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Zusammenfassung: 

Jüngste Forschungsergebnisse der letzten Jahre unterstreichen, dass Protein-Protein 

Interaktionen eine wichtige Rolle für die biologischen Abläufe im intra- und 

extrazellulären Raum spielen. Aufgrund der teilweise widersprüchlichen und 

unvollständigen Erkenntnisse über Protein-Protein Interaktionen, befasst sich die Arbeit 

mit diesem aktuellen Thema.  

In der Arbeit wird zunächst eine große Zahl von temporär wechselwirkenden 

Proteinkomplexen mit bekannter Struktur gesammelt und analysiert. Dabei werden unter 

anderem Aspekte wie Vorkommen und Paarungspräferenzen der Aminosäuren und 

Sekundärstrukturelemente ermittelt, für die in früheren Untersuchungen bereits einige 

charakteristische Merkmale gefunden wurden. Die Ergebnisse dieses Kapitels stehen im 

Einklang mit früheren Studien und zeigen, dass temporär wechselwirkende 

Proteinkomplexe zwecks Reversibilität der Interaktion einen höheren Anteil an 

hydrophilen Aminosäuren besitzen und eine hohe geometrisch komplementäre 

Schnittstellenregion aufweisen.  

Diese charakteristischen Merkmale werden in einem weiteren Ansatz auf ihre 

Vorhersagekraft untersucht. Dazu wird die Effizienz von Protein-Protein 

Dockingprogrammen unter Berücksichtigung dieser Merkmale ausgewertet.  

Eine bekannte Schwäche von Protein-Protein Dockingprogrammen besteht darin, dass die 

nativen Protein-Protein Komplexe allein über die geometrische Komplementarität an der 

Schnittstellenregion ermittelt werden. Frühere Studien haben gezeigt, dass diese 

Vereinfachung in vielen Fällen zu einer großen Zahl von falsch-positiven Ergebnissen 

führt. Mit der Kenntnis über Paarungspräferenzen von Aminosäuren und 

Sekundärstrukturelementen werden die Ausgaben des Dockingprogramms nun neu 

analysiert. Tatsächlich zeigen die Ergebnisse leichte Verbesserungen. Eine detaillierte 

Analyse der Resultate zeigt allerdings, dass die verwendeten Merkmale zu keiner klaren 

Erkennung von falsch-positiven Dockingergebnissen führen. Um spezifischere Merkmale 

zur Erkennung von temporär wechselwirkenden Proteinkomplexen ausfindig zu machen, 

werden anschließend temporär und permanent wechselwirkende Proteinkomplexe 

miteinander verglichen. Damit werden die Unterschiede dieser beiden 

Proteinkomplextypen verdeutlicht und eine spezifische Merkmalsanalyse erleichtert. Auf 



Basis eines neuen Datensatzes ergeben sich für Paarungspräferenzen der Aminosäuren 

und Sekundärstrukturelemente keine klaren Unterscheidungen. Diese Beobachtung lässt 

sich zum Teil auf den geringen Datensatz zurückführen, was daraufhin zu einer 

ausgedehnten Datensuche und Datenbank-Konstruktion führt. Eine umfangreiche 

Literaturrecherche ergab 268 temporär und 266 permanent wechselwirkende 

Proteinkomplexe. Die für diesen Zweck entwickelte MySQL Datenbank erlaubt eine 

schnelle und spezifische Auswahl von Proteinkomplexen sowie die Berechnung von 

unterschiedlichen Potentialen, die z.B. in Dockingprogrammen eingesetzt werden 

können. Weiterhin lassen sich viele zusätzliche Merkmale der Proteinkomplexe 

zusammenstellen und ausgeben. Mit dieser großen und schnell zugänglichen Datenmenge 

wird das Problem der klaren Unterscheidung von temporär und permanent 

wechselwirkenden Proteinkomplexen wieder aufgegriffen. Der Einsatz eines 

automatisierten Mustererkennungs-Programms und die Analyse von 10.038 Merkmalen 

oder 347 Merkmalsgruppen anhand von 534 Proteinkomplexen ergab schließlich eine 

hohe Genauigkeit der Unterscheidung von temporär und permanent wechselwirkenden 

Proteinkomplexen. Diese Genauigkeit wird durch die gewichtete Kombination von 

lediglich vier minderdimensionale Merkmalsgruppen erreicht. Mit dieser hohen 

Wiedererkennung von temporär wechselwirkenden Proteinkomplexen sollte die Effizienz 

von Protein-Protein Dockingprogrammen, die bei der Evaluation der 

Dockinganordnungen allein auf geometrische Schnittstellenkomplementarität beruhen, 

deutlich erhöht werden. Weiterhin erlaubt die hohe Wiedererkennung der beiden 

Proteinkomplextypen, neue Daten aus der RCSB PDB automatisch zu klassifizieren, und 

in der Datenbank abzulegen. Eine größere Datenmenge wird die statistische Aussagekraft 

der Analysen deutlich erhöhen und eine feinere Aufteilung der Komplextypen erlauben. 



Kurzbeschreibung: 

Protein-Protein Interaktionen haben in den letzten Jahren sowohl im Bereich der 

Pharmazie, Medizin, Biologie, als auch im Bereich der Bioinformatik großes Interesse 

erlangt. In dieser Arbeit werden statistische Daten zu transienten Protein-Protein 

Interaktionen gesammelt und ausgewertet. Charakteristische Mermale werden in einem 

weiteren Ansatz auf ihre Vorhersagekraft untersucht. Dazu werden die Ergebnisse aus 

einem Docking-Programm nach diesen Merkmalen bewertet um natürliche Komplexe 

von solchen, die lediglich eine hohe geometrische Komplementarität aufweisen, zu 

unterscheiden. Die Ergebnisse zeigen Verbesserungen, aber dennoch Schwächen in der 

Vorhersagekraft auf. Um noch spezifischere Merkmale ausfindig zu machen, werden 

transiente und permanente Komplexe gegeneinander verglichen. Der eingeschränkte 

Datensatz führt schließlich zu einer ausgedehnten Datensuche und Datenbank-

Konstruktion. Diese wird schlussendlich für eine sehr detaillierte Merkmalsanalyse 

verwendet, die ein automatisiertes Mustererkennungs-Programm verwendet. Mit Hilfe 

dieses Programmes können sogar Kombinationen von Merkmalen auf ihre Spezifität 

untersucht werden, die schliesslich zu einer hohen Genauigkeit der Unterscheidung von 

transienten und permanenten Protein-Protein Interaktionen führt. Eine Kombination von 

vier Merkmalsgruppen ist dabei ausreichend. Damit können nun Docking-Programme 

verbessert werden, die zum Zwecke der Rechenzeitreduktion die Auswertung der 

Komplex-Anordnungen nur auf geometrische Komplementarität beziehen. 





Abstract: 

In the past years protein-protein interactions have gained a lot of interest in the fields of 

pharmacy, medicine, biology, and bioinformatics. In this work, statistical information on 

transient protein-protein interactions are collected and analyzed. Characteristic properties 

are then evaluated and their predictability estimated. Therefore, the results from a 

common docking approach are re-evaluated with the collected information to 

discriminate the native structure from those that simply have a high geometric 

complementarity at the interface region. The results show that although there is a 

noticeable improvement of the predictability after applying statistical information, the 

overall accuracy is still low. To find other more specific properties, transient and 

permanent complexes were compared to each other. The lack of data leads to an 

extensive search for more suitable structural data and the development of an extensive 

database. This database was ultimately used to retrieve a large number of protein 

properties that were automatically analyzed for their separation precision. A high 

accuracy was obtained in separating transient and permanent interactions based on the 

combination of only four properties. Combining this information with common docking 

approaches based on geometrical complementarity may lead to satisfying sensitivities. 
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1 

Organization of the Thesis 

 
 
 

 
Chapter 1 gives a short introduction to protein-protein interactions. Starting with the 

principles of dimerization and oligomerization and their consequences in biological 

cells will lead us to the current view of protein-protein interactions. Furthermore, 

this chapter introduces a number of methods and concepts that were employed and 

presumed in this thesis. 

Chapter 2 presents a statistical approach based on non-redundant transient protein-protein 

interfaces of known structure. By combining many known aspects of protein-

protein interactions, deeper insight in their nature was obtained. 

Chapter 3 is based on chapter 2 and presents an application of its observations. Using a 

rigid-body docking approach, the sensitivity of the docking is intensely tested after 

applying residue and structure based potentials. 

Chapter 4 focuses on the specificity of interface properties for transient protein-protein 

interfaces. Comparing a number of interface properties from transient protein-protein 

complexes to permanent protein-protein complexes will reveal the specificity of the 

given interface properties. This was observed by assessing the separation quality of 

the tested interface properties into transient and permanent protein-protein 

interactions.  

Chapter 5 introduces a new database that was developed to store a large number of 

properties collected from transient and permanent protein-protein complexes. By 

storing these data in a database their accessibility is enhanced and allows more 

detailed and faster statistical analyses. 

Chapter 6 is based on the database presented in chapter 5 and employs a machine 

learning approach to find protein properties within a large dataset that lead to a 

clear separation of transient/non-obligate and permanent/obligate interactions. In 

this chapter combinations of properties are analyzed as well.  

Chapter 7 gives an overall outlook for this thesis. 
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Introduction 
 

 

 

 

1.1. Protein-Protein Interactions 

 
Almost the full essential structure and function of biological cells may be referred to 

proteins. These large and complex molecules demonstrate a great flexibility that allows 

them to perform a large number of activities essential to life. No other type of biological 

macromolecule could carry all of the functions that proteins have collected over billions 

of years of evolution. The characteristic structures of proteins allow particular chemical 

groups to be placed in specific locations on the three-dimensional structure. This 

precision allows proteins to act as catalysts (enzymes) for a variety of chemical reactions. 

Precise placement of chemical groups also allows proteins to play important structural, 

transport, and regulatory functions in organisms. 

 

1.1.1. The Interaction of Proteins 

 
In biological systems proteins rarely act in isolation but bind other biomolecules to 

initiate cellular processes. These binding partners are often other proteins, as well as 

copies of the same protein that form dimers or higher-order oligomers, and may occur in 

relative isolation and within protein interaction networks and cascades [1][2]. 

Dimerization or oligomerization may provide several different structural and functional 

advantages to proteins such as improved stability, control over the accessibility and 

specificity of active sites, as well as increased complexity. Figure 1 shows an overview of 

the functional consequences of dimerization and oligomerization.   

 

 

 

1

4

3 
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Figure 1: Functional consequences of dimerization and oligomerization. (A) 
Concentration, stability and assembly. (B) Cooperation and allostery. (C) Modification 
of the active site. (D) Dimerization yields increased diversity in the formation of 
regulatory complexes.  
 
Figure 1A shows the dimerization as a natural process under conditions when the protein 

concentration is higher than the dissociation constant for the dimerization {1}. The 

consequence is a higher population of the dimeric form and a lower surface area when 

compared to the monomers’ surfaces. The assembly of large structures from previously 

formed subunits is a way to form large stable and dynamic structures without increasing 

the size of the genome or running into problems associated with the folding of large 

proteins {2}. As shown in figure 1B intramolecular surfaces between monomers and 

oligomers can generate sites for regulation by allostery. The binding of a cofactor or a 

1 
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substrate to a single subunit in an oligomer can change the conformation of that subunit 

{3} and cooperatively induce structural changes in the remaining subunits {4}. 

Dimerization of a monomer in figure 1C can generate new binding sites at the dimer 

interface or extend existing binding sites to increase specificity {5}, hide and block {6} 

or reveal active sites {7}. On the other hand, dimerization can lead to diversity in the 

formation of regulatory complexes shown in figure 1D. A protein might contain 

overlapping binding sites for different proteins. In this case the monomer can only bind a 

single competing protein at the same time {8}{9}. However, dimerization may also 

enable the simultaneous binding of those proteins on different subunits and create new 

binding sites for additional proteins {10}{11}. 

 

1.1.2. The Role of Protein Dimerization and Oligomerization in 
Biological Cells  

 
One of the major problems in understanding the role of protein dimerization in biological 

cells lies in the rather small amount of available biophysical data when compared to the 

numbers of known proteins. The best-characterized protein class is certainly the class of 

enzymes.  Several different factors were proposed to explain the large frequency of 

occurrence of dimerizing and mainly oligomerizing enzymes. Multimeric enzymes mostly 

form their active sites at the subunit interface, which leads to a high local concentration of 

active sites. The consequence is an enhanced regulation with loss in enzyme activity. In 

detail, the generation of new intermolecular interfaces can produce sites for allosteric 

regulation, enabling cofactors to bind to nonsubstrate sites, or facilitating substrate-induced 

cooperation. Hemoglobin is a classic example of a protein complex undergoing structural 

changes upon ligand binding together with the corresponding generation of a conformation 

with a very high ligand-binding affinity (figure 2). In lower vertebrates such as snakes, 

oxygenation causes dissociation of the hemoglobin tetramer to produce a dimer that acts as 

an oxygen store because of the higher affinity of the dimer for oxygen [3]. Under certain 

conditions such as stress or high activity, an associated decrease in pH promotes ATP-

induced tetramerization and allosterism, which then results in the release of oxygen. This 

transition from dimer to tetramer conformation might represent an intermediate point 
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during the evolution of the more stable hemoglobin tetramer that is found in higher 

vertebrates, where cooperative ligand binding is based on switching between quaternary 

states with different affinities for oxygen. 

 

 

 

Figure 2: Human Hemoglobin A tetramer. It is composed of four protein chains, two !-
chains (red and blue) and two "-chains (brown and yellow), each with a ring-like heme 
group containing an iron atom (not shown). Picture rendered in VMD using the PDB 
1buw [4]. 
 

Another motive for the dimerization is the mechanism for enzyme activation. As an 

example for this type, the family of cysteine and aspartic acid-proteases (caspases) will 

be discussed. Caspases are single-chain enzymes controlling the process that leads to cell 

death during apoptosis, which is one of the main types of programmed cell death. Failure 

of apoptosis mostly contributes to tumor development and autoimmune diseases. In 

general, limited proteolysis of the caspase generates two active catalytic domains, which 

is quite common for many other protease activations. However, this mechanism alone 

cannot lead to the activation of the initial protease (caspase-9) in the caspase pathway 

(figure 3). This is because there is no activating protease upstream of this enzyme. 

Structural and experimental studies have shown that under physiological conditions 

caspase-9 exists as an inactive monomer. During apoptosis, the cofactor Apaf-1 and 
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caspase-9 form a 1:1 complex in the presence of cytochrome c and ATP and generate an 

apoptosome [5]. This oligomeric complex colocalizes with multiple caspase-9 molecules 

causing an increase of the local concentration of caspase and inducing dimer formation 

and activation of the enzyme by exceeding the dissociation constant Kd for 

homodimerization. The interface of the dimer is formed by the interaction of an exposed 

activation loop in one monomer unit with a hydrophobic pocket in the other monomer. 

This interaction stabilizes the priming bulge of the activation loop and enables the active 

site that forms the substrate-binding conformation. Caspase-9 can then provide the 

proteolytic activity generating the active forms of caspase-3 and caspase-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Caspase pathway. The mitochondrial stress causes a release of cytochrome c 
(blue) from mitochondria (green), which then interacts with Apaf-1 (grey), ATP (red 
ball), and the inactive form of caspase-9 (dark yellow) forming a dimer. In the presence 
of inactive caspase-9 monomers (yellow), this complex induces caspase-9 dimerization 
and activation (light red). These activated caspases-9 further proceed to activate the 
effector caspases (red) that initiate the cleavage of various cellular targets. 
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On the other hand, dimerization can also inhibit an active monomeric enzyme as the 

receptor-like protein tyrosine phosphatase-! (figure 4), which mostly exists on the cell 

surface as a weak homodimer. The activity of this homodimer is down-regulated because 

of a part of one monomer that is stuck into the active site of the other monomer [6]. Such 

dimers could be activated with the binding of ligands that favor the dissociation to active 

monomers, or by signaling events that induce an open conformation in the dimer (figure 5).  

 

 

 

 

Figure 4: Domain 1 of the receptor-like protein tyrosine phosphatase-! of mouse. Chain 
A (red) and chain B (blue) dimer in the inactive state. Picture rendered in VMD using the 
PDB 1yfo [7].  
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Figure 5: Model for the 
regulation of receptor-like 
protein tyrosine phosphatase-! by 
dimerization. In the inactive state, 
the receptor-like protein tyrosine 
phosphatases-! are dimerized via 
domain D1 (also see figure 4), 
the transmembrane domain, and 
the extracellular domain. In the 
active state, the receptors are 
either monomers or dimers that 
no longer dimerize via D1 due to 
phosphorylation. Ligand binding 
can either stabilize or destabilize 
dimers [6]. 
 

 

 

Cell-surface receptor oligomerization and activation in response to the binding of an 

agonist is a common theme in the pathways transfering a signal across the cell 

membrane. Examples are the receptor families of growth hormones, interferons, 

cytokines and tyrosine kinases [8]. G-protein-coupled receptors (GPCRs), which are the 

most common cell-surface receptors, mostly function as dimers [9]. For some receptors 

agonist binding is required for initiation of the dimerization, while others require the 

homodimerization before the agonist can bind. Additionally, it was shown that rhodopsin 

must be arranged in dimeric arrays to absorb single photons [10]. Although dimerization 

can involve covalent interactions [11], most GPCRs dimerize via non-covalent 

interactions between extracellular domains, transmembrane regions and C-terminal tails 

of the proteins [12]. 

As previously mentioned, the oligomerization of multiple and identical subunits provides 

a simple way to form large structures. Structures such as the long fibrous extracellular 

matrix proteins myosin and collagen can be very stable and can last a lifetime (figure 6). 

On the other hand, some are rather dynamic, e.g. tubulin heterodimers that are composed 

of ! and " subunits. These subunits can be added or removed from the end of microtubuli 

to form the structural and transport system of the cytoskeleton [13] (figure 7).  
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Figure 6: Strong complex between the I domain of integrin !2"1 (blue) and a triple 
helical collagen peptide (red, grey, orange). Picture rendered in VMD using the PDB 
1dzi [14]. 
 

 

 

 

Figure 7: Dynamic complex of an !-" tubulin dimer (red, blue). Picture rendered in 
VMD using the PDB 1tub [15]. 
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1.1.3. The Diversity of Protein-Protein Interactions 

 
In their review on the diversity of protein-protein interactions in 2003, Nooren and 

Thornton discussed the structural and functional diversity of protein-protein interactions 

primarily based on protein families with available structural data [16]. As mentioned in 

the previous section, the protomers’ localization, concentration and local environment 

affect the interactions with the same or other protomers. In their review, the authors laid 

the basis for most subsequent studies on protein-protein interactions that considered the 

differentiation of protein-protein interaction types. Nooren and Thornton specified three 

classes of complexes: homo/hetero-oligomeric complexes, non-obligate/obligate 

complexes, and transient/permanent complexes. Homo/hetero-oligomeric complexes are 

interactions between identical or non-identical chains. In general, homo-oligomers can 

have either an isologous or heterologous organization. Isologously organized associations 

lead to the same surface of the two monomers (figure 8A) while heterologous assemblies 

use different interfaces and lead to different surfaces (figure 8B). Such heterologous 

assemblies can form further oligomerizations.  

A          B 

 

 

 

 

Figure 8:(A) Isologous and (B) heterologous homo-oligomers. 
 

The class of non-obligate and obligate complexes is defined on the basis of whether a 

complex is composed of protomers that are found or not found as stable in vivo 

structures. Complexes that do not have stable unbound protomers are called obligate 

complexes since their bound form is required and obligated. Non-obligate complexes are 

formed from stable unbound protomers that form in a dynamic equilibrium between 

unbound and bound states. This is the case for many intracellular signaling complexes 

and enzyme inhibitor complexes (e.g. figure 7). The last class mentioned in the review of 

Nooren and Thornton is the group of transient and permanent complexes. Transient 

complexes are believed not to form a complexed state for the whole lifetime of the 
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protomers. Such interactions are not stable enough to simply last in the complexed state. 

They associate and dissociate in vivo. Opposite, permanent interactions are stable and 

mostly remain in the complexed state for the lifetime of the protomers. Furthermore, the 

authors distinguish between weak and strong transient interactions. While weak transient 

interactions exist in a dynamic oligomeric equilibrium in solution, strong transient 

interactions require a molecular trigger to shift the oligomeric equilibrium. However, 

many protein-protein interactions cannot be clearly separated into either of the two last 

classes. The stability of the unbound protomers is rather relative and strongly depends on 

the physiological conditions of the environment. Additionally, it should be noticed that 

the two classes of non-obligate/obligate and transient/permanent complexes are very 

closely related. Obligate complexes that do not have a stable dissociated form mostly 

remain in the complexed state for their entire lifetime – also covered by the specification 

of permanent complexes. Transient interactions that dissociate and associate require 

stable unbound protomers like non-obligate complexes. In the literature these two classes 

are mostly combined. Although they focus on different aspects of complexes, a 

separation of protein complexes into these two classes will most likely lead to the same 

distribution. Remarkably, this is not the case for antigen-antibody complexes. Although 

antigens and antibodies do occur in a stable structure in solution such as non-obligate 

complexes, their complexed state has a strong binding, as it is the case for permanent 

complexes. 

At the same time, Ofran and Rost published a study where they classified protein-protein 

interactions into six different types of interfaces [17]. By introducing a new data-mining 

method the authors differentiated protein interfaces into:  

1.  intra-domain interfaces that are within one structural domain;  

2.  domain-domain interfaces that occur between different domains within one chain;  

3. homo-obligomer interfaces that form between permanently interacting identical chains; 

4. homo-complex interfaces formed between transiently interacting identical protein chains;  

5. hetero-obligomer interfaces formed between permanently interacting different 

protein chains;  

6. hetero-complex interfaces which form associations between different transiently 

interacting protein chains.  
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The authors introduced the term “obligomer” that stands for obligate oligomers, where 

“complex” stands for non-obligate oligomers. Their definition for obligate and non-

obligate complexes is similar to Nooren and Thorntons’ as obligate/non-obligate are also 

called two-state/three-state complexes. Folding and binding of the interacting proteins are 

inseparable for two-state complexes. Thus, such interactions form a permanent 

complexed state. On the other hand, protomers of non-obligate complexes fold 

independently and then bind. Such complexes are also called three-state complexes [18]. 

Since a change in quaternary state is often coupled with biological function or activity, 

three-state or transient/non-obligate protein-protein interactions are important biological 

regulators and are particularly emphasized in this work. 

 

1.1.4. Known Properties of Protein-Protein Interactions 

 
Many previous studies analyzed the properties of protein-protein interactions. Since the 

number of three-dimensional structural data available in earlier years was rather limited, 

the initial studies mostly examined general properties of interfaces such as the size of the 

contact area, the polarity of the interface, protrusion and flatness [19][20][21][22][23]. 

These and many other studies form the basis of the current understanding of protein-

protein interactions: interfaces of obligate complexes that are mostly formed by 

homodimers are larger and more hydrophobic than non-obligate associations [24][25]. 

The stable association derives from the co-folded and co-expressed protomers and the 

large hydrophobic surface patches, which are causing strong and tight interactions. In 

contrast, non-obligate interactions rather exhibit a more polar interface ensuring the 

stable unbound state of the monomers. LoConte et al. furthermore noticed conformational 

changes of the protomers upon complex formation once the interface area is larger than 

1000Å2 [25]. The consequences of such conformational changes may lead to an induced-

fit which increases the lifetime of an interaction.  However, although some structural 

differences were found between obligate and non-obligate complexes, the difficulty still 

remains to efficiently separate their protein-protein interactions. There exists a continuum 

between non-obligate/obligate or transient/permanent interactions and previously 
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mentioned structural characterization properties appear inadequate to distinguish between 

their different affinities or specificities.  

One important property of protein-protein interactions is obviously the specificity of 

interaction. Due to the rather crowded environment in vivo, many protomers are not in 

direct vicinity and need to be highly specific in partner recognition and binding, as it is 

the case for hormone-receptor and enzyme-inhibitor complexes. Such specific 

interactions mostly form interfaces with strong geometric and chemical complementarity. 

However, there are also multispecific interactions where multiple binding partners 

compete. Such complexes are mostly co-localized and their specificity is rather low.  

With an increasing number of available data the functional and structural principles of 

protein-protein interactions and their great diversity may soon be thoroughly understood.  

 

1.2. Methods in Bioinformatics 

 

In this section, a number of basic methods and techniques that were employed in this 

work will be briefly introduced. Describing the concept of databases and their typical 

implementations will eventually lead to the concepts of sequence comparisons. These 

comparisons are based on the concept of molecular evolution and will be briefly 

described as well. Furthermore, several structural analysis methods will be mentioned, 

which will lead to the last topic: data mining. 

 

1.2.1. Databases 

 
A database is a collection of information that is systematically stored in a computer and 

can be accessed with querying the dataset and consulting it to answer questions. There 

are two main motivations for storing data on a computer: retrieval and discovery. 

Retrieval is basically the ability to access stored data. The growing number of sequence 

information would be useless in its essence if there were no possibilities to retrieve the 

data. However, it is even more important to retrieve additional knowledge from the 

system than what was stored. Such additional information can be obtained with detection 

of connections between two pieces of information that were not known to be related at 
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the time they were separately stored in the database. Another way is to perform 

computational approaches on the data, which may yield new insight into the records.  

In this section two major groups of databases are separately described: sequence and 

structural databases. While sequence data contains just sequences of the proteins or 

nucleotides, their rich annotations and large number in the databases makes them 

essential for further analyses. Structural data is more preferential for most analyses but 

due to the difficulties in generating such data, there are a number of computational efforts 

to overcome this restriction as described in section 1.2.1.2. 

 

1.2.1.1. Sequence Databases 
 
Among all available databases the largest are without doubt sequence databases. A 

sequence database is mostly a collection of nucleotides or amino acids containing data 

from specific organisms or all. Currently, nucleotide sequence databases with up to 80 

million entries mark the largest amount of data in a database [26]. This is due to great 

success in recent international genome projects. However, maintaining databases is a 

great challenge. The major problem arises when joining records from a wide range of 

sources and individual researchers. The sequences and especially the biological 

annotations attached may qualitatively vary. There is also much redundancy, as multiple 

labs often submit numerous sequences that are nearly identical to other available entries. 

Another issue is based on the way sequences are retrieved. Protein sequence databases 

are mostly based on automated translations of mRNA nucleotide sequences, where all six 

open reading frames (ORFs) are considered and the meaningful ORF is translated and 

stored. This method is very appropriate when compared to other costly and time-

consuming methods such as mass spectrometry and the Edman degradation reaction. 

However, this automated approach barely leads to qualitatively competitive annotations 

and requires semi manual modifications, which lead to the large number of available and 

different protein sequence databases. 

Based on the primary sequence information a large number of secondary databases arose 

by time. Secondary databases collect data from primary databases that store annotations 

and sequences and use certain classification rules to group these sequences. In most 

cases, functionally or evolutionally related proteins are grouped into one class and their 
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sequence pattern is then retrieved and used for identifying other yet unknown sequences 

(also see section 1.2.4). Following, one popular representative for nucleotide and protein 

sequence databases, and one example for a secondary database are described. 

 

1.2.1.1.1. EMBL (Release) [27] 
 
The EMBL Nucleotide Sequence Database at the EMBL European Bioinformatics 

Institute (EBI) offers a large set of publicly available nucleotide sequences and 

annotations. Collaborations with DDBJ [28] and GenBank [29] led to coverage of the 

whole genome sequencing project data. The most common technique is expressed 

sequence tag (EST). EST is a short sub-sequence of a transcribed protein coding or non-

coding nucleotide sequence. It was originally used to identify gene transcripts, but has 

become a common method in gene discovery and sequence determination. The whole 

genome shotgun (WGS) sequencing is a faster and more complex sequencing process 

when compared to the common chain termination method of DNA sequencing after 

Sanger [30] that can only be used for short strands and makes it necessary to divide 

longer sequences up and then assemble the results to retrieve the overall sequence. In 

WGS sequencing, DNA is sliced randomly into small segments, which are then 

sequenced using the common chain termination method. Multiple overlapping segments 

for the target DNA are obtained with performing several fragmentation and sequencing 

rounds. These overlapping segments are then computationally assembled into a 

contiguous sequence. Although WGS sequencing is available for many years now, it 

became preferential when Celera Genomics announced using this method to produce a 

draft human genome sequence faster than the publicly funded Human Genome Project. 

Table 1 shows the distribution of the number of submitted sequences and their retrieval 

technique. 

Currently, EMBL Release consists of more than 80 million entries. Table 2 shows the 

number of entries for some organisms where plants, humans and other mammals stand in 

the major focus of these genome projects.  
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Class Number of Entries 
Constructed 841,474 
Expressed Sequence Tag 38,355,718 
Genome Sequence Scan 15,345,539 
High Throughput cDNA sequencing 440,827 
High Throughput Genome sequencing 94,210 
Patents 3,404,841 
Standard 3,186,797 
Sequence Tagged Site 883,330 
Third Party Annotation 5,119 
Whole Genome Shotgun 18,034,036 

 

Table 1: Distribution of the submitted sequences and their retrieval technique for 
nucleotide sequences in EMBL [31]. 
 
 
 

Division Number of entries 
Environmental Samples 1,732,858 
Fungi 1,392,128 
Human 11,448,482 
Invertebrates 9,640,399 
Other Mammals 16,973,288 
Mus musculus 8,160,933 
Bacteriophage 3,936 
Plants 17,893,858 
Prokaryotes 493,678 
Rodents 3,607,057 
Synthetic 678,974 
Unclassified 1,203,436 
Viruses 403,338 
Other Vertebrates 6,959,526 

 

Table 2: Distribution of the submitted nucleotide sequences and their organisms in 
EMBL [31]. 
 
 
1.2.1.1.2. UniProtKB/SWISSProt [32] 
 
The SWISSProt database is a popular primary sequence database containing protein 

sequences. Just recently it was renamed to UniProtKB (Universal Protein resource 

KnowledgeBase). Although the SWISSProt database with only quarter million entries is 
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one of the smallest protein sequence databases, it is yet the most popular protein 

database. This is due to its rich and partial manual annotations. Each entry contains the 

core data – sequence data, bibliographical references and taxonomic data – and 

annotations describing the function of the protein, post-translational modifications, 

domains and sites, secondary structure and quarternary structure, similarities to other 

proteins, diseases associated with deficiencies in the protein, sequence conflicts, and 

more. However, the developers also focus on crosslinking the entries with those of other 

databases with different contents, e.g. the nucleotide sequence database EMBL (Release), 

the protein structure database PDB, and various protein domain and family 

characterization databases (PRINTS, Pfam, INTERPRO, and more). At the moment, 

there are up to 60 references to other databases. SWISSProt is based on the data collected 

in the TREMBL database which stands for translated EMBL. Automatic translations and 

simple annotations from the nucleotide sequences in EMBL (Release) are first stored in 

TREMBL. Manually revising the entries of TREMBL leads to the SWISSProt database. 

TREMBL is currently more than 10 times bigger than SWISSProt although the database 

is growing faster (figure 9). Figure 10 shows the distribution of the data by organisms. 

Interestingly, the distribution is not clearly correlated to that of the nucleotide sequence 

database EMBL. The focus of the semi-manual annotation lies much stronger on 

prokaryotic data when compared to the focus of nucleotide data (table 2). 

 

 

 

Figure 9: Number of entries in UniProtKB/SWISSProt in 1000 (k) at various times [33].  
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Figure 10: Taxonomic distribution of the sequences in UniProtKB/SWISSProt. The left 
graphic shows all organisms and the right graphic only the distribution within eukaryotic 
organisms [33]. 
 
 

1.2.1.1.3. COG [34] 
 
Secondary databases were previously presented containing classifications of sequences 

after a given feature. The COG (Cluster of Orthologous Groups) clusters proteins that are 

assumed to have evolved from an ancestral protein. Such proteins can be either orthologs 

or paralogs (also see section 1.2.2). Orthologous proteins stem from different species that 

diverged from a common ancestor and typically kept the same function. A COG is 

derived from comparing each protein sequence against all other sequences encoded in 

completely sequenced genomes. Considering a protein from a given genome, this 

comparison would reveal those proteins from each of the other genomes to which it is 

most similar.  The relation is tested inversely. If a reciprocal best-hit relationship between 

these proteins can be found then those that are reciprocal best hits will form a COG. 66 

genomes are currently included in the database covering more than 70% of all protein 

sequences in these genomes. Due to the expected functional relation of COG members to 

each other, the COG is a well-known sequence analysis database for finding functionally 

relevant regions.  
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1.2.1.2. Structural Databases 
 
Understanding of functional and structural principles of protein folding and protein binding 

is crucially based on the knowledge on three-dimensional protein structures. This is not 

only due to higher conservation of the protein structure when compared to the proteins’ 

sequence. Several large sequence databases significantly contributing to the current 

understanding of protein function were mentioned before. However, without any available 

structural data, sequence data probably would not have led to as much knowledge. The 

combination of the rather small number of available structural data and the availability of a 

large number of sequence data reduces the problems caused by the lack of essential 

structural data. The gap between available structural data and sequence data is certainly 

related to the methodical difficulties to retrieve structural data. At the moment, structures 

are typically obtained by X-ray crystallography (table 3). The technique of X-ray 

crystallography records and analyzes data from the diffraction of X-ray photons arising 

from their interactions with the electrons of the sample. This generally allows determining 

type and positions of heavy atoms in a crystallographic lattice. The basis and also most 

challenging part of this assessment lies in generating crystals of the molecules. An 

alternative structure determination method is NMR spectroscopy. Here, the sample is first 

prepared then resonances are assigned, restraints are generated and a structure is calculated 

and validated. This technique is limited to small proteins due to overlapping peaks in larger 

proteins and faster weakening magnetization, which leaves less time to detect the signal.  

These two methods have complementary features. X-ray crystallography represents a 

robust and fast approach for proteins that form suitable crystals. NMR has advantages for 

structural studies of small proteins that are partially disordered, exist in multiple stable 

conformations in solution, or do not crystallize easily. NMR spectroscopy is an 

incremental method that can rapidly provide useful information concerning overall 

protein folding, local dynamics, existence of multiply-folded conformations, or protein-

ligand or protein-protein interactions.  

The creation of images of molecular structures is one of the most simple and broad 

applications. Other opportunities arising from structural information are classifications 

where similar structures are clustered together in order to form families of proteins 

(secondary databases). As previously mentioned, lot of focus was put in filling the gap 
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between available structural and sequence data as previously mentioned. Applications such 

as homology modeling construct a model of a proteins' tertiary structure based on its amino 

acid-sequence [35][36][37][38][39][40][41]. This technique relies on a sequence alignment 

between the sequence of unknown structure and at least one related sequence of which the 

structure could be determined experimentally. Since protein structures are stronger 

conserved than protein sequences, sequence similarity usually implies significant structural 

similarity. 

 
 Proteins NA Protein/NA complexes Other Total 
X-ray diffraction 30,746 931 1,421 28 33,126 
NMR 4,853 726 122 6 5,707 
Electron microscopy 91 10 33 0 134 
Other 77 4 3 0 84 
Total 35,767 1,671 1,579 34 39,051 

 

Table 3: Structures contained in PDB on 09/26/2006. NA stands for Nucleic Acid [42]. 
 
 
1.2.1.2.1. RCSB PDB [43] 
 
Currently, the standard depository for information about the three-dimensional structures 

of large biological molecules is the RCSB PDB. Founded in 1971 by Brookhaven 

National Laboratory, management of the Protein Data Bank was transferred in 1998 to 

members of the Research Collaboratory for Structural Bioinformatics (RCSB). 

The PDB format consists of a collection of fixed format records that describe the atomic 

coordinates, chemical and biochemical features, experimental details of the structure 

determination, and some structural features such as secondary structure assignments, 

hydrogen bonding, and biological assemblies and active sites. A large number of 

databases and projects were developed to integrate and classify the PDB in terms of 

protein structure, protein function and protein evolution. 

At the moment, there are nearly 40,000 structures stored. Compared to the number of 

known protein sequences of nearly 7,900,000 [44], 40,000 structures seem quite few. 

This difference mainly arises from the techniques of generating protein structures as 

discussed in the previous paragraph. However, as figure 11 shows, the number of 

determined structures in a year increases.  
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The web presence of the RCSB PDB contains a powerful database interface. The full 

content of the PDB files can be queried by many properties and features of the entries 

such as type of chains, number of chains, chain length, header descriptions, enzyme class 

numbers, and more. Given the importance of non-redundant data, the RCSB PDB site 

also optionally performs a redundancy assessment on the search results based on 

sequence alignments and their level of identity (also see section 1.2.3).  

 

 

Figure 11: Yearly growth of protein structures. ‘All’ are the fully available structures at 
a given year and ‘Diff’ shows the increased number of entries compared to the previous 
year [42]. 
 
 
1.2.1.2.2. CATH [45] and SCOP [46] 
 
The most common secondary databases of protein structures are CATH (Class, 

Architecture, Topology, Homologous superfamily) and SCOP (Structural Classifiction Of 

Proteins). Both databases cover almost the full PDB content. Classifying protein 

structures invokes separating them into groups in a way that they have similar attributes, 

such as secondary structure element-composition and other structural attributes. 

Considering that protein sequences can be grouped into evolutionary families and the fact 

that protein structures are more strongly conserved than protein sequences, the 

classification of proteins by structural criteria suggests to be more accurate than based on 
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sequence similarity or even homology. CATH and SCOP both hierarchically classify the 

protein structures from the PDB and have similar classes. Although their employment 

seems essential, one should note that many proteins with the same fold have emerged by 

divergent evolution from a common ancestor. However, it is also equally possible that 

they have no common ancestor and adopt the same fold simply because that fold is 

favorable from a physicochemical point of view.  

 

1.2.2. Molecular Evolution 

 
Understanding the nature of the machinery in organisms is mostly utilized in 

understanding their development, here evolution. In biology, evolution means the change 

in heritable attributes of a population over successive generations. All organisms on earth 

are related to each other through a common ancestor, which makes evolution the source 

of the vast diversity of organisms on earth. Darwins’ theory of evolution divided the 

procedure of evolution into three major features repeating in an endless cycle:  

1. Generation of random variations; 2. Natural selection of the variations; 3. Differential 

reproductive success. The generation of random variations happens mostly at the level of 

the genotype, which considers changes within the DNA sequence. Such variations are 

caused by mutations and insertions/deletions of nucleotides in the sequence. Mutations 

are mostly errors caused by the DNA replication or DNA repair machinery and provide 

the genetic variation upon which natural selection can act.  

Since most genetic mutations happen at the genotype level they can be neutral in their 

phenotypic effects or deleterious where they are removed by negative selection. Rarely, 

mutations may lead to an advantage such as a survival and reproductive advantage, which 

then may pass on more copies of their genetic material due to their large number of 

offspring. This is also called positive selection. The accumulation of small changes can 

result in the evolution of DNA or RNA sequences with new associated phenotypic 

effects. This process also leads to the evolution of entirely new biological functions.  

Homology describes the evolutionary relationship of sequences or structures that diverged 

from a common ancestor. Since the observation of this relation can only be inferred from 

sequence or structural similarity, its application is not trivial. Namely, defining threshold 
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values for similarity is the most challenging part. On the other hand, analogy refers to 

adopting a shared feature such as protein fold or function by convergent evolution from 

different ancestors. Given homologous sequences or structures it is possible to separate 

those that have resulted from gene duplication events within a species genome and perform 

different but related functions within the same organism (paralogs) from those that perform 

the same or a highly similar function in different species (orthologs).  

 

1.2.3. Sequence Analyses 

 
7,9 million protein sequences [44] are currently stored in the largest protein sequence 

database. Given the rich availability of protein sequence data it becomes important to 

understand how these proteins function. Experimentally characterizing their biochemical 

properties is impractical. However, since proteins with similar sequences have diverged 

from a common ancestral gene and possess in most of the cases similar structures and 

functions [47][48], the development of reliable sequence comparison methods was one of 

the major foci in bioinformatics. 

As mentioned before, protein structure is more conserved than protein sequences. 

Therefore, structural data is more suitable for analyzing evolutionary relationships. 

However, due to the lack of structural data as well as rather difficult structure comparison 

approaches, computational analyses of any newly determined protein sequence typically 

involve comparing that sequence against libraries of sequences to find related proteins 

with known functional properties.  

The basis of these computational methods requires estimating evolutionary events 

between two homologous sequences. The common concept is: consider any evolutionary 

event and weight its probability with scores and penalties. Minimizing these events 

should most likely lead to the best alignment between two sequences. In most cases, these 

methods have almost no computational weaknesses. However, the alignment output is 

strongly dependent on the scores and penalties for evolutionary events. Specifying these 

scores is mainly based on empirical studies where a number of related sequences are 

analyzed and evolutionary events statistically evaluated. Based on different datasets there 

are a number of available scoring matrices for amino acid-exchanges [49][50].  
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Analyses within protein families have revealed significant changes in the sequences of 

related proteins as long as they do not affect the folding or stability of the protein 

[51][52][53]. Other studies have shown that sequences of 100 residues or more, sharing 

at least 35% identical residues, are most likely homologs [54]. Even at lower levels of 

sequence identity, where functional annotation is not certain, sequence alignment enables 

the identification of equivalent regions or residues that may be functionally important. 

Particularly, multiple sequence alignments that optimize the alignment of several 

homologs (see 1.2.3.2) can be used to search for patterns of highly conserved residue 

positions. In this case, pairwise sequence alignment methods are performed to detect 

close homologs (!35% identity) and to reveal evolutionary relationships in what Doolittle 

has defined as a twilight zone of sequence similarity [47] down to as low as 25% identity. 

Below that, multiple alignment methods must be used to infer homology.  

 

1.2.3.1. Pairwise Protein Alignments 
 
The methods for comparing protein sequences can be divided into fast approximate 

approaches and those that attempt to accurately determine all possible residue positions. 

Fast approximate methods are mostly used for scanning a database with a sequence of 

unknown notation in order to find a homolog of known notation. Any relatives identified 

in the database can then be realigned using the accurate, but slower, methods.  

Pairwise alignments find their origin in 1970. At that time Needleman and Wunsch 

presented an algorithm for efficient comparison of two protein sequences [55]. By dividing 

the alignment into sub-alignments the comparison performed reasonably fast. Any possible 

orientation of the alignment is evaluated. Today the Needleman & Wunsch algorithm is 

known as a dynamic global alignment, where all possible alignments along the entire 

sequences are evaluated and accurately determined. However, many proteins are modular 

and comprise more than one domain. Domain recruitment and domain shuffling are now 

established as very common evolutionary mechanisms with which organisms expand their 

functional repertoire. Because of this, proteins that share one or more homologous protein 

domains may not be homologous over their entire sequence length. Therefore, 11 years 

after Needleman and Wunsch, Smith and Waterman developed a local implementation of 

the dynamic programming algorithm which seeks a local region of similarity [56].  
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Dynamic algorithms are rather slow but they ensure to output the perfect alignment for a 

given scoring matrix. Considering the sizes of some large protein sequence database, the 

usability of dynamic alignments is limited. Thus, alternative strategies were developed for 

the use of database search. In 1988 Pearson and Lipman introduced a heuristic approach for 

global alignment termed FASTA [57], which was supposed to speed up the alignment 

without sacrificing reliability. By focusing only on long identical segments between the 

two aligning sequences, the algorithm ignores the remaining alignment space. This results 

in a significant increase of speed due to the smaller alignment space with an acceptable risk 

of not finding the optimal alignment. Few years later, Altschul et al. introduced another 

heuristic approach for a local alignment termed BLAST [58]. BLAST (Basic Local 

Alignment Search Tool) was mainly developed for the use on large datasets. By dividing 

the query sequence into overlapping words (default are 3 amino acids for protein sequences 

and 6 bases for nucleotide sequences), BLAST generates a list of all consisting words and 

adds a list of similar words with a certain threshold for similarity. With these decoys the 

indexed database containing a large number of sequences is now queried. Only those 

sequence entries containing the sequence of the decoys will be considered for the 

alignments. Extending the alignment of the decoy hits in both sequence directions leads to 

high-scoring segment pairs (HSPs). These are stopped once the alignment score falls below 

a specified threshold. Figure 12 shows an overview of the algorithm. The speed increase 

with respect to dynamic alignment algorithms is highly significant due to the drastic 

reduction of alignments and the alignment space. BLAST also contains a module for 

statistical analysis estimating the significance of calculated similarity for a given alignment 

based on the Karlin-Altschul statistics [59]. This allows the rating of the similarity and may 

lead to homology estimations. Computationally, this is done with calculation of two values: 

the P- and E-value. The P-value indicates the probability that a given similarity score 

between two sequences occurs with the same or higher value also in other sequence 

alignments and thus does not have a high significance. Its corresponding E-value is the 

number of expected sequences with the same or even higher similarity in a database with a 

given number of sequences. 
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Figure 12: BLASTP procedure. (A) The query sequence is divided into overlapping 
words in the size of 3 letters. By defining a similarity cutoff (red line) similar words will 
be added to this list. The database is now queried with the decoys of this list. (B) 
Sequences with matches are retrieved. (C) Each retrieved sequence is aligned to the 
query sequence where each word-match is extended until its score falls under a defined 
threshold. These HSPs will be reduced to the e.g. longest 10 and the overall alignment is 
given by the HSPs lying nearest to the diagonal of the alignment box.  
 

1.2.3.2. Multiple Sequence Alignments 
 
Finding motif among functionally or structural related sequences has become an 

interesting research field especially in the area of protein classification and domain 

characterization based on the protein modularity assumption mentioned before. For this 

purpose multiple sequence alignment-methods were introduced in the early 1980s. 

Similar to the use of pairwise sequence alignments for database queries, dynamic 

PQG 

PEG 

PRG 

PKG 

PNG 

PDG 

PMG 

Database 

TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 
HGFEHVSDRTJDFGDSFRZPEGSFGQDCFYVNVURARF 
QVMKRTPQWIPICFLMYCVAWETIIUQWRNFPMGAS 
YYPQGCVLASFQDIQWEPIWRTEIUIQWRKALSDNKMLV 
… 

A 

B 

C 



INTRODUCTION  

28 

programming cannot easily be extended to more than three protein sequences as it may 

become enormously expensive in computing time. Therefore, heuristic methods were 

developed. A common method for performing a heuristic alignment search is the 

progressive technique. It constructs a multiple sequence alignment by first performing a 

series of pairwise alignments. The two most closely related sequences are first aligned 

and the next most closely related sequence is then successively aligned to the previous 

alignment as shown in figure 13. This also leads to a major limitation of progressive 

methods, which is their dependence on the initially assigned relations among the 

sequences and on the quality of the first alignment.  

A popular progressive alignment method is the Clustal method, especially the weighted 

variant ClustalW [60] where the scoring function is modified with a weighting function 

that assigns scaling factors to individual members of the query set based on their relation 

distance from their nearest neighbors. This modification leads to a weaker effect of 

relatively poor initial alignments early in the progression. However, since progressive 

methods are heuristic methods that do not guarantee to find a global optimum, the 

alignment quality is difficult to be evaluated and biological significance may not be 

implied. 

 



METHODS IN BIOINFORMATICS 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Progressive Alignment. Each bin contains a part of the progressive alignment 
that is oriented in the order of similarity. The first two sequences are most similar and 
initiate the progressive alignment. Sequences 3 and 4 are most similar to each other and 
are aligned separately. In the 3rd alignment a consensus sequence of each previous 
alignment is used. Any evolutionary change that is applied to the representing sequence 
will be applied to its previous sequences as well. Finally, a representing sequence from 
these previously aligned sequences is aligned against the 5th sequence. This results in a 
multiple sequence alignment. 
 

1.2.3.3. Consurf [61] 
 
Deriving conserved sequence regions was addressed in the previous section. Here, the 

well-known tool Consurf is presented. It calculates residue conservation scores and 

additionally projects these scores on a three-dimensional protein structure. The program 

package consists of several tools. In the first step Consurf collects a number of 
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homologous sequences to the query sequence using the non-heuristic Smith & Waterman 

local alignment algorithm. Given a threshold for the E-value, all sequences within this 

threshold are collected and duplicates discarded. In the next step a multiple sequence 

alignment is performed among these homologous sequences using ClustalW (figure 14). 

Based on specific rules for scoring amino acid-exchanges and gap penalties for insertions 

or deletions, the program calculates an average score for each position in the query 

sequence and applies normalization for each score. This is necessary since the scores 

provide a reference state for the level of conservation. The normalization is based on the 

authors’ assumption that surface residues that are involved in interactions with other 

molecules should be as conserved as the internal residues determining the protein 

structure. Therefore, a residue that is detected by Consurf as the most conserved is 

considered as conserved as a residue that is buried in the core of the protein. 

Subsequently, the program replaces the temperature B factors in the input PDB file with 

the conservation grades of the residues, which allows the conservation-mapped protein 

structure to be viewed in most pdb-viewers (see 1.2.4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Consurf procedure. 
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1.2.4. Structural Analyses 

 
Previously, some examples were described for analyzing the rich sequence data. In this 

section the most informative data is discussed: the protein structure data. Although the 

number of available structural data is quite limited, their information content is very high 

so that one can still obtain interesting insight into protein folding and protein binding. 

The connection between fold and function especially makes clear that understanding the 

function of proteins based on structural information should be the most straightforward 

way.  

The fold of proteins is mostly defining their molecular activities. In fact, the fold reveals 

binding sites, interaction surfaces and the precise spatial relationships of catalytic 

residues. However, the connection between function analysis and structural data is not 

always clear. One protein-folding topology may support a variety of functions and, 

conversely, one function may be associated with several different folds.  

Due to the lack of available structures, especially for complexes that can be used for 

analyzing interactions between proteins, many approaches have been developed to 

predict their interaction sites (see section 1.2.4.3.). These interactions are key to 

understand biological processes. Although there are also a number of strategies to predict 

interaction area from sequence data only [62][63][64], determining the structure of 

biomolecular interfaces is the best basis for a wider understanding of biological 

processes. The knowledge on structure also provides the possibility to modify their 

molecular interactions via structure-based drug design, site-directed mutagenesis and 

protein engineering. Therefore, docking and other structural prediction methods play an 

important role in structural bioinformatics.  

This chapter introduces the program package VMD that contains a large number of 

modules and functions, and the technique of protein-protein docking. Additionally, a 

short overview over current interface retrieval strategies is given.  
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1.2.4.1. VMD [65] 
 
Visualization methods are important for displaying molecular properties on molecules. 

These tools mainly allow rendering molecules according to numerical properties, e.g. the 

hydrophobicity and charges on the protein surface. Although there is a large number of 

available applications, only one that was employed for visualizing and analyzing all 

protein-protein interaction data is discussed in this chapter.  

VMD is a molecular graphics program designed for the display and analysis of molecules 

and molecular assemblies, in particular biopolymers such as proteins and nucleic acids. 

Aside from a large number of visualization options, VMD also includes a number of 

plugins, functions, as well as a terminal interface using the Tcl embeddable parser to 

allow complex scripts with variable substitution, control loops, and function calls. A 

typical script in VMD has 4 stages: 1. Load molecules; 2. Select atoms by given criteria; 

3. Perform measurements and calculations on the selections; 4. Output the results. Stages 

2 and 3 are based on VMD functions ‘atomselect’ and ‘measure’. ‘atomselect’ is a 

function for selecting atoms for a given argument. The variety of arguments allows 

detailed selections, e.g. atoms of a specified protomer in multi-chain complexes. What is 

more interesting, ‘atomselect’ also includes arguments for calculated distances between 

atoms. Given a distance cutoff of 5Å, a very short argument such as ‘chain A and within 

5 of chain B’ results in all atoms of chain A that are within 5Å of any atom in chain B. In 

the chapter 2 this function is used to retrieve interface residues for a given distance 

criterion. Additional functions allow the retrieval of further information such as the 

description of the amino acid to which the atoms belong to, and the secondary structure 

element of its amino acid, and more. The ‘measure’ function supplies several algorithms 

for analyzing molecular structures. Accessing the list of atoms collected with the 

‘atomselect’ function allows ‘measure’ to compute the solvent accessible surface area for 

the selection. Combining selection list and results from calculations such as the solvent 

accessible surface area, one may separate surface atoms and residues from those that lie 

in the core, or in the interface region for a given criterion.  
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1.2.4.2. Interface Definition 
 
When analyzing protein-protein interactions, previous authors mostly focused on the 

interface region only. However, as the diversity of the interface definition in different 

studies shows, there is no clear definition that non-controversially specifies this region 

[66][67][68][69][70]. Most of the definitions can be divided into two major groups: 

distance based and solvent accessibility criteria. In the distance dependent criteria, the 

distances between C" [66] or any heavy atom [67] of interacting chains are measured and 

those that lie within a specified distance threshold are understood to take part to the 

interface. The common distance threshold in the literature is 5Å. It describes a good 

compromise for discriminating relevant from irrelevant interactions. Relevant 

interactions are van-der-Waals and polar interactions. Although electrostatic interactions 

play an important role in interaction specificity and encounter steering, it becomes very 

challenging to consider such interactions by employing a large distance cutoff. Within the 

large interaction range a large number of irrelevant interactions may hardly be 

discriminated from those specific electrostatic interactions. Irrelevant interactions are also 

those that do not occur under physiological conditions and can be referred to crystal 

packing. 

In this work the method for determining amino acids that are involved in interface 

regions is mostly based on definitions applied via customized VMD scripts. By 

calculating all distances between all atoms in the complex, a distance cutoff can be used 

as a filter. A list of atom pairs with a shorter distance from each other than the cutoff 

value is generated. In the next step all those atom pairs from the same chain are 

discriminated. At this point, the list contains all atom pairs within a given distance cutoff 

and that belong to different chains. Another interesting approach was proposed by 

Jernigan et al. who used a criterion based on counting atomic contacts between opposite 

amino acids and defined interface atoms, such as those with more than a certain number 

of atomic contacts [71]. 

Solvent accessibility criteria are based on the loss of solvent accessible surface area 

(SASA) upon complex formation. For instance, Zhu et al. specified a residue as an 

interface residue if the loss of its SASA is greater than 1Å2 [68]. Bahadur et al. defined a 

loss of SASA greater than 1% as an interface residue [72]. The SASA area of these 
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studies was calculated by NACCESS [73]. The program uses the Lee & Richards method 

[74], whereby a probe of a given radius is rolled around the surface of the molecule, and 

the path traced out by its centre specifies the accessible surface. Typically, the probe has 

the same radius as water (1.4Å) and hence the surface described is often referred to as the 

SASA. The calculation makes successive thin slices through the 3D molecular volume to 

calculate the accessible surface of individual atoms. Another approach uses VMD 

together with the ‘measure’ function for atom surfaces. The function ‘measure’ calculates 

a ball with a given radius around any atom. Then it computes the non-overlapping area. 

This method is very fast and can be applied to molecules larger than 20,000 atoms, which 

is the limit for NACCESS. However, in this work it turned out that as VMDs’ measure 

does not consider the protein fold, it confuses internal cavities with surface patches.  

 

 
1.2.4.3. Protein-Protein Docking 
 
Computational protein-protein docking is a technique for predicting how one protein will 

bind to another. Given two proteins of identified structure that are known to interact, 

docking methods may determine their natural complexed structure. The information of 

how and where two proteins bind allows a large number of further studies. Most of them 

are related to the field of drug design. Although RCSB PDB already contains a number of 

protein-protein complex structures, crystallization of protein-protein complexes remains 

to be a very challenging process due to rather weak affinities between the protomers.  

Performing a protein-protein docking first requires the structures of the two proteins. 

Given the complexity of the structures considered at the atomic level, a simplified 

description of the structure is typically constructed. For example, the protein structure can 

be reduced to a series of cubic elements by discretizing the three-dimensional space using 

a grid (figure 15). Defining the grid size regulates the level of detail: the larger the grid 

spacing, the blurrier the representation of the molecule. Discretized structures on a grid 

allow fast surface matching when using methods such as Fast Fourier transform. It 

suffices to consider the relative movement of one protein with respect to the other one 

that is kept fixed at the center of the grid. When considering a translational (x, y, and z) 

scan only, the mobile molecule B moves through the grid representing the static molecule 
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A and a function describing shape complementarity fC is computed for each relative 

orientation. Mathematically, the correlation function fC = fA * fB is given by: 

! 

fC = fAx,y,z * fBx+" ,y+# ,z+$

z=1

N

%
y=1

N

%
x=1

N

%  

where N is the number of grid points along the cubic axes x, y, and z and !, ", and # are 

the translational vectors of the mobile molecule B relative to the static molecule A. Since 

fA and fB are both discrete functions representing the discretized molecules A and B, it is 

possible to calculate fC more quickly with the Fast Fourier Transform requiring only 

loge(N
3) calculations instead of N3. However, after each translational step molecule B can 

also be rotated around its axes x, y, and z. For this step Euler angles are used to minimize 

the computational efforts. Euler angles are a set of angles for given step sizes that lead to 

unique structural orientations in the three-dimensional space.  

Additionally, there are a number of algorithms employing heuristic methods for scanning 

the docking possibilities. Such methods are mostly considered when the computational 

efforts are high as it is the case for flexible docking. When one of the two molecules is 

not treated as a rigid-body but flexibly, conformational changes within the molecule are 

considered as well. However, most protein-protein docking approaches are rigid-body 

dockings, while flexible docking is rather applied for protein-ligand docking, where the 

protein is mostly held rigid and the small ligand is treated flexible.  

In 1992 Katchalski-Katzir et al. introduced a rigid-body docking using a Fourier 

transformation [75]. The authors developed a purely geometric docking approach 

considering flexibilities at the interfaces by allowing surface penetrations. In 2003 Huang 

et al. implemented this approach using the BALL library [76] and labeled it BDOCK. 

Due to the purely geometric validation of calculated complex formations, an additional 

scoring unit was added and later modified by Kunz and coworkers. By collecting e.g. the 

top 2000 ranked structures based on their interface complementarity, an additional 

program rescored these structures by evaluating their residue compositions at the 

interface region. Similar approaches were used in other groups as well [77][78][79]. A 

common scoring function for re-ranking docking outputs from purely geometric docking 

approaches is RPScore [79]. This pair potential function was derived from observed 

intramolecular pairings in a database of non-homologous protein domains, as well as 



INTRODUCTION  

36 

from observed intermolecular pairings across the interfaces in sets of non-homologous 

heterodimers and homodimers. The authors also applied fraction methods and achieved a 

significant improvement of the docking ranks when compared to the ranks after the shape 

complementarity docking. Fraction methods compute a potential based on the logarithmic 

rate of the counted and expected values. There are different concepts to define the 

expected value. One common way is based on the frequency of a residue to occur in the 

protein, which is based on the different frequencies of occurrence of different residues 

[80]. The mole-fraction method is proportional to the product of the fractional 

abundances of the residues in the pair. The contact-fraction method on the other hand is 

proportional to the propensities of the two residues to be paired with any residue. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: BDOCK procedure. Given two proteins A and B, where B is the smaller 
protein, both protein structures are discretized into a three-dimensional grid (here only 
two-dimensional). Using the Fast Fourier Transformation all translational steps are 
applied to the mobile discretized protein B in the static grid of protein A in order to 
calculate the correlation of the two contact surfaces as it represents the geometric 
complementarity. This procedure is repeated for each rotational step over all three axes.  
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1.2.5. Data Mining 

 
Previously, a number of techniques were introduced that generated large amounts of data 

that could be exploited to gain a deeper knowledge on biological processes. Analyzing 

such large and diverse data requires the aid of computational methods. In this chapter two 

common data mining methods are described. 

Data mining is defined as the process of discovering knowledge or patterns mostly 

hidden in large datasets. In the past years a large number of machine-readable datasets 

have literally led to a data explosion. Computational methods for extracting information 

from large quantities of different data are e.g. artificial neural networks, Bayesian 

networks, decision trees, genetic algorithms, statistical pattern recognition, support vector 

machines and others. Combining these methods with todays’ larger computing power 

improved the analyses significantly.  

Two main categories of data mining methods are common for analyzing protein function 

by a number of properties: clustering and classification. Clustering is used to organize a 

collection of unlabeled patterns into clusters of similar patterns. For a given model, these 

clusters will be most similar to each other than to other clusters. They yield clearer 

patterns from bulky data and ease their analysis. In the context of protein-protein 

interactions, clustering methods were used to identify clusters of e.g. different interface 

types for given interface properties.  

As shown elsewhere, similar functions yield similar interface properties [17]. Therefore, 

the use of classification techniques may assign functions to interface properties. Instead 

of learning functional classification of proteins in an unsupervised way like clustering, 

classification techniques start with a number of pre-classified patterns. The goal in 

classifications is to find a model that will be able to categorize a new pattern.  

 

1.2.5.1. Clustering 
 
The goal of clustering is to group a given set of data points by their similarity. Next to the 

available data points, a system for estimating the similarity has to be employed. When it 

comes to constructing phylogenetic relations, sequence similarity or homology is mostly 

used for clustering. In the case of protein-protein interaction clustering, a similarity 
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measure such as Pearsons’ correlation is used. Given the data and a measure for 

distances, a clustering method can then be used. There are two categories of clustering 

methods: hierarchical and non-hierarchical algorithms [81].  

Hierarchical clustering is based on a hierarchy structure like a tree, which is basically an 

interlaced series of partitions e.g. in figure 13. The hierarchy is built from individual 

elements by progressively merging clusters. The first step determines which elements 

have to be merged in a cluster. Usually, the two closest elements are clustered first. Given 

the example in figure 13, sequence 1 and 2 are clustered first since their similarity score 

is highest. This results in the clusters: (1,2)(3)(4)(5). In the next step the distances 

between all elements are computed again. In the case of sequences 1,2 the average 

distance from 1 and 2 to the other elements (average linkage/UPGMA), the minimum 

distance from 1 and 2 to the other elements (single linkage/Minimum Evolution) or the 

maximum distance from 1 and 2 to the other elements (complete linkage) can be utilized. 

The output of such algorithms is an interlaced series of partitions that can be cut at any 

level forming a different partition. A popular example for a hierarchical algorithm is the 

Neighbor-Joining algorithm [82]. The principle of this method is to find pairs of close 

neighbors that lead at each stage of the clustering to a minimized total branch length. The 

algorithm therefore starts with a star-like tree. 

Non-hierarchical clustering algorithms produce a single partition of the data instead of a 

clustering structure as a tree. Given large datasets, the complexity of such hierarchical 

trees can be high and inappropriate. K-means is the best-known partitioning algorithm. It 

starts with an initial partition and a fixed number of clusters and cluster centers and 

proceeds with assigning each element to its closest cluster center. New cluster centers are 

computed afterwards using the new cluster memberships. These steps are repeated until 

no changes are registered in the cluster memberships.  

Since the validation of clustering results is difficult and the efficiency of a given 

clustering algorithm depends on the clustered data, there is no optimal strategy for 

clustering data points.  
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1.2.5.2. Classification 
 
The idea behind constructing classification models for sample data is to train a system 

that can successfully classify new data. To estimate their predictability, the sample data is 

therefore randomly divided into a training set and a test set. Although classifications are 

mostly applied to large and labeled datasets, many recent studies also analyze rare 

structural data [83][84][85][86][87][88][89][90][45][46]. In that case, the division into 

training and test set is quite undesirable. A more suitable way to deal with this problem is 

the use of resampling techniques such as cross-validation. Taking the leave-one-out 

cross-validation, one data sample is taken out as a test sample while the remaining 

samples are used for the training. Systematically taking out each data sample for testing 

while training the remaining set will lead to an average prediction accuracy for a 

classification model. This way the full use of the limited number of data samples was 

assured for testing as well as for training. However, depending on the dataset this 

validation may become computationally very costly and inappropriate for some systems. 

In these cases the k-fold cross-validation is used where the dataset is randomly 

partitioned into k mutually exclusive test partitions and k-1 partitions are used for the 

training. The average error rates over all k partitions are then the cross-validation error 

rate. Mostly the 10-fold cross validation method is used. 

There exists a large number of classification methods. Commonly used methods are 

Bayesian classifiers, linear discriminant analysis, nearest neighbor classification, 

classification tree, regression tree, neural networks, genetic algorithms, and very recently 

support vector machines. 

Support vector machines classify data samples into two classes by fitting hyperplanes 

between the data points (figure 16). Although there are often many possible hyperplanes, 

the optimal hyperplane classifier stands in the focus of interest. The maximal margin of a 

separation can be uniquely constructed by solving a constrained quadratic optimization 

problem involving support vectors, a small subset of patterns that lie on the margin. The 

support vectors, often just a small percentage of the total number of training patterns, 

contain all relevant information about the classification problem. Figure 16 shows a 

simple partitioning of ‘O’ and ‘X‘ data. A linear separator can be constructed to separate 

the two classes as indicated by the red line. In cases where the SVM cannot linearly 
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separate the two data samples, non-linear decision rules (also called kernel functions) can 

be applied. Such functions map the data points into a high-dimensional feature space and 

then construct a linear separating hyperplane with maximum margin.  

Support vector machines have become very popular in the area of classification since 

they always find a global minimum, while other strategies may get stuck in local minima. 

Its simple geometric interpretation is easily computed and can be applied for many cases. 

Similar to the clustering algorithms, no particular SVM kernel function is guaranteed to 

lead to sensitive classifications.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Maximum-margin hyperplanes (blue lines) for a support vector machine 
trained with samples from two classes (circles and crosses). Samples along the 
hyperplanes marked with red circles are called the support vectors. The red line is the 
linear separator for this training sample. 
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Statistical Analysis of Transient Protein-Protein 
Interfaces 
 
 
 

 

2.1. Overview 

 
In this chapter a non-redundant set of 170 protein-protein interfaces of known structure 

was collected and statistically analyzed for residue and secondary structure element-

compositions and pairing propensities, as well as for side-chain and backbone interaction 

frequencies. A major goal of this work is to combine a number of previously analyzed 

aspects of protein-protein interactions to get a deeper insight in their nature. By now this 

was not possible, since most previous studies were based on different interface criteria, 

different and partially improper datasets, and different foci on types of interactions. The 

results of this chapter were published in the journal ‘PROTEINS: Structure, Function, 

and Bioinformatics’ in August 2005 [67].  

 

2.1.1. Analysis of Protein Interfaces  

 
Early statistical studies on protein-protein interactions have compared the compositions 

of internal and external interfaces [24][91][71][66][92][25][93]. Due to the small number 

of available structural data for protein-protein complexes, most of the studies did not 

distinguish between homo-multimers and hetero-multimers, as well as between 

permanent and transient interactions. This led to contradictory observations. Some studies 

showed a large dependency of residue composition on the type of the interfaces [91][25], 

whereas other reported that the residue compositions of different types of interfaces are 

rather similar [71][66][94]. Ofran and Rost introduced six types of interfaces [17]. For 

each interface type, they reported characteristic residue composition and residue pairing 

propensities.  

 

2 
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2.1.2. Packing of Interfaces 

 
A generally accepted conclusion from analyzing known structures of protein-protein 

complexes is that interacting proteins have a high degree of surface complementarity 

[95]. Tight packing of structural elements is therefore observed inside and between 

proteins [96][97]. It is interesting to look at the role of geometric complementarity in the 

packing of secondary structure elements as well. Jiang et al. characterized the role of 

geometric complementarity in secondary structure element-packing using a systematic 

docking procedure in order to recreate the crystallographically determined packing of 

secondary structure elements in known protein structures [98]. The apparent importance 

of the geometric match allowed prediction of the correct packing of the secondary 

structure elements based on a geometric fit alone. From high to low, the best packing 

were "-sheet and "-sheet, loop and loop, !-helix and !-helix, and !-helix and "-sheet. 

Such interface packing differs from core packing. Richards found that in known 

structures, core residues fill almost all the available interior space with minimal 

geometric strain and no steric overlaps [99]. Such dense packing is thought to provide 

many favourable van-der-Waals interactions as well as exclusion of solvent and thereby 

maximizing hydrophobic stabilization. Considering the comparably less hydrophobic 

surface and interface regions and the interfacial water molecules [25], the interface 

packing is probably not as tight as the core packing.  

 

2.1.3. Transient Binding 

 
The structural and thermodynamic basis for protein folding, protein assembly and 

protein-protein interactions are non-covalent contacts between residue side-chain and 

backbone atoms. Such contacts enable a large variety of associations and interactions 

within and between proteins. Since secondary structure elements !-helix and "-sheet are 

stabilized by hydrogen bonds between backbone atoms, these elements are obviously not 

residue-specific. In order to adopt their individual folds, protein structures are also 

stabilized by favourable backbone – side-chain and side-chain – side-chain contacts.  

Further examples for non-covalent interactions are such as those between side-chains of 
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separately folded chains, which lead to the assembly of multi-chain proteins. These are 

expressed in permanent interactions. In their review, Nooren and Thornton distinguished 

between transient and permanent complexes [16]. Their definition considers the 

association strength of complexes but not the environmental relation between the bound 

and unbound state. To incorporate this aspect, Nooren and Thornton used an additional 

classifier: obligate and non-obligate complexes. Here, the term “transient” is said to also 

fulfill the requirements for non-obligate and the term “permanent” for obligate 

interactions, since antigen-antibody interactions are discriminated. 

 

2.1.4. Different Interface Sizes 

 
Apparently, due to the lack of sufficient data only few attempts were made in the 

literature to distinguish the properties of rather small, middle, and large interfaces. In the 

process of analyzing the distributions of two groups of interfaces of different size, Glaser 

et al. found that hydrophobic residues occur more often on large contact surfaces, while 

polar residues prevail on small surfaces [66]. The exception is arginine, which is more 

common at large than at small contact surfaces.  

 

2.2. Methods 

- Methods 

2.2.1. Collecting Transient Protein-Protein Complexes 

 
In order to collect structural information on transient interfaces, all multiple-chain protein 

entries in the PDB (September 2003) containing at least two chains each with a length of 

more than 10 residues were examined. Furthermore, discriminating criteria were 

employed for ignoring glycoproteins, carbohydrates, DNA/RNA and any DNA/RNA 

hybrids. Structures with resolutions lower than 3Å were skipped. To reduce the large 

number of non-complexes in the remaining list, the term “complex” was required to 

occur in the PDB header of the entries. Removing all homologous sequences at a level of 

identity higher than 90% (default setting on the RCSB PDB site) led to a set of 286 PDB 

files. Ensuring that the dataset included the desired complexes with the correct chain 
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identifications for the interaction, all structures were semi-manually examined and 

therefore approximately 130 complexes overruled. This step was necessary since a large 

number of permanent complexes, small ligand complexes, and antibody-antigen 

structures still passed the previous filters. The antibody-antigen interactions were not 

considered here because of their rather ambivalent classification, where the connection 

strength leads to rather permanent interactions although the protomers occur stably in 

their unbound state (non-obligate complexes). Another reason for not considering 

antibody-antigen interactions is based on the variable regions or complementarity 

determining regions containing highly variable residues that form loops. This will 

probably shift the statistical results for identified propensities in pairing of secondary 

structure elements. However, Lawrence and Colmans’ study on the shape 

complementarity at protein-protein interfaces observed that antibody-antigen interfaces as 

a whole exhibit poorer shape complementarity than it is found in other systems involving 

protein-protein interactions [100]. This can be understood in terms of the fundamentally 

different evolutionary history of particular antibody-antigen associations compared to 

other systems considered in the study, and in terms of the differing chemical natures of 

the interfaces.  

In order to enrich the dataset, another 59 complexes from the ZLAB benchmark set [101] 

for protein-protein docking were added. These complexes passed the examinations and 

resulted in 153 PDB files involving 170 interfaces and 24,290 residue pairs. The list of 

transient complexes is shown in table 4 and the composition of their functional classes is 

illustrated in figure 17. The dataset is obviously enriched by enzyme complexes, which 

includes the group of enzyme-inhibitor complexes. These interactions are very strong and 

may be defined as permanent interactions. However, as enzyme-inhibitor complexes are 

regulatory elements in biological systems, their dissociation is required. They are 

therefore counted as “transient” interactions. 
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1ABO-A C 1B7Y-A B 1BVK-B C 1DHK-A B 1FPC-H I 1IRA-X Y 1MTN-B D 1SPB-P S 1VRK-A B 2TGP-Z I 
1ABR-A B 1BBZ-A B  1BVN-P T 1DN1-A B 1FQ1-A B 1ITB-A B 1MTN-C D 1STC-E I 1WQ1-R G 3EZE-A B 
1ACB-E I 1BCK-A C 1CA0-B D 1E0A-A B 1FSS-A B 1JST-A B 1NOC-A B 1STF-E I 1XDT-T R 3HHR-A B 
1AFE-H I 1BDJ-A B 1CA0-C D 1E96-A B 1GFW-A B 1JSU-A B 1NS3-A C 1TAB-E I 1YDR-E I 3HHR-A C 
1AHW-A C 1BGX-T H 1CBW-B D 1E9H-A B 1GGR-A B 1JSU-A C 1NSG-A B 1TAW-A B 1ZBD-A B 3R1R-A D 
1AHW-B C 1BGX-T L 1CBW-C D 1EAW-A B 1GL0-E I 1JSU-B C 1PDK-A B 1TBR-H R 2BTF-A P 3SGB-E I 
1AK4-A D 1BI7-A B 1CDK-A I 1EAY-A C 1GLA-F G 1JXP-A C 1PYT-A C 1TCO-A C 2FAP-A B 3SIC-E I 
1AN1-E I 1BI8-A B 1CEE-A B 1EBD-A C 1GOT-B G 1KIG-H I 1PYT-A D 1TCO-B C 2KAI-A I 3TEC-E I 
1ATN-A D 1BJR-E I 1CGI-E I 1EBD-B C 1GPQ-A D 1KKL-A H 1PYT-B D 1TFX-A C 2KAI-B I 3TGI-E I 
1AVG-H I 1BMM-H I 1CHO-E I 1EFU-A B 1GUA-A B 1KXQ-A H 1QBK-B C 1TGS-Z I 2PCC-A B 4SGB-E I 
1AVW-A B 1BMQ-A B 1CM1-A B 1ETH-A B 1HE8-A B 1KXV-A C 1QMZ-A B 1TMQ-A B 2PCF-A B 5SIC-E I 
1AVZ-B C 1BP3-A B 1CSE-E I 1FAP-A B 1HIA-A I 1L0Y-A B 1SBN-E I 1TPA-E I 2PTC-E I 7CEI-A B 

 

 

Table 4: List of 170 transient complexes. PDB ids and chain-identifiers are shown. 
 

   
Figure 17: Dataset composition of 170 transient complexes. 

 

2.2.2. Automated Analysis 

 
Based on VMD each coordinate file was processed using a tcl/tk script retrieving all 

heavy atoms found within a given distance between two different chains. A residue is 

understood to form an interfacial contact in the case where the distance between any of 

its heavy atoms and any heavy atom from a partner chain is less than 5Å (also see section 

1.2.4.1). This approach was also used by Aloy et al. [70]. 

Tracing the atom back to its corresponding residue allows analyzing interface residue-

compositions. Given the amino acid-description of the atoms and the sequence position 

of the residues facilitated the retrieval of the corresponding secondary structure element 
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as assigned by VMD. This yields the secondary structure element-composition and 

pairing propensities. The interactions between side-chain and backbone atoms and their 

frequencies were analyzed as well. The distance criterion for this analysis was reduced to 

3.5Å in order to discriminate non-specific interactions at the atomic level in a more 

satisfying way and yet keep sufficient data for significant statistical analyses. In this 

analysis the collected atom-pairs were traced back to the side-chain or backbone part of 

the corresponding amino acid. Finally, the dataset was split into differently sized 

interfaces. For that all interface participating residues were counted and their number was 

used for separating the interfaces into “small”, “middle”, and “large”.  

 

2.2.3. Normalization 

 
The statistics on pairing propensities of residues and secondary structure elements were 

normalized against the probability for a given residue or secondary structure element to 

occur at the interface given the following formula: 

! 

Sij =
cij

ni

N
*
nj

N

 

where Sij is the score for the pairing propensity between the residues i and j or the 

secondary structure elements i and j. The value of cij is the number of binding pairs 

between i and j that occur at the interfaces of the dataset. The denominator is the product 

of relative frequencies of the residues or secondary structure elements i and j occurring at 

the interface. Disturbingly, the dataset turned out to be asymmetric. After investigating 

the original PDB files, it was found that some files (i.e. 1EAW) assigned several residues 

to the same sequence position, whereas the VMD program expects a unique residue for 

each position. To retrieve a symmetrical matrix without examining the whole content of 

the dataset, the arithmetic mean for both fields was then used differing by approximately 

5% in the worst case. 
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2.3. Results and Discussion 

- Results and Discussion  

2.3.1. Residue Composition at Interfaces 

 
Two residues were considered to be in contact when the distance between any of their 

heavy atoms was less than or equal to 5Å. In this assay, all of the residues participating at 

the interface were counted. The average distribution of the entire dataset is 30.4% 

hydrophobic, 32.8% hydrophilic uncharged, and 36.8% charged residues. In opposite to 

other studies on protein-protein interfaces, the charged residues are the largest fraction 

[102][103][21][104]. Even the hydrophilic uncharged residues appear more frequently 

than hydrophobic residues. This finding attributes transient complexes that need to bind 

quickly and specifically but do not need to be stable for a long period of time and thus 

require a higher rate of hydrophobic residues. Comparing these results to large-scale 

studies [25][24][105][106][107][108][109] reveals the differences between dissimilar 

protein-protein interfaces. This is in agreement with Ofran and Rost [17]. It is not 

expected for permanent protein complexes to have a stable unbound state requiring a 

rather hydrophilic interface.  

The tendency of some residues, such as methionine, tryptophan, and cysteine, to appear 

less frequent at protein interfaces agrees with the results and statistics of most other 

studies. Figure 18 shows a detailed graph for the interface distribution compared to the 

composition in SWISSProt. Methionine, tryptophan, cysteine, phenylalanine, tyrosine, 

arginine, and histidine are more strongly represented at interfaces. This finding generally 

agrees with those of Ofran and Rost focusing on hetero complexes [17]. Tyrosine and 

arginine are typically overrepresented in hot spots [110][24]. The enrichment of tyrosine 

as an aromatic residue can be explained by its ability to contribute binding energy 

through the hydrophobic effect without a large entropic penalty since tyrosine has few 

rotatable bonds. Furthermore, tyrosine is capable in forming multiple types of 

interactions in the lowered effective dielectric environment of hot spots, which is very 

favourable [110]. Besides tyrosine, a preference is also found for arginine, which may 

contribute to binding through electrostatic steering and is capable for multiple types of 

preferred interactions. Salt bridges can be formed with its positively charged guanidinium 



STATISTICAL ANALYSIS OF TRANSIENT PROTEIN-PROTEIN INTERFACES  

48 

motif, and the guanidinium "-system allows a delocalization of the electron, which leads 

to an aromatic character. It also has the ability to form hydrogen-bond networks with up 

to five H-bonds. The high preferences for arginine could also be explained with the 

ability of arginine to “guide away” water molecules from the interface during complex 

formation, or, conversely, upon dissociation. Pairs of aromatic amino acids tend to be 

preferred due to the "-" stacking. The higher occurrence of methionine, phenylalanine, 

tryptophan, cysteine, and histidine compared to the SWISSProt distribution could be a 

statistical balance of the under-representation of hydrophobic amino acids such as 

alanine, valine, leucine, and isoleucine. The under-representation of such hydrophobic 

amino acids at transient interfaces is very important. It ensures a stable unbound state and 

facilitates dissociations. 

 
Figure 18: Residue composition of protein-protein interfaces compared to the general 
composition in the SWISSProt database [111]. This data was retrieved from a distance 
criterion of 5Å between two interacting chains of 170 transient interfaces.  
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2.3.2. Residue Pairing Propensity at Interfaces 

 
Given the set of interface residues from the previous assay, each interface residue was re-

selected and queried in order to find every corresponding residue in the binding chain that 

is located within 5Å to the selected residue. The computed statistics are given in a 20x20 

matrix as shown in figure 19. These scores are normalized against the fractional 

abundance of each residue at the interface. For better visualization, a few representative 

rows for specific residues are shown more detailed in figure 20. Hydrophobic residues 

prefer to interact with other hydrophobic residues, which is evident from figure 20a. In 

contrast, pairs of hydrophobic and hydrophilic residues were associated less frequently 

compared to the number of hydrophobic–hydrophobic interactions, see figure 20b, while 

the charged residues showed very specific preferences according to their charge (figure 

20c and figure 20d). Furthermore, the results support Glaser and coworkers’ finding on 

very high association frequencies between tryptophan and proline as shown in figure 19. 

Such pairings are often found at the binding interfaces for proline-rich peptides on 

adapter domains like SH3. Another high score was observed for the interactions between 

phenylalanine and isoleucine. This is not surprising since both hydrophobic amino acids 

have rather flat and elliptic side-chains that have the ability to geometrically match.  

As expected, one of the highest interaction peaks of figure 19 is found between arginine 

and glutamic acid. While the relative orientation of the charged groups of both residues 

suggests electrostatic attraction between both groups, a closer look reveals a broad range 

of residue-residue side-chain distances and angles reflecting a variety of electrostatic 

interactions, including salt bridges and hydrogen bonding. In addition to this, Glaser et al. 

also found that there is a hydrophobic interaction that may add to the pairing propensities 

of oppositely charged residues [66]. Even though these statistics show interesting but 

expected aspects of transient binding sites and underline the statistical strength of this 

study, the matrix does not correlate well with those of other studies, such as the RPScore 

matrix and Glaser’s ‘residue-residue contact preferences matrix’ [66]. Same happens 

between these two matrices. The highest peaks on phenylalanine and isoleucine are found 

in both matrices, as well as the favourable hydrophobic–hydrophobic and polar–polar 

interactions. The binding of proline and tryptophan is not as highly scored as in this 
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matrix, but the preference of charged residues, such as lysine and arginine for aspartic 

acid and glutamic acid, fits to these scores.  

The dataset of Glaser et al. contains 621 interfaces, 404 of which are homodimers and 

217 of which are heterodimers, including antigen-antibody interactions. The different 

character of the investigated interfaces may explain the low correlation with this study.  

Ofran et al. showed that there are significant differences in residue composition and 

residue-pairing propensities between interactions of residues within the same structural 

domain and between different domains, between permanent and transient interfaces, and 

between interactions associating homo-oligomers and hetero-oligomers [17]. This leads 

to the assumption that the generalized data of RPScore and Glaser and coworkers’ study 

may be the fundamental reason for the observed low correlation. This scoring matrix may 

therefore be more suitable for characterization of hetero-oligomer associations.  

 

 
 

Figure 19: Amino acid-pairing propensity matrix of transient protein-protein interfaces. 
Scores are normalized pairing frequencies of two residues that occur on the protein-
protein interfaces of transient complexes. 
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Figure 20: Relative occurrence for binding partners of (a) leucine, (b) asparagine, (c) 
aspartate, and (d) lysine. Black bars indicate hydrophobic residues, empty bars 
hydrophilic residues, and grey bars charged residues. The higher the score, the more 
frequently such pairs occur in the dataset. 
 
 

2.3.3. Secondary Structure Element-Composition 

 
The following analysis focuses on the types of secondary structure elements assigned to 

the interface residues. In addition to the interface composition, it might be interesting to 

study the types of secondary structure elements that are involved in these interfaces. The 

secondary structure element-composition is shown in figure 21. Helices and "-sheets 

occur infrequently, whereas turns/loops are overrepresented. Their statistical 

overrepresentation may be due to their ability to interact with different secondary 

structure elements. This suggests that interfaces need such bridges since larger secondary 

structure element-segments may come from the core of the protein and end at the surface 

or redirect into another secondary structure element-segment. The role of !-helices and 

"-sheets at the interface of transient interactions seems to be of less importance.  
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Figure 21: Secondary structure element-composition at transient protein-protein 
interfaces. ‘Helix’ represents !-helix, 3-10 helix and "-helix. 
 

2.3.4. Secondary Structure Element-Pairing Propensity 

 
The pairing propensities of secondary structure elements were collected from the residue 

propensity lists, simply by selecting the secondary structure element information for each 

of the residues. In the case of helices, including !-helices, 3-10 helices, and "-helices, 

and "-sheets the propensities are clear. As Jiang et al. ascertained, there is a strong 

preference for helix–helix and "-sheet–"-sheet interactions [98]. However, the results in 

figure 22 do not match in all cases. Whereas Jiang et al. reported that coil prefers coil the 

most, a larger preference between coil and turn/loop is found here. Interestingly, these 

results show a low pairing frequency between helix and "-sheet. Helix and "-sheet do not 

provide as tight packing as helix–helix and "-sheet–"-sheet do. This leads to the 

conclusion that the steric match plays an essential role in the packing of secondary 

structure elements, which is supported by other studies as well.  
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Figure 22: Secondary structure element-pairing propensity matrix. ‘Helix’ represents !-
helix, 3-10-helix and $-helix. Higher scores refer to higher pairing propensities. 

 

2.3.5. Side-Chain–Backbone Pairing Propensity 

 
In order to enhance the precision and still retain statistically strong data, a tighter distance 

criterion of 3.5Å between the heavy atoms of each interface residue and the 

corresponding chain was chosen. This analysis shows that interactions between 

transiently bound proteins occur through a variety of backbone–side-chain contacts as 

reflected in figure 23. This agrees with findings of Aloy et al. and Jackson [70][112]. 

Additionally, the distribution of secondary structure element-pairings within certain 

binding-combinations is examined. Figure 21 showed that helices and "-sheets are not 

exceptionally overrepresented at interface area. To verify this, the next analysis focused 

on helices – including !-helices, 3-10 helices, and "-helices – and "-sheets and summed 

up all remaining secondary structure elements as ‘else’. The previous findings are 

confirmed in this more stringent analysis, as shown in figure 23. Helix and "-sheet 

pairing combinations occur rarely, while the remaining, rather unstructured elements are 

more strongly involved in pairing combinations.  

Figure 24 illustrates the preferred pairing combinations of secondary structure elements at a 

given side-chain and backbone interaction. Helix–helix pairs are more strongly represented 
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in side-chain–side-chain interactions. As already discussed, tight packing plays an 

important role in protein-protein interactions. Therefore, it is assumed that helix–helix pairs 

are preferred over helix–"-sheet pairs due to their ability to pack more tightly. Such helix 

pairs have more side-chain interactions involved than backbone atoms. On the other hand, 

the tightest packing for "-sheets is with "-sheets, which involves more backbone–backbone 

interactions. While helix and "-sheet pairs are not as tight in their packing, the interaction 

of side-chain and backbone atoms is quite balanced. With this study, the role of tight 

sterical packing at the interface region was underlined for transient protein-protein 

interactions, focusing on helices and "-sheets. In general, these two structural elements 

play a minor role when compared to the remaining, rather unstructured secondary structure 

elements. This underlines the concept that helices and "-sheets tend to emerge from the 

interior of the protein and are redirected to the interior by structures such as turns, loops or 

even coils. Long stretches of helical or "–sheet structures are highly unlikely to be part of 

an interface when it comes to transient protein-protein interactions. 

 

 
Figure 23: Statistics on side-chain and backbone interactions and the secondary 
structure element-pairing propensities within given binding combinations. ‘Helix’ 
represents !-helix, 3-10-helix and $-helix while ‘else’ sums up any secondary structure 
element except helices or "-sheets. 
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Figure 24: Relative distribution of helix–helix, helix–"-sheet and "-sheet–"-sheet for all 
three binding combinations of side-chain atoms and backbone atoms. These frequencies 
derived from the distribution within one binding combination of figure 23. 
 

2.3.6. Comparison of Three Different Interface Sizes 

 
This analysis is based on the interface residues initially counted at a distance criterion of 

less than 5Å. Figure 25 shows the number of interfaces of a given size, which is 

quantified with the total number of residues at the interface on both chains. As a rough 

separation, interfaces with less than 33 residues were defined to be “small”, more than 32 

but less than 68 residues to be a “medium”-sized, and everything beyond 67 residues was 

declared as a “large” interface. This separation was derived from the average and the 

standard deviation of this distribution. 

Figure 26 shows the decreasing interface hydrophobicity as the interfaces become 

smaller. In general, hydrophobic residues contribute to binding affinity, but not as much 

to specificity. The opposite is valid for polar and charged residues. Small interfaces are 

characteristic for electron transfer complexes involved in energy metabolism where the 

two proteins need to bind quickly and with high specificity. Long lasting associations are 

neither required nor desired. Consequently, the frequency of hydrophobic residues is 

reduced and the number of polar and charged residues increased. On the other hand, large 
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interfaces rather need to be stabilized than specifically bound, which leads to the higher 

abundance of hydrophobic residues.  

Interestingly, the curve of charged residues slightly drops when it comes to smaller 

interfaces. This may be an effect caused by the way interface residues are selected (here 

with a cutoff value for the distance between the atoms). Salt bridges between two charged 

residues may have distances larger than 5.5Å [70][113], which is beyond the threshold 

used here. The statistics could be “confused” at this point, considering that fast-

associating and short-lived complexes prefer small interfaces and larger interfaces belong 

to slow-binding processes. The interpretation of these findings is hampered by the fact 

that kinetic and thermodynamic data is missing for many protein-protein interactions, or 

at least are not available in a convenient form. 

 
 

Figure 25: Interface size-classification. This plot shows the number of complexes of a 
given interface size (quantified with the number of residues that are involved in the 
interface). The classification was derived by the average and the standard deviation of 
this distribution. 
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Figure 26: Interdependency between interface quality and interface size. In addition to 
each interface-quality flow a linear trend graph is also shown. 
  
 

2.4. Conclusion and Outlook 

 
Statistical information was collected on different properties of transiently bound interfaces. In 

general, the findings agree with those of previous studies as well as with the interpretation of 

experimental crystal structures. The differences from other studies found for interface-pairing 

propensities of residues most likely result from the focus of this work on transient 

interactions only. A new observation for the residue compositions is that charged residues 

dominate the distribution, and hydrophilic uncharged residues appear more frequently than 

hydrophobic amino acids. This emphasizes the importance of interface recognition rather 

than the stability of the complex guaranteed by hydrophobic residues. The results on pairing 

propensities of residues are as expected. Hydrophobic residues prefer interactions with other 

hydrophobic residues, while the charged residues show very specific preferences according 

to their charge. The analysis of the secondary structure element-content reveals that helices 

and "-sheets play a minor role at transient protein-protein interfaces. It is suggested that 

longer secondary structure elements come from the core of the protein and will be redirected 

at the interface leading to an enrichment of the rather unstructured secondary structure 

elements, mainly turns, loops and coils. A closer look at the secondary structure element-
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pairing propensities shows the importance of packing, which is supported by other studies as 

well. Further analyses on side-chain and backbone interactions suggest high preferences 

between side-chain–backbone binding-combinations and underline the results on tight 

packing.  In the studies on differently sized interfaces it was found that the hydrophobicity of 

interfaces drops as the interface becomes smaller. Generally speaking, hydrophobicity 

contributes to binding affinity rather than specificity. The opposite is true for polar and 

charged residues.  

Finally, it should be noticed that the source of matrices for the pairing propensities of residues 

and secondary structure elements and additional analyses are based on the same method and 

dataset. This ensures compatibility between the different criteria and allows combination of the 

matrices as different steps in a filtering procedure. It is nearly impossible to derive comparable 

results from other independent studies, which are mostly based on different data and methods 

and hardly allow an overall conclusion. The next step will be to implement this information 

about compositions and pairing propensities of residues and secondary structure elements into a 

docking tool to test its performance of scoring protein-protein docking solutions. 
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Enhanced Sensitivity of a Docking Approach  
 

 

 
 

3.1. Overview 

 
In chapter 2 a non-redundant set of 170 protein-protein interfaces from transient 

complexes was collected and analyzed. A large number of characteristic properties were 

observed that may allow distinguishing between true transient complexes and other 

complex types or even crystal packing that form unspecific interactions. In this chapter a 

number of previously gathered information is used to test their predictability in finding 

native complex-formations proposed by a rigid-body docking approach. FFT docking 

was previously implemented in the Lenhof and Helms research groups by Hongbo Zhu 

and Bingding Huang using the BALL library. This implementation was termed BDOCK. 

Here, a modified version is employed and combined with residue and secondary structure 

element-pairing propensities in order to re-score highly complementary complex 

formations proposed by BDOCK.  

The modification of the scoring function in BDOCK and the implementation of secondary 

structure element-scoring are based on a supervised FoPra thesis of Kerstin Kunz. This 

chapter will therefore focus on the benchmarks and analyses of the system. 

 

3.1.1. The Rigid-Body Docking Problem 

 
Starting off with the known three-dimensional structures of two proteins, protein-protein 

docking programs attempt to predict the three-dimensional structure of their complex. 

This became an important area in structural bioinformatics, as the number of 

experimentally determined protein structures rapidly increases and their complex 

formation often remains unknown. Keeping the unbound proteins rigid significantly 

reduces the computational time required for finding the optimal orientation of the two 

proteins. Katchalski Katzir proposed one of the most popular rigid-body docking 

3 
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approaches in 1992 [75]. Discretizing the proteins on a cubic grid with given grid spacing 

and transforming the calculation into the Fourier space dramatically lowered the 

computational complexity for solving the search problem (see also section 1.2.4.3). It was 

previously stated that interacting proteins have a high degree of surface complementarity 

[95]. Tight packing of structural elements is therefore also observed between proteins 

[96][97]. This reduces the assessment of the orientations between the two proteins to the 

assessment of shape complementarity, which also reduces the computational complexity 

of the docking approach. However, given that proteins may undergo conformational 

changes once they form complexes and the evaluation of docking samples is now done 

just by shape complementarity, the algorithm is expected to produce a large number of 

false positive docking samples. There were a number of attempts trying to enhance the 

sensitivity of such type of docking approaches [114][115][116][117][118]. However, 

most of these solutions are time-consuming and therefore less appropriate for screening a 

large number of proposed complex formations.  

In this chapter, an alternative approach will be tested that re-scores the proposed complex 

structures using given pair potentials for residues and secondary structure elements.  

 

3.2. Methods 

 

3.2.1. BDOCK 

 
A weakness of rigid-body docking is the shape treatment based on rigid protomer 

structures, which may undergo conformational changes upon complex formation (induced 

fit). An obvious improvement of the rigid-body docking process therefore is the 

consideration of protein flexibility. In the case of keeping the protomer structures rigid, one 

should at least allow for some intermolecular penetration to mimic the effects of flexibility. 

However, such kind of flexibility consideration may only cover flexibility of side-chains 

but not of the backbone. The motions that constitute backbone flexibility are defined as 

hinge-bending [119] and were addressed for protein-ligand docking approaches [120] and 

just recently for protein-protein docking as well [121]. Another weakness may arise once 

complex formations are rated purely by their geometric complementarity. Given these 
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frailties, Huang and Zhu implemented the FFT docking algorithm in 2003 (Master thesis) 

using the BALL library and also introduced a subsequent screening function based on 

residue-residue pairing propensity-scoring in order to overrule most false positive 

structures.  

BDOCK consists of a number of specifications and parameters that either lead to a 

detailed but slow, or to a blurry but fast prediction of complex formation such as the grid 

size, angle steps, and surface thickness for the surface penetration. Additionally, the 

native complex structure can be specified and used as an assessment for the predicted 

complexes computing their RMSD. The program outputs a specified number of predicted 

complex formations ranked by the order of their surface correlation score (see also 

section 1.2.4.3). The complex formations are described as the translational and rotational 

translocations of the mobile protomer in relation to the static protomer.  

In 2005 Kunz and coworkers modified BDOCK and extended the scoring unit with 

secondary structure element-based scoring (FoPra thesis). 

 

3.2.2. Docking Scoring-Function 

 
Rigid-body docking approaches based on pure geometric complementarity do not 

guarantee to find the in vivo complex formation since their native formation does not 

necessarily rely on the geometric fit at the interface alone but also on biochemical 

complementarity. Thus, the developers of BDOCK extended the FFT docking 

implementation with a scoring unit that re-assesses the best complex formations based on 

their geometric complementarity by considering amino acid-pairing propensities. 

Although there are similar attempts based on atomic interactions [114][122], the use of 

residue-level potentials provides smoothness in the energy landscape that is likely to 

reduce the sensitivity of the function to precise atomic position. Additionally, these 

residue-based potentials are faster to evaluate. 

Here, the scoring unit accesses a matrix containing residue-residue pair potentials. These 

potentials are based on counted residue pairs within the interface region for a given 

interface criteria and are statistically evaluated.  
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3.2.2.1. RPScore [79] 
 
RPScore (Residue Level Pair Potential Score) is based on empirical pair potentials 

between amino acids. Each potential arises from pairing propensities of residues derived 

from interface-residue pairs within a given distance cutoff. Moont and coworkers 

collected a number of 103 non-homologous interfaces from the SCOP database. The 

authors specified, among others, three interface criteria and two fraction methods. A 

residue pair is selected if a specified distance cutoff between the atoms of interacting 

protomers is not exceeded for: (a) C" atoms, (b) any atom, or (c) the side-chain atoms. 

Furthermore, two different fraction methods were employed in order to retrieve residue-

pair potentials. The potential calculation is based on a logarithmic ratio of the counted 

and expected pair: 
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where Si,j is the potential for the residue pair i and j. The value ci,j is the number of 

counted residue pairs i and j and ei,j marks the expected number of pairs i and j that can 

be calculated either with the mole-fraction or contact-fraction method. The mole-fraction 

method is proportional to the product of the fractional abundances of the residue in the 

pair: 
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where C is the sum of all obtained contact pairs and ni/N, and nj/N, the fractional 

abundances for i and j. On the other hand, the contact-fraction method is proportional to 

the product of the fractional contact propensity of the residue in the pair: 
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where ci/CN and cj/CN are the frequencies for i and j to be involved in any residue pair. 

The value of the score Si,j for each pair can be considered simply as a statistical measure 

of likelihood of that pair occurring. Since the quantity is a log fraction, the total 

likelihood for a structure is the sum of all the individual scores. 
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3.2.2.2. SARScore 
 
Similar to RPScore, a residue-pair potential was calculated from the dataset of 170 

transient interfaces. The residue-pairing propensities showed clear patterns, as well as the 

secondary structure element-pairing propensities and may prove useful discriminating 

false positive docking samples. Considering the rich amount of transient complexes and 

the larger dataset, the derived pair potentials can be expected to be more successful for 

scoring results from protein-protein docking than RPScore. In particular, this may be the 

case for unbound-unbound docking. Such protomers were structurally determined since 

their unbound state is stable. Complexes between stable protomers meet the criterion of 

non-obligate complexes, which is considered in the extended definition for “transient” as 

mentioned in chapter 2.1.3.  

Pair potentials were derived for data obtained with four different distance cutoffs in order 

to specify interacting residues: 4Å, 5Å, 6Å, and 7Å. Similar to RPScore, the mole-

fraction method and contact-fraction methods were applied to compute potentials. In the 

case of the mole-fraction method, the fractional abundances for a given amino acid were 

not calculated from the available data but retrieved from the SWISSProt statistics as 

shown in figure 18 [111]. It is assumed that the expected values become more accurate 

and the potentials more significant. For the contact-fraction, the fractional contact 

propensities of the residues collected from the available data were employed.  

In a preliminary work of Kunz, the suitability of these two fraction methods was 

analyzed. Kunz found higher predictabilities of mole-fractioned residue-pair potentials 

based on FFT docking approaches. Based on this observation, residue-pair potentials are 

considered in the mole-fraction method only. However, Kunz also implemented the 

compatibility to a scoring matrix based on secondary structure elements. Similar to the 

residue-pair potential, the secondary structure elements of the residue-pairs within a 

given distance cutoff were collected and converted into pair potentials applying the 

contact-fraction method only. The mole-fraction method was skipped due to the missing 

data from larger datasets containing fractional abundances on secondary structure 

elements. Also, the results in figure 21, where the distribution of the abundances for 

given secondary structure elements is illustrated, show a nearly flat distribution which 

may not lead to useful mole-fractioned potentials.  
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Ultimately, the dataset of 170 transient interfaces was divided into ‘small’, ‘middle’, and 

‘large’ sized interfaces, as described in chapter 2.3.6 and shown in figure 25. For each 

size, different pair potentials were computed based on the idea that the separation into 

differently sized interfaces may improve the docking sensitivity for matching docking 

samples. 

Further in this chapter, the label SARScore (Structure And Residue Score) will be 

referred to as the mole-fractioned residue-pair potentials (SARScore(res)) and contact-

fractioned secondary structure element-pair potentials (SARScore(struc)) based on the 

dataset of 170 transient interfaces.  

 

3.2.2.3. Implementation of the Pair Potentials in BDOCK 
 

Huang and coworkers implemented the FFT docking program using the BALL library. 

Using the BALL library facilitates simple implementation for the subsequent screening of 

docking samples by pair potentials. Specifying a cutoff for the best docking formations 

after their correlation value (default: best 2000), the complex formation is drawn from the 

given translational and rotational translocations of the mobile protomer and distances 

within all atoms are computed. If a computed distance between a given pair of atoms is 

below a cutoff value (default: 5Å), the corresponding amino acids are selected and the 

pair-potential value in the scoring matrix is retrieved. Summing up all pair potentials, a 

score for a given complex formation is calculated and used for re-ranking the complex 

samples from the docking as shown in figure 27. Kunz and coworkers programmed an 

additionally modified version of the scoring function that does not retrieve the amino 

acid-type for a given atom pair but its secondary structure elements stored in the PDB 

file. However, this may lead to incompatibilities since the secondary structure elements 

retrieved form the pair potentials are based on the module STRIDE [123] implemented in 

VMD and not on the secondary structure element assignments stored in the PDB file. 

Consequently, the PDB files of the protomers in the benchmark set were edited to store 

secondary structure element-labels computed by STRIDE.  
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Figure 27: Procedure of the scoring function for BDOCK. SSE stands for secondary 
structure elements. 
 

3.2.3. Benchmark 

 
Benchmarking docking approaches can be divided into two classes depending on the 

input of protomer structures. If the known crystallographic complex structure is separated 

in two protomers and then docked into a complex again, it is called bound-bound 

docking. In this case, the protomers already have the complex fold and only need to be 

arranged correctly. In the case of unbound-unbound docking, the separately crystallized 

protomer structures are used for docking. In practice, the protomer structures may 

undergo conformational changes upon complex formation. A simple arrangement of the 

protomers may not be precise enough. These cases are not only more challenging for 

most rigid-body docking approaches, but also the typical application for docking.  

In order to test the performance of the docking and scoring approaches, a set of protomers 

with known complex structures was taken from the ZLAB benchmark set 2.0 [124]. 

Although a number of complexes from the ZLAB were previously used to retrieve 170 

transient interfaces, the newer version contains a number of new structures that are not 

included in the current database. This was the case for 8 complexes: 1EWY, 2MTA, 
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1F34, 1E6E, 1PPE, and 1D6R. Additionally, 9 benchmark complexes included in the 

dataset of 170 transient interfaces were added. This way the predictability of known 

interfaces was tested and compared to the 8 unknown cases. All together, 17 structures 

were used to benchmark the docking and the scoring. 15 of these structures are rather 

simple tests, where the unbound-unbound structures barely change conformations 

(RMSD bound vs. unbound <1.5Å). Two structures undergo larger conformational 

changes and mark difficult tests as shown in table 5. All structures belong to the class of 

enzyme-inhibitor complexes and should yield greater efficiencies when compared to the 

RPScore potentials as the dataset of 170 protein-protein complexes also contains a large 

number of enzyme-inhibitor complexes (figure 17). In order to estimate the efficiency of 

the docking and scoring approach, the docked complex structures are compared to the 

native complex structure. RMSDs below 3Å are defined to be near-native structures, as 

was also done by Huang and Schröder [125].  

The basic parameters for these examinations are a grid spacing of 1Å, surface thickness of 

2Å to consider flexibilities at the binding area, core overlap-penalty of -15, and angle steps of 

10° for the rotations of the mobile protomer leading to 14,868 rotations over all three axis. As 

figure 27 shows, only the best 2000 structures ranked after their surface correlations will be 

considered for the scoring. Previously it was observed that most structures with low RMSD 

values to the native complex were listed within the top 2000 ranks. 

 

3.3. Results and Discussion 

 

3.3.1. Unbound-Unbound vs. Bound-Bound Docking 

 
Bound-bound docking is based on protomer structures that are already in the 

conformation observed in the complex structure, while protomers with different 

conformations than in their complexed structure are used in the unbound docking. As 

conformational changes upon complex formation happen in most proteins complexes, 

unbound-unbound docking is applied in most of the cases. However, as rigid-body 

docking approaches barely consider conformational changes of the protomers, their 

usability for unbound-unbound docking is questionable. This aspect is analyzed here. 
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Focusing on 5 benchmark samples, the sensitivity of BDOCK for the given samples was 

benchmarked as unbound-unbound and bound-bound docking. In this section the best-

ranked 500 samples were analyzed. Additional information on their degree of 

conformational changes, as shown in table 5, could reveal some interesting aspects. It is 

expected that the sensitivity of BDOCK is higher for those benchmark samples with 

rather low conformational changes of the protomers when compared to their complexed 

state. Figure 28 shows that in all 5 cases BDOCK produces more near-native complex 

structures when the protomers already have the bound conformation (white bars). RMSD 

values beyond 3Å mostly lead to similar distributions for the unbound-unbound and 

bound-bound docking. However, the figures in figure 28 show a slight trend, where – in 

the case of unbound-unbound docking (black bars) – easier benchmark samples with 

lower conformational changes (figure 28A) lead to more low-RMSD docking results than 

those with higher conformational changes (figure 28E). This trend is only disturbed with 

the results in figure 28C, which are unexpectedly bad producing mainly high-RMSD 

docking samples. The possible explanation for this outlier might be based on the rather 

large 10° angle step size, where important orientations could be “jumped over”.  

 

Benchmark  
sample 

Conformational changes of the  
protomers upon complex formation [Å] 

2SNI* 0.35 
2SIC* 0.36 
2PCC* 0.39 
2MTA 0.41 
1PPE 0.44 
1AY7* 0.54 
1EAW* 0.54 
1MAH* 0.61 
1EWY  0.8 
1UDI* 0.9 
1F34 0.93 
1DFJ* 1.02 
1D6R 1.14 
1E6E 1.33 
1HIA* 1.4 
1CGI* 2.02 
1ACB* 2.26 

 

Table 5: Conformational changes of the benchmark samples. *Data included in the 
dataset of 170 transient complexes.  
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Figure 28: Comparison of the BDOCK results based on unbound-unbound (black) and 
bound-bound (white) docking benchmarks. The top 500 docking results after their 
geometric complementarity at the interface were divided into 6 groups of RMSD values 
to the native complex structure. (A) 1PPE, (B) 1EWY, (C) 1F34, (D) 1D6R, (E) 1E6E. 
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3.3.2. BDOCK Sensitivity without Scoring Functions 

 
In the previous section, a poorer sensitivity of BDOCK was observed for benchmark 

samples with increasing conformational changes upon complex formation. In this section 

the overall predictability of BDOCK is analyzed for all 17 benchmark samples in the 

unbound-unbound docking. The results are shown in table 6. A perfect docking approach 

would have ranked the lowest RMSD of the docking sample to the native structure in the 

first position. Although even the best docking sample will not achieve a lower RMSD 

than the values in table 5, the ranking will most likely indicate its sensitivity. However, 

table 6 shows underwhelming results. The best RMSDs are mostly ranked badly once 

shape complementarity is used. 2PCC leads to the best results, whereas all remaining 

benchmarks more or less strongly vary within the top 2000 ranked structures. Some 

benchmarks did not even generate structures below 4Å RMSD from the native complex 

(average ranks for RMSD values below 4Å of table 6 with “NA”). The distribution of the 

results also shows no relation between difficulty of the benchmark samples judged on 

their conformational changes upon complex formation and the best RMSD ranking result.  

A more detailed aspect for the best and worst benchmark results: 2PCC and 1D6R is 

shown in figure 29. The graphs show that neither 2PCC nor 1D6R have any correlation 

between shape complementarity and near native structure prediction. This is illustrated 

for all benchmark samples in figure 30, where the correlation coefficients for the ranks 

after the docking score and the RMSD ranks to the structure of the native complex were 

calculated and plotted. Clearly, all computed correlations show a random relation 

between the docking rank and the RMSD value. In the best case, a decreasing docking 

rank would as well lead to a decreasing RMSD rank for the docking samples. This 

concludes that the sensitivity of BDOCK purely based on geometric complementarity 

does not lead to satisfying results in this test and strongly urges the application of a 

second layer of scoring functions considering not only geometry but other aspects as 

well. Yet, a logarithmic trend graph that was calculated for the computed correlation 

coefficients weakly reveals that with decreasing conformational changes the correlation 

coefficient between docking rank and RMSD rank increases.  
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Benchmark  
sample 

Rank of the 
lowest RMSD 

Average rank for  
RMSDs below 4Å 

Standard deviation of average  
rank for RMSDs below 4Å 

2SNI* 1453 1009 466.17 
2SIC* 1697 902.75 594.95 
2PCC* 46 45.5 0.71 
2MTA 1272 NA NA 

1PPE 1371 925.92 591.16 
1AY7* 1176 NA NA 

1EAW* 455 616.87 489.64 
1MAH* 1877 NA NA 

1EWY  1806 1379.11 570.95 
1UDI* 1849 704.77 529.80 
1F34 569 NA NA 

1DFJ* 531 NA NA 

1D6R 1912 NA NA 

1E6E 951 1119.2 170.77 
1HIA* 1548 858.29 778.76 
1CGI* 1016 961.75 417.79 
1ACB* 1370 1348 31.11 

 

Table 6: Benchmark results for BDOCK based on pure shape complementarity ranking. NA 
stands for Not Available values. *Data included in the dataset of 170 transient complexes. 
 

A  

B  

Figure 29: Correlation analysis of the benchmark samples 2PCC (A) and 1D6R (B). 
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Figure 30: Correlation coefficient of the BDOCK ranking and the native structure RMSD 
for given benchmark PDBs. Benchmarks are sorted from left to right by their decreasing 
conformational changes upon complex formation. The best 2000 structures, after their 
docking score, were considered in this analysis. 
 

3.3.3. BDOCK and SARScore(res) 

 
In this section, the predictability of the residue-pair potential unit of SARScore 

(SARScore(res)) is compared to the previous results of the pure geometric scoring by 

BDOCK.  The data for the residue-pair potentials are based on 170 transient interfaces 

using a distance cutoff of 5Å. Table 7 compares the results from table 6 with those of 

SARScore(res). In most of the cases, the best RMSD rank is lower in case for 

SARScore(res) when compared to the pure shape complementarity rankings of BDOCK. 

Focusing on those benchmark samples that were not included in the dataset of 170 

transient interfaces, SARScore(res) shows more predictive results in 4 of 6 cases. This 

suggests a slight improvement of the docking results after re-ranking the docking samples 

with a residue-pair potential based on transient interfaces. Figure 31 shows the 

correlation coefficients of the sample ranks and RMSD ranks. The results of figure 30 are 

also shown. Clearly, the overall correlation of the SARScore(res) ranks are higher where 

the trend-graph even proposes a higher correlation for those difficult benchmarks with 

large conformational changes upon complex formation. A surprising aspect is found in 

the results that are almost equal for benchmarks from the dataset and those that were not 



ENHANCED SENSITIVITY OF A DOCKING APPROACH  

72 

included. This might point to a large diversity of the residue-pairing propensities at the 

given distance criteria within the dataset of 170 transient complexes. Section 3.3.8 and 

3.3.9 will address this aspect. However, correlation coefficients below 0.8 may still be 

based on random relations. This means that the observed results for SARScore(res) still 

do not show a significant sensitivity for the docking problem of rigid-body approaches.  

 

Benchmark 
sample 

BDOCK 
RotlR 

SARScore 
RotlR 

BDOCK 
ArfRb4 

SARScore 
ArfTb4 

BDOCK 
SdarRb4 

SARScore 
SdarRb4 

2SNI* 1453 1324 1009 1162.25 466.17 463.35 
2SIC* 1697 1079 902.75 1432.75 594.95 555.08 
2PCC* 46 552 45,5 937.5 0.71 545.18 
2MTA 1272 1412 NA NA NA NA 

1PPE 1371 178 925.92 846.88 591.16 502.55 
1AY7* 1176 855 NA NA NA NA 

1EAW* 455 574 616.87 945.5 489.64 460.95 
1MAH* 1877 718 NA NA NA NA 

1EWY  1806 1328 1379.11 1474.21 570.95 278.28 
1UDI* 1849 1617 704.77 1009.85 529.8 480.78 
1F34 569 1326 NA NA NA NA 

1DFJ* 531 667 NA NA NA NA 

1D6R 1912 763 NA NA NA NA 

1E6E 951 718 1119.2 685.4 170.77 58.01 
1HIA* 1548 379 858.29 406.93 778.76 94.29 
1CGI* 1016 489 961.75 526 417.79 282.19 
1ACB* 1370 390 1348 866.5 31.11 673.87 

 

Table 7: Benchmark results for BDOCK based on pure shape complementarity ranking 
and SARScore(res). NA stands for Not Available values, RotlR=Rank of the lower RMSD 
sample, ArfRb4=Average rank for RMSD below 4Å, and SdarRb4=Standard deviation of 
the average rank for RMSD below 4Å. *Data included in the dataset of 170 transient 
complexes. 
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Figure 31: Correlation coefficient of the BDOCK ranking (white)/SARScore residue pair 
potential at 5Å (grey) and the native structure RMSD for given benchmark PDBs. 
Benchmarks are sorted from left to right by their decreasing conformational changes 
upon complex formation. The best 2000 structures after their docking score were 
considered in this analysis. *Data included in the dataset of 170 transient complexes. 
 

3.3.4. Comparing RPScore and SARScore(res) 

 
The previous results suggest a slightly higher predictability of the residue-pair potential 

SARScore(res). The question addressed in this section is whether the residue-pair 

potential based on a more suitable dataset (here SARScore(res) compared to RPScore) 

will lead to more sensitive results. Although the available RPScore potentials specify a 

distance cutoff of 5Å it is not clear whether this cutoff is used on the C" atoms, any atom, 

or side-chain atoms. Since the authors could not supply this missing information, the 

following results should be treated carefully. Table 8 and figure 32 illustrate the results. 

Apparently, the sensitivities of RPScore and SARScore(res) are nearly the same in table 

8. This is the case for all benchmarks as well as for those that were not included in the 

dataset of 170 transient interfaces. As the authors did not mention the detailed interface 

criteria, no information on the 103 non-homologous data of RPScore could be retrieved 

as well, so the results could be focused on those benchmark samples that have not been 

used in any of the residue-pair potential training sets. When analyzing the correlation 

coefficients for residue-pair rank and RMSD rank, SARScore(res) appears more sensitive 

showing higher correlations, aside the ambiguity on the comparability of the two 
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potentials as they may be based on different interface criteria. This is mainly the case for 

the rather difficult cases.  

Summarizing the overall results by also taking into account the trend graphs gives the 

SARScore residue potential a slight advantage over RPScore when considering the 

predictability of the used benchmark samples. Yet, the achieved correlation coefficients 

are too low to clearly prove the assumption that more tailored scoring matrices will lead 

to better docking scoring-functions rather than all-purpose solutions such as RPScore.  

 
Benchmark 
sample 

RPScore 
RotlR 

SARScore 
RotlR 

RPScore 
ArfRb4 

SARScore 
ArfTb4 

RPScore 
SdarRb4 

SARScore 
SdarRb4 

2SNI* 301 1324 917.25 1162.25 566.61 463.35 
2SIC* 89 1079 517 1432.75 448.92 555.08 
2PCC* 1649 552 1793.5 937.5 204.35 545.18 
2MTA 535 1412 NA NA NA NA 

1PPE 663 178 842.97 846.88 454.56 502.55 
1AY7* 491 855 NA NA NA NA 

1EAW* 869 574 996 945.5 374.99 460.95 
1MAH* 213 718 NA NA NA NA 

1EWY  149 1328 527.11 1474.21 515.02 278.28 
1UDI* 317 1617 635.15 1009.85 386.99 480.78 
1F34 465 1326 NA NA NA NA 

1DFJ* 259 667 NA NA NA NA 

1D6R 1373 763 NA NA NA NA 

1E6E 1361 718 1346.8 685.4 459.14 58.01 
1HIA* 1163 379 1483.36 406.93 278.09 94.29 
1CGI* 930 489 1294.87 526 355.99 282.19 
1ACB* 1009 390 1052.5 866.5 61.52 673.87 

 

Table 8: Benchmark results for two residue based pair potentials: RPScore and 
SARScore(res). NA stands for Not Available values, RotlR = Rank of the lower RMSD 
sample, ArfRb4 = Average rank for RMSD below 4Å, and SdarRb4 = Standard deviation 
of the average rank for RMSD below 4Å. *Data included in the dataset of 170 transient 
complexes. 
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Figure 32: Comparing correlations between RPScore and SARScore residue pair 
potential rankings and the RMSD ranks. *Data included in the dataset of 170 transient 
complexes.  
 

3.3.5. BDOCK and SARScore(struc) 

 
In section 3.3.3 the pure shape complementarity of BDOCK was compared to the 

residue-pair potential of SARScore. Here, the secondary structure element-pair potentials 

of SARScore (SARScore(struc)) are compared to BDOCKs geometric evaluation of 

docking samples. Table 9 reveals a similar performance for SARScore(struc) as it was the 

case for SARScore(res) in table 7. Figure 33 leads to a lower trend graph once it is 

compared to the residue-pair potential of SARScore. This is also underlined in table 10, 

where the results of SARScore(res) are directly compared to those of SARScore(struc).  
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Benchmark 
sample 

BDOCK 
RotlR 

SARScore 
RotlR 

BDOCK 
ArfRb4 

SARScore 
ArfTb4 

BDOCK 
SdarRb4 

SARScore 
SdarRb4 

2SNI* 1453 836 1009 1127.62 466.17 639.29 
2SIC* 1697 1150 902.75 1274.25 594.95 392.09 
2PCC* 46 814 45,5 951.5 0.71 194.45 
2MTA 1272 1161 NA NA NA NA 
1PPE 1371 607 925.92 942.6 591.16 425.75 
1AY7* 1176 920 NA NA NA NA 
1EAW* 455 605 616.87 843 489.64 406.29 
1MAH* 1877 1222 NA NA NA NA 
1EWY  1806 1357 1379.11 1423.58 570.95 238.86 
1UDI* 1849 946 704.77 699.23 529.8 452.7 
1F34 569 818 NA NA NA NA 
1DFJ* 531 1353 NA NA NA NA 
1D6R 1912 828 NA NA NA NA 
1E6E 951 1529 1119.2 1244.6 170.77 418.52 
1HIA* 1548 682 858.29 544.79 778.76 203.52 
1CGI* 1016 421 961.75 384.5 417.79 229.35 
1ACB* 1370 201 1348 533.5 31.11 470.23 

 

Table 9: Benchmark results for BDOCK based on pure shape complementarity ranking 
and SARScore(struc). NA stands for Not Available values, RotlR = Rank of the lower 
RMSD sample, ArfRb4 = Average rank for RMSD below 4Å, and SdarRb4 = Standard 
deviation of the average rank for RMSD below 4Å. *Data included in the dataset of 170 
transient complexes. 
 

 

Figure 33: Correlation coefficient of the BDOCK ranking (white)/SARScore secondary 
structure element-pair potential at 5Å (grey) and the native structure RMSD for given 
benchmark PDBs. Benchmarks are sorted from left to right by their decreasing conformational 
changes upon complex formation. The best 2000 structures after their docking score were 
considered in this analysis. *Data included in the dataset of 170 transient complexes. 
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Benchmark 
sample 

Res 
RotlR 

Struc 
RotlR 

Res 
ArfRb4 

Struc 
ArfTb4 

Res 
SdarRb4 

Struc 
SdarRb4 

2SNI* 1324 836 1162.25 1127.62 463.35 639.29 
2SIC* 1079 1150 1432.75 1274.25 555.08 392.09 
2PCC* 552 814 937.5 951.5 545.18 194.45 
2MTA 1412 1161 NA NA NA NA 
1PPE 178 607 846.88 942.6 502.55 425.75 
1AY7* 855 920 NA NA NA NA 
1EAW* 574 605 945.5 843 460.95 406.29 
1MAH* 718 1222 NA NA NA NA 
1EWY  1328 1357 1474.21 1423.58 278.28 238.86 
1UDI* 1617 946 1009.85 699.23 480.78 452.7 
1F34 1326 818 NA NA NA NA 
1DFJ* 667 1353 NA NA NA NA 
1D6R 763 828 NA NA NA NA 
1E6E 718 1529 685.4 1244.6 58.01 418.52 
1HIA* 379 682 406.93 544.79 94.29 203.52 
1CGI* 489 421 526 384.5 282.19 229.35 
1ACB* 390 201 866.5 533.5 673.87 470.23 

 

Table 10: Benchmark results for residue (res) and secondary structure element (struc) -
pair potentials of SARScore. NA stands for Not Available values, RotlR = Rank of the 
lower RMSD sample, ArfRb4 = Average rank for RMSD below 4Å, and SdarRb4 = 
Standard deviation of the average rank for RMSD below 4Å. *Data included in the 
dataset of 170 transient complexes. 
 

3.3.6. Critical Assessment of the Results 

 
The previous results remain unsatisfactory. None of the methods achieved acceptable 

prediction accuracies for the given benchmark set. Although the trend shows a weak 

advantage for the SARScore residue-pair potential, all correlation coefficients are yet in 

the area of random distributions. At this point, estimating the performance of a random 

residue and secondary structure element-pair potential seems helpful. Therefore a residue 

and secondary structure element-pair potential matrix was randomly generated and used 

for re-ranking the top 2000 docking samples derived from BDOCK. Figure 34 shows for 

each scoring unit the average correlation coefficient over all 17 benchmark samples. 

Previously it was found that benchmarks from the dataset do not necessarily lead to better 

results. Thus, averaging the scores over all benchmark samples seems eligible. Although 
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the randomly generated secondary structure element-pair potentials result in the lowest 

average correlation, the randomly generated residue-pair potentials score surprisingly 

high. This supports the apprehension that the overall results may hardly be better than 

random.  

 

Figure 34: Average correlation coefficients SARScore(struc) and SARScore(res) are 
compared against random potentials RAND(struc) and RAND(res). 
 

 

3.3.7. Analysis of the Distance Criteria 

 
As the definition of the interface area definitively describes the pair potentials and the 

previous results for the distance criterion of 5Å did not lead to clear observations, 

analyzing different distance criteria was another choice. Here, the distance cutoffs of 4Å, 

5Å, 6Å, and 7Å were compared to each other. Figure 35 compares the average 

correlation coefficients over all 17 benchmark samples. Apparently, the larger the 

distance cutoff is set, the higher the average correlation and the predictability become. 

This is surprising since a distance cutoff of 7Å between any heavy atoms on two 

interacting chains may statistically evaluate a large number of non-interacting residues. 

However, the average scores are still much too low. Figure 36 shows the correlation 

coefficients for each benchmark sample separately. A drastic improvement of the larger 

distance cutoffs compared to smaller ones is not found and the small improvement of 

larger distance cutoffs is on average negligible.  
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Figure 35: Comparing the average correlation coefficients of the benchmark set for 
given pair potentials depending on the distance cutoff for the interface area.  
 
 

 

Figure 36: Comparing the correlation coefficients for given pair potentials depending on 
the distance cutoff for the interface region. 4StrucRank stands for SARScore(struc) 
derived from interface data based on a distance cutoff of 4Å. “Rank” indicates the 
correlation coefficients based on rank distributions instead of score values. *Data 
included in the dataset of 170 transient complexes. 
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3.3.8. Analysis of the Benchmark Set 

 
Summing up most of the previous results leads to mixed information. Mainly the 

inhomogeneous results in the scoring do not allow any conclusions. It was noticed that 

the rather large angle steps for the rotations of the mobile protomer may lead to rather 

bad docking samples, which may become an unsuitable basis for the scoring function as 

well. Smaller angle steps most likely may lead to better docking samples but the increase 

of computational time would be tremendous. Given this limitation, other questions arise: 

Are residue-pair potentials able to predict the native complex structures at all? Do native 

complexes or even transient complexes have stable patterns in their residue propensities? 

Ofran and Rost reported clear differences within several types of interactions [17]. 

However, the authors used a given criteria for distinguishing between the interface types 

and computed average residue pair propensities. It was not evaluated whether an 

observed pattern is strongly conserved in all participating complexes. In this section, the 

question will be addressed on whether the benchmark samples that yield rather well, 

average, or bad results do share residue-pair propensity patterns. Figure 37 reveals a 

surprising finding comparing the residue propensities of all benchmark samples in the 

categories: good (green), average (yellow), and bad (red) retrieved from a distance cutoff 

of 5Å. Within each category, the correlation coefficients of the residue-pair potentials 

were computed in order to search for patterns that may cause the shared level of 

prediction accuracy based on SARScore(res). It was expected that at least those 

benchmark samples that were acceptably predictive might contain a similar residue-

pairing propensity pattern and therefore lead to higher correlation coefficients. In figure 

37 all correlations are clearly too low. Patterns cannot be found. All derived results for 

the order of ranks after pair-potential scoring may be purely by chance since the 

benchmark samples used here do not bury any patterns. For the given interface criterion 

and benchmark set, this therefore generally questions the usability of any residue-pair 

potential to enhance the sensitivity of rigid-body docking.  
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Figure 37: Comparing residue-pairing propensities for a distance cutoff of 5Å within 
benchmark samples that led to sensitive scoring results for residue-pair potentials 
(green), average sensitive results (yellow), and low sensitive results (red).  
 

3.3.9. Analysis of the Dataset 

 
The essential idea behind residue-pair potentials is the existence of patterns within a group of 

complexes. Ofran and Rost found clearly different residue-pairing propensity patterns within 

6 types of interfaces [17]. In the dataset presented in chapter 2, 170 transient interfaces were 

collected. Although it was shown that the average pairing propensities are in agreement with 

the expected properties of transient complexes, it has not yet been evaluated how well 

conserved these patterns are within the 170 transient complexes. In this chapter, correlation 

coefficients within all complexes of the dataset are computed and clustered with the 

Neighbor Joining algorithm. The cluster tree is graphically shown in figure 38 drawn using 

the program MEGA3.1 [126]. There are a large number of clusters based on their residue-

pairing propensities at a distance cutoff of 5Å. Out of 14,365 correlation coefficient 

calculations the weakest correlation lies at -0.16 (#17 and #102) and the highest at 0.99 (#135 

and #152). The average correlation coefficient lies at 0.15 and marks a very low value and no 

stable pattern for all complexes. This observation may be limited to the applied distance 

criterion of 5Å. In the following chapters other criteria will be evaluated. 
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Figure 38: Circular tree of the clustered complexes using MEGA3.1 and the Neighbor Joining 
algorithm. The longer the branches, the lower the correlation coefficient and thus the less 
similar the complexes’ residue-pairing propensities at a distance cutoff of 5Å. Complexes were 
numbered from 1 to 170 and used as taxon for the branches. Apparently, no clear pattern exists 
within these transient complexes with respect to their residue-pairing propensities. 
 

3.4. Conclusion and Outlook 

 
The application of rigid-body protein-protein docking is a common practice in predicting 

complex structure of known protomers but unknown complexed states. Such approaches are 

fast and allow a full conformational search. As proteins change their conformations upon 

complex binding, this was identified as a major weakness for rigid-body docking approaches. 

In this project, an implementation of FFT docking was performed in order to test this 

weakness and apply common attempts to enhance its sensitivity. Although BDOCK supports 
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partial protein flexibility by allowing surface penetrations, it was shown that docking of 

unbound protein conformations leads to less accurate predictions when compared to the 

results of bound proteins. To possibly overcome this issue and the obvious weakness of 

evaluating the docking conformations purely by geometric complementarity of the interface 

region, a subsequent scoring unit was implemented. This scoring unit loads the top 2000 

docking samples ranked by their geometric interface complementarity and recalculates their 

ranks based on residue and secondary structure element-pair potentials. 17 benchmark 

samples from the ZLAB 2.0 were used to compare the docking accuracies. It was found, that 

neither the docking alone nor the extended scoring unit lead to satisfying accuracies in the 

case of the 17 benchmark samples. However, it was also shown that residue and secondary 

structure element-pair potentials do enhance the purely geometry based docking. Yet, these 

enhancements may rely on random effects. This also affects the observation that there is little 

improvement of the results once more suitable residue-pair potentials are employed. The 

dataset did not contain any clearly conserved patterns of residue-pairing propensities at a 

distance cutoff of 5Å as it was also the case for the benchmark set. For the given benchmark 

conditions, residue and secondary structure element-pair potentials will not enhance FFT 

docking approaches in any significant way.  

A generally controversial aspect of benchmarking docking approaches lies in computing the 

RMSD from the full protein complex. The entire protein complex may involve very similar 

interface conformations but strongly different orientations over the full complex. This will 

result in a high RMSD even though the interaction site was predicted correctly. It was 

suggested to rather restrict the RMSD calculations on the interface area. However, this 

strategy as well buries the risk for wrong evaluations. For small interfaces on large proteins, 

which is more likely the case in transient complexes, two interfaces may have a low deviation 

but still be located on different surface patches. 

As for the scoring function, different interface criteria should be tested since a correct 

definition of this area plays a major role in the predictability of computed potentials. 

Furthermore, conserved patterns within transient complexes should be analyzed based on 

different interface properties. For that it may be helpful to compare the set of transient 

interfaces with an out-group of permanent interactions to enhance the contrast in their 

patterns.  
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Distinction of Obligate and Non-obligate 
Interactions 
 

 

 

4.1. Overview 

 
A dataset of obligate/permanent and non-obligate/transient complexes is used to test a 

number of interface properties retrieved from two different interface criteria on whether the 

data can be clearly divided into obligate/permanent and non-obligate/transient complexes. 

This chapter addresses the previously posed question of available patterns at the interface 

regions of transient complexes for given interface criteria and interface properties. Clearer 

results are assumed by including an out-group of obligate/permanent interfaces into the 

analysis. To test the importance of certain properties of amino acids, residue classes are 

considered that group amino acids with similar qualities, and potentials are computed based 

on these assemblies. Ultimately, the complexes are clustered based on the similarity of their 

interfaces for a given distance criterion and interface property. To visualize the clusters, a 

method is applied that is mostly used in the field of phylogenetics; distances between the 

complexes for a given property are computed and a tree is drawn based on these distances. 

A statistical test leads to the best separation.  

This study was done with the support of a MySQL database developed by Peter Walter in 

his supervised diploma-thesis completed in 2006.  

 

4.1.1. Introduction 

 
Zhu et al. recently published an automatic classification for distinguishing obligate and 

non-obligate complexes [68]. Based on a dataset of 75 obligate and 62 non-obligate 

complexes, the authors achieved a separation accuracy of 91.8% when combining three 

of the six interface properties, namely the absolute and relative interface area sizes and 

the amino acid-composition of the interface area-normalized. The same database is used 

in this chapter in order to test the separation quality of 19 different interaction-site 

4 
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properties. Computed correlation coefficients between each combination of the 

complexes were then converted into distances. Applying the program package MEGA3.1 

[126] including 3 different clustering algorithms, two groups of clusters were calculated 

as the dataset consists of obligate and non-obligate complexes. The #2 test was applied on 

the clustered groups estimating the statistical significance for a given interface property 

to properly cluster the dataset into obligate and non-obligate complexes. The 19 

interaction-site properties consist of 8 different residue compositions and 8 residue-

pairing propensities, two different secondary structure element-pairing propensities, and 

the tightness of the interaction site. Due to the large number of features (20 for residue-

composition data and 210 for residue-pairing propensities) a graphical output of the 

clusters is nearly impossible. However, using MEGA3.1 and correlation coefficients, a 

dendrogram was found very useful for visualizing the clusters.  

 

4.2. Methods 

 

4.2.1. Data Handling 

 
The cited work of Zhu et al. presents a new web-application called NOXclass [68]. It is 

an automated classifier for distinguishing obligate, non-obligate and crystal packing 

interactions. Beside 106 crystal packing contacts the authors also collected 75 obligate 

and 62 non-obligate complexes in order to train their system. Obligate and non-obligate 

interactions were taken from a compiled set from Bradford et al. [127]. A set of transient 

interactions [128] was added to the non-obligate data, which share the same definition. 

Exactly this dataset of Zhu et al. was used in this chapter. Although 170 transient/non-

obligate interactions were collected in chapter 2, they were not included in this analysis 

as they may shift the rather balanced rate of obligate and non-obligate interactions from 

Zhu et al. 

In this study, the definition for interface participating residues was chosen differently 

from Zhu et al., based on experiences from available crystal structures where interfaces 

may involve tightly bound areas but also complementary surface patches separated by 

one or more water layers [25]. Zhu et al. defined a residue as an interface residue once its 
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solvent accessible-surface area (SASA) decreased by more than 1Å2 upon formation of 

the complex. In previous studies, a distance criterion of 5Å between heavy atoms was 

used to retrieve interface atoms, interface residues, and interface secondary structure 

elements. Here, two extreme distance-cutoffs are applied: 4Å and 8Å. Comparing results 

for distance cutoffs of 4Å and 8Å helps identifying the most suitable criteria for an 

interface and simplify the distinction of obligate and non-obligate interfaces. While 4Å 

considers only very tightly bound regions of the interface, barely allowing water 

penetration, a distance-range of 8Å even includes peripheral electrostatic interactions. 

However, once a distance cutoff of 8Å is used, one faces the difficulty of considering 

many buried residues as well that most likely do not participate in the interaction. To 

avoid such buried residues to be counted as interface residues, a new criterion for 

interface residues was added, where a residue fulfilling the distance criterion also has to 

have a larger surface contribution than 0Å2 when a probe with a radius of 4Å is used to 

calculate the surface area. Although common SASA calculations use a probe size of 

1.4Å, which is a typical radius of a water molecule, a preliminary test showed some 

peculiarities resulting from this probe size. Based on the current dataset, the test with a 

VMD-script showed that at the probe size of 1.4Å many buried cavities are counted in the 

surface area and thus many buried residues are wrongly predicted as surface exposed. 

Table 11 shows the ratio of buried interface residues for varying probe radii based on the 

SASA measurements of the program package VMD [65] (also see section 1.2.4.1). 

Clearly, the ratio for probe sizes up to 3.0Å is much lower than expected. Only for r = 

4.0Å, a ratio of 18% was obtained, which fits the expected range. Therefore a probe size 

of 4Å was used, which suppresses any cavities smaller than 268Å3 size. This 

approximately equals the volume of 9 water molecules.  

 

 
 
 
 
 

 

Table 11: Ratio of buried potential interface residues at a distance-cutoff of 8Å for 
different surface probe radii. 22869 residues in 137 complexes were examined. 
 

Probe radius  
[Å] 

Rate of buried interface residues at 8Å distance-cutoff  
[%] 

1.4 0 
2.4 0.05 
3.0 1.59 
4.0 18.54 
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Similar to previous works, statistical information on the residue composition, residue-

pairing propensities and secondary structure element-pairing propensities were collected 

using a tcl/tk script and the program package VMD. In addition to the secondary structure 

element-pairing propensities, another yet simple criterion for the tightness of the 

interaction site was introduced. Using the two counts of residue pairs within the distance 

cutoff of 4Å and 8Å, the tightness of the fit was simply defined as the ratio of the two 

numbers. A tight complex will have a ratio close to one. Lower values indicate less tight 

contacts, where the number of interactions at 8Å distance cutoff greatly exceeds the 

number of 4Å interactions.  

Collecting these data yielded a large set of information. To facilitate analysis, Walter and 

coworkers created a relational database using open-source components only (see chapter 

5). This system allows quick handling of the large amount of data and an easy import of 

additional data. Another feature of the database is the grouping of residues into classes of 

amino acids with similar properties (e.g. hydrophobic and hydrophilic). As shown in 

table 12, the simplest classification separates all amino acid-types into H-bond forming 

and non-forming residues (group label 2). The next finer level accounts for the different 

physicochemical properties and divides the amino acids into hydrophobic, hydrophilic 

uncharged, negatively and positively charged residues (group label 4). The last level 

contains small, hydrophobic, negatively and positively charged, and polar amino acids 

(group label 5). Grouping amino acids into classes should allow distinguishing important 

mutations from mutations maintaining the same properties. 

 

 

Table 12: Amino acid-assemblies for residue composition and residue-residue pairing 
propensities. Amino acid-names are abbreviated as one-letter code. 

Property small hydrophobic negatively 
charged 

positively 
charged 

polar Group 5 

Amino 
acids 

AGPST CLIVMWFY ED KRH NQ 

Property hydrophobic Hydrophilic 
uncharged 

negatively charged positively 
charged 

Group 4 

Amino 
acids 

AVLIFMGWP STCNQHY ED KR 

Property Not H-bond forming H-bond forming  Group 2 
Amino 
acids 

AVLIFMGWP STCNQHYEDKR 
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Due to the unequal abundances of the residue distributions upon assembling, a simple 

fraction method based on the number of amino acids in each group was introduced. The 

score of an amino acid-assembly composition or pairing propensity-group was calculated 

from the logarithmic ratio of counted and expected value, as it was applied with the mole-

fraction and contact-fraction method in section 3.2.2.1. The expected value was derived 

from the number of amino acids in that group, e.g. 5/20 in the group 5 for “small”. 

Additionally, area normalization for the residue composition and residue-pairing 

propensity data in all amino acid-classes was used. Therefore, the SASA at a probe size 

of 1.4Å was calculated for each interface residue. Dividing the SASA contribution of 

each individual interface residue at a given position by the total size of the interface, a 

relative surface contribution for each interface residue could be calculated. Other 

previously used fraction methods such as the contact-fraction and the mole-fraction have 

a constant effect on all complexes with only different fractions for different types of 

amino acids. Since the differences among the complexes should be emphasized, such 

fraction methods will not influence the correlation coefficients between the complex 

properties. 

For the residue compositions the database outputs a table containing 137 lines, where 

each line includes residue composition of each complex for all 20 amino acids (20 

columns). Applying the amino acid-classes to this table resulted in three further tables of 

137 lines each and – depending on the amino acid-class – 5, 4, or 2 columns. Given the 

two distance criteria, the residue-composition property results in 8 different tables. 

Similar to this, the residue-pairing propensity tables from the database contain 137 lines 

and 210, 15, 10, and 3 columns in two times four tables. The secondary structure 

element-pairing propensities were not considered in any classes and therefore yield two 

tables with 137 lines and four columns (helix, beta, turn, and coil). Finally, one table was 

computed for the tightness of the fit, which was derived from the ratio of the number of 

interface residues at 4Å and 8Å at a given complex. This table consists of 137 lines and 

one column.  
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4.2.2. Distance Matrix 

 
Similarity distances were computed from Pearsons’ correlation coefficients of 19 

different interface properties within 137 complexes: 
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where cij is the correlation coefficient for a given property of complexes i and j and N the 

number of elements for this interface property (i.e. N = 400 for the residue-residue 

pairing preferences in 20x20). To avoid negative similarity values the correlation 

coefficients cij were converted into positive distances: 

! 

dij =10 "10cij  

where dij is the distance score for the correlation coefficient cij with a range of 0-20. Zero 

indicates the lowest possible distance with the highest correlation coefficient of 1. In the 

case of interface tightness, the ratio was directly scaled to a range of 0-20 without 

calculating the correlation coefficient. 19 pair distance-lists with 9316 (1
137) distance pairs 

each were generated. In order to import the pair-distance table into MEGA3.1 the table 

was converted into an upper-right matrix. Finally, the following clustering algorithms 

implemented in MEGA3.1 were used: neighbor joining (NJ), minimum evolution (ME) 

and unweighted pair group method with arithmetic mean (UPGMA) (see also section 

1.2.5.1).  

 

4.2.3. Significance Assessment 

 
The major focus of this work is to find the interface properties that lead to significant 

separations of obligate and non-obligate complexes and reveal conserved patterns of the 

given interface property. Judging on the results after the first bifurcation (assumed 

separation into obligate and non-obligate interactions) of each clustering algorithm leads 

to a 2x2 matrix for each clustering algorithm and interface property where the 
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distribution of obligate and non-obligate complexes in each branch is statistically 

analyzed. To estimate the significance of this clustering the Pearson's #2-test including 

the Yates correction and the associated p value is employed: 
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where %c
2 is the corrected %2 after Yates, n1 and n2 the first two branches after the first 

bifurcation (see figure 41) and nobl and nnon the number of obligate and non-obligate 

complexes. Corresponding to this, n1obl is the number of obligate structures in the first 

branch and n1non the number of non-obligate structures in the same branch. The same case 

is for n2obl and n2non in the second branch. nall is the sum of n1obl, n1non, n2obl and n2non and 

equals 137 in this work. 

 

4.3. Results 

 
The focus of this analysis lies on the interface properties that are leading to the highest 

#c
2 values and thus clearest separation between obligate and non-obligate complexes. 

Finding suitable interface properties that show conserved patterns within obligate and 

non-obligate complexes will allow a more enhanced sensitivity in scoring rigid-body 

docking approaches. Furthermore, this knowledge may facilitate the generation of larger 

databases and therefore enhance the statistical strength of the data. 

 

4.3.1. Evaluating the Clusters for given Properties 

 
Figure 39A shows the #c

2 values for all 19 features. Additionally, 2 models are shown 

that contain a perfect and a random separation. Three criteria achieved #c
2 values of more 

than 15 at the distance cutoff of 8Å. The classification by residue-pairing propensities 

scored in a #c
2 value of 15.03 in the case of pairing propensities of H-bond forming 

residues and those that do not form such bonds. Taking a closer look at the average 

scores for retrieving the pair distance-lists of the pairing propensities reveals a trend 
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shown in table 13A. The unfavored interaction between H-bond forming and non-

forming residues marks an unexpected high average score. This indicates the problem of 

a distance-cutoff of 8Å where many unspecific contacts between accessible atoms are 

counted. However, since these unspecific contacts do not differ significantly between the 

obligate and non-obligate data set, the focus stays on the interactions of H-bond forming 

and H-bond non-forming groups. The different properties are obvious here. Obligate 

complexes have much fewer H-bond forming interactions than non-obligate complexes. 

These results are strongly related to another high scoring #c
2 value of figure 39A: the H-

bond forming and non-forming composition at the interfaces, which achieved a #c
2 value 

of 16.2. Table 13B shows the average scores for obligate and non-obligate complexes. 

This distribution is in full agreement with the previous results and once more underlines 

the importance of the capability to form or not form H-bonds once it comes to the 

classification of obligate and non-obligate complexes.  

 

A B  

Figure 39: %c
2-results for (A) 19 interface properties and (B)16 area-normalized 

interface properties. NJ = Neighbor Joining, ME = Minimum Evolution, UPGMA = 
Unweighted Pair Group Method with Arithmetic mean. AA = amino acid, SSE = 
secondary structure element, C2/C4/C5/C20 = composition and number of elements, 
P2/P4/P5/P20 = pairing propensities and number of elements, 4Å/8Å = distance-cutoff. 
Perfect = optimal separation, Random = random separation. 
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A 
 

H-bond forming – 
H-bond forming 

pairs 

H-bond forming – 
H-bond non-forming 

pairs 

H-bond non-forming – 
H-bond non-forming 

pairs 

Obligate 
complexes 

-0.059 0.276 0.057 

Non-obligate 
complexes 

0.065 0.269 -0.119 

 
 

  

B H-bond forming residues H-bond non-forming residues 
 

Obligate 
complexes 

-0.029 0.023 

Non-obligate 
complexes 

0.024 -0.04 

 

Table 13: Average scores (logarithm of the counted/expected rate) of all obligate and 
non-obligate complexes for (A) pairing propensities and (B) compositions at a distance 
cutoff of 8Å. 
 

Surprisingly, the best score was found for a feature that was not mentioned before in any 

classification approach. #c
2 = 17.92 (#c

2 = 16.52 for NJ) was obtained by evaluating the 

secondary structure element-pairing propensities at a distance-cutoff of 8Å. In obligate 

complexes the tightly packed secondary structure element-pairs [98] such as sheet-sheet, 

coil-coil and, in particular, helix-helix are stronger represented than in non-obligate 

complexes as shown in figure 40. This leads to the tree shown in figure 41, where a circle 

tree is calculated and drawn by MEGA3.1 using the NJ algorithm based on distances 

derived from the secondary structure element-pairing propensities at 8Å. The two 

branches are separated after the last pairing. Counting the labels “1” and “2” as they stand 

for obligate or non-obligate complexes, a distribution of 18 obligate and 37 non-obligate 

complexes for the left branch and 57 obligate and 25 non-obligate complexes for the right 

branch is obtained. This leads to #c
2 = 16.52.  
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Figure 40: The average number of secondary structure element-pairs for obligate and 
non-obligate complexes. 
 
The remaining entries in figure 39 show that the 8Å distance-cutoff for the interface 

residues leads in most cases to higher #c
2 values and thus to better obligate and non-

obligate distinction than the 4Å cutoff. A general rule for the residue class is not found 

except for the clearer distinctions of obligate and non-obligate for the H-bond forming 

assemblies compared to 20 residue non-assembled data.  

Independent from the clustering algorithm, the tightness of the interface defined here 

cannot distinguish between obligate and non-obligate complexes. Additionally, area-

normalized data was used to generate distance matrices (figure 39B). Overall, the 

previous highly significant interface properties still scored best when area-normalization 

was applied. However, most #c
2 values dropped by approximately 20%. In three cases – 

for the residue composition at 4Å distance cutoff and residue classes 4 and 5 – the #c
2 

value shows a clear increase when the data was area-normalized. 
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Figure 41: Circle tree drawn using MEGA3.1 based on the NJ clustering algorithm and 
secondary structure element-pairing preferences at 8Å distance-cutoff. Code: 
<pdbcode><chaincombination> <complextype> 1 = obligate; 2 = non-obligate. 
 

4.3.2. Evaluating the Clustering Algorithms  

 
Distances between the complexes for given properties were calculated and used for 

clustering. After the first bifurcation the distributions within each cluster were divided 

into two groups and statistically evaluated. 19 interface properties were analyzed. This 

section analyzes the effect of the three different clustering algorithms on the separation of 

the two complex types. As figure 42 shows, the correlation of the calculated distances for 
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secondary structure element-pairing propensities at a distance cutoff of 4Å and 8Å is very 

high (0.9). In other words, a very similar distribution of secondary structure element-

contacts is found when considering secondary structure element-pairs in direct contact 

(4Å) or at more distant contacts (8Å).  

 

 

Figure 42: Correlation coefficients of the interface properties using a distance cutoff of 
4Å or 8Å. AA = amino acid; SSE = secondary structure element; C = composition; P = 
pairing propensities; 2, 4, 5, 20 = number of elements. 
 

This finding is unexpected. Figure 43 shows the relative distribution of secondary 

structure element-pairs at 4Å (A) and 8Å (B) distance cutoff. The distributions are, as 

stated in figure 42, nearly the same.  

 

 

A B  
 

 

Figure 43: Relative distribution of secondary structure element pairs for obligate and 
non-obligate complexes at a distance cutoff of (A) 4Å and (B) 8Å. 
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However, in spite of this high correlation, #c
2 equals 1.91 for 4Å and 16.53 for 8Å 

distance cutoff (figure 39A). This is another unexpected observation, as the almost 

identical distance pairs should lead to the same distribution of the clustering for a given 

algorithm. Therefore, the relation was tested between the correlation coefficients of 4Å 

and 8Å data and the $#c
2 at 4Å and 8Å distance cutoff for each clustering algorithm. The 

results are shown in figure 44. Apparently, the NJ algorithm is very sensitive toward the 

clustered data. The more similar the clustered data is, the larger is the $#c
2 value. This 

tendency is less pronounced for the ME and smallest for UPGMA algorithm. The 

normalized relation in figure 45 shows the same trend. One may suspect this to be a 

peculiarity of the #c
2 test where small changes in the data separations may yield large #c

2 

changes. Figure 46 shows how the #c
2 values change once the separation in two 

categories is systematically changed from one extreme to the other. As expected, the #c
2 

test is very strict in highly significant areas. In the current case, a #c
2 change from 16.53 

to 1.91 can be caused with approximately 8 displacements. This suggests noticeable 

differences in the separations which derive from the NJ algorithm using the secondary 

structure element-pairing propensities at a distance cutoff of 4Å and 8Å. Table 14 shows 

the actual distributions, where the almost identical pair distance-lists lead to clearly 

different clusters after the first branching point.  

 

 

Figure 44: Correlation coefficients for various interface properties computed using 
either 4Å or 8Å distance cutoffs vs. the absolute difference of the corresponding %c

2 
values, termed &%c

2.  
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Figure 45: Correlation coefficients for various interface properties computed using 
either 4Å or 8Å distance cutoffs vs. the relative difference of the corresponding %c

2 
values, where &%c

2 is divided by the larger %c
2 value for the two distance criteria. 

 

 

Figure 46: Change of %c
2 values as the separation in two categories is systematically 

changed from one extreme to the other. An x-axis value of X indicates a separation of 75-
X, X, X, 62-X (e.g. 20: n1obl=55, n1non=20, n2obl=20, n2non=42).  
 
 

 SSE-P4 4Å SSE-P4 8Å 
Group 1 obligate 23 18 

Group 1 non-obligate 27 37 
Group 2 obligate 52 57 

Group 2 non-obligate 35 25 
 

Table 14: Clustering distribution after the first branching point for NJ using secondary 
structure element-pairing preferences at 4Å and 8Å distance cutoffs. 
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4.4. Conclusion and Outlook 

 
Applying three common clustering algorithms in order to characterize protein-protein 

interactions based on 19 different interface properties, a set of 75 obligate and 62 non-

obligate complexes was clustered to identify interface properties with a high sensitivity to 

the distinction of obligate and non-obligate interactions. Interface properties leading to 

clear separations of the two interaction types will also lead to conserved patterns within 

the interface regions.  

Residue compositions and pairing propensities for different residue assemblies together 

with secondary structure element-composition and pairing propensities, and the tightness 

of the interaction were used to compute distance matrices among all structures in the 

dataset. The distance matrices were used for clustering by applying three different 

algorithms: NJ, ME and UPGMA. Evaluating the reliability of the clustering methods 

allows concluding that the consensus of alternative clustering methods provides a more 

balanced basis than individual approaches. However, due to the focus of the clustering on 

interface area only, the criterion defining this area plays an even more important role than 

the clustering method. For that, two different distance cutoffs between the heavy atoms of 

the interacting chains were used. A distance cutoff of 4Å mainly considers tightly bound 

residues and regions. Water penetrations are discriminated. Using a distance cutoff of 8Å 

will also include contacts mediated by interfacial water molecules and include peripheral 

electrostatic interactions. The results suggest that averaged over all three clustering 

algorithms the distance criterion of 8Å leads to a better distinction of obligate and non-

obligate complexes. However, this might as well have another explanation; the number of 

interacting residues at 4Å distance cutoff is rather low for the composition of all residues 

or secondary structure elements and even lower for their pairing propensities. Based on 

these results it can therefore not clearly be concluded, whether the interface 

representation is better defined with an 8Å distance cutoff or not. Due to the more 

significant number of counted interaction pairs the results of the #c
2 tests based on the 

distance cutoff of 8Å are summarized in the following way:  

At a level of at least 99.9% confidence three interface properties result in a significant 

distinction of obligate and non-obligate complexes. It should be noted that this 

confidence interval has nothing to do with accuracies of predictions for classification 
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approaches. The residue-pairing propensities score in a #c
2 value of 15.03 (13.72 when 

area-normalized data was used) in the case of pairing propensities of H-bond forming 

residues and those that do not form such bonds. Taking a closer look at the average 

properties reveals the high importance of H-bond forming and non-forming residues at 

interfaces. Obligate interactions mostly consist of H-bond non-forming interactions while 

non-obligate interactions mostly form H-bonds. This finding is closely related to the next 

highly significant distinction criterion: composition of H-bond forming and non-forming 

residues. A #c
2 value of 16.2 (12.22 when area-normalized data was used) was obtained. 

This is in agreement with the current opinion on the importance of hydrophobicity at the 

interface of protein-protein interactions. Obligate protein-protein interactions must be 

stickier and require a higher hydrophobicity of the interface. However, in this approach 

the hydrophobicity of protein-protein interfaces did not lead to the best distinction of 

obligate and non-obligate complexes. In chapter 2 the distribution of the secondary 

structure elements did not show clear results, where the secondary structure element-

pairing propensities led to propensities following the rules of tight packing. In this 

chapter, however, the use of secondary structure element-pairing propensities scored in a 

maximum #c
2 value of 17.92, which is the highest significance found in these analyses. 

Although steric complementarity plays an important role in non-obligate interactions as 

well, a stronger proportion of tightly bound secondary structure element-pairs for obligate 

complexes was observed. This supports the stickiness of obligate complexes and meets 

our expectations. The additional criterion for the tightness of fit based on the number of 

interface residues at a distance cutoff of 4Å and 8Å led to a completely random 

distinction as the #c
2 value scored in 0.31. Apparently, this property is a too simplified 

model for the tightness of an interaction. 

Although none of the employed interface properties have led to a desired clear separation 

and therefore to a conserved pattern within the interface region of different complex 

types, the important role of interface hydrophobicity and tight packing at the interface 

area was underlined. Additionally, a new method was applied to visualize clusters by 

dendrograms. This is an easy, yet clear way to visualize even complicated clusters. It can 

also be used to graphically show the distribution of properties with dimensions higher 

than three such as residue composition and pairing propensities. Many current support 
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vector machine-approaches lack visualization techniques for more than three features 

[129][130][131][62]. Such dendrograms allow almost unlimited dimensionality for the 

feature vectors since they are based on correlation coefficients. Furthermore, the 

construction of such trees provides the opportunity to determine new classifiers. 

Depending on the level of bifurcation and penetration of the tree, one could determine 

different types of complexes with a different rate of interface property-purity.  

In chapter 5, the dataset will be increased in order to increase the statistical strength. 

Based on a larger dataset and efficient classification approaches, such as support vector 

machines, a larger number of interface properties shall be analyzed and combined. This 

may finally lead to a clearly conserved pattern for transient interfaces by efficiently 

separating transient from obligate complexes. Given such clear patterns, the docking 

problem may be addressed in a new attempt. 
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A Database for Analyzing Biomolecular Contacts 
 

 

 

 

5.1. Overview 

 
Databases are used to store information in a systematical way and allow quick and 

flexible access to the data. In this chapter a large number of information based on protein-

protein interactions is retrieved and systematically stored in a MySQL database-server. 

Mainly transient/non-obligate and permanent/obligate complexes were collected from the 

literature and a tcl/tk script was employed to retrieve a large number of information. The 

database currently contains 534 interfaces extracted from 479 PDB files, where nearly 

half of the interfaces are from transient/non-obligate and the rest from permanent/obligate 

complexes. The database will facilitate further more detailed statistical analyses in order 

to find clear patterns in complex types. 

This project was tackled in cooperation with Peter Walter during his diploma thesis and 

current PHD thesis. Peter Walters’ work was to store the data into the MySQL database 

and modify the structure of the database for the extended data. Furthermore, he 

constructed a user-friendly interface for public use.  

 

5.1.1. Introduction 

 
Currently, there is a strong need for methods that would help obtaining an accurate 

description of protein interfaces in order to be able to understand the principles that 

govern molecular recognition and protein function. While many of the recent efforts are 

focused on computationally identifying and characterizing protein networks and need to 

extract information on protein interaction from the PDB, these data are quite hard to 

access directly from the PDB database. Therefore, a number of groups have developed 

databases that store different aspects of protein-protein complexes. The group of Michael 

5 
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Schröder in Dresden for instance has developed the SCOPPI (Structural Classification Of 

Protein-Protein Interactions) database. It was published recently and contains interactions 

between protein domains [132]. These domain interactions are derived from all known 

protein structures and are classified and annotated. Applying a distance criterion retrieves 

inter-domain interfaces. Furthermore, their database contains various interface 

characteristics such as number, type and position of interacting amino acids, 

conservation, interface size, and permanent or transient nature of the interaction. Another 

interesting database from the group of Mayte Pisabarro at the same institute was 

published in 2006 as well: SCOWLP (Structural Characterization Of Water, Ligands, and 

Proteins) [133]. This database is developed for characterization and visualization of the 

PDB protein interfaces and includes proteins, peptidic-ligands, and interface water 

molecules, as descriptors of protein interfaces. The web-server allows structural analysis 

and comparisons of protein interfaces at atomic level. SCOWLP is automatically updated 

with every SCOP release. However, earlier approaches such as the Biomolecular 

Interaction Network Database (BIND) from Bader et al. are much wider spread [134]. 

This database is designed to store full descriptions of interactions, molecular complexes 

and pathways. Additionally, chemical reactions, photochemical activation and 

conformational changes can be described. Everything from small molecule biochemistry 

to signal transduction is abstracted so that graph theory methods may be applied for data 

mining.  

Here, a new database is presented, which is based on previous analysis and results of this 

thesis. Modifying and extending the tcl/tk script from chapter 2 and considering up to 7 

different interface criteria led to a large number of interface properties. The data is stored 

in a MySQL database, mainly to quickly access detailed information on protein-protein 

interaction sites and also perform additional calculations for statistical analyses and 

extended output functions. Furthermore, the database is extended with a user-friendly 

web-interface, which allows public access to the data.  
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5.2. Structure 

- Structure 

5.2.1. Data Set 

 
Six sources for obligate/permanent and non-obligate/transient complexes were taken 

from the literature [135][136][128][127][67][69]. Overlapping data was deleted and few 

contradictory classifications manually corrected. After applying quality filters on the 

dataset, such as unique residue labels for given sequence positions and proper atom 

labels, a set of 534 structures was retrieved.  

 

5.2.1.1. Protein-Protein Interaction Data Retrieval 
 
Based on the molecular visualization program VMD a previously employed script (see 

chapter 2) was extensively modified. After loading the PDB files, the script examines in 

its first section all residues of each chain and generates a list consisting of each sequence 

position, secondary structure element-descriptor, and the residue descriptor. Furthermore, 

the script analyzes whether the residue lies on the surface, core, or interface region of the 

protein for a given criteria. Calculating the accessible surface-area contributions of each 

residue based on a probe with radii of 1.4Å or 4.0Å (see section 4.2.1 and table 12), those 

with contributions larger than 0Å2 are understood to lie on the protein surface. As a probe 

size of 1.4Å yields larger surface area-contributions for nearly all residues, the probe size 

of 4.0Å is used for determining surface residues. Additionally, the change of accessible 

surface-area upon complex formation is calculated for each residue. When the accessible 

surface-area changes upon complex formation, the residue is said to be involved in the 

interface region. This generated list is also used to store the sequence of the protein chain 

in the database in order to allow more analyses based on the protein sequences as well. 

Furthermore, the interface size is calculated in Å2 based on the buried accessible surface-

area upon complex formation. Both probe sizes are considered. In the next section of the 

script, distances between pairs of atoms are measured and a number of distance cutoffs 

are used to retrieve a list of atom pairs. For these distance-based criteria, thresholds such 

as 4Å, 5Å, 6Å, 7Å and 8Å are used. In the previous chapter the distance cutoffs 4Å and 
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8Å were employed. While 4Å considers only very tightly bound regions of the interface, 

barely allowing water penetration, a distance-range of 8Å even includes peripheral 

electrostatic interactions. Here, the distances in-between these two extremes are evaluated 

as well. 

When using larger distance-cutoffs, many buried residues that most likely do not 

participate in the interaction are considered as well. Such interactions are discriminated in 

the same way as described in the previous chapter. All gathered atom pairs are recorded 

together with their chain identifier, residue descriptor, residue position in the sequence, 

and secondary structure element-descriptor. Storing the data at atomic level also allows 

retrieval of information on side-chain and backbone interactions.  

Considering the interface criteria from the first section of the tcl/tk script, 7 different 

criteria for interface residues are analyzed. Specifying an XML format for importing the 

data into the database, the script outputs all collected data in a properly organized XML 

file. 

 

5.2.1.2. Additional Data 
 
When storing computationally retrieved information on protein-protein interactions, 

experimental data may be very valuable to combine with. Kinetic data on the available 

interactions clearly determines the strength of interactions and may therefore be helpful 

in finding the best interface criterion or more clearly distinguish permanent and transient 

complexes. Since available kinetic data is rather limited and difficult to retrieve, such 

data is available only for a small number of complexes in the database. Carla Haid 

collected this information. However, it turned out that most experimental kinetic values 

have been measured at quite different experimental conditions, such as pH value, 

pressure and temperature, which limit their comparability.  

In addition to kinetics data, CATH, SCOP and UniParc identifiers were also added to the 

corresponding entries in the database. Such cross-references to the popular structural 

classification databases and the largest protein sequence database may facilitate more 

extensive analyses. 
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5.2.2. Database Design 

 
Currently, the database includes a number of relations that do not yet fully store all 

gathered data from the tcl/tk script. The central relation is ‘datasets’ (see figure 47). 

Every entry in ‘datasets’ consists of one interface specified by the PDB identifier, the 

combination of chains, and the size of the interface after a number of different interface 

criteria. The ‘contacts’ relation contains the list of interacting residue pairs for the five 

given distance-based interface criteria together with the corresponding secondary 

structure element. For each residue pair and the given distance-based interface criterion 

the side-chain and backbone-pairing propensities are stored in ‘sidechain/backbone’. The 

‘sequence’ relation stores the entire sequence and for each position in the sequence, the 

amino acid and secondary structure element-descriptor, the accessible surface area of the 

residue after a probe size with 1.4Å and 4.0Å radius before and after complex formation. 

Based on the five distance-based interface criteria, the relations ‘aa composition’, 

‘sidechain/backbone composition’, and ‘sec. struc. compostion’ store the composition 

data on residues, side-chain backbone, and secondary structure elements for each chain 

and result in 10 entries for each interface that is stored in ‘datasets’. The ‘SCOP’, 

‘CATH’, and ‘UniParc’ relations contain the identifiers for the corresponding databases. 

As SCOP and CATH identify domains instead of chains, there is a relation of M:N to 

‘datasets’.  

 



A DATABASE FOR ANALYZING BIOMOLECULAR CONTACTS  

108 

 

datasets

N

1

1

10

1 5

1 N

1 10
1

10

M N

M N

M N

contacts sidechain/backbone

sequence

aa composition

sidechain/backbone compositionsec. struc. composition

SCOP

CATH

UniParc

 

Figure 47: Dataset structure. 10 relations are shown containing different types of data. 
'datasets' is the central entity in the schema and represents the interfaces. Every interface 
may be assigned to more than one CATH, SCOP and exactly two UniParc classification. 
A CATH, and SCOP classification may refer to one or many interfaces (N:M). Each 
interface in 'datasets' consists of a number of amino acid-pairs that are represented by 
the 'contacts' (1:N). A contact pair contains a number of side-chain and backbone 
compositions depending on the distance criterion. 5 distance criteria are considered and 
lead to a 1:5 relation. Similarly, the relations between 'datasets' and 'aa composition', 
'sec. struc. composition', and 'sidechain/backbone composition' result in a 1:10 relation 
as they refer to each of the two chains. An interface with its chains consists of a number 
of residues leading to the 1:N relation between 'datasets' and 'sequence'. 
 

5.2.3. Database Administration 

 
Based on the XML files from the tcl/tk script an import filter was developed under JDOM, 

a class extension that offers extended functionality in importing and exporting XML-based 

data. Additional data such as the CATH, SCOP, and UniParc identifiers were added semi-

automatically. Downloading the parseable datasets of CATH, SCOP, and UniParc, simple 

parser were prepared to output a table of these identifiers for given PDB files and chain 

identifiers in the current dataset. This table was imported in the database. The same 

procedure is followed for kinetic data where information about the experimental conditions 

was also stored.  The developed administrators web-interface based on java allows the 

modification, deletion, and insertion, as well as the detailed query of the data. 

2 1 
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5.3. Features 

- Features 

5.3.1. Query Options 

 
The administrator interface allows detailed and individual queries. A number of standard 

queries were prepared for public use by simply specifying the query content and the area 

of searching. Typically, the user may search for specific PDB entries by their identifier, 

description, and links to the additional databases such as CATH, SCOP, and UniParc. 

However, it also facilitates to select interface properties and retrieve the complexes 

suiting the specified criteria. The user may define the interface criterion and the property 

of the interface such as hydrophobicity, rate of charged residues, size, rate of certain 

amino acids or secondary structure elements, values for kinetic data, side-chain backbone 

rates, and more. Allowing combinations of queries with logic operators, the output of the 

query can become very specific to the interest of the user. The user further has the option 

to refine the query results by re-applying all previously specified filter options. Figure 48 

shows a screenshot of the current query options. 

 

 

 

Figure 48: Query options. 
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5.3.2. Data View 

 
For a specified query, the user will retrieve a list of PDB identifiers with the particular 

chain combination for the interface. Furthermore, the PDB description that is stored in 

the HEADER compartment of the PDB file will be listed, as well as links to the CATH, 

SCOP, UniParc, and directly to the RCSB PDB entries that are related to the displayed 

complex (figure 49). Information mainly originating from the relation ‘dataset’ may be 

displayed as the users can specify the display options (figure 48). However, a number of 

second-level display options are offered too. More detailed information can be viewed by 

simply clicking on a listed entry (figure 50). For the specified interface criterion all 

interface residues stored are projected to the protein sequence of each chain. A number of 

statistical analyses may be viewed in figures generated by JfreeChart based on JAVA. 

Such analyses show the residue composition of the interface for the specified interface 

criterion, as well as the frequencies of hydrophobic, hydrophilic uncharged, and charged 

residues. The three-dimensional structure of the protein and the interface may be viewed 

using the Jmol-applet. This applet is combined with information on the interface area that 

can be projected on the displayed protein structure. 

One of the most interesting features of the database is the possibility to also display the 

residue and secondary structure element-pairing propensities in a color matrix, where 

different fraction methods can be calculated and interface criteria changed. The next 

section shows more about this feature. 
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Figure 49: Output of the results for a given query parameter. 

 

 

Figure 50: Detailed result output for a given interface with Jmol protein and interface view. 
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5.3.3. Output Options 

 
As mentioned in the previous section, an option to view residue and secondary structure 

element-pairing propensities was included. This feature serves the purpose to quickly 

compute scoring matrices as they were used in chapter 3 for the protein-protein docking 

approach. Based on a selected list of complexes, a given interface criterion, and fraction 

method, pair potentials may be computed in the same manor as introduced in section 

3.2.2.2. This function allows quick generation of scoring matrices based on varying 

datasets and therefore facilitates testing the relation between specificity of the dataset and 

its predictability on suitable benchmark sets. Currently supported output formats include 

plain text or Microsoft Excel format. 

 

5.4. Outlook 

 
Although the database is not yet ready for public use, most of the interaction data is 

stored properly and may be queried by the administrative interface. This will enable 

exhaustive analysis on a large dataset and retrieval of rich data on interface properties in 

order to eventually find conserved patterns within the two types of complexes. Such 

conserved patterns may not only simplify the expansion of the dataset in a fully automatic 

way, but also allow computing scoring matrices based on characteristic interface 

properties to support the predictability of docking approaches such as BDOCK.  

The next step will be to include atomistic interface pairs, as they were collected. Atomic 

contacts were used in a number of prediction approaches and seemingly lead to 

significant results [69][137]. Also, some important features that have previously shown 

an increase in significance of the analysis have not yet been integrated, such as the 

residue classes proposed in table 12. Compulsory extensions are the implementation of 

BioJAVA to increase the analysis strength of the data. BioJAVA contains a number 

sequence-alignment functions that may be used for internal computation of conservation 

scores for the residues, as well as allow the discrimination of data redundancy, as this has 

not yet been addressed in the dataset. Also the limited number of complexes that are 
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covered with kinetic data will be increased and the retrieval of links to other database 

should be automated.  

Beside the non-obligate/permanent and obligate/transient complexes collected so far, 

other more differentiated complex types may be introduced, as well as the popular 

differentiation of interfaces into rather “wet” or “dry” contact area [138]. Other types of 

biological contact elements such as interactions between proteins and small molecules or 

protein and DNA may become another future focus in this database project.  
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Classification of Obligate and Non-obligate 
Complexes 
 

 

 

6.1. Overview 

 
A powerful database presented in chapter 5 currently contains 534 obligate/permanent 

and non-obligate/transient complexes. Storing interaction data from 7 different interface 

criteria meets the requirements for more exhaustive clustering and classification 

approaches. In this chapter the dataset from the previous chapter is used to compute up to 

347 interface properties (feature vectors) in order to find the best descriptor for separating 

obligate/permanent and non-obligate/transient protein-protein interactions. A support 

vector machine is trained to identify the interface property with the highest significance 

in separation of the two types of complexes. This machine learning project is based on 

the experiences gained in chapter 4, and provides a significant extension. Here, a larger 

dataset, more interface properties, and a more efficient classification is applied in order to 

find combinations of properties leading to highly significant separations of the data. The 

results of this work will on the one hand ease the further expansion of the current data in 

the database, and on the other hand reveal properties or property combinations that lead 

to strongly conserved patterns within the interface region of the complexes, as it was also 

addressed in chapter 4.  

 

6.1.1. Introduction 
 
In recent years a lot of efforts were dedicated to the investigation of protein-protein 

interactions. Although there are many approaches identifying the general physicochemical 

properties of protein complexes [24][17][16][139][140][72][106][141][142], little is yet 

accepted as common knowledge. Other studies showed that protein-protein interactions 

might be highly specific and diverse at the same time [93][16][143]. Therefore, 

modulating the interactions has become of great interest. A fundamental distinction of 

6 
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protein-protein interfaces is the separation into obligate/permanent and non-

obligate/transient complexes. Although the general properties of these complex types 

seem clearly different, biological systems, such as protein complexes, do not obey in all 

cases a straightforward classification. The first attempt to classify protein-protein 

complexes into obligate and non-obligate interactions was done by Mintseris et al. in 

2003 [69]. The authors introduced the concept of atomic contact vectors. Compiling a 

dataset of 345 structures comprising 147 obligate and 198 non-obligate complexes, a 

prediction accuracy of 91% was achieved. In 2006 Zhu et al. introduced NOXClass that 

is a web-service for predicting protein-protein interaction types [68]. In their work a 

dataset of 75 obligate and 62 non-obligate structures was used to retrieve six properties, 

which were combined using a support vector machine approach [144]. By combining 

features such as the interface area size, relative interface area size and the area 

normalized residue composition, the authors obtained an accuracy of 88.32% for the 

separation of obligate and non-obligate complexes. However, this work mainly focused 

on the separation of obligate, non-obligate, and crystal packing structures where an 

accuracy of even 91.8% was achieved. In a very recent work, Block et al. achieved an 

accuracy of 93.6% for classifying permanent and transient complexes using C4.5 

decision trees on a data set of 147 permanent and 198 transient complexes based on the 

compiled list of Mintseris et al. [69]. The authors calculated two different atomic contact 

vectors, DrugScore pair potential vectors and SFCscore descriptor vectors and used four 

different machine learning algorithms: SVM, C4.5 Decision Trees, K Nearest Neighbors, 

and Naïve Bayes algorithm [137]. Three different feature selection methods were used to 

quickly find the best combination of feature vectors and achieve the highest accuracy. 

Similar to the results of Mintseris, the atomic contact vectors led to the best separation. 

Another very recent study on classifying permanent and transient protein interactions was 

published by Kottha and Schröder [145]. These authors used a dataset of 161 permanent 

and 242 transient interactions and calculated more than 300 interface attributes (features) 

mostly related to size, physicochemical properties, interaction propensities, and 

secondary structure elements. A prediction accuracy of 97% was achieved by applying 

support vector machines to the molecular weight difference of the interacting chains, size 

of the buried surface and number of hydrophobic contacts. The molecular weight 
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difference alone resulted in an accuracy of 80%. 

In summary, the previous studies did not identify a unique property being able to separate 

obligate and non-obligate complexes. However, highly significant distinctions can be 

achieved by combing a small number of features and applying machine learning 

algorithms such as support vector machines.  

In this work, 347 feature vectors containing 9,692 features are computed and a non-

redundant dataset containing 251 obligate and 212 non-obligate protein-protein 

complexes is used for training and testing. The feature vectors contain a large number of 

residue compositions and pairing propensities, where the interface area was defined by 

different criteria. Furthermore, different normalization methods were applied. The final 

goal is to establish an effective filter for the separation of obligate and non-obligate 

protein-protein interactions, which will be used in upcoming projects in order to classify 

the entire content of the RCSB PDB to retrieve more complexes for further studies. The 

results will also address the previous attempts to properly define transient complexes and 

enhance the sensitivity of rigid-body docking approaches.  

 

6.2. Methods 

 

6.2.1. Dataset 

 
534 structures containing obligate/permanent and non-obligate/transient complexes were 

previously collected and stored in a database (see chapter 5). Possibly, this database may 

contain protein-protein complexes of identical or highly similar sequences. For the 

analyses in this chapter, such redundancies may mislead the results and were therefore 

excluded. A common method for defining data redundancy is to apply a sequence identity 

threshold of, for example, 25%. Sequences with higher levels of identity are thought to be 

homologs and thus excluded from the analysis. As this project focuses on interface areas, 

redundant data is defined as such that have correlation coefficients among their residue 

pairing propensities of more than 0.8. Preliminary tests in dealing with correlation 

coefficients have shown that even at values up to 0.75, random correlations are still 

possible, although the probability is very low. Due to this observation and the urge for a 
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large dataset, the balance of possible redundancy and large dataset was set to a 

correlation coefficient threshold of 0.8. Also, it was found that within complexes with 

correlation coefficients beyond 0.8, no relation is found between the correlation 

coefficient and the level of sequence identity. This indicates that similar structures do not 

necessarily form the same interface and vice versa. After removing redundant data the 

size of the dataset equals 463 complexes containing 251 obligate/permanent and 212 non-

obligate/transient structures. This dataset is not only large but also fairly balanced, which 

is a good basis for this analysis. 

 

6.2.2. Construction of the Training and Test Set 

 
Based on a dataset of 463 protein-protein complexes, 347 properties (feature vectors) 

with 9,692 features were either provided by the database or extracted by scripts. The R 

package e1071 [146][147] interfacing to libsvm [148] was used to perform the support 

vector machine classification.  

 

6.2.2.1. Interface Criteria 
 
Up to 7 interface criteria were defined and employed (see also chapter 5). For the 

distance-based criteria threshold values of 4, 5, 6, 7 and 8Å were used. To avoid buried 

interfaces counted as interface residues, a residue fulfilling the distance-criterion also has 

to have a larger surface contribution than 0Å2 when a probe with a radius of 4Å is used to 

calculate the surface area (for further details see section 4.2.1). As for surface area based 

criteria, an interface residue was collected when its accessible surface area changed upon 

complex formation. The accessible surface area was computed using probes of 1.4Å or 

4.0Å radius.  
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6.2.2.2. Fraction Methods 
 
A common way to compare residue compositions or pairing propensities is to generate 

statistical potentials. In opposite to simply counting residues or pairs of residues, a 

statistical potential, similar to a lod score, is based on the logarithmic rate of the 

evaluated number and an expected number. There are different ways to define the 

expected number. One common procedure is based on the frequency of a residue to occur 

in the protein accounting for the different frequencies of amino acids (figure 18). Here, 

three different methods are applied to calculate the expected values. First, the mole-

fraction method, is proportional to the fractional abundances of the residues or secondary 

structure elements or their pairs. Second, the contact-fraction method, is only applied to 

pairing propensities where it is proportional to the frequencies of the two residues or 

secondary structure elements to be involved in any pairs. The third method is the area-

fraction, which is – similar to the mole-fraction – proportional to the relative area 

contribution of the residues to the surface area of the protein and was used in the work of 

Zhu et al. as well [68].  

Furthermore, the mole-fraction and area-fraction methods are applied in several 

variations. The mole-fraction is extended by relating the fractional abundances of the 

residues or secondary structure elements to (a) the full protein sequence of all complexes; 

(b) the surface sequence and (c) the interface region of all complexes only, which is 

based on a probe size of 4.0Å radius. The statistics for a, b and c were focused on 

obligate and non-obligate complexes separately. Based on previous studies, the area-

fraction is computed with two probe sizes, the common radius of 1.4Å (SASA) and the 

statistically sensible radius of 4.0Å (4ASA). 

In summary, four different fraction methods were used for composition data (mole-

fraction[full-protein], mole-fraction[surface], area-fraction[1.4Å], and area-

fraction[4.0Å]) and 6 different fraction methods for the pairing preferences data (mole-

fraction[full-protein], mole-fraction[surface], mole-fraction[interface], contact-fraction, 

area-fraction[1.4Å], and area-fraction[4.0Å]). In the cases of secondary structure element 

composition and pairing properties, the area-fraction method was not applied.  
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6.2.2.3. Amino Acid-Classes 
 
The ability of certain properties of complexes to separate obligate and non-obligate 

interactions was already analyzed in chapter 4. A great improvement in the sensibility of 

the predictions was found once amino acid-classes were used instead of the 20 individual 

amino acid-types. Such classes group several amino acids that share certain properties. 

Three classification schemes were employed. As shown in table 12, the simplest 

classification distinguishes the amino acid-types into H-bond forming and non-forming 

residues (group label 2). The next finer level accounts for the different physicochemical 

properties and divides the amino acids into hydrophobic, hydrophilic uncharged, 

negatively and positively charged residues (group label 4). The last level contains small, 

hydrophobic, negatively and positively charged, and polar amino acids (group label 5). 

 

6.2.2.4. Feature Collection 
 
9,692 features in 347 feature vectors (properties) were collected for a set of 252 obligate 

and 212 non-obligate protein-protein complexes. Nearly all features are based on the 

interface region of interacting chains. Most of the data comprise composition and pairing 

propensity statistics using different interface criteria, fraction methods and amino acid-

classes. The features can be divided into 5 sets: 

Composition data: Residue, class of residues and secondary structure element 

compositions at the interface region were counted and converted into statistical potentials 

using different interface criteria (table 15A). This resulted in 153 feature vectors. 

Pairing propensity data: Residue, class of residues and secondary structure element pairing 

propensities at the interface region were counted and converted into statistical potentials 

using different interface criteria (table 15B). 160 feature vectors were collected. 

Correlation data: For the residue, residue classes and secondary structure element 

compositions at the interface and surface, Pearson correlation coefficients were 

calculated. Changes in accessible surface area for both probe sizes were used to 

characterize the interface and surface regions where the interface region is a subset of the 

surface region (table 15C). This led to 18 feature vectors. 
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Side-chain backbone data: Based on the interaction of heavy atoms among complexed 

chains, it was analyzed whether an interacting heavy atom belongs to the backbone or to 

the side-chain of the interacting residue. Using all distance based interface criteria and 

additionally applying the contact-fraction method, a number of 10 feature vectors were 

generated (table 15D). 

Geometric features: this set includes 6 features (table 15E). The tightness of the fit was 

defined as the difference between the number of interface residues for the distance 

criteria 8Å and 4Å divided by the number of interface residues at 8Å distance cutoff. A 

tight fit would lead to nearly the same number of residues at a distance cutoff of 8Å and 

4Å. Dividing by the number of residues gathered at the distance cutoff of 8Å will 

normalize the results. Another very similar definition for the tightness of the fit was 

defined as the rate of the interface area size given by a probe with the radius of 1.4Å and 

the interface area size given by a probe with the radius of 4.0Å. Furthermore, additional 

features were included that led to a clear distinction between obligate and non-obligate 

complexes in two related and recently published studies. Zhu et al. reported a successful 

classification by considering the interface area size and interface area size ratio to the size 

of the bigger chain in the complex [68]. On the other hand, Kottha et al. found significant 

differences between obligate and non-obligate complexes when considering the 

molecular weight of the interacting chains and the difference of molecular weight within 

the interacting chains [145].  
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A 
 

Composition AS 4Å area normalized (1.4Å) Composition AS 6Å count group 5 Composition AS radius1.4Å area normalized (1.4Å) group 4 
Composition AS 4Å area normalized (1.4Å) group 2 Composition AS 6Å molar fractioned (protein) Composition AS radius1.4Å area normalized (1.4Å) group 5 
Composition AS 4Å area normalized (1.4Å) group 4 Composition AS 6Å molar fractioned (protein) group 2 Composition AS radius1.4Å count 
Composition AS 4Å area normalized (1.4Å) group 5 Composition AS 6Å molar fractioned (protein) group 4 Composition AS radius1.4Å count group 2 
Composition AS 4Å area normalized (4.0Å) Composition AS 6Å molar fractioned (protein) group 5 Composition AS radius1.4Å count group 4 
Composition AS 4Å area normalized (4.0Å) group 2 Composition AS 6Å molar fractioned (surface) Composition AS radius1.4Å count group 5 
Composition AS 4Å area normalized (4.0Å) group 4 Composition AS 6Å molar fractioned (surface) group 2 Composition AS radius1.4Å molar fractioned (protein) 
Composition AS 4Å area normalized (4.0Å) group 5 Composition AS 6Å molar fractioned (surface) group 4 Composition AS radius1.4Å molar fractioned (protein) group 2 
Composition AS 4Å count Composition AS 6Å molar fractioned (surface) group 5 Composition AS radius1.4Å molar fractioned (protein) group 4 
Composition AS 4Å count group 2 Composition AS 7Å area normalized (1.4Å) Composition AS radius1.4Å molar fractioned (protein) group 5 
Composition AS 4Å count group 4 Composition AS 7Å area normalized (1.4Å) group 2 Composition AS radius1.4Å molar fractioned (surface) 
Composition AS 4Å count group 5 Composition AS 7Å area normalized (1.4Å) group 4 Composition AS radius1.4Å molar fractioned (surface) group 2 
Composition AS 4Å molar fractioned (protein) Composition AS 7Å area normalized (1.4Å) group 5 Composition AS radius1.4Å molar fractioned (surface) group 4 
Composition AS 4Å molar fractioned (protein) group 2 Composition AS 7Å area normalized (4.0Å) Composition AS radius1.4Å molar fractioned (surface) group 5 
Composition AS 4Å molar fractioned (protein) group 4 Composition AS 7Å area normalized (4.0Å) group 2 Composition AS radius4.0Å area normalized (4.0Å) 
Composition AS 4Å molar fractioned (protein) group 5 Composition AS 7Å area normalized (4.0Å) group 4 Composition AS radius4.0Å area normalized (4.0Å) group 2 
Composition AS 4Å molar fractioned (surface) Composition AS 7Å area normalized (4.0Å) group 5 Composition AS radius4.0Å area normalized (4.0Å) group 4 
Composition AS 4Å molar fractioned (surface) group 2 Composition AS 7Å count Composition AS radius4.0Å area normalized (4.0Å) group 5 
Composition AS 4Å molar fractioned (surface) group 4 Composition AS 7Å count group 2 Composition AS radius4.0Å count 
Composition AS 4Å molar fractioned (surface) group 5 Composition AS 7Å count group 4 Composition AS radius4.0Å count group 2 
Composition AS 5Å area normalized (1.4Å) Composition AS 7Å count group 5 Composition AS radius4.0Å count group 4 
Composition AS 5Å area normalized (1.4Å) group 2 Composition AS 7Å molar fractioned (protein) Composition AS radius4.0Å count group 5 
Composition AS 5Å area normalized (1.4Å) group 4 Composition AS 7Å molar fractioned (protein) group 2 Composition AS radius4.0Å molar fractioned (protein) 
Composition AS 5Å area normalized (1.4Å) group 5 Composition AS 7Å molar fractioned (protein) group 4 Composition AS radius4.0Å molar fractioned (protein) group 2 
Composition AS 5Å area normalized (4.0Å) Composition AS 7Å molar fractioned (protein) group 5 Composition AS radius4.0Å molar fractioned (protein) group 4 
Composition AS 5Å area normalized (4.0Å) group 2 Composition AS 7Å molar fractioned (surface) Composition AS radius4.0Å molar fractioned (protein) group 5 
Composition AS 5Å area normalized (4.0Å) group 4 Composition AS 7Å molar fractioned (surface) group 2 Composition AS radius4.0Å molar fractioned (surface) 
Composition AS 5Å area normalized (4.0Å) group 5 Composition AS 7Å molar fractioned (surface) group 4 Composition AS radius4.0Å molar fractioned (surface) group 2 
Composition AS 5Å count Composition AS 7Å molar fractioned (surface) group 5 Composition AS radius4.0Å molar fractioned (surface) group 4 
Composition AS 5Å count group 2 Composition AS 8Å area normalized (1.4Å) Composition AS radius4.0Å molar fractioned (surface) group 5 
Composition AS 5Å count group 4 Composition AS 8Å area normalized (1.4Å) group 2 Composition SSE 4Å count 
Composition AS 5Å count group 5 Composition AS 8Å area normalized (1.4Å) group 4 Composition SSE 4Å molar fractioned (protein) 
Composition AS 5Å molar fractioned (protein) Composition AS 8Å area normalized (1.4Å) group 5 Composition SSE 4Å molar fractioned (surface) 
Composition AS 5Å molar fractioned (protein) group 2 Composition AS 8Å area normalized (4.0Å) Composition SSE 5Å count 
Composition AS 5Å molar fractioned (protein) group 4 Composition AS 8Å area normalized (4.0Å) group 2 Composition SSE 5Å molar fractioned (protein) 
Composition AS 5Å molar fractioned (protein) group 5 Composition AS 8Å area normalized (4.0Å) group 4 Composition SSE 5Å molar fractioned (surface) 
Composition AS 5Å molar fractioned (surface) Composition AS 8Å area normalized (4.0Å) group 5 Composition SSE 6Å count 
Composition AS 5Å molar fractioned (surface) group 2 Composition AS 8Å count Composition SSE 6Å molar fractioned (protein) 
Composition AS 5Å molar fractioned (surface) group 4 Composition AS 8Å count group 2 Composition SSE 6Å molar fractioned (surface) 
Composition AS 5Å molar fractioned (surface) group 5 Composition AS 8Å count group 4 Composition SSE 7Å count 
Composition AS 6Å area normalized (1.4Å) Composition AS 8Å count group 5 Composition SSE 7Å molar fractioned (protein) 
Composition AS 6Å area normalized (1.4Å) group 2 Composition AS 8Å molar fractioned (protein) Composition SSE 7Å molar fractioned (surface) 
Composition AS 6Å area normalized (1.4Å) group 4 Composition AS 8Å molar fractioned (protein) group 2 Composition SSE 8Å count 
Composition AS 6Å area normalized (1.4Å) group 5 Composition AS 8Å molar fractioned (protein) group 4 Composition SSE 8Å molar fractioned (protein) 
Composition AS 6Å area normalized (4.0Å) Composition AS 8Å molar fractioned (protein) group 5 Composition SSE 8Å molar fractioned (surface) 
Composition AS 6Å area normalized (4.0Å) group 2 Composition AS 8Å molar fractioned (surface) Composition SSE radius1.4Å count 
Composition AS 6Å area normalized (4.0Å) group 4 Composition AS 8Å molar fractioned (surface) group 2 Composition SSE radius1.4Å molar fractioned (protein) 
Composition AS 6Å area normalized (4.0Å) group 5 Composition AS 8Å molar fractioned (surface) group 4 Composition SSE radius1.4Å molar fractioned (surface) 
Composition AS 6Å count Composition AS 8Å molar fractioned (surface) group 5 Composition SSE radius4.0Å count 
Composition AS 6Å count group 2 Composition AS radius1.4Å area normalized (1.4Å) Composition SSE radius4.0Å molar fractioned (protein) 
Composition AS 6Å count group 4 Composition AS radius1.4Å area normalized (1.4Å) group 2 Composition SSE radius4.0Å molar fractioned (surface) 
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B 

C 

D 

 
Pairing Preferences 4Å area normalized (1.4Å) Pairing Preferences AS 4Å molar fraction (protein) group 4 Pairing Preferences AS 7Å molar fraction (interface) 
Pairing Preferences 4Å area normalized (1.4Å) group 2 Pairing Preferences AS 4Å molar fraction (protein) group 5 Pairing Preferences AS 7Å molar fraction (interface) group 2 
Pairing Preferences 4Å area normalized (1.4Å) group 4 Pairing Preferences AS 4Å molar fraction (surface) Pairing Preferences AS 7Å molar fraction (interface) group 4 
Pairing Preferences 4Å area normalized (1.4Å) group 5 Pairing Preferences AS 4Å molar fraction (surface) group 2 Pairing Preferences AS 7Å molar fraction (interface) group 5 
Pairing Preferences 4Å area normalized (4.0Å) Pairing Preferences AS 4Å molar fraction (surface) group 4 Pairing Preferences AS 7Å molar fraction (protein) 
Pairing Preferences 4Å area normalized (4.0Å) group 2 Pairing Preferences AS 4Å molar fraction (surface) group 5 Pairing Preferences AS 7Å molar fraction (protein) group 2 
Pairing Preferences 4Å area normalized (4.0Å) group 4 Pairing Preferences AS 5Å contact fraction Pairing Preferences AS 7Å molar fraction (protein) group 4 
Pairing Preferences 4Å area normalized (4.0Å) group 5 Pairing Preferences AS 5Å contact fraction group 2 Pairing Preferences AS 7Å molar fraction (protein) group 5 
Pairing Preferences 5Å area normalized (1.4Å) Pairing Preferences AS 5Å contact fraction group 4 Pairing Preferences AS 7Å molar fraction (surface) 
Pairing Preferences 5Å area normalized (1.4Å) group 2 Pairing Preferences AS 5Å contact fraction group 5 Pairing Preferences AS 7Å molar fraction (surface) group 2 
Pairing Preferences 5Å area normalized (1.4Å) group 4 Pairing Preferences AS 5Å count Pairing Preferences AS 7Å molar fraction (surface) group 4 
Pairing Preferences 5Å area normalized (1.4Å) group 5 Pairing Preferences AS 5Å count group 2 Pairing Preferences AS 7Å molar fraction (surface) group 5 
Pairing Preferences 5Å area normalized (4.0Å) Pairing Preferences AS 5Å count group 4 Pairing Preferences AS 8Å contact fraction 
Pairing Preferences 5Å area normalized (4.0Å) group 2 Pairing Preferences AS 5Å count group 5 Pairing Preferences AS 8Å contact fraction group 2 
Pairing Preferences 5Å area normalized (4.0Å) group 4 Pairing Preferences AS 5Å molar fraction (interface) Pairing Preferences AS 8Å contact fraction group 4 
Pairing Preferences 5Å area normalized (4.0Å) group 5 Pairing Preferences AS 5Å molar fraction (interface) group 2 Pairing Preferences AS 8Å contact fraction group 5 
Pairing Preferences 6Å area normalized (1.4Å) Pairing Preferences AS 5Å molar fraction (interface) group 4 Pairing Preferences AS 8Å count 
Pairing Preferences 6Å area normalized (1.4Å) group 2 Pairing Preferences AS 5Å molar fraction (interface) group 5 Pairing Preferences AS 8Å count group 2 
Pairing Preferences 6Å area normalized (1.4Å) group 4 Pairing Preferences AS 5Å molar fraction (protein) Pairing Preferences AS 8Å count group 4 
Pairing Preferences 6Å area normalized (1.4Å) group 5 Pairing Preferences AS 5Å molar fraction (protein) group 2 Pairing Preferences AS 8Å count group 5 
Pairing Preferences 6Å area normalized (4.0Å) Pairing Preferences AS 5Å molar fraction (protein) group 4 Pairing Preferences AS 8Å molar fraction (interface) 
Pairing Preferences 6Å area normalized (4.0Å) group 2 Pairing Preferences AS 5Å molar fraction (protein) group 5 Pairing Preferences AS 8Å molar fraction (interface) group 2 
Pairing Preferences 6Å area normalized (4.0Å) group 4 Pairing Preferences AS 5Å molar fraction (surface) Pairing Preferences AS 8Å molar fraction (interface) group 4 
Pairing Preferences 6Å area normalized (4.0Å) group 5 Pairing Preferences AS 5Å molar fraction (surface) group 2 Pairing Preferences AS 8Å molar fraction (interface) group 5 
Pairing Preferences 7Å area normalized (1.4Å) Pairing Preferences AS 5Å molar fraction (surface) group 4 Pairing Preferences AS 8Å molar fraction (protein) 
Pairing Preferences 7Å area normalized (1.4Å) group 2 Pairing Preferences AS 5Å molar fraction (surface) group 5 Pairing Preferences AS 8Å molar fraction (protein) group 2 
Pairing Preferences 7Å area normalized (1.4Å) group 4 Pairing Preferences AS 6Å contact fraction Pairing Preferences AS 8Å molar fraction (protein) group 4 
Pairing Preferences 7Å area normalized (1.4Å) group 5 Pairing Preferences AS 6Å contact fraction group 2 Pairing Preferences AS 8Å molar fraction (protein) group 5 
Pairing Preferences 7Å area normalized (4.0Å) Pairing Preferences AS 6Å contact fraction group 4 Pairing Preferences AS 8Å molar fraction (surface) 
Pairing Preferences 7Å area normalized (4.0Å) group 2 Pairing Preferences AS 6Å contact fraction group 5 Pairing Preferences AS 8Å molar fraction (surface) group 2 
Pairing Preferences 7Å area normalized (4.0Å) group 4 Pairing Preferences AS 6Å count Pairing Preferences AS 8Å molar fraction (surface) group 4 
Pairing Preferences 7Å area normalized (4.0Å) group 5 Pairing Preferences AS 6Å count group 2 Pairing Preferences AS 8Å molar fraction (surface) group 5 
Pairing Preferences 8Å area normalized (1.4Å) Pairing Preferences AS 6Å count group 4 Pairing Preferences SSE 4Å count 
Pairing Preferences 8Å area normalized (1.4Å) group 2 Pairing Preferences AS 6Å count group 5 Pairing Preferences SSE 4Å molar fractioned (protein) 
Pairing Preferences 8Å area normalized (1.4Å) group 4 Pairing Preferences AS 6Å molar fraction (interface) Pairing Preferences SSE 4Å molar fractioned (surface) 
Pairing Preferences 8Å area normalized (1.4Å) group 5 Pairing Preferences AS 6Å molar fraction (interface) group 2 Pairing Preferences SSE 4Å contact fractioned 
Pairing Preferences 8Å area normalized (4.0Å) Pairing Preferences AS 6Å molar fraction (interface) group 4 Pairing Preferences SSE 5Å count 
Pairing Preferences 8Å area normalized (4.0Å) group 2 Pairing Preferences AS 6Å molar fraction (interface) group 5 Pairing Preferences SSE 5Å molar fractioned (protein) 
Pairing Preferences 8Å area normalized (4.0Å) group 4 Pairing Preferences AS 6Å molar fraction (protein) Pairing Preferences SSE 5Å molar fractioned (surface) 
Pairing Preferences 8Å area normalized (4.0Å) group 5 Pairing Preferences AS 6Å molar fraction (protein) group 2 Pairing Preferences SSE 5Å contact fractioned 
Pairing Preferences AS 4Å contact fraction Pairing Preferences AS 6Å molar fraction (protein) group 4 Pairing Preferences SSE 6Å count 
Pairing Preferences AS 4Å contact fraction group 2 Pairing Preferences AS 6Å molar fraction (protein) group 5 Pairing Preferences SSE 6Å molar fractioned (protein) 
Pairing Preferences AS 4Å contact fraction group 4 Pairing Preferences AS 6Å molar fraction (surface) Pairing Preferences SSE 6Å molar fractioned (surface) 
Pairing Preferences AS 4Å contact fraction group 5 Pairing Preferences AS 6Å molar fraction (surface) group 2 Pairing Preferences SSE 6Å contact fractioned 
Pairing Preferences AS 4Å count Pairing Preferences AS 6Å molar fraction (surface) group 4 Pairing Preferences SSE 7Å count 
Pairing Preferences AS 4Å count group 2 Pairing Preferences AS 6Å molar fraction (surface) group 5 Pairing Preferences SSE 7Å molar fractioned (protein) 
Pairing Preferences AS 4Å count group 4 Pairing Preferences AS 7Å contact fraction Pairing Preferences SSE 7Å molar fractioned (surface) 
Pairing Preferences AS 4Å count group 5 Pairing Preferences AS 7Å contact fraction group 2 Pairing Preferences SSE 7Å contact fractioned 
Pairing Preferences AS 4Å molar fraction (interface) Pairing Preferences AS 7Å contact fraction group 4 Pairing Preferences SSE 8Å count 
Pairing Preferences AS 4Å molar fraction (interface) group 2 Pairing Preferences AS 7Å contact fraction group 5 Pairing Preferences SSE 8Å molar fractioned (protein) 
Pairing Preferences AS 4Å molar fraction (interface) group 4 Pairing Preferences AS 7Å count Pairing Preferences SSE 8Å molar fractioned (surface) 
Pairing Preferences AS 4Å molar fraction (interface) group 5 Pairing Preferences AS 7Å count group 2 Pairing Preferences SSE 8Å contact fractioned 
Pairing Preferences AS 4Å molar fraction (protein) Pairing Preferences AS 7Å count group 4 
Pairing Preferences AS 4Å molar fraction (protein) group 2 Pairing Preferences AS 7Å count group 5 

 

Correlation(Composition AS interface radius1.4Å area 
normalized (1.4Å); Composition AS surface radius1.4Å area 
normalized (1.4Å)) 

Correlation(Composition AS interface radius1.4Å; 
Composition AS surface radius1.4Å) group 4 

Correlation(Composition AS interface 
radius4.0Å; Composition AS surface 
radius4.0Å) 

Correlation(Composition AS interface radius1.4Å area 
normalized (1.4Å); Composition AS surface radius1.4Å area 
normalized (1.4Å)) group 2 

Correlation(Composition AS interface radius1.4Å; 
Composition AS surface radius1.4Å) group 5 

Correlation(Composition AS interface radius4.0Å; 
Composition AS surface radius4.0Å) group 2 

Correlation(Composition AS interface radius1.4Å area 
normalized (1.4Å); Composition AS surface radius1.4Å area 
normalized (1.4Å)) group 4 

Correlation(Composition AS interface radius4.0Å area 
normalized (4.0Å); Composition AS surface radius4.0Å area 
normalized (4.0Å)) 

Correlation(Composition AS interface radius4.0Å; 
Composition AS surface radius4.0Å) group 4 

Correlation(Composition AS interface radius1.4Å area 
normalized (1.4Å); Composition AS surface radius1.4Å area 
normalized (1.4Å)) group 5 

Correlation(Composition AS interface radius4.0Å area 
normalized (4.0Å); Composition AS surface radius4.0Å area 
normalized (4.0Å)) group 2 

Correlation(Composition AS interface radius4.0Å; 
Composition AS surface radius4.0Å) group 5 

Correlation(Composition AS interface radius1.4Å; 
Composition AS surface radius1.4Å) 

Correlation(Composition AS interface radius4.0Å area 
normalized (4.0Å); Composition AS surface radius4.0Å area 
normalized (4.0Å)) group 4 

Correlation(Composition SSE interface radius1.4Å; 
Composition SSE surface radius1.4Å) 

Correlation(Composition AS interface radius1.4Å; 
Composition AS surface radius1.4Å) group 2 

Correlation(Composition AS interface radius4.0Å area 
normalized (4.0Å); Composition AS surface radius4.0Å area 
normalized (4.0Å)) group 5 

Correlation(Composition SSE interface radius4.0Å; 
Composition SSE surface radius4.0Å) 

 

Sidechain-Backbone interaction 4Å contact fractioned Sidechain-Backbone interaction 6Å contact fractioned Sidechain-Backbone interaction 8Å contact fractioned 
Sidechain-Backbone interaction 4Å count Sidechain-Backbone interaction 6Å count Sidechain-Backbone interaction 8Å count 
Sidechain-Backbone interaction 5Å contact fractioned Sidechain-Backbone interaction 7Å contact fractioned 
Sidechain-Backbone interaction 5Å count Sidechain-Backbone interaction 7Å count 

 

Tightness of the fit ((8Åcount-4Åcount)/8Åcount) Interfacesize molecular weight of each chain 
Tightness of the Fit (Area4.0Å-Area1.4Å)/Area4.0Å Interfacesize/size of the bigger chain molecular weight difference between the two chains 

 
Table 15: List of feature vectors. A) Feature vectors based on compositions, B) feature 
vectors based on pairing preferences, C) feature vectors based on correlation 
coefficients, D) side-chain – backbone interactions, and E) 6 feature vectors based on the 
current literature findings 

E 
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6.3. Results 

 
9,692 features in 347 feature-vectors of 251 obligate/permanent and 212 non-

obligate/transient complexes were investigated with a support vector machine approach. 

Four different kernels were used to compute a sensitive filter for the separation of 

obligate and non-obligate complexes. Performing the leave-one-out cross-validation and 

additionally an average of 10 times 10fold cross-validation each feature vector was 

trained and validated separately. The accuracy of the prediction was defined as: 

Accuracy

! 

=
Sum  of  correct  predictions

Sum  of  total  predictions
 

In total, the calculation for the uncombined feature vectors led to 642,644 training and 

validation runs (347%463%4). On 20-nodes of a Dual-Xeon processor cluster the 

calculations took approximately 2 hours of CPU time. The computational time for each 

feature vector was estimated and the calculations were equally distributed on all 40 

CPUs.  

 

6.3.1. Single Feature Vectors 

 
Figure 51A shows that on average the results from the radial basis kernel gave more 

correct predictions than the other three kernels. This was also observed in the study of 

Zhu and coworkers [68]. However, looking at the results for the sigmoid kernel function 

in figure 51A shows a standard deviation of 28.83. With an average number of correct 

predictions of 263.88 a lower limit of 235.05 can be detected. Considering this limit as a 

standardized limit, a number of feature vectors must have led to accuracies lower than 

50%, which should not result from a support vector machines approach. The worst 

distribution of data-points can only be equal and lead to an accuracy of 50%. Analyzing 

the results did not reveal any errors. It was assumed that a number of feature vectors from 

complexes with very small interface regions may lead to overlapping data-points from 

different complex types. Such information could be interpreted as biased data that may 

have reduced the accuracy of 50%. However, as the training and testing set of this 

approach were the same for all four kernel functions, overlapping data-points must have 

led to low accuracies for all kernel functions. In fact, such low accurate results were 
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mostly obtained with the sigmoid and in some cases also with the polynomial kernel 

function. It is still unclear, why these two kernel functions may result in accuracies lower 

than 50%. Therefore the results derived from the sigmoid and polynomial kernel 

functions are no longer discussed. Also, since the radial kernel function scored most 

accurate and is typically used in the literature, further results are evaluated from the radial 

kernel function only. 

Combining all residue, secondary structure element, and side-chain backbone features 

(figure 51B), the average accuracy for side-chain backbone data surprisingly showed the 

highest value in cases where the remaining types of feature vectors were not considered 

(Rest). The data based on residues clearly has the most statistical strength and therefore 

may consist of many low scoring (weak accuracies) feature vectors summed in an 

average number of correct predictions. Therefore, putting too much emphasis on this 

graph is refrained. The group of ‘Rest’ is based on the 6 additional low dimensional 

feature vectors, which are analyzed in the process of this section. A point that was 

previously addressed but not clearly answered (see chapter 4) was whether the 

predictability benefits from grouping the amino acid into classes. In principle, reducing 

the dimension of a property by focusing on biophysical properties of the amino acids 

appears like a promising approach. However, figure 51C shows that this is not the case. 

Although the accuracy is increased in going from class 5 to 4 and 2, class 20 using no 

grouping scores the best. In this analysis, the statistical strength of all four classes is 

nearly the same. Therefore, one can conclude that unassembled data with large 

dimensions may lead to clearer separation of obligate and non-obligate complexes. At 

this point, all results were based on bundled compositional and pairing preferential data 

together with correlation coefficients. Figure 51D addresses the question of the 

effectiveness of given data forms on the separation accuracy. Aside the ‘Rest’ group, 

compositional and pairing preferential data are nearly equal in accuracy. Here, the small 

number of vectors based on correlation coefficients that are only one-dimensional feature 

vectors scored nearly in the range of random separation.  

Another interesting point already mentioned few times in previous chapters is, which 

interface criterion will lead to the best distinction of the complex types and may therefore 

suit the native interfaces most? Figure 51E compares seven different interface criteria that 



CLASSIFICATION OF OBLIGATE AND NON-OBLIGATE COMPLEXES  

126 

are partially common in the literature. The graph does not show clear results. Distance-

based interface criteria with a cutoff value of 4Å may lead to weak statistical data as 

some complexes in the dataset do not contain any interactions within this range threshold. 

This small number of data may lead to insufficient statistics. This is similar in the case of 

area-based interface criterion. Previously, it was observed that a probe with the size of 

1.4Å radius may confuse buried cavities with surface area. Therefore, most of the 

interfaces were found to be solvent accessible. When this method is used as an interface 

criterion, only a small number of tightly buried interaction pairs can be found. This leads 

to the same problem as for the distance criterion of 4Å and therefore results similar 

weakly. However, the concept of surface area-loss upon complex formation seems to 

achieve most accurate results, once buried cavities are not confused. This is the case for a 

probe with the radius of 4.0Å. As for the remaining distance criteria, no clear trend can 

be observed. 

The last aspect of the feature vectors that is analyzed here is the influence of fraction 

methods on the predictability of the computed potentials (figure 51F). Clearly, un-

fractioned data performed most accurately and leads to another surprising observation.  

Considering the previous results allows the assumption that un-grouped residue 

compositions derived from the area-interface criterion, without applying any fraction 

method, may lead to the most accurate results. Such kind of a feature vector indeed gave 

a high accuracy of 74,3% and marks the 7th best accuracy observed within 347 feature 

vectors. Figure 52 shows the top 10 accuracies within all 347 feature vectors for the 

radial kernel function. Ranks 2 and 4 to 10 consist of un-grouped residue pairing 

propensities at different distance cutoffs for interface residues and fraction methods. 

Aside the results for the fraction methods, these ranks are in good agreement with figures 

51B, C, D, and E when also considering the side-chain backbone pairing propensities 

achieving the second rank. The feature vector “weightabsAB” takes the 3rd rank. This 

feature vector includes the molecular weights in Dalton of the two interacting chains in 

the complex sorted after their size. Figure 53 shows two qualities of obligate and non-

obligate complexes when considering their molecular weight. First, obligate complexes 

tend to consist of bigger chains than non-obligate complexes. Second, the molecular 

weight differences of the two interacting chains are smaller for obligate complexes as 
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most data-points are collected on the diagonal although the obligate complexes in the 

dataset only consist of 2.4% of homodimers. This strongly agrees with the findings of 

Kottha and Schröder [145]. The authors performed a support vector machines approach 

on 161 permanent and 242 transient complexes. Using the molecular weight difference 

alone as a feature vector achieved an accuracy of up to 80%. On the current dataset, this 

property gave an accuracy of 70.19%. Considering that the databases are most likely not 

the same yet similar, the agreement is acceptable.  

The best accuracy was obtained with the feature vector “SBPrefcf37” or “Sidechain-

Backbone interaction 6Å contact fractioned” in table 15E and resulted in 74.95% 

accuracy. Figure 54 reveals a significant difference in the backbone – backbone 

interaction scores which are averaged over all obligate and non-obligate complexes. 
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A B

C D

E F  

Figure 51: Average number of correct predictions. 463 is 100% accuracy and 231.5 is 
50% accuracy and therefore purely random. (A) The average results based on the kernel 
function are shown. (B) The average correct predictions based on different types of data 
for the kernel function radial are shown. ‘SSE’ = secondary structure elements and 
‘Rest’ contains feature vectors such as weight difference between chains and weight of 
the chains, tightness related to number of amino acids at the interface and related to the 
interface area size, the relative size of the interface and the absolute size. (C) The 
performance of the amino acid-classes based on the radial kernel function is shown. (D) 
The results of different types of feature vectors are compared for the kernel function 
radial. ‘Rest’ contains the same feature vectors as described in B. (E) Compares the 
performance of different interface criteria for the kernel function radial. ‘Dis’ refers to 
distance-based criteria and their cutoff value and ‘Area’ refers to accessible solvent area 
criteria based on probe sizes with different radii. (F) Shows the results of the different 
fraction methods. ‘M’ stands for mole-fraction methods based on the full protein 
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statistics, the surface area statistics, and the interface area statistics. ‘Contact’ refers to 
the contact-fraction method and ‘A’ leads to the area normalization for given probe sizes 
with the radii 1.4Å and 4.0Å. Finally potentials without fraction methods have also been 
evaluated in ‘Count’. The error bar is based on the standard deviation. 
 

 
Figure 52: Top 10 results for the radial kernel function based on their accuracies.  
AS20PrefC24=residue pairing propensities at a distance cutoff of 8Å un-normalized. 
AS20PrefAN28=residue pairing propensities at a distance cutoff of 7Å area-normalized 
after a probe with the radius of 1.4Å. 
AS20PrefAN34=residue pairing propensities at a distance cutoff of 8Å area-normalized 
after a probe with the radius of 4.0Å. 
AS20PrefC23=residue pairing propensities at a distance cutoff of 7Å un-normalized 
AS20CompAc17=residue composition of changing surface area upon complex formation 
based on a probe with the radius of 4.0Å and un-normalized. 
AS20Prefmffp23= residue pairing propensities at a distance cutoff of 7Å mole-fractioned 
after full protein composition. 
AS20Prefmfs23=residue pairing propensities at a distance cutoff of 7Å mole-fractioned 
after surface composition. 
weightabsAB=weights of the two interacting chains. 
AS20PrefAN29=residue pairing propensities at a distance cutoff of 8Å area-normalized 
after a probe with the radius of 1.4Å. 
SBPrefcf37=side-chain backbone pairing propensities at a distance cutoff of 6Å contact-
fractioned. 
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Figure 53: Plot of the feature vector “weightabsAB” in figure 52 or “molecular weight 
of each chain” in table 15E.  
 
 

 

Figure 54: Plot of the feature vector “SBPrefcf37” in figure 52 or “Sidechain-Backbone 
interaction 6Å contact fractioned” in table 15E. Average scores for each type of 
interaction are shown for both types of interfaces. 
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6.3.2. Combined Feature Vectors 

 
In the literature accuracies of up to 93.6% were achieved using machine learning 

approaches and combinations of features [137]. In the previous section, the feature vector 

“Sidechain-Backbone interaction 6Å contact fractioned” led to an accuracy of 74.95%. 

Combining this feature vector with all remaining 346 vectors, the risk of falling into a 

local minimum exists while the computational complexity in finding a good yet not the 

best combination of feature vectors is low. Combining two feature vectors and using the 

radial kernel function, an increased accuracy of the “Sidechain-Backbone interaction 6Å 

contact fractioned” by 0.86% to 75.81% was observed. This accuracy was obtained when 

combining “Sidechain-Backbone interaction 6Å contact fractioned” with “molecular 

weight of each chain”.  

The combination with a third feature vector resulted in an accuracy of 80.78% (374 

correct predictions out of 463 predictions). Interestingly, the third feature vector differs 

from the “Sidechain-Backbone interaction 6Å contact fractioned” only in the interface 

criterion, which is 8Å. Table 16 shows the results from the leave-one-out cross-

validation. 

 

 Predicted  

 Obligate Non-obligate Total 

Obligate 208 43 251 
True 

Non-oblgiate 46 166 212 

 Total 254 209 463 

 

Table 16: Leave-one-out cross-validation results for the 3 feature vector-combination of 
“Sidechain-Backbone interaction 6Å contact fractioned” – “molecular weight of each 
chain” – “Sidechain-Backbone interaction 8Å contact fractioned” based on 463 
predictions. 
 

As table 16 shows, the prediction accuracies are 82.87% for obligate and 78.30% for non-

obligate complexes. In addition to the number of correct predictions, the decision values 
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for the SVM judging on predictions were evaluated as well. Table 17 shows the results on 

the average decision values. The region from -0.4524 to 0.4716 indicates the overlapping 

area for the separation. 

 

 Average decision values 

True obligate 0.9457 

False obligate -0.4524 

True non-obligate -0.8147 

False non-obligate 0.4716 

 

Table 17: Average decision values for the leave-one-out cross-validation results based 
on the 3 feature vector-combination of “Sidechain-Backbone interaction 6Å contact 
fractioned” – “molecular weight of each chain” – “Sidechain-Backbone interaction 8Å 
contact fractioned”. 
 

Combining up to 7 feature vectors did not improve the mentioned accuracy of 80.78%, 

which is in agreement with the literature [145][68] where the highest accessible 

accuracies were achieved by the combination of only a few features. 

Additionally, the relative area size of the interface with area-fractioned amino acid-

composition, as suggested by Zhu et al., was also tested. While Zhu and coworkers 

obtained an accuracy of 88.32%, only 66.74% were achieved in this work. 

   

6.4. Discussion 

 
9,692 features of protein-protein complexes were collected in order to distinguish 

obligate from non-obligate complexes in a dataset of 463 structures. Mainly focusing on 

the properties of the interface area, all features were grouped into 347 feature vectors 

mainly based on composition and pairing propensities of residues and secondary structure 

elements retrieved from different interface criteria and by applying a number of fraction 

methods. The R package e1071 interfacing to libsvm was used to perform the support 

vector machine classification and gave an accuracy of 80.78%. This accuracy was 
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achieved with combining two very similar pairing propensities of side-chain and 

backbone combinations and the weights of the two interacting chains. Obviously, mainly 

the backbone – backbone interactions of the two similar feature vectors lead to the good 

separation of the obligate and non-obligate dataset. This may support the idea of tight 

packing in obligate complexes, as the average score for backbone – backbone interactions 

is significantly higher than in non-obligate complexes. As stated before, the absolute 

weights may be a great separating aspect as well. Also it was concluded, that the rather 

low dimensionality of features might lead to better separations of obligate and non-

obligate complexes. The current work supports this assumption as the combination of 

three low dimensional feature vectors resulted in the highest accuracy. 

Previously, it was also found that the best separation of obligate and non-obligate 

complexes could be achieved when considering the pairing propensities of secondary 

structure elements. In the uncombined trainings and evaluations, the secondary structure 

element-pairing propensities led to an accuracy of up to 71.92%, which ranks within the 

top 25 of 347 feature vectors. The results of the current and previous work are therefore 

in good agreement.   

Two features, previously emphasized in the literature, led to lower yet acceptable 

separations. Kottha et al. found high separation sensitivity for the molecular weight 

difference of the two interacting chains alone. Using a radial base kernel function with 

support vector machines, this feature achieved an accuracy of 80%. Applying the same 

conditions to this dataset led to an accuracy of 70.19%. Although this accuracy is lower it 

remains surprising that this rather simple feature alone achieves such sensitivity.  

As mentioned above, the entire combinatorial space was not considered and a large risk 

for a local minimum is present. However, an accuracy of 80.78% in distinguishing 

obligate from non-obligate complexes obtained in a large dataset of 463 structures seems 

feasible enough for finding more database entries from the large pool of structures in the 

RCSB PDB and for characterizing interactions for re-evaluation of docking samples, as 

addressed in chapter 3.  
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Outlook 
 

 

 

 

This thesis introduced and applied several computational methods for analyzing protein-

protein interfaces. Statistical analyses, as applied in this work, strongly benefit from a 

large and clean dataset. The rich informational content of PDB structures has become an 

essential part of most analyses in the current literature. Although the RCSB PDB contains 

more than 40.000 structures, only 534 were collected in chapter 4 in order to retrieve 

additional information. An automated and easy to apply procedure to retrieve suitable 

protein structures will therefore be one of the most important steps in the further process 

of chapter 4. With the knowledge gained in chapter 6 such an automated procedure may 

be easy to develop. Collecting all multichain complexes from the RCSB PDB, three types 

of interactions may occur: 1. The packing of two chains is of non-obligate/transient or of 

2. obligate/permanent nature or 3. it is only a crystal packing. As the separation in non-

obligate/transient and obligate/permanent already achieved a satisfying accuracy, another 

filter should be developed to separate crystal packing from natural complexes. With these 

filters an automated update function in the ABC database developed in chapter 5 may be 

an easy implementation, as the program language R will soon be implemented in the 

database. This will utilize the use of powerful statistical learning approaches such as 

support vector machines.  

An increased dataset in the database will urge the need to define and find data 

redundancies. The implementation of BioJAVA in the database will allow sequence 

alignments and the assessment of sequence similarity and homology. This may be used to 

define redundancies. Additionally, an alternative definition, as used in chapter 6, may be 

implemented as well, where correlation coefficients for some interface or protein 

properties may be computed and used to define similarities.  

With an increased number of data in the database newer scoring matrices can be 

calculated. Combining this with the information from chapter 6 where a large number of 

interface properties were analyzed and a combination of interface and protein properties 

7 
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was found to lead to clear distinctions of obligate/permanent and non-obligate/transient 

interactions. A more enhanced scoring function may be applied to rigid-body docking to 

increase the predictability of the native structure. Instead of scoring residue and 

secondary structure element-propensities at given distance cutoffs gathered from all 

proposed docking orientations, one would now focus on the interactions of side-chain 

atoms and such in the backbone of the amino acids, as defined in chapter 6.  

The most focus will therefore be put on the new ABC database. Implementing even the 

VMD script that is used to gather the rich data from the protein complex structures into 

the database may lead to a fully automated database updating the data upon each new 

RCSB PDB entry. A superficial estimation led to nearly 10,000 potential complexes of 

either obligate/permanent or non-obligate/transient interactions. Such large data may lead 

to clearer patterns and deeper understanding of protein-protein interactions. A powerful 

docking and scoring approach may also generate a large number of new complex 

structures. 

Furthermore, different types of interactions may be found. By mainly applying the 

methods of chapter 4, dendrograms may visualize protein-protein interaction types 

beyond obligate or non-obligate, and transient or permanent.  
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