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Summary 

Automated preparative HPLC purification systems are an important and useful 

technology in pharmaceutical and chemical development. The systems have been 

applied to high-throughput purification of products from combinatorial compound 

synthesis for drug discovery, single compound isolation for further structure 

elucidation and activity screening, as well as fractionation of active compounds from 

plant extracts.  

Fraction collection in automated HPLC purification system can be triggered by less 

selective UV detection or by highly selective mass spectrometry (MS) for target-

oriented trigger or simultaneously by both detection systems. Unlike UV detection, 

mass spectrometry is a destructive detection technique. Therefore, a post-column 

split must be applied to send a small fraction of the column main flow to the mass 

spectrometer. A passive splitting device for an automated semi-preparative HPLC 

system using a column dimension of 10 mm i.d. was constructed and its design was 

optimized by theoretical modeling and experimental evaluation for both photometric- 

and mass spectrometric fraction collection trigger. The challenges in the 

implementation of automatic triggers are proper synchronization of peak detection 

and peak collection as well as minimization of band dispersion in the connection 

tubing between detectors and fraction collector. These could be verified with the 

optimized system. Both modeling and experiments using a standard mixture of 

parabens showed that compound transfer in the capillary connection both to fraction 

collector and mass spectrometer is the most critical part for the adjustment of delay 

time. The optimized instrumental setup was synchronized and characterized with 

both a microparticulate column operated at 5 mL/min and a silica-based monolithic 

C18-column (Monolith) of the same dimension performed at 10 mL/min for further 

increasing the speed of fractionation. Since the fast mode using a monolithic column 

can be accomplished on exactly the same instrumental setup, it represents an ideal 

alternative to the standard mode for high throughput purification of simple crude 

mixtures. 

Since the cost of isolated compounds depends strongly on their loadability on the 

column, maximizing loading capacity is of utmost importance. It is also known that 

the loadability may vary widely with the nature of the compound. Therefore, volume 

loading capacity for acetylsalicylic acid and mass loadability for some 

pharmaceutically relevant compounds (acetylsalicylic acid, amitriptyline, phenol and 
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rutin) on some RP-HPLC columns in semi-preparative dimension (10 mm i.d.) 

compared to their analytical dimension (4.6 mm i.d.) was studied extensively. In order 

to characterize the column properties and to obtain the optimum chromatographic 

conditions for the loadability study, the columns were first evaluated with the 

Engelhardt test and with different tests using amitriptyline as representative of a 

strongly basic drug. The Engelhardt test revealed similar properties for Luna 5 µm 

columns in both dimensions as well as for Luna and Acclaim in semi-preparative 

dimension. The column properties between three tested Acclaim columns were 

markedly different. Retention studies showed different influence on the retention of 

strong organic bases like amitriptyline using methanol and acetonitrile as eluent at 

different pH. The volume loading capacity obtained with Luna and Acclaim semi-

preparative columns was similar, whilst the Monolith exhibited 66% more volume 

loading capacity than both packed columns. This can be attributed to the higher total 

porosity and thus higher column void volume of the monolithic column. The semi-

preparative columns were generally more loadable (column volume normalized 

values) than the analytical ones, even for columns with identical properties like Luna. 

Mass loadability for acetylsalicylic acid on the semi-preparative Acclaim was 3.3 fold 

higher than on the respective analytical dimension, whilst semi-preparative Luna 

exhibited 2 fold loadability compared to the analytical one. Furthermore, plots of the 

peak shape parameters revealed unusual behavior for both Luna columns. Semi-

preparative Acclaim was superior in term of peak shape and loadability for 

acetylsalicylic acid. The Luna semi-preparative column exhibited a 3.3-fold mass 

loading capacity relative to the analytical one for amitriptyline, whilst the Acclaim 

semi-preparative scale was 2.5-fold more loadable than the analytical column. The 

best results for amitriptyline mass loadability were achieved with an acetonitrile-water 

eluent at pH 7.0. Luna columns exhibited better performance and loadability than 

Acclaim columns for this compound. The loading capacity for phenol and rutin on 

both Luna and Acclaim semi-preparative columns was similar. However, the peak 

shapes obtained with the Luna were slightly better. The mass loading capacity of 

Monolith was generally less than the packed columns in the same dimension. 

The optimized automated purification system (APS) was successfully applied to the 

fully automated fraction collection of pharmacologically and medicinally relevant 

components from plant extracts. The APS was utilized for fractionation of precious 

ingredients in St. John's wort (Hypericum perforatum L.) extracts, minor degradation 

products from active ingredients in a thermal stressed drug, and for isolation of the 
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toxic protein gliadin which can cause a so-called coeliac desease.   

In the second part of this work, St. John’s wort extracts obtained from Accelerated 

Solvent Extraction (ASE) applying different extraction procedures were 

characterized. Moreover, asphalt samples containing tar were extracted, prepared 

and analyzed for polycyclic aromatic hydrocarbons (PAHs) and small phenols 

contents. 

Nine samples from dried St. John’s wort plant material were extracted either by one 

single extraction step or several times applying a sequence of extraction methods. 

Accelerated solvent extraction carried out with the protocol of group extraction 4 

applying four consecutive extractions using hexane, methylene chloride, ethyl 

acetate, and acetonitrile gave the best results. The dried ASE extracts should be re-

constituted in methanol for analysis using HPLC or for fractionation applying APS.  

The most of main ingredients in St. John’s wort could be identified by HPLC analysis 

using UV and MS detectors. However, hyperforin was not found in the extracts. 

Comparing Acclaim and Luna analytical columns for analysis of St. John’s wort 

extracts under identical conditions, both columns were generally comparable.  

For the analysis of environmental pollutants in road asphalt samples, two individual 

HPLC methods with photodiode array detection and individual foregoing sample 

preparation procedures aligned to the demands of the present matrix were 

developed. The first was for the analysis of PAHs, the second for small phenols in tar 

asphalt samples. The extraction of PAHs and phenols were performed with CH2Cl2

by Soxhlet and by cold extraction. The extraction of the phenols was additionally 

evaluated for a triple batch extraction under sonication. The sample preparation for 

the analysis of PAHs pursued a cleaning up of the CH2Cl2 extract by liquid 

chromatography on silica followed by a transfer to a methanol solution to inject into 

reversed phase HPLC. Two individual ways of sample preparation were developed 

for the phenol analysis. One comprised a liquid-liquid extraction from the methylene 

chloride extract into alkaline aqueous solution at pH 13, the other was carried out in a 

similar way by liquid chromatography on silica. The developed analysis methods 

were applied to a coarsely and a finely milled aliquot of the sample. From the coarse 

sample, lower amounts of PAHs could be extracted and analyzed under the same 

conditions. A total content of 3500 mg PAHs/kg asphalt sample was determined in 

the finely milled aliquot for 4h Soxhlet extraction. The phenol analysis resulted in a 

total content of small phenols at approx. 17 ppm. The Soxhlet CH2Cl2 extraction with 

following alkaline aqueous extraction turned out to be the preferred way. 
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Zusammenfassung 

Automatisierte preparative HPLC-Purification-Systeme mit UV- und/oder MS-Trigger 

sind eine wichtige Methodik im Bereich pharmazeutischer und chemischer 

Entwicklung. Das System wird bei der Hochdurchsatzfraktionierung in der 

kombinatorischen Synthese für die Suche nach neuen Wirkstoffen, der 

Einzelsubstanzisolierung für Strukturaufklärung und Aktivitäts-Screening, als auch 

bei der Fraktionierung von aktiven Substanzen aus Pflanzenextrakten eingesetzt. 

Im Gegensatz zur UV-Detektion ist die Massenspektrometrie keine zerstörungsfreie 

Detektionstechnik. Deshalb muss ein Post-Column-Split implementiert werden. Ein 

passives Splitsystem für ein automatisiertes HPLC Purification System sowohl mit 

UV- als auch MS-Trigger für Säulen mit der Dimension von 10 mm i.d. wurde 

konstruiert, mit Hilfe eines mathematischen Modells optimiert und experimentell 

evaluiert. Die Herausforderungen bei der Implementierung von automatischem 

Trigger sind Synchronisierung zwischen Peakdetektion und –fraktionierung sowie 

Minimierung der Bandenverbreiterung in den Verbindungskapillaren zwischen 

Detektor und Fraktionssammler. Diese konnten mit dem optimierten System 

verifiziert werden. Theoretische Modellierung und experimentelle Versuche mit einer 

Standardmischung von Parabenen zeigten, dass der Zonentransport zum 

Fraktionssammler und zum Massenspektrometer die wichtigsten Parameter bei der 

Einstellung der Delayzeit sind. Das optimierte System wurde mittels einer mit 5 µm 

Material gepackten Säule mit Flussrate 5 mL/min sowie einer Monolith-Säule bei 

gleicher Dimension mit Flussrate 10 mL/min synchronisiert und charakterisiert. Da 

die Erhöhung der Fraktionierungsgeschwindigkeit mit einer Monolith-Säule bei 

gleichem Instrumenten-Setup erreicht wird, kann es als eine ideale Alternative zu 

einer Standardmethode für Hochdurchsatzreinigung von einfachen 

Substanzgemischen eingesetzt werden. 

Die mit der Isolierung von Substanzen verbunden Kosten sind stark abhängig von 

der Beladbarkeit der Säule. Deshalb ist die Maximierung der Beladbarkeit der Säule 

von großer Bedeutung. Zudem ist bekannt, dass die Beladbarkeit von der 

chemischen Natur der Proben abhängig ist. Aus diesem Grund wurden 

Volumenbeladbarkeit für Acetylsalicylsäure und Massenbeladbarkeit für einige 

Pharmazeutika auf verschiedene RP-HPLC-Säulen in semi-preparativer Dimension 

(10 mm i.d.) verglichen mit der analytischen Dimension (4,6 mm i.d.) umfassend 

untersucht. Die Säulen wurden zunächst mit dem Engelhardt-Test und mit 
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verschiedenen Test-Methoden unter Einbeziehung einer starken Base (Amitriptylin) 

untersucht, um die Säuleneigenschaften zu charakterisieren und um die optimalen 

chromatographischen Bedingungen für die Beladbarkeitsstudie zu erhalten. 

Der Engelhardt-Test zeigte ähnliche Eigenschaften für 5 µm Luna-Säulen in beiden 

Dimensionen sowie für die semi-preparativen Luna- und Acclaim-Säulen. Die 

Eigenschaften der drei Acclaim-Säulen waren allerdings sehr unterschiedlich. 

Retentionstudien zeigten verschiedene Einflüsse von Methanol und Acetonitril als 

Eluenten bei unterschiedlichen pH-Werten auf der Retention der starken Basen wie 

Amitriptylin.  

Semi-preparative Luna und Acclaim Säulen besitzen gleiche Volumenbeladbarkeit, 

während die Volumenbeladbarkeit auf der Monolith-Säule 66% höher als auf die 

beiden gepackten Säulen ist. Dies kann durch höhere Totalporosität und somit 

höheres Durchflussvolumen der Monolith-Säule erklärt werden. Semi-preparative 

Säulen waren im Allgemeinen mehr beladbar als die analytischen, auch für Säulen 

mit gleichen Eigenschaften wie Luna. Die Massenbeladbarkeit für Acetylsalicylsäure 

auf die semi-preparative Acclaim war um einen Faktor 3,3 höher als auf der 

analytischen Säule, während die semi-preparative Luna nur 2-fach mehr beladbar 

(normiert auf Säulenvolumina) war als die analytische. Weiterhin waren die Plots der 

Peakparameter bei Luna-Säulen ungewöhnlich. Die besten Ergebnisse für die 

Massenbeladbarkeit von Amitriptylin wurden mit Acetonitril-Wasser-Eluent bei pH 7 

erreicht. Die Luna-Säulen zeigten bessere Performance und Beladbarkeit für diese 

Probe als die Acclaim-Säulen. Die semi-preparative Luna war um Faktor 3,3 mehr 

beladbar als die analytische, während die Beladbarkeit auf der semi-preparativen 

Acclaim Säule 2,5-fach höher war als für die analytische. Die semi-preparativen 

Luna- und Acclaim-Säulen zeigten ähnliche Beladbarkeit für Phenol und Rutin. 

Allerdings zeigte die Luna-Säule bessere Peakform für diese Proben. Die 

Massenbeladbarkeit auf der Monolith-Säule war im Allgemeinen geringer als auf den 

gepackten Säulen gleicher Dimension.  

Das optimierte Automatisierte Purification System (APS) konnte erfolgreich für 

vollautomatische Fraktionierung von pharmakologisch und medizinisch relevanten 

Inhaltsstoffen aus Pflanzenextrakten angewandt werden. Das APS wurde für 

Fraktionierung wertvoller Inhaltsstoffe in Johanniskraut-Extrakten (Hypericum 

perforatum L.), zur Isolierung von Abbauprodukten aus aktiven Inhaltsstoffen in 

einem pharmazeutischen Präparat und für die Isolierung des toxischen Proteins 
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Gliadine, die eine so genannte Zöliakie-Krankheit verursachen kann, eingesezt. 

Der zweite Teil dieser Arbeit beschreibt die Charakterisierung von durch Accelerated 

Solvent Extraction (ASE) erhaltenen Johanniskraut-Extrakten sowie die Bestimmung 

von polyzyklischen aromatischen Kohlenwasserstoffen (PAKs) und Phenolen in 

teerhaltigem Straßenasphalt. 

Neun Proben von getrocknetem Johanniskraut-Pflanzenmaterial wurde entweder in 

einem Schritt oder in mehreren Schritten in einer Sequenz von Extraktionsmethoden 

extrahiert. Die ASE-Extraktion mit vier aufeinander folgenden Extraktionsschritten mit 

den Solventien Hexan, Dichlormethan, Ethylacetat und Acetonitril, ergab die beste 

Ausbeute. Die getrockneten ASE-Extrakte sollten für die weitere Analyse mittels 

HPLC oder für Fraktionierung mittels APS in Methanol überführt werden. 

Die meisten Hauptinhaltsstoffe in Johanniskraut konnten mittels HPLC-UV-MS 

identifiziert werden. Hyperforin konnte jedoch nicht bestimmt werden. Vergleich man 

die zwei für die Analytik benutzten analytischen Säulen Luna und Acclaim, waren die 

beiden unter gleichen chromatographischen Bedingungen vergleichbar.  

Zwei individuelle HPLC-Methoden und vorhergehende Prozeduren für die 

Probenvorbereitung von sehr komplexer Asphalt-Matrix wurden für die Bestimmung 

von PAKs und Phenolen entwickelt. Die Extraktion wurde in Dichlormethan mit zwei 

verschiedenen Methoden durchgeführt, der Soxhlet-Extraktion und der 

Kaltextraktion, und zusätzlich für Phenol einer Ultraschallextraktion. Für die 

anschließende PAK-Analyse wurde die Probe auf einer kleinen Kieselgelsäule mit 

Dichlormethan als Elutionsmittel chromatographisch aufgereinigt und in ein RP-

HPLC-kompatibles Lösemittel (Methanol) überführt. Zwei individuelle 

Probenvorbereitungs-Methoden wurden für die Phenol-Analyse entwickelt. Eine war 

die Flüssig-Flüssig-Extraktion des Dichlormethanextraktes in eine alkalische 

wässrige Lösung bei pH 13, die andere war die chromatographische Aufreinigung 

entsprechend der Probenvorbereitung für die PAKs. Mit den entwickelten 

Analysenmethoden wurden grob und fein gemahlene Proben untersucht. Die grob 

gemahlene Probe ergab einen geringeren Gehalt an PAKs. Eine Gesamtbelastung 

von ca. 3500 mg PAKs/kg Asphalt wurde in fein gemahlener Probe nach 4-stündiger 

Soxhlet-Extraktion ermittelt. Die Phenolanalyse zeigte eine Gesamtbelastung durch 

kleine Phenole von nur ca. 17 mg/kg. Soxhlet-Extraktion mit anschließender 

alkalischer Flüssig-Flüssig-Extraktion erwies sich als die beste Methode. 
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Chapter 1

Introduction 

Both pharmaceutical and biotechnological industries have raised the demand for the 

development of novel, faster, and more efficient ways to discover and isolate 

pharmacologically active compounds [1]. The purification of natural and synthetic 

compounds by fully automated preparative HPLC using gradient elution and real-

time, data-dependent fractionation triggering is becoming an increasingly important 

and useful technology in chemical and pharmaceutical development [2-6]. Typical 

applications include the high-throughput purification of products from combinatorial 

syntheses [7-13] or even manual single compound synthesis [4] for further structure 

elucidation and activity screening, as well as the fractionation of extracts of active 

ingredients from medicinal plants [14].  

A variety of instrumental solutions, which are in many cases equipped with dedicated 

software control, is commercially available and frequently termed "automated 

purification system" (APS). The most commonly employed chromatographic modes 

include normal-phase- [4], reversed-phase- [6,7], or supercritical-fluid 

chromatography [3]. The elution of the separated components may be monitored by 

a photometric detector and, alternatively or additionally, by a mass spectrometer, 

usually interfaced by means of an electrospray- or atmospheric pressure chemical 

ionization interface. Unattended fraction collection based on real-time photometric [4] 

or mass-selective triggering [2] has considerably increased the productivity of 

preparative fractionation, facilitating full automation of the process of compound 

separation and targeted fraction collection. High-speed and throughput are realized 

by means of a combination of automation [2], parallelization [5,15], and rapid 

separations in short columns packed with small particles (sub-2-µm particles) [16,17]. 

The latter approach is, however, frequently compromised by the pressure limitations 

of several preparative HPLC pumping systems. The common solution is either the 

use of short columns packed with larger, 5-10 µm particles at the cost of lower 

column efficiency [12] or of highly permeable monolithic columns that provide high 

efficiency at fast linear velocities and very moderate column back pressures [18]. 

In this work, an automated HPLC purification system applying both photometric and 

mass spectrometric fraction collection trigger in semi-preparative dimension using 10 

mm i.d. columns was implemented and optimized. The system was optimized by 
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theoretical modeling and evaluated with a packed microparticulate 5 µm C18 column. 

Moreover, a prototype silica-based monolithic column of the same dimensions was 

utilized to investigate the performance of the setup under high-throughput conditions. 

Particular focus was laid on minimized peak dispersion and compatibility with a range 

of flow rates from 5 to 10 mL/min. 

In APS applications, a certain amount of purified compounds is desired. The cost of 

preparing this quantity depends strongly on the loadability of the compound on the 

column. Therefore, maximizing loadability is of utmost importance in preparative 

chromatography, since both the cost of the equipment and the operation increase 

with the size of the column. However, it is also known that the column loadability may 

vary widely with the nature of the compound [19]. For this reason, different types of 

column loading capacity were studied for an acidic pharmaceutical compound (acetyl 

salicylic acid) on a set of RP-HPLC columns in a semi-preparative dimension and in 

an analytical dimension as comparison. Furthermore, mass loadability for a strongly 

basic drug (amitriptyline) on the same columns was extensively studied. In order to 

compare the loading capacity of the columns for different solutes, the loadability of a 

polar weakly acidic compound phenol and a neutral compound rutin was also 

investigated. In order to characterize the column properties, the freshly purchased 

unused columns were characterized prior to the loadability studies. The 

characterization of different column properties was performed using the Engelhardt 

test. Because of higher silanol activity obtained with some RP-columns, and in order 

to find the optimum chromatographic conditions for the loadability study, an extensive 

study using different mobile phases for a strongly basic probe compound 

(amitriptyline) was carried out. 

The optimized APS utilizing both photometric- and mass spectrometric trigger was 

applied to fractionation of pharmacologically and medicinally relevant compounds 

from plant extracts. The fractionation of precious compounds in St. John’s wort 

(Hypericum perforatum L.) extracts by UV and MS trigger is described in detail. 

Moreover, fractionation of degradation products from 2 active ingredients in a thermal 

stressed pharmaceutical formulation was performed for structural elucidation by NMR 

spectroscopy. Furthermore, fraction collection of toxic gliadin from wheat extract was 

carried out. 
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Chapter 2

Instrumental Setup for Automated Purification System with 

Mass Spectrometric and Photometric 

Fraction Collection Trigger 

2.1 Introduction 

Automated HPLC purification is a method of choice for the fractionation of high purity 

single compounds from a mixture running a single chromatographic separation. The 

important applications of the system are high-throughput purification of compounds 

from combinatorial chemistry [1-7], and fractionation of the impurities or degradation 

products from parent compounds [8,9]. A sufficient quantity of the fractions is 

necessary for further identification of their chemical structure or for toxicity tests [8]. 

Formerly, the automated HPLC purification system was triggered by less selective 

UV detection [10]. Consequently, every UV-active compound with UV intensity above 

a certain threshold was collected [11]. This is regarded as an advantage if every 

fraction is considered to be a target. However, this turns into a problem when only 

one fraction is desired, such as in combinatorial chemistry [6]. The advantages of 

UV-based systems are its ruggedness, low price, optimal signal-to-noise ratio and 

easy handling [6]. 

Since the implementation of mass spectrometry (MS) for target-oriented fraction 

trigger, it is gaining recognition [2]. The main advantage is that only the desired target 

molecule will be collected. This results in advantages, such as online identification, 

easy-to-handle logistics, and less demand on fraction collector capacity [11]. 

Because the splitting and the nature of the MS detector, peak broadening is 

sometimes observed [6]. This can lead to impure samples especially when fast 

chromatography is applied. The principle of UV-based and MS-based fraction 

collection is shown in Figure 2.1. 
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Figure 2.1: Principle of photometric and mass-based fractionation 

General issues in the implementation of automatic triggers for fractionation are 

proper synchronization of peak detection and peak collection as well as minimization 

of band dispersion in the connecting tubing between detector(s) and fraction 

collector. Since mass spectrometry (MS) is a destructive detection technique, a 

selective mass spectrometric fraction collection trigger requires splitting of the column 

effluent between mass spectrometer and fraction collector. Moreover, ion sources are 

easily fouled by large amounts of analyte, necessitating a substantial reduction and 

dilution of the column effluent flow to the mass spectrometer. In passive splitting 

devices, the flows of column effluent to the fraction collector and mass spectrometer, 

respectively, are regulated by the permeabilities of suitably dimensioned flow 

restrictors [12]. A supplementary Tee-piece may be implemented into the stream 

flowing to the mass spectrometer to accommodate the addition of make-up flow for 

dilution and to speed up the analyte zone. This configuration results in two parallel 

liquid paths flowing from column outlet to fraction collector and from make-up pump 

to mass spectrometer. Both flows are interconnected by means of the two Tee-

pieces, allowing the transfer of solution from one flow to the other (see Figure 2.8). 

Active splitters on the other hand, based upon a rapidly switched valve that transfers 

a small portion of the column effluent to a second flow of solvent directed to the mass 

spectrometer, have been shown to offer high flexibility and a broad range of splitting 

ratios independently of column permeability. Both active and passive splitting devices 

have been successfully incorporated into instrumental setups for mass-triggered 

fractionation [6,11,13,14]. A comparison of active and passive splitters for preparative 

HPLC has shown that active splitting devices (also called mass rate attenuators) offer 

minimal peak broadening and easy adaptation to a broad range of flow rates, split 
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ratios, and make-up flows [15]. Nevertheless, due to abrasion of the rapidly moving 

parts, rotor seals have to be exchanged on a regular basis. Moreover, peak profiles 

need to be smoothed by suitable averaging because of the discontinuous transfer of 

liquid between the donor and acceptor stream [15]. Passive splitters, on the other 

hand, are more difficult to optimize but hold the advantage of zero maintenance apart 

from the clogging risk and continuous transfer of liquid from one effluent stream to 

the other. 

Optimization of the split ratios, the time delays between the analytes passing the 

detector(s) and fraction collector, and the tubing dimensions in passive splitting 

devices is considerably complex on an empirical basis. A review of the current 

literature on automatic purification systems reveals that detailed descriptions of the 

setup of passive splitting devices and synchronization have not yet been published. 

Although the optimal settings are usually pre-installed from the factory, changes in 

column dimensions and/or flow rates may require modification of preset parameters.  

In this chapter, the set-up and characterization of automated HPLC purification 

systems with commercial passive splitters are reported. Because the tested 

commercially available splitters could not satisfy the requirements for high speed 

purification using flow rates typical for 10 mm i.d. columns, a passive splitting device 

was constructed and its design was optimized by theoretical modeling and step by 

step experimental evaluation for both photometric- and mass spectrometric fraction 

collection trigger.  

The system is evaluated with 100 x 10 mm i.d. columns packed with a 

microparticulate 5 µm octadecyl-stationary phase. Moreover, a prototype 

octadecylated silica-monolith of the same dimensions was utilized for the first time in 

a semi-preparative setup to investigate the performance of the setup under high-

throughput conditions. Particular focus was laid on minimized peak dispersion and 

compatibility with a range of flow rates from 5 to 10 mL/min. 

2.2 Experimental 

2.2.1 Chemicals and Materials 

All reagents used were of analytical grade. Methyl paraben, ethyl paraben, propyl 

paraben and butyl paraben were purchased from Fluka (Buchs, Switzerland), uracil 
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from Serva (Heidelberg, Germany), acetonitrile from Sigma-Aldrich (Steinheim, 

Germany). High-purity water was obtained from a Purelab Ultra system (ELGA, Celle, 

Germany). Preparative HPLC separations were performed either in a Luna C18(2) 

microparticulate column (100 Å, 5 µm, 100 x 10 mm i.d., Phenomenex, Torrance, CA, 

column #1), a prototype microparticulate column (120 Å, 5 µm, 100 x 10 mm i.d., 

Dionex, Sunnyvale, USA, column #2) or a silica-based, C18-derivatized monolithic 

research column (100 x 10 mm i.d., Merck, Darmstadt, Germany, column #3). 

Analytical HPLC separations were carried out on a Luna C18(2) column (100 Å, 5 µm 

column 150 x 4.6 mm i.d., Phenomenex). 

2.2.2 Instrumental Setups 

Preparative HPLC-UV-MS separations and fractionations were performed using a  

preparative HPLC system (Dionex Summit, Dionex, Germering, Germany) consisting 

of a binary semi-preparative high-pressure gradient pump (Model P680P HPG-2), a 

helium degassing unit, a semi-preparative autosampler (Model ASI-100P), a diode 

array detector (Model UVD340U PDA) with a semi-preparative detector cell (6 µl cell 

volume, 2 mm path length), a quadrupole mass spectrometer with an electrospray 

interface (Model MSQ), a high-pressure pump for delivering make-up flow (Model 

AXP-MS), and a fraction collector holding 7 mL tubes (Model Foxy Jr., Isco, Los 

Angeles, CA, USA). The fraction collector features a switching valve, which can be 

set to either direct the column effluent to an array of 144 sampling tubes or to a waste 

reservoir. The splitting system used for fractionation applying mass spectrometry was 

either a commercial splitting device (Accurate 1/1000, LCPackings, Amsterdam) or a 

home-made splitting system.  

The home-made splitting system was assembled from Tee-pieces and capillary 

tubing from Valco (Houston, TX) or Upchurch (Oak Harbor, WA) and polyimide-

coated fused silica capillaries of different inner diameters (Polymicro Technologies, 

Phoenix, AZ). The system was fully controlled through the Chromeleon 

Chromatography Management System (version 6.6, SP2, Dionex). Figure 2.8 shows 

a schematic of the set-up of the purification system incorporating the home-made 

splitting assembly. The dimensions of the capillaries were as follows: capillary 1 

(PTFE) 10,000 x 0.50 mm i.d., capillary 2 (fused silica) 400 x 0.05 mm i.d., capillary 3 

(PEEK) 300 x 0.13 mm i.d. 
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Analytical HPLC separations were performed on a system comprising a binary 

analytical high-pressure gradient pump (Model Summit P680A HPG-2, Dionex), a 

degassing unit (Model Degasys DG-1210, Dionex), an analytical auto-sampler with 

integrated temperature control (Model Summit ASI-100T, Dionex), and a dual 

wavelength UV detector (Model 2487, Waters, Milford, MA). The analytical system 

was also fully controlled by Chromeleon software.  

2.2.3 Determination of peak dispersion 

Peak dispersion was determined by analyzing a solution of four parabens (methyl-, 

ethyl-, propyl-, and butylparaben) or three parabens (methyl-, propyl-, and 

butylparaben) 100 mg/L each dissolved in mobile phase, using column #1 or column 

#2 . Elution was accomplished with acetonitrile-water (60/40, v/v) at a flow rate of 5 

mLmin-1. The injection volume was 100 µL and the detection wavelength was 254 

nm. In order to keep the volumes constant when the detector was installed at the end 

of the delay capillaries, a dummy detection cell was mounted in place of the original 

detector position. The peak widths at half height were calculated by Chromeleon. 

2.2.4 Determination of the Delay Times at Different Make-up Flows and 

Synchronization 

The delay times at different make-up flows were determined by injecting 100 µL of a 

solution containing methyl-, propyl-, and butylparaben, 1 g/L each, dissolved in 

mobile phase using column #2. Mobile phase and make-up solvent were 

water/acetonitrile (40/60 v/v). MS conditions are given in section 2.2.6.  

The system was characterized and synchronized by injection of 50 µL of a solution 

containing methyl-, propyl-, and butylparaben, 1 g/L each. The mobile phase and 

make-up solvent were water/acetonitrile (40/60 v/v) for the microparticulate column 

(column #1) and water/acetonitrile (50/50 v/v) for the monolithic column (column #3). 

The flow rates through the columns were 5 mL/min for column #1 and 10 mL/min for 

the column #3. The make-up flow was 200 µL/min in both cases. UV-detection was 

performed at 254 nm, and MS conditions are given in section 2.2.6. 
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2.2.5 Determination of Fraction Purity and Compound Recovery 

The recovery was evaluated by injecting a solution containing methyl-, propyl-, and 

butylparaben, 1 g/L each dissolved in mobile phase, onto the 10 mm i.d. columns (#1 

and #3). The injection volume was 50 µL and the mixture was separated under the 

chromatographic conditions given in section 2.2.4. Fractions were automatically 

collected and subsequently diluted to 5.00 mL with eluent. A second 100 µL-aliquot 

of the original paraben solution was diluted to 5.00 mL as well. Aliquots of 10 µL of 

both solutions were analyzed on the analytical HPLC-UV system at a flow rate of 2 

mL/min with an eluent comprising acetonitrile-water (60/40, v/v). The ratio of areas 

from these two analyses was utilized to calculate the recovery of parabens from the 

10 mm i.d. columns during automated fractionation. 

2.2.6 Mass Spectrometric Conditions and Mass-directed Fraction 

Collection Settings 

The electrospray source was operated at 3 kV needle voltage and 300 ºC probe 

temperature. The cone voltage was -50 V (negative mode). Full scan acquisition 

between m/z 100-250 with a scan time of 0.5 sec was performed. Mass traces were 

on-line extracted for m/z 151±0.5 (methylparaben), 179±0.5 (propylparaben), and 

193±0.5 (butylparaben) and used as data for peak detection and automated 

triggering. The threshold settings for the fraction collection were 20,000 counts for 

column #1 and 35,000 for column #3. 

2.3 Results and Discussion 

2.3.1 Setup of an Automated HPLC Purification System Using a 

Commercial Splitting Device 

The set-up of the semi-prep purification system with MS triggered fraction collection 

using a commercial splitting device Accurate 1/1000 from LCPackings (Amsterdam) 

is shown in Figure 2.2.  
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Figure 2.2: Scheme of purification system with commercial splitter 

The LCPackings 1/1000 Accurate Split configuration comprises two T-connections T1 

and T2 (Figure 2.3). The split-T-connection T1 receives the HPLC flow from the 

column and divides it into the two exit lines. The main flow exits along the delay 

tubing into the fraction collector (or waste), depending on the position of the fraction 

collector valve. The split flow transfers a minor aliquot from the main stream to the 

MS detector for mass selective trigger of fraction collection. A second T-connection 

(T2) is used to incorporate a make-up flow of an MS-friendly solution into the split 

flow in order to dilute the concentrated bands from the prep column, to speed up the 

transfer of the peak to the MS detector and to deliver an appropriate flow to the MS 

source to generate a stable pneumatically assisted electrospray. 
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Figure 2.3: Schematic diagram of the commercial splitter (LCPackings 1/1000 

Accurate).  

In order to select the suitable splitting device for the automated purification system, 

two commercially available splitters for two different column flow ranges (1-10 

mL/min and 10-50 mL/min) were investigated. 

2.3.1.1 Commercial Split System for Preparative Flow of 10 to 50 mL/min 

The assembly of the Accurate splitting device Accurate 1/1000, specified for flow rate 

10-50 mL/min is as follows (Figure 2.3): the length of the stainless steel capillary of 
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the Tubing 1 was measured to be 5900 mm and the volume was 2600 µL. From 

these figures, the i.d. of this capillary was calculated to be 0.75 mm. The fused silica 

capillary that represents the split flow restrictor had a length of 620 mm. Considering 

the specified split ratio of 1:1000, the i.d. of this restrictor was calculated to be 0.075 

mm. 

To implement the commercial splitter in the purification system, the original tubing 

from splitter to fraction collector was a stainless steel capillary with dimensions 

1010 x 1.0 mm, the ESI source was connected to the splitter via a fused silica 

capillary of 980 x 0.20 mm. With this set-up (established by Dionex for a larger scale 

system) and the recommended make-up flow of 1 mL/min (make-up solution identical 

to mobile phase H2O/ACN: 40/60), 100 µL of the mixture of 3 parabens (methyl-, 

propyl-, butylparaben) at a concentration of 10 g/L each were injected into column 

#2, but no signal could be observed at the MS detector. 

A further optimization of the connection capillaries with respect to dispersion 

minimization was carried out while maintaining the use of the commercial splitter. The 

original steel capillary (1010 x 1.0 mm) to connect the fraction collector was replaced 

by a PTFE tubing with the dimensions 5600 x 0.5 mm i.d. The former connection to 

ESI source (980 x 0.20 mm) was replaced by a PEEK capillary of 1000 x 0.13 mm 

i.d., thus reducing its volume to achieve faster signal transport at the given make-up 

flow rate. 

2.3.1.1.1 Characterization of the slightly modified system for peak dispersion 

To systematically characterize this slightly modified system, a solution of methyl-, 

propyl- and butylparaben were injected onto the column #2. The eluted peaks were 

recorded with a UV detector at 254 nm (UVD 340, Dionex) at 3 different positions: (A) 

behind the column, (B) behind the splitter, (C) at the fraction collector switching-valve 

(Figure 2.2). 

Figure 2.4 compares the chromatograms of the paraben mixture separation recorded 

directly behind the column (Figure 2.2, position A) and behind the splitter (Figure 2.2, 

position B). As can be seen, a pronounced peak dispersion ocurred in the splitting 

device. This could be related to the wide-bore tubing 1 (Figure 2.3), which was 

originally selected with respect to a column flow rate between 10 to 50 mL/min, 

specified for this splitting device. 
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Figure 2.4: Chromatograms of methylparaben, propylparaben and butylparaben (100 

mg/L each) using column #2 recorded behind column (A) and behind splitter for 

column flow 10-50 mL/min (B). (A) and (B) refer to positions in Figure 2.2. 

Experimental conditions are given in section 2.2.3.

The corresponding peak widths at 50% peak height and the HETP’s are given in 

Table 2.1. The peak widths at 50% peak height of the zones eluting from the main 

stream line of the splitter are 3-times larger than the zones entering this device 

(measured behind the column) and the HETP’s were 10-times lower (square function 

for calculation). No measurable additional band broadening in the PTFE connection 

tubing (5600 x 0.5 mm i.d.) to the fraction collector switching valve was encountered 

when detection was carried out at position C (Figure 2.2). 

Table 2.1: Peak width at 50% peak height (min) and HETP recorded with UV detector 

at different positions according to Figure 2.2 (Accurate 1/1000 for column 

flow 10-50 mL/min). 

Peak width at 50% peak height (additional 

dispersion in %) 
HETP 

  
  

behind 

column 

(A) 

behind 

splitter (B) 

at fraction collector 

switching valve (C)

behind 

column 

behind 

splitter 

Methylparaben 0.12 0.41 (242%) 0.46 (12%) 3588 373 
Propylparaben 0.14 0.43 (207%) 0.48 (12%) 5393 567 
Butylparaben 0.17 0.45 (165%) 0.51 (13%) 6517 798 
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2.3.1.1.2 Characterization of split and signal generation in the MS detector 

A first experiment was carried out with the set-up described in Figures 2.2 and 2.3 

applying a make-up flow of 1 mL/min (make-up solution identical to mobile phase at 

H2O/ACN: 40/60) and injecting 100 µL of a paraben mixture (10 g/L each) into the 

column #2 running at a flow rate of 5 mL/min. Under these conditions, no signal was 

obtained in the MS detector, as already experienced with the unmodified set-up. 

To study the cause of this observation, the MS detector was replaced by a simpler 

and more robust UV detector (Waters 2487). This was done, because it could not be 

initially verified that both the splitting/make-up system and the ESI-MS detector 

operated properly under the given conditions. The UV detector was installed in place 

of the MS to unambiguously approve the transfer of sample into the split restrictor, 

which could possibly to be suppressed by an overpressure generated at T2 (Figure 

2.3), due to a high make-up flow through the restrictive narrow connection capillary to 

the MS (Figure 2.2). At a make-up flow rate of 1 mL/min, no peaks could be 

monitored with the UV detector as well. This clearly proves a mal-operation of the 

splitter. Since this effect could be related to an overpressure at T2 resulting from the 

pronounced make-up flow through the narrow bore connection capillary to the MS 

detector, the make-up flow was varied in a subsequent experiment. 

Figure 2.5 shows the influence of the make-up flow on the chromatograms recorded 

with a UV detector at the position of the MS detector. The higher the make-up flow 

the lower was the signal. Eventually at a make-up flow of 1 mL/min the split flow was 

completely suppressed (or inverted), obviously since the pressure at T2 was higher 

than that at T1. 
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Figure 2.5: Peaks of MS flow line at different make-up flow detected with a UV 

detector. 



Instrumental Setup for Automated Purification System 17

Due to the obvious band dispersion in this commercial splitter, another commercial 

splitter specified for column flow of 1 to 10 mL/min was investigated. The results are 

described in the following section. 

2.3.1.2 Commercial Split System with Analytical Flow of 1-10 mL/min 

The dimension of the LCPackings Accurate splitting device 1/1000, specified for flow 

rate 1-10 mL/min is as follows (Figure 2.3): Tubing 1 consists of a long stainless steel 

capillary with inner diameter of 0.50 mm and a yellow PEEK capillary with inner 

diameter of 0.18 mm. The volume of Tubing 1 was measured to be 930 µL. The 

fused silica capillary that represents the split flow restrictor had a length of 350 mm 

and i.d. of 25 µm.  

To integrate the commercial splitter in the purification system, the original tubing from 

splitter to fraction collector was a PEEK capillary with dimensions 1006 x 0.50 mm. 

The ESI source was connected to the splitter via a PEEK capillary of 

1086 x 0.13 mm.  

The system was characterized at 2 different positions by injection of a solution three 

parabens using column #2. Figure 2.6 compares the chromatograms of the paraben 

mixture separation recorded directly behind the column (Figure 2.2, position A) and 

behind the splitter (Figure 2.2, position B). As can be seen, obvious peak dispersion 

occurred in the splitting device, however, less pronounced than obtained with the 

splitting device for column flow rate 10-50 mL/min.  
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Figure: 2.6: Chromatograms of methylparaben, propylparaben and butylparaben (100 

mg/L each) recorded behind column (A) and behind splitter for column flow 1-10 

mL/min (B). (A) and (B) refer to positions in Figure 2.2. Experimental conditions are 

given in section 2.2.3. 

The corresponding peak widths at 50% peak height and the HETP’s are depicted in 

Table 2.2. The peak widths at 50% peak height of the peaks measured behind the 

splitter are almost two times larger than the zones measured behind the column. The 

HETP’s were more than 2-times lower.  

Table 2.2: Peak width at 50% peak height (min) and HETP recorded with UV detector 

at different positions according to Figure 2.2. 

peak width at 10% peak height 

(additional dispersion in %) 
HETP 

  

  behind column 

(A) 

behind splitter 

(B) 

behind column 

(A) 

behind splitter 

(B) 

Methylparaben 0.06 0.11 (83%) 3640 1290 

Propylparaben 0.07 0.12 (71%) 5030 2150 

Butylparaben 0.09 0.13 (44%) 5825 2990 

In a flow splitting setup, a delay volume is generally required between the point 

where the flow is split to the mass spectrometer and the fraction collector. The delay 

volume serves to compensate for the time delay due to the transfer of components 

from the splitting Tee-piece to the mass spectrometer. Moreover, it must allow for 
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sufficient computation time for data handling and processing before data-dependent 

instrument control can make a decision to collect a fraction or to send the column 

effluent to waste. In this instrumental and computational setup, a delay time of at 

least 8 sec was mandatory to guarantee uncompromised fraction collection. A further 

investigation was carried out in order to verify if the delay time is suitable for the 

operation. To characterize this system, 100 µL of a test solution of methylparaben, 

propylparaben and butylparaben (1 g/L each, diluted in mobile phase) were injected 

onto the column. The mobile phase and the make-up mobile phase were H2O/ACN: 

40/60 with a column flow rate of 5 mL/min. To detect the arrival of the substance at 

the fraction collector, the end of the capillary from the splitting device to the fraction 

collector was connected directly (without additional dead volume) with a UV detector 

(UVD 340, Dionex). 

Figure 2.7 compares the measured and the calculated delay time depending on the 

make-up flow (equations for the calculation see next section). It is obvious that the 

calculated and especially the measured delay time were much lower than the 

required (8 sec). 
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Figure 2.7: Measured and calculated delay time dependence on the make-up flow 

with column flow rate 5 mL/min.  
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2.3.2 Theoretical Modeling and Experimental Setup for Fast Automated 

Purification with Mass Spectrometric and Photometric Fraction 

Collection 

Due to the requirement of the minimum delay time of 8 sec and the obvious band 

dispersion in the commercial splitter, it was necessary to replace the commercial 

splitter by a home-made splitting system with a configuration similar to the 

commercial one, but with capillaries of smaller bore and the smallest possible 

number of connectors. The development of this setup is described in this section.  

2.3.2.1 Optimization of Delay Capillary Dimensions for Minimal Dispersion 

Figure 2.8 gives an overview of the setup of the automated purification system used 

in this study. The major part of the column effluent, pumped at a flow rate of 5-10 

mL/min, is directed through a UV detector to the fraction collector. An additional UV-

detector is placed between the splitting point and fraction collector. In this case, the 

volumes of detection cell and tubing are a part of the delay volume.  

The delay capillary is referred to as capillary 1 (actually a combination of capillary 1a 

and 1b, with the UV detection cell in between) in Figure 2.8. Its total volume 

determines the time delay at a given flow rate, while its length and inner diameter 

control the generated zone dispersion and back pressure. A continuous flow is 

directed through capillary 3 to the mass spectrometer by a make-up pump operated 

at 200 µL/min. The transfer of sample components from the column effluent to the 

flow to the mass spectrometer is effected by two Tee-pieces and a small inner 

diameter fused silica capillary (capillary 2), which interconnects both flows to fraction 

collector and mass spectrometer, respectively. Optimization of the dimensions of 

capillary 2 is discussed later. 
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Figure 2.8: set-up of HPLC purification system with home made splitting system. 

Schematic diagram of the optimized instrumental setup for photometric and mass 

spectrometric trigger. Capillary 1 (PTFE) 10,000 x 0.5 mm i.d., UV detector 

positioned at 4,000 mm from T1, capillary 2 (fused silica) 400 x 0.05 mm i.d., capillary 

3 (PEEK) 300 x 0.13 mm i.d. 

The delay volume necessary to adequately synchronize the mass spectrometric 

trigger may be estimated based on the following assumptions. At a flow rate of 

5 mL/min characteristic for a packed column with 10 mm i.d., a delay volume of 

670 µL is required to generate an 8 sec time delay. This volume, however, needs to 

be increased with columns operated at higher flow rates, such as monolithic columns. 

For instance, the envisaged 10 mL/min flow rate would require 1340 µL delay 

volume. Moreover, the volume of the delay capillary in front of the fraction collector 

additionally has to compensate for any time delay generated in the split connection in 

front of the mass spectrometer. For these reasons, it was decided to implement a 

delay volume of approximately 2,000 µL between splitting point and fraction collector. 

Such a volume is generated by a 2.5 m piece of a 1.0 mm i.d. capillary or a 10 m 

piece of a 0.5 mm i.d. capillary. Smaller capillary i.d.s cause lower peak dispersion, 

since the parabolic zone profile generated in all open tubes will be more rapidly 

counterbalanced by diffusion. However, capillary length must be increased to the 

power of two with decreasing capillary i.d., generating considerably high back 
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pressures. This additional backpressure influences the split ratio and can limit the 

available column inlet pressure. 

Band dispersion in both capillaries of 1.0 and 0.5 mm i.d. was evaluated by using the 

microparticulate column #1 operated at 5 mLmin-1 and placing the detector cell 

directly behind the column outlet or at the end of the respective delay capillaries.  

Figure 2.9 overlays the chromatograms of the standard mixture of alkyl parabens 

measured directly behind the separation column (Figure 2.9a) and at the outlet of 

delay capillaries of 2,500 x 1.0 mm i.d. (Figure 2.9b) or 10,000 x 0.5 mm i.d. (Figure 

2.9c). Both delay capillaries featured identical delay volumes (1,960 µL). As 

expected, the 1.0 mm i.d. capillary caused markedly more pronounced band 

broadening relative to that with 0.5 mm i.d. From Table 2.3 can be deduced that the 

average increases in peak widths with the 1.0 mm and 0.50 mm i.d. delay capillaries 

were 129% and 75%, respectively.  On the other hand, the system pressure drop of 

approximately 50 bar using acetonitrile eluent was obtained with the 0.50 mm i.d. 

delay capillary, which prevented the use of even smaller i.d. capillaries to further 

reduce band dispersion, since pressure 4th potent to the radius of the capillary. A 

capillary having an inner diameter of 0.50 mm was taken as a base for optimization of 

the splitter design. 
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Figure 2.9: Chromatograms for determination of peak dispersion using the 

microparticulate column operated at 5 mL/min. Detection cell installed (a) behind the 

separation column, (b) behind the delay capillary 2,500 x 1.0 mm i.d., (c) behind the 

delay capillary 10,000 x 0.50 mm i.d.; sample, mixture of 4 parabens. Experimental 

conditions are given in section 2.2.3. 

Table 2.3: Peak widths at half height directly behind column #1 and behind two 

different delay capillaries of the same volume (1,960 µL). 

w0.5 [s] 

Substance 
behind column 

behind tubing  

2,500 x 1.0 mm 

behind tubing 

10,000 x 0.5 mm 

Methylparaben 3.8 9.8 7.4 

Ethylparaben 4.1 10.6 7.7 

Propylparaben 4.7 10.4 8.0 

Butylparaben 5.6 10.9 8.6 

Average 4.55 10.43 7.93 
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2.3.2.2 Theoretical Modeling and Experimental Evaluation of Splitter Setup for 

Mass Directed Fraction Collection 

Four requirements were defined for the splitter setup: 

I. Suitability for operation at 5-10 mL/min column flow, 

II. Band dispersion between trigger detector (either photometer or mass 

spectrometer) and fraction collector below 30%, 

III. Split ratio between 1:400 and 1:1,000, 

IV. Delay time for mass spectrometric trigger minimum 8 sec. 

The column flow was selected for optimized flow rates with both the microparticulate 

(column #1) and monolithic (column #3) columns. A realistic maximum band 

broadening requirement was based on the results obtained with capillary 1 having an 

i.d. of 0.50 mm. The selected split ratio range was considered to be a good 

compromise between minimum loss of substance to the mass spectrometer and 

sufficient ESI-MS detection performance under the make-up flow rates suitable for 

the given instrument. The system delay time was a requirement defined by the 

utilized software control. The setup was based on two Tee-pieces (T1 and T2) 

connected by a flow bridge (capillary 2). Inlet and outlet of the first Tee were 

connected to the column outlet and delay capillary 1, whereas the second Tee 

accommodated the connections to the pump delivering make-up flow and to the 

mass spectrometer, respectively (see Figure 2.8). 

Aim of the optimization was to determine the best combination of capillary 

dimensions in the common configuration depicted in Figure 2.8. In the following 

descriptions, the 2 Tee-pieces and the 3 (variable) capillaries will be assigned as in 

Figure 2.8. The pressure gradient between T1 and T2 and the dimension of capillary 

2 (between both Tee-pieces) directly control the split flow and thus the split ratio. 

Another important aspect of this part of the setup is the influence of both the length of 

and the linear velocity in capillary 2 connecting the two Tee-pieces. These variables 

mainly determine the time to transfer a peak from T1 to the mass spectrometer. This 

is because of a much higher linear velocity in capillary 3 (which is predominantly 

controlled by the magnitude of make-up flow), resulting in minor contribution of this 

second part to the total transfer time to the mass spectrometer. To calculate the so-

called system delay time for mass spectrometric trigger, the time to transport the 

detection zone from T1 to the mass spectrometer has to be subtracted from the time 

taken for the main peak zone to travel from T1 to the fraction collector valve. 
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As all the above mentioned criteria (capillary dimensions and magnitude of make-up 

flow) are strictly interrelated, optimization by empirical design is very difficult. 

Therefore, the influence of the different parameters on theoretical split ratio and 

system delay time was modeled. All calculations were based on the assumption that 

the pressure at T1 is determined by column flow rate and the permeability of capillary 

1 (sum of 1a and 1b in Figure 2.8), whilst the pressure at T2 is solely controlled by 

the make-up flow and the permeability of capillary 3. The influence of the flow 

through capillary 2 (only 5 – 20 µL/min) was considered negligible for the calculation 

of the pressure drop between T1 and T2. 

The pressure drop in all capillaries was calculated by using the integrated Hagen-

Poiseuille equation for laminar flow following Equation 1 and 2. Considering the 

pressures at the fraction collector valve and at the sprayer of the electrospray ion 

source to be zero, p(T1) and p(T2) directly refer to the pressures at T1 and T2, while 

F1 and F3 indicate column flow rate, and make-up flow rate; η the viscosity; R1 and R3

the tubing radii of capillary 1 and 3; L1 and L3 the lengths of capillary 1 and 3. 

8η F1 ⋅ L1
p(T1) =  ⋅ 

π R1
4

8η F1 ⋅ L1
p(T1) =  ⋅ 

π R1
4

  (Eq. 1) 

8η F3 ⋅ L3

p(T2) =  ⋅ 
π R3

4

8η F3 ⋅ L3

p(T2) =  ⋅ 
π R3

4
  (Eq. 2) 

The split flow rate between T1 and T2 was calculated from the pressure difference 

p(T1) – p(T2) according to Eq. 3, where F2 indicates the split flow rate; η the 

viscosity; R2 the tubing radius of capillary 2; and L2 the length capillary 2: 

π (p(T1) – p(T2))
F2 =  ⋅  ⋅ R2

4

8η L2  (Eq. 3) 

Dividing the column flow rate by the split flow rate, the split ratio was calculated. The 

theoretical delay time ∆t was calculated by means of Eq.4 which is based on the 

information obtained from Eqs. 1 – 3 (V1, V2 and V3 indicate the volumes of capillary 

1, 2 and 3, calculated from their nominal dimensions): 
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∆t = V1/F1 – V2/F2 – V3/(F2+F3)  (Eq. 4) 

The optimized setup was developed in a step by step variation of the four parameters 

length of capillary 1 (i.d. is already defined to be 0.5 mm), length of capillary 2 

(considering standardized available narrow bore diameters of fused silica like 75 and 

50 µm), i.d. of capillary 3 (minimum length was determined by instrument design to 

be 300 mm) and the magnitude of the make-up flow. The influence of these four 

important system parameters on the pressure gradient between T1 and T2, split flow, 

split ratio and system delay time is illustrated in Figures 2.10 to 2.13. All modeling 

was performed for column flow rates of both 5 mL/min (column #1) and 10 mL/min 

(column #3).  

With a make-up flow of 200 µL/min (calculations regarding make-up flow are reported 

in detail in section 1.3.4) and using the predefined parameters for capillary 2 (400 

mm x 50 µm) and capillary 3 (300 mm x 130 µm) the influence of the length of 

capillary 1 considering an i.d. of 0.5 mm was modeled for the pressure gradient 

between T1 and T2 (Figure 2.10a), the split flow (Figure 2.10b), the split ratio (Figure 

2.10c) and the system delay time. It can be seen that the curves of the pressure 

gradient and the split flow run linear with the length of capillary 1 (Figure 2.10a and 

2.10b). From Figure 2.10c it can be deduced that the length must be between 6,600 

mm and 11,000 mm to fulfill the requirement of a split ratio between 400 and 1,000 

with both flow rates. Figure 2.10d clearly shows that delay time was a bigger issue at 

higher column flow rates, since the curve for 10 mL/min showed a much shallower 

slope and reached the required 8 sec level at a capillary length of approx. 9,700 mm. 

In consequence, it is recommended to adjust a relatively low split ratio of approx. 

500, because the setup generated sufficient time delay at higher column flow rates. 

In order to have a little reserve in the delay time, a length of 10,000 mm was 

considered as optimal for capillary 1. 
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Figure 2.10: Modeling of the influence of the system parameter length of capillary 1) 

on (a) pressure gradient between T1 and T2, (b) split flow,  (c) split ratio and (d) 

delay time (for capillary denotation refer to Figure 2.8). 

Figure 2.11 shows the influence of the i.d. of capillary 3 at a fixed length of 300 mm 

(capillary 1 is 10,000 mm x 0.5 mm, capillary 2 is 400 mm x 50 µm) on the pressure 

gradient between T1 and T2, the split flow, the split ratio and the system delay time. 

Here, the split ratio was more critical with smaller column flow rates. Split ratios 

smaller than 1,000 were modeled for 5 mL/min flow and for capillaries having an i.d. 

of more than 106 µm. Moreover, the split ratio did not fall below 470 from an i.d. of 

150 µm both for 5 and 10 mL/min flow rates (Figure 2.11c). Once more, the bigger 

issue was system delay time, especially with higher column flow rates (Figure 2.11d). 

It became obvious that the i.d. of capillary 3 must be 106-170 µm to guarantee a 

delay of 8 sec. Reducing the i.d. of capillary 3 at a given make-up flow significantly 

increased the pressure at T2 and thus reduced the linear velocity in capillary 2, as 

shown in the plot of the pressure gradient (Figure 2.11a) and the split flow (Figure 

2.11b) with the diameter of capillary 3. In fact, the velocity in capillary 2 mainly 

determined the system delay time. This is clearly proven by the calculations 

presented in Figure 2.11d. As a further increase would only be of minimal effect on 

the split flow, the optimal i.d. of capillary 3 was defined to be 130 µm, which is readily 

available in PEEK material. 
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Figure 2.11: Modeling of the influence of the system parameter length of diameter of 

capillary 3 on (a) pressure gradient between T1 and T2, (b) split flow,  (c) split ratio 

and (d) delay time (for capillary denotation refers to Figure 2.8). 

The most critical parameter in the splitter design was the dimension of capillary 2. 

Figure 2.12a shows the influence of its length on the split ratio, Figure 2.12b on the 

system delay time. The modeling was made for variable capillary lengths having an 

i.d. of 50 µm or 75 µm. It can be seen from the plot in Figure 2.12a that the split ratio 

with the 75 µm capillary is much lower, due to its smaller restriction effect relative to 

capillary 1. This is most critical at a flow rate of 10 mL/min, where the split ratio 

adopted values below 100 at practical capillary lengths of less than 1,000 mm. 

Considering the influence on the delay time (modeled in Figure 2.12b), it is obvious 

that under such conditions a delay of less than 6 sec was generated, which prevents 

the applicability of 75 µm i.d. tubing for capillary 2. For a 50 µm i.d. capillary a length 

of more than 350 mm resulted in split ratios greater than 400 for both 5 and 10 

mL/min column flow rates. Figure 2.12b shows, however, that a length of 420 mm 

must not be exceeded to guarantee at least 8 sec delay time for the more critical flow 

rate of 10 mL/min. Hence, a length of 400 mm and an i.d. of 50 µm were defined as 

optimal for capillary 2. The modeling of capillary dimensions as presented above 

resulted in the following capillary dimensions for an optimal splitter setup: capillary 1, 

10,000 mm x 0.5 mm; capillary 2, 400 mm x 0.050 mm; capillary 3, 

300 mm x 0.13 mm.  
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Figure 2.12: Modeling of the influence of the system parameter length of capillary 2 

on (a) split ratio and (b) delay time (for capillary denotation refers to Figure 2.8). 

Finally, the influence of make-up flow in the optimized setup on pressure gradient 

between T1 and T2, split flow, split ratio and system delay time was modeled (Figure 

2.13). When the make-up flow was increased, the pressure at T2 increased linearly 

and thus the pressure gradient and the split flow decreased linearly (Figure 2.13 a 

and b). This induced a hyperbolic increase in the split ratio with increasing make-up 

flow. The split ratio rose above 1,000 when the make-up flow exceeded 450 µL/min 

for a column flow of 5 mL/min.  

The dependence of delay time on make-up flow rate turned out to be rather complex, 

as can be seen in Figure 2.13d. Up to a make-up flow rate of approx. 50 µL/min, the 

increase in linear velocity through capillary 3 mainly determined the time elapsing for 

a zone migrating from T1 to the mass spectrometer. As this time was reduced, the 

delay time increased. At higher flow rates, however, a marked back pressure was 

generated at T2 which dramatically decreased the linear velocity in capillary 2. This 

was the reason for the plateau at make-up flow rates larger than 100 µL/min, as the 

opposite effects on the flow through capillary 2 and capillary 3 compensated each 

other. The plateau was largely extended at a column flow rate of 10 mL/min, as can 

be deduced from the dotted line in Figure 2.13d. At a column flow rate of 5 mL/min, a 
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lower pressure was built up at T1. Hence, the pressure generated at T2 by the make-

up flow contributed more strongly to the pressure difference between T1 and T2 (see 

solid line in Figure 2.13d). For this reason, the system delay time showed a 

pronounced decrease when the make-up flow rate exceeded 400 µL/min. It was 

derived from the modeling that a make-up flow rate between 150 and 450 µL/min is 

compatible with the required minimum system delay time of 8 sec and split ratio 

smaller than 1:1000 for both 5 and 10 mL/min column flow rates. 

The optimal splitter setup as derived above was assembled and the experimental 

delay times were measured for different make-up flow rates. For this experiment, the 

UV-detector was positioned at the outlet of capillary 1 in order to detect the effective 

arrival of the peak zone at the fraction collector switching valve. The obtained 

experimental delay times for both column flow rates are included in Figure 2.13d 

together with the modeled curves. The deviations from the theoretical values were 

minimal and can be explained by deviations of the effective capillary i.d.s. from the 

specified values. According to the power of 4 in Hagen-Poiseuille’s law (Eq. 1), this 

effect is very significant.  

The plateau-like behavior for the delay time within a certain range of make-up flow 

rates could be experimentally verified (Figure 2.13d), so that a make-up flow rate 

between 150 and 300 µL/min can be selected for required dilution of the substance 

zone to MS without adjusting the delay time. The dilution of the substance zone is 

due to reduction of split flow with make-up flow and on the other hand due to dilution 

of the substance zone with the make-up flow. 
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Figure 2.13: Modeling and experimental verification of the influence of the system 

parameter make-up flow rate on (a) pressure gradient between T1 and T2, (b) split 

flow,  (c) split ratio and (d) delay time. Experimental conditions are given in section 

2.2.4. 

2.3.2.3 Influence of the Make-up Flow Rate on Mass Spectrometric Signal 

Quality 

According to the manufacturer, the linear quadrupole mass spectrometer applied in 

this study is optimized for robust routine operation at flow rates between 0.2 and 1 

mL/min. The range for adjusting the flows of nebulizing gas and drying gas of the 

electrospray ion source are rather limited and moreover, both flows may not be 

regulated independently. Before connecting the mass spectrometer to the split-

system, it was tuned by direct infusion of a solution of parabens (10 ng/µL) at a flow 

rate of 200 µL/min. Using the optimized tuning parameters and the instrumental 

setup described above (Figure 2.8), the separation and detection of a mixture of 

methyl paraben, propyl paraben and butyl paraben (1 g/L each, 100 µL injected) 

were evaluated. Figure 2.14 illustrates an overlay of the reconstructed total ion 

current chromatograms obtained with different make-up flow rates without any 

smoothing of the signal to critically assess signal stability. The peaks were generated 

on the microparticulate column (column #1) at a flow rate of 5 mL/min. With make-up 
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flows in the range of 100-300 µL/min, the elution times of all parabens matched 

almost perfectly, which is a clear proof of the independence of delay time on make-up 

flow in this range. 

Considering the peak shapes and peak sizes, a strong influence of the make-up flow 

rate could be deduced. At 80 and 100 µL/min, the observed signals were unstable 

and noisy. This is an indication for unstable electrospray. Lacking the possibility to 

adjust the nitrogen flows independently, it was not possible to optimize the 

electrospray conditions for that flow rate range. At a make-up flow rate of 150 µL/min 

or higher, stable and well-shaped signals were observed. With further increasing 

make-up flow rates a simultaneous decrease in the peak intensities was observed. 

This is due to the dilution of the peak zones, as ESI-MS is a (pseudo-)concentration 

dependent process. Increased dilution is not only a consequence of the larger 

volume of make-up-flow added to the column effluent, but also due to a reduction in 

the flow through capillary 2 because of a higher backpressure at T2 (see Figure 

2.13). 

The independence of the system delay time and the pronounced dilution effect with 

increasing make-up flow made this an ideal variable to control the concentration of 

the detection zones at the mass spectrometer without the need to correct system 

synchronization. A make-up flow of 200 µL/min proved to be suited for most of the 

applications and was selected for the system characterization as described below. 
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Figure 2.14: Influence of the make-up flow rate on the mass spectrometric signal 

quality. Experimental conditions are given in sections 2.2.4 and 2.2.6. 

2.3.2.4  Synchronization for UV- and Mass Spectrometric Trigger 

Combined photometric and mass spectrometric triggers are common practice for 

purification in high-throughput mode. The UV-detector is placed in-line between Tee 

1 and fraction collector, as depicted in Figure 2.8. For synchronization of the system, 

the actual delay times for both photometric- and mass spectrometric trigger were 

determined and subsequently entered into the software for correct fractionation 

trigger. To record the relevant chromatograms, the UV detector was positioned at the 

outlet of capillary 1 in order to determine peak arrival time and peak shape at the 

fraction collector, whilst a dummy detection cell was mounted at the original detection 

position in order to keep the delay volume constant. 

Figure 2.15 depicts the separation of three parabens in the microparticulate column 

at a flow rate of 5 mL/min. The uppermost and middle trace show the signal at the 

synchronized UV-detector (Figure 2.15a) and at the mass spectrometer (Figure 

2.15b), respectively. The lower trace represents the compound zones arriving at the 
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fraction collector. In order to measure the time delays, the zone dispersion in the 

connecting capillaries, and the synchronization of the band widths between the 

detectors and the fraction collector, the elution times and peak widths at half height 

were extracted from the chromatograms (Table 2.4). It can be seen that the peak 

zones pass both detectors simultaneously, while they arrive at the fraction collector 

with a delay of 16 s, offering sufficient time for real-time peak detection and valve 

switching. Because of the additional connecting capillary between UV detector and 

fraction collector, the band widths at the fraction collector were slightly higher than 

those at the UV detector. Moreover, peak widths recorded by the mass spectrometer 

were larger because of the comparatively large time constant of mass spectrometric 

detection (2 spectra per s). Synchronization was completed by entering the time 

delays and signal threshold for collection as parameters into the software for correct 

peak collection. 
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Figure 2.15: Synchronization and characterization of the optimized setup with the 

microparticulate column operated at 5 mL/min. Chromatograms recorded at the 

following positions: (a) at the synchronized UV detector, (b) at the mass 

spectrometer, (c) at the fraction collector. Experimental conditions are given in 

section 2.2.4. 
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The synchronization of the purification system with a semi-preparative monolithic 

column operated at a flow rate of 10 mL/min is illustrated in Figure 2.16. Although the 

monolithic column was eluted with a weaker eluent, the generated retention factors 

were 2-3-fold smaller than those with the microparticulate column. Compared to the 

microparticulate column, the resolution was lower with the monolithic column, which 

enabled the separation of the paraben mixture exactly with baseline resolution. This 

decrease in resolution is mostly due to lower phase ratio and a slight peak tailing in 

the monolithic column. The elution profiles recorded by the mass spectrometer even 

showed partial peak overlap. Nevertheless, the parameters derived from this 

experiment were suitable for proper synchronization of the system and enabled the 

fractionation of the paraben mixture at the fraction collector with resolution to 

baseline. It can be seen from the time shift in the elution profiles at the detectors and 

the fraction collectors that the delay time decreased to 8 sec with a column flow rate 

of 10 mL/min. 
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Figure 2.16: Synchronization and characterization of the optimized setup with the 

monolithic column operated at 10 mL/min. Chromatograms were recorded at the 

following positions: (a) at the synchronized UV detector, (b) at the mass 

spectrometer, (c) at the fraction collector. Experimental conditions are given in 

section 2.2.4. 
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Table 2.4: Peak widths at half height w0.5 and elution times tR in the optimized system 

at both trigger detectors and at the fraction collector for column #1 and column #3. 

w0.5, column #1 [s] tR, column #1 [min] 

Substance UV-

detector 

MS-

detector

fraction 

collector 

UV-

detector 

MS-

detector 

fraction 

collector 

Methyl –

paraben 
6.0 8.3 7.6 1.62 1.62 1.88 

Propyl –

paraben 
6.6 9.0 8.2 2.36 2.35 2.62 

Butyl –

paraben 
7.5 9.5 8.9 3.09 3.09 3.35 

w0.5,  column #3 [s] tR, column #3 [min] 

Substance UV-

detector 

MS-

detector

fraction 

collector 

UV-

detector 

MS-

detector 

fraction 

collector 

Methyl –

paraben 
3.1 4.9 3.8 0.83 0.83 0.96 

Propyl –

paraben 
3.2 4.9 3.9 0.98 0.98 1.11 

Butyl –

paraben 
3.4 5.2 4.1 1.12 1.12 1.25 

2.3.2.5 Evaluation of Fraction Purity and Recovery with the Optimized System 

The test mixture of parabens was also applied to evaluate the performance of 

fractionation with the optimized setup for both the microparticulate and the monolithic 

column. Only the fractionation with the monolithic column is shown in Figure 2.17, as 

this fractionation was more challenging than that with the packed column, due to the 

higher separation velocity and the reduced resolution between the sample zones. 

Figure 2.17a shows the UV chromatogram, which was utilized as a control in this 

experiment but not as a trigger for fractionation. The expected m/z values of the three 

parabens were entered as target values for mass spectrometric fraction trigger. 

Figure 2.17b depicts the chromatographic traces of the three channels, on which 
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single-ion monitoring was performed to detect the three parabens. Begin and end of 

the eluting bands were defined when the signal passed a given threshold value and 

those parts of the peak profile that were selected for collection by the software are 

indicated in Figure 2.17b by solid rectangles. Moreover, grid lines indicate the 

corresponding time intervals, shifted by the delay time, during which the eluting 

compounds were collected in the fraction collector.

Re-injections of the fractions into an analytical HPLC system equipped with a 

microparticulate column (Luna C18(2), 5 µm, same stationary phase as used in semi-

preparative column #1) were carried out to assess fractionation quality by quantifying 

the recovered amount of substance and its purity. The chromatograms of these re-

injections are depicted in Figure 2.17c. Peak purity was calculated as area% in the 

chromatograms. To determine recovery, a differential quantification was carried out, 

as described in the experimental section. The obtained purity and recovery values for 

both the microparticulate and monolithic column are summarized in Table 2.5. With 

both columns the purities for peak one are 100%. Slight carryover in the following 

fractions stems from a tiny volume of previous fraction stored in a short piece of 

tubing between the switching valve and the outlet or the robotic arm used to fill the 

fraction tubes (see arrows in Figure 2.17c). This problem could be readily alleviated 

by using a fraction collector having a minimal dead volume between switching valve 

and capillary outlet or by an additional feature allowing the purging of the tubing in 

between the fractionation intervals. The recoveries obtained with the microparticulate 

column were close to 100%, demonstrating the high yield of pure substance feasible 

with very well resolved compounds. In the case of the more critical separation on the 

monolithic column, the recovery was around 95%, which reflects the loss of material 

due to decreased peak resolution in the very fast fractionation.  
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Figure 2.17: Semi-preparative fractionation with mass spectrometric fractionation 

trigger (column #3) and re-analysis of the fractions using an analytical column. The 

chromatograms recorded at (a) 254 nm, and (b) at m/z 150.5-151.5 for 

methylparaben (1), m/z 178.5-179.5 for propylparaben (2), and m/z 192,5-193.5 for 

butylparaben (3) are shown. The chromatograms of the re-injected fractions are 

illustrated in (c); arrows indicate slight carryover from previous fractions. 

Experimental conditions are given in section 2.2.5 and 2.2.6. 

Table 2.5: Recovery and purity of the fractions determined with analytical HPLC. 

Substance 
Column #1 

Recovery (%) 

Column #1 

Purity (%) 

Column #3 

Recovery (%) 

Column #3 

Purity (%) 

Methylparaben 104 100 97 100 

Propylparaben 102 99.3 92 99.1 

Butylparaben 101 99.3 95 99.1 
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2.4 Conclusions 

Two tested commercially available split systems could not fulfill the requirements for 

high speed purification using flow rates typical for 10 mm i.d. columns. Hence, a 

passive splitting device was constructed and its design was optimized by theoretical 

modeling and step by step experimental evaluation for both photometric- and mass 

spectrometric fraction collection trigger. 

Mathematical modeling of the critical parameters of a passive splitting device 

facilitates the efficient optimization of tubing dimensions suitable for automated 

photometric and mass spectrometric triggering of peak fractionation in semi-

preparative HPLC with good predictive accuracy. Using a standard mixture of 

parabens, peak dispersion and synchronization may be experimentally evaluated in 

order to validate system performance.  Both modeling and experiment show that 

compound transfer in the capillary connecting flow to fraction collector and mass 

spectrometer is the most critical parameter in the adjustment of delay time. 

In standard mode, operation of a 100 x 10 mm i.d. column packed with 5 µm particles 

at a pressure of 60-70 bar with water/acetonitrile eluents generates 2,500-3,500 

theoretical plates. Adjusting a gradient volume of 5 column flow through volumes, 

purification in gradient mode including column regeneration using this setup takes 5-

6 min per run. 

A silica-based monolithic C18-column of the same dimensions performed at 

10 mL/min is suitable for further increasing the speed of fractionation. In spite of the 

higher flow rate utilized with the monolithic column, only 35-40 bar operating pressure 

is required. The separation efficiency is slightly lower but in the same order of 

magnitude as with the packed column (1,500-2,500 theoretical plates). Additionally, 

the plates were generated in less than half the time and at one quarter of the 

backpressure. The fast mode enables gradient purification in 2-2.5 min per run at the 

cost of a decrease in resolution. Since the fast mode can be accomplished on exactly 

the same instrumental setup, it represents an ideal alternative to the standard mode 

for high throughput purification of simple crude mixtures. 
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Chapter 3

Characterization and Loadability Study of RP-HPLC 

Columns for Automated Purification System 

3.1 Stationary Phase Characterization  

3.1.1 Introduction 

The column is the heart of the HPLC system, because in the column the 

physicochemical processes resulting in retention selectivity, take place [1,2]. In 

HPLC, the most widely used columns are from the reversed-phase (RP) type [3,4]. 

The wide variety of the presently available RP-HPLC phases, fortunately, facilitates 

the solution of a multitude of different separation problems via stationary phase 

selection. However, this leaves the analyst with the difficult problem of a proper 

column selection for a specific problem [5]. Although reversed-phase columns differ 

in a variety of ways, three attributes can be identified as most relevant for its 

retention properties [6,7]. One is the retentivity of a column towards non-polar solutes 

that has been described as “hydrophobicity”. This property is correlated with 

stationary phase alkyl length, bonding density, and substrate surface area, and is 

related to the quantity of hydrocarbon contained within the column. The second 

column property is the “silanol activity”. The third property is the “shape selectivity”. 

This may differ among columns with similar hydrophibicity and silanol activity.  

Silanols cannot be completely eliminated from the silica surface even after extensive 

silanization and end-capping [3]. The “silanol activity” includes cation exchange with 

strong bases, hydrogen bonding with polar solutes, both as a donor and an acceptor, 

as well as anion exclusion [3,6]. Cation exchange depends both on the number of 

exchange sites as well as on the pKa of these sites. In addition, anion exchange is 

possible, if for example amino groups are bonded to a packing to mask its silanol 

activity [6]. The study of silanol activity is usually based on asymmetric peak shapes 

often obtained with the analysis of ionized basic compounds [7,9]. The particular 

interest in this area is due to the large number of important pharmaceuticals and 

other biomedically relevant compounds which possess basic groups [10]. Because 

peak tailing is the most objectionable characteristic associated with silanol activity, 
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peak asymmetry (As) is commonly used as a figure of merit for this property [7]. Tests 

for silanol activity have been reported for buffered and unbuffered mobile phases. 

The presence of buffer ions suppresses some of the interaction with basic analytes 

[3]. If weak bases such as anilines are used, even a low concentration of buffer ions 

can suppress the influence of surface silanols [5,8]. Engelhardt and coworkers have 

developed such a test based on the retention and peak shape of p-ethylaniline in a 

mobile phase containing water-methanol [2,11,12]. Neue and Jerowik [8] and Sander 

et al. [7] have utilized amitriptyline as a probe for silanol activity, in a buffered mobile 

phase environment. The buffered mobile phase is thought to provide a more robust 

and more reproducible test [8,13]. McCalley performed a number of experiments 

concerned with elution behaviour of basic solutes on RP-stationary phases [10,13-

22]. 

A variety of test procedures have been developed to evaluate and characterize 

hydrophobicity, silanol activity, and other aspects of column performance in a single 

chromatographic test [6,7,11]. These methods are simple, but nevertheless several 

significant properties of HPLC packings can be derived [2,6]. The Engelhardt test is 

the most cited and used method [2]. Neue et al. have developed a test similar to the 

Engelhardt test [3]. Another new single run testing method has been developed by 

Sander et al., common by known NIST test [7]. The selection of the components in 

this test was based on published testing protocols [8,11] and commercial column 

literature. 

In this study some RP-HPLC columns in semi-preparative dimension (10 mm i.d.) 

were characterized and compared to their respective analytical dimension (150 x 4.6 

mm i.d.). The characterization of different column properties was performed using the 

Engelhardt test. Because of higher silanol activity obtained with some RP-columns, 

an extensive study using different mobile phases for a strongly basic probe 

amitriptyline was carried out. 

3.1.2 Experimental 

3.1.2.1 Columns 

The columns tested are listed in Table 3.1. All columns were tested using the 

Engelhardt test. Monolith is a silica-based monolithic research column from Merck 

(Darmstadt, Germany). The Acclaim C18 5 µm in semi-preparative dimension 
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(100x10 mm i.d.) was also a prototype. 

Table 3.1: Characteristics of 8 columns used in this work 

Acclaim C18 Luna C18(2) 
Synergi  

Polar-RP 
Monolith

Pore size [Å] 120 100 80 - 

Surface area 

[m2/g] 
300 400 475 - 

Carbon load [%] 18 17.5 11 - 

pH range 2-8 1.5-10 1.5-7 - 

Particle size [µm] 3 5 5 5 5 4 4 - 

Column i.d. (mm) 4.6 4.6 10 4.6 10 4.6 10 10 
Column length 
(mm) 150 150 100 150 100 150 150 100 

Manufacturer Dionex Phenomenex Phenomenex Merck 

3.1.2.2 Instrumental Setup 

Preparative HPLC-UV runs were performed using a  preparative HPLC system 

(Dionex, Germering, Germany) consisting of a binary semi-preparative high-pressure 

gradient pump (Model P680P HPG-2), a helium degassing unit, a semi-preparative 

autosampler (Model ASI-100P), and a diode array detector (Model UVD340U PDA) 

with a semi-preparative detector cell (6 µl cell volume, 2 mm path length). 

Analytical HPLC runs were performed on an analytical HPLC system comprising a 

binary analytical high-pressure gradient pump (Model Summit P680A HPG-2), a 

degassing unit (Model Degasys DG-1210), an analytical auto-sampler with integrated 

temperature control (Model Summit ASI-100T), and a diode array detector (Model 

UVD340U PDA) with an analytical detector cell (10 µl cell volume, 9 mm path length). 

Both HPLC systems were fully controlled by Chromeleon software.  

3.1.2.3 Conditions for the Engelhardt Test 

The substances of the simplified Engelhardt test and their concentration are as 

follows: uracil (20 mg/L), phenol (200 mg/L), p-ethylaniline (160 mg/L), toluene (1500 

mg/L) and ethylbenzene (1500 mg/L). The following conditions were used: eluent 

methanol/water 49:51 (w/w), flow rate 1.0 mL/min for analytical columns (4.6 mm i.d.) 
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and 4.7 ml/min for semi-preparative columns (10 mm i.d.), temperature 40°C using a 

column oven for analytical columns or 23°C using room temperature control for semi-

preparative columns, injection 10 µL for analytical columns and 47 µl for semi-

preparative column, detection at 254 nm. 

Peak asymmetries were calculated according to USP at 5% peak height using the 

following formula: As=(a+b)/2a, where a and b are the left and right peak widths at 

5% peak height. 

3.1.2.4 Conditions for Standard Tests with Amitriptyline 

Conditions for Dionex column specification test: 

Sample solution: amitriptyline at 240 mg/L dissolved in mobile phase, injection: 5 µL 

for analytical column; 25 µL for semi-prep column, mobile phase: 80% methanol, 

20% phosphate buffer 0.03 M, pH 6.0 (v/v), flow rate: 1 mL/min for analytical scale; 

4.7 mL/min for semi-preparative scale, temperature: 30°C, detection: 220 nm. 

Conditions for NIST test: 

Chromatographic conditions in this modified NIST test is described elsewhere [7]. 

Injection: amitriptyline at 2800 mg/L dissolved in mobile phase; 2 µL analyte for 

analytical column; 10 µL analyte for semi-prep column, mobile phase: 80% methanol, 

20% phosphate buffer 0.02 M, pH 7.0 (v/v), flow rate: 1 mL/min for analytical scale; 

4.7 mL/min for semi-preparative scale, temperature: 23°C, detection: 210 nm. 

Conditions for Waters test: 

Injection: 5 µL amitriptyline at 100 mg/L dissolved in mobile phase, mobile phase: 

65% methanol, 35% phosphate buffer 0.02 M, pH 7, flow rate: 1 mL/min, column 

oven temperature: 23°C, detection: 254 nm 

Retention study for amitriptyline using different mobile phases 

Buffers were prepared for pH 6.0, 7.0 and 8.0 using phosphate, pH 3.0 using either 

TFA or phosphate, pH 4.0 and 5.0 using either phosphate or acetate, and for pH 9.0 

using bicarbonate. The pH measurements were performed in the aqueous solution. 

The mobile phases used were methanol/buffer: 80/20 v/v or acetonitrile/buffer at 

different volumetric concentration. Amitriptyline was dissolved in the mobile phase. 

The separations were performed at 23 °C for analytical column using a column oven 

and for semi-preparative column at room temperature. The flow rates were set to 1 

mL/min for the analytical and 4.7 mL/min for the semi-preparative column dimension.  
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3.1.3 Results and Discussion 

3.1.3.1 Engelhardt Test 

The test mixture according to the Engelhardt test contained the substances uracil 

(inert marker), phenol (probing polar properties), p-ethyl aniline (weak base probing 

silanol properties, is commonly used to determine peak asymmetry as a measure for 

silanol activity), toluene (hydrophobic properties), ethyl benzene (hydrophobic 

properties, in combination with toluene used to determine methylene group 

selectivity). Peak symmetry was determined according to USP at 5% peak height.  

To assess the chromatographic performance of the columns in detail, the results of 

Engelhardt are listed in Table 3.2. The analytical columns were tested at 40°C and 

the semi-preparative columns at 23°C. The Luna analytical column was evaluated at 

40°C and 23°C, in order to compare the values at both temperatures and with the 

Luna semi-preparative column. 

Results obtained for tests at 40°C shows that the retention factors of phenol 

(hydrophilic compound) were similar except on the polar column Synergi Polar-RP 

(Table 3.2). The hydrophobic compounds toluene and ethylbenzene eluted earlier on 

Luna 5 µm analytical than on Acclaim 5 µm analytical column. This indicated that the 

Luna analytical column exhibited less hydrophobicity than the Acclaim 5 µm. The 

retention factor on Acclaim 3 µm analytical column was also smaller (i.e. less 

hydrophobicity) than the 5 µm analytical. The difference between these two Acclaim 

columns could be due to different bonding density, carbon load and packing density. 

On both polar Synergi Polar-RP columns, all compounds eluted earlier than on other 

packed columns. This could be attributed to reduction of the hydrophobicity by the 

embedded polar group [13,23].  

The retention factors of the hydrophobic compounds (toluene and ethylbenzene) at 

23°C on both analytical and semi-preparative Luna columns were identical. The 

retention factor of these compounds on the Acclaim 5 µm semi-preparative column 

was smaller than on the Luna columns. However, the analytical Acclaim 5 µm column 

exhibited more hydrophobicity than the Luna analytical column (measured at 40°C). 

This means that the Acclaim 5 µm analytical column exhibited more hydrophobicity 

than the semi-preparative dimension. It indicated that both columns were packed 

from different batches. This is also demonstrated by different peak asymmetries of p-

ethylaniline of both columns. However, the methylene selectivity (αEB/T) of all Luna 

and Acclaim columns was similar. 
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The peak asymmetry of p-ethylaniline with both Luna columns and Synergi analytical 

column was similar (Table 3.2). Peak asymmetry values of p-ethylaniline <1.3 qualify 

these phases as a material with low silanol activity. However, peak asymmetry with 

Synergi semi-preparative column was pronounced, though the manufacturing date 

revealed that both Synergi columns were packed from the same batch. The peak 

asymmetry obtained with both Acclaim analytical columns was also remarkably 

higher than the other analytical columns, indicating a higher residual silanol activity of 

Acclaim analytical columns. The value obtained with the 5 µm material column was 

slightly higher than that of the 3 µm material. This is remarkable, as generally 3 µm 

materials exhibited higher sensitivity (peak asymmetries) against bases like p-

ethylaniline [2]. 

The value of separation factor αP/T (the k ratio of phenol and toluene) is a measure 

for the polar selectivity of stationary phases. It is obvious that the polar selectivity of 

both Acclaim analytical columns was similar and smaller than the polar property of 

the Luna analytical column (Table 3.2). As expected, the Synergi Polar-RP columns 

exhibited the highest polar selectivity. The methylene selectivity (αEB/T - the k ratio of 

ethylbenzene and toluene) with all columns was identical (1.9) except for Synergi 

columns. 

The semi-preparative silica-based monolithic RP-column (Monolith) exhibited lower 

retention for all compounds compared to packed columns due to its higher column 

porosity. However, the polarity and the methylene selectivity were comparable to 

other classical RP-columns. 

Concerning peak efficiency, the substances with small or no retention exhibited lower 

plate numbers which indicates extra column band broadening. This evidently 

accounted for almost all columns. The effect was more pronounced on the semi-

preparative setup than on the analytical. The peak of p-ethylaniline of both analytical 

Acclaim columns shows a remarkably low efficiency compared to the other analytical 

columns, due to the high peak asymmetry. The plate number ratio between both 

materials, however, follows exactly the theoretical prediction (theoretical: N3µm/N5µm = 

5/3=1.67, obtained value: 1.65). With all peaks of higher retention (toluene and 

ethylbenzene), where the instrumental influence should be negligible, the 3 µm is 

more efficient than theoretically expected (N3µm/N5µm >1.82). From these relations it is 

obvious that the 3 µm material is packed more efficiently. The plate numbers on the 

Luna analytical column are generally slightly higher than on Acclaim 5 µm. In the 
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semi-prep scale, however, Acclaim showed better efficiency than Luna for late eluting 

peaks. 

In terms of efficiency for later eluting purely hydrophobic substances (toluene in 

Engelhardt test), good properties (H/dp<3.5) were found for all columns tested (see 

reduced plate heights in Table 3.2). However, the 5 µm analytical column showed a 

slightly smaller efficiency. 

Figure 3.1 shows chromatograms of the Engelhardt test applied to the columns (only 

test from 2 RP columns are shown). 
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Figure 3.1: Chromatograms of Engelhardt mixture on (a) Luna C18(2) 5 µm 100 x 

10 mm i.d. column, (b) Synergi Polar-RP 4 µm 150 x 10 mm i.d. column; mobile 

phase: water/methanol 51/49 (w/w); temperature 24°C. Peak identification: 1, uracil; 

2, phenol; 3, p-ethylaniline; 4, toluene; 5, ethylbenzene. 
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Table 3.2: Engelhardt test at 40°C and 25°C 

Column kphenol
kToluene kEB ααααP/T

ααααEB/T
As

(p-EA) 

Synergi Polar-RP 
4.6 mm i.d., 40°C 

0.7 3.4 5.4 0.21 1.6 1.2 

Acclaim 3 µm  
4.6 mm i.d; 40°C 

0.9 8.3 15.4 0.11 1.9 2.2 

Acclaim 5 µm  
4.6 mm i.d; 40°C 

0.9 9.1 16.9 0.10 1.9 2.4 

Luna 2 5 µm  
4.6 mm i.d; 40°C 

0.9 7.8 14.5 0.12 1.9 1.1 

Luna 2 5 µm  
4.6 mm i.d; 25°C 

1.0 10.5 20.0 0.10 1.9 1.2 

Luna 2 5 µm  
10 mm i.d; 25°C 

1.1 10.4 20.2 0.11 1.9 1.1 

Acclaim 5 µm  
10 mm i.d; 25°C 

1.0 10.1 19.2 0.10 1.9 1.5 

Synergi Polar-RP 
10 mm i.d.; 25°C 

1.0 5.0 8.3 0.20 1.7 2.7 

Monolith 
10 mm i.d.; 25°C 

0.4 3.8 7.1 0.11 1.9 1.6 

Plate number per meter column 

Uracil Phenol p-EA Toluene EB 

Efficiency

(H/dp)T

Synergi Polar-RP 
4.6 mm i.d., 40°C 

39,373 69,493 76,700 91,593 87,553 2.7 

Acclaim 3 µm  
4.6 mm i.d; 40°C 

29,349 77,987 48,168 122,159 110,959 2.7 

Acclaim 5 µm  
4.6 mm i.d; 40°C 

38,613 73,427 29,253 67,173 59,487 3.0 

Luna 2 5 µm  
4.6 mm i.d; 40°C 

29,240 64,813 77,047 86,847 79,173 2.3 

Luna 2 5 µm  
4.6 mm i.d; 25°C 

30,053 61,693 53,400 90,153 84,607 2.2 

Luna 2 5 µm  
10 mm i.d; 25°C 

16,310 44,840 33,480 76,070 69,300 2.6 

Acclaim 5 µm  
10 mm i.d; 25°C 

16,910 39,320 43,230 77,780 77,000 2.6 

Synergi Polar-RP 
10 mm i.d., 25°C 

57,907 82,040 12,207 100,720 100,160 2.5 

Monolith 
10 mm i.d.; 25°C 

17,470 27,720 50,880 100,170 109,060 - 

EB=ethylbenzene, P=phenol, T=toluene, p-EA=p-ethylaniline 
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3.1.3.2 Standard Test with the Strong Base Amitriptyline 

Amitriptyline is a strongly basic (tertiary amine) antidepressant drug with aqueous 

pKa of 9.4 [24]. This compound is a representative of basic pharmaceutical which is 

widely used for column test purposes. The elution characteristics of amitriptyline 

represent the column activity towards organic bases. Elution of organic bases with 

severe peak tailing is often associated with high silanol activity [6,7,21]. However, the 

elution of such compounds with symmetrical peak shape is considered indicative of 

silanol deactivation [7]. Because peak tailing is the characteristic associated with 

silanol activity, asymmetry factor As is a measure of this property [7]. Unlike the 

conditions in the Engelhardt test, the tests using amitriptyline (NIST, Dionex, Waters) 

require a buffered eluent. 

The pronounced p-ethyl aniline peak asymmetry of the tested Acclaim analytical 

columns in the Engelhardt silanol test gave rise to further studies on the behavior of 

the Acclaim and Luna columns with the basic compound amitriptyline. 

With the Waters test, no elution of amitriptyline was observed up to a retention factor 

of 10 for Acclaim and Luna columns. A gradient program following the isocratic step 

(Waters conditions) enabled elution at 80 % methanol. A reasonable explanation for 

this late elution can be found in strong hydrophobic interactions, which is in good 

agreement with results of the Engelhardt test. Hence, the Waters test cannot be 

considered for the discussion of column base behavior. 

The most important results obtained by Dionex and NIST tests compared to the 

Engelhardt test are summarized in Table 3.3. The reported results from the 

Engelhardt test monitor column efficiency (reduced plate height of toluene) and the 

silanol activity (asymmetry of p-ethylaniline). 

For all columns, the peak asymmetries obtained with the Dionex test were satisfying. 

It did not reveal significant silanol activity with the Acclaim columns. The peak 

asymmetry obtained with the NIST test for 5 µm Acclaim and Luna material columns 

was satisfying. These columns could be classified as columns with low silanol activity 

towards organic bases. Under NIST and Dionex conditions, the 3 µm analytical 

Acclaim column showed higher asymmetry than the 5 µm column (in case of NIST 

highly significant) which is in contradiction to the results obtained with the Engelhardt 

test. When the ratios of the Asamitriptyline for all Acclaim columns are considered, they 

are not consistent between Dionex and NIST conditions. This can most likely be 

related to different pH behaviour of the 3 materials. The excellent behaviour of the 
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Acclaim 5 µm semi-prep column exhibited in the Engelhardt test could not be 

confirmed with tests using the strong base amitriptyline.  

The results obtained with Luna columns under Engelhardt, DIONEX and NIST tests 

were consistent and comparable between both dimensions. Both materials provided 

identical chromatographic properties. It appears that the columns were packed from 

the same batch, as also claimed by the manufacturer. 

Table 3.3: Comparison of the results of standard column tests for Acclaim and 

Luna columns. 

Acclaim 3µ

4.6 mm 

Acclaim 5µ

4.6 mm 

Acclaim 5µ

10 mm 

Luna 5µ

4.6 mm

Luna 5µ 

10 mm 

Asymmetry (AMI) 

DIONEX 1.4 1.3 1.4 1.2 1.2 

NIST 2.1 1.4 1.4 1.4 1.3 

Engelhardt Test 

Efficiency: 
(H/dp)toluene 2.7 3.0 2.8 2.4 2.6 
Asymmetry  
p-ethylaniline 2.2 2.4 1.5 1.1 1.1 

3.1.3.3 Variation of Conditions from the Standard Base Test Procedure 

Methanol and acetonitrile are the common mobile phases used in RP-HPLC [2]. The 

retention of basic compounds is highly dependent on the mobile phase and the buffer 

pH [16,25]. Therefore, retention of amitriptyline was investigated extensively in both 

mobile phases at different pH values. The study of pH influence should enable an 

interpretation of the different test results and moreover provide data to find optimum 

conditions for the application of the column materials in a semi-preparative 

purification system. 

3.1.3.3.1 Variation of pH values in methanol eluent

To give an impression of the peak shape at low and increased sample loading and 
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the retention shift with differing pH values adjusted with phosphate and TFA, all 

chromatograms are overlaid in Figure 3.2 and Figure 3.3. The pH was measured in 

the aqueous buffer prior to addition of the organic solvent. Figure 3.2a shows the 

chromatogram for the Acclaim 3 µm column at low sample loading (1.2 µg). It shows 

the pronounced decrease of retention when the pH was reduced from 7.0 to 5.0. The 

peak heights differ markedly, due to the altering peak shape. Between pH 7.0 and 

6.0, no marked difference in peak shape occurred at low sample load. At pH 5.0, the 

poorest peak shape with fronting asymmetry was encountered. The sharpest and 

most symmetrical peaks were obtained at pH 4.0 and pH 3.0, however at very low 

retention (k<1). The retention at pH 3.0 and pH 4.0 with phosphate buffer was 

identical. At low sample load (1.2 µg), the retention decreased upon a change from 

phosphate to TFA and the peaks mutated from tailing to leading, but became sharper 

at half peak height. 

Figure 3.2b shows the same set of experiments and additionally with 5 mM 

phosphate buffer performed at higher sample load of 14 µg for all pH values, except 

5 µg for pH 5.0. At this sample load, a regular peak shape was achieved at pH 7.0 

with 20 mM phosphate buffer. However, at buffer concentration lower by factor of 4 

and at 20 mM phosphate pH 6.0, a fronting shoulder was observed at this high 

sample load. The peaks obtained at pH 5.0 and 4.0 exhibited extreme leading and 

very low efficiency, even at sample load of 5.0 µg. With phosphate at pH 3.0, a 

decrease of retention with increasing loading occurred, whilst with TFA retention 

increased weakly and a front shoulder appeared. 
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Figure 3.2: Overlay of amitriptyline peaks on the Acclaim 3 µm column at different 

pH values. Influence of eluent pH on amitriptyline retention and peak shape (a) At 

low sample load (1.2 µg), eluent: 20% phosphate buffer at 20 mM pH 3.0-7.0 and 

TFA pH 3.0 and 80 % methanol, (b) At increased sample load (14 µg or 5 µg for pH 

5.0), eluent: 20% phosphate buffer 20 mM at pH 3.0-7.0, phosphate buffer 5 mM at 

pH 7.0 and TFA pH 3.0, 80 % methanol. 

Figure 3.3 illustrates the peak shape under low sample load for the Luna 5 µm 

analytical column (Figure 3.3a) and the semi-preparative column (Figure 3.3b). The 

elution conditions for the analytical column were 80% methanol and 20 mM 

phosphate buffer at pH 4.0 to 7.0 and 23°C. The peak shapes were similar to the 

results obtained with Acclaim 3 µm column material. The difference was only found at 

pH 6.0. On the Luna, the peak moved to fronting. 

The elution conditions for amitriptyline on the Luna semi-preparative column were 

80% methanol and 20% either phosphate buffer for pH 3.0, 6.0 and 7.0 or acetate 

buffer for pH 4.0 and 5.0 or bicarbonate buffer for pH 9.0 (Figure 3.3b). The peak 

shape obtained for all pH values was excellent. However, the retention for pH 3.0-5.0 

was very low (k<1), similar to the results with other columns. The peak at pH 6.0 

shows a fronting, as observed in the Luna analytical column, indicating the presence 

of ionic interaction besides hydrophobic interaction. The retention behavior at pH 7.0 

and 9.0 was nearly identical. This indicates similar retention mechanisms occurring at 

both pH values. At pH 9.0, a small part of amitriptyline exists charged and the 
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residual silanols exist mostly charged, both retention mechanisms (hydrophobic and 

ionic interactions) could occur. Much stronger hydrophobic interactions can be 

expected with the uncharged species. 

As can be seen in Figure 3.3b, elution of low mass amitriptyline at pH 4.0 and 5.0 

using acetate buffer showed symmetrical peaks. The distorted peaks observed on 

both Luna and Acclaim columns with phosphate buffer at these pH values (Figure 

3.2a and Figure 3.3a) can be attributed to insufficient buffering ability of phosphate at 

these pH values, since the pKa values of phosphate are pKa,1=2.0 and pKa,2=7.1, 

whilst buffering capacity is in the range of pKa±1 with the highest buffer capacity at 

pH equal to pKa. 
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Figure 3.3: Overlay of amitriptyline peaks on the Luna 5µm columns at different pH 

values. Influence of eluent pH on amitriptyline retention and peak shape (a) On Luna 

5 µm analytical column at low sample load (1.2 µg), eluent: 20% phosphate buffer at 

20 mM pH 4.0-7.0 and 80 % methanol, (b) On Luna 5 µm semi-preparative column at 

low sample load (10 µg), eluent: 20% phosphate buffer at 20 mM for pH 3.0, 6.0 and 

7.0 or acetate buffer for pH 4.0 and 5.0 and 80 % methanol. (*) Acetate buffer. 

Figure 3.4 shows the plot of the retention factor depending on the pH values for 

aqueous methanol (20 mM buffer/methanol: 20/80) on the Luna semi-preparative 

column, Luna analytical and Acclaim 3 µm analytical column. This plot showed the 
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common retention mechanism of a basic compound on Type B RP columns [8]. On 

all three columns, it exhibited no or small retention at pH 3.0 to 5.0. The decrease in 

retention with decreasing pH can be attributed to suppression of silanol dissociation 

(pKa silanol ~ 7) and thus smaller contribution of cation exchange to retention. At the 

same time the degree of analyte protonation increases and its hydrophobic retention 

becomes smaller. The pKa of amitriptyline in water should be 9.4 [24]. Under purely 

aqueous conditions, less than 1% of amitriptyline should exist as free base at pH 7, 

which will not be alike at the given 80 % methanol content. The concept of pH and 

pKa in aqueous–organic mixtures has become better understood. In general, the pKa

of acids increases as the organic solvent concentration increases whilst the pKa of 

bases decreases compared with their values in aqueous solution [26,27,28]. Thus, in 

phosphate buffers the pH of aqueous–organic mixtures is raised, while the pKa of 

basic solutes is lowered which both lead to less solute protonation than would be 

expected in a purely aqueous solution. To understand the retention mechanisms of 

basic compounds, it is necessary to know the pH of mobile phase, the pKa of the 

compound in the mobile phase, and the pKa of the residual silanols in the mobile 

phase [29]. 

The retention on Luna semi-preparative column at pH 7.0 to 9.0 is identical. It 

evidenced a sigmoidal plot with inflection point at pH 5.6. This inflection point is the 

so-called apparent pKa [8] or chromatographic pKa (pKa,chrom) [30]. At a pH value 

equal to the inflection point the solute is to 50% dissociated (under this given 

chromatographic condition). The pKa,chrom depends on the pKa of the buffer and of the 

solute in mobile phase [30].  
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Figure 3.4: Dependence of the retention on the pH values 



Characterization and Loadability Study on RP-HPLC Columns for APS 57

3.1.3.3.2 Retention behavior and peak shape for amitriptyline with acetonitrile 

eluents 

Obviously, the solvating properties of the eluent have a significant influence on the 

chromatographic behavior of amitriptyline. As acetonitrile has several properties 

which differ from methanol – it is aprotic, has no hydrogen donor capacity and is less 

polar – the investigation of the retention of amitriptyline using acetonitrile as organic 

solvent is another point of interest. Moreover, acetonitrile eluent could be favorable 

particularly in preparative HPLC with APS due to its lower viscosity. In order to 

compare the results obtained with methanol eluent to those with acetonitrile and to 

optimize the elution conditions for loading capacity studies, the retention factors of 

the strong base amitriptyline were measured on Acclaim 3 µm analytical column at 

different eluent pH values and different acetonitrile concentrations and on Luna 5 µm 

semi-preparative column at different acetonitrile concentrations at pH 7.0. This pH is 

in the region of the average pKa of silanol groups on silica-based phases [31]. 

The results obtained with the Acclaim column are shown in Figure 3.5. Figure 3.5a 

shows the dependence of ln k on the acetonitrile content for different pH values. 

Using a 10 mM phosphate buffer, the deviation from a linear correlation of ln k versus 

% ACN was more pronounced at lower pH values. At the same time the slope of the 

fit increased significantly from pH 7.0 to pH 6.0. With 20 mM acetate buffer at pH 5.5 

the strongest deviation from linearity was observed. Figure 3.5b depicts the 

dependence of ln k on eluent pH for different ACN percentages. At pH 7.0 with 30% 

acetonitrile the retention factor was higher than 8. The curves at 40 % and 50 % 

represent a pronounced increase in retention from pH 6.0 to pH 7.0.  
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Figure 3.5: Dependence of amitriptyline retention on acetonitrile content for 

different eluent pH values on Acclaim 3 µm analytical column. Column oven 

temperature was set to 38°C, flow rate at 1 mL/min.

Figure 3.6a demonstrates the retention of amitriptyline in 20 mM phosphate buffer pH 

7.0 – acetonitrile in different acetonitrile content measured on the Luna 5 µm semi-

preparative column. Similar retention behavior as on the Acclaim 3 µm analytical 

column was observed, as depicted in Figure 3.5a. The curve of purely hydrophobic 

retention in logarithmic scale vs. organic modifier contents should exhibit linear plot 

for k values between 1 and 15 [32]. A non-linear curve can be attributed to the 

presence of ionic interactions of the analyte with the residual silanols of the stationary 

phase at pH 7.0. At this pH, the basic solute amitriptyline exists partly protonated and 

partly as free base. Heinisch et al. reported similar results performed on a XTerra-MS 

column [30]. However, they suggested that the ionic interaction of the protonated 

solute with residual silanols is not the reason for this phenomenon. They explained 

this rather with a compensation of two effects, the decrease of retention due to lower 

hydrophobic interaction on the one hand and an increase in retention due to a 

reducing dissociation rate of the solute on the other hand [30]. 
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Figure 3.6: Dependence of amitriptyline retention on pH at different ACN 

concentrations measured on Luna 5 µm semi-preparative column. 

The retention behavior of amitriptyline in the acetonitrile-aqueous mobile phase 

(Figure 3.6b) is different from that in the methanol mobile phase (Figure 3.4). With 

the acetonitrile mobile phase at pH 9, the retention increased up to 3-fold compared 

to that with the methanol mobile phase. The inflection point was determined to be at 

pH 7.3 (calculated by Origin) compared to this with methanol at pH 5.6 (Figure 3.4). 

The difference could be due to different nature of the organic modifiers and also its 

different concentration in the mobile phase, since these can have different effects on 

the mobile phase pH and thus different protonation of the compound.  

IUPAC recommended three definitions of the pH scales: pH
w

w
 (the pH is measured in 

the aqueous buffer before mixing it with the organic modifier), pH
s

w
 (the pH is 

measured after mixing the aqueous buffer with the organic modifier, but the pH 

calibration is performed with the common aqueous reference buffers), and pH
s

s
 (the 

pH is measured in the mobile phase solvent with the pH electrode calibrated with the 

buffer from the same solvent composition), respectively [33]. The measured pH
s

w
for 

a mobile phase containing aqueous phosphate buffer pH 7.0 – methanol: 20/80 v/v 

was 9.0 and for aqueous phosphate buffer pH 7.0 – acetonitrile: 40/60 v/v was 8.0. 

These values are in accordance with the values obtained by Rosés et al. [26,27,28] 

and Heinisch et al. [30]. 

Table 3.4 lists the retention data, the theoretical plates in peak half height (N), the 

peak width at 10% peak height (w0.1), and the asymmetry factor at 10% peak height 

(As) at low sample loading (10 µg) with methanol and acetonitrile eluents measured 
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on the Luna 5 µm semi-preparative column. With methanol eluent, the best efficiency 

was obtained at pH 7.0 and pH 9.0. The 80% methanol-phosphate buffer pH 7.0 

eluent was isoeluotrop to the 60% acetonitrile-phosphate buffer eluent for 

amitriptyline. The normal range for isoeulotropic condition between aqueous 

acetonitrile and methanol is approx. 10% [2]. It is obvious that the peak parameters 

with methanol mobile phase were generally superior to that with acetonitrile. The 

asymmetry factors obtained with acetonitrile were higher. This is in accordance with 

the results reported by McCalley et al. [13]. The peak parameters at pH 9.0 with 60% 

acetonitrile mobile phase were better than at pH 8.0. This might be due to the 

dominance of hydrophobic retention at pH 9.0, because amitriptyline is mostly 

unprotonated. However, the retention factor obtained with pH > 7 was higher than 10. 

Table 3.4: Peak shape parameter for amitriptyline on the Luna semi-preparative 

column at low sample load with methanol and acetonitrile eluents. 

 k N w0,1(min) As0 at 10% pw 

Methanol/ 20 mM buffer: 

80/20 v/v     

pH 3 0.0 2430 0.10 2.6 

pH 4 0.2 4820 0.08 1.8 

pH 5 0.7 3020 0.15 1.9 

pH 6 4.6 4600 0.35 1.3 

pH 7 5.6 6440 0.36 1.4 

pH 9 5.6 6563 0.36 1.2 

     

Acetonitrile/20 mM 

buffer     

pH 7 50% ACN 9.5 1645 1.12 3.2 

pH 7 55% ACN 7.4 1998 0.83 3.4 

pH 7 60% ACN 5.9 2328 0.64 3.5 

pH 7 70% ACN 4.6 3478 0.43 3.6 

pH 8 60% ACN 13.1 3099 1.17 5.1 

pH 9 60% ACN 15.4 5768 0.86 2.0 
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The efficiency and peak shape obtained on the Acclaim analytical column with 

acetonitrile eluent are plotted in Figure 3.7. The plate numbers at different eluent 

conditions are depicted in Figure 3.7a, the peak asymmetry values in Figure 3.7b. A 

trend towards improved peak shape with increased organic content is obvious. This 

behavior was not observed with Luna (Table 3.4). Increasing pH values also enhance 

plate numbers and asymmetry factors in most cases. At pH < 6, no acceptable peak 

efficiency could be obtained, no matter which ACN content was used. At pH 6.0, a 

tremendous increase of plate number (factor 10) occurred between 40 and 60% 

ACN. At pH 7.0, the efficiencies are generally high. In spite of the higher plate 

number with acetate buffer relative to the results with phosphate at pH 5, the peak 

asymmetry values using acetate were not acceptable (smallest value higher than 4).  
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Figure 3.7: Peak efficiencies for amitriptyline under different eluent conditions 

3.1.4 Conclusions of Stationary Phase Characterization 

The comparative standardized column tests proved a similar performance of the 

semi-prep Acclaim column relative to the semi-prep Luna column. Acclaim was 

slightly superior in plate numbers, Luna was slightly superior with respect to overall 

peak symmetry. The retention factors were very similar with both columns. Luna 

semi-prep was slightly advantageous for silanol activity, both columns showed 

nevertheless satisfying properties with all three different tests (Engelhardt, NIST, 

Dionex tests). 

Luna analytical and semi-preparative columns provided similar chromatographic 
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properties, as shown in the results obtained with all three different tests. However, 

marked differences in retention factors and silanol activity were encountered between 

the analytical and semi-prep columns for Acclaim columns. This would hamper a 

straightforward method scale-up due to resulting difference in selectivity. 

Furthermore, the silanol activity results obtained with three different tests were 

inconsistent.  

Retention studies show the different influence on the retention of strong organic 

bases like amitriptyline using methanol and acetonitrile as eluent. This could be due 

to the nature of the organic modifier or due to different content of aqueous buffer in 

both eluents, which are 20% in methanol mobile phase and 40% in acetonitrile 

mobile phase. At pH 7.0, both eluents were iso-eluotrope with respect to 

amitriptyline. From the results of the variation of acetonitrile concentration, a 

pronounced advantage of higher organic content and neutral pH values can be 

deduced with respect to peak shape parameters for amitriptyline. At pH 7, lower ACN 

contents than 60 % also enable reasonable chromatographic conditions, but as the 

retention factor was quite high, these conditions are not favorable for experiments 

with the purification system.  



Characterization and Loadability Study on RP-HPLC Columns for APS 63

3.2 Column Loadability Study 

3.2.1 Introduction 

The primary goal of the separation in analytical chromatography is identification and 

quantification of compounds, whilst preparative chromatography aims at the 

production of a single purified compound and using it for a further goal [34, 35]. The 

most preferred approach is to maximize the preparative load without a compromise in 

the purity of the collected fractions [36]. 

There are two different types of column loadability, namely volume overloading and 

mass overloading [36]. Volume overloading is normally applied for compounds with 

lower solubility. At low injected sample volume, the peak shapes are symmetrical. 

With increasing sample volume the peak becomes broader and forms a rectangle 

whilst the peak shape remains symmetrical. Under overloading condition the peak 

height remains constant and therefore forms a plateau. 

The column mass loadability varies widely with the nature of the compound [34]. 

Different loadability was found between the non-ionic and the ionic form of an 

ionizable compound [34]. The loadability depends also on the physicochemical 

parameters of the chromatographic system, such as the chemical nature of the 

mobile and stationary phases [1]. A traditional way to optimize the load of a multi 

compound mixture is to increase the injected sample mass until the two peaks touch. 

This is so called touching-band optimization.  

The mass loadability of a non-ionized compound can be described by simple 

adsorption isotherms such as the Langmuir isotherm [34,36]. Figure 3.8 shows the 

Langmuir isotherm and the changes of the peak shape with increasing sample load. 

As can be seen in Figure 3.8 a, at low sample load, the isotherm is linear, refers to 

the range of so-called linear chromatography. Under this condition, the peak shapes 

are symmetrical, and the retention factor, the band width, and therefore the column 

efficiency remain unaffected by concentration changes [36]. With increasing sample 

load the plot becomes curved and forms a plateau at high concentration. The plateau 

indicates the presence of a maximum concentration on the stationary phase 

(saturation capacity). The slope of the isotherm is equal to the capacity factor or 

retention factor k of the solute at a given mobile phase concentration. Under 

overloading condition the retention factor decreases with increasing sample load and 
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the peak maximum moves to shorter retention time, leading to right-angled triangle 

shapes and the end of the peak always appears at the same time (Figure 3.8b) 

[1,36]. The saturation capacity depends on the retention factor of the solute. This 

value is smaller for higher k factors, because the slope of the isotherm is steeper. 
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Figure 3.8: Langmuir isotherm (a) and changes of peak shape with increasing 

sample load (b). 

The loadability of ionized compounds such as basic compounds on RP stationary 

phases is reported up to 50 times lower than that of the non-ionized compounds [34]. 

At low pH values (pH 3.0 or less) the basic compounds are fully ionized. At this pH 

values the ionization of silanol groups in Type B packings (columns with ultrapure 

silica which do not contain acidic silanols) can be suppressed. Therefore, silanol 

interaction cannot occur. However, rapid peak shape deterioration with increasing 

sample load and overloading of the stationary phase in sub microgram sample load 

were observed [37]. It was reported that overloading was caused by mutual repulsion 

of ions of the same charge on the phase surface [19,34,38].  

The overloading of a variety of charged and uncharged compounds using highly inert 

modern RP materials was also studied by Gritti and Guiochon [39,40]. They 

measured the adsorption isotherm data of the compounds by frontal analysis. These 

data were modeled and used to calculate the adsorption energy distribution (AED). 

Based on these data they showed that these phases were still definitely 

heterogeneous, consisting of weak (type 1), intermediate (type 2), and strong (type 1) 

adsorption energy sites with the amount ratio 400:4:1, which could be accessed by 

different types of analyte. They found similar saturation capacity for charged and 

uncharged compounds. The overloading by very small amounts of ionized bases 
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reported by McCalley could be explained by the overloading of the strongest sites, 

while the continuing high total saturation capacity of the phase for these analytes 

measured by frontal analysis was due to the filling of weak sites [40]. However, 

results at very high loadings of ionized bases obtained by frontal analysis, which are 

typically 100 times higher than the empirical results, are not relevant to practitioners 

who require high column peak capacity (good resolution) [10]. Since the loss of 

efficiency occurs already at much lower mass of ionized solute [10]. 

To avoid overloading at low sample load, strongly basic solutes (pKa > 8) can be 

separated at a mobile phase pH above that of their pKa, where they exist as neutral 

molecules. However, the most silica-based columns are not stable for extended use 

above pH of 7.5 due to possible hydrolysis of the bonded phase [41]. 

In this part of the work, different types of the column loadability were studied for an 

acidic pharmaceutical compound acetylsalicylic acid. Moreover, the mass loadability 

for a strongly basic compound such as amitriptyline on the RP columns in semi-

preparative dimension compared to the analytical dimension was studied extensively 

using different mobile phases. Furthermore, the mass loadability of a polar weakly 

acidic compound (phenol) and a neutral compound (rutin) on semi-preparative 

columns was also investigated in order to compare the loading capacity of the 

columns for different solutes. 

3.2.2 Experimental 

The Columns and instrumental setup used in these experiments are as described in 

section 3.1.2. 

3.2.2.1 Chromatographic conditions 

Loading capacity study for aceylsalicylic acid 

The analyte was dissolved in the mobile phase. The mobile phase was 30 % 

acetonitrile, 70 % water titrated with formic acid to pH 3.0 (v/v). The temperature was 

set to 23°C. The flow rates were set to 1.3 mL/min for the analytical and 5.0 mL/min 

for the semi-preparative column dimension. All chromatograms were recorded at 

detection wavelength of 258 nm and 295 nm. 
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Loading capacity study for amitriptyline 

Phosphate buffers (20 mM) were prepared using NaH2PO4/Na2HPO4. 20 mM 

carbonate buffer pH 9.0 was prepared using ammonium carbonate. The pH values 

were measured in the aqueous phase prior to addition of the organic modifier. 

Loading capacity study for phenol 

The analyte was dissolved in the mobile phase. The mobile phase was 30 % 

acetonitrile, 70 % water titrated with formic acid to pH 3.0 (v/v). The temperature was 

set to 23°C. The flow rate was set to 5.0 mL/min. All chromatograms were recorded 

at detection wavelength of 254 nm. 

Loading capacity study for rutin 

The mobile phase was 20 % acetonitrile/methanol (9/1 v/v), 80 % water with 0.1% 

formic acid. The analyte was dissolved in methanol/water with 0.1% formic acid in 

50/50 v/v. The temperature was set to 23°C. The flow rate was set to 5.0 mL/min. All 

chromatograms were recorded at detection wavelength of 270 nm. 

3.2.3 Results and Discussion 

3.2.3.1 Loading Capacity Study for Acetylsalicylic Acid 

Acetylsalicylic acid is a representative for acidic pharmaceutical compound. The pKa

value of this weak acid in water is 3.5. The loadability study with this compound was 

performed using a mobile phase containing water at pH 3 (70%) and acetonitrile 

(30%). At this condition, the pKa of the compound in the mobile phase is slightly 

higher than the pKa in water, since higher organic solvent concentration increases the 

pKa value of acidic compounds [26,27,28]. However, organic phase content up to 

20% does not change the pH of the mobile phase and the pKa of the compound [3]. 

In aqueous solution at pH 3.0, 32% of acetylsalicylic acid are dissociated. In the 

applied mobile phase (water pH 3.0-acetonitrile 70:30 v/v) this compound is less 

dissociated than in water. 

The aim of this work was to investigate systematically the different overloading types 

in the semi-preparative HPLC, such as volume overloading at constant injection 

sample mass, mass overloading at constant injection volume, and volume 

overloading at constant sample concentration.  
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3.2.3.1.1 Selectivity of Acclaim columns for acetylsalicylic acid and salicylic 

acid 

In the acetylsalicylic acid purchased from Sigma, an additional peak of salicylic acid 

(impurity) was obtained, which was significant at a detection wavelength of 295 nm, 

where the impurity compound is detected 38 times more sensitive than the main 

solute. The UV spectra of both compounds are shown in Figure 3.9. 

As can be seen in Figure 3.10, the observed selectivity (α) of acetylsalicylic acid to 

salicylic acid is different on all Acclaim columns. Moreover, it varies in different 

directions with increasing sample load. With the 3 µm material (A), a slight increase 

in α from 1.31 to 1.35 was encountered with increasing amount of sample. Applying 

the analytical column with 5 µm material (B), a clearly smaller selectivity (α=1.03) 

was observed and the peaks could no longer be resolved. When the sample load 

was increased, the selectivity was also increased to α=1.06 and a clear shoulder of 

salicylic acid appeared. From the poor resolution between the peaks and a possible 

displacement effect (interpretation of increasing selectivity), an impact on the 

determination of the acetylsalicylic acid loading capacity with the 5 µm analytical 

column is to be expected. As shown in Figure 3.10c, the semi-preparative column (C) 

exhibited the greatest selectivity for the two acids. Unlike with column A and B, its α-

value dropped from 1.94 to 1.78 when the sample load was increased. 

Once more, these selectivity variations confirm the already described differences in 

the chromatographic behavior of the three Acclaim C18 materials. 
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Figure 3.9: Overlay of UV spectra of acetylsalicylic acid (ASA) and the impurity 

salicylic acid (SA) in a solution containing 99.5% ASA and 0.5% SA 
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Figure 3.10: Chromatograms of acetylsalicylic acid (ASA, 1 g/L) and salicylic acid 

(SA) detected at 295 nm measured on three Acclaim columns, left:  in non-

overloading condition (10 µL injection for analytical, 100 µL for semi-preparative 

column), right: injection volume overloaded (120 µL for analytical, 1200µL for semi-

preparative column). (a) Acclaim 3 µm analytical; (b) Acclaim 5 µm analytical; (c) 

Acclaim 5 µm semi-preparative dimension 

3.2.3.1.2 Volume loading at constant sample mass 

The aim of this study is the determination of the volume loading capacity by variation 

of injection volume at constant analyte mass injected on the column. The injected 

mass should be low in order to avoid mass overloading. This study was carried out 

on all three Acclaim columns, on both Luna columns and on the silica-based 

monolithic column (Monolith). 

For attempts on the analytical 3 µm Acclaim column, the sample mass was set to 

50 µg and 100 µg absolute injection on column. It was verified independently that no 

mass overloading occurs at these levels. Since the volume loading capacity for both 

sample masses was similar, the study on other analytical columns was performed at 

sample mass of 100 µg corresponding to 40 µg per mL column bed. The sample 

mass for semi-preparative columns was set to 500 µg absolute injection on column 
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corresponding to 63.7 µg per mL column bed. This is by 50 % higher than the 

normalized injected mass was on the analytical columns (40 µg/mL bed). When the 

protocol was modified to the semi-preparative scale, the injected sample mass was 

adopted to the increase of the column cross sectional area (approx. factor 5) and the 

influence of the column length was neglected.  

Overlays of the peaks are depicted in Figure 3.11 to Figure 3.13. The injection 

volume is indicated in the chromatogram overlays. The interpretation was made from 

the chromatograms detected at 258 nm, although for study on the analytical columns 

the extinction exceeded the common linear range of UV detectors. From the peak 

shapes, however, no serious detector overloading could be deduced. The areas of 

the peaks were equal due to the same solute mass injected on the column. The 

peaks started at the same point, because the start zones of the injection system in 

the loading and inject position are identical. With increasing volume loading, peaks 

became broader and therefore the peak maximum shifted to higher retention times. 

With the Acclaim 5 µm analytical column, the peaks at low injection volumes showed 

significant fronting (Figure 3.11a). This could be due to a competitive effect with the 

closely eluted impurity compound salicylic acid. 
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Figure 3.11: Peak overlays of 100 µg acetylsalicylic acid injected at different 

volumes on the Acclaim 5 µm columns. 
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Figure 3.12: Peak overlays of 100 µg acetylsalicylic acid injected at different 

volumes on the Luna 5 µm columns. 
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Figure 3.13: Peak overlay of 100 µg acetylsalicylic acid injected at different volumes 

on the silica based monolithic column (Monolith). 

To interpret the results with regard to optimum volume loadability, the most critical 

peak shape parameter, the peak width at 10 % peak height (w0.1), is plotted versus 

the normalized injection volume. The selected unit per bed volume (µL/mL) is used to 

compare loading capacities between different column dimensions and different 

stationary phase densities. The geometrical column void volume is considered as the 

bed volume. The optimum volume loading capacity was obtained at the volume 

giving a 10% increase of peak width at 10% peak height (w0.1) compared to the value 

at low injection volume (w0.1), as w0.1 = 1.1 w0.1,0. The w0.1 value is described in length 

unit (mm) instead of in time unit (sec or min). This unit is independent of the column 

flow rate and dimension.  

The plots of w0.1 depending on the injection volume for the Acclaim columns are 

shown in Figure 3.14a. As can be seen, the w0.1 value at low injection volume for the 
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3 µm was better than for other Acclaim columns. However, the overloading occurred 

earlier and its slope was higher. The optimum volume loading capacity for the 3 µm 

Acclaim column at 50 µg sample mass was determined to be 8 µL per mL bed. This 

corresponds to the injection on column of 20 µL. This value did not vary when 

increasing the injected mass from 50 µg to the limit mass capacity of 100 µg. The 

optimum volume loading for the 5 µm analytical column was determined to be 16 

µL/mL bed corresponding to 40 µL absolute injection on column. For the respective 

semi-preparative column, the optimum volume loading capacity was determined to 

be 31 µL per mL bed corresponding to 243 µL absolute injection volume on column. 

The volume loading capacity for the 5 µm analytical column relative to that of the 3 

µm one is significantly higher than chromatographic theory would predict. The 

theoretical ratio would be a factor of 1.3 (√(5/3)) instead a factor of 2. The value with 

the semi-preparative column was by 100% higher than that on the analytical 

dimension.  

Figure 3.14b shows the dependency of w0.1 on the injection volume for the Luna 

columns. The slope of overloading range for the semi-preparative column was much 

flatter. The optimum volume loading for the analytical column was determined to be 

20 µL/mL bed corresponding to an absolute injection volume of 50 µL. This volume is 

by 25% higher than that determined for the Acclaim 5 µm analytical column. The 

value for the semi-preparative column was 32 µL per mL bed corresponding to 251 

µL absolute injection volume, similar to the value with the Acclaim semi-preparative 

column. 

The plot of w0.1 value dependent on the injection volume for the Monolith is shown in 

Figure 3.14c. The optimum volume loading capacity obtained with Monolith was 

51 µL/mL bed corresponding to 400 µL injection volume on column. This is higher 

than that obtained with both packed semi-preparative columns, which can be 

attributed to the higher porosity of the monolithic column. 
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Figure 3.14: Dependency of peak shape parameter w0.1 on the injection volumes 

3.2.3.1.3 Mass loading at constant injection volume

The aim of this study is the determination of mass loading capacity at constant 

injection volume. This study was carried out on all 3 Acclaim columns, on both Luna 

columns and on the silica-based monolithic column (Monolith). The injection volume 

was 10 µL or 20 µL for the analytical columns and 100 µL or 200 µL for the semi-

preparative columns. As investigated in the previous section, these injection volumes 

are far away from the overloading range.  

Overlays of the peaks are depicted in Figure 3.15 to Figure 3.17. The corresponding 

injected sample mass is depicted in the respective chromatogram overlays. Since the 

UV absorptions at 258 nm clearly exceeded the dynamic range of the UV detector, 

the peaks detected at 295 nm were considered for interpretation. At this wavelength 

the peak height of salicylic acid is less than 10% that of acetylsalicylic acid. The 

increasing sample mass injected on column caused increasing peak tailing and a 

decreasing retention factor, except for peak shapes on the analytical 5 µm Acclaim 

column due to the interference of salicylic acid. On this column the peaks at low 

sample mass showed fronting (Figure 3.15a) and with increasing mass loading the 
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retention factor decreased and the interference of salicylic acid became noticeable. 
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Figure 3.15: Peak overlays at different masses injected on the 5 µm Acclaim 

columns. The injection volume was 10 µL for the analytical column and 100 µL for the 

semi-preparative. Legend shows absolute mass injected. 
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Figure 3.16: Peak overlays at different masses injected on the Luna analytical 

column (a) and semi-preparative column (b). The injection volume was 20 µL for the 

analytical column and 200 µL for the semi-preparative. Legend shows absolute mass 

injected. 
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Figure 3.17: Peak overlay at different masses injected on Monolith. The injection 

volume was 100 µL. Legend shows absolute mass injected. 

The same peak shape parameter as considered previously were plotted versus the 

absolute mass injected on column (Figure 3.18) in order to determine the optimum 

mass loading capacity. Increase of w0.1 value by 10% to the value in non-overloading 

range is used as a measure for the optimum mass loading.  

Figure 3.18a shows the plots of w0.1 depending on the injection volume for the 

Acclaim column. The w0.1 value in the non-overloading range for the 3 µm was 

excellent. Furthermore, this value on the semi-preparative 5 µm column was better 

than on the analytical one. This can be attributed to the competitive effect of salicylic 

acid on the analytical column. The curves for both analytical Acclaim columns run 

parallel, therefore the optimum mass loading capacity for both columns was similar, 

determined to be 42 µg per mL bed (corresponding to 105 µg sample mass on 

column). The optimum mass loading for the 5 µm semi-preparative column was 

determined to be 138 µg/mL bed corresponding to 1083 µg absolute injection on 

column. This value is more than 3-fold higher than that on the analytical column 

dimension.  

Figure 3.18b shows the dependency of w0.1 value on the sample mass for the Luna 

columns. The plots show unusual behavior for both columns. The w0.1 value 

increased gradually with increasing sample mass, even at low sample mass. The 

optimum mass loading was determined to be 4 µg/mL bed (corresponding to 10 µg) 

for the analytical column and 8 µg/mL (corresponding to 63 µg) for the semi-

preparative column. This unusual behavior could be related to the interaction of 

acetylsalicylic acid with the functionality in the stationary phase that is used to extend 

its stability at higher pH values.  
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The plot of w0.1 value for Monolith is shown in Figure 3.18c. The optimum mass 

loading capacity obtained with Monolith was 27 µg/mL bed corresponding to 212 µg 

sample mass injected on column. This lower value compared to the mass loading 

capacity obtained with the Acclaim column can be attributed to the lower amount of 

stationary phase in the monolithic column. 

Comparing the relative retention factor on Luna columns to that of the Acclaim 5 µm 

columns (k/k0) (Figure 3.19), it can be seen that the plot for the Acclaim columns was 

as expected (e.g. remaining constant over a certain range), whilst the k values on the 

Luna decreased continuously. The relative w0.1 value (w0.1 value divided by the value 

at low sample mass, w0.1/ w0.1,0) for these four columns are plotted in Figure 3.19b. 

The plot characteristic was similar for both Luna columns, however, on the semi-

preparative column exhibited three sections. 
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Figure 3.18: Peak shape parameter depending on the sample mass of acetylsalicylic 

acid 
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Figure 3.19: Relative retention factor and peak shape parameter depending on 

sample mass on the Luna and Acclaim columns. (a) Relative retention factor, (b) 

relative peak with at 10% peak height 

To compare the results of the mass overloading experiments carried out with the 

Luna and Acclaim columns, the determined values for peak shape parameter are 

depicted in Table 3.5. N0 and w0.1,0 are peak efficiency and peak width at 10% peak 

height for low sample load, respectively. The table shows the peak shape parameter 

values in theoretical plate number (N) equal to 90% of N value at low sample load 

(N= 0.9N0) and w0.1 equal to 110% of w0.1 value at low sample load (w0.1= 1.1w0.1,0). 

The value w0.1= 1.1w0.1,0 was used as a measure for the optimum loading capacity, 

since the values of w0.1= 1.1w0.1,0 are higher than that of N= 0.9N0. Moreover, at w0.1= 

1.1w0.1,0 the peaks were not yet distorted. In contrast, McCalley used N=0.9 N0 as a 

measure for the optimum loading capacity [37]. 
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Table 3.5: Values of peak shape parameters for acetylsalicylic acid on the Luna 

and Acclaim columns 

N=0.9No w0.1=1.1 w0.1,0
Column 

µg µg/mL bed µg µg/mL bed 

Luna semi-prep 30 3.8 63 8 

Luna analytical 7.5 3.0 10 4 

Acclaim semi-prep 725 92.4 1083 138 

Acclaim analytical 5 µm 88 35.3 105 42 

Acclaim analytical 3 µm 88 35.3 105 42 

3.2.3.1.4 Variation of injection volume at constant sample concentration 

The aim of this work was to investigate peak characteristics under increasing volume 

load at a constant sample concentration of 1 g/L. 

Overlays of the peaks with increasing sample load are depicted in Figure 3.20 to 

Figure 3.22. The corresponding injection volume is depicted in the respective 

chromatogram overlays. As shown in Figure 3.9 (section 3.2.3.1.1), the absorbance 

of acetylsalicylic acid at 258 nm is much higher than that at 295 nm. However, the 

interpretation was done at 258 nm, since on the Acclaim 5 µm analytical column the 

peak of salicylic acid strongly interfered with that of acetylsalicylic acid at detection 

wavelength 295 nm (Figure 3.20b). As can be seen in Figure 3.20b, a systematic 

increase in selectivity with increasing volume load can be observed. This must be 

due to a displacement effect which takes place in the wide sample zone at the head 

of the column. This is surprising, since the amount of the impurity should be in the 

range of 0.5% (according to the manufacturer Sigma). From the increasing second 

peak it must be deduced that an ongoing conversion (hydrolysis) of acetylsalicylic 

acid takes place in the acidic sample solution at ambient temperature. From the peak 

height ratio observed in the run with 250 µL injection volume, a salicylic acid 

concentration of ca. 1.5% can be determined. 

The peaks shapes obtained on the Acclaim 5 µm analytical column at 258 nm (Figure 

3.20a) were similar to that obtained with the volume loading capacity study (Figure 

3.11a). With other columns, peak tailing occurred with increasing sample load. In the 

overloading range, peak plateau was observed (Figure 3.21 and Figure 3.22). 
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Furthermore, the peaks on Monolith exhibited tri-angled shape with increased volume 

loading (Figure 3.22). 
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Figure 3.20: Increase of acetylsalicylic acid sample load by varying injection volume 

at constant sample concentration of 1 g/L on the 5 µm analytical column (a) at 258 

nm, and (b) at 295 nm and (c) on semi-preparative Acclaim column at 258 nm. 
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Figure 3.21: Peak shapes of acetylsalicylic acid sample load by varying injection 

volume at constant sample concentration of 1 g/L on the Luna columns. 
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Monolith
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Figure 3.22: Peak shapes of acetylsalicylic acid sample load on Monolith. 

The plot for the peak shape parameter w0.1 of this experimental series is shown in 

Figure 3.23. The plot behavior obtained in this experiment (volume loading at 

constant sample concentration of 1 g/L) was different from the study with increasing 

volume loading at constant sample mass. The results are a combination of both both 

overloading effects (volume loading and mass loading), since the sample mass 

injected on the column increased with increasing volume loading.  
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Figure 3.23: Peak shape parameter of acetylsalicylic acid sample load by varying 

injection volume at constant sample concentration of 1 g/L on different columns. 
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3.2.3.1.5 Conclusion from overloading experiment with acetylsalicylic acid 

To compare the results of the volume and mass loading capacity experiments carried 

out with the Acclaim columns, Luna columns and Monolith, the determined loading 

capacities are depicted in Figure 3.24. The loading capacity was calculated by 10% 

increase of peak width at 10% peak height (w0.1).  

Volume loading capacity is in general a parameter, which strongly depends on the 

instrumental set-up. Moreover, it decreases with the column plate number (~1/√N) 

and strongly increases with the retention factor (~(1+k)) and both parameters varied 

with the columns (Table 3.6). The result of volume loading capacity for Luna 

columns, which showed similar retention factors for both columns, is in good 

accordance with theory (theory 1.63, results 1.60). However, the results varied 

significantly with other columns, when the retention factors were different. Therefore, 

to perform a scale-up for volume loading capacity, it is necessary to set similar 

retention factors for both column dimensions.  

The volume loading capacity obtained with Monolith was obviously higher than that 

with both packed columns in the same dimension. This can be attributed to the 

higher total porosity and thus higher column void volume of the monolithic column. 

The retention factor of acetylsalicylic acid on the Monolith was similar to that on the 

Acclaim semi-preparative column (Table 3.6), although the organic phase content 

with Monolith was lower (20% acetonitrile). 

The data for the mass loading capacity (normalized for the column bed volumes) 

varied considerably with almost all columns, except between the Acclaim 3 µm and 5 

µm analytical columns. The mass loading capacity difference between analytical and 

semi-prep columns with the Acclaim columns was pronounced (3.3-fold). This could 

be due to differences in the chromatographic properties of the three materials, which 

is in accordance with the standard test results and the selectivities between the two 

carboxylic acids. The mass loading capacity on the Luna columns for acetylsalicylic 

acid was very low. The value obtained with the semi-preparative Acclaim was 17-fold 

and 5-fold higher than that with the semi-preparative Luna and Monolith, respectively. 

Furthermore, plots of the peak shape parameters revealed unusual behavior for both 

Luna columns.  

The loading capacity difference between analytical and semi-prep columns was more 

pronounced with the Acclaim than with the Luna columns. For the purpose of APS, 

the Acclaim semi-prep column appeared clearly advantageous over the respective 
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Luna column for acetylsalicylic acid. 

Table 3.6: Retention factor and peak shape parameters of acetylsalicylic acid at 

low injection mass and volume for different columns.   

Column k0 w0.1,0 (mm) N0 1/√√√√N0

Acclaim 3 µm 1.3 14.4 11,000 0.0095 

Acclaim 5 µm 

analytical 
2.4 23.8 10,500 0.0098 

Luna analytical 2.5 24.2 9,000 0.0105 

Acclaim 5 µm 

semi-prep 
1.8 23.8 4,000 0.0158 

Luna semi-prep 2.4 41.8 3,200 0.0177 

Monolith 1.9 17.7 5,500 0.0135 
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Figure 3.24: Volume and mass loading capacity for acetylsalicylic acid obtained with 

Acclaim, Luna and Monolith columns. Values are normalized for the column bed 

volumes.  
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3.2.3.2 Loading Capacity Study for Amitriptyline 

APS systems are mostly applied in the pharmaceutical industry. Furthermore, large 

numbers of pharmaceuticals and biomedically relevant compounds contain basic 

groups Amitriptyline is a strongly basic (tertiary amine) antidepressant drug with 

aqueous pKa of 9.4 [24]. This compound is a representative of basic pharmaceutical 

which is widely used for column test purposes. Based on the results obtained in 

standard test and retention studies using amitriptyline (see section 3.1.3.2 and 

3.1.3.3), this study was designed to investigate the loading capacity for amitriptyline 

using buffered aqueous methanol eluent at pH 6.0, 7.0 and 9.0 as well as using 

acetonitrile eluent at pH 7.0. The study was performed on packed RP-columns (Luna 

and Acclaims) in analytical and semi-preparative dimensions, and on semi-

preparative silica-based RP monolithic column (the Monolith).  

3.2.3.2.1 Loading capacity for amitriptyline on the Luna columns 

Figure 3.25 shows overlays of the peaks obtained with the Luna analytical column at 

pH 6.0 and pH 7.0 with phosphate buffer 20 mM -methanol (20/80) and at pH 7.0 

with phosphate buffer 20 mM- acetonitrile (40/60). At pH 7.0 with phosphate buffer 20 

mM -methanol (20/80) (Figure 3.25a), the retention decreased with increasing mass 

loading. Severe peak distortion including a pronounced front shoulder appeared at 

injected analyte amounts higher than 28 µg. This could be attributed to silanol 

overloading at high sample mass loading.  

An overlay of amitriptyline chromatograms at pH 6.0 with methanol eluent for 

different solute mass loading is shown in Figure 3.25b. The retention increased with 

increasing mass loading. The peak distortion with pronounced front shoulder 

appeared already at injected analyte amounts 14 µg. At this pH, silanol overloading 

appeared earlier. This could be due to insufficient buffering capacity of phosphate at 

this pH. 

Figure 3.25c shows an overlay of chromatograms at different mass loading obtained 

with phosphate buffer 20 mM- acetonitrile (40/60) at pH 7.0. The peak obtained with 

ACN eluent at low sample load showed a pronounced peak tailing, as also observed 

in earlier study (section 3.1.3.3.2). This can be considered a further indication for a 

marked contribution of cation exchange to amitriptyline retention due to the increase 
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of overall buffer concentration resulting from the higher amount of the aqueous 

component.  

Unlike observed with the methanol eluent at this pH, the retention increased with 

increasing mass loading. Furthermore, the peak shape observed under overloading 

conditions was different from that with methanol eluents. With ACN, the peak shape 

moves to fronting and the retention increased, but no peak shoulder was observed 

up to 60 µg loading. This can be explained by a higher degree of silanol dissociation 

(more aqueous mobile phase and overall buffer concentration 8 mM) and thus no 

silanol overloading. 
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Figure 3.25: Amitryptiline peaks at different sample mass loadings on the Luna 

analytical column. (a) 20 mM phosphate buffer pH 7– methanol (20/80), (b) 20 mM 

phosphate buffer pH 6 – methanol (20/80), (c) 20 mM phosphate buffer pH 7– 

acetonitrile (40/60); flow rate 1 mL/min; temperature 23°C; detection: 270 nm 

Figure 3.26 shows overlays of the peaks obtained with the Luna semi-preparative 

column at pH 6.0 to 9.0 with phosphate buffer 20 mM -methanol (20/80) and at pH 7 

with phosphate buffer 20 mM- acetonitrile (40/60). Loadability study was also carried 

out at pH 9. Since the Luna C18(2) column is specified for working at pH 2 to 10, it 

was of interest to extend the study to alkaline media. 

An overlay of amitriptyline chromatograms at pH 6.0 for different solute mass loading 

is shown in Figure 3.26a. The retention increased with increasing mass loading. The 

peak distortion with pronounced front shoulder as observed with the Luna analytical 

column, appeared at injected analyte amounts higher than 24 µg. 

At pH 7.0 with methanol eluent (Figure 3.26b) the front shoulders appeared at 

injected analyte amounts higher than 150 µg sample load, corresponding to 19 
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µg/mL column bed. With the analytical column, at an injected solute mass of 32 µg 

(12.9 µg/mL bed) the peak was already distorted. In contrast to pH 6.0, the retention 

decreased with increasing mass loading (typical column overloading). As mentioned 

in the analytical scale, the peak distortion with pronounced front shoulder can be 

considered due to silanol overloading.  

At pH 9.0 the amitriptyline solute is largely uncharged and the surface silanols are 

fully ionized. The peak shape under overloading conditions (Figure 3.26c) was much 

better than at other pH values, as even in the highest loading range studied, the 

peaks were not distorted. At overloading conditions, the peaks appeared like a 

double peak. This could be due to the interaction of charged amitriptyline with the 

silanols. The retention time of the main peak maximum remained constant.  

The peaks of amitriptyline obtained for different mass loadings with the acetonitrile 

eluent at pH 7.0 are overlaid in Figure 3.26d. The zone profiles encountered using 

this eluent were similar to those with the analytical scale column. No peak shoulder 

was observed up to 300 µg (38 µg/mL bed) loading. At injection of 420 µg (53 µg/mL 

bed) a plateau like front shoulder appeared under overloading conditions, but smaller 

than obtained with methanol eluents. The loadability study at analytical scale was 

done up to 60 µg loading corresponding to 24 µg/mL bed, no front shoulder was 

observed under these conditions.  
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Figure 3.26: Amitryptiline peaks at different sample mass loadings on the Luna semi-

preparative column. (a) 20 mM phosphate buffer pH 6.0–methanol (20/80), (b) 20 

mM phosphate buffer pH 7.0–methanol (20/80), (c) 20 mM carbonate buffer pH 9.0–

methanol (20/80) (d) 20 mM phosphate buffer pH 7.0–acetonitrile (40/60); flow rate 5 

mL/min; temperature 23°C; detection: 270 nm 

The relative peak shape parameters are plotted as a logarithmic function of sample 

mass loading (Figure 3.27). To obtain this, the measured peak shape parameter 

value was divided by the value at small sample mass load, e.g. 10 µg. The horizontal 

lines indicate the peak shapes in the non-overloading range. In this condition, the 

values remain constant with the loading. Overloading occurs with increasing sample 

mass loading. In this overloading range the peak width increases gradually and 

therefore the efficiency decreases. With methanol eluents (Figure 3.27a, c, and d), 

the values of asymmetry and retention factors are not critical. The value of peak 

width at 10% peak height was most critical for investigations at pH 7.0, since 

pronounced peak shoulder appeared at high loading. The theoretical plates were 

also critical values. Unusual behavior of theoretical plate plots is shown with the 

acetonitrile mobile phase (Figure 3.27b and 3.27e), as also indicated unusual peak 

shapes at both low loading and under overloading conditions (Figure 3.25c and 
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Figure 3.26d).  
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Figure 3.27: Plot of relative peak shape parameters for amitriptyline (efficiency, 

asymmetry, w0.1, w0.5 and k) dependent on logarithmic sample mass. (a) On the Luna 

analytical column using 20 mM phosphate buffer pH 7.0–methanol (20/80); (b) on the 

Luna analytical column using 20 mM phosphate buffer pH 7.0–acetonitrile (40/60), (c) 

on the Luna semi-preparative column using 20 mM phosphate buffer pH 7.0–

methanol (20/80); (d) on the Luna semi-preparative column using 20 mM carbonate 

buffer pH 9.0–methanol (20/80); (e) on the Luna semi-preparative column using 20 

mM phosphate buffer pH 7.0–acetonitrile (40/60); flow rate 5 mL/min; column oven 

temperature 23°C; detection: 270 nm. 

The most critical peak shape parameter (width at 10 % peak height) for both Luna 

columns at different eluent conditions is plotted versus sample load in mg per mL bed 

volume. All results can be seen at one glance in Figure 3.28. One can see that the 

loading behavior markedly depends on the eluent pH. On the analytical column 
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(Figure 3.28a) the efficiency with acetonitrile in the non-overloading range was 

slightly better. At pH 7, the slope of the increase of peak distortion was much flatter 

with ACN than that obtained with methanol. Hence, the loading capacity with 

acetonitrile must be considered superior to methanol, because in the highest loading 

range studied, the peaks were markedly less distorted using acetonitrile eluent. In the 

semi-preparative column dimension, the peak shapes in different eluents in the non-

overloading range were similar. As discussed previously, the amitriptyline loading 

with 60% ACN eluent at pH 7.0 was preferable to that with 80% MeOH eluent at the 

same pH and aqueous mobile phase. However, for the Luna columns, which are 

stable for working up to pH 10, the slope of the overloading range was much 

shallower in alkaline media (pH 9.0). Hence, the column could be more loaded than 

the optimum loading capacity without serious loss in efficiency. 
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Figure 3.28: Plot of w0.1 dependent on injected sample mass per mL bed using 

different eluents: (a) on the Luna analytical column, (b) on the Luna semi-preparative 

column. 
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Table 3.7 shows the peak shape parameter values in theoretical plate number (N) 

equal to 90% of N value at low sample load (N= 0.9N0) and w0.1 equal to 110% of w0.1 

value at low sample load (w0.1= 1.1w0.1,0) in µg sample load and µg per mL of bed 

volume. Similar loading capacity was obtained with the methanol eluent at pH 9.0 

and acetonitrile eluent at pH 7.0. It is not understandable, because the solute should 

be mostly uncharged at pH 9.0 and exist partly ionized and partly as free base at pH 

7.0 (Figure 3.4, section 3.1.3.3.1). Neue et al. reported that the loading capacity of 

un-ionized solute is higher than that of the ionized solute [34].  

As apparent in Table 3.7, the loading capacity of amitriptyline on the semi-

preparative column was surprisingly 3.3-fold higher than that on the analytical column 

dimension, although similar results with the Engelhardt test were obtained on both 

columns (Table 3.2, section 3.1.3.1). On the one hand this is advantageous, because 

the column enables high sample throughput in preparative chromatography. On the 

other hand it is difficult to predict the loading capacity within a scale-up process (with 

the same stationary phases) without performing the solvent consuming loadability 

study on the semi-prep column.  

Table 3.7: Loading capacity for amitriptyline on the Luna columns 

N=0.9No w0.1=1.1w0.1,0
Mobile phase 

µg µg/mL bed µg µg/mL bed

Luna 100x10 mm i.d.  

pH 7 buffer-MeOH: 20/80 106 13.5 235 30 

pH 9 buffer-MeOH: 20/80 131 16.7 290 37 

pH 7 buffer-ACN: 40/60  200 25.5 320 41 

Luna 150x4.6 mm i.d.  

pH 7 buffer-MeOH: 20/80 20 8.0 25 10 

pH 7 buffer-ACN: 40/60 13 5.2 31 12.5 

3.2.3.2.2 Loading capacity for amitriptyline on the Acclaim columns 

Figure 3.29 shows overlays of amitriptyline peaks obtained with the Acclaim columns 

at pH 6.0. The peak shapes at overloading conditions obtained with both analytical 



Characterization and Loadability Study on RP-HPLC Columns for APS 89

columns at the same elution conditions using 20 mM buffer were similar (Figure 

3.29a and Figure 3.29b). Peaks distortion with front shoulder appeared, as also 

observed with the Luna columns. However, different peak shapes were obtained with 

the Acclaim semi-preparative column (Figure 3.29c).

At buffer concentration of 30 mM with the 5 µm analytical column (Figure 3.29d) at 

otherwise identical elution conditions, lower retention was achieved. Peak shoulder at 

overloading condition was also smaller. Mass loading of 5.6 µg gave non-distorted 

peak shape, compared to distorted peak with 20 mM buffer. The different overloading 

behavior at different buffer ionic strength indicated the contribution of ionic interaction 

at this pH. The shift of retention time to lower value is a further indication for this ionic 

interaction with the residual silanols in the stationary phase. 
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Figure 3.29: Amitriptyline peak shapes on the Acclaim columns at pH 6.0 using 

phosphate buffer-methanol: 20/80. (a) On the Acclaim 3 µm analytical column using 

20 mM phosphate; (b) on the Acclaim 5 µm analytical column using 20 mM 

phosphate; (c) on the 5 µm semi-preparative column using 20 mM phosphate; (d) on 

the Acclaim 5 µm analytical column using 30 mM phosphate; temperature 23°C; 

detection: 270 nm; flow rate 5 mL/min for semi-preparative and 1.0 mL/min for 

analytical columns. 
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Figure 3.30 shows peak overlays of amitriptyline on Acclaim columns at pH 7.0 

obtained with methanol eluent (upper side) and acetonitrile eluent (lower side). With 

methanol eluent the peak maximum moved to lower retention factors and the front 

shoulder was growing with a further increase of mass loading. The peak shape 

behavior obtained with the analytical columns were similar both for methanol and 

acetonitrile eluents. Such a behavior was also observed with the Luna columns at the 

same conditions. Unlike the zone profiles encountered with both analytical scale 

columns using acetonitrile eluent, a marked plateau like front shoulder appeared 

under overloading conditions, similar to the behavior in methanol eluents.  

At pH 7 peaks began to distort at higher mass loading than at pH 6. On the analytical 

columns, loading of 10 µg sample gave normal peak shape, whilst at pH 6 from 5 µg 

sample load the peaks were already distorted. 
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Figure 3.30: Amitriptyline peaks on Acclaim columns using 20 mM phosphate buffer 

pH 7.0 and methanol: 20/80 (upper chromatogram) and buffer – acetonitrile: 40/60 

(lower chromatograms). (a) (b) on the 3 µm analytical column; (c) (d) on the 5 µm 

analytical column; (e) (f) on the 5 µm semi-preparative column. 
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Figure 3.31 depicts the mass loading capacity curves obtained with all Acclaim 

columns for the methanol and acetonitrile containing eluents in direct comparison. As 

also observed with the Luna columns, the loading capacity was markedly dependent 

on the pH values. Among the conditions applied for the study on the 5 µm analytical 

column, pH 7.0 provided a comparatively high loading ability of 8 µg per mL bed, 

whilst at pH 6.0 only 1 µg per mL bed could be loaded (Figure 3.31b). This trend was 

already observed with the 3 µm analytical column, where the ratio was, however, 

closer to 4 than to 8 (Figure 3.31a). 

With the semi-preparative column, the only noticeable difference between the 2 

eluents was the slightly better efficiency using acetonitrile in the non-overloading 

range. The overloading points were similar at about 20 µg/mL bed volume. 

Fortunately, it is by 2.5-fold higher than that obtained with the 5 µm analytical 

column. The most remarkable fact, however, is the similar slope in the overloading 

range, which could be foreseen from the zone profiles (comparing Figure 3.30a and 

Figure 3.30f). 

With both analytical columns at pH 7.0 the loading capacity revealed to be similar 

with both eluents. However, the slope of the increase of peak distortion was much 

flatter with acetonitrile than that observed with methanol. Hence, the loading capacity 

with acetonitrile must be considered superior to methanol, because in the highest 

loading range studied, the peaks were markedly less distorted using this eluent. 

Based on the results above it could be concluded that a mobile phase containing 

60% acetonitrile was superior to that with 80% methanol, as the peaks were 

markedly less distorted in the highest loading range. The non-overloaded range 

ended with both eluents at approx. 7 µg/mL bed. The overall behavior of the 5 µm 

analytical column for amitriptyline using both eluents mimicked that of the 3 µm 

column. 
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Figure 3.31: The plot of w0.1 dependent on logarithmic sample mass per mL bed for 

amitriptyline on Acclaim columns with different eluents. 

3.2.3.2.3 Loading capacity for amitriptyline on silica-based monolithic RP-

column 

Figure 3.32 depicts the peak overlays at different mass loading and the 

corresponding mass loading curve obtained with silica based monolithic RP-column 

(Monolith) at pH 7.0 using methanol and acetonitrile eluents. The peak shape 

behaviors obtained with this column were different from the packed columns. The 

peak shapes with both methanol and acetonitrile were similar. The only difference 

was the shape and width of the front shoulder. At low mass loading, the peaks were 

quite symmetrical, became broader and led to right-angled peaks with increasing 

sample mass. At higher mass loading it evidenced front shoulder, as also observed 

with other columns. This is due to silanol overloading, since at this pH hydrophobic 

and ionic interaction occurred simultaneously. 

The w0.1 plot behavior obtained with both eluents was slightly different. Using 

methanol eluent the value decreased slightly with increasing sample mass up to 

400 µg (corresponding to 51 µg/mL bed). Afterwards, as peak distortion with front 

shoulder appeared, the values increase rapidly and therefore formed a nearly vertical 
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plot. Using acetonitrile eluent the decrease of the w0.1 value in the non-overloading 

condition (up to 500 µg) was more pronounced. 
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Figure 3.32: Peak overlays at different mass loading and the mass loading curve for 

amitriptyline on the Monolith. (a), (b) 20 mM phosphate buffer – methanol (26/74); 

(c), (d) 20 mM phosphate buffer – acetonitrile (40/60); temperature 23°C; detection: 

270 nm; flow rate 10 mL/min. 

3.2.3.2.4 Conclusions of loadability study for amitriptyline 

The mass loadability study for amitriptyline was done on the Acclaim and Luna 

columns at both analytical and semi-preparative scales and on Monolith (in semi-

preparative dimension). The normalized loadability of Luna and Acclaim columns for 

amitriptyline at different mobile phases is summarized in Table 3.8.  

The loadability at pH 6.0 with methanol eluent was very low, due to insufficient 

buffering capacity of phosphate buffer at this pH value. The loadability at pH 7.0 with 

methanol and acetonitrile eluent was similar. However, the peak shapes under 

overloading conditions obtained with acetonitrile as eluent were better than with 

methanol at the same pH value. This could be due to the nature of the organic 

modifier or due to the difference in overall buffer concentration of both eluents (4 mM 

with methanol eluent and 8 mM with acetonitrile eluent). At pH 9.0 using carbonate 
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buffer and methanol eluent, the peak shapes under overloading conditions were 

superior. The loadability, however, was slightly lower than at pH 7.0. 

Table 3.8: Loading capacity for amitriptyline on Luna and Acclaim columns 

Loading capacity [µg/mL bed] 
Column 

pH 6, MeOH pH 7, MeOH pH 7, ACN pH 9, MeOH 

Luna analytical 2 10 12.5  

Luna semi-prep 5 30 41 37 

Acclaim 3 µm 2 8 7  

Acclaim 5 µm analytical 1 8 7  

Acclaim 5 µm semi-prep 2 20 20  

The poorer peak shape with the front shoulder under overloading conditions could be 

attributed to the surface silanol overloading due to insufficient silanol masking with 

the buffer ions at higher sample load. Blay [42] observed similar peak elution when 

he injected 14 µg amitriptyline on several columns using 5 mM phosphate buffer- 

methanol (20/80), as described in former NIST test [43]. When the overall buffer 

concentration increased to 20 mM, this front shoulder disappeared. McCalley used 

mobile phases containing overall buffer concentration of approx. 20 mM to perform 

the overloading study for strong bases (e.g. nortriptyline) [9,10,20,41]. Therefore, 

detrimental peak with front shoulder was not observed in his studies. However, in this 

work, higher buffer concentration cannot be used because of higher organic modifier 

content of mobile phase (80% methanol or 60% acetonitrile), which increases the risk 

of buffer precipitation. 

The semi-preparative columns were generally more loadable than the analytical 

ones. At pH 7.0 the semi-preparative Acclaim is 2.5-fold more loadable than the 

analytical one, whilst the loadability of the Luna semi-preparative scale was 3.3-fold 

higher than the analytical scale. 

The w0.1 plot behavior obtained for Monolith with both methanol and acetonitrile 

eluents was unusual. In the non-overloading condition the value w0.1 decreased with 

increasing sample mass. Afterwards, as peak distortion with front shoulder appeared, 

the values increase rapidly and therefore formed a nearly vertical plot.  
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3.2.3.3 Loading Capacity Study for Phenol 

Phenol is a polar, weakly acidic compound with a pKa value of 9.8 [24]. The elution of 

phenol on both semi-preparative Luna C18(2) and Acclaim C18 columns was 

performed at the identical condition as for acetylsalicylic acid (70% water titrated with 

formic acid pH 3.0 – 30% acetonitrile). At this given condition, phenol is in non-

ionized form. 

The overlays of phenol peaks obtained with the Luna C18(2) and Acclaim C18 semi-

preparative columns are shown in Figure 3.33a and Figure 3.33c, respectively. With 

both columns, the retention decreased, as expected, with the increasing mass 

loading once the overloading conditions are reached. With increasing mass loading 

the peaks became triangle shaped, especially with the Luna column. The plots of 

peak shape parameters obtained with both columns are also depicted in Figure 3.33b 

and Figure 3.33d, respectively. The peak shapes of phenols were markedly better 

than that of acetylsalicylic acid. 
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Figure 3.33: Overlays and the corresponding peak shape parameters of phenol on 

semi-prep Luna (a), (b), and semi-prep Acclaim (c) (d). 
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Table 3.9 shows the peak shape parameters at low sample loading and the mass 

loading capacity. The mass loading capacity (w0.1= 1.1w0.1,0) for both columns are 

similar, close to 225 µg (corresponding to 28.7 µg per mL bed volume). However, the 

peak shapes at non-overloading condition obtained with the Luna were slightly better 

than with the Acclaim. This could be attributed to the higher retention factor on Luna, 

despite of identical elution conditions for both columns. On the Acclaim semi-

preparative column the loading capacity of phenol was much lower compared to the 

loading capacity of acetylsalicylic acid, although phenol eluted as non-ionized solute, 

with the molar loading capacity of approx. 0.3 and 0.8 µmol/mL for phenol and 

acetylsalicylic acid, respectively. This could be due to the polar interaction of phenol 

with underivatized silanols.  

Table 3.9: Peak shape parameters at low sample mass for phenol on the Luna 

and Acclaim semi-preparative column and their mass loading capacity 

w0.1=1.1 w0.1,0
Column  k0 N0 w0.1,0 (min) 

µg µg/mL bed 

Luna 3.6 5,000 33.7 225 28.7 

Acclaim 2.4 4,900 36.1 220 28.0 

3.2.3.4 Loading Capacity Study for Rutin 

Rutin is a neutral compound with molecular weight of 610.51 and belongs to natural 

compound class of flavonoids. The elution of rutin on both packed semi-preparative 

columns Luna and Acclaim was performed in the mobile phase acetonitrile/methanol 

(9:1) 20% and water with 0.3% formic acid. This mobile phase was the initial 

condition for gradient separation of compounds in St. John’s wort extract. Rutin was 

not dissolved in the mobile phase, but in methanol/aqueous formic acid (0.3%): 

50/50, because of its low solubility. Its solubility in methanol is only 5 g/L and in water 

only 1g per 8 L water [24].  

Figure 3.34 shows the overlay chromatograms obtained with the Luna, Acclaim and 

Monolith semi-preparative columns, respectively. The plots of peak shape 

parameters obtained with these columns are depicted in Figure 3.35. The retention 
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decreased with the injected mass, as expected. The peaks obtained with the Acclaim 

column were generally broader than with Luna. However, the mass loading capacity 

(Table 3.10) obtained with both columns revealed to be similar (~200 µg). Monolith 

exhibited a lower loading capacity for rutin than the packed columns in the same 

dimension. 
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Figure 3.34: Overlaid peaks of rutin on three different stationary phases: On the 

semi-prep Luna (a), Acclaim (b): mobile phase: 80 % (A) water with 0.3% formic acid 

- 20 % (B) acetonitrile/methanol (9/1 v/v); temperature: 23°C; flow rate: 5.0 mL/min. 

On Monolith (c): mobile phase: 85 % (A) water with 0.3% formic acid - 15 % (B) 

acetonitrile/methanol (9/1 v/v); temperature: 23°C; flow rate: 10.0 mL/min. All 

chromatograms were recorded at detection wavelength of 270 nm. 
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Figure 3.35: Peak shape parameters of rutin on semi-prep Luna (a), (b), and semi-

prep Acclaim (c) (d). The mobile phase: 80 % water with 0.1% formic acid - 20 % 

acetonitrile/methanol (9/1 v/v); temperature: 23°C; flow rate: 5.0 mL/min. All 

chromatograms were recorded at detection wavelength of 270 nm. 
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Table 3.10: Peak shape parameters at low sample mass for rutin on the Luna, 

Acclaim and Monolith semi-preparative columns and the mass loading capacity. 

w0.1=1.1 w0.1,0
Column k0 N0 w0.1,0 (mm) 

µg µg/mL bed 

Luna 2.8 4,020 26.9 196 25.0 

Acclaim 3.2 3,500 37.5 200 25.5 

Monolith 2.0 3,600 22.2 124 16.8 

3.3 Conclusions 

The standard tests for silanol activity (NIST, Dionex specification, p-ethylaniline in 

Engelhardt test) revealed low residual silanol activity for both Luna C18(2) columns 

and for the semi-preparative Acclaim C18 5 µm column. The results of these tests 

applied to the corresponding analytical Acclaim C18 5 µm column were inconsistent. 

The markedly high silanol activity observed with the Engelhardt test from this column 

could not be confirmed with other tests. However, the methylene selectivity obtained 

with these columns was identical (α=1.9). 

The volume loading capacity obtained with Luna and Acclaim semi-preparative 

columns was similar, whilst Monolith exhibited 66% more volume loading capacity 

than both packed columns. This can be attributed to the higher total porosity and thus 

higher column void volume of the monolithic column. The volume loading capacity in 

the semi-preparative compared to the analytical dimension varied when the retention 

factors were different. Therefore, to perform a scale-up for volume loading capacity, it 

is necessary to set similar retention factors for both column dimensions. 

In mass overloading experiments with the two compounds acetylsalicylic acid and 

amitriptyline on the semi-preparative and the analytical columns, different loading 

capacity for both scales was observed. The Acclaim semi-preparative column was 

3.3-fold more loadable than the analytical column for acetylsalicylic acid, whilst semi-

preparative Luna exhibited 2-fold loadability compared to the analytical one. 

Moreover, plots of the peak shape parameters (w0.1 and k) of acetylsalicylic acid 

revealed unusual behavior for both Luna columns. However, the Acclaim 5 µm 

analytical column showed a clearly weaker selectivity for acetylsalicylic acid and the 

impurity salicylic acid than the semi-preparative column. 

The Luna semi-preparative column exhibited a 3.3-fold mass loading capacity 
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relative to the analytical one for amitriptyline, whilst the Acclaim semi-preparative 

scale was 2.5-fold more loadable than the analytical column. Peak shapes for 

amitriptyline under overloading conditions obtained with both Luna columns 

measured in all mobile phases (MeOH and ACN) were similar. In contrast, different 

peak shapes were observed between the Acclaim 5 µm columns. 

The loading capacity of phenol and rutin was similar for both Luna and Acclaim semi-

preparative columns. However, the peak shapes obtained with the Luna were slightly 

better.  

Based on the results above, it can be concluded that the overloading limits for solute 

mass of the semi-preparative columns cannot be easily scaled-up from the 

respective analytical columns. Optimization must be carried out with each specific 

set-up individually, even for the columns with similar chromatographic properties of 

their materials, such as both Luna columns, as verified in standard test results. 
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Chapter 4

Application of Automated Purification System for 

Fractionation of Biologically Active Ingredients from Plant 

Extracts Applying Photometric and Targeted Mass 

Spectrometric Trigger 

4.1 Introduction 

The applications of the automated purification system utilizing both photometric- and 

mass spectrometric trigger is reported in this chapter. The challenge in developing 

effective procedures for automated purification system is balancing throughput, 

recovery and purity. The fractionation of precious compounds in St. John’s wort 

extracts by UV and MS trigger is described in detail. Moreover, fractionation of minor 

degradation products in a thermal stressed pharmaceutical preparation was 

performed. Approximately 1 mg each of the fractions of these degradation products 

was required to further study their structure by nuclear magnetic resonance 

spectroscopy (NMR spectroscopy). Furthermore, fraction collection of toxic gliadin 

from wheat extract was carried out. The instrumental setup of the automated HPLC 

purification system is described in detail in Chapter 2. 

4.2 Automated Fractionation of Biologically Active Ingredients 

from St. John’s Wort Extract (Hypericum perforatum L.) 

4.2.1 Introduction and Tasks 

St. John’s wort (Hypericum perforatum L.) is an herb indigenous to Europe, Western 

Asia, North America, and North Africa [1]. The plant has been used in Europe as a 

remedy against mood swings and to improve wound healing for many centuries [2]. 

St. John’s wort extracts contain numerous biologically active substances including 

naphthodianthrones, such as hypericin and pseudohypericin, flavonoids and 

biflavons, such as amentoflavone, hyperin (hyperoside), rutin, quercitin, quercitrin 

and I3,II8-biapigenin, the phloroglucin derivates such as hyperforin and adhyperforin, 
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xanthones and essential oil monoterpenes and sesquiterpenes [2, 3]. The main 

constituents and their structures are depicted in Figure 4.1.  

Nowadays, the extract of the aerial part of the plant is becoming popular for the 

treatment of mild to moderate depression [4]. Hyperforin is indicated to be the major 

compound responsible for antidepressant activity [5]. However, it was further studied 

that the presence of rutin is mandatory [4]. Recently, it was also reported that 

flavonoids have antidepressant properties [3]. Furthermore, St. John’s wort extract 

was investigated acting as anti-inflammatory, anti-viral, anti-bacterial, anti-tumour and 

hepato-protecting [2,5,6]. Although many studies in the phytochemical analysis and 

in the pharmacology have been done, the mechanisms of action are still under 

debate [4]. Therefore, further pharmacokinetic and pharmacodynamic studies of the 

main components and their metabolites are urgently needed to clarify the role of each 

constituent [7]. High purity fractions of these constituents are necessary. 

Fractionation with UV and MS trigger of compounds in St. John’s wort extracts from 

accelerated solvent extractor (ASE) as well as from commercial extracts using 

packed and monolithic columns was performed. Re-injection of the fractions into the 

analytical HPLC system with UV detector was carried out to control the purity of the 

fractions and to calculate the recovery. 
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Figure 4.1: The main constituents of Hypericum perforatum L. and their structures 
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4.2.2 Experimental 

4.2.2.1 Chemicals and Materials 

All reagents used were of analytical grade. Acetonitrile and methanol were purchased 

from Sigma-Aldrich (Steinheim, Germany), formic acid from Merck (Darmstadt, 

Germany). High-purity water was obtained from a Purelab Ultra system (ELGA, Celle, 

Germany). Dried St. John’s wort extracts from accelerated solvent extractor were 

obtained from Dionex (Sunnyvale). Commercial St. John’s wort extracts Neuroplant 

1x1 coating tablets brand Schwabe Arzneimittel (Karlsruhe) were obtained from a 

pharmacy. 

The semi-preparative separation and fractionation were performed either in a Luna 

C18(2) column (100 Å, 5 µm, 100 x 10 mm i.d., Phenomenex, Torrance, CA), or a 

silica-based, C18-derivatized monolithic research column (100 x 10 mm i.d., Merck, 

Darmstadt, Germany). 

Analytical HPLC separations or re-injection of the fractions were carried out on a 

Luna C18(2) column (100 Å, 5 µm column 150 x 4.6 mm i.d., Phenomenex).  

4.2.2.2 Instrumental setups 

The instrumental setups for fractionation using optimized APS and for re-injection of 

the fractions are described in Chapter 2. 

4.2.2.3 Conditions for Fractionation 

To trigger the fractionation, at least one so called detection channel is required. In 

this semi-preparative purification system two detection channels are available.  

The fractionation can be triggered using one or both detection channels using 

command for channel selection options: ALL; fraction are collected if a peak is 

detected in all selected channels or ANY; if a peak is detected in at least one of 

selected channels).  

In UV trigger the selected wavelength is defined as one detection channel, whilst in 

MS trigger the selected m/z should be extracted on-line. One on-line mass extraction 

is defined as a detection channel. Therefore, in the program, the detection channel 

name must be newly defined within the expected elution time. A Chromeleon 
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program for fractionation of 3 degradation products in a TDS sample using both UV 

and MS triggers (chromatogram in Figure 4.20) is represented in Appendix. 

The substances to be collected and the corresponding m/z with the identification for 

the online mass extraction (MS_01 to MS_06) are collected in Table 4.1. The 

fractionation with UV trigger was performed at wavelength 270 nm. 

Table 4.1: The substances to be collected with UV and MS trigger and the 

corresponding m/z values (peak identification in APS runs) 

Peak  number Substance m/z Online mass extract 

1 Rutin 609 MS_01 

2 Hyperoside 463 MS_02 

3 Isoquercitrin 463 MS_02 

4 Astilbin 433 MS_03 

5 Quercitrin 447 MS_04 

6 Protohypericin 505 MS_05 

7 Biapigenin 537 MS_06 

4.2.2.3.1 Conditions for fractionation of St. John’s wort extract from ASE 

Conditions for fractionation and re-injection of fractions are following: 

Conditions for fractionation: 

Column: Luna semi-preparative column as described above. 

Mobile phase: (A) H2O + 0.3% formic acid, (B) ACN/MeOH:9/1+0.3% formic acid;  

Gradient method: 0-3 min 20% B; 3-15 min 20-21% B; 15-17 min 21-45% B; 17-20 

min 45-60% B; 20-23 min 60-100% B; injection 300 µL; flow rate: 5 mL/min; UV 

detection at 270 nm and UV spectra recorded. 

Collect outside peaks: no.  

MS: Block source temp: 300 °C; Cone voltage –100 V; scan time 1 sec (centroid); 

TIC 200-700 m/z; Make up solvent: 0.3% formic acid in water/ACN: 60/40; make up 

flow 200 µL/min. 

Conditions for re-injection into the analytical system: 

Column: Luna analytical column as described above. 
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Mobile phase: (A) H2O + 0.3% formic acid, (B) ACN/MeOH:9/1+0.3% formic acid;  

Gradient program:  

0-5 min 20% B, 5-17 min 20-21% B, 17-25 min 21-60% B, 25-27 min 60-100% B, 27-

29 min 100% B, 29-31 min 100-20% B, 31-35 min 20% B;  

injection 20 µL; flow rate: 1 mL/min; UV detection at 270 nm and UV spectra 

recorded. 

4.2.2.3.2 Conditions for fractionation of commercial St. John’s wort extract 

HPLC conditions for fractionation were as follows: 

The column used for fractionation was a Luna C18(2) column (100 Å, 5 µm, 100 x 10 

mm i.d). The mobile phase was 0.3% formic acid in water (A) and ACN/MeOH: 90/10 

v/v added with 0.3% formic acid; gradient method: 0-10 min: 20% B; 10-17 min: 20-

60% B; flow rate: 5 mL/min; injection volume: 300 µL. 

MS condition for fractionation: 

The electrospray source was operated at 3 kV needle voltage and 300 ºC probe 

temperature. The cone voltage was -100 V (negative mode). Make-up eluent was 

ACN/MeOH (9/1 v/v)/water/formic acid: 20/79.7/0.3 v/v, and make-up flow 200 

µL/min. Full scan acquisition between m/z 100-700 with a scan time of 0.5 sec was 

performed.  

HPLC condition for analytical separation and re-injection of fractions: 

Mobile phase used was (A) H2O + 0.3% formic acid and (B) ACN/MeOH: 9/1 +0.3% 

formic acid; flow rate 1 mL/min; temperature 25 °C, detection 3D spectra and 270 

nm; gradient method: 0-10 min: 20% B; 10-25 min: 20-60% B; 25-27 min: 60-100% 

B.  



Application of Automated Purification System 108

4.2.3 Results and Discussion 

4.2.3.1 Fractionation of St. John’s Wort Extract from Accelerated Solvent 

Extraction (ASE) 

The aim of this study was fractionations of 7 substances (Table 4.1) from St. John’s 

wort extracts obtained by ASE. Fractionation was performed in 3 different modes: 

with non-selective UV trigger, with simultaneous UV and MS trigger, and with MS 

trigger. 

4.2.3.1.1 Fractionation with UV trigger and determination of purity and recovery 

The fraction collection was performed with UV trigger applying one detection channel 

at 270 nm. The parameters for the fractionation using detection channel 1 were set 

so that all of the desired peaks could be collected. 

Figure 4.2 shows the UV chromatogram and the collected fractions (filled zones). The 

fractionation of the desired substances was successful. However, there were more 

fractions collected than expected, since UV is a non-selectiv trigger. Only the 

fractions of 7 substances listed in Table 4.1 were re-injected into the analytical 

system (Figure 4.4). The purity of the fractions determined from relative peak areas 

was satisfying, except for isoquecitrin (78%). The purity of rutin, astilbin, 

protohypericin and biapigenin was actually 100%. The reason for the impurities was 

the carry over from previous fractions. The high impurity of isoquercitrin is due to the 

poor resolution of the peaks of hyperoside and isoquercitrin using the semi-

preparative set-up.  

The recovery of the fraction was calculated from the peak areas of the respective 

substances in the re-injected fraction compared to these in the original ASE extract 

with consideration of the dilution factor (volume of fractions) and the injection volume. 

The so calculated recovery of rutin and biapigenin was determined to be 100% and 

80%, respectively. Figure 4.3 shows an analytical run of St. John’s wort ASE extract. 

As can be seen, the selectivity of the peaks on the analytical Luna C18(2) column is 

better than on the semi-preparative one. This could be due to the different column 

length between these columns (100 mm for semi-preparative, 150 mm for analytical 

column). Hence, the analytical column exhibited higher peak capacity. 
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Figure 4.2: UV chromatogram of St. John’s wort ASE extract and the collected 

fractions (filled zones). 1: rutin, 2: hyperoside, 3: isoquercitrin, 4: unknown peak with 

m/z 433, 5: quercitrin, 6: protohypericin, 7: biapigenin. Fraction collection parameters: 

Peak start slope: 3; peak end slope: -3; peak start threshold: 15; peak end threshold: 

15; threshold no peak end: 500; threshold do not resolve: 200. 
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Figure 4.3: UV chromatogram of St. John’s wort ASE extract analyzed using the 

gradient method for re-injection. Peak identification is listed in Table 7. 
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Figure 4.4: Re-injected fractions into the analytical system. (7*) The signal height of 

fraction 7 (biapigenin) was approx. 300 mAU. 

4.2.3.1.2  Fractionation with simultaneous UV and MS trigger and the determination 

of purity and recovery 

The following 4 substances in St. John’s wort ASE extract were collected (Table 4.1, 

peak number 4-7): astilbin with m/z 433, quercitrin (m/z 447), protohypericin (m/z 

505) and biapigenin (m/z 537). The fraction collection was performed with MS and 

UV trigger using 2 detection channels (channel evaluation: ALL). Detection channels 

1 and 2 were used for MS trigger and for UV trigger at 270 nm, respectively. To 

perform the fractionation with MS trigger, extracting mass traces online is required. 

The m/z values of substances above were defined as MS_03 to MS_06 for the online 

mass extract as described in Table 4.1. Since each online mass extract needs a 

detection channel, the settings for detection channel 1 (MS trigger) are varied with 

the run time. Time program for detection channel 1: 0-8 min MS_03; 8-12 min 

MS_04; 12-17 min MS_05; 17-25 min MS_06. 

In this experiment, the fractions were collected only when the conditions for 

fractionation were fulfilled in both detection channels. Figure 4.5 shows the UV 

chromatogram and the online mass extracts for four substances to be collected. As 
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shown in Figure 4.5b, the sensitivity of the mass spectrometric signals were very low, 

hence the signal-to-noise ratio was not satisfying. This could be due to fouling in the 

cone or block source. This resulted in lower fraction zones and therefore incomplete 

fractionation. 

The chromatograms of re-injected fractions are shown in Figure 4.6. The obtained 

purity of the fractions (as relative peak areas) was 100% for astilbin (m/z 433), 91% 

for quercitrin, 100% for protohypericin, and 98% for biapigenin, respectively. The 

purity of quercitrin was quite low compared to other substances, since the previous 

peak was incompletely collected (Figure 4.5, fraction 1), so that a quite concentrated 

peak substance remained in the capillary between switching valve and droplet former 

of fraction collector. This resulted in high carry-over peak relatively to lower 

substance peak of quercitrin. 
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Figure 4.5: UV chromatogram (a) and online mass extract (b) for fractionation (filled 

zones) with simultaneous UV and MS trigger, 4: MS_03: m/z 433 (astilbin), 5: 

MS_04: m/z 447 (quercitrin), 6: MS_05 m/z 505 (protohypericin), 7: MS_06: m/z 537 

(biapigenin). Fractionation parameters for detection channel 1 (MS trigger): Peak 

start threshold 1500; peak end threshold 1500; threshold no peak end 1500; 

threshold do not resolve 1500. Detection channel 2 (UV trigger): parameters as in 

previous section (fractionation with UV trigger). 
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The recovery of biapigenin was calculated to be 41%. This low recovery was also 

due to incompletely collected fraction (fraction volume of 680 µL, compared to 2000 

µL with UV trigger) caused by lower signal to noise ratio of the mass spectrometric 

signals. 
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Figure 4.6: Re-injected fractions into the analytical system. (*) The signal height of 

fraction 7 (biapigenin) was approx. 300 mAU. 

4.2.3.1.3 Fractionation with MS trigger and the determination of purity and recovery 

The substances in St. John’s wort ASE extract listed in Table 4.1 were collected: rutin 

(m/z 609), hyperoside and isoquercitrin (m/z 463), unknown substance with m/z 433, 

quercitrin (m/z 447), protohypericin (m/z 505) and biapigenin (m/z 537). The fraction 

collection was carried out with MS trigger. 

Both detection channels were used for this fractionation (Channel evaluation: ANY).  

Detection channel 1 was used to trigger the fractionation of rutin (MS_01), 

hyperoside and isoquercitrin (MS_02) and biapigenin (MS_06), while detection 

channel 2 was used to trigger smaller peaks with m/z 433 (astilbin, MS_03), 447 

(quercitrin, MS_04) and 505 (protohypericin, MS_05). The threshold for detection 

channel 1 was set higher than for channel 2. The time program for detection channel 

1 was set as follows: 0-4.8 min MS_01; 4.8-10 min MS_02; 10-25 min MS_06. Time 

program for detection channel 2 was following: 0-8 min MS_03; 8-12 min MS_04; 12-

25 min MS_05. 
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Figure 4.7 shows the online mass extracts for collected substances. The 

chromatograms of fractions re-injected into the analytical system are shown in Figure 

4.8. The obtained purity of the fractions (as relative peak areas) was determined to 

be >98% for all fractions except for isoquercitrin and quercitrin. The calculated 

recovery was 100% for rutin and 44% for biapigenin, respectively. This low recovery 

was also due to incompletely collected fraction (fraction volume of 620 µL, compared 

to 2000 µL with UV trigger). 
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Figure 4.7: Online mass extracts for fractionation with MS trigger. Filled zones: 

triggering in detection channel 1, dashed zones: triggering in detection channel 2. 

Parameters for fractionation using detection channel 1: Peak start threshold 2000; 

peak end threshold 2000; threshold no peak end 13000; threshold do not resolve 

12000. Parameters for detection channel 2: Peak start threshold 1500; peak end 

threshold 1500; threshold no peak end 1500; threshold do not resolve 1500.  
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Figure 4.8: UV chromatogram of fractions re-injected into the analytical system. (*) 

The signal height of fraction 7 (biapigenin) was approx. 300 mAU. 

4.2.3.2 Fractionation of commercial St. John’s wort extract 

The aim of the study described in this section was to fractionate the substances as 

depicted in Table 4.1 from a commercial St. John’s wort coating tablet. The 

fractionation was carried out applying UV trigger and MS trigger. The gradient 

program for the HPLC separation was optimized from earlier runs (section 4.2.3.1). 

The separation time was shorter than that performed in the previous section. 

4.2.3.2.1 Fractionation with UV trigger and determination of the purity and recovery 

The fraction collection was performed with UV trigger applying one detection channel 

at 270 nm. Figure 4.9 shows the UV chromatogram and the collected fractions (filled 

zones) of St. John’s wort commercial extract. The sample was prepared from 1 tablet 

disolved with 20 mL eluent (extract from approximately 3 g of plant material). As can 

be seen, the UV signal intensity is 2-fold higher than that from ASE extract produced 

from 5 g plant material and disolved in 10 mL eluent (Figure 4.2). Using the optimized 

gradient program, the separation time was 25% shorter than in earlier runs (section 

4.2.3.1), however no significant decrease in resolution was observed.  

The purity of 4 fractions re-injected (Figure 4.10) was determined to be 100% for 
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rutin, 94% for hyperoside, 82% for isoquercitrin and 100% for biapigenin. The low 

purity of isoquercitrin is alsodue to the carry over from previous fractions caused by 

the poor resolution of the peaks of hyperoside and isoquercitrin. The recovery of the 

fractions was calculated to be 83% for rutin, 74% for hyperoside, 63% for 

isoquercitrin and 73% for biapigenin.  
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Figure 4.9: UV chromatogram of commercial St. John’s wort extract and the 

collected fractions (filled zones). 1: rutin, 2: hyperoside, 3: isoquercitrin, 7: biapigenin. 

Fraction collection setting: peak start and end threshold 50 mAU, peak start slope 1, 

peak end slope -3; threshold no peak end: 600; threshold do not resolve: 400. 
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Figure 4.10: Re-injected fractions collected applying UV trigger into the analytical 

system.  

4.2.3.2.2 Fractionation with MS trigger and the determination of purity and recovery 

For mass targeted fraction collection, mass traces were on-line extracted for MS_01, 

MS_02, MS_03, MS_04 and MS_06 as listed in Table 1.  

Figure 4.11 shows the online mass extracts of fractionation applying MS trigger 
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carried out with optimum conditions of mass spectrometer. The MS signals were 10-

times higher than that in the previous experiment. The signal-to-noise ratio was 

satisfying. However, the resolution of the hyperoside and isoquercitrin peaks was lost 

due to band broadening in the splitter. Therefore, only one fraction of these 

substances was obtained. 

The chromatograms of the fractions re-injected into the analytical system are shown 

in Figure 4.12. The fraction of hyperoside and isoquercitrin was well resolved by the 

analytical chromatography. The obtained purity of the fractions could be determined 

to be 97% for rutin and 86% for biapigenin. The calculated recovery was 24% for 

rutin and 59% for biapigenin. 
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Figure 4.11:  Online mass extract of commercial St. John’s wort extract and the 

collected fractions (filled zones). (a) Detection channel 1, (b) Detection channel 2. 

Peaks 1: rutin, 2: hyperoside, 3: isoquercitrin, 4: astilbin, 5: quercitrin, 7: biapigenin. 

Fraction collection setting for detection channel 1: peak start and peak end 

thresholds 20,000 counts; for detection channel 2: peak start and peak end 

thresholds 2,000 counts 
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Figure 4.12: Re-injected fractions collected applying mass based trigger into the 

analytical system.  

4.2.3.2.3 Fractionation with MS trigger using silica-based RP-monolithic column 

Silica-based RP monolithic columns provide larger total porosity and thus higher 

permeability compared to packed RP columns. This allows operation at higher flow 

rates under moderate column back pressure. Therefore, it was expected that the use 

of this column for fractionation of St. John’s wort extracts could increase throughput 

of samples with high purity. 

Figure 4.13 depicts chromatograms of St. John’s wort separation on Luna C18(2) and 

on a silica-based RP monolithic column (Monolith). At the same flow rate and elution 

conditions, the separation on Luna was superior compared to that on Monolith 

(Figure 4.13a). The resolution of the rutin and hyperosid peaks was 2.3 for Luna and 

0.8 for Monolith. On Monolith, the resolution of these peaks decreased with 

increasing flow rate (Figure 4.13 b-d, gradient time was adapted to the flow rate). 
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Figure 4.13: Separation of St. John’s wort commercial extract (a) at 5 mL/min on 

Luna C18(2), (b) (c) (d) on Monolith at 5, 10 and 15 mL/min, respectively 

Fractionation of St. John’s wort extract on Monolith applying MS trigger is shown in 

Figure 4.14. As can be seen, the signals of online mass extracts were broader than 

the UV signal. The MS signal of peak 1 (rutin) overlapped partly with peak 2 

(hyperoside). Because the peak end threshold for rutin peak was set at lower value, a 

part of hyperoside peak was collected with rutin. Therefore, the purity of rutin was 

quite low (94%), as shown in re-injected fractions in Figure 4.15. Hyperoside and 

isoquercitrin peaks co-eluted even in the main flow (peak 2 and 3 in Figure 4.14, UV 

signals). The re-injection was performed on the Luna analytical column, because a 

respective monolithic column in analytical dimension was not available. All peaks 

collected with MS_02 could be resolved by this analytical column, as shown in Figure 

4.15. The purity of biapigenin was 100%. The recovery of rutin and biapigenin was 

determined to be both 100%. 
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Figure 4.14: UV chromatogram and mass based fractionation separated on Monolith 

at 5 mL/min. Gradient: 0-10 min: 15% B; 10-17 min: 15-60% B. Fraction collection 

settings: detection channel 1 for MS_01 and MS_03, peak start and peak end 

thresholds 20,000 counts; detection channel 2 for MS_02, peak start threshold 

200,000 and peak end thresholds 20,000 counts 
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Figure 4.15: Re-injection of fractions collected as in Figure 4.15. 

In order to increase the throughput, it was attempted to carry out fractionation at a 

column flow rate of 10 mL/min. The separation time was shortened to 6 min (Figure 

4.16). The resolution of rutin and hyperoside was comparable to the separation with 

the same flow rate but was completed in 9 min run time, as depicted in Figure 4.14. 

The peak end threshold of rutin fractionation was set approximately 2/3 from peak 

maximum, so that contamination with the next peak could be avoided (Figure 4.16b). 

Therefore the purity of this fraction was 100% (Figure 4.16c), but the recovery was 

only 24%. The purity of biapigenin was only 86%, because a quite concentrated rutin 

peak remained in the capillary between the switching valve and drop former due to 

incomplete fractionation of the previous peak (carry-over effect). This problem could 

be solved, if the option in the fractionation parameter “collect outside peak yes” is 
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implemented. However, a large number of fraction collection tubes will be needed to 

collect the eluents between the rutin and biapigenin fraction and this complicates 

identification of the correct fractions. 

550

U
V

 2
7
0
 n

m
 

(m
A

U
)

1.4

MS_01

MS_06

C
o

u
n

ts
 X

 1
0

6 TIC

Biapigenin
Rutin 200-700 m/z

0 2 4 5 min

0 5 10 15 20

200

m
A

U

min

Rutin
Biapigenin(c)

(b)

(a)
550

U
V

 2
7
0
 n

m
 

(m
A

U
)

1.4

MS_01

MS_06

C
o

u
n

ts
 X

 1
0

6 TIC

Biapigenin
Rutin 200-700 m/z

0 2 4 5 min

1.4

MS_01

MS_06

C
o

u
n

ts
 X

 1
0

6 TIC

Biapigenin
Rutin 200-700 m/z

0 2 4 5 min0 2 4 5 min

0 5 10 15 20

200

m
A

U

min

Rutin
Biapigenin(c)

0 5 10 15 20

200

m
A

U

min

Rutin
Biapigenin(c)

(b)

(a)

Figure 4.16: Fast chromatography and fractionation of St. John’s wort extract on 

Monolith at 10 mL/min. (a) UV chromatogram, (b) TIC, online mass extract and 

collected fraction (filled zones), (c) re-injection of the fractions on Luna C18(2) 

analytical dimension at flow rate 1.7 mL/min. Gradient program for fractionation: 0-2.5 

min 15% B; 2.5-6 min 60% B, fraction collection setting: detection channel 1 (MS_01) 

peak start threshold 20,000 counts, peak end threshold 500,000; detection channel 2 

(MS_06) peak start and peak end threshold 20,000 counts. 

4.2.4 Conclusion 

The optimized APS is suitable for the fully automated fractionation of active 

ingredients of St. John's wort. Fractionation was carried out with UV trigger, MS 

trigger and simultaneous UV and MS trigger. Recoveries were in the range 63 to 

100%, whilst the fraction purity was between 78 and 100%. For completely separated 

peaks, obtained purities approach 100%. Lower purity values are due to either 

incomplete chromatographic separation of the compounds (lower selectivity) or carry-

over of previous peak caused by incomplete fraction collection. 
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4.3 Fractionation of degradation products from active ingredients 

in a transdermal delivery system drug 

4.3.1 Introduction 

This study was designed to implement automated fractionation of degradation 

products from the active ingredients present in a transdermal drug delivery system 

(TDS). The TDS contained 2 active ingredients at a markedly different content. Both 

active ingredients are natural substances, but their identity cannot be disclosed for 

the sake of the collaborator’s interests. The related degradation products were 

formed during 13 month storage of this formulation at 40 °C. In order to identify the 

structures of the related degradation products by NMR, it was necessary to obtain a 

sufficient quantity of highly pure fractions of each substance.  

4.3.2 Experimental 

4.3.2.1 Chemicals and materials 

All reagents used were of analytical grade. Acetonitrile and methanol were purchased 

from Sigma-Aldrich (Steinheim, Germany), triflouroacetic acid (TFA) from Fluka 

(Buchs, Switzerland). High-purity water was obtained from a Purelab Ultra system 

(ELGA, Celle, Germany). TDS drugs containing active ingredients A and B were from 

Novosis (Munich, Germany) 

The semi-preparative separation and fractionation were performed in a Synergi RP-

Polar column (80 Å, 4 µm, 150 x 10 mm i.d., Phenomenex, Torrance, CA).  

Analytical HPLC separations or re-injection of the fractions were carried out on a 

Synergi RP-Polar column (80 Å, 4 µm, 150 x 4.6 mm i.d., Phenomenex, Torrance, 

CA). 

4.3.2.2 Instrumental Setups 

The instrumental setups for fractionation using optimized APS and for re-injection of 

the fractions are described in Chapter 2. 

4.3.2.3 Sample preparation and conditions for separation and fractionation 

10 TDS samples, containing 0.4% active ingredient A and 11% active ingredient B 
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(identity of active ingredients confidential) were extracted in 250 mL acidic 

acetonitrile/ 0.10% hydrochloric acid by slow shaking overnight followed by 4 h 

sonication. This stock solution contained 0.17 mg mL-1 active ingredient A and 4.62 

mg mL-1 active ingredient B . For HPLC injections, 12 mL of this solution were diluted 

with 88 mL water containing 0.025% TFA and then filtered through a 0.45 µm Teflon 

filter. The injection volume was 1000 µL. Purification using the 150 x 10 mm i.d. 

Synergy RP-polar column was performed by isocratic elution at 12% acetonitrile in 

0.025% aqueous TFA for 5 min, followed by a gradient of 12-23% acetonitrile in 7 

min, and finally 23-50% acetonitrile in 1.5 min at a flow-rate of 5.7 mL/min and 25 °C. 

Diode array spectra were recorded and the elution profile was monitored at 205 nm. 

The settings for mass spectrometric detection were as follows: block source 

temperature, 300 ºC; needle voltage 2 kV; cone voltage 30 V  (positive mode); scan 

time: 1 s; make-up flow, 200 µL min-1, except from 9-11 min 300 µL min-1; make-up 

eluent, 79.98% water/0.02% TFA/20% acetonitrile. The settings for fraction collection 

with photometric trigger were as follows: peak start threshold, 4 mAU; peak end 

threshold, 2 mAU; peak start slope 3 mAUs-1; peak end slope, -2 mAUs-1. The 

settings for MS trigger were: on-line extracted mass traces for m/z 218±0.5, 332±0.5, 

and 291±0.5.; peak start threshold, 250,000 counts;  peak end threshold, 150,000 

counts. The conditions for analytical re-chromatography on the 150 x 4.6 mm 

Synergy column were the same as for fractionation, except for the flow rate, which 

was 1.2 mL min-1 and the injection volume, which was 50 µL. 

4.3.3 Results and discussions 

4.3.3.1 Optimization of the separation 

To separate the substances in the TDS containing the 2 active ingredients as well as 

the degradation products, a semipreparative polar reversed-phase column was 

selected. The separation was carried out using the instrumental setup described 

above with an acetonitrile gradient in water containing 0.025% trifluoroacetic acid. 

The separation of the sample was first carried out with eluent containing acetonitrile 

and water titrated with phosphoric acid at pH 2.5 and 5 mM TEA. Because this eluent 

is not suitable for detection by mass spectrometry (it builds a salt tri-ethylammonium 

phosphate), the use of TEA was then not considered. Furthermore, separation with 

eluent adjusted to pH 2.5 with commonly used additives in HPLC-MS such as formic 
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acid and TFA was carried out. No retention was observed by using formic acid as 

additive. Figure 4.17 compares the separation at pH 2.5 using phosphoric acid and 

TFA. It is apparent that useful selectivity difference could be obtained by changing 

the additive. Peaks 1, 2 and 3 were the degradation products to be collected. TFA 

was preferred, first because it is a volatile acid, second because the obtained peak 

shapes were superior and third because the substance to be collected (peak 2, 

degradation product 2) did not elute next to the major compound active ingredient B.  
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Figure 4.17: Separation of TDS sample on the analytical system using eluent 

containing phosphoric acid and TFA both at pH 2.5. Peak 1: degradation product 

(DP) 1, 2: DP2, 3: active ingredient A, 4: active ingredient B, 5: DP3. 

Figure 4.18 shows separations performed on the semi-preparative Synergi RP-Polar 

column at different injection volumes. The resolution decreased with increasing 

injection volume. However, up to injection volume of 1000 µL, the resolution of peaks 

of degradation products was satisfying. 
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Figure 4.18: Separation of TDS sample on the semi-preparative APS at different 

injection volumes. Peak identifications see Figure 4.17. 
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4.3.3.2 Fraction collection and determination of purity and recovery 

The fraction collection was performed with MS and UV trigger using 2 detection 

channels (channel evaluation: ALL). Therefore, only desired degradation products 

DP1, DP2 and DP3 were collected. Detection channels 1 and 2 were used for UV 

trigger at 205 nm and for MS trigger, respectively.

Figure 4.19 shows the UV chromatogram and the online mass extracts for 3 

substances to be collected. As can be seen, the separation was excellent and the 

peaks of the three substances of interest were completely collected. Figure 4.20 

shows the chromatogram from the injection of TDS sample into the analytical system 

and the re-injected fractions. The purity was determined to be 100% for DP1 and 

DP2 and 98.7% for DP3. It is not clear, why DP3 was contaminated with a small 

amount of active ingredient B. However, its purity was still >98%. The recovery of 

desired compounds was calculated to be 99.6% for DP1, 100% for DP2 and 97.8% 

for DP3. 
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Figure 4.19: UV chromatogram and online mass extract for fractionation of 

degradation products in thermal stressed TDS sample containing 2 active ingredients 

with simultaneous UV and MS trigger (filled zones). Peak 1: degradation product 1 

(DP1, m/z 219), 2: DP2 (m/z 333), 3: active ingredient A, 4: active ingredient B, 5: 

DP3 (m/z 292). 
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Figure 4.20: UV chromatograms of TDS sample injected into the analytical system 

and re-injected fractions of TDS sample. Injection volume was 50 µL each. Peak 

identifications see Figure 4.19. 

Figure 4.21 shows the UV spectra of the compounds in TDS sample. It is evidenced 

that the UV spectra of DP1 and DP3 are similar to the UV spectrum of active 

ingredient B. However, it became obvious in the preliminary study that only DP2 and 

DP3 were observed in the TDS sample containing only active ingredient B. 

Degradation product DP1 could be a degradation product from active ingredient B in 

presence of active ingredient A, since their UV spectra were very similar. 
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Figure 4.21: UV spectra of active ingredient B, active ingredient A and 3 degradation 

products (DP1, DP2, and DP3) formed in thermal stressed TDS samples. 
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Isolation of at least 1 mg each degradation products was necessary in order to study 

the structure of these substances by NMR spectroscopy. Table 4.2 describes how 

many injections were needed to obtain this amount. The calculation was based on 

the assumption that the peaks of these degradation products exhibited identical 

response factor as the peak of active ingredient B, since it is not possible to obtain 

reference standards for these substances. Injection of 1000 µL sample into APS 

contained 554 µg of active ingredient B. Considering the relative peak areas of active 

ingredient B and the degradation products, at least 1 mg of each degradation product 

was collected from 153 injections for DP1 and DP2 and from only 44 injections for 

DP3. Operation of the APS in for 7 days with 22 injections per day was required. 

Table 4.2: Calculation of chromatographic runs needed to collect each 1 mg 

degradation products. Injection of 1000 µL sample contained 554 µg of active 

ingredient B. 

 % area 

µg 

substance 

per run 

Injections 

for 1 mg 

substance 

Volume 

fraction 

(mL) 

Total 

volume 

(mL) 

Active 

ingredient B 93.0 554    

DP 1 1.1 6.6 153 2.0 305 

DP 2 1.1 6.6 153 2.7 412 

DP 3 3.8 22.6 44 4.3 190 

4.3.4 Conclusions 

APS is applicable for the fully automated, unattended fraction collection from 

hundreds of injections using targeted UV and mass trigger. Minor components can be 

isolated from a large excess of major components using APS with purity and 

recovery higher than 98%. The isolated degradation products in the milligram range 

could be successfully applied for structural elucidation by NMR spectroscopy. 
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4.4 Fractionation of toxic gliadin from European wheat extract 

4.4.1 Introduction 

Gliadin is the ethanol soluble fraction of gluten. Another major protein fraction of 

gluten is glutenin [8]. Gluten is defined as the rubbery protein mass that remains 

when dough is washed to remove starch [8]. The soluble gliadin comprises mainly 

monomeric proteins, whilst the insoluble glutenin contains aggregated proteins [8]. 

Glutens are present in wheat, barley, and rye. Some people are sensitive to glutens 

due to the coeliac-active factor contained in gliadin. This causes the so called coeliac 

disease [9]. 

Coeliac disease is an immune-mediated disorder that affects primarily the 

gastrointestinal tract [9]. It is characterized by chronic inflammation of the small 

intestinal mucosa that may result in atrophy of intestinal villi, malabsorption, and a 

variety of clinical manifestations, which may begin in either childhood or adult life [9]. 

Intestinal symptoms can include diarrhea, abdominal cramping, pain, and distention, 

and untreated celiac disease may lead to vitamin and mineral deficiencies, 

osteoporosis, and other extra-intestinal problems [9]. 

The aim of this study is to perform fractionation of γ-gliadin, one of the toxic gliadins. 

The fractionation was carried out utilizing the selective mass-based trigger. 

4.4.2 Experimental 

4.4.2.1 Instrumental setup 

Fractionation and HPLC separations were performed on an analytical system 

comprising a binary analytical high-pressure gradient pump (Model Summit P680A 

HPG-2, Dionex), a degassing unit (Model Degasys DG-1210, Dionex), an analytical 

auto-sampler with integrated temperature control (Model Summit ASI-100T, Dionex), 

a dual wavelength UV detector (Model 2487, Waters, Milford, MA), a quadrupole 

mass spectrometer with an electrospray interface (Model MSQ), a high-pressure 

pump for delivering make-up flow (Model AXP-MS), and a fraction collector holding 7 

mL tubes (Model Foxy Jr., Isco, Los Angeles, CA, USA). The system was fully 

controlled by Chromeleon software 
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The setup of the purification system incorporating the home-made splitting assembly 

is the same as depicted in Figure 1.7. However, the dimensions of the capillaries 

were optimized for fractionation using the analytical HPLC system. Since only 

columns in analytical dimension (4.6 mm i.d.) were available. The capillary 

dimensions were as follows: capillary 1 (PEEK) (a) 1,000 x 0.25 and (b) 2,500 x 0.38 

mm i.d., capillary 2 (fused silica) 100 x 0.05 mm i.d., capillary 3 (PEEK) 200 x 0.13 

mm i.d. 

4.4.2.2 Chemicals and materials 

All reagents used were of analytical grade. Acetonitrile and methanol were purchased 

from Sigma-Aldrich (Steinheim, Germany), triflouroacetic acid (TFA) from Fluka 

(Buchs, Switzerland). High-purity water was obtained from a Purelab Ultra system 

(ELGA, Celle, Germany). Gliadin extract from European wheat IRRM-480 was 

obtained from Institute for Reference Materials and Measurements IRRM (Belgia). 

The separation and fractionation were performed either in a Vydac C4 or C18 protein 

column (300 Å, 5 µm, 250 x 4.6 mm i.d., Grace, Hesperia, CA).  

4.4.2.3 Conditions for HPLC separation and fractionation of gliadins 

HPLC condition for fractionation and re-injection of the fraction: 

Mobile phase (A) H2O + 0.05% TFA and (B) ACN + 0.05% TFA; flow rate 2 mL/min; 

temperature 50 °C, detection 3D spectra and 210 nm, gradient for fractionation and 

re-injection 25-50% B in 20 min. 

MS conditions for fractionation: 

The electrospray source was operated at 3 kV needle voltage and 300 ºC probe 

temperature. The cone voltage was +50 V. Make-up eluent was H2O/ACN/TFA: 

70/30/0.05, and make-up flow 150 µL/min. Full scan acquisition between m/z 200-

2000 with a scan time of 1 sec was performed.  

Fraction collection settings: 

For mass targeted fraction collection, mass trace was on-line extracted for m/z 

1381±0.5 and used as data for peak detection and automated triggering. Peak start 

threshold was 200,000 counts and end threshold 100,000 counts. 
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4.4.3 Results and discussion 

Figure 4.22 shows the separation of gliadins in wheat extract on a C4 protein column 

25 cm length (Vydac). The sample is quite complex, so that analysis time of 80 min 

was not sufficient to obtain adequate separation. The mass spectrum of γ-gliadin, one 

of the toxic gliadins, is shown in Figure 4.22b. 

0 10 20 30 40 50 60 70 80

0

250

In
te

n
s
it

y
 

1200

1100 1300 1500 1700

0

(a) (b)

γγγγ-gliadin

U
V

 2
1
0

 n
m

 [
m

A
U

]

0 10 20 30 40 50 60 70 80

0

250

In
te

n
s
it

y
 

1200

1100 1300 1500 1700

0

(a) (b)

γγγγ-gliadin

0 10 20 30 40 50 60 70 80

0

250

0 10 20 30 40 50 60 70 80

0

250

In
te

n
s
it

y
 

1200

1100 1300 1500 1700

0

In
te

n
s
it

y
 

1200

1100 1300 1500 1700

0

(a) (b)

γγγγ-gliadin

U
V

 2
1
0

 n
m

 [
m

A
U

]

Figure 4.22: (a) UV chromatogram of gliadins from European wheat (IRRM-480); 

Vydac C4, 250 x 4.6 mm I.D. 5 µm 300 Å; flow rate: 1 mL/min; gradient, A: H2O + 

0.05% TFA, B: ACN + 0.05% TFA, 20-50% B in 0-80 min, (b) Mass spectrum of γ–

gliadin. 

Fractionation of γ-gliadin was carried out using targeted mass trigger (Figure 4.23). 

One of the multiply charged masses (Figure 4.22b) could be selected as a mass 

target (1381 m/z). The separation was performed on a C18 protein column with 25 

cm length, which exhibited inferior selectivity than the C4 column, at a flow rate of 2 

mL/min and shorter time (20 min). The target peak co-eluted with the previous peak. 
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Figure 4.23:  Fractionation of γ-gliadin. (a) TIC and on-line mass extract for fraction 

collection, (b) UV chromatogram, (c) re-injected fraction 

4.4.4 Conclusion 

Proteins, which exhibit series of multiply charged mass signals, can be successfully 

fractionated by targeted mass triggering. Mass triggering maximizes the recovery, 

however, the purity was low due to partly co-eluting peaks. 

4.5 Conclusions of APS applications 

The optimized automated purification system (APS) is applicable to the fully 

automated fraction collection of pharmacologically and medicinally relevant 

components from plant extracts. The fractionations were carried out applying non-

selective photometric trigger or targeted mass spectrometric trigger or simultaneous 

photometric and mass spectrometric trigger. In this work, the APS system was 

utilized for fractionation of precious ingredients in St. John's wort extract, minor 

degradation products from 2 active compounds in a pharmaceutical formulation, and 

toxic protein gliadin.  

The isolated ingredients in St. John’s wort extract could be used to further study the 

biological activity of the compounds. The fractionated degradation products will be 
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used for structural elucidation by NMR spectroscopy. The isolated gliadins will be 

utilized for further identification by peptide fragment fingerprinting. 

Sufficient peak resolution (≥1.5) allows for achieving 100% purity and recovery. 

Lower values are due to incomplete chromatographic separation of the compounds 

or incomplete fractionation of previous peaks, so that impurities due to carry-over are 

occurred. 
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Chapter 5

Characterization of St. John’s Wort Extracts from 

Accelerated Solvent Extraction (ASE) 

5.1 Introduction 

Several methods have been used to extract active compounds from St. John’s wort 

(Hypericum perforatum L.) such as Soxhlet extraction [1], supercritical fluid extraction 

[2-5], pressured water extraction [6], ultrasonically assisted extraction [7] and 

accelerated solvent extraction [1, 7]. 

Comparisons of different extraction methods for the extraction of some active 

compounds from St. John’s wort have already been reported [1, 7]. According to the 

authors the content of hypericins from St. John’s wort obtained by ASE was little 

higher than that obtained by Soxhlet extraction or indirect sonication. The optimal 

conditions for ASE extraction were 40 °C and 100 bar, using methanol as the 

extraction solvent [1, 7]. These results are in agreement with a study on the 

optimization of extraction conditions for active components from St. John’s wort using 

response surface methodology [8]. 

The aim of this work was characterization St. John’s wort ASE extracts performed 

using different extraction procedures, identification of biological active constituents, 

analysis and quantification of the extracts.  

5.2 Experimental 

5.2.1 Instrumental Setup 

HPLC-UV-MS analysis of the extracts was performed using a Dionex Summit 

analytical HPLC system (Dionex, Germering, Germany) with ASI 100T auto-sampler; 

pump P680; column oven TCC 100; UVD 340U with analytical detector cell; and 

weight spectrometer MSQ (ThermoFinnigan). Data acquisition and analysis were 

performed with Chromeleon version 6.60 SP2. 
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5.2.2 Columns 

Luna C18(2) 100 Å 5 µm, 150 x 5.6 mm i.d. (Phenomenex, Torrance, CA) was used 

for identification and quantification of the extract (section 5.3.1 and 5.3.2). Acclaim 

120 Å C18 5 µm, 150 x 5.6 mm i.d (Dionex, Sunnyvale, USA) was used for 

comparison with the Luna column (section 5.3.3). 

5.2.3 Sample preparation 

5.2.3.1 Extraction procedures 

The ASE extracts of St. John’s wort were obtained from Dionex ASE Group (Salt 

Lake City, USA).  According to Dionex the extracts were prepared as follows: each 

33 mL cell of the ASE was charged with 5 grams of plant material (refers to raw 

sample) mixed in hydromatrix. The cell was fitted with a cellulose filter. The extraction 

was performed using the methods described in Table 5.1. 

Table 5.1: Methods for extraction of Hypericum perforatum by ASE.  

 Method 1 Method 2 Method 3 Method 4 

Pressure 1500 psi 1500 psi 1500 psi 1500 psi 

Temp (C) 100 100 100 100 

Static 5 min 5 min 5 min 5 min 

Cycles 1 2 2 1 

Flush 50% 50% 50% 50% 

Purge 120 sec 120 sec 120 sec 120 sec 

Solvent CH2Cl2 Ethyl acetate Acetonitrile Hexane 

The list of obtained samples and the extraction methods are depicted in Table 5.2. 

Nine different samples of plant material were extracted either by one single extraction 

step (sample 1 and 2) or several times applying a sequence of extraction methods 

named group extraction (sample 3-9). 

The obtained extracts were solvent free and dried. The weight of each dried extract 

(individual extraction steps and the sum) is depicted in Table 5.2. As several 

extraction procedures were repeated twice or three times, it can be seen that the 

repetition yielded varying amounts. The reason can be both sample in-homogeneity 

and experimental conditions. Further discussion will be mentioned in section 5.3.  
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Table 5.2: Extraction methods applied for the extraction of each sample of St. John’s 

wort and the preparation for HPLC analysis. Method number refers to Table 5.1. 

ASE extraction Preparation for HPLCSample 

Vial 

number

Method 

number 

Extract 

weight (g) 

Solvent Filtration/ 

Centrifug. 

Sample 1: extraction 1 12 3 0.2667 MeOH C 

Sample 2: extraction 1 

repeated 

21 3 0.8454 MeOH C 

4 1 0.3137 MeOH C Sample 3: 

group extraction 2 5 3 0.1998 ACN F 

10 1 0.2501 MeOH C Sample 4: 

group extraction 2 

repeated 

11 3 0.3044 MeOH F 

1 1 0.2131 MeOH C 

2 2 0.0684 MeOH C 

Sample 5: 

group extraction 3 

3 3 0.1512 ACN F 

7 1 0.2211 MeOH C 

8 2 0.0597 MeOH C 

Sample 6: 

group extraction 3 

repeated 9 3 0.1382 MeOH F 

13 4 0.1212 MeOH C 

14 1 0.0786 MeOH C 

15 2 0.0522 MeOH C 

Sample 7: 

group extraction 4 

16 3 0.1666 MeOH C 

17 4 0,1558 MeOH C 

18 1 0,0885 MeOH C 

19 2 0,0671 MeOH C 

Sample 8: 

group extraction 4 

repeated 

20 3 0,1126 MeOH C 

22 4 0,2621 MeOH C 

23 1 0,0789 MeOH C 

24 2 0,0418 MeOH C 

Sample 9: 

group extraction 4 

repeated in amber vials 

25 3 0,1506 MeOH F 
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5.2.3.2 Preparation for the analysis by HPLC–UV–MS 

Each extract from the sample of plant materials was re-constituted in 10 mL of MeOH 

(Table 5.2), except extracts from vial 3 and from vial 5, which were dissolved in 10 

mL of acetonitrile (ACN).  

After centrifugation and decantation, an aliquot of these solutions was diluted with 1 

volume of water containing 0.1% formic acid and again filtered or centrifuged and 

decanted (Table 5.2, last column). 

5.2.3.3 Conditions for the analysis by HPLC–UV–MS 

In order to determine the optimal HPLC parameters, optimization of eluent 

composition and gradient profile was performed with sample 25 which was 

considered representative. The optimized conditions are as follows: 

Mobile phase: (A) H2O + 0.3% formic acid, (B) ACN/MeOH: 9/1 +0.3% formic acid;  

Gradient method: see Table 5.3 

Flow rate: 1mL/min. 

Detection: 3D spectra and 270 nm. 

MS: Block source temp: 500 °C; Cone voltage –100 V; weight spectrum in centroid, 

scan time 0.5 sec; TIC 100-700 m/z. 

Table 5.3: Gradient profile for HPLC 

Time (min) B (%) 

0 20 

5 20 

23 21 

26 45 

30 60 

35 100 

41 100 

42 20 

48 20 
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5.3 Results and discussion 

5.3.1 Identification of Constituents in St. John’s Wort ASE Extracts 

For this experiment the St. John’s wort ASE extract from vial 25 (Table 5.2, sample 9, 

group extraction 4 repeated in amber vial) prepared as described in Table 5.2 was 

selected. 

Figure 5.1 shows the MS and UV chromatograms of the Hypericum extract from vial 

25 (extraction solvent ACN) re-constituted in MeOH. The MS detection yielded more 

peaks than UV. Substances identified from the detected m/z are listed in Table 5.4. 

Hyperoside and isoquercitrin are two isomers (see Figure 5.1b). These two 

substances could not be sufficiently resolved with analytical HPLC. 

The MS chromatogram (A) showed a peak with the molecular mass of hyperforin 

(m/z 535) at ca. 40 min retention time, where no peak was obtained in the UV 

chromatogram detected at 270 nm. This indicated that hyperforin could be present 

only in small amount in the extract, since hyperforin should be detectable at 

wavelength between 270 and 284 nm [9, 10]. The possible reason is the loss of this 

substance during extraction because it is sensitive against high temperature and light 

[11, 12, 13], since the extraction was performed at 100°C. In a study it was reported 

that extraction of St. John’s wort by ASE performed using extraction solvent methanol 

at temperature of 40°C and 100 bar under light exclusion yielded 0.87 mg hyperforin 

per gram plant material [7].  
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Table 5.4: Substances identified in St. John’s wort extract from vial 25 and the 

corresponding m/z values 

Substance m/z Peak number 

Rutin 609 1 

Hyperoside 463 2 

Isoquercitrin 463 3 

Miquelianin 477  

Guaijaverin 449  

Astilbin 433  

Quercitrin 447 4 

Protohypericin 505 5 

Quercetin 301 6 

Biapigenin 537 7 
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Figure 5.1: Identification of compounds in St. John’s wort ASE extract. UV (a) and 

MS chromatograms (b) of sample 9 (vial 25, extraction solvent ACN) re-constituted in 

MeOH.  
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5.3.2 Characterization of ASE Extraction Methods 

Figures 5.2 to 5.10 show the UV chromatograms of all nine Hypericum samples. 

Each chromatogram is labeled depending on the extraction method as given in Table 

5.2. As listed in Table 5.2, most of the extracts were re-constituted in MeOH, except 

the extracts in vial 3 (sample 5, extraction method 3) and in vial 5 (sample 3, 

extraction method 3) which were re-constituted in acetonitrile. The quantitative yield 

of the ingredients will be further discussed in the following section. 

Figure 5.2 and 5.3 show the analysis of two samples extracted by ASE under 

identical conditions (sample 1 and 2). The samples were extracted by one single step 

using acetonitrile and re-constituted in MeOH. Both plant material samples exhibited 

different pattern. The substance quercetin was found only in one sample (sample 1). 

Peaks of all other substances in sample 1 were generally smaller than that in 

sample 2. 
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Figure 5.2: UV chromatogram of sample 1 (extraction 1). D refers to extraction 

method 3 with extraction solvent acetonitrile (Table 5.1). Peak identification: (1) rutin, 

(2) hyperoside, (3) isoquercitrin, (4) quercitrin, (5) protohypericin, (6) quercetin, (7) 

biapigenin.  
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Figure 5.3: UV chromatogram of sample 2 (extraction 1 repeated). Identification of 

chromatograms and peaks refer to Figure 5.2. 

The chromatograms of two samples extracted according to the protocol of group 

extraction 2 (Table 5.2) are shown in Figures 5.4 and 5.5. The samples were 

extracted first using dichloromethane (B) and then using acetonitrile (D). The ACN 

extract from sample 3 was re-constituted in ACN. Whilst the respective extract from 

sample 4 was re-constituted in MeOH. 

As can be seen, no peak was found in the extract using a non-polar extraction 

solvent dichloromethane (Figure 5.4B and 5.5B). The extract re-constituted in ACN 

(Figure 5.4D) exhibited lower peak area, larger peak width and asymmetric peaks for 

early eluted substances than that re-constituted in MeOH (Figure 5.5D). A possible 

reason is poorer solubility of these hydrophilic substances in ACN relative to that in 

MeOH. It was observed that the extract re-constituted in ACN showed a turbid 

suspension. Whilst the extract re-constituted in MeOH yielded a clear solution. 

Surprisingly, peak of the hydrophobic substance biapigenin from the ACN solution 

was higher than from MeOH. It could be assumed that biapigenin is more soluble in 

ACN than in MeOH.  
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Figure 5.4: UV chromatograms of sample 3 (group extraction 2). Chromatogram D: 

the extract was re-constituted in ACN. B and D refer to extraction method 1 

(dichloromethane) and 3 (acetonitrile), respectively (Table 5.1). Peak identification: 

(1) rutin, (2) hyperoside, (3) isoquercitrin, (4) quercitrin, (5) protohypericin, (6) 

quercetin, (7) biapigenin.  
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Figure 5.5: UV chromatograms of sample 4 (group extraction 2 repeated). 

Identification of chromatograms and peaks refer to Figure 5.4. 

Figure 5.6 and 5.7 show the analysis of two samples (sample 5 and 6) extracted by 

ASE under identical conditions. Both samples were extracted in 3 steps 

consecutively using extraction solvents dichloromethane, ethyl acetate and 

acetonitrile, as listed in Table 5.2. The extracts were re-constituted in MeOH, except 

the acetonitrile extract from sample 5 was re-constituted in ACN (Figure 5.6D). 

As also observed in sample 3 and 4, no peak was found in the extracts using 

dichloromethane. Chromatograms of both samples extracted using ethyl acetate 



Characterization of St. John’s Wort Extracts from Accelerated Solvent Extraction (ASE) 144

showed similar pattern (Figure 5.6C and 5.7C). However, the peaks of substances 

from the first sample are generally much higher than from the second sample. The 

peak shapes of substances in ACN extract re-constituted in ACN (Figure 5.6D) 

exhibited similar behavior as in previous extract (Figure 5.4D). 
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Figure 5.6: UV chromatograms of sample 5 (group extraction 3). B, C, and D refer to 

extraction method 1 (dichloromethane), 2 (ethyl acetate) and 3 (acetonitrile). Peak 

identification: (1) rutin, (2) hyperoside, (3) isoquercitrin, (4) quercitrin, (5) 

protohypericin, (6) quercetin, (7) biapigenin. Chromatogram D: the extract was re-

constituted in ACN.  
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Figure 5.7: UV chromatograms of sample 6 (group extraction 3 repeated). 

Identification of chromatograms and peaks refer to Figure 5.6. 
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Figures 5.8, 5.9 and 5.10 depict the analysis of three samples extracted 

consecutively in 4 steps according to Table 5.2 (group extraction 4). The extracts 

from sample 9 were collected in amber vials. 

The chromatograms from all samples showed a similar pattern for the individual 

steps. However, the peak areas of the substances from the samples extracted using 

identical methods were different. Peaks of substances of the extracts from sample 8 

were significantly higher than from other samples, although the extracts from sample 

9 were collected in amber vials. No peak was found in all hexane and 

dichloromethane extracts (chromatogram A). Substance quercetin was not found in 

all extracts. The peaks of rutin, hyperoside and isoquercitrin in the ethyl acetate 

extract were smaller than in the ACN extract, except in sample 8. However, 

biapigenin peaks in all ethyl acetate extracts was higher than in the ACN extract. 
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Figure 5.8: UV chromatograms of sample 7 (group extraction 4). A, B, C, and D refer 

to extraction method 4 (hexane), 1 (dichloromethane), 2 (ethyl acetate) and 3 

(acetonitrile). Peak identification: (1) rutin, (2) hyperoside, (3) isoquercitrin, (4) 

quercitrin, (5) protohypericin, (6) quercetin, (7) biapigenin.  
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Figure 5.9: UV chromatograms of sample 8 (group extraction 4 repeated). 

Identification of chromatograms and peaks as in Figure 5.8. 
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Figure 5.10: UV chromatograms of sample 9 (group extraction 4 repeated in amber 

vials). Identification of chromatograms and peaks as in Figure 5.8. 

5.3.3 Quantification of the extraction yields 

This section presents a discussion on the differences between the individual applied 

ASE procedures and the general ASE repeatability on a more quantitative basis.  

The dry mass of the extracts from individual extraction steps and the total extract 

mass are shown in Figure 5.11. The total extract dry mass was similar for almost all 

extraction procedures, except for extraction 1 and the repeated procedure. Except for 

extraction group 3, the dry mass from individual steps varied within repeated 
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extraction procedures. However, the pattern for three repeated extraction procedure 

for extraction group 4 was similar.  
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Figure 5.11: Mass of ASE extracts in individual extraction steps and the total weight 

for each sample. 

Table 5.5 shows the comparison of the total extract weight normalized by plant 

material weight and rutin content obtained from different ASE procedures. Rutin 

content in the extracts was determined by calibration of the peak areas using rutin 

standard substance. The obtained total extract dry mass per gram plant material 

except for extraction 1 was similar, as also depicted in Figure 5.11 for absolute total 

extract weight. However, these normalized values (between 84 and 111 mg/g plant 

material) were less than 50% of the value obtained using extraction solvent methanol 

(40°C, 100 bar) as reported by Smelcerovic et al. [8] (Table 5.5 last raw). 

Similar total rutin content within the repeated extraction procedures was observed in 

extraction 1 and group extraction 3, but not in other extraction procedures (Table 5.5 

third column). Total rutin contents normalized by plant material weight and by extract 

dry mass are depicted in Table 5.5 fourth and fifth columns, respectively. These 

values were normalized in order to compare these from different ASE extraction 

procedures and to compare these ASE procedures to the value obtained in the 

literature and obtained by analysis of a commercial extract. Total rutin contents per 

gram plant material were similar within the repeated extraction procedures, except in 

group extraction 2 and in one repeat in group extraction 4. The difference in rutin 

content normalized by extract weight is due to the inconsistency of the extract weight 
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from individual steps, as shown in Figure 5.11. As can be seen in Table 5.5, the 

highest total rutin content was achieved by ASE procedures from group extraction 4. 

Smelcerovic et al. reported results of active compound contents in St. John’s wort 

extracts obtained using different extraction devices [7]. They found that the highest 

amount of active compounds was achieved by using direct sonication. The results 

obtained by ASE using only methanol as extraction solvent (40°C, 100 bar) were 

comparable to that by Soxhlet extraction. However, Soxhlet extraction needs 

significantly longer extraction time (20 min by ASE compared to 24 h by Soxhlet). 

Rutin content obtained by ASE reported by Smelcerovic et al. [7] was 2.0 mg/g plant 

material. This value is 25% higher than that obtained in this study.  

Comparing rutin content from ASE to that from a commercial St. John’s wort extract 

obtained as a coating tablet containing 600 mg extract (Neuroplant 1x1, Schwabe 

Arzneimittel, Karlsruhe, Germany) (Table 5.5 before last row), it is obvious that rutin 

amount per 1 gram extract in Neuroplant was comparable with the highest content 

obtained in one of group extraction 4. However, the amount from ASE was not 

reproducible.  
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Table 5.5: Total extract dry mass and rutin content obtained using different ASE 

procedures compared to literature results and a commercial St. John’s wort extract. 

Total extract 

(mg/g plant 

material) 

Total rutin 

content 

(µg) 

Rutin content 

(mg/g plant 

material) 

Rutin content

(mg/g 

extract) 

Extraction 1 53 2920 0.6 10.9 

Extraction  1 repeated 169 2762 0.6 3.3 

Group extraction 2 a) 103 1518 0.3 3.0 

Group extraction 2 

repeated 

111 4213 0.8 7.6 

Group extraction 3 a) 87 4556 0.9 10.5 

Group extraction 3 

repeated 

84 4933 1.0 11.8 

Group extraction 4 84 5346 1.1 12.8 

Group extraction 4 

repeated 

85 7872 1.6 18.6 

Group extraction 4 

repeated in amber vials 

107 6414 1.3 12.0 

Neuroplant 1x1  

(600 mg extract) 

- 9860 - 16.4 

ASE extraction using 

methanol [7] 

240  2.0  

a) Acetonitrile extract (extraction method 3) from these groups was re-constituted in 

acetonitrile 

Because only rutin was available as reference substance for the calibration of the 

analytical HPLC method, peak areas for five compounds of interest (rutin, 

hyperoside, isoquercitrin, protohypericin, biapigenin) were monitored for the two 

extraction steps (methods) in all extraction sequences (group extractions) that 

yielded analyzable amounts of the mentioned substances. These methods comprised 

ethyl acetate (method 2) or acetonitrile (method 3) as extraction solvents. The peak 

areas are given in bar charts and depict the results from the two individual extraction 

steps (if both were applied). The third bar chart shows the sum of peak areas from 
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these two steps to monitor the total extraction yield of a distinct sequence. The 

asterisks mark the two cases where the extracts were re-constituted with acetonitrile 

instead of methanol. Below each figure of this type, a second bar chart is given to 

monitor the peak areas normalized to the extract dry mass of the individual extraction 

steps (see Table 5.2 and Figure 5.11). This additional representation was made since 

marked differences of the absolute extraction yields were observed, even for group 

extraction repetitions (lower extraction amounts should result in smaller peak areas).  

From Figures 5.12 to 5.21 it can be concluded that both the total extraction yield of 

each individual substance and the ratio between the extraction yields with ethyl 

acetate and acetonitrile varied when experiments were repeated. The variations in 

the total yield are still observed when normalized peaks areas are displayed (see 

extraction 1 and group extraction 4). However, with the normalized diagrams the 

pattern (ethyl acetate yield – acetonitrile yield – total yield) was copied in the 

repetitive experiments for all selected ingredients. 

With respect to the comparison of methanol and acetonitrile to re-constitute the dried 

extracts (see asterisks), no consistent results were obtained. Whilst acetonitrile 

yielded smaller normalized peak areas for rutin, hyperoside and isoquercitrin, 

protohypericin and similar peak areas for biapigenin with group extraction 3, the 

normalized peak areas with group extraction 2 were smaller from the methanol 

solution for all substances except for rutin. For chromatographic reasons, the general 

preference given to methanol was mainly motivated by the better peak shapes 

obtained for the early eluting compounds (see chromatograms C and D in Figure 5.6) 

due to the solubility of these substances in methanol. 

When the different ASE procedures are compared for their total extraction yield, the 

most advantageous protocol was group extraction 4 (hexane, dichloromethane, ethyl 

acetate, acetonitrile) followed by group extraction 3 (dichloromethane, ethyl acetate, 

acetonitrile). The single acetonitrile extraction yielded smaller extracted amounts than 

the two step protocol dichloromethane and acetonitrile. The obvious reason for the 

success of a protocol starting with a non-polar extraction step could be a kind of pre-

washing effect. The non-polar solvents extract the hydrophobic ingredient (e.g. lipids) 

from the sample and improve the wetting of the plant material surface by the polar 

solvents ethyl acetate and acetonitrile.  

Comparing the extraction yield ratio of ethyl acetate and acetonitrile, it can be seen 

that ethyl acetate resulted in higher normalized peaks for all substances. This could 
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be attributed to the fact that the ethyl acetate step was always prior to the acetonitrile 

step and both solvents seem to be appropriate to extract the compounds of interest. 

In other words, the compounds were mostly, but not completely extracted with ethyl 

acetate. However, the predominance of the normalized peak areas from the ethyl 

acetate extract increased from rutin to biapigenin with increasing hydrophobicity of 

the compounds. Ethyl acetate solubility relative to acetonitrile solubility increases with 

the hydrophobicity of the solute. 

It can be concluded that ASE should be carried out with the protocol of group 

extraction 4; the dried extracts should be re-constituted in methanol for re-injection 

into the APS. They could be combined from the ethyl acetate and the acetonitrile 

extract, since both chromatograms turned out to be very similar (see Figures 5.8 to 

5.10). However, the ASE method reproducibility appeared to be not very satisfying, 

as can be seen in the variation in dry mass and HPLC results for repetitive ASE 

experiments. 
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Figure 5.12: The rutin content in all samples. (*) re-constituted in ACN.  
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Figure 5.13: The content of rutin in all samples, normalized by the dry mass. (*) re-

constituted in ACN 
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Figure 5.14: The hyperoside content in all samples. (*) re-constituted in ACN 
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Figure 5.15: The normalized yield of hyperoside in all samples. (*) re-constituted in 

ACN 
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Figure 5.16: The isoquercitrin content in all samples. (*) re-constituted in ACN 
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Figure 5.17: The normalized isoquercitrin content in all samples. (*) re-constituted in 

ACN 
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Figure 5.18: The content of protohypericin in all samples. (*) re-constituted in ACN 
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Figure 5.19: The yield of protohypericin in all samples normalized by the dry mass. (*) 

re-constituted in ACN 
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Figure 5.20: The content of biapigenin in all samples. (*) re-constituted in ACN 
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Figure 5.21: The yield of biapigenin in all samples normalized by the dry mass. (*) re-

constituted in ACN 

5.3.4 Comparison of the Luna and Acclaim columns 

Figure 5.22 shows the UV chromatograms and gradient profile in Luna and Acclaim 

columns.  Comparing both analytical columns, under identical conditions no 

pronounced difference was encountered. However, Acclaim exhibited more retention 

due to its higher hydrophobicity, as proved by Engelhardt test for both columns 

(substances toluene and ethylbenzene eluted in Acclaim later than in Luna). 

The sharp peak of protohypericin on Acclaim compared to Luna is due to the elution 

of the peak in a steep gradient in the case of Acclaim, whilst in the flat part of the 

gradient in the case Luna. Considering the selectivity of small peaks between 5 and 

17 minutes (Figure 5.23) in Luna and Acclaim, it turned out that peaks 3, 5 and 6 

were better resolved with Luna, whilst peak 2 and 8 were better resolved with 

Acclaim. 
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Figure 5.22: UV Chromatograms and gradient profile in between Luna (A) and 

Acclaim (B) columns. 
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Figure 5.23: Zoomed chromatograms between 5 and 17 minutes.  
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5.4 Conclusions 

St. John’s wort extracts obtained from ASE applying different extraction protocols 

using the extraction solvents dichloromethane, ethyl acetate, acetonitrile and n-

hexane were identified, characterized and quantified. Different samples of plant 

material were extracted either by one single extraction step or several times applying 

a sequence of extraction methods. 

The active substances of St. John’s wort rutin, hyperoside, isoquercitrin, quercitrin, 

quercetin, protohypericin and biapigenin could be identified by HPLC analysis using 

UV and MS detectors. The two isomers hyperoside and isoquercitrin could not be 

completely resolved nor with Acclaim, neither with Luna column. In general, the 

resolution of the whole spectrum of ingredients was satisfying. However, not all 

St. John’s wort ingredients reported in literature could be traced. Quercetin was 

detected in a considerable quantity only in 2 ASE extracts, whilst hyperforin might be 

lost during or after the extraction due to its sensitivity against high temperature and 

light.  

Accelerated solvent extraction should be carried out with the protocol of group 

extraction 4: four consecutive extractions applying hexane, methylene chloride, ethyl 

acetate, and acetonitrile. It appears that extraction with non-polar solvents such as 

hexane and methylene chloride initially removed the matrices from the plant material 

notably the lipophilic substances, but did not extract the desired biologically active 

ingredients. The dried extracts should be re-constituted in methanol for analysis 

using HPLC or for fractionation applying APS. However, the ASE method 

reproducibility appeared to be not very satisfying, as can be seen in the variation in 

dry mass and HPLC results for repetitive ASE experiments. 

Comparing the Acclaim and Luna analytical columns, both columns were generally 

comparable under identical conditions. No pronounced difference was encountered, 

except that Acclaim exhibited more retention than Luna.  
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Chapter 6

Method Development for the Analysis and Quantification of 

Polycyclic Aromatic Hydrocarbons (PAHs) and Small 

Phenols in Road Asphalts Containing Tar 

6.1 Introduction 

In the industrialized countries the quality of the infrastructure for the road traffic is 

very important. Over the last 50 years many new roads and highways have been 

constructed. Road pavements contain approx. 95% aggregate and 5% binder. In the 

past years coal tar pitch was used as binder for road pavement or so-called asphalt 

pavement. Today the binder for asphalt pavements is served from bitumen.  

Asphalt containing tar is classified as a hazardous waste [1]. This contains toxic and 

carcinogenic compounds at high concentration levels, especially polycyclic aromatic 

hydrocarbons (PAHs), e.g. benzo[a]pyrene and phenols, which are dangerous for the 

environment and health, and contaminate groundwater reservoir [1]. Asphalt 

containing tar should be distinguished from bitumen asphalt achieved from crude oil 

distillation [2, 3, 4]. Since 1983 a clear terminology is given by the German standard 

DIN 55946-1 [2] and DIN 55946-2 [3] to distinguish bitumen from tar. At the same 

time, the use of tar products for road construction materials was prohibited in many 

countries. 

Although coal tar contains numerous hazardous substances at different and varying 

concentration levels, it has become common to analyse a set of representative PAHs 

and phenols for quantitative chemical analyses. A frequently used set of compounds 

has been proposed by the US Environmental Protection Agency (US-EPA) [5]. 

The aim of this work was to develop sample preparation and HPLC methods for the 

quantification of polycyclic aromatic hydrocarbons (PAHs) and small phenols in road 

asphalts containing tar. In addition to a successful extraction of the hazardous 

substances from the asphalt, an effective sample preparation considering the matrix 

was essential. 
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6.2 Experimental  

6.2.1 Materials and Chemicals 

The original road surface sample was crushed to 0/25 and reduced according to 

EN932-2 (prepared by Juchem Company, Niederwörresbach, Germany). An aliquot 

of this sample was milled to a fine powder. All chemical used were of analytical 

grade. A standard reference mixture of 16 EPA-PAHs was purchased from Supelco 

(Pennsylvania, USA). 

The column used for the PAH analysis was a Nucleodur C18 Gravity, 5 µm, 150 x 4.0 

mm i.d. (Macherey & Nagel, Düren, Germany). A ProntoSil C18 ACE EPS column 

(120Å, 3 µm, 150 x 4.0 mm id) from Bischoff Chromatography (Leonberg, Germany)) 

was used for phenol analysis. 

6.2.2 HPLC Apparatus and Elution Conditions 

HPLC analysis for PAHs was performed using a Waters Alliance system (Waters, 

Germany). Phenol analysis was carried out using a Dionex Summit system (Dionex, 

Germering, Germany). Both systems were equipped with a diode array detector. 

Elution conditions for PAHs analysis were as follows:  

Mobile phase: (A) water, (B) acetonitrile; gradient method: 0-3 min 60% B 

isocratically, 3-30 min 60-100% B, 30-32 min 100% B, 32-35 min 100-60% B, 35-40 

min 60% B; injection 10 µL; flow rate: 1.0 mL/min; temperature: 38 °C, detection: UV 

at 220 nm and UV spectra. 

Elution conditions for phenol analysis were as follows: 

Mobile phase: (A) water, (B) acetonitrile; 0-20 min 35% B isocratically, 20-22 min 35 -

 100% B for cleaning the column, 22-25 min 100%-35% B, 25-30 min 35% B; 

injection 20 µL; flow rate: 1.7 mL/min; temperature: 38 °C, detection: UV at 215 nm 

and UV spectra. 
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6.2.3 Procedure of Extraction by Sonication of the Raw Sample for 

Phenol Analysis 

Extraction of the coarse material: 

80 g coarse sample were 3x sonicated with 80 mL CH2Cl2 each. Separation of the 

liquid was done by decantation. The total volume was concentrated to 133 mL.  

Extraction of the fine material: 

30 g of powdered sample were 3x sonicated with 40 mL CH2Cl2 each. The total 

extract was concentrated to 80 mL. 

The stones of both samples were dried overnight at room temperature. 

6.2.4 Procedure for the Sample Preparation for Phenols prior to HPLC 

Analysis 

The CH2Cl2 extract was prepared for the phenol analysis in two different ways as 

depicted in the following scheme: 

P henol analys is : preparation of s amplesP henol analys is : preparation of s amplesP henol analys is : preparation of s amplesP henol analys is : preparation of s amples

Samples in Dichlormethane

Liquid-liquid extraction in 1 M 
NaOH (1 mL per mL extract)

Neutralisation with HCl

Quantification

Injection into HPLC

Filtration

SPE-Filtration
3 mL extract with 15 mL CH2Cl2

Concentration to 1 mL

Addition of 3 mL methanol

Filling with methanol to 3 mL

Evaporation of CH2Cl2

Filtration

1. way 2. way

P henol analys is : preparation of s amplesP henol analys is : preparation of s amplesP henol analys is : preparation of s amplesP henol analys is : preparation of s amples
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NaOH (1 mL per mL extract)
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Filtration
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3 mL extract with 15 mL CH2Cl2
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Filling with methanol to 3 mL

Evaporation of CH2Cl2

Concentration to 1 mL

Addition of 3 mL methanol

Filling with methanol to 3 mL

Evaporation of CH2Cl2

FiltrationFiltration

1. way 2. way

Preparation of the SPE:  

0.8 g of silica (40 µm, DuPont) was packed into SPE cartridge. The cartridges were 

fitted in the SPE vacuum apparatus (JT Backer). Before elution of samples the 

cartridges were washed 2 times with 1.5 mL CH2Cl2. 
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6.3 Results and Discussion 

6.3.1 Analysis of PAHs 

6.3.1.1 Development of the Gradient HPLC Method for PAH Analysis 

The list of 16 representative hazardous PAHs proposed by US EPA is depicted in 

Figure 6.1. For the separation of PAHs in reversed phase chromatography, special 

features of the stationary phase are required in order to separate solutes that are 

similar in their molecular structure. This essential property is called molecular 

recognition or shape selectivity. It is usually obtained on C18 phases with wide pores 

(>15nm) and high alkyl chain density, preferably polymer modified. Other special 

phases (e.g. C30) also provide that property. Because no special PAH columns were 

available, two potentially appropriate standard columns were investigated (Nucleodur 

C18 Gravity, 5 µm, 150 x 4 mm from Macherey & Nagel, Düren, Germany and YMC 

Pro-C18, 120Å, 3 µm, from YMC Inc. USA). Both columns were evaluated for the 

analytical task and the Nucleodur column proved to be clearly superior.  
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Indeno[1,2,3-cd]pyrene
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Figure 6.1: Structures of the 16 EPA PAH and numbers for peak assignment. 
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The obtained separation is depicted in Figure 6.2 with a 5 ppm standard of 13 PAHs, 

the peak assignment is according to Figure 6.1. Indeno(1,2,3-cd)pyrene, 

dibenzo(a,h)anthracene and benzo(g,h,i)perylene were not available as individual 

compounds and are missing in this standard chromatogram. It can be seen, that 

acenaphthene and fluorene could not be separated, the 2 pairs chrysene and 

benzo[a]anthracene as well as benzo[b]fluoranthene and benzo[k]fluoranthene are 

only partly resolved.  
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Figure 6.2: PAH separation on Nucleodur C18 Gravity, 5 µm, 150 x 4 mm 

(Macherey&Nagel), detection 220 nm. 

6.3.1.2 PAH Detection 

From the photodiode array detector, UV spectra of each peak in the chromatogram 

can be extracted (Figure 6.3).  The spectra of those solutes causing poorly resolved 

peak pairs on the column used, namely (10, 9) and (11, 12), can be seen. It can be 

deduced, that peak identity can unambiguously be verified from the significantly 

different spectra. Moreover a tuning of the detection wavelength would partially allow 

discrimination between the compounds that compose a purely resolved peak pair. 
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Figure 6.3: Peak UV spectra taken from single injections of the PAH.  

6.3.1.3 Calibration for PAH Analysis 

The developed method was calibrated for quantification with external standard 

solutions. The calibration solution for most analytes with the exception of 

phenanthrene (5) and benzo[k]fluoranthene (12) were prepared by diluting a 2000 

ppm stock solution in CH2Cl2 (purchased from Supelco) with methanol to 

concentrations between 5 and 50 ppm, which is appropriate for the analysis of a 

asphalt containing tar extract after dilution by factor 20 (low abundance PAHs are 

quantified by extrapolation). It was verified that the residual 5 % CH2Cl2 had no 

impact on the quality of the chromatogram. Figure 6.4 shows a chromatogram from 

the 10 ppm solution of the mixture. Peak B is 2-bromonaphtylene, which is included 

from the manufacturer for internal calibration but could not be resolved from the 

phenanthrene peak by the applied method. Hence, phenanthrene and the missing 
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PAH 12 were calibrated from individually prepared solutions in methanol 

(corresponding to chromatogram in Figure 6.2). All calibration curves were recorded 

at the same detection wavelength (220 nm) and are depicted in Figure 6.6. For the 

non resolved peak pairs PAHs 3 and 4, PAHs 9 and 10 and PAHs 14 and 16, a sum 

value was calibrated, neglecting the differences in the absorption coefficients. 
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Figure 6.4: Separation of the diluted Supelco mixture (10 ppm), conditions as in 

Figure 6.2, peak B is 2- bromonaphtylene. 
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Figure 6.5: PAH calibration curves for peak areas. 
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6.3.1.4 Extraction Procedure for Asphalts Containing Tar 

The raw sample of road asphalt containing tar was extracted by two different 

methods. The first extraction method was the Soxhlet technique using 2 mL CH2Cl2

per g sample. This method was applied to the coarse and powdered samples. From 

the extraction procedure on the fine, powdered the sample Soxhlet aliquots of 10 mL 

were taken after 4 h and after 8 h. The extraction was terminated after 24 h. From the 

coarse sample a 10 mL aliquot was taken after 4 h and the extraction was also 

terminated after 24 h. The extracts were subjected to a clean-up procedure described 

in the following paragraph. The other extraction method was a cold extraction. This 

extraction was carried out with dichloromethane in a closed vessel stored for 24 h in 

a refrigerator. This extraction method was used by a laboratory for road authority in 

Luxemburg. 

6.3.1.5 Sample Preparation for HPLC 

It is obvious that the dark brownish CH2Cl2 extracts from Soxhlet contain high 

amounts of resin-like substances acting as the effective binder in the asphalt. When 

the CH2Cl2 volume was decreased from 10 mL to 3 mL by evaporation, an almost 

black resin-like residue was obtained, which could not be dissolved or not even be 

wetted by methanol (reason and context in following paragraph). To separate the 

PAH from this matrix and to obtain an HPLC compatible sample, a column liquid 

chromatography on bare silica was carried out. 0.5 g of silica (Impaq, 20 µm, 

DuPont) was filled into a modified Pasteur pipette (the long narrow tip was cut off to 

reduce the dead volume) and the silica bed was retained with glass wool at both 

ends. This column was rinsed with 5 mL CH2Cl2 to clean the silica from impurities. 

1 mL CH2Cl2 extract was poured onto this column. The PAH fraction was eluted with 

further CH2Cl2 until the effluent became clear or slightly yellow (approx. 5 mL 

required). 

It is not possible to inject a CH2Cl2 solution directly onto a C18 reversed phase HPLC 

column. Due to the strong elution power of this solvent on reversed phases, 

tremendous peak distortion and shift of retention times would occur. Hence, a 

transfer to a RP-HPLC compatible solvent like methanol was mandatory. Therefore, 

the 5 mL CH2Cl2 effluent was reduced to 1 mL in a Rotavapor at 550 mbar and 

ambient temperature. To this concentrate, methanol was added to a volume of 
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10 mL. The solution became turbid and suspension-like. Then the residual CH2Cl2

was evaporated from this solution by rotating it again under 200 mbar to a volume of 

approx. 7 mL. The resulting solution was exactly filled up to 10 mL with methanol, 

filtered through a 0.45 µm hydrophilic PTFE membrane filter and directly injected into 

the HPLC. 1 mg/L PAH concentration in this solution corresponds to 20 mg PAH in 

1 kg asphalt containing tar (neglecting the incomplete recovery). 

6.3.1.6 Recovery of the Sample 

For the recovery studies, a 10 ppm solution in CH2Cl2 diluted from the Supelco 

mixture was applied. For PAH 5 and 12, an individual 10 ppm solution was prepared. 

These solutions were subjected 3 times to the described evaporation procedure for 

the solvent change from CH2Cl2 to methanol, as well as to the complete sample 

preparation procedure (silica fractionation). The peak areas measured from the direct 

dilution of the 2000 ppm mixture were taken as reference values. Those peak areas 

measured after transferring the 10 ppm solution to methanol, or after applying the 

silica chromatography with subsequent transfer to methanol, were taken to calculate 

a recovery for the procedure. The precision determined from the obtained results was 

not very satisfying, since the relative standard deviation was up to 25 % (varying for 

individual compounds). For both the solvent change and the complete procedure, the 

second attempt yielded the most plausible and consistent recovery values. The 

recovery rates for the individual PAHs and the non-resolved peak pairs are given in 

Table 6.1. For calculating the PAH contents in the real samples, the recovery rates of 

the right column in Table 6.1 were taken into account. 
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Table 6.1: Recovery of the reconstitution in methanol after CH2Cl2 evaporation and of 

the column chromatography clean-up with subsequent solvent transfer. 

PAH Recovery of solvent change Recovery of complete procedure 

PAH 1 86 % 81 % 

PAH 2 95 % 94 % 

PAH 4+3 94 % 94 % 

PAH 5 99 % 99 % 

PAH 6 89 % 90 % 

PAH 7 95 % 95 % 

PAH 8 95 % 97 % 

PAH 10 91 % 93 % 

PAH 9 93 % 91 % 

PAH 11 94 % 94 % 

PAH 12 95 % 94 % 

PAH 13 99 % 99 % 

PAH 14 94 % 93 % 

PAH 16+15 95 % 95 % 

6.3.1.7 HPLC Analysis of the Sample for PAH Content

When real asphalt sample extracts are injected, in spite of the foregoing clean-up 

procedure, it is mandatory to use a pre-column to protect the separation column. The 

complete sample preparation method was applied to different Soxhlet extracts from 

the aliquots (powder and coarse) of the sample. 

Figure 6.6 shows the chromatogram obtained from the 4 h extract of the sample 

milled to a fine powder. The method was applied to the Soxhlet extract of the powder 

and the coarse sample as well as to the CH2Cl2 cold extract. The non resolved peaks 

of PAH 3, 4, 9, 10 and 14, 16 were quantified as approximate sum content by using 

the averaged calibration function of both compounds. For these three samples, the 

PAH concentrations are given in Table 6.2. A possible small peak of acenaphthylene 

would be overlaid by another co-eluting substance that could be clearly distinguished 

by the UV spectrum. Therefore this could not be determined. However, it could be 

present at the lower or sub ppm level.  
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When the extracted amounts between the fine and the coarse sample are compared, 

it becomes obvious that by 18 % more PAH could be extracted from the powder 

sample, a trend that was to be expected. The PAH pattern of both sample forms was 

similar, but not identical. 
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Figure 6.6: Analysis of powder sample after 4 h extraction on Nucleodur C18 

Gravity, detection at 220 nm. 
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Table 6.2: PAH amounts in the sample (in mg/kg solid material). 

Compound 4 h Soxhlet extract 

from powder 

4 h Soxhlet extract 

from coarse 

sample 

Cold extract 

PAH 1 25 29 14 

PAH 2  not found  not found  not found  

PAH 4,3 128 129 71 

PAH 5 1088 1107 611 

PAH 6 341 309 169 

PAH 7 730 624 334 

PAH 8 1314 932 455 

PAH 10,9 414 248 111 

PAH 11 310 286 164 

PAH 12 164 145 86 

PAH 13 141 134 75 

PAH 14 40 41 22 

PAH 16+15 100 92 52 

Sum of all 4794 4075 2164

6.3.1.8 Comparison of the Powder and Coarse Sample Extraction Kinetics 

Both forms of the sample were extracted for 24 h and aliquots after 4 and 8 h were 

taken. For the sake of clarity, only the sum contents of the PAHs analyzed in the 

extracts after different Soxhlet extraction times are presented in Figure 6.7. It can be 

deduced that the sum amount decreased with increasing extraction time. The reason 

is a drop of the concentration of the higher PAHs which might be due to a thermal 

decomposition or any kind of conversion of these compounds. This effect might be an 

essential disadvantage of the Soxhlet technique, were the analytes are subjected to 

the boiling dichlormethane (40°C) for several hours or even to higher temperatures 

when dried out at the inner glass surface above the solvent level in close contact to 

the heating device. 
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Figure 6.7: Sum amount of PAH in the fine and the coarse the sample after 

different times of Soxhlet extraction. 

6.3.1.9 Optimization of Detection Wavelength for HPLC Analysis of PAHs 

It is obvious that the UV detection at 220 nm is a non-selective detection, especially 

in presence of a very complex matrix. Hence, it was evaluated whether wavelength 

optimization in UV detection enables a more selective detection and thus more 

accurate analysis results. Figure 6.8 illustrates a detection optimization approach for 

the example of the poorly resolved peaks from the PAHs chrysene (11.42 min) and 

benzo[a]anthracene (11.62 min). Besides the use of a selective wavelength, a 

calibration via peak heights should be less sensitive to matrix bias than peak area 

calibration, since it is more likely that the peak edges incorporate significantly 

contributing impurities than this is the case for the peak apex. 



Method Development for Analysis and Quantification of PAHs and Small Phenols 172

n
m

220

240

260

280

Minutes

11.3 11.4 11.5 11.6 11.7 11.8

n
m

220

240

260

280

300

320

340

Minutes

6 8 10 12 14 16 18 20

0

11 11,5 12 12,5 13

min

220 nm

265 nm

287 nm

nm
250 300 350

11.42 min

nm
250 300 350

11.62 min

(a) (b)

(c) (d)
(e)

n
m

220

240

260

280

Minutes

11.3 11.4 11.5 11.6 11.7 11.8

n
m

220

240

260

280

Minutes

11.3 11.4 11.5 11.6 11.7 11.8

n
m

220

240

260

280

300

320

340

Minutes

6 8 10 12 14 16 18 20

n
m

220

240

260

280

300

320

340

Minutes

6 8 10 12 14 16 18 20

0

11 11,5 12 12,5 13

min

220 nm

265 nm

287 nm

nm
250 300 350

11.42 min

nm
250 300 350

11.62 min

nm
250 300 350

11.42 min

nm
250 300 350

11.62 min

(a) (b)

(c) (d)
(e)

Figure 6.8: UV photodiode array contour chromatogram of PAH separation (a) (b) 

and UV peak spectra of chrysene and benzo[a]anthracene (c) (d). The chromatogram 

overlay (e) compares the non-selective detection at 220 nm, chrysene selective 

detection at 265 nm and benzo[a]anthracene selective detection at 287 nm. 

The calibration data from 3-dimensional chromatograms were re-calculated for peak 

heights with optimized detection wavelengths and the PAH quantification in the 

sample was corrected based on these calibration curves. Optimal detection 

wavelengths for the 16 compounds are given Table 6.3.  
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Table 6.3: Detection wavelengths for optimized selectivity in PAH analysis. 

PAH UV detection wavelength [nm] 

Naphthalene 220 

Acenaphthylene 229 

Acenaphthene 227 

Fluorene 262 

Phenanthrene 252 

Anthracene 252 

Fluoranthene 235 

Pyrene 240 

Benzo[a]anthracene 287 

Chrysene 265 

Benzo[b]fluoranthene 256 

Benzo[k]fluoranthene 306 

Benzo[a]pyrene 296 

Dibenzo[a,h]anthracene 297 

Benzo[g,h,i]perylene 209.5 

Indeno[1,2,3-cd]pyrene 245.5 

Using the selective detection wavelengths for PAH (given in Table 6.3) and 

calibrating the method via peaks heights instead of peak areas, the HPLC analysis 

results of the fine sample by 4 h Soxhlet extraction were recalculated. The obtained 

PAH concentrations are summarized in Table 6.4.  
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Table 6.4: Concentration of PAHs quantified by selective detection results in the 

sample. All concentrations in mg/kg in solid sample. 

PAH Concentration in mg/Kg 

selective detection 

Naphthalene 19 

Acenaphthylene - 

Acenaphthene 78 

Fluorene 104 

Phenanthrene 874 

Anthracene 164 

Fluoranthene 661 

Pyrene 436 

Benzo[a]anthracene 265 

Chrysene 195 

Benzo[b]fluoranthene 210 

Benzo[k]fluoranthene 226 

Benzo[a]pyrene 124 

Dibenzo[a,h]anthracene 19 

Benzo[g,h,i]perylene 60 

Indeno[1,2,3-cd]pyrene 63 

Sum of PAHs 3499 

To discuss some of these deviations more in detail, Table 6.5 compares results of 

HPLC at universal detection wavelength and at optimized detection wavelength with 

the quantitative data obtained with GC-FID and GC-MS for three representative 

compounds. For fluorene, the difference between peak area and peak height 

quantification is depicted. Moreover, an optimized detection protocol even enables 

quantification of compounds with poorly resolved peaks in the chromatogram. The 

fluorene quantification via peak height and the selective detection of chrysene 

yielded concentrations close to the values determined with GC-FID. Nevertheless, 

the HPLC results for benzo[a]anthracene showed that no reliable quantification with 

HPLC-UV is possible, even with optimized detection.
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Table 6.5: Influence of the separation-, detection- and calibration method on 

quantitative PAH results in the sample. All concentrations in mg/kg solid 

sample. 

PAH 

HPLC UV 

220 nm 

peak area 

HPLC peak height 

(λ) 

GC-FID GC-MS 

Fluorene 730 673 (220 nm) 648 550 

Chrysene (Chr) - 195 (265 nm) 181 129 

Benzo[a]anthracene 

(BaA) 

- 265 (287 nm) 208 136 

Chr+BaA 414 470 (265, 287 nm) 389 265 

6.3.2  Analysis of Phenols 

Small phenols were extracted from the raw sample applying both Soxhlet extraction 

and sonication. 10 small phenols as depicted in Figure 6.9 should be monitored as 

representatives of elutable hazardous substances in asphalt containing tar. To 

separate the weakly acidic phenols from the CH2Cl2 extract of the asphalt, either a 

liquid-liquid extraction into sodium hydroxide solution or solid phase extraction (SPE) 

was carried out.  
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Figure 6.9: Structures of 10 small phenols. 
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6.3.2.1 Development of the HPLC Method for Phenol Analysis 

It was not possible to develop an appropriate method applying the Nucleodur HPLC 

column, which was used for the PAH analysis. Several available columns were tested 

with isocratic elution using non buffered eluents of water/methanol or 

water/acetonitrile and also the addition of 10 mM phosphate buffer at pH 3 was 

elaborated. A polar embedded C18 Phase ProntoSil C18 ACE EPS 120Å, 3 µm 

(Bischoff, Leonberg) in a 150 x 4.6 mm column provided the best selectivity and 

required no buffer addition to obtain excellent peak shapes. However, it was not 

possible to separate 3- and 4-methylphenol. A pre-column was mounted to protect 

the separation column from matrix compounds when real samples are injected.  

The obtained separation is depicted in Figure 6.10 with a 5 ppm standard of 10 

phenols dissolved in methanol. The 150 mm column packed with 3 µm particles 

provides high separation efficiency, which is mandatory for the complex matrix and 

the expected low concentration range of the analytes.  
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Figure 6.10: PAH separation on ProntoSil C18 ACE EPS 120Å, 3 µm (Bischoff, 

Leonberg), 150 x 4 mm column), detection at 215 nm, Peaks: 1, phenol; 2, 3-

methylphenol; and 3, 4-methylphenol 4, 2- methylphenol; 5, 2,4-dimethylphenol, 6 4-

ethylphenol; 7, 2,6-dimethylphenol: 8, 2-naphthol; 9, 2,4,6-trimethylphenol; 10, 1-

naphthol, 5 ppm each phenol. 
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UV peak spectra were recorded with the photodiode array detector. Unlike the PAH 

UV spectra, they exhibit no pronounced differences between the individual alkyl 

phenols. However, the spectra were helpful to distinguish phenol or naphthol peaks 

from other matrix compounds in the real samples. Figure 6.11 shows the UV spectra 

of the phenols. 
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Figure 6.11: UV spectra of the phenols.  

6.3.2.2 Calibration for Phenol Analysis 

The developed method was calibrated for quantification with external standard 

solutions. They were prepared as a mixture of 10 phenols dissolved in 

methanol/water 1/1 (v/v). The concentration range was between 1 and 5 ppm, as the 

phenol concentrations in the extracts were in the low ppm range and it was not 

possible to determine sub ppm levels accurately due to matrix influence and 

precision of the extraction procedure. All calibration curves are given in Figure 6.12. 
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Figure 6.12: Calibration curves for peak areas of phenols. 

6.3.2.3 Sample Preparation for Phenols and Recovery Rate of Alkaline 

Aqueous Extraction from CH2Cl2

A liquid-liquid extraction into sodium hydroxide solution was carried out to separate 

the weakly acidic phenols from the CH2Cl2 Soxhlet extract of the asphalt. The 

alkaline extract was neutralized with HCl solution of factor 10 higher concentration, 

because strongly basic solutions can damage the silica based HPLC packing. It was 

verified that the resulting NaCl content in the sample solution (up to 1.8 mol/L) had no 

impact on the chromatographic separation. The neutralized solution was filtered 

through a 0.45 µm PTFE membrane filter and 10 µL injected into the HPLC system. 

The dilution due to the neutralization with HCl was considered in the quantification 

calculation. 

To optimize the pH in the extraction solvent, the recovery rate for the extraction of all 

10 phenols at 25 ppm concentration into aqueous NaOH solution of 10 mM, 100 mM, 

500 mM, 1000 mM and 2000 mM was determined. To assess the influence of the 

matrix on the extraction constant, the same experiment was performed with a 25 ppm 

spiked solution of the 24 h Soxhlet extract of the powder from asphalt containing tar 

the sample. The 24 h extract was selected, because sufficient volume from the 4 h or 
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8 h extracts was not available. The spiking was performed by dosing 1000 ppm stock 

solution of the 10 phenols dissolved in dichloromethane to the extract. Because of 

the high spiking level of 25 ppm relative to actual phenol content of the sample, this 

original phenol content was not considered. Regarding the general accuracy of the 

results, the possible resulting error (<5 %) appears to be justifiable. A chromatogram 

of the spiked sample is depicted in Figure 6.13. 
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Figure 6.13: Soxhlet extract (24 h) of the sample (powder) spiked with phenols to 25 

ppm. For peak identification see Figure 6.9. 

Figure 6.14 shows the Influence of the NaOH concentration on the extraction 

constant expressed as a recovery rate in % for both series. It became obvious that, 

except for phenol itself, the NaOH content of 100 mM or below was insufficient to 

obtain a satisfying extraction yield. The reason is the decreased acidity due to the 

inductive effect of the alkyl groups, besides the poor water solubility of the naphthols. 

At 500 mM NaOH, appropriate extraction was yielded for all substances except ethyl 

phenol and trimethyl phenol. An increase to 2000 mM NaOH could not markedly 

improve the recovery. When both graphs in Figure 6.14 are compared, it becomes 

obvious that there is a matrix influence on the recovery, which increases with 

increasing analyte hydrophobicity. It must be considered that the aqueous alkaline 

extract is taken from the CH2Cl2 Soxhlet extract without further purification. This 

raffinate is a deeply brownish and colloidal broth which contains resinlike substances 

that can adsorb or occlude the hydrophobic phenols.
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Figure 6.14: Recovery rate for phenols for extraction from CH2Cl2 using extraction 

solvents with different NaOH concentrations. 

It was decided to work with the 1000 mM NaOH extracts. Table 6.6 presents the 

recovery rates calculated from the ratio of the peak areas (extract to methanol-water 

standard solution) for the extraction from 25 ppm CH2Cl2 solutions and from the 

spiked extracts from the sample (as shown in Figure 6.13). The higher recovery rates 

of the more hydrophilic phenols in presence of the matrix may be due to a 

solvophobic effect caused by the apolar matrix compounds.  
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Table 6.6: Recovery of the 1000 mM NaOH aqueous extraction from CH2Cl2 in 

absence and presence of asphalt matrix at a phenol level of 25 ppm. 

Substance Recovery in absence of matrix Recovery in presence of matrix

Phenol 86 % 100 % 

3-, 4-MP 87 % 94 % 

2-MP 80 % 85 % 

2,6-DMP 82 % 84 % 

4-Ethyl 

phenol 65 % 67 % 

2,4-DMP 80 % 81 % 

2-Naphthol 84 % 83 % 

2,4,6-TMP 48 % 34 % 

1-Naphthol 82 % 66 % 

6.3.2.4 HPLC Analysis for Phenol Content 

The above described sample preparation method (alkaline extraction, neutralization 

and filtration) was applied to the 4 h Soxhlet extracts from the finely milled sample. 

10 µL of the filtrate were subjected to HPLC analysis following the protocol described 

above. The obtained chromatogram is shown in Figure 6.15, where the 

chromatogram of the spiked matrix is added to facilitate peak identification. Figure 

6.16 depicts a direct overlay of the UV peak spectra recorded from the standard 

mixture and from the analysis of the asphalt containing tar sample. Most of the listed 

phenols could be identified by their spectra in addition to the matching retention 

times. Even for the very small peak 5 (ethyl phenol), the noisy spectrum was almost 

unambiguous. However, the noise dominated in the spectra of trimethyl phenol and 

the 2 naphthols. For the quantification peaks 1 through 9 were treated as identified 

and pure and the calibration shown in Figure 6.12 was applied. The obtained results 

(given in Table 6.7) were calculated using the recovery rate that considers the matrix 

influence (right column in Table 6.6). To calculate the content the solid sample, it 

must be considered that 1g material was extracted with 2 mL CH2Cl2. The 

subsequent liquid-liquid extraction was carried out with equal volumes of raffinate 
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and extract in 1 step. The sum amount for all 10 phenols in the asphalt was 

determined to be around 16 ppm. 
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Figure 6.15: Analysis of 2702/4 powder sample after 4 h extraction using the method 

described in the text. The chromatogram of the 25 ppm spiked matrix is included for 

comparison. 
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Figure 6.16: Peak UV spectra from analysis of the sample overlaid with spectra 

recorded from injection of standard.  

Table 6.7: concentration of phenols determined with the 4 h Soxhlet exctract from the 

sample (milled powder). 

Substance 

Concentration in the alcal. 

aqueous extract in mg/L 

Concentration in the solid 

sample in mg/kg 

Phenol 1.9 3.8 

3-,4-Methyl phenol 1.6 3.2 

2-Methyl phenol 0.5 1.0 

2,6-Dimethyl phenol 2.6 5.2 

4- Ethy lphenol 0.5 1.0 

2,4-Dimethyl phenol 0.5 1.0 

2-Naphthol 0.1 0.2 

2,4,6-Trimethyl phenol 0.5 1.0 

1-Naphthol not found not found 

Sum of all phenols 8.2 16.4 
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6.3.2.5 Batch Extraction of the Raw Sample for Phenol Analysis Applying 

Sonication  

The determination of phenol content from the raw sample using three successive 

batch extraction steps with CH2Cl2 under sonication (see details in experimental part)

was carried out in order to compare this method with the Soxhlet extraction 

technique. The coarse and fine materials from the sample were simultaneously 

extracted by 3 successive steps under sonication. The solid material and supernatant 

were separated by decantation, since no centrifugation device at appropriate scale is 

available. Moreover, the remaining minerals were extracted with 1000 mM sodium 

hydroxide solution under sonication after CH2Cl2 extraction and this extract was also 

analyzed for phenols. 

The analysis was carried out by HPLC. However, no phenols could be found neither 

in the alkaline extract from organic solvents nor in that from the stones (Figure 6.17), 

since none of the peaks observed in the chromatograms B through D exhibited 

identifiable UV-spectra. Consequently, the phenols must be still present in the 

organic phase (CH2Cl2), possibly adsorbed to fines from minerals and non-soluble 

asphaltenes generated under the influence of sonication. These fines are not likely to 

be present at a similar level when applying the Soxhlet procedure for extraction.  
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Figure 6.17: Chromatograms of 10 small phenols standard at 5 ppm (A) and alkaline 

aqueous extract from coarse stones 2702/4 after CH2Cl2 batch extraction (B), liquid-

liquid extraction from CH2Cl2 batch extract of 2702/4 in coarse form (C) and in fine 

form (D). For peak identification see Figure 6.9. 

At this stage of experiments it was obvious that the sonication batch extraction did 

not yield the same result like the Soxhlet technique. An adherence of phenolates to 

the stones and suppression of dichloromethane extraction, however, could not be 

verified. To elucidate the reason behind the ineffective aqueous extraction, further 

experiments were required. 



Method Development for Analysis and Quantification of PAHs and Small Phenols 186

6.3.2.6 Comparison of Liquid-liquid Extraction into Alkaline Aqueous Solution 

and SPE Clean-up of CH2Cl2 Extracts for Sample Preparation Prior to 

Phenol Analysis 

It was discussed in the last section, that applying sonication batch extraction with 

CH2Cl2, no phenols could be found after liquid-liquid extraction in the alkaline 

solution. Hence, the next task was to analyze the phenols in the CH2Cl2 extract. 

Therefore this extract was cleaned by solid phase extraction (SPE) on a silica 

cartridge (see experimental part), since the percolation through a Pasteur pipette 

packed with the 20 µm silica was extremely slow when the sonicated extracts were 

applied. This observation already indicates a consistency different from that of the 

Soxhlet extracts. The cartridge was eluted with CH2Cl2 (5 times the sample loading 

volume). Then, the effluent was concentrated and the solutes transferred to methanol 

following the protocol developed for PAH analysis. Using this sample preparation, 

only 4 phenols at an approximate concentration of 1 ppm each were determined 

(Figure 6.18). Comparing the chromatograms in Figure 6.18 with those in Figure 6.17 

C and D, it is obvious that numerous compounds of similar polarity like the selected 

phenols are present in the CH2Cl2 batch extract, which are not extractable into the 

alkaline solution with liquid-liquid extraction. These matrix compounds markedly 

biased the analysis of the phenols. 
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Figure 6.18: Chromatograms of CH2Cl2 extract of coarse (A) and fine (B) raw sample 

with SPE. 
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The possible reason why no equalent amount of phenols compared to Soxhlet 

extraction could be found, could be again the impact of a differing matrix effect under 

influence of sonication, which obviously leads to fines from the original asphalt 

sample. The higher yield from the CH2Cl2 phase cleaned by SPE on silica relative to 

the liquid-liquid extraction sample preparation approach must be due to a more 

efficient phenol leaching from the fines under the percolation in the SPE-cartridge 

relative to single equilibrium step in the liquid-liquid system. Unfortunately, other 

disturbing matrix compounds were also leached from the SPE cartridge. 

6.3.2.7 Phenol Analysis from Cold Batch Extraction on the Sample 

To complete the characterization of the different extraction processes performed with 

the raw asphalt sample, a phenol determination was carried with the asphalt cold 

extract. The extraction was carried out with dichloromethane in a closed vessel 

stored for 24 h in a refrigerator. With this sample, significantly lower PAH extraction 

yields were already encountered. 

The resulting phenol contents analyzed from this extract are listed in Table 6.8. The 

chromatogram is shown in Figure 6.19. Although the pattern resembles that obtained 

from the Soxhlet extract, the resulting concentrations were only at a 30% level 

relative to the exhaustive extraction technique. This result goes along with that 

obtained for the PAH analysis from the same extract. For both the PAHs and phenol, 

the cold batch extraction of asphalt with dichloromethane does not yield a 

representative extract for analysis. 
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Figure 6.19: Chromatogram of standards with each 1 ppm phenols (A) and phenols 

from cold extraction (B). 

Table 6.8: Phenol content from the cold extraction.

Substance 

Concentration in the 

solid sample in 

mg/kg 

Phenol 1.7 

3-,4-Methyl phenol 1.0 

2-Methyl phenol 0.2 

2,6-Dimethyl phenol 1.1 

4- Ethyl phenol - 

2,4-Dimethyl phenol 0.5 

2-Naphthol - 

2,4,6-Trimethyl phenol - 

1-Naphthol - 

Sum of all phenols 4.5 
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6.4 Conclusions 

Two individual HPLC methods with photodiode array detection and individual 

foregoing sample preparation procedures aligned to the demands of the present 

matrix were developed for the analysis of small phenols and polycyclic aromatic 

hydrocarbons (PAHs) in tar asphalt samples. For the PAH separation, gradient HPLC 

was required, whilst the phenol separation could be performed isocratically.  

The extraction of PAHs and phenols were performed with CH2Cl2 by Soxhlet and by 

cold extraction. The extraction of the phenols was additionally evaluated for a triple 

batch extraction under sonication. 

Two individual ways of sample preparation were developed for the phenol analysis. 

One comprised a liquid-liquid extraction from the CH2Cl2 extract into alkaline 

aqueous solution at pH=13.0, the other pursued a cleaning up of the CH2Cl2 extract 

by liquid chromatography on silica followed by a transfer to a methanol solution to 

inject into reversed phase HPLC. The sample preparation for the analysis of PAHs 

was carried out in a similar way by liquid chromatography on silica. 

The developed analysis methods were applied to the coarsely and a finely milled 

aliquots of the sample. From the coarse sample, lower amounts of PAHs could be 

extracted and analyzed under the same conditions, which can rather be attributed to 

non representative aliquotation of the coarse sample than to less exhaustive 

extraction. 

The phenol analysis resulted in a total content of small phenols at approx. 17 ppm, 

individual phenol concentrations were approx. 2 ppm. The Soxhlet CH2Cl2 extraction 

with following alkaline aqueous extraction turned out to be the preferred way. With 

both the sonication batch extraction and the sample preparation via chromatographic 

clean-up of the CH2Cl2 extract, problems were encountered. No significant

differences in the determined phenol content were observed between the coarse 

sample and the milled sample. 
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Appendix 

Chromeleon program for fractionation of TDS Sample 

;PROGRAM TDS 

 Log ComputerName

 Log LampIntensity 

;Pump settings 

 Pressure.LowerLimit = 5

 Pressure.UpperLimit = 120

 %A.Equate = "water + 0.02% TFA+5% ACN"

 %B.Equate = "100% ACN + 0.02% TFA"

;Sampler settings

 DispSpeed = 20

 DrawSpeed = 20

 SampleHeight = 0.50

 SyringeDelay = 5

 UpSpeed = 5.00

 DownSpeed = 5.00

 RadialSpeed = 20.00

;Definition of MS channels and of the filter index

;for the channels MS_01 to MS_03. NOTE: programmed for M + 1 !

 Smoothing = Gaussian

 SmoothingPoints = 9

 MS_01.MinMass = 217.0+0.5

 MS_01.MaxMass = 217.0+1.5 

 MS_01.FilterIndex = 1

 MS_02.MinMass = 331.0+0.5

 MS_02.MaxMass = 331.0+1.5

 MS_02.FilterIndex = 1

 MS_03.MinMass = 290.0+0.5 

 MS_03.MaxMass = 290.0+1.5

 MS_03.FilterIndex =1

;****************************************************************

;* Definition of triggers for fraction collection starts here.

;****************************************************************

 Trigger FracStart FracStartDetected

 Valve     = On

 EndTrigger

 Trigger TubeChange FracTubeChange

 Valve = Off

 Tube = Tube + 1

 Valve    = On
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 EndTrigger

 Trigger FracEnd FracEndDetected

 Valve    = Off

 Tube = Tube + 1

 EndTrigger

;****************************************************************

;Definition of triggers for fraction collection ends here.

;****************************************************************

;Basic fraction collection parameters

 CollectFractions =  Yes

 CollectOutsidePeaks =  No

 PumpDevice =  "Pump"

 TubeMaxVolume =  7.00

 TotalNumberInstalled =  144

 MaxTubesPerFraction =  Unlimited

 TubeWrapping =  No

 DelayVolume =  1275

 ChannelEvaluation = All

;Conditions for online peak recognition at program start:

 DetectionChannel1.Name =  "MS_01"

 DetectionChannel1.PeakStartSlope =  Off

 DetectionChannel1.PeakEndSlope =  Off

 DetectionChannel1.PeakStartThreshold =250000.00

 DetectionChannel1.PeakEndThreshold = 150000.00

 DetectionChannel1.ThresholdNoPeakEnd = 700000.00

 DetectionChannel1.ThresholdDoNotResolve = 400000.00

 DetectionChannel2.Name =  "UV_Vis_1"

 DetectionChannel2.PeakStartSlope = 3

 DetectionChannel2.PeakEndSlope =  -2

 DetectionChannel2.PeakStartThreshold = 4

 DetectionChannel2.PeakEndThreshold = 2

 DetectionChannel2.ThresholdNoPeakEnd = 50.00

 DetectionChannel2.ThresholdDoNotResolve = 20.00

 UV_VIS_1.Wavelength =  205

 UV_VIS_1.Bandwidth =  1 

 UV_VIS_1.RefWavelength =  600 

 UV_VIS_1.RefBandwidth =  1 

 UV_VIS_1.Step =  Auto

 UV_VIS_1.Average =  On

 3DFIELD.RefWavelength =  600.0 

 3DFIELD.RefBandwidth =  1.9 

 3DFIELD.Step =  0.5 

 3DFIELD.MinWavelength =  200.0 

 3DFIELD.MaxWavelength =  400.0 

 3DFIELD.BunchWidth =  1.9 

 0.000 Flow =  5.700 [ml/min]

 %B =  7.5 [%]

 AuxFlow = 0.20 [mL/min] 

 Autozero 

 Wait Sampler.Ready and MS.Ready
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 Inject

 UV_VIS_1.AcqOn

 Pump_Pressure.AcqOn

 3DFIELD.AcqOn 

 MS_01.AcqOn

 MS_02.AcqOn

 MS_03.AcqOn

5.000 %B =  7.5 [%]

7.200 DetectionChannel1.Name =  "MS_02"

9.000 DetectionChannel1.Name =  "MS_03"

 AuxFlow = 0.30 [mL/min] 

11.000 AuxFlow = 0.20 [mL/min] 

12.000 %B =  19.0 [%]

13.500 %B =  50.0 [%]

14.500 %B =  7.5 [%]

19.000 UV_VIS_1.AcqOff

 Pump_Pressure.AcqOff

 3DFIELD.AcqOff 

 MS_01.AcqOff

 MS_02.AcqOff

 MS_03.AcqOff

 Flow =  5.700 [ml/min]

 %B =  7.5 [%]

19.100 End


