idally. As shown by the C–N–C angle (ca. 140°) of the Newman projection, the molecule as a whole is only slightly flattened. The torsional angle of the orbitals of the two lone pairs is 64°. The structure of 1 corresponds to a propellane skeleton in which a bridge is replaced by two vicinal lone pairs (Fig. 1).

Fig. 1. a) Molecular structure of 1 in the crystal (M representation); b) Newman projection (M) with torsional angles; c) bond lengths [pm] and angles [°]

In dioxane, the enantiomers gave molar optical rotation values of [α]D 2130±60 and [α]D 24700±400 [enantiomer A: (+); enantiomer B: (−); concentrations 2×10⁻² to 14×10⁻² g mL⁻¹]. Figure 2 shows the respective CD spectra and the electronic spectrum. A definite assignment of the absolute configuration of the enantiomers could not be carried out, even after determination of several Cu-data sets, since the small dispersion effect of the nitrogen with CuII radiation was too small compared to the error of measurement.

The rate constants for the racemization were determined by measurement of the optical rotations in decane; T [K] (k×10⁴ [min⁻¹]): 370 (642), 360 (233), 350 (75.6), 340 (24.7), 330 (7.34), 320 (2.01). The thermal racemization requires an activation energy of 27.1(1) kcal mol⁻¹ [113(±4) kJ mol⁻¹]; pre-exponential factor A = 6.52×10¹⁴. Compound 1 can racemize both by rotation about the N–N axis as well as by double nitrogen-inversion. In both cases, a greater degree of planarization of the molecule is to be expected for the transition state. A comparable planarization can also be achieved by one-electron oxidation, which transforms the destabilizing interaction of the vicinal lone pairs into a bonding three-electron interaction, resulting in a planarization of the pyramidal arrangement of the substituents. 1° should therefore have a very low racemization barrier. This is in fact observed. Oxidation of the enantiomers affords an optically inactive radical cation,⁴⁹

The above findings indicate that the high racemization barrier of 1 is essentially due to the gauche effect⁴⁹ of the vicinal lone pairs. Their interaction with the coupled π-electron system proves to be surprisingly small.

Received: December 30, 1985 [Z 1605 IE]

CAS Registry numbers:
1, 100992-72-1; ent-1, 100992-73-2.

[3] Yellow crystals (from ethyl acetate), ca. 0.2×0.2×0.4 mm, P2₁,

a=94(4)nm, b=69(1)nm, c=129(2)pm, β=102.37(1)°, ρCuKα = 1.301 g cm⁻³ for Z=2. 2324 symmetry independent reflections measured (Nonius CAD 4 diffractometer, MoKα radiation). Solution of structure by direct methods. Anisotropic refinement of all non-H atoms converged at R = 0.037 for 1514 observed reflections [I ≥ 1.96σ(I)]. Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-75130, the names of the authors, and the full citation of the journal.

Strontium and Barium Alkoxostannates(II)—Molecules with S₅ Symmetry

By Michael Veith,* Dieter Käfer, and Volker Huch

Tris(tert-butoxy)stannates of the alkali-metals¹¹ and of monovalent thallium²² exhibit a remarkable variety of structures. Whereas the stannates of thallium, I, as well as...
those of lithium and sodium, 2, form cage-like, molecular units, those of potassium, rubidium and cesium, 3, form polymers. The structures are illustrated in formulas 1-3, where the lines between the atoms represent, as usual, electron pairs, either in the sense of a two-center bond or a donor-acceptor bond (formal charges not shown). Our interest now turned to the question of whether these structural principles are preserved when two tris(tert-butyl)oxostannate ligands are available per "cation", i.e. on going to divalent metal "cations".

To check this we have examined the reaction of tert-butoxides of Mg,[3] Ca,[4] Sr,[5] and Ba,[3] which are insoluble in benzene, with a solution of tin di-tert-butoxide[6] \[\text{Mg(OtBu)}_2 + \text{Sn(OtBu)}_2 \rightarrow \text{Mg(OtBu)}_2\text{Sn(OtBu)}_2\] \[\text{(a)}\], \text{Mg(OtBu)}_2, and \text{Ca(OtBu)}_2 do not react, even in boiling benzene (1H-NMR, quantitative recovery of the starting substances), whereas \text{Sr(OtBu)}_2 and \text{Ba(OtBu)}_2 undergo complete reaction in accord with Equation (a). The sharp distinction between the tert-butoxides of calcium and strontium is also demonstrated in the following experiment: A Ca/Sr alloy was converted into a mixture of the tert-butoxides, which was then treated with a benzene solution of \[\text{Sn(OtBu)}_2\text{M(OtBu)}_2\text{Sn}\] \[\text{M}=\text{Sr} ; \text{M}=\text{Ba}\] \[\text{4}\], \text{M}=\text{Sr} ; \text{5} , \text{M}=\text{Ba}\] undergo complete reaction in accord with Equation (a).

The compounds 4 and 5 are colorless, and crystallize isotypically (decomposition temperatures: 220 and 270°C, respectively). Both show a singlet in the 1H-NMR spectrum (4: \(\delta = 1.44 \text{ (1.42)}\), 5: \(\delta = 1.41 \text{ (1.40)}\) in benzene (toluene)), and the elemental analyses and mass spectra are consistent with the formula given in Equation (a). We have determined the structure of 4 by single-crystal X-ray structure analysis (Fig. 1).

The crystal lattice of 4 contains molecules of point symmetry \(S_6\) (3), packed, internally interlocked, parallel to \((001)\) within the layers and in the [001] direction with the layer sequence A, B, C, ... (the angle in the rhombohedral unit cell is 52.2°). If we consider only the skeletal atoms, then the polycycle can be built from two trigonal bipyramids connected via a common apex with retention of the threefold axis. This apical position, which at the same time is a center of inversion, is occupied by the Sr atom, which is situated in a distorted octahedral environment (O-Sr-O: 90±24.41°). The Sn atoms are, as in the related compounds 1-3, trigonal-pyramidally coordinated (O-Sn-O: 82.3(1)°). The equatorial apices of the two bipyramids are occupied by the oxygen atoms, which, as expected, are at shorter distances from the Sn atoms than from the Sr atom (cf. Fig. 1). A striking feature is that the O atoms are not, as in 1[2], located in a pyramidal, but in a trigonal-planar environment (sum of angles at the O atoms: 359.5°) — perhaps this arises as a result of intramolecular interactions. Actually, the tert-buty1 groups in the molecule are in unusual close proximity (distance between the centers of the tert-buty1 groups 511 and 550 pm): they completely shield the metal atom in the center of the molecule. If the central metal atom were to be even smaller than strontium, the tert-buty1 groups would repel each other extremely strongly. The Ca atom is probably already too small (Ca-0 in CaO: 240.5 pm[69]).

The structure of 4, like that of 1-3, is very difficult to formulate. Besides the formulation as the donor-acceptor complex 4, other possible formulations are those with formal charges or ionic substructures 4’ and 4”, respectively.

\[\text{Fig. 1. Structure of 4 in the crystal. The unmarked atoms are C atoms; the H atoms are not shown. The point symmetry of 4 in the crystal is reduced from } D_3\text{, and the unit cell is reduced from } D_3\text{, by slight rotation of the tert-buty1 groups. Cell dimensions: } a=1017.1(1), c=2996(2) \text{ pm} \text{, space group: } R3; Z=3. \text{ Four-circle diffractometer (Siemens) } R=0.033 \text{ (all atoms anisotropic) at a reflection-parameter ratio of } 15.0:1. \text{ Some selected bond lengths [pm] and angles [°]: Sn-O: 207.8(3), Sr-O: 252.3(3), O-C: 141.8(6), O-Sr-O': 65.6(1), Sn-O-C: 124.9(3), Sr-O-C: 142.8(3). Further details of the structure investigation are available on request from the Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-51786, the names of the authors, and the full citation of the journal.}\]
Procedure

A solution of freshly sublimed [Sn(OrijBu)]3 (7) [1.2 g, 4.53 mmol] in benzene (25 mL) was added dropwise to a suspension of M(OriBu)2, M = Sr, Ba (6 mmol) in benzene (10 mL). The mixture was stirred for 2 h, filtered, and the filtrate evaporated almost to dryness. The product crystallized out as colorless platelets. Yield: 1.59 g (92%) 4 or 1.71 g (93%) 5.

Received: January 14, 1986;
revised: February 4, 1986 [Z 1622 IE]
German version: Angew. Chem. 98 (1986) 367

CAS Registry numbers:
4, 101165-23-5; 5, 101165-24-6.

Diels–Alder Adducts of Benzene with Arenes and Their [4 + 2] Cycloreversion**

By Achim Bertsch, Wolfram Grimme,* and Gerd Reinhardt

A continuum of reaction pathways exists for the [4 + 2] cycloreversion, from the simultaneous breaking of two single bonds to stepwise bond cleavage. The retrocleavage of Diels–Alder adducts formed from two arenes should most closely resemble the ideal synchronous reaction. Both components lack the two singly occupied p-orbitals necessary to become aromatic, and only simultaneous formation of these two centers enables the transition state to acquire part of this stabilization. Having reported earlier the adduct 4 between benzene and naphthalene,[1] we now report the Diels–Alder adducts of benzene both with itself and with anthracene and naphthacene.

The Diels–Alder trimer 1 of benzene decomposes at 100°C to benzene without evidence for the formation of the intermediate o,p'-dibenzene 2.[2,3] The retrocleavage of 1 also takes place upon irradiation with a high-pressure mercury lamp through quartz. If the reaction is carried out at −90°C in CD2Cl2 in an NMR tube and followed by recording the 1H-NMR spectrum, signals other than that of benzene are observed, which first build up and then decrease during the course of the reaction. These signals correspond to those expected for o,p'-dibenzene (Fig. 1): upon heating of the sample to room temperature, they disappear in favor of the benzene signal. At −90°C, the intermediate photoproduction reacts with 4-phenyl-1,2,4-triazoledione (PTAD) to form the adduct 3, the structure of which also confirms the presence of 2.

The kinetics of the [4 + 2] cycloreversion of o,p'-dibenzene 2 was determined by flash photolysis.[3] A solution of the tribenzene 1 in isoctane (8 x 10−5 M) was irradiated in a quartz cuvette (l = 10 cm) with a flash from a capacitor discharge and the transient UV absorption of the dibenzene formed, 2, was recorded at 280 nm. The lifetime of 2 is ca. 0.5 s at room temperature; the kinetic parameters of the decomposition were derived from nine rate constants in the temperature range 20–55°C (see Table 2).

In order to synthesize the more stable adducts 5–7, anthracene and naphthacene were allowed to react with p-benzoquinone. With anthracene, 5a was the sole product, whereas with naphthacene a 1:1 mixture of the stereoisomers 6a and 7a was obtained. By hydrogenation with zinc in acetic acid, 5b and a mixture of 6b and 7b were obtained; these compounds were then converted into the bistosylhydrazones 6c–7c. Reaction with N-butyllithium in tetrahydrofuran/n-hexane at 0°C afforded the anthracene adduct 5d and a 1:1 mixture of the isomeric naphthacene adducts 6 and 7, respectively.

The adduct 10, involving the outer ring of anthracene, was obtained from 4a,9,9a,10-tetrahydroanthracene 8.[5] Cycloaddition of p-benzoquinone afforded the adduct 9a, which, as described above, was converted into the hydrocarbon 9 via the intermediates 9b and 9c. Before dehydrogenation of the tetralin moiety in 9, the cyclohexadiene ring must be protected by addition of 4-ethyl-1,2,4-triazolidene to give adduct 9d. After formation of the naphthalene system in 10d by heating with 2,3-dichloro-5,6-dicyano-p-benzoquinone in tetrachloroethane, the protecting group is removed by basic hydrolysis and oxidation with copper(II) chloride.

The adducts so obtained (Table 1) decompose cleanly into their aromatic components between 0 and 100°C; the nonseparated isomeric naphthacene adducts 6 and 7 have the same lifetime. In order to measure the rates of cycloreversion, a degassed solution of the compound in dodecane (10−5 M) was added to a thermostatted polarimeter cuvette (l = 5 cm); the formation of naphthacene, anthracene, and naphthacene was followed by continuous re-