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Abstract

This work is based on calculation of total-energy minium structures for var-

ious cluster systems using Density-Functional Tight Binding method com-

bined with genetic algorithm method. Cluster systems which we have inves-

tigated include both semiconductor clusters and metallic clusters. Results

of theoretical studies of binary homogeneous SinGen clusters, indicates the

formation of mixed alloy structures for these clusters. We observe mostly

hetero-atomic Si-Ge bonds in SinGen clusters, which shows that both Si and

Ge have strong tendency to form bonds with each other. We also observe

that there are very few Si-Si bonds compared to Ge-Ge bonds in binary

SinGen clusters. We have calculated the bond energies for ESi−Ge, EGe−Ge

and ESi−Si which also favors the formation of more hetero Si-Ge, and Ge-

Ge bonds as compared to Si-Si bonds. In these alloy structures, Si shows

very poor tendency to be coordinated to another Si atom. In general, %

age coordination of Si decreases from 5 or 4, as in pure Sin clusters to 3 in

binary SinGen clusters whereas, for Ge atoms % age coordination number

increases from 3 to 4 as compared to pure Gen clusters. Further more, for

binary homogeneous SinGen clusters, we have found that these binary clus-

ters have different growth pattern as compared to their elemental counter

parts. This gives rise to different structures for SinGen clusters when com-

paring to pure elemental clusters in the same size range. Our observation

is clearly depicted in similarity function analysis of these cluster structures

in which we observe that binary clusters show very poor similarity with

elemental clusters. Our stability function analysis predicts stable cluster

structures for all the clusters systems.

In the second part of our work, we have studied the geometries and struc-

tural and electronic properties of the Cun clusters in the size range 2 ≤ n

≤ 36 atoms. An intensive search for low-energy minima of Cun clusters was

carried out using DFTB method combined with genetic algorithm meth-
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ods for an unbiased global structure optimization. We have used various

descriptors for analyzing the Cun clusters including stability, shape, and

similarity analysis as well as radial distances of atoms and HOMO-LUMO

gap studies. We have obtained the global minimum-total energy structure

of Cun clusters in the size range n ≤ 10 which are reported in earlier studies.



Zusamenfassung

In dieser Arbeit wurden mit Hilfe der Dichtefunktional-tight-binding-Methode

(DFTB) die energetisch niedrigsten Strukturen verschiedener Clustersys-

teme untersucht. Die dabei betrachteten Systeme umfassen Halbleiter und

Metall Cluster. Das Ziel dieser Arbeit ist es, die strukturellen und elek-

tronischen Eigenschaften dieser Systeme zu klären. In Kapitel 1 erfolgt

eine kurze Darstellung von früheren Untersuchungen von Halbleitern und

metallischen Clustern. Anschliessend wird ein Überblick über den Auf-

bau dieser Arbeit gegeben. Die Dichtefunktional-Theorie (DFT) und die

Dichetefunktional-tight-binding-Methode (DFTB) werden in Kapitel 2 be-

sprochen. Der genetische Algorithmus, den wir zur Berechnung des glob-

alen Energieminimums verwendet haben, wird an dem Ende dieses Kapitels

dargestellt.

Kapitel 3 und 4 enthalten die theoretische Ergebnisse von der Untersuchung

der Halbleiter und Kapitel 5 diese von der Untersuchung der metallichen

Clustern.

Cluster sind Systeme, die zwischen kleinen Molekülen und makroskopischen

Festkörpern liegen. Die Bestimmung der exakten Struktur ist der wichtigste

Schritt bei der Clusteruntersuchung, dennoch erweist sich globale Struktur-

optimierung als sehr schwierger Prozess.

In dem ersten Teil dieser Arbeit werden die Ergebnisse von der Unter-

suchung der Halbleiter Sin, Gen und SinGen Cluster gezeigt, wobei für

Si and Ge n zwischen 2 und 44 Atome und für die bimetallische Cluster

zwischen 2 und 22 Si-Ge Einheiten liegt. Um die strukturellen and ener-

getischen Eigenschaften von den optimierten Clustern in Abhängigkeit von

der Clustergrösse darzustellen und zu diskutieren,wurden die Stabilitäts-

und Ähnlichkeits-funktionen , die radiale Verteilung, die gesamte Cluster-

form, die Symmetrie, der HOMO-LUMO Abstand untersucht. Die Ergeb-

nisse zeigen für die bimetallische Cluster die Bildung von Mischlegierungen,
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hauptsächlich Bindungen zwischen den Heteroatomen Si und Ge und sehr

wenig Si-Si Bindungen im Vergleich zu Ge-Ge. Die gleiche Ergebnisse zeigen

auch die ausgerechneten Bindungsenergien ESi−Ge, EGe−Ge und ESi−Si. Die

Koordinationszahl von Si wird reduziert-von 5 oder 4 in Sin auf 3 in den

bimetallischen Cluster. Die umgekehrte Tendenz wird bei Ge behobachtet-

von 3 in Gen auf 4 in den SinGen Clustern. Des weiteren wurde festgestellt,

daß die bimetallische homogene Cluster unterschiedlich im Vergleich zu den

reinen Elementen wachsen, was auch zu verschiedenen Strukturen führt.

Dieser Strukturunterschied zwischen SinGen und Sin , Gen mit gleicher An-

zahl von Atomen kann durch die Ähnlichkeitsfunktion dargestellt werden.

Die Ergebnisse der Stabilitätsfunktion-untersuchungen zeigen stabile Struk-

turen für die drie Systeme.

Der zweite Teil der Arbeit enthält die Ergebnisse von den theoretischen

Untersuchungen der strukturellen und energetischen Eigenschaften von Cun

mit 2≤ n ≤ 36 Atomen. Die gleiche theoretische Methode wurde auch hier

verwendet und die Eigenschaften von den optimierten Clustern wurden in

Abhängigkeit von der Cluster- größe untersucht und diskutiert. Für n ≤ 10

wurden globale Strukturen erhalten, die im Einklang mit früheren theoretis-

chen Untersuchungen sind.

Eine kurze Schlussfolgerung mit einem Überblick über die Beobachtungen

bei den einzelnen Systemen stellt den letzten Teil der Arbeit dar (Kapitel

6).



Chapter 1

Introduction

1.1 Nanoscience and Cluster Studies

Nanoscience, a branch of material science where materials at nanometer

size range are investigated, has found most central place in the field of re-

search over the last decades. Both experimentalists and theoreticians have

contributed for this field but contributions from theoreticians are growing

rapidly. Nanoscience has started in early 1980’s and its major development

was birth of cluster science and since then clusters and nanoparticles in the

size range of some 10s to some 10 000s of atoms are studied extensively.

These systems are of special interest because they have sizes in a range

where quantum confinement or quantum-size effects (QSE) play important

role for the unique, size dependent properties of these materials. Thus, the

determination of the size dependent properties of these nano-particles and

to find relation between size and properties is not easy for these systems. In

experimental studies the clusters are rarely isolated, but instead they often

interact with some other medium while theoretical studies deal with isolated

clusters of a well defined size for which it is overwhelmingly complicated to

determine the structure. The identification of the structure of the lowest

total energy for a cluster of N atoms requires searching in a geometry space

of 3N-6 dimensions, which for any but the smallest values of N hardly is

possible.

In our present work, we will try to identify the structures of lowest total en-

ergy for different cluster systems by carefully searching through the geomet-

ric space and then will try to look at the structural and electronic properties

associated with these cluster systems. We have used Density-Functional
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Tight Binding method (DFTB) for our calculations. The optimization is

carried out by so-called genetic algorithm that has been developed in our

own group. The DFTB method and the algorithm are both explained in

chapter two of this thesis. The cluster systems which we have studied in-

clude both semiconductors and metallic clusters.

Semiconductor clusters are a special class of matter with sizes in between

single atoms and semiconductor quantum dots [1]. A tremendous effort has

been invested in the structural characterization of clusters of the group 4

semiconductor elements, Silicon and Germanium. These are two most im-

portant microelectronics materials, so understanding the growth habit of

their clusters is of substantial practical relevance. In the bulk, both Si and

Ge pack in a tetrahedral ’diamond’ lattice. Over the past two decades or so,

free Silicon clusters have been extensively studied both experimentally [2]-

[9] and theoretically [10]-[30],[52] compared to Germanium clusters [31]-[51].

A central issue concerning the Sin and Gen clusters is their lowest energy

geometric structures, namely, their global minima as a function of size n

. Major efforts have been undertaken towards finding the global minimum

structures in different size ranges and at different levels of theory. Looking

at the structural developments of both Sin and Gen clusters, it is reason able

to ask what happens for hetero-clusters like SinGen. One should anticipate

that there should be interesting properties existing for binary SinGen mi-

cro clusters. Si-Ge technology has been studied extensively in the past ten

years and the binary hetero structures Si/Si1−xGex have produced a new

generation of high performance heterojunction bipolar transistors (HBT),

field effect transistors and infrared detectors [53, 54]. Moreover atomic scale

analysis of Si-Ge materials is becoming more and more important as semi-

conductor devices are constantly being scaled down. The concepts obtained

from Si-Ge in the bulk form may not be directly applicable to Si-Ge at the

nanoscale level due to lattice strains and surface energy effects. Therefore,

fundamental understanding of the structural and electronic properties of

Si-Ge nanoclusters is going to play an important role in the advancement in

the nanoscale devices. Studies on binary semiconductor clusters may pro-

vide us insight into the bulk alloy structrues. Considering the importance

of these semicondotor alloy systems, we have selected to study binary ho-

mogeneous Si-Ge clusters. In order to make a comparison between pure and

binary Si-Ge clusters, we have also investigated the total-energy minimum

structures of pure Sin and Gen clusters using DFTB method.

Up to now, mixed SinGen clusters remain unexplored compared to their

elemental counterparts. S.D.Li et.al, [55] investegated the low-energy struc-
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tures of SimGen (for m + n ≤ 10) clusters using tight-binding methods with

out frequency analysis. Later on, they performed a more extensive study

on binary AmBn (A,B= Si,Ge,C and m + n ≤ 10) [56] clusters using the

B3LYP-DFT method but only on selected initial geometries with high sym-

metries. They have found that geometries of AmBn binary clusters follow

similar structural patterens with lower symmetries when compared with cor-

responding elemental Sis and Ges in this size range. J.Tarus et.al [57] have

studied the ’segregation in SiGe clusters’ using classical molecular dyanam-

ics (MD) method. Their main finding in this article is that Ge has strong

tendency to segregate onto the surface of clusters. Jer-Lai Kuo et.al [58]

has recently studied SimGen clusters with (m+n) ≤ 7 using B3LYP-DFT

and CCSD(T) methods. They have found that SimGen clusters have similar

structural patterns as those of corresponding elemental clusters of Sis and

Ges . Abu et.al [59] has studied the structural and electronic properties

of core-shell Si-Ge nanoparticles using LDA-DFTB method. Very recently

Jerzy Leszczynski et.al, [105] have also studied GenSim in the size range

n+m = 2-5 using advanced ab initio approaches. From these studies we ob-

serve that globally optimized total energy minimum structures for SimGen

clusters have only been studied for very small size range i.e, (m + n ≤ 10)

and these binary clusters largly remain unstudied in the medium size range.

Keeping this in mind, we have investigated the structural growth pattern

and variation in properties with increasing n, for medium sized binary ho-

mogeneous SinGen (size range = 22 Si-Ge units) clusters. Furthermore, in

order to compare the structural growth pattern and properties of binary

SinGen clusters with their elemental counter parts, we have studied the

globally optimzed structures and properties of both Sin and Gen clusters in

the same size range with DFTB method.

Metal clusters, like semiconductor clusters have been object of extensive

theoretical and experimental investigations, due to their unique physical

and chemical properties determined by their restricted size. Among the

metal clusters, Copper clusters constitute one of the more studied metals

in the field of cluster science. During the last decade many parameter-free

studies on small Copper clusters have been published. These include the

density-functional study on small neutral and charged Copper clusters by

Massobrio et.al, [60] and the similar work by Calaminici et.al, [61] on neu-

tral and charged clusters, as well as others studies based on either ab inition

[62] or density-functional [63] approaches. It has been observed that except

for the absolutely smallest Copper clusters, there are different assumptions

on the structure of clusters based on different potentials. For this reason
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we have studied copper clusters in the medium size range upto n=36 atoms

and their structural and electronic properties are investigated in detail.

In our present work all the calculations are performed using Density Func-

tional Tight Binding Method combined with genetic algorithm method

(method for global optimization) for the determination of total energy min-

imum structures for all cluster systems. Search for the global total-energy

minimum structures for differenct cluster systems and extracting informa-

tion about their structural and electronic properties have been an important

topic of our work.
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1.2 Organization of work

This work is organized as follows. After the introductory initial chapter,

we have discussed briefly Density Functional Theory and then our method

(DFTB) used for calculations in chapter two. Density Fucntional Tight

Binding method (DFTB) has been used through out this work for the cal-

culations of total energy minimam structures of pure Silicon (Sin), pure Ger-

manium (Gen) and homogeneous binary (SinGen) clusters. Copper clusters

(Cun) have also been studied using the same method. We have presented

the genetic algorithm method in detail afterwords which is used to ob-

tain the globally optimized structures for our systems. In chapter three we

have discussed the geometric structures obtained from global optimizaion of

semiconductor clusters including both elemental and binary clusters, Silicon

and Germanium. In chapter 4, we have given various tools for analysing our

semiconductor cluster strucutures, which include similarity functions, com-

mon neighbours analysis, radial distribution functions, stability functions,

HOMO-LUMO Gap analysis and shape analysis. All these tools enable us

to study the structural and elctronic properties of investigated clusters in

detail. In chapter five we have presented the results of theoretical studies

of Cun clusters and their structural and electronic properties are discussed

in detail. In chapter 6 we will conclude our results and work.





Chapter 2

Theory and Method For

Calculations

In this chapter we will give a short overview of Density Functional Theory

and, afterwards, introduce the Density Functional Tight Binding Method

(DFTB) that has been applied through out this work to calculate the elec-

tronic and structural properties of nanoparticles and finally talk about the

optimization method with which we have obtained globally optimized total-

energy minimum structures for our systems.

2.1 Density-Functional Theory

The most central problem of quantum chemistry is to solve Schrodinger-

wave equation [67]

ĥψ = Eψ (2.1)

Applying the Born-Oppenheimer approximation is a first step towards an

approximate solution of the Schrodinger-wave equation. The resulting equa-

tion is the time-independent Schrodinger wave equation for the electrons

ĥeψe = Eeψe (2.2)

where ψe = ψe(x1, x2, x3, ..., xN ) is the electronic wavefunction depending

on position ri = (xi, yi, zi) and spin σi of each electron i [xi = (ri; σi) =

(xi, yi, zi, σi)]. Knowing the complete N-electron wavefunction ψe is more

than actually required for the calculations of experimental observable, be-

cause these only depend on the coordinates of one or two electrons. Thomas

11
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and Fermi [68] proposed that one can determine the electron density in

three-dimensional position-space instead of electronic wavefunction and from

that obtain all information of interest. The resulting equation that directly

determines electronic density ρ( r) is much easier to solve than Schrodinger

wave equation itself. This so-called Thomas-Fermi method has been one of

the most important steps in the development of Density-Functional The-

ory (DFT). However the results obtained from Thomas-Fermi approach

are very inaccurate, because the approach is constructed as an approxima-

tion instead of an exact alternative to solve the Schrodinger wave equation

e.g, the Thomas-Fermi method does not give an electronic shell structure.

Density-functional theory itself is based on the two theorems [69] by Pierre

Hohenberg and Walter Kohn that have been published in 1964. Walter

Kohn has been honored with the Nobel-prize in chemistry (together with

John Pople) for this fundamental work.

The Hohenberg-Kohn Theorems

The first Hohenberg-Kohn theorem states that it is possible to calculate

any ground state property of a given system by the knowledge of electron-

density ρ(r) only. Therefore, the total(electronic)energy of the system Ee

is a well-defined functional of the electron density:

Ee[ρ(r)] = F [ρ(r)] +

∫

ρ(r)Vext(r)dr (2.3)

Here, F [ρ(r)] is a universal potential that is independent of the external

potential Vext(r) and, therefore, also of the geometry of the nuclei of the

system. The external potential is determined first of all by the Coulomb

Potentials of the atomic nuclei but may, moreover, contain additional (e.g,

electrostatic or gravitational) potentials. Through the potential, the elec-

tron density ρ(r) determines the Hamilton operator and thereby, all ground-

state properties. The total number of electrons for the system of the interest

is also defined by ρ(r):

N =

∫

ρ(r)dr (2.4)

The second Hohenberg-Kohn theorem states that a variation of the ground-

state electron density [starting from the exact electron density ρ(r)],

ρ̃(r) = ρ(r) + δρ(r) (2.5)

results in a positive change of the total ground-state energy:

Ee[ρ̃(r)]>Ee[ρ(r)] (2.6)
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By changing the electron density to ρ̃(r), the number of electrons in the

system are unchanged:

∫

ρ̃(r)dr =

∫

ρ(r)dr (2.7)

Thus, the variational principle holds for the energy as a density func-

tional.

The Kohn-Sham Equations

The last mentioned problem, i.e, the Hohenberg-Kohn theorems do not

explicity give any functionals, is still unsolved. In 1965 Walter Kohn and

Lu Jeu Sham published a method for the calculation of the electron density

with the so-called Kohn-Sham equations [70]. The Kohn-Sham Equations

are a set of single-particle equations similar to the Hartree-Fock equations.

The problem, how to calculate the total energy as a density functional, has

been transformed to the solution of this set single-particle equations. We

will now have a closer look at an N-particle system: the total(electronic)

energy Ee[ρ(r)] of the system to interest can be described as,

Ee[ρ(r)] = T [ρ(r) +

∫

ρ(r)[Vext(r) +
1

2
Vc(r)]dr + ÉXC [ρ(r)] (2.8)

Here, T is the kinetic energy of the system,
∫

ρ(r)Vext(r)dr is the energy

resulting from the external potential, and 1
2

∫

ρ(r)VC(r)dr the Coulomb en-

ergy which is resulting from the electron repulsion (the factor 1
2

deletes

the double-counted terms). Éxc is the so-called exchange correlation en-

ergy. This term contains all terms that are not included in the other three

addend. After exertion of the variational principle using the Lagrange mul-

tiplier µ (which is the chemical potential for the electrons), we get

δT

δρ
+ Vext(r) + VC(r) +

δÉXC

δρ
= µ (2.9)

where µ has been introduced to satisfy the condition,

N =

∫

ρ(r)dr (2.10)

The trick of Kohn and Sham is to introduce a system similar to the original

one but with N particles that are non-interacting. These N non-interacting

particles shall move in an external potential Veff(r) that is defined in such a
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way that the electron density and the energy are equal to the electron den-

sity and the energy of the original system to interacting particles. Equations

[1.8] and [1.9] therefore become much more easier for this fictive system:

Ee[ρ(r)] = TKS[ρ(r)] +

∫

Veff(r)ρ(r)dr (2.11)

After applying the variational principle we obtain,

δTKS

δρ
+ Veff(r) = µ (2.12)

with

Veff(r) =
δT

δρ
−
δTKS

δρ
+ Vext(r) + VC(r) +

δÉxc

δρ(r)
(2.13)

Here the kinetic energy TKS of the fictive system is not equal to the kinetic

energy of the real system. The Hamiltonian is now simplified to a great

extend and can be written as the sum of N single-particle operators ˆheff :

Ĥ =

N
∑

i=1

[−
1

2
∇2

ri
+ Veff( ri)] =

N
∑

i=1

ĥeff(i) (2.14)

We can write the many-body wavefunction as a single Slater determinant

ψ =| ψ1, ψ2, ψ3, ..., ψN | (2.15)

and the single-particle equations are,

ĥeff(i)ψi = ǫiψi (2.16)

These determine the single-particle energies ǫi. Finally, the electron density

is the sum over the N orbitals with the lowest single-particle energies ǫi:

ρ(r) =

N
∑

i=1

ni | ψi(r) |
2 (2.17)

where ni is the occupation number of the i -th orbital. The electron density

of the system consisting of non-interacting particles has been constructed

in such a way that it is equal to the electron density of the real system.

However, the single-particle wavefunctions of the non-interacting particles

ψi and energies ǫi are not identical with those of the electrons but practice

has shown that they provide a good approximation to them.
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The Local-Density Approximation

A problem originates from the exchange-correlation energy Exc[ρ(r)] and

the according potential

Vxc(r) =
δT

δρ
−
δTKS

δρ
+
Éxc

δρ
≡
δExc

δρ
(2.18)

because they are unknown. However, the exchange-correlation energy can

be written as

Exc[ρ(r)] =

∫

ǫxc(r)ρ(r)dr (2.19)

where Exc can be expressed approximately in terms of the electron density

and its derivatives:

ǫxc(r) = ǫxc[ρ(r), | ∇ρ(r) |,∇
2ρ(r), ...] (2.20)

The local-density approximation (LDA) approximates ǫXC as depending

only on the electron density ρ(r).

2.2 Density-Functional Tight-Binding Method

The Density-Functional Tight Binding method has been used throughout

this work to optimize the structures of investigated clusters and to calcu-

late their structural and electronic properties. DFTB method has been

developed by G.Seifert et.al, [64, 65, 66]. The DFTB method is based on

the Density-Functional Theory of Hohenberg and Kohn [69] in the formu-

lation of Kohn and Sham [70]. The single-particle eigenfunctions ψi(r) are

expanded in a suitable set of localized atom-like basis functions φm(r) :

ψi(r) =
∑

i

cimφm(r) (2.21)

Here, m is a compound index that describes the atom at which the func-

tion is centered, the angular dependence of the function, as well as its ra-

dial dependence. These functions are obtained from self-consistent density-

functional calculations on the isolated atoms employing a large set of Slater-

type basis functions. The Hamilton operator ĥ is defined as

ĥeff = t̂+ Veff(r) (2.22)

Here, t̂ is kinetic energy operator(t̂ = 1
2
∇2), and the effective Kohn-Sham

potential Veff(r) is approximated as a simple superposition of the potentials
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of the neutral atoms,

Veff (r) =
∑

j

V 0
j | (r −Rj |), (2.23)

where Rj is the position of j th atom.

Furthermore, we make use of a tight-binding approximation, so that

hmn = 〈φm | t̂+
∑

j

V 0
j | φn〉 = 〈φm | t̂+ V 0

jm
+ (1 − δjn,jm

)V 0
jn

| φn〉 (2.24)

where Rjm
and Rjn

are the positions of the atoms at which the mth and nth

basis functions are centered, respectively. The Kronecker-δ is included in

order to assure that the potential in not double counted for jn = jm. Through

this approximation, only two center terms in the Hamiltonian matrix are

considered, but all two-center terms (hmn=〈φm| ĥ | φn〉, Smn= 〈φm| φn〉)

are calculated exactly within the Kohn-Sham basis. These approximations

lead to the secular equations
∑

m

cnm(hmn − ǫiSmn) = 0 (2.25)

Using the Kohn-Sham eigenvalues ǫi, the total energy E[ρ(r)] may be written

as

Ee[ρ(r)] =

occ
∑

i

ǫi−
1

2
[

∫

Veff(r)ρ(r)dr−

∫

Vext(r)ρ(r)dr]+Exc−
1

2

∫

Vxc(r)ρ(r)dr+EN

(2.26)

Here, the external potential Vext is the electrostatic potential from the nu-

clei, Exc the exchange corelation energy, Vxc the corresponding potential,

EN the nuclear repulsion energy, and ρ(r) is the electron density. Since

the difference between superposed atomic electron densities and the true

electron density of the system of interest in only small and since by far the

largest parts of the interatomic interactions are of fairly short range, the

major part of the total energy is contained in the difference of the single

particle energies of the system of interest, ǫi, and of the isolated atoms,

ǫjm(ǫjm is the j th eigenvalue of the mth atom), i.e,

ǫB =
occ
∑

i

ǫi −
∑

j

∑

m

ǫjm (2.27)

The short-ranged interactions can be approximated by simple pair-potentials,

so that the expression for total energy becomes,

EB ≈
occ
∑

i

ǫi −
∑

j

∑

m

ǫjm +
1

2

∑

j 6=j́

Ujj́(| Rj − Rj́ |) (2.28)
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List of Diatomic molecules

Compound Diatomic Valence Electrons

SiGe Si2, Ge2, SiGe,GeSi Si:3s,3p; Ge: 4s,4p

Si Si2 3s,3p

Ge Ge2 4s,4p

Cu Cu2 3d,4s,4p

Table 2.1: Shows list of diatomic molecules for which parameter-free DFT

calculations have been performed to obtain potentials for the DFTB calcu-

lations. The right column gives those orbitals whose electrons are treated

within frozen-core approximations.

Ujj́ | Rj −Rj́ |) is determined as the difference of ǫB and ǫSCF
B for diatomic

molecules (with ǫSCF
B being the total energy from exact density-functional

calculation). Finally we will consider only valence electrons for our cal-

culations, whereas the others will be treated as frozen core. With these

approximations all relevant information on the above mentioned matrix el-

ements can be extracted from calculations on isolated two-atomic systems,

in our cases on these two-atomic systems shown in table [Table 2.1]. The

local total-energy minimization is performed by using the forces. Here, the

force Fj that acts on the j th atom of interest can be calculated using the

Hellmann-Feyman theorem,

Fj = −
∂E

∂Rj

(2.29)

The forces can be split up into two parts, one acting on the electrons

only F e
j , the other one acting exclusively on the nuclei FN

j ,

Fj = F e
j + FN

j (2.30)

The nuclear part consists of the sum of the derivatives of the repulsive

energies of the nuclei,

FN
j =

∑

j 6=j́

∂

∂Rj
(

ZjZj́

| Rj − Rj́ |
) (2.31)

whereas, the electronic part can be written as the sum of orbital contribu-

tions,

F e
j =

∑

i

niFji = −
∂

∂Rj
(
∑

i

ni〈φi | ĥ | φi〉) (2.32)
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Here, ni is the occupation number of the ith orbital (either being ni=0, or

ni=1), and as consequence we sum only over the occupied orbitals (ni=1,

i=1,...occ). Fji can be written as

Fji =
∑

m,n

cimcin(−
∂Hmn

∂Rj
+ ǫi

∂Smn

∂Rj
+
∂V ee

mn

∂Rj
) (2.33)

V ee
mn are the matrix elements of the electron-electron potential (V ee = VH +

Vxc). The component of the potential is compensated by the nuclear part

FN
j ,

FN
j ≈

∑

m,n

cimcin
∂V ee

mn

∂Rj

(2.34)

These two terms are approximated by the repulsive term U(R),

U(R) =

{ ∑

n an(R− R1)
n for R<R1

0 for R ≥ R1
(2.35)

The forces that are acting on an atom positioned at Rj , can finally be

calculated as,

Fj = −∇jEtot =
occ
∑

i

∑

m,n

(−
∂Hm,n

∂Rj

+ ǫi
∂Sm,n

∂Rj

) +
1

2

∑

j 6=j́

∂

∂Rj

U(| Rj −Rj́ |)

(2.36)
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2.3 Method for Global Optimization

In Cluster studies, the most important and thats why most difficult job

is to find the globally optimized structures. Global structure optimization

is difficult because of the omnipresence of local minima, and the number

of which increases exponentially with the size of clusters. We can get the

idea, how difficult is to find global optimized structure by this simple fact

that a 13-atom Leonard-Jones cluster has at least 1506 distinct local min-

ima and there are good reasons to expect roughly as many local minima

for more realistic potentials modeling various elements. Global optimiza-

tion is difficult also because of the fact that the one has to explore the

entire space of potential surface so that searching will not miss the lowest

total energy minimum, and also take care that enough individual relax-

ation has been done. Numerous approaches have been suggested for solving

the global optimization problem, among them, Simulated Annealing (SA),

Basin-Hopping (BH), Genetic algorithms (GA) are most often used meth-

ods. In our present work we have applied a new global optimization method

that has been developed by our group. Initial structures are generated using

random-number generators and then combined with genetic algorithms to

get optimized structures.

Random Number Generator

A random number generator is a computational device designed to gener-

ate a sequence of numbers that lack any pattern i.e, appear random. The

many applications of randomness has lead to many different methods for

generating random data. In dealing with structure optimization problem,

we want to have very many different initial structures that we hope could

cover the entire space and later leading to relaxed structures, so we need

random number generator that generates as many divities possible. One of

the system-supplied random numbers generators is called a ’random number

generator’ named like’ran’ and a calling sequence like x=ran(iseed). You

initialize iseed to a arbitrary value before the first call to run. Each initial-

izing value will typically return a different subsequent random sequence, or

at least a different subsequence of some one enormously long sequence. The

same initializing value of iseed will always return to the same random se-

quence. The system-supplied random number generator (iseed) can supply

random number from 0 to 1, and since the same initializing value of iseed

can always give the same random sequence, there is one advantage that we
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can trace back to the structures that were generated. In the present work

we shall use random number generator to generate initial structures that

will be improved with genetic algorithm method.

Genetic Algorithm

Genetic algorithms are used as a search technique in computing to find ex-

act or approximate solutions to optimizations and search problems. When

they are used in atomic cluster studies, they are named as Cluster Genetic

Algorithms (CGA). The cluster genetic algorithms works by randomly se-

lecting and mating the more fit individuals in a generation to produce the

next generation of offsprings, where fitness is the measure of the energetic

stability for an individual cluster structure. Global minima is than found

as some off the new offsprings will have lower energy than their ancestors.

Until now, different genetic operators have been used to optimize the struc-

ture of clusters. As global optimization faces two different requirements,

one, the search has to explore the entire space in order to not miss the

global minimum and secondly, local relaxation should be sufficient in order

to provide an accurate total energy for that initial structure. Because of

these tough requirements, one has to remember that there is no guarantee

that any method will identify the structure of the global total-energy min-

imum accurately.

The genetic algorithm method, which we used for our calculations is de-

scribed as follows : Suppose that we have optimized the structure of the

cluster with n units. From this structure we construct a first generation

consisting of M independent clusters for the (n+1) unit system by ran-

domly adding one atom (In case of homogeneous bimetallic SiGe clusters,

we added one atom each of Si and Ge) and letting these structures to relax

to their nearest total-energy minima. Subsequently, a new set of clusters

is constructed by cutting each of the original ones randomly into two parts

that are interchanged (under the constraints mentioned above) and, after-

wards, allowed to relax. Out of the total set of 2M structures, the M ones

of the lowest energy are kept as the next generation. This procedure is

repeated until the lowest total energy is unchanged for a large number of

generations.



Chapter 3

Results of Semiconductor Cluster

Studies

3.1 Introduction

Main aim of our work lies in finding and exploring the geometric structures

of pure and binary semiconductor clusters, Silicon and Germanium upto 44

atoms . For investigation of structural and electronic properties, first impor-

tant step is to find the global minima of cluster structures. The method for

structural optimization has been described in chapter 2 and its not an easy

task. The genetic algorithm that has been applied through out our work is

very effective and strong tool but still it has some limitations. It requires

more computational effort and time. DFTB routine takes long time as the

number of atoms increases. In this chapter, we will present and discuss

the geometric structures of pure Sin, pure Gen and binary semiconductor

SinGen clusters obtained from DFTB calculations.

As it has been described above, free Silicon clusters have been studied more,

both experimentally and theoretically, compared to Germanium clusters.

Previous studies have confirmed that Sin and Gen have identical structures

upto n = 12 [75]-[81]. Ground state structures of small Silicon clusters

in the size range (n ≤ 11) have been well established using ab initio and

Density Functional Theory (DFT) calculation [11, 12, 104]. Jackson and

coworkers [15] reported systematic searches for the global minima of Sili-

con cation and neutral clusters in the medium size range of Si 19≤ n ≤ 28,

using either single-parent evolution algorithm or the big bang algorithm cou-

pled with density functional tight binding method (DFTB) [106, 107, 108].

21
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Recently, the size range 25 ≤ n ≤ 29 has received increasingly attention

[27, 110, 109, 111, 112] largely because earlier experiments [3, 4, 5, 8, 84]

have revealed a structural transition from prolate to near spherical geome-

try at around Si27 for both cation and anion Silicon clusters. A more recent

experimental/theoretical photoelectron spectroscopy study [113] also con-

firmed the structural transitions occurring at Si27 for anion clusters. To

date, the true global minima for many Sin clusters in medium size range

are still debatable [112, 107, 108, 114, 115, 116]. The observed mobility

of silicon cation cluster Sin
+ indicates that isomers are prolate for n < 25

and oblate for n > 33, while the both shaped isomers coexist in the size

range of 25-33 [4, 5]. Germanium is contiguous to Silicon in the periodic

table. It also shows many important characteristics similar to Silicon. For

the small Ge clusters, their ground-state structures have similar geometries

in comparison with Si except for their bond lengths. Previous studies have

confirmed that the global minimum Sin and Gen have identical structures

[75]-[81] up to n =12. The main difference is the increase in bond lengths

of Ge clusters by about 4-5% compared to Si. But for the larger Ge and

Si clusters, their ground state structures are different [83, 84]. Shvarts-

burg et.al, have performed a systematic ground state geometry search for

Gen neutral and cations in the n < 16 size range using density functional

theory(local-density approximation) and gradient-corrected methods [45].

They also made a comparison between the Si and Ge clusters in which the

structures of Gen and Sin for n > 14 differ in details. Since the pure elemen-

tal clusters in small size range have identical geometries, it is reasonable to

ask whether binary clusters SinGen would preserve such trend and for larger

values of n if they show homogeneous or non-homogeneous growth process.

Studies on binary semiconductor clusters may provide us an answer to this

question. For binary SinGen, available data about globally optimized struc-

tures is limited to small cluster size (m+n ≤ 10). For binary Si-Ge clusters,

Tarus et.al, [57] have studied the geometrical structures and the distribution

of atomic species in SimGem clusters at 0 K utilizing different optimizing

tools. They found out that there is a strong segregation of Ge to the surface.

Zhi-Hao Jin et.al, [56] have found that SimGen (m + n ≤ 10) have similar

ground state structures to corresponding elemental Sis and Ges clusters.

A very recent study of binary SimGen (m + n ≤ 7) by Jer-Lai Kuo et.al,

[58] have found that binary clusters are found to have similar ground-state

structures as the corresponding elemental clusters. After giving a short de-

scription of the available data about binary and elemental Si-Ge clusters, we

will proceed to our results of DFTB calculations for global optimization of
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binary homogeneous SinGen , and pure Sin and Gen clusters uptil medium

size range (n ≤ 44 atoms).
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3.2 Structures of Sin,Gen, and SinGen Clusters

The globally optimized total energy minimum structures of pure and binary

Si-Ge clusters obtained from DFTB are shown in figures [3.1-3.8]. Bond

length comparison of our cluster systems is presented in Table [3.1]. Our

results for binary SinGen clusters are in well agreement with one of the

recent studies on GenSim (m+n = 5) by Jerzy Leszczynki et.al, [105]. Si3
and Ge3 both have an isosceles triangle structure with C2v point group which

is confirmed by most of the previous studies [75]-[81]. From geometric point

of view, four-atom clusters are very important as they can show the onset

of three-dimensional (3D) evolution. Here we have found that all the four-

atomic cluster sysmtems have a D2h planner rhombus strcuture as found in

previous studies [42, 50, 103, 104, 105]. In case of Si4 the bondlengths of each

side is equal to 2.31 Å and that of additional bond along the shorter diagonal

is 2.65 Å where as in case of Ge4, each side is 2.55 Å, and shorter diagonal

has 2.92 Å, which is in good agreement with Erm Kikuchi et.al, [50]. We can

see that there is an increase of bondlengths in case of Ge4 as compared to

Si4. In case of Si2Ge2 planer rhombus structure (D2h) has side bondlengths

equal to 2.5 Å where as shorter diagonal has bondlength of 2.63 Å. There

is no Si-Si interaction in this four-atomic cluster. Our structure for Si2Ge2

is in very good agreement with S.D.Li et.al, [55] and Pawel Wielgus et.al,

[105]. Pawel Wielgus et.al, [105] have found the side bondlengths in Si2Ge2

equal to 2.415 Å which is slightly shorter than our bondlengths. A trigonal

bipyramid structure with D3h point group is obtained for Si5 and Ge5. Si6
has D4h tetragonal where as Ge6 has C2 symmetry. Si3Ge3 takes an edge-

capped distorted bipyramid as its ground state structure (C2v). The edge-

capping Si atom is directly connected to two Ge atoms in the four membered

horizontal plane to form more Si-Ge bonds. Si-Si interaction is very weak

rsi−si = 3.5 Å. This result is also in very good agreement with S.D.Li et.al,

[55]. Si7 has D5h pentagonal bipyramid structure where as Ge7 has distorted

pentagonal bipyramid structure with C2v point group. For Si8 cluster, we

have obtained a singly caped pentagonal bipyramid which is in agreement

with the results based on the tight binding molecular dynamics calculation

by I.H.Lee et.al, [121]. Si4Ge4 has also a singly caped pentagonal bipyramid

structure (Cs structure) which is comparable to the Cs structure of S.D.Li

et.al, [55]. Ge8 has distorted bicapped octahedron structure with C2h point

group. We have found a bicapped pentagonal bipyramid with C2v point

group as the global energy minima for Si9 cluster. For this structure the

two caps are on the same side of the pyramid. Ge9 has Bernal structure with
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(C2v) pointgroup. Si10 is a magic number cluster which has been extensivly

studied theoretically. Our calculation confirms that a tetra capped trigonal

prism with C3v point group is the global minimum structure for Si10. Si5Ge5

has structure resembling to Si10 cluster structure. We have found a Cs

distorted tricapped tetragonal antiprism or a distorted petnacapped trigonal

prism strucuture as global energy minima for Si11 cluster. This was also

proposed by Sieck et.al, [114]. Our results differ from the global energy

minima of Ho and co workers [24]. They have found a tricapped trigonal

prism with two additional caps on side trigonal faces C2v strucuture. Our

results also differ from Rohlfing and Raghavachari [11] calculations who

predicted a (Cs) bicapped tetragonal antiprism with additional caps on

side trigonal faces structure. For Si12 cluster we have found a Cs structure

which can be described as hexacapped trigonal prism. This structure has

been a selected isomer for detailed study of Si12 cluster with combined

tight-binding and denisty functional molecular dynamics investigation of

Si12 cluster by Bahel and Ramakrishna [18]. Much more theoretical studies

have been devoted to the Si13 cluster because of the possiblity of finding a

high symmetry (Ih) core based icosahedral structure. However, existance of

such icosahedral structure for Si13 has been subject of much more debate

[19, 85, 117, 118, 119, 120]. We have found a Cs symmetry structure for

Si13 cluster, which can be viewed as a slightly distorted C2v structure. Our

result is in good agreement with Ho et.al, [24]. Our result differ from DF-

TB calculation by I.Rata et.al, [106] and work of X.C.Zeng et.al, [86] who

have found a C2v structure which can be described as a distorted tricapped

trigonal prism with an additional rhombus capped on one edge of the prism.

For Si14 cluster, a number of low lying isomers have been reported in the

literature [21, 85, 106]. We have found a Cs strucuture as a global minimum

strucuture for Si14 which was also found by Sieck et.al, [21]. This structure

has two stacked rhombi with distortion and one fivefold ring capped with

an atom. For Si15, we have found C1 structure as global minimum structure

which is in agreement with structure from global geometry optimization

using basin-hopping method by Zeng et.al, [30]. For Si16 cluster, we have

found a very symmetric and higly stable structure with C2v point group.

This structure is based on a stacking sequence of fourfold and fivefold rings

with caping atoms. Our result differs from Ho et.al, [24] and Zeng et.al,

[30], who predicted C2h symmetry for Si16 cluster. We have found a C1

symmetry structure for Si17, Si18 and Si19 which are in agreement with

with results of Zeng et.al, [30]. For Si20 we have found a prolate structure

with two distinct Si10 rings, this strucuture has C1 symmetry. From the



26 CHAPTER 3. RESULTS OF SEMICONDUCTOR CLUSTER STUDIES

Bond length Comparison (Å)

Type This work [122] experimental [105]

Si2 2.25 2.27 2.36 2.25

Ge2 2.39 2.38 2.46 2.399

SiGe 2.32 2.33 2.41 2.32

Table 3.1: Bond Length Comparison

global minimum structures we can say that Sin clusters clearly have prolate

structures till Si24 and from Si25 to Si37 there is a gradual change from

prolate to nearly spherical strucutres. The point groups of Sin cluster from

Si3 to Si20 and for Gen clusters from Ge3 to Ge15 are given in the Table [3.2]

and [3.3] respectively.

Looking at the total energy minimum structrues of binary SinGen, and

pure Sin, Gen clusters obtained from DFTB calculations, we can observe

that binary homogeneous SinGen clusters do not follow the same growth

pattern as that of pure Sin and pure Gen clusters except for very small

cluster size. Our strcutures for hetero SinGen clusters do not resemble with

those of pure Sin and pure Gen cluster structures. Same is the case for both

pure Sin and pure Gen clusters as they also follow different growth patterns

except for very small cluster size. Here we would like to mention that some

geometric structues of Sin and Gen clusters do resemble with some of the

previous studies, as discussed above. Similarly binary SinGen clusters, with

two and three Si-Ge units also have structures which are already obtained

from earlier studies. In case of binary SinGen clusters, as the cluster size

grows, we can observe that Si-Ge interactions are strong as we see more

number of Si-Ge bonds. Also Si-Si interactions are very weak as seen from

small sized binary SinGen clusters. These structural developments give rise

to formation of mixed ally structures for binary SinGen clusters.

In order to learn about these structural developments in detail, we have

used various kinds of structural analysis tools, which we will discuss in next

chapter.



3.2. STRUCTURES OF SIN ,GEN , AND SINGEN CLUSTERS 27

Figure 3.1: The optimized geometries of the energetically lowest isomers of

Sin (light green), Gen (pink) and SinGen clusters for 2 ≤ N ≤ 7 units
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Figure 3.2: The optimized geometries of energetically lowest isomers of Sin
(light green), Gen (pink) and SinGen clusters for 8 ≤ N ≤ 13 units
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Figure 3.3: The optimized geometries of energetically lowest isomers of Sin
(light green), Gen (pink) and SinGen clusters for 14 ≤ N ≤ 19 units
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Figure 3.4: The optimized geometries of energetically lowest isomers of Sin
(light green), Gen (pink) and SinGen clusters for 20 ≤ N ≤ 22 units
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Point Group comparison for Sin clusters

n This work [29] [30]

3 C2v C2v C2v

4 D2h D2h D4h

5 D3h D3h D5h

6 D4h C2v C2v

7 D5h D5h C3v

8 Cs C1 Oh

9 C2v C2v C2v

10 C3v C3v D5h

11 Cs C2v C2v

12 Cs C2v D2d

13 Cs C2v C2v

14 Cs Cs D3h

15 C1 D6d C1

16 C2v Cs D4d

17 C1 C2 Cs

18 C1 Cs Cs

19 C1 Cs Cs

20 C1 C2 C1

Table 3.2: Point Group comparison for Sin clusters
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Point Group comparison for Gen clusters

n This work [45] [48] [75]

3 C2v C2v C2v C2v

4 D2h D2h D2h D2h

5 D3h D3h D3h D3h

6 C2 D4h D4h D4h

7 C2v D5h D5h D5h

8 C2v C2h C2h Cs

9 C2v C2v C2v C2v

10 C1 C3v D3v C3v

11 C1 Cs C2v

12 C1 C2v C2v

13 C1 C2v Cs

14 C1 Cs

15 C1 Cs

Table 3.3: Point Group comparison for Gen clusters
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Figure 3.5: The optimized geometries of the energetically lowest isomers of

odd numbered Sin clusters for odd 3 ≤ N ≤ 25
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Figure 3.6: The optimized geometries of the energetically lowest isomers of

odd numbered Sin clusters for odd 27 ≤ N ≤ 43
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Figure 3.7: The optimized geometries of the energetically lowest isomers of

odd numbered Gen clusters for odd numbered clusters 3 ≤ N ≤ 25
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Figure 3.8: The optimized geometries of the energetically lowest isomers of

Gen clusters for odd numbered clusters 27 ≤ N ≤ 43



Chapter 4

Tools For Structural Analysis

As a result of the optimization of different structures of clusters, we get

larger amount of numbers, mainly about total energies of clusters and the

nuclear coordinates. Now the next very important part is to extract useful

information from these larger amount of numbers. In this chapter, we shall

discuss some of the means that have been used for the purpose of extract-

ing information from numerical results. All these methods will be discussed

separately and results for each of our system clusters will be analyzed af-

terwards.

4.1 Structural Similarity

In this section we shall discuss, how we can compare the similarity between

two cluster structures with N units (or atoms) and N-1 units plus an extra

unit. This is important to know because in this way we can check if clusters

show a regular growth in which unit after unit is added to a given core or,

whether the cluster is similar to a piece of infinite, periodic crystal or of

some other larger system (high symmetry object like icosahedron). Due to

structural relaxations, the two cluster structures can only be approximately

identical and not exactly. For this purpose, we have applied similarity

functions here, which are discussed as below. We have applied two similarity

functions based on interatomic distances and radial distances. For similarity

function, we calculate all the possible distances dij (between every two atoms

i and j ) for the (n -1)-atomic cluster and sort them. Subsequently, we

consider all possible distances for the n atom cluster and calculate dij′ .

37
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The smallest value of q1 with

q = [
1

N

N
∑

i=1

(dij − d′ij)
2]1/2 (4.1)

defines the similarity index of n th atom cluster,

s1 = (1 + q1)
−1 (4.2)

This index is one for a cluster that is obtained by adding a single atom

to the (n -1)-atom cluster, and approaches 0 for very different structures.

In equation [4.1], we have first divided the coordinates for Si and Ge with

a constant (5.85 a.u for Si and 6.10 a.u for Ge) so as to scale the coor-

dinates. By dividing through this number, the influence of different bond

lengths in both clusters is minimized. Otherwise, structural related clusters

with slightly different interatomic distances would have values of similarity

function that suggest less equivalence than there actually is. For the sec-

ond similarity function which depends on radial distances of the atoms, we

calculated the center for each cluster by

R0 =
1

n

n
∑

i=1

Ri (4.3)

and then sorted all the ri for n-atom and ri′ for n-1 atom clusters. Similarity

Function is then calculated as above

q = [
1

N

N
∑

i=1

(rij − r′ij)
2]1/2 (4.4)

and

s2 = (1 + q1)
−1 (4.5)

Similarity Functions calculated individually for each cluster system will be

discussed in next section.
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Similarity Functions For Sin Clusters

Figure [4.1] shows similarity functions based on interatomic distances and

based on radial distances separately for pure Sin clusters. In this figure, we

can see some clear peaks of clusters. There is clear low peak at Si6 in the

upper channel of Figure [4.1] representing the dissimilarity between 5-atom

and 6-atom clusters. This peak does not occur at lower channel of Figure

[4.1] as dissimilarity is caused mainly by different interatomic distances and

not so strongly by different radial distributions. In upper channel of Figure

[4.1] there is also a significant peak at Si15 which means that in Si14 and

Si15 the radial distances change marginally by adding an atom to the hollow

Si14 structure. This peak is absent in lower channel. There is another sharp

peak in lower channel of Figure [4.1] for Si27 indicating that when an atom

is added to Si26, it is located away from the center of the cluster that

is why the radial distances are altered. This peak is not so profound in

upper channel of Figure [4.1]. There is very sharp peak at Si20 in both the

channels indicating that when an atom is added to Si19, both center and

interatomic distances are changed when we get Si20 structure. The average

value of similarity function (when interatomic distances are sorted) for n>

20 is 0.87. This indicates that clusters are structurally related to each

other when interatomic distances are sorted. In contrast similarity function

(when radial distances are sorted) has average value of 0.78 for n>15 which

means that radial agreement is less good than that of interatomic distances.

This is because a slightly moved atom changes the center of mass and causes

therefore deviations in all values ri whereas in the same case the interatomic

distances dij are changed for that specific i .

We have compared Sin cluster structures with a spherical fragment of the

fcc crystal when the center of the fragment is placed at, (upper panel) the

position of an atom, (middle panel) the middle of nearest neighbors, (lower

panel) the center of the cube as plotted in figure [4.2]. For clusters to be

structurally similar, similarity function should be above 0.8, but here we

don’t see any kind of similarity between Sin and fragment of fcc crystal.
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Figure 4.1: Similarity Functions for Sin cluster (upper channel) is based on

interatomic distances, (lower channel) is based on radial distances
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Figure 4.2: Each panel shows the similarity function for the Sin clusters

when comparing with a spherical fragment of the fcc crystal when the center

of the fragment is placed at, (upper panel) the position of an atom, (middle

panel) the middle of nearest neighbor bond, (lower panel) the center of the

cube
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Similarity Functions For Gen clusters

Here we will try to look at the similarity functions drawn from Ge clusters.

In Figure [4.3], we have plotted similarity function for pure Gen clusters

in which upper channel shows similarity function based on interatomic dis-

tances while lower channel shows similarity function based on radial dis-

tances. There are prominent low peaks in lower channel for Ge18 and Ge32
which means that these clusters differ from the structures of Ge17 and Ge31
respectively as there radial distances are altered. The corresponding peaks

in upper channel are less prominent in both the cases indicating that inter-

atomic distance are not very much changed when an atom is added to both

of these structures. There is another very low peak for Ge11 atom cluster

for both the functions indicating change in both radial distances and in-

teratomic distances when an extra atom is added to Ge10. As the cluster

size grows, we can observe that similarity function in not a smooth function

especially when radial distances are sorted. This means that with increas-

ing n clusters are not structurally related to each other and they are not

built up atom by atom. The value of s1 for Gen> 20 is 0.85 which reflects

structural similarity in clusters with more than 20 atoms. The average of

similarity function based on radial distances is 0.76 indicating that radial

agreement is less good than that of interatomic distances as in case of pure

Sin clusters. A comparison with fragment of fcc crystal does not show any

similarity like the Sin clusters.
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Figure 4.3: Similarity Functions for Gen clusters (upper channel) is based

on interatomic distances, (lower channel) is based on radial distances
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Figure 4.4: Each panel shows the similarity function for the Gen clusters

when comparing with a spherical fragment of the fcc crystal when the center

of the fragment is placed at, (upper panel) the position of an atom, (middle

panel) the middle of nearest neighbor bond, (lower panel) the center of the

cube
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Similarity Function for Sin, Gen, and SinGen clusters

Here we will present a comparison of similarity function analysis for Sin,

Gen and SinGen clusters. In order to compare these three different cluster

systems, we have divided their coordinates with a constant (5.85 a.u for

Si and 6.1 a.u for Ge and for SinGen cluster with 5.96 a.u). In this way

we have scaled our coordinates for all the structures and minimized the

influence of different bond lengths on these cluster structures. Then we

took average of separation to the center for each cluster structure.

q = [
1

N

N
∑

i=1

(rA
i − rB

i )]1/2(4.6)

s1 = (1 + q1)
−1 (4.7)

Comparison of structures of pure Sin and pure Gen clusters is plotted in

Figure [4.5]. Here we can observe that comparison between pure Sin and

pure Gen clusters is very poor. This means that both the cluster systems

follow different growth patterns. Comparable structures from Similarity

function comparison between Sin and Gen clusters are at size n=5,6,8,10

and 14. Similar comparisons between structures of pure Sin clusters and

bimetallic SinGen and those of pure Gen clusters and bimetallic SinGen are

plotted in figures [4.6] and [4.7] respectively. In case of similarity function

between pure Sin and binary SinGen clusters, we can see that overall sim-

ilarity between the structures is very poor. Binary clusters and pure Sin
clusters do have structural similarity in the size range n≤ 10. Same is the

case for similarity comparison between pure Gen and binary SinGen clus-

ters. Cluster structures show similarity in the small size range but as the

sizes of clusters grows, cluster structures become more and more dissimilar.

From the similarity function analysis between binary SinGen and pure Sin
and Gen clusters, it is clear that binary clusters show very poor similarity

with their elemental counter parts. This means that binary clusters follow

different growth processes compared to their atomic species.
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Figure 4.5: Similarity Function between Sin and Gen clusters : Here

N=number of atoms
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Figure 4.6: Similarity Function between Sin and SinGen clusters: Here N=

Number of units of Si-Ge
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Figure 4.7: Similarity Function between Gen and SinGen clusters: Here N=

Number of units of Si-Ge
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4.2 Common Neighbor Analysis

We have used Common Neighbor Analysis to analyze our cluster structures

in detail. This idea was originally used by Faken and Johansson [71] for

single-atomic clusters. CNA performs a simple geometric analysis of the

nearest neighbors around a reference pair of atoms in given structure. A

cutoff distance is defined and common neighbors which are separated by

less than this distance are considered as bonded. As a result of this analysis

we try to get following set of indices for a given pair of atoms in a given

cluster structure.

1. Number of shared nearest-neighbors i

2. Number of bonds between shared neighbors j

3. Number of bonds in longest bond-chain formed by shared neighbors. k

4. In case of hetero-atomic clusters, we use this index which tells us about

the type of initial reference pair, whether is of A-A type or B-B type or A-B

type. l

A cut-off distance is chosen for each cluster (5.85 a.u for Sin , 5.96 a.u for

SinGen and 6.11 a.u for Gen clusters systems). Main idea is to get different

sets of indices for each cluster structures and then try to compare these with

crystal lattice structures to check for any sort of similarity, if any. In the

monoatomic bulk fcc structure, an atom has 12 nearest neighbors. With

each of them it shares (i =4) common neighbors of which two pairs of atoms

are connected by a geometric bond (j =2) and as the longest chain of bonds

in neighbors in this case is only one so fcc structure has 12 × (4:2:1) sets of

indices. Compared with the monoatomic CNA there are more informations

to be sorted during the analysis of binary systems. In addition to detection

of geometric bonds and the longest chain of bonds, it is necessary to store

the type of the initial reference pairs. In this way it will be possible to

distinguish between ordered and disordered binary structures and regions

consisting of only one atomic type, as for example in the case of phase seg-

regation. Here we recognized very many different sets of indices for all the

clusters. We have plotted all these indices for pure Gen and for pure Sin
clusters in figures [4.08] and [4.09] respectively. For bimetallic homogeneous

SinGen clusters, we have divided the indices into three sets depending on

the type of initial reference pair, as mentioned above and plotted that in

figures [4.10], [4.11] and [4.12].

While comparing CNA for pure Sin and Gen clusters, we can see that pure

Sin have very many different sets of indices as compared to pure Gen clus-

ters. This means that pure Sin have more compact structures as compared
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to pure Gen clusters. This has been confirmed in our radial distance anal-

ysis where we see that individuals atoms in Gen clusters are scattered over

a wide range from the center of mass R0. In case of pure Sin we see very

many different curves for different indices and some of them are lying at

the base in Figure [4.9]. These low lying curves represent the indices like

(3,2,2),(3,3,3),(4,3,3), and (4,4,4) which means that pairs of atoms are sur-

rounded by these many different ways. Such indices are mostly present in

the size range N<20. This is also proved by our radial distance analysis as

we see a difference in pattern for radial distances as we move from Si19 to

Si20 atom cluster. Most stable Sin clusters structures are also found in this

size range.

As mentioned above, we have divided our CNA for bimetallic SinGen clus-

ters into three sets depending on the type of pairs i.e, if the initial reference

pairs are both Si-Si type or Ge-Ge type or Si-Ge type. This is done in-order

to check what are the preferential sites for both Silicon or Germanium atoms

in binary SinGen clusters i.e, whether they tend to stay around same kind

of atoms or they move towards opposite atoms (mixed alloy formation).

We found that when the initial pairs are both silicon atoms, then we don’t

see very many different curves in common neighbor analysis. This is very

interesting finding as it means that Si atoms do not show tendency to form

more bonds with other Si atoms in binary clusters. We see more number

of curves in CNA when the initial pairs are Ge-Ge or Si-Ge. This means

that there is a strong tendency for both Si and Ge to form bonds with each

other in binary clusters. In order to get more clear picture about this we

have also plotted coordination number analysis for three different cluster

systems.
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Figure 4.8: Common Neighbor Analysis forGen clusters : Here N = Number

of Atoms
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Figure 4.9: Common Neighbor Analysis for Sin clusters : Here N = Number

of Atoms
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Figure 4.10: Common Neighbor Analysis for SinGen clusters when initial

pairs are Si-Ge : Here N = Number of Si-Ge units
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Figure 4.11: Common Neighbor Analysis for SinGen clusters when initial

pairs are both Si : Here N = Number of Si-Ge units
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Figure 4.12: Common Neighbor Analysis for SinGen clusters when initial

pairs are both Ge : Here N = Number of Si-Ge units
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In Figure [4.13], [4.14], [4.15], and [4.16] we have plotted %age coordi-

nation number of Ge having Ge, Ge having Si, Si having Si and Si having

Ge atoms as their neighbors in the binary SinGen clusters. This will give

us more clear picture of distribution of atomic species in binary SinGen

clusters. From these four figures its clear both Si and Ge show strong ten-

dency for having Ge and Si atoms as their neighbors respectively in binary

SinGen clusters. Also Si shows a decaying curve in Figure. [4.15] which

means that Si has very less tendency to form bond with other Si atoms

in binary clusters. Ge shows more tendency for other Ge and Si atoms as

obvious from Figure [4.13]. From this coordination number analysis we can

see that binary SinGen clusters prefers to form mixed alloy structures. The

total %age coordination numbers for Si and Ge in binary SinGen clusters

are plotted in figure [4.17] and [4.18] respectively. Figures [4.19] and [4.20]

show total %age neighbors of Silicon and of Germanium in pure Sin and

Gen clusters. The overall coordination number of Silicon decreased from

5 to 3 in mixed clusters where as that of Ge atoms increased from 3 to 4

or even 5 atoms. This figure clearly explains that Si bonds are reduced in

binary clusters as compared to atomic Sin clusters. J.Tarus et.al, [57] have

studied the segregation in Si-Ge clusters and for Si15Ge15 they found that

coordination number for Silicon and Germanium is three where as for this

structure we have found that average coordination around Si is approxi-

mately equal to three which is in good agreement with their result. Further

more study from Abtew et.al, [72] reveals that when they have homogeneous

composition for both Si and Ge, Germanium atoms wants to have four fold

coordination and that has been found by our result also. To give an example

of total coordination number analysis, we have plotted total neighbors of

both Si and Ge verses distance of Si and Ge from center for Si22Ge22 cluster

in Figures [4.21] and [4.22]. These figures also show tendency of both Si and

Ge to have opposite atoms as their neighbors in binary Si22Ge22 cluster.
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Figure 4.13: % Coordination Number : Here N = Number of Ge neighbors

around Ge atoms in binary SinGen clusters
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Figure 4.14: % Coordination Number : Here N = Number of Si neighbors

around Ge atoms in binary SinGen clusters

4.3 Stability Function

DFTB calculations gives us total energy as a function of size of the cluster

EB(N ). In figure [4.23],[4.24] and [4.25], we show EB(N)
N

as a function of

N for the globally optimized structures of pure Sin , pure Gen and binary

SinGen cluster structures respectively. As we can see from relative total

energy per unit EB(N)
N

as a function of N that all the curves are more or less

monotonically decreasing as a function of N with few exceptions in all the

cluster systems. This statement means that any cluster is stabler than two

separated fragments, but by just looking at total energy per unit we can

not say that which cluster structures are particularly stable.
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Figure 4.15: % Coordination Number : Here N = Number of Si neighbors

around Si atoms in binary SinGen clusters

For binary SinGen clusters we have studied 22 different structures with

each having same number of both Si and Ge atoms. Each of this structures

has different number of Si-Si, Ge-Ge and Si-Ge bonds. We have solved

equation [4.8] so as to find bond energies ESi−Si, EGe−Ge and ESi−Ge. We

have found that energy for single Si-Ge unit comes out to be -2.4 eV which is

in good agreement with atomic energies of both Si and Ge which is -2.17 eV.

The fit of equation [4.8] gives ESi−Ge
∼= EGe−Ge >ESi−Si, which means that

its more favorable for Si-Ge and Ge-Ge bonds to be present in binary SinGen

cluster as compared to Si-Si bonds. This observation is in accordance with

the CNA analysis [section:4.2] and earlier structural discussion, in which

we observe that Si has no tendency to have Si as a neighbour where as

Ge shows more tendency for Si-Ge and Ge-Ge bonds. Here we obseve that

bond energies also predict the formation of mixed alloy structures for binary

SinGen clusters. Our results also match with the findings of Abu et.al, [59]

who have also found that EGe is lower than ESi so that Ge atoms wants to

be incorporated to the Ge-Si core-shell structures.

∑

n

[En−(n0E0+N(n)Si−SiESi−Si+N(n)Ge−GeEGe−Ge+N(n)Si−GeESi−Ge)]
1/2 = 0

(4.8)

In case of pure clusters we have also calculated the energies for n-fold co-

ordination by solving the equations [4.9] and [4.10] for pure Sin and Gen
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Figure 4.16: % Coordination Number : Here N = Number of Ge neighbors

around Si atoms in binary SinGen clusters

clusters. Our results show very small difference in the n-fold coordination

energies.
∂

∂Eik

∑

m

[Etot(Sim) −
∑

i

nmiEi]
1/2 = 0 (4.9)

∂

∂Eik

∑

m

[Etot(Gem) −
∑

i

nmiEi]
1/2 = 0 (4.10)

In order to identify such particularly stable structures for our cluster sys-

tems, we have used so called stability function defined as,

Estab = En+1 + En−1 − 2En (4.11)

Here we compare the total energy of the cluster of N units with struc-

tures of N+1 and N -1 units and this function gives a highest peak when

the N atom cluster is particularly stable. We have plotted the stability

functions for pure Sin , pure Gen and binary SinGen clusters in Figures

[4.26], [4.27], and [4.28] respectively. For pure Sin clusters, we have found

that clusters with those n=7,16,34 and 38 are particularly stable where

as with n=17,25,39 are particularly unstable. Similarly stable Germanium

clusters are with those n=5,16,29 and 39, while particularly unstable are

those with n=6,15,28,39. Binary Si-Ge clusters don’t show extra stabil-

ity as evident from the stability function peaks. We can identify clusters



4.3. STABILITY FUNCTION 61

Figure 4.17: % Total Coordination Number of Si in SinGen clusters

Figure 4.18: % Total Coordination Number of Ge in SinGen clusters

with n=10,14,12,24,28 are more stable over other structures. Here we want

to mention that Stability Function is meant to identify particularly stable

structures, however it does not give any detailed explanation for the reason

behind particular stability.
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Figure 4.19: % Total Coordination Number in pure Sin clusters

Figure 4.20: % Total Coordination Number in pure Gen clusters

HOMO-LUMO Gap Analysis

HOMO-LUMO Gap gives information about the electronic properties of

clusters. The HOMO-LUMO gap (Egap) i.e, the energy gap between the

highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO), for pure Sin, pure Gen and for binary SinGen



4.3. STABILITY FUNCTION 63

Figure 4.21: Total Coordination Number of Ge atoms in Si22Ge22 , Here we

have calculated distance of all Ge atoms from center of Si22Ge22 cluster and

plotted all its neighbors. Here C = Silicon and B = Ge

clusters are shown in Figures [4.29],[4.30] and [4.31] respectively. For all

clusters, we have found relatively wider gap for small clusters and narrower

for the larger ones. This can be due to the presence of higher number of

surface atoms and therefore higher number of dangling bonds in larger clus-

ters. From the HOMO-LUMO Gap figures, it is evident that gap is size

dependent and also for smaller clusters band gap is relatively large and for

larger ones its narrower. For Silicon clusters, HOMO-LUMO Gap shows

maxima at n = 5,7,10,14,16 in the size range n ≤ 20 which correlates very

well with the maxima of stability function of Sin clusters (Fig: 4.26). For

Germanium clusters also, HOMO-LUMO Gap correlates fairly well with

the stability function maxima of Gen clusters (Fig: 4.27). For Germanium

clusters, HOMO-LUMO Gap shows maxima at n=5,7,8,14,16, and 19 in

the size range n ≤ 20. We have not found correlation between stability and

band gap for binary SinGen expect for four and eight atomic binary clus-

ters. We have found the widest gap in small Silicon clusters to be 1.6 eV

where as smallest gap is found for larger clusters which is 0.4 eV. Marta B.

Ferraro et.al, [74] have studied medium sized Sin clusters in the size range

Si 18≤ n ≤ 60 and they are reported widest band gaps as 2.25 eV and 1.8

eV respectively where as smallest gaps as 1 eV and 0.76 eV respectively.
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Figure 4.22: Total Coordination Number of Si atoms in Si22Ge22 , Here we

have calculated distance of all Si atoms from center of Si22Ge22 cluster and

plotted all its neighbors. Here C = Silicon and B = Ge

The gaps of pure clusters of Gen clusters have the same trend as those of

pure Sin clusters, only slightly narrower, which was reported earlier by Mel-

nikove et.al, [73]. For very small clusters, Ge gap is slightly narrower than

Si clusters. We have found the widest gap in small germanium clusters to

be 1.6 eV where as smallest gap is found for larger clusters which is 0.3 eV.

Studies of Zhong-Yi Lu et.al, [75] for size range upto n=13 for both Si and

Ge clusters have found widest Gap as 2.2 eV and 2.1 eV respectively. For

binary cluster SinGen we have found the same trend as elemental clusters

but larger SinGen binary clusters have wider gap as compared to both Sin
and Gen clusters.
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Figure 4.23: Variation in the total energy per atom for Sin clusters : Here

N= Number of Atoms

4.4 Radial Distribution Function

Radial distribution functions are very important as they give valuable infor-

mations about the structure of clusters. The radial distribution is defined

as follows. For each atom of our cluster systems, we calculate the distance

to the center of mass (positioned at R0)

~R0 =
1

n +m

n+m
∑

j=1

~Rj (4.12)

and, subsequently, for each atom its so-called radial distance

rj = |~Rj − ~R0|, j = 1, 2, · · · , n+m (4.13)
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Figure 4.24: Variation in the total energy per atom for Gen clusters : Here

N= Number of Atoms

where Ri being the position of ith atom, is calculated. Subsequently all

these n distances are displayed in one diagram and shown as a function of

the cluster size (number of atoms n). One aspect is clear from the radial

distribution analysis that, for all cluster systems, i.e, Sin, Gen, and SinGen,

the radius of the cluster is increasing with increasing n. The growth pat-

tern of all the three cluster systems is different. For homogeneous SinGen

clusters, we can see that radial distances for the different SinGen clusters

are relatively large (accept for Si5Ge5). We can see more distances in ra-

dial distribution function for binary clusters compared to atomic clusters

in the small size range except for Si5Ge5. Stability Analysis shows that

Si5Ge5 is relatively stable structure along with few other cluster structures

compared to other SinGen clusters. This suggests that SinGen clusters have
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Figure 4.25: Variation in the total energy per atom for SinGen clusters :

Here N= Number of Atoms

overall very low symmetry and that is confirmed by the point group analy-

sis of available structures. In case of pure Sin clusters we see that clusters

in the size range N<20 are less scattered (more compact) as compared to

Gen clusters in the same size range. Stability analysis predicts some stable

clusters for Sin clusters in this size range. After N >20 both the cluster

systems have wide range of distances from the center, meaning very low

symmetric structures. In radial distribution function of Sin cluster we can

see a major difference in the distances of cluster Si19 and Si20. This change

is also identified in similarity function analysis of pure Sin cluster. If we

look at the structures of both clusters we will find that Si19 has a different

structure compared to Si20 which has two separate Si10 units. Point group

analysis of pure Sin and pure Gen clusters is shown in tables [3.2] and [3.3]
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Figure 4.26: Stability Function which has maxima (minima) for particular

stable (unstable) structure for Sin clusters : Here N = Number of Atoms

respectively. One more thing that we can notice from radial distribution

of Gen clusters is that besides having more irregular radial distances from

the center as compared to Sin clusters, they have some how shell structures

specially in the size range 22<N< 31. The radial distribution functions for

pure Sin, pure Gen clusters are shown in Figures [4.32] and [4.33] respec-

tively. For binary SinGen clusters we have divided the radial distribution

functions into two types based on distances of Silicon and Germanium from

the center and are plotted in figures [4.35] and [4.36].
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Figure 4.27: Stability Function which has maxima (minima) for particular

stable (unstable) structure for Gen clusters : Here N = Number of Atoms

We have divided the radial distribution function of SinGen clusters into

two parts on the basis of distances of Silicon atoms and Germanium atoms

from the center so that we can clearly observe, how both Silicon and Ger-

manium atoms orient themselves in bimetallic clusters. Here we can observe

that for smaller units up-till 12 atom cluster Ge atoms are lying close to the

center where as Si tend to move away from the center. The same trend is

followed for larger clusters as we can see very few points for Si atoms lying

close to the center. Reason behind this can be size difference between Ge

and Si as Germanium is heavier element than Silicon.
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Figure 4.28: Stability Function which has maxima (minima) for particular

stable (unstable) structure for SinGen clusters : Here N = Number of Si-Ge

units

4.5 Shape Analysis

For the structural Analysis of Clusters, the overall shape and its size de-

pendence is also of significant importance. To study this in more detail

we calculate for a given n-atom cluster the eigenvalues Iαα of the matrix

containing the moments of inertia
∑n

i=1 siti. Here s and t are the x,y,z co-

ordinates in a coordinate system centered at the center of mass R0 defined

in equation [4.6]. From the eigenvalues I, we analyze the overall shape of

the cluster. Three identical eigenvalues suggest a spherical shape, whereas

two large and one small value suggest a lens like shape, and two small and

one large value suggest a cigar-like shape. In Figure [4.37] and [4.38] (for

pure Sin and pure Gen clusters) we show the average eigenvalues (scaled by

N
5

3 , which is the scaling a spherical jellium would possess) together with



4.5. SHAPE ANALYSIS 71

Figure 4.29: HOMO-LUMO Gap for Silicon clusters : Here N = Number of

Atoms

marks indicating the overall shape. Also the largest difference between the

eigenvalues is shown. We see that no cluster has an overall spherical shape,

in agreement with the point group analysis of Sin clusters and of pure Gen

clusters from Tables [3.02] and [3.03] respectively. However the largest dif-

ference of the eigenvalues takes particularly low values for n=5,10,15,41 for

Sin clusters and for N=5,10,42,44 for Gen clusters. Some of these clusters

are particularly stable so we can say that stability is roughly related to the

spherical structure of these clusters. This is explained by radial distance

analysis as we can see that for Si5 and Si10 there are few radial distances

showing that these are symmetric clusters.

Here we would like to mention that, general conclusions about the semicon-

ductor studies are given in the last part of this thesis (Chapter 6)
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Figure 4.30: HOMO-LUMO Gap for Germanium clusters : Here N = Num-

ber of Atoms
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Figure 4.31: HOMO-LUMO Gap for Silicon Germanium binary clusters :

Here N = Number of Atoms
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Figure 4.32: Radial Distribution Function for Sin clusters : Here N = Num-

ber of Atoms
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Figure 4.33: Radial Distribution Function for Gen clusters : Here N =

Number of Atoms
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Figure 4.34: Radial Distribution Function for SinGen clusters : Here N =

Number of Atoms
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Figure 4.35: Radial Distribution for Si in SinGen clusters
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Figure 4.36: Radial Distribution for Ge in SinGen clusters
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Figure 4.37: Shape Analysis for Sin clusters : Here N = Number of Atoms
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Figure 4.38: Shape Analysis for Gen clusters : Here N = Number of Atoms



Chapter 5

Properties of Cun Clusters

5.1 Introduction

In second part of our research work, we will present results of theoretical

studies of properties of Cun clusters in medium size range (2 ≤ N ≤ 36).

The evolution of structures and properties of metal clusters has been a sub-

ject of great interest in the past few years [86]-[94]. Clusters can serve as a

convenient model for a systematic understanding of properties of materials

at nanoscale level. Of the metal clusters, transition metals (TM) clusters

are particularly interesting since they have been widely used as catalysis in

many heterogeneous catalytic reactions [95, 96].

In this chapter, we present theoretical studies on the structural evolution

of medium sized copper clusters (n < 37). Small copper clusters have

been a subject of intense theoretical and experimental studies. While the

first principles based calculations were generally restricted to Cun (n ≤ 10)

[61, 93, 94, 97, 98, 99] larger Copper clusters up to n = 55 were system-

atically investigated with the tight-binding method assuming the clusters

follow an icosahedra growth pathway [63]. Massobrio et.al, [60, 93] per-

formed the first DFT calculations using the Car-Parinello Method and the

local-density approximation (LDA) to study Cun with n ≤ 10. They used

the cluster geometries that had been used earlier for Nan and Agn clus-

ters, which were re-optimized for Cun clusters. K.Jug et.al, [99] used the

generalized gradient approximation (GGA) to study the relative stability

of a number of cluster isomers upto n=10. Similarly Fernández et.al, [123]

examined the selected cluster geometries up to n=13, and for n=20, using
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GGA to compare and contrast the properties of Cun,Agn and Aun. Gu-

velioglu et.al, [124] investigated the H2 chemisorption on Cun up to n=15,

using DFT-based study. In intermediate size range, Darby et.al, [125] used

a genetic algorithm to find the optimal structures for n=10-56, representing

the energy surfaces with the Gupta Potential. M.Kabir et.al, [63, 126, 128]

have used tight-binding based molecular dynamics approach to study the

size range n=3-55. Denitsa et.al, [102] has used embedded-atom method

(EAM) in the version of Daw,Baskes, and Foiles (DBF) to study the Cun

clusters in the size range n=2-150. M.Yang and K.A.Jackson et.al, [127]

have used unbiased search based on DFT to study the structural evolution

of Cun clusters in the size range n=8-20. In this work, we have studied

the optimized geometries of Cun clusters in the size range (2 ≤ N ≤ 36).

To identify the ground-state structures of Cun, we have used density func-

tional tight binding method (DFTB) as described in chapter 2. The DFTB

Hamiltonian includes 3d and 4s orbitals for each atom. Hamiltonian and

overlap matrix elements are based on DFT results for isolated atoms. The

repulsive pair potential in the model was fit to reproduce DFT results for

the Cu dimer. Cu crystal has fcc structure with lattice parameter a=3.67 Å,

where as we have produced here a=3.61 Å. The global minima structures

were obtained using so called genetic algorithms which was found to pro-

vide an efficient tool for the global geometry optimization. The geometric

algorithm for structural optimization has been explained in section [2.3] of

present work. In the next section we will present structures of Cun clus-

ters and then discuss them separately and compare them with the available

data.
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5.2 Structures of Cu clusters: Cu2 to Cu36

The structures of the small Cun clusters upto Cu9 except Cu5 are similar

to those obtained from first principles theoretical work on Cun clusters.The

optimized bond-length for Cu2 dimer comes out to be 4.11 a.u, where as its

experimental value is 4.22 a.u. Table [5.1] shows the comparison between

bond length of the Cu dimer with other approaches. The Cu3 is equilateral

triangle (point group D3h), where as Cu4 cluster is predicted to be having

planer rhombus (D2h) structure. These structures are also predicted by

other studies [63, 93, 101, 124, 126]. We have investigated Cu5 to be having

trigonal bipyramid (D3h symmetry) structure. This structure is different

from DFT based studies [124] but is not new structure of Cu5 cluster as it

is predicted by EAM studies in the version of DBS by Denitsa et.al, [102].

In the case of Cu6 cluster we have found flat pentagonal pyramid C5v to be

the most table structure which is also predicted by M.Kabir et.al, [63] by

TBMD studies. How ever this differs from the results found by H.Cheng

[124] (DFT studies) and Denitsa [102] who predict planer trapezoidal (C2v

symmetry) and octahedron (Oh symmetry) respectively for Cu6 cluster. For

Cu6 local-density approximation with in molecular dynamics performed by

Massobrio et.al, [93] predicts two trigonal bipyramid where as tight binding

linear muffin-tin-orbital calculation performed by Lammers et.al, [101] pre-

dicts square bipyramid structure. We have found the pentagonal bipyramid

with D5h symmetry to be the most stable structure for Cu7 cluster. This

prediction is in well agreement with other first principle studies. For Cu8 we

have found bicapped octahedron with D2d symmetry to be lowest energy

structure. This structure is also found by Denitsa et.al, [102] as the most

stable structure. Cu8 is predicted to be having capped pentagonal bipyra-

mid (Cs) structure by M.kabir et.al, [63] who carried out tight binding based

molecular dynamics approach for Cun cluster studies. Studies by Lammers

et.al, [101] gives anti-prism structure to Cu8. For Cu9 we have obtained D3h

symmetry where as M.Kabir et.al, [63] found the BPB with capping atom

on the non adjacent faces with C2 symmetry where as Denitsa et.al, [102]

found C2v symmetry for Cu9. For Cu10 we have found D4d structure while

in case of M.Kabir et.al, [63], they found tri-capped pentagonal bipyramid

structure where as Denitsa et.al, [102] found C3v symmetry of Cu10 cluster.

For smaller Cun clusters we have produced the structures which are reported

in earlier works. The structures of optimized Cun clusters are presented in

figure [5.1] and [5.2]. M.Kabir et.al, [63] suggested that copper clusters for

10 ≤ n ≤ 55 adopt an icosahedral structure using tight-binding calculation
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Cu dimer Bond-length comparison

Method Bond Length Å

Here 2.11

DBF/VC 2.13/2.22

ab initio 2.17

exp. 2.22

Table 5.1: Cu dimer Bond-length comparison

which, in contrast is different from our findings. We have obtained struc-

ture with C2v point group for Cu11 cluster which is in very good agreement

with the all the four different methods used by Denitsa et.al, [102]. Our

structure for Cu12 cluster has Cs symmetry which is same structure found

by M.Yang and K.A.Jackson et.al, [127] based on density-functional calcu-

lation. We have found a symmetric structure with C2v point group for Cu13

cluster which differs from results from other studies. We have given the

point groups of Cun clusters in table [5.2].

In the next section we will discuss various tools used to study size dependent

properties of Cun clusters.
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Figure 5.1: Structures of Smaller Cun clusters 2 ≤ N ≤ 25
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Figure 5.2: Structures of Smaller Cun clusters 26 ≤ N ≤ 36
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5.3 Tools for Structural Analysis

Radial Distribution Function

As mentioned in Chapter 4, Radial distribution functions are very important

as they give valuable informations about the structure of clusters. The

radial distribution is defined as follows. For each atom of Cun cluster , we

calculate the distance to the center of mass (positioned at R0)

~R0 =
1

n +m

n+m
∑

j=1

~Rj (5.1)

and, subsequently, for each atom its so-called radial distance

rj = |~Rj − ~R0|, j = 1, 2, · · · , n+m (5.2)

where Ri being the position of ith atom. Subsequently, all these n dis-

tances are displayed in one diagram and shown as a function of the cluster

size (number of atoms n). We can observe that, in the resulting diagram,

radius of the cluster increases with the cluster size n. Radial Distribution

function for Cun clusters is plotted in figure [5.3]. As mentioned, radius

is increasing with increasing number of atoms, although some irregularities

do occur and in those cases the cluster radius decreases slightly even if an

atom is added. This case be clearly observed in case of Cu16 and Cu17. In

most cases this decrease is consistent with a re-organization of the system

and an increase in the number of the symmetry elements. The point groups

of the clusters are given in the table [5.2].

Secondly with increasing number of atoms per cluster more and more differ-

ent distances occur. This indicates that these clusters have lower symme-

tries than those with only a few different distances to the origin. Clusters

with n ≤ 10 are highly symmetric as we can see few distances in the radial

distribution function for this size range. Some stable Cun clusters are found

in this range, as seen in stability function analysis for Cun clusters. We can

observe that clusters in the size range 16 ≤ N ≤ 25 have a shell structure

in which one atom is present at the center of the cluster. Clusters have

asymmetric arrangement in the size range 26 ≤ N ≤ 33. In contrast to

the smaller cluster (table [5.2]) the larger ones have much lower symme-

tries. The point groups C1,Cs, and C2 are dominating but there are still

some clusters with even D symmetry. However most clusters have at least

a mirror plane or even a C2 axis.
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Figure 5.3: Radial Distribution Function for Cun clusters : Here N = Num-

ber of Atoms

Stability Function

From DFTB calculations we get total energy which is plotted as a function

of cluster size EB(N ). In Figure [5.4] we show EB(N)
N

as a function of N for

the globally optimized structures of Cun clusters. As we can see from rela-

tive total energy per unit EB(N)
N

as a function of N that the curve is more

or less monotonically decreasing as a function of N. This means that any

cluster is stabler than two separated fragments. However there are some
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Point Group comparison

n This work [102] [128] [99] [127]

3 D3h D3h C2v(ob.) C2v C2v

4 D2h Td D2h D2 D2

5 C2v D3h D3h C2 C2

6 C5v Oh Cs D3h D3h

7 D5h D5h D5h D5h -

8 D2d D2d Cs C2v C2v

9 D3h C2v D3h Cs C2v

10 D4d C3v - D4d C2v

11 C2v C2v - - C1

12 Cs C5v - - Cs

13 C2v Ih - - C1

14 C2 C3v - - C1

15 C1 D6d - - C1

16 C1 Cs - - C1

17 D2 C2 - - C2

18 Cs Cs - - C1

19 Cs D5h - - C1

20 Cs Cs - - C1

Table 5.2: Point Group comparison for Cun clusters
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irregularities in this curve also. The total energies per atom for Cu9 and

Cu15 are particularly high i.e., both clusters are particularly unstable. In

order to identify particularly stable cluster structures we have used stability

function given in equation [5.3]. In stability function analysis we compare

the total energy of the cluster of N units with structures of N+1 and N

-1 units and this function gives a highest peak when the N atom cluster is

particularly stable. The stability function is plotted in Figure [5.5]. Cu9

and Cu15 have the most negative values which indicates that they are par-

ticularly unstable. The reason for this particular instability can be the

exceptional stability of the Cu10 and Cu16 cluster structures.

Estab = En+1 + En−1 − 2En (5.3)

The second possibility to explain the instability of Cu9 and Cu15 is that the

genetic algorithm did not find the global minima. Particular stable clus-

ters are with those with n=4,8,10,14,18,26,30 and 33, where as particularly

unstable are those with n= 9,15,21,25 and 31.
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Figure 5.4: Total Energy Per Atom for Cun clusters : Here N = Number of

Atoms

Similarity function

To investigate the growth of Cun clusters, we have used similarity functions,

that have been described in chapter 4 (section:4.2). Similarity Functions for

Cun clusters are plotted in figure [5.6] .
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Figure 5.5: Stability Function for Cun clusters : Here N = Number of Atoms

We can see that structural development is very irregular over the whole

range of n that we have considered here, with some smaller intervals where

S is relatively close to 1. We can see some significant peaks of this function

in both the channels. The low peak of Cu6 in the upper panel means that

when an atom is added to Cu5, it alters the interatomic distances as it is

placed away from the center. This peak is less profound in lower panel. We

can also observe clear low peaks at Cu22 and Cu23 which means that both

interatomic distances and radial distances are altered with the addition of an

atom. The average value of similarity function when interatomic distances

are sorted is 0.79 where as it is 0.73 when radial distances are calculated.

This means that similarity function analysis between the Cun clusters is

poor and clusters are not built atom by atom as the cluster size increases.

We have also compared Cun cluster structures with a spherical fragment of
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Figure 5.6: Similarity Functions for Cun clusters (a) based on interatomic

distances (b) based on radial distances

the fcc crystal and plotted it in figure [5.7]. From the figure it is evident

that there is a poor similarity between Cun clusters and spherical fragment

of the fcc crystal.
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Figure 5.7: Each chanel shows the similarity function for the Cun clusters

when comparing with a spherical fragment of the fcc crystal when the center

of the fragment is placed at, (upper panel) the position of an atom, (middle

panel) the middle of nearest neighbor bond, (lower panel) the center of the

cube
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HOMO-LUMO Gap

We have plotted the HOMO-LUMO Gap for even numbered Cun clusters in

Figure [5.8]. However, for odd numbered Cun clusters we have considered

two gaps, one between the single-occupied orbital and the lowest completely

empty orbital, Eg2 Figure [5.10] and one between the highest completely

filled orbital and the single-occupied one, Eg1 Figure [5.9]. We did not find

correlation between stability and band gap for Cun clusters except for even

numbered Cu8 and Cu18 clusters.

Figure 5.8: HOMO-LUMO Gap for Cun even clusters
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Figure 5.9: HOMO-LUMO Gap for Cun odd (Eg1) clusters
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Figure 5.10: HOMO-LUMO Gap for Cun odd (Eg2) clusters
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Shape Analysis

For the structural Analysis of Clusters, the overall shape and its size de-

pendence is also of significant importance. To study this in more detail

we calculate for a given n-atom cluster the eigenvalues Iαα of the matrix

containing the moments of inertia
∑n

i=1 siti. Here s and t are the x,y,z co-

ordinates in a coordinate system centered at the center of mass R0 defined

in equation [3.3]. From the eigenvalues I, we analyze the overall shape of

the cluster. Three identical eigenvalues suggest a spherical shape, whereas

two large and one small value suggest a lens like shape, and two small and

one large value suggest a cigar-like shape. In Figure [5.11] we show the

average eigenvalues (scaled by N
5

3 , which is the scaling a spherical jellium

would possess) together with marks indicating the overall shape. Also the

largest difference between the eigenvalues is shown. We see that clusters

do not have an overall spherical shape, however the largest difference of

the eigenvalues takes particularly low values for N= 9,20,18 and 33 for Cun

clusters. Some of these clusters are particularly stable as we can see from

stability function analysis so we can say that stability is roughly related to

the spherical structure of these clusters.
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Figure 5.11: Shape Analysis for Cun clusters : Here N = Number of Atoms





Chapter 6

Summary and Conclusions

In the present work we have investigated structural and electronic prop-

erties of different semiconductor and metal cluster systems. These studies

have been carried out using density-functional method: a density-functional

tight binding program (DFTB). Geometry optimizations were carried out

using a genetic algorithm method which proved to be an effective tool in

finding global total-energy minimum structures for different cluster systems.

It has been observed that optimization of clusters requires more computa-

tional efforts as the cluster size grows from smaller to medium size clusters.

The genetic algorithm has been applied to optimize pure and binary ho-

mogeneous Si-Ge semiconductor clusters upto 44 atoms (22 units) using

DFTB method. Same method is used for the total energy calculation of

Cun clusters in the medium size range (2 ≤ n ≤ 36 ). In this study we have

investigated the geometric structures of these clusters and then compared

with other results.

We have found that binary SinGen clusters follow different growth pattern as

compared to pure elemental clusters. This gives rise to formation of mixed

disordered alloy structures for binary SinGen clusters with low symmetries.

Same is the case for pure Sin and Gen clusters as their cluster structures

are different from each other especially as the cluster size grows. These

structural differences between semiconductor cluster systems are clearly vis-

ible from our similarity functional analysis. Binary SinGen clusters, in the

size range n ≤ 8 have structures which are reported in earlier studies also

[55, 105]. Elemental Sin and Gen clusters also show structural similarity in

the size range n ≤ 10. We have found symmetric Copper clusters struc-

101
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tures in the size range n ≤ 10 which have been found by some earlier studies

[67, 72].

Total energy per atom curves for elemental semiconductors show monotonic

decrease as with N. For binary SinGen clusters, total energy per atom curve

shows some irregularities for Si7Ge7 and for Si9Ge9. These are particularly

visualized in the stability function where these both clusters turn out to be

particularly unstable. Total energy per atom for Copper clusters also shows

some irregularities at Cu9 and Cu15 which can also be seen in stability func-

tion where they both turn to be particularly unstable. Stability Function

predicts stable cluster structures for all the cluster systems. For pure Sin
clusters, we have found that clusters with those n=7,16,34 and 38 are par-

ticularly stable where as for Germanium clusters, stable structure are those

with n=5,16,29 and 39. Binary SinGen clusters do not show extra stability

which can be seen from the stability function peaks. Particular stable Cop-

per clusters are with those with even number n=4,8,10,14,18,26,30.

Overall similarity between the semiconductor cluster systems is very poor

as seen from the similarity function analysis drawn for all the cluster sys-

tems. Similarity functions used for structural similarity analysis show good

agreement when similarity functions are drawn from interatomic distances

for pure elemental clusters. This agreement is less profound when radial dis-

tances are sorted out. Si20 and Ge11 show clear peak low peaks in similarity

functions which shows their dissimilarity with Si19 and Ge10 clusters. In case

of pure clusters, as the cluster size increases we see that peaks in similarity

function are not regular especially when radial distances are sorted. This

shows that clusters are not structurally related to each other. The similar-

ity between binary SinGen and and pure clusters is very poor as indicated

in Figures [4.5-4.7]. This shows that binary clusters are not structurally

related to atomic clusters. Similarity functions for Cun clusters show clear

peak at Cu22 and Cu23 clusters. The average value of similarity function

for Cun clusters when interatomic distances are sorted is 0.79 where as it is

0.73 when radial distances are sorted. This shows that both the similarity

functions are not perfect for Cun clusters and clusters can not be regarded

as built up atom by atom.

Through Common Neighbor Analysis we have obtained sufficient informa-

tions about the geometric structures of different clusters systems. Pure Sin
have very many different sets of indices as compared to pure Gen clusters.

This means that pure Gen clusters have more open cluster structures as

compared to Sin clusters. In binary clusters we have found that there are

few curves for CNA when initial reference pair were both Si atoms. This
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shows that Si does not want to have more neighbor. While is case, when

reference pairs were Si-Ge, or Ge-Ge type, then we have found more differ-

ent peaks in CNA curve. This shows tendency of Ge to form more Si-Ge

and Ge-Ge bonds in binary SinGen clusters. This gives rise to mixed alloy

structures for binary clusters. We have looked at the total coordination of

both Silicon and Geranium in binary clusters. We have found that total

percentage coordination of Si decreases from 4 or 5 to 3 in binary clusters

compared to elemental clusters where as for Ge atoms it increases to 4 in

binary clusters compared to 3 in pure elemental Ge clusters. This clearly

indicates that Si has less tendency to form bonds in SinGen clusters where

as Ge shows greater tendency of forming bonds in binary clusters. We

have also calculated the bond energies i,e ESi−Si, EGe−Ge, ESi−Ge, in binary

SinGen clusters. ESi−Ge and EGe−Ge in binary SinGen clusters has more

negative value as compared to ESi−Si which explains that Si-Ge and Ge-Ge

bonds are more favored as compared to Si-Si bonds. We have found that

Ge atoms tend to more towards the center of the SinGen clusters. This can

be due to more negative value of EGe−Ge compared to ESi−Si. Also the size

difference between Germanium and Silicon might be another reason for this

movement of Ge atoms towards the center.

Radial Distribution function give us distribution of atomic species in differ-

ent cluster systems. In binary SinGen clusters we observe that silicon atoms

tend to move away from the center of cluster which is mostly occupied by

germanium atoms. In case of Sin clusters we see that clusters in the size

range N≤ 20 have compact structures as compared to Gen clusters in the

same size range. Stability Analysis predicts some of stable Sin clusters in

this size range. We can also see that radius of cluster increases with increas-

ing n. Radial distribution function plotted for Cun clusters shows that Cun

clusters have symmetric structures till the size range n=10 as we can see few

distances. From Cu15 onwards clusters have a shell structure in which one

atom is sitting in the center of the cluster. Cu33 have a compact structure

with high stability as seen in stability function. Comparing Cun clusters

with fragment of fcc crystal structure shows a poor similarity between Cun

clusters and fcc piece. We have also performed shape analysis for elemental

clusters which gives no clusters with an overall spherical shape in different

cluster systems. We have also plotted the second difference in energy which

has some low values which correspond to stable clusters. Stability of these

clusters can be related to near spherical nature of these clusters.

The HOMO/LUMO gap as function of cluster size shows strong oscilla-

tions and it decreases with the increasing cluster size n. The gaps of pure
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clusters of Gen clusters have the same trend as those of pure Sin clusters,

only slightly narrower, which was reported earlier by Melnikove [63]. For

binary SinGen clusters we have found the same trend as elemental clusters

but larger SinGen binary clusters have wider gap as compared to both Si

and Ge clusters. For Silicon clusters, HOMO-LUMO Gap shows maxima

at n = 5,7,10,14,16 in the size range n ≤ 20 which correlates very well

with the maxima of stability function of Sin clusters (Fig: 4.26). For Ger-

manium clusters also, HOMO-LUMO Gap correlates fairly well with the

stability function maxima of Gen clusters (Fig: 4.27). For Germanium clus-

ters, HOMO-LUMO Gap shows maxima at n=5,7,8,14,16, and 19 in the

size range n ≤ 20. We have not found correlation between stability and

band gap for binary SinGen expect for four and eight atomic binary clus-

ters. We did not find correlation between stability and band gap for Cun

clusters except for even numbered Cu8 and Cu18 clusters.
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[23] I.Vasiliev, S.Ögut and J.R.Chelikowsky, Phys.Rev.Lett. 78, 4805

(1997).

[24] K.M.Ho, A.A.Shvartsbug, B.Pan, Z.Y.Lu, C.Z.Wang, J.G.Wacker,

J.L.Fye and W.F.Jarrold, Nature(London). 392, 582 (1998).

[25] B.Liu, Z.Y.Lu, B.Pan, C.Z.Wang, K.M.Ho, A.A.Shvartsbug and

M.F.Jarrold, J.Chem.Phys. 109, 9401 (1998).

[26] Y.Luo, J.Zhao and G.H.Wang, Phys.Rev.B 60, 10703 (1999).

[27] L.Mitás, J.C.Grossman, I.Stich and J.Tobik, Phys.Rev.Lett. 84, 1479

(2000).

[28] B.X.Li, P.L.Cao and M.Jiang, Phys.Status Solidi 218, 399 (2000).

[29] Z.Y.Lu, C.Z.Wang and K.M.Ho, Phys.Rev.B 61, 2329 (2001).

[30] X.Zhu and X.C.Zeng, J.Chem.Phys. 118, 3558 (2003).

[31] G.Pacchioni and J.Koutecky, J.Chem.Phys. 84, 3301 (1986).

[32] D.A.Dixon and J.L.Gole, Chem.Phys.Lett. 188, 560 (1992).

[33] A.B.Anderson, J.Chem.Phys. 63, 4430 (1975).

[34] J.Harris and R.O.Jones, Phys.Rev.A 18, 2159 (1978).



107

[35] J.E.Northrup and M.L.Cohen, Chem.Phys.Lett. 102, 440 (1983).

[36] J.E.Kingcade, H.M.Nagarathna-Naik, I.Shim and K.A.Gingerich,

J.Phys.Chem. 90,2830 (1986).

[37] J.Andzelm, N.Russo and D.R.Salahub, J.Chem.Phys. 87, 6562 (1987).

[38] K.Balasubramanian, J.Mol.Spectrosc. 123, 228 (1987).

[39] M.S.Islam and A.K.Ray, Chem.Phys.Lett. 153, 496 (1988).

[40] K.Balasubramanian, Chem.Rev. 90, 93 (1990).

[41] J.Bruna and F.Grein, Mol.Phys. 74, 1133 (1991).

[42] D.Dai and K.Balasubramanian, J.Chem.Phys. 96, 8345 (1992).

[43] D.Dai, K.Sumathi and K.Balasubramanian, Chem.Phys.Lett. 193,

251 (1992).

[44] D.Dai and K.Balasubramanian, J.Chem.Phys. 105, 5901 (1996).

[45] A.A.Shvartsburg, B.Liu, Z.Y.Lu, C.Z.Wang, M.F.Jarrold and

K.M.Ho, Phys.Rev.Lett. 83, 2167 (1999).

[46] P.W.Deutsch, L.A.Curtiss and J.P.Blaudeau, Chem.Phys.Lett, 270,

413 (1997).

[47] A.M.Marzzone, Phy.Rev.B 54, 8 (1996).
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