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History  

 

Ordinarily it is expected that parents contribute equally to the offspring owing to the 

Mendel’s laws of inheritance. However there are evidences in support to the 

deviations from the laws of inheritance such as Alexander Blink’s study on R locus 

in maize, (early 1950), Barbara McClintock’s (1958) study on suppressor mutator 

(Spm), a transposable element in maize and the inactivation of X chromosome in 

mammals (initially identified as Barr body). The X inactivation is a phenomenon 

where one of the X chromosome is excluded from gene expression after fertilization 

for the rest of the lifespan of an organism (Panning and Jaenisch 1998); Lyon M F 

Nature 1961).   

 

Unequal contribution of parent of origin specific alleles to the offspring became 

more evident when McGrath and Solter (McGrath and Solter 1984) and Surani 

(Surani, Barton et al. 1984) tried pioneering experiments on generating gynogenetic 

(fusion of two female pronuclei) or androgenetic (fusion of two male pronuclei) 

embryos. These embryos were not normal and the simplest explanation was that the 

male and female gametes were unequal in contribution to the genetic programming 

during early development. The developing embryo expresses a set of genes from the 

allele contributed from the father and another set contributed from the mother during 

development and as a consequence gynogenetic and androgenetic embryos find 

themselves inappropriately diploid for imprinted loci. 

 

The first evidence of parent of origin effects was observed in a transgene experiment. 

In this experiment the transmission of the transgene from a autosomal chromosome 

showed parent of origin specific gene expression (Swain, Stewart et al. 1987). Soon 

Igf2 in mice and later many other endogenous genes were also identified in mammals 

that showed parent of origin specific transcription (also referred as imprinting) 

(DeChiara, Robertson et al. 1991). In no time it was realized that this parent of origin 

effect is regulated by epigenetic modifications, such as DNA methylation and 

modifications on histone tails. 
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Several theories were also put forth to explain how and why such a complicated 

regulatory mechanism has evolved and its pivotal role in development. These 

theories were prevention of female reproductive diseases (also called as “ovarian 

time bomb”), theory of evolvability (i.e. imprinting has evolved as a mechanism 

enhancing the adaptability of a species to a changing environment), defence against 

parasitic diseases by silencing and the theory of conflict between parental alleles. 

(Moore and Haig 1991; Barlow 1993; Varmuza and Mann 1994; Beaudet and Jiang 

2002) Parental conflict is the most widely accepted theory of imprinting. It states that 

imprinting only occurs in organisms in which nutrients pass directly from the mother 

to the foetus and eventually leads to unequal investment of parental alleles to the 

growth of the foetus. Another theory proposed earlier in 1995, has also gained much 

attention in recent years. This theory describes the importance of imprinting during 

development and shows a link between recombination hot spots and imprinted 

regions. It states that differential chromatin remodelling during male and female 

meiosis is associated with epigenetic reprogramming at imprinted chromosomal 

regions. This as a result leads to different recombination rates between the two sexes 

(Paldi, Gyapay et al. 1995; Sandovici, Kassovska-Bratinova et al. 2006). 

 

In conclusion genomic (or parental) imprinting is observed in mammals and is a 

phenomenon in which allele of a gene is expressed depending on the parent of origin. 

This differential gene expression is regulated by epigenetic marks present on 

different alleles. 
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I Epigenetic and development 

I.1 Definition of imprints and imprinting 

 

The term imprinting throughout this work relates to the ability of cells to maintain a 

different epigenetic memory on parental chromosomes. The heriTable, non-

mutational modifications on chromosomal regions define the epigenetic memory. 

Epigenetic marks can be attained either by modifying the DNA nucleotides or 

modifying the histone proteins. The differential marking on the chromosome 

influences the transcription of the genes and the replication timing of the two 

parental alleles.  

 

Genes showing differences in transcriptional activity based on parent of origin are 

termed as imprinted genes. To this date, 40 and 80 imprinted genes are identified in 

human and mouse respectively (documented for human and mouse at 

http://www.mgu.har.mrc.ac.uk/research/imprinting; http://igc.otago.ac.nz) (Morison, 

Ramsay et al. 2005). The extent of imprinting in mouse or human is not fully known, 

but has been estimated in mouse to range between 100 and 600 genes (Luedi, 

Hartemink et al. 2005). Likewise other mammalian species also show the presence of 

imprinted genes (Young, Fernandes et al. 2001; Young, Schnieke et al. 2003; Dindot, 

Farin et al. 2004; Arnold, Lefebvre et al. 2006; Lucifero, Suzuki et al. 2006). The 

evidence that imprinting of a gene is conserved in different mammalian species was 

first demonstrated by Killian J K on Igf2r gene. In this study authors observed that 

Igf2r is imprinted in most mammals but not in human (Killian, Nolan et al. 2001). 

 

Imprinted genes are often observed in clusters, referred as imprinted domains. 

These clusters are under the regulation of one or more imprinting centers (ICs). 

These regulatory imprinting centers are enriched in CpG dinucleotides and often 

constitute CpG islands. Often array of tandem repeats ( i.e. two or more approximate 

copies of a pattern of nucleotides ) or presence of non coding transcript is observed 

near or within the imprinting center (Neumann, Kubicka et al. 1995; Hutter, Helms et 

al. 2006). Functionality of the imprinting center differs between parental alleles and 

depends on the epigenetic modifications present on the alleles.  
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I.2 Imprinting in bovine  

 

Imprinted genes have thus far been identified in marsupial (metatherian), placental 

(eutherian) mammals (Scott, Spielman et al. 1998; Killian, Byrd et al. 2000; O'Neill, 

Ingram et al. 2000) and in flowering plants (Scott, Spielman et al. 1998). However, 

no indication of imprinting was found in monotreme (prototherian) mammals and 

other vertebrates and invertebrates. Since most of the presented work in this thesis 

relates to the imprinting in bovine (placental mammal) therefore I would like to 

present the current knowledge of imprinting in this species.  

 

Imprinted genes are functionally involved in growth and development of the 

mammalian foetus and placenta. Recently, lesions in imprinted domains have also 

been shown in association to the failure in animal cloning. Bovine and ovine 

represent their importance in both farm animal industries as well as in cloning 

technology. Even though of their importance, these both species are far behind in the 

study of imprinted genes and related regulatory mechanisms. One of the reasons 

accounts for the lack of sequence information in the past, however many sequencing 

centers are presently in process of sequencing not only cow (bovine) and sheep 

(ovine) but also many other animal species. Studies on imprinted genes indicate that 

imprinting mechanisms are conserved in different mammalian species including 

bovine. However, minor differences can be visualized among species such as Ascl2, 

which is not imprinted in bovine and human, while it is imprinted in mouse. 

Similarly Igf2r is imprinted in most of the mammals but not in humans. The Table 

below summarizes the imprinted genes in bovine and their imprinting status in 

human, mouse and ovine. 
 

 

 

 

 

 

 

Table 1: Known Imprinted genes in bovine compared to human, mouse and  
               sheep 

Ascl2Ascl2
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I.3 Dynamics of epigenetic modifications  
 

To gain more knowledge on the regulatory mechanisms involved at imprinting 

domains, it essential to know how the chromosomal DNA is packed in a cell. In a 

eukaryotic cell, the chromosomal DNA is condensed and compacted with histone 

proteins. Histone proteins form an octamer, which is comprised of two molecules of 

each highly conserved H2A, H2B, H3, and H4 histones, around which the 

chromosomal DNA is wrapped. This nucleoprotein complex is called a nucleosome 

core. Nucleosomes are connected with a linker DNA, and are stabilized through the 

binding of histone H1 protein (“Beads on String”) (Figure 1). This combination of 

DNA and histone proteins is called as chromatin. There are several levels of 

chromatin condensation before higher level of compacted metaphase chromosomal 

structure is achieved. Such condensed chromatin structures at a locus are dynamic 

and are capable of undergoing folding and unfolding transitions. These transitions 

are critical for the gene regulation since they determine the accessibility of regulatory 

factors to the underlying DNA. Different modifications on DNA or on histone tails 

modulate the folding and unfolding transitions. These non mutagenic changes on a 

chromosome are termed epigenetic modifications. When these epigenetic 

modifications depend on parent of origin, they are termed as imprints. 

 

 
 
Figure 1:  Structural organisation of nucleosomes in chromatin 
 
 
In chromatin, the extruding tails of the histone proteins are the preferential sites for 

post translational modifications. These histone ‘tails’ do not contribute significantly 

to the structure of individual nucleosomes nor to their stability, but they do play an 

essential role in controlling the folding of nucleosomal arrays into higher order 
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structures. Enormous numbers of posttranslational modifications are known on these 

histone tails such as acetylation and methylation of lysine (K) and arginine (R), 

phosphorylation of serine (S) and threonines (T), ubiquitylation and sumoylation of 

lysine, as well as ribosylation. Adding to the complexity is the fact that each lysine 

residue can accept one, two or even three methyl groups, and an arginine can be 

mono or di-methylated. Studies on histone modifications show site-specific 

combinations of histone modifications correlating with a particular biological 

function. For example, a transcriptional inactive state is characterized by histone 

deacetylation at Lys-14, which precedes methylation at Lys-9 (Noma, Allis et al. 

2001). In contrast, the active transcriptional state has a combination of H3 K14 

acetylation and H3 S10 phosphorylation (Lo, Duggan et al. 2001).  

 

Another known epigenetic modification that can alter the chromatin, is on 

chromosomal DNA. Genomic DNA can be modified on nucleotides as methylated 

cytosines or methylated adenines (e.g. plant, bacteria). Methylation of cytosine 

occurs as a covalent modification in which methyl group is added to a cytosine base, 

mostly at CpG dinucleotides. This modification on cytosine is the major known DNA 

modification in mammals. Mammalian gene promoters are often associated with 

CpG rich (CpG island) regions and are unmethylated at all stages of development 

and tissue types (Antequera and Bird 1993). However, if the CpG island is 

methylated then this modification prevents the recruitment of transcriptional factors 

to the promoter and as a result the associated promoter is stably silent. De novo DNA 

methylation is rare in adult somatic tissues and is mostly observed during 

differentiation, ageing and in cancer cells. Even so, occasionally methylation marks 

can also disappear from the DNA segment during cell differentiation. This is often 

observed on tissue specific enhancers or promoters of tissue specific genes 

(Lucarelli, Fuso et al. 2001; Tagoh, Melnik et al. 2004). 

 

I.4 Establishment and propagation of DNA methylation  

 

Imprinting mechanisms define the differential epigenetic memory on parent of origin 

specific alleles. In order to preserve this phenomenon from one generation to 

another, imprints should be: 
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1) Faithfully transmitted from one cell division to another.  

2) Erased during germ cell differentiation. 

3) Established thereafter according to the sex of the individual and maintained for the 

rest of the life. 

 

Different DNA methyl transferase (Dnmts) enzymes plays crucial role in maintaining 

the phenomenon of imprinting in mammalian species. The DNA methyltransferase 

family involves two types of enzyme activity: one with de novo methylation activity, 

while the other having the ability to maintain the methylation on the genome. The de 

novo methylation activity is required for targeting specific unmethylated CpGs for 

the proper establishment of imprints in the germ cells and during differentiation 

(discussed later). DNA methylation maintance activity on the other hand is required 

for the faithful propagation of the imprint marks from one cell division to another. In 

mammals 5 genes have been identified as members of the DNA (5 cytosine) 

methyltransferases family. These are broadly classified as Dnmt1, Dnmt2 and Dnmt3 

families (Dnmt3a & Dnmt3b and Dnmt3L). The function of these genes solely or in 

combination with other factors or within the family is not yet clear.  

 

The DNA methylation marks are faithful transmitted from one cell to another during 

mitosis. This activity is called DNA methylation maintance activity and is mediated 

by Dnmt1 enzyme. Dnmt1 preferentially methylates at hemi methylated sites of 

double stranded DNA. It is recruited at the replication fork machinery during DNA 

replication and methylates the newly formed daughter strands depending on the 

epigenetic state of the parent template (Leonhardt, Page et al. 1992).  

 

The Dnmt3 family mainly constitutes the de novo methyltransferase enzymes. 

Among Dnmt3 family proteins, Dnmt3a and Dnmt3b are the active de novo 

methyltransferases and are expressed in male and female germ cells (Okano, Bell et 

al. 1999; Lucifero, Mann et al. 2004) These enzymes have equal preferences for 

unmethylated and hemi-methylated DNA in in-vitro experiments (Okano, Xie et al. 

1998) The Dnmt3b enzyme functions to methylate centromeric satellite repetitive 

elements and is also involved in transcriptional repression (Okano, Bell et al. 1999; 

Bachman, Rountree et al. 2001). Mutations in human DNMT3b enzyme are often 

associated with syndromes such as immunodeficiency, chromosomal instabilities, 
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and facial abnormalities (ICF) syndrome (Hansen, Wijmenga et al. 1999; Okano, 

Bell et al. 1999; Xu, Bestor et al. 1999) On the other hand, Dnmt3a along with 

truncated Dnmt3L (lacking conserved catalytic motifs, Figure 2) enzyme are 

involved in establishing germ line specific DNA methylation imprints. Knockout 

mice for Dnmt3L gene are normal but show improper germ cell differentiation. Male 

mice show sterility and females show the failure of establishing methylation at 

imprinted loci during oogenesis (Bourc'his, Xu et al. 2001; Hata, Okano et al. 2002).   

 

 
 
Figure 2: The DNA methyltransferases in mammals  
The Dnmt family proteins consist of cysteine rich motif in the N terminal and the catalytic activity 
resides (I to X conserved motifs) in the C terminal. Here a.a means length of amino acid of the 
protein (adopted from Bestor 2000). 

 
 
Another member of Dnmt enzymes is Dnmt2. Dnmt2 protein only consists of 

conserved catalytic motifs, is highly conserved and recently been shown to be 

involved in methylating asptRNA (Goll, Kirpekar et al. 2006). Its involvement in 

methylating chromosomal DNA is not clear.   

 

Epigenetic marks should also be reprogrammed in order to ensure that every 

generation receives the appropriate sex specific imprint. There are two well known 

events in the life cycle of an individual when the DNA methylation marks are 

actively erased. These events occur at the time of early embryo development and 

during germ cell (PGC) differentiation. (Monk, Boubelik et al. 1987; Kafri, Ariel et 

al. 1992; Tada, Tada et al. 1998; Oswald, Engemann et al. 2000). Both active and 

passive demethylation (through replication) activities are required for the erasure of 

DNA methylation, although the enzyme performing active de-methylation on 

cytosine residues is still unknown.  
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The first major demethylation event is observed after fertilization. The paternally 

derived genome in mice (also in other mammalian species with some differences) 

undergoes active demethylation and most of the methylation marks established 

during spermatogenesis are eliminated. (Mayer, Niveleau et al. 2000; Oswald, 

Engemann et al. 2000; Santos, Hendrich et al. 2002). This demethylation event 

occurs before the first cell division and is independent of DNA replication. In 

contrast, maternally derived genome retains DNA methylation during this process, 

but subsequently also undergoes passive demethylation during genome replication. 

This may be due to the fact that Dnmt1o (splice variant of DNA methylation 

maintance enzyme) resides in the cytoplasm during early stages of embryo 

development (Doherty, Bartolomei et al. 2002). During this demethylation event, 

most of the imprinting centers and some repetitive elements faithfully maintain the 

DNA methylation state (Olek and Walter 1997; Reik, Dean et al. 2001). Later during 

implantation the de novo DNA methylation activity (Dnmt3a and Dnmt3b) restores 

the normal levels of methylation on the genome. In mouse and in other mammals, the 

cycle of early embryonic demethylation followed by de novo methylation is critical 

in determining somatic DNA methylation patterns.  

 

A second wave of genome wide reduction in DNA methylation is observed in 

primordial germ cells (PGCs), in proliferating oogonial and spermatogonial stages. 

Here inherited imprinting patterns are also erased (Tada, Tada et al. 1997; Reik and 

Walter 2001; Hajkova, el-Maarri et al. 2002). The DNA demethylation of germ cells 

is crucial if the correct sex specific epigenetic information has to be laid down during 

sperm and oocyte maturation. Demethylation in PGCs starts at around embryo day 

11.5 (E11.5) and is completed by day E13-E14 (Hajkova, Erhardt et al. 2002). Once 

the supposedly ground state of DNA methylation is archived, the male and female 

PGCs begin to enter mitotic and meiotic arrest respectively. Over the period of 

oocyte growth, the maternal imprints as well as non imprinted sequences become 

methylated. Dnmt 3a, Dnmt3b and Dnmt3L all are expressed during postnatal oocyte 

growth. Different maternally methylated imprinting centers show appearance of 

DNA methylation at different stages of oocyte maturation (Lucifero, Mertineit et al. 

2002). 

 

 



Introduction 

 10 

 
 

 
Figure 3: DNA methylation imprint establishment and propagation  
The grey shaded region in the background demarcates the expression of Dnmt1 and the de novo 
DNA methyl transferases are indicated in respective stages. The imprinted regions on the DNA 
are marked as circle and these regions have parent of origin specific DNA methylation. The 
activity marks on imprinted regions are established during gametogenesis. The parental specific 
imprints are erased in primordial germ cells (PGCs) and the appropriate sex dependent imprint 
marks are re-established for the next generation. The maternal and paternal genomes (♂♀) have 
different imprint patterns in germ cell development. Both imprint marks and imprint reading are 
maintained after fertilization and during somatic cell division. DNA methylation at non imprinted 
regions (squares) behaves indifferently at both parental genomes. Filled circles or squares 
represent methylated DNA and open circles or squares represent unmethylated DNA regions. As 
with oocytes, the level of DNA methylation increases as sperm develops. This increase in DNA 
methylation content is attributed to both, paternal imprints as well as DNA methylation of non 
imprinted regions. All Dnmt enzymes are found during sperm maturation, although the expression 
level varies from stage to stage. For example Dnmt1 is found in high levels during meiosis except 
at pachytene stage. During spermatogenesis, de novo methyl transferases Dnmt3a and Dnmt3L 
are indispensable. Absence of any of them leads to DNA methylation errors in some of the 
paternally imprinted genes and also impairs spermatogenesis and gonad development (Okano, 
Bell et al. 1999; Hata, Okano et al. 2002). 
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I.5 Imprinting centers and their regulation 

 

After gaining knowledge on epigenetic marks, their establishment and maintance 

during development and differentiation, we now focus to understand the regulation 

of imprinted regions. Imprinted regions (region where imprinted genes are clustered 

together) are regulated by one or more imprinting centers. Different epigenetic mark 

on parental alleles defines the differential regulation of the imprinting centers. 

Imprinting centers behave differently in their mechanisms of action; among them 

some are well understood while others are still under investigation. In the majority of 

cases these centers function either as silencers or as insulator/boundary elements. 

Presented below are the two well known imprinted regions, the Beckwith-

Wiedemann syndrome (BWS) and Prader-Will (PWS) / Angelman syndrome (AS) 

regions, their regulation and the syndrome associated to them in humans. 

 

I.5.1 Imprinting centers in the Beckwith-Wiedemann syndrome (BWS) region 

 

The human chromosome 11p15.5 and its homologous region on the mouse distal 

chromosome 7 harbour a cluster of imprinted genes. This cluster is regulated by two 

well studied imprinted centers.  

 
Figure 4: Beckwith-Wiedemann syndrome region in mouse 
BWS region harbours two imprinting domains regulated mainly by imprinting centers H19 DMR 
and KvDMR1 respectively. Both imprinting centers are reciprocally methylated i.e. H19 DMR is 
methylated on paternal allele (♂) while KvDMR1 is methylated on maternal allele (♀). 
Methylated alleles at the imprinted centers lack their functionality. H19 DMR functions as an 
insulator to which CTCF protein binds (yellow circles) and inhibits the access of endodermal 
enhancers to the Igf2 promoter. KvDMR1 functions as a promoter and silencer and it silences 
genes on its both sides. Maternally expressed genes are indicated with red colour, paternally genes 
with blue and genes with biallelic expression with white. 
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The imprinting center located upstream of H19 gene is known as H19 DMR, and it 

regulates the Igf2, Ins and H19 genes. The second cluster of imprinted genes is 

located on the telomeric end in mouse chromosome 7, and is mainly regulated by 

KvDMR1 imprinting center. Imprinted genes such as Cdkn1c, Kcnq1, Tssc4, Phlda 

2, and the Ascl2 are regulated by KvDMR1 in mouse (Figure 4) 

 

I.5.1.1  Imprinting center 1 (H19 DMR) 

 

In mouse the centromeric imprinting sub-domain of BWS region, contains two well 

characterized imprinted genes, Igf2 and H19. These are expressed widely during 

embryonic development in identical tissues and are down-regulated shortly after 

birth. One exception to this are some parts of brain, such as choroids plexus, where 

Igf2 is expressed but H19 is not (Charalambous, Menheniott et al. 2004). These two 

genes are reciprocally imprinted i.e. Igf2 is expressed from the paternal allele while 

H19 is expressed from the maternal allele. Both genes are mainly regulated by DNA 

methylation at a chromatin boundary element located 5’ of H19, termed as 

differentially methylated region or imprinting center 1 (H19 DMR) (Tremblay, 

Duran et al. 1997; Ishihara and Sasaki 2002). 

  

The H19 DMR is unmethylated on maternal allele and is methylated on paternal 

allele. Several endo-dermal and meso-dermal enhancers were also identified 

downstream of H19 which functions on H19 or Igf2 promoters (Leighton, Ingram et 

al. 1995; Ishihara, Hatano et al. 2000) (Figure 5).  

 

 
Figure 5: Differentially Methylated Regions at H19 DMR imprinting domain 
All exons of the Igf2 gene and promoters of both genes in mouse are presented. DMRs are shown 
underneath together with their allele-specific DNA methylation status (filled, hypermethylated). 
DMR0 methylation pattern refers only to placenta. H19 DMR and known enhancers to this 
domain are placed on the map (not to the scale), where ME (meso dermal enhancer), EE 
(endodermal enhancer) and CCD (Choroid plexus specific enhancer) (adopted and modified from 
Lopes S et al, 2003). 
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Besides H19 DMR, this region also harbours differentially methylated regions in the 

Igf2 gene, i.e. DMR0, DMR1 and DMR2 (Figure 5). The DMR0 located in Igf2 

gene, is differentially methylated only in placenta tissue in mouse and acts as a 

placenta specific DMR (Moore, Constancia et al. 1997; Lopes, Lewis et al. 2003; 

Monk, Sanches et al. 2006). 

 

When H19 DMR is un-methylated, it acts as a boundary/insulator element and this 

function is mediated by the CTCF (zinc finger protein) protein. The CTCF protein 

complex at H19 DMR interacts with DMR1 (located in intron of Igf2 gene) and this 

interaction places Igf2 gene in a silent chromatin state and inaccessible to 

endodermal enhancers. The enhancers downstream of H19 are now in the vicinity of 

the H19 gene and eventually enhance its gene transcription. On contrary to this, on 

the paternal allele, the H19 DMR is methylated and CTCF protein is excluded from 

binding to the H19 DMR. Unknown protein complex machinery binds at the 

methylated H19 DMR and also interacts with the methylated DMR2 at Igf2 gene. 

The interaction now places H19 gene in a silent chromatin state and the endodermal 

enhancers in the vicinity of Igf2 promoter. This results in Igf2 gene transcription and 

hence Igf2 is paternally expressed. This is a good example illustrating that epigenetic 

mark (DNA methylation) determining the different long range interactions between 

the DMR sites. These different combinations of interactions among DMRs also show 

the complex regulation underlying in regulating Igf2 and H19 imprinted gene 

expression. (Murrell, Heeson et al. 2004) 

 

 
Figure 6: Parent specific interactions between the DMRs provide an epigenetic        
       switch for Igf2   Here H19 DMR is presented as IC1 
 (reproduced from Murrell et al 2004) 
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The meso-dermal enhancers were also identified later between H19 and Igf2 gene 

(Drewell, Arney et al. 2002). Tissue specific enhancers for choroid plexus are 

mapped between the H19 and Igf2 genes and in this tissue Igf2 is bi-allelic expressed 

(Figure 5). Since the enhancers for choroid plexus are between the Igf2 promoter and 

H19 DMR, hence the promoter is not under the influence of H19 DMR insulator. 

This also explains why Igf2 has biallelic expression in choroid plexus 

(Charalambous, Menheniott et al. 2004).  

 

I.5.1.2  Imprinting center 2 (KvDMR1) 

 

Since most of the work is done at the KvDMR1 imprinting center, therefore it is here 

discuss in detailed. 

 

Imprinting center 2 (KvDMR1) was initially identified by studying chromosomal 

breakpoints and DNA methylation changes in BWS patients. It was mapped in intron 

10 of KCNQ1 gene and was shown to possess differential DNA methylation on 

parent of origin specific alleles (Smilinich, Day et al. 1999).  

 

The imprinting center 2 (KvDMR1) is methylated on the active maternal allele of the 

KCNQ1 gene while is unmethylated on the paternal allele. On the paternal allele it 

functions as promoter for an oppositely oriented and paternally expressed gene 

known as KCNQ1OT1 or Lit1 (Mitsuya, Meguro et al. 1999; Engemann, Strodicke et 

al. 2000). On analysis of the known DMRs in KvDMR1 sub domain, only KvDMR1 

center maintains differential DNA methylation from the germ line (sperm and 

oocyte) till adult stages (Yatsuki, Joh et al. 2002). The targeted deletion of KvDMR1 

on the human paternal chromosome 11 when propagated in a chicken DT40 cell line 

resulted in activation of the normally silent paternal alleles of KCNQ1 and CDKN1C 

(Horike, Mitsuya et al. 2000). This removal of silencing by KvDMR1 on 

neighbouring imprinted genes was also observed after deletion of the KvDMR1 

center in mice (Fitzpatrick, Soloway et al. 2002). 

 

Studies on BWS patients showed that chromosomal breakpoints at 11p15.5 are often 

located in KCNQ1 gene in intron 14, 9 and between exon1a and exon 1c (Reid, 

Davies et al. 1997). These breakpoints disrupt the imprinting domain but often leave 
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the imprinted CDKN1C gene and the regulatory center KvDMR1 intact on one 

chromosome. CDKN1C is the only gene known, where loss of protein function 

causes BWS syndrome in human (discussed later). These chromosomal breakpoint 

studies show that KvDMR1 in most cases is still functionally active to regulate the 

imprinting of CDKN1C and the BWS phenotype results from the misregulation by 

unknown cis acting regulators. Studies on transgenic lines in mice also highlight the 

essence of cis acting regulatory elements. These all transgene studies were directed 

on Cdkn1c gene expression.  

 
Figure 7: Mapping of human BWS breakpoints and mouse transgenes  
                at KvDMR1 domain 
BWS region in human and mouse illustrated with the gene order and transcript orientation. 
Vertical arrows above human BWS show various breakpoints known from BWS patients (Reid, 
Davies et al. 1997). Various transgene lines roughly mapped to mouse BWS region are shown as 
horizontal line below the mouse BWS region. Horizontal shaded bars represent various enhancers 
identified from the different transgene studies, (John, Hodges et al. 1999; John, Ainscough et al. 
2001; Cerrato, Sparago et al. 2005) while the horizontal black bar below it represents the highly 
conserved intron 10 region (Paulsen, Khare et al. 2005). 

 
 
Figure 7 shows different transgene studies in mice. Transgenes covering only Cdkn1c 

and its upstream promoter region (35 kb) (John, Hodges et al. 1999), or translocation 

of Cdkn1c and its upstream region to Chromosome 11 (Cleary, van Raamsdonk et al. 

2001) showed that Cdkn1c gene is under the influence of the KvDMR1 center. In 
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both studies weak expression of Cdkn1c was observed and it was speculated that the 

lack of cis acting enhancers are responsible for this effect. Other transgene studies 

have only predicted tissue specific enhancers and none of the study showed the 

complete functionality of this domain in transgene constructs (John, Ainscough et al. 

2001). Recently Cerrato et al took 800kb transgene extending from Cars till Th and 

showed the complete functionality of this sub domain. In this transgene, the 

differential DNA methylation at KvDMR1, proper imprinting of the downstream as 

well as upstream genes to KvDMR1 and even imprinting of Cdkn1c gene in placenta 

was observed (Cerrato, Sparago et al. 2005).Cdkn1c imprinting in the placenta was 

never observed before in the other transgene studies. 

 

Chromatin studies at this domain showed that different histone modifications are 

present on different alleles at KvDMR1. The maternal allele shows presence of 

repressive histone modifications such as histone methylation at H3K9 and at H3K27, 

while the paternal allele possesses transcriptionally active chromatin with H3K4 

histone methylation and histone acetylation of H3K9 and H3K14. However, in the 

KvDMR1 neighbouring region this differential histone modification was only 

observed in placental tissue, while embryo proper showed no difference between the 

alleles (Umlauf, Goto et al. 2004). Further to this, the repressive histone modification 

observed at maternal allele, was found to be independent of the DNA methylation at 

KvDMR1 (Lewis, Mitsuya et al. 2004). Both of the chromatin studies as well as the 

transgene studies showed that the KvDMR1 center though indispensable but is not 

sufficient to regulate the entire imprinting sub-domain.  

 

KvDMR1 is a potential silencer, which is functional on the unmethylated paternal 

allele (Fitzpatrick, Soloway et al. 2002). This center also functions as an active 

promoter for the Kcnq1ot1 long transcript (40-60kb long). Presence of unmethylated 

state at KvDMR1 and Kcnq1ot1 transcripts are required for KvDMR1 center to be a 

functional silencer (Mancini-DiNardo, Steele et al. 2003; Mancini-DiNardo, Steele et 

al. 2006). There are discrepancies whether KvDMR1 also functions as an insulator 

and harbours potential CTCF binding (Chandrasekhar Kanduri and Victor 

Lobanenkov 2002; Kanduri, Fitzpatrick et al. 2002). 
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The Kcnq1ot1 promoter (or KvDMR1) harbours conserved “CAAT” sites, to which 

NY-F transcriptional factor binds. These CAAT sites were shown to be essential to 

KvDMR1 for its promoter and silencer activity (Mancini-DiNardo, Steele et al. 2003; 

Du, Zhou et al. 2004; Pandey, Ceribelli et al. 2004). 

 

Figure 8: Overview of imprinting center 2 (KvDMR1) in mouse 
Indicated is the minimum promoter mapped according to study performed by Marcini Dinardo et 
al, 2003 (nt 101453–102050; Gen. Bank accession number AP001295), while the conserved 
motifs and CAAT boxes are mapped according to the work by Paulsen et al 2005.  

 
 
It was also observed that on pre termination of Kcnq1ot1 (a long transcript app.40-

60kb in length) transcript, the silencing activity at KvDMR1 is lost, even though 

KvDMR1 is unmethylated and is transcriptionally active (Thakur, Tiwari et al. 2004; 

Mancini-DiNardo, Steele et al. 2006) 

 

Recently we have described highly conserved segmental regions in the KvDMR1 sub 

domain within different mammalian species. This conservation is specifically 

observed in intron 10 of KCNQ1 gene, where KvDMR1 is also located. These 

segments show nucleotide identity of >70%, were >100bp long and their relative 

position to KvDMR1 was also conserved (Paulsen, Khare et al. 2005). It is 

assumptive that these elements in the introns of KCNQ1 gene may function as cis-

acting regulatory element either to the KvDMR1 or to the genes in the sub-domain. 

However at this moment their potential role in imprinting or on gene regulation is not 

yet clear.  
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I.5.2 The Imprinting center at Prader-Willi and Angelman syndrome region 

 

I.5.2.1 Snrpn DMR 

 

Another well studied imprinting domain is at PWS / AS imprinted region (on human 

15q11-q13), and is regulated by SNRPN-DMR (PWS-SRO or IC). SNRPN-DMR is 

located at promoter to intron 1 of SNRPN gene in human and is at similar location in 

mouse. On this imprinting center paternal allele is unmethylated and is 

transcriptionally active for most of the imprinted genes such as MKRN3, NDN and 

SNURF-SNRPN. The maternal allele of this center is methylated and only UBE3A 

and ATP10 C genes are maternally expressed (in mouse Atp10 c gene is not 

imprinted) (Glenn, Porter et al. 1993).  

 

 
 
Figure 9: Regulation at PWS /AS imprinted domain 
The SNRPN promoter on the paternal allele (Pat) remains unmethylated (open 'lollipop') and is 
transcriptionally active (horizontal arrow). Only UBE3A and ATP10C are maternally expressed in 
this imprinted region.  

 
 
A second regulator in the region, the AR-SRO, is required to set the differential 

DNA methylation at the SNRPN-DMR (Shemer, Hershko et al. 2000). Interestingly, 

AS-SRO (35kb upstream of SNRPN-DMR) is methylated on both alleles but has an 

open chromatin (acetylated histones and access to DNase enzyme) only on maternal 

allele (Schumacher, Buiting et al. 1998; Buiting, Gross et al. 2003; Kantor, Kaufman 

et al. 2004). In contrast, at the SNRPN-DMR, the paternal allele is unmethylated and 

corresponds to open chromatin conformation, while maternal allele is methylated and 
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shows closed chromatin conformation (Schweizer, Zynger et al. 1999; Saitoh and 

Wada 2000).  

 

I.6 Syndromes associated to imprinting centers 

 

Defects in epigenetic modifications at imprinting centers may result in various 

syndromes. Two such syndromes mapped to above described imprinted regions are 

BWS and PWS /AS. 

 

I.6.1 Beckwith Wiedemann syndrome (BWS) 

 

Beckwith Wiedemann syndrome (Online Mendalian inheritance in Man (OMIM): 

130650) was first observed by Beckwith (1963) and Wiedemann (1964). This 

syndrome is a growth disorder characterized by macrosomia (large body size), 

macroglossia, visceromegaly, embryonal tumors (e.g., Wilms tumour, 

hepatoblastoma, neuroblastoma, and rhabdomyosarcoma), omphalocele, neonatal 

hypoglycemia, and ear creases/pits. Additional diagnostic findings include 

polyhydramnios and premature enlarged placenta, and cardiomegaly. 

 

BWS syndrome is sporadic in nature and the aetiology of this syndrome involves 

genetic and epigenetic factors. To date only one protein coding gene, CDKN1C, is 

known in which mutations alone can lead to the BWS phenotype (Hatada, Ohashi et 

al. 1996; Hatada, Nabetani et al. 1997; O'Keefe, Dao et al. 1997). CDKN1C is a cell 

cycle regulator and limits the cell proliferation. This gene is maternally expressed 

and is under the regulation of imprinting center 2 (KvDMR1) (Engemann, Strodicke 

et al. 2000; Horike, Mitsuya et al. 2000).  

 

Misregulation of imprinting at centers H19 DMR (upstream of H19) and KvDMR1 

(located in intron 10 of KCNQ1 gene) also causes BWS syndrome. Disruption of 

DNA methylation mark on maternal allele at KvDMR1 center is observed as the 

major aetiological factor for BWS syndrome (>50% of sporadic cases). Presence of 

unmethylated DNA at KvDMR1 results in biallelic expression of KCNQ1OT1 and 

silencing of the neighbouring maternally expressed imprinted genes, such as 
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CDKN1C (Lee, DeBaun et al. 1999; Sperandeo, Ungaro et al. 2000; Bliek, Maas et 

al. 2001; Weksberg, Nishikawa et al. 2001; DeBaun, Niemitz et al. 2002; Weksberg, 

Shuman et al. 2002; Murrell, Heeson et al. 2004; Martin, Grange et al. 2005). 

Deregulation of imprinting at H19 DMR is observed in 10% of the sporadic cases of 

BWS patients. The DNA hypermethylation at H19 DMR results in biallelic and over-

expression of IGF2 gene, a growth enhancing factor.  

 

Genetic factors other than mutation in CDKN1C, involved are uniparental disomies 

(UPD) of chromosome 11p15 (10-20% of the sporadic cases) and micro-deletions. 

UPDs results from duplication of a chromosome or segmental duplication of a 

chromosome. The vast majority of BWS patients with UPD exhibits somatic 

mosaicism i.e. not all cells have the duplication in an individual and this is due to the 

post zygotic mutation (Reik, Brown et al. 1994; Itoh, Becroft et al. 2000). Micro-

deletions have also been recently reported in BWS patients. Two familial case studies 

at H19 DMR show that micro-deletion results in elimination of CTCF binding sites 

(Sparago A Nat genet 2004, Prawitt, Enklaar et al. 2005) . At KvDMR1, from the 

single case study on a patient harbouring a deletion of KvDMR1, the actual 

mechanism cannot be deduced. This deletion however disrupts and deletes the whole 

regulatory center KvDMR1 in BWS patient. The maternal transmission of the 

deletion at KvDMR1 causes BWS phenotype while paternal transmission has no 

effect. It should be noted that deletion is only within the KCNQ1 gene and the 

CDKN1C gene is not affected (Niemitz, DeBaun et al. 2004). 

  

BWS syndrome has also been shown in association to embryonic tumours. Among 

them Wilms tumour (kidney tumour) is quite often reported in BWS patients. 

Epigenetic lesions at H19 locus and Wilm’s tumour (WTs) was first observed by 

Moulton  and Steenman ( M J (Moulton, Crenshaw et al. 1994; Steenman, Rainier et 

al. 1994). They showed that DNA hypermethylation of H19 promoter and 

inactivation of H19 gene expression is often associated to Wilm’s tumor in BWS 

patients.  
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I.6.2     Prader-Willi (PWS) and Angelman (AS) syndromes  
 

Another well studied imprinting defect is Prader-Willi syndrome (PWS) and 

Angelman syndrome (AS) and is associated with neurogenetic diseases. 

 

Angelman syndrome (AS; OMIM: 105830) results from lack of maternal 

contribution from chromosome 15q11-q13. Here the maternally expressed genes 

UBE3A and ATP10C are involved. UBE3a is indeed expressed in brain and is 

affected in AS while the involvement of ATP10C is not clear. This syndrome is 

characterized by mental retardation, abnormal behaviour, movement disorder and 

severe limitations in speech and language. 

 

Prader-Willi syndrome (PWS: OMIM: 176270) is a clinically distinct disorder 

resulting from paternal deletion of the same 15q11-q13 region. This syndrome is 

characterized by diminished foetal activity, obesity, muscular hypotonia, mental 

retardation, hypogonadism, short stature, and small hands and feet.  

 

Aetiologies of PWS and AS are, large chromosomal deletions (70%), uniparental 

disomy (29% and 1% respectively) and an imprinting defect at Snrpn DMR (PWS-

SRO) (1%and 4% respectively). Maternal transmission of any of the above indicated 

defects leads to AS syndrome while paternal transmission causes PWS syndrome.  

 

Recently concerns have been raised about the increasing incidences of imprinting 

syndrome in children conceived by assisted reproduction (ART). Several BWS 

patient cases were reported after the usage of ART, in particular after IVF (In Vitro 

Fertilization) treatment (DeBaun, Niemitz et al. 2003; Gicquel, Gaston et al. 2003; 

Maher, Afnan et al. 2003; Chang, Moley et al. 2005). Likewise 3 cases were also 

documented for Angelman syndrome after ICSI (Intra Cytoplasmic Sperm Injection) 

treatment (Cox, Burger et al. 2002; Orstavik, Eiklid et al. 2003). 
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I.7 DNA methylation in bovine and influence of IVF procedures 
 

Similar to BWS overgrowth phenotype, in mice and in farm animals’ (cattle and 

sheep) an overgrowth syndrome is often observed after the usage of ART procedures 

(Young, Fernandes et al. 2001; Dean, Bowden et al. 1998; Farin, Piedrahita et al. 

2006). This overgrowth syndrome in farm animals is referred as Large Offspring 

Syndrome (LOS).  

 

Since the current thesis work relates to the influence of ART on cattle (bovine) 

DMRs, hence here discussed in detail the various reproductive procedures used in 

cattle industry and the literature review on the LOS syndrome. 

 

I.7.1 Cattle reproduction and assisted reproductive techniques in 
 use 
 

The progress of cattle genetics through assisted reproductive technology is 

impressive in the last two decades. Since 1970, artificial insemination (AI) and the 

associated techniques such as semen cryopreservation and ovulation synchronization 

dominated the cattle farm reproductive techniques. AI is defined as deposition of bull 

semen in the reproductive tract of the cow as means of impregnation. Here elite sires 

are selected on the basis of progeny testing, and then are extensively used to improve 

the traits like milk and meat production.  

 

The female contribution to genetic progress was achieved with the advent of ET 

(embryo transfer) and the associated techniques such as non-surgical embryo 

collection, in vitro maturation, fertilization, and culturing of bovine oocytes. ET can 

be complimented with different strategies. Dams can be super-ovulated, artificially 

inseminated (AI) and later the resulted fertilized oocytes are collected by flushing. 

These fertilized oocytes are then cultured till blastocyst stage and are implanted in 

synchronized heifers. This technique is referred as multiple ovulation and embryo 

transfer (MOET). Oocytes can also be collected directly from mother's body by 

applying ultra-sonography, cultured for differentiation and then fertilized with 

spermatocytes (IVF), or in many cases a sperm is injected directly into an ovum, a 

process known as intra-cytoplasmic sperm injection (ICSI). If fertilization is 
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successful, similar to MOET, the fertilized ovum (or several fertilized ova) after 

undergoing several cell divisions, is either transferred to the surrogated mother's for 

normal development in the uterus, or frozen for later implantation. The purpose of 

commercial IVF is to obtain viable embryos from females that may not be able to 

produce descendants through conventional techniques.  

 

Many factors influence the efficiency of the assisted reproductive techniques, and the 

main ones are the quality of donor sperm and oocyte and the technique used to 

culture the embryos from the zygote to the blastocyst stage. 

 

I.7.2 Comparative placentation 

 

One of the aspects for proper embryo development is placentation. Improper 

regulations of the imprinted domains are known to cause lesions in placental 

development. Placenta is a connective tissue which facilitates the nutrient exchange 

between mother and foetus during embryo development. Placenta can be classified 

according to the number of placental layers present for nutrient exchange or 

according to the site of placental attachment to the foetus.  

 

Human and mouse possess a hemochorial placenta, where maternal blood is in direct 

contact with foetal chorion (see different layers of placenta Figure 10a). In dogs and 

cats, an endotheliochorial placenta (4 fetomaternal layers) is observed, while 

epitheliochorial placenta (6 fetomaternal layers) is present in pigs, cows, horses, and 

sheep.  

 

Placenta can also be classified based on characteristics of the site of attachment 

between embryo and the endometrium of the uterus. These are diffuse, cotyledonary, 

zonary, and discoidal placentas (Figure 10b). 

 

When the chorionic sac meets the uterine endometrium over its entire surface, it is 

known as diffuse placenta. This type of placentae is observed in horses, pigs, camels, 

lemurs, opossums, kangaroos, and whales. Chorionic villi can also be aggregated to 

form a broad band that circles about the center of the chorion such that the villi at the 
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ends regress, leaving only those in the center to be functional. This type of placentae 

is called as zonary placentae and is seen in carnivores.  

 

In primates and mouse discoid placenta are seen where chorion remains smooth and 

the other part interacts with the endometrium to form the placenta. The maternal 

blood cells are in direct contact with the foetal chorion. In ungulates such as cows, 

deer, goat, and giraffe cotyledonary placentae is observed. Here the villi are clumped 

together into circular patches called cotyledons and meets with maternal caruncles to 

form the placentome. 
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Figure 10: Comparative placentation  
A) Classification according to the placental layers: I) Hemochorial; II) endotheliochorial and II) 
epitheliochorial  
B) Classification of placenta according to the site of attachment. Arrows in the cow placentae 
represents cotyledon (yellow) and caruncles (white) 
(Adopted and modified from “A companion to Developmental Biology”; seventh edition by Scott 

F.Gilbert: http://7e.devbio.com/index.php). 

 
 
I.7.3 Placenta development in bovine 

 

The development of the early embryos and placenta in bovine is markedly different 

in comparison to primates and rodents. In human, the blastocyst gets implanted to the 

mother’s uterus at day 5-7 while in mouse implantation occurs at day 4 of gestation 

(Paria, Song et al. 2001; Vigano, Mangioni et al. 2003). In bovine as well as in 

sheep, the blastocyst undergoes an extended pre-attachment period. During this 

period there is extensive elongation of the trophoblast. Concomitantly with 
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trophoblast elongation, the inner cell mass also undergoes the first major 

differentiation process of gastrulation. Gastrulation gives rise to the different germ 

layers of the embryo (ectoderm, endoderm and mesoderm). In vivo, development of 

the zygote to the blastocyst stage in sheep and cattle takes about 6 days. Prior to the 

blastocyst stage there is no net growth of the embryo and during the pre attachment 

period, bovine embryo has access to nutrients within the oviduct and uterine fluid. 

The bovine placenta has many contact points in foetal membranes called 

placentomes. In bovine, placenta progressively attaches to the endometrium almost 

throughout the first trimester; this is in contrast to the more rapid and invasive 

attachment phase in human and rodents. The first sign of bovine implantation, takes 

place about two weeks later i.e. 21 dpi (days post insemination) (Guillomot 1995). 

By this time the bovine blastocyst has already initiated the gastrulation process and 

the trophoblast has elongated dramatically (Greenstein JS 1958; Maddox-Hyttel, 

Alexopoulos et al. 2003). The initial foetal placenta when comes in contact with 

maternal caruncles, it induces villous processes to undergo hypertrophy and 

hyperplasia and forms cotyledons which, by day 42 progresses to form larger and 

complex placentomes (The embryology of domestic animals; Noden DM 1990). 

Placentomes with extensive villous formation are the primary site of transport for 

easily diffusible molecules such as amino acids, glucose, oxygen and carbon dioxide, 

while macromolecules are transported in the inter placentomal areas adjacent to 

uterine glands. (Placentation in Marshel physiology of reproduction. 1994, and Kings 

GJ J exp zoology 1993) 

 

I.7.4 IVF associated foetal and placental abnormalities 

 

Though the feasible IVF technology has opened the possibilities to manipulate and 

cultivate the embryo, but on the other hand it has also been linked to many 

abnormalities in foetus. Reported abnormalities in foetuses or calves following 

transfer of in vitro cultivated embryos includes lower pregnancy rate, increased 

abortion, oversized calves, musculoskeletal deformities and abnormalities of 

placental development, which are often described as “Large Offspring Syndrome” 

(LOS). LOS has been described for bovine (Farin, Piedrahita et al. 2006), sheep 

(Sinclair, McEvoy et al. 1999) and mice (Eggan, Akutsu et al. 2001). These 
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abnormalities are more pronounced in cloned animals. Cloning procedures adopt to 

some extent the same protocols as in-vitro fertilization. Additional steps in cloning 

are enucleating the mature oocyte and thereafter transfer of the somatic nuclei in this 

enucleated oocyte. Later the cultivation and transfer to recipient heifers follows the 

same protocol as described for IVF derived foetuses. 

 

Comparative studies on foetal and placental phenotype across the gestation interval 

and assisted techniques have revealed many interesting observations. Early as in 

1995, Alexander BM on artificially inseminated and Hasler JM on in-vitro produced 

bovine calves performed systematic studies on early pregnancy losses (Alexander, 

Johnson et al. 1995; Hasler, Henderson et al. 1995). Alexander BM showed that 

embryonic losses from AI procedure in the first trimester of pregnancy precisely at 

30 to 60 day of gestation are in comparable range to that of naturally mated 

pregnancy losses, i.e. 6.5% and 4.3% respectively. In contrast, Hasler JF showed that 

abortions in IVF pregnancies, within first 100 days of gestation may vary from 7% to 

61% and these high incidences of abortion depend on the donor cells. The studied 

IVF calves were 20% heavier at birth and showed higher incidences of hydrallantois 

(water in allantoic membrane) and dystocia (difficulty in giving birth to the 

offspring). 

 

Later other studies also showed that even usage of in vitro cultivation of fertilized 

oocytes may result in heavier calves, such as in MOET the calves were 8% heavier 

than AI calves at birth (van Wagtendonk-de Leeuw, Mullaart et al. 2000). Several 

groups have also reported placental defects in concepti from cultured bovine 

embryos derived from IVF (Behboodi, Anderson et al. 1995; Farin and Farin 1995; 

Crosier, Farin et al. 2000; Farin, Crosier et al. 2001; Bertolini and Anderson 2002; 

Bertolini, Mason et al. 2002; Bertolini, Moyer et al. 2004)) and nuclear transfer 

procedures (Hill, Burghardt et al. 2000; Hill, Edwards et al. 2001). These placental 

defects were reasoned for the major cause for early pregnancy failure and abnormal 

foetal growth in IVF and in cloned pregnancies. Often lower number of placentomes, 

thick and oversized placentomes and frequent incidences of hydrallantois and 

overweight placenta are observed in IVF and in cloned fetuses.  
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Quite interestingly, these IVF oversized calves at birth, eventually are no different 

than normal sized AI calves in subsequent development. Similarly NT embryo 

derived yearling cattle were not significantly heavier than control animals despite 

former being heavier at birth (Wilson, Williams et al. 1995). Added to the note that 

these IVF calves showed no difference in their productive or reproductive abilities 

when compared to normally conceived animals (van Wagtendonk-de Leeuw, 

Mullaart et al. 2000). 

 

I.7.5 Imprinting defects in IVF derived foetuses 

 

Altered expression of imprinted genes regulating foetal growth and development was 

initially proposed as one of the main cause for the occurrence of abnormal offspring 

syndrome. (Dean, Santos et al. 2001; Reik, Dean et al. 2001; Farin, Farin et al. 2004). 

It was proposed that inadequate in vitro culture conditions or improper genetic 

reprogramming during assisted reproductive procedures (ART) results in improper 

establishment of imprinting at the regulatory imprinting centers during the critical 

period of pre implantation development. Investigations on imprinted gene expression 

in bovine and ovine fetuses derived after ART usage supported this hypothesis. 

Bovine foetuses after IVF, showed elevated expression of Igf2 in skeletal muscle and 

liver at day 70 of gestation. While in sheep the Igf2r imprinting center (located in 

intron 2 of Igf2r) was shown to have lower DNA methylation at the maternal allele 

and a lower expression of Igf2r in various embryonic tissues. (Blondin, Farin et al. 

2000; Young, Fernandes et al. 2001) 

 

Examination of gene expression patterns in embryos, foetuses, and placentas of 

cattle, sheep, and mice produced using in vitro culture procedures demonstrated 

altered expression of imprinted (Blondin, Farin et al. 2000; Doherty, Mann et al. 

2000; Young, Fernandes et al. 2001; Bertolini, Beam et al. 2002; Wrenzycki, 

Herrmann et al. 2004), X-linked (Gutierrez-Adan, Oter et al. 2000; Niemann, 

Wrenzycki et al. 2002; Wrenzycki and Niemann 2003; Wrenzycki, Herrmann et al. 

2005) and autosomal non-imprinted genes (Ravelich, Breier et al. 2004; Wrenzycki, 

Herrmann et al. 2004; Ravelich, Shelling et al. 2006). Changes in embryo-wide DNA 

methylation patterns and global DNA methylation levels were also reported in 
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association with adverse preimplantation development (Gabriela Gebrin Cezar and 

and Kenneth J. Eilertsen2 2003; Hiendleder, Mund et al. 2004). 

 

 
   

Figure 11:  Bovine foetuses at Day 80 of gestation 
Foetal weight comparison of day 80 A) AI derived foetus 82gm and B) SCNT cloned derived 
foetus 142 gm. The oversized IVF foetuses shows foetal weight of 100gm (not shown)  
 (reproduced from (Hiendleder, Mund et al. 2004) 
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Conclusions and aim of the thesis: 

 

Regulation of imprinting clusters is a multi-factorial process. DNA methylation at 

the imprinting centers is the main regulatory modifications of the imprinting domain. 

It is clear that imprinting centers are not self sufficient in determining the regulation 

of the entire cluster. The regulation of genes controlled by imprinting center also 

requires additional cis acting elements such as enhancers, silencers, insulators and/or 

additional secondary DMRs. The mechanisms how these methylation marks are 

established and interpreted remain less clear. 

 

Loss of imprinting at ICs (changes in DNA methylation) has been shown in 

association with multiple syndromes. Recent studies show a link between assisted 

techniques in reproduction and imprinting syndromes in human. 

 

In my present thesis I am addressing two questions: 

 
1)  Influence of ART procedures on imprinting centers.  

 

Here bovine is used as a model organism to study. It is so because in cattle farm 

industry, assisted reproduction is used routinely for producing calves. Secondly 

usage of ART in farm animal industry often results in large offspring syndrome 

(LOS). The LOS has the phenotypic similarities with human imprinting syndrome 

BWS. Moreover a systematic study can be performed on bovine owing to the easy 

accessibility to the sample material. 

 

2)  Functional role of highly conserved short sequences flanking the 
 KvDMR1 imprinting center 
 

The KvDMR1 imprinting center functions as an active promoter for a long transcript 

Kcnq1ot1. The long Kcnq1ot1 transcript is essential for the regulatory functioning of 

KvDMR1 as a silencer. However it is not clear how the KvDMR1 promoter itself is 

regulated and what are the cis acting regulatory elements in this sub domain.  
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II Material and Methods 

II.1 Materials 

II.1.1 Reagents 
 
 Acrylamide-Bisacrylamide Biorad GmbH, Munich, Germany 
 Agar    Life Technologies, Paisley, Scotland 
 Agarose   Biozym, Oldendorf Germany 
 APS     Fluka, Buchs, Switzerland 
 Acetic acid   Merck, Darmstadt, Germany 
 Bromphenol blue  Sigma, St. Louis, U.S.A 
 Coomassie-Blue R-250 Life Technologies, Paisley, Scotland 
 DTT     Sigma, St. Louis, U.S.A 
 Ethanol   Merck, Darmstadt, Germany 
 Ethidium bromide   Sigma, St. Louis, U.S.A 
 Fetal bovine serum  Life Technologies, Paisley, Scotland 
 Formaldehyde   Carl Roth, Karlsruhe Germany 
 Formamide    Sigma, St. Louis, U.S.A 
 L-Glutamine    Life Technologies, Paisley, Scotland 
 Glycerin    Merck, Darmstadt, Germany 
 IPTG     Sigma, St. Louis, U.S.A 
 Isopropanol    Merck, Darmstadt, Germany 
 ß-Mercaptoethanol   Sigma, St. Louis, U.S.A 
 Methanol    Merck, Darmstadt, Germany 
 PBS     PAN Biotech, Aidenbach, Germany 
 PEG 4000   Fluka, Buchs, Switzerland 
 Penicillin/Streptomycin Life Technologies, Paisley, Scotland 
 Sodium chloride  Merck, Darmstadt, Germany 
 SDS     Carl Roth, Karlsruhe Germany 
 TEMED    Invitrogen, Paisley Scotland 
 Tris-HCl    Carl Roth, Karlsruhe Germany 
 Xylencyanol   Sigma, St. Louis, U.S.A 
 
II.1.2 Radioactive Substances 
 
 α 32P-dCTP    MP Bio Medicals Germany 
 
II.1.3 Antibody 
 

 Hand1 antibody f(sc-22817)  Santa Cruz California USA 

 
II.1.4 Enzymes  
 
 Restriction endo nucleases New England Bio-labs, Frankfurt, Germany 
     MBI Fermentas, Opelstrasse Germany  
     Roche, Mannheim Germany 
 RNasein    Promega, Mannheim, Germany 
 DNase I   Boehringer, Mannheim Germany 
 Klenow-fragment  Boehringer, Mannheim Germany 
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 RNase A   Boehringer, Mannheim Germany 
 Trypsin EDTA  PAN Biotech, Aidenbach, Germany 
 Shrimp alkaline phosphatase USB, Cleveland USA 
  
 
II.1.5 Reagent Kits 
 
 ABI Big Dye Terminator kit Applied Bio systems, Foster City, CA, USA 
 Qia Quick Gel extraction kit Qiagen, Hilden, Germany 
 Jetsorb    Genomed, Bad Oeynhausen Germany 
 Plasmid Isolation kit   Qiagen, Hilden, Germany 
     Invitrogen, Paisley Scotland 
 TA cloning kit   Invitrogen, Paisley Scotland 
     Promega, Mannheim, Germany 
 High Prime DNA labelling kit Boehringer, Mannheim Germany 
 LipofectAMINE 2000 Invitrogen, Paisley Scotland 
 Dual Luciferase assay kit  Promega, Mannheim, Germany 
 ECL kit   Amersham, Biosciences NJ, USA 
 
II.1.6 Plasmids 
 
 pGL3 basic   Promega, Mannheim, Germany 
 SV40 pGL3   Promega, Mannheim, Germany 
 CMV pRL   Promega, Mannheim, Germany 
 pCR2.1   Invitrogen, Paisley Scotland 
 pGEMT   Promega, Mannheim, Germany 
 pCDNA3 with Hand1  Gift from Prof Dr. Paul Riley 
 Bluescript SK+II  Stratagene, CA USA 
 
II.1.7 Standards, Markers and Ladders 
 
 Protein marker    Biorad, Munich, Germany 
 DNA marker     
  1-kb ladder   NEB, Frankfurt, Germany 
  100bp ladder   NEB, Frankfurt, Germany 
 
II.1.8 Miscellaneous 
 
 Blotting paper    Schleicher and Schüll, Stuttgart, Germany 
 Blotting Membrane (nylon)   Roche, Basel, Switzerland 
 Dialysis filters, Type VS 
  0,0025µm   Millipore, Schwalbach Germany 
 Pipette tips    STAR labs, Ahrensburg Germany 
 Plastic material (tubes etc)     Sarstedt, Numbrecht Germany 
 Quartz Cuvette  Sarstedt, Numbrecht Germany 
 Reaction tubes  Eppendorf,  
 X-ray film    Kodak (Biomax), New York USA 
 Ultra centrifuge tubes  Beckman, Krefeld Germany 
 Cell culture material   24 well plates:         Becton Dickinson, NJ USA 
             Pipettes and flasks: Sarstedt, Numbrecht Germany 
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II.1.9 Instruments 
 
 Centrifuges   Beckman, Krefeld Germany 
     Sorvall (RC5B), Langenselbold Germany 
 Gel documentation system Biostep GmbH, Jahnsdorf Germany  
 Spectrophotometer  Thermo Electron Corporation, Waltham, USA 
 Luminometer   lumat Berthold, Bad Wildbad Germany 
 CO2 incubator   Sanyo, Bensenville USA 
 Cell culture clean bench  Antair, Germany 
 Microscope   TS 100, Nikon Ireland 
 Balances   Sartoris, Bradford USA 
 PCR machines  Eppendorf Master Gradient  Eppendorf 
 Electroblotter   Tank-Electro Blotter   PeqLab 
 

II.1.10 Biological material 

 
 Bacteria 
 
 Escherichia coli  
   SURE 2 Stratagene, CA USA 
   TOP 10 F’ Stratagene, CA USA 
 
 Mammalian cell lines 
 
   HEK293T  Human kidney fibroblast 
   C2C12  Mouse foetal myoblast 
 
II.1.11 Buffer and solutions 
Buffers provided with the kits were used as per manufacture protocol. The other 
buffers used are listed below. 
 
 Lysis buffer for genomic DNA isolation: 
  Solution A (10x): EDTA   25 mM 
     NaCl   75 mM 
 
  Solution B (10x): EDTA   10 mM 
     Tris-HCl (pH 8.0) 10 mM 
     SDS   1% 
 
 NaI-Solution:  NaI   90 g 
    Na2SO3  1 tea spoon 
    Distilled water 100 ml 
 PBS-Buffer (1x): (without Mg2+, Ca2+)  pH 7. 4 
    NaCl   137 mM 
    KCl   2.7 mM 
    Na2HPO4  10 mM 
    KH2PO4  2 mM 
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 PCR-Buffer (10x):  
    Tris-HCl (pH 8, 8) 75 mM 
    (NH4)2SO4  20 mM 
    MgSO4  2 mM 
    Tween 20   0.1%  
 
 DNA loading dye (6x):  
    Bromophenolblue 0.25% (w/v) 
    Xylen-Cyanol  0.25% (w/v) 
    Saccharose  40% 
 
 TBE-Buffer (5x): Tris-Base  54 g 
    Boric acid  27.5 g 
    EDTA   20 ml (0.5 M) pH 8,0 
    distilled water ad 1 l  
 
 TE-Buffer (10x): Tris-HCl (pH 8,0)  100 mM 
    EDTA (pH 8,0) 10 mM 
 
 20x SSC  NaCl     175.3 g 
    sodium citrate  88.2 g 
    distilled water  ad 1 litre (pH 7.0) 
  
 20% PEG 4000 PEG 4000  20 g 
    distilled water  100 ml  
    
 30% polyacyrlamide solution (37.5:1) 
    Acrylamide  150 g 
    Bis-acrylamide 4 g 
    distilled water  500 ml 
     
 Radio immuno precipitation Assay Buffer (RIPA lysis buffer)  

  Tris pH 7.5   20 mM 
  NaCl    150 mM 
  Nonidet P-40  1%   
  Sodium Deoxycholate 0.5% 
  EDTA    1 mM 
  SDS   0.1%  

 Protease inhibitors cocktail was mixed before performing protein extraction 
 
 Proteinase K (20mg/ml) proteinase K  20 mg 
       distilled water 1 ml 
 
 Hybridization Solutions 
  Denaturation buffer:  
    NaCl   1.5 M 
    NaOH   0.5 M 
  Neutralization buffer 
    Tris –HCl (pH 7,4) 1 M 
    NaCl   1.5 M  
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 0.5 M Sodium Phosphate Buffer (pH 7.2)  

  Solution A: Na2HPO4, 2H2O (1M): 177.9 g 
          distilled H2O:  1 litre. 
  Solution B: NaH2PO4, H2O (1M): 137.99 g 
          distilled H2O:  1 litre 
 Mix solution A and B for 1 litre of Sodium Phosphate Buffer 
 (0.5 M pH 7.2) as follows: 
   Solution A:   342 ml 
   Solution B:   158 ml 
   distilled H2O:   500 ml 
 

 Church Buffer: 
   Sodium Phosphate Buffer (0.5M pH 7.2) 0.25M 
   EDTA (0.5M)     1 mM 
   BSA      1% 
   SDS      7% 
 
 IPTG  Isopropyl-b,D-thiogalactoside (IPTG) 1.19 g  
   distilled water       5 ml 
   filter sterilize and Store at -20°C 
  
 20% X gal X gal     20 g 
   Dimethyl Formamide  100 ml 
  
 For Bacterial cultures 
  Antibiotic   1000X Stock concentration   
  Ampicillin   100 mg/ml in ddH20   
  Chloramphenicol  34 mg/ml in 100% EtOH  
  Kanamycin   40 mg/ml in ddH20  
  Tetracycline  15 mg/ml in 70% EtOH 
 
II.1.12 Media 
 
 Cell culture 
  DMEM   PAN Biotech, Aidenbach, Germany 
  RPMI    PAN Biotech, Aidenbach, Germany 
  
 Bacterial culture 
  
 LB media (pH 7, 0)     
  Bactro -trypton 20 g    
  Yeast extracts  5 g    
  NaCl   10 g    
  distilled water  1 litre and autoclave   
 
  For LB plates add 15 g bacto-agar in 1 l of LB media and autoclave 
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 SOC-Medium: (pH 7, 0)  
  Bactro -trypton 20 g 
  Yeast extracts  5 g 
  NaCl   0.5 g 
  KCl    10 ml (250 mM) 
  distilled water ad  1 litre   
  Autoclave and then add       
  Glucose  20 ml (1 M)     
  MgCl2    5 ml (2 M)     
  
 
II.1.13 Primer Tables 
 

 
 
Table 2:  Primers Table for DNA methylation analysis of bovine DMRs 
Primers used for polymorphism search and for bisulfite analysis for bovine putative imprinting 
centers. Here SN primer for H19 DMR is the SNuPE primer used for analyzing the SNP in additional 
individuals.  
 
 

 
Table 3: Primer Table for expression analysis in bovine BWS region 
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Table 4: Primers used for conserved NICE elements analysis 
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II.2 Methods 

 

II.2.1 Sequence analysis and identification of putative imprinting centers in 

 bovine and conserved elements at KvDMR1 imprinting sub domain 

 

The human chromosome 11 genomic sequence (NT_009237.17: 1694216-755779) 

spanning from MRPL23 till CDKN1C gene covering the entire human BWS region 

was used to screen the bovine sequences by BLAST (NCBI: 

http://www.ncbi.nlm.nih.gov/) or BLAT (Baylor college of medicine: http:// 

www.hgsc.bcm.tmc.edu) in the public server databases. Bovine BAC sequences 

AC150790, AC149767, AC169103.2 AC151859, and AC151858 covering the entire 

Kcnq1 gene were obtained from NIH intramural sequencing center 

(http://www.nisc.nih.gov) (Paulsen, Khare et al. 2005). Similarly the entire human 

Snrpn locus (NT_026446.13:1503593-2099408) spanning app. 150 kb, 5’of the first 

exon to the last exon of the gene was used. Bovine sequences NW_205360 and 

AY743660 were obtained at the Snrpn gene locus. Sequence alignments were 

performed by pipmaker (http://pipmaker.bx.psu.edu/pipmaker/) software and CpG 

island searches were done by CpG Plot (http://www.ebi.ac.uk/emboss/cpgplot/) 

software. Annotated exons of the genes in the respective region and CpG island 

harbouring imprinting centers from human sequences were aligned against mouse 

sequences as well as bovine sequences by multipipmaker. CpG islands at the 

conserved location to imprinting centers in bovine sequence were selected as putative 

imprinting centers. Tandem repeat analysis on the selected CpG islands were 

performed by Tandem Repeat Finder (http://tandem.bu.edu/trf/trf.html) software. 

 

Multiple sequence alignments at BWS region also revealed the presence of highly 

conserved segments of sequences within the introns of Kcnq1 gene. These were also 

analyzed in multiple alignments for additional species such as galago (AC147392, 

AC148124, AC187417, AC149008, AC187174, AC148957, AC183696), bat 

(AC149442, AC146964, AC146963) dog (AC147594), armadillo (AC147402, 

AC147403, AC148922, AC151936, AC152478, AC184042, AC190096) and chicken 

(BX640540, BX640401, BX649221, BX649222, BX640404, AP003796, AP003795, 
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BX663531). These conserved segments were called NICE (Neighbourhood of 

Imprinting Center Element).  

 

II.2.2 Sample and sequence information 

 

Bovine sample material was obtained from Institute of Molecular Animal Breeding 

and Biotechnology, Gene Center of the Ludwig, Maximilian University Munich, 

Germany. Procedure for oocyte recovery, in-vitro maturation of oocytes and 

thereafter IVF, culturing and embryo transfer are described in Hiendleder et al 2006. 

 

Heifers diagnosed pregnant were slaughtered in a local abattoir on day 80 after IVF 

or artificial insemination. Foetal parameters such as foetal weight and length, and 

foetal organ weights (heart, kidney, liver) were recorded. Liver samples were 

collected from the tip of the Lobus hepatis sinister, muscle samples were obtained 

from the Musculus gluteus maximus and brain samples were collected from the upper 

left hemisphere of the cerebrum. (Hiendleder, Wirtz et al. 2006) 

 

Two sires, 22 dams and 45 foetuses, constituting different bovine families, were 

analyzed for DNA methylation studies at putative imprinting centers.  

 

Mouse samples were collected from 9.5 dpc (days post coitus) in order to analyze the 

DNA methylation state of the conserved elements. Sample material was 

nomenclatured as “placental embryo” (PE), if extracted from placental part near to 

foetus, placenta maternal (PM), when extracted from placental part near uterus and 

“embryo” (E) for embryo proper. Each sample was genotyped in order to check the 

parental contribution. Crosses between inbred strain C57/B6 and SD7 (strain 

containing a part of the distal chromosome 7 of mus spretus SEG (Hemberger, 

Redies et al. 1998)) were checked by genotyping for the Tnni2 gene (performed by 

Joe Weber) while B6xSD7 embryos were checked by genotyping for the Osbpl5 

gene. SNuPE reaction protocol is same as performed for the polymorphism check at 

bovine H19 DMR (discussed later). The Tnni2 gene was analyzed for A/C 

polymorphism and Osbpl5 for T/C and C/T polymorphisms. SNuPE primer and 
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polymorphism location is indicated in Table 4. Samples showing equal parental 

allele contribution were taken for DNA methylation analysis. 

 

II.2.3 Polymorphism search by direct sequencing, restriction digestion and by 
 SNuPE 
 

PCRs were performed for polymorphism search in bovine foetuses with primers 

listed in Table 2. All PCRs were performed in presence of 1.5 mM MgCl2, 1.3% 

DMSO and 1.3 M betaine as final concentration. Obtained PCR products were 

precipitated by PEG 4000 and were subjected for direct sequencing, restriction 

digestion and SNuPE analysis. 

 

Direct sequencing was performed with BigDye Terminator v3.1 Cycle Sequencing 

Kit's from Applied Bio systems (Foster City, CA, USA). Sequencing reaction was 

performed according to manufacturer’s protocol with the modification of 2 µl of 

terminator Dye in the sequencing reaction and with additives 1.3% DMSO and 1.3 M 

betaine as final concentration. Sequencing reactions were then purified by sodium 

acetate ethanol precipitation method (2 µl Sodium acetate 1.5 M and 250 mM EDTA 

to 50 µl 100% ethanol). Sequencing products were dissolved in 20 µl of loading dye 

(0.01 g crystal violet in 1ml deionised formamide). Before casting the sequencing 

gel, the sequencing plates were cleaned with 5 M NaOH, 2% alqinox detergent and 

distilled water. Thereafter gel solution was prepared by adding 250 µl of 10%APS, 

35 µl of TEMED (N,N,N',N'-tetramethyl ethylene diamine) to the 5% 

polyacyrlamide solution, mixed, vacuumed and poured between the assembled 

plates. The comb was placed in reverse direction and fixers were tightened. The gel 

was left for 1 hour and 30 minutes to polymerize and was prerun for 30 minutes in 

TBE (10mM Tris HCl and 1mM EDTA) buffer. The samples were loaded on the gel 

after denaturation at 95°C for 5 minutes. The electrophoresis was performed in ABI 

Prism 377 DNA sequencer (version 3) at run voltage of 1.68 kV; current of 50 mA; 

electrophoresis power of 150 W; gel temperature of 51°C and laser power of 40mW 

and the running time was 7 hours for complete run. The analysis of the gel was done 

with ABI PRISM 100(version 3) with the instrument file dRhodamine and the 

sequences were analyzed for SNP by SeqAlign from Laser Gene software 

(DNASTAR, Inc, Madison, WI USA) and also manually. 
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The obtained SNP’s (Table 5) were cross checked with parent allele information. 

Polymorphism at bovine KvDMR1 was localized at “AAT (T/C)”; therefore 

additional individuals for KvDMR1 polymorphism were checked by restriction 

digestion with TasI at 60°C for 3 hr. The digested PCR products were visualized on 

2% agarose gel.  

Polymorphism at H19 DMR for additional individuals was checked by SNuPE 

reaction. The PEG 4000 precipitated PCR products were subjected to SNuPE primer 

(SN primer for H19 DMR indicated in Table 2) with ddCTP and ddTTP as extension 

nucleotides, cycled for 2’ 95°C followed by 50 cycles at 95° for 45”, 55° for 1’ and 

60° for 2’ in Eppendorf thermocycler (Eppendorff, Hamburg Germany). SNuPE 

reaction was carried out in 20µl of volume, with 3.6 µM SNuPE primer, 0.05 mM 

ddNTPs, 0.15 U Thermo Sequinase (Amersham) in reaction buffer supplied by the 

manufacturer. Extension products were later separated on dHPLC. (WAVE DNA 

Fragment Analysis System, Transgenomics) 

 

 
Table 5: Location of detected polymorphism at H19 DMR and KvDMR1 centers  
 
 
Polymorphisms search in conserved elements was performed in mouse strains 

C57BL/6, PWK, SD7 and molossinus. Primers and PCR conditions are listed in 

Table4. PCRs were performed on genomic DNA of the above stated strains, were 

PEG 4000 precipitated and later subjected for direct sequencing on automated 

sequencer from Beckman Coulter (Beckman Coulter GmbH, Krefeld, Germany) 

Polymorphism was observed between C57BL/6 and SD7 in two of the selected NICE 

elements (polymorphism site is indicated in Table 4) where CpG content was >10 

CpG dinucleotides. The DNA methylation analysis was performed in at least 2 of the 

reciprocal crosses i.e. SDxB6 and B6xSD7 crosses. 
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II.2.4 Bisulfite modification, cloning, sequencing and analysis 

 

II.2.4.1 Principle of bisulfite modification 

 

The reaction between pyrimidines and sodium bisulphite was first described in early 

1970s (Shapiro, Cohen et al. 1970; Shapiro and Weisgras 1970). In the first step of 

the bisulphite reaction, cytosines are sulphonated and deaminated and this reaction 

converts cytosine to uracil sulphonate. A subsequent desulphonation at a basic pH 

completes the conversion from uracil sulphonate to uracil (Figure 12).  

 
Figure 12: Chemical reaction for bisulfite conversion and modification  
 
 
Methylation at cytosine residue protects from being converted to uracil on bisulfite 

treatment. The most critical step in bisulphite modification of the genomic DNA is 

denaturation. Sodium bisulphite can only react with cytosine which is not involved in 

base-pairing. It is so because only bases that can adopt a syn conformation can 

undergo substitutions at position 6 (Schweizer, Witkowski et al. 1971), and in 

double-stranded DNA, this is not possible because base-pairing locks the ring in an 

unreactive anti-conformation (Shapiro, Braverman et al. 1973). Once the cytosine 

residue has reacted, the base-pairing is no longer possible (Schweizer, Witkowski et 

al. 1971). Presence of high salt concentration in a standard reaction (3–5 M) favours 

the re-annealing of strands and this increases the risk of incomplete reaction (Rein, 

Zorbas et al. 1997). Various technical modifications to this procedure have been 

attempted to reduce strand annealing, such as digesting the DNA prior to 

modification and then performing the reaction in a thermocycler with repeated 
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heating steps to 95°C(Rein, Zorbas et al. 1997). This approach suffers from the 

problem that DNA is very prone to depurination and repeated heating to 95°C 

combined with a reaction at acidic pH 5 can severely degrade the DNA. A more 

successful approach was to embed the DNA in low melting point agarose blocks 

(Olek, Oswald et al. 1996). This approach not only restricts the re-annealing of DNA 

strands, but also eases the subsequent reaction steps and reduces DNA losses from 

downstream purification procedures. 

 

II.2.4.2  Protocol 

 
II.2.4.2.1 Genomic DNA isolation 
 
Tissue samples were lyzed in 750µl lysis buffer (10 mM Tris HCl pH 8, 75 mM 

NaCl, 0.5M EDTA, 1% SDS) with 70 µl of proteinase K (20 mg/ml) and incubated 

at 50 °C overnight on a thermo shaker. Equal volumes of phenol (pH 8) were added 

to each sample and were placed on a rotator at room temperature for 15’ for thorough 

mixing. Samples were then centrifuged at 14000 rpm for 5’ and the supernatant was 

collected in a separate tube. Chloroform and isoamylalcohol  (24:1 v/v) extraction 

was then performed twice on the sample before precipitating the DNA with 

isopropanol, and the pellets were washed twice with 70% ethanol. Air dried pellets 

were dissolved in an appropriate volume of 10 mM Tris (pH 8) and measured in 

spectrophotometer for the DNA concentration at 260 nm wavelength.  

These DNA samples were later used for bisulfite treatment or for PCR amplification 

for the polymorphism search. Oocyte samples were treated in a different way 

(described below) for the bisulfite treatment. 

 

II.2.4.2.2 Bisulfite treatment on beads 

 

Genomic DNA (700 ng) was digested overnight with HindIII restriction endo 

nuclease (Roche) in 21 µl of reaction volume at 37°C. Restriction digested DNA was 

denatured in boiling water for 15 minutes and then immediately placed on ice for 

further treatment. Four µl of 2 M NaOH were added to each sample (final 

concentration 0.3M) and incubated at 50°C for 15 minutes. Fifty µl of 2% low 

melting agarose (SeaPlaque Agarose, FMC) were used per sample and of which 10 

µl were taken to form the beads in ice cold heavy mineral oil (Heavy white mineral 
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oil, Sigma). One ml of freshly prepared 2.5 M bisulfite solution (pH 5) (1.9 g sodium 

bisulfite with 720 µl of 2M NaOH in 2.5ml distilled water was mixed with 55 mg of 

hydroquinone in 500 µl distilled water and was added to each sample tubes. Brief 

centrifugation was performed in order to reverse the phase, i.e. sodium bisulfite 

solution goes under the heavy mineral oil and the beads are then in bisulfite solution. 

Tubes were incubated initially on ice for 30 minutes and then at 50°C for 3.5hr. 

Beads were washed two times with TE (pH 8) for 15 minutes and then treated twice 

with 0.3M NaOH for 15 minutes. Later two washes with TE (pH 8) for 15 minutes 

were performed to remove the last traces of NaOH. All the solution from the tube 

was drained out and only the intact beads were stored at 4°C for further use in PCR 

amplification. 

 

II.2.4.2.3 Bisulfite treatment in liquid 

 

Genomic DNA (700 ng) was digested overnight with HindIII (Roche) in 21µl of 

reaction volume at 37°C. Thereafter the solution containing 187 µl of sodium 

bisulfite (1,9gm sodium bisulfite in 2,5ml distilled water and 750 µl of 2M NaOH) 

and 73 µl of scavenger solution (98.6 mg of 6 hydroxy-2,5,7,8 tetramethylchroman-

2-carboxylic acid (Aldrich Steinheim Germany) in 2,5ml of 1,4 dioxan (Mereck 

Damstadt Germany)) was added to each sample tube. This DNA-bisulfite solution 

was cycled in a PCR machine; 99°C for 15’, 50°C for 1hr30’, denatured at 99°C for 

5’ and again incubated at 50°C for 1hr and 30minutes. The desulphonation and 

purification steps were performed in Microcon 50 columns (Millipore corporation 

Bedford USA). In brief, samples were loaded on the column and centrifuged at 

maximum speed (14000rpm) for 15 minutes, and later were washed with 500 µl of 

TE (pH 8) and again centrifuged at maximum speed for 10 minutes. Samples in 

columns were then treated with 500 µl of 0.3M NaOH for 10 minutes and were 

centrifuged to remove the NaOH solution. One time wash with TE was done and 

then 50 µl of warm (50°C) TE was added, columns were turned upside down and 

transferred in the new tubes. Centrifugation at 3000 rpm for 20 minutes was 

performed in order to elute the sample DNA from the column. 
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II.2.4.2.4 Bisulfite treatment on oocytes 

 

At least 50 oocytes were taken for a bisulfite reaction. These oocytes were mixed 

with 15 µl 2% LMP agarose and were heated in boiling water for 15 minutes. Before 

boiling, heavy mineral oil is overlaid on the oocyte-agarose solution. Samples were 

cooled down on ice in order to form one agarose bead where oocytes are already 

embedded. To this 750 µl of lysis buffer without SDS (10 mM Tris HCl pH 8, 75 

mM NaCl, 0.5 M EDTA) and 70 µl of proteinase K (20 mg/ml) were added and 

incubated at 50°C for overnight at thermo shaker. Next day beads were washed with 

distilled water once and subjected to the protocol mentioned before for the bisulfite 

treatment on beads (section II.2.4.2.2). 

 

II.2.5 PCR amplification from bisulfite treated DNA 

 

Bisulfite modified genomic DNA beads were melted and 5 µl (or 3 µl from liquid 

bisulfite treatment) of it were added in 50 µl of PCR reaction mix for the 

amplification of the region of interest. PCR was performed with HotStarTaq DNA 

polymerase (QIAGEN GmbH, Hilden, Germany) at 95°C for 15’ followed by 40 

cycles of 95°C for 45”, Tm for 45’’ and 72°C for 1 minute. Last step of extension 

was performed at 72°C for 10 minutes. 

 

The obtained PCR products were purified from gel by QIAEX II Gel Extraction 

(QIAGEN GmbH, Hilden, Germany) , cloned in pGEMT (Promega Madison, WI, 

USA) or pCR-TOPO2.1 (Invitrogen, Paisley Scotland) vector and were sequenced 

using standard methods either on Beckman Coulter (CEQ™ 8000 Genetic Analysis 

System, Fullerton, CA, USA) or at Berlin (Max Planck Institute for Molecular 

Genetics, ProScience Berlin). Sequence analysis of the bisulfite cloned sequences 

was performed with BiQ analyzer software. (Bock, Reither et al. 2005) 

 

Bisulfite primers and PCR conditions for bovine putative imprinting centers are 

listed in Table 2 while for mouse conserved regions; they are listed in Table 4. 
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II.2.6 COBRA and semi-quantification 

 

II.2.6.1 Principle of COBRA 

 

Bisulfite modification of a genomic DNA converts cytosine residues to uracil and 

subsequent PCR amplification on the modified DNA, changes uracil to thymine in 

the amplicons. By this modification many of the restriction enzyme recognition sites 

are mutated. This mutation of cytosine to thymine residues most often disrupts the 

restriction sites; however in few instances it also creates a new recognition site. In 

contrast, if the methylated cytosines are present in restriction recognition sites, then 

there will be no conversion of cytosine to thymine, and eventually no disruption of 

the sites. When the obtained PCR products are subjected to the restriction digestion, 

it shows a distinct digestion pattern. This can be visualized on separating agarose or 

polyacyrlamide gels. Presence of digested or undigested amplicons represents the 

methylated or unmethylated templates in the unconverted genomic DNA (Figure 13) 

 

 
Figure 13: Principle of COBRA technique  
Conversion of cytosine to thymine in unmethylated templates abolishes the BstU I site shown as 
cross. Lanes in the separating gel are undigested PCR product (1), digest with BstU I (2, 4) and 
digests with Tas I (3, 5). Each digestion pattern represents a different state of methylation at a 
locus in the genomic DNA e.g. lane 2 shows complete methylation state when digested with BstU 
I enzyme. Similarly lane 3 shows complete digestion with Tas I which is a new site created from 
bisulfite modification of unmethylated genomic DNA and then PCR amplification. While mixed 
means PCR amplicons (from bisulfite treated DNA) are generated from both types of templates 
methylated and unmethylated genomic DNA. 
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II.2.6.2 Protocol 

 

PCR products from bisulfite treated DNA, were enriched by a second round of PCR 

for COBRA analysis. One µl of the first round PCR products were again amplified 

with same primers for another 20 cycles and were analyzed by different combination 

of enzymes for COBRA analysis (combinations and conditions are listed in Table 6). 

Restricted digest samples were run on 2.5% agarose gel in 1x TBE buffer (10 mM 

Tris HCl and 1 mM EDTA). Semi-quantification of digested bands was performed 

by calculating band intensities with the Total Lab software (Biostep GmbH, 

Jahnsdorf Germany). Band intensities of a single lane was taken in measurement but 

was also cross-checked with the intensity of undigested input. (Table 6) 

 

 
 

Table 6: Combination of restriction enzyme used in COBRA analysis 
All COBRA digestions were performed for 3 hours at the indicated temperature in degree Celsius 
(°C). Semi quantification was performed according to the formulae stated in the Table. 
Conversion by bisulfite treatment disrupts the restriction sites, but is not affected if methylated 
(digesting amplicons from methylated templates). Likewise some additional sites are created 
(digesting amplicons from unmethylated templates). Conversion rate is checked either by creation 
of site or by disruption of a site indicated by “con”. 
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II.2.7 RT-PCR and hybridization 

 

Bovine tissue RNA was prepared by the conventional protocol of Chomczynski and 

Sacchi. (Chomczynski and Sacchi 1987) In brief, tissue material (100 mg) was 

homogenized on ice in 1 ml lysis buffer (4M guanidin-thiocyanat, 25 mM sodium 

citrate, 0.5% N-lauroylsarcosin, 0.1M beta mercaptoethanol dissolved in DEPC 

treated water). After complete homogenization, phenol chloroform extraction was 

performed in order to remove the proteins, lipids and genomic DNA. Equal volume 

of acidic phenol (pH 4) was added and centrifuged at 5000 rpm at 4°C; supernatant 

was collected and extracted twice with chloroform /isoamylalcohol (24:1). Extracted 

RNAs was precipitated by isopropanol / ethanol method and were dissolved in DEPC 

treated water. The obtained RNA was later treated with DNase enzyme in order to 

degrade any DNA present. One µl of DNase was added in 50 µl of RNA solution, 

incubated at 37°C for 30 minutes and then inactivated the DNAase enzyme by 

incubating at 95°C for 15 minutes. Thereafter RNA was once again extracted by the 

phenol-chloroform-isoamylalcohol procedure and this time RNA was precipitated by 

ethanol precipitation method. The obtained RNA pellet was dissolved in 25 µl of 

DEPC water and was quantified in a spectrophotometer at 260 nm of wavelength.  

 

Reverse transcription was performed with M-MLV reverse transcriptase, RNase H 

Minus (Promega). Two µg of RNA were reverse transcribed in 1x buffer (provided 

by the manufacturer) supplemented with 6 µl dNTP (1,25mM of each dNTP), 0.5µl 

of RNAsin (40 units/µl), 0.2 µl random hexamers (500 µg/ml) and 1µl of reverse 

transcriptase (200 units/µl) (Promega). Reverse transcription was carried out at 37°C 

for 90 minutes and thereafter transcriptase was inactivated by heating to 90°C for 15 

minutes. 

 

Gene amplification was performed using gene specific primers listed in Table 4. All 

PCRs were performed for 95°C for 5’ followed by 95° for 30 seconds, 58° for 30 

seconds and 72° for 1 minute for 22 cycles (except for PolyA polymerase gene, the 

annealing temperature was 55°C). For 18srRNA gene PCR amplification was 

performed for 20 cycles and 1/3rd volume of cDNA was taken for control genes 

18srRNA, ß actin and Gapdh. The Igf2, Phlda2 and Cdkn1c genes were amplified in 

presence of 1.3 M Betaine and 1.3% DMSO as final concentration. Amplified 
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products were then run on 1.5% agarose gel, stained with ethidium bromide and 

photographed. Later the gels were subjected for denaturation for 15’ (1.5M NaCl and 

0.5M NaOH), neutralization for 15’ (1M Tris pH 7.4 and 1.5 M NaCl) and the RNA 

was transferred (blotted) on a positively charged nylon membrane (Roche, Basel 

Switzerland).  

 

Probes for different genes were obtained by amplifying from the genomic DNA. 

These probes were labelled with alpha 32P dCTP (10 mCi/ml, MP bio-medicals 

Germany) using high prime premixed labelling kit from Roche (Roche Applied 

Science, Basel Switzerland) at 37°C for 30 minutes and later purified by Amersham 

G25 columns (Amersham Biosciences NJ, USA). Before hybridizing the membranes 

with probes for overnight at 60°C, membranes were prehybridized with Church 

buffer (sodium phosphate buffer 0.25M pH 7.2, EDTA 1 mM, BSA 1%, SDS 7%) at 

65°C for 2 hr. Next day 3 washes with 2x SSC and 1%SDS and 3 washes with 0.2x 

SSC and 1% SDS were performed. Membranes were washed briefly with distilled 

water and wrapped in cellophane film before putting them for the exposure to 

Fujifilm super medical X ray films (Fujifilm UK). Exposures were performed for 1 

hr, 4 hr at room temperature and overnight at -80°C. For PolyA polymerase and 

Gapdh the exposure time was also extended to 4 days at -80°C. Band intensity 

quantification was performed by Image Quant software using default parameters. 

(Amersham Biosciences NJ, USA) 

 

II.2.8 Plasmid Construct preparation for transient transfection assays  

 

Analysis of conserved elements for different regulatory functions such as promoter, 

enhancer and silencers were performed by dual luciferase assays.  

 

Plasmid constructs were made for promoter/ enhancer assay by utilizing pGL3 based 

vectors (Invitrogen, Paisley Scotland). NICE elements were initially cloned in 

pCR2.1 vector (Invitrogen, Paisley Scotland) and thereafter HindIII / XhoI as well as 

Acc651 / XhoI sites were used to insert the NICE elements in both orientations into 

pGL3 basic vector (Acc. No.U47295). Though these constructs contain parts of 



Material and Methods 

 49 

vector pCR2.1, and these parts have some enhancing activity in HEK293T cells but 

they showed no promoter activity. In order to have endogenous condition, we cloned 

KvDMR1 promoter from mice into pGL3 basic vector. Initially KvDMR1 promoter 

was digested with PstI (AJ271885.2: 138671-142304) and a 3.6kb fragment was 

cloned in pCR2.1. Thereafter it was cleaved by Acc65I and HindIII (3.0 kb: 

AJ271885.2: 139280-142304) to clone in pGL3 basic vector in the known promoter 

orientation. KvDMR1 in pGL3 constructs were later digested with SalI, end filled 

and to it blunt end NICE elements were cloned. The end filling of the fragments were 

performed by Klenow fragment DNA polymerase (Boehringer, Mannheim Germany) 

according to the manufacturer’s protocol. In brief, to the digested vector and insert 

DNA add Klenow buffer to 1x as final concentration, 40µM of each dNTP and 1 unit 

of Klenow fragment DNA polymerase. Incubate the reaction at 37°C for 10 minutes 

and then stop by heating the mixture for 10 minutes at 75°C. Later perform gel 

isolation of the linearized vector and insert for the appropriate ligation reactions. 

 

In order to check the promoter influence, KvDMR1 was replaced by SV40 promoter 

where SV40 was cleaved out from pGL3 SV40 promoter reporter construct 

(U47298). 

 

To check the influence of tandem repeats present in KvDMR1, the repeats were 

cleaved from the KvDMR1 promoter at Ecl136II and EcoRV (AJ271885.2: 140488-

142304) and religated. In this way approximately 2,0Kb from the promoter construct 

was removed. This deletion resulted in removal of almost all tandem repeats 

including conserved motifs. (Paulsen, Khare et al. 2005)  

 

      A) 
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B) 

 

 C)  

 

Figure 14: Plasmid constructs used in different transfection assays 
A) Plasmid vector maps of pGL3 (Promega)  
B) Constructs for promoter assay and for the influence of NICE elements on KvDMR1 or SV40 
promoter activities. 
C) Constructs with the KvDMR1 with deleted repeats as promoter. 

 
 
Influence of Hand1 on NICE elements was performed by co-transfection assays, 

where Hand1 constructs were the kind gift from Paul Riley (Molecular Medicine 

Unit, Institute of Child Health; London. Described in (Scott, Anson-Cartwright et al. 

2000)).  
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II.2.9 Promoter/enhancer assays by Dual Luciferase assay  

 

Transient transfections were conducted with Lipofectamine 2000 (Invitrogen, Paisley 

Scotland). For single test plasmid transfection, 800 ng of construct DNA was 

transfected with 5ng of control renilla firefly luciferase (pRL having CMV promoter 

(Promega) for normalization) plasmid. Transfections were performed by standard 

protocol in 24 well plates with the modification of 1.5µl of Lipofectamine 2000 

instead of 2 µl. In brief, 1x105 cells were plated in 500 µl of growth medium without 

antibiotic one day prior to the transfection. At the time of transfection the cells were 

70-90% confluent. The construct test DNA and control pRL plasmid DNA were 

diluted in 50 µl DMEM without serum or in OptiMEM (Solution A). In separate 

eppendorf tube 1.5 µl of Lipofectamine 2000 were added in 50 µl of media or 

OptiMEM and thereafter both the solutions were mixed after 5 minutes of incubation 

at room temperature. This solution mixture was then incubated at room temperature 

for 30 minutes so that complexes can be formed between plasmid DNA and the 

lipofectamine agent. Later, the mixture was added drop wise on to the cells and 

mixed gently by rocking the plate back and forth. Transfected cells were incubated at 

37°C at 5% CO2 for 30hr. 

 

After desired incubation at 37°C, cells were washed twice with 500 µl of 1x PBS and 

were harvested by adding 200 µl of passive lysis buffer 1x (Promega) and incubated 

at room temperature for at least 30 minutes. Transfection analysis was carried out 

with 10µl of lysate in 50 µl of LARII and then 50µl of STOP and GLOW buffer 

(Promega). Luciferase readouts were carried on a Berthold lumat illuminometer (LB 

9507; Bad Wildbad Germany) for 10 seconds. Transfections were carried out in 

triplicates and at least three independent transfections were made for each 

experiment.  

 

In co-transfection assays, equal quantity of test constructs were transfected with 

control plasmid i.e. test plasmid I (400 ng) + test plasmid II (400 ng) and pRL 

control plasmid (5 ng). Harvesting of the cells was done after 72 hr of transfection, 

this time point was taken after optimization by a time assay (discussed in results). 
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Co-transfection was performed for each test construct i.e. NICE element, against 

Hand1 construct or with pcDNA3 vector in which Hand1 is cloned. Transfections in 

HEK293T cells were done according to standard protocol of transfections in 24 well 

plates.  

 

Transfections in C2C12 cells were performed similarly with the modification that the 

media was replaced by OptiMEM before transfection. After transfection, cells were 

serum starved for 6hr at 37°C and 5% CO2 and then only OptiMEM was replaced by 

complete media.  

 

Table 7: Transient transfection methods used in different cell lines 
 
 
II.2.10 Western blot 

 

The trypsinized cells were spin down after 1 time wash with PBS. Collected cells 

were lyzed in 20µl of RIPA lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% 

Nonidet P-40, 0.5% Sodium Deoxycholate, 1 mM EDTA, 0.1% SDS) with 

proteinase inhibitor cocktail (SIGMA) and incubated on ice for 30 minutes. During 

incubation, samples were tapped at every 5 minutes. Lyzed cells were incubated for 

10 minutes in boiling water and were centrifuged at 14000 rpm for 10 minutes. The 

supernatant was collected and now the samples were ready for loading on SDS 

PAGE.  

 

SDS PAGE (polyacyrlamide gel electrophoresis) gel is comprised of running gel and 

stacking gel. Stacking gel concentrates all the protein before they can be resolved on 

running gel. After assembling the glass plates, 10% resolving gel (10% acrylamide 

mix, 0.4 M tris (pH 8.8), 0.1% SDS and for polymerization 100 µl of 10% APS & 4 

µl TEMED for 10ml resolving solution) was poured to about 1cm below the wells of 

the comb (app. 5 ml). The gel was sealed with water saturated 1-butanol and left for 

at least 1hr for gel polymerization. Later water saturated 1-butanol was poured off 

and 5% stacking gel solution (5% acrylamide, 0.125M Tris (pH 6.8), 0.1% SDS and 
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for polymerization 50 µl of 10% APS & 2 µl TEMED for 5 ml stack solution was 

added and was increased according to the volume) was added and the comb was 

inserted. When the stacking gel was polymerized, the plates with the casted gel were 

placed in the gel rig and were immersed in running buffer (0.025 M Tris pH 8.8, 

0.192 M glycine, and 0.1% SDS). Wells were thoroughly washed before loading the 

samples with 2x Laemmli loading buffer (130 mM Tris HCl pH 6.8, 10% Glycerol, 

4% SDS, 0.02 % bromophenolblue and 4% ß mercaptoethnaol). Twenty µg of 

protein extract was loaded and the gels were run at constant current of 35-37mA. 

Before transferring proteins from SDS PAGE to PVDF (polyvinylidenedifluoride) 

membrane, the membrane was wetted with 100% methanol for 30 minutes on rocker. 

After pre-wetting in 1x transfer buffer (0.025 M tris pH 8.3, 0.192 M glycine) 

membrane and the gel were assembled as a “sand-witch” for Tank-Electro Blotter 

(PeqLab, Erlangen Germany) in the following manner “sponge-filter paper-gel-

membrane-filter paper-sponge”.  Transfer of proteins from gel to membrane was 

performed in was performed at 2 mA/cm2 for overnight at 4°C on stirrer.  

 

The pre-stained protein marker lane was cut off from the membrane after the transfer 

of the proteins to the membrane and the membrane was incubated in blocking buffer 

(10% BSA in 0.02% Tween 20 PBS) at room temperature (22°C) for 4 hours. 

Thereafter the first antibody (1:1000; Hand1 polyclonal antibody raised in rabbit) in 

2.5% BSA was added and incubated overnight at 4°C with constant agitation. Next 

day the membrane was washed 3x with 0.05% Tween 20 in PBS before adding the 

second antibody (1:10000; horse radish peroxidase (HRP) conjugated anti rabbit 

antibody) and incubated for 4 hours at room temperature. Membrane was later 

washed 3x with 0.05% Tween 20 in PBS and was processed using the ECL detection 

kit (according to the manufacturer protocol).  

 

II.2.11 Statistical analysis 

 

Chi square statistical analysis was performed to analyze DNA methylation data 

obtained by cloning and sequencing. Only informative individuals were taken in 

account for the statistical analysis. At least 15 clones per sample with an allele clone 

ratio of 0.4-0.6 (allele clones/ total number of clones) was considered for analysis. 
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Pair wise chi square test was executed to compare individual tissues, with the degree 

of freedom as 1. 

 

Student t test (paired comparison) was used to analyze the significance of the 

constructs readouts in different transfection assays. Comparison was performed 

against the reference promoter such as, KvDMR1 promoter, KvDMR1-R promoter 

or SV40 promoter in the respective transfection assays. In co-transfection assay the 

comparison was against the co-transfection with control vector. Triplicates of a 

transfection assay was averaged and considered as one read out of an experiment and 

at least three transfections were analyzed for the statistical analysis
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III Results 

III.1 DNA methylation at bovine imprinting centers 

 
III.1.1 Identification of imprinting centers and informative individuals in bovine  

 

Human assisted reproduction (ART) has been shown to affect epigenetic 

modifications of imprinting centers of the BWS and PWS/AS regions. Localization 

of the relevant genomic elements in bovine using comparative genome analysis was 

initially performed in order to identify the homologous putative DMRs in bovine. 

 

The entire genomic region homologous to the human Beckwith Wiedemann 

syndrome (BWS) region is located on bovine chromosome 29 while the location of 

the PWS / AS gene cluster is still not clear. On comparative sequence analysis of the 

bovine BWS region to human and mouse, we found similar arrangement and order of 

the genes. This also holds true for the location of evolutionary conserved elements 

and known regulatory elements such as the endodermal enhancer elements 

downstream of H19 (Figure 15, Appendix Table 1 & 2) (Ishihara, Hatano et al. 2000; 

Paulsen, Khare et al. 2005). 

 

The chromosomal region of the PWS/AS region is currently neither present in a 

contiguous annotated sequence nor completely covered by overlapping BAC clones. 

Therefore it was not possible to verify the entire structure of the PWS/AS gene 

cluster in bovine. However we identified BAC sequences containing the entire Snrpn 

gene. Performing comparative sequence analysis at PWS / AS region among bovine, 

mouse and human sequences, only Snrpn exons shows sequence conservation (refer 

appendix Table 2 & 4 for the location of the DMR and exons of the Snrpn gene). 

 

In order to identify the putative DMRs, we analyzed various characteristics of known 

imprinting centers in human and mouse. 

 

The H19 DMR is a CpG island which is located about 3 kb upstream of the putative 

H19 transcriptional start. In human, H19 DMR consists of long tandem repeats; i.e. 

400bp A and B repeats while in mouse, different repeats are present: a G rich repeat 
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and so called K-repeats. (Jinno, Sengoku et al. 1996; Stadnick, Pieracci et al. 1999; 

Thorvaldsen, Mann et al. 2002; Lewis, Mitsuya et al. 2004).  This center also 

harbours CTCF protein consensus binding sites 7 in human and 4 in mouse (Bell and 

Felsenfeld 2000). The putative bovine H19 DMR region has similar relative location 

to the H19 gene i.e. 3 kb upstream of the 1st exon of the gene and also possesses long 

tandem repeats of 1,6kb length (Appendix Table 3). The 1,6kb long tandem repeat is 

repeated 3 times and the third replicate is truncated. The bovine putative H19 DMR 

harbours 7 CTCF consensus binding sites, similar to human H19 DMR, and 

consensus binding sites numbered 2 to 6 are present on the 1,6kb long tandem 

repeats. (Figure 16) This center in bovine also contains G rich repeats between CTCF 

binding site and H19 transcriptional start site, similar to the mouse H19 DMR. 

Overall the bovine H19 DMR exhibits considerable structural similarities to both, the 

corresponding H19 DMR in human (large repeated substructures and number of 

CTCF sites) and mouse (G-rich repeats).  

 

We also located the second BWS imprinting center (KvDMR1) at a conserved 

position in intron 10 of the bovine Kcnq1 gene (Figure 15). For human and mouse it 

has been shown that this imprinting center is a promoter of the Kcnq1 antisense 

transcript Kcnq1ot1 (Lit1). Also in bovine the KvDMR1 comprises a CpG island like 

promoter structure (including CAAT boxes) linked to an extensive cluster of short 

tandem repeats. We have shown that the CpG island itself and the repeats exhibit 

only marginal sequence conservation among all mammals. However in different 

mammals the KvDMR1 imprinting center is flanked by a number of highly 

conserved elements. These characteristics i.e. presence of short tandem repeats and 

flanking conserved elements in bovine sequences demarcates the CpG island at 

similar location as the putative KvDMR1 (Figure 16 & Figure24) (Paulsen et. al 

2005) 

 

Similarly in the PWS / AS imprinting region, the DMR is a CpG island and located 

at the 1st exon of the Snrpn gene in human and in mouse. In bovine sequences, the 

corresponding DMR (which is a CpG island) within exon1 region of Snrpn is well 

conserved on the sequence level (Figure 16). 
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Having located all relevant imprinting control elements within the BWS and 

PWS/AS regions in bovine, I then screened our collection of foetuses, corresponding 

dams (if known) and sires for informative polymorphisms. In total 45 foetuses and 

corresponding sires and dams (22 in number) were analyzed in this study. For H19 

DMR and KvDMR1, only one completely informative polymorphisms (i.e. with an 

unambiguous assignment of foetal alleles to their sire and dam origin) and a few 

foetuses in which alleles can be distinguished but were not assigned to the parent 

allele information, were identified. Unfortunately no informative polymorphism 

within the Snrpn DMR or in the imprinted genes at BWS region of all samples 

analysed was found. 

 

III.1.2 Identification of allele specific methylation at the imprinting centers  

 

The selected imprinting centers are primary DMRs (Differentially Methylated 

Regions) i.e. they acquires different DNA methylation marks in the germ line and 

maintain the difference through out the development. Hence initial DNA methylation 

analysis was performed on germ cells i.e. spermatocytes and oocytes. It has been 

shown that the DNA methylation imprints at the imprinting centers are established at 

different stages of oocyte development. Moreover this time dependent imprint 

establishment at an imprinting center was shown to vary between human and mouse 

(Lucifero, Mertineit et al. 2002). Therefore initially the GV stage oocytes were 

analyzed for methylation imprints and later metaphase II oocytes DNA methylation 

imprints were also examined (next section).  

 

The DNA methylation analysis was performed by cloning and sequencing of PCR 

products derived from bisulphite treated genomic DNA.  In addition, the DNA 

methylation imprints at H19 DMR and KvDMR1 for the allele specific DNA 

methylation in completely informative individuals in several foetal and placental 

tissues were also examined. For the foetal tissues DNA methylation analysis another 

technique, COBRA (combined bisulfite and restriction analysis, refer methods 

section II.2.6.1), was also used  
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At H19 DMR, the DNA methylation study included two CTCF sites located within 

the repeated 1,6kb segments of this DMR. Hence amplification resulted in two 

distinct size products (I) harbouring the 3rd CTCF binding including an allele specific 

polymorphism and (II) the 5th CTCF binding site with no informative polymorphism 

(Figure 16). These PCR products can be distinguished by a length polymorphism, 

where product II has an insert “TCTTGAGCTGACCCTGCCTGC”. As with human 

and mouse H19 DMR DNA methylation, the bovine H19 DMR was completely 

methylated in sperm DNA and complete absence of methylation was observed in 

oocytes (GV stages) DNA. This differential DNA methylation was also observed in 

various tissues of the foetus and (partially) in placental tissue (Figure 17 & Figure 

20).  

 

Methylation analysis at KvDMR1 in bovine revealed that sperm DNA was 

unmethylated and the DNA methylation imprints were already present at GV stage 

oocyte DNA i.e. they were completely methylated. The differential DNA 

methylation was also observed at foetal stages in both the embryo and placenta 

(Figure 18 & Figure 20). The third imprinting center the Snrpn DMR also showed 

complete DNA methylation in GV stage oocytes and complete unmethylated state in 

sperm DNA. Here too different foetal tissues and placental tissue were analyzed by 

COBRA (combined bisulfite and restriction analysis) and by cloning and sequencing 

of bisulfite treated template PCR products. (Figure 19 & Figure 20) Both 

independent assays confirmed a DNA methylation level of about 50%. Moreover, 

individually sequenced clones revealed an almost one to one distribution of 

unmethylated and methylated sequences suggesting an allele specific imprint. Due to 

the absence of polymorphisms I was unable to assign the parental allele identity.  

 

In conclusion, all three DMRs (H19 DMR, KvDMR1 and the Snrpn DMR) showed a 

parent of origin specific differential DNA methylation imprint that is established in 

germ cells and maintained after fertilization. However in placenta both H19 DMR 

and KvDMR1 imprints are apparently not fully maintained (Figure 20). This partial 

absence of DNA methylation imprints in placenta contrasts the situation in mouse 

where I (data not shown) and others observed a complete maintenance of differential 

DNA methylation at all three imprinting centers.  
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Figure 16: Bovine putative imprinting centers show differential DNA   
                   methylation in germ cells 
Imprinting centers in bovine were identified by comparison with the characteristics described in 
human and in mouse for the respective homologous center. Upper most panel shows the 
imprinting centers in bovine, indicated with the location of nearest known transcript, presence of 
CTCF binding sites (consensus binding site: CCGCNNGGNGNC ) and the presence of tandem 
repeats. Refer to appendix Table 2 for the genomic location of the DMRs and for tandem repeats.  
Methylated CpGs are indicated by filled circles (●), unmethylated by open (○) and ambiguous 
CpGs by the absence of circles ( ) and each horizontal lane represents the analysis of a single 
clone. H19 DMR bisulfite treatment and amplification has resulted in two products shown as 
product I and II. Here G at H19 DMR is the location of G rich repeat. Numbers above the circles 
indicate the number of CpG analyzed and at KvDMR1 center analysis of 30 CpGs from 47 is 
shown here. Here n.d. refers to not determined. 

 
 
III.1.3 Disruption of imprinting mark at H19 DMR in in-vitro matured oocyte 

 

In bovine, IVF procedures also involve the in-vitro maturation of oocytes before 

subjecting them to fertilization with spermatozoa. Several studies indicate the 

influence of culturing (during maturation of oocytes or post-fertilization culturing of 

embryos) on DNA methylation imprints and hence I next examine the stability of 

DNA methylation imprints in in-vitro maturated oocytes.  
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In in-vitro matured oocytes, the DNA methylation mark at Snrpn DMR was 

unaffected and no significant difference in DNA methylation level was observed 

when compared to GV stage oocytes (p=0.29). Both stages were showing complete 

DNA methylation at the Snrpn DMR. In contrast H19 DMR showed absence of 

DNA methylation in GV stage oocytes, which significantly appears in in-vitro 

matured oocytes (p<0.001). Bisulfite PCR products obtained from matured oocyte 

DNA displayed mostly complete methylated or unmethylated clones and only few 

mosaic clones. (Figure 16) 

 

Similar observations of incorrect imprints at H19 DMR have been reported for in 

vitro maturation of human oocytes. (Borghol, Lornage et al. 2005) Due to the lack of 

PCR amplicons, KvDMR1 DNA methylation was not analyzed for the in vitro 

matured oocyte. 

 

III.1.4 Aberrant DNA methylation in placenta of IVF foetuses 

 

After knowing that the DNA methylation imprints are well conserved in bovine at 

the selected imprinting centers, I next analyzed the stability of DNA methylation 

imprints in IVF derived foetuses. 

 

For an initial screen of different individuals and tissue samples, I used the COBRA 

(combined bisulfite and restriction analysis) technique. In short, bisulfite PCR 

products were subjected to the restriction enzymes digestion and later analyzed by 

agarose gel electrophoresis. After bisulfite treatment and PCR amplification, most of 

the restriction sites are “mutated” due to bisulfite induced base changes, and also a 

few new sites are created. Presence of methylation on cytosine however prevents the 

disruption of some restriction sites. The digestion pattern of PCR amplicons, 

obtained from methylated and unmethylated template, can be easily distinguished.  

 

COBRA analysis revealed that the methylated patterns at the imprinting center at 

PWS / AS region, the Snrpn DMR in AI and in IVF families were no different. Both 

groups showed identical patterns indicative for the presence of both methylated and 

unmethylated sequences (Figure 19). Moreover these patterns do not change in 
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different tissues. The selected PCR products were also cloned and sequenced, and the 

results obtained were consistent to the COBRA results i.e. Snrpn DMR was showing 

equal representation of methylated and unmethylated clones in different embryonic 

and extra-embryonic tissues. Hence the studied IVF foetuses showed no influence of 

the IVF treatment on DNA methylation at Snrpn DMR (Figure 20) 

 

The COBRA analysis at H19 DMR also revealed similar differential DNA 

methylation patterns in different embryonic tissues of AI and in IVF animals. 

However placental tissues were showing variation with mostly reduced DNA 

methylation in IVF animals as compared to the AI animals. Three IVF foetuses 

showed reduced DNA methylation in placenta while one IVF foetus was normal for 

DNA methylation (Figure 17). Cloning and sequencing of bisulfite products revealed 

a substantial loss of paternal allele methylation in one informative IVF foetuses as 

compared to AI placenta (p< 0.001) (Figure 20). One of the control foetuses (AI-

F37) also revealed reduced DNA methylation in placental tissue (p< 0.001). This 

foetus was obtained after super ovulating dam and performing AI and later 

transferring embryos to recipient heifers, termed as Multiple Ovulation and Embryo 

Transfer (MOET). 

 

Similar to H19 DMR, KvDMR1 also showed DNA methylation differences in 

placenta. AI foetuses showed mosaic DNA methylation on maternal allele. Maternal 

DNA methylation within placenta of AI and MOET control foetuses varies from 36 

to 68%. Interestingly, the AI foetus showing lower DNA methylation by cloning and 

sequencing revealed proper differential methylation in COBRA analysis. It should be 

noted that the later technique does not take in account of the DNA methylation at 

respective alleles, but gives an overall DNA methylation at a locus. However, in 

placenta of IVF foetuses, a complete absence of DNA methylation was observed in 

two of four samples on the maternal allele, IVF _F58 and IVF-F59 (p< 0.05) 

(Figure20 and Figure 18). One of the IVF placental samples (IVF F12) showed a 

gradual loss of DNA methylation on the supposedly maternal allele (due to the 

presence of higher DNA methylation marks i.e.21%). This tissue sample was 

showing most of the clones with partial DNA methylation, having a gradient from 

right to left (Figure22). Unfortunately due to the lack of sufficient amount of PCR 
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products, I could not cross check the IVF-F12 sample by COBRA analysis. Placenta 

tissue from IVF-F14 showed presence of proper differential DNA methylation 

between two alleles (79%). This foetus has also shown a normal DNA methylation 

imprint at H19 DMR in the placental tissue sample. As for H19 DMR imprinting 

center, here too foetal tissues revealed no significant DNA methylation difference 

between control AI and IVF animals (Figure 20). 

 

H19 DMR 

 
Figure 17: COBRA on PCR product at H19 DMR 
Bisulfite converted DNA (PCR products) was digested with BstUI. Digestion with BstUI indicates 
the presence of methylated cytosines within the restriction sites. 
A) The number of restriction BstUI sites are indicated on a bisulfite treated and amplified PCR 
product at H19 DMR. The PCR amplification has resulted in two amplicons: product I and II. 
B) Agarose gels showing the restriction digestion pattern of the PCR product (from bisulfite 
treated DNA). Where undigested PCR product is indicated by “-”sign.  

C) The band intensities from the agarose gels were quantified by TOTAL Lab software (Bio Step) 
and were used to roughly estimate the DNA methylation level of individual tissues. This 
estimation is presented as bar graph of two independent COBRA experiments. Refer to Table 6 
for formulae used for band intensity estimation analysis. 
Asterisk(s) indicates that the sample was analyzed by COBRA only once, while B, M, L, P means 
brain, muscle, liver and placenta (foetal part of placenta i.e. cotyledon). 
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C)  Placenta tissues of IVF derived foetuses 

 
 
Figure 20: DNA methylation analysis on three imprinting centers H19 DMR, 
KvDMR1 and Snrpn DMR 
Foetal brain and placental tissues analyzed from day 80 foetuses derived by different fertilization 
procedures i.e. AI, MOET and IVF. Parental specific alleles are indicated with respective symbols 
(♂♀) while if the parental of origin information is ambiguous then alleles were assigned as 
presumed maternal (pre♀) or presumed paternal (pre ♂) alleles depending on the methylation 
levels on the alleles. The sample tissues lacking polymorphism are indicated by “n.i” (non 
informative) and all the clones are grouped together. Here filled circle represents methylated CpG, 
open circle for unmethylated CpG and ambiguous CpG with absence of circle.  Foetal tissues 
showed no difference in DNA methylation between AI control animals and IVF derived foetuses 
(A).  Placental tissues also showed presence of differential methylation in control foetuses (B), 
while aberrant DNA methylation was observed in IVF derived placental tissues at H19 DMR and 
KvDMR1 (C). n.d is not determined 

 
 
III.1.5  DNA methylation at CpG islands in the Igf2 gene  
 

So far the DNA methylation analysis showed aberrant methylation on primary DMRs 

only in placental tissues of IVF derived foetuses. Here too only imprinting centers in 

the BWS region showed incorrect imprinting, while the imprinting center Snrpn 

DMR was indifferent as compared to AI control foetuses. Next I asked the stability 



Results 

 

 

 68

of methylation imprints in other DMRs in BWS region. Other than H19 DMR and 

KvDMR1, the known DMRs in BWS region are located in different introns of Igf2 

gene and in the introns of Cdkn1c gene. The three well characterized DMRs at Igf2 

gene locus are DMR0 (in intron1), DMR1 (in intron 3) and DMR2 (spans a region 

from exon 8 till exon 9 in mouse). The DMR1 and DMR2 specify a CpG island 

definition (DNA of length of minimum 200bp, contains >50% C+G and the 

calculated Observed /Expected (observed CpG /[number of C’s * number of G's) / 

window length]) ratio over 0.6(Gardiner-Garden and Frommer 1987), while DMR0 

is a CpG rich region (Monk, Sanches et al. 2006). In human and mouse DMR0 is 

maternally methylated, while DMR1 and DMR2 are paternally methylated. The 

DMR0 is differentially methylated in placenta tissue in mouse only; however in 

human it shows differential DNA methylation in all foetal tissues as well as in 

placental tissue (Moore, Constancia et al. 1997; Lopes, Lewis et al. 2003; Monk, 

Sanches et al. 2006).  

 

In bovine, the putative DMRs within in Igf2 gene were observed at the similar 

location i.e. DMR0 in intron 1; DMR1 in intron 3 and DMR2 in the last exons of the 

Igf2 gene. As in human and mouse, the bovine DMR1 and DMR2 also constitute a 

CpG islands, while DMR0 was enriched in CpG dinucleotides but showed no clear 

CpG island by definition (Gardiner-Garden and Frommer 1987). The DMR0 shows 

high sequence conservation with the human and mouse sequences (Figure 21, 

location indicated in appendix Table 2).   

 

The COBRA analysis at the bovine DMR0 showed presence of high DNA 

methylation in sperm DNA. This was also confirmed by direct sequencing the PCR 

product amplified from bisulfite modified sperm DNA (Figure 22c). Unfortunately 

oocyte samples were not available at this time and hence were not analyzed for the 

DNA methylation. COBRA analysis on different foetal tissues as well as on placental 

tissues in various individuals revealed similar digestion patterns. This indicates the 

presence of methylated and unmethylated template in the genomic DNA at DMR0. 

COBRA analysis showed presence of almost 1:1 ratio of methylated and 

unmethylated templates, which might be due to the allele specific methylation. When 

IVF animals were compared with AI control animals, only 1 of 4 IVF derived 
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foetuses showed aberrant digestion pattern in COBRA analysis. The IVF-F58 foetus 

showed almost complete absence of methylation in placenta while in liver it was 

completely methylate (Figure 22 a, b). On cloning and sequencing of bisulfite PCR 

products, DMR0 showed mosaic pattern of DNA methylation in different foetal 

tissues and placenta. Due to the lack of polymorphism, alleles cannot be assigned to 

the methylation state (data not shown). Nevertheless individual clones can be 

classified in 2 classes based on the methylation level, which indicates presence of 

differential methylation at this DMR.. Presence of mosaic DNA methylation pattern 

at bovine DMR0 is in consistence with the mouse and human DMR0 DNA 

methylation (Moore, Constancia et al. 1997; Monk, Sanches et al. 2006).  

A) 

 
B) 
Bovine          ------------------------------------TGTCTCTGGAAGA-AGACAGACCT 23 
Human           GACCAGTGAAGTGAAAAACCCCCCAGCTGAGTACCTTGCTCATGGAAGATGGAAGGACAT 75 
Mouse           CAGATGACTGATGACAGAGAAGAATTCTAAATTGAGTGTCCATGAAACATGAGGCGACAA 240 
                                                    **    ** ** *      ***   
Bovine          GGCCGCACTGTGCTG-------GTGCTGCACTGGGAGCGCCCGAGGGAA-GATTTTTCTG 75 
Human           AACTGCACAGTACAT-------A-ACTGTACCGGGAGCACCTAAAATCC-AATTTTTCTG 126 
Mouse           GATGGCGCTGTGCCACAAGGATACACCACACCCGGAAGACCTTAGAAAGTAATTTTAATA 300 
                    ** * ** *            *   **  ***   **  *       *****  *  
Bovine          ACTGTCCTCGAACCCGGATTT-TTCCCAAGATGCCCCGCCCCC----ATTTTACCCGTGC 130 
Human           CTGATTCTTGAACCCTGCTTTGTCCCCCTTATTCCCCCCCCCCCGCCATTTTACCAGTGC 186 
Mouse           TTTATTTTAAATCCGGACCCTAATTTGCATAAGCCACGCCCCT-----TTTTACCTGTGC 355 
                    *  *  * **      *         *  ** * ****      ******* **** 
Bovine          CACACGCACTGGCATGCCCGGATGTGTCCAGTGATTGCCAAGTGTCAATC-AATTGAGGC 189 
Human           CACGTCCACCAACATTCCAGG--GTGTCAAGTAACTGCCAAGTGTCACTCTAAGTAAAGC 244 
Mouse           CACGCCCACAGACATTCCAGG--GTGTCAGGTGACTGCCAGGTGTCAATC-CAGTGAAGC 412 
                ***   ***   *** ** **  *****  ** * ***** ****** **  * * * ** 
Bovine          CCCGCCCACCCTCAACCCCCCTCCGCAGAGCCCC-ACCTCCCAACTGGCAGCCAGTACTT 248 
Human           TACACCCACTCCCCACCACC-TCCACATAGCCCCCACCTCCTAGCTGGCAG--GGAGCTT 301 
Mouse           CCCACCCACTCTCCACCCC--TGCACATAGTCCCTACCCCCTAGCTAACAGGAAGTGCTT 470 
                  * ***** * * *** *  * * ** ** *** *** ** * **  ***   *  *** 
Bovine          CTGGCT-AATGCCCATGCCCACTAACGCCTTTCTGCCAGGCTAAGGGTGGGCCTAGTCTC 307 
Human           CTGGCT-TATGCCCACGCCCACAGGCGCCTTTCTGCCAGGTCAGGGGTGGGCCAAACCTC 360 
Mouse           CTAGCTTAATTCAAACCTGCATAGACGCCTTCCTGTCTG-TCAGGCAGGGGCCAAAGCCC 529 
                ** ***  ** *  *    **    ****** *** * *   * *   ***** *  * * 
Bovine          CACCCTCTGATGCGCC-ATACCCTCACGTGGGAAGGTGCCAGAGCCAGCTGTTCCAGCAG 366 
Human           CACCCGCTAATGTACC-ATGCCCTGGTGCTGGAAAGTGCCTGAGCCAGCTGCCCCAGCGG 419 
Mouse           CACCCTCTAATGCCCCCATACCCTAGTGTAGGAAAGCGCCATAGCCAGCTGCCCCATAAG 589 
                ***** ** ***  ** ** ****   *  **** * ***  *********  ***   * 

Figure 21: Identification of putative DMRs in Igf2 gene 
A) Multiple sequence alignment of bovine Igf2 as reference sequence with human and mouse. 
Refer to Figure 15 for the colour code for the alignment. The Igf2 exons are in grey bars, CpG 
islands in blue bars, putative DMRs highlighted in yellow. Co-ordinates for the presented DMRs 
in Igf2 are indicated in appendix Table 2. B) Sequences of the DMR0 region exhibits high 
similarity between human, mouse and bovine, where * means identical nucleotide. The analyzed 
CpG are highlighted with green colour and the TaqI sites with the open boxes. The first site 
“CCGA” will be converted in TaqI site after bisulfite treatment.   
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III.1.6 Expression analysis of genes regulated by imprinting center H19 DMR 
 and KvDMR1 
 

Having observed the defects in DNA methylation at the studied imprinted centers, 

the next aim was to check the expression of the imprinted genes regulated by the 

affected imprinting centers. Since Snrpn DMR has not shown any significant DNA 

methylation differences, hence expression of genes associated with this center was 

not analyzed. Imprinted genes such as Igf2 and H19 which are regulated by H19 

DMR and Phlda2 (TSSC3, Ipl) and Cdkn1c regulated by KvDMR1 were analyzed by 

semi-quantitative RT PCR. For normalization I used four genes namely PolyA 

polymerase, Gapdh, 18sRNA and ß actin genes. RT-PCR was conducted for 22cycles 

and the PCR products were blotted and hybridized with radio labelled probe for 

semi-quantification.  

 

Expression analysis on the control gene 18sRNA showed even quantities of RNA in 

all analyzed tissues (AI and IVF). Within AI tissue samples all other control genes 

showed presence of even amounts of RNA except for 2 tissue samples (AI F25 

placenta and MOET F37 muscle). Both samples showed weak amounts of RNA of   

ß actin, PolyA polymerase and Gapdh. When control genes were compared within 

IVF samples, high variation in the amounts of RNA was observed. The control gene 

PolyA polymerase showed low level to the complete absence of amounts of RNA in 

IVF derived foetal brain and muscle tissues respectively. Similarly Gapdh gene 

expression was also low in several IVF derived foetal and placental tissues. 

Therefore, if taken in account the expression of all control genes, it will be difficult 

to normalize the gene expression in IVF tissue samples.  

 

Here I observed that none of the control gene used were reliable for normalizing the 

expression of gene of interest. All the control genes showed high variability among 

different tissue sample derived from control foetuses. This might be due to either 

high variation in the gene expression within different control foetuses or due to the 

presence of poor quality of RNA in few samples. Only 18s RNA control gene was 

well amplified from all tissue samples derived from IVF foetuses. The Gapdh and 

PolyA polymerase control genes showed aberrant expression after IVF treatment and 

hence were unsuiTable for the normalization. Only ß actin control gene was well 
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amplified from different bovine tissue samples (AI) and showed variations 

depending on the presumed RNA quality in few samples (AI-F25 and IVF-F58 

placental tissues, Figure 23a). Moreover it seems that in this study the ß actin gene 

expression was not affected by the IVF treatment and hence was used for further 

analysis.  

 

When different genes from BWS region were compared after normalizing against     

ß actin gene or by visual evaluation, I did not observe any gross difference between 

AI control samples and IVF tissue samples. However, in this analysis I did confirm 

that Phlda2 is expressed in placenta in bovine, as known from human and mouse 

expression data. And that the H19 gene shows over-expression in the placental 

tissues, where DNA methylation defects at H19 DMR was also observed.  
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A) 

 
 

B)

 
 

Figure 23: Semi-quantitative RT-PCR of the imprinted genes  
A) Southern blot images of RT-PCR products hybridized to the gene specific probes. The 
underneath plus and minus sign indicates RT performed in presence and absence of transcriptase 
respectively. RT-PCR was performed for 22 cycles (except 18sRNA 20cycles) before analyzing by 
southern hybridization. Hybridized membranes blots were incubated for 4hr at room temperature 
before developing except for Phlda2, Poly A and Gapdh where exposure was extended to over 
night at -80°C. Here different foetal tissues and placental tissues are represented as B (brain); M 
(muscle); P (placenta) and g (for genomic DNA amplification.  
B) Summarizes the visual quantification of results in A. 
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III.2 Characterization of conserved elements at imprinting center 2  

  

Review of literature 

 

The imprinted domain at the telomeric end of chromosome 7 in mice is regulated by 

the imprinting center 2 (KvDMR1), which is located in the intron 10 of Kcnq1 gene. 

On the paternal allele KvDMR1 is unmethylated, functions as an active silencer and 

harbours a promoter for Kcnq1ot1 transcript (Mancini-DiNardo, Steele et al. 2003; 

Thakur, Tiwari et al. 2004). As discussed earlier in the introduction, various studies 

on chromosomal breakpoints in human BWS patients, mouse transgene and 

chromatin studies at this domain indicate the involvement of cis and/or trans 

regulatory elements (Reid, Davies et al. 1997; John, Ainscough et al. 2001; (Cerrato, 

Sparago et al. 2005; Umlauf, Goto et al. 2004; Lewis, Mitsuya et al. 2004). We have 

previously reported the presence of high sequence conservation in intron 10 of 

Kcnq1 gene (Paulsen, Khare et al. 2005). It is assumptive that this high conservation 

has regulatory function. In order to understand the functional role of highly 

conserved DNA elements at this imprinting sub-domain, transient transfection assays 

as well as DNA methylation studies were performed. 
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III.2.1 Identification and selection of NICE elements 

 

As shown before that the bovine BWS region has similar arrangement and order of 

the genes when compared to human and mouse sequences (Figure 15. This 

comparative sequence analysis also revealed high conservation within Kcnq1 gene in 

all three species human, mouse and bovine when compared to entire BWS region. 

When this comparative analysis was expanded in different species such as galago, 

armadillo, bat, dog and chicken where later two species are not shown here in the 

alignment (Figure 24), it supported our previous finding. In all species except of 

chicken, high sequence conservation was observed in intron 9, 10 and 14. In most of 

the species the sequence information for the entire BWS region was not available; 

hence the search for conserved elements in the entire BWS region was performed 

only for human, mouse and bovine sequences. However where ever the sequence 

information for above stated species was available, it was cross checked. 

 

The sequence comparison at KCNQ1 gene revealed 32 conserved elements. When 

given the criteria of >90% if < 300bp or >80% if >300bp within human, mouse and 

bovine sequence comparison, highly conserved elements could be identified. We 

coined the term NICE (Neighbouring the Imprinting center Conserved Elements) for 

these conserved elements. These highly conserved elements were localized mostly in 

intron 10 of KCNQ1 gene (12 in number), while 1 was in intron 9 and 5 were in 

intron 14 (Figure 24, Table 9). These conserved elements were named as numbers if 

they were highly conserved among different mammalian species and are located in 

intron 10 (eg. NICE One and were also described in Paulsen et al, 2005), while were 

named as exon number_conserved element number (e.g. NICE 09_01) if they were 

conserved among most of them i.e. if one mammalian species is not showing high 

conservation. Four elements were found highly conserved (numbered One, Two, 

Three, and Four) and two of them (One and Four) were also found to be conserved in 

chicken KCNQ1 (Table 9)(Paulsen, Khare et al. 2005). 

 

In order to analyze these conserved elements by in vitro and ex vivo experiments 

(transient transfection assays), 4 of these highly conserved elements were selected 
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after performing various in silico analysis (stated below). These were NICE 09_01, 

NICE 10_04, NICE 10_08 and NICE 10_13 and the plasmid constructs were made 

after amplifying the conserved sequences from the mouse genomic DNA.  

 

These selected 4 conserved elements were equally distributed on either side of the 

KvDMR1 imprinting center. The conserved element NICE 09_01 and NICE 10_04 

are located down stream of KCNQ1OT1 transcript, while NICE One and NICE 

10_13 are upstream of the transcript. The conserved elements NICE One and NICE 

10_13 contains >10CpG dinucleotides and hence were also ideal for DNA 

methylation analysis in different embryonic tissues. Conserved elements NICE 

09_01 and NICE 10_04 are the longest elements showing very high conservation 

among different mammalian species. The conserved element NICE 10_04 also lies 

within the Kcnq1ot1 transcript (Umlauf, Goto et al. 2004). Other NICE elements do 

have interesting properties but we decided to start our analysis with the above stated 

NICE elements.  

 

On in silico analysis on these conserved elements, following were the interesting 

facts: 1) NICE One is a potential promoter having a score of 0.9 from promoter 

prediction searches (Promoter prediction 2.0 

http://www.cbs.dtu.dk/services/Promoter/). One of the bovine EST AV592964, also 

map to this element and shows splice variant with exon 11, 12 and 13 of Kcnq1 gene. 

Many promoter specific elements such as CAAT box, GC box and TATA boxes 

were also mapped and found to be conserved between different species, here 

demonstrated for human, mouse and bovine (Figure 25).  

2) None other than E box motifs were found to be enriched in these conserved NICE 

elements. Basic helix-loop-helix proteins bind to E boxes and are known to play 

important role during development. We also looked for the expression pattern known 

from literature on the selected candidate factors binding to E boxes. Among them, 

the protein Hand1 was often seen as potential target for non-canonical E boxes at 

NICE elements (appendix Figure 1). Hence this protein was taken under 

consideration for further analysis. Hand1 is expressed during preimplantation stages 
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in placenta and is also involved in patterning expression in cardiac ventricles.(Scott, 

Anson-Cartwright et al. 2000; Togi, Kawamoto et al. 2004)  
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Table 8: List of conserved NICE elements  
Co-ordinates for exons of the human KCNQ1 gene (AJ006345) as well as the highly conserved 
elements (NICE elements) are indicated in three species human, mouse (AJ251835, AJ271885) 
and bovine (AC147592, AC147396). Percentage indicates the sequence identity of mouse or 
bovine against human sequence respectively. Open boxed and bold NICE elements are here under 
analysis (namely NICE 09_01, NICE 10_04, NICE 10_08 and NICE 10_13). The conserved 
elements NICE 10_08 is also referred as NICE One in the publication from Paulsen et al (2005). 
Here ++ indicates the criteria NICE >90% if < 300bp or >80% if NICE >300bp 
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Hand1 protein is known to possess anti Ascl2 properties, where later protein is 

important for placentation (as Hand1 is) and is mapped to KvDMR1 sub-domain. 

The Ascl2 gene is also imprinted in mice in placenta (Alders, Hodges et al. 1997; 

Scott, Anson-Cartwright et al. 2000). 

 
III.2.2 Transient transfection assays to characterize the murine conserved 
 elements 
  
III.2.2.1 Promoter assays 

 

Earlier, the in silico analysis has already revealed that NICE One may be a potential 

promoter. At this conserved element the bovine EST AV592964 is spliced to exon 

11, 12 and 13 of the Kcnq1 gene. Analyzing the conserved element NICE One and 

neighbouring region in human, mouse and bovine, I could also detect potential 

regulatory sites such as TATA box, GC Box and CAAT boxes (Figure 25). None 

other conserved elements showed any significant score for promoter prediction. 

Hence next I addressed the same question in transient transfection assays. 

Transfections were performed in two different cell lines HEK293T cells and C2C12 

cells. In this analysis I could not detect any promoter activity in any of these cell 

lines, for any of the conserved elements. 
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Figure 25: Promoter analysis of the NICE elements 
A) Various human KCNQ1 transcripts are presented on the top. The known bovine transcript 
AV592964 is also mapped to it. Horizontal bars below represent a 1.5kb DNA sequence analysis 
of NICE One element in human, mouse and in bovine. Indicated on these bars are various in silico 
predicted regulatory elements such as TATA box, CAAT box and GC box. Arrows indicate the 
start of the bovine transcript AV592964.  
B) The bar diagram represents the fold increase over the basic luciferase vector. Different 
restriction sites used for cloning the NICE elements from pCR2.1 to pGL3 vector are indicated as 
HindIII (H); ACC65I (A) and XhoI (X). Number 14 and 31 represents both orientations of the 
0,8kb mouse DNA segment extending from CAAT boxes to NICE One element. Each transfection 
was performed in triplicates and the graph is a representation of at least three independent 
experiments. 
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III.2.2.2 Co-Influence of NICE elements on different promoters 

 

The next question was to check whether any of these conserved elements have any 

enhancer or silencer activity. Hence the selected conserved elements were placed 

downstream of the Luciferase gene in pGL3 vectors where different promoters such 

as KvDMR1 or SV40, were already present at promoter site. Here I asked for the 

influence of these conserved elements on different promoters and in different cell 

line i.e. HEK293T (human embryonic kidney fibroblast.) and C2C12 (mouse foetal 

myoblast.) cells.  

 

In transient transfection assays, I observed a 2 fold increase in the promoter activity 

of KvDMR1 when compared to SV40 promoter in HEK 293T cells. However when 

the same promoters were analyzed in C2C12 cells, both KvDMR1 and SV40 showed 

equal strength of promoter activities. High variation within the promoter activity for 

the KvDMR1 was observed in different transfection assays in both HEK293T and in 

C2C12 cell lines. 

 

When these promoters were subjected against different conserved elements in 

transient transfection assays, only NICE 09_01 showed significant influence on 

SV40 or on KvDMR1 promoters in both cell line HEK293T and C2C12 cells. The 

conserved element NICE 09_01 showed the highest suppression on KvDMR1 

promoter ranging from 50 to 60 % in C2C12 and HEK 293T cells respectively 

(p<0.01). NICE 09_01 also showed suppression to SV40 promoter in HEK 293T 

cells (p<0.01). Interestingly in contrast to its suppression effect in HEK293T cells, 

NICE09_01 showed almost 2 fold enhancement of SV40 promoter activity in C2C12 

cells (p<0.001) (Figure 26 a, b). 

 

Likewise the conserved element NICE 10_04 also showed suppression effect in 

HEK293T, for either SV40 or KvDMR1 promoter activities (p<0.05). However this 

conserved element had no significant effect on any of the promoter activities in 

C2C12 cells (Figure 26 a, b). 
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Some interesting facts were also observed for the conserved elements NICE One and 

NICE 10_13. The conserved element NICE One showed no significant influence on 

SV40 promoter in any of the cell lines studied. However slight but not significant 

suppression in HEK293T cells and almost 1.5 fold enhancement in C2C12 cells 

(p<0.001) was observed against KvDMR1 promoter activity. In contrast NICE 10_13 

showed enhancement (p<0.05) for SV40 promoter activity in both cell lines, while it 

only showed suppression for KvDMR1 promoter activity in C2C12 cells (p<0.05). 

NICE 10_13 had no influence on KvDMR1 promoter in HEK 293T cells (Figure 26 

a, b). 
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A)            

   

B) 

   

Figure 26: Influence of NICE elements on different promoters in HEK293T and        
C2C12 cells 
Graphs were plotted by giving the reference value as 1 to the pGL3 SV40 promoter (A) and the 
KvDMR1 promoter (B). All the other luciferase /renilla readouts were compared to the reference 
promoter activity. Statistical analysis was done by “student t test” where each sample was 
compared to the reference promoter. Here * means p<0.05; ** p<0.01 and *** is p<0.001.  Vector 
pGL3 means basic construct without having any promoter element and NICE 09_01+SV40 means 
constructs with SV40 as promoter. Each experiment was conducted three times and triplicate 
transfection for each sample was carried out in each experiment.  
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III.2.2.3 Influence of tandem repeats in KvDMR1 promoter and conserved    
 elements 
 

The imprinting center KvDMR1 also harbours different tandem repeats and conserved 

motifs downstream of the transcriptional start site. (Figure 21c) Presence of tandem 

repeats and its functional significance at imprinting centers is controversial. (Pearsall, 

Plass et al. 1999; Lewis, Mitsuya et al. 2004; Reinhart, Paoloni-Giacobino et al. 2006) It 

has been shown that KvDMR1 promoter activity is not affected from the absence of 

these tandem repeats or the conserved motifs (Mancini-DiNardo, Steele et al. 2003). 

 

Hence I was interested to address the influence of conserved elements on KvDMR1 

without tandem repeats and to compare with full length KvDMR1 promoter. 

 

On removal of tandem repeats and conserved motifs from KvDMR1 promoter, I did not 

observe any reduction or enhancement of promoter activities in any of the studied cell 

lines i.e. HEK293T or in C2C12 cells in comparison to full length KvDMR1 

(Figure27). It should be noted that the KvDMR1 without repeats construct, is lacking 

one of the CAAT boxes (numbered 4 in Figure 27) and is 26 bp away from the 

transcriptional start site, as earlier stated by Marcini DiNardo. (Mancini-DiNardo, 

Steele et al. 2003)  

 

Combining the KvDMR1 promoter lacking tandem repeats, to different conserved 

element constructs, I observed significant suppression of the promoter activity. Three of 

four analyzed conserved element showed suppression on the promoter activity in 

HEK293T cells and these were NICE 09_01, NICE 10_04 and NICE One (p values of 

<0.01, <0.01 and <0.05 respectively). One conserved element, NICE10_13 showed no 

influence to KvDMR1 promoter either in presence or in absence of repeats. When the 

same constructs were analyzed in C2C12 cells, a significant removal of suppression 

earlier seen against full length KvDMR1 was observed for elements NICE 09_01 and 

NICE 10_13. The conserved element NICE 09_01 still shows suppression of 30% on 

promoter activity, which with full length KvDMR1 was 50%. In addition NICE 10_13 

showed no suppression on the KvDMR1 promoter having no repeats. Interestingly 



Results 

 

 

86  

conserved elements NICE One and NICE 10_04 showed significant suppression on the 

promoter activity of KvDMR1 lacking tandem repeats (p<0.001 and p<0.01 

respectively). In earlier study on full length KvDMR1 promoter, the NICE 10_04 

conserved element showed no influence, while NICE One had 1,5 fold enhancement of 

KvDMR1 promoter activity in C2C12 cells. 

 

 
 

 
 

 
Figure 27: Influence of NICE elements on KvDMR1 promoter without repeats 
Upper panel shows the schematic drawing of the promoters used here. For comparison, the influence 
of conserved elements on KvDMR1 was plotted again (refer Figure 26). The bar graphs are plotted 
for the respective cell lines i.e. HEK293T (A) and C2C12 cells (B). The KvDMR1 promoter activity 
was used as reference for both types of promoter, KvDMR1 with repeats and without repeats and was 
normalized to the value 1. Statistical analysis was done by “student t test” where each sample was 
compared to the reference promoter. Note that presence or absence of repeats (KvDMR1 or KvDMR-
R) has no influence on the KvDMR promoter activity in HEK293T and C2C12 cell lines. Indicated 
asterisk(s) represent p value p<0.05 (*); p<0.01(**) and p<0.001(***).  Each experiment was 
conducted three times and triplicate transfection for each sample was carried out in each experiment.  
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III.2.2.4 Analysis of transcriptional factor Hand1 on NICE elements in  
    HEK293T cells  

 

Multiple sequence alignments among different mammalian species showed presence 

Hand 1 factor binding sites (“NRTCTG”) in highly conserved NICE elements. The 4 

consensus binding sites of Hand1 protein on NICE 09_01, two each on NICE 10_04 and 

NICE One and only one site in NICE 10_13 was observed (appendix Figure 1). Other 

NICE elements (not analyzed in this study) also showed the presence of Hand1 binding 

sites (already discussed), hence the next question was to analyze the candidate Hand1 

transcriptional factor and its influence on the activity of conserved NICE elements. 

  

Transient co-transfections were performed in order to analyze the influence of Hand1 

protein on conserved elements. The expression construct of Hand1 was a kind gift from 

Prof. Paul Riley  (Hill and Riley 2004) and for control co-transfection, vector backbone 

where Hand1 cDNA was cloned, in this case pCDNA3 was used.  

 

Initially the influence of Hand1 protein on SV40 and KvDMR1 promoter was analyzed. 

In silico analysis showed presence of Hand1 consensus binding at both promoters. Only 

the SV40 promoter, in transient transfections in HEK 93T cells showed influence of 

Hand1 protein on its promoter activity. Although KvDMR1 full length promoter also 

contains number of non conical E boxes, but on transient transfection it showed no 

significant influence of co transfection with Hand1 protein expressing construct when 

compared to the control vector co transfection read outs. Though promoter activity of 

KvDMR1 itself varies from transfection to transfection, but this has never shown 

consistent significant influence in the presence of Hand1 protein. Hence KvDMR1 

promoter was used in presence or absence of conserved elements for further analysis. 

 

The next task was to check the influence of Hand1 protein at different time points and at 

different concentrations. In order to do so pCDNA3-Hand1 constructs were titrated 

against NICE 09_01 KvDMR1 full length construct as well as these transfections were 

conducted for different incubation time. Optimization was performed with NICE 09_01 

with KvDMR1 as promoter with increasing amount of Hand1 (1:1, 1:2 and 1:3) 
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construct and for different time scale (24hr, 48hr and 72 hr). In both types of 

optimization, I could not detect any significant influence of KvDMR1 promoter itself 

when compared to the pcDNA3 control vector. These experiments showed that the 

Hand1 protein at 1:1 ratio (i.e. 1 time Hand1 expressing construct and 1 time conserved 

element with KvDMR1 promoter) was sufficient and no improvement was observed 

with 1:2 or 1:3 co-transfection ratio (data not shown). However the influence of Hand1 

protein on KvDMR1 promoter in presence of conserved NICE 09_01was significant 

only after 72 hr of post transfection (Figure 28).  

The Hand1 protein expression was also confirmed by western blot analysis in these co-

transfection assays. Transfected cells were divided at the time of harvesting and one 

half was used for luciferase activity and another half was utilized to perform western 

blot with Hand1 antibody (sc-22817, Santa Cruz California USA.). The result of 

western blot showed cross reactivity of Hand1 antibody with some unknown proteins 

(visible as high molecular weight bands in the blot), but at the expected size of Hand1 

protein (27+5 kilo dalton (kd)), a single band was observed. A second band was also 

observed at 27kd and this represents the endogenous translational start sites in the 

Hand1 expressing construct. In a control co-transfection with pcDNA3 construct, no 

Hand1 protein was detected. Interestingly maximum protein expression of Hand1 was 

seen at 24hr which reduces with elongated post transfection time. At 72 hr post 

transfection Hand1 band was still visible but was very weak in comparison to 24 hr 

band intensity. However the influence of Hand1 is only visible after 72 hr in dual 

luciferase assay, and at this time point the Hand1 protein expression is weaker when 

compared to 24 and 48 hr incubation. It should be taken in account that control loading 

of the proteins is not performed and all the loading is compared with non specific 

reactivity of the antibody (higher molecular weight bands on western blot Figure 28b). 

 

The titration and time dependent experiments revealed that 1:1 ratio of plasmid 

constructs and 72hr post transfection incubations are the optimum conditions. Hence 

further analysis on conserved elements was performed with these two criteria.  

As earlier shown that conserved elements NICE 09_01 and NICE 10_04 had 

suppression effect on the KvDMR1 promoter activity, a similar observation was seen 

when these conserved element constructs were co-transfected with control pcDNA3 
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vector. However when NICE 09_01 was co-transfected with Hand1 expressing 

construct, there was a significant removal of suppression (<25%) (p<0.01) Similar 

results were obtained with NICE 10_04 co-transfected with Hand1 expressing construct, 

which showed a complete removal of suppression (p<0.05). 

 

A) 

  

B) 

 

Figure 28: Optimization for co-transfection and expression of Hand1 protein 
a) Dual luciferase transfection assay read outs are presented in the bar graph. The ratios of reporter 
luciferase gene with renilla luciferase gene activity were plotted in the graph. Renilla luciferase is an 
internal control to normalize the transfection efficiency. Co-transfections were performed with Hand1 
expressing construct and the readouts were compared to the co-transfection with pcDNA3 vector. 
b) Western blot of the same transfection assay, where C means co-transfections with pcDNA3 and H 
means co-transfections with Hand1 expressing construct 
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Influence of Hand1 showed no statistical significance on NICE one, even though 1.5 

fold enhancement was observed for KvDMR1 promoter activity (p<0.1). This might 

also reflect the high variability within the KvDMR1 promoter activity. In contrast NICE 

10_13 did not showed any influence in presence of Hand1 protein. 

 

Figure 29: Co-transfection with Hand1 expressing construct  
The constructs containing NICE elements with KvDMR1 as promoter were analyzed by co 
transfecting with Hand1 expressing construct. The analysis shows removal of suppression from NICE 
09_01 and NICE 10_04 while NICE one shows enhancement of 1.5 fold. KvDMR1 alone or with 
NICE 10_13 shows no influence in presence of Hand1 protein. Here student t test was applied to 
compare constructs with conserved NICE elements co-transfected with Hand1 against co-transfection 
with control pcDNA3. Single asterisk(s) * is for p value < 0.05 while double asterisk(s) ** means 
p<0.01. Each experiment was conducted at least three times and duplicate transfection for each 
sample was carried out in each experiment.  

 
 
III.2.2.5 DNA methylation analysis of NICE elements 

 

The next question addressed in this study was the DNA methylation imprints on these 

NICE elements in mouse. The KvDMR1 imprinting domain is placental specific and 

consists of many genes which are exclusively expressed in placenta such as Phlda2 and 

Ascl2. Hence DNA methylation analysis was performed in embryo proper as well as in 

placental tissues. 

 

Among the selected NICE elements, only NICE One and NICE 10_13 have more than 

10CpG dinucleotides, therefore these were selected for DNA methylation analysis. 

 

The samples of tissue material were collected at 9,5dpc, and three different tissue 

samples were collected. These were embryo proper (E), placental tissue near the uterus 
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(PM) and placental material near to foetus (PE). In order to check the parental 

contribution, first generation (F1)crosses between inbred strain C57/B6 and SD7 were 

checked by genotyping for Tnni2 gene (performed by Joe Weber) while B6xSD7 

embryos were checked by genotyping for Osbpl5 gene. Samples showing equal 

contribution were taken for the DNA methylation analysis. Placental tissues towards 

uterus (PM) samples were not analyzed for DNA methylation by cloning and 

sequencing since they showed higher maternal contribution in genotyping this is due to 

higher contribution of maternal tissue in these samples. Therefore PM sample tissues 

were only analyzed by COBRA analysis. 

 

DNA methylation analysis in germ cells (sperm and matured oocytes (metaphase II 

stage)) revealed complete DNA methylation at both conserved elements NICE One and 

NICE 10_13. Analyzing foetal and placental tissue at NICE 10_13 revealed partial 

DNA methylation, where both the parental alleles at NICE10_13 were indifferent i.e. 

most of the clones were methylated and only few clones were not methylated. When 

NICE One was analyzed for the embryo, it showed complete DNA methylation on both 

alleles and this was also confirmed in reciprocal crosses. However NICE One analysis 

for placental tissue, showed biased DNA methylation towards the maternal allele. The 

maternal allele showed 70% DNA methylation while paternal allele was only 30% 

methylation (p<0.05) (Figure 30b). Presence of complete methylation in embryo and 

having unmethylated and methylated state in placenta for NICE One was also 

confirmed by COBRA analysis, where only placental samples were clearly showing the 

presence of methylated and unmethylated templates (Figure 30 a). Even the placental 

tissue PM (which contains some maternal tissue) also showed in COBRA analysis the 

presence of both type of templates methylated and unmethylated (data not shown). All 

DNA methylation analysis on foetal and placental tissue was also performed on 

reciprocal crosses, which exhibited the similar tendency for DNA methylation. As a 

control, DNA methylation study at the KvDMR1 imprinting center was also performed. 

COBRA results on KvDMR1 in mice showed presence of PCR amplicons representing 

unmethylated and methylated templates in embryo proper as well as in placental tissue. 

The bisulfite PCR product of one placental sample was cloned and sequenced and it 

revealed complete DNA methylation on the maternal allele while complete absence of 
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methylation on paternal allele. Here observed DNA methylation state on KvDMR1 is 

consistent with the previous observations (Lewis, Mitsuya et al. 2004).  

 

 
 
 
 

 
Figure 30 a: COBRA analysis at NICE One and control KvDMR1 center in mouse 
COBRA analysis was performed with Taq I endonuclease restriction enzyme. This enzyme digests 
only the PCR amplicons representing the methylated state of template in the genome. Here T is the 
digest with Taq I while M represents the DNA size marker.
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Figure 30 b: DNA methylation analysis of NICE One and NICE 10_13 
Schematic map illustrates the positions of NICE elements with respect to the KvDMR1 on the top. 
Below, the filled black circles indicate the methylated CpGs while white circles represent the 
unmethylated CpGs. Absence of circle represents non-informative CpGs. Each horizontal row of 
circles represents a single clone. 
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IV Discussion 
 

The first objective of the experimental work of my thesis was to identify the 

imprinting regions in bovine and to examine the imprinting status. Imprinted regions 

in bovine were identified by sequence comparison of the homologous regions with 

human and mouse. The identified imprinted centers were then analyzed for the DNA 

methylation status. With a few exceptions, bovine ICs and DMRs showed the 

presence of methylation imprints, a typical feature for mammals. Exceptions were 

found in embryo proper and in placental tissues in few DMRs for the DNA 

methylation. Another focus of this study was to compare the DNA methylation on 

the selected DMRs in foetuses derived by different fertilization procedures. Here the 

ART (IVF) derived foetuses showed extensive hypomethylation in DMRs located in 

the BWS region in placental tissue only. The aberrant methylation pattern was 

restricted to the BWS region and was not observed in PWS / AS region.  

 

The second objective of my thesis was to characterize conserved elements flanking 

one of the imprinting centers, the KvDMR1. The presence of short highly conserved 

sequence elements in the introns of Kcnq1 suggests that they might act as additional 

regulators within KvDMR1 imprinting sub-domain. Indeed 4 of these conserved 

elements tested in transient transfection assays showed effect on promoter activity. 

Furthermore one of these conserved elements shows a placental specific methylation 

pattern, making it a primary candidate for a placental specific regulatory function. 

 

IV.1 DNA methylation at imprinting centers in bovine and      
 influence of IVF procedures 

 

IV.1.1 Identification of imprinted centers in bovine  

 

In this study I analyzed the imprinted regions in the bovine, human and mouse. With 

the main focus on a detailed DNA methylation analysis in bovine, the three species 

(bovine, human and mouse) were compared for the imprinted region at BWS and 

PWS /AS regions. On comparative study, it was observed that the gene order and the 

location of the imprinting centers (for bovine these were putative centers) were 

conserved in all three species in the respective imprinting region. A detailed 
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comparison of the putative center in bovine to its homologous human and mouse 

imprinting center revealed many structural similarities in all three species. All the 

DMRs shared few common structural similarities, such as presence of CpG islands 

associated to tandem repeats within the imprinting center and that the centers were at 

a similar distance from the nearest gene. Some specific features of mouse and human 

imprinting centers were also observed at the bovine H19 DMR and KvDMR1. The 

bovine H19 DMR showed presence of conserved CTCF consensus binding sites 

similar to human and mouse H19 DMR architecture (Bell and Felsenfeld 2000). A 

comparison of sequences flanking KvDMR1 revealed the presence of several highly 

conserved elements (NICE, discussed below) at similar distances to the KvDMR1 

imprinting center in different mammalian species (Paulsen, Khare et al. 2005). In 

contrast to the conservation of NICE elements, the CpG islands or the associated 

tandem repeats in the imprinting centers show only marginal sequence homology, 

despite having the same epigenetic mark (imprints). 

  

IV.1.2 DNA methylation imprints are conserved in bovine, mouse and in human 
 
The prerequisite step in determining the imprinting status in bovine (as differentially 

methylated), was the search for informative polymorphic sites in the bovine putative 

DMRs. This was required in order to distinguish the parental alleles in the DNA 

methylation analysis. However only a limited number of individuals showed 

presence of polymorphisms at the H19 DMR and KvDMR1 centers, and complete 

absence of polymorphisms for the Snrpn DMR or in the exons of the bovine putative 

imprinted genes was observed. This low degree of polymorphism might be due to the 

extensive use of artificial insemination (AI) in bovine farm industry. With the use of 

AI, only few elite sires (father) were used during the last decades to improve the 

economically important traits. This eventually has resulted in high homogeneity in 

the genomes of specific breeds. Hence the alternative approach is to use hybrid lines 

to study the imprinting in bovine e.g. progeny from Bos taurus and Bos indicus, 

which currently many labs are performing (Dindot, Farin et al. 2004). 

 

In this study the DNA methylation analyses were performed by two independent 

methods i.e. COBRA and by cloning and sequencing of PCR products obtained from 

bisulfite treated genomic DNA. COBRA technique is a quantitative method for the 
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assessment of DNA methylation. It only analyses methylation of cytosines within the 

restriction sites and cannot distinguish between the methylation of alleles. On the 

other hand cloning and sequencing is quantitative as well as qualitative method for 

analyzing the DNA methylation. The later technique not only distinguishes the 

respective parental alleles but also determines the methylation levels at each CpG 

dinucleotide. However due to the involvement of many technical steps, cloning and 

sequencing sometimes show bias towards the methylated or unmethylated templates. 

Hence both techniques COBRA and cloning and sequencing, are treated as a 

compliment to each other in the present DNA methylation analysis.  

 

In the present investigation, I demonstrate that DNA methylation imprints are present 

at bovine H19 DMR, KvDMR1 and Snrpn DMRs in germ cells. The differential 

methylation at different DMRs is well maintained in foetal tissues such as brain, liver 

and muscle. Extra-embryonic tissue i.e. cotyledon (placenta), also show presence of 

differential DNA methylation at the H19 DMR and Snrpn DMR in control AI 

animals. However at the KvDMR1 imprinting center, placental tissue showed mosaic 

but biased DNA methylation at maternal allele. This mosaic and hence incomplete 

DNA methylation in bovine placental tissue at the KvDMR1 is different from mice 

and human placental tissues, where a firm methylation is observed (Table 9) (Lewis, 

Mitsuya et al. 2004, own observation; Monk, Arnaud et al. 2006). It is not clear 

whether these DNA methylation differences arise from the different placental 

structures or to the different physiology (refer introduction I.7.2). 

  

It is known that DMR0 located in Igf2 gene, shows placental specific differential 

methylation in mouse. In contrast human DMR0 shows differential methylation in all 

foetal and placental tissues (Moore, Constancia et al. 1997; Monk, Sanches et al. 

2006). The obtained bovine DNA methylation results show consistency with the 

published data on human tissues i.e. presence of methylated and unmethylated 

templates in different foetal tissues and in placenta tissues at DMR0. The Table 9, 

below summarizes the DNA methylation in bovine, human and mouse for the 

analyzed DMRs. 
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Table 9: Conserved differential methylation at homologous imprinted centers 
Analyzed bovine DNA methylation results were compared with the published human and mouse 
DNA methylation at different DMRs. The DNA differential methylation was conserved in all 
three species in foetus (for bovine brain, muscle, liver tissues are treated together as foetus) and in 
extraembryonic placental tissues at the analyzed DMRs. Few deviations (highlighted with boxes) 
were also observed in this comparative study. These were at mouse DMR0 which is documented 
as completely methylated in foetal tissues and the present study where bovine placental tissues 
show mosaic DNA methylation at KvDMR1. The asterisk means absence of polymorphism in the 
study, and complete methylation is indicated by “Meth” while, differential methylation by 
“Diff.Meth”.    

 
 
Interestingly DMR0 showed complete DNA methylation in bovine sperm DNA. 

Presence of methylation in sperm DNA is indicative that paternal allele might be 

methylated in foetal tissues. This seems to be in contrast to the DNA methylation 

state in mouse where paternal allele is unmethylated and serves as functional 

promoter for the placental specific Igf2 gene. It can be speculated that this DMR is a 

secondary DMR and the oocytes DNA also has high methylation state. In later stages 

of embryo development one allele looses the DNA methylation marks, while the 

other allele maintains it. This will eventually results in a differentially methylated 

state at DMR0 in foetal and extraembryonic tissues. To validate the present 

assumption on DMR0, the methylation studies on the oocytes as well as on the early 

embryo developmental stages will be the next steps. Methylation analysis on early 

embryonic stages will give more insight as how the indifferent methylation marks on 

parental alleles acquires the differential state. It is known that both parental genomes 

undergoes demethylation after fertilization (Oswald, Engemann et al. 2000; Reik, 

Dean et al. 2001). Therefore it will be also interesting to know the dynamics of 

methylation on this DMR, whether both the alleles shows demethylation and only 

one allele gets methylated in later stages of development or only one allele is 

demethylated after fertilization. 
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IV.1.3 DNA methylation at imprinting centers in IVF derived foetuses is 
 aberrant 
 

Our study was also focused on determining the DNA methylation differences 

between foetuses produced by different fertilization procedures at the selected 

imprinting centers. The subsequent methylation analysis was hence performed on a 

pre-selected overgrown IVF derived foetuses and the control foetuses derived by AI 

or MOET fertilization procedures. The analyzed IVF derived bovine foetuses showed 

reduced DNA methylation at imprinting centers of BWS region. The paternally 

imprinted H19 DMR and at maternally imprinted KvDMR1 imprinting centers 

showed reduced DNA methylation only in placental tissues. However, the embryo 

proper of IVF derived foetuses showed normal differential DNA methylation, and 

this was also observed for the control foetuses. In contrast imprinting center in PWS 

/AS region, Snrpn DMR, showed no DNA methylation lesions.  

 

Interestingly, one of the control animals (MOET-F37) derived after multiple 

ovulation and embryo transfer (MOET) had proper differential DNA methylation at 

all analyzed imprinting centers except at H19 DMR. Here the placental tissue 

showed a reduced overall DNA methylation. Unfortunately only one MOET 

individual was analyzed in this study and hence no general conclusions can be drawn 

on the observed effect. 

 

Beside the MOET placenta, I also observe changes in DNA methylation in in-vitro 

matured oocytes. Again the hormonal stimulation is involved in the maturation of 

oocytes. However, here the changes at H19 DMR were opposite to expected i.e. high 

DNA methylation in oocytes. On the other hand MOET fertilization procedure also 

involves steps of in vitro culturing and embryo transfer. These additional steps may 

play a role in causing lesions on DNA methylation at H19 DMR. In conclusion, H19 

DMR was found susceptible to IVF procedures. The factors involved or the 

consequences of this aberration (DNA methylation) at H19 DMR are not yet clear. 

These observations are in line of the earlier findings of aberrant DNA methylation at 

H19 DMR on hormonal treatment or during oocyte maturation in human 

(Thomassin, Flavin et al. 2001; Sato, Otsu et al. 2006; Borghol, Lornage et al. 2005).  

 



Discussions 

99  

In summary all the above findings indicate that the influence of IVF technology 1) 

varies on different imprinting centers, here H19 DMR and KvDMR1 are affected 

while Snrpn DMR and DMR0 were not, 2) differs between embryo proper and extra-

embryonic tissues, and 3) in-vitro maturation of oocytes and hormonal treatment may 

play a role in epigenetic misregulation at certain imprinting loci. During my 

investigation on DNA methylation in bovine, some intriguing questions also came 

into light. Is there any link between the appearance of DNA methylation during 

oocyte maturation at the H19 DMR and the reduced DNA methylation in extra-

embryonic tissue in IVF foetuses at paternal allele? Or is it the culture condition, 

which leads to the reduced DNA methylation? 

 

Earlier study demonstrated that IVF foetuses produced by similar procedures show 

elevated DNA methylation, especially in liver tissues. In this publication no obvious 

DNA methylation difference for placenta was observed between IVF foetuses from 

control AI animals. (Hiendleder, Mund et al. 2004) This difference to my findings 

may be explained by the fact that the earlier study was performed by quantifying the 

total mC (methylated cytosine) in the genome (including repetitive elements) while in 

present study the focus was on DNA methylation of a single copy imprinted DMRs. 

However at DMR0, in 1 of the IVF derived foetuses I do observe high methylation in 

liver tissues. 

 

IV.1.4 Correlation of phenotype or the expression data to the observed aberrant 
 DNA methylation 
 

Analyzed IVF foetuses displaying reduced to absence of DNA methylation at H19 

DMR and KvDMR1, also show elevated growth characteristics such as birth weight, 

different organ weight, and crown rump length. However not all IVF conceived 

foetuses showed defects at H19 DMR and KvDMR1 imprinting centers (IVF-F14). 

This individual was also normal for growth parameters when compared to control AI 

animals (refer to the Table 10). 

 

Foetal overgrowth phenotypes have been documented for mice and sheep in IVF or 

SCNT derived foetuses. In cloned sheep foetal overgrowth was attributed to the loss 

of DNA methylation at the imprinting center located in intron 2 of Igf2r. As a 
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consequence Igf2r gene expression was dramatically reduced, while there was no 

deviation in Igf2 expression when compared to control animals (Young, Fernandes et 

al. 2001). In cloned mice the overgrowth phenotype was attributed to DNA 

hypermethylation at H19 DMR imprinting center which eventually resulted in over-

expression of Igf2 (Dean, Bowden et al. 1998). However, several other studies 

observed a reduced growth in IVF derived mice litter (Van der Auwera and 

D'Hooghe 2001). In the present study the bovine H19 DMR and KvDMR1 are 

affected (unmethylated) in placental tissues of IVF derived foetuses.  

 

 
 
Table 10: Summary of methylation defects in ART derived bovine foetuses and  
                 associated phenotype 
The grey shaded area indicates the higher growth measurements in IVF derived foetuses as 
compared to the AI control animals. These results are the summary of COBRA and clone and 
sequencing analyses, where both techniques showed consistent results. One exception was AI-F23 
which showed normal differential methylation in COBRA analysis but reduced maternal 
methylation at KvDMR1 region. Refer to the discussion section IV.1.1 for the explanation of 
these differences between COBRA and clone and sequencing of bisulfite PCR products. 

 
 
It seems that IVF protocols occasionally results in abnormal foetal growth in 

different species and that the associated mechanisms also vary at the molecular level. 

Above, two studies were performed on cloned sheep and mice, which quite often 

demonstrate pronounced phenotypes. On the other hand IVF derived bovine foetuses 

show significant but not pronounced abnormal growth when compared to the control 

AI animals. Our study indicates the possibility of reduced Igf2 (a growth enhancing 

gene) expression due to the loss of DNA methylation at paternal H19 DMR allele. 

Reduced Igf2 expression would cause a reduced growth. In contrast here the IVF 

derived foetuses showing reduced DNA methylation at H19 DMR have also the 

overgrowth phenotype. Also in the other imprinting center, KvDMR1, the reduced 

maternal methylation should lead to reduced expression of Cdkn1c (growth 
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suppressing gene), Ascl2 and Phlda2 (involved in placental development) genes. 

This is expected due to increased silencer activity around the KvDMR1 (Du, Beatty 

et al. 2003; Mancini-DiNardo, Steele et al. 2003). Thus aberrant decreased 

expression of the genes regulated by KvDMR1 like Cdkn1c, Ascl2 and Phlda2 would 

co-relate with the observed growth defects and placental abnormalities in IVF 

derived foetuses. However my preliminary expression analyses do not show any 

reduction in the expression of Cdkn1c or Phlda2 genes in the foetuses showing 

incorrect DNA methylation imprint. In summary the current knowledge on the 

changes of methylation and expression do not give a conclusive picture.  

 

The present analysis on Igf2 gene expression in IVF derived bovine foetuses does not 

support the previously shown elevated Igf2 expression at day 70 of gestation of 

bovine IVF derived foetuses (Blondin, Farin et al. 2000). In the publication the 

authors normalized the Igf2 gene expression against 18sRNA expression. In reference 

to the publication, I also analyzed 18sRNA along with 3 other control genes for 

normalizing the expression results. The 18sRNA is ubiquitously expressed and was 

also found to be well expressed in all the analyzed tissues in the present analysis. 

However control genes such as ß actin, Gapdh and PolyA polymerase showed 

variable gene expressions in the control animal tissues. The placenta of AI-F25 and 

muscle of MOET-F37 (refer result section Figure 23) showed low expression of all 

the control genes except of 18sRNA. This indicates either high variability of control 

genes expression within tissues and in individuals or the presence of poor quality 

RNA. Even a higher variation in the expression of control genes was observed in IVF 

derived foetal tissues. Here again the IVF derived foetal tissues showed even 

expression of 18sRNA in all analyzed tissues.  

 

Therefore the future expression analysis requires a control gene or a combination of 

genes which have low variability within individuals, after IVF procedures and also 

shows expression dependency on the RNA quality. These criteria’s might also 

include a tissue specific control gene, e.g. a placental specific control gene. This will 

be done by checking the additional control genes, which are routinely in use for 

human and mouse gene expression. These are ubiquitin C, TATAA-box binding 

protein, cyclophilin A, and ß glucuronidase (Vandesompele, De Preter et al. 2002; 

Goossens, Van Poucke et al. 2005). In addition few other human genes are included 
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since they show low variability among different human tissue samples. These are 

PolR2A (polymerase RNA II (DNA directed) polypeptide A), Rplp0 (ribosomal 

protein, large, P0) and Fn1 (fibronectin1) (personnel communication with Gregor 

Reither, Medical Faculty of Saarland University, Homburg/Saar, Germany). All the 

selected control genes will be tested on different bovine tissues samples and the 

genes which meet the criteria stated above will be selected for future expression 

studies.  

 

IV.1.5 Possible mechanisms of overgrowth phenotype in ART derived foetuses 

 

In summary so far there is no conclusive model including all three effects i.e. 

changes in DNA methylation of imprinting centers, expression of imprinted genes 

and the observed phenotype. It has been shown that most of the pregnancy losses in 

IVF conceived foetuses occur in the first trimester of pregnancy i.e. from day 30 to 

day 90 and this is mostly attributed to abnormal foetal membrane (placenta) 

development (Hasler, Henderson et al. 1995). It has also been reported that IVF 

foetuses show reduced foetal growth in the initial phase of gestation i.e. day 37 to 

day 58, and this difference from control animals disappears by day 72 (Bertolini, 

Mason et al. 2002). However, these reports have to be taken with ultimate caution 

since these observations were performed by ultra-sonography which is a relative 

measurement. The tendency of initial reduced growth of the foetus which eventually 

results in foetal overgrowth at the time of birth is also documented for cloned calves 

(Hashizume, Ishiwata et al. 2002). Other investigators reported that the foetal 

overgrowth in LOS calves shows significant increment only in the last (third) 

trimester of pregnancy (Bertolini, Mason et al. 2002; Hashizume, Ishiwata et al. 

2002). 

 

My study shows that the H19 DMR has a reduced DNA methylation in placenta of 

IVF foetuses, and this will result in reduced expression of Igf2 gene. The Igf2 gene is 

involved in foetal growth enhancement. Any reduced expression of Igf2 gene in 

placental tissue will eventually result in lower number of placentomes or abnormal 

development of placentomes. This effect is quite often seen in IVF and cloned 

animals.  It is also known that a compensatory mechanism develops in foetuses with 

abnormal development of placental tissue, in order to balance the undernourished 
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foetus (Bertolini, Mason et al. 2002). Hence, the late first trimester of gestation in 

bovine seems to be critical for such compensatory mechanisms. At the molecular 

level it could be co-related as a compensatory mechanism generated either by 

maternal or by foetal tissues, to overcome the deficient growth promoting genes 

(such as Igf2) for the proper placentome development. This may be reflected at day 

72 of gestation when IVF and control animals have similar foetal growth 

measurements (Bertolini, Mason et al. 2002). In the present study the time point for 

bovine sample collection was performed at day 80 of gestation, which may coincide 

with the speculated compensatory phase. This might explain why there were no gross 

differences at the expression level of the Igf2 or Cdkn1c genes (growth related genes) 

in the analyzed samples.  

 

It is well known that Cdkn1c and Igf2 genes are the key players in BWS related 

overgrowth phenotype. The Igf2 gene is a growth enhancer, while Cdkn1c is a 

checkpoint control gene indirectly regulating the cell proliferation (and also the 

growth). Hence it is expected that any disturbances in the balance between these two 

genes might lead to an abnormal growth phenotype. Secondly it is also possible that 

other imprinted genes are involved in the fine tuning of the growth parameters. 

Recent study on interactions of Zac1 protein (also imprinted gene) indicates the 

existence of imprinted genes network regulating the embryonic growth (Varrault, 

Gueydan et al. 2006).   

 

Hence a further investigation on networking of not only imprinted genes but also the 

interactions between the DMRs is required. It is clear that H19 DMR interacts with 

secondary DMRs such as DMR1 and DMR2, in regulating Igf2 imprinted gene in 

embryo. However Igf2 gene shows a placental specific splice variant in mouse. In 

mouse DMR0 is known to regulate Igf2 gene expression in parent of origin specific 

manner in placenta. Therefore it will be interesting to investigate whether H19DMR 

also interact with DMR0 in mouse placenta for the Igf2 gene regulation. In contrast 

to mouse, human (Monk, Sanches et al. 2006) and our study on bovine species show 

presence of differential methylation at DMR0 in embryo and in placental tissues. 

Both the studies suggest that there might be a different regulatory mechanism of Igf2 

gene where not only H19DMR, DMR1 and DMR2 but also DMR0 is involved.   
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Nevertheless, to gain more knowledge on the influence of assisted reproductive 

technology (e.g. IVF) on imprinted regions, a systematic analysis is required. This 

will consider all the required parameters such as, foetal and placental measurements, 

plasma protein assessment, normalized gene expression, global DNA methylation 

level and DNA methylation at other imprinted centers at different days of gestation. 

 

Aforementioned facts are that the large offspring syndrome 1) is an abnormal foetal 

growth observed only during prenatal development 2) after parturition the defect is 

rectified 3) the placental abnormalities are often associated with LOS foetuses and 

finally 4) results from present investigation show epigenetic lesions (DNA 

methylation) in IVF derived foetuses at imprinting centers, only in placental tissues 

while embryo proper is normal. This study will be continued on a large population of 

bovine in order to confirm the DNA methylation defects observed on indicated 

imprinting centers as molecular markers for pre-diagnosis of LOS in cattle industry. 

In addition primary imprinting centers such as imprinting center at the Igf2r gene 

locus and the secondary DMRs at Igf2 gene, DMR1 and DMR2 will also be 

analyzed. 

 

The LOS animals share similarities with BWS human patients’ i.e. phenotypic 

features and the post parturition development. Hence, it will be interesting to analyze 

human placental tissues for DNA methylation at imprinted centers in BWS patients. 

If affected, they can serve as early markers for pre-diagnosis of BWS foetuses in 

human. 
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IV.2 Functional role of conserved elements at KvDMR1 imprinting sub-
 domain 
 

In parallel to the DNA methylation study on bovine DMRs, I also studied the 

functional significance of the cis acting conserved elements in the KvDMR1 sub-

domain of the BWS region. 

 

The main observations in this study were:  

1) On sequence alignments of the BWS region in different mammalian species, I 

show that there is pronounced sequence conservation in the introns 9, 10 and 14 of 

KCNQ1 gene. Since these conserved elements are flanking the imprinting center 

KvDMR1 in BWS region, they were named as NICE elements. 

2) Using transfection assays, I demonstrate that selected conserved NICE elements 

do not have any promoter activity in human embryonic fibroblast HEK293T or in 

mouse embryonic myoblast C2C12 cells. 

3) Few of the analyzed conserved elements show a significant influence on 

heterologous SV40 or homologous KvDMR1 promoters in HEK293T or in C2C12 

cell lines  

4) The KvDMR1 promoter contains tandem repeats. Earlier investigations as well as 

this study shows that these tandem repeats are not required for the KvDMR1 

promoter activity (Mancini-DiNardo, Steele et al. 2003). However in mouse 

myoblast C2C12 cells, the NICE element influences the KvDMR1 promoter in a 

tandem repeat dependent manner. 

5) Co-transfection of Hand1 expressing constructs showed influence of the 

regulatory activities of some NICE elements on KvDMR1 promoter. 

6) The DNA methylation of one of the analyzed conserved elements varies 

significantly between embryo and placenta. In placenta it exhibits a biased DNA 

methylation of the maternal allele (imprinted). 

 

It was clear from the investigation that none of the analyzed conserved elements has 

any promoter activity. Hence their influence as being the putative alternative 

promoters e.g. as start points of antisense transcripts can be ruled out. However the 

possibility that a strong enhancer regulating any of these conserved elements for 

being a promoter cannot be challenged.  



Discussions 

106  

In this investigation I show that the promoter activity of KvDMR1 is specifically 

modulated by the presence of different conserved elements located in different 

introns of the Kcnq1 gene. The observed influence seems to be regulated by the 

tandem repeat array present in the promoter region. This is the first investigation 

supporting the active regulatory role of tandem repeats at KvDMR1 locus. Other 

investigators as well as my study show that the promoter activity of KvDMR1 is not 

affected by the repeats alone (Mancini-DiNardo, Steele et al. 2003). KvDMR1 itself 

shows no sequence conservation among different species except the presence of 

CAAT boxes and the conserved motifs, which vary in number in different species 

(Du, Zhou et al. 2004; Paulsen, Khare et al. 2005). In addition, I also demonstrate 

that one of the CAAT boxes in KvDMR1 promoter region is not essentially required 

for its promoter activity in HEK293T and C2C12 cell lines. This conclusion is based 

on the fact that I did not observe any difference between promoter activities of 

KvDMR1-R (without repeats), which also lacks CAAT box numbered 1 (result 

section Figure 27a), when compared to full length KvDMR1 promoter. 

 

The possible functional role of tandem repeats at imprinted centers is elusive. Mixed 

opinion exists in terms of tandem repeats as being requisite for imprinted centers 

(Pearsall, Plass et al. 1999; Lewis, Mitsuya et al. 2004; Walter, Hutter et al. 2006). 

However our results indicate that the promoter activity of KvDMR1 can be altered in 

presence of conserved elements. When tandem repeats are deleted from the 

KvDMR1, the influence of conserved elements on KvDMR1 promoter was also 

removed (refer to results section).These results suggest the possibility of direct or 

indirect interactions of KvDMR1 with the conserved NICE elements. The ongoing 

investigation will provide us with more evidences in support to the possible 

regulatory role of tandem repeats at KvDMR1 imprinting center. In the present study 

the conserved NICE elements on mouse KvDMR1 promoter showed influence in a 

repeat dependent manner in mouse myoblast cells. Our results on the KvDMR1 

center or the associated tandem repeats showed no sequence conservation among 

different mammalian species (including human and mouse) (Paulsen, Khare et al. 

2005). Therefore influence of NICE elements on human KvDMR1 promoter in 

HEK293T, NIH3T3 and C2C12 will be tested. This later experiment will show 

whether NICE elements influences on specific type of tandem repeats or it only 

requires a promoter possessing the tandem repeats. 
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The above investigation was conducted in cell lines originating from different 

species (human and mouse) and different tissues (fibroblast and myoblast). Therefore 

a third cell line e.g. a mouse fibroblast cell line (NIH 3T3), will be used to confirm 

the consistency in the results obtained from human embryonic kidney fibroblast 

(HEK293T). Since the present investigation (also discussed later) gave clues that 

NICE elements might be involved in placental specific gene regulation. Therefore 

another cell line originating from mouse placental tissue (a trophoblast cell line) will 

also be used for further analysis.  

 

When the in silico predicted candidate transcriptional factor Hand1 was tested in co-

transfection experiments, assays demonstrated significant removal of suppression 

from NICE 09_01 or NICE 10_04 promoter activity in HEK293T cells after 72 hr 

post transfection. Note that Hand1 co-transfection experiments did not show any 

significant influence of Hand1 protein on KvDMR1 promoter activity. Interestingly 

the number of conserved Hand1 consensus sites present in these NICE elements also 

corresponds to the effect seen in transient transfection assays i.e. maximum influence 

is from NICE 09_01 having 4 sites and no influence from NICE 10_13 which 

harbours only one site (appendix Figure 1). When Hand1 protein expression was 

checked in above co-transfections experiments by Western blot, it showed presence 

of Hand1 protein at all time points i.e. 24hr, 48 hr and 72 hr post transfection. 

However, the significant influence can be observed after 72 hr post transfection in 

luciferase read outs. It should be noted that Hand1 protein also undergoes post 

translational modifications such as phosphorylation, which influences its biological 

activity (Firulli, Howard et al. 2003). Another possibility for the influence of Hand1 

protein at 72hr might be the presence of two Hand1 peptides (32 and 27kd band) 

expressed from the constructs. These two proteins might counter-acts and hence the 

effect is not visible at 24 and 48 hrs, or that the interacting partner is missing at these 

early time points. Hence to rule out all these possibilities we wish to continue the 

same experiments in a mouse trophoblast cell line where Hand1 protein expression is 

induced to higher levels upon differentiation (Scott, Anson-Cartwright et al. 2000). 

Here, if required then the sTable cell lines will be established in order to understand 

the regulatory mechanisms involving the conserved elements in trophoblast cell line. 

Study on sTable lines will limit the technical steps and also the associated 

experimental errors. 
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The Hand1 transcriptional factor is expressed exclusively in placenta and in the heart 

ventricles. It is known to interact with other factors to form hetero dimers for its 

functional activity (Scott, Anson-Cartwright et al. 2000; Firulli, Howard et al. 2003; 

Hill and Riley 2004). It is known that defects in Kcnq1, harbouring KvDMR1 center, 

leads to cardio myopathy such as Long QT syndrome1, Romano-Ward syndrome or 

Jervell and Lange-Nielsen syndrome. Therefore it’s highly likely that the influence 

of Hand1 protein in cardiomyocytes or in placental tissue will reveal pronounced 

functional significance of the conserved elements on KvDMR1 promoter activity. 

Interestingly the KvDMR1 imprinting domain exhibits different imprinting mark in 

embryo proper and in placenta. In placenta this domain shows faithful differential 

imprint marks on histone modification in the entire domain whereas in embryo 

proper these marks are restricted to the KvDMR1 center only. It should be also noted 

that KCNQ1, which harbours the KvDMR1 imprinting center, is not imprinted in 

human foetal heart and in adult tissues (Lee, Hu et al. 1997).Therefore it will be 

interesting to know the functional role of Hand1 in regulating the KvDMR1 

imprinting domain in different tissues. These findings will also highlight the 

antagonistic behaviour of Hand1 and Ascl2 (in placental tissue), where later is 

regulated by the KvDMR1 imprinting domain. 

 

When these NICE elements were analyzed for the epigenetic modifications (DNA 

methylation), I observed substantial differences between embryo proper and placenta 

in one of the conserved elements. NICE One showed the existence of partially 

differential DNA methylation (maternal allele being more methylated) in placenta. 

The embryo proper however showed complete DNA methylation at both alleles. If 

the unmethylated or methylated state on the conserved element is recruiting the 

transcriptional factors for its regulatory functioning, then the different functional 

state on the alleles can only be predicted for placenta tissue. This is in concurrence 

with the differential histone modification observed in placenta and not in embryo 

proper, in the KvDMR1 imprinting dom ain. It also indicates that the importance of 

DNA methylation in placenta might have been underestimated. 

 

In addition we are planning to check these conserved elements for the presence of 

insulator or silencer activity. This will be performed by colony forming assays (Bell 
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and Felsenfeld 2000) and here all the plasmid constructs for the selected NICE 

elements are ready and experimental conditions are also optimized.  

 

Additional experiments will also be performed in order to get complete 

understanding of the regulation at KvDMR1 imprinting domain. These will include 

identification of DNase hypersensitivity regions by real time PCR at KvDMR1 

imprinting sub domain. This experiment will help in selecting tissue specific 

candidate NICE elements, which have a regulatory role at this sub-domain. The 

experiments such as Chromosome Conformation Capture (3C) will highlight the 

interaction of conserved elements with the KvDMR1. Investigation will also be 

performed on additional conserved elements located in KCNQ1 introns as well as in 

combination with other promoters from KvDMR1 imprinting sub-domain. The 

transfection assays will be performed in HEK293T cells, C2C12 cells, NIH3T3 cells 

and in a trophoblast cell line. Other experiments such as electro mobility shift assay 

(EMSA) to show interaction of Hand1 with conserved element will supplement the 

findings. Identifying the DNase hypersensitive region by real time PCR will be 

performed at KvDMR1 imprinting sub-domain. If NICE elements are enriched in 

this assay then it will also confirms the regulatory potential of NICE elements at 

KvDMR1imprinting sub-domain 
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Summary 

 

The epigenetic mark such as DNA methylation, at imprinted centers is often 

disrupted in imprinting syndromes in human. Recently these epigenetic alterations 

have also been implicated in assisted reproduction technology (ART) derived 

syndromes. The DMRs (sometimes also called imprinting centers) are indispensable 

for gene regulation in the imprinting domains. However the details of tissue and 

allele specific gene regulation in imprinted regions are poorly understood. In this 

study I investigated the Beckwith Wiedemann syndrome Region (BWS) in order to 

gain more knowledge on the influence of ART on maintance of imprinting in cattle 

and on the regulatory role of conserved elements in the vicinity of KvDMR1, one of 

the imprinting centers in the BWS region.  

 

For investigation of epigenetic aberrations caused after the usage of ART, cattle was 

used as a model organism because of the easy accessibility of sample material and 

also frequent occurrence of overgrowth phenotypes similar to BWS syndrome. In 

cattle, the putative imprinting center regulating BWS and PWS /AS imprinting 

clusters are well conserved in genome in location when compared to human and 

mouse sequences. These centers also faithfully maintain differential methylation 

imprints in the germ lines as well as in embryo proper and in placental tissues. On 

comparative methylation analysis between foetuses derived from different 

fertilization procedures, i.e. AI derived (control animals) and IVF derived foetuses 

(day 80 of gestation), a substantial loss of methylation in placental tissues was 

detected at imprinting centers in BWS region i.e. H19 DMR and KvDMR1. In 

contrast the embryo proper showed no methylation defect in IVF derived foetuses. It 

was also observed that not all imprinting centers were affected by the usage of ART. 

Imprints at the Snrpn DMR, in the PWS / AS region, were well maintained in IVF 

derived and control AI derived foetuses.  

 

The functional regulation of the cis acting conserved elements was analyzed at 

KvDMR1 imprinting sub-domain. The KvDMR1 sub-domain is characterized by the 

presence of high sequence conservation in intron 10 of the Kcnq1 gene (Paulsen, 

Khare et al. 2005). When 4 of highly conserved elements were linked to a reporter 
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gene and tested in transient transfection assays, they showed varying influence on the 

KvDMR1 promoter. When tandem repeats were deleted from the KvDMR1 

promoter, release of the influence of conserved elements on promoter activity was 

observed. This is the first report showing that tandem repeats in KvDMR1 promoter 

modulate its promoter activity by interacting with conserved elements in the BWS 

domain. Interestingly, co-expression of the placental and heart specific 

transcriptional factor Hand1 has resulted in enhanced KvDMR1 promoter activity 

only in presence of conserved elements. In particular potential functioning of one 

conserved element in placenta is also indicated by an unusual allele specific DNA 

methylation pattern. 

 

In conclusion, the presented data on methylation in bovine embryo and placenta and 

to some extent the functional analysis on cis acting conserved elements support the 

hypothesis that the KvDMR1 sub-domain behaves differently in the embryo proper 

and in placental tissues.  
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Zussamenfassung 

 

Im Menschen sind bei Imprinting-assoziierten Syndromen epigenetische 

Markierungen an Imprinting-Zentren wie z. B. die DNA-Methylierung oft verändert. 

Kürzlich wurde entdeckt, dass diese Veränderungen auch bei durch ART (assisted 

reproduction technology, künstliche Befruchtung) erworbenen Syndromen auftreten. 

DMRs (manchmal auch Imprinting-Zentren genannt) sind für die Regulation von 

Genen in Imprintingdomänen unverzichtbar, die Details der allel- und 

gewebsspezifischen Genregulation jedoch kaum verstanden. In dieser Studie habe 

ich die Beckwith-Wiedemann-Syndrom (BWS) Region analysiert, um den Einfluß 

von ART auf Imprinting in Rindern, sowie die regulatorische Rolle konservierter 

Elemente in der Nachbarschaft der KvDMR1, eines der Imprinting-Zentren der 

BWS-Region zu untersuchen. 

 

Um die epigenetischen Veränderungen nach Einsatz von ART zu untersuchen, wurde 

das Rind als Modell-Organismus gewählt, da hier leicht zugängliches Probenmaterial 

zur Verfügung steht und sich nach ART dem BWS-Syndrom ähnliche Phänotypen 

(Überwuchs) zeigen können. Im Rind sind die putativen Imprinting-Zentren der 

BWS bzw. PWS/AS Imprinting-cluster hinsichtlich ihrer Lage im Genom beim 

Vergleich zu Maus bzw. Mensch gut konserviert. Diese Zentren behalten ihre 

differentiellen Methylierungen in der Keimbahn, sowie im Embryo und plazentalen 

Geweben. Vergleichende Methylierungsanalysen an Föten, die durch 

unterschiedliche ART-Techniken (d.h. durch AI bzw. IVF empfangene Föten) 

entstanden, zeigten im plazentalen Gewebe einen substanziellen 

Methylierungsverlust an den Imprinting-Zentren der BWS-Region, d.h. die H19-

DMR und die KvDMR1. Im Embryo fand sich dagegen keine veränderte 

Methylierung in mitlles IVF generierten Föten. Auch zeigte sich, dass nicht alle 

untersuchten Imprinting-Zentren durch ART betroffen sind. So wurden die Imprints 

der Snrpn DMR in der PWS/AS Region sowohl in Kontrolltieren (AI) als auch in 

IVF-Föten aufrecht erhalten.  

 

Die regulatorische Funktion konservierter, in cis wirkender Elemente wurde an der 

KvDMR1 Imprinting-Subdomäne untersucht. Die KvDMR1 Subdomäne zeichnet 
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sich durch eine hochkonservierte Sequenz im Intron 10 des Kcnq1 Gens aus 

(Paulsen, Khare et al. 2005). Vier der hochkonservierten Elemente wurden mit einem 

Reportergen gekoppelt und in transienten Transfektionen getestet. Sie zeigten 

unterschiedlichen Einfluß auf den KvDMR1 Promotor. Wurden die Tandem Repeats 

vom KvDMR1 Promotor entfernt, verringerte sich der Einfluß der konservierten 

Elemente auf die Promotoraktivität. Dies ist der erste Hinweis dafür, dass die 

Aktivität des KvDMR1 Promotors durch Interaktion seiner Tandem Repeats mit 

konservierten Elementen der BWS-Region moduliert wird. Interessanterweise zeigte 

sich bei Ko-expression des plazenta- und herzspezifischen Transkriptionsfaktors 

Hand1 eine verstärkte KvDMR1-Promotoraktivität nur bei Anwesenheit der 

konservierten Elemente. Eine mögliche Funktion dieser konservierten Elemente in 

der Plazenta wird ferner durch ein ungewöhnliches DNA Methylierungsmuster eines 

der Elemente in eben diesem Gewebe unterstrichen. 

 

Zusammenfassend lässt sich sagen, dass die vorgelegten Daten zur DNA 

Methylierung in Embryo und Plazenta des Rindes und zum Teil die 

Funktionsanalysen der in cis wirkenden, konservierten Elemente die Hypothese 

unterstützen, dass die KvDMR1 Subdomäne sich im Embryo und in der Plazenta 

unterschiedlich verhält. 
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Abstrakt 

 

Der Mechanismus des Imprinting ist eine in Säugetieren bekannte Erscheinung. 

Genomisches Imprinting beinhaltet multiple Faktoren. Es ist bekannt, dass 

fehlreguliertes Imprinting im Menschen verschiedene Syndrome verursacht. 

Gegenwärtige Untersuchungen zeigen einen Zusammenhang zwischen künstlicher 

Befruchtung und Imprinting-Syndromen im Menschen. In der vorliegenden Arbeit 

wurden Föten von Rindern untersucht, um den Einfluß künstlicher 

Befruchtungstechniken (ART) auf Imprinting-Regionen zu überprüfen. Es wurden 

verschiedene Imprinting-Regionen gewählt und deren Imprinting-Zentren durch 

Sequenzabgleich mit Mensch und Maus identifiziert. An allen untersuchten 

Imprinting-Zentren waren die Imprints (DNA-Methylierung) vorhanden. Beim 

Vergleich der Imprints von Föten einer Kontrollgruppe (AI) mit denen von IVF-

generierten Föten, zeigte sich ein substanzieller Verlust paternaler Methylierung in 

der H19DMR, wohingegen sich maternale Methylierung der KvDMR1 nur in 

plazentalen Geweben IVF-generierter Föten (ART) fand.  

 

Der zweite Fokus der vorliegenden Arbeit lag darin, das regulatorische Potenzial 

hoch-konservierter, kurzer Sequenzen (NICE), die das KvDMR1-Zentrum 

flankieren, zu untersuchen. Vier der hochkonservierten Elemente wurden getestet 

und zeigten einen Einfluß auf die Promotor-Aktivität. Dabei zeigte sich, dass dieser 

Effekt durch die Anwesenheit von Tandem Repeats in der KvDMR1 moduliert 

wurde. Dies ist die erste Untersuchung, die eine mögliche Rolle der konservierten 

NICE-Elemente und der Tandem Repeats auf die Promotor-Aktivität des KvDMR1-

Imprinting-Zentrums aufzeigt. 
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VII Appendix 

Appendix Figure 1:  

Multiple sequences alignment between different mammalian species at the NICE 

elements 

The identical nucleotides in the alignment is represented by a dot (.), gap by a dash (-) and mismatches by 
the respective nucleotides (A, C, G, T). Mapped Hand1 sites (highlighted with open boxes) are according 
to the consensus binding sites “NRTCTG” or “CACGYN”, where R represents G or A; N represents any 
nucleotide and Y is for C or T.   

 
Multiple sequence alignment at NICE 09_01 
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Multiple sequence alignments at NICE 10_04 and NICE One
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Multiple sequence alignment at NICE 10_13 
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Appendix Table 1: Human-bovine BWS region 
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Appendix Table 2: Regulatory elements at Human-bovine BWS region 

 

 
Appendix Table 3: Tandem repeats at the analyzed imprinted centers 

 

 
Appendix Table 4: Human-bovine Snrpn gene
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Abbreviations 

µl  : microlitre 
AI  : Artificial Insemination 
APS  : Ammonium persulfate 
Ascl2  : Achaete-scute complex homolog-like 2 
AS-SRO  : AS- Shortest Region of Overlap 
bp  : basepair 
BWS  : Beckwith Wiedemann Syndrome 
C2C12  : Mouse myoblast cell line from C3H strain 
CBF  : CCAAT box-Binding Factor 
Cdkn1c  : cyclin dependent kinase inhibitor 1c 
CMV  : CytoMegalo Virus 
CO2  : Carbon Dioxide 
CTCF  : CCCTC-binding factor 
CTF  : CCAAT-binding Transcription Factor 
ddNTP  : Didioxy Nucleotide TriPhosphate 
DMEM  : Dulbecco's Modified Eagle Medium 
DMR  : Differentially Methylated region 
DMSO  : Dimethyl Sulfoxide 
Dnmt  : DNA methyl transferase 
dpi  : Days post insemination 
ECL  : Electrochemiluminescent 
EDTA  : Ethylenediaminetetraacetic acid tetrasodium salt dihydrate 
Hand 1  : Heart and Neural Crest Derivatives expressed 1  
ESTs  : Expressed Sequence Tags 
ET  : Embryo transfer 
FCS  : Foetal Calf Serum 
Gapdh  : Glyseraldehyde-3-phosphate dehydrogenase 
H (no) K (no) : Histone (no.) amino acid lysine (number) 
HEK293T  : Human embryonic kidney fibroblast cell line 
hr  : Hour 
HS  : Hyper Sensitive 
ICF  : Immunodeficiency, Chromosomal instabilities, and Facial  
      abnormalities syndrome 
ICR  : Imprinting control region 
ICSI  : Intra cytoplasmic sperm injection 
Igf2  : insulin like growth factor 2 
Igf2r  : insulin like growth factor 2 receptor 
IPTG  : Isopropyl-ß-D-thiogalactopyranosid 
IVF  : In vitro fertilization 
Kcnq1  : potassium voltage-gated channel, KQT-like subfamily, member 1 
Kcnq1ot1  : KCNQ1 overlapping transcript 1 
KvDMR1  : KCNQ1 Differentially Methylated Region 1 
LCRs  : Long range control regions 
LH  : luteinizing hormone 
Lit1  : long QT intronic transcript 1 
LOS  : Large offspring syndrome 
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mM  : milli Molar 
MOET  : Multiple Ovulated Embryo Transfer 
mRNA  : Messenger ribonucleic acid 
NaCl  : Sodium Chloride 
NaOH  : Sodium hydroxide 
NF-Y  : nuclear transcription factor Y 
NICE  : Neighbouring the Imprinting center Conserved Elements 
O2  : Oxygen 
OMIM  : Online Mendelian Inheritance in Man 
PCR  : Polymerase chain reactions 
PGC  : Primodial Germ Cells 
Phlda2  : pleckstrin homology-like domain, family A, member 2 
pRL  : plasmid renilla 
Pu  : purine 
PWS / AS  : Prader Willi syndrome / Angelman syndrome 
PWS-SRO  : PWS-Shortest Region of Overlap 
Py  : Pyrimidine 
SCNT  : Somatic Cell Nuclear Transfer 
SNuPE  : Single Nucleotide Primer Extension 
Spm  : suppressor mutator 
SV40  : Simian virus 40 
TEMED  : N,N,N',N'-Tetramethylethylenediamine 
TESS  : Transcriptional element search software 
tRNA  : transfer ribonucleic acid 
UPD  : Uniparental disomy 
WT  : Wilm’s tumour 
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