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Zusammenfassung 1  

 1

Zusammenfassung 

Die heterologe Expression komplexer Naturstoff-Biosynthesewege spielt eine immer größer 

werdende Rolle bei der Entdeckung und Modifikation von Wirkstoffen aus der Natur und 

gewinnt somit zunehmend an Bedeutung in der biotechnologischen Forschung. Diese 

Methode ermöglicht die Produktion komplexer Metabolite in leicht handhabbaren 

Wirtsorganismen und bildet so die Grundlage für die Entwicklung neuer Naturstoffderivate 

durch genetische Manipulation der Biosynthesewege. Die vorliegende Arbeit beschreibt eine 

innovative Strategie für die heterologe Expression des komplexen Phenalinolacton-

Biosynthesewegs aus dem Streptomyceten Tü6071. Mit Hilfe der Red/ET Rekombination 

wurde dieses Gencluster, das auf 2 Cosmiden vorlag, kloniert und in verschiedenen 

Streptomyceten-Stämmen heterolog exprimiert. Das somit etablierte Expressionssystem bietet 

nun die Möglichkeit, durch gezielte genetische Manipulation der Biosynthesewege in 

Escherichia coli und anschließende heterologe Expression neue, möglicherweise wirksamere 

Naturstoffe und Naturstoffderivate zu entwickeln. 

Der zweite Teil dieser Arbeit beschäftigt sich mit Untersuchungen zur Biosynthese einer 

ungewöhnlichen Klasse von Sekundärstoffen: den GE81112 Tetrapeptiden. Um die 

zugrundeliegende Biosynthese dieser Naturstoffe nun detailliert zu untersuchen, wurde eine 

Strategie für die Klonierung und Identifizierung des entsprechenden Genclusters entwickelt, 

das schließlich auf zwei überlappenden Cosmiden identifiziert wurde. Gleichzeitig konnten 

Methoden zur genetischen Manipulation des Stammes entwickelt werden, die es ermöglichten 

das Gencluster durch Geninaktivierungsexperimente zu identifizieren. Mit Hilfe der 

erhaltenen Ergebnisse konnte schließlich ein erstes Model für die GE81112 Biosynthese 

erarbeitet werden. Die in dieser Arbeit erhaltenen Einblicke in die Biosynthese können in 

Zukunft einen wichtigen Beitrag zur Entwicklung neuer GE81112 Derivate leisten.  
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Abstract 

The heterologous expression of natural product biosynthetic pathways is of increasing interest 

in biotechnology and drug discovery. This approach enables the production of complex 

metabolites in more amenable host organisms and provides the basis for the generation of 

novel analogs through genetic engineering. In this thesis, we describe a straightforward 

strategy for the heterologous expression of the highly complex phenalinolactone biosynthetic 

pathway, which was recently cloned from Streptomyces sp. Tü6071. Using Red/ET 

recombineering, the phenalinolactone pathway was reconstituted from two cosmids and 

heterologously expressed in several Streptomyces strains. The established expression system 

now provides a convenient platform for functional investigations of the biosynthetic genes and 

the generation of novel analogs, by genetic engineering of the pathway in Escherichia coli. 

The second part of this thesis describes work on a distinct class of secondary metabolites, the 

GE81112 tetrapeptide family. We developed a strategy for the cloning and identification of 

the GE81112 biosynthetic gene cluster, in order to investigate the biosynthetic pathway in 

detail. Generation of a cosmid library enabled us to identify the corresponding biosynthetic 

gene cluster on two overlapping cosmids. In parallel, we established methods to manipulate 

the strain genetically, allowing us to verify the identity of the GE81112 gene cluster by gene 

inactivation experiments. In addition, we characterized several proteins from the pathway 

using enzymatic assays in vitro. Taken together, these data have enabled us to propose a 

preliminary model for GE81112 biosynthesis. The results also open the door to developing 

new derivatives of these promising compounds by genetic engineering.  
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1 Introduction 

1.1 Natural products as a robust source of new drugs and drug leads 

Microorganisms produce a vast number of secondary metabolites with useful biological 

activities for both human and veterinary medicine, including compounds which function as 

antibiotics, immunosuppressive and antitumor agents, as well as herbizides, insecticides and 

antiparasitic agents. Figure 1.1 exemplifies a further characteristic feature of these so-called 

‘natural products’: their significant structural diversity. The recruitment of many different 

building blocks, as well as the activity of diverse modifying enzymes, leads to the 

construction of highly complex chemical structures. 

 

 
 

Figure 1.1: Prominent natural products used in clinical applications. 
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Natural product research, as we know it today, began with the serendipitous discovery of 

penicillin in 1929 by Alexander Fleming – an event which inaugurated a new era in the 

treatment of bacterial diseases [1]. Since then, many natural products and synthetically 

modified natural product derivatives have been successfully developed for clinical use to treat 

human diseases, across a broad range of therapeutic areas [2]. Even today, natural products 

continue to play a dominant role in the discovery of leads for the development of new drugs. 

In fact, approximately 50% of the pharmaceuticals currently in clinical use are of natural 

product origin .  

A special focus in the field of natural product research is the development of new 

antibiotics [3]. Motivating these efforts is the fact that infectious diseases remain the second-

leading cause of death worldwide and the third-leading cause of mortality in economically-

advanced countries [4]. In order to deal with growing bacterial resistance to existing drugs, 

there is a pressing need for the discovery and development of new antibiotics [5]. Despite the 

fact that large pharmaceutical companies have significantly de-emphasized natural product 

discovery over the past several years, many new and interesting molecules with unique 

scaffolds and/or novel modes of action have been found during this time by research efforts in 

academia and small pharma companies [6]. Smaller biotechnology companies, in particular, 

have increased their focus on natural product research, mainly in the infectious diseases but 

also in anticancer areas (Figure 1.2) [6]. These findings emphasize that natural product 

research continues to provide significant value in the discovery of novel chemical structures 

and bioactive leads for clinical development. 

 

 
 

Figure 1.2:  New substances derived from natural products.  

  

Among the natural producers of secondary metabolites, beside plants, microorganisms are a 

particularly promising source of novel bioactive entities. In nature, the diversity of 
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microorganisms is enormous and only a very minor portion of bacterial and fungal species 

have been cultured to date and examined for secondary metabolite production [7]. The 

majority of bioactive compounds were isolated from, non-filametous bacteria, fungi and 

actinomycetes [7;8].  

With respect of secondary metabolism, actinomycetes are the most-intensively studied 

group; among them, the genus Streptomyces has been proven to be the most proficient 

producer of secondary metabolites, at least under standard laboratory conditions [9]. A wide 

array of bioactive molecules has been isolated from streptomycetes, leading to their historical 

importance in natural product discovery [3].  

 

1.2 Streptomycetes as important natural product producers  

Streptomycetes are soil-dwelling bacteria and ubiquitous in nature. Their ability to colonise 

the soil is greatly facilitated by growth as a vegetative hyphal mass which can differentiate 

into spores that assist in spread and persistence (Figure 1.3). The spores are a semi-dormant 

stage in the life-cycle, and can survive in soil for long periods (several years). 

 

  
Figure 1.3: Streptomycetes colonies. 

(a) Typical colony morphologies of Streptomyce sp. isolated from the soil. (b) A panoramic 
view of the colony morphology of Streptomyces coelicolor. Both peripheral and aerial mycelia 
develop from the central mass of the colony. Metabolites, including the blue antibiotic 
actinorhodin, are excreted into the medium and into aqueous droplets on the hydrophobic 
surface of the colony. (Figures reproduced from reference [9]). 

 

Streptomycetes produce many extracellular enzymes, such as cellulases, xylanases, amylases, 

maltases, and others. These catalysts make them important players in soil biodegradation 

processes, as they are able to decompose complex mixtures of polymers in dead plants, 

animal and fungal material [10]. Further characteristics of these strains are their high G+C 

content (72% on average), linear chromosomes and and large genome sizes. The sequenced 

genome of Streptomyces coelicolor comprises 8.6 Mbp [11], whereas the S. avermitilis 
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genome contains 9 Mbp [12]. However, their most notable characteristic is their capability to 

produce biologically active secondary metabolites, a feature which has made them the focus 

of natural product research.  

Streptomycetes were first recognized as natural product producers some 60 years ago, 

with the discovery of streptomycin [13]. Since then, the majority of known antibiotics have 

been isolated from streptomycetes. Of the 12000 or so antibiotics known by 1995, 55% were 

derived from streptomycetes and 11% from other actinomycetes [14]. Among these 

antibiotics are drugs which have been in clinical use as antibiotics for many years, including 

the macrolide antibiotic erythromycin A synthesized by the actinomycete Saccharopolyspora 

erythraea [15] and the aromatic polyketide tetracycline [16] (Figure 1.4). 

 

 
 

Figure 1.4: Natural compounds from actinomycetes and streptomycetes which serve as important 
medicines.  

 
Another prominent example of a therapeutically relevant streptomycete natural product is the 

cyclic lipopeptide antibiotic daptomycin (Cubicin®) from S. roseosporus. Daptomycin was 

approved in the United States in 2003 and in Germany in 2006 for the treatment of skin 

infections caused by Gram-positive pathogens. In addition to antibiotics, streptomycetes have 
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also yielded important anticancer compounds, such as the cytostatic doxorubicin [17], which 

is widely used in chemotherapy (Figure 1.4). 

As the vast majority of therapeutically important secondary metabolites are produced 

from Streptomyces sp., making them a proven source for therapeutically-useful compounds, 

they should be the continued focus of research to identify new bioactive substances. In the last 

years intense efforts have also been made to discover new groups of microbial producers with 

the assumption that an increase to discover new organisms correlates with the potential to 

discover chemical diversity (new structures). These investigations dealt with marine bacteria, 

pathogenic bacteria (pseudomonads) or organisms that are difficulte to cultivate 

(cyanobacteria) [18-20]. Among the bacteria discovered in these screenings especially the 

group of myxobacteria have attracted attention as proficient producers of novel bioactive 

compounds [21]. 

In the majority of the cases, these secondary metabolites are the end products of 

complex, multistep biosynthetic processes. Understanding the mechanisms involved in the 

biosynthesis of the compounds is an essential prerequisite for optimizing production and 

yield. Furthermore, directed manipulation of the genes governing secondary metabolism 

offers a promising alternative to total or semi-synthesis, to generate altered natural products. 

The success of this approach depends on the cloning and subsequent genetic and biochemical 

characterization of the corresponding biosynthetic pathways.  

Fortunately, in the majority of cases, the compounds are produced by sets of genes 

which are clustered in the bacterial chromosome; this feature presumably allows the 

microorganisms to co-regulate the expression of the many genes. The first proof that the 

genes for antibiotic biosynthesis are clustered was provided by Malpartida and Hopwood in 

1984 [22]. The researchers isolated and cloned a continuous DNA fragment from S. coelicolor 

which apparently carried the complete genetic information required for the biosynthesis of the 

antibiotic actinorhodin. Indeed, the cloned DNA fragment could complement several 

actinorhodin non-producing mutants. Furthermore, introduction of the DNA fragment into the 

heterologous host S. pavulus directed actinorhodin biosynthesis – providing proof that the 

cluster of genes located on this DNA fragment was responsible for the production of the 

antibiotic actinorhodin. The advantage for natural product researchers is that if a single gene 

within the gene cluster is located, the others can mostly be identified fairly straightforwardly 

by chromosomal walking.  

Many molecular tools have been developed for targeted genetic manipulation in 

streptomycetes over the last several decades [10] and hundreds of biosynthetic gene clusters 
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have been identified to date. Together, these developments have enabled detailed analysis of 

the molecular principles that govern multiple pathways [23]. Recently, this field has been 

revolutionized by advances in sequencing technologies, which now allow the rapid 

sequencing of entire bacterial genomes in a matter of days. The first Streptomyces strain to be 

sequenced was S. coelicolor [11]. Before the genome of S. coelicolor was sequenced, it was 

known that the strain produces three antibiotics, actinorhodin, prodiginin and the 

nonribosomal peptide calcium-dependent antibiotic (CDA) [10;11]. However, the genome 

sequence revealed a further 23 gene clusters (comprising approximately 5% of the total 

genome), which are likely to be dedicated to secondary metabolism.  

Thirty gene clusters were identified in the second sequenced strain, S. avermitilis, which 

could be correlated to secondary metabolism, corresponding to 6.5% of the genome. Although 

antibiotic production by the Streptomcyes has been studied intensively over the last century, 

mathematical models predict that only 3% of antibacterial compounds synthesized by these 

bacteria have been discovered to date [24]. These facts indicate that the genomic capacity of 

these microorganisms to synthesise natural products is much higher then originally 

anticipated, a hypothesis which is supported by the available genome sequencing data. In 

order to identify, isolate and evaluate these as yet uncharacterized biosynthetic gene clusters 

and exploit them for analogue production, techniques must be developed to allow the 

straightforward genetic manipulation of the strains. Genetic manipulation in natural producer 

strains is straightforward in some model organisms (for example S. coelicolor) but for many 

other Streptomyces strains it remains more challenging, although there has been some 

progress [10]. Many of these strains are slow-growing or not yet culturable, which further 

hinders the genetic manipulation of the biosynthetic pathways. 

One very useful approach is to express entire gene clusters in genetically more tractable 

production hosts, which facilitates the genetic manipulation of the secondary metabolite 

pathways. This so-called ‘heterologous expression’ technique represents a promising tool for 

both obtaining deeper insights into the biosynthetic pathways, and for generating novel 

derivatives of natural compounds for evaluation as drug leads. 

 

1.3 Heterologous expression of natural product pathways 

There has been considerable recent interest in both the natural product research and drug 

discovery communities, in developing heterologous expression techniques for complete 

secondary metabolite pathways. Furthermore, heterologous expression can also be used to 
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screen genomic DNA obtained from microbial niches (metagenomes) for the production of 

novel secondary metabolites [25;26].  

Efforts towards achieving heterologous expression have met with considerable success 

during the last decade [27-29]. However, in most cases, only small biosynthetic gene clusters 

were expressed in hosts which were closely-related to the producing strains [30]. To date, the 

heterologous expression of secondary metabolite pathways from Streptomyces has mainly 

been achieved in related actinomycete species, and the relatively small biosynthetic gene 

clusters (less than 30 kbp) were often located on a single cosmid or bacterial artificial 

chromosome (BAC) within a genomic library [31-33]. Expression of larger and more complex 

pathways remains more demanding, but can be facilitated by constructing several plasmids 

that harbor subsets of the biosynthetic genes [34].  

As this approach requires time consuming classical cloning steps, however, a new 

method for the expression and engineering of large biosynthetic pathways was developed in 

our working group by Wenzel et al. [35]. In this case, Red/ET (λ-mediated) recombineering 

technology [36-38] was used to reconstitute the hybrid nonribosomal peptide 

synthetase/polyketide synthase (NRPS/PKS) myxochromide S pathway from the 

myxobacterium Stigmatella aurantiaca on one expression construct and to integrate genetic 

elements for expression in Pseudomonas putida. Heterologous expression was successful, and 

the construct yielded higher amounts of myxochromide in P. putida than in the natural 

producer Stigmatella  aurantiaca [35;39;40].  

Red/ET is a novel technique for DNA manipulation, which is precise and independent 

of the presence of restriction sites and the size of the DNA molecule. These features make it 

ideal for the manipulation of large DNA fragments. DNA molecules targeted by Red/ET 

recombineering are precisely altered by homologous recombination in strains of E. coli which 

express phage-derived protein pairs, either RecE/RecT from the Rac prophage, or Redα/Redβ 

from λ phage. These protein pairs are functionally and operationally equivalent. RecE and 

Redα are 5'→3' exonucleases, while RecT and Redβ are DNA annealing proteins (Figure 1.5). 
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Figure 1.5: Mechanism of Red/ET recombineering. 

The target double strand DNA is digested by a 5′→3′ exonuclease (RecE or Redα), after which 
the single-strand binding protein (RecT or Redβ) can bind to the DNA to stabilize the single 
strand. Homologous recombination can then take place. Diagram reproduced from 
www.genebridges.com.  
 
 
 

A functional interaction between RecE and RecT, or between Redα and Redβ, is also required 

in order to catalyze the homologous recombination reaction. Recombination is mediated by 

homology regions, which are stretches of identical DNA sequences found on both molecules 

to be recombined (Figure 1.6). As the sequence of the homology regions can be generated in a 

chemically synthesized oligonucleotide, any position on a target molecule can be specifically 

altered. Red/ET recombination thus allows, at least in principle, every type of possible DNA 

modification (insertions, deletions, substitutions, fusions, point mutations, direct cloning and 

subcloning) regardless of the size of the target molecule (e.g. cosmids or BACs) [41].  

 

 

http://www.genebridges.com/�
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Figure 1.6: Red/ET recombineering. 

The central step in Red/ET recombineering is the crossover between a targeting construct 
containing homology arms (hm) and the target, which can be a gene locus on the E. coli 
chromosome or any other stretch of DNA in a BAC or plasmid vector contained within the 
cell. Diagram reproduced from www.genebridges.com. 

 

Perlova, et al. [42] also used Red/ET to stitch together a myxobacterial biosynthetic pathway. 

Here, Red/ET recombineering was employed to modify two cosmids containing the entire 

myxothiazol pathway. In a final ligation step, the whole pathway was reconstituted on one 

expression construct, which was subsequently expressed in Myxococcus xanthus. Production 

of myxothiazol was comparable to that of the natural producer Stigmatella aurantiaca 

[42].The same pathway was also expressed in Pseudomonas putida [43]. These and 

subsequent examples [44;45] demonstrate how this promising technique can now be used for 

the reconstitution of large and complex biosynthetic pathways in E. coli and their subsequent 

heterologous expression in related or non-related heterologous hosts. Figure 1.7 gives a 

general overview of the strategy for cloning and heterologous expression of large natural 

product assembly lines [35;39] 
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Figure 1.7: General strategy for the heterologous expression of large biosynthetic pathways. 

After screening of a BAC or cosmid library for constructs containing parts of the investigated 
natural product biosynthetic gene cluster, overlapping fragments can be stitched together in E. 
coli using Red/ET recombineering. The resulting construct harboring the complete natural 
product assembly line can be further modified in E. coli by recombineering, e.g., by inserting 
genes needed for transformation into the heterologous host and/or insertion of promoter 
region(s). The final construct can be transferred into a suitable heterologous host for expression 
of the biosynthetic pathway. Natural product formation can ultimately be analyzed by 
conventional techniques, e.g., HPLC-MS and/or TLC [35].  

 
 

The successful heterologous expression of several classes of natural products, including the 

polyketides (PKs) and non-ribosomal polypeptides (NRPs) and their hybrids, presented a 

special challenge, because the biosynthesis of these complex structures typically requires 

large gene sets [46;47]. The core structures in each case are assembled by gigantic 

multienzymes called polyketide synthases (PKSs) and non-ribosomal peptide synthetases 

(NRPSs), respectively. In both systems, the proteins have to be posttranslationally modified in 

order to be active [48]. These multifunctional enzymes can reach remarkable sizes, for 

example mycolactone A and B from the the bacterium Mycobacterium ulcerans are 

synthezised by PKS multienzymes housing eight and seven extension modules containing 

16990 amino acids and 14130 amino acids, respectively [49].  

Once the proteins are expressed as functional proteins within the cell, they require a 

specific pool of substrates, including but not limited to short-chain fatty acids, proteinogenic 

and non-proteinogenic amino acids, mevalonate, shikimate pathway intermediates, and sugars 

to enable natural product formation. Therefore, the required substrates must be available in 

the heterologous hosts in adequate amounts, at the correct time point.  
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1.4 The biosynthetic logic of nonribosomal peptide synthetases  

NRPS multienzymes are composed of repetitive, multicatalytic units called modules which 

carry out several reactions in a coordinated manner. Typically, each module in the assembly 

line performs one cycle of chain extension (incorporation of one amino acid into the growing 

peptide chain). One cycle of chain extension comprises three essential enzymatic reactions: 1) 

recognition of an amino acid as substrate and its activation as its aminoacyl-adenylate; 2) 

covalent binding of the amino acid as a thioester to the multienzyme; and 3) condensation 

with the amino acyl or peptidyl group tethered to the neighbouring module [50]. This process 

is schematized in Figure 1.8. Overall, peptide synthesis proceeds in an N- to C-terminal 

direction.  

Each of the steps in chain extension is carried out by a specific domain within the 

module. A typical module consists minimally of an adenylation (A) domain, a peptidyl carrier 

protein (PCP) domain (also referred to as a thiolation (T) domain) and a condensation (C) 

domain [47]. The A domain is responsible for recognizing and activating the starter/extender 

unit, which is then covalently linked to the PCP. The attachment point is the terminal 

sulfhydryl of a phosphopantetheine arm attached to a highly conserved serine residue [51]. 

This ‘swing arm’ is added post-translationally to the PCP by a phosphopantetheinyl 

transferase (PPTase). The Ppant arm (20 Ǻ in length) is characterized by its flexibility, which 

presumably facilitates the transport of the intermediates to the reaction centers [51]. The 

condensation domain then catalyses peptide bond formation between the aminoacyl-S-PCP 

and the incoming aminoacyl or peptidyl-S-PCP (see Figure 1.8). The release of the 

intermediates in a linear or cyclic form is normally performed by a thiosterase domain, which 

is located at the end of the last module of the assembly line [52;53] 
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Figure 1.8: Reactions catalyzed by the essential domains in NRPS multimodular assembly lines.  
 

Domains that are involved in the particular reactions are highlighted in grey. A: activation 
domain ; PCP: peptidyl carrier domain; C: condensation domain.  

 

A variety of optional domains increase the structural diversity of the products, including 

methyl transferase (MT), epimerase (E), oxidation (Ox) and heterocyclization (HC) activities 

[54]. These tailoring enzymes are embedded in the NRPS assembly lines and modify the 

elongating chains while they are still covalently tethered to the proteins as peptidyl-S-enzyme 

intermediates. Other tailoring enzymes act in trans, recognizing either or both the peptidyl 

chains or the PCP domains. A third group of tailoring enzymes act after the assembly-line 

stage of the biosynthesis, and further transform the released peptides (e.g., by introducing 

cross-linking or addition of glycosyl groups) [55].  
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In general, nonribosomal peptide synthesis is a linear process in which each module is 

responsible for one particular chain elongation step and the specific order of the modules 

defines the sequence of the incorporated amino acids. However, recent characterization of 

many NRPS systems has revealed several examples where the arrangement of modules and 

domains within the enzyme is not co-linear with the sequence of transformations required to 

generate the observed product. Therefore, Mootz et al. proposed a classification of NRPS 

systems into three groups, according to their biosynthetic logic [56]: linear NRPSs, iterative 

NRPSs and nonlinear NRPSs. Representative examples for each type of biosynthesis are 

shown in Figures 1.9–1.11.  

 

 
Figure 1.9: The multiple carrier thiotemplate mechanism illustrated with the example of tyrocidine A 

synthesis.  

Three peptide synthetases encoded by the genes tycA, tycB and tycC act together to assemble 
the cyclic decapeptide. Diagram reproduced from [57].  

 

Figure 1.9 illustrates a linear NRPS, which is involved in the biosynthesis of the decapeptide 

tyrocidine [58]. In a linear NRPS, the core domains are arranged in the order C-A-PCP. The 

initiation module, which lacks the C domain, is responsible for the incorporation of the first 

amino acid. The terminal module normally contains a TE domain for release of the full-length 

peptide chain. Other examples of linear NRPSs are those responsible for biosynthesis of 

surfactin [59] and pristinamycin [60]. 
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Figure 1.10: The enterobactin assembly line as example for iterative NRPSs.  

 Three dihydroxybenzoylserine-S-PCP intermediates are generated on the two modules which 
are oligomerized and cyclized to the final product on the TE domain. Diagram reproduced 
from [56]. 

 

In iterative NRPSs, modules or domains are used more than once for the assembly of a 

particular product. This strategy is employed to construct peptide chains that consist of 

repeated smaller units. The key step is then the oligomerization and cyclization of the 

monomers by the thioesterase domain. For example, in enterobactin biosynthesis (Figure 

1.10), the complete NRPS assembly line acts iteratively to generate a common structural unit 

(trimer of dihydroxybenzoylserine units) [61], which is then oligomerized to the final product. 

Bacillibactin of B. subtilis, a cyclotrimerized dihydroxybenzoyl-glycyl-threonine-peptide, is 

structurally very similar [62]. An iterative NRPS is also involved in the assembly of 

gramicidin [63].  
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Figure 1.11: The non-linear yersiniabactin NRPS.  

Yersiniabactin biosynthesis proceeds on a mixed NRPS/PKS system. Cy: cyclization domain, 
MT: methylation domain. Diagram reproduced from [56]. 

 

Over the last several years, it has become clear that a number of biosynthetic gene clusters 

deviate in their domain organization from the standard C-A-PCP architecture. In fact, these 

nonlinear NRPS clusters comprise a major proportion of the NRPS systems found in nature 

[64]. The main characteristics of these systems are the unusual arrangement of the core 

domains C, A and PCP. Such a non-linear NRPS is depicted in Figure 1.11. The NRPS 

responsible for the siderophore yersiniabactin is a striking example of nonlinear NRPS 

assembly, where one A domain is used to load three different PCPs [65]. Due to the unusual 

domain organization of nonlinear NRPS biosynthetic gene clusters, it is very difficult to 

predict the product structures with any confidence. Therefore, detailed biochemical studies are 

needed to understand the function and the interplay between the enzymes, which makes 

research with nonlinear NRPS very challenging.  

 

 

 

 

 

 

 

 



Introduction 18  

 18

1.5 Outline of the dissertation  

Studies on the biosynthesis and the heterologous expression of complex secondary 

metabolites from streptomycetes 

 

The present thesis deals with experiments to heterologously express the phenalinolactone 

biosynthetic gene cluster from Streptomyces Tü6071, and to investigate the biosynthesis of 

the GE81112s from Streptomyces 14386. Figure 1.12 shows the GE81112 family and the 

phenalinoactones, of which the main metabolites are PL A and PL D.  
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Figure 1.12: Structures of the GE81112 metabolites and the phenalinolactones. 

 

The phenalinolactones are structurally intriguing tricyclic terpene glycosides which are 

produced by Streptomyces sp. Tü6071. The compounds exhibit promising antibacterial 

activity [66]. In addition to a highly oxidized γ-butyrolactone ring, which is most likely 

derived from pyruvate, the oxidatively functionalized terpenoid backbone is decorated with a 

5-methylpyrrole-2-carboxylic acid as well as the rare deoxyhexose, 4-O-methyl-L-amicetose. 

The recent cloning and sequence analysis of the pla biosynthetic gene cluster from 

Streptomyces Tü6071 [66] revealed a highly complex genetic architecture that consists of 35 

orfs, which are organized into 11 putative operons. 

Our goal was to heterologously express the cluster using Red/ET recombineering, as 

the technique had already been shown to be suitable for the reconstitution and expression of 

natural product pathways. However, at the outset of this work, the approach had not been 

applied to non-PKS/NRPS gene clusters from streptomycetes. Initially the PL cluster was 
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located on two different cosmids. Therefore, the first aim of the work was to collect the 

biosynthetic genes together onto one expression construct, and then to introduce genetic 

elements for expression in different heterologous hosts. The established expression system 

was then expected to provide a convenient platform for functional investigations of the 

biosynthetic genes and the generation of novel analogues, by genetic engineering of the 

pathway in E. coli.  

The second part of this thesis describes work on a second class of secondary 

metabolites, the GE81112 tetrapeptide family. The GE81112 compounds were isolated from a 

Streptomyces sp., and to date, three variant GE factors have been identified (GE81112 factors 

A, B1 and B). The metabolites were found in the course of microbial product screening 

experiments aimed at discovering novel antibiotics acting on bacterial protein synthesis. 

Extensive NMR and MS studies revealed that the GEs incorporate 4 uncommon amino acids: 

the nonproteinogenic amino acids hydroxypipecolic acid and hydroxypentanoic acid, as well 

as an (amino)histidine and a hydroxychlorohistidine [67] (Figure 1.12). Although the core 

structure of the GEs could be predicted straightforwardly to arise from a nonribosomal 

peptide synthetase (NRPS) multienzyme, the origin of several amino acids and functional 

groups, including the aminohistidine as well as the chlorination and carbamoylation, was not 

obvious from considerations of classical assembly-line biosynthesis. As the biosynthetic gene 

cluster had not been identified, the first objective was to clone the GE81112 biosynthetic gene 

cluster in order to allow studies of the underlying biosynthesis. Once the cluster was 

identified, it would then be annotated, as the first step towards deciphering the biosynthetic 

pathway. In parallel, we aimed to develop methods to genetically manipulate the strain, as 

they were not available. A final goal was to investigate GE biosynthesis by heterologous 

expression. 
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2 Material and Methods 

2.1 Chemicals 

All chemicals used in this work were obtained from the manufacturers, at analytical grade. 

 
Table 2.1: Chemicals used and their sources 

Chemical product Manufacturer 
Acetone 
Acetonitrile 
Chloroform 
Ethanol 
Ethyl acetate 
Hexane 
Methanol 
Magnesium sulfate 
2-Propanol 
Succinic acid 

Sigma Aldrich 

Bacto agar 
Casitone 
Casaminoacids 
Malt extract 
Tryptone 
Peptone  
Yeast extract 

Becton Dickinson and 
Co., USA 

Ammonium acetate 
Sodium-EDTA 
Potassium hydroxide 

Fluka 

Acetic acid 
Boric acid 
Bromphenolblue 
Calcium chloride-di-hydrate 
Glucose monohydrate 
Glycerin 
Magnesium chloride 
Magnesium sulfate hepta-hydrate 
Potassium acetate 
Potassium hydrogen phosphate 
Potassium sulfhate 
Sodium chloride 
Sodium citrate-di-hydrate 
Sodium hydroxide 

Merck 

BSA (Bovine Serum Albumin) New England Biolabs 
Ammonium persulfate 
5-Bromo-4-chloro-3-indolyl-�-D-galactopyranoside 
Coomassie Brilliantblue 250R 
Dithiothreitol  
Ethidium bromide solution (1%) 
Formamide 
Maleic acid 
Sodium dodecyl sulfate (SDS) 
Rotiphorese®Gel 30 
TEMED 
Triton X-100 

ROTH 
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2.2 Enzymes, Kits and Markers 

All enzymes used in this work are listed in Table 2.2 and were used according to the 

manufacturers’ protocols. 

 
Table 2.2: Enzymes, kits and markers and their manufacturers 

Product Manufacturer 

Page RulerTM Prestained Protein Ladder 

Page RulerTM Protein Ladder 

1 kb DNA ladder 

T4 DNA ligase 

Shrimp alkaline phosphatase 

Restriction endonucleases 

Plasmid purification kit 

Nucleotides 

MBI Fermentas 

Cre recombinase New England Biolabs 

Phusion DNA Polymerase Finnzymes 

Triple Master Polymerase Eppendorf 

HotStarTaq Ploymerase Quiagen 

Topo TA Cloning® Kit 

Gel-Dry™ Drying Kit 

Invitrogen 

Nucleospin® Extract Macherey & Nagel 

Ribonuclease A 

Proteinase K 

Lysozyme 

Roth 

DIG labeleld DNA Molecular Weight Marker III 

DIG-Labeling and Detection Kit 

DIG-Blocking solution 

DIG EasyHyb 

DIG PCR Labeling Mix 

Roche 

BugBuster® Protein Extraction Reagent Novagen 

Gigapack® III Gold Packaging Extract Stratagene 
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2.3 Buffers and stock solutions 

2.3.1 Solutions and buffers for molecular biology applications 

Table 2.3: Solutions and buffers for molecular biology  

Buffer Constituents 

Cell Lysis buffer (P1) NaOH 

10% SDS 

H2O 

20 mM 

10 ml 

to 100 ml 

Cell suspension buffer (P2) Glucose 

Tris 

EDTA 

H2O 

5 mM 

2.5 mM 

1 mM 

to 100 ml 

DNA Loading buffer (6×) Glycerin (87%) 

Bromphenol blue 

Xylene cyanol 

H2O 

3 ml 

25 mg 

25 mg 

to 10 ml 

0.5 M EDTA  EDTA 

NaOH 

H2O 

186 g 

20 g 

to 1L 

Glycerol (50%) Glycerol 

H2O 

115 ml 

to 1L 

Glycerol (20%) Glycerol 

H2O 

57.5 ml 

to 100 ml 

0.1 M IPTG IPTG 

H2O 

240 mg 

to 10 ml 

5 M Sodium chloride 

 

NaCl 

H2O 

580 g 

to 100 ml 

Neutralisation buffer (P 3) 3 M Potassium acetate  

Acetic acid 

H2O 

60 ml 

11.5 ml 

to 100 ml 

10% SDS solution SDS 

H2O 

10 g 

to100 ml 

SET buffer 

 

Tris-HCl (pH 7.5) 

NaCl 

EDTA (pH 8) 

20 mM 

75 mM 

25 mM 

To 100 ml 
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Buffer Constituents 

TBE buffer  (1x) TRIZMA base 

Boric acid 

Na-EDTA 

H2O 

242 g 

57.1 ml 

100 ml 

to 1L  

SM-buffer Tris-HCl (1 M, pH 7.4) 

NaCl 

MgSO4.7 H2O 

Gelatine-solution (2%) 

H2O 

50 ml 

5.4 g 

2 g 

5 ml 

to 1 L 

1 M Tris-HCl TRIZMA Base 

H2O 

60.5 g 

to 500 ml 

P (protoplast) buffer Sucrose  

K2SO4 

MgCl2.6 H2O 

Trace element solution 

H2O 

Add after autoclaving: 

KH2PO4 (0.5%) 

CaCl.2H2O (3.68%) 

TES buffer (5.73%, pH 7.2) 

103 g 

0.25 g 

2.02 g 

2 ml 

to 800 ml 

 

1 ml 

10 ml 

10 ml 

 

2.3.2 Solutions and buffers for Southern Blot and colony hybridization 

Table 2.4: Solution and buffers for Southern Blot and colony hybridization 

Buffer Constituents 

Depurination buffer HCl (1 M) 

H2O 

250 ml 

to 1L 

Denaturation buffer 

 

NaOH 

NaCl (5 M) 

H2O 

20 g 

333 ml 

to 1 L 

Neutralisation buffer 

 

Tris HCl (1 M, pH 7.4) 

NaCl 

H2O 

500 ml 

175.5 g 

to 1L 

SSC (20×) 

 

NaCl 

Sodium citrate.2 H2O 

H2O 

155.3 g 

88.2 g 

to 1L 
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Buffer  Constituents  

Hybridization buffer 

 

DIG Easy Hyb Granules 

H2O 

 

to 64 ml 

2× wash solution SSC (20×) 

10% SDS 

H2O 

100 ml 

10 ml 

to 1L 

1× wash solution 

 

SSC (20× ) 50 ml 

10 ml 

to 1 L 

Maleic acid buffer Maleic acid 

NaCl 

H2O 

11.61 g 

8.8 g 

to 1L 

Blocking solution DIG blocking reagent 

Maleic acid buffer 

50 g 

to 500 ml 

Detection buffer Tris-HCl  (1 M) 

NaCl 

H2O 

100 ml 

5.8g 

to 1 L 

Stripping buffer NaOH 

SDS (10%) 

H2O 

8 g 

10 ml 

to 1L 

 

 

2.3.3 Solutions and buffers for enzymatic applications 

Table 2.5: Solution and buffers for enzymatic applications 

Buffer Constituents 

10x buffer Tris-HCl 

NaCl 

MgCl2 

H2O 

750 mM 

1 M 

100 mM 

to 50 ml 

Binding buffer Tris-HCl (pH 7.8) 

NaCl 

Glycerol 

Imidazole 

H2O 

20 mM 

200 mM 

100 ml 

60 mM 

to 1L 

Borate buffer Boric acid 

H2O 

200 mM 

to 1L 
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Buffer  Constituents  

 

Elution buffer 

 

Tris-HCl (pH 7.8) 

NaCl 

Glycerol 

Imidazole 

H2O 

 

20 mM 

200 mM 

100 ml 

500 mM 

to 1 L 

Stop-mix Activated charcoal 

Tetrasodium pyrophosphate 

Perchloric acid 

H2O 

6 g 

50 ml 

19.2 ml 

to 500 ml 

Stripping buffer 

 

Sodium phosphate (pH 7.4) 

NaCl 

EDTA 

H2O 

20 mM 

500 mM 

50 mM 

to 1 L 

Nickel solution NiSO4 100 mM 

Coomassie Brilliant Blue Brilliant Blue 250 

H2O 

Methanol 

Acetic Acid 

2 g 

450 ml 

450 ml 

100 ml  

4× Protein loading buffer Tris (1 M, pH 6.8) 

87% Glycerol   

Bromophenol blue  

SDS    

H2O   

DTT 500 mM   

The DTT is added directly 

before use. 

5 ml  

4 ml 

10 mg 

1 g  

to 10 ml 

800 μl 

 

PBS buffer 1 PBS tablet 

H2O 

 

to 500 ml 

Wash buffer Tetrasodium pyrophosphate 

Perchloric acid 

H2O 

50 ml 

19.2 ml 

to 500 ml 
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2.4 Media 

2.4.1 Media for E. coli cultivation 

Table 2.6: Media for E. coli cultivation (for agar plates 16 g/L agar were added to the medium) 

Medium Constituents 

LB medium Tryptone 

Yeast extract 

NaCl 

H2O 

10 g 

5 g 

5 g 

to 1 L 

2YT medium Tryptone 

Yeast extract 

NaCl 

H2O 

16 g 

10 g 

5 g 

to 1L 

Freezing solution MgSO4 x 7 H2O 

Na-Citrat x 2 H2O 

NH42 SO4 

Glycerol 

H2O 

Add after autoclaving: 

K2HPO4 

KH2HPO4 

H2O 

760 mg 

4.5 g 

9 g 

440 g 

to 800 ml 

 

47 g 

18  g 

to 200ml 

 

 

2.4.2 Media for cultivation of pseudomonads  

Table 2.7: Media for cultivation of pseudomonads 

Medium Constituents 

LB medium Tryptone 

Yeast extract 

NaCl 

H2O 

10 g 

5 g 

5 g 

to 1 L 

PMC medium K2HPO4 

KH2PO4 

NH4(SO4)2 

Na-Citrate 

MgSO4 

H2O 

6 g 

5 g 

1 g 

8.8 g 

800 mM 

to 1 L 
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2.4.3 Media for cultivation of streptomycetes 

Table 2.8: Media for cultivation of streptomycetes 

Medium Constituents 

Tryptone soy broth medium 

(TSB) 

Tryptone soy broth 

H2O 

30 g 

to 1L 

Yeast extract-malt extract medium 

(YEME) 

Yeast extract 

Peptone 

Malt extract 

Glucose 

Sucrose 

H2O 

3 g 

5 g 

3 g 

10 g 

340 g 

to 1L 

Soya mannitol medium 

(SM) 

Mannitol 

Soya flour 

H2O 

20 g 

20 g 

to 1L 

INA5 medium Glycerol 

Soya flour 

CaCO3 

NaCl 

H2O 

30 g 

15 g 

5 g 

2 g 

to 1L 

T6 medium Glycerol 

Soya flour 

CaCO3 

H2O 

45 g 

25 g 

2g 

to 1 L 

R2YE medium Sucrose 

K2SO4 

MgCl2.6 H2O 

Glucose 

Casaminoacids 

H2O 

Add after autoclaving: 

KH2PO4 (0.5%) 

CaCl2.2H2O (3.68%) 

L-Proline (2 %) 

TES-Puffer (5.73 %, pH 7.2) 

Trace element solution  [10] 

1 N NaOH 

Yeast extract (10%) 

51.1 g 

0.125 g 

5.06 g 

5 g 

0.05 g 

to 400 ml 

 

5 ml 

40 ml 

7.5 ml 

50 ml 

1 ml 

2.5 ml 

25 ml 
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Medium  Constituents  

V6 medium Glucose 

Meat extract 

Yeast extract 

Peptone 

Casein 

NaCl 

 

pH 7.5 

20 g 

5 g 

5 g 

5 g 

3 g 

1.5 g 

to 1L 

NBG Peptone 

Meat extract 

Glucose 

NaCl 

H2O 

10 g 

3 g 

10 g 

5 g 

to 1L 

NL111 Meat extract 

CaCO3 

Malt extract 

H2O 

pH 7.2 

20 g 

10 g 

100 g 

to 1L 

 

2.5 Antibiotics 

Table 2.9: Antibiotics used in this work 

Antibiotic Stock solution End concentration 

Ampicillin 100 mg/ml 100 µg/ml 

Chloramphenicol 34 mg/ml 34 µg/ml 

Kanamycin 60 mg/ml 60 µg/ml 

Tetracyline 12.5 mg/ml 12.5 µg/ml 

Zeocin 100 mg/ml 25µg/ml 

Apramycin 60 mg/ml 60 µg/ml 

Nalidixic acid 25 mg/ml 25 µg/ml 
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2.6 Instruments and materials 

• Agarose gel electrophoresis  

Electrophoresis chamber SUB-CELL® GT   (Biorad)  

Electrophoresis chamber MINI-SUB-CELL® GT  (Biorad)  

• Centrifuges  

Cool centrifugee 5805R     (Eppendorf)  

Tabletop centrifuge 5415D     (Eppendorf)  

Centrifuge Avanti JE      (Beckmann Coulter) 

Biofuge Pico      (Heraeus) 

• Electroporator 

Gene pulser XCell     (Biorad)  

Electroporation cuvette 0.1 cm    (Biorad)  

• Electro blotter 

Trans-Blot SD Semi Dry Transfer Cell   (Biorad)  

• French Press       (SLM Aminco)  

• HPLC  

DAD-coupled HPLC      (Dionex)  

• HPLC-MS  

Agilent 110 series HPLC system    (Agilent)  

Bruker HCTplus      (Bruker)  

Bruker micrOTOF      (Bruker)  

LTQ-Orbitrap      (Thermo Finnigan)  

• Image documentation  

N-1000 Darkroom      (Peqlab) 

Camera biovision      (Peqlab) 

• Incubators  

Incubators       (Binder)  

Hybridization oven APT Line Series BFED   (Binder)  

Multitron Shakers      (Infors)  

• Laminar flow  

HeraeusLaminAir®      (Kendro)  

Hera Safe       (Kendro)  
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• NMR  

Bruker Advance 500      (Bruker)  

• PCR  

Mastercycler Gradient     (Eppendorf) 

PCR Sprint Thermocycler     (Thermo Electron Corp) 

• pH-measurements 

pH-Meter 766 Calimatic     (Knick)  

• Photometer  

Helios Epsilon Spectrophotometer   (Thermo) 

• Protein purification 

Äkta Prime system     (GEHealthcare) 

• TLC 

Alugram®SL G/UV
254 

TLC Platten    (Macherey & Nagel)  

• Thermomixer 

Thermomixer compact    (Eppendorf) 

Thermomixer comfort    (Eppendorf) 

• Sterilisation  

Systec VX-150      (Systec)  

• Ultrasonic bath 

Sonarex       (Bandelin)  

• Water processing 

Milli-Q water purification system    (Millipore)  

PURELAB ultra      (ELGA)  

• Others materials  

Membrane filter 0.22 μm     (Millipore)  

Nylon membrane, positively charged   (Roche)  

Microspin Columns      (Amersham Pharmacia)  
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2.7 Bacterial strains, oligonucleotides and plasmids 

2.7.1 Bacterial strains 

Table 2.10: Bacterial strains used in this work  

Strain Genotype/characteristics Reference 

E.coli DH10B F-mcrA∆(mrr-hdsRMS-mcrBC) 

Ø80dlacZ∆M15∆lacX74 deoR recA1 endA1 

araD 139∆ (ara,leu) 7696 galU galK rpsL 

nupG  

[68] 

E. coli HS 996 F-mcrA∆(mrr-hdsRMS-mcrBC) 

Ø80dlacZ∆M15∆lacX74 deoR recA1 endA1 

araD 139∆ (ara,leu) 7696 galU galK rpsL 

nupG fhuA::IS 

Invitrogen 

E. coli ET 12567/pUZ8002 dam13::Tn9 dcm-6 hsdM hsdR recF143 zjj-

201::Tn10 galK2 galT22 ara14 lacY1 xyl-5 

leuB6 thi-1 tonA31 rpsL136 hisG4 tsx-78 mtlI 

glnV44, carrying the oriT mobilisating plasmid  

pUZ8002 

[10] 

E. coli GB2005 HS996 ΔrecT and redα Genebridges 

E. coli GB2005 red GB2005 insertion of the pBAD recE recT γ 

recA operon 

Genebridges 

E. coli SCS110 rpsL (Strr) thr leu endA thi-1 lacY galK galT 

ara tonA tsx dam dcm supE44 Δ(lac-proAB) [F´ 

traD36 proAB lacIqZΔM15] 

Stratagene 

E. coli BL21(DE3) F– ompT gal dcm lon hsdSB(rB
– mB

–) λ(DE3 

[lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 

[69] 

E. coli Rosetta BL21 (DE3) 

pLysS/RARE 

 

F- ompT hsd SB(RB
– mB

–) gal dcm λ(DE3 [lacI 

lacUV5-T7 gene 1 ind1 sam7 nin5]) 

pLysSRARE (CmR) 

Novagen 

 [69] 

 

E.coli SURE endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ 

sbcC umuC::Tn5 uvrC e14- Δ(mcrCB-hsdSMR-

mrr)171 F'[proAB+ lacIq lacZΔM15 Tn10(tetR)] 

Stratagene 

[70] 

P. putida KT2440 wild type [71] 

S. lividans TK24 Derived from S. lividans TK66 [72] 

S. coelicolor A3(2) wild type [73] 

S. coelicolor M512 ΔredD, ΔactII-ORF4 SCP1–SCP2– [74] 

S. Tü6071 phenalinolactone producer [66] 

S. 14386 GE81112 producer [75] 
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2.7.2 Oligonucleotides  

2.7.2.1 Primers used in the phenalinolactone project 

Table 2.11: Primers used in the phenalinolactone project, DST= desalted 

Primer Sequence (5′→3′) Purification 

PhlET6 CGAGCGGGGATGCGCCAACTTCGCCCGTTCTTCTTCCTAA

GGGCGAATTCGGATCTGATCAGCACGTGTT 

HPLC 

PhlET7 GTAGAGGATCTCTAGATTAATTGGGAGTGATTTCCCTTGTT

TAAAGGATCTCAGTCCTGCTCCTCGGCCA 

HPLC 

PhlET10 

 

GTAGAGGATCTCTAGATTAATTGGGAGTGATTTCCCTTGTT

TAAAGGATCAGTACTCCACTAGTGTGAATTGTAATACGAC

TCACTATAGGGCGATTTAAAGGATCCGGCCAGCCTCGCAG 

AGCAG 

HPLC 

PhlET11 

 

GGGCGCTCTGGTTGTGGAGCAGGTGCTCGTACCAGTGGCC

GACGACGTACTTACTTGGCGGAAGTCTGCT 

HPLC 

PhlET18 

 

CAGCGCGATGGTGTACGAGAGGCGGTCGTCCGCCCATGCG

TGAGCTGAAGGCTGCTCTA GTACACCTGA 

HPLC 

PhlET19 

 

CGGGGGATGGGATTGCGTAGGTCTTGGGTTGCTGCCGTCT

CGGCATGCACGTCGTTGCTGTATCTCCAG 

HPLC 

PhlET20 

 

TCTCGGATCTGGTCGTGCGAAGGCGCTCCGACAACGCCGT

TTGAAAAGGGGCTGCTCTA GTACACCTGA 

HPLC 

PhlET21 

 

CGAATGCGCCGGATCCGTTGTTGCTGTTCCTCGGTGAGGTC

AAACTCCACGTCGTTGCTGTATCTCCAG 

HPLC 

PhlET22 

 

GAGGCCACGCTGGGGGCCCACCGCCACATCTGCTGAAGAG

AATGGTCGGGGAAGTTCCTATTCTCTAGAAAGTATAGGAA

CTTCTGCAGCAGCACGTGTTGAC 

HPLC 

PhlET23 

 

TCCGGCTGCACGACGGCCTCGTCGGCGTGGCGGACGCGCT

CTCTTCTTGAGAAGTTCCTATACTTTCTAGAGAATAGGAAC

TTCAAGCGCCGGTTCGTACGGCG 

HPLC 

PhlET28 

 

CGGCCCCCAGAAGTGAGGGTACTGCCCGGCGAACAGGGG

TGATTTAAATCCTGGTGTCCCTG 

HPLC 

PhlET29 

 

AGAACGCCAACGGGATCGACTGGCTCTGAATTCTCCGTGA

CCATGCCCATCAGAACCTTCCTACCAACCGGCACGATTGT

GCCCACAACAGCATCTTACGCCCCGCCCTGCCACTC 

HPLC 

Apra_for GTGCAATACGAATGGCGAAA DST 

Apra_rev TCAGCCAATCGACTGGCGAG DST 

ermE 

CPhl19_for 

GCCAGGCTTCTTGCCCATCT DST 

ermE 

CPhl19_rev 

ACGTGCGGCGTCCGCGCCGA 

 

DST 
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2.7.2.2 Primers used in the GE81112 project 

Table 2.12: Primers used in the GE81112 project 

Primer Sequence (5′→3′)  Purification 

Cyclo_14386_for AGCGCCAGGAGAGACCCTTG DST 

Cyclo_14386_rev GCGTGCAACTGGGTGACGGC DST 

Cyclo Probe_for CCCCGGGCCGGAACGCCATG DST 

Cyclo Probe_rev GAACGCCATGACCATGCGGG DST 

Tubz_up GGAGGTGGCCGTGCAGAGGATGTC DST 

TubZ_down CTGCACGCGCTGATGGATGAGGTC DST 

RapL_up GCGCGTCGGGCATCGGTGTG DST 

RapL_down CCTTGGGCAGCTCGGTCTTG DST 

Cyclo KO_for ACTGCAGAATTCGCGACGAACGCCCGCACCG DST 

CycloKO_rev TACTGAGAATTCGGTGCCTACGCCGGGCTC DST 

NRPS-A1-up CGGCTCCACCGGCACNCCNAARGGNG DST 

NRPS-H1-dn CGGCCGAGGTCGCCNGTNCKRTA DST 

RevA3 CCTCCGGSCCSACCGGSMCGCCSAAGG DST 

PSLGG 2000 GCCGCCSAGSCYGAAGAA DST 

BI11-T7end-2-for TGGAGCGTCAGGCGCATCCC DST 

BI11-T7end-2-rev GGACCGTCTTCACCGAGGCC DST  

pGEX_Cyclo_for_EcoRI CCTTGGGAATTCACAAGCCCTAACACTGAGCG DST 

pGEX_Cyclo_for_NotI GCCCGTGCGGCCGCTCACCGCCGCGCTCCCTG DST 

pET28_Cyclo_for_NdeI CCTTGGCATATGACAAGCCCTAACACTGAGCG DST 

pET28_Cyclo_for_BamHI GCCCGTGGATCCTCACCGCCGCGCTCCCTG DST 

BI11A1_pip_for CCGTACATATGCTCGTTCCTGCCGGAACCGG DST 

BI11A1_pip_rev CGCGGGGATCCCTACCGCGAGGCGTTCGAGT DST 

BI11A2_for GCCGCCATATGTCTCCCCGGCACCCGGTCGC DST 

BI11A2_rev GGTCAGGATCCCCGGCGCGGGGCGGGGTGCC DST 

BI11A3_for CCGACCATATGCCCTCGGTCCCGGTCGGCAG DST 

BI11A3_rev ACCGGGGATCCACGATCGAGCACCCGCGACC DST 

FD10_KO_for 

 

GCCAGTCAGCGACGGCCAGTGCGAGCGCGGC

GAGCAGCACGTCGTTGACAATTTAAATCCTGG

TGTCCCT 

HPLC 

FD10_KO_rev 

 

GCGTATGTGATTTATACGTCGGGTTCGACGGG

GCGGCCGAAGGGTGTGGTTTACGCCCCGCCCT

GCCACT 

HPLC 

Sonde BI11 SEQ1 CATGTTCGAGCTGTCCTTCC DST 

Sonde BI11 SEQ2     CAGGTCGGCCACCTCCAACG DST 

Sonde BI11 SEQ3    GCTGGACGCGAACCTGACGG DST 
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Primer Sequence (5′→3′)  Purification 

Sonde BI11 SEQ4 GCGCCCTGATCTCCTCCACGG DST 

Sonde BI11 SEQ5    TCGGGCAGTGCGTCGAGCATG DST 

Sonde BI11 SEQ6        GCCGTCCGCCGGAGACCTTG DST 

Sonde BI11 SEQ7 CATCAGCTCCCGGGTCGTGGT DST 

Sonde BI11 SEQ7_rev GTCAGCGCCACGACCGACGAC DST 

Sonde BI11 SEQ6_rev        ATGATCGCGAAGCGCGGCTGA DST 

Sonde BI11 SEQ5_rev    TCGGCGCGAGCGGCACCGGCC DST 

Sonde BI11 SEQ4_rev AGTTCTGGCGGGCCACCGAGG DST 

Sonde BI11 SEQ 3_rev  CCGCGTGCTGCAACTGCCTTC DST 

Sonde BI11 SEQ 2_rev  GGCGCGGGCGTTCGTCGCCGA DST 

T7 TAATACGACTCACTATAGGGC DST 

T4 CACCTGTGGCGCCGGTGATG DST 

LacZ1 CTTGGGCTGCAGGTCGAC DST 

LacZ2 GTGTGGAATTGTGAGCGG DST 

 

2.7.3 Plasmids 

2.7.3.1 General plasmids 

Table 2.13: General plasmids used in this work 

Plasmids Relevant characteristics Reference 

pSC101-BAD-γβαA-Apra ET cloning vector Genebridges 

pSC101-BAD-γβαA-Amp ET cloning vector Genebridges 

pCR2.1-TOPO 
Cloning vector, lacZα, t7 , f1ori, neoR, 

bla, pUC origin 
Invitrogen 

pKC1132 
Knockout vector for Streptomyces, oriT 

RK2, lacZα, aac(3)IV 
[10] 

pKC1139 
Knockout vector for Streptomyces, oriT 

RK2 lacZα, aac(3)IV,  ori psG5 
[10] 

pRK2013 Tn903, RK2   [76] 

pGEX-6-P-1 
Expression vector, for expression with N-

terminal GST Tag 
GE Healthcare 

pET28b(+) 
Expression vector, for expression with N-

terminal His Tag 
Novagen 

pOJ436 
Cosmid vector, oriT RK2 aac(3)IV,  λcos 

attP ØC31 
[10] 
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2.7.3.2 Plasmids used in the phenalinolactone project 

Table 2.14: Plasmids used in the phenalinolactone project 

Plasmids Vector Relevant characteristics 

CPhl7 pOJ436 ET cloning product, Cos 3-1O12 + zeocin resistance gene, 
apraR, zeoR 

CPhl8 pOJ436 

ET cloning product, complete PL biosynthetic gene cluster 

containing the zeocin resistance gene and the oriT-tet-trpE 

cassette, apraR ,tetR, zeoR 

CPhl9 pOJ436 
ET cloning product, Cos 10-4D08 + oriT-tet-trpE cassette, 

tetR, apraR 

CPhl10 pOJ436 
ET cloning product, CPhl8 + Pm-promotor in front of the gene 

plaM2, tetR, apraR,cmR 

CPhl13 pOJ436 
ET cloning product, complete PL biosynthetic gene cluster 

containing  loxP-kan-cassette, apraR, tetR, zero, kanR 

CPhl14 pOJ436 
ET cloning product, complete PL biosynthetic gene cluster, 

knockout of plaP5, apraR, tetR, zero, kanR 

CPhl15 pOJ436 
ET cloning product, complete Phl biosynthetic gene cluster 

containing  loxP-kan-cassette, apraR, tetR, zero, kanR 

CPhl16 pOJ436 
ET cloning product, complete PL biosynthetic gene cluster, 

knockout of plaP2, apraR, tetR, zero, kanR 

CPhl17 pOJ436 
ET cloning product, complete PL biosynthetic gene cluster 

containing  frt-kan-cassette, apraR, tetR, zero, kanR 

CPhl18 pOJ436 
ET cloning product, complete PL biosynthetic gene cluster, 

knockout of plaA6, apraR, tetR, zero, kanR 

CPhl19 pOJ436 

ET cloning product, complete PL biosynthetic gene cluster 

containing bidirectional ermE promoter in front of the genes 

plaM2 and plaO2 

Cos3-1O12 pOJ436 
Cosmid containing part of the PL biosynthetic gene cluster, 

apraR 

Cos10-4D08 pOJ436 
Cosmid containing part of the PL biosynthetic gene cluster,  

apraR 
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2.7.3.3 Plasmids used in the GE81112 project 

Table 2.15: Plasmids used in the GE81112 project 

Plasmids Vector  Relevant characteristics 

Cos FD10 pOJ436 
 Cosmid from Streptomyces 14386 cosmid library, 

pOJ436 backbone, apraR   

Cos AI6 pOJ436 
 Cosmid from Streptomyces 14386 cosmid library, 

pOJ436 backbone, apraR 

Cos BI11 pOJ436 
 Cosmid from Streptomyces 14386 cosmid library, 

pOJ436 backbone, apraR 

Cos BA23 pOJ436 
 Cosmid from Streptomyces 14386 cosmid library, 

pOJ436 backbone, apraR 

Cos EB22 pOJ436 
 Cosmid from Streptomyces 14386 cosmid library, 

pOJ436 backbone, apraR 

pKC1132_FD10 pKC1132 
 pKC1132 derivative containing an internal 1.3 kb 

fragment of NRPS from FD10, apraR 

pKC1132_AI6 pKC1132 
 pKC1132 derivative containing an internal 1.3 kb 

fragment of NRPS from AI6, apraR 

pKC1132_BI11

_PipA 
pKC1132 

 pKC1139 derivative containing an internal 0.6 kb 

fragment of  pipecolic acid incorporating A-

domain from BI11, apraR 

pKC1139_FD10 pKC1139 
 pKC1132 derivative containing an internal 1.3 kb 

fragment of NRPS FD10, apraR 

pKC1139_AI6 pKC1139 
 pKC1132 derivative containing an internal 1.3 kb 

fragment of NRPS AI6, apraR 

pKC1139_ 

BI11_PipA 
pKC1139 

 pKC1132 derivative containing an internal 0.6 kb 

fragment of  pipecolic acid incorporating A-

domain from BI11, apraR 

BI11-PipA-

Topo 
pCR2.1-TOPO 

 Topo derivative containing an internal 0.6 kb 

fragment of  pipecolic acid incorporating A-

domain from BI11, apraR 

Cyclo-pGEX pGEX6-P-1 

 pGEX-6P-1 derivative for expression of the 

cyclodeaminase gene with N-terminal GST Tag, 

ampR 

BI11A1 pET28b(+) 
 pET28b derivative for expression of  BI11 A1 

with N-terminal His tag, kanR 

BI11A2 pET28b(+) 
 pET28b derivative for expression of  BI11 A2 

with N-terminal His tag, kanR 

BI11A3 pET28b(+) 
 pET28b derivative for expression of  BI11 A3 

with N-terminal His tag, kanR 
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2.8 Streptomycetes 

2.8.1 Mutants of S. lividans TK24 

Table 2.16: Mutants of S. lividans TK24 generated in this work 

Mutant Relevant characteristics 

S. lividans TK24::CPhl8  
Integration of CPhl8 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::CPhl14 
Integration of CPhl14 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::CPhl16 
Integration of CPhl16 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::CPhl18 
Integration of CPhl18at the attP site for heterologous 

expression, apraR 

S. lividans TK24::CPhl19 
Integration of CPhl19 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::FD10 
Integration of FD10 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::BI11 
Integration of BI11 at the attP site for heterologous 

expression, apraR 

S. lividans TK24::BA23 
Integration of BA23 at the attP site for heterologous 

expression, apraR 

 

 

2.8.2 Mutants of S. coelicolor A3(2) 

Table 2.17: Mutants of S. coelicolor A3(2) generated in this work 

Mutant Relevant characteristics 

S .coelicolor A3(2)::CPhl8  
Integration of CPhl8 at the attP site for heterologous 

expression, apraR 

S .coelicolor A3(2)::CPhl14 
Integration of CPhl14 at the attP site for heterologous 

expression, apraR 

S .coelicolor A3(2)::CPhl16 
Integration of CPhl16 at the attP site for heterologous 

expression, apraR 

S .coelicolor A3(2)::CPhl18 
Integration of CPhl18 at the attP site for heterologous 

expression, apraR 

S .coelicolor A3(2)::CPhl19 
Integration of CPhl19 at the attP site for heterologous 

expression, apraR 
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2.8.3 Mutants of S. coelicolor M512 

Table 2.18: Mutants of S. coelicolor M512 generated in this work 

Mutant Relevant characteristics 

S .coelicolor M512::CPhl8 
Integration of CPhl8 at the attP site for heterologous expression, 

apraR 

S .coelicolor M512::CPhl14 
Integration of CPhl14 at the attP site for heterologous 

expression, apraR 

S .coelicolor M512::CPhl16 
Integration of CPhl16 at the attP site for heterologous 

expression, apraR 

S .coelicolor M512::CPhl18 
Integration of CPhl18 at the attP site for heterologous 

expression, apraR 

S .coelicolor M512::CPhl19 
Integration of CPhl19 at the attP site for heterologous 

expression, apraR 

 

2.8.4 Mutants of S. 14386 

Table 2.19: Mutants of S. 14386 generated in this work 

Mutant Relevant characteristics 

S. 14386::pKC1132_BI11_PipA Insertion of pKC1132_BI11_PipA in S. 14386 to create a 
knockout of the GE81112 cluster 

 

 

2.9 Cultivation and conservation of strains 

2.9.1 E. coli/Pseudomonas putida 

3 ml of sterile LB medium were inoculated with a few cells from a single colony and 

cultivated at 30 °C (Pseudomonas) or 37 °C (E. coli) at 180 rpm overnight. For storage at –80 

°C, 1 ml of the culture was mixed with 1 ml of 50% glycerol. To restart cultivation, a few 

cells from the frozen cultures were inoculated into fresh LB medium with an inoculating loop. 

Antibiotics were added to the growth medium as appropriate.  

 

2.9.2 Streptomycetes  

2.9.2.1 Spores 

1 ml of sterile 20% glycerol was added to a fresh well-sporulating plate. The surface of the 

culture was scraped vigorously with an inoculating loop to resuspend the spores. The crude 

suspension was then poured into a sterile falcon tube and diluted with 20% glycerol to obtain 
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a homogenous suspension. 1 ml of this spore suspension was then aliquoted into 1.5 ml 

eppendorf tubes and frozen at –20 °C.  

 

2.9.2.2 Mycelia 

A square from a well-sporulating plate was used for inoculation of 30 or 50 ml medium 

(typically TSB) as preculture. The primary growth cultures were inoculated 1:100 with the 

preculture, and incubated at 28 °C or 30 °C at 180 rpm. For storage at –80 °C, 1 ml of the 

culture was mixed with 1 ml of 50% glycerol. To restart cultivation, a few cells were 

inoculated on fresh agar plates.  

 

2.10 Isolation of prokaryotic DNA 

2.10.1  Isolation of genomic DNA 

Genomic streptomycetes DNA was isolated using the salting out procedure [10]. Mycelia 

from a 30 ml culture were harvested at 3000 rpm for 10 min. The mycelia were resuspended 

in 5 ml SET buffer, and then 100 µl lysozyme solution (1 mg/ml lysozyme in P-buffer) was 

added. The mixture was incubated at 37 °C for 30–60 min. 140 µl proteinase K solution (20 

mg/ml in H2O) was then added, and then the solution was mixed by inversion. 600 µl of 10% 

SDS was added and again the sample was mixed by inversion. The mixture was incubated at 

55 °C for 2 h. 2 ml 5M NaCl were added, and again mixed by inversion. After cooling to 37 

°C, 5 ml chloroform were added, and the sample was mixed by inversion for 30 min at 20 °C. 

The sample was then centrifuged for 15 min at 3000 rpm at room temperature. The 

supernatant was transferred to a fresh tube, 0.6 vol isopropanol were added, and then the 

sample was mixed by inversion. After ca. 3 min, the DNA could be spooled onto a sealed 

Pasteur pipette. The DNA was rinsed in ca. 2 ml 70% ethanol, air dryed and dissolved in 200 

µl H2O by heating at 55 °C.  

 

2.10.2  Isolation of plasmid and cosmid DNA by alkaline lysis 

An overnight culture of 1–3 ml of E. coli was harvested by centrifugation in 1.5 ml eppendorf 

tubes. The supernatant was removed and the pellet was resuspended in 250 µl buffer P1 + 

RNAse (100µg/ml). The cells were then lysed in 250 µl P2 (NaOH/SDS). The lysate was then 

neutralised by adding 250 µl potassium acetate. The samples were then centrifuged for 10 min 

at 13000 rpm. The plasmid DNA remained in the supernatant was precipitated with 600 µl 
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isopropanol. After 10 min of centrifugation at 13000 rpm, the DNA pellets were washed with 

700 µl 70% EtOH, air dryed, and then dissolved in 20 µl H2O. 

 

2.10.3  Isolation of plasmid DNA with the NucleoSpin® Plasmid Kit 

Isolation of plasmid DNA with the NucleoSpin® Plasmid Kit was performed according to the 

manufacturer’s instructions.  

 

2.11 Separation and purification of DNA 

A 0.8% agarose gel containing ethidium bromide (EtBr, ~0.25 μg/ml) was prepared and the 

DNA samples, prepared in 6× DNA loading dye, were loaded into the slots of the gel. A size 

standard (GeneRulerTM 1 kb DNA ladder, Fermentas) was used to determine the length of 

DNA samples from PCR or specific fragments from restrictions. Electrophoresis was 

performed in 1× TBE buffer with a voltage of approximately 10 V per cm gel length until the 

dye front reached the edge of the gel. DNA was visualized under UV light (245 nm) using a 

gel documentation (peqlab). 

 

2.11.1  Extraction of DNA from agarose gels 

After separation by gel electrophoresis, desired DNA fragments were excised from the gel 

under UV light. Extraction from the gel was carried out with the NucleoSpin® Extract Kit, 

according to the manufacturer’s protocol. 

 

2.11.2  DNA precipitation 

DNA dissolved in H2O was mixed with 1/10 vol 3M NaOAc solution. After addition of 1 

volume isopropanol, the sample was incubated 20 min at –20 °C. After centrifugation for 10 

min at 13000 rpm, the pellet was washed with 700 µl 70% EtOH, air dryed and redissolved in 

the desired volume of H2O. 

 

2.11.3  Phenol/chloroform extraction 

An equal volume of phenol/chloroform was added to the DNA sample, followed by vortexing. 

After centrifugation the upper aqueous phase was separated cleanly by decanting. Phenol was 

quantitatively removed by subsequent precipitation with isopropanol (see part 2.10.2). 
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2.12 Polymerase chain reaction  

For polymerase chain reaction or PCR different polymerases were used which are listed in 

Table 2.20. 

 

2.12.1  Composition of standard PCR setup 

Different annealing temperatures were tested for the PCR reactions 

 
Table 2.20: PCR protocols 

 Phusion-

Polymerase 

Triple Master 

Polymerase 

Hot Star Taq 

Polymerase 

Buffers 4  µl  

5× GC buffer or 

5× HF buffer 

5 µl 

10× Tuning buffer 

2.5 µl 

10× HST buffer 

MgCl2 (25 mM) – – 1.5 µl 

dNTPs  

(1.2 mM/dNTP) 

4 µl 8 µl 4 µl 

DMSO 0.6 µl – 0.75 µl 

Glycerol (50%) – – 4 µl 

Primers 1/2   

(50 pmol/µl) 

0.5 µl 0.5 µl 0.5 µl 

Polymerase 0.2 µl 0.3 µl 0.1 µl 

Template 0.5 µl 0.5 µl 0.5 µl 

Sterile water 10.2 µl 32.5 µl 10.65 µl 

Total volume 20 µl 50 µl 25 µl 

Temp. 98 °C 95 °C 95 °C Primary 

denaturation Time 30 min 3 min 15 min 

Temp. 98 °C 95 °C 94 °C Denaturation 

Time 8 s 1 min  20 s 

Temp. 60 °C 58 °C 58 °C Annealing 

Time 30 s 1 min 30 s 

Temp. 72 °C 72 °C 72 °C Extension 

Time 0.25 min/kb 1 min/kb 1 min/kb 

Temp. 72 °C 72 °C 72 °C Final 

extension Time 10 min 10 min 10 min 

Cycles 32 30 30 
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2.12.2  Colony PCR 

Cells were removed from an agar plate with an inoculating loop or 10 µl of cell suspension 

was taken from a liquid culture and transferred into an eppendorf tube containing 10 µl H2O. 

The cell mixture was then boiled at 95 °C for 10 min in an eppendorf thermomixer. 1 µl of 

this mixture was used as template in the PCR reaction. Hot Star Taq Polymerase was used for 

all colony PCRs following the protocol in Table 2.20. 

 

2.13 Enzymatic manipulation of DNA 

2.13.1  Restriction endonucleases 

Reactions were performed in a total volume of 20 µl containing 2 µl 10×buffer, 5 µl DNA, 

0.5µl restriction enzyme and 12.5 µl H2O. The restriction mix was incubated for 2–4 hours or 

overnight at 37 °C (or at other incubation temperatures recommended by the manufacturer). 

All restriction enzymes and corresponding buffers were purchased from Fermentas GmbH.  

 

2.13.2  Ligation 

Ligations were carried out in a total reaction volume of 10 µl, containing 1 µl vector, 7 µl 

insert DNA, 1 μl 10×ligation buffer and 1 µl T4 DNA ligase. The reaction was incubated 

overnight at 16 °C, and then heat-inactivated for 20 min at 65 °C (Thermomixer comfort) 

following verification of the successful ligation by agarose gel electrophoresis. 

 

2.13.3  Dephosphorylation 

Dephosphorylation was carried out within the restriction reaction. 1 µl shrimp alkaline 

phosphatase (SAP) was added to the restriction digestion. Incubation was carried out at 37 °C 

for 1 h. Heat-inactivation of the enzyme was then performed for 15 min at 65 °C.  

 

2.13.4  Cloning with TOPO-TA-Cloning kit 

Direct cloning of PCR products was carried out using the TOPO TA Cloning® kit 

(Invitrogen). TOPO TA Cloning® provides a highly efficient, 5-minute, one-step cloning 

strategy ("TOPO® Cloning") for the direct insertion of Taq polymerase-amplified PCR 

products into a plasmid vector. Taq polymerase has a nontemplate-dependent terminal 

transferase activity that adds a single deoxyadenosine (A) to the 3´ ends of PCR products. The 

linearized vector supplied in this kit has single, overhanging 3´ deoxythymidine (T) residues. 
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This allows PCR inserts to ligate efficiently with the vector. If PCR reactions were carried out 

with other then Taq polymerase, addition of 3’ A-overhangs is needed. All reactions were 

performed according to the manufacturer’s protocol.  

 

2.14 Red/ET recombination 

For Red/ET recombination the target cosmid/plasmid was first electroporated into competent 

cells containing the Red/ET catalyzing plasmid GB2005/pSC101-BAD-γβαA-amp. Selection 

was carried out using ampicillin (50 µg/ml) and the appropriate antibiotic from the incoming 

target construct. Cells were grown at 30 °C overnight and used as preculture. 1.4 ml LB 

medium were inoculated with 30 µl of the cells and cells grown at 30 °C until an OD600 = 0.2 

was reached. Expression of Red/ET proteins was induced by adding 25 µl of 10% L-

arabinose. Further incubation was carried out at 37 °C until an OD600 = 0.4 was obtained. 

Cells were then harvested by centrifugation for 1 min at 13000 rpm and washed twice with 1 

ml chilled H2O. After the last washing step, the cells were resuspended in 30 µl H2O and 

electroporated with purified PCR product. Electropoartion conditions were as follows: 1350 

V, 10 µF, 600 Ohms. After electroporation, 1 ml pre-warmed LB was added and the cells 

were cultivated for 1 h at 37 °C without antibiotic. The cells were then plated out on LB-agar 

containing the appropriate antibiotics. Recombination products were checked by restriction 

digest with several enzymes (selected on the basis of in silico digests of the expected 

products).  

 

2.15 Transformation of bacteria 

2.15.1  Electroporation of E. coli 

To obtain electrocompetent cells, cells were grown at 37 °C to an OD600 = 0.6–0.8 in 1.5 ml 

Eppendorf tubes. The cell suspension was then centrifuged and washed twice with chilled 

H2O. Cells were then resuspendend in 30 µl H2O and used for electroporation with a 0.1 cm 

cuvette. Electroporation parameters were as follows: 1250 V, 10 µF, 600 Ohms, and the 

expected time constant was 5 ms. After electroporation, 1 ml of pre-warmed LB was added 

and the cells were cultivated for 1 h at 37 °C without antibiotic. The cells were then plated out 

on LB-agar containing the appropriate antibiotics.  
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2.15.2  Conjugation of streptomycetes with E. coli 

Electrocompetent cells of E. coli ET12567/pUZ8002 grown in the presence of kanamycin 

(kan) (25 µg/ml) and chloramphenicol (cm) (25 µg/ml) to maintain selection for pUZ8002, 

were prepared as described previously (2.15.1). The competent cells were transformed with 

the oriT-containing vector, and selected for the incoming plasmid only. A colony was 

inoculated in 1 ml of LB-medium containing cm and kan and the antibiotic used to select for 

the oriT-containing plasmid, and grown overnight. The overnight culture was diluted 1:100 in 

fresh LB containing antibiotics, and grown at 37 °C to an OD600 of 0.4–0.6. The cells were 

washed twice with an equal volume of LB and resuspended in 0.1 volume of LB. During the 

washing of the E. coli cells, for each conjugation approximately 108 Streptomyces spores were 

added to 500 µl 2YT broth, heat shocked at 50 °C for 10 min and then cooled. 500 µl E. coli 

cells were then added to 500 µl of the heat-shocked spores or mycelial fragments. The 

mixture was spun briefly and most of the supernatant was poured off. The pellet was then 

resuspended in the residual liquid. The cells were plated out on SM agar plates without 

antibiotic. After 16–20 h incubation at 30 °C, cells were scraped from the plate and 

resuspended in 500 µl LB medium. The mixture was then plated in different dilutions on SM 

agar plates containing nalidixic acid (25 µg/ml) and apramycin (60 µg/ml). Incubation at 30 

°C was continued until the appearance of potential exconjugants.  

 

2.15.3  Protoplast transformation 

25 ml YEME medium were inoculated with 0.1 ml spore suspension and incubated for 36–40 

h in a 30 °C shaker at 180 rpm. Cultures of S. lividans and S. coelicolor were poured into a 50 

ml falcon tube and centrifuged for 10 min at 1000×g. The supernatant was discarded and the 

pellet was resuspended in 15 ml of 10.3% sucrose. After 10 min of centrifugation, the 

supernatant was again discarded and the washing step was repeated. The mycelia were 

resuspended in 4 ml lysozyme solution (1 mg/ml in P-buffer) and incubated at 30 °C for 15–

60 min. 5 ml P-buffer were added and the protoplasts were sedimented gently by spinning at 

1000×g for 7 min. The supernatant was discarded and the protoplasts were resuspended in 1 

ml P-buffer. 300 µl PEG (sterile filtered) were mixed with 900 µl P-buffer. 400 µl of this 

solution were mixed with 100 µl of the freshly-prepared protoplasts and 10 µl DNA. Dilutions 

of this mixture were plated out on R2YE agar plates, and the plates incubated at 30 °C. After 

16–20 h, the plates were overlaid with 1 ml H2O containing 1 mg/ml apramycin. Resistant 

colonies typically appeared after 3 days. 
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2.16 Construction of a cosmid library from Streptomyces 14386 

This method was used to clone large genomic DNA fragments (35–45 kb) into cosmid vectors 

[77] using phage transfection. 

 

2.16.1  Preparation of the ligation reaction 

Genomic DNA of Streptomyces 14386 (see part 2.10.1) was partially digested with Sau3A. 

After separation by gel electrophoresis, fragments showing an average size between 35 and 45 

kb were pooled and extracted with phenol/chloroform (2.11.3) and precipitated. The DNA 

was subsequently dephosphorylated (2.10.3) and extracted with phenol/chloroform again. The 

aqueous phase was later precipitated together with the vector pOJ436. 

The E. coli/Streptomyces shuttle vector pOJ436 was digested with the restriction 

endonuclease PvuII and subsequently dephosphorylated with SAP. The DNA was extracted 

with phenol/chloroform and precipitated. The vector was subsequently digested with BamHI, 

extracted with phenol/chloroform again and precipitated together with the partially-digested 

genomic DNA.  

 

2.16.2  Ligation and phage infection  

The precipitated DNA pellet from 2.16.1 was resuspended in 15 µl H2O and ligated at 16 °C 

(2.13.2). The DNA was precipitated again and resuspended in 20 µl H2O. 4 µl from the 

ligation reaction were mixed with the GigapackIII Gold Packaging Extract (Stratagene), 

incubated for 1.5 h at room temperature and subsequently mixed with 500 µl SM-buffer and 

50 µl chloroform. The mixture was centrifuged briefly and stored at 4 °C. 

In parallel E. coli SURE was grown in LB medium supplemented with 10 mM Mg2SO4 and 

0.2% maltose, until an OD600 = 0.7 was reached. Various amounts of packaging extract were 

then mixed with E. coli SURE as follows:     

2 µl packaging extract + 23 µl SM buffer + 25 µl E. coli SURE 

5 µl packaging extract + 20 µl SM buffer + 25 µl E. coli SURE 

10 µl packaging extract + 15 µl SM buffer + 25 µl E. coli SURE 

 

The mixtures were incubated for 30 min at 37 °C. 200 µl LB were then added and incubation 

was continued at 37 °C while shaking 2 h at 165 rpm. The cells were plated out on LB agar 

containing 60 µg/ml apramycin. The titer of the packaging extract was determined through 

counting the colonies. Typically, 2 µl of packaging extract yielded 2275 colonies. 
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2.16.3  Generation of the cosmid library  

To obtain a 10-fold coverage from an estimated genome size of 8 Mbp, ca. 2000 cosmid 

clones were needed. In order to ensure that enough clones were obtained, 5 µl packaging 

extract were used and prepared as described in 2.16.2. After incubation, the cells were plated 

on LB agar containing 60 µg/ml apramycin in 22 cm × 22 cm NUNC plates (Nalgene). The 

plates were incubated at 32 °C overnight and the colonies were picked using the Qbot-robot 

(Gentrix) in the Department of Genome Analysis at the Helmholtz-Centre for Infection 

Research in Braunschweig in six 384-well microtiterplates containing 50 µl 2YT medium (60 

µg/ml apramycin).  

 

2.16.4  Robotically produced high-density colony arrays 

The plates were incubated at 37 °C overnight and the growing colonies were spotted with the 

Qbot-robot (Gentrix) on fresh NUNC-LB-agar plates (60 µg/ml apramycin) which were 

covered with a 22 cm × 22 cm nylon membrane. 50 µl freezing solution (Table 2.6) was 

subsequently added to each well of the microtiter plates were subsequently amended with 50 

µl freezing solution (2.4.1) and frozen at -80 °C.  

.  

Altogether 12 membranes were spotted with the complete cosmid library. To enable an 

explicit assignment of the transferred colonies to the six 384er microtiterplates each colony of 

the microtiterplates was spotted twice in a definend 4x4 array (Figure 2.1). 

 
Figure 2.1: Spotting array of the high-density colony filters. 

 

The NUNC-LB-agar plates with the nylon membranes were incubated at 32 °C for 16–20h. 

For the subsequent lysis of the cells, the membranes were processed as follows: Whatman 

paper was soaked with denaturation solution, neutralization solution and 2× SSC solution 

(Table 2.4). The membranes (bottom side) were transferred onto the Whatman paper, initially 

using denaturation solution. After 15 min incubation, the membranes were briefly transferred 
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to dry Whatman paper in order to remove remaining denaturation solution. Subsequent 

incubation in neutralization solution (15 min) and 2× SSC (10 min) was carried out, followed 

by drying of the membranes on fresh Whatman paper. The colonies were fixed on the 

membranes through incubation at 80 °C for 2 h. The membranes were treated with 14 ml 

Proteinase K solution (2 mg/ml) for 1 h at 37 °C. To remove cell debris, the membranes were 

treated with H2O soaked tissues. After drying at room temperature, the processed membranes 

could be used for hybridization. 

 

2.17 DNA Hybridization 

2.17.1  Southern Blot  

5 µg genomic DNA were digested with different restriction enzymes (2.13.1) and separated 

by gel electrophoresis (2.11). After gel documentation, the gel was depurinated for 10 min in 

0.25 M HCl, with gentle shaking. The gel was subsequently incubated twice for 20 min in 

denaturation buffer (Table 2.4) and neutralization buffer (Table 2.4) at room temperature. 

After treatment of the gel, the DNA was blotted onto a membrane by vacuum blot.  

 

2.17.2  Vacuum Blot 

The membrane placed onto Whatman paper soaked with 10× SSC (Table 2.4) on the vacuum 

blotter, in order to prevent the formation of air bubbles. A plastic mask was placed on the 

membrane leaving a window for placing the gel onto it. The gel was placed onto the 

membrane and the vacuum pump was switched on to immobilize the gel onto the membrane. 

The vacuum blot chamber was filled with 10× SSC and blotting was carried out for 90 min, 

with a vacuum of 5 mm Hg.  

 

2.17.3  Generation of DIG-labeled probes 

For the generation of DIG-labeled probes the ‘DIG PCR labeling mix’ from Roche was used. 

Digoxigenin labeled desoxynucleotides were employed in a standard PCR reaction (2.12). 

The obtained probe was stored at –20 °C, until it was used for hybridization.  

 

2.17.4  Hybridization and detection with the DIG labeling system 

The DIG systems protocol from Roche was used. The membrane was pre-hybridized in 

hybridization buffer for 2 h at 42 °C. The DIG labeled probe was denaturated for 10 min at 95 
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°C and directly cooled on ice. The probe was then added to the hybridization buffer to obtain 

a final concentration of DIG labeled probe of 7.5–15 ng/ml. The pre-hybridization solution 

was removed and fresh hybridization buffer containing the DIG-labeled probe was added to 

the membrane. Hybridization was performed at 42 °C overnight. Non stringent hybridization 

(heterologous) was performed at 38–40 °C. After hybridization, the membrane was washed 

twice with 2× SSC washing buffer (Table 2.4) at room temperature, followed by stringent 

washing with 0.5× SSC (Table 2.4) at 68 °C (58 °C for colony hybridization). The membrane 

was subsequently equilibrated in maleic acid buffer (Table 2.4) for 10 min and then incubated 

with blocking solution (Table 2.4) for 30 min at room temperature. DIG antibody (Anti 

digoxigenin-AP conjugate, Fab fragment) was added to fresh blocking solution (1:10000) and 

the membrane was incubated for 30 min in this solution. The membrane was then washed 

twice with maleic acid buffer for 15 min. The membrane was then briefly equilibrated with 

detection buffer (Table 2.4) (5 min) and subsequently covered with CDP-Star solution 

(Roche) (1 ml/100 cm2). After 1 min of incubation, the membrane was shrink-wrapped and 

the chemoluminescence was detected by gel documentation (Peqlab).  

 

2.17.5  Stripping of membranes 

Membranes were treated with stripping buffer (Table 2.4) for 20 min at room temperature. 

After a brief equilibration in 2× SSC, the membranes were either used again for hybridization 

or stored at –20 °C. 

 

2.17.6  Colony Hybridization 

Hybridization of the high-density colony filters from S. 14386 was carried out with the DIG 

system from Roche as described in 2.17.4.  

 

2.17.7  Analysis of DNA- and protein sequences 

Sequence data were analyzed with the program Vector NTI (InforMax). Additional programs 

for sequence analysis were freely accessible via the internet.  

BLAST    http://www.ncbi.nlm.nih.gov/blast/  

Frame  plot    http://www.nih.go.jp/~jun/cgi-bin/frameplot.pl  

PKS/NRPS Analysis   http://www.tigr.org/jravel/nrps/  
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ClustalW    http://www.ebi.ac.uk/clustalw/  

PFAM     http://www.sanger.ac.uk/Software/Pfam/search.shtml 

Npbiogene    http://www.npbiogene.com/ 

NRPS predictor  http://www-ab.informatik.uni-tuebingen.de/toolbox/  
    index.php?view=domainpred 

2.18 Protein and enzymatic analysis 

Different proteins from the GE biosynthetic gene cluster were overexpressed as GST- or His-

tagged fusion proteins for biochemical characterization. The genes were cloned into the 

expression vectors pGEX-6P-1 (N-terminal GST-tag) or pET-28b(+) (N-terminal His-tag) 

(Table 2.13). The genes are expressed under the control of IPTG-inducible promoters (T7 

promoter in the pET system, Ptac promoter in the pGEX system). The pET-28b(+) plasmid 

carries kanamycin resistance, the pGEX-6P-1 plasmid ampicillin resistance. The genes were 

cloned into the expression vectors, sequenced and transformed into E. coli BL21(DE3) or E. 

coli Rosetta BL21 (DE3) pLysS/pRARE. 

 

2.18.1  Cultivation and cell disruption 

A single colony of E. coli BL21 or E. coli Rosetta BL21 (DE3) pLysS/pRARE containing the 

plasmid with the expression vector construct was used for inoculation of a LB culture (with 

the appropriate antibiotic). This preculture was grown overnight and used to inoculate the 

expression culture (1:100 dilution). The culture was then grown until an OD600 = 0.8 at 30 °C 

and 180 rpm, and then induced with IPTG to a final concentration of 0.1 M. Incubation was 

continued at 16 °C overnight, or at 30 °C for additional 2 h. Cells were harvested by 

centrifugation for 10 min at 10000 rpm and were resuspended in an appropriate buffer (e.g. 

PBS buffer or binding buffer for Äkta-purification) (Table 2.5)). All further steps were carried 

out on ice or at 4 °C.  

To check for the presence of soluble protein, 1 ml of the cell culture was centrifuged, 

the pellet was resuspended in 100 µl BugBuster® Protein Extraction Reagent (Novagen) and 

then the mixture was incubated for 20 min at room temperature. The cell lysate was then 

centrifuged for 10 min at 4 °C and 10 µl of the supernatant and the remaining pellet were 

analyzed by SDS-PAGE. If the protein was soluble, the residual culture was used for cell 

disruption at larger scale. For this, the cells were lysed using a French press at 700 psi 

(typically two passages). E. coli Rosetta BL21 (DE3) pLysS/pRARE strains were induced to 

http://www-ab.informatik.uni-tuebingen.de/toolbox/�
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carry out self-lysis by freezing and thawing, which caused the production of lysozyme. In this 

case, the cell lysate was centrifuged for 45 min at 10000 rpm, and the remaining supernatant 

was used for further purification.  

 

2.18.2  Protein purification 

2.18.2.1 GST-tagged proteins 

GST fusion proteins were purified using GST MicroSpin columns (GE Healthcare). The 

lower caps were removed from the columns, and each column was placed into a clean 2 ml 

eppendorf tube and spun for 1 min at 3500 rpm. The flow-through was discarded and the 

lower caps were replaced. 600 µl of the cell lysate (see part 2.18.1) were applied to the 

column. The columns were recapped at the top and mixed gently by inversion for 20 min at 

room temperature. The top and bottom caps were removed and each column was placed into a 

clean 2 ml eppendorf tube. The tube was centrifuged for 1 min at 3500 rpm to collect the 

flow-through. Each tube was placed into a new eppendorf tube and 600 µl 1× PBS wash 

buffer was applied to each column. This step was repeated once. 150 µl cleavage buffer 

containing 10 µl PreScission (GE Healthcare) protease were then added to the column and the 

top and bottom caps were replaced; the column was then incubated at 4 °C overnight. On the 

following day, the columns were placed into eppendorf tubes and the eluate containing the 

protein without GST tag was collected and checked using SDS-PAGE.  

 

2.18.2.2 His-tagged proteins 

Prepacked HisTrap™ HP columns were used for preparative purification of histidine-tagged 

recombinant proteins by immobilized metal ion affinity chromatography (IMAC) on the Äkta 

prime. 15 ml protein lysate were filtered through a sterile filter and loaded onto the 1 ml 

HisTrap column. Purification was performed as recommended in the GE Healthcare manual 

(HisTrap HP, Instructions 71-5027-68 AF). The following gradient was applied: 
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Table 2.21: Imidazol gradient applied for Äkta system.  

Volume [ml] Eluent A: binding buffer [%] Eluent B: elution  buffer [%] 

20 100  0  

40 100  0  

60 100  0  

70 88  12  

80 80  20  

90 60  40  

100 40  60  

110 0  100 

Pressure limit: 0.55 MPa; Flow 1ml/min 

 

To check the fractions for the presence of protein, 150 µl of each fraction were precipitated 

with an equal volume of acetone at –20 °C for 20 min. After centrifugation, the precipitated 

protein pellet was resuspended in 10 µl of 4× protein loading buffer and analyzed by SDS-

PAGE.  

 

2.18.3  Bradford assay 

Bradford assays were carried out according to the manufacturer’s manual (Biorad). In each 

case, a standard curve was measured with bovine serum albumin (BSA).  

 

2.18.4  Protein concentration by centrifugation 

Concentration of protein extracts was performed using Amicon Ultra-30 K centrifugal filters 

(Millipore), according to the manufacturer’s instructions. The nominal molecular weight limit 

(NMWL) of the filters was 30,000 Da.  

 

2.18.5  SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis, is a technique to 

separate proteins according to their molecular weight [78]. The following proteins markers 

were applied for size determination:  

Marker PageRuler™, Fermentas: 10, 15 25, 30, 40, 50, 60, 70, 80, 100, 120, 170 kDa 

Marker PageRuler™ Prestained, Fermentas : 10, 15 25, 35, 40, 55, 70, 120, 170 kDa 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate�
http://en.wikipedia.org/wiki/Polyacrylamide_gel�
http://en.wikipedia.org/wiki/Electrophoresis�
http://en.wikipedia.org/wiki/Protein�
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2.18.5.1 Preparing of SDS gels and electrophoresis 

For detection of proteins, a 10% separating and a 5% stacking polyacrylamide gel were 

prepared. Ca. 20 µg protein was loaded into each lane of the gel. The protein samples were 

mixed with 10 µl of 4× protein loading buffer and boiled for 10 min at 95 °C. After loading 

the protein sample and a prestained protein marker (Fermentas) onto the gel, electrophoresis 

was performed in 1× running buffer at 100 V. Electrophoresis was stopped when the 

bromophenol blue front reached the edge of the gel (approximately 1.5 h).  

 

10% Separating gel: 

H2O     5.9 ml  

30% Bis-/Acrylamide mix  5  ml  

1.5 M Tris (pH 8.8)   3.8 ml  

10% SDS     150 µl 

10% APS    150 μl  

TEMED    6 μl  

The solution was poured between two glass plates, overlaid with isopropanol and allowed to 

polymerize. 

 

5% Stacking gel: 

H2O     7 ml  

30% Bis-/Acrylamide mix  1.7  ml  

1.5 M Tris (pH 6.8)   1 ml  

10% SDS     100 µl 

10% APS    100 μl  

TEMED    10 μl  

 

The solution was poured onto the separating gel and allowed to polymerize. 

 

2.18.5.2  Detection of protein bands 

Protein gels were stained with Coomassie Brilliant Blue. The staining solution contained 

methanol/acetic acid/water (10:10:80) and 1% Coomassie Brilliant Blue R250 (Roth). 

Staining was carried out for 1–2 h, or was accelerated by heating the gel in the microwave for 
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a couple of seconds. Destaining was performed in the same mixture without Coomassie. Gel-

Dry™ Drying Kit (Invitrogen) was used to conserve gels. 

 

2.18.6  Protein identification by MALDI-MS 

The desired protein band was excised from the SDS-PAGE gel and washed three times with 

water. 500 µl of a 50% acetonitrile (ACN) mixture in H2O were added until the gel piece was 

destained. The gel piece was then air dried and 500 µl ACN were added for 10 min. The gel 

piece was air dried again and 20 µl trypsin were added to each sample. After complete 

rehydration of the gel piece, 20 µl 40 mM NH4HCO3 were added and the gel piece was 

incubated overnight. TFA was added to a final concentration of 0.1%. The sample was then 

stored at –20 °C prior to analysis by MALDI-MS.  

 

2.18.7  Cyclodeaminase assay 

To determine the cyclodeaminase acitivity one millimole L-or D-Lysine was incubated at 30 

°C with 10 µM protein, 5 mM Tris (pH 8.0), 1 mg/ml BSA, and 100 µM NAD+. H2O was 

added at a total volume of 100 µl and the reaction was incubated for 16 h. The reaction was 

quenched with two reaction volumes of acetonitrile, stored at -20 °C for at least 10 min and 

spun at 13000 rpm for 10 min. The supernatant was vacuum-dried and solved in 200 µl borate 

buffer and used for derivatization. 

For derivatization, the reactant solution constisted of FMOC-Cl dissolved in acetone (1.5 

mg/ml). Two hundred microliters of FMOC solution was added to the 200 µl of the 

reaction/borate buffer mixture and incubated 10 min at room temperature. Termination of the 

reaction and removal of excess reagent (Fmoc-Cl), its hydrolysis product FMOC-OH, and 

acetone were performed by extraction with 600 µl hexane. After two additional extractions, 

400 µl 25% acetonitrile in 0.1 M borate buffer was added. A 50 µl aliquot of the diluted 

sample was injected into the HPLC system. FMOC-derivatized compounds were separtated 

with a standard gradient (see section 2.10.1.). The peak corresponding to FMOC pipecolic 

acid was detected with a mass of m/z = 571.2 [M-H]–. 

 

2.18.8  ATP-PPi exchange assay 

This assay was carried out in order to determine the substrate specificity of adenylation 

domains. Therefore 2 µM protein, 5 µl dATP (40 mM), 10 µl 10× buffer and 5 µl amino acid 

(40 mM) were mixed together. The reaction was started by addition of 0.1 µCi [32P]-
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pyrophosphate (Perkin Elmer). Incubation was done for 30 min and the reaction was stopped 

by the addition of 500 µl stop-mix. After centrifugation for 1 min at 13000 rpm the pellet was 

washed twice with 1 ml 0.1M wash buffer (Table 2.5). The charcoal pellet was then 

resuspended in 0.5 ml H2O. 3.5 ml scintillation fluid was then added to the mixture and the 

radioactivity was determined by scintillation counting. 

 

2.19 Analysis of secondary metabolites in natural producer strains and 

recombinant Streptomyces strains 

Streptomyces strains used in this work were Streptomyces Tü6071 [66], S. lividans TK24 [72], 

S. coelicolor A3(2) [11], S. coelicolor M512 (ΔredD, ΔactII-ORF4 SCP1–SCP2–) [73] and 

Streptomyces 14386 [67] (Table 2.10). For production and heterologous expression of 

secondary metabolites different cultivation conditions were used for the different strains.  

 

2.19.1  Cultivation in production medium 

2.19.1.1 Phenalinolactones 

For phenalinolactone production, the cultures were cultivated under standard conditions at 28 

°C and 180 rpm on a rotary shaker, and harvested after 6–8 days by centrifugation. NL111 

(Table 2.8) liquid medium was used for production. Precultures were grown in the same 

medium and used to inoculate production cultures (1:100 dilution). Studies on the 

optimization of PL production were performed under standard cultivation conditions in 

NL111 medium, but with growth at 37 °C and also in NBG, SM and INA5 medium.  

Apramycin (60 µg/ml) was used for cultivation of recombinant Streptomyces strains. 

 

2.19.1.2 GE81112 

Precultures were grown in V6 medium and used to inoculate production cultures (1:100 

dilution). INA5 or T6 (Table 2.8) production medium was used for production of GE81112. 

The cultures were maintained at 30 °C and 180 rpm on a rotary shaker and harvested after 6–8 

days. Apramycin (60 µg/ml) was used for cultivation of recombinant Streptomyces strains. 

 

2.19.2  Feeding experiments 

Precultures were grown in V6 medium at 30 °C for 3 days and then used to inoculate a 50 ml 

production culture in T6 medium (1:100 dilution). Stock solutions of deuterium-labeled L- 
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and D-pipecolic acid and uniformely labeled (U13C) L-histidine (500 mM) were prepared and 

introduced into the cultures after 72, 96, 120, 144 and 168 h, to a final concentration of 1 mM. 

Cells were harvested after 196 h. As a control, the same cultivation was performed without 

feeding of labeled substances. 

 

2.19.3  Extraction 

After cultivation in production medium, the cells were harvested by centrifugation at 5000 

rpm for 10 min. The culture supernatant was extracted twice with ethyl acetate. The solvent 

was then removed by evaporation, redissolved in methanol (1% of the original culture 

volume) and centrifuged for 10 min. The supernatant was transferred to a fresh vial. The cell 

pellet was extracted with a mixture of acetone/methanol (1:1). The solvent was then removed 

by evaporation redissolved in methanol (1% of the original culture volume) and centrifuged 

for 10 min. The supernatant was transferred to a fresh vial.  

 

2.19.4  Purification of GE compounds 

The GE81112 producer S. 14386 was cultivated at 30 °C in 5 L baffled shake flasks at 180 

rpm in GE production medium (see part 2.19.1.2). 13 L were harvested after 6 days of 

cultivation. Cells were extracted with acetone/methanol (1:1) and the supernatant was 

extracted with ethyl acetate (1:1), as described in 2.19.3. HPLC-MS analysis revealed that the 

desired compounds could only be found in the supernatant. 13 L of supernatant were then 

extracted twice with ethyl acetate (1:1). After evaporation of the solvent, the extract was 

resuspended in methanol and extracted with heptane (1:1). The extract was then fractionated 

by preparative RP-HPLC (Dionex P680 HPLC equipped with a PDA-100 Photodiode Array 

Detector; Waters xBridge™ Prep C18  column (5µm OBD™ 19 × 100 mm)) using a stepwise 

gradient, (0–2 min, 10% acetonitrile; 2–30 min, 10–95% acetonitrile; 10 ml/min; detection at 

280 nm; injection volume, 250 µl) coupled to a mass spectrometer (Bruker HCTplus ion trap, 

operating in positive-ionization mode at a scan range of m/z 100–1100).  

Fractions were checked by HPLC-MS analysis, and combined when they contained the 

desired compounds. The solvent was evaporated, and the compounds were further enriched by 

gel permeation chromatography (Sephadex LH-20 in methanol). Pure compound was obtained 

by sequential RP-HPLC using a stepwise gradient (solvent B: acetonitrile containing 0.01% 

formic acid, 0–10 min, 30% B; 10–20 min, 30–50%; 20–25 min, 50–95% B; 25–27 min, 

95%B, injection volume 200 µl).  
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2.19.5 Analysis of the secondary metabolites 

2.19.5.1  HPLC-UV/Vis, HPLC-MS, HPLC-MS/MS, LTQ-Orbitrap-MS 

10 μl of the extracts (see part 2.19.3) were analyzed by HPLC-MS analysis. Analysis was 

carried out using an Agilent 1100 series solvent delivery system equipped with a photodiode 

array detector and coupled to a Bruker HCTplus ion trap mass spectrometer. Chromatographic 

separation was carried out on a Nucleodur C18/3 µm RP column (125 × 2 mm; Macherey & 

Nagel) equipped with an C18/5 precolumn (8 × 3 mm) using a mobile phase system 

consisting of H2O (A) and acetonitrile (B), each containing 0.1% formic acid. The following 

gradient was applied: 0–2 min, 25% B; 2–22 min linear from 25–95 %B; 22–24 min isocratic 

at 95% B. Detection was carried out in negative or positive ionization mode at a scan range of 

m/z = 100–1100.  

 Phenalinolactones were identified by comparison to the retention times (rt) and the MS 

data of authentic standards (phenalinolactone A: rt = 13.5 min, [M–H]– = 714.5; 

phenalinolactone D: rt = 18.1 min, [M–H]– = 698.3) in negative ionization mode. 

Phenalinolactone E was identified by comparison to the retention times and the MS data of 

phenalinolactone D (phenalinolactone E: rt = 13.0 min, [M–H]–  = 570.3). LC-coupled FT-

Orbitrap-MS analysis was carried out with an Accella UPLC system (Thermo Electron 

Corporation) coupled to a LTQ Orbitrap mass spectrometer (Thermo Fisher Scientific) 

operating in negative or positive ionization mode at a scan range of m/z 100–2000. A Hypersil 

Gold column (2.1 × 50 mm; Thermo Fisher Scientific) was used for separation with a solvent 

system consisting of H2O (A) and acetonitrile (B), each containing 0.1% formic acid. A 

gradient of 5–95 % B was applied over 10 min. Measurements were carried out in single ion 

mode (SIM). GE8112 compounds were identified by comparison to the retention times (rt) 

and the MS data of authentic standards (GE factor A: [M+H]+ = 644.21858; GE B: [M+H]+ = 

659.22953 and GE factor B1: [M+H]+ = 658.2458760) in the negative ionization mode. 

 

2.19.5.2 NMR 

The structure of the isolated compounds 631, 645 and 659 were elucidated by using 1D (1H-, 
13C-NMR) and 2D NMR analysis (1H-1H-COSY, HSQC heteronuclear sequential quantum 

coherence, HMBC heteronuclear multiple bond correlation) on Bruker DRX 500 or Bruker 

Advance 500 spectrometers using several solvents ([d6]DMSO and CD3OD). Calculation of 

theoretical NMR-spectra was performed with ACD/Labs 7.00 software. 
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3 Results 

3.1 Heterologous expression and genetic engineering of the phenalinolactone 

biosynthetic gene cluster using Red/ET recombineering  

3.1.1 Goals 

The aim of the thesis was the development of heterologous expression techniques for complex 

secondary metabolite pathways from streptomycetes using Red/ET recombineering. The 

biosynthetic gene cluster which was chosen for this work was the phenalinolactone 

biosynthetic gene cluster from Streptomyces Tü6071. The gene cluster was already cloned and 

sequenced in the group of Andreas Bechthold from Freiburg University, from whom the strain 

was obtained. As the complete gene cluster was located on two different cosmids, we aimed 

in the first step to reconstitute the complete PL biosynthetic pathway on one expression 

construct using Red/ET recombineering. After the successful cloning, we planned to express 

the pathway in different heterologous host strains such as pseudomonads and streptomycetes. 

The successful heterologous expression would then open the door for generation of novel 

analogues by genetic engineering. 

 

3.1.2 Reconstitution of the complete pla biosynthetic gene cluster 

We employed Red/ET recombineering in E. coli [36-38] to rebuild the entire pla biosynthetic 

pathway on an integrative E. coli-Streptomyces shuttle vector (pOJ436), and to introduce 

additional genetic elements for heterologous expression in pseudomonads and streptomycetes. 

 

3.1.2.1 Cloning strategy 

The biosynthetic gene cluster comprises 11 transcriptional units harboring 35 genes. Two 

pOJ436-derived cosmids (Cos3-1O12 and Cos10-4D08 [66]) containing overlapping regions 

of the pla gene cluster were used as starting points. The cloning strategy is described in Figure 

3.1, and consists of three different cloning steps that are each discussed in detail below.  
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Figure 3.1: Description of the cloning strategy. 

The phenalinolactone biosynthetic gene cluster consists of 35 orfs, and was located on two 
overlapping cosmids (Cos3-1O12 and Cos10-4D08) carrying the pOJ436 backbone. In the first 
step, a ScaI-oriT-tet-trpE cassette was inserted via Red/ET recombineering into Cos10-4D08 at 
the upstream end of the gene cluster, generating the construct CPhl9. In the next step, 
introduction of the zeocin resistance gene at the downstream end of the cluster led to the 
construct CPhl7. After restriction digest of CPhl9 with ScaI, the resulting 15 kb fragment was 
used to reassemble the whole cluster using Red/ET recombineering. The final expression 
construct containing the whole cluster was designated CPhl8.  
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3.1.2.2 Cloning step 1:  introduction of the ScaI-oriT-tet-trpE box at the 5′-end of the 

pla biosynthetic gene cluster 

Cos10-4D08 was modified by insertion of a gene cassette into the upstream end of the pla 

gene cluster, to generate construct CPhl9. In addition to a ScaI restriction site and a 

tetracycline (tet) resistance gene, the introduced cassette also contained an oriT as well as a 

portion of the trpE gene from Pseudomonas putida which should in future enable the transfer 

of the expression construct into pseudomonads. The oriT was needed for conjugation and the 

trpE gene for integration into the Pseudomonas putida genome. This step also resulted in the 

deletion of orfs 1–3, which we expected not to be involved in PL biosynthesis. The ca. 4 kb 

gene cassette was amplified by PCR from template CMch37 [35] which contained the oriT-

tet-trpE box. The primers PhlET10 and PhlET11 that were used in the PCR contained three 

homology arms in total (H1, H2 and H3). Homology arms 1 and 2 were used to enable the 

integration of the oriT-tet-trpE box into Cos10-4D08, via double homologous recombination 

(Figure 3.2) 

 
Figure 3.2: Red/ET Cloning step 1. 

Integration of oriT-tet-trpE box into cosmid 10-4D08 via double homologous recombination 
resulted in the construct CPhl9. H1, H2 and H3: homology arms 1, 2, and 3 

 

Homology arm 3 and the ScaI restriction site were needed for the subsequent cloning steps. 

Selection for correct recombinant mutants was carried out on LB-agar containing tetracycline 

(12.5 µg/ml) and apramycin (60 µg/ml). To confirm the individual cloning steps, each of the 

constructs generated by recombination was digested with a diagnostic set of restriction 

enzymes (Figure 3.5). 
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3.1.2.3 Cloning step 2:  introduction of the zeocin resistance gene at the 3′ end 

In the next cloning step we aimed to reconstruct the whole phenalinolactone biosynthetic gene 

cluster on one expression construct. Therefore, construct CPhl9 was digested with ScaI to 

generate a linear fragment which could then be recombined with the target construct Cos3-

1O12 containing the remaining part of the cluster. As the whole ScaI restriction digest was to 

be used for transformation, it was formally possible that there could be still some undigested 

construct CPhl9 in the transformation mixture. Selection on tetracycline (oriT-tet-trpE box) 

and apramycin (target molecule) would then result in mutants carrying the constructs CPhl9 

and Cos3-1O12, without any recombination taking place. To avoid this problem, we inserted 

the zeocin resistance gene in Cos3-1O12 to create CPhl7. The introduction of a new resistance 

gene enabled selection on tetracycline and zeocin, forcing homologous recombination and 

avoiding replication of the undigested construct CPhl9 in the mutants. The zeocin resistance 

gene was inserted into Cos3-1O12 at the opposite end of the gene cluster (downstream of 

plaZ), an alteration which simultaneously deleted orf6 which was not needed for 

phenalinolactone biosynthesis.  

 
Figure 3.3: Red/ET Cloning step 2.  

Integration of the zeocin resistance gene into cosmid 3-1O12 via double homologous 
recombination resulted in the construct CPhl7. H4, H5: homology arms 4 and 5. 

 

The ca. 600 kb zeocin cassette was amplified by PCR, again using MCh37 as template. Two 

homology arms (H4 and H5) were introduced with primers PhlET6 and PhlET7. Double 

homologous recombination via these homology arms enabled the insertion of the zeocin 

cassette into Cos3-1O12. Selection for correct recombinant mutants was carried out on LB-

agar containing zeocin (25 µg/ml) and apramycin (60 µg/ml). To confirm the cloning step, the 
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construct CPhl7 generated by recombination was digested with a diagnostic set of restriction 

enzymes (Figure 3.5). 

 

3.1.2.4 Cloning step 3:  stitching of the pla biosynthetic gene cluster 

Construct CPhl9 was digested with ScaI to generate a linear 15 kb fragment. A ScaI site had 

been inserted into the construct with the primer PhlET10 in the first cloning step described in 

chapter 3.1.2.2. A second ScaI restriction site was already present in the overlapping region of 

the cosmids (Figure 3.4).  

 
Figure 3.4:   Red/ET Cloning step 3.  

Digestion of CPhl9 with ScaI and recombination of the 15 kb linear fragment with CPhl7, 
resulted in the final construct CPhl8 containing the complete pla biosynthetic pathway. 

  

This 15 kb fragment was then transformed into E. coli GB2005/pSC101-BAD-γβαA-amp in 

order to achieve recombination with CPhl7. Recombination of the linear fragment with CPhl7 

containing the missing end of the gene cluster resulted in the final construct CPhl8 containing 

the complete phenalinolactone pathway flanked by the oriT-tet-trpE box at the 5′-end and the 

zeocin resistance gene at the 3′-end of the cluster (Figure 3.4). Selection for correct 

recombinant mutants was carried out on LB-agar containing zeocin (25 µg/ml) and 

tetracycline (12.5 µg/ml). The individual cloning steps were confirmed by restriction analysis 

with the enzymes EcoRI, BglII and PvuII, as shown in Figure 3.5.  
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Figure 3.5: Restriction analysis of the Red/ET recombination constructs. 

Lane 1: Cos3-1O12, 2: CPhl7, 3: CPhl8, 4: CPhl10, 5: CPhl9, 6: Cos10-4D08. Lanes 1 and 6 
show the restriction pattern of the starting constructs Cos3-1O12 and Cos10-4D08. Lane 2 
shows the restriction fragments of CPhl7 into which the zeocin resistance gene was inserted, 
and lane 5 shows the restriction pattern of CPhl9 with the introduced oriT-tet-trpE box. 
Comparing the recombination constructs with the starting constructs enabled us to confirm the 
identity all of the constructs. Lane 8 shows the final construct CPhl8 containing all the 
fragments combined from CPhl7 and CPhl9. Lane 4 shows the restriction pattern of the 
construct CPhl10, which contains a promoter exchange. All restriction patterns showed the 
expected fragments. 

 

In summary, using this cloning strategy, we were able to reconstitute the complete 

phenalinolactone biosynthetic pathway on one expression construct containing the pOJ436 

backbone. At this point, the expression construct was ready for transformation into various 

heterologous host strains.  

 

3.1.3 Transformation of the biosynthetic gene cluster into heterologous host strains 

Two genera of bacteria, Pseudomonas and Streptomyces, were selected as hosts, as they had 

already been proven as suitable for heterologous expression of natural products [79]. 

 

3.1.3.1 Triparental conjugation of the expression construct CPhl8 into pseudomonads 

The final expression construct CPhl8 was transferred into Pseudomonas putida KT2240 by 

triparental mating. Exconjugants were screened on PMM agar containing tetracycline (12.5 

µg/ml) for the selection of P. putida::CPhl8 mutants. The transformation efficiency was very 

high, yielding several thousand tetracycline-resistant exconjugants. Single colonies were used 

for inoculation of liquid cultures. 
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3.1.3.2 Conjugation of the expression construct CPhl8 into streptomycetes 

The expression construct CPhl8 carried the vector backbone of the E. coli/Streptomyces 

shuttle vector pOJ436, enabling integration at the chromosomal attP site in streptomycetes 

genomes. Three different Streptomyces strains were used for transformation: Streptomyces 

lividans TK24, Streptomyces coelicolor A3(2) and Streptomyces coelicolor M512. The 

construct was transformed using biparental conjugation, and selection was carried out at 30 

°C on SM agar plates containing apramycin (60 µg/ml) and nalidixic acid (25 µg/ml). In all 

cases, the transformation efficiency was very high, yielding several thousands apramycin-

resistant exconjugants. After 3–5 days, single colonies were transferred to fresh SM agar 

plates containing apramycin and nalidixic acid. When sporulation was observed, the colonies 

were used to inoculate liquid cultures. 

 

3.1.3.3 Verification of the mutants  

After transformation of the expression construct CPhl8 into pseudomonads and 

streptomycetes, many antibiotic-resistant colonies were obtained in all cases. To verify the 

integration of the constructs into the genome of the different strains, primers apra_for and 

apra_rev were designed to amplify the apramycin resistance gene from the vector backbone of 

CPhl8. For the verification of the Pseudomonas mutants, a colony PCR was performed with 2 

randomly chosen colonies. 1 µl of an overnight culture was used as template for the PCR 

reaction. The Pseudomonas putida KT2240 wild type strain was used as a negative control, 

while DNA from the expression construct CPhl8 was used as a positive control. PCR products 

with the expected size (777 bp) were obtained for all mutants and for the positive control, 

whereas the negative control did not yield a PCR product (Figure 3.6). These result indicated 

the successful integration of the expression construct into the Pseudomonas putida genome. 

 

 
Figure 3.6: Verification of P. putida KT2240::CPhl8 mutants by colony PCR. 

Amplification of the apramycin resistance gene. Lane 1: P. putida KT2240::CPhl8#1; Lane 2: 
P. putida KT2240::CPhl8#2; Lane 3: P. putida WT; Lane 4: CPhl8 DNA. 
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For the verification of the Streptomyces mutants, genomic DNA was isolated from the 

mutants and from the wild type strain. A PCR was then performed using the apramycin 

primers to amplify the apramycin resistance gene from the vector backbone. Figure 3.7 

exemplifies one PCR reaction using four randomly chosen S. lividans TK24 mutants and wild 

type as template. The expected PCR product with a size of 777 bp was present in all mutants 

and in the positive control (CPhl8 DNA), but not in the wild type. PCR reactions were 

performed for all mutants. Integration of the expression construct into the genome of the 

different Streptomyces strains was confirmed in all mutants. 

 

 
 
 
Figure 3.7: Verification of S. lividans TK24::CPhl8 mutants by PCR. 

Amplification of the apramycin resistance gene. Lane 1: S. lividans TK24 WT; Lanes 2–5: S. 
lividans TK24::CPhl8 mutants #1–4; Lane 6: CPhl8 DNA. 

 

3.1.4 Heterologous expression of the phenalinolactone biosynthetic gene cluster 

In order to heterologously express the phenalinolactone pathway in pseudomonads and 

streptomycetes, cultivation conditions had to be established. Different media and temperatures 

were tested, as described below. 

 

3.1.4.1 Cultivation of pseudomonads 

Two mutants of P. putida KT2240::CPhl8 were inoculated into a 50 ml culture LB medium 

containing 1 ml XAD and tetracycline (12.5 µg/ml). In parallel, the wild type P. putida 

KT2240 was inoculated into a 50 ml culture LB containing 1 ml XAD without antibiotic. 

Cultivation was carried out at 16 °C and 30 °C for 3 days. The cultures were then harvested 

by centrifugation and the XAD was extracted with MeOH/acetone and submitted to HPLC-

MS analysis. 
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3.1.4.2 Cultivation of streptomycetes 

Streptomyces lividans TK24::CPhl8, S. coelicolor A3(2)::CPhl8 and S. coelicolor 

M512::CPhl8 were grown in 100 ml NL111 production medium containing apramycin (60 

µg/ml) at 28 °C for 6–8 days. In parallel, the corresponding wild type strains as well as the 

natural phenalinolactone producer Tü6071 were grown in production medium without 

antibiotic. The cultures were harvested by centrifugation and the supernatant was extracted 

with ethyl acetate and submitted to HPLC-MS analysis.  

 

3.1.4.3 HPLC-MS analysis  

3.1.4.3.1 Production profile of the natural producer Streptomyces TÜ6071 

Initially the production profile of an extract of the natural producer Tü6071 was analyzed by 

HPLC-MS to establish HPLC conditions for the detection of phenalinolactones. Dürr et al. 

[80] demonstrated previously that production of phenalinolactones in NL111 production 

medium produced the highest yields. The primary metabolites produced during cultivation in 

NL111 medium were phenalinolactones (PLs) A and D, whereas PLs B and C were not 

detected [80] (Figure 3.8). 

 
Figure 3.8:  Chemical structures of phenalinolactones A, B, C and D. 

 

Figure 3.9 shows the typical production profile of the natural producer Streptomyces Tü6071. 

Phenalinolactones were identified by comparison to the retention times (rt) and the MS data 

of authentic standards. Analysis was performed in negative ionization mode enabling 

detection of the phenalinolactone A and D parent ions (m/z [M–H]– = 714.3 (RT: 13.8 min) 

and m/z [M–H]– = 698.3 (18.1 min), respectively).  
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Figure 3.9: HPLC-MS analysis of the natural producer Streptomyces Tü6071.  

a) Base peak chromatogram (BPC) in negative ionization mode within a mass range of 100–
1100 B) Extracted ion chromatogram (EIC) of PL A with a mass of m/z [M–H]– = 714.3 c) 
Extracted ion chromatogram (EIC) of PL D with a mass of m/z [M–H]– = 698.3.  

 

Fragmentation of the parent ions leads to a characteristic fragmentation pattern (MS/MS 

fingerprint) that could be used to unambiguously identify PL A and PL D. Figure 3.10 shows 

the detected parent ions of PL A and PL D, and the corresponding MS/MS fragmentation 

patterns. The MS/MS fragmentation pattern of PL A exhibited characteristic fragmentation 

ions with masses m/z [M–H]– = 582.7, 600.5, 642.4, 670.4 and 686.4. The corresponding 

fragments for PL D were m/z [M–H]– = 584.7, 626.6, 654.4, 670.4. On the basis of these 

fragmentation patterns, it was possible to clearly identify phenalinolactones in the extracts of 

the heterologous host strains.  
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Figure 3.10: ESI-MS/MS fragmentation patterns of PL A and PL D.  

a) Parent ion of PL A with a mass of m/z [M–H]– = 714.3 detected at a retention time of 13.5 
min. b) MS/MS fragmentation pattern of PL A showing characteristic fragmentation ions. c) 
Parent ion of PL D with a mass of m/z [M–H]– = 698.3  detected at a retention time of 18.3 
min. d) MS/MS fragmentation pattern of PL D showing characteristic fragmentation ions. 

 

3.1.4.3.2 Production profile of the Pseudomonas mutants 

The basepeak chromatograms were analyzed for the presence of masses corresponding to PL 

A and PL D, but neither compound was detected in the extracts. Therefore, a new, higher 

selectivity and sensitivity HPLC-MS method was used (developed by Daniel Krug). This 

method detected the CID (collision-induced dissociation) fragmentation of compounds with 

masses 714.5 and 698.3 eluting between retention times of 12–14 min and 18–20 min, and 

was validated by analysis of the phenalinolactone A and D standards. However, analysis using 

this new method still failed to reveal the presence of phenalinolactones A and D.  
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3.1.4.3.3 Production profile of the Streptomyces mutants  

We next investigated the extracts of the Streptomyces mutants, using the previously-described 

method. Phenalinolactones A and D were detected in extracts of the natural producer 

Streptomyces Tü6071, and in the recombinant S. lividans and S. coelicolor strains harboring 

the pla gene cluster. As expected no phenalinolactones were present in extracts of the 

corresponding wild type S. lividans and S. coelicolor strains. This result clearly demonstrated 

the successful heterologous production of the terpene glycosides (Figure 3.11). 

 

 
 

Figure 3.11: HPLC/MS analysis of streptomycetes mutants carrying the PL pathway. 
 

A) BPC of natural phenalinolactone producer strain S. sp. Tü6071, S. lividans TK24 WT and S. 
lividans::CPhl8. B) Natural producer strain S. sp. Tü6071, S. coelicolor A3(2) WT and S. 
coelicolor::CPhl8. C) Natural producer strain S. sp. Tü6071, S. coelicolor M512 WT and S. 
coelicolor::CPhl8. The chromatograms show the negative ions within a mass range of 100–
1100 in auto MSn mode. CID fragmentation between retention times of 12–14 min and 16–18 
min was monitored for the masses 714.5 and 698.3, corresponding to the phenalinolactone A 
and D standards. The section in each chromatogram between 12–18 min is shown in expanded 
form on the right. PL A and/or D were detected in the extracts of the recombinant strains.  
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3.1.4.4 Optimization of heterologous PL production in Pseudomonas 

3.1.4.4.1 Promoter exchange 

As there was no PL detected in extracts of the Pseudomonas mutants harboring the pla 

biosynthetic pathway, we decided to exchange one of the native Streptomyces promoters 

against the inducible Pm-promoter. Importantly, the Pm-promoter had already been validated 

during the heterologous expression of the myxochromide biosynthetic pathway [35]. As the 

cluster is composed of 11 different transcription units (operons), we intended to introduce the 

Pm-promoter at a position which would drive transcription of the genes for the core 

biosynthetic machinery. Based on biosynthetic considerations, enzymes PlaT1–T6 comprise 

the machinery to biosynthesize the phenalinolactones scaffold [66]. The first precursor of PL 

biosynthesis is geranylgeranyl diphosphate (GGDP), which is generated by PlaT4 from 4 

monomers of isopentenyl pyrophosphate (IPP) (see Discussion Figure 4.2). PlaT6 and PlaT5 

are expected to be involved in IPP production. So these first three enzymes should be able to 

catalyze the formation of GGDP. PlaT1-PlaT3 then catalyze the formation of PL precursor 1 

and 2 (shown in Figure 4.2, Discussion part). Unfortunately, the corresponding genes (plaT1–

3 and plaT4–6) are located in different transcription units and exhibit different orientations 

(Figure 3.12). Therefore, we introduced the promoter in front of the gene plaM2 where the 

initial genes for biosynthesis are located (plaT4-6), expecting that overexpression of the early 

genes in the pathway would lead to the initiation of PL production or to the production of 

GGDP or PL precursors. For this, a cassette containing the Pm-promoter was amplified by 

PCR using CMch37 [35] as template, the xylS gene and the chloramphenicol resistance gene, 

as well as 50 bp homology arms to enable double homologous recombination. This cassette 

was introduced by Red/ET recombineering and exconjugants were selected on LB agar 

containing chloramphenicol (cm) (34 µg/ml) and apramycin (60 µg/ml).  

 
Figure 3.12: Introduction of the inducible Pm-promoter in front of plaM2 by Red/ET 

recombineeering. 
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The new construct CPhl10 was verified by restriction analysis (Figure 3.5) and subsequently 

transformed into the P. putida KT2240 by triparental conjugation. Integration of the construct 

into the chromosome was confirmed by colony PCR analysis, amplifying the apramycin 

resistance gene as described above (3.1.2.3.). Expression was induced by adding 1 mM toluic 

acid to the cultures after 2 h of cultivation. We expected at least that GGDP would be 

expressed when the core biosynthetic genes (plaT4-6) were under the control of the Pm-

promoter. However, HPLC-MS analysis still did not reveal production of PL precursors or PL 

production in extracts of the Pseudomonas mutants.  

 

3.1.4.5 Optimization of heterologous PL production in Streptomyces 

3.1.4.5.1 Changing cultivation conditions 

Production of PL in the heterologous Streptomyces strains was quantified using authentic PL 

standards. Production under standard conditions (NL111 medium at 28 °C; underlined in 

grey, Table 3.1) was much lower in the heterologous host strains (maximum 0.13 µg/L in S. 

lividans TK24) than in the native host S. Tü6071 (Table 3.1). In an attempt to optimize 

production in the heterologous hosts, different cultivation conditions (additional media and 

temperatures) were tested (Table 3.1), with growth at 28 °C. Production was highest under 

standard conditions in NL111 production medium (Table 3.1). In INA5 and SM medium, PL 

production was typically lower in the heterologous host strains then in the natural producer, 

while the same media yielded less phenalinolactones from the native host relative to 

cultivation in NL111 medium. Growth in NBG medium completely abolished production by 

all strains. These results indicated that PL production in NL111 medium was optimal relative 

to cultivation in INA5, SM and NBG media. 
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Table 3.1: Phenalinolactone production by Streptomyces Tü6071, S. lividans TK24, S. coelicolor 
A3(2) and S. coelicolor M512 during cultivation in different media at 28 °C. Highest 
production yield underlined in grey. 

 

Strain 
Production of 

phenalinolactone (µg/L) 

 NL111 INA5 SM NBG 

     

S.  Tü6071 500 200 200 - 

S. lividans TK24::CPhl8 0.13 0.10 0.05 - 

S. coelicolor A3(2)::CPhl8 0.01 0.01 �  - 

S. coelicolor M512::CPhl8 0.5 0.03 0.01 - 

     

 

We also evaluated cultivation at 37 °C. Under these conditions, phenalinolactone production 

by S. lividans was increased 100-fold compared to growth at 28 °C (Table 3.2). However PL 

production by the S. coelicolor mutants was completely abolished at this higher temperature.  

 
Table 3.2: Phenalinolactone production by Streptomyces Tü6071, S. lividans TK24, S. coelicolor 

A3(2) and S. coelicolor M512 during cultivation in NL111 medium at 28 °C and 37 °C.  
 

Strain 
Production of 

phenalinolactone (µg/L) 

 28 °C 37 °C 

   

S. Tü6071 500 200 

S. lividans TK24::CPhl8 0.13 10 

S. coelicolor A3(2)::CPhl8 0.01 - 

S. coelicolor M512::CPhl8 0.5 - 

   

 

3.1.4.5.2 Precursor feeding 

We also attempted to improve production by supplementation with a putative biosynthetic 

precursor. Because the core terpenoid backbone in phenalinolactone biosynthesis is derived 

from isoprenoid building blocks [66], we administered mevalonolactone to the culture 

medium. Mevalonolactone is the lactonized form of mevalonate, a direct precursor in the 

mevalonate pathway for the construction of isoprenoid units [74]. Most Streptomyces strains 

employ the non-mevalonate pathway for the formation of isoprenoids, but some strains 
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additionally utilize the mevalonate pathway to produce terpenoid antibiotics [74]. However, 

feeding of 1 mM mevalonolactone did not increase phenalinolactone production in 

Streptomyces sp. Tü6071 nor in the heterologous host strains  

 

3.1.4.5.3 Promoter exchange 

We also evaluated the effect of exchanging a number of the native promoters against the 

strong constitutive ermE promoter [81]. We intended to introduce the promoter at the same 

position (between plaO2 and plaM2) as in the construct for the PL expression in the 

pseudomonads (3.1.4.4.1), as this transcriptional unit contained the genes for the core 

biosynthetic gene cluster. We expected that at least GGDP or precursor 1 or 2 should be 

expressed (Figure 4.2, Discussion part). For this, we constructed a bidirectional promoter so 

that transcription in both transcription units containing the core genes would be driven (Figure 

3.13). We therefore amplified the ampicillin (amp) resistance gene with primers containing 50 

bp homology arms to enable homologous recombination. The ermE promoter was also 

introduced using the primers, as it is only ca. 60 bp in size. The amplified cassette was 

introduced by Red/ET recombineering, and recombinant mutants were selected on LB agar 

containing amp (100 µg/ml) and apra (60 µg/ml). The new construct CPhl19 was verified by 

restriction analysis, and subsequently transformed into the three heterologous host strains. In 

each case, integration of construct CPhl19 into the genome was verified by PCR, as described 

earlier (3.1.3.3.). 

 
Figure 3.13: Introduction of two ermE promoters between plaO2 and plaM2 by Red/ET 

recombineering. 
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HPLC-MS analysis of the extracts from the mutants revealed that neither PL nor any PL 

precursors were produced in the mutants. Instead PL production was completely abolished.  

 

3.1.5 Genetic modification of the pla biosynthetic gene cluster 

The established heterologous expression system enabled attempts to engineer the PL 

biosynthetic pathway to generate novel analogs. In theory, using Red/ET recombineering, we 

could perform single or multiple in-frame deletions at any desired position within the 

expression construct. As proof-of-principle, we aimed to modify PL biosynthesis by deletion 

of selected genes from the CPhl8 expression construct. 

 

3.1.5.1 Deletion of plaA6 

The first aim was to modify the pla gene cluster by deletion of the glycosyl transferase-

encoding gene plaA6 from the CPhl8 expression construct, to generate a phenalinolactone 

derivative lacking the L-amicetose moiety. For this, a kanamycin resistance cassette was 

amplified by PCR to incorporate flanking flippase (FLP) recombinase target sites (FRT sites), 

as well as 50 bp homology arms to enable double homologous recombination (Figure 3.14). 

After replacement of the target gene (plaA6) by the selection marker (kan) using Red/ET 

recombineering, the kan gene was excised from the expression construct by FLP-

recombinase-catalyzed site-specific recombination, to create a markerless in-frame deletion. 

The modified pla gene cluster was again verified by restriction analysis. The construct 

CPhl18 was subsequently transformed into the three heterologous Streptomyces strains by 

conjugation, and integration of the construct into the chromosome was confirmed by PCR 

analysis by amplifying the apramycin resistance gene, as described earlier. 
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Figure 3.14: Deletion of the glycosyl transferase encoding gene plaA6. 

Red/ET recombineering was used to replace plaA6 with the kanamycin resistance 
cassettewhich was flanked by FRT recognition sites. Incubation with FLP recombinase at 37 
°C led to a markerless deletion of plaA6 in the pla cluster.  

 

3.1.5.2 Deletion of plaP2 and plaP5 

By deletion of the acyltransferase encoding gene plaP2, we aimed to generate a derivative 

lacking the 5-methylpyrrole-2-carboxylic acid moiety. The gene plaP5 is proposed to be 

responsible for the methylation of the pyrrole carboxylic acid [66], and thus deletion of this 

gene was expected to give an unmethylated PL derivative. To create these deletions, we 

exploited the Cre/lox system instead of the FLP/FRT system. Using the Cre system would 

enable us to do two deletions in parallel using the FRT system too. Therefore a kanamycin 

resistance cassette was amplified by PCR to incorporate Cre recombinase target sites (loxP 

sites), as well as 50 bp homology arms to enable double homologous recombination 

(analogous to Figure 3.14). After replacement of the target gene (plaP2 or plaP5) by the 

selection marker (kan) using Red/ET recombineering, the kan gene was excised from the 

expression construct by Cre-recombinase-catalyzed site-specific recombination, to create a 

markerless in-frame deletion. The modified pla gene cluster was subsequently transformed 

into three heterologous host strains by conjugation, and integration of the construct (CPhl14 

(Δplap2) and CPhl16 (Δplap5) into the chromosome was confirmed by PCR analysis by 

amplifying the ampramycin resistance gene, as described earlier.  
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3.1.5.3 Verification of the new PL derivatives by high-resolution Orbitrap MS analysis 

Nine mutant strains were obtained after conjugation with the different constructs listed in 

Table 3.3. The production profiles of the mutant strains were analyzed by HPLC-MS, and 

compared to that of the respective wild type strains, and the natural phenalinolactone producer 

Streptomyces  Tü6071. The expected masses of the new derivatives are also listed in Table 

3.3.  

 
Table 3.3: Streptomyces mutants obtained after conjugation with the modified constructs 

Construct Modification in the 
biosynthetic pathway Heterologous host 

Sum 
formula of 

expected PL 
derivatives 

Expected  
mass [M–H] – 

CPhl14 ΔplaP2 S. lividans TK24 C37H50NO11 684.3 

CPhl14 ΔplaP2 S. coelicolor A3(2) C37H50NO11 684.3 

CPhl14 ΔplaP2 S. coelicolor M512 C37H50NO11 684.3 

CPhl16 ΔplaP5 S. lividans TK24 C25H35O8 463.3 

CPhl16 ΔplaP5 S. coelicolor A3(2) C25H35O8 463.3 

CPhl16 ΔplaP5 S. coelicolor M512 C25H35O8 463.3 

CPhl18 ΔplaA6 S. lividans TK24 C31H40NO9 570.3 

CPhl18 ΔplaA6 S. coelicolor A3(2) C31H40NO9 570.3 

CPhl18 ΔplaA6 S. coelicolor M512 C31H40NO9 570.3 

 

As expected, phenalinolactones A and D (m/z [M–H]– = 714.5 at retention time 13.8 min and 

m/z [M–H]– = 698.5 at 18.1 min) were detected in the extract of the natural producer, but not 

in extracts of the wild type heterologous hosts. In the extract of the strain S. coelicolor 

M512::CPhl18, we detected a new compound designated as PL E (m/z [M–H]– = 570.3 at 13.0 

min) which differed from PL D by 128 atomic mass units, consistent with the anticipated loss 

of the 4-O-methyl-L-amicetose moiety (Figure 3.15). MS2 analysis confirmed that the new 

compound had a similar fragmentation pattern to the PLs (shown in Figure 3.16). 
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Figure 3.15: HPLC/MS analysis of S. coelicolor::CPhl18. 

A) BPC of parental strain S. coelicolor M512 and B) S. coelicolor M512::CPhl18 (plaA6 
deletion). A new compound, designated PL E, was detected in the extract of S. coelicolor 
M512::CPhl18 at a retention time of 13.0 min. C) Fragmentation pattern of PL E (molecular 
ion, m/z [M–H]– = 570.3).  

  

The compound was not detected in extracts of the S. lividans::CPhl18 and S. 

coelicolor::CPhl18 mutants, nor in the extracts of the other heterologous host strains carrying 

the constructs CPhl14 and CPhl16. No expected derivatives could be detected in the extracts 

of the mutants carrying constructs CPhl14 and CPhl16 instead PL production was completely 

abolished in these mutants. 

 

To verify the identity of PL E from S. coelicolor M512::CPhl18, we analyzed the compound 

by high resolution LC-coupled Fourier transform-Orbitrap MS. This analysis confirmed the 

expected elemental composition of C31H40O9N1 (measured m/z [M–H]– = 570.26733; 

calculated m/z [M–H]– = 570.27086; Δ = –3.52166 amu). Additional structural information 

was obtained using tandem-MS and subsequent comparison of the MS2 fingerprints with 

those obtained for the glycosylated compound PL D. The principal collision induced 

dissociation (CID)-fragmentations for the standard substance PL D and the new derivative PL 

E were assigned as summarized in Table 3.4. Fragmentation of the terpenoid backbone as 

well as of the sugar and the pyrrole-carboxylic acid groups was not observed in the MS2 
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spectra of PL D, indicating that despite the loss of the sugar group, the fragmentation pattern 

of phenalinolactones D and E should be very similar. Indeed, comparison of the fragmentation 

pattern of both molecules showed that they exhibited the same set of peaks, but offset by a 

constant mass difference corresponding to L-amicetose (Table 3.5 and Figure 3.16). The 

peaks are derived from the parent molecules by expulsion of CO, CO2 and H2O, although the 

precise locations of these losses remain to be elucidated. The expulsion of C4H2O4, which 

occurred from both compounds, can be attributed to the γ-butyrolactone. These data strongly 

suggest that the PL E is the desired unglycosylated derivative of PL D. 

 

 
 
Figure 3.16: Verification of the unglycosylated derivative PL E by LTQ-Orbitrap MS analysis. 

Accurate mass determination of the standard substance PL D (A) and the unglycosylated 
compound PL E (B) with high resolution LC-coupled Orbitrap-MS yielded molecular ions of 
m/z [M–H]– = 698.35504 and m/z [M–H]–  = 570.26733, respectively, suggestive of the 
elemental formulas C38H52O11N1 and C31H40O9N1. Additional support for structure assignment 
was provided by MS2 studies, which showed that PL D and PL E have the same fragmentation 
patterns, but with the peaks offset by a constant mass corresponding to the L-amicetose moiety 
missing in PL E. 
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Table 3.4 
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3.2 Identification of the GE81112 biosynthetic gene cluster 

3.2.1 Goals 

As the GE81112 biosynthetic gene cluster had not been identified, the first objective was to 

clone the cluster in order to allow studies of the underlying biosynthesis. (For this, we aimed 

to generate a cosmid library based on the E. coli/Streptomyces shuttle vector pOJ436 [10]). 

We then hoped to use in vitro protein expression and targeted gene inactivation to obtain 

deeper insights into the biosynthesis. To support this work, we aimed to establish genetic 

manipulation methods for the strain, starting with optimization of production and cultivation 

conditions for the GE81112 compounds.  

 

3.2.2 Production profile of Streptomyces 14386 

The GE81112 producing Streptomyces strain 14386 was provided by the company KtedoGen 

(Italy). Initial experiments for cultivation optimization to produce GE compounds in shake 

flasks were carried out by Margherita Sosio (KtedoGen). Sosio tested two different media, 

INA5 and T6, for both cultivation of the strain and GE production. Precultures were grown in 

V6 medium for 96 h, and then used to inoculate INA 5 and T6 production medium (1:100). 

The GE81112 production results are shown in Table 3.5.  

 
Table 3.5: GE81112 compounds produced under different cultivation conditions.  

 

Medium/cultivation 

time 

LC/MS 

[M+H]+ 

 INA 5 (96 h) ND 

 INA 5 (140 h) ND 

 T6 (96 h) ND 

 T6 (140 h) 644, 659 

ND: Not Detected 

 

Detection of GE81112 factor A and B by LC/MS was only possible after cultivation in T6 

medium for 140 h. These results showed that T6 (cultivation time: 140 h) is the best medium 

identified to date for production of GE compounds. To reproduce these results in our lab, we 

cultivated the strain under the same conditions and analyzed the extracts for the presence of 

the GE metabolites. Overall, our results were nearly identical to those obtained by KtedoGen. 

For example, during cultivation in INA5 medium, GE compounds could never detected by 
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MS. During cultivation in T6 medium for 140 h, low amounts of the main GE compound B 

(m/z [M+H]+ = 659.22953) were detected by high resolution MS analysis on an Orbitrap LTQ 

mass spectrometer with the sum formula C24H36O10N10Cl1 (see Figure 3.17).  

 
Figure 3.17: Analysis of the extracts of strain S. 14386 by high-resolution MS on an LTQ Orbitrap 

mass spectrometer.  

A) Base peak chromatogram (BPC) with B) extracted ion chromatogram (EIC) showing a 
molecular ion of m/z [M+H]+ = 659.23254, as well as C) the elemental formula. 

 

Despite trying several different cultivation conditions, production of the GE compounds 

remained low or even undetectable by MS. Due to the poor yields, it was not possible to 

obtain an MS/MS spectrum of the substances from the culture extract. These findings are in 

full agreement with the results obtained by KdetoGen. Although production was low in T6 

medium detection of the GE81112 B compound was reliable so that we used these cultivation 

conditions for future experiments. 

 

During analysis of the culture extracts from S. 14386, it became apparent that the strain was 

producing additional metabolites. These substances first attracted attention because one of 

them (659) had nearly the same mass by HPLC-MS analysis as the corresponding GE81112 

compound B and also incorporated chlorine as shown by the isotopic pattern (Figure 3.18).  
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Figure 3.18: HPLC/MS analysis of an extract of strain S. 14386. 

A) Base peak chromatogram (BPC) with extracted ion chromatograms (EIC) showing 
molecular ions of m/z [M+H]+ = 631.3, 645.3 and 659.3. B) Mass spectrum of the three 
substances showing isotopic patterns characteristic of chlorinated compounds. 

 

A detailed analysis of the extract revealed three likely related substances with masses of m/z 

[M+H]+ = 631.3, 645.3, and 659.3, which all showed an isotopic pattern which is typical for 

chlorinated substances (Figure 3.18 B)). To obtain accurate mass information, the compounds 

were analyzed at high resolution using an Orbitrap LTQ mass spectrometer. Determination of 

the exact masses and the corresponding elemental formulae (Figure 3.19) confirmed that the 

compounds differed by 14 mass units from each other. Correspondingly, they share the same 

overall fragmentation patterns, but with peaks offset from each other by 14 mass units. 



Results 82 

 82

 
Figure 3.19: Analysis by high resolution MS of the substances with molecular masses 631, 645, 659.  

The determined accurate masses and molecular formulae are shown. A) Pseudo-molecular ion 
of [M+H]+=631.3, B) fragmentation pattern of molecular ion [M+H]+=631.3, C) Pseudo-
molecular ion of [M+H]+=645.3, D) fragmentation pattern of molecular ion [M+H]+=645.3, E) 
Pseudo-molecular ion of [M+H]+=659.3 F) fragmentation pattern of molecular ion 
[M+H]+=659.3  

 

This analysis suggested that the substances are related to the known GE series of compounds, 

as they are chlorinated and have similar elemental formulas; however, as the fragmentation 
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patterns differed, the compounds are not identical but remain interesting to investigate. 

Finally the MS analysis of the production profile revealed that we could now detect the main 

GE81112 factor B compound. In the next step we aimed to generate a cosmid library to allow 

us to identify the corresponding biosynthetic gene cluster. 

 

3.2.3 Generation of a cosmid DNA library 

One strategy for cloning and identifying a gene cluster is to generate a gene library in E. coli. 

A gene library is a population of organisms, each of which carries a DNA molecule that was 

inserted into a cloning (e.g. cosmid) vector. Ideally, all of the cloned DNA molecules 

represent the entire genome of the organism meaning that the desired biosynthetic gene 

cluster should be also present there. Knowing the size of the genome of the organisms from 

which one would generate the library one can calculate the approximately number of cosmids 

containing the gene cluster. When we assume that the average size of a Streptomyces genome 

is 9 Mbp and a cosmid vector can carry ca. 40 kb of insert DNA then we need to generate ca. 

225 cosmid clones to clone the whole genome. To get a 10-fold coverage of the genome 2250 

cosmid clones need to be obtained. As biosynthetic gene clusters are normally between 30 and 

60 kb approximately 30-60 cosmids are expected to harbor parts of the gene cluster. The 

cosmids containing the desired gene cluster can then be identified by screening of the cosmid 

library with labeled probes (Figure 3.20).  
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Figure 3.20: General overview of the strategy for generation of a cosmid library. 

Genomic DNA of the desired organism is isolated and cloned into cosmid vectors. The desired 
cosmid(s) containing the whole biosynthetic gene cluster or portions of it can then be identified 
with a labeled probe. A common cosmid vector is the E. coli/Streptomyces shuttle vector 
pOJ436 [10]. 
 

As a cosmid vector, we used the E. coli/Streptomyces shuttle vector pOJ436 [10]. Genomic 

DNA from the GE81112 producing strain was isolated using the salting out procedure 

(described in section 2.10.1). The isolated DNA was then partially digested with Sau3A to 

obtain fragments 30–35 kb in size. Fragments of the correct size were pooled and used for 

ligation into the PvuII/BamHI-digested vector pOJ436. Figure 3.21 shows partially-digested 

DNA generated by using different amounts of enzymes. Fractions 6 and 7 were chosen for the 

ligation, as they contained the greatest proportion of fragments between 35–40 kb. The two 

fractions were pooled together and ligation was carried out as described in section 2.16.1. To 

determine the phage titer different amounts of infected E. coli were plated out yielding 

different amounts of cosmid clones (see section 2.16.1).  
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Figure 3.21: Digestion of genomic DNA from S. 14386 with Sau3A. 

Lane 1: Ladder; Lane 2–7: variable digestion of genomic DNA obtained by 
using different amounts of enzyme.  
 

We investigated whether 19 randomly choosen cosmid clones 

contained the correct insert size by digestion with BamHI 

(Figure 3.22). In Figure 3.22 one can see that most of the clones 

showed different fragments larger then 10 kb indicating that 

most of the analyzed clones contained an insert with an average 

size of 30–40 kb. Based on this information, we created the 

cosmid library containing 2304 cosmid clones in order to reach 

a 10-fold coverage of the genome of S. 14386 (section 2.16.2).  

The cosmid library was then ready for hybridization with a suitable probe to identify the 

GE81112 biosynthetic gene cluster.  

 

 
Figure 3.22: Analysis of 19 randomly chosen cosmid clones. 
 

The clones were digested with BamHI to determine whether they contained different inserts 
and inserts of the correct size.  

 

 

3.2.3.1 Retrobiosynthetic analysis of GE81112 to design suitable probes 

To find suitable probes for the hybridization of the cosmid library, we applied a 

“retrobiosynthetic” strategy which allowed us to predict some aspects of the genetic 

composition of the gene cluster from the structure of the natural product. As described 

previously, GE81112s were assumed to derive from a non-ribosomal peptide synthetase. It is 

known that for these systems there is a strong correlation between compound structure and 

biosynthetic organization (even for some domains in non-linear systems) [64]. For example, it 
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is possible to predict with some degree of confidence, the building blocks incorporated into 

the structure and therefore the number of modules and the complement of domains in the 

NRPS, as well as which functionalities are likely to arise by  post assembly-line processing. 

Thus, according to the molecular structure of GE81112, we were able to propose a hypothesis 

for the complement of genes that was likely to be present in the GE81112 gene cluster. 

Assuming that the pathway will be co-linear (see section 1.4), the biosynthetic gene cluster 

should incorporate four NRPS chain extension modules which are responsible for activating 

and introducing the four observed amino acids (Figure 3.23). Each of the modules was 

expected to incorporate the three standard NRPS domains, C, A and PCP. We also anticipated 

that a halogenase would be involved in the chlorination of all three GE81112 compounds.  
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Figure.3.23: Structures of GE81112 metabolites.  

The different building blocks were expected to be derived from different amino acids and are 
marked in different colors. Red: pipecolic acid, green: ornithine/glutamine, blue: histidine, 
purple: histidine  

 

We also hypothesized that the starter unit for GE81112 biosynthesis would be pipecolic acid, 

or its hydroxylated derivative (shown in red in Figure 3.23). As the stereochemistry of the 

GE81112 compounds has not been solved yet, we did not know if L-or D-pipecolic acid would 

be incorporated. On the basis of published precedent [82], however, we assumed that the 

pipecolic acid would be formed from lysine via the action of a lysine cyclodeaminase (Figure 

3.24).  
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Figure 3.24: Example of conversion of L-lysine to L-pipecolic acid by the action of a lysine 
cyclodeaminase as it is known from rapamycin.  

 

This proposal is in accordance with the in vitro characterization of RapL, a cyclodeaminase, 

which has been found in the rapamycin biosynthetic gene cluster cluster [82]. Other 

cyclodeaminases have been identified in the friulimicin [83], the virginiamycin S [84] and in 

the tubulysin biosynthetic gene clusters [85]. The in vitro reaction has also been reconstituted 

for LipE from the friulimicin gene cluster [83] and TubZ from the tubulysin biosynthetic gene 

cluster (Y. Chai, A. Sandmann, unpublished results). The pipecolate moiety in GE81112 

differs from those in rapamycin and tubulysin, in that it is hydroxylated at position 3. This 

step was anticipated to be catalyzed by a β-hydroxylase, but the timing (i.e. before or after 

incorporation) could not be predicted. Another interesting feature of the structures is the 

amino acid which is incorporated second – aminohydroxypentanoic acid (building block 2, 

marked in green) – which we expected to derive from glutamine/glutamate or ornithine. We 

also hypothesized that the third and fourth amino acid building blocks (indicated in blue and 

purple) are likely to derive from histidine.  

 

3.2.4 Design of the probes 

On the basis of these predictions, we were able to design suitable probes for the screening of 

the cosmid library. For this, it is desirable to design a probe which is specific for an unusual 

feature of the cluster; as such a probe is likely to improve the chances of finding the correct 

cosmid. As described above, we predicted that a cyclodeaminase should be present in the 

genome. As such cyclodeaminases are relatively rare in biosynthetic pathways [86], this gene 

was judged to be a good candidate for trying to locate the GE81112 biosynthesis gene cluster 

in the genome of S. 14386. We therefore designed a probe based on cyclodeaminase 

sequences. To create the probe, we used specific primers to amplify two known 

cyclodeaminase genes – tubZ [85] (primers: TubZ_up and TubZ_down (section 2.7.2.2.)) 

from the tubulysin cluster and rapL [87] from the rapamycin cluster (primers: RapL_up and 
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RapL_down (2.7.2.2.)). The amplificates were pooled and used to probe the cosmid library at 

low stringency. To check if the probe worked, we hybridized the genomic DNA of S. 14386 

(digested with different enzymes) with the probe which yielded several distinct hybridization 

signals, indicating that the cosmids containing cyclodeaminase genes were likely present, and 

therefore that the library was likely to contain the desired cluster. 

As an alternative approach, we designed an additional probe to identify NRPS genes. For this, 

we used degenerate NRPS primers (RevA3 and PSLGG) (2.7.2.2.) which had already been 

employed successfully to identify NRPS genes in myxobacteria [88-90]. These primers 

amplify A domains between the structural regions A3 and A6 [91], where the amino acid 

binding pocket is located, giving a 1.3 kb PCR fragment. The PCR was carried out using a 

step-wise gradient with different annealing temperatures (46–52 °C) using the S. 14386 DNA 

as template. Several of the obtained PCR fragments were cloned into PCR 2.1 TOPO and 

sequenced. Different A domain binding pockets were obtained after sequencing (presumably 

specific for the incorporation of valine, threonine, glutamine) indicating that the probes had 

successfully amplified various A domains. As it was not possible to correlate the substrate 

specificities of the A domains to the GE81112 structure, we were unable to select a single A 

domain as a probe, and therefore decided to use the whole PCR reaction containing all of the 

amplified A domains. This approach was expected to ensure a high diversity of A domain 

hybridization so that as many as possible A domains would hybridize.  

 

3.2.5 Identification of an unknown NRPS biosynthetic gene cluster 

3.2.5.1 Identification of two cosmids containing NRPS genes 

Using both the cyclodeaminase and A domain probes at low stringency, we identified several 

cosmids which hybridized with one or both of the probes (Figure 3.25). Ten of these cosmids 

were then chosen for a more detailed analysis. A PCR with the degenerate NRPS primers was 

performed to verify the hybridization results, yielding the expected 1.3 kb fragment in each 

case. PCR with the cyclodeaminase primers was not successful; this result was expected, 

however, as the primers used were not degenerate, and so would not have been expected to 

target the particular cyclodeaminase gene(s) present in the S. 14386 genome. The DNA of the 

ten cosmids was isolated, and digestion with different enzymes was performed to evaluate the 

restriction patterns and to check if similar restriction fragments for different cosmids were 

obtained. This result would indicate that the same DNA sequence (biosynthetic gene cluster) 

was present on the cosmids.  
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Figure 3.25: High density colonies filters. 

A) Hybridization with the cyclodeaminase probe. B) Hybridization with the NRPS probe. 
 

Two of the cosmids showed similar restriction patterns, indicating that they contained 

overlapping sequence. End sequencing (Primers T4 and T7 (Table 2.12)) revealed that one of 

the cosmids (AI6) contained NRPS sequences (Table 3.6), and so this cosmid and the 

overlapping one were sequenced in their entirety. 

 
Table 3.6: End sequencing results for cosmids FD10 and AI6 with T4 and T7 primers 

Cosmid Homology (Name, Strain, Database no.) Identity Score 
E-

Value 
FD10_T4 Polyketide synthase type I, Streptomyces aizunensis, 

gi/62737770/AAX98186186.1 
40% 37.4 bits 0.26 

FD10_T7 Glutamate synthase, small subunit, Streptomyces 
avermitilis,gi/29832732/ref/NP827366.1 

89% 228 bits 2e-79 

AI6_T4 Hypothetical protein SAV2451, Streptomyces 
avermitilis MA-4680, gi/29828993/ref/NP823627.1 

83% 268 bits 3e-70 

AI6_T7 Peptide synthetase 2, Streptomyces filamentosus 
gi/60650533/gb/AAX31558.1 

51% 304 bits 6e-81 

 

3.2.5.2 Annotation of the unknown biosynthetic gene cluster 

The two cosmids were sequenced at the HZI (Helmholtz Center for Infection Research) in 

Braunschweig, in the Department of Genome Analysis. The obtained sequence was then 

analyzed for the presence of putative open reading frames (orfs) with FramePlot 2.3.2 [92], 

and preliminary functional assignments of individual orfs were made by comparison of the 

deduced gene products with proteins of known function in the BLAST database. Sequence 

analysis of cosmids AI6 and FD10 revealed three orfs for NRPS biosynthesis each containing 

four modules, which are all transcribed in the same direction (Figure 3.26 and Table 3.7). The 

modules include typical NRPS domains C, A and PCP domains, as well as E domains. 
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Figure 3.26: Sequencing results from cosmids FD10 and AI6.  

Key:  orange, NRPS and PKS genes; brown, regions which are shared between cosmids AI6 
and FD10. 
 
 

Table 3.7: List of NRPS genes from cosmids FD10 and AI6 

Orf Proposed function Identity/similarity to protein/origin 

Cosmid FD10   

nrps1_FD10 NRPS: A1 PCP1 C2 A2 PCP2 

E2 

52%, 64%: SACE4288, 

Saccharopolyspora erythraea 

nrps2_FD10 NRPS: C3 A3 PCP3 C4 A4 

PCP4 E4 

47%, 58%: CDA peptide synthetase I, 

Streptomyces coelicolor A3(2) 

nrps3_FD10 NRPS: C5 54%, 70%: pstC, Actinoplanes friuliensis 

Cosmid AI6   

nrps1_AI6 NRPS: A1 PCP1 E1 51%, 63%: SACE4288, 

Saccharopolyspora erythraea 

nrps2_AI6 NRPS: C2 A2 PCP2 C3 A3 

PCP3 E3 

47%, 58%: CDA peptide synthetase I, 

Streptomyces coelicolor A3(2) 

nrps3_AI6 NRPS: C4 A4 50%, 65%: pstC, Actinoplanes friuliensis 

 

The nrps1_FD10 gene from cosmid FD10 most likely starts with an ATG which is located 9 

bp downstream of a putative ribosome binding site (RBS) GAGG. nrps1_FD10 appears to be 

part of an operon with nrps_FD10_2-3. nrps2_FD10 represents another NRPS with a putative 

RBS (GGAG) upstream from the start codon ATG. The subsequent gene nrps3_FD10 
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encodes a NRPS protein, which only contains a C-domain. nrps3_FD10 starts with GTG, and 

a RBS (GGAG) is located 8 bp upstream. On the basis of sequence analysis and restriction 

mapping, it was expected that the two cosmids would contain portions of the same 

biosynthetic gene cluster, and would therefore share an overlapping region. However, 

annotation of cosmid AI6 revealed that only the nrps2_AI6 gene showed exactly the same 

sequence as nrps2_FD10. The other two genes, nrps1_AI6 and nrps3_AI6, exhibited some 

sequence identity to the corresponding FD10 genes, but were not identical along their full 

lengths. Specifically, nrps1_AI6 is only half the size of nrps1_FD10, while only a portion of 

nrps3_AI6 is present in nrps3_FD10. Additionally gene nrps3_AI6 is interrupted at the end of 

the cosmid, so it is not clear how large this gene cluster actually is. Taken together, these 

observations indicate that the clusters might have arisen from gene duplication, as they are 

overall highly similar, though not identical.  

 

At this point, it remained to establish which of the two clusters, if either, was responsible for 

the biosynthesis of GE81112. The presence of four modules in each gene cluster was 

consistent with the incorporation of four amino acids into the corresponding products, so no 

decision could be made on that basis. We therefore performed a detailed sequence analysis of 

the NRPS domains from each module.  

 

3.2.5.3 Analysis of the NRPS domains 

3.2.5.3.1 A domains 

NRPS include a specific adenylation domain to select each amino to be incorporated into the 

peptide product; the sequence of A domains in the NRPS dictates the primary structure of the 

peptide product. A domains contain 10 highly-conserved core motifs (A1─A10), where the 

region between motifs A3 and A6 forms the amino acid binding pocket [91]. To determine the 

substrate specificity of the A domains in the putative GE81112 clusters, each of the A 

domains was aligned with A domains from the gramicidin, rapamycin and tubulysin 

synthetases. All ten core motifs were identified in each A domain from both cosmids, 

indicating that all A domains are functional.  
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Figure.3.27: Consensus core motifs of A domains from cosmid FD10. 

The ten core motifs A1–A10 of the NRPS A domains are shown. The A domains from cosmid 
FD10 were compared with known A domains from NRPSs of gramicidin (GrsA), rapamycin 
(RapP) and tubulysin (TubB). The amino acids marked in green match the consensus motif for 
each region. “x” can be any amino acid. 

 

The substrate specificity of A domains can be predicted using the specificity-conferring code 

of adenylation domains [93;94]. The code was developed by two different groups [93;94] 

using the crystal structure of the phenylalanine-activating A domain PheA from the 

gramicidin synthetase (GrsA) from Bacillus brevis. The crystal structure led to the 

identification of the 8 residues that form the substrate binding pocket. By comparing the 

sequence of PheA, the structure of which was known, with the sequence of 160 other 

adenylation domains, eight residues that (putatively) form the amino acid binding pockets 

were identified. The signature sequences for different substrate specificities were then 

determined from groups of domains activating the same substrate. This code now allows the 
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substrates of uncharacterized or unknown A domains to be predicted from the primary 

sequences. Nevertheless some limitations of the code should be noted. First, there is only a 

limited amount of sequence information available for A domains, and thus it is currently 

impossible to discern with confidence consensus specificity sequences for all amino acids. 

Furthermore, NRPS are not restricted to proteinogenic substrates and more then 300 are 

known to be incorporated but the codes currently available are mostly restricted to 

proteinogenic amino acids. A clear shortcoming of the available biochemical data is that it is 

limited mostly to A domains from E. coli, Bacillus sp. and Pseudomonas sp. Actinomycetes, 

including notably Streptomyces, are largely missing from the essential database. 

 

In order to predict the substrate specificity of the FD10 and AI6 A domains from the 

sequenced cosmids, the A domains were aligned against the A domain from the gramicidin A 

synthetase (GrsA), and the 8 residues that form the amino acid binding pocket were identified 

(Figure 3.28; shown for A domains from cosmid FD10).  

 
Figure.3.28: Alignment of A domains from cosmid FD10 with the A domain of GrsA. 

grey: core motifs of A domain; black: 8 residues that form the amino acid binding pocket 
 

Additionally the sequence was cross-checked with the bioinformatics programs 

(http://www.tigr.org/jravel/nrps/ and http://www-ab.informatik.uni-tuebingen. de/ 

toolbox/index.php?view=domainpred) which also allow substrate specificities to be predicted. 

Sequence analysis of the code residues from all of the A domains from both clusters allowed 

the prediction of substrate specificity in several cases (Table 3.8).  
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Table 3.8: Putative A domain ‘code residues’ within A domains from both clusters  
 

                        Position of the amino acid within the A domain 

 235 236 239 278 299 301 322 330 
Activated 

amino acid 
prediction 

 

Identitiy 
to 

protein 

FD10_A1 D A V D F G T I No hit  

FD10_A2 D A L L I G A V Phe/Trp 75% 

FD10_A3 D F W S V G M V Thr 87% 

FD10_A4 D A A Q L G V I No hit  

AI6_A1 D A L L I G A V Phe/Trp 75% 

AI6_A2 D F W S V G M V Thr 87% 

AI6_A3 D A A Q L G V I No hit  

AI6_A4 D V F S V A V V No hit  

 

When identity to known A domains could not be found in the database for the 8 amino acid 

residues, no hit was predicted from the bioinformatics program. We also compared the A 

domains manually with the known A domains which were published by Challis et al. [94]. 

Despite the use of multiple methods no substrate specificity could be predicted for FD10_A1, 

FD10_A4, AI6_A3 and AI6_A4. 

 

Consistent with the observation that both clusters exhibited an overall high level of sequence 

similarity, three of the A domains from each cluster showed the same apparent substrate 

specificity (FD10_A2 and AI6_A1, FD10_A3 and AI6_A2 and FD10_A4 and AI6A3). 

FD10_A2 (which showed the same specificity as AI6_A1) exhibited 75% identity to the 

specificity pocket of the TycB-M2 A domain in Bacillus brevis, which selects and activates L-

phenylalanine or L-tryptophan. Sequence analysis of FD10_A3 (same specificity as AI6_A2) 

revealed 87% identity to the specificity pocket of the SyrE-M7 A domain in Pseudomonas 

syringae, which is involved in selection and activation of L-threonine. Analysis of FD10_A1, 

FD10_A4 and AI6_A3 and AI6_A4 A-domains revealed that the identified code residues did 

not allow a prediction of the specificity.  
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3.2.5.3.2 PCP, C and E domains 

The PCP, C and E-domains were analyzed to determine whether or not they were likely to be 

functional, which would support the hypothesis that the clusters act to biosyntheize a 

tetrapeptide. The peptidyl carrier protein (PCP) (or thiolation (T) domain) is the site of 

substrate attachment during chain elongation [95]. These proteins show a conserved signature 

sequence LGx(HD)S(LI), where the central S is the point of covalent attachment of the Ppant 

prosthetic group. The signature sequence including the active serine was found in all PCP 

domains from both cosmids FD10 and AI6, indicating that the domains should be activated to 

participate in chain extension.  

 
Figure 3.29: PCP consensus motif.  

The PCP domains from cosmid FD10 were compared with known PCP domains from the 
gramicidin (GrsA), surfactin (SrfA), tyrocidine (TycA) and calcium-dependent antibiotic 
(CDA) NRPSs. The amino acids marked in grey match the consensus motif. “x” can be any 
amino acid. The highly conserved serine residue (site of Ppant attachment) is indicated in 
black. 

 

C domains are responsible for the condensation of two amino acids activated on adjacent 

modules. These domains incorporate seven highly-conserved core regions, all of which were 

found in the C domains in both cosmids FD10 and AI6. We also analyzed the epimerase 

domains, which are responsible for substrate epimerization (formation of D-amino acids). 

Again, the seven characteristic conserved motifs for all E domains could be identified in the E 

domains on both cosmids. These results demonstrate that, in principle, all modules are active 

and so each system should be able to generate a tetrapeptide. Thus, these results did not allow 

us to prove or exclude that one or both of the clusters are responsible for the biosynthesis of 

GE81112 and further experiments/analysis had to be done. Therefore we continued our 

analysis, by investigating the cyclodeaminase from FD10.  
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3.2.6 Analysis of the cyclodeaminase from cosmid FD10 

We also expected that the GE81112 cluster would include a cyclodeaminase, providing L-

pipecolic acid from L-lysine. BLAST sequence analysis of both cosmids revealed that only 

cosmid FD10 contained a cyclodeaminase sequence (The protein showed 62% identity to the 

TubZ protein from Angiococcus disciformis). To analyse the conserved regions of the protein 

which would indicate whether it was functional, we performed an alignment with three 

different cyclodeaminases TubZ [85], LipE [83] and RapL [87] (Figure 3.30). 

 

 
Figure.3.30: Alignment of the cylodeaminase from cosmid FD10 with LipE, RapL and TubZ. 
 

No color: Non-similar amino acid residues, blue: conservative, green: block of similar, yellow: 
identical 

 

Cyclodeaminases are typically 1000–1100 kb in size (corresponding to approximately 350 

amino acid residues). However, the cyclodeaminase present on cosmid FD10 was only 465 kb 
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in size, corresponding to 155 amino acid residues. Thus, more than half of the protein was 

apparently missing, relative to previously-characterized cyclodeaminases.  

   

3.2.6.1 Heterologous expression of cosmids FD10 and AI6 

In principle, the most straightforward method to verify the identity of the gene clusters would 

have been to knockout one of the NRPS genes, and then to determine if production of 

GE81112 was abolished. We attempted to generate this knockout by amplifying an internal 

region from the nrps_2 gene, which was then cloned into the knockout vector pKC1132 [10], 

and introduced the vector into strain S. 14386  by conjugation. However, to date, the knockout 

has not been successful.  

 

We therefore decided to use an alternative strategy to determine the identities of the cluster – 

heterologous expression of the biosynthetic gene clusters from both cosmids. The two 

cosmids were transformed into S. lividans TK24 and S. coelicolor A3(2) by conjugation. 

Exconjugants were verified by PCR (amplification of the apramycin resistance gene) and 

extracts were analyzed by high resolution Orbitrap-MS analysis (data not shown). We did not 

observe production of GE81112 in the extracts of the mutants harboring either cosmid AI6 or 

FD10. Instead, three new peaks with masses 631.2242 (retention time 3.86 min), 645.2389 

(retention time 4.70 min) and 659.2545 (retention time 4.94 min) were detected in the extract 

of S. lividans TK24::FD10 (Figure 3.31), although the compounds were not present in S. 

lividans TK24 wild type or in S. lividans TK24::AI6.  
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Figure 3.31: Analysis of S. lividans::FD10 extract by high-resolution MS.  

  
A) Base peak chromatogram (BPC) of S. lividans::FD10 extract and extracted ion 
chromatograms (EICs), showing molecular ions and elemental formulas of B) m/z= 631.2242 
[M+H]+, C) m/z = 645.2389 [M+H]+  and D) m/z = 659.2545 [M+H]+ . E), F) and G) show the 
exact masses and elemental formulas of GE81112 factor A, B1 and B for comparison. 

 

Detailed MS/MS analysis revealed that all 3 of the substances exhibited exactly the same 

fragmentation pattern as the new chlorinated substances found during analysis of the GE 

producer strain (section 3.2.2). This result led us to conclude that the three substances 631, 

645 and 659, had been heterologously expressed in S. lividans from cosmid FD10. No 

production of the same metabolites was observed from cosmid AI6, which is likely explained 

by the fact that the cluster is incomplete. In addition, no other new metabolites were detected 

in the extract of S. lividans TK24::AI6.  

These results indicated that the biosynthetic gene cluster from cosmid FD10 is not responsible 

for biosynthesis of GE81112, but for the new substances which might be related to the GE 

compounds. Therefore we aimed to purify the novel substances and to elucidate their 

structures.  
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3.2.7 Isolation and attempted structure elucidation of three chlorinated substances 

In previous experiments, we observed that the desired compounds were mostly localized to 

the culture supernatant, while only traces of the metabolites were present in the cell pellets. 

Cultivation with XAD resin did not lead to an increase of production, and only small amounts 

of the compounds were detected in the extract of the XAD. Therefore the strain was grown 

without XAD, and the compounds were isolated from the supernatant. S. 14386 was grown in 

GE production medium for 6 days and harvested by centrifugation. 

 

 
Figure.3.32: Purification procedure for substances 631, 645 and 659. 

 

The purification scheme is outlined in Figure 3.32. First, 13 L of the supernatant were 

extracted twice with the same volume of ethyl acetate. After the solvent was removed by 

evaporation, the extract was resuspended in 50 ml methanol and extracted with heptane for 

degreasing. The heptane and MeOH phases were subsequently analyzed by HPLC-MS.  
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Figure 3.33: HPLC-MS analysis of heptane and MeOH fractions. 

Base peak chromatogram of heptane A) and MeOH B) phases, and extracted ion 
chromatograms of MeOH fraction showing molecular ions of C) m/z [M+H]+ = 631.3, D) 645.3 
and E) 659.3.  

 

Only traces of the compounds could be detected in the heptane phase, while all three 

compounds were present in the MeOH phase (Figure 3.33). The methanol phase was therefore 

evaporated and resuspended in a smaller volume of methanol (2 ml). This sample was then 

fractionated by semi-preparative HPLC using a stepwise gradient (solvent A: H2O containing 

0.01 % formic acid; solvent B: methanol containing 0.01% formic acid, 25%–90% B over 35 

min, injection volume 250 µl). As the substances did not exhibit a significant UV signal, the 

HPLC was coupled to a mass spectrometer (Bruker HCT equipped with an ion trap mass 

spectrometer) for online monitoring of the masses. Using this method, the exact retention 

times of the compounds could be measured, allowing straightforward collection of the 

substances. Five fractions were collected and analyzed for the presence of the compounds 

(representative results are shown in Figure 3.34).  
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Figure 3.34: HPLC/MS analysis of different purified fractions after preparative HPLC. 

 
Base peak chromatogram showing molecular ions with the masses m/z [M+H]+ = 631.3, 645.3 
and 659.3.  

 

Fractions 2, 4 and 5 contained the compounds 631, 645 and 659, respectively. However, 

contaminants remained in all of the fractions, so it was necessary to carry out a further 

purification step. MS analysis revealed that only substances with relatively low masses (< m/z 

= 300) were present in fraction 2 (containing 631). Fractions 4 (645) and 5 (659) also 

contained substances with masses similar to the desired compounds (in a range of m/z = 600). 

These observations prompted us to use size-exclusion chromatography for fraction 2 (631), 

followed by purification by isocratic preparative HPLC, while fractions 4 (645) and 5 (659) 

were directly submitted to separation by isocratic preparative HPLC. All 30 samples from 

each fraction were combined and the solvent evaporated. The extracts of fractions 4 (645) and 

5 (659) were resuspended in 500 µl methanol.  

 

The extract of fraction 2 (631) was resuspended in 1 ml of methanol and subsequently 

separated on a Sephadex LH20 column (28 h), yielding 48 fractions. Every second fraction 

was analyzed by HPLC/MS. Fractions 9–11 contained the compound and were combined. 

The solvent was evaporated and the extract was resuspended in 500 µl methanol. All three 

extracts were then purified by isocratic preparative HPLC (solvent A: H2O containing 0.01 % 

formic acid; solvent B: acetonitrile containing 0.01% formic acid, 0–10 min 30% B isocratic, 

10–20 min 30%–50% B, 20–25 min 50%–95% B, 25–27min 95% B, injection volume 200 
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µl). Monitoring was again carried out by mass spectrometry. After this separation step, 

essentially pure compound was obtained in each case (Figure 3.35)  

 
Figure 3.35: HPLC-MS analysis of different fractions after preparative HPLC. 

Base peak chromatograms and UV chromatograms after preparative HPLC showing molecular 
ions of A) m/z [M+H]+ = 631.3, B) m/z [M+H]+ = 645.3, and C) m/z [M+H]+ = 659.3.  

 

The extracts were vacuum-dried by lyophilization and weighed. Compound 631 was obtained 

at a yield of 4.8 mg, compound 645 at 2.3 mg and compound 659, 1.2 mg. Structure 

elucidation of all three substances was then performed by NMR.  

 

3.2.8 NMR structure elucidation 

NMR structure elucidation was started with the compound 631 because purification yielded 

the highest amount (4.8 mg) of this compound. NMR was carried out using 1D (1H, 13C) and 

2D (1H-1H-COSY, HMBC and HSQC) NMR analysis in [D6]DMSO as well as in CD3OD. 

Although several structural elements have been elucidated to date for compound 631 (Figure 

3.36), it has not yet been possible to solve the complete structure. 
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Figure 3.36: Postulated structural elements of compound 631 identified by NMR spectroscopy.  

N/O means that N or O might be present at that specific position. R indicates that the 
functionality could not be identified. 

 

(NMR interpretation was done by H. B. Bode) and is not discussed in detail here. The 

structure is likely to contain four amino acid-derived structural elements (nos. 1–4) including 

two ornithine moieties (3 and 4) which are probably acylated (H. B. Bode, personal 

communication). However, these structural elements could not be connected together due to 

missing correlations in the 2D-NMR experiments (HMBC, COSY). The three compounds 

631, 645 and 659 differ in 14 atomic mass units each. To date, it is not clear at which 

positions these variations occur. Therefore, further experiments will be necessary to complete 

the structure elucidation.  

 

3.2.9 Identification of the GE81112 biosynthetic gene cluster 

3.2.9.1 Identification of a cosmid containing GE81112 biosynthetic genes 

As the results described in section 3.2.5 led us to conclude that the identified gene clusters 

were not involved in the biosynthesis of GE81112, we developed a new strategy to identify 

the GE81112 gene cluster. The previous cyclodeaminase probe successfully identified a 

cyclodeaminase, but it was truncated, and therefore presumed to be inactive. However, as 

such pseudo-genes often arise by gene duplication of an original active copy; we reasoned 

that there might be a second, complete cyclodeaminase gene in the genome, which should be 

functional. We therefore decided to generate a new specific cyclodeaminase probe based on 

the cyclodeaminase sequence found on cosmid FD10. In order to amplify the cyclodeaminase 



Results 104 

 104

gene, a PCR reaction was carried out using specific primers (Table 2.12, Cyclo Probe_for and 

Cyclo Probe_rev). The resulting 400 bp PCR product was labeled with digoxigenin and used 

to re-probe the cosmid library. To evaluate the likely success of this strategy, we first carried 

out a Southern Blot to check if the probe hybridized to more than one gene in the genome. 

Digestion of cosmid FD10 with PvuII produced a 2.5 kb fragment which encompasses the 

cyclodeaminase sequence. Thus, if the FD10 cyclodeaminase were the only cyclodeaminase 

in the genome, we would have observed a single 2.5 kb band by Southern Blot. 

 
Figure.3.37: Southern Blot analysis of genomic DNA from S. 14386.  

1: Ladder; 2–4: varying concentrations of genomic DNA from S. 14386 digested with PvuII. 
 

For the Southern, genomic DNA of S. 14386 was isolated and digested with PvuII. 

Hybridization was carried out at 42 °C under stringent conditions using the new 

cyclodeaminase probe. Southern Blot analysis showed the expected 2.5 kb band (Figure 3.37). 

However, two additional signals were detected at approximately 1 kb and 13 kb (Figure 3.37), 

suggesting that the probe hybridized a total of three times with genes in the genome (1 kb, 2.5 

kb and 13 kb band). We assumed that the hybridization had been successful, as non-specific 

hybridization would likley have resulted in more signals. Thus, we concluded that the genome 

was likely to contain a second or even a third copy of the cyclodeaminase gene. As the new 

probe seemed to function well, we aimed to screen the cosmid library again with this probe to 

identify cosmids that had not hybridized with the old cylodeaminase probe. Hybridization was 

again carried out at 42 °C (Figure 3.38).  
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Figure 3.38: Screening of S. 14386 cosmid library with the specific cyclodeaminase probe.  

 

The hybridization was successful, as only nine distinct signals were obtained, in addition to 

that with cosmid FD 10 (positive control). To verify the presence of cyclodeaminase sequence 

on these nine cosmids, we performed a PCR analysis on the cosmids using the primers 

employed to generate the probe. PCR products of ca. 400 bp were obtained for all cosmids 

and the control FD10, confirming in each case that the cyclodeaminase sequence was present. 

As we expected that NRPS sequence must also be present on the cosmid, we additionally 

performed a PCR using the degenerate NRPS primers RevA3 and PSLGG [88]. 

Unfortunately, no PCR products were obtained with these primers. One possible explanation 

for this result, however, is that the NRPS degenerate primers RevA3 and PSLGG were not 

optimal. Indeed, attempts by other members of the laboratory to use these primers to amplify 

A domains from Streptomcyes genomes have not been successful, perhaps because they were 

originally designed for use with myxobacterial DNA.  

 

We therefore designed new primers based on Streptomyces A domains using the CODEHOP 

software [96]; priming was targeted against the core A3 and A6 motifs. The new primers were 

then used to amplify A domains from the nine cosmids that produced products of the correct 

size in the cyclodeaminase PCR. This reaction resulted in PCR products from four of the nine 

cosmids. These fragments were cloned into pCR2.1-TOPO and sequenced. BLAST analysis 

revealed that all of the sequences showed high homology to A domains. We then analyzed the 

A domain sequences as described earlier, to predict the substrate specificity of each A domain 

(Table 3.9).  
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Table 3.9: Putative A domain ‘code residues’ within A domains from cosmids  
 

                            Position of the amino acid within the A domain 

 235 236 239 278 299 301 322 330 
Activate
d amino 

acid 

Identity 
to 

protein 
Topo BG23 D A S Q V G E V Asp/Asn 75% 

Topo DB20 D A V D F G T I No hit  

Topo DK18 D A V D F G T I No hit  

Topo BI11 D V Q D I A H M Pro/Pip 70% 

 

This analysis led to a prediction that the A domain in cosmid BI11 would be specific for 

proline/pipecolic acid. This result was supported by BLAST analysis of the A domain which 

predicted homology to a “NRPS for pipecolate incorporation, Streptomyces sp. NRRL 

30748”. We also directly compared the nonribosomal code of this A domain to those of 

known pipecolic acid-incorporating A domains from the rapamycin and tubulysin systems 

(Table 3.10). The code residues in each case were similar, supporting the probable specificity 

for pipecolic acid.  

 
Table 3.10: Substrate specificity pocket of pipecolic acid incorporating A domains  

                                Position of the amino acid within the A domain 

 235 236 239 278 299 301 322 330 
Activated 

amino 
acid 

 

A domain RapP D Y Q Y C G H L Pip  

A domain BI11 D V Q D I A H M   

A domain TubB D I Q Y I A Q V Pip  

 

Taken together, these data strongly suggested that cosmid BI11 contained the biosynthetic 

pathway for GE81112. Furthermore, as we anticipated that the NRPS would contain four 

modules (30–40 kb), it was possible that entire gene cluster would be located on a single 

cosmid. To verify this, we end sequenced the cosmid using primers T4 and T7 (Table 2.12.). 
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Table 3.11:  End sequencing results of cosmid BI11 with T7 and T4 primers 

Cosmid Homology Identity Score 
E-
Value 

BI11_T4 DNA binding protein, Streptomyces coelicolor 36% 143 1e-32 

BI11_T7 L-arginine beta-hydroxylase, Streptomyces 
vinaceus 

44% 
 

331 4e-89 

 

The T4 end exhibited homology to a DNA binding protein, while sequence at the T7 showed 

similarity to an arginine β-hydroxylase (Table 3.11). The DNA binding protein was not 

expected to have any function in the biosynthesis, and thus cosmid BI11 contained at least 

one end of the gene cluster. However, it was possible that the β-hydroxylase was involved in 

the biosynthesis, so we could not conclude that the entire cluster was located on the cosmid. 

Nonetheless, we sequenced BI11, as at least a significant portion of the cluster was likely to 

be present.  

 

3.2.9.2 Identification of overlapping cosmids 

To find a cosmid which overlapped with the 3′ (T7) end of the GE81112 biosynthetic gene 

cluster, we amplified a 1 kb fragment from the T7 end of cosmid BI11 to serve as a probe. 

The sequenced PCR product was then used as a template to carry out a PCR reaction using 

digoxigenin-labeled nucleotides. The cosmid library was then screened with the new probe, 

with hybridization at 42 °C.  

 

 
Figure.3.39: Screening of the cosmid library to identify cosmids which overlapped the T7 end of 

cosmid BI11. Cosmid BI11is labeled. 
 



Results 108 

 108

Seven new cosmids were identified, in addition to cosmid BI11 (marked in Figure 3.39). We 

initially investigated the cosmids by PCR analysis by amplifying an 800 bp fragment with the 

primers used to generate the probe (cyclo probe_for and cyclo probe_rev). All of the cosmids 

produced a positive signal. However, as some of the cosmids gave a similar restriction pattern 

to that of BI11, we excluded them from further analysis. We chose one cosmid (BA23) which 

showed the least similar fragmentation pattern and analyzed it further. To ensure that both 

cosmids (BI11 and BA23) contained similar portions of the cluster, and to determine whether 

the cloned DNA was co-linear with the S. 14386 chromosome, we performed a Southern Blot 

with both the cosmids and the wild type genomic DNA. In theory, the probe that derives from 

the T7 end of cosmid BI11 should produce identical signals when hybridized to the cosmids 

and the wild type DNA. As hybridization was observed to the same fragments in all cases 

(Figure 3.40), the cosmids were verified to be co-linear with the genome. 

.  
Figure 3.40: Southern Blot analysis of cosmid BI11 and the overlapping cosmid.  

Schematic arrangement of cosmids BI11 and BA23. To verify the colinearity between the 
cosmids and the genome, the cosmids and the genomic DNA were digested with the same 
enzymes (NotI, SalI and PvuII). The probe was designed against the T7 end of cosmid BI11, as 
shown. 1: Cosmid BI11, 2: cosmid BA23, 3: genomic DNA, L: Ladder 

 

3.2.9.3 Annotation  

The two cosmids BI11 and BA23 were sequenced in the HZI. The obtained sequence was 

analyzed for the presence of putative open reading frames (orfs) with FramePlot 2.3.2 [92], 

and preliminary functional assignments of individual orfs were made by comparison of the 

deduced gene products with proteins of known function in the BLAST database (Table 3.12).  
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Table 3.12: BLAST results for genes on the cosmids BI11 and BA23 

Gene Homology Identity Score E-Value 

orf1 
putative partitioning protein ParA, Nocardia 
farcinica IFM 10152 
 

63/222 
(29%) 
 

77.0 
 

8e-13 
 

orf2 
hypothetical protein SAV_5443 
Streptomyces avermitilis MA-4680 
 

263/478 
(55%) 
 

470 
 

1e-130 
 

orf3 
FtsK/SpoIIIE family protein 
Streptomyces avermitilis MA-4680 
 

802/1099 
(72%) 
 

1565) 
 

0 
 

orf4 
hypothetical protein SAV_6995 
Streptomyces avermitilis MA-4680 
 

118/142 
(83%) 
 

244 
 

2e-63 
 

orf5 
serine/threonine protein kinase 
Streptomyces avermitilis MA-4680 
 

249/381 
(65%) 
 

395 
 

5e-108 
 

geA 
thioesterase type II 
Streptomyces atroolivaceus 
 

89/230 
(38%) 
 

142 
 

4e-32 
 

geB 

putative ABC-type multidrug transport 
system ATPase and permease 
component, Streptomyces griseus 
 

269/563 
(47%) 
 

449 
 

4e-124 
 

geC 
putative ABC transporter ATPase and 
permease component, Streptomyces griseus 
 

291/575 
(50%) 
 

533 
 

1e-149 
 

geD 
TubZ protein 
Angiococcus disciformis 
 

182/346 
(52%) 
 

337 
 

1e-90 
 

geE 
syringopeptin synthetase 
Pseudomonas syringae 
 

209/522 
(40%) 
 

325 
 

7e-87 
 

geF putative L-proline 3-hydroxylase protein 
Ralstonia solanacearum GMI1000 

81/253 
(32%) 
 

123 
 

2e-6 
 

geG 
 

peptide synthetase protein, Ralstonia 
solanacearum GMI1000 

765/2401 
(31%) 
 

857 
 

0 
 

geH 
non-ribosomal peptide synthetase 
Myxococcus xanthus DK 1622 

 

168/530 
(31%) 
 

194  
 

2e-47 
 

geI 
L-arginine β-hydroxylase 
Streptomyces vinaceus 
 

144/322 
(44%) 
 

238 
 

6e-61 
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Table 3.12: Continuation of Table 3.12 

Gene Homology Identity Score E-Value 

geJ 
bacitracin synthetase 3; BacC, 
Bacillus licheniformis 
 

223/598 
(37%) 
 

368  
 

1e-99 
 

geK 
ribosome-associated GTPase 
Streptomyces sviceus ATCC 29083 
 

209/368 
(56%) 
 

395 
 

3e-108 
 

geL 
halogenase, 
Microcystis aeruginosa 
 

199/500 
(39%) 
 

376 
 

2e-102 
 

geM bacitracin synthetase 3; BacC,Bacillus 
licheniformis 

199/500 
(39%) 
 

397  2e-108 

geN ChlK, thioesterase type I, 
 Streptomyces antibioticus 

44/112 

(39%), 
80.5 4e-14 

orf6 
3-oxoacid CoA-transferase subunit B 
Streptomyces avermitilis, MA-4680 
 

177/215 
(82%) 
 

359  
 

1e-97 
 

orf7 
protocatechuate 3,4-dioxygenase α 
subunit, Streptomyces avermitilis MA-
4680 
 

185/253 
(73%) 
 

375  
 

2e-102 
 

orf8 
protocatechuate 3,4-dioxygenase β 
subunit, Streptomyces avermitilis MA-
4680 
 

129/182 
(70%) 
 

253  
 

5e-66 
 

orf9 
3-carboxymuconate cycloisomerase 
Streptomyces sviceus ATCC 29083 
 

319/447 
(71%) 
 

570 
 

8e-161 
 

orf10 
deoxyribose-phosphate aldolase 
Streptomyces avermitilis MA-4680 
 
 

150/205 
(73%) 
 

285  
 

4e-75 
 

orf11 

arthrofactin synthetase/syringopeptin 
synthetase C-related non-ribosomal 
peptide synthetase module, 
Bradyrhizobium sp. BTAi1 
 

513/1186 
(43%) 
 

777  
 

0.0 
 

orf12 
peptide synthetase protein, Ralstonia 
solanacearum GMI1000 
 

221/656 
(33%) 
 

244  
 

3e-62 
 

orf13 
putative ATP/GTP binding protein 
Streptomyces coelicolor A3(2) 
 

178/193 
(92%) 
 

338 
 

3e-91 
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Table 3.12: Continuation of Table 3.12 

Gene Homology Identity Score E-Value 

orf14 
integrin-like protein, Streptomyces 

avermitilis MA-4680 
 

200/468 
(42%) 

 

299 
 

3e-79 
 

orf15 
two-component system sensor kinase, 

Streptomyces coelicolor A3(2) 
 

107/218 
(49%) 

 

179 
 

2e-43 
 

orf16 
polyketide synthase type I, Streptomyces 

aizunensis 
 

228/435 
(52%) 

 

359 
 

4e-97 
 

 

Based on the chemical structure of GE81112 we expected a NRPS pathway involving a 

cyclodeaminase and a halogenase. Annotation of the two cosmids revealed 30 orfs of which 

14, designated geA–N, are postulated to be involved in the GE81112 biosynthetic pathway 

(Figure 3.41). The genes marked in black indicate NRPS encoding enzymes.  

 

The sequenced region starts with the gene orf1, which shows homology to a putative 

partitioning protein ParA from Nocardia farcinica IFM 10152. This protein is not expected to 

be involved in the biosynthesis, as these proteins are known to be involved in bacterial mitosis 

[97]. Similarly, we excluded orfs 2 and 3, as they do not show homology to proteins 

postulated to be involved in the biosynthesis. orf2 is a hypothetical protein with no assigned 

function, and orf3 encodes for a FtsK/SpoIIIE family protein which belongs to the family of 

DNA translocases [98]. It is not possible, however, to conclusively identify the boundaries of 

a gene cluster based solely on the deduced functions of the gene products. Therefore, in 

future, it will be necessary to carry out gene knockouts to confirm the proposed cluster ends. 

 
Figure 3.41: GE81112 biosynthetic gene cluster on cosmids BI11 and BA23. 
 

Key: black, NRPS biosynthetic genes; light grey, modification genes; dark grey, orfs not 
involved in the biosynthesis. 

 

The first gene that we predicted to be involved in the biosynthesis is gene geA, which encodes 

a type II thioesterase (TEII). TEIIs are present in many NRPS and PKS systems, where they 
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perform crucial proof-reading functions by hydrolyzing aberrant substrates from the 

respective carrier protein domains. In modular PKS, type II TEs are proposed to release from 

the ACP domains acyl groups that have been produced by aberrant decarboxylation of chain 

extender units [99]. In NRPS systems, they are proposed to play two functions: removal of 

acyl groups added to the PCP domains during post-translational priming of the apo proteins, 

and release of amino acids that have been loaded by mistake [100].  

 

geA appears to be in an operon with genes geB–E. geB and geC encode proteins which show 

homology to ABC transporter systems. Many antibiotic-producing actinomycetes posses at 

least one ABC (ATP-binding cassette) transporter which forms part of the antibiotic 

biosynthetic pathway, and in most cases confers resistance to the drug in a heterologous host. 

In Type I ABC transporters, two genes are involved, one encoding a hydrophilic ATP-binding 

protein with one nucleotide-binding domain, and the other encoding a hydrophobic membrane 

protein. The same type of proteins have been found in the GE81112 cluster [101]. geD 

encodes the cyclodeaminase gene that was targeted in our second probing strategy. It shows 

52% identity to TubZ, the cyclodeaminase from Angiococcus disciformis. This time the 

protein was not truncated as in cosmid FD10 and was proposed to be functional. The 

sequence of the truncated cyclodeaminase gene on cosmid FD10 is identical to a region 

within geD, consistent with the idea that the truncated form arose from gene duplication.  

 

geE is the first gene that encodes for a NRPS protein, and most likely starts with a GTG. A 

putative RBS (GGAG) was found 7 bp upstream of the gene. The next gene geF is oriented in 

the opposite direction, and encodes a protein with homology to a putative L-proline 3-

hydroxylase. This enzyme is expected to be responsible for the hydroxylation of the pipecolic 

acid. The following gene, geG, encodes another NRPS protein, and is the likely starting point 

of a new operon which includes genes geH and geI. geG has an ATG start codon and a 

putative RBS (GAAGG) is located 19 bp upstream from the start codon. geH encodes a third 

protein with homology to NRPSs, and again starts with a GTG. The last gene in this operon is 

geI, which exhibits homology to an L-arginine β-hydroxylase, which might be responsible for 

the hydroxylation of one of the incorporated histidines in GE81112. The last operon contains 

5 genes (geJ–geN). This operon starts with a change in the transcription direction again. The 

operon begins with the gene geJ which encodes a NRPS enzyme. The next two genes, geK 

and geL, encode a GTPase protein and a halogenase, respectively; GeL may be responsible 

for the chlorination of the GE81112 histidine. The NRPS-enconding gene geM starts with a 
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TTG, and a RBS (AGGG) is located 6 bp upstream of the gene. The last gene of the operon is 

geN, which encodes a protein with homology to a type I thioesterase. A RBS (GAAA) is 

located 8 bp upstream of the gene which starts with an ATG. The involvement of orfs 6–16 

can not yet be excluded. 

 

3.2.9.4 Analysis of NRPS domains 

The sequence analysis revealed 14 open reading frames that we predicted to be part of the 

gene cluster. Five of them showed homology to NRPS genes (Figure 3.41). The constituent 

domains were assigned using the PKS/NRPS predictor (http://www.tigr.org/jravel/nrps/) and 

confirmed by manual inspection with BLAST, as the prediction programs can omit some 

domains.  

 

 
Figure 3.42: The GE81112 biosynthetic gene cluster.  

 

In order to incorporate 4 amino acids into the GE81112 structure, we expected the synthetases 

to contain 4 modules for the biosynthesis of a tetrapeptide including a loading module 

followed by three condensation module with the standard C-A-PCP arrangement. However, 

the sequence analysis revealed that the cluster exhibits a highly nonlinear arrangement that 

did not fit to what we expected. Altough the domain complement for the biosynthesis of a 

tetrapeptide could be identified one extra module consisting of an A-PCP didomain could be 

identified. Furthermore the modules showed a highly split arrangement (Figure 3.42). Thus, 

from the domain assignment alone, the overall order of subunits could not be discerned, and 

so we carried out further analysis of the domains themselves. We started with the analysis of 

the A domains, as we hoped that the predicted substrate specificities would give us a first hint 

about the order of the domains. 

 

3.2.9.4.1 Analysis of the A domains  

To determine the order of the A domains in the GE81112 cluster, we analyzed the substrate 

specificity of the A domains. The eight conserved motifs were identified for each A domain, 

and the specificity-conferring code (bioinformatics and manual prediction) was then used to 

http://www.tigr.org/jravel/nrps/�
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predict the substrate specificity. The first A domain, encoded by gene geE (GeEA1) as a 

discrete protein, showed specificity for the incorporation of proline/pipecolic acid (see section 

3.2.9.1). This observation made it a candidate for selection of the GE81112 starter unit. The 

second A-domain located on gene geG (GeGA2) showed homology to 

ornithine/glutamine/asparagine-incorporating A domains. The third A domain on gene geG 

(GeGA3) was predicted to be specific for the incorporation of tyrosine/tryptophane, and the 

two latter domains on geJ (GeJA4) and on geM (GeMA5) for histidine (Table 3.13).  

 
Table 3.13: Putative A domain ‘code residues’ within A domains in the GE81112 cluster 

                        Position of the amino acid within the A domain 

 235 236 239 278 299 301 322 330 Predicted 
amino acid 

Identity 
to 

protein 

GeEA1  D V Q Y I A Q V Pro/Pip 70% 

GeGA2 D A Y N L G L I Orn/Gln/Asp 70% 

GeGA3 D A V G V G E V Tyr/Trp 70% 

GeJA4 D S A S T A E V His 70% 

GeMA5 D S A L T A E V His 70% 

 

These results correlated well with our prediction that an ornithine and two histidines are 

incorporated in the the GE81112 metabolites, in addition to the pipecolic acid. However, it 

remained unclear why two PCP-A didomains (geM and geJ) are located within the cluster, 

although only one is required to give a total of four active modules. To check if any of the 

domains were inactive in order to account for the prescence of the apparently superfluous 

module, we continued by analyzing the C and PCP domains.  

 

3.2.9.4.2 Analysis of the C and PCP domains 

The GE81112 cluster contains three C domains which were aligned with C domains from the 

rapamycin [102], the gramicidin [103] and the calcium-dependent antibiotic [104] clusters. 

The seven conserved regions were identified in all of the C domains. The same analysis was 

carried out for the PCP domains, revealing the signature sequence and active Ser residue, in 

all cases. These results demonstrate that in principle, all modules are active, so that it is 

unlikely that one of the modules is skipped.  
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3.2.9.4.3 Analysis of the TE domains 

TE domains are characterized by a conserved signature sequence GxSxG [91]. There are two 

classes of TE domains known in NRPS systems. TEI domains are normally integrated into the 

multienzyme subunits, and located at the C-terminal end of the modules which are involved in 

adding the last amino acid to the linear peptides [91]. These TEs are responsible for cleavage 

of the linear peptide products. Type II TEs are normally discrete proteins that perform a 

crucial proof-reading function by hydrolyzing aberrant substrates from the respective carrier 

proteins [100;105]. We could identify two discrete TE domains (on genes geA and geN) in the 

GE81112 biosynthetic gene cluster which showed the conserved motif, indicating that they 

are functional enzymes. As they were both discrete proteins, it appeared as if they were both 

TEII enzymes. However, while BLAST analysis (see Table 3.12) revealed that the protein 

GeA showed high homology to a type II TE, protein GeN was similar to type I TEs. This 

finding was surprising, as GeN is a discrete protein like a type II TE, and not integrated into 

an NRPS as is typically found in bacterial NRPS systems.  

 

3.2.9.4.4 Docking domain analysis  

The analysis of all domains with the NRPS subunits revealed that they all contained the 

respective conserved regions, indicating that all proteins/domains are probably functional. In 

the vast majority of NRPS complexes, the modules are distributed over two or more NRPSs 

which have to interact selectively with each other to bring about the synthesis of a defined 

product. The molecular basis for the selective interaction between NRPSs are the so called 

‘communication-mediating (COM)’ domains [106;107]. A donor COM domain (ComD) 

located at the C terminus of an aminoacyl- or peptidyl-donating NRPS and an acceptor COM 

Domain (ComA) located at the N terminus of the accepting partner NRPS form a matching 

set, required for the proper intermolecular interaction between adjacent modules. In contrast, 

ComD and ComA domains of nonpartner NRPSs are considered nonmatching, preventing false 

contact between enzymes [106]. The C-terminal COM domain, which consists of 

approximately 20–30 amino acids, most often follows a PCP or E domain, while the N-

terminal COM domain, which typically precedes a C or HC domain, comprises 15–25 amino 

acids. Although the overall sequence similarity between COM domains is low, the amino acid 

composition is relatively uniform. The C-terminal COM domains incorporate a higher than 

average proportion of acidic amino acids, while N-terminal COM domains are biased toward 
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polar residues, suggesting that specificity is mediated largely by polar/or electrostatic 

interactions between key residues. 

To obtain insight into how the different NRPS proteins from the GE81112 cluster 

might interact with each other to form a defined biosynthetic template, we analyzed the 

GE81112 NRPS proteins for putative COM domains. In contrast to linear NRPS, the 

GE81112 system is a nonlinear systems in which many of the modules are split (Figure 3.43). 

Thus, we devised an NRPS pathway in which individual multienzymes interact to reconstitue 

standard C-A-PCP modules (for example GeE and GeH, Figure 3.43). This task was aided by 

the in silico prediction of the substrate specificity of the A domains which gave us some hints 

as to the ordering of the proteins within the pathway.  

 
Figure 3.43: GE81112 biosynthetic gene cluster.  

 
Domains that are postulated to interact with each other are highlighted in the same color. 

 

We predict that protein GeE (harboring the single A domain GeEA1 which is predicted to 

incorporate pipecolic acid) interacts with subunit GeH to form the loading module. Interaction 

of GeH with GeG would then form the next two modules (A domains GeGA2 (Orn/Gln) and 

GeGA3 (Trp/Tyr)). Protein GeG would than interact with either GeJ (A domain GeGA4 (His)) 

or GeM (A domain GeGA5 (His)) to form the last module. The protein GeN has a TEI 

function and is therefore proposed to hydrolyze the final tetrapeptide from the assembly line.  

 
Figure 3.44: Predicted interaction of NRPS enzymes from the GE81112 biosynthetic gene cluster. 
 

It is not clear if proteins GeG and GeJ or GeG and GeM interact with each other to form the 
last module. 
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In contrast to standard COM domains which normally facilitate the interaction between PCP 

and C domains located on separate multienzymes, intersubunit protein-protein interactions in 

the GE81112 system must reconstitute interfaces between C and A domains (between proteins 

GeH/GeG, and betwee GeG/GeJ or GeG/GeM, see Figure 3.44) to provide a functional 

pathway. To determine if we could identify COM domains between C and A domains, GeHC1 

and GeGA2 (module 2), and GeGC3 and GeJA4 (module 4) or GeMA (module 5), we 

constructed a sequence alignment (attached in the appendix, Table 5.1) comprising putative 

modules 1–5. In this alignment, the sequences of modules 1–5 (Figure 3.44) were compared 

to standard C-A-PCP modules (modules from NRPS pathway from cosmid FD10). This 

analysis revealed large putative recognition sequences at the C terminus of the C domains and 

the N terminus of the A domains in modules 2 and 4 (Figure 3.45).  

 
Figure 3.45: Proposed NRPS interaction and order of subunits in the GE81112 biosynthesis.  

 

However, these recognition sequences did not match the standard size of COM domains (20–

30 amino acid residues). Instead, we found stretches of approximately 100 amino acid 

residues at each terminus; to reflect this difference, we’ve designated the sequences as 

‘recognition elements’ instead of COM domains. Nonetheless, the C-terminal recognition 

elements incorporate a high proportion of acidic amino acids while the N-terminal linker 

domains are biased towards polar amino acids, providing the basis for electrostatic 

interactions as in classical COM domains (the recognition elements contained approximately 

the same proportion of acidic and polar amino acid residues as COM domains). Such 

recognition sequences are normally not found between C and A domains, indicating that in 

this special case, these sequences have a docking function, enabling the interaction between 

NRPS proteins. 

  

At this stage, it remained unclear why the cluster contains an apparently superfluous fifth 

module. One hypothesis was that both bidomains GeJ and GeM can interact with the C 

domain of protein GeG to form the fourth module of the NRPS, incorporating histidine in 

either case. To evaluate this hypothesis, we aligned the sequences of proteins GeJ and GeM, 
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in order to evaluate the extent of their sequence similarity (Table 5.2, appendix). We reasoned 

that a high degree of sequence identity would provide evidence for the evolution of the two 

didomains by gene duplication, supporting the idea that they might both be able to interact 

with the C terminal C domain from GeG. However, the alignment showed that the proteins 

exhibit only 25% mutual sequence identity, consistent instead with a lack of shared partner 

specificity. Indeed, GeM lacks the putative recognition sequence for GeG which is present at 

the N-terminus of GeJ. Taken together, these data indicated that the didomain protein GeM 

was not derived from duplication of GeG, and should therefore have a specific function in the 

pathway (Figure 3.45). To provide further support for the proposals concerning domain order 

and functions of GeJ and GeM, we investigated the gene cluster using both gene inactivation 

and expression analysis of recombinant proteins. 

 

3.2.10   Insertional mutagenesis of the GE81112 biosynthetic gene cluster  

To first verify the identity of the gene cluster, we aimed to inactive the gene geE. For this, a 

knockout construct was designed by amplifying an internal fragment (660 bp) of the gene, 

which was then cloned into the knockout vector pKC1132 [10] leading to the construct 

pKC1132_BI11_PipA. Initial attempts to transform S. 14386 with the knockout plasmids 

pKC1132_FD10 and pKC1132_AI6 however, were unsuccessful, necessitating the 

development of a revised transformation method. The classical procedures for streptomycetes 

transformation are protoplast transformation and conjugation [10]. We tried both methods 

with the knockout vector, using a replicative vector pOJ446 [10] and an integrative vector 

pSET152 [10], as controls. The protoplast transformation method did not produce any 

exconjugants using the knockout vector or with the controls. The conjugation was then 

attempted with varying amounts of E. coli. In the standard procedure, a certain amount 

(normally 500 µl) of E. coli culture (OD600 = 0.6) is mixed with an equal volume of 

Streptomyces cells. Using this approach, we only obtained a low number of colonies with the 

replicative and the integrative vector controls, and no colonies with the knockout construct 

(Table 3.14). We then tried 100-fold and 1000-fold more E. coli cells, but obtained the same 

result. 
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Table 3.14: Transformation efficiency of S. 14386 by biparental conjugation 
 

Transformation
Method 

E. coli amount 
0.5×108 

E. coli amount 
50×109 

Biparental 

conjugation 
pKC1132_BI
11_PipA 

pOJ446 
replicative 

pSET152 
integrative 

pKC1132_B
I11_PipA 

pOJ446 
replicative 

pSET152 
integrative 

 – 20 50 50–100 100–200 500–1000 

 

We next modified the procedure by mixing 5 mL of an overnight culture of E. coli which had 

a very high cell density, with 5 ml of Streptomyces cells. This change finally led to several 

exconjugants containing the knockout vector, indicating that the amount of E. coli is crucial 

for the conjugation efficiency with this strain. The obtained mutants were verified by PCR 

amplifying the ampramycin resistance gene as well as an internal region from the genomic 

DNA, proving the correct integration (primers: apra_for and apra_rev, lacZ1 and lacZ2 and 

BI11A1_pip_for and BI11A1_pip_rev) (section Table 2.12). The mutants were cultivated in 

production medium, as before. The extracts were then analyzed for the presence of the 

GE81112 compounds by high-resolution MS (Figure 3.46).  
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Figure 3.46: High resolution MS analysis of extracts of S. 14386 wild type and S. 14386::pKC1132 

_BI11_PipA mutant. 
 

A) BPC of S. 14386 wild type extract. B) EIC of GE81112 factor B showing a molecular ion of 
the mass m/z = 659.22953 [M+H]+ from S. 14386 wild type extract. C) EIC of GE81112 B 
showing the analysis for a molecular ion of the mass m/z = 659.22953 [M+H]+ of S. 
14386::pKC1132_BI11_PipA  

 

This analysis clearly showed that production of GE81112 factor B (mass m/z [M+H]+ = 

659.22953) was abolished in the mutant, verifying the identity of the gene cluster. As an 

alternative approach we tried the heterologous expression of the cosmids, as described before 

3.2.6.1. Heterologous expression couldn’t be observed from the cosmids. This was not 

surprising as they both didn’t contain the whole cluster. 

 

3.2.11 Feeding experiments 

Inspection of the GE81112s metabolite structures suggests that they incorporate modified 

versions of pipecolate, histidine and ornithine/glutamine. Thus, it was possible that the 

corresponding proteinogenic amino acids were incorporated and then modified, or 

alternatively that the modifications occurred prior to activation of the building blocks by the 

A domains. To investigate this question directly, we designed feeding experiments with 

labelled substrate. As the stereochemistry of GE81112 compounds has not yet been solved, 

we decided to feed separately both D- and L-pipecolic acid. In an independent experiment, we 

also fed U13 C-labelled histidine. Unfortunately, we did not detect any incorporation of the 
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labeled amino acids into GE81112, a result which we attribute to the very low production 

yield of the GE81112 compounds.  We also did not observe any incorporation of the labeled 

amino acids into the newly- discovered substances 631, 645 and 659. As these substances are 

produced in reasonable amounts and could be clearly detected in HPLC-MS, we could 

exclude production yield as the underlying problem. Thus, it is likely that none of the amino 

acids used in this experiment could be incorporated into the substances. These findings are 

consistent with the structure elucidation results, as to date, no structural elements similar to 

pipecolic acid or histidine have been found.  

 

3.2.12  Biochemical characterization of the GE81112 biosynthetic gene cluster 

An alternative approach to feeding experiments to evaluate the proposed biosynthesis is to 

express key enzymes involved in substrate biosynthesis or selection in recombinant form, and 

assay them in vitro. As we still had no experimental proof that the expected amino acids are 

incorporated from the A domains proposed in section 3.2.9.4.4 we tried to express three of the 

A domains in recombinant form in E. coli to assay them in vitro. Additionally the 

cyclodeaminase was chosen for recombinant expression to confirm its proposed function. 

 

3.2.12.1  Expression and purification of the lysine cyclodeaminase GeD 

Lysine cyclodeaminases have been shown in vitro to generate L-pipecolic acid from L-lysine 

[82;83;108] (and Y. Chai et al. unpublished data). The enzymes were obtained in recombinant 

form from E. coli  [108] and in some cases it could be determined that the L-stereoisomer of 

pipecolic acid was formed. Based on this precedent, we intended to express the 

cyclodeaminase geD from the GE81112 cluster in E. coli as a C-terminal fusion to GST, and 

to test its function in an assay in vitro. For this, we amplified the open reading frame of geD 

from cosmid BI11 and cloned it as an EcoRI-NotI fragment into the expression vector pGEX-

6P-1 (Figure 3.47). 
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Figure 3.47: Construct pGEX_cyclo for the expression of geD as a GST fusion protein in E. coli. 

 

The expression construct was sequenced, and then transformed into E. coli BL21 by 

electroporation. Cultivation was then carried out at both 16 °C and 30 °C. Analysis of 10 μl of 

the supernatant and the pellet using a 12% SDS polyacrylamide gel showed that most of the 

protein was present in the pellet, following growth at both 16 °C and 30 °C (Figure 3.48).  

 

 
Figure 3.48: Expression of the construct pGEX_cyclo in E. coli BL21.  

Protein expression was carried out at 16° and 30 °C. The expected GST-fusion protein (69 
kDa) was only present in the pellet. Key:  P, pellet; S, supernatant. 

 

To attempt to obtain soluble protein, we tried expression in E. coli Rosetta BL21 (DE3) 

pLysS/RARE. In addition, we evaluated whether two sets of chaperones (Chaperone Plasmid 

Set, www.takara-bio.eu) would increase the solubility of the protein in E. coli BL21. 

Chaperone set 1 contained chaperones GroE, GroL, trigger factor and chloramphenicol (cm) 
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resistance [109], while chaperone set 2 contained chaperones GroE, GroL and cm [110] (E. 

coli Rosetta BL21 (DE3) pLysS/RARE was not suitable as an expression host for the 

chaperones because it already carries a plasmid with chloramphenicol resistance). Both strains 

were cultivated as described in section 2.18.1.  

 

E. coli Rosetta BL21 (DE3) pLysS/RARE/pGEX_cyclo was induced with 0.1 mM IPTG, and 

the E. coli strains containing the chaperones with 1 mM IPTG (according to the 

manufacturer’s instructions). Cultivations were performed at 16 °C for all three expression 

cultures. As before, most of the protein was found to be insoluble. However, during 

expression with chaperone 1 in E. coli BL21 and independently in E. coli Rosetta BL21 

(DE3) pLysS/RARE, some soluble protein was present in the supernatant (Figure 3.49). 

 
Figure 3.49: Expression of the cyclodeaminase GeD. 

 
Expression was performed at 16 °C with chaperone set 1, chaperone set 2 and in E. coli Rosetta 
BL21 (DE3) pLysS/RARE. Soluble protein is indicated by the arrows. Key: P, pellet; S, 
supernatant. 

 

The GST-fusion protein was purified from the crude cell extract using GST minicolumns, 

coupled with on-column digest using PreScission Protease. The final yield of purified GeD 

from expression in E. coli Rosetta was approximately 0.8 mg/ml protein. Figure 3.50 shows 

the GST fusion protein (26 kDa) which was eluted with reduced glutathione, and the cleaved 

GeD (43 kDa) after on-column cleavage with PresScission Protease. 
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Figure 3.50: Purified protein GeD.  

GeD expression in E. coli Rosetta BL21 (DE3) pLysS/RARE and co-expression with 
chaperone set 1. The gel shows the protein with the GST tag and following cleavage with 
PreScission Protease. Cleaved protein is indicated by the arrows.  

 

The identity of the protein (from both samples) was verified by MALDI-MS (data not shown), 

and frozen at –80 °C until use.  

 

3.2.12.2 Cyclodeaminase assay  

On the basis of its homology to TubZ and RapL, GeD was presumed to act as a lysine 

cyclodeaminase, converting L-lysine to L-pipecolic acid [82]. In order to evaluate whether 

GeD could catalyze the same reaction, we used a method previously established by A. 

Sandmann and Y. Chai method to detect L-pipecolic acid by HPLC/MS.  

 

In brief, treatment of the pipecolic acid standard (a racemic mixture of L- and D-) with 9-

fluorenylmethyl chloroformate (Fmoc-Cl) converted the amine to the corresponding Fmoc-

carbamate. The Fmoc-pipecolic acid was then straightforwardly detected by HPLC/MS (m/z = 

571.2 [M-H]–  (Figure 3.51 A)). Additionally pure L- and D-pipecolic acid standards were 

derivatized and analyzed to establish the retention times of L- and D-pipecolic acid, showing 

that D-pipecolic acids elutes first. As a positive control, we simultaneously assayed the 

enzyme TubZ from the tubulysin cluster, which had previously been shown to catalyze the 

formation of L-pipecolic acid from L-lysine, in vitro (Y. Chai, A. Sandmann, unpublished 

results). As expected, incubation of TubZ with L-lysine resulted in the formation of L-

pipecolic acid (Figure 3.51 B)). To verify that exclusively the L-stereoisomer was formed, we 
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mixed the standard reaction mixture with the product of TubZ. A clear increase of the signal 

corresponding to the L-stereoisomer was observed (Figure 3.51 C)).  

 
Figure 3.51: Cyclodeaminase assays.  

A) Standard of D- and L-pipecolic acid. B) L-pipecolic acid formed by TubZ in the presence of 
L-lysine. C) Mixture of assay reactions A) and B), to verifiy the stereochemistry of the 
pipecolic acid generated in B). D) Incubation of GeD with D-lysine. E) Incubated of GeD with 
L-lysine. 

 

Disappointingly, incubation of GeD (both fractions were used from expression in E. coli 

Rosetta and also from coexpression with the chaperones) with both L- and D-lysine under the 

same conditions failed to produce any pipecolic acid of either stereochemistry. As the assay 

worked efficiently with the control protein TubZ, GeD is apparently inactive under the assay 

conditions, or L-lysine (D-lysine) is not the correct substrate. 

 

3.2.12.3  Expression of A domains 

In order to directly investigate A domain substrate specificity, we aimed to express the first 

three A domains from cosmid BI11 as N-terminally His6-tagged proteins from pET28b. DNA 
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fragments coding for the adenylation domains of geE (1 domain, GeEA1) and geG (2 

domains, GeGA2 and GeGA3) were amplified from cosmid BI11, and cloned into pET28b 

vectors using NdeI and BamHI. Cosmid BA23 was not completely sequenced at this timepoint 

so that we couldn’t amplify the other two A domains from geJ and geM encoding GeJA4 and 

GeMA5. The constructs were confirmed by sequencing and transformed into E. coli Rosetta 

BL21 (DE3) pLysS/RARE. Cultivation was carried out at 16 °C. Expression was induced 

with 0.2 mM IPTG, at OD600 = 0.8–1.  

 
Figure 3.52: Expression of A domains in E. coli Rosetta BL21 (DE3) pLysS/RARE at 16 °C.  

Soluble proteins are indicted by the white arrows. Key:  P, pellet; S, supernatant 

 

Protein GeEA1 was found in the soluble fraction after French press lysis of E. coli cells, as 

judged by SDS-PAGE (Figure 3.52). However, only a small amount of both GeGA2 and 

GeGA3 were present as soluble proteins. Nonetheless, the observed sizes of the proteins were 

in good agreement with the calculated molecular masses of 56.6, 59.9 and 61.7 kDa, 

respectively. To try to improve the solubility of GeGA2 and A3, we co-expressed them with 

the chaperone set described in section 3.2.12.1. Coexpression with chaperone set 2 led to 

soluble protein in the case of GeGA2, allowing the enzyme to be purified by Ni2+-affinity 

chromatography using the Äkta prime system (Figure 3.53 and section 2.18.2.2). GeGA3 

could not be expressed as soluble protein until now. In the future further attempts to increase 

solubility need to be done. 
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Figure 3.53: SDS-PAGE of adenylation domains overexpressed in E. coli.  

A) Purification of A domain GeEA1. Lanes 1–6: various fractions after Äkta purification; 
Lanes 4–6 contain the purified A domain used for biochemical analysis. B) Purification of A 
domain GeGA2. Lane 1–9: various fractions after Äkta purification; Lanes 4–8 contain the 
purified A domain used for biochemical analysis.  

 

All proteins were analyzed by MALDI-MS, which identified them as the desired proteins. 

Both the SDS-PAGE (Figure 3.53B) and the MALDI-MS analysis (data not shown) revealed, 

however, that a proportion of protein GeGA2 was truncated from its C-terminal end. As this 

was not expected to interfere with the substrate specificity of the intact domain, the mixture 

was used in subsequent assays.  

 

3.2.12.4  ATP-PPi exchange assay 

The substrate specificity of the two purified adenylation domains was evaluated using the 

well-established ATP-PPi exchange assay [58;111]. This assay measures the amino acid-

dependent exchange of radiolabel from 32PPi into ATP. For this, each protein was incubated 

with a panel of different amino acids, including the anticipated substrate of each domain. As a 

control, each protein was incubated in the absence of added amino acid. 
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Figure 3.54: Relative substrate specificities of the adenylation domains GeEA1, GeGA2. 
 

The substrate specificity of the A domains was investigated using the ATP-PPi assay. The 
highest activities were set to 100%.  

 

GeEA1 activated L-Pip (100%), D-Pip (82.88%) and L-Pro (80.3%). The background and 

controls were between 0.85% and 3.79%, confirming that the measured activity reflected the 

true substrate preference of the A domain (Figure 3.54). GeGA2 activated L-Orn (100%) as 

well as L-Gln (62.7%). L-Glu and L-Asp were also activated to a minor extent. So the 

preferred activation of ornithine and glutamine was clear. Taken together, our results prove 

that the two internal enzyme fragments investigated exhibit the enzymatic properties of 

adenylation domains. The determination of the A domains specificity enabled us to place the 

first two A domains in the correct order within the synthetase. As predicted previously, the A 

domain GeEA1 activates pipecolic acid, and thus forms a part of the loading module (module 

1). It is followed by module 2, which harbors an A domain (GeGA2) specific for 

orithine/glutamine. It remains to test the other three A domains GeGA3, GeJA4 and GeMA5 to 

determine their function.  
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4 Discussion 

4.1 General scope of this work 

This thesis deals with the biosynthesis and heterologous production of complex secondary 

metabolites from streptomycetes. A method for the heterologous expression of these 

compounds in streptomycetes was developed, using the phenalinolcatone biosynthetic 

pathway as a model system. The established expression system provided the basis for the 

modification of the pathway, leading to the production of a new derivative.  

Identification and biochemical characterization of the GE81112 biosynthetic gene 

cluster provided information about the biochemistry of this unique family of secondary 

metabolites and of nonlinear NRPS megasynthetases more generally. In the course of these 

studies, genetic manipulation methods for a new streptomycetes strain were developed, 

leading to the formation of a knockout mutant.  

 

4.2 Phenalinolactone - Heterologous expression of a complex secondary 

metabolite 

4.2.1 Heterologous expression of natural product pathways 

Heterologous expression of complex natural product biosynthetic gene clusters in amenable 

host strains has become an important tool in natural products research and drug discovery. 

This strategy provides an alternative to (over)producing structurally complex substances that 

would be difficult or impossible to access by other means, and can enable the generation of 

novel analogs by combinatorial biosynthesis approaches. However, successful heterologous 

production of natural products faces significant challenges, deriving both from complicated 

nature of the secondary metabolites, and the complexity of the biosynthetic enzymes. In 

addition to laboratory convenience, excellent growth characteristics, and an array of available 

genetic tools, the heterologous host must be able to express relatively large proteins (e.g. PKS 

and NRPS proteins) [30;112], post-translationally modify them to their active forms, and 

produce adequate amounts of activated intracellular building blocks. As the codon usage is 

usually [113] critical for efficient expression, it is generally important that the GC content of 

the foreign genes and the host genome are similar. Furthermore, the functionality of 

regulatory elements and promoter structures as well as mRNA stability need to be considered 

when choosing the host organism. To date, the most successful heterologous expression 
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experiments have relied on hosts which are closely-related to the natural producer strain. For 

example, many clusters derived from Streptomyces clusters have been reconstituted in related 

actinomycete strains [29;33;114-116]. As most of these gene clusters were relatively small 

(<30 kbp), it was often possible to retrieve the entire gene set from a single cosmid within a 

genomic library of the natural producer strain [30]. In cases where the libraries were prepared 

in E. coli-Streptomyces shuttle vectors (e.g. the medermycin and griseorhodin A biosynthetic 

gene clusters [31;117]), transfer of the pathways into heterologous strains was 

straightforward.  

 

However, many natural product biosynthetic gene clusters are larger than the average insert 

size of common cosmid vectors. One strategy for overcoming this size limitation is to use 

BAC shuttle vectors for library construction, as they can accommodate inserts in excess of 

100 kbp. This approach enabled the successful expression of the 128 kbp daptomycin 

biosynthetic gene cluster from Streptomyces roseosporus in a related Streptomyces strain 

[118]. Another option is to clone subsets of the biosynthetic gene cluster into compatible 

expression plasmids, followed by their stepwise introduction and co-expression in suitable 

host strains [34;119]. As the cloning procedure allows the introduction of artificial promoter 

regions, heterologous production can be performed even in non-related host organisms. Using 

this strategy, natural products from Streptomyces were produced in E. coli, and myxobacterial 

compounds were obtained from Streptomyces host strains [120-122]. 

 

An alternative to these classical, time-consuming cloning and mutagenesis approaches is the 

reassembly of large natural product pathways on a single transferable vector system, using 

Red/ET technology. This recombination approach was developed by the Stewart group in 

1998 [37], and is ideal for manipulating large pieces of DNA as it does not depend on the use 

of restriction enzymes. Phage-derived protein pairs (RecE/RecT from the Rac prophage or 

Redα/Redβ from the lambda phage) are employed to precisely alter target DNA molecules by 

homologous recombination within E. coli strains [36]. The first notable proof-of-principle for 

the cloning of a large PKS/NRPS hybrid pathway using Red/ET recombineering was provided 

by Wenzel et al. [35]. The 29.6 kb pathway directing the biosynthesis of myxochromides S 

was rebuilt on one molecule and the DNA elements for transfer, stable maintenance, and 

inducible expression were introduced, enabling the production of the natural product in 

Pseudomonas putida.  
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In Streptomyces strains, Red/ET cloning has been used to modify the backbone of cosmids 

containing complete biosynthetic pathways, enabling the heterologous expression of the 

aminocoumarin antibiotics novobiocin and clorobiocin [123]. In these examples, all of the 

genes were oriented in the same direction, consistent with the presence of a single 

transcriptional unit. In comparison to the aminocoumarin pathways, the phenalinolactone 

gene cluster of Streptomyces  Tü6071 is more complex, as it consists of 35 orfs which appear 

to be organized into 11 individual transcriptional units [66]. This highly divergent architecture 

would seem to present a significant challenge to the regulatory apparatus of heterologous host 

strains.  

 

Thus, in attempting to achieve heterologous expression of the phenalinolactone pathway, we 

developed a Red/ET-based methodology to reconstitute the entire gene cluster on one 

construct to ensure that all transcriptional units were intact. Whereas similar approaches had 

already been used to engineer myxobacterial systems [35;42], the ‘stitching together’ of 

complex actinomycete pathways via Red/ET recombineering had not been previously 

described when the Ph.D. thesis was started which intended us to start this project. Shortly 

after our work was published another example for the heterologous expression of a gene 

cluster using Red/ET was published by the Gust group [124]. Using this method they were 

able to stitch and express the coumermycin A1 biosynthetic gene cluster in S. coelicolor 

M512. Using Red/ET recombineering the entire gene cluster of PL was rebuilt from 

overlapping cosmids based on the integrative E. coli-Streptomyces shuttle vector pOJ436, and 

transformed into different heterologous hosts. 

 

4.2.2 Heterologous expression of the PL pathway in pseudomonads 

Pseudomonads has been shown to be suitable heterologous hosts for the production of natural 

products [125]. These microbes possess a high GC content, have a relatively short doubling 

time, and genetic tools are well established. Therefore we aimed to heterologously express the 

PL gene cluster in Pseudomonas putida. As we had integrated an oriT-tet-trpE cassette into 

the expression construct, transformation and integration of the vector into the Pseudomonas 

genome was possible. Integration into the genome was proven by PCR and the obtained 

mutants were cultivated, extracted and the extracts analyzed by HPLC-MS. Unfortunately we 

did not observe any heterologous production of PLs in P. putida.  
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One of the major issues for the heterologous expression of biosynthetic pathways in unrelated 

bacteria is the supply of adequate precursors. In the case of the polyketide myxothiazol, 

heterologous expression in P. putida initially failed. However, integration into P. putida of an 

operon responsible for production of an essential building block, methylmalonyl-CoA, 

resulted in myxothiazol production [43]. To investigate whether the absence of a precursor 

could explain the failure to obtain the PLs from P. putida, we considered the biosynthetic 

model for phenalinoalctone biosynthesis published by Dürr et al. [66;80] (Figure 4.1). The 

pathway can be divided into four major parts: (1) formation of the terpene backbone and its 

extension with phosphoenolpyruvate; (2) modification and rearrangement of the 

phosphoenolpyruvate-derived side chain toward the γ-butyrolactone moiety; (3) biosynthesis 

of L-amicetose and pyrrole-2-carboxylic acid; and (4) group transfer reactions and late-stage 

tailoring. The precursors for each portion of the biosynthesis are derived from (1) the 

nonmevalonate pathway (terpene biosynthesis); (2) pyruvate (γ-butyrolactone biosynthesis); 

(3) glucose (L-amicetose biosynthesis); and (4) L-proline (pyrrole-2-carboxylic acid 

biosynthesis). 
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Figure 4.1: Proposed biosynthetic pathway for phenalinolactone formation.  

 
Figure adapted by Dürr et al. [66]. 
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As the nonmevalonate pathway is present in P. putida [126] and the respective genes are also 

present in the cloned gene cluster, we eliminated this pathway from consideration. The 

remaining precursors such as pyruvate, glucose and L-proline are derived from the primary 

metabolism, and were therefore also expected to be present in P. putida. Thus, we assumed 

that P. putida is able to produce all precursors which are needed for PL biosynthesis.  

 

As pseudomonads posses a high GC content similar to that of streptomycetes, we also 

assumed that codon usage was not a problem. This focused attention on the native 

Streptomyces promoters, which may not be recognized in Pseudomonas putida. To date, 

heterologous expression of natural product biosynthetic pathways in pseudomonads has only 

been succesful when the native promoters were exchanged against the inducible Pm promoter 

[35;43;125]. For this reason, we also aimed to exchange several promoters in the PL 

biosynthetic gene cluster to achieve heterologous expression in P. putida. As the PL 

biosynthetic gene cluster contains 35 orfs and 11 transcriptional units, we expected that at 

least one promoter would be present in each operon, for a total of 11 promoters. As a starting 

point, we decided to exchange the promoter in front of the operon containing the genes 

responsible for assembling the core structure of the PLs. The proteins PlaT1–PlaT6 (Figure 

4.2) comprise the enzymatic machinery to biosynthesize the phenalionalctone terpenoid 

scaffold. The isoprene building blocks for phenalinolactone biosynthesis are derived from the 

nonmevalonate pathway which is also present in P. putida. So it can be assumed that the 

isopentenyl pyrophosphate (IPP) should be produced in primary metabolism of P. putida. The 

genes plaT5 and plaT6 in the PL cluster comprise additional copies of the dxp (1-deoxy-D-

xylulose 5-phosphate) and hmbpp (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate) 

synthase genes from the nonmevalonate pathway. It is speculated that PlaT5 and PlaT6 

probably enhance the IPP production [66]. PlaT4 catalyzes the head to tail condensation of 

four isoprene monomers toward geranylgeranyl diphosphate (GGDP), the phenalinolactones 

direct terpene precursor. PlaT1 is suggested to catalyze an epoxidation of the C-14/-15 double 

bond of GGDP prior to its cyclization. PlaT2 is responsibe for the cyclization of GGDP to PL 

precursor 1. PlaT3 might be considered for the phosphoenolpyruvate transfer to the terpene 

backbone. The next step would be the dehydrogenation of the newly established C-C linkage, 

giving the C-15/-16 double bond. PlaZ would be a candidate for this dehydrogenation reaction 

(Figure 4.2). 
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Figure 4.2: Proposed biosynthesis of possible PL precursors. IPP: isopentenyl pyrophosphate, 

GGDP: geranylgeranyl diphosphate. 
 

Unfortunately the corresponding genes plaT1-3 and plaT4-6 are located in two different 

operons, making it impossible to attempt to upregulate transcription with a single promoter 

switch. We started by targeting the operon containing the first three biosynthetic genes, 

plaT4-6. The native promoter was exchanged against a cassette containing the Pm promoter, 

the xylS gene and a resistance gene (chloramphenicol) using Red/ET cloning, and mutants 

were verified by PCR. We expected at least the direct precursor GGDP to be produced as 

plaT4-plaT6 are present in the operon where the promoter was exchanged. But analysis by 

HPLC-MS analysis failed to reveal the presence of GGDP, PL precursors or PL in the 

mutants. This result demonstrated that exchange of this single promoter was insufficient to 

achieve production of any precursors in P. putida.  

 

In principle, a follow-up strategy would be to attempt to exchange all of the native promoters 

against the same Pm promoter cassette or other Pseudomonas promoters. However, this 

approach is likely to cause difficulties, as the introduction of promoters by Red/ET 

recombination is based on homologous recombination; the presence of the same promoter 

sequence at multiple locations within the cluster would probably result in undesired 

recombination events. Alternatively, it might be possible to use a set of different promoters. 

However, only a few inducible promoters are currently known for pseudomonads. Taking 

these considerations into account, we concluded that it would not be feasible to exchange all 
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of the promoters within the PL cluster. We therefore pursued heterologous expression in an 

alternative host. 

 

4.2.3 Heterologous expression of the PL pathway in streptomycetes 

The Red/ET engineering enabled the efficient transfer and integration of the whole PL 

pathway into several Streptomyces strains, as the construct contained a vector backbone with 

an attP site and the integrase gene. The 62 kbp construct was successfully conjugated with 

high efficiency into the host strains S. lividans TK24 and S. coelicolor A3(2), and integration 

into the chromosomes confirmed by PCR. In contrast to the Pseudomonas mutants, the 

resulting mutant strains of S. lividans TK24::CPhl8 and S. coelicolor A3(2)::CPhl8 were both 

shown to produce phenalinolactones A and D. This result strongly suggests that the inserted 

cluster contains all genes necessary for the biosynthesis of phenalinolactone, although 

participation of enzymes native to the heterologous hosts cannot be ruled out. Evidently, all of 

the regulatory elements required for transcription of the pla genes were recognized in the 

heterologous hosts, albeit at reduced efficiency relative to the native host strain (Table 3.2).  

 

One potential complication of using S. lividans and S. coelicolor as heterologous hosts is their 

endogenous production of the antibiotics prodiginin (Red), actinorhodin (Act) and calcium-

dependent antibiotic (CDA), which may hamper the simultaneous biosynthesis (and detection) 

of a desired new compound. This problem has been circumvented in several cases by using a 

mutant strain of S. coelicolor M512, in which the Act and Red gene clusters have been 

deleted [123;127]. Therefore, S. coelicolor M512 was also used here as an additional 

heterologous host for phenalinolactone biosynthesis. Indeed, after successful expression of the 

cluster in the strain, production of phenalinolactone was 5- to 50-fold higher at 28 °C relative 

to that in S. lividans TK24 or S. coelicolor A3(2) (Table 3.2). Interestingly, cultivation at 37 

°C in S. lividans yielded a further enhancement in productivity (up to 100-fold compared to 

cultivation at 28 °C) although the optimal growth temperature for S. lividans is 30 °C. An 

increase in phenalinolactone biosynthesis was not observed for the S. coelicolor strains at 37 

°C. In fact, incubation at 37 °C completely abolished PL biosynthesis, consistent with the fact 

that production by the native host Streptomyces Tü6071 is also significantly lower at this 

temperature (200 µg/L). Thus, under optimized fermentation conditions, it is clear that S. 

lividans is a superior heterologous host for phenalinolactone biosynthesis than the S. 
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coelicolor strains, although the production is still 50-fold lower than from the natural 

producer.  

 

An attempt was also made to increase phenalinolactone production by feeding of the putative 

precursor mevalonolactone, but no increase in the yield of PL was observed. Analysis of the 

pla cluster shows that it incorporates genes for producing isoprenoid building blocks via the 

mevalonate-independent pathway, and indeed this biosynthetic origin has previously been 

demonstrated [66]. In addition, genes belonging to the mevalonate pathway have not yet been 

identified in either S. lividans and S. coelicolor [128;129]. Thus, it seems that the 

heterologous host strains used here lack the enzymes to metabolize mevalonate, which 

accounts for our failure to increase phenalinolactone yields by supplementation.  

 

In a further attempt to increase productivity, we exchanged two of the native promoters 

against the strong constitutive ermE promoter using Red/ET recombineering again. The 

advantage in this strategy was the ermE promoters sequence could be introduced with the 

primers, so that two promoters could be exchanged in a single step. The two promoters were 

placed in front of the two operons harboring the first biosynthetic genes (plaT1-3 and plaT4-

6).  It has previously been demonstrated that introduction of the ermE promoter can increase 

the yields of heterologously-expressed natural products, or even lead to initiation of 

production. For example, cloning of eight validamycin biosynthetic genes under the control of 

the ermE promoter led to heterologous production of this metabolite in S. lividans [130]. 

Another example was the heterologous expression of an intermediate of the kendomycin 

starter unit. The heterologous expression of a gene set of 7 genes revelaed that 3,5-

dihydroxybenzoic acid is an intermediate in the kendomycin starter unit biosynthesis [131]. 

Successful heterologous production was only achieved in S. coelicolor but not in S. lividans.  

Cloning of the ermE promoter in front of the gene set initiated the heterologous expression in 

S. lividans.  Production under the control of the ermE promoter in S. lividans was even much 

more higher (150mg/ml) compared to production in the natural producer or the heterologous 

production in S. coelicolor with and without the ermE promoter (S. C. Wenzel unpublished 

data). Unfortunately, exchange of the native promoters against the ermE promoter in the pla 

biosynthetic gene cluster did not yield any increase in productivity.  As we introduced two 

ermE promoters in front of both operons containing the first biosynthetic genes we expected 

at least a production of GGDP or precursor 1 (Figure 4.2). As PlaZ which is probably needed 

for the formation of precursor 2 was not part of both operons precursor 2 was not directly 
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expected to be produced. But no GGDP or any other precursors could be detected; instead, PL 

production was completely abolished. These results led us to conclude that promoter 

exchange interrupted transcription or led to problems with regulation or both, probably as a 

result of the complex operon structure of the pla cluster. Again, a solution might be to 

exchange of all the promoters within the cluster, but this approach would raise the same issues 

as in the pseudomonads. Thus, overall we achieved the greatest success in improving PL 

production by changing the growth temperature of S. lividans showing that standard 

microbiological optimization methods can still be effective. 

 

4.2.4 Genetic modification  

The expression system described here further enabled the generation of an unglycosylated 

phenalinolactone derivative. For this, Red/ET technology was combined with the FRT/FLP 

recombinase system to construct a markerless deletion of the glycosyl transferase gene plaA6. 

Heterologous expression of the modified construct resulted in the unglycosylated derivative 

phenalinolactone E (PL E), demonstrating that the glycosyl transferase PlaA6 catalyzes the 

attachment of L-amicetose to the hydroxylated terpenoid backbone. Surprisingly, biosynthesis 

of PL E was only observed in S. coelicolor M512, although yields of the parent glycosylated 

compound from S. lividans TK24 were much higher. In this case, the utility of S. coelicolor 

mutant strain M512 as suitable host may stem from its overall lower background of secondary 

metabolism. The use of the FRT/FLP recombinase system in combination with the Red/ET 

technology is a powerful tool to create a markerless gene deletion in a single expression 

construct. This modification is conveniently achieved by introducing the FRT recognition 

sites into the PCR primers. Recombination with FLP recombinase results in a markerless 

mutation, in which only a 34 bp scar sequence is left in place of the deleted gene of interest. 

This scar sequence does not present a problem for further recombination procedures. To 

construct two mutations simultanesouly, the Cre/loxP system can be employed in parallel.  

 

A similar approach has been used by Heide et al. [132]. New aminocoumarin antibiotic 

derivatives were generated by targeted gene replacement using Red/ET recombineering. 

However, instead of introducing FRT or loxP recognition sites with the primers, they 

introduced recognition sites for the restriction enzymes SpeI and XbaI which are rare cutters 

in the Streptomyces DNA. Digestion of the cosmids by SpeI and XbaI resulted in compatible 

overhangs, and religation then resulted in a cosmid in which only an 18 bp scar sequence was 
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left in place of the deleted gene. One drawback of this approach in comparison to the 

FRT/FLP or Cre/lox system, however, is that a ligation step is always required. Additionally, 

no other SpeI or XbaI sites can be present in the target sequence, whereas the recombinase 

system is not dependent on restriction sites but on the FRT/loxP recombination site.  

To obtain additional PL derivatives, we generated two constructs containing markerless 

deletions of the genes plaP2 and plaP5. By removal of the acyltransferase- encoding gene 

plaP2, we aimed to generate a PL derivative lacking the 5-methylpyrrole-2-carboxylic acid 

moiety (Figure 4.3). The gene plaP5 is proposed to be responsible for the methylation of the 

pyrrole carboxylic acid [66], and thus deletion of this gene was expected to give an 

unmethylated PL derivative (Figure 4.3). In this case, we exploited the Cre/lox system instead 

of the FLP/FRT system. Using both systems in combination, we aimed to obtain a small set of 

different PL derivatives (Figure 4.3). 

 
Figure 4.3: PL derivatives expected after deletion of different biosynthetic genes, in heterologous 

streptomycetes hosts.   
 

Unfortunately, no variant PLs could be detected in extracts of mutants carrying the deletions 

in plaP2 and plaP5, and instead, PL production in these strains was completely abolished. 

The failure to detect new derivatives might be explained by very low production levels: as PL 
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E is already produced in miniscule amounts, it seems reasonable that production of 

derivatives could fall under the detection limit. However, we cannot rule out the possibility 

that deletion of the genes interrupted transcription, or that regulatory problems occurred.  

 

4.2.5 Future aspects 

Although several Streptomyces gene clusters have been relocated to heterologous hosts using 

Red/ET cloning, transcription in each case was under the control of a single promoter [123]. 

Thus, the pla cluster represents the most complicated gene set yet to be heterologously 

expressed in any Streptomyces sp. In future, efforts to understand the regulatory factors 

governing phenalinolactone biosynthesis should aid in efforts to optimize heterologous 

production, for example by overexpressing positive regulators. Also other heterologous 

actinomycetes hosts could be tried to optimize heterologous production. In addition, the 

results described here set the stage for further engineering the biosynthetic machinery in E. 

coli towards the generation of additional novel PL analogues. 
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4.3 GE81112 family compounds - Novel tetrapeptide inhibitors of bacterial 

protein synthesis 

Identification of the biosynthetic gene cluster 

The emergence of multi-drug resistant microbial pathogens is driving the search for novel and 

more effective antibiotics, especially those with new mechanisms of action. The majority of 

known antibiotics inhibit the fundamental process of protein synthesis. Prominent examples 

of antibiotics which target this machinery are the macrolides erythromycin and azithromycin, 

the aminoglycosides kanamycin and tobramycin, and the tetracyclines [133]. Elongation 

activities such as aminoacyl-tRNA binding and decoding in the ribosomal A-site, 

transpepdidation, and translocation are frequently found to be affected by antibiotics, albeit by 

different mechanisms. However, other functions such as translation initiation and termination, 

are only rarely targeted [133]. Thus, the tetratpeptide GE81112 compounds represent a unique 

class of novel antibiotics, as they selectively and effectively inhibit the formation of the 

prokaryotic 30S initiation complex [67]. To obtain a better understanding of the biosynthesis 

of these unique metabolites, we set out to identify and clone the corresponding biosynthetic 

gene cluster. We hoped that insights into the biosynthesis would enable the directed 

engineering of novel GE81112 derivatives.  

 

4.3.1 Attempts to identify the GE81112 biosynthetic gene cluster  

4.3.1.1 Generation of a cosmid library and hybridization strategy 

At the beginning of the work, we obtained the GE81112 producer strain S. 14386 from the 

company KtedoGen. In order to enable the identification and cloning of the biosynthetic gene 

cluster, we started by optimizing production conditions for the GE81112 compounds. After 

establishing cultivation and detection of the GE81112 metabolites, we aimed to locate the 

corresponding gene cluster by generating a cosmid library, and screening it with suitable 

probes. Before rapid genome sequencing methods became available, numerous NRPS and/or 

PKS biosynthetic gene clusters were sucessfully identified using this approach [134-137]. 

  

We therefore generated a 2304 clone cosmid library from the genomic DNA of the GE81112 

producer strain containing. A suitable probe was obtained by applying a “retrobiosynthetic 

strategy”, which allowed us to predict some aspects of the composition of the GE81112 

cluster from the metabolite structures. On this basis [67], we predicted that the biosythesis 
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would be carried out by a non-ribosomal peptide synthetase, and so designed probes to 

identify NRPS genes. Furthermore, we were able to predict that the starter unit would 

probably derive from pipecolic acid, which is known to be formed from lysine via the action 

of a lysine cyclodeaminase [82]. As cyclodeaminase genes are relatively rare in the genome 

[86] this gene was used to design a second probe to identify the GE81112 cluster. 

 

4.3.1.2 Identification of an unkown NRPS biosynthetic gene cluster 

Screening of the cosmid library with both probes revealed two cosmids apparently harboring 

overlapping regions of a gene cluster. Furthermore, sequence analysis revealed that both 

cosmids harbored NRPS biosynthetic genes. As the modules in both clusters contained 

comparable domains in the order C-A-PCP [56] (Figure 4.4), we expected the two cosmids to 

contain the same biosynthetic gene cluster. Surprisingly, however, a more detailed sequence 

analysis revealed that the gene clusters, although highly similar, were not identical. This 

finding might indicate that they have arisen from a recent gene duplication event, followed by 

sequence divergence.  

 
Figure 4.4: Module and domain arrangement from NRPS biosynthetic gene cluster on cosmid AI6 

and FD10. Identical domains from both clusters are highlighted in the same colors.  
 

The prescence of two highly-similar clusters was unexpected, but might have accounted in 

principle for the biosynthesis of the GE81112 family of tetrapeptides (e.g. each of the clusters 

might have given rise to a subset of family members). However, no examples of such ‘in 

parallel’ biosynthesis of similar metabolites within the same strain have been described to 

date, although closely-similar derivatives of a single natural product have been isolated from 

different strains (e.g. myxochromide A and S) [138].  

 

As it was not clear at this stage if the identified clusters were responsible for the biosynthesis 

of the GE81112 compounds, we analyzed the NRPS domains from each module. For the 
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incorporation of four amino acids we expected four modules containing the standard C-A-

PCP organization and additionally a cyclodeaminase for the generation of the starter unit 

pipecolic acid. The four module arrangement was present on cosmid FD10 as we predicted, as 

well as a cyclodeaminase gene. These results supported the hypothesis that the identified 

assembly line on cosmid FD10 is able to biosynthesize a tetrapeptide or tetrapeptides, as 

expected in the biosynthesis of the GE81112 family. The gene cluster on cosmid AI6 was not 

completely present on the cosmid. Three complete modules could be identified on this cosmid 

indicating that the cluster should at least be able to synthezise a tripeptide. Module four 

contains a C and an A domain but lacks a PCP where the cluster is interrupted. This could 

imply that there would still be a PCP in the the genome sequence so that the cluster would 

also be able to synthetize a tetrapeptide or even a longer peptide, as we don’t know what 

sequence follows. When considering the similarity with FD10 one could also conclude that 

the cluster on AI6 ends with the C domain on gene nrps_3 (same domain arrangement than in 

cosmid FD10) and that the additional A domain would belong to another cluster. To answer 

these questions the overlapping cosmid providing the whole pathway for the NRPS on AI6 

would need to be identified which failed until now. 

 

To test if all domains are likely to be functional, the conserved regions of all C, A, PCP and E 

domains [91] were analysed and found to be present. Using the specificity-conferring code of 

adenylation domains, we were able to predict the substrate specificity of some of the A 

domains (Table 3.8). As both clusters had an overall high content of sequence similarity, it 

was not surprising to find three A domains from each cluster which showed the same apparent 

substrate specificity. The identical A domains are found to be in the same order assuming that 

module 1 has been deleted/added to the FD10 cluster (Figure 4.4: identical domains are 

highlighted in the same colors). The A domains FD10_A2 (AI6_A1) showed substrate 

specificity for the incorporation of phenylalanine/tryptophan. A domain FD10_A3 and 

AI6_A2 were predicted to show substrate specificity for the activation of threonine. No 

confident predictions could be made for the remaining A domains, possibily indicating that 

they active uncommon amino acids.  

 

Overall, the two predicted A domain specificities for both clusters did not fit well with the 

biosynthetic hypothesis for the GE81112 compounds, as it was expected from the 

“retrobiosynthetic analysis” that pipecolic acid and two histidines would be incorporated.  
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In addition to the NRPS genes, we found the expected cyclodeaminase gene, but it was only 

present on cosmid FD10. Furthermore, sequence analysis revealed that more than half of the 

protein was missing relative to previously-described cyclodeaminases [82;83;85]. We 

assumed, therefore, that the truncated protein was no longer functional. This result provided 

an additional strong hint that the identified gene cluster was probably not responsible for 

GE81112 biosynthesis. As these results were based solely on in silico predictions, however, 

we aimed to obtain experimental validation for the identity of the gene clusters. 

 

4.3.1.3 Heterologous expression 

The most straightforward strategy to verify a gene cluster is to knockout one of the NRPS 

genes which are normally clustered in the genome and essential for the biosynthesis. We tried 

to do this knockout but, to date, it has not been succesfull. We therefore pursued an alternative 

strategy to determine the identities of the identified gene clusters, using heterologous 

expression [30;118;139;140]. Both cosmids were transferred into heterologous hosts S. 

lividans TK24 and S. coelicolor M512 and the extracts were checked for GE81112 

production. Unfortunately, the desired compounds could not be detected in the heterologous 

hosts. Instead three new compounds were detected in the heterologous host carrying cosmid 

FD10, which were not present in the wild type. These substances exhibited exactly the same 

fragmentation pattern as three compounds that were found during our initial analysis of the 

natural producer strain S. 14386, and which attracted our attention because one of them had 

the same mass (659) as GE81112 factor B. In addition, their fragmentation patterns suggested 

that they are chlorinated. Thus, the compounds might be structurally-related to the GE81112 

metabolites, but were definately not the desired GE81112 compounds.  

 

Taken together, these results indicated that the biosynthetic gene cluster present on cosmid 

FD10 is not responsible for biosynthesis of GE81112. The new compounds were not 

expressed from cosmid AI6, although it contained a highly similar gene cluster. One possible 

explanation for this result was that the cluster was interrupted in the nrps_3 gene and was not 

fully present on the cosmid. When we expect the cluster on AI6 to biosynthesize a tripeptide 

(as discussed earlier) then this tripeptide should at least incorporate the three identical amino 

acids than cosmid FD10, which could lead to a similar fragmentation pattern of the 

compound.  But no such tripeptides could be identified. This result rather indicates that the 

cluster was not complete and was therefore not heterologously expressed as essential genes 
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are missing. We also concluded that the cluster on AI6 is not responsible for GE81112 

biosynthesis, due to its high overall similarity to the gene cluster on FD10 which has been 

proofen to biosynthesize the new compounds.  However, to provide further support for our 

conclusions, we aimed to purify the novel compounds from the wild type and elucidate their 

structures. All three compounds could be purified in reasonable amounts for NMR elucidation 

using standard chromatographic techniques. We focused our initial structure elucidation 

efforts on compound 631, as it was obtained in the highest yields following purification. The 

NMR data obtained to date suggest that the structure of compound 631 contains four amino 

acids, consistent with the four modules found within the NRPS biosynthetic gene cluster on 

cosmid FD10. However, in silico analysis of the A domain specificity predicted that FD10_A2 

would incorporate phenylalanine and FD10_A3 threonine, while it appears that the compound 

includes a starter most likely derived from proline and a second amino acid derived from 

alanine. Analysis of the A domains FD10_A1 and FD10_A4 did not yield a clear prediction 

for their substrate specificity, consistent with the idea that they are uncommon A domains 

which may activate two unusual, modified ornithines.  

 

The gene cluster found on cosmid FD10 exhibits few additional features that hint as to how to 

put together the structural elements identified to date by NMR. One element of note is that the 

cluster ends with a C domain and not with a TE, as is typical for bacterial NRPS. This 

observation suggests that the C domain might catalyze a head-to-tail condensation to yield a 

cyclic product, as found for the cyclosporine synthetase [141]. However, evaluating this 

hypothesis awaits the full structural elucidation of the compounds. Additionally there was also 

a PKS part found to be present on FD10 but not on AI6. But this gene was also not fully 

present on the cosmid. So it cannot be excluded that the PKS is somehow involved in the 

biosynthesis of the new compounds, but this seems rather unlikely as it is not expected to be 

functional when interrupted. Final evidence would be given by a knockout in the natural 

producer or even on cosmid FD10 which was heterologously expressed. As the new 

compounds contained unusual amino acids harboring modifications it is also not clear how 

they can be biosynthesized from the relatively simple cluster on the cosmid. One explanation 

would be that the heterologous host provides some of the enzymes which are needed for this 

most likely complicated biosynthesis. One fact which is supporting this hypothesis is that the 

new compounds were only expressed in S. lividans and not in S. coelicolor, indicating that S. 

lividans has probably some advantages (e.g. special enzymes) for the biosynthesis of the new 

compounds.  
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4.3.2 New strategy-new probe  

 Identification of the GE81112 biosynthetic gene cluster 

As we had proven by heterologous expression that the gene cluster on cosmid FD10 (and 

probably also on AI6) were not responsible for the biosynthesis of the GE81112 compounds 

but for a new class of peptides, we developed an alternative strategy to identify the GE81112 

gene cluster. The basis for our approach was to screen with a novel probe. We knew from the 

earlier experiments that our previous probe had successfully identified the cyclodeaminase 

gene on cosmid FD10. However, the protein was truncated and therefore presumed to be 

inactive. As such pseudo-genes typically arise from gene duplication of an original active 

gene copy, we assumed that there might be a second, complete cyclodeaminase in the 

genome. To evaluate this hypothesis, we designed a probe specific for additional copies of the 

cyclodeaminase gene, on the basis of the sequence of the truncated cyclodeaminase. 

Screening the genome with this probe by Southern Blot revealed two signals in addition to 

that corresponding to cosmid FD10, indicating that the genome contained a second or even a 

third copy of the cyclodeaminase gene. Importantly, this gene was likely to be associated with 

the remainder of the GE81112 gene cluster. We therefore re-probed the cosmid library with 

the specific cyclodeaminase probe, leading to the identification of new cosmids. We further 

confirmed that the cosmids contained the cyclodeaminase sequence by PCR. As we strongly 

expected NRPS sequence to be present on the cosmids, we used degenerate NRPS primers to 

amplify A domain sequences. Using these primers, we successfully amplified A domains 

from four of the identified cosmids. Prediction of the A domain substrate specificity revealed 

one cosmid containing an A domain with specificity for proline/pipecolic acid, exactly as 

predicted for the GE81112 starter unit. Sequencing of the cosmid revealed a biosynthetic 

pathway which harbored different genes (e.g. cyclodeaminase) which we expected for 

GE81112 biosynthesis. However, as the entire gene cluster was not present on the cosmid, we 

identified an overlapping cosmid. Furthermore, we verified that the genetic organization on 

both was co-linear with the genome.  

 

To confirm the identity of the cloned biosynthetic locus, we first aimed to establish a method 

to genetically manipulate the strain. Although genetic manipulaton systems are well 

established for some streptomycetes strains [10], it turned out that the GE81112 producer was 

significantly less amenable to genetic manipulation. Nonetheless, using biparental mating, we 

developed a method for DNA transfer from E. coli via conjugation. We started method 
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development by conjugating both a replicative and an integrative vector as controls to test 

transformation efficiency. Using the standard amount of E. coli as described in Kieser et al. 

[10], we only obtained low numbers of colonies. As it was known from studies with other 

bacteria that the amount of E. coli can be crucial for conjugation efficiency [142], we tested 

different amounts of E. coli. Indeed, we found that transformation efficiency was 10–20-fold 

higher when large numbers (50×109) of E. coli were used. With a conjugation method 

established, we were able to inactivate gene geE, which resulted in the complete abolishment 

of the main GE81112 derivative factor B, which we could detect by high-resolution MS. This 

result provided clear evidence that the identified cluster was responsible for the production of 

the GE81112s. 

 

4.3.3  Analysis of the GE81112 biosynthetic gene cluster 

Sequence analysis of the identified cluster revealed that it harbored only NRPS components. 

Many clusters have a co-linear genetic and protein organization, following the so-called co-

linearity rule, in which each module is responsible for one discrete chain elongation step and 

the specific order of the modules defines the sequence of the incorporated amino acids [64]. 

Contrary to our expectation that we would find such a linear NRPS system providing four 

modules with the standard C-A-PCP domain order, the cluster exhibited a highly nonlinear 

genetic arrangement (Figure 4.5).  

 

 
Figure 4.5: Nonlinear arrangement of the GE81112 biosynthetic gene cluster.  

Domains that are proposed to interact are highlighted in the same colors. 

 

Several examples of such nonlinear NRPS systems have been reported  and initially, these 

NRPS were thought to be rare exceptions to the co-linearity rule [56]. However, during the 

past few years it has become clear that nonlinear NRPS are not an exception, but constitute a 

considerable fraction of the NRPS repertoire present in nature. The characteristic feature of 

these nonlinear NRPSs is at least one unusual arrangement of the core domains C-A-PCP. The 

GE81112 system also revealed a highly split genetic and module architecture, but when 

rearranging the domains they provide a linear assembly line as described in the results part. 

Although four amino acids are incorporated into the structure which would normally require 
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four modules, five modules harboring five distinct A domains were identified. Further 

unusual features of the cluster include two freestanding A-PCP didomains encoded by genes 

geJ and geM, and a stand-alone A domain, encoded by gene geE. Such stand-alone A 

domains have previously been identified in the nonlinear NRPS pathways to myxochelin 

[143] and yersiniabactin [144]. Similarly, freestanding A-PCP didomains have been found in 

the zorbamycin and syringomycin gene clusters [145;146]. 

 

The conserved regions of all domains in the GE81112 cluster were analyzed, and predicted to 

be functional. However, from the domain assignment alone, the order of subunits (modules) 

could not be predicted, as there were more modules present then expected for the biosynthesis 

of a tetrapeptide. We therefore began our analysis of the cluster with the prediction of the 

substrate specificity of the A domains, which we anticipated would give us a hint as to the 

order of the subunits. Based on analysis of the GE81112 structures, we expected that four 

amino acids would be the precursors of the biosynthesis incorporated into the compound in 

the order: pipecolic acid-ornithine/glutamine-histidine-histidine (Figure 4.6).  

 
Figure 4.6: GE81112 tetrapetide structure and corresponding amino acid sequence Pip-Orn/Gln-His-

His. 
 

The predicted specificity for four of the five A domains correlated with our expectations 

(Table 3.13). Together with an analysis of putative docking regions, we were able to predict 

how the NRPS proteins interact with each other to biosynthezise the GE81112s (Figure 4.7). 

Overall, we suggest that the linear assembly line consists of four modules exhibiting the 

standard C-A-PCP domain arrangement, and that the pathway incorporates one additional A-

PCP didomain, where the function was not clear, as well as a stand-alone thioesterase domain 
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for chain release. On both ends of the cluster additional orfs have been (Table 3.12) found 

where it was not clear if they have a function in the biosynthesis. What we suggest here is a 

first preliminary model of the biosynthesis where it remains to determine the boundaries of 

the gene cluster by knockout experiments. 

 
Figure 4.7: A) Nonlinear genetic arrangement of the GE81112 NRPS and B) proposed interaction of 

NRPS proteins to yield a linear assembly line. REs: Recognition elements. 
 

Nonetheless, the function of the apparently superfluous module 5 remained unclear. One 

hypothesis was that the corresponding gene geM arose by gene duplication of geJ (or the 

opposite way around), as both genes showed the same domain arrangement and the encoded 

A domains were both predicted to activate histidine. If true, the protein GeM would also be 

expected to be able to interact with GeG to form the last module. However, sequence analysis 

revealed that the two proteins are not highly homologous, and that in addition, GeM was 

missing a putative recognition sequence for interaction with GeG as was present in GeJ. We 

therefore concluded that GeM is unlikely to interact with GeG, and therefore assigned the role 

of the fourth extension module to protein GeJ. However, as the two domains from GeM were 

predicted to be functional, we assumed that the didomain must have a specific function in the 

biosynthesis. A detailed discussion about a possible biosynthesis and the function of the 

single proteins will be given in the next chapter. 

 

4.3.3.1 Biosynthetic proposal for the GE81112 compound family 

Our data taken together allowed us to propose a pathway to the GE81112 metabolites, albeit 

incomplete. GE81112 biosynthesis likely starts with the biosynthesis of L-pipecolic acid from 

L-lysine via the action of the putative cyclodeaminase (Figures 4.8A and 4.14). Unfortunately 

we were not able to reconstitute this reaction in vitro when we expressed the GE81112 
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cyclodeaminase GeD, as GeD was inactive under our assay conditions. Pipecolic acid would 

then be activated by the A domain GeEA1 in module 1 and loaded onto the adjacent PCP 

(Figures 4.8 B and 4.14). To evaluate the function and substrate specificity of the A domain, 

we performed an ATP-PPi exchange assay in vitro. This experiment clearly showed that L-

pipecolic acid was activated, supporting our hypothesis that this is the starter unit for the 

biosynthesis. The pipecolic acid moiety in GE81112 is hydroxylated at the β-position; a 

reaction which we predict is catalyzed by the putative L-proline-3-hydroxylase, GeF. 

However, the timing of hydroxylation (on the free amino acid [147], while the amino acid is 

thethered to the PCP [148], or following release of the chain from the assembly line [55;90]), 

remains unclear and several examples of all three reactions have been reported [55]. 

 
Figure 4.8: Proposed biosynthetic mechanisms. 
 

 A) Generation of pipecolic acid from lysine via the action of a cyclodeaminase (GeD). B) 
Activation and loading of pipecolic acid by module 1 followed by subsequent hydroxylation at 
position 3 by a putative β-hydroxylase (GeF). Alternative timings of the hydroxylation reaction 
are possible.  

 

It might have been possible to evaluate whether hydroxylation occurs before or after 

activation by the module 1 A domain, by assaying for the domain’s relative specificity for 

pipecolic acid and hydroxypipecolic acid. However, as the required hydroxypipecolic acid 

was not commercially available, it was not possible to carry out this experiment. Nonetheless, 

we propose, based on literature precedent [148], that  GeF most likely hydroxylates the PCP-

bound pipecolic acid (Figures 4.8 B and 4.14).  
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It was not directly obvious from which amino acid the second building block is derived as 

there are two different structures found in the GE81112 factors A, B and B1 which differ at 

position 6. In GE81112 factor A and B the second amino acid incorporated into the structure 

is hydroxypentanoic acid, which is hydroxylated at position 4 and O-carbamoylated at 

position 6. In factor B1 it is an ornithine which is hydroxylated at position 4 and N-

carbamoylated at position 6. To account for the biosynthesis of these two derivatives, we 

hypothesized that the A domain GeGA2 of module 2 can activate either glutamic acid or 

glutamine, followed by reduction of the carboxylic groups which would lead to 

hydroxypentanoic acid (factor A and B) or ornithine (factor B1), respectively. The proposal is 

shown in Figures 4.9A and B. 

 
Figure 4.9: Proposed biosynthetic mechanisms for generation of the second building block. 
 

A) Reduction of PCP-bound glutamate to hydroxypentanoic acid. B) Reduction of PCP-bound 
glutamine to ornithine. 

 

The timing of the reduction is not clear, nor is the enzyme which would catalyze this reaction. 

The next step in either case, however, would be the hydroxylation of the γ-carbon putatively 

catalyzed by GeI. Finally, the hydroxypentanoic acid/ornithine would be modified by N-/O-

carbamoylation. Again, the timing of the carbamoylation is not clear, but precedent examples 

suggests that it would happen following chain release [149;150]. Carbamoylation is normally 

catalyzed by a carbamoyltransferase, which we couldn’t find in the biosynthetic pathway. So 

we cannot exclude that the carbamoylation is catalyzed by another mechanism. Additionally it 

might be possible that the carbamoyltransferase gene is located somewhere else in the 
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genome. Alternatively, ornithine (factor B1) would be activated directly by the A domain, but 

this model does not explain how factors A and B are generated. To determine directly which 

amino acid is activated by this A domain, we tested the function of the enzyme in vitro using 

the ATP-PPi exchange assay. According to our hypothesis, the A domain must show a broad 

substrate acceptance, activating at least two different amino acids (glutamate, glutamic acid or 

ornithine) to generate all three GE81112 derivatives. Indeed, activation of all the three amino 

acids was observed, although the A domain showed a preference for ornithine. Thus, it 

appears that ornithine is directly activated by GeGA2, which accounts for the structure of 

factor B1. The reduced degree of activation of the other two substrates may indicate that 

modified versions of glutamic acid and glutamine are preferred.  

 

The third amino acid incorporated into the chain is either histidine (in GE81112 factor A) or 

aminohistidine (as in factors B and B1). In the case of GE81112 factor A, histidine is likely to 

be incorporated directly, but the origin of the aminohistidine is less obvious. One hypothesis 

is that the aminohistidine might be derived from cyclization of arginine by nucleophilic attack 

of the γ-carbon (Figure 4.10). This step could be catalyzed by an arginine cyclase operating 

on a PCP-bound substrate. This proposal implies that the A domain GeGA3 tolerates different 

substrates, activating both histidine (factor A) and arginine (factors B and B1). However, an 

additional possibility is that cyclization of arginine to aminohistidine occurs before the amino 

acid is thethered to the PCP, making aminohistidine the second substrate of the A domain. 

Thus, according to this alternative hypothesis, the A domain should be able to activate both 

histidine and aminohistidine. 

 
Figure 4.10: Proposed mechanism for the PCP-bound cyclization of arginine by a putative arginine 

cyclase. 
 

As the cluster lacks an obvious arginine cyclase, it appears likely that aminohistidine is 

generated by another mechanism. The in silico analysis of GeGA3 appears to support this 

proposal, as it suggests a specificity for Tyr/Trp and not arginine. This prediction may 

indicate a general preference for aromatic residues, accounting for activation of both histidine 
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and aminohistidine, but it is not clear how aminohistidine could be generated from tyrosine or 

tryptophane. Furthermore, amination of the PCP-bound histidine or after release of the chain 

cannot be excluded. To evaluate one of the hypotheses the suggested putative substrates must 

be tested in the ATP assay, which remains to be done. 

 

The last amino acid to be incorporated in GE81112 is a 6-chlorinated histidine. The 

chlorination reaction is expected to be catalyzed by a halogenase. Halogenation is a common 

modification of natural products and many halogenated compounds are known [151-153]. The 

timing of halogenation reactions during natural product biosynthesis has been shown to vary. 

For example, pre-assembly line chlorination of tryptophane occurs in rebbecamycin assembly 

[154], a PCP-bound threonine is modified during the biosynthesis of syringomycin [155], 

while β-tyrosine is chlorinated following release of the peptide chain, in the assembly of 

chloroereomycin [156]. A candidate for catalyzing the chlorination of the GE81112 

compounds is the halogenase GeF. A number of different scenarios can be proposed for how 

the histidine is chlorinated and incorporated into the metabolites (Figures 4.11 A, B and C). 

Common to all three is the role of module 4 in incorporating the (chloro)histidine, which is 

also hydroxylated at the β-position. 
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Figure 4.11: A linear model for the GE81112 NRPS templated assembly from four amino acids.  
 

In the first proposal (A), biosynthesis starts with the activation of histidine by the A domain of 

GeM (which is predicted to show specificity for this amino acid) which is then bound to the 

PCP of GeM (didomain protein). The putative halogenase GeL would then chlorinate the 

PCP-bound histidine to afford chlorohistidine, as has been proposed for the chlorination of L-

threonine in the syringomycin biosynthesis [146]. The hydroxylation could then occur on the 

Cl-His-S-GeM intermediate; alternatively hydroxylation would occur on the free histidine 

(prior to PCP attachment), or following release of the tetrapeptide from the synthetase. 

However, as the majority of hydroxylations have been shown to occur on PCP-bound amino 

acids [148], we believe that this mechanism is most likely. Nonetheless, it is unclear whether 

hydroxylation proceeds or follows the chlorination. The 3-hydroxy-6-chlorohistidine would 
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then be transferred onto the PCP of GeJ. There are several examples of such PCP-to-PCP 

shuttling in the literature. In the syringomycin pathway, for example, the freestanding A-PCP 

protein SyrB1 activates and loads threonine. The halogenase SyrB2 then acts on the Thr-S-

SyrB1 intermediate to produce 4-Cl-Thr-S-SyrB1. The Cl-Thr is then shuttled in trans to the 

PCP of a C-PCP didomain of the NRPS synthetase SyrE. This reaction is catalyzed by the 

acyltransferase SyrC, a protein belonging to the hydrolase superfamily [157]. Postulated 

functions for members of this protein family also include thioesterase and haloperoxidase 

[158]. A similar mechanism has been elucidated recently for zorbamycin biosynthesis [145], 

in which L-valine is loaded onto the PCP domain of ZmbVIIb, hydoxylated by ZmbVIIc, and 

subsequently transferred onto the PCP domain of ZmbVIIa by the predicted type II 

thioesterase ZmbVIId (Figure 4.12). 

 
Figure 4.12: Proposed mechanism for the biosynthesis and incorporation of L-hydroxyvaline in the 

zorbamycin biosynthetic pathway.  
 

The coronamic acid biosynthetic pathway incorporates a further example of the shuttling of 

aminoacyl moieties [159]. In this example, the aminoacyltransferase CmaE shuttles an allo-Ile 

moiety between the pantetheinyl arm of the PCP domain of CmaA (A-PCP didomain) and the 

freestanding PCP domain of CmaD. By mechanistic analogy, the histidine in GE81112 

biosynthesis may be loaded onto the PCP domain of GeM, chlorinated by GeL and/or 

hydroxylated by GeI, and subsequently transferred onto the GeJ PCP domain by the predicted 

type II thioesterase GeA, acting as acyltransferase (Figure 4.11A). In this model, the A 

domain in module 4 would not be necessary.  

 

Alternatively (pathway B) histidine is loaded onto the PCP of GeM and chlorinated by GeL 

leading to chlorohistidine. The chlorohistidine would then be released by GeA acting as a 

thioesterase, as described for BarC from the barbamide biosynthetic pathway [160]. The free 

chlorohistidine would then be activated by the A domain GeJA4 and loaded onto the PCP of 

module 4. In the next step, β-hydroxylation catalyzed by GeI would take place on the PCP-

bound species.  
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In these proposed pathways, GeA is predicted to function either as an acyltransferase or as a 

type II thioesterase, both of which are known to release amino acids from PCP domains [100]. 

To attempt to provide support for one or the other of the pathways, we aligned GeA against 

other known acyltransferases/thioesterases. The aminoacyltransferases identified to date have 

been assigned into two groups [145]. The first group, comprising SyrC, CmaE, ZmbVIId, 

contains a GxCxG motif harboring an active site cysteine; enzymes in this group are predicted 

to act as acyltransferases. Indeed, the active-site cysteine of these enzymes has been shown to 

be directly involved in aminoacyltransfer [159]. The second group contains acyltransferases 

BarC [160] and CouN7 [161], which both contain an active site serine (GxSxG) and are 

predicted to function as ordinary thioesterases. For example, in the barbamide biosynthetic 

pathway, BarC is proposed to release trichloroleucine by hydrolysis [160]. When we aligned 

the two thioesterase-like proteins GeA and GeN from the GE81112 biosynthetic gene cluster, 

the presence of an active site serine was clear, suggesting that the proteins both function as 

normal thioesterases (Figure 4.13). Thus, it seems likely that GeA is acting as a type II TE 

catalyzing the release of chlorohistidine (pathway B). The second thioesterase, GeN, is 

expected to catalyze the realease of the peptide from the assembly line (Figure 4.14), even 

though it is a discrete protein (i.e. type II architecture).  

 

 
Figure 4.13: Sequence alignment of acyltransferase/thioeseterases found in NRPS clusters. 

TheGxC/SxG is highlighted. 
 

The final alternative (pathway C) is that free histidine is chlorinated, and then activated and 

loaded onto the PCP of module 4. The remainder of the pathway would then follow that of 

proposal B. Thus in pathway C, module 5 does not play a role, but according to sequence 

analysis it is probably active. 
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Figure 4.14: Proposed GE81112 biosynthetic pathway of factor B1.  

 

Overall, pathway B appears to be the most reasonable, as the TE is clearly predicted to act as 

a thioesterase catalyzing the release of the chlorohistidine, rather than its transfer to GeJ. 

Further supporting pathway B is the fact that in pathways A and C, no function is required of 

a single domain or a didomain, respectively, when there is no evidence from sequence 

analysis that any of these domains should be inactive. Indeed, there are a number of examples 

in the literature in which apparently superfluous modules have been shown to be essential for 

natural product biosynthesis [157;159-161].  
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4.3.4 Summary and Future aspects 

The cloned GE81112 biosynthetic pathway could be identified and cloned and comprises a 

complex NRPS biosynthetic machinery. Many unusual features were found in its modular 

architecture, including A domains which likely incorporate unusual amino acids, such as 

pipecolic acid and chlorohistidine. Although many questions about the biosynthesis remain, 

the availability of the GE81112 cluster as well as tools for genetic manipulation now provide 

a platform for attempts to decipher these issues, and to generate new GE81112 derivatives by 

genetic engineering. A future goal will be to define the cluster boundaries by further gene 

inactivation experiments. To obtain further experimental evidence for the proposed 

biosynthetic pathway selected proteins can be studied in vitro. At first the three remaining A 

domains should be expressed and tested in the ATP assay for the activation of the suggested 

substrates. Furthermore it would be interesting to characterize the PCP of module 5 to 

demonstrate that this module is really needed for the biosynthesis. Another possibility to 

further investigate the gene cluster and to increase the production of the GE81112 compounds 

would be the heterologous expression. Therefore the cluster would need to be stitched from 

the two cosmids as it was already described for the phenalinolactone cluster and transferred 

into heterologous hosts, such as S. lividans. 

Additionally to the GE81112 biosynthetic gene cluster another novel NRPS cluster could be 

identified from Streptomyces 14386. Successful heterologous expression of this gene cluster 

revealed that it was responsible for the biosynthesis of three new peptides, which we 

speculated to be related to the GE81112 family as they seemed to be also chlorinated 

tetrapeptides. To get an idea about the structure of this compound family we purified all three 

compounds and tried to elucidate their structure by NMR. Although structure elucidation was 

not completely finished, it turned out that theses substances incorporate unusual amino acids. 

To finally determine if these substances are related to the GE81112 family, full structure 

elucidation needs to be done. Once the structure elucidation is finished investigations on the 

mode of action of these substances can also be done. However, with the heterologous 

expression of these substances and the genetic manipulation methods developed for S. 14386, 

we now have the basis for gene deletion experiments to investigate the biosynthesis of this 

new class of peptides.  
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5 Appendix 

Table 5.1: Sequence alignment of putative modules 1-5 from the GE81112 biosynthteic pathway 
with two modules of the NRPS pathway from cosmid FD10.  

 
C-A-PCP_FD10_2    1 ---------------------------MLFLALYDEQAVDTYTFQLAFELEGDVDAAGLRAAGDALLRRY 
C-A-PCP-FD10_3    1 -----------PYARPDVIPLSVGQRGQWFLNRFDD-GSGAYNILHTLRLTGALDREALRLALDDVVARH 
C-A-PCP_4         1 -------------ADDGFLPLSRAQRRVWLTSRRAG--SETFVISDLVRLGRRIDADALRRALGAVVERQ 
C-A-PCP_5         1 -------------ADDGFLPLSRAQRRVWLTSRRAG--SETFVISDLVRLGRRIDADALRRALGAVVERQ 
C-A-PCP-3         1 ---------VLWPETPGPVPASNAQRRMWFLEQYEGGELRPYNMVEAFRLPGRHEAADVAVALERTVRRH 
C-A-PCP-2         1 EPAGPAVPRQRPADPLPGTEVSAATRWLWLERQRADGDFGAYTVPCLLEGDGPLDTDRLAAALTVVARRH 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2   44 PNLRAGFRHEKLSRPVQVIPHQ-AEVPWREVDLRAESADGRAAALARLADEDRTHRFDLSRPPLLRFTLV 
C-A-PCP-FD10_3   59 ESLRT-IYPEIDGISRQVILEG-AEVDWTVREVPEEQLAG---ALAAEAAEG----FDLSLDIPVRAALF 
C-A-PCP_4        56 DMLRAQALPRGTEAELTVLDRLPDGVPLVVVELPGADPSGPEAAAALRDARRTG--FALDRAPLFELRLL 
C-A-PCP_5        56 DMLRAQALPRGTEAELTVLDRLPDGVPLVVVELPGADPSGPEAAAALRDARRTG--FALDRAPLFELRLL 
C-A-PCP-3        62 QALRTVFRTEPEGLRQIVLTPGEARPELRVHRARGTDMAG---LLRRVADAEQRHVFDPATGPLLRAHWL 
C-A-PCP-2        71 RALRTVFTEAHGEPRAVVTDDVPALEVADLRGQDAG-----DARFAACVDERVAVPFDPATGPLVRATVF 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  113 ----RLGD---------------------EQYRLMIVLHHILLDGWSFPLLVNDLFELYGRRGDETGLPR 
C-A-PCP-FD10_3  120 ----VLGD---------------------TECVLLLSMHHIASDGWSLAPLSRDLSVAYRARLAGAAPSW 
C-A-PCP_4       124 ----TGVV---------------------GGDLLTVTAHHLIYDGASVDVLLRDLFTAYEQAVAGEPPRL 
C-A-PCP_5       124 ----TGVV---------------------GGDLLTVTAHHLIYDGASVDVLLRDLFTAYEQAVAGEPPRL 
C-A-PCP-3       129 ----VEGANAGGDEGGDKSGDESGDSGGEAGGTLLLSVHHSVCDGWSFAVILRDLLRFLDGTEELPAPTQ 
C-A-PCP-2       136 LLPG-------------------------DRWSLLLLADHLVCDGRSLEILADQLVAAYADPASDVGRPP 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  158 VTPYREYLAWLSRQ-----DKAGAEA-------AWRGALDGVTEPTLLAPAAAANAVRVAPEEFTVDLSQ 
C-A-PCP-FD10_3  165 AGLPVQYADFALWQREVLGDEADPESELCRQLSFWTGRLDGLPQ-ELTLPADRQRPTESSGRGGLVDFTL 
C-A-PCP_4       169 PPLTYTYQEWVREERE---WLAGPEAER--EVAFWRERLRGLAE--SPDPVDPARRRSRRGRTGQVHRTV 
C-A-PCP_5       169 PPLTYTYQEWVREERE---WLAGPEAER--EVAFWRERLRGLAE--SPDPVDPARRRSRRGRTGQVHRTV 
C-A-PCP-3       195 YGAYALGQHTRRDDMEG--------------LEFWRRTLDGAPA--VDLPLDRRRPRERGSAAGTVRLAV 
C-A-PCP-2       181 GGEPAEETPAARPADPR------------AALDHWRSVLEPPPA-PLPLPVRGPRTEPAGSTTGIAAREI 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  216 ET--TAALDSLARARGLTMNTLVQGAWGLLLGSATGRSDVLFGATVSGRPAELPGVQSMVGLFINTIPVR 
C-A-PCP-FD10_3  234 EPGLHQGLVELARSGRASVFMVLQAGVAALLSRLGAGSDIPIGTPVAGRTDEA--LDDLVGFFLNTLVLR 
C-A-PCP_4       232 PA-------VLLRATAATPFAQVVTAFALTVRHHTGATDLVLGFAAGLRDRPE--ADQLIGYLVNAVPLR 
C-A-PCP_5       232 PA-------VLLRATAATPFAQVVTAFALTVRHHTGATDLVLGFAAGLRDRPE--ADQLIGYLVNAVPLR 
C-A-PCP-3       249 GEDTTRAVQGLCRELGTTSFTAMVAAVRVLLLRWSGADDIVLGTVVSGRDQPE--LADSVGLFVNTVALR 
C-A-PCP-2       238 GPDVLRRLTDLGRHHHAGPFVPLAAAVARTLAGLTGSADICLGTAVDRRARAG--AKDAVGFHVATVPLR 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  284 VGLDPAESVAGLFGRIQDQQTELMDHHHVGLT------EIQRLTGQSVLFDTLAVFEN---YPLDSGELE 
C-A-PCP-FD10_3  302 TDTSGDPAFDELVGRVREVNLAAYAHQDVPFERLVEALKPERSTARHPLFQVMLALQNQAEARLELPGLH 
C-A-PCP_4       293 VTLDDTVTGGELLPRVQHGIVEAYEHARLPFDVLAERLALRAGPGRSLLLDLGVSWEN---------AAL 
C-A-PCP_5       293 VTLDDTVTGGELLPRVQHGIVEAYEHARLPFDVLAERLALRAGPGRSLLLDLGVSWEN---------AAL 
C-A-PCP-3       317 TPVEPERGFAELVAAVAAHAREARAHEEYPFEHLVEALGAERVMGRNPLFDVLVEASVSG---TDPLGSG 
C-A-PCP-2       306 LDVRDEMSADDLVRHVARRTMDAVDHSDVTFDGLVAALDPPRSPGRMPFFDVWVALYP-----RIDTGPR 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  345 KSVDGVRVRGLTARDATHYPLSLIAYPG-EHMVLRVGHRPDLVDRETAETLVGRLVRILEAVAADPDRSV 
C-A-PCP-FD10_3  372 VVPEPVDIATSKFDLALDFTERFAADGTPDGVDGFLQYSADLFDRETAETLVARLSRFLGSVAAEPGQRI 
C-A-PCP_4       354 RPESQVVEDLLPDDLPATSDLWLYARVKGDELHLDLTYDDNLLDEAEAGAYADDVAAVLRGLAAGATAPP 
C-A-PCP_5       354 RPESQVVEDLLPDDLPATSDLWLYARVKGDELHLDLTYDDNLLDEAEAGAYADDVAAVLRGLAAGATAPP 
C-A-PCP-3       384 DGPAAEHIRLDSGAEGFDLAFSFTEPAPGRPIEVAITYREDVLDAATVHRAAGQLRHLLTALVADPSVPV 
C-A-PCP-2       371 PPDGIALRGGPTPLRVGMFELSFQCVEHAHGMRLTLQYDALRYAADTAERMVQRLGDEVARLLGDPTEPA 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  414 ASLDMLSVG----------ERRLVLGEWAGVGGVVSED-------------------------------- 
C-A-PCP-FD10_3  442 GAVEVLAPA----------ERERVLVEWNDSAHELAP--------------------------------- 
C-A-PCP_4       424 AQPTVPPPCPPPPAAPPAPNPSAPGPVWSDTRYDFLIPEQGKVRMTSDSAVPATTVRPRRLGPAHSAPAR 
C-A-PCP_5       424 AQPTVPPPCPPPPAAPPAPNPSAPGPVWSDTRYDFLMTPENELKAP------------------------ 
C-A-PCP-3       454 GSAPLLPPD----------QRDALLAAGTGPRGPVPRTAG------------------------------ 
C-A-PCP-2       441 PETAPAHRSFGGFQFDALAAGHQVPFLDVVSSAGGTPECALDPSATERLDALTGGDPTG----------L 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
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C-A-PCP_FD10_2  442 ---------------------------------------------------------------------- 
C-A-PCP-FD10_3  469 ---------------------------------------------------------------------- 
C-A-PCP_4       494 ARLPLTGAAADGLAKVSGGRPLEELVGLTAAATVVVGSAEHTDEPVVAVSGPSGPVLCGIGAAAPATVAD 
C-A-PCP_5       470 ---------------------------------------------------------------------L 
C-A-PCP-3       484 ---------------------------------------------------------------------- 
C-A-PCP-2       501 LLLTVAAARLALAALDEESRHVVLVPAPTNASRADPAADADTAPRELALCAPLDRSAPASVFLTSLHAEL 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
C-A-PCP_FD10_2  442 ---------------------------------------------------------------------- 
C-A-PCP-FD10_3  469 ---------------------------------------------------------------------- 
C-A-PCP_4       564 LVRAVDAALRSAPAADVRDAALAGAVLVSSARVGTAGAPAVRRDAIELTLSEPGADGGRDLVAEAAPERA 
C-A-PCP_5       471 ITRSVGARLRESRIHDN-------------------------------------SAGGRLSTNRDDPK-- 
C-A-PCP-3       484 ---------------------------------------------------------------------- 
C-A-PCP-2       571 ESALPLAWHDREDVASRLRLAGVPAAHALARLGVVCEEAGGKLLQPVGLCLTLRRSAGRLVLTAEAGGEL 
A-PCP_Loading1    1 ---------------------------------------------------------------------- 
 
 
C-A-PCP_FD10_2  442 ------------------------------------------------------VTLPGLFEAQVVRAPG 
C-A-PCP-FD10_3  469 ------------------------------------------------------ATLADLFEAQAARTPA 
C-A-PCP_4       634 EAWFLEVLLRSVARVLAGFTDPHDAVADLPRAGADDVAAATDFGRRGFEPDGVTTTLIAPIEAAVHAYPD 
C-A-PCP_5       502 -------------------------------------------------------TLTFLFEECARNVPG 
C-A-PCP-3       484 -------------------------------------------------------TLLDLVLAQVRRAPE 
C-A-PCP-2       641 PVAATALLRCAAAALEALGRSPRHPVAALDVLGPAQRAELERWSGLPVVAEFADATLTGVLDDAAARFPG 
A-PCP_Loading1    1 ------------------------------APSPPGHAGPVVDTGVSTVLELIDREVAAHPGDPAVREPG 
 
 
C-A-PCP_FD10_2  458 STALVFGGESVSYGELNARANRLARFLIARG-VGPERFVAVSLPRSVELVVAVLAVLKAGGAYVPVDPDY 
C-A-PCP-FD10_3  485 GTALVHGEESLSYGELNARANRLARLLTGRG-VGPEQVVALALPRSPDLVVALLAVVKAGAAYLPVDPEY 
C-A-PCP_4       704 RTAVVAGARTLTYREFWRATEAVADRLRASG-IGRGQRVGVLTGKSVHAVPAITGTLLAGAAYVPLDPRS 
C-A-PCP_5       517 NIALEFEGEFLSYGELNRRANKLAHHLRETGGVRPDDRVALLVRHPPDVIIAELAVLKAGGAYVPLDPDN 
C-A-PCP-3       499 GRAVVCGDRVLTYGDLDRRADALAARIAAVAPTGPDRVVAVVCDRSEWMPAALLAVLKTGSAFLPLDPEQ 
C-A-PCP-2       711 REAVSDGTVVWSHRDLAERSSRAARTLALDHGLKPGDRVALLLPKSPELVLAVLAVLRAGASFVPLDPSH 
A-PCP_Loading1   41 REVT--------YAELDRLADTVAGRLVGEFGIGRGDVVLLAARAGADFTAAVLGTLRAGAAYLPVDTAY 
 
 
C-A-PCP_FD10_2  527 PAERVAYLLEDSAPSFVLD---------------EAAFAGADVSGFSDVDVRDGERLGVLSGLS------ 
C-A-PCP-FD10_3  554 PAERIAFMLRDAAPALVLTTSGTGIGTTAPALPLDAAETVAALADHSDADLTDADRTTPLTDRH------ 
C-A-PCP_4       773 PAARLAEILDDAACGAVLVAPDMLDALPEGLAAPVIDLAAVAGGDAGAPAPGEQSAPAAPTAPTG----- 
C-A-PCP_5       587 PPGVTQRIIEDVTPRAMVIES------SAAAGAVFFDGELFVIDVMSDALETPESDPEPEVTPS------ 
C-A-PCP-3       569 STARLVGVLRDSGAVAAVASAQFAGVTAGAGLPTVTVGAPGAAAGQDAPVRGARDQDAPVLDEPREARAA 
C-A-PCP-2       781 PPARVARQLRLSGAVCVISARDELPGDLAVPVVSP---RALSAAPGPGATADAGTPSGPAPDDE------ 
A-PCP_Loading1  103 PPERIAQILGASSAALLVLADPGSLDTGAAGTPATGLAGLVAPEPSGGPVPAAAVRRGPAPEDP------ 
 
 
C-A-PCP_FD10_2  576 -----AAYVIYTSGSTGRPKGVVVPHGNVVRLFSATDRWFDFGPDDVWTLFHSFAFDFSVWEIWGPLLHG 
C-A-PCP-FD10_3  618 -----PVYVIYTSGSTGTPKGVVVTHGALTGQLRWLAAETELTPRDVVLARTPVSFDAAGAELWPPLVSG 
C-A-PCP_4       838 PLPDDLAYVVYTSGSTGRPKGVEIRHRAIASYVHWKLRNHGLDHDTRVLQLPSLAFDSSVADLFPVLASG 
C-A-PCP_5       645 ----DLAYVIYTSGTTGTPKGIAVEHQAIVNTLTWRNAYYGFGTDAVNLAIPRPSFDSSVADTFCSLTTG 
C-A-PCP-3       639 AGHADLAYVVYTSGSTGAPKGVMVEHGGIVNSVRFRVDHYGLGADGAVLQVDPIHADAGIVDVFSALASG 
C-A-PCP-2       842 ------AILFFTSGSTGLPRPVALTHRQLAHKVLASGRLVGFDEEIRCALLSAVTSDALTYQIFTTLAAG 
A-PCP_Loading1  167 ------AYVIFSSGSTGAPKGIVQTHRCLANFISWQVEGSGLGRGRRVLQVAPLTFDVSVQEMFYTLASG 
 
 
C-A-PCP_FD10_2  641 GRLVVVPFAVSRSPREFRALLVREGVTVLSQTPSAFYQLMAADAECGAGDGELVLRRVVFGGEALDLWRL 
C-A-PCP-FD10_3  683 AAVALASAEVTRDPEQLLAFIGHHGVTVAQFVPS----LLAATPLDERGRG---IRVLLMGGEALPAALA 
C-A-PCP_4       908 GLLVLADTHKLVPR-QLAELAEQHRVTHMTTVPSLYRVLLDELP-----RAADSLRAVTVAGEATTPDLV 
C-A-PCP_5       711 TRLVLPRRDRITDRRYLTGLMESAGVTHFLITPVLYKRLLGAMDA----QRLKTLRCVTVAGEWFTSSLT 
C-A-PCP-3       709 APMVIITRDQLLTPEEVAAVVRQHPIRHVLLVPSLYQVLLDEVGP-----AFRGVREIVLGGERVTRALA 
C-A-PCP-2       906 GCVVPMDSPQTLAPQEFWTTTRRLRVNVINCVPSLLAVMAEG----LPPGAAEDVRICLLGGDEIPAGFL 
A-PCP_Loading1  231 GCLHVPEAHVRRDPRDLIDFVIDERIEVVDFPQSLIDVVMTLPT--TFEHAADLRHIISAGETVRVNEAL 
 
 
C-A-PCP_FD10_2  711 GDWYARHGDAAPVLVNMYGITETTVHVSYVALDAG------------RVAGNAGSVVGRGIADLRVYVLD 
C-A-PCP-FD10_3  746 GQAAAAWG---AQVINVYGPTEATIQATSGRPDGS------------GDDATT-VPIGRPAWNTRVYVLD 
C-A-PCP_4       972 RRHHELLP--GVRLINEYGPTECSVGATAFDHG---------------TDAGPGVPIGWPISNTVATVTG 
C-A-PCP_5       777 KEHYRRLP--EVGLFNEYGPSENAVCSTVHPLA---------------ATDES-VLIGKPVDHTEAFVLD 
C-A-PCP-3       774 ARHAELLP--GVRLYNEYGPAEDSVLTTVELVEPAGTDGGSGAPDTRSPTASGDASIGRPLPGKWVDLLD 
C-A-PCP-2       972 PRLADRLR--VGTFANLYGPTEATIEATTFTCPGSALP------------ALTTVPVGRPSEGFGVVVLT 
A-PCP_Loading1  299 EALLTRRP--EITLHNHYGPAENHMVAAHSMS-GAAGN------------LEPGPPVGSLVWNTYIYLLD 
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Table 5.2: Sequence alignment of proteins GeJ and GeM from the GE81112 biosynthetic pathway 
Sequence homology was 29%. Protein GeJ shows an N-terminal linker sequence which is not 
present in GeM. 
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