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Abstract

In this thesis, the mechanisms underlying anesthesia and the adsorption of proteins on
solid surfaces have been studied using the method of molecular dynamics simulations.

It is generally assumed that biological membranes are the site of anesthetic action. How-
ever, there is no consensus whether anesthetics act directly by binding to membrane pro-
teins, thereby inhibiting their function, or indirectly by modulating the physical properties
of the lipid part of the membrane. In the simulations presented here, distinct changes of
lipid bilayer properties in response to the presence of alkanols, a group of anesthetics,
have been observed. An anesthetic-induced shift of the equilibrium between different
membrane protein conformations, modeled by simple geometric shapes, has been found.
In simulations with the ion channel gramicidin A embedded in a lipid bilayer, alkanols
distributed inhomogeneously in the bilayer, with almost no alkanol molecules residing in
close vicinity to the gramicidin. These results provide evidence for an indirect mode of
anesthetic action.

Spontaneous protein adsorption on solid-liquid interfaces is the first step in the forma-
tion of biofilms. Here, a coarse-grained molecular dynamics scheme has been applied to
study this complex process at high resolution, but still reaching the necessary time and
length scales. Changes in protein structure and dynamics after adsorption and preferred
orientations of proteins on the surface were observed.






Zusammenfassung

In dieser Arbeit wurde die Wirkungsweise von Anisthetika und die Adsorption von Pro-
teinen an Festkorperoberflichen mittels Molekiildynamik-Simulationen untersucht.

Es wird allgemein angenommen, dass Anésthetika auf biologische Membranen wirken.
Umstritten ist jedoch, ob Aniésthetika direkt an Membranproteine binden und damit deren
Funktion hemmen, oder ob sie indirekt wirken, indem sie die physikalischen Eigen-
schaften der Lipiddoppelschicht der Membran verdndern. Solche indirekten Effekte wur-
den in den hier vorgestellten Simulationen bei Anwesenheit von Alkanolen, einer Gruppe
von Andsthetika, beobachtet. Gleichzeitig wurde eine durch Anésthetika verursachte Ver-
schiebung des Gleichgewichts zwischen unterschiedlichen, vereinfacht dargestellten Pro-
teinkonformationen gefunden. Simulationen eines in einer Lipiddoppelschicht eingebet-
teten Ionenkanals zeigten eine sehr geringe Konzentration von Alkanolen in unmittelbarer
Nihe des Kanals. Diese Ergebnisse deuten auf eine indirekte Wirkungsweise von Anés-
thetika hin.

Spontane Adsorption von Proteinen an fest-fliissig Grenzflachen ist der erste Schritt bei
der Bildung von Biofilmen. Um diesen Prozess der Proteinadsorption mit hoher Auflo-
sung auf ausreichend langen Zeit- und Lingenskalen zu untersuchen, wurde ein ,,coarse-
grained* Molekiildynamik-Schema verwendet. Es wurden Veridnderungen in der Prote-
instruktur und -dynamik und bevorzugte Ausrichtungen der Proteine auf der Oberflache
beobachtet.
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1 Biological Basics and Motivation

Anesthetic action is generally assumed to take place at the site of biological membranes,
impeding signal propagation along or across cells. However, neither the exact molecular
target of anesthetics nor their mode of operation are known today.

Here, possible molecular mechanisms underlying anesthesia have been studied by means
of molecular dynamics simulations. In a first step, the influence of 1-alkanols of different
hydrocarbon chain lengths (Fig. 1.1) on lipid bilayers as a simplified approximation for
biological membranes has been investigated. The simulations provided a basis to judge

1-Ethanol 1-Octanol 1-Decanol 1-Tetradecanol
OH OH OH OH
CH, < CH, CH, CH,
CH, CH, CH, CH,
CH, CH, CH,
CH, CH, CH,
CH, CH, CH,
CH, CH, CH,
CH, CH, CH,
CH, CH, CH,
CH, CH,
CH, CH,
CH,
CH,
CH,
CH,

Figure 1.1: 1-alkanols (also called 1-alcohols) considered in this study. Characteristics are the po-
lar hydroxyl headgroup bonded to the first carbon atom and the hydrophobic hydrocarbon chain. 1-
alkanols with a chain length of up to 12 carbon atoms (dodecanol) are anesthetics (see, e. g., [206]).

different models previously proposed for anesthesia on an atomistic level, as 1-alkanols up
to a chain length of approximately 12 carbon atoms act as anesthetics (see, e. g., [206]).
Subsequently, effects of high pressure on lipid bilayers containing 1-alkanols were as-
sessed in additional simulations, as in vivo anesthesia has been shown to be reversed by
application of pressure. Emphasis was placed on the calculation of local lateral stresses
within the bilayers, which have been suggested to play an important role in the mech-
anism of anesthesia [33-35]. Quantitative predictions for a shift in the conformational
equilibrium of membrane proteins, described by simple geometric shapes, were possible.
Finally, the influence of 1-alkanols on a membrane-embedded ion channel modeled in full
atomistic detail was investigated.
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1 Biological Basics and Motivation

The thesis starts with an introduction to biological membranes and membrane proteins,
before the term anesthesia is specified and different models of anesthetic action that are
currently discussed in literature are presented. In Chapter 2, an overview over the his-
tory and progress, as well as the limitations of molecular dynamics simulations is given,
together with a detailed explanation of simulation algorithms and techniques. Results ob-

tained within this part of the thesis are presented in the Chapters 3, 4, and 5, followed by
concluding remarks in Chapter 6.

1.1 Biological Membranes

Biological membranes are abundant in nature. Each cell is surrounded by a membrane
(a so-called plasma membrane or cell wall), segregating the cell cytoplasm from the sur-
rounding medium, and also single organelles within cells are typically enclosed by their
own membrane. By this compartmentalization of organisms in smaller, biologically ac-
tive, and highly specialized subunits, chemical reactions can be performed more effec-
tively. The membranes provide mechanical stability as well as high flexibility to the cell,
and they serve as selective filters for the passive transport (e. g., diffusion or osmosis) of
matter, being permeable only for some small, uncharged molecules, but impermeable for,
e. g., ions or larger amino acids. In this way, concentration and charge gradients in the cell
can be created and upholded. The transport of larger molecules and ions across cell walls
is ensured by the mechanisms of endo- and exocytosis, where small carrier vesicles fuse
with or constrict from the cell membrane (Fig. 1.2), and by specialized proteins inside the
membrane (e. g., ion channels or transport proteins). Furthermore, plasma membranes are
the site for receptor molecule binding (important for, e. g., cell-cell communication) and
the site for metabolic activities and energy producing processes. Finally, biological mem-
branes can propagate voltage pulses and are therefore also essential in signal transduction.

Inside
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Figure 1.2: Mechanism of exo- and endocytosis. In exocytosis, material from the inside of the
cell, that is enclosed in a small lipid vesicle, is released into the medium surrounding the cell by

fusion of the transport vesicle with the cell membrane. Endocytosis is the reverse process allowing
for the uptake of material into the cell.
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1.1 Biological Membranes

Plasma membranes of animal cells (Fig. 1.3) consist of three layers [144]: the glycocalix
at the outer membrane surface, a central lipid-protein layer, and the cytoskeleton at the
inner cell wall. The glycocalix (cell coat) is a carbohydrate-rich, macromolecular film
of several tens of nanometer thickness, built up by the extracellular domains of glyco-
lipids and glycoproteins (i. e., lipids and proteins with covalently bound oligosaccharides
(sugars)) that are anchored in the central lipid-protein layer. The cytoskeleton is a fibrous
protein network that provides mechanical stability to the cell. The characteristic and main
structural part of biological membranes is the lipid-protein layer (see Fig. 1.3), where
functional membrane proteins are embedded in or attached to a lipid bilayer. The mass

; {
é g D ;\{ :":{ ~ 3

e - -
Sy = =
 e——— N

Figure 1.3: Schematic picture of a biological membrane. The central layer consists of different
types of lipids (shown here in grey), glycolipids (blue), some sterols (black molecules, discernable
by their ring structure; only in eukaryotic cell membranes), and embedded membrane proteins
(green). At the cytoplasmic side (yellow), the lipid-protein layer is connected to the fibrous net-
work of the cytoskeleton, depicted here in red. At the extracellular side (green), the lipid-protein
layer is attached to the glycocalix, indicated by the carbohydrate moieties of the glycolipids (blue).

ratio of proteins to lipids depends on the membrane type and varies from 3.6 for mito-
chondrial membranes to 0.25 for myelin membranes [67]. For plasma membranes it is
about 1.0.

Lipids are amphiphilic molecules with a polar or negatively charged, hydrophilic head-
group and one or more hydrophobic hydrocarbon chains'. There exists a wide variety
of different lipids, varying in, e. g., the headgroup composition, the hydrocarbon chain
length, or the chain unsaturation. Depending on the ratio of the headgroup volume to
the chain volume and on the lipid concentration, lipids dissolved in water spontaneously

'In a broader sense, lipids can be defined as all naturally occurring molecules that are insoluble in water
(see, e.g., [19]). Here, I follow the notion commonly used in membrane biophysics (see, e. g., [98])
defining lipids as amphiphilic molecules, i. e., molecules with one polar and one apolar part.

17



1 Biological Basics and Motivation

aggregate into micelles or bilayers. In such a bilayer, a broad variety of different lipids,
mostly phospholipids (see Fig. 1.4) with two hydrocarbon chains of 8 to 22 carbon atoms
each, is arranged in a planar, sandwich-like structure, where the hydrocarbon chains
stretch into the bilayer core and the lipid headgroups are oriented towards the outside
of the bilayer (Fig. 1.3). The thickness of these structures is about 5 to 10 nm. At phy-
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o=¢ \ o=c¢ \ =g \
hydrophobic e Vi e P e Vb
CH/ CH, CH/ CH, CH/ CH,
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faI'IC)i/ 2\CH \CHz 2\CH \(:H2 iCH \CHZ
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CH/ CH1/ CH/ CHA/ CH/ CH{
Z\CH \CH‘ Z\CH \CH’ Z\CH \CHZ
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\CH3 \CHZ / \CHZ /CH
/ CH, / CH,
CH, CH,
\ \
CH, CH,
DMPC DPPE DPPS

Figure 1.4: Structure of three phospholipids commonly found in biological membranes: dimyris-
toylphosphatidylcholine (DMPC), dipalmitoylphosphatidylethanolamine (DPPE), and dipalmi-
toylphosphatidylserine (DPPS). The hydrophilic lipid headgroup usually consists of an alcohol
rest bound to a phosphate group. The hydrophobic part of phospholipids is typically built up by
two fatty acid chains bound to a glycerol or a sphingosine moiety. Different lipids vary in the
headgroup composition and in the length and unsaturation of the hydrocarbon fatty acid chains.

siological conditions, the lipid matrix is in the fluid, also called liquid disordered, phase,
where the lipids as well as embedded proteins can (almost) freely diffuse within the mem-
brane plane. This behavior was described by Singer and Nicholson in their famous "fluid
mosaic model" [238]. At low temperatures or high pressures, lipid bilayers undergo a
phase transition to a more ordered gel phase (see, e. g., [98]) or to a pressure-induced,
partially interdigitated gel phase (see, e. g., [64]).

The lipid composition of biological membranes found in nature varies considerably, not
only between different species, but also within single organisms and within domains of

18



1.1 Biological Membranes

one membrane. Depending on the mixture of lipids, membranes exhibit diverse struc-
tural and dynamical properties (see Section 1.1.1). In plasma membranes, three different
kinds of lipids prevail: phosphatidylcholines (PC), phosphatidylethanolamines (PE), and
the negatively charged phosphatidylserines (PS) (Fig. 1.4). These lipid species are usu-
ally asymmetrically distributed between the two monolayers, with more PC lipids in the
outer membrane leaflet and more PE lipids in the inner leaflet. PS lipids are exclusively
found in the inner leaflet, leading to a charge separation that is crucial for the orientation
of membrane proteins in the plasma membrane ("positive-inside rule") and probably also
for membrane fusion. The membrane composition can change in response to environmen-
tal conditions; for example, bacterial membranes have been shown to adopt their melting
temperature when grown at higher temperatures ([98] and references therein). This diver-
sity and adaptiveness strongly suggests a relation between the lipid composition and the
function of a biological membrane, as assumed in lipid and lipid-mediated theories for
anesthesia (see Section 1.3).

1.1.1 Structural and Dynamical Properties

Besides by their composition, lipid bilayers are characterized by structural and dynam-
ical properties like the area per lipid, the bilayer thickness, the lipid tilt angle, the lipid
dipole moment, the deuterium lipid order parameter, and the bilayer bending rigidity. As
these parameters are used in the analysis of the trajectories obtained from the molecular
dynamics simulations, they are introduced here. This section is of rather technical nature
and can be omitted on a first reading.

The area per lipid is the area that each lipid occupies within the bilayer plane. In lipid
bilayer simulations, it is usually obtained by dividing the total area of the simulation box
in the membrane plane by the number of lipids in one monolayer. Although in this way
only the projected area of the bilayer is taken into account and undulations of the mem-
brane are neglected, the error is expected to be small in nanoscopic multilamellar systems
simulated using periodic boundary conditions (see Section 2.2.5). As lipid bilayers are
self-assembled structures, in thermal equilibrium the area per lipid adjusts itself to mini-
mize the free energy and the bilayer is in a tension-free state.

The bilayer thickness depends on the length of the lipid carbon tails and on their order,
commonly measured in terms of the (average) deuterium lipid order parameter Scp (see
Fig. 1.5). The order parameter at the position of the ith hydrocarbon atom C; is given
by [263]

2 1

SCD = _gsxa: - gsyy ) (11)

where S,3, {a, 5} € {z,y, 2}, is the order parameter tensor

1
Sap = <g cos 0, cos b3 — §5ag> (a, B=m,y,2) (1.2)
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1 Biological Basics and Motivation

R R
CH, CH, cH
CH, 2
CH, CH, CH, CH,
CH,
CH, CH, CH, CH,
CH,
CH,
CH,

Figure 1.5: Tllustration of the lipid order parameter definition. On the left hand side, a saturated
lipid hydrocarbon chain (R denotes an arbitrary lipid headgroup) in an all trans (i. e., a = 180° for
all dihedral angles o between four adjacent carbon atoms) conformation, corresponding to a large
value of the average deuterium lipid order parameter, is given. On the right hand side, one dihedral
angle is in a gauche (i.e., a ~ +60°) conformation, resulting in a decreased average deuterium
lipid order parameter.

6, denotes the angle between the arth molecular axis and the bilayer normal, and 4 is the
Kronecker delta. Usually, at position C}, the vector C;_1-C;,1 is taken as the z-direction
and the plane spanned by the atoms C;_;, C;, and C; is taken as the y—z plane [263].
The bilayer thickness is furthermore influenced by the tilt of the lipid molecules with re-
spect to the bilayer normal and by a possible intertwining of the lipid chains of the two
opposite monolayers.

Due to the weak lipid-lipid interactions with no chemical bonds, but only hydrophobi-
cally driven aggregation, lipid bilayers exhibit only a small resistance to bending and are,
at normal temperature and pressure, deformed by thermally excited bending undulations
and single lipid protrusions. These surface fluctuations and undulatory motions are conve-
niently described in continuum elasticity theory, where lipid bilayers are modeled as two
dimensional sheets with negligible thickness. This approximation is valid as long as the
wavelength of the considered bending undulations ), 4 is larger than the bilayer thickness
d. The surface is most easily defined in the Monge? parametrization, where the "height’
z = z(x,y) is given as a function of the coordinates = and y.

For membranes under tension ?, the free energy F is given by the product of the area (area
segment dA = dx dy \/1 + 22 + 2 in the Monge representation) and the surface tension

~ [228]:
E:fy/da:dy,/lez%—i-zg : (1.3)

Here, the notation z, = & z(xz,y) and z,, = 8‘9—;2 z(x,y) is used. The free energy of sur-
face fluctuations can be calculated from the free energy difference between the deformed
and the flat surface. Expanding the square root in Eq. (1.3), V1 + 2 ~ 1+ % x, and keep-

ing in mind that for a flat surface z, = 2z, = 0, the free energy of the fluctuations per unit

2Gaspard Monge, 1746-1818
3Although in the simulations only tension-free bilayers are considered, here first the general formula
Eq. (3.4) is derived.
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1.1 Biological Membranes

area egq is [228]

eq = ;w£+i). (1.4)
Bending undulations of the membrane can be described in terms of the mean and Gaussian
curvatures H = %(lﬁ + Kg) and K = Kikg, which are the invariants of the curvature
tensor under rotation of the coordinate system [228]. ~; and ko are the two prinicipal,
1. e., extremal, curvatures of the membrane. Accounting for the rotational invariance, the
free energy of curvature per unit area e., up to second order in the principal curvatures,
can be most generally written as [103, 228]

1
e = §kc(/£1+/12—200)2+k3/<1/f2 (1.5)
= 2k, (H —c)* + kK . (1.6)

The first summand comprises the energy contribution for deviations of the bilayer shape
from the spontaneous curvature ¢, and the second term represents the energy of saddle-
shaped deformations. The bending or curvature modulus k. and the saddle splay modulus
ks both have the dimension of energies. For simulations of nanoscopic, symmetric bi-
layers under periodic boundary conditions (see Section 2.2.5), the spontaneous curvature
is zero and only bending undulations, but no saddle splay deformations occur (see, e. g.,
[22]). These terms are therefore omitted in the following.

Choosing the Monge representation, the Gaussian curvature for a nearly flat surface (z, <
1 and z, < 1) can be expressed as H ~ % (222 + 2yy) [228]. The curvature free energy
per unit area then becomes

1
€c = 5 kfc (le‘ + Zyy)2 . (17)

The total free energy of the undulations per unit area, arising from both bending and
fluctuations, is the sum of eg and e,

%m—%w@m+%f+w%+£» . (1.8)

In Fourier space (2(r) = c¢) Z(k) exp (i k7), with 7 = (z,y), k = (k, k,), and c an ap-
propriate normalization constant), the free energy per unit area simplifies to (k := \l; b

(ke k* +~ k%) 2(k)* . (1.9)

€und =

N| —

Considering the surface energy as a generalization of the harmonic oscillator problem
(Gaussian model, see, e. g., [22, 228]), the average energy of each wave vector mode is
Fid = eand A = %k:BT according to the equipartition theorem. A is the area of the
simulation box, kg the Boltzmann constant and 7' the temperature. The average mode
amplitudes in Fourier space are then given by

kT 1
~ 2
) = R

(1.10)
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1 Biological Basics and Motivation

As the surface tension 7 in a self-assembled bilayer is zero, the bending modulus k. can
be obtained from a fit of the spectrum (Eq. (1.10)).

A quantity closely related to the bending elasticity is the area compressibility K4 =
Ky = g_Zv with the isothermal compressibility «7, the surface tension 7, and the bi-
layer area A. In constant pressure simulations, it can be calculated from the mean square

fluctuations o of the area of the system according to
oh=—A . (1.11)

This equation can be derived from general ensemble theory for systems of finite size
by relating ensemble averages of observables obtained in two different thermodynamic
ensembles* [4]. However, values of the area compressibilities obtained by Eq. (1.11)
might be inaccurate, as the error of the area fluctuations in equilibrated simulation systems
will be relatively large [72]. Additionally, application of algorithms like the Berendsen
coupling scheme [16] (this coupling scheme yields no defined thermodynamic ensemble,
see Section 2.2.3), and the use of periodic boundary conditions (see Section 2.2.5) might
both suppress area fluctuations in the system and thereby bias the results. Together with a
possible undersampling of the fluctuations caused by the limited simulation time, all this
would lead to an imprecise result for K 4.

1.1.2 Pressure Distribution

Lipid bilayers are characterized by large lateral stresses resulting from packing constraints
inside the bilayer and from molecular interactions of the lipids and the surrounding sol-
vent. These internal forces vary strongly with the bilayer depth and are generally de-
scribed within the formalism of local membrane pressures.

For a macroscopic system, pressure is defined either mechanically as the normal force
acting per unit area, or thermodynamically as the partial derivative of the free energy F
of the system with respect to the volume V' at constant entropy, i. €., without exchange of

heat:
oF
p=— (W>T . (1.12)

For homogeneous, isotropic systems, these two definitions are equivalent (see, e. g., [14,
102]). In order to generalize this concept to the nanoscopic systems investigated in atom-
istic simulations, a microscopic definition of pressure has to be found that in the limit of
large ensembles and long time averages equals the macroscopic definition of pressure.

4These ensembles differ by the parameter that is kept constant: in the first ensemble, the extensive variable
F (here: the area A) is fixed, while in the second ensemble, the conjugate intensive variable f (here:
the surface tension 7) is kept constant.
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1.1 Biological Membranes

In the mechanical definition, the local pressure in a system can be written as a tensor and
is given by the sum of kinetic and configurational contributions’

Piocal = Pkin + pconﬁg : (113)

The kinetic contribution can be easily evaluated in terms of the velocities of all particles
within a confined volume. For the configurational pressure in a small volume element
AV at position 7, Schofield and Henderson [230] derived a microscopic description

aB 1 o o e
pcfnﬁg(r):A—V Y F /C_(S(r—rc)(drc)ﬁ , (1.14)

where the contour integral Cj; runs from a reference point 7 to the position 7; of particle
i, and dr, is a line element of this contour at position 7. Both, the reference point and
the contour can be chosen arbitrarily. The sum is taken over all particles 7 in the system.
F, is the total force acting on particle i and {a, 3} € {z,y,2}. The brackets indicate
an ensemble average. Hence, the configurational pressure at position 7 is a sum over
contributions from all particles 7 in the system, for which the corresponding contours Cly;
pass through the volume element AV at position 7~ [244]. In case of only pairwise additive
interactions in the system, Eq. (1.14) can be written as [230, 244]

. ! N
Peonie(™) = = Ay Zﬂj/_@(r—rc)(dn)ﬂ , (1.15)

i<j Cij

where F’ij are the forces acting between particles ¢ and j. A popular choice for the contour
C;;jin Eq. (1.15) is the Irving-Kirkwood (IK) contour, connecting the particles at positions
7; and 7'; by a straight line®.

For a semi-isotropic lipid bilayer in the liquid disordered phase, the configurational stress
tensor is approximately diagonal [85]. Using the IK contour, the local pressure as a
function of the bilayer normal (taken as the z-direction) can be calculated by dividing
the bilayer in thin slices of thickness Az and volume AV parallel to the membrane
plane [142]:

Piocal (Z> = ALV Z <mzﬁz ® 172) - ALV Z <sz] X T_';j f (27Z17Zj>> . (116)

1 € slice 1<J

Note, that the configurational contribution, and therefore the pressure tensor, is not uniquely defined, as a
divergence free term can be added without changing the measurable force acting per unit volume (see,
e. g, [14]).

The IK contour is only suited for use with m-body interactions with finite number m. Therefore, in
simulations applying lattice summation methods to evaluate electrostatic interactions (see Section 2.2.2),
other contours, like the one suggested by Harasima [94], have to be used. To circumvent this problem,
results for local pressures given in this thesis have been computed in a two-step process, where first the
evolution of the system was simulated applying lattice summation methods, and only in a second step
local pressures were calculated applying a cutoff for electrostatic interactions. This procedure has been
shown to converge towards the correct results, as long as a large enough cutoff is used [244].
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1 Biological Basics and Motivation

For the kinetic energy term, only the particles in the slice at position z contribute, while
for the configurational term interactions between all particle pairs in the system have to
be included. The z-coordinate, mass, and the velocity of particle 7, and the force and the
distance between particles i and j are denoted by z;, m;, U;, ﬁ;j, and 7;;, respectively. The
function f (z, z;, z;) is the ratio between the length of the contour C;; (Eq. (1.15)) within
the slice at position 2z and the full length of this contour. It can be expressed as [85]

O(zi —2)O(z+ Az — z;) for z; = z;
Iz 2, 2) = { —— [FdCO(C—2)O(z+Az—()  otherwise, (1.17)
where O(z) denotes the Heaviside step function, with ©(z) = 0 for z < 0, ©(0) = 1/2,
and ©(z) = 1 for z > 0. The local lateral and normal pressures are defined as p(z) =
(Pzz(2) + pyy(2)) /2 and pn(2) = p..(z). The latter is approximately constant due to
the translational invariance within the bilayer plane. The surface tension can be obtained

from v = [ (pn(2) — pr(2)) dz.

As self-assembled lipid bilayers are only a few nanometer thick and the sum over all forces
acting within the bilayer is zero, it is difficult to determine local pressures experimentally,
and up to now, only quantitative measurements of the pressure distribution in lipid bi-
layers have been achieved [121, 258]. In many theoretical studies it has been found that
large lateral pressures of several hundred bars act inside lipid bilayers’ (see, e. g., [142]).
These pressures result from a balance of forces acting at different depths inside the bilayer
and adding up to zero only if integrated across the whole bilayer (zero surface tension).
The main contributions to the pressure originate from forces due to the hydrophobic ef-
fect, striving to minimize the contact between the apolar lipid chains and the polar water
molecules and therefore decreasing the area per lipid (Ap(z) = pr(z) — py(2) < 0), and
forces due to steric interactions between membrane components, expanding the bilayer
(Ap(z) > 0)°.

An idealized, not scalable pressure profile is given in Fig. 1.6. The profile is symmetric
due to the symmetry of the bilayer in the direction of the bilayer normal. Within the hy-
drophobic core of the bilayer the difference between the lateral and normal pressure Ap is
positive due to an entropic repulsion resulting from steric interactions of the lipid hydro-
carbon chains®. At the hydrophobic-hydrophilic interface, where the glycerol backbones
of the lipids are located, a large interfacial tension (Ap < 0) is caused by the hydrophobic

7A simple estimate of magnitude of lateral pressures in the bilayer has been given by Cantor [36]: As
the surface tension of a lipid bilayer is zero, the interfacial tensions at each monolayer of typically
Yinterface ~ 0.05 N/m have to be compensated by the entropic repulsion of the chains. Assuming a
hydrophobic thickness of a bilayer of d ~ 3nm, the average lateral pressure in the bilayer core is
2’Yinterface/d ~ 330 bar.

8 Although not absolutely precise, the difference of pressures Ap(z) = pr(2) — pn(z) as a function of
the membrane normal is commonly referred to as the lateral pressure profile and this convention will
be adopted in the following. The use of the pressure difference instead of only the lateral pressure
is justified, as the normal pressure in lipid bilayers is approximately constant due to the translational
invariance within the bilayer plane.

9The central maximum of Ap at z = 0 is related to the density minimum of lipid molecules in the center
of lipid bilayers (Fig. 3.1). In this region, positive contributions to the pressure due to steric repulsions
(part of the Lennard Jones interactions, see Section 2.2.1) are reduced, but also the absolute value of the
negative contributions from bonded interactions (see Section 2.2.1) are decreased (Fig. 4.8).
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1.2 Membrane Proteins
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Figure 1.6: Illustration of the effective lateral pressures inside lipid bilayers. The upper panel
shows an idealized, not scalable pressure profile (right hand side; adapted (modified) from [34])
and the spatial localization of the different peaks inside the bilayer (left hand side). The cartoon in
the lower panel depicts the resulting effects for the lipids. Please note, that — although not shown
in the illustration — water molecules play an important role for the overall shape of the lateral
pressure profile.

effect described above. In the lipid headgroup region, interactions between the polar or
charged lipid headgroups and (oriented) solvent molecules result in a small, positive peak,
before the pressure difference drops to zero in the bulk water region.

1.2 Membrane Proteins

Membrane proteins are an important constituent of biological membranes. Depending on
the membrane type, they can account for up to 75 mass-% of the membrane. Two dif-
ferent classes can be distinguished: peripheral membrane proteins, that are only attached
to the surface of the membrane, and integral membrane proteins, stretching across the
hydrophobic core of the lipid-protein layer of biological membranes. The transmembrane
part of integral membrane proteins is either made up by a bundle of a-helices, or by 3-
sheets ((3-barrel proteins) forming a transmembrane pore (Fig. 1.7).
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1 Biological Basics and Motivation

Figure 1.7: Examples for an a-helical (left, subunit of bacteriorhodopsin, protein data bank
(PDB) entry 1KGB [69]) and a 3-barrel (right, subunit of the sucrose-specific porin, PDB en-
try 1A0S [76]) membrane protein. The color coding refers to the secondary structure: a-helices
are colored red, 3-sheets yellow, and coil elements green.

Membrane proteins play an important role in the active and passive transport of biological
substances — especially of ions — across cell walls, in the excitation and propagation of
nerve pulses, and in cell-cell recognition. Besides, they act as receptors and enzymes, and
they constitute the structural elements linking the lipid-protein layer to the cytoskeleton
and the extracelluar matrix. The relevance of membrane proteins becomes evident by the
fact that they account for ~ 70% of all known drug targets [147]. As proteins are very
sensitive to their local environment, a modulation of membrane protein function can not
only be affected by a specific binding of drugs to these proteins, but probably also by a
change in the composition and the properties of the lipid matrix surrounding the protein
(see, e. g., [147]).

1.3 Anesthesia

The term anesthesia originates from the greek word avatofnoia, that describes the insen-
sitivity of an organism to external stimuli. Two kinds of anesthesia can be distinguished:
general and local anesthesia. Drugs causing general anesthesia act at the central nervous
system, i.e., the brain and the spinal cord, and usually induce a reversible loss of con-
sciousness. Local anesthetics act at the peripheral nervous system and selectively block
the formation and propagation of nerve pulses in a spatially limited part of the body. In
this thesis, only general anesthesia is considered.

The first public demonstration of anesthesia was achieved in 1846 by William Morton us-
ing diethyl ether as anesthetic. Since then, anesthesia has become a well established and
widely used technique in medicine to keep patients free of pain not only during surgery,
but also in intensive care.

General anesthesia is a complex phenomenon involving loss of consciousness (hypnosis),
analgesia, amnesia, muscle relaxation, and suppression of reflexes. Despite an intensive
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1.3 Anesthesia

research, the underlying molecular mechanisms are still not understood. Today it is gener-
ally assumed that anesthetics either integrate into the lipid matrix of neuronal membranes,
thereby modulating their physical properties, or that they bind specifically to membrane
proteins involved in signal transduction at synapses. In both cases, they could hinder the
propagation of nerve pulses and thereby induce anesthesia.

Molecules of very different structures and compositions, ranging from the inert noble
gas xenon to more complex molecules like sevoflurane (Fig. 1.8), act as anesthetics.
Corresponding to their way of application, these drugs are commonly divided into in-
halational and intravenous anesthetics. All of them have different anesthetic (e. g., mainly
analgetic, or only hypnotic, etc.) as well as different side effects; and as in general anes-
thetic effects are additive, usually a combination of drugs is used to maximize the desired
effects and to minimize side effects in clinical applications.

Around 1901, Meyer and Overton discovered that the anesthetic potency of a drug corre-
lates with its lipophilicity [165, 194]. This so-called Meyer-Overton correlation is the only
common property found for almost all anesthetics up to now and suggests a hydrophobic
site of anesthetic action. According to this rule, the anesthetic potency of a homologous
series of molecules increases with increasing carbon chain length. However, there exists a
cutoff length, where potency suddenly drops. For the 1-alkanols considered in this thesis,
the cutoff length is approximately 12 carbon atoms, i. e., dodecanol (see, e. g., [206]).

1.3.1 Lipid-Mediated versus Protein-Binding Models

Following the work of Meyer and Overton, many models for the mechanism of general
anesthesia have been suggested. According to the proposed site of action they can be
grouped into lipid(-mediated) and protein-binding models'®. Here, only the most recent
examples of both classes will be briefly presented.

Based on the strong correlation between the lipophilicity and the anesthetic potency of
a drug, and considering the large diversity of anesthetics, with even the noble gas xenon
being a potent anesthetic, lipid theories assume a cooperative physical mechanism for
anesthesia with the lipid layer of the plasma membrane as the site of anesthetic action. A
recent example for such a lipid model was suggested by Heimburg and Jackson: they ques-
tioned the established Hodgkin-Huxley model [108] for signal propagation along neurons
and instead proposed a thermodynamically motivated model, where nerve pulses travel as
solitons along neuronal membranes [99]. Within this framework, anesthesia is explained
by an anesthetic-induced decrease of the membrane phase transition temperature (see Sec-
tion 1.1) that impedes soliton propagation [100, 101].

The basis for lipid-mediated theories is the assumption that membrane proteins are sen-
sitive to their local environment. In this way, anesthetic-induced changes of the physical
properties of the host lipid bilayer can alter the activity of membrane proteins and thereby
suppress signal transduction. A recent example of such a theory will be presented in more

1%n principal, the theories of Miller [167] and Pauling [197], where anesthesia is explained by the forma-
tion of clathrates in cell fluids, represent a third class of models. However, no evidence for such a model
has been found and these theories will not be considered here.
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Figure 1.8: Examples of general anesthetics. The molecular weights and volumes of different
anesthetics can vary by as much as a factor of 10 [275].

detail in Section 1.3.2.

In protein-binding theories, a binding of drugs to membrane proteins is assumed to cause
anesthesia. Many different ion channels and protein receptors have been suggested as
potential anesthetic targets (for a review, see [275]), the most likely targets being -
aminobutyric acid type A(GABA,) receptors , two-pore K channels, and N-methyl-
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1.3 Anesthesia

D-aspartate (NMDA) receptors [77]. The greatest success for this kind of theories was
the observation that the activity of the soluble protein luciferase from the North Amer-
ican firefly Photinus pyralis was suppressed by various anesthetics without any lipids
present [78]. However, firefly luciferase is not involved in any kind of signal transduc-
tion. As the universality of the Meyer-Overton correlation suggests a unitary mechanism
of anesthetic action, arguments against protein-binding theories can be found in the large
diversity of anesthetics (see Section 1.3): it seems unlikely that all these chemically very
different molecules bind in the same way to membrane proteins. Besides, most anesthet-
ics have been found to have some effect on some protein receptor, but no channel could
be identified that is influenced in the same way by all anesthetics.

1.3.2 Anesthetic Mechanism via Changes in the Local
Pressure Distribution in Biological Membranes

As the results presented in this thesis are discussed within the framework of the lipid-
mediated model for anesthesia developed by R. Cantor in 1997 [33-37], this work will be
briefly presented in the following.

As explained in Section 1.1.2, biological membranes are characterized by large lateral
stresses of several hundred bars varying non-monotonously with depth inside the mem-
brane. Applying a statistical lattice model, Cantor has shown that the inclusion of 1-
alkanols into lipid bilayers modifies these pressures in a non-uniform manner. Though
the relative changes obtained in this way at clinical anesthetic concentrations are only
small, the absolute changes in the pressure are still large due to the magnitude of the
local pressures [33]. Provided that intrinsic membrane proteins exist in at least two dif-
ferent conformations r and ¢ (interpreted as an open and a closed channel form) with
varying difference of the cross section areas in the direction of the membrane normal,
i.e., AA(z) = Ai(z) — A.(2) # const., an anesthetic-induced modification of the bilayer
pressure profile will shift the thermodynamic equilibrium between different conforma-
tions of the protein, as illustrated in Fig. 1.9. By equating the chemical potentials y, and
1 of both protein conformations for the case with and without anesthetics independently,
and assuming that A A(z) is unaffected by the pressure redistribution caused by the anes-
thetics, Cantor derived a quantitative description of this effect (for the detailed formalism,
see Section 4.4.2). In subsequent calculations he demonstrated that even small variations
in lipid bilayer composition or small amounts of additives could change the equilibrium
between two different conformations of membrane proteins, modeled by a simple geo-
metric shape [36, 37]. However, the occurence of such a change depended strongly on the
assumed protein shape and the additive.

The attractiveness of this model lies in the fact that for the first time a full mechanistic
explanation for anesthesia has been given. Besides, the anesthetic effect is traced back to
large changes in the pressure, and not — like in previously suggested lipid models — to only
small variations in lipid properties like, e. g., the bilayer volume, that could also easily be
achieved by an increase in temperature (which does of course not induce anesthesia). Fur-
thermore, within this model two known exceptions to the Meyer-Overton correlation, the
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Figure 1.9: Mechanism of anesthesia as suggested by R. Cantor. The two drawings depict a lipid
bilayer (grey) with an embedded membrane protein (light grey). The lateral pressure distribution
is indicated by the black arrows. On the left hand side, without anesthetics, the large interfacial
tension (outward pointing arrows) at the bilayer water interface and the entropic repulsion (inward
pointing arrows) of the lipid hydrocarbon chains force the protein into a more open conformation
in the outer bilayer region and a narrow conformation within the bilayer center. With anesthetics
(small, dark grey molecules; right hand side), the pressure distribution inside the bilayer is changed
and the protein adapts its shape accordingly. Please note, that the changes of the pressure profile
upon addition of anesthetics are not the real changes, but are chosen here in order to illustrate the
mode of operation.

cutoff in anesthesia for 1-alkanols and the anomalously low potency of very hydrophobic
molecules, has been reproduced [33].

1.3.3 Pressure Reversal

General anesthesia can be reversed by the application of external pressure. First hints
to this effect were found in experiments on bacterial luminescence [115], before in 1950
Johnson and Flagler [116] showed that tadpoles that had been anesthetized with alcohol
resumed swimming after application of high external pressures between 140 and 350 bar.
The effect on unnarcotized animals was an increased activity up to pressures of 140 bar,
but paralysis at higher pressures. Similar pressure reversal effects were later reported
applying other anesthetics to tadpoles [93] and to newts and mice [139]. Investigations
of the dependence of pressure reversal on the anesthetic concentration let to the conclu-
sion that pressure reversal is presumably not due to a decrease of the partition coefficient
of anesthetics inside the membrane [166]. This result was supported by experiments of
Trudell et al. [272], who showed that small molecules were not displaced from phospho-
lipid membranes by application of external pressure.
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2 Molecular Dynamics Simulations

2.1 Overview

In molecular dynamics (MD) simulations, the properties and the time evolution of many-
particle systems are investigated by solving Newton’s equations of motion

—

for all atoms in the system simultaneously. In this equation, F, is the total force acting
on atom %, m; is the mass of this atom, and a; = j—; Z; denotes its acceleration. The total
number of atoms in the system is /V. In principle, such kind of deterministic approach
has already been anticipated by Laplace at the beginning of the 19th century [55], but an
analytical solution to the N-body-problem is not possible for NV > 3 and only with the
invention of computers a numerical solution for many particle systems became feasible.
The first MD simulations were performed in 1957 on two-dimensional hard spheres by
Alder and Wainwright [2], who also outlined the theoretical basics of the method [3]. In
the following, liquid argon [211], water [212], and also larger molecules [226], as well
as systems containing ions [300] have been simulated. The method was subsequently ap-
plied to investigate the mobility of a folded protein first in vacuum [164], and later also
in a solvent environment [283, 285, 286]. In an extremly long-time simulation of 1 us,
intermediate states of folding of a peptide in solution could be identified [60]. Simulations
of preformed lipid bilayers were first accomplished in 1982 [277], before later also their
self-assembly could be demonstrated [157].

Today, the technique of MD simulations is applied to a wide range of diverse biomolec-
ular problems and technical applications. The first include the simulation of lipid vesi-
cles, lipid bilayers, and membrane fusion, of large protein complexes in their native en-
vironment (e. g., [53]), of enzyme activity [23], and even of entire viruses [82]. The
latter addresses technical problems like for example cracking in metals. Systems contain-
ing about 10% atoms can be simulated for time intervals of hundred nanoseconds, where
the limiting factor is the available computing power. It is now generally acknowledged,
that the molecular environment — water (with ions) in most cases — has a large influence
and therefore has to be included in the simulations, although its explicit simulation is
very time-consuming and usually accounts for about 90% of the overall computational
cost. In order to avoid unwanted boundary effects when simulating nanoscopic samples,
most simulations are currently carried out using periodic boundary conditions (see Sec-
tion 2.2.5), enabling the use of effective techniques to calculate long-range electrostatic
interactions fast and accurately (see Section 2.2.2). Sophisticated MD simulation pack-
ages have been developed, the four most popular ones being CHARMM (Chemistry at
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Harvard Macromolecular Mechanics [29]), GROMACS (Groningen Machine for Chemi-
cal Simulations [18, 143, 278]), GROMOS (Groningen Molecular Simulation [281, 284]),
and NAMD (Nanoscale Molecular Dynamics [202]).

The evaluation of interactions between the atoms is usually done using so-called force
fields (see Section 2.2.1). In short, such a force field is a collection of interaction param-
eters and semi-empirical rules allowing to evaluate the forces between different types of
atoms in a simple manner. Various force fields have been designed by several research
groups, that are optimized for use under different environments (i.e., hydrophilic/hy-
drophobic solvent) and conditions (i. e., pressure, temperature). The best-known exam-
ples are probably AMBER [47, 198, 294, 295] and its generalization GAFF [241, 293],
CHARMM [29, 152, 153], GROMOS [281, 284], and OPLS [118, 119]. Also, different
models for the simulation of water molecules have been suggested, the most common ones
being the (extended) simple point charge (SPC(/E)) model [15, 17], and the transferable
intermolecular potential with three (TIP3P) or with four (TIP4P) particles [117].
Limitations of MD simulations result from the description of the atoms as classical parti-
cles. Thereby, the rapid movements of the light hydrogen atoms, fast vibrational motions,
and bond-length fluctuations, where quantum effects cannot be neglected, are not treated
adequately. Likewise, systems at very low temperatures (0-10 K) are not evaluated cor-
rectly. As a covalent bond is approximated by a simple harmonic spring between two
atoms, chemical reactions requiring bond breaking cannot be simulated in conventional
MD simulations.

An open challenge is the adequate sampling of the conformational space within the lim-
ited simulation time. Only if a statistically representative ensemble is sampled, macro-
scopic quantities can be correctly calculated as ensemble averages over the MD trajec-
tory. In general, the energy landscape of a many-particle system is a rugged surface with
many local minima and maxima, and MD simulations easily get trapped in a small part of
the vast conformational space. Methods to address this problem involve smoothening of
the potential-energy surface (e. g., [111, 203]), scaling of system parameters like atomic
masses or the temperature [129, 155], or performing simulations of multiple copies of
the same system at, e. g., different temperatures or pressures [168, 247, 248], allowing an
exchange or interaction between the system replicas. An overview over these techniques
has been given by van Gunsteren and Berendsen [280].

A possibility for extending the accessible time scales in simulations that has become very
popular in the last years are coarse-grained (CG) molecular dynamics simulations. The
idea of coarse-graining is to neglect unimportant or uninteresting degrees of freedom,
such that less accuracy, but a faster time evolution of the system is achieved (see also
Section 8.1).

Certainly, simulations are not meant to replace experiments, but to complement them.
Simulations are important where "experiments are impossible (collision of stars, weather
forecast), dangerous (flight simulation, explosion simulation), expensive (high pressure
simulation, wind channel) or blind (many properties cannot be observed on very short
time scales and very small space scales)" [280]. They give valuable details in the inter-
pretation of experimental results, can be used to make semi-quantative predictions, and
allow interpolation of experimental results to different environmental conditions.

As can be seen from this short overview, MD simulations are a large and active field
of research and involve the application of many different techniques contributing in the
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simulation algorithm as well as in the post-simulation trajectory analysis. A detailed de-
scription of all facets would go beyond the scope of this thesis and only the mechanisms
applied in the presented simulations will be discussed in the following.

2.2 Methods

Any many particle system is completely described by the time-dependent Schrédinger
equation

HU =iho, 0 | (2.2)

with the Hamilton operator H , the wave function ¥, and Planck’s constant h = 6.626 x
1073*Js = 2mh. However, this equation cannot be solved analytically for more than
two particles. For larger systems, approximations like the Born-Oppenheimer approxima-
tion [28], in which the motion of the light electrons and of the heavier nuclei are separated,
have to be used. The basis of this approximation is the larger inertia of the nuclei as com-
pared to the electrons, but the same (Coulomb) forces acting on both, resulting in a much
slower motion of the nuclei. The electrons follow the motion of the nuclei almost in-
stantaneously. Using this approximation, the solution of the Schrédinger equation can be
divided into two-steps, first considering the electron motion for fixed positions of the nu-
clei and afterwards solving the Schrodinger equation for the nuclei moving in an effective
potential.

In MD simulations, electrons are supposed to be in their ground state. They are not rep-
resented as explicit particles, but contribute to the potential in which the nuclei (referred
to as atoms in the following) move. The atoms are treated as classical particles, obeying
Lagrange’s equations of motions. Interactions between atoms are assumed to depend only
on the instantaneous coordinates of the atoms, such that the forces acting between differ-
ent atoms are conservative, i. e., they can be calculated as the derivative of a potential V.
This leads to Newton’s equations of motion

F=—V:V(f)=ma (2.3)

for the interacting atoms. The potential V' is usually approximated by semi-empirical
force fields (see Section 2.2.1).

Various algorithms have been developed to solve the equations of motion numerically and
thereby follow the time evolution of a many-particle system. In general, any such algo-
rithm should be time-reversible, as also the equations of motion are time-reversible, and
it should conserve the phase space volume (Liouville theorem), a necessary precondition
for energy conservation. From a computational point of view, the possibility to use a large
time step at high accuracy is desirable.

The two most popular algorithms are probably the Verlet [291] and the equivalent leap-
frog [107] integration schemes. The Verlet [291] algorithm can be derived from the Taylor
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expansion of the atom coordinates at times t — At and t + At

F(t) 1 &

r(t+At) = r(t)+ov(t)At + 5 A + 31 93 AL+ O(ALY (2.4)
F(t) 1 d3r
r(t—At) = r(t) —v(t)At + Q—AtQ — 3 ﬁmﬁ +O(AtY) . (2.5)

It is assumed that the forces are constant during the small integration time step A¢. Adding
up these two equations gives the defining equation for the Verlet algorithm [291]

r(t+ At) =2r(t) —r(t — At) + %Aﬁ +O(AtY) . (2.6)

The velocity of the atom is obtained from

r(t+ At) —r(t — At)

v(t) = SAs + O(A?) . (2.7)

The leap-frog algorithm makes use of half time steps and is determined by the two equa-
tions

r(t+At) = r(t)+o(t+At/2) At (2.8)

F(t
v(t+At/2) = v(t—At/Q)—I—LAt : (2.9)
m
Although the leap-frog algorithm evaluates the coordinates and velocities at times dif-
fering for half a time-step, it is preferred over the Verlet algorithm, as in the latter the
positions of the atoms do not depend on the particle velocities, rendering velocity scaling
in order to keep the temperature constant (see Section 2.2.3) more difficult.

2.2.1 Force Fields

A crucial and non-trivial task in MD simulations is the evaluation of the potential 1/, from
which the forces acting on the atoms are derived (Eq. (2.3)). This is mostly done in terms
of so-called force fields, where parameters describing the interactions between all atoms
are stored.

Ideally, force field parameters should be derived from quantum-mechanical ab initio cal-
culations, be transferable between similar molecules, be robust against changes in the
conditions (e. g., pressure, temperature) and in the environment, and accurately repro-
duce experimental results. In practice, most force fields are built on a semi-empirical
approach, in the sense that a chemically motivated, preferably simple shape of the poten-
tial is assumed and free fit parameters are adjusted to reproduce experimental results. For
calibration, mostly small molecule properties, like for example solvation free enthalpies
in the case of the GROMOS96 [284] force field, are used.

The terms contributing to the potential can be subdivided into bonded interactions be-
tween neighbouring atoms and non-bonded interactions between any two atoms:

V(Tla R 7aN) = Vbonded + Vnonfbonded . (210)
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Neighboring atoms are defined as atoms that are connected via three (third neighbors)
or less (first, second neighbors) covalent bonds. For simplicity, non-bonded interactions
between first and second neighbors are excluded in most force fields. Bonded interac-
tions are composed of energy terms for covalent bonds, angles, and improper and proper
dihedrals (see also Fig. 2.1):

%ondcd = Vbonds + vanglos + ‘/imp.dih. + Vprop.dih. (211)
e.g. 1 2 1 2
£y 5 K0 —bo)" + > 5 Ko(0 = 00)
bonds angles
1
+ Y 5 Kel€ = &) + > K,(1+cos(ng —4)) . (2.12)
imp.dih. prop.dih.
A
T LA,
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b, b
B
R VIR
Angles O 0
C

= Ly,

Improper Dihedrals
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Proper Dihedrals

Figure 2.1: Schematic representation of all bonded interactions and the corresponding potential
terms.

The explicit shape (Eq. 2.12) assumed for the interactions can vary depending on the
force field used. In general, the quantum character of covalent bonds is neglected and
the bonds are approximated by harmonic springs with force constants K} and equilibrium
length by (Fig. 2.1 A). Angles between three atoms are treated in a similar way (Fig. 2.1
B). For neighboring interactions between four atoms, two kind of dihedral terms are de-
fined. Improper dihedrals (Fig. 2.1 C) are designed to maintain the shape of planar ring
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groups by confining the dihedral angle ¢ to one fixed value &, using a harmonic potential.
For proper dihedrals (Fig. 2.1 D), determining for example the cis/trans isomerism of a
molecule, several dihedral angles ¢ can be adopted, allowing for transitions between dif-
ferent molecular structures. Preferences for certain dihedral orientations can be specified
by additional 1-4 interaction terms (i. €., interactions between atoms connected via three
covalent bonds) in the force field.

Non-bonded interactions include the Lennard Jones and Coulomb potentials between the
atoms ¢ and j (see Fig. 2.2):

Vnon—bonded = VLJ + VCoulomb
0—.. 12 0_4. 6 1 q,q.
B )) g e e
/r“A 7"‘4. 7T 7’14.
pairs(i,j) " K pairs(i,j) 0=r Tij
6
r
Lennard Jones
VA
© © SN
Coulomb f

Figure 2.2: Schematic representation of the non-bonded interactions and the corresponding
potentials.

Here, €;; and 0;; are parameters determining the interaction strength and equilibrium dis-
tance between the two atoms ¢ and j, respectively, 7;; is the interatomic distance, ¢; and
q; are the charges of the atoms, and the sum is evaluated over all atom pairs in the system.
The Lennard Jones terms comprise the strong repulsion (Pauli repulsion) preventing steric
overlap of atom orbitals (o< ri_jm) and the attractive London dispersion contribution (van
der Waals interaction) between temporarily induced dipoles (ox — rifi). The electrostatic
potential is proportional to the charges of the particles and to their reciprocal distance. It
should be noticed that in MD simulations also parts of an electron charge can be assigned
to single atoms to adequately model the charge distribution in molecules. The dielectric
permittivity €, enables the inclusion of environmental screening effects. In the repre-
sentation of the non-bonded contributions chosen here, all terms are pairwise additive.
However, this is no necessity and especially for the upcoming inclusion of polarization
effects into force fields, higher order moments with interactions between multiple parti-
cles will become important.

Two features of current force fields should be mentioned: First, in order to speed-up
simulations by a reduction of degrees of freedom, many force fields use a united atom
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representation, treating non-polar carbon atoms and the hydrogen atoms bonded to them
as single atoms. And second, to account for the chemical environment in which the atoms
are located, current force fields often comprise many more atom types than occurring in
nature. For example, in the GROMOS 53A6 [193] parameter set, different types of atoms
are defined for a carbonyl oxygen, a carboxyl oxygen, a hydroxyl oxygen, an ether oxy-
gen, and a water oxygen. In this thesis, the focus was on the prediction, analysis, and
interpretation of average, macroscopic quantities of large biomolecular systems. There-
fore, approved force fields from literature have been used. Although artifacts for the
partitioning of ethanol into lipid bilayers have been observed (see Chapters 3, 4, and 5),
no changes in the employed force fields have been made in order to maintain their internal
consistency.

2.2.2 Treatment of Long-Range Interactions

For the calculation of the non-bonded interactions with their unlimited range of action,
the sum over all particle pairs in the system has to be evaluated, requiring N? compu-
tations and making the simulations prohibitively slow for a large number of particles N
in the system. Currently, three different methods are mainly employed to circumvent this
problem: the truncation of forces or potentials by a spherical cutoff, the treatment of long-
range interactions in terms of a reaction field, or the evaluation of the contributing terms
by lattice summation methods.

In the cutoff method, all interactions with particles beyond a distance 7o are set to
zero. It is generally assumed (see, e.g., [229]) that such a truncation of the forces or
the interatomic potentials by a sufficiently large cutoff (usually around 1 nm in atomistic
MD simulations) can safely be done for Lennard Jones interactions with their fast decay
proportional to rif‘, but leads to severe artifacts in the calculation of the longer-ranged
electrostatic interactions. These artifacts can be reduced by the application of switch or
shift functions, switching the potential or the forces smoothly to zero either in a buffer re-
gion with 7puger < 7 < Teutot (SWitch) or over the whole interaction range 0 < 7 < Tcytoft
(shift). To avoid artificial separation of opposite charges at the cutoff distance, neutral
charge groups can be introduced, such that either all or none of the group charges are
included in the summation. A further reduction of the truncation errors can be obtained
using a twin-range cutoff, where forces within a first sphere of radius r; are computed
every integration step, while forces in a second sphere 7, < r < ry are only evaluated
every n-th integration step (n of the order of 10 to 100), allowing for a larger overall cutoff
ry. Nevertheless, truncating the electrostatic interactions introduces considerable errors
in the results.

In the reaction field method [10, 179, 192, 266], the system around each interaction side is
separated into an inner region of interest (not necessarily, but ideally a sphere), where the
contributions to the Coulomb potential are treated explicitly, and the surrounding medium,
that is approximated as a homogeneous bulk with dielectric constant £ and ionic strength
1. The full electrostatic potential V' at any point is then given by

V=V,+Vy | (2.14)
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where the direct term V; and the reaction field term V¢ are solutions of the Poisson equa-
tion in the inner region and the Poisson-Boltzmann equation in the outer region, respec-
tively. The requirements of a continuous potential at the region boundary and of a vanish-
ing potential at infinite distance determine the potential uniquely. The performance of this
method depends critically on the quality of the approximation of the surrounding medium
as a homogeneous bulk medium.

For simulations performed under periodic boundary conditions (see Section 2.2.5), vari-
ants of the Ewald summation technique [68] are widely used to exactly evaluate the
Coulomb interactions. For these periodic systems, the sum of the electrostatic interac-
tions has to be extended over all image cells yielding

4id;
VCoulomb 247750 Z ZZ ’ru ‘i‘]n| . (215)

=1 j=1

il = (nyLy,nyLy,n.L,), {n,,n,,n.} € Z, is the vector of translation between the orig-
inal box (with dimensions L, L,, and L) and its periodic images. The prime indicates
that for the simulation cell with |7i| = 0 the interaction term ¢ = j is excluded from the
summation. The sum in Eq. (2.15) is only conditionally convergent, decaying very slowly
for large distances |77;|. The trick of the Ewald summation technique is to add a Gaussian
charge distribution that neutralizes the original point charge distribution, and to subtract
this same Gaussian charge distribution again at the same time. In this way, the total sum
can be divided into two independent series. The series involving the original charges and
their neutralizing Gaussian counterpart rapidly converges in real space, while the series
over the additional pure Gaussian charge distribution contains long-range interactions, but
is a smoothly varying periodic function and therefore converges in the reciprocal space.
Evaluating these two terms separately using a cutoff both in real and reciprocal space
yields accurate results for the electrostatic interactions. A disadvantage of this method
is an enhancement of the artificial periodicity introduced into the simulations by the use
of periodic boundary conditions (see Section 2.2.5). The Ewald summation itself is a
slow procedure scaling with at least N3/2 [201], but fast variants like the Particle Mesh
Ewald (PME) algorithm [50], for which the required number of computations is reduced
to N log N, give accurate results in a reasonable amount of time.

2.2.3 Temperature and Pressure Coupling

In conventional MD simulations, solving Newton’s equations of motion for many-body
systems within a confined and fixed simulation box, the energy and the volume are con-
served and the states of a microscopic ensemble are sampled. On the other hand, experi-
ments are mostly conducted at constant pressure and temperature, i. e., within a canonical
ensemble. As thermodynamic averages obtained in the different ensembles match only in
the limit of infinite system sizes, for a comparison of experimental and simulation results
it is desirable to simulate at constant pressure and temperature. In this way, also a prac-
tical problem of constant energy MD simulations could be solved: even in equilibrium,
truncation of long-range interactions and numerical inaccuracies result in a slow drift of
the temperature (and thereby also the energy) away from its starting value.
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Different methods have been suggested to maintain a constant temperature and pressure
during simulations. They can be grouped into constraint, stochastic, weak-coupling, and
extended system dynamics algorithms [282]. Throughout this thesis, the Berendsen algo-
rithm [16], mimicking a weak coupling to an external heat and pressure bath, has been
used and will therefore be presented here in more detail following the description given
by van Gunsteren and Berendsen [282].

In the Berendsen scheme [16], deviations of the instantaneous system temperature 7' from
the reference temperature 7|, are corrected according to

T  Ty—T
dt_ T ’

(2.16)

where ¢ is the time and 77 is the time constant for the exponential relaxation of the system
temperature towards the reference temperature. The temperature adjustment is accom-
plished by scaling the velocity of all particles at each time step by a factor \: v; — \vj;.
This scaling results in a kinetic energy change

1 1
AEkin = E 5 m ()\17;)2 — E m ’17;;2
1
= (A2-1) 5 Nar kT (2.17)

where Ng¢ is the number of degrees of freedom and k3 denotes the Boltzmann constant.
In Eq. (2.17), the equipartition theorem, Fy;, = Zl % mv_;2 = %NdkaT, has been used.
The kinetic energy change is linked to a temperature change via the heat capacity C' of
the system by

. A-Ekin
- C

From the desired temperature adjustment per time step At (Eq. (2.16)), and using Eqs. 2.17
and 2.18, the scaling factor A can be derived to be

2C At (Ty—T
=41 — ) 2.1
A \/ + Ndf /{?B T ( T ) ( 9)

The magnitude of the temperature correction can be adjusted by the choice of the time
constant 7. In the limit of 7+ — 00, microcanonical simulations are recovered. In the
opposite limit of 7 = At, the temperature is constrained to its equilibrium value at each
time step and no temperature fluctuations are allowed. For intermediate values of 7 the
generated ensemble cannot be characterized neither as a canonical nor as a microcanonical
ensemble.

The total pressure in a microscopic system is given by the pressure tensor

AT (2.18)

1
Ptotal = V(ZEkin —-=g) , (2.20)
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where Ey;, = % > m;U; ® U; is the kinetic energy tensor and 2 = ), iTif ® F’ij is the
virial tensor (compare to Section 1.1.2). Using these quantities, a pressure coupling can
be achieved in the same way as for the above described temperature coupling according
to

apP  Py—P

— =2 - (2.21)

dt Tp
Instead of the velocities, the coordinates of the particles and the box volume are scaled
at each time step in order to relax the system to the reference pressure. In case of an
anisotropic system, the scaling factor itself becomes a tensor.

2.2.4 Constraints

A crucial factor in the speed of MD simulations is the magnitude of the time step: the
larger the time step, the faster the simulation proceeds. The maximum time step that can
be used is determined by the fastest motions in the system. In atomistic simulations, these
motions are high frequency length fluctuations of covalent bonds and angular vibrations.
As these high frequency oscillations are of essential quantum character, they cannot be
correctly described by classical harmonic oscillators (compare Section 2.2.1) and correc-
tion terms to the energy would have to be introduced. Instead, these fluctuations can be
removed from the simulations by constraining all bond lengths between covalently bound
atoms to their equilibrium distance. This is possible, as the bond length fluctuations are in
general decoupled from larger motions and are of minor interest for the evolution of the
system; and it is justified by the fact that a high-frequency (hv > kpT’) quantum harmonic
oscillator always remains in its ground state. Constraining angle vibrations in this way is
however not possible, as this can affect the molecular motion [282].

Fixed bond lengths between different atoms can be imposed on a system as holonomic
constraints. Using the method of Lagrange multipliers, this gives a system of 3N + m
equations, where NN is the number of particles in the simulation system and m is the num-
ber of constraints. For the case of small molecules and especially water, Miyamoto et al.
derived and implemented an analytical solution to this set of equations based on geomet-
rical considerations (SETTLE). For larger molecules, an analytical solution becomes very
time-consuming and numerical solutions are preferred. The two most popular algorithms,
SHAKE [227] and LINCS [106], first solve the unconstrained equations of motions, and
afterwards reset the atomic coordinates such that the constraint equations are fulfilled. In
SHAKE, this resetting is done iteratively, while LINCS uses a two-step matrix formal-
ism.

2.2.5 Periodic Boundary Conditions

Due to the limitations of the currently available computing power, atomistic MD simu-
lations are restricted to systems of about 10° atoms and to time scales of some hundred
nanoseconds. Compared to their volume, these systems have a large surface area; thus
the simulation outcome is dominated by edge effects resulting from the boundaries of
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the system. Contrarily, most experiments are performed on large, macroscopic samples,
where boundary effects have only a minor and localized influence. To minimize edge
effects in simulations, most MD studies today are performed applying periodic bound-
ary conditions, realized by simulating infinitely many translated, neighboring copies of a
space-filling simulation box in all three spatial directions (see Fig. 2.3). Space-filling box
types are for example a triclinic box, a rectangular box, a truncated octahedron, a hexag-
onal prism, or a rhombic dodecahedron. Within this approach, an artificial periodicity

Figure 2.3: Schematic drawing of a simulation
setup applying periodic boundary conditions.
Translated copies of the simulation box are tightly
packed in all three spatial dimensions.

is imposed on the system. However, errors resulting from this periodicity diminish with
increasing system sizes and they are in general expected to be smaller than effects caused
by system boundaries to a vacuum.

For the use of periodic boundary conditions, some restrictions have to be kept in mind.
Usually, the minimum image convention is applied, meaning that for the calculation of
short-range interactions (e. g., Lennard Jones interactions) between atoms A and B, only
the nearest of all periodic images of atom A to atom B should be considered (see Fig. 2.4).
Also, single atoms as well as larger molecules like proteins should not be allowed to inter-
act with their own periodic image. For a rectangular box, this implies that the minimum
box dimension must exceed the maximum length of the largest simulated molecule plus

o °
B (\\,.(/X/) B’
AV

> @

Figure 2.4: Allowed and forbid-
den short-range interactions in a
periodic simulation setup.
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twice the cutoff radius for short-range interactions. Long-range interactions that cannot
be truncated without introducing severe artifacts are treated using lattice summation al-
gorithms (see Section 2.2.2). To exclude divergent terms in these calculations, overall
charge neutrality of the system must be ensured.

Applying periodic boundary conditions in lipid bilayer simulations, multi-lamellar phases
are generated. In these layered structures, the amount of water between the periodic im-
ages of the bilayer has a critical influence on the bilayer properties (see, e.g., [109]). A
sufficiently thick water layer must be ensured to obtain single-bilayer properties from the
simulations. This condition is often referred to as *full hydration of the lipid bilayer’ and
is generally assumed to be fulfilled by simulating a minimum of about 30 water molecules
per lipid molecule.
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3 1-Alkanols and Membranes: A
Story of Attraction
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Although 1-alkanols have long been known to act as penetration en-
hancers and anesthetics, the mode of operation is not yet understood.
In this study, long-time molecular dynamics simulations have been per-
formed to investigate the effect of 1-alkanols of various carbon chain
lengths onto the structure and dynamics of dimyristoylphosphatidyl-
choline bilayers. The simulations were complemented by microcalorime-
try, continuous bleaching and film balance experiments. In the sim-
ulations, all investigated 1-alkanols assembled inside the lipid bilayer
within tens of nanoseconds. Their hydroxyl groups bound preferen-
tially to the lipid carbonyl group and the hydrocarbon chains stretched
into the hydrophobic core of the bilayer. Both, molecular dynamics sim-
ulations and experiments showed that all 1-alkanols drastically affected
the bilayer properties. Insertion of long-chain 1-alkanols decreased the
area per lipid while increasing the thickness of the bilayer and the order
of the lipids. The bilayer elasticity was reduced and the diffusive mo-
tion of the lipids within the bilayer plane was suppressed. On the other
hand, integration of ethanol into the bilayer enlarged the area per lipid.
The bilayer became softer and lipid diffusion was enhanced.

ITheoretical and Computational Membrane Biology, Center for Bioinformatics Saar, Saarland University,
PO Box 15 11 50, 66041 Saarbriicken, Germany
2Department of Physics, Augsburg University, Universititsstr. 1, 86159 Augsburg, Germany
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3.1 Introduction

Since the demonstration of the phenomenon of anesthesia in the middle of the 19th cen-
tury by William Morton, there has been a keen research interest to elucidate the underlying
mechanism. Special interest arises from the fact that there is a vast number of structurally
and chemically different molecules — amongst them the 1-alkanols — which all cause
anesthesia (see review [275]). To account for this variety of anesthetics, the hypothesis of
a nonspecific or physical mode of action of anesthesia, mediated by lipid bilayers, rather
than a chemical reaction mechanism with binding of anesthetics to membrane proteins
was proposed (see, e. g., [135, 222, 274]). This hypothesis is supported by the fact, that
the Meyer-Overton rule, after which the anesthetic effect of a drug correlates with its
lipophilicity, is the only relation which was found to be valid for almost all general anes-
thetics [275].

Many different theories explaining the mode of action of anesthetics were suggested and
investigated. Indirect, lipid-mediated theories proposed anesthetic action to be exerted
by a change of membrane properties upon insertion of anesthetics — like the volume of
the membrane [222] or the volume that anesthetics occupy within a membrane [175], the
phase transition temperature [101], the lipid chain order, the thickness of the membrane,
the lateral phase separations in membranes [271], or the lateral pressure profile [33]. The
latter changes may influence the function of proteins embedded in the membrane, e. g.,
induce a shift of the conformational equilibrium between the closed and the open state
of membrane channels [33, 271]. A similar mechanism of protein function regulation by
bilayer elasticity was also suggested (for a review, see [147]). However, up to now there
is no consensus neither about the site of action of anesthetics nor about the mechanism of
their action.

Apart from anesthesia, an important application of aliphatic alkanols is their use as pen-
etration enhancer in transdermal drug delivery [297]. Like in the case of anesthetics,
neither the mechanism of action of penetration enhancers nor the exact site of action is
known yet [297]. An interesting parallel between the potency of 1-alkanols as anesthetics
and as penetration enhancer can be found for the so-called cutoff-effect for anesthetics:
the potency of a homologous series of anesthetics — e. g., the 1-alkanols — is increasing
until a certain chain length is reached. 1-Alkanols with a chain length above the cutoff
length show no anesthetic potency anymore. Similarly, the permeation enhancing effect
of 1-alkanols increases with increasing chain length up to decanol and decreases again
for 1-alkanols with longer carbon chains [6]. Also, the potency of alcohols as anesthet-
ics as well as penetration enhancers was found to decrease with branching of the carbon
chain [135, 297]. For monounsaturated 1-alkenols the cutoff in potency for anesthesia
was found to be shifted to longer carbon chains [206]; the same effect can be found for
I-alkenols as penetration enhancer [297]. Apart from the general interest in the mecha-
nisms of anesthesia and penetration enhancement caused by alcohols, an understanding
of these effects would possibly allow an improved design of anesthetizing and permeation
enhancing drugs.

Up to now there have been only a few computational studies targeting the influence of
anesthetics or alcohols on lipids. A recent study by Patra et al. [196] examined the in-
fluence of methanol and ethanol onto dipalmitoylphosphatidylcholine (DPPC) and palmi-
toyloleoylphosphatidylcholine (POPC) lipid bilayers by molecular dynamics (MD) simu-
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lations, reporting a decreased order for lipids bound to ethanol and an increased fluidity
of the bilayers upon insertion of ethanol. In two successive studies, Chanda and Bandy-
opadhyay [41, 42] studied the influence of ethanol onto dimyristoylphosphatidylcholine
(DMPC) bilayers at moderate and high concentrations. Despite a short simulation time
of 5ns and pre-insertion of ethanol molecules into the bilayer according to experimen-
tal results, a change in the distribution of lipid headgroup dipoles and an increase of the
in-plane and out-of-plane mobility of the lipids could be observed. The mobility of in-
terfacial water was raised due to preferential hydrogen bonding of ethanol to the lipids.
In a combined experimental and theoretical study of POPC bilayers with ethanol at low
hydration, Feller et al. [71] found an interaction between the ethanol molecules and the
lipid phosphate groups via formation of hydrogen bonds and a predominant localization
of the ethanol molecules at the bilayer/water interface. Kranenburg et al. and Venturoli et
al. [133, 134, 290] applied coarse-grained simulations to investigate the influence of al-
cohols on the phase diagrams and especially on the interdigitated phase of lipid bilayers.
Concerning anesthetics, the influence of halothane on a pure DPPC bilayer [273] and on
a simple transmembrane channel (gramicidin A) [146, 257] has been studied by means
of MD simulations. Halothane molecules preferentially resided at the channel-lipid-water
interphase. At physiologically relevant concentrations, only minimal effects on the gram-
icidin A structure, but profound changes in the channel dynamics were reported.

Here, we use MD simulations to investigate the effects of 1-alkanols of different chain
lengths (below and above the cutoff length) on the structure and dynamics of lipid bi-
layers. Although lacking physiological components as, e. g., integral membrane proteins,
phospholipid bilayers can be considered as a first approximation to understand the be-
havior of cell membranes [196]. Applying the technique of MD simulations allows to
monitor the insertion of the 1-alkanols into the bilayer as well as modifications of the bi-
layer properties induced by the 1-alkanols in atomic detail. Special emphasis has been put
on the analysis of the bilayer elasticity, volume changes of the bilayer, as well as the lipid
ordering before and after addition of 1-alkanols, as these effects have been proposed to be
central to the mechanism of action of anesthesia. The simulation results were endorsed
by continuous bleaching, film balance and microcalorimetry experiments.

3.2 Materials and Methods

3.2.1 Molecular Dynamics Simulations
Simulation Setup

MD-simulations have been carried out using the GROMACS software package version
3.3 [18, 143, 278]. For the starting structure, a hydrated DMPC bilayer consisting of 128
lipids (kindly provided by Peter Tieleman) was used. This bilayer was placed into solu-
tions of different alkanols — ethanol, octanol, decanol and tetradecanol — with water.
The initial coordinates of the 1-alkanols were created with the help of the Dundee PRO-
DRG2 Server [231] and then the 1-alkanols were randomly added to the water phase. The
concentrations of the water-alkanol solutions were in the range of 0.0 to approximately
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0.6 mol kg™! (0, 8, 24, and 72 1-alkanols). Suggested values for full hydration of lipid
bilayers range from 20 to 32 water molecules per lipid [109, 142, 195]. To ensure full hy-
dration, we chose a minimum total number of 5, 000 water molecules for the systems with

128 lipids, corresponding to a minimum ratio of 39 water molecules per lipid (compare
Table 3.1). Additionally, for octanol and ethanol, systems at larger 1-alkanol concentra-
tions of about 0.9 to 1.3 mol kg~ ! were studied. Starting structures for systems with larger
1-alkanol concentrations were taken from systems at lower concentrations. The effect of
ions (system E8) was analyzed by randomly adding sodium and chloride ions at a con-
centration of 215 mM to the water-phase of an equilibrated ethanol-DMPC-water system
(E3 after 100 ns, compare Table 3.1). Each system was simulated for 100 ns.

To deduce the bilayer elasticity from the bilayer undulations (see below), larger patches
were necessary. For this reason, we quadruplicated six equilibrated systems with different

I-alkanol solutions and simulated them for 30— 50 ns. In order to estimate the influence
of the system size, three systems were increased sixteenfold (2048 lipids, simulation time
> 23 ns). A summary of the simulation systems and times is given in Table 3.1.

All systems were simulated using periodic boundary conditions, a rectangular simulation
box, and a constant number of atoms at fixed pressure and temperature (NPT ensemble).
Constraining the bond lengths by the LINCS [106] and SETTLE [169] methods allowed
for an integration step size of 2fs. The lipids and the water-alkanol solutions were sep-
arately coupled to a heat bath at 310 K using a coupling time constant of 0.1 ps [16].
The pressure was kept constant at 1 bar by a weak semi-isotropic coupling to a pressure
bath [16] using a time constant of 1 ps and a compressibility of 4.5 x 107° bar~!.

To ensure a correct treatment of the long-range electrostatic interactions, the Particle Mesh
Ewald method [50] was applied using a Fourier grid spacing of 0.12 nm, a 4th-order cu-
bic interpolation and a relative accuracy of 1.0 x 107°. The short-range van der Waals
interactions have been accounted for with a cutoff-scheme using a cutoff radius of 1 nm.
The neighborlist was updated every 10th integration step.

The force field for the lipids was taken from Berger et al. [20]. For water, the SPC
model [17] was chosen. For the 1-alkanols, the GROMACS force field, modified for
the partial atomic charges according to MacCallum and Tieleman [151], was adopted.
A system with ethanol was additionally simulated using the recently developed GRO-
MOS 53A6 force field [193]. The main difference between the two force fields used for
the simulations of ethanol is an increased polarity of the hydroxyl group for the GRO-
MOS 53A6 force field.

Membrane Thickness

The average headgroup-to-headgroup thickness dyy of the bilayer was calculated by de-
termining the center of mass coordinates of each lipid headgroup at each time step. These
headgroup coordinates — weighted by a normalized Gaussian function — were assigned
to a grid in the x—y—plane (lateral membrane plane) for each monolayer separately. The
membrane thickness was taken as the space and time average of the distance between
opposite grid points.
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system | number of | number and type of number of simulation
name lipids 1-alkanol molecules | water molecules | time (ns)
Cl1 128 none 5,673 100
C2 512 none 22,692 52
C3 2048 none 90,768 23
El 128 8 Ethanol 7,470 100
E2 128 24 Ethanol 7,409 100
E3 128 72 Ethanol 9,394 100
E4 128 128 Ethanol 6,995 100
E5 512 288 Ethanol 26,800 31
E6 2048 1152 Ethanol 107,200 23
E7 128 72 Ethanol 6,146 100
E8 128 72 Ethanol 9,322 100
01 128 8 Octanol 5,237 100
02 128 24 Octanol 5,140 100
03 128 72 Octanol 6,656 100
04 128 128 Octanol 7,945 100
05 128 185 Octanol 7,955 100
06 512 96 Octanol 20,560 40
o7 512 288 Octanol 26,624 33
08 2048 1152 Octanol 106,496 26
D1 128 8 Decanol 5,229 100
D2 128 24 Decanol 5,092 100
D3 128 72 Decanol 7,474 100
D4 512 288 Decanol 29,896 31
TD1 128 8 Tetradecanol 5,212 100
TD2 128 24 Tetradecanol 5,027 100
TD3 128 72 Tetradecanol 7,307 100
TD4 512 288 Tetradecanol 29,228 31

Table 3.1: The systems studied in the simulations.

For the simulation E7, the GRO-
MOS 53A6 [193] force field was used instead of the GROMACS force field. The simula-
tion E8 contained ions in the aqueous phase.
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Deuterium Order Parameter

The average fluctuations of the lipid and 1-alkanol chains around the bilayer normal are
characterized by the order parameter tensor

1
Sap = <gcos 6, cosfz — §5aﬁ> (o, B=1x,y,2) (3.1)

where cos 6, denotes the angle between the arth molecular axis and the bilayer normal.
The deuterium order parameter Scp can be derived from the order parameter tensor by
using the equation

2 1
SCD = —gSm - gSyy . (32)
Here, the deuterium order parameters were calculated for the carbon atoms of the DMPC
lipids as well as for the carbon atoms of the 1-alkanol molecules themselves. Both lipid
chains were considered separately. The order parameters were averaged over time, starting
at the respective equilibration time (Table 3.2).

Area per Lipid

Although there are various sophisticated methods to calculate the area per lipid in binary
mixtures [62], we chose the conventional approach to divide the total area of the simula-
tion box by the number of lipids in one monolayer and to neglect the area of the 1-alkanol
molecules. In this way, the simulated results can be most easily compared to experiments.
The fact that the area per 1-alkanol molecule is much smaller than the area per lipid further
substantiates this procedure.

Calculation of the Bilayer Elasticity from Undulations

The elasticity of the bilayer has been derived from its undulations by performing a spec-
tral analysis analogous to the procedure described by Lindahl and Edholm [141]. Similar
methods have been applied by Goetz et al. [84], Marrink and Mark [158], and den Otter
and Briels [57].

For modes with wavelengths larger than the membrane thickness, protrusions can be ne-
glected and the bilayer can be approximated as a single surface. In Fourier space, the
potential energy F,,q of the surface undulations divided by the total area A of the bilayer
can be expressed as a function of the spectral intensity I(|k|) (see, e. g., Safran [228])

Euna([F))

_ 74 712 7
L =05 (/ﬂc‘k‘ + k| ) (%)) (3.3)

with the wave vector k, the bending modulus k. and the surface tension . Using the
equipartition theorem F = % kpT with the Boltzmann constant kp and the temperature
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T', a transformation of equation (3.3) yields the following relation between the spectral
intensity and the bending modulus:

o kgT /- Lo\l
T(R]) = =5 (ke [RF +1RE) (3.4)

For the semi-isotropic pressure coupling applied in the simulations, the surface tension is
approximately zero. The bending modulus can then be obtained from a fit of the spectral
intensity as a function of the wave number.

The spectral intensity was computed by fitting a grid with a spacing of ¢ ~ 0.2nm to
the plane of the bilayer (z—y plane). For each grid point (z;,y;), the amplitude of the
grid point normal to the bilayer plane z(z;, y;,, t) as a function of time was calculated by
summing over the center of mass z-coordinates z;(¢) of the lipid headgroups weighted by
a coordinate-dependent Gaussian function:

() —z:)%— 2
z .Ti,yj’ = — _— —

(3.5)

The sum ) = adds up the contributions of the two monolayers and the sum ), is taken
over all lipids of one monolayer. The elasticity has been computed both for the average
of the two monolayers as well as for the monolayers separately. To ensure correct weight-
ing of the contributions of all surrounding lipids to the amplitude of the undulations at a
certain grid point, the width o of the Gaussian function was chosen proportional to the
grid spacing: o = 0.8 g. Thereby, all lipid headgroup coordinates can be attributed with a
non-negligible contribution to specific grid points, while only a small smoothing between
neighboured grid points is applied. A two-dimensional Fast Fourier Transformation (FFT)
was applied to the function z(x;, y;,t) yielding Z(k., k,, t). Projection of the two spatial
directions onto the absolute value of the wave vector k gave the k-space mode amplitudes
%(|k|, t), the square of which is the spectral intensity I(|k/|,¢). A binning over the intensi-
ties for different wave numbers in intervals of h% was applied, where [}, is the length of
the simulation box in - and y-direction.

As mentioned above, such an analysis can only be conducted for modes with wavelengths
larger than the bilayer thickness (see Fig. 3.6). Therefore, only the 4-fold bilayers con-
sisting of 512 lipids (= 12.8 nm box length in - and y-direction) and the 16-fold systems
(2048 lipids) (see Table 3.1) have been evaluated.

Additionally, the same analysis has been performed, but with a FFT in all three dimen-
sions to resolve the intensity not only as a function of the wave number, but also the
frequency. The total spectral intensity (| k |) is then given by the sum over all frequencies
except w = 0 (exclusion of w = 0 eliminates the translation of the bilayer).

Diffusion Coefficient

The lateral self-diffusion coefficient D of the lipids

D= ! lim (% (|z (to) —  (to + t)|2>t0) (3.6)

4 t—o0
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3 1-Alkanols and Membranes

was estimated from the slope of the mean-square displacements d? of the center of mass
coordinates x of the lipid headgroups in the bilayer plane (linear fit in the time interval
from the 2nd to the 5th nanosecond):

N T-t-1

a2 (t) NT_ DY lalte) —xlto + 1) (3.7)

i=1 to=0

The first sum runs over all /V lipids and the second sum runs over all time frames smaller
than 7" — ¢, where 7' is the sampling time (sliding window). The lateral mean-square
displacements of the lipids were corrected for the center of mass motion of the respective
monolayer [24]. The error was estimated by splitting the trajectories with 512 lipids into
pieces of 10 ns length, and those with 128 lipids into pieces of 40 ns length.

3.2.2 Experiments
Diffusion Measurements and Continuous Bleaching

DMPC was purchased from Avanti Polar Lipids (Alabaster, AL, USA) and used without
further purification. The fluorescent lipid probe TexasRed DHPE was purchased from In-
vitrogen (Karlsruhe, Germany). Branched polyethylenimine (PEI) (M.W. 1800 g mol™1),
potassium nitrate, ethanol (p.a.) and tetradecanol (purity 97%) were obtained from Sigma
Aldrich (Munich, Germany).

Supported lipid bilayers on a cushion of PEI were recently shown to display quasi-free
behavior [237] and thus were selected to study the lateral diffusion of the alkanol doped
membranes. Multilamellar vesicles (MLVs) were prepared by hydration of a dried lipid
film with 150 mM KNO3/H50O and subsequent incubation at 7" > 75, for several hours.
Small unilamellar vesicles (SUVs) were obtained by sonification of MLVs with a probe
sonificator for 15 minutes. Finally, the SUVs were centrifuged to remove titanium parti-
cles.

Solid supported bilayers for diffusion measurements were prepared by vesicle fusion on
a microscope coverslip. The SUV solution with a concentration of 0.5mg ml~! and
a 0.2% TexasRed DHPE content was incubated on the cover glass at T > T,, for 6
hours, followed by extensive washing with buffer to remove the remaining SUVs. To ob-
tain polymer-cushioned bilayers, a 10 mg ml~! PEI solution in 150 mM KNO3/H,O was
added to the system and left to incubate for 15 minutes.

The diffusion measurements were performed on an Axiovert 200 Fluorescent Micro-
scope (Zeiss, Gottingen, Germany) using the method of continuous photobleaching [59].
Briefly, a spot of approximately ten micrometers diameter (Area of Interest, Aol) was
observed with a 63x oil immersion objective. The fluorophores inside the spot are con-
tinuously photobleached while new unbleached lipids diffuse into the Aol. For the ra-
dial intensity distribution near the edge of the Aol the following analytical expression
holds [59]:

B
I(r) o< exp (Ar) with A\ = 50 : (3.8)
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In this equation, D is the diffusion constant of the fluorophore and Bj is the bleaching
rate. By is determined from the exponential decay of the intensity in the center of the
Aol,

I (t) ox exp (—Byt) . (3.9)

The results are given as the mean of three measurements performed within hours on a
freshly prepared sample, with the standard deviation giving the error bars.

Incorporation of 1-Alkanols into the Membrane

Ethanol was directly added to the aqueous phase and is therefore given in vol%. Tetrade-
canol, however, is not water soluble and was therefore dissolved in chloroform and added
to the chloroform/DMPC solution prior to vesicle or film preparation. Partition coeffi-
cients of tetradecanol are therefore missing.

Film Balance Experiments

To acquire the compressibility of lipid membranes with and without 1-alkanols, pressure-
area-isotherms were measured using a regular film balance of Nima Technologies (Coven-
try, England). 500 ml of double distilled water was filled into a trough and the lipid-
chloroform solution was spread onto the water surface. Due to the low solubility of
tetradecanol in water, tetradecanol and DMPC molecules were mixed together in a ra-
tio of 1 to 10 in a chloroform solution, while 2 vol% of ethanol were directly added into
the water subphase. After evaporation of the solvent the film was compressed with a speed
of 3cm? min~! (1.3 A%/minute per molecule). The lateral pressure was monitored using
a Wilhelmy plate. The isothermal compressibility x, was directly derived using

1dA
= ——| . 3.10
Kt Adn ( )
T
From the compressibility profile we extracted «r of the liquid expanded phase (corre-
sponding approximately to the fluid phase in lipid bilayers) by fitting two tangents at the
lower left of the transition peak shoulder (compare Fig. 3.9). The intersection was taken

as the onset of the fluid phase. From the same fit the error bar was calculated.

Microcalorimetry

Multilamellar Vesicles (MLVs) of DMPC were produced both in double distilled water
and in a double distilled water/ethanol (9:1 v/v) solution. For DMPC/tetradecanol MLVs
(20:1 mol/mol), the components dissolved in chloroform were mixed and after evapora-
tion of the solvent hydrated in double distilled water. Differential heat capacity scans
of the lipid dispersions (0.5 mgml™!) were recorded with a Microcal VP-DSC Micro
Calorimeter (Microcal Inc., USA) at a heating rate of 5° C h~! at high feedback mode.
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Measured data were analyzed using the routines of the Origin software (Microcal Inc.,
USA). The solubility of the 1-alkanols in the phospholipid membranes can directly be
derived from the heat capacity experiment exploiting the shift in the phase transition tem-
perature [8]

RT?
AT = —uxp . 3.11
e (3.11)
R denotes the gas constant, 7" the transition temperature of the lipid-alkanol-suspension,
and x,, the concentration of dissolved 1-alkanol in the membrane fraction in mol. The
transition enthalpy H is extracted from the heat capacity by integrating over the transition
regime

H = /cpdT . (3.12)

Hence, the thermodynamic partition coefficient /X, defined as the ratio of the mole frac-
tion of 1-alkanols in the bilayer and the mole fraction of 1-alkanols in the surrounding
water, can be calculated directly from equation (3.11) and the amount of alkanol added to
the solution.

3.3 Results and Discussion

3.3.1 Molecular Dynamics Simulations
Equilibration Times

All 1-alkanols went into the bilayer within a few nanoseconds. Only for the simulations
with ethanol and the simulations with the highest octanol concentrations (O4 and O5),
1-alkanol molecules remained in the water. Long-chain 1-alkanols clustered prior to their
membrane insertion, resulting in increased equilibration times. To determine the equili-
bration times, the concentration of the 1-alkanols in the water as well as the area per lipid
and the lipid order parameter were monitored as a function of time. The equilibration
times for the different simulations with 128 lipids are summarized in Table 3.2. All later
analysis is done with respect to these equilibration times.

System Cl | El | E2 | E3|E4 | E7| E8 | Ol | O2
Eq. time (ns) || 5 S5 |16 312520 20 10 25

System 03|04 |05|D1|D2|D3|TDI1 | TD2 | TD3
Eq. time (ns) || 30 | 40 | 30 | 10 | 20 | 60 | 13 60 50

Table 3.2: Equilibration times for the different simulated systems with 128 lipids. Please
note that simulations at higher 1-alkanol concentrations were started from snapshots at
lower concentrations.
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Given that the building blocks for the large systems with 512 and 2048 lipids, i.e., the
smaller patches, were already in equilibrium, the equilibration times for the 4-fold and
16-fold systems were expected to be small. Using the same criteria as before, the large
systems were even found to be in equilibrium from the beginning. However, for the cal-
culation of the bending modulus from the bilayer undulations, additionally all undulatory
modes have to be fully developed. Therefore, the intensity of each mode, especially the
modes with the longest wavelengths, which take the longest time to develop [158], was
monitored as a function of time (not shown). Maximum intensity was reached within the
first few nanoseconds and an equilibration time of 6 ns for the patches with 512 lipids and
7 ns for the patches with 2048 lipids was chosen accordingly.

Partition Coefficients

In the simulations presented here, the initial molalities of the 1-alkanol-water solutions
were chosen in the range of 0.0 mol kg~! to 1.3mol kg=! (mole fraction 0.000 to 0.023).
After equilibration, in the simulations with 1-alkanols molalities of 0.09 mol kg~! to
2.13mol kg~! (mole fractions of 0.06 to 0.59) were obtained within the bilayer, close to or
above the 1-alkanol concentrations required to reach anesthesia (10 mM to 100 mM [79,
130, 234]). However, the anesthetic effect depends strongly on the anesthetic used, the
desired effect, and other factors.

The thermodynamic partition coefficient K, defined as the ratio of the mole fraction of 1-
alkanols in the bilayer and the mole fraction of 1-alkanols in the surrounding water, could
only be calculated for simulations for which the average number of 1-alkanol molecules
outside of the bilayer was significantly larger than zero. Otherwise, lower bounds for the
partition coefficient (determined by assuming that one alkanol molecule stayed inside the
water) are given. The respective values are summarized in Table 3.3. Because for most of
the simulations the number of 1-alkanols remaining in the water is very small, the stan-
dard deviation determined by block averaging is large.

System E3 E4 E7 ES8
Part. Coeff. || (1.8 +1.4) x 10° | 470 £ 119 76+20 | 814 +331
System 03 05 D3 TD3
Part. Coeff. *2.4 % 10 (5.5%25) x 10" | *2.7 x 10% | *2.6 x 107

Table 3.3: Partition coefficients obtained for the simulations with 128 lipids and large con-
centrations of 1-alkanols. Values marked by * define lower bounds. For the simulation
E3, an equilibration time of 30 ns was used.

For decanol and tetradecanol, the lower bounds of /K, obtained here are consistent with
measurements of the partition coefficients A (ratio of concentrations) of 1-alkanols into
bilayers consisting of a mixture of egg lecithin, cholesterol and phosphatidic acid [79].
Seeman et al. [234] reported a remarkably lower value for the partitioning of decanol into
erythrocyte ghost membranes (K = 1226.31 +92.13 in units of molal membrane concen-
tration over molar water concentration, i.e., K, ~ 4.4 x 10%), but still this value is well
above the lower bound for the partition coefficient found here (K, > 2.7 x 10%).

53



3 1-Alkanols and Membranes

Thermodynamic partition coefficients for octanol and various pure bilayers (DPPC, DOPC,
DLPE, DOPG, and SAPC) were experimentally determined by Rowe et al. [225] (K, ~
1.7 x 104, averaged over all different bilayers at 7' = 45° C) and are in agreement with the
lower bound for the octanol partition coefficient of system O3 (K, > 2.3 x 10?), and com-
parable to the thermodynamic partition coefficient of system O5 (K, = (5.5 Jﬁ?;) x 10%).
In a recent study, using NMR data and gas chromatography, Koenig and Gawrisch [130]
found about 4 % of the ethanol being bound to the lipids for a solution of ethanol and
water at physiological concentration with a fraction of 14 wt% lipids. This corresponds to
a thermodynamic partition coefficient of K, ~ 10. A value in the same order of magni-
tude was reported by Rowe [224] and was confirmed by our own experiments (see below).
The thermodynamic partition coefficients obtained from the simulations E1 — E4 using the
GROMACS force field parameters for ethanol are larger than these experimental values
by at least two orders of magnitude. A similarly increased partition coefficient can be
deduced from the recent simulations by Patra et al. [196], using the same force field. This
discrepancy between experiment and simulations is at least partially due to the force field:
usage of the refined GROMOS 53A6 force field [193] for the ethanol molecules (simula-
tion E7) with an increased polarity of the hydroxyl group resulted in a considerably de-
creased partition coefficient of K, = 76 = 20 as compared to the respective system using
the GROMACS force field (E3, K, ~ (1.8+1.4) x 10®). Further reasons for the deviating
partition coefficient in the simulations could be inaccuracies in the lipid force field or the
only implicit consideration of polarization effects in the region of the hydrophilic lipid
headgroup. A possible influence of ions (Na™ and C17) was tested by a simulation at ap-
proximately 200 mM NaCl (GROMACS force field). Though in the simulation with ions
a decrease of the partition coefficient by a factor of 2 was observed (simulations E3 and
ER), this decrease is too moderate to account for the difference between the experiments
and the simulations. Due to the considerably too large partition coefficient for ethanol,
the observed effects are probably amplified with respect to experiments at comparable
concentrations.

Distribution of 1-Alkanols inside the Bilayer

Initially, all 1-alkanols were randomly placed into the water. The 1-alkanols sponta-
neously moved into the bilayer on short timescales. Their tendency to cluster inside
the water phase — resulting in a slowdown of membrane insertion — increased with
the carbon chain length. Once inside the bilayer, the hydroxyl groups of the 1-alkanols
were closely anchored to the lipid headgroups and their carbon tails stretched into the
hydrophobic core of the bilayer (see Fig. 3.1).

The 1-alkanol integration process is very heterogeneous: head-first and tail-first inser-
tion as well as initial aggregation on the membrane surface was observed for long-chain
1-alkanols. Aggregation of long-chain 1-alkanols on the membrane surface is followed ei-
ther by a sequential membrane integration of the cluster-alkanols, or by penetration of the
complete cluster into the lipid headgroup region. The latter case is illustrated in Fig. 3.2,
showing a tetradecanol cluster insertion after several lipids gave way. After insertion, the
1-alkanol carbon chains aligned with the hydrophobic lipid tails and dispersed inside the
monolayer (Fig. 3.2 C).
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Figure 3.1: Snapshot of some of the simulation systems after 100 ns with ethanol (A), octanol (B),
decanol (C), and tetradecanol (D) (128 lipids/72 1-alkanol molecules). The 1-alkanol chains are
highlighted in green, their oxygens are represented by red spheres. Water is blue, the lipid chains
are yellow, the phosphorus atoms are magenta, and nitrogen atoms are light blue). Additionally,
the (number) density profiles across the lipid bilayer (normalized to one) both for the octanol-
DMPC system (E) as well as for the tetradecanol-DMPC system (F) are given. The latter exhibits
an asymmetric distribution of the tetradecanol molecules between the two monolayers.
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Figure 3.2: A cluster of tetradecanol molecules (green: carbon chains, red: oxygen atoms) enters
the bilayer. A and B show a side and a top view of a snapshot after 11 ns, C a top view after 100 ns.
For clarity, water molecules have been omitted from the representation (in A, four lipids have been
removed additionally). After 100 ns, the tetradecanol cluster is dissolved in the lipid bilayer (C).

No crossing events of tetradecanol molecules between the bilayer leaflets were observed.
For octanol and decanol only one, and for ethanol many such crossing events were found
(see also [196]).

For ethanol and octanol, the partitioning of 1-alkanol molecules between the monolayers
was rather uniform (except for the two largest concentrations of octanol). Yet for decanol
and tetradecanol, this distribution was asymmetric due to the clustering of the 1-alkanol
molecules inside the water prior to membrane insertion.

Without 1-alkanols, a bilayer thickness of d = 34.6 A was determined. This value is
in line with results of experimental studies: e. g., Lewis and Engelman [140] reported a
bilayer thickness (distance between the maxima in the electron density profile) of dyy =
(34 4 1)A at T = 36° C studying sonicated unilamellar DMPC liposomes (This value was
later corrected by addition of 0.8 to 1A [177)). Comparable values were found by Nagle
et al. [177] and Kucerka et al. [136]. Depending on the concentration, the insertion of the
long-chain 1-alkanols octanol, decanol, and tetradecanol globally increased the thickness
of the bilayer by 0.5—6.1 A (compare Table 3.4).

# 1-alkanols Ethanol Octanol Decanol | Tetradecanol
dun (A) | dun (A) | dun (A) | dun (A)
8 346+0.2|351+£03]|35.1+£04| 3524+0.2
24 346+04]360+03]36.5+£03| 37.3+£0.2
72 344402 |382+04]40.3+0.2| 40.74+0.2
128 33.6+0.2 | 39.8+0.1 - -
185 - 40.24+0.1 - -

Table 3.4: Average headgroup-to-headgroup thickness dyy; of the bilayer for the different
simulations with 128 lipids. The thickness of the pure bilayer in water was (34.6 £ 0.3) A.
For simulations E2, E3, and TD3, equilibration times of 15, 30, and 15 ns were used.
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However, due to the asymmetric integration of tetradecanol, a local thinning of the mem-
brane could be observed: lipids of one monolayer were drawn to the other monolayer,
such that the tetradecanol chains spanned the whole hydrophobic core of the bilayer (see
Fig. 3.1 D). In Fig. 3.1F, this thinning is reflected by an additional peak in the phospho-
rus density. The insertion of ethanol decreases the bilayer thickness by up to 1 A. This
is coupled to the well-known intertwining between the lipid fatty acyl chains [242]. In
simulations with octanol, decanol, and tetradecanol, the central minimum in the density
profile was more pronounced than for a pure DMPC bilayer (not shown).

The hydroxyl groups of inserted 1-alkanols preferentially hydrogen bonded to the lipid
glycerol backbone. A hydrogen bond analysis, where a hydrogen bond was said to exist
if the donor and acceptor atoms were < 3.5 A apart and the angle hydrogen — donor —
acceptor was < 30°, showed that for all simulations with 128 lipids and 72 1-alkanols
(GROMACS force field) more than 50 hydrogen bonds between the lipid oxygen atoms
and the 1-alkanols’ hydroxyl groups existed at every time step. The favorite binding site
was the carbonyl oxygen at the end of the sn2-chain (stereochemical numbering), where
more than 49% of all hydrogen bonded 1-alkanols docked. For the simulation of ethanol
with the GROMOS 53A6 force field, only approximately 33 hydrogen bonds between
lipid oxygens and 1-alkanols existed on average per time step. Typical lifetimes of hydro-
gen bonds, defined as the inverse of the rate constant for hydrogen bond breaking [279],
between the 1-alkanols and the carbonyl oxygen of the sn2-chain ranged from 434 ps for
ethanol to 1976 ps for octanol. Experimental studies reported ethanol-lipid contact times
of the same order (1 ns [110] up to 1.8 ns [130]).

Deuterium Order Parameters

For the simulations using the GROMACS force field for the 1-alkanols, the insertion of
any 1-alkanol into the lipid bilayer resulted in an increase of the (average) deuterium order
parameter of the lipid carbon chains (Fig. 3.3). This order increase was larger for longer
1-alkanol chains and larger concentrations of the 1-alkanols inside the bilayer. The usage
of the refined GROMOS 53A6 force field for ethanol slightly decreased the average order
of the lipids in the presence of ethanol compared to pure bilayers. These findings are also
reflected in a decreased gauche:trans ratio of the lipid tails (see Section Supplementary
Material).

Addition of ethanol (GROMACS force field) mainly influenced the order of the outer car-
bon atoms. Relative to the pure bilayer, a steeper order decrease at the core of the bilayer
was observed. This effect is probably due to intertwining of the lipids and is in line with
the thickness decrease of the bilayer. The octanol, decanol, and tetradecanol molecules
stretched further into the bilayer and raised the order of all carbon atoms. For these 1-
alkanols, the maximum of the lipid order parameter was shifted towards the bilayer core.
Both lipid chains (snl and sn2) showed a similar behavior; the values were only shifted
by the additional carbon atom at the headgroup of the snl chain.

The deuterium order parameters strongly depend not only on the concentration of the so-
lute [204], the temperature [205], and the hydration of the sample [204], but also on the
specific lipid investigated as well as on the cholesterol content of the bilayer. Therefore,
a comparison between the theoretically derived and experimentally found values requires
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Figure 3.3: Deuterium order parameter of the DMPC lipids as a function of the carbon number,
counted from the outside to the inside of the bilayer (128 lipids). Solid lines indicate values
obtained from the simulations (sn2 chain, black: pure DMPC, orange: DMPC with 72 ethanol
molecules, blue: DMPC with 72 octanol molecules, green: DMPC with 72 decanol molecules,
and red: DMPC with 72 tetradecanol molecules). Standard deviations are included by error bars
(hardly visible due to their smallness). The orange dashed line shows the lipid order parameters
calculated from the simulations of ethanol with the GROMOS 53A6 force field (simulation E7).
Symbols denote experimental values from 2H-NMR measurements (black squares: pure DMPC
measured by Nevzorov [180]; black diamonds: pure DMPC measured by Pope and Dubro [204];
blue triangles: DMPC with octanol (lipid/solute/water molar ratio of 1.0/0.4/9.0, T" ~ 34°C)
measured by Pope and Dubro [204]). Rearrangements of the experimental order parameters of
Pope and Dubro [204] according to the overall shape of the curve obtained in the MD simulations
(see text) are shown as dotted lines (pure DMPC: black; DMPC with octanol: blue).

a careful analysis of the respective conditions. 2H-NMR measurements of the lipid or-
der parameter were done by Pope and Dubro [204] and Nevzorov et al. [180]. Their
results are included in Fig. 3.3. While for pure DMPC bilayers the results of Nevzorov et
al. [180] agree very well with the simulations, the measurements of Pope and Dubro [204]
show an increased lipid order as compared to our simulations. This is probably due to the
comparably low hydration (9 water molecules per lipid) and temperature (7' ~ 34°C)
in the experiments. As in the simulations, Pope and Dubro [204] observed a lipid order
increase upon addition of octanol. However, the lipids were perdeuterated in various po-
sitions simultaneously. Therefore, the measured order parameters could not be assigned
unambiguously to the lipid carbon atoms [204]. Based on the results of our simulations,
we suggest a rearrangement of the experimental values as indicated by the dotted lines in
Fig. 3.3. For this rearrangement, the experimental values have been reassigned to the car-
bon atoms such that the order parameters as a function of the carbon atom number adopt
the same shape as the order parameters determined from the simulations.

The order of the 1-alkanol carbon chains was found to depend on the chain length and
the 1-alkanol concentration in the bilayer (Fig. 3.4) in the same way as the lipid order. A
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comparison to 2H-NMR experiments qualitatively confirms the simulation results: Pope
and Dubro [204] investigated the influence of solute concentration and hydration onto the
order of octanol molecules dissolved in DMPC bilayers. As in the simulations, they found
an increase in the octanol order as the octanol concentration was raised. An increase in
hydration reduced the order of the octanol molecules. Values for tetradecanol and decanol
order parameters can be found in publications of Westerman et al. [296] and Thewalt et
al. [260], where the order of selectively deuterated 1-decanol molecules was measured
using multilamellar dispersions. As can be seen from Fig. 3.4, the order parameters cal-
culated from the simulations are in most cases larger than the experimentally found values.
For decanol and tetradecanol, this discrepancy is probably due to the considerably larger
temperatures (7' = 323 K and 7" = 330 K) in the experiments.
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Area per Lipid

For the pure DMPC bilayer in water, the average area per lipid was 64.15 £ 0.77 A2 in
agreement with experimental results ranging from 60.01 £ 0.75 A2 [9] to 65.7 + 3.0 A2
[140] at 309 K and with previous simulation studies applying the same force field (e. g.,
[92, 109, 298]). The area per lipid increased for membranes containing ethanol, while it
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decreased for membranes containing decanol or tetradecanol (see Table 3.5 and Fig. 3.5).
For the lower octanol concentrations, the analysis showed a slight decrease of the area per
lipid, while for high concentrations an increase was found. For a DMPC-ethanol system
containing monovalent ions (system E8), the area per lipid was 63.75 4 0.81 A2 due to the
coordination of cations by the lipid carbonyl groups [24].

The increase in the area per molecule for ethanol is in agreement with micropipette aspi-
ration experiments by Ly and Longo [148, 149] as well as our own experimental results
(see below).

# 1-alkanols Ethanol Octanol Decanol Tetradecanol
ApL (A?) ApL (A?) ApL (A?) ApL (A?)
8 64.38 & 0.56 | 63.60 = 0.59 | 63.88 £ 0.88 | 64.03 &+ 0.54
24 64.74 +£0.98 | 63.45 4+ 0.78 | 62.69 £ 0.67 | 61.49 £+ 0.53
72 67.18 £ 0.54 | 63.44 4+ 0.96 | 59.80 £0.32 | 60.57 + 0.31
128 70.96 £+ 0.53 | 64.38 +0.28 - -
185 - 68.49 £+ 0.25 - -

Table 3.5: Average area per lipid (ApL) for the different simulations with 128 lipids. For
the simulation of a pure bilayer in water, the average area per lipid was calculated to be

64.1540.77A2. For simulations E2, E3, and TD3, equilibration times of 15, 30, and 15 ns
were used.

072F T T T T T T T T T T T T
o.7o:f -
0.68 |- :
0.665'
0.64

0.62

area per lipid (nm?)

0.60 [ .

[ — pure bilayer

—— octanol — tetradecanol
deconlol etlhonol

40 60
time (ns)

0,58 F

0 20

Figure 3.5: Area per lipid for the bilayer in the solutions with 72 molecules of the respective 1-
alkanol as a function of time. The values were smoothed by averaging over time intervals of 1 ns
(sliding window procedure).

Combining the results for the area per lipid and the thickness of the bilayer (Table 3.4),
the volume per lipid was computed (Table 3.6). For the pure bilayer, the volume per
lipid was Vpypc = (1.11 4 0.01) nm3. This compares well to the experimental value of
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Vompe = 1108A3 at T = 309K reported by Nagle and Wilkinson [178]. The average
lipid volume increased only slightly with increasing 1-alkanol concentration.

# 1-alkanols Ethanol Octanol Decanol Tetradecanol
V (nm?) V (nm?) V (nm?) V (nm?)
8 1.11+0.01 | 1.124+0.01 | 1.12£0.02 | 1.134+0.01
24 1.12+0.02 | 1.144+0.02 | 1.14 £0.02 | 1.154+0.01
72 1.16 +0.01 | 1.21+£0.02 | 1.20£0.01 | 1.234+0.01
128 1.194+0.01 | 1.284+0.01 - -
- - 1.38 £0.01 - -

Table 3.6: The volume V' per lipid for the different simulations with 128 Lipids. For the
pure bilayer in water, a value of (1.11 + 0.01) nm® was found.

Bending Modulus and Elasticity

In the following, we investigated the influence of 1-alkanols on the elastic properties of
the DMPC bilayer. The bending moduli of the different systems were calculated by a fit
of the intensity of the bilayer undulations observed in the simulations (compare Section
Materials and Methods and see Fig. 3.6). The values are summarized in Table 3.7. They
were obtained using a time resolution of At = 10 ps, a grid spacing g ~ 0.2nm, and a
width of the Gaussian function of 0 = 0.8 g. The first 6 ns (7 ns) (512 (2048) lipids) of
the trajectories were omitted in the analysis to account for equilibration of the systems
(see Section Equilibration Times). The error was estimated by block averaging over time.
The time window was adjusted such that the autocorrelation of the undulatory modes with
the largest wavelength drops below 0.2. The bending moduli denoted with a superscript
av’ were calculated by averaging the grid coordinates of both lipid monolayers; values
denoted with "up’ or ’low’ correspond to the analysis of individual monolayers.

System | # DMPC | k2 (10729 J) | k% (10720J) | k¥ (10720J)
C2 512 25+£0.2 1.5+0.1 1.5+0.1
C3 2048 3.2+0.1 21+0.1 21+0.1
ES 512 22=x0.1 1.5+0.1 1.3+0.1)
E6 2048 26=x0.3 1.7+0.2 1.6 £0.2
06 512 25+£0.2 1.7£0.1 1.5+£0.1
o7 512 3.6 £0.3 21+£0.2 25+£0.2
08 2084 45+£0.1 3.2+0.1 3.2+0.1
D4 512 3.6t04 1.9+0.3 21+04

TD4 512 2.7+£0.2 1.8+£0.2 1.1+0.1

Table 3.7: The bending moduli for the different simulation systems. k%" was calculated by
averaging over the two monolayers; k="' gives the bending modulus for the upper/lower
monolayer separately.
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Figure 3.6: Intensity of undulations (scaled for the different patch sizes) versus wave number for
the simulation systems C2 (512 lipids) and C3 (2048 lipids) (pure bilayers). The elasticity is
obtained by fitting the intensity at low wavenumbers (< 27 /), A9 = membrane thickness).

In agreement with the experiments of Ly et al. [148, 149], ethanol decreased the bend-
ing modulus of the bilayer. On the other hand, at larger concentrations the long-chain
1-alkanols octanol and decanol stiffened the bilayer.
The asymmetric distribution of the tetradecanol molecules inside the bilayer (62.5% of the
tetradecanol molecules went into the upper monolayer), led to a persistent (asymmetric)
local thinning of the membrane. Thereby, the flexibilities both of the monolayers and of
the bilayer are presumably overestimated. For symmetric insertion, we would thus expect
a stiffening also for tetradecanol-containing membranes. In general, the bending moduli
of the monolayers are smaller than the ones of the corresponding bilayer, because in the
latter case peristaltic motions were averaged out, while these motions contribute when
calculating the bending moduli of the separate monolayers. Systems with 2048 lipids
shifted the bending moduli to 20 — 30% larger values compared to the four times smaller
systems, reflecting possibly not fully developed undulations at large wavelengths.
An analysis of the spectral intensity as a function of the frequency and the wave num-
ber showed that small frequencies dominate in the small wave number region (27/)\¢ =~
1.8nm™1), that is crucial in the calculation of the bending modulus (Fig. 3.7).
For direct comparison to compressibility experiments (see below), the area compressibil-
ity K4 was determined as well. Assuming a statistical ensemble, it can be calculated from
the area fluctuations of the bilayer according to [4, 72, 141]

kgT - A

where A is the bilayer area. Within the large error margins, long-chain alkanols at mod-
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Figure 3.7: A contour plot of the intensity as a function of the wave number and the frequency for
the system C2. A time interval of 46 ns was analyzed with a time resolution of 1 ps. The intensity
shows a sharp peak for low frequencies and small wave numbers.

erate to high concentrations increased the area compressibility by a factor of 3-8 with
respect to pure DMPC bilayers, while no effect was seen for ethanol (within the error
bars). The area compressibility for pure DMPC (K4 = 300...700mNm™1) is at least
a factor of two larger than the respective experimental values ([65] and values in this
manuscript). However, the results (see Section Supplementary Material) show a strong
dependence on the length of the simulation as well as on the selected time interval, indi-
cating undersampling of the fluctuations [72]. This undersampling is presumably coupled
to an underestimation of the fluctuations, impeding a quantitative comparison to experi-
ment.

Diffusion Coefficient

In Fig. 3.8 the lateral diffusion coefficients of the lipid headgroups, calculated and aver-
aged for the systems with 128 and 512 lipids containing 72 and 288 1-alkanols, respec-
tively, and for the control simulations of pure DMPC, are compared with results from the
continuous bleaching experiments (see below). The addition of long-chain 1-alkanols de-
creased the lipid diffusion coefficient compared to pure DMPC, while addition of ethanol
slightly increased it. These results are in line with the described changes in the area per
lipid. For octanol, decanol, and tetradecanol, the area per lipid was decreased, i.e., the
lipids were more closely packed than for a pure DMPC bilayer. Additionally, hydro-
gen bonds that were formed between the long-chain 1-alkanols and the lipids were rather
long-lasting and thereby larger complexes with a decreased diffusion coefficient could be
formed. For ethanol in turn the opposite effect held true: the area per lipid was enlarged,
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resulting in an increase of the average distance between the lipids. Ethanol-lipid com-
plexes are comparable to single lipids in size and weight and are therefore expected to
exhibit similar diffusion properties as lipids in ethanol-free bilayers.

Quantitatively, the simulation result Dj™ = (10.4 + 0.6) um? s~ for the pure DMPC
bilayer compares well with published values; for example, Filippov et al. [73] reported
avalue Dy, &~ 11 um? s~ at T = 308 K for the lateral diffusion coefficient of lipids in
DMPC bilayers with 35 wt% of *H,0O. In agreement with our simulation results, an in-
crease in the lipid diffusion in the presence of ethanol was reported in earlier experimental
studies of ethanol-altered membrane fluidity in erythrocyte and brain membranes by Chin
and Goldstein [44] and in studies of the lipid mobility in neural crest cells by Chen et
al. [43].
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Figure 3.8: Comparison between the experimental and simulated values for the lateral self-
diffusion coefficient of the lipids. The simulation data were taken from the systems with 512
lipids and 288 1-alkanol molecules.

3.3.2 Experiments
Diffusion Coefficient

Continuous bleaching (CB) experiments were performed using solutions of 10 vol% of
ethanol or 10 mol% of tetradecanol. In the presence of ethanol the diffusion constant re-
mained almost constant (minimal increase) in relation to a pure membrane. However, the
data exhibit a rather large error bar. We assume that the presence of ethanol disturbs the
membrane cushion causing some heterogeneity in the lipid bilayer, which would indeed
result in an increased error bar. This assumption was confirmed by diffusion measure-
ments on the bare glass slide without further support; here, the error decreased while the
diffusion coefficient remained slightly enlarged.
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In the case of tetradecanol, a clear decrease in the diffusion coefficient was found in agree-
ment with the simulation (Fig. 3.8). Although the general tendency as well as the order of
magnitude is preserved, there are discrepancies in the absolute values. The difference in
temperature and the necessity of a soft support cannot be excluded to affect the measure-
ment of the diffusion constant. Considering all these factors the good agreement between
the experiments and the simulations is remarkable.

Film Balance Experiments
A: Compressibility Measurements

By monitoring a pressure-area isotherm on a film balance, the isothermal compressibility
k7 of a monolayer can be calculated by applying Eq. (3.10). In Fig. 3.9, the isothermal
compressibility of a pure DMPC monolayer compared to a DMPC monolayer with 2 vol%
ethanol in the subphase or 10 mol% tetradecanol in the monolayer is shown. The presence
of a pronounced peak, which represents the lipid phase transition, was necessary to assign
the compressibility of the fluid phase. To assure such a clear criterion for the distinction
between the two phases the compressibility of DMPC/ethanol and DMPC/tetradecanol
was measured at slightly different temperatures. As described in the Section Materials
and Methods, the onset of the fluid phase was taken as the lower left of the shoulder in
Fig. 3.9 defined by the two adjacent tangents (dotted lines).

Although the absolute value of xr might slightly depend on the temperature, the order
of magnitude and the change in xr when adding 1-alkanols are not expected to vary
significantly over the relatively small relevant temperature interval. From Fig. 3.9 we find
an increase in isothermal compressibility in the presence of ethanol by approximately
80%. When adding tetradecanol however, the membrane becomes roughly 30% stiffer. In
the fluid phase with non-coupling monolayers, the bending modulus k. of a bilayer can be
approximated by the monolayer isothermal compressibility according to [22, 66, 216]

2 d?

ke = ;
a KT

(3.14)
where d denotes the membrane thickness of the bilayer, x is the isothermal compress-
ibility of the monolayer in the fluid phase, and a is a numerical constant which depends on
the details of the model. For two leaflets free to slide past each other, a was estimated to
be 48 [22]. This model has been applied here. Taking d from the simulations (Table 3.4)
and k7 from the experiment, Eq. (3.14) yields a bending modulus of (3.0 4= 0.6) x 1072° ]
((2.0 £ 0.4) x 1072 J) for the pure DMPC membrane at 13.0° C (7.5° C). For the ethanol
treated membrane the bending modulus is decreased ((1.6 & 0.3) x 10720 J), while it is
increased for the membrane containing tetradecanol ((3.2 +0.6) x 1072 J). This is in
good agreement with the simulation results for the bending moduli (Table 3.7). Both
theoretical and experimental findings therefore demonstrate that addition of tetradecanol
in the membrane decreases the compressibility and consequently increases the bending
modulus, while ethanol has the reverse effect (see also Tierney et al. [264]).
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Figure 3.9: Isothermal compressibility as a function of applied lateral pressure as obtained from
film balance experiments on DMPC monolayers with and without ethanol (7" = 13° C) or tetrade-
canol (1" = 7.5° C). The left side from the intersection of the tangents (dotted lines) denotes the
liquid expanded phase. The z-coordinate of this intersection distinguishes the onset of the liquid
expanded phase while the y-coordinate defines the isothermal compressibility k7 (k7 ~ 0.017 %
for a DMPC monolayer with water subphase and 7 ~ 0.031 %, for a DMPC monolayer on a
water subphase containing 2 vol% ethanol at 7" = 13° C). For the sake of clarity only two pairs
of tangents are shown. During analysis several tangents have been applied providing the error
bar given in the text. Different temperatures have been chosen for experimental convenience, as
it allows to clearly define the onset of the liquid expanded phase, which can only be observed in
certain temperature intervals.

B: Area per Lipid

Film balance experiments allow to monitor the change in the average area per molecule
as a function of temperature and pressure in the presence and absence of 1-alkanols very
precisely. As the fluid phase extends over a certain pressure or temperature interval, the
average area per molecule in this phase is not constant. In order to compare our ex-
perimental data to the simulations, we calculated the relative change in area per molecule
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with and without 1-alkanol for some reference point taken as the lower left of the shoulder
in Fig. 3.9. When looking at the isotherm (data not shown), the resulting pressure corre-
sponds to an increase in area per molecule of approximately 20% in the presence of 2 vol%
ethanol in the subphase. The change in area per molecule in the presence of tetradecanol
was evaluated following the same protocol. However, since tetradecanol is not water sol-
uble, it was not added into the subphase, but directly mixed with the DMPC/chloroform
solution before spreading. A decrease in the area per molecule of roughly 10% could be
calculated from Fig. 3.9 and the corresponding isotherm. Thus, experiment and simula-
tions do agree in their general tendency of an increase in area per lipid in the presence of
ethanol and decrease with tetradecanol.

Microcalorimetry

In Fig. 3.10, the heat capacity profiles for DMPC in the presence and absence of 1-alkanols
are illustrated. The existence of 10 vol% ethanol in the bath shifts the phase transition
temperature of DMPC with respect to the pure system by 2.2 K to lower temperatures.
This clearly indicates that ethanol incorporates into the membrane and stabilizes the fluid
phase. Thus one would expect a reduced order parameter and a decreased packing density
with increasing ethanol concentration at constant temperature.

These findings are in agreement with our simulations (see Fig. 3.3) and NMR studies by
Barry and Gawrisch [11]. Assuming that ethanol only incorporates into the fluid phase
of the lipid membrane, the formula for the melting point depression (see Eq. (3.11)) can
be applied. A shift of 2.2 K at 10 vol% ethanol leads to a fraction of approximately six
ethanol molecules per 100 DMPC molecules. The thermodynamic partition coefficient is
therefore estimated to K, ~ 2, in good agreement with earlier studies [130]. In contrast,
the addition of tetradecanol stabilizes the gel phase of the membrane by shifting the phase
transition to higher temperatures. Therefore, tetradecanol is expected to increase both the
order parameter and the packing density of the lipids. Since the number of tetradecanol
molecules in the subphase is unknown (see Section Materials and Methods), a partition
coefficient cannot be given. However, experiments and simulations are once more in ex-
cellent agreement.

Our conclusion of an enhanced packing density for DMPC membranes treated with tetrade
canol and a decreased packing density after incorporation of ethanol derived from the DSC
experiments are qualitatively in agreement with findings of Aagaard et al. [1], obtained
by vibrating tube densitometry.
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Figure 3.10: Heat capacity profile for DMPC in the presence and absence of ethanol and
tetradecanol.
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3.4 Summary and Conclusions

We have shown that 1-alkanols of different chain length exert a profound influence onto
the structure and dynamics of DMPC bilayers. In the simulations, all 1-alkanols diffused
into the bilayer very quickly. While the partition coefficients of the long-chain 1-alkanols
octanol, decanol, and tetradecanol matched experimental values, the partition coefficient
of ethanol was overestimated. Usage of a refined force field could partially resolve this
issue. The 1-alkanol’s hydroxyl group preferentially hydrogen bonded to the lipid car-
bonyl atoms and the carbon chains of the long-chain 1-alkanols aligned with the lipid
carbon chains. In agreement with differential scanning calorimetry (DSC) experiments,
the simulations showed that long-chain 1-alkanols increase the lipid order and decrease
the fraction of lipids being in gauche conformation (see Section Supplementary Material).
Order parameters determined from the simulations allowed to unambiguously reassign
the peaks in the spectra obtained by NMR experiments on multiple deuterated lipids. The
area per lipid is increased and the bilayer is slightly thinned by adding ethanol. In contrast,
long-chain 1-alkanols had the reverse effect on the membrane structure (Fig. 3.11).
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Figure 3.11: Sketch of structural lipid bilayer changes upon addition of ethanol and tetradecanol.

For the lipid dynamics and the elasticity of the bilayer, the same antagonism held true:
ethanol increased the diffusion coefficient of the lipids (in the simulations) and decreased
the bending modulus of the bilayer, while the long-chain 1-alkanols decreased the lipid
diffusion coefficient and increased the bending modulus. The total volume of the hy-
drophobic bilayer core was slightly increased by the inclusion of any 1-alkanol, yet these
changes seem to be too small to lend support to volume expansion theories of anesthesia.
The main predictions of the MD simulations were confirmed by continuous bleaching
experiments, DSC measurements, and film balance experiments for ethanol and tetrade-
canol. Qualitative agreement was obtained between the simulations and the experimen-
tal results for the diffusion coefficient and the bilayer elasticity. In DSC measurements,
differential shifts of the phase transition temperature were found for ethanol and tetrade-
canol. The increase in lipid order by long-chain 1-alkanols in combination with the in-
crease in bending modulus and the thickening of the bilayer can be interpreted as a stabi-
lization of the lipid bilayer gel phase.

The reported structural and dynamical changes of the bilayer properties by the insertion
of 1-alkanols may partly be responsible for the anesthetizing and permeation enhanc-
ing effect of these drugs: the changes in the bilayer thickness could cause a mismatch
between the lipid matrix and embedded membrane proteins and modify protein-bilayer
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hydrophobic interactions. Thus, for proteins undergoing conformational changes at the
protein-bilayer interface, the conformational equilibrium between different states could
be shifted. In a similar way, the protein function could as well be regulated by the bi-
layer elasticity [147], which was modulated by 1-alkanols, too. Asymmetric insertion of
long-chain 1-alkanols may moreover lead to a considerably transient local thinning and
probably destabilization of the membrane.

In order to elucidate the mechanism of anesthetics at the atomic scale and to distinguish
between indirect effects via a change of the membrane properties and direct effects upon
binding of anesthetics to the respective target proteins, future work will require the study
of potential targets for anesthetics like ion channels embedded in explicit multicomponent
membranes.
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3.6 Appendix: Supplementary Material

3.6.1 Molecular Dynamics Simulations
Trans/Gauche Distribution of Lipid Tails

The changes in the lipid order parameters are mirrored by the distribution of dihedral
angles of the lipid carbon chains. A conformation is called gauche™ state for dihedral
angles o = —60° & 60°, it is called gauche™ state for « = +60° + 60° and trans state for
o = 180° £ 60°.

Fig. 3.12 shows the fraction of dihedral angles in the gauche® conformations. All in-
vestigated 1-alkanols with the exception of ethanol reduced the fraction of lipid chain
dihedrals in the gauche® conformations. This ordering effect increases with the length of
the 1-alkanols.
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Dipole Moment of the Lipid Headgroups

According to Seelig et al. [232], changes in the dipole orientation of the lipid headgroups
can induce high local electric fields of up to 10°V ecm~!. Such high fields can be of
importance in any process depending on the permeability of the bilayer. Therefore, the
orientation of the lipid dipole moments and the electric field across the bilayer are inves-
tigated here.

For pure phosphatidylcholine bilayers, neutron diffraction experiments of Seelig et al. [30,
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31, 233] established an "essentially parallel (within 30°) alignment" of the phosphoglyc-
erol polar groups to the plane of the membrane. In the simulations with 72 1-alkanols and
128 lipids, a broad distribution of angles 6 between the lipid dipoles and the membrane
normal was observed (see Fig. 3.13). In the case of the pure DMPC bilayer, the aver-
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angle (degq.) the simulation systems O3, D3,

TD3 and E3 (containing 72 1-
alkanol molecules each).

age angle was f = 70.6°. After insertion of 1-alkanols, the angle distribution broadened
slightly (see Fig. 3.13) with the mean angles shifted towards larger values for the long-
chain 1-alkanols (see Table 3.8). The maximum 6,,,,, of the angle distributions increased
with increasing 1-alkanol concentration for octanol and decanol, but decreased for an in-
creasing number of tetradecanol molecules. These changes in the lipid dipole orientations
had only minor influence on the electrostatic potential across the lipid bilayer (Fig. 3.14).

Area Compressibilities Derived from MD Simulations

Area compressibilities have been derived from all simulations according to

kpT - A
Ki = 515 (3.15)
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# 1-al- Ethanol Octanol Decanol Tetradecanol
kanols angle (°) angle (°) angle (°) angle (°)

0 | Omax£0| 0 | Omax£0| 0 | O £0| 0 | Opar £0
8 |706| 7875 |70 752 [70.8| 7675 |708| 817
24 (709 | 7270 |70.9| 80F% |711| 83% | 713| 8077
72| 70.9 | 7273 | 715 | 84 | 723 | 8477 | 724 | 787

Table 3.8: Average angle / between the lipid dipole moment and the bilayer normal, angle
Onax at the maximum of the angle distribution function (see Fig. 3.13), and width of the
distribution 6 at half maximum averaged over all times starting at the respective equili-
bration times (see Table 3.2). For the pure DMPC bilayer, an average angle of 70.6° was
found (Bmax = 76° *50).
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0.0 . . . . . . increased thickness of the

-3 -2 -1 0 1 2 3 bilayer after insertion of
z (nm) long-chain 1-alkanols.

and are summarized in Table 3.9. The analyzed simulation time intervals were chosen
equal for all simulations of similar size. Where possible, two independent intervals of
the same length are given, reflecting the large statistical error caused by an undersam-
pling of the fluctuations. The statistical error of the respective area compressibilities
were calculated by approximating the error of the area fluctuations. The latter depends
on the relaxation time 7 of the correlation function of the area fluctuations according to
0% = (27/T)(5A?)? (discussed thoroughly in [72]).
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3 1-Alkanols and Membranes

time Ethanol Octanol Decanol Tetradecanol
#lip. | # alk. (ns) Ka(2X Ka (2 | Ky (2N Ka (2N
128 8 60 — 100 || 437 £ 121 | 638 £133 | 527 £ 135 405 £+ 102
20—60 || 730161 | 511+£96 215 + 89 821 + 140
24 60 — 100 || 409 107 | 325£101 | 492 £ 139 720 £ 173
20 — 60 214 £ 78 - 450 £+ 136 -
72 60 — 100 || 493 £125 | 414 £180 | 1141 £265 | 1794 £ 449
128 | 60 — 100 || 621 & 117 | 2360 £+ 403 - -
185 | 60 — 100 - 3935 £ 753 - -
512 96 6 —31 - 409 + 137 - -
288 6 —31 5794+ 151 | 476 & 158 | 1889 £ 362 | 2457 + 676
2048 | 1152 8 —23 389 + 127 | 662 4 243 - -

Table 3.9: Area compressibilities calculated from the bilayer area fluctuations. For the
simulations without 1-alkanols the values for the area compressibilities are as follows:
128 lipids: (335 = 148) 2N (60 — 100 ns) and (692 =+ 128) 2N (20 — 60 ns); 512 lipids:
(347 £+ 123) %N (6 — 31ns) and (663 + 112) %N (27 — 52ns); and 2048 lipids: (542 +
125) 2N (8 — 23 ns).
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4 The Influence of 1-Alkanols and
External Pressure on the Lateral
Pressure Profiles of Lipid
Bilayers

Biophysical Journal, Vol. 95, p. 5766-5778, 2008

1 1

Beate Griepernau ' and Rainer A. Bockmann

The suggestion by Robert Cantor, that drug-induced pressure changes in
lipid bilayers can change the conformational equilibrium between open
and closed states of membrane proteins and thereby cause anesthesia,
attracted much attention lately. Here, we studied the effect of both large
external pressure and of 1-alkanols of different chain lengths — some
of them anesthetics, others not — on the lateral pressure profiles across
dimyristoylphosphatidylcholine (DMPC) bilayers by molecular dynam-
ics simulations. For a pure DMPC bilayer, high pressure both reduced
and broadened the tension at the interface hydrophobic/hydrophilic and
diminished the repulsion between the phospholipid headgroups. Whereas
the effect of ethanol on the lateral pressure profile was similar to the
effect of a large external pressure on a DMPC bilayer, long-chain 1-
alkanols significantly amplified local maxima and minima in the lateral
pressure profile. For most 1-alkanols, external pressure had moderate
effects and did not reverse the changes 1-alkanols exerted on the pres-
sure profile. Nevertheless, assuming the bent helix model as a simple
geometric model for the transmembrane region of a membrane protein,
protein conformational equilibria were shifted in opposite directions by
addition of 1-alkanols and additional application of external pressure.

!Theoretical and Computational Membrane Biology, Center for Bioinformatics Saar, Saarland University,
PO Box 15 11 50, 66041 Saarbriicken, Germany
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4 Lateral Pressure Profiles

4.1 Introduction

Although the phenomenon of general anesthesia has been known for a long time, the
underlying mechanism is not yet understood [275]. There is an ongoing debate about
whether general anesthesia is caused by a specific binding of anesthetics — amongst them
the I-alkanols, up to a chain-length of about 12 carbon atoms (see, e.g., Pringle et
al. [206]) — to membrane proteins [81] or by a nonspecific, lipid-mediated mode of action.
In the latter case, the drugs are supposed to induce changes in lipid bilayers, which in turn
alter the conformational equilibrium between different states of membrane proteins. A
further alternative lipid-mediated mechanism for anesthetic action has recently been sug-
gested on the basis of a soliton model for signal propagation in nerves [99]: Assuming that
nerve pulses travel as solitons along cell membranes, a melting point depression caused
by anesthetics would impede signal transduction and thereby cause anesthesia [100, 101].
General anesthesia can be reversed by the application of external pressure [93, 115, 116,
139, 166]. These two antagonizing mechanisms — anesthesia and its pressure reversal —
are not necessarily coupled, but it is likely that they are related in some way. Here, we
tested whether the model for a lipid-mediated mode of operation suggested by Robert
Cantor [33-35] can also account for pressure reversal of anesthesia in a simple manner.
Cantor’s idea [33—-35] is based on the premise that there is a variation of the cross-sectional
area difference between the closed and the open conformation of membrane proteins in
the direction of the bilayer normal. If this assumption is fulfilled, a change in the lateral
pressure profile of lipid membranes caused by anesthetics could shift the equilibrium be-
tween the open and closed conformation of membrane ion channels and thereby cause
anesthesia. A simple mechanism for pressure reversal of anesthesia would then be a shift
of the conformational equilibrium of these membrane proteins in the opposite direction
by external pressure.

Cantor’s model has not been tested yet, as the lateral pressure profile of membranes
or lipid bilayers is difficult to determine in experiments. Up to now, only qualitative
measurements of the pressure distribution in the bilayer chain region were achieved:
Templer et al. [258] doped mixed bilayers composed of varying concentrations of di-
oleoylphosphatidylcholine and dioleoylphosphatidylethanolamine with di-pyrenyl phos-
phatidylcholine probes of different chain lengths. These doped bilayers were then used
for fluorescence measurements, where the rate of the eximer to monomer signal of the
pyrenes was assumed to be a measure of the pressure in the bilayer. Upon increase
of the dioleoylphosphatidylethanolamine concentration, the total lateral pressure in the
chain region was increased and a transfer of lateral pressure away from the heads to-
wards the ends of the carbon chains occurred. Applying a similar technique, Kamo
et al. [121] found that the lateral pressure in mixed bilayers composed of 1-palmitoyl-
2-oleoylphosphatidylcholine and 1-monoolein increased as a function of the monoolein
fraction as long as the bilayer was in the lamellar phase, had a discontinuity in the phase
transition regime, and was approximately constant in the cubic phase. Addition of the
peptide 18A lowered the lateral pressure only in the acyl chain region at the bilayer inter-
face.

In theoretical studies, analytical and statistical methods, mean-field approaches, Monte
Carlo techniques, and coarse-grained models [33, 35-38, 83, 85, 95, 172, 236, 249, 250,
289, 302] as well as all-atom molecular dynamics (MD) simulations [40, 90, 91, 142, 184,
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190, 191, 195, 259] have been used to calculate lateral pressure profiles of lipid bilayers.
Based on all-atom MD simulations, Lindahl and Edholm [142] classified all terms con-
tributing to the lateral pressure according to their physical origin (electrostatic, Lennard
Jones, dihedral, or other bonded interactions) and the interacting molecules (pairwise
contributions of lipid chains, headgroups, or water molecules) and distinguished between
energetic and entropic contributions to the surface tension. Similar studies have been per-
formed by other authors: Gullingsrud and Schulten [91] explored the impact of simulation
and analysis parameters on the calculation of pressure profiles across bilayers consisting
of various lipids and studied the influence of the lateral pressure distribution on the gating
process of the mechanosensitive channel MscL applying a simple geometric model. Later,
Gullingsrud et al. [90] computed the pressure profile of a protein-lipid system (melittin
embedded in a dimyristoylphosphatidylcholine (DMPC) bilayer) and found that the over-
all pressure distribution of this system was only moderately changed compared to a pure
DMPC bilayer. Patra [195] investigated the changes in the lateral pressure profile of a
dipalmitoylphosphatidylcholine (DPPC) bilayer upon addition of cholesterol. Carrillo-
Tripp et al. [40] detected that the magnitude of the chain pressure near the headgroup-tail
interface was enlarged for lipid bilayers containing docosahexaenoic acids (DHA) com-
pared to simulations of bilayers made of only saturated or monounsaturated lipids. The
usage of docosapentaenoic acid instead of docosahexaenoic acid, that is accompanied by
a shift of the maximum density of unsaturated bonds towards the bilayer core, did not
yield such effect. Niemela et al. [184] probed the pressure profiles of raft-like bilayers.
Various sterols, all of them with a structure very similar to cholesterol, exerted significant
changes on the pressure profiles of lipid bilayers, especially in the case of unsaturated
bilayer lipids [190]. Ollila et al. [191] observed that the central maximum in the lat-
eral pressure profile decreased upon increasing lipid chain unsaturation whereas all other
peaks increased in height. Recently, Terama et al. [259] reported that ethanol dimin-
ished the magnitude of the peaks in the lateral pressure profiles of DPPC and palmitoyl-
docosahexaenoyl-phosphatidylcholine lipid bilayers in the region of the lipid headgroups.
Using a coarse-grained approach, Frischknecht and Frink [83] found that ethanol, butanol,
and hexanol did not alter the shape of the pressure profile curve of the pure bilayer, but
that these alcohols reduced the magnitude of all peaks. Thickness changes of the bilayers
upon addition of alcohols were reflected by a shift of the pressure profile peaks along the
bilayer normal.

Here, we investigated in all-atom MD simulations, in which way 1-alkanols modify the
lateral pressure of lipid bilayers, and in particular whether observed changes are reversed
by the application of external pressure. 1-Alkanols are an especially interesting test case,
as it was suggested that small alcohols change the lateral pressure in membranes and
thereby cause dissociation of embedded KcsA potassium channels [276]. Changes in the
structure, the dynamics, and in the local pressure distribution of lipid bilayers in response
to anesthetics and external pressure were analyzed from MD simulations of lipid bilayers
containing 1-alkanols of different chain lengths at two different pressures. Hypothetical
shifts in the conformational equilibria for some simple geometric models of the trans-
membrane region of a membrane protein upon addition of 1-alkanols and application of
large external pressure were calculated.
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4.2 Methods

4.2.1 Molecular Dynamics Simulations of Membrane-Alkanol
Systems

MD simulations of fully hydrated lipid bilayers containing 1-alkanols of different chain
lengths have been carried out at pressures of 1 bar (see also a previous study [89]) and
1000 bar using the GROMACS software package version 3.3.1 [18, 143, 278]. Each bi-
layer consisted of 512 DMPC lipids and was hydrated by a minimum of 22, 600 water
molecules; 288 molecules of ethanol, octanol, decanol or tetradecanol were dissolved in
each simulation system. The systems were built by quadruplicating equilibrated membrane-
alkanol-water systems with 128 DMPC molecules [89]. Additionally, control simulations
without 1-alkanols were run. Simulations for the long-chain 1-alkanols octanol, decanol,
and tetradecanol at normal pressure were taken from the previous study [89]. Equilibrated
snapshots of these simulations were chosen as starting structures for high-pressure simu-
lations. A summary of all simulations is given in Table 4.1.

System | Number and type | Number of | Pressure | Simulation | Equilibration
name of 1-alkanol water (bar) time (ns) time (ns)
molecules molecules

Crx none 22,692 1 52 6
C1000 none 22,692 1000 32 6

El 288 ethanol 24,584 1 53 10
E1000 288 ethanol 24,584 1000 75 20
o1~ 288 octanol 26,624 1 33 6
01000 288 octanol 26,624 1000 70 45
D1~ 288 decanol 29,896 1 31 6
D1000 288 decanol 29,896 1000 32 6
TD1* 288 tetradecanol 29,228 1 31 6
TD1000 | 288 tetradecanol 29,228 1000 34 6

Table 4.1: All simulated systems containing various 1-alkanols. Systems marked by *
were already partially analyzed in the previous study [89]. All analysis was done with
respect to the given equilibration times.

Hydrostatic pressures to reverse anesthesia in tadpoles range from 140 to 350 bar [116].
Due to large pressure fluctuations ( ~ 200 bar) in MD simulations of nanoscopic sys-
tems, we chose an external pressure of 1000 bar. Experimentally, even higher pressures
are applied to lipid bilayers.

All systems were simulated for a minimum of 31 ns using periodic boundary conditions, a
rectangular simulation box, and a constant number of atoms at fixed pressure and temper-
ature 7' = 310 K (NPT-like ensemble). Constraining the bond lengths by the LINCS [106]
and SETTLE [169] methods allowed for an integration step size of 2 fs. The lipids and the

78



4.2 Methods

water-alkanol solutions were separately coupled to a heat bath at 310 K using a coupling
time constant of 0.1 ps [16]. External pressures of 1 bar and 1000 bar (see Table 4.1) were
applied using a weak semi-isotropic coupling to a pressure bath [16] with a time constant
of 1 ps and a compressibility of 4.5 x 1075 bar~!.

The simple point charge (SPC) water model [17] was chosen. The force field for the
lipids was taken from Berger et al. and Chiu et al. [20, 45]. For the long-chain 1-alkanols,
the GROMACS force field (based on GROMOS87) was applied, modified for the partial
atomic charges according to MacCallum and Tieleman [151]. Ethanol was simulated us-
ing the recently developed GROMOS 53A6 force field [193], as this has been shown to
result in a lower partition coefficient in better agreement with experimental values [89].
Note that the Lennard Jones parameter of the lipid hydrocarbon chains and of the 1-
alkanols slightly differ from each other. For phospholipids, they were adjusted to repro-
duce the heat of vaporization for pentadecane [20].

To ensure a correct treatment of the long-range electrostatic interactions, the particle
mesh Ewald (PME) method [50] was applied using a Fourier grid spacing of 0.12 nm,
a fourth order cubic interpolation, and a relative accuracy of 1.0 x 107°. The short-range
van der Waals interactions have been accounted for with a cutoff-scheme using a cutoff
radius of 1 nm. The neighborlist was updated every 10th integration step.

For details of the calculations of the lipid order parameter, the average headgroup-to-
headgroup bilayer thickness dyy, the area per lipid, and the lateral lipid diffusion coef-
ficient, please refer to the previous study [89]. The orientation of the lipid chains was
determined in terms of two angles v and «.. v denotes the angle between the lipid chains
and the membrane normal, while « is the angle between the lipid chain vector (defined by
the centers of mass of the 3rd and 4th and the 11th and 12th carbon atom of the respective
lipid chain), projected onto the membrane plane, and an arbitrarily chosen vector (1,0, 0).
The partition coefficient was calculated from the number of 1-alkanols inside and outside
the bilayer at every time step. The criterion for inside/outside was based on the compari-
son of the z-coordinates of the center of mass of the lipid headgroups (shifted by 0.2 nm
to the bulk water phase) and of the 1-alkanols. The given error is the standard deviation
of the partition coefficient obtained by block averaging (5 ns windows).

4.2.2 Calculation of Lateral Pressure Profiles

The difference between the lateral and the normal pressure as a function of the normal
coordinate of the bilayer, often referred to as local lateral pressure profile, was calculated
analogous to the procedure described by Lindahl et al. [142]: The pressure tensor is given

by
p=2E) - | (4.1)

where E is the kinetic energy density tensor and 3. is the configurational stress tensor.
In the case of exclusively pairwise interactions between the particles, the bilayer can be
divided into horizontal slices of thickness Az. Here, 100 slices per box were used, result-
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ing in a thickness of approximately 1 A per slice. The local pressure tensor can then be
calculated according to the formula [142]:

Plocal (2) = A—lv Z (mt; @ ;) — A—lv Z (ﬁm ® 7 f (2, 2, Zj)) . (42

1 € slice 1<j

The first sum is taken over all particles in the slice at z, whereas all particle pairs in the
system contribute to the second term. The z coordinate, mass and the velocity of particle
i, and the force and the distance between particles ¢ and j are denoted by z;, m;, v, ﬁij,
and 77;, respectively. The volume of the slice is AV. The function f (z, 2;, z;) assigns
a weight to the virial depending on the position of the two particles 7 and j. It is given
by [85]

@(zl—z)@z—i—Az—zi for z; = z;
Fz 2, 25) = { Zj_zl — I dgé @(z)—i— Az — ()  otherwise. ’ (4.3)
©(z) denotes the Heaviside step function, with ©(z) = 0 for z < 0, ©(0) = 1/2, and
O(z) =1for z > 0.
To obtain the pressure profiles from the simulations, reruns of the original trajectories
were performed using a modified version of GROMACS 3.0.2, kindly provided by Lin-
dahl and Edholm [142]. Here, the SHAKE [227] algorithm was applied instead of LINCS
[106], because pairwise interactions could then be extracted more easily [142]. Sonne
et al. [244] showed that the results obtained using PME for the simulations and a cut-
off scheme in the reruns are converging towards the correct Ewald results as long as the
chosen cutoff is large enough (7.uof at the order of 1.6-2.0 nm). Here, electrostatic in-
teractions in the reruns were truncated at a cutoff radius of 3.0nm. For each bin, the
diagonal elements of the local pressure tensor were calculated every 100 ps. The val-
ues were then averaged over time and a Gaussian smoothing over neighboring bins was
performed. Finally, the profiles were symmetrized with respect to the bilayer center.

4.3 Results

4.3.1 Equilibration Times

All starting structures for the high pressure simulations had been equilibrated at a pressure
of 1 bar in the previous study [89]. The systems were further equilibrated at high pressure
until the thermodynamic partition coefficient K, of the 1-alkanols in the bilayer, the area
per lipid, and the average lipid order parameter had become constant. An equilibration
time of 6 ns was found to be sufficient for most of the systems (see Table 4.1). Exceptions
were the simulations containing ethanol and the simulation with octanol at a pressure of
1000 bar with equilibration times between 10 ns and 45 ns. For octanol at high pressure,
we observed a drastic decrease in the area per lipid and an increase in the lipid order
parameter. These changes could possibly hint to a phase transition of the lipid bilayer, as
discussed below.
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4.3.2 Partition Coefficients

For the simulations with ethanol, thermodynamic partition coefficients (ratio of the mole
fraction of 1-alkanols inside the bilayer and the mole fraction of 1-alkanols in the sur-
rounding water) of K, = 68 &= 7 (1 bar) and K, = 61 £ 5 (1000 bar) were determined
(on average, 189 + 8/182 + 6 ethanol molecules were inside the bilayer at 1/1000 bar).
Experimental values for the ethanol-lipid partition coefficient at normal pressure are con-
siderably lower and range from K, ~ 2 to K, ~ 28 [89, 130, 224, 259, 268, 269],
depending on the kind of lipids and the experimental conditions. This discrepancy be-
tween experiments and simulations has also been observed and discussed in previous
studies [89, 196, 259]. Reasons for the overestimated ethanol partition coefficients in
the simulations could be inconsistencies in current force fields [241, 262], only implicit
consideration of polarization effects in the region of the hydrophilic lipid headgroup [89],
or artifacts due to the limited size of the simulation system as compared to experimental
setups and the use of periodic boundary conditions [259]. Also, at low ethanol concentra-
tions, the partition coefficient strongly depends on the alcohol concentration [259], ren-
dering high precision experiments in this regime difficult. Due to the too large partition
coefficient for ethanol, observed effects are probably amplified with respect to experi-
ments at comparable concentrations [89].

Also for the long-chain 1-alkanols, the partitioning between solvent and membrane was
unaffected by the large external pressure. As for normal pressure, all 1-alkanols were
located within the bilayer, their hydrocarbon chains being aligned with the phospholipid
tail region.

4.3.3 Structural Changes

It has been shown that the simulation of the pure DMPC bilayer at standard pressure
(simulation C1, see Table 4.1) reproduces experimental values for the area per lipid, the
bilayer thickness, the lipid order parameter, the lipid diffusion, and the bilayer elasticity
quantitatively [89]. Also, alkanol-induced changes of these parameters predicted in the
simulations were in good agreement with the limited experimental data available [89].
High external pressure had a small to moderate effect on the structural properties of the
ethanol-, decanol- and tetradecanol-phospholipid systems. For these membranes, the area
per lipid and the bilayer thickness were reduced by 3.5 - 4.7% and 1 - 2% with respect to
the systems at 1 bar (see Tables 4.2 and 4.3).

Without 1-alk- Ethanol Octanol Decanol | Tetradecanol
anols (A?) (A% (A% (A% (A%
1bar 64.14+04 67.8+05|625+04|59.3+0.1 60.2 +0.1

1000 bar 61.2+0.6 64.6 £0.5|54.6+0.1|56.6+0.1 58.1+0.1

Table 4.2: Average area per lipid calculated from simulations of a DMPC bilayer contain-
ing different 1-alkanols at pressures of 1 bar and of 1000 bar.
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Without 1-alk- | Ethanol Octanol Decanol | Tetradecanol
anols (A) (A) (A) (A) (A)
1bar 34.6 £0.2 34.0+£0.2|38.6+02|405+0.1 | 41.0+0.1

1000 bar 33.94+0.3 33.3+0.2|40.64+0.1|40.1+0.1| 40.6+0.1

Table 4.3: Average headgroup-to-headgroup thickness of a DMPC bilayer containing var-
ious 1-alkanols at normal and high external pressures.

The bilayer containing octanol (systems O1/01000) underwent the largest changes with
an area per lipid decrease of 7.9 A? and a thickness increase of 2.0 A (see also Fig. 4.1).

with octanol @ 1 bar with octanol @ 1000 bar

-

Figure 4.1: Simulation systems containing octanol at 1 bar (snapshot after 33 ns, left side) and
at 1000 bar external pressure (70 ns, right side) . The 1-alkanol carbon atoms are represented by
green spheres, connected to the hydroxyl group (red and white spheres). Lipid tails are shown
as yellow sticks. The lipid headgroup atoms are shown as spheres (phosphorus atoms, magenta;
oxygen atoms, red; choline groups, blue) and grey sticks (carbon atoms). The surrounding water
is depicted as blue sticks. In the enlarged view, the increased order and the decreased tilt of the
lipid chains with respect to the membrane normal can be seen.
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Application of external pressure exerted an ordering effect on the lipid tails by lateral
compression of the bilayer. In agreement with the measurements of, e. g., Reyes Mateo et
al. [217], the hydrocarbon chain order, measured by the deuterium lipid order parameter,
was enlarged for all systems at 1000 bar (see Fig. 4.2). This order increase was addi-
tionally reflected in the reduction of the fraction of gauche dihedrals of the hydrocarbon
chains (data not shown). Again, the largest changes induced by high external pressure
were found for the octanol systems O1/01000. The structural rearrangements of the bi-
layers under pressure were accompanied by an enhanced interdigitation of the lipid — and
in the case of decanol and tetradecanol also of the 1-alkanol — chains. This is reflected
by an increased density in the core region of the bilayer, exemplarily shown for DMPC in
Fig. 4.3.

Figure 4.3: Normalized number
density profiles across the bi-
layer for the simulations of the
pure DMPC systems (C1, solid
lines; C1000, dashed lines). A
Gaussian smoothing has been
applied. The blue, black, and
red lines represent the water, the
lipid bilayer, and the phosphorus
densities, respectively. Error bars
are insignificantly small and are
omitted here for clarity. The
maxima of the phosphorus den-
sity curve mark the approximate
headgroup location.

density
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For the pure DMPC bilayer at standard pressure, the majority of the lipid chains were tilted
with angles ~ ranging from 0° to 20° with respect to the bilayer normal (Fig. 4.4). The
angles «, a measure for the lateral orientation, were homogeneously distributed for pure
DMPC bilayers and for the ethanol-DMPC system. Addition of long-chain 1-alkanols to
the bilayer decreased the tilting of the lipid chains. For tetradecanol (especially for the
upper monolayer), the lateral distribution was narrowed.

High external pressure aligned the lipid tails with the membrane normal in the presence
of long-chain 1-alkanols, reflected by a shift of the distribution towards smaller angles ~.
The increased order in the octanol-phospholipid system (see Fig. 4.2) is additionally seen
in the strong alignment of the hydrocarbon tails (pronounced maximum in the distribution
of « for the upper monolayer; Fig. 4.4). The increase in lipid chain order, the increased
packing density, and the alignment of the lipid tails for the octanol-DMPC system at high
pressure are clearly seen in snapshots of the simulation system, too (Fig. 4.1).

pure DMPC with eth with oct with dec

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
r 4 r

r V4
B x2 E x6 O x10 O x14
M x4 O x8 O x12 B x16

Figure 4.4: Orientation of the lipid chains (upper monolayer) of the different simulations. The
chain orientation is given as a function of the angle v between the lipid chains and the bilayer
normal and the angle o defined by the projection of the lipid chains onto the bilayer plane and
the arbitrarily chosen vector (1,0, 0). The top row shows results from the simulations at standard
pressure, the bottom row for the high pressure simulations. The color coding is chosen relative to
an equal distribution in the angles o and . Occupancies with lower than two times this number
are colored white, between two and four times this number are colored purple, between four and
six times this number dark blue, etc.
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4.3.4 Diffusion Coefficient

At standard pressure, lipid diffusion was enhanced in a DMPC bilayer containing ethanol
with respect to pure bilayers, whereas it was suppressed in systems containing octanol,
decanol, or tetradecanol (see Table 4.4 and the previous study [89]). The diffusion coef-
ficients predicted from the simulations were shown to be in agreement with values found
in continuous photobleaching experiments [89]. External pressures of 1000 bar decreased
the lipid motion in all systems: for the pure DMPC, the ethanol-, the decanol-, and the
tetradecanol-DMPC systems, the lipid diffusion was decreased by a factor of 1.6-2.3. In
contrast, for the octanol-DMPC system, a roughly 5-fold decrease in lipid diffusion was
observed.

Without 1-alk- | Ethanol Octanol | Decanol | Tetradecanol
anols (“97) | () | (") | () | (")
1bar 11.5+0.6 170£0.7 | 66+£04 | 29+£0.1 3.0£0.1
1000 bar 71403 75+03 | 1.44+0.1]1.74+0.1 1.84+0.2

Table 4.4: Lipid diffusion coefficients for simulations of a DMPC bilayer with various
1-alkanols at a pressure of 1 bar and of 1000 bar.

4.3.5 Pressure Profiles

The symmetrized pressure profiles calculated from the MD simulations of the pure DMPC
bilayer at 1 bar and at 1000 bar and the difference between them (for the calculation of the
difference pressure profile the bilayer at 1000 bar was scaled to the same thickness as the
bilayer at 1 bar) are shown in Fig. 4.5. Results obtained at standard pressure (Fig. 4.5A)
are in agreement with previous studies [40, 90, 91, 142, 184, 190, 191, 195, 244, 259]:
large tensions, which are due to strong electrostatic interactions and hydrophilic forces
minimizing the contact between water and the hydrocarbons, were observed in the region
of the glycerol group (¢ = +1.44nm). At the water-lipid interface (z ~ +2.2nm) a
second, slightly smaller tension peak was resolved. This two peak pattern was observed
also in the separate contributions of the various interaction groups to the pressure profile
(Fig. 4.6). The tension peaks are caused by solvent-lipid interactions forming a hydrogen
bonded network. Due to the increased order of interfacial water molecules (see, e. g., Siu
et al. [241]), solvent-solvent interactions are repulsive at the interface (Fig.4.6). Pressure
maxima resulting from the entropic repulsion of the lipid chains were found in the region
of the 5th-7th carbon atom. The vanishing pressure in the bulk water region may be used
as a signature of full hydration of the lipid bilayer.

At an external pressure of 1000 bar (see Fig. 4.5B) , the general shape of the curve
was maintained, whereas the amplitudes of all local maxima and minima, especially
the chain repulsion term, were strongly suppressed leading to a smoothed profile. The
tension maxima in the headgroup region are merged and cover the whole headgroup re-
gion. Inclusion of 1-alkanols into the bilayer strongly modified the pressure profiles (see
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Figure 4.5: Lateral pressure profiles of a DMPC bilayer consisting of 512 lipids at normal pres-
sure (top) and at 1000 bar (middle). The local lateral pressure, i.e., the difference between the
lateral and normal components of the pressure tensor, is plotted as a function of the normal co-
ordinate z of the bilayer (solid black line, z = 0 at the bilayer center). The error, calculated by
averaging over time intervals and using error propagation for the smoothing procedure, is indi-
cated by the grey shaded area. As a reference, the normalized, dimensionless number densities of
various lipid components across the bilayer are given (dark blue: phosphorus group, light blue:
choline group, yellow: glycerol group, green: 6th and 7th carbon atoms of the lipids, red: wa-
ter). The bottom panel shows the difference between the pressure profiles at 1000 bar (bilayer at
1000 bar scaled to the thickness of the bilayer at normal pressure) and at 1 bar.
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Fig. 4.7). Ethanol mainly reduced the magnitude of the chain repulsion terms, which was,
however, less pronounced if the GROMACS force field with modified partial charges [151]
was used for ethanol (results not shown). This is in agreement with coarse-grained calcu-
lations of Frischknecht and Frink [83], whereas Terama et al. [259] found no significant
changes at this peak in all-atom simulations using a DPPC bilayer. Both Frischknecht and
Frink [83] and Terama et al. [259] reported a pronounced decrease of the interfacial ten-
sion upon addition of ethanol, whereas we observed only a slight, insignificant decrease.
A splitting of the total pressure into the contributions from the interacting groups (data not
shown) showed a decreased solvent-lipid tension at the interface and at the region of the
glycerol group, and a peak for alkanol-lipid interactions in the latter region. Therefore it
can be concluded that ethanol replaced solvent molecules in the region around the glyce-
rol backbone. The above-mentioned difference in the total pressure profile to the study of
Terama et al. [259] is probably due to different force fields used for ethanol and different
cutoffs for Coulombic interactions.

Addition of long-chain 1-alkanols amplified the local pressure maxima and minima in
the bilayer core. Due to the thickening of the bilayers, the peaks were shifted outwards.
Remarkably, a tension peak was now seen within the hydrophobic core. This peak was
caused by increased bonded interactions (see Fig. 4.8) from alkanol-alkanol and lipid-
lipid interactions (data not shown). These bonded interactions are probably enlarged due
to the increased order of the lipids and the 1-alkanols (see also the previous study [89])
(increased number of dihedrals in trans conformation). Upon addition of long-chain 1-
alkanols, the repulsive Lennard Jones interactions of the lipids and of the 1-alkanols were
enhanced (see Fig. 4.8). With ethanol, decanol, and tetradecanol at high pressure, only
moderate changes in the total pressure profile were found as compared to the respective
pressure profile at 1 bar. The Lennard Jones interactions in the high-pressure systems
with decanol or tetradecanol are increased, but this change is compensated for by in-
creased bonded interactions and decreased 1-4 interactions. Drastic changes in the lateral
pressure profile were obtained for the octanol-DMPC system at high pressure: the inter-
facial tension minimum almost vanished, but the first minimum (counted from the center
of the bilayer) became much more pronounced.
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Figure 4.7: Upper section of each panel: Lateral pressure profiles of DMPC bilayers containing
various 1-alkanols at external pressures of 1 bar (colored solid lines) and 1000 bar (colored dotted
lines). For comparison, the lateral pressure profile of a pure DMPC bilayer is drawn (black solid
line). Errors are indicated by gray shadows. The normalized dimensionless density of the lipid
glycerol group is shown in yellow (solid line: 1bar, dashed line: 1000 bar; mostly, these two
curves overlap). Lower section of each panel: Difference between the lateral pressure profiles with
and without 1-alkanols (black line) and the difference of the curves with 1-alkanols at 1000 bar
and 1 bar (colored lines). For the calculation of the difference-pressure profiles, the contributing
terms were scaled to the thickness of the pure bilayer at normal pressure.

4.4 Discussion

4.4.1 Partition Coefficient

One hypothesis explaining the pressure reversal of anesthesia could have been a shift of
the bilayer-water partitioning equilibrium of anesthetics such that less anesthetics dissolve
in the lipid bilayer. Here, neither in the case of ethanol nor in the case of long-chain 1-
alkanols, significant changes of the partition coefficients at a pressure of 1000 bar were
observed. However, due to the large partition coefficients of long-chain 1-alkanols [79,
225, 234], moderate changes in the partition coefficient of these alkanols would hardly
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emerge in MD simulations with their inherent limited system size. Our results are in
agreement with a study of Trudell et al. [272], where electron spin resonance techniques
were used to investigate the partitioning of TEMPO (2,2,6,6 tetramethylpiperidine-1-oxyl)
molecules in phospholipid vesicles. Only a very moderate shift of the distribution of
TEMPO molecules between the aqueous and lipid phase, too small to account for the
reversal of anesthesia, was found. Therefore, the assumption of reversal of anesthesia
by a pressure-driven change of the 1-alkanols’ partitioning behavior can be discarded, in
agreement with the work by Miller et al. [166], who — based on thermodynamic analyses
— showed in 1973 that a pressure-induced shift of partitioning is not able to explain the
pressure-dependence of the anesthetic concentration.

4.4.2 Pressure Profiles

The lateral pressure profile of a DMPC bilayer at normal pressure was not only largely

modified by the addition of 1-alkanols studied here, but the long-chain 1-alkanols caused

even a tension in the bilayer core. The conformational equilibrium of membrane-embedded
proteins could easily be shifted by this effect. Therefore, the results presented here lend

support to a lipid-mediated mode of anesthetic action via the lateral pressure inside a

membrane as suggested by Cantor [33-35].

To illustrate this idea further, we calculated the hypothetical shift in the conformational

equilibria of some model proteins [36, 91] upon addition of 1-alkanols using the pressure

profiles obtained from the MD simulations. For the notation and calculations, we follow
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4 Lateral Pressure Profiles

the work by Cantor [36]: At a given lateral pressure distribution py, the conformational
equilibrium between conformational states (s = 7,¢,...) of membrane proteins is given
by Ky = % If the cross-sectional area difference AA(z) = A;(2) — A,(z) varies in the
direction of the bilayer normal, a change in the lateral pressure profile p(z) results in the
change of energy

h
AW:/ Ap(z2)AA(z) dz, (4.4)
—h

with Ap(z) = p(2) — po(2) and the thickness h of one monolayer. For AA(z) = const.,
it follows that

h h h
AW = AA(z) / Ap(z)dz = AA(2) (/ p(z)dz —/ po(2) dz) =0, (4.)5)
h —h —h

since a self-assembled bilayer is always in a tension-free state [163]. Induced by the
change in lateral pressure, a new conformational equilibrium K = % will be established.
For the result of the integration (Eq. (4.4)), the definition of the bilayer thickness d = 2h
is crucial (see Fig. 4.9), as there exists a large tension at the lipid-water interface. Here,
we defined the bilayer thickness by the maxima of the phosphorus density of the pure
lipid bilayer at 1 bar and scaled the bilayers of all other simulations to the thickness of
this bilayer. This approximation is reasonable, since lipid membranes in close vicinity of
an embedded membrane protein adjust to its central hydrophobic surface. By equating
the chemical potentials x,- and p, of the two conformational states at each lateral pressure
distribution p(z) and py(z), and assuming that AA(z) is independent of Ap(z), Cantor
deduced the relation K = Kye 2W/(k8T) —: K e~*, with kg and T denoting the Boltz-
mann constant and the temperature, respectively [33-36].
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Figure 4.9: Values of o = W/(kgT) (for the comparisons at 1 bar) as a function of the mono-
layer thickness chosen for the integration (see Eq. (4.4)). The bilayer center is located at z = 0.
The position of the phosphorus density maximum for the pure bilayer at 1 bar, used as the criterion
for the monolayer thickness in our calculations, is marked by the dashed vertical line.
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Assuming, as Cantor did [36], an expansion of the cross-sectional protein area in powers
of z with different expansion coefficients in the two bilayer leaflets, i.e., A;(z) = A(0)+
ai |z +as 2% +. .. with afs =a;, forz > 0and a;fs = a; , for < 0, and a symmetrical
bilayer (i.e., p(z) = p(—2)), o can be expressed in terms of the difference of the integral
moments of p(z) and py(z) [36]

o= (kgT)~ ZAajAP (4.6)

with Aa; = Aa;r—i—Aa;, Aaji = ai ]T, and AP; = fo ZAp(z)dzforj > 1. ARyis
zero as the bilayer is always in a tensmn free state [163] The first two integral moments
of the DMPC bilayer at 1 bar, calculated from our pressure profiles, are P, /(kgT) =
(—=0.11 £ 0.04) A~ and P,/(kpT) = —3.26 % 0.78. Using a statistical thermodynamic
lattice model for bilayers, Cantor [36] derived values for P /(kgT) = —1.74 A" and
Py/(kgT) = —29.4, about an order of magnitude smaller than the respective moments
from the MD simulations. The differences probably arise from the simplified model and
the neglected headgroup repulsion in the calculations of Cantor [36].

Three models for different membrane proteins have been suggested [36, 91]: The cooper-
ative tilt model [36] describes a helix bundle, that is twisted along the bilayer normal (in
opposite directions for the two monolayers). In the bent helix model [36], a membrane
protein is built up by kinked helices forming a non-uniform bundle that can be inscribed
by one truncated cone per monolayer. The cross-sectional area of such a membrane pro-
tein is A,(z) = 7 (&(0) + || tan(¢))?, with the radius of the helix bundle £,(0) and the
angle ¢ = ¢* between the cone-shaped envelope of the kinked helix bundle at the up-
per/lower monolayer and the bilayer normal (for a more detailed description see [36]).
The mechanosensitive channel MscL. was approximated by a truncated cone stretching
over the whole bilayer (conical shape model [91]). Different protein conformations are
given by different slopes.

Using the results for the lateral pressure profiles from our simulations, we calculated the
exponent «, characterizing the shift between two conformations of a protein, for these
three protein models. As for the parameters of these models, we used values that were
previously suggested from the respective authors: tan?(6;) — tan®(f,) = 0.05 for the
cooperative tilt model ([36], corrected), with the twist angle 6, of the respective confor-
mation, a change of the cone slope from 0.0 to 0.2 for the MscL. model of Gullingsrud and
Schulten [91], and angles ¢;7 = ¢~ = 0° and ¢;” = ¢; = 6° between the bilayer normal
and the envelope of the kinked helices (assuming a symmetrical protein) for the bent helix
model [36]. A change in the conformational equilibria was considered as significant, if K
and K, differed by at least a factor of 2, i.e., if |a| > In(2) =~ 0.69.

According to this definition, we found no significant changes in the protein conforma-
tional equilibrium upon addition of 1-alkanols or application of external pressure for the
cooperative tilt and the conical shape model. However, assuming a bent helix model, the
computed lateral pressure profiles for 1-alkanols and external pressure exert opposing ef-
fects on the conformational equilibrium of a hypothetical membrane protein, in line with
the anesthetic action of 1-alkanols and the reversal of the anesthetic effect by external
pressure (see Table 4.5): for addition of 1-alkanols at normal pressure, o was negative for
all four investigated 1-alkanols.
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4 Lateral Pressure Profiles

System | Reference | AP, /(kgT) APy /(kgT) a Signifi-
system (A1) cance

El Cl —0.125£0.053 | —1.803 £0.794 | —3.43 £1.39 yes
Ol Cl —0.140 £ 0.060 | —1.048 £ 0.898 | —3.77 £ 1.60 yes
D1 Cl1 —0.088 £0.059 | 0.673 £0.853 | —2.27+1.56 | yes
TD1 Cl —0.109 £ 0.067 | 0.246 +=1.017 | —2.86 £ 1.77 yes
C1000 C1 —0.112 4+ 0.059 | —0.771 £ 0.860 | —3.02 £ 1.57 yes
E1000 El 0.011 £ 0.054 0.690 £ 0.828 0.33 £1.44 no
01000 Ol 0.293 £ 0.072 5.983 £1.077 8.16 +£1.91 yes
D1000 D1 0.225 £ 0.068 3.357 £0.976 6.17+1.81 yes
TD1000 TD1 0.041 £0.075 0.958 £1.139 1.16 = 1.99 no

Table 4.5: Changes in the first and second integral moments upon the transition from
po(z) (reference system) to p(z) and corresponding changes in the conformational equi-
librium of bent helix model proteins, measured by «. The error was calculated by error
propagation.

The decreasing difference (within error margins) in the moments A P; and A P, for longer
hydrocarbon chains of the 1-alkanols correlates with the cutoff effect for anesthetics, i.e.,
1-alkanols with a chain length of 12 carbons or more do not show any anesthetic po-
tency (see, e. g., Pringle et al. [206]). However, the cutoff is probably dependent on the
membrane composition. Application of external pressure resulted - except for the con-
trol simulation - in positive values of «, and thus a reversal of the effect of 1-alkanols on
the distribution of states, significant only for simulations containing octanol and decanol.
The computed pressure-induced shift in the conformational equilibrium of a hypothetical
protein in a pure lipid bilayer (negative «) correlates with the experimentally observed
"pressure paralysis" [93].

Thus, — although the application of external pressure did not reverse the alkanol-induced
changes in the lateral pressure profile — a pressure-reversal mechanism of anesthesia for
the bent helix model is seen: 1-alkanols moved the protein conformational equilibrium in
one direction, whereas external pressure changed the equilibrium in the opposite direc-
tion. However, this pressure-reversal mechanism crucially depends on the type of change
in protein shape upon activation or deactivation. Therefore, simulations of lipid bilay-
ers containing explicit membrane proteins and eventually also different lipid species and
cholesterol will be necessary.

4.4.3 Phase Behavior

A different mechanism for anesthesia relies on shifts in the membrane phase transition
temperatures by anesthetics [101]. Depending on thermodynamic parameters such as tem-
perature and pressure, lipid bilayers exist in different phases. Upon heating, pure DMPC
bilayers at standard pressure exhibit a so-called pretransition from a gel to a ripple phase
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at 14° C and a main transition from a ripple to a liquid-disordered phase at 24° C (see,
e.g., [97, 113, 299]). By application of external pressure, further distinct phases can be
induced [64]; for example, for saturated phosphatidylcholine bilayers with chain lengths
of 13 to 18 carbon atoms, a pressure-induced interdigitated phase has been found [112].
Phase transitions of lipid bilayers have been observed successfully in dissipative particle
dynamics simulations [132—134], as well as in coarse-grained and atomistic molecular
dynamics simulations [56, 138, 162, 245]. In (MD) simulations, indications for phase
transitions are drastic changes in the area per lipid, the bilayer thickness, the lipid chain
order, and the lipid diffusion [138]. Besides, the tilt angle of the lipid chains with respect
to the membrane normal varies: in the gel Lg and in the ripple Py phase, the lipid chains
are tilted, whereas in the pressure-induced, partially interdigitated gel phase Lg;, they are
aligned parallel to the bilayer normal. In the liquid crystalline phase L, the lipid chains
are disordered (see Eisenblitter and Winter [64]).

In our simulations, we did not observe any signature for a phase transition of the pure
DMPC bilayer and the bilayer with ethanol at 1000 bar. However, large structural changes
were observed for the DMPC bilayer with octanol at high external pressure. Especially,
the alignment of the lipid chains to the bilayer normal, the enhanced interdigitation, and
the strong shrinking of the area per lipid indicate a transition to the partially interdigitated
gel phase Lg;. Our previous simulations of DMPC bilayers with decanol and tetradecanol
at 1 bar showed a drastic decrease in the area per lipid and an increase in the lipid order
parameter. These systems probably underwent phase transitions to the gel state already at
normal pressure. Therefore, for these systems, only moderate pressure-induced structural
changes were found.

These results are in line with previous experiments: In accordance with the Clausius-
Clapeyron relationship, Ichimori et al. [112] measured a linear increase of the gel to
liquid-crystalline phase transition temperature with a slope of 21.2 K /kbar. At high pres-
sures above 3 kbar, a partially interdigitated gel phase was observed. At normal pressure,
addition of 1-alkanols up to the chain length of octanol caused a lowering of the main
gel to liquid-crystalline phase transition temperature [89, 137], depending linearly on the
alkanol concentration (experiments with DPPC vesicle membranes) [252]. Long-chain 1-
alkanols from decanol up to tetradecanol exerted a biphasic dose-response effect on DPPC
vesicles: at low concentrations they depressed, but at higher concentrations they elevated
the phase transition temperature [120]. Additional external pressure increased the phase
transition temperatures with all 1-alkanols [252].

Since no phase transition was observed for pure DMPC at 1 kbar in the simulations, we
conclude that in simulations, the main phase transition temperature for DMPC at normal
pressure is significantly lower than obtained from experiment. Similarly decreased tran-
sition temperatures were found before for DPPC and DPPE bilayers applying a similar
force field [138].

4.5 Summary and Conclusions

The influence of a large external pressure and of 1-alkanols of different chain-lengths on
the lateral pressure profile of a DMPC bilayer has been evaluated. Similar to the effect of a
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large external pressure on a pure bilayer, ethanol smoothed out the lateral pressure profile
as compared to the profile of the pure bilayer. Long-chain 1-alkanols amplified local max-
ima and minima in such a way that a tension was created within the bilayer core. Except
for the simulation with octanol, the pressure profiles for bilayers containing 1-alkanols
were only moderately changed by a pressure of 1000 bar. External pressure slightly de-
creased both the area per lipid and, except for the simulation with octanol, the bilayer
thickness. Lipid diffusion was strongly suppressed and an enhanced interdigitation of the
lipid chains — for decanol and tetradecanol also of the 1-alkanol chains — was observed.
At normal pressure, addition of long-chain 1-alkanols caused an alignment of the lipid
chains in the direction of the bilayer normal. This effect was amplified by the application
of an external pressure. For the octanol-DMPC system, external pressure probably caused
a phase transition to the pressure-induced, partially interdigitated Lg; gel phase.

For the bent helix model of membrane proteins [36], changes in the lateral pressure profile
caused by 1-alkanols and additional external pressure were found to shift the equilibrium
between different protein conformations in opposite directions, consistent with an anes-
thetic effect of the 1-alkanols and the pressure reversal of anesthesia. Our results lend
support to Cantor’s model that anesthesia is mediated by local pressure changes. In this
context, more complex simulations including various lipid species and in particular mem-
brane proteins would be of interest, focusing on the effect of different anesthetics and
external pressure on shifts in the main phase transition temperature and on their influence
on embedded proteins.
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4.7 Addendum: Simulations at Intermediate Pressures

4.7 Addendum: Simulations at Intermediate
Pressures

Within this study, also simulations at intermediate pressures of 50, 100, and 200 bar have
been performed. The results of these simulations are similar to what was presented before
and will therefore not be discussed here in detail. However, one notable result should be
pointed out: the difference of the first integral moments AP, = foh 2 (p(z) — po(2)) dz
(compare to Section 4.4.2) did not increase — as one might have expected — linearly with
pressure, but large values of AP, were already found at pressures of 50 and 200 bar
(Fig. 4.10). Therefore, the necessary change in the first integral moment for pressure
reversal of anesthesia can already be observed at lower pressures in the simulations.
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Figure 4.10: Difference of the first integral moments, A Py, for different external pressures with
respect to the simulation at normal pressure.
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Although anesthesia is widely used in clinical applications, the under-
lying molecular mechanisms are not yet known. It is generally assumed
that anesthetics act by either binding specifically to membrane proteins,
or by changing the properties of biological membranes involved in sig-
nal transduction, thereby affecting the function of embedded proteins
indirectly. Here, the influence of some anesthetics, namely of various
1-alkanols, on a gramicidin—-membrane system has been investigated us-
ing long-term molecular dynamics simulations. We found a strong de-
crease of drug adsorption close to the embedded gramicidin. In agree-
ment with lipid-mediated theories, the drug molecules influence both
the structure and dynamics of the ion channel by modulating the prop-
erties of the surrounding lipid environment. Ethanol decreased the pore
radius coupled to an increase in protein fluctuations, whereas decanol
increased the pore radius.

!Theoretical and Computational Membrane Biology, Center for Bioinformatics Saar, Saarland University,
PO Box 15 11 50, 66041 Saarbriicken, Germany
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5 Gramicidin A

5.1 Introduction

During the last decades there has been a very active discussion concerning the molecular
basics underlying anesthesia (see, e. g., [275]). Three classes of theories for anesthesia
can be distinguished: the protein-binding models, suggesting the direct binding of anes-
thetics to protein receptors or ion channels, the models of Miller [167] and Pauling [197],
proposing anesthetic-induced clathrate formation in cell fluids, and the lipid(-mediated)
theories, assuming an unspecific change of biological membrane properties by anesthetics
and probable consequences on membrane proteins. In the latter theories, especially the
interplay between membrane lipids and membrane proteins is emphasized. Two recent ex-
amples of lipid(-mediated) models for anesthetic action are the theories by Cantor [33-35]
and by Heimburg and Jackson [100, 101]. Cantor proposed an influence of the internal
lateral membrane pressure on the equilibrium between different protein conformations.
Changes of the lateral pressure induced by the integration of anesthetics into biological
membranes could then modulate ion currents through membranes. Heimburg and Jackson
suggested a completely new model describing nerve pulse propagation by soliton migra-
tion along neurons [99], and concluded that a melting point depression of the membrane
caused by anesthetics would impede signal transduction and thereby cause anesthesia.
The microscopic action of anesthetics on proteins and lipid bilayers has been investi-
gated in a couple of molecular dynamics (MD) simulation studies: Specific interactions
of the volatile anesthetic halothane with four-helix bundles [51, 52], with subunits of
the nicotinic acetylcholine receptor [288], and with ketosteroid isomerase [305] were
reported. Effects of halothane on the protein dynamics could be inferred from simula-
tions of gramicidin [257] and a potassium channel [287]. Remarkably, the latter study
reported different effects of halothane on the global dynamics of the open and closed
conformation of the ion channel. Based on these simulations, the authors suggested a
preferential binding of anesthetic molecules to the cavity available for the open confor-
mation [287]. The anesthetic molecules halothane or ethanol were preferentially found
in the hydrophilic lipid headgroup region of the membrane or at the lipid-water inter-
face 88, 89, 131, 196, 259, 273, 288] and were shown to decrease the number of protein-
lipid contacts (halothane [288]). Both of these small anesthetics decreased the lipid order
and thereby increased the fluidity of the lipid bilayer.

In order to gain further insight into the microscopic processes causing anesthesia, we have
previously investigated the influence of some anesthetic molecules of varying size, namely
of various 1-alkanols, on the properties of a phospholipid bilayer (as an approximation for
biological membranes) by long-time atomistic MD simulations [88, 89]. The simulations
were performed at normal and enlarged external pressure to elucidate also the experi-
mentally demonstrated pressure reversal of anesthesia, i.e., the effect that anesthesia in
animals can be reversed by external pressures between 70 and 350 bar [93, 115, 116, 139,
166]. In the present study, these previous investigations are complemented by introducing
a simple ion channel, the gramidicin A, into the membrane. The antibiotic gramicidin A,
produced by the soil bacterium Bacillus brevis, forms a transmembrane, cation-specific
ion channel. This channel is built up by two monomers, each consisting of 15 alternating
D- and L-amino acids. Except for four amphiphilic tryptophan residues, the amino acid
sequence (HCO - LVal - Gly - LAla - DLeu - LAla - DVal - LVal - DVal - LTrp - DLeu
- LTrp - DLeu - LTrp - DLeu - LTrp - NHCH;CH>0H) is hydrophobic. Depending on
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the environmental conditions and the solvent history, gramicidin A mainly exists in two
different conformations: a single-stranded head-to-head helical dimer (Fig. 5.1), with the
C-termini located at the bilayer interface and the N-termini buried in the bilayer interior,
and a double-stranded intertwined double helical dimer. Although recent results gave evi-
dence that the energy barrier to potassium passage is decreased for the intertwined double
helix with respect to the head-to-head helical dimer [240], here the latter conformation has
been chosen for the simulations, as this is widely assumed to be the stable (single channel
lifetime of the order of seconds) and channel-forming conformation in lipid bilayers (see
reviews [46, 123, 128, 223, 301]). Gramicidin A has been used as a simple model for
larger membrane proteins in many studies [46, 123, 128, 223, 301], as it is small (im-
portant for the feasibility of simulations), easily accessible, and its structure was resolved
very early both by NMR spectroscopy [7, 125, 126] and X-ray measurements [32]. De-
spite its smallness, simplicity, and the unusual alternating sequence of D- and L-amino
acids, which results in a (-sheet like structure of the helices, gramicidin A neverthe-
less exhibits many important structural features of more complex ion channels [123] and
displays also characteristic channel behavior like ion selectivity, subconductance states,
blocking, and modulation of channel properties by the lipid environment [301].

During the last years, several experimental and simulation studies trying to identify the
molecular targets of anesthetics by investigating the influence of selected anesthetics and
nonanesthetics on gramicidin A have been reported by P. Tang and co-workers [145, 253—
257, 303]. With the term ’'nonanesthetics’ the authors referred to molecules, which have
a similar structure as some anesthetics and should be anesthetics according to the Meyer-
Overton rule (the correlation of anesthetic potency with lipophilicity), but do not have
anesthetic potency. The results of these studies emphasized the importance of the interfa-
cial location of anesthetics in contrast to nonanesthetics, that resided mainly in the bilayer
core [303]. Though the anesthetics halothane and 1-chloro-1,2,2-trifluorocyclobutane
(F3), and the nonanesthetic 1,2-dichlorohexafluorocyclobutane (F6) were found to induce
only minor structural changes on gramicidin A [255-257], specific interactions of the
anesthetics with the tryptophan residues were repeatedly reported using different mea-
surement techniques [39, 253-256, 303]. Also, the sodium transport in gramicidin A
was found to be enhanced by addition of the anesthetic F3, but to be unaffected by the
addition of the nonanesthetic F6 [254]. In MD simulations, an influence of the anes-
thetic halothane, but not of the nonanesthetic hexafluoroethane on the channel dynamics
of gramicidin A was observed [145, 257].

Here, we report the effects of changes in the lipid environment, induced by the addition
of 1-alkanols of varying chain length and by external pressure, on a gramicidin A dimer
embedded in a phospholipid bilayer. We investigated the unbiased partitioning of the 1-
alkanols with respect to the ion channel, the thickness adjustment of the bilayer to the
peptide dimer, changes in the structure, dynamics, and the pore radius of gramicidin, and
the lateral pressure profiles of the peptide-lipid-alkanol systems.
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5 Gramicidin A

5.2 Methods

5.2.1 Molecular Dynamics Simulations

MD simulations of the gramicidin A (head-to-head helical dimer conformation; protein
data bank entry 1IMAG [127], see Fig. 5.1) embedded in a lipid bilayer have been per-
formed using the GROMACS [18, 143, 278] software package version 3.3. The bilayer

Figure 5.1: Side view and top view of the head-to-head helical dimer conformation of grami-
cidin A (protein data bank entry IMAG [127]). The backbones of the two monomers are colored
in orange and green, respectively. Side chains are represented by grey lines.

was hydrated by a solution of 1-alkanols and water. A pre-equilibrated peptide-bilayer
system was taken from a previous study [240]. Each system consisted of 124 DMPC
lipids, one gramicidin A dimer, a minimum of ~ 5, 900 water molecules (corresponding
to > 47 water molecules per lipid), and 72 1-alkanol molecules (ethanol, octanol, or de-
canol), that had been placed in the water phase at random positions (see Table 5.1 and
Fig. 5.2). For all systems, simulations were carried out at external pressures of 1 bar and
600 bar. Additionally, control simulations without 1-alkanols were performed. Each sim-
ulation was run for 100 ns. With regard to its long equilibration time, the simulation with
decanol at normal pressure was extended to 140 ns. Equilibrated snapshots of the 1 bar
simulations were taken as starting structures for the simulations at 600 bar.

For all simulations, periodic boundary conditions, a rectangular simulation box, and a
constant number of atoms at constant pressure and temperature 7' = 310 K were used
(NPT like ensemble). The lipids, the water-alkanol solution, and the peptide were sepa-
rately coupled to a heat bath [16] with a coupling constant of 0.1 ps. Pressure was kept
constant by a weak semi-isotropic coupling to a pressure bath [16] with a time constant
of 1 ps and a compressibility of 4.5 x 1075 bar~!.

The force field of Berger et al. [20] and Chiu et al. [45] was applied for the lipids, and
combined with the GROMOS96 53A6 force field [193] for the gramicidin (see also Siu
and Bockmann [240]). For water, the SPC model [17] was chosen. Bond lengths were
constrained by the LINCS [106] and SETTLE [169] algorithms and an integration step
size of 2 fs was used.
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5.2 Methods

The long-range electrostatic interactions were treated by the Particle Mesh Ewald (PME)
method [50] applying a Fourier grid spacing of 0.12nm, a 4th order cubic interpolation
and a relative accuracy of 1.0 x 107°. The short-range van der Waals interactions were
truncated at a cutoff radius of 1 nm.

Figure 5.2: Starting structure with gram-
icidin A embedded in a lipid bilayer
and surrounded by an octanol-water so-
lution. The protein is drawn in cartoon-
representation with the two helical dimers
colored in orange and green. The lipid
headgroups are represented by red (atoms
of the phosphate and choline groups) and
yellow (glycerol moiety) spheres, the lipid
and octanol hydrocarbon tails by grey
sticks, and the hydroxyl group of octanol
by red and white spheres. Water is colored
light blue.

system number and type number of pressure | equilibration
name | of 1-alkanol molecules | water molecules (bar) time (ns)
Cl1 none 6142 1 0
C600 none 6142 600 10

El 72 ethanol 5892 1 20
E600 72 ethanol 5892 600 25

(0] 72 octanol 7154 1 25
0600 72 octanol 7154 600 10

D1 72 decanol 7280 1 80
D600 72 decanol 7280 600 15

Table 5.1: All simulated systems containing various 1-alkanols and one head-to-head he-
lical dimer of gramicidin A. All analysis was done with respect to the given equilibration

times.
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5 Gramicidin A

5.2.2 Analysis

The partition coefficient K, was calculated as the ratio of the mole fraction of 1-alkanols
inside the bilayer and the mole fraction of 1-alkanols in the water. The criterion for in-
side/outside the bilayer was based on the comparison of the z-coordinates of the center
of mass of the lipid headgroups (shifted by 0.2nm to the bulk water phase) and of the
1-alkanols [88, 89]. The given error is the standard deviation of the partition coefficient
obtained by block averaging (5 ns windows).

The bilayer’s headgroup-to-headgroup thickness was computed by using a grid in the z—y
plane (lateral membrane plane) with grid spacing g ~ 2 A. Separately for each monolayer,
the "height’ at each lattice point was assigned by summing the center of mass coordinates
of all lipid headgroups at each time step — weighted by a normalized, distance-dependent
Gaussian function with width ¢ = 0.8g. The "height’ difference at each grid point be-
tween the monolayers was taken as the local membrane thickness.

The pore radius of gramicidin was calculated using the program suite "Hole’ [243]. This
package determines the radius of the pore at each position along the channel axis by find-
ing the largest sphere that can be inscribed into the channel without overlapping with any
channel atom.

The lateral pressure profile of the system, defined as py — pr, = p.. — (Dzz + pyy)/2 (lipid
bilayer in the z—y plane, p, 3 [{®, 3} € {z,y, 2}] is the microscopic pressure tensor of
the system, and py and p;, denote the normal and lateral pressure, respectively), was cal-
culated from reruns of the original trajectories using a modified version of GROMACS
3.0.2 provided by Lindahl and Edholm [142]. In these reruns, the constraint algorithm
SHAKE [227] and a cutoff of 3.0 nm for the electrostatic interactions were used. The
latter is justified, as reruns truncating electrostatic interactions have been shown to con-
verge to the correct results obtained by Ewald summation, as long as the cutoff is chosen
large enough [244] (rcuton at the order of 1.6 to 2.0nm). For details of the calculation
of the pressure tensor please refer to the article by Lindahl et al. [142] and our previous
study [88]. The simulation box was discretized into 100 horizontal slabs of approximately
1 A thickness in the direction of the bilayer normal (z-coordinate). For each bin, the dif-
ference of the normal and lateral pressure were calculated every 100 ps. The values were
then averaged over time and a Gaussian smoothing (width o &~ 1 A) over neighboring bins
was performed.

5.3 Results

5.3.1 Equilibration Times

The systems were assumed to be in equilibrium for converged partition coefficients and
areas of the simulation box. The respective equilibration times are listed in Table 5.1. All
further analysis was done with respect to these equilibration times.

102



5.3 Results

5.3.2 Distribution of 1-Alkanols

Due to their amphiphilic nature, the 1-alkanols spontaneously moved into the bilayer
and oriented with their polar hydroxyl groups in the hydrophilic headgroup region of the
membrane and with their hydrophobic hydrocarbon chains stretched into the hydrophobic
membrane core (compare also [88, 89]). For the simulations with ethanol, the 1-alkanol
molecules distributed homogeneously between the two leaflets and the partition coeffi-
cients at 1 bar and at 600 bar were similar with K, = 56 & 6 and K, = 55 £ 7, respec-
tively. In the case of the long-chain 1-alkanols octanol and decanol, all 1-alkanols moved
into the lipid bilayer within the equilibration time. In contrast to ethanol, clustering of
octanol and decanol inside the water phase prior to insertion resulted in an asymmetrical
distribution of these molecules between the upper and lower monolayer (30:42 for octanol
and 22:50 for decanol).

As previously reported and discussed [88, 89, 196, 259], the ethanol partition coefficient
is too large as compared to experiments [89, 130, 224, 259, 268, 269] and therefore the
observed effects are probably amplified with respect to experiments at comparable con-
centrations. For the long-chain 1-alkanols, the full partitioning of the 1-alkanols into the
bilayer agrees well with the large partition coefficients determined in various experimen-
tal studies [79, 225, 234].

For all investigated 1-alkanols, the area density of the 1-alkanols in the lipid bilayer var-
ied with the distance to the embedded peptide (Fig. 5.3). Close to the gramicidin, only
very few 1-alkanol molecules were found, whereas further apart the number of 1-alkanols
per unit area increased. For ethanol this increase was moderate, while it was more pro-
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Figure 5.3: Area density of 1-alkanol molecules (blue, green, and orange lines; left ordinate) in
the membrane plane as a function of the distance to the center of mass of gramicidin. Results at
1 bar (600 bar) are represented by solid (dashed) lines. For comparison, also the lipid area density
of the gramicidin-phospholipid system without 1-alkanols is given (grey lines; right ordinate).
Please note the differently scaled axes of ordinates for the 1-alkanol and the lipid area densities.
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5 Gramicidin A

nounced for the long-chain 1-alkanols. The onset of the increase for decanol occurred at
larger distances to the peptide than for octanol. Differences in the integrated area densi-
ties (from Fig. 5.3, not shown), i. e., the number of molecules solved in the membrane, are
due to differences in the partition coefficients for ethanol and the long-chain 1-alkanols.
Also the lateral size of the simulation systems varied slightly, as it was free to adjust to
its equilibrium value (NPT like ensemble, see Methods section). For the simulations with
octanol and decanol at 600 bar, this area was decreased from 44.66 + 0.10 nm? (octanol,
1 bar) to 40.92 + 0.13 nm? (octanol, 600 bar) and from 42.16 £ 0.15 nm? (decanol, 1 bar)
to 38.58 £ 0.03 nm? (decanol, 600 bar).

For all simulations, the bilayer thickness (for the definition see Methods section) close
to the gramicidin is decreased from the average value, 1. e., the lipid bilayer adjusted to
the dimensions of the gramicidin A (Fig. 5.4). This is in agreement with previous ob-
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Figure 5.4: Bilayer thickness as a function of the distance (in the bilayer plane) to the center of
mass of gramicidin. Results at 1 bar (600 bar) are represented by solid (dashed) lines. Error bars
are included, but are very small and therefore hardly visible.

servations for gramicidin [239] and other proteins and peptides; for a review see, €. g.,
[114]. Close to the ion channel, the thickness of the bilayer ranged from about 3.0 nm to
3.3nm. For larger distances from the gramicidin, the membrane thickness increased to
3.4 —4.1nm.

The average bilayer thickness (taken over the whole simulation box) of the pure DMPC
bilayer with gramicidin A at normal pressure was increased as compared to values ob-
tained for pure phospholipid systems (see [88, 89]). Nevertheless, the overall trends
upon addition of 1-alkanols (see Table 5.2) are in agreement with these previous simu-
lations [88, 89]: at normal pressure, the thickness was increased by addition of long-chain
1-alkanols and decreased by ethanol. Additional external pressure had opposite effects on
the different systems: in the simulations of the pure gramicidin-DMPC system and with
added ethanol, large pressure led to a decrease of the average bilayer thickness, whereas
it increased the average bilayer thickness in the simulations with octanol or decanol.
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5.3 Results

Without 1- Ethanol Octanol Decanol
alkanols (nm) (nm) (nm) (nm)

1 bar 3.56 £0.01 | 3.44£0.01 | 3.66 £0.01 | 3.87 £ 0.01
600bar || 3.51£0.02 | 3.33+0.04 | 3.81 £0.03 | 4.00 £ 0.01

Table 5.2: Average bilayer thickness.

5.3.3 Influence of 1-Alkanols on the Structure and Dynamics
of Gramicidin A

The addition of 1-alkanols had only a minor influence on the overall structure of grami-
cidin A. The root mean square deviation (RMSD) of the total dimer was below 0.23 nm for
all simulations at normal and enlarged pressures (data not shown). The observed stability
of gramicidin is in agreement with studies of Tang et al. [255-257], who investigated the
effects of the anesthetics halothane and F3 on gramicidin.

Also the dynamics of the peptide was hardly affected by the addition of 1-alkanols (Fig.
5.5). Only with ethanol, the fluctuations of the channel were significantly enhanced, prob-
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Figure 5.5: Root mean square fluctuations of the C,-atoms of gramicidin. In the upper panel, the
simulations at normal pressure, and in the lower panel, the simulations at enlarged pressure are
shown (black: no alcohols, orange: with ethanol, blue: with octanol, and green: with decanol).
Errors (computed on blocks of 5 ns) are negligibly small and therefore omitted in the plot.

ably due to the increased fluidity of the lipid bilayer upon addition of ethanol. This ef-
fect was also seen in the autocorrelation function of the backbone N-H bond orientation
(Fig. 5.6). Especially the initial fast decay (< 0.1 ns) associated with the local anisotropic
diffusion of the N-H bonds [257] was significantly enhanced by ethanol for the amino
acids close to the hydrophobic core (residue number < 8). Application of external pres-
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Figure 5.6: Autocorrelation function of backbone N-H bond orientations, separately for the
membrane-anchoring region of gramicidin (A, residues 9-15) and for the part of gramicidin em-
bedded within the hydrophobic core of the lipid bilayer (B, residues 2-8). Val at position 1 was
excluded from the plot due to very large variations. The N-H bond orientation autocorrelation
function was computed after fit of the protein backbone to the starting structure, thereby excluding
the (slow) anisotropic helical tumbling motion [257] of the gramicidin channel from the results.

sure reversed this effect. The influence of long-chain 1-alkanols on the dynamics of this
transmembrane (TM) region was negligibly small. Alkanols and external pressure exerted
a small effect on the N-H bond dynamics within the membrane-anchoring region of gram-
icidin (residue number > 9). The dynamics in this region is most probably influenced by
hydrogen bonding to lipid headgroups and alkanols (for octanol, see below), resulting in
significantly increased decay times (between 0-2ns) for the autocorrelation function as
compared to the hydrophobic TM region.
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The average tilt angle of the ion channel with respect to the membrane normal was 21 +1°
(1 bar). This value was decreased to 16 & 1° by application of a pressure of 600 bar. In-
clusion of I-alkanols into the bilayer decreased the gramicidin tilt angle to 10° — 14°,
while additional application of large external pressure reversed this effect for ethanol (see
Table 5.3).

Without 1- | Ethanol | Octanol | Decanol
alkanols (°) (°) ) )

1 bar 21+1 14+1 | 14+1 | 10£1
600 bar 16£1 242 | 17T£1 | 12£1

Table 5.3: Average tilt angle of the gramicidin dimer versus the z-axis of the simulation
box.

The interfacial tryptophan residues have an important role in anchoring the peptide in-
side the bilayer, and probably also for the overall ion channels’ structure and function
(see the reviews [46, 123, 128, 301]). In mutation studies, a replacement of tryptophan
residues by phenylalanine side chains had a large influence on the ion conductance of
gramicidin [12]; also anesthetics (halothane and F3) showed an effect on the tryptophan
residues of gramicidin [39, 253-256, 303]. To see whether there is a competitive binding
of 1-alkanols, lipids, and interfacial water to the tryptophan residues, we studied the hy-
drogen bonding of the tryptophan residues. In agreement with the area distribution of the
1-alkanols, hydrogen bonding of 1-alkanols to the tryptophan residues of gramicidin was
rarely observed (< 5% of the simulation time for hydrogen bonding of ethanol to individ-
ual tryptophans, < 1% for octanol and decanol). The only exception was the simulation
with octanol at large external pressure, where for a total of 22% of the simulation time
hydrogen bonding of an octanol molecule to Trp9, and for 10% of the time to the inter-
facial Trp13 and Trp15 of the lower monomer occurred. Typically, either lipid or solvent
molecules were hydrogen bonded to the tryptophan residues of gramicidin, independent
of the presence of 1-alkanols.

The pore radius of gramicidin A varied along the central axis of the ion channel (Fig. 5.7).
The maximum pore radius was found at the interconnect of the two monomers (z ~ 0 nm),
and the minimum radii at z ~ £0.9nm, i. e., approximately at the inner potassium bind-
ing site of gramicidin [189]. Despite the overall structural stability of gramicidin, the pore
radius significantly decreased in the membrane core region upon addition of ethanol, re-
mained almost unmodified after adding octanol, and significantly increased for decanol.
External pressure increased the pore radius of gramicidin in the pure phospholipid bilayer
for the ethanol and octanol systems. The pore radius at 600 bar was similar for all inves-
tigated systems, comparable to the pore radius found after addition of decanol at normal
pressure.

5.3.4 Lateral Pressure Profile

A "truly mechanistic" [33] model of anesthesia was suggested by R. Cantor [33—-35]: Un-
der the assumption of different conformations of ion channels for the closed and open
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Figure 5.7: Pore radius of gramicidin A, computed from one snapshot every 100 ps, measured
along the central axis through the peptide (symmetrized). The origin is chosen at the center of the
ion channel. Results at 1 bar (600 bar) are represented by solid (dashed) lines. Errors are shown
as grey-shaded areas.

state with different cross sectional areas, changes in the lateral force distribution inside
the bilayer are supposed to shift the conformational equilibria between these states. Such
conformational changes between open and closed states could be structural rearrange-
ments of the protein, possibly accompanied by modulations of the channel pore radius.
The latter idea of a change in ion channel pore radius would be appealing, as then a direct
link to ion conductance might be provided.

Lateral pressure profiles calculated from the different simulations are given in Fig. 5.8. In
these profiles, the characteristic properties of lipid bilayers were correctly reproduced: in
the bilayer core, a positive lateral pressure resulted from entropic repulsion of the lipid
acyl chains. At the hydrocarbon-water interface a large tension is observed due to the
hydrophobic effect, striving to minimize the contact area between the apolar lipid chains
and the polar solvent. This negative tension peak is interrupted by a small positive peak,
resulting from lipid headgroup-headgroup repulsion and solvent-solvent interactions of
ordered interfacial water molecules (compare [88, 241]). Further outside, the pressure
difference between the normal and the lateral pressure drops to approximately zero in the
bulk water region.

Comparison of the pressure profile of the DMPC-gramicidin system studied here to the
corresponding profile of a pure DMPC system (not shown) [88] shows only a minor influ-
ence of the gramicidin on the membrane lateral pressure profile, in agreement with results
of Gullingsrud et al. [90] for the peptide melittin in DMPC lipid bilayers.

Upon addition of ethanol molecules, the peaks of the pressure profile were decreased in
magnitude, such that the overall profile appeared smoothed. With octanol, no significant
pressure changes in the bilayer interior were found, but — in agreement with the increased
area per lipid in these simulations (pure DMPC, 1 bar: 40.12 4 0.12 nm?; DMPC with
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octanol, 1 bar: 44.66 + 0.10nm?) — the lipid headgroup-headgroup and solvent-solvent
repulsion of ordered water molecules at the bilayer-water interface was decreased. De-
canol enhanced the central maximum of the profile. For the lower monolayer (z < 0),
containing the larger number of decanol molecules, the profile was broadened, in line
with the overall thickness increase of the bilayer with decanol. At 600 bar pressure, the
profile without 1-alkanols was smoothed. With ethanol, the positive contribution inside
the bilayer as well as the interfacial tension term were slightly increased with respect to
the simulations with ethanol at normal pressure. The profile with octanol was only slightly
broadened by the increase in bilayer thickness. For the lower monolayer of decanol, an
additional strong tension term inside the bilayer at z ~ —0.8 nm occurred, similar to our
previous study on pure alkanol-DMPC systems [88].

The insensitivity of the pressure profiles to the addition of octanol suggests a stabilizing
effect of gramicidin, as for lipid bilayers without proteins large changes in the pressure
profile upon addition of octanol had been found [88]. Interestingly, the comparatively
small lateral pressure in the hydrophobic TM region after addition of ethanol at 1 bar is
linked to a decreased gramicidin pore radius, and the largest pressure seen after addition
of decanol to an increase in the pore radius. The radius decrease for ethanol at 1 bar is
coupled to a decrease in intramolecular hydrogen bond formation (data not shown).
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Figure 5.8: Lateral pressure profiles for the simulation systems without any 1-alkanols (upper left
panel), with ethanol (upper right panel), with octanol (lower left panel), and with decanol (lower
right panel). Results at 1 bar (600 bar) are represented by solid (dashed) lines. Please note the
scaled ordinate for the simulations with decanol. The horizontal line at 200 bar is shown as a
guide for the eye.
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5.4 Discussion

A major drawback of earlier simulation studies of anesthetics acting on gramicidin in a
lipid environment was the short simulation time [257]. The obtained distribution of anes-
thetics was probably biased due to pre-insertion of the anesthetic molecules into the mem-
brane and by the short equilibration time. In contrast, here the 1-alkanols were randomly
distributed in the water phase at the beginning of the simulations and then let to freely
diffuse into and inside the bilayer. Therefore, an important result of this study is the dis-
tribution of 1-alkanols inside the bilayer with respect to the embedded peptide. The region
in close proximity of gramicidin was found to be depleted of 1-alkanols, different from
the preferred interaction of halothane with a potassium channel reported recently [287].
This observation renders a chemical binding between gramicidin A and the 1-alkanols,
necessary for any kind of protein-binding model of anesthesia, unlikely and hints to a
lipid-mediated mechanism.

While the influence of octanol on the structure of gramicidin was small, ethanol and
decanol had a significant, however opposed effect on the gramicidin pore radius. The
overall conformational stability of gramicidin is in agreement with previous studies us-
ing halothane and F3 as anesthetics [255-257]. However, our simulations oppose the
view [257] that the anesthetic action is induced by the binding of drug molecules to the
interfacial tryptophan residues. Rather, our results suggest a modulation of membrane
properties which in turn affect the structure and dynamics predominantly of the hydropho-
bic TM domain.

Even for the small-sized gramicidin channel, a correlation between variations in the ion
channel pore radius and the central peak in the lateral pressure profile was observed for
ethanol and decanol (pure DMPC and octanol did not show significant changes in the
central pressure peak). This finding lends support to the model for anesthesia suggested
by Cantor [33-35], where changes in the lateral pressure profile are assumed to shift con-
formational equilibria of ion channels if the cross sectional area difference of open and
closed states varies in the direction of the bilayer normal. The observed relation between
the structure and the dynamics of gramicidin A on the one hand, and the addition of differ-
ent 1-alkanols or the application of external pressure on the other hand, provides evidence
for an influence of 1-alkanols and external pressure on the ion conductance of gramicidin.
In this respect, potential of mean force calculations, directly evaluating the free energy
barrier for ion passage through the channel, could give further insight. This is, however,
beyond the scope of this manuscript.

5.5 Summary and Conclusions

In this study, we have shown that 1-alkanols of different hydrocarbon chain length dis-
tributed inhomogeneously in the lipid bilayer with respect to an embedded gramicidin A
dimer. In close proximity to the peptide, the area density of 1-alkanols was decreased,
providing evidence against a protein-binding model for anesthesia. 1-alkanol-induced
changes in the structure and dynamics of gramicidin were found. The pore radius of
the gramicidin channel was influenced by the 1-alkanols depending on their hydrocarbon
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chain length. This effect was probably achieved by the modulation of the lateral pressure
in the membrane. We showed here, that alkanols with a short chain may exert an oppo-
site effect on a membrane-embedded ion channel (here the gramicidin) as compared to
long-chain 1-alkanols. The exact value for the transition point will probably depend on
the membrane composition. Therefore, further studies focusing additionally on the influ-
ence of the lipid acyl chain length on the structure, dynamics, and on the conductivity of
different ion channels, as well as investigating the effect of the protein concentration in
the bilayer appear mandatory.
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6 Summary, Conclusions, and
Outlook

In the simulations presented here, modifications of lipid bilayer properties by addition
of 1-alkanols have been observed. For simplified model proteins of a certain geometric
shape, a shifted equilibrium between two states, interpreted as a closed and an open or an
active and an inactive state, was found in the presence of 1-alkanols, and an opposite shift
was observed upon additional application of pressure. The latter findings can be associ-
ated with an anesthetic action on a molecular level according to Cantor [36]. Simulations
of the small ion channel gramicidin embedded in a lipid bilayer showed a strongly inho-
mogeneous distribution of 1-alkanol molecules within the bilayer plane, with almost no
drug molecules residing in close vicinity of the peptide. Still, the pore radius of grami-
cidin was strongly modified in simulation of the peptide-bilayer system with ethanol and
decanol.

The alteration of bilayer properties in response to the presence of anesthetics, and the
absence of any specific interaction between gramicidin and 1-alkanol molecules support
the view of a lipid or lipid-mediated mechanism for anesthesia. Based on the calculations
with model membrane proteins, a regulation of ion channel activity by anesthetics via the
lateral pressure profile as suggested by Cantor [33] seems feasible.

In future studies it would be desirable to simulate more complete models of biological
membranes including larger and more complex proteins, different types of lipids, and
also some sterols with their bulky ring structure. Assuming a unitary mechanism for
anesthesia as the universality of the Meyer-Overton correlation suggests, simulations of
a broad variety of anesthetics will have to be performed to identify mechanisms valid for
all anesthetics alike. However, this will require an enormous computational effort and can
only be achieved by introducing appropriate simplifications to speed up the simulations.
Coarse-grained simulations as introduced in the second part of this thesis will be a valu-
able tool to address this problem.

A completely different approach to identify mechanisms underlying anesthesia could be
based on a possible stereoselectivity of the anesthetic interaction. Stereoisomers are
molecules that have the same chemical formula and structure, but differ by their chirality.
They are like a molecule and its mirror image and have the same physico-chemical prop-
erties. Simulating the effect of the two stereoisomers of a drug — one having anesthetic
potency and the other lacking this potency — on a lipid-protein system, should give valu-
able information about the relevant interactions for anesthesia. However, the literature
concerning stereoselectivity of general anesthetics is very controversial: various studies
have reported stereoselective interactions of anesthetics [58, 80, 96, 150, 171, 208], while
other authors found no stereoselectivity [63, 74, 75, 124, 207, 209]. As most of the exper-
iments have been carried out in vivo, it is also not known, whether the actual anesthetic
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mechanism, or rather the transport of anesthetics towards their site of action is stereose-
lective. Nevertheless, if in experiments stereoselectivity could be undoubtedly verified on
a single receptor level, simulations of this receptor would be promising.
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7 Protein Adsorption

Protein adsorption on solid-liquid interfaces is a fundamental biological process that is
relevant for a broad range of medical and biotechnological applications (see Section 7.1).
As proteins are large macromolecules that might undergo surface-induced conformational
changes, many different entropic and enthalpic terms are effective during protein adsorp-
tion on solids and a complete theoretical description and a control of this process are
difficult to obtain.

Here, coarse-grained (CG) molecular dynamics simulations were used to study the ad-
sorption of two different proteins, namely of lysozyme and human serum albumin (HSA),
on a negatively charged solid surface. The applicability of the CG model was tested by
comparison to experimentally known results, and analyses of the protein orientation on
the solid surface, of structural changes of the protein during the course of the simulations,
and of enthalpic interactions between the protein, the solvent, and the solid surface are
presented.

7.1 Motivation

When an aqueous protein solution is brought into contact with a solid material, in almost
all cases proteins adsorb spontaneously at the interface (see, e. g., [48]). This behavior
is exploited for diverse technical applications like, e. g., for solid phase immunoassays
employed in medical diagnostics, for biosensors and biochips ("lab on a chip") used to
analyze solutions containing several different proteins, for bioreactors, where a series of
reaction steps is catalyzed by spatially separated enzymes adsorbed on a solid surface,
and for tissue engineering (see the reviews [49, 122]). On the other hand, the protein
adsorption on surfaces can also be harmful like in the case of the aggregation of lysozyme
(present in the tear fluid) on contact lenses leading to infections. Protein adsorption is the
first and decisive step in the formation of a biofilm on, e. g., implant material or teeth: as
cells and bacteria can in general not attach to the bare solid surface, but adhere to the inital
protein layer formed on the surface, the nature of the emerging biofilms, and therefore the
integration of implant material into, or its rejection from bodily tissue or the built up of
dental plaque on teeth, depend critically on the kind of proteins covering the surface.

In all these examples, a control of the protein adsorption process would be desirable. One
method explored today is the design of functional interfaces, as it has been found that,
for example, proteins adsorb more easily on hydrophobic surfaces than on hydrophilic
surfaces (see [48, 154] and references therein). Also coatings, like the so-called polymer
brushs and self-assembled monolayers (see, e. g., [48, 49]), can inhibit protein adsorption
on solid surfaces [49]. However, until now most of these approaches are empirically based
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7 Protein Adsorption

and a complete (theoretical) understanding of the adsorption process, allowing for system-
atic modifications, is lacking. Here, simulation studies can provide important insights and
details that are difficult or impossible to obtain in experiments.
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8 Methods

8.1 Coarse-Grained Molecular Dynamics
Simulations

Coarse-grained molecular dynamics simulations have gained increasing popularity in the
last years due to the desire to study processes taking place on the microsecond time scale
in large nanoscopic systems. The term coarse-graining refers to the introduction of ad-
ditional simplifications and approximations in atomistic molecular dynamics simulations.
Thereby a speed-up of the simulations can be achieved and larger systems can be simu-
lated for longer time intervals. Many different models and levels of simplification have
been suggested, ranging from simulations of simple binary Lennard Jones fluids [85], over
models treating proteins and lipids in some detail, but using an implicit representation of
the solvent and of solid materials [182, 183], up to simulation schemes, where all interac-
tions are treated explicitly and the chemical nature of macromolecules is mostly retained.
Extensive reviews of the different approaches have been given by Nielsen et al. [181],
Tozzini [267], Venturoli et al. [290], and Miiller et al. [174].

Here, the MARTINI coarse-graining scheme (see Section 8.1.1) suggested by Marrink
and co-workers [156, 161, 170] has been used. In this model, a reduction of the num-
ber of degrees of freedom — and thereby a speed-up of the simulations — is achieved
by combining (functional groups of) several atoms into one larger particle, a so-called
coarse-grained bead. Only a few bead types (see Section 8.1.1) are defined and the model
provides a systematic parametrization of all possible interactions between all different
coarse-grained beads, allowing for a broad range of different applications [170]. In com-
parison to atomistic simulations, a considerable increase in simulation speed is obtained,
but still a relatively high resolution reflecting the structural details and the charge dis-
tribution of large molecules is retained and solvent is explicitly taken into account (i.e.,
water is simulated using explicit particle-particle interactions between coarse-grained wa-
ter beads and is not approximated as a continuous medium). First applications of this
model have given promising results (see Section 8.1.1) and the model is expected to gain
further importance in biomolecular modeling.

8.1.1 MARTINI

The MARTINI force field [156, 161, 170] was first released in 2004 as a model for semi-
quantitative coarse-grained simulations of lipids in water [156]. The model was shown to
reproduce known structural and dynamical properties of lipid bilayers of various compo-
sition [156]. Using different lipid species, not only the self-assembly of lipids to a fluid
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bilayer, but also the transition to a crystalline state upon cooling, and the formation of an
inverted hexagonal phase and of micelles could be observed [156, 160]. In the following,
the MARTINI force field was successfully applied to study phospholipid vesicles [159]
and to investigate domain formation in mixed phospholipid bilayers [70]. Bond and Sam-
son et al. [25-27] and Shih et al. [235] based coarse-grained simulations of membrane
proteins on this force field, though still applying harmonic constraints or additional dihe-
dral potentials to keep the proteins stable. In 2007, an improved version of the MARTINI
force field [161] and, in 2008, its extension to peptides [170] were published. The model
was since then applied to study, e. g., the oligomerization of rhodopsin [200] and the gat-
ing of membrane protein channels [270, 304].

The MARTINI force field was calibrated to reproduce partitioning free energies between
polar and apolar phases of various chemical compounds [161, 170]. In this model, all
hydrogen atoms are disregarded and (functional) groups of — on average — four atoms are
mapped onto coarse-grained beads. Exceptions are ring-like structures as in sterols or in
the amino acid tryptophan, where a higher resolution mapping is used. Four main classes
of beads are defined: apolar (C), nonpolar (N), polar (P), and charged (Q) beads. A fine-
tuning of interactions is achieved by introducing subtypes of these classes: for the polar
and apolar beads, the degree of (a)polarity is assigned by numbers 1 to 5, where increas-
ing numbers mark increasing polarity. For the non-polar and charged beads, subtypes are
distinguished according to their hydrogen bonding capability: a = acceptor, d = donor, da
= donor and acceptor, and 0 = no preference for hydrogen bonding. All beads have the
same mass m = 72u of four water molecules, except the beads in ring-like structures
with a mass of 45 u.

Like in all-atom force fields (see Section 2.2.1), bonds between nearest neighbors are
modeled by a harmonic spring and angles between next nearest neighbors are defined by
a harmonic angle potential. For aliphatic carbon chains, the bond length is generally set
to 0.47nm, while for proteins it is adjusted individually based on statistical considera-
tions [170]. Proper dihedral potentials are used to impose the correct secondary structure
on peptide backbones. Also the functional form for the non-bonded interactions is chosen
equivalent to the all-atom case (Eq. (2.13)):

Vnonfbonded = VLJ + VCoulomb

= 457L' Y _ M 4147
Z J (Tz’j ) (rij > + Z 4’/T€0€r rij

pairs(i,j) pairs(i,j)

The minimum distance between two non-bonded particles ¢ and j is in general set to
0;; = 0.47nm, except for ring structures (0;; = 0.43nm) and for strongly repulsive in-
teractions between charged and apolar beads (0;; = 0.62 nm). Lennard Jones interactions
between bonded next neighbors are excluded in the MARTINI model. For the strength
of the interaction ¢;; between two beads, ten different levels are defined, ranging from
strongly attractive interactions between charged particles to strongly repulsive interac-
tions between apolar and charged particles. In ring-like structures, €;; is scaled to 75%
of its original value. Lennard Jones interactions are shifted to zero in the cutoff region
between 0.9 nm and 1.2nm. Electrostatic interactions between charges ¢; and g; at the
distance r;; are modeled including a dielectric screening by setting €, = 15. The Coulomb
potential is truncated at the cutoff radius 7. ;o = 1.21nm. The interactions are shifted to
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zero over the whole interaction range, mimicking a distance-dependent screening.
Compared to atomistic simulations, a speed-up by 3-4 orders of magnitude can be ob-
tained using the MARTINI coarse-grained model [156]. Different factors contribute to
this effect: the reduction of the number of degrees of freedom, the truncation of the elec-
trostatic interactions, the use of a large time step of 20 to 50fs, and a faster intrinsic
dynamics [156, 161]. The use of a large time step is made possible by disregarding all
hydrogen atoms, by combining groups of atoms into larger and heavier beads, and by —
similar to the atomistic simulations (see Section 2.2.4) — constraining the length of cova-
lent bonds. For the same reasons, small variations in the energy landscape are smoothed,
leading to a reduced friction and to a faster overall dynamics of the system. By compar-
ison with atomistic simulations and experimental data, the dynamics have been found to
be increased by a factor of ~ 4 [156].

The MARTINI force field was designed for use close to room temperature and at normal
pressure [156]. As coarse-grained water, modeled by one polar P4 bead per four real
water molecules, was found to freeze already at temperatures of 290 K [156], Marrink et
al. [161] introduced antifreeze particles BP4, with an increased radius compared to parti-
cles P4. Replacing 0.1 mole fraction of P4 water beads by these antifreeze particles lowers
the freezing temperature, but it also reduces the density and the self-diffusion constant of
water by about 10% [161]. However, no effect on structural properties of a hydrated lipid
bilayer were found [161].

When applying the MARTINI force field, some deficiencies in the parametrization should
be kept in mind. First of all, the calibration of force field parameters according to free
energies results in a bias of both entropy and enthalpy, as the loss of entropy, inherent
in the coarse-grained model, is compensated by a reduced enthalpy term. Secondly, all
parametrization was done in the fluid phase. Therefore, buried residues in large proteins,
which can be in an intermediate state between fluid and crystallized, might be described
inadequately [170]. Furthermore, a too weak adsorption of positively charged amino acids
at membrane-water interfaces was observed [170]. And finally, although the force field
was released for use with proteins [170], simulations of lysozyme and barnase in solu-
tion revealed anomalously large structural deviations of these proteins from their native
structure during the course of the simulations. Similar problems were encountered by
Tieleman et al. [261]. Therefore, with the current version of the MARTINI force field,
additional constraints have to be used to stabilize the structure of proteins.

Limitations for the applicability of the MARTINI force field result from the cutoff used
for non-bonded interactions and from the way how proteins are modeled. By truncat-
ing electrostatic interactions, all long-range interactions are abandoned and artifacts will
be inevitable (see Section 2.2.2). In principle, also in coarse-grained simulations, lattice
summation or reaction field methods could be applied. However, this would make the
simulations slower and the force field parameters would probably have to be readjusted.
In the modeling of peptides and proteins, secondary structure elements are fixed by angle
and dihedral potential terms. Therefore, only movements of different structural elements
in relation to each other, but no change in secondary structure can be investigated [170].
Nevertheless, the MARTINI method is certainly one of the most efficient, systematically
parameterized coarse-grained models available today, being applicable to diverse systems,
and allowing for microsecond long high-resolution simulations of large systems (about
2.5 x 10% atoms).
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8.2 Principal Component Analysis

Principal component analysis (PCA) [199], also called covariance analysis, essential dy-
namics, or proper orthogonal decomposition, is a method to reduce high-dimensional
data sets to a lower number of dimensions, but still keeping most of the relevant infor-
mation. Applications of this technique include image compression and pattern and face
recognition. In biomolecular simulations, PCA 1is used to identify functional motions in
proteins [5, 54].

Starting from a data set of 3/N x M data points, e. g., a trajectory of N protein atoms
and M time steps in MD simulations, first the time average of each degree of freedom is
subtracted at each time step to retrieve only the relevant internal motions. In simulations,
this is usually done slightly different, namely by fitting the structures at each time step to
one reference structure. From this data, arranged in a 3NV x M matrix B with the columns
containing the coordinates of all atoms x(¢), the covariance matrix

1
C - —BB* 8.1
M @1

Ciy = ((xi— () (z; = (2)) ) (8.2)

is built, where B* is the conjugate transpose of B and (...) denotes the average over
all times. This matrix can be diagonalized by a linear, orthonormal transformation V.
The columns of V are the eigenvectors of C, also called principal or essential modes.
For convenience, they are arranged by decreasing order of the corresponding eigenvalues
)\i:

VﬁlcV = diag()\l, )\2, ce ,)\3]\7) with )\1 Z )\2 2 s 2 )\3]\7. (83)

The eigenvectors span a coordinate system, with the special property that the covariance
of any two coordinates is zero; i. e., the motions along these coordinates are uncorrelated.
The eigenvalues \; are a measure for the mean square fluctuations along the respective
eigenvector. For systems with a confined geometry, as for example a protein trapped in a
local minimum of its energy landscape, many degrees of freedom are restricted by energy
barriers and the corresponding eigenvalues will be close to zero. Assuming that important
dynamics are connected with large fluctuations, a projection of the data on the first few
eigenvectors reveals and separates the fundamental motions:

p(t) = W" (x(t) — (x)) - (8.4)

The p;(t) are called the principal components. The matrix W is a subset of V, keeping
only the most important (in terms of large eigenvalues) eigenvectors

W(p,q) =V(p,q) with p = 1,...,3N (8.5)
q = 1,...,L
1 < L <3N

For a mass-weighted analysis of Newtonian dynamics, the atom masses have to be in-
cluded in the Equations 8.2 and 8.4.
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8.2 Principal Component Analysis

In the case of insufficient sampling in the simulations, the results of the PCA can be biased

by random diffusion in fluctuation space. It has been shown that the principal components

pi(t) of this random diffusion are cosine-shaped with the number of periods equal to half

the principal component index ¢ [104]. Hints to random diffusion are a large cosine con-
1

tent [105]
2 T T -
G == (/ cos(imt) p;(t) dt) (/ pf(t)dt) (8.6)
T \Jo 0

of the pricipal components (7' = sampling time interval) or a small subspace overlap

2

L, Lm

1
overlap(Wn, Wm) = L_ Z Z(Wms : Wm,t>2 (87)

nog=1 t=1

of the subspaces W,,, W, of different time intervals n, m of the trajectory (w,, s, Wi, 1
are the eigenvectors spanning the subspace W,,, W) [105]. However, a small overlap of
parts of the trajectory can equally well indicate a structural change of the protein. In the
case of microsecond long coarse-grained simulations of proteins, a sufficient sampling of
the protein mobility can be safely assumed and a small subspace overlap for different time
intervals of the trajectory can therefore be assigned to conformational transitions of the
simulated proteins.
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The adsorption of proteins on solids and soft materials plays a vital
role in biotechnological and biomedical applications, for example for
the biocompatibility of implant material or in dental health care. Not
only the properties of the sorbent surface can be changed, but also the
proteins might undergo conformational changes during adsorption. To
investigate such processes in molecular detail, but still reaching appro-
priate time scales (microseconds), coarse-grained molecular dynamics
simulations were applied here. As a model system, the adsorption of
lysozyme and human serum albumin to a simple, slightly negatively
charged, single-layer solid surface were studied at various ion concen-
trations. Protein diffusion before and after attachment to the surface, the
orientation of the proteins on the surface, energetic interactions driving
adhesion, and conformational changes of the proteins in the course of
the simulations have been analyzed.

!Theoretical and Computational Membrane Biology, Center for Bioinformatics Saar, Saarland University,
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9 Protein Adsorption on Solid Surfaces

9.1 Introduction

Protein adsorption on solid—liquid interfaces plays an increasingly important role in many
biotechnological and biomedical applications. Examples are solid-phase immunoassays
for medical diagnostics, biosensors ("lab on a chip"), and the use of implants, where
protein adsorption is the first step in the formation of a biofilm that is critical for the in-
tegration of the material into, or its rejection from, bodily tissue. As protein adsorption
can be both harmful, i.e., the accumulation of lysozyme (present in the tear fluid) on
contact lenses, but also desirable, as in the case of albumin adsorption on implant mate-
rial preventing the adhesion of platelets and thrombus formation, the ultimate goal is an
understanding and a control of the adsorption process. The latter could be achieved for
example by a design of functional surfaces favoring or inhibiting adsorption of selected
proteins.

Experimentally accessible quantities include the adsorbed layer thickness, the adsorbed
protein mass and concentration, and rate constants for adsorption processes. Single mol-
ecule interactions and changes in the conformation and orientation of single proteins can
partially be investigated using attenuated total reflectance Fourier transform infrared spec-
troscopy (ATR-FT-IR), total internal reflection fluorescence spectroscopy (TIRF), and
atomic force microscopy (AFM), but are in general difficult to determine. In this re-
spect, simulations are a valuable tool providing the desired detailed information.

As proteins adsorption takes places on time scales of microseconds up to milliseconds [86],
atomistic simulations, limited to nanosecond long timescales, cannot be used. Up to
now, mainly colloidal models (e. g., [13, 87, 187, 188, 210, 215, 219-221]), where the
whole protein is represented by a single sphere that moves in a potential mimicking a
solvent, have been applied to investigate this process by Brownian Dynamics, Monte
Carlo (MC), or Random Sequential Adsorption [251] techniques. Enhanced levels of
sophistication have been achieved using an inhomogeneous charge distribution for the
protein or including conformational changes by introducing additional degrees of free-
dom (e. g., [13, 210]). Two more detailed approaches retaining structural characteristics
of the protein, were given by the united residue MC simulations of Zhou et al. [306],
where each amino acid was represented by a sphere, and by the rigid-body MC simula-
tions of Ravichandran et al. [214], where lysozyme was simulated in full atomistic detail,
but without any structural flexibility.

Here, the recently developed MARTINI force field [156, 161, 170] was used to inves-
tigate the adsorption of two proteins, lysozyme and human serum albumin (HSA), on a
negatively charged solid surface by microsecond long, coarse-grained molecular dynam-
ics (MD) simulations. Within this framework, we were able to study the time evolution of
the system and to simulate the solvent explicitly. Lysozyme can be found in human saliva
and tear fluid, playing an important role in the defense of the organism against bacteria,
and HSA is abundant in the human blood plasm, being responsible for diverse transport
processes and for maintaining the osmotic pressure. Both proteins have been intensively
studied in experiments, allowing for a direct comparison and a validation of results ob-
tained from the simulations.

The focus of this study was put on the applicability and the possibilities of coarse-grained
molecular dynamics simulations for investigating protein adsorption processes on solids,
on the determination of the orientation of the proteins on the surface, and on the calcu-
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lation of energetic interactions that are important for the adhesion of the proteins on the
solid surface.

9.2 Methods

For the coarse-grained MD simulations performed in this study, the GROMACS software
package [18, 143, 278] together with the MARTINI force field [156, 161, 170] has been
used. At the start of each simulation, a protein — either lysozyme or HSA — was placed in
a water-ion-solution above a solid surface that was oriented along the x—y plane (Fig. 9.1).
A vacuum layer of ~ 70 nm thickness in z-direction finished the set-up.

Figure 9.1: Simulation system for the adsorption study of human serum albumin (HSA, orange)
on a solid surface (grey spheres) in explicit ionic solution (0.2 M NaCl, green and blue spheres).
Initially, HSA is randomly placed in the water box.

The solid surface was built up by a monolayer of non-polar coarse-grained beads ar-
ranged in a quadratic lattice. In order to mimic a mica surface, some randomly chosen,
non-polar beads were replaced by negatively charged beads, such that a charge density of
— 0.5 e/nm? (electron charge ¢ = 1.602 x 107'? C) was obtained. The spacing between
neighboring beads, which were connected by covalent bonds, was set to 0.47 nm. To pre-
vent any drift of the system, the position of three or four (simulations with lysozyme or
HSA, respectively) solid atoms were constrained by a harmonic potential.

The all-atom protein structures of lysozyme (1LYD [218]) and of HSA (1BMO [246])
were taken from the protein data bank [21]. For HSA, residues that had not been resolved
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experimentally were remodeled using the package WHATIF [292]. Lysozyme was sim-
ulated carrying a positive charge of 4 8 e (isoelectric point (pI) of lysozyme pI ~ 11),
while HSA was taken as uncharged (pI ~ 5). The coarse-grained coordinates and topolo-
gies were produced according the procedure described by Monticelli et al. [170]. As
lysozyme in solution was found to be unstable in simulations, the secondary structure of
lysozyme and HSA was preserved by applying harmonic constraints (force constant of
1000 kJ/(molnm)) between all non-bonded protein beads with a distance of less than
0.65 nm (compare also [25, 26]). The proteins were placed with various orientations and
a minimum distance of at least 2.6 nm (lysozyme) or 3.1 nm (HSA) to the substrate in
a solution of water and NaCl. Like previously reported for the MARTINI force field
(see [156, 161]), every tenth coarse-grained water bead had to be replaced by an enlarged,
antifreeze bead to keep the water from freezing. Although this procedure lowers the
self-diffusion constant of water by about 10%, no effects on the structural properties of
hydrated lipid bilayers were found in simulations using the MARTINI force field [161].
The total size of the simulation box was fixed at 11nm x 11nm X 82nm and 15nm X
15nm x 86 nm for the simulations with lysozyme and HSA, respectively. The systems
were simulated using periodic boundary conditions, and a large vacuum layer was intro-
duced to prevent interactions between copies of the system in z direction. A constant
temperature of 300 K was maintained using the Berendsen weak coupling algorithm [16]
with a coupling time constant of 1 ps. An integration time step of 20 fs was used and the
neighbor list was updated every 10 th integration step. Lennard Jones and electrostatic
interactions were truncated using a shift cutoff between 0.9 nm and 1.2 nm and between
0.0 nm and 1.2 nm, respectively. The dielectric constant for the Coulomb interactions was
setto &, = 15.

In order to obtain statistically relevant data, a large number of microsecond long simu-
lations has been accomplished. For lysozyme, simulations at six different salt concen-
trations, ranging from 0.0 to 1.0 molar, have been performed. At each concentration,
eight simulations, differing in the initial orientation of the protein, have been carried out
for 1 up to 4 us (depending on the adsorption time of the protein). In the case of HSA,
eight systems at two concentrations, 0.2 and 0.6 molar, have been simulated for 7 us
each. Accounting for the accelerated dynamics in coarse-grained simulations of a factor
of ~ 4 [156, 161], the times of the individual simulations are up to 28 s long. In the
following, always the real simulation times (not multiplied by the factor of four) will be
given.

9.3 Results and Discussion

9.3.1 Adsorption Times and Protein Diffusion

In all simulations, the proteins adsorbed and finally remained on the solid surface. Here,
adsorption was said to occur when the minimal distance between the surface and the pro-
tein was less than 0.5nm. Ultimate or final adsorption refers to the protein staying on
the surface for the remainder of the simulation time, at least 300 ns for lysozyme and 3 us
for HSA. Already before the final adsorption, temporary adsorption events occurred for
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both proteins. For lysozyme, the mean final adsorption times (i. e., the time at which the
ultimate adsorption occurred) ranged from 0.5 ps to 1.3 ps at the different concentrations,
whereas for HSA this time was slightly longer (see Fig. 9.2). This effect was at least
partially due to a slower diffusion of the larger HSA molecules compared to the smaller
lysozyme. Neither for lysozyme nor for HSA, a significant dependency of the mean fi-
nal adsorption time on the ion concentration in solution was found. However, the time
of the first contact between lysozyme and the solid surface was slightly increased with
increasing ion concentration, reflecting the decreased diffusion coefficient of lysozyme
with increasing ion concentration in solution (see below).

4.0x10° T T T T T T
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L * HSA
3.0x10%- _
i
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£ s ]
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Figure 9.2: Mean final adsorption times for lysozyme and HSA on the solid surface.

The lateral (x—y plane) diffusion coefficient of lysozyme and HSA in solution decreased
with increasing ion concentration (Fig. 9.3). At an ion concentration of 0.2 M NaCl, val-
ues of D = (8.4 4 0.6) x 107" cm?s™! (lysozyme) and D = (4.0 £0.1) x 107" cm?s™!
(HSA) were obtained from the simulations. Correcting these values by about 10% to ac-
count for the decreased water diffusion upon addition of antifreeze particles [161], these
values are in good agreement with experimentally determined diffusion coefficients of
D = (10.6 £ 0.1) x 10~ "cm?s™! for lysozyme in a physiological buffer [61] and of
D ~ 5.8 x 107" cm?s~! for bovine serum albumin (BSA, similar to HSA) in a solution
with pH = 5.0 and at ion concentrations ranging from 0.0 to 0.5 M [213].

After the final adsorption on the solid surface, the lateral diffusion of the proteins was
strongly decreased. It became equal for both proteins and it was independent of the ion
concentration in solution. Concerning surface diffusion of proteins adsorbed on the solid-
liquid interface, only few experimental studies have been performed. For BSA adsorbed
on poly(methylmethacrylate) and poly(dimethylsiloxane) surfaces, diffusion coefficients
of the order of D ~ 107% cm?s~! [265] have been reported. For lysozyme adsorbed on
mica, Mulheran et al. [173] deduced a diffusion coefficient of D = 9 x 107 cm? s
by comparing adsorption patterns of AFM experiments and Monte Carlo (MC) simula-
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tions. However, compared to values reported from studies with other proteins and other
substrates [186, 265], this value appears too low, maybe resulting from inaccuracies in the
MC model. Nevertheless, the coarse-grained simulations presented here seem to overes-
timate the surface diffusion of lysozyme and HSA. This is probably due to the truncation
of electrostatic and van der Waals interactions, and to the properties chosen for the model
surface: simulating multiple solid layers, increasing the roughness, and changing the hy-
drophobicity of the surface are all expected to influence the protein diffusion on the sur-
face. Also the lattice spacing (taken here as the typical distance between covalently bound
particles in the MARTINI model) has an influence on the interaction energies between the
protein and the surface [185] and therefore on the protein diffusion coefficient.
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Figure 9.3: Lateral diffusion coefficient of the proteins before the first and after the final adsorp-
tion on the solid surface.

9.3.2 Protein Orientation

As lysozyme has an approximately ellipsoidal shape with one well-defined long axis (see
Fig. 9.5), its orientation on the solid surface can be described in terms of a single angle
~ between the unit vector along this axis (defined by the center of mass of the protein
residues 13-59 and 81-155) and the solid surface normal (0,0,1). Values obtained for ~
for the different ion concentrations in solution range from (95 £ 1)° up to (112 + 1)°,
indicating an orientation of lysozyme almost parallel to the solid surface.

For HSA with its heart-shaped conformation (Fig. 9.6), the orientation has been character-
ized by two angles v and 0 (see Fig. 9.4). The centers of mass of the three main domains
of HSA (protein residues 1-197, 198-388, and 389-585 according to the SCOP protein
classification [176]) define the three points A, B, and C. ~ is defined as the angle between
the vector bac = —AB + 0.5AC and the solid surface normal (0,0,1), determining the
tilt of the protein with respect to the surface. ¢ is the angle between the normal vectors
of the solid and of the protein. As the values for v are very different in the individual
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\ 4

Figure 9.4: Angles and planes characterizing the orientation of HSA (represented by the orange
triangle) on the solid surface (blue). The points A, B, and C are defined as the center of masses of
the three main domains of the protein. ~ is the angle between the vector bac = —AB + 0.5AC
and the solid surface normal (0,0,1), determining the tilt of the protein with respect to the surface.
0 (not shown) is the angle between the normal vectors of the solid and of the protein, indicating
whether the protein faces the surface with the "front" side (§ < 90°) or with the "back" side
(6 > 90°).

simulations, they were not averaged, but are listed separately in Table 9.1. Like in the

Conc. (molar) | Name v 0
0.2 2A 74+1 | 20+1
0.2 2B 97+1 | 12541
0.2 2C 44+ 1 51 +1
0.2 2D 104+1 | 140+1
0.6 6A 1171 | 46+1
0.6 6B 361 | 59+1
0.6 6C 81+1 | 146+1
0.6 6D 9%6+1 | 152+1

Table 9.1: Values of the angles characterizing the orientation of HSA on the solid surface
for the different simulations.

case of lysozyme, HSA is tilted towards the surface (y close to 90°), except for the sim-
ulations 2C and 6B. However, in some cases, the protein faces the solid surface with its
"front" side (0 < 90°), while in other cases the "back" side is turned towards the surfaces
(0 > 90°). Altogether, HSA seems to adsorb with different metastable (on the microsec-
ond timescale) orientations on the solid surface.

To further characterize the adsorbed state of the proteins on the surface, for each amino
acid the number of time steps where the minimum distance between the residue and the
solid surface was lower than 0.5 nm has been counted, starting from the time of the final
protein adsorption. For both proteins, lysozyme and HSA, residues could be identified
that preferentially adsorbed on the surface (see Figs. 9.5 and 9.6). As the solid surface is
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9 Protein Adsorption on Solid Surfaces

negatively charged, these preferentially adsorbing residues are mostly positively charged
themselves or in close vicinity to other positively charged residues. However, not all
positive charged residues adsorbed frequently, stressing the importance of the protein ge-
ometry, as some residues are buried and cannot come close to the solid surface.

Figure 9.5: Charge distribution (top) and preferentially adsorbing residues (bottom) of lysozyme.
The two views on the right and left hand side show the protein from the front and from the back. In
the upper panel, positive charged residues are colored red and negative charges are colored blue.
In the lower panel, the number of contacts between the protein residues and the solid surface after
the final adsorption is color-coded. Blue denotes a small, red a large number of contacts.

9.3.3 Interaction Energies

To control the protein adsorption on solids, it is essential to know the forces driving this
process. Therefore, the differences in electrostatic and Lennard Jones energies before the
first contact of the protein with the solid surface and after its ultimate adsorption have
been calculated for the mutual interactions of the protein, the solvent, and the solid (Ta-
ble 9.2). Upon adsorption of the proteins on the solid, the electrostatic and Lennard Jones
interactions between the protein and the solid increased (negative energy difference), fa-
voring adhesion of the protein on the solid. At the same time, solvent molecules were
displaced from the protein and from the solid surface, resulting in decreased interactions
(positive energy difference) between the solvent and the solid and the solvent and the
protein, counteracting the protein adsorption. But as the solvent molecules released from
the solid became now (fully) available for solvent-solvent interactions, these interactions
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9.3 Results and Discussion

Figure 9.6: Charge distribution (top) and preferentially adsorbing residues (bottom) of HSA. The
two views on the right and left hand side show the protein from the front and from the back. In
the upper panel, positive charged residues are colored red and negative charges are colored blue.
In the lower panel, the number of contacts between the protein residues and the solid surface after
the final adsorption is color-coded. Blue denotes a small, red a large number of contacts.

were in turn increased. Electrostatic interactions were always small compared to Lennard
Jones contributions. In all simulations, a negative energy difference for the protein-protein
interactions was found, indicating some intramolecular rearrangement of protein residues.
The sum of all energy contributions is always negative, yielding an enthalpic driving force
for the adsorption.

9.3.4 Conformational Changes

Possible surface-induced changes in protein conformation and in internal mobility upon
adsorption are an important issue in biotechnological applications as they might be ac-
companied by a modification or even a loss of protein function. From the observed slight
increase in the root mean square deviations (RMSD) of the proteins from their initial
structure after the final adsorption on the surface (Table 9.3) and from the increased in-
tramolecular Lennard Jones and electrostatic interactions (Table 9.2), it can be deduced
that the proteins slightly change their conformation after adsorption. Please note, that here
only small structural rearrangements can be observed, as an unfolding and denaturation
of the protein is prevented by the applied harmonic constraints (compare Section 9.2). In
order to relate these structural changes to functional motions of the proteins, a principal
component analysis (PCA) has been performed and is shown exemplarily for the different
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9 Protein Adsorption on Solid Surfaces

simulations of HSA (Fig. 9.7). The underlying assumption of this technique is that im-
portant dynamics within the protein is related to the largest observed fluctuations. Then
the directions of the dominant collective motions in, e. g., proteins can be identified by
determining the largest eigenvalues and the corresponding eigenvectors of the covariance
matrix (after fitting all simulation structures to a reference structure) for the protein (see,
e. g., [5]). Here, the overlap

2

2
Z Z(Wn,s . Wm,t)2 (91)

s=1 t=1

overlap(W,, W,,) =

DN | —

between the eigenspaces W,, and W, that are spanned by the first two eigenvectors w,, s,
Wit {8,t} € {1,2} (chosen for their distinctly larger eigenvalues compared to the other
eigenvectors) of all different 100 ns time intervals n, m of each individual simulation has
been calculated (Fig. 9.7). For all simulations, at least two conformations® with differ-
ing dominant motions have been found, discernable by the block structure in the plots
(Fig. 9.7). Especially well differentiated are the transitions for the simulations C and D at
0.6 M ion concentration, while the situation is less clear for the simulation A at the same
ion concentration. Most conformational changes were observed after the final adsorption
of the protein on the surface. Unexpectedly, the changes in the protein dynamics identi-
fied by the PCA could not be clearly correlated with simultaneous changes in the protein
RMSD or the protein orientation on the solid surface, suggesting that already very subtle
structural changes, hardly visible in the RMSD data, can affect the internal dynamics of
HSA. Also for lysozyme, changes in the global motions of the protein could be observed,
but the transitions between the different states are less clear.

9.4 Summary and Conclusions

In this study, coarse-grained simulations using the MARTINI model [156, 161, 170] have
been performed to study the adsorption and adhesion of two proteins, lysozyme and HSA,
on a negatively charged solid surface. The experimentally known diffusion coefficient of
the proteins in solution has been well reproduced, whereas the lateral diffusion of the pro-
teins adsorbed on the surface was overestimated in the simulations. The deviations of the
latter might be due to different properties of the solid (surface) in experiments and sim-
ulations, as changes in the surface hydrophobicity and roughness as well as inclusion of
multiple solid layers in the simulations are expected to change the diffusion coefficient of
the adsorbed proteins. The adhesion of the proteins on the surface was found to be driven
by Lennard Jones interactions. For lysozyme, an almost parallel orientation of the protein
on the surface has been found, while for HSA several — on the timescales of the simulation
— stable orientations were observed. For both proteins, residues adsorbing preferentially
on the surface could be identified. Increased RMSD values for the proteins after adsorp-
tion pointed to surface-induced conformational changes of the proteins and also internal
protein motions were effected by surface-protein interactions.

%In the notation used here, the conformation of a protein is not only determined by its structure, but also
by its internal dynamics.
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However, also some limitations of this study should be kept in mind. The solid was mod-
eled by only a monolayer of coarse-grained beads, such that interactions between the bulk
solid and the solvent molecules or the proteins have not been taken into account. Be-
sides, the necessary harmonic distance restraints ensuring the stability of the simulated
proteins restrict the conformational mobility of the proteins. In this regard, a refinement
of the MARTINI model [156, 161, 170], allowing for more flexibility while maintaining
the structure of the protein in solution, is certainly needed.

Nevertheless, the application of the MARTINI model [156, 161, 170] allowed for the first
time microsecond long simulations to study protein adsorption on solids on a very detailed
level and including explicit solvent molecules. In future studies, the properties of the solid
surface can be varied to analyze the influence of enthalpic effects on the adsorption pro-
cess. Simulations at different temperatures or application of forces pulling the proteins
away from the surface can be used to estimate entropic contributions. By the accessible
timescales within this model, even simulations of multiprotein adsorption become possi-
ble, allowing to identify adsorption patterns and to assess the effect of already adsorbed
proteins on the adsorption behavior of proteins in solution.
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Conc. solid-protein solid-solvent protein-protein protein-solvent solvent-solvent total
(molan) || € (55) | L (o) | € G | L9 Gap) | © ) | U Gasp) 1 CGaD) | DGs) | CGR) | WGES) | G5
Lysozyme
0.0 —20£1 | -406£3 | 1+1 | 2454+4 | —6+1 | —=52+£6 | 31 | 48> %7 0+1 | —408 +10 || —160 £ 24
0.2 —17£1 | 4073 | 21 | 2404 01 =275 | 11£1 | 4687 | =31 | —427£9 || —159 £23
0.4 —20£1 | —414£2 | 5+1 | 251 +4 | =61 | =58+£3 | 22£1 | 497£5 | =101 | —469+8 | —203 £35
0.6 —18+1 | -345£3 | 4+£1 | 209+3 | —3+1 | —41+4 | 21£1| 431£6 | -10+£1| —431+£10 | —184£23
0.8 —-17+£1 | -363£3| 61 | 223+£3 | —4+1 | =603 | 26£1 | 4775 | —124+1| —436+8 || —160+24
1.0 —18+1 | -406£3 | 94+1 | 208+3 | —-13£1 | —26+£3 | 39£1 | 485+£6 | —23+1| —468+9 || —161+£21
HSA
0.2 —-16+£1 | -544£2| 01 | 318+4 | -21£1 | -2724+£9 | 24£1 |872£10| —=7+£1 | =690+ 13 || —336 £61
0.6 —-16£1| -600£3 | 4+1 | 366+4 | —26£1 | —157+9 | 29£2 | 79711 | —8+£1 | =789 +£18 || —401 £49

Table 9.2: Differences of Coulomb (C) and Lennard Jones (LJ) energies before the first contact of the protein with the solid surface and after

its final adsorption, resolved for the mutual interactions between the protein, the solid, and the solvent (water molecules and ions).
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Conc. RMSD before the RMSD after the
(molar) first contact (nm) | final adsorption (nm)
Lysozyme
0.0 0.43 +0.01 0.48 £0.01
0.2 0.46 + 0.01 0.50 £ 0.01
0.4 0.46 £ 0.01 0.48 £ 0.01
0.6 0.44 +0.01 0.51 £0.01
0.8 0.44 +0.01 0.45 +0.01
1.0 0.46 + 0.01 0.48 +£0.01
HSA
0.2 0.46 + 0.01 0.49 +0.01
0.6 0.48 +0.01 0.48 +0.01

Table 9.3: Mean root mean square deviation of the proteins from their initial structure
before the first contact of the protein with the solid surface and after their ultimate

adsorption.
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Figure 9.7: Overlap (color-coded) of the eigenspaces, spanned by the two eigenvectors with max-
imum eigenvalues, between all different 100 ns time intervals for the various HSA simulations. A
large overlap of 1.0 (red) indicates that the protein exhibits similar dominant motions in both time
intervals, whereas a small overlap of 0.0 (black) points to changed internal dynamics of the protein.
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10 Outlook

Within this study, coarse-grained molecular dynamics simulations have been successfully
applied to study the adsorption of single proteins on solid surfaces. As discussed in Sec-
tion 9.4, the model can now be extended to systematically vary the properties of the solid
surface, to estimate entropic effects contributing in the adsorption process, and to investi-
gate even multiprotein adsorption. Especially the setup of a multiscale model that allows
for a switching between coarse-grained and atomistic simulation would be interesting, as
then a fast time evolution of the system in the coarse-grained simulation steps and a high,
atomistic resolution of time steps with important dynamics could be achieved at the same
time.

On the other hand, also some further development of the model will be necessary. In future
studies, not only the solid surface, but multiple solid layers should be included in the sim-
ulations in order to take also the interactions of the bulk solid with the adsorbing proteins
into account. For the description of these interactions, a larger cutoff radius for Lennard
Jones (and electrostatic interactions) should be considered, as an influence of long-range
van der Waals forces on the protein adsorption kinetics has been reported [210]. How-
ever, care has to be taken to retain the internal consistency of the MARTINI force field.
Finally, a refinement of the model permitting full conformational flexibility of the protein,
but reproducing its known stability in solution would be desirable. This could maybe be
achieved by a selective release of the applied elastic constraints or by a reparametrization
of some interactions in the MARTINI force field.

In summary, it can be concluded that coarse-grained molecular dynamics offer new and
exciting insights into the complex process of protein adsorption on solid-liquid interfaces
and that future studies and refinements of the model can be based on the work presented
here.
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