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Short summary 
 
The non-ionic surfactant D-alpha-tocopheryl poly(ethylene glycol 1000) succinate 

(TPGS 1000) has been previously shown to increase oral bioavailability of P-

glycoprotein (P-gp) substrates by modulating activity of the efflux pump. In the 

present thesis structure activity relationship of the interaction and possible 

mechanism of inhibition of the efflux transporter were investigated to optimize the 

TPGS structure. P-gp inhibitory activity of TPGS could be increased by modifying the 

length of the PEG chain with optimal inhibition being achieved at a PEG molecular 

weight of ~1500 Da. The inhibitory effect of TPGS on P-gp could be also increased 

by modifications to the hydrophobic part of the molecule, such as the exchange of 

the alpha-tocopherol moiety for cholesterol. The inhibitory activity of the TPGS 

analogues does not correlate with their physicochemical properties such as 

molecular weight, molecule volume, or lipophilicity. In agreement with these findings, 

an unspecific alteration of the P-gp membrane environment could be ruled out in 

electron spin resonance experiments. TPGS was shown not to be a P-gp substrate 

itself nor does it interact with one of the transport active drug binding sites of P-gp to 

competitively block drug efflux. Rather, the inhibitory effect of the TPGS analogues 

correlates with their inhibition of substrate induced ATPase activity, indicating that the 

depletion of the energy source of the efflux pump is an integral part in the inhibitory 

mechanism of TPGS. 

. 
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Kurzzusammenfassung 
 

Für das nicht ionische Tensid D-Alpha-tocopheryl poly(ethylene glycol 1000) succinat 

(TPGS 1000) wurde kürzlich gezeigt, dass es die orale Bioverfügbarkeit von 

Substraten des Effluxtransporters P-Glykoprotein (P-gp) durch Hemmung der 

Effluxpumpe steigert. In der vorliegenden Arbeit wurden die 

Strukturwirkungsbeziehungen der Wechselwirkung zwischen TPGS und P-gp und 

der Mechanismus, der der Hemmung zu Grunde liegt, untersucht, um die TPGS 

Struktur zu optimieren. Die P-gp Hemmung durch TPGS konnte durch Variation der 

PEG Kettenlänge erhöht werden, wobei der optimale Hemmeffekt bei einem PEG 

Molekulargewicht von ungefähr 1500 Da beobachtet wurde. Des Weiteren steigerten 

auch Modifikationen des hydrophoben Molekülteils, wie der Austausch des Alpha-

Tocopherol-Restes durch Cholesterol, das Hemmpotenzial von TPGS. Die 

inhibitorische Wirkung der TPGS Derivate korreliert nicht mit ihren 

physikochemischen Eigenschaften wie Molekulargewicht, Molekülvolumen oder 

Lipophilie. In Übereinstimmung mit diesen Ergebnissen konnte eine unspezifische 

Änderung der Membranumgebung von P-gp in Elektronenspinresonanz-

Untersuchungen ausgeschlossen werden. Für TPGS konnte gezeigt werden, dass es 

selbst kein Substrat von P-gp ist und nicht mit einer der transportaktiven 

Bindungsstellen von P-gp, im Sinne einer kompetitiven Hemmung interagiert. 

Vielmehr korreliert der inhibitorische Effekt mit der Hemmung der Substrat-

induzierten ATPase Aktivität, was darauf hinweißt, dass diese Depletion der 

Energiequelle der Effluxpumpe ein essentieller Bestandteil des Hemmmechanismus 

von TPGS ist. 
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1 General introduction 
1.1 Drug absorption across epithelial barriers and the role 

of active transport systems  
 

On the way from the application site to the biological target a drug is subject to four 

major steps of pharmacokinetics: absorption, distribution, metabolism and excretion 

(the so called ADME process). The interplay of these four processes will determine 

the extent to and time after which a drug will appear at its site of action, thereby 

influencing the pharmacological effect. The drug’s fate in the ADME process is 

interwoven with its ability to cross epithelia, a major biological barrier to drug 

distribution.  

 

Absorption of a molecule across an epithelial barrier is the sum of competing 

processes that influence the net absorption to varying extents: Depending on its 

physicochemical properties, mainly size and hydrophilicity, a molecule may 

transverse an epithelial barrier by two routes: one) through the cells (transcellular 

transport; Figure 1-1 A) or two) in between the cells (paracellular transport; Figure 

1-1 B) via pores formed by the tight junctions. The radius of the tight junctional pores 

in human intestine has been estimated to be between 0.5 and 5 nm, limiting the size 

and weight of paracellularly transported molecules to < 300 Da [1]. Furthermore very 

hydrophilic compounds will be transported paracellularly, as they distribute poorly 

into the lipophilic membranes, a prerequisite for transcellular diffusion. Transcellular 

diffusion is also limited to a certain extent. According to Lipinski’s rule of five, only 

compounds with a logP < 5, molecular weight of up to approximately 500 Da and up 

to 5 H-bond donors and 10 H-bond acceptors are likely to be absorbed to a high 

extent [2]. Both transports, transcellular and paracellular diffusion, are passive 

processes and follow a concentration gradient between apical and basolateral side of 

the epithelial barrier.  

Transporter proteins, exhibiting low to high specificity, are integrated in the cell 

membrane and may modify transcellular transport, enabling otherwise poorly 

permeable drugs to cross the cell layer. 
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Figure 1-1 Transport routes across epithelia: A: transcellular passive diffusion, B: paracellular passive 
diffusion, C1: carrier mediated transcellular transport, C2: primary active transport, C3 secondary 
active transport (either symport (syt) or antiport (apt)), D: active efflux, E: (receptor-mediated) 
endocytosis. 

 
A substrate may be transported along a concentration gradient, without the need for 

a primary or secondary energy source (facilitated transport, Figure 1-1 C1). Active 

carriers on the other hand either actively pump their substrates across the membrane 

by ATP hydrolysis (Figure 1-1 C2) or utilize the concentration gradient of another 

compound simultaneously translocated either in the same direction (symport) or in 

the opposite direction (antiport; Figure 1-1 C3). Depending on the direction of 

transport, one may distinguish two groups of active transporters: influx transporters, 

which pump their substrates into the cells and efflux transporters which confer 

transport in the opposite direction (Figure 1-1 D). 

 

Although diverse transport systems can be found ubiquitously in the body, the 

respective tissue distribution for specific transporters may differ. By their expression 

in epithelia, transporters may influence all steps of the ADME process [3]. While 

influx transporters generally positively influence absorption and bioavailability of 

substrates, efflux transporters often have negative effects on substrate 

pharmacokinetics, as they limit permeability of epithelia and support substrate 

excretion and metabolism [4]. Thereby they can pose a significant challenge to the 

development of new pharmaceutical entities and formulations. 
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1.2 Efflux transporters 

1.2.1 ABC transporters 
 
With few exceptions, such as the solute carrier LRP (lung resistance related protein), 

most known efflux systems in the human body belong to the so called ATP binding 

cassette (ABC) superfamily of transporters. ABC transporters are found in most 

organisms, from bacteria to humans [5]. Thus far, 48 human ABC transporters 

belonging to seven subfamilies (ABCA-ABCG) have been described. They include 

not only efflux pumps such as P-glycoprotein (P-gp), the multidrug resistance 

associated proteins (MRP1-7), and the half transporter breast cancer resistance 

protein (BCRP), but also non-transporters, such as the chloride channel CFTR, or 

SUR1/2, a modulator of ATP sensitive potassium channels [6]. ABC transporters are 

characterised by a highly conserved nucleotide binding fold with a characteristic 

Walker A and Walker B and a signature or C motif, whereas the organisation, 

number and localisation of their transmembrane domains may differ (Figure 1-2) [6].  

 

Figure 1-2 Membrane topology of ABC transporters known to confer drug resistance; adopted from [6]. 

 
ABC efflux pumps use energy released from ATP hydrolysis to actively pump 

substrates, if necessary against a concentration gradient, out of cells [7]. They have 

been identified as the primary cause for the so called multidrug resistance 

phenomenon in cancer cells: overexpression of MRP1, BCRP and P-gp was shown 
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to protect cancerous tissues from the intracellular accumulation of a broad variety of 

structurally unrelated chemotherapeutics, thus weakening their therapeutic impact [5, 

8-10]. In addition, ABC transporters have important physiological functions, as they 

protect the body in general and sensitive tissues like the brain in particular from 

entrance of potential toxins and help to eliminate metabolites [3]. Substrate spectra of 

different ABC efflux systems overlap. For example, P-gp and MRP1 have similar 

transport specifity. Whereas P-gp only transports neutral and cationic compounds, 

MRP1 in addition translocates anionic compounds, frequently metabolite conjugates 

with glutathione [11]. The convoluted substrate-transporter interactions complicate 

the identification of transport and multidrug resistance pathways and the 

interpretation of pharmacokinetic data. 

1.2.2 P-glycoprotein 

 
P-gp was the first ABC transporter to be discovered and is probably the most 

extensively studied human efflux pump. The special interest in P-gp is based on its 

prominent role both in drug pharmacokinetics and cancer chemotherapy. P-gp was 

discovered in the 1970s when studies with Chinese hamster ovary (CHO) cells 

revealed a 170 kDa carbohydrate containing protein, which was unique to drug 

resistant mutants, and conferred cross-resistance to a variety of structurally unrelated 

anticancer agents such as actinomycin D, methotrexate, daunorubicin and colchicine 

[12]. The protein was named P(ermeability)-glycoprotein because it was thought to 

reduce the permeability of cancer cells towards drugs [12]. However, this theory was 

soon refuted, as it was revealed that P-gp unidirectionally pumps drugs out of cells, 

thus reducing the intracellular concentration of the anticancer agents [13]. 

(Over)expression of P-gp has since then been shown in a variety of primary and 

treated tumors and today P-gp is considered the mainstay among ATP-dependent 

efflux transporters that confer multidrug resistance in tumor cells [14, 15].  

 

The gene responsible for P-gp expression, named MDR1 [16], is located on 

chromosome 7q21 and is transcribed into a 4.5 kilobase mRNA. The corresponding 

glycoprotein consists of 1280 aminoacids, which are arranged as 2 homologous 

halves joined by a linker region. Each half consists of a transmembrane domain 

(TMD) with 6 membrane-spanning α-helices (transmembrane segments, TM) and a 

hydrophilic region with a nucleotide binding domain (NBD) (Figure 1-3).  
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The two halves, which are not completely symmetrical [17], build together a cup-like 

structure with a 5 nm central pore [18, 19]. It was shown that the deletion of the 

central core of the linker region results in normal expression of the protein at the cell 

surface, but no functional transport or drug-stimulated ATPase activity [20]. 

Replacement of the depletion with a peptide with a predicted flexible secondary 

structure restored the function, indicating that interaction of both halves is critical for 

the functioning of the molecule. P-gp is glycosilated at three sites in the first 

extracellular loop [21]. The glycosilation appears to be essential for trafficking of the 

efflux pump to the cell surface, but does not influence the transport function [21].  

  

 

Figure 1-3: Structure of P-gp as obtained by homology modelling (in ribbon representation). A: Side 
view; B: intracellular view. TM helices are colored from light rose to dark red from TM1 to TM6 and 
TM7 to TM12. Intracellular domain (ICD) helices are coloured from light to dark blue from ICD1 to 
ICD3 and ICD4 to ICD6. NBD helices and strands are coloured in dark and light green, respectively. 
The Walker A, signature region, and Walker B of each NBD are coloured in magenta, orange, and 
pink, respectively; adopted from [22]. 

 
P-gp is an ATPase, requiring energy derived from ATP hydrolysis to actively pump a 

substrate out of the cell back into the extracellular fluid. According to the 

“hydrophobic vacuum cleaner” hypothesis (Figure 1-4), the P-gp ligand binding 

site(s) are located in the inner membrane leaflet of the lipid bilayer [23, 24]. In a 

multi-step process [25], the substrate first partitions into the outer leaflet of the 

membrane bilayer before flip-flopping from the outer membrane interface to the inner 

interface. The subsequent substrate binding in the cytoplasmic leaflet of the lipid 

bilayer leverages the two-dimensional, lateral diffusibility of partitioned compounds 

within the lipid membrane; a more efficient process than interactions that would 

randomly occur after three-dimensional diffusion from the aqueous environment. The 

P-gp pump then undergoes a conformational change in response to substrate 

binding and ATP hydrolysis.  
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Figure 1-4 Idealized representation of P-gp within the lipid membrane bilayer and the hydrophobic 
vacuum cleaner model of P-gp substrate transport. 

 

Different mechanisms for the next step have been proposed. The most popular 

suggest a transfer of the bound ligand to the core of the ring or ‘flipping’ it back to the 

exoplasmic leaflet. Consequently, affinity of the drug binding site strongly decreases 

and the substrate is released. The exact catalytic cycle of the conformational change 

in P-gp and other ABC transporters has been extensively studied and so far is best 

described by the so called ‘ATP switch model’ [26]: Binding of a substrate to the high 

affinity drug binding site results in increased affinity of the two nuclear binding 

domains for ATP and two molecules of ATP bind cooperatively to generate a closed 

NBD dimer. The subsequent conformational changes in the transmembrane domains 

extracellularly expose the drug-binding site and reduce its affinity, releasing the 

bound drug. ATP is hydrolyzed to form a transition-state intermediate and the 

sequential release of a phosphate ion and ADP restores the transporter to its basal 

configuration. 

 
P-gp transports a wide range of structurally diverse substrates. Examples (Table 1-1) 

include cancer drugs such as paclitaxel, doxorubicin or vinblastine, the calcium 

channel blocker verapamil, antibiotics (e.g. erythromycin, actinomycin D) and 

different HIV protease inhibitors (e.g. indinavir, saquinavir).  
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Table 1-1 Examples of P-gp substrates, modulators and inhibitors, assembled from [5, 27, 28]. 

 

The only common P-gp substrate feature seems to be that they are all hydrophobic 

with a molecular mass between 300 and 2000 Da [29], while anionic compounds are 

not transported by P-gp. This broad substrate specifity is incompatible with a 

traditional enzyme-substrate interaction theory and instead may be explained by the 

existence of more than one transport-active drug binding site.  

Subs trate  

(Pharmacological class) 

Substrate/Inhibitor  

(Pharmacological class) 

Inhibitor  

(Pharmacological class) 

Topotecan 

(Topoisomerase I inhibitor) 

Verapamil 

(Calcium channel blocker) 

Ketoconazole 

(Fungicide) 

Etoposide, Teniposide 

(Topoisomerase II inhibitors) 

Nicardipine, Nifedipine, Nitrendipine 

(Dihydropyridine) 

Sodium orthovanadate 

(ATP hydrolysis inhibitor) 

Actinomycin D 

(Antitumor antibiotic) 

Cyclosporine A (Cs A) 

(Immunosuppressant) 

Clarithromycin 

(Antibiotic) 

Paclitaxel, Docetaxel 

(Taxanes ) 

Progesterone 

(Steroid hormone) 

Reserpine 

(Antihypertensive) 

Colchicine 

(Spindle inhibitor) 

Chloroquine 

(Malaria medication) 

GF120918 

(Specific P-gp inhibitor) 

Digoxin 

(Cardiac glycoside) 

Daunorubicin, doxorubicin 

(Anthracyclines) 

PSC833 

(Specific P-gp inhibitor) 

Puromycin 

(Antibiotic) 

Ritonavir, saquinavir, indinavir 

(HIV protease inhibitors) 

Tween 80, Cremophor EL, 

Pluronic P85 

(Surfactants) 

Rhodamine 123, Calcein 

AM, Hoechst 33342 

(Fluorescent dyes) 

Erythromycin 

(Antibiotic) 

Cis-(Z)-flupentixol 

(Antipsychotic) 

Dexamethasone, 

hydrocortisone 

(Glucocorticoids) 

Vinblastine, vincristine,  

(Vinca alkaloids) 

Silymarin, Flavone, Biochanin A 

(Flavonoids)  

Morphine 

(Opioid) 

Talinolol 

(Beta-adrenergic antagonist) 

Sodium taurodeoxycholate, 

sodium deoxycholate 

(Bile salts) 

L-Dopa 

(Antiparkinson-prodrug) 

Amiodarone 

(Antiarrhythmic agent) 

Dimethyl-beta-cyclodextrin 

(Excipient, solubilization 

enhancer) 
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At least four binding sites, which can influence each other allosterically, are currently 

being discussed in literature. The first two sites initially discovered are the Hoechst 

33342-selective 'H-site' of P-gp that binds colchicine and the RHO selective 'R-site', 

which binds anthracyclines such as doxorubicin and daunorubicin [30]. Later, a third 

P-gp drug-binding site, selective for prazosin and progesterone, was discovered [31]. 

Some groups have also suggested a fourth site specific for dihydropyridines, such as 

nicardipine [32, 33].  

 
The exact localisation of the binding sites in the molecule is still unclear. Data so far 

only indicates that both the R- and the H-site are located near the cytoplasmic leaflet 

of the lipid membrane bilayer, with the R-site located slightly more shallowly or closer 

to the interfacial phospholipids head group region [34, 35]. Photoaffinity labelling, 

cross linking and homology modelling studies place the substrate binding domains at 

the interface between TMD1 and TMD2 [36, 37], with TMs 4,5,6 in TMD1 and TMs 

9,10,11 and 12 in TMD2 contributing residues [37, 38]. Several substrates are known 

to bind to more than one binding site of P-gp, indicating a clear overlap of the binding 

regions and the formation of a bigger drug binding pocket [39]. Such a common drug 

binding pocket, could use residues from different TMs for binding the different 

substrates (induced fit); the number and type of residues involved deciding affinity for 

a particular substrate [40].  

 

The expression and distribution of P-gp within tissues influences the ADME of 

substrate molecules [41]. P-gp is found in the lung, gut, liver, kidney, brain, testis, 

and placenta [42-48] (Figure 1-5). Furthermore P-gp is also expressed in peripheral 

blood mononuclear cells, such as macrophages and lymphocytes [49, 50]. Leading to 

an asymmetric transport of substrate compound across the cell layer, the efflux pump 

is expressed only on one membrane domain of a differentiated and functionally 

polarized cell type. Thereby these cells act as biochemical barriers and prevent 

access of possibly toxic xenobiotics to underlying tissues and systemic circulation or 

facilitating removal of substrate metabolites [51, 52]. 
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Figure 1-5 Tissue distribution of P-glycoprotein and the net flux accomplished by its asymmetric 
location on the cells; adapted from [53]. 

 

The extent to which P-gp influences pharmacokinetics (PK) and thus the 

pharmacodynamics (PD) of a substrate depends on the route of application, the 

therapeutic target and the physicochemical properties of the compound. In the case 

of oral absorption, many compounds that are P-gp substrates are virtually unaffected 

by P-gp as they either bypass the efflux pump via rapid passive diffusion or they are 

applied in such high dose that they saturate P-gp [54-56]. However, the importance 

of P-gp efflux to oral drug absorption increases with drugs known to have low 

aqueous solubility, slow passive diffusion (BCS classes II-IV) and/ or marked first-

pass metabolism, or if only low doses of the P-gp substrate are applied [57, 58]. 

Furthermore, compounds that are targeted to the central nervous system are often 

quantitatively influenced by P-gp efflux because the exposing free concentrations in 

plasma are typically not high enough to saturate the efflux pump at the blood-brain 

barrier [59]. A selective inhibition of P-gp was shown to improve oral bioavailability of 

otherwise poorly absorbed P-gp substrates such as docetaxel, paclitaxel, topotecan, 

or cyclosporine A [58, 60-62] and increased effectiveness of cancer chemotherapy in 

multidrug resistant tumors in a number of clinical studies [63-65]. 

 

The first P-gp inhibitors to be discovered such as verapamil, quinidine, or 

cyclosporine A, are merely modulators of P-gp activity as they are substrates of the 

efflux pump themselves and show a dose-dependent competitive inhibition of 

substrate binding. High doses of these first generation inhibitors are required to 

effectively inhibit P-gp, with strong toxic side effects due to the inherent primary 

pharmacological effect of the drugs. Second generation inhibitors, which are either 

non-racemic enantiomers (e.g. dexverapamil) or are structurally derived from the first 
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generation substances (e.g. the cyclosporine A analogue PSC833 or the pipecolinate 

derivative VX710), lack the pharmacological properties of their predecessors and can 

be employed in much lower doses. However, these substances are not very specific 

for P-gp, as they also modulate activity of other transporters [66] and/or metabolizing 

enzymes such as CYP450 3A4 with overlapping substrate specifities [67]. To avoid 

the resulting convolutions in drug pharmacokinetics and drug-drug and drug-food 

interactions, a third generation of very potent and selective P-gp inhibitors was 

generated, e.g. tariquidar XR9576, laniquidar R101933 and GF120918 [38]. The 

potency of these third generation inhibitors is about 10 times higher than the potency 

of first or second generation inhibitors. 

 

Besides these xenobiotics small molecular inhibitors, endogenous substances such 

as bile salts (e.g. sodium taurochenodeoxycholate, sodium deoxycholate) and 

phospholipids have also been shown to modulate P-gp activity. Furthermore, 

naturally occurring flavonoids (e.g. flavone, biochanin A, silymarin) were found to 

improve absorption of P-gp substrates in vitro and in vivo [68-71]. Of special interest 

for pharmaceutical technology is the ability of certain non-ionic surfactants such as 

Tween 80, different Spans, several Pluronic block copolymers, Cremophor EL, and 

vitamin E TPGS (TPGS 1000) to inhibit P-gp mediated efflux (see 1.3.2) [72-77].  
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1.3 Surfactants 
 

1.3.1 Definition and pharmaceutical application 
 
Surfactants (surface active agents) are tensides, i.e. by aligning themselves at the 

interface, they reduce the interfacial tension at liquid-liquid or air-liquid interfaces. In 

bulk solutions, surfactants may assemble into aggregates called micelles. The 

concentration at which surfactants begin to form micelles is known as the critical 

micelle concentration (CMC).  

 

Surfactants are amphiphilic and may be classified according to structure: i) anionic, ii) 

cationic, iii) ampholytic, and iv) non-ionic surfactants. Anionic surfactants (e.g. 

sodium dodecyl sulphate (SDS), traditional soaps or fatty acid salts) are widely used 

in products for personal hygiene, detergents and washing agents. Because of their 

high irritating potential and toxicity towards biological membranes, anionic surfactants 

only play a minor role in overall pharmaceutical formulations. Cationic surfactants 

(e.g. Cetyl trimethylammonium bromide (CTAB), polyethoxylated tallow amine 

(POEA), benzalkonium chloride) possess great antimicrobiological properties and are 

therefore incorporated as preservatives in aqueous and semi-solid formulations.  

 

Non-ionic surfactants play the biggest role in galenics. They are more hydrophobic 

than ionic tensides and possess a greater capacity to dissolve poorly soluble drugs. 

Additionally, in general, non-ionic surfactants are less cytotoxic and show superior 

compatibility with other ionic excipients or active agents. Examples of non-ionic 

surfactants include cetyl alcohol, cetyl stearyl alcohol, polyoxyethylene fatty acid 

esters (Myrjs®), polyoxyethylene fat alcohol ethers (Brijs®), polyoxyethylene sorbitan 

fatty acid esters (Tweens®), sorbitan fatty acid esters (Spans®), polyoxyethylene 

polyoxypropylene blockcopolymers (Pluronics®), polyoxyethylene fatty acid 

glycerides (e.g. Cremophor EL®) and vitamin E TPGS. Non-ionic surfactants are 

widely used in pharmaceutical technology as wetting agents, solubilizers, emulsifiers, 

foam stabilizers, antifoams and also as permeation enhancers in oral formulations. 

For many years, the permeation enhancing effect of non-ionic surfactants was mainly 

attributed to an increased solubility of lipophilic drugs, a perturbation of intestinal cell 

membranes or tight junctions and an interaction with metabolic enzymes [78-80]. 
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However for some non-ionic surfactants it has been shown that the permeability 

enhancement is in large part due to inhibition of efflux systems such as P-gp or MRP. 
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Figure 1-6 Structure of A: Tween 80 and B: Polyoxyl -35-castor oil (Cremophor EL). 

 

1.3.2 Surfactants as oral absorption enhancers 
 

Several studies investigated the inhibitory potential of different surfactants on efflux 

transporters and tried to elucidate specificity and mechanism of inhibition. Various 

excipients (e.g. Labrasol, Tween 20 and 80, TPGS 1000, Imwitor 742, Solutol HS15, 

Cremophor EL, different Pluronics, Softigen 767) were identified as more or less 

potent P-gp inhibitors [72, 81-84], whereas only few substances show MRP inhibition 

[85, 86]. Thus far, no reports can be found in the literature on surfactant interaction 

with BCRP. The inhibitory effect seems to be restricted to non-ionic surfactants as 

neither cationic (hexadecyltrimethylammonium bromide (CTAB)) nor anionic 

surfactants (SDS) modulate P-gp activity [74]. 
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Currently, little is known about the mechanism of efflux pump inhibition. Besides a 

competitive inhibition of drug binding or an allosteric modulation of P-gp activity, 

where interaction occurs at one of the non-transport active binding sites, a non-

specific alteration of the lipid membrane environment has been proposed as a 

possible inhibition mechanism. Surface active agents might become incorporated into 

the phospholipid bilayer, thereby either increasing or decreasing the microviscosity of 

the membrane. P-gp displays a tangled relationship with its membrane environment; 

P-gp recognizes its substrates within the cytosolic leaflet and also translocates some 

endogenous lipids to the exoplasmic leaflet [87]. Furthermore recent studies 

demonstrated an integral role of membrane cholesterol content and localization on  

P-gp functionality. Cholesterol membrane depletion was shown to inhibit activity of  

P-gp [87-89], which in some cell lines was found to be preferably located in 

cholesterol enriched membrane microdomains, so called ‘lipid rafts’ [90]. Therefore, it 

seems feasible that a rigidization and/or fluidization of the lipid membrane may alter 

cholesterol organisation and might influence conformation and/or conformational 

flexibility of P-gp and its nucleotide and substrate binding domains. However, findings 

on the membrane altering effects of non-ionic surfactants and their correlation to     

P-gp inhibition are contradictory. For example, in the case of Cremophor EL, different 

reports can be found in the literature suggesting either fluidization [91], rigidization 

[92], or no effect [73] on membrane fluidity. Inconsistencies, such as these, may be 

observed when different surfactants are compared: Rege et al. [72] observed a 

membrane fluidization for Tween 80 and Cremophor EL, whereas TPGS 1000 was 

found to be a membrane rigidifier. At the same time, cholesterol is known to rigidify 

the lipid membrane yet it does not modulate P-gp activity [72].  

Studies on Pluronic P85 and other block copolymers have revealed an inhibition of  

P-gp ATPase, which alone or in combination with an intracellular energy depletion by 

disruption of mitochondria seems responsible for P-gp inhibition [93, 94]. The 

inhibition of the efflux pump ATPase could be due to a direct blocking of intracellular 

NBD’s, sterical hindrance of drug, nucleotide binding or unspecific membrane effects, 

tying back to the aforementioned theory [93].  

Altogether, the exact mechanism of action for P-gp inhibition by surfactants remains 

unclear and it seems questionable, if all surface active compounds share a common 

mechanism of inhibition. 
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1.3.3 D-Alpha-tocopheryl poly(ethylene glycol 1000)  succinate  

 
TPGS 1000 (Vitamin E TPGS, Tocophersolan, D-alpha-tocopheryl poly(ethylene 

glycol 1000) succinate) was developed in the 1950’s as a water-soluble form of 

vitamin E and as such has been administered to individuals with fat malabsorption, 

who can’t absorb naturally occurring lipophilic D-alpha-tocopherol, e.g. patients with 

cystic fibrosis, Crohn’s disease, short bowel disease, pancreatic enzyme deficiency, 

or cholestatic liver disease [95-97]. The mechanism for the tocopherol to enter the 

enterocyte and become absorbed has not yet been fully elucidated. TPGS 1000 may 

be hydrolyzed to free alpha-tocopherol i) in the stomach (non-enzymatic hydrolysis), 

ii) in the proximity of the brush border epithelium (esterase hydrolysis), iii) via a lipase 

on the surface of the enterocyte, which may transfer tocopherol into the enterocyte, 

or iv) entire TPGS micelles may be taken up and hydrolyzed intracellularly [98].  

 

TPGS 1000 (Figure 1-6) is comprised of a lipophilic non-polar (water-insoluble) 

vitamin E head and a hydrophilic (water-soluble) polyethylene glycol tail. It is 

prepared by the esterfication of the acid group of crystalline D-alpha-tocopheryl acid 

succinate with polyethylene glycol 1000. Due to its amphiphilic nature (hydrophilic 

lipophilic balance HLB value ~ 13) and surface active properties, the non-ionic 

surfactant TPGS 1000 can be used as a solubilizer, an emulsifier and/or as a vehicle 

for lipid based-drug delivery formulations: When used above its CMC of 0.02% wt, 

TPGS 1000 has been shown to greatly improve the solubility and bioavailability of 

poorly water soluble drugs, such as cyclosporine A, amprenavir, paclitaxel, and 

estradiol [58, 62, 77, 99, 100].  
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Figure 1-7: Structure of Vitamin E TPGS; n = 22, R = H. 
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In many cases, the bioavailability enhancing effect of TPGS is not restricted to a 

mere drug solubilization. Significant effects on bioavailability can already be 

observed at levels below the CMC, where no micellation of drug can occur [101]. 

Instead, the absorption enhancing effect of TPGS 1000 may also be attributed to an 

inhibition of P-gp mediated efflux [101, 102]. TPGS increases the sensitivity of P-gp 

expressing cells to several cytotoxic P-gp substrates in vitro and effectively blocks 

polarized transport of rhodamine 123 (RHO) and paclitaxel in transport assays [101]. 

P-gp inhibition by TPGS 1000 has also been demonstrated in a number of in vivo 

studies: TPGS 1000 increased bioavailability of paclitaxel in rats both via intravenous 

(iv) as well as oral (po) formulations [58, 103] and increased oral bioavailability of 

talinolol in humans [104]. 

 

Among surfactants TPGS 1000 is generally considered to be one of the most potent 

P-gp inhibitors [72, 77, 81, 84]; however, some groups report no significant influence 

of TPGS 1000 on P-gp [72, 75]. The inhibitory potency of TPGS 1000 (IC50: 3.5 µM) 

is only slightly weaker than that of the first generation P-gp inhibitor cyclosporine A 

(IC50: 1.0 µM), but falls considerably short to specifically synthesized inhibitors of the 

third generation, such as GF120918 (IC50: 20 nM) [105] or LY335979 (IC50: 50-60 

nM) [106]. TPGS 1000 was shown to be relatively selective in its inhibition, not 

significantly modulating the activity of other efflux pumps such as MRP2, or uptake 

transporters such as hPeptT1 and MCT [84]. The membrane bound metabolizing 

enzyme CYP P450 3A4, that shares a broad range of substrates with P-gp, is also 

not affected by TPGS 1000 [107]. A second beneficial effect of TPGS for cancer 

chemotherapy may not be related to P-gp inhibition: Alpha-tocopherol succinate itself 

has been described to have anti-cancer properties, inducing cell apoptosis in 

leukaemia cells as well as human breast and prostate cancer cells [108-110]. The 

effect has been shown to be enhanced by esterfication of alpha-tocopherol succinate 

with polyethylene glycol to TPGS 1000 [111]. 

 

A small number of products on the market already employ the solubilizing and 

permeability enhancing properties of TPGS 1000: For example, Agenerase® soft 

capsules and solution contain TPGS 1000 and the P-gp substrate and poorly water 

soluble HIV protease inhibitor amprenavir. In addition, some generic oral formulations 
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of the immunosuppressant cyclosporine A (Cicloral Hexal® capsules and solution, 

Ciclosporin-1A Pharma® capsules and solution) contain TPGS 1000.  

 

In recent years, the potential of TPGS 1000 for oral drug delivery and cancer 

chemotherapy has also been utilized in the development of nanoscaled controlled 

drug delivery system.: TPGS 1000 can be used as an emulsifier [112, 113] or as a 

coating material [113, 114] in the preparation of poly-d,l-lactide-coglycolide (PLGA) 

and polylactide (PLA) nanoparticles. The addition of TPGS 1000 as an emulsifier in 

the preparation of paclitaxel loaded PLGA nanoparticles, increased the AUC by a 

factor of three compared to Cremophor EL emulsified PLGA nanoparticles [103]. 

Alternatively, TPGS 1000 can represent the polymer-matrix itself. Copolymers of 

PLA-TPGS [115, 116] and PLGA-TPGS [117] showed higher paclitaxel drug loads 

and stronger sustained release compared to PLA/ PLGA controls. 

Furthermore, polycaprolactone (PCL)-TPGS nanoparticles have been designed for 

nasal immunisation with diphtheria toxoid [118]. Liposomal systems employing 

TPGS 1000, such as the mixed micelles of poly(ethylene glycol)-phosphatidyl 

ethanolamine conjugate (PEG-PE) and TPGS 1000 for the delivery of the anti-cancer 

drug camptothecin [119], are also feasible. 

1.4 Aim of the work 
 

Originally, TPGS 1000 was developed as a water soluble form of Vitamin E and not 

with the aim to synthesize a new surfactant or even to act as a P-gp efflux inhibitor. 

The absorption enhancing properties of TPGS 1000 were more or less discovered by 

chance. Therefore it seems reasonable to assume that the structure of TPGS 1000 

may not be optimized for either aim, and that a structural modification might yield 

more potent P-gp inhibitors. Commercially available TPGS 1000 was chosen as the 

chemical lead and two groups of analogues were synthesized by Eastman Chemical 

Company; analogues varied via PEG chain length or via a modified hydrophobic 

moieties replacing the vitamin E succinate portion. 

 In the first part of this thesis, the inhibitory potential and cytotoxicity of all analogues 

were determined by in-vitro assays and the results were correlated to 

physicochemical parameters in a structure activity relationship (SAR) study. Based 

upon these preliminary results, additional analogues of TPGS 1000 were synthesized 

and the SAR working hypothesis was further refined. To better understand the 
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mechanism of TPGS interaction with P-gp, and to compare and contrast results with 

findings from other labs, influence of experimental design (site of application, pre-

incubation time) and purification of TPGS on the P-gp inhibition were investigated.  

In the second part, more sophisticated mechanistic studies were conducted. To 

understand the observed SAR pattern and improve the rational design of new P-gp 

inhibitors, influence of TPGS on P-gp ATPase activity, cell membrane fluidity and 

conformational flexibility were investigated. 
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2 Structure-activity relationship of the 
interaction of vitamin E TPGS with 
P-glycoprotein 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter have been published in: 

E.M. Collnot, C. Baldes, M.F. Wempe, J. Hyatt, L. N avarro, K.J. Edgar, U.F. 

Schaefer, C.M. Lehr, Influence of vitamin E TPGS po ly(ethylene glycol) chain 

length on apical efflux transporters in Caco-2 cell  monolayers, J. Control 

Release 111 (2006) 35-40. 
Copyright © 2006 Elsevier B.V 

 

E.M. Collnot, C. Baldes, C. Wright, J.L. Little, U. F. Schaefer, C.M. Lehr, V.J: 

Wacher, K.J. Edgar, M. Wempe, Vitamin E TPGS modula tion of P-gp efflux in 

Caco-2 cells: Significance of compound purity, pre- incubation time and 

application side, Eur J Pharm Sci, submitted 

 



Structure-activity relationship of Vitamin E TPGS interaction with P-gp 
 

22 

2.1 Introduction 
 
The commercially available TPGS 1000 (D-alpha-tocopheryl poly(ethylene glycol 

1000) succinate) was originally developed as a water-soluble form of vitamin E. It 

consists of a lipophilic alpha-tocopherol head, which is connected via a succinate 

linker to a hydrophilic polyethylene glycol tail. Due to its surface active properties, 

TPGS 1000 may be used as a solubilizer, as an emulsifier and as a vehicle for lipid 

based-drug delivery formulations. In recent years, TPGS 1000 has been described 

as an effective oral absorption enhancer for improving the bioavailability of poorly-

absorbed drugs, an effect believed to be mediated via an inhibition of the apical efflux 

transporter P-gp. TPGS increased the sensitivity of P-gp expressing cells to several 

cytotoxic P-gp substrates in vitro and effectively blocked polarized transport of RHO 

and paclitaxel in transport assays [101]. In several studies, TPGS 1000 was found to 

be one of the most effective P-gp inhibitors among the surfactants [77, 81, 84]; 

however, other groups have reported no significant effect of TPGS 1000 [72, 75].  

 

TPGS 1000 is a relatively weak P-gp inhibitor. Originally, TPGS 1000 was not 

developed as a P-gp inhibitor; thus it is reasonable to believe, that the structure of 

TPGS may be further optimized for P-gp inhibition. Hence, TPGS 1000 was chosen 

as the lead molecule and two different groups of analogues were prepared by 

Eastman Chemical Company, a supplier of commercially available TPGS 1000. In 

one analogue group, the alpha-tocopherol part was conserved and only the PEG 

chain length was altered, leading to a broad range of TPGS derivatives with PEG 

molecular weights between 200 and 6000 Da (TPGS 200, 238, 400, 600, 1500, 

2000, 3350, 3500, 4000 and 6000; Figure 2-1). Two analogues (TPGS 750 OMe and 

TPGS 1100 OMe) contained a mono-methyl-ether group instead of a free hydroxyl 

group at the end of the PEG chain. The second group of TPGS analogues 

encompassed molecules with an average PEG chain length of 22 monomers (1000 

Da) but varying hydrophobic moieties in exchange for alpha-tocopherol (Figure 2-2). 

In particular gamma-tocopherol, 4-octylphenol, phytol, cholesterol and thioctic acid 

were employed. Because thioctic acid is a carboxylic acid the formation of a direct 

ester with PEG 1000 via its carboxyl group negated the need for a succinate linker.  
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Analogue n R  Analogue n R 

TPGS 200 4 H  TPGS 1500 33 H 

TPGS 238 5 H  TPGS 2000 45 H 

TPGS 400 9 H  TPGS 3350 76 H 

TPGS 600 13 H  TPGS 3350 79 H 

TPGS 750-OMe 16 CH3  TPGS 4000 91 H 

TPGS 1000 22 H  TPGS 6000 136 H 

TPGS 1100-OMe 24 CH3  

 

Figure 2-1 General structure of TPGS and novel analogues with modified PEG chain properties. 

 

In this first part of the dissertation, the novel analogues were tested in a bidirectional 

Caco-2 transport assay conducted to investigate their ability to modulate efflux of the 

model P-gp substrates RHO, a fluorescent dye, and 3H-digoxin (DIG), a cardiac 

glycoside. Cytotoxicity indicators such as transepithelial electrical resistance (TEER) 

and lactate dehydrogenase (LDH) release were investigated. Moreover, 

physicochemical properties of the analogues were determined experimentally (CMC) 

or in silico and correlated to the inhibitory activity in a structure activity relationship 

(SAR) study. Based on the preliminary results, additional TPGS analogues were 

synthesized and the SAR working hypothesis further refined. 
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Figure 2-2 Structures of TPGS analogues with modified hydrophobic moieties: A Phytyl PEG 1000 
succinate, B Thioctic acid PEG 1000 ester, C 4-Octylphenyl PEG 1000 succinate, D Cholesteryl PEG 
1000 succinate, E Gamma-tocopheryl PEG 1000 succinate. 
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2.2 Materials and methods 

2.2.1 Materials  
 
TPGS 1000, alpha-tocopherol, alpha-tocopherol succinate and all TPGS derivatives 

were obtained from Eastman Chemical Company (TN, USA). Transwell permeable 

filter inserts (3460, pore size 0.4 µM, 1.13 cm2) were obtained from Corning B.V Life 

Sciences (Schiphol-Rijk, Netherlands). Dulbecco’s modified Eagle’s medium 

(DMEM), non-essential aminoacids (NEAA) and fetal bovine serum (FBS) were 

purchased from GIBCO (Invitrogen GmbH.; Karlsruhe, Germany). The “cytotoxicity 

detection kit (LDH)” was from Roche Diagnostics (Mannheim, Germany). Rhodamine 

123 (RHO), 3H-digoxin (specific activity 6.4 Ci/mmol), non-labelled digoxin, bovine 

serum albumin (BSA), PEG 1000 and all other chemicals were purchased from 

Sigma-Aldrich (Taufkirchen, Germany). 

2.2.2 Synthesis of TPGS 
 
All syntheses were performed at Eastman Chemical Company according to the 

following general synthetic procedure: UPS grade alpha-tocopherol succinate 

(3.25 g, 6.12 mMol) was dissolved in dichloromethane (20 ml) and 1.1 equivalents of 

the corresponding polyethylene glycol added and stirred at room temperature. DMAP 

(4-dimethylaminopyridine; 0.1 equivalents) and DCC (N, N'-dicyclohexylcarbodiimide, 

1.1 equivalents) were sequentially added. The reaction vessel was capped and 

stirred overnight. The reaction mixture was Büchner filtered, and the filtrate 

concentrated under reduced pressure to afford crude product(s). Whenever 

indicated, products were then purified as their mono- and di-ester mixtures via 

preparative HPLC (Dynamax Microsorb C8, 250 x 41.4 mM I.d., 8 µM particles, 60 Å 

pore) using mobile phases (A, 25/75 methanol/acetonitrile (ACN); B, 25/75 iso-propyl 

alcohol (IPA)/ACN; C, IPA) with general gradient conditions of A for 24 min, B for 

6 min and C for 12 min at a flow rate of ~80 ml/min. 

 

2.2.3 Cell culture 
 
Caco-2 cells, clone C2BBe1, were purchased at passage 60 from American Type 

Culture Collection (ATCC; Manassas, VA, USA) and experiments conducted using 

passages 70-92. Cells were grown to ~90% confluence in 75 cm2 T-flasks with 
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DMEM supplemented with 10% FBS and 1% NEAA. Cells were grown at a 

temperature of 37.0 ± 0.5°C in an atmosphere of ~85 % relative humidity and ~5% 

CO2 and culture medium was changed every second day. Cells were seeded on 

Transwell inserts (pore size 0.4 µM, 1.13 cm2) at a density of ~60,000 cells/cm2. 

TEER was measured and only monolayers with a TEER > 350 Ω*cm2 with 

background subtracted were used for transport studies. 

 

2.2.4 Preparation of TPGS stock solutions 
 
All TPGS analogue stock solutions (33 mM), except TPGS 200, 238, and 3350, were 

prepared immediately prior to experiments in Krebs Ringer Buffer pH 7.4 (KRB: 

14 mM NaCl, 0.3 mM KCl, 1 mM HEPES, 0.4 mM glucose, 0.14 mM CaCl2, 0.25 mM 

MgCl2, 0.15 mM K2HPO4). TPGS 200, 238, and 3350 as well as vitamin E stock 

solutions were prepared using DMSO. Cholesterol and cholesterol succinate stock 

solutions were prepared in ethanol 96%. Stock solutions were diluted (1:1000) to give 

a final TPGS derivative concentration of 33 µM. Both DMSO and ethanol 96% were 

found to have no influence on RHO/DIG transport in a 1:1000 dilution (data not 

shown). To generate dose-response curves, dilutions of the stock solutions with the 

corresponding solvent were prepared and then diluted 1:1000 with KRB/RHO/DIG to 

afford the final concentration. 

 

2.2.5 Transport assay 
 
Caco-2 monolayers were used 21-25 days after seeding. Transport of the P-gp 

model substrates RHO and DIG was assessed in absorptive (apical to basolateral, 

Ap�Bl) and secretory (basolateral to apical, Bl�Ap) directions. Prior to the transport 

experiments, unless otherwise denoted, monolayers were pre-incubated (1 h) with 

the respective TPGS analogue (33 µM in KRB pH 7.4) on both sides. Subsequently, 

at t = 0 min, the substrate solution, consisting of RHO (13 µM) or DIG (1 µM) in KRB 

pH 7.4, respectively, was added to the donor compartment. To study RHO transport 

pure KRB pH 7.4 was added to the receiver compartment; in the DIG experiments 

the receiver solution consisted of 1% BSA in KRB pH 7.4. All solutions also 

contained the TPGS analogue (33 µM).  
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In some experiments standard pre-incubation conditions were modified to study 

influence of experimental protocol: Overall pre-incubation time was always 60 min. 

However, pre-incubation with KRB containing TPGS was varied between 0 and 

60 min, i.e. pre-incubation time 15 min means 45 min of pre-incubation with KRB, 

followed by 15 min incubation with KRB containing TPGS (33 µM). In experiments 

studying the influence of the side of surfactant application, pre-incubation took place 

for 60 min in pure KRB containing no TPGS. Before the experiment was 

commenced, TPGS was added to the apical side only, to the basolateral side only, or 

to both sides. 

Throughout all experiments, monolayers were agitated using an orbital shaker (IKA®-

Werke GmbH & CO KG; Staufen, Germany) at 100 ± 20 rpm. Samples were taken 

after 30, 60, 120, 180, 240, and 300 min from the receiver compartment. After each 

sampling, an equal volume of fresh transport buffer (~37°C) was added to the 

receiver compartment. Experiments were performed over 3 passages, each 

directional transport experiment comprising a total of n = 18, with the exception of the 

DIG experiments, dose-response curves and control experiments, where n = 9. To 

ensure integrity of the monolayers, TEER values were measured on the day of the 

experiment, after the pre-incubation, and at the end of the experiment. 

 

2.2.6 Sample analysis 
 

RHO was quantified using a CytoFluor-II fluorescence plate reader (Perseptive 

Biosystems; Weiterstadt, Germany) operating at excitation wavelength of 485 nm 

and emission wavelength of 530 nm. Fluorescence was linear in a range between 

0.006 µM and 6.5 µM and the detection was reproducible with a standard deviation 

< 2.0%. The limit of quantification (LOQ) was 0.006 µM. The detection was accurate 

with a relative standard deviation of 0.45%, 1.6%, and 3.5% at 6.5 µM, 0.5µM and 

0.01 µM, respectively. To take possible quenching into account, all calibration curves 

were generated in the presence of the respective tenside.  
3H labelled DIG samples were collected in scintillation vials and mixed with 2 ml of 

Ultima Gold scintillation cocktail (Perkin Elmer). Activity of these samples was 

assessed in a Tri-Carb liquid scintillation analyzer (Perkin Elmer). 
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2.2.7 Data processing and statistical analysis 
 
Flux was determined using receiver compartment steady-state appearance rates of 

RHO/ DIG (∆Q/∆t; µg/s). Apparent permeability (Papp) was calculated according to: 

 

Papp = (∆Q/∆t) * (1/A) * (1/C0) 

 

where A (cm2) is the nominal surface area of the monolayer and C0 (µg/ml) is the 

RHO concentration in the donor compartment at t=0.  

Relative change of Papp (cm/s) was calculated according to the equation:  

 

rel. increase of absorptive transport = (1-Papp (Ap�Bl) test/Papp (Ap�Bl) control) *100 

rel. decrease of secretory transport= (1-Papp (Bl�Ap) test/Papp (Bl�Ap) control) *100 

 

where Papp control is the absorptive/ secretory transport in the absence of TPGS or any 

P-gp modulator and Papp test represents the respective values in the presence of the 

investigated substance. 

 Additionally, the degree of inhibition (DI) was calculated as a measure of the overall 

extent of P-gp inhibition. DI was defined as: 

 

DI = (Papp (Bl�Ap)test - Papp (Ap�Bl)test) / (Papp (Bl�Ap)control- Papp (Ap�Bl)control)*100 

 

2.2.8 Cytotoxicity 
 
LDH is a cytosolic enzyme that is readily released upon cell membrane damage. 

Hence, LDH may be used as a tool to monitor cellular toxicity. LDH released into the 

assay medium can be measured via a coupled enzymatic assay. Conversion of the 

yellow tetrazolium salt (2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium 

chloride) into a red formazan salt is colorimetrically detected at 490 nm. Caco-2 cells 

were grown on 96-well tissue culture plates with a flat bottom (Greiner Bio-One 

GmbH; Frickenhausen, Germany) for 21 days as previously described. Monolayers 

were incubated (4 h) with 10 different concentrations ranging between 19.5 µM and 

10 mM of the respective TPGS derivative in fresh Hank’s balanced salt solution 

(HBSS) (~37°C) pH 7.4 containing 1% BSA. After the incubation, LDH release into 

the supernatant was determined using the cytotoxicity LDH kit as described by 
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Roche Diagnostics. Fresh HBSS/BSA (1%) pH 7.4 and Triton-X 100 (0.1%) in 

HBSS/BSA (1%) pH 7.4 were used as negative and positive controls, respectively. 

LDH release has been expressed (Fig. 5) relative to control values. Experiments 

were performed with an n=8 for each concentration. 

2.2.9 Determination of the critical micelle concent ration (CMC) 
 
Using the Du Nouy ring method, CMC's were determined from surface tension 

measurements performed with an Interfacial-Tensiometer K8600 (Kruess, Germany). 

All measurements were conducted in KRB pH 7.4 at 37°C in the absence of cells. 

Two independent experiments were performed with 3 measurements per 

concentration (n=6). 

 

2.2.10 Computational modelling 
 
Computational modelling was conducted at Eastman Chemical Company using a 

Dell™ computer equipped with a Pentium(R) 4 CPU (2.40 GHz) containing 1.5 GB of 

RAM. Chemical structures were drawn with CS Chem-Draw Ultra® (version 6.0.1, 

Cambridge Soft Corporation) and copied into CS Chem3D Ultra® (version 6.0, 

Cambridge Soft Corporation). Gaussian 03W (Version 6.0) was installed and used. 

The structures were initially inputted so that the repeating PEG chain length was 

linear. For each molecule, a molecular mechanics (MM) minimization was performed 

with a root-mean-square (RMS) of 0.01. Next, molecular dynamics was conducted 

(parameters: 2.0 fs step interval, 1 kcal/atom/ps, and 310 K) to afford structures 

containing coiled PEG units. Subsequently, Gaussian® molecular mechanics (UFF, 

6-31G basis set) was conducted [29]; afterwards, the property server was used to 

compute theoretical Connolly Molecular Area (CMA), Connolly Solvent-Excluded 

Volume (SEV), and ClogP (octanol/water). 

2.2.11 Data fitting and statistical analysis 
 
Data was fitted empirically to respective equations using Sigma Plot 9.0 graphing 

software (Systat Software Inc.; Point Richmond, CA, USA). 

Results are expressed as mean ± standard deviation (SD). Significance of difference 

in the Papp values was determined by one-way analysis of variances (ANOVA) 

followed by Neumann-Keuls-Student post-hoc tests.  
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2.3 Results 

2.3.1 Transport assay  

2.3.1.1 Analogues with modified PEG chain length 
 
In the first set of transport experiments, TPGS analogues with modified PEG chain 

lengths and a free hydroxyl group at the end of the PEG chain were investigated 

(Figure 2-1). The original data set encompassed TPGS 200, 238, 400, 600, 1000, 

2000, 3350, 3500, 4000 and 6000.  

 

Among these analogues, TPGS 1000 had the greatest influence on RHO efflux 

(Figure 2-3). TPGS 1000 significantly (P < 0.001) increased the absorptive transport 

of RHO from 0.36 ± 0.05*10-6 cm/s (control) to 0.66 ± 0.07*10-6 cm/s (~82% 

increase). Resulting in an overall reduction of RHO efflux ratio (ER) from 18.0 ± 5.3 

to 2.6 ± 1.0 (Table 2-2), secretory transport of RHO was likewise significantly 

(P < 0.001) reduced from 6.47 ± 0.85*10-6 cm/s in the control group to 

1.71 ± 0.29*10-6 cm/s (~74% decrease). The effects were still noteworthy, but not as 

pronounced for TPGS 238, 400, 600, 2000, 3350, and 3500. No significant influence 

was observed for TPGS 200, 4000, and 6000. Furthermore, all analogues displayed 

comparable effects on absorptive (Ap�Bl) and secretory (Bl�Ap) RHO transport.  

 

To further evaluate the influence of PEG chain length, the chain length was plotted 

against the observed results (increase of absorptive transport as well as decrease of 

secretory transport) and fitted empirically to different equations. In both cases, the 

activity pattern may be best described by a Weibull distribution (Figure 2-4) 

(F(x) = 1 – exp [-(x/b)c], 0<x) with r2 values of 0.94 and 0.91, respectively. Using 

these calculations, the predicted optimal PEG chain length for absorptive and 

secretory RHO transport resides between 1581 ± 209 and 1182 ± 476 Da, 

respectively. 
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Figure 2-3 RHO transport across Caco-2 monolayers in the absence and presence of TPGS 
analogues possessing different PEG chain lengths; above: absorptive transport Ap�Bl; below: 
secretory transport Bl�Ap; mean ± SD, n = 18; bars marked with * are significantly different from 
negative control. (P < 0.05) and ** are very significantly different (P < 0.001). 
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Figure 2-4 PEG chain length dependency of P-gp inhibitory effect of TPGS 1000 in absorptive as well 
as secretory direction; mean ± SD, n= 18. 

 

2.3.1.2 Testing of the PEG chain length hypothesis and influence of purification 
 

After the first set of studies, the proposed PEG chain length theory (see 2.3.1.1), was 

tested in a head to head comparison of novel TPGS analogues; PEG chain lengths in 

the range of the predicted optima (TPGS 750-OMe, TPGS 1000, TPGS 1100-OMe, 

TPGS 1500, and TPGS 2000) were used. Two of these analogues, TPGS 750-OMe 

and TPGS 1100-OMe, differed in the terminal hydroxyl group of the PEG chain, 

which was capped off as a mono-methyl-ether.  

Previous to the head to head comparison, the influence of TPGS analogue 

purification on the inhibitory potency was determined in a dose-response study 

(Figure 2-5) employing different concentrations of commercial TPGS 1000 (83-85%) 

and highly purified (>99%) TPGS 1000 as modulators of P-gp mediated RHO efflux.  
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Figure 2-5 Dose response curve of commercial TPGS 1000 and high purified (>99%) TPGS 1000 in 
Caco-2 transport studies with the fluorescent dye RHO; mean ± SD, n = 9. 

 

At the highest concentrations tested (33 µM and 330 µM), both purified and non-

purified TPGS 1000 achieved almost complete inhibition of P-gp with no statistically 

significant differences between both qualities. The inhibitory effect levelled out in this 

concentration range. However, as reflected in its EC50 value, the inhibitory values 

were slightly higher for purified TPGS 1000 and its onset of inhibitory action occurred 

at lower concentrations compared to the non-purified material, purified TPGS 1000 

EC50 (0.61 ± 0.07 µM) was about 5 times lower than the EC50 of commercially 

available, non-purified TPGS 1000 (2.91 ± 0.17 µM). As a result, highly purified 

materials were used in the subsequent head to head comparison of the different 

second generation TPGS derivatives. As indicated in the reduction of RHO ER from 

18.6 ± 4.1 to values ≤ 4.5 (Table 2-1), all tested analogues, including the two TPGS 

methyl-ethers, significantly reduced RHO efflux.  
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Experiment Ap-->Bl 
Papp x 10-6 cm/s ± SD 

Bl-->Ap 
Papp x 10-6 cm/s ± SD 

Efflux 
Ratio (ER) ± SD 

Control 0.22 ± 0.02 4.1 ± 0.6 18.6 ± 4.1 

TPGS 750-OMe 0.36 ± 0.07 0.96 ± 0.29 2.7 ± 1.3 

TPGS 1000 0.39 ± 0.05 1.0 ± 0.14 2.6 ± 0.7 

TPGS 1100-OMe 0.39 ± 0.11 0.97 ± 0.14 2.5 ± 1.1 

TPGS 1500 0.45 ± 0.08 0.84 ± 0.17 1.9 ± 0.7 

TPGS 2000 0.42 ± 0.03 1.9 ± 0.3 4.5 ± 1.0 

 

Table 2-1 RHO absorptive transport (Ap�Bl), secretory transport (Bl�Ap), and efflux ratio (ER) 
across Caco-2 monolayers in the presence of different TPGS analogues (33 µM) on both apical and 
basolateral sides at pH 7.4; mean ± SD, n=9. 

 

Consistent with PEG chain hypothesis, TPGS 1500 was the most potent P-gp 

inhibitor, increasing absorptive RHO transport from 0.22 ± 0.02*10-6 cm/s to 

0.45 ± 0.08*10-6 cm/s (102% increase) and reducing secretory RHO transport from 

4.1 ± 0.6 *10-6 cm/s to 0.84 ± 0.17*10-6 cm/s (79% decrease) (Table 2-1). For all of 

these purified analogues, the influence on P-gp mediated transport in both directions 

was stronger than was to be expected from the previous SAR study, placing the new 

data points above the previously fitted Weibull curve in the original PEG chain length 

plot (Figure 2-6, grey plot). However, the new data points still follow the predicted 

trend, allowing for a new fitting of curves to the same function. Compared to the old 

predictions (0.94 and 0.91), the new Weibull curve showed slightly improved r2 

values (0.98 and 0.97) and a noticeable but not statistically significant (P > 0.05) shift 

of the PEG chain length maxima (1466 ± 125 Da and 1271 ± 123 Da for absorptive 

and secretory transport, respectively). 
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Figure 2-6 Dependence of TPGS PEG chain length: Weibull regression of relative absorptive transport 
increase (above) and relative secretory transport decrease (below); new data points and fit integrated 
into old plot; mean ± SD; n = 18. 
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2.3.1.3 Variation of P-gp model substrate 
 

Since little is known about the specifity of TPGS interaction with P-gp (and its 

different binding sites) and choice of substrate might influence the results, transport 

experiments were also conducted using 3H-digoxin (DIG) as an alternative model    

P-gp substrate. Inhibitory effects of TPGS 1000 as a moderate P-gp inhibitor and 

TPGS 4000 as a non-modulator of P-gp activity were investigated. Furthermore the 

strong first generation P-gp inhibitor cyclosporine A (CsA, 15 µM) was included as a 

positive control.  

 

Table 2-2 Comparison of inhibitory effect of CsA (15 µM), TPGS 1000 (33 µM) and TPGS 4000 
(33 µM) on RHO and DIG efflux in Caco-2 monolayers; mean ± SD, n = 18 for RHO data, n = 9 for 
DIG data. 
 

Independent of transport direction, and the presence or absence of a P-gp 

modulator, Papp values for DIG were about 2 times higher than RHO permeability 

data. Nevertheless, the total effects of all three tested P-gp inhibitors were 

  RHO (13 µM) DIG (1µM) 

Papp (A�B) x 10-6 cm/s 0.36 ± 0.05 0.66 ± 0.14 

Papp (B�A) x 10-6 cm/s 6.47 ± 0.85 11.41 ± 0.54 

Control 

ER 18.0 ± 5.3 17.3 ± 4.4 

Papp (A�B) x 10-6 cm/s 0.80 ± 0.05 1.45 ± 0.11 

Increase (A�B) % 121.2 ± 20.2 118.7 ± 32.6 

Papp (B�A) x 10-6 cm/s 0.91 ± 0.18 1.78 ± 0.38 

Decrease (B�A) % 86.0 ± 28.4 84.3 ± 11.9 

CsA (15 µM) 

ER 1.1 ± 0.3 1.2 ± 0.2 

Papp (A�B) x 10-6 cm/s 0.67 ± 0.07 1.24 ± 0.20 

Increase (A�B) % 82.5 ± 19.6 87.3 ± 36.9 

Papp (B�A) x 10-6 cm/s 1.71 ± 0.29 4.23 ± 0.58 

Decrease (B�A) % 73.6 ± 22.3 62.8 ± 17.5 

TPGS 1000 (33 µM) 

ER 2.6 ± 1.0 3.4 ± 1.5 

Papp (A�B) x 10-6 cm/s 0.44 ± 0.05 0.76 ± 0.11 

Increase (A�B) % 21.1 ± 5.1 13.9 ± 5.2 

Papp (B�A) x 10-6 cm/s 5.67 ± 0.92 8.66 ± 0.63 

Decrease (B�A) % 12.3 ± 3.6 24.1 ± 2.9 

TPGS 4000 (33 µM) 

ER 12.9 ± 3.8 11.4 ± 2.7 
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comparable in both experimental setups. Both CsA and TPGS 1000 significantly 

(P < 0.05) reduced DIG efflux ratio from 17.3 ± 4.4 to 1.2 ± 0.2 and 3.4 ± 1.5, 

respectively. TPGS 4000 had no significant effect, only slightly lowering ER to 

11.4 ± 2.7. As indicated by the differences in relative increase (87.3 ± 36.9) and 

decrease (62.8 ± 17.5) of transport, the inhibitory influence of TPGS 1000 was 

slightly but not statistically significantly (P = 0.091) stronger in the absorptive 

direction than in the secretory direction.  

 

2.3.1.4 Analogues with modified hydrophobic moieties 
 
The second set of TPGS analogues evaluated in the RHO transport assay consisted 

of analogues with modified hydrophobic moieties (Figure 2-2). In a head to head 

comparison, commercial TPGS 1000, cholesteryl PEG 1000 succinate and gamma-

TPGS 1000 all showed significant inhibitory effects on P-gp activity (Figure 2-7). 

Inhibition was most pronounced for cholesteryl PEG 1000 succinate, which increased 

absorptive transport from 0.41 ± 0.02*10-6 cm/s to 0.79 ± 0.11*10-6 cm/s and reduced 

secretory transport from 4.43 ± 0.44*10-6 cm/s to 0.93 ± 0.22*10-6 cm/s. Phytyl PEG 

1000 succinate and 4-octyl-phenyl PEG 1000 succinate had weak effects on RHO 

transport, while thioctic acid PEG 1000 ester showed no significant influence at all.  
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Figure 2-7 Influence of TPGS analogues with modified hydrophobic moieties on RHO transport across 
Caco-2 cell monolayers; mean ± SD, n =18. 
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To better quantify the differences in inhibitory potency between the two most potent 

P-gp modulators (TPGS 1000 and cholesteryl PEG 1000 succinate) a dose-response 

study with the two surfactants was conducted (Figure 2-8). At 0.47 ± 0.05 µM, the 

determined EC50 value for cholesteryl PEG 1000 succinate was significantly lower 

than the EC50 of commercial TPGS 1000 (2.92 ± 0.17 µM). As was the case for the 

purified commercially available TPGS 1000, the inhibitory potency of the cholesterol 

derivative could be increased via purification of the monoester, i.e. by-products of its 

synthesis, such as the cholesteryl PEG 1000 succinate diester were removed. The 

purification of cholesteryl PEG 1000 succinate reduced the EC50 value to a level of 

0.067 ± 0.009 µM. 
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Figure 2-8 Dose response curve of commercial TPGS 1000 and non-purified and purified cholesteryl 
PEG 1000 succinate; mean ± SD, n = 9. 
 

2.3.1.5 Influence of pre-incubation time and side of application 
 
Various investigators have reported differing results for effectiveness of in vitro P-gp 

inhibition by TPGS 1000 [58, 77, 101, 104]. Because the experimental conditions 

may account for these inconsistencies, we varied pre-incubation conditions, 
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surfactant application side and model substrate (RHO) concentration. Kinetics of 

RHO transport across Caco-2 cell monolayers were studied in the presence and 

absence of TPGS 1000 (33 µM) on both sides of the monolayer. In the absence of a 

P-gp modulator, absorptive RHO flux was linearly correlated to the employed RHO 

amount, while secretory RHO transport was saturable and followed a one-site 

saturation model ( F(x) = Jmax * abs(x) / (KM + abs(x)) ) with a Km value of 

27.84 ± 5.32 µM and Jmax of 1.085 µMol/h/cm2. On the addition of TPGS 1000, 

absorptive RHO transport increased, and secretory transport was reduced: both now 

followed linear kinetics over the tested RHO concentration range (0.1 to 50 µM).  
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Figure 2-9 RHO kinetics in the presence and absence of TPGS 1000; mean ± SD, n = 9; plots were 
fitted to linear curve for absorptive (Ap�Bl) transport and secretory (Bl�Ap) transport in the presence 
of TPGS 1000 and to a one site saturation model for secretory (Bl�Ap) transport in the absence of 
TPGS 1000. 
 
As represented in Figure 2-10 and Figure 2-11, bi-directional RHO transport was 

investigated using different pre-incubation times (0, 15, 30, 45 and 60 min) in the 

presence of TPGS 1000. The influence of TPGS 1000 on absorptive RHO transport 

was clearly time dependent: the shorter the pre-incubation time, the longer the delay 

in the onset of inhibition (Figure 2-10). As a result, if Caco-2 cell monolayers were 

pre-incubated for only 0, 15, or 30 min with TPGS 1000, the increase in absorptive 

permeability at the end of the experiment was weaker and steady state was never 

achieved, making the determination of meaningful Papp values nearly impossible. 

Optimum results with a maximal influence were reached after 45-60 min of pre-

incubation.  
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Figure 2-10 Influence of pre-incubation time on P-gp inhibitory effect of TPGS 1000: absorptive 
(Ap�Bl) permeability of RHO in Caco-2 cell monolayers; mean ± SD, n = 9. 
 

In the case of secretory RHO transport, regardless of the length of pre-incubation 

time, TPGS 1000 had a large effect relative to control (Figure 2-11). Yet, a clear 

increase in inhibition with pre-incubation time was noticeable.  
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Figure 2-11 Influence of pre-incubation time on P-gp inhibitory effect of TPGS 1000: secretory 
(Bl�Ap) permeability of RHO in Caco-2 cell monolayers; mean ± SD, n = 9. 
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In a next step the impact of application side of the inhibitor on absorptive and 

secretory RHO transport in the absence of pre-incubation was determined. In 

separate experiments, TPGS 1000 was placed on the apical side only, on the 

basolateral side only, and on both sides of the monolayer (Figure 2-12 and Figure 

2-13). Independent of the application side, it took ~1.5-2.0 h to observe an 

enhancement in absorptive RHO transport rate. The effect was slightly delayed when 

TPGS 1000 was only placed on the basolateral side and also afforded lower, but not 

significantly different, permeability values after 300 min (Figure 2-12).  
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Figure 2-12 Influence of the application side on P-gp inhibitory effect of TPGS 1000; absorptive 
(Ap�Bl) permeability of RHO in Caco-2 cell monolayers; mean ± SD, n = 9. 
 

The impact of TPGS 1000 on secretory RHO transport was instantaneous and 

showed the same time dependent behaviour as absorptive RHO transport. When 

TPGS 1000 was only placed on the basolateral side, significantly weaker effects on 

RHO efflux were observed. No differences could be found between applications on 

both sides versus only on the apical side of the monolayer (Figure 2-13). 
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Figure 2-13 Influence of the application side on P-gp inhibitory effect of TPGS 1000; secretory 
(Bl�Ap) permeability of RHO in Caco-2 cell monolayers; mean ± SD, n = 9. 
 

2.3.1.6 Other surfactants  
 
As examples of other non-ionic surfactants previously described to modulate P-gp 

activity, Tween 80 and Cremophor EL were included in the transport experiments. To 

compare their inhibitory properties to TPGS 1000, EC50 values were determined from 

dose-response curves (Table 3-4). The study revealed TPGS 1000 to be the 

strongest P-gp modulator of the three surfactants. Tween 80 and Cremophor EL both 

performed significantly worse at 18.4 ± 6.5 µM and 24.7 ± 10.2 µM, respectively.  

2.3.1.7 Control experiments with degradation products 
 
Control experiments were performed. TPGS 1000 and cholesteryl PEG 1000 

succinate degradation products (alpha-tocopherol, alpha-tocopherol succinate, 

cholesterol, and cholesterol succinate) and polyethylene glycol 1000 were tested at a 

concentration of 33 µM for their ability to inhibit RHO efflux (Figure 2-14). All 5 

substances had no significant effects on RHO efflux, neither in absorptive nor in 

secretory direction. ER, as an overall indicator of efflux activity, therefore remained 

unchanged on addition of the degradation products (ER > 11.5). ER was very 

significantly reduced in the presence of TPGS 1000 (2.5 ± 1.1) and cholesteryl PEG 

1000 succinate (1.4 ± 0.5). 
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Figure 2-14: Influence of alpha-tocopherol, alpha-tocopherol succinate, cholesterol, cholesterol 
succinate and PEG 1000 on RHO transport across Caco-2 monolayers; mean ± SD, n=9; bars marked 
with ** are very significantly different from control (P < 0.001). 
 

2.3.2 Cytotoxicity 
 
As compared to control values, none of the TPGS analogues, whether with modified 

PEG chains or hydrophobic cores, showed relevant LDH cytotoxicity at 33 µM, the 

concentration employed in the transport assay. TPGS 200, 232, 400, 600, 750-OMe, 

3350, and 4000 had no significant effect at any of the tested concentrations and 

never reached a relative LDH release of 20% or higher (Figure 2-15). TPGS 2000, 

3500 and 6000 slightly raised the LDH release at concentrations > 5 mM. However, 

compared to a 1% Triton X-100 solution, relative cytotoxicity was still at a reasonably 

low level between 20 and 42%. TPGS 1000 showed the highest increase in LDH 

release among the analogues with conserved alpha-tocopherol cores, starting at a 

concentration of 625 µM and reaching a maximum cytotoxicity of 82 (± 32)% at a 

concentration of 10 mM.  



Structure-activity relationship of Vitamin E TPGS interaction with P-gp 
 

44 

Analogue conc. (µmol/l)

10 100 1000 10000

re
l. 

cy
to

to
xi

ci
ty

 (
%

)

-40

-20

0

20

40

60

80

100

20 %

TPGS 200
TPGS 232
TPGS 400
TPGS 600
TPGS 750 MME
TPGS 3400
TPGS 4000

 
 

Analogue conc. (µmol/l)

10 100 1000 10000

re
l. 

cy
to

to
xi

ci
ty

 (
%

)

-40

-20

0

20

40

60

80

100

120

20 % 

TPGS 1000
TPGS 2000
TPGS 3500
TPGS 6000

 
 

Figure 2-15 Rel. cytotoxicity of TPGS analogues with modified PEG chain length compared to positive 
control (0.1% triton X-100) in the LDH release assay; mean ± SD; n = 12. 
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In general, analogues with modified hydrophobic moieties generally demonstrated 

higher LDH cytotoxicity (Figure 2-16). Among these surfactants, 4-octyl phenyl PEG 

1000 succinate had the highest cytotoxic potential, reaching half maximal cytotoxic 

effect at a concentration of 0.24 ± 0.03 mM. Cholesteryl PEG 1000 succinate and 

phytyl PEG 1000 succinate also showed significant cytotoxic effects, but at higher 

concentrations with IC50 values of 0.89 ± 0.09 mM and 0.97 ± 0.11 mM, respectively. 

The other analogues displayed only slightly increased LDH release with an overall 

ranking of 4-octyl-phenyl PEG 1000 succinate > cholesteryl PEG 1000 succinate = 

phytyl PEG 1000 succinate > TPGS 1000 = gamma-TPGS 1000 > thioctic acid PEG 

1000 ester. 
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Figure 2-16 Rel. cytotoxicity of TPGS analogues with modified hydrophobic moieties compared to 
positive control (0.1% triton X-100) in the LDH release assay; mean ± SD; n = 12. 

 

In accordance with the LDH release data, TEER values were constant throughout the 

transport experiment, consistent with viable intact monolayers, when Caco-2 cells 

were incubated with TPGS 1000 or PEG chain length analogues (Table 2-3). 

Moreover, no loss of tight junction functionality could be observed in the presence of 

gamma-TPGS 1000, cholesteryl PEG 1000 succinate, and thioctic acid PEG 1000 

ester (Table 2-3). However, TEER dropped significantly on incubation with phytyl 

PEG 1000 succinate. The decrease of barrier resistance was most pronounced for  

4-octyl phenyl PEG 1000 succinate, which reduced TEER from 605 ± 45 Ω*cm2 to 

63 ± 20 Ω*cm2
 after 6 hours. 



Structure-activity relationship of Vitamin E TPGS interaction with P-gp 
 

46 

 
Start of the 

experiment 

After 60 min of 

preincubation 

End of the 

experiment 

No TPGS analogue 507 ± 49 557 ± 50 541 ± 125 

TPGS 200 573 ± 66 522 ± 42 526 ± 61 

TPGS 238 502 ± 93 499 ± 61 533 ± 62 

TPGS 400 529 ± 20 512 ± 24 531 ± 38 

TPGS 600 452 ± 40 432 ± 68 431 ± 101 

TPGS 750-OMe 609 ± 90 612 ± 64 636 ± 87 

TPGS 1000 505 ± 76 502 ±36 549 ± 41 

TPGS 1100-OMe 591 ± 86 562 ± 121 604 ± 126 

TPGS 1500 600 ± 39 582 ± 58 618 ± 48 

TPGS 2000 590 ± 67 534 ± 88 601 ± 42 

TPGS 3350 501 ± 68 432 ± 62 461 ± 87 

TPGS 3500 510 ± 88 513 ± 143 480 ± 145 

TPGS 4000 490 ± 51 509 ± 90 502 ± 88 

TPGS 6000 574 ± 38 522 ± 46 526 ± 60 

Cholesteryl PEG 1000 succinate 577 ± 67 467 ±24 457 ± 34 

Phytyl PEG 1000 succinate 523 ± 40 503 ± 26 208 ± 77 * 

4-octyl phenyl PEG 1000 succinate 605 ± 45 486 ± 25 * 63 ± 20 ** 

Thioctic acid PEG 1000 ester 471 ± 87 421 ± 87 505 ± 109 

Gamma-tocopheryl PEG 1000 succinate 482 ± 30 413 ± 56 536 ± 97 

 

Table 2-3 Development of TEER values in the presence of TPGS analogues during the course of 
transport experiments; mean ± SD, n = 18; * = significantly different to start of the experiment 
(P < 0.05). 

 

2.3.3 Determination of physicochemical properties 
 
The surface tensions of the TPGS analogues in KRB at 37 ± 1°C were measured and 

their CMC values determined. All TPGS analogues possessing the alpha-tocopherol 

moiety and modified PEG chain lengths presented CMC’s of 0.02 ± 0.019% wt (Table 

III-4). Variances were greater between analogues with modified hydrophobic 

moieties. The cholesterol, phytol, and 4-octyl-phenol analogues (0.01 ± 0.01% wt) 

were comparable to TPGS 1000 in their solubilizing potential, while gamma-

TPGS 1000 at 0.001 ± 0.001% wt had a considerably lower CMC. Thioctic acid PEG 

1000 ester had the lowest solubilizing capacity at a CMC of 0.1 ± 0.09% wt.  
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Analogue MW 

(Da) 

CMC 

(% wt) 

ClogP CMA

(Å2) 

SEV 

(Å3) 

TPGS 200 713.0 0.02 ± 0.019 11.9 668 762 

TPGS 232 745.0 0.02 ± 0.019 11.9 763 805 

TPGS 400 913.0 0.02 ± 0.019 12.2 850 987 

TPGS 600 1113.0 0.02 ± 0.019 12.4 949 1199 

TPGS 750-OMe 1278.0 0.02 ± 0.019 13.3 964 1396 

TPGS 1000 1513.0 0.02 ± 0.019 13.0 1213 1667 

TPGS 1100-OMe 1627.0 ND 13.8 1221 1908 

TPGS 1500 2013.0 ND 13.8 1530 2420 

TPGS 2000 2513.0 0.02 ± 0.019 ND 1719 3011 

TPGS 3350 3863.0 0.02 ± 0.019 ND 2496 4911 

TPGS 3500 4013.0 0.02 ± 0.019 ND 2522 5027 

TPGS 4000 4513.0 0.02 ± 0.019 ND 3100 5676 

TPGS 6000 6513.0 0.02 ± 0.019 ND 4268 8231 

Gamma-tocopheryl PEG 1000 succinate 1503.0 0.001 ± 0.001 12.5 1135 1675 

Cholesteryl PEG 1000 succinate 1472.6 0.01 ± 0.009 11.4 1178 1562 

Phytyl PEG 1000 succinate 1382.5 0.01 ± 0.009 10.4 1161 1510 

Thioctic acid PEG 1000 ester 1206.3 0.1 ± 0.1 3.5 986 1209 

4-octyl phenyl PEG 1000 succinate 1292.0 0.01 ± 0.009 6.6 1026 1381 

 

Table 2-4 Physicochemical properties of TPGS 1000 and its analogues; CMC was determined 
experimentally, while ClogP, CMA and SEV were calculated in silico using Chem 3D Ultra; ND = not 
determined. 

 

Other physicochemical parameters to depict molecule size and lipophilicity were 

derived from in silico modelling of the molecule structure. Each TPGS analogue was 

initially drawn using Chem-Draw® with the corresponding linear PEG chain. A 

molecular mechanics (MM) followed by a molecular dynamics process was then 

conducted. Next, Gaussian® molecular mechanics (UFF, 6-31G basis set) was 

conducted to afford a local minimized gas-phase structure (Figure 2-17). In addition a 

semi-empirical calculation was conducted. Using the property server, Connolly 

Molecular Area (CMA), Connolly Solvent-Excluded Volume (SEV), and octanol/water 

partition coefficient (ClogP) were computed. Due to computational limitations, 

calculations were in part impeded by TPGS molecule structure: the high number of 
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atoms for TPGS analogues with a molecular weight > 2500 Da made ClogP values 

for these molecules unobtainable.  

 

  

Figure 2-17 3D structure of TPGS 200 (left) and TPGS 2000 (right) as optimized by molecular 
dynamics calculations. 

 

Molecule volume, which may be described by CMA and SEV, increased linearly with 

molecular weight/PEG chain length. The computational analysis did not reveal an 

optimum PEG chain length or a threshold value for a non-linear increase of molecule 

volume (Figure 2-18). The existence of such a threshold value would indicate a 

drastic change in molecular folding or mobility. 

In the same way, ClogP, a measure of lipophilicity, increased linearly with the length 

of the PEG chain, the exception being the two ether analogues, whose increase in 

lipophilicity was more pronounced due to the capping of the terminal hydroxide 

functional group (Table 2-4). In consequence, if the degree of inhibition in the Caco-2 

transport assay is plotted against the ClogP, the corresponding curve follows the 

same trend as in the original Weibull curve (Figure 2-19). Even though no actual 

ClogP values were obtainable for the rest of the TPGS analogues with PEG chains 

> 1500 Da, it can be assumed that their ClogP would continue to increase linearly, 

the ClogP vs. DI plot thus mirroring also the declining part of the Weibull distribution.  
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Figure 2-18 Correlation of computational data with molecule weight of the TPGS analogues: above: 
SEV, below: CMA. 
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A sufficient lipophilicity increases membrane penetration of a molecule and clearly 

facilitates its reaching the propagated site of action. However, a ClogP value 

of > 13.5 can’t be a prerequisite for effective P-gp modulation, as the most potent P-

gp modulator cholesteryl PEG 1000 succinate has a lower ClogP value of 11.4 

(Table 2-4). The ClogP values of the TPGS analogues with modified hydrophobic 

moieties increase in the order thioctic acid PEG 1000 ester < 4-octyl phenyl PEG 

1000 succinate < phytyl PEG 1000 succinate < cholesteryl PEG 1000 succinate 

 < gamma TPGS 1000, thus also demonstrating the relation between lipophilicity and 

effectiveness of inhibition. If combined however, the two groups of analogues are too 

divergent to make general predictions for optimal ClogP values. 
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Figure 2-19 Correlation of ClogP with degree of inhibition. 
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2.4 Discussion 
 
In recent years, several studies have presented effect(s) of different commonly used 

pharmaceutical excipients on P-gp efflux activity [75, 81, 120-122]. However, these 

studies discuss structurally diverse surfactants. The current work focuses on two 

groups of homologous TPGS analogues. In a TPGS structure-activity relationship 

(SAR) study, TPGS derivatives with varying PEG chain lengths or modified 

hydrophobic moieties were synthesized and evaluated in vitro for their ability to 

modulate P-gp mediated efflux.  

 

2.4.1 Analogues with modified PEG chains 
 

Among the tested analogues with modified PEG chain lengths, commercial 

TPGS 1000, whose P-gp modulating properties were merely discovered by chance, 

performed amazingly well: it was the most potent P-gp modulator in the original data 

set. All analogues with shorter or longer PEG chain length demonstrated weaker     

P-gp inhibition in both transport directions (Figure 2-3).  

 

The astounding P-gp inhibitory properties of commercial TPGS 1000 are mirrored by 

the low EC50 value of TPGS 1000 compared to other surfactants such as Tween 80 

and Cremophor EL (Table 3-4). The determined EC50 values for TPGS 1000 and 

Cremophor EL are comparable to literature results for the inhibition of RHO efflux in 

mdr1 overexpressing P388/mdr1 mouse lymphocytes (3.92 ± 0.60 µM and 

33.5 ± 22.4 µM for TPGS 1000 and Cremophor EL, respectively) [84]. However, in 

the case of Tween 80, the determined value here varies from previous findings which 

were reported with a higher EC50 at 152.7 ± 229.0 µM [84]. The discrepancies may 

be explained by the use of different cell lines: P-gp expression levels may be 

assumed to be much higher in P388/mdr1 cells than in Caco-2 cells, thus allowing for 

a better differentiation of inhibitory properties. On the other hand, Caco-2 cells were 

chosen for this study, as they present one of the best in vitro models for the small 

intestinal epithelium and afford very good in vitro – in vivo correlations [123, 124]. In 

particular, Caco-2 cells express a vast array of efflux transporters known to influence 

in vivo oral absorption [125]. A comparative study performed in our lab, ranked the 

TPGS analogues according to their inhibitory potential in a calcein AM assay using 
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P-gp overexpressing MDCKII-MDR1 cells. The findings of this study confirmed the 

results of the Caco-2 transport experiments and validated the use of the Caco-2 

systems for P-gp inhibition screening [126].  

 

TPGS 1000’s near optimal PEG chain length may also be illustrated by the fitting of 

the data to a Weibull distribution, which also implies the existence of even more 

potent P-gp inhibitors at a predicted PEG molecular weight between 1581 ± 209 and 

1182 ± 476 Da for absorptive and secretory transport respectively (Figure 2-4). On 

testing this theory by the synthesis, purification, and subsequent head-to-head 

comparison of TPGS analogues with PEG chain lengths in the range of this predicted 

optimum, one of the analogues (TPGS 1500) indeed surpassed the original 

TPGS 1000 in its inhibitory effect on in vitro P-gp efflux (Table 2-1). The results are 

consistent with the previously described model and demonstrate that the optimization 

of the TPGS structure for P-gp modulating purposes by altering the PEG chain length 

is possible. 

 

For all of these second generation analogues, the inhibitory effect in both transport 

directions surpassed the previously expected levels; however, the discrepancy was 

larger for absorptive than for secretory transport. The heightened activity in this set of 

surfactants compared to the previous results may be attributed to the use of highly 

purified materials (>99% pure) instead of crude products. The influence of TPGS 

purification becomes apparent by comparing the EC50 values for non-purified 

(2.91 ± 0.17 µM) and highly purified TPGS 1000 (0.61 ± 0.07 µM) (Figure 2-8). As 

estimated by HPLC commercially available TPGS 1000 mainly consists of 

TPGS 1000 monoester (~ 85%) and TPGS 1000 diester (~ 13%)  
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Figure 2-20 Structure of TPGS 1000 diester, a by-product of the TPGS synthesis. 
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The TPGS 1000 monoester represents the active compound in this mixture, as its 

degradation products PEG 1000 and alpha-tocopherol succinate were shown not to 

influence in vitro P-gp activity (Figure 2-14) and a head to head comparison of TPGS 

1500 diester, TPGS 1000 diester and TPGS 2000 diester, also failed to reveal a 

modulation of RHO transport in absorptive or secretory direction for either compound 

(study conducted at Eastman Chemical Company, data not shown). Interestingly, the 

difference in EC50 values between the two TPGS qualities (commercial and purified 

TPGS 1000) is higher than can be attributed to the varying monoester content. A 

‘dilution” of the active component content would only afford a theoretical EC50 value 

of ~2.5 µM. Instead, TPGS synthesis by-products, most likely the TPGS diester, 

interfere with the P-gp inhibitory mechanism of the monoester, providing additional 

reasons for the use of purified materials.  

 

It is important to point out that the purification doesn’t affect the ranking of the 

analogues’ inhibitory potential. The same activity pattern can be observed in both the 

old and new data set. Consequently a fitting of the new data to the Weibull function 

only slightly alters the quality of the fit and doesn’t significantly shift the predicted 

maxima (Figure 2-6). However, it can be noted, that the refinement of the maxima for 

secretory and absorptive transport leads to a converging of the predicted values and 

suggests the existence of a common optimum for both transport directions (as seems 

reasonable from a mechanistic point of view) at a length between 1466 ± 125 Da and 

1271 ± 123 Da.  

 

The two methyl ether compounds also followed the Weibull trend, demonstrating that 

the free hydroxyl group at the end of the PEG chain is not essential for the P-gp 

inhibitory function of TPGS. Furthermore, the ether derivatives present an interesting 

alternative to non-ether TPGS 1000. The use of a capped PEG in the TPGS 

synthesis allow for a much easier preparation of pure, more active material. Unlike 

non-ether PEGs, PEG 750-OMe and PEG 1100-OMe contain a reactive hydroxyl 

group at only one end of the polyethylene glycol polymer chain. Therefore 

esterification with vitamin E succinate can only occur on this end of the PEG chain, 

leading to the sole formation of TPGS monoesters and avoiding the formation of 

diesters.  
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2.4.2 Influence of experimental conditions 
 

RHO kinetic in Caco-2 cells was investigated to determine substrate affinity to P-gp 

(Figure 2-9). Secretory RHO transport followed a one-site saturation model with a 

Jmax of 1.085 µmol/h*cm2 and a Km of 27.84 ± 5.32 µM, which is comparable to 

literature values (16.5 ± 2.0 µM) [127]. This Km value places RHO in the group of      

P-gp substrates with moderate affinity to the efflux pump, similar to vinblastine            

(Km = 36.5 µM [128]), but with markedly lower affinity than the HIV protease inhibitor 

ritonavir (Km = 0.06 µM [129]) and significantly higher affinity than the             

topoisomerase II inhibitor etoposide (Km = 276 µM [128]). At a RHO concentration of 

13 µM (approximately half of the determined Km value) no saturating effects can be 

observed, as RHO kinetic in this part of the curve is still linear, making it a suitable 

concentration for P-gp inhibition experiments. The lack of a saturating effect in 

absorptive direction where RHO transport follows simple linear kinetics may be 

explained by differing transport pathways of RHO across cell monolayers. According 

to the model of Troutman and Thakker (Figure 2-21), absorptive RHO transport is 

limited to the paracellular route, while secretory RHO transport is thought to mainly 

occur via a basolaterally located uptake transporter and subsequent apical P-gp 

efflux [130]. Consequently, in absorptive directions only low RHO concentrations can 

reach the efflux pump due to the longer diffusion distance, not reaching levels high 

enough to saturate the efflux transporter.  

 

 

 

Figure 2-21 RHO transport routes across epithelial monolayers, according to Troutman and Thakker; 
adopted from [130] 
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In the presence of TPGS 1000 (33 µM), almost complete P-gp inhibition is achieved. 

In consequence RHO transport in both transport directions is controlled by passive 

diffusion, following linear kinetics. As the applied TPGS 1000 concentration was quite 

high, no information can be derived regarding the inhibitory mechanism of TPGS: 

only an incomplete P-gp inhibition would allow for a fitting of RHO data to a 

Michaelis-Menten model and a comparison of Vmax and Km data in the presence and 

absence of the P-gp modulator. 

 

Due to the postulated differing transport routes between absorptive and secretory 

direction, the use of RHO for evaluating P-gp efflux activity was criticized in recent 

publications [130, 131]. In absorptive direction RHO is claimed to be transported 

solely via the paracellular diffusion, thus by-passing the efflux pump and yielding no 

information on actual ‘absorption enhancement’ by efflux pump inhibition. Instead of 

RHO, the use of other model substrates such as DIG is propagated, which are 

thought to be transported by transcellular diffusion in both transport directions. A 

comparison of the relative effect of TPGS 1000, TPGS 4000 and the first generation 

P-gp inhibitor CsA on P-gp efflux activity revealed no differences in the extent and 

ranking of the inhibitory effects between DIG and RHO as P-gp model substrates 

(Table 2-2): Due to its higher lipophilicity DIG permeability data was higher than RHO 

data. However, efflux ratios and the relative changes of transport were comparable in 

both experimental setups. Contrary to Troutman’s substrate theory, the DIG data as 

well as the RHO data demonstrated no differences in the influence of the P-gp 

modulators on absorptive versus secretory transport. A stable experimental setup 

with a replacement of sample volume (instead of a complete exchange of receptor 

buffer) in an otherwise closed system and sufficient equilibration periods may negate 

the impact of the contrasting transport pathways. This also stresses the importance 

of experimental design for the evaluation of P-gp modulators in bidirectional transport 

experiments.  

 

Differences in experimental protocol may help explain the discrepancies observed 

when comparing P-gp inhibition results for TPGS 1000 among different groups: while 

most in agreement with the above mentioned findings observe strong P-gp inhibitory 

effects of TPGS in both transport directions, others report a polarity of effect with a 

pronounced secretory inhibition, but no influence in the absorptive direction [72, 132]. 
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RHO micellar sequestering by TPGS 1000 was proposed as a possible explanation 

for this phenomenon [72]. However, this seems unlikely as effects could in part be 

observed at concentrations well below the CMC of TPGS 1000 (0.02% wt) and the 

sequestering would affect both transport directions to a similar degree.  

 

Instead, pre-incubation in the presence of TPGS proved to strongly influence the 

effectiveness of the P-gp inhibition. A polarity of effect was observed, as absorptive 

RHO transport was very pre-incubation time dependent, while secretory transport 

was less impacted by changes in the experimental protocol. The maximum increase 

of absorptive transport was observed after ~45 min of pre-incubation, while decrease 

of secretory RHO transport was instantaneous (Figure 2-10 and Figure 2-11). The 

distinct transport pathways for RHO may explain the discriminative effect of 

TPGS 1000 on RHO transport. In the absorptive direction a certain period of time 

(during which RHO enters the cells via the “backdoor”) has to pass before P-gp is 

exposed to significant amounts of RHO and efflux activity and inhibition of such can 

be observed. In the case of secretory RHO transport exposure occurs much faster 

and effects on P-gp activity become apparent immediately. The inhibitory potential of 

TPGS 1000 on P-gp is the same in both transport directions and optimal pre-

incubation conditions of ~45-60 min apply for both experimental setups; however, the 

magnitude of the pre-incubation effect may vary depending on transport direction (i.e. 

the compartment to which RHO is administered). Besides providing a possible 

explanation for observed differences in inhibitory activity of TPGS 1000, the time-

dependence of the inhibition offers new possibilities to optimize P-gp inhibition by 

TPGS. A delayed release of the P-gp substrate drug in relation to TPGS might 

increase the efficacy of in vivo P-gp inhibition. 

 

A similar variation in sensitivity to changes in the protocol could be observed when 

the application side of TPGS 1000 was altered (Figure 2-12 and Figure 2-13): 

Independent of its side of application, TPGS 1000 affected absorptive as well as 

secretory RHO transport, although the effect was slightly weaker in both transport 

directions when the surfactant was placed only in the basolateral compartment. As in 

the previous experiments with zero min of pre-incubation time, it took up to 1.5-2.0 

hours to observe an effect on absorptive transport. In addition, the effect was further 

delayed when TPGS 1000 was only added to the basolateral side, indicating that 
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TPGS 1000 has to first traverse the cell monolayer to reach its site of action in the 

apical cell membrane and subsequently inhibit P-gp mediated efflux. Consequently, 

P-gp inhibition by TPGS 1000 seems to be the result of a direct interaction of the 

tenside with the efflux pump rather than indirect effects that are translated through 

the cell membrane.  

 

2.4.3 Analogues with modified hydrophobic  moieties  
 

A second possibility to influence the P-gp modulating properties of TPGS was 

demonstrated in the variation of the hydrophobic part of the molecule. Of the five 

novel structures with modified hydrophobic moieties, only cholesteryl PEG 1000 

succinate surpassed TPGS 1000 in its P-gp modulating effect, with a slightly stronger 

inhibition of RHO efflux in the head to head comparison at 33 µM and a significantly 

lower EC50 value (0.47 ± 0.06 µM). Similar to TPGS 1000, the amphiphilic cholesteryl 

PEG 1000 succinate monoester was shown to be the active component and the 

inhibitory potency could therefore be further increased via purification 

(EC50 = 0.067 ± 0.009 µM). Gamma-TPGS 1000 performed similar to commercial 

alpha-TPGS 1000 in the head to head comparison, suggesting that a small change in 

the molecule structure, such as the addition of a methyl-group to the hydrophobic 

core, is not sufficient to drastically alter P-gp modulation potential. On the other hand, 

the exchange of alpha-tocopherol for 4-octyl-phenol and phytol decreased the P-gp 

activity. However, the evaluation of meaningful Papp values for these two analogues 

was hindered by their relatively high cytotoxicity: 4-octyl-phenyl PEG 1000 succinate 

and phytyl PEG 1000 succinate compromised the Caco-2 monolayer integrity and 

made it impossible to reach steady state transport conditions. Thioctic acid PEG 

1000 ester completely lacked P-gp modulating properties. As this is the only 

derivative to miss the succinate linker, the loss of activity can’t be clearly ascribed to 

the change of the hydrophobic core. A reduced conformational flexibility of the 

molecule structure and/ or an increased susceptibility to hydrolysis may also account 

for this phenomenon.  
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2.4.4 SAR and mechanism of P-gp inhibition by TPGS  
 

The head to head comparison results have implications for the understanding of the 

inhibitory mechanism of TPGS. TPGS 1000 and the analogues with modified 

hydrophobic moieties (with the exception of thioctic acid PEG 1000 ester) do not 

greatly differ in their physicochemical properties (i.e. ClogP, molecular weight, or 

molecule volume) yet they show markedly different extents of influence on the efflux 

pump. This indicates a more specific interaction of the surfactant molecule(s) with   

P-gp rather than an unspecific alteration of the membrane environment. The latter 

theory was suggested because of the amphiphilic structure of TPGS 1000, which 

allows for an intercalation of the molecules into the lipid bilayer of the cell membrane. 

Looking at the cytotoxicity and TEER data, a complete rupture of the cell membrane 

at P-gp active levels (~ 33 µM) may be ruled out, although more subtle changes in 

membrane fluidity, might not be apparent from the LDH results and need to be 

excluded, e.g. via electron spin resonance spectroscopy (ESR).  

 

No explanation can be derived for the observed Weibull activity pattern of analogues 

with varying PEG chain lengths from their physicochemical parameters computed in 

the molecular modelling study. Hydrophilicity and molecule volume are linearly 

related to molecule/ PEG chain weight and therefore don’t correlate with P-gp 

activity. It might be inferred that at PEG chain lengths greater than ~1500 Da, the 

surfactant molecules simply become too large and/or hydrophilic to enter/cross the 

cell membrane and reach the site of action, thus explaining the declining part of the 

Weibull curve. None the less, the increased P-gp inhibitory potential with moderate 

PEG chain lengths remains unexplained, as the inhibitory mechanism of TPGS is not 

yet understood. 

 

From the control results, it is clear that the formation of an amphiphilic structure by 

the PEG chain and the hydrophobic moiety is essential to influence RHO efflux. The 

importance of the PEG component for the inhibitory activity of several P-gp 

modulators had been suggested in previous studies [73, 75, 133]. Hugger et al. [121] 

illustrated that PEG 300 itself can inhibit P-gp function, but only at concentrations of 

≥20% v/v. Following this trend, PEG 1000 alone (at 33 µM) was not sufficient to 

influence P-gp activity. 
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It was previously proposed that the permeability enhancing effect of tensides, 

amongst them TPGS 1000, was likely due to micelle formation [62, 134]. However, 

TPGS 1000 has been reported to influence efflux well below its CMC of 0.02% wt 

[101]; the current results using a TPGS 1000 concentration of 33 µM (0.005% wt) are 

consistent with the ‘below CMC’ conclusion. Surface tension measurements of 

analogues with varying PEG chain lengths showed their CMC's to be similar to 

commercial TPGS 1000 (0.02 ± 0.019%); the variances were greater among 

analogues with modified hydrophobic moieties. Still, all derivatives, with the 

exception of thioctic acid PEG 1000 ester, showed sufficient to good solubilizing 

properties and would allow for their use as emulsifiers and/or solubilizers in 

pharmaceutical formulations. The high CMC standard deviations may be explained 

from the use of the non-purified crude products in the measurements; all analogues 

consisted of 80-85% mono-ester and 14-19% diester. The general trend clearly 

suggests no correlation between CMC values and P-gp modulatory activity. A RHO 

sequestering as the cause for the decline in the P-gp inhibitory activity for TPGS 

analogues with longer PEG chain length is questionable, as quenching was taken 

into account during the experimental setup and the decrease in activity became 

apparent while operating below the CMC.  

 

Interestingly, the presented results demonstrate novel excipient potential in more 

than one way. Besides an optimization of TPGS structure for P-gp inhibition, the 

synthesis of new TPGS analogues with strong drug solubility capacity (e.g. TPGS 

400) but little influence on efflux, could be demonstrated. Such detergents may be 

quite advantageous to drug-delivery, especially as new formulations get developed 

that show only minimal to no interactions with other drugs, formulations or nutrients. 

 

2.4.5 In vivo impact of TPGS 
 

Toxicity aspects are only a minor concern in the evaluation of TPGS. In clinical 

studies conducted in the 1980’s (when TPGS was investigated as a water soluble 

vitamin E source), no toxicity from TPGS was found as measured by hemogram, 

urinalysis, osmolality, renal function, and liver function [135]. Only a small portion of 

TPGS is absorbed from the intestine as intact molecules. The majority is hydrolysed 

in the enterocytes to PEG and vitamin E succinate, which is then further degraded to 
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vitamin E. The absorbed PEG is rapidly cleared by glomerular filtration [135]; 

problems may only arise in patients with renal insufficiency, as they may develop a 

hyperosmolar state. The active component of TPGS, the TPGS monoester, doesn’t 

reach the systemic circulation. Therefore interactions of TPGS with hepatic MDR1 

and other metabolic transporters and enzymes can be excluded. This clearly 

represents an advantage of TPGS over other (small molecular) P-gp inhibitors, as a 

modulation of the interplay of the various hepatic transport systems could have 

unpredictable consequences on the pharmacokinetics of drugs. 

 

TPGS concentrations reached in vivo via the formulations on the market are 

sufficient to completely inhibit P-gp, as Brouwers et al. [136] were able to 

demonstrate for Agenerase® soft gelatine capsules. The capsules contain 280 mg of 

TPGS in addition to the HIV protease inhibitor and P-gp substrate amprenavir. In 

human intestinal fluid from both duodenum and jejunum, high TPGS concentrations 

in the mM range were found, a TPGS concentration high enough to completely inhibit 

P-gp and at the same time increase amprenavir solubility from the µM to the mM 

range. However the high TPGS concentration also negatively affected amprenavir 

permeability: micellation of the drug reduced the free amount that could cross the 

intestinal epithelium. 

 

The actual in vivo impact of TPGS for oral drug delivery, in particular the extent to 

which the P-gp inhibition contributes to the absorption enhancement, is still being 

discussed. The solubilizing effect of TPGS and other excipients may be the main 

cause for increasing bioavailability of P-gp substrates. The significance of the efflux 

phenomenon is most pronounced for poorly soluble, but highly permeable drugs in 

BCS class II. Drastically increasing their solubility allows the substrates to saturate 

the efflux systems, thus minimizing the efflux effect and the importance of P-gp 

modulation. Furthermore, endogenous substances such as bile salts and 

phospholipids might provide similar effects as TPGS and other non-ionic surfactants, 

as they are known to have both solubilizing and P-gp modulatory properties. The 

additional beneficial effect of adding a weak P-gp inhibiting surfactant to the 

formulation may therefore be only minimal. 
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2.5 Conclusion 
 
Based on the PEG chain length hypothesis, TPGS 1500 was synthesized as a novel 

TPGS analogue with improved P-gp modulating properties. New P-gp inhibitors could 

also be developed via modification of the hydrophobic moiety. Cholesteryl PEG 1000 

succinate represents the most potent P-gp inhibitor amongst TPGS analogues, so 

far. Furthermore, TPGS ether derivatives were introduced as an interesting 

alternative to synthesize purer, and thus more active, TPGS analogues. On the other 

hand the PEG chain length dependency of the inhibitory effect also suggests that 

new solubilizers without any P-gp inhibitory properties can be logically constructed 

(e.g. TPGS 400 or TPGS 4000). These new surfactants may greatly reduce 

formulation-formulation, drug-formulation, and/or formulation-food interactions 

associated with inhibition of P-gp and/or other drug transport proteins. They could 

broaden the spectrum of excipients for pharmaceutical formulations and open up a 

new series of useful solubilizers for in vitro drug permeability screening. Sensitivity of 

TPGS activity to exposure time (and to a lesser degree application side) may help 

explain the differing reports on TPGS ability to inhibit P-gp in vitro, and could have 

dramatic influence on its performance as an in vivo P-gp inhibitor and bioavailability 

enhancer. Delivery systems, which allow for a delayed release of the drug in relation 

to TPGS, could further improve the circumvention of P-gp mediated drug efflux. 

Thus far, the mechanism for the observed structure activity patterns has not been 

elucidated, although an unspecific alteration of the membrane environment does 

seem increasingly unlikely.  
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3 Mechanism of Vitamin E TPGS 
interaction with P-glycoprotein 
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3.1 Introduction 
 

Although it was possible to improve the P-gp inhibition by TPGS through 

modifications of the hydrophilic PEG chain or the hydrophobic moiety, the rational 

behind the superior inhibitory properties of the new surfactants has not been 

understood. Therefore it can not be predicted whether or not the potential for further 

structural improvement has been exhausted. A mechanistic understanding of 

inhibition of P-gp by surfactants should give new insights into the structure activity 

relationships and vastly improve the rational design of more potent P-gp inhibitors.  

In the last years, a vast amount of research effort has been focussed on P-gp, yet the 

exact inhibitory mechanism of non-ionic surfactants remains unclear. Three 

mechanisms are currently being proposed in the literature: i) a sterical hindering of 

substrate binding [137], ii) an alteration of membrane fluidity [72, 73], and iii) an 

inhibition of efflux pump ATPase in combination with a possible intracellular ATP 

depletion [93, 138, 139]. Findings from the previous SAR studies suggest a more 

specific interaction of TPGS with the efflux pump instead of an unspecific alteration of 

membrane fluidity: Only some variations to the hydrophobic part of the molecule 

resulted in increased inhibitory activity, while others significantly reduced affectivity. 

Furthermore, to a certain degree, the P-gp inhibitory effect was side specific and 

could not be directly translated from the basolateral side of the monolayer to the 

apical side, where the efflux pump is located. However, all things considered 

evidence is tentative and necessitates more specific investigations into the state of 

the P-gp membrane environment.  

 

Therefore, in this second part of the thesis the mechanism of TPGS interactions with 

P-gp in its membrane environment was investigated. Alterations in membrane fluidity 

in the presence of the surfactant were studied via electron spin resonance 

spectroscopy (ESR). Modulation of ATPase activity was measured in the absence 

and presence of P-gp substrates using an ATPase assay. Furthermore, 

conformational changes in P-gp due to the addition of TPGS were studied through 

the reactivity with the monoclonal antibody UIC2. Results were compared and 

correlated to findings from our previous P-gp inhibition experiments in the Caco-2 

transport system. 
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3.2 Materials and methods 
 

3.2.1 Materials  
 
Commercial Vitamin E TPGS 1000, Vitamin E, Vitamin E succinate, cholesterol, 

cholesterol succinate and all TPGS derivatives were obtained from Eastman 

Chemical Company (TN, USA). Vitamin E TPGS and all analogues were prepared 

and purified according to the method previously described [140]. Dulbecco’s modified 

Eagle’s medium (DMEM), non-essential amino acids (NEAA) and fetal bovine serum 

(FBS) were purchased from GIBCO (Invitrogen GmbH, Karlsruhe, Germany). 

Reduced ß-nicotinamide dinucleotide (NADH), sodium azide, ethylene glycol-bis              

(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), and phosphoenol-pyruvate 

were from Fluka (Neu-Ulm, Germany). Monoclonal CD243 P-gp antibody clone UIC2 

was from Immunotech (Marseille, France), Alexa Fluor® 488 conjugated anti-mouse 

IgG was purchased from Molecular Probes (Leiden, Netherlands). 5-doxyl stearic 

acid, ouabain, nicardipine, R+-verapamil, quinidine, progesterone, lactic 

dehydrogenase (LDH)/ pyruvate kinase, bovine serum albumin (BSA), PEG 1000, 

SDS, Triton-X 100, procaine hydrochloride and all other chemicals were purchased 

from Sigma-Aldrich (Taufkirchen, Germany).  

3.2.2 Cell culture 
 
Caco-2 cells, clone C2BBe1, were purchased at passage 60 from American Type 

Culture Collection (ATCC; Manassas, VA) and used at passages 70-92. Cells were 

grown to ~90% confluence in 75 cm2 T-flasks with DMEM supplemented with 10% 

FBS and 1% NEAA. Culture media were changed every second day and cells were 

grown at a temperature of 37 ± 0.5°C in an atmosphere of ~85% relative humidity and 

~5% CO2. 

 

3.2.3 ESR spectroscopy 
 
ESR was chosen as a convenient method to study the membrane environment of    

P-gp in the absence and presence of TPGS 1000 and its different analogues. ESR is 

a form of absorption spectroscopy that is used in various fields of application, e.g in 

solid-state physics, for the identification and quantification of radicals, in chemistry, to 
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identify reaction pathways, and in biology or medicine for tagging biological spin 

probes (see 6). 

Trypsinized Caco-2 cells were spin labelled by incubating a suspension 

(2.0*107cells/ml) in Krebs Ringer Buffer (KRB; pH 7.4) for 30 min at 37 ± 0.5°C with 

0.50 mM of a spin label stock solution (10 mM 5-doxyl stearic acid (5-SA) in ethanol). 

Different test compound concentrations were added to the cell suspensions and 

incubated for 60 min. After suspension centrifugation (4 min at 1200 g), supernatant 

was removed and the cell pellet was washed and resuspended in KRB to give a final 

concentration of ~1.0*108 cells/ml. To quench residual free spin label, chrome 

oxalate (final concentration 2.0 mM) was added and the ensuing cell suspension 

(100 µl) was filled into the test tube (WG806A Tissue cell; Rototec-Spintec, 

Biebesheim, Germany) and placed in a 4103 TM/ 8609 cavity (Bruker, Karlsruhe, 

Germany). 

 

ESR measurements were performed at room temperature using a Bruker ESP300 E 

spectrometer with an ER081 (90/30 C5) magnet (Bruker, Karlsruhe, Germany). The 

following conditions were used: microwave power 1mW, modulation amplitude 2 G, 

sweep width 100 G, modulation frequency 100 kHz, scanning time 40.96 s and time 

constant 10.24 ms. ESR measurements were performed at room temperature using a 

Bruker ESP300 E spectrometer with an ER081 (90/30 C5) magnet (Bruker, 

Karlsruhe, Germany).  

 

Using the equation proposed by Gaffney and Lin (see below)[141], cell membrane 

fluidity may be depicted via the cell membrane order parameter S. S can be derived 

from the ESR spectral line splitting. Briefly, the spin active nitroxide group of 5-SA is 

situated within four carbon atoms of the polar carboxyl group of the lipid acid. 

Reporting on molecular dynamics occurring near the membrane surface, 5-SA is 

located in the membrane close to the membrane head groups and the nitroxide 

functionality unveils molecular dynamic changes that may occur near the membrane 

surface. Normally, a free nitroxide radical in solution will produce a characteristic 

three line (isotropic) ESR spectrum because of rapid tumbling of the molecule; 

whereas in biological membranes, the restricted mobility of the spin label is causing 

an anisotropic (or powder-like) spectrum. The spin probe 5-SA becomes intercalated 

into the membrane bilayer and aligns itself along an axis parallel to the membrane 
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normal. In that case the maximal hyperfine component azz of the NO-moiety is 

oriented parallel to the long molecular axis of 5-SA and parallel to the membrane 

normal, the minimal hyperfine component axx is oriented perpendicular to it. The 

anisotropic motion of the spin label with respect to membrane normal then leads to 

the experimentally observed largest hyperfine interaction aII (≤ azz) and minimal 

splitting a┴ (≥ axx) which thus are monitoring the dynamic behaviour (Figure 3-3). 

Comparing the observed aII and a┴ values to the theoretical principal values, azz and 

axx, allows one to calculate S; defined as the ratio of the observed hyperfine 

anisotropy (aII - a┴) to the 25 gauss theoretical maximum azz – axx = 25 G when the 

spin label is rigidly immobilised.  

 

S = (aII - a┴)/ (azz – axx); 0≤ S ≤ 1 

 

When S = 0, molecular mobility is unhindered and fluidity is maximal. When S = 1, 

molecular motion is negligible and rigid glass spectra are obtained. In biological 

membranes, a membrane order gradient may be observed [142]. The gradient 

typically stretches from a highly ordered zone (0.60-0.80) in the polar-non-polar 

interface region to the non-polar membrane core where it may approach 0.20. As the 

solvent terms such as polarity are not included, the expression for S is only an 

approximation. However, in this study only relative changes in the Caco-2 system are 

measured and the absolute values for S are not essential.  

3.2.4 ATPase assay 
 
Since it may be affected by TPGS analogues, ATPase activity was measured in the 

presence and absence of different P-gp substrates (verapamil (50 µM), quinidine 

(50 µM), progesterone (100 µM), and nicardipine (0.5 µM). We used a modified 

version of a high-throughput screening assay developed by Garrigues et al. [143] 

with commercially available human P-gp membranes from Sf9 insect cells (BD 

Gentest, Heidelberg, Germany). Briefly, membrane vesicles were preincubated for 

30 min at 37 ± 0.5°C in assay buffer that contained : i) MgATP (1.0 mM); ii) an ATP 

regenerating system consisting of pyruvate kinase (0.7 units/ml) and phosphoenol-

pyruvate (1.0 mM); and iii) a coupled system using LDH (1.0 unit/ml) and NADH 

(0.5 mM). Ouabain (0.5 mM), sodium azide (10 mM) and EGTA (1.0 mM) were added 

as inhibitiors of unspecific ion pump ATPases.  
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The surfactant and – depending on the experimental setup – the respective P-gp 

substrate were added from stock solutions and vesicles were incubated for 60 min at 

37 ± 0.5°C. NADH consumption, corresponding stoichi ometrically to the produced 

ADP, was measured with a UV-VIS plate reader (Spectra SLT III, TECAN, 

Crailsheim, Germany) at 340 nm. 

 

 
Figure 3-1 Schematics of a coupled enzymatic ATPase assay, adapted from [143]. 

 

3.2.5 Immunocytochemical staining 
 

Caco-2 cell monolayers were stained three weeks after seeding on Transwell 

permeable filter inserts. Cells were washed and preincubated for 15 min at 37°C with 

pure KRB or KRB containing 10 µM CsA, respectively. Preincubation solution was 

removed and cells were fixed at room temperature for 10 min with 

2% paraformaldehyde (PFA). Cells were washed and residual PFA was blocked for 

10 min with 50 mM NH4Cl, followed by permeabilization for 8 min with 0.1%              

triton X-100. UIC2 mouse monoclonal antibody stock solution (50 µg/ ml) was diluted 

1:50 in phosphate buffered saline (PBS) containing 1% BSA and cells were 

incubated for 60 min with the UIC2 primary antibody at 37°C. Mouse IgG1 κ was used 

as isotypic control and diluted 1:100 with PBS containing 1% BSA. The monolayers 

were then washed three times with PBS before being reacted with 1:100 dilution of 

Alexa Fluor ®488 conjugated goat anti-mouse F(ab’)2 fragment in PBS containing 1% 

BSA. 1 µg/ml of propidium iodide was added for counterstaining of cell nuclei. After 

30 min of incubation at 37°C, cells were washed thr ee times with PBS and 

embedded in FluorSave anti-fade medium (Calbiochem, Bad Soden, Germany).  
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Images were obtained using a confocal laser scanning microscope (MRC-1024, 

Biorad, Munich, Germany) with the instrument settings adjusted that no positive 

signal was observed in the channel corresponding to green fluorescence of the 

isotypic control. 

3.2.6 UIC2 shift assay 
 
UIC2 is a monoclonal antibody that can recognize human P-gp on the cell surface 

and strongly inhibits P-gp mediated drug efflux [144]. In contrast to other similar P-gp 

antibodies, UIC2 reactivity is sensitive to the functional state of P-gp, thus allowing to 

monitor P-gp conformational changes via its binding. UIC2 binding to P-gp is 

increased upon substrate binding or in cells whose ATP levels are depleted or whose 

nucleotide binding sites are inactivated by mutation [145]. On the other hand UIC2 

binding is decreased in the presence of vanadate, which traps P-gp in a transition 

state by forming an irreversible ternary complex with ADP and P-gp [146, 147]. The 

differences in UIC2 reactivity are ascribed to differing numbers of P-gp molecules 

presenting the epitope recognized by UIC2 at the cell surface, thus reflecting 

conformational changes of the efflux pump during its catalytic cycles (Figure 3-2). 

Residues in the extracellular loop between TM5 and TM6 are directly involved in the 

display of the UIC2 epitope [148]. TM6 has been shown to be actively involved in the 

drug transport process and the proximity of this region to TM6 may help explain why 

UIC2 binding is sensitive to the functional state of P-gp and why binding of UIC2 

inhibits P-gp mediated drug transport.  

 
Figure 3-2 Principle of the UIC 2 shift assay: A Binding of UIC2 to inactive P-gp in the absence of a 
substrate; B: increased binding of UIC2 to P-gp paratopes exposed in active P-gp; adapted from 
www.chemicon.com. 
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For the UIC2 shift assay, Caco-2 cells, grown on Transwell permeable filter inserts, 

were harvested by trypsinization, washed and resuspended in KRB supplemented 

with 1% BSA. The number of viable cells was determined by trypan blue staining. 

0.5 * 106 of viable cells in a total volume of 400 µl KRB + 1% BSA were incubated for 

30 min at 37°C with 5 µg of primary monoclonal anti body UIC2. Wherever mentioned, 

cells were pre-incubated for 15 min (45 min in the case of TPGS 1000) at 37°C with 

5 µM of CsA, 1 mM sodium orthovanadate, 50 µM verapamil, or 33 µM of 

TPGS 1000 prior to antibody addition. With the exception of CsA, which was 

dissolved in ethanol 96%, all test compound stock solutions were prepared using 

bidistilled water. Sodium orthovanadate had to be activated for use in the UIC2 shift 

assay by depolimerization of vanadate. For this purpose a 100 mM stock solution of 

sodium orthovanadate was adjusted to pH 10.0, boiled and cooled down. The three 

steps were repeated until a stable, colourless solution was received. The activated 

orthovanadate stock solution was stored in aliquots at -20°C.  

After incubation with the UIC2 antibody, cells were diluted with ice cold KRB to 2 ml 

and the suspension was centrifugated at 1000 g for 5 min. The cell pellet was 

washed two times with 2 ml of ice cold KRB. Cells were then resuspended in 400 µl 

of KRB + 1% BSA containing 4 µl of Alexa Fluor ®488 conjugated anti-mouse IgG 

and incubated for 30 min at 37°C in the dark. After wards, cells were diluted again to 

2 ml and secondary antibody was removed by centrifugation. Cells were washed two 

times with 2 ml of ice cold KRB, before the cell pellet was resuspended in 1 ml of ice 

cold PBS to be analyzed in a BD FACS Calibur fluorescence-assisted cell sorter (BD 

Biosciences, Heidelberg, Germany). The fluorescence intensity associated with cells 

was expressed on a log scale. 

3.2.7 Statistical analysis 
 
All results are expressed as mean ± standard deviation (SD). Correlation of data with 

results from previous Caco-2 transport experiments was conducted using Sigma Plot 

9.0 graphing software (Systat Software Inc.; Point Richmond, CA, USA). Significance 

of difference in order parameters and ATPase activity values was determined by one-

way analysis of variances (ANOVA) followed by Holm-Sidak post-hoc tests.  
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3.3 Results 

3.3.1 ESR 
 
The influence of TPGS 1000, and other analogues, on bilipid cell membrane fluidity 

was investigated using the lipid soluble spin label 5-doxyl stearic acid (5-SA). Figure 

3-3 shows a typical ESR spectrum obtained when 5-SA was incorporated into Caco-2 

cell membranes in the absence of any modulators of membrane fluidity or P-gp 

activity.  

 

 

Figure 3-3 Typical ESR spectrum of 5-doxylstearic acid incorporated into Caco-2 cells: aII and a┴ are 
derived from spectral line splitting as indicated. 

 

Incubating with the spin label and brief exposure to hypoxic conditions during the 

ESR measurements, had no negative effect on cell viability; trypan blue viability 

staining results for ESR treated and untreated trypsinized Caco-2 cells revealed 

72.2 ± 4.8% and 75.4 ± 3.9% viable cells, respectively (mean ± SD, n = 3).  
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Indicating a highly organized Caco-2 cell membrane in the head group region, the 

spin probe   5-SA in untreated cells gave an average S value of 0.789 ± 0.007 (Table 

3-1). The results are in line with literature values describing an S value between 0.60 

and 0.80 in the head group region of the lipid membrane bilayer.  

To validate the Caco-2 ESR technique, we studied the influence of the surfactants 

SDS and Triton-X 100, which are both commonly used in molecular biology to fluidize 

and enhance the permeability of cell membranes, and have already been shown to 

fluidize membranes of prokaryotic and eukaryotic cells [149-151]. SDS showed a 

concentration dependent effect on membrane fluidity. Compared to control, 1.0 mM 

SDS significantly reduced S to 0.728 ± 0.014 (Table 3-1). A similar effect was 

observed for Triton-X 100 0.1%, which afforded an S value of 0.732 ± 0.006 (Table 

3-1). Cholesterol succinate (1.0 mM) was used as a model membrane rigidifying 

compound [152-154]. The moderate but significant (P < 0.05) rigidification of the cell 

membrane in the presence of cholesterol succinate (S = 0.813 ± 0.005) was 

comparable to the effect observed in the presence of 0.37 mM of the local 

anaesthetic procaine hydrochloride (S = 0.805 ± 0.005; Table 3-1). For a long time, 

local anaesthetics were believed to fluidize cell membranes [155, 156]. However, it 

could be shown that they exert an amphiphilic effect on cell membrane fluidity, 

fluidizing the hydrocarbon core region but rigidifying the head group region [157, 

158]. Overall, the extent of change in the order parameter S observed in the 

validation studies is well in the “normal range” compared to findings from previous 

ESR studies on other membrane active substances [70, 149]. 

 

Membrane Fluidizer/ Rigidizer Order parameter S  

Control 0.789 ± 0.007 

SDS 0.10 mM 0.784 ± 0.070* 

SDS 1.0 mM 0.728 ± 0.014* 

Triton-X 0.1% 0.732 ± 0.006* 

Procaine hydrochloride 37.0 mM 0.813 ± 0.005* 

Cholesterol succinate 1.0 mM 0.805± 0.005* 

 

Table 3-1 Order parameter ’S’ of the spin label 5-SA incorporated into untreated Caco-2 cells and cells 
preincubated with potential membrane rigidizers and fluidizers; mean ± SD, n = 3-5; * = significantly 
different from untreated control (P < 0.05). 
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TPGS 1000 at a concentration between 3.3 µM and 1.65 mM had no statistically 

significant (P < 0.05) effect on Caco-2 cell membrane fluidity (Figure 3-4). As the 

concentration of TPGS 1000 was continuously increased, a progressive fluidization of 

the cell membrane was observed. At the highest TPGS 1000 concentration 

(16.5 mM), ‘S’ was reduced from control (0.807 ± 0.005) to 0.727 ± 0.019, 

corresponding to a 12.9% reduction of the order parameter. 
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Figure 3-4 Relative change of the order parameter ‘S’ of the spin label 5-SA in Caco-2 cells under the 
influence of different concentrations of TPGS 1000 and cholesteryl PEG 1000 succinate ; mean ± SD, 
n = 3-4; * = significantly different from untreated control (P < 0.05). 

 

In contrast to TPGS 1000, cholesteryl PEG 1000 succinate rigidified the membrane in 

a dose dependent manner (Figure 3-4). The effect was statistically significant 

(P < 0.05) at a concentration of 1.65 mM onward. At the highest concentration, 

cholesteryl PEG 1000 succinate (16.5 mM) increased 'S' from control (0.790 ± 0.026) 

to 0.902 ± 0.003, a 14.1% increase of the degree of order. For a head to head 

comparison of different TPGS analogues with varying PEG chain length (Table 3-2), 

concentrations of 33 µM and 3.3 mM were chosen, as they produced a maximal 

TPGS 1000 influence in the Caco-2 P-gp inhibition transport assay and the first 
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significant fluidizing effects in the ESR studies, respectively. At 33 µM, all of the 

tested TPGS analogues had only minimal influence on rigidity. At 3.3 mM, TPGS 200 

was the only analogue that slightly, although not statistically significantly (P = 0.279) 

rigidified the membrane, while S for TPGS 600 was comparable to control. Similar to 

the previous dose response curve (Figure 3-4), TPGS 1000 (3.3 mM) significantly 

(P < 0.05) decreased S from 0.780 ± 0.016 to 0.746 ± 0.004. TPGS 2000, 4000 and 

6000 all showed similar extents of fluidization as TPGS 1000; the fluidizing effect 

appears to level off at a PEG chain length of 1000 Da. The membrane fluidization by 

TPGS 3500, though notable, was not statistically significant (P = 0.17). 

 

 Order parameter S ± SD 

Control 0.780 ± 0.016 

Test compounds At 3.3 mM At 33 µM 

TPGS 200 0.791 ± 0.010 0.788 ± 0.008 

TPGS 600 0.779 ± 0.016 0.784 ± 0.031 

TPGS 1000 0.746 ± 0.004 * 0.783 ± 0.002 

TPGS 2000 0.747 ± 0.011 * 0.790± 0.001 

TPGS 3500 0.754 ± 0.016 0.778 ± 0.008 

TPGS 4000 0.749 ± 0.019 * 0.793 ± 0.014 

TPGS 6000 0.752 ± 0.004 * 0.776 ± 0.002 

 
Table 3-2 Order parameter ’S’ of the spin label 5-SA incorporated into Caco-2 cell membranes in the 
presence of different TPGS analogues (at 33µM and 3.3 mM); mean ± SD, n = 3-5; * = significantly 
different from untreated control. (P < 0.05) 
 

3.3.2 ATPase assay 
 

To quantify changes in the P-gp ATPase activity by surfactants, especially 

TPGS 1000, a coupled enzymatic assay using artificial human MDR1 enriched 

membrane vesicles was employed [143]. Varying TPGS 1000 concentrations were 

tested for ATPase activity modulation; experiments were conducted in the absence 

and presence of different P-gp substrates known to induce efflux pump action and 

thereby ATPase activity. TPGS 1000 did not significantly influence ATPase activity 

on its own, neither inducing additional ATPase activity nor inhibiting basal ATPase 

function (Figure 3-5, open circles).  



Mechanism of TPGS interaction with P-gp 
 

75 

However, in the presence of verapamil (50 µM), which stimulated ATPase activity to 

a level of 39.89 ± 3.79 nmol/(mg*min), a dose dependent inhibition of this activation 

was observed with a TPGS 1000 EC50 value of 3.18 ± 1.97 µM (Figure 3-5, closed 

circles and Table 3-3). 
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Figure 3-5 Influence of TPGS 1000 on P-gp ATPase activity in the absence and presence of verapamil 
(50 µM). 

 

EC50 values were also determined in the presence of other P-gp substrates known to 

induce ATPase activity (Table 3-3). The ATPase activating effect 

(44.48 ± 2.69 nmol/(mg*min)) and the EC50 value determined for TPGS 1000 

(3.25 ± 1.29 µM) were comparable to verapamil results if progesterone (100 µM) was 

instead used as the model substrate. The EC50 values in the presence of quinidine 

(50 µM) and nicardipine (1.0 µM) were about 4-8 times lower at 0.82 ± 0.47 µM and 

0.40 ± 0.17 µM, respectively. Nicardipine induced the highest ATPase activity in the 

absence of TPGS 1000 (46.72 ± 6.67 nmol/(mg*min)), while quinidine was the 

weakest inducer amongst the tested substrates at 17.00 ± 3.96 nmol/(mg*min)).  
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Inductor of ATPase activity Level of induced ATPase activity 

(nmol/(mg*min)) 

IC 50 (TPGS 1000) 

(µM) 

Verapamil (50 µM) 39.89 ± 3.79 3.18 ± 1.97 

Quinidine (50 µM) 17.00 ± 3.96 0.82 ± 0.47 

Progesterone (100 µM) 44.48 ± 2.69 3.25 ± 1.29 

Nicardipine (1 µM) 46.72 ± 6.67 0.40 ± 0.17 

 

Table 3-3 Induction of ATPase activity and EC50 values of TPGS 1000 in the presence of different P-
gp substrates; mean ± SD, n = 8. 

 

In order to try and expand the findings from TPGS 1000 to other non-ionic 

surfactants, EC50 values in the ATPase assay using verapamil (50 µM) as an ATPase 

inducer were also determined for Tween 80 and Cremophor EL. The determined 

EC50 value for Tween 80 at 2.21 ± 0.65 µM was in the same concentration range as 

the TPGS 1000 value, but markedly lower than the EC50 previously determined for 

the same compound in the Caco-2 transport assay. Cremophor EL performed best 

with an EC50 value of 0.35 ± 0.05 µM. 

 

 TPGS 1000 

EC50 (µM) 

Tween 80 

EC50 (µM) 

Cremophor EL 

EC50 (µM) 

Caco-2 transport assay 2.91 ± 0.17 18.4 ± 6.5 24.7 ± 10.2 

ATPase assay (verapamil 50 µM) 3.18 ± 1.97 2.21 ± 0.65 0.75 ± 0.10 

 

Table 3-4 EC50 values of TPGS 1000, Tween 80 and Cremophor EL as determined in the bidirectional 
Caco-2 transport assay (2.3.1.6) and in the ATPase assay, using verapamil 50 µM as an inductor of 
ATPase function; mean ± SD, n = 9 (transport assay), n = 12 (ATPase assay). 

 
Using the same experimental setup, we expanded our findings by comparing the 

modulating effect of different TPGS analogues on ATPase activity. Both groups of 

TPGS derivatives with varying PEG chain length and modified hydrophobic moiety, 

but conserved PEG chain of 1000 Da, were evaluated. The derivatives did not 

influence ATPase activity in the absence of P-gp substrates, but they were able to 

inhibit verapamil induced ATPase activity. The head to head comparisons showed 

that the cholesterol and phytol derivatives had the strongest inhibitory influence on 

verapamil induced ATPase activity at the two tested concentrations of 3.3 µM and 
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33 µM (Figure 3-6). Compared to the negative control in the absence of any TPGS 

analogue, verapamil induced ATPase activity was reduced by 

30.28 ± 2.75 nmol/(mg*min) and 29.61 ± 2.75 nmol/(mg*min), respectively.  
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Figure 3-6 Change of verapamil (50 µM) induced ATPase activity in the presence of different TPGS 
analogues (33 µM) with modified hydrophobic moieties; mean ± SD, n = 8; * = significantly different 
from untreated control (P < 0.05). 

 
Among the derivatives with alternative hydrophobic moieties, thioctic acid PEG 1000 

ester was the weakest ATPase activity modulator. Gamma-TPGS behaved similarly 

to commercially available alpha-TPGS 1000. Among the TPGS analogues that varied 

in PEG chain length (Figure 3-7), commercially available TPGS 1000 was the most 

efficient ATPase activity inhibitor. Analogues with longer or shorter PEG chain 

lengths gradually showed weaker inhibitory potential on ATPase function. In the case 

of TPGS 6000, a reverse effect was observed with a slight but significant (P< 0.05) 

induction of ATPase activity.  
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Figure 3-7 Change of verapamil (50 µM) induced ATPase activity in the presence of different TPGS 
analogues (33 µM) with varying PEG chain lengths; mean ± SD, n = 8; * = significantly different from 
untreated control (P < 0.05). 

 

Furthermore, as control experiments in the ATPase assay, ATPase inducing and/or 

inhibiting activity was investigated using vitamin E, vitamin E succinate, cholesterol, 

cholesterol succinate and PEG 1000. No significant (P< 0.05) influence on ATPase 

activity was observed over a concentration range from 0.0033 nM to 330 µM neither 

in the presence nor absence of P-gp substrate verapamil. 

 

3.3.3 UIC2 shift assay 
 

UIC2 reactivity shift assay was used to study P-gp conformational transitions in the 

presence of different concentrations of TPGS 1000. The known P-gp substrates and 

competitive inhibitors CsA and verapamil were included as references as well as 

sodium orthovanadate which traps the efflux pump in a transition state.  
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Figure 3-8 Immunofluorescence staining of P-gp in Caco-2 cells using the UIC2 antibody, cell nuclei 
are counterstained with propidium iodide left: in the absence of a P-gp substrate, right: in the presence 
of CsA 10 µM; microscope settings were kept constant in both pictures; the scale bar in the lower left 
corner represents 50 µm 
 
 

Binding of the UIC2 antibody to P-gp was shown by immunocytochemical staining 

(Figure 3-8). Intensity of the fluorescence can be quantified in a fluorescence 

activated cell sorter. Indicating increased reactivity of UIC2 with its epitope in P-gp, 

both CsA (10 µM) and verapamil (50 µM) shifted intensity of the fluorescence to 

higher levels (Figure 3-9 A and B, respectively). The shift was stronger for CsA, 

which raised the mean fluorescence intensity Fmean from 21.8 ± 4.3 FU in the control 

to 106.2 ± 9.2 FU, while verapamil only increased Fmean to a level of 45.4 ± 4.7. In 

contrast, 1.0 mM sodium orthovanadate induced a profound reduction in UIC2 

binding (Fmean = 4.0 ± 1.3 FU). The presence of TPGS 1000 did not significantly 

affect UIC2 reactivity, although Fmean was slightly reduced to 18.6 ± 3.9 FU. 
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Figure 3-9 Monoclonal antibody UIC2 reactivity with P-gp in Caco-2 cells. Caco-2 cells were incubated 
with UIC2 antibody in the absence (dotted line) and presence of P-gp substrates/ modulators (fat 
lines); A: 10 µM CsA, B: 50 µM verapamil, C: 1.0 mM vanadate, D: 33 µM TPGS 1000. 
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3.4 Discussion 

3.4.1 Influence on membrane environment 
 

In recent years, interest in surfactant interaction with efflux pumps such as P-gp has 

steadily increased. A number of studies have attempted to evaluate inhibitory 

potential of different surfactants and the exact nature of their interaction with efflux 

transporters [72, 73, 81, 84]. A fluidization/rigidification of the membrane environment 

[72, 73, 159, 160], sterical hindrance of substrate binding [137], and inhibition of 

efflux pump ATPase activity [93, 138, 139] are among the various mechanisms that 

have been proposed. However, so far there is no clear answer; results from different 

studies are contradictory and systematic studies with homologous groups of 

surfactants are lacking.  

In an attempt to correlate our results with data from the previous SAR study (see 2), 

we focused on TPGS 1000 and two groups of homologous analogues with either 

modified PEG chain lengths or modified hydrophobic moieties. Using ESR as our 

method of choice, we investigated the influence of TPGS 1000 and its analogues on 

membrane fluidity. The ESR technique was already previously used to study 

membrane fluidizing effects of bile salts and verapamil in viable MDR1 over-

expressing Chinese hamster ovary (CHO) cells [70].  

 

At low concentrations (up to 0.33 mM) TPGS 1000 had only negligible effects on 

Caco-2 membrane fluidity, not statistically significantly (P > 0.05) reducing the 

membrane microviscosity (Figure 3-4) Our findings contradict previous results which 

showed TPGS 1000 (0.025 and 0.10 mM) to rigidify Caco-2 cell membranes [72]. 

Those measurements were performed using a fluorescence anisotropy method 

where the rigidifying effect of TPGS 1000 was restricted to the lipophilic fluorescent 

dye 1,6-diphenyl-1,3,5-hexatriene (DPH). DPH was incorporated into the non-polar 

side chain regions of Caco-2 cell membranes, whereas its cationic derivative            

1-(4-trimethylammoniumphenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH) measured 

membrane effects in the polar head group region and was unaffected by the 

presence of TPGS. DPH measurements often present highly variable results, as can 

be seen when comparing studies using other known P-gp surfactant modulators (e.g. 

Cremophor EL®). Hugger et al. [73] reported no effect of Cremophor EL® on DPH or 
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TMA-DPH membrane fluidity in Caco-2 and MDCK-MDR1 cells; yet, other groups 

reported either a significant fluidization of the cell membrane in the presence of 

Cremophor EL® [91], or a rigidifying effect of the surfactant on KB 8-5-11 (human 

epidermoid carcinoma) cells [92]. Besides the use of different cell lines with varying 

lipid compositions and protein content, the distribution of fluorescent dyes into 

intracellular organelles may help explain the experimental discrepancies. DPH is not 

only plasma membrane specific, but is known to distribute to other cell organelles 

within the cell, such as mitochondrial membranes. Therefore, the net polarization 

value is a product of all these effects [161]. Furthermore, variable placement of the 

fluorescent dye into the lipid bilayer may also contribute to the contradictory findings. 

Altogether, the shortcomings of the fluorescence anisotropy method necessitate the 

use of alternative techniques, such as ESR. Spin probes, such as 5-SA, are derived 

from lipidic acids and are much more lipophilic than fluorescent dyes (e.g. DPH and 

TMA-DPH). Relative to fluorescent dyes, spin probes incorporated into cell 

membranes are more stable and have not been reported to access intracellular 

membranes. The spin probe position within the membrane is highly defined and by 

adjusting the position of the spin active group, different regions of the cell membrane 

may be selectively studied.  

 

Significant membrane fluidizing via TPGS 1000 was only observed above 3.3 mM 

(Figure 3-4). This concentration is about 100 times higher than the concentration at 

which full inhibition in Caco-2 transport studies was observed, and almost 1000 times 

higher than the IC50 value determined for TPGS 1000 in the transport 

(5.86 ± 2.17 µM, data not shown) and ATPase assays. Instead the findings match 

better with results from previous cytotoxicity studies, which measured the release of 

the intracellular enzyme LDH as an indicator of cell membrane damage. Increased 

LDH release (> 20% cytotoxicity compared relative to positive control 1% Triton-X 

100) which reflects a destabilization of the cell membrane, was observed with a 

TPGS 1000 concentration of ≥ 2.5 mM [140]. The discrepancy between membrane 

fluidization and effective inhibitory concentration weakens the argument that 

surfactants (e.g. TPGS 1000) afford an unspecific membrane perturbation that 

modulates P-gp activity.  
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Furthermore, cholesteryl PEG 1000 succinate, which performed as good as 

commercial TPGS 1000 in the ATPase inhibition assay and surpassed its inhibitory 

potential in the Caco-2 transport assay (see 2.3.1.3), demonstrates opposite 

behaviour to TPGS 1000. Instead of fluidizing the cell membrane, cholesteryl 

PEG 1000 succinate significantly (P < 0.05) rigidified the cell membrane (≥ 1.65 mM; 

Figure 3-4). It seems highly unlikely that two opposing phenomena (e.g. membrane 

rigidification and fluidization) mediated by two related substances would lead to 

identical changes in P-gp conformational mobility, a factor believed to be responsible 

for efflux pump inhibition.  

 

We previously [140] established that different TPGS analogues with varying PEG 

chain lengths afford different P-gp inhibitory potential in vitro. The ESR head to head 

comparison data also support the notion that P-gp inhibition via TPGS 1000 is not 

directly correlated to cell membrane fluidization (Table 3-2). TPGS analogues were 

tested at 33 µM and 3.3 mM; these concentrations produced a maximum TPGS 1000 

influence in the Caco-2 P-gp inhibition transport assay and the first significant 

fluidizing effects in the TPGS 1000 dose-response ESR studies, respectively. At 

33 µM, all TPGS analogues, regardless if they were previously shown to be P-gp 

active or non-active in Caco-2 transport experiments, had only negligible influence on 

rigidity. These findings are consistent with the non-effect in the TPGS 1000 dose 

response curve at this concentration. No correlation of PEG chain length with cell 

membrane fluidization or rigidification was observed. At the higher concentration of 

3.3 mM, a significant (P< 0.05) fluidization of the cell membrane was noted for 

TPGS 1000 and all other derivatives with higher molecular weights. It appears that a 

certain PEG chain length, or rather molecular size, is required to mediate a significant 

fluidizing effect. However, higher molecular weight TPGS analogues, such as TPGS 

4000 and TPGS 6000 – non-active in previous P-gp inhibition assays – resulted in a 

similar decrease in 'S'; surfactant sequestering into the cell membrane apparently 

levels off or may be reduced.  
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3.4.2 Influence on P-gp ATPase 
 

Besides possible unspecific alterations in membrane microviscosity, inhibition of 

efflux pump ATPase resulting in energy source depletion was investigated via an 

ATPase assay. In an attempt to consistently maintain a high amount of P-gp 

expression and selectively study a single efflux pump, artificial P-gp enriched 

membranes were used. Four different P-gp substrates (verapamil, quinidine, 

nicardipine, and progesterone) known to interact with different binding sites of the 

efflux pump, and/or occupy different regions of the large drug binding pocket [32, 

162], were chosen as inducers of ATPase activity (see 1.2.2). 
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Figure 3-10 Determination of optimal substrate concentrations in the ATPase assay with commercially 
available MDR1 enriched Sf9 insect membranes; mean ± SD, n = 4. 

 

Optimal P-gp substrate concentrations were determined via standard dose response 

experiments. In accordance with previous studies [32, 143], verapamil, progesterone, 

quinidine and nicardipine all gave bell shaped dose response curves with maximum 

induction of ATPase activity at 50 µM, 100 µM, 50 µM, and 1.0 µM, respectively 

(Figure 3-10). 

Dose response curves for TPGS 1000 were generated in the presence and absence 

of P-gp substrates. When incubated on its own with artificial P-gp containing 
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membranes (Figure 3-5), TPGS 1000 neither induced significant ATPase activity nor 

inhibited basal ATPase function over a concentration range from 0.0033 nM to 

330 µM, indicating no direct interaction between the transport sites and the 

surfactant. TPGS 1000 appears not to be a substrate of P-gp, making a competitive 

inhibition of substrate binding unlikely. However, a significant dose-dependent 

inhibition of P-gp substrate induced ATPase activity was observed. The determined 

EC50 values for inhibition of verapamil and progesterone induced ATPase activity 

(3.18 ± 1.97 µM and 3.25 ± 1.29 µM, respectively) are comparable to the EC50 value 

determined in a transport assay with the fluorescent dye RHO (2.91 ± 0.17 µM), 

indicating a correlation between inhibition of substrate transport and energy 

depletion. EC50 values for inhibition of quinidine and nicardipine induction of ATPase 

activity were about 10 times lower (0.82 ± 0.47 µM and 0.40 ± 0.17 µM, respectively).  

Degree of inhibition in the Caco-2 transport assay
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Figure 3-11 Correlation of change in induced ATPase activity mediated by different TPGS analogues 
and their degree of inhibition in the Caco-2 cell monolayer efflux assay. 

 
As summarized in Figure 3-11 a correlation was observed when the change of 

verapamil (50 µM) induced ATPase activity was plotted versus degree of inhibition 

observed in the Caco-2 transport assay. The degree of inhibition was calculated from 

the Caco-2 raw data. Generally, a good correlation (r2 = 0.97) was found between the 

inhibitory potency of the various TPGS analogues and their effect on verapamil 

induced ATPase activity.  
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Consistent with findings from previous transport experiments, cholesteryl PEG 1000 

succinate showed the strongest inhibition of verapamil induced ATPase activity. 

Cholesteryl PEG 1000 succinate, as well as phytyl PEG 1000 succinate, surpassed 

commercially available TPGS 1000 (Figure 3-6). However, phytyl PEG 1000 

succinate performed considerably worse in the bidirectional Caco-2 transport assay 

and therefore lies outside the correlation (Figure 3-11). Besides phytyl PEG 1000 

succinate, thioctic acid PEG 1000 ester is the only derivative that lies outside the 

correlation. Its effect in the transport assay was markedly lower than would be 

expected by the extent of energy depletion. In the case of phytyl PEG 1000 succinate 

this result could be attributed to its strong cytotoxic effect; as shown by increased 

LDH leakage and a massive drop off of TEER values during the transport experiment 

(see 2.3.2), while the discrepancy for thioctic acid PEG 100 ester may be due to 

increased hydrolysis of the ester during the longer course of the transport experiment 

(6 hours compared to 1.5 hours in the ATPase assay). 

A slight induction of ATPase activity was observed in the presence of TPGS 6000. 

This phenomenon may be explained via micelle sequestration of inhibitors of 

unspecific ATPases (ouabain, EGTA, and sodium azide). A concentration of 33 µM 

was used, which lies above the CMC of 0.02% wt. Altogether, the ATPase assay 

data suggest that ATPase activity inhibition is a major part in the mechanism of P-gp 

inhibition by TPGS, and maybe non-ionic surfactants in general. Pluronic block 

copolymers have been shown to inhibit efflux pump ATPases [137]. Pluronic 

copolymers with intermediate lengths of hydrophobic PO (propylene oxide) chains 

and relatively short hydrophilic EO (ethylene oxide) segments, a model 

representative being Pluronic P85, were shown to have the highest MDR modulating 

potential [163]. Their modulatory influence on P-gp, and other ABC transporters, was 

attributed to a so called “double punch” effect of intracellular energy depletion by 

disruption of mitochondria and membrane fluidization, which directly affects P-gp 

ATPase activity [93].  

 

As discussed above, we could not show relevant membrane fluidizing effects for 

TPGS analogues at P-gp active concentrations. Therefore, alternate hypotheses may 

be proposed: i) merely incorporating large surfactant molecules into the cell 

membrane affords a reduction of ATPase activity as substrate can not be bound 

because of a sterical blocking of the binding site; and ii) a direct interaction of the 
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surfactant with allosteric sites – not with a transport site – in the P-gp efflux pump. 

There is strong evidence for the existence of several allosteric sites in P-gp, such as 

the cis-(Z)-flupentixol binding site [164, 165] and the SR33557 binding site [166]. 

Both explanations appear consistent with the varying EC50 values for 

progesterone/verapamil and quinidine/ nicardipine determined in the ATPase assay. 

Sterically blocking substrate binding may not encompass all binding sites, or portions 

of the binding pocket, to the same extent. Alternatively, an allosteric modulation of    

P-gp may influence different binding sites to varying extents. A direct interaction of 

surfactant molecules with the efflux pump intracellular ATP binding domains is 

considered unlikely, since such a modulation of ATPase activity would influence all P-

gp substrates to a similar extent and would be expected to perturb basal ATPase 

activity.  

In an attempt to try to transfer the mechanistic findings for TPGS to other non-ionic 

surfactants, EC50 values for inhibition of verapamil induced ATPase activity were 

determined for Tween 80 and Cremophor EL. Tween 80 at 2.21 ± 0.65 µM performed 

comparable to TPGS 1000, while Cremophor EL surpassed the other two non-ionic 

surfactants with an EC50 value of 0.35 ± 0.05 µM (Table 3-4). The high affectivity for 

Tween 80 and Cremophor EL is in disagreement with the results from the Caco-2 

transport assay and in consequence the ranking of the inhibitory potential for all three 

surfactants differs between both assays. The use of different cell systems (Caco-2 

vs. P-gp enriched Sf9 cell membranes) and substrates in both assays might account 

for varying values. Still, the contradictory inhibitory potentials for the different 

surfactants infer that although a modulation of ATPase function is mediated by all 

three surfactants, Tween 80 and Cremophor EL affect additional transport systems 

(e.g. the postulated basolateral uptake transporter for RHO) thus negating their 

overall efficiency in the Caco-2 transport assay. Only further investigations can 

uncover if the structurally diverse group of non-ionic surfactants shares a common 

mechanism of action for P-gp modulation.  
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3.4.3 Influence on P-gp conformation 
 
To further narrow down possible mechanisms of TPGS interaction with P-gp, the 

conformational changes in the efflux pump in the presence of TPGS were 

investigated using the UIC2 shift assay. The monoclonal UIC2 antibody inhibits the 

activity of MDR1 by binding to an epitope on the proposed extracellular loop between 

TM5 and TM6 [148]. As the display of the UIC2 epitope depends on the functional 

state of P-gp, the binding affinity of UIC2 reflects conformational changes in the efflux 

pump. In the absence of substrate, only a portion of P-gp molecules can react with 

UIC2. Addition of P-gp substrates or ATP depleting agents increases UIC2 reactivity. 

On binding of the drug, ATP is hydrolysed, which is coupled with movement in TM6 

and TM12 [167], thus shifting position of the extracellular loop linked to TM6 and 

converting UIC2 non-recognizable P-gp molecules to UIC2-recognizable molecules. 

 

As has been previously described [145], the known P-gp substrates and competitive 

inhibitors, CsA and verapamil, both significantly increased reactivity of UIC2 with     

P-gp in Caco-2 cell (Figure 3-9). In contrast, the presence of TPGS 1000 did not 

statistically significantly affect UIC2 binding, although a slight shift to lower affinities 

can be noted. Hence, TPGS doesn’t bind to one of the substrate active drug binding 

sites of P-gp, neither as a substrate nor as a competitive inhibitor. Furthermore, an 

intracellular ATP depletion by TPGS can be excluded. Such a mechanism of action 

was previously proposed for Pluronic P85, an other non-ionic surfactant known to 

inhibit P-gp [139], but would increase the number of UIC2 recognizable molecules 

[145].  

 

The slight reduction of UIC2 binding in TPGS treated Caco-2 cells shows similarities 

to the trapping of P-gp in a transition state in the presence of orthovanadate. 

Vanadate forms a ternary complex with ADP and the NBD of P-gp [146], inhibiting 

nucleotide dissociation and reducing the number of UIC2-recognizable P-gp 

molecules. As an alternative to the formation of an intracellular complex, an allosteric 

modulation of P-gp might be proposed. Cis(Z)-flupentixol, an allosteric inhibitor of    

P-gp, has been demonstrated to reduce UIC2 reactivity with P-gp by blocking 

substrate translocation and dissociation [165].  
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An allosteric inhibition of P-gp by TPGS would go with the sensitivity of P-gp 

inhibition to changes of the hydrophobic moiety (see 2.4.4) and the variation in EC50 

values observed for substrates with varying drug binding sites (see 3.4.2). On the 

other hand a non-effect of TPGS 1000 on UIC2 binding would be in line with a 

proposed sterical blocking of substrate binding, as no direct binding with the efflux 

pump would occur and the number of UIC2-recognizable molecules would be neither 

increased nor decreased. 

 

Altogether, the UIC2 results for TPGS 1000 have to be considered inconclusive as 

the observed shift to lower affinities is weak compared to the reduction induced by 

vanadate and can not be considered statistically significant. The overall UIC2 binding 

in Caco-2 cells, probably due to only moderate P-gp expression levels, is too low to 

better differentiate changes in the conformational state.  

3.5 Outlook 
 

Thus far, the results don’t allow us to definitively identify the inhibitory mechanism of 

TPGS and additional studies are required. The synthesis of new TPGS analogues 

with further modified hydrophobic moieties may help to narrow down the specifity of 

the TPGS interaction with P-gp that was already hinted at in the results for the first 

generation TPGS analogues with modified hydrophobic cores.  

A greater variety of TPGS analogues could lead to the development or rejection of a 

pharmacophore model, thus allowing to approve or to decline the ‘sterical blocking of 

substrate binding’ theory. Interesting candidates for the synthesis of these new TPGS 

analogues might be flavonoid or bile salt derivatives (e.g. naringenin PEG succinate, 

silybin PEG succinate, or chendesoxy cholic acid PEG succinate; Figure 3-12). 

These are molecules that have been described to modulate P-gp activity and 

subsequent PEGylation might increase or decrease the inhibition potency. According 

to the PEG chain length theory, the molecular weight of the PEG moiety should be 

adjusted to 1500 Da. Alternatively, other polymer chains could be evaluated, e.g. 

polyethyleneimine, although cytotoxicity aspects have to be taken into account. 
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Figure 3-12 Suggested new TPGS analogues to be investigated in the next step of a TPGS SAR 
study; A: Silybin PEG 1500 succinate; B: Naringenin PEG 1500 succinate; C chendesoxy cholic acid 
PEG 1500 succinate. 
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3.6 Conclusion 
 

The ability of different TPGS analogues to inhibit verapamil induced ATPase activity 

was found to correlate with their inhibitory potential in the Caco-2 cell transport 

assay. The correlation supports the notion that efflux pump energy source depletion 

is a major factor in the inhibitory mechanism of TPGS. ATPase inhibition seems to be 

a function of sterically blocking substrate binding and/or allosteric modulation of P-gp 

rather than a competitive inhibition or an unspecific rigidification or fluidization of the 

cell membrane; such effects were only observed at concentrations about 100 fold 

higher than those needed to achieve full efflux inhibition and did not correlate with the 

activity pattern in bidirectional transport studies. The theory of an allosteric 

modulation of P-gp activity is further supported by findings in the UIC2 assay. A 

reduction of antibody reactivity was observed, which may be explained by a blocking 

of drug translocation and dissociation. 
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4 Summary 
 
Efflux transporters such as P-glycoprotein may influence pharmacokinetics of 

substrate drugs. The water soluble vitamin E derivative and non-ionic detergent, 

TPGS 1000, was demonstrated to be one of the most potent modulators of P-gp 

among surfactants. However, the P-gp inhibiting properties were merely discovered 

by chance and molecule structure was not optimized for this purpose. In order to 

study, and potentially improve P-gp inhibition, two groups of homologous TPGS 

analogues were synthesized.  

TPGS inhibitory potential may be increased by a modification of the PEG chain 

length. Optimum efflux inhibition was achieved at a chain length of ~1500 Da, as 

predicted from the Weibull distribution describing the activity pattern. The lack of P-gp 

inhibitory activity in TPGS analogues with either very short (e.g. TPGS 400) or long 

(e.g. TPGS 6000) PEG chains, opens up other potential applications of the novel 

TPGS analogues. As non-active excipients with sufficient solubilizing potential but no 

transporter modulating ‘side effects’, they may present lower risks of drug-

formulation, formulation-food, or formulation-formulation interaction and may be 

better suited as solubility enhancers in in vitro permeability studies, as they don’t 

mask potential P-gp involvement in substrate bioavailability.  

New P-gp inhibitors could also be developed by the exchange of the hydrophobic 

moiety of TPGS for other compounds. Thus far, cholesteryl PEG 1000 succinate 

represents the most potent TPGS analogues. Cholesteryl PEG 1000 surpassed both 

TPGS 1000 and TPGS 1500 in their P-gp modulating effect.  

P-gp inhibition by TPGS was shown to be mediated via the TPGS monoester, while 

the diester component, a by-product of the TPGS synthesis negatively influences the 

P-gp modulation. In consequence, the inhibitory activity of TPGS and its analogue 

cholesteryl PEG 1000 succinate could be increased about 10 times by purification of 

the monoester. Furthermore, TPGS ether derivatives were introduced as an 

interesting alternative to non-etherified TPGS analogues. They allow for the synthesis 

of pure TPGS monoesters, thus indirectly increasing the inhibitory potential. 

Sensitivity of TPGS inhibitory activity to exposure time (and to a lesser degree 

application side) may help explain the differing reports on TPGS ability to inhibit P-gp 

in vitro, and may have dramatic influence on its performance as an in vivo P-gp 

inhibitor and bioavailability enhancer. Delivery systems, which allow for a delayed 
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release of the drug in relation to TPGS, could help further improve the circumvention 

of P-gp mediated drug efflux. 

 

With regards to the mechanism of P-gp inhibition by TPGS, no correlation could be 

detected between activity of the TPGS analogues and their physicochemical 

parameters, determined experimentally and in silico. Activity of TPGS is not linearly 

related to CMC, lipophilicity, molecular weight or molecule volume. A cut off seems to 

exist at a molecular weight of ~2100 Da, explaining the declining part of the Weibull 

activity curve. As the TPGS molecules become increasingly larger and more 

hydrophilic, their distribution into and transport across the cell membrane is reduced, 

hinting at target/ side of action of TPGS that is located intracellularly or in the 

membrane region. 

An unspecific alteration of the membrane environment by TPGS, negatively 

influencing the conformational mobility of P-gp, could be ruled out as a possible 

mechanism of action: TPGS neither significantly increased nor decreased membrane 

fluidity at P-gp active concentrations (33 µM). A statistically significant decrease of 

membrane microviscosity could only be detected at concentrations about 100 times 

higher than those needed to inhibit P-gp and the effect did not correlate with the 

Weibull activity pattern observed in the bidirectional transport studies. Furthermore 

the equally P-gp active cholesteryl analogue of TPGS showed opposing effects as it 

rigidized the membrane at concentrations of > 1.65 mM. The results of these ESR 

experiments match the differences observed in the inhibitory activity of TPGS 

analogues with modified hydrophobic moieties, where only specific modifications of 

the TPGS structure were found to be P-gp active while others completely lacked any 

inhibitory effect, an activity pattern best explained by a specific interaction of TPGS 

with the efflux pump. 

 

Instead of an unspecific alteration of P-gp membrane environment the inhibitory 

mechanism of TPGS involves an inhibition of efflux pump ATPase, which could be 

demonstrated to correlate directly with the inhibitory effect of varying TPGS 

analogues in Caco-2 transport experiments. The efflux pump inhibition is not the 

result of a competitive inhibition of substrate binding as TPGS 1000 isn’t a substrate 

of P-gp and doesn’t bind to one of the transport active binding sites of the efflux 

pump: in the UIC2 shift assay TPGS failed to induce the characteristic conformational 
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change observed in the presence of a P-gp substrate. Furthermore in the ATPase 

assay, TPGS 1000 could not induce significant ATPase activity by itself and therefore 

is not transported by the efflux pump. The results of the UIC2 shift assay are 

inconclusive with regards to a further exploration of the essential energy depletion. At 

this moment it can’t be distinguished if the reduction of substrate induced ATPase 

activity is due to a sterical blocking of substrate binding, thus only representing in 

indirect effect of TPGS on the ATPase function or if an allosteric modulation or 

intracellular complex formation with the ATPase traps P-gp in a transition state. The 

low resolution of the UIC2 shift in Caco-2 cells, doesn’t allow to definitively interpret if 

the observed slight but statistically not significant shift of UIC2 binding to lower 

affinities represents an actual reduction of UIC2 affinity. 
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5 Zusammenfassung 
 

Die Pharmakokinetik von Arzneistoffen wird durch Effluxtransporter wie P-gp 

beeinflusst. Das wasserlösliche Vitamin E Derivat und nicht-ionische Tensid 

TPGS 1000 ist einer der potentesten P-gp Modulatoren in der Gruppe der 

oberflächenaktiven Substanzen. Seine P-gp hemmenden Eigenschaften wurden 

jedoch eher durch Zufall entdeckt und seine Molekülstruktur wurde folglich auch nicht 

auf diesen Zweck hin optimiert. Um die P-gp Hemmung durch TPGS zu genauer zu 

untersuchen und wenn möglich zu verbessern, wurden zwei Gruppen von                     

TPGS-Analoga synthetisiert. 

Die Hemmwirkung von TPGS konnte durch Modifikation der PEG Kettenlänge 

verbessert werden. Wie aus der Weibull Verteilung, die das Aktivitätsmuster von 

TPGS Derivaten mit unterschiedlicher Kettenlänge beschreibt, vorhergesagt, wurde 

die optimale Hemmung des P-gp Effluxes dabei von Molekülen mit einer Kettenlänge 

von ungefähr 1500 Da erzielt. Die fehlende Hemmwirkung anderer TPGS Derivate 

mit sehr kurzer (z.B. TPGS 400) oder langer (z.B. TPGS 6000) PEG Kette eröffnet 

zusätzlich weitere Anwendungsmöglichkeiten der neuen TPGS Analoga. Die nicht-

aktiven TPGS Derivate stellen Hilfsstoffe mit ausreichenden 

löslichkeitsverbessernden Eigenschaften dar, jedoch ohne die Transporter 

modulierenden Nebenwirkungen anderer Tenside, weshalb ihnen ein geringeres 

Risiko für Arzneistoff-Formulierungs-, Formulierungs-Nahrungs-, oder Formulierungs-

Formulierungs-Wechselwirkungen innewohnt. Des weiteren könnten sie als 

Lösungsverbesserer in in vitro Permeabilitätsstudien Einsatz finden, da sie mögliche 

P-gp Efflux Effekte auf die Bioverfügbarkeit von Arzneistoffen nicht überspielen oder 

verbergen. 

Neue P-gp Hemmstoffe konnten außerdem durch Austausch der hydrophoben TPGS 

Komponente durch andere Strukturen synthetisiert werden: Cholesteryl PEG 1000 

succinat stellt dabei den zur Zeit potentesten P-gp Hemmstoff unter allen bekannten 

TPGS Derivaten dar, da es sowohl TPGS 1000 als auch TPGS 1500 in ihrem Effekt 

auf P-gp noch übertrifft.  

Es konnte weiterhin gezeigt werden, dass die eigentliche aktive Komponente des 

Stoffgemischs TPGS 1000 der TPGS Monoester ist, während der TPGS Diester, ein 

Nebenprodukt der TPGS Synthese die Hemmung sogar negativ beeinflußt. Folglich 



Zusammenfassung 
 

98 

war es möglich durch Aufreinigung des Monoesters das Hemmpotenzial sowohl von 

TPGS 1000 also auch von Cholesteryl PEG 1000 succinat jeweils um etwa das       

10-fache zu steigern. Außerdem wurden TPGS Etherderivate eingeführt, die eine 

interessante Alternative zu den normalen nicht veretherten TPGS Molekülen 

darstellen. Durch die Etherbildung ist es möglich, ausschließlich reine TPGS 

Monoester zu synthetisieren und dadurch indirekt die Hemmwirkung ohne vorherigen 

Aufreinigungsschritt zu steigern. 

Die Abhängigkeit der TPGS Hemmwirkung auf P-gp von der Vorinkubationszeit in 

Gegenwart des Tensids (und zu einem geringeren Maße auch von der 

Applikationsseite des Hemmstoffs) erklärt die teilweise widersprüchlichen Berichte 

über die Effektivität der P-gp Hemmung durch TPGS in vitro. Gleichzeitig könnte die 

Zeitabhängigkeit des Effekts auch Auswirkungen auf die in vivo Wirkung von TPGS 

haben. Delivery Systeme, die den Arzneistoff zeitlich versetzt zu TPGS freisetzen, 

könnten die Minderung des P-gp Einflusses auf die Bioverfügbarkeit weiter 

verstärken. 

 

Bezüglich des Hemmmechanismus von TPGS konnte keine Korrelation zwischen 

den experimentell und in silico bestimmten physikochemischen Eigenschaften der 

TPGS Analoga und ihrer Aktivität entdeckt werden. Die Hemmwirkung von TPGS 

korreliert weder mit der CMC, der Lipophilie, dem Molekulargewicht noch dem 

Molekülvolumen. Es läßt sich lediglich feststellen, dass bei einem Molekulargewicht 

von etwa 2100 Da ein Cut off zu existieren scheint, der den abfallenden Teil der 

Weibull Kurve erklärt. Ab einer bestimmten Größe werden die TPGS Moleküle zu 

hydrophil und voluminös, um sich in die Membran zu verteilen bzw. diese zu 

durchqueren. Indirekt kann daraus auch auf einen wahrscheinlichen intrazellulären 

oder membrangebundenen Wirkort des TPGS Moleküls geschlossen werden. 

Eine unspezifische Änderung der Membranumgebung durch TPGS, die die 

konformelle Flexibilität von P-gp beeinflussen könnte, konnte jedoch als potentieller 

Hemmmechansimus ausgeschlossen werden: in einer P-gp aktiven Konzentration 

(33 µM) wurde die Membran durch TPGS weder verflüssigt noch rigidisiert. Eine 

statistisch signifikante Reduktion der Membranfluidität wurde nur in Konzentrationen 

festgestellt die etwa 100-fach höher liegen, als die zur P-gp Hemmung notwendigen 

Mengen. Der Effekt korrelierte auch nicht mit dem Weibull Aktivitätsmuster aus dem 

bidirektionalen Transportversuch. Das ebenfalls P-gp aktive TPGS Derivat 
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Cholesteryl PEG 1000 succinat, zeigte genau den gegenteiligen Effekt, indem es die 

Membran in Konzentrationen über 1,65 mM rigidisierte. Die Ergebnisse aus den ESR 

Versuchen passen damit zu den beobachteten Unterschieden bei den TPGS 

Derivaten mit modifiziertem hydrophoben Kern. Nur bestimmte Modifikationen 

erhöhten die Hemmwirkung auf P-gp, während andere keine hemmenden Effekt auf 

die P-gp Aktivität beinhalten, was auf eine spezifische Wechselwirkung mit der 

Effluxpumpe schließen läßt. 

 

Anstatt einer unspezifischen Änderung der P-gp Membranumgebung beinhaltet der 

Hemmmechanimus von TPGS eine Hemmung der P-gp ATPase, ein Effekt der mit 

dem Ausmaß der Hemmung im Caco-2 Transportversuch korreliert. Die Hemmung 

der Effluxpumpe kann dabei nicht das Resultat einer kompetitiven Hemmung der 

Substratbindung und indirekten Reduktion der ATPase Aktivität sein, da gezeigt 

werden konnte, dass TPGS kein P-gp Substrat ist und nicht an eine der 

transportaktiven Bindungsstellen der Effluxpumpe bindet: im UIC2 shift assay konnte 

nicht die normalerweise in Gegenwart von P-gp Substraten beobachtete Zunahme 

der UIC2 Affinität festgestellt werden. Zusätzlich induzierte TPGS allein, ohne die 

Zugabe von P-gp Substraten, im ATPase Assay keine nennenswerte ATPase 

Aktivität und wird folglich auch nicht von der Effluxpumpe transportiert. Statt dessen 

könnte die essentielle Energiedepletion durch eine sterische Abschirmung der 

Substratbindung, eine allosterische Modulation von P-gp oder eine direkte Interaktion 

mit den intrazellulären Nukleotidbindungsdomänen erklärt werden. Die Ergebnisse 

des UIC2 shift Assay erlauben leider keine eindeutige Einschränkung dieser 

Möglichkeiten. Es konnte zwar eine leichte Reduktion der UIC2 Affinität in Gegenwart 

von TPGS beobachtet werden, was darauf hinweisen könnte, dass die Effluxpumpe 

in einem Übergangszustand gefangen sein könnte, jedoch ist die 

Differenzierungsgenauigkeit im UIC2 Assay mit Caco-2 Zellen zu gering um eine 

statistische Signifikanz des Effekts zu beweisen. 
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6 Appendix: ESR spectroscopy 
 

6.1 Theoretical background 
 

Besides mass and electric charge, an electron is defined by its angular momentum J. 

J is the sum of the intrinsic angular momentum S of the electron due to the electron 

spin and the orbital angular momentum L arising out of the rotation of the electron 

around an atom’s nucleus.  

An electric current circulating in a planar loop produces a magnetic dipole moment, 

which is positioned perpendicularly to the plane of the loop. The total magnetic 

moment of an electron µJ consists of the intrinsic magnetic dipole moment of the 

electron spin µS and the orbital magnetic dipole moment µl. For most applications, 

when free radicals are considered, the orbital magnetic dipole moment can be 

neglected, and the magnetic dipole moment is reduced to the intrinsic magnetic 

dipole moment µS. 

|µJ| = |µS| = -g*|S|*µB 

 

where µB is the Bohr magneton (9.27 x 10-24 J T-1 ) and g is a factor of proportionality, 

the so called ‘Lande factor’. A free electron (on its own) has a g value of 

2.002319304386 (ge, the electronic g factor).  

 

When placed in an external magnetic field of strength B0, the magnetic dipole 

moment of the electron can align itself parallel or anti-parallel to the external field, 

with two distinct energy levels of: 

 

E+ = + ½ * ge * µB* B0 

E- = - ½ * ge * µB* B0. 

 

This splitting of energy levels by an external magnetic field is called the ‘Zeeman 

effect’ (Figure 6-1). The strength of the external magnetic field B0 determines the 

energy difference ∆E between both energy states.  
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If this energy ∆E is applied to the system in the form of electromagnetic radiation (h * 

ν, where ν is the speed of the electromagnetic wave and h is Planck’s constant), 

resonance conditions are reached and energy will be absorbed leading to a ‘flipping’ 

of the magnetic moment. 

 
∆E = ge*µB*B0 = h * ν 

 

In ESR spectroscopy, resonance conditions are generally achieved by the variation 

of the strength of the external magnetic field (0.1 -1 Tesla), while the wavelength of 

the absorbed microwave radiation is kept constant.  

 

Figure 6-1 Zeeman splitting of electron energy levels in a homogeneous external magnetic field and 
further splitting of the electron energy levels due to hyperfine coupling with a nucleus (mI= ½). 
 

 

Electrons are normally associated with atoms, which can change the angular moment 

of the electrons in different ways. Firstly, the electron may gain or lose intrinsic 

angular momentum through the interaction with the orbital angular momentum. This 

so called spin-orbit coupling influences the value of the g-factor, which then varies 

from the theoretical value of 2.002319304386. Spin-orbit coupling is most 

pronounced in transition metal compounds (1 < g < 4), while radicals are less 

affected.  

h* ν = ge * µB *B0 

B0 

mS 

+½ 

-½ 

+½ 

+½ 

-½ 

-½ 

mI 
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Secondly, this change in angular momentum is not the same for all orientations of the 

atom or molecule in an external magnetic field. In other words, the g-factor changes 

according to the orientation of the paramagnetic atom in the magnetic field—it is 

anisotropic. This anisotropy depends upon the electronic structure of the atom in 

question, and therefore can yield information about the atomic (or molecular) orbitals 

containing the unpaired electron.  

 

Thirdly, interaction may occur between the electron spin and spin of the atom’s 

nucleus. A nucleus with a nuclear spin of I = ½ generates a local magnetic field Bloc, 

which can again align itself parallel or anti-parallel to the external magnetic field. The 

corresponding electron therefore is subject to two different magnetic fields Beff = B0 + 

Bloc and Beff = B0 - Bloc, leading to a further splitting in two energy levels and thereby 

spectral lines, the so called ‘hyperfine structure’ (Figure 6-1). Hyperfine splitting is 

observed with all nuclei, with a nuclear spin l > 0. In general, a paramagnetic probe 

with the electron spin S = ½ and the nucleus spin l will give an ESR spectrum with 

2S* (2I + 1) = 2l +1 ESR transitions. Resonance conditions are reached in a 

resonance field Bres with  

 

Bres =B0
res – a*mI, 

 

where B0
res is the resonance field in the absence of electron- nucleus coupling, mI is 

the magnetic quantum number and ‘a’ is the hyperfine coupling constant, which 

describes the distance of the lines of the hyperfine structure. Often there is more than 

one nucleus interacting with the electrons. Consequently the number of transition 

processes (and spectral lines) will increase. In the case of varying hyperfine coupling 

constants smaller and longer couplings may overlay, a phenomenon known as the 

‘super hyperfine structure’. 
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6.2 Spectral anisotropy 
 
As mentioned above and indicated in Figure 6-2, both the g-factor and the hyperfine 

coupling constant ‘a’ depend on the orientation of the spin active group (in this case 

the p-orbital of a nitroxide group) in the outer magnetic field B0. 

 

Figure 6-2 Dependency of the ESR spectra of nitroxide spin probes on the orientation; frame of 
reference is the orientation of outer magnetic field B0; adopted from [168] 

 
The z-axis in the pictured coordinate system corresponds to the orientation of the p-

orbital that lies parallel to the longitudinal molecule axis of the spin probe. In a single 

crystal, aligning B0 parallel to any of the three main axes of the system, leads to three 

distinctly different signals, each described by their own g-factor and hyperfine 

coupling constant: 

 

axx = 5.9*10-4T, ayy = 5.4 *10-4 T and azz = 3.29*10-3 T 

gxx = 2.0088, gyy = 2.00548 and gzz = 2.0021. 

 

If, as in most cases, the molecule system is symmetric to one axis, two components, 

aII = azz, a┴ = axx and gII = gzz, g┴ = gxx respectively, are enough to describe the ESR 
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spectrum. For orientations in between the two main axes values in between are 

assumed.  

As the hyperfine coupling constant and the g-factor only depend on the angle Φ 

between the magnetic field and the molecular axes, the orientation of the molecule 

can be derived from the experimentally determined parameters a0 and g0 according 

to: 

Φ∗+Φ∗= ⊥
2222

0 sincos ggg II  

Φ∗+Φ∗= ⊥
2222

0 sincos aaa II  

 

All contemplations so far were restricted to single crystals. However in reality, more 

often poly-crystalline powder spectra will be encountered, in which all orientations 

occur statistically. The spectrum then contains all g-factors and hyperfine coupling 

constants, giving an overall signal as indicated in Figure 3-3 

 

 

Figure 6-3 Origin of an anisotropic ESR signal of a statistically distributed spin probe; a = overall 
absorption; the dotted lines represent the absorption signals of the different orientations; b = first 
derivative of the overall signal; adopted from [168] 

 
In a non-viscous solution, in contrast to the powder spectra, the probe molecules can 

rotate rapidly and freely around their axes. If the rotation correlation time is smaller 

than the duration of the absorption process, the anisotropy of ‘a’ and ‘g’ averages out 

and the spectrum becomes independent of the orientation of B0. The hyperfine 

coupling constant and the g factor assume so called isotropic mean values with 

Absorption A 

1. derivative: dA/ dB0 
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a0 = 1/3 (azz + ayy + axx), g0 = 1/3 (gzz + gyy + gxx) and a0 = 1/3 (aII + 2a┴), 

g0 = 1/3 (gII + 2g┴) in a system that is symmetric to the axes, respectively. The 

resulting spectrum is characterized by three sharp lines (Figure 6-4 b).  

Figure 6-4: a. anisotropic spectrum of 5-doxyl stearic acid , measured at 77K in a 0.5 mM solution in 
water b: quasi isotropic spectrum of 5-doxyl stearic acid in a 0.5 mM solution in water at 298K, azz is 
the maximal hyperfine coupling constant; a0 is the isotropic hyperfine coupling constant. 

 

2 a zz 

2a0 



Appendix 
 

107 

6.3 Spin probes and the order parameter S 
 
ESR measurements can only be performed on probes containing unpaired electrons, 

such as paramagnetic metal ions (e.g. Fe3+, Cu2+, Mn2+), organic molecules 

containing electron triplets, and free radicals. With the help of ESR spectroscopy, 

structural information about the environment of the unpaired electrons, such as the 

orientation of the spin-active group and its mobility in its environment, as well as the 

concentration of the spin-active group may be acquired. However, most often bio-

molecules don’t include paramagnetic groups or unpaired electrons. Therefore 

indirect measurements have to be conducted, using stable organic radicals, so called 

spin labels. The spin labels are attached covalently or via H-bonds or hydrophobic 

interactions to macromolecules. Those macromolecules can either be the molecules 

to be investigated themselves or they can function as probes, examples being 

derivatives of lipidic acids such as 5-doxyl stearic acid (5-SA, figure 6-6) or T-SASL 

(2,2,6,6-tetramethyl piperidin-1-oxyl-4-yl-octadecanoate). Generally, nitroxide radical 

(N-O·) probes are used either in the form of derivatives of oxazolidine or piperidine/ 

pyrrolidine.  

 

N  

O

R1

R2 N  

R

O

A B

 

Figure 6-5 Spin active oxazolidine (A) and piperdine/ pyrrolidine (B) groups. 

 

Methyl groups located close to the N-O· group reduce the reactivity of the radical, 

making the spin label stable in solution for weeks. In the nitroxide spin probes, the 

unpaired electron is located in the 2pп-orbital of the nitrogen and is subject to 

hyperfine coupling with the nitrogen 14N nucleus (l=1), resulting in a hyperfine splitting 

into three transition lines.  

As noted above, ESR spectra of paramagnetic substances depend on the orientation 

of paramagnetic atom in the outer magnetic field. This is utilized in the construction of 

spin probes to obtain information about the probe environment. A lipid spin label is 

constructed in a way that the axes of the nitroxide group assume definite positions in 

the molecular coordinate system: The z-axis (the direction of the outer magnetic field 
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B0) is the longitudinal axis of the molecule and defines the direction of the maximal 

hyperfine splitting with azz = 3.2*10-3 T. The p-orbital of the nitroxide nitrogen is 

orientated along the z-axis, while the two other components of the hyperfine coupling 

with ayy = axx 5.6*10-4 T are located perpendicularly to the longitudinal axis. 

 

 

 

NO O  OH

O  
Figure 6-6 Structure of the spin label 5-doxyl stearic acid and orientation of the molecule axes. 

 

In a membrane, the spin probe will align itself parallel to the membrane normal. If the 

spin label is rigidly incorporated into the membrane system or covalently bound to a 

macromolecule, the resulting spectrum will resemble an anisotropic powder spectrum 

via statistical distribution of the orientations. In reality, the spin label will not be 

completely immobilized. Therefore the theoretically possible maximal hyperfine 

splitting azz and minimal hyperfine splitting axx will not be reached. Instead, the 

experimentally determined parameters aII and a┴ will assume other values (aII < a zz 

and a┴ > axx). The divergence from the theoretical values will be increase along with 

the mobility of the spin probe. To quantify the mobility of the spin probe the order 

parameter ‘S’ is introduced as the ratio of the actual hyperfine coupling constants to 

their theoretical values: 

 

S = (aII- a┴ )/ (a zz – axx) ; 1 ≤ S ≥ 0 

 

When S = 0, molecular mobility is unhindered and fluidity is maximal. When S = 1, 

molecular motion is negligible and powder like spectra are obtained. In biological 

membranes, a membrane order gradient may be observed. The gradient typically 

stretches from a highly ordered zone (0.60-0.80) in the polar-non-polar interface 

region to the non-polar membrane core where it may approach 0.20. 

a zz = 3.2*10-3 T longitudinal axis 

ayy = 5.6*10-4 T 

axx = 5.6*10-4 T 
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8 Abbreviations 
 
BCRP breast cancer resistance protein 

BSA bovine serum albumin 

ClogP octanol/ water partition coefficient 

CMA Connolly Molecular Area 

CsA cyclosporine A 

DIG digoxin 

EC50 concentration at which half maximal inhibitory effects are observed 

ER efflux ratio 

ESR electron spin resonance  

Fmean mean fluorescence intensity 

FU fluorescence units 

IC50 concentration at which half maximal cytotoxic effects are observed 

LDH lactate dehydrogenase 

MDR multidrug resistance  

MRP multidrug resistance associated protein 

Papp  apparent permeability coefficient 

P-gp P-glycoprotein 

RHO rhodamine 123  

S order parameter 

SEV Connolly Solvent-Excluded Volume 

TPGS D-alpha-tocopheryl poly(ethylene glycol 1000) succinate 
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