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Chapter 1

Abstract

This thesis consists of two parts of which one is dedicated to global structure-optimization of

clusters and the other part to conjugated polymers in the presence of an external DC field.

Clusters are intermediates between smaller molecules and extended, macroscopic solid.
Often, only for very few cluster sizes the structure is known. However, due to their size and low
symmetry it is a far from trivial task to perform a global structure optimization. In the present
work, new global optimization methods, i.e., the ”Aufbau” and the genetic algorithms have
been developed. These structure-optimization methods are combined with density-functional
tight-binding calculations for the determination of the total energy for a given structure. The

approach is applied to study HAIO, AlO, Au, and Al clusters.

In the study on electronic and structural properties of nanostructured HAIO clusters,
we have considered isolated (HAIO),, clusters, the interactions between two such clusters, and
two-dimensional layers of HAIO. In the calculations we used a parameterized density-functional
tight-binding method in the calculation of the electronic properties for a given structure, com-
bined with two different unbiased approaches, i.e., a 7 Aufbau” and a genetic-algorithm method,
for optimizing the structure for clusters with n up to 26. The results for the isolated clusters

are analyzed by means of similarity, stability, and shape parameters.
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The optimized HAIO clusters were found to contain a core of A1O where, moreover, mainly
heteroatomic bonds exist. The H atoms are found only on the surface of the core and are only
bonded to Al. From additional parameter-free density-functional calculations we could see that
there is a strong energetic driving force for creating systems with AI-O bonds and, moreover,
the clusters would prefer to have one Al-H bond per unit. The cluster with n=4 has a very
high symmetry. Moreover, with increasing n the total energy per unit decreases monotonously.
The combined clusters n; 4+ ng are slightly more stable than the two isolated clusters of n; and
ng units, but significantly less stable than the optimized n; + ny cluster. We also found that
infinite layered HAIO can be stable, in particular for a system consisting of two AlO layers
bonded via Al-O bonds and with additional H atoms attached to the Al atoms. It turned out,
however, that this system was only marginally more stable than the most stable cluster of our

study.

In the study of Au clusters, the geometries and electronic properties of the most stable
Auy clusters with NV from 2 up to 58 are presented. An intensive search for low-energy minima
of Auy clusters was carried through using DFTB method combined with genetic algorithms for
an unbiased global structure optimization. Various descriptors are used in analysing the results,
including stability, shape, and similarity functions, as well as radial distances of the atoms and
the orbital energies, all as functions of N. Also dissociation patterns and the symmetry of the
clusters are analysed. By comparing with results of jellium calculations, it is demonstrated
that for gold clusters, electronic effects are very important, leading to a partly suppression of

the occurrence of magic numbers, as well as to low-symmetry and less compact clusters.

This study represents the first such one where also electronic degrees of freedom explicitly
are included, which indeed turns out to be important. When including orbital interactions, not
only packing but also directional interactions determine the optimal structure and, therefore,
in most cases our optimized structures do not have a very high symmetry, i.e., the occurrence
of magic numbers becomes much less pronounced. In this respect, gold seems to be special. For
other metals, packing effects are often dominating, whereas for covalently bonded elements, the
effects due to directional bonds are dominating. We suggest that for gold there is a competition
between the two leading to the low-symmetry, although quite compact structures of the Auy

clusters.
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Admittedly, by using a parameterized (and not first-principles) method, our results may
be connected with some uncertainty. Thus, the fact that we find the transition from planar to
three-dimensional structures for a much too small N may be explained from this. On the other
hand, low-symmetry structures have been found in other, more accurate studies on selected

clusters.

The fact that electronic effects are important was indicated by the results of the calcula-
tions for the spherical-jellium model. In particular the stability function from these calculations
had a somewhat larger amplitude than was the case for the DFTB results. Once again, the
lowering of the symmetry is one reason for this difference. Furthermore, in some cases we could
correlate the occurrence of particularly stable clusters with large gaps of the electronic orbitals

around the Fermi level.

We observed a number of consequences of the occurrence of structures that are less com-
pact and with low symmetries. Thus, the existence of magic numbers was not particularly
pronounced, and for dissociation processes of clusters with more than around 20 atoms it was
energetically favored to split off a larger part. Moreover, the structures showed hardly any
resemblance with fragments of either crystalline gold or an icosahedron. Nevertheless, the
structures did show some regular patterns like the building up of an atomic shells for clusters

smaller than around 20 atoms.

In a second part we studied infinite, periodic chains in the presence of an external elec-
trostatic field parallel to the chain direction. We used different approaches. In a first approach
we approximated the external potential through a potential with a periodicity of the Born von
Karman zone. This approach was used both for a simple Hiickel-like Hamiltonian with one
orbital and electron per atom. With this approach the approximations could be studied in
some details. The same approach was also used in combination with our own parameter-free

density-functional method and applied to conjugated polymers.

However, ultimately we were able to prove that this approach is inaccurate. Approximat-
ing the system as being infinite and periodic has consequences for how the dipole moment (or,
equivalently, the polarization) shall be defined. Whereas the dipole moment for any finite sys-

tem, independently of its size, contains only contributions from the static charge distribution,
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an additional current contribution has to be included in the case that the system is assumed
being infinite and periodic. Since the response of the system to an external electrostatic field
is described through the additional term P-E , with P and E being the polarization and the
electric field vector, respectively, our finding made it necessary to modify the approach of how

to include electric fields in the calculations.



Chapter 2

Zusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Teile: zum Einen wurde sich mit global strukturop-
timierten Cluster befasst, wahrend im zweiten Teil der Einfluss eines externen Potentialfeldes

auf konjugierte Polymere untersucht wurde.

Cluster bilden das Verbindungsglied zwischen kleinen Molekiilen und makroskopischen
Festkorpern. Lediglich fiir eine unbedeutende Anzahl von ihnen ist iiberhaupt eine Struktur
bekannt. Aufgrund ihrer geringen Grofle und niedrigen Symmetrie gestalten sich globale
Strukturoptimierungen der Cluster alles andere als trivial. In der vorliegenden Arbeit wurden
neue Methoden zur Optimierung entwickelt, wie die " Aufbau” Methode oder der Genetische
Algorithmus. Zur Bestimmung der Gesamtenergie einer gegebenen Struktur wurden diese

Entwicklungen zusammen mit einer Tight-Bindung-Dichtefunktionaltheorie verwendet. Dies
wurde auf HAIO, AlO, Au und Al Cluster angewandt.

Bei den Studien zu den elektronischen und strukturellen Figenschaften der nanostruk-
turierten HAIO Cluster wurden isolierte (HAIO),, Cluster, die Wechselwirkung zwischen zweier
solcher Cluster und zwei-dimensionale Schichten von HAIO betrachtet. In den Berechnungen
zu den elektronischen Eigenschaften fiir eine gegebene Struktur wurde eine parametrisierte

Tight-binding Dichtefunktionalmethode verwendet, welche mit den zwei unterschiedlichen
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vorbedingungsfreien Anwendungen, ”Aufbau” Methode und genetischer Algorithmus, kom-
biniert wurde, um eine Strukturoptimierung von Cluster mit n bis zu 26 durchzufithren. Die
Ergebnisse fiir die isoliereten Cluster wurden mit Hilfe der Parameter Ahnlichkeit, Stabilitét

und Form analysiert.

Die optimierten HAIO Cluster enthalten einen AlO-Kern welcher hauptséachlich heteroatomar
gebunden ist. Die Wasserstoffatome wurden ausschliefilich an der Kernoberfliche lokalisiert
und binden nur an Aluminiumatome. Zusétzliche paramterfreie Dichtefunktionalberechnungen
zeigten, dass eine starke energetisch treibende Kraft existiert, die die Bildung von Al-O-
Bindungen begiinstigt und die Cluster lediglich eine Al-H-Bindung pro Einheit bevorzugen.
Fiir den Cluster mit n = 4 wurde eine hohe Symmetrie gefunden. Mit steigendem n nimmt
die Gesamtenergie pro Einheit monoton ab. Die kombinierten Cluster n; + no sind geringfiigig
stabiler als die isolierten Cluster n; und ns, aber bedeutend instabiler als der optimierte
ny + no Cluster. Ebenso wurde stabiles unendlich geschichtetes HAIO gefunden, insbesondere
fiir Systeme aus zwei AlO-Schichten, gebunden iiber Al-O-Bindungen und mit zusatzlichen
H-Atomen angelagert an die Al-Atome. Es stellte sich heraus, dass dieser Cluster nur

geringfiigig instabiler war, als der stabilste Cluster innerhalb dieser Untersuchungen.

Zu den Betrachtungen der Au-Cluster werden die geometrischen und elektronischen Eigen-
schaften der stabilsten Auy- Cluster mit /N von 2 bis 58 gezeigt. Fiir die intensive Suche nach
Energieminima der Auy-Cluster wurde die DF'TB-Methode mit dem Genetischen Algorithmus
kombiniert um eine vorbedingungsfreie globale Strukturoptimierug zu ermoglichen. Die um-
fangreiche Analyse der Ergebnisse umfasst die Stabilitéts-, Form- und Ahnlichkeitsfunktionen
ebenso wie die radialen Atomentfernungen und die Orbitalenergien als Funktionen von N
dargestellt. Zusatzlich wurde das Dissoziationsverhalten und die Symmetrie der Cluster unter-
sucht. Im Vergleich zu Jellium-Rechnungen wurde gezeigt, dass fiir Au-Cluster elektronische
Effekte von Bedeutung sind und teilweise das Auftreten der magischen Zahlen unterdriicken,

ebenso wie Cluster niedriger Symmetrie und nur gering kompakte Cluster.

Dies sind die ersten Studien, die ebenfalls elektronische Freiheitsgrade beriicksichtigen,
was sich als wichtig herausgestellt hat. Bei der Beachtung der Orbitalwechselwirkung bes-

timmen nicht nur die Packung, sondern auch die richtungsbezogenen Wechselwirkungen die
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optimale Struktur und daher besitzen in den meisten Fallen unsere optimierten Strukturen
keine hohe Symmetrie, wodurch das Auftreten der magischen Zahlen weniger ausgepréagt
erscheint. Vor diesem Hintergrund scheint Gold ein Spezialfall zu sein. Bei anderen Metallen
spielen die Packungseffekte die bedeutende Rolle, wohingegen fiir kovalent bindende Elemente
die Effekte auf Basis der gerichteten Bindungen dominieren. Wir gehen daher davon aus, dass
der Wettstreit zwischen den beiden zuvor beschriebenen Effekten zu der gering symmetrischen,

aber dennoch ziemlich kompakten Struktur der Auy-Cluster fiihrt.

Zugegebnermaflen fiihrt die Verwendung einer parametrisierten (und nicht first-principles)
Methode bei unseren Ergebnissen zu einer gewissen Unsicherheit. Damit kann der Umstand,
dass wir einen Ubergang von einer planaren zu einer drei-dimensionalen Struktur fiir viel
zu kleine N gefunden haben, erklart werden. Auf der anderen Seite wurden aber gering
symmetrische Strukturen in anderen genaueren Untersuchungen zu ausgewéhlten Clustern

gefunden.

Die Tatsache, dass elektronische Effekte eine Rolle spielen, wurde durch die Ergebnisse
der spharischen Jellium-Modell-Rechnungen aufgezeigt. Insbesondere die Stabilitatsfunktion
dieser Berechnungen hatte eine grofiere Amplitude als im Falle der DFTB Ergebnisse. An
dieser Stelle sei noch einmal erwéhnt, dass die Erniedrigung der Symmetrie hierfiir eine
Erklarung sein kann. Auflerdem korrelieren wir in manchen Fallen das Auftreten teilweise

stabiler Cluster mit grossen Liicken der elektronischen Orbitale um das Fermi-Niveau herum.

Wir beobachteten zahlreiche Konsequenzen aus dem Auftreten von Strukturen geringer
Kompaktheit und niedriger Symmetrie. Folglich war die Existenz der Magischen Zahlen
nicht besonders ausgepragt und, fiir die Dissoziation von Clustern mit mehr als 20 Atomen,
war es energetisch glinstiger, einen grofien Teil abzuspalten. Die Strukturen zeigten kaum
Ahnlichkeiten mit Fragmenten von kristallinem oder ikosaedrischem Gold. Trotzdem zeigten
die Strukturen regelméfiges Verhalten, wie den Aufbau von atomaren Schalen fiir Cluster mit

weniger als 20 Atomen.

Im zweiten Teil dieser Arbeit wurden unendliche periodische Ketten in einem externen
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elektrostatischen Feld, welches sich parallel zur Kette ausbreitet, untersucht. Zur Verwendung
kamen verschiedene Modelle. In einem ersten Ansatz wurde das externe Feld mit einem
Potential angenédhert, welches die Periodizitdat der Born von Karman Zone aufweist. Dieser
Ansatz wurde fiir einfache hiickel-dhnliche Hamiltonoperatoren mit einem Orbital und einem
Elektron je Atom verwendet. Mit Hilfe dieser Methode konnten die Naherungen in gewissem
Umfang durchgefiihrt werden. Der gleiche Ansatz wurde mit unserer eigenen parameter freien

Dichtefunktionalmethode auf konjugierte Polymere angewandst.

Allerdings konnten wir recht schnell zeigen, dass dies der falsche Weg war. Das System
als unendlich und periodisch anzundhern hat Auswirkungen auf das Dipolmoment (bzw. die
Polarisation). Wahrend fiir das Dipolmoment fiir endliche Systeme, unabhéngig von ihrer
Grofle, lediglich Beitrage der statischen Ladungsverteilung zu berticksichtigen sind, muss fiir
unendliche periodische Systeme noch ein Beitrag des Stroms beriicksichtigt werden. Da die
Antwort des Systems auf ein externes elektrostatisches Feld durch den zuséatzlichen Ausdruck
P. E, mit P und E als Polarisations- und elektrischem Feldvektor beschrieben wird, fithrte
unsere Erkenntnis dazu, den Ansatz dahingehend zu éndern, auf welche Art und Weise

elektrische Felder in den Berechnungen zu berticksichtigen sind.
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Preface

In this thesis, the results of two separate, independent, fields of work will be presented. The
first part is devoted to the development of global structure optimization methods with special
application to clusters. The second part describes our study of electronic properties of infinite,

periodic, conjugated polymers exposed to external DC fields.

In the first part, two new algorithms, i.e., "aufbau” method and genetic algorithms,
have been developed and combined with density-functional tight-binding methods. The new
algorithms are unbiased, and a global search of the structure of the lowest total energy can be
carried out without making any approximation. In the study, not only the global structures
of the clusters are searched unbiasedly, but also the electronic properties of the clusters are
included in the calculation, making our studies more detailed than those of most other structure
optimization studies. The new algorithms were applied to clusters with three, two, or one types
of atoms, for example HAIO, AlO, Au-Cu, Cu-Ni, Al, Au, and Na clusters. The results show
that the new unbiased global optimization methods are reliable, and that they are good tools

to study the electronic and structural properties of the clusters

In the second part, different theoretical methods for treating external DC fields for infinite
polymers are compared. Both results of model calculations and those of ab initio, density-

functional calculations are reported.

1X
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The thesis consists of an introductory part, describing the background to the studies,
followed by publications that have been either published or submitted for publication in inter-

national scientific journals. The articles, included in this thesis, are:

1. Y. Dong and M. Springborg: ”Infinite Polymers and Electrostatic Fields”, Synth. Met.
135-136 (2003) 349-350.

2. M. Springborg, B. Kirtman, and Y. Dong: ”Electronic polarization in quasilinear chains”,
Chem. Phys. Lett. 396 (2004) 404-409.

3. M. Springborg, Y. Dong: ”Conjugated Polymers in External DC Fields” in Advances in
Quantum Chemistry, 47 (2004) 369-392.

4. Y. Dong and M. Springborg: ”Theoretical study of nanostructured HAIO” in Advances
in Science and Technology, 44 (2004) 167-174.

5. Y. Dong, M. Springborg, M. Burkhart and M. Veith: ”Structural and electronic properties
of nanostructured HAIO and AlO”, Advances in Computational Methods in Science and
Engineering 4A (2005) 1010-1013.

6. Y. Dong, M. Burkhart, M. Veith and M. Springborg: ”Structural and electronic properties
of nanostructured HA10”, J. Phys. Chem. B 109 (2005) 22820-22829.

7. Y. Dong and M. Springborg: ”Properties of Auy clusters”, submitted for publication.

8. Y. Dong and M. Springborg: ”Global structure optimization study on Aus_oy Clusters”,

submitted for publication.

9. Y. Dong and M. Springborg: ”Unbiased determination of structural and electronic prop-

erties of gold clusters with up to 58 atoms”, submitted for publication.

The first three articles contain the study of electronic properties of infinite, periodic,
conjugated polymers exposed to external DC fields. The articles from 4 to 9 contain
studies on global structure optimization methods with application to HAIO, A1O and Au
clusters. Article 4, article 5 and article 6 are the study on HAIO and AlO clusters, article
7 to 9 devoted to Au clusters study, which have been submitted to the publication. For
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all articles, they were wrriten as a collaboration among all involved scientists. In articles
1-3, the desnity functional code had been developed by others, whereas I applied it to the
problems of interest. I developed the Hiickel method and accompanying program myself
and applied it too. For article 2, I carried through some of the calculations. For articles
4-6, I developed the methods and applied them. All calculations and a major part of
the analysis of the results were my work, the only exception is the DFT calculation by
Markus Burkhart on the clusters with n from 2 to 6 units. All the calculations, all the

program development and major of the analysis of the results for articles 7-9 are my work,
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Chapter 5

Clusters

It is well known that materials properties depend sensitively on their structure and com-
position, and actually the development of our society is to a large extent a consequence of our
capability to exploit this fact, although precise prediction of the materials properties for a given
system not yet has become possible. During the last quarter of a century another approach
for controlling and varying materials properties has been intensively studied and partly also
exploited in practical applications. Thus, when the materials dimensions are reduced to the

nm range, their properties change markedly from those of their macroscopic counterparts.

One class of such systems is provided by clusters that typically contain between some
10s and some 100 000s of atoms, and most often only a few type of atoms (with, however, the
possible exception of surfactants that saturate dangling bonds on the surface of the clusters).
Quantume-size effects combined with the fact that the number of surface atoms relative to the
total number of atoms is far from vanishing may be held responsible for the unique, size-
dependent properties of those materials and they have, accordingly, been the subject of many
experimental and theoretical studies (see, e.g., [1]). The precise determination of the relation
between size and property is, however, not easy for clusters. In experimental studies the clusters
are rarely isolated, but instead they often interact with some other medium like a solvent or a

supporting surface, possess surfactants, or their precise size is only approximately known. On
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the other hand, theoretical studies most often deal with isolated clusters of a well-defined size
and often without ligands for which it is overwhelmingly complicated to determine the structure.
Without any further information the identification of the structure of the lowest total energy
for a cluster of N atoms requires searching in a geometry space of 3N — 6 dimensions, which

for any but the smallest values of N hardly is possible.

Since most of the structures of the clusters are unknown. Determination of the geometric
ground state of the clusters is the work that faces to scientists. But, global structure optimiza-
tion is very difficult, this is because of the omnipresence of local minima, and the number of
which tends to increase exponentially with the size of the problem. For example, there are at
least 1506 distinct local minima for the 13-atom Lennard-Jones clusters and good reasons to
expect roughly as many local minima for more realistic potentials modeling various elements.
The number of minima of n atom clusters of most elements should be in the thousands for n
=13-15 and probably on the order of 10* -10° for 15 < n < 25. On the other hand, the com-
puter cost of reliable relaxation for the individual optimization is also other problem. Global
optimization is a hard task because it has two contradictory requirements: the search has to
explore the entire space of potential surface so that the searching will not miss the lowest total

energy minimum, and simultaneously every individual relaxation has been done enough.

Numerous approaches to solving the global optimization problem have been suggested,
among them, Simulated Annealing (SA), Basin - Hopping(BH), Genetic Algorithms (GA) are
the most often used methods, there are also other methods: minima hopping [2, 3], and multi-
canonical algorithms [4], conformational space annealing (CSA) [5] et al. [9, 10, 11]. Detailed
comparisons of different approaches are rare. Wales and Scheraga [6] reported global optimiza-
tion of clusters, crystals, and biomolecules by basin hopping method. Simulated annealing [26]
probably provided the first generally applicable technique for global optimization, in this ap-
proach the state of the system is followed by simulation as the temperature is decreased slowly
from a high value, in the hope that it will eventually come to rest at the global potential energy
minimum. Simulated annealing has several merits: (1) it does not get suck in local minima
as do classical gradient searches; (2) it is derivative-free, trivial to program (and maintain),
and can be easily applied to a wide class of optimization problems. The technique has been

shown in a variety of applications [7, 8]. Another global optimization method is Basin - Hop-



ping, in essence the BH method is Monte Carlo minimization, which removes relatively low
barriers separating local minima of the potential energy hypersurface and thus effectively con-
verts portions of the potential energy surface into a multidimensional staircase, each accepted
Monte Carlo move is associated with an energy minimization[12, 13]. With the exception of
GA, most standard algorithms are based on thermodynamic principles. At sufficiently low
temperature the ground state configuration will be the dominant configuration and hence the
search is solved in principle. Unfortunately thermodynamics does not tell us anything about
how fast the thermodynamic equilibrium distribution is obtained and as a matter of fact it can
be extremely slow. Consequently, global optimization strategies based on thermodynamic may

be of questionable value.

On top of the global optimization methods, one may add extra features in order to speed
up the calculation, like the taboo search [21, 22]. The basic idea of the taboo search is quite
simple: avoid trying the same solution more than once. The problem of repeated visits of
certain configurations has already been recognized by many researchers. one remedy that was
proposed is flooding [24], and other is history operators [25] by defining an order parameter,
and building the history path in the space of the parameter itself, or in the cluster configuration

space [23].

It is the purpose of the present work to develop, and subsequently apply, new global
optimization methods. Initial structures will be generated using random-number generators,
but since a search based purely on random numbers will converge extremely slowly (essentially,

approaching the lowest total energy as M~'/3

, where M is the number of structures that
have been studied), we combine this initial guess with more intelligent structure-optimization
methods. are developed in this work by using random operator, aufbau methods and genetic

algorithms.

It turned out that the most effective approach was obtained by combining genetic opera-
tors with density-functional tight binding methods. Before discussing these methods in detail,

we emphasize the following aspects about clusters.

First, small atomic clusters (roughly n < 100) are different from bulk and show specific

size effects. These properties can be very sensitive to structure, but little is known about the
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structure of small clusters apart from a few very small clusters (n < 10). Second the lowest-
energy structures are usually the most abundant in experiments on clusters, and the number of
the distinct minima on the potential-energy surface of clusters grows exponentially with the size
of the clusters, so mathematically the calculations are costly. Third, also the single total-energy

evaluation for one structure grows rapidly with systems size.

5.1 Random Number Generator

)

It may seem perverse to use a computer to produce "random” number since any program,
after all, will produce output that is entirely predictable, hence not truly "random”. The
meaning randomness is to generate a diversity of numbers that satisfy the programmer. In
other words, any two different random number generators ought to produce statistically the
same results when coupled to your particular applications program. A pragmatic point of
view, then is that randomness is in the eye of the programmer. Uniform deviates are just
random numbers that lie within a specified range (typically 0 to 1). Other sorts of deviates
are almost always generated by performing appropriated operations on one or more uniform
deviates. We are dealing with structure optimization problem, in other words, we want to have
very many different initial structures that we hope that they could cover entire space and later
leading to relaxed structures, so we need the random generator that generates as many divities

’ random number

as possible. One of system-supplied random number generators is called a ’
generator,” named like "ran,” and a calling sequence like x=ran(iseed). You initialize iseed to a
arbitrary value before the first call to run. Each initializing value will typically return a different
subsequent random sequence, or at least a different subsequence of some one enormously long
sequence. The same initializing value of iseed will always return to the same random sequence.
The system-supplied random number generator ran(iseed) can supply random number from 0
to 1, and since the same initializing value of iseed can always give the same random sequences,

there is one advantage that we can trace back to the structures that were generated.

In the present work we shall use random numbers to generate initial structures that

subsequently will be improved by using one of the two methods below.
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5.2 Aufbau method

Once we have chosen the method for calculating the total energy for a given structure (in our
work it is the density-functional tight-binding method that will be described below), the next
question is how do we perform a structure optimization, particularly when we do have little
information about the systems that we are about to study, which is the case for HAIO clusters,
AlO clusters, Au clusters, and Al clusters. ”Aufbau” method was also developed to study
HAIO, AlO, Au and Al clusters. In the present work the ” Aufbau” method was mainly used
to study HAIO clusters and, therefore, we shall describe the method only for this system. For
the HAIO clusters it was important that it was known from experiment that the clusters are
stoichiometric, i.e., are of the form (HAIO),,. We start out optimizing the structure of a single
HAIO molecule (i.e., n=1) by choosing the structure of the lowest total energy from a very large
number of calculations on randomly constructed structures that were allowed to relax to their
closest total-energy minimum. Subsequently, we only assume that the structure of the cluster
with n+1 units can be obtained by randomly adding one Al, one O, and one H atom to the
cluster with n units. Thus, out of very many calculations where we randomly add those three
atoms to the optimized structure of the cluster with n units (imposing only the constraints
that the extra atoms should not be too close to any other atom or too far from all the other
ones, and subsequently allowed to relax) we obtain an optimized structure of the system with
n+1 units. The resulting cluster of such calculation is not with absolute certainty that of the

global total-energy minimum, but, hopefully, a very good approximation to it.

5.3 Genetic Algorithms

Calculations on (HAIO),, clusters showed that although the ” Aufbau” method is efficient, even
more efficient were methods based on genetic algorithms. Therefore, in further studies we
shifted to these methods that shall be described here.

Physics, chemistry, biology or economy often have to deal with the classical problem of

optimization, Generally speaking, a large part of mathematical development dealt with that
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topic. Purely analytical methods widely proved their efficiency, they nevertheless suffer from
a insurmountable weakness. Other methods, combining mathematical analysis and random
search have appeared, but although these methods are very efficient, there is no proof that the

optimum will be found.

Genetic algorithms inspired by Darwinian evolution process were formally introduced in
the United States in the 1970s by John Holland at University of Michigan. His achievements
were presented in the publication of ’Adaptation in Natural and Artificial System’ in 1975.
Holland had a double aim: to improve the understanding of natural adaption process, and to

design artificial systems having properties similar to natural systems[58, 59].

The continuing price/performance improvements of computational systems has made ge-
netic algorithms attractive for some types of optimization. In particular, genetic algorithms
work very well on mixed (continuous and discrete), combinatorial problems. They are less sus-
ceptible to getting 'stuck’ at local optima than gradient search methods. But they tend to be
computationally expensive. To use a genetic algorithm, you must represent a solution to your
problem as a genome (or chromosome). The genetic algorithm then creates a population of
solutions and applies genetic operators such as mutation and crossover to evolve the solutions
in order to find the best one(s).

Under these conditions, genetic algorithms are increasingly being used in a number of
global optimization problems in chemistry ranging from crystal structure prediction and protein
folding in biomolecules to parameter development for empirical and semi-empirical quantum
mechanical calculation. And when used to study atomic clusters, they are called Cluster Genetic
Algorithms (CGA). The cluster genetic algorithm works by randomly selecting and mating the
more fit individuals in a generation to produce the next generation of offsprings, where the
fitness is some measure of the energetic stability for an individual cluster structure. The global
minimum is eventually located because some of the new cluster conformations created by the
genetic algorithm have lower energies than the structures in previous generations. A good
mating operator causes good structural features in a cluster to be passed to next generation

while maintaining structural diversity in the overall population.

Until to now, different genetic operators have been used to optimize the structure of clus-
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ters. Deaven and Ho [14, 15, 16] first proposed that the most important mating operator is the
cut-and-paste method in a GA for global optimization of atomic clusters. Wolf and Landman
[17] used the add/etch operations in their global optimization studies of large Lennard-Jones
cluster. Ge and Head [18, 19] used four mating methods to study Si passivated by H atoms:
one is to take the arithmetic mean of the cartesian coordinates from two parent geometries.
The second method is to take a fragment of Si atoms from one parent and replace it with the
fragment of the other parent with the same number of atoms, and also cut a fragment of H
atoms in one parent and replace it with a fragment of H atoms in the other parent with the
same number of atoms. The third method is to cut each parent into halves and then recombine
one half from each parent to generate the offsprings. and the fourth method is to use basic CGA
as the above-mentioned three methods, but by modifying the genetic operators which produce
new offsprings from the parent clusters. Joswig and Springborg [20] used a parent-children,

cutting and mating method to study Al clusters.

Global optimization faces two contradictory requirements: i) the search has to explore the
entire space in order to not miss the global minimum, ii) a local relaxation shall be sufficiently
accurate in order to provide an accurate total energy for that initial structure. Furthermore,
one has to remember, that there is no guarantee that any method will identify the structure
of the global total-energy minimum. In order to arrive at a sufficiently efficient method, we
developed our own versions of genetic operators to search for the global-energy-minimum for

different sizes of clusters.

A) Operator 1: Suppose that we have optimized the structure of the cluster with n units.
From this structure we construct a first generation consisting of M independent clusters
for the (n + 1)-unit system by randomly adding one unit (or atom) and letting these
structures relax to their nearest total-energy minima. Subsequently, a new set of clusters
is constructed by cutting each of the original ones randomly into two parts that are
interchanged (under the constraints mentioned above) and, afterwards, allowed to relax.
Out of the total set of 2M structures, the M ones of the lowest total energy are kept as
the next generation. This procedure is repeated until the lowest total energy is unchanged

for a large number of generations.



8 CHAPTER 5. CLUSTERS

B) Operator 2: Based on the ” Aufbau” method and GA method, operator 2 was developed by
combining the two methods together. First the ” Aufbau” method is applied to generate
many initial configurations (for example 200). Then from the 200 relaxed structures,
seeds are selected as the initial structures for GA operator 1. Afterwards, GA operator 1

is used to carry out structure optimization.

C) Operator 3: As we mentioned above that the computing cost for one energy evaluation
is extremely large compared to that of all other operations in global optimization, i.e.,
the generation of random numbers, the generation of initial structures, the cutting and
interchanging the structures, and the sorting and selection of clusters for the next gener-
ation.... In order to make the global optimization realistic, there are two things that we
can do to reduce the computing time. One is to reduce the time of the local optimiza-
tion, another is to reduce the number of the initial structures that later will be relaxed.
Local optimization is relatively simple and there are many good algorithms. Here we
used methods based on the energy gradients. In the optimization, the energy gradients
are used to update the geometry. Another way of reducing the time of optimization is
to reduce the number of generations. As we mentioned above a single energy evaluation
is extremely costly, so compared with the first factor to reduce the computation time,
the second factor is of paramount importance. In the first operator 1, after cutting the
optimized structures, we form new clusters by pasting the halves. However, it is possible
that the new clusters are similar to the clusters that we have studied before. Therefore,
in order to make sure that the clusters of the next generation are different from the ones
of the present generation, we compare the structures directly. If the two structures are
found to be similar, the structure of the new generation is discarded and a new structure

constructed.

In order to quantify similarity between two structures we proceed as follows. For each
structure we consider either the radial distances of the interatomic distances. E.g., for a
(HALO),, cluster, the radial distance for each of the 3n atoms is
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SYSTEM Agr AFE
SO1—-SM1 0.759 0.1971
SO1—-SM2 3333 0.08588
SO2—-SM2 3.3726 0.084146
SM1—-SM2 3.6051 0.1112
SM1—-S02 1.4262 0.19535

which ﬁo is the center of the cluster,

- 1 3 -
0= 3 (5.2)

defined from the positions R; of the atoms.

Two structures of the same number of atoms are then compared by sorting these radial

distances for each structure, separately, and subsequently calculate

13n

Ar = (5, 201 =), (5.3)

i=1

Alternatively, the sorted interatomic distances, {d;}, can be used in defining a structural dif-

ference
3n(3n—1)
2 2 1
A, — —— S db — d*)?)z2 5.4

Finally, the upper indices 717 and 72" refer to the two different structures.

Using these concepts we can actually illustrate the problem of identifying the structure of
the global total-energy minimum. Thus, in Table I we show the total-energy difference between
some different structures together with their structural difference as defined above. SO1, SO2
are old structures, whereas SM1, SM2 are new structures obtained in a next generation. The
table shows clearly that different structures may have comparable total energies, whereas similar
structures may have quite different total energies, i.e., the total energy is indeed a complicated

function of structure.

In particular the genetic algorithms are based on studying several structures in parallel

(i.e., all the members of a generation). This suggests that the calculations with advantage can
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be carried through using several CPUs in parallel. As a part of this present work we therefore
implemented the possibility of performing parallel computing, although it ultimately was not

used.

5.4 Message-Passing Interface (MPI)

MPI makes it possible to perform parallel computations. For either ”aufbau” or genetic al-
gorithms methods that we have described above, the program handles more than one clusters
at the same time. This makes it possible to use MPI assuming that a cluster of computers
that can handle this is available. MPI (message-passing interface) was defined in 1994 by a
broadly-based group of parallel computer vendors, computer scientists, and applications devel-
opers after 2 years of intensive process. MPI is not a new computer language, but is instead a
library. According to the number of instruction and data, one may use either SIMD (Single-
Instruction Multiple-Data) or MIMD (Multiple-Instruction Multiple-Data). Yet another possi-
bility is SPMD (Single-program Multiple-Data) and MPMD (multiple-Program Multiple-Data).

5.5 Density Functional Tight-Binding Method

In the sections above, we have discussed in some detail the problem of minimizing the total
energy as a function of structure, without, however, discussing how the total energy is be-
ing calculated. In the present work we used a parameterized density-functional tight-binding
method that now shall be described.

The tight-binding method lies between very accurate, very expensive, ab initio methods
and the fast, but less accurate, empirical methods. When compared with ab initio methods,
a tight-binding method is typically two to three orders of magnitude faster, but suffers from
a reduction in transferability due to the approximations made; when compared with empirical
methods, the tight-binding method is two to three orders of magnitude slower, but the quan-

tum mechanical nature of bonding is retained, ensuring that the angular nature of bonding is
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correctly described far from equilibrium structures. Tight-Binding is therefore useful for the
large number of situations in which quantum-mechanical effects are significant and unknown

for systems like cluster, but for which the system size makes ab initio calculations impractical.

The calculations of the electronic properties for a given structure were performed using
the parameterized density functional tight-binding (DFTB) method of Seifert et al. [27, 28, 29].

According to this method, the single-particle eigenfunctions ¥;(r) to the Kohn-Sham

equations are expanded in a set of atomic-like basis functions ¢,,:
Ti(r) =D Cim@m(r) (5.5)

Here, m is a compound index that describes the atom at which the function is centered, the
angular dependence of the function, as well as its radial dependence. These functions are
obtained from self-consistent density functional calculations on the isolated atoms employing a

large set of Slater-type basis functions.

The Hamiltonian is defined as
iLIlg—l- Veff(r) (56)

Here, £ is the kinetic-energy operator, and the effective Kohn-Sham potential V., 7¢(r) is approx-

imated as a simple superposition of the potentials of the neutral atoms:
Vegs(r) = V21 — Ry ) (5.7)
j
Furthermore, we make use of a tight-binding approximation, so that
P, = <¢m‘£+ Z V]0‘¢n> = <¢m|i+ Vg?n + (1 - 5jn7jm)ng‘¢n> (5’8>
j

where R;  and R;, are the positions of the atoms at which the mth and nth basis functions
are centered, respectively. The Kronecker-9 is included in order to assure that the potential
is not double counted for j,, = j,,. Through this approximation, only two center terms in the
Hamiltonian matrix are considered, but all two-center terms (fmpn = (G| h|dn)s S = (G| dn))
are calculated exactly within the Kohn-Sham basis. These approximations lead to the secular
equation
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Using the Kohn-Sham eigenvalues ¢;, the total energy E[p(r)] may be written as

occ

1
:Zei—i[/veff( r)dr — /vm r)dr] +EXC——/VXC r)dr+ Ey. (5.10)

The external potential V.., is the electrostatic potential from the nuclei, F'x¢ is the exchange-
correlation energy, Vy¢ the corresponding potential and Ey the nuclear repulsion energy. Since
the difference between superposed atomic electron densities and the true electron density of the
system of interest is only small and since by far the largest parts of the interatomic interactions
are of fairly short range, the major part of the total energy is contained in the difference of the
single particle energies of the system of interest, {¢;}, and of the isolated atoms, {€;,,} (€jm is

the jth eigenvalue of the mth atom), i.e.,

occ

eB:Zei—ZZejm (5.11)

The short-ranged interactions can be approximated by simple pair-potentials, so that the ex-

pression for total energy becomes

occ

EB%ZEZ ZZ€Jm+ > Ui (IR; — Ryl) (5.12)

J#J

Uji(IR; — Rj) is determined as the difference of ep and €27 for diatomic molecules
(with E3CF being the total energy from exact density-functional calculations). Finally we
will consider only valence electrons for our calculation, whereas the others will be treated as

frozen-core.

With these approximations all relevant information on the above-mentioned matrix ele-
ments can be extracted from calculations on isolated two-atomic systems, in our cases on these

two-atomic systems shown in the table.

The local total-energy minimization is performed by using the forces. Here, the force F;
that acts on the j-th atom of the system of interest can be calculated using the Hellmann-

Feynman theorem.
oF

| P
77 T OR,;

(5.13)
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Compound Diatomics Valence Electrons
HAIO Aly, O, Hy, AlO,OAl,OH, HO,AlH, HAL | Al : 35,3p; O : 2p; H : 1s
AlO Aly, Oq, AlO, O Al Al 2 3s,3p;0 : 2p
Al Al Al : 3s,3p
Au Aug Au : 5d, 6s

The forces can be split up into two parts, one acting on the electrons only (Fj), the

another one acting exclusively on the nuclei (FY),

e N
The nuclear part consists of the sum of the derivatives of the repulsive energies of the nuclei,
0 AVAY
FN = Z ( I ) (5.15)
whereas the electronic part can be written as the sum of the orbital contributions,

0 .
F; = anFﬂ = "OR, (Z nz<¢2‘h‘¢z>> (5.16)

Here, n; is the occupation number of the i-th orbital (either being n;=0, or n;=1), and as a

consequence we sum only over the occupied orbitals (n;=1, i=1,...,0cc). Fj; can be written as

OHpn  OSum av;;)

j mZﬂc ¢ ( oR, T “BR, | OR,

Vee are the matrix elements of the electron-electron potential (V¢ = Vi +V,.). The component

(5.17)

of the potential is compensated by the nuclear part F;V ,

avee
N o mn
These two terms are approximated by the repulsive term U(R),
W(R—Ry)" for R<R
U(R) = | Znon(B—Ry" or ! (5.19)
0 for R > R;

The forces that are acting on an atom positioned at R; can finally be calculated as,

< OH OSmn 1 0
Fj - _vjEtot - ZZ <_ 8R] + €; 8Rj ) + 5]%/ 8R] U(|RJ — R]’D' (520)

i myn
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Chapter 6

Conjugated Polymers in External DC
Fields

Conjugated polymers have been at the focus of a large research activity over more than a quarter
of century (see, e.g., [33, 34, 35, 36]). Compared with more traditional plastics, the conjugated
polymers contain a backbone with sp?>- and sp-bonded (and not sp3-bonded) carbon atoms.
The last valence electron(s) per carbon atom occupy p orbitals and participate in 7 bonds
between the carbon atoms. This has two consequences: the polymers are essentially planar,
and the energy gap between occupied and unoccupied orbitals is small (i.e., corresponds to that

of conventional semiconductors) with 7 orbitals appearing closest to the Fermi level.

There is a strong coupling between electrons and phonons (structure) which leads to a
lowest-energy structure with alternating C—C bond lengths and to the occurrence of structural
defects (i.e., solitons and polarons) when the chains are charged. Both finite oligomers and
essentially infinite polymers can be synthesized, and a special class of oligomers is the finite, so-
called push-pull systems where the two end-groups are different, so that an excitation involves

an internal charge transfer from one end to the other.

Due to the combination of mechanical properties as plastics and electronic properties as

15
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crystalline semiconductors, these materials are been considered interesting for many special-
purpose applications, including light-emitting diodes, transistors, and sensors. For the present
purpose it is, however, most important to observe that the 7w electrons that are somewhat
loosely bound to the backbone, but not so loosely bound that they are free-electron-like, give
rise to very large linear and, in particular, non-linear responses to external electric fields. The
responses can be quantified through the polarizabilities («) and hyperpolarizabilities (3, 7, .. .)

by expanding either the dipole moment
pi=n"+ > 0B+ Y BupBEc+ Y. vuEiEE A+ (6.1)
I=x,Y,2 J.k=z,y,z i.kl=x,y,z
or the total energy
1

1
Etot:Et((())t)_ Z /%(O)Ei -3 Z OéijEiEj—g Z Bijk B B By,
i:x7y7z i7j:x7y7'z i7j7k:x7y7z
1
— 1 Z ’VijklEiEjEkEl + - (62)
i7j7k7l:w7y7z

in the electric-field components. When AC fields are applied, the (hyper)polarizabilities become

frequency dependent,
Dijiker..om(Wis Wi, Wk« « « Wiy with w; = |w; L wy £ -+ £ wyy| (6.3)

with p being «, 3, v, ... Non-zero values of # and 7 lead to effects like second- and third-
harmonic generation, four-wave mixing, electric-field-induced second harmonic, the Kerr effects,
and the Pockels effect, which are interesting both for basic and for applied science. Accordingly,

much effort is put into obtaining maximally large values of these parameters.

In the thermodynamic limit any property Z for a finite system A—(X),—D will be either
independent of or proportional to n. Experimental [37] and theoretical [38, 39, 40, 41, 42]
studies have, however, shown that when Z is the polarizability « or the hyperpolarizability -,
Z(n)/n lor Z(n) — Z(n — 1)] converges only very slowly as a function of n towards the large-n
limit and, moreover, the convergence for + is slower than that for o [39]. On the other hand,
since the larger systems tend to have larger values of Z(n)/n than the smaller ones, it is highly
relevant to consider the large systems. Thus, considering infinite, periodic systems is a useful

alternative.
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For finite oligomers of polyacetylene it has been found [41] that the vibrational con-
tribution to the total polarizability amounts to roughly 10% of the total polarizability, and,
although it is known that this percentage will increase for the hyperpolarizabilities, we shall

here concentrate on the electronic part of the responses.

Most often, (hyper)polarizabilities of polymers are calculated using a perturbation-
theoretical approach based on the formalism of Genkin and Mednis [43]. Thereby, both occu-
pied and unoccupied orbitals have to be included in the calculation and the fact that different
electronic-structure methods (most notably, Hartree-Fock- and density-functional-based meth-
ods) often yield fairly inaccurate results for the unoccupied orbitals may be the reason for
the fact that the calculated (hyper)polarizabilities often depend strongly on the method (see,
e.g., [42, 44]). Thus, in order to access the accuracy of the different methods or, alternatively,
to avoid the problems related to the accuracy of the unoccupied orbitals, one may include a
DC field directly in the calculations whereby at least the static (hyper)polarizabilities can be

calculated.

However, the inclusion of a static field is a non-trivial endeavor. First, even for the smallest
possible system (e.g., an isolated hydrogen atom) and for the smallest possible external field,
the eigenvalue spectrum changes dramatically: there is no bound states, and states that in
the field-free case were bound change into resonances. And for an infinite system parts of the
system will be exposed to a divergent field. On the other hand, for crystalline systems it has
been found [45] that the polarization is a bulk property, i.e., is accessible by considering a single
unit cell. This can, e.g., be done through the Berry-phase formulation of polarization (see, e.g.,
[46]). Moreover, finite-chain calculations have indicated [47, 48] that the electron distribution
for a chain exposed to a DC field is roughly periodic far away from the boundaries, suggesting

that a periodic-chain treatment should be possible.

We finally mention that one further reason for studying infinite, periodic polymers in
external DC fields is the findings [48, 49, 50] that currently applied approximate density-
functionals (like the one we are using) may be inadequate when calculating responses to external
DC fields. Thus, studies like the ones of this contribution may provide further insight into the

failures of the functionals. On the other hand, we stress that our basic method is, in principle,
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not dependent on these problems and can be modified easily according to new proposals for

approximate density functionals.

6.1 A simple Hickel-like model

In order to analyse the problems of treating an infinite, periodic system in an external field, it
turned out to be useful to first consider a simpler model system for which many and detailed
calculations could be carried through. Ultimately, the results of this analysis gave information

on problems related with our initial approach.

The models that we consider are all related to a simple Hiickel-like model. As a prototype

we consider the Hamiltonian
FI - I:Itb —|— I:Iext (64)

where the last term is caused by the external field, described within the electric-dipole approx-

imation.
The tight-binding part is given by
Hy =Y oiélei + 3 Bi(el ¢+ éléin). (6.5)

Here, we have assumed that we have one orbital per site (labeled x; with ¢ being the site) and

that ¢; and é,T are the corresponding annihilation and creation operators. Moreover,

a forj==k
; B; fork=j7+1
(G Hwlxe) =47 , (6.6)
O fork=j5-—1
0  otherwise.
We will assume that the external field only affects the diagonal elements,
How = Eidle,. (6.7)

We will assume that the system has one electron per site, that the on-site energies «; are

site-independent (and accordingly can be set equal to 0), and that 3; alternates between t_ = 0.5
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and ¢y = 1.5. For an infinite periodic chain without the external field we will accordingly have
an occupied band between —2 and —1, a gap between —1 and +1, and an unoccupied band
between +1 and +2. These numbers can be used in estimating the strength of a field above
which the calculations become meaningless. Considering a finite system with N sites and letting
E; = Fia/2, the Nth atom experiences a potential of roughly N FEa/2 higher than the 1st atom
does. If this value is larger than the gap, electrons will start flowing from one end of the system
to the other. In order to avoid this run-away solution, we must require £ < 4[t, —t_|/(aN).
Therefore, we have chosen the fairly large value of the hopping-integral alternation. Another
reason is that calculations for a similar model [47] have shown that the polarizability per site

converges the faster as a function of chain length the larger the hopping-integral alternation is.

We shall now use this model in studying different approximations. We set
E,=(—M)Ea/2 (6.8)

(a/2 is the average interatomic distance) and consider a chain of 2M sites with periodic bound-
ary conditions, i.e., in effect we assume that atom 1 and atom 2M are bonded, too. A very
special case is that of 2M = 2, where we accordingly assume that the external potential has the
periodicity of the lattice. For larger values of 2M the approximation is that of assuming that
the potential has the shape of a sawtooth curve with the periodicity being that of the Born von
Kéarman zone. l.e., the approximation is equivalent to considering an infinite, periodic system
for which an electronic-structure calculation is been performed using M equidistant k points
in the first Brillouin zone. Proposing that the external potential due to the field should have
this periodicity is not new [51, 52|, and in fact Resta [53] has shown that one has to use an

operator with the periodicity of the Born von Karman zone.

These approximations are schematically illustrated in Fig. 6.1.

[width=12cm]fig01.ps

Figure 6.1: Schematic representation of the external field for (a) a finite system with the true
field, (b) the approximation that the field has the periodicity of the lattice, and (c) that it has

the periodicity of the Born von Karman zone.

Otto [54] and later Kudin and Scusseria [55] realized that the major problem for directly
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including the field in an electronic-structure calculation is related to the fact that the field
destroys the periodicity. On the other hand, as mentioned above, both mathematical arguments
and actual calculations have found that the charge distribution inside an extended system
remains periodic also in the presence of an external field. Therefore, Otto sought a separation
of the form

) ! i
HCXt = Hext + H

ext? (69)
where the first term has the periodicity of the lattice and the second is a remainder. Then,
only the first term is kept. We stress that this separation may be rather arbitrary (one may

add any lattice-periodic term to H’, when simultaneously subtracting it from H” ).

ext

According to Bloch, in the absence of the external field any orbital is a Bloch wave of the

form
Un(F) = e T (7) (6.10)
where n is a band index, and uf: is lattice-periodic. Then
FUR() = iV e () — iV (). (6.11)

By neglecting the second term, only a lattice-periodic term is kept. Maybe the most important
problem of this approach is that it is closely tied to the precise definition of the orbitals,
Eq. (6.10), so that different definitions of the Bloch waves may ultimately lead to different
definitions of H’

ext*

6.2 LMTOs

Instead of using the approach based on neglecting the second term in Eq. (6.11), we used the
approximation of Fig. 6.1(c). In this case, one may systematically improve the quality of the
calculation by increasing the number of k points, whereby the discontinuities become more
and more separated, so that their effect should become increasingly reduced. This idea was

combined with a parameter-free density-functional method.

We apply our own density-functional method that has been described in detail elsewhere
[56, 57] and, therefore, shall be only briefly discussed here.
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The method is based on expanding the eigenfunctions to the Kohn-Sham equations in a
basis set of LMTOs (Linearized Muffin-Tin Orbitals), which are represented numerically inside
non-overlapping, atom-centered, so-called muffin-tin spheres and analytically in the interstitial
region outside all spheres. The numerical functions are obtained by considering the spherically
symmetric part of the potential inside the muffin-tin spheres and for this solving the Kohn-
Sham equations numerically for an orbital energy (denoted €,) that is in the energy range where
the orbital has its largest support, leading to the atom- and angle-dependent basis function
¢z [L being a short-hand notation for (I,m)]. In addition we define the energy-derivative
Q%E’ L= %gbﬁ’ ;- The analytical functions are decaying, spherical waves [i.e., spherical Hankel
functions times harmonic functions, hl(l)(|77 — R|k)Y (r—R) = hi p..(7)]. The functions are
matched continuously and differentiably on the sphere boundaries. The basis functions y Rl
are accordingly eigenfunctions to a muffin-tin potential and, as such, good approximations to
the true solutions to the Kohn-Sham equations. It shall, however, be stressed that the full
potential is included in the calculations. In our implementation of the method we consider
infinite, periodic, isolated polymer chains. The periodicity is utilized in constructing Bloch

functions from the basis functions of different unit cells,

1 N .

k : ikmn
= lim —— 3 e 6.12
Xp, Lok Neoo /AN £ 1 1n:ZNXRnp,L,H ( )

where ]%np is the position of the pth atom in the nth unit cell. We let the z axis be the polymer

axis.

Of computational reasons it is then most convenient to use not Bloch but Wannier func-
tions as the basis functions when calculating the matrix elements for the operator of Fig. 6.1(c).

These are defined as

1
ij(F) = m -

eid’j(k)@bf(F)e_ikp (6.13)

where j is a band index and p labels the unit cell of the Wannier function. The phases ¢;(k)

are determined so that the integral [y, [wjo(7)|*2*dr is minimized.
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6.3 The Breakdown of the Approach

The density-functional method mentioned above was developed and tested for small model
systems, including a chain of hardly interacting H, molecules. In this case, by performing
calculations on the system with the molecules being parallel to the chain axis one can calculate
the response of the molecules to a field that is parallel to the chain axis. The same results (within
the accuracy of the approach) should be obtained when placing the molecules perpendicular to
the chain and, simultaneously, placing the field perpendicular to the chain axis. In this case,

the field does not destroy the lattice periodicity and can be included much simpler.

The test calculations gave confidence that the approach was working. Subsequently, it

was applied to a conjugated polymer, trans polyacetylene.

However, a further analysis of the Hiickel model showed ultimately that the approach is
incorrect. In a collaboration with Bernie Kirtman (University of California, Santa Barbara)
we were able to prove mathematically that the correct approach is based on using the full Eq.
(6.11). It turns out that one then obtains two different contributions to the dipole moment, i.e.,
a charge term that corresponds to Fig. 6.1(b) and a current term that cannot be represented
in figures like those of Fig. 6.1. The second term is the larger, the more the units of the system
are interacting, and, therefore, its effects are close to vanishing for the test system of hardly
interacting Hy units. Its existence is closely related to the approximations made in treating the
system: for any finite system, no matter how large, it does not exist, but approximating the

system as being infinite and periodic, it shows up.



Bibliography

[1] F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

2] S. Goedecker, J. Chem. Phys. 120, (2004) 911.

[3] S. Goedecker and W. Hellmann, Phys. Rev. Lett. 95, (2005) 055501.

[4] B. A. Berg and T. Neuhuas, Phys. Lett. B 267, (1991) 249-253.

[5] J. Lee, In-H. Lee and J. Lee, Phys. Rev. Lett. 91, (2003) 080201.

6] D. J. Wales and H. A. Scheraga, Science. 285, (1999) 1368.

[7] R. A. Donnelly, Chem. Phys. Lett. 136, (1994) 274.

[8] U. Rothlisberger, W. Andreoni, M. Parrinello, Phys. Rev. Lett. 72, (1994) 665.

9] G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B. C. Curley, L. D. Lloyd and R. L.
Johnston, J. Chem. Phys. 122, (2005) 194309.

[10] G. Rossi and R. Ferrando, Chem. Phys. Lett. 423, (2006) 17-22.

[11] P. Liu and B. J. Berne, J. Chem. Phys. 118, (2003) 2999.

[12] D. J. Wales and J. P. K. Doye, J. Phys. Chem. 101, (1997) 5111-5116.

[13] S. Yoo, J. Zhao, J. Wang and X. Ch. Zeng, J. Am. Chem. Soc. 126, (2004) 13845-13849.
[14] D. M. Deaven, K. M. Ho, Phys. Rev. Lett. 75, (1995) 288.

23



24 BIBLIOGRAPHY

[15] J.R. Morris, D. M. Deaven, K. M. Ho, Phys. Rev. B. 53, (1996) R1740.

[16] D. M. Deaven, N. Tit, J.R. Morris, K. M. Ho, Chem. Phys. Lett. 256, (1996) 195.
[17] M. D. Wolf, U. Landman, J. Phys. Chem. A102, (1998) 6129.

[18] Y.-B. Ge, J. D. Head, Chem. Phys. Lett. 398, (2004) 107-112.

[19] Y.-B. Ge, J. D. Head, J. Phys. Chem. B108, (2004) 6025-6034.

[20] J.-O. Joswig, M. Springborg, Phys. Rev. B68, (2003) 085408.

[21] D. Cvijovi¢ and J. Klinowski, Science. 267, (1995) 664.

[22] S. D. Hong and M. S. Jhon, Chem. Phys. Lett. 267, (1997) 422-426.

[23] J. Cheng and R. Fournier, Theor. Chem. Acc. 112, (2004) 7-15.

[24] A. Votor, J. Chem. Phys. 106, (1997) 4665.

[25] F. F. Guimardes, J. C. Belchior, R. L. Johnston and C. Roberts, J. Chem. Phys. 116,
(2002) 8327.

[26] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Science 220, (1983) 671.

[27] D. Porezag, Th. Frauenheim, Th. Kohler, G. Seifert, and R. Kaschner, Phys. Rev. B 51,
(1995) 12947.

(28] G. Seifert, R. Schmidt, New J. Chem. 16, (1992) 1145.

[29] G. Seifert, D. Porezag and Th. Frauenheim, Int. J. Quantum Chem. 58, (1996) 185.
[30] I. D. W. Samuel et al., Science. 265, (1994) 1070.

[31] Y. Zhang, Z.-H. Lu, J. Mol. Struct.467, (1999) 233.

[32] M. Springborg, O. K. Anderseb, J. Chem. phys.87, (1987) 7125.

[33] H. Shirakawa, Angew. Chem. 113, 2642 (2001).

[34] A. G. MacDiarmid, Angew. Chem. 113, 2649 (2001).



BIBLIOGRAPHY 25

[35] A. J. Heeger, Angew. Chem. 113, 2660 (2001).

[36] T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (eds), Handbook of Conducting
Polymers (Marcel-Dekker, New York, 1998).

[37] I. D. W. Samuel, I. Ledoux, C. Dhenaut, J. Zyss, H. H. Fox, R. R. Schrock, and R. J. Silbey,
Science 265, 1070 (1994).

[38] B. Champagne, D. H. Mosley, J. G. Fripiat, and J.-M. André, Int. J. Quant. Chem. 46, 1
(1993).

[39] D. Lu, B. Marten, M. Ringnalda, R. A. Friesner, and W. A. Goddard III,
Chem. Phys. Lett. 257, 224 (1996).

[40] B. Champagne, D. Jacquemin, J.-M. André, and B. Kirtman, J. Phys. Chem. A 101, 3158
(1997).

[41] B. Champagne, E. A. Perpete, and J.-M. André, J. Chem. Phys. 101, 10796 (1994).

[42] D. H. Mosley, B. Champagne, and J.-M. André, Int. J. Quant. Chem. Symp. 29, 117
(1995).

[43] V. N. Genkin and P. M. Mednis, Sov. Phys. JETP 27, 609 (1968) [Zh. Eksp. Teor. Fiz. 54,
1137 (1968)].

[44] Z. Shuai and J. L. Brédas, Phys. Rev. B 46, 4395 (1992).
[45] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
[46] R. Resta, Rev. Mod. Phys. 66, 899 (1994).

[47] J.-M. André, J. Delhalle, and J.-L. Brédas, Quantum Chemistry Aided Design of Organic
Polymers (World Scientific, Singapore, 1991).

[48] B. Champagne, E. A. Perpete, S. J. A. van Gisbergen, E.-J. Baerends, J. G. Snijders,
C. Soubra-Ghaoui, K. A. Robins, and B. Kirtman, J. Chem. Phys. 109, 10489 (1998).

[49] M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders,
Phys. Rev. Lett. 88, 186401 (2002).



26 BIBLIOGRAPHY

[50] M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders,
J. Chem. Phys. 118, 1044 (2003).

[51] K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983).

[52] K. Schmidt and M. Springborg, Phys. Chem. Chem. Phys. 1, 1743 (1999).
[53] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).

[54] P. Otto, Phys. Rev. B 45, 10876 (1992).

[55] K. N. Kudin and G. E. Scuseria, J. Chem. Phys. 113, 7779 (2000).

[56] M. Springborg and O. K. Andersen, J. Chem. Phys. 87, 7125 (1987).

[57] M. Springborg, J.-L. Calais, O. Goscinski, and L. A. Eriksson, Phys. Rev. B 44, 12713
(1991).

[58] J. H. Holland, Adaption in Natural Algorithms and Artifical systems (University of Michi-
gan Press, Ann Arbor, USA, 1975).

[59] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning
(Addison-Wesley, Reading, USA, 1989).



Chapter 7

List of Talks

9 Y. Dong, M. Springborg. Theoretical study on (HAIO),, clusters. International conference

of computational methods in science and engineering 2005. Oct. 2005, Loutraki, Greece.

8 Y. Dong, M. Springborg. Theoretical study on (HAIQO), clusters. 9th national quantum
chemistry conference. Oct. 2005, Guiling, PR China.

7 Y. Dong, M. Springborg. Structural and electronic properties of nanostructured (HAIO),
and AlO. Seminar in Tsinghua University. Sept. 2005, Beijng, PR China.

6 Y. Dong, M. Springborg. Structural and electronic properties of nanostructured (HAIO),
and AlO. 41th Symposium on Theoretical Chemistry. Sept., 2005, Innsbruck, Austria.

5 Y. Dong, M. Springborg. Structural and electronic properties of finite (HAIO), clusters.
Seminar in Univeristy of Missouri-Columbia. Apr., 2005, Columbia, USA.

4 Y. Dong, M. Springborg. Structural and electronic properties of finite (HAIO), clusters.

Seminar in University of California, Santa Barbara. Apr., 2005, Santa Barbara, California,

27



28

CHAPTER 7. LIST OF TALKS

USA.

Y. Dong, M. Springborg. Structural and electronic properties of finite (HAlLO), clusters.
APS March Meeting 2005, March, 2005, Los Angeles, California, USA.

Y. Dong, M. Springborg. FElectronic and structural properties of finite (HAIO), clusters.
Seminar in South-East University. Sept., 2004, Nanjing, PR China.

Y. Dong, M. Springborg. Electronic and structural properties of finite (HALO), clusters.
First International Conference on Theoretical Chemistry, Molecular Modeling, and Life
Science s. Aug., 2003, Beijing, PR China.



Chapter 8

List of Publications

24

23

22

21

20

19

18

Y. Dong and M. Springborg. Unbiased determination of structural and electronic proper-

ties of gold clusters with up to 58 atoms, submitted for publication.

Y. Dong and M. Springborg. Properties of Auy clusters, submitted for publication.

M. Springborg, B. Kirtman, Y. Dong and V. Tevekeliyska. Infinite, periodic system in

external fields, submitted for publication.

Y. Dong and M. Springborg. Global structure optimization study on Aug_oy Clusters,

submitted for publication.

V. Tevekeliyska, Y. Dong, M. Springborg and VG. Grigoryan. Structural and energetic

properties of sodium clusters, submitted for publication.

D. Alamanova, Y. Dong, H. ur Rehman, M. Springborg and V. G. Grigoryan. Structure
and electronic properties of gold clusters, Computing Letters.1 (2005) 319-330.

Y. Dong, M. Burkhart, M. Veith and M. Springborg. Structural and Electronic Properties

29



30

17

16

15

14

13

12

11

10

CHAPTER 8. LIST OF PUBLICATIONS

of Nanostructured HAIO, J. Phys. Chem. B (2005) 22820-22829.

M. Springborg, VG. Grigoryan, Y. Dong, D. Alamanova, H. ur Rehman and V. Teveke-
liyska. Structural and Electronic Properties of Metal Clusters, Advances in Computational
Methods in Science and Engineering 2005. 4A (2005) 1026-1031.

Y. Dong, M. Springborg, M. Burkhart and M. Veith. Structural and Electronic Properties
of Nanostructured HAIO and AlO, Advances in Computational Methods in Science and
Engineering 2005 4A (2005) 1010-1013.

A. Md. Asaduzzaman, K. Schmidt-D’Aloisio, Y. Dong and M. Springborg. Properties of
polythiophene and related conjugated polymers: a density-functional study, Phys. Chem.
Chem. Phys.7 (2005) 2714-2722.

Y. Dong, M. Springborg. Theoretical Study of Nanostructured HAIO, in Proceedings of
3rd International Conference " Computational Modeling and simulation of Materials”. Ed.
P. Vincenzini et al., Techna Group Publishers, (2004) 167-174.

M. Springborg, Y. Dong. Conjugated Polymer in External DC Fields Advances in Quan-
tum Chemistry. 47 (2004) 369-292.

M.Springborg, B.Kirtman and Y. Dong. FElectronic Polarization in Quasilinear Chains.
Chem. Phys. Lett. 396(2004) 404-409.

Y. Dong, M. Springborg. Infinite Polymers and electrostatic Fields. Synth. Met., 135-
136(2003) 349-350.

PS. Ma, MM. Chen and Y. Dong. Solid-Liquid Equilibria of Several binary and Ternary
systems containing Maleic Anhydride. Chinese J. Chem. Eng., 10(3)(2002) 323-327.

YL. Lu, Y. Dong, MM. Chen and W Xu. The Synthesis of Maleic Anhydride and the
Ezxploitation of its backward product. Chemical Industry and Engineering, 1(18)(2001)
52-56.



31

H. Xu, Y. Dong, and PS. Ma. Solubility of MA in Phthalic Diester . Petrochemical
Technology. 29(7)(2000) 501-503.

PS. Ma, Y. Dong, and W. Xu. Studies on the Solid-Liquid FEquilibria of Maleic Anhydride
in diester sebacate. Petrochemical Technology. 29(8)(2000) 586-588.

PS. Ma, Y. Dong, and W. Xu. Studies on the Solid-Liquid FEquilibria of Maleic Anhydride
in Chain dicarbozylic Acid Diester. Chemical Engineering(China). 28(4)(2000) 48-51.

Y. Dong, and PS. Ma and W. Xu. Study on the Solubility of Maleic Anhydride in 1,2-
cyclohexanedicarbozylic Acid Diisobutyl Ester and Diethyl Ester. 14(2)(2000) 160-163.

Y. Dong, XQ. Ruan and JM. Zheng. Studies on the Triarylmethyl Stable Free-Radical
Polymer Polymer Materials Science and Engineering. 15(4)(1999) 72-74.

XQ. Ruan, Y. Dong, JM. Zheng CT. Guo. Studies on Synthesis of Pyrenebenzaldehyde
COPNA RESIN and its Magnetic , 25(5)(1997) 469-473.

XQ. Ruan, Y. Dong and JM. Zheng. Synthesis and Characterization of Triarylmethane
Resin Apply Chemistry, 14(3)(1997) 74-77.

XQ. Ruan, JM. Zheng and Y. Dong. Magnetic Behavior of Triarylmethane Resin Coal
Chemical Industry, 3(1997) 53-56.



Infinite Polymers and Electrostatic Fields
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Abstract

Different theoretical methods for treating external DC fields for infinite polymers are compared. Both results of model
calculations and those of ab initio, density-functional calculations are reported.

Keywords: Ab initio and semiempirical methods and calculations, polyacetylene

1. Introduction

Conjugated molecules and polymers possess large lin-
ear and nonlinear responses to external electromagnetic
fields. Studies have shown that the nonlinear responses
per monomer converge slowly as a function of chain
lengths [1,2], making studies of infinite polymers at-
tractive. Their calculation requires matrix elements for
the dipole-moment operator. For infinite systems this
operator suffers from two problems: it diverges and it
destroys the periodicity. Different solutions have been
proposed and here we compare some of those.

T [ (I
(a) (b) (e)
o
©
[
I I Y Y /V
0 10 20 O 10 20 O 10 20
Unit cell Unit cell Unit cell

Figure 1. Schematic representation of the z operator (a) as it
in reality is and (b,c) when a periodicity with (b) the lattice or
(c) the Born-von-Karman zone is assumed.

For an infinite, periodic chain the wavefunctions are
Bloch waves, ¥;(7) = e**uy, ,(7), where uy ,, is a peri-
odic function. In a calculation one uses a discrete set
of N equidistant k values, which corresponds to a pe-
riodicity of Ny unit cells [the Born-von-Kérman (BvK)

*Tel: 449 681 302 3856; fax: 449 681 302 3857; e-mail:
m.springborg@mx.uni-saarland.de

zone]. For the z operator (cf. Fig. 1) one may assume
that it has the periodicity of either the BvK zone or of
the lattice. Alternatively, z operating on a Bloch wave
equals —iZ + ie** Ze~* operating on it [3]. Only
the first term destroys the periodicity and may, as an
approximation, be ignored.

In the present contribution we shall show — through
theoretical studies with two different approaches — that
many of the commonly used approaches may suffer from
inaccuracies due to approximations in the treatment of
the external field. In a future work we will compare ab
initio results obtained with our approach with results of
other experimental and theoretical studies.

2. Model calculations

We studied a chain of N sites with periodic bound-
ary conditions and a Hiickel-like Hamiltonian with one
orbital and electron per atom. Only nearest-neighbour
hopping integrals were set non-zero and they alternated
between —0.5 and —1.5 (arbitrary units). The field op-
erator is E - 7 = Exz. Only on-site matrix elements for
the z operator were set non-zero. We considered three
cases: 1) the z operator has the symmetry of the BvK
zone, 4i) it has the symmetry of the lattice (i.e., of two
atoms), and 7i7) that the first term above is ignored.

The results of Fig. 2 show that the response depends
on the approach. Also for the potential of Fig. 1(c) there
is an almost regular electron distribution, except for the
boundaries, until for large field strengths the electrons
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Figure 2. The number of electrons as a function of site for
(upper part) E = 0.02 and N = 204 for different cases and (lower

part) for case ¢) for different E.
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Figure 3. Variation in total energy per two atoms as a function
of E. Results for N =12, 102, 204, and 306 are shown.

start flowing from one end to the other, cf. Fig. 2. Fi-
nally, Fig. 3 shows that case ii) leads to a fundamen-
tally wrong description of the response, whereas the two
other approaches are comparable. Differences suggest,
however, that the approach 4) is the one to be used.

3. Ab initio calculations

Our density-functional method, described in [4], uses
LMTOs in expanding the wavefunctions. An LMTO
is an analytical function augmented inside the atom-
centered, non-overlapping spheres with numerical func-
tions. Our programs can treat infinite, periodic, and
isolated chains. The calculations give the Bloch waves
in terms of LMTOs. Subsequently, we define Wannier
functions, wy,(F) = ﬁ S e Bk (Pe=ikr . ¢, (k)
are chosen so that wy,, is localized. wy, has the period-
icity of the BvK zone. We studied trans polyacetylene
with a realistic structure and N = 20. The chain was
placed in the (z,2) plane with the z axis being paral-
lel to the chain axis. The Wannier functions were cal-
culated for the field-free system. Subsequently, a field
along the z, y, or z axis was added. For the last case we
considered both approximations of Fig. 1(b) and (c).
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Figure 4. Total energy per C2Hs unit as a function of E for
a field along different axis. Atomic units are used: fields in
2.571-10'°© V/m and energies in 13.606 eV.
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Figure 5. The number of electrons inside the carbon spheres for
a field along different axis.

Fig. 4 shows that the total energy changes the least
(most) when the field is parallel to the y (z) axis and
that the response for fields along the 2z axis depends
strongly on whether an approach like the one of Fig.
1(b) or like the one of Fig. 1(c) is used. The number of
electrons inside the spheres is a descriptor of electron re-
distributions. Fig. 5 shows that a field along the z axis
makes the two C atoms per unit different, whereas one
along the y axis does not. A similar asymmetry is ob-
served for fields along the z axis with both approaches,
but this polarization is much stronger for case i) than
for case ii). For case i) we notice that the electron dis-
tribution gives only two different ‘types’ of C atoms,
although the 40 C atoms per BvK zone experience dif-
ferent fields. When E becomes so large that electrons
flow from one end of the BvK zone to the other, our ap-
proach can no longer be used. The band structures (not
shown) give, finally, that for the largest fields along the
z axis significant shifts (some eV) are observed (mak-
ing the calculations unreliable), whereas more realistic
fields give shifts that are hardly observable.
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Abstract

Starting with a finite k-mesh version of a well-known equation by Blount, we show how various definitions proposed for the
polarization of long chains are related. Expressions used for infinite periodic chains in the ‘modern theory of polarization’ are
thereby obtained along with a new single particle formulation. Separate intracellular and intercellular contributions to the polari-
zation are identified and in application to infinite chains, the traditional sawtooth definition is found to be missing the latter. For a
finite open chain the dipole moment depends upon how the chain is terminated, but the intracellular and intercellular polarization
do not. All of these results are illustrated through calculations with a simple Hiickel-like model.

© 2004 Elsevier B.V. All rights reserved.

The purpose of this Letter is to answer some ques-
tions that arise in connection with the theoretical treat-
ment of macroscopic polarization in quasi-one
dimensional chains. In order to specify the issues let us
consider a macroscopic, open-ended, polymeric chain
consisting of identical unit cells. For sake of argument
this chain is assumed to be polarized due to an asymmet-
ric unit cell and/or an external electric field. There are
two contributions to the polarization P, i.e. to the dipole
moment per unit cell. One is due to the asymmetric
charge distribution within a unit cell in the central
region of the chain and the other is due to the charge
of opposite sign that accumulates at the chain ends.

Hiickel-type calculations (see below) show that the
contribution due to the finite chain ends does not vanish
even in the infinite chain limit. This is simply due to the
fact that, for a charge of fixed magnitude at either end,
the dipole moment is directly proportional to the dis-
tance between the charges.

* Corresponding author. Fax: +49 681 302 3857.

E-mail addresses: m.springborg@mx.uni-saarland.de (M. Spring-
borg), kirtman@chem.ucsb.edu (B. Kirtman), y.dong@mx.uni-
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0009-2614/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
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Next, imagine that the chain ends are connected to
form a ring. In that event there are no ends and all the
unit cells are identical. What is the relationship between
the unit cell charge distribution of the closed chain and
the unit cell charge distribution at the center of the open
chain? In fact, they are the same as our Hiickel-type cal-
culations confirm. Then, what has happened to the con-
tribution to the polarization associated with the charge
build-up at the ends of the open chain? As it turns out
this contribution is associated with a charge flow term
that arises from Blount’s theoretical expression [1] for
the polarization when periodic boundary conditions
are applied. This raises the question of whether or not
such a term can be accounted for by the conventional
sawtooth approach [2,3]. The latter is based on using a
finite mesh in k-space, along with periodic boundary
conditions [4,5], but it does not correspond to a finite-
mesh analogue of Blount’s formula which will be
presented here. From a general formulation of this ana-
logue several approximations will be developed includ-
ing the fundamental equation(s) of the so-called
modern theory of polarization [6-10].

Using a Hiickel model, discussed below, we demon-
strate quantitatively that the sawtooth approach omits
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the current term and that Blount’s formula gives an
accurate approximation for the polarization when ap-
plied with a finite set of k points. Finally, it will be seen
that the polarization of long finite chains with arbitrary
terminal substituents does not depend on the nature of
these substituents even though the same cannot be said
of the dipole moment D itself.

For a finite chain of alternating A and B atoms the
Hiickel Hamiltonian may be written in terms of ortho-
normal atom-centered basis functions {y,} as

2K 2K—1

H= Z Z lpp+i p+1cp+ccp+1) (1)

p=—2K+1 p=—2K

where 4K is the number of atoms, é; and ¢, are the cre-
ation and annihilation operators for the function y,, and

€p and —1, 41 are on-site energies and hopping integrals,
respectlvely. The matrix elements of the position opera-
tor are given by (x,|z[x,,) = Onmz, With z, being the posi-
tion of the pth atom. For convenience, the atoms are
taken to be equally spaced, z,=4[p—12], with
p=-2K+1,..., 2K being odd (even) for the A (B)
atoms, and /2 being the nearest-neighbor distance.
Assuming one electron per atom it is straightforward
to evaluate the atomic charges and the electronic polar-
ization, P (dipole moment per A—B unit) as a function of
the number of A-B units, 2K. As an example (using
arbitrary units for length and energy and setting the
electronic charge equal to +1) for a = 2.0, alternating
on-site energies €, = = 0.5= *¢j, and hopping integrals
ty =-2.2, t_=-1.8, we find that the polarization is
converged to a value P =0.58125 for K> 13 while the
charges on the central atoms are Q(A)=0.74413,
O(B) = 1.25587. The latter result in a contribution
P.= P—(al4)[Q(B)—QO(A)] = 0.32538 to the polarization
due to accumulation of charge at the chain ends. We
may think of P. as an intercellular charge flow term.
The existence of a substantial intercellular charge flow
term is remarkably robust to variations in the model.
Thus, including next-nearest-neighbor interactions,
modifying the matrix elements at the chain ends or alter-
ing (y,|Z|x,,) in realistic ways often changes the total di-
pole moment, but not the polarization, of sufficiently
long chains. The effect of varying terminal (on-site
and/or hopping) matrix elements is illustrated in
Fig. 1. The figure shows that altering the chain ends
changes the charges on the ends (upper part) and the di-
pole moment (lower part) but neither the polarization
(slope of dipole-moment curve) nor the charges in the
central region are affected. The right-hand panel of the
lower part shows that the polarization can vary for small
chains (see, particularly, curve f).

The fact that one may calculate the polarization by
studying only the central cells has been shown previ-
ously by Vanderbilt and King-Smith [9]. However, this
does not imply that different terminating groups, which

0

atomic charge

80

10

Dipole moment

sawtooth

1 " " " 1 " " " " " " " " " " " "
0 10 20 1 2 3
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Fig. 1. Upper part: Distribution of the atomic charges as a function of
atom index for a finite chain with 80 atoms for different cases of the
matrix elements for the terminating atoms, i.e. the on-site energies for
the first (last) atom have been modified as e — ¢+ A¢
(—ep — —€o + Ag,), and the hopping integrals between the first (last)
two atoms according to —ty — —t4 + At; (—t+ — —t+ + At,). Lower
part: The dipole moment for the same cases but as a function of chain
length. Here, ‘sawtooth’ corresponds to the dipole moment for a ring
system when using the sawtooth approximation, and the right panel
shows a blow-up of the low-K part. The curves marked a, b, ¢, d, e, and
f (in the lower panels these labels are listed in the same order as the
curves appear) correspond to the following modifications:
(AepAe,,At,AL) = (0,0,0,0),  (1.0,0,0,0), (0,1.0,0,0), (0,0,—1.0,0),
(0,0,0,—1.0), and (1.0,—1.0,—1.0,1.0), respectively.

lead to different charge accumulation at the chain ends,
give the same polarization because there is a contribu-
tion due to intercellular charge flow that could change.
Thus, this is a generalization of the Vanderbilt and
King-Smith result, which is consistent with the known
near-sightedness [11] of the single-particle density
matrix. It has obvious implications for the design of
donor-acceptor, or push—pull, systems and is valid pro-
vided the chain is sufficiently long.

Even for an unsubstituted chain where the ends are
connected so that no charge can accumulate there is
an important contribution to the polarization that arises
from the intercellular charge flow. We now turn to that
case and consider a ring of 2K identical AB unit cells.
Application of periodic boundary conditions leads to
the general expression for the eigenfunctions

V() = (F)e = —— \/2_1< > e Z o) (2)

m=—K+1
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with n being a band index, ,,, the pth basis function of the
mth unit cell, and N, the number of basis functions per
cell. In our Hiickel model, n = 1 (n = 2) for the occupied
(empty) band, and p =1 (p =2) indicates the function
on the A (B) atom. For any given set of parameters and
sufficiently long chains the electronic charges, Q(A) and
Q(B), turn out to be identical to those at the center of
the open-ended chain of the same length. Thus, for either
chain, the same intracellular polarization ¢ [O(B) — O(A)]
is obtained. This means that the P, contribution must be
accounted for in some other way. For the ring we can
readily identify that contribution by considering Blount’s
expression for the polarization in the limit K — oo

:%"En:/<u;|a%u';> dk, (3)

where the n summation is over the (doubly) occupied
bands. Using Eq. (2) it is easy to show (cf. [12]) that

zz/m

« . d
X chn ((XqO |Z_ ma | Xpm> +1<Xq0 ‘ Xpm> dk) fm dk. (4)
Pq

With a finite 2K-point-mesh approximation for the
integral one can verify that the first term on the right-
hand side of Eq. (4) yields the intracellular polarization.
This leaves the second term as the periodic cyclic chain
analogue of the intercellular charge flow contribution
described above in connection with the open chain.

If one is interested in long open-ended chains it is
usually advantageous computationally to assume that
the chain is infinite and periodic. A number of different
proposals have been advanced for calculating the polar-
ization of infinite periodic chains using finite k& mesh
methods. In order to compare these approaches we fol-
low the treatment of Blount [1], based on the relation

() = 16 e L) — i ), 5

to obtain the effect of the coordinate z acting on a single
electron whose orbital, /(7), is expanded in terms of

Bloch waves
DD AGTED BB TH G A (6)
k n k n
In fact, Blount [1] obtained Eq. (4) by using Eq. (5)
on y of Eq. (6). Here instead of a continuous k we will
use a finite k-mesh, which corresponds to assuming that
the system possesses the periodicity of the Born von
Karman (BvK) zone containing 2K unit cells. Conse-
quently, the analytical derivatives in Blount’s formula-
tion will be replaced by numerical derivatives. In
lowest order the numerical derivatives corresponding
to the terms in Eq. (5) are:

: ﬁzz HGY G
Ay MZZW )y =™ A5
+ EZZ NGV AGTA R -
AN () AkZZ L AL =@,

with Ak = n/aK. By construction these expressions have
the BvK periodicity and it follows that the lowest order
finite-k-mesh analogues of (/|z[y) are (zﬁ“zn/" = b

(e

WI(—i, il ) = <

Wl(—ia_+ia")

> Ak(l_S+)

A¢eﬁh—lﬁw>=3;w—1x

sin(Akz) 1//> :2i1Ak(S+ _s5),

Ak
(®)

w«—M&H%nw=<w

where S* = (|e™*|y). If the spatial extent of y is
much smaller than 1/Ak (this can, e.g., be obtained by
increasing the number of k points in an actual calcula-
tion), and assuming that [, . | Zy( 7)[*d7 exists (e.g.
when  is a well-localized Wannier function), then we
may make the approximation

1 i
<lp EeilAkz|lp> ~ E{eimk(lﬁlzhﬂ) (9)
or
1
Wlz|y) ~ — lnSJr EImlnS+,
1
(Ylzly) ~ lnS’ AkImlnS" (10)

ww—wmbwsﬁ

Here, the second equalities in the first two expressions
have been obtained by removing the imaginary parts
and, accordingly, requiring that (i|z|y) is real. This re-
sult comes about automatically in the expressions based
on the A, operators.

The treatment for N electronsis similar. In that case the
one-electron Bloch waves are replaced by Slater determi-
nants P4 = %[wk‘ (rl)lpk2 (), ..., lﬁf‘v” (7v)], where .o/ is
the antisymmetrlzer and Eq. (5) becomes
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Then an arbitrary N-electron function can be written
as the linear combination  Y(7#),7,...,7y) =
S WA, P, ... Fy)fF with the single-particle situation

[
being a special case. The generalization of the quantities
in Eq. (7) becomes

e e ] fe n o
A’W(rl’rz"”’rN)iAikZ:Z[‘P’?(rl’rz"”’m)f’?

_ u{/l; Ak(},l’r27 .,}—;N)ffmk}

AW P ) = {30 S ettt
[
[ ()l () -y () fF
_uf_cll l(rl)ukz 1(,,2),..“&—1(;]\/)‘/[71?%;}}
(12

with analogous expressions for le+ and 211,218 and Zlg.
Hence, the generalization of Eq. (8) is

~ ~ 1 ~ I i H

A = —iA N =—1TJ1 = iAk(z)+zy+42n)
14_+14_ Ak[ ¢ ],

g ! s i —iAk(zy+z3++2zn

A+:—1A++1A+:E{[e Martart-tav) _ ],

- YRS I .

Ay = —1A; + 1Ag = sin [Ak(zy +zp 4+ -+ - + zy)]-

(13)

We will restrict ourselves to the case where there is a
finite gap between occupied and unoccupied bands, as-
sume no spin polarization (N is even), and use a single
determinant wavefunction (Hartree-Fock or Kohn-
Sham theory). Then

(P)4|P) = AL (1= (dets*y],

(|4, |9) = < (dets) — 1], (14)

(¥4 ¥) = [(dets+) (deté‘)z],

2iAk
where §i is the N/2 x N/2 matrix containing the single—
particle matrix elements Si = (Yf | etitke | ¢ ).

Assuming localized orbitals we rnay apply the analogue
of Eq. (9), i.e.

- e:tiAk(zl +zo++zy)
Ak

'P> ~ 1 e:tlAk(lI’|zl+zz+ +z\/\‘I’

(¥ i
(15)

and either of the first two equations in Eq. (14), in com-
bination with Eq. (13), to arrive at the expression

PR:—%Imlndet§+:%Imlndet§*, (16)
for the polarization. Note that (S*)'=S". An essentially
identical formula in terms of Bloch orbitals has been gi-
ven by Resta [4]. We observe that Eq. (16) is based on a
not too accurate finite-difference approximation to the
derivative. A more accurate approximation is

Py = % arcsin B ((detS*) (deté)zﬂ : (17)

Despite this Pg turns out to be more useful comput-
ationally. To see why we write

detS* = s+, (18)
whereby

Pr = —% arctan (g),

" 19)
Py = o arcsin(2st).

As K — oo, 57 + 1> — 1, while |s|, |#|]<1 are increasing
functions of K. Accordingly, as our numerical results be-
low confirm, Pr converges faster than Py as a function
of K. On the other hand, P, can be valuable analytically;
indeed, it motivated our choice for the operator defined
in Eq. (23) below.

The value of det S will not be altered by an arbi-
trary unitary transformation of the single determinant
orbitals. So, instead of localized orbitals we may use
the occupied Bloch waves from which these orbitals
are obtained. Then, the matrix elements of S* are
non-zero only for pairs of Bloch waves whose k values
differ by Ak (modulus 2n/a). As a result S* can be writ-
ten as consisting of 2K x 2K square blocks, each of
dimension B=N/(4K) (the number of doubly-occupied
bands) with non-zero elements only in the set of blocks
lying one stripe above and one stripe below the main
diagonal.

Given that the Bloch functions are differentiable with
respect to k as discussed by Blount we obtain for small

Ak
4 ). (20)

In(det §%)° ~ :FZAkZ Z <
k=1 n=

Inserting this into the right-hand side of Eq. (16)

yields another formula for the polarization

Pasy = zz< > e1)

k=1 n




408 M. Springborg et al. | Chemical Physics Letters 396 (2004) 404—409

which is the 1D discretized Berry phase expression [9]
used in the modern theory of polarization.

For the treatment of core orbitals (or those of non-in-
teracting periodically repeated molecules) we suppose
that the orbitals are strongly localized so that
(W, (F — R,)|e" €|y, (7 — R,,)) vanishes unless the
units n; and n,, where the functions are centered, are
identical. In that case we may write for orbitals of the
same unit

(b 600, ) 2 By 50 30K, |2 20, U

+(iA2k)2<%l | (Z_Zp].’pz)z|%>+...7

(22)

with z,; ,> being the ‘center’ of the p;th and p,th orbital.
Therefore, the ‘traditional’ contribution to the polariza-
tion from these orbitals, i.e., >, (\,|z[},), is obtained
only in the case where all terms but the first one on
the right-hand side of Eq. (22) are negligible (e.g. in
the limit Ak — 0).

So far we have presented an internally consistent ap-
proach for how to calculate the polarization in an infi-
nite, periodic chain when basing the discussion on a
generalization of Blount’s work to the case of a finite
BvK zone. We have arrived at an expression involving
the expectation values for N-body operators, i.c., the
S* matrices. This has been taken as a proof that the
polarization is a many-body phenomenon [6,7]. How-
ever, the polarization can also be written in terms of
the single-particle operator

1 & 4 1 gk (o
P =gk 2 2 2 [ L @ W)

Ui ) ) 1] (23)

_ e—iAkzm

It is straightforward to show that the expectation value
of this operator gives P, in the limit Ak — 0.

In order to explore our ideas further, the Hiickel-like
model described above was used to evaluate the various
polarization expressions we have presented. For our
purposes it is necessary to have matrix elements of z
and e™** that are defined consistently. Hence, we calcu-
lated the matrix elements in both cases analytically
assuming piecewise constant basis functions of adjusta-
ble width, w. For simplicity we also assumed that
w < al2, whereby the results become independent of w.
Other more realistic functions are possible, of course,
but the above choice is sufficient to make the desired
comparisons.

In Table 1 we show some typical results for the vari-
ous choices of P obtained using BvK periodic boundary
conditions. The finite chain value determined from the
increment AD=1/2[D(2K+2)—D(2K)], where D is the di-
pole moment, is also presented for comparison. In order
to interpret polarization values the reader should recall
that P is determined only up to an arbitrary multiple
of the unit cell length [cf. Egs. (16) and (17)], which in
this case is 2.0. Bearing this in mind, the table shows that
AD agrees very well with the polarization of the infinite
system given by Pg. Indeed, the finite chain result con-
verges more rapidly to the infinite K limit. The sawtooth
approximation (denoted Py in the table) is calculated
using periodic boundary conditions with z replaced by

Table 1
Results of model calculations with the Hiickel model
€0 Iy r K Py Pr Pxsv P, AD
0.5 2.2 1.8 20 0.25587 —1.41859 —1.41745 0.29410 0.58125
200 0.25587 —1.41875 —1.41875 0.39798 0.58125
2000 0.25587 —1.41875 —1.41875 0.41643 0.58125
20 000 0.25587 —1.41875 —1.41875 0.41852 0.58125
0.5 2.5 1.5 20 0.21337 —1.68291 —1.68305 0.26857 0.31695
200 0.21337 —1.68305 —1.68305 0.31134 0.31695
2000 0.21337 —1.68305 —1.68305 0.31638 0.31695
20 000 0.21337 —1.68305 —1.68305 0.31690 0.31695
0.5 1.5 1.5 20 0.33562 —1.00000 —3.00000 0.00000 1.00000
200 0.33562 —1.00000 —3.00000 0.00000 1.00000
2000 0.33562 —1.00000 —3.00000 0.00000 1.00000
20 000 0.33562 —1.00000 —3.00000 0.00000 1.00000
0.0 2.5 1.5 20 0.00000 —2.00000 —2.00000 0.00000 0.00000
200 0.00000 —2.00000 —2.00000 0.00000 0.00000
2000 0.00000 —2.00000 —2.00000 0.00000 0.00000
20 000 0.00000 —2.00000 —2.00000 0.00000 0.00000
0.5 2.0 0.0 20 0.24254 —1.75735 —1.75746 0.22586 0.24254
200 0.24254 —1.75746 —1.75746 0.24078 0.24254
2000 0.24254 —1.75746 —1.75746 0.24236 0.24254
20 000 0.24254 —1.75746 —1.75746 0.24252 0.24254

The lattice constant equals a = 2. All other parameter values are given in the table.
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a piecewise linear function having the BvK periodicity.
Note that Py gives the correct value only when the sys-
tem consists of purely non-interacting units (last case in
table). Since sin(x) = sin(t—o) it is not possible to dis-
criminate between Py and (a/2)— P, (cf. the first case in
the table). If that is taken into account, we see that
Pxsy, Pr, and Py all give similar results, although the
latter converges much slower, and the former much fas-
ter, than the others.

In conclusion we have provided a unified picture of
electronic polarization in extended quasilinear chains
based primarily on the finite k-mesh analogue of
Blount’s treatment for infinite periodic systems. Sepa-
rate intracellular and intercellular contributions are
identified and compared between closed and open
chains. It is shown that neither component is affected
by substitution at the end of an open chain, as occurs
in a push-pull compound. On the other hand, the tradi-
tional sawtooth formulation for infinite closed chains
fails to account for the intercellular charge flow term.
Several different expressions for the electronic polariza-
tion are systematically generated from the same starting
point, including those related to the so-called modern
theory of polarization.

From the same perspective we obtain an alternative
single particle operator, which yields the polarization
as its expectation value. Hiickel-type calculations are

carried out to illustrate all of these points and to assess
the convergence properties of the various polarization
formulas as the k-mesh spacing decreases to zero.
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Abstract

Different aspects related to the theoretical treatment of the elec-
tronic properties of infinite, periodic, conjugated polymers exposed
to external DC fields are discussed. Various proposed methods are
studied within a simple Hiickel-like model that includes alternating
hopping integrals. It is found that when rewriting the extra term
due to the DC field as one that involves the k derivatives of the
Bloch functions, one has to be very careful. First, only under cer-
tain circumstances one may ignore those parts that are non-diagonal
in k, whereas under other circumstances results that depend on the
(unphysical) phase factors of the Bloch waves are obtained. On the
other hand, an approach based on Wannier functions is found to be
mathematically well-founded. Based on these results, we subsequently
present a density-functional method that uses Wannier functions and
that can be used in treating infinite, periodic systems exposed to DC
fields. Some first results for an infinite linear chain of carbon atoms
are presented and discussed.
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1 Introduction

Theoretical chemistry and physics are partly concerned with the development
of new theoretical and computational methods for studying special properties
and/or materials and partly concerned with the application of these methods
to questions of current interest. Thereby, a central issue is that of exploring
new materials or properties that so far has been out of reach with theoretical
methods.

Slightly more than 10 years ago one of the present authors together with
colleagues in Uppsala, including Osvaldo Goscinski, used one of the sim-
plest possible conjugated polymers, trans polyacetylene, (CH),, as a model
compound for exploring new computational tools for calculating electronic
properties of infinite, periodic, polymeric systems [1, 2]. In order to celebrate
the 65th birthday of Osvaldo Goscinski it therefore seems natural to return
to a simple conjugated polymer and use it as a model system for studying
specific properties of polymeric systems that are of current interest and, si-
multaneously, pose challenges to theoretical treatments. Thus, we shall here
study the response of conjugated polymers to external electrostatic fields.
We stress that although this has been the subject of many theoretical stud-
ies over the last 1-2 decades (see, e.g., [3]), there remains still a number of
only partly solved problems that warrant more detailed investigations. In
this spirit we shall here present results of some simple model calculations
together with present and a apply a formalism for treating such fields di-
rectly in a parameter-free electronic-structure method for infinite, periodic
polymers.

Conjugated polymers have been at the focus of a large research activity
over more than a quarter of century (see, e.g., 4, 5, 6, 7]). Compared with
more traditional plastics, the conjugated polymers contain a backbone with
sp?- and sp-bonded (and not sp®-bonded) carbon atoms. The last valence
electron per carbon atom occupies a p orbital and participates in @ bonds
between the carbon atoms. This has two consequences: the polymers are
essentially planar, and the energy gap between occupied and unoccupied
orbitals is small (i.e., corresponds to that of conventional semiconductors)
with 7 orbitals appearing closest to the Fermi level.

There is a strong coupling between electrons and phonons (structure)
which leads to a lowest-energy structure with alternating C—C bond lengths
and to the occurrence of structural defects (i.e., solitons and polarons) when
the chains are charged. Both finite oligomers and essentially infinite poly-



mers can be synthesized, and a special class of oligomers is the finite, so-called
push-pull systems where the two end-groups are different, so that an excita-
tion involves an internal charge transfer from one end to the other.

Due to the combination of mechanical properties as plastics and electronic
properties as crystalline semiconductors, these materials are been considered
interesting for many special-purpose applications, including light-emitting
diodes, transistors, and sensors. For the present purpose it is, however, most
important to observe that the 7 electrons that are somewhat loosely bound to
the backbone, but not so loosely bound that they are free-electron-like, give
rise to very large linear and, in particular, non-linear responses to external
electric fields. The responses can be quantified through the polarizabilities
(o) and hyperpolarizabilities (8, 7, ...) by expanding either the dipole mo-
ment

Mi = ,ul(o) + > agEi+ Y BpEiEc+ Y, vimEEcE4--- (1)

J=z,y,z J.k=x,y,2 Jkl=x,y,2

or the total energy

1 1
By = Eql — > WO B, 3 > ayEE; — < Y BiuBEiEE
iZE,y,z i?j:w,y,z i’j’k:z,y’z
1
-1 > VimEiE;EE + - - (2)
i’j’k,l:z,y7z

in the electric-field components. When AC fields are applied, the (hyper)po-
larizabilities become frequency dependent,

Dijoserm Wiy Wiy Why -« -, W) with w;, = |wj Fwg £ -+ = Wy (3)

with p being «, 3, 7, ... Non-zero values of 8 and 7y lead to effects like second-
and third-harmonic generation, four-wave mixing, electric-field-induced sec-
ond harmonic, the Kerr effects, and the Pockels effect, which are interesting
both for basic and for applied science. Accordingly, much effort is put into
obtaining maximally large values of these parameters.

In the thermodynamic limit any property Z for a finite system A—(X),—
D will be either independent of or proportional to n. Experimental [8] and
theoretical [9, 10, 11, 12, 13] studies have, however, shown that when 7 is
the polarizability « or the hyperpolarizability v, Z(n)/n [or Z(n)— Z(n—1)]
converges only very slowly as a function of n towards the large-n limit and,

4



moreover, the convergence for v is slower than that for a [10]. On the other
hand, since the larger systems tend to have larger values of Z(n)/n than
the smaller ones, it is highly relevant to consider the large systems. Thus,
considering infinite, periodic systems is a useful alternative.

For finite oligomers of polyacetylene it has been found [12] that the vi-
brational contribution to the total polarizability amounts to roughly 10%
of the total polarizability, and, although it is known that this percentage
will increase for the hyperpolarizabilities, we shall here concentrate on the
electronic part of the responses.

Most often, (hyper)polarizabilities of polymers are calculated using a
perturbation-theoretical approach based on the formalism of Genkin and
Mednis [14]. Thereby, both occupied and unoccupied orbitals have to be
included in the calculation and the fact that different electronic-structure
methods (most notably, Hartree-Fock- and density-functional-based meth-
ods) often yield fairly inaccurate results for the unoccupied orbitals may be
the reason for the fact that the calculated (hyper)polarizabilities often de-
pend strongly on the method (see, e.g., [13, 15]). Thus, in order to access the
accuracy of the different methods or, alternatively, to avoid the problems re-
lated to the accuracy of the unoccupied orbitals, one may include a DC field
directly in the calculations whereby at least the static (hyper)polarizabilities
can be calculated.

However, the inclusion of a static field is a non-trivial endeavour. First,
even for the smallest possible system (e.g., an isolated hydrogen atom) and
for the smallest possible external field, the eigenvalue spectrum changes dra-
matically: there is no bound states, and states that in the field-free case were
bound change into resonances. And for an infinite system parts of the sys-
tem will be exposed to a divergent field. On the other hand, for crystalline
systems it has been found [16] that the polarization is a bulk property, i.e.,
is accessible by considering a single unit cell. This can, e.g., be done through
the Berry-phase formulation of polarization (see, e.g., [17]). Moreover, finite-
chain calculations have indicated [18, 20] that the electron distribution for a
chain exposed to a DC field is roughly periodic far away from the boundaries,
suggesting that a periodic-chain treatment should be possible. This is what
we shall address in this contribution. We shall discuss in detail a simple
Hiickel-like model that allows for detailed studies of also larger systems and
that can give information on the consequences of the different approximations
that have been proposed for including an external DC field for an infinite,
periodic polymer. Subsequently, we shall present a method for including a



DC field in a parameter-free electronic-structure method, and finally we shall
present some results using this approach. For the sake of completeness we
mention that some preliminary results have presented previously [19].

We finally mention that one further reason for studying infinite, periodic
polymers in external DC fields is the findings [20, 21, 22] that currently
applied approximate density-functionals (like the one we are using) may be
inadequate when calculating responses to external DC fields. Thus, studies
like the ones of this contribution may provide further insight into the failures
of the functionals. On the other hand, we stress that our basic method is,
in principle, not dependent on these problems and can be modified easily
according to new proposals for approximate density functionals.

2 (General considerations and a simple Hiuckel-
like model

For a single particle of mass m and charge ¢, moving in the potential V(7)
(e.g., from nuclei), that is being exposed to an external electro-magnetic field,
the Hamilton operator becomes

A 1 L g oo 2
Hz—(P——A) + V() + qU (). 4
—(P-L13) +V() +aU(7) @
Here, c is the speed of light, and P is the momentum conjugate to 7. The
electric and magnetic fields are given by

. 04 .
E = ——
5 vU
B = VxA. (5)

Whereas E and B are physical and measurable quantities that are unique,
this is not the case for A and U and there is some arbitrariness in how these
two are chosen, i.e., how the gauge is chosen.

In the electric-dipole approximation, valid for wavelengths of the field
much larger than typical distances of the particle, A is set equal to 0, giving

n2

H= ;’—m + V() + qU(P), (6)



whereas in the Coulomb gauge, valid for the wavelength of the field being
comparable with the typical distances for the particle, U is set to 0, giving

a=t(B_98) +v 7
-~ 2m ( c ) + V(). (M)
We shall here choose the electric-dipole approximation, but comment on the
use of the Coulomb gauge below.

In order to explore the effects of further approximations, we shall study
in some details the Hiickel-like Hamiltonian

E[ = ﬁtb + IA{eXt (8)

where the last term is caused by the external field, described within the
electric-dipole approximation.
The tight-binding part is given by

Hyy =S cicle; + 3 Bilel 6+ éleiny). (9)
A %

Here, we have assumed that we have one orbital per site (labeled y; with
i being the site) and that ¢; and éj are the corresponding annihilation and
creation operators. Moreover,

o forj=k
B fork=j+1
Br fork=j5-1
0  otherwise.

(G Huw ) = (10)

We will assume that the external field only affects the diagonal elements,
Heo =Y Eiélé;. (11)
i

We will assume that the system has one electron per site, that the on-site
energies «; are site-independent (and accordingly can be set equal to 0), and
that (; alternates between ¢_ = 0.5 and ¢, = 1.5. For an infinite periodic
chain without the external field we will accordingly have an occupied band
between —2 and —1, a gap between —1 and +1, and an unoccupied band
between +1 and +2. These numbers can be used in estimating the strength
of a field above which the calculations become meaningless. Considering a
finite system with NV sites and letting E; = Fia/2, the Nth atom experiences
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a potential of roughly NFEa/2 higher than the 1st atom does. If this value is
larger than the gap, electrons will start flowing from one end of the system
to the other. In order to avoid this run-away solution, we must require
E < 4|ty —t_|/(aN). Therefore, we have chosen the fairly large value of
the hopping-integral alternation. Another reason is that calculations for a
similar model [18] have shown that the polarizability per site converges the
faster as a function of chain length the larger the hopping-integral alternation

is.
We shall now use this model in studying different approximations. We

set
E;=(i— M)Ea/2 (12)

(a/2 is the average interatomic distance) and consider a chain of 2M sites
with periodic boundary conditions, i.e., in effect we assume that atom 1 and
atom 2M are bonded, too. A very special case is that of 2M = 2, where
we accordingly assume that the external potential has the periodicity of the
lattice. For larger values of 2M the approximation is that of assuming that
the potential has the shape of a sawtooth curve with the periodicity being
that of the Born von Karman zone. l.e., the approximation is equivalent to
considering an infinite, periodic system for which an electronic-structure cal-
culation is been performed using M equidistant & points in the first Brillouin
zone. Proposing that the external potential due to the field should have this
periodicity is not new [23, 24|, and in fact Resta [25] has shown that one has
to use an operator with the periodicity of the Born von Karman zone.

These approximations are schematically illustrated in Fig. 1.

Otto [26] and later Kudin and Scusseria [27] realized that the major prob-
lem for directly including the field in an electronic-structure calculation is
related to the fact that the field destroys the periodicity. On the other hand,
as mentioned above, both mathematical arguments and actual calculations
have found that the charge distribution inside an extended system remains
periodic also in the presence of an external field. Therefore, Otto sought a
separation of the form

~

Hew = I:I(Iext + H

ext’ (]‘3)
where the first term has the periodicity of the lattice and the second is a
remainder. Then, only the first term is kept. We stress that this separation
may be rather arbitrary (one may add any lattice-periodic term to H., when

simultaneously subtracting it from H,).



(a) (b) (c)

Field

| | YYVYYYVYVY Yy
crr v bl crr e tevrrrrr e Ty crr v P T

0 10 20 O 10 20 O 10 20

Unit cell Unit cell Unit cell

Figure 1: Schematic representation of the external field for (a) a finite system
with the true field, (b) the approximation that the field has the periodicity
of the lattice, and (c) that it has the periodicity of the Born von Karmaén
zone.

According to Bloch, in the absence of the external field any orbital is a
Bloch wave of the form

Un() = FTup () (14)
where n is a band index, and uE is lattice-periodic. Then
FUR(R) = iV e FTUE(R) — iV k(7). (15)

By neglecting the second term, only a lattice-periodic term is kept. Maybe
the most important problem of this approach is that it is closely tied to the
precise definition of the orbitals, Eq. (14), so that different definitions of
the Bloch waves lead ultimately to different definitions of H’,. In order to
demonstrate this in detail we shall study our simple Hiickel model.

For this model and for a ring of 2M sites the Bloch functions for the two
bands are given by

1 X . i
W= 2 5 (s £ M) 0, (10

i0n (k)

where a is the length of one unit cell, e is an, in principle, arbitrary k-

and band-dependent phase factor, and

ok
ioth) — | e Tt (17)
t_|_ + t_e—zka
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By using that we have assumed that only on-site overlap matrix elements
are non-zero, and that the electrostatic field gives non-zero matrix elements
only for orbitals on the same atom, we obtain after some manipulations

0

—ikoz 1 7
8k| e %3) = T oas <(X2m—1i€¢(k1)X2m)|(am—Z)

2M =

X (xom—1 £ €i¢(k2)X2m) + €i¢(k2)¢l(k2)X2m

+0;z2 (kZ) (X2m—1 + €i¢(k2)X2m)>
o (ks k1) (6 (k) Oy (k1))

iyl e

1 1
= G Sl — b & Foul — )

5/ () o) — 500, (B) (D) & (xalxa))

w @i(fny (k2)—0ny (k1))
a Ma

— i(6ny (k) —0ny (k) z_7"
Ok ,kOks, k€ 1 1 (1+1)
1
T30 (k) = 5, () (1 1) (18)

when using that (x,|z|x,) = (p — M)a/2. Moreover, in the first right-hand
side, we choose the same (different) sign in the expressions for the bra and
the ket if ny = mny (n1 # ny), whereas the upper (lower) sign is used when
ni1 = ny (ny # ne) in the subsequent expressions.

This is the term that is kept in the approach by Otto. The one that is
neglected is

1 ; (k-
—i(yf | W’ ) = oM {(xam—1 % €*)xo Y am(xom—1 £ €?*) )
m

:I:ew(kZ)(ﬁl(kz)sz + 9:12 (k2)(xom—-1 £ €i¢(k2)X2m)>

% eia(kz—kl)’m i(9n2 (kz)—anl (kl))

. 1
= HOny(k2)=0n, (k1)) [5k1 k5k2 ko (1+ 1)9;2(]‘7) + ¢'(k))
1 + eile(k2)— (kl)) iam (k2 — kl)] 1
+(1+e€ 2M E me (19)

It is clear that the term neglected by Otto has contributions also from k; = k.
Moreover, what is considerably more problematic, the separation into what

10



is kept and what is ignored depends on the phase factors, which often in a

practical calculation are out of control. It is also clear that the largest term

that is being ignored is comparable to the largest term that is being kept.
When adding the expressions from Eqs. (18) and (19), one obtains

i(0n —0, a a
< zl‘ﬂwln:) =e€ @ z(k) b l(k)) - Z + 5n1,n2§ 9 (20)

i.e., the unsatisfactory dependence on the phase factors is canceled, except
as understandable general pre-factors. One may invert Eq. (16), thereby
writing the atom-centered basis functions in terms of the Bloch functions.
Subsequently, Egs. (18) and (19) can be used in identifying (Xom; |H'|Xm,)-
Not surprising, it turns out that also this depends on the phase factors.

Alternatively, one may base the discussion on the Bloch waves constructed
from the atom-centered basis functions,

k 1 & ik
X1 = \/—— P Xom—1€"""
M
Xlzc Z zkam (21)
whereby
N s (MH)“(S ki, fOr Mg =ng=1
<an|eZ > ak2| ' 2zXn22> = 5]91,192 for ny = N9 = 2 (22)
0 otherwise
and o M ja(ky—k1)
ke koy _ J S met®F2mRUM for ny = ng
Oy 0ks [Xnz) {0 otherwise. (23)

This case corresponds actually to the separation of Fig. 5, to be discussed
below, and when only keeping the term Z; that then replaces Héxt
Returning to Egs. (4) and (5), an electrostatic term may be described in

the electric-dipole approximation through

—

U = —-Ey-7

A=17 (24)
or, alternatively, in the Coulomb gauge through

U =0

A = t-E,. (25)
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The latter case involves a potential that is spatially invariant and, accord-
ingly, attractive from a computational point of view. This was the original
idea of Genkin and Mednis [14] that recently was taken up by Kirtman et
al. [28, 29]. Since the Coulomb gauge is based on a time-dependent external
(vector) potential, the solutions become time-dependent, but as argued by
Genkin and Mednis they can be written as (time-dependent) Bloch waves
characterized by

B=Fk+ fo(t) (26)
with —e being the electronic charge. [Notice that for a polymer, k = (0,0, k),
when assuming that the polymer axis is the z axis]. Thus, the Bloch functions
(either in form of Bloch waves constructed from a set of atom-centered basis
functions, which is the case in the approach of Kirtman et al., or in form
of the exact solutions for the field-free case, which is used by Genkin and
Mednis) can be used in studying the case of an external field. Then, one has
to study matrix elements between different Bloch waves and the perturbing
operator, which, it turns out, is 7. For this, they arrive ultimately at an
expression like Eq. (13), and also they obtain

H = ieiﬁ"?ﬁ,;e_“”. (27)

This result was based partly on earlier arguments by Blount [30] who dis-
cussed how to represent 7 for infinite, periodic crystals. Since this discussion
is of fundamental importance to the present study we shall reproduce it here
with some modifications that take into account the procedures of performing
band-structure calculations for a polymer.

Usually, a band-structure calculation for a polymer that is considered
periodic in the z direction is performed by considering a discrete, equidistant

set of k points,
ka 1 2 K -1
—=0,xt=,£—,...,=2—,1 28
’/T ) K’ K) 7 K 7 ( )
(M = 2K). Then, all Bloch functions have the periodicity of the Born von
Karman zone, i.e., of the length 2K - a, with a being the length of one unit
cell. With n being the band index, any function with this periodicity can be

expanded in the Bloch functions,

HGEDIDIR AR D BT (SR (29)
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With 2 being the sawtooth representation of z, shown in Fig. 1(c), we consider
functions that are in its domain, i.e., functions for which [ « |2f(7)[>dF exists
(BvK denotes one Born von Karmén zone). Also Zf(7) has the periodicity
of the BvK zone and, accordingly,

IGED LGB (30)

In contrast to the discussion above, we shall now approach the situation
of a real electronic-structure calculation where one does not use an infinite,
continuous set of k£ points, but in most cases a finite set of equidistant points.

We define an operator A that is acting on the function f(7) but whose
action is closely linked to the expansion of Eq. (29), i.e., to the definition of
the Bloch functions ¢* Thus, we define A through

A = A[SE w1
= A;fk(m
= Zk:Afk(F)

Z fk (7:‘) _Afl:;c—Ak(F), (31)

k

with Ak = -%. Notice that in the limit of Ak — 0, A changes into the

differential operator 2

ok
We then have
—iAf(7) + e Ae A f(7)

— L tkz[, k(= pk _ , k—Ak k—Ak

A% Z SIS — A
—[E ) 1 = SR £

7 )

= 11— iAkz k lc’ 39
agll -~ @I E S (32)

where the first equality is obtained by using that A is a linear operator.
Only the second term on the left-hand side gives a non-zero contribution,
suggesting to keep only this. Hence, in this case taking the limit Ak — 0 one

13



obtains the first term on the right-hand side of Eq. (15) for 7 acting on some
function, except that the function has to be continuous in £ and, accordingly,
cannot be a Bloch function.

Some comments of caution are required here. First, as discussed also
by Blount [30] and by Kirtman et al. [29], one has to be careful with the
phases of the Bloch functions. Whereas these functions are continuous in 7
space, this may not be the case in k£ space. Thus, when considering the limit
K — oo (i.e., Ak — 0), it is important that the limit exists, i.e., that ¥ f*
is continuous and differentiably in & space. In that case, one may neglect the
first term on the left-hand side and, accordingly, arrive at the approximation
of Eq. (27). On the other hand, only in that limit the expression on the
right-hand side corresponds to a Hermitean operator.

A special case occurs when inserting one of the Bloch functions as f(7),
i.e., choosing

I = 60Ok ko (33)
Then
—iAf(7) = 0
e Aot p () = 1 - ek (i, (34)

Egs. (32) and (34) provide an approach for including 7 (or, rather, z)
directly in an electronic-structure calculation when using a finite, discrete
set of k points. However, only in the limit of an infinite, continuous set, the
true z is included, whereas for a discrete set, z is being replaced by

1
Ak
that has the periodicity of the Born von Karmén zone, but is not Hermitean.

It shall be emphasized that the operator A acts on a function that is
expanded in terms of Bloch functions, and that the action is on the expansion
coefficients and Bloch functions, specifically on their dependence on k, i.e.,
it depends strongly on the precise definition of the Bloch functions.

The situation is different when the function depends explicitly on £ and
this dependence is included in the action. This is, e.g., the case for the oper-

ators defined by Otto [26]. His formalism corresponds to define an operator
A’ through

Z =

1— eiAkz] (35)

Al =~ [e ) - vl )
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- dkxz N1, —ikz, ko (F\ U 0 1Akz, ) ko—
e NeT e () = o U (7) — € SRR () (36)

For this, the limits Ak — 0 may exist, provided that the functions ¢* are
continuous and differentiably in k£ space. When only being interested in ‘inte-
grated’ quantities (e.g., the sum of the operator acting on the different Bloch
functions), Eqgs. (34) and (36) give — when summed over all contributions
— identical results. However, when considering the individual terms, for
instance when including the term in the calculation of the orbital energies,
this is not necessarily the case.

Kirtman et al. [28, 29] implemented this approach in an ab initio pro-
gram for infinite, periodic polymers and calculated subsequently both linear
and non-linear responses to external fields. The results were compared with
similar results for finite oligomers of increasing size. The results of the two in-
dependent sets of calculations show a convincing agreement, suggesting that
it is justified to ignore the formal problem above, although the mathematical
rigor for this is lacking.

The discussion makes it obvious that it is a far from trivial problem how
to treat 7 in an actual calculation. Therefore, we decided to first study the
Hiickel-like model numerically, using two different approximations for 7. In
one case we used the full potential of Fig. 1(c), whereas in the other case we
considered only the periodic part of Fig. 1(b). As discussed above, the latter
case corresponds to use the separation of Egs. (13) and (15) applied on the
Bloch waves formed by the basis functions (i.e., not the eigenfunctions).

Fig. 2 shows some of the results for the calculations. We considered a ring
of 204 sites and the two approximations of Figs. 1(b) and (c) for different
field strengths. Since the Hiickel model assumes a set of atom-centered or-
thonormal basis functions, the coefficients to the eigenfunctions give directly
information on the number of electrons on the different atoms. From the
total number of electrons, depicted in the figure, it is immediately seen that,
for the largest fields, the approximation of Fig. 1(c) leads to solutions where
parts of the electrons flow from one end to the other, but in the middle part
of the chain the two curves seem to be very similar. There are, however, also
in this case minor differences that may be important. Thus, simply consid-
ering the number of electrons around atom number 101, we find this to be
1 & n with n being 0.00017, 0.00172, 0.01716, and 0.1687 for the sawtooth
curve with the lattice periodicity and for the four different field strengths,
respectively, whereas the sawtooth curve with the Born von Kédrman period-
icity gives n of 0.00018, 0.00182, 0.01821, and around 0.17, respectively, i.e.,
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Figure 2: The number of electrons on the different atoms as found for the
Hiickel model with a ring of 204 sites exposed to an external field. The field
strength is given on the figure, and the two curves in each panel corresponds
to the two approximation of Figs. 1(b) and (c).

in general slightly larger.

When looking at the variation of the total energy as a function of field
strength (Fig. 3), it is clear that also this depends on the approximation.
First, as Fig. 3(a) shows, the energy changes dramatically for field strengths
exceeding the value where electrons start flowing from one end to the other
(which happens earlier for the approximation of Fig. 1(c) than for that of Fig.
1(b). But also for weaker fields, where the electronic distribution is essentially
homogeneous throughout the system [cf. Fig. 3(b)], there are clear differences
depending on how the system is treated and in general, the approximation
of Fig. 1(c) gives a stronger field dependence of the total energy than the
approximation of Fig. 1(b), and for the former the dependence increases as
a function of system size, also for fairly large sizes.

3 A first-principles method for polymers

Ultimately, our goal is to include the effects of the external fields in a
parameter-free ground-state calculation of the properties of an infinite, peri-
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Figure 3: The total energy per two atoms as a function of field strength for
the Hiickel model with a ring of 12, 102, 204, and 306 sites (from below)
with the sawtooth approximation of Fig. 1(c) together with the results for
the same chains with the approximation of Fig. 1(b) (uppermost curve). The
two panels differ in the scale of the ordinate.

odic polymer. To this end we apply our own density-functional method that
has been described in detail elsewhere [31, 2] and, therefore, shall be only
briefly discussed here.

The method is based on expanding the eigenfunctions to the Kohn-
Sham equations in a basis set of LMTOs (Linearized Muffin-Tin Orbitals),
which are represented numerically inside non-overlapping, atom-centered, so-
called muffin-tin spheres and analytically in the interstitial region outside all
spheres. The numerical functions are obtained by considering the spherically
symmetric part of the potential inside the muffin-tin spheres and for this solv-
ing the Kohn-Sham equations numerically for an orbital energy (denoted ¢,)
that is in the energy range where the orbital has its largest support, leading to

the atom- and angle-dependent basis function ¢z ; [L being a short-hand no-

tation for (I, m)]. In addition we define the energy-derivative qz-SRL = a%,‘ﬁﬁL'
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The analytical functions are decaying, spherical waves [i.e., spherical Han-
kel functions times harmonic functions, hl(l)(|f'— R|k)Y,(r—R) = hg  (P)]
The functions are matched continuously and differentiably on theys’phere
boundaries. The basis functions xz; . are accordingly eigenfunctions to a
muffin-tin potential and, as such, good approximations to the true solutions
to the Kohn-Sham equations. It shall, however, be stressed that the full
potential is included in the calculations.

In our implementation of the method we consider infinite, periodic, iso-
lated polymer chains. The periodicity is utilized in constructing Bloch func-
tions from the basis functions of different unit cells,

N

1 .
k S . tkTn
Xotw = U0 AN T 2 Xmin® (37)

where ﬁnp is the position of the pth atom in the nth unit cell. We let the z
axis be the polymer axis.

The method has been applied to a number of conjugated polymers over
the last almost two decades (see, e.g., [32]), and as a special application we
also studied the case of chains exposed to an external electrostatic field per-
pendicular to the chain direction. Thereby, the periodicity was not destroyed
and, accordingly, the basics of our approach could be kept unchanged.

As one example we show in Fig. 4 results for polycarbonitrile exposed
to an external field perpendicular to the chain direction. Polycarbonitrile,
(CHN),, resembles trans polyacetylene but has every second CH group re-
placed by an N atom. In the figure we show both the band structures and
the density of the highest occupied orbital of o symmetry for different values
of the field strength. The largest values, +0.05 hartree a.u., are very large
compared to typical experimental conditions, so the results of the figure show
that the perturbations on the electronic properties due to the field are small.
This is an important result because this suggests that the orbitals, etc., cal-
culated for the system without external fields provide good starting points
for inclusion of the field. This we shall use.

We shall approximate the scalar potential of the electrostatic field by the
sawtooth curve of Fig. 5 that has the periodicity of the Born von Karman
zone, i.e., of the length of one unit cell times the number of k£ points that is
used in a calculation. We have here assumed that the potential takes both
positive and negative values. By doing so, the average potential from the
field vanishes and we have therefore an optimal starting point for eliminating
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Figure 4: The (top) band structures and (bottom) electron density for the
highest occupied orbital at & = 0 for polycarbonitrile (CHN), been exposed
to an external DC field perpendicular to the chain direction but in the plane
of the nuclei. The strength of the field is (left) -0.05, (middle) 0, and (right)
+0.05 hartree atomic units.

effects that are linear in the number of k£ points of the calculation (i.e., in
the length of the Born von Karmén zone).

In order to make use of the fact that the orbitals of the unperturbed
system provide good approximations to those of the perturbed system, we
construct Wannier functions from the Bloch orbitals of the unperturbed state.
The Bloch functions are given through

1/15(77) = Z Cﬁ;p,L,nXI;,L,n(F)

p,L,k
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Figure 5: The left part shows the sawtooth curve Z that is periodic (and
linear) with the periodicity of the Born von Kdrmén zone. It is decomposed
into the lattice-periodic part of the middle part, and the piecewise constant
part shown in the right part of the figure, 2 = 2; + 2.

_ EL ,p,L KZQSROP (F) + b]:L;p,L,n¢é0p,L (T_) (38)

1 N
Ep,L,K, dn;p,l;fi llmN_)oo V2N+1 Z =—N hRmpaLa"i(/F')

where the first expression is valid for 7 in sphere at }_?:Op and the second is
valid for 7 in interstitial region.
Then, the Wannier functions are defined through

) 1 [ —ikm
w(7) = —Tzwfme@(“e b

- N—)OO \/m Z Z wle]nLK’XRnJ ;L K‘(_')

—N j,n,L,k

ZL [a%;q,L,ﬂquOq,L(F) + b;l;);q,L,h‘,¢R’0q,L(T_‘)

(39)
. 1 N
ZP,L,F» d}lz)l;q,l,n th—>°° V2N+1 Zm:—N hﬁmq,L,n (F)’

where, once again, the first expression is valid for 7" in sphere at ﬁop and the
second is valid for 7 in interstitial region. In addition, e’?®*) is a phase factor
that can be chosen free (see below), and [ is a band index. Moreover, the
Wannier functions (that have the periodicity of the Born von Kdrmén zone)
obey the important property

Wip41(T) = wip(F = @) (40)
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with @ being the lattice vector. A further property is that when the phase
factors e'®(®) are chosen properly, the Wannier functions take the form of
Eq. (29) with fF being continuous and differentiably, so that the problems
discussed at the end of the preceding section vanish.

Using the Wannier functions as basis functions in the electronic-structure
calculation means writing any orbital as

i(P) = Y cipwip(7). (41)

Inserting this expression into the Kohn-Sham equations means, ultimately,
that we have to calculate matrix elements (wy, p, (7)|Peft [Wiy p, (7)), Where heg
is the effective Kohn-Sham operator, containing the kinetic-energy opera-
tor, the Coulomb potentials from the electrons and from the nuclei, the
exchange-correlation potential in some approximation (e.g., a local-density
or a generalized-gradient approximation), and, finally, the potential from the
external electrostatic field,

h2
2m,

het = —=— V2 + Va(F) + Va(7) + Vie (7] + Vo (7). (42)
Just as for the field-free case where we use the expansion of Eq. (38), the
orbitals, and consequently also the electron density, is expressed in terms of
the numerically given functions ¢ and ¢ inside the muffin-tin spheres and
in terms of the analytically given Hankel functions in the interstitial region.
Accordingly, the calculation of the matrix elements for all parts of the Kohn-
Sham operator except for Vpc proceeds just as in for the periodic, field-free
case (see [31, 2]). Actually, it is useful to split A into

hoit = hig + AVo(7) + AVie(7) + Voo(7), (43)
where }Azgff) is the self-consistent Kohn-Sham operator in the field-free case.
When expressing the wavefunctions in terms of the Bloch waves of Eq. (38),

7(0 1 i -
<wl1p1 ‘h’e(sz) ‘wbm) = 511,l2ﬁ Z EZ e k(p2=p1) (44)
k

with € being the orbital energy of the Bloch wave f in the field-free case.
Moreover,

<wl1p1 |wl2p2> = 551,l2 5;01,;02' (45)
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Thus, here we only need to discuss the treatment of Vpo. We may write
Voo(F) =Ey o+ Ey-y+ E, - % (46)

The first two terms do not break the translational symmetry and can fairly
simply be incorporated into the calculations. The matrix elements can be
calculated using the expression of the Wannier functions in terms of the Bloch
functions, and subsequently performing the required integrals analytically in
the interstitial region and numerically inside the spheres with expressions
that are very similar to those we need for the other lattice-periodic parts of
the potential (see, e.g., [31, 2]).
For Z we use the sawtooth function of Fig. 5. Then,

1 2NK

Z z Z Z wiklpl,jlnlLllﬂl

ni,me=—2NK+1 j1,j2 L1,La K1,K2

X Wiyps,jansLaka <Xﬁn1j1 ,L1,K1 (’F) ‘é‘xﬁn2j2 ,La,k2 (T_'» : (47)

<wl1p1 ‘2|wl2p2> 1\}1—{%0 2N +1

We write
Z2=21+4 29, (48)

where Z; has the periodicity of the lattice, and 2z, that of the Born von
Kérman zone (cf. Fig. 5). Then,

<wl11)1|21 +22|wl2p2> = 5 Z Z Z Z C;C11,;1,L1,n1 l2,]2,L2,I€2

kl:kz J1,92 L1,L2 K1,K2

i(diy (k2)—iy (k1)) ,—im(kep2—kip1) /4 K 51~ k2
Xem2 ! € <Xj1,L1,H1‘Z‘Xj2,L2,H2>'

(49)
Here,
k A ~
<X]1,L1,K,1‘ |Xj;,L2,nz> = <X§11,L1,n1 |21|X_I;22,L2,K12> + <X§11,L1,n1 ‘22‘X‘I;22,L2,K)2>
N
= (5k k lim Z eiklﬂ(’,minl)
1E2 N—>oon1,n2:_N
X<Xéj1n11Llanl‘21|Xéj2n25L2;l€2>0
1 N K ik . )
+ lim — Z Z et (k2n2—kiny
N—oo 2K ni,nea=—N n=—K+1
x <Xéj1n1,L1,n1 (n - 1)a|Xéj2n2 ,LQ,KZ2>O’ (50)
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where a is the length of the unit cell. Moreover, the subscript ‘0’ on the
bra-kets indicates that the integration is to be taken over the reference unit
cell, i.e., whereas x and y are unlimited, the z integration is over the interval

of length a.
Since «
1 a
— > (n—-1la=-<, (51)
2K ne— K41 2

both expressions above can be evaluated by performing an integral over a z
interval of length a together with infinite x and y integrations. Except for
the basis functions, the integrand is z™, with m = 0 and m = 1. We shall
also add the integral for m = 2 of reasons to be explained below.

O
LO T T T T T T T T

Energy (eV)

Figure 6: The band structures for a linear chain of carbon atoms with alter-
nating bond lengths. k¥ = 0 and k£ = 1 are the center and the edge of the first
Brillouin zone, respectively, and the dashed line shows the Fermi level.

Starting with our field-free calculations we have implemented the calcu-
lations of these finite-z-interval integrals. It turned out that these were best
performed numerically, also in the interstitial region where the basis func-
tions are represented analytically. The reason is that the planar boundary
of our integration region is only with great difficulties combined with our
representation for the basis functions in spherical coordinates.

23



The reasons for adding m = 2 is that the phases ¢;(k) of the Wannier
functions [cf. Eq. (39)] at best are determined by requiring that (w;,(7)|(z —
zp)?|wip)o is maximized [30] (here, z, is the z coordinate of the center of the
pth unit cell).

We have applied this approach on a linear chain of carbon atoms with
alternating bond lengths of 2.7 and 2.5 a.u. In Fig. 6 we show the band
structures for this system without any external field. The calculations were
done using 7 k points in half-part of the Brillouin zone, giving a Born von
Karman zone of 12 unit cells, each with two carbon atoms. Moreover, we
included the 20 energetically lowest bands that all are shown in the figure
(notice, however, that 7 and § bands are pairwise degenerate) and, for the
sake of simplicity, we applied a local-density approximation within density-
functional theory.

3x1073

)

N

A E R B
0 6 12

Unit cell

—3x1073

Figure 7: Changes in the number of electrons ascribed to the different unit
cells for the field with the symmetry of the Born von Karman zone and with
a strength of e - F, = 0.0002 Hartree.

The occupied valence bands consist of two low-lying o bands and a double
degenerate m band just below the Fermi level. Also the lowest unoccupied
band is of 7 symmetry. Thus, without the DC field the four energetically
lowest valence bands are double occupied and all other bands are empty. We
shall use this information below in quantifying the effects of the external DC
field in different approximations, i.e., we shall analyse the occupation of the
different bands as a function of band index. Moreover, in order to quantify
the electronic distribution we shall use the number of electrons inside the
muffin-tin spheres (with radii of 1.1 a.u.) for the 24 atoms per Born von
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Kérméan zone.

n
0

-0.02

Band index

Figure 8: Changes in the number of electrons for the different bands relative
to the numbers for the undistorted system (24 for the first 4 bands, and 0
for the remaining). The curves are (in order of decreasing amplitude) for
field strengths of e - E, = 0.0002, 0.0005, and 0.0002 Hartree for (the most
oscillating curve) the case of the field with the symmetry of the Born von
Kérman zone, and (the other curves) for the case that the field has the lattice
periodicity.

We considered two approximate treatments of the DC field, i.e., one where
we only included z; of Fig. 5 and Egs. (48)—(50), and another where the full
sawtooth curve Z was included. Some representative results are shown in
Figs. 7 and 8. Since the Wannier functions can be ascribed to individual
unit cells, we show in Fig. 7 the number of electrons (relative to the number,
8, for the undistorted system) of each unit cell in the case that the field
operator has the symmetry of 2 of Fig. 5. As may not surprise, the electrons
do show an asymmetric distribution, although the flow from one end of the
Born von Karméan zone to the other is small. The number of electrons inside
the muffin-tin spheres give also information on the electron redistributions.
Thus, for e - E, = 0.0002 Hartree these numbers are 3.2403 and 3.2413 for
the two carbon atoms per unit cell for the operator 2; of Fig. 5, and 3.2217
and 3.2575 for the operator Z. Here we also see a larger effect for Z than for
21. However, for the Z all atomic spheres show the same numbers, so that
the charge redistribution of Fig. 6 is restricted to the interstitial region.

For the undistorted system, the four lowest bands will contain each 24
electrons, whereas the higher-lying bands will contain 0 electrons. Turning
on the field will lead to partial occupation of the higher-lying bands, and in
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order to quantify this, we show in Fig. 8 the changes in the band occupancies
due to the field both for the field with the operator given by 2 in Fig. 5 and
given by Z; of that figure. Two things are immediately clear: the significant
changes occur for the bands closest to the Fermi level, giving support for
basing the calculation on the Wannier functions, and the operator Z leads to
significantly larger redistributions than the operator 2Z; does, once the field
strength has been fixed.

Finally, also the total energy shows different behaviours depending on
how the electric field is being treated. It turned out, however, that the
calculations only with great difficulties could be stabilized against oscillations
and, therefore, we refrain from presenting results for the total energy.

4 Conclusions

In this contribution we have concentrated on presenting some fundamental
considerations concerning the theoretical treatment of an infinite, periodic,
polymeric chain being exposed to an external electrostatic field. The analysis
of a simple Hiickel-like model revealed that only under certain circumstances
one can base the discussion on Bloch functions and substituting 7 with a
derivative with respect to k. Thus, this was not the case when including the
field directly in the calculations, but could, e.g., be used when using Wannier
functions as basis functions which are continuous functions not only of 7 but
also of k.

Subsequently, we presented the general strategy for including the field in
a self-consistent electronic-structure method for density-functional studies of
infinite, periodic polymers and applied the method for a linear chain of carbon
atoms. Here we found similar results, i.e., the response of the system to the
external field was significantly stronger when the field was approximated by
a sawtooth curve with the periodicity of the Born von Kérméan zone than
when it possessed the periodicity of the lattice. However, by analysing the
occupancies of the band orbitals for different field strengths, we could see
that our approach based on Wannier functions is healthy: the main changes
occur for the orbitals closest to the Fermi level.

Finally, we stress that our study does not answer all questions. Thus,
the fact that we use an approximate density functional in our parameter-free
calculations may be one source of errors in the calculated quantities, although
this problem is only marginally related to that of a proper treatment of the
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external field in an electronic-structure method. Second, our method is still in
its infancy and many tests are required before it can be established whether
it is a useful approach. Third, we have presented a method for directly
including a DC field in the calculations, whereas other approaches, based on
perturbation theory, also allow for the treatment of AC fields. Our approach
allows for an alternative control of the results of the latter in the limit of
vanishing frequencies, but it still is an open question how the results can be
used in improving the perturbation-theoretic approaches.

But, as has been the case with much of the work of Osvaldo Goscinski,
science proceeds by proposing and trying new approaches. And in this spirit
we close this contribution to the honour of Osvaldo Goscinski!
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THEORETICAL STUDY OF NANOSTRUCTURED HALO

Yi DONG, Michael SPRINGBORG
Physical Chemistry, University of Saarland, 66123 Saarbrucken, Germany

Using two unbiased methods for optimizing the structure together with a parameterized density-
functional method we have calculated the structural and electronic properties of isolated (HAIO),
clusters for n up to 26. The results include relative stability, interatomic distances, and overall
shape. A main finding is that the hydrogen atoms form a surface layer on an AIO core where,
in turn, only heteroatomic bonds are found. Subsequently, in order to study the properties of
the macroscopic, nanoscaled HAIO material we also considered the properties of two interacting
clusters that were optimized in the first part.

1. INTRODUCTION

Nanostructured materials have attracted interest of research for many years. An interesting
material in this respect is layers of oxoaluminumhydride that can be produced in chemical-vapor-
deposition experiment of aluminumhydrid complexes on metal surfaces. The resulting nanostruc-
tured material contains various aluminum oxides, pure aluminum, as well as HAIO. This material
can be used as a substrate for organized structures of organic molecules. However, except for the
fact that HAIO is stoichiometric, very little is known about the structural and electronic properties
of HAIO. Therefore, we decided to study the electronic and structural properties of HAIO. The very
limited information on the material makes it a considerably challenge to study its properties with
theoretical methods. Thus, a complete study should consider both isolated (HAIO),, clusters as
well as clusters that interact with each other and with other materials without essentially making
any assumptions on the structure.

As a first step in this direction we shall here report results of our theoretical study of structural
and electronic properties of isolated (HAIO),, clusters with n up to 26 as well as of the interactions
of two such clusters. In the determination of the structure we have used two largely unbiased
approaches, so that we in many cases have had to perform extremely many total-energy calculations
for a given value of n. This has only been possible by applying a parameterized electronic-structure
method. This as well as our approaches for determining the structure shall be presented briefly in
the next section. Subsequently, we present some of our main results both for the isolated clusters

and for the interaction of two clusters. Our main findings are summarized in Sec. 4.



2. CALCULATIONAL METHOD

The calculations were performed using the parameterized, tight-binding, density-functional me-
thod of Seifert et al.' 3 According to this method, the binding energy of a given compound with a
given structure is written as a difference in the orbital energies of the compound minus those of the
isolated energy, 3=, €, —>",, >, €mi (with m being an atom index and i an orbital index), augmented
with pair potentials, >, my Urnymy (| By — Romy |) (with R, being the position of the mth atom).
In calculating the orbital energies we need the Hamilton matrix elements (Xum,n, |H|Xm,n,) and the
overlap matrix elements (X n;|Xmon,)- Here, Xmn is the nth atomic orbital of the mth atom.
The Hamilton operator contains the kinetic-energy operator as well as the potential. The latter is

).

and, subsequently, we assume that the matrix element (X, |Vin|Xman,) vanishes unless at least

approximated as a superposition of the potentials of the isolated atoms, V (7) = 3, Vi (|7 — R,

one of the atoms m; and m, equals m. With these approximations all relevant information
on the above-mentioned matrix elements can be extracted from parameter-free density-functional
calculations on isolated two-atomic systems, in our case on H,, HAI, HO, Al,, AlIO, and O,.
Finally, the pair potentials Uy, ,, are obtained by requiring that the total-energy curves from
parameter-free density-functional calculations on the diatomics are accurately reproduced.

In optimizing the structures of HAIO clusters, we have used two different, unbiased approaches,
i.e., our own ‘Aufbau’ method as well as a method based on genetic algorithms. The only informa-
tion we use is that HAIO is stoichiometric.* With our ‘Aufbau’ method, that is closely related to
our ‘Aufbau/Abbau’ method that we have used in optimizing the structure of large metal clusters,®
we start out optimizing the structure of a single HAIO molecule by choosing the structure of the
lowest total energy from a very large number of calculations on randomly constructed structures
that were allowed to relax to their closest total-energy minimum. Subsequently, we only assume
that the structure of the cluster with » + 1 units can be obtained by adding one Al, one O, and
one H atom to the cluster with n units. Thus, out of very many calculations where we randomly
add those three atoms to the optimized structure of the cluster with n units (imposing only the
constraints that the extra atoms should not be too close to any other atom or too far from all the
other ones) we obtain an optimized structure of the system with n + 1 units. The resulting cluster
of such a calculation is not with absolute certainty that of the global total-energy minimum, but,
hopefully, a very good approximation to it.

Our other approach is based on the so-called genetic algorithms, which are based on the

principles of natural evolution and are, therefore, also called evolutionary algorithms®’, and was



found to provide an efficient tool for global geometry optimizations. Our version of the genetic
algorithms is as follows. Suppose that we have optimized the structure of the cluster with n
units. From this structure we construct a first generation consisting of M independent clusters
for the (n — 1)-unit system by randomly adding one Al, one O, and one H atom and letting
these structures relax to their nearest total-energy minima. Subsequently, a new set of clusters is
constructed by cutting each of the M original ones randomly into two parts that are interchanged
(under the constraints mentioned above) and, afterwards, allowed to relax. Out of the total set
of 2M structures, the M ones of the lowest total energy are kept as the next generation. This
procedure is repeated until the lowest total energy is unchanged for a large number of generations.

By comparing the results from the two sets of (independent) calculations, i.e., using the ‘Auf-
bau’ method and the genetic algorithms we have a possibility to check the reliability of each
approach.

The material HAIO is nanostructured, i.e., is believed to consist of smaller ‘clusters’ that,
however, are very close. This means that the properties of the individual clusters may to only a
smaller extent be found for the nanostructured material. In order to obtain some first insights into
the latter, we have also considered the consequences of putting two clusters together. l.e., we
studied the system consisting of the cluster with n; and ny units that are placed at positions so
close that they interact. Subsequently, they are allowed to relax. We select the structure of the
lowest total energy from a large set of calculations where we have varied the relative orientations

of the two clusters.

3. RESULTS AND DISCUSSION

We shall here present results of (HAIO), clusters that were optimized for n up to 26 using
the 'Aufbau’ method and up to 10 using the genetic-algorithms approach. In order to analyse the
results we shall define radial distances r; for the 3n atoms by first constructing the center of the
cluster Ry = = R; from the positions E; of the atoms. Then, r; = |R; — Ry|.

In order to compare the results of the two types of structure optimizations we list in Table |
a set of key quantities, including the total energies and two parameters that compare the struc-

1/2 1/2
tures. Here, A, = |+ 32 (r2¥f — r8)2|  and Ag = |7 )E?Z?"_I)Q(Rf”f — R¥)?2|

3n i 3n(3n—1
where {R;} are the interatomic distances, and where we have assumed that r; and R; have been
sorted in increasing order. Finally, ‘auf’ and ‘ga’ refer to ‘aufbau’ method and genetic algorithms,
respectively. From the table, we see that the energy minima from the two approaches are very

close, and the structure difference is also very small. Accordingly, the two unbiased approaches



give almost the same structures of the HAIO clusters, making us believe that we have found the

global total-energy minimum of the (HAIO),, clusters, and that our approaches are reliable.

FIGURE 1
The structure of (HAIO),, for n= 2, 8, 9, 10, and 26. The outer light spheres represent hydrogen
atoms and the light and dark spheres of the inner parts represent aluminum and oxygen atoms,
respectively.

The optimized (HAIO),, clusters for 6, 24, 27, 30, and 78 atoms are shown in Fig. 1. The
figure shows that the Al and O atoms form the inner part of the clusters, whereas the H atoms are
only found on the surface of the clusters. Moreover, in the inner part we only find Al-O bonds and
no Al-Al or O-O bonds, and on the surface the H atoms are only bonded to Al atoms.

In Fig. 2 we show the pair correlation functions gag(R) for the cluster with n = 2 and n = 26.
Here, gag(R) is the number of A-B pairs with an interatomic distance of R. This figure shows
the strong preference for Al-O and Al-H nearest neighbours both for the small and for the large
clusters.

The overall shape of the clusters can be analysed as follows. We construct the matrix containing
the moments of inertia relative to the center of the cluster and diagonalize this, subsequently. For
simplicity we have not bothered about the difference masses of the three types of atoms. For a

homogeneous sphere with N = 3n atoms, the eigenvalues will be proportional to N°/3, which is

n 2 3 4 ) 6 7 8 9 10
Eauf | -4.8238 -4.9275 -5.0673 -5.1190 -5.1892 -5.2367 -5.2892 -5.3377 -5.3795
E&: | -4.8238 -4.9275 -5.0673 -5.1190 -5.1914 -5.2376 -5.2908 -5.3396 -5.3762
A, 0.00 0.01 0.00 0.00 0.47 0.44 0.16 0.13 1.38
Ay 0.00 0.00 0.00 0.00 0.30 0.20 0.075 0.01 2.00

TABLE |
The total energy in Hartree per unit for (HAIO), clusters as found with the ‘Aufbau’ method
(second row) and the genetic algorithms (third row) together with the two parameters A, and A,
(in a.u.) describing the difference in the structure.
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FIGURE 2
The pair-correlation functions (in arbitrary units) for (upper part) n = 2 and (lower part) n = 26
with R in a.u.

why we divide by this quantity. If all three eigenvalues are identical, the cluster has an overall
spherical shape, whereas two large and one small eigenvalue results in an overall lens-like shape,
and the third possibility gives an overall cigar-like shape. The results (cf. Fig. 3) shows that only
one cluster (n = 4) has an overall spherical shape, whereas the two other structures both occur.
On the other hand, the eigenvalues do not differ much from being identical so the clusters are close
to be roughly spherical.

When we consider the cluster with n + 1 units it is highly relevant to study how similar it is
to the one with n units, i.e., whether the larger can be considered as a result of a growth process
starting with the smaller one. In order to study this question quantitatively, we define a similarity
function as follows. We consider all those n-unit fragments of the (n + 1)-unit cluster that can
be obtained by removing one H, one Al, and one O atom. Subsequently, we calculate and sort all
interatomic distances for this fragment {R; ., ;}. These are compared with the sorted interatomic
distances {R,,;} for the n-unit system, i.e., we construct #*7=1 g2 = e/ nili — Bni)’
The smallest value of ¢, gmin defines the similarity function S = 1/(1 4 gmin), Which approaches 1

when the (n+1)-unit cluster is the n-unit cluster plus an extra unit. The results of Fig. 3 show that
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FIGURE 3
The (left part) eigenvalues of the matrix with the moments of inertia, (middle part) the similarity
function, and (right part) the stability function. In the left part, the rows on the top indicate
whether the cluster has an overall spherical shape (lowest row), a cigar-like shape (middle row), or
a lens-line shape (upper row). The dashed line is the average of the three eigenvalues.

in particular for the smallest clusters this is certainly not the case, but also for the larger clusters
(marked on the figure) structural changes occur that, actually, partly correlate with the changes in
the overall shape as given by the left part of Fig. 3.

Finally, the stability of a given cluster can be analysed through the total energies, i.e., by using
the stability function Ay(n) = Ei(n+ 1)+ Ewt(n—1) —2E(n). This functions, that has peaks
for particularly stable clusters, is also shown in Fig. 3. The peak for n = 4 is clearly recognized,

i.e., the highly symmetric cluster is also particularly stable.

nomone Bt ERi(n)  E(n) Bl (m) + Bl (na)  Efi(ni) + Efi(ne)

tot

9 2 3 -25.5948 -25.5948 -25.5948 -24.4301 -24.4301

6 2 4 -31.0983 -31.1353 -31.1483 -29.9168 -29.9168

12 4 8 -64.9534 -65.2908 -62.5828 -62.5956

17 8 9 -94.0379 -94.6440 -90.3529 -90.3828
TABLE Il

The total energy in Hartree for (HAIO), systems, where we have considered either interacting
(HAIO),,, and (HAIO),,, clusters (giving the total energy denoted ‘com’) or an isolated, optimized
(HAIO),, cluster in comparison with the total energy of the two isolated, non-interaction clusters.
‘auf’ and ‘ga’ mark the results from the ‘Aufbau’ method and the genetic algorithms, respectively.

As mentioned above, the ‘Aufbau’ method and the genetic algorithms result in structures with
all H atoms on the surface. When having a macroscopic, nanostructured materials, some H atoms
will necessarily be confined to the inner parts of the complete system, which may result in different

structures. In order to study such systems we considered two clusters of n; and my units and



brought them so close that they would interact. Table Il shows the total energies in comparison
with those of the optimized clusters with n = n{ 4+ ny units. We see that the combined systems are
considerably more stable than the two separate, non-interacting clusters, but, on the other hand,

less stable than the optimized larger system.

FIGURE 4
From left to right: The structure of the n = 6 system in comparison with that of two interacting
ny = 2 and ny = 4 systems, as well as the structures of the n = 17 system and that of interacting
n1 = 8 and ny = 9 systems.

Finally, Fig. 4 shows the structures of two of those systems (i.e., ny + n, = 2 + 4 and
ni + ng = 8 + 9) together with the n = 6 and n = 17 unit systems. In this case it is clearly seen
that the hydrogen atoms are placed between the two cores of AIO and from Table Il we see that
this structure is, although less stable than the completely optimized system of n unit, considerably
stabler than the non-interacting system. Thus, our results lend support to the consensus that
nanostructured HAIO consisting of interacting (HAIO),, clusters is (meta-)stable with hydrogen

sitting on the surface of the single clusters but between the different cluster.

4. CONCLUSIONS

In this work we have presented our unbiased approach for optimizing the structure of a complex
material, HAIO, that has more types of atoms. By comparing the results of our ‘Aufbau’ method
with those of the genetic algorithms we could argue that we have most likely identified the global
total-energy minimum structures for (HAIO),, clusters with n up to 26. Although our approach
avoids having to search the complete structure space for each value of n, we had nevertheless
to perform very many total-energy calculations for a given n, so that a parameterized density-
functional method was considered the best choice for an electronic-structure method.

The most stable structure was found to be formed by a clusters with an AlO core containing
only heteroatomic bonds and covered by a layer of H atoms. For the smallest clusters it was

not possible to identify some growth pattern, but for the larger ones, the structure became more



regular. Very stable was the cluster for n = 4 that had an overall spherical shape.

Bringing two smaller clusters of n; and ns units together resulted in a united system only
slightly less stable than the cluster of ny + ns units, but significantly more stable than the isolated,
non-interacting parts. For the united system, the AlO cores were separated by H atoms. Thus,
nanostructured HAIO may very likely consists of such (HAIO),, clusters that are forced together in

some (meta-)stable arrangement.
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Abstract: The results of theoretical studies of nanostructured HAIO and AlO are pre-
sented. We have considered isolated clusters, the interactions between two clusters, and
two-dimensional layers. In most of the calculations we used a parameterized density-
functional tight-binding method in the calculation of the electronic properties for a given
structure, combined with two different unbiased approaches, i.e., an ‘Aufbau’ and a genetic-
algorithm method, for optimizing the structure for clusters. The results for the isolated
clusters are analyzed by means of similarity, stability, and shape parameters. Smaller
structures were also studied with parameter-free DFT methods.

Keywords: Clusters, structure, stability, density-functional calculations

PACS: 36.40.-c, 36.90.+f, 61.46.+w, 73.22.-f

1 Introduction

HAIO is an interesting material that can be used as a substrate for organized structures of organic
materials, but only little is known about its precise structure. Here, we shall show that theo-
retical studies can give useful information that ultimately turns out to extend and support the
experimental information about it.

HAIO can be prepared either by CVD (chemical vapor deposition) at low temperatures as a
thin glassy layer using the precursor bis-(tert-butoxyalane) [AlH,(O¢Bu)], and various metals as
target substrates [1, 2], or as an amorphous powdered nanostructured material by the reaction
of different methylsiloxanes with the alane H3 Al-NMe;s in either ether or aromatic solvents under
mild conditions [3, 4].

The purpose of the present work is to obtain further information on HAIO by considering both
finite clusters and infinite, periodic layers and ultimately present a proposal for the structure of
the HA1O compounds. In agreement with experimental indications, we find that the HA1O clusters
consist of an AlO core with H atoms on the surface. We shall therefore also consider isolated AlO
clusters, here.
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We studied theoretically the structural properties of the (HALO),, clusters with n up to 26 using
a density-functional-theory tight-binding method. This method can give the electronic properties
for a given structure as well as determine a structure of a local total-energy minimum once an initial
structure has been chosen. However, the method is not directly able to determine the structure of
the global total-energy minimum. In order to search for that for the (HAlO),, clusters, we have
used two unbiased approaches, i.e., a method we have called the ‘Aufbau’ method as well as genetic
algorithms.

To verify the results of these methods we also performed parameter-free DFT calculations on
smaller (HA1O),, units with n = 1,2,3,4,6. For each n we considered several different isomers, as
well as calculated their vibrational spectra.

Since the experimentally produced nanostructured material is extended, it must contain nano-
structures in close contact. Therefore, we also studied the interactions between pairs of optimized
(HALO),, and (HAIO),, clusters for different values of n; and n,. Finally, the fact that HAIO
can be synthesized as a layer compound made us study infinite, periodic, two-dimensional layers
of HAIOQ, too.

Finally, we also used the parameterized density-functional method together with the genetic
algorithms in studying stoichiometric AlO clusters.

2 Theoretical Methods

For most of the calculations, we used the density-functional tight-binding method (DFTB) of Seifert
and coworkers [5, 6]. With this method, the binding energy is written as the difference in the orbital
energies of the compound minus those of the isolated atoms, i.e.,as Y, € —>_, > . €mi (with m be-
ing an atom index and 7 an orbital index), augmented with pair potentials, 3, .. Um,ms, (|Rm, —

Rm2|) (with R,, being the position of the mth atom). In calculating the orbital energies we need
the Hamilton matrix elements (Xum,n, | H |Xman,) and the overlap matrix elements (Xom,n, |Xmans)-
Here, Xmn is the nth atomic orbital of the mth atom. The Hamilton operator contains the kinetic-
energy operator as well as the potential. The latter is approximated as a superposition of the
potentials of the isolated atoms, V() = >, Vi (|7 — R..|), and subsequently we assume that the
matrix element (Xm,n|Vim|Xmans) vanishes unless at least one of the atoms m; and my equals m.
Finally, the pair potentials Uy, m, are obtained by requiring that the total-energy curves from
parameter-free density-functional calculations on the diatomics are accurately reproduced.

Finally, we used the parameter-free, density-functional program package TURBOMOLE [7] for
the smallest (HALO),, clusters.

We used two different methods in determining the structures of the clusters.

In some of the calculations we used our own Aufbau method [8]. The method is based on
simulating experimental conditions, where clusters grow by adding atom by atom to a core. By
repeating this process very many times, we can identify the structures of the lowest total energy.
Alternatively, we optimized the structures using the so-called genetic algorithms [8, 9, 10]. Here,
from a set of structures we generate new ones through cutting and pasting the original ones. Out
of the total set of old and new clusters those with the lowest total energies are kept, and this
process is repeated until the lowest total energy is unchanged for a large number of generations.

3 Results for the (HAlO), Clusters

First, we optimized the structure of (HA1O),, clusters with n up to 26 using our ‘Aufbau’ and with
n up to 18 using the genetic-algorithms approaches, respectively. We define a radial distance r,
for each of the 3n atoms as r; = |R R0| where Ro is the center of the cluster, Ro = % ?"1 R

Fig. 1 shows the radial distance for the different clusters and atoms. The figure shows, for each
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Figure 1: The radial distances (in a.u.) for Al, O, and H atoms, separately, as a function of the
size of the cluster n for (HAlO),, clusters. In each panel, a small horizontal line shows that at least
one atom of the corresponding type has that distance to the center of the cluster for a given value
of n.

type of atoms separately, the radial distances for the different values of n. It is very clear that the
largest radial distances are found for H atoms and, in addition, that essentially all H atoms always
have larger radial distances than the Al and O atoms. On the other hand, the central part of the
clusters are clearly formed by both Al and O atoms.

Also the parameter-free DFT calculations on various (in total, 28) isomers of (HA1O)g supports
this consensus. For each of the 28 (HAlO)g clusters we calculated the radial distances of the
different atoms. Subsequently we plotted this as a function of the total energy per unit and show
in Fig. 2 the results. When comparing the clusters of roughly the lowest total energies we see that
Al and O are those atoms with smaller radial distances, whereas those of hydrogen are larger. For
the higher total energies, the radial distances of Al and O show a weak tendency to increase and
simultaneously those of H are slightly decreasing. In total this analysis confirms the tendency for
the (HAI1O),, clusters to possess a Al-O core covered with H atoms.

By analysing the overall shape of the clusters we also found that there are particularly stable
clusters (most pronounced for n = 4) for which the structure is roughly spherical.

4 Conclusions

The results of this study are unique as they have been obtained by using several different exper-
imental and theoretical approaches independently of each other. By combining the results from
all approaches, we have arrived at an unusually detailed picture of the structural properties of
nanostructures HA1O despite the complications determining this directly in experimental studies.

All approaches indicate that nanostructured HAIO consists of subsystems with an AlO core
covered by H atoms. This structure can, e.g., be obtained by keeping the (HA1Q),, clusters not too
large, but, alternatively, also two-dimensional sheets HAIO can also satisfy these constraints. The
calculations (not shown here) give indeed that also such sheets are stable with a binding energy
comparable with that of the largest clusters considered here.

Finally, we stress that some of the conclusions could only be obtained after a careful analysis
of the results of the calculations by means of special descriptors.
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Figure 2: The radial distances for the different smaller clusters as function of the total energy
per unit. The different panels show the different types of atoms. The results are from the DFT
calculations for the (HALO),, clusters with n =1,2,3,4,6.
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The results of a theoretical study of the nanostructured ternary compound HAIO are presented. We have
considered isolated (HAIQXlusters, the interactions between two such clusters, and two-dimensional layers
of HAIO. In many of the calculations we used a parametrized density-functional tight-binding method in the
calculation of the electronic properties for a given structure, combined with two different unbiased approaches,
i.e., an “Aufbau” and a genetic-algorithm method, for optimizing the structure for clusterswighto 26.

The results for the isolated clusters are analyzed by means of similarity, stability, and shape parameters.
Isolated structures with up to 6 were also studied intensively with pure DFT methods.

I. Introduction The purpose of the present work is to obtain further

Theoretical studies on the structural and electronic propertiesformation on HAIO by considering both finite clusters and

of materials continue to constitute a useful complement to infinite, periodic layers and ultimately present a proposal for
experimental studies, and often the combination of the two the structure of the HAIO compounds. ,
approaches gives more information than each of them separately e studied theoretically the structural properties of the

could have contributed. In this work we shall present results of (HAIO)n clusters withn up to 26 using a density-functional-
such a study for HAIO with, however, the main emphasis on theory tight-binding method. This method can give the electronic

the theoretical results, although we repeatedly shall make properties for a given structure as well as qlepermine a structure
mention of experimental results. of a local total-energy minimum once an initial structure has
The ternary compound HAIO is an interesting material that P€€n chosen. However, the method is not directly able to

can be used as a substrate for organized structures of organid€términe the structure of the global total-energy minimum. To
materials, but only little is known about its precise structure. S€arch for that for the (HAIQ)clusters, we have used two

Here, we shall show that theoretical studies can give useful Unbiased approaches, i.e., a method we have called the “Aufbau”
information that ultimately turns out to extend and support the Method as well as genetic algorithms.
experimental information about it. To verify the results of these methods, we also performed
HAIO can be prepared either by CVD (chemical vapor Pure DFT calculations on smgller (HAIRYNits ywthnz_l, 2,
deposition) at low temperatures as a thin glassy layer using the3; 4. and 6. For eachwe considered several different isomers,
precursor bigért-butoxyalane), [AIH(OtBU)], and various as vyell as the calgulatlon of their vibrational spectra. .
metals as target substraféspr as an amorphous powdered Since the experimentally produced nanostructured material
nanostructured material (with considerable content of bymate- IS €xtended, it must contain nanostructures in close contact.
rial) by the reaction of different methylsiloxanes with the alane Therefore, we also studied the interactions between pairs of
HsAl-NMe; in either ether or aromatic solvents under mild ©OPtimized (HAIO), and (HAIO),, clusters for different values
conditions34 The different preparation routes lead to materials Of N1 andnz. Finally, the fact that HAIO can be synthesized as
that have similar infrared (IR) spectra, showing a distinctive & layer compound made us study infinite, periodic, two-
absorption for the(Al—H) stretching mode at 1925 crh(layer dimensional layers of HAIO, too. . .
compound) and 18951929 cnt? (powder compound), respec- The paper is organized as follows. In section Il we describe
tive|y_ Using ang|e_dependent reflection IR spectroscopy for the details of the calculational methods that are used to S'El.ldy the
|ayerl a shoulder at 1670 crhbecomes more prominent when HAIO clusters and Iayers. Subsequently, the results for isolated
the angle is decreased. This feature can be ascribed to bridgingFlusters are presented in section Ill, and in that section we also
Al—H--Al entities87 Annealing both layer and powder com- discuss the interaction between two clusters, as well as the
pound causes the hydride band in the IR spectrum to decreasd@roperties of two-dimensional layers of HAIO. A brief summary
in intensity. Furthermore?’Al{1H} MAS NMR spectra show  Of our conclusions is given in section IV. Finally, for the sake
resonances for sixfold, fivefold, and fourfold (at 6, 30 and 58 ©f completeness we mention that a brief account of parts of the
ppm, respectively) coordinated aluminum species; XPS analysisPresent study was published previously.

of an HAIO film is consistent with these resuls.
II. Computation Methods

*To whom correspondence should be addressed. E-mail:

m.springborg@mx.uni-saarland.de. A. Parametrized Density-Functional Method.Many of the
"' Department of Physical and Theoretical Chemistry. calculations of the electronic properties for a given structure
zE_erﬁgirlt,m;gtoﬁfgg‘r’;?(au”r'“c_scag?{:r'férgé were performed using the parametrized tight-binding density-
I E-mail: m.burkhart@mx.uni-saarland.de. functional method of Seifert et &t1° According to this method,
DE-mail: veith@mx.uni-saarland.de. the relative total energy of a given compound with a chosen
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structure is written as the difference in the orbital energies of is as follows. Suppose that we have optimized the structure of

the compound minus those of the isolated atoms, i.e., as the cluster witm units. From this structure we construct a first
generation consisting d¥1 independent clusters for the ¢
Zei — ZZemi (1) 1)-unit system by randomly adding one Al, one O, and one H
[ m T atom and letting these structures relax to their nearest total-

energy minima. Subsequently, a new set of clusters is con-

(with mbeing an atom index arican orbital index), augmented gy cted by cutting each of the original ones randomly into two

with pair potentials, parts that are interchanged (under the constraints mentioned
- - above) and, afterward, allowed to relax. Out of the total set of
Z Umpmz(lle N Rsz @) 2M structures, thévl ones of the lowest total energy are kept
T as the next generation. This procedure is repeated until the
(with ﬁmbeing the position of thenth atom). lowest _total energy is unchanged for a large number of
generations.

In calculating the orbital energies, we need the Hamilton
matrix elementsiymn,|H|xmn,Jand the overlap matrix ele-
ments LY mn, [xmn,[] Here, ymn is the nth atomic orbital of the
mth atom. The Hamilton operator contains the kinetic-energy
operator as well as the potential. The latter is approximated as
a superposition of the potentials of the isolated atoms,

By comparing the results from the two sets of (independent)
calculations, i.e., using the Aufbau method and the genetic
algorithms, we have a possibility to check the reliability of each
approach.

C. Pure DFT Calculations. In addition to the calculations
using the Aufbau method and the genetic algorithms, we

V(T) = sz(ﬁ _ ‘R’mD (3) performed calculations using Ahlrichs’ program system TUR-
- BOMOLE.* All calculations used pure DFT with the Becke
Perdew functional®>16.17.18employing SV(P) basis set8 The

and subsequently we assume that the matrix elementCoulomb terms were treated by the Répproximation to speed
By | Vimlxmn,[Vanishes unless at least one of the atomand up computation time for the geometry optimization8p/SV-
m, equalsm. Finally, the pair potentialt)y, m, are obtained by  (P))20.21
requiring that the total-energy curves from parameter-free  We studied very many structures of (HAIQ)ith n =1, 2,
density-functional calculations on the diatomics are accurately 3, 4, and 6. Here, starting from “reasonable” starting geometries,
reproduced. With these approximations, all relevant information relaxed structures were obtained and, subsequently, analyzed.
on the above-mentioned matrix elements can be extracted fromThis gave 2, 5, 7, 8, and 28 different structuresrfer 1, 2, 3,
calculations on isolated two-atomic systems, in our caseon H 4, and 6, respectively.
HAI, HO, Alz, AIO, and Q. D. Interacting Clusters and Layers. The material HAIO is

B. Unbiased Structure Optimizations. With the method nanostructured in the powder form and glasslike in the layer
above we can calculate the total energy of a given structure, form; that is, is believed to consist of smaller “clusters” that,
and by calculating also the forces acting on the atoms, i.e., thehowever, are very close to each other. This means that the
derivatives of the total energy with respect to nuclear coordi- properties of the individual clusters may to only a smaller extent
nates, also the structure of a local total-energy minimum can be recovered for the nanostructured material. To obtain some
be identified. To search for the structure of the global total- first insight into the latter, we have also considered the
energy minimum for the isolated (HAIQglusters, we have used  consequences of putting two clusters together. That is. we
two different, unbiased approaches, i.e., our own Aufbau method studied systems consisting of the clusters witrand n, units
as well as a method based on genetic algorithms. The onlythat are placed at positions so close that they interact. Subse-
information we use is that HAIO is stoichiometfi€ With our quently, they are allowed to relax. We finally select the structure
Aufbau method, that is closely related to our “Aufbau/Abbau” of the lowest total energy from a large set of calculations where
method that we have used in optimizing the structure of large we have varied the relative orientations of the two clusters.
metal clusterd! we start out optimizing the structure of a single Finally, we also studied infinite, periodic, two-dimensional
HAIO molecule (i.e.,n = 1) by choosing the structure of the layers of HAIO. Here, we considered both systems containing
lowest total energy from a very large number of calculations only one layer as well as systems containing two, covalently
on randomly constructed structures that were allowed to relax bonded, layers. In all cases we constructed an@lsquare
to their closest total-energy minimum. Subsequently, we only lattice from a periodically repeated unit &f x N Al and O
assume that the structure of the cluster witt 1 units can be atoms. In one case we considered just a single layer Mith
obtained by adding one Al, one O, and one H atom to the cluster 8 and with H atoms added to the Al atoms on only one side of
with n units. Thus, out of very many calculations where we the layer. In another case we considered a single layer Mith
randomly add those three atoms to the optimized structure of = 6 but with the H atoms added to the Al atoms alternatingly
the cluster withn units (imposing only the constraints that the on one or the other side of the layer. Furthermore, we considered
extra atoms should not be too close to any other atom or too two layers placed on top of each other and still with H atoms
far from all the other ones, and subsequently allowed to relax) added to the Al atoms. Here, we h&d= 6 for the case that
we obtain an optimized structure of the system with 1 units. the two layers were placed so that-#l and O—-O bonds
This is repeated starting from= 1 up to, in our case) = 26. between the layers could be formed, whereas weNha4 for

The resulting cluster of such a calculation is not with absolute the case when we only had AD bonds between the layers. In
certainty that of the global total-energy minimum but, hopefully, all cases we varied the lattice constants of the repeated units in
a very good approximation to it. order to determine the optimized value, and by varying the value

Our other approach is based on the so-called geneticof N, we checked that the results were converged as a function
algorithms, which in turn are based on the principles of natural of this parameter.
evolution and are, therefore, also called evolutionary algo- We add that the calculations on the interacting clusters and
rithms1213We found that it provides an efficient tool for global  on the layers all were performed using the parametrized density-
geometry optimizations. Our version of the genetic algorithms functional method that was described in section IIA.
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TABLE 1: Various Parameters Describing the Results of the Optimization of the (HAIO), Clusters Using Either the Aufbau or

the Genetic-Algorithms Approach?

n=2 n=3 n=4 n=>5 n==6 n=7 n=28 n=29
Ef};f —4.8238 —4.9275 —5.0673 —5.1190 —5.1892 —5.2367 —5.2892 —5.3377
E—4.8238 —4.,9275 —5.0673 —5.1190 —5.1914 —5.2376 —5.2908 —5.3396
A 0.00 0.01 0.00 0.00 0.47 0.44 0.16 0.13
Ag 0.00 0.00 0.00 0.00 0.30 0.20 0.075 0.01

an describes the size of the clust&?y andE®

are the calculated total energies (in au per unit) with the two methodshAaadd A4 are the

two parameters (in au) that are used in quantifying the difference between the structures.

Ill. Results

First, we optimized the structures of (HAIQ)lusters withn
up to 26 using our Aufbau approach and witlip to 18 using
the genetic-algorithms approach. A set of key quantities are
shown in Table 1, of which some are introduced in order to

compare the results from the two approaches. We define a radial

distancer; for each of the B8 atoms as

r=IR — Ry (4)
whereﬁo is the center of the cluster,
13
R=—)>R (5)
3n &

Subsequently, two parameters are defined as follows

3n 1/2
A= (r iauf - riga)2]
£
2 3n(3n—1)/2 172
Ag=|—— Z (d— dFy? (6)
3n(3n — 1) =

where d; are the interatomic distances and where we have
assumed that; and d; have been sorted in increasing order.
Finally, the upper indices “auf’ and “ga” refer to the Aufbau

energetic ordering in the two theoretical approaches. However,
as we shall see below, the overall picture that emerges from
the calculations with the two different methods is mutually
consistent.

As examples of the results of the calculations, we show in
Figure 1 optimized structures using the different methods. As
exemplified in the figure, it turned out that all optimized
(HAIO),, clusters have a structure where the Al and O atoms
form an inner part of the cluster, whereas the H atoms are only
found on the surface of the cluster. Moreover, in the inner part
of the clusters there are mainly -AD bonds and essentially no
Al—Al or O—0O bonds, and on the surface the H atoms are
bonded only to Al atoms. Parts of this are illustrated in Figure
4, which shows the radial distances for the different clusters
and atoms. The figure contains, for each type of atoms
separately, the radial distances for the different values ¢f
is very clear that the largest radial distances are found for H
atoms and, in addition, that essentially all H atoms always have
larger radial distances than the Al and O atoms. On the other
hand, the central parts of the clusters are clearly formed by both
Al and O atoms.

Experimental results on (HAIQ)Xlusters are not available,
but derivatives of the type (RAIQ)R = bulky organic ligand)
have been prepared and the crystal structures of (RAR¥
CeH2-2,4,614-Bug) and (RAIO) (R = t-Bu) have been deter-
mined23-24While the tetrameric unit forms a twisted &8, ring,
which is due to the special ligand usedBUAIO)s has a drum-
shaped structure very similar to one of our calculated iso-
mers?3.24

and genetic-algorithms approaches, respectively. The parameter Also, the DFT calculations on the smallest cluster give

approaches 0 if the two structures are very similar. In Table 1

results in support of this general structure. As mentioned

we see that the lowest total energies from the two approachesabove, we considered in total 50 isomers of (HAI®ith

are very close and, moreover, in both cases show the samen = 1, 2, 3, 4, and 6. To extract information from these

tendency that the energy per unit decreases with increasing sizeesults, we proceed as follows. First we analyzed the inter-
of the cluster. Furthermore, the two parameters defined aboveatomic distances for all 50 structures. It turned out that none

that quantify the structural differences are also very small. The

possessed ©O or H—H nearest neighbors and that it was

above analysis gives us strong reasons to suggest that the globaklative easy to identify AtH, Al-0O, and C-H bonds as

total-energy minimum of the (HAIQ)clusters has been found
and also that our two unbiased approaches are reliable.

being pairs with an interatomic distance smaller than 2.2, 2.5,
and 1.5 A, respectively. The AlAl interatomic distances,

Further support for our conclusion is obtained from the results on the other hand, showed a large spread, and it was not
of the pure DFT calculations, as shall be discussed below. Usingpossible to readily identify a cutoff distance below which the
this pure DFT technique, we first studied the HAIO monomers Al atoms could be considered as being bonded. In the subsequent
in order to compare with previously published data using SCF analysis we therefore considered two extreme values, 2.5 and
and MP3 method® Our calculations show that for the HAIO 4.1 A,
monomer the hydroxyde AIOH is more stable than the hydride  Next we studied the total energy per unit as a function of
HAIO, as also found in the SCF and MP3 calculations. For  number of A-B bonds per unit, with A and B being H, Al,
> 2 the hydridic species become more stable than the corre-and O. The results are shown in Figure 2. The results are very
sponding hydroxides. Comparing the geometries, our bond scattered, but nevertheless, it is possible to identify certain
lengths are slightly longer than those of the previously published trends. First, the total energy decreases as the numberd@Al
results. Maybe not surprising, the structures of the energetically bonds increases. Second, a similar, but much weaker, trend can
lowest isomers of (HAIQ) for n > 2 as calculated with the  be identified for the number of AfAl bonds (here we have
parametrized method and as calculated with the parameter-freaused 4.1 A as our cutoff value, but 2.5 A gives very similar
method are not identical, which may be ascribed to the results). Third, there is a clear preference for structures with
occurrence of several (meta-)stable structures with a differentone Al=H bond per unit. These observations can be quantified
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Figure 1. (HAIO), structures. The left side shows clusters witk 2, 3, 4, and 26 from DFT-TB calculations using the Aufbau method in the
structure optimization (top to bottom). The other structures show different isomers (DFT calculations) for thes($yAté&n. Hydrogen, aluminum,
and oxygen are represented with small white spheres, large gray spheres, and black spheres, respectively.
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Figure 2. Variation in the total energy per unit as a function of the
number of A-B bonds per unit. The results are from the DFT
calculations for the (HAIQ) clusters withn = 1, 2, 3, 4, and 6, and
the meaning of A and B is given in the panels.

by approximating the total energy of the various (HA|O)
isomers as

Eiot = NEy t Majai Eaial + NaioEaio T ManEan t NonEon
(7)

A least-squares fit to our 50 DFT results gdga = —0.175
eV (—0.122 eV)Eao = —1.000 eV (-1.170 eV) Ean = 0.750
eV (0.678 eV), andEon = 1.119 eV (0.798 eV), when using
4.1 A (2.5 A) as the cutoff distance for ARl bonds. These
numbers show that AIO bonds are strongly preferred and that

o ETTTTTTITITTY

ry ()

T T

T

80

ra (B)

80

o (R)

Ll
-5

O \‘I\’I‘\I\l\\
-8 -7 -6

Energy (eV/unit)

Figure 3. Radial distances for the different smaller clusters as a
function of the total energy per unit. The different panels show the
different types of atoms. The results are from the DFT calculations for
the (HAIO), clusters withn = 6.
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Figure 4. Radial distances (in au) for Al, O, and H atoms, separately, as a function of the size of therclost@dAlO), clusters. In each panel,
a small horizontal line shows that at least one atom of the corresponding type has that distance to the center of the cluster for a given value of

when choosing between adding H to either Al or O, it is o
energetically preferred to create -AH bonds. These features ol
are in perfect agreement with the results for the structure -

optimizations for the larger clusters obtained using the Aufbau
or genetic-algorithms method.

For each of the 28 (HAIQ)clusters, we also calculated the
radial distances of the different atoms. Subsequently, we plotted
this as a function of the total energy per unit, and we show the o 5 10 15 20 25
results in Figure 3. One should remember that the radial distance
for each atom of the smaller clusters is on the average smaller_ ) ) ) )
than that of the larger clusters. Therefore, we chose to consider’ /94r€ 5. Smallest interatomic AB distances (in au) for (HAIQ)

. . clusters for different values of and different pairs of atoms.
only the clusters of the same size, i.e., (HAJOWhen
comparing the clusters of roughly the lowest total energies, we
see that Al and O are those atoms with smaller radial distances, ;¢ shown in Figure 7, also particularly stable.

Whergas those 9f hydrogen are larger. For the higher total = tpgo oyerg)| shape of the clusters can be quantified by
energies, the radial distances of Al and O show a weak tendencyconsidering the eigenvaluds, of the matrix containing the

to increas? ak?_d simlultgneoufsly thc;]se of H are fsligk;]tly declreas'moments of inertia relative to the center of the cluster. The shape
”}g' In total, this anayS|socon Irms ¢ etendt_arp]cy orthe (HAIO) i the cluster is roughly spherical if all three eigenvalues are
clusters to possess a-AD core covered with H atoms. identical, whereas the cluster has a lenslike shape if two

The DFT calculations strongly indicate that the stables gjgenyalues are larger than the average eigenvalue, and finally,
hydrides mainly have terminal hydrides. Moreover, it is interest- i < an overall cigarlike shape if two eigenvalues are smaller

ing to ot.)se.rve that When .cor.nparing isomers Wit,h bridging. H than the average eigenvalue. This analysis is shown in Figure
atoms with isomers with bridging hydroxy groups, isomers Wlt'h 8. For a homogeneous sphere of constant density, the eigen-
OH groups usually are more stable than the corresponding, 5| es scale as®’3 and, therefore, the results of Figure 8 have
isomer with bridging H atoms. been scaled witm=53. In Figure 8 it is seen, as mentioned

hWe now rgtur(;l(;o th.e I?rger. cluslters rt]hzt were studLed Witrr]‘ above, that the cluster with= 4 has spherical shape, whereas
the parametrized density-functional method. Figure 5 shows the o gjike and cigarlike shapes occur for all other clusters studied
smallest interatomic distances for different types of pairs, and e

in Figure 6 we show the pair correlation functiogss(R) for

the clusters witm = 2 andn = 26. Here gas(R) is the number

of A—B pairs with an interatomic distance Bf It is seen that
there is a strong preference for - AD and A-H nearest-
neighbor bonds, both for the small and for the large clusters.
For the sake of completeness, we add that the bond lengths fo

diatomic AIO and AlH are 3.33 ag= 1.76 A and 3.06 aw= quantify whether the structure of the cluster with- 1 units is
1.62 A, respectively. By analyzing the nearest surroundings of giiiar to the structure of the cluster withunits as follows.

the Al atoms, we fipd that the coordination number of _AI IS \We consider all the-unit fragments of ther(+ 1)-unit cluster
between 3 and 6 with the value 6 for Al atoms that are in the that can be obtained by removing one H, one Al, and one O

central part of the clusters. This is in excellent agreement with 5., [i.e., in total we considen(+ 1) different fragments].

the NMR dg_ta. . Subsequently, we calculate and sort all interatomic distances
The stability of a given cluster can be analyzed through the ¢, ihis fragmen{R.., }. These are compared with the sorted

total energies. Most conveniently, this is done by using the jn«eratomic distanceRy} for the n-unit system; that is, we
stability function construct '

AE, = E(n+ 1) + E(n — 1) — 2E,,(n) 8) 3n(@En— 1) e
— 9= 3 RumR) O

8
T

6
T

Smallest Distance

shall see below, the cluster far= 4 is highly symmetric and,

Our two approaches for structure optimization, i.e., the
Aufbau and genetic algorithms, are both based on building up
the ( + 1) cluster from the one with units, suggesting that
the structure of then(+ 1) cluster is closely related to that of
the n cluster. Also, Figure 8 suggests that the structure is, at
least over certain ranges of relatively unchanging. We can

This function is shown in Figure 7. It has peaks for

particularly stable clusters, i.e., for= 4, 19, and 22. As we 2
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Figure 7. Stability function for (HAIO), clusters as a function of.

Out of the ( + 1)3 values ofg, we choose the smallest value
of g, i.e.,gmin, that subsequently defines the similarity function

1

S=_—— —
1+ Qmin/aﬂ

(10)

with ag chosen equal to 1 aGapproaches 1 if then(+ 1)-unit
cluster is very similar to the-unit cluster plus one unit and 0
for structurally very different systems.

Figure 9 shows this similarity function for the clusters with
n= 2 ton=25. Itis obvious that, for the smaller clusters, the
cluster withn + 1 units is certainly not similar to the-unit

cluster, and the growth of the clusters is, accordingly, not
regular. On the other hand, for the larger clusters, the similarity one with n =

O e
I .:

b o ceses o
.
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o
2
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n

Figure 8. Eigenvaluesl,, of the matrix with the moments of inertia
for (HAIO), clusters as a function of. To obtain values of,, that are
roughly independent afi, they have been scaled loy®2. The marks
on the top indicate whether the cluster has an overall spherical shape
(lowest row), a cigarlike shape (middle row), or a lenslike shape (upper
row). The dashed curve is the average of the three eigenvalues.
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Figure 9. Similarity function for (HAIO), clusters as a function af.

26. First we show in Figure 10 the radial

function approaches 1, although, also for those, significant distributions of the Mullikengross populations; that is, we
structural changes occur, as we have also seen through our othetalculate thegross population for each atom separately and

structure descriptors.

depict them subsequently as a function of the radial distance of

In discussing the electronic properties of the clusters, we eq 4. This picture confirms the consensus from above that the
consider solely the largest one of the present study, i.e., theH atoms are those with the largest radial distances. Moreover,
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ol S I I LI UL I and H 1s functions. The unoccupied orbitals appear at positive
'; Z_____**___a_r*__*__*_*_*f*__* _________ E energies, so that the gap between occupied an unoccupied
S ol ] orbitals is large.
j% ¥ r 7] The HAIO clusters form parts of a nanostructured material,
& : T e B . B so that they may very likely interact with each other. In this
S *_ww M iy L X context it is an interesting issue whether the H atoms will try
ot;- — é — ";‘ — 'é‘ — ‘é' = ‘110' = '1'2 to remain outside a central part, as we have observed for the
individual, isolated clusters. We decided, therefore, to study the
Radial Distance interaction between two clusters by putting two of the previously

Figure 10. Radial distribution of the Mullikergrosspopulations of optimized clusters together. This was done as follows. We
the valence electrons for the (HAlg)cluster. The horizontal dashed  placed two clusters ofi; and n, units so close to each other
lines mark the values for the neutral atoms, i.e., 1, 3, and 6 for H, Al, {4t they would interact. The initial structures were those of
and O, respectlvely._AI and O atoms are m_arked by stars, H atoms are,[he isolated (HAIO), and (HAIO), clusters, and we considered
marked by closed circles, and the radial distance is given in au. Y . 2 ’ A
very many relative orientations of the two clusters, out of which
Total density of states we chose the one that led to the lowest total energy after
structural relaxation. Table 2 shows the total energies in
comparison with those of the optimized clusters wits n; +
ny units. From the table we see that the interacting clusters are
more stable than the two separate, noninteracting clusters but
clearly less stable than the larger clustenainits. For the case
L 1 that the two clusters were brought so close that they interact,
' . . . before the combined cluster was relaxed, it was found that the
-20 -10 0 hydrogen atoms are placed between the two cores of AlO, but
after the combined cluster was relaxed, the hydrogen atoms are

Figure 11. Density of states of the valence orbitals in arbitrary units only sitting on the surface of th_e combined cIl_Js_ter. This supports

for the (HAIO); cluster. It has been obtained from the discrete energy our consensus that clusters with hydrogen sitting on the surface

levels upon a broadening with narrow Gaussians. All shown orbitals ©f the clusters are most stable.

are occupied, whereas the unoccupied ones appear at positive energies. Figure 12 illustrates this idea even further. This figure
has been obtained as follows. We consider the casg of 8

it is seen that both O and H atoms receive electrons, whereasand n, = 9 units before and after relaxation. In each case

the Al atoms donate electrons. For the Al atoms, there seems(i.e., before and after relaxation) we calculate the center of

to be a larger donation of electrons in the innermost parts of the two parts according to eq 5. The line joining these two

the cluster, whereas a similar trend not is observed for the O centers defines the axis in a cylindrical coordinate system

atoms. with z = 0 being the midpoint between the two centers.

For all geometries that were studied with the DFT method, Subsequently, we superpose the two coordinate systems in one
we also calculated the IR spectrum. Therefore, we can comparefigure and show the initial and final values oand the distance
the theoretical vibrational bands with those of the layer to thez axis (denotedl) for each atom separately by joining
compound. Figure 15 shows this result. The theoretical spectrumthese points with a straight line. Finally, we depict these lines
was constructed as the sum of the spectra for the lowest-total-for each type of atom individually. The stars mark the final
energy structures of (HAIQ)n = 2, 3, 4, and 6). Except for  positions of then; = 8 system whereas the closed circles mark
the shoulder at 1670 cm, there is a very good agreement the final positions of thew, = 9 system. In particular, the H
between theory and experiment. The fact that we do not find atoms tend to increas# upon relaxation, i.e., to move away
the shoulder is reasonable, since all minimal structures of our from the region between the two clusters. On the other hand,
calculations have terminal hydrides, whereas the shoulder maythe first of all the O atoms but also to a lesser extent the Al
be due to bridging AFH—AI units, although a final assignment ~ atoms are seeking to fill out the space between the two clusters
is lacking at the moment. when they are combined.

In Figure 11 we show the density of states of the valence Our experimentally synthesized material is a glasslike,
orbitals for the same cluster. This curve is clearly split into two amorphous film2 Moreover, our theoretical findings, i.e., that
parts, i.e., a low-energy part aroure?5 eV due to O 2s the H atoms prefer to stay outside an AlO core, which for larger
functions as well as a high-energy part due to Al 3s, 3p, O 2p, clusters becomes increasingly difficult when requiring that the

N=26

30

Density of states
15
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Energy (eV)
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z z z

Figure 12. Graphical illustration of the structural relaxations of bringing thhe= 8 (left part) andh, = 9 (right part) clusters together. Shown are
the relaxations in a cylindrical coordinate system withndd being the position along the cylindrical axis and the distance from it, respectively,
both in au. The three panels show the displacements of the Al, O, and H atoms, individually. For details about the presentation, see the text.
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Figure 13. Structure of layers of HAIO for one layer where H atoms are on one side (upper left) or two sides (upper right), as well as for two
layers with the Al atoms of one layer above either the O (lower left) or the Al (lower right) atoms of the other layer. We use the same color coding
as in Figure 1. Notice that interlayer interactions were not included in the calculations. Moreover, the structures on the right-hand part are seen to
split into smaller fragments whose size, however, may be biased by the size of the repeated unit in the calculations.
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Figure 14. Variation in energy per unit for isolated clusters and for 0.2
the layers of HAIO. The results for the layers are shown to the right 1
with the one-layer results marked with stars (here, the lowest total 0'3'_
energy is for the case when the H atoms are on the same side, whereas ¢4
they are alternating on the two different sides in the other case) and 1
the two-layer results marked with circles (here, the lowest total energy 0.5
is for the case when A1O bonds form the bonds between the layers). 06 experiment

- L . Figure 15. Comparison of calculated and experimental infrared spectra.
material is stoichiometric, suggest that stable structures of HAIO The ypper theoretical spectrum is calculated as the weighted average

may occur for layers of HAIO. To study this proposal further, of the line spectra for the optimized structures of the (HAI@)= 2,

we considered theoretically extended HAIO systems consisting 3, 4, and 6) clusters. The experimental spectrum has been taken from
of either one or two layers of HAIO. We add that these @ HAIO layer on a steel target with a reflection technique (angf3.30
calculations ignore interlayer interactions that can be very

important and that, therefore, may modify our conclusions For a single layer of HAIO, one can imagine two highly
significantly, when included. symmetric cases, i.e., one where all H atoms are on one side of
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TABLE 2: Properties of Two Interacting Clusters of n; and parametrized density-functional method for the calculation of

n, Units Giving in Total n = n; + n, Units? electronic and energetic properties for a given structure.

Efe(n) + Egi(m) + Moreover, for smaller clusters we also performed a large number

nomon EQ EG)  ERM  Euln)  ERM) of parameter-free density-functional calculations. The fact that

5 2 3 —255048 —255948 —25.5948 —24.4301 —24.4301 all methods give very similar rgsults makes us believe that the

6 2 4 —31.0983 —31.1353 —31.1483 —29.9168 —29.9168 results are reliable. Also, the infrared spectra could be repro-
7 3 4 —36.5535 —36.6566 —36.6632 —35.0518 —35.0518 duced by the parameter-free density-functional calculations.
g g g —64.9534 —65.2908 —65.3370 —62.5828 —62.5956 The optimized HAIO clusters were found to contain a core

—94.0379 —94.6440 —94.6602 —90.3529 —90.3828 of AIO where, moreover, mainly heteroatomic bonds exist. The

a g2 or E® gives the calculated total energy (in au) with either the H atoms are found only on the surface of the core and are only

Aufbau or the genetic-algorithms approach, respectivEly(n;) + bonded to Al. From the parameter-free density-functional
Ewt(no) gives results for the relaxed, noninteractions clusters, whereas calculations we could see that there is a strong energetic driving
Ew(n) gives results for the relaxed cluster mbinits. Finally,Egy"(n) force for creating systems with AlO bonds and, moreover,
gives results for the relaxed, combined clusters. the clusters would prefer to have one-l bond per unit. The

the layer, and one where every second H atom is above andCIUSter withn = 4 has a very high symmetry. Moreover, the

every second H atom is below the AlO layer. These are shown stability function shows that .With increasimghg total energy
in Figure 13. For the case that all H atoms are on the same side®" unltl_dehclreases monb(itonr:callyr.] The c_omlblntad TIUWEPS "
of the layer, the Al and O atoms form a layer with bond lengths n, are slightly more stable than the two isolated clusters,o
of 3.33 au,= 176 A and 3.34 au=1.77 A. Moreover. the andn, units but significantly less stable than the optimized

hydrogen atoms are sitting on the outside of the layer bonded+ nt)zlclqster. We Ials;) found that |nf|n|t¢ I.ayerid HAI? c?n be
to the Al atoms with A-H bond lengths of 3.21 as 1.70 A, SaPle, in particular for a system consisting of two AlO layers

The Al—O—Al bond angles are 85-86° and 147—152. bonded via A-O bonds and with additional H atoms attached

: . to the Al atoms. It turned out, however, that this system was
Remarkably different things occur when the H atoms are :
- . . . only marginally more stable than the most stable cluster of our
sitting alternatingly on the two sides of the single AlO layer.

Then we found that the layer split into several small parts all study.

with the same kind of structure; that is, the H atoms are binding These findings are in accord with our experimental results:
to the Al atoms with A-H bond lengths around 3.08 as We find that by thermal treatment of HAIO, the system loses

1.63 A, whereas the AIO bond lengths are around 3.40 &u hydrc.)gen. in the first place. _The (AIQ):O"? is not affected in .
180 A the first instance, but as it is electronically unsaturated, it
For the case of two layers of HAIO, we studied two cases, decomposes_by dlspropo_rfuonanon to Al an_d@d. Apart frpm
. . the use of this metastability of the sytem in our experiments,
i.e., either the Al atoms of one layer were placed on top of the - - - .
we are also interested in the transient (Al&ate, about which
O atoms of the other layer, or they were placed on top of the

Al atoms of the other layer. It turned out that the first situation further theoretical and experimental work is underway.
was much more stable than the second one, which may not be
surprising, and in the second case we find that the system breaki
into small parts.

Finally, it is interesting to study the energy per unit for the

finite clusters in comparison with that for the layers, shown in Supporting Information Available: Results from the

Figure 14. It is remarkable that the two-layer structure is not ;.o meter-free density-functional calculations on the 50 isomers
significantly more stable than the finite clusters. We believe ¢ (HAIO), with n = 1, 2, 3, 4, and 6, including structural and
that the systems prefer to have H atoms on some surface.qnergetic information. This material is available free of charge
However, since the surface area scales’dsthe available area via the Internet at http://pubs.acs.org.
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Abstract: The geometries and electronic properties of the most stable small Au,, clusters are
presented. An intensive search for low-energy minima of Au, clusters was carried through
using a density-functional tight-binding method combined with genetic algorithms for an
unbiased global structure optimization. The structural and energetic properties of the
small gold clusters are compared with those of planar Au,, clusters with n =5 to 15.
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1 Introduction

In contrast to the case of semiconductors, the electrons of metals are assumed to be delocalized
and not to participate in directional bonds. Thereby, the structure of metals becomes dictated
by packing arguments. As a consequence, for infinite, periodic solids of only one element, the
fcc and hep lattice structures result. For finite systems, i.e., clusters, symmetry elements that
are not allowed for the infinite, periodic system, like five-fold symmetry axes, can occur, whereby
closed-packed structures like the icosahedron can show up.

Gold seems to show deviations from this behaviour, while simultaneously being one of the most
studied elements in the context of clusters (see, e.g., [1]). For instance, the structure of Auy
clusters with N up to around 15 has been found to be planar [2, 3]. Moreover, for larger clusters
indications for the existence of cage-like structures have been observed [4, 5, 6]. And Hikkinen
et al. [7] found that for 53 < N < 58, low-symmetry ‘amorphous’ structures are found, whereas
the high-symmetric structures for the 55-atomic clusters not are the most stable structures. It
is believed that a subtle interplay between relativistic effects, directional orbital interactions, and
delocalized electrons is responsible for these results.

From this brief discussion it is clear that the properties of Auy clusters only partly are un-
derstood. But, for an understanding of any property of clusters it is mandatory to have accurate
information on their structures. However, this information is not easily accessible, neither with
experimental nor with theoretical methods. From a theoretical point of view, the combination
of low symmetry, a large-dimensional structure space, and an exponentially growing number of
metastable structures with size makes it very demanding to determine the structure of a whole set
of clusters without making severe approximations either in the description of the interatomic inter-
actions or concerning the structure of the systems. As a consequence, most theoretical studies on
Auy clusters are based on either applying accurate methods on the smallest possible systems or on
larger ones with selected high-symmetry structures or, alternatively, using approximate methods

L Corresponding author; e-mail: y.dong@mx.uni-saarland.de
2 e-mail: m.springborg@mx.uni-saarland.de
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that do not explicitly include electronic degrees of freedom on a larger set of clusters for which the
structures of the global total-energy minima are sought in an unbiased way.

In this work, we apply a parameterized density-functional tight-binding method combined with
an unbiased approach to determine the lowest energy structures of gold clusters. In contrast to
previous unbiased structure optimizations, our total-energy method includes electronic degrees of
freedom, making it, we believe, more accurate. Because of the recent interest in planar gold clusters,
we also included such ones, together with the icosahedral Au;3 and tetragonal Ausg clusters, and
in this presentation we shall concentrate on our results for the Auy clusters with 1 < N < 20.
Our results for clusters with IV up to around 60 will be published elsewhere.

2 Computational Method

We have used a parameterized tight-binding density-functional method combined with genetic
algorithms to determine the global total-energy-minimum structures for gold clusters containing
up to 20 atoms. The planar gold clusters with NV = 5— 15 and the icosahedral Au;3 and tetragonal
Auyg clusters were relaxed locally.

The density-functional tight-binding method [8, 9, 10] is based on the density functional theory
of Hohenberg and Kohn in the formulation of Kohn and Sham. The Kohn-Sham orbitals of
the system of interest are expanded in terms of atom-centered basis functions. The Kohn-Sham
operator is h = { + Vog(7) with { being the kinetic-energy operator and Vyg(7) being the effective
Kohn-Sham potential which in our approach is approximated as a simple superposition of the
potentials of the neutral atoms Veg () = >_; V(|7 - RJ|) In the present method, only two-center
terms in the Hamiltonian matrix are considered, but all those are calculated exactly.

From the Kohn-Sham eigenvalues {¢;} of the system of interest and those of the isolated atoms,
{€jm} (with m being an atom index and j an orbital index), we obtain an approximate total energy
of the system of interest relative to that of the non-interacting atoms, E, ~ > ,€;—>2; >, €jm +

> i Ujs (IR; — R;/|). The last term is a set of short-ranged, repulsive pair potentials. These
are obtained be requiring that the total energy of two-atomic systems (in our case, on Auz) as a
function of interatomic distance is accurately reproduced. Finally in the present study only the 5d
and 6s electrons of the Au atom are explicitly included in the calculations, whereas the rest are
treated within a frozen-core approximation. Ultimately, we checked the accuracy of our approach
by calculating the lattice constant of crystalline Au. The result is within 0.3% of the experimental
value.

In optimizing the structures of gold clusters, we have used genetic algorithms [11, 12]. Our
version is as follows. Suppose that we have optimized the structure of the cluster with N — 1
atoms. From this we construct a first generation consisting of M independent clusters for the
N-atom system by randomly adding one Au atom and letting each of these structures relax to its
nearest total-energy minimum. Subsequently, a new set of clusters is constructed by cutting each
of the original ones randomly into two parts that are interchanged (under the constraints that no
atom should be too close to any other atom or too far from all the other ones) and, afterwards,
let relax. Out of the total set of 2M structures, the M ones of the lowest total energy are kept for
the next generation. This procedure is repeated until the lowest total energy is unchanged for a
large number of generations.

3 Results and Discussion

In Fig. 1 we show the variation in the total energy per atom for the globally optimized structures
together with that of the icosahedral Auys cluster (for which the total energy could be lowered
upon a local symmetry-breaking relaxation, which is seen as the two triangles in Fig. 1, with the
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Figure 1: The variation in the total energy per atom (relative to that of the isolated atom) for the
optimized Auy clusters (solid curve) together with those of planar structures (dark circles) and
those of icosahedral Au;3 and tetragonal Auyg clusters (dark triangles).
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Figure 2: Properties related to the eigenvalues I, of the matrix containing the moments of inertia.
The upper panel shows the average value (scaled by N°/3) together with marks indicating whether
the Auy cluster is overall spherical (dots in the lowest row), overall cigar-like shape (middle row) or
overall lens-like shape (upper row). The lower panel shows the largest difference in the eigenvalues.

lower one corresponding to the lower-symmetry structure), and that of the tetragonal Augg cluster
for which the total energy was only marginally higher than that of the globally optimized structure.

In order to obtain additional information on the structure, we first determine the center for

each cluster, 1%0 = % Zfil R,-, with ﬁ, being the position of the ith atom, and then the radial
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distance for each atom r; = |Rl — ﬁ0|. Subsequently, we calculate the 3 x 3 matrix containing
> siti (with s and t being z, y, and z), and from the eigenvalues I, of this we analyse the
overall shape of the cluster: three identical eigenvalues suggest a spherical shape, whereas two
large and one small value suggest a lens-like shape, and two small and one large value suggest a
cigar-like shape. In Fig. 2 we show the average eigenvalue (scaled by N5/3 which is the scaling a
spherical jellium would possess) together with marks indicating the overall shape. Also the largest
difference between the eigenvalues is shown. We see that except for a single atom, no cluster has
an overall spherical shape, in agreement with the suggestion that Auy clusters in general possess
a low symmetry.

10

Radial distance
5
T

Figure 3: The radial distances of the atoms for the Auy clusters. For each value of NV, a horizontal
line indicates that at least one atom has that radial distance. The thicker curve marks the radius
of a spherical jellium with the density as that of crystalline gold.
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Figure 4: The similarity function quantifying whether the structure of a cluster with N atoms
resembles that of the cluster with N — 1 atoms plus one atom. In the left panel the radial distances,
and in the right panel the interatomic distances have been used in quantifying the similarity.

The low symmetry can also be seen in Fig. 3 where we show the radial distances of the atoms
as a function of N. The fact that for each value of N we have many different values is an indication
of the low symmetry. Interesting is it also to see that for most clusters, the largest radial distance
is smaller than the radius of a spherical cut-out of crystalline gold with the same number of atoms,
although if, e.g., the atoms are small spheres, the spatial extension of the cluster would be larger
than the largest radial distance. Finally, we see a clear shell construction: for N > 10 all atoms
have fairly large radial distances.
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Figure 5: The similarity function quantifying whether the structure of a cluster with N atoms
resembles a piece of the fcc crystal. The different curves correspond to different cut-outs of the
crystal.

Finally, we shall discuss the similarity of the clusters with different other objects. We consider
first two clusters, Auy and Auy_;. For the former we consider each of the N structures that
can be obtained by removing one atom. Subsequently, we compare the radial distances or the

1/2

interatomic distances for the two structures, ¢ = [% Zle(x;. — x?)z] / with P being N — 1 or
(N — 1)(N — 2)/2 and with z! and z{ being the quantities for the (N — 1)-atomic fragment of
the Auy cluster and for the Auy_1 cluster, respectively. A similarity function is then defined as
S = m, with gmin being the smallest value of ¢ and ag = 1 a.u. Other similarity functions are
constructed by considering the radial distances of an unrelaxed spherical cut-out of the crystalline
material (with different values depending on where the center of the cut-out is placed). S — 1
(S — 0) if the two structures that are being compared are very similar (very different).

Some examples of such an analysis are shown in Figs. 4 and 5. The fairly small values of S
in both figures show that in the size range considered here, the structures do indeed not resemble

each other, neither are they close to small fragments of the infinite crystal.

4 Conclusion

We have presented results of our theoretical study on the electronic and structural properties
of Auy clusters. We have used an unbiased approach in optimizing the structure together with
a parameterized density-functional method for calculating the total energy and the electronic
properties of a given structure.

We found that for clusters with up to 6 atoms, the structure of the lowest total energy was
planar. For larger clusters, truly three-dimensional objects are found but for clusters with up to
15 atoms, planar structures were found to lie very close in energy to those found in the unbiased
search. We can not exclude that removing inaccuracies in our approach would change the relative
ordering of those. Another interesting finding is that the high-symmetry structures for N = 13
and N = 20 (i.e., an icosahedron and a tetrahedron, respectively) are also comparable in energy
with those we optimized (in particularly for N = 20 this is the case), but that for N = 13, the
icosahedron lowers its symmetry through local relaxation. Moreover, in many cases our structures
possess a cage-like structure.

The fact that the structures possess a low symmetry was clearly observable in the distribution
of the radial distances of the atoms and in the eigenvalues of the matrix with the moments of
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inertia. Finally, our similarity functions indicate that the structures of the individual clusters
neither resemble each other, not resemble pieces of the infinite fcc crystal.
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Abstract. The geometries and electronic properties of the most stable small Au,, clusters with n =2 to
20 are presented. An intensive search for low-energy minima of Au, clusters was carried through using a
density-functional tight-binding method combined with genetic algorithms for an unbiased global structure
optimization. The structural and energetic properties of the small gold clusters are compared with those
of planar Au, clusters with n =5 to 15. Also a comparison with results from the spherical jellium model

is presented.

PACS. 36.40.-c Atomic and molecular clusters — 61.46.Bc Clusters

1 Introduction

Clusters formed by gold atoms are among the most inten-
sively studied clusters, partly because they can be used
in electronic devices [1], as nanomaterials [2], and as cata-
lysts [3-6]. As a consequence, there exist many theoretical
studies on the electronic and structural properties is Au,,
clusters.

For instance, Hakkinen and Landman investigated neu-
tral and anionic gold clusters Aus_19 using the density-
functional theory with scalar-relativistic ab initio pseu-
dopotentials and a generalized gradient approximation [7].
Wang et al. studied lowest-energy gold clusters with size
from 2 to 20 [8], whereas Walker [9] performed density
functional theory calculations on neutral and cationic gold
clusters with up to nine atoms. Small gold clusters show
catalytic activity, like Aug supported on MgO that can
catalyze the oxidation reaction of CO to CO2, and Aujg
is used to catalyze CO oxidation on a TiO; support. It
has also been suggested that the surface roughening plays
an important role in the catalytic activity, since nonpla-
narity of gold clusters localizes the electron density and
thus promote reactivity.

For an understanding of all the properties of small gold
clusters it is mandatory to have a detailed information on
the structural and electronic properties of these systems.
Although much effort has been invested in this endeavour,
there are still many open questions, of which one interest-
ing one is at what size the gold cluster changes from 2D
to 3D geometry [10].

Since the number of structural degrees of freedom of
an Au, cluster equals 3n — 6, since the number of inequiv-
alent (meta-)stable structures grows essentially exponen-
tially with n, and since the computational demands for a

& Corresponding author; e-mail: y.dong@mx.uni-saarland.de
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single structure scales as n* with k > 3, theoretical studies
on Au, clusters are in one or another way biased. Either
many structures are studied with less accurate methods,
or few, selected, structures are studied with more accurate
methods.

As a typical example we mention the studies of Garzén
et al. [11] and of Michaelian et al. [12] who used global
optimization methods (based on genetic algorithms) com-
bined with the simple Gupta potential for the description
of interatomic interactions. The optimized structures were
subsequently studied further using density functional cal-
culations.

In the present work, we apply a parameterized density-
functional tight-binding method combined with an unbi-
ased global minimum search to determine the lowest en-
ergy structures of gold clusters with from 2 to 20 atoms. In
contrast to previous unbiased structure optimizations, our
total-energy method includes electronic degrees of free-
dom, making it, we believe, more accurate. Because of
the recent interest in planar gold clusters [13-15], we also
included such ones in our study, together with the icosa-
hedral Au;3 and tetragonal Auyg clusters.

2 Computational Method

By using a parameterized tight-binding density-functional
method combined with genetic algorithms we have de-
termined the global total-energy-minimum structures for
gold clusters containing up to 20 atoms. The planar gold
clusters with 5-15 and the icosahedral Au;s and tetrago-
nal Auyg clusters were relaxed locally.

The density-functional tight-binding method [16-18] is
based on the density functional theory of Hohenberg and
Kohn in the formulation of Kohn and Sham. Moreover,
the Kohn-Sham orbitals v; of the system of interest are
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expanded in terms of atom-centered basis functions {¢;},
pi(r) =) cijgy(x). (1)
J
This gives the secular equations

Z Cim (hmn - 6z'Smn) =0, (2)

where the matrix elements of Hamiltonian h,,, and the
overlap matrix elements S,,, are defined as

hmn = <¢m|il|¢n)

Smn = <¢m|¢n> (3)
and the Hamiltonian is defined as
h =%+ Veg(r) (4)

with # being the kinetic-energy operator and Veg(r) being
the effective Kohn-Sham potential which is approximated
as a simple superposition of the potentials of the neutral

atoms
Verr(r) = >_ V7' (Ir = Ry). (5)

In the present method, all three-center terms are ig-
nored, but all two-center terms are calculated exactly.

From the Kohn-Sham eigenvalues {¢;} of the system
of interest and those of the isolated atoms, {€;m} (with m
being an atom index and j an orbital index), we can arrive
at an approximate total energy of the system of interest
relative to that of the non-interacting atoms,

B, ~ Zei =YD em+ % > Uiy (IR; =Ry)). (6)

J i#i’

The last term is a set of short-ranged, repulsive pair po-
tentials. These are obtained by requiring that the total
energy of two-atomic systems (in our case, on Aus) as a
function of interatomic distance is accurately reproduced.

Finally, in the present study only the 5d and 6s elec-
trons of the Au atom are explicitly included in the calcu-
lations, whereas the rest are treated within a frozen-core
approximation.

Ultimately, we checked the accuracy of our approach
by calculating the lattice constant of crystalline Au. The
result is within 0.3% of the experimental value.

In optimizing the structures of gold clusters, we have
used genetic algorithms. As we have shown in our studies
on (HAIO),, clusters [19,20], this approach gives accurate
results.

The genetic algorithms are based on the principles of
natural evolution and are, therefore, also called evolution-
ary algorithms [21,22]. They provide an efficient tool for
global geometry optimizations. Qur version of the genetic
algorithms is as follows. Suppose that we have optimized
the structure of the cluster with n — 1 atoms. From this
structure we construct a first generation consisting of M
independent clusters for the n-atom system by randomly

adding one Au atom and letting each of these structures
relax to its nearest total-energy minimum. Subsequently,
a new set of clusters is constructed by cutting each of
the original ones randomly into two parts that are inter-
changed (under the constraints that any atom should not
be too close to any other atom or too far from all the other
ones) and, afterwards, let relax. Out of the total set of 2M
structures, the M ones of the lowest total energy are kept
for the next generation. This procedure is repeated until
the lowest total energy is unchanged for a large number

of generations.
A B M
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Fig. 1. The structures of the Au, clusters from the global
structure optimization. n goes from 3 in the upper left corner
to 20 in the lower right corner.

3 Results and Discussion

In Fig. 1 we show the structures that our global structure
optimization has produced for Au, with 3 < n < 20.
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Fig. 2. The variation in the total energy per atom (relative to
that of the isolated atom) for the optimized Au, clusters (solid
curve) together with those of planar structures (dark circles)
and those of icosahedral Aujs and tetragonal Aus clusters
(dark triangles).
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Fig. 3. The orbital energies for Au, clusters as a function of
n. Each line for a given n marks at least one orbital with that
energy, and the thicker curve shows the Fermi energy.

It is seen that up to n = 6 the clusters are planar, but
above that the structures are truly three-dimensional ones.
Nevertheless, as Fig. 2 shows, the total energy per atom for
the planar structures with up to 15 atoms is only slightly
higher than that of the structures of Fig. 1. It is therefore
possible that a more accurate method would predict that
the planar ones have a lower total energy.

For most planar clusters we considered more different
structures, resulting in more different total energies, as
seen in the figure. In one single case (n = 10) the planar
geometry even resulted in a total energy that was lower
than that of the global optimization, indicating that de-
spite the high reliability of the genetic algorithms, also
they may at cases fail. For the icosahedral Auys cluster,
the total energy could be lowered upon a local symmetry-
lowering relaxation, which is seen as the two triangles in
Fig. 2 (with the lower one corresponding to the lower-
symmetry structure), whereas for the tetragonal Ausg clus-
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Fig. 4. Results from calculations using the spherical jellium
model and assuming that each atom contributes with 11 elec-
trons. The upper panel shows the variation in the total en-
ergy per atom, and the lower one the orbital energies with the
thicker curve marking the Fermi energy.

ter the total energy was only marginally higher than that
of the globally optimized structure.

It is interesting to compare the results of Fig. 2 with
those of Fig. 3. In the latter figure we show the orbital
energies for the different Au, clusters. Here, the Fermi
energy possesses a locally maximum for n = 3, 9, and 20,
which, with n = 20 partly being an exception, also are
systems of low stability. Moreover, for the two former, the
removal of a single electron would move the Fermi energy
into a large energy gap, suggesting that Aud and Augd are
particularly stable. Finally, Fig. 3 shows how a deep-lying
broad band of orbitals from the 5d functions is formed for
the larger systems.

Often the spherical jellium model is used in obtaining
a simple description of the stability and the orbitals of
metal clusters. Assuming that one atom contributes with
only one electron, one would obtain particularly stable
clusters for those with 2, 8, 18, and 20 atoms. However,
when assuming that each atom contributes with 11 elec-
trons, the situation will change. This is shown in Fig. 4
where results from a spherical-jellium study are shown.
The variation in the total energy is clearly much stronger
than that of Fig. 2. One reason could indeed be that the
5d electrons of Au only partly are so delocalized that they
feel the spatial extensions of the clusters. This is confirmed
by the orbital energies, shown in the lower panel, that do
not at all resemble those of Fig. 3.
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Table 1. Symmetry of gold clusters from 3 to 20 atoms

Size Symmetry Size Symmetry Size Symmetry
3 Dy 9 D3, /Dy 15 C
4 Dy, 10 D, 16 Cs
5 Cay 11 C 17 C
6 D3y 12 (o)} 18 Cs
7 Ds), 13 Cs 19 G
8 Ta 14 Cs 20 G

As may be seen from Fig. 1, the structures we find
in our global optimization are fairly irregular. This can
also be extracted from the results of Table 1 that lists the
symmetry groups of the structures. These are indeed all of
low symmetry. Finally, a recent study of Bulusu et al. [23]
finds that hollow gold cages exist for Au,; withn = 16—18,
both according to experimental and theoretical results. In
Fig. 1 we see that our study finds many Au,, clusters with
n =7 — 20 to have cage-like structures.

4 Conclusion

In this work we have presented results of our theoretical
study on the electronic and structural properties of Au,
clusters. We have used an unbiased approach in optimiz-
ing the structure together with a parameterized density-
functional method for calculating the total energy and the
electronic properties of a given structure.

We found that for clusters with up to 6 atoms, the
structure of the lowest total energy was planar. For larger
clusters, truly three-dimensional objects are found but for
clusters with up to 15 atoms, planar structures were found
to lie very close in energy to those found in the unbi-
ased search. We can not exclude that removing inaccu-
racies in our approach would change the relative order-
ing of those. Another interesting finding is that the high-
symmetry structures for n = 13 and n = 20 (i.e., an icosa-
hedron and a tetrahedron, respectively) are comparable in
energy with those we optimized (in particularly for n = 20
this is the case), but that for n = 13, the icosahedron low-
ers its symmetry through local relaxation. Moreover, in
many cases our structures possess a cage-like structure.

Indeed, the observation of low-symmetry structures
was a general finding of our calculations. Thus, these clus-
ters are far spherical. Thus, as we also explicitly demon-
strated, the spherical jellium model does not at all pro-
vide an accurate description of the properties of the small
Au,, clusters. Instead, an explicit description of the 5d and
6s orbitals is needed, suggesting also that methods based
on pair potentials but without an explicit description of
the orbital interactions may provide inaccurate results for
those small systems.
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Abstract

Isolated neutral Aupy clusters are studied using a parameterized density-functional tight-binding
method combined with genetic algorithms for N from 2 up to 58. Various descriptors are used in
analysing the results, including stability, shape, and similarity functions, as well as radial distances
of the atoms and the orbital energies, all as functions of N. Also dissociation patterns and the
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to low-symmetry and only partly compact clusters. Also shell-like structures are found.
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I. INTRODUCTION

It is well known that materials properties depend sensitively on their structure and com-
position, and actually most technological products are to a large extent a consequence of
our capability to exploit this fact, although precise prediction of the materials properties for
a given system not yet has become possible. During the last quarter of a century another
approach for controlling and varying materials properties has been intensively studied and
partly also exploited in practical applications. Thus, when the materials dimensions are
reduced to the nm range, their properties change markedly from those of their macroscopic
counterparts.

One class of such systems is provided by clusters that typically contain between some 10s
and some 100 000s of atoms and most often only a few type of atoms (with, however, the
possible exception of surfactants that saturate dangling bonds on the surface of the clusters).
Quantum-size effects combined with the fact that the number of surface atoms relative to
the total number of atoms is far from vanishing may be held responsible for the unique,
size-dependent properties of those materials and they have, accordingly, been the subject of
many experimental and theoretical studies (see, e.g., [1]). The precise determination of the
relation between size and property is, however, not easy for clusters. In experimental studies
the clusters are rarely isolated, but instead they often interact with some other medium like a
solvent or a supporting surface, possess surfactants, or their precise size is only approximately
known. On the other hand, theoretical studies most often deal with isolated clusters of a
well-defined size and often without ligands for which it is overwhelmingly complicated to
determine the structure. Without any further information the identification of the structure
of the lowest total energy for a cluster of NV atoms requires searching in a geometry space
of 3N — 6 dimensions, which for any but the smallest values of N hardly is possible.

A special case is that of gold clusters. They have attracted much attention over the last 20
years, partly due to applications in, for example, catalysis, biology, and nanotechnology,?™
and partly because gold clusters can be a useful model system for theoretical studies. On

the other hand, it has turned out to be particularly difficult to determine the structures of



these clusters. When attempting to perform an unbiased structure optimization of a larger
range of cluster sizes, parameter-free electronic-structure methods cannot be applied due
to the large computational needs and, instead, more or less accurate approximate methods
have to be applied. And then it has turned out that in particularly for gold clusters, the
resulting structures depend very sensitively on the applied method (see, e.g., [1]), which is
to a much lesser extent the case for clusters of most other elements.

Various electronic-structure methods have been applied for gold clusters with up to
around 20 atoms with the special emphasis on identifying the size at which the clusters
change from two- to three-dimensional.>'® Slightly larger Auy clusters (with N up to 26)
were studied by Fa et al.'¢ using parameter-free density-functional calculations, but for even
larger clusters there exists only few electronic-structure studies for selected sizes and/or
structures (see, e.g., [17,18]). Instead, unbiased studies of the structures of gold clusters for
larger N are all based on more or less empirical interaction potentials, like the embedded-
atom, the Sutton-Chen, the Murrell-Mottram, and the Gupta potential (see, e.g., [1,19,20]),
which, however, turn out to lead to markedly different results depending on the potential.

As a step towards a more accurate, but unbiased, study of the properties of gold clusters
for also larger values of N we shall here report results of a study that explicitly includes a
description of the electronic degrees of freedom. Using a parameterized density-functional
method in combination with genetic algorithms for the structure determination we have
optimized the structures for Auy clusters with N up to 58. The computational approach
shall be described in Sec. II and the results in Sec. ITI. We shall put special emphasis on
analysing our findings through some few key descriptors and also compare them with those
of two extreme situations: the results of the above-mentioned empirical calculations that
do not include electronic degrees of freedom, and those of jellium calculations that exclude

structural degrees of freedom. Finally, Sec. IV summarizes our findings.



II. THE COMPUTATIONAL METHOD

In order to calculate the electronic properties and total energy of a given structure we
have used the parameterized density-functional tight-binding (DFTB) method of Seifert et
al.21723 For the determination of the structure of the lowest total energy we have combined
this method with genetic algorithms.

The density-functional tight-binding method is based on the density functional theory of
Hohenberg and Kohn in the formulation of Kohn and Sham. Then, the Kohn-Sham orbitals

P, of the system of interest are expanded in terms of atom-centered localized basis functions
Xm»
Wi(r) = ) cimXm(r — Ry). (1)
m

The Kohn-Sham single-particle operator is approximated as

h=1+Vea(r) =1+ 3 V7(Ir - Ry)), (2)
j

with ¢ being the kinetic-energy operator and V,g(r) being the effective Kohn-Sham potential
which is approximated as a simple superposition of the potentials of the neutral atoms.
Furthermore, we assume that the matrix elements (Xm|V}’|x,) vanish unless at least one of
the two basis functions is centered at atom j. Finally, all remaining matrix elements are
calculated accurately.

From the Kohn-Sham eigenvalues of the isolated atoms and of the system of interest we
calculate the total energy (relative to that of the isolated atoms) according to

occ

1
Egm) & =2 0 ¢m+5 2 Upp(R; —Ry) (3)

J J#y
(with m being an atom index and j an orbital index). Here, Ujy, is a short-range pair potential
between atoms j and k that is so adjusted that results from parameter-free density-functional
calculations on two-atomic systems as a function of the interatomic distance are accurately
reproduced.

Finally in this study only the 5d and 6s electrons were explicitly included in the calcula-

tions, whereas the others were treated within a frozen-core approximation.



Since the approach is based on extrapolating results from the two-atomic systems to larger
systems, we tested it by calculating the lattice constant of crystalline Au. We found 7.73 a.u.,
which is in excellent agreement with the experimental value of 7.71 a.u.?* Subsequently, we
assume that the properties of the finite Auy clusters are accurately described, too, although
this is an approximation.

In optimizing the structures of gold clusters, we have used a method based on genetic
algorithms that we earlier have used in optimizing the structures of (HAIO)y clusters.?*26
The genetic algorithms are based on the principles of natural evolution and are, therefore,

2728 and have been found to provide an efficient tool for

also called evolutionary algorithms
global geometry optimizations. Our version of the genetic algorithms is as follows. Suppose
that we have optimized the structure of the cluster with N — 1 atoms. From this structure
we construct a so-called generation consisting of M independent clusters for the N-atom
system by randomly adding one Au atom and letting each of these M structures relax to its
nearest total-energy minima. Subsequently, a new set of clusters is constructed by cutting
each of the original ones randomly into two parts that are interchanged (under the constraint
that no atom should become too close to any other atom or too far from all the other ones)
and, afterwards, allowed to relax. Out of the total set of 2M structures, the M ones of the
lowest total energy are kept as the next generation. This procedure is repeated until the
lowest total energy is unchanged for a large number of generations.

In addition to these calculations we also considered the spherical jellium model. Here,
it was assumed that all but the 11 5d and 6s valence electrons per gold atom as well as
the nuclei were smeared out to a spherical medium (jellium) with a constant density inside
which the valence electrons were moving. The density of the jellium was taken to be the
same as in crystalline Au, and a local-density approximation within density-functional theory
was assumed valid for the valence electrons. The resulting one-dimensional, single-particle
equations were solved numerically and self-consistently.

Finally, throughout the paper we shall use a.u. as length unit and eV as energy unit. More-

over, brief accounts of our results for clusters with N < 20 have been presented elsewhere.?%:3



III. RESULTS AND DISCUSSION

From the DFTB calculations we extract the total energy as a function of size of the cluster,
Eg(N). In Fig. 1 we show E(N)/N as a function of N for the globally optimized structures
together with the value of the icosahedral Au;z cluster (for which the total energy could be
lowered upon a local symmetry-breaking relaxation, which is seen as the two triangles in
Fig. 1, with the lower one corresponding to the lower-symmetry structure), and that of the
tetragonal Augg cluster for which the total energy was only marginally higher than that of
the globally optimized structure. In the figure we also show results for planar clusters with
N < 15. The figure shows that for clusters with up to 6 atoms, the structure of the lowest
total energy is planar. For larger clusters, truly three-dimensional objects are found but for
clusters with up to 15 atoms, planar structures lie very close in energy to those found in
the unbiased search. We can not exclude that removing inaccuracies in our approach would
change the relative ordering of those. On the other hand, Koskinen et al.?! found also that
the DF'TB method predicts a transition from 2- to 3-dimensional structures for a relatively
low value of N. Finally, the experimentally observed tetragonal Auy, cluster®? is indeed a
structure of a very low total energy.

In Fig. 1 we see that the total energy per atom is an overall decreasing function of N
until N ~ 20 after which value the function instead oscillates around values within roughly
10% of that of the infinite crystal. When approximating the interatomic interactions so that
the electronic degrees of freedom are not directly included, structure optimizations often
tend to produce structures that are characterized by closed packing whereby as many atoms
as possible obtain a high coordination. In that case, the total energy per atom is overall
decaying as function of cluster size (see, e.g., [20]). However, already the existence of planar
gold clusters suggests that such a description is inaccurate for gold. Therefore, the structure
of gold clusters is not only determined by a condition of minimizing the surface area, but
also electronic interactions between nearest neighbors are important, meaning ultimately
that the total energy per atom not will be a simple, and slowly, decaying function of N but

will possess a rather different functional behavior, as seen in the figure. As we shall see



below, these properties of gold clusters manifest themselves at many different places.

In order to identify particularly stable clusters we consider the stability function,
AyEp(N) = Ep(N +1) + Eg(N — 1) — 2E5(N), (4)

that has maxima (minima) for particularly (un)stable structures. This function is shown in
Fig. 2. Due to the above-mentioned change in Eg(N) for N ~ 20 the stability function is
much more smooth for N < 20 than for N > 20. For N < 20 our results confirm those of
Wang et al.'' who predicted a clear even-odd oscillatory pattern, i.e., clusters with even N
were stabler than those with odd N. On the other hand, the most pronounced maxima, at
N =24, 33, 40, 42, 51, and 54 do not follow this even-odd pattern, and are only marginally
in agreement with the results of the embedded-atom calculations,?® that do not explicitly
include electronic degrees of freedom.

In order to analyse the origin of the particularly stable clusters (i.e., magic numbers), we
first consider the effects of electronic degrees of freedom. In Fig. 3 we show the stability
function as obtained from the jellium calculations. It is clear that this stability function takes
somewhat larger, positive or negative values than that of the DF'TB calculations, suggesting
that the fact that the DF'TB calculations also allow for structural relaxations leads to an
overall damping of the stability of the clusters as a function of their size. Moreover, the
two curves show only a marginal agreement. In fact, embedded-atom calculations® lead
to even smaller absolute values of the stability, suggesting that ‘stability’ is dictated by a
complicated interplay between structural and electronic degrees of freedom.

Whether the jellium model is adequate can, e.g., be studied by looking at the orbital
energies. In Fig. 4 we show the orbital energies for the jellium model as a function of cluster
size. Since the spherical symmetry is assumed for all clusters, it is trivial to separate the
orbitals according to their symmetry properties and, subsequently, to plot their energies as
continuous curves. In contrast, Fig. 5 shows the results from the DFTB calculations. A
comparison shows first of all that in the DFTB calculations a narrower, deep-lying band
(below —10 eV) exists that is formed by the 5d functions. Thus, around the Fermi level,

orbitals formed mainly by the 6s functions are found. This could suggest that in the jellium



calculations one should treat not 11 but only 1 valence electron per atom. This would,
however, lead to magic numbers at 2, 8, 18, 20, 34, and 58, which hardly is in agreement
with the results of the DFTB calculations. A further result of a comparison between Figs.
4 and 5 is that for each value of N the cluster has a lower symmetry in the DF'TB calcu-
lations than assumed in the jellium calculations. Therefore, the orbitals have much lower
degeneracies in the DF'TB calculations leading to many more, different orbital energies. A
remarkable exception is N = 33 that has only few different orbital energies and, in addition,
is particularly stable (see Fig. 2).

Before leaving the discussion of electronic effects we present one result that indicates
that the electronic degrees of freedom have some impact on the stability of the clusters.
In the DFTB calculations we do not allow for a spin-polarization. Therefore, the gap FE,
between the highest occupied and lowest unoccupied orbital (HOMO and LUMO) vanishes
for odd N. However, for odd N we may consider two other gaps, one between the single-
occupied orbital and the lowest completely empty orbital, E, ;, and one between the highest
completely filled orbital and the single-occupied one, E 5. In Fig. 6 we show E, for even N
and E,; and E,, for odd N. The maxima for N around 6, 8, 18, and 34 (E,) and 9, 19, 23,
33, and 35 (E,,) correlate fairly well with some of the maxima in Fig. 2. These results are
only marginally in agreement with those of Wang et al.'! who, however, found that many
of the clusters in the range 2 < N < 20 were planar, which most likely is the case in that
size range, pointing to some limitations of the present approach.

As indirectly indicated in Fig. 5, the optimized structures of the Aupy clusters possess a
low symmetry. This is further illustrated in Table I, where the point groups of the optimized
structures from the DFTB calculations are listed. It is obvious that most clusters have a
low symmetry. A similar tendency is also found in embedded-atom calculations®® where
electronic degrees of freedom are not included directly, indicating that the occurrence of the
low symmetry is not only an electronic effect like a Jahn-Teller distortion. In their first-
principles, density-functional study on Auy clusters for N up to 20, Wang et al.!* found that
many clusters have a planar structure, which in some sense also is a low-symmetry struc-

ture. Moreover, Hikkinen et al.!” found that for 53 < N < 58, low-symmetry, ‘amorphous’



structures are found, which they ascribed to strong relativistic effects. In our calculations,
relativistic effects are only partly included, but similar results are nevertheless found. Quite
different structures were found by Fa et al.'® whose first-principles, density-functional cal-
culations indicated that for N up to 26, structures with a close resemblance to fragments of
the crystal for some values of N as well as tubelike structures for other N were found. This
is in remarkable contrast to our findings, as we shall discuss further below.

In order to obtain additional information on the structure, we first determine the center
for each cluster,
1 N
=N Z:ZI i (5)

with R; being the position of the ¢th atom, and then the radial distance for each atom

Subsequently, we calculate the 3 x 3 matrix containing Y, s;t; (with s and ¢ being z, v,
and z), and from the eigenvalues I,, of this we analyse the overall shape of the cluster:
three identical eigenvalues suggest a spherical shape, whereas two large and one small value
suggest a lens-like shape, and two small and one large value suggest a cigar-like shape. In
Fig. 7 we show the average eigenvalue (scaled by N 5/3 which is the scaling a spherical jellium
would possess) together with marks indicating the overall shape. Also the largest difference
between the eigenvalues is shown.

We see that except for a single atom, no cluster has an overall spherical shape, in agree-
ment with the results of Table I. However, the largest difference of the eigenvalues takes
particularly low values for N = 8, 9, 18, 25, and 33. Some of these values correspond to
particularly stable clusters, for which the stability accordingly may be related to a roughly
spherical structure, whereas other values occur for clusters with just some few extra atoms
on the surface of a compact core.

This is confirmed by Fig. 8 that shows the radial distances for the different Auy clusters.
For N up to around 10 all atoms have a relatively large, but in many case quite scattered
distance to the center, suggesting structures of very low symmetry. For 8 < N < 24 all radial

distances take quite large values suggesting that the structure of these clusters resembles



a hollow cage, The existence of such structures was actually predicted recently.?® Also the
results of density-functional calculations by Gu et al.* on Auy clusters with 32 < N <
35 point to the existence of cage-like structures, which, however, here only marginally is
supported in this size range.

For several clusters one or more of the largest radial distances are significantly larger than
the radius of the spherical jellium for the same cluster size. The reason is that these clusters
have a particularly low symmetry and are very far from being spherical (this can also be
seen in the lower part of Fig. 7 as clusters with large maximal differences). Such clusters
often possess atoms on the surface that are bonded to only one or two nearest neighbors.
That such structural elements exist have also been seen in the density-functional study of
Remacle and Kryachko on smaller clusters.'® Fig. 8 confirms that the cluster for N = 33 is
particularly symmetric.

As mentioned above, Fa et al.!® suggested the occurrence of structures related to either
fragments of the crystal or to tube-like structures. Our results of Figs. 7 and 8 do not support
the latter suggestion. In order to address the first suggestion in more details we use two
different approaches. In the first we use so-called similarity functions defined as follows. For
a given N we sort all the radial distances. Simultaneously, we construct a spherical fragment

of the crystal (with a fixed choice of the center) and sort its radial distances, {r’}. From

1 al fcey2 1/2 7
0= [y 2] U
the similarity function is defined as
1
- - 8
1+ q/u (®)

(u; = 1 a.u.), which approaches 1 (0) if the two structures are very similar (different). This
function is shown in Fig. 9, where we also compare with the structure of an icosahedron.
Here, we have compared the radial distances of the Auy cluster with those of an icosahedral

35,36 suggests that

Auyyy cluster in the same way as above. Our experience for other systems
only when the similarity function is well above 0.8 the two structures that are compared
are structurally related to each other. Thus, the results of the present study do not at all

confirm the suggestions of Fa et al.'6
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Alternatively, we may use the common-neighbor analysis.>” A cut-off distance is defined
(we use the average of the nearest- and next-nearest-neighbor distances in the fcc crystal)
and to each pair of two atoms, three indices, (4, j, k), are defined. i is the number of common
neighbors, 7 is the number of bonds between those, and £ is the number of bonds in the
longest unbroken sequence of bonds among those. For an infinite fcc crystal, the three sets
(2,1,1), (4,2,1), and (4,4, 4) occur with a relative occurrence of 4 : 2 : 1. In Fig. 10 we
show the results of this analysis. We recognize very many other sets of indices than those of
the fcc crystal and with relative occurrence comparable with the ones of the indices of the
fce crystal. Thus, also this analysis does not at all suggest that fragments of the crystal are
found.

An interesting cluster is the Auss cluster which has been the subject of numerous exper-
imental and theoretical studies (see, e.g., [17]). As seen in Table I, we find that it has a
relatively low symmetry (and not an icosahedral, cuboctahedral, or dodecahedral symme-
try, as often assumed) with one atom at the center of a slightly distorted high-symmetric
structure. Accordingly, this as well as other structures that according to Table I have a low
symmetry, appear as being close to high-symmetric upon visual inspection as shown for the
Auyz, Augg, Auss, and Auss clusters in Fig. 11.

The radial distances of Fig. 8 suggest that certain structural motifs develop as a function
of cluster size, i.e., that the cluster with N atoms is similar to that with N —1 atoms plus an
extra atom. Some deviations may be found for the smallest values of N as well for N = 33.
In order to quantify this suggestion we consider similarity functions that are obtained by
comparing the cluster with N — 1 atoms with each of the N fragments with N — 1 atoms
of the cluster with N atoms. Both for the Auy_; cluster and for each of the fragments
we calculate and sort either the radial distances or the interatomic distances and calculate
subsequently a ¢ value analogous to that above. The smallest value of the N ¢ values is used
in defining the similarity function S. The result is shown in Fig. 12. It is obvious that the
two descriptors give somewhat different results, but also that hardly any of the clusters can
be related to the one of one atom less. Thus, here indeed ‘each atom counts!” In particular,

the figure shows that the Auss cluster is exceptional and different from the other ones.
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Finally, we have seen that the total energy per atom is almost constant for N above around
20. This has as a further consequence that when considering the dissociation processes,
Auy — Auy_g + Aug, and seeking that value of K # 0 that requires the smallest energy,
we find quite scattered values, cf. Fig. 13. Thus, whereas K = 1 or K = 2 for N < 20,
K takes much larger values for larger N, implying that many of the larger clusters may

preferably split into two not too different parts.

IV. CONCLUSIONS

Using an unbiased structure-optimization method (based on genetic algorithms) in com-
bination with a parameterized density-functional method we have studied electronic and
structural properties for the whole series of Auy clusters with N < 58. This study rep-
resents the first such one where also electronic degrees of freedom explicitly are included,
which indeed turns out to be important.

Most other related studies have been carried through using simpler descriptions for the
interatomic interactions without explicitly including electronic-orbital interactions. Since
the latter are those being responsible for directional interactions, it may not surprise that
most, previous studies have found structures characterized by close packing. This includes
the finding of particularly stable, highly symmetric clusters (i.e., magic numbers).

When including orbital interactions, not only packing but also directional interactions
determine the optimal structure and, therefore, in most cases our optimized structures do
not have a very high symmetry, i.e., atoms bonded to just one or two neighbors are often
found. In this respect, gold seems to be special. For other metals, packing effects are often
dominating, whereas for covalently bonded elements, the effects due to directional bonds are
dominating. We suggest that for gold there is a competition between the two leading to the
low-symmetry, although often quite compact structures of the Auy clusters.

Admittedly, by using a parameterized (and not first-principles) method, our results may
be connected with some uncertainty. Thus, the fact that we find the transition from planar

to three-dimensional structures for a much too small N may be explained from this. On the
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other hand, low-symmetry structures have been found in other, more accurate studies on
selected clusters, as discussed above.

The fact that electronic effects are important was indicated by the results of the cal-
culations for the spherical-jellium model. In particular the stability function from these
calculations had a somewhat larger amplitude than was the case for the DFTB results.
Once again, the lowering of the symmetry is one reason for this difference. Furthermore, in
some cases we could correlate the occurrence of particularly stable clusters with large gaps
of the electronic orbitals around the Fermi level.

In agreement with recent results, we found that the most stable structures for 10 < N <
20 correspond to shell-like structures. Moreover, we predict that Auss should be particularly
stable. Surprisingly, for N > 20 the total energy per atom changes only little, which as a
consequence means that the energetically favored dissociation channels for these clusters
often are those where the cluster splits into two larger fragments.

Moreover, the structures showed hardly any resemblance with fragments of either crys-
talline gold or an icosahedron. Nevertheless, the structures did show some regular patterns
like the building up of atomic shells for clusters larger than around 20 atoms.

In total, we hope to have demonstrated that the properties of gold clusters are surprising
and that they can only be understood in details if incorporating explicitly electronic effects.
Whether also an accurate description of relativistic effects is necessary, we will leave as an

open question.
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TABLE I: Point groups (PG) of the optimized Auy clusters from the DFTB calculations as

function of .

N|PG|N|PG|N|PG|N|PG|N|PG|N |PG|N|PG|N |PG

Coy |10| Cuq (17| Cy |24| C4 |31] C 38| C 45| C 52| Cy
Doy |11] Co, |18| Cs, |25 C1 32| C |39| C1 46| C |53 Cy
Cs 12| C5, (19| D5, (26| C |33 D2 |40| Cy |47| C1 [54| Cy
13|Dop, |20|Cy, (27| Cy |34| Cy (41| C |48 C 55| Cy
D5y (14| Co 21| C) |28| C 35| C |42| C (49| C |56] Cy
Dyq (15| D9g|22] C1 29| C4 (36| C1 |43 Cy |50| Cy |57 Cy

Ne) oo -~ (=] ot = w
S
IS

Cay |16| Do (23| Cy |30 C |37| C |44| C 51| C 58| Cy

16



Energy (eV/atom)

O 40 ©°

0

10 20 3

O

N

FIG. 1: The variation in the total energy per atom (relative to that of the isolated atom)
for the optimized Auy clusters (solid curve) together with those of planar structures (dark

circles) and those of icosahedral Au;; and tetragonal Auy clusters (dark triangles).
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FIG. 2: The stability function which has local maxima (minima) for particularly (un)stable

structures.
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FIG. 3: As Fig. 2, but for the jellium model.
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FIG. 4: The orbital energies as a function of cluster size from the jellium calculations. The

thicker curve shows the energy of the highest occupied orbital.
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FIG. 5: As Fig. 4 but from the DFTB calculations.

21



Energy (eV)
2 3 4 5

1

0

FIG. 6: The three energy gaps, E, (solid curve) for even N as well as E,; (dashed curve)
and E,, (dash-dotted curve) for odd N, as a function of N.
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FIG. 7: Properties related to the eigenvalues I,, of the matrix containing the moments of
inertia. The upper panel shows the average value (scaled by N°/3) together with marks
indicating whether the Auy cluster is overall spherical (dots in the lowest row), overall
cigar-like shape (middle row) or overall lens-like shape (upper row). The lower panel shows

the largest difference in the eigenvalues.
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FIG. 8: The radial distances as a function of cluster size, i.e., each small line represents

(at least) one atom with that radial distance. The curve shows the radius of the spherical

jellium with a density as in the crystal.
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FIG. 9: Each panel shows the similarity function for the Auy clusters when comparing with
(a) an icosahedral cluster, and (b-d) a spherical fragment of the fcc crystal when the center
of the fragment is placed at (b) the position of an atom, (c) the middle of a nearest-neighbor

bond, and (d) the center of the cube, respectively.
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FIG. 10: Results of a common-neighbor analysis. Each curve shows the relative occurrence
of a certain set of indices (i, j, k) (described in the text), when excluding (i, 7, k) = (0,0, 0),
and the two thicker curves show the occurrence for (4,7, k) = (2,1,1). (4,4,k) = (4,1,1) and
(1,7, k) = (4,4,4) are not found in this size range.
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FIG. 11: The optimized structure of Auy clusters with N = 13 (top, left), N = 18 (top,
right), N = 33 (bottom, left), and N = 55 (bottom, right).
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FIG. 12: The similarity function quantifying whether the structure of a cluster with N atoms
resembles that of the cluster with N — 1 atoms plus one atom. In the upper panel the radial
distances, and in the lower panel the interatomic distances have been used in quantifying

the similarity.
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FIG. 13: The value of K # 0 leading to the energetically most favorable dissociation Auy —
AllN_K + AuK.
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