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Chapter 1- Introduction

Epigenetic reprogramming of the genome

A major goal of current research is focused on understanding the mechanisms that

govern nuclear reprogramming, which is defined as the changes in gene expression

patterns that expand the developmental potential of a fully differentiated cell to a

totipotent state. Nuclear de-differentiation through transplantation of the nucleus into an

enucleated oocyte is one experimental approach to reprogram somatic cells. Somatic cell

nuclear transfer (SCNT) is ultimately aimed at generating uncommitted stem and

progenitor cells that may be useful for cell replacement therapies. The success of

reprogramming fully differentiated cells using SCNT has demonstrated that no genetic

information is lost during development, with the exception of antigen receptor genes in

lymphocytes, and that nuclear totipotency is retained for all cell types thus far studied.

The low but reproducible success of SCNT in reprogramming a range of differentiated

cells back to totipotency suggested that epigenetic mechanisms of gene regulation and

differentiation are responsible for keeping cells in their state of differentiation. Epigenetic

refers to mitotically stable modifications of DNA or chromatin that do not alter the

primary nucleotide sequence. Epigenetic reprogramming is intended to reset these

modifications from a fully differentiated to a less differentiated state, ideally to the

totipotent embryonic state that allows differentiation into all lineages.

The goal of the studies described here was to establish a set of methods aimed at

ultimately enhancing the efficiency of epigenetic reprogramming. To this end, three

experimental avenues were accomplished. The initial study developed an approach to

allow conditional regulation of epigenetic modifiers using RNA interference. DNA

methylation is probably the best studied epigenetic modification known to regulate the

expression of key embryonic “pluripotency genes” (Boiani et al., 2002; Bortvin et al.,

2003) such as Oct-4. Consistent with the inverse correlation between DNA methylation

and gene expression, DNA hypomethylation of the genome significantly increases the

reprogramming efficiency after nuclear transfer (Blelloch et al., submitted). However as

discussed below, global hypomethylation also increases the risk of genomic instability

and tumor formation. To avoid adverse effects of DNA hypomethylation, we have



Chapter 1- Introduction Epigenetic Reprogramming

7

developed a Cre-lox based system for conditional gene suppression by RNA interference.

It allows in a simple manner to study the effects of transiently down regulating an

essential gene, such as Dnmt1, in order to increase epigenetic reprogramming. By

subsequently reversing the knockdown and thereby restoring endogenous gene

expression many deleterious effects of longer term suppression can be avoided.

The second application of our conditional gene knockdown approach using RNA

interference was aimed at testing the notion that development of an embryo derived by

SCNT might be restricted by temporarily inactivating a gene essential for development,

yet the same embryo might be fully competent for extracting embryonic stem cell lines

useful for therapeutic purposes. Due to incomplete epigenetic reprogramming many

cloned embryos fail to express (reactivate) one or more of a set of “pluripotency genes”,

with Oct-4 being one of the best studied members of this class (Boiani et al., 2002;

Bortvin et al., 2003). However, many of the abnormalities observed in cloned animals

involve also deregulation of gene expression in the placenta (Humpherys et al., 2002). It

appears that many placenta-specific genes are also not reactivated after nuclear transfer

(Hall et al., 2005). Cdx2 is an essential transcription factor for trophectoderm

differentiation and might be involved in some of the cloning phenotypes. Owing to its

crucial role it was also an ideal candidate to test a concept called altered nuclear transfer

(ANT) that has been proposed as a modification of the current NT technology. We have

demonstrated the feasibility of the ANT technique, which now provides a scientific basis

for the discussion surrounding alternative ways of deriving stem cells. Our findings

confirmed previous results gained through deletion of Cdx2 by gene targeting (Strumpf et

al., 2005). The phenotype of our knockdown was indistinguishable from the published

knockout phenotype. Importantly, the generation of conditional Cdx2 shRNA expressing

ES cells takes only a few weeks compared to at least two months for a knockout of both

alleles by gene targeting (see discussion). Moreover, loss of Cdx2 is early embryonic

lethal (blastocysts fail to implant) and no conditional knockout has been reported to date.

Conditional Cdx2 ES cells will therefore be a useful tool to further investigate the role of

Cdx2 in development.

Finally, another approach in studying epigenetic reprogramming is to determine

the epigenetic differences between different cellular states, and to further elucidate what
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defines the nature of “stemness” within a stem cell. DNA methylation is probably the

best studied epigenetic modification that determines patterns of gene expression within a

cell. In order to better define the epigenome of different cell types, we have developed an

approach for large-scale high resolution DNA methylation analysis. The results presented

in this work provide new tools and insights for the study of epigenetic reprogramming.

Before describing the main findings of each of these three projects, I will review in more

detail the background concepts for the major topics covered by my research.

RNA interference

Overview

In the past decade, small RNAs have emerged as central regulators of gene

expression from worms to humans.

Two studies published in 1993 were the first to show that small non-coding RNAs

were involved in gene regulation (Lee et al., 1993; Wightman et al., 1993). Lee and

colleagues discovered that lin-4, a gene involved in the timing of C. elegans larval

development, did not encode a protein, but rather a 22 nucleotide-long RNA that was

predicted to arise from a longer precursor. This group and Wightman et al. then

discovered that the lin-4 RNA molecule was complimentary to multiple sites in the 3’

UTR of another gene, lin-14. Both groups suggested that the binding of the small lin-4

RNA to the lin-14 UTR might repress the translation of lin-14, which is required for the

transition from cell divisions of the first larval stage to those of the second (reviewed in

(Bartel, 2004)). It took several years before additional small regulatory RNAs were

discovered (Bartel, 2004). Because the first small RNAs to be identified were involved in

timing developmental transitions, they were referred to as small temporal RNAs

(stRNAs). Later cloning efforts revealed that this new class of RNAs was much broader

than originally thought, with many of them expressed in a tissue-specific rather than

timing-dependent manner. As a result, stRNAs were renamed microRNAs (miRNAs)

(Bartel, 2004).

A few years later, studies in C. elegans showed that double-stranded (ds) RNA

was a substantially more potent and long-lasting inhibitor of gene expression than single-

stranded (ss), or antisense, RNA (Fire et al., 1998). Thus, although the endogenous small

RNAs (miRNAs) had already been discovered, their true gene-inhibiting potential was
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not appreciated until the study by Fire and colleagues emerged and, ultimately, paved the

way for the RNA interference (RNAi) revolution (Fire et al., 1998).

RNAi is now appreciated as one of the most powerful ways to silence gene

expression, and this technique has rapidly transformed gene function studies across

phyla. RNAi operates through an evolutionarily conserved pathway that is initiated by

dsRNA (reviewed in (Dykxhoorn et al., 2003; McManus and Sharp, 2002)). In

eukaryotes such as plants and worms, long dsRNA (e.g. 1000 bp) molecules that are

introduced into cells are processed into ~21 nt siRNAs by the dsRNA endoribonuclease

Dicer (Bernstein et al., 2001). These siRNAs can then associate with a complex known as

the RNAi-induced silencing complex (RISC) and direct the destruction of mRNA

complementary to one strand of the siRNA. Recent studies have shown that the choice of

RNA strand that is incorporated into the RISC is non-random and thus has important

consequences for the design of siRNAs (Schwarz et al., 2003). siRNA design will be

discussed in detail below.

Although the Dicer pathway is highly conserved, the introduction of long dsRNA

(>30 bp) into mammalian cells results in the activation of antiviral signaling pathways,

leading to nonspecific inhibition of translation and cytotoxic responses (Stark et al.,

1998). One way to circumvent this problem is through the use of synthetic siRNAs that

transiently down-modulate target genes without triggering cell death (Elbashir et al.,

2001a). The subsequent discovery that plasmid-encoded interfering RNAs could

substitute for synthetic siRNAs permitted the stable silencing of gene expression

(reviewed in (Mittal, 2004)). In these systems, an RNA polymerase III promoter is used

to transcribe a short, inverted stretch of DNA, resulting in the production of a short

hairpin RNA (shRNA) that is then processed by Dicer to generate an siRNA. These

vectors have been widely used to inhibit gene expression in mammalian cell systems.

More recently, several groups have reported the use of similar expression constructs for

the generation of RNAi-expressing transgenic mice (Carmell et al., 2003; Kunath et al.,

2003; Rubinson et al., 2003), which, in some cases, recapitulate the phenotype of mice

genetically deficient for the gene in question (Kunath et al., 2003; Rubinson et al., 2003).

RNAi: siRNAs, shRNAs and miRNAs
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As shown in Figure 1, the different groups of small RNAs enter presumably the

same RNAi pathway. Long dsRNA, shRNAs and miRNA precursor are all  processed by

Dicer into small RNA species. Alternatively, synthetically derived 21-nt long dsRNAs

can feed directly into the endogenous RNAi processing pathway. Long dsRNAs,

although effective in C. elegans, cannot be used in mammalian cells (see above) and will

therefore not be discussed in more detail.

MicroRNAs are endogenous, small non-coding RNAs that are involved in gene

regulation (Bartel, 2004). Most studies suggest that endogenous microRNAs are

transcribed by RNA polymerase II as longer primary nuclear transcripts, and are then

processed into smaller, ~70-nt long pre-miRNAs by the RNAse III endonuclease, Drosha.

These pre-miRNAs are then exported to the cytoplasm. In contrast, shRNAs are typically

transcribed by RNA polymerase III using the U6 or H1 promoter. Functional siRNAs,

shRNAs and miRNAs all share a preference for A/U basepairs at the 5’ terminus of the

antisense (AS) strand of the target gene, indicating a strand bias in stability and also the

existence of a joint, indistinguishable pathway as illustrated in Figure 1.

Figure 1: RNA interference. The RNAse III endonuclease, Dicer, generates small RNAs from
long dsRNA, shRNAs and pre-miRNAs that become incorporated into the RISC. Depending
on the target identity this can lead to translational repression or mRNA degradation.
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In general, it is assumed that miRNAs pair imperfectly to the target sequences and

that they work by repressing rather than degrading the target gene. However, recent work

in C. elegans has demonstrated that this might not be true for all miRNAs (Bagga et al.,

2005). In that study, the authors show that let-7 degrades its target gene lin-41, despite

only partial base-pairing. The targets of the lin-4 miRNA, lin-14 and lin-28, are degraded

in a similar fashion (Bagga et al., 2005). Doench and colleagues have shown that, like

miRNAs, siRNAs can repress the translation of target mRNAs with only partial

complementary binding sites (Doench et al., 2003).

Following cleavage and nucleo-cytoplasmic export, the miRNA pathway appears

to be indistinguishable from the siRNA pathway. Long dsRNAs, plasmid-based shRNAs,

synthetic siRNAs and miRNAs are likely processed through the same endogenous,

evolutionary conserved pathway. Although miRNAs and siRNA are processed similarly

and are composition-wise indistinguishable, their origin and evolution are different

(reviewed in (Bartel, 2004)). Post-transcriptional repression, cleavage or translational

repression of mRNA appears to depend on identity of the target sequence rather than the

origin of the small RNA (miRNA or siRNA). Notably, when a miRNA cleaves its target,

the cleavage occurs at the same position as that cleaved by a siRNA, i.e., between the

nucleotides complementary to residues 10 and 11 of the si/miRNA (Bartel, 2004;

Elbashir et al., 2001b).

In addition to regulating gene expression at the posttranscriptional level, small

RNAs can also suppress gene expression at the genomic level. RNA-directed DNA

methylation is well established in plants (Matzke and Birchler, 2005), and has recently

been shown to occur in human cells as well (Kawasaki and Taira, 2004). However, the

latter report still awaits confirmation in independent studies.

The human genome is estimated to harbor approximately 200-255 miRNA genes.

C. elegans and Drosophila have approximately 103-120 and 96-124 miRNA genes,

respectively (Bartel, 2004). Most of the miRNAs that have been cloned are conserved in

closely related species, such as mouse and human. Even more striking, more than a third

of C. elegans miRNAs have a homolog in humans (Bartel, 2004). Recently identified

miRNAs include those that are involved in cell proliferation, cell death, fat metabolism

(flies), neuronal patterning (nematodes), differentiation of hematopoietic cells (mice), and
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control of leaf and flower development (plants) (reviewed in (Bartel, 2004)). More than

200 microRNAs have been described in humans, although the function of a majority of

them is unknown. The 5’ region of microRNAs -- in particular the seven nucleotides at

position 2-8 -- are essential for siRNA/miRNA function. These “core elements” or “seed”

sequences determine the specificity of the siRNA/microRNA. Not surprisingly, these

sequences are highly conserved and have thus been used to predict target mRNAs using

comparative genetics and computational analysis (Lewis et al., 2003).

Two recent reports implicated miRNAs in tumorigenesis. The first found that a

frequent chromosomal amplification (13q31-q32) contains a miRNA cluster that might be

involved in the underlying malignancy (Ota et al., 2004). He et al. over expressed this

miRNA cluster (miR17-92) in a mouse B-cell lymphoma model and showed that it

accelerated tumor development when combined with c-myc, suggesting that miRNAs can

act as oncogenes (He et al., 2005).

Design of siRNAs and shRNAs

When long dsRNA is used for RNAi, target selection is not required, as an array

of siRNAs is produced from the longer dsRNA. One or more of these siRNAs will have

the right sequence and effectively knock down the mRNA of interest. However, in

mammalian cells, with the exception of early embryos, dsRNA cannot be used,

necessitating the design of a single synthetic siRNA or shRNA that can efficiently

suppress the target mRNA.

Elbashir et al. were the first to demonstrate that synthetic 21-nt duplex RNAs can

specifically silence target mRNAs without triggering an interferon response in

mammalian cells (Elbashir et al., 2001a). When siRNAs were generated from long

dsRNAs by Dicer, a large number of distinct 21-nt long RNAs are produced. Although

this approach is effective for gene silencing, it is impossible to determine which of the

21mers is producing the knockdown. The first insights regarding the mechanism of

RNAi-mediated cleavage were provided by the same group (Elbashir et al., 2001b). By

cloning the Dicer cleavage products of long dsRNAs, they found that nearly half were

21-nt and about a third 22-nt in length (Elbashir et al., 2001b). Based on this initial

finding, a number of general design rules have been suggested (Elbashir et al., 2002). The

principle design consisted of a 19-nt core sequence with a GC content of 30-70% --
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which appeared to lend internal stability -- with 2-nt overhangs on either end: AA at the

5’ and TT at the 3’ terminus. Even with these rules, the design of siRNAs was still

largely based on trial and error. This changed when Schwarz et al. showed that the

absolute and relative stability at the 5’ ends of the siRNA duplex determined which

strand would be incorporated into the RISC complex. (Schwarz et al., 2003). This

asymmetric incorporation into RISC has important consequences for the design, as the

antisense strand of the siRNA can direct cleavage of only the sense strand mRNA target.

The next step towards improving the rational design of siRNAs came from a

systematic analysis of the efficiency of 180 siRNAs that targeted two genes at every other

base (Reynolds et al., 2004). An analysis of the functional and non-functional siRNAs

suggested a new set of design rules, which included low G/C content, a bias towards low

internal stability at the sense strand 3’-terminus, a lack of inverted repeats, and sense

strand base preferences at certain positions. Each parameter was assigned a numeric score

(-1, 0, or +1) with a maximum total score of 10. A score of 6 or higher translated to a

five-fold higher probability of achieving 80% inhibition when compared to a random

sequence (Boese et al., 2005; Reynolds et al., 2004). In general, applying these rules has

significantly improved the average efficiency of target degradation. It should be noted

that several of the shRNAs used in this work, such as Cdx2, have been designed

according to these rules (see Methods and Materials). Notably, most effective shRNAs

that were selected by trial and error followed these rules and had scores of 6 or higher

based on the criteria listed. Importantly, although these rules were established using

siRNAs, they appear to work equally well for the design of shRNAs.

In our hands, the rate of generating potent knockdowns using these rules ranges

from 25-50% of the shRNAs designed. Despite this relatively high success rate, it is

advisable to test the knockdown efficiency of shRNAs in reporter assays before

proceeding to the actual experiment. There are many different ways to test for functional

knockdown (reviewed in (Sandy et al., 2005)); one simple assay used for the selection of

Cdx2 shRNAs is described in Figure 12 (Chapter 3).

Finally, it is worth mentioning that the secondary structure of the target mRNA

does not appear to play a significant role in determining the efficiency. This conclusion

was based on the sorting of siRNA functionality classes to a predicted mRNA target site
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accessibility value (Boese et al., 2005). This was further supported by the observation

that shifting a siRNA by only two base pairs along the mRNA can dramatically alter the

silencing efficiency (Reynolds et al., 2004).

RNAi and its applications

Owing to the ease of synthesizing siRNAs and creating shRNA vectors, RNAi is

an attractive tool for large-scale library screens that ultimately allows one to target every

gene in the organism of interest (Hannon and Rossi, 2004). Particularly exciting are

recent array-formatted, retrovirus-based, barcoded shRNA expression libraries that target

human and murine genes (Berns et al., 2004; Paddison et al., 2004). To further enhance

the potency of the knockdowns, the next generation of shRNA libraries has applied

improved shRNA design and then embedded the shRNA sequence in microRNA

sequences to mimic endogenous small RNAs (Silva et al., 2005).

The potency and specificity of RNAi also make this technique attractive for

therapeutic purposes. Potential applications include the down-regulation of oncogenes or

growth factors for the treatment of cancer (Hannon and Rossi, 2004). Due to the

importance of particular base-pairings for effective interference, one could envision

designing shRNAs that specifically target a mutant, disease-causing allele. The use of

single nucleotide polymorphisms (SNPs) to achieve such specificity has been

demonstrated in preliminary studies (Miller et al., 2003). ShRNAs have also been tested

for the treatment of viral infections, in particular HIV. The main problem with this

strategy is that the high mutation rate of HIV makes it difficult to target the viral RNA.

However, targeting cellular HIV co-receptors, such as the CCR5 receptor, have shown

promising results in human lymphocytes (reviewed in (Hannon and Rossi, 2004)).

Another attractive target for RNAi treatment is viral hepatitis, as there is no vaccine or

treatment for hepatitis C virus (HCV), and hepatitis B virus (HBV) can be prevented only

by vaccination . McCaffrey and colleagues demonstrated that they could achieve a

significant (99%) knockdown of the HBV core-antigen in liver hepatocytes by shRNA

(McCaffrey et al., 2003). In a different study Song et al. used hydrodynamic injection of

siRNAs into mice to silence the Fas-receptor. This led to inhibition of Fas-mediated

apoptosis in the liver and the prevention of fulminant hepatitis, which would result in the

mouse’s death (Song et al., 2003).
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These reports, among many others, highlight the potential for the use of RNAi in

disease therapy. However, many issues still need to be resolved, including the delivery

and specificity of siRNAs. In particular, the potential for off-target effects requires

further investigation (Jackson et al., 2003). In general, to reduce the chance of off-target

effects BLASTn searches should be performed for all si/shRNAs. When performing these

searches, the word size, which determines the search window for identity, should be set

to the lowest possible value (7 for BLASTn) and the significance value (expect value; E

value) should be set relatively high (e.g.,>1000) to better suit short sequences.

Nuclear transfer

The early days of nuclear transplantation

It is fascinating to consider that a single cell, the zygote, gives rise to an organism

with hundreds of different cell types represented by trillions of individual cells. It is even

more striking that, with few exceptions, the genetic content of each differentiated cell

remains identical to that of the original zygote. These cells therefore retain all the genetic

information necessary to generate an entire organism. While this idea of “nuclear

totipotency” or “nuclear equivalence” is now well established, it was not clear a few

decades ago whether or not cells lose genetic information during the process of

differentiation (reviewed in (Hochedlinger and Jaenisch, 2002b)).

In 1952, Briggs and King attempted to address this question by pioneering a novel

technique termed nuclear transplantation (Briggs and King, 1952) (Fig. 2). Their

approach was to transplant the nucleus of a differentiated cell into an enucleated oocyte

as a means of assessing the nuclear potency of the differentiated cell. Using nuclei from

frog blastomeres, Briggs and King demonstrated that the nuclei could be reprogrammed

to a zygotic state and could generate early cleavage embryos when transplanted into

enucleated oocytes (Briggs and King, 1952). Later they used frog cells from several

stages of embryonic development as donors to determine whether differentiated cells

retain the same developmental potential as the zygote (Briggs and King, 1957).

Interestingly, they observed a gradual decline in cloning efficiency with increased donor

cell differentiation. In later studies, analysis of cell morphology and marker gene

expression were used to more accurately define the origin and differentiation state of the
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Figure 2: Murine nuclear transfer by microinjection. a) Schematic drawing of the NT
procedure. The inner cell mass (ICM) will give rise to embryonic stem cells, when
explanting the blastocyst onto irradiated feeder cells. Alternatively, when transferred to
a synchronized pseudopregnant female, the blastocyst can generate a mouse. The outer
cells of the blastocyst, the trophectoderm, will give rise to the extraembryonic tissues
(placenta) and the ICM cells will generate the embryo. b-k) The same steps as in a)
shown by light microscopy.
(ICM: inner cell mass; TE: trophectoderm)

TE
ICM
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donor cell -- a critical issue in resolving the question of nuclear potency (Hochedlinger

and Jaenisch, 2002b). Although Gurdon succeeded in generating adult frogs from

embryonic cells in 1962, adult donor cells have not produced any live frog clones,

suggesting that adult cells, in contrast to embryonic cells, lack nuclear totipotency

(Hochedlinger and Jaenisch, 2002b).

Despite the early successes in amphibian cloning, the development and

application of nuclear transplantation in mammals did not make much headway (Fig. 3).

The first attempt to clone mammals was reported in 1975 (Bromhall, 1975). Bromhall

used both microinjection and virus-induced fusion of morula cells with unfertilized rabbit

Figure 3: Timeline of key events in the application of nuclear
transfer and stem cell research
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eggs. In both cases, only early cleavage could be observed. Although Bromhall did not

enucleate the eggs prior to microinjection, he reported some cases of stochastic self-

enucleation. This suggested that the donor nucleus could support early development. In

1983, McGrath and Solter successfully transplanted zygotic nuclei into previously

enucleated zygotes using cell fusion. This demonstrated the feasibility of the

transplantation technique in mice (McGrath and Solter, 1983). The reconstructed

embryos developed at a frequency comparable to wildtype embryos. However, later

attempts to use blastomeres as donors failed, leading McGrath and Solter to speculate that

cloning in mammals would not work (McGrath and Solter, 1984).

Table 1: Animals cloned from embryonic, foetal and adult donor cell by
nuclear transfer in the past decade. *ACT: Advanced Cell Technology;
Lanza et al. ** Texas A&M University
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Breakthroughs in mammalian cloning in the years following these early

experiments included the generation of live lambs, cattle and pigs. All cases were based

on nuclear transplantation using nuclei from blastomeres as donors (reviewed in

(Campbell et al., 2005)). Although these reports were milestones in mammalian cloning,

they still did not address the question whether adult cells are able to give rise to an entire

organism (and therefore retain nuclear totipotency). Ten years after the successful

generation of lambs by NT of blastomere nuclei, Campbell and colleagues reported

another success: the first sheep to be derived by NT using donor nuclei from an

embryonic cell line (Campbell et al., 1996). In 1997, the same group reported a further

breakthrough -- the cloning of “Dolly”, the first mammal cloned from an adult cell

(Wilmut et al., 1997). During the last eight years, considerable progress has been made in

the technology of cloning and in the understanding of its species-specific requirements.

Researchers have successfully generated cloned offspring from 15 additional species,

using both embryonic and adult donor cells (Table 1) (reviewed in (Campbell et al.,

2005);(Lee et al., 2005)).

Cloning and differentiation

In their early studies, Briggs and King had observed that differentiating frog cells

progressively lose their nuclear potency (Briggs and King, 1957). To date, no frogs have

been cloned from adult cells. This raises the question whether mammalian clones,

including Dolly, are really derived from differentiated cells or from rare adult stem cells.

Dolly’s donor cells, as well as the somatic cells used to generate clones in subsequent

years, originated from adult animals. There was, however, no conclusive evidence that

the donor cells had been fully differentiated (Hochedlinger and Jaenisch, 2002b).

The unequivocal demonstration that terminally differentiated cells can give rise to

an NT-derived organism was established using lymphocytes as donor cells (Hochedlinger

and Jaenisch, 2002a). In lymphocytes, immunoglobulin (Ig) and T-cell receptor (TCR)

gene rearrangements serve as endogenous markers for both the origin and the

differentiation state of the donor cell. The NT-derived monoclonal mice displayed unique

Ig or TCR rearrangements in every tissue demonstrating that the donor cells were indeed

fully differentiated (Hochedlinger and Jaenisch, 2002a). Eggan and colleagues later

cloned mice using nuclei form terminally differentiated olfactory neurons. They
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demonstrated that even nuclei from post-mitotic donor cells can re-enter the cell cycle

and generate viable clones (Eggan et al., 2004). However, due to the low NT efficiency

of the donor cells, these studies first derived NT-ES cells. Hochedlinger and Jaenisch

then generated cloned mice by implementing a second step in which tetraploid

blastocysts were injected with NT-ES cells. This ensured that the resulting offspring was

entirely derived from the ES cells. In this procedure, all extra-embryonic tissues were

derived from the tetraploid cells. To demonstrate that terminally differentiated cells can

generate each and every kind of embryonic and extra-embryonic lineages, Eggan and

colleagues subjected the olfactory neuron-derived NT-ES cells to a second round of

nuclear transfer. More recently, it was shown that terminally differentiated NKT cells can

be directly cloned (Inoue et al., 2005). NKT cells, like B and T cells, have genetic

rearrangements that allow retrospective identification of the differentiation state of the

cells. It is worth mentioning that, even though T cells and NKT cells are part of the same

cell lineage, their respective NT efficiency is significantly different (Hochedlinger and

Jaenisch, 2002a; Inoue et al., 2005).

Why is cloning so inefficient?

Based on the progress in cloning over the past decade, it has to be assumed that,

given the appropriate conditions, almost any donor cell type can be used for NT.

Furthermore, it should be possible to generate offspring using NT from most, if not all,

species. However, the overall cloning efficiency remains extremely low: only an

estimated 0-5% of reconstructed embryos develop to term (Campbell et al., 2005). The

first mouse clones were generated more than 7 years ago (Wakayama et al., 1998) and

many different laboratories now conduct murine nuclear transfer experiments. The

efficiency of mammalian cloning has not significantly improved, despite great efforts to

this effect. In addition to the inefficiency of the cloning procedure, there is the possibility

that normal clones do not exist. It is conceivable that the few clones that survive are

simply less abnormal than those that do not survive (Jaenisch, 2004). There are several

possible explanations for the inability of the donor nucleus to generate functional clones.

Technical issues, such as the handling, isolation and type of the donor cell, as well as the

subsequent activation and culture conditions, probably impact cloning efficiency. There

are also important biological barriers, such as non-equivalence of the maternal and
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paternal genomes. These barriers will be more difficult to resolve than any technical

limitations (Jaenisch, 2004).

As a result of natural fertilization, the genetic content of a zygote is inherited by

all somatic cells of the developing organism. However, only a subset of genes is active in

a given cell type. For normal development to proceed, it is crucial that in a particular cell,

all essential genes are switched on, while those that are not required are switched off.

Many of the genes crucial to early development, such as Oct-4 have already been

identified. Recent studies show that somatic cell-derived NT blastocysts often fail to

reactivate many of these crucial genes (Boiani et al., 2002; Bortvin et al., 2003).

Gene expression is regulated by epigenetic mechanisms such as DNA methylation

and chromatin modifications that impose stable but reversible marks on the genome.

Such stable alterations resulting in differential gene expression are often referred to as

“epigenetic” (Wang et al., 2004). A key factor in cloning-associated abnormalities

probably involves inadequate epigenetic reprogramming of the donor genome. DNA

methylation, one of the best-studied epigenetic modifications, is known to be aberrant in

many clones (see below). Recent work by Blelloch et al. supports the central role of

DNA methylation: global hypomethylation of the donor cell before NT was shown to

significantly increase the efficiency of ES cell derivation (Blelloch et al., submitted).

Another study showed significant improvements in cloning efficiency and NT-ES

cell development after trichostatin-A (TSA) treatment of  the reconstructed oocyte. TSA

is a compound that increases histone acetylation and DNA demethylation (Kishigami et

al., 2006). A better understanding of the reprogramming factors and events that occur in

the oocyte should help further improve efficiency of nuclear transfer.

Biological NT applications

Nuclear transplantation was originally developed to study the question of nuclear

equivalence (Briggs and King, 1952). The technique allows the in-vivo amplification of a

single cell into an entire organism. It thus constitutes a powerful tool for dissecting

genetic and epigenetic regulatory mechanisms within the genome.

The cloning of mice from lymphocytes, for example, made it possible to study the

process of allelic regulation (Gerdes and Wabl, 2004) and secondary Ig rearrangements

(Koralov et al., 2005) in monoclonal mice. Similarly, nuclear transfer has been used to
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determine whether the variety of olfactory receptors is created by gene rearrangements in

a fashion similar to the generation of antibody diversity in the immune system. This

question was originally contemplated because of parallels between the immune system

and the brain, such as a requirement for the non-homologous end-joining (NHEJ)

machinery and Rag1 expression in both lymphocytes and neurons, as well as the presence

of a vast number of different receptors in the olfactory epithelium. To address this

question, Eggan and colleagues used olfactory sensory neurons as NT donors to produce

cloned mice (Eggan et al., 2004). The resulting data suggested that genetic

rearrangements do not occur in olfactory neurons.

One intriguing question recently addressed by NT was the contribution of

epigenetic changes in the development of cancer and whether such changes could be

reprogrammed to alter the cancer phenotype. A study by Hochedlinger et al., showed that

several tumour cell lines could support the pre-implantation development, but not the

derivation of ES cells. One melanoma cell line generated pluripotent ES cells and

contributed to chimeras when injected into diploid blastocysts. It is interesting that the

tumour phenotype was similar to that of the original cell line, but showed higher

penetrance and shorter latency. This demonstrated that the secondary changes in the

melanoma cell line are compatible with a wide spectrum of development, but that they

also predispose the cells to transformation (Hochedlinger et al., 2004).

In a second study, NT of embryonic carcinoma (EC) cells was used to compare

the role of epigenetic and genetic alterations in tumorigenicity and in the developmental

potential of EC cells respectively. Although EC cell lines generated NT-ES lines with

great efficiency, the tumorigenic and developmental potential in the latter remained the

same as in the donor EC cells. This suggested that irreversible genetic changes, rather

than epigenetic modifications, determined the phenotype of EC cells (Blelloch et al.,

2004).

Commercial NT applications

As well as providing a tool for studying developmental biology, nuclear transfer

has great potential for agricultural technology, the propagation of endangered species,

and for therapeutic applications.
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Transplantation of a nuclear transfer-derived blastocyst to the uterus of a recipient

female will, in some cases, generate live offspring. Nuclear transfer in human is a highly

controversial theme. Apart from ethical objections, animal experiments have already

shown that such endeavours are dangerous. These findings have resulted in the broad

consensus among scientists that cloning humans for reproductive purposes would be

irresponsible (Jaenisch and Wilmut, 2001).

Many important farm animals such as cattle, pigs and sheep have been successfully

cloned using this technique (Campbell et al., 2005). Nuclear transfer also allows the

simple propagation of ,,elite” strains of animals. Among other reasons, the lack of ES or

ES-like cells that can contribute to the germline in sheep and in other farm animals made

the generation of sheep by NT from a cell line so important (Campbell et al., 1996). Cell

lines now allowed similar manipulations of farm animal genomes that are readily

available in the mouse. This approach was successfully used to produce transgenic sheep,

pigs and cows in the years to follow (Campbell et al., 2005).

It should be emphasized that abnormalities, though present in the cloned animal, are

epigenetic and therefore not problematic for the propagation of farm animals. Current

evidence indicates that all epigenetic abnormalities can be corrected in the germline and

the offspring can therefore be completely normal and healthy (Jaenisch, 2004).

Finally, it is worthy of note that endangered species such as a Gaur have been

cloned using domestic animals as oocyte donors (Lanza et al., 2000), demonstrating

another useful application of NT.

Therapeutic NT applications

When a NT blastocyst is explanted it can, under certain conditions, generate

customized pluripotent NT-ES-cell lines which have great potential for regenerative

medicine. Stem cells are generally defined as cells with the ability to self renewal and to

generate more restricted, differentiated cells. The two major classes of stem cells are

adult and embryonic stem cells. In the adult, many tissues, including the intestine and the

haematopoetic system, have a significant turnover. This remarkable ability to regenerate

is provided by rare, quiescent stem cells that can give rise to the manifold cell types of

their respective tissue. They are generally thought to be restricted to that lineage (Wagers

and Weissman, 2004). There have also been a few reports suggesting that adult stem cells
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have greater developmental potential, and that they can transdifferentiate into other cell

lineages. However, the ability of these cells to generate cells of other lineages remains

very controversial (Wagers and Weissman, 2004).

One major limitation of adult stem cells is that, once they have been removed

from their biological niches, it is difficult to expand and maintain them in a multipotent

state. By contrast, embryonic stem cells grow in culture for unlimited passages, while

maintaining the potential to generate every single cell type in the body. Indeed, a single

embryonic stem cell can generate an entire mouse (Wang and Jaenisch, 2004).

The first murine ES cells were derived independently by two groups in 1981

(Evans and Kaufman, 1981; Martin, 1981). Shortly after these initial reports, murine ES

cells were shown to contribute to all tissues. Above all, they can contribute to the

germline and therefore to the offspring of chimeras (Bradley et al., 1984). The first

human ES cell line was reported by Thomson and colleagues almost two decades after

the derivation of murine ES cells (Thomson et al., 1998). Two years later, Munsie et al.

reported the derivation of NT-ES cells from somatic cells in the mouse (Munsie et al.,

2000).

The first breakthrough in using nuclear transfer for therapy was demonstrated by

Rideout and colleagues (Rideout et al., 2002), who derived NT-ES cells from an

immunodeficient mouse. The immunodeficiency defect was corrected by homologous

recombination. The repaired NT-ES cells were then differentiated in vitro into

haematopoetic precursors and then transplanted back to the donor mouse. This procedure

indeed restored normal lymphocyte populations in the mouse, constituting the proof of

principle that NT can be used for therapeutic applications. This was further supported by

another study that used NT-ES cell-derived dopaminergic neurons to ameliorate disease

in a mouse model of Parkinson disease (Barberi et al., 2003). These studies highlight

NT’s great potential for stem cell therapies. However, many technical and safety issues

must still be addressed before these findings can be translated into human therapy.

Alternative approaches for reprogramming somatic cells

While research in mammalian nuclear transfer is making progress, alternative

ways of de-differentiating somatic cells might also prove useful. NT represents the most

extreme form of nuclear reprogramming. Alternative approaches, such as cell fusion,
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allow the de-differentiation of somatic cells, and thus the generation of pluripotent hybrid

cells. When a less differentiated cell is fused with a differentiated cell, the former

typically dictates the fate of the hybrid. In mouse and humans, fusion of ES cells with

somatic cells results in the formation of pluripotent hybrids (Cowan et al., 2005; Do and

Scholer, 2004; Tada et al., 2001). Do and Scholer took the initial fusion studies

performed by Tada et al. one step further by investigating what part of the ES cell

(cytoplast or karyoplast) harboured the reprogramming activity. Their results suggested

that the reprogramming activity was present only in the karyoplast (Do and Scholer,

2004).

Although these fusion experiments demonstrate the potential of this approach,

they have several drawbacks. The major problem in clinical applications is that the

hybrids resulting from cell fusion are tetraploid. Ideally, the embryonic and somatic

nucleus should remain separate for the time required to accomplish functional

reprogramming. This, however, can only be achieved when efficient reprogramming

occurs without DNA replication and cell division. Do and Scholer fused ES cells to

neurosphere cells treated with mitomycin C to inhibit DNA replication and cell division.

In these experiments, reactivation of the Oct4-GFP reporter was observed only when the

neurospheres were pretreated with a demethylating agent. This suggests that

reprogramming might depend on DNA replication (Do and Scholer, 2004).

In addition, it is unclear whether the data presented in these studies show complete

functional reprogramming of the somatic genome or only partial reprogramming

compensated by the pluripotent ES genome. Although numerous reprogramming events,

such as reactivation of somatic Oct-4 and other genes, have been demonstrated (Cowan et

al., 2005; Tada et al., 2001), this does not necessarily mean that all genes required for a

pluripotent state have been reactivated. However, further investigation will provide new

insight into the reprogramming events after cell fusion.

Cell free nuclear extracts provide another interesting approach for

reprogramming. However, early experiments with human cell lines to determine whether

the somatic genome is reprogrammed have not been convincing. It is possible that

transient protein uptake from the nuclear extracts takes place rather than a reactivation of

endogenous genes and functional reprogramming (Hakelien et al., 2004; Hakelien et al.,
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2002; Taranger et al., 2005). Further studies, using more stringent measures of

reprogramming, will be required to assess the true reprogramming potential of cell

extracts.

Alternative approaches for generating stem cells

Embryonic stem cells are routinely derived from a very early stage embryo

termed the blastocyst (Figs. 2 and 4). Ever since Thomson and colleagues reported the

isolation of the first human embryonic stem cell (hESC) lines (Thomson et al., 1998), the

derivation of new stem cell lines has remained highly controversial. To derive

Figure 4: Altered nuclear transfer (ANT). The ANT procedure is very similar to the regular NT
described in Figure 2. a) The first lineage differentiation takes place after the 8-cell stage. b) The
only modification required for ANT is the introduction of a conditional RNAi system (contains a
GFP cassette; described in Chapter 3) via lentiviral transduction. Due to the presence of the Cdx2
shRNA, no Cdx2 protein can be made and hence the TE cannot form properly. The blastocyst
becomes a disorganized clump of cells and cannot implant, yet it still allows derivation of
pluripotent of ES cells.
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customized ES cells, NT takes the destruction of an intact human blastocyst into account

-- one that could potentially generate a human being. This problem is at the root of the

whole ethical dilemma.

We recently reported an alternative approach to generate NT-ESCs (Meissner and

Jaenisch, 2006). This method, called altered nuclear transfer, was proposed by W.

Hurlbut, a member of the president’s council for bioethics (Hurlbut, 2005). We designed

a simple experimental strategy to test the feasibility of this concept in the mouse (see

Chapter 3). During the first stages of preimplantation development, all blastomeres

remain totipotent. However, after the 8-cell stage, the first lineage differentiation decision

takes place. This decision generates the first two cell lineages: the trophectoderm (TE)

and the inner cell mass (ICM) (Fig. 4a). The latter gives rise to the embryo as well as to

embryonic stem cells when explanted. The TE generates the foetal-maternal interface

(placenta) and trophectoderm stem cells (TS) cells when explanted (Tanaka et al., 1998).

The concept of altered nuclear transfer involves disabling a gene that is essential

for TE function prior to NT, thus eliminating the developmental potential of the

reconstructed embryo (Fig. 4b). In fact, the lack of the TE lineage generates a “biological

artifact” (Hurlbut, 2005), since it creates a disorganized clump of cells. Detailed studies

from the laboratories of Rossant and Beck provided excellent insight into the role of

Cdx2, the earliest known TE-specific transcription factor. Using a recently developed

conditional RNAi system (see Chapter 3), we demonstrated that loss of Cdx2 leads to the

development of abnormal blastocysts that cannot implant. However, the absence of Cdx2

did not affect the ability to derive pluripotent ES cells, and removal of the Cdx2 inhibitor

from the ES cells restored their potency to that of any normal ES cell line.

It has already been shown that human and mouse ES cells can be derived from

morula stage embryos (Strelchenko et al., 2004; Tesar, 2005). A new study now reports

that single 8-cell stage blastomeres can generate pluripotent ES cell lines (Chung et al.,

2006). Although this study is interesting, the reported efficiency was several times lower

than the efficiency of ES cell generation using later stage embryos. The authors

envisioned this technique as a possible way of solving the ethical dilemma of sacrificing

a viable embryo to generate ES cells. They demonstrate that removing a single

blastomere from a murine eight-cell embryo does not affect the developmental potential
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of the manipulated embryo. The single blastomere could thus be used to generate ES cells

and the seven-cell embryo could be transferred to generate a foetus.

Obviously, this procedure, if feasible in humans, would apply only to couples

undergoing in-vitro fertilization (IVF). In addition, the low efficiency of the procedure

means that it is fairly unlikely that every blastomere yields an ES cell line, raising in turn

the question of what to do with the embryos that did not yield a matching ES cell line.

Moreover, in other species it has been shown that single blastomeres are still totipotent.

Thus it could still be argued that destroying a blastomere is equivalent to destroying an

embryo. Indeed, people have used similar rationale to argue against the altered nuclear

transfer approach (Solter, 2005). While it is clearly impossible to please everybody, it

must also be admitted that both approaches provide interesting scientific data as well as a

scientific basis for alternative ways of generating ES cells using more ethical approaches.

DNA methylation and epigenetic reprogramming

Overview

DNA methylation is a key epigenetic modification that provides heritable

information not encoded in the nucleotide sequence. 5-methylcytosine is the only known

covalent modification of DNA in vertebrates (Jeltsch, 2002). Mammalian DNA

methylation serves a wide-range of functions including regulation of gene expression,

genomic imprinting, and X-chromosome inactivation. It contributes to genomic stability

and serves as a defense mechanism against transposable elements (Bestor, 2000b;

Jaenisch, 1997; Jaenisch and Bird, 2003; Robertson and Wolffe, 2000). In addition, its

role in disease states such as cancer becomes increasingly evident (Feinberg, 2004;

Gaudet et al., 2003; Jones and Baylin, 2002; Laird, 2003; Robertson, 2002).

Three catalytically active DNA methyltransferases (Dnmts) have been described

that are responsible for establishing and maintaining methylation patterns in mammals

(Bestor, 2000b; Li et al., 1992; Okano et al., 1999; Okano et al., 1998a). Dnmt1 has been

largely viewed as the maintenance enzyme, owing to its preference for hemimethylated

DNA (Robertson and Wolffe, 2000). Dnmt3a and Dnmt3b have no preference and are

required for de novo methylation activity (Okano and Li, 2002). During murine

preimplantation development methylation levels decrease with some notable exceptions

including imprinted genes and IAP elements (Jaenisch, 1997; Lane et al., 2003). Around
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the time of implantation normal methylation levels are restored by the de novo

methyltransferases and later maintained by Dnmt1.

Targeted gene disruption for each of the catalytically active Dnmts (1, 3a and 3b)

results in a lethal phenotype demonstrating the essential role of DNA methylation in

development (Li et al., 1992; Okano et al., 1999). Interestingly, undifferentiated ES cells

deficient for Dnmt1, Dnmt3a, Dnmt3b or Dnmt3a/3b do not display any obvious

abnormalities (Lei et al., 1996; Okano et al., 1999). Normally in wild-type ES cells most

CpG dinucleotides are methylated with the exception of many CpG-islands.

In addition, ES cells and early embryos, but not somatic cells, seem to contain

significant amounts of non-CpG methylation (mostly CpA) (Haines et al., 2001;

Ramsahoye et al., 2000). Currently the functional role of this non-CpG methylation is not

clear.

In general, methylation is found in CpG-poor regions, while CpG-rich areas (CpG

islands) seem to be protected from this modification and are generally associated with

active genes (Cross and Bird, 1995). This is consistent with the fact that methylated CpG

islands are found on the inactive X chromosome and on the silenced allele of imprinted

genes (Neumann and Barlow, 1996; Razin and Cedar, 1994; Riggs and Pfeifer, 1992).

The methyl group is positioned in the major groove of the DNA where it can easily be

detected by proteins interacting with the DNA (Jeltsch, 2002). The effects of DNA

methylation on chromatin structure and gene expression are likely mediated by a family

of proteins that share a highly conserved methyl CpG-binding domain (MBD) (Wade,

2001). Two of these, MeCP2 and MBD1, have been suggested to be involved in

transcriptional repression (Fujita et al., 2000; Fujita et al., 1999; Nan et al., 1997) based

on biochemical observations that they form complexes with histone deacetylases and

other proteins important for chromatin structure (Jones et al., 1998; Nan et al., 1998;

Wade et al., 1999; Zhang et al., 1999).

DNA methylation during development

DNA methylation patterns are extremely dynamic in early mammalian

development. Within 1-2 cell divisions after fertilization a wave of global demethylation

takes place. It has been suggested that the paternal genome is actively demethylated

during the period of protamine-histone exchange and the maternal genome subsequently
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becomes demethylated, presumably through a passive DNA replication mechanism (Reik

et al., 2001; Santos et al., 2002). By the morula stage, methylation is found only in some

repetitive elements and imprinted genes (Reik et al., 2001; Sanford et al., 1987; Walsh et

al., 1998). After implantation, genome-wide methylation levels increase dramatically,

establishing a differential pattern between the cells of the ICM and those of the

trophectoderm (Santos et al., 2002), and ultimately resulting in the formation of

methylation patterns found in the adult (Turker, 1999). Primordial germ cells (PGC) also

undergo global demethylation. Importantly, in contrast to demethylation during

preimplantation, all parental specific epigenetic marks are erased in the PGC by

embryonic day 13-14. As a result, PGC and diploid germ cells are the only cell type

where the paternal and maternal genomes are equivalent. Upon initiation of

gametogenesis, PGC remethylation begins and the parental-specific methylation patterns

that will code for monoallelic expression of imprinted genes are established (Lucifero et

al., 2002; Reik et al., 2001).

Maintenance and establishment of DNA methylation is accomplished by at least

three independent catalytically active DNA methyltransferases: Dnmt1, Dnmt3a and

Dnmt3b (Bestor, 2000a; Robertson and Wolffe, 2000). There are two isoforms of Dnmt1,

an oocyte specific isoform (Dnmt1o) and a somatic isoform. Somatic Dnmt1 is often

referred to as the ‘maintenance’ methyltransferase because it is believed to be the enzyme

that is responsible for copying methylation patterns after DNA replication. The oocyte

specific isoform of Dnmt1 is believed to be responsible for maintaining but not

establishing maternal imprints. The Dnmt3 family (Dnmt3a, 3b, 3l and a number of

isoforms) is required for the de novo methylation that occurs after implantation, for the

de novo methylation of newly integrated retroviral sequences in mouse ES cells (Bestor,

2000a; Okano et al., 1999), and for the establishment of imprints (Dnmt3l) (Li, 2002). It

was recently shown that Dnmt3a has a strong preference for unmethylated DNA

(Yokochi and Robertson, 2002).

The essential role of DNA methylation in mammalian development is highlighted

by the fact that mutant mice lacking each of the enzymes (generated by gene targeting)

are not viable and die either during early embryonic development (Dnmt1 and Dnmt3b)

or shortly after birth (Dnmt3a) (Li et al., 1992; Okano et al., 1999; Robertson and Wolffe,
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2000). The knockout of Dnmt3l leads to male infertility and the failure to establish

imprints in female eggs (Bourc'his et al., 2001b; Li, 2002). Disruption of Dnmt2 did not

reveal any obvious effects on genomic DNA methylation (Okano et al., 1998b).

DNA methylation and SCNT

Considering the fundamental role of DNA methylation in development, it seems

likely that any NT embryo will need to recapitulate a functional pattern of epigenetic

modifications in order to proceed through normal embryogenesis. Several groups have

investigated DNA methylation patterns in NT embryos and reported finding

abnormalities in DNA methylation (Bourc'his et al., 2001a; Dean et al., 1998; Dean et al.,

2001; Kang et al., 2001a; Kang et al., 2002; Ohgane et al., 2001). In cloned bovine

embryos, satellite sequence methylation levels are more similar to the donor cells than to

control embryos (Kang et al., 2001a). However, methylation patterns of single copy gene

promoters in cloned bovine blastocysts appeared to be normally demethylated (Kang et

al., 2001a). In addition, the satellite sequences, but not the single copy genes, showed

more methylation in TE than in the ICM of cloned bovine blastocysts (Kang et al., 2002)

(reviewed in (Han et al., 2003)). Using antibodies against 5-methyl cytosine two

independent studies showed that the cloned bovine embryos did not undergo global

demethylation in early embryogenesis and even showed precocious de novo methylation

(Dean et al., 2001), with euchromatin being abnormally hypomethylated and centromeric

heterochromatin being abnormally hypermethylated (Bourc'his et al., 2001a). These

findings suggest that different chromosomal regions might respond differently to

demethylation in the egg cytoplasm. Interestingly, when the same satellite sequences

examined in bovine (Kang et al., 2001a) were analyzed in a different species (porcine)

methylation levels at the blastocyst stage of cloned embryos were more comparable to

those of fertilized control embryos (Kang et al., 2001b), suggesting also species-specific

differences. A recent study that analyzed a number of imprinted genes in cloned murine

blastocysts showed that most of the examined genes displayed aberrant methylation and

expression patterns (Mann et al., 2003).

It would be interesting to know if aberrant methylation patterns during

preimplantation development contribute to the low efficiency of generating clones and to

what extent the clones can tolerate such variation. Unfortunately, analyzing the
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methylation status in preimplantation embryos provides only indirect correlations

preventing satisfactory resolution of this question.

In order to establish a potential correlation between global DNA methylation

levels and the developmental potential of cloned embryos, Cezar et al., compared the

genome-wide methylation status among spontaneously aborted cloned fetuses, live cloned

fetuses, and adult clones in bovine (Cezar et al., 2003). When genome-wide cytosine

methylation levels were measured by reverse-phase HPLC, they found that a significant

number of aborted fetuses lacked detectable levels of 5-methylcytosine. In contrast, when

seemingly healthy adult, lactating clones were compared to similarly aged lactating cows

produced by artificial insemination, comparable DNA methylation levels were observed.

The authors suggested that survivability of cloned cattle is related to the global DNA

methylation status. All evidence suggests that a correct global methylation status is

required for development. However, subtle changes might be compatible with normal

development and result only in minor or no phenotypes. For example, by applying

restriction landmark genome scanning (RLGS) in two seemingly healthy cloned mice, it

was shown that methylation patterns at several sites in each clone differed from those in

the controls (Ohgane et al., 2001).

The reason for the frequent abnormal DNA methylation patterns in cloned

embryos is still unclear. It is likely that, because of the epigenetic difference between the

somatic donor cell and the gametes, the somatic nucleus responds differently to the egg

cytoplasm, affecting subsequent events during embryogenesis. For example, the highly

coordinated demethylation process in the pronuclei of the maternal and paternal genome

upon fertilization might not happen appropriately in the somatic donor genome following

NT. It is not clear whether all of the somatic epigenetic marks imposed by DNA

methylation during differentiation can be removed from the donor nucleus. Any failure to

demethylate the DNA sequences that are normally demethylated during early cleavage

stages of development might be stably passed on to progeny cells. Another possible

explanation for the aberrant methylation patterns in clones may result from the ectopic

expression of the somatic form of Dnmt1 in the egg and cleavage stage cloned embryos.

In the mouse oocyte and preimplantation embryo, the oocyte specific form (Dnmt1o) but

not the longer somatic form is expressed. It has been shown that a translocation of
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Dnmt1o between nucleus and cytoplasm is tightly regulated during murine

preimplantation development (Howell et al., 2001; Ratnam et al., 2002). In contrast,

cloned preimplantation mouse embryos were reported to aberrantly express the somatic

form of the Dnmt1 gene, and the translocation of Dnmt1o was absent (Chung et al.,

2003). As mentioned above, DNA methyltransferases (Dnmt1, 3a, 3b 3l) play important

roles in setting up and maintaining DNA methylation patterns. It is reasonable to

speculate that dysregulation of any of these enzymes in clones may alter DNA

methylation patterns.

These abnormal DNA methylation patterns could result in embryo lethality or

phenotypic abnormality. At present, little is known about the developmental role of

dynamic changes in DNA methylation during preimplantation, although very recently,

the importance of early embryonic methylation patterns in setting up the structural profile

of the genome was shown (Hashimshony et al., 2003). This suggests that the failure to

establish correct methylation patterns early in development might have far reaching

effects on the chromatin structure. Interestingly, mouse embryos deficient for Dnmt1 and

Dnmt3b die around E9.5 (Li et al., 1992; Okano et al., 1999), but Lsh mutant mice die

only after birth despite showing a substantial loss of methylation throughout the genome

(Dennis et al., 2001).

Analyzing DNA methylation

The intense interest in the biological functions of DNA methylation and its role in

diseases have led to numerous techniques to detect and compare DNA methylation

(reviewed in (Laird, 2003; Murrell et al., 2005)). Global methods such as nearest

neighbor analysis (NNA) and high-performance liquid chromatography are valuable to

quantify the total 5-methylcytosine content of a DNA sample, but information on the

position in the genome cannot be gained (Ramsahoye, 2002a; Ramsahoye, 2002b).
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Digestion with methylation-sensitive (or methylation-dependent) restriction

enzymes (MSREs) has been used to selectively enrich the methylated and unmethylated

DNA fractions, respectively (Bedell et al., 2005; Lippman et al., 2004; Lippman et al.,

2005; Strichman-Almashanu et al., 2002; Yamada et al., 2004). Similarly, methylation-

dependent restriction in a cloning host has been employed as a filter against methylation-

Figure 5: Differential base modification by sodium bisulfite. A hypothetical DNA strand
containing cytosine and 5-methyl-cytosine residues. Single stranded DNA is generated using
NaOH. After adding sodium bisulfite all cytosine residues are converted to uracil by the
mechanism shown. The 5-methyl-group protects against the sulphonation and therefore every
methylated cytosine remains unchanged. After complete reaction the DNA strands are not
complimentary anymore. Hence, each strand is amplified by PCR using different primer sets that
are specific for the converted sequences. The PCR products are cloned into a plasmid vector and
sequenced. The sequences can be aligned to the original sequence: C-T mismatches indicate
unmethylated cytosines, whereas C-C matches indicate a methylated cytosine
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rich sequences in clone libraries (Rabinowicz et al., 1999). Another, more recent genome-

wide approach used immunopreciptation with a methyl cytosine antibody rather than

restriction digestion to enrich for the methylated fraction (Weber et al., 2005). The

enriched genome fractions are analyzed by sequencing or by array-hybridization

(Lippman et al., 2004; Lippman et al., 2005). MSRE-based methods are somewhat

indirect in that they discriminate for or against methylation at the recognition site of the

particular enzyme used and cannot directly reveal the methylation status of cytosines or

CpG dinucleotides outside the restriction site.

In contrast, methylation-sensitive chemical reactions have no specific recognition

sequence. Sodium bisulfite efficiently deaminates unmethylated cytosine to uracil

without affecting 5-methyl cytosine (Fig. 5). In recent years, PCR amplification and

sequencing of bisulfite-converted genomic DNA has emerged as the gold standard for

analyzing and comparing methylation patterns at specific loci (Frommer et al., 1992).

Despite these technological advances, in the absence of systematic sequence-

based methylation analyses, the genomic methylation landscape in mammals is still

largely unexplored. Therefore, the potential diagnostic value of specific methylation

differences remains largely untapped.

The human epigenome project (HEP) is aimed at generating a high-resolution

DNA methylation map of the human genome (Novik et al., 2002; Rakyan et al., 2004).

To achieve this goal the bisulfite sequencing technique has been scaled-up in a targeted

fashion using locus-specific PCR primers. We describe a new random approach for large-

scale high-resolution DNA methylation analysis termed reduced representation bisulfite

sequencing (RRBS) in the last part of Chapter 3.

DNA methylation and disease

Aberrant methylation patterns as a result of incomplete epigenetic reprogramming

have been implicated in the abnormal development after NT (see above). ES cells are

epigenetically unstable with many imprinted genes affected (Humpherys et al., 2001).

Recent work has demonstrated a link between loss of imprinting (LOI), in particular Igf2,

and tumorigenesis (Sakatani et al., 2005).

Most human cancers display genome-wide hypomethylation and concomitant

promoterspecific tumor suppressor gene hypermethylation (Feinberg, 2004; Gaudet et al.,



Chapter 1- Introduction DNA Methylation

36

2003; Jones and Baylin, 2002; Laird, 2003; Robertson, 2002). Generation of mice

carrying a hypomorphic allele for Dnmt1 demonstrated that global hypomethylation

resulted in aggressive T cell lymphomas that displayed a high frequency of chromosome

15 trisomy. These results indicated that DNA hypomethylation plays a causal role in

tumor formation, possibly by promoting chromosomal instability (Gaudet et al., 2003).

Using conditional inactivation of de novo methyltransferase Dnmt3b in Apcmin/+

mice, our lab has demonstrated that loss of Dnmt3b has no impact on microadenoma

formation, which is considered the earliest stage of intestinal tumor formation. However

we observed a significant decrease in the formation of macroscopic colonic adenomas.

Interestingly many large adenomas showed regions with Dnmt3b inactivation, indicating

that Dnmt3b is required for initiation of macroscopic adenomas but is not required for

their maintenance. Also Dnmt3b inactivation in normal colonic epithelium had no

adverse effect on tissue homeostasis. These results support a role for Dnmt3b in the early

stages of macroscopic colonic tumor initiation and suggest that it is not required for later

tumor maintenance (Lin et al., 2006).

Consistent with the notion that both promoter hypermethylation and genome-wide

hypomethylation are functionally important in tumorigenesis, genetic and or

pharmacologic reduction of DNA methylation levels results in suppression or promotion

of tumor incidence, respectively, depending on the tumor cell type. For instance, DNA

hypomethylation promotes tumors that rely predominantly on loss of heterozygosity

(LOH) or chromosomal instability mechanisms, whereas loss of DNA methylation

suppresses tumors that rely on epigenetic silencing. Mutational and epigenetic silencing

events in Wnt pathway genes have been identified in human colon tumors. ApcMin/+ mice

were recently used to investigate the effect of hypomethylation on intestinal and liver

tumor formation. Intestinal carcinogenesis in ApcMin/+ mice occurs in two stages, with the

formation of microadenomas leading to the development of macroscopic polyps. Using

Dnmt1 hypomorphic alleles to reduce genomic methylation, showed an elevated

incidence of microadenomas that were associated with LOH at Apc. In contrast, the

incidence and growth of macroscopic intestinal tumors in the same animals was strongly

suppressed. In contrast to the overall inhibition of intestinal tumorigenesis in

hypomethylated ApcMin/+ mice, hypomethylation caused development of multifocal liver
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tumors accompanied by Apc LOH. These findings support the notion of a dual role for

DNA hypomethylation in suppressing later stages of intestinal tumorigenesis, but

promoting early lesions in the colon and liver through an LOH mechanism (Yamada et

al., 2005).

Parts of this chapter have been published:

Meissner, A. and Jaenisch, R. From frog cloning to the generation of customized ES

cells. BIF Futura (2006). In press

Wang, Z.*, Meissner, A.*, and Jaenisch, R. Nuclear Cloning and Epigenetic

Reprogramming. Handbook of Stem Cells. Academic Press (2004)

*equal contributing authors
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Chapter 2- Materials and Methods

Generation of plasmids

To generate pSico the lox-CMV-GFP-lox cassette was removed from lentilox 3.7

(pLL3.7) (Rubinson et al., 2003) by digesting with BfuAI and PciI, followed by filling-in

and religation. The first TATAlox followed by the terminator and by an EcoRI was

inserted in the resulting plasmid by PCR-mediated mutagenesis using the following

oligos: pSico6Eco GAATTCAACGCGCGGTGACCCTCGAGG; and pSico6

ASAAAAAACCAAGGCTT-

ATAACTTCGTATAATTTATACTATACGAAGTTATAATTACTTTACAGTTACCC.

To insert the second TATAlox preceded by a NotI site the resulting plasmid was

digested with EcoRI and XhoI and ligated to the following annealed oligos: TATALOX

F: AATTCGAGAGGCGGCCGCATAACTTCGTATAGTATAAATTATACGAAGTT-

ATAAGCCTTGTTAACGCGCGGTGACCC; and TATALOX R: TCGAGGG-

TCACCGCGCGTTAACAAGGCTTATAACTTCGTATAATTTATACTATACGAAGT

TATGCGGCCGCCTCTCG.

The resulting construct was finally digested with EcoRI and NotI and ligated to an

EcoRI-CMV-GFP-NotI cassette to generate pSico. A similar strategy was employed to

generate the various “test” constructs shown in Figure 7. Primer sequence and details are

available upon request.

To generate pSico Reverse (pSicoR) the 5’ loxP site present in pLL3.7 was

removed by digesting with XhoI and NotI and replaced with a diagnostic BamHI site

using the following annealed oligos: Lox replace for TCGAGTACTAGG-

ATCCATTAGGC and Lox replace rev GGCCGCCTAATGGATCCTAGTAC.

A new lox site was inserted 18 nt upstream of the proximal sequence element

(PSE) in the U6 promotor by PCR-mediated mutagenesis.

Oligos coding for the various shRNAs were annealed and cloned into HpaI-XhoI

digested pLL3.7, pSico and pSicoR. Oligo design was as described (Rubinson et al.,

2003). The following target regions were chosen: Nucleophosmin (Npm),

GGCTGACAAAGACTATCAC; Luciferase, GAGCTGTTTCTGAGGAGCC; DNA

methylatransferase 1 (Dnmt1), GAGTGTGTGAGGGAGAAA; and P53,

GTACTCTCCTCCCCTCAAT.
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The CD8 oligo sequence was the same described in (Rubinson et al., 2003). All

constructs were verified by DNA sequencing. To amplify recombined and unrecombined

vector the following oligos were used: Loopout F, CCCGGTTAATTTGCATATAA-

TATTTC; and Loopout R: CATGATACAAAGGCATTAAAGCAG.

Antibodies, chemicals, flow cytometry and western blotting

Anti-α-tubulin antibody was from Sigma, the p53 antibody was a kind gift by K.

Helin (European Institute of Oncology, Milan), and the anti-Npm was a gift from P. G.

Pelicci (European Institute of Oncology, Milan) and E. Colombo (European Institute of

Oncology, Milan). All mouse antibodies used were monoclonal. Doxorubicin and

doxycycline were obtained from Sigma.

To assess expression of CD4 and CD8 in mice, single-cell suspensions of

splenocytes were blocked with anti-CD16 CD32 for 10 min on ice. After blocking, the

cells were incubated with phycoerythrin-conjugated anti-CD8, allophycocyanin-

conjugated anti-CD4, and PerCPCy5.5-conjugated anti-CD3 for 20 min at 4°C (BD

Pharmingen, San Diego). Acquisition of samples was performed on a FACScan flow

cytometer, and the data were analyzed with CELLQUEST software (BD

Immunocytometry Systems, San Jose, CA). Plots were gated on CD3 cells.

For cell-cycle analysis, 106 cells were fixed in 70% ethanol, washed in PBS, and

resuspended in 20 µg/ml propidium iodide (Sigma) and 200 µg/ml RNAseA in PBS.

For western blotting cells were lysed in a buffer containing 1% TritonX-100,

10mM TrisCl and 140mM NaCl and a protease inhibitor cocktail (SIGMA). Proteins

were resolved by SDS-PAGE, transferred to a filter, blocked overnight in 5% fat-free

milk in TBS 0.1% Tween (TBS-T). After 1h incubation with the primary antibody filters

were washed in TBS-T, incubated 30 minutes with the appropriate HRP-conjugated

secondary antibody, washed 3 times in TBS-T and processed using the ECL plus kit and

exposed to film.

Luciferase assay

For reporter assay, 293T cells were cotransfected in 12-well plates by using

FuGENE 6 with the appropriate shRNA vectors together with pGL3control and

pRLSV40. The total amount of transfected DNA was 500 ng per well. Firefly and Renilla

luciferase activity were measured 36 h after transfection by using the dual reporter kit
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(Promega) according to the manufacturer’s instruction. All experiments were performed

in triplicate.

Immunocytochemistry

Cells plated on glass coverslips that had been pre-incubated with 0.1% gelatin in

PBS at 37˚C for 30 minutes were fixed in 4% paraformaldehyde (in PBS) for 10 minutes,

washed with PBS and permeabilized by incubating in PBS 0.1% Triton X-100 for 10

minutes at room temperature. To prevent non-specific binding of the antibodies, cells

were then incubated with PBS in the presence of 5% Bovine Serum Albumin (BSA) for

30 minutes. The coverslips were then gently deposited, face down, on 100 µl of primary

antibody diluted in PBS 5% BSA. After one-hour, coverslips were washed three times

with PBS (5 minutes per wash). Cells were then incubated 30 minutes at RT with the

appropriate secondary antibody Cy3 (Amersham), Alexa 488- or Alexa 350-conjugated

(Molecular Probes). Coverslips were mounted in a 90% glycerol solution containing

diazabicyclo-(2.2.2)octane antifade (Sigma) and examined by fluorescence microscopy.

Images were further processed with the Adobe Photoshop software (Adobe).

Southern blot and methylation analysis

DNA was isolated from the indicated ES cell lines. To assess the levels of DNA

methylation, genomic DNA was digested with HpaII, and hybridized to pMR150 as a

probe for the minor satellite repeats (Chapman et al., 1984), or with an IAP-probe (Walsh

et al., 1998). For the methylation status of imprinted genes, a combined bisulfite

restriction analysis (COBRA) assay was performed with the CpGenome DNA

modification kit (Chemicon) using PCR primers and conditions described previously

(Lucifero et al., 2002). PCR products were gel purified, digested with BstUI or HpyCH4

IV and resolved on a 2% agarose gel. NNA was done as previously described

(Ramsahoye, 2002b).

Northern blots

For the small RNA Northern blotting, 15 µg total RNA isolated with TRIzol

(Invitrogen) according to the manufacturer’s instructions, and was resolved on a 15%

denaturing polyacrylamide gel, transferred to a nylon membrane, and was cross linked by

using the autocrosslink function of a Stratalinker. The membrane was hybridized
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overnight to a 32P 5’-labeled DNA probe corresponding to the 19-nt sense strand of the

p53 shRNA (GTACTCTCCTCCCCTCAAT). Hybridization and washes were performed

at 42˚C.

For detection of the p53 mRNA, 15 µg of total RNA was resolved on an agarose-

formaldehyde gel, transferred to a nylon membrane, and hybridized to a probe

corresponding to the entire p53 coding sequence.

Cloning and design of shRNAs

shRNAs were designed using the pSicoOligomaker 1.5 (developed by Andrea

Ventura/Jacks lab), which is freely available at

http://web.mit.edu/ccr/labs/jacks/protocols/pSico.html. Cloning into pSico and pSicoR

was done as described on the website.

Generation of lentivirus, infection and Cre-mediated recombination

Lentiviruses were generated essentially as described (Rubinson et al., 2003).

Briefly, 5 µg of lentiviral vector and 2.5 µg of each packaging vector were cotransfected

in 293T cells by using the FuGENE 6 reagent (Roche Diagnostics). Supernatants were

collected 36–48 h after transfection, filtered through a 0.4- µm filter, and used directly to

infect MEFs. Two rounds of infection 8 h apart were usually sufficient to infect 90% of

cells. GFP-positive cells were sorted 3–4 days after infection. For ES cell infection, the

viral supernatant was centrifuged at 25,000 rpm in a Beckman SW41t rotor for 1.5 h, the

viral pellet was resuspended in 200 µl of ES cell medium, and was incubated 6 h at 37°C

with 10,000–20,000 cells. After infection, ES cells were plated in 10-cm dishes with

feeders and GFP-positive colonies were isolated 4–5 days later. On average, 10–30% of

ES colonies were GFP-positive. Recombinant adenoviral stocks were purchased from the

Gene Transfer Vector Core facility of University of Iowa College of Medicine (Iowa

City, IA). Infections were performed by using 100 plaque-forming units of virus per cell.

The number of integrations was determined by Southern blot analysis. Genomic DNA

was digested with XbaI (single cut in the viral backbone) and probed with an EGFP-

probe.

Cre-mediated recombination was achieved by transiently tranfecting a Cre-

recombinase containing plasmid. Briefly, after introducing the Cre plasmid into the ES

cells by electroporation, cells were cultured for 24h (not longer, to avoid random
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integration of plasmid) in ES medium plus puromycin. GFP-negative subclones were

picked, expanded and tested for recombination (Cdx21Lox).

Immunohistochemistry and RT-PCR

Cdx2 staining of blastocysts was done as described in (Strumpf et al., 2005). The

protocol is available on the Rossant laboratory website

(http://www.mshri.on.ca/rossant/protocols/immunoStain.html). Monoclonal anti-Cdx2

(CDX2-88, BioGenex, CA, USA) was used for all Cdx2 stainings. RT-PCR was done

with a One-Step RT-PCR Kit (Qiagen) using the following primer: β-actin 5-

ggcccagagcaagagaggtatcc-3 (forward) and 5-acgcacgatttccctctcagc-3 (reverse), Oct-4

(333bp) ggatggcatactgtggacct (forward) and agatggtggtctggctgaac (reverse), Cdx2

(225bp) AAACCTGTGCGAGTGGATG (forward) and

CTGCGGTTCTGAAACCAAAT (reverse). β-actin RT primer were published in ref.

(Strumpf et al., 2005), and Oct-4 and Cdx2 primer were design using PRIMER3.

Nuclear transfer, embryo transfer, ES cell derivation and 2N/4N blastocyst

injections

Nuclear transfer was done as described (Eggan et al., 2001a; Wakayama et al.,

2005). Nuclear transfer embryos were transferred at day 3.5 (morula/blastocyst stage)

into the uteri of day 2.5 pseudo-pregnant recipient females. For ES cell derivation, the

zona pellucida was removed using acidic tyrode (AT) solution and blastocyst were

explanted on irradiated feeders in ES medium plus MEK1 inhibitor (PD98059). Diploid

and tetraploid blastocyst injections were done as described in (Wang and Jaenisch, 2004).

ES cell manipulation

ES cells were cultivated on irradiated mouse embryonic fibroblasts (MEFs) in

DMEM containing 15% fetal calf serum, leukemia inhibiting factor,

penicillin/streptomycin, L-glutamine, and non-essential amino acids. All ES cells were

depleted of feeder cells for two passages on 0.2% gelatine before isolating DNA.

RRBS library construction and sequencing

Mouse ES DNA (50-100 µg) was digested to completion by overnight incubation

with 1,000 units of BglII and electrophoresed on a 1.8% agarose gel. Marker lanes were
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stained with SYBR Green (Invitrogen). A narrow slice containing the 500-600 bp

fraction was excised from the unstained preparative portion of the gel. DNA was

recovered by electroelution, phenol extraction and ethanol precipitation as described

elsewhere (Garnes, 2002). Typical yields were 300-600 ng of size-selected BglII

fragments as measured by PicoGreen fluorescence (Invitrogen). The size-selected BglII

fragments (1-2 pmol) were ligated to 700 pmol BglII adapter pre-annealed from

oligodeoxynucleotides 5’-AGTTATTCCGGACTGTCGAAGCTGAATGCCATGG and

5’-pGATCCCATGGCATTCAGCTTCGACAGTCCGGAAT in 70 µl containing 2,400

units T4 DNA ligase (New England Biolabs) for 16 h at 14°C. Excess adapter was

removed by ultrafiltration (Millipore Montage) followed by preparative electrophoresis in

2% agarose and electroelution, yielding 50-100 ng of adapter-ligated material.

Adapter-ligated, size-selected BglII fragments (50 ng) were bisulfite-treated using

the reagents and protocol of the CpGenome DNA modification kit (Chemicon) with the

following modifications: the DNA was alkali-denatured for 20 min. at 55°C; the total

reaction volume was increased from 650 µl to 750 µl and contained 0.22 g urea (Paulin et

al., 1998) ; the mixture was incubated for 24 h at 55°C. After alkaline desulfonation and

final desalting, single-stranded uracil-containing reaction products were eluted in 40 µl of

TE buffer and converted to double-stranded DNA by PCR with primers 5’-

TTGGATTGTTGAAGTTGAATG and 5’-

AAACTATCAAAACTAAATACCATAAAATC designed to amplify molecules

carrying bisulfite-modified adapter sequences at both ends. For each bisulfite reaction,

eight 50 µl PCRs were performed, each containing 2.5 µl bisulfite-treated DNA, 25 pmol

of each PCR primer and 2.5 units PfuTurboCx Hotstart DNA polymerase (Stratagene).

Thermocycling included eight cycles of “touchdown” (Don et al., 1991) at annealing

temperatures from 55°C to 52°C (two cycles at each temperature) followed by 10 cycles

at an annealing temperature of 51°C. Denaturation (94°C), annealing and extension

(72°C) times were 10 s, 30 s and 3 min., respectively. PCR products were cleaned-up by

ultrafiltration followed by preparative electrophoresis on a 2% agarose gel. Typical yields

were between 50 and 100 ng for each library. Gel-purified PCR product (4 ng) were

incubated for 5 min with 1 µl pCR BluntII TOPO vector and cloned by electroporation of
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Escherichia coli TOP10 (Invitrogen). The cloning efficiency was ~2,000 colonies per ng

of PCR product.

Plasmid DNA was isolated by standard protocols, and cloned inserts were

sequenced using 2.7 pmol M13 reverse primer and 2 µl BigDye3.1 mix (Applied

Biosystems) in 10-µl sequencing reactions (25 cycles). Caused by preferential cloning in

one orientation, ~80% of the sequences were the G-poor strand. Most inserts that had

been cloned in the other orientation (C-poor strand) sequenced poorly, with peak-heights

and sequence quality suddenly dropping after 300-400 bases.

Data analysis

In silico digestion of the mouse genome (NCBI Build 33, May 2004) was

performed at BglII sites, followed by selection of fragments ranging from 440 to 640

bases. Cytosines were converted to thymine, with upper/lower case used to differentiate

converted from original thymines. Each strand was converted separately. Sequencing

reads were mapped to the genome by using NCBI BLAST (without query filtering) to

search the database of size-selected and converted BglII fragments. The top BLAST hit

determined the most probable genome location of each read and also permitted

identification of original and converted cytosines over the high-scoring segment pair

length. The repeat content of the in silico reduced representation and the sets of

sequencing reads were compared to that of the whole genome using RepeatMasker

(http://www.repeatmasker.org). Locations of all sequence reads relative to selected

genomic landmarks were determined by comparing fragment coordinates to those of the

RefSeq and Ensembl transcript sets and CpG islands from UCSC.

The expected number of redundant RRBS sequences and the sequence overlap

between two DNA samples were calculated by composite Poisson statistics in 5 bp bins

across the range of insert sizes. Di is the number of BglII fragments in the reference

genome that fall into bin i. Nai is the number of successful sequencing reads from DNA

sample a that fall into bin i. ∑(Nai
2/2Di) double-hits in sample a are expected by random

sampling (Altshuler et al., 2000). The expected number of BglII fragments sequenced at

least once in sample a and in sample b is ∑[(1-e -(Nai/Di))x(1-e -(Nbi/Di))xDi].
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Chapter 3- Results

Cre-lox regulated conditional RNA interference in cells and mice

Abstract: The use of RNA interference for studying gene function has become an

essential part of biology. Owing to the dominant nature of RNAi, a major limitation of

this approach is that germ-line transmission can be obtained only for shRNAs targeting

genes whose knock-down is compatible with animal viability and fertility. Moreover,

even for cell-based applications, constitutive knock-down of gene expression by RNAi

can limit the scope of experiments, especially for genes whose inhibition leads to cell

lethality. To overcome these limitations, and to extend the applications of RNAi in

mammalian systems, we have developed a Cre-lox-based approach for the conditional

expression of shRNA. Two different strategies were used to generate mouse embryonic

fibroblasts (MEFs), embryonic stem (ES) cells and transgenic mice in which the

expression of an shRNA is tightly regulated in a Cre-dependent manner. One vector

allows for conditional activation of shRNA expression, whereas the other permits

conditional inactivation of expression of the hairpin RNA. The ability to efficiently

control shRNA expression using these vectors was shown in cell-based experiments by

knocking down p53, nucleophosmin and DNA methyltransferase-1. We also demonstrate

the usefulness of this approach to achieve conditional, tissue-specific RNA interference

in Cre-expressing transgenic mice. Combined with the growing array of Cre expression

strategies, these vectors allow spatial and temporal control of shRNA expression in vivo

and should facilitate functional genetic analysis in mammals.

This part of Chapter 3 has been published:

Ventura A*, Meissner A*, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R,

Jacks T. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl

Acad Sci U S A. 2004 Jul 13; 101 (28):10380-5.

*equal contributing authors
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As outlined in Chapter 1 the rational for generating a system for conditional gene

suppression by RNAi was to investigate conditions, such as global hypomethylation, that

could enhance the reprogramming efficiency. The vectors described here allow in a

simple manner to study the effects of transiently down regulating essential genes. By

subsequently reversing the knockdown and thereby restoring endogenous gene

expression many deleterious effects of longer term suppression can be avoided. In the

following part, I will describe how the vectors were generated and how the effectiveness

of both vectors was tested for a number genes in vitro and in vivo.

Generation of pSico and pSicoR

The U6 promoter has been widely used to drive the expression of shRNAs and a

U6-based lentiviral vector for the generation of transgenic mice has been recently

described (Rubinson et al., 2003). To control shRNA expression in a Cre-dependent

manner, we decided to modify the mouse U6 promoter by inserting a Lox-STOP-Lox

cassette. Similar to other RNA polymerase III promoters, the U6 promoter is extremely

compact, consisting of a tightly spaced TATA box, a proximal sequence element (PSE),

and a distal sequence element (DSE) (Fig. 6a). Mutagenesis experiments have

demonstrated that while the DSE is partially dispensable for transcriptional activity, the

PSE and the TATA box are absolutely required. Moreover, the spacing between the PSE

and the TATA box (17 nt) and between the TATA box and the transcription start site (25

nt) is critical, as even small changes have been shown to severely impair promoter

activity (Paule and White, 2000). A consequence is that to effectively suppress the

activity of the U6 promoter, the Lox-STOP-Lox element must be positioned either

between the PSE and the TATA box or between the TATA box and the transcription start

site. In addition, to reconstitute a functional promoter, after Cre expression, the normal

spacing between PSE, TATA box, and transcription start site must be restored. The latter

consideration precludes the utilization of a classic lox-STOP-lox cassette because, after

Cre-mediated recombination, the residual loxP site (34 nt) would necessarily increase the

PSE-TATA or the TATA-start-site spacing, thus resulting in a non-functional promoter

(See Fig. 7).
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Figure 6: Generation of pSico and pSicoR. a) Schematic representation of the mouse U6 promoter.
The spacing between the DSE, the PSE, the TATAbox, and the transcription start site (1) is
indicated. b) Comparison between the sequence of a loxP site and a TATAlox site (Upper).
Comparison between the sequence of the wild-type mouse U6 promoter and the sequence of the U6
promoter with a TATAlox site replacing the TATA box (Lower). c) The TATAlox can replace the
TATA box in the U6 promoter. Equal amounts of the wild-type U6 promoter and of the TATAlox
U6 promoter (empty or driving the expression of shRNA against the firefly luciferase gene) were
transfected in 293T cells together with reporter plasmids expressing firefly luciferase and renilla
luciferase. Thirty-six hours later, cells were lysed and the ratio between firefly and renilla
luciferase activity was measured. d) A TATAlox-STOPTATAlox cassette in the U6 promoter
efficiently suppresses shRNA expression. Increasing amounts (0–200 ng) of plasmids containing
the indicated version of the U6 promoter were transfected in 293T cells together with reporter
plasmids, and luciferase activity was measured as in c. e) Schematic representation of pSico before
and after Cre-mediated recombination. f) Schematic representation of pSicoR before and after Cre-
mediated recombination. SINLTR, self-inactivating long terminal repeats; Psi, required for viral
RNA packaging; cPPT, central polypurine tract; EGFP: enhanced GFP; WRE, woodchuck
regulatory element.
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Figure 7: a) Schematic representation of the U6 promoters carrying the lox-CMVGFP-lox tested
in panel 6b. The CMV-GFP cassette is not drawn to scale. Test 1 and Test 2 have the lox-STOP-
lox cassette between the DSE and the PSE. In Test 3 the cassette is positioned between the PSE
and the TATA box and finally in Test 4 it is positioned between the TATAbox  and the putative
transcription start site. b) The indicated U6 constructs were assayed as in Figure 6c for their
ability to induce knock-down of the firefly luciferase gene. Note that constructs containing the
lox-stop-lox cassette upstream of the PSE are still capable of efficiently repressing luciferase
activity (Test 1 and Test 2), while the constructs in which the lox-stop-lox cassette is situated
between the PSE and the TATA (Test 3) or between the TATA and the transcription start site
(Test 4), are inactive even in the recombined conformation indicating that in both cases the
residual lox site negatively affects U6 promoter activity.
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To overcome these limitations, we generated a bifunctional lox site (TATAlox), that, in

addition to retaining the ability to undergo Cre-mediated recombination, contains a

functional TATA box in its spacer region (Fig. 6b-d).

As shown in Figure 6, when the TATAlox replaces the TATA box site in the U6

promoter, the spacing between PSE, TATA and transcriptional start site is not altered

(Fig. 6b), and the resulting promoter retains transcriptional activity (Fig. 6c).

To create a conditional U6 promoter, a cytomegalovirus (CMV)-enhanced GFP

stop/reporter cassette was inserted between two TATAlox sites so that after Cre-mediated

recombination the cassette would be excised, generating a functional U6 promoter with a

TATAlox in place of the TATA box (Fig. 6d). A T6 sequence was positioned

immediately upstream of the CMV promoter to serve as a termination signal for RNA

polymerase III. The terminator combined with the inserted CMV-GFP cassette

completely suppressed the activity of the U6 promoter (Figs. 6d and 8c and 8d). To

facilitate the generation of conditional knock-down mice and cell lines, the conditional

U6 cassette was inserted into a self-inactivating lentiviral vector derived from pLL3.7

(Rubinson et al., 2003). The resulting plasmid was named pSico (Fig. 6e).

To allow for conditional inactivation of shRNA expression, we generated a

second vector named pSicoR (Fig. 6f). In pSicoR, the CMV-GFP reporter cassette is

placed downstream of the U6 promoter and does not affect its activity. Two loxP sites in

the same orientation are present in this vector; the first positioned immediately upstream

of the PSE in the U6 promoter, and the second immediately downstream of the GFP-

coding sequence. In contrast to cells infected with pSico, cells infected with pSicoR are

expected to constitutively transcribe the desired shRNA until a Cre-mediated

recombination event leads to the excision of the CMV-GFP cassette and an essential part

of the U6 promoter. Importantly, in both pSico and pSicoR, the CMV-GFP cassette

marks infected cells and loss of GFP expression indicates successful Cre-mediated

recombination.

Cre-regulated RNAi in cells

The ability of pSico and pSicoR vectors to conditional silence endogenous genes

was demonstrated by insertion of a hairpin designed to inhibit expression of the mouse

tumor suppressor gene p53. As a control, the same sequence was cloned into the



Chapter 3- Results Conditional RNA Interference

50

constitutive shRNA vector pLL3.7. In pLL3.7 the CMV-GFP cassette is located

downstream of the U6 promoter and is flanked by loxP sites such that Cre-mediated

recombination is expected to result in loss of GFP expression without affecting shRNA

expression (Rubinson et al., 2003). These three constructs were then used to generate

lentiviruses and infect MEFs. To simplify the detection of p53, MEFs expressing high

basal levels of a transcriptionally inactive point mutant (R270H) p53 allele (K. Olive and

T. Jacks, unpublished work) were used in these experiments. High-efficiency

transduction by all of these vectors was achieved as indicated by uniform GFP expression

in infected cells (Figure 8b and data not shown). As shown in Fig. 8, after superinfection

Figure 8: Cre-regulated knockdown of p53. a) p53R270H/- MEFs infected with the indicated lentiviruses
were sorted for GFP positivity and infected with Ad or Ad-Cre. Four days after infection, genomic DNA
was extracted, and a PCR was performed to amplify the recombined and unrecombined viral DNA. b) The
same cells were analyzed by epifluorescence microscopy to detect GFP. Similar cell density and identical
exposure time was used for all images. c) Fifteen micrograms of totalRNAextracted from the above
indicated MEFs was separated on a 15% denaturing polyacrylamide gel, transferred on a nitrocellulose
filter, and hybridized to a radi-labeled 19mer corresponding to the sense strand of the p53 shRNA. Equal
RNA loading was assessed by ethidium bromide staining of the upper part of the gel (Lower). d) Northern
(Upper) and Western blotting (Lower) showing p53 knock-down in the above indicated cells.
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with a Cre-expressing recombinant adenovirus (Ad-Cre), near complete recombination

with concomitant loss of GFP fluorescence was observed for all vectors. One week after

Cre expression, high levels of the p53-siRNA were detected in cells infected with pSico-

p53 (Fig. 8c), whereas no p53-siRNA was observed in the same cells in the absence of

Cre expression, confirming the complete suppression of U6 promoter activity by the

TATAlox-STOP-TATAlox cassette. The length of the processed RNA (21-24 nt) was

identical in cells infected with pLL3.7-p53, pSico-p53 (after Ad-Cre infection), or

pSicoR-p53 (before Ad-Cre infection), indicating that the presence of the TATAlox in

pSico does not qualitatively affect shRNA production. Finally, infection with Ad-Cre led

to almost complete disappearance of p53-siRNA in pSicoR-p53-infected cells (Fig. 8c).

Consistent with functional p53-siRNA expression by these vectors, Cre-mediated

recombination resulted in a dramatic reduction of both p53 mRNA and protein levels in

pSico-p53-infected cells (Fig. 8d). Conversely, pSicoR-p53 generated a p53 knock-down

that was reversed upon Ad-Cre infection (Fig. 8d). We noticed an unexpected increase in

p53-siRNA and p53 knock-down after Cre expression in cells infected with pLL3.7-p53

(Fig. 8c and 8d, lanes 2 and 3). This increase could reflect promoter interference because

the CMV and the U6 promoters are in close proximity in pLL3.7 before to Cre-mediated

recombination.

As additional proof of concept, we cloned short hairpins directed against the

nucleolar protein Npm and Dnmt1 into pSico and pSicoR. Npm is a putative tumor-

suppressor gene involved in a number of chromosomal translocations associated with

human leukemias and lymphomas, and has been shown to physically and functionally

interact with the tumor suppressors p19ARF and p53 (Bertwistle et al., 2004; Colombo et

al., 2002). Specific, Cre-dependent knock-down of Npm was observed in both MEFs and

ES cell clones infected with pSico-Npm (Figs. 9a and b). The opposite effect, Cre-

dependent reexpression of Npm, was observed in pSicoR-Npm infected MEFs (Figures

9a and 9c).

The characterization of ES cells mutant for Dnmt1 has been reported (Li et al.,

1992), and demonstrated that Dnmt1 is required for genome-wide maintenance of

cytosine methylation. Dnmt1-deficient ES cells are viable and proliferate normally,

despite substantial loss of methylation; however, they die upon differentiation. Whereas
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Figure 9: Cre-regulated knockdown of Npm and Dnmt1. a) Cre-regulated knock-down of Npm. MEFs
were infected with the indicated lentiviruses, and GFP-positive cells were sorted and were superinfected
with empty Ad or Ad-Cre. One week later, whole-cell lysates were separated by SDS PAGE, and were
subjected to Western blotting against Npm and tubulin. b) ES cells carrying a doxycycline-inducible Cre
(C. Beard and R.J., unpublished data) were infected with the indicated lentiviruses. GFP-positive clones
were isolated, passaged two times, and were either left untreated or were incubated with 2 µg/ml
doxycycline for 1 week. Immunoblot analysis was performed as in a. c) Immunofluorescence microscopy
analysis of MEFs infected with pSico-Npm, pSicoR-Npm or pSico-CD8. After lentiviral infection GFP-
positive MEFs were sorted and superinfected with empty Adenovirus or Ad-Cre. One week later cells
were co-plated on glass coverslips, fixed and decorated with anti Npm antibody (red). Nuclei were stained
with DAPI. d) Cre-regulated knock-down of Dnmt1 affects cytosine methylation. Methylation analysis of
minor satellite DNA. ES cells carrying a doxycycline-inducible Cre transgene were infected with the
indicated lentiviruses. Single GFP-positive clones were isolated, expanded, and passaged five times
before being either mock-treated or incubated with 2 µg/ml doxycycline. After five more passages, the
genomic DNA was extracted and digested with the indicated enzymes and subjected to Southern blot
analysis. e) As in d, but the genomic DNA was treated with sodium bisulfite, subjected to PCR to amplify
the indicated imprinted regions, and digested with BstUI.
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re-expression of the Dnmt1 cDNA in these cells leads to methylation of bulk genomic

DNA and nonimprinted genes, the methylation pattern of imprinted loci cannot be

restored without germ-line passage (Tucker et al., 1996). We tested whether we could

recapitulate the phenotype observed in Dnmt1-deficient ES cells by using pSico-Dnmt1

and pSicoR-Dnmt1. As shown in Figure 9, pSico-Dnmt1-infected ES cells underwent

significant loss of CpG methylation of minor satellites (Fig. 9d) and of two imprinted

genes tested (Fig. 9e) upon Cre induction. Importantly, the reacquisition of DNA

methylation at minor satellites sequences, but not at imprinted loci in pSicoR-Dnmt1

after Cre-mediated recombination, confirms previous results obtained with reexpression

of Dnmt1 (Tucker et al., 1996). These results further illustrate the potential for

application of the pSicoR vector in vitro and in vivo to perform “rescue” experiments.

Conditional RNAi in mice

One motivation for incorporating a conditional U6 cassette into a lentiviral vector

was to rapidly generate conditional knock-down mice. To demonstrate this application

directly, ES cells were infected with pSico-CD8 (Fig. 10a), which was designed to inhibit

expression of the T lymphocyte cell surface marker CD8 (Rubinson et al., 2003). Three

pSico-CD8 ES clones were used to generate chimeric mice, and transmission of the

pSico-CD8 transgene to the progeny was observed for two of them. All transgenic mice

were easily identified by macroscopic GFP visualization (Fig. 10b), although we

observed some variability in the extent and distribution of GFP expression among

littermates. Importantly, all transgenic mice produced normal amounts of CD4+ and CD8+

lymphocytes and were apparently normal and fertile, indicating that the presence of the

nonexpressing pSico-CD8 transgene before Cre activation did not affect CD8 expression

and was compatible with normal mouse development. To achieve either global or tissue-

specific activation of the CD8 shRNA, pSico-CD8 chimeras were crossed to Msx2-Cre or

Lck-Cre transgenic mice that express Cre in the oocyte (Gaudet et al., 2004; Sun et al.,

2000), or under the control of a T cell-specific promoter (Hennet et al., 1995),

respectively. Flourescence-activated cell sorter analysis demonstrated that pSico-

CD8;Lck-Cre and pSico-CD8;Msx2-Cre mice had a specific reduction in splenic CD8+,

but not CD4+ T lymphocytes as compared to controls (Fig. 10c). As predicted, the pSico-

CD8;Msx2-Cre progeny showed complete recombination of
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Figure 10: C o n d i t i o n a l
knockdown of CD8 in
transgenic mice. a)  ES cells
infected with pSico-CD8
visualized with an inverted
fluorescence microscope. b) A
litter of newborns derived from
a cross between a pSico-CD8
chimera and an Lck-Cre female.
Three pups present bright GFP
fluorescence, indicating germ-
line transmission of the pSico-
CD8 transgene. c) Knock-down
of CD8 in the spleen of Msx2-
Cre   pSico-CD8 and Lck-Cre
pSico-CD8 mice. Chimeras
from pSico-CD8-infected ES
cells were crossed to Msx2-Cre
or Lck-Cre animals. The
resulting mice were genotyped
for the presence of Cre and
pSico. Splenocytes from 1- to
3-week old mice with the
indicated genotypes were
harvested, stained for CD3,
CD4, and CD8 expression, and
analyzed by flow cytometry.
Only CD3 cells were plotted.
One representative example of
littermates for each cross is
shown. d)  PCR detection of
Cre-mediated recombination of
pSico-CD8 in genomic DNA
extracted from the tail (A) or the
thymus (B ) of mice with the
indicated genotypes.
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the pSicoCD8 transgene and lacked detectable GFP expression, while in the pSico-

CD8;LckCre mice recombination was detected in the thymus but not in other tissues (Fig.

10d and data not shown). Transgenic mice derived from two different ES clones gave

similar results.

Tetraploid blastocyst complementation represents a faster alternative to diploid

blastocyst injection because it allows the generation of entirely ES-derived mice without

passage through chimeras (Eggan et al., 2001a; Tanaka et al., 2001). In principle, this

technology applied to pSico-infected ES cells would allow the generation of conditional

Figure 11: Generation of conditional knockdown embryos by tetraploid complementation. a) A postnatal
day 14.5 embryo derived by tetraploid complementation using the pSico-p53 #1 ES clone. The area
enclosed by the dashed line corresponds to the non-ES cell-derived placenta. b) PCR detection of
recombination in MEFs derived from the indicated embryos. Genomic DNA was extracted 4 days after
Ad or Ad-Cre infection and subjected to PCR. c) Histogram overlays showing loss of GFP expression in
MEFs derived from pSico-p53#1 (Upper) and pSico-p53#3 (Lower) embryos 4 days after Ad-Cre (green
plot) or Ad empty (purple filled plot) infection. Control, GFP-negative MEFs (red plot) are included as
reference. d) Cell cycle profile of MEFs derived from embryos with the indicated genotypes infected with
Adeno empty or AdenoCre and either mock treated or treated with 1µg/ml doxorubicin for 18 hours. e)
MEFs derved from the indicated tetraploid complementation pSico-p53 embryos, or from wild-type
embryos, were treated with doxorubicin for 18 h and subjected to Western blot against p53 and beta-
tubulin.
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knock-down mice in ~5-6 weeks (1 week for cloning the shRNA, 1-2 weeks for ES cells

infection and clone selection, and ~2 weeks for tetraploid blastocyst injection and

gestation). To test this protocol directly, ES cells were infected with pSico-p53 and two

different clones, pSico-p53#1 and pSico-p53#3, were injected into tetraploid blastocysts.

As a rapid way to assess the inducibility of the p53 shRNA in ES cell-derived animals,

midgestation embryos were recovered from two recipients females. Two apparently

normal, GFP positive embryos were recovered; one each from ES clone pSico-p53 #1

and pSico-p53 #3 (Fig. 11a and data not shown). MEFs generated from these embryos

were passaged once and infected with Ad or Ad-Cre. As expected, Cre expression

induced significant recombination and loss of GFP expression (Figs. 11b and c).

Importantly, in Ad-Cre-infected cells, p53 induction and cell-cycle arrest after

doxorubicin treatment were significantly inhibited compared to Ad-infected control cells

(Figs. 11d and e).
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Generation of nuclear transfer-derived pluripotent ES cells from cloned

Cdx2-deficient blastocysts

Abstract: The derivation of embryonic stem (ES) cells by nuclear transfer holds great

promise for research and therapy but involves the destruction of cloned human

blastocysts. Proof of principle experiments have shown that “customized” ES cells

derived by nuclear transfer (NT-ESCs) can be used to correct immuno-deficiency in mice

(Rideout et al., 2002). Altered Nuclear Transfer (ANT) has been proposed as a variation

of nuclear transfer because it would create abnormal nuclear transfer blastocysts that are

inherently unable to implant into the uterus but would be capable of generating

customized ES cells (Hurlbut, 2005). To assess the experimental validity of this concept

we have used nuclear transfer to derive mouse blastocysts from donor fibroblasts that

carried a short hairpin RNA construct targeting Cdx2 (pSicoR-Cdx22Lox). The conditional

lentivirus-based vector, pSicoR, was described extensively in the previous part. Cloned

blastocysts were morphologically abnormal, lacked functional trophoblast and failed to

implant into the uterus. However, they efficiently generated pluripotent embryonic stem

cells when explanted into culture.

This part of chapter 3 has been published:

Meissner A, and Jaenisch R. Generation of nuclear transfer-derived pluripotent ES cells

from cloned Cdx2-deficient blastocysts. Nature. 2006 Jan 12; 439 (7073): 212-5.
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The second application of our conditional gene knockdown approach using RNAi

was aimed at testing the notion that development of an embryo derived by SCNT might

be restricted by temporarily inactivating Cdx2, yet the same embryo might be fully

competent for extracting embryonic stem cell lines useful for therapeutic purposes.

Altered nuclear transfer (ANT)

Survival of the normal embryo beyond implantation depends on the formation of

the trophectoderm lineage, the extra-embryonic lineage that forms the fetal-maternal

interface within the placenta. The second embryonic lineage that forms, the inner cell

mass (ICM), gives rise to all subsequent lineages in the embryo proper, and it is the ICM

that, upon explanting in culture, gives rise to ES cells. The “altered nuclear transfer”

(ANT) concept (Hurlbut, 2005) is based on the premise that the inactivation of a gene

crucial for trophectoderm development will eliminate the potential to form the fetal-

maternal interface, but will spare the ICM lineage. By genetically altering a somatic

donor cell before to nuclear transfer, one could generate cloned blastocysts that have no

potential to develop beyond the blastocyst stage because no placenta could be formed.

However, such cloned blastocysts could generate NT-ESCs derived from the ICM.

In this study we have performed a proof-of-principle experiment in mice to test

the validity of the ANT approach and chose Cdx2 as a candidate gene, as this gene

encodes the earliest-known trophectoderm-specific transcription factor that is activated in

the 8-cell embryo and is essential for establishment and function of the trophectoderm

lineage (Chawengsaksophak et al., 2004; Strumpf et al., 2005). Cdx2-deficient

blastocysts fail to maintain a blastocoel, lack epithelial integrity, dysregulate the ICM-

specific transcription factors Oct-4 and Nanog, and show increased cell death (Strumpf et

al., 2005). Importantly, Cdx2-deficient blastocysts are able to form an ICM and generate

ES cells when explanted in tissue culture (Chawengsaksophak et al., 2004; Strumpf et al.,

2005).

Generation of Cdx2 deficient NT-ES cells

We selected for functional short hairpin (sh)RNAs against Cdx2 as described in

Figures 12 and 13. The experimental scheme, outlined in Figure 14a, involved the

introduction of a conditional Cdx2 shRNA lentiviral vector (Fig. 14b) into primary tail-
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tip fibroblasts from neonatal F1 mice (C57BL/6x129/SvJae). Green fluorescent protein

(GFP)-positive

Figure 12: Selection of functional shRNAs. To select functional shRNAs against Cdx2, several
Cdx2 shRNA target sequences were cloned into the 3’UTR of a DsRed reporter construct. Next
transient co-transfections (293 cells) of the various DsRed-Cdx2 plasmids and the respective
knockdown constructs were used to determine the potency of each hairpin by fluorescence
microscopy and fluorescence activated cell sorting (FACS) analysis a) DNA sequence of the Cdx2
shRNA used. b) The sense strand sequence was cloned into the 3’UTR of a DsRed reporter gene
containing plasmid (Clontech). c) DsRed-Cdx2 was mixed with FUGENE (Roche) and split into two.
To the first well a pSicoR-CD8 (control, no target sequence present for the CD8 shRNA) was added
and to the second well the pSicoR-Cdx2 vector (knockdown, DsRed contains the target sequence).
Two different versions of the pSicoR vector were used, one containing a pgk-puro selection gene (d
and e) and the other one a CMV-EGFP cassette (f and g). d-g) The knockdown efficiency was
determined 24-48h post infection by fluorescence microscopy (images shown were taken with
identical exposure time) and fluorescence activated cell sorting (FACS) analysis (data not shown).
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Figure 13: Knockdown of
endogenous Cdx2. The knockdown
efficiency against endogenous Cdx2
was demonstrated using ZHBTc4
ES cells that upon downregulation
of Oct-4 (doxycycline dependent)
differentiate into trophectoderm
with concomitant upregulation of
Cdx2 expression. Semi-quantitative
RT-PCR was used with 25, 30 and
35 amplification cycles for Cdx2.
Cdx2 was readily detectable after
27h in the uninfected control cells.
In the presence of the shRNA no
Cdx2 was detected even after
prolonged repression of Oct-4, which was confirmed by immunohistochemistry (data not shown). In the
control cells, but not in the Cdx2 knockdown cells we detected a faint Cdx2 signal after 35 cycles of
amplification. The absence of the signal in the knockdown cells at 0h suggests that it might be real and
could originate from a small fraction of the ES cells that were differentiated. (ZHBTc4: Niwa et al., 2000)

Figure 14: Derivation of NT-ESCs from Cdx2-deficient blastocysts. a) Primary tail-tip fibroblasts were
infected with a conditional lentiviral RNA interference (RNAi) construct targeting Cdx2 before nuclear
transfer (NT). Blastocysts deficient for Cdx2 were morphologically abnormal and unable to implant but
gave rise to NT-ESCs. After initial expansion of the Cdx2 knockdown NT-ESCs (Cdx22Lox) we used
transient Cre expression to generate subclones (Cdx21Lox) with a deleted hairpin. To test the potency of ES
lines before and after ‘loop-out’ we used teratoma formation, diploid and tetraploid blastocyst injections
as well as nuclear transfer. b) The conditional RNAi system (pSicoR) has been described above. The
shRNA, which targets nucleotides 1890–1908 located in the 30 UTR of Cdx2, was cloned into the
conditional RNAi vector generating pSicoR-Cdx22Lox. This vector carries the Cdx2 shRNA construct and
an enhanced green fluorescence protein (EGFP) gene flanked by two LoxP sites (2Lox), which allows for
Cre-mediated deletion of the shRNA and the EGFP sequences.
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Cdx22Lox tail-tip fibroblasts were selected and used as donors for nuclear transfer. Cdx2-

deficient blastocysts derived from the manipulated donor cells were tested for their

potential to implant into the uterus and to generate pluripotent ES cells.

Of a total of 526 reconstructed oocytes, 350 formed pronuclei, of which 61

cleaved and developed into nuclear transfer morula/blastocysts. Cdx2 knockdown nuclear

transfer embryos showed no delay in developing to the early blastocyst stage compared to

Figure 15: Cdx2-deficient blastocysts and ES cell derivation. a) Cdx2 immunostaining of day 3.5–4.5
wild-type and nuclear transfer blastocysts. The following donor cells were used for the nuclear transfer
(from second column, left to right): Cdx22Lox tail-tip, Cdx22Lox ES cells, and Cdx21Lox ES cells. b) A
typical Cdx22Lox tail-tip nuclear transfer blastocyst is shown 84 h after activation of the reconstructed
oocytes. Cdx2-deficient blastocysts initially cavitated but failed to maintain the blastocoel and collapsed.
Below, an expanded nuclear transfer blastocyst derived from control cells is shown. c) RT–PCR analysis
of normal and Cdx2-deficient nuclear transfer preimplantation morula/blastocysts. Four 4-cell embryos
were pooled andRNA was extracted for reverse transcription. All other samples were prepared from single
morulae or blastocysts. Tail-tip fibroblasts (lane 6) express neither Cdx2 nor Oct-4. Trophectoderm stem
(TS) cells (lane 7) express Cdx2, but no Oct-4. A faint Cdx2-specific band, such as that seen in the
blastocyst containing the shRNA construct targeting Cdx2 shown in the figure, was detected in less than
half of the tested embryos; most gave no signal in this test. d) Derivation of ES cells from Cdx2-deficient
blastocysts. A Cdx22Lox tail-tip nuclear transfer-derived blastocyst with its initial outgrowth after 72 h
(left) and a wild-type blastocyst (right) with its initial outgrowth are shown.
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nuclear transfer embryos expressing a shRNA targeting CD8 ((Ventura et al., 2004); data

not shown). Figure 15a shows that GFP-positive Cdx22Lox nuclear transfer blastocysts did

not express Cdx2 as assessed by immunohistochemistry, in contrast to wild-type

blastocysts (column 1 and 2, Fig. 15a). Figure 15b shows that, when compared to control

nuclear transfer blastocysts, Cdx22Lox nuclear transfer blastocysts were morphologically

abnormal and failed to maintain a blastocoel cavity during in vitro cultivation, similar to

previous results with Cdx2 knockout blastocysts (Strumpf et al., 2005). Using semi-

quantitative polymerase chain reaction with reverse transcription (RT-PCR), we

confirmed the deficiency of Cdx2 expression in Cdx22Lox nuclear transfer blastocysts,

whereas control morulae and blastocysts showed robust Cdx2 expression (Fig. 15c).

Developmental potential of Cdx22Lox NT-ES cells

To assess whether Cdx2 deficiency interfered with postimplantation development,

Cdx22Lox nuclear transfer morulae/blastocysts were transferred into the uteri of pseudo-

pregnant females. The uteri were removed at embryonic day E6.5 and examined for sites

of implantation. Figure 16a shows no implantations in the uterus from a foster mother

transplanted with five Cdx22Lox nuclear transfer blastocysts, in contrast to a uterus

transplanted with five nuclear transfer control blastocysts that resulted in successful

implantations (Fig. 16b). As summarized in Table 2, none of the Cdx22Lox nuclear transfer

blastocysts formed visible implantation sites (0 out of 40), in contrast to control nuclear

transfer blastocysts that were derived from fibroblasts carrying the CD8 control shRNA

(6 out of 15). In addition, no evidence for delayed implantation was obtained, as we

failed to detect implantation sites at E7 or E8 in females transplanted with a total of 18

Cdx2 knockdown nuclear transfer embryos (data not shown). These results demonstrate

that nuclear transfer from donor fibroblasts carrying the pSicoR-Cdx22Lox virus resulted

in morphologically abnormal Cdx2-deficient nuclear transfer blastocysts that failed to

implant upon transfer into foster mothers.

To investigate whether Cdx2-deficient blastocysts can generate ES cells upon

explantation in culture, nuclear transfer Cdx22Lox blastocysts were transferred onto feeder

cells. While control nuclear transfer blastocysts formed trophoblastic outgrowths

characteristic of the trophectoderm lineage, the Cdx22Lox nuclear transfer blastocysts

failed to generate any trophoblast cells (Fig. 15d). Consistent with previous observations
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Figure 16: Cdx2-deficient cells maintain developmental potential but are unable to implant after nuclear
transfer. a-b) In each example shown, five nuclear transfer blastocysts were transferred at day 3.5 into the
uterus of a day 2.5 pseudo-pregnant female. a) Cdx2-deficient blastocysts fail to implant. A representative
uterus isolated at day 6.5 is shown. No deciduae were detectable from transplanted Cdx2-deficient
blastocysts. b) Control nuclear transfer blastocysts showed normal implantation sites at day 6.5. c) Bright-
field image of a postnatal Cdx22Lox ES chimaera. d) GFP signal indicates a contribution from Cdx22Lox ES
cells. e–g) Histological sections and anti-GFP staining from a newborn Cdx22Lox chimaera. There was a
contribution to the liver (endoderm; e) and muscle (mesoderm; f) but not to the intestine (g). h) Anti-Cdx2
staining of the intestine shown in g. i) Coat colour contribution of Cdx22Lox ES cells. Recipient blastocysts
have a C57BL/6 x DBA/2 F1 background and the Cdx22Lox ES cells a C57BL/6 x 129SvJae background.
The presence of agouti (129/SvJae) fur indicates donor cell contribution. A litter with one wild type (black
mouse below the top agouti), two low-contribution (middle) and two high-contribution chimaeras are
shown.
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(Chawengsaksophak et al., 2004; Strumpf et al., 2005), Cdx2-deficient blastocysts

generated ICM outgrowths that grew into stable, GFP-positive nuclear transfer Cdx22Lox

ES cell lines with an efficiency that was comparable to that of nuclear transfer blastocysts

derived from wild-type fibroblasts (14% of explanted blastocysts). As criterion for

pluripotency, we tested the ability of the nuclear transfer Cdx22Lox ES cell lines to form

chimeras when injected into diploid blastocysts. The GFP-labeled cells contributed

extensively to neonatal chimeras (Figs. 16c, d) and formed high-grade postnatal chimeras

(Fig. 16i, summarized in Table 3) with high contributions to most tissues (Fig. 16e, f),

with the notable exception of the intestine (Fig. 16g), which was entirely composed of

Cdx2-positive cells derived from the host blastocyst (Fig. 16h). This is in agreement with

previous reports, as it has been shown that Cdx2 is required for normal development of

the gastro-intestinal tract (Chawengsaksophak et al., 1997). We further explored the

developmental potency of the NT-ESCs using tetraploid complementation, which

Table 3: Developmental potential of ES cells deficient (Cdx22Lox) or proficient (Cdx21Lox)
for Cdx2 expression.

Table 2: Survival of clones to blastocyst and post-implantation stage after nuclear transfer
from different donor cells.

Shown are the number of reconstructed oocytes with pseudo-pronuclei after 5–6 h of
activation. Morula/blastocyst transfers were done on day 3.5. pSicoR-CD82Lox fibroblasts
carry a shRNA against CD8 (see above).
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represents the most stringent test for pluripotency, as the resulting “ES mice” are entirely

composed of cells derived from the injected ES cells (Eggan et al., 2001b). Consistent

with previous results (Chawengsaksophak et al., 2004), transfer of the Cdx22Lox ES cells

resulted in no live embryos at E14 (Table 3). These data indicate that nuclear transfer

using pSicoR-Cdx22Lox fibroblasts generates abnormal blastocysts that are inherently

unable to implant and grow into a fetus but are able to generate pluripotent ES cells that

have a diminished developmental potency as compared to wild-type ES cells.

Restoring Cdx2 function

To assess whether NT-ESCs derived from Cdx2-deficient blastocysts could have

the same pluripotency as wild-type ES cells, we investigated whether the block to normal

developmental potential could be relieved by reversing the effects of the Cdx2 gene

knock-down. Normal Cdx2 gene function was restored in Cdx22Lox ES cells by transient

transfection of a Cre plasmid, resulting in the deletion of the Cdx2 shRNA and EGFP

marker gene (Cdx22Lox to Cdx21Lox; compare Fig. 14b), and rendering the cells Cdx2

competent and GFP negative. Nuclear transfer from Cdx21Lox donor cells generated GFP

negative normal appearing nuclear transfer blastocysts that expressed wild type levels of

Cdx2, as shown by immunostaining (Fig. 15a, right column) and RT-PCR (Fig. 15c, lane

5). To test whether deletion of the shRNA would restore pluripotency, the Cdx21Lox ES

cells were injected into tetraploid blastocysts. As shown in Table 2, Cdx21Lox ES cells

efficiently generated ES mice in contrast to the Cdx22Lox ES cells that were unable to give

rise to ES mice. These results show that the deletion of the Cdx2 shRNA sequences

creates ES cells that can generate all somatic tissues including normal intestinal cells,

which cannot be derived from the Cdx22Lox parental ES cells (compare Fig. 16g, h).

Finally, to test whether totipotency of Cdx21Lox ES cell nuclei was recovered, we

transplanted Cdx21Lox blastocysts derived by nuclear transfer using Cdx21Lox donor ES

cells into pseudo-pregnant foster mothers. As summarized in Table 2, normal-sized

implants were detected at E6.5. These results confirm that Cdx2 deficiency was

responsible for the failure of clones to generate functional blastocysts and exclude other

genetic alterations acquired during in vitro manipulation of the cells in the characteristic

block to implantation. Most importantly, our data demonstrate that ES cells competent to

generate all lineages can be derived from abnormal nuclear transfer blastocysts.
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Reduced Representation Bisulfite Sequencing for comparative high-

resolution DNA methylation analysis

Abstract: To improve the study of epigenetic differences between cell types more global

approaches for analyzing epigenetic modifications are required. We have developed a

large-scale random approach termed reduced representation bisulfite sequencing (RRBS)

for analyzing and comparing genomic methylation patterns. BglII restriction fragments

were size-selected to 500-600 bp, equipped with adapters, treated with bisulfite, PCR

amplified, cloned and sequenced. We constructed RRBS libraries from murine ES cells

and from ES cells lacking DNA methyltransferases Dnmt3a and 3b and with knocked-

down (kd) levels of Dnmt1 (Dnmt[1kd,3a-/-,3b-/-]). Sequencing of 960 RRBS clones from

Dnmt[1kd,3a-/-,3b-/-] cells generated 343 kb of non-redundant bisulfite sequence covering

66,212 cytosines in the genome. All but 38 cytosines had been converted to uracil

indicating a conversion rate of >99.9%. Of the remaining cytosines 35 were found in

CpG and 3 in CpT dinucleotides. Non-CpG methylation was >250-fold reduced

compared to wild-type ES cells, consistent with a role for Dnmt3a and/or Dnmt3b in CpA

and CpT methylation. Closer inspection revealed neither a consensus sequence around

the methylated sites nor evidence for clustering of residual methylation in the genome.

Our findings indicate random loss rather than specific maintenance of methylation in

Dnmt[1kd,3a-/-,3b-/-] cells. Near-complete bisulfite conversion and largely unbiased

representation of RRBS libraries suggest that random shotgun bisulfite sequencing can be

scaled to a genome-wide approach.

This part of Chapter 3 has been published:

Meissner A*, Gnirke A*, Ramsahoye B, Bell G, Lander ES, Jaenisch R. Reduced

Representation Bisulfite Sequencing for comparative high-resolution DNA methylation

analysis. Nucleic Acid Research. 2005 Oct 13; 33 (18): 5868-77.

* equal contributing authors
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Another approach in studying epigenetic reprogramming is to determine the

epigenetic differences between different cellular states, and to further elucidate what

defines the nature of “stemness” within a stem cell. DNA methylation is probably the

best studied epigenetic modification that determines patterns of gene expression within a

cell. In order to better define the epigenome of different cell types, we have developed an

approach for large-scale high resolution DNA methylation analysis.

Reduced representation bisulfite sequencing

RRBS is analogous to the reduced representation shotgun sequencing (RRS) used

for single nucleotide polymorphism (SNP) discovery (Altshuler et al., 2000). The method

is based on size selection of restriction fragments to generate a “reduced representation”

of the genome of a strain, tissue or cell type.

For this study, we digested genomic DNA with BglII and purified fragments

between 500 and 600 bp in size on an agarose gel. Based on the available mouse genome

sequence, BglII digestion is expected to generate 21,939 BglII fragments in this size

range comprising ~12 Mb (0.5%) of the genome. Size-selected BglII fragments were

equipped with end adapters, denatured and treated with bisulfite to convert all

unmethylated cytosines to uracil. Bisulfite-converted DNA remains single-stranded as the

two strands are no longer complementary. Primers specific for the converted adapter

sequence and a proofreading thermostable DNA polymerase were used to synthesize the

second strand and to PCR amplify the bisulfite-converted material. Blunt-end PCR

products were cloned in a plasmid vector and sequenced (Fig. 17).

For analysis of the bisulfite sequences and to identify the corresponding genomic

sequence we searched RRBS reads against a reduced representation database of the

mouse genome that contained both strands of BglII fragments that had been size-selected

and bisulfite-converted in silico. When aligned to the original genome sequence, a 5-

methylcytosine is thus displayed as a matching C in the bisulfite sequence, and C to T

transitions indicate unmethylated cytosines.

Even though bisulfite sequencing is a widespread technique, some concerns

persist. Since bisulfite converts single-stranded but not double-stranded DNA, incomplete

denaturation or reannealing leads to incomplete conversion. This complicates the data

analysis, as it is not always possible to determine whether an unconverted cytosine
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represents bona fide methylation or an experimental artifact. Another potential problem is

depurination, strand breakage and DNA degradation caused by the harsh reaction

conditions, which lower the yield of full-length BglII fragments significantly. It has been

estimated that >90% of the input DNA is lost due to DNA degradation during the first

hour of a bisulfite reaction (Grunau et al., 2001). However, to maximize the conversion

rate, the reaction is usually carried out overnight, necessitating extensive PCR

amplification before cloning or sequencing to compensate for the inevitable loss of DNA.

Moreover, since most proofreading enzymes stall at uracil residues in the template strand,

non-proofreading Taq polymerase is usually prescribed for second-strand synthesis and

PCR amplification which can lead to PCR-induced sequencing errors.

These limitations are less worrisome for single-copy loci, but could be significant

in a genome-wide setting, where no preselection against fast-reannealing repetitive

sequences is made and where amplification bias and skewed sequence representation

creates serious sampling problems. Indeed, our preliminary attempts were plagued by

DNA degradation, incomplete conversion and poor efficiency of PCR amplification, most

Figure 17: Reduced representation
bisulfite sequencing. Genomic DNA
is digested to completion using a
restriction enzyme (here BglII).
After size-selection an adapter is
added. The DNA is denatured, and
unmethylated cytosines are bisulfite-
converted to uracil. The two
resulting C-poor strands are no
longer complementary to each other.
Primers specific for the converted
adapter sequence are used to fill-in
the second (G-poor) strand and for
PCR amplification. PCR products
are cloned and sequenced.
Sequences generated from RRBS
libraries are projected onto the
genome by searching against a
reduced representation database of
BglII fragments that had been size-
selected and bisulfite-converted in
silico.
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likely caused by the re-annealing of repetitive sequences including the common adapter

sequence at the ends of each DNA molecule. Moreover, certain sequences were clearly

overrepresented in the resulting libraries indicating amplification bias during the PCR.

These initial problems were largely remedied by performing the bisulfite reaction in the

presence of urea as suggested by Paulin et al. (Paulin et al., 1998) and by fine-tuning

experimental parameters such as DNA concentration, time and temperature of the

bisulfite reaction, and number of PCR cycles for the double-strand rescue and

amplification by a proofreading thermostable DNA polymerase engineered to accept

uracil in the template strand (Fogg et al., 2002).

To test if our optimized protocol was sufficient to achieve complete genome-wide

bisulfite conversion without compromising library complexity and representation, we

wished to construct and sequence RRBS libraries from genomic DNA that was largely

free of methylation. To this end we generated ES cells deficient in all three major DNA

methyltransferases.

ES cells deficient for Dnmt1, Dnmt3a and Dnmt3b

We combined knockouts for the de novo Dnmts (Dnmt3a and Dnmt3b) with

RNAi-induced knockdown of Dnmt1 (Fig. 18a) using a lentivirus-based system for stable

short hairpin RNA (shRNA) expression (Ventura et al., 2004). The Dnmt1 knockdown

resulted in a significant albeit not complete loss of Dnmt1 protein compared to the

Dnmt[3a-/-,3b-/-] control cells (Fig. 18b).

To determine whether the decrease in Dnmt1 levels led to efficient demethylation,

we analyzed the methylation status of minor satellite repeats and IAP elements in a

number of control and knockdown ES cell lines by MSRE analysis. Significant repeat

demethylation was observed when Dnmt1 was knocked down, and the methylation levels

in the Dnmt[1kd,3a-/-,3b-/-] ES cells closely resembled the digest of genomic DNA with

MspI which cuts irrespective of the methylation status (Fig. 19a and b). Loss of

methylation at these repeat elements appears to be primarily caused by the lack of Dnmt1

and largely independent of the de novo Dnmts at these early passages. Using a COBRA

assay (Eads and Laird, 2002) we observed loss of imprinting at four imprinted genes

following Dnmt1 knockdown as compared with the controls (Fig. 19c). Taken together,
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these experiments showed that Dnmt1 knockdown resulted in significant loss of

methylation at specific genes and repeat elements.

To better quantify these results, we used NNA, which allowed to determine the

global amounts of CpG methylation in wild-type and mutant ES cells. We detected ~2%

residual CpG methylation in the Dnmt[1kd,3a-/-,3b-/-] cells compared to 22% in the Dnmt1

null ES cells and 75% in wild-type ES cells (Fig. 19d). Dnmt3b heterozygous and

homozygous ES cells displayed wild-type methylation levels in the presence of Dnmt1

and showed similar loss of methylation within six passages of Dnmt1 knockdown (Fig.

19d and data not shown) confirming the potency of the shRNA.

To test the RRBS approach and to determine whether specific sequences were

retaining methylation we generated and sequenced BglII RRBS libraries from wild-type

and Dnmt-deficient ES cells.

Figure 18: Generation of Dnmt1, Dnmt3a and Dnmt3b deficient ES cells. a) Dnmt3a/3b homozygous
double knockout ES cells have been described previously (Okano et al., 1999). The knockdown virus is
expressing a Dnmt1 shRNA, whereas the control is not. The infection was termed Passage 0. After the
infection ES cells were passaged four times on feeders followed by two additional passages under feeder-
free conditions (Passage 6). Number of viral integrations were determined by Southern blotting and clones
with single integration were selected (data not shown). b) Western blot analysis. The status of the different
Dnmts is indicated above. The knockdown ES cells showed a significant reduction in Dnmt1 levels
compared with their sister clone. c/c is a previously reported Dnmt1 null ES line (Lei et al., 1996).
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Figure 19: Methylation status of the Dnmt-deficient ES cells. All knockdown and control
ES cells were analyzed at Passage 6 after infection. a) Minor satellite repeat methylation.
HpaII digests of genomic DNA were hybridized to minor satellite probe pMR150. MspI is
an isoschizomere of HpaII and cuts irrespective of the methylation status (i.e. appearance of
a ladder in HpaII lane indicates loss of methylation). The status of the different Dnmts is
shown above the Southern blot. All knockdown and control ES cell lines were generated as
described in Figure 18. Each knockdown line contains a single lentiviral integration (data
not shown). b) IAP methylation. HpaII-digested genomicDNAwas hybridized to an IAP
probe. c) COBRA analysis for imprinted genes. Genomic DNA was bisulfite treated and
after PCR amplification of H19, Snrpn, Peg1 and Peg3 a restriction digest was performed to
analyze the methylation status of the differentially methylated regions (U=unmethylated,
M=methylated). The second (smaller) fragment of the methylated and digest product is not
shown. d) Total mCpG quantification by NNA. The spots corresponding to CpG and
mCpGare indicated in the upper left panel. The per cent mCpG/(CpG+mCpG) are displayed
in each panel (estimated error 5%).
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Sequencing of RRBS libraries

In preliminary experiments we noticed that sequencing RRBS clones with reverse

primer had a significantly higher success rate and produced longer reads on average than

sequencing with forward primer. We therefore sequenced the RRBS clones single-pass

using reverse primer. Only clones with high-quality sequence across the entire length of

the insert were used for the final methylation analysis. Table 4 summarizes the

sequencing statistics from 960 RRBS clones from Dnmt-deficient cells and 192 clones

from wild-type ES cells.

Although blunt-ended PCR products can insert in either orientation into the

cloning vector, only a minority had inserts in the orientation that resulted in the C-poor

sequence, i.e. the strand that has been modified by bisulfite (153 out of 876 RRBS reads

from the Dnmt[1kd,3a-/-,3b-/-] library). The vast majority of the clones produced the

Table 4: Sequencing and methylation statistics
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complementary G-poor reads. Notably, the sequence quality was also significantly

different for the two orientations. Almost all G-poor reads were high-quality across the

entire insert whereas peak heights and quality of many C-poor reads dropped after a few

hundred bases, leaving relatively few complete C-poor sequences for the methylation

analysis. Preferential cloning in one orientation and high drop-out rate for C-poor strands

were more pronounced in the Dnmt[1kd,3a-/-,3b-/-] library which has an extremely

asymmetric base distribution. Of the sequenced inserts 96% from this library consisted

solely of three bases, i.e., either A, G and T or A, C and T due to complete absence of

methylated cytosine in the corresponding genome loci. Directional cloning and

sequencing bias has been observed before with bisulfite-treated DNA (Grunau et al.,

2001) and is therefore not a RRBS specific phenomenon.

Of the complete RRBS reads from Dnmt[1kd,3a-/-,3b-/-] cells (89%) found a near-

perfect match in the reduced representation reference-sequence database and could be

placed with high confidence on the mouse genome. The rate of genome alignments for

sequences from wild-type ES was slightly higher (94%). Overall, the success rate of full-

length, mapped bisulfite sequence was 72% of all clones picked. A schematic of the

distribution of RRBS sequences along the mouse chromosomes is available in Figures 20

and 21. In addition we have developed a genome browser that allows a more

comprehensive view of the genomic environment of the RRBS libraries and the data

generated (for a sample screenshot see Fig. 22).

Fifty-six loci were hit by more than one RRBS sequence from the Dnmt[1kd,3a-/-

,3b-/-] library. Ten of these potentially represent sequences that occur more than once in

the genome. The remaining 46 appear to be unique loci that have indeed been cloned and

sequenced twice. This is more than the 23 double-hits expected by random sampling of

an ideal library, possibly indicating a slight cloning or sequencing bias. Consistent with

random cloning, the much smaller number of wild-type RRBS sequences produced only

one double-hit. Eleven fragments were sequenced in both cell lines, compared to eight

sequence overlaps expected given the number and size distribution of successful reads

from each library (Fig. 23). The total length of non-redundant and mapped RRBS

sequences was 342,556 bp for Dnmt[1kd,3a-/-,3b-/-] and 80,692 bp for wild-type ES cells.
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Figure 20: Genomic location and methylation status of 609 non redundant RRBS sequences from
Dnmt[1kd,3a-/-,3b-/-] ES cells. The blue asterisk indicates reads that were free of methylation. All the reads
that contained methylation have the number of mCpG/CpG displayed. Yellow indicates transcript locations.
The Y chromosome was also hit by RRBS sequences, but is not included in the mapping tool used.
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Figure 21: Genomic location of 148 RRBS sequences from wildtype ES cells. Yellow indicates transcript
locations. The Y chromosome was also hit by RRBS sequences, but is not included in the mapping tool
used.
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Figure 22: RRBS Genome Browser. The main window of the RRBS genome browser is shown.
http://frodo.wi.mit.edu/cgi-bin/jaenisch_rrbs/gbrowse.cgi/mouse_may04
username = jaenisch/ password = rrbs.
The browser works like most common genome browsers, with zoom in/out and different tracks that can be
displayed. In addition, the sequence for each fragment can be viewed. The knockdown and wildtype
fragments display the respective bisulfite converted sequence. The corresponding sequence in the BglII
track provides the uncoverted sequence, which can be used for individual alignments.
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Figure 23: Size
distributions of the
sequenced clones
from each library.
RRBS reads from
wild-type ES cells
(black) had a mean
of 553 bp and an SD
o f  1 7  b p .
Dnmt[1kd,3a-/-,3b-/-]
reads were (570 ±
20) bp in size (grey
bars). The size
distributions of the
two libraries were
overlapping but not
identical.

Table 5: Fraction (in per cent) of various types of sequences in the mouse reference
genome, the 500–600 bp BglII reduced representation thereof (RR genome) and RRBS
sequences from Dnmt-deficient and wild-type ES cells.

aRepeat and GC content were taken from (Waterston et al., 2002)
bCpG islands were taken from the mm6 mouse genome assembly on the UCSC genome
browser.
cFraction of genome sequence that falls within gene bounds of non-overlapping
ENSEMBL gene models.
dFraction of RRBS sequences with significant hits to the ENSEMBL gene fraction of the
genome.
eFraction of genomesequence that falls within 5 kb upstream of the transcription start site
of ENSEMBL gene models.
fFraction of RRBS sequences with significant hits to regions 5 kb upstream of
transcription start sites.
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To determine whether these RRBS libraries were generally representative we compared

the GC content, the representation of CpG islands, transcripts, promoter regions and

different classes of repeat elements between the entire mouse genome (Waterston et al.,

2002), the 500-600 bp BglII fraction thereof and the genome sequences hit by the RRBS

clones (Table 5). While reducing the representation introduced a noticeable bias, in

particular a reduction of repeats, bisulfite conversion, PCR amplification, cloning and

sequencing did not. The GC content of loci covered by RRBS sequences ranged from 32

to 63%, indicating satisfactory performance of our protocol over a wide range of GC

content. Likewise, the distribution of the sequenced clones in the genome did not show

conspicuous hot or cold spots (see Figs 20 and 21). Taken together, our data suggest that

RRBS libraries are sufficiently random and representative of the genome fraction used to

make them.

Reducing the complexity by size fractionation of a limit digest with BglII

(recognition site AGATCT) is expected to bias somewhat against GC-rich regions of the

genome. Pooling two single digests with compatible enzymes such as BglII and BamHI

(GGATCC) before the size selection would sample the genome more evenly and increase

the complexity of the RRBS libraries.

Comparison of wild-type and Dnmt-deficient ES cells

The RRBS sequences revealed the methylation status of 66,212 cytosines in

Dnmt[1kd,3a-/-,3b-/-] ES cells (Table 4, bottom half). Only 38 of these were inferred to be

methylated, 35 of them in CpG and three in CpT dinucleotide context. Considering the

non-random distribution of mC among the four dinucleotides, it unlikely that all of them

were caused by incomplete bisulfite conversion or PCR or sequencing errors. Moreover,

the 35 mCpGs are ~1% of all bisulfite-sequenced CpGs, which is close to the 2% mCpG

level determined by NNA (Fig. 19d). By comparison, 90% of CpGs were methylated in

wild type ES cells. We also observed a considerable difference in the level of non-CpG

methylation [(mCpA+mCpT)/C], which was >250-fold reduced in the Dnmt-deficient ES

cells.

In the Dnmt[1kd,3a-/-,3b-/-] RRBS sequences, 25,020 bases were covered 2- or 3-

fold, comprising 4,669 cytosines including 217 CpGs. Overlapping RRBS sequences

agreed for most loci. In two cases, only one sequenced Dnmt[1kd,3a-/-,3b-/-] clone
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displayed a methylcytosine. At another discordant site, the two reads agreed at one

mCpG but disagreed at another.

To address the issue of heterogeneity, we selected ten loci with mCpGs and ten

loci without methylation and designed specific PCR primers to bisulfite re-sequence them

in a targeted fashion. Multiple clones were sequenced for each locus in wild type,

Dnmt[3a-/-,3b-/-] and the Dnmt[1kd,3a-/-,3b-/-] cells. In all but one case, at least one re-

sequenced clone matched the previously determined mCpG pattern precisely, and the

overall level of methylation for each region was similar in all cases (Fig. 24 and data not

shown). Thus, as a rule, a single clone from the RRBS library provides a good indication

of the general methylation pattern at any given site. This is in line with the predominantly

bimodal methylation profiles observed previously (reviewed in Ref. (Bird, 2002)). For

example, >80% of the loci in the HEP survey of the MHC were either hypermethylated or

hypomethylated (Rakyan et al., 2004).

Four representative examples are shown in Fig. 24. For the two loci on

chromosome 4 and 15, respectively, all clones, including the clone from the RRBS

library, indicated complete absence of methylation in Dnmt[1kd,3a-/-,3b-/-] cells. The sister

cell line with normal Dnmt1 levels (see Fig. 18) was also considerably demethylated at

these sites compared to wild-type ES cells. The two other loci maintained more mCpGs

in the methylation-impaired cell lines. The two CpGs on chromosome 17 that were most

consistently methylated in Dnmt[3a-/-,3b-/-] cells showed also residual methylation in the

Figure 24: Targeted bisulfite sequencing of specific loci. Ten loci for which RRBS sequencing indicated
mCpGs in Dnmt-deficient cells and 10 loci that were devoid of methylation were bisulfite re-sequenced
using specific primers in wild-type (top), 3a/b double knockout (middle) and Dnmt[1kd,3a-/-,3b-/-] cells
(bottom). Shown are two examples of each set. Each row represents a single sequenced molecule. Filled
squares are methylated CpGs and empty ones indicate unmethylated sites. The asterisk indicates the original
clone sequenced from the library.
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Dnmt[1kd,3a-/-,3b-/-] cells. One of these two mCpGs was detected in the RRBS clone.

Targeted resequencing detected methylation at the second CpG. This pattern is consistent

with passive random loss of CpG methylation in Dnmt[1kd,3a-/-,3b-/-] cells.
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Chapter 4- Discussion
Much of our current research is focused on understanding the mechanisms that

govern nuclear reprogramming through various approaches including nuclear transfer.

This is ultimately aimed at generating patient-specific uncommitted stem and progenitor

cells that may be useful for cell replacement therapies. The goal of the studies described

here was to establish a set of methods that try to increase the understanding as well as the

efficiency of epigenetic reprogramming. The potential applications of the tools and data

presented here are manifold and will therefore be discussed in a more general way.

Conditional RNA interference

Since the development of gene targeting technologies in ES cells (Thomas and

Capecchi, 1987), the gold standard for the analysis of gene function in mammals has been

the creation of knock-out mice. Improvements to this technology have allowed for a more

refined analysis of gene function at specific developmental stages or in specific tissues.

These refined techniques are based on conditional knock-out strategies that are controlled

by Cre-lox-regulated recombination (Van Dyke and Jacks, 2002). Despite significant

technical improvements over the last decade, however, the creation of loss-of-function

alleles in mice remains time consuming and costly. The recent demonstration that the

RNA pol III-driven expression of shRNAs can be used to functionally silence gene

expression in transgenic mice suggests that RNAi-based technologies might be a

convenient alternative to gene targeting through homologous recombination (Carmell et

al., 2003; Kunath et al., 2003; Rubinson et al., 2003).

A major limitation of current approaches for transgenic RNAi is the inability to

regulate the expression of shRNA. Instead, approaches result in constitutive gene

silencing in all tissues. The lentiviral vectors described here overcome this limitation.

The compact nature of RNA polymerase III promoters (Paule and White, 2000)

prevents the use of a conventional Lox-STOP-lox strategy to achieve Cre-inducible

shRNA expression. Some investigators have recently tried to circumvent this problem by

placing the lox-STOP-lox cassette in the loop region of the shRNA (Fritsch et al., 2004;

Kasim et al., 2004). However, this approach results in the transcription of the residual

loxP site as part of the shRNA, resulting in the synthesis of a longer dsRNA that
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processed less efficiently (Fritsch et al., 2004) and might elicit non-specific, off-target

effects or an IFN response (Stark et al., 1998). By using a mutant lox site that contains a

functional TATA box in its spacer sequence, we were able to obtain Cre-regulated

transcription and efficient processing of a normal-length shRNA.

The potential applications of RNAi-based technology was further extended with

the creation of the lentiviral vector pSicoR, in which constitutive shRNA expression can

be terminated by a Cre-mediated recombination event. As demonstrated for Dnmt1, this

vector can be used to determine the functional consequences of gene reactivation and will

facilitate rescue experiments in vivo. In addition, by mimicking the action of small-

molecule drugs designed to activate the proteins or pathways controlled by human

disease genes (e.g., tumor suppressor genes), this strategy could be used to identify

promising new targets for drug development.

Because preparation of conditional RNAi constructs only requires the cloning of

short synthetic DNA sequences, a large number of conditional knock-down strains can be

generated in parallel by a single investigator. This approach is thus ideally suited for

large-scale projects aimed at the characterization of genetic pathways or the validation of

candidate target genes identified through gene profiling screenings. For example, gene

expression profiling in murine cancer models typically yields numerous genes that

distinguish tumor from normal tissue. Using conventional or conditional knock-out

strategies, it is practical to examine the functional relevance of only a small fraction of

these genes. In contrast, shRNA conditional systems, such as pSico, greatly reduce the

time, cost and effort required to perform such large-scale experiments.

It is important to note that although pSico and pSicoR were used in this work to

control the expression of ‘‘artificial’’ shRNAs, they might also be used to spatially and

temporally regulate the expression of naturally occurring microRNAs -- an approach that

could help unravel the biological functions of this abundant class of small RNAs (Bartel,

2004).

The two lentiviral vectors reported here allow for greater control over gene

inactivation compared with constitutive shRNA expression systems, an advance that

expands the number of potential applications of RNAi-based technologies. The pSicoR
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vector has been successfully used to test a proposed modification of the current nuclear

transfer procedure called altered nuclear transfer.

Altered nuclear transfer

The ethical controversy surrounding nuclear transplantation arises from the

unavoidable destruction of the reconstructed human blastocyst in order to obtain

embryonic stem cells useful for biomedical research and therapy. The available evidence

suggests that after nuclear transfer, the reconstructed embryos lack the potential to

develop into normal human beings with any acceptable or practical efficiency (Jaenisch,

2004). Despite the incompatibility of this approach with normal human development, the

utility and promise of nuclear transfer lies in the development of embryonic stem cells

that have the same biological and molecular characteristics and the same therapeutic

potential as those derived from fertilized embryos (Brambrink et al., 2006; Jaenisch,

2004). Altered nuclear transfer further cripples the already compromised blastocyst and

eliminates the potential for the blastocyst to implant into the uterus and establish the

fetal-maternal connection (Hurlbut, 2005). The genetic manipulations of the somatic

donor cells that are required to generate this inherently abnormal blastocyst are simple

and straightforward. Our data indicate that the removal of the Cdx2 gene from somatic

cells prior to nuclear transfer results in the formation of a blastocyst that lacks the

functional cells of the trophectoderm lineage. This finding is consistent with previous

results with embryos from mutant animals (Strumpf et al., 2005). Because the Cdx2 gene

is expressed prior to the blastocyst stage (Strumpf et al., 2005), Cdx2-deficient clones are

abnormal at the pre-blastocyst stages, before an overtly abnormal phenotype becomes

apparent. By reversing the Cdx2 deficiency we demonstrate that fully competent ES cells

can be derived from the inherently abnormal product of nuclear transfer using Cdx2-

deficient donor cells.

If ANT was ever contemplated as an approach for the generation of human ES

cells by nuclear transfer, the following issues need to be considered. First, although

CDX2 is expressed in the trophectoderm of human blastocysts (Adjaye et al., 2005) and

derivatives of hES cells (Hyslop et al., 2005), its expression pattern in the human fetus

has not been determined. As such, it is unknown whether the effect of CDX2 on

placentation will be the same in humans as in mice. Because the effect of gene inhibition
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on human placentation cannot be tested, surrogate assays such as in vitro differentiation

of hES cells are required to assess the effect of CDX2 deficiency on human trophoblast

development.  In addition, with the use of retroviral vectors for gene transduction (Pfeifer

et al., 2002) comes the risk of insertional mutagenesis and thus the activation of

oncogenes that can cause leukemia (Hacein-Bey-Abina et al., 2003). However, this

probably does not represent a serious problem in ANT because, in contrast to the gene

therapy trials using retroviral infection of bone marrow cells, viral integration into the

fibroblasts does not lead to a proliferative advantage and selective outgrowth of infected

cells due to an activated oncogene. Finally, since all nuclear transfer-derived ES cells are

clonal, simple DNA analysis would indicate whether proviral integration occurred in the

vicinity of an oncogene.

The results reported in this study provide proof of principle that inhibition of

genes important for trophoblast function can prevent placentation without interfering with

ES cell potency, and may thus provide a scientific way to side-step the ongoing debate

surrounding the nuclear transfer technology. However, because the Cdx2-deficient

embryo is not obviously abnormal before the onset of Cdx2 expression, this approach

may not solve the ethical dilemma. Moreover, research with primate or human cells will

be required to assess whether Cdx2 is an optimal target for human application. Finally,

we wish to emphasize that ANT is simply a modification and not an alternative to nuclear

transfer. As the approach requires additional manipulation of the donor cells, it is likely

to complicate the logistics of production and safety assessment of therapeutic patient-

specific ES cell lines.

Some critics have raised doubts about whether an essential role of CDX2 in

human placentation could ever be established, thus making it impossible to assess the

potential effectiveness of the ANT approach in humans (Solter, 2005). While CDX2’s

role in human placentation cannot be studied in mutant embryos, a simple in vitro assay

could be developed. For example, human ANT blastocysts could be explanted in culture

to verify whether CDX2 deficiency prevents the generation of trophoblast cells – the cells

that generate the placental lineage - as it does in the mouse. Although such surrogate

assays cannot provide 100% certainty regarding the effect of CDX2 deficiency on human

placentation, a positive in vitro result would provide sufficient confidence that inhibition



Chapter 4- Discussion Genome-wide DNA Methylation Analysis

85

of the CDX2 gene would abrogate the reproductive cloning potential of ANT-derived

human blastocysts. It has also been argued that because of the dependence of siRNA

expression on genomic integration, numerous human ANT embryos would have to be

tested to assure sufficient CDX2 inhibition. However, linking siRNA with GFP

expression provides a simple way to isolate donor cells that contain a high level of CDX2

siRNA prior to nuclear transfer. Finally, although ANT will probably not persuade

everyone who opposes nuclear cloning, and attempts to find technological solutions to

contentious ethical issues may represent a diversion of the scientific process (Melton et

al., 2004), we also find merit in another argument. Our work is supported by public

funds. As a result, it could be argued that we have an obligation to take the public debate

on scientific and ethical issues seriously and to contribute to possible solutions. As long

as the experiments performed in pursuit of this goal are scientifically sound, it is a moot

point whether such efforts would lead to a resolution of the controversy.

As described in Chapter 1, a great deal of current research is focused on the de-

differentiation and/or reprogramming of somatic cells with the ultimate goal of

generating less differentiated cells that will be useful for patient therapy. The cloning of

fully differentiated cells has demonstrated that no genetic information is lost during

development and that nuclear totipotency is retained. This suggested that epigenetic

mechanisms of gene regulation and differentiation are responsible for keeping somatic

cells in their differentiated state. In order to better define the epigenome of different cell

types, we have developed an approach for large-scale high resolution DNA methylation

analysis.

Genome-wide high resolution DNA methylation analysis

In this work, we explored the feasibility of large-scale shotgun bisulfite

sequencing for genome-wide analysis of DNA methylation. We have shown that bisulfite

sequencing libraries can be constructed that are largely unbiased and representative of the

genome. These libraries display few false-positive methylcytosines caused by incomplete

cytosine to uracil conversion or PCR and sequencing errors.

Insert sizes of the libraries were kept very small (500-600 bp) for two reasons.

First, the bisulfite reaction requires relatively high temperatures (50-60°C) and a low pH

(pH5) -- conditions that are known to cause depurination and strand breakage. In
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addition, smaller molecules are less prone to damage and require fewer PCR cycles to

recover intact molecules suitable for cloning compared with larger ones, thereby

minimizing the risk of a skewed representation. Finally, larger-insert clones would

require sequencing of both strands, and C-poor strands have proven difficult to sequence

in our hands.

We used limit digestion with BglII and size fractionation to reduce the complexity

of the DNA. The resulting RRBS libraries cover a small but reproducible fraction of the

genome and are therefore suitable for large-scale comparative methylation studies across

different strains, tissues or cell types. Based on the overall success rate (72%) and insert-

size distributions encountered during this pilot study (Fig. 23), we expect that for a pair-

wise comparison, sequencing 100 x 384 RRBS clones from each DNA sample will

produce 4.0 Mb of high-quality, overlapping bisulfite sequence with 2- to 3-fold coverage

in each library of fragments within 1 SD of the mean size. Assuming that improvements

in sequencing of C-poor strands (85% success rate) and better libraries with congruent

insert-size distributions can be made, the same sequencing effort would yield ~5.8 Mb of

pair-wise comparative sequence which, of course, is still only a tiny fraction of the

genome.

At this level of genome coverage, differential methylation at most individual sites

in the genome, including many functionally important ones, is likely to escape detection.

However, we expect the coverage to be sufficient to generate methylation variable

position markers for future bisulfite SNP “epigenotyping” (Murrell et al., 2005). A

genome-wide set of comparative bisulfite sequences may prove useful to train computer

algorithms for predicting methylation patterns. RRBS sequencing may be sufficient to

detect genomic imprints (or the loss thereof), tissue-specific regulated methylation

domains or long-range methylation gradients along a chromosome. We also envision

RRBS applications in epigenetic cancer profiling and bio-marker discovery.

Despite the essential role of the known DNA methyltransferases in mouse

development (Li et al., 1992; Okano et al., 1999), DNA methylation and the enzymes

responsible for its establishment and maintenance appear to be largely dispensable in

undifferentiated ES cells. Dnmt1-deficient ES cells retain approximately 20% CpG

methylation, likely due to continuous de novo methylation by Dnmt3a and Dnmt3b.
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Although early passage Dnmt3a/b double mutant ES cells show almost wild-type levels

of CpG methylation (Chen et al., 2003; Jackson et al., 2004), they progressively lose

methylation with <1% remaining after 75 passages (Jackson et al., 2004). This gradual

loss may reflect the infidelity of the maintenance enzyme Dnmt1.

Our data showed that ES cells that lack the DNA methyltransferases Dnmt3a and

3b and have greatly reduced levels of Dnmt1 were viable with 1-2% CpG methylation

remaining after only six passages. The extremely low rate of false-positive

methylcytosines allowed us to identify and inspect some of the rare sites that retained

methylation. There were no obvious hotspots for residual mCpGs in the genome (Figures

20 and 21). Also, there was no correlation between the numbers of CpGs and the residual

methylation at a given site. The distance to CpG islands or to known genes also appeared

to be random and none of the loci was notably conserved across species. Finally, no

specific motif was detected upstream or downstream of the residual mCpG dinucleotides

(data not shown). Thus these findings provide no evidence of specific maintenance of

residual mCpG by an unidentified DNA methyltransferase. Rather, Dnmt[1kd,3a-/-,3b-/-]

cells seem to lose residual CpG methylation in a random fashion over time.

Only 3 of the 25,505 sequenced CpT dinucleotides were inferred to be methylated

in Dnmt-deficient cells, and no methylated CpA was detected. By comparison, wild-type

cells showed 0.7% CpT and 2.4% CpA methylation in agreement with previous

observations (Dodge et al., 2002; Ramsahoye et al., 2000). Previous experiments have

also shown that the presence of Dnmt1 is not required for non-CpG methylation

(Ramsahoye et al., 2000). In contrast, non-CpG methylation becomes almost undetectable

in ES cells lacking Dnmt3a and Dnmt3b (Dodge et al., 2002). Both global nearest

neighbor data and our bisulfite-sequencing data therefore suggest that the de novo DNA

methyltransferases 3a and/or 3b are responsible for asymmetric CpA and CpT

methylation in murine ES cells.

In this pilot study we have employed a combination of RNAi-induced knock-

down and complete knockout of DNA methyltransferases to generate murine ES cells

that were almost completely devoid of DNA methylation. These cells had only 1-2%

residual CpG methylation left after a few passages, and non-CpG methylation was over

250-fold reduced compared to wild-type ES cells.
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Unamplified, nearly methylation-free genomic DNA is an ideal substrate to

optimize and test conditions for genome-wide bisulfite conversion, PCR amplification

and library construction for future genomic shotgun bisulfite sequencing of mammalian

genomes. We have shown that essentially complete bisulfite conversion can be achieved

without undue adverse effects on library complexity and sequence representation.

Perspectives

RNA interference has become one of the predominant tools to assess gene

function across all species. In the near future, it is likely that a catalog of functional

siRNAs will be available for every known gene in most organisms. And further studies

comparing the mechanisms of endogenous miRNAs and synthetic siRNA should increase

the efficiency of rational RNAi design. The discovery and optimization of RNAi will

undoubtedly lead to advances in medical treatment, either directly as therapy or by

revealing new gene targets for therapy.

In the 50 years since Briggs and King first reported the nuclear transfer technique,

NT has become a powerful research tool that holds great promise for therapy in the years

to come. The prospect of deriving customized ES cells has significant implications for

medical therapy, and, more immediately, for the use of patient-derived ES cells as disease

models. For instance, stem cells derived from a patient that suffers from Parkinson’s

disease would provide limitless material to study the physiology of the affected cells.

Typically, by the time Parkinson’s disease is diagnosed, most of the cells have been lost.

Stem cells derived from patients could be differentiated into neurons in vitro and then

used for mechanistic studies. These cells might also provide a means of screening

candidate drugs and compounds with the potential to counter neurodegeneration. The

long-term goal, however, remains patient-tailored cell replacement therapy. This goal

will require longer-term clinical trials and the resolution of numerous safety issues before

such a therapy could be implemented in patients.

One of the next steps in studying stem cell biology will be to decipher the

epigenome of stem cells and compare it to differentiated cells. As discussed, large-scale

random bisulfite sequencing complements existing directed bisulfite sequencing

strategies, which are well suited to analyze a limited number of gene promoters and

regulatory sequence elements in a large number of samples. One advantage of sequencing
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clone libraries in a random fashion is that no target-specific PCR or sequencing primers

are needed. Once the library is made, the method is amenable to automation and is

scaleable. Since the bisulfite reads are not assembled but merely aligned to the reference

genome sequence, we expect this method to work well in combination with highly

parallel sequencing technologies that produce single reads of approximately 100 bases in

length (Margulies et al., 2005). Finally, in principle, bisulfite-converted libraries can be

constructed from randomly sheared DNA for future whole-genome bisulfite sequencing.
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Summary
The goal of the studies described here was to establish a set of methods aimed at

ultimately enhancing the efficiency of epigenetic reprogramming. The use of RNA

interference (RNAi) for studying and influencing gene function has become an essential

part of biology. In this work, we have described two lentivirus-based vectors used for

conditional, Cre-lox regulated RNAi in cells and in mice. One vector triggers Cre-

dependent activation (pSico) and the other Cre-dependent termination (pSicoR) of

shRNA expression. These vectors were used to conditionally and reversibly knock-down

p53, Npm, and Dnmt1 expression in ES cells and in MEFs. As a proof of principle, pSico

was used to generate conditional and tissue-specific knock-down mice. As outlined in

Chapter 1 conditional depletion of various gene products by RNAi will provide better

understanding of the factors involved in epigenetic reprogramming. This knowledge

should ultimately lead to enhancing the efficiency of successful reprogramming. The

pSicoR system was applied in later experiments to temporally suppress Cdx2 function in

donor nuclei prior to nuclear transfer, a modification of the current procedure, termed

altered nuclear transfer (ANT). Finally, deciphering the epigenome of different cell types

is critical for understanding the regulation of both normal development and disease states.

In the last part of this work we have devised a new strategy that permits high-resolution

comparative DNA methylation analysis. The system was tested in ES cells depleted of

DNA methylation by elimination of the DNA methyltransferases Dnmt1, Dnmt3a and 3b.

Dnmt1 was knocked down in Dnmt3a and 3b double knockout ES cells using a pSicoR-

Dnmt1 vector.
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Zusammenfassung

Der Transfer eines differenzierten Zellkerns in eine entkernte Eizelle

(Kerntransfer) ist einer von mehreren experimentellen Ansätzen um die

Reprogrammierung von differenzierten Zellen zu erreichen. Unter Reprogrammierung

vesteht man grundsätzlich die Erweiterung des Entwicklungspotentials einer

differenzierten Zelle. Eines der Hauptziele von Kerntransfer-Experimenten ist es

undifferenzierte Stamm- oder Vorläuferzellen hervorzubringen, welche für

Zellersatztherapien genutzt werden können. Der Hauptvorteil von humanen Kerntransfer-

Stammzellen liegt darin, dass sie patientenspezifisch sind und dadurch nicht vom

Immunsystem als fremd erkannt würden.

Einer der Schwerpunkte unserer gegenwärtigen Forschung ist es, ein besseres

Verständnis der Mechanismen und Faktoren, die in der Kernreprogrammierung involviert

sind, zu gewinnen. Die Tatsache, dass vollständig differenzierte Zellen mittels

Kerntransfer reprogrammiert werden können, zeigt, das im Verlauf der Entwicklung

keine genetische Information verloren geht, d.h. differenzierte Zellkerne enthalten

sämtliche Informationen um einen kompletten Organismus hervorzubringen. Diese

Ergebnisse deuten darauf hin, dass die Regulierung der Differenzierung über

epigenetische Mechanismen gesteuert wird. Epigenetische Modifikationen sind stabile

Veränderungen der DNA oder des Chromatins, die jedoch die primäre DNA Sequenz

nicht verändern. Das Ziel meiner Untersuchen ist es, Methoden und ein besseres

Verständnis der involvierten Faktoren zu entwickeln, um den Vorgang der

Reprogrammierung verbessern zu können.

Im ersten Teil meiner Arbeit beschreibe ich ein neues System zur Cre-Lox

regulierbaren Gen Inhibierung durch RNA Interferenz. Die Effektivität und

Funktionalität des Systems wurde für mehrere Gene in vitro und in vivo gezeigt. Neben

vielen anderen nützlichen Anwendungen, wie konditionelle Regulierung von essentiellen

Genen in vivo, was hier für das Tumorsuppressorgen p53 gezeigt wurde, erlaubt das

System transiente Blockierung von Faktoren, die epigenetische Modifikationen

regulieren, wie z.B. DNA Methyltransferase 1 (Dnmt1). Es konnte bereits gezeigt

werden, dass eine Reduzierung der genomischen DNA Methylierung einen positiven
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Einfluss auf die Effizienz des Reprogrammierens durch Kerntransfer hat. Allerdings

ergeben sich aus der daraus bedingten Hypomethylierung der DNA auch negative

Konsequenzen, wie z.B. vermehrtes Auftreten von Tumoren. Diese negativen

Auswirkungen lassen sich durch zeitlich beschränkte Inhibierung des Enzyms

vermindern, da nach dem Entfernen des RNAi Systems das endogene Gen wieder aktiv

ist.

Im zweiten Teil beschreibe ich eine Modifikation der normalen Kerntransfer

Technik. Dabei wird eine Gen, mittels des oben beschriebenen RNAi Systems blockiert,

was unerlässlich ist für die Differenzierung in Trophectoderm, welches später die

Plazenta formt. Dadurch wird kein funktioneller Embryo erzeugt, aber es lassen sich

trotzdem Stammzellen gewinnen. Diese Experimente stellen eine wissenschaftliche Basis

für die Diskussion über die Gewinnung von Stammzellen dar, und erlauben ausserdem

weitere Analysen von essentiellen Faktoren die für die extraembryonalen Gewebe

notwendig sind. Dies ist wichtig, da viele essentielle Gene im geklonten Embryo selbst,

aber auch in seinen extraembryonalen Teilen, nicht korrekt reaktiviert werden.

Obwohl die DNA Sequenz zwischen Stammzellen und differenzierten Zellen

identisch ist, sind sie epigentisch verschiedenen. Um diese Unterschiede im gesamten

Genom besser untersuchen zu können, haben wir eine Methode entwickelt, die es erlaubt

grosse Teile des Epigenoms zu analysieren und zwischen verschiedenen Zelltypen zu

vergleichen.
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