Zur Reaktion eines Bis(amino)germylens mit Germaniumaziden: Abfangreaktionen von instabilen Germa-Iminen

M. Veith*, E. Werle und V. Huch

Saarbrücken, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 23. Oktober 1992.

Professor Hartmut Bärnighausen zum 60. Geburtstage gewidmet

Inhaltsübersicht. Das cyclische Bis(amino)germylen 1 wurde mit verschiedenen Germaniumaziden $Me_{2}Si(NtBu)_{2}GeR(N_{3})$ (R = Mc (2), tBu (3), N(SiMe_{3})_{2} (4), N_3 (5)) umgesetzt. Außer 4 reagieren alle Azide mit dem Germylen 1 unter Distickstoffentwicklung und gleichzeitigem Angriff des Ge^{II}-Zentrums auf den α -Stickstoff einer Azidgruppe. Das sich offenbar zwischenzeitlich bildende Germaimin (bzw. Germanitrid) wird durch weitere Reaktion mit der Azidkomponente (2 und 5) bzw. mit dem Lösungsmittel Pyridin abgefangen. Im Falle der Reaktion mit 2 bildet sich ein Germatetrazol $[Mc_2Si(NtBu)_2]GeN_4[Ge(Me)(NtBu)_2SiMe_2]_2$ (6), dessen Stickstoffatome ausschließlich durch Germaniumatome substituiert sind (Punktsymmetric C_s(m)). Bei der Reaktion mit entsteht ein Tris(germa)amin 5 $[Mc_2Si(NtBu)_2Ge(N_3)]_3N$ (7), das an jedem Germaniumatom noch jeweils eine Azidgruppe gebunden hat. Nach

Röntgenstrukturanalyse befinden sich neben der trigonal planaren Ge₃N-Einheit noch die 9 Stickstoffatome der Azidgruppen in der Molekülebene (kristallographische 3/m Symmetrie). Besonders überraschend ist die Reaktion von 1 mit 3 in Pyridin: im Produkt $Me_2Si(NtBu)_2Ge(C_5H_4N)N(H)Ge(tBu)(NtBu)_2SiMe_2$ (8) ist der Pyridinrest über das α -Kohlenstoffatom an das Germanium gebunden, während das verbleibende Wasserstoffatom sich an den Nitrid-Stickstoff addiert hat. 6 kristallisiert monoklin in C2/m mit a = 24,306(9), $b = 10,933(6), c = 19,420(9) \text{ Å}, \beta = 91,81(2)^{\circ}$ mit Z = 4, 7 kristallisiert hexagonal in P6₃/m mit $a = b = 16,73(1), c = 11,006(6) \text{ Å}, \gamma = 120^{\circ} \text{ mit } Z = 2,$ und 8 kristallisiert monoklin in $P2_1/n$ mit a = 11,341(6), $b = 26,086(9), c = 13,244(7) \text{ Å}, \beta = 98,12(2)^{\circ} \text{ mit}$ Z = 4.

Reaction of a Cyclic Bis(amino)germylene with Germaniumazides: Trapping-Reactions of Unstable Germa-Imines

Abstract. The cyclic bis(amino)germylene 1 reacts with different germaniumazides of the type $Mc_2Si(NtBu)_2Ge(R)N_3$ (R = Me (2), tBu (3), N(SiMe_3)_2 (4), R = N₃ (5)). With the exception of 4 all azides lose dinitrogen when treated with 1 and the Ge^{II} center coordinates the α -nitrogen of the azide group. It seems to be reasonable to assume a transient germaimine (nitride) which is trapped by further reaction with the azide molecules 2 and 5 or by reaction with the solvent pyridine (3). In the case of 2 the germatetrazole

 $[Me_2Si(NtBu)_2]GeN_4[Ge(NtBu)_2SiMe_2]_2$ (6) is formed, the tetrazole nitrogens being exclusively substituted by germanium atoms (point symmetry of the molecule $C_s(m)$). When 1 is treated with 5 a tris(germa)amine $[Me_2Si(NtBu)_2Ge(N_3)]_3N$ (8) is formed, which has an azide group attached to each Ge-atom. X-ray analysis reveals that the nine nitrogen atoms of the azide groups are coplanar with the trigonal planar Ge₃N moiety (crystallographic symmetry: 3/m). The reaction of 1 with 3 is very surprising: the pyridinc in the product $Mc_2Si(NtBu)_2Ge(C_5H_4N) - N(H)Ge(tBu)(NtBu)_2SiMe_2$ (7) is bonded via an α -carbon atom while the remaining hydrogen has added to the nitride-nitrogen. 6 crystallizes in the monoclinic system space group C2/m, b = 10.933(6), a = 24.306(9), c = 19.420(9) Å. $\beta = 91.81(2)^{\circ}$ and Z = 4. 7 crystallizes in the hexagonal system space group $P6_3/m$ with a = b = 16.73(1), c = 11.006(8) Å, $\gamma = 120^{\circ}$ and Z = 2, and 8 crystallizes in the monoclinic system space group $P2_1/n$, a = 11.341(6), b = 26.086(9), c = 13.244(7) Å, β = 98.12(2)° mit Z = 4.

Wie schon lange bekannt, reagieren kurzlebige Germylene, die auf verschiedene Art erzeugt werden können, mit Aziden unter N₂ Freisetzung zu Folgeprodukten, deren Entstehung auf das zwischenzeitliche Auftreten von Germaiminen zurückgeführt wird (Gl. (1)) [1-3].

$$\mathbf{R}_2 \mathbf{Ge:} + \mathbf{X} - \mathbf{N}_3 \rightarrow \mathbf{N}_2 + \{\mathbf{R}_2 \mathbf{Ge} = \mathbf{N} - \mathbf{X} \leftrightarrow \mathbf{R}_2 \mathbf{Ge}^{\oplus} - \mathbf{N}^{()} - \mathbf{X}\}$$
(1)

Derartige Germaimine, bzw. (wenn man die zwitterionige Form besonders betont) Germanitride, reagieren im allgemeinen unter Dimerisierung [4-6], 1,3-Cycloaddition eines weiteren Azids [7, 8] oder 1,2-Addition polarer Systeme [7] zu thermodynamisch und kinetisch stabilen Produkten (Gl. (2)).

Unter bestimmten Reaktionsbedingungen gelingt es sogar, Germaimine durch Addition einer Base am Germanium zu stabilisieren [7, 9] (Gl. (3)):

$$Me_{2}^{(i)} - Et$$

$$|$$

$$EtMe_{2}N + \{R_{2}Ge = N - X\} \rightarrow R_{2}Ge - N^{\odot} - X$$
(3)

Auch sterisch und elektronisch stabilisierte Germylene setzen sich vorzugsweise mit Triorganylsilylaziden um, wobei in diesem Fall das Germaimin-Zwischenprodukt bei Raumtemperatur lange genug stabil ist, um es spektroskopisch zu charakterisieren [8, 10-12]. Die erste Röntgenstrukturanalyse eines basenstabilisierten Germaimins wurde 1990 veröffentlicht [13].

Da uns vor kurzem die Synthese einer Reihe von Bis(amino)-germaaziden mit Liganden unterschiedlichen Platzbedarfs bzw. unterschiedlicher Elektronegativität geglückt war [14], erschien es naheliegend diese in der Reaktivität gegenüber dem cyclischen Bis(amino)germylen 1 [15] zu untersuchen. Neben dem Reaktionsverlauf interessierten uns auch die Molekülstrukturen der Produkte, um auch strukturchemische Unterschiede herausarbeiten zu können.

Umsetzungen der Bis(amino)germaazide 2-5 mit dem Bis(amino)-germylen 1

Sowohl das sterisch am Germanium(IV)-Atom wenig gehinderte Azid 2 als auch das Diazid 5 reagieren bei Raumtemperatur spontan mit dem Germylen 1 unter N₂-Abspaltung, während die Derivate 3 und 4, die am Germaniumatom neben den allen Molekülen gleichen Substituenten die sterisch anspruchsvollen Gruppen tert-Butyl bzw. Hexamethyldisilazyl tragen, selbst bei 110 °C in siedendem Toluol über mehrere Tage, keine Reaktion eingehen (Gl. (4) und (5)).

R

$$2 Me_{2}Si(NtBu)_{2}Ge - N_{3} + Ge(NtBu)_{2}SiMe_{2} \rightarrow N_{2} +$$
(4)

$$R = Me (2) 1$$

$$R = N_{3} (5) [Me_{2}Si(NtBu)_{2}Gc(R)]_{2}[Me_{2}Si(NtBu)_{2}Ge]N_{4}$$

$$R = Me (6)$$

$$R = N_{3} (7)$$

$$R$$

 $Mc_{2}Si(NtBu)_{2}Ge - N_{3} + Ge(NtBu)_{2}SiMe_{2} \xrightarrow{AT} (5)$ $R = tBu (3) \qquad 1$ $R = N(SiMe_{3})_{2} (4)$

Das Fortschreiten der Umsetzungen nach Gl. (4) kann bequem über ¹H-NMR-Spektren bzw. die Stickstoffentwicklung verfolgt werden. Nach 30 Minuten ist in den Fällen 2 und 5 die Reaktion zum Stillstand gekommen und in beiden Fällen verbleibt bei einem molaren Verhältnis von 1:1 in bezug auf die Ausgangsmenge der Reaktanden gerade ein halbes Äquivalent an unumgesetztem Germylen 1. Verschiebt man das Molverhältnis zu Gunsten der Azidkomponenten auf 2:1, so erhält man in sehr guten Ausbeuten (>60% isoliertes Produkt) die analytisch gleichartig zusammengesetzten Verbindungen 6 und 7 als einzige feste Produkte, die sich durch Umkristallisation einfach reinigen lassen.

Während die Schmelzpunkte und Molmassen der beiden Verbindungen nahe beieinander liegen, sind ihre spektroskopischen Eigenschaften sehr unterschiedlich. So treten bei 6 im 'H-NMR Spektrum drei Signale für die Dimethylsilylgruppen und zwei Signale für die tert-Butylgruppen (neben einem Resonanzsignal für die Ge-Me-Gruppe) auf, dagegen findet man im ¹H-NMR Spektrum von 7 jeweils nur ein Signal für die Me₂Si- und N-tBu-Gruppen. Im Infrarot-Spektrum von 6 sind die für die Schwingung im Azidmolekülteil charakteristischen Banden nicht mehr vorhanden, während im Spektrum von 7 bei 2105 cm⁻¹ eine starke Absorption zu erkennen ist. Offensichtlich muß es sich bei 6 und 7 um zwei unterschiedliche Strukturen handeln, wobei die NMR-Spektren für 6 eine Spiegelebene und für 7 darüberhinaus noch eine dreizählige Achse andeuten, sieht man von intramolekularen Bindungsfluktuationen ab. Wie die Strukturanalysen letztendlich beweisen, handelt es sich bei 6 um ein cyclisches Tetrazen, das ein verbrückendes Germaniumatom im Ring enthält (also ein Tetrazol) und bei 7 um ein Tris(germa)amin, deren Germaniumatome noch jeweils mit einer Azidgruppe verbunden sind (zur detaillierten Strukturbeschreibung siehe weiter unten).

Auch in alternativen Lösungsmitteln wie Benzol oder Tetrahydrofuran finden bei Siedetemperatur der Lösungsmittel keine Umsetzungen zwischen 1 und 3 bzw. 4 statt. Nimmt man jedoch Pyridin, so beobachtet man bei der Reaktion zwischen 1 und 3 eine fortlaufende Änderung des ¹H-NMR-Spektrums, die nach 4 Tagen Kochen unter Rückfluß abgeschlossen ist (Gl. (6)). Das Reaktionsprodukt 8 läßt sich sublimieren und kristallisiert aus Hexan in Form farbloser Kristalle.

$$tBu$$

$$| \\Me_2Si(NtBu)_2Gc + Me_2Si(NtBu)_2Gc - N_3 + C_3H_3N \rightarrow N_2 + 1$$

$$1 \qquad 3 \qquad (6)$$

 $[Mc_2Si(NtBu)_2Ge(tBu)N][Me_2Si(NtBu)_2Ge]C_3H_3N$ 8

Bei der Verbindung 8 kann es sich prinzipiell um zwei unterschiedliche Stellungsisomere A und B handeln. Die Struktur A – ein basenstabilisiertes Germaimin – wäre in Analogie zu den Befunden von *Wiberg* und Mitarb. zu sehen [7, 9, 16], während B durch eine neuartige Folgereaktion eines Germaimins entstanden sein könnte.

Es fällt auf, daß das im Molekül vorhandene Pyridin sich nicht im Vakuum entfernen läßt, was bereits eher mit dem Isomeren B vereinbar ist. Ein weiterer Hinweis liefert das ¹³C-Spektrum im aromatischen Bereich: während man bei A drei Resonanzsignale erwarten sollte, müßten es bei B fünf unterschiedliche sein. Letzteres ist auch tatsächlich erfüllt. Zudem findet man im IR-Spektrum von 8 die für ein sekundäres Amin erforderliche v(N-H)Schwingung bei 3 343 oder 3 256 cm⁻¹ (ob die beiden beobachteten Banden auf das gleichzeitige Vorliegen von Wasserstoffbrücke und "freiem" N-H zurückgehen (siehe weiter unten), oder durch partielle Hydrolyse von 8 bei der Aufnahme zustande kommen, kann nicht abschließend entschieden werden). Bewiesen wird die Struktur schließlich durch eine Röntgenstrukturanalyse (siehe weiter unten).

Röntgenstrukturanalysen an 6, 7 und 8

Es gelang uns von den Verbindungen 6, 7 und 8 zur Röntgenstrukturanalyse geeignete Einkristalle durch Kristallisation aus organischen Lösungsmitteln zu erhalten. Die Raumgruppen bestimmten wir über die charakteristischen Auslöschungsmuster, wobei sich die zentrosymmetrischen Alternativen (C2/m gegenüber C2 oder Cm bei 6 und P6₃/m gegenüber P6₃ bei 7) im Laufe der Verfeinerung ergaben. Die wichtigsten Ergebnisse der Kristalluntersuchungen und der Gang der Rechnungen sind in Tabelle 1 zusammengestellt. Bei allen Strukturen besitzen einige der endständigen Kohlenstoffatome der tert-Butylgruppen eine Fehlordnung, die durch Splitatomlagen berücksichtigt werden konnten. Eine alternative Verfeinerung dieser Strukturen in den niedersymmetrischen Raumgruppen (siehe vorne) brachte eine Verschlechte-

	6	7	8
Formel	$C_{32}H_{78}Ge_3N_{10}Si_3$	C ₃₀ H ₇₂ Ge ₃ N ₁₆ Si ₃	C20Ha2Ge2NaSi2
Molmasse	905,13	959,10	696.25
Raumgruppe	C2/m	P6 ₁ /m	$P2_{1}/n$
Gitterparameter	a 24,306(9)	16,730(9)	11,341(2)
[Å] bzw. [°]	b 10,933(6)	16,730(9)	26,086(4)
	c 19,420(9)	11,006(6)	13,244(2)
	a 90	90	90
	β 91,81(2)	90	98,12(2)
	y 90	120	90
Zellvolumen [Å ³]	5158(2)	2668(2)	3878,8(10)
Zahl der Formeleinheiten	4	2	4
Dichte D _x [g/cm ³]	1,06	1,10	1,18
Absorptionskoeffizient		·	
$(MoK\alpha)$ [mm ⁻¹]	1,83	1,78	1,64
Diffraktometer		Siemens/Stoc AED 2	
Max. u. min. 2θ Werte	3,0-45,0	3,0-50,0	3,0-48,0
Zahl der unabh. Reflexe	3 306	1 476	5 703
Zahl der beob. Reflexe	2722	1 181	4759
σ -Grenze (F > n σ)	2σ	3σ	2σ
Strukturlösung	direkte Methoden	direkte Methoden	Patterson
Lage der H-Atome	nicht berück-	nicht berück-	"ideale Position"
-	sichtigt	sichtigt	mit C—H = 0,96 Å
Zahl der Parameter	220	88	419
R-Werte R	6,99	7,52	5,06
R _w			4,74
Gewichtsschema ^a) k ₁	_		1,0
k ₂	_		0,0001
Restelektronen-			
dichte [eÅ ⁻³]	1,57	0,89	1,22

Tabelle 1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von 6, 7 und 8

^a) W = $k_1/(\sigma_1^2 + k_2 \cdot F^2)$

rung der Strukturmodelle. Die Ortskoordinaten der Atome sowie die wichtigsten Bindungslängen und -winkel sind in den Tabellen 2–5 enthalten [17]. Darüberhinausgehende Einzelheiten sind zusammen mit den F_o/F_c -Listen hinterlegt [18].

Alle drei Kristallstrukturen können als typische vander-Waals Packungen beschrieben werden, da die kürzesten intermolekularen Abstände ausschließlich auf Methylkontakte zurückzuführen sind. Bemerkenswert erscheint uns jedoch, daß die aus Packungsgründen ungünstige m (C_s) Symmetrie bei zwei Molekülen im Kristall erhalten bleibt: so besitzt 6 die kristallographische Punktsymmetrie m und 7 sogar die noch höhere Punktsymmetrie $\overline{6}$ (3/m) (lange exponierte Filmaufnahmen lieferten keine Hinweise auf verzwillingte Kristalle).

Abbildung 1 zeigt als Ergebnis der Strukturanalyse das Molekül 6 [19]. Wic unschwer zu erkennen, liegen die Stickstoffatome der Tetrazeneinheit sowie sämtliche Germanium- und Siliciumatome zusammen mit den endständigen Methyl-Kohlenstoffatomen in einer Ebene, die gleichzeitig Spiegelebene ist. Eine pseudo-zweizählige Achse verläuft durch Si(2) und Ge(2) und auch eine pseudo-Spiegelachse, auf der sich außer diesen zwei Atomen

Abb. 1 Zeichnerische Darstellung des Moleküls 6 [19] nach Röntgenstrukturanalyse. Die nicht bezeichneten Atome sind Kohlenstoffatome. Die gestrichenen Atome sind mit den ungestrichenen über die Spiegelebene miteinander verknüpft

Ge(1) - N(1)	1,850(13)	Ge(1) - N(5)	1,832(10)	
Ge(1) - C(1)	1,945(19)	Ge(2) - N(4)	1,836(14)	
Ge(2) = N(1)	1.846(14)	Ge(3) - N(7)	1,825(11)	
Ge(2) - N(6)	1.846(11)	Si(1) - C(3)	1,885(20)	
Ge(3) - N(4)	1.868(13)	Si(2)-C(6)	1,907(26)	
Ge(3) - C(8)	1.948(20)	Si(3) - C(10)	1,868(24)	
Si(1) - N(5)	1.730(11)	N(2) - N(3)	1,272(20)	
Si(1) - C(4)	1.892(22)	N(6) - C(5)	1,478(16)	
Si(2) - N(6)	1.717(12)	N(7) - C(9)	1.482(16)	
Si(2) - C(7)	1.918(25)		, , , , , ,	
Si(3) - N(7)	1.716(12)			
Si(3) - C(11)	1.911(24)			
N(1) - N(2)	1,408(20)			
N(3)—N(4)	1,395(20)			
N(5) - C(2)	1,508(18)			
N(1)—Ge(1)—N(5)	115,5(4)	N(1)—Ge(1)—C(1)	103,2(7)	
N(5) - Ge(1) - C(1)	120,3(5)	N(1) - Ge(2) - N(6)	123,0(4)	
N(5) - Ge(1) - N(5A)	82,2(6)	N(6)—Ge(2)—N(6A)	81,4(7)	
N(1) - Ge(2) - N(4)	86,1(6)	N(4) - Ge(3) - C(8)	104,6(7)	
N(4) - Ge(2) - N(6)	124,3(4)	N(5) - Si(1) - C(4)	116,0(6)	
N(4) - Ge(3) - N(7)	115,5(4)	N(5) - Si(1) - N(5A)	88,2(7)	
N(7) - Ge(3) - C(8)	119,6(5)	C(4) - Si(1) - N(5A)	116,0(6)	
$N(7)$ —Ge(3)— $N(7\Lambda)$	81,6(7)	N(6) - Si(2) - C(7)	114,6(7)	
N(5) - Si(1) - C(3)	114,7(6)	N(6)—Si(2)—N(6A)	89,0(8)	
C(3) - Si(1) - C(4)	106,8(10)	N(7) - Si(3) - C(11)	115,0(6)	
C(3) - Si(1) - N(5A)	114,7(6)	N(7) - Si(3) - N(7A)	88,0(8)	
N(6) - Si(2) - C(6)	115,9(7)	Ge(1) - N(1) - N(2)	111,8(10)	
C(6)—Si(2)—C(7)	106,4(12)	N(1)-N(2)-N(3)	116,1(14)	
N(7)—Si(3)—C(10)	115,5(6)	Ge(2) - N(4) - Ge(3)	138,2(8)	
C(10)—Si(3)—C(11)	107,4(11)	Ge(3) - N(4) - N(3)	110,7(10)	
Ge(1)—N(1)—Gc(2)	137,8(8)	Ge(2) - N(6) - C(5)	131,4(8)	
Ge(2) - N(1) - N(2)	110,3(10)	Ge(1) - N(5) - Si(1)	94,3(5)	
N(2) - N(3) - N(4)	116,5(14)	Si(1) - N(5) - C(2)	133,3(9)	
Ge(2) - N(4) - N(3)	111,0(10)	Ge(3)—N(7)—C(9)	129,4(9)	
Ge(2) - N(6) - Si(2)	94,8(6)			
Si(2)—N(6)—C(5)	133,8(9)			
Ge(1) - N(5) - C(2)	130,7(9)			
Ge(3) - N(7) - Si(3)	95,0(6)			
Si(3)—N(7)—C(9)	135,0(9)			
· · · · · · · · · · · · · · · · · · ·				

Tabelle 2 Die wichtigsten Bindungslängen (Å) und Winkel (°) im Molekül 6 (A bezeichnet Symmetrieäquivalente Atome)

auch noch N(6) und N(6A) befinden, ist noch relativ gut erfüllt, wie ein Vergleich entsprechender Bindungslängen und -winkel von Tabelle 2 ergibt. Dem freien Molekül kommt demnach die Punktsymmetrie mm2 (C_{2v}) zu. Das Grundgerüst des Moleküls besteht aus dem fünfgliedrigen Germatetrazolring, dessen Germaniumatom spirocyclisch in einen weiteren GeN₂Si-Vierring eingebunden ist. Die beiden Stickstoffatome N(1) und N(4) sind mit weiteren Germaniumatomen verbunden, die ihrerseits wieder Glieder von Vierringen darstellen. Letztere beide SiN₂Ge-Ringe stehen symmetriebedingt ebenso wie der spirocyclisch gebundene Ring streng senkrecht zum ebenen Tetrazolring und bilden N(1)—Ge(1) · · · Si(1)- und N(4)—Ge(3) · · · Si(3)-Winkel von 119,8 bzw. 121,7°.

Die Bindungslängen im Molekül 6 sind nicht weiter auffällig (Ge-N-Abstand zwischen 1,83-1,87(1)Å, Si - N = 1,72 - 1,73(1)Å, N-N = 1,40(1),N = N1,27(2)Å) und lassen sich gut mit Abständen in ähnlichen Molckülen vergleichen [8, 20]. Im Mittel sind die Bindungslängen im Germatetrazolring in 6 um etwa 0,02 Å länger als im Germatetrazol, das Meller et al. beschreiben [8]. Die Ursache für diesen Unterschied ist offenbar auf die verschiedenen Substituenten an den Stickstoffatomen zurückzuführen. Erwartungsgemäß hat das im Spirozentrum sitzende Germaniumatom Ge(2) im Vierring einen um 4,7° kleineren Winkel als im Fünfring (siehe Tabelle 2); auch die Winkel am kleineren Silicium - sind in den GcN2Si-Ringen durchweg

Ge-N(1)	1,865(2)	Ge—N(2)	1.865(18)	
Ge-N(5)	1,823(10)	Si-C(1)	1,917(23)	
Si—N(5)	1,729(11)	N(3)—N(4)	1,109(42)	
Si—C(2)	1,890(34)			
N(2)—N(3)	1,194(33)			
N(5)—C(3)	1,515(19)			
N(1)-Ge-N(2)	94,9(5)	N(1)—Ge— $N(5)$	129.0(4)	
N(2)-Ge-N(5)	110,8(6)	N(5)—Ge— $N(5A)$	82,6(6)	
N(2)-Ge-N(5A)	110,8(6)	N(5)— Si — $C(2)$	113,9(7)	
N(5) - Si - C(1)	115,5(8)	N(5)— Si — $N(5A)$	88,3(7)	
C(1)—Si—C(2)	108,7(12)	Ge - N(2) - N(3)	118,3(11)	
Ge-N(1)-GcA	120,0(1)	Ge—N(5)—Si	94,5(5)	
N(2) - N(3) - N(4)	176,4(19)	Si—N(5)—C(3)	131,9(9)	
Ge-N(5)-C(3)	132,7(8)			
	· · ·			

Tabelle 3Die wichtigsten Bindungslängen (Å) und Winkel (°) im Molekül 7

Tabelle 4Die wichtigsten Bindungslängen (Å) und Winkel (°) im Molekül 8

Ge(1) - N(1)	1,822(6)	Gc(1)-N(3)	1,874(5)
Gc(1)—N(4)	1,857(4)	Ge(1) - C(1)	1,975(6)
Ge(2)—N(1)	1,814(6)	Ge(2)N(2)	1,846(5)
Ge(2)—N(5)	1,848(5)	Gc(2)C(61)	1,968(6)
Si(1)—N(3)	1,723(5)	Si(1)—N(4)	1,715(5)
Si(1)—C(81)	1,881(9)	Si(1)C(82)	1,859(10)
Si(2)—N(2)	1,723(6)	Si(2)—N(5)	1,732(5)
Si(2)—C(71)	1,875(8)	Si(2)—C(72)	1,866(8)
N(1)—H(1)	0,660(56)	N(2) - C(2)	1,481(8)
N(3)—C(3)	1,478(6)	N(4)-C(4)	1,461(8)
N(5)—C(5)	1,469(8)	N(6)—C(61)	1,330(9)
N(6)—C(64)	1,342(11)	C(61)C(62)	1,379(11)
C(62)—C(63)	1,387(12)	C(63)C(65)	1,364(14)
C(64)C(65)	1,361(13)	N(6)H(1)	2,487(55)
N(1) - Ge(1) - N(3)	114,1(3)	N(1) - Ge(1) - N(4)	114,6(2)
N(3) - Ge(1) - N(4)	81,2(2)	N(1)—Ge(1)—C(1)	112,6(3)
N(3) - Ge(1) - C(1)	115,0(3)	N(4) - Ge(1) - C(1)	115,9(2)
N(1)-Ge(2)-N(2)	121,8(2)	N(1) - Ge(2) - N(5)	121,3(2)
N(2) - Ge(2) - N(5)	81,6(2)	N(1)—Ge(2)—C(61)	101,3(3)
N(2) - Gc(2) - C(61)	115,2(2)	N(5)-Ge(2)-C(61)	116,2(2)
N(3) - Si(1) - N(4)	89,9(2)	N(3)—Si(1)—C(81)	114,3(3)
N(4) - Si(1) - C(81)	113,6(3)	N(3) - Si(1) - C(82)	115,9(3)
N(4) - Si(1) - C(82)	116,8(4)	C(81)-Si(1)-C(82)	106,2(4)
N(2) - Si(2) - N(5)	88,7(2)	N(2)-Si(2)-C(71)	116,1(3)
N(5) - Si(2) - C(71)	115,5(3)	N(2)—Si(2)—C(72)	114,4(3)
N(5)—Si(2)—C(72)	116,3(3)	C(71)-Si(2)-C(72)	105,7(4)
Ge(1) - N(1) - Ge(2)	147,3(4)	Ge(2) - N(2) - Si(2)	94,9(2)
Ge(2) - N(2) - C(2)	131,4(4)	Si(2)—N(2)—C(2)	132,2(4)
Ge(1) - N(3) - Si(1)	94,0(2)	Ge(1) - N(3) - C(3)	134,5(4)
Si(1) - N(3) - C(3)	131,3(4)	Ge(1) - N(4) - Si(1)	94,9(2)
Ge(1) - N(4) - C(4)	133,2(4)	Si(1)-N(4)-C(4)	129,3(4)
Ge(2) - N(5) - Si(2)	94,5(2)	Ge(2) - N(5) - C(5)	130,7(4)
Si(2) - N(5) - C(5)	131,9(4)	Ge(1) - C(1) - C(11)	109,7(4)
Ge(1) - C(1) - C(12)	107,9(5)	C(11)-C(1)-C(12)	109,8(6)
Ge(1) - C(1) - C(13)	109,9(5)	C(11) - C(1) - C(13)	108,8(6)
\cdot \cdot \cdot $ \cdot$ $ \cdot$ $ \cdot$ $ \cdot$ $ \cdot$	/		· · · /

Tabelle 5Koordinaten (×104) und isotrope Temperaturfaktoren (Ueq, Å 2 ×103) der Atome in den Kristallstrukturen von 6,7 und 8

	X	У	Z	U(eq)
Verbind	ung 6:			
Ge(1)	6623(1)	0	6858(1)	39(1)
Ge(2)	8037(1)	Õ	7070(1)	39(1)
Ge(3)	8817(1)	õ	8 592(1)	46(1)
Si(1)	5733(2)	Ő	7577(3)	51(2)
Si(2)	8584(3)	Õ	5926(3)	73(3)
Si(3)	8734(2)	Ő	9929(3)	63(2)
N(1)	7 307(6)	ŏ	7304(7)	39(5)
N(2)	7 264(6)	0	8025(8)	49(6)
N(3)	7716(6)	0	8374(8)	50(5)
N(4)	8 196(5)	0	8 000(7)	43(5)
N(6)	8324(4)	-1101(11)	6455(5)	59(4)
C(5)	8326(5)	-2453(9)	6446(6)	72(6)
C(51)	8141(11)	-2970(28)	7 149(10)	77(10)*
C(52)	8917(8)	-2919(33)	6306(15)	118(16)*
C(53)	7923(11)	-2915(30)	5862(12)	93(12)*
C(51a)	8210(11)	-2903(28)	5 694(9)	100(12)*
C(52a)	7877(9)	-2978(27)	6920(12)	87(10)*
C(53 a)	8901(7)	-2923(26)	6702(13)	79(9)*
N(5)	6126(4)	-1101(10)	7184(5)	49(4)
C(2)	6152(6)	-2476(13)	7237(9)	76(6)
C(21)	6332(8)	-2985(19)	6 5 5 6 (10)	103(6)
C(22)	6 562(8)	-2828(19)	7854(10)	99(6)
C(23)	5 566(9)	-2912(22)	7404(11)	125(7)
N(7)	8 803(4)	-1090(11)	9302(6)	60(3)
C(9)	8778(6)	-2444(10)	9283(7)	96(8)
C(91)	8 796(13)	-2964(35)	10042(11)	150(18)*
C(92)	8 228(9)	-2874(31)	8902(14)	104(11)*
C(93)	9285(10)	-2958(32)	8886(14)	117(13)*
C(91 a)	9074(13)	-2931(36)	9964(12)	96 (14)*
C(92a)	8156(8)	-2861(35)	9269(17)	86(13)*
C(93 a)	9069(12)	-3003(36)	8640(13)	91(14)*
C(1)	6 801(8)	0	5888(10)	67(8)
C(3)	4 983(8)	0	7 302(12)	80(10)
C(4)	5761(10)	0	8552(11)	81(10)
	9364(10)	0	5843(15)	110(13)
C(8)	9438(8)	0	7981(11)	74(9)
C(I)	8275(12)	0	5005(12)	113(14)
C(10)	8060(9)	0	10366(12)	87(10)
C(II)	9301(11)	0	10633(12)	98(12)
Verhindi	1ng 7.			
Ge	3140(1)	5467(1)	2 500	47(1)
Si	1970(4)	3 696(4)	2 500	47(1)
N(1)	3 3 3 3	6666	2 500	44(7)
N(2)	4391(11)	5832(10)	2500	67(8)
N(3)	4602(12)	5247(13)	2500	82(10)
N(4)	4843(17)	4739(17)	2 500	131(16)
N(5)	2511(7)	4542(7)	1406(10)	61(5)
C(1)	648(15)	3082(17)	2.500	102(14)
C(2)	2 3 3 9 (18)	2797(16)	2,500	103(15)
C(3)	2571(13)	4490(12)	37(14)	97(10)
C(4)	2 508(19)	5294(19)	-551(25)	130(9)**
C(5)	1 808(17)	3 482(17)	-316(24)	111(8)**
C(6)	3481(17)	4531(17)	-250(23)	112(8)**
C(4 a)	3407(41)	5 372(40)	-425(61)	89(20)***
C(5 a)	1 685(39)	4463(42)	-347(78)	94(35)***
C(6 a)	2587(47)	3 674(42)	- 512(79)	160(49)***
		· · ·	· · /	····/

Tablene	5 (10165co.d	<u> </u>		
	x	У	z	U(eq)
Verbind	lung 8:			
Ge(1)	7512(1)	859(1)	2259(1)	39(1)
Ge(2)	7958(1)	1795(1)	469(1)	39(1)
Si(1)	6897(2)	785(1)	4 097(1)	56(1)
Si(2)	8471(2)	1 523(1)	-1332(1)	56(1)
N(1)	7 638(6)	1468(2)	1608(5)	47(2)
N(2)	7 185(4)	1629(2)	-810(3)	50(2)
N(3)	6131(4)	797(2)	2877(3)	47(2)
N(4)	8214(4)	851(2)	3614(3)	47(2)
N(5)	9278(4)	1 627(2)	- 139(3)	44(2)
C(1)	7868(6)	265(2)	1428(5)	55(3)
C(11)	9122(7)	323(3)	1 1 2 6 (6)	83(4)
C(12)	7811(8)	-214(3)	2067(6)	87(4)
C(13)	6954(8)	237(3)	448(6)	93(4)
C(2)	5926(6)	1 689(3)	-1274(5)	63(3)
C(21)	5795(8)	2055(5)	-2148(8)	135(5)
C(22)	5 378(9)	1176(3)	-1597(11)	159(7)
C(23)	5215(8)	1891(5)	- 501(8)	138(6)
C(3)	4840(4)	805(3)	2 501(5)	84(4)
C(31)	4512(12)	638(5)	1 387(6)	79(5)*
C(32)	4006(11)	541(5)	3154(9)	96(6)*
C(33)	4689(13)	1 388(3)	2571(10)	99(6)*
C(31a)	4632(13)	226(3)	2 377(10)	99(6)*
C(32a)	4086(11)	1012(5)	3 284(8)	78(5)*
C(33 a)	4460(12)	1 069(5)	1 472(7)	79(5)*
C(4)	9 380(6)	1011(3)	4129(5)	64(3)
C(41)	9 502(9)	1 588(3)	4117(8)	115(5)
C(42)	9552(8)	807(4)	5 228(6)	105(4)
C(43)	10375(7)	775(4)	3 601(6)	101(4)
C(5)	10551(6)	1 722(3)	191(5)	53(3)
C(51)	11285(7)	1 3 3 4 (3)	- 308(7)	81(4)
C(52)	10838(7)	1672(3)	1 345(5)	86(4)
C(53)	10930(7)	2256(3)	- 109(7)	88(4)
N(6)	7 487(5)	2601(2)	1 774(4)	57(2)
C(61)	7 825(5)	2518(2)	866(5)	43(2)
C(62)	8047(7)	2923(3)	251(7)	59(3)
C(63)	7914(7)	3424(3)	562(8)	70(4)
C(64)	/ 358(7)	3088(3)	2067(7)	73(4)
C(03)	/ 559(7)	3 503(3)	1492(8)	74(4)
C(7)	ð / /ð(ð)	1985(3)	-2353(5)	85(4)
C(72)	8 380(8) C 770(8)	870(3)	-1884(6)	83(4)
C(81) C(81)	6770(8)	163(3)	4792(7)	100(4)
U(82)	0.511(9)	1299(4)	4966(7)	113(5)
$\Pi(1)$	/ 488(01)	1651(21)	1910(41)	25(19)

Besetzungsfaktoren: * 0,50; ** 0,80; *** 0,20

um 6,6° größer als am größeren und weicheren Germaniumatom.

Das Tris(germa)amin 7 ist in Abbildung 2 dargestellt. Die Germaniumatome sind allesamt vierfach von Stickstoffatomen koordiniert und liegen zusammen mit dem zentralen Stickstoffatom N(1), allen Azidgruppen und den Dimethylsilylgruppen (SiC₂) auf einer kristallographischen Spiegelebene. Durch das zentrale Stickstoffatom N(1) verläuft eine dreizählige Achse. Die SiN₂Ge-Vierringe stehen senkrecht zur Spiegelebene, ähnlich wie

Tabelle 5 (Fortsetzung)

in der Struktur von (Me₂Si(NtBu)₂Ge(Cl))₃P [20], die in vielen Details mit 7 zu vergleichen ist. Die an den Germaniumatomen gebundenen Azidgruppen liegen zwischen den Vierringen und besitzen einen Ge—N—N Winkel von 118(1)°. Die Winkel am α -N-Atom der Azidgruppe sowie die dreizählige Symmetrie des Moleküls erinnern in gewissem Maße an die Triquetra, dem Haupt der Medusa mit den drei Beinen [21], das neben der Insel Sizilien, die Isle of Man und die Stadt Füssen [22] in ihrem Wappen führen.

Abb. 2 Molekül 7 in SCHAKAL-Darstellung [19]. Durch N1 verläuft eine dreizählige Achse, durch alle ausgefüllten Kugeln (außer N5 und symmetrieäquivalente) einc Spiegelebene. Die nicht ausgefüllten Kreise geben die Lagen der Kohlenstoffatome wieder

Die Abstände und Winkel im Molekül 7 sind in Tabelle 3 enthalten. Die kürzeste Bindung ausgehend vom Germaniumatom erfolgt zum Stickstoffatom im Vierring (Ge-N(5)), während die Bindungen zum Amin-Stickstoff N(1) bzw. dem α -N der Azidgruppe etwa 0,04 Å länger sind. Die Koordinationsfigur um die Germaniumatome ist stark verzerrt tetraedrisch: so z. B. betragen die Si \cdots Ge-N(1)- und Si \cdots Ge-N(2)-Winkel 148,1° bzw. 117,0°, sind also sehr unterschiedlich. Ursache für die asymmetrische Ausrichtung der Vierringe ist offenbar die Azidgruppe der jeweils benachbarten Germaniumatome: dem Platzbedarf des Azidliganden wird durch Aufweitung des N-Ge···Si-Winkels Rechnung getragen. So betragen auch die nichtbindenden Abstände zwischen N(2) und N(5) bzw. N(5A) 3,04 Å, was in ctwa dem doppelten van-der-Waals-Radius des Stickstoffs (1,55 Å) entspricht [23]. Auch die nichtbindenden intramolekularen Abstände N(3) \cdots C(1A) und N(3) \cdots C(2) sind mit jeweils 3,95 Å gleich und legen nahe, daß Azidgruppen Ausrichtungen der und der die Ge(NtBu)₂SiMe₂ Ringe zueinander im wesentlichen auf

intramolekulare Abstoßungen begründet sind. Ein Abstand fällt jedoch bei dieser Betrachtung etwas aus dem Rahmen: die Entfernung zwischen N(2A) und Ge beträgt 2,97(3)Å und ist damit um etwa 0,55 Å kleiner als die Summe der van-der-Waals-Radien der beiden Atome [23]. Auch wenn dieser Abstand zu lang für eine einfache σ -Bindung ist, kann man dennoch nicht eine sekundäre Bindung ausschließen. Der N(2A) · · · Ge—N(2) Winkel beträgt übrigens 159,5(6)°, so daß man die Koordinationssphäre am Germaniumatom auch als verzerrt trigonal-bipyramidal beschreiben könnte mit N(2) und N(2A) als axiale und N(1), N(5) und N(5B) als äquatoriale Liganden (zu einer weitergehenden Diskussion siehe nächstes Kapitel).

Die Azidgruppen besitzen die übliche Asymmetrie in den Bindungslängen [24]: der Abstand N α --N β ist um 0,08 Å länger als N β --N γ (Tab. 4). Im Vergleich zum H₃Ge--N₃ [25] fällt der N α --N β -Abstand um 0,05 Å zu kurz aus, was u. a. auf den hohen U-Wert des N β -Atoms zurückzuführen ist. Die Abweichung von einer linearen Anordnung der drei Stickstoffatome (3,6°) ist in Festkörpern öfters anzutreffen [24] und ist nur etwas größer als die Standardabweichung. Die U-Werte der N-Atome steigen mit zunehmender Entfernung vom Germaniumatom: auch diese Tatsache wird bei kovalent gebundenen Azidgruppen öfters beobachtet [24].

Abb. 3 Molckül 8 nach Röntgenstrukturanalyse [19]. Die nicht ausgefüllten Kreise geben die Lagen der endständigen Kohlenstoffatome wieder

Als letzte der Verbindungen ist schließlich die Molekülstruktur von 8 in Abbildung 3 wiedergegeben. Das Molekül besitzt keine kristallographische Punktsymmetrie, jedoch kann man bereits bei Betrachtung der Abb. 3 erkennen, daß die Abweichung von $C_s(m)$ nur gering ist. Sowohl der Pyridin-Rest als auch die Germaniumatome, das Atom N(1) und die Dimethylsilylgruppen (SiC₂) liegen in der Pseudospiegelebene. Dies läßt sich auch aus den Abständen und Winkeln von Tabelle 4 entnehmen. Das Molckülgerüst von 8 besteht aus zwei SiN₂Ge-Vierringen, die über ein Stickstoffatom (N(1)) miteinander verknüpft sind. Die Germaniumatome sind unterschiedlich substituiert: während Ge(1) einen tert-Butyl-Rest als weiteren Liganden besitzt, ist Ge(2) mit einer C₅H₄N-Gruppe über das Kohlenstoffatom C(61) verbunden. Der Pyridinrest ist also nicht über das Stickstoffatom an Ge(2) koordiniert, sondern über das α -Kohlenstoffatom des Pyridins gebunden (vertauscht man N(6) mit C(61) erhöhen sich die U-Werte und das Strukturmodell wird schlechter). Das gesamte Molekül kann man daher als Insertionsprodukt eines ungesättigten Ge—N-Systems in die C—H-Bindung des α -Kohlenstoffatoms im Pyridin anschen.

Die Bindungslängen der beiden Germaniumatome zum zentralen Stickstoffatom N(1) sind innerhalb der doppelten Standardabweichungen nahezu gleich (Mittelwert: 1,818(5)Å). Die Lage des Wasserstoffatoms H(1) ließ sich aus einer Differenzfourieranalyse eindeutig bestimmen und weiterhin auch frei verfeinern. Es befindet sich mit den beiden Germaniumatomen Ge(1) und Ge(2) und dem Stickstoffatom N(1) in einer Ebene (Winkelsumme um N(1) = 360°). Das Stickstoffatom N(1) sollte demnach sp² hybridisiert sein, jedoch ist der Ge(1)--N(1)-Ge(2)-Winkel mit 147° stark aufgeweitet. Die Ursache liegt hier in der intramolekularen Abstoßung der tert-Butyl bzw. Pyridyl Liganden von den Vierringen und deren Atomen und Substituenten, wie leicht aus Abbildung 3 zu erkennen ist.

Die äquiplanare Anordnung des Pyridylringes mit dem gerade besprochenen Aminteil des Moleküls hat außer einem intramolekularen, sterischen auch einen bindungstheoretischen Grund. Zwischen den Stickstoffatomen N(1) und N(6) (2,97 Å) bildet sich nämlich eine Wasserstoffbrücke aus. Diese Brücke läßt sich ablesen, an dem relativ kleinen Winkel C(61)—Ge(2)—N(1) (101,3(3)°) und dem N(1) · · · N(6) Abstand von 2,97 Å. Selbst wenn man den (in Röntgenstrukturanalysen systematisch [26] zu gering bestimmten) N(1)—H(1) Abstand von 0,7 Å zugrunde legt, findet man eine N···H-Distanz von 2,48 Å, also in der Größenordnung von N···H-Abständen im festen trans-Tetrazen-(2) (N···H 2,07-2,63 Å, N···N 3,03-3,53 Å) [27].

Die Bindungslänge der Germanium-Kohlenstoffbindung Ge(1)—C(1) ist mit 1,975(6) nicht ungewöhnlich groß. Man hätte erwarten können, daß diese Bindung infolge der sterischen Abstoßung der tert-Butylgruppe mit den anderen Teilen des Moleküls verlängert würde. Auch in den GeN₂Si-Vierringen findet man keine Verzerrungen: die Ringe sind weitgehend planar wie aus den Winkelsummen von 360° (Ring mit Ge(1)) und 359,7° (Ring mit Ge(2)) folgt.

Vergleich der Strukturen im Festkörper und in Lösung

Wie aus den Röntgenstrukturanalysen abzuleiten, sollten den untersuchten Molekülen in Lösung folgende Punktsymmetrien zukommen: 6: C_{2v} (mm2), 7: C_{3h} (3/m) und 8: $C_s(m)$. Die ¹H-NMR- bzw. ¹³C-Spektren der Verbindungen stehen mit diesen Voraussagen bei 6 und 8 auch im Einklang. Entsprechend findet man z. B. bei 6 für vier der sechs tert-Butylgruppen, die über die C_{2v} -Symmetric miteinander verbunden sind, auch nur 1 Signal im ¹H-NMR-Spektrum oder bei 8 auch nur 2 Resonanzsignale für die tertiären Kohlenstoffatome der tert-Butylgruppen im ¹³C-NMR-Spektrum, da von den insgesamt 4 tert-Butyl jeweils 2 über die Spiegelebene ineinander überführt werden.

Das ¹H-NMR-Spektrum von 7 besteht nur aus 2 Resonanzsignalen, eines für sämtliche Methylgruppen am Silicium und eines für die tert-Butylgruppen. Hieraus ergibt sich demnach die Punktsymmetrie D_{3h} . Dies steht aber offenbar im Widerspruch zur Struktur im Festkörper. Die höhere Punktsymmetrie ließe sich erreichen, wenn man freie Drehbarkeit der Ge(N₃)(NtBu)₂SiMe₂-Gruppen um die N(1)-Ge-Bindung zuließe (vergleiche Abb. 3). Molecular Modelling Berechnungen [28] belegen jedoch eindeutig, daß eine solche Drehung aus sterischen Gründen unmöglich ist. Das Molekül ist demnach in seiner Struktur durch die tert-Butylgruppen förmlich "eingesperrt". Ganz ähnlich sind die Verhältnisse im [Me₂Si(NtBu)₂Ge(Cl)]₃P [20]; hier beträgt zwar die zu überwindende Energie bei Drehung um die Ge-P Bindung im Vergleich zu 7 "nur" ≈ 300 kcal/Mol, jedoch kann eine solche Energie bei Normalbedingungen nicht aufgebracht werden. Der sterische Zwang äußert sich bei diesem Molekül in einem außergewöhnlich großen Ge—P—Ge Winkel von 115,0°, der Phosphor ist demnach fast trigonal planar koordiniert. In Abbildung 4 ist übrigens eine Superposition der beiden Moleküle skizziert. Bei Betrachtung wird deutlich, daß im Molekül 7 offenbar die sterischen Zwänge noch weitaus gravierender sind.

Ge Na G

Abb. 4 Superposition der Moleküle $[Mc_2Si(NtBu)_2Ge(N_3)]_3N$ (7) (gefüllte Stäbe) und $[Me_2Si(NtBu)_2Ge(Cl)]_3P$ [20] (nicht gefüllte Stäbe) in Drahtmodell-Darstellung (Blick entlang der dreizähligen Achsc). Die tert-Butylgruppen sind weggelassen; die SiN₂Ge-Vierringe erscheinen in der Draufsicht als Linien. Die Lagen der Germaniumatome, des Chlor- und des N α -Atoms der Azidgruppe sind besonders gekennzeichnet

Vergleicht man das ¹H-NMR Spektrum des oben beschriebenen Trigermylphosphans mit dem Trigermylamin 7, so fällt ins Auge, daß das Trigermylphosphan so wie erwartet zwei Resonanzsignale für die Me₂Si-Gruppen im Spektrum besitzt. Da eine Drehung um die Ge—N-Bindung ausgeschlossen ist, kann die Äquivalenz der beiden Methylgruppen am Germaniumatom in 7 nur noch daher rühren, daß die Azid-Einheit von einem Germanium zum anderen wandert. Die im Festkörper gefundene Struktur würde diese Annahme unterstützen; der zurückzulegende Weg sollte etwa 1 Å betragen (siehe oben). Leider findet man durch Abkühlung einer Lösung von 7 in Toluol bis etwa –80 °C keine Aufspaltung der Dimethylsilylgruppen in zwei Signale. Weitere, auch festkörperspektroskopische Untersuchungen sind jedoch in Arbeit [29].

Zusammenfassung

Die Germaazide 2-5 reagieren mit dem Bis(amino)germylen 1 in unterschiedlicher Weise. 4 ist unter den gewählten Bedingungen nicht zur Reaktion zu bringen. Die übrigen Azide verlieren jeweils Distickstoff und bilden ein Intermediat, das in Anlehnung an vorausgegangene Arbeiten (siehe Einleitung) ein Germaimin sein könnte. Dieses stabilisiert sich durch Folgereaktion unterschiedlich. Bei 2 entsteht über 1,3-dipolarer Cycloaddition des Azidteils ein Tetrazol 6, bei 5 durch 1,2-Addition der Ge-Azid-Bindung ein Tris(germa)amin 7 und bei 3 durch Addition der aktivierten C—H-Bindung ebenfalls ein 1,2-Additionsprodukt. Die Reaktionsvielfalt ist in Schema (7) nochmals dargestellt.

Z. anorg. allg. Chem. 619 (1993)

Experimenteller Teil

Alle Umsetzungen wurden unter N_2 -Schutzgas in abgeschlossenen Glasapparaturen ausgeführt. Die 'H- und ¹³C-NMR-Spektren erhichten wir auf Geräten der Firma Bruker (Wp 80/Aspect 2000; 80 MHz und AC 200/Aspect 3000; 200 MHz). Die Infrarotspektren wurden auf einem Gerät der Firma Perkin-Elmer (Spektrometer 883) aufgenommen (in Benzol, Lösungsmittel mittels Spektrensubtraktion kompensiert; nur die stärksten Banden sind angegeben). Für die Massenspektren benutzten wir ein Finnigan MAT 90 (120 eV, CI, Reaktionsgas Isobutan). Die Filmaufnahmen der Einkristalle erhielten wir auf Huber-Precession- bzw. Stoe-Weissenbergkameras. Die C-, H-, N-Analysen wurden vom mikroanalytischen Laboratorium Beller, Göttingen, durchgeführt. Die aus den Röntgenstrukturbestimmungen erhaltenen Atomkoordinaten von 6, 7 und 8 sind in Tabelle 5 zusammengefaßt.

Umsetzung von 1,3-Di-tert-butyl-2,2-dimethyl-4-azido-4-methyl-1,3,2,4-diazasilagermaetidin 2 mit dem Bis(amino)germylen 1.

Darstellung von 6. In eine Lösung von 220 mg (0,66 mmol) 2 [14] in 5 ml Benzol tropft man bei Raumtemperatur über 10 Minuten eine Lösung von 90 mg (0,33 mmol) Bis(amino)germylen 1 [15] in 2 ml Benzol. Nach 12 h Refluxieren sind im 'H-NMR-Spektrum keine Edukte mehr nachweisbar. Durch Abkondensieren der flüchtigen Bestandteile erhält man einen Feststoff, der nach Umkristallisieren in THF als farblose, in Benzol gut lösliche Blättehen erhalten wird. Die Ausbeute an 6 beträgt 184 mg (0,2 mmol – 62%).

Umsetzung von 1,3-Di-tert-butyl-2,2-dimethyl-4-azido-4-tertbutyl-1,3,2,4-diazasilagermaetidin (3) mit dem Bis(amino)germylen 1 in Pyridin.

Darstellung von 8. 310 mg (0,83 mmol) des Germaniumazids 3 [14] werden 4 d zusammen mit 227 mg (0,83 mmol) 1 [15] in einem Gemisch von 2 ml Benzol/4 ml Pyridin refluxiert. Nach Abkondensieren der flüchtigen Bestandteile erhält man ein farbloses Pulver, das bei 10⁴ Torr durch Sublimation gereinigt wird und aus n-Hexan in farblosen Blättchen kristallisiert. Die Ausbeute an 8 beträgt 462 g (0,66 mmol – 80%).

[Mc₂Si(NtBu)₂Ge(tBu)]NH[(C₃H₄N)Ge(NtBu)₂SiMe₂], **8**: Sublp.: 120 °C/10⁻⁴ Torr; Schmp.: 118 °C; C₂₉C₆₂Ge₂N₆Si₂ (696,25 g/mol); C 50,30 (ber. 50,03), H 8,71 (8,98), N 12,00 (12,07)%. Massenspektrum: Pcak höchster Masse: m/z = 696(M⁻¹ = C₂₉H₆₂²⁴Ge¹²GeN₆²⁸Si₂). ¹H-NMR, (C₆H₆): 0,47 ppm (s, 3 H, SiCH₃), 0,53 ppm (s, 3 H, SiCH₃), 0,59 ppm (s, 6 H, SiCH₃), 1,26 ppm (s, 18 H, N-C-CH₃), 1,39 ppm (s, 18 H, N-C-CH₃), 1,56 ppm (s, 9 H, Ge-C-CH₃), 7,28 ppm (t, 1 H, Arom.), 7,71 ppm (t, 1 H, Arom.), 7,89 (d, 1 H, Arom.), 8,74 (d, 1 H, Arom.). ¹³C--NMR (CDCl₃): 5,9 ppm (s, 1 C, Si-CH₃), 6,1 ppm (s, 1 C, Si-CH₃), 6,8 ppm (s, 1 C, Si-CH₃), 7,5 ppm (s, 1 C, Si-CH₃), 28,6 ppm (s, 3 C, GeC(CH₃)₃, 29,4 ppm (s, 1 C, GeC(CH₃)₃), 34,6 ppm (s, 6 C, NC(CH₃)₃, 35,2 ppm (s, 6 C, NC(CH₃)₃), 50,5 ppm (s, 2 C, NC(CH₃)₃), 51,1 ppm (s, 2 C, NC(CH₃)₃), 122,9 ppm (s, 1 C, Arom.), 128,9 ppm (s, 1 C, Arom.), 134,4 ppm (s, 1 C, Arom.), 149,4 ppm (s, 1 C, Arom.), 169,3 ppm (s, 1 C, Arom.), 1R(cm⁻¹): 3343 (w), 3256 (w), 3034 (w), 2959 (s), 2924 (s), 2855 (s), 1459 (m), 1417 (w), 1385 (m), 1375 (m), 1357 (m), 1244 (m), 1213 (s), 1106 (w), 1058 (s), 1031 (m), 990 (w), 915 (w), 870 (s), 675 (m), 559 (m), 531 (m).

Umsetzung von 1,3-Di-tert-butyl-2,2-dimethyl-4-azido-4-hexamethyldisilazyl-1,3,2,4-diazasilagermaetidin (4) mit dem Bis(amino)germylen 1.

257 mg (0,54 mmol) des Germaniumazids 4 [14] werden mit äquimolaren Mengen des Bis(amino)germylens 1 [15] 10 d in 8 ml Pyridin refluxiert. Ein nach dieser Zeit aufgenommenes 'H-NMR-Spektrum der Lösung zeigt keine Veränderung im Vergleich zur Ausgangslösung.

Umsetzung von 1,3-Ditert-butyl-2,2-dimethyl-4,4-diazido-1,3,2,4-diazasilagermaetidin 5 mit dem Bis(amino)germylen 1.

Darstellung von 7. In 0,36 ml (370 mg, 1,3 mmol) des Bis(amino)germylens 1 in 5 ml Benzol tropft man bei RT unter Rühren innerhalb 5 Minuten eine Lösung von 242 mg (0,65 mmol) des Germaniumdiazids 5 in 5 ml Benzol zu. Es erfolgt spontane Gasentwicklung und nach 1 h Rühren hat sich das Edukt quantitativ umgesetzt ('H-NMR). Nach Abkondensieren des Lösungsmittels kristallisiert man aus 3 ml THF um und isoliert anschließend 380 mg (0,40 mol = 62%) farbloser Stäbchen von 7.

 $[Me_2Si(NtBu)_2Ge(N_3)]_3N$, 7. Schmp.: 241 °C. $C_{30}H_{72}Ge_3N_{16}Si_3$ (959,10 g/mol); C 38,83 (bcr. 37,57), H 7,72 (7,57), N 21,60 (23,37)%. Molmasse, kryoskopisch in Benzol: gef.: 959.

¹H-NMR (C_6H_6): 0,49 ppm (s, 18 H, Si-CH₃), 1,35 ppm (s, 54 H, N-C-CH₃). IR (cm⁻¹): 2953 (s), 2924 (s), 2852 (s), 2105 (vs), 1460 (m), 1387 (w), 1360 (m), 1281 (m), 1208 (s), 1051 (s), 1031 (m), 1004 (m), 979 (s), 676 (m), 630 (m).

Sämtliche Rechnungen wurden auf einer micro-vax des Instituts unter Zuhilfenahme der angegebenen Programme [17, 19] bzw. auf einem PC [28] durchgeführt.

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung unserer Arbeiten.

Literatur

- P. Rivière, A. Cazes, M. Rivière-Baudet, J. Satgé, J. Organomet. Chem. 155 (1978) C 58
- [2] J. Satgé, Adv. Organomet. Chem. 21 (1982) 241
- [3] M. Rivière-Baudet, P. Rivière, A. Castel, G. Lacrampe, J. Stagé, Rec. Trav. Chim. Pays-Bas 102 (1983) 65
- [4] N. Wiberg, J. Organomet. Chem. 273 (1984) 141
- [5] N. Wiberg, Ch. K. Kim, Chem. Ber. 119 (1986) 2980
- [6] N. Wiberg, N. Karampatses, Ch. K. Kim, Chem. Ber. 120 (1987) 1203

- [8] J. Pfeiffer, W. Maringgele, M. Noltemeyer, A. Meller, Chem. Bcr. 122 (1989) 245
- [9] N. Wiberg, P. Karampatses, Ch. K. Kim, Chem. Ber. 120 (1987) 1213
- [10] C. Glidewell, D. Lloyd, K. K. Lumbard, J. S. McKechnie, Tetrahedron Lett. 28 (1987) 343
- [11] C. Glidewell, D. Lloyd, K. W. Lumbard, J. S. McKechnie, M. B. Hursthouse, R. L. Short, J. Chem. Soc., Dalton Trans. 1987, 2981
- [12] C. Glidewell, D. Lloyd, K. W. Lumbard, J. Chem. Soc., Dalton Trans. 1987, 501
- [13] M. Veith, S. Becker, V. Huch, Angew. Chem. 102 (1990)
 186; Angew. Chem. Int. Ed. Eng. 29 (1990) 216
- [14] M. Veith, E. Werle, Z. anorg. allg. Chem. 609 (1992) 19
- [15] M. Veith, M. Grosser, Z. Naturforsch. 37b (1982) 1375
- [16] N. Wiberg, K. Schurz, J. Organomet. Chem. 341 (1988) 145
- [17] G. Sheldrick, SHELX-76, SHELX-86, Programs for Crystal Structure Determination, Cambridge (1976), Göttingen (1986)
- [18] Weitere Informationen zu den Kristallstrukturuntersuchungen sind beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2 hinterlegt und können dort unter Angabe der Hinterlegungsnummer CSD-56828, der Autoren und des Zeitschriftenzitates erfragt werden
- [19] E. Keller, SCHAKAL-88, Fortran Program for Graphical Representation of Molecular and Crystallographic Models, Freiburg (1988)
- [20] M. Veith, M. Grosser, V. Huch, Z. anorg. allg. Chem. 513 (1984) 89
- [21] G. Oswald, Lexikon der Heraldik, Bibliograph. Inst. Leipzig, 1. Auflage 1985
- [22] O. Neubecker, W. Rentzmann, Wappenbilderlexikon, Baltenbergverlag, München, 1974
- [23] J. E. Huheey, Anorganische Chemie, Prinzipien von Struktur und Reaktivität, W. de Gruyter, Berlin 1988, S. 278
- [24] U. Müller, Structure and Bonding 14 (1972) 141
- [25] J. D. Murdoch, D. W. II. Rankin, J. Chem. Soc., Chem. Comm. 1972, 748
- [26] I. D. Brown, D. Altermatt, Acta Cryst. B41 (1985) 244
- [27] M. Veith, G. Schlemmer, Z. anorg. allg. Chem. 494 (1982) 7
- [28] Program ALCHEMY III, Tripos Ass., St. Louis, Missouri, 1992, parameters by M. Veith
- [29] M. Veith, M. Zimmer, Universität Saarbrücken

Anschr. d. Verf.:

Prof. Dr. M. Veith, Dr. E. Werle, Dr. V. Huch

Institut für Anorganische Chemie der Universität Im Stadtwald

W-6600 Saarbrücken 11