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Nomenclature 

 

HTE High Throughput Experimentation 

HTS High Throughput Screening 

MPB Morphotropic phase boundary 

PZT Pb(Zr,Ti)O3 

KNN (K,Na)NbO3 

Dij Dielectric displacement in i and j directions 

ε0 Dielectric permittivity of air 

εij Dielectric permittivity of material in i and j directions 

εr Relative dielectric permittivity 

P Polarisatioon 

Pr Remanent polarisation 

Ps Saturation polarisation 

Eij Electric field in i and j directions 

dijk piezoelectric constant  in i, j or k directions 

d33
* Large signal piezoelectric constant in Z-direction with electric field in Z-direction 

tan δ Dielectric losses 

T Stress 

S  Strain 

Kp Planar coupling factor 

Q Mechanical factor 

C Capacitance 

Tc Curie temperature 

t Goldschmidt factor 

RA Ionic radius large cation 

RB Ionic radius small cation 

RO Ionic radius oxygen 

BT BaTiO3 

PMN Pb(Mg,Nb)O3 

PNN Pb(Ni,Nb)O3 

EA Earth alkali 

TB Tungsten-Bronze 

SBN Sr1-xBaxNb2O6 



Nomenclature    

SCNN (Sr,Ca)2-xNaxNb5O15 

KLN K3Li2Nb5O15 

TO-T Orthorhombic-Tetragonal phase transformation temperature 

NN NaNbO3 

KN KNbO3 

BNT (Bi,Na)TiO3 

BKT (Bi,K)TiO3 

SPS Spark plasma sintering 

LT LiTaO3 

BNN Ba2-xNaxNb5O15 

LKNNT(Li,K,Na)(Nb,Ti)O3 
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I. Introduction 

 

1. Preamble 

 

Piezoelectricity is the ability of certain crystalline materials to develop an electric 

charge proportional to a mechanical stress. The materials having this ability possess 

also the reverse effect, i.e. generate mechanical strain proportional to an applied 

voltage, this is called inverse piezoelectric effect1. The word “piezoelectric” is derived 

from the Greek word “piezein” which means to press or squeeze. 

 

2. Historical introduction 

 

Piezoelectricity was first observed on a quartz crystal by J. and P. Curie in 1880 but it 

is only almost 40 years later that Cady used it as radio frequency oscillator. A few 

years later the discovery of the barium titanate by Hippel et al. and the discovery of the 

poling process lead to the use of BaTiO3 in phonograph pickers. The discovery of lead 

zirconate-titanate (PZT) by Jaffe et al. in 1954 opened a wide field of applications to 

piezoelectric ceramics2. 

 

Both, the direct and the inverse piezoelectric effect can be used for devices or they can 

be used simultaneously3. 

The devices using the direct piezoelectric effect are basically used in 2 applications: 

detection of large or small signals. The detection of large signals is used to generate 

high voltage and can be applied to power generators. The devices based on the 

detection of small signals are basically used in the detection of sound, ultrasound, 

force, acceleration or pressure. Small changes in pressure for example can be easily 

detected by some piezoelectric materials at high frequency inducing a change in the 

electric signal produced, which makes these materials very effective for sensors. 
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Both the direct and the inverse piezoelectric effect can be used in devices like 

frequency filters, acoustic delay line, sonar sensors or transformers. 

The inverse piezoelectric effect is used for devices like actuators, motors, ink jet printer 

heads or sound and ultrasound transducers. The accuracy, the force, the repeatability 

of the strain produced by certain piezoelectric material make them suitable for such 

applications. 

 

Piezoelectric ceramics can be employed for a lot of industrial applications. However the 

use of lead is strictly limited as lead is a heavy element and a potent neurotoxin. The 

European Council Directive on Waste from Electrical and Electronic Equipment" 

(WEEE) proposes restrictions on the use of lead among other materials in electronic 

products4. An exception was temporarily made about PZT as no other material was 

found to replace it for actuators. However, alternative lead-free ceramics should be 

investigated. The Japanese industry is rather active and lead-free ceramics with 

performances comparable to those of PZT are already available 5 . Therefore new 

development methods should be carried out to make the market pressure.  

 

3. High Throughput Experimentation 

 

The period between the generation of an idea and the moment it reaches the market is 

known under “time to market”. A short time to market is one of the key success factors 

of any industrial product. The time to market of piezoelectric devices could be 

successfully shortened by the application of High Throughput Experimentation (HTE) 

combined with High Throughput Screening (HTS) to their development. As the name 

suggests these methods permit the production and the properties screening of a high 

volume of samples by significantly increasing the speed at which new materials are 

engineered. HTE was developed in the early 1990’s in the drug industry and is 

implemented at present in the development of catalysts, or polymers and 

pharmaceutical products6. 

 

The generic workflow of HTE is shown in figure 3. The data collected from these 

processes is subsequently analysed through data mining techniques. HTE and HTS 

exist in different size, scale and form, depending on the material researched. However 

the same general steps are followed for each technology.  



I. Introduction   5 

Make
Prepare samples

-Manual
-Lab Automation
Process Samples

Design
Working plan
Design assay

Virtual Screening

Test
Run Assay

-Manual
-Automated

Measure

Data 
Data summarisation

Make
Prepare samples

-Manual
-Lab Automation
Process Samples

Design
Working plan
Design assay

Virtual Screening

Test
Run Assay

-Manual
-Automated

Measure

Data Mining
Data summarisation

HITS

Make
Prepare samples

-Manual
-Lab Automation
Process Samples

Design
Working plan
Design assay

Virtual Screening

Test
Run Assay

-Manual
-Automated

Measure

Data 
Data summarisation

Make
Prepare samples

-Manual
-Lab Automation
Process Samples

Design
Working plan
Design assay

Virtual Screening

Test
Run Assay

-Manual
-Automated

Measure

Data Mining
Data summarisation

HITS

 
Fig. 1: Generic HTE workflow 

 

a. Design 

 

Although the HTE method allows the production of a significant amount of samples, the 

experiences should be designed in accordance with the selected experimental model. 

This model varies with the platform which is dependent on the type of material 

evaluated. The design of experiments optimises the efficiency of the method. 

b. Make 

 

The make phase has three main components: starting materials or sources, 

formulations and samples production. This depends on the type of material evaluated: 

films, bulk… 

c. Test 

 

The test phase evaluates the key properties. These properties are conditioned by the 

application of the material researched. Often new equipment specific to the material 

and the application must be designed for the test phase. 

d. Data Mining 

 

During the data mining step the data are compiled and analysed. With the results 

collected during a run, the design of experiments for the next run can be better oriented 

and new areas of interest can be explored. 
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Various technologies can be used to produce the samples; and different technologies 

can be used in parallel, depending on the throughput desired and the state of the 

research. To screen a large compositional area, fully automated methods producing 

small size samples are used, such as the sol-gel method. As the screening progresses 

the quantity of samples can be reduced and their size increased. 

 

Liquid handling systems are often used for the first screening as the precision of the 

automated solution is quite high and the manufacturing of samples can be quite easy. 

A piping robot can mix different substances and coat them on a substrate. This type of 

method was first used to discover new dielectrics in 19957. Samples were coated on a 

silicium wafer coated with platinum and sintered together. Then their key properties are 

screened. 

Generally materials with interesting properties that can be screened on a wafer can be 

engineered by this method. The test method depends on the material investigated (for 

catalyst IR is often used, for luminescent materials a spectrometer will be used etc…). 

 

Solid handling systems are not so widely used as the dosing system is not trivial. 

Moreover the handling of solid samples on one plate is sometimes not so simple due to 

the necessity of mixing the powders together. In the case of ceramics and in particular 

for piezoelectric ceramics, these should be often grinded or the powders employed 

must have a very fine grain size, which makes the automated dosage more difficult. 

 

4. High Throughput Experimentation for the Development 

of new Piezoelectric Ceramics 

 

As explained above the fast development of new piezoelectric ceramics is crucial for 

the market but on the other hand HTE solutions are quite difficult to set up for 

piezoelectric ceramics due to the long preparation time needed. The aim of this work is 

to find an efficient compromise between the sample quality and the rapidity of the 

production and evaluation of new materials. 

At present only partial HTE solutions are developed for the production of piezoelectric 

ceramics8, therefore a workflow should be developed and then an improvement cycle 

for each step should be carried out.  

 



I. Introduction   7 

The work during the project was divided in two parts. First new lead-free dielectrics 

should be identified with a sol-gel method; the sol-gel method which has a very high 

throughput is set up to identify new materials with a high dielectric constant. After this 

phase the materials identified should be processed through the mixed-oxide route 

where the throughput is lower but other parameters like sintering temperature or doping 

could be adjusted. This work is based only on the mixed-oxide route as both parts were 

handled independently. 

First the classical preparation must be evaluated and innovative production solutions 

should be met. Then for the qualification of the new materials, the key properties 

should be chosen and an adapted measurement solution developed. The focus on 

different properties depends on the application. The aim of this project is to find a lead-

free material for actuators; therefore the emphasis is put on the indirect piezoelectric 

properties, especially materials having the highest strain for a given electric field. In the 

following section the definitions of the key properties are given, before proceeding with 

the description of the state of the art in the field of piezoelectric lead-free ceramics. 

 

5. Scientific project and Goals  

 

As stated before the market of piezoelectric ceramics for actuator applications is rather 

important. The most employed material is PZT which contains almost 60 weight % lead 

and due to environmental concerns the use of lead should be reduced in the next 

years. Therefore HTE method for the production and screening of bulk lead-free 

piezoelectric ceramics produced from a mixed-oxide route should be developed to 

accelerate the material development. This HTE method must also be focused on the 

processing and evaluation of bulk samples and moreover it should deliver 

complementary information regarding doping and/or sintering parameters.  

The goals of this works were the following:   

Set up of a HTE route for the synthesis of bulk piezoelectric ceramics  

Set up of a HTE screening of key parameters of bulk piezoelectric ceramics 

Discover new lead-free piezoelectric bulk ceramics 

Optimise new lead-free piezoelectric bulk ceramics 

The first two parts are treated in chapter IV. Thereafter the discovery of new lead-free 

piezoelectric ceramics is investigated in chapter VII and finally the optimisation is 

considered in chapter VIII.  

The basics and the state of the art lead-free piezoelectric ceramics is first examined in 

chapters II and III. 
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II. Basics 

 

1. Ferroelectricity and Antiferroelectricity 

 

The ferroelectricity is the presence of a spontaneous electric moment in a crystal which 

can be changed in its orientation between two or more distinct crystallographic 

directions by applying an external electric field9. The term ferroelectricity is used in 

analogy with ferromagnetism in which materials exhibit a spontaneous magnetic 

moment. Another phenomenon similar can exist, the antiferroelectricity. An 

antiferroelectric state is defined as one in which lines of ions in the crystal are 

spontaneously polarized, but with neighboring lines polarized in antiparallel 

directions.

 
Fig. 2: Domains and polarisation in a ferroelectric  material 

 

From the thirty-two crystal classes, twenty-one are non symmetric and of these twenty 

are polar. If the dipole is reversible applying an electric field, the material is said to be 

ferroelectric. There are two types of ferroelectrics: displacive and order-disorder. The 

piezoelectrics are of the displacive type. When an ion is displaced from its equilibrium 

the internal electrical field forces increase faster than the elastic restoring forces 

creating an asymmetric shift and hence a dipole moment.  
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2. Ferroelectric polarisation 

 

The polarisation is the result of the dipole moment in the crystals in the material. In a 

non-poled ceramic the total polarisation can be 0 as the dipoles can have different 

orientations but in a poled ceramics the dipole moments are aligned which results in a 

remanent polarisation 10 . The polarisation is the measure of the degree of 

ferroelectricity. The most frequent approach to measure the polarisation is the 

investigation of charge-field hysteresis as shown in Fig. 5.  

D is the dielectric displacement and is equal to: 

PEεD o +=                      (1.1) 

where ε0 is the dielectric permittivity of air and is equal to 8.85 10-12 F/m, E the electric 

field applied and P the polarisation. The remanent polarisation (Pr) is the polarisation 

(expressed in C/m²) that remains after an applied electric field is removed and the 

coercitive field (Ec) is the necessary field to switch the remanent polarisation to 0. 

When no further domain orientation can occur, the behaviour between the dielectric 

displacement and the electric field becomes linear. This linear response extrapoled to 

the polarisation axis (E=0) is the saturation polarisation (Ps). 

 
Fig. 3: Typical hysteresis loop of dielectric displ acement vs. electric field 3 

 

3. The perovskite structure 

 

The perovskite structure is the structure of BaTiO3, which was the first piezoelectric 

ceramic discovered. Fig. 6 describes the dipole moment in a perovskite structure. The 

perovskite is a primitive cell with a large ion in A-site (barium for BaTiO3), a small ion in 

B-site (titanium for BaTiO3) and oxygen in the centre of the faces11. 
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Fig. 4: Dipole moment in a tetragonal perovskite 

 

Modification of the perovskite structure to enhance the properties of the material should 

be carried out according to the Goldschmidt tolerance factor t. The relationship 1.2 

describes the ideal perovskite structure when t=1: 

 

( )OB

OA

RR2

RR
t

+
+=                     (1.2) 

where RA, RB and RO indicate the ionic radii of the large and small cations and the 

anions respectively. Generally for t<0.92 the antiferroelectric properties do not appear, 

for 0.92<t<1 the structure tends to be cubic and for t>1 the structures are generally 

ferroelectric. 

 

4. Dielectric constant and losses12 

 

The electric displacement in a dielectric material is related to the applied electric field 

by the relation: 

jiji EεD =           (1.3) 

where εij is the dielectric permittivity of the material, Di the electric displacement and Ej 

the electric field component. 

To characterise a material, it is usual to refer to the relative dielectric constant εr which 

is defined as the ratio between the charge stored on an electrode slab of the material 

and the charge stored on identical electrodes separated by air. The relation between 

the dielectric permittivity of the material and its relative dielectric constant is: 

r0ij εεε =           (1.4) 

A 

O 

B 
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The permittivity of the material is a dimensionless unit. For practical measurement the 

capacitance (C) of the material is measured and is related to the permittivity εr through 

the equation: 

d
A

εεC r0=           (1.5) 

where A is the surface of the sample and d the distance between the electrodes. As the 

capacitance depends on the geometry of the sample, εr represents a material data and 

is commonly used to describe the material properties. εr refers often to the domain 

displacement. A high εr is the signal of a difficult but stable polarisation as a lower εr is 

the signal of an easily polarisable material but which is easy to depolarise. 

 

To measure the relative dielectric constant of a material, alternative voltage is used. 

The alternative voltage has two components, a real one called in-phase and an 

imaginary one called out-of-phase. The dielectric losses characterise the ratio of the 

out-of-phase component to the in-phase component. 

The dielectric losses in the material are often referred as tan δ which is the tangent of 

the loss angle or the ratio of parallel resistance to the parallel reactance, expressed in 

percent. For a material having interesting properties the losses should be as low as 

possible. 

 

5. The piezoelectric tensor13 

 

The equations of the state of the piezoelectric effect relate the elastic variables, stress 

and strain to the electric variables, field and displacement. The piezoelectric effect can 

be described by the results of different electrical behaviour of the material with the 

relation: 

j
T
ijjkijkij EεTdD +=          (1.6) 

or the Hooke’s Law can be used to define the reverse piezoelectric effect and in this 

case the relation used is: 

kkijkl
E
ijklij EdTsS +=          (1.7) 

where Sij is the strain, E
ijkls the compliance, Tkl the stress and dkij the piezoelectric 

constant. The piezoelectric constant is often used to define the performance of a 

material destined to actuator application. To measure it the direct piezoelectric effect or 

the reverse piezoelectric effect can be used. During this PhD the inverse piezoelectric 
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effect was used to quantify the performances of the new materials, therefore more 

attention will be paid to the equation 1.8. 

The compliance and the piezoelectric constant are orientation dependant and the 

equation 1.7 can be replaced by: 


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  (1.8) 

The annotations 1…6 refer to the axes as described in fig. 1. The axe 3 refers to the 

poling axe and the axes 1 and 2 refer arbitrarily to perpendicular axes. 

The method of measurement chosen allow measuring the displacement in the poling 

direction, therefore S3 is measured. The equation 1.6 becomes: 

3333
E
332

E
321

E
313 EdTsTsTsS +++=        (1.9) 

To measure the free displacement of a ceramic no stress is applied on the sample and 

T1…6 are equal to 0 and the equation 1.7 becomes: 

S3=d33E3                   (1.10) 

1(x)

2(y)

3(z)

4

5

6

 
Fig. 5: Notation of axes 

 

The piezoelectric coefficient d33 can also be defined as: 

T3

3
33 E

S
d 









∂
∂

=                   (1.11) 

This definition is employed to quantify the piezoelectric coefficient during the 

measurement as the stress is constant. The piezoelectric coefficient d33 is expressed in 

pm/V or C/N. The notation C/N is used in case of a direct piezoelectric effect 

measurement and pm/V is used in case of an inverse piezoelectric effect 

measurement. Thus the notation pm/V will be used in the rest of this work as the 

measurement method is the inverse piezoelectric effect. 
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6. Planar Coupling Factor kp and Mechanical Quality 

factor Q14 

 

The energy to a piezoelectric body can be applied either by an electric field or stressing 

it. The response will be either mechanical or electrical. The planar coupling factor kp is 

the square root of the mechanical energy applied transformed into electrical output or 

the square root of the applied electric energy converted into mechanical energy. Or in 

other word kp is the power conversion efficiency. It is measured by a resonance 

method. 

The mechanical quality factor Q characterises “the sharpness of the resonance” and is 

obtained from the 3dB bandwidth of the series resonance of a resonating system. Q is 

also interpreted as the ratio of total energy stored to the energy loss per cycle 

multiplied by a constant or the ratio of reactance to resistance. 

Both properties were not systematically measured during the first screening but 

discrete samples were chosen to be evaluated. 

 

7. Curie temperature 

 

The Curie temperature is named after Pierre Curie. For ferromagnetic material it is the 

temperature at which it looses its permanent magnetic field. Due to the analogy 

between ferromagnetism and ferroelectricity, the Curie temperature is also used to 

describe the temperature where ferroelectric materials loose their spontaneous 

polarisation. 

All piezoelectric properties as well as mechanic or elastic properties vary with the 

temperature. During the heating of the material a change occurs in the crystal lattices. 

Many of piezoelectric ceramics become cubic and they loose their polarisation. An 

effective method to measure the Curie temperature is measuring the dependence of 

the capacity with the temperature. Generally above this crystal structure transition the 

dielectric constant obeys the Curie-Weiss law: 

c
r T-T

C
1- =ε                    (1.12) 

where C is a constant called the Curie constant, T the temperature and Tc the Curie 

temperature. Near the Curie temperature the crystal structure is often ‘soft’ and can be 
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polarised strongly with a small electric field. Therefore the permittivity of many of the 

useful ferroelectrics is very high in the vicinity of the Curie temperature15. For broad 

scope of application, materials having a high Curie temperature are often 

recommended. For the actuators in injectors for example, the engine service 

temperature is situated around 90°C. In case of overhea t, up to 130°C, the injectors 

should be able to run, therefore a material with a Curie temperature much over 130°C 

must be employed. An additional safty factor advises to employ materials having the 

double temperature, thus materials having a minimal Curie temperature of 260°C are 

generally employed for injectors. 
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III. State of the art of Lead-Free Piezoelectric Ma terials 

 

1. PZT-based compositions  

 

The most common piezoelectric material used at the moment is PZT. As discussed 

previously, PZT was discovered in 1954 by Jaffe and co-workers and it has attracted 

most research efforts carried out in the field of piezoelectric during the last half century. 

Nowadays PZT is widely used under its multiple forms and its production is well 

established. Before beginning with the state of the art of lead-free piezoelectric 

materials, a small introduction on lead-containing materials will be presented to 

establish a realistic comparison between both material classes. 

Pb(Zr, Ti)O3 is a solid solution between PbTiO3, which is tetragonal  and ferroelectric, 

and PbZrO3, which is orthorhombic and antiferroelectric16. Around 52% PbZrO3, there 

is a coexistence of both structures and a morphotropic phase boundary (MPB) is 

present. The highest piezoelectric effects are measured near the MPB. Early works 

show the benefits of modifications of PZT through isovalent substitutions of lead by 

increasing the piezoelectric constant 17 . Modifications are possible with elements 

compensating valence substitutions of A or B-sites. Other clases of additives are those 

which cause A or O-position vacancies. The additives causing A-positionsvacancies or 

“donor” substitutes are widely used to enhance the performances of PZT18,19,20. The 

characteristic properties of those additives are the increase of the dielectric constant, 

dielectric losses, mechanical coupling factor on one hand and the reduction of 

mechanical Q and coercive field on the other hand. The additives causing O-position 

vacancies or “acceptor” substitutions are not so widely used as they induce the 

opposite effects of the additives causing the A-position vacancies. Therefore a 

compensating valence substitution is often more successful than A or O-position 

vacancies. 

Among the compensating valence substitutes of B-sites in PZT the best known are 

(Mg1/3Nb2/3)
21or (Ni1/3Nb2/3)

22. Both substitution couples can be used alone (PZT-PMN 

or PZT-PNN) or as a ternary system (PZT-PMN-PNN)23. The properties induced by this 

kind of substitutions are diverse, from low temperature sintering 24  to superior 
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piezoelectric properties 25 . The compensating valence substitution can be made 

between the A and B-site, i.e. introducing in A-position ion producing O-position 

vacancies and in B-sites ion producing A-position vacancies26.  

 

Table 1: Description of the properties of different  PZT-based materials 

Material Doping ε 
tan δ 

[%] 

d33
*
 

[pm/V] 

Tcurie 

[°] 
Year Ref. 

PZT No 1700  223 386 1965 27 

PNN-PZT 
Compensating 

valence substitution 
  1100  2003 28 

Pb1-xEAx (Zr, Ti) 

O3 

Additive causing A-

positions vacancies 
1600 0.03 400 110 1994 29 

Pb1-x(Sr, K)x (Zr, 

Ti)1-yNby O3 

Compensation 

valence substitution 
1800  450 335 1999 30 

PMN-PZT 
Compensation 

valence substitution 
1400 0.3 430 350 2003 26 

 

2. Tungsten Bronze materials 

 

The Tungsten-Bronze (TB) structure consists of a skeletal framework of MO6 octahedra 

sharing corners from the three different types of tunnels parallel to the c-axis in the unit 

cell formula of [(A1)2(A2)4C4][(B1)2(B2)8]O30
31. 

 
Fig. 6: Tungsten-Bronze structure 

 

The compounds being piezoelectric have generally the formula AB2O6, like PbNb2O6, 

which was the first non-perovskite piezoelectric known32 . In this TB the sites are 

occupied by Nb, the A-sites are 5/6 filled by Pb and the C-sites are not occupied at all 
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(see Fig. 6). The one cell TB should be Pb5Nb10O30 which is simplified into PbNb2O6. 

One of its major properties is its high Curie temperature of 570°C and its ability to work 

in this temperature region without suffering depoling. One of the first applications of 

these materials were piezoelectric ceramic transducers. Later other ceramics having 

the tungsten-bronze structure have been produced as single crystals for electro-optic 

applications. The single crystal form is quite expensive to produce but for some devices 

like electromedical tomography the material cost is a trivial part of the total system, 

therefore TB single crystals can be used33. The properties of the TB, like those of other 

materials, differ significantly from the polycrystalline state to the single crystal state.  

Other TB materials having the same structure as PbNb2O6 are the TB where the A-site 

is occupied not by lead but by earth-alkaline ions. One or a mix of two or three ions can 

reside in the A-sites while the C-site is empty. One of the most commonly used TB is 

Sr1-xBaxNb2O6 (SBN). Its interest resides in the large pyroelectric current and large 

linear electro-optic coefficient34. The SBN sinters at quite high temperature or needs 

pressure sintering; therefore additives are often used like V2O5
35 to lower the sintering 

temperature because they induce a liquid phase sintering at low temperature. The 

control of the microstructure is also not so easy with SBN ceramics and abnormal grain 

growth is often seen 36 . However recent developments have facilitated the 

microstructure control and the orientation of these ceramics making them more 

interesting for new industrial applications37. The use of SBN as a replacement for PZT 

for the actuator material in the car industry would not be possible due to its low Curie 

temperature about 75°C 38. 

In the same category the other widely researched ceramic is Sr2-xCaxNaNb5O15 or 

SCNNx. The A1-sites are filled by Sr or Ca and A2-sites are occupied Na, C- sites are 

empty and B1 and B2-sites are filled by Nb. SCNNx is an interesting candidate to 

replace PZT as it exhibits a large piezoelectric signal of d33=270 pC/N but under its 

single crystal form39. Single crystals are expensive to produce and therefore not used 

for industrial applications where the costs play a central part. Therefore improvement 

should be realised for the piezoelectric properties of polycrystalline SCNNx, one of its 

major problem being its density due to the evaporation of the alkali ion during the 

sintering. In polycrystalline ceramics the grain boundaries, crystal orientation and 

variations in composition did not allow to obtain the highest properties observed in the 

single crystals but a piezoelectric coefficient of d33=100 pC/N could be measured40. An 

alternative sintering process evaluated was Spark Plasma Sintering (SPS) which leads 

to satisfying microstructure and properties, unfortunately, this process can not be used 

for industrial processing as it is too time-consuming41.  
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Another class of TB are those where the C-site is fully occupied. Actually the C-site is 

larger than the A-site and it can be occupied by an alkali ion. This is the case for the 

potassium lithium niobate (K3Li2Nb5O15 or KLN) where all sites are occupied42. KLN is 

of great interest as monocrystal for non linear applications however the interesting form 

of KLN is the single crystal and the properties are largely dependant on the crystal 

direction but its completely filled structure allows a high resistance to laser damage43. 

Recent works improved the quality of KLN polycrystals to make them suitable for low 

cost applications44. 

 

3. Bismuth layered Structures 

 

Bismuth layered structures are made up of two dimensional perovskite layers 

separated from each other by Bi2O2
2+ layers. This group of ferroelectric compounds is 

known since the 50’s. It is interesting from the structural point of view but it presents 

weak piezoelectric effects in its ceramic form45. These compounds can be described by 

the general formula Bi2Ax-1BxO3x+3 where x is the number of units in the perovskite 

layer.  

X = 1 X = 2 X = 3X = 1 X = 2 X = 3  
Fig. 7: Bismuth layer structures 

 

Typically the Bi-layer structures are based on Bi2O3-TiO2 compositions. The most 

investigated are Bi4Ti3O12, Bi2Ti3O9 and Bi2Ti2O7
46 . Modifications of these base 

compositions with earth-alkalis are also included in this family. The Bi-layer structures 

are characterised by high Curie temperature, low dielectric constant and large 

anisotropy in the electromechanical properties47. This anisotropy can be furthermore 

increased by grain orientation in the ceramic using reactive-templated grain growth 
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processing. Despite these attractive properties these compounds would never be used 

as actuators due to their poor piezoelectric coefficient not exceeding 45 pm/V after 

grain orientation48. 

 

4. Perovskite 

 

The materials having the perovskite structure are of more common use for 

polycrystalline materials due to their superior performances. The perovskite structure is 

described in a previous section. 

 

a. BaTiO 3 

 

As stated before BaTiO3 (BT) was the first piezoelectric ceramic which was developed. 

The causes of the piezoelectricity were soon discovered by Kay and Vousden in 1949, 

to be linked to a displacement of the Ti central ion toward to the adjacent oxygen ions 

by applying an electric field49. The BT possesses interesting dielectric properties which 

are highly dependent on the microstructure and the preparation method50. BT has two 

transition temperatures, the Curie temperature (Tc) at 130°C and tetragonal-

orthorhombic transition temperature (TO-T) about 20°C. Depending on the purity of the 

material or the composition modifications theses temperatures can be shifted. 

Composition modifications of BT also allow the control of different processing 

parameters or properties. The substitution of the A-position by cations of the same 

valence except in the case of Pb, which tends to lower the Curie temperature for 

example. The replacement by strontium leads to an increase of ε and the addition of 

Ca raises the tetragonal temperature stability area. The B-position substitution by ions 

like Zr, Hf or Sn leads to a complete solid solution having different influences on the 

properties51. Although BT is the oldest piezoelectric ceramic known, it is still the object 

of numerous investigations to increase and understand its performances. The 

correlation between the preparation of BT and the dielectric properties is still the object 

of investigation. As different preparations lead to diverse microstructures, the 

morphology of ferroelectric domains is changed and that has an impact on the electric 

properties52. Doping of BT with elements having a different valence than barium and 

titanium induces A- or O-position vacancies which also influence the dielectric 

properties. Acceptor ions such as Co3+ or Al3+ for the A-position and Nb5+ for the B-

position create A-position vacancies and allow the control the abnormal grain growth53, 
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they also help the movement of the domain walls leading to special electric 

behaviour54. The influence of the doping with rare earth is not clear as it is difficult to 

determine if they will be situated in A- or B-position. The most important effect detected 

was the decrease of the resistivity for low doping levels and the increase for high 

doping levels 55, 56. 

The doping of BT with other perovskite as potassium niobate was also intented. 

NaNbO3 is antiferroelectric (see section below (K,Na)NbO3-based ceramics) and the 

mixing of a ferroelectric and an antiferroelectric can lead to a high performance 

material as is the case for PZT. For high NaNbO3 contents (>50 mol %) the material is 

antiferroelecric and for low contents (<7.5 mol %) the material is ferroelectric57. 

Others approaches to replace titanium in BaTiO3 were studied. If titanium is replaced 

by the couple (Li1/4Nb3/4) or (Cu1/3Nb2/3), the Goldschmidt rule still applies (see equation 

1.2) and t~1. Ba(Li1/4Nb3/4)O3 leads to the formation of a cubic structure at room 

temperature and Ba(Cu1/3Nb2/3)O3 has a highly tetragonal structure and is 

ferroelectric58. However the piezoelectric properties are not large enough to enable the 

use of this kind of materials for actuator purposes. 

 

b. (Bi, Na)TiO 3-based materials 

 

(Bi,Na)TiO3 (BNT) is also a perovskite like BT where barium is alternatively replaced by 

bismuth and sodium. The crystal structure of BNT is rhombohedral. BNT is considered 

to be an interesting lead-free piezoelectric ceramic since many years due to its stable 

temperature dependence of the frequency constant and high mechanical coupling 

factor59. However BNT suffers of depoling at about 200°C. The  depoling temperature 

must not be interpreted as the Curie temperature as no phase transition is visible. The 

origin of this phenomenon is not totally understood but some authors think that it 

corresponds to a ferroelectric-antiferroelectric phase transition60. The single crystal 

forms of BNT show interesting properties in regards to the use as actuators, with 

measured d33 about 500 pm/V61.   

As well as for the other ferroelectrics different works have been carried out in order to 

improve the properties of BNT. Different techniques can be used to increase the 

properties such as an improved sample preparation, the doping through A- or B- 

position valence substitutions or mixing BNT with other perovskites. 

 

The preparation methods have a big influence on the later properties of piezoelectric 

ceramics. The purity and the grain size of the starting materials employed can be of 
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importance as impurities can lead to the formation of different phases in the ceramic 

and the grain size of the starting materials influences the calcination and the sintering 

or the density62. For BNT optimal parameters to optimise the density of the ceramic and 

thus its dielectric properties63 have been found. Another method employed to optimise 

the performances of BNT is the non-stochiometric preparation. One of the major 

problems of the BNT like PZT is the evaporation of one of the elements during 

sintering, i.e. the control of the bismuth content in the BNT is crucial to maintain the 

stochiometry. Piezoelectric and dielectric measurements revealed that a deficiency of 

titanium leads to an increase in the piezoelectric coefficient, the dielectric constant ε, 

the dielectric losses as well as the electromechanical coupling coefficient, but at the 

same time the depolarisation temperature was shifted to lower temperatures. Exactly 

the contrary effects can be observed for an excess of titanium64. The other preparation 

method which can influence the properties is the microstructure development and the 

development of a texture in the ceramic. If the grains are oriented the dielectric 

properties are enhanced. The reactive templated grain growth is one of the current 

methods to give a microstructure orientation. In this method a precursor of a target 

compound is used as a reactive template, and a complementary compound for the 

target compound is mixed. A green sample containing the aligned reactive templates is 

produced via tape-casting. The sample is then calcined in-situ and sintered. The matrix 

alginates subsequently with the templates and the properties are enhanced due to the 

uniform grain orientation. In most of the cases the templates used for BNT are 

Bi4Ti3O12
65. This technique allows to increase the piezoelectric properties like d33 up to 

two times and a piezoelectric coefficient of 152 pC/N could be measured by Tani et 

al.66.  

 

For BNT as well as other ceramics the properties can be increased by the adjunction of 

dopants. The substitution of sodium through potassium and lithium is one of the most 

widely used substitutions. This kind of doping leads to a pure phase perovskite in 

BNT67 with increased piezoelectric properties like a d33 value of up to 230 pm/V for 

6 at.% Li68. Moreover, a MPB exists between BNT and (Bi0.5K0.5)TiO3 (BKT) at around 

80 mol% BNT, which makes it a more suitable candidate to replace PZT, as the 

piezoelectric properties are better around the MPB similar to PZT. However the 

depolarisation temperature decreases up to 174°C at th e MPB. Therefore compositions 

not in the MPB are also suitable to produce lead-free actuators like 0.7 BNT – 0.3 BKT 

which possesses a depolarisation temperature similar to BNT but with a higher d33 

coefficient around 130 pm/V69. The classic doping of Bi0.5(Na,K)0.5TiO3 with Pb, Li etc… 

is also possible. 
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The doping creating A- or O-position vacancies can be carried out with an excess of 

sodium or bismuth in the starting materials but also other elements can be used like 

rare earths. Doping BNT with rare earth like cerium shows beneficial to the properties 

due to a better densification of the ceramic70.  

 

A different doping strategy is doping with other elements which are not similar to the 

elements contained in BNT and therefore use the compensative valence substitution 

like using the alkaline instead of (Bi0.5Na0.5) or compounds like MnCoO3. Mn and Co 

can take the A- or B-positions in the BNT leading to serious changes like a dramatic 

lowering of the Curie temperature but at the same time an enhancement of the 

electromechanical coupling factor as well as the resistivity71. The doping with earth 

alkaline elements such as Ca improves the piezoelectric coefficient72. If BNT is doped 

with barium, the resulting material corresponds to a mixture of two perovskites BNT 

and BT. This kind of modification can be also interpreted in a different manner under 

the form of a modification of BNT such as [(Bi0.5Na0.5)1-xBax]TiO3. In this section it will 

be treated in this first form, i.e. a mix of two perovskites BNT and BT. 

A MPB between BNT and BT at a concentration of 6-8 mol% BT has been reported in 

1991 by Takenaka et al.73. Some piezoelectric properties are increased as the planar 

coupling factor, the piezoelectric constant or the dielectric constant but the 

depolarisation temperature decreases up to 100°C 74. The replacement of sodium by 

lithium in BNT-BT leads to interesting properties as piezoelectric properties have a 

different behaviour. The piezoelectric coefficient d33 and the relative dielectric constant 

ε increase linearly when BNT contains 7.5 at.% lithium and 8 mol% BT and moreover, 

the depolarisation temperature lightly decrease to 190°C 75. The replacement of sodium 

by potassium in BNT-BT leads to BKT-BT. A MPB also exists between BKT and BT at 

approximately 40 mol% BKT but these ceramics are difficult to densify without additive 

due to the evaporation of potassium during sintering and possess lower piezoelectric 

properties than BNT-BT76. 

As stated before a MPB exists between BNT and BT as well as BNT and BKT 

therefore, Nagata et al. investigated the existence of a MPB between the three end-

members BNT-BKT-BT77. They found the best piezoelectric properties for 0.852BNT-

0.028BT-0.12BKT that means in the theoretically rhombohedral zone. The values 

measured for this composition were ε=1141, kp=0.56, Tc=301°C and d 33=191 pC.N-1. 

However, they did not give any value for the depolarisation temperature. 
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Fig. 8: Phase relationship of the (Bi 1/2Na1/2)TiO3-BaTiO 3-(Bi 1/2K1/2)TiO3 (BNBK) system 

around the MPB (from 85). 

 

Other work from Li et al. were focussed on similar ternary compounds but with different 

ratios for the three end-members, and they found the best properties for 0.895BNT-

0.035BT-0.07BKT with ε=850, d33=150 pC.N-1, Td=120°C and T c=320°C 78.  

Other end-members possible to mix with BNT are different perovskite as KNbO3 or 

NaNbO3. The presence of a MPB between BNT and KNbO3 was not clear before the 

work of Ishii et al. because dense ceramics were difficult to prepare due to the 

evaporation of the alkali element. In this study, high density by hot pressing of the 

samples was achieved and the MPB could definitely be investigated79. The MPB was 

found around 5 mol% KNbO3 in solid solution in BNT. On the other hand the 

depolarisation temperature decreases with the amount of doping incorporated. 

A MPB between BNT and NaNbO3 was found at 90-98 mol% NaNbO3 in solid solution 

into BNT80. These results were confirmed by Li et al. who found that the depolaristion 

temperature also was diffuse and did not exist anymore for high doping levels.  

 

 Table 2: summarisation of (Bi1/2Na1/2)TiO3-based materials 

Material Remark d33 

[pm/V] 

Td 

[°C] 

Ref. 

BNT  80 200 65 

BNT-single crystal  450 200 67 

BNT-textured Templated Grain Growth with 

Bi4Ti3O12 seeds 

150 200 72 

BNT-Li doped  230 190 74 

BNT-K doped MPB at 15 at.%K 130 174 75 

BNT-BT MPB at 8 mol% BT 120 100 80 

BNT-BKT-BT MPB 191 120 85 

BNT-(K,Na)NbO3 MPB around 5 mol% (K,Na)NbO3 71  88 
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c. (K, Na)NbO 3-based materials 

 

(K, Na)NbO3 (KNN) is a piezoelectric formed by the ferroelectric KNbO3 (KN) and the 

antiferroelectric NaNbO3 (NN)81. To begin this part first both materials will be shortly 

separately presented. 

 

KN is quite difficult to process to full densities by natural sintering for different reasons. 

The first is that the phase stability is limited to 1040°C therefore high temperature 

sintering is not possible. Another important reason is the volatibility of potassium oxide 

at low temperatures inducing slight stochiometry changes thus leading to the formation 

of impure phases82. However, production techniques for KN single crystals have been 

developed as KN is interesting for its photorefractive effect used for holographic data 

storage, phase conjugation, data processing or band wavelength filter83. KN presents 

different phase transitions similar to BT; these are cubic (above 400°C), tetragonal 

(between 400 and 230°C), orthorhombic (between 230 and -50°C) and rhombohedral 

(under -50°C). 

In the research for new lead-free piezoelectric ceramics KN single crystals are widely 

investigated to optimise their performances as actuator. The domain engineering is one 

of the methods. If the domains are oriented and their size optimised the piezoelectric 

properties are better for transducer applications but for actuator applications the d33
* 

values are too small84. The full poling of the material is also an important parameter to 

investigate to increase the performances of KN. Study shows that with an adapted 

poling some piezoelectric properties could be 5 times enhanced in comparison with a 

classical poling treatment85. Despite its properties as single crystal, the properties of 

polycrystalline KN are not without interest. A carefully preparation can produce 

samples with dynamic d33 up to 110 pm/V86: 

As well as for other ceramics the properties of KN can be improved by the utilisation of 

dopants. One of the classical dopants is tantalum since KTaO3 is ferroelectric89. The 

K(Nb,Ta)O3 (KNT) as well as KN can also be grown as single crystal and used in 

electro-optical devices 87  or it can be used as polycrystalline ceramics for tunable 

applications 88 . KN in its polycrystalline form can be easily doped to improve its 

properties, which is not the case for single crystals as dopants disturb the 

crystallographic order. Among the most promising dopants for KN ceramics is the 

couple LaFeO3 as almost all piezoelectric properties are enhanced by the addition of 

only 3mol% in solid solution: the density raises to 98.8% of the theoretical density, the 

remanent polarisation increases to values of single crystal KN, the dielectric constant, 
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the orthorhombic-tetragonal phase transition temperature and the Curie temperature 

stay unchanged and the d33 coefficient increases up to 98 pC/N 89.  

 

NN as stated above is antiferroelectric with an orthorhombic structure at room 

temperature89. NN undergoes appreciatively the same phase transitions like KN. This 

phase transitions temperatures can however be easily influence by the introduction of 

dopants into single crystals, such as Mn90. Ferroelectric domains can appear as the 

result of polarisation creating piezoelectricity in NN although NN is antiferroelectric91. 

However this piezoelectric effect in NN is quite weak, ε and d33 are low despite of 

polarisation (respectively 200 and 50 pC/N). 

Regarding the fabrication of NN it meets the same problems as KN due to the 

evaporation of sodium during its firing. Techniques such as spark plasma sintering 

(SPS) allow to fabricate high density NN. SPS is a process that uses microscopic 

electrical discharges between particles under pressure (about 30 MPa). The NN 

samples produced through SPS have interesting properties like a quite high remanent 

polarisation after poling (around 28µC.cm-²) and its coupling factor remains stable at 

18% over a wide temperature range (up to 300°C) 92 

 

KN and NN alone do not show piezoelectric properties good enough to compete with 

PZT but a solid solution of both like PZ and PT leads to higher performances. 

 

KNN did not arouse enthusiasm of the scientific community due to its sinterability 

problems which are the same as KN and NN. It was though during a long time that 

KNN cannot be sintered by conventional technique93. However the limitation on the use 

of lead in consumable devices put the attention on lead-free materials a few years ago. 

In 2001 the European LEAF project proposed KNN as alternative material for PZT for 

certain industrial applications94. 

The addition of NN to KN increases the dielectric constant and ε values of KNN around 

250 have been reported for (K0.5Na0.5)NbO3 prepared by a mixed-oxide route95. The 

Curie temperature is not too modified in comparison to the Curie temperature of pure 

NN and KN. The Curie temperature of KNN is around 400°C. One of the other 

characteristic of pure KNN is that it suffers also a phase transition around 200°C 

between orthorhombic and tetragonal (see Fig. 9).  

The attention developed in the last years about KNN lead to a better observation of the 

influencing parameters permitting to reach higher performances. One of the first 

parameters to be controlled is the preparation. Often KNN is prepared through the 

mixed-oxide route from sodium and potassium carbonates. These carbonates are 
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sensitive to the ambient humidity and a false stochiometry of the final compound can 

be introduced if no attention is given to the dryness of the starting powders. The use of 

dried powder and a careful milling can increase the density and therefore the dielectric 

and piezoelectric properties96. However the maximal density reached by this route was 

only of 95% and a d33 around 80 pC/N was measured. To estimate the properties of a 

fully densified KNN other sintering process should be investigated like SPS which was 

already used for KN or NN. SPS leads to a density superior to 99% of the theoretical 

density (theoretical density of 4.51 g.cm-³) for sintering temperatures inferior to the 

temperature of air sintering (920°C instead of 1140° C). The piezoelectric coefficient 

measured for the samples was 148 pC/N, nearly the double of the d33 measured on air-

fired samples with the same composition97. Another preparation method of the powder 

from alkoxides leads to a very fine powder after calcination with a different morphology. 

This kind of preparation did not conduct to a KNN ceramic with interesting properties 

and is therefore not adapted for the production of bulk ceramics98. 

 

 
Fig. 9: phase diagram of (K,Na)NbO 3 

 

The properties of pure KNN cannot satisfy the requirements of the industry for some 

applications. Thus an optimisation of the properties may be achieved through doping. 

The first part of the following review about KNN doping focuses on dopants with the 

same valence, the second part on mix with different perovskite and to finish the review 

dopants with different effects on the ceramic will be introduced. 

 

Doping elements with valence 1 and 5 were the first investigated to improve the 

performances of KNN. The alkalis being critical elements the attention was put first on 

the insertion of lithium in A-position. This kind of modification can be also investigated 

as a ternary system with the three end-members KN, NN and LiNbO3 (LN). LN has an 

ilmenite structure which is similar to the perovskite but due to the small diameter of 

lithium it is a heavily distorted perovskite. LN has also application for electro-optical 
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devices like KN. The insertion of lithium in the A-position allows to increase the 

dielectric constant ε at room temperature. This is due to the displacement of the 

orthorhombic-tetragonal phase transition temperature (TO-T). For 5 mol% Li doping in 

KNN TO-T moves from 200°C to 110°C, the incorporation of more  Li decreases TO-T up 

to temperature below room temperature for 7 mol% Li 99 . On the other hand the 

incorporation of Li into KNN leads to an improvement of the piezoelectric coefficient of 

200 pm/V. This can be interpreted as a MPB between LN and KNN as described by 

Kakimoto et al. The limit of solid solution of LN into KNN was detected for 7 mol% of 

LiNbO3. The incorporation of more than 7 mol% leads to the formation of a secondary 

phase identified as a tungsten-bronze. Another benefit of the incorporation of Li into 

KNN is the decrease of its sintering temperature100. Samples containing 5 mol% LN 

fired at 1040°C present higher d 33 (150 pm/V) and coupling factor (37%) than samples 

fired at higher temperature or containing more LN. 

The silver niobate and silver tantalate (respectively AgNbO3 and AgTaO3) also have a 

perovskite structure and are reported to be ferroelectric101. They possess a similar 

phase transition as potassium niobate and silver comes in mind as a dopant for KNN. 

Few references are available on the topic as the first studies reported poor 

piezoelectric properties102. 

It is natural to think about tantalum to replace niobium as they are neighbours in the 

periodic classification of the elements and have similar properties. Different cases can 

be investigated: the incorporation of Li and Ta independently or the insertion of LiTaO3. 

It is interesting to begin by an independent content of Li and Ta to evaluate their 

properties. The addition of Li as stated above increases the piezoelectric coefficient d33 

of pure KNN; the addition of Ta to LKNN increases even more d33 up to 300 pm/V for 

samples containing 20 mol% Ta and 3 mol% Li103. Li has quasi no influence on the 

Curie temperature, which sinks linearly with the addition of Ta. Moreover, Ta increases 

the sintering temperature. The maximal density measured on Li- and Ta- modified KNN 

was reached for higher sintering temperature but the absolute density was higher for 

samples doped with both elements104. Guo et al. have detected the existence of a MPB 

between LiTaO3 (LT) and KNN around 5-6 mol%. Similarly to LN the limit of solid 

solution is situated at 7 mol% and an increase in LT content leads to the formation of a 

second phase having the tungsten-bronze structure105. Saito et al. reported another 

MPB between KNN and LT106 as shown in Fig. 10. For low Li and Ta doping level, KNN 

stays orthorhombic (grey area). At higher doping level (for Li between 5 and 12 mol%, 

depending on the Ta content) the ceramics become tetragonal (white area) and for 

higher Li content (from 12 mol% Li) a tetragonal and a near phase coexist 

independently from the Ta content (dashed area).  
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Fig. 10: MPB in LKNNT depending on Li and Ta conten t 

 

Another element which can be inserted in B-position is antimony (Sb). The common 

oxidation numbers of antimony are -3, 3 and 5. If it is inserted into KNN due to its 

radius it will naturally be inserted in B-position and will take the oxidation number 5. 

LiSbO3 (LS) is used as an electroceramic and is primarily used in its thin film form. The 

first effects of LS doping on KNN were reported by Zang et al.107. The effects of LS are 

even more important onto KNN than LT as the maximal piezoelectric coefficient was 

reported for 5.2 mol% LS in solid solution into KNN of 320 pC/V. A planar coupling 

factor around 51% was also measured and the Curie temperature does not suffer an 

important decrease but the TO-T was shifted to 70-80°C. Another work from Yang et al. 

reported a MPB between 6 and 10 mol% of LS in solid solution into KNN. The values 

were quite different for d33 as the maximum reported was 171 pm/V and the TO-T was 

only shifted to temperatures around 120°C. 

In 2004 the scientific journal Nature presented a paper from Saito et al. which had an 

important impact on the piezoelectric scientific society. A lead-free piezoelectric 

ceramic with properties comparable to those of PZT via air- and pressure-less sintering 

was reported108. Their results are presented in Fig. 11. The compounds called LF 1-4 

are from the family (K1-xNax)1-yLiy)(Nb1-z-wTazSbw)O3. The compounds called LF 3-4T are 

the same composition as LF3 and 4 but with a texture created via templated grain 

growth techniques. As shown in Fig. 11 the properties of lead-free compounds are 

comparable to those of non-modified PZT and are superior to those of other known 

lead-free piezoelectrics, such as BaTiO3, (Bi,Na)TiO3 or non modified KNN.  

The optimal composition was obtained for x=0.54, y=0.04, z=0.1 and w=0.04 with the 

following properties: ε=2000, d33
*=290 pm/V, Tc=275°C. The orientation of the ceramic 

via templated grain growth leads to a d33
* of 416 pm/V. 

Complementary work of Yoo et al. shows the importance of the sintering parameters 

and poling conditions to achieve even better properties than those presented by Saito 
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et al.109. The addition of potassium carbonate in excess to reach better densities was 

reported. As the potassium is an element which has a high vapour pressure and can 

therefore easily vaporise during sintering, a compensation was done before sintering to 

reach a stochiometric KNN. The poling temperature of KNN was also centre of 

attention and they discovered that poling at high temperature (more than 100°C) leads 

to higher polarisation. 

 

 
Fig. 11: d 33 coefficient vs. Curie temperature for different co mpounds from Saito et al. 

 

After the results presented by Saito et al. KNN-based ceramics became the centre of 

attention since with appropriate doping the properties of a lead-free piezoelectric could 

reach those of PZT-based materials. 

 

Another family of dopants for KNN are the earth-alkali elements such as barium, 

strontium, magnesium or calcium because of their large radius (almost as large as the 

alkali elements) and their low valence. The influence of 0.5 at.% of earth-alkali 

elements on KNN is noticeable. They mostly occupied the A-site; calcium and 

strontium promoted the densification and decrease the phase transition temperature 

(TO-T as well as Tc) and the piezoelectric response is enhanced for air sintered 

samples. The introduction of magnesium leads to the contrary effects and the addition 

of barium conducts to the formation of a second phase110. The effects of potassium and 

sodium substitution by strontium and A-position vacancies were studied in details by 

Tashiro et al.111. The introduction of strontium and therefore, A-position vacancies 

leads to abnormal grain growth. Furthermore, the resistivity of the samples was too low 

and no sufficient electric field could be applied to measure piezoelectric properties. By 
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adding MnO the abnormal grain growth was inhibited, the resistivity increases and 

satisfying piezoelectric properties could be measured as d33
* up to 150 pm/V. 

To inhibit or control the formation of A-position vacancies an acceptor can be inserted 

on B-sites. One of the most employed in the literature is titanium; this leads to the 

insertion of compounds like EATiO3 (EA=earth alkaline element) into KNN. Chang et al. 

reported improvement of the piezoelectric properties as well as a decrease of both 

transition temperatures112. The influences of EATiO3 doping are similar to EA doping 

reported by Malic et al., i.e. the doping with SrTiO3 and CaTiO3 leads to denser 

ceramics and a increase of the piezoelectric properties whereas, the KNN ceramics 

doped with MgTiO3 and BaTiO3 exhibit a secondary phase and lower piezoelectric 

performances. The KNN doping with BaTiO3 was studied more in details by Guo et al. 

and they discovered the existence of a MPB between KNN and BT for 6 mol% BaTiO3 

in solid solution into KNN113. However, it is for only 2 mol% that the piezoelectric 

properties with a reported d33 equal to 106 pC/N were the most important. The addition 

of BT decreases the Curie temperature and leads to a diffuse phase transition 

temperature. The microstructure of KNN also is improved and the grain size distribution 

is mono-modal without abnormal grain growth. These results were confirmed by 

Shimojo et al.114 who studied furthermore the doping of KNN with SrTiO3 and came to 

the conclusion that the use of strontium to dope KNN provides better piezoelectric 

results as SrTiO3 is paraelectric and BaTiO3 ferroelectric at room temperature. Other 

groups from Japan cam to the same conclusion and also discovered the existence of a 

MPB at 6 mol% SrTiO3 in solution in KNN. But they measured different piezoelectric 

coefficients, one of 90-96 pm/V115 and the other of almost 200 pm/V116. The true value 

is difficult to know but it is sure that the piezoelectric properties are enhanced with the 

doping of SrTiO3 in the MPB. 

As stated above one of the major problems of KNN is its lack of density under air firing, 

therefore the addition of a secondary phase which fills the pores can improve the 

properties. Matsubara et al. discovered a sintering aid when they added copper oxide 

to KNN. In the presence of copper a second phase, namely K4CuNb8O23 (KCN) is 

formed during the sintering, which promotes the densification. The addition of only 

0.5 mol% KCN achieved the best performances, lower εr and tan δ (respectively 200 

and 2%) higher d33, kp and Q (180 pm/V, 0.4 and 1200)117. The modification of copper-

doped KNN with tantalum leads to the formation of a similar liquid sintering phase, 

namely K5.4Cu1.3Ta10O29 (KCT). The quantity of KCT needed to achieve the best 

performances of KNN is only of 0.38 mol%118. Its performances are approximately as 

good as the properties of dense KNN prepared with KCN. The doping of KNN with 
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lithium and sintered with KCT leads to higher properties; εr, kp, Q and d33 increased to 

respectively 400, 0.43, 2000 and 200 pm/V 119. 

Other dopants like zinc, scandium, cadmium, cerium or tin were studied by Zuo et 

al.120. It was discovered, that the addition of tungsten, yttrium and cerium inhibits the 

densification during sintering and that elements like zinc promote it and high densities 

(>96% of theoretical density) were achieved at low temperature. The addition of 1 at.% 

Zn also promotes other properties like relative dielectric constant, coupling factor or 

piezoelectric coefficient which attained the values of respectively 650, 0.44, 117 pm/V 

without affecting the Curie temperature and the TO-T. That confirms the work of Park et 

al., who first discovered, that the addition of ZnO to KNN improves its performances121. 

 

Table 3: Summary of different KNN-based materials 

Material Doping ε 
d33 

[pm/V] 

Tc 

[°C] 
Ref. 

KNN air-sintered  250 80 400 96 

KNN hot-pressed   150  100 

KNN Li  200  103 

KNN Li-Ta  300  107 

KNN Li-Sb  171  111 

KNN Li-Ta-Sb 2000 290 275 112 

KNN earth-alkali  95  114 

KNN EATiO3  106  116 

KNN Cu; Cu containing compounds 200 200  123 

KNN Zn 650 117  126 
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IV. Method 

 

1. Classical preparation 

 

To develop new compositions of the multilayer ceramics, new materials are first treated 

individually as bulk materials. When the properties are considered acceptable 

multilayer techniques are developed. In the first part of the material development, bulk 

samples of one up to several millimetres are produced and investigated. The method 

described in this section was used to produce the first bulk samples before the 

multilayer technique was further developed. The classical preparation follows different 

stages which will be described step by step as well as the contribution of each 

individual step to the quality of the ceramic sample. 

 

a. Dosage 

 

The receipt of the ceramic is prepared and the weight of each ingredient is calculated 

(an example is given Chap 9). The chosen quantity for the classical preparation is of 

one mole, which represents a weight of powder around 300g for lead-based ceramics 

and around 500g for niobate-based ceramics. The significant amount of dosed powder 

has two reasons: one is to minimise the error induced by each component and the 

second is the possibility to vary parameters such as calcination or sintering 

temperature and time. In the classical method all the components are dosed per hand 

with a precision of 0.1 mg. The time invested in dosing varies with the number of 

compounds. Typically for a receipt with 6 compounds, the time taken for a complete 

dosing is 45 minutes.  

The powders are weighted in PVC beakers of one litre and water or alcohol is used as 

cooling media depending of the solubility of the raw materials in water or alcohol. 
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b. First milling 

 

To produce the bulk samples the powders are ground on a on a milling bank for 18h in 

the PVC beaker. At the beginning of the milling process the grain size of the different 

compounds is different and in many cases the distribution is heterogeneous. 
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Fig. 12:Particule size distribution of different po wders before and after milling banc 

 

The milling achieves a unimodal grain size distribution (d50≈0.6µm) as well as an 

intimate mixing of the different compounds. These two parameters are important to 

optimise the calcination step which comes afterwards. Before the calcination the slurry 

is dried out by means of filtration and a drying furnace. 

 

c. Calcination 

 

During the calcination the perovskite structure is formed. The stochiometry of the 

ceramic will be determined during this step. The different compounds are transformed 

to give the final stochiometry (ABO3 in the case of the perovskite). If carbonates are 

dosed, the carbon as well as the exceeding oxygen will be released. To form the 

perovskite structure, the compounds need a certain amount of energy which is given by 

the temperature. Typically for perovskite formation the calcination temperature is 

situated between 700 and 800°C.  

As the calcination is a sensitive parameter the heating and cooling rate should not be 

too high to allow the different atoms to diffuse within the mixture. Typical heating and 

cooling rates are 3 K/min. The calcination takes up to 5 h and the total time taken is 

about 24h.  
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Once the perovskite structure has formed, the mixture must be milled another time to 

break the agglomerates which could impeach the densification during sintering. 

 

d. Second milling 

 

After the calcination the second milling takes place to break the agglomerates formed 

during the calcination. The second milling is also carried out in a one litre PVC beaker 

with water as cooling liquid. The second milling takes 18h. Afterward the slurry is 

filtered and dried in a furnace. 

 

e. Pressing and debinding 

 

The dried powder is then granulated with the addition of polyvinyl butyrate (PVB). PVB 

helps the powder to glue during the forming, that ensures the formation of pellets. The 

pellets are shaped in a uniaxial press with a maximal load of 8 bar. The pellets have a 

diameter of about 15mm and a thickness of about 1.5mm. 

After the pressing, the pellets are put in a furnace for the debinding process. The PVB 

has to be burnt out to ensure a good densification of the sample. The process takes 

place at 550°C for two hours. 

 

f. Sintering 

 

The sintering is the final step for the formation of the piezoelectric ceramic. 

To avoid the diffusion of certain element in the sintering air, pellets are stacked. To 

investigate enough samples, 7 or 8 pellets are piled up, with the upper and the lower 

ones dismissed after sintering   (due to the diffusion between the sintering medium and 

support). This means that 5 or 6 samples are available to characterise a composition 

and a method of preparation. 

To prevent the gluing of the pellets together a fine layer of ZrO2 powder is placed 

between each pellet because zirconium ions have a low diffusivity in PZT. 

There are three important parameters of the sintering phase that must be considered in 

detail: 

Sintering temperature. A too high temperature can damage the ceramic. Diffusion can 

also be too fast and the pellets may glue together, even leading in extreme cases to 
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ceramic melt. A too low sintering temperature achieves poor density leading to poor 

properties. The sintering temperature has to be adjusted for each ceramic. 

Heating rate. The sintering of a ceramic is carried out by different mechanisms. Six 

basic mechanisms are responsible for the sintering of the ceramic. They are illustrated 

in Fig. 13. Three of these mechanisms are related to surface transport and three to 

bulk transport. Surface and bulk transports are in fact complementary. The surface 

transport is responsible for the neck formation and the bulk transport for the growing of 

the neck. As the formation of the neck and its growth are time dependent, enough time 

must be allowed to produce the sample, otherwise it will be incorrectly sinter (high 

concentration of closed porosity for example), which will be detrimental for the poor 

properties. 

Weight loss during sintering. If the weight loss is significant during sintering, the 

composition of the powers has to be adjusted accordingly during their elaboration. A 

weight loss of 2% for a PZT during the sintering must be compensated with the addition 

of 2% weight lead oxide in the initial powder composition because lead is the most 

volatile compound of the PZT. After the sintering the samples can be characterised. 

 

 

 
Fig. 13 Sintering principle 

 

g. Characterisation 
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i) Sample preparation 

 

For the characterisation the surfaces of the samples have to be plane and parallel to 

allow a unidirectional transmission of the electric field in the ceramic. Parallel and plane 

surfaces are obtained by means of grinding. Samples are glued with wax on a plate to 

grind one surface and afterwards they are glued on the other side to grind the second 

surface. The surfaces are then washed with benzene to eliminate all traces of wax.  

The samples need an electric contact to allow the dielectric characterisation. Different 

methods are available to make the contact: a metallic solution can be sprayed on the 

surface and the organics can be burnt off to provide a fine bed of metal on the surface. 

Alternatively the contacting metal can be sputtered on the surface. The second method 

was the standard at the lab and the equipment was available, so this was the method 

that was selected. The selected contact metal was Ag as it is the main component of 

the electrodes of the multilayer system; it is quite cheap and melts at low temperature. 

The diameter of the samples is measured and they are placed in a support having an 

adequate diameter in order to keep as much ceramic surface as possible free of silver. 

This system allows having the maximum of the surface contacted with silver to avoid 

clamping as well as a heterogeneous field distribution in the sample during the 

characterisation. This mounting allows also the edge of the sample to stay free of silver 

to avoid short-circuit during the measurement without supplementary machining. 

 

ii) Properties screening 

 

For each sample the diameter and the thickness must be known. The dielectric 

constant of the material is calculated using the following formula: 

d
A

εεC 0 ∗∗=                    (1.13) 

C is the measured capacity, A the area of the surface, d the thickness and ε0 the 

dielectric constant of the vacuum. 

The samples are then poled in SF6 (isolating gas) and the dielectric constant is 

measured again. During the polarisation the dipole moments are all oriented in the 

same direction. The difference of dielectric constant after and before the poling gives a 

concrete reference to the ability of the piezoelectric domain to tilt. Typically samples 

within a MPB have a higher dielectric constant after the poling than those not having a 

MPB which have a comparable or deeper dielectric constant. 
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Afterwards the d33 or strain in the poling direction is measured. The system is home-

made. The sample is held between two tips and a field is applied from the lower to the 

upper tip. The field is recorded at the input source and the elongation is measured with 

the upper tip which contains an inductive sensor and recorded. The d33 is the 

elongation of the sample (in pm) through the voltage applied for a sample having a 

thickness of one mm. For the application as multilayer this property is one of the most 

important. The measurement takes place typically 3 times at 2kV/mm and 2 times at 

1kV/mm. During the polarisation the sample suffers a deformation. The first 

measurement poles the sample again and then during the second measurement only 

the piezoelectric property is measured. 

 

2. High Throughput Method 

 

To improve the time needed to prepare samples a few steps must be reconsidered and 

adapted to the HTE method. 

a. Dosing 

 

The first consideration that needs to be done is to reduce the quantity of powder dosed. 

The quantity of powder should be reduced in order to work in smaller milling cups that 

can be processed in parallel. This quantity should not to be too small to allow the 

screening of the properties. These properties have to be measured on a sample which 

can be easily manipulated. The size of the classical sample is of 1mm thickness and 

14mm diameter. The thickness of the sample is reduced for HTE to 0.5 up to 0.75 mm 

and the diameter to 7 mm. This allows a reduction of the quantity of powder of the half 

to produce the same number of samples. 

To obtain a reliable measurement, the data of a minimum of three samples must be 

considered. As the upper and lower samples of the stack in the sintering boat are not 

used due to the diffusion with the sintering medium, five samples have to be produced 

per sintering. The diffusion of the lower sample with the sintering medium can be 

avoided with the use of a platinum foil. The lower sample is, in this case, used to 

analyse the microstructure. 

As stated in sintering (see chapter  IV.1.f), the sintering parameters are of importance 

for the properties of the material. They have to be screened in order to cover all 

combinations that may lead to the discovery of an adequate material. Four different 

sinterings are evaluated in a first step to screen a large panel and therefore guaranty 



IV. Method   38 

that all are parameters are ensured. To screen four sintering modus with five samples, 

twenty samples have to be produced. A sample weighs less than 1 g in case of PZT 

and roughly 1/2g for lead-free samples. Thus 20g of powder must be dosed for each 

new PZT composition and the quantity of powder can be reduced by 12 to 10g for lead-

free samples.  

During this work the powders were hand weight, as the automated powder dosing 

system was not sufficiently accurate. Moreover, processing parameters are decisive in 

the properties of the ceramic and the hand dosage allows keeping a certain flexibility 

which can be of great importance in the discovery of new materials. The dosing of eight 

compositions with six components takes approximately 3h. 

 

During the hand dosage libraries of eight different compositions were processed. In a 

further step the powders have to be milled. This step takes place in a planetary milling 

machine which can accept a maximal of eight milling cups meaning that eight 

compositions were always handled in parallel. 

 

b. Milling and drying 

 

After the dosing the powders are milled in a planetary milling machine with 8 bowls 

containing 10-20g of powder. The planetary milling process is a high energy process, 

reducing the time that it takes to achieve the same or smaller particle size than in a 

milling banc. The planetary ball milling machine operates as described in the manual of 

the Fritsch Company: “The material is crushed and torn apart in eight grinding bowls by 

grinding balls. The grinding balls and the material in the grinding bowl are acted upon 

by the centrifugal forces due to the rotation of the grinding bowl about its own axis and 

due to the rotating supporting disc. The grinding bowl and the supporting disc rotate in 

opposite directions, so that the centrifugal forces alternately act in the same and 

opposite directions. This results in, as a frictional effect, the grinding balls running 

along the inner wall of the bowl, and as an impact effect, the balls impacting against the 

opposite wall of the grinding bowl. The impact effect is enhanced by the grinding balls 

impacting against one another. Loss-free grinding, even in the case of grinding of 

suspensions, is guaranteed by a hermetic seal between the grinding bowl and the 

cover“122. 

A typical grain size (d50) after 18h on the milling banc is 0.9µm. After 3h in the planetary 

ball milling machine, a typical d50 is 0.5µm. The particle size of the powder is of great 
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importance to achieve a homogeneous material. The repartition of the particle size 

should be monomodal to avoid segregation during pressing.  

 

                       

 

 
Fig. 14 a and b: Planetary ball milling machine and  its operating principle 

 

After milling the powders are dried in a freeze-dryer which allows the parallel drying of 

the 8 powders. The 8 slurries are poured in 8 steel plates and put together on a 

support. These are subsequently frozen at -40°C. After wards the frozen slurries are put 

on the freeze-dryer which is sealed with a bell. The pressure of the interior of the 

freeze-dryer is held at 0.02 mbar during 24h. This process presents the advantage of 

producing dry, non-agglomerated powders. Traditionally powders are poured in Petri 

cups and dried in a drying oven at some temperature, which creates bonding between 

the particles, agglomerating them and requiring further granulating and cleaning steps 

which are time consuming and decrease the quality of the powders.  

The fundamental principle in freeze-drying is sublimation, the shift from a solid directly 

into a gas. Just as evaporation, sublimation occurs when a molecule gains enough 

energy to break free from the molecules around it. Water will sublime from a solid (ice) 

to a gas (vapor) when the molecules have enough energy to break free but the 

conditions aren't right for a liquid to form.  

 

a

b
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Fig. 15 a and b: Freeze-Dryer and water phase diagr am 123 

 

There are two major factors that determine what phase (solid, liquid or gas) a 

substance will take: heat and atmospheric pressure. For a substance to take any 

particular phase, the temperature and pressure must be within a certain range. Without 

these conditions, that phase of the substance can't exist. The chart above shows the 

necessary pressure and temperature values of different phases of water. The material 

is frozen solid, which separates the water from everything around it, on a molecular 

level, even though the water is still present. Next, the machine turns on the vacuum 

pump to force air out of the chamber, lowering the atmospheric pressure below 0.06 

mbar. The heating units apply a small amount of heat to the shelves, causing the ice to 

change phase. Since the pressure is so low, the ice turns directly into water vapour. 

The water vapour flows out of the freeze-drying chamber, past the freezing coil. The 

water vapour condenses onto the freezing coil in solid ice form. This continues for 

many hours while the material gradually dries out. After 24h the eight slurries are dried. 

 

c. Pellets formation 

 

The powders are then pressed into pellets. The traditional way to press the pellets (see 

 IV.1.e) is too slow and the pressure achieved is not high enough to assure a good 

sample quality of reactively sintered samples (see  IV.2.d) in any case and in particular 

and lead-free systems they can be difficult to sinter. An initial green density over 60% 

may overcome this kind of problems; to obtain it green samples must be isostatically 

pressed at 3000 bars. With this level of initial density the final density of sintered 

samples is comparable to that of those produced by the conventional processing. The 

dried powders fulfil a silicon mould were 20 holes are present. The silicon forms are 80 
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X 100 mm and holes of 10 mm diameter a performed each cm (see Fig. 16). A silicon 

mask is used on the bottom and on the top to seal the mould.  

 
Fig. 16: Silicon mould for isostatic pressing 

 

Eight moulds are filled in parallel and are pressed together. The isostatic pressing does 

only achieve a higher green density of the pellets but permits the parallel pressing of 

the different compositions simultaneously. Isostatic pressing allows a pressure 20 

times higher than the pressure obtained by means of the uniaxial press. The pressing 

of 20 samples of 8 compositions as well as the cleaning of the moulds is carried out in 

2 h. 

d. Sintering 

 

To save time a different preparation of the samples has to be found. The calcination 

process is very time consuming as the powders have to be milled and dried before and 

after calcination. There are some processes which alloy the calcination and the 

sintering to take place in one step. This preparation is called reactive sintering. 

After the pressing of the powders into pellets the materials have to be sintered. As 

stated in section  IV.1.a, 20 pellets are pressed for each composition and 5 are 

necessary for each sintering. The 8 compositions of the same library are sintered 

together. That means that for a library 4 sinterings are carried out. Five pellets are piled 

up on a platinum foil, and set on an alumina plate. The construction is sealed using an 

alumina boat.  

The reactively sintered samples are generally not as dense as conventionally prepared 

samples. The density, however, affects the properties of the material drastically. In 

order to enhance densification and homogeneity an additional dwelling is realised at 
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the calcination temperature (generally between 700 and 850°C) for a couple of hours 

depending on the system (2 h for PZT and 5 h for KNN). Then the samples are heated 

up to the sintering temperature, between 1000 and 1200°C. The more important 

parameters are the dwelling temperature, time and sintering temperature. The selection 

of these parameters is fundamental to reach a high sample quality. The samples are 

cooled at a rate of 3 K/min up to room temperature. 

The sintering is carried out during a period between 24 and 30 h. 

 

The reactively sintered samples need a smaller particle size than the classically 

prepared ones as the sintering process requires more energy. A grain size of 

d50 = 0.5 µm can be achieved after 3 h of planetary milling. The grain size achieved 

after planetary ball milling is smaller than the grain size achieve after 18h on a milling 

bank thus making the planetary ball milling method more suitable for the reactive 

sintering. The reactive sintering is a satisfying process on PZT samples as part of the 

lead liquefies during the sintering, allowing a high densification of the ceramic. 

 

e. Sample preparation 

 

To characterise the materials the samples have to be polished to a plane surface, as to 

measure the dielectric properties the samples will be submitted to an electric field. If 

the surfaces are not planar and parallel the direction of the electric field deviates into 

different directions and the properties cannot be measured accurately. Additionally, 

during sintering chemical elements diffuse from the sintering atmosphere into the skin 

of the samples. Skimming it allows a more accurate measurement of the bulk 

properties of the material. The available equipment allows to polish one library of 

samples at the same time. This is a time consuming step, but it allows a better quality 

of the samples. The samples are glued with bee wax on a steel plate and are polished 

on one face. Afterwards the samples are turned over, glued and polished on the other 

face. The samples are polished to a thickness of 0.5 to 1 mm.  

As the samples are porous the wax diffuses into the material. To remove the rest of the 

wax, the samples are heated at 550°C for 1 h.  
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Fig. 17: Silicon mask for samples spattering 

 

After the plane polishing silver electrodes must be applied to the surface. The 

contacting of the material takes place through sputtering of the ceramics. In the 

traditional preparation the samples are placed on plates with holes adapted to different 

diameters. In the case of the HTE preparation not all the diameters of the samples can 

be measured and placed in adequate plates, thus different compositions having 

different sintering behaviour and slight diameter variations appear. To adapt to these 

variations a silicon mask was developed (see Fig. 17). The silicon is elastic and adapts 

perfectly to small diameter variations. The silicon mask has small cavities of 7 mm 

diameter and 2mm depth. In one mask with a cavity diameter of 7mm, samples having 

a diameter between 7 and 7.5 mm can be placed. The silicon mask with the samples is 

placed in the sputtering machine and one face is sputtered. Then the samples are 

turned and the other face is sputtered. Two silicon masks are needed for one library. A 

silicon mask containing up to 56 samples. The sputtering of one library on two faces 

takes place during 1 h. 

 

 

f. Dielectric characterisation 

 

As described before, many of the electrical parameters can be measured on a 

piezoelectric material to determine its properties. However one or more key properties 

have to be selected to test the new materials.  

 

In the case of piezoelectric ceramics, the first property measured is the relative 

dielectric permittivity, εr. The measurement of the permittivity takes place manually. As 

permittivity cannot be measured directly measured, it is through the measurement of 
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the capacity C that εr is determined. Thus the diameter and the thickness of each 

sample are measured manually and the capacity is determined. This measurement is 

very quick; a library of 96 samples can be measured within 2 h. 

 

The second important property for piezoelectric ceramic as actuators is the 

piezoelectric constant, d33. As explain in the section 2.5, d33 is the strain of a sample 

subdued to an electrical field. As explained in the chapter  I.5, the aim of this work is to 

find a candidate to replace PZT. One of the main applications of PZT for the industrial 

partners during this project was piezoelectric injectors where the large signal 

piezoelectric constant is a target property. Therefore, during this study, the large signal 

piezoelectric constant, here named d33
*, was one of the target properties additionally to 

εr. 

This constant is slightly different because the piezoelectric displacement is not linear 

with the voltage applied as schematically illustrated in Fig. 18. The piezoelectric 

displacement arrives to saturation and the large signal piezoelectric constant d33
* is 

smaller than the small signal piezoelectric constant d33. During this study much effort 

was dedicated to the construction of an automated d33
* measuring equipment. 

d33
*d33

voltage

displacem
ent

 
Fig. 18 : schematic piezoelectric displacement in f unction of voltage 

 

To develop the automated d33* measuring equipment, three important points have been 

taken into account. 

 

First, to measure properly the strain of the sample, two tips must hold it to avoid a false 

measurement of the displacement if the sample bends during measurement. If the 

sample is placed on a surface or if numerous tips hold the sample; the bending of the 

sample and the displacement can be measured at the same time. With this kind of 

method the d33
* cannot be correctly evaluated. The placement between two tips allows 
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measuring strictly the strain of the sample. Fig. 19 shows a schematic representation of 

the measurement failure during d33
* measurement if the sample is not held between 

two tips. 

Displacement measured

Displacement real

Displacement measured

Displacement real

 
Fig. 19: bending of sample during d 33

* measurement 

 

Secondly, the sample must be able to move freely between the two tips, which must be 

perfectly aligned. The tips must be on the same axe as the electrical field induced in 

the ceramic must be parallel to displacement. On the other hand the sample must be 

perpendicular to the field induced. The point impeaches the placement of the Z-axe on 

a XY plate, so the two tips have to be fixed on one axe and the only displacement 

allowed is on the Z-axe. 

 

Finally,the sample must be free between the two tips to avoid any mechanical 

disturbances. The elongation measured is in the order of magnitude of the picometer 

therefore any external mechanical load on the sample can disturb the measurement 

and give a false result. 

 

These three considerations have to be taken in account in the design of the test 

equipment.  

 

The samples are placed on a plate with holes. Around the holes a cavity allows the 

precise positioning of the samples. The diameter of the cavities is 9 mm and the 

diameter of the holes is 6mm, which means that the samples must have a diameter 

between 6 and 9 mm. Plates contain 96 places to allow the simultaneous measurement 

of one library on one plate. The lower tip is mounted on a motorised plate (Z-axe 

motor). It passes through the hole and lifts the sample up. The tip displacement can be 

of a few centimetres. The upper tip is places within a few tenths of millimetre above the 
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surface of the samples. That means that the lower tip must lift the sample only a few 

tenths of millimetre until it contacts the upper tip. The displacement of the sample with 

the lower tip must be as short as possible to avoid sample deterioration. After this 

process takes place, the sample is held between the two tips and free of any 

mechanical disturbances.  

The upper tip contains an inductive sensor that can measure the displacement of the 

sample with a high precision. The displacement is recorded with a millitron. During the 

lifting of the sample the Z-axe motor receives information of the millitron, stopping the 

raise of the downer tip when the displacement is reached. That means that the sample 

is lifted up to the reference point of the millitron. The measurement starts after the 

sample is finely adjusted by the vibration shaking of the lower tip.  

V

Computer

S
en

so
r

 
Fig. 20: schematic description of the d 33

* measuring equipment 

 

When the first sample is ready for measurement, the millitron stores the reference 

voltage given by its initial position. The voltage is given by a potentiometer that records 

simultaneously the voltage and the current that the sample receives. The sample is 

submitted to a high voltage to pole it. During the poling a displacement of the sample is 

produced. To avoid measuring the displacement during the poling 2 further 

measurements are carried out at the same voltage. The third measurement is taken 

into account to evaluate the performances of the material. Other measurements with a 

lower voltage can be carried out after the first cycle. The cycle of measurement should 

be entered for each library. Typically three ramps up to 2 kV/mm and two at 1 kV/mm 

are carried out. After the measurement of the sample the downer tip goes down and 

the plate drives to the next sample and a new cycle can begin again. 
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The software calculates the d33 values. In an old version, the difference between the 

upper and lower point were taken as the total displacement. In this version the rush of 

the curve is taken into the total displacement which can generate an error up to 20%. In 

the new version (used from 08/2006) the recorded curve is fitted and the rush of the 

curve is eliminated. The d33 values are calculated by using the expression (1.14): 

d*U
mindmaxd

33d
−

=                   (1.14) 

dmax and dmin are respectively the maximal and minimal displacement of the sample, U 

the voltage per thickness unit and d the thickness of the sample. 

 

 

 
Fig. 21: Automated d 33

* measurement place 

 
Fig. 22: two tips old a sample for the d 33

* measurement 
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With the values of the voltage and the displacement the software delivers automatically 

the d33
*.  The numerical results are saved in an excel table (see section 9.3.2) and the 

curves are saved as text file. For each sample and ramp the effective voltage, the 

voltage per thickness unit, the strain, the displacement, the d33 and the maximal current 

are saved in an excel table. The file is analysed afterwards with Spotfire (see section 

9.3.2). Spotfire allows making clustering in the results. One of the must important 

values to take into account is the current. Even if samples having a high current are 

often conductive, the maximum allowed current should be calculated in order not to 

damage the sample. 

 

For each library different parameters are evaluated together to determine the 

acceptable current. For some samples it is possible that the current decreases with the 

applied voltage. In this case only the current of the third measurement will be taken into 

account. For other samples, the current stays stable for each measurement. In this 

case the sample should be eliminated. Normally when the current is higher as 0.1 mA, 

the sample is eliminated. 

 

 
Fig. 23: Evaluation of the samples data with Spotfi re 

 

The last property measured is the Curie temperature. For one composition the Curie 

temperature does not change with process parameters like sintering temperature and 

only one sample is necessary to record it. That is why no improvements were made in 

this direction as the throughput of the measurement is high enough (max. 10 samples 

per night).  
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The Curie temperature measuring apparatus consisted of 10 supports assembled 

together where an electrical contact is set up covered by alumina. The assembly is 

installed in a recipient and is warmed up with definite parameters. The capacities and 

temperatures are recorded and delivered in a text data. The analysis of the data takes 

approximately 30 min.  

 

All the properties are recorded in an Excel table for each library. This table is loaded 

afterwards in an access-based database. The properties of the sample in this database 

are connected to the preparation of the samples. 

 

3. Conclusion 

 

HTE is a set of methods using automated sample preparation and characterisation. In 

this sense the preparation of the samples in this work cannot properly called HTE 

because it is more a parallelisation than a properly full automated method. However 

improvements inspired in the HTE method were adapted to accelerate the preparation. 

The preparation method described achieves a speeding up to four times in comparison 

with the classical method which is below the theoretical possibilities of HTE due to the 

a high level of human intervention required for the sample manufacture. 

  

Bulk piezoelectric properties are fundamental for the definition of an adapted material 

for a given application. These properties can be evaluated only with samples having a 

high quality. The properties are strongly dependant on the phases present in the 

material as well as the density of the samples. High sample quality is difficult to achieve 

with a pure HTE approach. To obtain the high quality of the samples different 

preparation steps must be carried out. Within a library the results are comparable, and 

must be even further comparable between different libraries, meaning that meticulous 

sample processing is critical to obtain the required sample quality and homogeneity to 

carry out this work. 

  

During the preparation of the powders and samples, manipulation can be complex to 

preserve the quality of the sample. This compromise between throughput and quality 

was critical for this work.  

The measurement of the dielectric properties could be partly automated. Manipulation 

is needed between each step of the characterisation but different properties are 

necessary for a full characterisation of a sample. First the dielectric constant εr is 
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measured per hand because the diameter and the thickness of the sample must be 

known. The relatively short time needed to measure the geometry of each sample 

manually does not make it worth to set up an automated measurement system. After εr, 

d33
* is automatically measured and finally the measurement of the Curie temperature is 

carried out. With the automated d33
* measuring machine the characterisation of a 

library was carried out within 24 hours, thus 4 times faster than with the traditional 

methods.  

 

Table 4 : comparison of traditional and HTE method 

HTE Method Time Conventional method Time 

Dosage of 8x0.1 mole 2h Dosage of one mole 0,5h 

Grinding in planetary ball-milling 

machine 
3h First grinding and drying 36h 

Drying in freeze dryer 24h Calcination 10h 

Moulding in isostatic press (160 

samples) 
2h Second grinding and drying 36h 

Granulation 2h 

Moulding in uniaxial press 

(40 samples) 
1h Reactive sintering 

 

24h 

Sintering 

 

24h 

 

Table 4 compares both the HTE based method developed in this work and the 

traditional method. To prepare 8 new materials the time needed is about 55h with the 

HTE method and about 880h for the classical preparation. The theoretical acceleration 

is 16 times with the new way of preparation. Indeed due to the parallelisation of the 

processing in the classical method and a high degree of human intervention in the 

HTE-based method developed in this work the real improvement is about 4 times.  

 

A real HTE characterisation could be implemented. Although the dielectric constant is 

measured manually, an automated process could be set up but is not justified as the 

improvement on the manual measurement is negligeable. The d33 measuring machine 

provides a real acceleration for the dielectric characterisation. Before the automated 

set-up was build it took 8 hours for a manipulator to measure all the d33 of a library. 

Now the automate needs 4 hours to characterise a library and the personal expense is 

only of 20 minutes. The information is delivered in an excel sheet form and can be 

directly imported into Spotfire. After selection only the data required for further 
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calculations is introduced into the database. The Curie temperature is then recorded as 

described before. The routine dielectric characterisation can be achieved within 24h for 

a library. 

 

If no human intervention were needed a library could be produced and characterised 

within 10 days, with the present method it takes approximately 4 weeks. On the other 

hand the work can be parallelised, meaning that the real throughput is in average of 

one library each 3 weeks. 
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V. Tests on a Lead-Zircon-Titanate System 

 

A number of improvements to accelerate the production of samples were investigated 

on PZT materials. As described in a previous chapter the preparation of the material is 

quite long due to multiple steps. One of the most time consuming steps is the 

calcination because the powder must be ground twice and dried. For the first tests the 

reactive sintering was tested on a PZT system. The reactive sintering is a simple and 

time saving processing method, where the oxide mixtures are directly calcined and 

sintered at high temperatures without undergoing a second milling after the calcination. 

The method has to be tested on a well known material and the data have to be 

compared. The material selected is a PZT, doped with 2 mol% of neodymium (Nd)124. 

The Nd is assumed to replace Pb in the perovskite structure125. However, due to the 

principle of electroneutrality, the Nd, which has a valence of 3 will create a disturbance 

in the material. Three possibilities exist: Zr or Ti will be reduced, O will be inserted in 

the lattice or Pb vacancies will be created. The Pb has a high vapour pressure 

therefore the creation of Pb vacancies will be favoured as explain in equation (1). 

 

↑+•+→+ ++++ 2
A

3
A

32
A 3Pb2Nd2Nd3Pb        (1) 

 

The A site vacancies are assumed to increase the mobility of ferroelectric grain 

boundaries and inhibit the grain growth126; however the concentration of Pb vacancies 

should not be too high to avoid negative effects on the dielectric properties2. As stated 

before the properties are optimal in the MPB. The MPB moves with the doping rate, the 

raw materials and the preparation method. The MPB should be reached adjusting the 

zirconium to titanium ratio.  

 

The MPB of the PZT doped with 2% Nd is found around a ratio Zr :Ti = 0.48:0.52, but a 

slight stochiometry change is possible due to different parameters among the quality of 

the raw materials or the preparation method. In previous work127 the influence of the Nd 

concentration, the ratio Zr:Ti as well as the sintering temperature was studied. This 

previous work will be use as a reference but, it has to be to taken into account that now 
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different precursors are available for the manufacture of PZT. To obtain a pure PZT 

through reactive sintering (Zr,Ti)O2 proprietary precursors were used. 

 

1. Reactive Sintering 

 

The reactive sintering of PZT-based piezoelectric ceramics has been previously 

investigated128. However, it not nowadays a typical method to process PZT-based 

ceramics as the quality of the ceramics is lower than the quality of a ceramic produced 

by classical methods. In particular, PZT-based ceramics were difficult to process via 

this method, because large amount of PbO excess were needed to induce a liquid 

phase sintering and thus reducing the porosity of PZT.  

Temperature (°C)

PbO
Transformation

200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

D
el

ta
 L

 (
%

)

Perovskite

Formation

Densification

D
el

ta
 L

 (
%

)

Temperature ( °C)

Pb excess = 0.5 mol%

Pb excess = 1 mol%

Pb excess = 2 mol%

2

0

-5

-10

-15

-20
12001000800600400200

 Fig. 24: Dilatometer curve of (Pb 1Nd0.02)(Zr0.48Ti0.52)O3 of a reactive sintered sample (a top) 

and a sample having suffered calcination (b, bottom ) 

 

Dilatometer measurements were carried out with an autoranging Keithley multimeter to 

investigate the sintering behaviour of PZT (see  Fig. 24). The reactively sintered 

material shows a first anomaly between 400 and 550°C. This hump is the sign of the 
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transformation of PbO into Pb3O4
129. The formation of Pb3O4 was also verified through 

XRD analysis (see   

Fig. 25). The perovskite is formed between 750 and 900°C and the material densifies 

with a linear shrinkage of 11%. The material prepared with the classic methods, 

independently of its excess in Pb, shows a linear shrinkage of 15% as shown in  Fig. 

24 b. The samples prepared through HTE method have a lower density than the 

samples prepared through the classical route. 

The densities of the samples were measured with a Micrometrics AccuPyc 1330 helium 

picnometer. The values of table 1 show that the densities of reactively sintered 

samples are 95% of the density of conventionally manufactured samples. A dwell at 

850°C for 2 hours provides an enhancement of the densi fication and the density rises 

to 97% of the density of conventionally manufactured samples.  

  

Fig. 25: X-Ray diffraction pattern of a reactively sintered PZT at 500°C  
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Table 5 Density of different samples 

Sample 
Density 

[g/cm³] 

Conventionally manufactured 7.7939 

Reactively sintered 7.4697 

Reactively sintered + dwell at 750°C for 2 hours 7.494 2 

Reactively sintered + dwell at 850°C for 2 hours 7.527 3 

 

To control the phase formation, an XRD pattern was carried out on samples after 

reactive sintering. As shown in Fig. 26 the material obtained shows a pure phase 

perovskite. 
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Fig. 26: X-ray diffraction pattern of reactively si ntered PZT with 2% Nd at 1200°C 

 

2. Characterisation 

 

The surfaces of polished and etched samples produced by reactive and conventional 

sintering were observed under a light microscope (Fig. 27 a and b). As shown in Fig. 

27 the average grain size of the reactively sintered samples is 5µm and the grain size 

of the conventionally sintered samples is 3.5µm. The microstructure of the reactively 

sintered samples shows a closed porosity with large channels.  
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Samples were produced with different zirconium/titanium contents between 51 mol% 

and 55 mol% Zr with 0.5% increments. The dielectric values of the HTE samples with 

ε=923 and tan δ=2.3% for a zirconium content of 53 mol% were similar to the values of 

conventionally manufactured samples with ε=1042 and tan δ=1.4% 130 . The 

morphotropic phase boundary is clearly identified.  

 shows the values of the relative dielectric constant before and after the poling for 

reactively sintered samples with a dwell at 800°C for t wo hours. The same tendency is 

observable in each curve: a peak in the area of 53 mol% Zr. The MPB is clearly 

identifiable for the samples which contain between 52 and 53.5 mol% zirconium 

because the permittivity after poling is higher than the permittivity before poling. The 

results found with the reactively sintered samples are in accordance with the results 

found with the classical prepared samples as shown in  

. 

     
Fig. 27: Light microscope image f PZT reactively si ntered (a) and conventionally sintered 

(b) 

 

 

 shows the difference between the dielectric constant before and after poling for four 

different zirconium contents. The grey columns are the compositions with 3% Pb 

excess and the stroked out columns are those with 5% Pb excess. To investigate the 

effect of the calcination temperature during the reactive sintering of the samples, 

different oven programs have been used. First, the samples were heated up to 1250°C 

at a rate of 2k/min, held for 2h and cooled down to room temperature. A second 

program was designed which consist of heat the samples up to 800°C at 2K/min, 

maintain the temperature during 2h (which is the calcination temperature and time used 

during the classical preparation of this kind of PZT ceramics) and then heat the 

samples up to 1250°C at 2K/min, held for 2h and fina lly cooled down at room 

(b
(a) 



V. Test on a Lead-Zirconate-Titante System   57 

temperature. Two other programs consist of vary the temperature of the calcination, 

maintaining the oven temperature at 850°C and 900°C .  

 shows the effect of the reactive sintering on the properties of the samples. The brighter 

colours show a reactive sintering without plateau at calcination temperature; the darker 

colours show a plateau at different calcination temperatures (the darker the colours 

are, the higher the plateau temperature is). This figure shows the importance of PbO 

excess during the processing of PZT materials as well as the maintaining time during 

the calcination step. PbO excess and control of the atmosphere are two important 

parameters for classic sintering of ceramics and particularly for PZT131 . The PbO 

excess must be present to induce the liquid phase during sintering which allows higher 

densities to be reached. PbO vaporisation was controlled during sintering through the 

use of a firing boat which was saturated with a mix of PbO and ZrO2 before. The 

optimal parameters found are an excess of 3 mol% of PbO and a plateau at 850°C for 

2 h. The optimal excess of PbO was shown not to be as high as in previous reports132. 

The plateau at 850°C is optimal because calcination takes place between 700 and 

875°C and the plateau let more time to carry out the  calcination. The temperature is 

chosen at the end of the calcination step when diffusion is fast but densification has not 

started. At lower temperatures (<800°C) the formation  of the perovskite could not have 

been totally completed and higher temperatures showed no benefit either. As has been 

stated133, the presence of PbO excess is crucial in achieving high density PZT. On the 

other hand, an unacceptably high PbO excess endangers correct densification due to 

the rapid formation of a liquid phase followed by a rapid particle rearrangement, and 

solution/precipitation induces an inhomogeneous microstructure with large pores. A 

PbO excess of 3 mol% leads to the optimum densification parameters. 

 

Fig. 30 shows the piezoelectric coefficient d33 of samples with different preparation 

conditions for the same range of compositions. The bright grey line shows the results of 

the conventionally prepared samples. The dark grey and the black lines are the values 

of the reactively sintered samples; the black line represents values of samples with a 

dwell during the sintering at 900°C for two hours. Al l the samples contained 3% PbO 

excess and were sintered at 1250°C for two hours. The d 33 values of the reactively 

sintered samples are lower than the values of the conventionally sintered samples. 

This is an expected result due to the low density of the samples; nevertheless the 

values are already close to the conventionally sintered ones and it should be noted that 

in the morphotropic phase boundary the values are somewhat higher (Zr content 0.53-

0.535). 
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Fig. 28: Dielectric constants of reactive-sintered (a) and classically prepared (b) 

Pb1Nd0.02(ZrxTi1-x)O3 samples. 
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Fig. 29: Relative dielectric constant before and af ter poling of different PZT samples with 

zirconium content variation. The temperatures indic ated are the plateau 

temperature/sintering temperature 
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The values of the samples having suffered a dwell at 900°C are lower. This dwell, 

being in the densification zone, impairs the perovskite formation and the ceramic 

shrinks without having formed the perovskite. 
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Fig. 30: Piezoelectric coefficient in poling direct ion (d 33) at 2kV/mm 

3. Conclusion 

 

A solid state synthesis and characterisation method for piezoelectric ceramics was 

established as described in chapter  IV.2 and this method was first tested on a PZT 

system in chapter  V. 

This method achieved excellent results. The MPB is clearly observable through the 

values of the relative dielectric constant before and after the poling as well as the 

values of the piezoelectric coefficient d33. For both measurements the values of the 

reactively sintered samples are almost as high as the values of the samples 

manufactured by conventional methods.  

The remarkable results on a PZT system may be related to the quick formation of the 

perovskite structure and the high sinterability induced by the liquid phase formation 

during sintering. For different systems the method can be improved and used to 

develop any kind of piezoelectric material. 
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VI. Test on a Lead-Free System 

 

The high throughput experimentation method was proved on a PZT system and needs 

to be also validated on a lead-free system. The test on a lead-free system is carried out 

on a (K0.5Na0.5)NbO3 (KNN)-based system as recent studies on a (KNN)-based 

piezoelectric ceramic have demonstrate great improvements of the system 

performances5. 

 

1. Test system 

 

The test system selected was developed by the company Toyota-Denso and has the 

formula: [Lix(KyNa1-y)1-x](Nb1-z-wTazSbw)O3. A scientific publication5 as well as a patent134 

came together in the second half of 2004 which reported the last improvement on the 

performance of KNN. In the patent a lot of variations have been tested and all the 

results are available which gave a good reference. 

To test the method a few libraries were carried out with determined goals. As it was 

clarified before KNN has a MPB around K:Na=0.5:0.5135,136. The goal of one library was 

to find this MPB. A second library was carried out to establish the role of the two 

dopants lithium and antimony in the KNN composition. 

 

2. Raw materials 

 

Traditionally, to prepare KNN-based piezoelectric ceramics, sodium and potassium 

carbonates are used as raw materials. They are mixed, calcined, mixed again and 

sintered. During the calcination, the carbonates are transformed and a noticeable 

quantity of CO2 is released. During the HTE process, the ceramics are reactively 

sintered and the use of carbonate can be difficult. If carbonates are used as raw 

materials for the reactive sintering, the amount of carbon and oxygen to be released 
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during the perovskite formation is too big to achieve dense ceramics (12% in weight) 

and according to the phase diagrams (see section 3.4.3) no liquid phase during the 

sintering is present. Therefore, the carbonates can definitively not be used and 

precursors were employed to perform the reactive sintering of KNN. The precursors 

chosen were KNbO3, NaNbO3 and KTaO3. No precursor was used to incorporate 

lithium as the quantities are quite small and no commercial product was available. 

 

3. Sintering 

 

To test the reactive sintering on lead-free samples, dilatometer measurements were 

carried out (Fig. 31). The reactive sintering of the sample with carbonates shows 30% 

shrinkage whereas the sintering of a sample prepared from the same powder but 

calcinated shows 5% shrinkage. The reactively sintered sample prepared with oxides 

shows 1% shrinkage and the sample prepared from the same powders, but calcined, 

shows 2.5% shrinkage. 

The difference of shrinkage between the samples prepared with carbonates can be 

explained by the release of CO2 during the transformation of K2CO3, Na2CO3 and 

Li2CO3. In both reactive sintered samples a hump is visible between 500 and 850°C 

which is the sign of the perovskite formation. However, the hump of the reactively 

sintered sample prepared from oxides is not as high as those of sample prepared from 

carbonates as the precursors have a structure narrow to the structure of the KNN. The 

NaNbO3 and KNbO3 have both an orthorhombic perovskite structure at room 

temperature and undergo a series of transformations between 200 and 640°C 137. Their 

lattice parameters are shows in Table 6. The (K,Na)NbO3 has also an orthorhombic 

perovskite structure at room temperature with somewhat different lattice parameters 

and undergoes also a series of phase transformation138. The reactive sintering of KNN 

is also a mix of sintering and phase transformation of precursors, therefore the 

shrinkage is not as important for this sample as for the samples prepared from calcined 

powder. 

To prove the quality of the method on KNN samples a high temperature X-ray analysis 

is carried out on different samples (Fig. 32). The analysis shows that the product of the 

reactive sintering with oxides is not a pure phase perovskite as it was in the case of 

PZT. This is a mix of perovskite (around 96%) and tungsten-bronze (around 4%). An 

improvement of the method has to be realised to obtain a pure phase perovskite.  
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Table 6: Lattice parameters of NaNbO3, KNbO3 and (K,Na)NbO3 

 KNbO3
139 NaNbO3

140 (K, Na)NbO3
141 

 orth tetra cub orth tetra cub orth tetra cub 

A 5.689 3.986 5.598 5.531 - 5.671 4.015 - 

B 3.969 - 15.523 - 3.952 3.945 - 3.99 

C 5.725 4.142 

4.02 

5.505 3.974 - 5.645 3.97 - 
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Fig. 31: Dilatometer measurement of [Li .04(K .47Na.53).96](Nb .84Ta.1Sb .04)O3 processed 

differently 

 

To obtain samples with a higher quality, the HTE preparation has to be closer to the 

classical preparation, thus an additional calcination was inserted in the workflow. The 

powders can be mixed and then a partial calcination could take place. The quality of 

the calcination will not be as good as if the powders were milled before. This step can 

improve the quality of the samples. 
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Fig. 32: X-ray diffraction pattern of a reactively sintered sample of 

[Li .04(K .47Na.53).96](Nb .86Ta.1Sb .04)O3 

 

 

The dosage of the powder takes place in a plastic cup which is adapted to the 

Speedmixer®. The Speedmixer® is a machine which homogenises the powder without 

milling. The plastic cup is put in a support which rotates like a centrifuge but the 

support possesses is own rotation system. The mixing of the powder is realised 

through the opposition of centrifugal forces of the central part and the centrifugal forces 

of the cup support. Fig. 33 illustrates the movement of a plastic cup in a Speedmixer®. 

Rotation of main axe

Rotation of plastic cup

 
Fig. 33: schematic rotation of a cup in a Speedmixe r 

 

Alcohol is added in the mixing cup to improve the homogenisation of the powders. The 

alcohol does not solubilise the powders and can be quickly removed for the mixing cup 

by evaporation. The mixing in the Speedmixer is 1 m long for each powder. Thus the 
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mixing takes 8 m for all powders and the evaporation of the alcohol 1 h in a drying 

oven.  

 

After the homogenisation the powders are calcined together in small crucibles. For 

KNN the calcination takes 5 h at temperature between 750 and 900°C. Once the 

calcination is finished, the powders are grinded in a planetary ball milling machine as 

previously described and the rest of the process follows, i.e. the powders are milled in 

parallel in a planetary ball milling machine for 3 h and dried in a freeze-dryer.  

Typically the dosing of the powder is done in the morning, then the powders are mixed 

and dried in the afternoon and calcined overnight. The next day the powders are ready 

to be milled. The additional step takes 1 day more but allows to reach a higher quality 

of the samples. A good compromise between sample quality and throughput is here 

met. However this additional step does not disturb the throughput since the real 

throughput is lower than the theoretical one due to high level of human handling of the 

samples as stated in the section method. 

To characterise the calcination step an X-ray analysis was obtained from three 

samples: a reactively sintered sample, a previously calcined and sintered sample and 

the calcined powders (without sintering) of the sample. It is shown that the sample 

having previously been calcined shows a pure phase perovskite (Fig. 34). 
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Fig. 34: X-ray diffraction pattern of [Li .04(K .47Na.53).96](Nb .86Ta.1Sb .04)O3 samples having 

suffered different preparations 

 

Furthermore to verify the phase formation during sintering high temperature X-ray 

analysis was carried out between room temperature and 1060°C on different samples 
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(from the Anadolu University, Turkey). Fig. 35a represents the pattern of a non calcined 

sample prepared from carbonates, Fig. 35b represents the pattern of a non calcined 

sample prepared from oxide precursors and finally Fig. 35c shows the reflexes of a 

calcined sample prepared from oxides.  

 

The Fig. 35a shows clearly the transformation of the potassium and sodium carbonates 

and niobium oxide into KNN at temperatures from 570°C. The peaks for 2 θ at 28 and 

38° which are characteristic for sodium and potassium carbon ates disappear and a 

peak at 2θ=33° which is typical for a perovskite appears. The carbo nates are presents 

up to 650°C and for temperatures above 650°C only t he perovskite is present. At 

900°C a new phase begins to appear recognisable for its  peak at 2θ=29°C. This phase 

is unidentified but it stays present after cooling to room temperature.  

The Fig. 35b represents the behaviour of a sample processed from precursors and 

reactively sintered. At room temperature near the perovskite structure of the niobates 

other peaks at 2θ=23, 29 and 33.5° reveal the presence of Li 2CO3 and Ta2O5. These 

peaks disappear above 750°C, which is the calcination te mperature, i.e. temperature at 

which the perovskite is formed. At 2θ between 45 and 46.5°, 51 and 52.5° and 56.5 

and 58°, the reflexes of the potassium and sodium nioba tes are separated and as the 

temperature increases the peaks approach each other and finally fuse at 650°C. During 

the sintering the peaks of cubic KNN are more and more acute, after cooling at room 

temperature it seems that the ceramic has an orthorhombic structure identifiable by 

bright peaks at 2θ=47 and 52° (at 2 θ=47° reflexes of  (200) (020) and (002) and at 

2θ=52°(201), (210), (102), (012), (120) and (021)). A dditionally to the perovskite, 

another unidentified phase was visible since the beginning of the heating at 2θ=40° 

and reminded stable during the whole sintering and at room temperature. 

The high temperature XRD profiles of the calcined sample prepared from precursors is 

similar to the profiles of the non-calcined one. However, the perovskite peaks are more 

intense and the intensity of the peaks of the external phases is diminished. Before 

calcination the powders are not intimately ground and are only mixed with the help of a 

Speedmixer®, therefore, the calcinations could not be finished as shown in Fig. 34. 

The near phases are present up to 1020°C but after cool ing at room temperature the 

only phase present is a pure phase perovskite with two phases present: orthorhombic 

and tetragonal. In the literature1 a new morphotropic phase boundary was discovered 

in the KNN system and this sample should have a composition in the MPB, therefore, 

the presence of both structures is in agreement with it.  
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Fig. 35: high temperature XRD pattern of [Li .04(K .47Na.53).96](Nb .86Ta.1Sb .04)O3  

a. non calcined prepared from carbonates 

b. non calcined prepared from oxides 

c. calcined prepared from oxides 

 

Only the ceramic processed from oxides having suffered calcination show the presence 

of a pure perovskite phase and furthermore, the presence of two structures, an 

orthorhombic and a tetragonal in accordance with the literature. Therefore this 

calcination process was implemented for KNN-based ceramics in the workflow of the 

HTE method developed. 

 

4. Characterisation 

 

As said in the previous section a few libraries were made to test the method on a lead-

free system. The goal of the first library was to study the influence of a pre-calcination 

on the dielectric properties. The values of ε are presented in Fig. 36. No significant 

influence of the pre-calcination could be seen on the ε values. The KNN is certainly not 

such sensible as PZT is to impurity however the calcination will takes place as well. It is 

c. 
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difficult to estimate how sensible a material is to impurities. For further material 

developments the calcination step will always be done to ensure the chance to find a 

suitable material. 
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Fig. 36: epsilon before and after poling for sample s with and without calcination 

 

The aim of the next library was to find the MPB for a broad K/Na variation. A maximum 

is found around K:Na=0.45:0.55, where the MPB is normally positionned. It was found 

with a measurement called TkC (see Fig. 37). The TkC measurement is not a 

conventional one. To measure TkC ε is recorded at discrete temperatures between 20 

and 80 °C. At these temperatures ε varies linearly and the values of the slopes are 

recorded for each material. The Tkc is the slope of the ε curve around room 

temperature. If the material endures a phase transformation the ε doest not suffer a 

linear variation and it will give a significant change of the slope. This measurement is 

perfectly adapted to find the MPB as the boundary will be indicated with a peak or a 

deep in the value of the significant change of the slope. No measurements were 

available for samples containing 0.65 and 0.7 potassium as no measurable sample 

could be produced. Fig. 37 shows the change of slope around K/Na~0.8, i.e. 

K:Na=0.45:0.55, value in accordance with the values of the literature for the MPB of the 

Li, Ta and Sb modified KNN5. 

The second library was prepared to study the influence of lithium and antimony on the 

KNN doped with tantalum. Fig. 38 a, b and c show the results of the electric and 

piezoelectric measurements. The variation was not linear as both Li and Sb content 

were simultaneously changed. Eight compositions were selected where the ratio K/Na 

stays constant as well as the tantalum doping. Lithium and antimony were varied as 

followed: Li und Sb= 4, 8 and 12%. The effects of both dopings were evaluated. 
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Fig. 37 a, b and c: dielectric measurement of [Li x(K .5Na.5)1-x](Nb .9-yTa.1Sby)O3 
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The values of ε are optimal for 4% Li doping and 8% Sb doping, the increase of doping 

lowers the ε values. d33
* is higher for 4% Li doping and 4 and 8% Sb doping. The 

increase in doping lowers the d33
* values as the doping makes the MPB move. The 

highest d33
* value reached is 300 pm/V which corresponds to the value cited in the 

references1. The Curie temperature is the highest for the sample having less doping as 

it is the case for PZT142. All the results are in accordance with the results given in the 

patent application134. 
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Fig. 38 : Tkc measurement for different K/Na variat ion 

 

5. Conclusion 

 

The developed preparation method was tested on a lead-free system. Some 

modifications had to be done as for example the use of specific precursors and the 

insertion of a new step in the workflow. The use of precursors was inevitable to obtain 

quickly high quality KNN samples despite a rapid preparation. Normally the use of 

precursors prevents a high flexibility in the compositions because they have a fixed 

stochiometry. The precursors employed in the case of KNN are generally stoichiometric 

KNbO3 or NaNbO3 which have the same stochiometry as the KNN therefore, the 

flexibility is guaranteed. 

The calcination step helped to obtain pure phase perovskite samples. Nevertheless the 

KNN samples show a high stability despite the few disturbances due to external 

phases. However to reduce potential problems, the calcination step before sintering 

has been maintained during the rest of the studies as it is not very time consuming. 

T
kC
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The MPB of a KNN-based system could be found through dielectric measurements. 

The dielectric values of the samples prepared with the HTE method were in 

accordance with those of the literature. The influence of doping elements like lithium 

and antimony could be clearly identified, they improve the ε and d33
* values but at the 

same time they lower the Curie temperature. 

The method shows satisfying results on this KNN-based system and can now be used 

conventionally to discover new KNN-based compositions which are the most promising 

lead-free piezoelectric materials. 
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VII. New Potassium-Sodium-Niobate based Materials 

 

1. Potassium-Sodium-Niobate doped with liquid phase 

inductive elements 

 

a. Theory 

 

One of the principal problems of KNN is its difficulty to densify due to high volatilisation 

of sodium and potassium at high temperatures 143 . To improve the densification, 

alternative sintering methods such as spark plasma sintering, hot pressing or hot 

isostatic pressing are often considered144,145. However it is of interest to sinter KNN 

under normal atmospheric conditions for industrial processing. Different routes can be 

used, among them, the addition of sintering aids is one of the most cost effective. One 

of the first elements used to induce a liquid phase sintering was the copper by 

Matsubara et al. 146 . The insertion of copper into KNN forms a copper potassium 

niobium compound K4CuNb8O23 (KCN) and into Ta-doped KNN a copper potassium 

tantalum compound K5.4Cu1.3Ta10O29, (KCT) is generated. Both compounds act as a 

sintering aid and fill the pores into KNN thus, the material obtained is denser and the 

dielectric and piezoelectric properties are superior. Only a few copper is needed to 

obtain better values than those of KNN without sinter help (0.38 mol% of sintering aid 

KCT achieve an optimal density). The maximal d33 reported of KNN doped with KCT is 

190 pm/V under an electrical field of 4 kV/mm. 

 

b. Experimental (Part I) 

 

A first library was realised with different copper contents (added as copper oxide) to 

evaluate the reproduction of the results reported by Matsubara et al.154. In another 
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library different cations (tungsten, germanium and gallium) were introduced together 

with copper to produce a co-doping. 

 

c. Results (Part I) 

 

As shown in Fig. 39 XRD analysis was performed on the copper-doped KNN. Traces of 

metallic copper are visible (light blue peaks). 

 
Fig. 39: XRD-Pattern of 0.95 (K 0.5Na0.5) NbO3 - 0.05 CuO 

 

The results of the dielectric measurements and the piezoelectric coefficient d33
* of both 

libraries are visible in Fig. 40 and in Fig. 41. On these plots the copper content is 

diagrammed on the x-axis and the different colours represent different cations for the 

co-doping. The black points represent the values of the samples doped only with 

copper; the red, grey and green points represent respectively the values of the samples 

additionally doped with tungsten, germanium and gallium.  

A microstructure examination and X-ray mapping were carried out on Cu-Ge-doped 

KNN (see Fig. 42). The mapping (figure on the right hand side) shows the distribution 

of the germanium in the ceramics. On the left-hand side figure, border of grains are 

easily recognisable (highlighted in white for more clarity), between the grains, the 

mapping shows the presence of the germanium. Therefore it seems that the 

germanium is not built into the ceramic, but is present between the grains, possibly 

forming a liquid phase sintering. 
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Fig. 40: dielectric properties of 1-x (K 0.5Na0.5)Nb- x CuX samples with different doping 

(X=W, Ge or Ga) 
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Fig. 42:  SEM micrograph of 0.98 (K 0.5Na0.5) NbO3- 0.02 (CuO-GeO2) and germanium 

distribution analysis 
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d. Discussion (Part I) 

 

The dielectric losses of the KNN samples doped with copper oxide (CuO) are 

extremely high, which is often the sign of a high conductivity. Different hypothesis could 

explain it: 

- Copper which will not form KCN is inserted in A-sites and is considered as a donor; in 

this case the conductivity can be caused by a deficiency in electrons to respect the 

stochiometry of the material 

- Copper, which will not form KCN, is inserted in B-sites and is an acceptor, in this case 

the conductivity can be caused by an excess of electrons in the material respectively to 

the stochiometry 

- KCN or KCT phases formed are conductive, a hypothesis which could explain why 

the amount of 0.38 mol% achieves optimal properties 

 

To consider the insertion of an ion in the perovskite structure two aspects have to be 

considered: the size and the coordinate. 

In a perovskite the A-sites are 12-coordinate and the B-site are 6-coordinate11. The 

copper is quite small to enter in an A-site and the higher coordination number makes it 

difficult to enter in an A-site therefore its insertion in a B-site seems to be more 

probable. The third hypothesis was also not considered as any traces of KCN or KCT 

could be detected by XRD analysis which proves that the amount of secondary phase 

was not significant enough. 

To try to reduce the dielectric losses of the materials a co-doping was realised in the 

same manner as done with PZT147; i.e. an acceptor or donator ion is inserted in the 

structure. To compensate the insertion of an A-site acceptor is not possible as the A-

site has a valence of one, then the compensation will be done in B-site with ions having 

a valence of four or less. The chosen ions are gallium, germanium and tungsten as 

their ionic radius fit the niobium radius. The conductivity of the copper doped samples 

lowers with the addition of these doping elements, i.e. the tan δ is lower. However, the 

effect of the germanium is more important than those of other elements as the 
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dielectric losses of the copper-germanium doped samples is low as it can be seen in 

Fig. 41.
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The d33
* is improved as it can be properly measured due to the low level of current 

passing through the sample during the measurement. In further libraries an optimal 

copper and germanium content will be investigated as well as an optimal sodium to 

potassium ratio. 

e. Experimental (Part II) 

 

The d33
* value can be improved with an adjustment of the Cu/Ge and K/Na ratios. First 

the optimal doping in Cu and Ge was searched then the ratio K/Na was investigated.  

The content in Cu and Ge was varied between 0 and 5% for the following formula 

(K0.5Na0.5)1-yCuyNb1-xGexO3 as in Table 7. 

 

Table 7: Doping rate of copper and germanium 

Sample Nr 1 2 3 4 5 6 7 8 

y 0.02 0 0.01 0.01 0.005 0 0 0 

x 0 0.01 0.02 0.01 0 0.02 0.01 0.005 

 

The further investigation on this material system concerns the K/Na ratio. The MPB of 

KNN can move with the addition of doping elements148 and the adjustment of the Na/K 

ratio should provide better performances. However, since it is known that the MPB is 

situated around K/Na=0.5/0.5 the research zone is narrow and the sodium content was 

varied between 0.42 and 0.56 with 2% increment.  
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f. Results (Part II) 
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Fig. 43: d 33
* of (K .5Na.5)1-yCuy Nb1-xGex O3 

The values of the large piezoelectric signals of (K0.5Na0.5)1-yCuyNb1-xGexO3 are 

presented in 
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Fig. 43. 

 

Fig. 44 shows the dielectric measurement for (K0.5Na0.5)0.98Cu0.02Nb0.98Ge0.02O3 having 

suffered 3 different sintering temperatures. The red lines show the sample sintered at 

1050°C, the green ones at 1100°C and the blue ones at  1150°C. 
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Fig. 44: dielectric and piezoelectric measurements of (K xNa1-x).99Cu .01 Nb .99Ge.01 O3 

 

g. Discussion (Part II) 

 

It is though that copper and germanuim doping will not affect the place of the MPB 

because they are not built in the perovskite structure, therefore the optimum in copper 

and germanium doping can be searched independently of one another. 

The first dielectric measurements carried out were surprising as the dielectric losses 

were high despite of the previous measurements where the losses were very low and 

the dielectric losses of this experimental series were independent of sintering 

temperature and composition. The difference between the sintering of the first library 

and this one was the sintering support employed (Pt-foil or Nb2O5-powder). The 

sintering on a Pt-foil was preferred since it acts as a diffusion barrier during sintering, 

however the samples sintered on the Pt-foil show high dielectric losses, therefore, it 

was though that the diffusion of niobium within the sample was the key processing 

parameter to achieve high quality samples. The tan δ of the sample sintered on the 

platinum foil reached values between 0.1 and 1 and with the Nb2O5-powder bed the 

values of tan δ drop to less than 0.03. Then d33
* and εr can be properly measured. As 

shown in the doping with 2 mol% Cu and 2 mol% Ge gives the best results for this 

library with d33
* reaching 200 pm/V. The values of d33

* are lower than the values 

previously measured. This alteration can be attributed to a difficult processing of KNN.  
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h. Conclusion 

 

The dielectric values measured on the samples from the second library were different 

to the values of the first library. Normally the higher the sintering temperature, the 

denser is the ceramic. In this case the values of the material sintered at higher 

temperature are lower than the values of the samples sintered at lower temperature. In 

the case of KNN too high temperatures damage the performance of the material due to 

the evaporation of sodium and/or potassium, resulting in an unstoichiometry of the 

material creating secondary phases which reduce the material performances. 

Samples having a content in sodium around 52% and sintered at 1075°C show the 

highest values for d33
* of almost 200 pm/V. 

During the upscaling problems were met concerning the production of the samples and 

the properties measured during the HTE phase could not be reproduced. Therefore, a 

deeper investigation of the material will not be continued. 

For the KNN system this investigation shows that the formation of a liquid phase 

sintering improves the performances (up to two times) but another strategy should be 

investigated to increase the performances to a level comparable to those of PZT. 

 

2. KNN and Tungsten-Bronze 

 

a. Theory 

 

In a previous section the results of a composition patented by Toyota-Denso were used 

as material system to test this HTE processing route to KNN-based ceramics. 

Satisfying dielectric properties could be measured on samples having not a pure phase 

perovskite but a mix of 4% of tungsten-bronze and 96% of perovskite phases. The 

material showed the following properties: εr max = 1247, tan δ = 0.02, d33
*
 max = 400 pm/V 

and TC = 281°C. These properties are better than those given  in the patent application. 

 

On the other hand a patent application from TDK Company was published149 claiming 

that the properties of KNN doped with lithium, tantalum, zinc, magnesium and BaNb2O6 

(member of the tungsten-bronze family) are definitively higher than those known up to 

now. They measured a d33 up to 436 pC/N for the following formula: 0,995 
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(K.38Na.57Li.05) (Nb.9Ta,1) – 0,005 BaNb2O6 + 0,31 wt.% of KNN MnO +0,05 wt.% of 

KNN ZnO. 

 

Seeing those two examples, it was thought that the addition of tungsten-bronze (TB) to 

KNN can improve its properties.  

In order to screen the interaction between TB and KNN, three different TB were 

considered with different properties as shown in Table 8 

 

SBN has a high εr and d33 whereas its Curie temperature is quite low, BNN has a high 

Curie temperature but low εr and d33, and SCNN has medium values for all its 

properties. 

 

Table 8: properties of different TB used 

 

Formula Abb. 
ε 

Polycrystal 

d33 

Polycristal 

ε 

Moncrystal 

d33 

Monocrystal 

Tc 

°C 

Sr.75Ba.25Nb2O6 SBN 550  3000 670 56 

Ba2NaNb5O15 BNN ≈ 100  47 20 560 

Sr1.85Ca0.15NaNb5O15 SCNN ≈ 1600 100 1740 270 270 

 

b. Previous investigation 

 

It has been shown in the last years that successful sodium-potassium niobate lead-free 

piezoelectric ceramics contain lithium and tantalum150,151, therefore an investigation 

was carried out to find the optimal Li and Ta doping of a simple KNN which will be used 

as starting material for further TB doping. 

 

i) Experimental 

 

KNbO3, NaNbO3, KTaO3 and Li2CO3 were dosed to obtain the following compositions: 

[(K1-xNax)0.96Li0.04](Nb0.96Ta0.04)O3 with 0.5 ≤ x ≤ 0.57. The doping of 4% LiTaO3 was 

chosen according to the literature152 which indicates that more than 4% LiTaO3 induces 

a non perovskite phase near pure phase KNN. The K/Na ratio was varied to find a 



VII. New Potassium-Sodium-Niobate based Materials   81 

 

 

suitable starting composition and ballast sintering was tried to impeach the volatilisation 

of the alkalis. 

 

ii) Results 

 

The microstructure was studied by means of SEM after polishing of the surface and 

thermal etching (see Fig. 45). The structure of KNN is easily recognizable with square 

grains and other grains showing an abnormal grain growth. 

 

 
Fig. 45: microstructure of (Li 0.04K0.47Na0.53)(Nb0.96Ta0.04)O3 

 

The values of tan δ are shown in Fig. 46. The other dielectric values are not relevant as 

the dielectric losses are too high. Only the samples having a sodium rate between 52 

and 55 mol% could be measured because the dielectric losses were not too high. The 

samples with a sodium rate below 52 mol% and above 55 mol% showed short circuit 

during the measurement of d33
*.  
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Fig. 46: tan δ of (K 1-xNax).96Li .04 Nb .96Ta.04 O3 

 

iii) Discussion 

 

Lithium and tantalum are both inserted in the KNN structure as their sizes and 

properties are similar to the sizes and properties of sodium, potassium and niobium 

and so they affect the place of the MPB on a phase composition diagram153. The 

presence of the MPB was detected for 4 mol% LiTaO3 in the literature but for a K/Na 

ratio of 0.5/0.5. For this library it could be observed that the losses were lower in the 

region of 52 to 54 mol% sodium for all sintering processing which indicates a better 

stability of the samples. The change of optimal composition range can be attributed to 

the use of sodium and potassium precursors on one hand but also to the preparation 

mode on the other hand. Second phases may be present in the raw materials which 

impacts the properties of the material employed and the accelerated preparation mode 

does not lead to a pure phase perovskite material. 

The most favourable sintering is carried out with 0.25g of sodium-, potassium- and 

lithium-carbonate in the sintering boat. The addition of these carbonates allows the 

saturation of the sintering atmosphere in the boat and so the evaporation of sodium, 

potassium and lithium is reduced. On the other hand too high amounts of these 

carbonates disturb the stoichiometry of the samples leading to the creation of external 

phases. So the dielectric losses of the samples sintered with 1g carbonates in the boat 

were too high and it did not allow the proper measurement of the rest of the properties. 

The samples sintered with 0.5g carbonates present higher losses than the samples 

sintered with 0.25g carbonates. 
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c. Strontium-Calcium-Sodium-Niobate 

 

Ceramics from the system (1-x) Sr2NaNb5O15-x Ca2NaNb5O15 (SCNNx) were 

investigated as lead-free piezoelectric ceramics due to their interesting properties. The 

properties of SCNN15 as polycrystalline material were already investigated by Xie et al. 

and they measured superior properties for d33 and ε154. 

 

i) Experimental 

 

The SCNN15 was prepared from Sr-, Ca-, Na2- CO3 and Nb2O5 powders. The powders 

were grinded together 18h in a PVC cup with alcohol as cooling medium, dried and 

used as a precursor for a binary library. The doping of LKNNT with SCNN15 was as 

follows: 0.5, 1, 1.5, 2, 2.5, 3, 4 and 5 mol%. 

 

ii) Results 

 

The first measured property is εr (see Fig. 47). The dielectric constant varies not 

linearly with the SCNN15 content. With the increasing of the doping level the values 

first decrease and then increase from 1.5 mol% doping. 
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Fig. 47:Epsilon before poling for 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Sr1.85Ca.15NaNb5O15 
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The measurement of d33 is shown in Fig. 48. Between 0.5 and 4 mol% SCNN15 doping 

the tendency is the same for εr and d33
* but for the sample doped with 4 and 5 mol% 

SCNN15 the value of ε increases whereas the value of d33
* decreases. 

0

50

100

150

200

250

300

0,0 1,0 2,0 3,0 4,0 5,0 6,0

SCNN content [mol%]

d3
3 

[p
m

/V
]

 
Fig. 48: d 33

* at 2kV/mm of 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Sr1.85Ca.15NaNb5O15 

 

To investigate the phases present in the samples XRD analysis was carried out (see 

Fig. 49). 
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Fig. 49: X-ray pattern of 1-x [(K 0.47Na0.53)0.96Li 0.04](Nb 0.96Ta0.04)O3 - x Sr 1.85Ca0.15NaNb5O15 

 

Fig. 50 shows micrograph of samples doped with different concentration of SCNN15 

and the evolution of the main crystallite size is reported in  

Fig. 51. It is easy to see from the Fig. 50 the influence of the doping, the shape and 

size of grains of different samples being rather different the one to the others. With 0.5 

mol% SCNN doping the microstructure remains almost the same as without doping, the 

main crystallite size decreases up to 2mol% SCNN, reaches a maximum for 3 mol% 

SCNN and then decreases again. The curve of the main crystallite size is comparable 

to the curve of d33
*.  

 

The last property to be routinely measured is the Curie temperature (Fig. 53). The 

sample 0.995 [Li0.04 (Na0.53K0.47)0.96](Nb0.96Ta0.04)O3-0.005 Sr0.85Ca0.15NaNb5O15, whose 



VII. New Potassium-Sodium-Niobate based Materials   85 

 

 

measurement is represented by the black line shows a peak around 280°C which can 

be associated to the Curie temperature. For samples containing higher doping the 

behaviour is quite different: the samples containing 1 and 3 mol% SCNN15 show two 

little peaks and the samples containing 4 and 5 mol% do not show any peak.  
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Fig. 50: microstructrure evolution of 1-x [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-

X Sr1.85Ca.15NaNb5O15  
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Fig. 51: Main crystallite diameter in dependence of  SCNN15 concentration 
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To investigate the phase transformations high temperature XRD was carried out on 

one sample having the composition 0.97 [Li0.04(Na0.53K0.47)0.96](Nb0.96Ta0.04)O3-

0.03 Sr0.85Ca0.15NaNb5O15.   

Fig. 52 displays a general overview of the reflexes obtained between room temperature 

and 400°C; Fig. 54 shows the repartition of the peaks intensity for 2θ between 44.5 and 

46.5° which are the reflex of (002) in function of t he temperature during heating and 

cooling.  
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Fig. 52: X-ray pattern of 0.97 [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-0.03 Sr.85Ca.15NaNb5O15 during 

heating up to 400°C 
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Fig. 53: capacitance vs. temperature of 1-x [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-

X Sr.85Ca.15NaNb5O15 

COOLING

HEATING

 

Fig. 54: high temperature diagram of XRD-reflexes a t 2θ=44.5-46.5 for 

0.97 [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-0.03 Sr.85Ca.15NaNb5O15 during  heating and cooling of 

the sample 
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A DSC measurement was carried out on the calcined sample and on the sintered 

sample (see Fig. 55) to complete the high temperature XRD patterns. 
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Fig. 55: differential scanning calorimetry of 0.97 [(K 0.47Na0.53)0.96Li 0.04](Nb 0.96Ta0.04)O3 - 0.03 

Sr1.85Ca0.15NaNb5O15 

 

The black line represents the DSC curve of the powder after calcinations and the red 

line represents the DSC curve of a sintered sample. In this diagram an endothermic 

peak is visible around 300°C which is the signal of the C urie point. No other endo- 

other exothermic peak is visible for inferior temperatures. 

 

d. Barium-Sodium-Niobate 

 

The BNN is also a TB characterised by the occupancy of all A-sites whereas the C-

sites are empty in the formula [(A1)2(A2)4C4][(B1)2(B2)8]O30. BNN is widely used as 

singe crystal as electro-optic and acousto-optic material and for optical frequency 

converters or generators155. 

 

i) Experimental 

 

The BNN starting powder was conventionally prepared from BaCO3, Na2CO3 and 

Nb2O5. A binary library was carried out mixing LKNNT and BNN. 

The preparation of precursors allows the weighting of only two powders instead of 8 

(KNbO3, NaNbO3, KTaO3, BaCO3, Na2CO3, K2CO3 and Nb2O5) thus accelerating the 
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preparation time. After the weighing of both powders, the binary library was handled as 

described in the section “method”. 

The library prepared included different levels of BNN doping into LKNNT: 0.5, 1, 1.5, 2, 

2.5, 3, 4 and 5%. 

ii) Results 

 

The results for the measurement of the relative dielectric constant are shown in Fig. 56 

and the piezoelectric constants are displayed in Fig. 57. 
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Fig. 56: Epsilon before poling of 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Ba2NaNb5O15 
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Fig. 57: d 33

* at 2kV/mm of 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Ba2NaNb5O15 
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Fig. 58: capacitance vs. temperature for 98.5 [Li 0.04(Na0.53K0.47)0.96](Nb 0.96Ta0.04)O3-

1.5 Ba2NaNb5O15 

 

The study of the Curie temperature is focussed on a sample containing 1.5% of BNN, 

because this composition shows the best dielectric and piezoelectric properties. On the 

other hand, the behaviour of all samples during the measurement of the capacitance in 

function of the temperature was comparable. 

 

The hysteresis effect between heating and cooling during the Curie temperature 

measurement was investigated by measuring the Curie temperature again on the same 

sample different laps of time after the first measurement (see Fig. 59). 
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Fig. 59: capacitance vs. temperature for 98.5 [Li 0.04(Na0.53K0.47)0.96](Nb 0.96Ta0.04)O3-1.5 

Ba2NaNb5O15 different period after the first measurement 
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Fig. 60: high temperature X-ray pattern of 98.5 [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-1.5 

Ba2NaNb5O15 between room temperature and 400°C 

 

The investigation of the phase transformation in function of the temperature was 

carried out by high temperature XRD (up to 400°C) as it can be seen in Fig. 60. Fig. 61 

shows the repartition of the peaks between 44.5° < 2 θ  < 46.5°. 

 

Fig. 61 displays a repartition of the peaks between 2θ=44.5 and 46.5° in function of the 

temperature. 
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HEATING

COOLING

 
Fig. 61: high temperature diagram of XRD-reflexes a t 2θ=44.5-46.5 for 98.5 

[Li .04(Na.53K .47).96](Nb .96Ta.04)O3-1.5 Ba2NaNb5O15 during heating and cooling of the sample 

e. Strontium-Barium-Niobate  

 

SBN has also a TB structure where out of six possible A-sites occupied only five are 

occupied by alkaline-earth ions, which is called partially filled TB156. Pure SBN has 

been used into pyro-electric, electro-optic, piezoelectric and photo-refractive devices 
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and its properties have been improved by producing single crystals or oriented 

ceramics through template grain growth157. 

 

i) Experimental 

 

The SBN precursor was also conventionally prepared from Sr-, BaCO3 and Nb2O5 in 

the same manner as described before and was used with LKNNT powder to prepare a 

binary library. The library is also similar to the previous one, with 8 different doping 

level of LKNNT with SBN: 0.5, 1, 1.5, 2, 2.5, 3, 4 and 5 mol %. 

 

ii) Results 

 

The relative dielectric constants are displayed in Fig. 62. 
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Fig. 62: Epsilon before poling for 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Sr.75Ba.25Nb2O6 

 

In this library the dielectric constant does not vary with the doping content. Except for 

3% SBN were a slight peak can be detected for all sintering parameters. The Fig. 63 

shows the measurement of d33
*. 
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Fig. 63: d 33 at 2kV/mm of 1-X [Li .04(Na.53K .47).96](Nb .96Ta.04)O3-X Sr.75Ba.25Nb2O6 

 

For this library the measurement of the Curie temperature was also obtained and 

shows also a non typical tendency (see Fig. 64). A first hump is present around 220°C, 

a second around 260°C. Then the values of εr decrease to 300°C and increase again. 

No values where measurable above 340°C because the equ ipment to measure the 

Curie temperature could not achieve those temperatures.  
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Fig. 64: capacity vs. temperature for 97 [Li .04(K .47Na.53).96](Nb .96Ta.04)O3-3 Sr.75Ba.25Nb2O6 

f. Discussion 

 

Due to stoichiometric considerations the addition of TB can probably provoke A-site 

vacancies in the perovskite. As stated in a previous chapter, the general formula of a 

TB is [(A1)2(A2)4C4][(B1)2(B2)8]O30 and for the TB selected the A-sites are earth alkali, 

C-sites (when occupied) sodium and B-sites niobium. The ions occupying the A- and 

C-sites in the TB can be inserted into the A-sites of the perovskite as the ionic radie are 

similar. The ions of the A-sites of TB are earth alkali and they have a valence of two 

whereas the alkali ions of the perovskite have a valance of one. Therefore, if an earth 
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alkali is inserted into an A-site of a KNN perovskite, it creates disturbances because 

the electro-neutrality is not respected. The addition of more positive or less negative 

ions induces A-site vacancies158 and the earth-alkali elements introduced must create 

A-site vacancies. The Kröger-Vink notation which treats the point defect in analogy to 

atoms and molecules in chemical reaction equations can be employed to describe it. 

It was found that only A-site vacancies in the KNN improve the performances159 but do 

not induce the desired top performances as describe above. 

 

i) Strontium-Calcium-Sodium-Niobate doped 

Lithium-Sodium-Potassium-Tantalum-Niobate 

 

The Kröger-Vonck notation for SCNN15-doped LKNNT is: 

( ) OBBAAAA 15)O(35xBxB12xVxNa2xEAAx1 +++−++++− • '  

where A represents the alkali elements (K, Na, Li) in the perovskite, EA represents the 

earth alkali elements (Sr and Ca) and B the elements of the B-site (Nb and Ta). 

 

Between 0.5 and 4 mol% SCNN15 doping, the tendency is the same for εr and d33
* but 

for the sample doped with 4 and 5 mol% SCNN15 the value of εr increases whereas 

the value of d33
* decreases. This is probably due to the competition between SCNN15 

and KNN. SCNN15 has high εr value which influences the εr values of the two-phases 

ceramic and then high εr values are achieved, whereas the quantity of SCNN15 is not 

sufficiently important to produce also improvements on the d33
* values.  

As it can be seen in Fig. 49 the phase composition of KNN evolves with the doping 

level. For doping content of 0.5 and 3 mol% the material presents a pure phase 

perovskite but for other doping level an additional unidentified phase is visible. The 

materials presenting a pure phase perovskite also show the highest piezoelectric 

coefficient d33
*. 

 

The measurement of the Curie temperature shows a particular behaviour of the 

samples: some curves possess two or more peaks during heating and are flat during 

cooling. The non-doped KNN shows a peak at 200°C which is the orthorhombic to 

tetragonal phase transformation160 but for the doped-samples no peak is visible in this 

area of temperature; which means that the orthorhombic-tetragonal phase 

transformation has been shifted to lower temperatures or it does not exist anymore. 
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As it can be seen in Fig. 53, the Curie temperature of the sample containing 3 mol% 

SCNN15 seems to be above 320°C, maximal temperature a t which the measurement 

was done. The peak at 270°C is present which can be assimil ated to the Curie 

temperature of SCNN15 but the first peak around 240°C can not be identified. 

Therefore high temperature XRD were carried out (see   

Fig. 52). In this diagram we can clearly see that at room temperature the structure of 

the material is monoclinic or orthorhombic (the X-ray does not allow differentiating both 

structures), then at 90°C a tetragonal structure begi ns to appear. The tetragonal 

structure is stable up to 270°C. However, for this com position in Fig. 53 the curve of the 

capacity in function of the temperature seems to continue increasing after the phase 

transformation into a cubic structure. The peaks around 250°C could not be explained 

by a phase transformation therefore, external phenomena must be the cause of this 

anomaly. Possible reasons are the presence of water in the sample or the presence of 

a secondary phase which cannot be detected by XRD. Differential scanning calorimetry 

of this sample shown in Fig. 55 does not allow discerning a phase transformation as 

the temperature interval between both peaks was too low. In this diagram an 

endothermic peak is visible around 300°C which is the si gnal of the Curie point. No 

other endo- other exothermic peak is visible for inferior temperatures, therefore the 

hypothesis of a phase transformation about 240°C cannot  be validated. Water release 

during heating would have been noticed in the DSC measurement. During DSC 

measurement the sample sintered is different to the bulk samples produced, i.e. its 

surface in contact to air is smaller and the mechanisms of water absorption and release 

should be different. Thus, if nothing appears during DSC measurement that does not 

mean that the hump shown at 240°C during the Curie t emperature measurement was 

not water release. Due to lack of powders of the compositions investigated this 

phenomena could not be deeper explored.  

 

ii) Barium-Sodium-Niobate doped Lithium-Sodium-

Potassium-Tantalum-Niobate 

 

 

The Kröger-Vinck notation for BNN is the same as for SCNN15 as the formula is the 

same, i.e. EA2NaNb5O15
 where only barium is the earth alkaline present. The values of 

εr are almost the same as the values of non-doped LKNNT. The doping has no real 
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influence on the values of εr. The values of d33
* are improved in comparison with the 

values of non-doped LKNNT and reach 230 pm/V for a sample doped with 1.5 mol% of 

BNN, sintered at 1100°C for 1 hour with a maintain o f 2 hours at 750°C. The values of 

tan δ are also better than those of the sample from the section  b, as the values stay 

stable between 0.04 and 0.07. The last measured property is the Curie temperature. In 

the Fig. 58 different peaks are observable that are not the Curie temperature. The two 

peaks could be interpreted as phase transformations. The Curie temperature is 

situated at 350°C but the peaks at 100 and 250°C are not yet identified. 

It is known that the pure KNN endures an orthorhombic-tetragonal phase 

transformation at about 200°C 161 (TO-T). In the case of KNN doped with tantalum, the 

Curie temperature lowers as well as the transition temperature. For 10% tantalum 

doping, TO-T lowers from 200 to 160°C and the Curie temperature decreases from 

400°C to 350°C 162. For LT-doped KNN, it is known13 that the Curie temperature is 

shifted to 320°C and T O-T is shifted around 100°C for KNN doped with 4% LT. 

Therefore in this material the first peak around 100°C could be identified to an 

orthorhombic-tetragonal phase transformation as the presence of water was excluded 

during the DSC measurements. 

For the second peak, it is remarkable that during the cooling the curve of the plot is flat 

instead of rising at temperatures around the Curie temperature like the heating curve. 

This kind of phase transformation seems to have a hysteresis. Therefore the capacity 

vs. the temperature was measured one week after and one day after as seen in Fig. 

59. One day after the first measurement the profile of the curve is different with a 

disappearance of the peak at 250°C, whereas the peak at tributed to the orthorhombic-

tetragonal transformation always exists but with a lower intensity. One week after the 

first measurement both peaks are present with the same intensity. XRD analyses were 

performed on a sample to identify the phases at least one week after this 

measurement. 

High temperature XRD was also carried out on a sample having the composition 

98.5 Li0.04(Na0.53K0.47)0.96](Nb0.96Ta0.04)O3 - 1.5 Ba2NaNb5O15 between room temperature 

and 400°C to try to find a second phase transformation ; the X-ray pattern are shown in 

Fig. 60 and Fig. 61. On these figures it can be seen that a tetragonal structure appears 

at 60°C and stays stable up to 340°C, temperature at  which only the cubic structure is 

visible. No phase transformation in the region of 250°C is visible. As well as for the 

other sample (KNN-based ceramic with SCNN15 doped) complementary analysis 

method as differential scanning calorimetry could not reveal more information as it was 

the case for SCNN15-doped KNN. However, it is to note that the anomaly for BNN-
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doped LKNNT appears in the same temperature region as for SCNN15-doped LKNNT, 

hence, the research will be focused on one doping system to try to find an explanation 

and this will be applied on the second doping system to verify the results found on one 

system.  

 

iii)  Strontium-Barium-Niobate doped Lithium-

Sodium-Potassium-Tantalum-Niobate 

 

The A-site vacancies concentration is different with SBN as with the two other 

tungsten-bronzes because of its different composition. For KNN-based ceramics doped 

with SBN the Kröger-Vink notation is the following: 

( ) ( ) ( ) OBB
'
AAA O632xBBx1xVxEAAx1 +++−+++− •  

 

In this library the effect of the TB doping seems to be maximal for 3 mol% SBN where 

the values of d33
* reach 300 pm/V for samples being sintered 1h at 1150°C  with a dwell 

for 2h at 750°C and with 0.5g Na-, K- and Li 2CO3 in the sintering boat. In this library the 

values of the dielectric losses are also low (around 5%) which validate the results. 

For this composition the high temperature behaviour is comparable to 0.985 LKNNT-

0.015 BNN and 0.97 LKNNT-0.03 SCNN. The Curie temperature seems to be higher 

than 350°C but the apparatus could not achieve higher  temperatures. No more analysis 

was performed on this library as the behaviour is so similar to the other ones. The 

doping of KNN with LiTaO3 and Sr0.75Ba0.25Nb2O6 gives interesting results which should 

be later pursued. 

 

iv) General discussion 

 

For each atom of earth alkali added one A-site vacancy is created, i.e. for each mol of 

SCNN15 or BNN added two moles of A-sites vacancies are created and for each mol 

of SBN added one mole of A-sites vacancies is created. In PZT the introduction of A-

site vacancies induced by the doping with cation having a valence of three and a large 

radius (rare earth or bismuth fpr example) modifies the electric and piezoelectric 

properties depending on the cation employed and its concentration163,164. 
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A maximum of average crystallite size was observed for 3 mol% SCNN15 which also 

corresponds to 6 mol% A-site vacancies. None of the samples observed showed 

abnormal grain growth contrarily to LKNNT samples. The abnormal grain growth was 

systematically studied by Drofenik et al. on semiconductive BaTiO3
165. According to 

their theory the driving force for the abnormal grain growth is the stored free surface 

energy of fine grains, which is released during abnormal grain growth. This surface 

energy is consumed in oxygen release and donor-dopant incorporation. The abnormal 

grain growth observed for LKNNT composition can be explained by the same theory. 

During sintering the evaporation of lithium, sodium and potassium induced oxygen 

vacancies, in the same way oxygen vacancies are naturally present into PZT due to 

lead evaporation during sintering166. These oxygen vacancies provoke abnormal grain 

growth in LKNNT ceramics. 

Recently Tashiro et al. observed that abnormal grain growth occurs in Sr-doped KNN 

for low dopant level (between 1 and 4 mol% Sr content) and they related it to dopant-

donor incorporation167. In the Tb-doped LKNNT, despite the possible creation of A-site 

vacancies no abnormal grain growth could be observed. Another explanation is that the 

charge compensation occurs by decreasing the number of oxygen vacancies present in 

the original LKNNT which shows abnormal grain growth. With the decrease of oxygen 

vacancies the densification can be superior if, as in PZT ceramics, the oxygen 

vacancies are the slowest moving species and they control the densification rate 

according to Kington and Atkin168,169. Higher densification means also higher electric 

and piezoelectric properties, which explains the superior properties of TB-doped 

LKNNT. Moreover in PZT the domain wall pinning does not occur since the donor 

doping suppresses the formation of oxygen vacancies. It is supposed that the poling of 

donor-doped PZT is in this way promoted170. 

 

3. Conclusion 

 

Different doping was successfully applied to KNN-based ceramics to improve the 

performances of this material. Two different strategies were assessed to enhance the 

performances: the addition of a liquid phase sintering to reach high density and 

therefore, higher dielectric and piezoelectric properties and the addition of elements 

which can be introduced in the perovskite structure inducing different effects. 
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The piezoelectric properties of air-sintered non-modified KNN could be enhanced 

trough the formation of a liquid phase sintering containing copper and germanium. The 

literature describes the doping of KNN with a small quantity of copper inducing a liquid 

phase sintering of KCN or KCT which improve the density. During the reproduction of 

the results we found that high amounts of copper induce also high conductivity into the 

material. To try to control this conductivity, crystal defects were created by the addition 

of a second doping element. Among them the germanium showed the most interesting 

properties by reducing the dielectric losses and improving the piezoelectric coefficient. 

The presence of a liquid phase could be identified through microstructure analysis and 

the presence of germanium was proven with energy dispersive X-ray analysis. 

The addition of tungsten-bronze based compositions improved the dielectric and 

piezoelectric properties of LT-doped KNN. For two chosen TB the values of d33
* almost 

approached 300 pm/V. The doping with TB induced anomaly for almost doped samples 

during the Curie temperature measurement. This anomaly could not be explained with 

the method employed, therefore, a deeper investigation of this composition should be 

carried out. The improvement of the piezoelectric properties induced could not be 

clearly explained at the moment. The creation of A-site vacancies induced by the 

introduction of earth alkaline elements and at the same the decrease of oxygen 

vacancies play an important role and their effects are positive on the dielectric and 

piezoelectric properties of KNN-based ceramics. The maximum d33
* for samples having 

TB doping was measured for samples doped with 3 mol% SBN and SCNN15. 

Moreover samples doped with SCNN15 showed another maximum for 0.5 mol% 

doping. The effects of the dopants employed in addition to strontium (calcium or 

barium) are also not clarified and more investigations would be necessary. First the 

attention will be focused on the doping with SCNN15 for two reasons: the creation of 

vacancies is more effective in comparison to SBN, for one mol SCNN15 added two mol 

A-site vacancies are created and in the measurement of d33
* in dependence of the 

doping content, two peaks are visible. 
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VIII. Optimisation of Lead-Free Compositions 

 

 

The HTE process set-up allows the optimisation of a composition space as the process 

is rather close to a classical processing. The previous chapter was focussed on the 

discovery of new lead-free piezoelectric ceramics and now this part will focus on the 

further development of one of the most promising compositions. The best results were 

measured on [(K,Na)NbO3 - LiTaO3 – Sr1,85Ca0,15NaNb5O15]-based ceramics, therefore, 

it is in this composition area that improvements should be made. 

The exact composition on which the best results were obtained was exactly 

0.93 (K0.47Na0.53)NbO3 – 0.04 Li TaO3 - 0.03 Sr1,85Ca0,15NaNb5O15. The first 

investigation was to find out the optimal LiTaO3 doping as well as an alternative 

processing route. 

 

1. First Experimental Series: Optimal LiTaO3 Doping 

 

The LT-doping of KNN was found in the literature to be optimal for 4 mol%171 and it was 

on this basis that further doping with Sr1,85Ca0,15NaNb5O15 (SCNN15) was made, but 

now, in order to optimise the interactions (if there are) of both doping, their contents 

should be adjusted. In parallel a different processing of the powder was carried out to 

understand the influence of each compound on the final composition. 

 

a. Experimental 

 

Three powders were simultaneously prepared:  

(K0.47Na0.53)NbO3 from KN and NN 

LT from Li2CO3 and Ta2O5 

SCNN15 from SrCO3, CaCO3, Na2CO3 and Nb2O5 
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These powders were ground for 24h on a milling banc with alcohol as cooling medium, 

dried and sieved. Half of each powder were independently calcined at temperature 

allowing the formation of the desired compound (i.e. 750°C, 5h for (K 0.47Na0.53)NbO3
172; 

1150°C, 2h for SCNN15 173 and 800°C, 2h for LiTaO 3
174) and both calcined and non-

calcined powders were used as starting materials for this experimental series. 

The variation consisted in holding the SCNN15 content at 3 mol% and varying the 

content in LiTaO3 between 0 and 7 mol% for both calcined and non-calcined powders 

as described in Fig. 65. The first series with the non-calcined powders is represented 

with the number 1 and the series with the calcined powders is represented by the 

number 2. In these experimental series, two compositions are the same as a 

composition found in chapter  VII.2.c (the compositions with 4 mol% LiTaO3 which 

contain 3 mol% SCNN15) in order to have a reference between different experimental 

series.  

 

Li 2CO3 + Ta2O5 KNbO3 + NaNbO3 SrCO3 + CaCO3 + Na2CO3 + Nb2O5 

LiTaO3 (K,Na)NbO3 Sr1.85Ca0.15NaNbO3 

0.97-x (K,Na)NbO3 – x LiTaO3 – 0.03 Sr1.85Ca0.15NaNbO3  

0.97-x (K,Na)NbO3 – x LiTaO3 – 0.03 Sr1.85Ca0.15NaNbO3  

HTE Processing 

HTE Processing 

Calcination 

Start 

1 

2 

 
Fig. 65: First experimental series 

 

b. Results Reactive Sintering  

 

The relative dielectric constant and dielectric losses obtained for the library processed 

with non-calcined powders are shown in Fig. 66 and the piezoelectric constant in Fig. 

67.  

The relative dielectric constant and the dielectric losses show unexpected values. The 

εr-values of samples sintered at the lowest temperature are lower than for the samples 

sintered at temperatures above 1125°C. For low LT co ntent (0 and 1 mol%) the values 
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of εr are inconsistent. For higher doping levels only the sintering temperature shows an 

influence. The dielectric losses are dramatically high in comparison to the first library. 

The d33
*-values show a maximum for 6 mol% LT at 200 pm/V. 
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Fig. 66: εr and tan δ of 0.97-x (K,Na)NbO 3 - xLiTaO 3 - 0.03 Sr1.85Ca0.15NaNb5O15 
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Fig. 67: d 33

* of 0.97-x (K,Na)NbO 3 - xLiTaO 3 - 0.03 Sr1.85Ca0.15NaNb5O15 

 

c. Results Influence of Precalcination 

 

The results of the dielectric constant and piezoelectric constants are shown in Fig. 68 

and Fig. 69.  

The relative dielectric constant and the dielectric losses show different values to those 

of the previous part of this experimental series. The εr-values of the samples are 

independent of the sintering temperature. For 4 mol% LT content the values of εr as 

well as tan δ are significantly lower than for other doping levels. For doping content 

higher than 4 mol% LT, the values of the dielectric losses stay low. The d33
*-values are 
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not strongly affected by the doping level but a maximum for 4 mol% LT up to 200 pm/V 

is observable. 
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Fig. 68: relative dielectric constant and dielectri c losses of 0.97-x (K 0.47Na0.53)NbO3 - x 

LiTaO 3 - 0.03 Sr1.85Ca0.15NaNb5O15 dependant on the firing temperature 
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Fig. 69: d 33

* of 0.97-x (K 0.47Na0.53)NbO3 - x LiTaO 3 - 0.03 Sr1.85Ca0.15NaNb5O15 depending on 

the firing temperature 

 

d. Discussion 

 

The lowest dielectric losses of the library with the samples produced from non-calcined 

powders were measured for the samples containing 6 mol% LT, but the value attain 

was of 0.2 which is clearly higher than the value of the sample measured in the first 

library (see Chap. 7.2). This can be related to the low density of the samples. 

The theoretical density of KNN is approximately 4.5 g/cm³ and the average density 

measured of the samples of this library was only 3.7 g/cm³ which is almost 80% of the 
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theoretical density. The density was not high enough to allow a measurement reflecting 

the real properties of the materials. Nevertheless, a tendency in this library could be 

identified. The d33
* values of the samples containing 6 mol% LT are higher than the 

other ones, meaning that this doping level should be better for this composition space. 

However, d33
* values measured are lower than those expected, especially for the 

samples doped with 4 mol% LT as the value of 290 pm/V was previously measured on 

a sample having this composition. 

 

The results of the relative dielectric constant are more consistent for the library 

prepared from the calcined powders than for the library with the non-calcined powders 

because a tendency could be observed: εr is around 1000 at concentration below 

4 mol% SCNN15 doping, then a peak of low εr for 4 mol% SCNN15 is observed and 

finally εr remains around 900 for higher doping levels. On the other hand the dielectric 

losses are even higher than for the library prepared from non-calcined powders. The 

lowest dielectric losses measured for the samples containing 4 mol% calcined LT were 

only of 0.25. The average density of the samples from the library prepared from 

calcined powders was 3.52 g/cm³ whereas the average density of the samples from the 

library prepared from non-calcined samples was 3.7 g/cm³. The lack of density of the 

samples can explain also in this case the high values of the dielectric losses. The 

values of d33
* are as low as those recorded for the library where the samples were 

produced from non-calcined powders, but the peak maximum is not located at the 

same LT content. In this case the optimal d33 values are recorded for 4 mol% LT. 

 

A piezoelectric constant of 200 pm/V could be measured for one composition in both 

libraries, however this maximum was not observed for the same composition: for the 

library where the different powders were non-calcined a maximal of d33
* was observed 

for 6 mol% LT and for the library where all compounds where individually calcined the 

composition with 4 mol% LT shows the maximal piezoelectric coefficient. 

The interactions between the perovskite and the tungsten-bronze could not be totally 

understood but these libraries give indication of the orientation of further experiments: 

in order to produce samples with higher density and therefore lower dielectric losses, 

no previous separate calcination of the compounds should be carried out. Therefore, 

the doping with 6 mol% LT presents the best dielectric and piezoelectric properties for 

this mode of preparation. 
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In the first library prepared for doping of LKNNT with SCNN15, the content of LT 

chosen was 4 mol% as a MPB for the system KNN/LT at this doping level has been 

observed by Zhen et al.175. However as it is the case for PZT, the MPB can move with 

the incorporation of dopants in the cell176. The doping of KNN with earth-alkalis like 

strontium and calcium makes the MPB move as they are built in the perovskite cell. 

Therefore the content in LT for 3 mol% SCNN15-doped KNN is optimal for 6 mol%. 

 

From this library the main conclusion is that 6 mol% LT into 0.97 (K0.47Na0.53)NbO3 - 

0.03 SCNN15 shows the best properties. But the results are troubling as the 

composition used as reference between two libraries does not provide the same 

properties. Different reasons could cause these results: 

- Different preparation (before (K,Na,Li)(Nb,Ta)O3 were ground together and in this 

case KNN and LT are separately ground). 

- Use of different starting materials. 

- Drastic reproducibility problems of KNN-based piezoelectric ceramics177.  

During the first phase, i.e. the development of new lead-free piezoelectric ceramics, a 

different batch of powder was used for KN as well as for NN. This was known and 

attention was paid to compensate the slight stoichiometry variations but other 

parameters may influence the piezoelectric properties of the samples. 

From this point on, the work will be focussed on the precursors and their influence on 

the properties of KNN-based piezoelectric ceramics. 

 

2. Second Experimental Series: Influence of  Precursors 

 

a. Different Precursors 

 

As it has been observed in the previous experimental series the influence of the 

precursors is important for the properties of the piezoelectric KNN-based ceramics, in 

this second experimental series one composition was selected which was produced 

with different precursors to observe correlations between raw materials compositions 

and electric properties. In a first part, different sources for potassium, sodium, niobium 

and tantalum were tested and in a second part various potassium niobates having 

different stoichiometry were employed to determine their influence on the piezoelectric 

properties. The final stoichiometry of the materials produced is always the same 
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(0.93 (K0.47Na0.53)NbO3 - 0.03 SCNN15 – 0.04 LT) and, the stoichiometry variations due 

to different stoichiometry of the starting materials were compensated using carbonates. 

 

 

i) Experimental 

 

The raw materials used to produce the first series were 3 different potassium- and 

sodium-niobate, tantalum- and niobium-pentoxide, sodium- and potassium-carbonate. 

Table 9 gives the composition of the starting materials employed for each composition 

(enumerated from 1 to 8). The composition of the precursors employed was 

determined by the results of X-ray fluorescence spectroscopy given by the 

manufacturer. To describe the precursors the nomenclature employed refers always  to 

the niobium and tantalum being 1 (as they are non-volatile elements, it can be though 

that their content remains constant in the ceramic) and the number written is the 

content of alkali in reference to those elements. For example K:Nb=1.014 means that 

the stoichiometry of this precursor is K1.014Nb1O3+δ; the compensation of this precursor 

is made with the addition of niobium oxide to achieve the stoichiometry KNbO3. For 

precursors having a deficit in sodium or potassium, this is compensated by the addition 

of sodium or potassium carbonate. In the precursors, niobium and tantalum were 

selected as references as they are not as volatile as the alkali elements. The 

composition selected was 0.93 (K0.47Na0.53)NbO3 – 0.04 LiTaO3 - 0.03 SCNN15 where 

SCNN 15 was already prepared without calcination. 

 

Table 9: starting materials and their composition 

1 Carbonate 

2 K:Nb=1, Na:Nb=1.021, K:Ta=0.934 

3 K:Nb=1.014, Na:Nb=0.9934, K:Ta=0.934 

4 Ta2O5, K:Nb=1.014, Na:Nb=0.9934 

5 K:Nb=1.027, Na:Nb=0.996, K:Ta=0.934 

6 Ta2O5, K:Nb=1.027, Na:Nb=0.996 

7 K:Nb=1.014, Na:Nb=0.996, K:Ta=0.934 

8 K:Nb=1.027, Na:Nb=0.9934, K:Ta=0.934 
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The composition number 1 was produced with carbonates in order to have a reference; 

the other combinations of starting materials were arbitrarily selected, considering the 8 

compositions per series and the starting materials available. The analysis of this series 

was more detailed than the other ones as the key parameter for an optimal processing 

are investigated. 

 

ii) Results 

 

First dilatometer measurements on non-calcined powders allow the observation of the 

calcination and sintering behaviour of different materials; the two parameters 

considered are the sintering starting temperature and the sintering rate. Fig. 70 shows 

the densification behaviour and the densification rate for compositions 1 and 3 of table 

9. The difference of sintering behaviour between the samples produced with 

carbonates as raw materials and the samples produced with precursors was 

investigated and subsequently the difference between the raw materials was analysed. 
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Fig. 70: Densification behaviour of two samples hav ing the composition 1 and 3 of table 9  

 

The sintering behaviour of all samples is shown in Fig. 71. The sintering begins around 

1000°C for all samples. 
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Fig. 71: Sintering behaviour of 0.93 (K 0.47Na0.53)NbO3 – 0.04 LiTaO 3 - 0.03 SCNN15 

prepared with different precursors 

 

In addition to dilatometer measurements, X-ray analysis of the calcined powders were 

carried out to prove the phase formation in the samples. The composition of the 

calcined powders can have an influence on the sintering behaviour of the ceramics, so 

the detection of second phases, which can have benefits on the sintering is essential to 

control and understand the interactions between the different elements. 

The results of the X-ray analysis of powders, calcined at 750°C for 5 hours, are given in 

Table 10.  

The dielectric measurements of the samples are shown in Fig. 72; the different colours 

presented different sintering processes. 
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Fig. 72: dielectric constant and losses of 0.93 (K 0.47Na0.53)NbO3 – 0.04 LiTaO 3 - 

0.03 SCNN15 prepared with different precursors 

 



VIII. Optimisation of Lead-Free Compositions   110 

 

 

To complete the dielectric measurement the piezoelectric coefficients d33
* are 

measured as shown in Fig. 73. 
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Fig. 73: d 33

* of 0.93 (K 0.47Na0.53)NbO3 – 0.04 LiTaO 3 - 0.03 SCNN15 prepared with different 

precursors  

 

Table 10: phase composition of calcined powders in vol. % 

Sample KN NN TB (K,Na)NbO3 

1 44,7 33,1 7,6 14,6 

2 41,9 36,8 6,2 15,1 

3 44,8 32 6 17,2 

4 43,1 38,2 5,5 13,2 

5 41,7 37,6 5,8 14,9 

6 39,4 39,7 6,5 14,4 

7 40 38,5 5,4 16,1 

8 42,5 35,7 5,2 16,6 

 

The samples from the composition 2 of table 9 have a d33
* of around 200 pm/V 

independently of their sintering parameter. The highest d33
* values were recorded for 

the samples from the compositions 3, 6 and 7. The piezoelectric coefficients measured 

were partly higher than those previously measured with values higher than 300 pm/V. 

 

b. SodiumNiobate 
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i) Experimental 

 

Eight lots of NN were prepared by the supplier with different stoichiometry (~20g each). 

The eight stoichiometries available for Na:Nb were: 0.934, 0.9964, 1.0198, 1.0266, 

1.0369, 1.0379, 1.04154 and 1.0443, i.e. for 2 samples potassium was in deficit and for 

the 6 others potassium was in excess. The other raw materials used were KT 

(K:Ta=0.934:1), KN (K:Nb=1.014:1), Nb2O5 and  Li2CO3. 

 

ii) Results 

 

As well as for the other experimental series first a dilatometer measurement of all 

samples was carried out (see Fig. 74). 
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Fig. 74: sintering behaviour of 0.93 (K 0.47Na0.53)NbO3 - 0.04 LiTaO 3 - 0.03 SCNN15 prepared 

with different NaNbO 3 

 

The influence of the dwell to enhance the formation of the perovskite was also 

analysed. Three different sintering programmes were carried out: 

- maintain 5h at 800°C, sintering 1h at 1140°C 

- maintain 2h at 800°C, sintering 1h at 1140°C 

- sintering 1h at 1140°C 

Fig. 75 shows the dielectric properties of the samples prepared with different NaNbO3 

precursors as a function of the potassium excess in these precursors with different 

sintering programs. 
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Fig. 75: dielectric contant and losses of 0.93 (K 0.47Na0.53)NbO3 - 0.04 LiTaO 3 - 0.03 SCNN15 

prepared with different NaNbO 3 precursors 

 

The piezoelectric constant should complement the overview on the material properties 

in relation to the stoichiometry of the potassium niobate employed in the preparation. 

These are shown in Fig. 76 in function of the potassium excess used.  
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Fig. 76: d 33

* of 0.93 (K 0.47Na0.53)NbO3 – 0.04 LiTaO 3 - 0.03 SCNN15 prepared with different 

NaNbO3 precursors 
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c. Discussion 

 

During the dilatometer measurements of samples from the library of the first part, i.e. in 

the library where the samples were prepared with different sources for potassium, 

sodium, niobium and tantalum (see 8.2.1), a first hump is visible at 200°C for the 

carbonate-based ceramic; this can be attributed to the beginning of the decarboxylation 

of the carbonates. Then the densification rate increased around 450°C. That can be 

attributed to the perovskite formation. The precursor-based ceramic (number 3, in grey) 

shows an almost linear expansion up to 1000°C which mea ns that this ceramics shows 

a flat densification rate. The formation of the perovskite for the precursor-based 

ceramic can not be easily detected by dilatometer measurement as the main 

precursors employed (NN and KN) have the same crystal structure as the final 

compound (perovskite) and the parameters of their unit cells are close (See section 

3.4.3 ). 

The dilatometer curves of all the samples shown in Fig. 71 are quite similar to those in 

Part 7.2 and the sintering of all ceramics begins around 1000°C. It can be observed 

that the samples having the compositions 3 and 6 have a higher densification rate than 

the other samples. 

The phase compositions of the calcined samples are similar as shown in table 10. The 

contents in potassium and sodium niobate are higher than expected. The perovskite 

transformation of potassium and sodium niobate is quasi undetectable through 

dilatometer measurement on the calcined samples, therefore it was thought that their 

content would be rather low in comparison to KNN. It can be observed that the 

tungsten bronze structure is already formed at low temperatures although in the 

literature the calcination of SCNN15 is reported to be effective only at high 

temperature 178 . This is also surprising as in the previous series no presence of 

tungsten-bronze was detected in the sintered ceramic. 

The values of the dielectric constant and losses are scattered for both measurements 

and highly dependent on the sintering temperature and the sintering program. The 

samples sintered at 1140°C for 1 hour show the highest relative dielectric constant. 

The samples sintered at 1100°C for 1 hour show lower r elative dielectric constants and 

the samples sintered with a dwell show the lowest dielectric constant. Regarding the 

dielectric losses, they are dependent on the composition as well as on the sintering 

temperature. For almost all the samples the dielectric losses of samples sintered with a 

dwell are lower than the dielectric losses of samples sintered without. The 
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compositions 3 and 6 from table 9, which showed the fastest sintering rate in Fig. 71, 

show also the lowest dielectric losses with samples of the composition 7. Samples from 

the compositions 2, 4 and 8 from table 9 show the highest dielectric losses and 

samples from the compositions 4 and 8 from table 9 the highest relative dielectric 

constant. Often samples having high dielectric losses show low electric resistance and 

for those compositions it is difficult to dissociate the contribution to the relative 

permittivity from the elevated conductivity and the intrinsic property of the material. 

As for the other properties the piezoelectric coefficient of the samples is highly 

dependent on the sintering temperature. This was not the case in the previous series 

(see chapter 8.1). The lowest values were measured on the samples of the 

compositions 1, 4 and 8 from table 9. The composition 1 is carbonate-based, and it is 

assumed that the samples are porous due to the evaporation of CO2 during the 

preparation. Therefore the piezoelectric coefficient remains low; the samples 4 and 8 

show the highest dielectric losses and among the highest relative dielectric permittivity. 

 

The second part of this experimental series focussed on the stoichiometry of the 

sodium niobate. The sample processed with NN having a deficit in potassium begins to 

sinter at lower temperature (around 1000°C) but the densification rate is rather low. 

The samples prepared with NN with an excess in potassium begin to sinter at higher 

temperatures (around 1050°C) but with a high sinteri ng rate and among them the 

sample prepared the NN with 3.79 mol.% potassium excess shows the quickest 

sintering rate. 

The values for both, relative dielectric constant and dielectric losses, were scattered 

and independent of the sintering program. The interpretation of the differences 

between the two precursor families (those having potassium excess and deficit) is not 

clear as few precursors with potassium deficit were available and so no statistic could 

be established. 

The samples prepared with NN containing potassium excess have a slightly higher d33
* 

and a dwell at 800°C is not suitable to improve the p iezoelectric properties. The 

majority of the samples having suffered a long maintain previous to the sintering (5h) 

were not measurable at 2 kV/mm due to short-circuits. 

 

All the piezoelectric and dielectric results of the first part of this experimental series are 

summarised in Fig. 77, showing the dependence of the piezoelectric coefficient, the 

relative dielectric permittivity with the stoichiometry of the potassium and sodium 

niobate. The other precursors are not summarised in this figure as the potassium and 
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sodium niobate are the main components and the addition of other parameters would 

complicate the visualisation.  
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Fig. 77: dependence of electric properties of 0.93 (K0.47Na0.53)NbO3 – 0.04 LiTaO 3 - 0.03 

SCNN15 prepared with different precursors sintered at 1140°C 

 

The dependence of the properties on the stoichiometry of the starting materials cannot 

be directly seen with this experimental series, therefore parameters must be handled 

separately. Thus in the next series which is the second part of this experimental series, 

different batches of NN will be tested, the other raw materials being constant. 

 

The best properties were obtained in the second part of this experimental series for the 

samples processed with the NN having 1.98 mol% sodium excess, sintered at 1140°C 

without maintain; moreover, the relative dielectric constant of this sample is 750 and 

the losses are rather low (0.12). With this second experimental series high d33
* values 

as well as low tan δ could be reproduced but correlations between the raw materials 

employed, the preparation, the sintering and the properties are difficult to identify at this 

state of the research. It has been observed that the use of NN with a slight potassium 

excess provides better properties of the material. A slight potassium excess into NN 

can have two influences on the material: 

- compensate the evaporation of sodium during firing and achieve optimal equilibrium 

in the material 

- secondary phases induced by the potassium excess can favour the sintering of the 

materials 

Moreover no maintain should be carried out during the sintering since the desired 

properties decline. A dwell increases the sintering time and the probabilities of alkali 
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evaporation are also increased. So a dwell for this area of material compositions does 

not contribute to the improvement of the material. 

 

More parameters, such as the stoichiometry of the alkali elements in the material play 

an essential role and will be thereafter analysed in the third experimental series. 

 

3. Third Experimental Series: Evaluation Non-

Stoichiometry  

 

a. Experimental 

 

It has been reported in the literature that for PZT a part of the lead evaporates during 

sintering, therefore, during the preparation a small lead excess is employed to 

compensate the evaporation179. For KNN-based materials the low vapour pressure of 

potassium and sodium can create a non-stoichiometry in the material resulting in 

formation of undesired secondary phases as it is the case for KN, consequently, as for 

PZT small excess of potassium and sodium was studied. At the same time the 

literature describes that a slight stoichiometric deficit in alkali elements into KNN 

favours the sintering180. A bright variation in potassium and sodium excess was studied 

during this experimental series and different powder combinations were also 

experimented to see the influence of their composition on the properties. For these 

libraries no sodium niobate with sodium excess was available as determined in the 

previous experimental series, consequently the libraries were processed with those 

present in laboratory, i.e. two powders with 0.4 and 0.7 mol% sodium deficit, named 

respectively NN-0.4 and NN-0.7 and the deficit was compensated with potassium 

carbonate. 

 

The compositions studied were 0.97 [(K0.47Na0.53)0.94-xLi0.06] (Nb0.94Ta0.06)O3 – 0.03 

SCNN15 with -0.04 ≤ x ≤  0.03, i.e. a deficit of 3 mol% sodium and potassium up to an 

excess of 4 mol% were processed. The powders available were two potassium 

niobate, one with 1.4 mol% potassium excess (KN1.4) and one with 2.7 mol% excess 

(KN2.7) and the two sodium niobate described above. Four combinations were possible 

with these four powders: 



VIII. Optimisation of Lead-Free Compositions   117 

 

 

KN1.4/NN-0.7 

KN2.7/NN-0.4 

KN1.4/NN-0.4 

KN2.7/NN-0.7 

The four combinations lead to four libraries with identical compositions prepared with 

the four different precursor sets. The compositions of these libraries are shown in  

Table 11. 

Table 11: compositions of the libraries of the expe rimental series 

Nr. x Composition 0.97 [(K0.47Na0.53)0.94-xLi0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

1 +0.03 0.97 [(K0.47Na0.53)0.91Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

2 +0.02 0.97 [(K0.47Na0.53)0.92Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

3 +0.01 0.97 [(K0.47Na0.53)0.93Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

4 0 0.97 [(K0.47Na0.53)0.94Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

5 -0.01 0.97 [(K0.47Na0.53)0.95Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

6 -0.02 0.97 [(K0.47Na0.53)0.96Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

7 -0.03 0.97 [(K0.47Na0.53)0.97Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

8 -0.04 0.97 [(K0.47Na0.53)0.98Li0.06] (Nb0.94Ta0.06)O3 – 0.03 SCNN15 

b. Results 

 

The relative dielectric constants and the dielectric losses of the four libraries are 

represented in Fig. 78 (library prepared with the combination KN1.4/NN-0.7), Fig. 79 

(library prepared with the combination KN2.7/NN-0.4), Fig. 80 (library prepared with the 

combination KN1.4/NN-0.4) and Fig. 81 (library prepared with the combination KN2.7/NN-

0.7). 
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Fig. 78: relative dielectric constant and dielectri c losses of 0.97 [(K 0.47Na0.53)0.94-xLi 0.06] 

(Nb0.94Ta0.06)O3 – 0.03 SCNN15 prepared with KN 1.4 and NN -0.7 
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Fig. 79: relative dielectric constant and dielectri c losses of 0.97 [(K 0.47Na0.53)0.94-xLi 0.06] 

(Nb0.94Ta0.06)O3 – 0.03 SCNN15 prepared with KN 2.7 and NN -0.4 
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Fig. 80: relative dielectric constant and dielectri c losses of 0.97 [(K 0.47Na0.53)0.94-xLi 0.06] 

(Nb0.94Ta0.06)O3 – 0.03 SCNN15 prepared with KN 1.4 and NN -0.4 
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Fig. 81: relative dielectric constant and dielectri c losses of 0.97 [(K 0.47Na0.53)0.94-xLi 0.06] 

(Nb0.94Ta0.06)O3 – 0.03 SCNN15 prepared with KN 2.7 and NN -0.7 

 

The dielectric constants as well as the dielectric losses are different for all the libraries.  

After measurements of the dielectric properties, the piezoelectric coefficients were 

measured, shown in Fig. 83.  For these experimental series a new tool has been 
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employed to display the results. The automated d33
* measuring machine was fully 

operating and the software Spotfire® was utilised to plot the results. In the automated 

d33
* measuring machine two limiting parameters are employed to apply the electric 

field: either the electric field applied on the sample or the current passing through it. 

The amplifier used for the measurement of d33
* allows a maximum current of 1 mA; if 

the current passes this limit no electric field is applied.  
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Fig. 82: capacity in function of the temperature fo r 0.97 [(K 0.47Na0.53)0.96Li 0.06] 

(Nb0.94Ta0.06)O3 – 0.03 SCNN15 prepared from different precursors 
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Fig. 83: d 33

* of 0.97 [(K 0.47Na0.53)0.94-xLi 0.06] (Nb 0.94Ta0.06)O3 – 0.03 SCNN15 prepared from 

different precursors 
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The Curie temperature is the last parameter to be measured. Fig. 82 shows the curve 

measured on one sample of the composition 0.97 [(K0.47Na0.53)0.96Li0.06] (Nb0.94Ta0.06)O3 

– 0.03 SCNN15 from each library. 

 

c. Discussion 

 

The influence of the precursor combination in this experimental series is significant. 

The first library, processed with KN1.4 and NN-0.4, shows stable values of the relative 

dielectric constant only for sintering at 1050°C. The va lues of εr of the samples sintered 

at higher temperatures are also higher but more scattered. The values of the dielectric 

losses are rather low, scattered and the minimum is situated for A/B=1.02. 

The plots of the values of εr and tan δ of the second library, processed with KN2.7 and 

NN-0.4 follow the same profile, and both sink with higher A/B ratio. The values are lower 

for samples sintered at higher temperatures. The lowest value of the dielectric losses is 

attained for A/B ratio of 1.01 and at the same time the relative dielectric constant is 

about 500.  

In the results of the third library, processed with KN1.4 and NN-0.4 the tendency visible is 

the same for εr as well as for tan δ, i.e. a peak is present around A/B=1.03, except for 

the samples sintered at 1050°C. High dielectric losses are  often related to high 

conductivity therefore, in this library for high SCNN15 contents; it is difficult to discern 

the contribution to the relative dielectric constant from the material itself or from the 

conductivity. For lower A/B ratios, the losses are lower and therefore, the values of εr 

are more representative of the material properties. 

The last library was processed with the more non-stoichiometric precursors, i.e. with 

KN2.7 and NN-0.7. The results of the relative dielectric losses are rather scattered except 

for the samples sintered at 1100°C. A slight tendency i s visible for the dielectric losses 

and the samples sintered at 1125°C show the lowest losses. All the samples had lower 

losses for A/B=0.99 but the lowest losses were measured for the samples sintered at 

1125°C having A/B ratio of 1.02. The samples having A /B ratios higher than 1 had high 

relative dielectric constants. 

 

As well as the dielectric values, the values of d33
* measured of the different libraries 

which are supposed to have the same compositions are totally different. For the two 

first libraries the values do not as strongly depend on the sintering temperature as the 

two last libraries. In fact the opposite tendency is detectable: for the library processed 
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with KN1.4 and NN-0.7 the values of d33
* sink with increasing A/B ratios and for the library 

processed with KN2.7 and NN-0.4, a peak for A/B=1.03 is present. 

For the second library the plot of the d33
* values shows the opposite behaviour to that of 

εr and tan δ and furthermore the current passing through the sample decreases with 

increasing A/B ratio. This tendency is distinguishable for the two first libraries. The d33
* 

maximum measured for the two first libraries is almost the same: 225 pm/V. 

The d33
* values of the two last libraries are rather scattered. The curve of the dielectric 

measurement for the third library (processed with KN1.4 and NN-0.7) can be connected 

with the d33
* measurement; i.e. the losses increase with increasing A/B ratio and the 

current passing through the samples also increases with the A/B ratio. The curve of the 

d33
* values of the fourth library does not show a clear tendency either. The highest 

piezoelectric coefficient measured was 250 pm/V for A/B ratio of 1. 

The profile of the curves of the dielectric constant as function of the temperature should 

be the same as they are measured on samples having the same composition. For the 

samples from the two first libraries the orthorhombic-tetragonal phase formation 

revealed in a previous chapter is present at 125°C, w hereas the curve is flat in this 

area for the samples from the two last libraries. The Curie temperature is shifted to 

higher temperatures for the libraries 1, 2 and 3 (300°C for the library 1 and 3, 340°C for 

the library 2) and for the fourth library the curve is also flat, but a detailed view shows 

that the Curie temperature is situated around 270°C. 

Such high differences cannot be explained only by the different stoichiometries, other 

parameters concerning the precursors are investigated to control the quality of the 

samples produced. The parameters investigated for the different precursors powders 

were the specific surface area determined by the BET method (results Robert Bosch 

GmbH), the grain size distribution measured in water and the purity determined by X-

ray analysis (results Robert Bosch GmbH). The results are summarised in Table 12. 

 

Table 12: properties of different precursors  

 Lot Nr. 
Potassium/Sodium 

excess (mol%) 

BET 

(m².g-1) 

XRD 

Presence of 

external phase 

Grain size 

distribution 

(d50 in µm) 

20051001 +2.7 4.23 + 1.05 
KN 

20051105 +1.4 4.31 + 0.96 

20060205 -0.7 2.33 + 2.64 
NN 

20051115 -0.4 4.67 +++ 0.98 
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The precursors employed show important differences for the properties measured. To 

reduce the differences concerning the specific surface area and the grain size 

distribution in the next experimental series the powders were previously ground. 

 

The third experimental series was focussed on the relations between precursor 

combinations, lack of stochiometry of the weight composition and the resulting 

properties. The high values of 290 pm/V measured during the discovery of the new 

material system could not be reproduced as previously but similar values were 

measured (250 pm/V). However, no correlation between the high values measured and 

the precursors used was found. No real difference of importance between the 

precursors could be determined. For the two first libraries and for the fourth of this 

experimental series the dielectric losses were lower for higher A/B ratios, this has not 

necessarily a direct consequence on the values of the piezoelectric coefficient but the 

properties measured on samples having low tan δ are more reliable as the εr measured 

is an intrinsic property of the material and during the d33
* measurement the current 

remains under the limiting value given by the amplifier and the risk of spark shortening 

is also lower. Thereof, a slight alkali excess should improve the properties of KNN-LT-

SCNN15. To verify this, further experimental series with KNN-LT-based powders with 

an alkali excess were prepared as basis for further investigations. 

 

4. Fourth Experimental Series: Evaluation of alkali 

elements excess  

 

a. Experimental 

 

From the last experimental series it is though that a small potassium and sodium 

excess into KNN-based ceramics could improve the properties. Therefore, to try to 

reproduce the first results, the preparation method was the same as used during the 

discovery of new KNN-based ceramics, i.e. powders from the (K,Na,Li)(Nb,Ta)O3 

system were classically prepared and then used as base for further doping with 

SCNN15. The KNN was doped with 6 mol% LT as we conclude from the first 

experimental series and two NN as well as two KN were tested simultaneously. 
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Thereof, 4 powders were prepared: 2 with 1 mol% sodium and potassium excess 

prepared from two different sodium and potassium niobates and 2 with 2 mol% sodium 

and potassium excess prepared from the same powders (see Table 13). 

 

Table 13: Research libraries for the fourth experim ental series 

Basic material system 
K/Na 

Excess 

Precursor 

combinations 
 

SCNN15 

Doping 
Library 

KN1.4 / NN-0.4 LKNNT1.1 1 [(K0,47Na0,53)0,95Li0,06] 

(Nb0,94Ta0,06)O3 
1 mol% 

KN2.7 /  NN-0.7 LKNNT1.2 2 

KN1.4 / NN-0.4 LKNNT2.1 3 [(K0,47Na0,53)0,96Li0,06] 

(Nb0,94Ta0,06)O3 
2 mol% 

KN2.7 /  NN-0.7 LKNNT2.2 

0-7 mol% 

4 

 

The first two libraries prepared from LKNNT having 1 mol% sodium and potassium 

excess were investigated and then the two other libraries prepared from a LKNNT 

having 2 mol% were studied. 

The composition of the LKNNT selected was [(K0.47Na0.53)0.95Li0.06] (Nb0.94Ta0.06)O3, as 

stated before, it contains 1 mol% alkali element excess, i.e. 0.5 mol% excess sodium 

and 0.5 mol% excess potassium. Two powders with these compositions were 

classically prepared; one with a potassium niobate having 1.4 mol% potassium excess 

regarding niobium (KN1.4) and with a sodium niobate having 0.4 mol% sodium deficit 

regarding niobium (NN-0.4), called powder LKNNT1.1, the second powder was prepared 

with a potassium niobate having 2.7 mol% potassium excess regarding niobium (KN2.7) 

and with a sodium niobate having 0.7 mol% sodium deficit regarding niobium (NN-0.7), 

called LKNNT1.2. These powders were subsequently doped with SCNN15 between 0 

and 7 mol% with 1 mol% steps. 

 

b. Results: 1 mol% sodium and potassium excess 

 

The preparation of these powders allows reducing the differences concerning the 

specific surface area and the grain size distribution. Fig. 84 shows the particle size 

distribution of different powders. Typical curves of a sodium niobate and lithium 

carbonate were added to see the benefits of previous grinding of the powders on the 

particle size distribution. The grinding of Li2CO3, KN, NN and KT (and eventually 

Nb2O5, K2CO3 and Na2CO3) allows a unimodal particle size distribution of all powders. 

When the powders were ground at the same time, with similar grinding medium (ZrO2-
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spheres) and in similar grinding cup, the particle size of both powders for the binary 

libraries was approximately the same allowing a better mixing of both powders in the 

Speedmixer®. 
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Fig. 84: particle size distríbution of different po wders   

 

The results of the dielectric measurements for the library prepared with LKNNT1.1 are 

shown in Fig. 85 and those for the library prepared with LKNNT1.2 are shown in Fig. 

86.  
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Fig. 85: relative dielectric constant and dielectri c losses of 1-x [(K 0.47Na0.53)0.95Li 0.06] 

(Nb0.94Ta0.06)O3 – x SCNN15 prepared from LKNNT1.1 
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Fig. 86: relative dielectric constant and dielectri c losses of 1-x [(K 0.47Na0.53)0.95Li 0.06] 

(Nb0.94Ta0.06)O3 – x SCNN15 prepared from LKNNT1.2 

 

The Fig. 87 shows the d33
* measured in function of the compositions, i.e. of the 

concentration of SCNN15, furthermore, the colour displays the maximal current 

measured. Both diagrams show a maximum for different compositions. The library 

prepared with LKNNT1.1 shows a maximum for 1 mol% SCNN15 about 225 pm/V and 

the maximum of the second one is situated for 4 mol% SCNN15 with a value of 

d33
*=160 pm/V. 

0mA 1mA

d 3
3* 

[p
m

.V
-1

]

250

200

150

100

50

0

250

200

150

100

50

0

SCNN    0mol%

d 3
3* 

[p
m

.V
-1

]

7mol% SCNN    0mol% 7mol%

LKNNT 1.1 LKNNT 1.2

0mA 1mA

d 3
3* 

[p
m

.V
-1

]

250

200

150

100

50

0

250

200

150

100

50

0

SCNN    0mol%

d 3
3* 

[p
m

.V
-1

]

7mol% SCNN    0mol% 7mol%

0mA 1mA

d 3
3* 

[p
m

.V
-1

]

250

200

150

100

50

0

250

200

150

100

50

0

SCNN    0mol%

d 3
3* 

[p
m

.V
-1

]

7mol% SCNN    0mol% 7mol%

LKNNT 1.1 LKNNT 1.2

 
Fig. 87: d 33

* of 1-x [(K 0.47Na0.53)0.95Li 0.06] (Nb 0.94Ta0.06)O3 – x SCNN15 

 

Nevertheless to understand the reason of higher properties for samples containing 1 up 

to 2 mol% SCNN15 with LKNNT1.1, microstructure images were collected by means of 

SEM. The evolution of the microstructure depending on the SCNN15 content is visible 

in Fig. 88. 
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Fig. 88: microstrucure of 1-x [(K 0.47Na0.53)0.95Li 0.06] (Nb 0.94Ta0.06)O3 – x SCNN15 prepared 

from LKNNT1.1 

 

The Curie temperature was measured for samples containing different doping levels as 

shown in Fig. 89. 
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Fig. 89: Curie temperature of 1-x [(K 0.47Na0.53)0.95Li 0.06] (Nb 0.94Ta0.06)O3 – x SCNN15 prepared 

from LKNNT1.1 

 

 

c. Results: 2 mol% sodium and potassium excess 

 

The second part of the investigation was pursued with two LKNNT powders having 

2 mol% potassium and sodium excess, therefore its formula was 

[(K0.47Na0.53)0.96Li0.06](Nb0.94Ta0.06)O3. The precursors employed to prepare both powders 

were the same as previously, i.e. one powder was prepared with a potassium niobate 

having 1.4 mol% potassium excess regarding niobium and with a sodium niobate 

having 0.4 mol% sodium deficit relative to niobium, called powder LKNNT2.1 and the 

second powder was prepared with a potassium niobate having 2.7 mol% potassium 

excess relative to niobium and with a sodium niobate having 0.7 mol% sodium deficit 

relative to niobium, called LKNNT2.2. Both LKNNT were doped with SCNN15 between 

0 and 7 mol%. The results of the dielectric measurement are displayed in the Fig. 90 

for the library prepared from LKNNT2.1 and in the Fig. 91 for the library prepared from 

LKNNT2.2. 
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Fig. 90: relative dielectric constant and dielectri c losses of 1-x [(K 0.47Na0.53)0.96Li 0.06] 

(Nb0.94Ta0.06)O3 – x SCNN15 prepared from LKNNT2.1 
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Fig. 91: relative dielectric constant and dielectri c losses of 1-x [(K 0.47Na0.53)0.96Li 0.06] 

(Nb0.94Ta0.06)O3 – x SCNN15 prepared from LKNNT2.2 
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Fig. 92: d 33

* of 1-x [(K 0.47Na0.53)0.96Li 0.06](Nb 0.94Ta0.06)O3 - x SCNN15 prepared with different 

precursors  
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The values of d33
* of both libraries which are plotted in Fig. 92 are scattered. However a 

maximum is visible for both about 2 mol% SCNN15 doping as it was the case for the 

other libraries of this experimental series.  

The diagram of the capacitance in function of the temperature of samples of the 

compositions 1-x [(K0.47Na0.53)0.95Li0.06](Nb0.94Ta0.06)O3 – x SCNN15 prepared from the 

two different LKNNT with 2 mol% sodium and potassium excess is displayed in Fig. 93. 
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Fig. 93: Capacitance in function of the temperature  1-x [(K 0.47Na0.53)0.96Li 0.06](Nb 0.94Ta0.06)O3 

- x SCNN15 prepared with different precursors 

 

 

d. Discussion 

 

The library prepared with LKNNT1.1 shows dramatically high dielectric losses for high 

doping level (<4 mol%) and these are moreover dependent on the sintering 

temperature. For lower sintering temperatures the losses are higher, since the samples 

are not as dense as samples sintered at higher temperatures. Samples containing 

between 1 and 4 mol% SCNN15 show satisfying dielectric properties; the relative 

dielectric constants are situated between 400 and 900 and the losses are under 25%. 
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The library prepared with LKNNT1.2 shows a different behaviour concerning the 

relative dielectric constant and the dielectric losses. The dielectric constant are 

generally not as high as the previous library and a peak for 6 mol% SCNN is present 

where the value attains 800. The losses are low and independent of the SCNN15 

content.  

In both libraries it is possible to see a positive effect of the addition of SCNN15 to 

LKNNT prepared from KN and NN precursors: the dielectric constants are higher for 

doped samples and the losses are partially lower. To see if the results of the dielectric 

measurement are really satisfying, the piezoelectric coefficient d33
* must be also 

measured and the influence of the SCNN15 doping must be evaluated.  

The morphology and shape of the grains is different to those observed during the first 

phase of the development of new material systems (see Chapter 7.2). The density of 

the samples seems to be rather constant with the increase of the doping content. The 

average crystallite size increases between 0 and 2 mol% SCNN15 from 1 to 3µm and 

then decreases for 3 mol% and more SCNN15 to 0.5 µm. The microstructure analysis 

of samples from the library prepared from LKNNT1.1 shows that the doping with 

2 mol% leads to more homogenous grain size distribution as well as larger grains. 

The behaviour observed with the samples during the Curie temperature measurements 

from this experimental series is similar to those observed during the first phase of 

development of this material system. For high level of doping (4 mol% SCNN15 in Fig. 

89) a peak of low intensity is visible around 280°C whi ch indicates the Curie 

temperature of this sample. For the non-doped sample a shoulder around 125°C 

appeared, which can be interpreted as the orthorhombic to tetragonal phase 

transformation, whereas for the samples doped with 2 mol% SCNN15, this shoulder is 

not present. Both non-doped and 2 mol%-doped samples show a peak around 280°C 

during heating which was not present during cooling. The non-doped sample seems to 

have a Curie temperature higher than 400°C and the 2 mol%-doped samples a Curie 

temperature around 370°C (see Fig. 89). The dopants h ave the same effect onto KNN-

based ceramics as on other piezoelectric materials, i.e. the Curie temperature sinks 

with the doping level. Additionally, the addition of this doping seems to lead to the 

disappearance or the shifting of the orthorhombic-tetragonal phase transformation as 

no shoulder is visible on the curve of the doped samples. Therefore it seems that this 

dopant shifts the both transitions temperatures of KNN. 

 

In the second part of the fourth experimental series the evolution of the values of the 

relative dielectric constant and the dielectric losses for two libraries of the same 
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composition is rather similar. The relative dielectric constant εr increases with the 

SCNN15 content and the dielectric losses are dramatically high in the library prepared 

from LKNNT2.1 for SCNN15 contents exceeding 4 mol%. The dielectric losses of the 

library prepared from LKNNT2.2 are not as high after 4 mol% SCNN15 doping but a 

slight increase is visible. As it is the case for the libraries prepared with 1 mol% sodium 

and potassium excess the library prepared with the precursors KN2.7 and NN-0.7 the 

values of the dielectric losses are lower than the values of the dielectric losses of the 

library prepared with the precursors KN1.4 and NN-0.4. 

The behaviour of samples having the same theoretical composition is different. The 

non-doped samples prepared from LKNNT2.1 shows a Curie temperature higher than  

400°C whereas the sample prepared with LKNNT2.2 shows i ts maximal capacitance  

at about 380°C. The 2 mol%-doped LKNNT2.1 shows a max imum about 280°C and the 

sample with the same composition prepared with LKNNT2.2 has a Curie temperature 

of 340°C. The sample doped with 4 mol% SCNN15 prepar ed from LKNNT2.1 shows a 

weak maximum about 280°C, whereas the sample with the  same doping level but 

prepared from LKNNT2.2 shows a net capacitance maximum at the same temperature. 

 

In this experimental series the morphology of the precursors cannot be the cause of the 

difference between the results of four libraries as both LKNNT were ground before 

being used as starting powder for a binary library with SCNN15 and they show a 

narrow grain size distribution. One of the only parameter which could cause such 

differences is the stoichiometry of the precursors and thereof, the presence of 

unidentified phases together with the perovskite phases. 

The excess of alkali elements into TB-doped KNN shows positive effects on the sample 

quality. The conductivity of the samples proportional to the maximal amperage 

measured during d33
* measurement was lower for these experimental series than in the 

previous ones. Moreover, it has been shown that the dielectric and piezoelectric 

properties of KNN-based ceramics improved with the addition of SCNN15 for all 

libraries of this experimental series. The high temperature behaviour is rather different 

for samples having the same compositions from the different libraries. In both cases 

the Curie temperature decreases with SCNN15 doping. 

 

5. Conclusion 
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The goal was the optimisation of one of the most promising lead-free compositions 

developed in a previous phase, SCNN15-doped LKNNT. However reproduction 

problems were rapidly met, which were partly attributed to a different processing route 

on one side and to the use of different niobate precursors on the other hand. Despite 

these reproduction problems some improvements regarding the LT doping could be 

accomplished in the first part and it has been observed that 6 mol% LT into SCNN15-

doped KNN leads to superior properties. Other experimental series were studied to try 

to understand the relationship between the precursor compositions, their combination 

and the properties measured for the piezoelectric samples. It has been found that a 

sodium excess of about 1-2 mol% in the sodium niobate precursor allows to improve 

the properties of KNN-based samples. The third experimental series focussed on the 

lack of stochiometry between A and B sites and four libraries were carried out with the 

same compositions and different precursor combinations. The properties measured 

were different for all libraries but a slight improvement of the sample quality could be 

detected through the measurement of the dielectric losses for samples having an 

excess of alkaline elements (A/B > 1). Therefore, in the last experimental series 4 

different starting KNN powders with 1 and 2 mol% sodium and potassium excess as 

well as 6 mol% LT were prepared and doped with SCNN15. The quality of the samples 

improved and the maximal current measured for the majority of the sample was lower 

than 1mA. The 4 libraries showed the same tendencies, a peak of the piezoelectric 

coefficient at 1-2 mol% SCNN15. 

The optimisation of the LKNNT-SCNN15 carried out in this part did not allow to 

reproduce the sample with the same quality as first discovered, but some parameters 

are now assessed to achieve superior material properties: 

- the NN-precursor employed should have a sodium excess of about 1 mol% 

- sodium and potassium excess into KNN of 1 mol% 

- LT content of 6 mol% 

- SCNN15 content of 1-2 mol% 

- narrow particle size distribution of the different powders before calcination 

Despite the reproduction difficulties met during the optimisation of the material 

composition, satisfying properties could be constantly measured like a relative 

dielectric constant εr about 700, dielectric losses tan δ about 0.1 and a large  

piezoelectric coefficient d33
* of 225 pm/V. 
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IX. Experimental 

 

1. Sample preparation 

 

The samples were prepared with the method described in the chapter 6. The 

throughput of the compositions was not high enough to require the use of software and 

they were individually determined. The programming of a software was difficult due to 

the use of precursors with different stochiometry. For example to produce 

[(K0.47Na0.53)0.94Li0.06](Nb0.84Ta0.1Sb0.06)O3 from the precursors KN1.4 and NN-0.6, if the 

alkali ions had been provided only by the precursors to avoid the use of carbonates, 

the quantity of niobium would have been too high as shown in Table 14. 

 

Table 14: composition calculation (1) 

Precursor Quantity (mol) Alkali ions (mol) Niobium ions (mol) 

KN1.4 0.4357 0.4418 0.4357 

NN-0.6 0.5015 0.4982 0.5015 

Sum  0.94 0.9372 

 

Therefore, the quantity of precursors had to be adjusted and it was decided that each 

precursor should deliver the same amount of niobium. Hence the maximal quantity of 

precursor was fixed out 0.42 mol and the rest of alkali ions were inserted as carbonates 

as shown in Table 15. 

After calculation of each composition, the final stochiometry was controlled by means 

of Excel. After the determination of the stochiometry; the weight of each raw material 

for the 8 compositions of a library was calculated and recorded.  
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Table 15: composition calculation (2) 

Raw material Quantity (mol) Alkali ions (mol) Niobium ions (mol) 

KN1.4 0.42 0.42588 0.42 

NN-0.6 0.42 0.41723 0.42 

Na2CO3 0.080972 0.08097  

K2CO3 0.01592 0.01592  

Sum  0.94 0.84 

 

The powders were weighted per hand up to the fourth decimal place to find a balance 

between precision and time spend. The weighting up to the second decimal induced a 

maximal error of 15 mol % and the weighting up to the third decimal a maximal error of 

2 mol % as shown in  

Table 16 as example of the composition 0.97[(K0.47Na0.53)0.95Li0.06](Nb0.94Ta0.06)O3 – 0.03 

SCNN15 prepared from the raw materials KN1.4, NN-0.6, Li2CO3, Ta2O5, Na2CO3 and 

SCNN15. 

The error was amplified for raw materials with a lower molar weight like sodium and 

lithium carbonates. The truncation at the third decimal was considered acceptable for 

almost all components except sodium carbonate. The control of the stochiometry is 

crucial for KNN-based ceramics, therefore, an approximation of 2 mol% was not 

acceptable and the weighting should be made with a precision up to the fourth decimal 

which deliver admissible results without loosing a lot of time. 

 

After weighting of the powders in 50ml plastic cup adapted for Speed-mixer® they were 

mixed for 1 min at 2000 revolution/minute with 20ml alcohol as homogenising liquid. 

Tests were pursued to determine the best parameter as shown in Fig. 94. The dry 

mixed powders were not homogenous, white and black grains (from KN, NN and CuO) 

could be distinguished. The homogenisation with alcohol gave better results. The 

mixing time of only 30s was not sufficient to break all the agglomerates, and it is only 

after 1min that the homogeneity of the powders seemed to be sufficient. 

 

After mixing the powders were dried and inserted in 10x20x10mm³ alumina calcination 

crucibles. The small size of the calcination crucibles allows the parallel calcination of all 

powders at the same time in one oven. 
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Table 16: molar error induced by weighting precisio n 

Raw 

material 

Quantity 

for 

0.1mol 

(mol) 

Weight 

Min. 

weight 3 

decimal 

Max. 

weight 3 

decimal 

Min. mol Max. mol Error 

KN1.4 0.04271 7,8030 7,802 7,804 0,042701 0,042718 ±0.03% 

NN-0.6 0.04846 8,0152 8,015 8,016 0,048456 0,048472 ±0.02% 

Li2CO3 0.00582 0,2150 0,214 0,216 0,005793 0,005848 ±0.5% 

Ta2O5 0.00582 1,2859 1,285 1,286 0,005816 0,005820 ±0.07% 

Na2CO3 0.00069 0,0385 0,038 0,039 0,000683 0.000700 ±2% 

SCNN15 0.003 3,0217 3,021 3,022 0.002999 0.003000 ±0.005% 

        

Raw 

material 

Quantity 

for 

0.1mol 

(mol) 

Weight 

Min. 

weight 2 

decimal 

Max. 

weight 2 

decimal 

Min. mol Max. mol Error 

KN1.4 0.04271 7,8030 7,80 7,81 0,042696 0,04275 ±0.1% 

NN-0.6 0.04846 8,0152 8,01 8,02 0,048436 0,048496 ±0.07% 

Li2CO3 0.00582 0,2150 0,21 0,22 0,005684 0,005955 ±2.5% 

Ta2O5 0.00582 1,2859 1,28 1,29 0,005793 0,005839 ±0.5% 

Na2CO3 0.00069 0,0385 0,03 0,04 0,000566 0.000755 ±15% 

SCNN15 0.003 3,0217 3,02 3,03 0.002998 0.003008 ±0.07% 

 

 
Fig. 94: Powder mixing with Speedmixer 
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After the calcination the powders were ground in a planetary ball milling machine. The 

maximal throughput of the planetary ball milling machine is 8 powders parallel ground 

into 80 ml zirconium oxide grinding cup. The optimal grain size in function of the 

grinding medium was given by the constructor (Fritsch GmbH) and they recommended 

30 10 mm diameter zirconium oxide ball for the 80 ml grinding cups. The powders were 

grinded during 3 hours to obtain an optimal grain size repartition as shown in Fig. 95. 
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Fig. 95: Particle size distribution after different  milling time 

 

The pressing took place in specially designed silicon moulds as shown in Fig. 16. Due 

to the pressing in a isostatic press, the powders did not need the presence of any 

binder to be pressed. One composition filled in one mould produce 20 samples of each 

new composition. After filling of the moulds, they were sealed in a plastic bag and put 

in the cavity of a wet bag isostatic press (Dieffenbacher, Isomat CIP-Anlage). They 

were pressed up to 3000 bar during 1 min. No variations of these parameters were 

done as they were the typical parameters adjusted for this press. 

 

To avoid the diffusion effect of the samples with the sintering medium or sintering plate, 

5 samples of each composition were pilled up on a platinum foil and were encapsulated 

in a zirconium oxide sintering boat. The boat was placed in an oven and the desired 

temperature programme was carried out. 

For the characterisation the samples, their surfaces had to be parallel ground. To 

maintain the throughput and to achieve the same thickness for all samples of a library 

(which is later important for the measurement of d33
*) all the samples of a library were 

glued by means of wax on the grinding plate and parallel ground on both side of the 

samples. 
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The metallization of the samples was carried out by means of silver vapour deposition. 

The samples were placed in a silicon matrix, which sustains them in the silver vapour 

deposition machine (Leybold-Heraeus). A silicon matrix could contain the half of a 

library (48 samples) and to contact them around 1g of silver was necessary. 

 

2. Characterisation 

 

a. Electro-mechanical characterisation 

 

All the produced samples were electrically characterised as stated in the chapter $. 

The measurement of the relative dielectric constant was achieved by the measurement 

of the capacitance with a capacitance bridge (Wayne Kerr Automatic Precision Bridge 

B905). To obtain the value of the relative dielectric constant, the thickness and 

diameter of the sample must be taken into account.  Equation 1.15 defines the 

calculation of the relative dielectric constant of the material. 

t
A

εεC r0 ××=            (1.15) 

where C is the capacitance measured, ε0 is the permittivity of the air = 8.85.10-12 F/m, A 

is the area of the electrode and t the thickness of the sample. 

The dielectric losses are measured at the same time. They are determined as the 

tangent of the phase loss during the measurement of the capacitance. 

  

In the literature the piezoelectric coefficient d33, which is measured via the direct 

piezoelectric signal, is often used to asses the material properties. However, as the 

goal of the project was to find a replacement for PZT in the actuator industry, the large 

signal piezoelectric coefficient d33
*, which is measured with the indirect piezoelectric 

response was selected. The measurement of d33
* with a robot was described in a 

previous chapter. 

The definition of d33 is the current developed by a material in the poling direction 

submitted to a force in the poling direction per unit length; its unity is the C/N. The 

definition of d33
* is the strain developed in the poling direction under an applied electric 

field in the poling direction per length unit and its unity is m/V. Both d33 represent the 

piezoelectric coefficient measured via direct or indirect piezoelectric effect. The goal of 

this project was to find new materials to replace PZT in the actuator industry; where the 
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large signal piezoelectric coefficient is often used. Therefore to asses the piezoelectric 

material properties d33
* was measured. 

For the measurement, the thickness of the samples is needed as d33
* is a coefficient 

relative to unit length. As all the samples of a library are ground together the thickness 

is the same for all samples and is known. After silver vaporisation on the surface of the 

samples these are put onto a plate containing wells and the automated measurement 

of a whole library can be carried out. The description of the d33
* measurement robot is 

described in chapter 4.2.6. 

 

b. Curie temperature 

 

The Curie temperature of each composition was measured with bulk samples. Up to 

ten samples could be parallelly positioned in an oven between two contacts protected 

by alumina and heated up to the desired temperature with the selected ramp. The 

capacitances were recorded at constant time intervals. 

After measurement the data were processed with Origin and the temperature of 

maximal capacitance is the Curie temperature of the sample. 

 

c. X-ray analysis 

 

The X-ray analysis (Siemens SD500) was carried out on selected sintered samples, 

calcinated powder and on raw materials to analyse the phases present qualitatively as 

well as quantitatively. The diffractogrammes were recorded in an angular zone of [10°, 

80°] 2θ with an increment of 0.02° and a measuring time of 5sec for each step. The 

acceleration voltage was 40 kV and the current at the anode was 15mA. 

 

After record of the diffractogrammes the data were analysed and compared with ASTM 

data (American Society of Testing and Measuring). The qualitative measurements were 

carried out comparing the location of the reflexes and the quantitative measurements 

were carried out comparing their intensity. 

 

d. Dilatometer measurement 
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Dilatometer measurements (Netschz DIL402PC) were carried out in order to observe 

the behaviour of the samples during sintering. Powders of the selected samples were 

filled in silicon barrels with dimensions of 8 mm diameter and 10 mm height. These 

small barrels were subsequently uniaxially pressed up to 3000 bar to obtain pellets 

having the same properties in all directions. Subsequently the pellets were grinded to 

obtain plane parallel surfaces. 

Afterwards the samples were placed in the dilatometer and held with an alumina stem 

fixed to an inductive sensor. The dilatometer measurements took place in a 

temperature range from 25°C to 1150°C with a ramp o f 10 K.min-1. 

 

e. Microstructure analysis by means of SEM 

 

For the study of the microstructure the samples were first gradually polished up to 1µm 

and thermally etched. The chemical etching on KNN-based samples was not easy as 

the niobium oxide is chemically extremely stable; therefore, thermal etching was 

carried out at a temperature of about 100°C lower th an the sintering temperature.  

After etching the samples were glued on a support. To impeach electrical charging of 

the surface of the sample through the electron beam, the samples were sputtered with 

platinum.  After the sample preparation, the microstructure analyses were carried out 

by means of a scanning electron microscope. 

The secondary electron detector (Hitachi S-4100) allows taking different micrographs of 

the samples. To analyse the crystallite size distribution about 200 grains were detected 

in different areas of the sample to ensure that all the distributions were considered. 

 

f. Differential Scanning Calorimetry (DSC) 

 

The DSC (Netzsch DTA404PS Eos) was used to detect the phase transformation 

during calcination and sintering. DSC is a thermo-analytical technique in which the 

difference of heat amount required to increase the temperature of a sample and a 

reference as function of the temperature is measured. The reference sample used was 

made of aluminum oxide which has a linear heat capacity over a large range of 

temperatures. The sample as well as the reference were placed in platinum crucible 

and heated up to 1200°C at a heating rate of 10 K/m in. 
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g. Specific Surface Area (SSA) 

 

The SSA determine the total specific external and internal surface area of disperse or 

porous solids by measuring the amount of physically adsorbed nitrogen according to 

the method of Brunauer, Emmett and Teller181 (BET method). 

 

h. Grain size distribution 

 

The grain size distribution was analysed via laser diffraction analysis (Malvern 

Instruments). The apparatus allows the grain size distribution of wet powders; 

therefore, the powders were mixed with distilled water and dispergator and 

homogenised 2 min with ultra-sounds. Consequently the solution was measured for 

1 min. 

3. Data management 

 

All the data concerning the production of the samples as well as their properties 

measured were recorded in a database created for the design of the plates and the 

properties measured. The databases as well as the table used for the download of the 

results were created by the project partner of the chair of Technical Chemistry at the 

University of Saarbrücken. The download of the information was divided on two parts. 

First the processing of the samples was recorded in the database with help of a 

specially designed excel sheet. Then the measured properties were also registered in 

another specially designed Excel sheet and also downloaded in the same database. 

The overview on all the registered samples could be done connecting the database to 

a visualising software, Spotfire®. 

 

a. Samples Processing 

 

Different powders were used to process the samples. The first step was to record of 

the powders in the database. A dummy samples should be created to enlist the 

powders, i.e. the dummy sample was recorded per hand in the database as well as the 

powders composing it. For each powder used, the stochiometry is recorded as shown 



IX. Experimental   140 

 

 

in Fig. 96. The precursor registered in this example is KNbO3 (Lot. 20070612). From 

the X-ray fluorescence analysis given by the provider, the stochiometry calculated was 

K0.992Nb1O3-δ. As the sum of the compounds except oxygen should be 100%, the 

composition of this precursor was calculated and this compound contained 49.98 mol% 

potassium and 50.02 mol% niobium. The composition is written as _P:Nb/50,02-

K/49,98-.   

 
Fig. 96: Data import for new chemicals  

 

At the same time the raw materials are recorded in the database, different processing 

must also be recorded with the same dummy sample. In the database different 

processing steps (Method) could be chosen like pipetting, coating, milling, etc. To 

process the bulk samples, variations were introduced in the method as calcination and 

sintering temperature, dwell and ramp. Few methods were often used as KNN-based 

materials calcine and sinter about the same temperatures. 

After recording of the raw materials (new chemicals) and methods in the database the 

sample compositions and processing can be downloaded. The number of samples is 

rather high to register them as single samples in the database. Therefore, an Excel 

sheet with all the samples processed in a library was developed in parallel to the 

database. Libraries are composed of 8 different compositions, processed with 4 

different parameters and 3 samples per composition and processing are available, that 

means that a library contains 96 samples. In the Excel sheet a sequential number is 

given to all samples (S2_001_XXXX), the number of the sample in the library, the 

composition by the chemicals employed and their content, the method, operator, date 

of synthesis and the X and Y position in the d33
* robot. The Fig. 97 gives an overview of 

this Excel sheet. The boxes marked in blue are those to fill. 
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Fig. 97: Excel sheet employed to download the sampl es compositions and processing of 

one library 

 

The composition of the samples is given in mol % and must be calculated for each new 

composition. For example, to prepare the following composition 

0.97[(K0.47Na0.53)0.95Li0.06](Nb0.94Ta0.06)O3 – 0.03 SCNN15 the quantity of each powder is 

calculated and normalised as shown in Table 17. 

 

Table 17: normalisation of composition 

Chemical Lot. Number Quantity for 1 mol (mol) Mol. % 

KN 20051105 0.427125 42.42 

NN 20060205 0.484675 48.13 

Li2CO3  0.0291 2.89 

Ta2O5  0.0291 2.89 

K2CO3  0.00692 0.69 

SCNN15  0.03 2.98 

 

b. Results 

 

After filling the Excel sheet for the samples processing, it can be downloaded in the 

database. Each sample is recorded with a sequential number as well as X and Y 

coordinates, which must be used to record the properties measured of the samples. To 

download the properties, an Excel sheet must be also created. The sample name is 

then changed to S2_001_XXXX X=x Y=y. For the evaluation of the properties, different 

key parameters were measured and a selection of them was done and these were 

recorded in the database. The relative dielectric constant and dielectric losses before 

and after poling, d33
* by 1 and 2 kV/mm and the Curie temperature were always 
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recorded. Additional parameters could also be recorded as the coercive field and the 

remnant polarisation.  

 
Fig. 98: Excel sheet for properties download 

 

After download of the results all the samples could be found in the database with their 

identification number and their X and Y place. The composition, sintering program and 

the properties of all samples were consultable. 

The complete database could be connected to Spotfire® for a fast visualisation of all 

data available concerning the samples processing as well as results. For individual 

libraries the visualisation of the results was carried out by direct import of the Excel 

sheet into Spotfire®. 

 

c. Data mining 

 

The data mining was carried out with help of the visualisation software Sportfire®. As 

stated before two modes of visualisation were available, through connection with the 

database or by direct import of the results. 
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The presentation of most of the results was done by direct import of the results from 

the Excel sheet into Sportfire®. The advantage is a quick import and evaluation of the 

results. During this work the samples were classified by composition in the x-axis. Then 

in the y-axis one of the key parameters was given and, in colour, a second property 

appeared (often the combination was εr / tan δ or d33
* at 2kV/mm / I max). The shape of 

the plots indicated the sintering temperature. 3D visualisation was also possible but 

they are not reported in this work as their visualisation is difficult. 
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X. Overview and Further Developments 

 

 

The aim of this work was to develop a high throughput experimentation method for the 

screening of bulk lead-free piezoelectric ceramics via mixed-oxide route. The 

established route allows the evaluation of different parameters like doping and sintering 

during processing. Moreover a large amount of key parameters could be screened for a 

complete characterisation of the samples. With this method new doping systems for 

lead-free piezoelectric ceramics were developed and optimised. The goals of this work 

were the following: 

 

Set up of a HTE route for bulk samples produced from mixed-oxide 

Production of libraries for the evaluation of the influence of composition as well as 

sintering parameters 

Construction of a HT characterisation machine for piezoelectric samples 

Automated characterisation of the samples and properties evaluation 

 

The set up of the HTE processing route for bulk materials presented different 

challenges: 

  

Few automated powder dosing systems were available. 

The homogenisation of powders is difficult. 

In the case of piezoelectric ceramics, the powders need to be pressed and sintered. 

 

To solve these different problems, the first step of the processing (powders dosing) 

was carried out per hand which on one hand slows the production of samples but 

which on the other hand allows more flexibility regarding the library design. After 

dosage, the powders were mixed and subsequently calcined. Ensuing the powders 

were parallel grinded and dried. Finally the powders of different compositions were 

parallel pressed into pellets and sintered. 
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In this case it is difficult to talk about a high throughput experimentation route as the 

sample preparation is not fully automated and it is not an innovative processing route. 

The method developed consisted in a deep parallelisation of different steps of a 

classical preparation. The throughput of this parallelised method is 4 times higher than 

the classical preparation  

High throughput experimentation often requires high throughput screening. 

Piezoelectric samples need two electrodes on flat parallel surfaces to ensure a 

homogeneous propagation of the electric field applied during measurement. 

Accordingly the samples were plane polished in parallel after sintering and the whole 

surfaces were contacted by means of silver vapour deposition. Afterwards the key 

properties of the samples (εr, tan δ, d33
* and TC) could be automatically determined at a 

fast rate. The evaluation of the results was improved by the use of the visualisation 

software Spotfire®. The characterisation of a library can be called “High Throughput”. 

The sample production and characterisation allowed the evaluation of 10 new 

compositions having suffered four different sintering programs which is normal for a 

second screening. 

 

The accelerated production method was tested on two known material systems, a PZT 

and a KNN-based ceramics. 

For the PZT-based material system, a Zr/Ti variation was applied to find the 

morphotropic phase boundary. The method was successful as the MPB could be found 

with the measurement of εr and the values of d33
* measured were almost as high as the 

values measured on conventionally processed samples. 

To process the KNN-based material system improvements had to be carried out on the 

present method as follows: 

 

Use of KNbO3 and NaNbO3 precursors. 

Insertion of a new steps in the processing, i.e. the mixing with Speedmixer® and 

calcination before high energy milling. 

 

For this material system the method was also successful with results for the values of 

the measured properties close to the values found in the literature. 

The method has been successfully tested with two different material systems, the 

values obtained for the dielectric and piezoelectric measurement allowed the 
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identification of the MPB and interesting composition areas. Therefore the method 

could be applied to discover new materials. 

 

The HTE phase of material discovery was applied to KNN-based materials. The 

throughput of the method was too slow to permit using it as a material discovery 

method and it was focussed on the discovery of new doping system for KNN.  

The KNN doping with copper and germanium delivered promising results in the HTE 

phase. The losses were limited (<0.02), εr was low and d33
* up to 200 pm/V could be 

measured. However the reproducibility of the satisfying results (in particular concerning 

d33
*) was not totally controlled and problems were met during the upscaling. Larger 

quantities of the most promising composition could not be produced with the same 

properties measured during the HTE phase. 

The doping of KNN with lithium and tantalum was investigated not as a new material 

but as a starting composition for further doping. It has been seen that tungsten-bronze 

compounds could be promising doping materials for KNN-based piezoelectric 

ceramics. Three compounds having different dielectric and piezoelectric properties 

were selected and tested as doping for KNN between 0.5 and 5 mol%. The dielectric 

constants of the SBN and BNN-doped KNN were constant with low values and both 

showed a peak in the d33
* measurements of respectively 300 pm/V for 3 mol% SBN 

and 230 pm/V for 1.5 mol% BNN doping. The value of the Curie temperature and the 

orthorhombic-tetragonal phase transformation were reduced from respectively 400 and 

200°C for pure KNN to about 300 and 100°C for SBN a nd BNN doped-KNN. The KNN-

doping with SCNN15 showed a slight different behaviour concerning the dielectric and 

piezoelectric properties. The values of the dielectric losses were low, the values of the 

dielectric constant increase with the doping content and two peaks in the d33
* values 

were identified at 250 and 300 pm/V, for 0.5 and 3 mol% doping. The influence of the 

tungsten-bronze doping could be also detected through the measurement of the 

capacitance in function of the temperature, where the reduction of the orthorhombic-

tetragonal phase transformation as well as the Curie temperature to respectively 280 

and 120°C could be identified. The crystallite size dist ribution in the sintered samples 

was also altered by the tungsten-bronze doping. 

The doping with tungsten-bronze can create A-site vacancies in KNN improving its 

ability to sinter and its dielectric as well as piezoelectric properties as it is the case for 

PZT. 
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The processing method being close of a conventional processing, the optimisation of 

promising composition discovered could be also carried out on the same way. 

During the first experimental series the lithium and tantalum content were adjusted and 

different processings were tested. The non-expected results pointed out problems 

concerning the use of different batch of KNbO3 and NaNbO3 precursors. The dielectric 

properties were incoherent and the d33
* maximum measured was 200 pm/V. However it 

could be established through the measurement of the dielectric losses that a content of 

6 mol% lithium and tantalum in solid solution into SCNN-doped KNN provided a better 

quality to the samples as the losses attained their lowest level for this composition. 

The second experimental series was focussed on the precursor problematic by 

producing in the same libraries samples with the same composition but produced from 

starting powders having different stoichiometries. No results concerning the 

stoichiometry of KNbO3 could be delivered but it was arrest that an excess of 1 up to 

2 mol% sodium in NaNbO3 improved the piezoelectric properties. 

In the third experimental series the excess or deficit of sodium and potassium was 

evaluated in respect to an electronically neutral composition. Four libraries with the 

same final compositions were processed with four different precursor combinations. 

Despite the same end compositions of all samples from the libraries their behaviours 

were different, the maximum for different parameters being at different locations. 

However, it could be seen that an excess of 1 or 2 mol% sodium and potassium in 

respect to an electronically neutral composition improved the quality of the samples. 

The highest d33
* measured on the samples from this experimental series was 

225 pm/V. 

Before the processing of the fourth experimental series, four basics powders with 1 and 

2 mol% sodium and potassium excess, using two different precursors combinations 

were milled. These powders were used as basic compositions for further doping with 

SCNN between 0 and 7 mol%. The quality of the samples from these libraries was 

improved and several samples were measured. A tendency for higher d33
* could be 

observed for SCNN doping between 1 and 3 mol% where the values for d33
* reached 

225 pm/V. 

During this phase of optimisation of the first promising compositions, the high results 

previously measured could not be reproduced. However, parameters achieving 

superior performances could be arrested: 

Lithium and tantalum content of 6 mol% 

SCNN15 content between 1 and 3 mol% 

Use of NaNbO3 having a sodium excess about 1 or 2 mol% 
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Excess or 1 mol% sodium and potassium regarding the neutral composition 

 

The successfully established method for piezoelectric samples preparation and 

characterisation allows a throughput of about 10 new compositions per week. With this 

method new doping for KNN-based ceramics could be developed and optimised. 
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