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Abstract 

 

Iron (Fe) deficiency in humans is the most prevalent nutritional disorder in the world. 

Since plants serve as the primary source of dietary Fe, improving the Fe content of crops 

represents an important step towards a better public health. Tomato responds to low Fe 

availability by an enhanced proton extrusion from the root and upregulation of the genes 

encoding FeIII-chelate reductase (LeFRO1) and FeII transporter (LeIRT1). As a result, 

more Fe is rendered soluble and thus accessible for the plant. Previously, we identified 

the tomato gene LeFER as one of the major regulators of Fe uptake in the root under Fe-

deficiency conditions. LeFER encodes a bHLH transcription factor that is responsible for 

the induction of Fe-mobilization genes. The aim of the presented work was to study 

upstream regulatory events of LeFER action, and the effects of LeFER function on the 

network of metabolic pathways in the cell under Fe-deficiency conditions. First, we 

examined the control of LeFER gene and LeFER protein expression in response to Fe-

nutritional status in wild type, mutant plants with defects in Fe-uptake regulation, and 

35S transgenic plants overexpressing LeFER. Both LeFER gene and LeFER protein were 

found consistently downregulated in roots after generous (100 µM, physiologically 

optimal) compared to low (0.1 µM) and sufficient (10 µM) Fe supply, and occasionally 

downregulated at sufficient compared to low Fe supply. Second, downregulation of 

LeFER by high Fe was found additionally controlled at posttranscriptional level. LeFER 

showed nuclear localisation and transcriptional activation in yeast. Third, LeFER protein 

regulation in the Fe-accumulation mutant chloronerva indicated that LeFER protein 

expression was not directly controlled by signals derived from Fe transport. Thus, we 

concluded that LeFER is able to affect transcription in the nucleus and its action is 

controlled by Fe supply at multiple regulatory levels. Fourth, we investigated the changes 

in the tomato root proteome when different plant genotypes were grown under different 

Fe-supply conditions (as indicated above). Using proteomics tools, differentially 

expressed proteins have been identified – dependent and independent on LeFER protein 

expression. Our data show major changes in the proteome as a result of exposure to low 

Fe in the medium, affecting an array of metabolic pathways ultimately involved in, 

among others, energy balance, stress response, and phytohormone signaling. 
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Abstrakt 

 

Eisenmangel ist die häufigste Ernährungskrankheit von Menschen. Da Pflanzen die 

primäre Quelle von Eisen (Fe) in unserer Ernährung sind, sind Kulturpflanzen mit 

verbessertem Eisengehalt ein wichtiger Schritt in Richtung einer besseren Gesundheit der 

Bevölkerung. Tomatenpflanzen reagieren auf niedrige Eisenverfügbarkeit mit Erhöhung 

der FeII Konzentration in der Wurzelumgebung aufgrund der erhöhten 

Protonenausscheidung und der Induktion der FeIII-Chelatreduktase (LeFRO1) und des 

FeII Transporters (LeIRT1). Infolgedessen wird mehr Fe lösbar gemacht und steht der 

Pflanze zur Verfügung. Vorangegangene Arbeiten der Arbeitsgruppe haben LeFER als 

hauptsächliches Regulatorgen identifziert, welches die Eisenaufnahme in Wurzeln bei 

Eisenmangel kontrolliert. LeFER kodiert für einen Transkriptionsfaktor der basischen 

Helix-Loop-Helix Familie, welcher für die Induktion von Eisenmangelantworten 

verantwortlich ist. Ziel der vorliegenden Arbeit war es, oberhalb liegende 

Regulationsmechanismen von LeFER näher zu untersuchen, und die Auswirkungen der 

LeFER Funktion auf das Netzwerk von metabolischen Wegen in der Zelle unter 

Eisenmangel zu untersuchen. Zuerst untersuchten wir die Kontrolle der Expression des 

LeFER Gens und LeFER Proteins als Antwort auf den Eisenhaushalt in Wildtyp, 

Mutanten mit Defekten der Eisenaufnahmeregulation, und in 35S transgenen Pflanzen, 

welche LeFER überexprimieren. LeFER mRNA und LeFER Protein waren 

herunterreguliert in Wurzeln, die großzügig mit Fe versorgt waren (100 µM, 

physiologisch optimal) verglichen mit Wurzeln, die normal oder unterversorgt waren mit 

Fe (10 µM, 0.1 µM). Gelegentlich war eine niedrige Expression auch bei normaler 

Eisenversorgung zu sehen. Zweitens, wir haben gefunden, dass LeFER zusätzlich auf 

posttranskriptioneller Ebene herunterreguliert war durch viel Fe. LeFER zeigte 

Zellkernlokalisation und transkriptionelle Aktivierung in Hefe. Drittens, die LeFER 

Proteinregulation in der Eisenakkumulationsmutante chloronerva zeigte, dass LeFER 

Proteinexpression nicht direkt durch Signale des Eisentransports reguliert war. Wir 

schlussfolgerten, dass LeFER die Transkription im Zellkern beeinflusst, und seine 

Aktivität durch die Eisenversorgung auf verschiedenen Ebenen reguliert wird. Viertens, 

wir untersuchten Veränderungen im Tomate Wurzelproteom, wenn Pflanzen mit 
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unterschiedlichen Genotypen verschiedenen Eisenbedingungen ausgesetzt waren. Mit 

Proteomics Werkzeugen haben wir Proteine identifiziert, welche abhängig oder 

unabhängig von LeFER differentiell durch Fe exprimiert waren. Unsere Daten zeigten, 

dass große Veränderungen im Wurzelproteom als Antwort auf Eisenmangel auftreten, 

welche eine Reihe von metabolischen Wegen beeinflussten, die mit Energieversorgung, 

Stressantworten und Phytohormonsignalwegen in Verbindung stehen. 
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1. Introduction 

 

Iron (Fe) is an essential nutrient for every organism. As a component of many vital 

enzymes, it is required for a wide range of biological functions, such as electron transport 

in the respiratory chain (e.g. cytochromes), DNA synthesis (e.g. ribonucleotide 

reductase), photosynthesis (e.g. chlorophyll synthesis and chloroplast structure/ function), 

nitrogen fixation (e.g. symbiotic root nodules establishment/ function) and hormone 

synthesis (e.g. lipoxygenase, ethylene precursor) (Briat and Lobreaux, 1997). 

 

Fe deficiency is the world’s most prevalent human nutritional disorder (WHO: 

http://www.who.int/nut/ida.htm). Although vegetables, for example spinach, are regarded 

as Fe rich, plant (nonheme) Fe is poorly absorbed – only 1.4 - 7% of the Fe from spinach 

can be taken into the body, compared to 20% from red meet (Scrimshaw, 1991). In many 

developing countries, the use of staple crops with naturally low Fe content can cause 

nutritional problems, especially when vegetables are the predominant food source. This 

effect can also be caused in plants with high Fe content such as legumes in the presence 

of antinutrients, such as oxalic acid or phytate that decrease the bioavailability of Fe (Hell 

and Stephan, 2003). 

The foliar application of Fe chelators such as Fe-EDTA or Fe-EDDHA has been 

recommended to cure “Fe-chlorosis” – the yellowing of leaves as a result of Fe 

deficiency (Chen, 1997). These chemicals are, however, very expensive for extensive 

use. Fe deficiency of crops growing on calcareous soils can be cured to some extent with 

fertilizers. However, such treatments are costly and cannot be precisely targeted to the 

deficient parts of the plant, causing, in some cases, Fe excess followed by yield reduction. 

To have significant impact on the Fe nutrition of humans, improvement strategies are 

under way to fortify crops with Fe. That is, to develop new varieties of major crops with 

increased amounts of bioavailable Fe. 

In this respect, understanding the control of Fe-uptake mechanisms in plants is of 

vital importance for efficient Fe fortification efforts. It would help to address the Fe-

deficiency problem in a better way leading to a specific and more effective solution. 
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1.1. Bioavailability of Fe 

Despite being generally present in high quantities in soils (the forth most abundant 

element in the lithosphere), Fe has a very limited bioavailability in aerobic and neutral 

pH environments. In aerobic soils, Fe is found predominantly in the form of FeIII, mainly 

as a constituent of oxyhydroxide polymers with extremely low solubility. Due to that, the 

equilibrium concentration of free FeIII in such environments is limited to approximately 

10-17 M. Such a value is far below that required for the optimal growth of plants and 

microbes – 10-9 to 10-4 and 10-7 to 10-5, respectively (Guerinot and Yi, 1994). The 

insufficient Fe availability can be particularly pronounced in plants grown on calcareous 

soils, which cover approximately one-third of Earth’s surface. Therefore, without active 

mechanisms for extracting Fe from the soil, most plants would exhibit Fe-deficiency 

symptoms, such as chlorotic (yellowed) interveinal areas in young leaves and stunted root 

growth, which leads to reduced crop yields or even complete crop failure. 

In contrast, in acidic, waterlogged soils, excess FeII can be toxic for the plants. It 

promotes the formation of reactive oxygen-based radicals that are able to damage vital 

cellular components (notably membranes, by lipid peroxidation), leading to a loss of 

integrity and possible cell death. Plants exposed to excessive levels of Fe show bronzing 

(coalesced tissue necrosis), flaccidity and/ or blackening of the roots (Schmidt, 1999). 

As a consequence of these properties of solubility and toxicity, Fe homeostasis in the 

whole organism, as well as in the cells, must be balanced to supply enough Fe for cell 

metabolism and to avoid excessive, toxic levels. In this way, plants have evolved 

different mechanisms to control Fe uptake. 

 

1.2. Strategies for Fe Uptake in Plants 

As a strategy for restricting excessive uptake of Fe, wetland species have evolved 

mechanisms for oxidizing ferrous Fe (FeII) in the rhizosphere (Schmidt, 1999). 

Plants, living under aerobic soil conditions, have developed two phylogenetically 

distinct strategies to cope with the extremely low availability of soluble Fe compounds 

(Marschner and Römheld, 1994). Dicots and nongraminaceous monocots employ an Fe-

acquisition mechanism termed Strategy I based on the reductive detachment of Fe from 

its ligand. Under Fe-deficient conditions, such plants exhibit enhanced proton extrusion 
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in the rhizosphere, increased FeIII-reduction capacity at the root surface, followed by an 

uptake of FeII via a ferrous transporter on the root plasma membrane (Römheld and 

Marschner, 1983). As a result, plants elevate the Fe availability in the rhizosphere and 

enhance its uptake. 

In response to Fe deficiency, graminaceous monocots release high-affinity Fe-

chelating substances from the mugineic acid family, called phytosiderophores (PS). 

These substances solubilize the inorganic FeIII compounds from the soil and the resulting 

FeIII-PS complexes are taken up by the root cells via a specific plasma membrane 

transport system without reduction of the FeIII ion. This mechanism is termed Strategy II 

(Römheld and Marschner, 1986) and it resembles the microbial siderophore system 

(Neilands, 1981). 

 

1.3. Strategy I 

Strategy I-type plants respond to Fe deficiency with both morphological and 

physiological changes (Römheld, 1987), which lead to an increased root surface area for 

reduction and transport of Fe. The changes in morphology include formation of root 

hairs, swelling of root tips, enhanced lateral root development and reduced lateral root 

growth (Schmidt, 1999) (Fig. 1). 

 

1.3.1. Rhizosphere Acidification 

A main physiological response to Fe deficiency is the increased acidification of the 

rhizosphere due to activation of a specific H+-ATPase, which leads to extrusion of 

protons from the roots and aids in rendering more Fe soluble. This process can be quite 

fast – within a few hours the roots may lower the pH in the soil solution to values of 3 or 

lower. At the same time, a pH decrease of 1 releases 103 times more FeIII ions into the 

rhizosphere (Bienfait, 1985). This not only helps to acidify the extracellular space but it 

also has a pivotal role in establishing the electrochemical gradient (a proton moving 

force) that drives the uptake of solutes through their respective carriers and channels 

(Sussman, 1999). The capacity of a plant to acidify the rhizosphere in response to Fe 

deficiency depends to some extent on the cation/anion uptake balance and the nitrogen 

(N) nutrition of the plant. One member of the family of P-type H+-ATPases, AHA2 
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(‘Arabidopsis H+-ATPase’), is most abundantly expressed in root hairs (Sussman, 1994) 

and may encode an isoform involved in the uptake of mineral nutrients (Fox and 

Guerinot, 1998). 

 

 

Figure 1: Strategy I for Fe uptake in plants. 

 

The uptake of Fe in roots of dicots and nongraminaceous monocots is based on FeIII reduction and 

involves three distinct processes: (i) acidification of the rhizosphere through an H+-ATPase activity, which 

solubilizes FeIII; (ii) reduction of FeIII to FeII through a plasma membrane-bound FeIII-chelate reductase 

(LeFRO1 in tomato); and (iii) uptake of FeII into the root epidermal cells through an FeII transporter 

(LeIRT1 in tomato). Fe deficiency is sensed by the roots and an yet unknown Fe signal triggers the 

expression of the bHLH transcription factor LeFER, which acts as a positive regulator of the above-

described Strategy I components. 

 

1.3.2. FeIII Reduction 

The second and most typical physiological strategy I response to Fe deficiency is an 

enhanced FeIII reduction. It is thought to be the primary factor in making Fe available for 

absorption (Guerinot and Yi, 1994). Ferric reduction takes place at the plasma membrane 
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of root epidermal cells. It catalyses transmembrane electron transport from cytosolic 

reduced pyridine nucleotides to extracellular Fe compounds serving as electron acceptors. 

This process is an obligatory prerequisite for Fe uptake in Strategy I plants and it is 

activated at insufficient Fe supply (Buckhout et al., 1989). Plasma membranes isolated 

from roots of Fe-deficient plants contained 2- to 3-fold higher specific activities for FeIII-

chelate reductase than plasma membranes isolated from plants grown under Fe-sufficient 

conditions (Buckhout et al., 1989). The enzymatic activity of FeIII reductase in the root 

epidermal cells is additionally optimized by the pH decrease on the root surface, as a 

result of the H+-ATPase activity, since the optimum pH of the plant membrane reductase 

is generally around 6 (Chaney et al., 1972). 

 

1.3.3. Uptake of FeII 

Fe is transported across the root plasma membrane as free FeII via a separate 

transporter acting downstream of the FeIII-chelate reductase. The capacity of uptake and 

translocation of Fe is greatly enhanced upon Fe starvation (Yi and Guerinot, 1996). In 

Arabidopsis, AtIRT1 functions as the major root transporter responsible for the uptake of 

FeII from the soil solution following the reduction of FeIII chelates by the plasma 

membrane reductase in response to Fe deficiency (Eide et al., 1996). 

 

1.3.4. Genes Involved in the Mobilization of Fe in Strategy I Plants 

1.3.4.1. Reductase Genes 

AtFRO2 - The characterization of three allelic Arabidopsis mutants (frd1-1, frd1-2 

and frd1-3) which do not show induction of FeIII-chelate reductase under Fe-deficient 

conditions, confirms that Fe must be reduced prior to its transport and that FeIII reduction 

can be uncoupled from proton release (Yi and Guerinot, 1996). The reductive mechanism 

of Fe uptake by Strategy I plants shares many similarities with the high-affinity Fe-

uptake system of yeast. This property has been successfully used to characterize the 

reductase/ FeII-transport system of plants at a molecular level. 

The FeIII-chelate reductase gene AtFRO2 has been cloned by Robinson et al. (1999) 

from Fe-deficient Arabidopsis roots, based on sequence similarity with the yeast FRE 
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genes, and it was shown to map to frd1-1. When expressed in frd1-1 mutant lines, it 

restores FeIII-reductase activity. 

AtFRO2 is upregulated in roots under Fe-deficiency conditions (Robinson et al., 

1999). AtFRO2 mRNA was detected in root epidermal cells, similarly to observations for 

AtIRT1 localization (see below). Additionally, a posttranscriptional level of control on 

AtFRO2 gene expression was revealed by analysis on transgenic 35S::AtFRO2 plants, 

which failed to induce FeIII-reductase activity under sufficient Fe-supply conditions 

regardless of the constitutive expression of the gene (Connolly et al., 2003). 

AtFRO2 shares similarities with human phagocytic NADPH gp91phox oxidoreductase 

and with the yeast FeIII-chelate reductases, specifically in the heme- and nucleotide 

cofactor-binding sites. This is consistent with its function in electron transfer from 

cytosolic NADPH to extracellular FeIII. Therefore, AtFRO2 belongs to the superfamily 

of flavocytochromes that transport electrons across membranes (Robinson et al., 1999). 

AtFRO2 belongs to an eight-member gene family in Arabidopsis. AtFRO3 is also 

strongly induced upon Fe deficiency in roots, which suggests it has a similar function as 

AtFRO2 (Wu et al., 2005). However, AtFRO3 is predominantly expressed in the vascular 

cylinder, whereas AtFRO2 is expressed at high levels in the outer layers of Fe-deficient 

roots, suggesting that FRO family members function in a variety of locations in the plant 

(Mukherjee et al., 2006). 

In pea, PsFRO1 represents the reductase involved in root Fe acquisition (Waters et 

al., 2002), supported by the observation that PsFro1 mRNA levels in plants correlated 

with FeIII-chelate reductase activity. In contrast to AtFRO2, PsFRO1 is expressed in both 

root and shoot (upregulated by Fe deficiency), suggesting an additional role in Fe 

distribution throughout the plant. 

In tomato, the main FeIII-chelate reductase is encoded by LeFRO1, which is 

expressed in roots, leaves, cotyledons, flowers, and young fruits. The transcription 

intensity of LeFRO1 in roots is dependent on the Fe status whereas it is constitutively 

expressed in leaves (Li et al., 2004). Two more genes, termed LeFRO-TC124302 and 

LeFRO-TC129233, were identified in tomato due to their sequence similarity to AtFRO2. 

LeFRO-TC124302 was expressed in a root-specific manner, slightly Fe regulated and 

dependent on a functional LeFER gene, but it was found to be specific to the L. 



1. Introduction 

 15 

esculentum genome. A L. esculentum introgression line devoid of LeFRO-TC124302 had 

similar levels of FeIII-reductase activity as the wild type, indicating that LeFRO-

TC124302 is not essential for FeIII reduction. All LeFRO-TC129233 EST sequences 

were derived from flower libraries, the gene was not detected in roots or shoots (Bauer et 

al., 2004b). This data additionally suggests that LeFRO1 is the main gene responsible for 

FeIII-chelate reduction under Fe deficiency in tomato roots. 

 

1.3.4.2. Transporter Genes 

AtIRT1 – Expression of an Arabidopsis cDNA library into the yeast fet3fet4 

(FERROUS TRANSPORTER) double mutant strain, impaired in both low- and high-

affinity Fe transport, enabled cloning of a plant FeII transporter by screening for 

complementation of the mutant phenotype (Eide et al., 1996). It was designated AtIRT1 

(IRON-REGULATED TRANSPORTER). The AtIRT1 gene is not the equivalent of the 

FET3 or FET4 genes of S. cerevisiae. Instead, it encodes the founding member of a 

different class of eukaryotic metal ion transporters, referred to as the ZIP (ZRT, IRT-

LIKE TRANSPORTERS) family (Guerinot, 2000), with related sequences in rice, yeast, 

nematodes and humans. It encodes a protein with eight transmembrane (TM) domains. 

Four histidine-glycine repeats constitute potential metal-binding sites between TM 

domains 3 and 4 (Eng et al., 1998). 

In addition, AtIRT1 mediates uptake of MnII and ZnII in the yeast smf1 and zrt1zrt2 

mutants, respectively defective in Mn and Zn transport, but cannot restore growth of the 

Cu uptake-deficient yeast mutant ctr1, implying that this transporter is not involved in the 

uptake of Cu (Korshunova et al., 1999). Inhibition of Fe uptake in AtIRT1-expressing 

yeast by excess of several transition metals such as Cd, Co, Mn and Zn was observed, 

showing that AtIRT1 is also able to transport CdII and CoII. The determinants for this 

broad substrate specificity of AtIRT1 have been investigated by site-directed mutagenesis 

(Rogers et al., 2000). 

AtIRT1 expression is induced in roots of plants grown under Fe-deficiency (Eide et 

al., 1996; Connolly et al., 2002; Vert et al., 2002), suggesting a role of AtIRT1 in Fe 

uptake in planta. Such role has been demonstrated by the characterization of an 

Arabidopsis irt1 knock-out mutant (Vert et al., 2002). The irt1 mutant plant is chlorotic 
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and has a severe growth defect in soil, leading to death, which can be rescued by the 

application of exogenous Fe, probably through the activity of not yet characterized low-

affinity Fe transporters. Additionally, roots of the irt1 mutant are defective in Fe uptake, 

and do not accumulate Zn, Cd, Mn, and Co under Fe-deficient conditions. This is in 

agreement with the observation that Fe-deficient plants have increased levels of root-

associated Mn, Zn, Cd and Co, suggesting that, in addition to Fe, AtIRT1 mediates 

uptake of these metals into plant cells (Korshunova et al., 1999). The fact the AtIRT1 has 

plasma membrane localization in root epidermal cells supports a transporter function in 

Fe uptake from the soil. These lines of evidence for the function of AtIRT1 in planta have 

been confirmed by two other independently obtained irt1 mutant lines (Henriques et al., 

2002; Varotto et al., 2002). Thus, AtIRT1 is considered as the major Fe transporter at the 

root surface in A. thaliana (Vert et al., 2002). 

AtIRT1 production is further regulated at the protein level as AtIRT1 protein 

accumulation is repressed by sufficient Fe and Zn. 35S::AtIRT1 transgenic plants express 

AtIRT1 mRNA constitutively, but are unable, under Fe-deficient conditions, to produce 

AtIRT1 protein in any plant tissue except the root (Connolly et al., 2002). This additional 

level of control of AtIRT1 expression provides the plant with an effective mechanism to 

switch off Fe-uptake activity when not needed. 

AtIRT1 homologues have also been characterized in pea and tomato (Cohen et al., 

1998; Eckhardt et al., 2001). The pea gene, called PsRIT1, is upregulated under Fe 

deficiency and complements both the fet3fet4 and zrt1zrt2 yeast mutants, thus potentially 

mediating high-affinity Fe and Zn uptake in plants. 

In tomato, LeIRT1 and LeIRT2 are both expressed in roots but only LeIRT1 appears 

to be strongly upregulated in response to Fe deficiency (Eckhardt et al., 2001). Both 

genes restore the growth defect of the fet3fet4, zrt1zrt2, and smf1 yeast mutants (Eckhardt 

et al., 2001). However, the tomato genes are able to complement the Cu transport-

deficient yeast strain ctr1 whereas AtIRT1 does not (Eide et al., 1996). 

 

AtIRT2 – AtIRT2 is a gene belonging to the ZIP family and closely related to AtIRT1. 

AtIRT2 is able to transport Fe and Zn, but, unlike AtIRT1, it cannot transport Mn and Cd, 

when expressed in yeast (Vert et al., 2001). AtIRT2 is expressed only in roots, in the same 
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territories as AtIRT1, and is upregulated by Fe deficiency. However, both the level of 

expression of AtIRT2 and its induction by Fe deficiency are much lower compared to 

AtIRT1. A null irt2 mutant has no apparent phenotype, and overexpression of AtIRT2 in 

irt1 mutants does not rescue the irt1 growth defect, which raises the question of the 

function of AtIRT2 in planta (Varotto et al., 2002; Vert et al., 2002). 

 

AtNRAMPs – The NRAMP (NATURAL RESISTANCE-ASSOCIATED 

MACROPHAGE PROTEIN) gene family of metal transporters in Arabidopsis has seven 

members (Maser et al., 2001). Generally, NRAMPs are widely distributed throughout 

living organisms, functioning in the transport of a broad range of divalent metal cations, 

including Fe (Gunshin et al., 1997). Their name was derived from phagosomal NRAMP1 

which functions as an efflux pump in the membrane and in this way enhances resistance 

against intracellular bacteria by reducing metal availability (Lafuse et al., 2000). 

One of the seven Arabidopsis members, AtEIN2, is involved in ethylene response and 

its function in metal transport has not been demonstrated yet. 

On the other hand, the role of AtNRAMP1, AtNRAMP3, and AtNRAMP4 in metal 

transport has been shown both in yeast and in planta (Curie et al., 2000; Thomine et al., 

2000). In yeast, expression of AtNRAMP1, AtNRAMP3, or AtNRAMP4 complements the 

phenotype of strains defective in Mn or Fe uptake. In addition, heterologous expression 

of AtNRAMP3 or AtNRAMP4 increases yeast sensitivity to Cd, indicating that these genes 

encode metal transporters with multiple specificities (Curie et al., 2000; Thomine et al., 

2000). 

In Arabidopsis, AtNRAMP1, AtNRAMP2, AtNRAMP3, and AtNRAMP4 are expressed 

in both roots and shoots, but only the accumulation of AtNRAMP1, AtNRAMP3, and 

AtNRAMP4 increases in roots in response to Fe deficiency (Curie et al., 2000). 

AtNRAMP1 overexpression in plants confers increased resistance to toxic Fe levels 

(Curie et al., 2000). The closely related genes AtNRAMP3 and AtNRAMP4 share similar 

tissue-specific expression patterns, transcriptional regulation by Fe, and subcellular 

localization at the vacuolar membrane (Thomine et al., 2003; Lanquar et al., 2005). 

Although neither single mutant has a dramatic phenotype, the germination of nramp3 

nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe 
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supply (Lanquar et al., 2005). Additionally, mutant seeds have wild type Fe content, but 

fail to retrieve Fe from the vacuolar globoids. These results indicate that AtNRAMP3 and 

AtNRAMP4 function redundantly in the mobilization of Fe from the vacuole during early 

seed development. AtNRAMP3 and AtNRAMP4 are currently the most likely candidates 

to control the active (re)mobilization of metals to and from the vacuolar pool. 

The tomato homologues of AtNRAMP1 and AtNRAMP3, LeNRAMP1 and 

LeNRAMP3 (Bereczky et al., 2003), respectively, encode functional NRAMP metal 

transporters in yeast, where they were shown to be Fe regulated and localized mainly to 

intracellular vesicles. LeNRAMP1, in contrast to LeNRAMP3, has a root-specific 

expression and is strongly upregulated by Fe deficiency. Additionally, LeNRAMP1 was 

expressed in the vascular root parenchyma. A role for LeNRAMP1 in Fe 

compartmentalization within the plant but not in Fe uptake from the soil was suggested 

(Bereczky et al., 2003). 

AtYSL – A search for homologues of the maize YS1 gene in Arabidopsis identified 

eight genes, named YSL (YELLOW STRIPE-LIKE) (Curie et al., 2001). Since 

nongraminaceous plants do not synthesize or secrete PS, it was suggested that YSL 

proteins mediate the uptake of metals that are complexed with plant-derived PS or 

nicotianamine (NA) (Colangelo and Guerinot, 2006). NA is produced in all plants and 

has the ability to bind Fe (von Wiren et al., 1999). Based on sequence similarity to 

ZmYS1, A. thaliana has eight predicted AtYSL proteins. Two family members, AtYSL1 

and AtYSL2 have recently been studied in some detail. 

AtYSL1 is a shoot-specific gene, expressed in the xylem parenchyma of leaves, whose 

transcript levels increase in response to Fe excess (Le Jean et al., 2005). Based on the 

phenotype of the ysl1 mutant, a role of AtYSL1 in long-distance circulation of Fe and NA 

and their delivery to the seed was suggested. 

AtYSL2 transports FeII and CuII when these metals are chelated by NA. AtYSL2 is 

expressed in many cell types in both shoots and roots, such as the xylem-associated cells 

within the vasculature of expanded leaves (DiDonato et al., 2004), and in the pericycle 

and endodermis of the roots (Schaaf et al., 2005), suggesting that diverse cell types obtain 

metals as metal-NA complexes. AtYSL2 transcript accumulation increases under 

conditions of Fe sufficiency or Fe resupply (DiDonato et al., 2004; Schaaf et al., 2005), 
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and responds also to Cu (DiDonato et al., 2004) and Zn (Schaaf et al., 2005). Based on its 

expression pattern and its apparent protein localization in lateral membranes (DiDonato 

et al., 2004), a major function of AtYSL2 might be in the lateral transport of metals in the 

vasculature, most probably through the plant veins (DiDonato et al., 2004). The ysl2-1 

single mutant does not have an obvious phenotype which may reflect functional 

redundancy within the Arabidopsis YSL family (DiDonato et al., 2004). 

AtIREG2 – Another class of transporters involved in the intracellular distribution of 

Fe might be represented by AtIREG2 (or AtFPN2). AtIREG1, 2, and 3 are related by 

sequence to the animal IRON-REGULATED PROTEINS (IREGs), also called 

FERROPORTINS (FPNs) (Schaaf et al., 2006), for which a function in Fe export has 

been demonstrated, as for example for the mammalian IREG1 gene (McKie et al., 2000). 

AtIREG2 is involved in Fe-dependent Ni detoxification in the roots. Its expression is 

clearly upregulated under Fe deficiency and localized in the tonoplast in Arabidopsis 

(Schaaf et al., 2006). 

AtFRD3 – The Arabidosis frd3 mutant, also isolated as man1 (Delhaize, 1996), is 

unable to turn off the root FeIII-reductase activity at sufficient Fe supply (Yi and 

Guerinot, 1996). frd3 accumulates a variety of metals, such as Fe and Mn, due to the 

upregulation of AtIRT1 (Delhaize, 1996). 

The AtFRD3 gene has a root-specific expression, and encodes a transmembrane 

protein belonging to the MULTIDRUG AND TOXIN EFFLUX TRANSPORTERS 

(MATE) family (Rogers and Guerinot, 2002). AtFRD3 was shown to function in Fe 

localization in Arabidopsis by loading of an Fe chelator in the root xylem necessary for 

efficient Fe uptake out of the xylem or apoplastic space and into leaf cells (Green and 

Rogers, 2004). It has recently been suggested that the Fe chelator transported by AtFRD3 

is citric acid (Durrett et al., 2006). 

 

1.3.4.3. Nicotianamine (NA) 

The tomato mutant chloronerva accumulates high levels of Fe (Stephan and Scholz, 

1993) and behaves as if it is always experiencing Fe deficiency, even when grown under 

Fe-sufficient conditions. Among the typical symptoms of Fe deficiency is the 

characteristic interveinal chlorosis in young leaves. On the other hand, the Fe-uptake 
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mechanisms in the mutant, including proton extrusion and reductase activity, are 

constitutively expressed. As a result, it accumulates too much Fe in its shoots, leading to 

retarded growth and development of necrotic spots on the leaves. Grafting the 

chloronerva mutant onto wild type or vice versa normalizes the mutant phenotype, 

indicating that it is due to the lack of a transportable substance (Ling et al., 1999). 

The observed abnormalities in chloronerva have been correlated with a deficiency in 

NA synthesis (Stephan and Grün, 1989) due to a mutation in the gene LeNAS encoding 

the enzyme NA synthase (NAS) that converts S-adenosyl methionine to NA (Ling et al., 

1999). The LeNAS gene has been mapped to the long arm of chromosome 1 (Ling et al., 

1996) and later isolated by map-based cloning (Ling et al., 1999). 

chloronerva is an NA auxotroph – application of NA to the roots or leaves of mutant 

plants leads to their phenotypic recovery (Stephan and Scholz, 1993). It was thought that 

in chloronerva cells Fe is unable to react with the sensor protein without the aid of NA, 

leaving the repressor unsaturated and Fe uptake to continue in excess of cellular needs 

(Scholz et al., 1992). This could explain why the NA-free mutant suffers from apparent 

Fe deficiency and fails to repress inducible Fe-uptake processes (Stephan and Scholz, 

1993). 

On the molecular level, lack of NA in the chloronerva mutant results in induced 

expression of LeIRT1 and LeNRAMP1, compared with wild type, despite sufficient Fe 

supply. This upregulation was found dependent on the presence of a functional LeFER 

gene. Thus, it was concluded that LeNAS is required for the proper Fe-dependent 

regulation of LeIRT1 and LeNRAMP1 (Bereczky et al., 2003). 

NA occurs in all plants and chelates metal cations, including Fe. Its role as a mediator 

of Fe transport in the phloem could also explain the various phenotypes of the 

chloronerva mutant (Stephan et al., 1994; 1996). Evidence for this is that the 

concentrations of NA in the phloem correlate with those of Fe and other metals, and that 

the NA-free mutant chloronerva has a phenotype indicative of Fe deficiency (Stephan 

and Scholz, 1993; Pich and Scholz, 1996). It was also shown that NA chelates both FeII 

and FeIII, and role for NA in scavenging Fe for protecting the cell from oxidative 

damage, resulting from the Fenton reaction, was proposed (von Wiren et al., 1999). 

Additional evidence in support of such a role was provided by the cellular distribution of 
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NA in response to the Fe status of both pea and tomato plants – while under Fe deficient 

(0 µM) and normal (10 µM) Fe supply NA was mainly present in the cytoplasm, in Fe-

loaded plants (100 µM) most of the NA was present in the vacuole, indicating the 

possible importance of vacuolar sequestration in the detoxification of excess Fe (Pich et 

al., 2001). 

Additional evidence for the role of NA was obtained from transgenic tobacco plants 

that constitutively expressed the barley HvNAAT gene (Takahashi et al., 2003). In 

graminaceous plants, NAAT catalyzes the amino group transfer of NA for the 

biosynthesis of phytosiderophores (see 1.4. Strategy II). In this way, the transgenic 

plants experienced NA shortage, which caused disorders in internal metal transport, 

leading to interveinal chlorosis of young leaves (similar to the chloronerva phenotype) 

and abnormally shaped and sterile flowers. These findings demonstrated the essential role 

of NA in growth, flower development, and fertility in plants (Takahashi et al., 2003). 

 

1.3.4.4. Other Known Mutants Impaired in Strategy I Response 

Several plant mutants are known to exhibit increased rates of Fe uptake irrespective 

of Fe supply. The genes responsible for these mutant phenotypes could represent 

important components of the Fe-response pathway, however they are not yet identified. 

brz - The pea mutant brz (bronze) accumulates high levels of Fe (Kneen et al., 1990) 

(Welch and Kochian, 1992) similar to the tomato mutant chloronerva. The brz mutant 

develops bronze necrotic spots on its leaves probably due to the 50-fold increased leaf-Fe 

content compared to leaves of wild type plants. The basis for the excessive Fe 

accumulation appears to be the increased FeIII reduction and FeII uptake regardless of 

plant Fe status (Grusak et al., 1990). The brz mutant also accumulates high levels of other 

divalent cations (MgII, MnII, ZnII). The brz mutation is monogenic, recessive and maps 

to chromosome 4 (Kneen et al., 1990). 

dgl - Similar phenotype is observed for the dgl (degenerated leaflets) mutant in pea 

(Grusak and Pezeshgi, 1996). It also has an increased capacity to acidify the rhizosphere. 

Reductase studies using plants with reciprocal shoot:root grafts demonstrated that shoot 

expression of the dgl gene leads to the generation of a transmissible signal that enhances 

FeIII reductase activity in roots. The dgl gene product may alter or interfere with a 
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normal component of a signal transduction mechanism regulating Fe homeostasis in 

plants (Grusak and Pezeshgi, 1996). 

 

1.3.4.5. Ferritin 

Due to the potential of free Fe for causing damage in the cell through radical 

formation, plants need to regulate its uptake and store it in a safe and soluble form. Two 

important compartments involved in this function are the apoplastic space and the 

vacuoles (Briat et al., 1995). The ferritins, a class of multimeric proteins, also act as an Fe 

buffer inside the cell (Harrison and Arosio, 1996). The importance of ferritin function is 

emphasised by its ubiquitous distribution among living species – plants, animals, fungi 

and bacteria. 

 

1.4. Strategy II 

Strategy II plants are characterized by the release of phytosiderophores (PS) (e.g. 

mugineic acid (MA) in barley and avenic acid in oat) which efficiently solubilize 

inorganic FeIII by chelation, and by the induction of a high-affinity uptake system for 

FeIII-PS complexes that transports the FeIII chelates as intact molecules (Römheld, 

1987). Both processes are induced in response to Fe deficiency through upregulation of 

the underlying genes (Fig. 2). 

This strategy is considered to be more efficient than Strategy I; a good illustration for 

this is the fact that grasses can grow on calcareous soils which do not support the growth 

of dicots. One reason for this may be that Strategy II is less pH dependent than Strategy I 

(Guerinot and Yi, 1994). 

Knowledge of the Strategy II Fe-acquisition mechanism has increased considerably 

since the discovery of PS in washings from the roots of Fe-deficient rice and oats 

(Takagi, 1976; 1993). It was found that PSs are structurally related to NA. Later, it 

became evident that NA is an intermediate in the biosynthesis of the mugineic acid 

family of PS. Although NA is produced by both monocots and dicots, the subsequent 

steps leading to MAs synthesis are specific to grasses. The critical enzyme in this specific 

pathway is nicotianamine-aminotransferase (NAAT) (Shojima et al., 1990; Ohata et al., 

1993; Kanazawa et al., 1994; 1995) that catalyzes the transfer of an amino residue to NA, 
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resulting in the production of 2’-deoxymugineic acid (DMA), the precursor of all other 

MAs (Shojima et al., 1990). Subsequent hydroxylation of DMA results in the formation 

of other members of the MA family (Nakanishi et al., 1993; Okumura et al., 1994; 

Nakanishi et al., 2000). 

 

 

Figure 2: Strategy II for Fe uptake in plants. 

 

The uptake of Fe in roots of graminaceous monocots is based on FeIII chelation and involves two 

distinct processes: (i) biosynthesis of FeIII-chelating substances – phytosiderophores from S-adensyl 

methionin through the enzymatic activity of nicotianamine synthase (NAS) and nicotianamine 

aminotransferase (NAAT), and excretion of PS into the rhizosphere, where they chelate FeIII from 

insoluble compounds; and (ii) uptake of FeIII-PS complexes into the root epidermal cells through a specific 

transporter (YS1 in maize). 

 

The uptake of FeIII-PS complexes in Strategy II plants occurs through a specialized 

transporter. The gene encoding for this transporter was discovered by investigating the 

yellow-stripe 1 (ys1) mutant of maize, which is unable to respond to Fe deficiency due to 

a defect in the uptake of FeIII-PS complexes (Von Wiren et al., 1994). The ZmYS1 gene 

encodes a plasma membrane protein from the OLIGOPEPTIDE TRANSPORTER (OPT) 
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family (Yen et al., 2001). Both ZmYS1 mRNA and protein are upregulated by Fe 

deficiency in roots and shoots, where ZmYS1 functions as a proton-coupled symporter to 

transport FeIII-PS and FeIII-NA (Curie et al., 2001; Roberts et al., 2004; Schaaf et al., 

2004). 

 

1.5. Fe Transport Throughout the Plant and Systemic Signaling 

Generally speaking, accumulation of a given metal is a function of uptake capacity 

and intracellular binding sites. In a multicellular organism, the situation is complicated by 

tissue- and cell-specific differences and also by intercellular transport. The processes that 

are assumed to influence metal accumulation rates in plants are the following: 

mobilization and uptake from the soil, compartmentation and sequestration within the 

root, efficiency of xylem loading and transport, distribution between metal sinks in the 

aerial parts, sequestration and storage in leaf cells. At every level, concentration and 

affinities of chelating molecules, as well as the presence and selectivity of transporters, 

affect metal accumulation rates (Clemens et al., 2002). 

The uptake of Fe in the plant starts in the apoplast of the root epidermal cells 

(Bienfait et al., 1985). Once taken up into the root symplast, Fe has to be shielded from 

oxygen to prevent precipitation and generation of oxygen radicals. For this purpose, it is 

assumed to be chelated by NA for several reasons: (i) NA forms stable complexes with 

both Fe oxidation states at neutral and weakly alkaline pH (Stephan et al., 1996), (ii) NA 

is ubiquitous in higher plants in all tissues (Scholz et al., 1992), (iii) Fe-NA complexes 

are relatively poor Fenton reagents (von Wiren et al., 1999), and (iv) NA concentrations 

correlate with localization and levels of Fe (Pich et al., 2001). 

Radial transport of Fe from the root epidermis to the xylem vessels is most probably 

occurring as an FeII-NA complex on a symplastic route (Stephan et al., 1996). 

Fe is loaded in the xylem sap and translocated into the aerial parts of the plant 

through the transpiration stream. This process is mediated by xylem parenchyma or 

transfer cells and represents a separate control point for nutrient transport to the shoot 

(Schurr, 1999). The role of YSL transporters in loading Fe from the cortical cells to the 

xylem has been suggested (Colangelo and Guerinot, 2006). Organic acids, especially 

citrate, are the main metal chelators in the xylem (White et al., 1981) and it is generally 
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agreed that Fe is oxidized when released into the xylem vessels and then transported as 

an FeIII-citrate complex (Tiffin, 1966; Lopez-Millan et al., 2000). 

Further up in the shoot, Fe is unloaded from the xylem into the apoplastic spaces of 

leaf mesophyll cells. The uptake of FeIII by leaf mesophyll appears to depend on a 

reduction step via a plasma membrane-bound FeIII-chelate reductase, which most likely 

releases FeII from FeIII citrate (Brüggemann et al., 1993). There is also some evidence 

that FeIII reduction in vivo may be aided by intermediate superoxide radical formation or 

by strong blue light (Brüggemann et al., 1993). In pea and tomato, PsFRO1 and LeFRO1, 

respectively, are also expressed in leaves and induced by Fe deficiency (Waters et al., 

2002; Li et al., 2004), making them good candidates for an FeIII reductase in the leaf. 

The distribution of Fe from the cells adjacent to the veins to the leaf lamina is 

probably again mediated by an Fe-NA complex, because in the NA-deficient mutant 

chloronerva most of the Fe is deposited along the veins. As a result, a characteristic 

interveinal chlorosis develops (Stephan and Scholz, 1993). 

Fe moves from source to sink tissues via the phloem sap. NA is one of the potential 

phloem metal transporters (Stephan and Scholz, 1993). It binds preferentially FeII, and 

not FeIII, in the phloem sap (von Wiren et al., 1999). There is a low but significant 

steady-state concentration of FeII in the phloem (Maas et al., 1988). The bulk of Fe in the 

phloem is in the form of FeIII and chelated by the IRON TRANSPORT PROTEIN (ITP) 

(belonging to the Late Embryogenesis Abundant (LEA) family) (Krueger et al., 2002). It 

is suggested that NA plays a role in loading and unloading Fe in the phloem by chelating 

FeII in the transition to and from FeIII-ITP complexes. The YSL transporters are good 

candidates for transporting FeII-NA in and out of the phloem. A reductase should also be 

involved in the process, oxidizing FeII from NA for binding to ITP, and reducing FeIII 

from ITP for binding to NA. 

 

For the induction of Fe-deficiency responses, small amounts of extracellular Fe are 

more favourable than no Fe. For example, increased reductase activity was found in 

Glycine max roots supplied with 0.32 µM Fe relative to those supplied with 0.1 µM 

(Chaney et al., 1972). Similar results have been reported for various species (Jolley et al., 

1986; Miller and Olsen, 1986; Stephan and Grün, 1989). Likewise, in mutants that are 
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characterized by increased Fe-deficiency responses (such as chloronerva, for example), 

higher reductase activity is observed with normal amounts of Fe relative to Fe-free grown 

plants (Stephan and Grün, 1989; Grusak et al., 1990; Grusak and Pezeshgi, 1996). A 

stimulation of the Fe uptake system by low, non-zero, Fe concentrations may be 

advantageous in ecological terms. 

Besides sensing changes in Fe supply in the rhizosphere, plants are able to monitor 

the shoot Fe status and to send a signal from the shoot to the root to activate uptake 

mechanisms. The identity of this signal is still unknown but it is believed to be 

transmitted by the phloem (Maas et al., 1988). Candidates are plant hormones, Fe-

complexes or redistributed Fe (Hell and Stephan, 2003). 

When split-root plants were grown continuously with a localized supply of Fe, an 

increase in reduction rates was evident in the Fe-supplied portion of the root system. 

Apparently, the reductase activity of the Fe-supplied roots is controlled by the shoot Fe 

requirement, compensating for the decreased percentage of roots participating in Fe 

acquisition (Schmidt et al., 1996). 

The regulation of the root high-affinity Fe-uptake system by whole-plant signals was 

investigated in Arabidopsis, through monitoring the gene expression of the root FeIII-

chelate reductase AtFRO2 and the high-affinity Fe transporter AtIRT1 (Vert et al., 2003). 

Split-root experiments indicated that the expression of AtFRO2 and AtIRT1 is controlled 

by a local induction from the root Fe pool and through a systemic pathway involving a 

shoot-borne signal, both signals being integrated to tightly control production of the root 

Fe uptake proteins. Additionally, the expression of AtFRO2 and AtIRT1 is diurnally 

regulated (expressed during the day and downregulated at night) but this level of control 

can be overruled by Fe starvation (Vert et al., 2003). 

 

In summary, information trafficking between different plant parts appears to be of 

crucial importance for the regulation of appropriate internal concentrations of Fe in 

higher plants. Although root cells are capable of sensing intracellular and possibly 

external Fe concentrations and of inducing Fe-deficiency responses, this control can be 

overruled by shoot-derived signals. This is most obvious in cases where, despite adequate 

external Fe concentrations, either the translocation or the uptake of Fe by leaf cells is 
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inhibited or a high demand for shoot growth is clear (e.g. when Fe supply is locally 

restricted as in the case of split-root plants) (Schmidt, 1999). 

 

1.6. Regulation of Fe-Uptake Components 

Plants have to cope with two problems during acquisition of Fe for their needs. On 

one hand, it is the low bioavailability of Fe in the soils which often causes Fe deficiency 

in the plant. On the other hand, Fe can be highly toxic for the cells if it is not properly 

chelated and compartmentalized. For these reasons, coordination of Fe uptake processes 

according to the growth requirements of the plant is of vital importance for its survival, 

and is thus under tight regulation. This regulation occurs at several different levels. 

 

1.6.1. Transcriptional Regulation 

Many of the biological processes in a plant are regulated at the level of transcription. 

Changes in gene expression have been shown to underlie the response to environmental 

cues and stresses (such as light, temperature, and nutrient availability), the defense 

response against pathogens, and many more. In plants, as well as in animals, 

development is based on the cellular capacity for differential gene expression (Benfey 

and Weigel, 2001). Alterations in gene expression are also emerging as a major source of 

the diversity and change that underlie the morphological evolution of eukaryotic 

organisms (Tautz, 2000). In particular, morphological changes that occurred during plant 

domestication and crop improvement in agriculture have been associated with mutations 

in transcription factors (Peng et al., 1999), alterations in their expression (Wang et al., 

1999), or changes in the expression of other types of regulatory proteins (Frary et al., 

2000). 

The proteins involved in transcription in eukaryotes can be classified into four 

different functional groups: (1) the basic transcription apparatus and intrinsic associated 

factors (also known as general transcription factors); (2) large multi-subunit coactivators 

and other cofactors; (3) sequence-specific DNA-binding transcription factors; and (4) 

chromatin-related proteins. In contrast to the components of the basal transcription 

machinery, which in general are highly conserved, coregulators and transcription factors 

have diverged largely among eukaryotes (Lemon and Tjian, 2000). 
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In plants, the maintenance of Fe homeostasis is so far mainly described on the level of 

gene expression. A mechanism similar to the IRE/IRP control in animals has not been 

described yet. 

 

1.6.1.1. LeFER Gene 

The first identified regulator of Fe nutrition in plants is the LeFER gene in tomato 

(Ling et al., 2002). 

The chlorotic tomato Fe-inefficient mutant fer (T3238fer) (Fig. 3A) is unable to 

respond to Fe deficiency by switching on Strategy I responses, including the enhanced 

proton extrusion in the rhizosphere, the increase in FeIII-chelate reductase activity, and 

the FeII uptake. Thus, the mutant is unable to survive on FeIII in soil. However, if 

supplied with the Fe complex FeHEDTA at high concentrations, or grafted onto wild-

type rootstock, the plant develops normally (Brown et al., 1971; Brown and Ambler, 

1974). Reciprocal grafting of the mutant to a wild type indicated that the LeFER gene is 

required in the root but not in the shoot (Brown et al., 1971). 

Genetic analysis showed that the fer mutation is a monogenic recessive trait, which 

could be mapped to the center of chromosome 6 (Ling et al., 1996). The LeFER gene was 

isolated by map-based cloning, and was predicted to encode a basic helix-loop-helix 

(bHLH) protein (Fig. 3B) that is required for induction of Fe-mobilization responses in 

tomato roots (Ling et al., 2002). 

 

 

Figure 3: fer mutant and the regulator of Fe uptake in tomato, LeFER. 
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(A) The tomato fer mutant exhibits severe leaf chlorosis and retarded growth compared to wild type 

(Wt) plants, since it is unable to switch on Strategy I responses under Fe-deficient conditions. (B) The gene 

responsible for the fer mutant phenotype, LeFER, belongs to the bHLH family of transcription factors. A 

schematic representation of the highly conserved bHLH domain, which is generally involved in DNA 

binding. 

 

The fer mutation is due to the presence of a large DNA insertion at the end of LeFER 

gene exon 1. The effects of the mutation at low and sufficient Fe supply were shown to 

be both on physiological and morphological level (Ling et al., 2002). fer mutants 

exhibited reduced FeIII-reductase capacity and LeIRT1 expression level compared to wild 

type plants. Morphologically, fer mutant plants showed lower number of root hairs on the 

lateral root tips, and significantly reduced root weight due to inhibited lateral root growth. 

LeFER gene expression was detected in roots and root tips, and at a lower level in 

hypocotyls of seedlings, but not in cotyledons or leaves. No significant difference in the 

expression level was observed when plants were subjected to either low or sufficient Fe 

supply. Furthermore, an in situ hybridization analysis on root transverse sections revealed 

differential LeFER mRNA localization throughout the length of the root. In the dividing 

root zone where no vasculature is developed yet, LeFER was detected in the epidermis 

and outer cortical cell layers. In the elongation zone where vasculature starts to 

differentiate, LeFER was mainly observed in the epidermis cells. In the mature root-hair 

zone, LeFER transcripts were restricted to the vascular cylinder between the xylem and 

the phloem. This pattern was found similar at low and sufficient Fe supply. Due to the 

incapability of the fer mutant to switch on the Fe-deficiency response on either 

morphological, physiological, or gene expression level, it was concluded that the primary 

defect in the mutant is caused by a regulatory deficiency (Ling et al., 2002). 

The expression of the tomato FeIII-chelate reductase gene LeFRO1 (Li et al., 2004), 

and that of the transporter genes LeIRT1 and LeNRAMP1 (Bereczky et al., 2003) was 

shown to be downregulated in the roots of fer mutant plants, suggesting that LeFER acts 

upstream of the Fe-uptake machinery. Additionally, LeNRAMP1 expression colocalized 

with that of LeFER in the vascular parenchyma. However, the LeFER gene was not 



1. Introduction 

 30 

sufficient for inducing LeIRT1 and LeNRAMP1 when ectopically expressed (Bereczky et 

al., 2003), suggesting additional level(s) of regulation acting upon LeFER function. 

Furthermore, a double mutant of fer and chloronerva has been characterized (Ling et 

al., 1996). The severe phenotype, together with a significantly decreased expression of 

LeIRT1 and LeNRAMP1 in those mutant plants, suggest a synergistic effect of the lack of 

LeFER and LeNAS genes. Interestingly, expression levels of both LeIRT1 and 

LeNRAMP1 were elevated in the chloronerva mutant despite sufficient Fe supply and the 

presence of a functional LeFER gene (Bereczky et al., 2003), suggesting that NA is 

required for the proper regulation of the two genes. 

In an attempt to identify membrane-localized proteins under the control of LeFER, 

Bienfait (1988) has performed a comparison of two-dimensional protein gel on 

membrane fractions of wild type and fer mutant plants. At least two membrane proteins 

that are produced under Fe-deficiency conditions in tomato roots were found to absent in 

the fer mutant. However, due to technical reasons, identification was not possible at the 

time. Since then, no further proteomic studies on the response in tomato roots to Fe 

deficiency have been performed. 

Recently, the LeFER-like regulator of Fe uptake in Arabidopsis was cloned and is 

known respectively as AtFIT1 (Fe-DEFICIENCY INDUCED TRANSCRIPTION 

FACTOR 1), AtFRU (FER-LIKE REGULATOR OF IRON UPTAKE), or AtBHLH29 

(Colangelo and Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2005). Throughout the 

following chapter the gene is named acording to the origin of the data discussed. Of the 

162 predicted bHLH proteins in Arabidopsis (Heim et al., 2003; Toledo-Ortiz et al., 

2003), AtFIT1 is the closest homologue to the tomato LeFER gene (Colangelo and 

Guerinot, 2004), and it can functionally complement the tomato fer mutant (Yuan et al., 

2005). AtFRU was shown to be necessary for upregulation of Fe mobilization genes, 

suggesting that Fe uptake is controlled by conserved regulatory genes in dicots (Jakoby et 

al., 2004). 

AtFIT1 mRNA, similar to observations for AtFRO2 and AtIRT1, was detected in the 

outer cell layers of the root and accumulated in response to Fe deficiency. fit1 mutant 

plants are chlorotic and need Fe supplementation in order to survive. These plants also 

accumulated less Fe than wild type in roots and shoots. Microarray analysis revealed 
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many genes under the control of AtFIT1, which are either novel or implicated in Fe 

homeostasis (Colangelo and Guerinot, 2004). 

In a parallel study, Jakoby et al. (2004) analysed the function of AtFRU, and could 

show that the gene was mainly expressed in roots in a cell-specific pattern and induced 

by Fe deficiency. However, some of the obtained results regarding AtFRO2 and AtIRT1 

expression levels differed from the ones reported by Colangelo and Guerinot (2004), 

probably due to differences in the growth conditions and mutant alleles used. Jakoby et 

al. (2004) showed that in fru knockout plants, AtFRO2 and AtIRT1 gene expression was 

downregulated, whereas in AtFRU overexpression lines it was induced upon low Fe 

supply in roots and/or in leaves. The gene expression results were paralleled by FeIII-

reductase and chlorophyll measurements. 

Both LeFER and AtFRU genes appear to play similar roles in their respective systems 

in controlling Fe-deficiency responses in the root (Colangelo and Guerinot, 2004; Bauer 

et al., 2004a; 2004b). Both, LeFER/AtFRU/ATFIT1 are essential and act upstream in 

inducing the AtFRO2/AtIRT1 system in roots. The BHLH genes are themselves up-

regulated by low Fe supply although this up-regulation is not as strong as that of AtIRT1. 

Overexpression studies showed that LeFER and AtFRU can enhance Fe-uptake responses 

but only at low Fe supply suggesting additional posttranscriptional activation by low Fe 

or inactivation by high Fe (Bereczky et al., 2003; Jakoby et al., 2004). 

The superfamily of bHLH transcription factors is conserved from yeast to mammals. 

bHLH proteins are the second largest transcription factor family in plants and govern a 

wide range of biological processes (Riechmann et al., 2000). The conserved bHLH 

domain consists of approx. 18 hydrophilic and basic amino acids comprising the basic 

region, which permits binding to DNA at the hexanucleotide E-box sequence 5’-

CANNTG-3’. Two stretches of hydrophobic residues separated by a loop region form 

two amphipathic α-helices and allow these proteins to form homo- and/or heterodimers 

(Voronova and Baltimore, 1990; Toledo-Ortiz et al., 2003). 

 

Expression of the Arabidopsis Fe-deficiency response genes AtFRO2, AtIRT1, 

AtIRT2, and AtNRAMP1, AtNRAMP3, AtNRAMP4 is controlled by Fe status at the level 

of transcript accumulation. Their mRNAs accumulate in roots in response to Fe 
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deficiency and are rapidly switched off by Fe resupply (Eide et al., 1996; Curie et al., 

2000; Connolly et al., 2002). The same holds true for the tomato genes LeFRO1, LeIRT1, 

and LeNRAMP1 (Bereczky et al., 2003; Li et al., 2004). 

 

1.6.1.2. Other Transcriptional Regulators in Plants 

A putative bHLH transcription factor gene, named OsIRO2, has been identified by 

using a rice 22K oligo-DNA microarray as strongly expressed in both roots and shoots 

during Fe deficiency. Expression of the barley homologue of OsIRO2, HvIRO2, was also 

found induced by Fe deficiency, and an in silico search revealed that IRO2 is highly 

conserved among graminaceous plants. The binding sequence of OsIRO2 (5’-

CACGTGG-3’) was determined, and similar sequences were found in the promoter 

regions of several genes involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, 

OsFDH, OsAPT1, and IDS3, suggesting that OsIRO2 is involved in the regulation of 

these genes under Fe-deficient conditions (Ogo et al., 2006). 

 

The control of gene expression through transcription factors is exerted through cis-

regulatory elements contained in the promoter regions of the respective genes. Studies on 

the genes involved in Fe-deficiency responses in various plants have identified Fe-

responsive cis-elements, such as the 16bp-long IDRS (Iron-Dependent Regulatory 

Sequence), conserved among Arabidopsis and maize, and found in the promoters of 

ferritin genes. IDRS was shown to be responsible for the downregulation of ferritin under 

Fe deficiency (Petit et al., 2001). 

Two cis-acting elements, IDE1 and IDE2 (Iron-Deficiency Responsive Element) 

were identified in the promoter of the barley HvIDS2 (Iron-Deficiency Specific clone 2) 

gene (Kobayashi et al., 2003), which encodes a dioxygenase involved in the 

hydroxylation of the PS deoxymugineic acid (DMA) (Nakanishi et al., 2000). These two 

elements were found responsible for the induction of HvIDS2 by Fe deficiency. IDE 

sequence homologues were also found in the promoter regions of other Fe-inducible 

genes, such as HvNAAT, HvNAS1, HvIDS3, OsNAS1, OsNAS2, OsIRT1, AtIRT1, and 

AtFRO2, suggesting the conservation of Fe-responsive cis-regulatory elements among 

various genes and species (Kobayashi et al., 2003). 
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Using homologous sequences in the promoter regions of HvIDS2 and HvIDS3 as a 

bait, a Yeast One-Hybrid screen has yielded a novel DNA-binding gene, which encodes a 

putative basic leucine-zipper transcription factor. Its expression was found upregulated 

during the early stages of Fe deficiency, making it a good candidate for a regulator of Fe-

deficiency responses in barley (Itai et al., 2004; Von Wiren, 2004). 

 

1.6.2. Posttranscriptional Regulation 

Many plant species possess strategies to endure abiotic stresses, and to respond to 

challenges from pathogens. Although these responses are frequently regulated at the 

transcriptional level, there is extraordinary diversity in the posttranscriptional 

mechanisms that promote developmental plasticity and adaptation. The function of many 

plant genes is known to be controlled posttranscriptionally (Bailey-Serres, 1999). 

Posttranscriptional regulation can be exerted in several different ways, such as 

alternative splicing, mRNA turnover control, protein modifications, targeted protein 

degradation. 

It is suggested that at least 5 % of all predicted genes in Arabidopsis are alternatively 

spliced (Kazan, 2003; www.plantgdb.org/ASIP). The great majority of such genes encode 

proteins with regulatory functions (http://www.tigr.org/tdb/e2k1/ath1/altsplicing/splicing 

_variations.shtml). In addition, the genes associated with various stress responses, 

especially with abiotic stress, seem to be particularly prone to alternative splicing (Kazan, 

2003). One such example is presented by the regulation of the relative abundance of two 

splicing forms of the AtSOS4 (Salt Overly Sensitive 4) gene by salt stress (Shi et al., 

2002). 

The rate of mRNA turnover, which is the half-life of normal (nonaberrant, nonviral) 

mRNAs, provides a major posttranscriptional step to regulate gene expression (Wilusz 

and Wilusz, 2004). The importance of mRNA turnover is revealed by the phenotypes of 

plants in which the expression of genes involved in controlling mRNA stability has been 

disrupted. For example, the Arabidopsis mutant for Downstream 1, which regulates the 

mRNA stability of Cinnamoyl CoA reductase-like (CCR) and Senescence-associated 

gene 1, have defects in their circadian rhythm (Lidder et al., 2005). 
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Over the past few decades, numerous reversible and irreversible covalent 

modifications that alter protein activity, location, state, and/or turnover have been 

recognized as prominent players in the regulation of gene function. Examples include 

phosphorylation, methylation, acetylation, myristylation, ADP ribosylation, and 

glycosylation. Both biochemical data and the number of protein kinase/phosphatase 

genes present in plant genomes point to phosphorylation as a dominant modifier (Callis 

and Vierstra, 2000). Recently, however, polypeptide tags also have emerged to be 

important posttranslational regulators of protein function. Among them are ubiquitin 

(Ub), RUB-1 (related to Ub-1; also known as NEDD8), SUMO (small Ub-like modifier), 

ATG-8 (autophagy-8) and ATG-12, UFM-1 (Ub-fold modifier-1) and HUB-1 (homology 

to Ub-1) (Downes and Vierstra, 2005). The best known is Ub (ubiquitin) that serves as 

reusable tag for selective protein degradation by the 26 S proteasome and for endosomal 

trafficking. Genomic analyses indicate that Ub pathway alone comprises over 6% of the 

Arabidopsis proteome with thousands of proteins being targets (Downes and Vierstra, 

2005). Consequently, this pathway influences much of plant biology (Hatakeyama and 

Nakayama, 2003). Preliminary studies for the rest of the above mentioned polypeptide 

tags indicate that these tags have much more limited sets of targets and provide more 

specialized functions, including transcriptional regulation, protein localization, 

autophagic turnover and antagonizing the effects of Ub. On the basis of their widespread 

distribution and pervasive functions, peptide tags can now be considered as prime players 

in plant cell regulation (Downes and Vierstra, 2005). 

 

In the context of Fe-deficiency response regulation, several genes are known to be 

controlled posttranscriptionally. However, the detailed mechanisms of these regulatory 

processes still remain to be elucidated. 

For two of the major genes involved in Fe uptake, AtIRT1 and AtFRO2, an additional 

posttranscriptional level of control was observed (Connolly et al., 2002; Connolly et al., 

2003). 35S:AtIRT1 transgenic plants were shown to accumulate higher levels of Cd and 

Zn compared to wild type, indicating a successful overexpression of the gene. However, 

although AtIRT1 mRNA was expressed constitutively in these plants, AtIRT1 protein was 

present only in the roots when Fe is limiting, suggesting that the expression of AtIRT1 is 
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controlled posttranscriptionally (Connolly et al., 2002). A regulation of AtIRT1 

expression by ubiquitination under sufficient Fe/Zn conditions has been hypothesized, 

due to the high degree of sequence similarity between AtIRT1 and the Zn-regulated yeast 

transporter ZRT1 (Zhao and Eide, 1996; Connolly et al., 2002). ZRT1 was shown to be 

posttranscriptionally regulated via Zn-mediated ubiquitination (Gitan et al., 1998; Gitan 

and Eide, 2000). 

AtFRO2, together with AtIRT1, was found induced under Fe starvation and 

coordinately repressed following Fe resupply. AtFRO2 mRNA was detected at high 

levels in the roots and shoots of 35S:AtFRO2 transgenic plants. However, FeIII-chelate 

reductase activity was only elevated in the overexpressing plants under conditions of Fe 

deficiency, indicating that AtFRO2 is subject to posttranscriptional regulation, as shown 

for AtIRT1 (Connolly et al., 2003; Vert et al., 2003). 

 

1.6.3. Transcriptional and Posttranscriptional Regulation by Fe in Other 

Organisms 

1.6.3.1. Fe Uptake Regulation in Bacteria 

In bacteria, the expression of a large number of genes – more than 90 in some cases 

(Hantke, 2001) is directly controlled by the prevailing intracellular concentration of FeII 

via its complexing to a regulatory protein (the FUR protein or equivalent). In this way, 

the biochemistry of the bacterial cell can accommodate the challenges from the 

environment or the host (Ratledge and Dover, 2000). 

The FUR (FERRIC UPTAKE REGULATOR) protein, present in gram-negative and 

certain gram-positive bacteria, and the DtxR (DIPHTHERIA TOXIN REPRESSOR) 

protein, in gram-negative bacteria, repress gene transcription when loaded with FeII 

(Hantke, 1981; Boyd et al., 1990; Schmitt and Holmes, 1991). 

FUR regulates also other genes in addition to those involved in Fe acquisition. Fe 

availability regulates various toxins and other virulence determinants (Litwin and 

Calderwood, 1993), presumably because a lack of Fe signals the pathogen that it is likely 

to be inside its host organism. 
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1.6.3.2. Fe Uptake Regulation in Yeast 

In yeast, homeostatic control of cellular Fe uptake is mediated by the key 

transcriptional activator AFT1 (ACTIVATOR FERROUS TRANSPORT), which binds 

to a consensus sequence present in the promoters of its target genes (Yamaguchi-Iwai et 

al., 1995; 1996). Under Fe-deficiency conditions, AFT1 induces transcript accumulation 

of FRE1, FRE2, FET3, FTR1 and other genes that are Fe-uptake components in yeast 

(Yamaguchi-Iwai et al., 1996; Eide, 1998). By contrast, in Fe-replete cells, AFT1 does 

not bind to its target cis-element. It was shown that the Fe-regulated DNA binding by 

AFT1 is not due to a change in the expression level of the protein or to alteration of its 

DNA binding activity (Yamaguchi-Iwai et al., 2002). Instead, AFT1 has different 

intracellular localization based on the Fe status of the cell. Under Fe-limited conditions it 

is located within the nucleus where it activates its target genes. Under Fe-sufficient 

conditions, AFT1 is in the cytoplasm and thus kept “inactive”. Furthermore, it was 

suggested that the nuclear export of AFT1 is critical for ensuring Fe-responsive 

transcriptional activation of the AFT1 regulon and that the nuclear import/export systems 

are involved in Fe sensing by AFT1 in S. cerevisiae (Yamaguchi-Iwai et al., 2002). 

Based on its amino acid sequence, AFT1 may directly bind an Fe atom and therefore 

acts as an Fe sensor in the cytoplasm, reaching the nucleus only when not bound to Fe as 

a result of low Fe status (Yamaguchi-Iwai et al., 2002). Alternatively, since AFT1 can be 

phosphorylated (Casas et al., 1997), the intracellular Fe status may modify the 

phosphorylation state of AFT1, thus controlling its localization in the cell. 

In the fission yeast Schizosaccharomyces pombe, FEP1 is required for 

downregulation of genes encoding components of the reductive Fe transport machinery. 

It exerts its repressor function by binding to a conserved regulatory element upstream of 

the genes encoding the cell surface FeIII reductase (FRP1), and the two-component Fe-

transporting complex (FIP1 and FIO1) (Pelletier et al., 2002). Additionally, FEP1 

represses the expression of the Fe-siderophore transporter STR1 under Fe-sufficient 

conditions, and thus occupies a central role in coordinating transcriptional regulation of 

genes encoding components of the reductive and non-reductive Fe-transport systems in 

fission yeast (Pelletier et al., 2003). 
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A recent study by Puig et al. (2005) has elucidated coordinated global metabolic 

reprogramming in response to Fe deficiency and identified a mechanism for achieving 

this by targeting specific mRNA molecules for degradation. In response to Fe deficiency, 

the Saccharomyces cerevisiae Cth2 protein was shown to specifically downregulate 

mRNAs encoding proteins that participate in many Fe-dependent processes. mRNA 

turnover requires the binding of Cth2 to specific AU-rich elements in the 3' untranslated 

region of mRNAs targeted for degradation. 

 

1.6.3.3. Fe Uptake Regulation in Mammals 

In mammals, the signal and regulatory mechanisms that orchestrate the expression of 

the proteins involved in Fe uptake, storage, utilization, and export have been best studied 

on the posttranscriptional level of control. 

 

IRE/IRP – In animals, expression of the different players in Fe homeostasis is 

regulated posttranscriptionally, via the IRE/IRP system (Klausner et al., 1993). IRP1 and 

IRP2 (IRON-RESPONSIVE PROTEIN) are Fe-sensing RNA-binding proteins that bind 

to the IRE (iron-responsive element) sequence present in the 5’ or 3’ untranslated regions 

(UTRs) of several genes involved in Fe homeostasis. IREs are conserved hairpin 

structures found in the UTRs of Fe-related mRNAs. IRP binding in the 5'-UTR of ferritin 

H and L chains and ferroportin mRNAs inhibits translation. In contrast, binding of IRPs 

to IREs in the 3’-UTR of the transferrin receptor 1 (TfR1) and NRAMP2 mRNAs 

stabilizes the transcripts (Hentze and Kühn, 1996; Rouault and Klausner, 1997; Schneider 

and Leibold, 2000; Hentze et al., 2004). 

Although the genes encoding IRP1 and IRP2 are highly homologous (Rouault and 

Klausner, 1997), they sense cytosolic Fe levels by different mechanisms. IRP1 is a 

bifunctional protein. When cellular Fe is high, IRP1 binds a 4Fe-4S cluster and functions 

as a cytoplasmic aconitase, interconverting citrate and isocitrate, without an RNA-

binding ability. Under these conditions, transferrin receptor (TfR) mRNA is degraded and 

ferritin mRNA is translated. When cellular Fe is low, loss of the 4Fe-4S cluster allows 

IRP1 apoprotein to bind IREs with high affinity, resulting in TfR mRNA transcript 

stabilization, and prevention of ferritin mRNA translation (Beinert et al., 1996). Unlike 
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IRP1, IRP2 undergoes Fe-dependent degradation in Fe-replete cells (Guo et al., 1995). It 

can bind heme, triggering oxygen-dependent oxidation, ubiquitination by the E3 

ubiquitin-protein ligase HOIL1, and degradation by the proteasome (Kang et al., 2003; 

Yamanaka et al., 2003). Thus, neither IRP binds to IREs when cellular Fe is high. 

The activities of the two IRPs are only partially redundant, and it was shown that they 

occupy different regulatory niches. In normal physiology, tissue oxygen tension 

determines the contribution of each IRP to the regulation of Fe homeostasis. At the 

ambient oxygen concentrations in tissues of healthy animals, the Fe-S cluster of IRP1 

appears to be stable, and IRP1 is therefore poorly suited to function as an Fe sensor 

(Meyron-Holtz et al., 2004a). In contrast, IRP2 has a different mechanism of Fe sensing 

that relies on Fe-dependent degradation (Guo et al., 1995). Fe-dependent turnover is 

intact at physiologically relevant oxygen concentrations, which enables IRP2 to dominate 

normal regulation of Fe homeostasis in mammals (Meyron-Holtz et al., 2004b). 

 

1.6.3.4. Possibilities for Regulation of Transcription Factors 

Since transcription factors are the proteins responsible for regulating cellular 

processes, it is interesting and important to know in turn how their own expression and 

function are regulated. This regulation can occur through different mechanisms, such as 

transcriptional regulation by other transcription factors, posttranscriptional regulation 

through protein-protein interactions, protein modifications, protein stability control, etc. 

 

A very well studied example of transcriptional regulation of transcription factors is 

presented by the genes involved in meristem maintenance and lateral organ specification. 

They were shown to be regulated in part by negative interactions between the Myb-

domain transcription factor ASYMMETRIC LEAVES1, which is expressed in lateral organ 

primordia, and homeobox transcription factors which are expressed in the shoot apical 

meristem (KNOX genes). The KNOX gene SHOOT MERISTEMLESS (STM) negatively 

regulates ASYMMETRIC LEAVES1 (AS1) which, in turn, negatively regulates other 

KNOX genes including KNAT1 and KNAT2 (Byrne et al., 2002; Iwakawa et al., 2002). 
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Several examples of posttranscriptional modulation of transcription factor function 

through direct interactions between different transcription factors have been reported in 

Arabidopsis. In addition to increasing the regulatory repertoire, direct interactions 

between transcription factors are one of the mechanisms by which proteins with very 

similar DNA binding domains might achieve regulatory specificity (see, for example, 

Grotewold et al., 2000). Direct interactions can occur between members of the same 

protein family, to form dimeric complexes that bind to palindromic DNA sequences, or 

between transcription factors of different families. Examples of the latter include 

Arabidopsis, maize, and petunia proteins of the MYB and bHLH families (Hobo et al., 

1999; Nakamura et al., 2001). 

Posttranscriptional regulation on the level of protein stability has been shown for 

several transcription factors. Recent research in the field of auxin signaling, for example, 

has discovered a diverse array of posttranscriptional control mechanisms. In 2005, three 

groups reported independently that auxin homeostasis and related developmental 

processes in Arabidopsis depend on microRNA-mediated regulation of key components 

of auxin signaling. The effects of auxin on plant development are mediated by several 

transcription factor families, including the auxin response factors (ARFs) and NAC-

domain transcription factors. First, ARGONAUTE1 (AGO1), a key player in microRNA 

pathways, was shown to regulate auxin-induced adventitious root formation associated 

with its effect on the expression of AUXIN RESPONSE FACTOR17 (ARF17) and auxin-

inducible GH3 genes that are presumed targets of ARF17 (Sorin et al., 2005). Second, 

Mallory et al. (2005) show that plants expressing a form of 
ARF17 that is resistant to 

transcript cleavage mediated by the microRNA miR160 produce high levels of ARF17 

mRNA and have altered accumulation of GH3-like mRNAs associated with numerous 

dramatic growth defects. Finally, it was shown that miR164-directed cleavage of NAC1 

mRNA affects auxin regulation of lateral root development, suggesting that microRNA-

mediated regulation may function in maintaining auxin homeostasis (Guo et al., 2005). 

Another interesting example of posttranscriptional control of transcription factors is 

also coming from research on auxin action, making auxin signaling research a good 

representative of the complexity of regulatory mechanisms occuring in plants. Cloning of 

the TRANSPORT INHIBITOR RESPONSE 1 (AtTIR1) gene (Ruegger et al., 1998) 
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revealed that it encodes an F-box protein, the specificity factor of the SCF (for Skp1p, 

Cdc53p/cullin, and F-box protein in yeast and mammals) class of ubiquitin E3 ligases 

(Deshaies, 1999). AtTIR1 was shown to interact with the Arabidopsis Skp1-like proteins, 

AtASK1 and ASK2, and the cullin AtCUL1 to form a functional SCFAtTIR1 degradation 

complex (Gray et al., 1999; Gray et al., 2001), which targets the Aux/IAA family of 

transcription factors (Kepinski and Leyser, 2002). 

An interesting example of complex transcription factor regulation comes from 

research on oxygen sensing in mammals, which is also linked to cellular Fe levels, and 

shows the regulatory connection between signal perception and effects on a transcription 

factor function. The cellular hypoxic response includes the transcriptional activation of 

genes involved in angiogenesis, erythropoiesis and anaerobic metabolism. This response 

is mediated by the transcription factors HIF1α (HYPOXIA INDUCIBLE FACTOR) and 

HIF2α (Iliopoulos et al., 1996). Under normal oxygen tension, HIF is rapidly targeted for 

proteasomal degradation through an interaction with the von Hippel-Lindau (VHL) tumor 

suppressor. When oxygen levels become limiting, this interaction is disrupted and HIF 

accumulates in local regions of hypoxia (Cockman et al., 2000). Interestingly, the bHLH-

PAS (basic helix–loop–helix Per/Sim/Arnt) transcription factor HIF1α is composed of 

two subunits, an oxygen-sensitive and a constitutively expressed one (Wang et al., 1995; 

Wang and Semenza, 1995). The oxygen-sensitive subunit becomes stabilized in response 

to hypoxia, Fe chelators, and divalent cations. Under normoxic conditions, hydroxylation 

of this subunit is essential for HIF proteolytic degradation. As oxygen levels decrease, 

hydroxylation of HIF also decreases and it becomes stabilized. Interestingly, the 

hydroxylase activity was found dependent on the cellular availability of both oxygen and 

FeII (Schofield and Ratcliffe, 2004). 
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2. Aim of the Project 

 

Plants are the primary source of Fe for humans and understanding the mechanisms 

that underlie plant Fe homeostasis is of interest for addressing agricultural problems, and 

Fe malnutrition in humans. Great progress has been made in recent years towards 

describing the general strategies for Fe uptake in different plant species, and identifying 

and characterizing the genes responsible for these processes. Since these events need to 

be strictly regulated in space and time, an extensive effort is underway for identifying the 

regulators of Fe uptake. Genetic analyses in tomato led to the identification of LeFER 

(Ling et al., 2002) – the single known Fe uptake regulatory gene in plants. 

The goal of our project was to investigate the regulation of LeFER and the 

mechanism of its action. This is of critical importance not only for basic science but also 

from a biotechnological point of view with respect to potential applications of the 

acquired knowledge for improving the bioavailablity of Fe in crops. To achieve this goal 

we have defined four specific aims. 

First, the regulation of LeFER on transcriptional level should be addressed by using 

gene expression profiling on different plant genotypes (fer mutant, wild type, 35s1 

overexpressing line) grown under varying Fe-supply conditions. 

Second, the possibility of posttranscriptional control of LeFER should be investigated 

by using anti-LeFER antisera for protein level determination and immunolocalization on 

the same plant genotypes and growth conditions. 

Third, the mode of action of LeFER protein might be dependent on direct Fe sensing 

and interaction(s) with other proteins. To address this, Fe binding assays and screening 

for LeFER interaction partners in a heterologous yeast system should be performed. 

Fourth, understanding the function of LeFER at a broader molecular level should be 

achieved by investigating the changes in the tomato root proteome with respect to LeFER 

presence and Fe availability. This would reveal its role in the crosstalk of different 

metabolic and signaling pathways in the plant. 
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3. Materials and Methods 

 

3.1. Materials 

3.1.1. Plant Material 

Tomato plant lines used were fer mutant (T3238fer), chloronerva mutant, and wild 

type cultivars Moneymaker and Bonner Beste. Transgenic lines 35s1 and 35s2 contained 

an intact FER cDNA starting at the first ATG (position 20; AF437878) and second ATG 

(position 41; AF437878) start codons, respectively, driven by the constitutive cauliflower 

mosaic virus 35S promoter in the fer mutant background, as described previously (Ling et 

al., 2002; Bereczky et al., 2003). 35s1 and 35s2 plants were complemented by LeFER 

overexpression and grew similar to wild type (Ling et al., 2002). 

 

3.1.2. Bacterial Strains 

Bacterial strains used for molecular cloning: 

• E. coli DH5α; genotype: recA1 endA1 gyrA96 thi-1 hsdR17 (rk-, mk+) relA1 

gyrA96 supE44 (Φ 80 lacZ ∆M15) ∆ (lacZYA-argF) U169 (Sambrook et al., 

1989) 

• E. coli InαF’; genotype: F’ endA1 recA1 hsdR17 (rk-, mk+) supE44 thi-1 

gyrA96 relA1 Φ80 lacZ∆M15 ∆ (lacZYA-argF) U169 (Invitrogen) 

Bacterial strain used for recombinant protein expression: 

• E. coli HMS 174; genotype: F’ recA hsdR (rk12-, mk12+) Rifr (Novagen) 

 

3.1.3. Yeast Strains 

Yeast strains used for Yeast One-Hybrid assays, and Yeast Two-Hybrid library 

construction and screening: 

• AH109; genotype: MATa trp1-901 leu2-3 112 ura3-52 his3-200 gal4∆ gal80∆ 

LYS2::GAL1UAS-GAL1TATA-HIS3 GAL2UAS-GAL2TATA-ADE2 URA3::MEL1UAS-

MEL1TATA-lacZ MEL1 (James et al., 1996) 
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• Y187; genotype: MATα ura3-52 his3-200 ade2-101 trp1-901 leu2-3 112 

gal4∆ met
–
 gal80∆ URA3::GAL1UAS-GAL1TATA-lacZ MEL1 (Harper et al., 

1993) 

 

3.1.4. Plasmids 

• pCR2.1: E.coli cloning vector; KanR, AmpR (Invitrogen) 

• pET-29a: E.coli recombinant protein expression vector; KanR (Novagen) 

• pGBKT7 BD: yeast bait expression vector; KanR, TRP1 (Clontech) 

• pGADT7-Rec AD: yeast library expression vector; AmpR, LEU2 (Clontech) 

• modified pFF19: plant protoplast transformation vector for expression of 

protein-GFP fusions; AmpR (Hofius et al., 2004) 

 

3.1.5. Chemicals, Enzymes and Kits 

Chemicals for general use were mainly purchased from Roth (Germany). Enzymes, 

kits and special consumables were purchased from the following companies: 

• Amersham (GE Healthcare, Germany): Megaprime DNA Labelling Kit, 

ECLTM Detection Reagent Kit, Hybond-N+ nylon membrane, [α32P] dCTP, 

chemicals used for two-dimensional electrophoresis, 2D-Quant Kit, IPG 

strips, NHS-Activated Agarose 

• BioRad (Germany): Bradford buffer 

• Clontech (USA): Yeast growth media, BD Matchmaker Library Construction 

& Screening Kit 

• Corning (USA): 245x245 mm plates 

• Dianova (USA): Rhodamine-Red Anti-Rabbit Antibody 

• Duchefa (The Nederlands): Plant growth media 

• Fermentas (Germany): Restriction endonucleases, DnaseI, Taq DNA 

polymerase, T4 DNA ligase, Shrimp Alkaline Phosphatase, Prestained Protein 

Marker, RevertAid First Strand cDNA Synthesis Kit 

• Invitek (Germany): Invisorb Spin Plant RNA Mini Kit 

• Invitrogen (The Nederlands): TA-Cloning Kit 
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• Kodak (USA): X-Omat AR film 

• Macherey-Nagel (Germany): NCL nitrocellulose membrane 

• Metabion (Germany): Oligonucleotides 

• Millipore (USA): Ultrafree-MC Filter Units 

• Molecular Probes (USA): DAPI 

• Novagen (USA): S-Protein Agarose, S-Protein Conjugated Alkaline 

Phosphatase 

• Pierce (USA): Goat Anti-Rabbit Horseradish Peroxidase Antibody, GelCode 

Blue Stain Reagent 

• Promega (USA): Sequencing Grade Modified Trypsin V511 

• Qiagen (Germany): QIAquick Gel Extraction Kit, Plasmid Purification Kit 

(mini and midi), Rneasy Plant Mini Kit 

• Roche Diagnostics (Germany): NBT, BCIP 

• Schleier & Schuell (Germany): Protran nitrocellulose membrane 

• Sherwood Medical (USA): Paraplast Plus 

• Sigma-Aldrich (USA): Ponceau S, Anti-Rabbit Alkaline Phosphatase-

Conjugated Antibody 

• Takara (Japan): ExTaq DNA polymerase 

 

3.2. Methods 

3.2.1. Plant Methods 

3.2.1.1. Plant Growth 

Tomato (Lycopersicon esculentum) seedlings were grown in a hydroponic system in 

Hoagland solution (1 mM MgSO4, 5 mM KNO3, 5 mM CaNO3, 4.55 mM KH2PO4, 0.45 

mM K2HPO4, 46 µM H3BO3, 0.3 µM CuSO4.5H2O, 4.5 µM MnCl2.4H2O, 0.1 µM 

(NH4)6Mo7O24.4H2O, 4 µM ZnSO4.7H2O, pH 5.8) supplied with 10 µM FeNaEDTA, 

according to Stephan and Prochazka (1989). Twelve days after germination the plants 

were transferred into Hoagland solution with different Fe concentrations – 0.1 µM 

FeNaEDTA for limiting Fe supply conditions, 10 µM FeNaEDTA for sufficient Fe 

supply, and 100 µM FeNaEDTA for generous Fe supply, and grown for additional 8 days 
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before harvesting for further analyses (100µM FeNaEDTA is physiologically optimal and 

recommended for multiple plant growth media (see catalogue from Duchefa Biochemie, 

Haarlem, The Nederlands). 

 

3.2.1.2. Reductase Assay 

FeIII-chelate reductase activity assays were performed according to Stephan and 

Prochazka (1989) and Ling et al. (2002) on 4 to 5 plants per condition. Plant roots were 

placed into Hoagland solution with 40 µM FeNaEDTA and 170 µM sodium 

bathophenanthrolinedisulfonate (BPDS). Reduction rates were calculated from the 

absorption of FeII-BPDS at 540 nm in 1 h in the medium and per gram root material 

(molar extinction coefficient 22.5). 

 

3.2.2. Yeast Methods 

3.2.2.1. Small Scale Yeast Transformation 

Small scale yeast transformation was performed according to Gietz et al. (1992) as 

follows: 2 ml seed culture of AH109 in YPAD medium was diluted in 50 ml to OD600 0.5 

and incubated at 30ºC for 4 h. Cells were collected at OD600 > 1.5, washed once with 25 

ml dH2O, and resuspended in 1 ml 0.1 M lithium acetate (LiAc). Subsequently, cells were 

pelleted and resuspended in 0.1 M LiAc to a final volume of 0.5 ml. The obtained cell 

suspension was divided into 0.05 ml samples, the cells were pelleted and mixed with a 

transformation mixture containing 33 % polyethyleneglycol (PEG) 3350, 0.1 M LiAc, 0.5 

mg denatured herring testes carrier DNA, 2 µl purified plasmid of interest. Following 

incubation at 30ºC for 30 min and 42ºC for 30 min, cells were brought to 0.2 ml final 

volume, plated on small SD-Trp plates, and grown for 2 days at 30ºC. 

 

3.2.2.2. Yeast One-Hybrid Assay 

For the purpose of LeFER activation domain identification, ten GAL4 DNA-binding 

domain fusion constructs containing different parts of LeFER into pGBKT7 (Clontech), 

as described in Table 1, were created by cloning the EcoRI restriction fragments from the 

respective pET-29a constructs (for LeAll, LeN, and LeC, see section 3.2.4.1.) or by 

amplifying from pET-29a:LeFER (see section 3.2.4.1.) using the primers listed in Table 
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2. The verified constructs were transformed into the yeast (Saccharomyces cerevisiae) 

strain AH109 (Clontech) according to (Gietz et al., 1992) (see section 3.2.2.1.) and grown 

on synthetic dextrose (SD) medium containing amino acid supplements without 

tryptophane (SD-Trp). After two days of growth at 30°C, the obtained colonies were 

assayed for lacZ reporter gene activation according to the manufacturer’s instructions. 

Yeast cells transformed with the empty pGBKT7 vector were assayed in parallel and 

used as a negative control. 

 

Primer combinations Code Construct Size 
LeN-5’ + LeC-3’ LeAll LeFER coding  915 bp 
LeN-5’ + LeN-3’ LeN LeNshort + basic 474 bp 
LeC-5’ + LeC-3’ LeC LeC 327 bp 
LeN-5’ + LeNshort-3’pGB Le7 LeNshort 348 bp 
LeN-5’ + LeHLH-3’pGB Le8 LeNshort + basic + HLH 588 bp 
Lebasic-5’pGB + LeN-3’ Le9 Lebasic 123 bp 
LeHLH-5’pGB + LeHLH-3’pGB Le10 LeHLH 117 bp 
Lebasic-5’pGB + LeC-3’ Le11 Lebasic + HLH + C 567 bp 
LeHLH-5’pGB + LeC-3’ Le12 LeHLH + C 444 bp 
Lebasic-5’pGB + LeHLH-3’pGB Le13 Lebasic + HLH 240 bp 

 

Table 1: GAL4 DNA-binding domain fusion constructs containing ten different parts of LeFER 

coding sequence. 

 

Primer name Primer sequence 
LeN-5’ 5’-aatggagagtggtaatgcatcaatgg-3’ 
LeN-3’ 5’-ttaggctttatccatctttgtgatattaggaac-3’ 
LeC-5’ 5’-aatgaatttcacaacctattatccagcaat-3’ 
LeC-3’ 5’-ttagaccaacggagatgtctcgaagt-3’ 
LeNshort-3’pGB 5’-ttttctgcagttagcttgttggagtcattttgg-3’ 
LeHLH-5’pGB 5’-ttttccatggagatgtccatcattggagatg-3’ 
LeHLH-3’pGB 5’-tttgctgcagttatttctttgcattttgaaata-3’ 
Lebasic-5’pGB 5’-ttttccatggagatgaaaggcacgaggac-3’ 

 

Table 2: Primers used for the construction of GAL4 DNA-binding domain fusion constructs 

containing ten different parts of LeFER coding sequence (see Table 1). 

 

3.2.2.3. Yeast Two-Hybrid Library Construction and Screening 

• Yeast Two-Hybrid Library Construction 

Yeast Two-Hybrid library was constructed from roots of wild type tomato plants (cv. 

Moneymaker) grown at 0.1 µM FeNaEDTA using BD Matchmaker Library Construction 
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& Screening Kit (Clontech) according to the manufacturer’s instructions. Some specific 

points of the protocol were performed as follows: RNA was extracted using RNeasy 

Plant Mini Kit (Qiagen). The first-strand cDNA synthesis was performed using an oligo 

(dT) primer. Double-stranded (ds) cDNA was amplified by Long Distance PCR at 30 

cycles. Ds cDNA was purified over BD Chroma Spin Columns (Clontech). For the 

library construction, yeast strain AH109 was used as follows: 10 ml seed culture of 

AH109 in YPAD medium was diluted in 50 ml to OD600 0.5 and incubated at 30ºC for 4 

hours. Cells were collected at OD600 > 1.5, washed in 0.5 volume of dH2O, and 

resuspended in 3 ml 0.1 M LiAc. After 15 min incubation at 30ºC, cells were pelleted and 

resuspended in transformation mixture containing 33 % PEG 3350, 0.1 M LiAc, 0.5 mg 

denatured herring testes carrier DNA, 20 µl purified ds cDNA, 6 µg pGADT7-Rec AD 

Cloning Vector (Clontech). Following incubation at 30ºC for 30 min and 42ºC for 30 

min, cells were brought to 10 ml final volume and plated on large SD-Leu plates (245 x 

245 mm, Corning, USA) (800 µl/plate). After 4 days at 30ºC, cells were collected in 

YPAD containing 25 % glycerol and 0.015 mg/ml Kanamycin, and stored at -80ºC. 

• Yeast Two-Hybrid Library Screening 

The obtained library was used for a Yeast Two-Hybrid assay in four experiments with 

different parts of LeFER used as bait – LeC, Le7, Le11, and Le12 (see above, Table 1). 

The assay was done by yeast mating between strain AH109 containing the library, and 

strain Y187 containing the bait, as follows: 100 OD-units of seed bait culture were 

collected in 1/100 volume YPAD and mixed with a thawed aliquot of library incubated in 

YPAD for 10 min at 30ºC. The mixture was plated on small YPAD plates (400 µl/plate) 

and incubated for 4.5 hours at 30ºC. Cells were collected with 6 ml YPAD/plate, 

resuspended in 25 ml dH2O, and plated (1ml/plate) on large SD-His/Trp/Leu plates 

containing 4 mM 3-amino-1,2,4-triazole (3-AT) (low stringency screening). Plates were 

incubated at 30ºC and single colonies were collected from day 5 to 10, regrown on SD-

His/Trp/Leu + 3-AT and tested for the presence of a positive binding partner of the bait 

by lacZ assay. Yeast media and lacZ assay were prepared as described in the Yeast 

Protocols Handbook (Clontech). 
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• Yeast Two-Hybrid Library Screening Quality Control 

For each Yeast Two-Hybrid screening performed, the quality of the screen was 

estimated according to several criteria (Table 3). Mating efficiency was calculated based 

on plated dilution series (1:10, 1:100, 1:1000, 1:10 000) on SD-Trp (selects bait strain), 

SD-Leu (selects library strain), and SD-Trp/Leu (selects diploids) media. Plates with 30 

to 300 colony forming units (cfu) were counted, and the number (#) of viable cfu/ml was 

calculated according to the formula: “cfu/(plated volume (ml) * dilution factor)”. The 

number of viable cfu/ml for the two mating partners was compared to determine the 

“limiting” partner (the strain with lower viability). The mating efficiency (% diploid) was 

calculated according to: “(# of cfu/ml of diploids)/ (# of cfu/ml of limiting partner) * 

100”. This value has to be above 2 %. Finally, the number of clones screened was 

calculated: “(# of cfu/ml of diploids) * resuspension volume (ml)”. The calculated values 

for each criterion for the four Yeast Two-Hybrid screens performed are presented in 

Table 3. 

 

# viable cfu/ml limiting partner 
Y2H Screen SD-

Leu 
SD-Trp SD-

Trp/Leu 
bait library 

% 
diploid 

# of 
clones 

screened 
LeN 2*107 2*107 1*106  X 6.4 3.1*107 
LeC 2*107 1*107 6*105 X  4.3 1.4*107 
Leb+HLH+C 2*107 3.8*107 3.6*106  X 18 9*107 
LeHLH+C 2*107 3*107 2.2*106  X 11.6 5.5*107 

 

Table 3: Quality control criteria for monitoring the efficiency of a Yeast Two-Hybrid screen. The 

values for four screens are presented. 

 

3.2.3. DNA and RNA Techniques 

3.2.3.1. Molecular Cloning 

Molecular cloning techniques such as PCR, enzyme digestion, and DNA ligation 

were performed according to manufacturer’s instructions and standard protocols 

(Sambrook et al., 1989). 
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3.2.3.2. Gene Expression Analysis 

Total RNA was extracted using Invisorb Spin Plant RNA Mini Kit (Invitek) 

according to the manufacturer’s instructions. 1 µg of Dnase I-treated RNA was used for 

cDNA synthesis using the RevertAid First Strand cDNA Synthesis Kit (MBI Fermentas). 

Semiquantitative reverse transcription (RT)-PCR was performed as described in 

Bereczky et al. (2003). The utilized primers surrounded an intron to distinguish between 

cDNA and genomic amplification products. The reactions were analysed by agarose gel 

electrophoresis and Southern blot hybridization according to standard procedures. The 

LeFER expression signals (5’- tttcggagcgcaaaaggagag-3’ and 5’-

cttgattgctggataataggttgtgaaat-3’, amplified in 20 cycles) were normalized according to the 

constitutive control product of the elongation factor gene LeEF-1a (5’-

actggtggttttgaagctggtatctcc-3’ and 5’-cctcttgggctcgttaatctggtc-3’, amplified in 15 cycles). 

 

3.2.4. Protein Techniques 

3.2.4.1. Recombinant Protein and Antibody Production and Purification 

• Construct Preparation 

The entire coding region of the LeFER cDNA (5’-aatggagagtggtaatgcatcaatgg-3’ and 

5’-ttagaccaacggagatgtctcgaagt-3’), the region between the first ATG and the helix-loop-

helix domain (N-LeFER, 5’-aatggagagtggtaatgcatcaatgg-3’ and 5’-

ttaggctttatccatctttgtgatattaggaact-3’), and the region between the helix-loop-helix domain 

and the stop codon (C-LeFER, 5’-aatgaatttcacaacctattatccagcaat-3’ and 5’-

ttagaccaacggagatgtctcgaagt-3’) were amplified by PCR and cloned into pCR2.1 plasmid 

via TA cloning (Invitrogen, Carlsbad, CA). After sequence verification, the fragments 

were subcloned into the expression vector pET-29a (Novagen, Madison, WI) by using the 

EcoRI restriction site. 

• Recombinant Protein Expression and Purification 

Protein expression was performed in the E. coli strain HMS174 with 0.5 mM 

isopropylthio-β-galactoside (IPTG) induction at OD600 of 0.6 for 3 hours at 30°C. The 

expressed proteins were purified using S-protein Agarose columns (Novagen) according 

to the manufacturer’s instructions. 
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• Antibody Production and Purification 

Both the purified LeFER and N-LeFER proteins were used to obtain rabbit polyclonal 

antisera by a service facility at the Institute of Plant Genetics and Crop Plant Research 

(IPK). NHS-Activated Agarose (Amersham) was covalently linked to purified LeFER or 

C-LeFER protein according to the manufacturer’s instructions, and used to affinity-purify 

the anti-N-LeFER and anti-LeFER antisera, respectively. The purified antisera 

recognized full-length LeFER protein by Western blot analysis of E. coli-expressed 

LeFER protein as well as in wild type, 35s1, and 35s2 plant samples. No protein of the 

correct size was detected in fer mutant protein extracts. Throughout the following 

sections, the affinity-purified anti-N-LeFER and anti-LeFER antisera are named anti-N-

FER antiserum and anti-FER antiserum, respectively. 

 

3.2.4.2. Western Blot Analysis 

• Bacterial Protein Extracts 

Bacteria were grown as descibed in section 3.2.4.1. Cultures were harvested by 

centrifugation for 20 min at 5,000 x g. The supernatant was used as a crude bacterial 

protein extract for Western blot analysis after diluting it 1:1 with 2x Laemmli loading 

buffer (0.1 M Tris-HCl pH 6.8, 4 % SDS, 20 % Glycerol, 10 % β-ME, 0.005 % 

bromphenol blue) and subsequent denaturation at 95°C for5 min. The same preparation 

method was used for purified recombinant proteins (obtained as described in section 

3.2.4.1.). Protein concentration of the bacterial extracts was measured by Bradford buffer 

(BioRad). Equal amounts of total protein extracts were loaded onto a 12% SDS-

polyacrylamide gel for separation. Samples were transferred to Protran nitrocellulose 

membrane (Schleier & Schuell), stained with Ponceau S (Sigma-Aldrich), and 

photographed. Subsequently, the membranes were probed with S-Protein Conjugated 

Alkaline Phosphatase (Novagen) and the signals were visualized by a nitroblue 

tetrazolium chloride/5-bromo-4-chloro-3-indolyl-phosphate toluidine salt (NBT/BCIP) 

color reaction (violet staining) according to Roche Diagnostics (Mannheim). 

Alternatively, protein blots were probed with anti-N-FER antiserum or anti-FER 

antiserum as described below. 
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• Plant Protein Extracts 

Total plant protein extracts were obtained as follows: Leaves and roots were 

harvested and weighed after grinding. The plant material was extracted in 2x Laemmli 

loading buffer and subsequently centrifuged for 5 min at 10,000 x g. The amount of 2x 

Laemmli loading buffer added was adjusted according to the weight of ground material. 

Crude nuclear protein fractions were isolated according to Escobar et al. (2001). Protein 

concentrations were measured using the 2D-Quant Kit (Amersham Biosciences). Equal 

amounts of the supernatants containing the total protein extracts (9µg) were denatured at 

95°C for 5 min and loaded onto a 12% SDS-polyacrylamide gel for separation. Samples 

were transferred to Protran nitrocellulose membrane (Schleier & Schuell), stained with 

Ponceau S (Sigma-Aldrich), and photographed. Subsequently, the membranes were 

probed with anti-N-FER antiserum or anti-FER antiserum (1:2,000 or 1:1,000, according 

to the concentration of the eluate used) followed by goat anti-rabbit horseradish 

peroxidase secondary antibody (Pierce Chemical, 1:4,000). Western blots were developed 

using ECL chemiluminescence detection reagents (Amersham Biosciences) according to 

the manufacturer’s instructions. The accuracy of loading was further controlled by 

Coomassie Blue staining of protein gels loaded with the same amounts of protein samples 

(9µg) as used for Western blots. 

 

3.2.4.3. Immunolocalization on Single Nuclei 

Single nuclei were obtained from paraformaldehyde-fixed root tips after 

cellulase/pectinase enzyme treatment and subsequent cell disruption (Houben et al., 

1999). The isolated nuclei were probed with anti-N-FER antiserum (1:200) followed by 

rhodamine red-conjugated anti-rabbit secondary antibody (Dianova, 1:100) and 

counterstained with 4',6’-diamidino-2-phenylindole (DAPI) (Molecular Probes). The 

fluorescent signals were detected by a confocal laser scanning microscope (CLSM 510 

Meta, Zeiss). For DAPI, the 364-nm line of an argon laser was used for excitation and the 

emission was measured at 450 to 490 nm. For rhodamine red fluorescence, the excitation 

used was 543 nm (helium-neon laser) with a band-pass filter at 560 to 600 nm. The 

number of rhodamine red fluorescent signals per nucleus were counted using the Zeiss 

LSM Image Examiner Software after generation of six-step diagrams where the intensity 



3. Materials and Methods 

 52 

of the signal was plotted over the area of the confocal image. Different levels of relative 

pixel intensities were presented as RGU (relative grayscale units): 1 to 50, 51 to 100, 101 

to 150, and 151 to 200. 

 

3.2.4.4. Immunolocalization on Transverse Root Sections 

Tomato roots from plants grown under different Fe-supply conditions were 

formaldehyde-fixed, eosin-counterstained, and embedded in Paraplast Plus (Sherwood 

Medical). Immunolocalization was performed on 10-µm transverse sections using anti-N-

FER antiserum (1:200) followed by anti-rabbit alkaline phosphatse-conjugated secondary 

antibody (Sigma, 1:200) according to Smith et al. (1992). The signals were visualized by 

NBT/BCIP color reaction (violet staining) (Roche Diagnostics, Mannheim) according to 

manufacturer’s instructions. Images were recorded using an Axioplan 2 imaging 

microscope (Zeiss). 

 

3.2.4.5. GFP Fusion Protein Localization in Arabidopsis Protoplasts 

• Construct Preparation 

Three different LeFER C-terminal GFP fusion constructs were generated by first 

amplifying cDNA fragments: 35S::LeFER-GFP, the whole coding sequence of LeFER 

(5’-aatggagagtggtaatgcatcaatgg-3’ and 5’-ttagaccaacggagatgtctcgaagt-3’); 35S::N-

LeFER-GFP, the N-terminal coding sequence in front of the helix-loop-helix domain (5’-

aatggagagtggtaatgcatcaatgg-3’ and 5’-ttaggctttatccatctttgtgatattaggaact-3’); 35S::C-

LeFER-GFP, the C-terminal coding sequence behind the helix-loop-helix domain (5’-

aatgaatttcacaacctattatccagcaat-3’ and 5’-ttagaccaacggagatgtctcgaagt-3’). PCR fragments 

contained a KpnI and SalI restriction site at the 5’ and 3’ termini, respectively, and were 

cloned behind the 35S promoter into a modified pFF19 vector that contained mGFP5 

(Hofius et al., 2004). 

• Protoplast Transformation 

The verified constructs were transformed into Arabidopsis protoplasts according to 

(Reidt et al., 2000) as follows: Suspension cultures of A. thaliana were used for 

protoplast isolation. Following cell wall digestion in a 1% cellulase R10 (Duchefa 

Biochemie) and 0.5% macerozym R10 (Duchefa Biochemie) solution, protoplasts were 
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centrifuged and washed two times in W5 medium (0.9% NaCl, 1.8% CaCl2, 0.04% KCl, 

0.1% Glucose, pH 5.6). Next, they were concentrated in Mg Mannitol (0.45 M Mannitol, 

15 mM MgCl2, 0.1% MES pH 5.6) to a density of approximately 3x106
 cells/ml. To 

transform the resulting protoplasts, solution containing plasmid DNA (5 µg of each 

plasmid) and carrier DNA (160 µg) was added to 330 µl Mg Mannitol containing 1x106 

protoplasts. Equal amount of PEG solution (40% PEG 6000, 0.1 M Ca(NO3)2, 0.4 M 

Mannitol, 0.1% MES, pH 6.5) was added to the mixture after 10 minutes incubation. 

After 20 min, the transformed protoplasts were diluted into 4 ml K3 medium and 

transferred to small Petri dishes. Following a 16 to 18 hours incubation, GFP fluorescent 

signals were detected using a laser scanning microscope (CLSM 510 Meta, Zeiss) by 488 

nm argon laser excitation and a band-pass filter at 505 to 525 nm. 

 

3.2.4.6. Recombinant Protein Fe Binding 

The experiment was performed following a procedure described by Krueger et al. 

(2002). Affinity purified recombinant LeFER, N-LeFER, C-LeFER proteins (see above), 

AtITP (kindly provided by Prof. R. Hell; used as a positive control), and BSA (bovine 

serum albumine; used as a negative control) were dialysed against Binding buffer (0.05 

M N-(2-hydroxyethyl)piperazine-2’-(2-ethanesulfonic acid) (HEPES) pH 7.0, 0.3 M 

NaCl, 100 % Glycerol), and spotted on a 40 µm nitrocellulose membrane (Schleier & 

Schuell) in equal molarity (7.2*10-6 mol). The membrane was then incubated with 

radioactive solution - 0.55 µM 55FeCl3 in Metal Binding buffer (MBB) (25 mM Tris pH 

6.8, 0.15 M NaCl). If needed, FeIII was reduced to FeII by addition of 55 µM Na 

ascorbate. After 2 hours, the membrane was washed three times for 30 min with MBB 

and exposed for 72 hours to a Phosphoimager screen (Fuji). 

 

3.2.4.7. Two-Dimensional Gel Electrophoresis (2-DE) 

• Sample Preparation 

Sample preparation and 2-DE of tomato roots from different plants (fer mutant, wild 

type, 35s1) grown at different Fe concentrations (0.1, 10, 100 µM FeNaEDTA) have been 

performed as previously described (Amme et al., 2005; Schlesier and Mock, 2006). 

Briefly, the plant material was ground under liquid nitrogen to fine powder. One part (1 g 
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usually) of this material was precipitated by 10 parts of precipitation solution containing 

10% w/v trichloroacetic acid (TCA) and 0.07% w/v β-mercaptoethanol (β-ME) in 

acetone for 45 min at -20ºC. After washing twice with acetone containing 0.07% w/v β-

ME, the precipitate was dried in a vacuum centrifuge. Proteins were dissolved using 50 

µl/mg of lysis buffer (8 M urea, 2% 3-[(3-cholamidopropyl)dimethylamonio]-1-

propanesulfonate (CHAPS), 0.5% IPG buffer, 20 mM dithiothreitol (DTT)). The 

supernatant was clarified by centrifugation through 0.45 mm Ultrafree-MC filter units 

(Millipore). The protein concentration of the samples was measured with 2D-Quant Kit 

(Amersham Biosciences). 

• Sample Separation by 2-DE 

175 µg of protein were loaded by rehydration to 13 cm immobilized pH gradient 

(IPG) strips pH 3–10 and separated on IPGphor unit (Amersham Biosciences), using the 

following settings: 1 h gradient 250 V, 1 h gradient 500 V, 1 h gradient from 500 to 4000 

V, and 5 h 4000 V with a total of about 24 kVh. After isoelectric focusing (IEF), strips 

were equilibrated for 15 min in equilibration buffer (50 mM Tris-HCl pH 8.8, 6 M urea, 

30% v/v glycerol, 2% w/v sodium dodecyl sulfate (SDS), 20 mM DTT, 0.01% w/v 

bromphenol blue), and mounted on top of a SDS polyacrylamide gel with stacking gel in 

a Hoefer S600 apparatus (Amersham Biosciences). After washing three times with dH2O, 

gels were stained with colloidal Coomassie Brilliant Blue (CBB) G-250 solution 

(GelCode Blue Stain Reagent, Pierce) for 1 h, washed with dH2O for 5 min, and stored in 

dH2O. 

• 2-DE Gel Image Analysis 

The obtained CBB stained 2-DE gels were scanned on UMAX Power Look III 

scanner with Power Scan 3.0 software (Nonlinear Dynamics). Gel images were initially 

analyzed for differentially expressed protein spots with Progenesis software package 

Phoretix 2D Evolution v2005 (Nonlinear Dynamics). Following settings were used: 

Background Substraction enabled; Total Spot Volume normalization; Eq. Radius > 7, and 

Volume/Area > 1000 spot detection parameters. Protein spots with minimum 1.5 times 

difference in expression intensity in pairwise comparisons for each condition were 

selected, cut out from the respective 2-DE gel and subjected to identification by mass 
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spectrometry. Detailed expression profiling for each selected protein spot throughout all 

experimental conditions was performed using PDQuest Advanced 8.0 software (BioRad). 

 

3.2.4.8. Identification of Proteins by Mass Spectrometry (MS) 

Protein identification was performed by using Matrix-Assisted Laser Desorption 

Ionization Time-Of-Flight (MALDI-TOF) MS (Bruker Daltonics) and/or nanoscale 

Liquid Chromatography-Electrospray Ionization (LC-ESI) MS/MS (Waters) systems as 

described by Amme et al. (2005). 

• Protein Spot Digest 

After comparison of the obtained 2-DE gel images (see section 3.2.4.7.), 155 

differentially expressed protein spots were chosen for analysis. Protein spot gel pieces of 

about 1.5 mm in diameter were manually cut out from the 2-DE gels, and washed for 30 

min at room temperature under vigorous shaking with 400 ml buffer (10 mM ammonium 

bicarbonate/50% acetonitrile (ACN)). After removing the supernatant, the gel pieces 

were dried. For the digestion of proteins, 10 ml trypsin solution (Sequencing Grade 

Modified Trypsin V511, Promega, Madison; 10 ng/ml in 5 mM ammonium 

bicarbonate/5% ACN) were added to each sample. After incubation for 5 h at 37°C, the 

reaction was stopped by adding 2 ml 1% trifluoroacetic acid (TFA) (Schlesier and Mock, 

2004). 

• Protein Identification by MALDI-TOF MS 

For MALDI-TOF MS, 1 ml of the protein spot digest was mixed with 2 ml of the 

matrix solution (5 mg α-cyano-4-hydroxycinnamic acid (CHCA) in 80% v/v ACN and 

0.1% w/v TFA) and 1 ml of this mixture was deposited onto the MALDI target. The 

tryptic peptides were analyzed with a REFLEX III MALDI-TOF mass spectrometer 

(Bruker Daltonics, Leipzig, Germany). Spectra were calibrated using trypsin autolysis 

products (m/z 842.501 and 211.101) as internal standards under application of the Xtof 

software Version 5.1.5 (Bruker Daltonics). 

• Databse Searches for MALDI-TOF MS Data 

Protein identification was performed by searching for Viridiplantae in the 

nonredundant NCBI database and the SwissProt database using the MASCOT search 

engine (Matrix Science, London, UK) with the following parameters: monoisotopic mass 
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accuracy, 100 ppm; missed cleavages, 1; allowed variable modifications, oxidation (Met) 

and propionamide (Cys). Successful protein identification by MALDI-TOF MS was 

achieved for 66 (43 %) of the 155 analysed spots. 

• Protein Identification by LC-ESI MS/MS 

89 protein spots were subjected to LC-ESI MS/MS nanoscale analysis. 6 ml of the 

protein spot digest was used for the nanoscale reversed phase (RP) LC analyses, which 

was conducted on a modular CapLC LC system (Waters, Milford, MA, USA). The 

mobile phase flow from the C pump was used to preconcentrate and desalt the digest 

samples on a 5 mm x 300 mm Symmetry C18 precolumn (Waters) for 5 min at 20 ml/min 

with an aqueous 0.1% formic acid solution. The peptides were subsequently eluted onto a 

150 mm x 75 mm analytical Atlantis C18 column (Waters) and separated with an 

increasing ACN gradient from 5% to 50% B in 30 min. Mobile phase A consisted of 

0.1% formic acid in ACN/water (5:95, v/v) and mobile phase B of 0.1% formic acid in 

ACN/water (80:20, v/v). The nanoscale LC effluent from the analytical column was 

directed to the NanoLockSpray source of a Q-Tof Ultima API hybrid quadrupole/TOF 

mass spectrometer (Waters). The mass spectrometer was operated in a positive ion mode 

with a source temperature of 80°C and a cone gas flow of 25 l/h. A voltage of 

approximately 2 kV was applied to the nano flow probe tip. The mass spectra were 

acquired with the TOF mass analyzer in V-mode of operation and spectra were integrated 

over 1 sec intervals. 

MS and MS/MS data were acquired in a continuum mode using MassLynx 4.0 

software (Waters). The instrument was calibrated with a multi-point calibration using 

selected fragment ions of the CID of Glu-Fibrinopeptide B. Automatic data directed 

analysis was employed for MS/MS analysis on doubly and triply charged precursor ions. 

The product ion MS/MS spectra were collected from m/z 50 to m/z 2000. Lock mass 

correction of the precursor and the product ions was conducted with a mixture of Glu-

Fibrinopeptide B and erythromycin in 0.1% formic acid in ACN/water (50:50, v/v), 

respectively, and introduced via the reference sprayer of the NanoLockSpray interface. 

• Databse Searches for LC-ESI MS/MS Data 

ProteinLynx GlobalSERVER v2.1 (Waters) software was used as a software platform 

for data processing, deconvolution, and de novo sequence annotation of the spectra, and 
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various database search types. The MS/MS spectra searches were conducted with a 

protein Viridiplantae index of the nonredundant NCBI database and an EST database 

comprising nucleotide sequences of L. esculentum, S. tuberosum, and N. tabacum. A 25 

ppm precursor, a 0.05 Da product ion tolerance, one missed cleavage, and variable 

methionine oxidation were used as the search parameters. BLAST homology and 

similarity searches were conducted with a protein Viridiplantae index of the NCBI 

database and the nonredundant NCBI database as a whole. Successful protein 

identification by LC-ESI MS/MS was achieved for 73 (76 %) of the 89 analysed spots, 

which is 47 % of all 155 differentially expressed protein spots. 

 

3.2.4.9. Statistical Analysis on Proteomics Data 

Statistical analysis on the proteomics data set was performed as an external 

collaboration in the group of Pattern Recognition (Dr. Udo Seiffert) at the Leibniz 

Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany. 

 

3.2.5. Sequence Analysis 

3.2.5.1. Sequence Searches and Alignments 

Sequence searches were performed using the Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1997) available on the NCBI website 

(http://www.ncbi.nlm.nih.gov/BLAST/). Alignments were done with the DNASTAR 

software (Lasergene) using either the ClustalW algorithm or as one pair alignments by 

Martinez-NW method. 

 

3.2.5.2. Sequence Data 

Gene identities are available at the EMBL/GenBank data libraries under accession 

numbers AF437878 (LeFER) and XI4449 (LeEF-1a). 
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4. Results 

 

4.1. Regulation of LeFER on Transcriptional and Posttranscriptional Level by 

Fe and NA Availability 

4.1.1. LeFER Gene Expression in Response to Fe Availability 

LeFER is the central regulator of Fe mobilization in response to Fe deficiency in 

tomato. Previous experiments have demonstrated that LeFER is active in plants exposed 

to Fe deficiency but not at high Fe supply (Ling et al., 2002). One possibility to control 

LeFER action would be a differential gene expression in response to Fe availability. 

LeFER was previously reported to be expressed at similar level upon low (0.1 µM 

FeNaEDTA) and sufficient (10 µM FeNaEDTA) Fe supply, suggesting that its mRNA 

abundance might not be regulated at the transcriptional level (Ling et al., 2002). 

However, the effect of a generous Fe supply, such as 100 µM, on LeFER gene expression 

was not tested. 

We investigated tomato plants grown under three different Fe supply conditions – low 

(0.1 µM FeNaEDTA), sufficient (10 µM FeNaEDTA), and generous (100 µM 

FeNaEDTA) Fe supply. We observed that wild type plants grew well in the hydroponic 

condition when supplied with 10 or 100 µM FeNaEDTA in Hoagland medium, whereas 

at 0.1 µM FeNaEDTA, plants developed leaf chlorosis (Fig. 4A, compare also to fer 

mutant plants). Since 100 µM is the regular concentration of Fe in multiple plant growth 

media (Duchefa Biochemie), this concentration can be regarded as physiologically 

optimal. 

As an indirect measure of Fe uptake efficiency and LeFER gene activity, a reductase 

assay was performed on fer mutant and wild type plants grown at the three different Fe 

supply conditions. At low Fe supply, the root FeIII-reductase activity in wild type plants 

was found the highest. The increase of Fe concentration up to sufficient or generous Fe 

supply led to approximately 2.5 and 4.5 times decrease in the activity values, 

respectively. fer mutant plants grown under Fe-deficient conditions exhibited only a weak 

background level of reductase activity irrespective of Fe supply conditions (Fig. 4B, only 

data for fer mutant plants grown at low Fe supply is shown). 
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Figure 4: Morphological and physiological responses to Fe deficiency, and 

regulation of LeFER gene and LeFER protein expression by Fe availability in roots. 

 

Wild type (wt) and fer mutant plants were grown in the presence of 0.1, 10, or 100 µM FeNaEDTA. 

(A) Comparison of Fe-deficiency leaf chlorosis between fer mutant (i) and wild type (ii-iv) plants grown at 

0.1 (i, ii), 10 (iii), and 100 (iv) µM FeNaEDTA. (B) Root FeIII reductase activity assay of fer mutant and 

wild type (WT) plants grown under different Fe supply conditions. SD are indicated; n = 4-5 

plants/condition. (C) Semiquantitative RT-PCR analysis of LeFer mRNA levels in tomato roots. LeFER 

expression levels were normalized according to the constitutively expressed LeEF-1a gene. LeFER signals 

were absent in fer mutant plants due to the presence of an insertion within the region to be amplified. (D) 
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Western blot analysis on total root protein extracts; 9 µg protein were loaded in each lane. Coomassie Blue 

staining was used to demonstrate equal protein loading. 

 

LeFER gene expression was determined by semiquantitative reverse transcription 

(RT)-PCR. The signals obtained were normalized according to the constitutively 

expressed LeEF-1a gene. We found highest LeFER expression in response to Fe 

deficiency. At sufficient Fe supply, LeFER expression was either decreased compared to 

low Fe supply, in two out of four experiments (Fig. 4C; see also Fig. 8B, wild-type 

lanes), or at a similar level, in two out of four experiments, as found previously by Ling 

et al. (2002). At generous Fe supply, LeFER transcript levels were consistently 

downregulated (Fig. 4C; see also Fig. 8B). No signal was obtained in fer mutant plants, 

regardless of Fe supply, due to the presence of a large insertion of approximately 4kb in 

between the binding sites for primers used in the RT-PCR experiments (Fig. 4C; Ling et 

al., 2002). Taken together, LeFER mRNA levels responded to different Fe availability 

conditions with a marked downregulation at generous Fe supply. Interestingly, the 

difference in reductase activity levels of wild type plants grown at different Fe supply 

conditions were following the same tendency as observed for difference in the expression 

levels of LeFER in these plants. 

 

4.1.2. LeFER Protein Expression in Response to Fe Supply 

To check whether LeFER protein levels parallel LeFER mRNA expression, we 

developed an affinity-purified polyclonal anti-FER antiserum from rabbit directed against 

the N-terminal LeFER peptide, excluding the helix-loop-helix domain (N-FER), termed 

anti-N-FER antiserum. In Western blot analysis the antiserum recognized recombinant N-

FER and whole intact LeFER proteins when expressed in E. coli (data not shown). The 

anti-N-FER antiserum was subsequently used in Western blot analysis on total root and 

leaf plant protein extracts. In wild type root protein extracts, a specific band of 

approximately 35 kD was immunologically detectable (Fig. 4D). This band was absent in 

fer mutant root extracts regardless of Fe supply (Fig. 4D). It was also absent in wild type 

leaf protein extracts, but detectable in leaf protein extracts of transgenic plants that 

ectopically expressed the LeFER gene in leaves (see Fig. 5C). Since the detected band 
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was with the predicted size of the LeFER protein, and it was absent in fer mutant plants, 

these results indicate that the anti-N-FER antiserum recognized specifically LeFER 

protein. We investigated LeFER protein abundance in tomato plants grown at low (0.1 

µM), sufficient (10 µM), and generous (100 µM) Fe supply. In wild type plants, LeFER 

protein levels were either similar (in two out of three experiments) or slightly lower (in 

one out of three experiments) when plants were grown at sufficient compared to deficient 

Fe supply (Fig. 4D; see also Figs. 5A and 8C). At generous Fe supply, the amount of 

LeFER protein was consistently undetectable in wild type (Fig. 4D; see also Figs. 5A and 

8C). Thus, LeFER protein expression showed a marked downregulation at generous Fe 

supply and was induced by Fe deficiency. 

 

 

 

Figure 5: LeFER gene and LeFER protein expression in transgenic plants 

constitutively expresing LeFER. 

 

(A) Western blot analysis using anti-N-FER antiserum on total protein extracts from roots of wild type 

(wt) and 35s1 transgenic plants overexpressing LeFER, grown at 0.1, 10, or 100 µM FeNaEDTA. (B) 

Semiquantitative RT-PCR analysis of LeFer mRNA levels in tomato roots of 35s1 plants grown at 

sufficient and generous Fe supply. LeFER expression levels were normalized according to the 

constitutively expressed LeEF-1a gene. (C) Western blot analysis using anti-N-FER antiserum (left), and 
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anti-FER antiserum (right), on total protein extracts from leaves of fer mutant, wild type, and 35s1 

transgenic plants grown at 0.1 or 10 µMFeNaEDTA. LeFER protein is indicated by an arrow; 9 µg protein 

were loaded in each lane in A and C. Coomassie Blue staining was used to demonstrate equal protein 

loading. 

 

4.1.3. LeFER Gene and LeFER Protein Expression in Transgenic Plants 

Constitutively Expressing LeFER 

Previously, the functional complementation of transgenic fer mutant plants by 

overexpression of an intact LeFER cDNA behind the cauliflower mosaic virus 35S 

promoter was shown (lines C1-2 = 35s1 and C2-8 = 35s2; Ling et al., 2002; Bereczky et 

al., 2003). 35s1 plants contained a full-length LeFER cDNA, whereas that of the 35s2 

plants was 21 bp shorter and started with the second ATG start codon, both in the fer 

mutant background (see section 3.1.1.). 35s1 plants were slightly better complemented 

than 35s2 plants (Ling et al., 2002). Bereczky et al. (2003) have observed that although 

LeFER was expressed constitutively at low and sufficient Fe supply in these transgenic 

plants, molecular Fe mobilization responses were stronger at low than at sufficient Fe 

supply, and detectable in roots but not in leaves. These previous results, suggested that 

LeFER gene action might be regulated at the posttranscriptional level, such as via protein 

stability or protein activation. Here, we investigated this possibility in more detail. 

First, we analyzed whether LeFER mRNA and LeFER protein were expressed in 

transgenic 35s1 plants grown upon sufficient and generous Fe supply. We found that 

LeFER mRNA was produced in 35s1 plant roots regardless of Fe supply, as expected 

from a constitutive LeFER gene expression under the 35S promoter (Fig. 5B). However, 

the LeFER protein level was clearly downregulated at generous versus sufficient Fe 

supply in roots (Fig. 5A). 

In leaves of transgenic LeFER overexpression plants, LeFER protein was stably 

expressed (Fig. 5C). Since the anti-N-FER antiserum recognized multiple protein bands 

in leaf protein extracts, we generated as a control an anti-FER antiserum that was directed 

against full-length LeFER protein and affinity purified against C-terminal LeFER 

peptides (C-FER). The anti-FER antiserum recognized a single protein band in leaf 

extracts of 35s1 plants but not of fer mutant plants that corresponded to a 35-kD LeFER 

protein (Fig. 5C, right). Taken together, LeFER mRNA and LeFER protein levels were 
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separately regulated in the transgenic 35s LeFER overexpression plants, indicating 

control of LeFER protein abundance at the posttranscriptional level. 

 

4.1.4. LeFER Protein Expression in Single Root Nuclei 

To further analyze LeFER protein expression, we employed immunolocalization of 

LeFER in single root tip nuclei (Houben et al., 1999). Briefly, isolated root tip nuclei 

were immunolabeled with anti-N-FER antiserum and rhodamine red-labeled secondary 

antibody. Nuclear genomic DNA was counterstained with 4’,6-diamino-phenylindole 

(DAPI). The advantage of this method was that immunolocalization signals could be 

quantified. The intensities of fluorescent signals were examined by laser scanning 

microscope image software so that fluorescent signal peaks could be counted per nucleus 

and statistically analyzed (see section 3.2.4.3.). In fer mutant plants grown at 0.1, 10, and 

100 µM FeNaEDTA, fluorescence levels of 1.27, 1.15, and 1.3 signal peaks/nucleus were 

observed, respectively (Fig. 6A, D, G, and J). In wild type plants, low-intensity signal 

peaks (between 51 and 100 relative greyscale units; RGU) were observed (Fig. 6B, E, H, 

and J). The signals were spread throughout the nucleus without an obvious pattern (Fig. 

6B). On average, in nuclei of Fe-starved wild-type cells, 10.0 signal peaks were found, in 

nuclei of Fe-sufficient cells, 4.5 signal peaks were found, and in nuclei of generous Fe-

treated plants, 1.3 signal peaks were found (Fig. 6J). In the 35s1 and 35s2 plants, the 

numbers of fluorescent signal peaks were about 100 to 400 times higher compared to 

wild type and of higher intensity (Fig. 6C, F, I, and K). Signal intensity and number of 

signals decreased in the nuclei of the transgenic plants when they were exposed to 

sufficient and generous Fe supply (Fig. 6K). For the 35s1 line, signal intensity and 

number were higher than in the 35s2 line (Fig. 6K). Additionally, the higher abundance 

of LeFER in the nuclei of 35s1 and 35s2 roots led to a rearrangement in the subnuclear 

signal localization. Compared to the diffused signals observed for wild-type nuclei, the 

transgenic lines exhibited a stronger concentration of the fluorescence signal in the 

nucleolus (Fig. 6C). In summary, the intensity of LeFER protein staining in single root 

tip nuclei suggested a Fe-dependent LeFER expression in the root tips. 
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Figure 6: LeFER protein expression in single root nuclei. 

 

Immunolocalization of LeFER on single root tip nuclei detected by anti-N-FER antiserum, followed by 

rhodamine red-coupled anti-rabbit IgG and counterstained with DAPI. (A to C) Superimposed confocal 

images of rhodamine red, DAPI, and differential interference contrast (DIC). (D to I) Diagrams, created by 

the laser scanning microscope 5 image software, presenting the respective rhodamine red (D–F) and DAPI 

(G–I) fluorescent signal peaks. The images represent the intensities of the fluorescent signals plotted on the 

same surface as the respective superimposed confocal image in A to C. Different levels of fluorescent 

signal intensities are represented by different colors: blue, 1 to 50 Relative Grey Scale Units (RGU); blue-

green, 51 to 100 RGU; green, 101 to 150 RGU; and yellow, 151 to 200 RGU. The images represent 

examples for the fer mutant (A, D, and G), wild type (B, E, and H), and 35s1 plants (C, F, and I), grown at 

0.1 µM FeNaEDTA. (J) Mean number of fluorescent rhodamine red signal peaks (LeFER signals) per 

nucleus for the negative control (secondary antibody omitted), fer mutant, and wild type plants, grown 

under all Fe supply conditions tested (µM FeNaEDTA). Only signal peaks with intensities between 51 to 

100 RGU were counted. Higher signal intensities were not detected for these samples. SD are indicated; n = 

10 nuclei. (K) Mean number of fluorescent rhodamine red signal peaks per nucleus for 35s1 and 35s2 

plants, grown under different Fe supply conditions (µM FeNaEDTA). Three levels of fluorescent signal 

intensities were counted, between 51 and 200 RGU. SD are indicated; n = 10 nuclei. 
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4.1.5. LeFER Protein Localization in Root Transverse Sections 

To check whether LeFER protein might show differential cellular localization in 

response to Fe supply, we performed immunolocalization of LeFER in transverse root tip 

sections (Fig. 7). Wild-type, fer mutant, and transgenic 35s1 plants were grown at 

deficient, sufficient, and generous Fe supply conditions. fer mutant plants displayed no 

specific LeFER signals, showing again the specificity of the anti-N-FER antiserum (Fig. 

7A, D, and G). In additional negative controls for secondary antibody specificity, no 

signals were detected throughout the root sections (data not shown). At generous Fe, no 

signals were detected both in wild type and in 35s1 plants (data not shown). LeFER 

protein expression signals were only detected in wild type and 35s1 plants grown at 

sufficient and low Fe supply. In these cases, the expression patterns were similar (Fig. 7 

shows data for sufficient Fe supply). In wild type plants, LeFER protein was localized in 

cells of the root tip except those of the root cap (Fig. 7B). In the root elongation zone, a 

specific pattern of LeFER expression was observed, represented by two rings with higher 

signal concentration (Fig. 7E). The two rings of LeFER expression signals comprised the 

cell layer of the epidermis and a cell layer surrounding the vascular cylinder, perhaps the 

differentiating endodermis. Diffused signals could also be seen in the cortex cells. In the 

mature root hair zone, the signals were concentrated in the parenchyma cells inside the 

vascular cylinder (Fig. 7H). The 35s1 roots showed the same pattern of LeFER staining 

with more intense signals than the wild-type roots. Despite constitutive expression of 

LeFER mRNA in the 35s1 plants (Fig. 5B; for constitutive expression of the 35S 

promoter in transgenic tomato roots, see also Moghaieb et al., 2004), the LeFER protein 

pattern was the same in the 35s1 plants as in wild type (compare Fig. 7C, F, and I with 

Fig. 7B, E, and H). These results suggest that LeFER protein was expressed in distinct 

cell types at low and sufficient Fe supply, independent of LeFER mRNA expression. The 

cellular LeFER protein expression might be regulated by posttranscriptional in addition 

to transcriptional control. 
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Figure 7: LeFER protein localization in root transverse sections. 

 

LeFER immunolocalization using anti-N-FER antiserum on 10-µm paraffin-embedded tomato root 

cross-sections of fer mutant (A, D, and G), wild type (B, E, and H), and 35s1 (C, F, and I) plants. (A to C) 

Transverse sections from the meristematic root zone. (D to F) Transverse sections from the elongation root 

zone. (G to I) Magnified views of the central cylinder from transverse sections in the root hair zone, as 

indicated on the root scheme. The presence of LeFER protein was revealed by violet staining from indirect 

immunolabeling with a secondary antibody coupled to alkaline phosphatase. 

 

4.1.6. Regulation of LeFER Protein Expression in chloronerva – dependence on 

NA Availability 

To gain further insight into Fe-mediated downregulation of LeFER, we examined 

whether LeFER mRNA and LeFER protein expression were influenced by the 

availability of internal Fe (supplied by NA) or external Fe (supplied by the medium). For 

these experiments, we utilized the chloronerva mutant as a tool. chloronerva plants lack 

the metal and Fe chelator nicotianamine (NA), produced normally by an intact LeNAS  
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Figure 8: Regulation of LeFER gene and LeFER protein expression in chloronerva 

mutant plants. 

 

(A) Generous (ii, 100 µM FeNaEDTA), compared to low (i, 0.1 µM FeNaEDTA) Fe supply partially 

rescues the chloronerva mutant phenotype. (B) Semiquantitative RT-PCR analysis of LeFer mRNA levels 

in roots from chloronerva and wild type plants grown under deficient (0.1 µM), sufficient (10 µM), and 

generous (100 µM) Fe supply. LeFer transcript abundance is normalized according to the constitutively 

expressed LeEF-1a gene. (C) Western blot analysis using anti-N-FER antiserum on total root extracts from 

chloronerva and wild type plants grown under 0.1, 10, or 100 µM FeNaEDTA; 9 µg protein were loaded in 

each lane. Coomassie Blue staining was used to demonstrate equal protein loading. 

 

gene product (= nicotianamine synthase; Ling et al., 1999). NA is required for 

intracellular and intercellular transport of Fe to target components or compartments. Lack 

of NA (lack of internal Fe) causes local Fe deficiencies. Despite sufficient Fe supply, 
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chloronerva plants mobilize and take up more Fe into the root than wild type (for review, 

see Scholz et al., 1992). Although extra Fe is transported to the shoots, it cannot be 

delivered to targets in all leaf cells, resulting in interveinal leaf chlorosis. It was 

previously found that the LeFER gene was expressed in chloronerva mutant roots 

(Bereczky et al., 2003). Here, we analyzed Fe dependence of LeFER gene and LeFER 

protein expression in chloronerva plants. We observed that at 100 µM Fe supply, 

chloronerva mutant leaves turned green and short-root phenotypes were rescued 

compared to low Fe supply (Fig. 8A). These findings indicate that chloronerva mutants 

were capable of responding to Fe. The wild type cultivar Bonner Beste (the background 

of the chloronerva mutant) showed decreased LeFER mRNA and LeFER protein 

expression at generous Fe supply (100 µM), similar to the wild type cultivar 

Moneymaker (Fig. 8B, C, compare with Fig. 4C, D). In chloronerva mutant plants, 

however, LeFER mRNA and LeFER protein expression levels were both enhanced 

compared to wild type, which was particularly evident at generous Fe supply (Fig. 8B, 

C). Therefore, external Fe supply was not sufficient to downregulate LeFER. 

 

4.1.7. Subcellular Localization of LeFER Protein 

The single-nuclei immunoassays indicated localization of the bHLH domain protein 

LeFER in nuclei. We analyzed whether LeFER protein might show differential 

localization within the cell in response to Fe supply. Therefore, we investigated 

subcellular localization of LeFER. Crude nuclear and remaining cellular protein fractions 

were prepared from root protein extracts of wild type and 35s1 plants. In Western blot 

analysis, LeFER protein was mainly detected in the nuclear, but not in the remaining, 

cellular fractions of the analyzed lines grown at deficient and sufficient Fe supply (Fig. 

9A). Therefore, intracellular localization of LeFER was presumably not dependent on Fe 

concentration. 
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Figure 9: LeFER protein subcellular localization and transcriptional activation. 

 

(A) Western-blot analysis using anti-N-FER antiserum on cytosolic and remaining cellular protein 

fractions from roots of wild type and 35s1 plants grown at 0.1 or 10 µM FeNaEDTA. The presence of 

LeFER protein is indicated by an arrow. (B to M) Confocal images of Arabidopsis protoplasts transiently 

transformed with C-terminal GFP fusion constructs showing GFP fusion protein localization. (B to D) Full-

length LeFER::GFP. (E to G) N-LeFER::GFP. (H to J) C-LeFER::GFP. (K to M) Free GFP. (B, E, H, and 

K) Superimposed GFP and DIC images. (C, F, I, and L) GFP fluorescence. (D, G, J, and M) DIC images. 
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(N) Yeast One-Hybrid assay showing transcription activation capacity of LeFER. Transcription activation 

is visualized by a positive LacZ assay (blue color of the colonies). Empty vector was used as a negative 

control. 

 

To confirm the nuclear localization of LeFER, we employed a green fluorescent 

protein (GFP) tagging technique. Arabidopsis protoplasts were transiently transformed 

with a construct containing 35S::LeFER-GFP. The LeFER::GFP fusion protein was 

localized in the nucleus (Fig. 9B–D). Only very few and light signals were located 

outside the nucleus. In contrast, free GFP was located in the cytoplasm and the nucleus 

(Fig. 9K–M). For the purpose of determining the location of the putative nuclear 

localization signal in the LeFER protein, two truncated N- and C-terminal LeFER::GFP 

fusion constructs were tested. Neither of the two protein parts contained the helix-loop-

helix domain (N- and C-terminal parts) and was able to trigger GFP localization strictly 

to the nucleus, as was the case for full-length LeFER::GFP (Fig. 9E–J). Presumably, the 

presence of a sequence contained in the helix-loop-helix domain was necessary for the 

proper nuclear localization of the LeFER protein. 

 

4.2. Transcriptional Activation of LeFER 

bHLH domain proteins are usually nuclear transcription factors. Since LeFER was 

localized to the nucleus, we hypothesized it might act there as a transcription factor. To 

investigate the potential of LeFER to activate transcription, we performed a Yeast One-

Hybrid assay. Full-length LeFER was fused to the GAL4 DNA-binding domain and 

transferred into yeast cells containing the GAL4-responsive upstream activating sequence 

fused to a minimal promoter and the lacZ reporter gene. Full-length LeFER was able to 

promote reporter gene activity, indicating that LeFER alone was able to activate 

transcription in this assay (Fig. 9N). Therefore, LeFER is presumably able to affect 

nuclear transcription in plants. 

Furthermore, we created nine LeFER deletion constructs with different combinations 

of the N- and C-terminal, basic, and helix-loop-helix (HLH) domains for mapping the 

activation domain of LeFER (Table 1, Fig. 10). Similarly, they were fused to the GAL4 

DNA-binding domain and screened in a Yeast One-Hybrid assay for lacZ reporter gene 

activation. From all nine constructs, only two were able to activate transcription in this 
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system – LeN+b, containing the N-terminal part of LeFER and the basic part of the 

bHLH domain, and LeN+bHLH, containing the N-terminal part of LeFER and the whole 

bHLH domain (Fig. 10). Neither the N-terminal part of LeFER (LeN), nor the basic 

(Lebasic), helix-loop-heix (LeHLH) part, or whole bHLH domain (Leb+HLH) could 

activate transcription alone (Fig. 10), suggesting that the LeFER activation domain is 

shared between the N-terminal and the basic parts of the protein. 

 

 

 

 

Figure 10: LeFER activation domain mapping. 

 

LeFER deletion constructs were tested in a Yeast One-Hybrid assay for lacZ reporter gene activation 

ability. The constructs contained single or combination of more than one different parts of the whole 

LeFER protein, used here as a positive control. LeN, N-terminal part of LeFER; LeC, C-terminal part of 

LeFER; Lebasic, basic part of the LeFER bHLH domain; LeHLH, helix-loop-helix part of the LeFER 

bHLH domain. For each construct, transcription activation ability was tested and presented either by a 

positive (blue circles with plus), or negative (white circles with minus) lacZ assay result. 
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4.3. LeFER Fe-Binding Assay 

Another possibility for Fe-mediated downregulation of LeFER could be presented by 

a direct binding of Fe to LeFER. Therefore, we examined whether affinity purified 

recombinant LeFER protein could bind radioactive 55FeIII or 55FeII in a dot blot assay. 

The binding ability of the whole LeFER protein was compared to that of N- or C-terminal 

parts of the protein, excluding the helix-loop-helix domain (N-LeFER and C-LeFER, 

respectively). Arabidopsis Iron Transport Protein (AtITP) (kindly provided by Prof. R. 

Hell) was used as a positive control, and bovine serum albumin (BSA) – as a negative 

control. The whole LeFER protein showed Fe binding to both FeIII and FeII, although 

weaker than that of AtITP (Fig. 11). N-LeFER and C-LeFER had Fe binding levels 

similar to that of LeFER (Fig. 11). BSA showed no Fe-binding ability. The result 

suggests that LeFER can bind both FeIII and FeII in the described in vitro binding assay. 

 

 

 

Figure 11: LeFER Fe binding assay. 

 

Affinity purified recombinant LeFER, N-LeFER, and C-LeFER proteins were tested for Fe-binding 

ability in an in vitro dot blot assay with radioactive 55FeIII or 55FeII. AtITP (kindly provided by Prof. R. 

Hell) was used as a positive control; BSA was used as a negative control. All proteins were spotted in equal 

molarity (7.2*10-6 mol), and in three different dilutions (dilution factor 1, 10, or 100). 
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4.4. Screening for Putative LeFER Interaction Partners by Yeast Two-Hybrid 

Assay 

We have shown that LeFER is regulated by Fe availability and may act as a 

transcription factor in Fe-deficiency induced responses of tomato roots. Homo- and/or 

heterodimerization have been reported for a number of bHLH transcription factors. We 

have performed a Yeast Two-Hybrid screening for putative LeFER interaction partners, 

using a cDNA library from Fe-deficient wild type tomato roots (see section 3.2.2.3.). 

Since the LeFER protein shows transcriptional self-activation in yeast (see above), we 

have performed independent screens with four LeFER deletion constructs – LeN, LeC, 

Leb+HLH+C, and LeHLH+C, which do not activate transcription on their own (Fig. 10). 

Yeast strain Y187 containing one of the deletion constructs (bait) was mated with strain 

AH109 containing the cDNA library. Diploids were selected on low stringency medium 

(SD-His/Trp/Leu + 4 mM 3-AT), which only allows growth of cells expressing bait (- 

Trp selection) and library cDNA fragments (-Leu selection) which interact (-His 

selection). Single colonies growing on the triple selection medium were additionally 

tested for lacZ reporter gene activation to confirm presence of interaction. Library cDNA 

fragments from lacZ positive colonies were amplified, sequenced, and database BLAST 

searches were performed. Sequences from positive clones were identified either as 

Expressed Sequence Tags (ESTs; partial, single-pass sequences from either end of a 

cDNA clone), such as AI, BI, BG Gene Bank identifiers, or as Tentative Consensus 

sequences (TCs; created by assembling ESTs in virtual transcripts). 

When using the N-terminal part of LeFER (LeN) or the bHLH+C-terminal part of 

LeFER (Leb+HLH+C) bait constructs, no lacZ positive colonies or PCR products 

corresponding to putative interaction partners could be obtained (Table 4). However, both 

the HLH+C-terminal part of LeFER (LeHLH+C) and the C-terminal part of LeFER 

(LeC) bait constructs yielded several putative binding partners – 2 and 14, respectively 

(Table 4). PCR fragments amplified from different lacZ positive colonies, but with the 

same size and sequences corresponding to the same tomato identity, were considered as 

one PCR clone. 
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 LeN LeC Leb+HLH+C LeHLH+C 
No of triple selection positive colonies 428 725 153 154 
No of LacZ positive colonies 60 491 0 4 
No of sequenced PCR products 7 133 - 4 
No of failed sequences 0 18 - 0 
No of false positives 7 13 - 0 
No of putative interaction partners 0 14 0 2 
No of genes represented in multiple clones - 3 - 1 
No of genes represented in single clones - 11 - 1 

 

Table 4: Summarized results from four independent Yeast Two-Hybrid screens with a cDNA library 

from Fe-deficient wild type tomato roots, and different LeFER deletion constructs used as a bait. For each 

experiment, the number (No) of selected diploid colonies, PCR products and identified genes is presented. 

 

Only two putative interaction partners of LeFER could be identified from a Yeast 

Two-Hybrid screen using LeHLH+C as a bait (Table 5). TC15501 encodes a homologue 

of a ferredoxin nitrite reductase, whereas AI775423 has unknown function. 

 

Tomato 
ID 

Name  No of 
Fragments 

No of 
Clones 

TC155013 homologue to UP|Q76G13 (Q76G13) Nitrite reductase, partial (71%) 3 2 
AI775423 tomato|AI775423 1 1 

 

Table 5: Results from an Yeast Two-Hybrid screen of wild type Fe-deficient tomato roots cDNA 

library with the HLH+C-terminal part of LeFER (LeHLH+C) used as a bait. Tomato identifiers (IDs), 

sequence homology, and number (No) of PCR fragments and clones for each independent sequence 

obtained from lacZ positive colonies are presented. 

 

A Yeast Two-Hybrid screen with LeC as a bait yielded 14 putative LeFER interaction 

partners (Table 6). Three of the sequences – corresponding to geranylgeranylated protein 

(NTGP5), protein phosphatase 2C (PP2C), and ferredoxin nitrite reductase, were 

identified in more than one PCR clones (Table 4, 6), which may reflect their higher 

degree of representation in the library, with NTGP5 identified in 46 % of all PCR 

fragments. From the three ESTs identified, only BI935216 showed similarity to a 

polyubiquitin mRNA from Antirrhinum major (snapdragon); for the other two ESTs 

(AI775423 and BG631146) no putative function could be assigned. Two of the identified 

sequences (TC154302 and BI925177) were considered as false positives due to their 

negative orientation in the vector pGADT7-Rec containing the cDNA library fragments. 
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Tomato 
ID 

Name  No of 
Fragments 

No of 
Clones 

Functio
nal Cat. 

TC155870 similar to UP|Q9ZRD0 (Q9ZRD0) NTGP5, complete 
(Geranylgeranylated protein) 

61 9 1 

TC155802 UP|Q6QLU0 (Q6QLU0) Protein phosphatase 2C, complete 24 8 1 
TC155013 homologue to UP|Q76G13 (Q76G13) Nitrite reductase, partial 

(71%) 
7 4 2 

TC155690 similar to TIGR_Ath1|At5g65640.1 bHLH family protein , partial 
(48%) 

1 1 3 

TC153558 UP|Q39257 (Q39257) Ubiquitin, complete 1 1 4 
TC155639 similar to UP|Q8VX74 (Q8VX74) Glycine-rich RNA-binding 

protein, partial (93%) 
1 1 3 

TC154715 similar to UP|O04287 (O04287) Immunophilin, complete 1 1 4 
TC163025 similar to UP|Q84U56 (Q84U56) TMV induced protein 1-2, 

partial (96%) 
1 1 5 

TC168593 homologue to UP|Q6T7E8 (Q6T7E8) Adenylosuccinate synthase , 
partial (27%) 

1 1 2 

TC163084 homologue to UP|Q9FZ14 (Q9FZ14) Tuber-specific and sucrose-
responsive element binding factor 

1 1 3 

AJ784514 gi|62719020|emb|AJ880385.1| Nt partial mRNA for putative stress 
related chitinase 

1 1 5 

BI935216 similar to A. major polyubiquitin mRNA, partial 1 1 4 
AI775423 similar to potato|TC130616, EST from abiotic cDNA 1 1 6 
BG631146 tomato|BG631146 1 1 6 
TC154302 homologue to UP|Q947H2 (Q947H2) Ribosomal protein, 

complete, false positive 
4 3 - 

BI925177 homologue to SP|Q10597|ATPG_ ATP synthase gamma chain, 
false positive 

9 7 - 

 

Table 6: Results from an Yeast Two-Hybrid screen of wild type Fe-deficient tomato roots cDNA 

library with the C-terminal part of LeFER (LeC) used as a bait. Tomato identifiers (IDs), sequence 

homology, number (No) of PCR fragments and clones, and assigned functional category for each 

independent sequence obtained from lacZ positive colonies are presented. Functional categories are 

encoded by numbers: 1, signaling; 2, metabolism; 3, regulation; 4, protein degradation and maintenance; 5, 

biotic stress; 6, unknown. 

 

The 14 identified putative LeFER interaction partners could be grouped in six 

functional categories (Fig. 12), where categories “regulation” and “protein degradation 

and maintenance”, contained the highest number of identified proteins (each with three 

members). Each of the rest of the categories: “signal transduction”, “metabolism”, “biotic 

stress”, and “unknown”, contained two identified proteins. 
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Figure 12: Functional assignment of putative LeFER interaction partners, identified 

through a Yeast Two-Hybrid screen using LeC as a bait. 

 

Fourteen putative LeFER interaction partners are grouped in 6 functional categories (see Table 6). The 

number of proteins falling into each category is represented in the respective pie chart piece. 

 

Interestingly, when comparing the two screens – with LeHLH+C and LeC baits, it 

becomes evident that although LeHLH+C yielded only 2 putative LeFER interaction 

partners, both of these proteins were also identified in the LeC screen. This result 

supports the reliability of the obtained data and hints towards a possible domain 

discrimination for the binding of the putative LeFER partners. Taken together, the 

screening in the heterologous yeast system has provided several candidate proteins as 

possible LeFER interaction partners. Most of them were identified when using the C-

terminal part of LeFER as a bait, which is consistent with the general observation that C-

terminal parts of bHLH proteins are responsible for protein-protein oligomerization 

(Murre et al., 1994). 
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4.5. Screening for Fe- and LeFER-Regulated Proteins by Two-Dimensional 

Electrophoresis (2-DE) 

So far, little is known about the signaling and metabolic networks underlying the 

complex processes in plants which lead to a response to Fe deficiency. We do not know 

which proteins, other than Fe-mobilization components, are acting in the LeFER 

pathway. With the aim to identify new proteins involved in the LeFER-regulated Fe-

deficiency response, we have analyzed the root proteome from plants with different 

LeFER genotypes and exposed to varying Fe-supply conditions. 

 

4.5.1. Design of the Proteomics Experiment 

For proteomics studies, we employed two-dimensional gel electrophoresis (2-DE) 

coupled with protein identification by mass spectrometry. We screened for three groups 

of differentially expressed proteins, namely for proteins whose expression was dependent 

on Fe supply, for proteins whose expression was dependent on LeFER activity, and for 

proteins whose expression was dependent on both, Fe supply and LeFER activity. We 

have used for our experiments three different plant genotypes (fer mutant, wild type, and 

35s1 transgenic plants) that we grew each for eight days under three different Fe-supply 

conditions (0.1, 10, and 100 µM FeNaEDTA). fer mutants can be considered Fe-deficient 

due to genetic factors (genetically induced Fe deficiency), whereas wild type and 35s1 

plants were only Fe-deficient when exposed to low Fe supply (physiologically induced Fe 

deficiency). For these reasons we have examined the root proteome changes after a 

period of eight days of Fe deficiency. Prolonged changes to Fe deficiency will be 

manifested in the root proteome allowing for better comparison between genetically and 

physiologically-induced Fe deficiency. Roots from the nine samples were collected. 

Three independent biological repetitions (harvests) were examined, whereby each 

biological repetition included three technical repetitions. The structure of the experiment 

is presented in Figure 13. 
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Figure 13: Structure of the proteomics experiment performed on tomato roots. 

 

Protein samples for 2-DE were extracted from tomato roots from three different plant genotypes (fer 

mutant, wild type (wt), and 35s1 transgenic plants) grown under three different Fe-supply conditions (0.1, 

10, and 100 µM FeNaEDTA). Three different biological repetitions (harvests, H1-3) were examined. For 

each harvest three technical repetitions were performed (represented as pink squares on the scheme). In 

total, 81 good quality 2-DE gels were obtained and processed. 

 

We used a protocol for protein extraction from the collected tomato root samples for 

obtaining cytosolic and organelle (nuclei, mitochondria, plastids, etc.) proteins (see 

section 3.2.4.7.). 175 µg of total protein extract from each sample were subjected to 

isoelectric focusing on 13 cm immobilized pH gradient (IPG) strips in the linear pH range 

of 3 to 10, and consequently separated according to their molecular weight on 12.5 % 

SDS polyacrylamide gels. The obtained 2-DE gels (Fig. 14) were quantitatively stained  
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Figure 14: Representative 2-DE gels for each condition used in the tomato root 

proteomics approach. 

 

Representative Coomassie Brilliant Blue stained 2-DE gels for fer mutant, wild type (wt) and 

transgenic 35s1 plants grown under low (0.1 µM), sufficient (10 µM), and generous (100 µM FeNaEDTA) 

Fe supply. 
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with colloidal Coomasie Brilliant Blue reagent, imaged and compared in order to identify 

differentially expressed protein spots. The initial image comparisons were completed 

using the Phoretix 2D Evolution software, where images could be compared only 

pairwise, with a set threshold of 1.5 times expression change. However, due to the high 

number of 2-DE images we later used the more powerful software. PDQuest Advanced 

(Biorad). PDQuest allowed optimized spot detection and spot matching, and the 

possibility to compare multiple gels/ replicate groups simultaneously. 

In our experimental conditions, we could detect 800-1000 protein spots per protein 

gel. Interestingly, the highest number of spots was always detectable in the fer mutant 

condition, and even more if fer mutants were grown under Fe deficiency (Fig. 15). On the 

other hand, in wild type and 35s1 samples, equal numbers of about 800 spots were 

detectable regardless of Fe supply. This observation can be due to an increased protein 

synthesis or increase in the number of stable degradation products under Fe-deficient 

conditions and in fer mutants. 

 

 

 

Figure 15: Total number of protein spots detectable by 2-DE analysis. 

 

Nine experimental conditions were examined – fer mutant, wild type, and transgenic 35s1 plants 

grown at low (0.1 µM), sufficient (10 µM) and generous (100 µM FeNaEDTA) Fe supply. 
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4.5.2. Protein Spot Identification 

A total of 155 differentially expressed protein spots (Fig. 16) were selected for 

identification by mass spectrometry. These differentially expressed spots were either 

induced or repressed in any sample versus another sample. All other detectable spots 

showed constitutive expression in all genotypes and Fe-supply conditions, and were not 

considered for analysis. As described in Materials and Methods, we have used two 

techniques for identification of protein spots. First, all spots were subjected to MALDI-

TOF-MS analysis. The determined peptide masses were used to screen the following 

plant databases: the whole nonredundant NCBI database, the Viridiplantae index of the 

nonredundant NCBI database, the whole SwissProt database, the Viridiplantae index of 

the SwissProt database, and an EST database comprising nucleotide sequences from L. 

esculentum, S. tuberosum, and N. tabacum. For 66 spots it was possible to obtain a high 

probability score for a protein identity. However, in 89 cases it was not possible to 

determine the protein spot identiy. In these cases, we employed nanoLC-ESI-MS/MS to 

obtain peptide sequences. These sequences were then used to screen the databases again. 

This way, it was possible to identify further 73 protein spots. Finally, only in the case of 

16 out of the 155 spots we could not achieve protein identification. 8 of the protein spots 

had no known function. In 7 protein spots, 2 different proteins were identified. A list of 

all investigated protein spots (ordered by SSP number) with their respective putative 

identity, Gene Bank accession number(s) and assigned functional category is presented in 

Appendix A. 

Several of the selected protein spots displayed obvious changes in their expression 

pattern throughout the investigated growth conditions. Two such representative spots are 

shown in Figure 17. 
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Figure 16: A virtual master 2-DE gel containing all 155 differentially expressed 

protein spots, which were identified from the tomato root proteomic analysis. 

 

Differentially expressed protein spots are marked with their SSP numbers, obtained after analysis with 

the PDQuest Advanced software, according to their position on the master gel. 
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Figure 17: Representative differentially expressed protein spots. 

 

Representatives of differentially expressed protein spots: (a.) with strongly induced expression by Fe 

deficiency in wild type (wt) and 35s1 plants, but only slight response to Fe supply in fer mutant plants, 

exemplified by IAA6 protein (SSP 1204), and (b.) with strongly induced expression by high Fe supply in 

wild type and 35s1 plants, but no expression in fer mutant plants, exemplified by germin protein (SSP 

8010). Graphs represent protein expression levels based on normalized intensity for area (Norm INT*Area) 

for each investigated growth condition. n = 3 for 3 biological replicates (harvests). Bars indicate SD. Red 

circles indicate the respective protein spots on magnified views of representative Coomassie Brilliant Blue 

stained 2-DE gels. 

 

Analysis of protein spot identities showed that the spots belong to proteins with 

different types of functions (Fig. 18). Almost one-third of all differentially expressed 

proteins have metabolic functions in energy, carbohydrate, nitrogen, amino acid, or other 

metabolic pathways. 19 % of the proteins are involved in the response to oxidative, 

abiotic, biotic or more general stress. The third largest group of differentially expressed 

proteins (15.4 %) function in protein degradation pathways or in maintaining protein 

folding and stability. The other proteins are involved in regulation (4.9 %), signal 

transduction (3.7 %), protein synthesis (1.9 %), hormone response (1.2 %), etc. 14.8 % of 

the proteins have unknown function. 
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Figure 18: Representation of protein functions belonging to the analyzed protein 

spots that were differentially regulated by Fe supply conditions and LeFER activity. 

 

Differentially expressed protein spots were organized in 12 functional categories based on their 

putative identity. In total, 155 protein spots were analyzed, whereby identities were obtained for 139 spots 

(here taken as 100 %). The number of protein spots falling into each functional category are expressed in 

percent from the total 139 identified protein spots. See also Appendix A for detailed information. 

 

4.5.3. Statistical Analysis of Expression Data 

In order to perform a detailed analysis on the expression pattern of each identified 

differentially expressed protein spot, the whole data set was subjected to a statistical 

quality control. First, the consistency of the technical repetitions was confirmed by using 

both correlation and Euclidean differences (Fig. 19), which made it possible to combine 

them together into one data matrix. Subsequently, based on the reshaped data set, the 

consistency of the biological repetitions was examined. As to be expected, these show 

higher variability, however, without corrupting the consistency of the data. Thus, the data 

was considered of good quality and suitable for further analysis. 

Then, we investigated further the data with the aim to obtain distinctive clustering of 

protein identities based on their expression patterns. 
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Figure 19: Three-dimensional structure of the tomato roots proteomics data set 

illustrated by an Euclidean-based embedding technique. 

 

Technical repetitions are presented as data points in three different colours. Data point triplets 

belonging to the same experiment (harvest) are formed. Outliers, which are not contained in the main data 

cloud, can be seen on the right hand side of the plot (performed by Dr. Udo Seiffert). 

 

4.5.4. Clustering of Expression Data Using Venn Diagrams 

First, we chose to cluster protein spots that were induced in the same Fe-supply 

condition and in the same line versus any other conditions which could differ between 

these spots. Venn circle diagrams based on three experimental situations were created to 

illustrate the relations between different sets (clusters) of protein expression data. 

Different Venn diagrams were generated for different Fe-supply conditions. For example, 

protein spots which were found highly expressed in fer mutants upon Fe deficiency, but 

not highly expressed in wild type or 35s1 upon Fe deficiency, were found in the unique 

section of the fer circle. However, protein spots which were highly expressed upon Fe 
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deficiency in fer mutants, in wild type and in 35s1 plants, but for example expressed at 

lower level in other conditions, were placed into the intersection of the three circles. This 

type of clustering revealed the number of proteins, which were co-induced by the given 

Fe-supply condition in the specified genotypes (Fig. 20). A list of all protein spots 

belonging to each of the different expression categories represented with Venn diagrams 

is provided in Appendix B. 

From the Venn diagrams we could deduce the following: The highest number of 

induced proteins was observed in plants grown under Fe-deficient (0.1 µM, Fig. 20a), 

compared to sufficient (10 µM, Fig. 20b) and generous (100 µM FeNaEDTA, Fig. 20c) 

Fe supply conditions – 108 versus 63 and 59 proteins, respectively (all induced proteins 

irrespective of genotype found at low Fe in all three circles versus all induced proteins 

found at 10 and 100 µM Fe in all three circles). At the same time, the percentage of fer 

mutant specific spots (found in the fer-specific sections) was the lowest at 0.1 µM Fe (14 

spots, 13 % of 108 spots), compared to 27 % (17 out of 63 spots) and 25 % (15 out of 59 

spots) for 10 and 100 µM Fe, respectively. The number of proteins which were co-

induced in an Fe-supply condition in all three genotypes (found in the intersections of all 

three circles) was two to three times higher upon Fe deficiency than upon Fe supply. 

These data indicate that first of all, most of the differentially expressed spots were 

induced upon an Fe-deficiency condition rather than induced upon an Fe-supply 

condition. This suggests that proteins are perhaps more likely induced by Fe deficiency 

rather than suppressed, and that lack of LeFER also results in induction of spots rather 

than repression. Moreover, the numerous spots induced under Fe deficiency even in the 

absence of LeFER suggest that the plant can switch on a more general Fe-deficiency 

response, which does not directly rely on LeFER action. 
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Figure 20: Venn diagrams, representing relations between three sets (clusters) of 

tomato root protein expression data. 

 

Venn diagrams, illustrating the number of proteins induced in the specified genotype (fer mutant, wild 

type, or 35s1 transgenic plants) grown under the specified Fe concentration (a. - 0.1;b. - 10; or c. - 100 µM 

FeNaEDTA) versus any of the other Fe-supply conditions. The number of induced proteins which are 

shared between the different genotypes are found in the intersections and indicated in colour: blue, between 

fer mutant and wild type; green, between fer mutant and 35s1 plants; violet, between wild type and 35s1 

plants; red, common for all three plant genotypes investigated. 

 

Second, Venn diagrams were also arranged in a complimentary way by analyzing in 

one diagram two situations (two genotypes, fer and wild type, one Fe-supply condition, 

0.1 µM Fe) (Fig. 21). This Venn representation describes the dependence of protein 

expression on LeFER. Proteins can either be induced or repressed, dependent on LeFER 

or independent (Appendix C; Fig. 21), respectively. Of special interest were proteins 

belonging to the group “LeFER induced, -Fe induced” (Fig. 21), since these would be 

proteins induced by LeFER under Fe deficiency, similarly to the FeIII reductase LeFRO1 

and the FeII transporter LeIRT1. This expression group contains 9 protein spots, which 

correspond to 8 different protein identities (Table 7). Spots 8107 and 8108 were both 

identified as germin-like protein and represent either two different isoforms or modified 

protein species. The other proteins in the group belong to diverse functional categories 

such as metabolism, protein degradation, folding and stability, stress response, and 

structural proteins, indicating the broad spectrum of physiological and morphological 

processes influenced by the lack of Fe in the plant environment. 
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Figure 21: Venn diagrams, representing relations between four different sets 

(clusters) of tomato roots protein expression data based on LeFER and low Fe supply 

dependence. 

 

Venn diagrams, illustrating the number of proteins distributed among four expression categories and 

their intersections. The red numbers indicate induction, the blue numbers repression. Two categories 

describe proteins with generally (throughout all Fe supply conditions tested) induced or repressed 

expression in fer mutant plants (upper right and lower left circles, respectively). Two other categories 

describe proteins with induced or repressed expression under Fe deficiency in wild type plants (upper left 

and lower right circles, respectively). The proteins belonging to each group presented on the diagram are 

listed in Appendix C. 

 

SSP Putative Identity GI Functional Cat. 
0601 similar to 26S proteasome regulatory subunit S5A TC149782 protein degradation 
1503 alpha-tubulin gi|17402471 structural protein 
2702 glucose-regulated protein 78 gi|170386 protein folding & stability 
4506 enolase gi|19281  energy metabolism 
5201 cytosolic malate dehydrogenase TC142327 metabolism 
6202 glyceraldehyde 3-phosphate dehydrogenase gi|2078298 metabolism 
6507 DnaJ like protein gi|6782421 protein folding & stability 
8107 germin like protein TC138076 stress response 
8108 germin like protein TC138076 stress response 

 

Table 7: A list of proteins belonging to the expression group “LeFER induced, -Fe induced” from the 

Venn diagram clustering shown on Figure 21. SSP number, putative identity, gene identifier (GI), and 

respective functional category for each protein spot are presented. 
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4.5.5. Clustering of Expression Data Using Expression Patterns 

Based on the two Venn diagram representations we obtained an overview about the 

number of protein changes. However, the Venn diagrams do not allow conclusions about 

the expression patterns of individual proteins, e.g. whether Fe-deficiency-induced 

proteins are also induced in fer mutants at high Fe or not. 

To achieve a more distinctive clustering of proteins based on specific expression 

patterns, we defined 16 different patterns that included expression profiles throughout all 

Fe-supply conditions and LeFER genotype for each protein spot (Fig. 22). These 16 

individual patterns were subgrouped into six categories based on common expression 

change tendencies (Fig. 22 I. – VI.). A list of all proteins belonging to the respective 

expression pattern cluster is presented in Appendix D. 

Category I contains 14 proteins with LeFER-independent regulation, either induced 

by Fe deficiency (Fig. 22 Ia., 0.1 µM Fe) or induced by generous Fe supply (Fig. 22 Ib., 

100 µM FeNaEDTA) Most of these proteins function in protein degradation, and protein 

folding and stability. 

Categories II to VI contain LeFER-dependent proteins. 

Category II contains one stress response protein in two isoforms (or modification 

states) that was induced by Fe deficiency only if LeFER is present (Fig. 22 II). In the 

absence of LeFER, this protein was not expressed. 

Category III is defined by LeFER-dependent expression, especially at high Fe. This 

category consists of proteins with reduced (Fig. 22 IIIa. and b.) or zero (Fig. 22 IIIc.) 

expression in the fer mutant (Fig. 22 IIIa.) and high expression at high Fe in wild type 

(Fig. 22 IIIb. and c.). 50 % of these proteins have metabolism functions, 25 % are 

involved in different stress responses, 25 % belong to the protein folding and stability, 

root morphology, and regulation functional categories. 

Category IV includes proteins that are expressed at low level at -Fe in the absence of 

LeFER whereas in the presence of LeFER the expression is constitutively high (Fig. 22 

IV). Category IV proteins function in protein degradation, oxidative stress, and as 

structural proteins. Perhaps these proteins might be downregulated in fer mutant plants 

because they could be toxic at very low Fe, as would be the case in fer mutants grown 
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under low Fe supply, or these proteins may have high requirements for Fe which cannot 

be met in Fe-deficient fer mutant plants. 

Category V is the largest category (39 protein spots), defining proteins which are 

highly expressed in the absence of LeFER at low and/or high Fe supply. It contains three 

subcategories according to the responses of the proteins to Fe supply in the fer mutant. 

The first subcategory (Fig. 22 Va. to Ve.) defines proteins which do not respond to Fe 

supply in fer mutant plants. In wild type and 35s1 plants, their expression is either 

induced under Fe deficiency (Fig. 22 Va. to Vc.), repressed under Fe deficiency (Fig. 22 

Vd.), or unchanged (Fig. 22 Ve.). The second subcategory (Fig. 22 Vf. and g.) describes 

proteins with induced expression under Fe deficiency in the fer mutant, and generally 

reduced (Fig. 22 Vf.) or zero (Fig. 22 Vg.) expression under all Fe-supply conditions in 

wild type and 35s1 plants. The third subcategory, Vh., is characterized by an induction at 

low Fe in both wild type and 35s1 plants but repression by low Fe in the fer mutant (Fig. 

22 Vh.). Such proteins would need LeFER for their proper induction in response to 

different Fe supply conditions. In general, one-third of the proteins in category V have 

metabolic functions, 28 % are stress related, 23 % have unknown function. The 

remaining proteins are involved in protein degradation, regulation, signal transduction, 

and hormone response. 

Category VI describes deregulated Fe-dependent expression in LeFER 

overexpressing plants, and contains a single protein involved in protein degradation (Fig. 

22 VI). Its expression according to Fe supply is inverted in 35s1 compared to fer mutant 

and wild type plants. Interestingly, for this protein the lack of LeFER does not influence 

its expression, whereas the overexpression of LeFER does. 
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Figure 22: Expression pattern clustering of differentially expressed protein spots 

identified by the tomato roots proteomics approach (Legend continues on the next page). 
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Differentially expressed protein spots were grouped in 16 distinctive expression patterns (clusters), 

organised in 6 categories (I. – VI.) with subcategories (Ia., b.; IIIa., b.-c.; Va.-e., f.-g., h.). I., “LeFER-

independent regulation by Fe”; II., “LeFER-dependent induction at –Fe”; III., “General LeFER-dependent 

induction, especially at high Fe”; IV., “Repressed at –Fe in the absence of LeFER”; V., “Induced in the 

absence of LeFER at – and + Fe”; VI., “Deregulated Fe-dependent expression in o.e. LeFER”. The number 

of protein spots belonging to each category is indicated. Protein expression patterns show the expression 

change in each plant genotype (fer mutant, wild type, 35s1 transgenic plants) throughout the three Fe-

supply conditions tested (0.1, 10, and 100 µM FeNaEDTA), with expression change tendencies indicated. 

For each category, the distribution of the respective proteins in functional categories (in colour code) is 

presented. A list of all protein spots belonging to a specific category or expression pattern is provided in 

Appendix D. 

 

4.5.6. Functional Analysis of Expression Data 

The obtained clustering, described above, shows how diverse the expression profiles 

can be in response to LeFER presence and Fe supply. We used this clustering information 

to address the question how many and which functional categories of proteins are 

dependent only on Fe supply or only on LeFER. 72 differentially expressed protein spots 

were used for this functional analysis. 

To start, we compared the functions of proteins that were characterized by expression 

strictly dependent only on Fe supply irrespective of LeFER activity (14 spots, Fig. 22 Ia. 

and b.; Fig. 23 a.) with the functions that proteins had that were not dependent on Fe 

and/or were dependent on LeFER (58 spots, Fig. 22 II. – VI.; Fig. 23 b.). Interestingly, 

we found that among the 14 LeFER-independent spots there were no proteins involved in 

amino acid metabolism, general stress response, abiotic and biotic stresses, root 

morphology, structural proteins, signal transduction, hormone response, and proteins with 

unknown function. But these 14 proteins included several that were involved in 

carbohydrate metabolism. The functional categories nitrogen metabolism, protein 

degradation, protein folding and stability, and regulation were also over-represented 

among the strictly Fe-dependent protein spots. On the other hand, among the 58 LeFER 

and/or Fe-dependent spots there were no proteins with carbohydrate functions. Protein 

functions metabolism, energy metabolism, and oxidative stress were similarly 

represented. 
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Therefore, the protein group dependent only on Fe supply showed generally low 

functional diversity but elevated representation of specific functional categories like 

carbohydrate metabolism. 

Next, we compared the functions of proteins that were dependent only on LeFER but 

not on Fe supply (26 spots) (Fig. 22 IIIa., IV., V.e.-g.; Fig. 23 c.) with the functions of 

proteins that were not dependent on LeFER and/or dependent on Fe supply (46 spots) 

(Fig. 22 I., II., IIIb. and c., Va.-d. and h., VI.; Fig. 23 d.). This time, we observed that the 

functional categories amino acid metabolism, abiotic and biotic stresses, and structural 

proteins, were specifically represented only among the 26 proteins that were LeFER-

dependent. On the other hand, in this group, proteins from the categories carbohydrate 

metabolism, protein folding and stability, general stress response, root morphology, and 

hormone response, were not present. Reduced representation was noted for the categories 

energy metabolism, protein degradation, and oxidative stress. Proteins with unknown 

function were represented to a higher degree. The functional categories metabolism, 

nitrogen metabolism, regulation, and signal transduction, were regulated to a similar 

extent among the two groups of proteins. 

In conclusion, this analysis shows that strictly Fe- and strictly LeFER-dependent 

spots were not only characterized by different expression patterns but also by different 

functions. Our analysis also showed that a majority of proteins have an expression pattern 

that was dependent on both LeFER and Fe supply. 

 

We further refined the above functional analysis in order to distinguish spots with 

higher expression and lower expression inside the above specified strictly Fe- or strictly 

LeFER-dependent groups. For that purpose, the clustering of spots in the pie charts 

described in Figure 23, was used to produce a segregated version (Fig. 24). For 

segregation, we took apart the proteins with expression at low Fe supply (Fig. 24 a.) from 

the proteins with expression at high Fe supply (Fig. 24 c.) in the group of proteins with 

strictly Fe-dependent expression. Similarly, in the group of strictly LeFER-dependent 

expression, we took apart the proteins with high expression in the presence of LeFER 

(Fig. 24 e.) and low expression in the presence of LeFER (Fig. 24 g.). 

 



4. Results 

 94 

 

 

 

Figure 23: Pie charts representing differentially expressed protein spots grouped in 

functional categories according to the dependence of their expression on Fe supply and 

LeFER presence. 

 

Colour coded pie charts represent: (a.) protein spots which expression depends only on Fe supply, 

versus (b.) the rest of the protein spots, with expression dependent on both LeFER presence and Fe supply; 

(c.) protein spots which expression depends only on LeFER presence in wild type plants, versus (d.) the 

rest of the protein spots, with expression dependent on both LeFER presence and Fe supply. The 

percentage and number of protein spots belonging to each functional category are presented. 
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Figure 24: Pie charts representing differentially expressed protein spots grouped in 

functional categories according to the dependence of their expression on low or high Fe 

supply (a.-d.), and induction or repression by LeFER (e.-h.). 

 

Colour coded pie charts representing additional segregation of functional categories extracted from 

Figure 23. -Fe expressed: (a.) protein spots with expression depending only on Fe supply which are 

induced by Fe deficiency, versus (b.) the rest of the protein spots, with expression dependent on both 

LeFER presence and Fe supply; ++Fe expressed: (c.) protein spots with expression depending only on Fe 

supply which are induced by generous Fe availability, versus (d.) the rest of the protein spots, with 

expression dependent on both LeFER presence and Fe supply; LeFER expressed: (e.) protein spots with 

expression depending only on LeFER presence in wild type plants, which are induced by LeFER, versus 

(f.) the rest of the protein spots, with expression dependent on both LeFER presence and Fe supply; LeFER 
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downregulated: (g.) protein spots with expression depending only on LeFER presence in wild type plants, 

which are repressed by LeFER, versus (h.) the rest of the protein spots, with expression dependent on both 

LeFER presence and Fe supply. The percentage and number of protein spots belonging to each functional 

category are presented. 

 

With the help of this clustering, interesting correlations could be observed. Low and 

high Fe supply showed induction of distinct functional categories of strictly Fe-dependent 

proteins. The expression of proteins involved in metabolism, energy metabolism, protein 

folding and stability, and regulation was enhanced at low Fe. In contrast, high Fe resulted 

in higher expression of proteins with carbohydrate metabolism (which is specific for the 

group of strictly Fe-dependent proteins), nitrogen metabolism, and oxidative stress 

functions. The only shared functional category was protein degradation, with higher 

representation in the group of high Fe expressed protein spots. 

In a similar fashion, proteins strictly regulated by the presence of LeFER fell into 

distinct functional categories depending on whether they were up- or down-regulated. 

The presence of LeFER resulted in upregulation of proteins with functions in nitrogen 

metabolism, protein degradation, oxidative stress, structural proteins, and regulation. On 

the other hand, the presence of LeFER resulted in downregulation of proteins involved in 

energy metabolism, abiotic and biotic stresses, signal transduction, and unknown 

proteins. Two functional categories were shared – metabolism and amino acid 

metabolism, both of them with higher representation in the group of proteins 

downregulated by LeFER. 

Taken together, the clustering revealed striking discrimination in the regulation of 

distinct functional groups of proteins in response to Fe supply and LeFER activity. 
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5. Discussion 

 

Here, we analyzed the upstream regulation of the LeFER gene and LeFER protein 

essential for the onset of Fe mobilization responses at low Fe supply. LeFER protein 

action is controlled through transcriptional regulation at the mRNA level and 

posttranscriptional regulation at the protein level, depending on the Fe nutritional status. 

The action of LeFER is suppressed by high Fe, whereas at low Fe LeFER exerts positive 

control over Fe mobilization responses. These findings are in agreement with the 

evolutionary tendency for negative control of key regulators in cellular processes. 

We mapped the transcription activation domain in the LeFER protein, and identified 

putative interaction partners of the transcription factor in heterologous yeast system 

screens. A tomato roots proteomics approach identified a diverse set of proteins 

expressed under the control of LeFER and/or Fe supply. Their analysis revealed further 

functions of LeFER in plant defense and the maintenance of a fine-tuned balance 

between different stress responses according to the immediate plant needs. 

 

5.1. Transcriptional and Posttranscriptional Control of LeFER 

The bHLH domain protein LeFER is a nuclear protein in plant cells that has 

transcription factor activity in yeast cells and, presumably, also in plants. As a regulator 

for Fe uptake, LeFER is supposed to sense the Fe nutritional status upstream of its action. 

We found regulation of LeFER at different levels. First, the LeFER gene was regulated at 

the transcriptional level by Fe, whereby gene expression decreased with Fe supply. This 

effect was very consistent when comparing generous Fe supply (a physiologically 

optimal condition) with low or sufficient Fe supply conditions. However, Fe regulation 

was not consistent when comparing low and sufficient Fe supply. Occasionally, LeFER 

mRNA levels were higher at low Fe supply versus sufficient Fe supply, and, at other 

times, the levels were similar as was previously described by Ling et al. (2002). Up-

regulation of LeFER mRNA at low and sufficient Fe supply compared to generous Fe 

supply suggests that additional upstream Fe-regulated transcription factors may control 

LeFER gene expression. 
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Second, LeFER protein was controlled at the posttranscriptional or protein stability 

level. In wild type, chloronerva, and fer mutant plants, the amount of LeFER transcripts 

correlated well with the amount of LeFER protein. An exception to this was observed in 

transgenic lines expressing a functional LeFER protein using the constitutive 35S 

promoter in the fer mutant background instead of the natural LeFER promoter. The 35S 

promoter was not regulated by Fe and resulted in constitutive LeFER mRNA expression 

levels. Despite this, LeFER protein was downregulated at generous Fe supply in these 

transgenic lines. Since the transgenic LeFER cDNA constructs were devoid of the natural 

5’ and 3’ untranslated region of the LeFER gene, downregulation of LeFER protein was 

presumably not the effect of low mRNA stability due to the untranslated regions. Most 

likely, LeFER was affected at the level of protein stability at generous Fe supply. 

Downregulation of LeFER protein was evident in Western blot experiments as well as in 

single root nuclei immunolocalization studies. 

We also observed a discrepancy between previously studied mRNA in situ expression 

(Ling et al., 2002) and protein in situ expression investigated here. In the undifferentiated 

root cells of the root tip, LeFER mRNA in situ signals were detected in all cells in 

transverse sections, while protein signals were present in all cells except those of the root 

cap. In the elongating root zone, mRNA signals were mainly present in the epidermis 

and, to a lesser degree, in cortical cells. However, protein signals were mainly present in 

the epidermis and in an inner ring of cells, perhaps the differentiating endodermis, 

surrounding the vascular cylinder, as well as to a lower extent in cortical cells. In the root 

hair zone, expression of mRNA and protein signals were both confined to parenchymatic 

cells in the vascular cylinder. Since the same protein expression pattern was observed 

between plants expressing LeFER behind its natural promoter and behind the constitutive 

35S promoter, we suggest that LeFER protein was differentially stable in different root 

tissues. The root cells that express LeFER protein seem relevant for regulation of Fe 

uptake at the root tip, such as the epidermis, the developing endodermis, and the vascular 

parenchyma. 

Third, LeFER protein was controlled at the level of protein action. Ectopic expression 

of the LeFER gene in roots grown upon sufficient Fe supply or in leaves did not result in 

elevated expression of LeFER gene-dependent LeIRT1 or LeNRAMP1 genes as shown by 
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Bereczky et al. (2003). Here, we showed that, in these cases, LeFER protein was 

produced. Despite that, LeFER was not sufficient for inducing the downstream responses. 

For its action as a transcription factor, LeFER might require an additional protein-binding 

partner or, alternatively, LeFER might be activated or inactivated by posttranslational 

modifications. 

Control of LeFER at different levels may allow a rapid and fine-tuned adaptation to 

changing Fe requirements. Levels of active LeFER protein appear to be controlled more 

tightly than the levels of LeFER mRNA. Available LeFER mRNA may represent a 

reserve for new protein production even under conditions of generous Fe supply, where 

LeFER protein is rapidly degraded or not produced. At sufficient Fe supply, control of 

LeFER protein action seemed more important than control through protein production or 

stability. Interestingly, protein stability control was also discussed for AtIRT1 and 

AtFRO2, two essential components for Fe mobilization in Arabidopsis (Connolly et al., 

2002, 2003), and might be a general feature involved in plant Fe regulation. 

 

5.2. Fe-Availability Signals Regulating LeFER 

It was previously hypothesized that nicotianamine (NA) may act as a sensor for Fe 

availability in the network of events controlled by LeFER (Bereczky et al., 2003). 

Increased LeFER mRNA and LeFER protein expression were detected at generous Fe 

supply in the chloronerva mutant. Despite the high Fe concentration in the environment, 

LeFER protein was stable in chloronerva. Phenotypic analysis showed that chloronerva 

mutant plants responded to Fe and were able to overaccumulate Fe and other metals in 

the roots and in the leaf veins (for review, see Scholz et al., 1992). Generous Fe supply 

partially rescued the plants, although the interveinal areas of the leaves remained 

chlorotic and clearly Fe deficient. Despite Fe uptake into chloronerva roots, LeFER 

mRNA and LeFER protein levels were elevated, and LeFER protein was active in 

inducing Fe mobilization genes (see also Bereczky et al., 2003). Thus, since LeFER is not 

switched off by the high Fe concentrations in the root, it is not likely controlled by a 

signaling cascade directly emitted from successful Fe transport signals in the root. Most 

probably LeFER responds to Fe-deficiency signals coming from the chlorotic parts of the 

shoot. 
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We suggest the following model of LeFER regulation by NA and Fe availability (Fig. 

25). In wild type plants (Fig. 25 A), low Fe supply triggers Fe deficiency in the shoot, 

which is a signal for upregulation of LeFER expression. LeFER, then, switches on the 

subsequent Fe-deficiency response of the plant – upregulation of the FeIII-chelate 

reductase (LeFRO1) and the FeII transporter (LeIRT1), leading to elevated Fe uptake into 

the root. When the plant is provided with generous Fe supply, optimal levels of NA-Fe 

complexes are available for transport to the shoot. As a result, sufficient Fe in the shoot 

signals downregulation of both LeFER mRNA and protein levels in order to avoid excess 

Fe accumulation. In this way, the availability of NA-Fe complexes allows the system to 

distinguish between the different Fe concentrations available to the plant and to adjust the 

LeFER expression levels accordingly. In the chloronerva mutant (Fig. 25 B), however, 

NA is not produced and as a consequence not enough Fe is delivered to the shoot. Fe-

deficiency signal is generated into the shoot that triggers both LeFER mRNA and protein 

accumulation. Even when generous Fe is supplied to the plant, the system is misregulated 

and, as a result, excess Fe and other metals are overaccumulated in the root. 

Interestingly, in vitro studies demonstrated an Fe-binding ability of the recombinant 

LeFER protein for both FeII and FeIII ions. It was not possible to determine whether the 

N- or the C-terminal part of the protein was responsible for the binding, since both parts 

were able to bind Fe to a similar extent. It is tempting to speculate that Fe (either as FeII 

or FeIII), possibly delivered as a NA-complex, may serve as an activity modifier of 

LeFER protein, although further experiments in planta would be necessary in order to 

prove such hypothesis. 
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Figure 25: Model of LeFER regulation by NA and Fe availability signals (Legend 

continues on the next page). 
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(A) Low Fe supply triggers Fe-deficiency responses in roots of wild type plants (blue arrows) by 

upregulation of LeFER mRNA and protein levels, which leads to upregulation of the FeIII-chelate 

reductase LeFRO1 and the FeII transporter LeIRT1, thus rendering more Fe available for the plant. 

Generous Fe supply provides sufficient Fe delivered to the shoot through NA-Fe complexes. This generates 

a signal leading to downregulation of both LeFER mRNA and protein levels, and, as a result, the Fe-

deficiency response in the root is blocked (black arrows) in order to avoid excess Fe accumulation. (B) In 

the chloronerva (chln) mutant, which lacks NA (red crosses), even generous Fe supply fails to provide 

sufficient Fe to the whole shoot due to an interrupted Fe translocation. An Fe-deficiency signal is generated 

in the shoot (red arrow), which keeps LeFER active and the Fe-deficiency response of the root switched on 

irrespective of external Fe supply, demonstrating the crutial role of NA availability for proper LeFER 

function. 

 

5.3. Protein Networks Involved in the Regulation of Fe- and/or LeFER-

Dependent Tomato Root Homeostasis 

The search for proteins and protein networks involved in the regulation of processes 

dependent on Fe and/or LeFER, was attempted in 2 complementary ways. On one hand, 

we have aimed at identifying proteins which directly interact with LeFER and may or 

may not depend on Fe availability. On the other hand, a comprehensive proteomics 

screen for differentially expressed proteins allowed us to pinpoint key changes in the 

tomato root proteome, and additionally to uncover crosstalks between major metabolic 

pathways in the cell, in response to changing Fe supply or LeFER presence/activity. 

 

5.3.1. Interaction Partners of LeFER 

We demonstrated that LeFER can activate transcription in a heterologous yeast 

system due to the presence of an activation domain in the protein. By using LeFER 

deletion constructs, the activation domain was mapped as being shared between the N-

terminal part of the protein and the basic part of the bHLH domain. Neither of these two 

parts could trigger transcriptional activation on its own. The amino acid sequence of the 

LeFER activation domain region shows no obvious similarity to previously identified 

transcription factor activation domains which are mainly acidic, as it was shown for 

example for the herpes simplex virus virion protein VP16 (Triezenberg et al., 1988; 

Stringer et al., 1990). Most probably LeFER possesses a novel type of transcriptional 
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activation domain. Still, the activation ability of LeFER deletion constructs should be 

additionally verified in planta. 

For its action as a transcription factor, LeFER might require an additional protein-

binding partner. bHLH domain proteins bind DNA as homo- or heterodimers. The 

activation domain mapping experiments allowed the use of non-activating LeFER 

deletion constructs in yeast two-hybrid assays with the purpose of identifying putative 

direct binding partners of LeFER. The expression of such proteins would not be 

necessarily dependent on the Fe supply, as LeFER binding partners could either serve for 

modulating the activity of the protein in response to Fe, or contribute to the cell-specific 

expression/activity of LeFER in the root. 

The use of four different LeFER deletion constructs in Yeast Two-Hybrid assays led 

to the interesting observation that the domain structure of LeFER based on amino acid 

sequence apparently reflects functional speciation. The N-terminal part of the protein 

(LeN), under our screening conditions, did not “fish out” any direct binding partners. On 

the contrary, the C-terminal part of the protein (LeC) readily interacted with a number of 

putative protein partners. Regarding the bHLH domain of LeFER, when the whole 

domain was fused to the C-terminus of the protein (Leb+HLH+C), no binding partners 

could be identified. Removing the basic part of the bHLH domain from this construct 

(LeHLH+C) yielded binding partners, although fewer than with LeC – 2 versus 14, 

respectively. Interestingly, these 2 hits were also identified from the LeC screen, showing 

the reproducibility of the interactions. Thus, the N-terminal part of the protein, together 

with the basic part of the bHLH domain, could be responsible for transcriptional 

activation. The bHLH domain is supposed to act in the process of DNA binding, and the 

C-terminal part of the protein could be specifically mediating the interaction of LeFER 

with other proteins. The latter is consistent with the general observation that C-terminal 

parts of bHLH proteins are responsible for protein-protein oligomerization (Murre et al., 

1994). 

The identified putative LeFER binding partners fall into 3 categories – nuclear, 

cytosolic and organelle proteins. An interaction of LeFER with the first group of proteins 

is consistent with its nuclear localization and transcription factor activity. Of specific 

interest is the identified bHLH family protein. Interestingly, the interaction occurs also 
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through the C-terminal part of this protein, consistent with the above mentioned 

observation. Additionally, the respective tomato gene shows highest sequence similarity 

to the Arabidopsis gene At5g65640, which belongs to the same group III of bHLH 

transcription factors (based on sequence similarity and domain structure) (Heim et al., 

2003) as the Arabidopsis homologue of LeFER – AtFRU (At2g28160). According to the 

Arabidopsis microarray database Genevestigator (https://www.genevestigator.ethz.ch/ 

at/), there is a certain level of tissue and stress response coexpression of the two 

Arabidopsis genes, which makes At5g65640, and its tomato homologue, good candidates 

for AtFRU and LeFER binding partners, respectively. 

Other putative interaction partners with nuclear localization are the glycine-rich 

RNA-binding protein, tuber-specific and sucrose-responsive element binding factor, and 

protein phosphatase 2C. The latter is also of high interest since our data suggests that 

LeFER, additionally to being transcriptionally and posttranscriptionally regulated by Fe 

availablity, is also affected on the level of its activity, and phosphorylation would be a 

possible means for exerting such control on LeFER. Glycine-rich RNA-binding proteins 

(GRP) have been identified in a number of plants and animals. Most of them have on 

their N-terminus RNA recognition motif (RRM), which is RNA binding domain, and on 

their C-terminus glycine-rich domain. It has been suggested that some of them may be 

involved in stress response, as their mRNA accumulation level was modified following 

exposure to cold, wounding, acute hypersensitive response, ABA treatment, salicylic acid 

treatment, or water stress. For example, GRP homologues in Arabidopsis (AtGRP7 and 

AtGRP8) are regulated by low temperature as well as circadian clock (Heintzen et al., 

1997). But the molecular function of GRP remains unknown. The tuber-specific and 

sucrose-responsive element binding factor (a Myb-related transcription factor) may be 

involved in sugar signaling and gene expression in relation to carbohydrate metabolism 

under abiotic stresses. Many environmental stresses like drought, cold and salinity lead to 

major alternations in carbohydrate metabolism and the sugar signaling pathways interact 

with stress pathways to modulate metabolism (Price et al., 2004). 

A more complex explanation is needed for understanding the identified interactions 

of LeFER with cytosolic and organelle proteins. First of all, LeFER is synthesized in the 

cytosol and it may be possible that it is involved in protein-protein interactions before 
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being translocated into the nucleus, especially if it has a relatively rapid turnover rate. 

Second, our data show that LeFER is predominantly localized in the nucleus but we 

cannot exclude that some portion of the protein remains in the cytoplasm always or only 

under certain conditions. Interestingly, excluding the enzymes adenylosuccinate synthase 

(AMP biosynthesis; first committed step) and chitinase (biotic stress response), the rest of 

the identified cytosolic interaction partners of LeFER – geranylgeranylated protein, 

ubiquitin, and immunophilin, are involved in posttranslational protein modifications. 

Ubiquitin acts through its post-translational attachment (ubiquitinylation) to other 

proteins, where these modifications alter the function, location or trafficking of the 

protein, or targets it for destruction by the 26S proteasome (Burger and Seth, 2004). 

Regulatory proteins such as transcription factors and histones are frequent targets of 

ubquitination (de Napoles et al., 2004). However, it should be noted that ubiquitination 

normally occurs when the target protein interacts with a specific E3 ligase and then 

becomes covalently linked to one or more ubiquitin residues (Hatakeyama et al., 2001). 

In our case, we observe a putative direct interaction with ubiquitin which may reflect a 

proposed function of ubiquitin as molecular chaperone (Passmore and Barford, 2004) and 

lead to another type of posttranslational modification – conformational change. Similarly, 

immunophilin, also known as rotamase or peptidyl-prolyl cis-trans isomerase (PPIase), is 

involved in proper protein folding and conformational changes (EC 5.2.1.8). The 

observed interaction with a geranylgeranylated protein may reflect either a transfer of the 

geranylgeranylted residue to LeFER, thus modifying it, or it may be part of a signaling 

cascade, since geranylgeranylated proteins have been shown to act as signal transductors 

(Figueroa et al., 2001; van de Donk et al., 2005). Geranylgeranylated proteins have also 

been shown to interact with certain proteins and regulate their localization between a 

membrane and the cytoplasmic pool (Magee and Seabra, 2003). 

Clearly, the indication for LeFER modification of any nature is an exciting possibility 

which has to be pursued in more detail in the future. 

LeFER was also shown to interact with nuclear-encoded organelle protein, such as 

ferredoxin-nitrite reductase (EC 1.7.7.1), in two of our heterologous yeast screens (with 

both LeC and LeHLH+C used as a bait). Such interaction, as already mentioned above, 

may occur in the cytoplasm. Nitrite reductase has a single (4Fe-4S) cluster and a 
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siroheme, also containing one Fe atom in its structure, as prosthetic groups, thus 

rendering the molecule highly susceptible to Fe shortage in the cell. Thus, it is tempting 

to speculate that the loss of the cofactors of nitrite reductase under conditions of Fe 

deficiency may change the function of the molecule from enzymatic conversion of nitrite 

to ammonia (using reduced ferredoxin as an electron donor), to a signaling compound, 

and that change, through interaction of LeFER, could trigger upregulation of Fe-

deficiency response in the cell. Such scenario would resemble the well described dual 

function of the animal aconitase in response to low Fe supply (Klausner et al., 1993). 

However, more detailed investigations would be necessary in order to check that 

hypothesis. 

In addition, it is important to mention that three of the putative LeFER interaction 

partners identified in our Yeast Two-Hybrid screens – chitinase, immunophilin, and 

nitrite reductase, were also detected as differentially expressed proteins in the tomato 

roots proteomics approach (see below). This shows the good complementarity of the two 

techniques in discovering proteins involved in the complex networks of Fe-availability 

dependent and LeFER-controlled events. 

 

5.3.2. LeFER- and Fe-Regulated Protein Networks 

Proteomic analysis is recently becoming a powerful tool for the functional 

characterization of proteins in plants. To date, most broad-scale analysis is performed by 

transcriptomics, due to its easier handling compared to proteomics. However, many types 

of information cannot be obtained from the study of genes alone. For example, proteins, 

not genes, are responsible for the phenotypes of cells. It is impossible to elucidate 

biological mechanisms, such as the effects of the environment for example, solely by 

studying the genome. And only through the study of proteins we can characterize 

posttranscriptional effects and protein modifications. 

Due to the availability of vast nucleotide sequence information and based on the 

progress achieved in sensitive and rapid protein identification by mass spectrometry, 

proteome approaches open up new perspectives to analyze the complex functions of 

model plants and crop species at different levels. Along with general limitations of the 

currently available technologies, however, plant proteome approaches face specific 
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challenges. Sample preparation is often more difficult due to the rigidity of plant cell 

walls or can be compromised by the accumulation of large quantities of secondary 

compounds in the central vacuole, which upon tissue disruption can lead to protein 

precipitation (Canovas et al., 2004). 

Due to the availability of complete genomic sequence information and of large 

mutant collections, a number of recent proteome studies have focused on Arabidopsis as 

a model plant. Still, with the completion of the rice genome and the progress of EST 

sequencing projects for many other plant species, we are observing an increased use of 

crop and other model plants. 

Here, we have investigated the tomato roots proteome and its response to different Fe 

supply and LeFER plant genotypes. In particular, we performed protein expression 

proteomics, which is defined as the quantitative study of protein expression between 

samples that differ by some variable. In this approach, protein expression of the entire 

proteome (or of subproteomes) between samples can be compared, and novel proteins 

involved in the biological process in question can be identified (Graves and Haystead, 

2002). 

In our study, the proteomes of 9 different samples were compared – fer mutant, wild 

type, and 35s1 LeFER overexpressing plants, grown at low (0.1 µM Fe), sufficient (10 

µM Fe), and generous (100 µM FeNaEDTA) Fe supply. As a result, 155 differentially 

expressed protein spots were detected and subjected to protein identification. 139 of them 

could be identified by MALDI-TOF MS and/or ESI-nanoLC-MS/MS mass spectrometry, 

that is an almost 90 % success rate. Most of the proteins were identified by LC-MS/MS; 

MALDI-TOF identification was difficult to obtain for proteins with relatively high or low 

molecular weights. Database searches, in most cases, yielded identities from tomato or 

other solanaceous species, such as tobacco and potato, and more rarely from Arabidopsis. 

This may be due to the fact that tomato is a member of the asterid clade, whereas 

Arabidopsis belongs to the rosid clade (Savolainen et al., 2000). Approximately 75-125 

million evolutionary years separate the two clades. 

Comparing the total number of protein spots per 2D-gel for each experimental 

condition, we observed that fer mutant plant gels had more protein spots than those for 

wild type and 35s1 plants. In addition, for fer mutant, this number was decreasing 
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gradually from low to generous Fe supply (fer 0.1 > fer 10 > fer 100), whereas for wild 

type (and 35s1 plants) it did not change (wt 0.1 ~ wt 10 ~ wt 100) (see Fig. 15). Thus, the 

highest number of protein spots was detected in fer mutant plants grown under Fe 

deficiency, and the lowest – in 35s1 plants grown under generous Fe supply. This may be 

due to several reasons – an increased number of newly synthesised proteins in response to 

the severe Fe deficiency, presence of stable degradation products, and/or stabilization of 

proteins as a result of decreased turnover rate probably due to absence of LeFER activity, 

in the fer mutant plants. 

When comparing the number of protein spots among the 72 differentially expressed 

ones with clear expression patterns (see Fig. 22), which were induced under the 

respective experimental condition, the following tendency of decreasing spot number was 

observed: fer 0.1 (44 spots) (see Fig. 22 Ia., Va. – g.) > wt 0.1 (40 spots) (see Fig. 22 Ia.; 

II; IIIa.; IV; Va. – c., h.) > fer 100 (37 spots) (see Fig. 22 Ib.; IV; Va., c. – e., h.; VI) > wt 

100 (24 spots) (see Fig. 22 Ib.; IIIa. – c.; IV; Vd.; VI). This suggests that the majority of 

proteins are induced by LeFER at low Fe supply, and much fewer spots are induced at 

generous Fe supply, leading to the conclusion that LeFER is not as active at generous as 

at deficient Fe availability, thus confirming our expectations and previous results. 

Clustering of the differentially expressed proteins was attempted in several ways. 

The distinction between proteins with Fe-regulated LeFER-independent, LeFER-

regulated Fe-independent, and Fe-regulated LeFER-dependent expression, revealed that 

LeFER is involved in the majority of Fe-regulated changes of the proteome, since most of 

the proteins were dependent on both Fe supply and LeFER presence (32 spots), whereas 

fewer proteins depended only on LeFER or Fe (26 and 14, respectively) (see Fig. 23). 

The group of 14 protein spots with Fe-regulated LeFER-independent expression showed 

the lowest functional diversity, indicating that only very specific metabolic pathways are 

generally regulated by Fe supply, whereas LeFER regulates/influences a much broader 

spectrum of pathways. 

Proteins with strictly Fe-dependent expression presumably do not act in the pathway 

of LeFER. If these proteins acted upstream of LeFER we would expect an effect on 

LeFER and the LeFER-dependent proteins by consequence. If these proteins acted 

downstream of LeFER we would expect that they would also be influenced by the LeFER 
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genotype. It is very puzzling the genetically-induced Fe deficiency does not result in 

differential regulation of these strictly LeFER-dependent proteins. One possible 

explanation is that the plant acts very early to genetically-induced Fe deficiency via a 

separate mechanism from the later LeFER-dependent physiologically-induced Fe-

deficiency response. From previous studies we know that the fer phenotype gets 

manifested only in the post-cotyledon seedling stage suggesting that LeFER is not 

essential for early germination and seedling growth. Yet the plants may sense the fer 

defect at this early time point, and adjust accordingly in a manner that renders altered 

expression of these strictly Fe supply-dependent proteins unnecessary at a later time 

point. 

On the other hand, the presence of strictly LeFER-dependent proteins suggests that 

LeFER has additional regulatory functions which were previously not known. From the 

finding that LeFER repressed proteins involved in abiotic and biotic stress irrespective of 

Fe supply we deduce that this could be a preventive function. Interestingly, fer mutant 

leaves show typical necrosis in addition to chlorosis. Necrosis is never observed in 

normally Fe-deficient plants. 

Based on our observations from the conducted proteomics study, we suggest a model 

for the network of metabolic pathways regulated by Fe supply and LeFER 

presence/activity (Fig. 26). Lack of Fe, in LeFER-dependent manner, influences the 

majority of uncovered metabolic pathways in our study. For example, it affects the 

expression of proteins involved in general, nitrogen, and energy metabolism, perhaps in 

an attempt to counteract the increased energy demands of the cells, since the lack of Fe, 

an important cofactor of many enzymes involved in energy production, depletes the cells 

of vital reducing agents. Proteins involved in degradation, and proper protein folding and 

stability, are also regulated by the Fe-deficiency stress through the action of LeFER. The 

expression of oxidative stress-related proteins is controlled, suggesting the importance of 

protecting the cells from reactive oxygen species. The activated LeFER protein triggers 

the expression of signal transduction and regulation proteins, thus probably affecting a 

wide range of processes and coordinating the flow of the above mentioned metabolic 

pathways. Interestingly, the regulation of a number of proteins which were annotated as 

involved in general stress response, root morphology, and hormone response, was not 
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possible, in our study, without the coordinated action of Fe supply signals and LeFER, 

suggesting the need of tight control over these interconnected plant processes. 

However, our data shows that the response of the plant on protein level to Fe 

deficiency in the environment depends mainly but not only on LeFER action. Fe 

deficiency, independently of LeFER, is sufficient to downregulate enzymes involved in 

carbohydrate metabolism, which was shown to be highly susceptible to different abiotic 

stresses (Gupta and Kaur, 2005). 

On the other hand, there is a number of pathways regulated only by LeFER 

presence/activity without direct dependence on Fe supply (in wild type conditions). This 

category is of particular interest, since it reveals that LeFER does not only serve to induce 

Fe mobilization responses to Fe deficiency in the root, but it has also additional functions. 

It influences the expression of certain proteins from functional categories, with shared 

regulation also by Fe availability with or without LeFER dependence, such as different 

metabolism branches, protein degradation, oxidative stress, and regulation. However, 

there are certain categories of proteins which are specifically influenced by LeFER. 

Structural proteins are upregulated, probably supporting root growth in search of Fe-rich 

soil patches; different amino acid metabolism proteins are either up- or downregulated; 

whereas abiotic and biotic stress responses are downregulated. On one hand, the latter is 

somewhat surprising, since Fe-deficient plants are known to have elevated susceptibility 

to diseases and one would expect them to counteract this by upregulating defensive biotic 

stress-related enzymes, such as chitinase, for example. On the other hand, the changes in 

the proteome suggest that Fe-deficient plants have higher energy demands due to 

impaired function of the energy producing metabolic pathways. Therefore, it is probably 

of higher priority for the plant to tightly control all stress-related responses and allow the 

induction of only those processes which would specifically counteract the Fe-deficiency 

problem, saving much needed energy and avoiding a hypersensitive response. 

Thus, our study revealed an important additional function of LeFER – in protecting 

the plant and allowing a fine-tuned balance between the different stress responses in 

accordance with the immediate demands of the organism. An independent confirmation 

of this is the fact that fer mutant, unlike Fe-deficient wild type plants, develops necrotic 

spots on the leaves, probably due to the lack of protective LeFER activity. 
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Figure 26: Model of Fe-deficiency and LeFER-action controlled metabolic pathways. 

 

The majority of tomato roots proteome changes are dependent on the concerted action of Fe-supply 

signals and LeFER presence/activity (-Fe, LeFER section of the scheme). A smaller number of metabolic 

pathways is controlled in a LeFER-regulated Fe-independent manner (in wild type conditions) (LeFER 

section of the scheme). An even smaller diversity of controlled functional groups of proteins is observed in 

the Fe-regulated LeFER independent group (-Fe section of the scheme). The 3 different regulatory sections 

are scaled to represent the respective amount of regulated proteins. Specific and common functional groups 

are shown for each regulatory section on the left and right side of the scheme, respectively. Upregulation is 

indicated by black arrows; downregulation – by black stunted lines; up- and downregulation at the same 

time – by white arrows. See text for details. 
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It is interesting to compare our protein expression data with transcriptomic studies 

revealing changes on the level of gene expression in response to Fe deficiency, which 

would allow conclusions about the correlation between the two levels of regulation. 

Microarray data for Fe-deficiency responses in tomato was presented by Wang et al. 

(2002). A high-density array containing 1,280 mineral nutrition-related genes was 

screened with cDNA probes from mRNA isolated from roots of tomato plants exposed to 

-Pi, -K, or -Fe hydroponic medium for 0, 1, 3, 6, 12, 24, or 48h. Genes previously not 

associated with P, K, and Fe nutrition were identified, such as the leucine-zipper 

transcription factor Nitf (nutrient-induced transcription factor), MAP kinase, MAP 

kinase kinase (MEK1), and 14-3-3 proteins. These genes had the strongest and most rapid 

increase in expression in response to changes in plant status for all three mineral 

nutrients. Unfortunately, it is difficult to compare this data with the results of our 

proteomics study. The authors have aimed at identifying early changes in transcription in 

response to the three mineral deficiencies. In our case, the proteome of tomato roots was 

studied after a prolonged exposure to Fe deficiency in order to identify changes in the 

protein complement that are specifically caused by the lack of Fe. As it becomes evident 

from the study of Wang et al., after short exposure to a mineral deficiency the response in 

the cell is general, not necessarily specific for the exact type of stress that the plant is 

experiencing. 

Two different transcriptomic studies have been performed in Arabidopsis. Colangelo 

and Guerinot (2004) have reported a microarray analysis of wild type and fit1-1 mutant 

plants (lacking a functional AtFIT1 gene, the Arabidopsis homologue of LeFER) grown 

under Fe-sufficient (50 µM FeIII-EDTA) and Fe-deficient conditions (0 µM Fe + 300 

µM ferrozine) for 3 days. In their study, only genes which are upregulated by Fe 

deficiency in wild type plants and deregulated in Fe-deficient fit1-1 mutant plants have 

been analysed. 72 such genes were further divided in three categories according to the 

expression in the mutant – (a.) with a complete loss of Fe regulation (59 genes), (b.) with 

a partial Fe regulation (8 genes), and (c.) upregulated at sufficient Fe supply (5 genes). In 

our case, a more complex array of expression patterns was investigated. Among them, 23 

proteins had deregulation at low Fe supply in fer, and upregulation by low Fe in wild type 

plants. 16 of those proteins had expression patterns corresponding to group (a.), 7 
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proteins – to group (b.), and no proteins were detected that correspond to group (c.) of the 

above described study. On the level of gene/protein identity, only few correlations were 

observed – 4 identities, which generally followed the same corresponding expression 

patterns – zinc finger (C3HC4-type RING finger) family protein; β-glucosidase; 

translation initiation factor (5A, in our study, represented in two protein spots); and 

subtilisin-like Ser protease (represented by two different proteins in three protein spots, in 

our study). In conclusion, the study of Colangelo and Guerinot is difficult to use for 

direct comparison with our data because different plants and experimental growth 

conditions were employed. The authors also observed that certain genes are regulated 

only by Fe supply without AtFIT1-regulation dependence, however, they did not suggest 

any additional functions of AtFIT1 except its role in upregulating Fe-deficiency response 

in Arabidopsis roots. 

A second study, by Thimm et al. (2001), used a 6000 cDNA chip and studied 

expression in Arabidopsis plants of a different ecotype (Landsberg erecta) that were 

grown hydroponically. Here, a set of genes induced under Fe deficiency were identified. 

Similarly to Collangelo and Guerinot, several genes encoding cytochrome P450-like 

proteins and zinc finger proteins were reported to accumulate in response to Fe 

deficiency. Generally, however, the results of these 2 array studies showed little 

similarity. 

In our proteomics study and the study of Thimm et al., changes in the expression of 

20 common enzymes, mainly involved in glycolysis, the citrate cycle, and the oxidative 

pentose phosphate cycle, were observed, with only a slight correlation between mRNA 

and protein levels. Still, some common conclusion could be made. In Arabidopsis roots, 

transcription of sequences corresponding to enzymes of anaerobic respiration was found 

induced. This correlates with our observations of increased protein levels of several 

glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate 

dehydrogenase, fructose-1,6-bisphosphate aldolase, etc. Thus, it seems likely that the 

energy demand of the roots required for the Fe-deficiency response exceeded the capacity 

of oxidative phosphorylation, and an increase in anaerobic respiration was required to 

maintain metabolism. 
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It is important to consider that in our case, tomato plants were grown hydroponically 

under different Fe-supply conditions for 8 days before harvesting. For the transcriptomic 

study, Arabidopsis plants were grown hydroponically for 1, 3 or 7 days under Fe 

deficiency. Generally, Thimm et al. observed maximum levels of response at 3 days of 

treatment, whereas at 1 and 7 days the mRNA levels were relatively low. Interestingly, 

there was somewhat higher level of correlation between our 2 sets of data when 

comparing with the 3 days of Fe-deficiency treatment. A possible explanation may be 

that at 3 days under low Fe supply the mRNA levels peak in order to create a pool of the 

respective protein. At 7 (or 8) days after the onset of Fe deficiency, the protein pool is 

already established (observed as high levels of protein expression), and only a basal level 

of mRNA expression is needed to support it. 

Several metabolic enzymes were previously shown to respond to Fe deficiency on the 

level of enzyme activity, which allowed us to compare the reported changes with our 

protein expression data. For five enzymes, activity levels under Fe deficiency correlated 

well with protein expression levels. The glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase, for example, was shown to have an increased activity in cucumber 

(Cucumis sativus) (Espen et al., 2000), as well as in tomato roots (Herbik et al., 1996). 

The same was true for the activity of H+-ATPase (Dell’Orto et al., 2000). Reduced 

enzyme activity of several Fe-containing enzymes correlated with decreased protein 

expression, as it was shown for catalase (Machold, 1968), aconitase (De Vos et al., 1986), 

and Fe-superoxide dismutase (Sevilla et al., 1984). For three enzymes, protein expression 

and enzyme activity levels differed – formate dehydrogenase (Herbik et al., 1996; Suzuki 

et al., 1998) and ascorbate peroxidase (Herbik et al., 1996) had increased enzyme activity 

under Fe deficiency but no increase in protein expression was observed in our study. 

Peroxidase showed increased protein levels but a decrease in enzyme activity (Machold, 

1968), although in this case the comparison is more difficult due to the large number of 

different peroxidases and peroxidase isoforms. In conclusion, relatively high correlation 

between protein expression and activity levels was observed. An exception may be 

represented in some cases by Fe-containing enzymes, where overproduction of the 

apoproteins probably attemps to counteract the loss of activity. 
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6. Perspectives 

 

Tomato is a valuable crop species, whose importance as a model plant has increased 

in the recent years. Molecular biology techniques available for Arabidopsis have also 

been successfully applied in tomato, and a genome sequencing initiative is currently 

under way. 

The work presented here has aimed to contribute to our understanding of the 

regulation and underlying molecular mechanisms of an important physiological process 

for the plant – the uptake of the micronutrient Fe. 

The screening for putative interaction partners of LeFER yielded several promising 

candidates, which could be involved in signal transduction and modification of LeFER 

function. The interaction of these proteins with LeFER has to be further verified in 

planta. Several techiques are available. One possibility would be to perform bimolecular 

fluorescence complementation (BiFC) (Bracha-Drori et al., 2004) by transient expression 

in protoplasts, in bombarded leaves, or in stably transformed tomato plants. The 

functional relevance of the interactions could be investigated through a RNAi antisense 

approach (Vaucheret et al., 2001) or by observing transient downregulation in tomato 

through virus induced gene silencing (Lindbo et al., 1993; Kumagai et al., 1995). 

The proteomics approach presented here has suggested the existence of a network of 

metabolic pathways under the control of Fe supply and/or LeFER presence/activity. An 

important information on the extent of posttranscriptional regulation triggered by Fe 

deficiency could be provided by a complementary transcriptomic study on a tomato 

microarray chip which has recently become available (Alba et al., 2004). 

Additional level of regulation in response to Fe deficiency may be investigated by 

performing phosphoproteomics studies with the aim to identify activated proteins. This 

would provide an even more specific picture of underlying events and possibly hint 

towards new targets of LeFER action. 
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7. Summary 

 

Iron (Fe) deficiency in humans is the most prevalent nutritional disorder in the world, 

causing illness, premature death and economic losses. Since plants serve as the primary 

source of dietary Fe, improving the Fe content of crops could represent an important step 

towards a better public health. However, to achieve this, a deep understanding of the 

mechanisms controlling the uptake and distribution of Fe inside the plant is of major 

importance. 

Tomato is a Strategy I-type Fe-efficient plant. Its response to low Fe availability in 

the environment is characterized by an increase in the amount of FeII in the rhizosphere 

due to an enhanced proton extrusion from the root and an upregulation of the root FeIII-

chelate reductase (LeFRO1) and FeII transporter (LeIRT1). As a result, more Fe is 

rendered soluble and thus accessible for the plant. Previous work in our group has 

identified the tomato LeFER gene, encoding a bHLH transcription factor protein, as one 

of the major regulators controlling Fe uptake in the roots under Fe-deficiency conditions. 

The aim of the presented study was to investigate the mechanism and regulation of 

LeFER action, and to discover additional components of the Fe-deficiency response in 

tomato roots, which would allow us to identify the involved pathways and their 

interconnections. 

We analyzed the upstream regulation of the LeFER gene and LeFER protein, which is 

essential for the onset of Fe-mobilization responses at low Fe supply. Our experiments 

showed a dependence of LeFER gene expression on Fe availability. Using the generated 

affinity purified polyclonal antisera and several tomato transgenic lines constitutively 

overexpressing LeFER, we could demonstrate an Fe-dependent posttranscriptional level 

of regulation on LeFER protein abundance, which ensures its increased stability (and 

possibly activity) upon Fe starvation. Thus, LeFER protein action was found to be 

controlled through transcriptional regulation at the mRNA level and posttranscriptional 

regulation at the protein level, depending on the Fe nutritional status. The action of 

LeFER is suppressed by high Fe, whereas at low Fe LeFER exerts positive control over 

Fe-mobilization responses. 
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By the use of Arabidopsis protoplasts and tomato root nuclear extracts, we 

demonstrated the nuclear localization of the LeFER protein. This observation, along with 

the fact that LeFER can activate transription on its own in a heterologous yeast system, 

and its role in upregulating a number of Fe-mobilization genes, allowed us to conclude a 

transcription factor function for LeFER. A transcription activation domain was found to 

be shared between the N-terminal part and the basic part of the bHLH domain of the 

protein, which is rather unconventional, considering the fact that most of the 

demonstrated activation domains are strongly acidic or contain acidic residues among 

hydrophobic ones (Kotak et al., 2004). 

We used non-activating deletion constructs to perform Yeast Two-Hybrid library 

screens with a generated cDNA library from Fe-deficient tomato roots, which yielded 

several putative LeFER binding partners. Of special interest is an uncharacterised bHLH 

protein, since BHLHs are known to function as homo- or heterodimers. Another 

interesting candidate, identified by this approach, is a protein phosphatase, which hints 

towards possible regulation of LeFER by phosphorylation, adding a third level of control 

over its action – the level of protein activity. 

A central question in studying Fe homeostasis in plants, and their response to 

insufficient Fe in the environment, is to unreavel the underlying key metabolic pathways 

and their interconnections. To address this, and to estimate the role of LeFER in the 

crosstalk of involved processes, we have used proteomics tools to investigate the changes 

occurring at protein level when different genotypes (wild type, fer mutant, LeFER 

overexpressing line) were grown under different Fe-supply conditions (0.1, 10, 100 µM 

FeNaEDTA). Our comprehensive study on the identity and expression patterns of 

selected proteins yielded a network of metabolic pathways regulated by Fe supply and/or 

LeFER presence/activity, allowing us to pinpoint specific functional groups of proteins 

with shared types of regulation. Fe deficiency was found to trigger major changes in the 

plant proteome, ranging from energy balance and stress response to phytohormone 

signaling. Furthermore, we could reveal an important additional function of LeFER – 

protecting the plant from hypersensitive response by fine-tunning the control of different 

stress responses of the plant. 
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Zusammenfassung 

 

Eisenmangel ist die häufigste Ernährungskrankheit von Menschen, die zu 

Folgekrankheiten, vorzeitigem Tod und ökonomischen Verlusten führt. Da Pflanzen die 

primäre Quelle von Eisen (Fe) in unserer Ernährung sind, sind Kulturpflanzen mit 

verbessertem Eisengehalt ein wichtiger Schritt in Richtung einer besseren Gesundheit der 

Bevölkerung. Um dies zu erreichen ist es notwendig, die Mechanismen zu kennen, 

welche die Aufnahme und Verteilung von Fe in der Pflanze kontrollieren. 

Tomate ist eine Strategie I Fe-effiziente Pflanze. Tomatenpflanzen reagieren auf 

niedrige Eisenverfügbarkeit mit Erhöhung der FeII Konzentration in der 

Wurzelumgebung aufgrund der erhöhten Protonenausscheidung und der Induktion der 

FeIII-Chelatreduktase (LeFRO1) und des FeII Transporters (LeIRT1). Infolgedessen wird 

mehr Fe lösbar gemacht und steht der Pflanze zur Verfügung. Vorangegangene Arbeiten 

der Arbeitsgruppe haben LeFER als hauptsächliches Regulatorgen identifziert, welches 

die Eisenaufnahme in Wurzeln bei Eisenmangel kontrolliert. LeFER kodiert für einen 

Transkriptionsfaktor der basischen Helix-Loop-Helix Familie. 

Ziel der vorliegenden Arbeit war es, den Mechanismus und die Regulation von 

LeFER näher zu untersuchen, sowie weitere Komponenten der Eisenmangelantwort zu 

entdecken. Dadurch sollen die beteiligten Wege und Verbindungen der Antworten 

gefunden werden. 

Wir analysierten die oberhalb liegende Regulation von LeFER Gen und LeFER 

Protein, welches für das Anschalten von Eisenmobilisierungsantworten bei niedriger 

Eisenverabreichung essentiell ist. Unsere Experimente zeigten eine Abhängigkeit der 

LeFER Genexpression von der Eisenverfügbarkeit. Mittels des generierten Affinitäts-

gereinigten polyklonalen Antiserums und verschiedener LeFER überexprimierender 

transgener Tomatenlinien konnten wir zeigen, dass LeFER Protein auch durch Fe-

abhängige posttranslationale Mechanismen kontrolliert wird. Hierdurch wird eine größere 

Stabilität des FER Proteins (und dadurch vermutlich höhere Aktivität) erreicht. Das heißt, 

LeFER Proteinaktion wird durch transkriptionelle Regulation auf mRNA Ebene 

kontrolliert sowie durch posttranskriptionelle Regulation auf Proteinebene, in 

Abhängigkeit von der Eisenverfügbarkeit. Die Handlung von LeFER wird durch viel Fe 
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unterdrückt, während LeFER bei wenig Fe eine insgesamt positive Kontrolle über 

Eisenmobilisierungsantworten ausübt. 

Mit Hilfe von Arabidopsis Protoplasten und Tomatenwurzelkernextrakten konnten 

wir nukleäre Lokalisation von LeFER Protein zeigen. LeFER konnte die Transkription im 

heterologen Hefesystem stimulieren. Aufgrund seiner Aktivität in Pflanzen, verschiedene 

Eisenmobilisierungsgene zu aktivieren, folgerten wir auf eine Funktion als 

Transkriptionsfaktor, wie es auch für andere bHLH Proteine gezeigt wurde. Eine 

Transkriptions-aktivierende Domäne wurde geteilt zwischen N-terminalem Teil und 

basischer Domäne, was eher ungewöhnlich ist. Die meisten Aktivierungsdomänen sind 

sauer oder enthalten saure und hydrophobe Aminosäuren. 

Wir verwendeten nicht-aktivierende Deletionskonstrukte, um eine cDNA Hefe 2-

Hybridbank zu screenen, welche aus Eisenmangel-ausgesetzten Tomatenwurzeln 

präpariert worden war. Mehrere LeFER Bindepartner wurden gefunden. Von besonderem 

Interesse war ein bislang uncharakterisiertes bHLH Protein, denn bHLH Proteine agieren 

als Homo- oder Heterodimere. Eine Proteinphosphatase war ein weiterer interessanter 

Kandidat, der auf eine mögliche Beteiligung von Phosphorylierung bei der LeFER 

Regulation hindeuten könnte. 

Eine zentrale Frage bei der Untersuchung der Eisenhomöostase in Pflanzen ist es, die 

metabolischen Wege und Verbindungen zu entfädeln. Um dies zu untersuchen und um 

die Rolle von LeFER bei den Verbindungen der verschiedenen metabolischen Prozesse 

abzuschätzen, haben wir einen Proteomics Ansatz gewählt und die Veränderungen des 

Wurzelproteoms in verschiedenen Tomatengenotypen (Wildtyp, fer Mutante, LeFER 

Überexpressionslinie) bei verschiedenen Eisenbedingungen (0.1, 10, 100 µM Fe) 

analysiert. Diese umfangreiche Studie über die Identifizierung und Expressionsmuster 

von ausgewählten Proteinspots zeigte ein Netzwerk von metabolischen Wegen auf, 

welche von Fe und/oder LeFER kontrolliert werden. Diese Proteine konnten in Klassen 

mit gemeinsamen Funktionen eingeordnet werden. Eisenmangel induzierte 

Proteomveränderungen, welche den Energiehaushalt, Stressantworten bis hin zu 

Phytohormonantworten betrafen. Desweiteren konnten wir eine neue Funktion für LeFER 

vorschlagen, nämlich den Schutz von Pflanzen vor hypersensitiver Antwort durch 

feinregulierte Kontrolle von Stressantworten der Pflanzen. 



8. Abbreviations 

 120 

 

8. Abbreviations 

 

2-DE – two-dimensional gel 

electrophoresis 

ACN – acetonitrile 

AMP – adenosine monophosphate 

ATP – adenosine triphosphate 

BCIP – 5-bromo-4-chloro-3-indolyl-

phosphate toluidine salt 

bp – base pair(s) 

bHLH – basic Helix-Loop-Helix 

β-ME – β-mercaptoethanol 

BPDS – sodium 

bathophenanthrolinedisulfonate 

BSA – bovine serum albumin 

CaMV – cauliflower mosaic virus 

CBB – Coomassie Brilliant Blue 

cDNA – complementary DNA 

cfu – colony forming units 

CHAPS – 3-[(3-

cholamidopropyl)dimethylamonio]-1-

propanesulfonate 

CHCA – α-cyano-4-hydroxycinnamic 

acid 

Da – dalton (molecular mass) 

DAPI – 4',6’-Diamidino-2-phenylindole 

DIC – differential interference contrast 

DMA – 2’-deoxymugenic acid 

dsDNA – double-stranded DNA 

DTT – dithiothreitol 

ECL – enhanced chemiluminescence 

EDTA – ethylenediaminetetraacetic acid 

epi-HDMA – 3-epihydroxy-2’-

deoxymugenic acid 

epi-HMA – 3-epihydroxymugenic acid 

ESI – electrospray ionization 

EST – expressed sequence tag 

Fe – iron 

FeII – ferrous iron 

FeIII – ferric Fe 

GFP – green fluorescent protein 

GUS – β-glucuronidase 

HEPES – N-(2-hydroxyethyl)-

piperazine-2’-(2-ethanesulfonic acid) 

IEF – isoelectric focusing 

IPG - immobilized pH gradient 

IPTG – isopropylthio-β-galactoside 

LiAc – lithium acetate 

MA – mugineic acid 

MALDI-TOF – matrix-assisted laser 

desorption ionization time-of-flight 

MBB – Metal Binding buffer 

mRNA – messenger RNA 

MS – mass spectrometry 

MS/MS – tandem mass spectrometry 

m/z – mass-to-charge ratio 

N – nitrogen 

NA – nicotianamine 
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NBT – nitroblue tetrazolium chloride 

OD – optical density 

PEG – polyethyleneglycol 

Pi – inorganic phosphate 

pI – isoelectric point 

ppm – parts per million 

PS – phytosiderophore 

RGU – relative grayscale units 

RP – reversed phase 

RT-PCR – reverse transcriptase-PCR 

SD – standard deviation 

SDS – sodium dodecyl sulfate 

ssDNA – single-stranded DNA 

SSP – sample spot number 

TCA – trichloroacetic acid 

T-DNA – transferred DNA 

TFA – trifluoroacetic acid 

TM – transmembrane domain 

Vh – volt6hours 

WT – wild type 
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Appendix B 
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10 µM FeNaEDTA 
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100 µM FeNaEDTA 

A B C D E F G 

0302 

0303 

1106 

2709 

3204 

3305 

4304 

6108 

6307 

6407 

7110 

7403 

8001 

8204 

8212 

1202 

1209 

3105 

4103 

5003 

6005 

6103 

6406 

6603 

7101 

7111 

7203 

1808 

3301 

4307 

4506 

7501 

2402 0006 

2102 

2304 

4101 

4104 

7509 

7603 

7604 

7711 

0601 

0803 

1501 

1503 

2401 

3302 

4102 

5301 

5401 

0008 

1608 

2003 

3308 

5804 

8010 

8403 

9001 

 

 



10. Appendix 

 141 

Appendix C 

 

 

 

 

 

A B C D 1 

(A:B) 

2 

(B:C) 

3 

(C:D) 

4 

(D:A) 

0005 

0601 

0803 

1106 

1203 

1204 

1302 

1501 

1502 

1503 

1604 

1807 

2201 

2401 

2405 

2407 

2701 

2702 

2704 

3003 

3005 

3010 

3501 

4303 

4305 

4308 

4506 

5201 

5405 

5410 

5506 

5605 

5701 

6104 

6108 

6201 

6202 

6304 

6307 

6507 

7102 

7113 

7115 

7201 

7301 

7403 

7502 

7707 

7801 

8003 

8005 

8102 

8107 

8108 

8203 

8204 

8205 

8212 

8303 

8309 

8401 

8407 

8409 

8502 

8503 

 

0006 

1203 

1204 

1302 

1607 

1608 

2201 

3004 

3005 

3009 

3010 

3204 

3402 

3508 

4308 

4408 

5302 

5306 

5504 

6108 

6401 

6406 

6506 

7010 

7011 

7101 

7113 

7115 

7203 

7301 

7403 

7501 

7502 

7503 

7603 

7711 

7801 

8003 

8102 

8203 

8204 

8205 

8303 

8309 

8407 

8502 

8503 

 

0006 

0008 

1202 

1209 

1607 

1608 

2003 

2102 

2304 

2402 

3105 

3308 

4101 

4102 

4103 

4104 

4307 

5003 

5804 

6005 

6103 

6406 

6603 

7101 

7111 

7203 

7509 

7603 

7604 

7711 

8010 

8403 

9001 

0008 

0303 

0601 

0706 

1503 

1710 

2304 

2702 

3305 

4102 

4104 

4307 

4407 

4506 

5101 

5201 

5401 

5804 

6202 

6402 

6507 

6603 

7509 

7604 

8010 

8107 

8108 

9001 

1203 

1204 

1302 

2201 

3005 

3010 

4308 

6108 

7113 

7115 

7301 

7403 

7502 

7801 

8003 

8102 

8203 

8204 

8205 

8303 

8309 

8502 

8503 

0006 

1607 

1608 

6406 

7101 

7203 

7603 

7711 

0008 

2304 

4102 

4104 

4307 

5804 

6603 

7509 

7604 

8010 

9001 

0601 

1503 

2702 

4506 

5201 

6202 

6507 

8107 

8108 

 



10. Appendix 

 142 

Appendix D 

 

 

 

 



 

 143 

 

Acknowledgements 

 

This work has been carried out at the Institute for Plant Genetics and Crop Plant 

Research (IPK), Gatersleben, and at the Saarland University, Saarbruecken, Germany. I 

would like to acknowledge all my current and former colleagues in Gatersleben and 

Saarbruecken. 

Especially I would like to thank Prof. Dr. Petra Bauer for giving me the opportunity 

to work in her group both as a diploma and PhD student, and for all the support and 

guidance during my scientific development. 

I thank Dr. Hans-Peter Mock, Dr. Andrea Matros, Dr. Bernard Schlesier, Annegret 

Wolf, and the rest of the Applied Biochemistry group at the IPK for accepting me in their 

group and teaching me the secrets of proteomics. 

I thank Dr. Frederik Boernke (Ricki) for teaching me how to work with yeast, and for 

the constant help and discussions during my Yeast Two-Hybrid experiments. 

I thank Dr. Udo Seiffert for the bioinformatic analyses; Dr. Annegret Tewes and 

Sabine Skiebe for providing Arabidopsis protoplasts; Dr. Michael Melzer and Bernhard 

Claus for help with confocal microscopy; Dr. Andreas Houben for the single root nuclei 

isolation protocol; Dr. Udo Conrad and Dr. Gudrun Moenke for help with phage display; 

Dr. Daniel Hoffius for providing the pFF19g plasmid; Dr. Helmut Baeumlein, Dr. Jens 

Tiedemann and Andreas Czihal for help in various occasions; Dr. Mitko Doushkov and 

Dr. Vesselin Christov for their help; Dr. Marion Roeder for allowing us to use her labs. 

Special thanks to my students – Mike, and especially to Julia Fleischer for their 

excellent assistance in my work, and their vivid eager to learn something new. 

I thank the members of our former Pflanzen Stress und Entwicklung (PSE) group at 

the IPK – Wim Reidt, Zsolt Bereczky, Marco Klatte, Kavitta, Yi-Fang, and especially our 

technician Mary Ziems, and my dear friends Hong-Yu Wang and Almudena. I also thank 

the new members of our group – Angelika Anna, Siva, and our helpful secretary Monika 

Schaefer. 

I thank all my friends from IPK for all their love and support – Kalinka, Matias, 

Marta, Inma, Thomas, Maria, Vlado, Dorota, Evelyn, Astrid, Anja H. 



 

 144 

Last, but not least I want to thank my husband Rumen Ivanov for the endless help 

(especially with radioactivity), support and discussions, and to my family, and especially 

my father, Krassimir Brumbarov, for helping me to become what I am both as a scientist 

and as a person. 

 



 

 145 

 

Curriculum Vitae 

 

Name:    Tzvetina Brumbarova 

Date and place of birth: 5 April 1979, Sofia, Bulgaria 

Marial status:  Married 

Nationality:   Bulgarian 

 

Education: 

Current position:  PhD student 

7.10.2002-15.07.2006 Leibniz Institute of Plant Genetics and Crop Plant Research 

(IPK), Gatersleben, Germany (2002 – 2005) 

    University of Saarland, Saarbruecken, Germany  

(2005 – 2006) 

    Supervisor: Prof. Dr. Petra Bauer 

Thesis title: Functional Characterization of the bHLH 

Transcription Factor LeFER Essential for Upregulation of 

Iron Responses in Tomato Roots 

Higher Education: 

1997-2002   “St. Kliment Ohridski” University of Sofia, Bulgaria 

    Faculty of Biology 

    Master of Biology, Speciality Molecular Biology, 

    Specialization Biochemistry 

Masters Degree: 

2002    St. Kliment Ohridski” University of Sofia, Bulgaria 

    Master thesis: Leibniz Institute of Plant Genetics and Crop 

Plant Research (IPK), Gatersleben, Germany 

    Supervisor: Prof. Dr. Petra Bauer 

Topic: Cloning and Expression of the LeFER Gene – 

Putative Regulator of Iron Homeostasis in Plants 

    Defended: September 2002, with the maximal score of 6.00 



 

 146 

 

Secondary Education: 

1992-1997   “Akad. Liubomir Chakalov” National Secondary School for 

    Natural Sciences and Mathematics, Sofia, Bulgaria 

    Profile Biology and Biotechnology with extensive 

    English language study 

    Average grade award: Excellent (5.95) 

    (in a six scale awarding system, wherein the highest grade is 

    6.00 and the lowest positive – 3.00) 

 

Practical Activities: 

1999-2000   Faculty of Biology, University of Sofia, Bulgaria 

    Supervisor: Dr. Magdalena Chorbadjieva 

    Practical activity – Laboratory of Enzymology 

July 2000-Sept 2000  Leibniz Institute of Plant Genetics and Crop Plant Research 

    (IPK), Gatersleben, Germany 

    Supervisor: Dr. habil. Helmut Baeumlein 

    Topic: Training on basic molecular genetics techniques 

 

Fellowships: 

1998, 1999, 2000, 2001 Fellowships from the Sofia University for excellent results 

in education 

 

Languages: Bulgarian, Russian, German, and English (Cambridge 

Advanced Certificate, Grade A) 

 

 

 

 

 

 



 

 147 

 

Publication List 

 

Publications: 

Petra Bauer, Thomas Thiel, Marco Klatte, Zsolt Bereczky, Tzvetina Brumbarova, 

Ruediger Hell, and Ivo Grosse (2004) Analysis of Sequence, Map Position, and Gene 

Expression Reveals Conserved Essential Genes for Iron Uptake in Arabidopsis and 

Tomato Plant Physiol (136) 4169-4183. 

 

Petra Bauer, Zsolt Bereczky, Tzvetina Brumbarova, Marco Klatte, and Hong-Yu Wang 

(2004) Molecular Regulation of Iron Uptake in the Dicot Species Lycopersicon 

esculentum and Arabidopsis thaliana Soil Sci Plant Nutr 50 (7) 997-1001. 

 

Tzvetina Brumbarova and Petra Bauer (2005) Iron-Mediated Control of the Basic 

Helix-Loop-Helix Protein FER, a Regulator of Iron Uptake in Tomato Plant Physiol 

(137) 1018-1026. 

 

Tzvetina Brumbarova, Andrea Matros, Udo Seiffert, Hans-Peter Mock, and Petra 

Bauer; A Comprehensive Proteomics Study on the Effects of Iron Deficiency and FER 

Presence in Tomato Roots (Manuscript in Preparation). 

 

Tzvetina Brumbarova and Petra Bauer (2006) Iron Uptake and Transport, In P K 

Jaiwal, ed, Plant Genetic Engineering (9): Plant Membrane and Vacuolar Transporters 

(Book in Preparation) 

 

Personal Presentations at Meetings: 

4th International Biometals Symposium, Sept 2004, Garmisch-Partenkirchen, Germany 

Regulation of The Regulator: Role of FER in Root Iron Mobilization (Oral Presentation) 

Tzvetina Brumbarova and Petra Bauer 

 



 

 148 

13th International Symposium on Iron Nutrition and Interactions in Plants, July 2006, 

Montpellier, France 

A Comprehensive Proteomics Study on the Effects of Iron Deficiency and FER Presence 

in Tomato Roots (Poster) 

Tzvetina Brumbarova, Andrea Matros, Udo Seiffert, Hans-Peter Mock, and Petra Bauer 

 

XV FESPB Congress “Plant, People, Ecosystems and Applications”, July 2006, Lyon, 

France 

A Comprehensive Proteomics Study on the Effects of Iron Deficiency and FER Presence 

in Tomato Roots (Poster) 

Tzvetina Brumbarova, Andrea Matros, Udo Seiffert, Hans-Peter Mock, and Petra Bauer 

 

 



 

 149 

 

Eidesstattliche Versicherung 

 

 

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und 

ohne Benutzung anderer als der angegebenen Hiflsmittel angefertigt habe. Die aus 

anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe 

der Quelle gekennzeichnet. 

 

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form 

in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt. 

 

 

Tzvetina Brumbarova 
 

 

 

 

Saarbruecken, August 2006 
 

 

 


