in idealized

positions and refined using the riding model with general isotropic temperature

factors.

F.5 Starting materials

The following compounds were prepared using literature procedure. In some case

the proposed method were modified for improving the yield or isolating crystals if

necessary.

Compounds Reference

[Zn(Dmit)2](Et4N)2
42

DmitCOPh (L0)
42

Ln(N(SiMe3)2)3 (Ln= Nd, Eu, Tb, Er)
210

Au(THT)Cl
156

F.6 Synthesis

F.6.1 Synthesis of 4,5-bis[(2´-hydroxyethyl)thio]1,3-dithiole-2-thione

(L1H2)

Ligand L1H2 was synthesised following the report of Hansen [Ref. 47], for this reason,

only the way to obtain crystals will be reported here. The yellow plates (obtained

according to reference 47) were dissolved in THF and filtrated. The filtrate was

reduced by slow evaporation of the solvent and after cooling L1H2 was obtained as

yellow crystals suitable for X-ray measurement.

m.p: 58-60 °C (65-67 °C [Ref 47]).

NMR (CDCl3): ppm)= 2.80 (2H, s); 3.06 (4H, t, J= 5.5 Hz); 3.63 (4H, t, J= 5.5Hz).

(NMR (DMSO-d6):ppm)= 3.04 (4H, t, J= 6.17 Hz); 3.63 (4H, t, J= 6.17Hz); 5.05

(2H, s).

NMR (CDCl3), [from Ref. 47]: ppm= 3.05 (4H, t, J= 6 Hz); 3.63 (4H, q, J= 6 Hz); 5.06

(2H, t, 6 Hz).

ATR-IR: (OH) 3272 (br.), (CH) 2920,  (C=S) 1074(s),  (C-S) 796 cm-1.
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El.An: C7H10S5O2 (Mw=286 g.mol-1): found (calc.) C, 28.55 (29.37); H, 3.31 (3.57)%.

UV-Vis (CH2Cl2) : max(nm) (, M-1cm-1) = 272 (22400), 380 (47820).

F.6.2 Synthesis of 4,5-bis[carboxymethylthio]-1,3-dithiol-2-thione (L2H2)

In a 2.1 g (2.9mmol) solution of Bis(tetraethyl ammonium) bis(1,3-dithiol-2-thione-4,5-

dithiolate)-zincate dissolved in 50 ml acetone were added a mixture of 2.08 g

(22mmol) of ClCH2COOH, 0.88 g (22 mmol) of NaOH and 20 ml H2O. The mixture

was heated under reflux for 1 day resulting in a colour change from deep-red to

orange. The solvents were then removed in vacuum and HCl (50%) was added with

cooling to give yellow precipitate. After filtration the precipitate was then dissolved in

diethyl ether. The organic phase was then filtrated after decantation, and dried under

MgSO4. Slow evaporation of this solution allowed for isolation of yellow crystals (1.53

g, 84%) suitable for X-ray analysis.

NMR (DMSO-d6/TMS, ppm): 1H, 3.87 (4H, s), 4.27 (2H, broad);C,211.16 (C=S),

169.72 (C=O), 136.51 (C=C), 37.59 (CH2).

El.An: C7H6S5O4 (Mw=314.42 g.mol-1): calc.(found) C 26.75 (26.62); H 2.22 (2.18) %.

UV-Vis (THF): max(nm) (, M-1cm-1) = 265.7 (27900), 378.6 (40560).

ATR-IR: (OH) 3273-2800 (br.), (CH) 2970,(C=O) 1738 (m) and 1692(s),  (C=S)

1065(s) cm-1.

F.6.3 Synthesis of 4,5-bis[carboxymethylthio]-1,3-dithiol-2-thione.THF

(L2H2.THF)

In a 2.1 g (2.9mmol) solution of Bis(tetraethyl ammonium) bis(1,3-dithiol-2-thione-4,5-

dithiolate)-zincate dissolved in 50 ml acetone were added a mixture of 2.08 g

(22mmol) of ClCH2COOH, 0.88 g (22 mmol) of NaOH and 20 ml H2O. The mixture

was heated under reflux for 1 day resulting in a colour change from deep-red to

orange. The solvent were then removed in vacuum and HCl (50%) was added with

cooling to give yellow precipitate. After filtration the precipitate was then dissolved in

THF and heated for half an hour. The solution was then filtrated and dried under
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MgSO4. Slow evaporation of this solution allowed for isolation of yellow crystals (1.59

g, 71%) suitable for X-ray analysis.

NMR (DMSO-d6/TMS, ppm): 1H, 3.87 (4H, s), 4.27 (2H, broad);C,211.16 (C=S),

169.72 (C=O), 136.51 (C=C), 37.59 (CH2).

Additional peaks corresponding to THF were found in the NMR spectra. [1H, 1.74

(4H, m), 3.54 (4H, m);C25.16 (CH2), 66.72 (CH2O)].

El.An: C11H14S5O5 (Mw=386.42 g.mol-1): calc.(found) C 34.16 (33.92); H 3.60 (3.28)

%.

UV-Vis (THF): max(nm) (, M-1cm-1) = 265.7 (27900), 378.6 (40560).

ATR-IR: (OH) 3400-2200 (br.), (CH) 2889,(C=O) 1693(s),  (C=S) 1051(s) cm-1.

F.6.4 Synthesis of 4,5-bis[benzoylthio]-1,3-dithiol-2-thione (L0)

In a 8 g (11 mmol) solution of Bis(tetraethyl ammonium) bis(1,3-dithiol-2-thione-4,5-

dithiolate)-zincate dissolved in 200 ml acetone were added dropwisely 20mL

(17mmol) of benzoyl chloride (ClCOPh) and with stirring over a period of 2h. The

reaction mixture was allowed to stand overnight at room temperature resulting in a

colour change from deep-red to orange with formation of a yellow/light brown

precipitate. This precipitate was then filtered at the pump, and successively washed

on the filter with H2O (100 mL) and acetone (100 mL). The crude material was

dissolved in CHCl3 (100 mL), refluxed for 10 min with decolourising charcoal, and

filtered hot on a fluted filter paper. The CHCl3 solution was reduced to 50 mL in

vacuum, MeOH was added portionwise with shaking, and the solution was left in the

refrigerator. Large yellow air-stable crystals, suitable for X-ray analysis, were

obtained after filtering off and air-drying (7.22 g, 79%).

NB: The crystals could also be obtained from pure CHCl3 solution of L0.

NMR (CDCl3/TMS, ppm): 1H, 7.50 (4H, t), 7.66 (2H, t), 7.95 (4H, d);C,212.49

(C=S), 185.59 (C=O), 135.02 (C=C dmit-ring), 129,128 ect. (C=C Ph-ring).

El.An: C17H10S5O2 (Mw=406.14 g.mol-1): found (calc.) C 50.22 (51.62); H 2.46 (2.10)

%.

UV-Vis (CH3CN): max(nm) (, M-1cm-1) = 366.6 (36333) nm.

ATR-IR:(C-H) 3046 (w), (C=O) 1686 (s) and 1670,  (C=S) 1056(s) cm-1,  (C-S)

878 cm-1.
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F.6.5 Synthesis of complex L0-CuI

Copper iodide (0.140 g; 0.739 mmol) was dried under vacuum at room temperature

(45 min) and dissolved in acetonitrile (15 mL). A solution of ligand L0 (4,5-

di(benzyolthio)-1,3-dithiole-2-thione) (0.300 g 0.739 mmol) dissolved in THF (10 mL)

was added to the copper solution at room temperature. The clear solution turned

immediately to deep red after addition of the ligand. The resulting red solution was

stirring during 1h and then filtrated. The filtrate was then reduced to ca 10 mL and

cooled to allow the formation of red crystals of L0-CuI (65% yield) suitable for X-ray

measurement.

ATR-IR: (CH) 3060 ,(C=O) 1698 and 1668(s),  (C=S) 1026(s), (C-S) 877 cm-1.

El.An: C68H40S20O8Cu2I2 (Mw=2005.46 g.mol-1): found (calc.) C 40.52 (40.69); H1.92

(1.99)%.

UV-Vis (CH3CN) : max(nm) (, M-1cm-1) = 366 (27599).

F.6.6 Synthesis of complex L1H2-CuI

Copper iodide (0.0665 g; 0.349 mmol) was dried under vacuum at room temperature

(45 min) and dissolved in acetonitrile (15 mL). A solution of ligand L1H2 (4,5-

di(hydroxyethylthio)-1,3-dithiole-2-thione) (0.200 g; 0.699 mmol) dissolved in THF (10

mL) was added to the copper solution at room temperature. The clear resulting

yellow solution turned trouble 2 minutes after addition of the ligand. The resulting

yellow-orange solution was stirring during 1h and then filtrated. The filtrate was then

reduced to ca 10 mL to allow formation of yellow-red powder of L1H2-CuI (65% yield).

All attempts to crystals growth were unsuccessful.

ATR-IR: (OH) 3245, (CH) 2917,  (C=S) 1033 and 1004(s),  (C-S) 842 cm-1.

El.An: C28H40O8S20Cu2I2 (Mw=1526.83 g.mol-1): found (calc.) C 20.3 (22.03); H 2.48

(2.64)%.

UV-Vis (CH2Cl2) : max(nm) (, M-1cm-1) = 380 (24840).

NMR (DMSO-D6,  ppm)= 3.05 (4H, t, J= 6.17 Hz); 3.62 (4H, q, J= 6.17Hz);

5.07 (2H, t).
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F.6.7 Synthesis of L2H2-CuI complex

Copper iodide (0.100 g; 0.525 mmol) was dried under vacuum at room temperature

(45 min) and dissolved in acetonitrile (12 mL). A solution of ligand L2H2 (4,5-

di(carboxymethylthio)-1,3-dithiole-2-thione) (0.082 g 0.262 mmol) dissolved in

acetonitrile (10 mL) was added to the copper solution at room temperature. The clear

solution turned immediately to deep red after addition of the ligand. The resulting red

solution was stirring during 1h and then filtrated. The filtrate was then reduced to ca

15 mL to allow for formation of red-brown crystals of L2H2-CuI (54% yield).

NB: the crystals should be grown by room temperature; cooling the filtrate overnight

gives aggregated which are not measurable by X-Ray diffraction.

ATR-IR : (OH) 3273-2800 (br.), (CH) 2888,(C=O) 1685 (s),  (C=S) 1028(s) cm-1.

El.An: C28H24S20O16Cu2I2 (Mw=1638.7 g.mol-1): found (calc.) C 16.52 (20.52); H 1.92

(1.48)%.

UV-Vis (CH3CN) : max(nm) (, M-1cm-1) = 376 (9090).

F.6.8 Synthesis of complex L1H2-HgI2 and L1H2-HgCl2 • 0.25 THF

Synthesis of complex L1H2-HgI2:

Mercury iodide (0.160 g; 0.349 mmol) was dried under vacuum at room temperature

(45 min) and dissolved in hot toluene (15 mL). A solution of 4,5-bis[(2´-

hydroxyethyl)thio]1,3-dithiole-2-thione (0.100 g 0.349 mmol) dissolved in THF (5 mL)

was added to the mercury solution while a temperature of 60 °C was maintained. The

resulting clear yellow solution was stirring during 45 min and then filtrated. The filtrate

was then reduced to ca 10 mL and cooled to allow formation of yellow crystals (0.169

g; 65% yield) suitable for X-ray measurement.

m.p: 72-74 °C

El.An: C7H10S5O2HgI2 (Mw=740 g.mol-1): found (calc.) C 11.18 (11.35); H 1.30

(1.35)%.

UV-Vis (in CH2Cl2):max(nm) (, M-1cm-1)= 270 (15400), 380 (11820) nm.

ATR-IR: (OH) 3240,  (CH) 2964, (C=S) 1031, (C-S) 796 cm-1.
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Synthesis of complex L1H2-HgCl2 • 0.25 THF:

Complex L1H2-HgCl2 • 0.25 THF was synthesized in a similar manner as described

for L1H2-HgI2 from L1H2 and equimolar HgCl2 (0.094 g; 0.349 mmol). L1H2-HgI2 was

isolated as yellow material (0.137 g; 68% yield). However we failed in growing

crystals suitable for X-ray measurements.

m.p: 68-70 °C

El.An: C8H12S5O2.25HgCl2 (Mw=575 g.mol-1): calc. (found) C 16.92 (16.70); H 2.20

(2.10)%.

UV-Vis (CH2Cl2): max(nm) (, M-1cm-1)= 274 (6530), 380 (7280).

ATR-IR:  (OH) 3229,  (CH) 2934,  (C=S) 1015cm-1.

F.6.9 Synthesis of complex L1H2-AuCl

Chloro(tetrahydrothiophene)gold(I) (0.112 g; 0.349 mmol) (Au(THT)Cl) was dissolved

in acetone (8 mL). A solution of 4,5-bis[(2´-hydroxyethyl)thio]1,3-dithiole-2-thione

(0.100 g 0.349 mmol) dissolved in acetone (7 mL) was added to the clear gold

solution at room temperature. The resulting clear yellow-orange solution was stirring

during 1h and then filtrated. The filtrate was then reduced to ca 7 mL and cooled to

allow formation of yellow crystals (0.105 g; 58% yield) suitable for X-ray

measurement.

NMR (DMSO-d6): ppm) = 3.12 (4H, t, J= 6.17 Hz); 3.63 (4H, t, J= 6.17Hz);

5.12 (2H, s).

El.An: C7H10S5O2AuCl (Mw=518.5 g.mol-1); found (calc): C 16.15 (16.20); H 1.84

(1.92) %.

UV-Vis (THF): max(nm) (, M-1cm-1) = 315 (5800), 424 (12780) nm.

ATR-IR: (OH) 3252,  (CH) 2960, (C=S) 1008, (C-S) 806 cm-1.
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F.6.10 Synthesis of complex L2H2-AuCl

Chloro(tetrahydrothiophene)gold(I) (0.100 g; 0.312 mmol) was dissolved in acetone

(15 mL). A solution of 4,5-bis[carboxymethylthio]1,3-dithiole-2-thione L2H2 (0.098 g

0.312 mmol) dissolved in acetone (15 mL) was added to the clear gold solution at

room temperature. The resulting clear yellow solution turned to deep orange within a

period of few seconds. The mixture was stirring during 1h and then filtrated. The

filtrate was then reduced to ca 10 mL and cooled to allow formation of yellow crystals

(0.092 g; 54.11 % yield) suitable for X-ray measurement. (NB: 2 acetone molecules

were found in the crystal structure (in the dimer)).

NMR (DMSO-d6): ppm= 3.72 (4H, s); 3.26 (2H, s, br).

El.An: C26H38S10O12Au2Cl2 (Mw=1324.5 g.mol-1); found (calc): C 21.15 (23.56); H

1.14 (2.70) %.

UV-Vis (in THF): max(nm) (, M-1cm-1) = 320 (6200), 416 (12820) nm.

ATR-IR: (OH) 3377,  (CH) 2951, (C=O) 1694,  (C=S) 1013, (C-S) 784 cm-1.

F.6.11 Synthesis of lanthanides silyl-amide ( M[N(SiMe3)2]3 , M= Ce,

Nd, Eu, Tb, Er)

Cerium, neodymium and erbium silyl amides (formula M[N(SiMe3)2]3, where M= Ce,

Nd, Eu, Tb, Er) were synthesised by respective reaction between metal chlorides (2.5

g, 10.14 mmol of CeCl3 ; 2.16 g, 8.6 mmol of NdCl3; 0.32 g, 1.2 mmol of EuCl3; 1.4 g,

5.27 mmol of TbCl3; and 2.13 g, 7.78 mmol of ErCl3) and three equivalents of Li-

N(SiMe3)2 (5.09 g, 30.42 mmol; 4.33 g, 25.8 mmol; 0.622 g, 3.7 mmol; 2.64 g, 15.8

mmol; and 3.91 g, 23.3 mmol, respectively). The metal chlorides were dried in a

dynamic vacuum at 130 °C for 2h and dissolved in 25 mL THF (the flask was cooled

with liquid nitrogen because of the strongly exothermal reaction). The stoichiometric

amount of Li-N(SiMe3)2 was dissolved in toluene and added to the THF solution

containing the metal salts. The reaction mixture was stirred and heated at 60 °C for

48 h. The resulting white precipitate (LiCl) was removed by filtration and the formed

lanthanide silyl amides were sublimed at 100 °C (10-2 Torr). The Ce, Nd, Er silyl

amides were obtained as yellow-brown, blue, and pink solid powders, respectively.
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El.An: Calculated (found)%.

Ce[N(SiMe3)2]3 : 4.712 g, 76 %; C18H54N3Si6Ce (Mw=621.32 g.mol-1); C 34.79 (29.7);

H 8.78 (5.9); N 6.76 (3.9) %. (Pyrophoric compound)

Nd[N(SiMe3)2]3 : 4.02 g, 75 %; C18H54N3Si6Nd (Mw=624.24 g.mol-1); C 34.6 (31.87); H

8.65 (9.6); N 6.73 (6.29) %.

Eu[N(SiMe3)2]3 : 0.535 g, 70.5 %; C18H54N3Si6Eu (Mw=631.96 g.mol-1); C 34.18

(30.92); H 8.54 (8.62); N 6.64 (6.17) %.

Tb[N(SiMe3)2]3 : 1.76 g, 52%; C18H54N3Si6Tb (Mw=638.72 g.mol-1); C 33.81 (32.03);

H 8.45 (8.95); N 6.58 (5.93) %.

Er[N(SiMe3)2]3 : 3.52 g, 70 %; C18H54N3Si6Er (Mw=647.26 g.mol-1); C 33.38 (31.85); H

8.34 (8.70); N 6.49 (6.32) %.

F.6.12 Synthesis of Ln3+-dithiolene complexes

F.6.12.1 Synthesis of Ln2(L
1)3 complexes

Lanthanide silyl amides (Ln[N(SiMe3)2]3 ; Ln= Nd (0.5 g, 0.8 mmol); Er (0.52 g, 0.8

mmol)) was dissolved in freshly distilled THF under stirring. The resulting solution

was degassed with a N2 flow to avoid any trace of moisture. 0.456 g (1.6 mmol) of

L1H2 (4,5-bis[hydroxyl-ethylthio]-1,3-dithiol-2-thione) dissolved in THF was then

dropwisely added to lanthanide silyl amides solution giving rise to a rapid

precipitation of a yellow solid. The reaction was left 1h after complete addition of the

ligand, filtrated and washed twice with pentane to remove any rest of lanthanide silyl-

amide. The complexes were then obtained after drying the resulting yellow solid

under vacuum and characterised as followed:

- Nd2(L
1)3

Yield 60% (0.547 g); El.An: C21H24S15O6Nd2 (Mw=1140.48 g.mol-1): found (calc.) C

21.06 (22.09); H 2.23 (2.10); Nd 25.51 (25.29) %.

ATR-IR:  (CH) 2920, (C=S) 1051, (C-S) 879 cm-1.

- Er2(L
1)3

Yield 51%; El.An: C21H24S15O6Er2 (Mw=1187.96 g.mol-1): found (calc.) C 20.62

(21.21); H 2.34 (2.02); Er 27.31 (28.16) %.

ATR-IR:  (CH) 2965, (C=S) 1060, (C-S) 798 cm-1.

NB: all attempts to dissolve these products in common solvents were unsuccessful.
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F.6.12.2 Synthesis of Nd(L2H)L2 complexes

One equivalent of lanthanide silyl amide (Ln[N(SiMe3)2]3 ; Ln= Nd (1.49 g, 2.38

mmol); Eu (1.51 g, 2.38 mmol); Tb (1.52 g, 2.38 mmol); Er (1.54 g, 2.38 mmol)) was

dissolved in freshly distilled THF under stirring. The resulting solution was degassed

with a N2 flow to avoid any trace of moisture.1.50 g (4.77 mmol) of L2H2 (4,5-

bis[carboxymethylthio]-1,3-dithiol-2-thione) dissolved in THF was then dropwisely

added to lanthanide solution giving rise to a rapid precipitation of a yellow solid. The

reaction was left 1h after complete addition of the ligand, filtrated and washed twice

with pentane to remove any rest of lanthanide silyl-amide. The complexes were then

obtained after drying the resulting yellow solid under vacuum and characterised as

followed:

- Nd(L2H)L2

Yield 66%; El.An: C14H9S10O8Nd (Mw=770.12 g.mol-1): calc.(found) C 21.83 (21.11);

H 1.18 (1.35); Nd 18.73 (18.50) %.

ATR-IR: (OH) 3240 (s), (CH) 2964, (C=O) 1649, (C=S) 1051, (C-S) 796 cm-1.

- Eu(L2H)L2

Yield 44%; El.An: C14H9S10O8Eu (Mw=777.84 g.mol-1): calc.(found) C 21.62 (20.01);

H 1.17 (1.03); Eu 19.54 (19.76) %.

ATR-IR: (OH) 3334 (s),  (CH) 2965, (C=O) 1647, (C=S) 1061, (C-S) 794 cm-1.

- Tb(L2H)L2

Yield 54%, C14H9S10O8Tb (Mw=784.8 g.mol-1): calc.(found) C 21.43 (C 20.14); H 1.16

(1.45); Tb 20.25 (19.38) %.

ATR-IR: (OH) 3240 (s),  (CH) 2965, (C=O) 1643, (C=S) 1056, (C-S) 801 cm-1.

- Er(L2H)L2

Yield 60%, C14H9S10O8Er (Mw=792.26 g.mol-1): calc.(found) C 21.20 (19.11); H 1.13

(1.25); Er 21.11 (16.19) %.

ATR-IR: (OH) 3500-2800 (br),  (CH) 2962, (C=O) 1645, (C=S) 1056, (C-S)

882 cm-1.

NB: all attempts to dissolve these products in common solvents were unsuccessful.
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F.6.12.3 Synthesis of Eu(L2Na)L2

0.351 g (1.36 mmol) of europium chloride was dissolved in freshly distilled methanol

under stirring. The resulting white suspension was degassed with a N2 flow to avoid

any trace of moisture. 0.853 g (2.72 mmol) of L2H2 (4,5-bis[carboxymethylthio]-1,3-

dithiol-2-thione) in methanol was treated with MeONa (2 equivalents) and the

resulting carboxylate solution was then dropwisely added to the europium solution,

giving rise to a rapid precipitation of a yellow solid. The reaction was left 1 week, in

which a yellowish mixture was obtained. The resulting precipitate was filtered off and

washed several times with alkohol to eliminate the NaCl. Eu(L2Na)L2 was isolate as

an amorphous yellow powder in a 61% yield (1.36 g) after drying.

NB: all attempts to dissolve this product in common solvents were unsuccessful.

El.An: C14H8S10O8EuNa (Mw=799.82 g.mol-1): calc.(found) C 21.02 (C 20.61); H 1.01

(H 0.95); Eu 19.00 (19.50) %.

ATR-IR:  (CH) 2970, (C=O) 1615, (C=S) 1063, (C-S) 792 cm-1.

F.6.12.4 Synthesis of Er-Hg heterobimetallic complex

In a THF/Toluene (5 mL/10 mL) solution of L1H2-HgI2 (0.309g, 0.418mmol) was

added dropwisely a THF (10 mL) solution of ErCl3 (0.057g, 0.208mmol). The resulting

yellow solution turns turbid. The mixture is stirred during one day at 60°C. The

resulting clear yellow solution was then filtrated and the filtrate reduced to 10 mL.

Pink crystals of Er-Hg were obtained after cooling at -5 °C within a period of one

week. Yield (from HgI2): 55%.
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H Annexes: additional crystallographical data

4,5-bis[(2´-hydroxyethyl)thio]1,3-dithiole-2-thione (L1H2)

Table 1. Crystal data and structure refinement for L1H2.

___________________________________________________________________

Identification code sh2250

Empirical formula C7 H10 O2 S5

Formula weight 286.45

Temperature 103(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)/n

Unit cell dimensions a = 5.2765(5) Å = 90°.

b = 25.853(3) Å = 105.124(6)°.

c = 8.6152(10) Å  = 90°.

Volume 1134.5(2) Å3

Z 4

Density (calculated) 1.677 Mg/m3

Absorption coefficient 0.991 mm-1

F(000) 592

Crystal size 0.5 x 0.4 x 0.2 mm3

Theta range for data collection 1.58 to 29.46°.

Index ranges -7<=h<=7, -34<=k<=35, -11<=l<=10

Reflections collected 13208

Independent reflections 3138 [R(int) = 0.0406]

Completeness to theta = 29.46° 99.7 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3138 / 0 / 167

Goodness-of-fit on F2 1.008

Final R indices [I>2sigma(I)] R1 = 0.0296, wR2 = 0.0568

R indices (all data) R1 = 0.0475, wR2 = 0.0633

Largest diff. peak and hole 0.445 and -0.312 e.Å-3

___________________________________________________________________
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2250. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

_ x y z U(eq)

___________________________________________________________________

S(1) 220(1) -276(1) 2949(1) 18(1)

S(2) 3292(1) 656(1) 4468(1) 16(1)

S(3) 3554(1) 322(1) 1325(1) 14(1)

S(4) 7435(1) 1160(1) 1002(1) 16(1)

S(5) 6974(1) 1551(1) 4651(1) 17(1)

C(1) 2207(3) 213(1) 2927(2) 13(1)

C(2) 5413(3) 871(1) 2086(2) 13(1)

C(3) 5280(3) 1026(1) 3555(2) 14(1)

C(4) 5378(4) 1135(1) -1058(2) 15(1)

C(5) 2949(4) 1470(1) -1354(2) 15(1)

C(6) 4243(4) 2004(1) 4435(2) 18(1)

C(7) 2972(4) 2164(1) 2726(3) 18(1)

O(1) 3698(3) 1999(1) -1029(2) 18(1)

O(2) 4782(3) 2434(1) 2032(2) 18(1)

___________________________________________________________________

Table 3. Bond lengths [Å] and angles [°] for sh2250.

_____________________________________________________

S(1)-C(1) 1.6442(2)

S(2)-C(1) 1.7343(2)

S(2)-C(3) 1.7509(2)

S(3)-C(1) 1.7330(2)

S(3)-C(2) 1.7525(2)

S(4)-C(2) 1.7564(2)

S(4)-C(4) 1.824(2)

S(5)-C(3) 1.7571(2)

S(5)-C(6) 1.829(2)

C(2)-C(3) 1.347(3)

C(4)-C(5) 1.512(3)

C(5)-O(1) 1.431(2)

C(6)-C(7) 1.508(3)

C(7)-O(2) 1.433(2)
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C(1)-S(2)-C(3) 97.72(9)

C(1)-S(3)-C(2) 98.08(9)

C(2)-S(4)-C(4) 102.28(9)

C(3)-S(5)-C(6) 99.41(9)

S(1)-C(1)-S(3) 122.02(1)

S(1)-C(1)-S(2) 125.65(1)

S(3)-C(1)-S(2) 112.29(1)

C(3)-C(2)-S(3) 115.53(1)

C(3)-C(2)-S(4) 124.16(1)

S(3)-C(2)-S(4) 120.19(1)

C(2)-C(3)-S(2) 116.36(1)

C(2)-C(3)-S(5) 126.18(1)

S(2)-C(3)-S(5) 117.43(1)

C(5)-C(4)-S(4) 114.02(1)

O(1)-C(5)-C(4) 109.60(2)

C(7)-C(6)-S(5) 114.39(1)

O(2)-C(7)-C(6) 111.45(2)

__________________________________________________________

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2250. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

S(1) 18(1) 17(1) 18(1) -1(1) 4(1) -7(1)

S(2) 19(1) 17(1) 12(1) 0(1) 4(1) -6(1)

S(3) 14(1) 14(1) 15(1) -1(1) 6(1) 0(1)

S(4) 11(1) 20(1) 17(1) 5(1) 4(1) -1(1)

S(5) 15(1) 17(1) 16(1) 1(1) -1(1) -5(1)

C(1) 11(1) 13(1) 13(1) 1(1) 1(1) 1(1)

C(2) 9(1) 13(1) 18(1) 4(1) 2(1) 0(1)

C(3) 12(1) 13(1) 16(1) 3(1) 1(1) -2(1)

C(4) 17(1) 14(1) 16(1) 1(1) 6(1) 2(1)

C(5) 13(1) 15(1) 14(1) 0(1) 1(1) -2(1)

C(6) 20(1) 18(1) 17(1) -3(1) 6(1) -5(1)

C(7) 16(1) 18(1) 20(1) -2(1) 3(1) 0(1)

O(1) 20(1) 13(1) 20(1) 2(1) 0(1) 2(1)

O(2) 24(1) 15(1) 15(1) -1(1) 3(1) -4(1)
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___________________________________________________________________

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3) for sh2250.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(7) 2270(40) 1870(8) 2040(20) 10(5)

H(3) 1810(40) 1352(8) -650(30) 15(5)

H(2) 6610(40) 1249(8) -1670(30) 16(5)

H(5) 2810(40) 1841(9) 4900(30) 21(6)

H(4) 1920(40) 1424(9) -2500(30) 21(6)

H(8) 1520(50) 2393(10) 2760(30) 36(7)

H(1) 4910(40) 785(9) -1380(30) 23(6)

H(9) 2530(50) 2167(11) -1590(30) 40(8)

H(6) 5010(40) 2294(9) 5060(30) 20(6)

H(10) 4760(50) 2306(10) 1230(30) 29(8)
___________________________________________________________________

4,5-bis[carboxymethylthio]-1,3-dithiol-2-thione (L2H2)

Table 1. Crystal data and structure refinement for L2H2.

___________________________________________________________________

Identification code sh2498

Empirical formula C7 H6 O4 S5

Formula weight 314.42

Temperature 200(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 5.1049(10) Å = 108.07(3)°.

b = 10.755(2) Å = 101.06(3)°.

c = 11.638(2) Å  = 91.18(3)°.

Volume 594.0(2) Å3

Z 2

Density (calculated) 1.758 Mg/m3

Absorption coefficient 0.968 mm-1

F(000) 320
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Crystal size 0.6 x 0.44 x 0.2 mm3

Theta range for data collection 3.15 to 27.93°.

Index ranges -6<=h<=6, -13<=k<=13, -15<=l<=15

Reflections collected 5383

Independent reflections 2612 [R(int) = 0.0476]

Completeness to theta = 27.93° 91.6 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2612 / 0 / 169

Goodness-of-fit on F2 0.784

Final R indices [I>2sigma(I)] R1 = 0.0334, wR2 = 0.0608

R indices (all data) R1 = 0.0720, wR2 = 0.0677

Largest diff. peak and hole 0.361 and -0.322 e.Å-3

___________________________________________________________________

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2498. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

S(1) 11621(1) 219(1) 8944(1) 23(1)

S(2) 7767(1) 2330(1) 9632(1) 26(1)

S(3) 5750(2) 1694(1) 6545(1) 35(1)

S(4) 9468(2) -470(1) 6317(1) 32(1)

S(5) 13729(2) -2018(1) 7200(1) 39(1)

O(1) 4165(4) 3730(2) 5481(2) 31(1)

O(2) 8180(4) 4876(2) 5917(2) 37(1)

O(3) 12185(3) 4079(2) 9401(2) 26(1)

O(4) 14367(4) 4653(2) 11388(2) 30(1)

C(1) 11735(5) -818(3) 7466(2) 25(1)

C(2) 9126(5) 1179(3) 8510(2) 22(1)

C(3) 8159(5) 865(3) 7262(2) 27(1)

C(4) 8051(6) 2991(3) 6516(3) 28(1)

C(5) 6596(6) 3908(3) 5919(2) 24(1)

C(6) 10687(6) 3098(3) 10807(3) 24(1)

C(7) 12461(5) 3998(3) 10447(2) 20(1)

___________________________________________________________________
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Table 3. Bond lengths [Å] and angles [°] for sh2498.

_____________________________________________________

S(1)-C(1) 1.749(3)

S(1)-C(2) 1.753(3)

S(2)-C(2) 1.761(3)

S(2)-C(6) 1.800(3)

S(3)-C(3) 1.766(3)

S(3)-C(4) 1.818(3)

S(4)-C(1) 1.732(3)

S(4)-C(3) 1.749(3)

S(5)-C(1) 1.651(3)

O(1)-C(5) 1.234(3)

O(2)-C(5) 1.305(3)

O(3)-C(7) 1.228(3)

O(4)-C(7) 1.314(3)

C(2)-C(3) 1.371(4)

C(4)-C(5) 1.505(4)

C(6)-C(7) 1.514(4)

C(1)-S(1)-C(2) 97.94(1)

C(2)-S(2)-C(6) 102.69(1)

C(3)-S(3)-C(4) 97.03(1)

C(1)-S(4)-C(3) 97.94(1)

S(5)-C(1)-S(4) 123.84(2)

S(5)-C(1)-S(1) 123.64(2)

S(4)-C(1)-S(1) 112.51(2)

C(3)-C(2)-S(1) 115.3(2)

C(3)-C(2)-S(2) 123.7(2)

S(1)-C(2)-S(2) 120.70(1)

C(2)-C(3)-S(4) 116.3(2)

C(2)-C(3)-S(3) 125.6(2)

S(4)-C(3)-S(3) 118.06(2)

C(5)-C(4)-S(3) 111.1(2)

O(1)-C(5)-O(2) 125.2(2)

O(1)-C(5)-C(4) 122.1(3)

O(2)-C(5)-C(4) 112.7(2)

C(7)-C(6)-S(2) 114.0(2)

O(3)-C(7)-O(4) 124.6(3)

O(3)-C(7)-C(6) 124.2(2)
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O(4)-C(7)-C(6) 111.3(2)

_____________________________________________________________

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2498. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

S(1) 23(1) 24(1) 23(1) 10(1) 2(1) 7(1)

S(2) 18(1) 21(1) 37(1) 7(1) 4(1) 2(1)

S(3) 28(1) 33(1) 46(1) 25(1) -10(1) 0(1)

S(4) 42(1) 32(1) 22(1) 12(1) 1(1) 5(1)

S(5) 43(1) 41(1) 36(1) 10(1) 13(1) 20(1)

O(1) 31(1) 30(2) 34(1) 16(1) 2(1) 9(1)

O(2) 35(1) 36(2) 47(1) 29(1) 0(1) 3(1)

O(3) 21(1) 32(1) 24(1) 10(1) 3(1) -2(1)

O(4) 29(1) 32(2) 26(1) 10(1) -1(1) -9(1)

C(1) 24(1) 26(2) 30(2) 14(1) 9(1) 3(1)

C(2) 20(1) 19(2) 29(1) 13(1) 2(1) 0(1)

C(3) 26(1) 26(2) 29(2) 15(1) -2(1) -1(1)

C(4) 30(2) 28(2) 28(2) 13(2) 2(1) 6(1)

C(5) 29(2) 25(2) 20(1) 9(1) 5(1) 7(1)

C(6) 25(2) 17(2) 28(2) 6(1) 1(1) -1(1)

C(7) 17(1) 15(2) 25(1) 2(1) 5(1) 5(1)

___________________________________________________________________

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3) for sh2498.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(1) 7250(80) 5330(50) 5510(40) 86(15)

H(2) 15290(60) 5070(30) 11140(30) 30(10)

H(4A) 8870(60) 3450(30) 7300(30) 34(9)

H(4B) 9340(60) 2670(30) 6070(30) 35(9)

H(6A) 11720(60) 2460(40) 11050(30) 40(9)

H(6B) 10120(60) 3600(30) 11470(30) 39(9)
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___________________________________________________________________

4,5-bis[carboxymethylthio]-1,3-dithiol-2-thione.THF (L2H2.THF)

Table 1. Crystal data and structure refinement for L2H2.THF.

___________________________________________________________________

Identification code sh2594

Empirical formula C11 H14 O5 S5

Formula weight 386.52

Temperature 180(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Pnna

Unit cell dimensions a = 7.9656(4) Å = 90°.

b = 21.0885(11) Å = 90°.

c = 9.5192(5) Å  = 90°.

Volume 1599.06(14) Å3

Z 4

Density (calculated) 1.606 Mg/m3

Absorption coefficient 0.740 mm-1

F(000) 800

Crystal size 0.66 x 0.40 x 0.30 mm3

Theta range for data collection 1.93 to 27.32°.

Index ranges -10<=h<=10, -27<=k<=27, -12<=l<=12

Reflections collected 28804

Independent reflections 1800 [R(int) = 0.0520]

Completeness to theta = 27.32° 99.9 %

Absorption correction Multiscan

Max. and min. transmission 0.8085 and 0.6409

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1800 / 0 / 125

Goodness-of-fit on F2 1.080

Final R indices [I>2sigma(I)] R1 = 0.0302, wR2 = 0.0585

R indices (all data) R1 = 0.0420, wR2 = 0.0619

Largest diff. peak and hole 0.257 and -0.258 e.Å-3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2594. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

S(1) 1555(1) 4266(1) 6792(1) 25(1)

S(2) 1726(1) 4384(1) 9928(1) 26(1)

S(3) 2500 5000 12674(1) 37(1)

O(1) 4240(2) 3405(1) 8111(1) 37(1)

O(2) 7736(2) 2500 7500 33(1)

O(3) 5803(2) 3337(1) 6167(2) 41(1)

C(1) 2500 5000 10937(3) 25(1)

C(2) 2150(2) 4709(1) 8281(2) 21(1)

C(3) 4532(2) 3562(1) 6927(2) 27(1)

C(4) 10541(3) 2418(1) 6730(2) 42(1)

C(5) 3581(2) 4050(1) 6087(2) 27(1)

C(6) 8814(3) 2162(1) 6502(2) 43(1)

Table 3. Bond lengths [Å] and angles [°] for sh2594.

_____________________________________________________

S(1)-C(2) 1.762(2)

S(1)-C(5) 1.806(2)

S(2)-C(1) 1.730(1)

S(2)-C(2) 1.744(2)

S(3)-C(1) 1.653(3)

O(1)-C(3) 1.198(2)

O(2)-C(6)#1 1.466(2)

O(2)-C(6) 1.466(2)

O(3)-C(3) 1.331(2)

C(1)-S(2)#2 1.730(1)

C(2)-C(2)#2 1.350(3)

C(3)-C(5) 1.507(3)

C(4)-C(6) 1.493(3)

C(4)-C(4)#1 1.507(4)

C(2)-S(1)-C(5) 101.09(8)

C(1)-S(2)-C(2) 97.74(9)

C(6)#1-O(2)-C(6) 108.3(2)
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S(3)-C(1)-S(2)#2 123.73(7)

S(3)-C(1)-S(2) 123.73(7)

S(2)#2-C(1)-S(2) 112.55(1)

C(2)#2-C(2)-S(2) 115.98(6)

C(2)#2-C(2)-S(1) 126.40(6)

S(2)-C(2)-S(1) 117.57(1)

O(1)-C(3)-O(3) 124.11(2)

O(1)-C(3)-C(5) 126.16(2)

O(3)-C(3)-C(5) 109.70(2)

C(6)-C(4)-C(4)#1 102.98(1)

C(3)-C(5)-S(1) 115.12(1)

O(2)-C(6)-C(4) 105.65(2)

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,-z+3/2 #2 -x+1/2,-y+1,z

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2594. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

S(1) 22(1) 29(1) 25(1) -5(1) -3(1) -1(1)

S(2) 26(1) 29(1) 23(1) 3(1) 2(1) -1(1)

S(3) 31(1) 60(1) 19(1) 0 0 1(1)

O(1) 36(1) 48(1) 27(1) 5(1) 4(1) 8(1)

O(2) 27(1) 34(1) 39(1) -8(1) 0 0

O(3) 42(1) 45(1) 36(1) 0(1) 10(1) 17(1)

C(1) 18(1) 36(1) 22(1) 0 0 6(1)

C(2) 18(1) 27(1) 18(1) 0(1) 1(1) 2(1)

C(3) 25(1) 27(1) 28(1) -8(1) 0(1) -1(1)

C(4) 37(1) 47(1) 43(1) 12(1) 9(1) 12(1)

C(5) 27(1) 32(1) 21(1) -5(1) 2(1) 0(1)

C(6) 44(1) 48(1) 38(1) -16(1) -5(1) 15(1)



Chapter H - Annexes

209

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3) for sh2594.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(1) 6340(30) 3063(13) 6620(30) 68(9)

H(2) 4250(20) 4409(9) 5990(20) 28(5)

H(3) 3370(30) 3903(9) 5240(20) 36(6)

H(4) 8690(30) 3296(11) 8230(20) 43(6)

H(5) 11410(30) 2908(12) 8530(20) 58(7)

H(6) 10720(30) 2192(11) 8800(20) 48(6)

H(7) 8390(30) 2759(11) 9430(30) 59(7)

L0-CuI complex

Table 1. Crystal data and structure refinement for L0-CuI.
___________________________________________________________________

Identification code sh2465

Empirical formula C74 H40 Cu2 I2 O8 S20

Formula weight 2079.14

Temperature 170(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 12.1861(6) Å = 62.198(2)°.

b = 13.5080(6) Å = 84.796(2)°.

c = 13.5835(6) Å  = 87.493(2)°.

Volume 1969.71(16) Å3

Z 1

Density (calculated) 1.753 Mg/m3

Absorption coefficient 1.909 mm-1

F(000) 1032

Crystal size 0.6 x 0.3 x 0.15 mm3

Theta range for data collection 1.68 to 36.34°.

Index ranges -20<=h<=18, -20<=k<=22, -22<=l<=22

Reflections collected 55470

Independent reflections 18876 [R(int) = 0.0280]
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Completeness to theta = 36.34° 98.7 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 18876 / 0 / 463

Goodness-of-fit on F2 0.967

Final R indices [I>2sigma(I)] R1 = 0.0347, wR2 = 0.0844

R indices (all data) R1 = 0.0618, wR2 = 0.0969

Largest diff. peak and hole 1.438 and -0.681 e.Å-3

___________________________________________________________________

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2465. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

C(1) 2381(1) 2149(1) 2985(1) 21(1)

C(2) 1278(1) 3998(1) 1978(1) 22(1)

C(3) 2324(2) 4304(1) 1982(2) 23(1)

C(4) 2365(2) 6138(2) 2351(2) 28(1)

C(5) 2837(2) 7224(2) 2114(2) 28(1)

C(6) 3774(2) 7666(2) 1400(2) 39(1)

C(7) 4182(2) 8684(2) 1228(2) 48(1)

C(8) 3660(3) 9245(2) 1759(2) 52(1)

C(9) 2734(3) 8815(2) 2457(3) 56(1)

C(10) 2311(2) 7797(2) 2639(2) 44(1)

C(11) -906(2) 4253(2) 1477(2) 27(1)

C(12) -1910(2) 4949(2) 1076(2) 26(1)

C(13) -2914(2) 4397(2) 1349(2) 36(1)

C(14) -3875(2) 5000(2) 973(2) 43(1)

C(15) -3831(2) 6148(2) 340(2) 42(1)

C(16) -2834(2) 6710(2) 67(2) 38(1)

C(17) -1868(2) 6108(2) 436(2) 31(1)

C(18) 6815(2) 1243(1) 2199(2) 25(1)

C(19) 8872(2) 953(1) 1761(2) 24(1)

C(20) 8702(2) 452(2) 2889(2) 26(1)

C(21) 10045(2) 1662(2) -312(2) 29(1)

C(22) 11054(2) 1683(2) -1007(2) 29(1)

C(23) 11894(2) 900(2) -616(2) 34(1)
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C(24) 12825(2) 988(2) -1319(2) 42(1)

C(25) 12927(2) 1864(2) -2393(2) 50(1)

C(26) 12089(2) 2648(2) -2779(2) 51(1)

C(27) 11149(2) 2559(2) -2099(2) 39(1)

C(28) 9319(2) -1619(2) 4446(2) 27(1)

C(29) 10198(2) -2440(2) 4984(2) 25(1)

C(30) 9972(2) -3562(2) 5323(2) 34(1)

C(31) 10770(2) -4367(2) 5802(2) 41(1)

C(32) 11781(2) -4065(2) 5960(2) 43(1)

C(33) 12003(2) -2946(2) 5642(2) 40(1)

C(34) 11216(2) -2136(2) 5145(2) 32(1)

Cu(2) 4593(1) 687(1) 3840(1) 29(1)

I(1) 5058(1) 1499(1) 5175(1) 29(1)

O(1) 1706(2) 5598(1) 3114(1) 44(1)

O(2) -889(1) 3250(1) 1849(2) 41(1)

O(3) 9210(1) 2170(2) -674(1) 49(1)

O(4) 8383(1) -1853(1) 4436(2) 44(1)

S(1) 2733(1) 807(1) 3613(1) 26(1)

S(2) 1054(1) 2553(1) 2602(1) 22(1)

S(3) 3261(1) 3237(1) 2654(1) 25(1)

S(4) 283(1) 5034(1) 1388(1) 27(1)

S(5) 2839(1) 5670(1) 1322(1) 25(1)

S(6) 5488(1) 1583(1) 2061(1) 30(1)

S(7) 7729(1) 1623(1) 1036(1) 27(1)

S(8) 7376(1) 507(1) 3447(1) 30(1)

S(9) 10180(1) 864(1) 1152(1) 35(1)

S(10) 9776(1) -165(1) 3755(1) 30(1)

C(35) 4123(6) 4733(6) 4755(6) 136(2)

C(36) 4307(7) 4476(7) 5785(8) 167(3)

C(37) 4983(8) 5124(8) 3810(8) 225(3)

___________________________________________________________________

Table 3. Bond lengths [Å] and angles [°] for sh2465.

_____________________________________________________

C(1)-S(1) 1.6602(2)

C(1)-S(3) 1.7154(2)

C(1)-S(2) 1.7305(2)

C(2)-C(3) 1.359(2)

C(2)-S(4) 1.7474(2)
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C(2)-S(2) 1.7504(2)

C(3)-S(3) 1.7407(2)

C(3)-S(5) 1.7493(2)

C(4)-O(1) 1.202(2)

C(4)-C(5) 1.479(3)

C(4)-S(5) 1.825(2)

C(5)-C(10) 1.382(3)

C(5)-C(6) 1.385(3)

C(6)-C(7) 1.390(3)

C(7)-C(8) 1.372(4)

C(8)-C(9) 1.364(4)

C(9)-C(10) 1.392(3)

C(11)-O(2) 1.205(2)

C(11)-C(12) 1.490(2)

C(11)-S(4) 1.793(2)

C(12)-C(13) 1.389(3)

C(12)-C(17) 1.392(3)

C(13)-C(14) 1.391(3)

C(14)-C(15) 1.379(4)

C(15)-C(16) 1.388(4)

C(16)-C(17) 1.394(3)

C(18)-S(6) 1.664(2)

C(18)-S(8) 1.705(2)

C(18)-S(7) 1.725(2)

C(19)-C(20) 1.355(2)

C(19)-S(7) 1.743(2)

C(19)-S(9) 1.753(2)

C(20)-S(8) 1.734(2)

C(20)-S(10) 1.750(2)

C(21)-O(3) 1.209(2)

C(21)-C(22) 1.474(3)

C(21)-S(9) 1.785(2)

C(22)-C(23) 1.389(3)

C(22)-C(27) 1.399(3)

C(23)-C(24) 1.386(3)

C(24)-C(25) 1.383(4)

C(25)-C(26) 1.387(4)

C(26)-C(27) 1.378(4)

C(28)-O(4) 1.199(2)
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C(28)-C(29) 1.481(3)

C(28)-S(10) 1.825(2)

C(29)-C(34) 1.389(3)

C(29)-C(30) 1.396(3)

C(30)-C(31) 1.383(3)

C(31)-C(32) 1.380(4)

C(32)-C(33) 1.397(4)

C(33)-C(34) 1.381(3)

Cu(2)-S(1) 2.304(5)

Cu(2)-S(6) 2.325(6)

Cu(2)-I(1) 2.627(3)

Cu(2)-I(1)#1 2.645(3)

Cu(2)-Cu(2)#1 3.051(5)

I(1)-Cu(2)#1 2.645(3)

C(35)-C(36) 1.314(9)

C(35)-C(37) 1.483(1)

C(36)-C(37)#2 1.322(1)

C(37)-C(36)#2 1.322(1)

S(1)-C(1)-S(3) 124.56(1)

S(1)-C(1)-S(2) 120.90(1)

S(3)-C(1)-S(2) 114.54(9)

C(3)-C(2)-S(4) 119.22(1)

C(3)-C(2)-S(2) 115.09(1)

S(4)-C(2)-S(2) 125.68(1)

C(2)-C(3)-S(3) 117.23(1)

C(2)-C(3)-S(5) 126.12(1)

S(3)-C(3)-S(5) 116.58(1)

O(1)-C(4)-C(5) 125.73(2)

O(1)-C(4)-S(5) 120.77(2)

C(5)-C(4)-S(5) 113.46(1)

C(10)-C(5)-C(6) 120.17(2)

C(10)-C(5)-C(4) 117.51(2)

C(6)-C(5)-C(4) 122.32(2)

C(5)-C(6)-C(7) 119.3(2)

C(8)-C(7)-C(6) 120.3(2)

C(9)-C(8)-C(7) 120.5(2)

C(8)-C(9)-C(10) 120.1(3)

C(5)-C(10)-C(9) 119.6(2)
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O(2)-C(11)-C(12) 123.62(2)

O(2)-C(11)-S(4) 122.26(1)

C(12)-C(11)-S(4) 114.11(1)

C(13)-C(12)-C(17) 120.00(2)

C(13)-C(12)-C(11) 117.43(2)

C(17)-C(12)-C(11) 122.56(2)

C(12)-C(13)-C(14) 120.0(2)

C(15)-C(14)-C(13) 119.9(2)

C(14)-C(15)-C(16) 120.64(2)

C(15)-C(16)-C(17) 119.7(2)

C(12)-C(17)-C(16) 119.8(2)

S(6)-C(18)-S(8) 124.52(1)

S(6)-C(18)-S(7) 120.41(1)

S(8)-C(18)-S(7) 115.06(1)

C(20)-C(19)-S(7) 115.44(1)

C(20)-C(19)-S(9) 118.99(1)

S(7)-C(19)-S(9) 125.56(1)

C(19)-C(20)-S(8) 117.08(1)

C(19)-C(20)-S(10) 121.98(2)

S(8)-C(20)-S(10) 120.87(1)

O(3)-C(21)-C(22) 124.41(2)

O(3)-C(21)-S(9) 121.88(2)

C(22)-C(21)-S(9) 113.63(1)

C(23)-C(22)-C(27) 120.3(2)

C(23)-C(22)-C(21) 123.05(2)

C(27)-C(22)-C(21) 116.67(2)

C(24)-C(23)-C(22) 119.5(2)

C(25)-C(24)-C(23) 120.3(2)

C(24)-C(25)-C(26) 120.1(2)

C(27)-C(26)-C(25) 120.3(2)

C(26)-C(27)-C(22) 119.5(2)

O(4)-C(28)-C(29) 125.03(2)

O(4)-C(28)-S(10) 120.94(2)

C(29)-C(28)-S(10) 114.03(1)

C(34)-C(29)-C(30) 120.02(2)

C(34)-C(29)-C(28) 123.09(2)

C(30)-C(29)-C(28) 116.88(2)

C(31)-C(30)-C(29) 119.7(2)

C(32)-C(31)-C(30) 120.2(2)
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C(31)-C(32)-C(33) 120.2(2)

C(34)-C(33)-C(32) 119.9(2)

C(33)-C(34)-C(29) 120.0(2)

S(1)-Cu(2)-S(6) 106.626(2)

S(1)-Cu(2)-I(1) 111.146(2)

S(6)-Cu(2)-I(1) 114.295(2)

S(1)-Cu(2)-I(1)#1 102.49(1)

S(6)-Cu(2)-I(1)#1 112.34(2)

I(1)-Cu(2)-I(1)#1 109.29(1)

S(1)-Cu(2)-Cu(2)#1 119.88(2)

S(6)-Cu(2)-Cu(2)#1 133.14(2)

I(1)-Cu(2)-Cu(2)#1 54.92(9)

I(1)#1-Cu(2)-Cu(2)#154.37(8)

Cu(2)-I(1)-Cu(2)#1 70.708(1)

C(1)-S(1)-Cu(2) 108.40(6)

C(1)-S(2)-C(2) 96.70(8)

C(1)-S(3)-C(3) 96.33(8)

C(2)-S(4)-C(11) 103.22(8)

C(3)-S(5)-C(4) 100.55(9)

C(18)-S(6)-Cu(2) 106.60(6)

C(18)-S(7)-C(19) 96.18(9)

C(18)-S(8)-C(20) 96.15(9)

C(19)-S(9)-C(21) 103.84(9)

C(20)-S(10)-C(28) 99.58(9)

C(36)-C(35)-C(37) 124.3(8)

C(35)-C(36)-C(37)#2 131.6(9)

C(36)#2-C(37)-C(35) 98.6(8)

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1 #2 -x+1,-y+1,-z+1

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2465. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

__________________________________________________________________

C(1) 19(1) 20(1) 25(1) -11(1) -1(1) 0(1)

C(2) 22(1) 18(1) 26(1) -11(1) -4(1) 1(1)
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C(3) 23(1) 18(1) 28(1) -11(1) -3(1) 0(1)

C(4) 30(1) 24(1) 31(1) -14(1) 1(1) -5(1)

C(5) 31(1) 24(1) 29(1) -13(1) -3(1) -5(1)

C(6) 33(1) 33(1) 53(1) -22(1) 4(1) -9(1)

C(7) 41(1) 36(1) 64(2) -21(1) 3(1) -18(1)

C(8) 73(2) 30(1) 56(2) -21(1) -12(1) -15(1)

C(9) 86(2) 39(1) 56(2) -34(1) 5(2) -13(1)

C(10) 58(2) 39(1) 45(1) -30(1) 8(1) -13(1)

C(11) 22(1) 26(1) 33(1) -14(1) -6(1) 3(1)

C(12) 21(1) 30(1) 30(1) -17(1) -6(1) 5(1)

C(13) 26(1) 39(1) 43(1) -19(1) -5(1) 2(1)

C(14) 22(1) 57(1) 51(1) -26(1) -5(1) 4(1)

C(15) 32(1) 55(1) 45(1) -29(1) -12(1) 20(1)

C(16) 40(1) 36(1) 39(1) -18(1) -12(1) 16(1)

C(17) 31(1) 30(1) 35(1) -17(1) -9(1) 7(1)

C(18) 24(1) 23(1) 25(1) -8(1) -2(1) 0(1)

C(19) 21(1) 22(1) 25(1) -8(1) -2(1) 1(1)

C(20) 21(1) 25(1) 26(1) -7(1) -3(1) 0(1)

C(21) 29(1) 26(1) 29(1) -10(1) 0(1) -2(1)

C(22) 29(1) 28(1) 31(1) -15(1) 3(1) -3(1)

C(23) 29(1) 32(1) 40(1) -17(1) 3(1) -2(1)

C(24) 32(1) 45(1) 54(1) -27(1) 5(1) 0(1)

C(25) 43(1) 57(2) 52(1) -30(1) 18(1) -8(1)

C(26) 55(2) 52(1) 36(1) -15(1) 14(1) -4(1)

C(27) 43(1) 39(1) 31(1) -14(1) 5(1) 2(1)

C(28) 25(1) 26(1) 29(1) -12(1) 1(1) -3(1)

C(29) 24(1) 25(1) 24(1) -10(1) 3(1) -1(1)

C(30) 36(1) 27(1) 34(1) -11(1) 0(1) -2(1)

C(31) 49(1) 28(1) 39(1) -10(1) -4(1) 6(1)

C(32) 43(1) 40(1) 36(1) -11(1) -4(1) 13(1)

C(33) 29(1) 43(1) 40(1) -11(1) -5(1) 4(1)

C(34) 27(1) 30(1) 33(1) -10(1) -2(1) -2(1)

Cu(2) 22(1) 27(1) 34(1) -12(1) -1(1) 2(1)

I(1) 30(1) 23(1) 36(1) -14(1) -5(1) 2(1)

O(1) 52(1) 40(1) 43(1) -24(1) 19(1) -22(1)

O(2) 28(1) 26(1) 67(1) -19(1) -15(1) 2(1)

O(3) 36(1) 60(1) 31(1) -6(1) 0(1) 17(1)

O(4) 27(1) 33(1) 66(1) -18(1) -7(1) -3(1)

S(1) 21(1) 18(1) 36(1) -11(1) -4(1) 1(1)
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S(2) 19(1) 18(1) 30(1) -11(1) -3(1) 0(1)

S(3) 19(1) 20(1) 34(1) -11(1) -5(1) 0(1)

S(4) 23(1) 20(1) 37(1) -13(1) -8(1) 3(1)

S(5) 26(1) 19(1) 29(1) -11(1) 2(1) -3(1)

S(6) 22(1) 32(1) 29(1) -8(1) -4(1) 5(1)

S(7) 24(1) 27(1) 23(1) -6(1) -2(1) 3(1)

S(8) 24(1) 37(1) 23(1) -9(1) -1(1) 1(1)

S(9) 24(1) 46(1) 27(1) -11(1) -1(1) 6(1)

S(10) 25(1) 27(1) 29(1) -5(1) -8(1) -4(1)

___________________________________________________________________

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x

10 3) for sh2465.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(6) 4134 7277 1032 47

H(7) 4824 8993 741 57

H(8) 3947 9939 1640 62

H(9) 2376 9210 2819 67

H(10) 1663 7499 3123 52

H(13) -2944 3607 1792 43

H(14) -4561 4623 1153 52

H(15) -4490 6559 87 50

H(16) -2810 7501 -370 46

H(17) -1182 6487 252 37

H(23) 11832 308 127 41

H(24) 13394 445 -1062 51

H(25) 13573 1928 -2867 60

H(26) 12164 3249 -3517 61

H(27) 10570 3089 -2369 47

H(30) 9272 -3773 5226 41

H(31) 10622 -5129 6022 49

H(32) 12328 -4620 6285 51

H(33) 12693 -2742 5767 48

H(34) 11370 -1373 4914 38
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L1H2-HgI2 complex

Table 1. Crystal data and structure refinement for sh2303.
___________________________________________________________________

Identification code sh2303

Empirical formula C7 H10 Hg I2 O2 S5

Formula weight 740.84

Temperature 200(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 4.4760(10) Å = 116.30(3)°.

b = 13.973(3) Å = 92.86(3)°.

c = 14.900(3) Å  = 93.97(3)°.

Volume 830.0(3) Å3

Z 2

Density (calculated) 2.964 Mg/m3

Absorption coefficient 13.607 mm-1

F(000) 668

Crystal size 0.4 x 0.2 x 0.18 mm3

Theta range for data collection 2.75 to 24.00°.

Index ranges -4<=h<=5, -15<=k<=15, -16<=l<=16

Reflections collected 5130

Independent reflections 2394 [R(int) = 0.0464]

Completeness to theta = 24.00° 92.0 %

Absorption correction Numerical

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2394 / 0 / 156

Goodness-of-fit on F2 1.027

Final R indices [I>2sigma(I)] R1 = 0.0248, wR2 = 0.0627

R indices (all data) R1 = 0.0273, wR2 = 0.0637

Largest diff. peak and hole 1.374 and -1.154 e.Å-3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2303. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

Hg 878(1) 3507(1) 1825(1) 54(1)

I(1) -1502(1) 4178(1) 3556(1) 43(1)

I(2) 4696(1) 3673(1) 582(1) 39(1)

S(1) -1210(5) 1312(1) 877(1) 53(1)

S(2) 2237(4) 1511(1) 2739(1) 37(1)

S(3) -1809(4) -391(1) 1557(1) 42(1)

S(4) -637(4) -1415(1) 2932(1) 38(1)

S(5) 3991(4) 750(1) 4314(1) 45(1)

O(1) 825(10) -3762(3) 2609(3) 42(1)

O(2) 3839(10) 3078(3) 6232(3) 44(1)

C(1) -287(13) 834(4) 1690(4) 33(1)

C(2) 1965(13) 548(3) 3191(4) 29(1)

C(3) 126(14) -347(4) 2630(4) 34(1)

C(4) 1148(14) -2470(4) 1916(4) 37(1)

C(5) -6(14) -3569(4) 1774(4) 36(1)

C(6) 6247(14) 2030(4) 4720(4) 38(1)

C(7) 4691(14) 3018(4) 5311(4) 36(1)

___________________________________________________________________

Table 3. Bond lengths [Å] and angles [°] for sh2303.

_____________________________________________________

Hg-I(1) 2.633(9)

Hg-I(2) 2.655(8)

Hg-S(1) 2.812(2)

S(1)-C(1) 1.669(5)

S(2)-C(1) 1.727(6)

S(2)-C(2) 1.751(5)

S(3)-C(1) 1.720(5)

S(3)-C(3) 1.754(6)

S(4)-C(3) 1.757(5)

S(4)-C(4) 1.846(5)

S(5)-C(2) 1.759(6)
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S(5)-C(6) 1.821(6)

O(1)-C(5) 1.423(6)

O(2)-C(7) 1.410(6)

C(2)-C(3) 1.343(8)

C(4)-C(5) 1.503(7)

C(6)-C(7) 1.511(8)

I(1)-Hg-I(2) 154.07(2)

I(1)-Hg-S(1) 102.10(5)

I(2)-Hg-S(1) 102.81(5)

C(1)-S(1)-Hg 106.18(2)

C(1)-S(2)-C(2) 97.2(2)

C(1)-S(3)-C(3) 97.1(3)

C(3)-S(4)-C(4) 99.7(2)

C(2)-S(5)-C(6) 104.2(3)

S(1)-C(1)-S(3) 122.5(3)

S(1)-C(1)-S(2) 123.9(3)

S(3)-C(1)-S(2) 113.5(3)

C(3)-C(2)-S(2) 116.0(4)

C(3)-C(2)-S(5) 122.4(4)

S(2)-C(2)-S(5) 121.6(3)

C(2)-C(3)-S(4) 125.1(4)

C(2)-C(3)-S(3) 116.1(4)

S(4)-C(3)-S(3) 118.6(3)

C(5)-C(4)-S(4) 111.2(4)

O(1)-C(5)-C(4) 113.3(5)

C(7)-C(6)-S(5) 115.8(4)

O(2)-C(7)-C(6) 112.8(4)

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2303. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

Hg 65(1) 69(1) 46(1) 37(1) 25(1) 19(1)

I(1) 59(1) 39(1) 34(1) 17(1) 16(1) 9(1)
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I(2) 35(1) 54(1) 36(1) 26(1) 6(1) 3(1)

S(1) 97(2) 34(1) 32(1) 20(1) 1(1) 5(1)

S(2) 50(1) 26(1) 37(1) 18(1) 5(1) 0(1)

S(3) 62(1) 31(1) 34(1) 17(1) 0(1) -5(1)

S(4) 57(1) 26(1) 34(1) 17(1) 12(1) 0(1)

S(5) 64(1) 33(1) 42(1) 21(1) -6(1) 3(1)

O(1) 47(3) 53(2) 40(2) 30(2) 12(2) 15(2)

O(2) 45(3) 55(2) 38(2) 26(2) 13(2) 7(2)

C(1) 42(4) 28(2) 30(3) 11(2) 8(3) 8(2)

C(2) 38(3) 22(2) 30(2) 12(2) 9(2) 9(2)

C(3) 46(4) 27(2) 32(3) 15(2) 9(3) 5(2)

C(4) 46(4) 35(3) 37(3) 21(2) 13(3) 5(2)

C(5) 49(4) 30(3) 30(3) 13(2) 6(3) 9(2)

C(6) 33(3) 44(3) 34(3) 16(2) 3(3) 2(2)

C(7) 47(4) 32(3) 31(3) 16(2) 8(3) -5(2)

___________________________________________________________________

L1H2-AuCl complex

Table 1. Crystal data and structure refinement for L1H2-AuCl.

___________________________________________________________________

Identification code sh2566

Empirical formula C14 H20 Au2 Cl2 O4 S10

Formula weight 1037.73

Temperature 293(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)/n

Unit cell dimensions a = 5.4398(11) Å = 90°.

b = 30.511(6) Å = 105.49(3)°.

c = 8.6704(17) Å  = 90°.

Volume 1386.8(5) Å3

Z 2

Density (calculated) 2.485 Mg/m3

Absorption coefficient 11.535 mm-1

F(000) 976

Crystal size 0.7 x 0.1 x 0.05 mm3

Theta range for data collection 2.53 to 27.98°.

Index ranges -6<=h<=6, -40<=k<=39, -11<=l<=11
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Reflections collected 12410

Independent reflections 3107 [R(int) = 0.0798]

Completeness to theta = 27.98° 92.9 %

Absorption correction Numerical

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3107 / 0 / 148

Goodness-of-fit on F2 1.034

Final R indices [I>2sigma(I)] R1 = 0.0270, wR2 = 0.0629

R indices (all data) R1 = 0.0396, wR2 = 0.0674

Largest diff. peak and hole 1.074 and -1.219 e.Å-3

___________________________________________________________________

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2566. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

Au 12958(1) 341(1) 89(1) 26(1)

Cl 13399(3) 560(1) -2353(2) 36(1)

S(1) 12263(3) 193(1) 2531(2) 29(1)

S(2) 8943(3) 955(1) 1076(2) 29(1)

S(3) 8656(3) 618(1) 4134(2) 29(1)

S(4) 5289(3) 1702(1) 983(2) 32(1)

S(5) 5080(3) 1328(1) 4674(2) 32(1)

C(1) 10047(11) 583(1) 2582(6) 26(1)

C(3) 7003(11) 1251(2) 2023(6) 26(1)

C(2) 6901(11) 1097(2) 3469(6) 26(1)

C(4) 7894(13) 2079(2) 1024(7) 36(1)

C(6) 7361(12) 1307(2) 6669(6) 30(1)

C(5) 9393(13) 2225(2) 2690(7) 35(1)

C(7) 9670(12) 1597(2) 6834(7) 33(1)

O(2) 9083(9) 2054(1) 6746(5) 37(1)

O(1) 7853(10) 2395(1) 3636(5) 38(1)

___________________________________________________________________
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Table 3. Bond lengths [Å] and angles [°] for sh2566.

_____________________________________________________

Au-S(1) 2.2928(2)

Au-Cl 2.2932(2)

Au-Au#1 3.0778(6)

S(1)-C(1) 1.702(5)

S(2)-C(1) 1.714(5)

S(2)-C(3) 1.752(6)

S(3)-C(1) 1.714(6)

S(3)-C(2) 1.758(5)

S(4)-C(3) 1.768(5)

S(4)-C(4) 1.818(7)

S(5)-C(2) 1.767(6)

S(5)-C(6) 1.840(6)

C(3)-C(2) 1.353(8)

C(4)-C(5) 1.523(8)

C(6)-C(7) 1.513(8)

C(5)-O(1) 1.419(8)

C(7)-O(2) 1.427(6)

S(1)-Au-Cl 173.59(5)

S(1)-Au-Au#1 102.27(4)

Cl-Au-Au#1 84.00(4)

C(1)-S(1)-Au 100.30(2)

C(1)-S(2)-C(3) 96.7(3)

C(1)-S(3)-C(2) 96.3(3)

C(3)-S(4)-C(4) 100.4(3)

C(2)-S(5)-C(6) 101.4(3)

S(1)-C(1)-S(2) 123.4(3)

S(1)-C(1)-S(3) 121.9(3)

S(2)-C(1)-S(3) 114.7(3)

C(2)-C(3)-S(2) 115.7(4)

C(2)-C(3)-S(4) 126.6(4)

S(2)-C(3)-S(4) 117.6(3)

C(3)-C(2)-S(3) 116.1(4)

C(3)-C(2)-S(5) 125.3(4)

S(3)-C(2)-S(5) 118.6(3)

C(5)-C(4)-S(4) 114.8(4)

C(7)-C(6)-S(5) 113.7(4)
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O(1)-C(5)-C(4) 114.0(5)

O(2)-C(7)-C(6) 113.5(5)

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms: #1 -x+3,-y,-z

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2566. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

Au 24(1) 23(1) 31(1) -2(1) 5(1) 0(1)

Cl 33(1) 37(1) 36(1) 9(1) 8(1) 3(1)

S(1) 26(1) 26(1) 34(1) 2(1) 6(1) 1(1)

S(2) 33(1) 30(1) 23(1) 1(1) 6(1) 5(1)

S(3) 31(1) 28(1) 27(1) 3(1) 7(1) 0(1)

S(4) 28(1) 33(1) 30(1) -2(1) -2(1) 7(1)

S(5) 23(1) 43(1) 31(1) -6(1) 7(1) -2(1)

C(1) 25(3) 21(2) 28(3) -6(2) 3(2) -5(2)

C(3) 24(3) 26(2) 22(2) -6(2) -1(2) 1(2)

C(2) 20(3) 30(2) 25(2) -6(2) 1(2) -5(2)

C(4) 44(4) 31(3) 33(3) 5(2) 11(3) 7(2)

C(6) 34(4) 37(3) 21(2) 0(2) 9(2) -3(2)

C(5) 37(4) 30(2) 34(3) 4(2) 3(3) -3(2)

C(7) 32(4) 35(3) 28(3) -7(2) 4(2) -3(2)

O(2) 44(3) 34(2) 28(2) -4(2) 4(2) -4(2)

O(1) 49(3) 31(2) 30(2) 1(2) 3(2) 8(2)

___________________________________________________________________

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3) for sh2566.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(4A) 9061 1940 502 43

H(4B) 7204 2337 405 43

H(6A) 6491 1393 7462 36

H(6B) 7929 1006 6896 36
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H(5A) 10346 1976 3243 42

H(5B) 10614 2447 2585 42

H(7A) 10890 1537 7852 39

H(7B) 10473 1524 5993 39

H(2) 8528 2126 5806 27(16)

H(1) 6731 2551 3079 57

_________________________________________________________________________

L2H2-AuCl complex

Table 1. Crystal data and structure refinement for L2H2-AuCl.

Identification code sh2793

Empirical formula C13 H18 Au Cl O6 S5

Formula weight 662.99

Temperature 153(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 5.6607(3) Å = 71.359(2)°.

b = 14.1790(6) Å = 88.234(3)°.

c = 14.3137(6) Å  = 85.486(3)°.

Volume 1085.20(9) Å3

Z 2

Density (calculated) 2.029 Mg/m3

Absorption coefficient 7.408 mm-1

F(000) 640

Crystal size 1.21 x 0.09 x 0.06 mm3

Theta range for data collection 1.50 to 32.41°.

Index ranges -8<=h<=8, -17<=k<=21, -19<=l<=21

Reflections collected 25482

Independent reflections 7708 [R(int) = 0.0552]

Completeness to theta = 32.41° 98.8 %

Absorption correction Multiscan

Max. and min. transmission 0.6818 and 0.0403

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7708 / 0 / 235

Goodness-of-fit on F2 1.054

Final R indices [I>2sigma(I)] R1 = 0.0448, wR2 = 0.0915
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R indices (all data) R1 = 0.0691, wR2 = 0.0995

Largest diff. peak and hole 1.801 and -3.112 e.Å-3

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2793. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

________________________________________________________________________________

x y z U(eq)

____________________________________________________________

Au(1) 2418(1) 4267(1) 88(1) 25(1)

S(1) 3091(2) 4358(1) 1607(1) 27(1)

S(3) 7250(2) 3057(1) 1252(1) 24(1)

S(2) 6641(2) 3356(1) 3139(1) 26(1)

S(4) 11018(2) 2040(1) 4012(1) 27(1)

S(5) 11721(2) 1735(1) 1789(1) 31(1)

Cl(1) 1751(2) 4068(1) -1394(1) 35(1)

C(1) 5599(8) 3603(4) 1966(4) 23(1)

C(4) 8960(9) 1695(4) 5038(4) 26(1)

C(5) 7247(9) 944(4) 4982(3) 24(1)

C(2) 9051(8) 2557(4) 3030(4) 22(1)

C(3) 9339(8) 2422(4) 2143(4) 24(1)

C(6) 10932(9) 491(4) 2454(4) 31(1)

C(7) 8745(10) 185(4) 2095(4) 30(1)

O(1) 7410(6) 477(3) 4401(3) 30(1)

O(2) 5578(7) 866(3) 5650(3) 30(1)

O(4) 8230(8) -717(3) 2662(3) 38(1)

O(3) 7543(10) 673(3) 1413(4) 64(2)

O(5) 4571(8) 8566(4) 2084(3) 48(1)

C(9) 4502(10) 8358(4) 1315(5) 36(1)

C(8) 6294(11) 8675(5) 516(4) 40(1)

C(10) 2580(13) 7756(6) 1175(6) 58(2)

O(6A) 2810(20) 6198(9) 4760(8) 53(3)

C(11A) 1810(30) 5214(11) 3686(10) 48(3)

C(12A) 980(20) 5931(9) 4216(9) 35(2)

C(13A) -1530(30) 6469(12) 3909(12) 59(4)

O(6B) 1935(18) 6049(7) 4908(7) 41(2)

C(12B) 4130(30) 6093(12) 4112(12) 60(4)

C(13B) -3580(50) 6600(20) 3909(19) 110(8)

C(11B) 3220(30) 5410(13) 3541(12) 61(4)
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Table 3. Bond lengths [Å] and angles [°] for sh2793.

_____________________________________________________

Au(1)-S(1) 2.264(1)

Au(1)-Cl(1) 2.274(1)

Au(1)-Au(1)#1 3.270(4)

S(1)-C(1) 1.697(5)

S(3)-C(1) 1.688(5)

S(3)-C(3) 1.740(5)

S(2)-C(1) 1.715(5)

S(2)-C(2) 1.739(5)

S(4)-C(2) 1.750(5)

S(4)-C(4) 1.810(5)

S(5)-C(3) 1.758(5)

S(5)-C(6) 1.800(6)

C(4)-C(5) 1.517(7)

C(5)-O(1) 1.214(6)

C(5)-O(2) 1.309(6)

C(2)-C(3) 1.348(7)

C(6)-C(7) 1.501(8)

C(7)-O(3) 1.196(7)

C(7)-O(4) 1.327(7)

O(5)-C(9) 1.230(7)

C(9)-C(8) 1.487(9)

C(9)-C(10) 1.489(9)

O(6A)-C(12A) 1.457(2)

C(11A)-C(12A) 1.492(2)

C(12A)-C(13A) 1.562(2)

O(6B)-C(12B) 1.649(2)

C(12B)-C(13B)#2 1.51(3)

C(12B)-C(11B) 1.58(2)

C(13B)-C(12B)#3 1.51(3)

S(1)-Au(1)-Cl(1) 176.37(5)

S(1)-Au(1)-Au(1)#1 90.30(3)

Cl(1)-Au(1)-Au(1)#1 91.74(4)

C(1)-S(1)-Au(1) 103.24(2)

C(1)-S(3)-C(3) 96.7(2)

C(1)-S(2)-C(2) 96.3(2)
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C(2)-S(4)-C(4) 100.7(2)

C(3)-S(5)-C(6) 99.4(2)

S(3)-C(1)-S(1) 125.4(3)

S(3)-C(1)-S(2) 115.0(3)

S(1)-C(1)-S(2) 119.6(3)

C(5)-C(4)-S(4) 114.5(3)

O(1)-C(5)-O(2) 124.7(5)

O(1)-C(5)-C(4) 124.7(5)

O(2)-C(5)-C(4) 110.5(4)

C(3)-C(2)-S(2) 115.7(4)

C(3)-C(2)-S(4) 123.9(4)

S(2)-C(2)-S(4) 120.3(3)

C(2)-C(3)-S(3) 116.2(4)

C(2)-C(3)-S(5) 125.9(4)

S(3)-C(3)-S(5) 117.8(3)

C(7)-C(6)-S(5) 115.1(4)

O(3)-C(7)-O(4) 122.6(6)

O(3)-C(7)-C(6) 126.6(6)

O(4)-C(7)-C(6) 110.7(5)

O(5)-C(9)-C(8) 122.3(6)

O(5)-C(9)-C(10) 119.4(6)

C(8)-C(9)-C(10) 118.3(6)

O(6A)-C(12A)-C(11A) 114.8(1)

O(6A)-C(12A)-C(13A) 128.5(1)

C(11A)-C(12A)-C(13A) 115.0(1)

C(13B)#2-C(12B)-C(11B) 125.6(2)

C(13B)#2-C(12B)-O(6B) 134.3(2)

C(11B)-C(12B)-O(6B) 100.1(1)

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z #2

x+1,y,z #3 x-1,y,z

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2793. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

Au(1) 25(1) 20(1) 29(1) -4(1) -4(1) -3(1)
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S(1) 26(1) 24(1) 31(1) -9(1) -3(1) 1(1)

S(3) 27(1) 23(1) 23(1) -7(1) 0(1) -3(1)

S(2) 27(1) 26(1) 25(1) -10(1) -2(1) 2(1)

S(4) 23(1) 29(1) 29(1) -7(1) -5(1) -4(1)

S(5) 29(1) 28(1) 36(1) -12(1) 9(1) -2(1)

Cl(1) 37(1) 32(1) 38(1) -14(1) -11(1) 1(1)

C(1) 19(2) 21(2) 29(2) -8(2) 1(2) -5(2)

C(4) 28(2) 25(3) 26(2) -8(2) -3(2) -5(2)

C(5) 25(2) 23(3) 23(2) -8(2) -5(2) 2(2)

C(2) 22(2) 19(2) 26(2) -5(2) -1(2) -5(2)

C(3) 17(2) 27(3) 27(2) -8(2) 0(2) -3(2)

C(6) 28(3) 29(3) 35(3) -12(2) -2(2) 3(2)

C(7) 39(3) 23(3) 31(3) -14(2) -4(2) 0(2)

O(1) 30(2) 33(2) 32(2) -15(2) 3(2) -10(2)

O(2) 30(2) 33(2) 32(2) -14(2) 5(2) -11(2)

O(4) 42(2) 35(2) 36(2) -10(2) -5(2) -8(2)

O(3) 87(4) 32(3) 68(3) -6(2) -49(3) -6(2)

O(5) 47(3) 56(3) 54(3) -35(2) 8(2) -14(2)

C(9) 28(3) 33(3) 53(4) -23(3) -2(2) 2(2)

C(8) 40(3) 40(4) 40(3) -15(3) -1(3) 3(3)

C(10) 43(4) 68(5) 79(5) -45(4) -6(4) -11(4)
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3)

for sh2793.

__________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(4A) 9876 1414 5656 31

H(4B) 8036 2306 5072 31

H(6A) 12277 15 2415 37

H(6B) 10699 437 3157 37

H(2) 4739 401 5655 45

H(4) 7161 -919 2396 56

H(8A) 5510 9106 -87 59

H(8B) 7081 8084 393 59

H(8C) 7473 9042 716 59

H(10A) 1387 7700 1698 87

H(10B) 3250 7089 1205 87

H(10C) 1838 8085 532 87
___________________________________________________________________

Er-Hg complex (3).

Table 1. Crystal data and structure refinement for Er-Hg complex .

_________________________________________________________________

Identification code sh2472

Empirical formula C32 H66 Cl6 Er2 Hg I2 O9

Formula weight 1596.46

Temperature 170(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 9.1770(3) Å = 87.913(2)°.

b = 15.7741(5) Å = 75.2440(10)°.

c = 17.9528(8) Å  = 87.7110(10)°.

Volume 2510.19(16) Å3

Z 2

Density (calculated) 2.112 Mg/m3

Absorption coefficient 7.954 mm-1
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F(000) 1508

Crystal size 0.52 x 0.38 x 0.22 mm3

Theta range for data collection 1.17 to 22.12°.

Index ranges -9<=h<=9, -16<=k<=13, -18<=l<=18

Reflections collected 23683

Independent reflections 6137 [R(int) = 0.0339]

Completeness to theta = 22.12° 98.2 %

Absorption correction Multiscan

Max. and min. transmission 0.2736 and 0.1040

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6137 / 0 / 471

Goodness-of-fit on F2 1.033

Final R indices [I>2sigma(I)] R1 = 0.0314, wR2 = 0.0736

R indices (all data) R1 = 0.0411, wR2 = 0.0782

Largest diff. peak and hole 0.695 and -1.852 e.Å-3

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2x 103) for sh2472. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

Er(1) 1347(1) 2608(1) 6604(1) 21(1)

Er(2) 8219(1) 2330(1) 2821(1) 26(1)

Hg 7292(1) 2656(1) 754(1) 41(1)

I(1) 9294(1) 3711(1) -22(1) 62(1)

I(2) 4955(1) 1821(1) 642(1) 71(1)

Cl(1) 3294(2) 1395(1) 6153(1) 30(1)

Cl(2) -680(3) 3794(1) 6972(1) 36(1)

Cl(3) 7418(3) 3189(1) 4047(1) 36(1)

Cl(4) 6357(3) 3295(1) 2216(1) 34(1)

Cl(5) 8839(3) 1520(1) 1502(1) 35(1)

Cl(6) 10059(3) 1342(2) 3316(1) 39(1)

O(1) -284(6) 1884(3) 6022(3) 23(1)

O(2) 3346(6) 3572(3) 6360(3) 25(1)

O(3) -129(6) 1673(4) 7550(3) 30(1)

O(4) 6230(6) 1437(4) 3251(3) 31(2)

O(5) 1724(6) 3146(4) 5312(3) 29(1)

O(6) 10104(7) 3232(4) 2273(4) 37(2)
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O(8) 2065(7) 2708(4) 7728(4) 39(2)

O(9) 3848(8) 3761(4) 8189(4) 51(2)

O(10) 2038(10) 1430(5) 8732(4) 71(2)

C(3) -1242(9) 842(5) 5388(5) 30(2)

C(4) 5884(10) 979(6) 3996(5) 32(2)

C(5) 5160(11) 1228(6) 2826(5) 36(2)

C(6) 161(9) 1303(6) 5386(5) 29(2)

C(7) 4941(9) 3339(6) 6256(6) 35(2)

C(8) -2468(10) 1533(6) 5661(6) 33(2)

C(9) 9981(11) 4155(6) 2200(6) 43(3)

C(10) 598(11) 3590(7) 4982(6) 46(3)

C(11) 2695(12) 3185(7) 3962(5) 44(3)

C(12) 11632(11) 2954(7) 1842(7) 53(3)

C(14) 11453(15) 4436(7) 1743(8) 83(5)

C(13) 12436(14) 3751(9) 1637(10) 95(5)

C(15) 4342(10) 629(6) 4088(5) 34(2)

C(16) 4323(10) 477(6) 3258(5) 36(2)

C(18) -110(11) 743(6) 7495(5) 38(2)

C(17) -1923(9) 1956(6) 6267(6) 34(2)

C(21) -1227(11) 1922(6) 8250(5) 41(3)

C(19) -1309(14) 445(7) 8170(7) 65(4)

C(20) -1955(19) 1150(9) 8583(9) 124(8)

C(22) 3122(10) 3090(6) 4708(5) 40(3)

C(23) 1404(12) 3849(7) 4175(6) 55(3)

C(24) 3185(11) 4486(6) 6329(6) 42(3)

C(26) 5759(11) 4164(6) 6084(8) 59(3)

C(25) 4659(13) 4817(7) 6295(9) 77(4)

C(29) 3265(13) 4454(7) 8670(7) 59(3)

C(31) 1652(16) 1382(11) 9557(7) 92(5)

C(28) 5310(20) 3873(11) 9057(10) 104(6)

C(30) 3189(16) 815(10) 8456(9) 95(5)

C(27) 5081(15) 3378(10) 8436(9) 91(5)

C(32) 2320(20) 554(11) 9749(10) 112(7)

C(33) 3690(20) 499(11) 9075(12) 122(7)

C(34) 4170(20) 4493(14) 9208(11) 149(9)
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Table 3. Bond lengths [Å] and angles [°] for sh2472.

_____________________________________________________

Er(1)-O(8) 2.289(6)

Er(1)-O(2) 2.373(5)

Er(1)-O(1) 2.379(5)

Er(1)-O(5) 2.385(5)

Er(1)-O(3) 2.388(5)

Er(1)-Cl(2) 2.565(2)

Er(1)-Cl(1) 2.572(2)

Er(2)-O(6) 2.283(6)

Er(2)-O(4) 2.307(6)

Er(2)-Cl(6) 2.554(2)

Er(2)-Cl(3) 2.556(2)

Er(2)-Cl(5) 2.652(2)

Er(2)-Cl(4) 2.653(2)

Hg-I(2) 2.615(9)

Hg-I(1) 2.620(8)

Hg-Cl(4) 2.760(2)

Hg-Cl(5) 2.761(2)

O(1)-C(6) 1.456(1)

O(1)-C(17) 1.456(1)

O(2)-C(24) 1.444(1)

O(2)-C(7) 1.461(1)

O(3)-C(21) 1.452(1)

O(3)-C(18) 1.473(1)

O(4)-C(5) 1.443(1)

O(4)-C(4) 1.464(1)

O(5)-C(22) 1.456(1)

O(5)-C(10) 1.460(1)

O(6)-C(9) 1.460(1)

O(6)-C(12) 1.476(1)

O(9)-C(29) 1.419(1)

O(9)-C(27) 1.423(1)

O(10)-C(30) 1.410(2)

O(10)-C(31) 1.432(1)

C(3)-C(6) 1.503(1)

C(3)-C(8) 1.534(1)

C(4)-C(15) 1.507(1)

C(5)-C(16) 1.514(1)
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C(7)-C(26) 1.511(1)

C(8)-C(17) 1.496(1)

C(9)-C(14) 1.467(1)

C(10)-C(23) 1.499(1)

C(11)-C(22) 1.490(1)

C(11)-C(23) 1.531(2)

C(12)-C(13) 1.470(2)

C(14)-C(13) 1.367(2)

C(15)-C(16) 1.523(1)

C(18)-C(19) 1.490(1)

C(21)-C(20) 1.449(2)

C(19)-C(20) 1.385(2)

C(24)-C(25) 1.455(1)

C(26)-C(25) 1.405(2)

C(29)-C(34) 1.432(2)

C(31)-C(32) 1.49(2)

C(28)-C(34) 1.38(2)

C(28)-C(27) 1.446(2)

C(30)-C(33) 1.38(2)

C(32)-C(33) 1.51(2)

O(8)-Er(1)-O(2) 72.9(2)

O(8)-Er(1)-O(1) 143.0(2)

O(2)-Er(1)-O(1) 143.90(2)

O(8)-Er(1)-O(5) 144.8(2)

O(2)-Er(1)-O(5) 71.93(2)

O(1)-Er(1)-O(5) 72.27(2)

O(8)-Er(1)-O(3) 71.4(2)

O(2)-Er(1)-O(3) 144.26(2)

O(1)-Er(1)-O(3) 71.65(2)

O(5)-Er(1)-O(3) 143.81(2)

O(8)-Er(1)-Cl(2) 92.59(2)

O(2)-Er(1)-Cl(2) 92.95(1)

O(1)-Er(1)-Cl(2) 89.26(1)

O(5)-Er(1)-Cl(2) 86.32(2)

O(3)-Er(1)-Cl(2) 90.55(2)

O(8)-Er(1)-Cl(1) 91.55(2)

O(2)-Er(1)-Cl(1) 89.08(1)

O(1)-Er(1)-Cl(1) 86.92(1)
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O(5)-Er(1)-Cl(1) 90.78(2)

O(3)-Er(1)-Cl(1) 89.97(1)

Cl(2)-Er(1)-Cl(1) 175.77(7)

O(6)-Er(2)-O(4) 173.7(2)

O(6)-Er(2)-Cl(6) 91.12(2)

O(4)-Er(2)-Cl(6) 93.43(2)

O(6)-Er(2)-Cl(3) 92.32(2)

O(4)-Er(2)-Cl(3) 91.61(2)

Cl(6)-Er(2)-Cl(3) 94.94(8)

O(6)-Er(2)-Cl(5) 88.33(2)

O(4)-Er(2)-Cl(5) 87.28(2)

Cl(6)-Er(2)-Cl(5) 90.61(7)

Cl(3)-Er(2)-Cl(5) 174.40(7)

O(6)-Er(2)-Cl(4) 88.81(2)

O(4)-Er(2)-Cl(4) 86.35(2)

Cl(6)-Er(2)-Cl(4) 175.97(7)

Cl(3)-Er(2)-Cl(4) 89.09(7)

Cl(5)-Er(2)-Cl(4) 85.36(7)

I(2)-Hg-I(1) 141.62(3)

I(2)-Hg-Cl(4) 102.64(5)

I(1)-Hg-Cl(4) 105.23(5)

I(2)-Hg-Cl(5) 103.91(5)

I(1)-Hg-Cl(5) 105.93(5)

Cl(4)-Hg-Cl(5) 81.31(7)

Er(2)-Cl(4)-Hg 96.02(7)

Er(2)-Cl(5)-Hg 96.02(7)

C(6)-O(1)-C(17) 109.3(6)

C(6)-O(1)-Er(1) 126.8(4)

C(17)-O(1)-Er(1) 124.0(5)

C(24)-O(2)-C(7) 108.6(6)

C(24)-O(2)-Er(1) 125.8(5)

C(7)-O(2)-Er(1) 125.5(5)

C(21)-O(3)-C(18) 109.0(6)

C(21)-O(3)-Er(1) 126.1(5)

C(18)-O(3)-Er(1) 124.8(5)

C(5)-O(4)-C(4) 109.5(6)

C(5)-O(4)-Er(2) 125.6(5)

C(4)-O(4)-Er(2) 124.8(5)

C(22)-O(5)-C(10) 107.5(7)
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C(22)-O(5)-Er(1) 126.1(5)

C(10)-O(5)-Er(1) 126.4(5)

C(9)-O(6)-C(12) 108.2(7)

C(9)-O(6)-Er(2) 127.2(5)

C(12)-O(6)-Er(2) 124.2(5)

C(29)-O(9)-C(27) 108.2(8)

C(30)-O(10)-C(31) 108.2(1)

C(6)-C(3)-C(8) 101.5(7)

O(4)-C(4)-C(15) 105.5(7)

O(4)-C(5)-C(16) 105.6(7)

O(1)-C(6)-C(3) 105.3(7)

O(2)-C(7)-C(26) 105.5(7)

C(17)-C(8)-C(3) 102.5(7)

O(6)-C(9)-C(14) 106.6(8)

O(5)-C(10)-C(23) 106.1(8)

C(22)-C(11)-C(23) 100.2(8)

C(13)-C(12)-O(6) 103.9(9)

C(13)-C(14)-C(9) 108.2(1)

C(14)-C(13)-C(12) 111.1(1)

C(4)-C(15)-C(16) 102.3(7)

C(5)-C(16)-C(15) 102.7(7)

O(3)-C(18)-C(19) 105.5(7)

O(1)-C(17)-C(8) 105.5(7)

C(20)-C(21)-O(3) 105.7(8)

C(20)-C(19)-C(18) 107.9(9)

C(19)-C(20)-C(21) 111.7(1)

O(5)-C(22)-C(11) 106.4(8)

C(10)-C(23)-C(11) 103.4(8)

O(2)-C(24)-C(25) 106.8(8)

C(25)-C(26)-C(7) 106.5(8)

C(26)-C(25)-C(24) 109.0(9)

O(9)-C(29)-C(34) 106.7(1)

O(10)-C(31)-C(32) 104.6(1)

C(34)-C(28)-C(27) 107.1(1)

C(33)-C(30)-O(10) 107.7(1)

O(9)-C(27)-C(28) 107.7(1)

C(31)-C(32)-C(33) 99.7(1)

C(30)-C(33)-C(32) 104.4(1)

C(28)-C(34)-C(29) 110.1(1)
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_____________________________________________________________

Table 4. Anisotropic displacement parameters (Å2x 103) for sh2472. The

anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h

k a* b* U12 ]

___________________________________________________________________

U11 U22 U33 U23 U13 U12

___________________________________________________________________

Er(1) 19(1) 18(1) 25(1) -2(1) -5(1) 0(1)

Er(2) 26(1) 23(1) 27(1) 3(1) -4(1) -3(1)

Hg 48(1) 42(1) 35(1) 1(1) -12(1) -1(1)

I(1) 80(1) 59(1) 45(1) 14(1) -11(1) -19(1)

I(2) 64(1) 83(1) 70(1) -18(1) -23(1) 2(1)

Cl(1) 23(1) 22(1) 44(1) -3(1) -8(1) 4(1)

Cl(2) 32(1) 25(1) 50(2) -12(1) -8(1) 7(1)

Cl(3) 40(1) 34(1) 32(1) -5(1) -7(1) 3(1)

Cl(4) 39(1) 32(1) 30(1) -1(1) -8(1) 6(1)

Cl(5) 40(1) 31(1) 32(1) -3(1) -8(1) 8(1)

Cl(6) 40(1) 34(1) 44(1) 3(1) -15(1) 6(1)

O(1) 18(3) 22(3) 28(3) -4(3) -3(3) -4(3)

O(2) 21(3) 16(3) 40(4) -4(3) -10(3) 0(3)

O(3) 35(4) 28(4) 23(3) 0(3) 0(3) -2(3)

O(4) 35(4) 30(4) 32(4) 9(3) -13(3) -9(3)

O(5) 26(3) 31(4) 31(3) 7(3) -10(3) -6(3)

O(6) 32(4) 23(4) 46(4) 5(3) 6(3) -4(3)

O(8) 46(4) 42(4) 32(4) -1(3) -16(3) -13(3)

O(9) 53(5) 46(5) 63(5) -20(4) -32(4) 4(4)

O(10) 92(6) 66(6) 42(5) 10(4) -2(4) 29(5)

C(3) 23(5) 29(5) 37(5) -3(4) -8(4) -5(4)

C(4) 38(6) 27(5) 32(5) 5(4) -11(4) -4(4)

C(5) 38(6) 42(6) 32(5) 2(5) -14(5) -6(5)

C(6) 24(5) 30(5) 33(5) -14(4) -5(4) 0(4)

C(7) 16(5) 34(6) 54(6) -7(5) -10(4) 10(4)

C(8) 23(5) 27(5) 54(6) 3(5) -17(5) -6(4)

C(9) 44(6) 27(6) 55(7) -1(5) -6(5) 3(5)

C(10) 42(6) 56(7) 43(6) 16(5) -16(5) 2(5)

C(11) 57(7) 49(7) 30(6) 6(5) -15(5) -14(6)

C(12) 29(6) 41(7) 76(8) -4(6) 7(6) 2(5)

C(14) 83(10) 32(7) 96(10) -5(7) 47(8) -15(7)
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C(13) 43(8) 71(10) 149(14) 42(10) 10(8) -19(8)

C(15) 36(6) 31(5) 33(5) 0(4) -7(4) -7(4)

C(16) 28(5) 41(6) 41(6) -5(5) -9(5) -2(5)

C(18) 38(6) 29(6) 40(6) 4(5) 3(5) -5(5)

C(17) 21(5) 31(5) 50(6) -4(5) -9(5) -2(4)

C(21) 41(6) 38(6) 35(6) -4(5) 6(5) 7(5)

C(19) 73(9) 30(6) 73(8) 10(6) 13(7) -6(6)

C(20) 136(14) 74(10) 100(12) -26(9) 93(11) -45(10)

C(22) 34(6) 35(6) 43(6) 8(5) 5(5) -8(5)

C(23) 54(7) 69(8) 50(7) 30(6) -28(6) -21(6)

C(24) 31(6) 28(6) 66(7) -2(5) -9(5) -3(5)

C(26) 28(6) 31(6) 119(11) -4(6) -18(6) -7(5)

C(25) 48(8) 33(7) 147(13) 9(7) -18(8) -12(6)

C(29) 65(8) 49(7) 68(8) -4(6) -29(7) 4(6)

C(31) 80(10) 140(14) 47(8) -3(8) -8(7) 37(10)

C(28) 119(14) 112(13) 116(13) 10(11) -94(12) -21(11)

C(30) 70(10) 105(13) 95(12) -6(10) -2(9) 33(9)

C(27) 70(10) 114(12) 108(12) -28(10) -58(9) 33(9)

C(32) 113(14) 130(15) 99(13) 89(12) -43(11) -48(12)

C(33) 156(19) 72(11) 162(19) -18(12) -89(17) 37(12)

C(34) 163(19) 200(20) 124(16) -101(15) -104(15) 71(17)

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(Å2x 10 3) for sh2472.

___________________________________________________________________

x y z U(eq)

___________________________________________________________________

H(8A) 2859 3067 7749 80(40)

H(8B) 1568 2390 8173 160(70)

H(3A) -1377 346 5750 35

H(3B) -1229 654 4866 35

H(4A) 5880 1367 4417 38

H(4B) 6638 513 4001 38

H(5A) 5686 1076 2292 43

H(5B) 4453 1714 2807 43

H(6A) 966 899 5465 35

H(6B) 533 1619 4892 35

H(7A) 5291 2948 5823 41
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H(7B) 5115 3059 6730 41

H(8A) -2538 1936 5235 40

H(8B) -3465 1283 5879 40

H(9A) 9728 4410 2714 52

H(9B) 9184 4325 1938 52

H(10A) 174 4095 5285 56

H(10B) -235 3211 4979 56

H(11A) 2348 2646 3811 53

H(11B) 3537 3396 3542 53

H(12A) 12121 2578 2167 63

H(12B) 11597 2650 1374 63

H(14A) 11364 4676 1238 99

H(14B) 11825 4882 2016 99

H(13A) 13155 3802 1959 113

H(13B) 13019 3741 1091 113

H(15A) 3538 1044 4331 40

H(15B) 4221 94 4400 40

H(16A) 4849 -66 3076 44

H(16B) 3278 474 3200 44

H(18A) 886 493 7516 46

H(18B) -327 582 7007 46

H(17A) -2268 2559 6305 40

H(17B) -2303 1669 6776 40

H(21A) -723 2177 8610 49

H(21B) -1973 2342 8131 49

H(19A) -2082 145 7994 78

H(19B) -868 48 8499 78

H(20A) -1877 1075 9121 149

H(20B) -3038 1198 8591 149

H(22A) 3646 2535 4743 48

H(22B) 3800 3546 4757 48

H(23A) 1795 4427 4156 66

H(23B) 730 3832 3825 66

H(24A) 2434 4690 6792 50

H(24B) 2846 4676 5867 50

H(26A) 6523 4189 6385 71

H(26B) 6274 4216 5529 71

H(25A) 4873 5292 5912 93

H(25B) 4674 5032 6804 93
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H(29A) 2199 4366 8944 70

H(29B) 3321 4989 8359 70

H(31A) 544 1399 9767 110

H(31B) 2082 1857 9767 110

H(28A) 5265 3506 9522 125

H(28B) 6308 4136 8905 125

H(30A) 2793 352 8213 113

H(30B) 4028 1075 8067 113

H(27A) 6001 3371 8005 109

H(27B) 4856 2786 8618 109

H(32A) 1638 81 9762 134

H(32B) 2603 566 10245 134

H(33A) 4510 844 9158 146

H(33B) 4066 -96 8993 146

H(34A) 4620 5059 9169 178

H(34B) 3537 4410 9739 178
_______________________________________________________________
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Scheme H-1: Representation of the molecules discussed in the Chapter B (see Table B-4)


