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Abstract
The main focus of this work lies in the mathematical modelling of quantitative com-
position activity relationships (QCARs) for heterogeneous catalysts tested for the
oxidation of propene to acrolein. The use of combinatorial chemistry approaches
together with high-throughput screening techniques also plays an important role
here. One the one hand, the thesis tries to give a validation of the used synthesis
and screening processes and on the other hand it is checked how well QCARs can
be realized by the two applied interpolation techniques: Kriging and multilevel B-
Splines.
Following a sol-gel procedure approximately 2400 catalysts have been prepared and
tested with the help of high-throughput synthesis and screening approaches. The
samples include two complete pentanary composition spreads (elements Cr, Mn,
Co, Te and Ni) having 10-%-wise variations in composition together with further
refinements. The screening for catalytic activity itself has been realized in a high-
throughput reactor system for sequential testing. An indicative sign of a potentially
good catalyst candidate has been a large GC signal for acrolein in the product gas
composition.
For the analysis of data, new visualization techniques needed to be developed and
introduced into the field of heterogeneous catalysis since common visualization ap-
proaches could not cope with more than three dimensional data sets.
Another challenge has been the calculation of activities of 5%-wise variations given
the 10%-wise samples by Kringing and B-Splines. Since the underlying functional
relationship between composition and catalytic activity is not known, a direct eval-
uation of both interpolation techniques cannot be easily given.
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Zusammenfassung
Das Hauptaugenmerk dieser Arbeit richtet sich auf die mathematische Modellierung
von Zusammensetzung-Aktivität-Beziehungen für heterogene Katalysatoren in der
Oxidation von Propen. Der Einsatz von Methoden der Kombinatorischen Chemie
und Hochdurchsatzansätzen sowohl zur Herstellung als auch zum Testen dieser
Katalysatorproben spielt dabei eine entscheidende Rolle. Die Arbeit versucht, zum
einen eine Validierung der verwendeten Synthese- und Screeningverfahren zu geben,
zum anderen aber auch zu prüfen, wie gut eine Beschreibung von Zusammensetzung-
Aktivität-Beziehungen mit zwei mathematischen Interpolationsverfahren (Kriging,
multilevel B-Splines) möglich ist.
Im experimentellen Teil der Arbeit wurden rund 2400 Katalysatoren, zusammenge-
setzt aus den Elementen Cr, Mn, Co, Te und Ni, synthetisiert und auf ihre Aktivität
hin getestet. Dabei wurden zwei komplette pentanäre Datensätze hergestellt (10%-
ige Variation der Zusammensetzung). Alle Proben wurden in einer Hochdurchsatz-
Screening Apparatur auf ihre Aktivität hinsichtlich der Oxidation von Propen (Ziel-
produkt Acrolein) untersucht. Als Kriterium für Aktivität wurden GC Signale aller
interessanten Produkte aufgenommen. Hohe GC Signale entsprachen einer hohen
Aktivität der Katalysatoren für das entsprechende Produkt.
Zum Auswerten der Daten waren neue Visualisierungskonzepte zu entwickeln, wie
sie im Bereich der heterogenen Katalyse noch nicht verwendet wurden. Mit Hilfe
des Kriging und B-Spline Ansatzes konnten die Aktivitäten von Katalysatoren mit
engeren Rasterungen im Suchraum geschätzt und mit experimentellen Werten ver-
glichen werden. Dies lieferte neben der Reproduzierbarkeitsanalyse auch einen Ver-
gleich der zwei verwendeten Modellierungsmethoden, wie es ansonsten mangels Ken-
ntnis des wahren zugrundeliegenden funktionalen Zusammenhangs nicht möglich
ist.
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1 Introduction and Objectives

1.1 Combinatorial Chemistry

In the 1980s [157, 158, 97] the need to rapidly and inexpensively synthesize many
chemical compounds spawned a new branch of chemistry known as combinatorial
chemistry. Originally, the techniques of this fast growing field have been primarily
developed by pharmaceutical companies and research in pharmaceutical sectors to
find new candidate drugs. Traditionally, chemists in the pharmaceutical business
had to synthesize possible drug candidates one by one before they could screen their
activities. The basic idea of combinatorial chemistry is to synthesize rapidly large
amounts of different compounds at the same time using a process that is supported
by automation and computation. Combinatorial chemistry contrasts with the time-
consuming and labor intensive method of traditional chemistry where compounds
are synthesized individually, one at a time. A variety of successes of combinatorial
approaches in pharmaceutical companies have been reported where drugs could have
been developed within months instead of years. To create and screen thousands of
compounds within days, hundreds of millions of dollars have been invested in these
techniques and nowadays nearly all of the major pharmaceutical companies have
their own combinatorial chemistry department [129]. Once the benefits of combina-
torial chemistry became apparent, inorganic and polymer chemists started applying
these methods, too.
Originally, combinatorial chemistry has been based on the premise that the proba-
bility of finding a hit in a random screening process is proportional to the number of
samples considered. In the beginning, the main objective of combinatorial chemistry
has been the simultaneous generation of a large variety of samples with an additional
screening process. Following this approach, the success rate of finding new hits is
greatly enhanced, while the time needed is considerably reduced. There are even
numerous advantages coming along with combinatorial chemistry, these new ap-
proaches could not diminish the importance of ”classical” techniques that still play
a significant role. Figure 1.1 illustrates the principal characteristics of conventional
and combinatorial strategies and also stresses the synergistic effects of combining
both. The combinatorial approach should be considered to be a sort of comple-
tion of conventional research, but not in a competitive way. A detailed description
of many advantages of conventional approaches has been intensively discussed by
Schlögl [148]. Still, the conventional way of research plays the most important role
of development and evaluation processes for new materials. Once a promising hit
has been discovered by combinatorial techniques it needs to be validated and syn-
thesized in laboratory scales, furthermore tested under conventional conditions to
confirm the results found by high-throughput. The natural diversity of the periodic
system bears too many possibilities to systematically synthesize and screen all of
them. For example, thinking of 75 stable elements and neglecting the variety of
possible structures, phases and compositions, 2,775 binary, 67,525 ternary and over
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1.1. Combinatorial Chemistry 3

one million quaternary mixtures can be obtained, cf. [104]. Up to now, one has
to be sure that we know only a very small part of all these possible materials. At
the moment combinatorial chemistry can be considered to be the most promising
concept to explore this vast variety of possibilities - although we must be aware
of that a complete recording of chemical diversity appears to be impossible. Even
combinatorial approaches cannot perform this. But they can improve the chance of
discovering completely new materials having special or improved features.

Figure 1.1: Principal characteristics of conventional vs. combinatorial strategy of drug
discovery.

The main advantage of combinatorial strategies compared to conventional approaches
is that they lead to samples that have been all obtained automatically under identi-
cal conditions and thus are highly reproducible. Automated equipment can perform
operations more rapidly (and for 24h a day) and can also cope with very small
amounts of reactants in a precise way.

Figure 1.2: Schematical workflow of combinatorial materials science.



4 1 Introduction and Objectives

Besides of being faster, combinatorial methods are also safer and have a lower en-
vironmental impact, since they use only small quantities of reactants. Being more
costly in equipment than conventional approaches, combinatorial chemistry can only
be successful if hits are identified within short time periods. Therefore, the experi-
ments need to be planned very carefully.
The combinatorial approach can be divided into four subfields, which are illustrated
by Figure 1.2.

Design of Experiments (DOE)
Before combinatorial experiments are being started, the experiments need to be
planned in an intelligent way. Intelligent means here, that as few experiments as
possible should be run to gain maximal knowledge about a studied system. In liter-
ature, this approach is called ”Design of Experiments” (DOE) and there exist vast
amounts of publications and monographs on that topic. In context with combina-
torial approaches, Cawse [21, 22] and Agrafiotis [2] published interesting ideas and
realizations and we refer to references [13, 14] for examples of DOE realized in in-
dustry.

Synthesis of Materials
The synthesis of materials aims to synthesize and analyze as many samples in par-
allel as possible. Today, mainly automated equipment is used for high-throughput
syntheses and techniques like physical vapor deposition (PVD) [28] or liquid phase
syntheses (Sol-Gel-, Hydrothermal-, Precipitation-, Polymerisation Syntheses). The
latter case often allows the elegant use of ink-jet printers. In 1997, a library contain-
ing new fluorescent materials has been created out of aqueous solutions of nitrates
of La, Eu, Gd and Al using ink-jet technology by Sun and coworkers, [172]. With
this technique, single volumes of 0.5 nl can be dosed exactly on desired positions. A
combinatorial realization of hydrothermal syntheses has been reported by Klein et
al. [94].

Analysis of Materials
Once the HT-synthesis of combinatorial libraries has been finished, the materials
need to be characterized and screened for a desired function. Again, these screening
processes should also be as automated as possible to save time and to increase ac-
curacy. It is impossible to mention all possible HT-screening techniques here since
there are too many. As the most important techniques one might think of video
cameras to detect optical features or IR-cameras having a high temperature resolu-
tion for the detection of spatially resolved reaction heats during a chemical reaction,
cf. [73]. Also spatially resolved mass spectrometry has been applied to analyze
products of combinatorial experiments, cf. [24, 87, 174].

Data Mining
Automated processes applied in combinatorial experiments lead to vast amounts of
data that need to be handled and evaluated. This data management cannot be done
manually and finding trends and correlations within large data sets is not a trivial
task.
The term Data Mining (DM) can be explained as the extraction of previously un-
known information out of databases using statistics, machine learning techniques,
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databases and visualization approaches [190]. In literature, also the term Knowledge
Discovery in Databases (KDD) has been coined being some sort of generic term to
data mining. According to Fayyad et al. [41], KDD is defined as ”the non-trivial
process of identifying valid and potentially useful new patterns in vast amounts of
data.”
The use of mathematical and statistical techniques in data mining processes already
revealed many successes. The main techniques that are applied in data mining
are factor analysis, principle component analysis, regression (non-linear and linear),
classification methods (e.g. hierarchical clustering, k-means clustering), outlier tests,
trend analysis and so on. They all aim to discover existing structures and correla-
tions that might be somehow hidden or not directly accessible. The whole bundle
of methods can be divided into two parts: those that do prediction and those that
do classification. Hastie and Tibshirani [65] and Härdle [62] provide good insight in
most of these techniques. For a detailed introduction to principle component anal-
ysis we refer to Joliffe [84]. Data mining also includes the technique of automatic
learning, also called statistical learning. These methods deal with learning out of em-
pirical data with the help of mathematically based algorithms. The special interest
in these techniques for material science in general lies in the possibility to establish
predictions of activity out of experimental data for samples with new compositions.
This means that it is extremely important to extract as much information out of the
data sets as possible to derive new knowledge about the correlation of composition,
micro structure and function of a certain material. Possibilities and chances of data
mining techniques are also summarized in [177]. Maier et al. [106] recently reviewed
the state of the art in materials science also including an overview on the current
status of the application of data mining techniques.
Within the combinatorial workflow, pieces of information that have been obtained
by data mining can now be used for the planning of new experiments and thus, the
circle in Figure 1.2 is closed.
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Figure 1.3: Growth of combinatorial literature and patents (non organic and non pharma-
ceutical)1.

1http://www.istl.org/02-winter/refereed.html
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Taking a look at the number of publications that have been published during the last
two decades dealing with combinatorial approaches, it can be clearly seen that the
growth in combinatorial literature is continuously expanding. Figure 1.3 gives an
overview on the number of publications and patents that have been published within
the last 20 years. Obviously, an ongoing growth among the number of publications
can be observed from 1995. And the trend still continues until today indicating high
research activities.
Especially during the last decade, combinatorial chemistry has been also finding
other applications in various fields such as for example high-temperature supercon-
ductors [195], magnetoresists [15], synthesis of metal surfaces exhibiting a gradient
in composition [9], in the synthesis of organic host compounds [143], optimization
and discovery of luminescent metal oxide materials [28, 29, 181] and many other
more. The following section is dedicated to the application of combinatorial chem-
istry approaches in heterogeneous catalysis.

1.2 Combinatorial Heterogeneous Catalysis

Today our high living standards are mainly influenced by optimized chemicals and
fuels manufactured with the help of so-called catalysts. In general, catalysts are sub-
stances that decrease the activation energy of a chemical reaction by interfering into
its reaction mechanism such that the rate constant of the conversion is increased
(or decreased). At the end of the reaction, the catalyst has not been wasted or
converted [136].
These catalysts strongly contribute to the world’s economy since catalysts are used
in the production of over 7000 compounds worth over $3 trillion globally. About
90% of chemical processes and 60% of chemicals production relie on the use of cata-
lysts. Globally there are about 100 catalyst manufacturing companies and the world
wide catalysts manufacture is estimated to $ 8.5 billion per year, cf. [156]. In the
future, these figure are likely about to increase as a direct result of increasing pres-
sure to develop environmental friendly manufacturing processes. From an economic
point of view, the benefits that come along with the development and use of effi-
cient catalysts are enormous: catalytic processes can be realized in a cheaper way,
having lower operating costs, creating less by-products or lead to formation of prod-
ucts with higher purities. In this context it becomes clear that there is an always
growing need for optimized and improved catalysts for every kind of application.
However, the discovery of new catalysts continues to be a challenging and rather
unpredictable trial-and-error process [130]. The conventional catalyst development
uses a large variety of recipes and synthesis routes, which are in general very time
consuming. Following the synthesis, the prepared samples need to be characterized
and tested and further improved until no improvements can be obtained anymore.
In addition, time scales here are given in months and years until a developed catalyst
is commercialized and applied in industrial processes. Facing increasing competi-
tion, these time limits become narrower and narrower going along with increasing
pressure on industry due to environmental aspects. This bottleneck can only be
overcome by new, innovative ideas that would lead to shorter development times for
highly demanded products and chemicals. But then also the development time for
appropriate catalysts need to be drastically decreased. Another crucial point here
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is the fact that the natural resources slowly run out and there are less resources
available for research and development.
Approximately twenty years ago, these problems have been already recognized within
the pharmaceutical industry which led to a strong spreading of combinatorial and
high-throughput approaches within this community. Since 1999 the number of con-
ferences and workshops on combinatorial catalysis has remarkably increased and
this rather new research field of combinatorial catalysis has gained its acceptance in
industry and academia. According to Senkan [156] the term combinatorial cataly-
sis itself can be described as a methodology or a set of tools where large diversities
of solid-state materials libraries are prepared, processed, and tested for activity and
selectivity in a high-throughput fashion.

Figure 1.4: Components of combinatorial catalysis.

As already mentioned above, high-throughput screening techniques produce an enor-
mous amount of data that need to be organized and processed. Therefore, combina-
torial catalysis also has to come along with sophisticated data management systems.
Here, the border between chemistry and informatics is more and more vanishing and
in the future more and more interdisciplinary work will be needed to realize efficient
combinatorial approaches. Figure 1.4 illustrates the main components that need
to be incorporated into combinatorial catalysis. It is of essential importance here,
that all parts are equally weighted to prevent the whole approach from bottlenecks
limiting the throughput. Although this is not an easy task, the optimal integration
of all parts should be the ultimate goal here.
The transfer of combinatorial methodologies to heterogeneous catalysis is a more
challenging task than for other scientific fields of materials science [82]. There are
many more aspects to consider arising from the complex and dynamic structure of
catalysts:
Heterogeneous catalyst are in general solid materials with multiple discontinuities in
structure and composition that cannot be easily controlled or systematically varied.
Additionally, these structures directly depend on the processing and synthesis of a
material and may change when the catalyst is exposed to reaction conditions. Here,
good catalysts will exhibit less changes resulting in slower deactivation and longer
life times. In contrast to other research areas there exist no defined descriptors that



8 1 Introduction and Objectives

could perfectly describe a heterogeneous catalyst [148] which makes research in this
field a challenging task. Furthermore no theories are yet known that would allow to
predict the catalytic performance of a material just out of its composition or struc-
ture. Within the last years, some research activities have been focused on so-called
quantitative-activity relationships (QSARs) or quantitative composition-activity re-
lationships (QCAR) trying to expand the ”similarity principle” known in organic
chemistry to solids [26, 92, 147, 162]. But this stays a difficult task.
Heterogeneous catalysts must further bind the reactants, lead them to bonding inter-
actions and allow the products to depart again. This is assumed to happen on active
sites situated on the surface of the catalyst particle or within its pores. Multitudes
of active sites exit on solid surfaces but their distribution changes with time. These
changes are caused by rates of solid-state diffusion and gas-solid interactions, both
influenced by temperature and local composition. As a direct consequence, catalysts
deactivate with time due surface reconstruction, sintering, poisoning, coke formation
and volatilization [31]. But it has been also observed that some catalysts need some
time “on stream” to reach their peak performance [38] which might be also induced
by the events mentioned before (e. g. surface reconstruction). To bring some more
light into the darkness here, new methodologies are needed that allow the realiza-
tions of a large number of systematic and parallel experiments helping to learn more
about heterogeneous catalysis and its mechanisms on the molecular scale. That is
why combinatorial catalysis may immensely profit from highly-parallel experimen-
tation and screening methods coming along with all advantages mentioned above.
Although software development for the organization of high-throughput experiments
and automated data management still is in its infancy. The use of combinatorial
approaches in heterogeneous catalysis may contribute to the general understanding
of catalysis in different manners: Clearly, it may speed up the whole development
process by increasing the chance of developing totally new and unexpected hits.
Furthermore, the systematic application of sophisticated data mining techniques to
large data bases may lead to the discovery of more trends and patterns for structure-
activity relationships leading to new input for practical catalyst development.

History and State of the Art of Combinatorial Heterogeneous Catalysis
The idea of applying combinatorial techniques to heterogeneous catalysis is not
totally new but can be dated back to the early years of the 20th century where
Mittasch at the BASF company coordinated an impressive research program to find
a catalyst for the synthesis of ammonia [117, 118]. For the systematic search for
a catalytic material approximately 20.000 experiments have been run by many re-
searchers in parallel, testing about 6.500 substances until they finally ended up with
the optimized catalyst. This catalyst allowed the industrial production of ammonia
according to the Haber-Bosch process and it is still in use until today changed by
only slight modifications. This has been the first great success of a combinatorial ap-
proach realized in industrial research. According to Senkan, [156], as a consequence
here, the birth of combinatorial inorganic chemistry should not be attributed to
materials research [61], as one can often find in the literature, but to heterogeneous
catalysis instead.
In the years after Mittasch’s success, the combinatorial approach to catalyst op-
timization has not been further followed, probably due to high labor costs. For
more than half a century, catalysis research has been mainly realized following the
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conventional approach of synthesizing and testing one sample at a time. Thus, the
development of new catalysts usually took several years. In 1970, this rather inef-
fective and slow approach has been criticized by Hanak [61] indicating that using
parallel synthesis and testing methods (’multi-sample-concept’ ) would be more effi-
cient and remarkably speed up the development process. But again, at that time,
the ideas of Hanak have not been adapted by other research groups and it took
some more years until the combinatorial approach has been brought to life by the
pharmaceutical industry. As mentioned above, high-throughput and combinatorial
techniques are widely spread within the pharmaceutical community and today often
10.000 samples can be tested per day.
Combinatorial libraries of potential catalysts can comprise organic, organometallic,
inorganic or solid materials. Especially in heterogeneous catalysis, the active sites
of the catalyst are embedded in a solid state material. Thus, the synthesis of combi-
natorial libraries can be realized by a variety of solution- based or vapor deposition
methods. A pioneering work in this field has been carried out by Schultz et al. [195]
in 1995, at the University of California. Here, the group applied vapor deposition
methods to synthesize thin film libraries of superconducting and magnetoresistant
materials. A short time period after these advances, researchers at Symyx Tech-
nologies produced high-density, thin film libraries of photoluminescent materials
using improved vapor deposition methods [28, 29]. As one of the first applications
of combinatorial approaches in catalysis the work of Weinberg et. al. [24] at the
Symyx Company has to be mentioned. In 1999, the group published results on the
catalytic oxidation of CO and the reduction of NO by metal alloy catalysts, since
this reaction has been quite thoroughly studied and perfectly lend itself to test and
validate combinatorial synthesis and screening techniques. Combinatorial chemistry
with respect to heterogeneous catalysis also includes high-throughput synthesis tech-
niques, high-throughput screening and data management. All three fields need to be
perfectly linked together to avoid the “bottleneck” that would remarkably decrease
the throughput and therefore the efficiency of the whole approach. Within the last
decade, many publications have been published dealing with combinatorial cataly-
sis. In 1998, Jandeleit et al. summarized and critically analyzed the development
in the application of combinatorial methodologies to the discovery of homogeneous
and heterogeneous catalysts between 1995 and 1998. For a detailed overview on
the developments achieved within this time period the reader is referred to some
review articles, e.g. [80, 184, 160, 19, 188, 128]. In 2001, Senkan [156] published
a review on combinatorial heterogeneous catalysis giving an excellent overview on
recent catalysis research up to 2001.
During the last five years research in heterogeneous catalysis has been extremely
influenced by the use of combinatorial methods. It is impossible to give a detailed
listing of all published works here, since this would go beyond the scope of this thesis.
Nevertheless, we should mention some success stories here. Within the last 8 years
the group around Maier published several successful results of new catalyst materi-
als discovered by the use of high-throughput synthesis and screening methods. The
group mainly worked with sol-gel techniques to synthesize the catalyst samples using
automated dispensing systems and emissivity corrected IR-thermography [72, 73] for
the detection of catalytically active species. Saalfrank [141, 142] discovered a new
catalyst being free of precious metals for CO oxidation at room temperature. Kirsten
[89] worked on combinatorial strategies to discover new catalysts with the help of
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genetic algorithms. Paul [127] used high-throughput screening set-ups for the testing
of antimony-rich selective oxidation catalysts. Furthermore, research of this group
also focuses on the development of screening set-ups [174] and the development of
data management systems [47].
Corma and coworkers widely use combinatorial approaches in their research for
new catalyst materials in oil reforming, petrochemical or fine chemicals processes
but also to find quantitative structure property relationships [25, 26]. The group
around Baerns published several success stories dealing with the development of
high-throughput synthesis and screening equipment for catalytic materials, e.g. [59].
They also used combinatorial techniques combined with data mining or learning
approaches (genetic algorithms, artificial neural networks) to discover new hetero-
geneous catalysts [191, 192, 139]. A detailed overview on recent research activities
in the field of applying genetic algorithms and artificial neural networks to hetero-
geneous catalysis is given by a contemporary review by Maier et al. [106].

Research work on quantitative structure activity relationships has also be reported
by projects of the groups around Schüth and Mirodatos [92, 91]. At the moment,
numerous industrial and academic research groups all over the world deal with com-
binatorial heterogeneous catalysis to optimize already known catalysts or to discover
new materials. Within the last 10 years, nearly all big chemical companies invested
in high-throughput equipment and there have also been several company founda-
tions aiming at the development and sale of high-throughput set-ups (e.g. Symyx
Technologies (USA), Avantium Technologies (The Netherlands), Chemspeed Ltd.
(Switzerland) or the hte-AG (Germany).
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Figure 1.5: High-throughput patents and pending applications (non-bioscience and non-
pharmaceutical) split by company, [30].

In the last ten years, the number of patents filed in this area has grown significantly.
Figure 1.5 shows the number of patents published within the last years by the most
common chemical companies using high-throughput technology. TecanInc. and
Zymark Inc. that supply robotics systems useful for materials and chemical research
have also made significant additions in their product offerings to the industry.
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1.3 Parameter Spaces and Composition Spreads

1.3.1 Parameter Spaces

As mentioned above, dealing with heterogeneous catalysts is a multi-dimensional
task. A large variety of parameters influence the performance of a heterogeneous
catalyst and therefore the parameter space that has to be dealt with is extremely
large. If it is assumed that there are 50 useful, stable and affordable elements in the
periodic table that could be used as constituents for heterogeneous catalysts, 1225
binary, 19600 ternary, 230 000 quaternary and about 1010 decanary combinations
can be constructed, following equation (1.1),

N(NE, NM) =

(
NE

NM

)
=

NE!

NM !(NE −NM)!
(1.1)

where NE denotes the number of possible elements, NM denotes the number of
elements chosen for the mixtures and N gives the total number of possible com-
binations. Even when neglecting different compositions and structural diversities
this parameter space significantly becomes larger and larger with increasing NM . If
additionally nc compositional increments are used the total number of combinations
is given by equation (1.2)

N(NM , nc) =

(
nc + NM − 2

nc − 1

)
=

(nc + NM − 2)!

(nc − 1)!(NM − 1)!
. (1.2)

The following table gives the numbers of compositional combinations for multiele-
ment mixtures:

nc NM = 2 NM = 3 NM = 4 NM = 5 NM = 6

6 6 21 56 126 252
11 11 66 286 1001 3003
15 15 120 680 3060 11628
21 21 231 1771 10626 53130
25 25 325 2925 20475 118755
31 31 496 5456 46376 324632
41 41 861 12341 135751 1221759

Table 1.1: Total number of compositional combinations of multielement mixtures.

The most important rows for our considerations are the 10%-wise compositional in-
crements (nc = 11) and 5%-wise compositional increments (nc = 21). This means,
for three elements we can synthesize 66 catalyst samples having 10% compositional
variations while four elements yield 286 samples. Varying five samples in this way
1001 samples have to be considered. Using 5%-wise compositional variations of 5
elements we would end up with 10626 samples whose syntheses definitely exceed the
capacities of conventional catalyst preparation within reasonable time. Within the
scope of our work we have been able to prepare 1001 catalyst samples, which gives
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a complete 10%-wise compositional variation of 5 elements. It can be clearly seen
that the number of combinations that have to be tested and evaluated for increasing
NM and nc drastically grows and quickly reaches the limit of practical realizability.
As we have seen above, there nearly exist an infinite number of possibilities to com-
bine elements out of the periodic table to develop new catalysts. Additionally, syn-
thesis routes can be varied, also the concentrations of the used precursor solutions,
the temperature programs, the pretreatment of the catalysts and so on. Thus, the
systematic synthesis and testing of all possible catalysts within a finite time period
is not possible. In the literature the term curse of dimension can be found to appear
within this context to describe the explosion of new possible mixtures by just adding
another element or using finer increments. Approaches to tackle this problem can
be found in the field of Design of Experiments (DOE), where maximal information
should be obtained out of a minimal number of experiments. In the literature, there
exist several theories about the optimal sampling of a search space and especially
for high-throughput research DOE is quite essential (cf. Figure 1.2). Hamprecht
and Agrell [60] considered the way sampling of a defined search space can be done
to gain the clearest possible picture of it. Furthermore, they express the problem
of sampling high-dimensional search spaces, where most of the points will lie on the
surfaces and only few inner points are obtained using uniformly spaced samples. As
an example, it can be mentioned here, that the sampling of a pentanary search space
using 10% increments results in 1001 samples, but only 126 samples really consist
of all five elements. All other samples can be interpreted as subsets of the whole
search space lying on hypersurfaces. The methodology of DOE approaches can be
found within several monographs and articles, e. g. [22, 60] and [106], and within
the references therein.
The curse of dimension still prevents the possibility to systematically sample the
parameter space for more than 10 considered elements. In view of this large dimen-
sional parameter spaces, combinatorial approaches seem to be the most rational way
for the discovery of new catalysts. The use of improved combinatorial synthesis and
screening methods still cannot realize to completely screen this large search space
but they can help to build appropriate, diverse combinatorial libraries that may lead
to an increased probability of finding a hit for a chemical reaction of interest. This
can only be realized by including chemical knowledge that has been obtained out
of conventional, traditional catalysis research and experiments but also combined
with chemical intuition or numerical simulation methods. These computational ap-
proaches still are in their infancy with respect to heterogeneous catalysis due to
the high complexity of the topic. There are only few theories or well understood
mechanisms available that would help to explain what really happens on the molec-
ular scale during a catalyzed chemical reaction. Thus, it is very hard to work out
structure activity or composition activity relationships for heterogeneous catalysts
and only little successes have been achieved here during the last years (cf. above).

1.3.2 Composition Spreads

The term Composition Spread will be used constantly throughout this thesis and
therefore it should be clarified here. As discussed above, the characterization of solid
catalyst materials depends on many parameters (synthesis parameters, surface char-
acteristics, pore structure, phases, etc.) and of course on the chemical composition
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of the material. For the realization of search strategies, the parameter space needs
to be efficiently sampled. This can be done by working out detailed experimental
designs, varying different parameters at a time or by fixing all parameters except one
and varying just this one key parameter. In this study, the chemical composition
of a catalytic material has been chosen to be the key parameter. Thus, the dimen-
sionality of the search space has been given by the number of contained elements of
a material. Then a sampling can be done by considering samples having different
compositions and therefore giving different points within this search space. Since the
composition of a material can only consist of discrete values, a finite number of pos-
sible combinations is given. Following table 1.1, the variation of three elements using
10% increments produces 66 combinations, a so-called ternary composition spread.
Using four elements with again 10% increments in composition leads to 286 combi-
nations, a quaternary composition spread. In the case of solid materials with defined
compositions, one speaks of discrete composition spreads since the increments cannot
become infinitely small, due to fabrication limits. In the approach discussed here,
composition spreads having 10%-wise variations in composition have been consid-
ered. Regions that appeared to be of special interest have been sampled by 5%-wise
steps. In other fields, e.g. thin films, also continuous composition spreads can be
obtained by sputtering techniques using sophisticated masks, cf. [196, 176]. Here,
continuous gradients in composition can be achieved and a predefined search space
can be completely screened, at least from a theoretical point of view. In practice,
there are still problems arising from continuous composition spread approaches, for
example, how to address a certain composition for screening.
The following figure shows, how discrete ternary and quaternary composition spreads
are graphically presented within this thesis.
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Figure 1.6: Discrete ternary (left) and quaternary (right) composition spread.

1.4 Preparation of Solid-State Libraries of Catalytic Materials

Techniques to combinatorially synthesize solid-state libraries of catalytic materials
have to lend themselves well for parallelization and automation. Basically, the tech-
niques can be grouped into two categories: thin film deposition-based methods and
solution-based methods of synthesis. In 2001, Senkan [156] presented a summary
of numerous combinatorial heterogeneous catalyst library synthesis methods and on
the one hand this overview clearly showed the infancy of the field at that time. On
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the other hand, it also illustrated that these approaches bear many research and
development opportunities for the discovery and optimization of new catalysts.
Today, six years later, the use of the mentioned synthesis methods has further spread
among industrial and academic research groups and combinatorial techniques could
tighten their position.
In general, a crucial practical issue in library synthesis is the so-called upscaling.
The most important goal of catalysis research is to develop new catalysts that can
be produced in large scale to be ready for industrial applications. Therefore, it has
to be checked, if each step of the combinatorial synthesis route can be realized in
scaling-up. A well known problem here is the scaling-up of materials previously
discovered as thin films since chemical and physical structures of those films may
not be easily transferable to the corresponding bulk material.

Thin Film Deposition Based Methods
For the preparation of thin film combinatorial libraries sputtering techniques with
physical masking are widely used. Weinberg and coworkers [24] for example applied
sputtering techniques for the discovery and optimization of CO oxidation catalysts.
The techniques used here have been based on the pioneering work of Hanak [61]
and Xiang et al. [195]. These authors published appropriate methodologies for the
parallel synthesis of spatially addressable solid-state materials libraries. One main
advantage of sputtering techniques is the fact that they allow the quick synthesis
of a large number of samples in parallel, i.e. they perfectly lend themselves for the
preparation of very large library systems. Furthermore, these techniques allow the
production of films having almost every desired and flexible composition. After the
deposition, the films can be further processed, for example, calcined or reduced to
produce catalytic materials. The most important thin film deposition methods are:

• Thermal chemical-vapor deposition, [85, 119]

• Plasma chemical-vapor deposition, [90, 178]

• Molecular Beam Epitaxy, [88, 113, 125]

• Pulsed Laser Deposition, [7, 66, 102].

For the application in heterogeneous catalysis, there are several limits: first, thin
films only have very small geometrical surface areas. Second, interactions between
support materials and active phases, effects caused by the particle size and trans-
port phenomena cannot be studied at thin films. Thus, thin film techniques for the
preparation of libraries of catalytic materials suffer from several drawbacks that can-
not be neglected. Today, most commercial catalysts are prepared by solution-based
methods.

Solution-Based Synthesis of Libraries
The application of solution-based syntheses for the preparation of solids bears the
advantage that the difficult handling of solids, e.g. automated dosing, can be totally
by-passed working with solutions. In general, solution-based synthesis techniques
can be divided into two groups: coprecipitation and impregnation, [144, 135]. Fur-
thermore, there exist several other methods that can be considered of being variants
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of the two groups mentioned above: hydrothermal synthesis, complexation, gelation,
crystallization, ion exchange, grafting, adsorption and deposition, [152].
For coprecipitation, two or more solutions are mixed, followed by precipitation,
filtration, washing, drying, forming and activation of the catalytic material. For im-
pregnation techniques, the solutions containing the catalytic compounds are brought
together with a porous carrier material, followed by drying and activation steps.
Here, the surface area and mechanical properties of the final catalytic material are
mainly determined by the type of the carrier. To apply impregnation and copre-
cipitation techniques successfully in combinatorial high-throughput approaches, the
processing steps need to be automated and miniaturized. Good results have been
achieved by the use of dispensing robots for dosing the precursor solution on the
carrier materials [137, 138]. Other research groups used modified ink jet printers to
dose precursor solutions on carrier materials [34, 172, 121]. The use of hydrother-
mal synthesis techniques has already been reported several times, cf. [3, 94], and
for detailed information the review article by Akporiaye and coworkers [4] might be
interesting. Further success stories of applying these synthesis techniques in a com-
binatorial way have been reported and a good overview on different works can be
found in reference [156]. Sol-gel preparation techniques lend themselves in a perfect
way to the automated synthesis of catalyst libraries by the use of dispensing robot
systems [145]. The precursor solutions are mixed in the desired ratios by the robot
and the final catalytic materials (metal oxides) are then obtained by additional gela-
tion, drying and calcination steps. All catalysts discussed within this thesis have
been prepared following exactly this route and the following section is dedicated to
the explanation of the sol-gel process from a mechanistical point of view.

1.5 Preparation of Solids by Sol-Gel Methods

A process that has, in the past years, gained much notoriety in the glass and ce-
ramic field is the sol-gel process. Using this synthesis technique a large variety of
inorganic networks from silicon or metal alkoxide monomer precursors can be pro-
duced. The first notification of sol-gel approaches can even be traced back in the
mid 1800s where Ebelmen reported the first silica gelation from SiCl4 in moist air
[37]. Extensive studies followed by the early 1930s and a renewed interest evoked
in the early 1970s when it became possible to form monolithic inorganic gels at
low temperatures and convert them into glasses without the need of a high tem-
perature melting process. Through the sol-gel procedure, homogeneous inorganic
oxide materials with desirable properties such as hardness, optical transparency,
chemical durability, tailored porosity, and thermal resistance, can be produced at
room temperature, as opposed to the much higher melting temperatures required
in the production of conventional inorganic glasses. Various material shapes can
be generated in the gel state such that the ceramics and glasses produced in this
way appear in the shape of monoliths, films, fibers, or monosized powders. Sol-gel
techniques comprise a large variety of applications including optics, protective and
porous films, optical coatings, window insulators, dielectric and electronic coatings,
high temperature superconductors, reinforcement fibers, fillers, and, important here,
heterogeneous catalysts, [48, 67]. The preparation of catalyst materials using the sol-
gel technique comes along with a bundle of advantages, since the syntheses can be



16 1 Introduction and Objectives

well controlled by the researchers and individually adapted to “design” desired fea-
tures of the new material. Following [53, 58, 95, 96], the sol-gel process allows to
get

• a superior homogeneity and higher purity of a material

• an improved microstructural control of the metallic particles that serve as
isolated active site of a catalyst

• large BET2 surface areas

• an improved thermal stability of supported metals

• a well-defined, narrow pore size distribution

• an easy access to a large variety of metals via their precursors

• a porous material out of rather simple synthesis steps (no extra steps as filtra-
tion, reflux or distillation)

Derived from the name itself, the sol-gel process involves the evolution of inorganic
networks through the formation of a colloidal suspension (sol) and gelation of the
sol to form a network in a continuous liquid phase (gel), [86]. The formed gel is an
interconnected network with pores of submicrometer dimensions that are filled with
a solvent and polymeric chains whose average length is greater than a micrometer,
[86]. For the metal precursors, numerous reactants can be used having the metal
ion surrounded by appropriate, reactive ligands. Here, metal alkoxides are mostly
used as precursors since they react readily with water. Widely used metal alkoxides
are the alkoxysilanes, such as tetramethoxysilane (TMOS) and tetraethoxysilane
(TEOS). However, other alkoxides such as aluminates, titanates, and borates are
also commonly used in the sol-gel process, often mixed with TEOS.
Looking at the molecular level and the behavior of the functional groups during
a sol-gel process, the overall reaction can be divided into three steps: hydrolysis,
alcohol condensation and water condensation. A scheme of that can be found in
Figure 1.7 where these three reaction steps are illustrated by alkoxysilanes.

2named after Brunauer, Emmett and Teller, who developed an elegant method to determine the surface
area of a porous material by gas adsorption, [18].
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Figure 1.7: The three main reaction steps of the sol-gel process, (a) hydrolysis, (b) water
condensation, and (c) alcohol condensation.

Step (a) is the hydrolysis reaction of the alkoxysilanes to form silanols (terminal
alkoxide groups (OR) are replaced by hydroxyl groups). The subsequent water and
alcohol condensation steps ((b) + (c)) involve the silanol groups (Si-OH) to produce
siloxane bonds (Si-O-Si) together with either water or an alcohol as side products.
The properties and special features of a sol-gel network are influenced by a number
of synthesis factors that control the rate of hydrolysis or condensation. As the most
important factors, the pH-value, reaction temperature and time, concentration of
the reactants, presence of catalysts and the molar ratio of H2O/Si should be men-
tioned, [16]. Variations of these factors result in different structures and properties
of the sol-gel network within certain ranges.
For the application in catalysis, it is important to end up with highly porous mate-
rials with defined active sites given by the metal centers together with large surface
areas. Sol-gel synthesis makes these materials accessible in a rather convenient way.
In general, porous materials are divided into three groups, according to their pore
diameters. Microporous materials only contain pores having less than 2 nm pore
diameter. The pore diameters of mesoporous materials range between 2 nm and 50
nm, while macroporous materials only contain pores with diameters larger than 50
nm.
By means of different gel drying the pore sizes can be controlled reliably. Drying
by evaporation under normal conditions causes a shrinkage of the gel due to present
capillary pressure. Then, the resulting dried gel, a so-called xerogel, is often reduced
in volume compared to the original wet gel. Xerogels mostly consist of micropores.
Drying under supercritical conditions (i.e. there is no interface between liquid and
vapor) causes no capillary pressure and therefore the shrinkage is much smaller. As
a product here, so-called aerogels are obtained, mostly consisting of air. In most
cases, aerogels do contain meso- or macropores. Xerogels and aerogels both have
high porosities resulting in large surface areas.
Using different metal alkoxides as precursors there is the danger that one species
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will lead to higher hydrolysis and condensation rates than the other species. If hy-
drolysis and condensation rates of used precursors are too different, the formation of
domains of a certain metal within the final material might be a direct consequence.
To prevent that, one can either work with an excess of solvent in order to decrease
the concentration of metal ions [57], or add complexing agents. These chemicals (
organic acids, diols, β-diketons etc.) stabilize the metallic species by coordinating
the metallic center causing a balancing effect of the hydrolysis and condensation
rates. The stabilizing function of the complexing agent is based on the interaction
between the donor electrons of its oxygen atoms and the empty orbitals of the metal
cation. Thus, the metallic center is less accessible for the nucleophilic attack of H2O
molecules which decreases the hydrolysis rate.
The sol-gel procedure can be acidly, basically or fluoric catalyzed [173]. In com-
binatorial materials science, the acid-catalyzed sol-gel process has gained the most
importance. In contrast to basically catalyzed sol-gel recipes, a larger variety of
doping elements and elements in general can be used since many precursors of these
elements would precipitate as hydroxides within a basic milieu. Furthermore, the
role of the used solvent to prepare the precursor solutions is also important. In
many cases, iso-propanol is used because of its low surface tension which prevents
the channels from collapsing due to high capillary forces. Within the following figures
we sketch the mechanism of the hydrolysis and condensation reaction of the acidly
catalyzed sol-gel process for the well-studied case of tetraethoxysilane (TEOS).
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Figure 1.8: Hydrolysis reaction under acidic conditions.

By mixing the precursors (dissolved in a solvent, e.g. an alcohol), the acid and
water, the ethoxide groups of the used metal ethoxides are protonated at the oxygen
atom. Then a nucleophilic attack by a water molecule can take place at the silicon
center with ethanol being the leaving group.
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Figure 1.9: Condensation reaction under acid conditions.

Figure 1.9 shows how the hydrolysed metal ethoxides condensate and build chains
by splitting of ethanol. Under acidic conditions, the hydrolysis and condensation of
terminal ethoxide groups is favored such that in the beginning of the condensation
process rather long chains are built up. Since the metal ion does not directly influence
the condensation rate, a statistical distribution of metal ions according to their molar
ratios within the ethoxide chains on the molecular level can be achieved, assuming
that the used precursors possess similar alkoxide groups. Due to the growth of
long chains, the network can enclose other metal atoms apart from the precursor
ions [101]. In this way, a large variety of doping elements can be added if their
precursor solutions do not lead to precipitation. As the chains are getting longer,
the probability of crossed connections increases leading to a gel.
In general, under acidic conditions, the hydrolysis rate overtakes the condensation
rate resulting in a gel having little branching. On the opposite, working under basic
conditions will lead to highly branched gels since the condensation rate being much
faster than the hydrolysis steps, cf. [16].
For a detailed insight into sol-gel chemistry and further reading, the reader is referred
to the literature, e.g. [53, 105, 115, 123, 179, 182] and especially to the monograph
[16]. The application of sol-gel techniques for catalyst preparation has been reported
in numerous articles, e. g. in [93] and [103].

1.6 High-Throughput Screening Methods

Once the libraries have been prepared, the materials need to be screened for their
desired properties. In catalysis research, the desired property is the ability of a
material to catalyze a predefined reaction given by its activity and/or selectivity.
Still, the screening of catalytic libraries is a challenging task mainly because of the
time dependence of the catalytic performance of the materials. Many catalysts de-
activate with time when exposed to reaction conditions by sintering, poisoning or
coking but it might also happen, that catalysts need some time before reaching
their full performance. So, new catalysts need to be tested for extended reaction
times adding another bottleneck to the combinatorial workflow. Miniaturization
and massive parallelization of reactor systems coupled with fast screening systems
may counteract this bottleneck. Worldwide, several research groups work on these
issues, cf. [70, 73, 126, 154].
The appropriate screening tool for each application has to be always carefully cho-
sen and evaluated. In general, optical methods and mass spectrometry are the most
common screening techniques used in catalyst screening because of their broad ap-
plicability and relative speed. In the field of high-throughput screening methods for
porous heterogeneous catalytic materials a throughput of several hundreds per day
is the upper limit - in contrast to thin film libraries where these numbers can be
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easily topped. High-throughput screening set-ups for heterogeneous catalysts can
be characterized by the following issues: catalyst samples are contained in specially
shaped libraries and due to their synthesis techniques catalyst samples are often
tested at mg-scale sample weight. Furthermore, the screening often yields results
being of more qualitative nature (so-called primary screening) and the hits need
to be verified in conventional experiments being closer to real operating conditions
than high-throughput set-ups.
Screening methods can be basically divided into two groups: sequential and parallel
methods.
Parallel Screening Methods
IR-thermography is widely used for the screening of catalytic activities because of
its ease of application. This technique has been firstly introduced by Willson and
co-workers as a screening tool for heterogeneous catalysts in 1996, [120], using hy-
drogen oxidation as model reaction. A short time later, Maier and co-workers [73]
successfully refined this approach by also taking into account the different emissivi-
ties of materials making the tool a more quantitative one. IR-thermography allows
the detection of very small differences in temperature, as they occur during catalytic
reactions. It has already been applied as a time-resolved screening tool for catalytic
reactions, [133]. Further parallel screening methods can be mentioned, namely:

• Laser Induced Fluorescence Imaging (LIFI):
Detection of Fluorescent Species, [171].

• Resonance-Enhanced Multiphoton Ionization (REMPI):
In-situ ionization of reaction products by UV lasers, followed by detection of
photoions or electrons by spatially addressable microelectrodes, [153].

• Photoacoustics, [83]

• IR-Spetroscopy, [164]

• Color Indication Methods, [150].

Sequential Screening Methods
Numerous publications dealing with sequential screening methods have been pub-
lished during the last years. The most important approaches to be mentioned here
are spatially resolved mass spectrometry, cf. [24, 174, 126] and gas chromatogra-
phy [186]. In several applications, the time needed to screen one sample lies in the
range of 1-2 minutes. Unfortunately, these set-ups cannot be used to study the
time dependent behavior of catalyst samples, e.g. deactivation, due to the relatively
short reactant-catalyst contact. In most cases, these screening methods have been
developed to identify different reaction products of partial oxidation reactions as a
function of catalyst composition or formulations.
Identification of the time on-stream performance of a catalytic material can be ap-
proached by the use of array microreactors [155]. Here, it is possible to test large
numbers of catalysts in parallel and for longer time periods. For a practical use in
industrial applications, the lifetime and long-term stability of a catalyst is of essen-
tial importance.
For the screening of our catalyst samples, a sequential gas chromatography set-up
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has been used. A detailed description of the reactor system and the analytical parts
is given within section 7.3 of this thesis. Furthermore, the used screening system
has already been described in literature, cf. [87, 126, 174, 185].

1.7 Selective Oxidation of Propene to Acrolein

For the screening of our pentanary composition spreads the oxidation of propene has
been chosen as model reaction. Among all possible products that can be obtained
by the oxidation of propene we exclusively focused on acrolein as our product of
interest. By using GC-analytics also other by-products have been detected during
the primary screening. A listing of these by-products can be found within the
experimental part of this thesis, cf. section 7.3.

1.7.1 Acrolein

Acrolein (also called propenal, acrylaldehyde), CH2 =CH-CHO, is a colorless, toxic
and volatile substance (melting-point: -88 ◦C, boiling-point: 52.7 ◦C). Emission
of acrolein into the atmosphere is mainly done by automotive exhaust gases, by
pyrolysis of tobacco while smoking, by overheating of fat, e. g. by deep-frying.
Acrolein has been discovered in 1843 by Redtenbacher and at the beginning of the
20th century, its economic importance was rather small. Until that time, ist has
been synthesized out of glycerine. In 1942, Degussa developed the first technical
process using the condensation of formaldehyde and acetaldehyde at 300-320 ◦C in
the gas phase. The yields have been 70-80%. Since the used catalyst showed only
short stability of approximately 150 h it had to be regenerated by air and water for
24 h at 500-550 ◦C. The first catalytic process using propene has been realized by
Shell in 1958 with the help of a Cu2O-catalyst supported on SiC. By the addition of
gaseous promotors (hydrogen halides, halogenated hydrocarbons) an acrolein yield
of up to 65% could have been achieved. Until today, the production of acrolein is
nearly entirely realized by the heterogeneously catalyzed oxidation of propene in the
gas phase according to the following reaction, [32]

CH2 =CH-CH3 + O2 → CH2 =CH-CHO + H2O, ∆HR = -369.2 kJ mol−1

1.7.2 Catalysts

The selective oxidation of propene to acrolein in air is done using a heterogeneous
mixed metal oxide catalyst, mainly consisting of molybdenum and bismuth, [8, 54,
122]. For catalysts containing Bi and Mo only a small dependence of selectivity
from yield has been reported and due to their excellent stability, these catalysts can
be used for several years. The discovery of appropriate catalysts for the selective
oxidation of propene to acrolein has been realized by putting much effort into the
optimization of the original Bi-Mo or Bi-Mo-P system by including further elements
like Co, Fe, Ni but also alkaline metals and alkaline earth metals, cf. [32] and the
corresponding patents therein. Usually, the catalysts are stabilized by adding silica
or alumina as support or framework materials. The composition of the used catalyst
can be summarized by the following formula:

(Mo12BiaFeb(Coc + Nid)ePfMgOy)z(SiO2)(1−z)
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with M being additives like Na, K, Cs, Mg, Ca, Cr, Sm, Pt, etc..

These multi-functional mixed metal oxide catalysts are used as extrudate or shell-
catalysts in the fixed bed of tube bundle reactors.
Some words about the mechanism of this selective oxidation:
The mechanism of the main reaction has been proven by isotope marking experi-
ments with 18O and pulsing experiments in the absence of oxygen in the gaseous
phase to be of Mars-van Krevelen kind. The oxidation of propene to acrolein
takes place at two different active centers of the catalyst. At the first center, propene
is oxidized by the lattice oxygen of the catalyst. By delivering this oxygen the cata-
lyst is reduced. The oxygen from the reaction atmosphere is adsorbed at the second
active site followed by spilling over to vacant anionic positions where it is inte-
grated into the lattice by re-oxidation of the catalyst. An efficient catalysis can only
take place, if the transport of electrons but also of the oxygen species between the
catalytic centers is quick enough. Here, the electronic structure of the catalyst is
decisive. By investigations with IR- & Raman-spectroscopy, several types of lattice
oxygen species could have been discovered for different Bi-molybdates. By adding
redox pairs like Cr2+/Cr3+, Fe2+/Fe3+ or Ce3+/Ce4+ the mobility of the lattice or the
reoxidation of the lattice can be accelerated, respectively. Here, the rate-determining
step seems to depend on the catalyst system. On the one hand, pulsing experiments
have shown that taking up the oxygen into the lattice for the re-oxidation is the
rate-determining factor here. On the other hand, in the work of Glaeser et al. [51],
the diffusion of oxygen on the catalyst surface is thought to be the slowest part of
the re-oxidation process. Using kinetic modelling of the reaction in a catalytic wall
reactor, the dependence of the rate-determining step from the reaction temperature
could have been shown, cf. [131, 132]. At a reaction temperature below 370 ◦C, the
reoxidation of the catalyst is the rate-determining step. Here, the presence of wa-
ter supports the reoxidation process and reduces total oxidation. At temperatures
above 370 ◦C, the reduction of the catalyst by propene is rate-determining. There
are still discussions going on concerning this mechanism that can be followed in the
literature, e.g. [189].
Now as before, the economical importance of the heterogeneously catalyzed selec-
tive oxidation of propene can be observed in many research activities spread over
the whole world. The world’s leading chemical companies like BASF, Degussa, Nip-
pon Shokubai Inc., Nippon Kayaku Inc. and Standard Oil (Sohio) but also research
laboratories intensively deal with that topic.

1.7.3 Industrial Processing

For the industrial realization of the propene oxidation as described above, the feed
gas consists of propene (5-10 Vol.-%), air (40-64 Vol.-%) and inert additives also
including water. The inert additives are needed to keep the reaction gas mixture
out of the explosive range. With a gas hourly space velocity (GHSV) of 1300 -
2600 h−1 , reaction temperatures of 300-450 ◦C and a pressure of 1-3 bar the yields
lie between 93-98% with an acrolein selectivity of 90% (w.r.t. propene). As by-
products, mainly 4-10% acrylic acid and 2-6% CO2 are obtained. Furthermore,
acetaldehyde, formaldehyde and acetic acid are obtained in minor amounts. At
the reactor exit, the product is quenched to prevent further reacting. Being an
exothermic process, the resulting energy of -369.2 kJ mol−1 can be used to heat up
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the feed gas, as it is already done in modern plants.
To get the acrolein out of the process, the reaction gas needs to be further treated.
In a first step, acrylic acid and other high boiling chemicals are washed out. The
remaining gas mixture is then led through an absorber to extract acrolein in cold
water. Here, parts of the gas mixture (e.g. propene, CO2, O2, N2) are recycled back
into the reactor. Following the absorber, a desorption step is placed to get acrolein
out of the sorbate. In a next step, low boiling substances (e.g. acetaldehyde) are
removed by distillation such that acrolein is obtained with a purity higher than 95%.
In all steps, it is important to prevent acrolein from polymerisation. This is done
by adding an inhibitor during the processing and storage, e.g. hydroquinone, [32].

1.7.4 Recent Developments

The selective oxidation of propene has been intensively studied within the last years,
[12, 49, 107, 168, 197]. Research focuses on the development of new and improved
catalysts and other reactor concepts. In one approach, propane is dehydrated to
give propene in a first step, then it is oxidized to acrolein. Economically more
interesting is the realization of this reaction in one step by using a bifunctional
catalyst that catalyzes the dehydration of propane to propene and oxidation of
propene. At the moment, the selectivity of this process to acrolein is still too small
for commercialization. To increase the selectivity, membrane reactors have been
used successfully at laboratory scale. Apart from the use of classical tube bundle
reactors, also catalytic wall reactors are applied. The advantages here lie in an
improved heat control of the process, i. e. an isothermal reaction procedure within
the catalyst bed can be obtained. This prevents the appearance of so-called hot-spots,
that may lead to undesired side reactions. That is one reason why the development
of a riser-reactor working with a fluidized bed has been realized. Another research
field to obtain better catalysts for this reaction is the application of aerosol-synthesis
approaches, e.g. high temperature aerosol decomposition, HTAD. By this technique,
nanoscaled Bi-Mo catalysts could have been generated having high crystallinity.
Another synthesis route being tried is the partial oxidation of ethane by oxygen to
give acrolein and acetaldehyde. By aldol condensation of formaldehyde, acrolein
can be obtained. The corresponding literature belonging to all processes described
above can be found within the references of [32].

1.7.5 Application of Acrolein

Possessing an aldehyde group and a conjugated double bond system, acrolein can
exhibit numerous reactions. The most important chemicals that are produced out
of acrolein are:

• Allylacohol being further processed to glycerine

• Methionine, an essential amino acid (> 0.5 · 106 t per year, Degussa, Novus,
Rhodia)

• acrylic acid and acrylates (approx. 3.5 · 106 t per year, BASF, Röhm & Haas,
Union Carbide)

• Pyridine, 3-Picoline (reaction with NH3 in the gaseous phase, Daicel)
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• 1,3-Propandiol (Adisseo, Degussa)

In industrial applications, the reaction of acrolein to acrylic acid and acrylates is
the most important, realized by approx. 3.5 · 106 t per year. Furthermore, acrolein
is used to be transformed to the essential amino acid methionine ( > 0.5 · 106

t production on the world market). The worldwide demand for acrylic acid and
methionine is steadily growing such that the need for acrolein will also increase. 1,3-
Propandiol is essentially used in drug industry and in the production of polyester
fibers. For more information on acrolein and its industrial application we refer to
the literature, e.g. [16, 187].

1.8 Scopes of this Thesis

The scopes of this thesis are of different kinds and cover experimental but also
theoretical aspects. The following questions can be considered to be of essential
interest:

1. Is it possible to construct quantitative composition activity relationships (QCARs)
for heterogeneous catalysts based on primary high-throughput screening data?

2. Does the chosen synthesis route allow the identical preparation of two complete
pentanary composition spreads (1001 samples each)?

3. Can a new sol-gel recipe be found to include Te as an additional element in
combination with Cr, Mn, Co and Ni?

4. How reliable does the chosen high-throughput synthesis work?

5. Where lie the problems with high-throughput screening data?

6. How good is the reliability of the screening set-up?

7. How good is the data quality? What about false positives/ false negatives?

8. Which mathematical approaches/techniques can be used to model these rela-
tionships?

9. Is it possible to estimate activities of heterogeneous catalysts for a predefined
model reaction using Kriging and B-Splines?

10. After prediction has been done, is it possible to validate the results in practice
(by synthesizing and testing the calculated compositions)?

11. What are the main differences between the two mathematical approaches?

1.9 Outline

For the convenience of the reader, the thesis starts with an introductional part. The
first chapter is dedicated to combinatorial chemistry in general and its application
to heterogeneous catalysis. The relatively new research area “combinatorial chem-
istry” is introduced and an overview on some historical aspects but also the state
of the art in combinatorial heterogeneous catalysis is given. Furthermore, the most
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important high-throughput preparation and screening techniques for solid catalyst
materials are addressed. Since all our materials considered here have been prepared
by a sol-gel method, cf. pp. 130, also a short introduction into this preparation
technique is given.

The second chapter is dedicated to Kriging, an interpolation technique known from
geostatistics. Chapter 2 gives a detailed introduction into Kriging with main fo-
cus on setting up the Kriging system to solve a given estimation problem. At the
end of this chapter we discuss how the given high-throughput screening data are
transformed into appropriate coordinate representations such that Kriging and the
B-Spline approach can be applied. It is also described, how composition spreads
can be elegantly represented in a mathematical way and how the composition of a
catalyst corresponds to a point in a three- up to five-dimensional search space.

Chapter 3 covers a short introduction into the theoretical aspects of the chosen B-
Spline approach.

In the second part of this thesis describes the obtained results.
Chapter 4 summarizes the most successful screening results of the catalyst libraries
and shows, if regions of interest found by a primary screening can be reproduced in
a second generation of catalysts. Additionally, the reliability of the synthesis route
and the high-throughput screening set-up are intensively considered and discussed.

Dealing with high-dimensional data sets, there is always the question of an elegant
and effective visualization. Chapter 5 is therefore dedicated to different visualization
approaches to visualize our raw screening data having more than three dimensions.
But also interpolated and therefore “continuous data” are visualized to indicate
regions of interest found by the primary screening. Chapter 5 presents some vi-
sualization approaches known in other scientific fields with a first application to
heterogeneous catalyst screening data.

In Chapter 6 the numerical results are discussed and the estimated activities ob-
tained by the Kriging and the B-Spline Model can be compared to those of re-
synthesized samples. Furthermore, the best catalyst compositions for the selective
propene oxidation are mentioned according to each model.

The final part of this thesis includes a detailed description of all experimental work
that has been done to synthesize and screen the whole set of catalysts.
Finally, Chapter 8 summarizes the most relevant results. Moreover, we sketch as-
pects that appear to be of great relevance for further research.
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2.1 Introduction

This chapter introduces an interpolation technique that is known as Kriging. Be-
longing to the field of Geostatistics, Kriging is used to approximate or interpolate
spatial data, i.e. to reconstruct phenomena over a domain based on observations
taken at a limited number of points (e.g. meteorological data, geological data, etc.).
Geostatistics itself deals with statistics applied to geology or perhaps more generally
to problems in the earth sciences.
Within the late 40’s of the last century the gold prices drastically decreased due to
increasing amounts of Russian gold brought to the world market leading the South-
African gold mines into huge difficulties. Daniel G. Krige, a young mining engineer
of the South-African Witwatersrand mines thought of developing a possibility to
convey more gold with less operating expense. To know about the gold content
of ore and therefore to judge about the chance to find gold within a certain area
needs experience and many test drills. Krige had the following idea: If there is the
possibility to draw as much information out of as few drills as possible this would
certainly help to increase efficiency. Today, the term Geostatistics includes many
methods and approaches originally developed by Krige: tools to gain knowledge
about surfaces or even volumes out of pointwise measurements.
Starting in the mid-60’s and especially in the mid-70’s Geostatistics became much
more closely affiliated with the work of George Matheron and this connection might
be still the prevailing one today. In his early works ”Traité de géostatistique ap-
pliquée” [109] and ”La théorie des variables régionalisées, et ses applications” [111],
he formalized the ideas of Krige. It took several years until the impact of his works
has been accepted within the geoscience community since the fundamental problem
of deducing information on surfaces out of discrete, pointwise data not only occurs
in geology but also in other fields of science.
With increasing calculating capacities and widely-used applications of geographic
information systems (GIS) the interest in Geostatistics spread also to other scien-
tific communities.
In the remaining parts of this thesis a compact introduction to Kriging is given to-
gether with an illustration how this approach has been applied to high-throughput
data in heterogeneous catalysis. With the help of Kriging, the activities of a priori
non-tested catalyst samples have been estimated such that these results could be
compared to those of synthesized compositions afterwards.

Applications
Geostatistics is very much an applied discipline and its development has been the
work of mining engineers, petroleum engineers, hydrologists, soil scientists, geolo-
gists as well as statisticians. There are applications in epidemiology, plant pathology
or entomology as well as forestry, atmospheric sciences, global change and geogra-

26
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phy. Apparent is the overlap with GIS and spatial statistics in general.

Problems and Objectives
In one respect Geostatistics might be viewed as simply a methodology for interpo-
lating data on an irregular grid but this seems to be too simplistic. A number of
interpolation methods and algorithms were already well known when Geostatistics
began to become popular: Inverse Distance Weighting and Trend Surface Analysis
as well as the Nearest Neighbor Algorithm.
First of all, Geostatistics is concerned with spatial data. That means that each
data point is associated with a location in space and there is at least an implied
connection between the location and the data value. Here, location can be thought
of to have two meanings: one is simply a point in space (which only exists in an
abstract mathematical sense) and secondly with an area or volume in space. For
example, let x, y, ..., w be points (not just coordinates) in 1, 2, or 3 dimensional
space and Z(x), Z(y), ... denote observed values at these locations. These might be
the grade of copper, temperature, concentration of a pollutant etc.. Now, let t be
a location that is not ”sampled”. The objective then is to estimate or predict the
value Z(t). If only this information is given then the problem is ill-posed, i.e., it does
not have a unique solution. One way to obtain a unique solution to this problem
is to introduce a model. There are two ways to do this: one is deterministic and
the second is stochastic or statistical. Both approaches must somehow incorporate
the idea that there is uncertainty associated with the estimation or prediction step.
The value at the non-sampled location is not itself random but the knowledge of it
is uncertain. One approach then is to treat Z(x), Z(y), ..., Z(t) as being the values
of random variables. If the joint distribution of these random variables were known
then the ”best” estimator (with best meaning unbiased and having minimal vari-
ance of the error of estimation) would be the conditional expectation of Z(t) given
the values of the other random variables. However, the data consists of only one
observation of the random variables Z(x), Z(y), ... and none of the random variable
Z(t), hence it is not possible to estimate or model this distribution using standard
ways of modelling or fitting probability distributions.

Kriging
The interpolation technique Kriging has been named by Matheron [109, 111] after
Daniel G. Krige. It is a linear estimation technique that yields the best linear
unbiased estimator (BLUE) of a non-observed value at an non-sampled location
t. During following sections it will become clear how the Kriging approach tackles
the handicap of ill-posed problems mentioned above.

2.2 Preliminaries

In this section, the elementary concepts and definitions of mean, variance, covari-
ance, random functions, regionalized variables, expectation etc. are presented (fol-
lowing [23] and [180]) that serve as fundamental prerequisites for introducing Krig-
ing. For a more detailed introduction to Kriging the reader is referred to some
standard text books and monographs, for example [180, 23, 79, 27].
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2.2.1 Definitions

Notation
Throughout this thesis a point in n-dimensional space is denoted by x. This means,
in 3D x stands for the coordinates (x1, x2, x3). In most cases, no explicit notation
for the coordinates of a point will be needed so that, except when stated otherwise,
x1, x2, ... will stand for distinct points in Rn.

Random Function
Let D ⊂ Rn be a domain with a positive volume and (Ω,A, P ) be a probability
space. A random function (RF) is a function of two variables Z(x, ω) such that for
each x ∈ D the section Z(x, ·) is a random variable on (Ω,A, P ). Each function
Z(·, ω), defined on D as the section of the RF at ω ∈ Ω, is a realization of the
RF. Shortly, the RF is denoted by Z(x) and a realization by the lowercase z(x). A
random function is also called a stochastic process when x varies in a 1D space (e.g.
x is interpreted as time) and a random field when x varies in a space of more than
one dimension.

Regionalized Variable
A variable that denotes the spatial distribution of a factor is called a regionalized
variable or spatially dependent. It is denoted by z(x) with x giving the coordinates
of the location (in most applications x ∈ R3). Again, z(x) is considered to be a real-
ization of a parent RF Z(x). Matheron [110] coined the term regionalized variable to
designate a numerical function z(x) depending on a location x, and combining large
irregularities of detail with spatial correlation. Figure 2.1 illustrates this connec-
tion: the regionalized variable z(x) is one realization of the random function Z(x).
A regionalized value z(x0) at a specific location x0 is a realization of a random
variable Z(x0) which is itself a member of an infinite family of random variables,
{Z(x) : x ∈ D}, the random function Z(x). Here, the point x0 is an arbitrary point
of region D which may or may not have been sampled.

Random Function Z(x) −→ Z(x0) The random variable’s
⇓ ↓ ↓ realization is a

Regionalized Variable z(x) −→ z(x0) regionalized value

Figure 2.1: Regionalized variables as a realization of a random function [180].

Distribution Function
Let z be a value randomly drawn from a set of values Z. Again, each value z can be
considered as a realization of a random variable Z. For a random variable Z that
takes values in R, the probability distribution function F (z) is defined as

F (z) = P (Z < z) with −∞ < z < ∞ (2.1)

The distribution function indicates the probability P that a value of the random
variable Z is below a given value z. If z is partitioned into intervals of infinitesimal



2.2. Preliminaries 29

length dz, the probability that a realization of Z belongs to such an interval is F (dz).
If the distribution function is differentiable, the density function p(z) can be defined
as

F (dz) = p(z) dz, (2.2)

i.e. the density function p(z) is given by the derivative of the distribution function.

Mean, Expectation
Let z(x1), ..., z(xn) be different realizations of the random variable Z(x). Then the
mean value z̄ of z(x1), ..., z(xn) is given by

z̄ =
1

n

n∑
i=1

z(xi). (2.3)

The idealization of the concept of the mean value is the mathematical expectation
or expected value. The expected value of Z, also called first moment of the random
variable, is defined as the integral over the realizations z of Z weighted by the density
function

E[Z] =

∫

z∈R

zp(z) dz = m (2.4)

Since the expectation is a linear operator, it holds by definition (2.4):

E[a] = a, (2.5)

E[bZ] = bE[Z] (2.6)

E[a + bZ] = a + bE[Z] (2.7)

for constants a, b ∈ R.
The second moment of the random variable is the expectation of its squared value

E[Z2] =

∫

z∈R

z2p(z) dz (2.8)

and the k-th moment is defined as the expected value of the k-th power of Z

E[Zk] =

∫

z∈R

zkp(z) dz. (2.9)

When Z is a discrete random variable with states zi, the integral in the definition
(2.4) of the mathematical expectation is replaced by a sum

E[Z] =
∑

i

zipi = m, (2.10)

where pi = P (Z = zi) is the probability that Z takes the value zi.
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Variance
The variance σ2 of the random variable Z, called the theoretical variance, is defined
as

var(Z) = E
[
(Z − E[Z])2

]
= E[(Z −m)2] = σ2. (2.11)

After expanding the binomial expression it yields

var(Z) = E[Z2 + m2 − 2mZ] (2.12)

and by the linearity of the expectation,

var(Z) = E[Z2]− (E[Z])2. (2.13)

The variance can thus be expressed as the difference between the second moment
and the squared first moment.

Sample Variance
The sample variance of a finite number of values always has a finite expectation
and it characterizes the dispersion of the values around their common mean. Let
z(x1), ..., z(xn) be a particular realization of the random function Z(x). If the n
values are known the sample variance can be calculated using the mean value z̄:

s2
n =

1

n

n∑
i=1

(z(xi)− z̄)2 with z̄ =
1

n

n∑
i=1

z(xi) (2.14)

Covariance
The theoretical covariance σij between two random variables Zi and Zj is defined as

cov(Zi, Zj) = E [(Zi − E[Zi]) · (Zj − E[Zj])]

= E [(Zi −mi) · (Zj −mj)] = σij (2.15)

where mi and mj are the means of the two random variables. The covariance of Zi

with itself is the variance of Zi,

σii = E[(Zi −mi)
2] = σ2

i (2.16)

The covariance divided by the square root of the variances is called the theoretical
correlation coefficient

ρij =
σij√
σ2

i σ
2
j

(2.17)

Two random variables are said to be uncorrelated if their covariance is zero.

Experimental Covariance
Let Z1(x) and Z2(x) be two random variables having n realizations z1(x1), ..., z1(xn)
and z2(x1), ..., z2(xn), respectively. Furthermore, let z̄1 and z̄2 be the corresponding
mean values. Then the experimental covariance is defined by
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s12 =
1

n

n∑
i=1

(z1(xi)− z̄1)(z2(xi)− z̄2). (2.18)

For two random variables, the experimental covariance gives the dispersion of the
data cloud around its center of mass (defined by (z̄1,z̄2)). The difference between
a value of one variable and the mean value is called a residual. The covariance of
Z1(x) and Z2(x) is positive, if the residuals of Z1(x) tend to have the same sign than
the residuals of Z2(x), on average. If the residuals show opposite signs on average,
the covariance is negative. If Z1(x) is identical with Z2(x), the covariance is equal
to the experimental variance.
In many applications, the covariances of pairs of variables need to be compared.
Sometimes, the units of the variables can not be easily compared because they are
of different type, e.g. cm, %, kg, ◦C, etc.. Then it is necessary to standardize each
variable Z(x) by subtraction of its mean value and dividing by its standard deviation
s, which is the square root of the sample variance s2.

z̃i(x) =
zi(x)− z̄

s
(2.19)

The standardized variable has a variance that is equal to 1. The covariance of two
standardized variables z̃1 and z̃2 is called the experimental correlation coefficient,
denoted by r12. In general, it is bounded by

−1 ≤ r12 ≤ 1 (2.20)

Variance-Covariance Matrix
Let Z1(x), ..., ZN(x) be N different random variables with n realizations z1i(x), ..., zni(x),
i = 1, ..., n each. These realizations can be arranged in a matrix Z:

Z =




z11 . . . z1j . . . z1N
...

...
...

zi1 . . . zij . . . ziN
...

...
...

zn1 . . . znj . . . znN




(2.21)

Let further M be a n×N matrix having the repeated mean values of each variable
in each column:

M =




m1 . . . mj . . . mN
...

...
...

m1 . . . mj . . . mN
...

...
...

m1 . . . mj . . . mN




(2.22)



32 2 Kriging

A matrix Zc of centered variables is obtained out of Z by subtracting M from the
raw data matrix

Zc = Z −M (2.23)

The variance-covariance matrix is the then defined by

V =
1

n
Z>

c Zc

=




var(Z1) . . . cov(Z1, Zj) . . . cov(Z1, ZN)
...

...
...

cov(Zi, Z1) . . . var(Zi) . . . cov(Zi, ZN)
...

...
...

cov(ZN , Z1) . . . cov(ZN , Zj) . . . var(ZN)




=




s11 . . . s1j . . . s1N
...

...
...

si1 . . . sii . . . siN
...

...
...

sN1 . . . sNj . . . sNN




(2.24)

The variance-covariance matrix is always symmetric and nonnegative definite. The
nonnegative definiteness of the covariance-variance matrix plays an important role
in theory and also has practical implications. For the exact definition together with
three criteria of nonnegative definiteness the appendix section in [180] is referred to.

Probability Distributions
According to Figure 2.1, the random mechanism Z(x0) acting at some given point
x0 of a region generates realizations that follow a probability distribution F

P (Z(x0) ≤ z) = Fx0(z). (2.25)

Here, P stands for the probability that an outcome of Z at the point x0 is lower
than a fixed value z.
Let Z(x1) and Z(x2) be two random variables at two different locations x1 and x2.
A bivariate distribution function for these two random variables is

P (Z(x1) ≤ z1, Z(x2) ≤ z2) = Fx1,x2(z1, z2), (2.26)

where P is the probability that simultaneously an outcome of Z(x1) is lower than
z1 and an outcome of Z(x2) is lower than z2.
Analogously, multiple distribution functions for n random variables located at n
different points can be defined:

Fx1,...,xn(z1, ..., zn) = P (Z(x1) ≤ z1, ..., Z(xn) ≤ zn) (2.27)
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This approach of defining multiple distribution functions provides a very general
model to describe processes in nature or technology. Often in practice, only few
data from one or several realizations of the random function can be obtained and
it is impossible to deduce all the mono- and multivariate distribution functions for
a certain set of points. This means, that some kind of simplification is needed here
which is provided by the idea of stationarity.

Strict Stationarity
In general, stationarity means that characteristics of a random function stay the
same when shifting a given set of n points from one part of the region to another.
This phenomenon is called translation invariance.
The definition of strict stationarity is the following: A random function is called
strictly stationary if for any set of n points x1, ..., xn (where n is an arbitrary positive
integer) and for any vector h

Fx1,...,xn(z1, ..., zn) = Fx1+h,...,xn+h(z1, ..., zn). (2.28)

In words this means that a translation of a point configuration in a predefined direc-
tion does not cause any changes to the multiple distribution or that a phenomenon
is homogeneous in space and repeats itself in the whole space.
There is a wide range of several degrees and types of stationarity ranging from non-
stationary random functions whose characteristics change at any time and location
to the concept of a strictly stationary function whose distribution functions are the
same always and everywhere. A weaker type of stationarity is defined by the so-
called second-order or weak stationarity.

Second-Order Stationarity
For a strictly stationary random function holds, that its moments, if they exist, are
also invariant under translations. If only stationarity of the first two moments is
considered, this is called second-order stationarity or weak stationarity. Then, for
points x and x + h of D ⊂ Rn this means:





E[Z(x)] = m for all x ∈ D

E[Z(x)−m][Z(x + h)−m] =: C(h) for all x, x + h ∈ D
(2.29)

where m is the mean (constant) and C(h) is called the covariance function which
will be discussed more closely in the following sections. C(h) depends only on the
separation h, also called lag h. A second-order (stationary) random function (SRF)
is called isotropic if its covariance function only depends on the length |h| of vector
h and not on its orientation. The opposite behavior is called anisotropic.
As strict stationarity requires the specification of the multipoint distribution (2.28)
for any set of points x1, ..., xn a relaxation of this approach can be to consider
only pairs of points x1, x2 in the domain D and try to deduce only the first two
moments, not the full distribution. For the case of the Gaussian distribution, this
strategy is ideal since the first two moments entirely characterize the distribution.
This relaxation yields quite good results in practice as long as the data histogram
does not show too heavy tails. Assuming the stationarity of the first two moments
of the variable is one possibility. Furthermore, there is the possibility to assume
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the stationarity of the first two moments of the difference of a pair of values at two
points, which is called intrinsic stationarity and leads to the notion of the variogram.

2.3 The Variogram

To solve interpolation or filtering problems the theory of stochastic processes and
random function has been applied for a relatively long time. The proposed methods
are mainly based on the first two moments of the random functions. For real world
applications, these moments are never known before and there must be a way to de-
termine them. One strength of geostatistics lies in the fact that it proposes a method-
ology to identify the features of the stochastic model but also a methodology for the
interpolation itself. Spatial phenomena are in general unique, non-reproducible,
often defined in a two- or three-dimensional domain, obtained from unevenly dis-
tributed sample points and, in most cases, too complex for a precise deterministic
description. These phenomena are regionalized variables {z(x) : x ∈ D ⊂ Rn}
that are regarded as realizations of random functions. A random function (RF)
{Z(x) : x ∈ Rn} is characterized by its finite-dimensional distribution (also called
here spatial distribution) which is the set of all multidimensional distributions of
k-tuples (Z(x1), Z(x2), ..., Z(xk)) for all values of k and all configurations of the
points x1, x2, ..., xk. In practice, it is rather impossible to calculate sample multidi-
mensional distributions for more complex k-tuples, even if a very large number of
realizations of a random function is available. The common case is that one has
only one single realization and therefore the distributions cannot be determined, ex-
cept under an assumption of stationarity which describes some sort of repetition in
space. With the help of stationarity two point configurations can be considered that
are identical up to a translation to be statistically equivalent. Assuming an uneven
distribution of sample points, the only (approximately) identical configurations that
can be found are pairs of sample points. To study these phenomena, the main tool
will be the variogram showing the behavior of the dissimilarity between Z(x) and
Z(x + h) depending on distance h. The following section distinguishes among three
main definitions of the variogram, namely

• Theoretical Variogram

• Sample (Experimental) Variogram

• Regional Variogram

2.3.1 Variogram and Covariance Function

Dissimilarity versus Separation
The variability of a regionalized variable z(x) at different scales can be measured by
computing the dissimilarity between pairs of data values z1 and z2 located at points
x1 and x2 in a spatial domain D. Let γ? be the measure for dissimilarity of two
values defined by

γ?
12 =

(z1 − z2)
2

2
(2.30)
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i.e. half of the squared difference between the two values.
The two points x1, x2 in space can be linked by a vector h = x2 − x1, as shown in
Figure 2.2.

D

h

x
1

x
2

Figure 2.2: Vector h linking two points in 2D space.

Furthermore, the dissimilarity γ? depends from the distance and the orientation of
the point pair described by vector h, i.e.

γ?(h) =
1

2
(z(x1 + h)− z(x1))

2 . (2.31)

Using all sample pairs in a data set (usually up to a distance of half the diameter
of the region) and plotting the dissimilarities γ? against the spatial separation h
(the absolute values of vector h) leads to a so-called variogram cloud. Figure 2.3
illustrates a schematic example. The dissimilarity often increases with distance as
near samples tend to be more alike than more distant samples.

|h|

g
*

Figure 2.3: Plotting the dissimilarities γ? against the spatial separation
h results in a variogram cloud.

As the dissimilarity is a squared quantity, the sign of vector h, i.e. the orientation
in which the points x1 and x2 are considered, does not effect the results. The
dissimilarity is symmetric with respect to h:

γ?(−h) = γ?(+h) (2.32)
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For the exploration of features of spatial data, the variogram cloud provides an excel-
lent tool. Values of the variogram cloud can, for example, be linked to the position
of the sample pairs on a map representation to study their spatial behavior. Anoma-
lies, inhomogeneities can be detected by having a closer look at high dissimilarities
at short distances. Haslett et al. [64] were the first to introduce the use of the
variogram cloud in combination with other views of the data together with many
examples. The variogram cloud can show different behaviors along different direc-
tions of the separation h = x2 − x1 in the case of anisotropy. To detect anisotropic
behavior, the variogram cloud needs to be calculated for several directions. In 2D,
at least four equally spaced directions are usually considered (e.g. the coordinate
axes and the diagonals). In 3D, the use of regular polyhedra yields equally spaced
directions.

Experimental Variogram
Considering a variogram cloud it is possible to extract the following information:

• The sample variogram. This is the curve giving the mean of the halved squared
differences as a function of distance. For practical applications, the sample
variogram is obtained from the variogram cloud by subdividing it into classes
of separation and computing an average for each class.

• Any other characteristic of the cloud which is again calculated by classes of
distance (median, quartiles, etc..)

• Box Plots. They present several characteristics of the variogram cloud in a
single figure, usually the mean, the median and some other quantiles of the
halved squared distances for each class of separation.

The sample variogram is calculated and displayed by classes of direction since, like
the variogram cloud, it can also be anisotropic. The sample variogram is defined by:

γ̂(h) =
1

2Nh

∑

x1−x2≈h

[z(x2)− z(x1)]
2 (2.33)

where Nh denotes the count of pairs of points that are separated (approximately)
by the lag h. It is calculated for discrete values of h and in practice, the length
of vector h is often kept inferior to half the diameter of the region. For pairs of
samples with vectors h of a length almost equal to the diameter of the region, the
corresponding samples are located near the border. Vector classes formed with such
pairs will have no contribution from samples at the center of the region and thus
are not representative of the whole data set. Figure 2.4 gives an illustration of that
situation.
Usually one can observe that the average dissimilarity between values increases when
the spacing between the pairs of sample points is increased. For larger spacings the
variogram sometimes reaches a sill which can be equal to the variance of the data.
The definition of the sample variogram can be generalized to more than two dimen-
sions (sometimes called variogram map). By the sample variogram, a decomposition
of the sample variance into distances is achieved. The average of all terms γ̂(h) for all
possible lags including the lag h = 0, weighted by Nh, is the mean of 1

2
(z(x2)−z(x1))

2
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|h|

|h|

D

Figure 2.4: Example of pairs of points lying more than half of the diam-
eter of set D apart.

for all pairs (x1, x2) including those for which x1 = x2, and it coincides with the sam-
ple variance of the data. The sample variogram provides us with an efficient tool
for the analysis of spatial data based on dissimilarity.

Regional Variogram
The experimental variogram of samples z(xi) is the sequence of dissimilarities for
different distance classes. Assuming that there are samples given for the whole do-
main D then the variogram can be computed for every possible pair in the domain.
Let D(h) be defined as the intersection of the domain D with a translation D−h of
itself. Then D(h) describes all points x having a counterpart x + h in D.
The regional variogram gr(h) is the integral over the squared differences of a region-
alized variable z(x) for a given lag h:

gR(h) =
1

2|D(h)|
∫

D(h)

(z(x + h)− z(x))2 dx (2.34)

where |D(h)| is the area (or volume) of the intersection D(h).
In practice, the regionalized variable z(x) might only be known at a few locations
and generally it is not possible to approximate z(x) by a simple deterministic func-
tion. Thus, z(x) is considered to be a realization of a random function Z(x). The
associated regional variogram

GR(h) =
1

2|D(h)|
∫

D(h)

(Z(x + h)− Z(x))2 dx (2.35)

is a randomized version of gr(h) and its expectation defines the theoretical variogram
γ(h) of the random function model Z(x) over the domain D.

γ(h) = E [GR(h)] (2.36)
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Theoretical Variogram
To express the variation of a random function Z(x) in space, the differences be-
tween values at pairs of points x and x + h can be considered. These differences
Z(x + h) − Z(x) are called increments. The theoretical variogram γ(h) is defined
by the so-called intrinsic hypothesis, which stands as a short form for ”a hypoth-
esis of intrinsic stationarity of order two”. This hypothesis that characterizes the
stationarity behavior of the random function includes the following two assumptions:

• The mean m(h) of the increments, also called the drift, is invariant for any
translation of a given vector h within the domain. Furthermore, the drift is
supposed to be zero independent from the position of h in the domain.

• The variance of the increments is finite with a finite value 2γ(h), depending on
the length and the orientation of a given vector h, but again being independent
of the position of h in the domain. This can be formally expressed as:
For any pair of points x, x + h ∈ D it holds

E[Z(x + h)− Z(x)] = m(h) = 0 (2.37)

var[Z(x + h)− Z(x)] = 2γ(h) (2.38)

With the help of these two properties of an intrinsic stationary random function the
definition of the theoretical variogram follows:

γ(h) =
1

2
E

[
(Z(x + h)− Z(x))2

]
(2.39)

The existence of expectation and variance of the increments does not imply the exis-
tence of the first two moments of the random function itself: Although the variance
of the increments may be finite for any vector h, an intrinsic random function can
have an infinite variance.
Some properties of the variogram are:

• At the origin, the value of the variogram is zero by definition:

γ(0) = 0 (2.40)

• The values of the variogram are positive:

γ(h) ≥ 0 (2.41)

• The variogram is an even function:

γ(−h) = γ(h) (2.42)

• The variogram grows slower than |h|2, i.e.:

lim
|h|7→∞

γ(h)

|h|2 = 0 (2.43)
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Covariance Function
For the definition of the covariance function the stationarity of the first two mo-
ments (mean and covariance) of the random function is essential.





E[Z(x)] = m for all x ∈ D

E[Z(x)−m][Z(x + h)−m] =: C(h) for all x, x + h ∈ D
(2.44)

Some properties of the covariance function are:

• The covariance function is bounded and its absolute value does not exceed the
variance

|C(h)| ≤ C(0) = var(Z(x)) (2.45)

• Similar to the variogram, it is an even function

C(−h) = C(+h). (2.46)

But unlike the variogram it can also take negative values.

• The covariance function divided by the variance is called the correlation func-
tion

ρ(h) =
C(h)

C(0)
, (2.47)

which is bounded by

−1 ≤ ρ(h) ≤ 1 (2.48)

• Furthermore, the variogram function can be deduced from a covariance function
by

γ(h) = C(0)− C(h). (2.49)

In general, the reverse is not true, because the variogram is not necessarily bounded.
Thus, the hypothesis of second-order stationarity is less general than the intrinsic
hypothesis (for the monovariate case) and unbounded variogram models do not have
a covariance function counterpart.

• A covariance is a positive definite function. This means that the use of a covari-
ance function C(h) for the computation of the variance of a linear combination
of n+1 random variables Z(xi) (i ∈ I for any index set I, describing any subset
sampled from a second-order stationary random function) must be positive. It
is necessarily linked to a positive semi-definite matrix C of covariances

var

(
n∑

i=1

wiZ(xi)

)
=

n∑
i=1

n∑
j=1

wiwjC(xi − xj) = w>Cw ≥ 0 (2.50)
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• Conditionally Negative Definite Function
The variogram is a conditionally negative definite function. To guarantee the
positivity of the variance of any linear combination of n + 1 random variables
being a subset of an intrinsic random function, the n+1 weights wi, i = 0, ..., n
need to sum up to zero. In that case, the variance of a linear combination of
intrinsically stationary random variables is given by

var

(
n∑

i=0

wiZ(xi)

)
=

n∑
i=0

n∑
j=0

wi wj γ(xi − xj)

≥ 0, if
n∑

i=0

wi = 0. (2.51)

It is important to notice here that the properties described above are not sufficient to
totally characterize a covariance or variogram function. An additional and necessary
condition for a function to become a covariance or a variogram function is that all
variance calculations have to lead to a nonnegative result.

2.3.2 Interpretation of a Variogram

Plotting a sample variogram γ̂(h) against |h| for a given direction of h generally
results in the following properties:

1. It always starts at zero, for h = 0, z(x + h)− z(x) = 0.

2. It increases with |h|.
3. It continues to increase, or else stabilizes at a certain level.

Range and Sill
The amount of the variogram increase reflects the degree of dissimilarity of more
distant samples. For the case the variogram increases infinitely, the variability of the
phenomenon has no limit at large distances. If, conversely, the variogram reaches a
limit, this value is called the sill. This means that there is a distance beyond which
Z(x) and Z(x+h) are considered to be uncorrelated. This distance is usually called
the range. For a better understanding the range can also be interpreted as an area
of influence of a sample.

Behavior near the Origin - Nugget Effect
Sill and range describe the variogram behavior at large distances. To examine the

continuity and spatial regularity of a regionalized variable it is important to consider
the variogram’s behavior near the origin. The type of continuity of the regionalized
variable might be differentiable, continuous but not differentiable, or discontinuous.
The last case, when the variogram is discontinuous at the origin, this phenomenon
is called nugget effect indicating that the values of the variable change abruptly at
a very small scale. Formally, this means:

lim
h→0

γ̂(h) 6= 0 (2.52)
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The term nugget effect itself originally arises from gold deposits where gold com-
monly occurs as nuggets of pure metal that are much smaller than the sampling size.
This may result in a strong grade variability among adjacent samples and causes a
discontinuity of the variogram at the origin. In general, the nugget effect is caused
by

• a microstructure or so-called ”geological noise” which describes a component
of the phenomenon with a range shorter than the sampling distance,

• a structure with a range smaller than the smallest distance between sample
points,

• and measurement or positioning errors.

How measurement or positioning errors influence the Kriging procedure shall be dis-
cussed in the following sections.

When the average dissimilarity of the values of a variogram is constant for all spac-
ings of h, there is no spatial structure in the data. Conversely, a non zero slope of
the variogram near the origin indicates structure. An abrupt change in slope indi-
cates the passage to a different structuring of the values in space. If the sampling
points are too far apart, it is impossible to tell from the variogram what is the exact
behavior at the origin. Furthermore, knowledge about the physics of the problem is
essential for modelling the variogram.

2.3.3 Different Variogram Models

The use of a variogram in a Kriging procedure requires continuous variogram val-
ues for every distance |h|. Of course, this cannot be provided by the experimental
variogram since only discrete measurements can be realized in practice. Fitting the
experimental variogram by an appropriate variogram function helps to overcome
this problem. Using a theoretical variogram also guarantees that the variance of any
linear combination of sample values is positive. This is important for setting up a
Kriging system where the values of an experimental variogram can lead to negative
Kriging variances.
When fitting a theoretical variogram function to the sequence of average dissimi-
larities (experimental variogram) it is important to notice that the fit implies an
interpretation of both the behavior at the origin and at large distances, beyond the
range of the experimental variogram. In most applications, the fit is merely done by
eye, because it is generally not so relevant how well the variogram function fits the
sequence of points. The important point here is that the right type of continuity
is assumed for the regionalized variable together with the stationarity hypothesis
associated to the random function. These assumptions will lead to the choice of an
appropriate variogram function which has a greater impact on the Kriging results
than the way the theoretical function is fitted. A detailed discussion of this context
can be found in [112].

There are several reasons to favor the variogram instead of the covariance function:
The variogram is a more general tool than the covariance. Another reason is more of
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practical interest: The variogram, unlike the covariance function, does not depend
on the existence of a mean value. In practice, the mean is not known in most cases
and has to be estimated out of the data, which also adds a bias. Therefore, the
variogram is often preferred to the covariance function.
In the following some of the most common covariance functions are presented. They
are mainly defined for isotropic (i.e. rotation invariant) random functions. For the
graphical representations the covariance functions are plotted as variograms using
relation (2.49):

Nugget-effect Model
The nugget-effect model describes a covariance function C(h) that models a discon-
tinuity at the origin:

Cnug(h) =

{
b for |h| = 0
0 for |h| > 0

(2.53)

where b is a positive value. In variogram representation, the variogram is zero at
the origin and has the value b for h 6= 0. An example of a corresponding variogram
function can be seen in Figure 2.5. The nugget-effect is used to model a discontinuity
at the origin of the variogram, i.e. when

lim
|h|→0

γ(h) = b. (2.54)

The phenomenon of the nugget-effect can be seen as an equivalent to the concept of
white noise in signal processing.

Spherical Model
Another widely spread covariance function is the spherical model

Csph(h) =





b
(
1− 3

2
|h|
a

+ 1
2
|h|3
a3

)
for 0 ≤ |h| ≤ a

0 for |h| > a
(2.55)

The range of the spherical covariance is indicated by parameter a, i.e. the covari-
ance vanishes when the range is reached. The parameter b represents the maximal
value of the covariance: the spherical covariance steadily decreases, starting from
the maximum value b at the origin and vanishes beyond range a.
The nugget-effect model can be interpreted as a special case of the spherical model
with an infinitely small range. But there is one crucial difference between these
two models: Cnug(h) describes a discontinuous phenomenon, whose values change
abruptly from one location to the other, while Csph(h) represents a continuous phe-
nomenon being not differentiable. A corresponding spherical variogram can be found
in Figure 2.6. In this example, the sill b = 1 is reached at a range of a = 3.

Exponential Covariance Function
The exponential covariance function model falls off exponentially with increasing
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Figure 2.5: A nugget-effect variogram:
its value is zero at the origin and b = 1
elsewhere.
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Figure 2.6: A spherical variogram with
sill b = 1 and range a = 3.

distance

Cexp(h) = b exp

(
−|h|

a

)
with a, b > 0. (2.56)

Parameter a determines how quickly the covariance falls off. For a value of h = 3a
the covariance function has decreased by 95% of its value at the origin. Thus, this
distance has been termed the practical range of the exponential model. This model
is continuous but not differentiable at the origin. It drops asymptotically towards
zero for |h| → ∞. An illustration of an equivalent variogram can be found in Figure
2.7.

Gaussian Model
The Gaussian Model with scale parameter a > 0 is defined by

Cgauss(h) = exp

(
−|h|

2

a2

)
(2.57)

is a covariance in Rn for any n. Its practical range is about 1.73a, as can be seen in
Figure 2.8 showing the corresponding variogram.
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Figure 2.7: Exponential Variogram
Model with sill b = 1 and range
parameter a = 1.
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Figure 2.8: A Gaussian Variogram Model
with a = 3.

Matérn Class of Covariance Functions
Covariance functions belonging to the so-called Matérn class (named after Bertil
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Matérn [108]) possess an additional parameter ν describing the differentiability or
smoothness. In most applications, a necessary differentiability can be deduced out
of the physical context of a problem. The mathematical representation of this class
of covariance functions depending on smoothing parameter ν is given by:

C(h) =





0 for h = 0

1
2ν−1Γ(ν)

(
h
a

)ν
Kν

(
h
a

)
for h > 0

(2.58)

for a > 0, ν ≥ 0 and Kν being a modified Bessel function of the second kind of order
ν (cf. [1]), Γ(·) denoting the usual gamma function and a giving the range. The
variogram representation of this model is the following:

γ(h) =





0 for h = 0

C
(
1− 1

2(ν−1)Γ(ν)

(
|h|
a

)ν

Kν

(
|h|
a

))
for h > 0

(2.59)

with C being the sill.
Depending on the choice of parameter ν, this class of variogram functions also con-
tains the most common types like the exponential or the gaussian model.

ν =





1
2

Exponential Type γ(h) = b
(
1− exp

(
− |h|

a

))

∞ Gaussian Type γ(h) = b
(
1− exp

(
− |h|2

a2

)) (2.60)

This model can have any behavior near the origin and Figure 2.9 illustrates the most
common cases. For ν →∞, the model converges towards the gaussian type.

Anisotropy
In practice, calculating the experimental variogram might lead to quite different
results depending on the direction of vector h. This phenomenon is called anisotropy.
For the applications concerning heterogeneous catalyst samples, always an isotropic
behavior is assumed, i.e. the variogram does not change with direction of h but
only with distance among sample points. Changes in composition of the catalytic
samples are assumed to cause a rotationally symmetric change around each sample.
For a detailed discussion of anisotropy, hole effects, periodicities and how such effects
are addressed in the context of variogram models, see standard textbooks (e.g. [23,
180]).
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Figure 2.9: Depending on parameter ν, variograms show different shapes
near the origin.

2.4 Simple Kriging

In general, Kriging is a geostatistical interpolation technique that considers both the
distance and the degree of variation between known data points when estimating
values in unknown areas. A kriged estimate is always a weighted linear combination
of the known sample values around the point to be estimated. Kriging leads to
weights that result in optimal and unbiased estimates. It attempts to minimize the
error variance and sets the mean of prediction errors to zero so that there are no
over- or under-estimates. Furthermore, a unique feature of Kriging is that it also
gives an estimation of the error at each interpolated point, providing a measure of
confidence for the results.

Suppose data are given for one type of measurement at various locations x1, ..., xn

of a spatial domain D. For each location xi, i = 1, ...n a random variable Z(xi)
is considered. Let x0 be an additional location in D with random variable Z(x0).
Furthermore, it is assumed that these random variables are a subset of an infinite
collection of random variables, namely the random function Z(x), defined at any
location of x of the domain D. Let the random function be second-order stationary,
as has been defined by equation (2.29). This means that both the expectation and
the covariance are translation invariant over the domain. Then, the expected value
E[Z(x)] = m is the same at any point x of the domain and the covariance between
a pair of locations depends only on the vector h separating them.
Now, the goal is to calculate a weighted average to estimate the unknown value at
location x0 using information at points x1, ..., xn. This situation is illustrated in
Figure 2.10. The estimation procedure for location x0 is based on the knowledge of
the covariances between the random variables at the points sampled.
The estimation approach called Simple Kriging (SK) is closely related to multiple
regression considered within a spatial context. One main aspect here is the fact,
that simple Kriging assumes a known, constant mean of the data which is often not
available in practice. In this case, it is estimated out of the sample data. Sometimes,
simple Kriging is also referred to as Kriging with known mean.
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Figure 2.10: Sample Points within domain D and the estimation point x0.

The weighted average for this estimation is defined as

Z?(x0) = m +
n∑

i=1

wi(Z(xi)−m) (2.61)

where wi are weights belonging to the residuals (Z(xi) − m). Unlike in multiple
regression, the mean m is the same for all locations following the stationarity as-
sumption.
For the estimation error at location x0 the difference between the estimated and the
true value is to be considered:

Z?(x0)− Z(x0) (2.62)

An estimator is said to be unbiased if the estimation error is zero on average:

E[Z?(x0)− Z(x0)] = m +
n∑

i=1

wi (E[Z(xi)]−m)− E[Z(x0)]

= m +
n∑

i=1

wi(m−m)−m

= 0. (2.63)

The variance of the estimation error, called the estimation variance σ2
E, can be

expressed as

σ2
E = var(Z?(x0)− Z(x0)) = E[(Z?(x0)− Z(x0))

2]. (2.64)

Expanding this expression leads to

σ2
E = E[(Z?(x0))

2 + (Z(x0))
2 − 2Z?(x0)Z(x0)]

=
n∑

i=1

n∑
j=1

wi wjC(xi − xj) + C(x0 − x0)− 2
n∑

i=1

wi C(xi − x0). (2.65)
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where the last equation has been computed using

cov[Z(xi), Z(xj)] = C(xi − xj), (2.66)

which directly follows from the stationarity assumption (2.29): the spatial covari-
ances only depend on the difference vector between the points.
Minimal estimator variance is obtained by setting the first partial derivatives to zero

∂σ2
E

∂wi

for i = 1, ..., n (2.67)

Explicitly, this means that for each i = 1, ..., n this yields,

2
n∑

j=1

wj C(xi − xj)− 2C(xi − x0) = 0 (2.68)

and the system of equations for simple Kriging can be written

n∑
j=1

wj C(xi − xj) = C(xi − x0) for i = 1, ..., n (2.69)

In matrix notation, this leads to




C(x1 − x1) C(x1 − x2) . . . C(x1 − xn)
C(x2 − x1) C(x2 − x2) . . . C(x2 − xn)

...
...

. . .
...

C(xn − x1) C(xn − x2) . . . C(xn − xn)







w1

w2
...

wn


 =




C(x1 − x0)
C(x2 − x0)

...
C(xn − x0)


 (2.70)

The left hand side of the equation system contains the matrix of data-to-data co-
variances between the locations. On the right hand side the covariances between
each data location and the point to be estimated are calculated. Solving this system
yields the desired weights wi, i = 1, ..., n. The system has a unique solution if the
matrix containing the covariances is nonsingular. This is always the case if the used
covariance function is strictly positive definite and all sample points are distinct
(which is the case for all the following applications).

Simple Kriging also provides a variance for each location x0. It is obtained by
substituting the left hand side of the kriging system by its right hand side in the
first term of the expression of the estimation variance σ2

E. Then the variance of
simple kriging is given by

σ2
SK =

n∑
i=1

wi C(xi − x0) + C(x0 − x0)− 2
n∑

i=1

wi C(xi − x0)

= C(0)−
n∑

i=1

wi C(xi − x0) (2.71)
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Properties of Z?(x0):
The estimator Z?(x0), the kriging estimator received in this way, is an exact interpo-
lator. If the point x0 coincides with a sample point, e.g. x1, then Z?(x0) is equal to
Z(x1). Furthermore, Z?(x0) is the best estimator as it minimizes the error variance
(in this case the variance is exactly zero).

2.5 Kriging the Mean

This section describes a procedure to estimate the mean value of samples that pos-
sess some kind of spatial correlation. The mean value can also be estimated by the
arithmetic mean which is the simplest approach. If the spatial correlations of the
samples should be included into estimating the mean, a weighted average has to be
constructed.

Let Z(xi) be a number of samples at positions xi, i = 1, ..., n irregularly spread in
a domain D. An estimator m? for the mean value m should be calculated which is
assumed to be a weighted average:

m? =
n∑

i=1

wi Z(xi) (2.72)

Now, the weights wi need to be calculated. It is assumed that the mean exists for
all samples of domain D, i.e. E[Z(x)] = m for all x in D. The estimator should be
unbiased which implies E[m? −m] = 0. Then it holds that

E[m? −m] = E

[
n∑

i=1

wiZ(xi)−m

]
= m

n∑
i=1

wi −m
!
= 0. (2.73)

It follows that the weights wi need to sum up to 1 to satisfy the unbiasedness
condition.

n∑
i=1

wi = 1 (2.74)

Further Z(x) need to be second order stationary with an existing covariance function
C(h) which describes the correlation between any pair of points x and x + h in the
spatial domain

C(h) = cov(Z(x), Z(x + h)) = E[Z(x) · Z(x + h)]−m2. (2.75)

Now, the variance of the estimation error in this unbiased procedure is the average
of the squared error

var(m? −m) = E[(m? −m)2]− (E[m? −m]2︸ ︷︷ ︸
=0

). (2.76)

The variance of the estimation error can be expressed in terms of the covariance
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function

var(m? −m) = E[m?2 − 2mm? + m2]

=
n∑

i=1

n∑
j=1

wi wjE[Z(xi)Z(xj)]− 2m
n∑

i=1

wi E[Z(xi)]︸ ︷︷ ︸
=m

+m2

=
n∑

i=1

n∑
j=1

wi wjC(xi − xj) (2.77)

The ”best” weights will be the weights that minimize var(m? −m) and respect the
unbiasedness condition (2.74) which gives the following minimization problem:

Minimize var(m? −m) subject to
n∑

i=1

wi = 1 (2.78)

The minimum can be found by setting the first order partial derivatives to zero. To
include the unbiasedness constraint into this problem, the minimization is solved
using the method of Lagrange, which can be found in detail e.g. in [169]. The
Lagrange approach solves a constrained minimization problem by converting it into
an unconstrained minimization of the Lagrange function.
This function ϕ is defined out of the original objective function plus a term containing
a Lagrange multiplier µ,

ϕ(wi, µ) = var(m? −m)− 2µ

(
n∑

i=1

wi − 1

)
. (2.79)

For ease of subsequent computation, the Lagrange multiplier is multiplied by factor
2 here.
To solve the optimization problem the partial derivatives of the objective function
ϕ(wi, µ) are set to zero

∂ϕ(wi, µ)

∂wi

= 0 for i = 1, ..., n (2.80)

∂ϕ(wi, µ)

∂µ
= 0 (2.81)

This yields a linear system of n + 1 equations. Solving this system leads to the
optimal weights wi for the estimation of the mean by a weighted average.





n∑
j=1

wj C(xi − xj)− µ = 0 for i = 1, ..., n

n∑
j=1

wi = 1.
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Summarized, this results in the system for Kriging the mean (KM).
The minimal estimation variance σ2 is computed by using the equations for the
optimal weights

n∑
j=1

wjC(xi − xj) = µ for i = 1, ..., n (2.82)

and in the expression of the estimation variance

σ2 = var(m? −m) =
n∑

i=1

n∑
j=1

wiwjC(xi − xj)

=
n∑

i=1

wiµ = µ

n∑
i=1

wi

︸ ︷︷ ︸
=1

= µ. (2.83)

This means that the variance of Kriging of the mean is directly given by the Lagrange
multiplier µ.
If there is no spatial correlation between points in space, the arithmetic mean is
the best linear unbiased estimator and also the corresponding estimation variance
is recovered. In general, it can be said that Kriging of the mean is a generalization
of the arithmetic mean estimator to the case of spatially correlated samples.

2.6 Ordinary Kriging

Ordinary Kriging (OK) is the most widely applied Kriging method. It can be used
to estimate a value at a point of a region for which a variogram is known. As men-
tioned above, the variogram is computed with the help of data points lying in the
neighborhood of the estimation location or by using the whole data set. Ordinary
Kriging can also be used to estimate a block value.

Ordinary Kriging Problem
The value at location x0 should be estimated as illustrated in Figure 2.11 using the

D

x
0

Figure 2.11: A domain with irregularly sampled points and a location
x0 of interest for estimation.
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data values from n surrounding sample points xi, i = 1, ..., n. The estimator Z?
OK

should be a linear combination of the points xi with weights wi.

Z?
OK(x0) =

n∑
i=1

wiZ(xi). (2.84)

In contrast to simple Kriging, ordinary Kriging constrains the weights to sum up to
one because in the particular case when all data values are constant, the estimated
value should also be equal to this constant. Again, it is assumed that the data are
part of a realization of an intrinsic random function Z(x) with a variogram γ(h).
Furthermore, the unbiasedness is achieved by unit sum weights:

E[Z?(x0)− Z(x0)] = E

[ n∑
i=1

wiZ(xi)− Z(x0) ·
n∑

i=1

wi

︸ ︷︷ ︸
=1

]

=
n∑

i=1

wiE[Z(xi)− Z(x0)] = 0, (2.85)

with the expectations of the increments being zero.
For the estimation variance σ2

E = var(Z?(x0)−Z(x0)) it holds that it is the variance
of the linear combination

Z?(x0)− Z(x0) =
n∑

i=1

wiZ(xi)− 1 · Z(x0) =
n∑

i=0

wiZ(xi), (2.86)

with a weight w0 equal to -1 and

n∑
i=0

wi = 0. (2.87)

It has to be noted here that the variogram is authorized for ordinary Kriging, but
not for simple Kriging because simple Kriging does not constrain the weights to sum
up to 1. Condition (2.87) directly corresponds to the one found in expression (2.51)
of a conditionally negative function. Using that connection, the estimation variance
for ordinary Kriging can be expressed as

σ2
E = E[(Z?(x0)− Z(x0))

2]

= −γ(x0 − x0)−
n∑

i=1

n∑
j=1

wi wj γ(xi − xj) + 2
n∑

i=1

wiγ(xi − x0). (2.88)

Minimizing the estimation variance due to the constraints on the weights results in
the ordinary Kriging system (OK)
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


γ(x1 − x1) . . . γ(x1 − xn) 1
γ(x2 − x1) . . . γ(x2 − xn) 1

...
. . .

...
...

γ(xn − x1) . . . γ(xn − xn) 1
1 . . . 1 0







wOK
1

wOK
2
...

wOK
n

µOK




=




γ(x1 − x0)
γ(x2 − x0)

...
γ(xn − x0)

1




, (2.89)

with wOK
i being the weights that have to be computed and µOK being the Lagrange

parameter. On the left hand side of the system, the dissimilarities between all data
points are coming into play while the right hand side shows the dissimilarities be-
tween each data point and the estimation point x0.
The ordinary Kriging system can also be written in the form





n∑
j=1

wOK
j γ(xi − xj) + µOK = γ(xi − x0) for α = 1, ..., n

n∑
j=1

wOK
j = 1.

(2.90)

The estimation variance of ordinary Kriging is

σ2
OK = µOK − γ(x0 − x0) +

n∑
i=1

wOK
i γ(xi − x0). (2.91)

The ordinary Kriging approach yields exact interpolations : if x0 is identical with
another sample point xi, then the estimated value is the same as the data value at
that point, i.e.

Z?(x0) = Z(xi) if x0 = xi. (2.92)

Looking at the Kriging system, this becomes clear: With x0 being one of the sample
points, the right hand side of the Kriging system is equal to one column of the left
hand side matrix. Then the vector w containing a weight equal to 1 for that column
and all other weights equal to zero (also µOK = 0) is a feasible solution of this
system. Actually, it is the only solution as the left hand matrix is not singular.

2.6.1 Ordinary Kriging Applied to Heterogeneous Catalyst Data

Within the scope of this thesis more than 2400 catalyst samples have been prepared
and screened for their catalytic activity for the oxidation of propene. The main
focus has been laid on the correlation between chemical composition of the catalysts
and their activity. With the help of Kriging, activities of non-synthesized compo-
sitions can be estimated given the activities of ”surrounding” samples. Due to the
construction of the Kriging estimator, estimation values larger than the largest mea-
sured value can be obtained, which is not always the case for estimation techniques.
In applying the Kriging approach to real catalyst data, this feature plays the most
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important role. Calculating the Kriging estimator of any desired catalyst compo-
sition within the sampled search space allows the construction of an appropriate
model of the functional correlation of composition and activity (QCAR, quantita-
tive composition activity relationship). This allows a deeper understanding of the
phenomena within the sample space such that the most active compositions can
be easily identified and further investigated. Another advantage of the Kriging ap-
proach compared to other interpolation or approximation techniques is the fact that
it is not restricted to three dimensions as some other interpolation techniques are.
For Kriging, the dimensionality of the data set plays no role since the only ”criti-
cal” calculations deal with distance measures (e.g. euclidian distances) defined in
Rn, n ∈ N, n > 0. In practice, the size of the Kriging system is given by the number
of screened samples. The combinatorial sampling of a pentanary composition spread
using 10%-wise increments yields 1001 samples which appears to be the actual limit
with respect to time and synthesis parameters. In this case, the Kriging matrix has
the size of 1002 × 1002 that can be easily handled by a common PC. Sampling a
six elemental search space using 10%-wise increments the number of samples to be
synthesized and tested moves to 3003, being a cumbersome task within reasonable
time. So, the limiting factor of applying Kriging to heterogeneous catalyst data lies
not in Kriging itself but in the availability of appropriate combinatorial screening
data. To show the efficiency of the estimation procedure with Kriging, a complete
pentanary composition spread has been prepared and screened automatically includ-
ing 10 ternary and 5 quaternary composition spreads. The results of the Kriging
estimation procedure applied to the most promising ternary and quaternary data
sets together with the complete pentanary are described in detail in Chapter 6.

2.7 Data Transformation

To work with data resulting from high-throughput screening experiments, appro-
priate transformations in a mathematically useful coordinate system has to be per-
formed. Originally, each data set consists of composition information and activity
values assigned to each sample. This means, for each catalyst, its elemental compo-
sition is considered together with its activity for the oxidation of propene to a certain
product. As already mentioned above, within this thesis the focus exclusively lies
on the activities of catalysts for acrolein among all the possible by-products. The
catalysts are mixed metal oxides composed of n different metals in various contents
and oxidation states. Therefore the content of oxygen within the materials may
differ depending on the preparation techniques, pretreatment or during the reaction
and is not further specified. The total metal content (defined as 100%) is indeed
uniquely determined if the contents of n− 1 metals are specified.
Mathematically, a catalyst consisting of n different metals can be described as a
point lying in the n-dimensional space Rn with each coordinate axis correspond-
ing to an element. Within the following sections ternary, quaternary and pentanary
composition spreads are dealt with separately and it is discussed how the data trans-
formation has been performed.
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2.7.1 Ternary Composition Spreads

Ternary composition spreads AaBbCcOx with a, b, c = 0, ..., 1 represent the sim-
plest case within this study. With a 10%-wise variation in composition, in total 66
different samples can be considered. Using the Cartesian coordinate system, ternary
compositions lie on the diagonal of the unit cube if the composition values between
0 and 1 are interpreted as Cartesian coordinates. Figure 2.12 illustrates this:
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Figure 2.12: Ternary system in 3D lying
on the diagonal of the unit cube.
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Figure 2.13: Ternary system transferred
into 2D representation within the Carte-
sian coordinate system.

Having the constraint that the proportions of metals sum up to 1 (100%), informa-
tion about the nth dimension is redundant such that a ternary system can also be
presented in 2D using an adequate coordinate transformation. For the aimed pur-
poses the data have been transformed into a 2D representation as shown in Figure
2.13.
Without loss of generality, the vertices of the triangle have been fixed to the coordi-
nates (0, 0), (1, 0) and (0.5,

√
3/2). Mathematically this has been done by multiply-

ing the original composition values by matrix MT . Let p = (a, b, c) be a point in R3

describing a catalyst with composition AaBbCcOx. The coordinates of this point p
in 2D representation (x2d, y2d) can be obtained by multiplying (b, c) by matrix MT .

(
1 0.5

0
√

3
2

)

︸ ︷︷ ︸
MT

·
(

b
c

)
=

(
x2d

y2d

)
(2.93)

This convention results in a representation of the ternary system with the first
element corresponding to the left vertex, the second element corresponding to the
right vertex and the third element is given by the top of the triangle. Thus, points
belonging to a ternary composition spread lie in a triangular shaped plane within
R2. Their activity values form the third dimension such that the interpolation
problem that needs to be solved here by Kriging is given in R3, cf. Figure 2.14.
Calculating the Kriging estimators corresponds to the calculation of a triangular
surface providing the activity for any composition within the parameter space.
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Figure 2.14: Ternary Composition Spread in 2D with activity giving the 3rd dimension.

2.7.2 Quaternary Composition Spreads

A quaternary composition spread AaBbCcDdOx with a, b, c, d = 0, ..., 1 in 10%-
wise variations yields 286 samples. As already discussed above, quaternary points
are originally lying in R4. Since an activity value belongs to each point there are
actually five dimensions to deal with. The compositional data can be transformed
into 3D representation analogously as discussed for the ternary case. This gives an
even tetrahedron in 3D. Without loss of generality, this tetrahedron is defined based
on the triangle defined for the ternary case and the fourth element sits on top of the
tetrahedron. Then the coordinates of the vertices in 3D are given by:




0
0
0


 ,




1
0
0


 ,




1
2√
3

2
0


 ,




1
2

1
3

√
3

2√
2
3


 (2.94)

Let p = (a, b, c, d) be a point in R4 describing a catalyst with composition AaBbCcDdOx.
The corresponding coordinates (x3D, y3D, z3D) for a representation in 3D can be ob-
tained by a multiplication with matrix MT (rotation of the coordinate system):




1 0.5 0.5

0
√

3
2

√
3

6

0 0
√

2
3




︸ ︷︷ ︸
MT

·



b
c
d


 =




x3D

y3D

z3D


 (2.95)

After this transformation the complete quaternary composition spread yields an even
tetrahedron in 3D as can be seen in the following figure.
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Figure 2.15: Example of a quaternary composition spread AaBbCcDdOx plotted in 3D.
The grey scale corresponds to the measured activity giving a fourth dimension.

2.7.3 Pentanary Composition Spreads

The last case to consider here is a pentanary composition spread AaBbCcDdEeOx.
Together with the activity values corresponding to each point there are six dimen-
sions to deal with. Following the transformation approach described above, the
composition information can be represented in 4D yielding some sort of generalized
tetrahedron, a convex polyhedron in 4D. Then, the coordinates of the vertices of
this polyhedron have to be determined applying the following procedure:
Consider the coordinates of the vertices of the tetrahedron in 3D (4 vectors in R3)
and expand them by one component. The fifth vertex in R4 should satisfy the con-
dition that its distance to all other vertices must be the same as it is always the
case for equilateral polyhedra. Without loss of generality and following the schemes
explained above this distance is set to 1 unit. Furthermore, all components of the
vectors should be positive since they directly correspond to the composition values
of materials (negative solutions have no applicable meaning here).
Setting up the system of equations to be solved:
Consider the known coordinates of the vertices of a tetrahedron in R3 having edge
length 1:




0
0
0


 ,




1
0
0


 ,




1
2√
3

2

0


 ,




1
2

1
3

√
3

2√
2
3


 (2.96)

To come to a polyhedron in R4 having five vertices, the dimension need to be ex-
panded by one component.
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e1 =




0
0
0
0


 , e2 =




1
0
0
0


 , e3 =




1
2√
3

2

0
0


 , e4 =




1
2

1
3

√
3

2√
2
3

0




(2.97)

To calculate the fifth vertex x = (x1, x2, x3, x4) it should hold: Vector x must have
the same distance from all other vertices and this distance should be 1 using the
euclidian distance measure. Then,

‖x− ei‖ = 1 for i = 1, . . . , 4. (2.98)

This leads to the following system of non-linear equations:

x2
1 + x2

2 + x2
3 + x2

4 = 1
x2

1 − 2x1 + x2
2 + x2

3 + x2
4 = 1

x2
1 − x1 + x2

2 −
√

3x2 + x2
3 + x2

4 = 1

x2
1 − x1 + x2

2 −
√

3
3

x2 + x2
3 − 2

√
2
3
x3 + x2

4 = 1

(2.99)

A positive solution for the fifth vertex is:

x =




1
2√
3

6√
6

12

1
2

√
5
2




(2.100)

Analogously, this approach can also be applied to find the sixth vertex in R5 and so
on. Solving the corresponding equation system leads to

x =




1
2√
3

6√
6

12√
10

20√
3
5




(2.101)

Summarizing, the calculation of coordinates for convex polyhedra in high dimen-
sional spaces can be done using the following transformation matrices:

• Tetrahedron in R3 for quaternary composition spreads:




1 1
2

1
2

0
√

3
2

√
3

6

0 0
√

2
3



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• Polyhedron in R4 for pentanary composition spreads:




1 1
2

1
2

1
2

0
√

3
2

√
3

6

√
3

6

0 0
√

2
3

√
6

12

0 0 0 1
2

√
5
2




• Polyhedron in R5 for composition spreads with six elements:




1 1
2

1
2

1
2

1
2

0
√

3
2

√
3

6

√
3

6

√
3

6

0 0
√

2
3

√
6

12

√
6

12

0 0 0 1
2

√
5
2

√
10

20

0 0 0 0
√

3
5




Within this thesis the data have always been transformed into the corresponding
spaces to apply the interpolation methods even though Kriging can easily cope
with multi-dimensional data. For the sake of a good visualization the reduction of
dimension by 1 comes along with a bundle of advantages for application.



3 Multilevel B-Splines

This chapter is dedicated to the theory and methodology of multilevel B-Spline
interpolation, a technique that is also used next to Kriging for interpolating catalyst
data. Within the next section a short overview on the most common interpolation
techniques is given together with the introduction of a multilevel B-Spline approach
to interpolate scattered data following the work of Lee and coworkes [100].

3.1 Scattered Data Interpolation

The problem of scattered data interpolation can be described as fitting a smooth
surface through data samples that are nonuniformly distributed. In general, the 2D
interpolation problem can be formulated as follows: Let P = {p1, ..., pN} ⊂ R2 and
values of function f at these points, f(p1), ..., f(pN). Then an interpolation (approx-

imation) function f̂ : R2 → R has to be found that describes the given data points
in the ‘best’ manner. The definition of ‘best approximation’ or ‘best interpolation’
cannot be easily answered since the real underlying function is not known. Thus,
no quality criteria (e.g. least squares distances etc.) or approximation errors can be
calculated.
For practical applications this problem plays an important role in many scientific and
engineering fields where data points are often sampled sparsely and only at distinct
positions. As the main goal of any interpolation technique the reconstruction of an
underlying function is intended. Then this function can be evaluated at any desired
position which allows the propagation of information associated with the scattered
data onto all positions in the domain. There are many sources of scattered data
but among the most common are measurements of physical quantities, results from
experiments and computational values. Scientific and engineering fields that mostly
yield scattered data are geology, meteorology, oceanography, cartography and es-
pecially mining. Scattered experimental data is also often produced in chemistry,
physics and engineering and nonuniformly spaced computational values may result
from finite element solutions of partial differential equations, computer graphics or
computer vision. A great interest of scattered data interpolation techniques is indeed
the gained information at non-sampled points. Having reconstructed the function,
a lot of useful applications, such as better visualization of data, can be performed.
For example, in geography or cartography, the reconstruction of a terrain surface
from scattered altitude values is exactly one application for interpolation approaches.

3.1.1 Application to Heterogeneous Catalyst Data

Within this thesis, scattered data interpolation has been used to construct the ac-
tivity surface of scattered catalyst activity measurements. From experiments, the
activity values of predefined compositions of mixed metal oxide catalysts have been
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given. The interesting question here is to find an underlying function connecting
composition and activity such that activity values of non-synthesized catalysts can
be estimated. Once the function is calculated, it can be evaluated at any desired
composition values being equivalent to calculating an estimator by the Kriging ap-
proach.

3.1.2 Interpolation Techniques

There has been a lot of activity within this field of research during the last two
decades, but scattered data interpolation remains a quite difficult and computation-
ally expensive problem. There is a vast amount of literature devoted to this subject
describing various approaches with different limitations in smoothness, time com-
plexity or allowable data distributions. For a detailed overview the reader is referred
to several surveys on this topic [10, 45, 74, 151]. In the following, a short description
of the most common interpolation techniques is given with an explicit focus on the
multilevel B-Spline interpolation approach presented by Lee et al. [100].

Most interpolation methods present f̂ as a weighted sum of the known values
zk = f(pk), i.e.

f̂(x, y) =
N∑

i=1

wizi , (x, y) ∈ R2 (3.1)

and differ in the method to calculate the weights.
In one of the simplest interpolation methods - the Inverse Distance Weighted Method
- the interpolation function f̂(x, y) at an arbitrary point (x, y) ∈ R2 is defined as a
weighted sum having weights proportional to the kth power of the inverse distance
between the point (x, y) and points with known values. This method suffers from
several well known drawbacks: The estimates are bounded by the extrema in the
samples values and thus this method is not appropriate for the application to the
catalyst interpolation problem. The probability that one gets the most active com-
positions within a composition spread is extremely small such that the interpolation
technique must also be able to yield larger activity values than the maximum mea-
sured value. The Inverse Distance Weighted Method uses weights of every scattered
point, as also Kriging does require all weights to be recomputed if any data point is
added or removed or just somehow modified. For k = 1 the interpolation function
is C0-continuous and has many cusps and corners. For k > 1 derivatives are zero on
P .
Shepard [159] proposed a variation in the inverse power, with two different weighting
functions using two separate neighborhoods based on the inverse distance weighted
method. Franke and Nielson [46] published a modified quadratic Shepard’s method
to improve these drawbacks and to produce C1-continuous interpolation functions.
Delaunay triangulation of P combined with subsequent linear or cubic interpolation
within each triangle [40, 134] has also been applied to construct an interpolation
surface.
Another popular technique to interpolate scattered data points is to define the in-
terpolation function as a linear combination of radially symmetric basis functions,
each centered at a data point. The unknown coefficients for the linear combinations
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have to be obtained by solving a linear equation system. For large data sets, the
coefficient matrices often suffer from poor condition numbers and need to be pre-
conditioned, cf. [35, 36]. There are several possibilities for choosing the appropriate
basis functions, e. g. Gaussian, multiquadratics originally suggested by Hardy [63],
thin plate splines or inverse multiquadratics [45].
In image processing, scattered data interpolation or approximation plays an essential
role in the reconstruction of images from nonuniform samples and therefore within
this community there exist by far more techniques and further improved methods.
The reader is referred to [140] for a survey on the application of radial basis functions
for image warping and [52] for a survey on nonuniform reconstruction techniques.
The method described by Lee et al. [100] is based on a B-Spline approximation
technique that has been proposed for image morphing [98, 99] constructing C2-
continuous interpolation functions from arbitrarily scattered data. Thus, this tech-
nique has been chosen to be applied to the catalyst data. Data resulting from
screening complete composition spreads are not randomly spread within the search
space but follow a predefined, regular grid. This gives a special case of scattered
data. The algorithm of Lee et al. works with a hierarchy of control lattices to gen-
erate a sequence of approximation functions which sum up to the desired function.
The ”heart” of the algorithm is composed of an effective and fast B-Spline approx-
imation technique applied to the different control lattice resolutions. The method
is also applicable to multivariate data sets and therefore catalyst data comprising
more than 3 elements can also be interpolated. Within the following section, the
methodology of the used multilevel B-Spline interpolation algorithm is explained in
detail.

3.2 A Multilevel B-Spline Algorithm

Although this interpolation method applies to multivariate data the mathematical
background is introduced here for the bivariate case. This leads to the ordinary sur-
face interpolation problem already described above. Let zk be data values sampled
at an arbitrary set of positions (xk, yk). Now one aims at finding an appropriate
interpolation function f(x, y) such that f(xk, yk) = zk and an evaluation of f at
any arbitrary position (x*,y*) becomes available. Together, the triplet (xk, yk, zk)
comprises the given scattered data.
Let Ω = {(x, y)|0 ≤ x < m, 0 ≤ y < n} be a rectangular domain in the xy-plane. A
set of scattered points P = {(xi, yi) | 0 ≤ xi < m, 0 ≤ yi < n, i = 1, ..., N} ⊂ Ω with

zi = f(xi, yi) is given. The approximation or interpolation function f̂ is formulated
as a uniform bicubic B-Spline function defined by a control lattice Φ overlaid on
domain Ω. Without loss of generality it is assumed that Φ is an (m + 3) × (n + 3)
lattice that spans the integer grid in Ω, cf. Figure 3.1 page 62. Let φij be the value
of the ij-th control point on lattice Φ with location (i, j) for i = −1, 0, ..., m+1 and

j = −1, 0, ..., n + 1. Then, the interpolation function f̂ can be defined using these
control points by

f̂(x, y) =
3∑

k=0

3∑

l=0

Bk(s)Bl(t)φ(i+k)(j+l) (3.2)
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where i = bxc − 1, j = byc − 1, s = x − bxc and t = y − byc. Functions Bk and Bl

are uniform cubic B-Spline basis functions defined as

B0(t) = (1− t)3/6

B1(t) = (3t3 − 6t2 + 4)/6

B2(t) = (−3t3 + 3t2 + 3t + 1)/6

B3(t) = t3/6

where 0 ≤ t < 1. The basis functions serve to weight the contribution of each control
point to f̂(x, y) based on the distance to (x, y). Then, the problem of finding function

f̂ is reduced to solving for the control points in Φ that best approximate the data
points.
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Figure 3.1: Configuration of control lattice Φ defined over domain Ω, cf. [100].

The missing values of control points φij are computed along the following equations,
giving the least square solution to weights φij, cf. [75, 100].

φij =

∑
p∈P w2

pφp∑
p∈P w2

p

(3.3)

φp =
wpzp∑3

a=0

∑3
b=0 w2

ab

(3.4)

where wp = wkl = Bk(s)Bl(t), k = (i + 1)− bxpc, l = (j + 1)− bypc, s = xp − bxpc
t = yp − bypc.

Having all weights φij of control lattice Φ calculated, one immediately gets the value

of function f̂ at any location of domain Ω. The smoothness and accuracy of the
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approximation and the contribution of each data point to the value of f̂(x, y) at
given locations depend primarily on the size and fineness of control lattice Φ. As
Φ becomes finer, the influence of a data point is constrained to a smaller neighbor-
hood. This leads to a closer approximation of P but, as a consequence, f̂ tends
to contain sharp local peaks at the data points. Using this approach, a tradeoff
between the smoothness and the accuracy of the approximation function f̂ has to
be found. This is done by applying a multilevel B-Spline approach with a hierarchy
of control lattices generating a sequence of approximation functions f̂k that result
in the desired function f̂ when summed up. In this sequence, a function resulting
from a coarse control lattice provides a rough approximation which is further refined
in its approximation accuracy by functions derived by finer lattices. With Φ being
sufficiently fine compared to the data distribution, the scattered points are interpo-
lated by f̂ .
Let f̂1, ..., f̂K , K ∈ N, K > 1 be a sequence of approximation functions resulting
from K different control lattices φ1, ..., φK with φi being of size (ni + 3)× (mi + 3)
corresponding to domain Ωi of size ni × mi. Then, the resulting approximation
function f̂ is defined by

f̂(x, y) =
K∑

i=1

f̂i(x, y) (3.5)

where K is the number of hierarchy levels.
Summarizing, the multilevel B-Spline Approximation (MBA) Algorithm can be for-
mulated as follows [100]:

MBA Algorithm:

1. Let i = 1, z
(1)
P = zp for all p ∈ P and domain Ω1 have size n×m.

2. Compute control lattice Φi for domain Ωi of size ni ×mi using

data points z
(i)
p and f̂i(x, y).

3. Compute residuals z
(i+1)
p = z

(i)
p − fi(xp, yp), p ∈ P .

4. Let i = i + 1.

5. Repeat process from step 2 for i = 2, ..., K.
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4 High-Throughput Screening

In this chapter the results of the high-throughput screening of all synthesized cata-
lyst samples are presented. In total, 2,400 samples have been screened for propene
oxidation. Two identical pentanary composition spreads have been studied consist-
ing of elements Cr, Mn, Co, Te and Ni (10% increment) together with 400 catalysts
being a refinement (5% increment) around the most active regions of the penta-
naries. All catalysts and their compositions are given in the Appendix (cf. pp. 161)
together with a unique sample number.

4.1 Sequential High-Throughput Screening of Catalyst Libraries

All the catalysts have been tested under identical conditions in a high-throughput
screening reactor system that has been recently developed within the research group
[174]. The whole set-up is explained and illustrated in detail within section 7.3. For
the screening process, the temperature has been fixed at 350 ◦C and the composition
of the feed gas has been adjusted with 28.4 vol-% propene and 71.6 vol-% synthetic
air. Among all possible products that can be monitored after the reactions by GC
measurements (cf. p. 135) the focus is laid on the formation of acrolein. Indication
for a high activity of a catalyst to form acrolein are large acrolein GC signals (peak
areas), in the following referred to as activity values.
Throughout the discussion of these results each sample is referred to by its sample
number enhanced by ’a’ or ’b’ corresponding to data set ’A’ or ’B’. The two identical
pentanary composition spreads A and B have been synthesized sequentially using
the same precursor solutions and dispensing robot. The interesting point in doing a
replication has been to check the reliability of the synthesis route and the screening
system. This chapter addresses the following issues:

1. To validate the whole screening set-up a slate library containing only reference
material (Hopcalite) and empty wells has been measured several times to study
the reliability of the system.

2. To check the distribution of temperature on a slate library, the temperature in
every filled well of the reference library has been recorded by a thermocouple.

3. Due to the limited number of wells on the slate plate (206 wells), the samples of
the pentanary composition spread had to be split over 5 different slate libraries
and hence, the whole data set is put together by 5 single measurement runs,
performed at different days. It is to be checked if this influences the samples
behavior and if screening results from these five separate measurements can be
put together in one data set.

4. Within the reactor, a temperature gradient of about 20 ◦C has been observed
which surly influences the activity of the catalysts according to their position
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on the plate. Higher temperatures should lead to more active samples, which
is also a problem in finding ’real’ hits.

5. How good has the reproducibility of data sets A and B been? Do the results
lie within the same range?

Having discussed all the above mentioned influences, the most active regions within
the 6-dimensional search space needed to be determined to reveal the best catalyst
for acrolein. This is not a trivial task since six dimensions need to be handled at
the same time. So, one challenge has been to find and to develop appropriate visu-
alization approaches to cope with 5D data (6D with activity for acrolein). Chapter
5 is dedicated to the visualization of multivariate screening data.
The main focus throughout this thesis is to validate the two modelling approaches:
Kriging and Multilevel B-Splines. It should be checked how predicted activities co-
incide with the experimental values for 5%-wise compositions. Therefore, the two
complete data sets together with the 400 samples of the refinement pose an invalu-
able prerequisite to discover composition-activity relationships for heterogeneous
catalysts. The synthesis of these two pentanary composition spreads also played an
important role since such complete data sets from combinatorial high-throughput
screening have not been available up to now. It has to be noticed again that the
data sets exclusively focus on the composition of the catalysts, all other parameters
such as synthesis route, calcination times, pretreatment of the precursors etc. have
been kept fixed. This is not always the case when dealing with high-throughput
screening data and that makes these data sets so valuable.

4.2 Screening Results of the Reference Library

The reference library has been alternatingly filled by Hopcalite, always leaving empty
wells in between. In total, 108 wells containing Hopcalite and 98 empty wells have
been tested. Figure 4.1 illustrates the layout of this library. Figure 4.2 (cf. page 67)
contains the mean values of the screening indicated by color. Red colored samples
show rather high activity for acrolein while blue and dark blue samples correspond
to low activities and empty wells that should contain at most traces of acrolein since
the wells are not totally isolated for gas diffusion. The difference between Hopcalite
samples and empty wells is clearly recognizable, indicating that the screening method
works quite well for this reaction. From Figure 4.2 a kind of overall trend can be
observed: the most active samples have been screened on inner library positions,
indicating that these positions are somehow advantaged. What causes these trends
shall be studied more closely within the next sections. In total, three screenings of
the library have been performed within eight months.
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Figure 4.1: Layout of the Reference Library: 108 wells filled with Hopcalite (black wells),
98 empty wells (marked by E).

0.5

1  

1.5

2  

2.5

3  

3.5

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

H

E

H

E

E

H

E

H

E

H

H

E

H

H

E

H

H

H

E

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

H

E

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

H

E

H

E

H

E

H

E

H

E

H

E

H

E

E

H

E

H

E

H

E

H

E

H

H

E

H

E

H

E

H

E

H

E

H

E

H

H

E

H

E

H

E

H

E

H

H

E

H

E

H

E

H

H

E

H

E

E

H

H

E

H

E

H

E

H

E

H

E

H

H

E

H

H

E

H

E

E

H

H

E

E

H

E

H

H

E

H

E

H

E

H

E

H

E

H

H

E

H

E

H

E

H

E

H

E

H

E

H

E

H

x 105 

Rel. Activity 

Figure 4.2: Results of the Reference Library (mean values taken over three screenings).

Table 4.1 summarizes the statistics of the measurements. The positive trend to-
ward the inner positions explains the quite large variability between maximum and
minimum value leading to large standard deviation values. Nevertheless, the repro-
ducibility of the screening results has been extremely satisfactory, especially for the
last two measurement runs. A slight decrease of activity within eight months might
be due to some sintering effects caused by the reaction conditions or aging behavior
of the catalyst. The advantaging of inner library positions might be due to a higher
temperature within this area of the plate. Therefore, the temperature distribution
of the reference library has been studied in more detail as shown in the next section.
The repeated screening of the reference library also provided enough valuable data
to determine a 95% -confidence interval for the Hopcalite values following the theory
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of observation errors (Student’s t distribution) . For the three measurements this
gives:

10/27/06 05/24/06 06/01/06

Minimal Value 7.34 · 104 5.00 · 104 2.96 · 104

Maximal Value 3.66 · 105 4.12 · 105 4.23 · 105

Median 1.20 · 105 7.70 · 104 7.42 · 104

Mean X̄ 1.37 · 105 9.82 · 104 9.25 · 104

Standard Deviation sx 6.36 · 104 5.98 · 104 5.81 · 104

Number of Measurements: n 108 108 108

Deviation from Mean: sx√
n

6.11 · 103 5.75 · 103 5.59 · 103

t-factor for n = 108 1.98 1.98 1.98

Deviation:1.98 · sx√
n

1.21 · 104 1.13 · 104 1.10 · 104

Deviation [%] 8.83 11.40 11.89

Interval 1.37 · 105 9.82 · 104 9.25 · 104

+/- 1.21 · 104 +/− 1.13 · 104 +/− 1.10 · 104

Table 4.1: Measurement statistics of the reference library.

Table 4.1 demonstrates how large the deviation among the Hopcalite samples has
been. Several statistics for each screening containing the two extrema, median and
mean value and the standard deviation are considered. Since only 108 samples
have been measured and no normal distribution of the measurement values can be
assumed the sample mean value does not represent the measurements in a correct
way. Therefore, the stochastic deviation of the measurements urand is calculated to
give the borders of a 95% - confidence interval. Following the theory of observation
errors (Student’s t distribution) [1], the random deviation among the measurements
is given by the quotient:

urand = tp,n
sx√
n

where sx being the standard deviation, n being the number of measurements and p
the desired statistical confidence level. In this case, t0.05,108 = 1.98, cf. page 1123 in
[17] and the corresponding confidence intervals can be determined as has been done
in table 4.1.
Furthermore the table also contains the percentage deviation, ranging from 8.83%
for the first screening of the library to 11.89% for the third screening. That means,
the actual activity values of a sample can be determined with a deviation of approx-
imately 10% inaccuracy. For a high-throughput screening technique this result is
acceptable.
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4.3 Temperature Profile of the Reference Library

To establish a temperature profile of the filled reference library the temperatures
in each filled well have been monitored by a thermocouple. Figure 4.3 shows the
results. Obviously, the temperature is not constantly distributed over the library
plate, it increases from left to right with a definite maximum around the inner
positions. The maximum measured temperature of 356 ◦C has been reached around
the center, while the minimal measured temperature of 334 ◦C appears at the left
margin. This means, a temperature gradient of 22 ◦C has been observed spread over
the library. This may be caused by the architecture of the reactor heating system
or an unsteady heat transfer between slate and steel, while the draft of the hood
may contribute, too. The lower temperatures at the margins obviously are due to
insufficient insulation. This definitely has an influence on the activity of a catalyst
sample since the speed of a catalytic reaction directly depends on the temperature.
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Figure 4.3: Temperature profile of the reference library (dark blue wells correspond to
empty wells with no temperature measurement).

This means within the screening data it can be observed that many of the most
active samples are situated on inner library positions giving the danger of too many
“false positives”. Therefore, a strategy to filter the data according to that influence
is proposed. This can be done by multiplying each activity value with an adequate
factor depending on the position and therefore the temperature of the sample. After
this correction, it might happen that the most active samples “loose” some activity
while other samples, less active, gain activity, especially those samples measured at
lower temperatures situated at outer positions.

Strategy: Correction of Temperature/Position Influence

For the correction of trends within the screening data a temperature value for each
well is needed. Since the temperature could have been only measured within the
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filled wells appropriate temperature values for the empty positions are required. This
has been done by using a Kriging model to calculate the temperatures at the empty
well positions. Then, each well/position of the library corresponds to a certain tem-
perature value. Figure 4.4 shows the results of the kriged temperature distribution.
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Figure 4.4: Results of kriging the missing temperature values.
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Figure 4.5: Activity versus temperature of the reference library.

As a main aspect, the dependence of activity on temperature need to be studied and
the two plots above give an idea of this correlation.
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Figure 4.6: Mean values of activity versus temperature of the reference library fitted by a
cubic polynomial.

It can be observed that there is a positive trend towards higher temperatures indi-
cating that the activity of the samples is positively influenced by higher temperature
values. Since some temperatures have been measured more often than others it was
decided to work with the mean activity values of the measured activities, see Figure
4.6. Then, an activity value for each empty well can be calculated by a fitting poly-
nomial and a complete library is obtained with 206 activity and temperature values
based on the temperature and activity measurements extended by modelled values.
The data can then be normalized to the mean activity value at the desired temper-
ature of 350 ◦C by assigning a scaling factor to each well/position. This factor will
be larger than 1 for positions with low temperatures or low activity values and less
than 1 for regions with high measured activities due to high temperatures. After
this normalization, all the samples of the Hopcalite library show the same activ-
ity as should be theoretically the case. When screening the pentanary composition
spreads also a trend has been observed that many active samples occurred near the
innermost positions indicating the consequences discussed above. Thus, this normal-
ization strategy has also been applied to the screened catalyst libraries to correct the
temperature influence of inner positions. Of course, it has to be assumed here that
all synthesized materials show a similar heat transfer than the Hopcalite material
does although materials may behave differently. To calculate the normalization fac-
tors according to the positions seems to be a good approach since all libraries have
been measured in the same way such that every position of the library exactly sits
at the same place in the reactor. Thus, in every run the screening has been realized
under the same conditions yielding the same errors and influences.
It can be also shown that the use of steel libraries leads by far to smaller temperature
gradients than slate, even at operating temperatures above 400 ◦C.

4.4 Screening Identical Libraries

To study the reliability of the screening system for the oxidation of propene a penta-
nary composition spread has been synthesized twice under exactly the same condi-
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tions. All samples have been sequentially synthesized within three days keeping all
other parameters fixed. For a complete pentanary composition spread extended by
reference samples five different slate plates have been needed to place all the catalyst
powders. In total, 10 (2 × 5) libraries have been filled to perform the screening at
350 ◦C. The exact distribution of the samples on the slate plates can be found in the
Appendix (see pp. 173). The following figures show the unscaled results (raw data)
of screening the 10 libraries for propene oxidation. For these plots, the same scaling
has been applied such that very active samples are colored in dark red and can be
identified at once. Another important aspect here was to check the reproducibility.
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Figure 4.7: Results of ht-screening
of library 1a (unscaled).
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Figure 4.8: Results of ht-screening
of library 1b (unscaled).
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Figure 4.9: Results of ht-screening
of library 2a (unscaled).
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Figure 4.10: Results of ht-screening
of library 2b (unscaled).
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Figure 4.11: Results of ht-screening
of library 3a (unscaled).
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Figure 4.12: Results of ht-screening
of library 3b (unscaled).
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Figure 4.13: Results of ht-screening
of library 4a (unscaled).
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Figure 4.14: Results of ht-screening
of library 4b (unscaled).
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Figure 4.15: Results of ht-screening
of library 5a (unscaled).
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Figure 4.16: Results of ht-screening
of library 5b (unscaled).
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A pairwise comparison of the libraries showed in general good reproducibiloity.

• Libraries 1a and 1b:
Sample 68 achieved higher GC signals on plate 1a, the results of other samples
on these plates could be well reproduced.

• Libraries 2a and 2b:
The reproducibility of libraries 2a and 2b has also been satisfactory. For ex-
ample, samples 322 and 299 showed in both cases comparably good activities.

• Libraries 3a and 3b:
These two libraries showed the best reproducibility amongst all pairs. Except
for sample 508 nearly no discrepancies were observed. All very active samples
of library 3a also showed high activities in their reproduction on plate 3b.
Sample 501 showed reproducibly the highest activity of all libraries. Sample
473 appeared to be the third-best catalyst in both data sets.

• Libraries 4a and 4b:
The leading samples yielded high activity values on both libraries. Sample 685
appeared to be the second-best catalyst in both cases. Remarkably here are
the good activity values of sample 603 situated at an outer position where a
lower temperature value may cause rather a decrease in activity. In general,
the overall reproducibility among both plates is well succeeded.

• Libraries 5a and 5b:
The results of the leading samples could have been reproduced and libraries 5a
and 5b show a good reproducibility. Sample 901 shows less activity on library
5a than on library 5b but nearly all other samples follow the same pattern.
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The following two tables illustrate the results of the 25 best catalysts (data without
scaling) from both screenings given their composition and position on the plates.

Ranking Sample X Y Cr Mn Co Te Ni Acrolein

Number Signal

1 501 9 10 0.1 0 0.2 0.4 0.3 9.84·105

2 685 8 8 0.1 0 0.4 0.3 0.2 8.48·105

3 473 7 12 0 0.2 0.7 0.1 0 8.02·105

4 860 6 12 0 0.1 0.8 0.1 0 6.95·105

5 820 3 8 0 0.2 0.6 0.1 0.1 6.73·105

6 603 1 8 0 0.3 0.5 0.1 0.1 6.67·105

7 299 9 8 0.1 0.2 0.4 0.3 0 6.04·105

8 631 4 8 0 0.2 0.5 0.1 0.2 5.80·105

9 422 3 12 0 0.1 0.7 0.1 0.1 5.61·105

10 747 12 13 0 0.3 0.3 0.1 0.3 4.96·105

11 699 9 7 0.9 0 0 0.1 0 4.92·105

12 485 8 8 0.1 0 0.3 0.6 0 4.89·105

13 508 10 1 0.1 0 0.3 0.4 0.2 4.87·105

14 954 13 5 0 0.3 0.6 0.1 0 4.54·105

15 686 8 9 0.1 0.4 0 0.3 0.2 4.38·105

16 322 10 16 0.1 0.2 0.6 0.1 0 4.34·105

17 680 8 3 0.1 0.1 0.7 0.1 0 4.14·105

18 507 9 16 0 0.4 0.2 0.1 0.3 4.11·105

19 929 11 8 0 0.1 0.6 0.1 0.2 4.04·105

20 715 10 9 0 0.3 0.4 0.1 0.2 4.00·105

21 986 15 14 0.1 0 0.4 0.4 0.1 3.96·105

22 744 12 10 0.1 0.3 0.3 0.3 0 3.92·105

23 509 10 2 0 0.4 0.3 0.1 0.2 3.85·105

24 68 7 7 0 0.1 0.5 0.1 0.3 3.82·105

25 437 5 3 0 0.2 0.4 0.1 0.3 3.70·105

Table 4.2: Best catalysts of data set A after ht-screening (unscaled data).

Comparing the unscaled screening results of data set A and B it can be observed
that the leading group, i.e. the best three catalysts are exactly the same samples in
both cases. That illustrates the good reliability of the synthesis route together with
the screening system. Among the best 25 catalysts of each data set, 17 catalysts
are contained in both leading groups, indicating again a good reproducibility of the
measurement results.
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Ranking Sample X Y Cr Mn Co Te Ni Acrolein

Number Signal

1 501* 9 10 0.1 0.0 0.2 0.4 0.3 9.44·105

2 685* 8 8 0.1 0.0 0.4 0.3 0.2 7.86·105

3 473* 7 12 0.0 0.2 0.7 0.1 0.0 7.60·105

4 485* 8 8 0.1 0.0 0.3 0.6 0.0 7.34·105

5 299* 9 8 0.1 0.2 0.4 0.3 0.0 7.33·105

6 284 8 8 0.1 0.1 0.2 0.5 0.1 7.21·105

7 603* 1 8 0.0 0.3 0.5 0.1 0.1 6.37·105

8 631* 4 8 0.0 0.2 0.5 0.1 0.2 5.53·105

9 820* 3 8 0.0 0.2 0.6 0.1 0.1 5.44·105

10 860* 6 12 0.0 0.1 0.8 0.1 0.0 5.11·105

11 340 12 5 0.0 0.4 0.4 0.1 0.1 4.84·105

12 747* 12 13 0.0 0.3 0.3 0.1 0.3 4.80·105

13 322* 10 16 0.1 0.2 0.6 0.1 0.0 4.79·105

14 422* 3 12 0.0 0.1 0.7 0.1 0.1 4.56·105

15 928 11 7 0.2 0.0 0.1 0.4 0.3 4.49·105

16 562 13 14 0.1 0.3 0.4 0.1 0.1 4.41·105

17 507* 9 16 0.0 0.4 0.2 0.1 0.3 4.28·105

18 954* 13 5 0.0 0.3 0.6 0.1 0.0 4.22·105

19 489 8 12 0.1 0.3 0.0 0.4 0.2 4.01·105

20 701 9 10 0.0 0.0 0.0 0.3 0.7 3.97·105

21 929* 11 8 0.0 0.1 0.6 0.1 0.2 3.95·105

22 986* 15 14 0.1 0.0 0.4 0.4 0.1 3.89·105

23 379 15 9 0.1 0.2 0.4 0.1 0.2 3.88·105

24 357 13 9 0.1 0.4 0.0 0.4 0.1 3.88·105

25 509* 10 2 0.0 0.4 0.3 0.1 0.2 3.79·105

Table 4.3: Best catalysts of data set B after ht-screening (unscaled data). Samples marked
by * are also contained among the best 25 samples of data set A.

In a next step, the same ranking of the catalyst performance was done after having
removed the temperature influence in the data. Tables 4.4 and 4.5 show the ranking
after the data have been multiplied by the scaling factor according to their position.
After scaling, sample 473 (originally on third position) takes the leading position in
both data sets. Comparing the unscaled with the scaled data sets one notices slight
changes within the ranking of the top 25 catalysts. For data set A, 11 catalysts re-
main among the leading 25 samples after scaling while 14 catalysts are kept for data
set B. Considering the best three catalysts before and after the scaling, a group of 6
samples can be identified being the most active ones: 473, 685, 860, 820, 501 and 299.
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Ranking Sample X Y Cr Mn Co Te Ni Acrolein Scaling

Number Signal Factor

1 473 7 12 0 0.2 0.7 0.1 0 8.02·105 1.00
2 860 6 12 0 0.1 0.8 0.1 0 7.75·105 1.12
3 820 3 8 0 0.2 0.6 0.1 0.1 7.64·105 1.14
4 685 8 8 0.1 0 0.4 0.3 0.2 7.19·105 0.85
5 603 1 8 0 0.3 0.5 0.1 0.1 5.97·105 0.89
6 299 9 8 0.1 0.2 0.4 0.3 0 5.71·105 0.95
7 401 1 7 0 0.1 0.1 0.4 0.4 5.18·105 1.88
8 747 12 13 0 0.3 0.3 0.1 0.3 5.11·105 1.03
9 422 3 12 0 0.1 0.7 0.1 0.1 5.02·105 0.89
10 631 4 8 0 0.2 0.5 0.1 0.2 4.98·105 0.86
11 748 12 14 0.2 0.1 0.4 0.3 0 4.92·105 1.43
12 411 2 9 0.2 0 0.2 0.4 0.2 4.81·105 1.54
13 75 7 15 0.1 0.4 0.2 0.1 0.2 4.63·105 1.49
14 508 10 1 0.1 0 0.3 0.4 0.2 4.63·105 0.95
15 954 13 5 0 0.3 0.6 0.1 0 4.54·105 1.00
16 189 16 9 0.2 0 0.3 0.4 0.1 4.48·105 1.41
17 437 5 3 0 0.2 0.4 0.1 0.3 4.40·105 1.19
18 863 6 15 0.2 0.5 0 0.3 0 4.37·105 1.19
19 763 14 3 0.1 0.4 0.1 0.3 0.1 4.33·105 1.23
20 970 14 9 0.1 0.4 0.4 0.1 0 4.33·105 1.41
21 14 2 11 0.2 0.2 0 0.3 0.3 4.27·105 1.37
22 368 14 8 0.1 0.2 0 0.3 0.4 4.26·105 1.33
23 759 13 12 0.1 0.2 0 0.4 0.3 4.25·105 1.35
24 605 1 10 0.2 0.2 0 0.4 0.2 4.22·105 1.51
25 562 13 14 0.1 0.3 0.4 0.1 0.1 4.16·105 1.13

Table 4.4: Best catalysts of data set A after ht-screening, scaled data. Sample 473 yielded
the best activity value.

It is interesting to notice that the second and third best samples of data set B (after
scaling) have a scaling factor below 1 which means that their original activity values
are decreased by a certain amount since they are located on inner plate positions.
Nevertheless, they possess very good activity values. Furthermore sample 473 has a
factor of 1 causing no activity change such that the result of this catalyst stays very
good. In the scaled data set A, the second and third best catalysts (860 and 820)
have been assigned a scaling factor larger than one leading to a slight improvement
of their activity values due to their plate positions. Another interesting results has
been obtained for sample 603 situated at an outer position of the library. This
sample yielded very good activity values during the screening and can be found
among the best 10 catalyst within all tables. Analyzing the data sets in this way
helped to get a first impression of the best catalyst samples. Fortunately, removing
the temperature trends out of the data did not totally disturb the original ranking
and a leading group of the 6 catalysts mentioned above could be identified.



78 4 High-Throughput Screening

Ranking Sample X Y Cr Mn Co Te Ni Acrolein Scaling

Number Signal Factor

1 473* 7 12 0 0.2 0.7 0.1 0 7.60·105 1.00
2 299* 9 8 0.1 0.2 0.4 0.3 0 6.93·105 0.95
3 685* 8 8 0.1 0 0.4 0.3 0.2 6.67·105 0.85
4 485 8 8 0.1 0 0.3 0.6 0 6.22·105 0.85
5 820* 3 8 0 0.2 0.6 0.1 0.1 6.18·105 1.14
6 284 8 8 0.1 0.1 0.2 0.5 0.1 6.11·105 0.85
7 860* 6 12 0 0.1 0.8 0.1 0 5.70·105 1.12
8 603* 1 8 0 0.3 0.5 0.1 0.1 5.70·105 0.89
9 928 11 7 0.2 0 0.1 0.4 0.3 5.61·105 1.25
10 947 12 11 0.1 0.2 0.3 0.3 0.1 5.18·105 1.45
11 562* 13 14 0.1 0.3 0.4 0.1 0.1 4.97·105 1.13
12 747* 12 13 0 0.3 0.3 0.1 0.3 4.95·105 1.03
13 340 12 5 0 0.4 0.4 0.1 0.1 4.84·105 1.00
14 411* 2 9 0.2 0 0.2 0.4 0.2 4.80·105 1.54
15 631* 4 8 0 0.2 0.5 0.1 0.2 4.74·105 0.86
16 401* 1 7 0 0.1 0.1 0.4 0.4 4.65·105 1.88
17 748* 12 14 0.2 0.1 0.4 0.3 0 4.63·105 1.43
18 189* 16 9 0.2 0 0.3 0.4 0.1 4.56·105 1.41
19 489 8 12 0.1 0.3 0 0.4 0.2 4.52·105 1.13
20 759* 13 12 0.1 0.2 0 0.4 0.3 4.47·105 1.35
21 203 1 9 0.2 0 0 0.5 0.3 4.46·105 1.36
22 368* 14 8 0.1 0.2 0 0.3 0.4 4.45·105 1.33
23 75* 7 15 0.1 0.4 0.2 0.1 0.2 4.42·105 1.49
24 437* 5 3 0 0.2 0.4 0.1 0.3 4.36·105 1.19
25 970* 14 9 0.1 0.4 0.4 0.1 0 4.35·105 1.41

Table 4.5: Best catalysts of data set B after ht-screening, scaled data. Samples marked by
* are also contained among the best 25 samples of the scaled data set A.

How good the reproduction of the whole data set has been can be seen in Figure
4.17 where the activity results of all 1001 samples are plotted. The x-axis denotes
the activity values of data set A, the y-axis the activity values of data set B. In
case of a perfect matching this plot should results in a bisecting line of an angle.
The best catalyst samples for the unscaled case are 501, 685 and 473 which can be
easily identified in the plot lying in the outermost right corner. It is remarkable
that catalyst ranking among the best 25 samples show a good reproducibility and
appear close to the bisecting line. The overall trend of this plot confirms the results
already discussed above in an elegant way. How the data behave after the scaling
process is illustrated in Figure 4.18. Here, it can be observed that the best sample
after the scaling process is catalyst 473. Its position in the outmost right corner
of the coordinate system indicates the best activity values in both data sets. Also
the leading groups of the best catalyst show a very good reproducibility and differ
noticeably from the rest of the samples. Sample 501 lost its good position due to an
inner library position and a small scaling factor of 0.3. It fell back to position 129
(data set A) and 153 (data set B) in the overall ranking.
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Figure 4.17: Comparison of the unscaled data sets A and B with respect to the measured
activity values. The leading group with samples 501, 685 and 473 clearly catches the eye.
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Figure 4.18: Comparison of the scaled data sets A and B with respect to the measured
activity values. The best sample 473 appears in the outmost right corner. Sample 501 lost
its good position due to a scaling factor of only 0.3.

Other very good catalysts that got factors smaller than one due to their inner library
positions still remain among the best samples. Furthermore, the leading group has
been supplemented with samples from outer positions due to scaling factors larger
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than one. An interesting result has been obtained for sample 603 lying at the margin
position (1,8). This sample has been already very active in both original data sets
and by its factor of 1.56 it even gains more activity by the scaling. Thus, sample
603 promises to be a really good candidate.

4.5 Splitting the Samples onto Five Libraries

To screen a complete pentanary composition spread consisting of 1001 samples five
slate plates were needed. Thus, the measurements have been carried out sequen-
tially during several days which might have influenced the results. To check this the
screening results of the reference samples located at each library have been consid-
ered and it was controlled if their results lie within the same range. The following
two figures illustrate the measured results by box-plots.
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Figure 4.19: Box plot of reference sam-
ples of libraries 1a-5a.
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Figure 4.20: Box plot of reference sam-
ples of libraries 1b-5b.

The screening results of the Hopcalite samples on different libraries showed good
accordance among each other. The median values of libraries 1a, 2a, 3a and 5a
appeared within the same range, a satisfying result. The same can be noted with
respect to libraries 1b, 2b, 3b and 5b. It has been interesting to see that the screening
of the Hopcalite samples of both libraries 4a and 4b yielded higher activity values
that lie far outside the 95%-confidence interval. Why this is the case for these two
libraries cannot be explained. But in 8 out of ten cases the Hopcalite samples yielded
results within the desired range such that a weighting of the results according to the
library is neglected.

4.6 Screening Results of the Ternary Composition Spreads

Within this section the most interesting screening results among the ten ternary
composition spreads that can be extracted out of the complete pentanary system
are presented. The left figure always corresponds to data set A while the right figure
contains the results out of data set B. For the following figures, the color corresponds
to the measured GC signals for acrolein, giving a sort of ”relative activity” for the
catalyst samples. The most active regions have been finer sampled (5%-wise incre-
ments) by a second generation of catalysts, to validate the modelling approaches.
These compositions have been marked by small black points.
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Figure 4.21: Screening results of the ternary system CrCoTe A (left) and CrCoTe B (right)
without scaling.
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Figure 4.22: Screening results of the ternary system MnCoTe A (left) and MnCoTe B
(right) without scaling.
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Figure 4.23: Screening results of the ternary system CrTeNi A (left) and CrTeNi B (right)
without scaling.
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Figure 4.24: Screening results of the ternary system CrMnTe A (left) and CrMnTe B
(right) without scaling.

According to Table 4.2 the ternary catalysts 473 and 860 show very good activities. It
is very interesting that these samples are neighbors within the same system MnCoTe,
cf. Figure 4.22. This means, the region around samples 473 and 860 appears to be
a region of interest for further investigations. The same can be deduced for samples
699 and 485, although the high activity value of sample 699 only occurred in data
set A. The activity of 485 has been verified in data set B. These representations are
as important as the statistical treatment since they visualize the consistency of the
activity-composition dependence. Outliers are identified by significant differences
to the next neighbors, while active materials should be surrounded by other active
samples. Avtivity is assumed to change gradually.

4.7 Screening Results of the Quaternary Composition Spreads

Analogously to the section above the screening results of the five quaternary sys-
tems are presented within this section. Quaternary composition spreads can be
represented by tetrahedra, as has been described within section 2.7.2. In this repre-
sentation, the ternary systems that build the equilateral triangles at the four faces
of the tetrahedra have been removed. Then, only real quaternary compositions are
drawn that are normally covered by ternaries. Nevertheless, it is not as easy as with
the ternary case to determine the composition of an active sample by just looking
at the plots - this requires some practice. Using appropriate software tools, these
drawbacks of a fixed representation as tetrahedra can be decreased. Within the
next chapter it will be explained, how an interactive representation of quaternary
composition spreads may facilitate the interpretation. For the following figures, the
results from data set A (left sides) and B (right sides) are again presented in direct
comparison.
Figure 4.25 shows a quaternary system consisting of the elements Mn, Co, Te, and
Ni. Again, the high reproducibility of the samples can be noted and especially sam-
ples 747, 631, 422, 820 and 603 showed comparable high activities in both data sets.
For the preparation of a second library generation this area has been identified as a
region of interest to be sampled finer by a second generation of catalysts.
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Figure 4.25: Screening results of the quaternary system MnCoTeNi A (left) and MnCoTeNi
B (right) without scaling.

Within Figure 4.26 the most active samples of both data sets can be clearly iden-
tified verifying the good reproducibility of the synthesis method and the screening.
Samples 501 and 685 together with a small neighborhood of surrounding points
have been synthesized again to check the power of the modelling approaches. These
results will be discussed in Chapter 6.
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Figure 4.26: Screening results of the quaternary system CrCoTeNi A (left) and CrCoTeNi
B (right) without scaling.



84 4 High-Throughput Screening

1  

1.5

2  

2.5

3  

3.5

4  

4.5

5  

5.5

6  

Mn

Ni

Cr

Te

686 

Relative Activity 

x 105 

1  

1.5

2  

2.5

3  

3.5

4  

4.5

5  

5.5

6  

Mn

Ni

Cr

Te

489 

Relative Activity 

x 105 

Figure 4.27: Screening results of the quaternary system CrMnTeNi A (left) and CrMnTeNi
B (right) without scaling.

In Figure 4.27 the system CrMnTeNi is illustrated. In this system, there has been
a noticeable difference between the two data sets. Sample 686 that proved to be
quite active in data set A did not show the same behavior within data set B. There,
sample 489 gained the best screening result.
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Figure 4.28: Screening results of the quaternary system CrMnCoTe A (left) and CrMnCoTe
B (right) without scaling.

In Figure 4.28 the screening results of the system CrMnCoTe are illustrated. In both
cases, the most active catalyst samples have been samples 299 and 322 indicating
the good reproducibility.
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4.8 Screening Results of the 2nd Generation of Catalysts

Within this section the screening results of a second generation of catalysts are iden-
tified that has been synthesized according to the regions of interest identified after
the first screening process. In total, again 400 catalyst samples have been prepared
lying in the 5% neighborhood of the most active samples. The active samples them-
selves have also been synthesized repeatedly to manifest their performances. The
exact compositions of these 2nd generation catalysts can be found within a table
given in the Appendix (pp. 169) together with the layouts of libraries 6 and 7. To
test whether the results can be compared to those of the previous screenings the
reference samples (Hopcalite) that have been placed on each library were considered
first. The screening results of the references should lie within the same range than
before. The following table gives the mean values of Hopcalite activity for each
measured library.

Library Mean Value of Hopcalite Activity ( ×104 )

1a 3.60
2a 5.71
3a 4.91
4a 6.83
5a 5.27
1b 4.60
2b 4.80
3b 4.27
4b 7.99
5b 4.55
6 6.11
7 7.04

Table 4.6: Mean values of Hopcalite activity of all measured libraries.

From this table it can be seen that the Hopcalite samples screened on libraries 6
and 7 do not noticeably differ from the other results. A mean value of 6.11·104 for
library 6 has also been reached on library 4a and the result for library 7 has been
topped on library 4b, such that there have been no remarkable anomalies. It can be
clearly seen that the results of the Hopcalite samples possess a large variance, rang-
ing from 3.60·104 on library 1a to 7.99·104 on library 4b for catalytic samples having
the same composition. This may have certain reasons, ranging from positional in-
fluences on the plates to sintering or aging effects. Since all samples are taken out
of the same batch, it is also an indication for the general experimental error (noise).
Furthermore, the set-up is thought to be a first screening and thus the chance of
detecting false positives or negatives cannot be excluded. For materials in general
it has to be kept in mind that the systematic variation of the chemical composition
throughout the whole composition space may also lead to the formation of different
phases. The transformation from amorphous mixed metal oxides to phase separa-
tions is assumed to be most likely the main reason for the observed experimental
deviations. Having only 66 measurement values taken at discrete points, the proba-
bility of a phase transformation between single measured samples is quite large. It
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has also been observed during our studies, that adjacent samples often show totally
different activity values, lying far away from each other even though their chemical
composition shows small variations.
This has to be paid attention to when working with the predictive models. Since
the input data are indeed very noisy it will not be possible to estimate the activity
value of a sample exactly. All that can be done is to predict the activity to lie within
a certain range as shall be further discussed within Chapter 6.
Next, the most active samples of the second screening are summarized. It appears
again that the best active sample is situated on an inner library position. Therefore,
also the corrected data have been considered to remove this apparent influence of
temperature gradients on the plates.

Ranking Sample X Y Cr Mn Co Te Ni Acrolein Signal

1 1287* 8 9 0.0 0.0 0.15 0.4 0.45 7.06 ·105

2 1396 17 7 0.0 0.3 0.5 0.1 0.1 5,50·105

3 1372* 14 11 0.0 0.35 0.40 0.1 0.15 5.37·105

4 1196* 17 8 0.45 0.0 0.0 0.45 0.1 5.35·105

5 1286* 8 8 0.0 0.0 0.15 0.35 0.5 5.22·105

6 1352* 12 15 0.0 0.2 0.55 0.1 0.15 5.20·105

7 1363* 13 14 0.0 0.3 0.45 0.1 0.15 5.15·105

8 1354* 13 4 0.0 0.15 0.5 0.1 0.25 5.11·105

9 1353* 13 3 0.0 0.15 0.6 0.1 0.15 5.10·105

10 1360* 13 10 0.0 0.2 0.55 0.10 0.15 5.10·105

Table 4.7: Best catalysts of the secondary screening without scaling. Samples marked with
* are not contained within the first generation of catalysts.

Within table 4.7, very active samples appeared out of the quaternary system Mn-
CoTeNi that has been already identified to contain promising samples lying in the
area around samples 820, 603, 631 and 422 (cf. Figure 4.25).

Ranking Sample X Y Cr Mn Co Te Ni Acrolein Signal

1 1008* 1 12 0.0 0.15 0.75 0.1 0.0 7.67·105

2 1354* 13 4 0.0 0.15 0.5 0.1 0.25 7.08·105

3 1356 13 6 0.0 0.2 0.5 0.1 0.2 6.93·105

4 1371* 14 9 0.0 0.3 0.45 0.1 0.15 6.81·105

5 1360* 13 10 0.0 0.2 0.55 0.1 0.15 6.76·105

6 1391* 16 9 0.0 0.35 0.25 0.1 0.3 6.58·105

7 1367* 14 5 0.0 0.25 0.6 0.1 0.05 6.32·105

8 1362* 13 12 0.0 0.25 0.5 0.1 0.15 6.28·105

9 1351* 12 14 0.0 0.25 0.45 0.1 0.2 6.11·105

10 1003* 1 7 0.0 0.05 0.85 0.1 0.0 6.04·105

Table 4.8: Best catalysts of the secondary screening with scaling. Samples marked with *
are not contained within the original data sets.
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So, this area has been verified to be an area of interest for this reaction. Further-
more, good samples have also be reproduced within the ternary systems CoTeNi
and CrTeNi. Applying the scaling procedure to this second generation of catalysts
led to the top ten catalysts shown in Table 4.8. Here, most of the samples again
originate from the quaternary system MnCoTeNi while two samples contain Mn, Co
and Te. The scaling procedure confirmed the trend observed out of the unscaled
data: the system MnCoTeNi yielded the best results. Due to the screening results
lying very close for those catalysts of the second generation and the experimental er-
ror, there have been only two samples appearing among the best ten samples before
and after the scaling. Nevertheless, the strong trend towards the quaternary system
MnCoTeNi has not been affected. In the following, the screening results of areas
that have been finer sampled are presented and compared to the first generation
screening data.
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Figure 4.29: Results of system MnCoTe with finer sampling of the regions of interest. Left:
unscaled data, Right: scaled data.

From Figure 4.29 it can be observed that the finer sampling could verify most of the
excellent performance out of screening 1. As mentioned above, the noise contained
within the data also causes some deviations here. Especially the best sample 473
yielded a lower result in the second screening that has been further decreased by the
scaling factor. Nevertheless, the region around sample 473 has been detected as the
most active region among all ternary composition spreads.
In Figure 4.30, the most interesting sample seems to be 699. The original impression
out of Figure 4.21 was that of 699 being an outlier while the refinement showed that
the neighborhood also yielded active samples. In contrast to that the activity of
sample 485 could not be confirmed by its neighborhood, so this might be a false
positive.
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Figure 4.30: Results of system CrCoTe with finer sampling of the regions of interest. Left:
unscaled data, Right: scaled data.
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Figure 4.31: Results of system CrMnTe with finer sampling of the regions of interest. Left:
unscaled data, Right: scaled data.
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Figure 4.32: Results of system CrTeNi with finer sampling of the regions of interest. Left:
unscaled data, Right: scaled data.

In Figure 4.30, the most interesting sample seems to be 699. The original impression
out of Figure 4.21 was that of 699 being an outlier while the refinement showed that
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the neighborhood also yielded active samples. In contrast to that the activity of
sample 485 could not be confirmed by its neighborhood, so this might be a false
positive.
Within Figure 4.31 again sample 699 is contained. The neighborhood towards Mn
shows a lower activity than for Co in the figures above. But still sample 699 is
not totally isolated. Further active samples within the unscaled composition spread
could not be verified. The application of the scaling procedure causes an increase
of the activity of these samples that did not appear among the refinement here. In
total, this composition spread is rather inactive but the refinement could verify some
trends of the original data set.
For the last ternary system CrTeNi considered here, things have almost been the
same than with CrMnTe. The only active region appeared around sample 699 being
the most active one but similar to CrCoTe, the region around sample 699 shows
quite good activity values, also for increasing Ni content. The region of interest
stayed also active after the scaling procedure.

Quaternary Systems
For the refinement of a quaternary composition spread, the system MnCoTeNi has
been chosen due to its good results in the primary screening. The following figure
presents the results of the secondary screening compared to the first screening.
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Figure 4.33: Results of system MnCoTeNi with finer sampling of the regions of interest.
Left: unscaled data, Right: scaled data

These results show that the screening results of the first generation have been repro-
duced in an excellent way. In both cases, the areas of interest around the marked
samples have been confirmed and the refined catalyst samples perfectly fit into the
original screening results.
Among all five quaternary systems, this system showed the best results of the refine-
ment measurements such that the considerations in the quaternary case are restricted
to this composition spread.
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Pentanary System
The screening results of the pentanary samples cannot be as easily visualized as the
ternary and quaternary ones. Therefore, the screening results of the pentanary com-
positions are summarized within the following tables, again differentiating between
data set A and B. Among the 1001 samples of the complete pentanary composition
spread, only 126 samples have exactly five components. Here, the best 10 catalyst
among these 126 are mentioned.

Ranking Sample X Y Cr Mn Co Te Ni Acrolein Signal

1 562 13 14 0.1 0.3 0.4 0.1 0.1 3.70·105

2 726 11 6 0.1 0.2 0.1 0.3 0.3 3.62·105

3 40 5 5 0.1 0.2 0.1 0.4 0.2 3.60·105

4 681 8 4 0.1 0.1 0.1 0.4 0.3 3.55·105

5 791 16 10 0.1 0.1 0.2 0.4 0.2 3.54·105

6 763 14 3 0.1 0.4 0.1 0.3 0.1 3.52·105

7 502 9 11 0.1 0.3 0.2 0.3 0.1 3.49·105

8 729 11 10 0.2 0.2 0.1 0.3 0.2 3.47·105

9 856 6 8 0.1 0.3 0.1 0.3 0.2 3.46·105

10 379 15 9 0.1 0.2 0.4 0.1 0.2 3.38·105

Means 0.11 0.23 0.18 0.29 0.19

Table 4.9: Best pentanary catalysts in data set A.

Ranking Sample X Y Cr Mn Co Te Ni Acrolein Signal

1 284 8 8 0.1 0.1 0.2 0.5 0.1 7.21·105

2 562 13 14 0.1 0.3 0.4 0.1 0.1 4.41·105

3 379 15 9 0.1 0.2 0.4 0.1 0.2 3.88·105

4 136 11 16 0.1 0.3 0.1 0.4 0.1 3.74·105

5 245 5 12 0.1 0.2 0.2 0.3 0.2 3.73·105

6 502 9 11 0.1 0.3 0.2 0.3 0.1 3.70·105

7 183 15 13 0.1 0.2 0.2 0.4 0.1 3.69·105

8 308 10 2 0.1 0.3 0.3 0.1 0.2 3.63·105

9 947 12 11 0.1 0.2 0.3 0.3 0.1 3.58·105

10 531 11 10 0.1 0.1 0.4 0.3 0.1 3.53·105

Means 0.1 0.22 0.27 0.28 0.13

Table 4.10: Best pentanary catalysts in data set B.

From Tables 4.9 and 4.10 it can be seen that among the leading group sample 562
achieved nearly identical ranking in data set A and B with similar activity values.
This result again indicates that the synthesis and screening route allows a replication
of samples and their activities. Furthermore, samples 502 and 379 can be also found
within the leading group of data sets A and B achieving comparable screening results.
The rest of the catalysts appeared either in leading group A or leading group B,
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indicating some sort of deviations among the pentanaries between the two data sets.
Compared to the screening results of the ternaries and quaternaries presented above
the samples of the pentanary system are less active. Except sample 284 of data set
B that achieved a very large activity value of 7.21·105. Since this sample does not lie
within the range of very good catalysts in data set A the possibility of sample 284
being an outlier has to be kept in mind. It is also interesting that only one sample
(729) among the best 20 catalysts considered within these two tables contains 20%
Cr while all other samples contain 10% Cr - a clear trend.
The elements Mn, Co and Te seem to have a positive influence on the performance
of a catalyst here having mean values larger than 0.2 which would be the evenly
spread value. Cr and Ni apparently best contribute to the catalytic activity with a
content of 10-20 %.
Analogously to the ternary and quaternary systems some areas of the composition
space have been finer sampled for a screening of a second generation of catalysts.
As for higher dimensions the number of neighbors of samples grows very fast it
has not been possible to synthesize all interesting neighborhoods here. In total, 14
pentanary samples have been synthesized half a year later to check their activities
(4 new pentanaries with 5% increment and 10 (2 × 5) reproductions of samples with
10% increment). The following table gives an overview on the performance of this
second generation of pentanaries:

Sample X Y Cr Mn Co Te Ni Acrolein Signal

1375 14 14 0.10 0.20 0.05 0.40 0.25 2.38·105

1376 15 4 0.10 0.20 0.05 0.35 0.30 4.18·105

1377* 15 5 0.10 0.10 0.20 0.40 0.20 9.37·104

1378 15 6 0.10 0.15 0.05 0.40 0.30 1.01·105

1379* 15 7 0.10 0.10 0.30 0.40 0.10 2.28·105

1380* 15 8 0.20 0.30 0.10 0.30 0.10 5.27·105

1381* 15 9 0.10 0.20 0.20 0.40 0.10 3.62·105

1382 15 10 0.05 0.20 0.05 0.40 0.30 3.25·105

1383* 15 11 0.20 0.10 0.30 0.30 0.10 5.52·104

1384* 15 12 0.10 0.10 0.20 0.40 0.20 8.29·104

1385* 15 13 0.10 0.10 0.30 0.40 0.10 9.79·104

1386* 15 14 0.20 0.30 0.10 0.30 0.10 2.90·104

1387* 16 5 0.10 0.20 0.20 0.40 0.10 1.76·105

1388* 16 6 0.20 0.10 0.30 0.30 0.10 4.56·104

Table 4.11: Second generation of pentanary catalysts. Samples marked with * have been
already synthesized in the first generation.

These measurements will become valuable to validate the Kringing and B-Spline
model, discussed more closely within Chapter 6.
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4.9 Summary

Summarizing, it can be said that the high-throughput screening of data set A and
data set B has been in good accordance. The most active samples could be repro-
duced in data set B and their activity values have been confirmed, at least for the
ternary and quaternary case. These samples and the neighborhood around them
are studied more closely within Chapter 6, where Kriging and multilevel B-Splines
are used to estimate activity values of non-synthesized samples but also of samples,
that have been re-synthesized or have 5%-wise compositional increments.
The global maximum of activity performance has been achieved by the catalyst
sample 501 (Cr0.1Co0.2Te0.4Ni0.3), followed by samples 685 (Cr0.1Co0.4Te0.3Ni0.2)
and 473 (Mn0.2Co0.7Te0.1) for the unscaled case. These three candidates showed
excellent performances within both data sets and even their internal ranking could
be exactly reproduced. Working with scaling factors sample 473 got the best results
in both data sets while sample 501 completely vanished out of the leading group.
Actually this sample received an extremely small scaling factor due to its inner li-
brary position. Nevertheless, this catalyst should also be evaluated once again in
the search of the optimal catalyst for the reaction studied. The pentanary mixtures
in general received lower activity values.

Chapter 6 will show how well the performance of catalysts can be predicted by a
Kriging approach and a multilevel B-Spline approximation algorithm. Furthermore,
it is discussed whether the scaling of data has a large influence on the estimation
results. It will be also analyzed if the estimation procedures can lead to new compo-
sitions that might show larger activity values than the global screening maximum.
Dealing with screening data from high-throughput combinatorial experiments often
more than three dimensions have to be dealt with. This means, that, for example,
ordinary scatter plots are not the best way to illustrate the results and correlations
in an elegant and informative way. Looking at the tetrahedra presented it can be
clearly seen what challenges lie in a good visualization technique for five-dimensional
data sets. Compositional information needs to be correlated with the screening re-
sults and for quaternary systems this yields a five dimensional data set, for pentanary
systems one ends up with six dimensions. The following chapter is dedicated to this
problem: visualizing more than four-dimensional data.
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This chapter focuses on a selection of visualization techniques that have been de-
veloped and applied to visualize the screening results of quaternary and pentanary
composition spreads.
Newly developed, automated synthesis techniques but also the increasing use of
combinatorial chemistry approaches and high-throughput screening (HTS) lead to
an explosion of generated data in the laboratories - data that are quite useless with-
out appropriate analyzing tools generating knowledge out of them. Within our work
an essential part has been the visualization of our high-throughput screening and
prediction results. Especially the visualization of quaternary systems needed to be
updated and reconsidered since the simple presentation of a quaternary composition
spread as a regular tetrahedron suffers from several drawbacks. Furthermore, visual-
ization of the pentanaries has been another challenge. Here, more than 5 dimensions
have to be considered and illustrated.
Within the next sections several possibilities to visualize high-throughput screening
data are discussed. An emphasis is laid on quaternary and pentanary composition
spreads since the usual way of presenting a ternary composition spread as an equi-
lateral triangular pattern seems to be most elegant.
The development of different techniques, strategies and applications to visualize data
belongs to a certain research area of computer graphics, the so-called information
visualization [20, 42, 183]. Here, visualization is most often directly connected to
data mining processes but apart from that it also plays an essential role within all
research fields, where lots of data have to be handled. Within the last years the
spreading of the so-called visual data mining could have been observed, a research
area within the information visualization especially adapted to the needs of data
mining, [6, 165]. In contrast to visualization in research, information visualization
not aims less at the illustration of chemical or physics measurement data or simula-
tions, but more on the visualization of correlations, pattern and information. Within
the last decade, intensive research has been going on within this field and the survey
of Wong and Bergeron [194] can be studied for a detailed description of the historical
development.
Out of the vast variety of visualization techniques, especially for large, multivariate
data sets, some techniques have been chosen that lend themselves very well for the
visualization of high-throughput screening data.

5.1 Types of Data and Dimensionality

Large data sets like screening data or results of combinatorial experiments often
contain large amounts of single entries, so-called records, together with a set of vari-
ables, the dimensions. One record in our case consists of one measured sample with
the single variables corresponding to the composition of the material (contents of Cr,
Mn, Co, Te and Ni) and the produced acrolein signal. In information visualization,
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the number of variables also gives the dimensionality of the data set. According to
Shneiderman [161], data sets can be one, two- or multi-dimensional and also contain
more complex data types such as text, hypertext, hierarchies, graphs or algorithms.
Alternatively, these data sets are also called uni-, bi- or multivariate.

One-dimensional Data Sets
Typical representatives of one-dimensional data sets are time dependent data. Each
point on the time axis corresponds to one or several measurement values. In chem-
istry, measuring the time dependence of a concentration or reaction often results
in a one-dimensional data set. In this application with high-throughput screening,
there have been no one-dimensional data.

Two- and Three-dimensional Data Sets
These data sets consists of two or three defined variables. In combinatorial chemistry
two dimensional data sets can be binary composition spreads while three-dimensional
data sets correspond to ternary composition spreads. Usually, there is a screening
value adapted to each composition such that the dimensions are increased by one
here. Most of the time those lower dimensional data sets can be illustrated by 2D
and 3D scatter plots. Although this illustration techniques seems to be quite simple,
it can become more and more confusing for very large data sets or a high density of
data.

Multi-dimensional Data Sets
In most cases, the data sets consist of more than three dimensions and therefore
cannot be illustrated by simple 2d or 3d scatter plots. Those multi-dimensional data
sets can easily contain thousands of records as they are generated by automated high-
throughput systems or combinatorial set-ups, often directly stored within relational
databases. These data can only be illustrated by elaborated visualization techniques
since an effective projection onto 2D or 3D is not a trivial task. For this thesis,
the visualization of more than four dimensions as they occur with quaternary and
pentanary composition spreads plays the central role.

5.2 Visualization Techniques

Within this section some visualization techniques discovered within other research
areas or other application fields are presented. Furthermore it is discussed how the
tetrahedral plots can be improved with respect to readability and validity. Most of
the plotting work has been realized in Matlab.

5.2.1 Parallel Coordinates

Parallel coordinates were proposed by Inselberg [76] in 1981 as a new way to rep-
resent multi-dimensional information. Since the original proposal, much subsequent
work has been added, e.g. [77, 78]. In the traditional approach with Cartesian
coordinates, all axes are mutually perpendicular and the visualization is restricted
to three dimensions. In parallel coordinates all axes are parallel to one another
and equally spaced. By drawing the axes parallel to one another, one can represent
points, lines and planes in more than 3 dimensions. A vertical line is used for the
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projection of each dimension or variable, arranged in a way that the maximum and
minimum values of each dimension are scaled to the upper and lower boundaries on
those vertical lines. A connecting line made up of n − 1 lines at the appropriate
dimensional values connects the axes to represent an n-dimensional point. The fol-
lowing figure presents a parallel coordinate representation of the screening results of
the quaternary system MnCoTeNi for acrolein.
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Figure 5.1: Parallel coordinates plot of the screening results (acrolein signal) of the qua-
ternary system MnCoTeNi. As an example, sample 631 is marked in color such that its
composition becomes easily accessible.

In this plot all quaternary compositions can be illustrated together with their achieved
acrolein signal. To give a better representation, the acrolein signals have been nor-
malized to the interval [0,1]. In a non-colored presentation it would be quite hard
to identify the connections belonging to one catalyst sample but in most software
solutions (e.g. Spotfire r©) these kind of plots are interactively accessible such that
clicking on a line highlights the corresponding connections. This makes it very easy
to find the best compositions or to identify trends within the data. Here, sample 631
has been highlighted to reveal its composition and screening results ranging among
the best catalysts of this data set. Parallel coordinates plots are an elegant tool to
illustrate high-dimensional data sets with different variables and objectives.

5.2.2 RadViz

By the RadViz method, cf. [5, 6], n-dimensional data sets are nonlinearly projected
onto 2 dimensions using the idea of springs being arranged around the perimeter of a
circle. The term RadViz is derived from radial visualization and the whole approach
can be considered to be quite similar to parallel coordinates, belonging to the field of
so-called lossless visualization techniques. The key to understand the way RadViz
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visualization works lies in a rather physical way of thinking: It is assumed that n-
dimensional data points are laid out as points equally spaced around the perimeter
of a circle. Furthermore, the ends of n springs are attached to these n perimeter
points while the other ends of the springs are attached to a data point. The spring
constant Ki, i = 1, . . . , n equals the values of the ith coordinate of the fixed point.
Then, each data point is displayed at the position where the sum of the spring forces
equals 0. In general, the data point values are usually normalized to have values
between 0 and 1 (in the case of catalyst compositions this is already the case since
all entries sum up to 1). For example, if all n coordinates of a n-dimensional data
point have the same value, this point will appear in the exact center of the circle.
If the point is described by a unit vector, then that point will appear exactly at the
fixed point on the edge of the circle (where the spring for that dimension is fixed).
Of course it can happen that several points are mapped onto the same position, i.e.
the mapping is not a unique transformation. It is also a non-linear transformation
of the data that allows to preserve certain patterns and to obtain a quite intuitive
representation of the data.

Figure 5.2: Presentation of the pentanary data set in RadViz. The color scheme corre-
sponds to the activity values measured for acrolein (raw data).

In the plot, sample 501 is explicitly highlighted to demonstrate how RadViz works. It
is not easy to directly get the composition of the sample, but only qualitative trends.
The longer the connecting line from the sample to the element on the boundary of
the circle, the less is its content in the sample. Sample 501 contains no Mn, thus,
this connection is the longest. Te holds the largest content, thus this connecting line
is shortest. In general, the main features of this visualization method are:
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• Points having approximately equal coordinate values will appear close to the
center of the circle.

• Points having similar values whose dimensions are placed opposite each other
on the circle will also appear close to the center of the circle.

• Points having one or two coordinates greater than the others lie closer to those
dimensions.

• An n-dimensional line will be mapped to a line.

• A sphere will be mapped to an ellipse.

• An n-dimensional plane maps to a bounded polygon.

Figure 5.2 illustrates the pentanary data set A (1001 catalyst samples with activ-
ity for acrolein) in radviz presentation. The color indicates the peak area of the
acrolein signal measured by gas chromatography. The larger the peak areas, the
more acrolein has been formed and the better the catalysts. Due to the regular
sampling of the composition space using 10% increment, the obtained pattern in
radviz appears as an equilateral polygon.
The visualization of the pentanary composition spread in this way allows an imme-
diate investigation of trends and correlations. In this case, it can be seen that the
best catalyst (dark blue point) contains more Co and Te than Mn or Cr. Indeed, the
best sample of this data set has been catalyst 501 (Cr0.1Mn0.0Co0.2Te0.4Ni0.3). By
the distribution of the blue points in this radviz representation we can easily derive
qualitative correlations of metal contents and activity of the catalysts. As another
trend, samples containing larger amounts of Cr or Mn have not been very active for
acrolein formation. Thus, for the studied reaction the elements Te, Co and Ni seem
to play a more important role. Having a look at the sorted catalyst samples at table
4.2 on page 75, these observations can be confirmed.
Summarizing, it can be said that the radviz visualization technique provides a quick
and elegant tool for a lossless illustration of high-dimensional data sets. The obtained
trends and correlations are more of qualitative kind since an exact determination of
the composition of a catalyst is not trivial. For software realizations this drawback
can be solved, for example, by providing the possibility to get the compositional
information by clicking at the sample.

5.2.3 Heat Maps

For the representation of multidimensional data sets, the use of so-called heat maps
can also be an efficient tool. Heat maps are colored schemes that “translate” numeric
values into color. This means, heat maps are color-coded tables. In the present
application, the complete pentanary data set consists of 1001 rows (catalysts) and 6
columns (5 elements & activity values). Still, the main interest with that data set is
the search for correlations and trends between composition and activity of a catalyst
sample. Figure 5.3 displays a heat map representation of 100 catalysts taken out
of the pentanary data set. For this illustration, the data table has been transposed
such that the rows contain the composition (rows 1-5) and measured activity values
(row 6).
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Figure 5.3: Representation of catalyst samples 450-550 by a heat map. The color corre-
sponds to the composition of the samples but also to the normalized activity values.

The columns then correspond to the catalyst samples. In this example, only 100
samples are considered due to readability reasons. To yield a better color-scheme,
the activity values have been standardized to the most active sample (sample 501,
cf. p. 75) such that this sample gets an activity value of 1 and all other catalysts
lie within the interval [0,1].
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Figure 5.4: Representation of the 100 best catalyst samples of data set A (unscaled data)
by a heat map. The color corresponds to the composition of the samples but also to the
normalized activity values.
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The representation of the data by a heat map allows a quick visual inspection of
the performance of the catalysts. The range between samples 450 and 550 has been
chosen for this example and the best sample 501 can be clearly identified by its
activity value of 1 given by a dark red line. Furthermore, the composition of sample
501 (Cr0.1Mn0.0Co0.2Te0.4Ni0.3) can be determined out of the color scheme. Using
too many samples within one heat map may become quite difficult to interpret since
the compositions of the catalysts cannot be uniquely determined by visual inspec-
tion. Here, sorting of the data according to a certain column or row may improve
the results. This has been done in Figure 5.4 showing the best 100 catalyst samples
(unscaled data).
Sorting the data and illustrating them by a heat map can reveal certain trends con-
cerning the composition of the catalysts. In the second example, it can be observed
that the leading group of catalysts contains larger amounts of Co compared to the
content of the other four elements.
In general, looking at the complete data set in this way can reveal information about
the distribution of good samples. In the case of an evenly sorted data set, the ap-
pearing of red clusters in the activity row can be a hint that the compositions of
these samples are quite promising.
Summarizing, it can be said that heat maps provide another convenient visualization
tool to illustrate large multidimensional data sets. The application of normalization
and sorting the data should be used to get an optimized representation with respect
to the used color scheme. For each data set, these settings should be individually
set.

5.2.4 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [84] is a projection technique widely used to
handle multivariate data containing interrelated variables. The application of PCA
can reduce the information dimensionality in a way that the loss of information is
minimized, by constructing uncorrelated axes that finally lead to a transformation
of the original coordinate system. Multivariate data sets then can be visualized by
their projections in 2D or 3D with a minimal loss of information.
In the studied application when considering only acrolein as product of interest, 5 out
of 6 used data columns (namely the columns containing the composition information)
are orthogonal to each other and thus uncorrelated. They all contain identical
entries, only in a shuffled way (since a complete and evenly sampled composition
spread is considered generated by mixture design). Due to this, none of these 5
columns is redundant and a reduction of dimensionality can at most be achieved by
one. If we added other products of interest, e.g. other columns to this data set, PCA
would be useful to detect trends and pattern within the data by removing redundant
information. For more information on how this approach has been realized using
high-throughput screening data in a nine-dimensional data set, the reader is referred
to some former work in this field, cf. [163]. Furthermore, this work shortly introduces
the theory of PCA but also mentions recently published applications of PCA in the
chemical sector.
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5.3 Developed MATLAB Environments

To visualize the catalyst data several graphical user interfaces (GUIs) have been
developed in Matlab providing a convenient access to its visualization power.

5.3.1 CatVis

This GUI enables the user to plot ternary and quaternary composition spreads where
color schemes, sizes of markers or additional circles around the markers (Circles-
button) can be arranged. It is also possible to add a bounding triangle for ternary
compositions if only parts of a ternary composition spread should be plotted and
the vertices of the triangle are missing (Triangle-button). Furthermore, the user
can scale the colorbar according to certain needs such that the color scheme is to be
slightly varied (Colorbar Min, Colorbar Max). The color scheme itself is chosen by
the context menu Colormap out of several schemes available (default layout: ’jet’).
With Units Colorbar and Label Colorbar text can be added to the colorbar. If no
text should appear in the plot, blanks should be placed here to prevent errors. For
quaternary composition spreads illustrated as a tetrahedron additionally the viewing
position can be adjusted (3D view). The Azimuth value gives the vertical rotation
while the Elevation value gives the height of the view (in degrees). Here, the default
values are -37.5 (az) and 30 (el) yielding the standard 3D view.

Characters Corresp. Element Position in Plot (Ternary/Quaternary)

1-2 1 left corner/ front corner
3-4 2 right corner/ right back corner
5-6 3 top of triangle/left back corner
7-8 4 top of tetrahedron

Table 5.1: Correlation between characters of the elements box and their position in the
plot.

Data are loaded in via the standard dialogue box in form of *.txt files. As a con-
vention here the *.txt files should be organized in such a way that the first column
corresponds to the composition values of the 1st element, the second column corre-
sponds to the 2nd element and so one till the last column including the screening
results or any other measurement values. It is important that a point is used instead
of a comma as decimal separator. The Elements box should be used to add element
names to the figure. In both cases (ternary and quaternary) always 8 characters
need to be spent to name the corners. For ternary plots, only the first 6 characters
are used and table 5.1 explains where the labels are placed in the plot (for 3D: in
default view position).
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Figure 5.5: Screenshot of the CatVis GUI.

5.3.2 TetraView

The GUI TetraView has been developed to scroll through a 3D tetrahedral plot
layer by layer. In contrast to the complete representation done in CatVis, this
representation might be helpful to look at the screening results of inner points of
the tetrahedron.

Figure 5.6: Screenshot of the TetraView GUI.

Loading in the data is again done via a *.txt-file as described above. Analogously
to CatVis, the corners of the tetrahedron can be labelled using the Elements edit
box. All other features that can be changed are similar to CatVis. By default, the
colorbar appears at the right side.
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5.3.3 View4d

Figure 5.7: Screenshot of the View4d GUI. The colorbar has been placed at the south
margin (SouthOutside).

This GUI has been developed to illustrate the modelling results of a quaternary
system by using a sliced representation. Having the results from the Kriging or
B-Spline model the tetrahedron not only consists of 286 discrete points but of many
more such that each layer is more closely packed with points. Illustration of these
points in form of lines connecting points with identical activity values (similar to
contour lines) yields an elegant way of visualization. This representation can help
to identify regions of interest more easily than the discrete, pointwise representation
can achieve.
The operation of the GUI is similar to the ones described above with self-explaining
edit boxes. The only difference here lies in the way the input data need to be
processed. For this representation no *.txt-file can be imported but a *.mat-file is
needed containing three arrays X,Y, Z with coordinate information in 3D and the
according activity information stored in an array V . These data can be obtained by
the Matlab routine plot cube.m. The operation of this m-file is documented quite
well by its comments and the internal help function.
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5.3.4 View5d

This GUI View5d has been designed to enable the visual inspection of a five dimen-
sional composition spread helping the search for regions of high activity values.

Figure 5.8: Screenshot of the View5d GUI. The colorbar has been placed at the right
margin (EastOutside).

Following the illustration used for the quaternary case (cf. section 2.7.3) we would
come to a generalized polygon in 4D with five corners which cannot be represented
in 3D.
The idea of View5d lies in the fact that always one element is kept fixed to a certain
composition value, to look then at all points having that fixed content. In the case of
0% of an element, one ends up with a subspace of a quaternary composition spread
that can be easily represented by a tetrahedron. Scrolling through the content
of one element this tetrahedral representation is kept while the number of points
is decreased. This is a logical consequence since with increasing content of one
element the number of mixtures including exactly this content decreases. The visible
mixtures contain all samples with fixed 5th element content but not only pentanary
mixtures but also binaries, ternaries and quaternaries. Choosing a fixed elemental
content of 90% results in a plot with only four points remaining. One difficulty for
this representation lies in the fact that the corner of the presented tetrahedra do not
correspond to pure mixtures but to binary mixtures of the fixed element and the
element represented by the corner.
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In this chapter the results of the prediction models applied to the most active compo-
sition spreads are discussed. As presented in Chapter 4 the best performing ternary
composition spread was MnCoTe containing samples 473, Mn0.2Co0.7Te0.1 and 860,
Mn0.1Co0.8Te0.1. In the quaternary case, the composition spread including the best
samples is MnCoTeNi. As already seen in Chapter 4 screening of a library of iden-
tical samples yielded a certain variance among the results. This means the data
contain a certain noise caused by synthesis or screening mistakes. Thus it is clear,
that the predictive power of the models cannot go beyond this noise. For practical
applications this means that only an interval of each estimated activity value can be
determined lying in the range of the observed variance of approximately 1.14 ·104.
This variance has to be subtracted from an estimated result or added to the result
to obtain the corresponding interval.

6.1 Kriging Model

6.1.1 The Kriging GUI

The application of Kriging to estimate the activity of non-synthesized samples can
also be realized by a MATLAB GUI that has been developed. The following figure
shows a screenshot of this application.

Figure 6.1: Screenshot of the Kriging GUI. The operation is described in the text.

104
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Operating the Kriging GUI
Similar to other GUIs, the application of the Kriging GUI starts with loading in
the data via *.txt-files. These files consist of four (ternaries), five (quaternaries) or
six (pentanaries) columns (decimals separated by points (!)) with the last column
containing the measured activity values or other experimental data. After loading
in the data, the experimental variogram is immediately calculated and plotted in
the coordinate system in the upper right corner of the GUI. Additionally, the com-
position of the best sample together with its screening result is displayed. To fit a
theoretical variogram function the appropriate parameters can be typed in (Kriging
Parameters). According to the chosen increment for Kriging the number of calcu-
lated points is returned. The smaller the chosen increment value, the more points
within the composition spread are kriged and visualized. Quite good results can be
already achieved for an increment of 0.02; for smaller increments, the calculation
time steadily increases. The button Calculate Theoretical Variogram yields the the-
oretical variogram function. This function can be changed and further adjusted by
changing the Kriging parameters. Furthermore, the model parameter determines the
type of Kriging model used for calculation (0.5: Exponential Type, ∞: Gaussian
type, cf. Figure 2.9). The button Calculate Theoretical Variogram always yields
the refreshed variogram function. If only compositions defined a priori should be
kriged, they can be loaded in via a *.txt-file by Load Compositions for Kriging. If
all Kriging parameters are fixed, the Kriging process is started by Start Kriging and
the results will be displayed. For the ternary case a modelled triangular surface
is obtained, in the quaternary case, the original tetrahedron is illustrated together
with the estimated points. In this case a representation of the Kriging results in
TetraView might be more informative. To change the layout of the plot several
parameters can be adjusted like the colormap, orientation of the colormap or the 3D
view. With cmin/cmax the range for the coloring can be individually changed such
that very active regions are highlighted. Input into the boxes Elements and Label
Colorbar labels the corners of the plots (cf. Table 5.1, p. 100) and the colorbar. The
field Marker Size controls the size of the markers in the tetrahedral plot (a value
between 60 and 80 is a good choice here). With Refresh the set parameters can be
applied to the plot. Pressing Export Data the results of the Kriging procedure can
be exported in a *.txt-file (compositions, Kriging estimator, Kriging variance). As
a final step, the graphic can be exported into certain file formats.

6.1.2 Kriging of the Ternary System MnCoTe

Within this section the performance of the Kriging model is tested when applied
to screening data of the ternary composition spread MnCoTe. For this compo-
sition spread a second generation consisting of 101 catalysts has been prepared
and screened to refine the most active region of the search space. It has been an
interesting task to check whether the estimated activity values lie in accordance
with the measured results. Therefore the Kriging estimator has been calculated
for each sample of the refinement generation. Furthermore it was to be checked
if estimated activity values can surpass the measured ones and lead to new active
compositions. Within this composition spread, samples 473 (Mn0.2Co0.7Te0.1) and
860 (Mn0.1Co0.8Te0.1) got the best activity values for acrolein. For the refinement
of this composition spread 101 samples have been synthesized and screened again



106 6 Numerical Results and Modelling

under the same synthesis and screening conditions as the parent data sets. Here,
two ternary starting systems are considered taken out of data set A, the unscaled
and scaled case. As shown in Figure 4.22, the reproduction of the samples show
excellent similarities between ternaries A and B such that it is sufficient to consider
the data obtained out of data set A only. Due to the temperature gradient observed
during the screening process the behavior of the scaled data is also considered. It
will be discussed in the following sections, whether the scaling procedure helped to
improve the results of the prediction.
First, the complete ternary composition spread MnCoTe taken out of data set A (un-
scaled) is considered. Figure 6.2 illustrates the kind of input data used for prediction
calculations.
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Figure 6.2: Screening results of the system MnCoTe together with finer sampling of the
regions of interest. Left: unscaled data, Right: scaled data

It can be clearly seen that the most active catalyst samples are 473 (peak area:
802,000) and 860 (peak area: 695,000) situated next to each other within a defined
region of interest. The rest of the composition spread appears to be rather inac-
tive for the propene oxidation studied. Unfortunately, the excellent performance of
sample 860 could not be confirmed by the second screening and reproduction. The
screening results for this sample appeared to be significantly lower. The neighbor-
hood around sample 473 could be verified as an active region, indicating that the
good performance of sample 473 is not a measurement error.
Now, the goal has been the determination of a so-called activity surface that de-
scribes the dependence between chemical composition of the catalysts and their
activities. This means, quantitative composition activity relationships (QCARs)
have to be established.
To apply the Kriging model, an experimental variogram has to be calculated (cf. pp.
36) out of the measured data. Then, a theoretical variogram function must be found
that best fits the experimental variogram cloud. There exist many different theoreti-
cal variogram functions and according to each problem, an appropriate function has
to be chosen. For this case, a variogram function with a parabolic behavior (approx-
imately quadratic) near the origin has been chosen, i.e. γ(|h|) ≈ c|h|2 for h → 0,
being continuous and differentiable at h = 0. This kind of variogram functions is
mostly used to describe regular phenomena. For catalysts, a regular variation of
activity with composition is assumed and the experiments have been planned such
that the compositions of the catalysts vary with a predefined, constant increment
(10%-wise variation). The following figure exhibits the corresponding variogram
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models according to the experimental data.
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Figure 6.3: Experimental Variogram of
MnCoTe taken out of data set A (no scal-
ing used) together with the fitted vari-
ogram function.
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Figure 6.4: Experimental Variogram of
MnCoTe taken out of data set A with
applied scaling together with the fitted
variogram function.

Furthermore, the chosen theoretical variogram functions are characterized by a
nugget effect that indicates the presence of possible variability between samples
with very similar compositions (cf. p. 40). The used variogram functions are given
by the Matérn class of variogram functions (see equation 2.59, p. 44), using the
parameters summarized in the following table. To check the performance of the
chosen Kriging models, the activity of 101 catalyst samples synthesized in a second
generation has been estimated.

Unscaled Data Scaled Data

Range 0.09 0.06

Sill 0.7 · 1010 3 · 109

Nugget Effect 0.2 ·1010 2 · 109

Smoothing Parameter 2 2

Table 6.1: Chosen Kriging parameters for the ternary system MnCoTe (unscaled and scaled
case)

Using these theoretical variogram functions, ordinary Kriging has been applied to
estimate the activity values of non-synthesized samples. Figure 6.5 illustrates the
results for the unscaled case.
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Figure 6.5: Kriging results for the unscaled system MnCoTe.

The Kriging estimator for the activities of 20,301 compositions has been calculated
within the ternary composition space which corresponds to an increment of 0.5%.
Then, the correlation between the composition and the activity can be illustrated
by a smooth surface. Within this unscaled data set it has been quite interesting
to see that a coherent part of the triangle appeared as an active region. The most
active samples 473 and 860 also have been obtained in this region. Since these two
samples are neighbors in composition the focus has been laid on the compositions
around them.
The Kriging model can also be applied to predict the activities of any desired com-
position within the considered search space. In this example, the most active com-
position calculated by the model has been (Mn0.18Co0.73Te0.09) with a calculated
activity value of 835,894 (Kriging variance: 54,360). In a second generation of cat-
alysts, the surrounding compositions (5%-wise variations) have been synthesized to
check whether the good performance of the first generation could be confirmed. In
the following figure the calculated results of this second generation of catalysts are
illustrated. The case of an ideal prediction would be given, if the points appeared
lying on the bisecting line of the coordinate system. In this representation it can be
observed that there are larger differences between measured and calculated activity
values, especially within the active region. This can be explained by the fact that the
catalyst samples of the second generation in general yielded lower activity values.
Unfortunately, the excellent screening result of sample 860 could not be reproduced
by the second generation. In both cases, the unscaled and scaled data set, this
sample yielded lower activity values. Since the Kriging model uses the first gener-
ation screening results as input data, the activity value of sample 860 is estimated
to its first screening value and therefore this calculated value exceeds the measured
one. Why this sample gained less activity during the second generation cannot be
properly explained and might be due to experimental issues. A significant deviation
of the second screening results from the first ones in the region of high activity has
been observed that can not be properly explained. As a positive result here, very
active samples have been obtained within the direct neighborhood of sample 860
that could verify the trend of the first screening.
To evaluate the quality of the considered models, a value of fit has always been
calculated, which can be described as the mean of the relative deviation between
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measured and calculated activities. Let therefore xi and yi be the calculated and
measured activity value of sample i, i = 1, . . . , n. Then, the value of fit (VoF) is
given by

V oF =
1

n

n∑
i=1

|yi − xi|
yi

(6.1)

This means, for each model a VoF can be obtained and the smaller this value, the
better correspond experimental and predicted activity values.
The VoF for the reproduction of samples taken out of the unscaled ternary system
MnCoTe is 0.32.

0 1 2 3 4 5 6 7 8

x 10
5

0

1

2

3

4

5

6

7

8

x 10
5

M
ea

su
re

d 
A

ct
iv

iti
es

473

860

1008

1007

1018

1009

Calculated Activities 

Figure 6.6: Comparison of calculated and measured activity values for the ternary system
MnCoTe (unscaled data).

The samples with 5%-wise variation around samples 473 and 860 showed also good
activities, cf. Figure 6.2, which confirmed the successful first screening.
In the following the scaled data set is considered to check whether the correction
of the data improves the prediction results. Figure 6.2 also illustrates the screening
results of the scaled data. It can be seen that some samples in the active region
have slightly reduced activity due to their library position while the activity of
other samples has increased. In general, the scaling procedure did not disturb the
trends observed in the unscaled case: the active region also stayed active. In con-
trast to the unscaled data, another quite active region appeared around sample 97,
Mn0.6Co0.3Te0.1. The VoF for the ternary system MnCoTe using scaled data can be
calculated at 0.31, which is nearly identical to the unscaled case.
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Figure 6.7: Kriging results for the scaled system MnCoTe.

Figure 6.7 gives the results of Kriging applied to the scaled data. For the calcu-
lations, the Kriging parameters already given in table 6.1 have been used and the
corresponding experimental and fitted variogram are shown in Figure 6.4.
According to the Kriging model, the most active sample has been again estimated
to lie within the active region at Mn0.16Co0.74Te0.1 with a calculated activity value of
793,491 (Kriging variance: 52,610), lying below the maximum of the unscaled case.
The following figure displays the comparison of measured and calculated activity
values. In general it can be said that the model overestimated most samples of
the second generation. Since the measured activity values of the second generation
have been significantly smaller than those of the first generation the behavior of the
model becomes clear. Why these deviations in activity occurred between first and
second generation cannot be cleared. In fact, the values for the Hopcalite samples
placed on the libraries reached comparable results, cf. section 4.8 page 85.
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Figure 6.8: Comparison of calculated and measured activity values for the ternary system
MnCoTe (scaled data).
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The most active samples of the first generation 473 and 860 also reached less activity
during the second screening and due to the conditions of the model the estimated
values are exactly those measured in the first screening, the input data. From figure
6.8 this can be clearly observed. An explanation for this behavior might be that
samples belonging to the second generation have been synthesized half a year later
using new precursor solutions while the Hopcalite samples have been again taken
out of the same charge. Furthermore, this indicates once again the difficulty of
comparing samples being not synthesized out of the same precursor solutions. As
discussed in Chapter 4 the reproduction of two identical libraries out of the same
precursor solutions yielded excellent results. Thus, the synthesis route and the
screening system themselves are working reliably.
Figure 6.2 also indicates that several samples lying in the close neighborhood of
samples 473 and 860 showed quite large activities such that the positive results
within this region of interest could be verified by the reproduction. For an intensive
search of a new active catalyst for the oxidation of propene, the researcher should
focus on the close neighborhood of samples 473 and 860.

6.1.3 Kriging of the Quaternary System MnCoTeNi

Similar to the discussion of the ternary system the quaternary system MnCoTeNi
should be studied more closely. This system again exists twice and the good repro-
ducibility among these two twin systems has been already reported within section
4.7. Thus, only the composition spread obtained out of data set A is dealt with
here. The following tables give the best 10 samples for the unscaled and the scaled
case, respectively.

Ranking Sample Mn Co Te Ni Acrolein (×105)

Signal

1 473 0.2 0.7 0.1 0.0 8.02
2 860 0.1 0.8 0.1 0.0 6.95
3 820 0.2 0.6 0.1 0.1 6.73
4 603 0.3 0.5 0.1 0.1 6.67
5 631 0.2 0.5 0.1 0.2 5.80
6 422 0.1 0.7 0.1 0.1 5.61
7 747 0.3 0.3 0.1 0.3 4.96
8 954 0.3 0.6 0.1 0.0 4.54
9 507 0.4 0.2 0.1 0.3 4.11
10 929 0.1 0.6 0.1 0.2 4.04

Table 6.2: Best catalysts of the system MnCoTeNi (unscaled data).

Table 6.2 shows that the two best samples here are ternary mixtures lying on the face
of the tetrahedron. These two samples 473 and 860 have been already studied in the
previous section. Therefore, this section exclusively focuses on the best quaternaries,
starting with sample 820.
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Ranking Sample Mn Co Te Ni Acrolein (×105)

Signal

1 473 0.2 0.7 0.1 0.0 8.02
2 860 0.1 0.8 0.1 0.0 7.75
3 820 0.2 0.6 0.1 0.1 7.64
4 603 0.3 0.5 0.1 0.1 5.97
5 401 0.1 0.1 0.4 0.4 5.18
6 747 0.3 0.3 0.1 0.3 5.11
7 422 0.1 0.7 0.1 0.1 5.02
8 631 0.2 0.5 0.1 0.2 4.98
9 954 0.3 0.6 0.1 0.0 4.54
10 437 0.2 0.4 0.1 0.3 4.40

Table 6.3: Best catalysts of the system MnCoTeNi (scaled data).

The scaling procedure did not change the leading group of this composition spread
and the ternary samples 473 and 860 stayed the most active ones. Again, sample
820 is the best quaternary here. In general, applying the scaling procedure to this
data set did only cause slight changes among the best catalysts.
For the calculation of non-synthesized samples by the Kriging model, the exper-
imental and theoretical variogram have to be calculated. In the following table,
the chosen variogram parameters are given leading to the fitted variogram function
illustrated by the figures on the following page.

Unscaled Data Scaled Data

Range 0.07 0.06

Sill 5.8 · 109 7.8 · 109

Nugget Effect 2 ·109 2 · 109

Smoothing Parameter 2 2

Table 6.4: Chosen Kriging parameters for the quaternary system MnCoTeNi (unscaled and
scaled case)

Again, the experimental variograms have been fitted by variogram functions that
possess a parabolic behavior near the origin together with a nugget effect since the
same assumptions apply as for the ternary case. The nugget effect again models
a possible variability among very similar samples (measurement noise) while the
parabolic behavior near the origin stands for very regular variations (smooth vari-
ation of the activity in dependence of the chemical composition is assumed). Both
theoretical variograms are again given by the Matérn class of variogram functions
(see equation 2.59, p. 44), using the parameters summarized in Table 6.4.
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Figure 6.9: Experimental Variogram of
MnCoTeNi taken out of data set A (no
scaling used) together with the fitted
variogram function.
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Figure 6.10: Experimental Variogram of
MnCoTeNi taken out of data set A (scal-
ing used) together with the fitted vari-
ogram function.

In the following figure, the result of Kriging applied to the unscaled quaternary
data set MnCoTeNi is shown. It can be clearly seen, that the most active region
appears around samples 473 and 860 that lie on one face (the triangle MnCoTe)
of the tetrahedron, being ternary mixtures. Here and in the following representa-
tions the tetrahedron is turned around in such a way, that the triangle given by
MnCoTe containing the most active samples comes to the front (Te content is plot-
ted in upward direction). For this calculation, the tetrahedron has been sampled
in 2%-increments giving 23,426 kriged points. The best composition calculated by
the Kriging procedure lies in the ternary system MnCoTe that has been already
studied in the previous section: Mn0.18Co0.72Te0.1 with an estimated activity value
of 822.489(Kriging variance: 64,327) while the maximum measured activity value is
802,000 at Mn0.1Co0.7Te0.1). The calculation itself, performed on a common laptop
computer, took about 5 minutes being completely implemented in Matlab. Since
the tetrahedron is a 3D object, looking inside is not possible in this illustration. To
get a better understanding of what happens inside the tetrahedron, a more sophisti-
cated illustration technique has been applied by slicing the tetrahedron in its upright
direction. In this representation it is possible to look ”inside” this 3D object search-
ing for active regions. As already described in Chapter 5, the use of GUI View4d
enables the scientist to interactively explore the tetrahedron by scrolling through all
its calculated layers. In this studied example, it can be clearly observed that there
is again a significant active region around samples 473 and 860. From the previous
study of the corresponding ternary system it is already known that compositions
around these samples are very active. In the quaternary case one can additionally
observe that the addition of Ni as a fourth component also yielded quite active sam-
ples (cf. 2nd tetrahedron with Te: 10%). The active region extends towards the
inner samples of the tetrahedron. However, the most active samples are still the
ternaries that lie on the face MnCoTe of the tetrahedron containing no Ni.
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Figure 6.11: Result of Kriging the MnCoNiTe system at 2%-wise variation of composition.

Co

Te: 0%

Te

Ni

Mn

Co

Te: 10%

Te

Ni

Mn

Co

Te

Ni

Mn Te: 20% 

Co

Te: 30%

Te

Ni

Mn

Co

Te: 40%

Te

Ni

Mn

0  

100

200

300

400

500

600

700

800

Co

Te: 70%

Te

Ni

Mn

x 103 

Relative Activity 

Figure 6.12: Results of Kriging the quaternary system MnCoTeNi illustrated in the slice
plot representation.
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Around the most active samples a second generation of catalysts has been prepared
to verify this region of interest but also to compare the Kriging results with mea-
sured values. In total, for this example 38 catalysts have been re-synthesized being
a refinement of the region of interest but also containing 10%-wise variations, cf.
Figure 4.33 on page 89. For the comparison of measured and calculated activity
values for these 38 re-synthesized samples, measured activity values have been again
plotted against calculated ones (see below).
Also the scaled data system MnCoTeNi has been considered here. According to
Table 6.3 the scaling procedure did only cause slight changes in the leading group
of the most active samples. That is why the graphical considerations are restricted
to the unscaled case, but the comparison between measured and estimated activity
values is given for both cases.
Figure 6.13 shows the comparison of estimated and measured activity values for 38
quaternary samples prepared in the second generation. The VoF has been calculated
to be 0.25. It can be derived out of this figure, that the Kriging model tends both to
over- and underestimate the activity here. Very good prediction have been obtained
for catalyst 747 (Mn0.3Co0.3Te0.1Ni0.3). This sample showed very good performance
again during its re-synthesis in the second generation. The other catalysts that have
been considered more closely (631, 603, 820, 422) have been slightly overestimated
by the Kriging model indicating that their activities measured in the second screen-
ing lie below the yielded results of the first screening. This trend has been already
noticed when considering the ternary case MnCoTe.
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Figure 6.13: Comparison of calculated and measured activity values for the quaternary
system MnCoTeNi (unscaled data).

The activity values of sample 340 and 377 have been underestimated here indicating
that this sample gained a larger measurement result in the second generation than for
the first screening. Summarizing, it can be said that in this case the re-synthesized
samples did not follow a clear trend of over- or underestimation. The better the
results of the second screening fit to the results of the first screening, the better can
the Kriging model predict those activity values.
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Figure 6.14: Comparison of calculated and measured activity values for the quaternary
system MnCoTeNi (scaled data).

In this quaternary system, the reproduction yielded better results than those ob-
tained in the ternary case studied previously.
The application of the scaling procedure for this quaternary system improved the
predictive power for all marked samples except for sample 747. Samples 340 and
377 both changed from underestimation to overestimation, due to the scaling fac-
tors applied to the input data for the Kriging model. In this case, the VoF factor
also lies at 0.25. In general, the scaling procedure did not remarkably influence the
predictive power here since the reproduction results of the second generation have
only been slightly affected by it. In general it can be said that the Kriging model
yielded better results in the quaternary case than in the ternary case due to a larger
amount of input data. In the ternary case 66 measured catalyst samples served as
input while the Kriging procedure can be performed for the quaternary case based
on 286 samples.
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The Quaternary system CrCoTeNi
The catalyst that reached the overall global maximum of activity in both data
sets is the quaternary sample 501 (Cr0.1Co0.2Te0.4Ni0.3) followed by sample 685
(Cr0.1Co0.4Te0.3Ni0.2). Therefore also the neighborhood of these samples contained
in the tetrahedron CrMnCoTe, cf. page 83 needs to be considered more closely. The
following figure shows the slice plot representation of the tetrahedron containing
samples 501 and 685 calculated by the Kriging procedure (range: 0.05, sill: 6 ·109,
nugget: 2 ·109, smoothing parameter: 2).
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Figure 6.15: Results of Kriging the quaternary system CrCoTeNi (unscaled data) illus-
trated in the slice plot representation.

In this representation it might look as if the active region was only spread around
the very active samples 501 and 685. Using the interactive visualization tool View4d
(explained in Chapter 5) allows a continuous moving through the slices also display-
ing the layers between Ni: 20% and Ni: 30%. Then it can be observed that the
active region is spread between the Ni range of 20% to 40% in vertical direction
and not only just around those two hot spots. These regions should be examined in
further studies more closely.

6.1.4 Kriging of the Complete Pentanary System CrMnCoTeNi

The best pentanary catalysts have been already listed within Chapter 4, cf. page
90. In this section the Kriging procedure is applied to the complete pentanary com-
position spread. It is interesting to see whether the model proposes another global
activity maximum or a maximum lying close to samples 501 or 685. Furthermore
the predictive power of the model can be checked when comparing the experimental
screening results of 14 catalyst samples synthesized in a second generation. Again,
only data set A is considered but also the scaled case. The following figure gives the
experimental variograms (having a remarkably nice shape here) together with the
fitted variogram functions. In contrast to previous experimental variograms more
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points are available as input for the pentanary case. Again, it was decided to choose
variogram functions having a parabolic behavior near the origin.
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Figure 6.16: Experimental Variogram of
CrMnCoTeNi taken out of data set A
(no scaling used) together with the fit-
ted variogram function.
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Figure 6.17: Experimental Variogram of
CrMnCoTeNi taken out of data set A
(scaling used) together with the fitted
variogram function.

The chosen Kriging parameter are summarized in the following table:

Unscaled Data Scaled Data

Range 0.07 0.045

Sill 5.2 · 1010 0.55 · 1010

Nugget Effect 0.1 ·1010 0.1 · 1010

Smoothing Parameter 2 2

Table 6.5: Chosen Kriging parameters for the complete system CrMnCoTeNi (unscaled
and scaled case)

For the complete data set 14 compositions have been re-synthesized and screened
again to check the predictive power. Figure 6.18 summarizes the results obtained.
In the unscaled case, the calculated activity values of samples 1382, 1381 and 1379
matched the measured activity values very well. Unfortunately, all other samples
are overestimated by the model. Again, this is caused by the situation that the
re-synthesized samples yielded lower activity values in the screening than during the
first generation - a fact that has been observed throughout the whole studies and
cannot be fully explained. Since the reproducibility has been excellent among the
first generation of catalysts (all produced out of the same precursor batches), this
deviation of screening results might be caused by the use of other precursor batches
half a year later. In this study the calculated VoF has been 3.27 being extremely
large compared to other studied systems.
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Figure 6.18: Comparison of calculated and measured activity values for the complete pen-
tanary system CrMnCoTeNi (unscaled data).
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Figure 6.19: Comparison of calculated and measured activity values for the complete pen-
tanary system CrMnCoTeNi (scaled data).

The behavior of calculated and measured activities in the scaled case is similar -
samples 1382, 1381 and 1379 behave acceptably. The rest is again overestimated
as already discussed above. For this prediction, a VoF of 3.46 has been calculated
such that the scaling procedure could not help to improve the prediction results
here. The Kriging estimators have been also calculated for a 2.5%-wise sampling
of the pentanary composition space yielding 135,751 calculated compositions. The
activity value of the most active catalyst, sample 501, has not been surpassed by the
model. Unfortunately, it has not been possible to give a good visual presentation of
the 135,751 calculated points. This has been too much for visualization via View5d
since the program could not cope with the calculation of all connecting lines.
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6.2 The B-Spline Model

In this section the interpolation results obtained by the B-Spline model are given.
Again, the same examples chosen in the previous sections are discussed here to get a
better feeling of similarities and differences of the two modelling procedures. First,
the ternary system MnCoTe should be considered. An application of this procedure
to heterogeneous catalyst data has been already published in [162].

6.2.1 The B-Spline Model Applied to the Ternary System MnCoTe

According to the B-Spline algorithm described in detail in Chapter 3, the fineness
of control lattice Φ has a large influence on the final interpolation function. As Φ
becomes finer, the influence of a data point is limited to a smaller neighborhood
(comparable to a variogram model having a small range). This enables the data
set to be more closely approximated, although the approximation surface will tend
to contain more local peaks near the data points. The following figures will help
to explain this behavior. In the figures it can be clearly observed how finer lattice
sizes lead to sharp local maxima at the measured points. The calculated activity
values at these points are overestimated and by far too large. It can also be seen
how a finer lattice spacing causes larger (local) approximation values. Due to the
construction of the B-Spline algorithm a finer lattice size leads to an interpolation
of the data while coarser lattice sizes yield an approximation of the points. This
can also be observed by taking a look at the ranges of the colorbar: the finer the
control lattice the larger the estimated maximal activity value. For this case, only a
lattice of 16 × 16 provides a good modelling result with a maximum activity value
of 852,000 at the composition Mn0.6Co0.27Te0.13 which exceeds the largest measured
value of 820,000 at Mn0.7Co0.20Te0.10. In total, 29,403 points have been calculated
for these representations.
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Figure 6.20: Modelling results of the B-Spline model applied to MnCoTe (unscaled data),
lattice size 8 × 8. Left: 2D representation, Right: 3D view

Figure 6.21: Results of the B-Spline Model with lattice size: 16 × 16

Figure 6.22: Results of the B-Spline Model with lattice size: 32 × 32

As already mentioned in section 6.1.2, 101 catalysts have be re-synthesized for this
system using a finer increment of 5% but also containing 10%-wise original mixtures.
The following figures illustrate the comparison of calculated and measured activities
for the scaled and unscaled case.
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Figure 6.23: Comparison of calculated and measured activity values for the system MnCoTe
(unscaled data). Lattice size: 16 × 16.

For the unscaled case the VoF has been calculated to be 0.61. The same system
modelled with the Kriging model yielded a VoF of 0.32. The B-Spline model also
tends to overestimate the activity values of the samples belonging to the second gen-
eration. Again, the low activity of the screening results of these 101 re-synthesized
samples may be responsible. Nevertheless, for sample 1018 the predicted activity
lies in good accordance with the experimental results. Especially, the most active
sample of the first generation, sample 473, has been overestimated by the model
since its screening result could not be confirmed during the second screening and re-
synthesis. Applied to the same ternary data set MnCoTe, the Kriging model caused
a smaller VoF such that this model describes the data in a better way here.
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Figure 6.24: Comparison of calculated and measured activity values for the system MnCoTe
(scaled data). Lattice size: 16 × 16.
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Working with the scaled data, the VoF has been calculated to give 0.67, even larger
than for the unscaled case. Apart from two outliers in Figure 6.24 that cause the
large VoF, the difference between measured and predicted activity values has been
quite small, especially for samples 1008 and 860. Sample 860 already yielded a
very good screening result in first generation. The corresponding application of the
Kriging model yielded a VoF of 0.31, nearly identical to the unscaled case. But
still the Kriging procedure exceeds the predictive power of the B-Spline model by
far. Taking a look at the results of the B-Spline modelling procedure applied to the
scaled data (cf. Figure 6.2) the following situation arises, illustrated in Figure 6.25.

Figure 6.25: Results of applying the B-Spline model (lattice size: 16 × 16) to the scaled
system MnCoTe.

The modelling result of the scaled case looks quite similar to the unscaled case. The
maximal measured activity value in this data set has been 495,000 at Mn0.2Co0.5Te0.3.
The model estimates the maximal activity value for the composition Mn0.17Co0.46Te0.36

at 479,000, lower than the largest measured activity value.

6.2.2 The B-Spline Model Applied to the Quaternary System MnCoTeNi

Similar to the Kriging approach, the quaternary system MnCoTeNi has been also
modelled using the B-Spline algorithm. The maximal measured activity value in this
system (unscaled case) has been obtained at Mn0.2Co0.7Te0.1Ni0.0 with an activity
value of 802,000. This means, the best catalyst here is sample 473, a ternary mixture.
In this application, a lattice resolution of 16 × 16 yielded the best results. The best
catalyst according to the model has been calculated at Mn0.17Co0.68Te0.15Ni0.0 having
an estimated activity value of 798,314 (+/− 11.400) staying below the maximal
measured value. The following figure shows the results of the B-Spline procedure
for the quaternary system MnCoTeNi (unscaled case) using the slice representation.
The slices from 0% to 50% Te content have been chosen for illustration here leading
to a good overview on this system. Again it must be noted here that a static
illustration of discrete slices cannot cope with the interactive illustration of these
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slice plots on a computer screen where the researcher can easily scroll through all
possible levels.
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Figure 6.26: Results of modelling the quaternary system MnCoNiTe by B-Splines (unscaled
data) illustrated in the slice plot representation.

Compared to the results of the Kriging model the B-Spline approach yielded nearly
the same results. Just by visual inspection it is hard to say, where the differences
between both procedures exactly are. The main difference can be observed taking
a look at the range of the colorbar. For this data set, the Kriging system in general
produced larger activity values.
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Figure 6.27: Comparison of calculated and measured activity values for the system Mn-
CoTeNi (unscaled data) by B-Splines. Lattice size: 16 × 16.
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The B-Spline procedure has been also used to check the differences between experi-
mental and predicted activity values for 38 re-synthesized catalyst samples. Figures
6.27 and 6.28 contain the results:
The unscaled case resulted in a VoF of 0.63. Except sample 377 together with two
samples lying in its neighborhood the predictive power within this example has been
quite good. The three outliers cause the large VoF here. In general, the trend of
the data set could be captured.
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Figure 6.28: Comparison of calculated and measured activity values for the system Mn-
CoTeNi (scaled data) by B-Splines. Lattice size: 16 × 16.

Considering the scaled case, only slight variations were observed. Again, around
sample 377 two samples yielding very bad estimation results appear. The VoF value
is calculated at 0.61 being once again enlarged by three outlying points. Com-
pared to the Kriging results, the B-Spline model again resulted in larger VoF values
indicating less predictive power.

6.2.3 The B-Spline Model Applied to the Complete Pentanary System
CrMnCoTeNi

Unfortunately, the extension of the B-Spline algorithm to data sets in more than
three dimensions could not be realized so easily. Since this approach could not cope
with the predictive power of Kriging the time needed for a complete implementation
has been used to improve the Kriging model and to develop several GUIs that allow
a convenient access to the implemented Matlab routines.
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Experimental Part
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7 Experimental Work

This chapter is dedicated to the experimental work that was done to synthesize a
complete pentanary composition spread with 1001 samples containing the elements
Mn, Co, Cr, Te and Ni. In the following sections, it is explained which metal pre-
cursors were employed and used in the acid-catalyzed sol-gel procedure to build the
gels on the way to the final catalyst powders. Furthermore, it is explained in detail
how the precursor solutions giving the later catalysts were mixed by a dispensing
robot, calcined and transferred to the slate library plates to be accessible for the
high-throughput screening. An explanation of the high-throughput screening reactor
together with the entire setup is given within section 7.3.

7.1 Precursors

All the tested catalysts were prepared by the same synthesis route, following an acid-
catalyzed sol-gel process that has been initially explained in section 1.5. Inspired by
the work of Schmidt [149] who synthesized a complete pentanary composition spread
out of the elements Mn, Co, Mo, Cr and Ni a quite similar approach was realized.
Since a large amount of catalyst samples was planned to be synthesized the replace-
ment of Mo obtained by the very expensive precursor Molybdenum-isopropoxide
was necessary. This was realized by the use of Te instead of Mo after an adequate
precursor for Te had been found. For the new compositions the recipe needed to be
slightly modified. The incidental subsections deal with the synthesis of the metal
propionates as metal ion precursors following the prescriptions described by Saal-
frank [141].

7.1.1 Preparation of Cr(III)-Propionate

20,00 g (50.02 mmol) Cr(NO3)3 · 9H2O was suspended in 300 ml propionic acid (4.0
mol) in a 500 ml one-necked round-bottomed flask. The reaction mixture was heated
under reflux at 150 ◦C and constantly stirred. Then, the reflux was removed and the
mixture was boiled at 150 ◦C for several days while the formation of nitrous oxides
was observed (brown gases, toxic!). If the formation of NOx became less (approx.
after 2-3 days), the excessive propionic acid was removed by a rotary evaporator
operated at 30 mbar and 50 ◦C. As a last step, the product was further dried at
high vacuum (< 1 mbar) at 50 ◦C for several h to end up as a dark green powder
which was further ground in a mortar. To check the composition of the synthesized
chromium-propionate, a CHN-analysis was performed. The results are summarized
in the following table.
The deviation of the theoretical results from the measured results can be explained
by impurities such as amounts of water and traces of nitrate that remained in the
powder and could not be removed totally.
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C H N

Theoretical Content [%] 39.88 5.58 0

Measured Content [%] 36.98 5.91 0.081

Table 7.1: Results of the CHN-Analysis of Cr(III)-Propionate.

7.1.2 Preparation of Co(II)-Propionate

The synthesis of Co(II)-propionate was realized following the description given by
Saalfrank [141] and Spinolo [166].

CoCO3 + 2CH3 − CH2 − COOH ­ Co(CH3CH2COO)2 + H2O + CO2 ↑ (7.1)

In a 500 ml one-necked round-bottomed flask, 15 g (126.11 mmol) CoCO3 were
suspended in 250 ml propionic acid. The reaction mixture was continuously stirred
and heated under reflux at 150 ◦C for 4 h. After cooling down, the dark violet
suspension was filtered to remove remaining CoCO3. Afterwards, excessive propionic
acid was removed by a rotary evaporator operated at 30 mbar and 50 ◦C. Finally,
the product was further dried in high vacuum (< 1 mbar) at 50 ◦C for several h to
end up as a violet solid. Further grinding in a mortar decreased the grain size. To
check the composition of the synthesized chromium-propionate, a CHN-analysis was
performed and the corresponding results can be found in the following table:

C H N

Theoretical Content [%] 35.14 4.91 0

Measured Content [%] 36.15 5.21 0.04

Table 7.2: Results of the CHN-Analysis of Co(II)-Propionate.

7.1.3 Preparation of Ni(II)-Propionate

The synthesis of Ni(II)-propionate was realized following the description given by
Saalfrank [141].

Ni(OH)2 + 2CH3 − CH2 − COOH ­ Ni(CH3CH2COO)2 + 2H2O (7.2)

In a 500 ml one-necked round-bottomed flask, 10 g (107.89 mmol) Ni(OH)2 were
suspended in 100 ml propionic acid. The reaction mixture was continuously stirred
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and heated under reflux at 150 ◦C for several h (transparent green solution). After
cooling down, the excessive propionic acid was removed by a rotary evaporator
operated at 30 mbar and 50 ◦C. Finally, the product was further dried in high
vacuum at 50 ◦C for several h to give a light green solid. Further grinding in a
mortar decreased the grain size. To check the composition of the synthesized nickel-
propionate, a CHN-analysis was performed and the corresponding results are given
in the following table:

C H N

Theoretical Content [%] 35.18 4.92 0

Measured Content [%] 35.04 5.14 0.078

Table 7.3: Results of the CHN-Analysis of Ni(II)-Propionate.

7.1.4 Preparation of Mn(II)-Propionate

The preparation of Mn(II)-propionate was done using MnO as starting material.

MnO + 2CH3 − CH2 − COOH ­ Mn(CH3CH2COO)2 + H2O (7.3)

In a 500 ml one-necked round-bottomed flask, 8.33 g (117.46 mmol) MnO were sus-
pended in 200 ml propionic acid. The reaction mixture was continuously stirred and
heated under reflux at 150 ◦C for several hours (transparent light brown solution).
After cooling down, the excessive propionic acid was removed using by rotary evap-
orator operated at 30 mbar and 50 ◦C. Finally, the product was further dried in high
vacuum (< 1 mbar) at 50 ◦C for several h to give a brownish solid. Further grinding
in a mortar decreased the grain size. To check the composition of the synthesized
nickel-propionate, a CHN-analysis was performed and the corresponding results can
be found in the following table:

C H N

Theoretical Content [%] 35.84 5.01 0

Measured Content [%] 35.23 4.92 0.075

Table 7.4: Results of the CHN-Analysis of Mn(II)-Propionate.

As the fifth metal precursor, telluric acid (H6TeO6) was used. All solid metal pre-
cursors were dissolved in Methanol in a concentration of 0.5 mol/l. To synthesize
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all catalyst by a sol-gel approach, also propionic acid and a complexing agent (4-
hydroxy-4-methyl-2-pentanone) were employed. The propionic acid route described
by Saalfrank [141] was applied in a slightly modified way to synthesize all catalysts.

7.2 High-Throughput Synthesis of a Pentanary Composition
Spread

The goal of this synthesis was the preparation of a complete pentanary composition
spread sampling a five dimensional search space. The five dimensions correspond
to the five used elements Mn, Co, Cr, Te and Ni. For the design of experiments, an
equally spaced sampling of the whole composition search space in 10%-wise variation
was applied. Then, the number of possible catalysts consisting of five metals is given
by equation (1.2), introduced on page 11.

N(NM , nc) =

(
nc + NM − 2

nc − 1

)
=

(nc + NM − 2)!

(nc − 1)!(NM − 1)!

In the studied case, NM = 5 (five elements) and nc = 11, since the content of each
element can take 11 different values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
and this results in

N(5, 11) =

(
11 + 5− 2

11− 1

)
=

(
14

10

)
=

14!

4! 10!
= 1001

samples in total. The 1001 prepared catalysts, their compositions together with a
unique sample number are listed in the appendix of this thesis in section C.1 (pp.
161). To check the reliability of the synthesis and the robot system the composition
spread was synthesized twice.

High-Throughput Synthesis of Catalysts

Two high-throughput syntheses of 1001 catalysts each were carried out with the help
of a conventional dispensing robot (Lissy by Zinsser Analytic, cf. Figure 7.1).
The robot performed the mixing of the metal precursor solutions that were man-
ually prepared before. For the mixing and further processing steps, sol-gel recipes
were used that had been individually developed within several years by the Maier
group. These recipes were implemented in the programming language Python to be
accessible by the software Plattenbau [146]. This software tool was also developed
by former members of the research group Maier to speed up the synthesis work of
sol-gel catalyst preparations by dispensing robots. With the help of this software
tool pipetting lists are created that can be directly exported to the robot. Further-
more, the software allows the design of a variety of rack layouts for the robot and
library syntheses.
For the synthesis of the catalysts four metal precursors (Mn, Cr, Co and Ni) were
used as propionates (cf. section 7.1) dissolved in Methanol (0.5 mol/l). For the
fifth metal precursor Te, H6TeO6 was dissolved in Methanol (0.5 mol/l). The sol-gel
recipe used in this approach was a slight modification of the propionic acid route
described by Saalfrank [141]. To synthesize a mixed metal oxide of the composition
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1

2

3

4

Figure 7.1: Zinsser dispensing robot used for the high-throughput synthesis: (1)Rack hold-
ing the precursor solutions (2) Washing station for needles (3) Synthesis rack holding the
synthesis vials (4) Robot head with two needles

AaBbCcDdEeOx the recipe can be characterized as follows:

aA : bB : cC : dD : eE
:

6(a+b+c+d+e)CA
:

0.3(a+b+c+d+e)PA
:

47.5(a+b+c+d+e)PS

where

• A, B, C, D, E denote the elements Mn, Co, Cr, Ni, Te.

• a, b, c, d, e denote the amounts of element A,...,E

• CA: complexing agent, 4-hydroxy-4-methyl-2-pentanone

• PA: Propionic Acid

• PS: Methanol, pure solvent

The precursor solutions were placed in 10 ml vials on a so-called reagent rack to
be accessible for the needles of the robot. For the synthesis itself the liquids were
transferred to small 2 ml vials that were arranged in a 50 sample layout on the
synthesis rack. This means that within one run 50 samples were completed. Then the
synthesis rack needed to be replaced. The order of pipetting the different solutions
was always done in the same manner: complexing agent as first step, then propionic
acid was added and finally all five metal precursor solutions were added in the
following order: Cr, Mn, Co, Te and Ni. To intense the mixing the samples were
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put on a vibrating plate for 30 min as soon as the pipetting has been terminated.
Afterwards the samples were placed into a hood for one week to perform gelation.
Then, the gels were calcined at 400 ◦C for five h to remove all remnants of organic
compounds (solvent, propionic acid). In all cases, the produced catalyst amount
was set to 400 µmol per sample. After the calcination, the catalyst powders needed
to be stirred with a glass rod to improve their homogeneity in corn sizes. Finally,
the powders were manually transferred into a library plate (containing 206 wells,
thickness 6 mm, diameter 99 mm), Figure 7.2.

Figure 7.2: Picture of a slate library filled with catalyst samples.

The choice of the library material (slate or steel) depends on the screening method
since emissivity corrected IR-Thermography (ecIR-Thermography) [72] requires ma-
terials that possess poor reflection properties together with a low reflectivity of in-
frared radiation. For the high-throughput screening setup that has been used in the
primary screening process of all catalyst samples steel libraries were used in general.
Here, slate libraries were used to allow further studies of a complete pentanary com-
position spread with ecIR-Thermography. Figure 7.2 illustrates a slate library filled
with catalyst powders, Hopcalite and some empty wells for reference and background
measurements, respectively. The used reference material Hopcalite is an industrial
catalysts mainly consisting of MnO2 and CuO in varying ratios often enhanced by
CoO or Ag2O. It is mostly applied for the oxidation of toxic CO to CO2 in breath-
ing apparatuses. The name Hopcalite is derived from the John Hopkins University
(’Hop’) and the University of California (’Cal’) that discovered this catalyst family
doing fundamental studies of the CO-oxidation during the first world war and in the
1920s.

7.3 High-Throughput Screening of Catalysts

The catalyst samples contained in the slate libraries were screened for propene ox-
idation (cf. section 1.7) in an open-well, high-throughput reactor system that has
been described previously, cf. [87, 126, 174, 185]. In this reactor system, the catalyst
library is placed in a custom-made reactor equipped with a heating system and an
insulation. The cross-section of the assembled setup together with a magnification
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of the reaction chamber is illustrated in Figure 7.3. During the screening the li-
brary is covered by a 15 mm thick ceramic mask made of Macor r© that provides
additional reaction volume on the top of each well. At the same time the mask
serves as an insulation to guarantee a constant library temperature. At the top of
this setup, a guiding mask is placed to help the threading of the sampling needle
into each well. Inside the sampling needle a capillary bundle containing both the
educt gas supply together with the product gas sampling system is arranged. The
needle itself can be placed sequentially into each well of the library plate such that
the space between catalyst powder and needle serves as reaction chamber for the
studied reaction. Since the sampling needle is fixed, the whole reactor is moved
by an xyz -stage to reach every single position of a well on the plate. Due to the
open structure of the reactor, it cannot be avoided that moisture or oxygen from
ambient air enters the reaction chambers. For the oxidation of propene, the educt
gas total flow (5ml/min) consists of a mixture of 71.6 vol-% synthetic air and 28.4
vol-% propene (air/C3H6: 2.51) such that ambient air pouring towards the reaction
chamber does not cause any problems.

Figure 7.3: (a) Cross-section of the high-throughput reactor system (b) Magnification of
the reaction chamber (dotted-circle in a)), [87].

During the reaction, the needle is placed directly over the catalyst sample such that
the feed gas mixture can overflow the catalyst powder. The gas composition of
products is analyzed by a micro-gas chromatograph (micro GC, model CP 4900;
Varian), equipped with a thermal conductivity detector. Table 7.5 shows the used
GC columns and the detectable chemicals.
The high-throughput screening system is run automatically controlled by the soft-
ware TestRig [174] such that up to 200 catalyst samples can be screened within
8-10 hours. In a general experiment, it takes about 120 s to determine the catalytic
activity of a catalyst by a single GC run (100 s reaction time, 10 s waiting outside
hole, 10 s moving to the next position). The experimental setup parameters were
determined by Schmidt [149] and needed not be modified since also the oxidation of
propene was studied. With this setup, the complete screening process takes approx-
imately 8 h.
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GC CP 4900 Varian Chemicals
Columns

Porapak Q , 10m 1,5-hexadiene, propylene oxide, propionic aldehyde
acetone, acrolein, benzene, H2O, allyl alcohol

52CB, 4m (heated) air, CO2, propene

Table 7.5: Used GC columns and the corresponding detectable chemicals.

The sequential GC analysis is controlled by the GC software CP-Maitre Elite while
the control of the xyz -stage is done via TestRig [174]. As model reaction, the oxida-
tion of propene at 350 ◦C was studied. Therefore, the reactor was gradually heated
up to 350 ◦C keeping the temperature fixed at 100 ◦C for about 30 min to remove
possible water from the catalyst powders. The results of the screening were written
into a *.txt file by the GC software including the retention times and peak areas of
the detected chemicals. The feed gases propene and synthetic air were also detected
during each GC run to provide an additional control of the reaction. Figure 7.5
shows the oxidation of propene and the reaction products that were monitored by
gas chromatography.

Figure 7.4: Scheme of the high-throughput screening reactor system and the applied GC
analytic.
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Figure 7.5: Detected products of propene oxidation at 350 ◦C.

Throughout this thesis the focus exclusively lies on the formation of acrolein out of
propene. This means, the catalysts were validated by the amount of their acrolein
production. Since all of the products mentioned above were monitored by the GC
analytics, the collected data also include information about other products that can
be further investigated. All synthesis results are contained in the data base HT-dat
to allow an efficient access for further studies.



8 Summary and Outlook

8.1 Summary

Within the scope of this thesis several main issues have been addressed. First, the
focus has been laid on the experimental work of synthesizing two identical pentanary
composition spreads yielding 1001 samples each. Therefore, different precursors for
Tellurium needed to be tested that allow the mixing with metal propionates without
any precipitations. Good results using Telluric acid have been obtained here. The
most active regions within this composition space have been sampled more closely
by a second generation of catalysts consisting of 400 samples. In total, approxi-
mately 2,400 catalysts have been synthesized and screened using high-throughput
synthesis techniques (a sol-gel approach realized by the use of pipetting robots) and
an automated screening setup for the sequential testing of the samples with respect
to their performance for the oxidation of propene. Especially the experimental work
and experience in the laboratory helped to understand how the data are obtained
and what the main error sources are. Different aspects of measurement accuracy
became clear during the screening and testing of catalysts. The identical synthesis
of two complete pentanary data has been realized yielding excellent screening re-
sults. Thus, the synthesis route using a sol gel procedure works reliably. It has been
observed, that samples synthesized with the same precursor batches at the same
time reached a high level of reproducibility. Unfortunately, this positive effect has
not been observed for samples resynthesized with new precursor batches half a year
later. This means that the screening results is strongly dependent on the quality of
chemicals and precursors used. The reliability of the screening set up by itself has
been checked by a library alternately filled with Hopcalite and empty wells. The
variation of screening results ranged between 8-11% as a common result for primary
high-throughput screening approaches. Also the existence of false positives or wrong
negatives has been observed and has to be kept in mind when dealing with high-
throughput screening data. The final decision about the active power of a catalyst
can only be found in conventional tests and characterizations.
The main part of this thesis has been the application of two mathematical inter-
polation techniques, Kriging and multilevel B-Splines, to high-throughput screening
data. One goal has been to check whether it is possible to predict activities of a priori
non-synthesized samples out of the activities of neighboring samples. Therefore, the
original data sets contained samples in 10%-wise variation of composition while the
samples of the second generation have been synthesized in 5%-wise variations. One
major problem that has been observed during the experimental and theoretical work
has been the reproducibility of the high-throughput screening results. Two complete
pentanary composition spreads have been synthesized within the shortest time pe-
riod possible using the same precursor solutions. It has been possible to reproduce
each library in an excellent way and the best catalysts of data set A also reached the
best results in data set B. Unfortunately, the reproduction and refinement of regions
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of interest of the composition space in a second generation of catalysts in general
yielded lower activity values. This means that the best samples taken out of the first
generation did not reach the expected results in the second generation. Why this
has been the case can not be completely explained but only assumed. Since always
a reference catalyst has been spread on each library plate the performance of these
known samples could provide a control mechanism for the screening set-up. The
reproducibility of the screening results of the Hopcalite samples always was accept-
able, also for the second generation such that it can be excluded that the screening
procedure itself caused the problems here. The deviating results between the first
and second generation of catalyst might be due to the different precursor solutions
or slight variations in the synthesis conditions. Although all synthesis parameters
have been kept fixed and no changes in operating the samples have been performed.
Since lower activities were obtained for the second generation, the predictive power
of the Kriging and B-Spline model could not yield satisfying results for all examples
studied. In most cases, the measured activity values of second generation catalysts
have been overestimated by the models due to larger activity values of input data.
Nevertheless, Kriging and multilevel B-Splines lend themselves in a very good way to
model smooth correlations as it is assumed for the relation between catalytic activity
and composition. In this application, the Kriging model yielded better estimation
results due to its larger flexibility while the B-Spline model tends to overestimate
the data leading to local maxima for finer lattice spacing.
The most important results of the high-throughput screening can be summarized as
follows:
The catalyst that yielded the best results for the oxidation of propene is sample 501
Cr0.1Co0.2Te0.4Ni0.3. This catalyst has been synthesized three times yielding always
excellent screening results. Also very good results have been observed for sam-
ples 685 (Cr0.1Co0.4Te0.3Ni0.2), 473 (Mn0.2Co0.7Te0.1) and 860 (Mn0.1Co0.8Te0.1),
although the screening results for samples 473 and 860 in the second generation
yielded lower results.
The best catalyst according to the Kriging model should have the composition
Mn0.18Co0.73Te0.09 (unscaled case) and Mn0.18Co0.73Te0.09 for the scaled case. This
means, the Kriging model always yielded a ternary mixture (MnCoTe) as global
maximum.
For the B-Spline model, the facts are:
Only in the ternary case MnCoTe the predicted catalyst activity exceeded the max-
imal measured activity for the proposed composition Mn0.6Co0.27Te0.13.
In general it can be said that several strong indications have been observed to as-
sume a smooth dependence between composition and activity of a heterogeneous
catalyst. The “similarity principle” already known in organic chemistry and biology
seems to be also present for heterogeneous catalysts - but in a more complex way. It
is clear that the composition plays an important role here but even more descriptors
and factors need to be considered to get more complex models. Furthermore, more
work need to be put in the development of reliably working synthesis and screening
setups, to speed up the throughput for the search of new optimized catalysts.
All implementation work needed for this thesis has been done in Matlab. In total,
more than 10.000 lines of source code have been implemented to realize the calcula-
tions and extended visualization challenges. Especially the development of the GUIs
took a large part of time and effort.
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Within the scope of this thesis different tools have been developed that improve
the handling of high-dimensional screening data. On the one hand, much work has
been done to develop and apply several new visualization techniques and to provide
convenient access to these techniques via the developed GUIs. On the other hand,
the implemented Kriging and B-Spline approaches help to check for active regions
in a data set and provide information on the regions between discrete data points.
This information can then be very important for further experiments and catalyst
generations.

8.2 Outlook

Throughout the whole thesis acrolein has been considered as product of interest
among other products of the oxidation of propene. Since the GC signals of up to
ten different products have been monitored, the whole discussion and analysis tech-
nique could also be applied to these data. To have a look at all monitored products
would have gone beyond the scope of this thesis, so acrolein has been the product
of choice. Nevertheless, the complete pentanary data sets contain large amounts of
valuable information on all other products and the application of further data min-
ing methods surly can reveal more trends and pattern. Researchers also dealing with
selective propene oxidation can take the data sets and look for promising element
combinations according to these primary screening results. The preparation of two
identical pentanaries allows further interesting work on visualization, especially in
higher dimensions. With the available data, visualization studies in more than 12
dimensions can be easily supported.
Since the Kriging model in general yielded better estimation results, further work
can be focused on the optimization of the Kriging approach. An idea here could be
to include locational uncertainty into the consideration of Kriging. This means that
the Kriging model should be optimized by a term describing the deviation of input
data from their real location. In the special case studied, the location of a data
point has been given by its composition leading to a certain coordinate in space.
Due to slight deviations between synthesized composition and theoretical composi-
tion (being always the case due to synthesis inaccuracies, only limited accuracy of
the pipetting robot, mistakes in the concentrations of the precursor solution etc.) the
assumed locations are not completely correct and these deviations could be included
into the model. There exist some theories how these problems can be corrected and
tackled by improved Kriging models (e.g. [50]).
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[109] Matheron, G.: Traité de Géostatistique Appliquée, Tome I; Tome II: Le
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versity, 2006
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A List of Abbreviations

◦C degree Centigrade
h hour(s)
min minutes
l liter
ml milliliter
µl microliter
nl nanoliter
Vol-% volume percent
mbar millibar
DOE Design of Experiment
GA Genetic Algorithm
ANN Artificial Neural Network
GUI Graphical User Interface
PCA Principal Component Analysis
QSAR Quantitative Structure Activity Relationship
QCAR Quantitative Composition Activity Relationship
KDD Knowledge Discovery in Databases
PVD Physical Vapor Deposition
HT High-Throughput
DM Data Mining
IR Infrared
TMOS Tetramethoxysilane
TEOS Tetraethoxysilane
LIFI Laser Induced Fluorescence Imaging
REMPI Resonance-Enhanced Multiphoton Ionization
GHSV Gas Hourly Space Velocity
HTAD High Temperature Aerosol Decomposition
BLUE Best Linear Unbiased Estimator
GIS Geographic Information System
RF Random Function
OK Ordinary Kriging
SK Simple Kriging
MBA Multilevel B-Spline Algorithm
VoF Value of Fit
PA Propionic Acid
PS Pure Solvent
CA Complexing Agent
GC Gas Chromatography
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B Used Chemicals and Equipment

B.1 Metal Precursors and Other Chemicals

Element Precursor Producer

CoCO3 Alfa Aesar
MnO Aldrich
Ni(OH)2 Alfa Aesar
Cr(NO3)3· 9 H2O Aldrich
H6TeO6 Aldrich

Table B.1: Used Metal Precursors

Chemical Producer

propionic acid Acros Organics
methanol ZChLUdS 1

4-hydroxy-4-methyl- Alfa Aesar
2-pentanone

Table B.2: Other Chemicals.

B.2 Used Equipment and Software

Description Type Producer

software Plattenbau Jens Scheidtmann
software Matlab The MathWorks
pipetting robot Lissy Zinsser Analytic
robot control software Zinsser REDI v. 5.3.0 Zinsser Analytic
vibrating plate Titramax 100 Heidolph Instruments
oven CWF 1100 Carbolite
oven software controller S27 Nabertherm
mass flow controller F-201C & F-200D Bronkhorst Hi-Tec
temperature controller dTron 16.1 Jumo
gas chromatograph CP-4900 Varian
software GC control CP-Mâıtre Elite Varian

Table B.3: Used Equipment and Software.

1Zentrales Chemikalienlager der Universität des Saarlandes
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C Compositions of Tested Catalysts

C.1 Pentanary Composition Spread of Cr, Mn, Co, Te and Ni

Sample No. Cr Mn Co Te Ni

1 0.1 0.6 0.2 0.0 0.1
2 0.1 0.3 0.6 0.0 0.0
3 0.1 0.3 0.0 0.0 0.6
4 0.0 0.7 0.2 0.1 0.0
5 0.2 0.1 0.2 0.0 0.5
6 0.1 0.4 0.1 0.1 0.3
7 0.4 0.0 0.6 0.0 0.0
8 0.1 0.0 0.1 0.3 0.5
9 0.2 0.5 0.2 0.0 0.1
10 0.1 0.2 0.0 0.5 0.2
11 0.0 0.2 0.3 0.0 0.5
12 0.2 0.1 0.0 0.0 0.7
13 0.0 0.0 0.3 0.4 0.3
14 0.2 0.2 0.0 0.3 0.3
15 0.1 0.0 0.6 0.1 0.2
16 0.3 0.2 0.0 0.4 0.1
17 0.2 0.0 0.0 0.6 0.2
18 0.3 0.0 0.4 0.1 0.2
19 0.3 0.5 0.1 0.1 0.0
20 0.0 0.0 0.1 0.4 0.5
21 0.0 0.0 0.3 0.3 0.4
22 0.3 0.1 0.4 0.0 0.2
23 0.4 0.1 0.0 0.0 0.5
24 0.3 0.0 0.2 0.1 0.4
25 0.1 0.4 0.1 0.2 0.2
26 0.1 0.7 0.1 0.1 0.0
27 0.0 0.1 0.6 0.0 0.3
28 0.1 0.0 0.5 0.1 0.3
29 0.7 0.1 0.0 0.1 0.1
30 0.6 0.0 0.3 0.0 0.1
31 0.0 0.2 0.1 0.6 0.1
32 0.2 0.6 0.1 0.1 0.0
33 0.0 0.3 0.0 0.7 0.0
34 0.2 0.7 0.0 0.0 0.1
35 0.0 0.7 0.1 0.1 0.1
36 0.8 0.0 0.1 0.1 0.0
37 0.2 0.0 0.0 0.7 0.1
38 0.1 0.5 0.0 0.1 0.3
39 0.0 0.3 0.7 0.0 0.0
40 0.1 0.2 0.1 0.4 0.2
41 0.4 0.5 0.1 0.0 0.0
42 0.1 0.1 0.5 0.0 0.3
43 0.5 0.1 0.0 0.1 0.3
44 0.3 0.0 0.2 0.0 0.5
45 0.4 0.2 0.2 0.1 0.1
46 0.5 0.3 0.1 0.0 0.1
47 0.2 0.4 0.2 0.1 0.1
48 0.2 0.0 0.0 0.4 0.4
49 0.0 0.3 0.0 0.6 0.1
50 0.3 0.0 0.0 0.3 0.4
51 0.6 0.1 0.1 0.2 0.0

Sample No. Cr Mn Co Te Ni

52 0.2 0.5 0.0 0.1 0.2
53 0.4 0.2 0.3 0.1 0.0
54 0.1 0.4 0.1 0.4 0.0
55 0.4 0.0 0.4 0.2 0.0
56 0.0 0.5 0.3 0.2 0.0
57 0.0 0.4 0.0 0.1 0.5
58 0.2 0.0 0.3 0.5 0.0
59 0.6 0.2 0.1 0.0 0.1
60 0.0 0.3 0.1 0.4 0.2
61 0.0 0.5 0.1 0.2 0.2
62 0.1 0.5 0.0 0.0 0.4
63 0.1 0.3 0.4 0.2 0.0
64 0.0 0.4 0.1 0.1 0.4
65 0.0 0.0 0.5 0.1 0.4
66 0.1 0.2 0.1 0.0 0.6
67 0.5 0.0 0.4 0.1 0.0
68 0.0 0.1 0.5 0.1 0.3
69 0.1 0.0 0.1 0.2 0.6
70 0.0 0.3 0.5 0.0 0.2
71 0.0 0.1 0.0 0.9 0.0
72 0.5 0.0 0.3 0.2 0.0
73 0.1 0.2 0.6 0.0 0.1
74 0.1 0.1 0.0 0.1 0.7
75 0.1 0.4 0.2 0.1 0.2
76 0.3 0.1 0.5 0.0 0.1
77 0.1 0.5 0.0 0.4 0.0
78 0.0 0.2 0.7 0.0 0.1
79 0.1 0.6 0.1 0.0 0.2
80 0.2 0.1 0.3 0.3 0.1
81 0.3 0.0 0.0 0.6 0.1
82 0.2 0.1 0.0 0.3 0.4
83 0.1 0.1 0.0 0.5 0.3
84 0.0 0.3 0.5 0.2 0.0
85 0.4 0.0 0.1 0.0 0.5
86 0.0 0.3 0.1 0.2 0.4
87 0.2 0.1 0.5 0.2 0.0
88 0.7 0.2 0.1 0.0 0.0
89 0.3 0.3 0.1 0.1 0.2
90 0.1 0.0 0.1 0.4 0.4
91 0.0 0.5 0.1 0.1 0.3
92 0.2 0.0 0.1 0.1 0.6
93 0.5 0.1 0.0 0.0 0.4
94 0.5 0.1 0.1 0.3 0.0
95 0.4 0.2 0.4 0.0 0.0
96 0.3 0.0 0.1 0.0 0.6
97 0.0 0.6 0.3 0.1 0.0
98 0.1 0.1 0.0 0.6 0.2
99 0.0 0.2 0.8 0.0 0.0
100 0.1 0.5 0.3 0.1 0.0
101 0.2 0.6 0.2 0.0 0.0
102 0.3 0.4 0.0 0.2 0.1
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161



162 C Compositions of Tested Catalysts

Sample No. Cr Mn Co Te Ni

103 0.1 0.5 0.3 0.0 0.1
104 0.0 0.0 0.3 0.6 0.1
105 0.3 0.2 0.0 0.5 0.0
106 0.0 0.4 0.1 0.2 0.3
107 0.5 0.0 0.4 0.0 0.1
108 0.4 0.0 0.0 0.5 0.1
109 0.0 0.1 0.0 0.4 0.5
110 0.2 0.5 0.0 0.2 0.1
111 0.1 0.2 0.2 0.1 0.4
112 0.4 0.0 0.3 0.3 0.0
113 0.2 0.0 0.0 0.1 0.7
114 0.0 0.0 0.3 0.2 0.5
115 0.1 0.3 0.1 0.5 0.0
116 0.2 0.2 0.0 0.5 0.1
117 0.1 0.0 0.1 0.8 0.0
118 0.6 0.2 0.0 0.2 0.0
119 0.3 0.0 0.3 0.1 0.3
120 0.2 0.5 0.0 0.0 0.3
121 0.1 0.1 0.2 0.3 0.3
122 0.2 0.3 0.1 0.3 0.1
123 0.1 0.1 0.4 0.1 0.3
124 0.1 0.6 0.3 0.0 0.0
125 0.1 0.3 0.3 0.2 0.1
126 0.1 0.1 0.0 0.8 0.0
127 0.9 0.1 0.0 0.0 0.0
128 0.4 0.1 0.4 0.1 0.0
129 0.0 0.1 0.4 0.1 0.4
130 0.1 0.2 0.2 0.0 0.5
131 0.2 0.0 0.2 0.0 0.6
132 0.2 0.0 0.1 0.3 0.4
133 0.0 0.0 0.2 0.1 0.7
134 0.2 0.1 0.2 0.1 0.4
135 0.1 0.3 0.1 0.2 0.3
136 0.1 0.3 0.1 0.4 0.1
137 0.0 0.3 0.2 0.0 0.5
138 0.2 0.0 0.2 0.6 0.0
139 0.0 0.6 0.0 0.0 0.4
140 0.2 0.3 0.0 0.0 0.5
141 0.9 0.0 0.1 0.0 0.0
142 0.2 0.1 0.1 0.0 0.6
143 0.1 0.6 0.2 0.1 0.0
144 0.0 0.0 0.1 0.5 0.4
145 0.2 0.0 0.2 0.5 0.1
146 0.0 0.1 0.0 0.0 0.9
147 0.1 0.2 0.0 0.2 0.5
148 0.3 0.4 0.0 0.3 0.0
149 0.5 0.0 0.1 0.0 0.4
150 0.0 0.0 0.9 0.0 0.1
151 0.2 0.2 0.0 0.2 0.4
152 0.1 0.2 0.2 0.2 0.3
153 0.3 0.2 0.3 0.2 0.0
154 0.3 0.0 0.0 0.4 0.3
155 0.0 0.4 0.2 0.0 0.4
156 0.0 0.2 0.3 0.5 0.0
157 0.0 0.1 0.4 0.4 0.1
158 0.3 0.4 0.3 0.0 0.0
159 0.4 0.1 0.1 0.3 0.1
160 0.0 0.7 0.0 0.2 0.1
161 0.1 0.4 0.2 0.3 0.0
162 0.2 0.0 0.1 0.6 0.1
163 0.1 0.3 0.0 0.1 0.5
164 0.3 0.0 0.1 0.5 0.1
165 0.0 0.0 0.0 0.8 0.2
166 0.2 0.1 0.2 0.5 0.0
167 0.7 0.1 0.2 0.0 0.0

Sample No. Cr Mn Co Te Ni

168 0.6 0.0 0.3 0.1 0.0
169 0.0 0.3 0.3 0.0 0.4
170 0.4 0.0 0.2 0.3 0.1
171 0.3 0.1 0.3 0.1 0.2
172 0.0 0.0 0.5 0.3 0.2
173 0.0 0.3 0.3 0.2 0.2
174 0.0 0.3 0.4 0.2 0.1
175 0.1 0.2 0.3 0.2 0.2
176 0.0 0.1 0.1 0.8 0.0
177 0.5 0.0 0.0 0.5 0.0
178 0.1 0.2 0.1 0.6 0.0
179 0.3 0.7 0.0 0.0 0.0
180 0.2 0.0 0.3 0.1 0.4
181 0.0 0.1 0.4 0.3 0.2
182 0.5 0.2 0.1 0.0 0.2
183 0.1 0.2 0.2 0.4 0.1
184 0.0 0.6 0.0 0.4 0.0
185 0.2 0.0 0.5 0.3 0.0
186 0.0 0.0 0.7 0.0 0.3
187 0.2 0.2 0.3 0.2 0.1
188 0.0 0.3 0.0 0.0 0.7
189 0.2 0.0 0.3 0.4 0.1
190 0.8 0.0 0.0 0.0 0.2
191 0.3 0.1 0.0 0.1 0.5
192 0.4 0.3 0.1 0.0 0.2
193 0.1 0.1 0.8 0.0 0.0
194 0.1 0.0 0.4 0.5 0.0
195 0.3 0.0 0.2 0.4 0.1
196 0.6 0.1 0.0 0.2 0.1
197 0.1 0.0 0.0 0.7 0.2
198 0.0 0.0 0.3 0.5 0.2
199 0.5 0.0 0.0 0.1 0.4
200 0.2 0.1 0.2 0.3 0.2
201 0.2 0.2 0.1 0.2 0.3
202 0.0 0.5 0.0 0.2 0.3
203 0.2 0.0 0.0 0.5 0.3
204 0.3 0.3 0.0 0.4 0.0
205 0.0 0.0 0.3 0.7 0.0
206 0.3 0.0 0.6 0.1 0.0
207 0.7 0.0 0.2 0.1 0.0
208 0.3 0.3 0.3 0.0 0.1
209 0.2 0.3 0.1 0.2 0.2
210 0.0 0.0 0.6 0.4 0.0
211 0.0 0.1 0.5 0.3 0.1
212 0.2 0.6 0.0 0.0 0.2
213 0.2 0.1 0.4 0.0 0.3
214 0.3 0.0 0.0 0.1 0.6
215 0.2 0.2 0.4 0.1 0.1
216 0.3 0.1 0.1 0.2 0.3
217 0.1 0.5 0.2 0.2 0.0
218 0.1 0.0 0.0 0.2 0.7
219 0.0 0.2 0.0 0.4 0.4
220 0.2 0.1 0.6 0.1 0.0
221 0.0 0.2 0.5 0.2 0.1
222 0.1 0.1 0.0 0.0 0.8
223 0.1 0.1 0.0 0.4 0.4
224 0.2 0.1 0.1 0.4 0.2
225 0.0 0.8 0.0 0.0 0.2
226 0.1 0.0 0.2 0.3 0.4
227 0.4 0.1 0.4 0.0 0.1
228 0.6 0.0 0.0 0.2 0.2
229 0.1 0.8 0.0 0.0 0.1
230 0.2 0.1 0.1 0.3 0.3
231 0.3 0.0 0.1 0.3 0.3
232 0.0 0.1 0.1 0.7 0.1
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Sample No. Cr Mn Co Te Ni

233 0.0 0.5 0.4 0.1 0.0
234 0.0 0.4 0.1 0.0 0.5
235 0.5 0.2 0.0 0.0 0.3
236 0.1 0.3 0.2 0.4 0.0
237 0.0 0.5 0.0 0.3 0.2
238 0.5 0.3 0.0 0.2 0.0
239 0.2 0.2 0.3 0.3 0.0
240 0.1 0.5 0.1 0.0 0.3
241 0.3 0.1 0.2 0.0 0.4
242 0.1 0.1 0.1 0.1 0.6
243 0.0 0.6 0.1 0.2 0.1
244 0.2 0.2 0.2 0.4 0.0
245 0.1 0.2 0.2 0.3 0.2
246 0.0 0.1 0.3 0.6 0.0
247 0.0 0.2 0.6 0.2 0.0
248 0.6 0.1 0.0 0.0 0.3
249 0.2 0.5 0.1 0.1 0.1
250 1.0 0.0 0.0 0.0 0.0
251 0.4 0.2 0.2 0.0 0.2
252 0.2 0.2 0.3 0.1 0.2
253 0.0 0.4 0.4 0.2 0.0
254 0.3 0.0 0.2 0.3 0.2
255 0.1 0.3 0.5 0.1 0.0
256 0.0 0.3 0.0 0.3 0.4
257 0.0 0.5 0.3 0.0 0.2
258 0.2 0.2 0.0 0.1 0.5
259 0.1 0.7 0.0 0.1 0.1
260 0.5 0.1 0.4 0.0 0.0
261 0.1 0.2 0.5 0.0 0.2
262 0.2 0.3 0.3 0.0 0.2
263 0.2 0.1 0.4 0.1 0.2
264 0.0 0.1 0.2 0.1 0.6
265 0.0 0.1 0.0 0.2 0.7
266 0.3 0.3 0.2 0.0 0.2
267 0.0 0.0 0.0 0.0 1.0
268 0.4 0.0 0.5 0.0 0.1
269 0.5 0.0 0.5 0.0 0.0
270 0.1 0.1 0.4 0.2 0.2
271 0.4 0.6 0.0 0.0 0.0
272 0.0 0.1 0.6 0.3 0.0
273 0.3 0.1 0.2 0.2 0.2
274 0.4 0.3 0.0 0.3 0.0
275 0.1 0.1 0.2 0.6 0.0
276 0.3 0.2 0.2 0.1 0.2
277 0.1 0.0 0.2 0.7 0.0
278 0.1 0.0 0.7 0.1 0.1
279 0.0 0.2 0.1 0.7 0.0
280 0.1 0.1 0.3 0.4 0.1
281 0.3 0.2 0.2 0.3 0.0
282 0.1 0.2 0.3 0.4 0.0
283 0.0 0.1 0.4 0.5 0.0
284 0.1 0.1 0.2 0.5 0.1
285 0.2 0.2 0.3 0.0 0.3
286 0.0 0.2 0.3 0.3 0.2
287 0.2 0.0 0.2 0.1 0.5
288 0.4 0.3 0.2 0.0 0.1
289 0.7 0.0 0.1 0.2 0.0
290 0.1 0.0 0.2 0.6 0.1
291 0.4 0.1 0.2 0.3 0.0
292 0.2 0.0 0.0 0.2 0.6
293 0.7 0.0 0.2 0.0 0.1
294 0.0 0.4 0.1 0.3 0.2
295 0.2 0.3 0.3 0.1 0.1
296 0.0 0.0 0.1 0.9 0.0
297 0.4 0.0 0.0 0.1 0.5

Sample No. Cr Mn Co Te Ni

298 0.2 0.4 0.1 0.3 0.0
299 0.1 0.2 0.4 0.3 0.0
300 0.1 0.0 0.3 0.1 0.5
301 0.2 0.3 0.2 0.2 0.1
302 0.0 0.1 0.2 0.0 0.7
303 0.3 0.2 0.2 0.2 0.1
304 0.7 0.1 0.1 0.0 0.1
305 0.0 0.0 0.5 0.4 0.1
306 0.0 0.2 0.2 0.4 0.2
307 0.2 0.3 0.5 0.0 0.0
308 0.1 0.3 0.3 0.1 0.2
309 0.1 0.1 0.2 0.1 0.5
310 0.4 0.2 0.1 0.3 0.0
311 0.1 0.4 0.1 0.0 0.4
312 0.1 0.1 0.3 0.3 0.2
313 0.1 0.0 0.7 0.2 0.0
314 0.1 0.7 0.0 0.2 0.0
315 0.0 0.1 0.2 0.2 0.5
316 0.2 0.2 0.2 0.1 0.3
317 0.0 0.4 0.0 0.4 0.2
318 0.1 0.4 0.0 0.2 0.3
319 0.3 0.2 0.0 0.2 0.3
320 0.1 0.0 0.3 0.3 0.3
321 0.1 0.2 0.3 0.1 0.3
322 0.1 0.2 0.6 0.1 0.0
323 0.1 0.0 0.4 0.0 0.5
324 0.0 0.1 0.1 0.6 0.2
325 0.8 0.2 0.0 0.0 0.0
326 0.3 0.0 0.4 0.2 0.1
327 0.1 0.3 0.1 0.1 0.4
328 0.1 0.1 0.5 0.1 0.2
329 0.4 0.1 0.0 0.4 0.1
330 0.0 0.0 0.7 0.2 0.1
331 0.2 0.0 0.6 0.0 0.2
332 0.0 0.2 0.2 0.2 0.4
333 0.0 0.5 0.0 0.1 0.4
334 0.0 0.1 0.3 0.4 0.2
335 0.0 0.5 0.0 0.0 0.5
336 0.2 0.7 0.1 0.0 0.0
337 0.1 0.2 0.1 0.5 0.1
338 0.6 0.1 0.0 0.1 0.2
339 0.3 0.5 0.2 0.0 0.0
340 0.0 0.4 0.4 0.1 0.1
341 0.7 0.1 0.1 0.1 0.0
342 0.3 0.1 0.3 0.0 0.3
343 0.4 0.2 0.0 0.2 0.2
344 0.0 0.1 0.3 0.0 0.6
345 0.0 0.4 0.3 0.3 0.0
346 0.0 0.2 0.0 0.6 0.2
347 0.4 0.0 0.4 0.1 0.1
348 0.1 0.0 0.0 0.9 0.0
349 0.7 0.2 0.0 0.1 0.0
350 0.2 0.4 0.0 0.0 0.4
351 0.1 0.2 0.1 0.2 0.4
352 0.3 0.5 0.0 0.2 0.0
353 0.0 0.2 0.3 0.4 0.1
354 0.4 0.1 0.2 0.1 0.2
355 0.1 0.0 0.6 0.3 0.0
356 0.3 0.0 0.3 0.2 0.2
357 0.1 0.4 0.0 0.4 0.1
358 0.2 0.1 0.3 0.1 0.3
359 0.5 0.0 0.0 0.0 0.5
360 0.3 0.0 0.4 0.3 0.0
361 0.0 0.0 0.1 0.8 0.1
362 0.2 0.0 0.4 0.2 0.2
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Sample No. Cr Mn Co Te Ni

363 0.0 0.2 0.0 0.2 0.6
364 0.3 0.0 0.0 0.2 0.5
365 0.3 0.2 0.0 0.3 0.2
366 0.0 0.2 0.3 0.1 0.4
367 0.1 0.1 0.0 0.7 0.1
368 0.1 0.2 0.0 0.3 0.4
369 0.2 0.4 0.3 0.1 0.0
370 0.4 0.0 0.1 0.5 0.0
371 0.0 0.5 0.0 0.5 0.0
372 0.0 0.0 0.0 0.4 0.6
373 0.4 0.5 0.0 0.1 0.0
374 0.0 0.8 0.1 0.1 0.0
375 0.2 0.3 0.0 0.3 0.2
376 0.0 0.2 0.1 0.5 0.2
377 0.0 0.5 0.3 0.1 0.1
378 0.0 0.4 0.2 0.4 0.0
379 0.1 0.2 0.4 0.1 0.2
380 0.5 0.1 0.1 0.2 0.1
381 0.2 0.2 0.1 0.4 0.1
382 0.0 0.6 0.1 0.0 0.3
383 0.5 0.3 0.2 0.0 0.0
384 0.2 0.0 0.2 0.3 0.3
385 0.0 0.4 0.4 0.0 0.2
386 0.3 0.1 0.4 0.1 0.1
387 0.4 0.1 0.3 0.1 0.1
388 0.0 0.0 0.3 0.1 0.6
389 0.0 0.0 0.4 0.3 0.3
390 0.3 0.1 0.2 0.3 0.1
391 0.2 0.5 0.1 0.0 0.2
392 0.1 0.2 0.4 0.0 0.3
393 0.0 0.3 0.2 0.1 0.4
394 0.0 0.4 0.5 0.1 0.0
395 0.4 0.1 0.3 0.2 0.0
396 0.2 0.4 0.1 0.2 0.1
397 0.0 0.1 0.2 0.3 0.4
398 0.2 0.0 0.4 0.3 0.1
399 0.0 0.0 0.4 0.4 0.2
400 0.2 0.3 0.0 0.4 0.1
401 0.0 0.1 0.1 0.4 0.4
402 0.0 0.0 0.6 0.1 0.3
403 0.1 0.0 0.1 0.5 0.3
404 0.1 0.2 0.0 0.0 0.7
405 0.0 0.0 0.9 0.1 0.0
406 0.6 0.0 0.0 0.0 0.4
407 0.3 0.1 0.1 0.3 0.2
408 0.1 0.5 0.0 0.3 0.1
409 0.5 0.1 0.2 0.1 0.1
410 0.1 0.1 0.2 0.0 0.6
411 0.2 0.0 0.2 0.4 0.2
412 0.3 0.2 0.1 0.4 0.0
413 0.4 0.1 0.2 0.2 0.1
414 0.1 0.2 0.1 0.1 0.5
415 0.0 0.0 0.1 0.2 0.7
416 0.0 0.7 0.0 0.3 0.0
417 0.0 0.4 0.1 0.4 0.1
418 0.3 0.1 0.0 0.3 0.3
419 0.0 0.6 0.0 0.2 0.2
420 0.5 0.3 0.0 0.1 0.1
421 0.2 0.1 0.0 0.5 0.2
422 0.0 0.1 0.7 0.1 0.1
423 0.1 0.2 0.0 0.6 0.1
424 0.0 0.1 0.4 0.0 0.5
425 0.0 0.4 0.3 0.2 0.1
426 0.0 0.2 0.0 0.1 0.7
427 0.2 0.2 0.1 0.5 0.0

Sample No. Cr Mn Co Te Ni

428 0.0 0.3 0.1 0.1 0.5
429 0.0 0.4 0.0 0.0 0.6
430 0.4 0.1 0.1 0.1 0.3
431 0.3 0.0 0.7 0.0 0.0
432 0.1 0.0 0.6 0.2 0.1
433 0.5 0.2 0.3 0.0 0.0
434 0.2 0.1 0.5 0.0 0.2
435 0.4 0.1 0.1 0.0 0.4
436 0.1 0.1 0.1 0.6 0.1
437 0.0 0.2 0.4 0.1 0.3
438 0.0 0.1 0.2 0.5 0.2
439 0.0 0.2 0.3 0.2 0.3
440 0.1 0.1 0.3 0.2 0.3
441 0.3 0.2 0.1 0.3 0.1
442 0.0 0.1 0.1 0.2 0.6
443 0.4 0.2 0.0 0.1 0.3
444 0.0 0.5 0.1 0.3 0.1
445 0.3 0.2 0.4 0.1 0.0
446 0.0 0.0 0.2 0.0 0.8
447 0.1 0.3 0.1 0.0 0.5
448 0.4 0.3 0.0 0.2 0.1
449 0.0 0.3 0.2 0.4 0.1
450 0.3 0.0 0.0 0.5 0.2
451 0.5 0.3 0.0 0.0 0.2
452 0.1 0.0 0.2 0.2 0.5
453 0.0 0.0 0.2 0.5 0.3
454 0.0 0.1 0.7 0.2 0.0
455 0.3 0.0 0.5 0.1 0.1
456 0.0 0.4 0.0 0.3 0.3
457 0.3 0.0 0.0 0.0 0.7
458 0.0 0.1 0.4 0.2 0.3
459 0.1 0.5 0.1 0.3 0.0
460 0.4 0.0 0.3 0.2 0.1
461 0.4 0.4 0.0 0.2 0.0
462 0.1 0.1 0.7 0.0 0.1
463 0.1 0.0 0.3 0.2 0.4
464 0.8 0.0 0.0 0.2 0.0
465 0.0 0.1 0.2 0.7 0.0
466 0.4 0.4 0.1 0.1 0.0
467 0.2 0.1 0.1 0.6 0.0
468 0.0 0.2 0.0 0.8 0.0
469 0.0 0.2 0.6 0.0 0.2
470 0.1 0.1 0.1 0.0 0.7
471 0.2 0.3 0.0 0.2 0.3
472 0.1 0.1 0.4 0.4 0.0
473 0.0 0.2 0.7 0.1 0.0
474 0.1 0.2 0.0 0.7 0.0
475 0.2 0.4 0.0 0.3 0.1
476 0.2 0.4 0.1 0.1 0.2
477 0.1 0.6 0.1 0.2 0.0
478 0.2 0.1 0.1 0.1 0.5
479 0.0 0.0 0.7 0.1 0.2
480 0.2 0.0 0.6 0.2 0.0
481 0.1 0.0 0.0 0.5 0.4
482 0.0 0.1 0.5 0.2 0.2
483 0.2 0.3 0.4 0.0 0.1
484 0.4 0.1 0.2 0.0 0.3
485 0.1 0.0 0.3 0.6 0.0
486 0.3 0.2 0.3 0.0 0.2
487 0.0 0.3 0.2 0.2 0.3
488 0.2 0.0 0.1 0.7 0.0
489 0.1 0.3 0.0 0.4 0.2
490 0.0 0.2 0.2 0.5 0.1
491 0.2 0.0 0.2 0.2 0.4
492 0.8 0.0 0.0 0.1 0.1
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Sample No. Cr Mn Co Te Ni

493 0.0 0.1 0.1 0.3 0.5
494 0.3 0.3 0.0 0.3 0.1
495 0.2 0.3 0.0 0.5 0.0
496 0.1 0.0 0.0 0.1 0.8
497 0.3 0.1 0.3 0.3 0.0
498 0.5 0.4 0.0 0.0 0.1
499 0.7 0.3 0.0 0.0 0.0
500 0.4 0.3 0.0 0.1 0.2
501 0.1 0.0 0.2 0.4 0.3
502 0.1 0.3 0.2 0.3 0.1
503 0.3 0.2 0.3 0.1 0.1
504 0.6 0.1 0.1 0.1 0.1
505 0.2 0.0 0.5 0.2 0.1
506 0.1 0.1 0.6 0.1 0.1
507 0.0 0.4 0.2 0.1 0.3
508 0.1 0.0 0.3 0.4 0.2
509 0.0 0.4 0.3 0.1 0.2
510 0.1 0.4 0.4 0.0 0.1
511 0.4 0.2 0.1 0.0 0.3
512 0.0 0.0 0.1 0.6 0.3
513 0.4 0.5 0.0 0.0 0.1
514 0.0 0.2 0.0 0.3 0.5
515 0.1 0.3 0.2 0.1 0.3
516 0.1 0.4 0.3 0.1 0.1
517 0.0 0.0 0.5 0.5 0.0
518 0.5 0.0 0.0 0.2 0.3
519 0.5 0.1 0.0 0.3 0.1
520 0.0 0.0 0.0 0.2 0.8
521 0.8 0.0 0.1 0.0 0.1
522 0.1 0.2 0.0 0.1 0.6
523 0.4 0.1 0.5 0.0 0.0
524 0.2 0.4 0.0 0.4 0.0
525 0.3 0.0 0.1 0.2 0.4
526 0.4 0.1 0.0 0.1 0.4
527 0.1 0.0 0.8 0.1 0.0
528 0.1 0.0 0.1 0.7 0.1
529 0.0 0.0 0.2 0.2 0.6
530 0.3 0.1 0.1 0.0 0.5
531 0.1 0.1 0.4 0.3 0.1
532 0.4 0.0 0.1 0.3 0.2
533 0.3 0.4 0.2 0.0 0.1
534 0.2 0.1 0.3 0.4 0.0
535 0.2 0.1 0.6 0.0 0.1
536 0.1 0.4 0.0 0.1 0.4
537 0.0 0.5 0.2 0.3 0.0
538 0.0 0.3 0.0 0.1 0.6
539 0.0 0.1 0.5 0.0 0.4
540 0.0 0.5 0.2 0.1 0.2
541 0.5 0.0 0.1 0.1 0.3
542 0.3 0.5 0.0 0.0 0.2
543 0.2 0.2 0.2 0.0 0.4
544 0.0 0.5 0.1 0.4 0.0
545 0.3 0.1 0.0 0.6 0.0
546 0.0 0.0 1.0 0.0 0.0
547 0.0 0.7 0.1 0.2 0.0
548 0.2 0.2 0.1 0.1 0.4
549 0.0 0.5 0.2 0.2 0.1
550 0.2 0.0 0.7 0.0 0.1
551 0.4 0.0 0.4 0.0 0.2
552 0.1 0.0 0.1 0.1 0.7
553 0.0 0.2 0.4 0.3 0.1
554 0.4 0.2 0.0 0.4 0.0
555 0.0 0.4 0.1 0.5 0.0
556 0.2 0.1 0.0 0.2 0.5
557 0.2 0.2 0.5 0.1 0.0

Sample No. Cr Mn Co Te Ni

558 0.3 0.1 0.3 0.2 0.1
559 0.5 0.1 0.1 0.0 0.3
560 0.7 0.0 0.1 0.0 0.2
561 0.3 0.3 0.0 0.0 0.4
562 0.1 0.3 0.4 0.1 0.1
563 0.3 0.0 0.2 0.5 0.0
564 0.1 0.0 0.1 0.6 0.2
565 0.3 0.0 0.6 0.0 0.1
566 0.0 0.1 0.7 0.0 0.2
567 0.0 0.3 0.1 0.6 0.0
568 0.5 0.1 0.3 0.0 0.1
569 0.3 0.0 0.3 0.3 0.1
570 0.0 0.4 0.6 0.0 0.0
571 0.2 0.7 0.0 0.1 0.0
572 0.2 0.2 0.5 0.0 0.1
573 0.0 0.5 0.1 0.0 0.4
574 0.1 0.1 0.1 0.3 0.4
575 0.2 0.1 0.0 0.4 0.3
576 0.6 0.0 0.1 0.1 0.2
577 0.0 0.0 0.4 0.2 0.4
578 0.1 0.0 0.2 0.5 0.2
579 0.1 0.7 0.2 0.0 0.0
580 0.1 0.2 0.5 0.2 0.0
581 0.6 0.0 0.0 0.4 0.0
582 0.4 0.0 0.2 0.4 0.0
583 0.3 0.3 0.0 0.2 0.2
584 0.2 0.0 0.0 0.0 0.8
585 0.2 0.0 0.6 0.1 0.1
586 0.3 0.3 0.1 0.0 0.3
587 0.1 0.3 0.3 0.0 0.3
588 0.4 0.1 0.0 0.3 0.2
589 0.2 0.3 0.1 0.0 0.4
590 0.3 0.1 0.4 0.2 0.0
591 0.4 0.0 0.2 0.2 0.2
592 0.3 0.4 0.1 0.1 0.1
593 0.0 0.6 0.2 0.1 0.1
594 0.2 0.0 0.1 0.0 0.7
595 0.5 0.1 0.1 0.1 0.2
596 0.3 0.2 0.5 0.0 0.0
597 0.1 0.3 0.0 0.3 0.3
598 0.4 0.2 0.2 0.2 0.0
599 0.1 0.6 0.0 0.0 0.3
600 0.0 0.2 0.4 0.4 0.0
601 0.6 0.0 0.2 0.0 0.2
602 0.5 0.2 0.2 0.0 0.1
603 0.0 0.3 0.5 0.1 0.1
604 0.1 0.0 0.4 0.2 0.3
605 0.2 0.2 0.0 0.4 0.2
606 0.2 0.0 0.4 0.0 0.4
607 0.3 0.4 0.2 0.1 0.0
608 0.1 0.5 0.2 0.1 0.1
609 0.3 0.6 0.0 0.0 0.1
610 0.6 0.1 0.3 0.0 0.0
611 0.8 0.1 0.1 0.0 0.0
612 0.1 0.1 0.3 0.1 0.4
613 0.2 0.1 0.1 0.2 0.4
614 0.1 0.0 0.5 0.3 0.1
615 0.4 0.1 0.1 0.4 0.0
616 0.3 0.1 0.0 0.2 0.4
617 0.0 0.8 0.1 0.0 0.1
618 0.0 0.7 0.2 0.0 0.1
619 0.1 0.0 0.4 0.1 0.4
620 0.0 0.2 0.2 0.0 0.6
621 0.1 0.3 0.0 0.6 0.0
622 0.0 0.4 0.0 0.6 0.0
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Sample No. Cr Mn Co Te Ni

623 0.0 0.3 0.6 0.0 0.1
624 0.2 0.0 0.7 0.1 0.0
625 0.1 0.0 0.3 0.0 0.6
626 0.0 0.3 0.3 0.3 0.1
627 0.1 0.3 0.2 0.2 0.2
628 0.2 0.2 0.6 0.0 0.0
629 0.3 0.1 0.2 0.1 0.3
630 0.2 0.0 0.3 0.0 0.5
631 0.0 0.2 0.5 0.1 0.2
632 0.3 0.1 0.1 0.4 0.1
633 0.2 0.4 0.4 0.0 0.0
634 0.0 0.2 0.0 0.7 0.1
635 0.1 0.1 0.5 0.2 0.1
636 0.0 0.6 0.4 0.0 0.0
637 0.2 0.2 0.1 0.0 0.5
638 0.0 0.3 0.0 0.4 0.3
639 0.1 0.3 0.5 0.0 0.1
640 0.3 0.3 0.1 0.3 0.0
641 0.0 0.0 0.8 0.1 0.1
642 0.6 0.0 0.0 0.1 0.3
643 0.0 0.2 0.2 0.1 0.5
644 0.0 0.2 0.1 0.3 0.4
645 0.0 0.5 0.5 0.0 0.0
646 0.0 0.6 0.2 0.2 0.0
647 0.1 0.4 0.5 0.0 0.0
648 0.2 0.3 0.0 0.1 0.4
649 0.0 0.0 0.2 0.8 0.0
650 0.0 0.1 0.0 0.1 0.8
651 0.0 0.0 0.2 0.3 0.5
652 0.4 0.1 0.0 0.2 0.3
653 0.0 0.0 0.1 0.0 0.9
654 0.0 0.3 0.4 0.0 0.3
655 0.5 0.5 0.0 0.0 0.0
656 0.3 0.3 0.2 0.1 0.1
657 0.5 0.0 0.2 0.2 0.1
658 0.3 0.5 0.0 0.1 0.1
659 0.0 0.8 0.0 0.2 0.0
660 0.1 0.0 0.2 0.1 0.6
661 0.4 0.4 0.0 0.0 0.2
662 0.0 0.4 0.2 0.3 0.1
663 0.1 0.0 0.0 0.4 0.5
664 0.1 0.1 0.1 0.5 0.2
665 0.0 0.3 0.1 0.0 0.6
666 0.4 0.0 0.0 0.2 0.4
667 0.0 0.9 0.0 0.1 0.0
668 0.4 0.0 0.1 0.2 0.3
669 0.2 0.1 0.2 0.2 0.3
670 0.0 0.9 0.0 0.0 0.1
671 0.1 0.0 0.5 0.0 0.4
672 0.2 0.1 0.2 0.4 0.1
673 0.0 0.1 0.1 0.0 0.8
674 0.1 0.4 0.0 0.5 0.0
675 0.2 0.8 0.0 0.0 0.0
676 0.0 0.0 0.4 0.6 0.0
677 0.6 0.1 0.2 0.1 0.0
678 0.5 0.0 0.1 0.3 0.1
679 0.0 0.3 0.2 0.3 0.2
680 0.1 0.1 0.7 0.1 0.0
681 0.1 0.1 0.1 0.4 0.3
682 0.2 0.0 0.3 0.2 0.3
683 0.2 0.4 0.2 0.0 0.2
684 0.5 0.2 0.0 0.3 0.0
685 0.1 0.0 0.4 0.3 0.2
686 0.1 0.4 0.0 0.3 0.2
687 0.0 0.4 0.3 0.0 0.3

Sample No. Cr Mn Co Te Ni

688 0.4 0.0 0.0 0.0 0.6
689 0.4 0.2 0.3 0.0 0.1
690 0.1 0.2 0.3 0.0 0.4
691 0.4 0.0 0.0 0.3 0.3
692 0.5 0.2 0.1 0.1 0.1
693 0.2 0.2 0.4 0.2 0.0
694 0.1 0.5 0.1 0.1 0.2
695 0.1 0.1 0.6 0.2 0.0
696 0.4 0.0 0.2 0.1 0.3
697 0.0 0.2 0.4 0.0 0.4
698 0.5 0.3 0.1 0.1 0.0
699 0.9 0.0 0.0 0.1 0.0
700 0.2 0.2 0.0 0.0 0.6
701 0.0 0.0 0.0 0.3 0.7
702 0.3 0.1 0.1 0.1 0.4
703 0.0 0.0 0.2 0.6 0.2
704 0.2 0.4 0.3 0.0 0.1
705 0.2 0.1 0.7 0.0 0.0
706 0.0 0.0 0.4 0.0 0.6
707 0.4 0.3 0.2 0.1 0.0
708 0.4 0.0 0.3 0.0 0.3
709 0.7 0.0 0.0 0.2 0.1
710 0.9 0.0 0.0 0.0 0.1
711 0.1 0.2 0.2 0.5 0.0
712 0.2 0.5 0.3 0.0 0.0
713 0.0 0.4 0.0 0.5 0.1
714 0.1 0.1 0.4 0.0 0.4
715 0.0 0.3 0.4 0.1 0.2
716 0.0 0.9 0.1 0.0 0.0
717 0.1 0.7 0.1 0.0 0.1
718 0.6 0.3 0.0 0.0 0.1
719 0.2 0.1 0.4 0.2 0.1
720 0.0 0.1 0.0 0.5 0.4
721 0.0 0.0 0.1 0.1 0.8
722 0.3 0.4 0.0 0.1 0.2
723 0.0 0.2 0.0 0.0 0.8
724 0.0 0.0 0.2 0.4 0.4
725 0.6 0.2 0.0 0.1 0.1
726 0.1 0.2 0.1 0.3 0.3
727 0.2 0.0 0.4 0.4 0.0
728 0.3 0.0 0.1 0.1 0.5
729 0.2 0.2 0.1 0.3 0.2
730 0.6 0.0 0.1 0.2 0.1
731 0.4 0.3 0.3 0.0 0.0
732 0.0 1.0 0.0 0.0 0.0
733 0.1 0.0 0.2 0.0 0.7
734 0.4 0.0 0.1 0.4 0.1
735 0.7 0.1 0.0 0.2 0.0
736 0.0 0.0 0.3 0.0 0.7
737 0.2 0.3 0.3 0.2 0.0
738 0.2 0.2 0.0 0.6 0.0
739 0.1 0.1 0.3 0.0 0.5
740 0.6 0.3 0.0 0.1 0.0
741 0.0 0.1 0.2 0.6 0.1
742 0.3 0.2 0.1 0.2 0.2
743 0.1 0.0 0.9 0.0 0.0
744 0.1 0.3 0.3 0.3 0.0
745 0.1 0.3 0.0 0.2 0.4
746 0.0 0.1 0.3 0.1 0.5
747 0.0 0.3 0.3 0.1 0.3
748 0.2 0.1 0.4 0.3 0.0
749 0.7 0.0 0.3 0.0 0.0
750 0.8 0.1 0.0 0.0 0.1
751 0.1 0.9 0.0 0.0 0.0
752 0.1 0.3 0.2 0.0 0.4
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753 0.0 0.2 0.5 0.0 0.3
754 0.1 0.6 0.0 0.2 0.1
755 0.0 0.6 0.1 0.3 0.0
756 0.3 0.3 0.2 0.2 0.0
757 0.1 0.5 0.4 0.0 0.0
758 0.8 0.0 0.2 0.0 0.0
759 0.1 0.2 0.0 0.4 0.3
760 0.0 0.2 0.5 0.3 0.0
761 0.0 0.1 0.5 0.4 0.0
762 0.3 0.5 0.1 0.0 0.1
763 0.1 0.4 0.1 0.3 0.1
764 0.0 0.0 0.1 0.7 0.2
765 0.0 0.3 0.1 0.3 0.3
766 0.1 0.0 0.5 0.4 0.0
767 0.0 0.0 0.4 0.5 0.1
768 0.1 0.4 0.0 0.0 0.5
769 0.3 0.2 0.0 0.1 0.4
770 0.7 0.0 0.0 0.1 0.2
771 0.3 0.3 0.1 0.2 0.1
772 0.3 0.0 0.4 0.0 0.3
773 0.5 0.2 0.2 0.1 0.0
774 0.1 0.1 0.0 0.3 0.5
775 0.0 0.2 0.1 0.4 0.3
776 0.3 0.2 0.2 0.0 0.3
777 0.0 0.6 0.0 0.3 0.1
778 0.0 0.2 0.1 0.1 0.6
779 0.2 0.3 0.2 0.0 0.3
780 0.3 0.2 0.4 0.0 0.1
781 0.0 0.4 0.2 0.2 0.2
782 0.6 0.2 0.1 0.1 0.0
783 0.0 0.6 0.0 0.1 0.3
784 0.4 0.4 0.2 0.0 0.0
785 0.4 0.4 0.0 0.1 0.1
786 0.2 0.0 0.0 0.8 0.0
787 0.1 0.1 0.6 0.0 0.2
788 0.1 0.0 0.3 0.5 0.1
789 0.7 0.0 0.0 0.0 0.3
790 0.0 0.2 0.4 0.2 0.2
791 0.1 0.1 0.2 0.4 0.2
792 0.3 0.2 0.1 0.1 0.3
793 0.0 0.6 0.1 0.1 0.2
794 0.6 0.1 0.0 0.3 0.0
795 0.4 0.0 0.0 0.4 0.2
796 0.1 0.4 0.3 0.0 0.2
797 0.0 0.8 0.0 0.1 0.1
798 0.6 0.0 0.2 0.1 0.1
799 0.2 0.1 0.5 0.1 0.1
800 0.3 0.0 0.1 0.6 0.0
801 0.2 0.1 0.1 0.5 0.1
802 0.0 0.1 0.8 0.0 0.1
803 0.4 0.4 0.1 0.0 0.1
804 0.0 0.7 0.0 0.0 0.3
805 0.5 0.4 0.1 0.0 0.0
806 0.2 0.0 0.8 0.0 0.0
807 0.0 0.5 0.2 0.0 0.3
808 0.2 0.0 0.3 0.3 0.2
809 0.4 0.2 0.1 0.1 0.2
810 0.5 0.1 0.2 0.0 0.2
811 0.0 0.6 0.3 0.0 0.1
812 0.0 0.2 0.2 0.3 0.3
813 0.5 0.0 0.0 0.4 0.1
814 0.0 0.1 0.0 0.8 0.1
815 0.0 0.0 0.2 0.7 0.1
816 0.0 0.0 0.5 0.0 0.5
817 0.5 0.0 0.2 0.1 0.2

Sample No. Cr Mn Co Te Ni

818 0.6 0.2 0.2 0.0 0.0
819 0.1 0.5 0.0 0.2 0.2
820 0.0 0.2 0.6 0.1 0.1
821 0.2 0.4 0.2 0.2 0.0
822 0.3 0.1 0.0 0.0 0.6
823 0.1 0.0 0.6 0.0 0.3
824 0.3 0.0 0.3 0.4 0.0
825 0.0 0.0 0.0 1.0 0.0
826 0.4 0.2 0.0 0.0 0.4
827 0.2 0.1 0.0 0.7 0.0
828 0.1 0.5 0.1 0.2 0.1
829 0.0 0.8 0.2 0.0 0.0
830 0.4 0.2 0.0 0.3 0.1
831 0.6 0.0 0.2 0.2 0.0
832 0.0 0.4 0.5 0.0 0.1
833 0.3 0.1 0.6 0.0 0.0
834 0.3 0.0 0.1 0.4 0.2
835 0.6 0.3 0.1 0.0 0.0
836 0.2 0.5 0.2 0.1 0.0
837 0.2 0.0 0.5 0.0 0.3
838 0.6 0.1 0.2 0.0 0.1
839 0.5 0.0 0.3 0.0 0.2
840 0.0 0.0 0.5 0.2 0.3
841 0.2 0.5 0.1 0.2 0.0
842 0.4 0.0 0.5 0.1 0.0
843 0.5 0.4 0.0 0.1 0.0
844 0.2 0.0 0.5 0.1 0.2
845 0.0 0.0 0.0 0.1 0.9
846 0.0 0.1 0.2 0.4 0.3
847 0.8 0.1 0.0 0.1 0.0
848 0.0 0.1 0.1 0.5 0.3
849 0.3 0.3 0.0 0.1 0.3
850 0.4 0.3 0.1 0.2 0.0
851 0.1 0.1 0.3 0.5 0.0
852 0.4 0.1 0.1 0.2 0.2
853 0.0 0.1 0.1 0.1 0.7
854 0.4 0.1 0.3 0.0 0.2
855 0.5 0.2 0.1 0.2 0.0
856 0.1 0.3 0.1 0.3 0.2
857 0.0 0.2 0.1 0.2 0.5
858 0.3 0.3 0.4 0.0 0.0
859 0.1 0.1 0.5 0.3 0.0
860 0.0 0.1 0.8 0.1 0.0
861 0.3 0.1 0.2 0.4 0.0
862 0.5 0.1 0.0 0.4 0.0
863 0.2 0.5 0.0 0.3 0.0
864 0.2 0.2 0.2 0.3 0.1
865 0.0 0.0 0.6 0.2 0.2
866 0.0 0.1 0.0 0.7 0.2
867 0.0 0.1 0.3 0.2 0.4
868 0.7 0.1 0.0 0.0 0.2
869 0.2 0.0 0.0 0.3 0.5
870 0.1 0.4 0.3 0.2 0.0
871 0.0 0.1 0.0 0.3 0.6
872 0.5 0.0 0.2 0.3 0.0
873 0.0 0.1 0.3 0.3 0.3
874 0.2 0.4 0.0 0.1 0.3
875 0.6 0.2 0.0 0.0 0.2
876 0.4 0.0 0.3 0.1 0.2
877 0.1 0.1 0.1 0.2 0.5
878 0.0 0.0 0.8 0.2 0.0
879 0.6 0.4 0.0 0.0 0.0
880 0.0 0.4 0.0 0.2 0.4
881 0.0 0.7 0.0 0.1 0.2
882 0.1 0.0 0.1 0.0 0.8
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883 0.3 0.6 0.0 0.1 0.0
884 0.2 0.3 0.1 0.1 0.3
885 0.5 0.0 0.3 0.1 0.1
886 0.1 0.2 0.4 0.2 0.1
887 0.7 0.0 0.0 0.3 0.0
888 0.0 0.0 0.0 0.9 0.1
889 0.0 0.1 0.9 0.0 0.0
890 0.6 0.0 0.0 0.3 0.1
891 0.5 0.0 0.1 0.2 0.2
892 0.1 0.0 0.5 0.2 0.2
893 0.0 0.2 0.0 0.5 0.3
894 0.5 0.0 0.2 0.0 0.3
895 0.4 0.0 0.2 0.0 0.4
896 0.3 0.0 0.0 0.7 0.0
897 0.2 0.4 0.1 0.0 0.3
898 0.0 0.0 0.0 0.5 0.5
899 0.1 0.0 0.8 0.0 0.1
900 0.3 0.2 0.0 0.0 0.5
901 0.1 0.6 0.0 0.3 0.0
902 0.0 0.3 0.4 0.3 0.0
903 0.0 0.7 0.3 0.0 0.0
904 0.7 0.2 0.0 0.0 0.1
905 0.0 0.6 0.2 0.0 0.2
906 0.3 0.6 0.1 0.0 0.0
907 0.2 0.2 0.4 0.0 0.2
908 0.5 0.1 0.0 0.2 0.2
909 0.3 0.0 0.5 0.0 0.2
910 0.1 0.0 0.0 0.3 0.6
911 0.0 0.0 0.0 0.7 0.3
912 0.0 0.3 0.3 0.4 0.0
913 0.5 0.1 0.3 0.1 0.0
914 0.4 0.0 0.1 0.1 0.4
915 0.3 0.2 0.1 0.0 0.4
916 0.1 0.2 0.5 0.1 0.1
917 0.0 0.0 0.6 0.3 0.1
918 0.2 0.1 0.0 0.1 0.6
919 0.1 0.1 0.0 0.2 0.6
920 0.0 0.0 0.6 0.0 0.4
921 0.4 0.1 0.0 0.5 0.0
922 0.1 0.0 0.7 0.0 0.2
923 0.0 0.5 0.4 0.0 0.1
924 0.1 0.0 0.0 0.8 0.1
925 0.0 0.1 0.0 0.6 0.3
926 0.0 0.0 0.7 0.3 0.0
927 0.1 0.6 0.1 0.1 0.1
928 0.2 0.0 0.1 0.4 0.3
929 0.0 0.1 0.6 0.1 0.2
930 0.0 0.0 0.0 0.6 0.4
931 0.6 0.0 0.4 0.0 0.0
932 0.1 0.0 0.0 0.6 0.3
933 0.4 0.3 0.1 0.1 0.1
934 0.6 0.0 0.1 0.0 0.3
935 0.2 0.1 0.0 0.6 0.1
936 0.0 0.1 0.3 0.5 0.1
937 0.1 0.3 0.4 0.0 0.2
938 0.2 0.3 0.2 0.3 0.0
939 0.2 0.1 0.3 0.2 0.2
940 0.2 0.6 0.1 0.0 0.1
941 0.0 0.5 0.0 0.4 0.1
942 0.1 0.6 0.0 0.1 0.2
943 0.5 0.0 0.0 0.3 0.2
944 0.0 0.7 0.1 0.0 0.2
945 0.3 0.1 0.1 0.5 0.0
946 0.2 0.0 0.1 0.2 0.5
947 0.1 0.2 0.3 0.3 0.1

Sample No. Cr Mn Co Te Ni

948 0.4 0.2 0.1 0.2 0.1
949 0.5 0.2 0.0 0.1 0.2
950 0.0 0.3 0.0 0.5 0.2
951 0.2 0.0 0.4 0.1 0.3
952 0.3 0.1 0.0 0.5 0.1
953 0.2 0.3 0.4 0.1 0.0
954 0.0 0.3 0.6 0.1 0.0
955 0.1 0.1 0.2 0.2 0.4
956 0.3 0.1 0.0 0.4 0.2
957 0.1 0.2 0.7 0.0 0.0
958 0.1 0.4 0.2 0.2 0.1
959 0.0 0.0 0.8 0.0 0.2
960 0.6 0.0 0.1 0.3 0.0
961 0.3 0.0 0.3 0.0 0.4
962 0.4 0.3 0.0 0.0 0.3
963 0.0 0.1 0.6 0.2 0.1
964 0.0 0.2 0.2 0.6 0.0
965 0.1 0.8 0.1 0.0 0.0
966 0.3 0.4 0.1 0.2 0.0
967 0.6 0.1 0.1 0.0 0.2
968 0.2 0.6 0.0 0.1 0.1
969 0.4 0.0 0.0 0.6 0.0
970 0.1 0.4 0.4 0.1 0.0
971 0.5 0.0 0.1 0.4 0.0
972 0.5 0.1 0.2 0.2 0.0
973 0.0 0.3 0.1 0.5 0.1
974 0.1 0.7 0.0 0.0 0.2
975 0.2 0.3 0.2 0.1 0.2
976 0.5 0.2 0.0 0.2 0.1
977 0.7 0.0 0.1 0.1 0.1
978 0.3 0.4 0.1 0.0 0.2
979 0.0 0.3 0.0 0.2 0.5
980 0.3 0.1 0.5 0.1 0.0
981 0.1 0.4 0.2 0.0 0.3
982 0.1 0.8 0.0 0.1 0.0
983 0.1 0.3 0.0 0.5 0.1
984 0.1 0.1 0.1 0.7 0.0
985 0.2 0.3 0.1 0.4 0.0
986 0.1 0.0 0.4 0.4 0.1
987 0.0 0.0 0.4 0.1 0.5
988 0.2 0.2 0.2 0.2 0.2
989 0.0 0.2 0.1 0.0 0.7
990 0.1 0.5 0.2 0.0 0.2
991 0.3 0.4 0.0 0.0 0.3
992 0.2 0.0 0.1 0.5 0.2
993 0.3 0.0 0.2 0.2 0.3
994 0.3 0.3 0.3 0.1 0.0
995 0.3 0.0 0.5 0.2 0.0
996 0.1 0.0 0.0 0.0 0.9
997 0.0 0.0 0.1 0.3 0.6
998 0.2 0.1 0.3 0.0 0.4
999 0.2 0.4 0.0 0.2 0.2
1000 0.2 0.6 0.0 0.2 0.0
1001 0.0 0.3 0.2 0.5 0.0

Table C.1: First Generation of Catalysts and their
Compositions.
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C.2 Second Generation of Catalyst Samples

Sample No. Cr Mn Co Te Ni

1002 0 0.1 0.8 0.1 0
1003 0 0.05 0.85 0.1 0
1004 0 0.1 0.85 0.05 0
1005 0 0.05 0.8 0.15 0
1006 0 0.15 0.8 0.05 0
1007 0 0.2 0.75 0.05 0
1008 0 0.15 0.75 0.1 0
1009 0 0.1 0.75 0.15 0
1010 0 0.05 0.75 0.2 0
1011 0 0.05 0.7 0.25 0
1012 0 0.1 0.7 0.2 0
1013 0 0.15 0.7 0.15 0
1014 0 0.2 0.7 0.1 0
1015 0 0.25 0.7 0.05 0
1016 0 0.15 0.65 0.2 0
1017 0 0.2 0.65 0.15 0
1018 0 0.25 0.65 0.1 0
1019 0 0.3 0.65 0.05 0
1020 0 0.25 0.6 0.15 0
1021 0 0.3 0.6 0.1 0
1022 0 0.35 0.6 0.05 0
1023 0 0.2 0.55 0.25 0
1024 0 0.25 0.55 0.2 0
1025 0 0.3 0.55 0.15 0
1026 0 0.35 0.55 0.1 0
1027 0 0.15 0.5 0.35 0
1028 0 0.2 0.5 0.3 0
1029 0 0.25 0.5 0.25 0
1030 0 0.3 0.5 0.2 0
1031 0 0.35 0.5 0.15 0
1032 0 0.15 0.45 0.4 0
1033 0 0.2 0.45 0.35 0
1034 0 0.25 0.45 0.3 0
1035 0 0.3 0.45 0.25 0
1036 0 0.35 0.45 0.2 0
1037 0 0.15 0.4 0.45 0
1038 0 0.2 0.4 0.4 0
1039 0 0.25 0.4 0.35 0
1040 0 0.2 0.35 0.45 0
1041 0 0.25 0.35 0.4 0
1042 0 0.35 0.35 0.3 0
1043 0 0.4 0.35 0.25 0
1044 0 0.45 0.35 0.2 0
1045 0 0.5 0.35 0.15 0
1046 0 0.55 0.35 0.1 0
1047 0 0.6 0.35 0.05 0
1048 0 0.35 0.3 0.35 0
1049 0 0.4 0.3 0.3 0
1050 0 0.45 0.3 0.25 0
1051 0 0.5 0.3 0.2 0
1052 0 0.55 0.3 0.15 0
1053 0 0.6 0.3 0.1 0
1054 0 0.65 0.3 0.05 0
1055 0 0.35 0.25 0.4 0
1056 0 0.4 0.25 0.35 0
1057 0 0.45 0.25 0.3 0
1058 0 0.5 0.25 0.25 0
1059 0 0.55 0.25 0.2 0
1060 0 0.6 0.25 0.15 0
1061 0 0.65 0.25 0.1 0
1062 0 0.7 0.25 0.05 0

Sample No. Cr Mn Co Te Ni

1063 0 0.75 0.25 0 0
1064 0 0.35 0.2 0.45 0
1065 0 0.4 0.2 0.4 0
1066 0 0.45 0.2 0.35 0
1067 0 0.65 0.2 0.15 0
1068 0 0.7 0.2 0.1 0
1069 0 0.75 0.2 0.05 0
1070 0 0.8 0.2 0 0
1071 0 0.25 0.15 0.6 0
1072 0 0.3 0.15 0.55 0
1073 0 0.35 0.15 0.5 0
1074 0 0.4 0.15 0.45 0
1075 0 0.45 0.15 0.4 0
1076 0 0.65 0.15 0.2 0
1077 0 0.7 0.15 0.15 0
1078 0 0.75 0.15 0.1 0
1079 0 0.8 0.15 0.05 0
1080 0 0.85 0.15 0 0
1081 0 0.25 0.1 0.65 0
1082 0 0.3 0.1 0.6 0
1083 0 0.35 0.1 0.55 0
1084 0 0.4 0.1 0.5 0
1085 0 0.45 0.1 0.45 0
1086 0 0.65 0.1 0.25 0
1087 0 0.7 0.1 0.2 0
1088 0 0.75 0.1 0.15 0
1089 0 0.8 0.1 0.1 0
1090 0 0.85 0.1 0.05 0
1091 0 0.3 0.05 0.65 0
1092 0 0.35 0.05 0.6 0
1093 0 0.4 0.05 0.55 0
1094 0 0.45 0.05 0.5 0
1095 0 0.7 0.05 0.25 0
1096 0 0.75 0.05 0.2 0
1097 0 0.8 0.05 0.15 0
1098 0 0.85 0.05 0.1 0
1099 0 0.9 0.05 0.05 0
1100 0 0.85 0 0.15 0
1101 0 0.9 0 0.1 0
1102 0 0.95 0 0.05 0
1103 0.95 0 0 0.05 0
1104 0.9 0 0 0.1 0
1105 0.9 0.05 0 0.05 0
1106 0.85 0 0 0.15 0
1107 0.85 0.05 0 0.1 0
1108 0.85 0.1 0 0.05 0
1109 0.8 0.05 0 0.15 0
1110 0.8 0.1 0 0.1 0
1111 0.8 0.15 0 0.05 0
1112 0.75 0.1 0 0.15 0
1113 0.75 0.15 0 0.1 0
1114 0.65 0.25 0 0.1 0
1115 0.65 0.3 0 0.05 0
1116 0.6 0.25 0 0.15 0
1117 0.6 0.3 0 0.1 0
1118 0.6 0.35 0 0.05 0
1119 0.55 0.3 0 0.15 0
1120 0.55 0.35 0 0.1 0
1121 0.55 0.4 0 0.05 0
1122 0.5 0.35 0 0.15 0
1123 0.5 0.4 0 0.1 0

continued on next page
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Sample No. Cr Mn Co Te Ni

1124 0.5 0.45 0 0.05 0
1125 0.45 0.35 0 0.2 0
1126 0.45 0.4 0 0.15 0
1127 0.45 0.45 0 0.1 0
1128 0.4 0.35 0 0.25 0
1129 0.4 0.4 0 0.2 0
1130 0.4 0.45 0 0.15 0
1131 0.35 0.4 0 0.25 0
1132 0.35 0.45 0 0.2 0
1133 0.25 0.25 0 0.5 0
1134 0.25 0.3 0 0.45 0
1135 0.25 0.35 0 0.4 0
1136 0.25 0.4 0 0.35 0
1137 0.25 0.45 0 0.3 0
1138 0.25 0.5 0 0.25 0
1139 0.2 0.25 0 0.55 0
1140 0.2 0.3 0 0.5 0
1141 0.2 0.35 0 0.45 0
1142 0.2 0.4 0 0.4 0
1143 0.2 0.45 0 0.35 0
1144 0.2 0.5 0 0.3 0
1145 0.2 0.55 0 0.25 0
1146 0.15 0.15 0 0.7 0
1147 0.15 0.2 0 0.65 0
1148 0.15 0.25 0 0.6 0
1149 0.15 0.3 0 0.55 0
1150 0.15 0.35 0 0.5 0
1151 0.15 0.4 0 0.45 0
1152 0.15 0.45 0 0.4 0
1153 0.15 0.5 0 0.35 0
1154 0.15 0.55 0 0.3 0
1155 0.15 0.75 0 0.1 0
1156 0.15 0.8 0 0.05 0
1157 0.1 0.15 0 0.75 0
1158 0.1 0.2 0 0.7 0
1159 0.1 0.25 0 0.65 0
1160 0.1 0.3 0 0.6 0
1161 0.1 0.35 0 0.55 0
1162 0.1 0.4 0 0.5 0
1163 0.1 0.45 0 0.45 0
1164 0.1 0.5 0 0.4 0
1165 0.1 0.55 0 0.35 0
1166 0.1 0.75 0 0.15 0
1167 0.1 0.8 0 0.1 0
1168 0.1 0.85 0 0.05 0
1169 0.05 0.2 0 0.75 0
1170 0.05 0.25 0 0.7 0
1171 0.05 0.3 0 0.65 0
1172 0.05 0.35 0 0.6 0
1173 0.05 0.4 0 0.55 0
1174 0.05 0.45 0 0.5 0
1175 0.05 0.5 0 0.45 0
1176 0.05 0.55 0 0.4 0
1177 0.05 0.8 0 0.15 0
1178 0.05 0.85 0 0.1 0
1179 0.05 0.9 0 0.05 0
1180 0.9 0 0 0.05 0.05
1181 0.85 0 0 0.05 0.1
1182 0.85 0 0 0.1 0.05
1183 0.8 0 0 0.05 0.15
1184 0.8 0 0 0.1 0.1
1185 0.8 0 0 0.15 0.05
1186 0.75 0 0 0.1 0.15

Sample No. Cr Mn Co Te Ni

1187 0.75 0 0 0.15 0.1
1188 0.55 0 0 0.05 0.4
1189 0.55 0 0 0.1 0.35
1190 0.5 0 0 0.05 0.45
1191 0.5 0 0 0.1 0.4
1192 0.5 0 0 0.15 0.35
1193 0.45 0 0 0.05 0.5
1194 0.45 0 0 0.1 0.45
1195 0.45 0 0 0.15 0.4
1196 0.45 0 0 0.45 0.1
1197 0.45 0 0 0.5 0.05
1198 0.4 0 0 0.05 0.55
1199 0.4 0 0 0.1 0.5
1200 0.4 0 0 0.15 0.45
1201 0.4 0 0 0.45 0.15
1202 0.4 0 0 0.5 0.1
1203 0.4 0 0 0.55 0.05
1204 0.35 0 0 0.1 0.55
1205 0.35 0 0 0.15 0.5
1206 0.35 0 0 0.2 0.45
1207 0.35 0 0 0.25 0.4
1208 0.35 0 0 0.3 0.35
1209 0.35 0 0 0.45 0.2
1210 0.35 0 0 0.5 0.15
1211 0.35 0 0 0.55 0.1
1212 0.3 0 0 0.15 0.55
1213 0.3 0 0 0.2 0.5
1214 0.3 0 0 0.25 0.45
1215 0.3 0 0 0.3 0.4
1216 0.3 0 0 0.35 0.35
1217 0.3 0 0 0.45 0.25
1218 0.3 0 0 0.5 0.2
1219 0.3 0 0 0.55 0.15
1220 0.25 0 0 0.2 0.55
1221 0.25 0 0 0.25 0.5
1222 0.25 0 0 0.3 0.45
1223 0.25 0 0 0.35 0.4
1224 0.25 0 0 0.4 0.35
1225 0.25 0 0 0.45 0.3
1226 0.25 0 0 0.5 0.25
1227 0.25 0 0 0.55 0.2
1228 0.25 0 0 0.6 0.15
1229 0.2 0 0 0.35 0.45
1230 0.2 0 0 0.4 0.4
1231 0.2 0 0 0.45 0.35
1232 0.2 0 0 0.5 0.3
1233 0.2 0 0 0.55 0.25
1234 0.2 0 0 0.6 0.2
1235 0.2 0 0 0.65 0.15
1236 0.15 0 0 0.35 0.5
1237 0.15 0 0 0.4 0.45
1238 0.15 0 0 0.45 0.4
1239 0.15 0 0 0.5 0.35
1240 0.15 0 0 0.55 0.3
1241 0.15 0 0 0.6 0.25
1242 0.15 0 0 0.65 0.2
1243 0.1 0 0 0.35 0.55
1244 0.1 0 0 0.4 0.5
1245 0.1 0 0 0.45 0.45
1246 0.1 0 0 0.5 0.4
1247 0.1 0 0 0.55 0.35
1248 0.05 0 0 0.4 0.55
1249 0.05 0 0 0.45 0.5
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Sample No. Cr Mn Co Te Ni

1250 0.05 0 0 0.5 0.45
1251 0.05 0 0 0.55 0.4
1252 0 0 0.75 0.15 0.1
1253 0 0 0.75 0.2 0.05
1254 0 0 0.7 0.15 0.15
1255 0 0 0.7 0.2 0.1
1256 0 0 0.7 0.25 0.05
1257 0 0 0.7 0.3 0
1258 0 0 0.65 0.2 0.15
1259 0 0 0.65 0.25 0.1
1260 0 0 0.65 0.3 0.05
1261 0 0 0.65 0.35 0
1262 0 0 0.6 0.3 0.1
1263 0 0 0.6 0.35 0.05
1264 0 0 0.6 0.4 0
1265 0 0 0.55 0.4 0.05
1266 0 0 0.55 0.45 0
1267 0 0 0.45 0.05 0.5
1268 0 0 0.45 0.1 0.45
1269 0 0 0.4 0.05 0.55
1270 0 0 0.4 0.1 0.5
1271 0 0 0.4 0.15 0.45
1272 0 0 0.35 0.05 0.6
1273 0 0 0.35 0.1 0.55
1274 0 0 0.35 0.15 0.5
1275 0 0 0.3 0.05 0.65
1276 0 0 0.3 0.1 0.6
1277 0 0 0.3 0.15 0.55
1278 0 0 0.25 0.1 0.65
1279 0 0 0.25 0.15 0.6
1280 0 0 0.25 0.25 0.5
1281 0 0 0.25 0.3 0.45
1282 0 0 0.2 0.25 0.55
1283 0 0 0.2 0.3 0.5
1284 0 0 0.2 0.35 0.45
1285 0 0 0.15 0.3 0.55
1286 0 0 0.15 0.35 0.5
1287 0 0 0.15 0.4 0.45
1288 0 0 0.1 0.35 0.55
1289 0 0 0.1 0.4 0.5
1290 0 0 0.1 0.45 0.45
1291 0 0 0.05 0.4 0.55
1292 0 0 0.05 0.45 0.5
1293 0.9 0 0.05 0.05 0
1294 0.85 0 0.05 0.1 0
1295 0.85 0 0.1 0.05 0
1296 0.8 0 0.05 0.15 0
1297 0.8 0 0.1 0.1 0
1298 0.8 0 0.15 0.05 0
1299 0.75 0 0.1 0.15 0
1300 0.75 0 0.15 0.1 0
1301 0.65 0 0.15 0.2 0
1302 0.65 0 0.2 0.15 0
1303 0.6 0 0.15 0.25 0
1304 0.6 0 0.2 0.2 0
1305 0.6 0 0.25 0.15 0
1306 0.55 0 0.2 0.25 0
1307 0.55 0 0.25 0.2 0
1308 0.55 0 0.3 0.15 0
1309 0.5 0 0.25 0.25 0
1310 0.5 0 0.3 0.2 0
1311 0.5 0 0.35 0.15 0
1312 0.45 0 0.3 0.25 0

Sample No. Cr Mn Co Te Ni

1313 0.45 0 0.35 0.2 0
1314 0.45 0 0.4 0.15 0
1315 0.4 0 0.35 0.25 0
1316 0.4 0 0.4 0.2 0
1317 0.4 0 0.45 0.15 0
1318 0.35 0 0.35 0.3 0
1319 0.35 0 0.4 0.25 0
1320 0.35 0 0.45 0.2 0
1321 0.3 0 0.35 0.35 0
1322 0.3 0 0.4 0.3 0
1323 0.3 0 0.45 0.25 0
1324 0.25 0 0.25 0.5 0
1325 0.25 0 0.3 0.45 0
1326 0.25 0 0.35 0.4 0
1327 0.25 0 0.4 0.35 0
1328 0.25 0 0.45 0.3 0
1329 0.25 0 0.5 0.25 0
1330 0.2 0 0.25 0.55 0
1331 0.2 0 0.3 0.5 0
1332 0.2 0 0.35 0.45 0
1333 0.2 0 0.4 0.4 0
1334 0.2 0 0.45 0.35 0
1335 0.2 0 0.5 0.3 0
1336 0.2 0 0.55 0.25 0
1337 0.15 0 0.3 0.55 0
1338 0.15 0 0.35 0.5 0
1339 0.15 0 0.4 0.45 0
1340 0.15 0 0.45 0.4 0
1341 0.15 0 0.5 0.35 0
1342 0.15 0 0.55 0.3 0
1343 0.1 0 0.45 0.45 0
1344 0.1 0 0.5 0.4 0
1345 0.1 0 0.55 0.35 0
1346 0.05 0 0.5 0.45 0
1347 0.05 0 0.55 0.4 0
1348 0.05 0 0.6 0.35 0
1349 0 0.2 0.5 0.1 0.2
1350 0 0.15 0.55 0.1 0.2
1351 0 0.25 0.45 0.1 0.2
1352 0 0.2 0.55 0.1 0.15
1353 0 0.15 0.6 0.1 0.15
1354 0 0.15 0.5 0.1 0.25
1355 0 0.2 0.45 0.1 0.25
1356 0 0.2 0.5 0.1 0.2
1357 0 0.15 0.55 0.1 0.2
1358 0 0.35 0.45 0.1 0.2
1359 0 0.25 0.3 0.15 0.3
1360 0 0.2 0.55 0.1 0.15
1361 0 0.15 0.6 0.1 0.15
1362 0 0.25 0.5 0.1 0.15
1363 0 0.3 0.45 0.1 0.15
1364 0 0.15 0.5 0.15 0.2
1365 0 0.2 0.45 0.15 0.2
1366 0 0.2 0.65 0.1 0.05
1367 0 0.25 0.6 0.1 0.05
1368 0 0.3 0.55 0.1 0.05
1369 0 0.35 0.5 0.1 0.05
1370 0 0.25 0.6 0.1 0.05
1371 0 0.3 0.45 0.1 0.15
1372 0 0.35 0.4 0.1 0.15
1373 0 0.4 0.35 0.1 0.15
1374 0 0.45 0.3 0.1 0.15
1375 0.1 0.2 0.05 0.4 0.25
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Sample No. Cr Mn Co Te Ni

1376 0.1 0.2 0.05 0.35 0.3
1377 0.1 0.1 0.2 0.4 0.2
1378 0.1 0.15 0.05 0.4 0.3
1379 0.1 0.1 0.3 0.4 0.1
1380 0.2 0.3 0.1 0.3 0.1
1381 0.1 0.2 0.2 0.4 0.1
1382 0.05 0.2 0.05 0.4 0.3
1383 0.2 0.1 0.3 0.3 0.1
1384 0.1 0.1 0.2 0.4 0.2
1385 0.1 0.1 0.3 0.4 0.1
1386 0.2 0.3 0.1 0.3 0.1
1387 0.1 0.2 0.2 0.4 0.1
1388 0.2 0.1 0.3 0.3 0.1
1389 0 0.3 0.3 0.1 0.3
1390 0 0.25 0.35 0.1 0.3
1391 0 0.35 0.25 0.1 0.3
1392 0 0.25 0.3 0.1 0.35
1393 0 0.35 0.2 0.1 0.35
1394 0 0.2 0.6 0.1 0.1
1395 0 0.25 0.55 0.1 0.1
1396 0 0.3 0.5 0.1 0.1
1397 0 0.1 0.7 0.1 0.1
1398 0 0.15 0.65 0.1 0.1
1399 0 0.4 0.4 0.1 0.1
1400 0 0.5 0.3 0.1 0.1

Table C.2: Second Generation of Catalysts and their
Compositions.



D Synthesized Libraries with Distribution of
Samples, References and Empty Wells

In the following the distribution of the catalyst samples on the slate libraries can be found.
The wells are marked by the sample number or by E (’empty well’) and H (’Hopcalite’).
Only Libraries 1a-5a are shown since libraries 1b-5b have been identically filled. Libraries
6 and 7 contain the 400 refinement catalysts with 5% and 10 %-wise variations of compo-
sition.
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Figure D.1: Layout of Library 1a.
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Figure D.2: Layout of Library 2a.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

H

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

E

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

H

525

526

527

528

529

530

531

532

533

534

535

E

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

H

591

592

593

594

595

596

597

598

599

600

Figure D.3: Layout of Library 3a.



175

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

E

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

H

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

H

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

E

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

E

725

726

727

H

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

Figure D.4: Layout of Library 4a.
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Figure D.5: Layout of Library 5a.
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Figure D.6: Layout of Library 6.
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Figure D.7: Layout of Library 7.


