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Abstract 
 

Multiphoton microscopy of a dually fluorescence-labeled model system in excised 

human skin is employed for high resolution three dimensional visualization in order to study 

the release, accumulation and penetration properties of drugs released from nanoscale carrier 

particles in dermal administration. Polymer particles were covalently labeled with fluorescein 

while Texas Red as a drug-model was dissolved in the particle to be released to the 

formulation matrix. Single nanoparticles on skin could easily be localized and imaged with 

diffraction limited resolution. The temporal evolution of the fluorescent drug-model 

concentration in various skin compartments over more than five hours was investigated by 

multiphoton spectral imaging of the same area of the specimen. The three dimensional 

penetration profile of the drug-model in correlation with skin morphology and particle 

localization information are obtained by a multiple laser line excitation experiment. 

Multiphoton microscopy combined with spectral imaging was found to allow non invasive 

long term studies of particle-borne drug-model penetration into the skin with sub cellular 

resolution. By dual color labeling a clear discrimination between particle-bound and released 

drug-model was possible. The introduced technique was shown to be a powerful tool in 

revealing the dermal penetration properties and pathways of drugs and nanoscale drug 

vehicles on microscopic level. 
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Introduction 
 

The encapsulation of active substances is a common pharmaceutical strategy to 

modify the transport and release properties of a drug. Especially to nanoparticulate systems 

great potential is attributed in the field of drug delivery. This is partly due to the fact, that 

sensitive drugs can be hidden from degradation in the particles (Daniels, 2006; Volodkin et 

al., 2004). Further powerful properties of nanoscale drug carrier are the sustained release 

(Daniels, 2006; El-Samaligy et al., 1986) of the active substances resulting in an extended 

activity or enhanced uptake (Alvarez-Roman et al., 2004c; Lombardi Borgia et al., 2005) and 

the possible reduction of adverse effects (Lamprecht et al., 2001). Functional coatings of the 

particles may allow the targeted accumulation and release of drugs at their therapeutic sites 

(Dinauer et al., 2005; Kotrotsiou et al., 2005; Wartlick et al., 2004). 

Widely used nanoparticle formulations are based on poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), and their co-polymers, poly(lactide-co-glycolide) (PLGA), which 

are known for their good biocompatibility and degradability through natural pathways 

(Brannon-Peppas, 1995). In oral and parenteral applications these solid biodegradable 

polymeric nanoparticle have already shown their advantage over liposomes by their increased 

stability (Hans and Lowman, 2002; Ravi Kumar et al., 2003; Soppimath et al., 2001). 

Nanoscale polymeric drug vehicles have also been proposed for transdermal delivery 

(Alvarez-Roman et al., 2004c; Kohli and Alpar, 2004; Lombardi Borgia et al., 2005; Luengo 

et al., accepted). Penetration (Alvarez-Roman et al., 2004c; Luengo et al., accepted), 

permeation (Luengo et al., accepted) and accumulation (Toll et al., 2004) of some particle-

borne drugs and drug models after topical application have been investigated by conventional 

techniques and confocal microscopy of single stained particles. 

Established methods for the investigation of drug penetration into the skin are mostly 

destructive: a representative sample of a defined skin layer is isolated and extracted for 
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chemical analysis (tape stripping method, cryo-sectioning) (Brain et al., 2002; Wagner et al., 

2001). The result of such an experiment is an area averaged depth profile of the drug in the 

skin to a certain time (Luengo et al., accepted). The depth profiles for different incubation 

times have to be investigated with different samples, neglecting the individual characteristics 

of biological specimens. To evaluate and optimize novel dermal drug delivery strategies using 

nanoscale drug carriers, more versatile techniques are required. Such a technique must allow 

the discrimination between free and carrier-bound drug, the tracing of the carrier 

nanoparticles, the allocation of microscopic delivery pathways to specific dermal sites and 

time studies on the same skin area. After application of nanoparticles as topical vehicles one 

can imagine different routes of drug delivery. It could be assumed that the whole 

nanoparticulate system is taken up without being destroyed (Kohli and Alpar, 2004) or that 

the nano-carrier is decomposed close to the skin surface and thereafter the active substance 

penetrates in dependence on the local environment (acidification or absorption of drug / 

nanoparticle-complexes) as speculated in Luengo et al. for the enhanced long term uptake of 

flufenamic acid (Luengo et al., accepted). Furthermore, a direct diffusion from the carrier into 

the stratum corneum is reasonable as described by Bouwstra et al. (Meuwissen et al., 1998; 

Van Kuijk-Meuwissen et al., 1998a). In any case, it is essential to distinguish between 

particles, particle-bound drug and released drug. Herein we describe how multiphoton laser 

scanning microscopy (MPM) and confocal laser scanning microscopy (CLSM) can be very 

beneficial tools in order to meet all these demands in one experiment. In particular 

multiphoton microscopy enables repeated non-invasive investigations of skin tissue down to 

the dermis with virtually no out-of-focus effects of the scanning laser beam (Konig and 

Riemann, 2003). Due to multiple labeling techniques in combination with multiphoton 

spectral imaging or selective excitation of the labels a clear discrimination between particle 

and free drug model is possible, as well as tracking of single particles. Due to the excitation of 

endogenous fluorophores of the skin by multiphoton excitation and the correlation of the 
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resulting autofluorescence image to the drug fluorescence pattern the identification of 

accumulative spots and penetration pathways is possible with sub-cellular resolution (Yu et 

al., 2003; Yu et al., 2002). Multiphoton microscopy provides several considerable advantages 

over conventional fluorescence and confocal microscopy (Konig, 2000; Xu et al., 1996). 

Three of which are relevant to the present investigation: the concentration of all light-matter 

interactions to the focal volume, the convenient separation of fluorescence from scattered 

excitation light due to the large blue-shift of fluorescence and the capability to excite 

compounds which else require ultraviolet excitation, in particular native fluorophores as 

NADH and keratin (Huang et al., 2002; Konig and Riemann, 2003; Pena et al., 2005). The 

confined interaction volume at the focal point is due to the In-dependence of n-photon 

absorption processes on the illumination intensity I. Hence already two-photon absorptions 

are confined to a sub-femtoliter focal volume, in which the illumination intensity is 

sufficiently high. Since the excitation with near infrared (NIR) lasers matches the optical 

window of biological matter (700 – 1100 nm) virtually no single-photon absorptions occur in 

the illumination cones. As a consequence, no fluorescence is generated outside the focal 

volume and therefore three dimensional spatial resolution is an inherent feature of 

multiphoton laser scanning microscopy. Furthermore out of focus photo-damage is drastically 

reduced and light penetration depth into tissue is significantly enhanced (Centonze and White, 

1998; Konig and Riemann, 2003). 

Since most pharmaceutical substances are basically non fluorescent, the usage of 

appropriate fluorescent model compounds is reasonable. Such a model compound has to 

match the molecular size, charge, membrane permeability, distribution, and diffusion 

coefficients as good as possible. A fluorescent label fixed to the actual drug molecule changes 

these properties and thus the penetration behavior considerably. Hence labeling only makes 

sense if specific interactions of the drug to certain sites are investigated. In contrast the non-

superficial fluorescent labeling of the nanoscale carrier particles doesn’t change the particle’s 
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pharmacokinetics significantly. In addition, the fate of the nano-carrier itself and its role in the 

changed uptake behavior may be investigated. In this work a two color labeling technique was 

used to trace the migration of the nanoparticles and to observe the release and uptake of the 

drug-model compound. To this end fluoresceinamine was covalently linked to the polymeric 

particle material and Texas Red was physically resolved in the particle matrix. It is shown, 

that individual sub-diffraction sized nanoparticles can be localized, traced and spectrally 

analyzed. Due to the two-color staining a clear discrimination between free and particle-

bound dye was achieved. The method turned out to allow stable measurements on excised 

human skin over hours with no significant drift of the specimen. 
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Results 
 

Multiphoton fluorescence imaging 

The multiphoton optical sections were recorded from the skin surface down to the 

bottom of the shown dermatoglyph at z = 42 µm over five hours under identical conditions 

(Figure 1). It was found, that the sub-diffraction-limit sized particles can easily be detected 

and localized, as long as their mean distance is well above this limit. They appear as lateral 

diffraction limited spots with widths of about 0.5 µm, which is in reasonable agreement with 

theoretical predictions for the minimum achievable full width half maximum FWHM of 

302 nm1. A typical fluorescence profile of two particles in situ is displayed in Figure 2. The 

minimal fluorescence spot size may be broadened by Brownian motion and distorted by flux 

motions of the gel in the dermatoglyphs. In case of the bright spots the detector went into 

saturation, which additionally caused a considerable broadening of the spot size. The mean 

distance between the nanoparticles in the present formulation is on the order of 5 µm. Three 

dimensional tracing of individual particles is easily possible under the outlined conditions and 

allows detailed studies on the migration of nanoscale drug carriers in the skin. 

The significant endogenous fluorescence of keratin under two-photon excitation 

enables imaging of the outermost layer of the stratum corneum and hence the dermal 

topography. The PLGA particles are obviously not able to penetrate the stratum corneum and 

stay in the gel-filled dermatoglyphs over the entire observation time (Figure 3). This 

corresponds with former findings of the authors in which no penetration of PLGA particles 

loaded with flufenamic acid into the human skin could be observed (Luengo et al., accepted). 
                                                 
1 The theoretical FWHM was calculated by convolution of a sphere profile of d = 290 nm with 

the squared intensity point spread function IPSF². The ISPF2 was derived according (Zipfel et 

al. 2003). 
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It is noteworthy, that even after more than five hours swelling, shrinking and stress relaxation 

motions of the skin sample only lead to minute deformations within the field of view. No drift 

of the specimen occurred. 

No significant changes in the background fluorescence intensity of the ointment 

matrix or in the stratum corneum as a consequence of the Texas Red release and accumulation 

were observed in the multiphoton fluorescence mode. The reason for this finding is the 

comparable low two-photon absorption cross-section of Texas Red at λ = 800 nm (Figure 4) 

while fluorescein and keratin are efficiently excited.  

 

Multiphoton spectral imaging 

In order to investigate the distribution of the drug-model Texas Red as a function of 

time, two-photon spectral imaging was applied. In this technique the luminescence signal 

from the specimen is spectrally resolved and the spectrum is stored for each pixel or voxel, 

respectively. From these data, fluorescence spectra for arbitrary regions of interest can be 

calculated. The laser wavelength of 800 nm leads to an image which is dominated by the 

fluorescein emission and the endogenous fluorescence of the stratum corneum. But due to the 

different sensitivity spectrum of the META detector array the sensitivity loss in the red 

spectral range is less drastic compared to the PMTs. Even faint contributions of the Texas Red 

fluorescence to any pixel or region of interest (ROI) of the image can now be isolated from 

the other emissions by spectral separation. In the present study a 145 × 145 µm2 area from the 

middle of Figure 3 was investigated. The spectral images were recorded to similar times as 

the optical sections. In Figure 5a a typical example of such a spectral image is displayed in 

true color mode. The nanoparticles appear clearly green, indicating that their fluorescence 

originates predominantly from the covalently bound fluorescein. The outermost layer of the 

stratum corneum shows a heterogeneous distribution of colors. For an interpretation the 
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fluorescence spectrum of the respective region is taken (Figure 6a, ROI 2). The reddish color 

of the deeper skin is mainly caused by residual scattered excitation light beyond 700 nm 

(Figure 6a, ROI 3). 

Three regions of interest are indicated in Figure 5a: ROI 1 contains the gel matrix 

including the nanoparticles, ROI 2 contains the keratinous surface layer of the stratum 

corneum and ROI 3 covers the deeper layers down to approximately 20 µm. Average 

fluorescence spectra are calculated from the ROIs at different times to reveal the evolution of 

the Texas Red concentration in these regions. Due to the small deformations of the specimen, 

especially in vertical direction, the ROIs do not enclose exactly identical skin domain at the 

different times. This may be a cause for small discrepancies in the spectral analysis. But since 

the ROIs were always chosen to enclose only skin compartments according to the definitions 

above, the spectral analysis will still reveal the accurate trends. To rule out errors due to 

varying offsets and fluctuations in the absolute signal, the Texas Red fluorescence is 

determined relative to an emission, which is expected to be constant in time. For ROI 1 the 

fluorescein emission from the nanoparticles at 525 nm is used, for ROI 2 the keratin 

autofluorescence around 510 nm and for ROI 3 the back scattered excitation light at 714 nm. 

Linear baselines are applied to reduce the influence of the background (Figure 6a). Since in 

particular the autofluorescence in ROI 2 and the Texas Red emission in ROI 3 show only dim 

intensities, the determined intensity ratios for ROI 2 and ROI 3 have large uncertainties. 

Anyway the rough trends are visible in those plots. 

Whereas the Texas Red content in the nanoparticles showed up to be low and 

basically constant already from the first measurement at t = 30 minutes (Figure 5c), the 

concentration of Texas Red in the gel matrix drops significantly with time (Figure 5b, 7b). 

The Texas Red concentration in the superficial layer of the stratum corneum is also declining, 

but less rapid (Figure 6c). The observation of declining concentration in this compartment 

from the earliest measurement at t = 30 minutes on means, that the vast fraction of Texas Red 
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was taken up from the gel to the stratum corneum surface almost immediately after 

application. Furthermore the release of Texas Red from the nanoparticles to the matrix started 

well before application to the skin. Probably the predominant fraction was released to the 

solvent even before suspension of the particles to the hydrogel. Since the concentration of the 

released dye is decreasing in the gel-filled dermatoglyphs and in the stratum corneum surface 

it must have penetrated the skin (or metabolism of the dye occurred, which is unlikely). In 

fact an increase of Texas Red concentration in the deeper stratum corneum and stratum 

granulosum is evident (Figure 6d), indicating a slow penetration of the dye. The fits to the 

plots are mono-exponential decays and growth, respectively. The fit curves have no 

theoretical pharmacokinetic background, but allow a convenient comparison of decay and rise 

times. Advanced interpretations of the release, uptake and penetration of the dye will be 

possible only on the basis of an appropriate pharmacokinetic model. The decay times of the 

mono-exponential fits are τROI 1 = 35±6 minutes, τROI 2 = 148±319 minutes and the rise time is 

τROI 3 = 59±38 minutes. 

 

Multitracking studies 

After 320 minutes a multitracking experiment visualizes the distribution of Texas 

Red, fluorescein and keratin fluorescence (Figure 7). In this technique the signals from the 

different fluorophores are separated by their excitation spectra, not by their fluorescence 

spectra as done in spectral imaging. As opposed to the spectral images, which are recorded 

with one excitation wavelength, herein the successive use of three excitation sources may lead 

to small mismatches between the channels. The vertical mismatch of the NIR two-photon 

excitation image to the images excited by visible laser sources is due to chromatic aberrations 

of the objective. The small average lateral shift from the fluorescein image, excited by the 

488 nm argon ion laser line, to the Texas Red image, excited by the 543 nm helium neon laser 
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line, is due to the microscope optics and could be compensated by image processing. 

Furthermore a multitracking experiment yields an overlay of successive scan images. If the 

specimen shows dynamics, any motion is reflected by shifts from one scan to the next. One 

must keep these mismatches in mind when performing colocalisation studies on different 

dyes. In Figure 7d an average lateral shift of about 6µm is evident between the fluorescein 

image and the Texas Red image. The shift is not uniform for all particles, but varies due to 

flux motions within the hydrogel during the acquisition times of the three single images of the 

multitracking experiment. The particle pattern in the two-photon excited image exhibits no 

correlation with the visibly excited images, indicating a vertical mismatch of the focal planes 

exceeding the normal size of the focal volumes (approximately 1 µm). This mismatch is also 

evident in the missing congruency of the dermatoglyph borders in the two-photon excited 

image and the 543 nm excited image (Figure 7). The keratin autofluorescence seems to be 

located not at the surface of the Texas Red stained dermatoglyph, but some microns inside of 

the skin. This is a consequence of the vertical mismatch between the NIR and visible focus. 

Nevertheless detailed distribution analysis for each isolated dye can be performed as well as a 

rough colocalisation study, since fluorescein and keratin are not excited by the 543 nm laser 

line and Texas Red is virtually exclusively excited by this excitation source (Figure 4). 

The 488 nm excited image (green) proves, that fluoresceinamine is strictly bound to 

the particles and not released during the time of observation. Previous experiments showed 

that released fluorescein is rapidly bound to the keratinous layer of the stratum corneum. In 

the present study no such accumulation is found. The fluorescence spots of the particles are 

mostly broadened due to saturation. In the 543 nm excited images (orange) the distribution of 

Texas Red is visible. The predominant fraction of the dye is to be found within the skin, but 

the particles are also slightly observable. Obviously there is still a certain amount of the dye 

stored in the nanoparticles, though the release process has proceeded far. The released Texas 

Red penetrated the skin and accumulated in the stratum corneum down to approximately 
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20 µm (Figure 7b). In Figure 7c, recorded at a depth of 32 µm, the penetration into deeper 

skin compartments can be recognized, since the walls of the dermatoglyph are steep enough to 

reveal the diffusion from the superficial layers inwards. The distribution of Texas Red in the 

skin is not uniform, but structured. It is conspicuous, that the superficial accumulation is 

strongest, where the skin adjoins to large gel-filled spaces. Beneath the superficial layer the 

distribution of the drug-model is more uniform, which indicates faster diffusion of the 

compound in these skin compartments. The fundamental discrepancy between the visible 

excited images and the two-photon image proves that the skin visible structures from the two-

photon image are predominantly due to keratin autofluorescence and not due to the superficial 

accumulation of Texas Red. xz-sections can be extracted from the multitracking z-stacks, 

which nicely exhibit the concentration profile in normal direction (Figure 8). The highest 

concentrations of Texas Red in the deeper layers are found under superficial areas with 

pronounced keratin autofluorescence. This supports the hypothesis of a fast resorption of 

Texas Red from the hydrogel to the keratinous compartments and a slower diffusion from 

there to the skin tissue underneath. A vertical mismatch of several microns between the 

543 nm excited Texas Red fluorescence and the multiphoton excited endogenous keratin 

fluorescence due to the chromatic aberration of the optics is apparent in all xz-sections. 

 

Discussion 
 

A major challenge in the design of nanoscale drug delivery entities is the 

development of mechanisms which triggers the release of the drug when the nanoparticle 

attains its therapeutic site. For dermal applications such mechanisms may consist of an 

intrinsic recognition element for specific sites or compounds of the skin and a thereby 

controlled release step. Another approach to this end is to modify the particle surface in a way 

that they accumulate at the therapeutic site and to start the drug release by external stimuli 
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like light illumination or the delayed application of a kick-off agent. A pure diffusive release 

of a drug from suspended particles starts at the moment of suspension and after a certain 

storage time the drug is predominantly dissolved in the suspension matrix. Hence this way of 

formulation compromises all advantages of nano particular drug delivery. Since so far no such 

intelligent trigger techniques are established for topical application of nanoscale drug carriers, 

the simple diffusive release mechanism is observed in the present work to demonstrate the 

capabilities of laser scanning microscopy in this field. As a consequence it was found, that the 

major fraction of Texas Red was already released to the gel matrix at the moment of the first 

measurement. This observation demonstrates that diffusive release of drugs from the particle 

cannot be employed for the practical use of nanoscale drug carriers and in general stresses the 

need for the design of intelligent nano carriers with controllable release behavior. The three 

dimensional microscopic and spectral resolution of the utilized techniques showed up to have 

a more versatile potential for the evaluation of such smart nanoparticle formulations than 

conventional penetration study methods. 

In general, multiphoton and confocal microscopy of dually labeled nanoparticles in 

human skin biopsies have been demonstrated to be very suitable techniques to investigate the 

migration, accumulation, release and penetration of nanoparticle-borne drugs in dermal 

application. By different fluorescence spectra of the covalently fixed and the physically 

dissolved dye discrimination between particle-bound and released compounds is possible. By 

performing spectral imaging the quantitative analysis of the release process is much less 

interfered by background emissions and crosstalk errors than in a conventional two detector 

channel study with a dichroic beamsplitter. Furthermore an emission can be attributed to a 

certain compound with a high degree of accuracy by resolving the fluorescence spectrum. 

It was shown, that tracing of even single particles of about 300 nm diameter in the 

gel matrix inside the dermatoglyphs is not a difficult task. The observation depth of 

multiphoton microscopy even in turbid media is on the order of several hundred microns 
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(Centonze and White, 1998) and is mostly limited by the working distance of the applied high 

numerical aperture objectives. Hence single fluorescent nanoparticles should be observable 

within the skin down to the dermis. This is of particular importance if particles are 

investigated, which are able to penetrate the epidermal layers. No penetration of particles into 

the skin was found in the present study. Due to the three dimensional sub cellular resolution 

and the possibility of repeated non-invasive investigations of the same skin area detailed 

information on the penetration pathway of particle-bound and free drug-models are 

accessible. 

Since confocal microscopy with visible excitation does not provide such enhanced 

observation depths, the multitracking technique is primarily adequate for investigations on the 

upper skin layers. Problems may arise from possible lateral mismatches, the chromatic shift of 

the focal planes in case of strongly differing excitation wavelengths and the time lag between 

the single scans. The influences of these interferences have to be carefully regarded in the 

interpretations of multitracking studies. Nevertheless it can be a powerful tool if the applied 

fluorophores are basically excited exclusively by the chosen laser lines, as demonstrated in 

the present study. 

The specimen mounting fulfilled the objectives of keeping the skin sample in place 

with an accuracy of few microns in three dimensions, to avoid desiccation and to minimize 

swelling and shrinking effects. In the present study excised, frozen and thawed human skin 

was used. The properties of a skin specimen treated accordingly will certainly differ from skin 

in vivo and freshly excised biopsies, as e.g. the pH depth profile changes rapidly after excision 

(Wagner et al., 2003) and the endogenous NADH fluorescence of the vital epidermal layers is 

virtually vanished after frozen storage. In spite of these physiological changes permeation 

measurements did not exhibit a changed passage behavior for the investigated compounds 

after frozen storage of human skin, indicating that the non vital superficial layer of the stratum 

corneum was the main penetration barrier (Wagner et al., 2004). A multiphoton microscopy 
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experiment on freshly excised human skin or in vivo could reveal even more detailed 

information on the drug penetration into the vital skin layers, since the cellular 

autofluorescence would allow the allocation of the drug pathways on single cell level. 

By deliberate variation of the fluorescent drug-model, correlations of the microscopic 

penetration behavior with various physicochemical properties of the drug-models could be 

investigated. An intelligent release mechanism providing for a defined initial time of release 

from the nanoscale drug carrier would allow to study the accurate evolution of drug 

concentrations in the diverse skin compartments and to derive a pharmacokinetic model of the 

drug uptake from nano particular formulations. 

Concluding, we demonstrated the benefits of multi-color labeling of biodegradable 

nanoparticles and the intriguing insights into the penetration behavior of particle-borne drugs 

due to the combination with multiphoton microscopy and confocal laser scanning microscopy. 

The usage of two fluorescent dyes of well separated absorption and emission spectra enabled 

the investigation of the transport of a fluorescent drug model in situ. This might be extended 

to multiple loading of nanoparticles with two or more drug models which differ in spectral 

and physicochemical properties for direct comparison. Furthermore relevant pharmaceutical 

compounds with native fluorescence may be investigated as well as intelligent release 

mechanisms. The kinetics of the drug transport from the initial formulation to the 

subcutaneous compartments can be studied in elementary steps, as the enrichment of particles 

in certain dermal sites (Toll et al., 2004), the release of the drug from the particles, its uptake 

into the stratum corneum, the diffusion into the deeper skin layers etc.. The determination of 

the enrichment in dependence of time as well as the visualization of the ‘structured’ diffusion 

process into the skin envisages the potential of this approach. In addition, the covalent label to 

the nanoparticle itself enables the investigator to follow the fate of the nano-carrier, its uptake, 

accumulation or decomposition. This might be very meaningful in particular for the 

exploration of the penetration function of hair shafts. First evidence was observed that these 
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follicles might play an important role (Alvarez-Roman et al., 2004b; Toll et al., 2004; Van 

Kuijk-Meuwissen et al., 1998b). 
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Methods & Material 
 

Materials: 

Poly(L-lactide-co-glycolide) (PLGA) (Resomer RG 50:50 H) was kindly provided by 

Boehringer Ingelheim (Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany). 5-

Fluoresceinamine (FA) and 1-ethyl-3-(3-Dimethylaminopropyl)-carbodiimide hydrochloride 

(DMAP) were obtained from Sigma (Sigma Chemical Co., St. Louis, MO, USA). 

Polyvinylalcohol (PVA) (Mowiol 4-88) was purchased from Kuraray (Kuraray Specialities 

GmbH, Frankfurt am Main, Germany). Texas Red® was provided by Atto-Tec (Atto-Tec 

GmbH, Siegen, Germany). We grateful acknowledge the kind provision of Natrosol® 250 M 

hydrogel (Aqualon, Hercules Inc., DE, USA) by J. Luengo. All other chemicals are of 

analytical grade. 

 

Polymer labeling and preparation of dual color nanoparticles 

FA bound PLGA (FA-PLGA) was prepared based upon the method described by 

Horisawa et al. (Horisawa et al., 2002). Briefly, PLGA (3.07g) and FA (0.0583g) were 

dissolved entirely in 30ml of acetonitrile with 0.0408g of DMAP and incubated at room 

temperature for 24h under light protection and gentle stirring. The resultant FA-PLGA was 

precipitated by the addition of purified water and separated by centrifugation. The polymer 

was rinsed from excessive reagents (dissolution in acetone and precipitation with ethanol in 

terms) and then lyophilized (Alpha 2-4 LSC, Martin Christ Gefriertrocknungsanlagen GmbH, 

Osterode Germany). 

Texas Red nanoparticles were prepared from FA-PLGA employing a single emulsion 

method (oil in water). The emulsion was formed between an organic FA-PLGA solution (2% 
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(w/v) in ethyl acetate) which additionally contained 30µl of a saturated Texas Red solution 

and 5ml of a PVA solution (1% in demineralized water) under stirring on a magnetic stirrer 

for 2h. Then, the emulsion was homogenized using an Ultra-Turrax® T 25 Mixer (Janke und 

Kunkel GmbH & Co., Staufen, Germany) at 13,500rpm and the organic solvent was removed 

by a rotary evaporator. The mean particle size was determined to d = 290±5 nm using 

photocorrelation spectroscopy (Zetasizer®3000HSA, Malvern Instruments GmbH, 

Herrenberg, Germany) and the homogeneity of the particles was verified using scanning 

probe microscopy (BioScope, Veeco, Santa Barbara, USA) (Figure 9). To prepare the 

nanoparticle ointment a Natrosol® gel (3% w/w) was mixed with an aqueous suspension of 

the nanoparticles in a 1:1 ratio. 

 

Skin preparation:  

Excised human skin from Caucasian female patients, who had undergone abdominal 

plastic surgery, was used. The procedure was approved by the Ethical Committee of the 

Caritas-Traegergesellschaft, Trier, Germany (6th July 1998). Adequate health and no medical 

history of dermatological disease were required. After excision the skin was cut into 10 × 10 

cm2 pieces and the subcutaneous fatty tissue was removed from the skin specimen using a 

scalpel. Afterwards the surface of each specimen was cleaned with water, wrapped in 

aluminum foil and stored in polyethylene bags at –26°C until use. Previous investigations 

have shown that no change in the penetration characteristics occurs during the storage time of 

6 months (Bronaugh et al., 1986; Wagner et al., 2004).  

 

Laser Scanning Microscopy: 

The microscopy studies were performed on a versatile laser scanning microscope 

(LSM 510 NLO META, Carl Zeiss Jena GmbH, Germany) for conventional confocal 
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microscopy with multiple excitation laser lines and multiphoton excitation microscopy. 

Herein, the 488 nm laser line of the internal argon ion laser and the 543 nm line of the internal 

helium neon laser were applied for confocal imaging. For multiphoton microscopy a 

femtosecond pulsed titan:sapphire laser at λ = 800 nm with 90 fs pulse width and 80 MHz 

repetition rate (Coherent Vitesse) was coupled into the microscope.  

The META scanning and detection module offers different ways to detect the 

fluorescence light. First, the complete emission is distributed between two sensitive 

photomultiplier tubes (PMT) by means of neutral and dichroic mirrors. Second, the emission 

signal is spectrally dispersed by a diffraction grating and guided on a 32 channel 

photomultiplier array for spectral analysis. Each channel detects a spectral range of about 

10nm in this arrangement. Three different imaging modes were applied in the present study: 

(a) the multiphoton fluorescence mode for the cumulative detection of the emitted 

fluorescence. Here the fluorescence intensity is recorded by one PMT. The laser line is 

blocked by a 650 nm shortpass beamsplitter and a 685 nm shortpass filter. This detection 

mode is the most sensitive one, but any spectral information is lost. (b) In the multiphoton 

spectral imaging mode the emitted light is separated from the laser line by the 650 nm 

shortpass beamsplitter and recorded spectrally resolved by means of the grating and the 

detector array. Each pixel of a spectral image contains the data of the 32 detector channels, so 

that emission spectra for each pixel or for defined areas of the image are accessible. The 

displayed images are true color coded. The spectral data is converted into appropriate RGB 

values. (c) The multitracking mode is actually an overlay of three fluorescence intensity 

images, subsequently acquired at different excitation wavelengths. An overlay procedure with 

two visible excitation laser lines was utilized on similar specimens by Alvarez-Roman et al. 

(Alvarez-Roman et al., 2004a). The excitation wavelengths are chosen to be preferably 

absorbed by exclusively one fluorophore (Figure 4). The 488nm argon ion laser line is 

predominantly absorbed by fluorescein, the 543 nm helium neon laser line by Texas Red 
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exclusively. Two-photon excitation at 800 nm is strong for fluorescein and the endogenous 

fluorophore keratin, but poor for Texas Red. 

Two-photon excitation spectra (Figure 4) were acquired according to a modified 

`excitation fingerprinting´ procedure introduced by Dickinson et al. (Dickinson et al., 2003). 

In contrast to the excitation fingerprinting technique, where the excitation power is kept 

constant for different wavelengths, herein the laser power calibration is adjusted for constant 

photon flux at different wavelengths to yield correct two-photon excitation spectra (Schneider 

et al., 2005). One-photon excitation and fluorescence spectra were acquired with a Hitachi FL 

4500 fluorometer using 50 µM aqueous solutions of fluorescein isothiocyanate (FITC) 

dextran and Texas Red. FITC dextran was used in order to investigate a compound preferably 

akin to FA-PLGA while showing good water solubility. The spectral properties of the 

fluorescein derivatives are almost unaffected by different substituents in the 5-position. 

 

Sample preparation 

For microscopy, disks of 0.8 cm diameter were punched out of frozen skin and 

placed surface-up on a microscopy slide inside a circular vertical spacer. After application of 

the ointment to the skin surface a cover slide was fixed onto the spacer by double-faced 

adhesive tape in a way that the skin surface was gently pressed against the cover slide. This 

setup provides constant specimen thickness and prevents desiccation of the skin sample. The 

observation was performed through the cover slide by means of a 40×/1.3 NA Oil Objective 

(Plan Neofluar, Carl Zeiss Jena GmbH, Germany). 
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Figure Captions 
 

Figure 1: 325 × 325 µm2 multiphoton optical sections of human skin treated with a 

hydrogel suspension of two color labeled nanoparticles. The sub-surface depths of the 

displayed images are (a) –6µm, (b) –9µm, (c) –12µm, (d) –15µm, (e) –24mm, (f) –33µm. The 

keratin autofluorescence clearly shows the surface of the dermatoglyphs. The excitation 

power for the multiphoton optical sections was PEX = 5 mW, the pixel acquisition time tPx = 

3.2 µs. 

 

 

Figure 2: Fluorescence intensity profile of two multiphoton excited nanoparticles in 

situ. The bimodal fit yields a full width at half maximum (FWHM) of 0.5µm. This is a 

reasonable value for the diffraction limited resolution of nanoscale particles under the present 

conditions. 

 

 

Figure 3: 325 × 325 µm2 multiphoton optical sections at a depth of –27µm 15, 50 and 

315 minutes after application of the nanoparticular formulation. 

 

 

Figure 4: One- (solid line) and two-photon (open circles plus B-spline fit) excitation 

spectra are displayed in the left panels. The right panels show the related fluorescence spectra 

of fluorescein isothiocyanate (FITC) dextran (a) and Texas Red (b). All spectra are 

normalized, the one- and two-photon abscissa are aligned for equal transition energies. One 

and two-photon excitation spectra may differ considerably because of the converse selection 
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rules of the related absorption processes. The excitation wavelengths at λ1P = 488 nm and 

543 nm, as well as at λ2P = 800 nm are accentuated by dotted vertical lines. 

 

 

Figure 5: Multiphoton spectral imaging: (a) True color representation of a spectral 

image at z = –21 µm with plots of the ROIs used for spectral analysis. (b) Fluorescence 

spectra series of ROI 1 showing the decline of Texas Red in the gel matrix (including 

particles). The Texas Red content in the particles is low and shows no clear trend as depicted 

in the series of the average spectra of 15 particles per image in (c). Since the Texas Red 

content of the particles does not change significantly, the decline of Texas Red in ROI 1 must 

occur in the gel matrix itself. The excitation power for the multiphoton spectral images was 

PEX = 15 mW, the pixel acquisition time tPx = 3.2 µs. 

 

 

Figure 6: Quantitative spectral analysis of the Texas Red concentration in different 

skin compartments. Scheme (a) shows the baselines and spectral positions used for calculating 

the emission ratios used to determine the relative contents of the drug-model Texas Red in the 

ROIs. Panels (b, c, d) display the temporal evolution of the emission ratios as a measure of 

Texas Red content in the ROIs. In ROI 2 the Texas Red emission at 612 nm is divided by the 

average keratin autofluorescence intensity at 500 nm and 525 nm because of the interference 

of the broad autofluorescence emission with noise effects around 500 nm. 

 

Figure 7: Multitracking experiments: (a, b, c) 325 × 325 µm2 combined optical 

sections in –6, -16 and –32 µm depth. (d) A detail image of particles and skin surface. Each 

panel consists of a multiphoton excited image (predominantly keratin autofluorescence and 
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fluorescein, grey-scale, top left image), a 488 nm excited image (fluorescein, green-scale, top 

right image) and a 543 nm excited image (Texas Red, orange-scale, bottom left image), as 

well as an overlay of which (bottom right image). The excitation powers for the optical 

sections in the multitracking study were PEX(800 nm) = 10 mW, PEX(488 nm) = 50 µW and 

PEX(543 nm) = 36 µW, the pixel acquisition time was always tPx = 3.2 µs. 

 

 

Figure 8: xz-multitracking sections composed from a stack of xy-optical sections 

with 3 µm distance in between. This representation nicely reveals the penetration profiles of 

Texas red into the skin and the correlation of the penetration behavior with skin morphology. 

The color coding is in accordance with Figure 7. 

 

                                                                                                                                                                 

Figure 9: (a) 2×2µm2 scanning force microscopy image of an air-dried aqueous 

suspension of the PLGA nanoparticles on a glass substrate. The image was acquired in the 

tapping mode, 0.2Hz scan speed. The topography from 180nm to 550nm altitude is encoded 

in the grey scale. (b) Histogram of the particle diameter d obtained by photocorrelation 

spectroscopy. The line is a Gaussian fit to the data. 

 



 

Figure 1: 325 × 325 µm2 multiphoton optical sections of human skin treated with a hydrogel suspension of two 

color labeled nanoparticles. The sub-surface depths of the displayed images are (a) –6µm, (b) –9µm, (c) –12µm, (d) 

–15µm, (e) –24mm, (f) –33µm. The keratin autofluorescence clearly shows the surface of the dermatoglyphs. The 

excitation power for the multiphoton optical sections was PEX = 5 mW, the pixel acquisition time tPx = 3.2 µs. 
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Figure 2: Fluorescence intensity profile of two multiphoton excited nanoparticles in situ. The bimodal fit yields a 

full width at half maximum (FWHM) of 0.5µm. This is a reasonable value for the diffraction limited resolution of 

nanoscale particles under the present conditions. 
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Figure 3: 325 × 325 µm2 multiphoton optical sections at a depth of –27µm 15, 50 and 315 minutes after application 

of the nanoparticular formulation. 
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Figure 4: One- (solid line) and two-photon (open circles plus B-spline fit) excitation spectra are displayed in the left 

panels. The right panels show the related fluorescence spectra of fluorescein isothiocyanate (FITC) dextran (a) and 

Texas Red (b). All spectra are normalized, the one- and two-photon abscissa are aligned for equal transition 

energies. One and two-photon excitation spectra may differ considerably because of the converse selection rules of 

the related absorption processes. The excitation wavelengths at λ1P = 488 nm and 543 nm, as well as at λ2P = 

800 nm are accentuated by dotted vertical lines. 
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Figure 5: Multiphoton spectral imaging: (a) True color representation of a spectral image at z = –21 µm with plots 

of the ROIs used for spectral analysis. (b) Fluorescence spectra series of ROI 1 showing the decline of Texas Red in 

the gel matrix (including particles). The Texas Red content in the particles is low and shows no clear trend as 

depicted in the series of the average spectra of 15 particles per image in (c). Since the Texas Red content of the 

particles does not change significantly, the decline of Texas Red in ROI 1 must occur in the gel matrix itself. The 

excitation power for the multiphoton spectral images was PEX = 15 mW, the pixel acquisition time tPx = 3.2 µs. 
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Figure 6: Quantitative spectral analysis of the Texas Red concentration in different skin compartments. Scheme (a) 

shows the baselines and spectral positions used for calculating the emission ratios used to determine the relative 

contents of the drug-model Texas Red in the ROIs. Panels (b, c, d) display the temporal evolution of the emission 

ratios as a measure of Texas Red content in the ROIs. In ROI 2 the Texas Red emission at 612 nm is divided by the 

average keratin autofluorescence intensity at 500 nm and 525 nm because of the interference of the broad 

autofluorescence emission with noise effects around 500 nm. 

 6



 

Figure 7: Multitracking experiments: (a, b, c) 325 × 325 µm2 combined optical sections in –6, -16 and –32 µm 

depth. (d) A detail image of particles and skin surface. Each panel consists of a multiphoton excited image 

(predominantly keratin autofluorescence and fluorescein, grey-scale, top left image), a 488 nm excited image 

(fluorescein, green-scale, top right image) and a 543 nm excited image (Texas Red, orange-scale, bottom left 

image), as well as an overlay of which (bottom right image). The excitation powers for the optical sections in the 

multitracking study were PEX(800 nm) = 10 mW, PEX(488 nm) = 50 µW and PEX(543 nm) = 36 µW, the pixel 

acquisition time was always tPx = 3.2 µs. 
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Figure 8: xz-multitracking sections composed from a stack of xy-optical sections with 3 µm distance in between. 

This representation nicely reveals the penetration profiles of Texas red into the skin and the correlation of the 

penetration behavior with skin morphology. The color coding is in accordance with Figure 7. 
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Figure 9: (a) 2×2µm2 scanning force microscopy image of an air-dried aqueous suspension of the PLGA 

nanoparticles on a glass substrate. The image was acquired in the tapping mode, 0.2Hz scan speed. The topography 

from 180nm to 550nm altitude is encoded in the grey scale. (b) Histogram of the particle diameter d obtained by 

photocorrelation spectroscopy. The line is a Gaussian fit to the data. 
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