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Abstract

For the deconvolution of the instrumental function in X-Ray diffraction profile anal-
ysis the implementation of an eigen function method with different regularisation
techniques is investigated and a simple regularisation algorithm is proposed. A sim-
ulation of an instrumental-broadened profile superimposed with random noise and
background signals is used to investigate the reliability and efficiency of the proposed
deconvolution technique. For the simulation an experimentally defined instrument
function based on an accurate mathematical model for Cu emission profile and the
geometry of the diffractometer is used. The parameters for this instrumental function
are obtained by least squares fitting of experimental data resulting from standard ref-
erence materials. The proposed method is successfully applied to the experimental
X-ray diffraction data for nanostructured CeOs, gold and gold alloys. Compared to
established algorithms, it is faster and more reliable in terms of stability, especially

in the case of large experimental noise.

Kurze Zusammenfassung

Zum Entfalten der instrumentellen Funktion in der Réntgenbeugungsprofil-Analyse
wurde eine Eigenfunktion-Methode mit verschiedenen Regularisierungstechniken un-
tersucht und ein einfacher Regularisierungsalgorithmus vorgeschlagen. Die Zuverlds-
sigkeit und Effizienz der vorgeschlagenen Entfaltungsmethode wurde anhand der Si-
mulation eines instrumentell verbreiterten Profils, das mit Zufallsrauschen und Hinter-
grundsignalen iiberlagert ist, untersucht. Fiir die Simulation wurde eine experimentell
definierte Instrumentfunktion verwendet, die auf einem exakten mathematischen Mo-
dell fiir das Cu-Emissionsprofil und auf der Geometrie des Diffraktometers basiert.
Die Parameter fiir diese instrumentelle Funktion wurden durch numerische Anpas-
sung experimenteller Daten von Standardreferenzmaterialien mit der Methode der
kleinsten Fehlersquadrate erhalten. Die vorgeschlagene Methode wurde erfolgreich
auf experimentelle Rontgenbeugungsdaten von nanostrukturierten CeO,, Gold und
Goldlegierungen angewandt. Verglichen mit etablierten Algorithmen ist die Methode

schneller und stabiler, besonders im Fall von starkem experimentellen Rauschen.






Summary

An experimental X-ray diffraction line profile is determined by sample broadening
and instrumental aberration. This can be represented as the convolution of a physi-
cal line profile and an instrumental function. The approximation of the instrumental
function influences the accuracy of the retrieved information on size and strain. The
parameters of the commonly used empirical model for an instrumental function ap-
proximation based on split Voigt or Pearson VII functions can considerably vary
depending on the type of the standard samples and the measurement conditions due
to the lack of physical interpretation. Therefore, a new model for the instrument
function based on an accurate mathematical model for Cu emission profile and the
geometry of the diffractometer is proposed.

The proposed model is proved using different standard samples. It is shown that
differences in the parameters for the instrumental function obtained by LaBg and
Al,O3 do not exceed 10%. The deliberate changes made to the diffractometer set-up
lead to changes of the corresponding values of defined parameters.

An important problem of powder diffractometry is the restoration of a physical line
profile from experimental data by extracting it as a solution of a convolution integral
equation. It is shown that commonly used Fourier based deconvolution methods cause
a dramatical increase of noise in the deconvoluted profile and even starting from low
instrumental noise this technique is absolutely not stable. The implementation of
an eigen function method with a simple regularisation algorithm is proposed for the
deconvolution of the instrumental function. The codes for the proposed deconvolution
method are written in MATLAB.

A simulation of an instrumental-broadened profile superimposed with random
noise and background signals is used to investigate the reliability and efficiency of
the proposed algorithm. For the simulation an experimentally defined instrumental
function based on the proposed above model is used. The parameters for this in-
strumental function are obtained by least squares fitting of experimental data sets

resulting from the reference materials LaBg and Al,O3. The proposed regularisation



technique shows high stability, especially in the case of large non negligible exper-
imental noise. Furthermore, the overestimation of the noise level leads only to a
slight worsening of the restoration results. An additional advantage of the proposed
regularisation technique is its independence on the concrete analytical form of the
approximation of the instrumental function.

A diffraction pattern contains information about the strain through changes in
the shapes of the Bragg peaks and also through peak shifts. Crystallite size effects
also influence the peak shape. Therefore, it is possible, to extract descriptions of
crystallite size and strain from the peak broadening of a diffraction pattern. The
use of the Voigt function for size and strain analysis by fitting of diffraction data
is popular because it favours the deconvolution procedures as well as the separation
of size and strain effects in the analysis. This approach gives adequate information
about size and strain values, however, it has three deficiencies: it uses the physically
unjustified Lorentzian-size and Gaussian-strain assumptions, it does not take into
account the size distribution information and it cannot deal with ’super-Lorentzian’
profiles. These deficiencies are confirmed in this study by fitting simulated physically-
derived size profiles with a Voigt function based model.

The convolution model, which uses a physically reasonable size profile and a
Gaussian-strain profile for the line profile fitting and accommodates the size distri-
bution and strain parameters has been successfully developed, validated and, finally,
applied to the experimental diffraction data for CeO5 and nanostructured gold, gold-
silver and gold-palladium alloys. It is shown that the convolution model gives access
to the size distribution and the strain information from the diffraction data. By
this method, consistent crystallite sizes are obtained and a good agreement between
strain values is achieved. The ‘convolution’ size distribution results satisfactorily agree
with those obtained from transmission electron microscopy (TEM). The TEM-derived
grain sizes, however, are larger than the ‘convolution’ crystallite sizes indicating that
apparent grains contain clusters of crystallites or stacking faults in the case of fcc

metals.



Zusammenfassung

Ein Rontgenbeugungslinienprofil wird durch probeninduzierte Verbreiterung und in-
strumentelle Verbreitung bestimmt. Dies kann als Faltung eines physikalischen Lini-
enprofils und einer instrumentellen Funktion dargestellt werden. Die Nédherung fiir
die instrumentelle Funktion beeinflusst die Genauigkeit der erhaltenen Informationen
iiber die Grofe und die Verspannung. Die Parameter des konventionell verwendeten
empirischen Modells fiir die instrumentelle Funktion, das auf Split- Voigt- oder Pear-
son VII-Funktionen basiert, konnen in Abhéngigkeit von der Art der Standardproben
und den Messbedingungen betrédchtlich variieren, was auf die mangelnde physikali-
sche Interpretation zuriickzufiihren ist. Deshalb wird ein neues Modell fiir die Instru-
mentfunktion vorgeschlagen, das auf einem exakten mathematischen Modell fiir das
Cu-Emissionsprofil und der Geometrie des Diffraktometers basiert.

Das vorgeschlagene Modell wird durch die Verwendung verschiedener Standard-
proben iiberpriift. Es wird gezeigt, dass die Unterschiede in den Parametern fiir die
instrumentelle Funktion, die fiir LaBg und Al,O3 erhalten wurden, 10% nicht iiber-
schreiten. Bewusst hegefiihrte Fehljustierungen des Diffraktometers fiihren zu Ande-
rungen der entsprechenden Parameter.

Ein wichtiges Problem der Pulverdiffraktometrie ist die Berechnung eines phy-
sikalischen Linienprofils aus experimentellen Daten, das aus der Losung einer Fal-
tungsintegralgleichung extrahiert wird. Es wird gezeigt, dass konventionell verwende-
te Fourier-basierte Faltungsmethoden einen dramatischen Anstieg des Rauschens im
entfalteten Profil verursachen. Sogar bei geringem instrumentellen Rauschen ist die-
se Technik unzuverléssig. Fiir die Entfaltung der instrumentellen Funktion wird die
Implementierung einer Eigenfunktionmethode mit einem einfachem Regulierungsal-
gorithmus vorgeschlagen. Die Codes fiir die vorgeschlagene Entfaltungsmethode sind
in MATLAB programmiert.

Die Zuverlassigkeit und Effizienz der vorgeschlagenen Entfaltungstechnik wurde
mit der Simulation eines instrumentell verbreiterten Profils, das mit Zufallsrauschen
und Hintergrundsignalen iiberlagert ist, untersucht. Fiir die Simulation wurde eine
experimentell definierte instrumentelle Funktion, die auf obigem Modell basiert, ver-
wendet. Die Parameter fiir diese instrumentelle Funktion wurden durch numerische

Anpassung experimenteller Daten von Standardreferenzmaterialien mit der Methode



der kleinsten Fehlerquadrate erhalten. Die vorgeschlagene Regulierungstechnik zeigt
eine hohe Stabilitit, besonders im Falle von starkem, nicht vernachldssigbaren ex-
perimentellen Rauschen. AuRerdem fiihrt die Uberschitzung des Rauschniveaus nur
zu einer geringen Verschlechterung der extrahieren physikalischen Linienprofile. Ein
zusitzlicher Vorteil der vorgeschlagenen Regulationstechnik ist ihre Unabhéngigkeit
von der konkreten analytischen Form der Anndherung der instrumentellen Funktion.

Ein Beugungsmuster enthilt Informationen iiber Verspannungen in den Anderun-
gen von Bragg-Peak-Formen und auch in den Peakverschiebungen. Kristallitgrofen-
effekte beeinflussen ebenfalls die Peakform. Deshalb ist es moglich, aus der Peak-
verbreiterung eines Diffraktogramms simultan Informationen iiber die Kristallitgrofe
und die Verspannung zu erhalten. Die Anwendung der Voigt-Funktion fiir die Analyse
von Grofen und Verspannungen durch Anpassung von Beugungsdaten ist populér,
weil es die Entfaltungsmethode genauso unterstiitzt wie die Trennung von Gréflen-
und Verspannungseffekten in der Analyse. Diese Annédherungsmethode gibt adaqua-
te Informationen iiber Grofen- und Verspannungswerte, jedoch weist sie drei Méngel
auf: Sie verwendet die physikalisch unbegriindeten Lorentzsche Grofsen- und Gaufssche
Verspannungsannaherungen, sie beriicksichtigt nicht die Grofenverteilung und ist fiir
das Super-Lorentz-Profil ungeeignet. Diese Méangel wurden in dieser Studie bestétigt,
indem simulierte Grofenprofile, die von physikalischen Daten abgeleitet wurden, mit
einem auf der Voigt-Funktion basierenden Modell angepasst wurden.

Das Faltungsmodell, das ein physikalisch sinnvolles Grofenprofil und ein Gauf-
sches Verspannungsprofil fiir die Anpassung des Linienprofils benutzt und die modale
Groke, Grokenverteilung und Verspannungsparameter bestimmt, wurde erfolgreich
entwickelt, validiert und schlieflich auf die experimentellen Beugungsdaten von na-
nostrukturiertem CeO, und Gold, Gold-Silber- und Gold-Palladiumlegierungen an-
gewandt. Es wurde gezeigt, dass das Faltungsmodell Zugang zu der Gréfenverteilung
und der Verspannungsinformation aus Beugungsdaten erlaubt. Durch diese Methode
werden konsistente Kristallitgroken erhalten und eine gute Ubereinstimmung zwi-
schen Verspannungswerten erreicht. Die ‘Faltungs-’ Grofenverteilungen stimmen hin-
reichend mit denen iiberein, die aus der Transmissionselektronenmikroskopie (TEM)
erhalten wurden. Die aus der TEM abgeleiteten Korngrofsen sind jedoch etwas gro-
fer als die ‘Faltungs-’ Kristallitgrofen: offensichtlich bestehen Koérner aus mehrere
Kristalliten konstituierender Cluster oder enthalten Stapelfehler im Fall von kubisch-

flachenzentrierten Metallen.
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Chapter 1

Introduction

1.1 Diffraction line profile analysis

Crystallite (or grain) size and strain within a polycrystalline material may have a
profound influence on its performance, e.g. on the fracture toughness, wear resis-
tance and thermal shock behaviour. A diffraction pattern of the material conveys
information about the strain through changes in the shapes of the Bragg peaks and
also through peak shifts. Crystallite size effects may also distort the line shapes.
Therefore, it is possible to extract descriptions of the size and strain effects from the
peak broadening of a diffraction pattern.

Strategies applied to model size and strain effects from Bragg peak shape distor-
tions mainly involve fitting mathematical functions to the measured line shapes, and
then extracting strain and size descriptions according to theoretical models for which
the mathematical functions are assumed to be physically correct for the material un-
der study. This approach, however, may be inappropriate as the analytical functions
used may not physically be acceptable and most of models mainly do not take into
account the size distribution.

The broad concept underpinning this study is that the changes in Bragg peak
shapes should be modelled with physically-appropriate functions which correctly re-
flect the microstructural environment under which size and strain develop.

A theory of size broadening was initially given by Scherrer [see Warren, 1969]
shortly after the discovery of X-ray diffraction. Stokes and Wilson [1944] devised a

method to study X-ray line broadening due to size and strain using Fourier transform

9



10 1. Introduction

theory. In subsequent developments [e.g. Langford, 1978], line profile analysis was
conducted by fitting mathematical functions to the diffraction data followed by the
extraction of size and strain descriptions from the fitted functions.

Most research on line broadening analysis theory has focussed on metallic materi-
als [Warren, 1969; Klug and Alexander, 1974; de Keijser et al., 1982; Langford et al.,
1986]. Some work has been done more recently on ceramic powders [Langford et al.,
1986; Auffredic et al., 1995; Balzar, 1999; Louer, 1999; Audebrand et al., 2000a,b;
Louer et al., 2002] and polymeric materials [Somashekar and Somashekarappa, 1997].

Assessments of size and/or strain information from the analysis of single Bragg
peaks is problematic because the shape of the peaks may provide reasonable results for
either strain or size modelling, but proves to be more challenging where both effects
are present. In the past, a single function was mainly used to separately represent
the size and strain components, e.g. Gaussian, Lorentzian (or Cauchy), pseudo-Voigt
and Voigt functions. However, both, theory and experiment showed that in many
cases such approaches may not be appropriate. This is presumably due to the lack of
physical basis for the use of particular functions for the material under study.

Klug and Alexander [1974] reviewed three classical methods which can be used for
simultaneously extracting crystallite size and strain contributions from x-ray diffrac-

tion line broadening data:
1. Fourier transform method
2. Integral breadth method
3. Line profile variance method

In applying these methods for separating crystallite size and strain contributions,
deconvolution of ‘pure’ specimen broadening must be carried out since an observed

peak profile is a convolution of instrumental and pure specimen profiles (Fig. 1.1).
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Figure 1.1: An observed diffraction peak g(t) is a convolution between ‘pure’ spec-
imen f(z) and instrumental function A(t — z).

The mathematical expression of the convolution is as follows:

g(t) = /_00 h(t — z) = f(2)dz (1.1)

or,

g—hof (1.2)

where g(x) is the observed profile, h(t— z) is the instrumental profile, f(z) is specimen
profile. Here, f represents the combined strain and size contributions to the profile. A
standard specimen, showing minimal strain- and size-related broadening, is required
for measurement of the peak profiles, h, which describe aberrations associated with
instrument optics and wavelength spread.

Procedures for deconvoluting of ‘pure’ specimen profiles f from observed profiles ¢
require an approximation of the measured profiles with an analytical function. A split
Pearson VII function has been used to model 4 for x-ray diffractometry [Howard and
Snyder, 1989; Balzar, 1992]. Use of the pseudo-Voigt function has also been reported
in x-ray and synchrotron radiation diffractometry [Thompson et al., 1987; Enzo et al.,

1938].



12 1. Introduction

The observed profile defined by the standard reference material can pretty well
be fitted using a model based on split Pearson VII or Voigt functions. Otherwise,
due to a big number of refinable parameters in this models and the interdependence
between their parameters defined by different standard samples can considerably vary.
Therefore, a model for the instrumental function which is based on physical properties
of diffractometer is more preferable. In this work the development of such a model

will be proposed.

A variety of methods have been proposed for the elimination of instrumental
broadening [Rachinger, 1948; Stokes, 1948; Keating, 1959; Gangulee, 1970; Ladell et
al., 1975]. However, none of these methods can be used to eliminate the instrumental
aberrations from the entire observed diffraction pattern in a one-step operation. It
is impossible to deconvolute all of the instrumental effects from an entire diffraction
pattern by a standard Fourier method, because the profile of the instrumental function
for powder diffractometry varies in a complex manner in dependence on the diffraction

angle 26.

Ida and Toraya [2002] have proposed a Fourier based approach to deconvolute
the instrumental aberration functions from experimental powder X-ray data. This
method is based on the combination of scale transformation, interpolation of data and
fast Fourier transformation. It is well-known, that the Fourier based deconvolution
always exaggerates the noise in the source data. Therefore, for successfull application
of Fourier based methods the real experimental data have to be first smoothed with
some empirical functions (like split Pearson, split Voigt and etc.). However, this
smoothing procedure will suppress or at least distort information about peak shape
where the information about specimen properties like size and strain distributions is

hidden.
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Therefore development of new fast and in terms of stability more reliable decon-
volution technique is required, especially in the case of large non neglectable experi-

mental noise.

In these classical methods, microstructural information was directly deduced from
experimental data for distorted metals [e.g. Guinier, 1963]. Consequently, the theory

was developed based on the dislocation theory in metals [Warren and Averbach, 1950].

The recent intensification of interest in strain-size analysis is attributed to the
dramatic improvement in computing power which has allowed profile fitting to be
performed more effectively. However, these advances have been limited by the use of
profile fitting functions which may not be physically appropriate for particular classes
of materials. Single-line and multi-line methods can be used for the extraction of
strain-size information by diffraction profile fitting. Recently, a pattern decomposition
method has been accomplished, for the same purpose, by fitting analytical functions
to whole diffraction patterns [Langford, 1992]. This achievement was followed by the
introduction of the whole-powder pattern-fitting (WPPF) approach [Toraya, 1986;
Scardi, 1999; Scardi and Leoni, 2001].

There are, in general, two approaches which are commonly used for obtaining
crystallite strain and size values from diffraction line-broadening: the application of
the integral breadth method and the Warren-Averbach Fourier transform method.
Reviews of these methods have been given, for example, by Delhez et al. [1982]. The
first approach involves diffraction data fitting with the symmetric Voigt (a convolution
of Gaussian and Lorentzian profile functions) [Langford, 1978; de Keijser et al., 1982],
pseudo-Voigt [Wertheim et al., 1974] or Pearson VII [Hall et al., 1977] functions which
do not necessarily have a physical basis in terms of microstructural character. Also,
these functions do not model the crystallite size distribution parameter [Klug and

Alexander, 1974; Langford et al., 2000; Popa and Balzar, 2002]. The second approach
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is more physically acceptable; however, it has two substantial limitations in that the
broadening should be sufficiently large [Delhez and de Keijser E. J. Mittemeijer, 1980]
and improper determination of the background introduces a severe ‘hook’ effect in
the Fourier reciprocal space [Warren, 1969]. Moreover, this Fourier technique cannot
readily deal with overlapping peaks and is very sensitive to experimental noise. As
a result, this method tends to be restricted to materials with high crystallographic
symmetry, giving rise to only few diffration peaks. Therefore, the line profile method
performed in angular/crystal space is preferred, provided that the model for each
effect is known and the overall function can be developed for the complete angular
and Q-range.

Multi-line profile fitting methods should be inherently superior to single-line pro-
cedures for strain-size analysis as the angular dependence of the separate strain and
size contributions to the specimen function f are markedly different. Two well-
known multi-line methods which have widely been used in line broadening analysis are
Warren-Averbach [1950; 1952] and Williamson-Hall[1953]. In the Warren-Averbach
method, Fourier transforms are performed using diffraction data to give information
about crystallite size and strain. However, again, the use of Fourier transform may
cause some numerical problems in the analysis.

In the Williamson-Hall method [Williamson and Hall, 1953], the peak broadening

[ is extracted from

Bcost % + 4desind (1.3)

where D is the apparent crystallite size, ¢ is the maximum (upper limit) micros-
train and A is the radiation wavelength. This method assumes that the Lorentzian
function contributes to both, size and strain effects. This assumption may not be a
good approximation for strain broadening since a strain profile tends to be Gaussian,

particularly for low-strain materials.
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Further development of line profile fitting of diffraction data with the Voigt func-
tion [Langford, 1978] led to the use of this function in the so called 'average size-strain’
method [Langford, 1992]. The Williamson-Hall plot was used only for qualitative in-

spection in describing if the specimen integral breadth is d*-dependent, where d* is the

1\ 2 *
interplanar spacing in reciprocal units. A plot of (d—f> V8. (d*f)2 was then examined
*

. . . PN
to give the mean strain value from the intercept of the plot on the (d—f axis and

the mean apparent size from its slope. It was assumed that strain contributes only to
the Gaussian profile and size to the Lorentzian profile. Since the pseudo-Voigt and
Pearson VII functions can approximate the Voigt function [de Keijser et al., 1983,
the use of these functions for size and strain analysis is possible, however with some
additional errors introduced from the approximation. It should be noted again that
application of these functions in the analysis has no direct physical basis. Moreover,

the crystallite size distribution is not taken into account in using the functions.

The extraction of microstructural information from powder diffraction data has
greatly been enhanced by the discovery of the Rietveld method [Rietveld, 1967, 1969]
which is an approach to fit a structural-based model to a whole powder pattern.
Subsequently, it was shown that the method can also be used to extract information
about crystallite size and strain [de Keijser et al., 1983; Delhez et al., 1993; Pratapa
et al., 2002]. The procedure can be accomplished using the Voigt function. It should
be emphasised that the application of this method with X-ray diffraction data may not
be satisfactory since the assumed functions for the instrument and specimen effects
may not be appropriate.

Further development in powder diffraction data analysis based on the whole pow-
der pattern approach was achieved by developing models which do not need complete
structural data [Toraya, 1986; Scardi, 1999; Scardi and Leoni, 2001]. Whole-pattern

fitting based on Fourier coefficient calculations has also recently been introduced
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[Ungar et al., 2001]. Whole Powder Pattern Fitting (WPPF) may be used at the
initial stage of an ab initio structure determination as well as for extraction of mi-
crostructural features such as crystallite size and microstrain [Scardi, 1999]. It is of
importance to note that the pattern fitting was performed by applying the analytical
functions such as Pearson VII [Toraya, 1986| and pseudo-Voigt [Scardi, 1999; Scardi
and Leoni, 2001]. The recent literature indicates a strong trend towards the use of
whole-powder diffraction data for acquiring structural and microstructural informa-
tion from materials.

Even though the results obtained by the approaches described above may be valid
for some material types (notably metals), the mathematical assumptions may lead to
incorrect results if the assumed size and dislocation models are inappropriate. In such
cases, the information gained from the analysis may be unreliable or even meaningless,
e.g. the negative values of size parameter calculated using the Williamson-Hall multi-

line method for alumina whiskers data reported by Balasingh et al. [1991].

1.2 Research objectives

The principal objectives of this study are: the examination of existing Voigt based
methods for strain-size evaluation; consideration whether Voigt-based models might
be refined for application in modelling of size-strain characteristics; development of
new physically-based modelling methods.

A new model has to be developed based on the theory given by Langford et al.
[2000]; Popa and Balzar [2002]; Ida et al. [2003].

The codes for the proposed model are written in C+-+. The codes are compiled
to produce executable software which can perform peak profile fitting in command
line interface mode.

Model evaluation should be performed using X-ray diffraction (XRD)
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The model for the instrumental function which is based on physical properties
of diffractometer will be proposed and proofed by using standard reference materials
like LaBg, Al,O3 and SiOs.

The development, of a new fast and in terms of stability more reliable deconvo-
lution technique will be presented, especially in the case of large non neglectable
experimental noise.

The codes for the proposed deconvolution method are written in MATLAB.



Chapter 2

Analysis of the diffraction pattern

This chapter reviews the literature on crystallite size and strain evaluations from
diffraction line broadening (the term ‘line broadening’ is used subsequently for sim-
plification). First, the definitions of crystallite size and strain are considered with
particular attention to the line broadening. A review of instrument contributions to
the broadening is then presented to provide a description of correcting for instrument
effects in size and strain analysis. The sources of the specimen-related line broad-
ening are explored, followed by details of the methods for assessing size and strain,
by means of the Fourier, whole-powder pattern-fitting and integral breadth methods.
The Fourier method is not discussed in detail as the method is not of interest in the

study.

Size broadening is due to the small size of a particular region which causes the
radiation to be incoherently diffracted [Guinier, 1963]. In polycrystalline materials,
a large number of grains with various relative positions and orientations causes vari-
ations in the phase differences between the wave scattered by one grain and waves
scattered by others, which can take any values between 0 and 27 with equal proba-
bility. The total intensity scattered by all grains is the sum of individual intensities
scattered by each grain; or, in other words, the grains diffract incoherently or inde-
pendently. In terms of size and strain, therefore, diffraction peak broadening consists
of a size broadening contribution which reflects the size of the grain (therefore called
grain size) and a strain broadening component which represents the relative atomic

displacements within the grain.

18
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Berkum et al. [1999] argued that lattice defects which are parts of grains, called
domains, can also be considered to diffract incoherently with each other. From this
point of view, line broadening may consist of a size broadening of domains and a
strain broadening from the same domains. The domain concept, however, does not
have a clear technical basis since it cannot be confirmed using other characterisation

techniques, while ‘grain size’ can be measured by microscopy.

The term ‘crystallite size’ is used by others [Louer, 1999; Langford et al., 2000]
who have argued that it also represents grain size. The term ‘crystallite size’ is used
in this thesis to define a finite size of region in a specimen where radiation is diffracted

coherently (with respect to other regions).

Size distribution describes the dispersion of crystallite sizes in a material. It is
now well known that size distribution influences diffraction peak shapes [Klug and
Alexander, 1974; Langford et al., 2000]. Therefore, it is possible to extract a size
distribution description from line broadening, provided that the appropriate model
is used. Recently, there have been some efforts to acquire information about size
distribution from line broadening by introducing an additional parameter into an

analytical profile function such as the pseudo-Voigt function [Popa and Balzar, 2002].

From the classical theory of strain in deformed materials, it is assumed that elastic
deformation will cause constant changes of lattice plane spacings from one grain to
another [Cullity, 1978]. Such strained materials exhibit macroscopic uniform dimen-
sion changes from the original size. These changes, relative to the original dimensions,
are called uniform macrostrains. If this kind of strain is observed on a microscopic
scale (approximatly as large as a grain several microns in size), the material can be
considered to exhibit a uniform microstrain. By contrast, it is known that plastic
deformation will cause various changes of lattice plane spacings from one grain to an-

other or one part to another. These lattice spacing changes, relative to the original,



20 2. Analysis of the diffraction pattern

are called non-uniform microstrains.

Macrostrain describes the line shift related information determined by the diffrac-
tometric residual stress method which is used routinely to characterise long-range,
near-surface tensile and compressive strains [Noyan and Cohen, 1987]. This category
of strain can occur, for example, when a material after anisotropic thermal expansion
cools during processing. The cooling rate of the inner part is smaller than that of
the outer part so that a compressive residual strain develops in the nearsurface of the
material.

Microstrain refers to Bragg line shifts and shape distortions associated with grain-
grain interactions such as those caused by differences in thermal expansion between
grains in a multi-phase material. Uniform microstrain relates to changes in cell param-
eters caused by these grain-grain tensile or compressive effects, whereas non-uniform
microstrain effects are associated with grain-grain shear effects which contribute to
line broadening.

Therefore, the microstructural strain-size related items of information which can
be extracted from the peak shapes of diffraction data are the non-uniform strain,
crystallite size and crystallite size distribution.

The ideal peak shape for a diffraction line is a delta function. In reality, however,
there are physical effects which may broaden the diffraction line. These effects can
be classified into instrument and specimen broadening. This section describes pos-
sible sources of line broadening in detail. Definitions of peak width and peak-shape
functions are compiled in Table 2.1.

There are two important measures in line profile analysis of powder diffraction,
i.e. the peak position and the peak width (or broadening). The peak position is
determined by [Klug and Alexander, 1974]

20 1(20)d(26)
T1(20)d(20)

(20) (2.1)
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Figure 2.1: A diffraction line profile illustrating the definition of peak, centroid and
full-width at half-maximum intensity (FWHM) [Klug and Alexander, 1974].

The peak width can be described by the following measures [Klug and Alexander,
1974]:
1. full-width at half-maximum (FWHM) - the overall width of the line profile at

half-maximum intensity measured above the background (see Fig. 2.1).

FWHM — 205 — 20, (2.2)

2. integral breadth () - the integrated intensity of the line profile above back-

ground divided by the peak height, I,.

8- i/'l(ze)d@e) (2.3)

3. variance - squared standard deviation of the elements comprising the profile.

[ (20 — (20))° - 1(20)d(20)
[ 1(20)d(20)

W= (20 — (20))%) = (2.4)
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Table 2.1: List of basic analytical profile-shape functions (PSFs) cited in this study.

Profile-shape function (PSF) Mathematical form

—41In 2i‘.2
Gaussian ! Io(x) = lye wg
Lorentzian (Cauchy) ? Ip(x) = o
: " 1442
Pearson VII ? Ipvir = =
PVII 1+ 4(21/m — 1)5;2_
pPVII
3 T2
Voigt * Iy(x) = I,—Re {erﬁ ( + zk)}
pL e
Pseudo-Voigt Lyv = plg(x) + (1 — o)1 (x)

Subscripts G, L, PVII,pV and V denote the Gaussian, Lorentzian, Pearson VII,

pseudoVoigt and Voigt functions, respectively.

x 20 position (in radian)
1(0) peak intensity
full-width at half-maximum intensity (FWHM)

integral breadth (= area/maximum intensity)

Pearson VII index

€ 3 o =

pseudo-Voigt mixing parameter
erfi complex error function

Re real part of a complex function

| WG
Yo - —=
2/6' L E
L
In2 2
7220=m)T (9 — 1) w
88pyvir = ( Jwevir where I' is the gamma function

@/m — 1) [N(m)]* 2
48 Boexp(k?)[1 — erf(k)| where erf is the error function or

432~ BB+ B
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Br
Ve
The Voigt shape factor ¢ is defined as
w
¢ —_
B
2 In2
br — =~ 0.6366 and G — 21/ —— — 0.9394
™ ™
Therefore,

0.6366 < ¢y < 0.9394, where ¢, is the Voigt shape factor.

The Voigt peak shape factor can be approximated using

¢NEQ+Ak+BH)
714 Ck + Dk?)

where A = 0.9039645, B — 0.7699548, C' — 1.364219, D — 1.136195, E — 2(In 2/m)'/? =
0.9394372. This approximation has a maximum difference from the exact value of

0.16% (at k = 0.15) [Langford, 1999].
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2.1 Instrumental broadening

The instrument broadening contribution & (Eq. 1.1) in powder diffraction data origi-
nates from the non-ideal optical effects of the diffractometer and from the wavelength
distribution of the radiation.

A diffraction profile measured from a structurally imperfect material (g profile) is
considered as a convolution of the profile [ due to crystallite imperfections (nonuni-
form microstrain and small crystallite size) and the h profile (Fig. 1.1). This re-
lationship can be expressed as (Eq. 1.1). The h profile can be determined either
mathematically [Wilson, 1963] or by measurement with a suitable standard material
[Berkum et al., 1995] which is assumed to be free from specimen broadening effects.

The influence of instrument effects on line broadening was reviewed in considerable
detail by Klug and Alexander [1974] who considered the effects of X-ray source,
flat specimen surface, axial divergence, specimen transparency, receiving slits and
instrument misalignment for a Bragg-Brentano diffractometer. The individual effects,
which are analytically approximated, may be convoluted with each other. These
effects have also numerically been modelled [Cheary and Coelho, 1992; Finger et al.,
1994; Ida and Toraya, 2002]. An ab initio Monte Carlo approach has also been applied
to determine the instrument function by taking into account all possible optical paths
[Timmers et al., 1992|. Some of the instrument characteristics, however, cannot
be determined directly with sufficient accuracy [Berkum et al., 1995]. Therefore,
measuring h for correction of the instrument profile is more precise and reliable,
provided that a suitable standard specimen is available. A standard specimen for
instrument correction should meet the following criteria [Berkum et al., 1995; Leoni

et al., 1998; Reefman, 1999

e does not exhibit measurable specimen broadening;
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e (ideally) is developed from the same material as the specimen to be investigated;

e should not exhibit pronounced transparency effect;

e exhibits minimal errors from crystal statistics caused by surface roughness or

large particles.

In cases where a standard material is developed from the same material under in-
vestigation, strain-size analysis gives the sample differences not the absolute values
[Balzar, 1999; Reefman, 1999]. A specimen showing the least line width can be used

as a reference and the relative microstructural information can he determined.

A standard reference material made from a material other than that under analy-
sis can also be used. The primary advantage of using this strategy is that the profile
is collected for a range of test materials provided there is no change in the instrument
arrangement. Examples of such standards are BaF, as described by Louer and Lang-
ford [1988] and the NIST Standard Reference Material (SRM) 660a LaBs [Freiman
and Trahey, 2000].

Procedures for convoluting i with a known or assumed f require an approximation
of the measured profiles with an analytical function. The measured profiles are fitted
with a selected profile function and the fit parameters are extracted. A variation of
the parameters with 26 can be obtained and then the profile for an arbitrary 20 can
be computed with the fit parameters. A split Pearson VII function has been used to
model h for X-ray diffractometry [Howard and Snyder, 1989; Balzar, 1992]. Use of
the pseudo-Voigt function has also been reported in X-ray and synchrotron radiation

diffractometry [Thompson et al., 1987; Enzo et al., 1988].
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2.1.1 Instrumental line profile

In this section the profile functions based on the Pearson VII function P(260) including
peak asymmetry are described [Toraya, 1986]. A restriction that the function P(20)

has a total area of unity gives the form

Q 1LANZ (91/Ry, _ 1) (20=T\2 L or 2
P(20) — W [ (* t& ) (2 1) (3%5) } . / 20<T (25)
B @R ) (ST for 20>
) (R, — b MRy Y ] 25)
Vi | VTR () @R (R '

where I'(R) is the gamma function, 7' the peak maximum position, W the full-
width at half-maximum (FWHM), A the asymmetry parameter, Ry, the decay rate
in 20 < T, and Ry that in 20 > T. P(20) has a peak half-width of WA/(1 4+ A) at
half-maximum height in 20 <7 and W/(1 + A) in 20 > T.

Profile intensity y(20;)cwe at the ith step is calculated by

y(20:)caic B+ZZ b (205) (2.7)

where B is an adjustable background level and I;; is an integrated intensity of the
kth component of characteristic X-rays (K« or Kay) for the jth reflection. It is

given by

~ 1,/ + K), (2.8)

]1

where K is an adjustable parameter representing the intensity ratio of the Kasy

component to Ka; and [; is the total integrated intensity of these two components.
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The peak maximum position of only the K« peak, T}y, is refinable, and that of Koo,

T}, is calculated from T} as

Tio = 2sin™! Ao/ Ay sin(T1/2)] + e, (2.10)

where A\; and \; are wavelengths for the Ka; and Kas components, respectively,
and e is an adjustable parameter to correct a peak separation of the a doublet.
The angular variations of parameters B, W;, A;, R;, and Ry can be approximate

with the following analytical expressions [Toraya, 1986]

B(20) = by + 0220 + bz sin @ -+ by tan 0, (2.11)
W (20) = (wy + wq tan @ 4 ws tan? 0)/2, (2.12)
A(20) = ay + ay/sin0 + as/sin® 0, (2.13)
Ri(20) = rpy + rpasin® + rps/sind, (2.14)
Ry (20) = ry1 + rgasing + rgs/sind, (2.15)

where lower-case letters with subscripts on the righthand side of the equations are
adjustable parameters.

Summarise, the list of adjustable parameter for instrumental profile fitting func-
tion is given in Tab. 2.2

The proposed above model can fit the instrumental function profile defined by
some standard reference material pretty well. Otherwise, due to a big number of re-
finable parameters and the dependence between those parameters obtained from dif-
ferent standard samples can considerably vary. Therefore, the model for instrumental
function which based on physical properties of diffractometer is more preferable. In

chapter 4 the development of such model will be proposed.
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Table 2.2: List of adjustable parameters in instrumental profile fitting

I; Integrated intensity of the jth peak

T} The jth peak maximum position

K Intensity ratio of Kay, component to Kay

e Correction for the peak separation of Koy and Kas
b1, b, bs, by Background level

Wy, Wy, W Full-width at half-maximum

ay, ao, a3 Peak asymmetry

Tr1,TL2, T3 Decay rate on the low-angle side
rH1,TH2, T3 Decay rate on the high-ange side

2.2 Specimen broadening

The specimen profile f after removal of the instrument effect A from the observed
profile g, conveys microstructural information representing size effects and lattice
distortion (non-uniform microstrain). The overall profile function f is the convolution
of the profile functions of these effects [Langford et al., 1988; Langford, 1999]. The
following section summarises the theories of line broadening by lattice imperfections,

which consist of small crystallites and non-uniform microstrains.

A basic theory of size broadening is presented by making an analogy of the ef-
fect of crystallite size on a diffraction pattern to the phenomenon associated with
optical gratings [Guinier, 1963]. The optical phenomenon shows that the diffraction
maximum depends only on the spacing between gratings and that the width of the
diffraction line depends on the number of gratings in a spatial unit. Increasing the
density of the grating will decrease the line width.

In the case of radiation diffraction, the number of reflecting lattice planes is anal-
ogous to the number of gratings. Reducing the number of lattice planes, however,
corresponds to the smaller crystallite size.

Consider a thin plate crystal, large in surface area, which consists of N lattice

planes of spacing d (Fig. 2.2). A radiation beam of wavelength A incident on the
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Figure 2.2: Diffraction at the Bragg angle of incident ¢ by N lattice planes with
lattice spacing of d.

surface of the plate at the Bragg incident angle of #, such that Bragg's law applies
A= 2dsinf (2.16)

The beam scattered by N planes is in phase producing a scattered ray with amplitude
NA, where A is the amplitude for a single lattice plane. If the angle of incidence is

changed from 6 to 6 -+ §, the path difference between two adjacent planes becomes
2dsin(0 4 6) = 2db cos ¢ (2.17)

The scattered wave is now the sum of the N waves but with a phase difference of

4
20 = %dé cos ) (2.18)

It can be shown that the intensity of the diffracted beam in a direction 0 + § is

[Guinier, 1963]
sin? N¢
sin? ¢

1)~ A (2.19)

1(6) approaches zero as

A

N > > —
p>m or 2Ndcosf

(2.20)
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which means that the width of the angular domain of the reflection is inversely pro-
portional to Nd. The thickness of the crystal (I — Nd, where L is perpendicular to
the diffracting planes) is associated with the full width at half-maximum (FWHM)

according to the following [Guinier, 1963]

0.9-A

FWHM =
Lcos@

(2.21)

2.2.1 The Laue interference function

Discussion on this topic involves use of the reciprocal lattice. Consider a set of
three scalar numbers (£, 7, () defining a point in reciprocal space at a vector distance
a* + nb* + (c* from the origin, where a*, b* and c¢* are the primitive translation
vectors of the reciprocal lattice. By defining the unit vector for the incident X-ray
radiation as sy and the scattered radiation vector as s, the scattering function 1(¢, 7, ()

gives the maximum intensity when the following conditions of diffraction are met,

S — Sp

A

S
=5 = ga* + nb* + (c* (2.22)

1(&,n,¢) can then be considered as a distribution in reciprocal space with its value
at any point giving the intensity according to the diffraction conditions with the
point being the extremity of the vector ; [James, 1965]. The total intensity of the
scattered waves [(£,n, () for any point in the reciprocal space is basically a product
of two factors: the modulus of the structure factor |F(¢,n,O)[° , where F(&,n,¢) is
the geometrical structure factor or structure factor, and the Laue interference factor
1o(§,m, ), or

16€,m,¢) = |F(&m, OF (&, 1, ) (2.23)

The geometrical structure factor can be written as

F =" f"exp(ikSp) (2.24)
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where the summation is made over all atoms in a unit cell, f’ is atomic scattering
2r . . . L
factor, k Syl is the wave-number and p is the vector distance of any point in the

unit cell from the origin of that cell. Defining
p —ua+vb +wc (2.25)

the structure factor can now be expressed as

F(&n,0) =Y [ exp(2mi(&u+ v + Cw)) (2.26)

where (u,v,w) and (a,b,c) are a set of numbers and a set of primitive translations in
crystal-lattice space, respectively. This structure factor term is of importance in the
theory of strain broadening by dislocations.

The interference function Io(&, n, {) for a parallepiped crystal fragment with Ny, Ny, N3
points parallel to the edges a, b, ¢ respectively has a general form of [James, 1965]

sin® Nywé  sin® Ngmn sin? Nsm(

sin? 7€ sin 71 sin 7(

[O(€>TI><) (227)

The interference function can be regarded as a representation of a periodic distribution
dependent on the vector ; in the reciprocal-lattice space. In circumstances where
a crystallite consists of a row of N equally-spaced points along the a axis, sheets of
crystallites form in the b*c* planes of the reciprocal lattice and are perpendicular to
the a axis. Since now Ny - N3 -1, the Laue interference function becomes

sin? Nymé

1(§) = SnPne (2.28)

Considering the diffraction condition sin 260 = — and the appropriate crystal lattice
a

space distance x — = , the Laue interference function can be written as
v

Io(€) — sin? Nnxa (2.29)

sin? rza
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Figure 2.3

Consider now a system with a large number of identical crystallites. The average
intensity of the scattered radiation corresponding to the distribution of the interfer-
ence function can be calculated by including all possible crystallographic orientations.
The calculation gives the average interference function Iy according to diffraction by
crystallites with random orientation. Determining the appropriate distribution func-
tions associated with the interference function is, therefore, essential in the intensity

calculation.

It OR and (ﬁ (see Fig. 2.3) are the position vectors for neighbouring reciprocal
points (h, k, 1) and (h+ &,k +n,0+ (), the interference function at R’ can be written
as 1o(&,m, ¢) [James, 1965]. Consider ds is a small element of the surface area for a
sphere of radius of OR’. The diffracted intensity of radiation through an angle 20

S|

over an area ds at a distance from a point of origin p- 2sinf PR is determined

by

— 1

/ Io(€, 1, €)ds (2.30)

The integrated intensity can then be calculated by integrating I, with respect to p.
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The integral breadth of the line is given by

B(p) % (2.31)

where I5(m) is the maximum value of I;. James [1965] used a Gaussian function to
approximate the interference function for a cubic crystal system and found that the
integral breadth of a diffraction line corresponds to the crystallite size following the

Scherrer equation

- KA
L cosf

Bsize(20) (2.32)

where K is the Scherrer constant those value depends in general on the external form
of the crystallites as well as on the order of the diffraction. Values for K have been
tabulated for some cubic crystal solids [Stokes and Wilson, 1944]. It was argued by
Stokes and Wilson [1944] that, usually, K — 1 is adequate to approximate the cubic

crystallites.

2.2.2 Classical theory by Stokes and Wilson

This theory was first introduced by Stokes and Wilson [1944] after making use of
the structure factor to calculate the non-linear strain (or, lattice distortion) from the
integral line-breadth.

Consider a displacement of a unit cell positioned at r by a vector u(r). Another
cell is also displaced with a distance ¢ from the first cell and direction with a unit
cell n. In general, this displacement involves both rotation and translation. However,
the rotation will not affect the phase of the scattered radiation unless it is very large
compared to the translation. The rotational structure factor contribution can then

be neglected [James, 1965]. Using (2.24), the structure factor for the displaced cells
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1s
F' = Fexp(iKS - u(r)) (2.33)

F’ = Fexp(iKS - u(r + nt)) (2.34)

For large values of ¢, I F"* vanishes. For small ¢, u(r+nt) can be expanded in powers

of t. Taking the first two terms gives
u(r + nt) = u(r) +tn- Vu (2.35)

Vu is a tensor for which the symmetrical part gives the strains in the crystal at the

point under consideration. In first approxymation, the intensity is

Jo  FE™  |F]?exp(ikS - tn - Vu) (2.36)

If n is perpendicular to the (hkl) planes, it can be found that S n|S| 2nsind.
Arsin f

Defining u = k|S| = then

Jy = F'F™ — |F|* exp(iptn - Vu - n) (2.37)

or,

Ji — | F|? exp(ipennt) (2.38)

since n- Vu-n is the tensile strain ey in the direction of n and perpendicular to the
reflecting planes.

The integral breadth of a diffraction line can then be calculated using

s20) — 122 / Judt (2.39)

cos 6
If w(e)de is a fraction of a crystal having e, between e and e de along the scattering

vector, the "apparent particle size" can be determined using

Dapp |J1;C|it / / e) exp(iute)dedt (2.40)
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It can be shown that

Dapp = 55—2w(0) (2.41)
2tand
B = 0 (2.42)

where w(0) is w(e) when e = 0. The ‘apparent strain’ is defined as

2
Capp — /BCOtO - m (243)

2.2.3 Dislocations and line broadening

Dislocations are one-dimensional defects in a crystal. The theory of line broadening by
dislocations has been reviewed by [Ungar, 1999]. The theory requires the definitions
of vector positions of two cells when they are distorted and undistorted. These are,
respectively, ¥ and r?% for the undistorted cells and ry and ry. for the distorted cells.
According to the theory of kinematic scattering, the intensity of a Bragg reflection

for a crystal with one atom in a unit cell is given by

I(k) = > exp(ik - (r, —ry)) (2.44)

where k is the diffraction vector (k — ko), k and kg being the wave vectors of the
scattered and the incident waves, respectively. The diffraction vector can be expressed
as

k—gts (2.45)

where g is the reciprocal lattice vector related to the associated Bragg reflection and
s is a vector which scans the reciprocal space in the vicinity of g.

If or, is the displacement of a cell from the undistorted position, it follows that

r, —r’+ dr, (2.46)
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The intensity of the Bragg reflection can then be written as [Ungar, 1999]

I(s) — f" Z exrp [is (r? — rg,)] exp [ig (61 — 61“2,)} (2.47)

where the term sdr is neglected. Equation (2.46) is of significance in the study of line

broadening by dislocations from the following perspective:
e for a large and perfect crystal, the Bragg reflection is a sharp delta function;
e strain information is contained in the dr;

e a Fourier transform of the phase shifts caused by the displacement component
is represented in

A = exp [ig - (617 — ory)] (2.48)
e the equation contains information about the crystal size.

The displacement component A becomes the focus of the theory. Several ap-
proaches have been developed by employing the displacement component A from
different ways to obtain the strain-related information [Warren and Averbach, 1950;

Groma et al., 1988; Krivoglaz, 1996].

2.2.4 Apparent crystallite size and strain

Wilson [1970] expressed the specimen broadening f as the inverse transform of the

Fourier transforms of size [V (¢)] and strain [Y (¢)] effects

) — vy (t)egp(—?wixt)dt (2.49)

where U is the volume of the unit cell. V() can be interpreted as the volume common
to a crystallite and its ‘ghost’ displaced a distance ¢ in the direction of the diffraction

vector dj,, (see Fig. 2.4), where
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...........................

vy S A L

Figure 2.4: Crystal A of volume V and its ‘ghost’ B which is displaced by a distance
¢ in the direction of the diffraction vector dj,, [Langford, 1999].

B 2sind (2.50)

1
diyl = =
| /Lkl| d )\

Langford [1999] applied the pattern decomposition approach to interpret the apparent
size by employing reciprocal space integral breadth (¢ in the absence of the strain

effects. The size integral breadth is

. Vi)

where V(0) is the mean volume of crystallites and L is the value of ¢ for which V() =0

or the maximum thickness [Guinier, 1963]. The integral breadth apparent size Dypp g

is defined as

1

Dapp,ﬁ g F
S

(2.52)

which can be interpreted as the volume-weighted thickness of crystallites measured
in the direction of [hkl] [Langford, 1999]. The reciprocal of the slope of the Fourier
transform of the normalised profile % is also a measure of crystallite thickness
known as the Fourier apparent size Dy, r [Wilson, 1963], or
_ V(o)

V'(0)

Doy 1y (2.53)
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The integral breadth and Fourier sizes, Dz and Dp, are weighted average thickness
in a particular direction which does not represent the actual mean dimensions and
indication of shapes. It can be shown that the mean crystallite diameter (D) for

spherical crystallites is given by [Wilson, 1962]

(D) = 4—? (2.54)
or
(D) = 3'%. (2.55)

Relationships between D and crystallite dimensions for various shapes have been

reported as well [Langford and Louer, 1982; Langford, 1992, 1999].

Stokes and Wilson [1944] introduced the concept of apparent strain €g 4., in asso-
ciation with the strain integral breadth 37, according to

2 )
e,(v’,app d—*D (2b6)

The apparent strain can be associated with the 'actual strain’ e according to

€,app ~ 5(e*)"? (2.57)

where (e2)1/2

is the root mean square strain or €,,,.

In conclusion, §2.2 has explored the theories of line broadening due to crystallite
size and strain. The discussion does not include line broadening due to mistakes
or stacking faults. Two principal ways to introduce size and strain effects to the
broadening formulation have been shown, i.e. using the line width (integral breadth

method) and the Fourier methods. These principles then become the bases of the

crystallite size and strain analysis which are discussed in the following section.
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2.3 Methods of crystallite size and strain analysis

The theory of x-ray line broadening was developed initially using the Fourier trans-
form approach. The application of this theory was performed, for example, by War-
ren and Averbach [1950, 1952]. It was also found that the classical Gaussian and
Lorentzian PSF can be used to fit the diffraction pattern [Klug and Alexander, 1974].
In subsequent developments [Langford, 1978], line profile analysis was conducted by
fitting appropriate mathematical functions such as the Voigt function to the diffrac-

tion data and then extracting size and strain parameters from the line width.

Various studies have been reported on the development of line broadening ana-
lytical methods. Three classical methods which can be used to extract crystallite
size and strain contributions from x-ray line broadening data are Fourier transform
method [Klug and Alexander, 1974], integral breadth method involving Gaussian and
Cauchy functions, line profile variance methods.

As described briefly in §1.1, deconvolution of ‘pure’ specimen broadening must be
carried out since an observed profile ¢ is a convolution of the instrumental A and pure
specimen [ profiles (Fig. 1.1) following (1.1). If f represents the combined crystallite
size and strain contributions to the profile, then f is a convolution of size and strain

functions, fp and fs, respectively, [Langford, 1999

f=/s®[p (2.58)

Classical size and strain analysis methods deduced microstructural information di-
rectly from experimental data of distorted metals [Warren and Averbach, 1950, 1952;
Guinier, 1963; Klug and Alexander, 1974].

Recent improvements in computing power have allowed diffraction pattern fitting

to be performed more effectively. However, progress has been limited by the use of
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profile fitting functions for modelling which may not be physically correct for partic-
ular classes of materials. There are three ways to analyse crystallite size and strain
by profile fitting, i.e. the use of a function containing microstructural parameters to
fit the real-space diffraction data, the use of a function to fit the Fourier transforms
of the diffraction data, and the use of an analytical function to fit diffraction data
followed by a Fourier-based analysis.

Multi-line profile fitting methods are size and strain assessment techniques which
employ more than one diffraction line. These methods might be expected to be su-
perior to single-line procedures as the angular dependence of the separate strain and
size contributions to the specimen function f are markedly different. Two wellknown
multi-line methods have been widely used in the line broadening analysis, i.e. the
Warren-Averbach [1950; 1952] and Williamson-Hall [1953] methods. Single-line meth-
ods, however, are recognised as rapid size and strain analysis procedures [de Keijser
et al., 1982; Delhez et al., 1982] which under some assumptions are adequate for
revealing the micro structural character of the specimen [York, 1999).

The following sub-sections explain the approaches which have been widely used

for the extraction of strain-size information by x-ray diffraction line profile analysis.

2.3.1 Method of Warren and Averbach

The Warren-Averbach method [1950; 1952] is a multi-line size and strain procedure.
If the instrumental profile function A is assumed, the specimen function f can be
deconvoluted from the observed function f. Consider H, G and I’ are the Fourier
transforms of A, g and f respectively. The deconvolution can be performed in terms

of complex Fourier transforms as follows

(2.59)
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According to the Stokes’ method [Stokes, 1948], the inverse Fourier transform gives

the specimen broadened line profile

2mixn
exp(—

J(x) = \/_ZHTL T,

) (2.60)

where x,, is the minimum value of & when the intensity can be considered to have
dropped to its background value. The specimen profile can be expanded into sine and

cosine terms, according to

2 2
[z Z F,.(n)cos( mm Z F;(n)sin(— 77:1771) (2.61)

Im

It follows that computations of the Fourier transforms are greatly simplified if the g, h
and [ functions are symmetrical because the sine terms vanished. However, symmet-
ric profiles are rarely observed. For instance, if Bragg-Brentano x-ray diffractometer
is used, h can be asymmetric due to the introduction of Kaq peaks. Corrections
for the K« doublet can be performed by mathematical elimination of the «ay con-
tribution [Rachinger, 1948; Huang and Parrish, 1975] by use of the iterative folding
(convolution) method [Ergun, 1968|.

According to (2.60), the specimen broadening f can be calculated directly from
the observed profile g without knowledge on the peak shape function of the h and ¢
profiles. However, it requires an accurate determination of the background limit x,,
to give an accurate f. In addition, the specimen broadening should be sufficiently
large relative to the instrument broadening in order to avoid unstable and inaccurate
deconvolution [Delhez and de Keijser E. J. Mittemeijer, 1980]. Furthermore, the
truncation of the Fourier series will always produce profile-tail ripples regardless of the
extent of the specimen broadening. The major disadvantage is that overlapping peaks
cannot be resolved without restoring the profiles with peak-shape functions. This
step introduces further biases into the results. As a result, the Stokes deconvolution

method can be performed appropriately only for materials with high crystallographic
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Figure 2.5: A crystal as an assemblage of columns of cells along the as direction.
Nsas is the column length (after Warren [1969]).

symmetry [Balzar, 1999].

In order to deal with overlapping peak difficulties,[Balzar, 1992| introduced the
use of the Voigt function, a convolution of a Lorentzian and a Gaussian function, as
the peak shape of the h and ¢ profiles. Since the convolution of two Voigt functions
is also a Voigt function, the integral breadths of A, ¢ and f profiles then have the

relationships

Lorentzian part: Brr By — Ohr (2.62)

Gaussian part: 7, — Bo; — Big (2.63)

The specimen breadths [y, and By can then be used to reconstruct the specimen
profile f.

In the Warren-Averbach method, the cosine Fourier coefficients (A,,) of f are used
to give information about crystallite size and strain, since the A, coefficients are the
product of two terms [Warren and Averbach, 1950]. The first term depends only on

the column length (size coefficient S - (see Fig. 2.5) and the second term depends
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only on distortion of the domains (distortion coefficient D):
A, = AZAP (2.64)

Taking [ as the undistorted distance between two unidirectional crystallographic po-
sitions, a linear curve can be developed by plotting (nA(l) vs. [? since each coefficient

can be written as [Delhez and de Keijser E. J. Mittemeijer, 1980]

AS - M (2.65)
AD — exp(—2722(3(]))) (2.66)

where N(n) is the average number per column of pairs of unit cells a distance of n
cells apart, N3 is the average domain size in unit cells perpendicular to the reflecting
planes, and (e*(1)) is the rms (root-mean square) strain. The slope gives the rms strain
value whereas the intercept produces the size coefficient function A2 from which the

average surface weighted domain size can be obtained by

dAf L
dn N. 3

(2.67)

n—0
Use of the Stokes’ deconvolution procedure prior to the Warren-Averbach method,
however, may introduce some errors in the microstructural information obtained from
the method. Also, the application of this method is limited to high symmetry ma-
terials. Balzar [1992] proposed an X-ray size-strain analysis procedure which is a
combination of the profile fitting and multi-line Warren-Averbach methods. In this
approach, the instrumental profile is modelled with a split Pearson-VII function and
the specimen profile with a Voigt function. The convolution between the functions
is fitted to the measured profile. The Gaussian and Lorentzian components are then
used to calculate the cosine Fourier coefficients, A,,. Both size and strain contributions
were modelled using Voigt functions. The Warren-Averbach method is applied to the

Fourier coefficients to determine the volume- and surface-weighted average domain
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sizes and rms strain. The profile fitting procedure proposed by Balzar is applicable
to overlapping peaks. However, the technique requires two orders of reflection of the

same plane, which limits its applications.

2.3.2 Analysis according to Williamson and Hall

In the Williamson-Hall method [1953], it is assumed that particle size broadening of

a line at Bragg position ¢; follows the Scherrer equation (with K = 1)

A
= 2.68
P D cos 0, (268)
while strain broadening is described by
B, — 4etan0; (2.69)

where D is the crystallite size, e is the upper limit strain and  is the integral breadth
of the peak. It is assumed that both the size and strain broadening contributions of
the specimen to the profiles are Lorentzian. Langford [1992] emphasised that this
method should not be used quantitatively but can provide qualitative information on
the nature of microstructural effects causing peak broadening. The total broadening

is described by the sum of (2.68) and (2.69) according to
A .
B cosl; = ot 4¢ sin 0. (2.70)

The use of the Voigt function in an 'improved’ Williamson-Hall method was in-
troduced by Langford [1992] using a pattern decomposition approach. The integral

breadth § of a Voigt function is approximated by

B2~ BB+ B2 (2.71)

where J; and (¢ are the integral breadths of the Lorentzian and Gaussian profiles,

respectively, and

e-d*
2

B - Ba -

1
. 2.72
D (2.7
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where d* — 2sinf

, with the integral breadths being in reciprocal units.

2.3.3 Single-line integral breadth method

The single-line methods can be performed either in Fourier or real space [Delhez
and de Keijser E. J. Mittemeijer, 1980; de Keijser et al., 1982]. Most of the Fourier
methods are vulnerable to deconvolution procedures particularly if the background
is determined inappropriately or if the peaks under investigation overlap. Some im-
provements have been made by employing profile shape functions [de Keijser et al.,
1983] so that the required Voigt integral breadths, for example, can be obtained

readily by

dA! 23]
- — _TL (2.73)
n—0
\ 2 2
eag  t(eh) 2w (29) o
dn? |, _, az a? (2.74)

where ﬁ}: is the Lorentzian breadth of the specimen profile f and a is period in a
20 scale. These expressions were derived using (2.67) and approximating the size-
broadened profile by a Laue interference function [Delhez et al., 1982] to give
2
1(6%)
- (2.75)

a

d? AS
dn?

n—0
The area-weighted average crystallite size (D), and the rms strain (e?)'/? were cal-

culated using [de Keijser et al., 1983]

D), = # 2.76
f
203; cosf
f
2\1/2 /BG tan 0 277
N 270

The correlations between the parameters for the pseudo-Voigt and Voigt functions

have been parameterised [David, 1986] which leads to the possibility of performing
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size and strain analysis using the pseudo-Voigt function, but with the introduction of

additional uncertainties due to the parameterisation.

The integral breadth single-line methods use peak-shape functions to fit a diffrac-
tion peak and relate the adjusted peak width parameters with the microstructural
information. This method of extraction of strain and/or size information from the
analysis of single Bragg peaks is problematic in that the shape of a single Bragg peak
may provide reasonable results for either strain or size modelling, but not where both
effects are present. In situations where the broadening is likely to be strain-only or
size-only, profile fitting is performed by associating the specimen-only function f with
the assumed line width expression for either strain or size broadening, e.g. the Scher-
rer line width. Furthermore, the method requires use of physically sensible functions
for the determination of functions A and ¢ which is particularly difficult to achieve

for XRD data due to the complex form of the instrument function h.

In the past, a single function such as Gaussian or Lorentzian was mainly used to
fit both the size and strain components. However, theory and experiment showed that
this approach to be inappropriate [de Keijser et al., 1982; Balzar, 1992] presumably
due to the absence of any physical basis for use of the profile functions. The pseudo-
Voigt function has also been used to fit X-ray diffraction profiles [Enzo and Schiffini,
1999]. However, the use of the pseudo-Voigt function also has no physical foundation

and may provide unreasonable results.

Langford [1978] made substantial progress in dealing with the complex form of
the profile function by employing the Voigt function (a convolution of Gaussian and
Lorentzian functions) for X-ray diffraction profile fitting which was found to give a

better approximation than its ‘derivatives’, i.e. Gaussian and Lorentzian functions.

The single-line integral-breadth method for extracting size and strain using the

Voigt function can be applied according to the procedure proposed by de Keijser
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et al. [1982] who used Gaussian and Lorentzian breadths (f,c and fhq, respectively)
to estimate the specimen-only contributions (3,c and Jne) according to Langford
[1978] with the expressions given by (2.62).

The angular dependence of the peak breadth 3 can be analysed to give crystallite
size and strain values, by assuming that the Gaussian component () is ascribed

to strain and the Lorentzian component (0;,) to size broadening

ﬁf(; — 4etan 01 (278)
and
A
L 2,
ﬁfL <D>\/ COS 01 ( 79)

where ¢ is the weighted average strain, ) is the radiation wavelength and (D)y is the

volume-weighted average size.

2.3.4 Techniques of Whole-Powder Fitting

The Rietveld method for analysis of powder diffraction data [Rietveld, 1967, 1969]
involves the fitting of the entire observed profile with a simulated pattern derived
using models for the crystal structure and diffraction peak profiles. The method was
originally developed for crystal structure analysis. The method may also provide mi-
crostructural information from peak profile character. The line profile model, which
is introduced in all major Rietveld-refinement programs, is a generalisation of the
Thompson et al. [1987] approach. It implicitly assumes that the observed and con-
stituent line profiles are Voigt functions [Balzar and Ledbetter, 1995]. A convolution
of any number of Voigt functions is also a Voigt function, therefore, one can write the

following expressions for Gaussian and Lorentzian observed line widths [Balzar and
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Popa, 2005]:

I = Utan?0 + Vtand + W + P/ cos* 0 (2.80)

'y = X/cosf+Ytanf + Z. (2.81)

Here, I is the full width at half-maximum (FWHM) of the line profile, U, V, W, X, Y
and Z are refinable parameters and I, and G denote Lorentzian and Gaussian profiles,
respectively.

As the parameters in Egs. (2.80) and (2.81) are FWHMs, they should be converted
to integral breadths of size-broadened and strain-broadened profiles before calculating
associated domain size and strain values (see Tab. 2.1). Then, the Lorentz and Gauss
integral breadths are combined for both size and strain parts according to the relation
(see Tab. 2.1):

exp(—k?) O

B (Be); T erf (k) k ﬁﬁg (2.82)

where ¢ stands for S and D. Only now can Jg and Jp be related to the corre-

sponding values of Dy and e, according to following equations:

A B
Dy cos0’ 4tan 6

Os - (2.83)

2.3.5 Crystallite size distribution

The crystallite size distribution may be an important descriptor for materials with
regard to the chemical and physical properties. For example, the activity and se-
lectivity of catalysts are influenced by the size distribution. It is therefore desirable
to determine this additional size information. This may be achieved through line
broadening analysis.

If the Fourier method is used, the size (or, column length) distribution can be

determined from the second derivative of the size Fourier coefficient AS [Warren,
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1969

(2.84)

where p is the column-length distribution function.

The effect of a crystallite size distribution on diffraction line profiles has been
investigated by Langford et al. [2000] by summing the intensity in reciprocal space
(2.49), with the absence of the strain component, after applying an assumed Gaussian
and lognormal distribution function as a weight factor for a particular morphology.
The effect of a unimodal distribution of crystallite size on a diffraction line profile
are to reduce its width and to disperse its tail. A line profile analysis was applied to
the XRD pattern of CeO, nanopowder and resulted in a lognormal distribution mean
value of 2.3 nm, which differed from the TEM result of 3.5 nm. They argued that this
difference can be due to limited number of particles considered in the TEM analysis
and also due to insufficient sampling. Note that the presence of any microstrain in
the specimen was ignored in the study which may contribute to the XRD and TEM

sizes difference.

Popa and Balzar [2002] developed an analytical size profile function which includes
the empirical lognormal and Poisson distributions. The size function can readily be
convolved with the strain and instrument functions. A test using CeO, powders
showed that a 'super-Lorentzian’ profile can be modelled with a broad lognormal size
distribution. It was also shown that the common Voigt function cannot model very
narrow and broad size distributions. It was argued that the crystallite size distribution
cannot be fully determined by diffraction analysis. For example, a 'super-Lorentzian’
character can be caused either by broad lognormal or multimodal size distributions.

Transmission electron microscopy may be required to explain the true distribution.
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2.3.6 Application and comparison of the methods

The Warren-Averbach method is commonly used in size and strain analysis despite
its disadvantages. Some applications of the method, particularly for deformed metals
and alloys, were compiled by Klug and Alexander [1974]. It appears that the Warren-
Averbach method cannot be considered as a general size and strain analysis method
due to inherent problems associated with truncation of line profiles and initial slope
determination. This is a result of the ‘hook’ effect which results from inaccurate
determination of background level. As a consequence, the Fourier and variance sizes,
for instance, are very different by a factor which can be as high as two [Langford

et al., 1988].

The Warren-Averbach and ‘double-Voigt’ methods were applied to the ‘classical’
materials W and MgO by Balzar [1999]. Standard specimens made from the same
materials were used to deconvolute the instrument profile. Size and strain analysis
was performed to obtain the relative values rather than the absolute values. It was
concluded that size and strain profiles may be modelled accurately with the Voigt
function. It was also found that there was a consistent relationship between the
results for Warren-Averbach and integral breadth methods. In general, however, the

methods showed small but systematic disagreement in the results.

The development of microstructure in nanocrystalline cerium oxide prepared by
thermal decomposition of cerium (IV) oxide nitrate has been studied with x-ray
diffraction data using the pattern decomposition method [Guillou et al., 1995]. The
Williamson-Hall plots were used to test for anisotropy effects and showed no size or
strain anisotropy effects. The apparent volume weighted average size and the appar-
ent strain were calculated following the ‘average size and strain plot’ procedure given

by Langford [1992]. It was found that the crystallites could be described as spherical,
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and that their dimensions increased with annealing temperature. The diffraction di-
ameter was markedly smaller than the SEM ‘particles’ diameter indicating that the
SEM ‘particles’ consist of clusters of coherently diffracting domains. It was also found

that the rms strain decreases progressively with annealing temperature.

Another study of microstructure development of nanocrystallite cerium oxide was
described [Audebrand et al., 2000b] with particular reference to the growth of the
crystallite size. The Williamson-Hall method was used to identify a size anisotropy.
The size analysis was performed using the Stokes’ deconvolution Warren-Averbach
[Warren and Averbach, 1952] and the Langford [1992] average size and strain meth-
ods. The values of Fourier and Langford sizes were significantly different which was
argued to be due to the presence of a crystallite size distribution. It was found that
the distribution becomes narrower when the temperature increases. Again, larger
SEM ‘particles’ than the crystallite size were found which was indicative of ‘particles’
composed of clusters of domains. Microstructural investigation using TEM showed
that TEM ‘particles’ are crystallites in the sense of coherently diffracting domains

[Auffredic et al., 1995] .

The Voigt integral breadth single-line method has been applied to various types
of materials, for instance metals [de Keijser et al., 1982], 5-SiC-whisker+Al,O3 com-
posites [Balasingh et al., 1991] and MgO sintered ceramics [Pratapa et al., 2002].
The method relies on the assumption that strain contributes only to the Gaussian
component of the Voigt function and that the size broadening contributes only to the
Lorentzian component [de Keijser et al., 1982]. In general, analysis for different reflec-
tions gave results with reasonable agreement. Consistent results for reflections from
the same crystallographic family were also obtained when the method was applied
to nickel layers [de Keijser et al., 1982]. These results support the proposition that

size and strain analysis using a single reflection should be adequate in general cases
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[York, 1999]. Note, however, that Gaussian-strain and Lorentzian-size assumptions
have been challenged recently [Wu et al., 1998a,b; Stephens, 1999] in terms of the
anisotropic size and strain effects.

The Rietveld size-strain method has been used widely for strain and size analy-
sis [Wu et al., 1998b; Nakamura et al., 2000; Pratapa et al., 2002]. The peak-shape
function incorporated in the fitting procedure is of importance for assessments of
the size and strain. The effect of crystallite anisotropy on diffraction peak broaden-
ing has been modelled [Greaves, 1985; Wu et al., 1998a; Stephens, 1999], and some
Rietveld programs have incorporated anisotropic broadening into the refinement pro-
cedures. Larson and von Dreele [1987], for example, included an additional parameter
to model the anisotropic size and two additional parameters to model the isotropic
and anisotropic strains which were then incorporated into the Lorentzian profile. The
model was applied, for instance, by Nakamura et al. [2000] to investigate dislocation
characteristics in LaNis which was subjected to an activation process and hydriding
dehydriding cycles. Reasonable agreement was achieved when the dislocation results
were contrasted to TEM data.

Four important observations can be summarised from the literature on strain and

size assessment methods:

1. The methods which are commonly used to determine crystallite size and strain
from line broadening are Fourier, variance and integral breadth methods. The
Fourier methods have inherent problems mostly related to the deconvolution

process and overlapping peaks.

2. The sources of disagreement among numerical results from size and strain anal-
ysis can be due to definitional differences for the parameters being used. The
Fourier and integral breadth methods define the crystallite size as the volume-

average dimension perpendicular to the reflecting planes, while the variance
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method interprets the size as the cube root of the volume of the crystallites.
In terms of strain, the Fourier method gives the rms strain {(¢?)'/? in a direc-
tion perpendicular to the reflecting planes and averaged over a distance L. The

integral breadth method provides an approximation to the strain value as the

1/2 172,

upper limit e such that e ~ 1.25(¢?)/2, while the variance method gives (e*)

The apparent size and strain values can be associated with the rms values after
appropriate correction. Mean diameter (D) is ﬂ‘gzﬁ (calculated by integral
breadth method) or SD“%F (by Fourier method), while the apparent strain can
be associated with either rms strain or upper limit strain, by €., =~ 5€pms O

Capp ~ 4e.

3. There is no integral-breadth profile fitting procedure which is based on a physical

model related to the microstructure of specimen.



Chapter 3

Development of the convolution model for size and strain line

broadening

It was shown by Langford et al. [2000]; Popa and Balzar [2002] that the Voigt-based
size-strain assessment method, wich was described in §2.3.4, can be used to obtain
reasonable strain values but dubious size values. The latter observation could be
attributed to the Voigt function not accommodating the size distribution. Moreover,
the Voigt function is used for size and strain analysis by assuming that the size con-
tributes only to the Lorentzian component and the strain to the Gaussian component.
Further investigations showed that the Voigt function cannot be used if the diffrac-
tion line shape lies outside the Gaussian and Lorentzian regions, notably within the
'super-Lorentzian’ region. Despite these limitations, the Voigt function provides the
insight that a specimen profile function should be a convolution of functions from
individual microstructural effects, that means a convolution of Gaussian-strain and

Lorentzian-size profiles.

This chapter describes the development of a new convolution model for crystal-
lite size and strain determination from diffraction line broadening. The size profile
component function for the model involves a size parameter and a size distribution
parameter which describes the dispersion of crystallite sizes. The involvement of the
size distribution parameter is expected to advance the existing models for size and
strain evaluations. The strain profile component function is Gaussian which can be
used for strain modelling of small strain [Warren, 1969; Delhez et al., 1993; Balzar,

1999; Kojdecki, 2004].
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3.1 Diffraction peak profiles from spherical crystallites with lognormal

size distribution

The basic expression for a line profile resulting from a small crystal [Wilson, 1962] is

given by

1(20) — (cos 0/ NI (k), (3.1)

where I(s), the intensity in reciprocal space expressed as a function of the distance
k = 2(sinf — sin Opyage)/ A, is given by

I(k) = U~ /” V(1) cos(2rst)dt, (3.2)

-7

where U is the volume of the unit cell. V(¢), the Fourier transform of I(k), can
conveniently be represented as the volume common to the crystal and its 'ghost’ or
double, displaced a distance ¢ in the hkl direction. 7 is then the value of ¢ for which
V(t) becomes zero. V(t) is clearly an even function, since displacements of +¢ and
—t are equivalent, and the line profiles arising from crystallite size are thus always
symmetrical, irrespective of the nature of the size distribution. /{(s) for crystals having
any shape for which V() can be expressed as a cubic in ¢ with constant coefficients
and continuous derivatives has been derived by Wilson [1962]. This mainly applies
to morphologies having cubic symmetry, but V (¢), and hence I(k), can readily be
calculated for other regular shapes. For example, Langford and Louer [1982] have
considered the case of cylindrical crystallites, Vargas et al. [1983] hexagonal prisms,
etc. Cylindrical morphology is often a suitable approximation when crystallites are
prismatic, acicular, or have the form of platelets. In practice, it is frequently observed
that crystallites tend to be approximately equiaxial, such as in powders produced
by sol-gel or hydrothermal decomposition, or cubic oxides obtained from solid-state

reactions. Such particles can then be regarded as having on average a spherical
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morphology. For a spherical crystallite, according to Langford and Wilson [1978]

40, 3l [t
Ast; D)= —L =1 — — :
st D) V(0) 2D ' 2D? (3:3)
and the line profile is given by
_ - (mD* 1 2sin(s) 4sin®(s/2) ,
oy =100 = (T ) {5 - EE B )

where D is the diameter and s = 27kD.
The normalised formula for the peak profile function fg(k; D) is derived from the

Eq. 3.3:

fs(k; D) = /D As(t: D)e =20 dg — 3D {i _ Zsin(s) | 4sin’(5/2) } . (39)

_D 2 s? st

It should be noted that the following relations,
Is(k; D) = (= D*/6) fs(k; D) (3.6)

are readily derived from the above equations.
It is assumed that the crystallite size obeys lognormal distribution with the median

m and logarithmic standard deviation w, the density function of which is given by

Jin(Dym,w) = le 5= P {—W} : (3.7)

and the cumulative distribution function is

1 In(D
Fin(D;m, w) — = erfe {—M} , (3.8)
2 2w
where the function erfe(x) is the complementary error function defined by
. 2 [T
erfe(r) = — exp(—t?)dt. (3.9)

It should be noted that geometric standard deviation, which is also frequently

used in literature, is equal to exp(w).
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The properties of the lognormal distribution have been reviewed by Langford et al.

[2000]. The jth moment of the distribution is given by

(D7 = /0'00 DY frn(D;m,w)dD — m? exp (j2;2) : (3.10)
from which the arithmetic mean is
(D) = mexp(0.5w?), (3.11)
the variance is
0® = (D)? [exp(w?®) — 1], (3.12)
the area-weighted mean is
(D)s = égzi = mexp(2.5w?), (3.13)
and the volume-weighted mean is
D)y — ég:i  mexp(3.502). (3.14)

The diffraction peak intensity profile from lognormally distributed spherical particles

(SLN) is given by
Isin(k;myw) = /000 Is(k; D) fun(D;m,w)dD, (3.15)
while the normalised formula is given by
fsn(k;m,w) = /000 fs(k; D) fin[D; mexp(3.5w?), w]dD. (3.16)

Although it is difficult to solve the integral in equation (3.16) analytically, the

exact solution of the Fourier transform

ASLN (t; m, w) = / fSLN(k; m, w)e(_2mkt)dk (317)
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is available [Ungar et al., 2001]. The solution is

Agin(t;m,w) = (1/2)erfe{[In(|t|/m) — 3w?|/v2w}
—(3]¢]/4m) exp(=2.5w?) erfc{[In(|t| /m) — 2w?|/V 2w}

+([t]? /4m?) exp(—4.5w%) erfc{[ln(|t|/m)]/\/§w}. (3.18)

Even though the SLN profile is clearly defined by equation (3.16) in integral form,
it is not easy to evaluate the integral numerically, especially for large values of w.
Langford et al. [2000] and later Popa and Balzar [2002] have proposed the numerical
formulae for evaluation of Eq. (3.16) which are valid just for small values of w. As
it was showed by Ida et al. [2003], the method describe in §4.4.1 can be also used to
the evaluation of the SLN function fspn(k;m,w) with only slight modification, which

gives the following equations [Ida et al., 2003]:

Joun (ks m,w) ~ Ho S0 wig,/ G, (3.19)

Do = mexp(4w?), (3.20)

Go - (wk)~‘arctan(37kDo/2), (3.21)

Hy -~ 27  exp(—0.5w?) G, (3.22)

& = x;Go, (3.23)

D} = (4/3nk) tan(nk§;), (3.24)

Dy =mexpldw? — 2 2werfe™ (D) /Dy)], (3.25)
9; = Js(k; Dy)/ Dy, (3.26)

G, = (3/4)[1 + (3kD'/4)} 7Y, (i = 1,..., N) (3.27)

where {x;} and {w;} are the abscissas and weights of the Gauss-Legendre quadra-

ture.
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Figure 3.1: The SLN profiles for the median m - - exp(—3.5w*)({D)y - - 1) and the
logarithmic standard deviation w = 0,0.5, 1, 1.5. Markers denote the values obtained
by the Fourier transformation.

The SLN profiles for w = 0,0.5,1,1.5, calculated by the Eqgs. 3.19-3.27 using
16-term numerical integrals, are shown in Fig. 3.1. All of the calculated profiles
coincided well with those derived from the inverse Fourier transform of Agyn(t;m,w)

calculated by equation (3.18).

3.1.1 Comparison with the Voigt profile

The lognormal distribution for spherical crystallites is characterized by two parame-
ters, the average diameter (D) (Eq. (3.11)) of the particles and the dispersion o2 (Eq.

(3.12)). It is convenient to define the dimensionless ratio [Popa and Balzar, 2002]
c—o*/(D)? (3.28)

The simulated diffraction data, calculating with Eg. (3.19-3.27), for various crys-
tallite size and dispersion were used to find the region where a simple Voigt profile
can be used. The Voigt approximation was done using commercial available software

TOPAS v2.1.
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Figure 3.2: Fitting (blue line of the simulated profile (red line) for spherical crys-
tallites with lognormal size distribution with (D)y = 10nm and ¢ = 0.2.
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Figure 3.3: Fitting (blue line) of the simulated profile (red line) for spherical crys-
tallites with lognormal size distribution with (D)y = 10nm and ¢ = 0.3 .

As can be seen from Figs. 3.2-3.5, the pseudo-Voigt function shows a satisfactory
approximation for the size-broadened profile only for ¢ < 0.4. For higher value of ¢, a
second Lorentz function must be added [Popa and Balzar, 2002]. Its weight increases

with increasing of ¢. The weight of the Gauss component decreases with increasing
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Figure 3.4: Fitting (blue line) of the simulated profile (red line) for spherical crys-
tallites with lognormal size distribution with (D)y - 10nm and ¢ 0.4.
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Figure 3.5: Fitting (blue line) of the simulated profile (red line) for spherical crys-
tallites with lognormal size distribution with (D)y - 10nm and ¢ 1.0.

of ¢ and from approximately ¢ = 0.3 it is negligible. It gives the range where Single-
line Integral Method (see §2.3.3) can be used. Although Langford et al. [2000] have
suggested that the Lorentzian or 'super-Lorentzian’ size effect might be attributed to
a non-unimodal size distribution, both shapes can be rather naturally explained by

the unimodal lognormal size distribution with large logarithmic standard deviation,
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as has been concluded by [Popa and Balzar, 2002]. Furthermore, 'super-Lorentzian’
[Wertheim et al., 1974] line profiles, which have been reported [e.g. Plevert and Louer,
1990], are also likely to be observed in the case of a broader size distribution (see Fig.

3.5).

3.2 Strain profile function

A Gaussian strain profile function was assumed which should be adequate, according
to others [e.g. de Keijser et al., 1982; Delhez et al., 1993; Wu et al., 1998al, for samples
with microstrain values in the vicinity of 10 or less. Examples for the adequacy of
the use of the Gaussian strain profile were found in CeO, powders (ca. 0.33- 1073 -
Popa and Balzar [2002]), a — AI,O5 whisker composites (ca. 0.7 - 107® - Balasingh
et al. [1991]) and cold-work nickel, nitrided steel and liquid-quenched AlSi alloy (ca.
2.0-107%,1.4-107% and 1.3 - 107 respectively - de Keijser et al. [1982]). It is worth
noting that the Gaussian strain distribution function describes the configuration of
strain probability in the crystal space, while the Gaussian profile function specifies a

profile-shape function. The strain profile function takes the form

M] (3.20)

fStrm'n(e) - ]O €eXp [_ W2

where W, is the full-width at half maximum intensity and can be associated with the

integral breadth for strain 3. as

W
p= (330
The maximum (upper limit) strain, €, can be calculated using
B, — 4etanb, (3.31)

where 0, is the Bragg peak position. For Gaussian strain distribution, the root mean

square strain, €., , can be determined as [Stokes and Wilson, 1944]

()

e

Erms — A —€ (3.32)
T
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The overall convolution profile function for both size and strain effects can then

be expressed as
(20 — 26,)
— (3.33)

where S is a scale factor which keeps the area under the profile constant. The

F(e,D,0) =S fspn @exp

calculation of above convolution was done using the technique described in §4.4.1.



Chapter 4

Development of the approximation for instrumental function

In the following chapter a new approach to approximate the total instrumental func-
tion based on physical properties of diffractometer is presented. There are no limi-
tations on the size of the source, sample or receiving slit, or the axial or equatorial
divergence. The proposed method, valid over a full range of 20 from 0 to 1807, can
be applied to different diffractometer geometries and can be implemented in different

refinement programs.

The line profile in X-ray powder diffraction for a monochromatic beam is deter-
mined by sample broadening and instrumental aberration. According to Klug and
Alexander [1974], this can be represented as the convolution of a pure diffraction

profile f and an instrumental function h (Eq. 1.1).

The following diffractometer factors affect the instrumental function: angular non-
uniformity of the intensity distribution, deviation of the flat specimen surface from
the focusing circle, axial divergence, specimen transparency and the finite width of
the receiving slit. Misalignments of the diffractometer, among them the deviation of
the sample plane from its ideal position, will also cause the changes of instrumental.
Additional optical elements, such as a crystal monochromator or analyzer, will also in-
fluence the instrumental profile. Alexander [1954] supposed that each of these factors
can be described by a separate instrumental function and that the total instrumental
function can be calculated as a convolution of specific instrumental functions. The
instrumental aberration causes three effects: a shift in the peak position, a change

in the profile width and an asymmetry of the profile. The influence of the different

64
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instrumental factors on the profile, especially for estimating the shift in the peak
position, are considered in detail by Wilson [1963]. According to Klug and Alexan-
der [1974]; Wilson [1963], the axial divergence is the most important contribution to
the total instrumental function. The calculation of the axial instrumental function is

considered by Cheary and Coelho [1998]; Finger et al. [1994]; Ida [1998a].

The most, complete approach based on the convolving of specific instrumental func-
tions is realized in the fundamental parameter approach (FPA) developed by Cheary
and Coelho [1998]. Special attention was given to calculate a specific instrumental
function caused by axial divergence. The representation of the total instrumental
function as a convolution is based on the supposition that specific instrumental func-
tions are completely independent. To compensate for the lack of knowledge about the
influence of coupling specific instrumental functions in FPA, it is also necessary to
tune the fundamental parameters in order to allow a best fit for the experimental data
[Cheary et al., 2004]. The other approach to calculate the total instrumental function
is ray tracing, in which the contribution of all possible incident and diffracted rays to
the total intensity is numerically treated. This approach, for example, was followed by
Bergmann et al. [1998] in the program BGMN. The approaches based on ray tracing
are time consuming. Kogan and Kupriyanov [1992] have suggested the calculation of
Fourier coefficients for instrumental functions. It was supposed that primary beam
intensity, transmission and absorption in the system can be represented as a product
of n instrumental functions. This supposition is equivalent to the assumtion that the
total instrumental profile can be consider as a convolution of specific instrumental
functions. The dimensions of the focus and the receiving slit in the equatorial plane
were assumed to be so small that they can be neglected. Honkimaki [1996] suggested a

method for the calculation of the instrumental function based on the consideration of
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all possible paths in the diffractometer, in which the second order terms in the equa-
torial axial coupling were taken into account. Recently, Masson et al. [2003] showed
that, for highresolution synchrotron powder diffraction, the instrumental function can
be represented as a convolution of four specific instrumental functions describing the
equatorial intensity distribution, the monochromator and analyzer transfer function,

and the axial aberration function.

4.1 The effect of the spectroscopic profile of the K, emission spectrum

of copper

A knowledge of the exact shape of the main lines of X-ray emission spectra and their
analytical description is necessary for the detailed evaluation of diffraction experi-
ments. There are some different approaches for explaining the asymmetric line pro-
files by physical arguments, which are likewise contradictory. The asymmetric shape
of emission lines is usually assumed to be due to non-resolved multiplet splitting of
the lines. According to Tsutsumi and Nakamori [1973], the K,; and K o lines of the
iron group elements and of copper are composed of two component lines due to the
splitting of the L or L levels, respectively, into two sublevels caused by exchange
interactions between the electrons of the incomplete shells. They suggested that both
of the components are skewed Lorentzians. An attempt to describe the observed
fine structure of the CukK, spectrum by means of a sophisticated multiplet model
was made by Sauder et al. [1977]. They attributed the structure of the spectrum to
transitions between double vacancy states. However, this fine structure was not con-
firmed by other workers [Bremer et al., 1982], that found the spectrum to be smooth.
A description assuming five Lorentzians to be superimposed was also given for the
more complicated CuKg 3 profile [Bremer and Serum, 1979]. Another approach to

the CuK, spectrum consists in the separation of a symmetrical curve as represented
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by the short-wavelength side of each line and taking the difference from the observed
intensity distribution as a likewise asymmetric ‘satellite line’ [Bremer et al., 1982; Par-
ratt, 1959]. The satellite line is assumed to be result from Auger processes [Bremer
et al., 1982]. None of the above approaches leads to a simple analytical expression
for the CuK, emission spectrum. A simple description of the asymmetric line pro-
files by considering them as two half-dispersion (Lorentzian) curves having different
half-widths, as proposed by some workers [Finster et al., 1971; Ladell et al., 1959]
is not relevant from the physical point of view and not compatible to the observed
spectral distributions. In order to obtain a sufficiently simple analytical description
of the spectrum, a calculated distribution was fitted to experimental data assuming
a doublet model of each K, line.

The spectrum for the above model may be written as a superposition of four
symmetrical component lines, each described by the following dispersion equation
(Lorentzian curves [see e.g. Agarwal, 1979]):

B Q; '
S\ ]21: - [%(A - Aj)r (4.1)

where A is the wavelength, A; - the peak wavelength of a single line, w; its half-
width and @); the relative peak height, 7 equal 1 and 2 for K,, and 3 and 4 for
Ka, , respectively. The distribution function S(A) is experimentally determined by
means of the integrated intensity R(f) reflected by the net planes of a single crystal
(O-glancing angle). The wavelength variable is transformed exactly to the 0 scale by

considering angular dispersion es follows:

2 2M;
w_j()\ —Aj) wi;(cosx +sinxcotf; — 1) (4.2)

with x = 0 — 0;.
All the parameters characterising the spectrum are given in Tab. 4.1. They are

based on the values of Bearden [1967] for the K,, and K, lines, which are generally
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Figure 4.1: X-ray CuK, emission spectrum as calculated from spectrum parameters
(Table 4.1). Full lines, component spectral lines;
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Table 4.1: CuK, emission spectrum parameters

accepted at present. The X-ray Culk, emission spectrum as calculated from spectrum

parameters (Table 4.1) is presented in Fig 4.1, whereas Fig. 4.7 shows the dependence

of the Culk,, spectroscopic profile on the diffraction angle.
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Figure 4.2: The dependence of the CukK, spectroscopic profile on the diffraction

angle.

4.2 Axial divergence effect

The axial divergence aberration is due to divergence of the X-ray beam along the
diffractometer axis in the plane of the specimen and is one of the most dominant
instrument contributions. In practice, the axial divergence is most readily recognised
by the asymmetry that introduces into low angle diffraction lines where the low angle
tails extend further than the high angle tails.

In general, a diffractometer will record X-ray counts over a range of measured
angles 20 rather than the true diffraction angle 26,. The only rays for which 20
260y will be those propagating parallel to the equatorial plane and incident on the
diffractometer axis. For a particular ray path the measured diffraction angle 26 for
a true diffraction angle 20y depends on the axial divergence o and 3 in the incident
and diffracted rays (see Fig. 4.3).

In Fig. 4.4 the geometry of powder diffractometry including vertical divergence
is presented. The diffraction angle 26, for given « and 3 is exactly related to the

horizontal angle 20 by the following equation:
cos(26p) = cos(20) cos(a) cos(B) + sin(a) sin(3) (4.3)
or

20 — 20, = arccos(cos(20q) sec(a) sec(f) — tan(a) tan(B)) — 20y = z(a, 5)  (4.4)
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Figure 4.3: Schematic view of a conventional powder diffractometry system with
double Soller slit geometry
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Figure 4.4: Geometry of powder diffractometry including vertical divergence. The
overall diffraction angle and its horizontal component are denoted by 26, and 20; «
and 3 are the angles of the deviations of the incident and scattered beams from the
horizontal plane.

the function z(a, ) can be approximated by

a? + 32

2(a, B) = cot(26y) + afcosec(26,), (4.5)

on the assumption that o and g are sufficiently small. By changing the variables
(o, B) to (x,5) by a = (z +y)/v2 and 8 = (x — y)/V/2, the above relation can be
simplified as [Ida, 1998a]

o —%(ﬁt _ ), (4.6)

where t = tan(6p). Assuming that the vertical window profiles of the incident and
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scattered beams to be fyi(a) and fvo(0), and the horizontal profile to be [y (20— 20),
where 20 is the horizontal angle which defines the position of the receiving slit or the
detector. When we define A20 = 20 — 20, the convoluted profile function P(A20)
has a general form of

P(A20) / / / (20 — 20) fr (@) fua(B)5(20 — 200 — 2)dadBd(20),  (4.7)
where 6(x) is the Dirac delta function. The integration of Eq. 4.7 on 20 gives

P(A20) / / FalA20 = 2) fur () fua(B)dad. (4.8)

When we compare the above formula with the following standard form of convolution:

P(A20) — / Tu(A20 — 2)w(2)dz, (4.9)

where w(z) is the window function to be convoluted to the original profile function

fu(z),w(z) is found to be given by the following integration:

w(2) = [ forlo)fual) o, (4.10)
or alternatively,
, rtuy\ , xr—y\ dy ,
w(z) /f\q (7) f\/g ( \/5 ) adl’ (4.11)

It the Soller slits are ideally designed and the beam source or the detector have
sufficient length in the vertical direction, the vertical window functions should have
the profile of a triangle as illustrated in Fig. 4.5, which is known as a Bartlett window
in the field of time series analysis. The normalised Bartlett window function fg(y)

with the full width at half maximum (FWHM) of ®y is given by

) = 3=~ Ejtortel < . (4.12)

and fg(p) = 0, elsewhere. Usually the Soller slits for the incident and scattered

beams have symmetric geometry, that is,

Foile) = fvalo) = fale)- (4.13)
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Figure 4.5: Profiles of normalized Bartlett and Gaussian window functions with
FWHM (&g, Pg) of 1

As it was proposed by Ida [1998a] the double vertical Bartlett windows can be
approximated by vertical Gaussian windows (Fig. 4.5), the analytical solution of
which is easier owing to the infinite integral range. Furthermore, a model based on
Gaussian windows will be appropriate, if the real Soller slits have random error in
geometry. The normalized Gaussian window function fg(¢) with the FWHM of ¢¢

is given by

Jalp) %/\g—jem {—4(111 2)%} (4.14)
or
Jalp) = \/;\I,G exp {—%} : (4.15)
where
Vg = 2%. (4.16)

When the Soller slits for the incident and scattered beams have symmetric geometry

again,

fvi(p) = fvale) = fale). (4.17)
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Figure 4.6: Horizontal window function wge mapped from symmetric double ver-
tical Gaussian window functions with the FWHM &g = 1 for various ¢ (= tanty)
values [Ida, 1998a).

The horizontal window function wgg has a much more simple analytical form than

horizontal window function wgp derived from Barlett window , that is [Ida, 1998a],

2 t2—1 7 241z
- — | K = 4.18
o= gz | e Ko () (418

where Ko(z) is the modified Bessel function of the second kind. Fig. 4.6 plots the
profiles of the wge(2) function for various ¢ values. The profile of wga(2) is found to
be quite similar to that of wpp(z) [Ida, 1998a].

Fig. 4.7 shows the dependence of the axial divergence aberration functions on the

diffraction angle.
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Figure 4.7: The dependence of the axial divergence aberration functions on the
diffraction angle for the axial divergence angle &g — 5.

4.3 Flat-specimen effect

The basic optics of the focussing powder diffractometer set up for symmetric diffrac-
tion is illustrated in Fig. 4.8. The X-rays are incident at an angle # on an ideal
polycrystalline specimen with a surface radius of curvature p. For diffraction from a
particular hkl plane the common property of all the diffracted rays from the specimen
is that they all deviate through the same angle 20. By simple geometry it can be
shown that all the diffracted rays converge to a focus on a circle which has the same
curvature as the specimen surface. The focus of the diffracted rays defines the po-
sition of the receiving slit. In commercial diffractometers the specimen is invariably
flat and the diffracted beam no longer perfectly focusses.

Fig. 4.9 illustrates the relation of the diffraction angle 26 and the goniometer angle
20, when the incident X-ray beam deviates from the centre of the flat specimen by

the angle . The above three angles are mutually related by the following equation:

2cot © = cot(© + @) + cot(20 — © — ). (4.19)

Therefore, when we define y = 20 — 20, y is given by

y =60 — ¢ — arccot [2cot © — cot(O + )], (4.20)
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Figure 4.8: Focussing in a symmetric powder diffractometer [Cheary et al., 2004].

or approximately [Ida and Kimura, 1999b],
y ~ —2¢°% cot O, (4.21)

for sufficiently small ¢.

When we assume that the peak profile function for the ¢ — 0 limit is expressed
by fo(20 —20y), where 20, is the Bragg angle and ¢ varies from —® /2 to $y /2, that
is, the horizontal divergence angle is defined by ®p, the asymmetrised peak profile is

given by
&g /2
Pp(A20) — (1)) / fo(A20 — ), (4.22)

_(I)H/Q

where A20 = 20 — 20,. The approximated form of (4.22) is given by

1 0
20) ~ —— 0(A20 — y) |y V2 4.2
pa2) = i | (a2 =yl (1.23)

where
2

o
Y = TH cot ©. (4.24)
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Figure 4.9: Diffraction from a flat plate showing the relationship between the mea-
sured angle 20 on the diffractometer and the diffraction angle 20 for a ray at the
outer limit of a beam of divergence .

As it was proposed by Ida and Kimura [1999a], if we compare the above formula with

the standard form of convolution,

p(A20) = / F(A20 — ) (y)dy, (4.25)

where wpy(y) is the window function to be convoluted, the asymmetric window func-

tion for the flat-specimen effect wy (y) is found to be given by

1
|y|_1/2 —— for —yyp<y<0
wi(y) = 2(ym)'? . (4.26)

0 elsewhere

Limitation of the horizontal divergence by the sample width

Although the horizontal divergence angle &5 is primarily determined by the open
angle of divergence/scattering slits (Ppg;ss), the effective angle is limited when the
sample size is not sufficient for covering the irradiated area. Fig. 4.9 illustrates
briefly the relation of the limits of the horizontal divergence and the sample width.

The horizontal deviation angles ¢, and ¢, and the sample widths W, and W, are
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Figure 4.10: The dependence of the flat-specimen aberration function on the diffrac-
tion angle.

exactly related by the following equations:

sin ©

01 = —O + arctan ———— (4.27)
cos © — Lt
R
in ©
@y = © — arctan _me (4.28)
Wy
cos © + N

When W, = W, = W, the effective horizontal divergence angle ®p . is approximately
given by
W
arctan | 2— | sin ©
(2%)

()

where R is the goniometer radius. If ®pg/ss is larger than ®p o5, Py should be deter-

Prerr ~ 01+ P2 = (4.29)

mined by ®p .4 instead of ®pg/ss, and the intensity of reflection should be multiplied
by @ e/ Pps/ss-

The dependence of the profile of wy (y) on the diffraction angle is shown in Fig.
4.10.

4.4 Instrumental function as convolution

The symmetrical part of the instrumental aberration can be described by a Voigt

function Thompson et al. [1987]. The shift of diffraction peaks and their asymmetry
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are mainly caused by following effects: Spectroscopic profile of Cuk, radiations, axial
divergence and flat specimen aberrations.
As it was assumed in the beginning of this chapter the instrumental function is

the convolution of the four above mentioned effects and can be described as:

h = w, ®wy @ wy @ wer, (4.30)

where weyp is the symmetric feature of the profile function given by pseudo-Voigt
function [Thompson et al., 1987], w, represent the effect of Cul{, emission spectrum,
wy the horizontal aberration effect (flat-specimen effect) and finally wy the vertical
aberration effect. The analytical solution is available only for the Lorenz component
of pseudo-Voigt function with wyg. Therefore an efficient method to calculate the

convolution is necessary.

4.4.1 An eflicient method for numerical calculation of convolution

An efficient method for the numerical integration of the convolution was proposed
by Ida [1998b]; Ida and Kimura [1999b]. The method is applicable to any kind of
aberration functions and the basic idea of this method is to substitute the variable ¥

of the integral
b

! (x — y)w(y)dy (4.31)
by the following equation:
_ ) - Flz—y),
¢ = W )
=y = - F! {F(x) — WW*(@} , (4.32)

where we assume that the peak of f(x) is located at x ~ =z and the primitive

functions of f(x) and w(y) are approximated by F(z) and W (y), respectively. Then
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the approximate formula based on numerical integration is given by

e -t
~wif (- y)w(y) |
2 T WG] (433
where we define
W= o- ) - CO =)y (4.3
& = a+ (B—a)x, (4.35)
o = wik E;C(L)__Fl(f(;o)a) (z — x0)] (4.36)
_ F(z) — F(xz —b)

8 = W] Fa) — Flay) (x — x0)], (4.37)

and z; and w; are the Gauss-Legendre abscissae and weights associated with the ¢th

point [Press et al., 1986].

4.4.2 Non-linear Least-squares Optimization

In the least-square procedure, a model is presumed to be optimal when the sum S of
the squares of the differences between the measured and the calculated patterns are

as amall as possible, that is when

S = Z wm(yo,m - yc,m)2 (438)

reaches a minimum. Here, y,,, is the observed step intensity, y. ., is the correspond-
ing calculated value, and w,, is the weighting factor for point m in the pattern which
is normally set as the reciprocal of the variance of the measured intensity at point m,
le. Wy — U% The calculated intensity is given by summing the contributions from
neighbouring Bragg reflections and background bkg,,.

The non-linear least-squares refinement C++ code has been written for profile

fitting, using equation (4.30), based on the standard algorithm given by Marquardt,
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Figure 4.11: Agreement between calculated and measured XRD patterns fot the
LaBs SRM660a standard samples. The observed data are indicated by red circle and
the calculated profile the continuous black line in the same field. The lower plot is
the difference between the calculated and measured patterns.

which is also known as the Marquardt or Levenberg-Marquardt method [Marquardt
1963; Press et al. 1989).

Refinement quality is assessed using the difference plot and the Criteria of Fit
(CoF). The difference plots were used to compare the agreement between calculated
and measured patterns. For example, Fig. 4.11 shows the agreement between cal-
culated and measured XRD patterns for the LaBs SRM660a standard samples. The

Criteria of Fit comprises

e profile R-factor, £,

> Yo — Yeml
R, = d d 4.39
\/Z [Yom — Uhignl (4:39)

o weighted profile R-factor, R,

> Wa(Yorm = Yem)? (4.40)

Hur > wm(%,m — bkgm)?
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e R-expected, R,

S>M-—P
exp — 4.41
Hosp \/Z wm(yom — bk gy)? ( )

where M - the number of data points and P - the number of parameters

e "Goodness of fit" (GoF) index, GOF

Rw Z wm(yom — Ye m)2
F="7 _ \/ : ’ 4.42
GO = M—P (4.42)
e Bragg R-factor, Rp
Z |Io k— [c lc|
Rp — &2 % 4.43
B STt (4.43)

4.5 Experimental proof of the proposed model for instrumental function

The quality of the proposed model for instrumental function approximation was tested
by least squares fitting of experimental data sets resulting from the reference mate-
rials LaBg (NIST SRM660a), Al,O3 and SiO,, respectively. A Siemens D5000 X-ray
diffractometer with CukK,, radiation tube as the X-ray source was used in this study.

In Figs. 4.12 and 4.13 the fit of selected peaks for LaBgs and Al,O3 standard
samples are shown. The observed asymmetry of the peak is well reproduced by
the model functions. It would be unrealistic to expect the refined parameters for a
diffractometer to match the directly measured values exactly as there are a number of
second-order effects in diffractometer profiles that are not incorporated in the fitting
model. Moreover, not all of the instrumental aberrations are independent and such
a convolutional model is not strictly valid for a certain combinations of aberrations
[Cheary and Coelho, 1992]. Nevertheless, the differences in the parameters for the
instrumental function obtained by LaBs and Al,Oz (see Table 4.2) do not exceed
10%. It was observed that when deliberate changes were made to the diffractometer
set-up, such as changing the receiving slit width, the change in the refined instrument

values corresponded well to the actual changes.
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Figure 4.12: Results of fitting 110, 210, 300, 321, 410 and 421 profiles from LaBg
with the parameters shown in Table 4.2. GoF = 2.1. Red circles represent observed
profile and black line - fitting profile.
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the observed profile and black line - fitting profile.



84 4. Development of the approximation for instrumental function

Table 4.2: Fitting parameters for LaBg and Al,O3 diffraction data based on Eq.
(4.30)

LaB, ALOs;
we,? | 3.5-10°2 | 4.1-1072
wr | 5.46-1072 | 4.8 - 1072
$y 0 | 2.23 2.33
by 1.34 1.21

The established instrumental parameters describe specific configuration of diffrac-
tometer if they are in a good agreement with their actual values. Therefore they can
be used as fixed parameters in the further fitting routine for different samples.

The quality of fitting a SiOs profile using the previously defined parameters are
shown in Fig. 4.14. As parameters for the instrumental function the average values
from Tab. 4.2 were used. Again, no significant error was found in the fit. Hence, the
proposed model is in practice a useful compromise between accuracy and numerical
effort.

The proposed approximation for instrumental function offers a number of benefits
in comparison with empirical methods based on splitting Voigt or Pearson VII func-
tions approximations (see §2.1). The application based on a physical model of the
diffractometer and its refined parameters should be self consistent with physical di-
mensions of the diffractometer. On this basis it can therefore identify whether or not
a diffractometer operates at optimum resolution for the conditions used and provides
a means for assessing the performance of a diffractometer in a particular application.
The number of parameters which are necessary for successfully description of the in-
strumental function are dramatically decreased (from 18 in the case of split Pearson
VII function (see §2.1) down to 4 parameters) which made the fitting routine more

stable and instrumental function more reproducible from sample to sample.
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4.6 Deconvolution of the instrumental aberrations from powder X-ray

diffraction data based on a Fourier method

It has been well recognised that experimental X-ray diffraction profiles are convolu-
tions of the incident X-ray spectral distribution, the various instrumental aberrations
and the intrinsic diffraction pattern of the powder or polycrystalline sample [Ladell
et al., 1959]. A variety of methods have been proposed for the elimination of instru-
mental broadening, including that caused by the oy — ap doublet [Rachinger, 1948;
Stokes, 1948; Keating, 1959; Gangulee, 1970; Ladell et al., 1975]. However, none of
these methods can be used to eliminate the instrumental aberrations from the entire
observed diffraction pattern in a one-step operation. The other methods restrict the
solution of this problem to a small part of the pattern (a single diffraction line). It is
impossible to deconvolute all of the instrumental effects from an entire diffraction pat-
tern by a standard Fourier method, because the profile of the instrumental function
for powder diffractometry is varied in a complex manner depending on the diffraction
angle 20. No significant improvement has been achieved in Fourier-based methods for
the elimination of the instrumental aberration from experimental peak profiles, after
the pioneering work of Stokes [1948] except the following application.

One of the best Fourier based approaches to deconvolute the instrumental aber-
ration functions from the experimental powder X-ray data has been proposed by Ida
and Toraya [2002]. This method is based on the combination of scale transformation,
interpolation of data and fast Fourier transformation. In this method the effects of
axial divergence, flat specimen, sample transparency and spectroscopic profile of the
source X-ray are eliminated from the entire observed diffraction pattern in the next

steps:

e The elimination of Kay and the higher-angle component of the axial divergence

aberration on the In(sin @) scale.
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e The elimination of the lower-angle component of the axial divergence aberration

and flat-specimen aberration on the — In(sin #) scale.

e The elimination of the aberration caused by the sample transparency on the

“In[(1 + cos 20) /(1 — cos 20)] scale.
e The elimination of symmetric feature of the profile function.

It is well-known, that the Fourier based deconvolution always exaggerates the noise
in the source data. To suppress the unwanted increase of the noisy structure Gaussian
filtering of the signal was performed after each deconvolution step. It is obvious that
this smoothing process introduces an additional error in the deconvoluted signal,
but it is impossible to avoid this additional filtering, as otherwise, any Fourier based
method will be even not stable against numerical noise introduced by limited accuracy
of calculation.

The simulation of an instrument-broadened X-ray profile was carried out to in-
vestigate the properties and stability of this method. The simulations include the
generation of an obhserved profile from the convolution of an instrumental and spec-
imen profile. The instrument profile was assumed to be as described in §4.4 and
the experimentally defined parameters from §4.5 were used. The instrument profile
function was normalised according to Eq. (5.2). The simulated pattern for nanos-
tructured gold with the median m = 20nm and the logarithmic standard deviation
w = 0.3 according to Eg. (3.33) was used as the specimen profile. Both profiles were
calculated over the interval of 30.0° — 90.0°. The small constant background was
added to simulate the effect of the misfitting error of the background level. Addition-
ally, Gaussian noise, calculated by standard technique was added to the convoluted
result. Its negative value was not restricted despite of strictly positive value of regis-

tered signals. In fact, negative values can arise after background removing procedure.
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The normalised specimen and instrumental profiles, as well as the simulated observed
profile for different noise level are given in Figs. 4.15, 4.16 (Top).

It is easy to see (Fig. 4.15) that in spite of additional smoothing procedure the
Fourier based deconvolution still causes dramatically increase of noise in the decon-
voluted profile. Even with relative small instrumental noise (~ 10%) this technique
became absolutely not stable (see Fig. 4.16). Therefore for the successfull applica-
tion of this method to the real experimental data they have to be fitted first with
some empirical functions (like split Pearson, split Voigt and etc.) and then a Fourier
based deconvolution can be applied. But this fitting procedure will suppress or at
least distort information about peak shape. As it was shown in Chapter 3 the in-
formation about specimen properties like size and strain distributions is hidden not
just in FWHM but also in peak shape. Therefore, applying this additional fitting
routine, it will be impossible to retrieve this information after the deconvolution.
Additional disadvantage of the above described technique is its dependence on the
concrete analytical form of the approximation of the instrumental function. Hence,
the introduction of additional effects to describe the instrumental function requires
an additional deconvolutional step and scale transformations that will decrease the
stability of this procedure even more.

Therefore the development of new deconvolution technique which should be fast,
independent of concrete analytical form of the instrumental function and more reliable
in terms of stability, especially in the case of large non neglectable experimental noise,

is required.
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Figure 4.16: Results of applying Fourier based deconvolution technique.
Top - simulated powder diffraction pattern for Au (111, 200, 220, 311 and 222 reflections) with m = 20nm and w = 0.3
(red line) convoluted with experimentally defined instrumental function and superimposed with 10% random noise and

background signals (green line). Bottom - the deconvoluted (green line) and original (red line) patterns.



Chapter 5

Superresolving reconstruction of signals in X-ray

diffractometry

The restoration of ‘pure’ specimen profile F'(z) from the experimental results obtained
by means of X-ray diffractometry is the typical problem of super resolution. This leads

to the solution of the inverse problem:

G@t) - H{L, F(2)} 1) / F()h(t, 2)dz + n(t) (5.1)

where F'(t) is measured profile, h(t, z) is the instrumental function of the diffrac-
tometer, n(t) is the additive noise. All the physical magnitudes are assumed to have
dimensionless form and the operator H is renormalised in the following way:

_ J1S PR, 2)dz| dt :1

H
= P

(5.2)

This idealised problem of the restoration F'(z) leads to the determination of inverse
operator !

H 2, G)) = F(2) (5.3)

and can be solved in different ways depending on the concrete form of the trans-
formation H on conditions that the random noise is absent. The practical problem
of the restoration is the determination of the estimation ['(z), which describes the
true distribution of F(z) satisfactorily (better than G(¢ = z2)). The limitations of
accuracy during the solution of practical problem are determined by the influence of
the additive noise n(t) which can not be removed from experimental measurements.

Therefore, from possible solutions of an idealised problem for practical applications,

91
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only those which provide stability of a solution against noise and with acceptable

accuracy should be chosen [Beyts and Mak-Donnell, 1989)].

The aim of this chapter is the investigation of the effectiveness of the methods
of multiplicative inverse filtering for superresolving restoration of "pure" specimen
profile in X-ray diffraction experiments.

Let us examine an idealised problem.

The shape of instrumental function of diffractometer h(t, z) depends on different
physical factors and structural specifications of device. In the following work it is
assumed that the function h(t, z) can be described as shown in chapter 4. It is easy
to see from Eq. (4.30) that the kernel h(t, z) is invariant by the displacement of the
argument (h(t,z) # h(t — z)) and non self-adjoint (h(t,z2) # h*(z,t)). Therefore,
inverse transformation (5.3) should be presented as numerical procedure which takes

onto account listed properties of direct transformation kernel.

Let us determine the left and the right iterated kernels R;(z1, 22), R,(t1,12) as:
Rl(zl, Zg) - / h(t, Zl)h(t, Zg)dt (54)

Rf,«(tl,tg) ~/h(t1,2)h(t2,2)dz (55)

From the determination (5.4), (5.5) and boundedness of functionh(t, z) follows that
Ry (21, 22) = Riy(20,21) and [ |Rlyr(z1,z2)|2dz1dz2 < +}o00. Therefore, there exist the

solutions ¢;(2), ¢;(t), )\lj’r, j = 1,2, ... of spectral problems
[ B stz = 00,2 (56)

/' Re(ty, )5 ()t = (X)) ?5(t2) (5.7)

which have the following properties:

1. the functions {¢;(2)} and {;(t)} are orthonormal bases in corresponding spaces;
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2. )\lj:)\;E)\j>O;
3. The operator I implements the representation ¢; < ¢;, therefore:
[ 120 = 2,2 5.9
[ 120500z = A0 (5.9)
The solution of idealised problem (5.3) can be described as
10 -3 hol) (5.10)
j=1

The measured output signal of the diffractometer can be presented as a series expan-

sion in basis functions {¢;(¢)}:

G(t) = Zgj%’(t) (5.11)
where
5~ [ecwa (5.12)

It should be mentioned that the sets of coeflicients {g;} and {f;} contain all the
information about the functions G(t) and F(z) and should be interpreted as their
generalized spectrums. According to (5.8), (5.9) there is a relation g; — A;f; between
the expansion coefficients which determines the transformation of signal spectrum by
the recording system. Therefore, the sequence of proper numbers {A;} is the transfer
characteristic of the recording system. The reconstruction of profile /'(2) in common

spectral presentation leads to the elementary operation :

95
=3, (5.13)

The relations (5.12), (5.13), (5.10) determine the inverse operator H™' as a simple

inverse filter {\;'}. The application of this filter provides a precise reconstruction of
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‘pure’ specimen profile according to the measurements made with low resolution on
conditions that the noise is infinitesimal.

The practical application of this simple inverse filtration for the restoration of a
signal credited with considerable limitations, which depend on the noise component
n(t). The difference between a real, experimental and in idealised problem of recon-
struction is the obligatory presence of additive random constituent in the measured
signal G(t) (at least as the precision of measurements is limited). The correctness of
the above mentioned statement can be understood from the analysis of Egs. (5.1),
(5.12), (5.13). Therefore, the inverse filtering of the signal G(t) leads to a spectrum

{v;}, which is the sum of the required spectrum { f;} and a random noise component:
] "; =
vi=Ji++ (5.14)

The diffractometer has a limited discrete resolution, therefore, its transfer character-
istic decreases in a high frequency region as fast as the device resolution decreases:
Aj ]—>—o<>) 0. Therefore, with increasing j, a random component increases unlimited
those leads to the complete destruction of the solution by the use of an inverse trans-
formation (5.10). Thus, the solution of the practical restoration problem requires
the limitations of an influence of high frequency noises. This can be made by the
replacement of the inverse filter {A\;'} by some regularisation filter H='(),), whose

transfer characteristic has to coincide with {)\j_l} in the region of low j and has to

decrease to zero by 7 — +oo:

ﬁ_l()\j) ~ )\j_l, )\j > Ag (515)
H_l()\j) — O, )\j << AO (516)

The value Ay determines a division of the signal spectrum into informative and

noisy regions and is proportional to the effective level of noise (in the case of weighted
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noise to its root-mean-square amplitude).

The simplest method of the restoration of the experimental regularisation problem
leads to the use of a procedure when in expansion (5.10) only a limited number of
coefficients f; comprises, which corresponds to relative high values of \; [Piskarev
et al., 1997]. Such a procedure is equivalent to the filtration of the spectrum {f;} by

the inverse rejector filter with its transfer characteristic

)\]'_17 j < JO

YN, o) = (5.17)

O, j>J0

The approximate solution {f;} of the restoration problem can be described as :

fi=H (N, Jo) - g5 (5.18)

The transition {f;} — F(2) is achieved by the use of (5.10).

The rejection limit Jy depends on the noise level and on the velocity of the decrease
of proper numbers A\; and should be chosen in the following way: noise constituent
must have an acceptable amplitude. The disadvantage of rejective filter is the "break"
of its transfer characteristic at j Jo. In most cases it leads to significant distor-
tions of the retorted signal. For this reason, a regularisation filter with a smoothed
characteristic is desired for the practical use.

Smoothed filters with the properties (5.15) are built by cutting the inverse filter

extension into the power series:

1
v dal—m\)F ke z (5.19)
J 2

The kind of the regularisation filter is determined by the choice of expansion

coefficients ag, constant 7 and order of filter K:

H7' (O, K) =) (1= 7hp)F (5.20)
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The methods of the solution of the restoration problem by applying the filters
(5.20), are nothing else but the modification of a Tikhonov inverse problem reg-
ularisation procedure for a generalized spectral representation (5.10), (5.11). The
particular feature of Tikhonov filters is the possibility of their optimization by differ-
ent parameters (K, ag, 7) for obtaining the best solution. Unfortunately it is rather
difficult to determine a well-founded criterion for such an optimization even for one
problem. Therefore, the effectiveness of Tikhonov regularisation technique in most
cases depends on the experience of the researcher.

The problem of the creation of optimal regularised inverse filter leads to the solu-
tion of the next statistical model.

Let us imagine a sequence of measurements (G| (t),G2(t),. .., which corresponds to
the specimen profile F(z), F5(E),.... It is supposed, that the ensemble of all possible
realisations of the signal { F(2)} and the noise {n(t)} create crossuncorrelated central
random processes with certain correlation functions (F'(21) F'(22)) and (n(t1)n(t2)) and
corresponding to spectral density matrices (f;fx) and (n;m), respectively (brackets
denote the realisation ensemble averaging). The filter lf];p%()\j) is supposed to be the
statistically optimal inverse filter, if it minimises the root-mean-square restoration

error in means of ensemble:

o2 (E) — <‘F(t) — R

2
> = min (5.21)
The solution of the problem (5.21) can be presented as the multiplication of the simple

inverse filter with some regularisation filter W(\;):

i) W) (5.22)

J
Then the problem (5.21) leads to the construction of the filter W (\;), which optimally
recovers the signal f; from the noisy invert signal v; (5.14):

F0 = S W0 a6 -5 (Wos W) a6 62

J J
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According to (5.10), (5.21), (5.23) the root-mean-square error:

: niM;
=S (0 (1= wo = wou)+ P wogwon)
gk I
(5.24)
It is known that the minimum root-mean-square error of signal by the use of a linear

filter is equal to the difference between signal dispersions and estimation [Levin, 1989).
ohin(2) = () = (()) (5.25)

Using (5.10), (5.23) the equation (5.24) leads to:

ohun(s) = B4 I ) (4559 0= WO O = WO 00 ) .26

The derivation of Egs. (5.23), (5.25) implies the noncorrelatedness between signal
and noise.

For the determination of W();), the results of integration (taking into account
the orthonormalisation of the basis {¢;(2)}) of the Eqs. (5.23), (5.25) should be
compared. After the transformation of the result of integration and taken into account

arbitrary of (f; fi), (njnx), the W(\;) can be described as the generalized Wiener filter:

<f> o
W) = (5.27)

Then optimal inverse filter is defined as:

(5.28)

<m>
(f3)

The relation (n?) /(f7) contain the parameters of additive noise in the output of the

A2+

system and in the input of the signal and, therefore, is not suitable for the practical

application. Thus, it can be replaced by some constant y, which on the assumption
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of (5.2) can be seen as rough estimate of the noise/signal ratio in the output of the

system.

The optimization procedure for the inverse filter requires some additional remarks.
First of all it is considered that {F(z)} creates a random centre process, which is
not veridical, because the profile F(z) is a positive quantity. Thus, before the im-
plementation of the Wiener filter it is necessary to perform the preprocessing of the
experimental results in the way that they correspond to the ‘signals’ F\(z) — (F(2)).
The Wiener filter (5.28) minimises the root-mean-square error of the restoration sig-
nal. However, it is not a necessary criterion of the quality of experimental restoration
problem. For creation of the optimal filter it is necessary to know the diagonal ele-
ments of the matrix of spectral distribution (f7) of the ensembles {F,(z)}, which are
not known exactly and are designed by using some general considerations about the
signals. At the same time specific restoration signal may not be the typical represen-
tative of the model of the statistic ensemble and its restoration error strongly exceeds
the ensemble-averaged one. Therefore, it is necessary to perform the comparative
analysis of the restorations results received by applying of different methods and to
chose only the method which gives the best results for the solution of the concrete

problem.

In this thesis the effectiveness of superresolution methods for the problems of
X-ray diffractometry are investigated by a numerical simulation of an instrumental-
broadened profile. The simulation of experimental data was done as described in

§4.6.

For superresolving reconstruction of signals the programme was written in Math-
works’ MATLAB . For Singular Value Decomposition (SVD) the corresponding algo-

rithm from Regularization Tools package [Hansen, 1994] for MATLAB was used.

The resolution function of the diffractometer in some range [z — Az; 2z + Az] is
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numerically characterised by the half-width of the instrumental function o,(z):

J (&= 2 |h(z, 2)|" dz
Jlh(z0, 2) dz

oi(20) (5.29)

_ fz|h(zo,z)|2dz
Z - f|h(zo,z)|2dz (5.30)

The enhancement of the resolution using inverse filtration can be estimated by defining

in the same way the half-width o;(zy) of the reconstructed profile Fs(z, 2):

Fs(2,2) = H™! {G; /(5(z - zo)h(t,z)dz} (5.31)

In Fig. 5.1 the reconstruction of a specimen profile (simulated by Eq. (3.19) with
m = 100nm and w = 0.2) using inverse rejection and optimal filters is shown. The pa-
rameters of the filters were selected in proportion to small noise level (<3%). It is pos-
sible to achieve approximately the same improvement of resolution o,(z2) /os(20) ~
2.5 with those filters. The profiles recovered using inverse rejection filter have side
lobes related to the above mentioned ‘break’ in its transfer characteristics. The infor-
mation about the resolution of the inverse filter is useful for the analysis of restoration
results: signal features which correspond to the segments Az < oy, should be inter-
preted as random ones. Besides, the rational approach of the restoration problem
expects previous smoothing of the experimental data. The value o5 allows to esti-
mate the minimal window of the smoothing filter what does not lead to the loss of

useful information.
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Figure 5.1: Reconstruction of specimen profile (green line) using inverse rejection
filter (b) and optimal filter (c¢). a) - experimental signal (blue line), level of noise -
3%; red line is original specimen profile.
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The stability of superresolving procudures was proved for the optimal filter on the
simulated signal with the levels of additive noise of 3, 5, 10 and 20%. The double
peak profile was simulated by Eq. (3.19) with m : 100nm and w - 0.2. The distance
between two peaks was approximately equal to average FWHM of both peaks. The
results of specimen profile reconstruction are shown on Figs. 5.2, 5.3. The optimal
filter shows high stability, however the overestimation of the noise level y leads only
to slight worsening of the restoration results (Fig. 5.3).

The implementation of superresolution procedures as regularised inverse filtration
leads to the improvement of the level of profile resolution in the problems of X-ray
diffraction as well as to the successfully removing of instrumental broadening form

experimental profile. They show high stability in terms of large experimental noise.
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Figure 5.2: Reconstruction of specimen profile (green line) using optimal filter.
Noise level: a) - 3%; b) - 5%. Original specimen profile - red line; Experimental
profile - blue line.
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5.1 Deconvolution of the instrumental aberrations from powder x-ray

diffraction using regularisation technique

The simulation of an instrument-broadened X-ray profile, described in 4.6, was car-
ried out to investigate the properties and stability of the superresolving method for
the deconvolution of instrumental function proposed in the previous section. The sim-
ulated pattern for nanostructured gold with the median m = 20nm and logarithmic
standard deviation w = 0.3 according to Eg. (3.33) was used as the specimen pro-
file. Both profiles were calculated over the interval of 30.0° —90.0°. The low constant
background was added to simulate the effect of the misfitting error on the background
level. Additionally Gaussian noise, calculated by standard technique was added to
the convoluted results (its negative value was not restricted as they can arise after
the background removing procedure). The normalised specimen and instrumental
profiles, as well as the simulated profile for different noise levels are given in Figs. 5.4
- 5.7 (Top).

For superresolving reconstruction of signals programmes in Mathworks’ MATLAB
were written. For the Singular Value Decomposition (SVD) a corresponding algorithm
from Regularization Tools package for MATLAB was used. The optimal regularisa-
tion parameter was choosen according to the algorithm proposed by [Kojdecki, 2004].

The results of the nanostructured gold profile reconstruction are shown in Figs. 5.4
- 5.7. The calculated lognormal distribution parameters from recovered gold profile is
presented in Tab.5.1. It is easy to see that the recovered parameters are in discrepancy
to original parameters within experimental error.

It is easy to see (Figs. 5.4-5.7) in comparison with results received by Fourier
deconvolution (Figs. 4.15-4.16) that the optimal filter shows high stability, however
the overestimation of the noise level y leads only to slight worsening of the restoration

results (Fig. 5.7), whereas, with Fourier deconvolution even lower noise level destroys
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Table 5.1: Calculated lognormal distribution parameters from simulated data for

nanostructured Au (m = 20 nm, w = 0.3) with different noise levels.

Noise, % | m,nm w
1 2034+0.4 ] 0.294+0.01
3 2084+ 0.6 | 0.28+0.02
5 21.24+0.9 ] 0.26 £ 0.02
10 24.14+25]0.26+£0.04
20 27.1+£3.1 1] 0.224+0.08
30 294445 0.25+0.10

the solution completely (Fig. 4.16). An additional advantage of the above described

regularisation technique is its independence on the concrete analytical form of the

approximation of the instrumental function. Hence, the introduction of additional

effects to describe the instrumental function, or completely changing the model for

describing the instrumental function will just change the form of the kernel h(t, 2),

however, the algorithm for recovering of the specimen profile will stay valid without

any change.
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Figure 5.4: Top - simulated powder diffraction pattern for Au (111, 200, 220, 311 and 222 reflections) with m = 20nm and
w = 0.3 (red line) convoluted with the experimentally defined instrumental function and superimposed with 3% random

noise and background signals (green line). Bottom - the deconvoluted (black line) and original (red line) patterns.
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Figure 5.6: Top - simulated powder diffraction pattern for Au (111, 200, 220, 311 and 222 reflections) with m  20nm
and w = 0.3 (red line) convoluted with the experimentally defined instrumental function and superimposed with 10%

random noise and background signals (green line). Bottom - the deconvoluted (black line) and original (red line) patterns.
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Chapter 6

Application of the developed technique

6.1 Application of the convolution model for strain-size assessments using

Ce02

This chapter reports the application of the convolution model (see Chapter 3 for the
description of the model) for assessing the size and strain parameters of CeOy. The
NIST SRM 660a LaBg standard and AlsO5 were used for the definition of XRD instru-
ment broadening function according to Chapter 4. A comparison of the convolution
size and strain values was made with those for the Voigt integral breadth analysis.
The size values are then compared to TEM results.

Nanocrystalline cerium oxide powder prepared by aging a cerium(III) nitrate so-
lution in the presence of hexamethylenetetramine [Chen and Chen, 1993 was used
for checking the X-ray diffraction data treating algorithm proposed in this work .

In Fig. 6.1, the TEM images of the cerium oxide powder are shown, whereas in
Fig. 6.3, the experimental diffraction profile of the same sample and the reconstructed
‘pure’ specimen profile of cerium oxide using the regularisation technique (see Chap-
ter 5) are presented. It can be seen that the instrumental aberration is successfully
removed without increasing the noise in the reconstructed profile. It should be admit-
ted that the use of Fourier based deconvolution techniques (see §4.6),however, leads
to unacceptable results.

In Fig. 6.3 (Bottom) the fit of a ‘pure’ specimen profile with the proposed convo-
lution model (see Chapter 3) is shown. The parameters obtained for measured CeOx

are: median size m = 4.9 nm, logarithmic standard deviation w = 0.41 (geometric

110
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20 nm . 20 nm
a) b)

Figure 6.1: TEM of the CeO; sample. Homogeneous crystallite size distribution
(see Fig. 6.4) can be observed on different parts (a,b) of the sample.

standard deviation o = 1.51) and strain e = 0.18.

In Fig. 6.2, CeO, experimental profile and its fit to the Double-Voigt Approach
using TOPAS v 2.1 [BrukerAXS, 2003] are shown. The parameters obtained from
this fit are: volume weighted column length L, 7.85 £ 4.4 nm and strain eg =
0.23 + 0.05.

In Fig. 6.4, the comparison of the results received with different techniques are
shown. The data are in a good agreement. Fit of TEM data with lognormal distribu-
tion gives median size m — 6.07 nm and a logarithmic standard deviation w = 0.38

From the XRD and TEM results it can be seen that the distribution curves of
relative frequency by length (diameter) of grains for the CeO, obtained by both tech-
niques are very similar. The difference between the data for crystallite size obtained
from TEM lognormal distribution analysis and applying of the convolution model for
X-ray diffraction does not exceed 1-2 nm. It is suggested that the coherently diffract-

ing domain is smaller than the apparent particle size. Also the data obtained with
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Figure 6.2: The measured profile (blue line) for CeO, and the fit (red line) using TOPAS. R, = 1.7.
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Figure 6.4: Particle size distributions of CeO,. The histogram represents normalised
data from TEM images obtained by counting of about 500 particles; red line is the fit
of TEM data with lognormal distribution function; blue line represents distribution
calculated by proposed convolution model using X-ray diffraction. Green line - the
volume weighted column length received with TOPAS V2.1 [BrukerAXS, 2003].

TOPAS are in good agreement with the developed convolution model. By using of
Eg. (3.14) the volume-weighted mean value for lognormal distribution received with
convolution model is (D)y = 8.8nm. Therefore, it can be concluded that the results
for the volume weighted column length obtained by the use of TOPAS software and

the convolution based technique are consistent within the experimental accuracy.



6.2 In-situ high temperature X-ray diffraction 115

6.2 Application of the convolution model for strain-size assessments using

in-situ high temperature X-ray diffraction.

This chapter reports the application of the convolution model (see Chapter 3 for de-
scription of the model) for the estimation of the size and strain parameters in gold,
gold-silver and gold-palladium alloys using TEM and XRD data. Again, NIST SRM
660a LaBg standard and Al,Os were used for the definition of the XRD instrumen-
tal broadening function described in Chapter 4. The ‘convolution’ size and strain
values are compared with those obtained from TEM analysis and the results of the

commercial software TOPAS.
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Figure 6.5: TEM of the nanocrystallite gold sample. Crystallite size on different
places of the investigated sample (a,b) can be determined.

TEM analysis of the nanocrystalline gold sample gives the mean crystallite size
of approximately 20 nm. The parameters for lognormal crystallite size distribution
calculated from X-ray diffraction data using convolution model are: median size m -

7.5nm and logarithmic standard deviation w = 0.61. The crystallite size of the
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investigated gold samples calculated with the TOPAS software is 254+6 nm. However,
it should be noted, that TOPAS evaluate the volume weighted column length, which
in case of using convolution model is (D)y - 7.5 % exp(3.5 * 0.61%)  27.6nm. It
can be concluded that the application of developed in this work model leads to the
results comparable with those obtained by TEM and commercial software techniques
(taking into account that TOPAS provides volume weighted average size values). The
TEM-derived grain sizes, however, are larger then those received with by means of the
convolution techniques. It is known that stacking faults and twin boundaries reduce
the apparent grain size calculated from diffraction peak broadening. Such defects
decrease the spatial extent of the columns contributing to the coherent scattering of
X-rays; that is, the size of the resulting ‘coherent scattering region’ bounded by the
defects (and grain boundaries) is smaller than that of the crystallite containing the
defect(s). Since stacking faults or twins are nearly always present to some extent in
real materials (and in special in fce metals), the size distribution values calculated
from such materials using X-ray diffraction are always smaller than those evaluated

with TEM analysis.

Nanocrystalline gold, gold-silver and gold-palladium alloys were electrodeposited
by pulsed techniques as reported in Yevtushenko et al. [2007]. The thermal stabil-
ity of nanocrystalline materials is important from both, fundamental and practical
viewpoints. In the design of micro-/nanodevices, mechanical properties are essential
since most of them are known to exhibit a dependence on grain size. To improve the
mechanical properties (hardness etc.) of coatings and bulk materials nanoscaling in
crystallite size should be achieved. But the problem of hardness decrease during the
production /utilization process at elevated temperatures causes a decrease of the life
time of the material. Therefore, investigations of the thermal stability of nanostruc-

tured samples are of high interest. The simultaneous observation of the dependence
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of the crystallite size on the annealing temperature is possible by using of in-situ high
temperature X-ray diffraction; however, the solution of the next problem should be
achieved. During the measurements it is necessary to obtain a big number of mea-
surements within a short period of time at a constant temperature. However, the
noise level of the measured signal increases by decrease of the time of data acquition.
For these reasons an effective and stable algorithm is required for the deconvolution
of the instrumental function. During the heating of samples the values for crystal size
as well as for microstrain will change. Therefore, a correct and robust algorithm for

the deconvolution with the following size-strain separation is required.

The stability of the electrodeposited nanocrystalline materials at high temperature
conditions is investigated with X-ray diffraction using a position sensitive detector
(Braun Inc., Germany). In the angular range covered by the detector we observe the

gold 111, 200, 220, 311 and 222 Bragg reflections.

In the Figs. 6.6 and 6.7, a comparison of Fourier based and regularisation tech-
nique is shown. It is possible to see that the proposed regularisation technique de-
convolutes the signal without increasing the noise level in the deconvoluted profile.
As a result, all the peak profiles obtained by the removing of instrumental function
using regularisation technique form high temperature gold diffraction patterns with
a narrow and symmetrical single peak profile. Whereas applying standard Fourier
based deconvolution technique causes a dramatice increase of the noise level: the

peaks with low intensity completely vanish from the deconvoluted results.

In Fig. 6.8 (Top), the experimental diffraction profile for gold at different tem-
peratures, the reconstructed ‘pure’ specimen profile and its fit with the proposed

convolution model (see Chapter 3 ) are shown.

The change of the size distribution with increasing temperature for gold is shown

in Fig. 6.10.
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Figure 6.6: Comparison of Fourier based (green lines) and regularisation (red lines)
techniques. The measured at different temperatures profiles for Au (111, 200, 220, 311 and
222 reflections) are represented as blue lines.
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Figure 6.8: The measured profile at different temperatures (black line) for AuAg alloy
(111, 200, 220, 311 and 222 reflections); reconstructed ’pure’ specimen profile (blue line)
and its fit (green line).
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Figure 6.9: The measured profile at different temperatures (black line) for AuAg alloy
(111, 200, 220, 311 and 222 reflections); reconstructed ’pure’ specimen profile (blue line)

and its fit (green line).
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Figure 6.11: Temperature dependence of the strain of Au.

In the same way changes of the size distribution with temperature for gold-silver
and gold-palladium alloys are presented in Figs. 6.12 and 6.14, respectively.

The gold, the gold-silver and the gold-palladium samples were heated from room

temperature up to 873 K with a rate of 2 K min~"'.

In the as prepared state, gold
has a microstrain of 0.38% (Fig. 6.11). After heating nano-gold up to 873K this
parameter decreases to 0.001%.

The gold-silver sample showed thermal stability up to approximately 600 K (Fig.
6.12). The microstrain decreases during the heating from the value of 0.45% ((Fig.

6.11)), corresponding to the sample measured at room temperature, down to 0.001%
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Figure 6.12: Temperature dependence of the crystallite size distribution of AuAg alloy.
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Figure 6.13: Temperature dependence of the strain of AuAg alloy.

and after that the crystallite growth sets in. The gold-palladium sample a similar
behavior like the other samples: the microstrain decreases from 0.65 % down to
0.001% (see Fig. 6.15) and after that the crystallites start to grow.

In the Figs. 6.16, 6.17 and 6.18 the change of the mean crystallite size and strain
with temperature calculated with TOPAS v2.1 [BrukerAXS, 2003] is represented. It
is easy to see that this dependences are similar with those calculated by convolution
model.

Therefore, it can be concluded that the method proposed in this work can be

successfully applied to experimental data.
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Figure 6.15: Temperature dependence of the strain of AuPd alloy.

The kinetics of high temperature crystallite growth is described by several authors
Natter et al. [1997, 2000]. As shown in Yevtushenko [2007] the growth of the crystal-
lites (obtained by the technique proposed in this work) can be well described by the

model from the literature.
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Figure 6.16: Dependence of the mean crystallite size (b) and strain (a) on the
temperature for Au calculated by TOPAS v2.1.

je¥]
~—r

lon
j —

size, nm

o o o
N Ee [=>

microstrain, %

o
=)

T T T T T T
1 1 1 1 1 1
300.0 400.0 500.0 600.0 700.0 800.0 900.0
T, °K
T T T T T T
1 1 1 1 1 1
300.0 400.0 500.0 600.0 700.0 800.0 900.0

T, °K

Figure 6.17: Dependence of the mean crystallite size (b) and strain (a) on the
temperature for AuAg alloy calculated by TOPAS v2.1.
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Chapter 7

Conclusion and outlook

The convolution model, which uses a physically reasonable size profile and a Gaussian-
strain profile for the line profile fitting and accommodates the modal size, size distri-
bution and strain parameters has been successfully developed, validated and, finally,
applied to the experimental diffraction data for CeO, and nanostructured gold, gold-
silve and gold-palladium alloys. It is shown that the convolution model gives access
to the size distribution and the strain information from the diffraction data. By
this method, consistent crystallite sizes are obtained and a good agreement between
strain values is achieved. The ‘convolution’ size distribution results agree satisfactorily
with those obtained from transmission electron microscopy (TEM). The TEM-derived
grain sizes, however, are larger than the ‘convolution’ crystallite sizes indicating that

the apparent grains contain clusters of crystallites.

The use of the Voigt function for size and strain analysis by fitting of diffrac-
tion data is popular because it favours the deconvolution procedures as well as the
separation of size and strain effects in the analysis. This approach gives adequate in-
formation about size and strain values, however, it has three deficiencies: it uses the
physically unjustified Lorentzian-size and Gaussian-strain assumptions, it does not
take into account the size distribution information and it cannot deal with "super-
Lorentzian’ profiles. These deficiencies are confirmed in this study by fitting simulated

physically-derived size profiles with a Voigt function based model.
It has been well recognised that experimental X-ray diffraction profiles are the

convolutions of various instrumental aberrations and the intrinsic diffraction patterns
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of the sample. Therefore, the knowledge of the instrumental function is very impor-
tant in X-ray diffraction as it influences the accuracy of the retrieved information
about size and strain. The commonly used empirical model based on split Voigt or
Pearson VII functions fit the instrumental function profile defined by some standard
reference materials pretty well. Otherwise, due to a big number of refinable parame-
ters and the dependence between them the data defined by different standard samples
can vary considerably. Therefore, the model for instrumental function based on phys-
ical properties of the diffractometer is more preferable. Such a model is proposed in
this work. It is shown that this model can fit the instrumental function very well.
Hereby, the number of parameters which are necessary for a successfull description of
the instrumental function dramatically decreases (from 18 in the case of split Pearson
VII function (see §2.1) down to 4 parameters) which makes the fitting routine more

stable and the instrumental function more reproducible from sample to sample.

The determination of the instrumental function requires, however, the develop-
ment of a stable algorithm for its deconvolution. No significant improvement is
achieved in methods for elimination of instrumental aberration from experimental

peak profiles proposed in literature.

It has been shown that commonly used Fourier based deconvolution methods
cause a dramatical increase of noise in the deconvoluted profile: this method is very
sensitive to the noise in the experimental signal. Moreover, its application leads to
the increase of the noise level in the deconvoluted signal. Even with relative low

instrumental noise (~ 10%) this technique is absolutely not stable

Therefore, a new deconvolution technique which is fast, independent of a concrete
model for the instrumental function and more reliable in terms of stability, especially

in the case of large non neglectable experimental noise, is developed.

The superresolving reconstruction of signals in X-ray diffractometry shows high
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stability and the overestimation of the noise level leads only to a slight worsening
of the restoration results. Whereas, by using Fourier based deconvolution models,
even lower noise levels completely destroy the solution. An additional advantage of
the proposed regularisation technique is its independence on the concrete analytical
form of the approximation of the instrumental function. Hence, the introduction of
additional effects to describe the instrumental function, or completely changing the
model for describing the instrumental function just change the form of the kernel
h(t,z), however, the algorithm for recovering of the specimen profile can further be
used.

The proposed method is successfully applied to the experimental X-ray diffraction
data for nanostructured CeO,, gold and gold alloys. Estimated results for crystallite
sizes and microstains are compared with those obtained from TEM analyses and from
commercially available software TOPAS [BrukerAXS, 2003] and are in a good agree-
ment with them. It has to be noted that, opposite to TOPAS, the proposed method
gives not just information about mean crystallite size but also about crystallite size
distribution. Moreover, the proposed method shows a high stability to the experimen-
tal noise level in the X-ray measurements and, therefore, leads to the determination
of realistic results with high efficiency. This new algorithm will especially advance
the evaluation of real-time experiments.

It can be concluded that proposed superresolving reconstruction of signals in X-ray
diffractometry is universal. It has no limitation due to the form of the instrumental
functions. It simultaneously can be applied to a whole X-ray diffraction profile and
leads to the reconstruction of ‘pure’ specimen profiles, which can be used for the
subsequent profile analysis such as Rietveld using different available contemporary
software packages. In addition, the use of the proposed method increases the efficiency
of the phase analysis because the shifts and overlaps of the peaks caused by different

instrumental aberrations are removed from the investigated signal.






Appendix A

Investigation of structure and dynamics of binary mixtures
consisting of charged colloids by means of Brownian dynamics

simulation.

Structure and dynamics of binary mixtures consisting of charged colloids are inves-
tigated using Brownian dynamics simulations. For the description of the structure
three partial correlation functions g44, gpp and gap are calculated for different ratios
of particle sizes and number of charges. The time dependent dynamic properties with
non-Gaussian diffusion are investigated both in terms of self diffusion and collective
diffusion. In intermediate time scale a subdiffusive process indicates memory effects
resulting from the caging of neighbouring particles. For long times, again, a diffusive
process is observed with the long-time self diffusion coefficient which depends on the

strength of the interparticle interactions.

Simulation method

Let us consider a binary mixture of charged spherical polyballs of N; and N, particles
with diameters o and o9(> 07), respectively. The interaction between all the pairs
(i, 7) of particles separated by a center-to-center distance r = |7; —7;| can be modelled

via the purely repulsive size-corrected DLVO potential [Wagner et al., 2001]

Ui'(r):zizjez( ehoi )( ko )e‘k’”7 (A1)

€ 1+ ko; 1+ koj r

where Z;, Z; are the effective numbers of charges on species ¢ and j, respectively, and
¢ is the dielectric constant. The inclusion of the geometrical factor exp[k(o;+0;)]/(1+

ko;)(1+ko;) is like incorporating the hard-core repulsion [Rosenberg and Thirumalai,
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1987]. For a binary suspension, the inverse Debye-Hiickel screening length x is given

by

12— fl;e; (”pZ + Z nlz12> (A.2)
where n, and n; are the total number densities of the particles and the monovalent
impurity ions (i.e., z; = 1), respectively. Here Z = 272, + (1 —1x)Zs, . = N1 /(N1 + N>)
and kg is the Boltzmann constant.

Following Errnak and Yeh [1974]; Errnak [1975a,b|, the finite difference Brownian
dynamic (BD) algorithm is used. In this algorithm the stochastic Langevin equations

of motion are integrated in a finite time interval At to update the particle positions

{ri(t) }:

ri(t+ At) =ri(t) + 8> Dy £(t) - At) + > (V,, - Dij- At) + Ry + O;(£). (A.3)

Here, § denotes 1/(kgT), D;; is the diffusion tensor, N = N; + N, and f;(¢) the
instantaneous force on particle j arising from direct interactions from the other N —1
particles. The force f; can be obtained by the gradient of the interaction potential

Uy

N
f; ==Y Vily(1—6;) (A.4)
j=1

The random displacements R,; are sampled from a Gaussian distribution with zero
mean and variance (R;R;) = 2D;;At.

If hydrodynamic interaction can be neglected, the diffusion tensor D,; simplifies
to Dy = kT /¢ = kgT/(3mno,), where £ is the macroscopic friction coefficient, 7 is
the viscosity of solvent and o, is the hydrodynamic diameters of the particle. The
choice of At should provide a reasonable stability of the trajectory. The step At is

chosen to be much smaller than the density relaxation time 74(~ 0/ Dy ~ 1073 sec)
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but much larger than the velocity relaxation time 7, = 2 (~ 1073 sec), where M is
the particle mass. The value At ~ 107 %sec was found to be a satisfactory choice to
ensure a reasonable stability of the trajectories.

In computer simulations commonly reduced units are used, where the physical
parameters are referred to system immanent parameters like the particle diameter.
In this work reduced units as in [Wagner et al., 2001]| are used and are marked by an

asterisks.

Observables

Upon knowledge of the trajectories of all particles and the interaction potential, in
principle all physical properties of the system can be calculated. In this work we
focus on the pair correlation function g(r) and the mean square displacement, (Ar?),
which is related to the self-diffusion coefficient by the Einstein-Smoluchowsky relation
(Ar?) = 2aDg(t)t, where a denotes the dimensionality of the system and Dg(t) the
time-dependent self-diffusion coefficient [Wagner et al., 2001].

The generalized pair correlation function is given by

g(r) = % <Z > o(r)s(r; - I‘)> (A.5)
AN

The static structure factor S(Q) can be calculated as Fourier transformation of
g(r). Taking into account that liquidlike structures are isotropic, pair correlation
functions and structure factors are functions only of the moduli r = |r| and @ = |Q],
respectively. The static structure factor S(Q) takes a form

sin(Qr)

Or dr. (A.6)

S(Q) =1+ 4mp [ 1%()
The mean square displacement (Ar?)(t) is

(Arf)(t) = ([uu(t) — r(0)]%) = 6uw(t), (A7)
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and the time dependent self-diffusion coefficient Dg(t) can be expressed as

_ 1 dar)o)

Dg(t
s(t) 6 dt

Results and discussion

The bulk of simulations was carried out with N = N; + Ny = 1024 particles confined
to a cubic box (of volume V'), whose dimensions are adjusted to get the appropriate
number density n, = N/V. The cubic periodic boundary conditions and its natural
consequence the minimum image convention [Allen and Tildesley, 1987|, to minimise
the surface effect were used in the simulation. Up to 1-10° steps corresponding to one
second in real time after equilibration of the system were performed. The simulation
starting from bcc lattices is made. The system considered to be in equilibrium if the

pair correlation function does not changed in subsequences runs (see Fig. A.1).

N =1024 —0
part 3
3] 0©=226 nm 5
Z,=205 -
off —10 *IOSSteps
At=5¢-6 s —0
—50
2 — 100
e —200
]
1 -
0 T T T

Figure A.1: The pair-correlation functions resulting from BD simulations start from
bee lattices.

The pair-correlation functions and the static structure factor resulting from BD
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simulations for different concentration ratios (p1/ps) of species are shown in Figs.
A.2 and A.3. The other parameters of the model system are Npgrticies = 1024, p =
5-1073m =3, T = 298.0K, At = 1ms, o1 = 100nm, oy = 200nm, Z; = 105, Zy = 405.

In Fig. A.4 the reduced mean square displacement w(t) = (Ar?)(t) is displayed.
In this figure, three regimes are visible: for short times, we see a diffusive process
characterized by the linear increase of the mean square displacement; the subsequent
nonlinear regime is a subdiffusive process caused by the cage-effect of the surrounding
particles; for long times, we find again a linear regime indicating a diffusive process.
In both diffusive regimes, the self-diffusion coefficient corresponds to the slope of w(t)
indicated by the dotted lines. The time-dependent relative self-diffusion coefficients
are displayed in Fig. A.5 for different concentration ratios of species.

By using of simulated data it is possible to reproduce the movement of each
particle in the colloidal binary mixtures. In the Fig. A.6 the screenshots of movie

which shows the moving dynamics of the colloidal binary mixtures are represented.
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Figure A.2: The pair-correlation functions (left) and the static structure factor (right) re-
sulting from BD simulations for different concentration ratios (p1/p2) of species. Npgrticies =
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Figure A.5: The time dependence of the self-diffusion coefficient.
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Figure A.6: The screenshots of BD simulations movie.
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